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Merci pour les moments conviviaux, pour l’ambiance et l’atmosphère de travail très agréable
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stimulantes, Sami le ”Sniper” pour toutes les parties où tu nous as mis KO, Masha pour notre
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Un énorme ”Big Up” à tous mes amis vivant au loin avec qui j’ai passé des moments
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Abstract

This thesis takes place in extreme value statistics and agricultural insurance frameworks.

For the first line of research, the extreme quantile of a response variable Y ∈ R can often be

linked to a vector of covariates X ∈ Rp. When p is large compared to the sample size n, the

conditional distribution of Y given X becomes difficult to estimate, especially when dealing

with extreme values. The first contribution of this thesis is to propose a new approach, called

Extreme-PLS, for dimension reduction in conditional extreme values settings. This approach

consists in reducing the dimension of X by maximizing the covariance between a linear

combination of coordinates X and Y given large values of Y . We establish the asymptotic

normality of the Extreme-PLS estimator under a single-index model. The second contribution

provides a Bayesian extension to the Extreme-PLS method to address data scarcity problems

in distribution tails. This approach allows to identify the direction of dimension reduction by

introducing a prior information on it. It provides a Bayesian framework for computing the

posterior distribution of the direction, where the likelihood function is obtained from a von

Mises-Fisher distribution adapted to hyperballs. Three prior distributions are considered:

conjugate, hierarchical and sparse priors. Finally, the performance of both approaches is

evaluated on simulated data, and an application on French farm income data is provided as

an illustration.

Regarding the second line of research, climate disruption and market deregulation have

increased and impacted agricultural production. Farmers’ incomes are faced with two main

types of risk related to price and yield volatility. Protection against these risks fall within

a good risk management and thus farmers’ insurance coverage. The third contribution of

this thesis concerns the study and modelling of the dependence structure between crop yield

and price risks using copulas. We also use conditional copulas to take into account the

effect of other covariates such as crop insurance purchase, claims and weather factors. The

last contribution focuses on considering the natural hedge mechanism, i.e. the negative

dependence between yields and prices, in a revenue insurance scheme. We analyse its effect

on the value of the actuarially fair premium on an example of revenue insurance contract

pricing. The results show that a natural hedge is likely to reduce insurance premiums in

France. All studies focus on French farm income data in the cereal (maize and wheat) and

wine sectors.
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Résumé

Cette thèse s’inscrit dans le cadre de la statistique des valeurs extrêmes et de l’assurance

agricole. Pour le premier axe de recherche, le quantile extrême d’une variable réponse Y ∈ R
peut souvent être lié à un vecteur de covariables X ∈ Rp. Lorsque p est grand comparé à la

taille de l’échantillon n, la distribution conditionnelle de Y étant donné X devient difficile

à estimer, surtout lorsqu’on a affaire à des valeurs extrêmes. La première contribution de

cette thèse est de proposer une nouvelle approche, appelée Extreme-PLS, pour la réduction

de la dimension dans le cadre des valeurs extrêmes conditionnelles. Cette approche consiste

à réduire la dimension de X en maximisant la covariance entre une combinaison linéaire

des composants de X et de Y étant donné de grandes valeurs de Y . Nous établissons la

normalité asymptotique de l’estimateur Extreme-PLS sous un modèle à indice unique. La

deuxième contribution est une extension bayésienne de la méthode Extreme-PLS pour traiter

les problèmes de rareté des données dans les queues de distribution. Cette approche permet

d’identifier la direction de la réduction de la dimension en introduisant des informations a

priori sur celle-ci. Elle fournit un cadre bayésien pour calculer la distribution postérieure de

la direction, où la fonction de vraisemblance est obtenue à partir d’une distribution de von

Mises-Fisher adaptée aux hyper boules. Trois distributions a priori sont considérées : loi

conjuguée, hiérarchique et sparse. Enfin, la performance des deux approches est évaluée sur

des données simulées, et une application sur des données de revenus agricoles françaises est

fournie à titre d’illustration.

En ce qui concerne le deuxième axe de recherche, le dérèglement climatique et la dérégula-

tion des marchés ont augmenté et impacté la production agricole. Les revenus des agriculteurs

sont confrontés à deux principaux types de risques liés à la volatilité des prix et des rende-

ments. La protection contre ces risques relève d’une bonne gestion des risques et donc de la

couverture d’assurance des agriculteurs. La troisième contribution de cette thèse concerne

l’étude et la modélisation de la structure de dépendance entre les risques de rendement et

de prix par les copules. Nous utilisons également les copules conditionnelles pour prendre

en compte l’effet d’autres covariables telles que l’achat d’assurance récolte, les sinistres et les

facteurs météorologiques. La dernière contribution porte sur la prise en compte du mécan-

isme de couverture naturelle, c-à-d la dépendance négative entre les rendements et les prix,

dans un système d’assurance des revenus. Nous analysons son effet sur la valeur de la prime

actuariellement juste sur un exemple de tarification de contrat d’assurance revenu. Les résul-

tats montrent qu’une couverture naturelle est susceptible de réduire les primes d’assurance

en France. L’ensemble des études se concentrent sur les données du revenu agricole français

dans les secteurs céréaliers (mäıs et blé) et viticoles.
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Introduction

PhD Context

This PhD is taking place within the cross-disciplinary project CDP Risk@UGA framework.

This project is in line with the Sendai framework for disaster risk reduction 2015-2030, which

encourages states to prevent better and anticipate disaster risks. The PhD was carried out

in the Statify team, a joint team of Inria Grenoble Rhône-Alpes and LJK (Laboratoire Jean

Kuntzmann), in collaboration with CERAG (Center for applied management studies and

research) at Grenoble Alpes University (UGA).

This thesis was supported by the Agence Nationale de la Recherche (ANR) in the framework

of the Programme d’Investissements d’Avenir (ANR-15-IDEX-02). It was also supported by

the Chair Stress Test, Risk Management and Financial Steering, led by the French Ecole

Polytechnique and its Foundation, and sponsored by BNP Paribas.

Farm income risks

In recent years, climate and financial market risks have increased considerably. The agri-

cultural sector is particularly concerned by this evolution since farmers’ income is exposed

to the two main risks of yields and prices. The risk of poor yields is mainly due to natural

perils such as drought, hail, pests, diseases and agricultural techniques used by farmers (Mos-

chini and Hennessy, 2001; Ullah et al., 2016). In contrast, price risk is linked to the inherent

volatility of financial markets (Ortmann et al., 1992; Ullah et al., 2016).

The global food price crisis of 2007-2008 led to an unexpected rise and volatility in food

prices. One of the main causes of this crisis was the production risk linked to severe droughts.

The latter led to a spike in prices, which was exacerbated by some governments imposing

export restrictions (Headey, 2011). International prices for maize and wheat roughly doubled

(see Figure 1). Thus, farmers were faced with production risks due to drought and price

1
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spikes over a short period. On the other hand, the impacts of climate change on agriculture

are constantly increasing. In 2016, cereal crops in France greatly suffered due to adverse

weather and severe drought. These unfavourable weather conditions led to significant yield

declines. In particular, wheat production suffered the most extreme yield loss in over half a

century (Ben-Ari et al., 2018). In 2021, cereal prices sharply increased (see Figure 1) despite

the good volumes of cereals harvested in France. This is due to climatic disruption on the

American continent (drought in Canada), strong international demand and limited harvests

by the main exporters (Russia, United States and Canada).

Figure 1 Prices of Chicago Board of Trade (CBOT) Corn, Soy and Wheat since 2005.
Source: Bloomberg, Rabobank 2021.

Insurance is one of the main risk management tools to cope with these risks. The various

agricultural insurance schemes include yield, price and revenue (Kang, 2007). Yield insur-

ance covers yield losses of a given crop due to any natural risk (Skees et al., 1997; Kang,

2007), while price insurance protects against financial market price risks (e.g. livestock price

insurance in the United States) (Kang, 2007). Revenue insurance provides a joint price and

yield coverage that guarantees farmers a minimum level of income (Hennessy et al., 1997).

The latter takes into account the potential dependence between prices and yields, particularly

the ”natural hedge” effect provided by the inverse relationship. This negative dependence is

extremely important as it moderates revenue variability and influences the demand for risk

management instruments (Finger, 2012). It is also of practical importance in designing insur-

ance contracts (Finger, 2012; Ramsey et al., 2019). So far, revenue insurance is only available

to farmers in countries such as the United States and Canada (Diaz-Caneja et al., 2008).

In contrast, no such products are available for European farmers (Meuwissen et al., 2003).

Insurance schemes in the European Union have focused mainly on yield coverage. However,

insuring yield risk individually offers lower coverage than pooling both risks, including price,
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into a single insurance policy. As for France, it has not yet promoted revenue insurance

despite being the largest agricultural producer in the European Union. Indeed, the current

reform of climate risk management tools in agriculture (bill no. 4758, early January 2022)

concerns the adoption of a universal compensation scheme for climate risks, but still does

not consider the revenue insurance scheme, which covers market risks as well. In addition,

existing insurance policies, such as multi-peril crop insurance, do not provide sufficient cov-

erage despite the important subsidies (Lidsky et al., 2017). Therefore, it seems relevant to

consider a revenue insurance program to protect farmers against extreme weather conditions

and financial markets volatility.

Dependence modelling in the design of revenue insurance

One of the main difficulties in implementing revenue insurance is modelling the dependence

structure between risks. Indeed, premium rates for revenue insurance must be calculated by

considering the joint distribution of yields and prices and the natural hedge they imply. This

dependence is often measured using the Pearson correlation coefficient (Embrechts et al.,

2002; Coble et al., 2000). It is widely known that this correlation is only appropriate for

measuring linear and monotonic relationships. Other non-parametric measures of association

such as Kendall and Spearman rank correlations are alternatives to overcome these limita-

tions (Ramsey et al., 2019). However, these correlations are also limited as they characterise

dependence over the entire risk distribution. In contrast, many risk management questions

focus on the behaviour of the distribution tails. In addition, the design of the revenue in-

surance contract requires the calculation of the premium rates and the probability of loss.

The latter depends on the joint probability distribution of yields and prices. Therefore, the

joint distribution and associated dependence must be calculated using flexible models that

can describe properties such as heavy-tails, extreme co-movement and tail dependence.

Recent research has proposed to use copula functions as a flexible tool to study the de-

pendence between yields and prices. The copulas, introduced by Sklar (1959), combine the

marginal distributions of the variables to form the joint (or multivariate) distribution with the

associated dependence structure. This is important as the range of parametric families of mul-

tivariate distributions available in the statistical literature is not rich enough. Copulas have

widespread applications in risk management, insurance and financial economics. However,

their use has been a recent contribution to the agricultural economics literature (Goodwin

and Hungerford, 2014; Bozic et al., 2014; Fousekis and Grigoriadis, 2017). Only a few works

on its application have been carried out in the context of the revenue insurance design (Zhu

et al., 2008; Ahmed and Serra, 2015; Duarte and Ozaki, 2019). Thus, it would be interesting
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to evaluate how such a programme could be implemented in France: first by using copulas

to model the dependence between risks and then by calculating an actuarially fair insurance

premium.

Conditional extreme values in high dimensions

Extreme value theory is a branch of statistics used to model rare or extreme events with a

very low probability of occurrence. It provides methods to quantify these events and their con-

sequences in a statistical way. Unlike classical statistics, which focus on the average behaviour

of distributions (law of large numbers, central limit theorem, etc.), it is concerned with the

behaviour of the distribution tails. Extreme value theory has been widely used in hydrol-

ogy (Anderson and Meerschaert, 1998; El Methni et al., 2012), reliability (Ditlevsen, 1994),

environmental sciences, such as meteorology (Coles et al., 2003; Gardes and Girard, 2010)

and climatology (Katz, 1999). It also plays an active role in insurance and finance (Embrechts

et al., 2013). Applications also exist in the field of agricultural science (Chuangchid et al.,

2013; van Oordt et al., 2021; Morgan et al., 2012; Mitchell et al., 2020). These applications

usually require the estimation of extreme quantiles, which lies in the tails of distributions.

The extreme quantile of a variable of interest Y ∈ R is often linked to a vector of covari-

ates X ∈ Rp. The goal is being to describe how extreme values of Y may depend on X.

In agricultural risk management, one motivating example is to model the lowest crop yields

depending on a wide range of factors, including agricultural inputs and financial and mete-

orological variables. Thus, the estimation of extreme conditional quantiles and conditional

tail index is an important issue in such applications. The conditional tail index drives the

heaviness of the conditional distribution tail of Y . The existing literature on their estimation

can be divided into three categories: parametric (Smith, 1989; Davison and Smith, 1990),

semi-parametric (Hall and Tajvidi, 2000; Ahmad et al., 2019; Davison and Ramesh, 2000)

and fully non-parametric (Gardes and Girard, 2008b; Daouia et al., 2011; Goegebeur et al.,

2014; Daouia et al., 2013).

In practice, with the increasing volume of stored data, we often face the problem of high

dimensional covariates, i.e. the dimension p of X is very large. In this situation, estimating

the conditional distribution of Y given X becomes difficult if the sample size is small com-

pared to p. This is referred to as the curse of dimensionality. This phenomenon leads to

an exploding variance of the estimators, thus impeding the inference. Therefore it becomes

necessary to combine dimension reduction methods with extreme value theory. In the lit-

erature, only a few recent works have been dedicated to the combination of these two lines
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of work (Gardes, 2018; Xu et al., 2020; Drees and Sabourin, 2021; Aghbalou et al., 2021).

However, these methods require some assumptions, such as conditional independence and

linear conditional expectation. The latter linearity condition is satisfied as soon as X is ellip-

tically distributed. However, in practice, the vector X is not necessarily expected to follow

an elliptical distribution, especially in a high dimensional setting.

High dimensionality raises important problems in the analysis of extreme values. On the

one hand, extreme conditional quantiles and classical estimators become inefficient. On the

other hand, the quality of the estimate is further degraded in extreme value analysis, as the

number of observations in the distribution tails is low. Indeed, the scarcity of extreme events

restricts available data. Thus, the introduction of Bayesian inference is of great interest

when dealing with problems with a small amount of data. Meaningful prior information

provided by experts could improve the quality of inference (Coles and Powell, 1996). Up to

our knowledge, there is no existing work that adopts the Bayesian approach to dimension

reduction in the regression context and conditional extremes.

French farm income database

All the analyses conducted in this thesis use a survey of French farmers belonging to the

Farm Accountancy Data Network (FADN). The data are accounted for each year from a

representative sample of farms with commercial size. This large database provides useful

information such as the balance sheet, income statement, farm expenses, chemical inputs,

characteristics of the farm operator, and the farm structure. We combine this database

with climate and weather information from Météo France weather stations, matched at the

regional level.

Outline of the thesis and contributions

This thesis is structured around five main chapters.

• Chapter 1 presents the state of the art. It recalls some basic concepts and theoretical

results that are useful for the rest of this thesis. First, it provides an overview of agricul-

tural risks types, management tools, and modelling techniques. Secondly, it introduces

the copula model, a necessary tool in the context of farm risks dependence modelling.

Some classical dimension reduction methods to overcome the curse of dimensionality are

discussed. Then, we present an overview of the Bayesian inference. The foundations of

these two approaches will be useful to develop new extreme analysis methods. Finally,

some results of extreme value theory are recalled: asymptotic behaviour of extreme
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values, domains of attraction and quantiles estimation. We also review the literature

on extreme conditional quantiles estimation, as well as on dimension reduction and

Bayesian inference in a conditional extreme setting.

In the context of extreme value statistics and agricultural insurance outlined above, the

thesis addresses the issues raised by providing four contributions presented in the following

chapters:

• In Chapter 2, we develop a new model, called Extreme-PLS, for dimension reduction in

regression and adapted to distribution tails. This approach combines the Partial Least

Squares dimension reduction method and the extreme value analysis. It is developed

in the context of a single-index non linear inverse regression model and heavy-tailed

distributions. More precisely, this approach aims to estimate the dimension reduction

direction by maximising the covariance between a linear combination of covariates X

and Y given Y exceeds a high threshold y. The considered model requires neither a

linear conditional expectation nor an assumption of conditional independence. Then,

we establish the asymptotic normality of our estimator. An iterative procedure to adapt

the approach to the multiple-index situation is also given. We evaluate the performance

of the Extreme-PLS on simulated data, and we show that it performs better than the

proposed estimator of Xu et al. (2020) in some situations. A statistical analysis of French

farm income data is also provided to analyse the smallest cereal yields considering other

factors (pesticides, fertilisers, farm expenses, weather, etc).

• In Chapter 3, we propose a Bayesian formulation of the previous Extreme-PLS model to

identify the direction of the dimension reduction and to introduce prior information on

it. The application of Bayesian inference in this model allows overcoming data scarcity

problems. The proposed approach provides a Bayesian framework for calculating the

posterior distribution of the direction, where the likelihood function is obtained from

a von Mises-Fisher distribution adapted to hyperballs. Some criteria for choosing a

prior distribution are discussed, such as incorporating the sparsity of the directions in a

Bayesian lasso prior. We illustrate the proposed method performance with simulations

and show that it is particularly efficient for small amounts of data. Finally, the model

is applied to analyse the smallest cereal yields on the same dataset as in the previous

chapter.

• In Chapter 4, we apply the statistical tool of copulas to model the joint distribution

of yields and prices and the associated dependence structure. We focus on cereal and

wine production in France, a country that has not yet implemented a revenue insur-

ance program. Various parametric copula models are investigated to model yields and
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prices risks. Goodness-of-fit tests are also performed to select the most suitable copula.

We show that the dependence is relatively high and can be described by the Frank

copula. We also model the dependence structure given other factors such as insurance

and meteorological variables using conditional copulas. We find that extreme weather

conditions strongly affect French cereal and wine income. The analysis shows that ex-

isting insurance contracts do not cover wheat and maize crops sufficiently as their prices

follow world market trends. Finally, these results highlight some implications for the

development of revenue insurance contracts to better hedge cereal farmers.

• Finally, in Chapter 5 we measure the so-called natural hedge, a negative correlation

between prices and yields, in the wheat, maize and wine-growing sectors using copulas.

This mechanism is of great practical importance for the design of revenue insurance, as

its costs and efficiency are strongly related to the degree of the natural hedge. Then,

we quantify the impact of this correlation on the variability of farmers revenue and

insurance premiums. Finally, we analyse its effect on the value of the actuarially fair

premium, on an example of revenue insurance contract pricing. Results show that

natural hedge is likely to reduce insurance premiums in France, particularly for wheat

and wine production. This has direct implications for the design and pricing of revenue

insurance contracts.

We finish with a conclusion and some perspectives on our research work.
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Abstract

This chapter introduces the basic concepts and theoretical foundations for this thesis. First,

we present in Section 1.1 the main types of risks in agriculture, the management tools for

their coverage and the modelling of the underlying risks of farm income. A presentation of

the French farm income dataset is also given. Section 1.2 provides an introduction to copula

models and briefly discusses their estimation, goodness-of-fit tests and conditional copulas.

Classical dimension reduction methods are presented in Section 1.3. Then, we provide an

overview of Bayesian modelling and some inferential techniques in Section 1.4. The last Sec-

tion 1.5 constitutes an introduction to the theory of extreme values in the univariate case.

This part first deals with the asymptotic behaviour of extreme values of a sample. Then it

proposes a characterisation of the distributions associated with the different domains of at-

traction. It also gives some results on the estimation of extreme quantiles. Finally, it provides

the theory of univariate extreme values in the presence of a covariate, in particular the esti-

mation of conditional extreme quantiles, and presents the notion of dimension reduction and

Bayesian inference (seen in Sections 1.3 and 1.4) in an extreme setting.
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Resumé

Ce chapitre introduit les concepts de base et les fondements théoriques de cette thèse. Tout

d’abord, nous présentons dans la Partie 1.1 les principaux types de risques en agriculture, les

outils de gestion permettant de les couvrir et la modélisation des risques sous-jacents du revenu

agricole. Une présentation de la base de données sur le revenu agricole français est également

fournie.La Partie 1.2 présente une introduction aux modèles de copules et aborde brièvement

leur estimation, les tests de qualité d’ajustement et les copules conditionnelles. Les méthodes

classiques de réduction de dimension sont présentées à la Partie 1.3. Nous fournissons en-

suite un aperçu de la modélisation bayésienne et de certaines techniques inférentielles dans

la Partie 1.4. La dernière Partie 1.5 constitue une introduction à la théorie des valeurs

extrêmes dans le cas univarié. Cette partie traite d’abord le comportement asymptotique

des valeurs extrêmes d’un échantillon. Elle propose ensuite une caractérisation des distribu-

tions associées aux différents domaines d’attraction. Elle donne également quelques résultats

sur l’estimation des quantiles extrêmes. Enfin, elle fournit la théorie des valeurs extrêmes

univariées en présence d’une covariable, en particulier l’estimation des quantiles extrêmes

conditionnels, et présente les notions de réduction de dimension et d’inférence bayésienne

(vues en Parties 1.3 et 1.4) dans un cadre extrême.
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1.1 Agricultural income risks and risk management

Agriculture is a sector where farmers are constantly faced with multiple and increasing

risks. These risks are increased due to a range of factors, including the globalisation of com-

modity trade, social and economic change, uncontrollable natural events and climate change

(Duong et al., 2019). The latter involves adverse outcomes, including yields and incomes

variability (Wing et al., 2021), and can also involve catastrophic outcomes at scales beyond

the individual farmer, such as financial bankruptcy, food insecurity and human health prob-

lems. Therefore, farmers must simultaneously face and manage a variety of risks that can

have cumulative effects (Komarek et al., 2020; Ullah et al., 2016). One example is the global

food crisis of 2007–2008 caused by a surge in international cereal prices. This crisis was the

result of a complex interaction of several factors, including excessive speculation on agricul-

tural commodity futures markets and crop failures due to drought (Headey, 2011). All these

factors have negatively impacted farmers who had to cope with production risk, markets risk

and institutional risk due to unexpected changes in government policy. Hence, risks outcome

can trigger cascading effects through another set of risks. Thus, it is essential to understand

these agricultural risks and the options available to mitigate their impacts.

To this end, we start by giving the main types of risks in the agricultural sector in Para-

graph 1.1.1. In Paragraph 1.1.2, we present some of the risk management tools available to

farmers to cope with risks. We focus on the revenue insurance management instrument that

will be presented in Paragraph 1.1.3. Finally, the modelling of risks is discussed in Paragraph

1.1.4.

1.1.1 Main types of agricultural risks

Agricultural risks can be classified into two main categories, according to (Hardaker et al.,

2015), namely business and financial risks as summarised in Table 1.1. Business risk is gen-

erally defined as the uncertainty inherent in the business, regardless of how it is financed (Ei-

dman, 1990). It includes production, market, institutional and human risks. First, the pro-

duction risk arises from the unpredictable nature of weather, climate change, pests, diseases,

technology, machinery efficiency, quality of inputs, fire, theft and other casualties (Anandhi

et al., 2016; Moschini and Hennessy, 2001). Secondly, prices are connected to the global

market and therefore unforeseen factors, anywhere in the world, such as weather conditions

or government measures, can cause dramatic changes in output and input prices. Institu-

tional risks include political risks, sovereign risks, i.e. risks caused by the actions of foreign

governments such as failure to comply with a trade agreement, and contractual risks, i.e.

risks inherent in transactions between trading partners and other commercial organisations.
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Finally, the people who operate the farm can also be a source of risk to the farm business.

Human risk includes personal health and well-being, family and work relationships and em-

ployee management.

In contrast, the financial risk category results from the way that agricultural businesses are

financed (Gabriel and Baker, 1980; de Mey et al., 2016). It includes the cost and availability

of capital and the ability to meet cash flow demands and absorb short-term financial shocks.

The cash flow is particularly important because of various ongoing expenses such as input

costs, tax payments, debt repayment and personal living expenses.

In some studies, variability in crop production and agricultural commodity prices are iden-

tified as the most important source of risk (Ortmann et al., 1992). Thus, the two main risks

related to price and yield volatility will be the focus of interest in the work of this thesis.

The risk of poor yields is mainly due to adverse natural events such as drought, hail, frost,

rainfall, floods, landslide, insect infestation, plant diseases and also to the agricultural tech-

niques implemented by farmers (Goodwin and Hungerford, 2014; Wang et al., 2020; Coble

and Knight, 2002). The price risk is more related to the deregulation of financial markets

(Johnson, 1975; Chavas, 2011), explained by the fact that most European countries have

moved from market-based support to decoupled direct payments. Then, producers are ex-

posed to high price volatilities on world commodity markets (El Benni et al., 2016). Finally,

price and yield are very important sources of risk in agriculture and are among the main

objectives of risk management.

Category Type of risk Causes

Business
Production Weather risks, pests and diseases, technol-

ogy change, yields, etc.
Price or market Output and input price fluctuation, mar-

ket shocks, etc.
Institutional Political, sovereign and contractual risks.
Human/personal Death, illness or injury of farmers or farm

workers.

Financial Financial Loans and credits.

Table 1.1. Summary of risks in agriculture (Hardaker et al., 2015)

1.1.2 Agricultural risk management tools

Risk management in agriculture is very crucial to provide the best coverage of the farmer’s

income and the security of other sectors of the economy (Ullah et al., 2016).

Farmers have several options for coping with yield variability. The first is to control or reduce

risk through the use of inputs and techniques such as fertilisers (Serra et al., 2003), pesti-



1.1 Agricultural income risks and risk management 13

cides (Eidman, 1990), or irrigation which is very effective in minimising the effects of low

rainfall or drought (Foudi and Erdlenbruch, 2012). The second is to reduce production vari-

ability through crop diversification (Finocchio and Esposti, 2008), vertical integration (Whit-

son et al., 1976) or the application of improved technology (Kim and Chavas, 2003). Another

way to manage production risk is to transfer some or all of the risk to someone else. Insur-

ance policies are an effective mechanism for transferring risk (Rejda, 2011; Hardaker et al.,

2015). It provides protection against an adverse event or unexpected loss. For example,

crop insurance is a very important type of insurance that guarantees a level of production,

thus eliminating the risk associated with forward pricing (Velandia et al., 2009). It provides

the financial support to fulfil a commitment if the insured crop suffers a loss before harvest.

Furthermore, a disability policy could also be a good risk management tool to deal with

the potential disability of farmers. There are other types of insurance contracts available

for farmers, including public liability, life, mortality, injuries, health, fire and theft cover for

assets (Rejda, 2011; Hardaker et al., 2015).

Farmers can use futures hedging (Shapiro and Brorsen, 1988), forward contracting (Goodwin

and Schroeder, 1994) and options markets (Makus et al., 1990) to manage the risk of price

volatility. The use of financial hedging measures is also of great importance. This is due to

the fact that financial risk affects the solvency of the firm (debt/equity ratio) or its liquidity

positions (Ullah et al., 2016). To cope with this risk, some financial responses for farmers

include (Eidman, 1990): holding assets for sale to meet cash demands and maintaining liquid

credit reserves, among others.

On the European side, the reform of the Common Agricultural Policy (CAP) in 2013 has

implemented some risk management tools for the member states. These tools include (Gar-

ćıa Azcárate et al., 2016): insurance, mutual funds, savings accounts, Ad-Hoc payments and

fiscal measures. Insurance policies provide farmers with an indemnity, an amount linked to

a certain loss calculation, in case of adverse events. These can be specific events in the case

of single peril crop insurance (for example, hail or frost) or a number of weather events for

combined risk insurance. There are other types of insurance for individual farms (Schaffnit-

Chatterjee et al., 2010). One can mention yield insurance which covers yield losses of a given

crop due to any type of climatic adversity. Multi-peril insurance covers the crop when pro-

duction falls under a certain threshold. Whole-farm yield insurance covers all crops produced

by the farm, except that the farmer is only eligible to indemnity if the overall production

falls under a certain threshold. Revenue insurance combines yield and price coverage, while

income insurance additionally covers production costs.

Mutual funds provide a way for a group of producers to share risk. They are financial reserves

built up from participants’ contributions (a fixed amount independent of the risk) that pro-
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vide compensation in case of major income losses. The Income Stabilisation Tool (IST) is an

important tool that provides financial support to mutual funds, which compensate farmers for

income losses due to production, price and/or cost risks (Hine et al., 2016; Meuwissen et al.,

2018; El Benni et al., 2016). The income loss is defined as a decrease of 30% of the expected

income over the previous three years average or a five years Olympic average (excluding the

highest and the lowest). This mutual fund provides compensation to farmers for a maximum

of 70% of the income loss. Savings accounts are another management tool in which farmers

can deposit part of their annual income into a special account that guarantees interest pay-

ments. Ad hoc payments are provisions that help farmers to rebuild their capital in the case

of catastrophes. Finally, fiscal and tax measures can also lead to income stabilisation. For

example, taxes can be reduced for farmers affected by climatic or market risks.

However, these risk management tools focus mainly on yield variability and neglect price

stabilisation tools, such as futures and forward contracts, options, or revenue contracts that

combine price and yield variations. Indeed, price risks can be hedged in futures and options

markets, which are efficient markets for systemic price risks (Purcell et al., 1991). Neverthe-

less, the use of these markets in Europe is not yet widespread (Meuwissen et al., 2011). The

main reasons are related to the existence of CAP support programmes and farmers’ lack of

education on futures and options markets. As for insurance, it plays a limited role in Europe

regarding price risks (Meuwissen et al., 2018). Indeed, insurance is widely available for per-

sonal and production risks such as yield variability, rather than price variability. Some form

of revenue insurance can be a very useful risk management tool. This type of contract is well

developed in the USA and Canada (Diaz-Caneja et al., 2008), whereas it is not widely spread

in Europe (Meuwissen et al., 2003). For instance, the Farm Bill in the USA comprises several

insurance systems that hedge yield and income losses. Premiums are affordable for farmers

because they are highly subsidised. On the other hand, the IST measure has not yet been

developed in Europe except in three Member States: Hungary, the region of Castilla y Leon

in Spain and Italy (Trestini et al., 2018). Moreover, this instrument could face problems

in setting appropriate income triggers (Finger and El Benni, 2014), information asymme-

tries1 (Meuwissen et al., 2011), production distortions (Mary et al., 2013) and the potentially

huge cost of implementation.

The case of France is particularly interesting as it is the largest agricultural producer in the

European Union (Enjolras and Sentis, 2011). France has set up two risk management tools: a

private crop insurance system, where premiums can be subsidised up to 65%, and a national

public fund for the mutualisation of health and environmental risks (called FMSE2). These

1Information asymmetry occurs when the potential insured knows more about the risk to be insured than
the insurer. It can lead to the dual problems of moral hazard and adverse selection (Meuwissen et al., 2011).

2Fonds de Mutualisation Sanitaire et Environnementale.
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tools have a limited effect, as French producers continue to receive European payments from

the CAP of around 7 billion =C per year, which is disconnected from market and weather

trends (Lidsky et al., 2017). Insurance coverage remains quite low despite the important

subsidies dedicated to multi-peril crop insurance and very recently the creation of a ”contrat

socle3”. Regarding the FMSE, it remains even more limited in scope.

1.1.3 Revenue insurance contract

The design of revenue insurance seems to be a more attractive option to cover the farm

income and cope with future volatility and uncertainty (Hennessy et al., 1997). In particular,

it offers better protection against yield and price risks than current crop insurance policies.

Although France is the largest agricultural producer in the European Union, it has not yet

implemented revenue insurance. Thus, ongoing reforms are encouraging professional bodies

and governments to develop such agricultural insurance products that take into account both

yield and price risks, which are key determinants of revenue. They aim at increasing the

attractiveness of revenue insurance compared to other risk management tools implemented

for different reasons. First, public subsidies for revenue insurance seem justified because the

risk covered is probably systemic, i.e. many farmers are exposed to the risk at the same time,

thus allowing for public transfers (El Benni et al., 2016; Meuwissen et al., 2003). Second,

correlations between prices and yields are implicitly considered by a total farm revenue in-

surance, which seems advantageous compared to single-crop yield or price risk management

instruments (El Benni et al., 2016). Indeed, the relevance of taking risks into account jointly

is manifest in that negative correlation (e.g. low yields with high prices), also called natural

hedge, could lead to a natural stabilisation of the revenue and to low fair premium rates. In

the case of a positive relationship in a low price market (low yields with low prices), revenue

contracts would have higher premiums but will provide better coverage of the producer’s

revenue.

The main issue in implementing revenue insurance is the calculation of an actuarially fair

premium, taking into account the dependence structure between price and yield risks. In

Europe, many research articles focus on actuarial evaluations of potential revenue insurance,

the resulting costs to the government or conceptual studies on issues of adverse selection and

moral hazard (Meuwissen et al., 2003). However, the literature on modelling the dependence

between price and yield risks within the revenue assurance scheme is sparse. One example is

the study of Ahmed and Serra (2015) which evaluated the economic impacts of the implemen-

tation of agricultural revenue insurance in Spain and assessed the dependence between prices

and yields. Therefore, it is relevant to model the interaction between the revenue underlying

3The contrat socle is a kind of reference crop insurance launched in France (Garćıa Azcárate et al., 2016).
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risks, with implications for evaluating the implementation of revenue insurance.

1.1.4 Modelling the underlying risks of revenue insurance

Modelling the dependence between yields and prices is of great concern. It may have impli-

cations for the eventual implementation of revenue insurance that would provide joint price

and yield coverage. The dependence between these risks is often measured using the Pearson

product moment correlation coefficient (Embrechts et al., 2002). This correlation is widely

applied as a measure of linear dependence in multivariate normal (more generally elliptical)

distributions. For instance, Coble et al. (2000) have studied the dependence between these

risks in the context of revenue insurance, using the Pearson correlation coefficient. However,

this correlation suffers from many deficiencies (Embrechts et al., 2002). The independence

of two random variables implies that they are uncorrelated, but a null correlation does not

imply independence unless the distributions are multivariate normal. In addition, the vari-

ance of the variables must be finite, which causes problems when dealing with heavy-tailed

distributions. Also, the correlation is not invariant under non-linear strictly increasing trans-

formations of variables. Non-parametric measures of association such as Kendall and Spear-

man rank correlations are alternative measures of dependence that are invariant to monotone

transformations and does not rely on an assumption of linearity (Schweizer and Wolff, 1981).

The work of Ramsey et al. (2019) used various non linear measures of association, including

Spearman and Kendall correlations to assess the dependence between prices and yields and

to examine the sensitivity of premium rates for all maize producing counties in the US. How-

ever, these measures of correlation are limited since they characterise the dependence over

the entire support of the variables. In contrast, many risk management issues focus on risk

in the distribution tail. Besides, it is highly important that the joint distribution of yields

and prices is formed and evaluated for actuarial purposes (e.g. pricing revenue insurance

contract).

An alternative measure of dependence to overcome these limitations is the use of copula

functions. It is a promising tool, which was originated by Sklar (1959), that combine the

marginal distributions of variables to form the joint distribution (multivariate distribution)

with the dependence structure. This is important because of the scarcity of multivariate

distributions available in the statistical literature. Copulas also allow incorporating both

linear and non-linear dependence and describing properties of extreme values such as heavy-

tails, extreme co-movement, and tail dependence. In the literature, the copula model has been

widely used for risk management, insurance, and financial economics issues. In the case of

agricultural income insurance, its use to model the dependence structure between yields and

prices is relatively recent. Among others, Zhu et al. (2008) assessed the dependence between
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yields and prices of maize and soybean crops using copulas, to provide an efficient insurance

contract for the whole farm revenue. Rusyda et al. (2021) modelled the variability of revenue

risk by implementing a copula towards crop yield and price to provide an alternative method

of multi-crop revenue insurance in Indonesia. Regarding the revenue insurance in Europe,

only one work of Ahmed and Serra (2015), to the best of our knowledge, which used copulas

to jointly model price and yield perils in the orange and apple sectors in Spain.

Regarding individual yield and price modelling, many research papers focus on modelling

individual yields and prices. Samuelson (2015) models prices by a lognormal while Tejeda

and Goodwin (2008) use a Burr distribution. For crop yield modelling, Ozaki et al. (2008) use

the normal and beta parametric distributions and also the non-parametric kernel estimator.

Other parametric techniques have been applied for estimating yield distributions, such as

the gamma distribution (Gallagher, 1986), the lognormal distribution (Stokes, 2000) and the

Johnson Su family (Ramirez et al., 2003). A variety of kernel functions have also been used

in the estimation (Ker and Goodwin, 2000; Ker and Coble, 2003). Classical statistical tools,

including parametric and non-parametric methods, focus mainly on studying the average

behaviour of distributions. Unfortunately, these tools fail to capture tail risks since the basic

statistical measures of risk are based on the average. The underestimation of tail distributions

can lead to inaccurate pricing when designing a revenue or a crop insurance programme and

bias the calculation of indemnities. Indeed, insufficient pricing and/or inadequate coverage of

the insured risk can lead to a series of undesirable effects for the insurer (underestimation of

the risk), and for the government who has to intervene in the case of an agricultural crisis to

save the crop insurance sector (Stokes, 2000). Thus, to overcome the limitations of classical

methods in modelling tail risk, extreme value theory is a powerful statistical framework that

provides many tools to study the extreme tails of distributions. Despite the increasing use

of extreme value theory in several fields, its application to agricultural risk management

related to prices and yields has so far been sparse in the academic literature. For extreme

price risk, van Oordt et al. (2021) applied extreme value approach to estimate the size and

probability of price spikes in agricultural commodities. Morgan et al. (2012) estimated three

tail quantile-based risk measures for corn and soybean production in the US. Fretheim and

Kristiansen (2015) applied the extreme value theory to commodity market risk from 1995 to

2013 using commodity prices of food. An analysis of the estimated shape parameters of the

Generalised Extreme Value distribution (GEV) has been conducted. For extreme yield risk,

the literature has been scarce. One can mention Mitchell et al. (2020) who used a Generalised

Pareto Distribution (GPD) for the estimation of regional highest yields and highest yields as

a function of pending on agricultural inputs. Performing extreme value analyses of yields and

prices depending on other factors such as climate, production costs and agricultural inputs
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would be of great interest.

This thesis tackles the first question by using the copula approach to model the joint

distribution of yields and prices and the associated dependence structure, in the cereal and

wine sector in France. We also focus on modelling the dependence structure depending

on other factors (meteorology and risk management tools). Furthermore, the potential of

implementing a revenue insurance scheme to cope with these risks will be assessed. Then,

this thesis addresses the second issue by developing novel methods based on extreme value

theory to model the conditional tail of price and yield distributions.

1.1.5 French farm income database

The overall work of this thesis is based on farm-level production data from the European

Farm Accountancy Data Network (FADN, RICA-Agreste). Data are accounted for each year

from a representative sample of farms, the size of which can be considered commercial4. FADN

database provides significant accounting and financial information on French professional

farms such as: balance sheet, income statement, crop insurance expenses, agricultural inputs

and characteristics of the farm operator and the farm structure. Within the original database,

we selected farms specialised in wheat, maize and quality wine-growing productions, over an

observable period between 2014 and 2016. The choice of these years is explained by the fact

that French cereal (wheat and maize) production in 2014 and 2015 reached a high record in

a low prices market context. As for 2016, the year was characterised by a drop in harvests

due to spring storms and summer drought, which led to lower yields as well. Our sample

finally includes 6 334 observations of 2 041 farms. We combine the dataset with information

on climate and weather from Météo France weather stations5, matched at the regional level.

In the following we explain the choice of the sectors considered, namely wheat, maize and

wine-growing. Then, we present the weather and the financial conditions of the global markets

over the time period considered and for each crop. Finally, we detail the main explanatory

variables that enter the different analyses of this thesis.

Choice of considered sectors. Wheat is the prominent cereal produced in France. It is mostly

located in the West of France and around the Parisian basin. France is the first European

producer and exporter of wheat and it is ranked fifth largest country in the world in terms

of national wheat production (Ben-Ari et al., 2018). This is due to the very high yields,

about 7.4 t/ha, compared to the world’s four largest wheat producers, such as Russia and

4The commercial size is specified according to Regulation 79/65/EEC of 15 June 1965. The farm must be
large enough to provide a main activity for the farmer and a level of income sufficient to support his or her
family.

5It listed by the French Ministry of Environment, Ecology and Sea, see www.stats.environnement.

developpement-durable.gouv.fr/Eider.

www.stats.environnement.developpement-durable.gouv.fr/Eider
www.stats.environnement.developpement-durable.gouv.fr/Eider
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the United States, which harvest about 5 and 3 t/ha of wheat respectively. Maize is the

second largest crop production in France, cultivated on more than 3 million hectares in 2016.

Thanks to favourable soil and climate conditions and the performance of producers, France

is also the world’s largest exporter of maize seeds (Ben-Ari et al., 2018).

Wine-growing comes in second place after cereals in terms of yields. In terms of wine

production, France occupies the first place worldwide along with Italy and Spain, depending

on years. The production value in France amounts to over 12,4 billion euros (among which

79% for quality wines). French viticulture is a leading production mostly based on family

farms. In spite of the slight decrease of wine consumption every year, prices increase regularly

thanks to exports. The two main concepts related to French quality wines are the concept of

”terroir”6 and the controlled designation of origin system (Appellation d’Origine Contrôlée–

AOC)7.

Weather and market conditions. Weather conditions in autumn 2014 and summer 2015

had very contrasting effects on cereals8. Winter crops such as wheat had high yields, unlike

autumn crops such as maize which suffered from drought and summer heat waves. However,

the French wheat record harvest occurred within an abundant global context. Thus, wheat

price dropped at the same time on global markets. However, the drop of the euro against

the dollar supported the prices of agricultural commodities exchanged in euros. For maize,

despite the decrease in production, global stocks remained high. In 2016, cereal production

suffered greatly in France due to climatic conditions (bad weather in spring and drought in

summer) which led to significant yield decline. Despite the poor harvests in France, cereal

prices remained low, due to the abundance of world production9.

Thanks to mild temperatures in winter and spring 2014, wine production increased by 17%

for AOC wine. At the same time, production stocks at the beginning of the 2014/2015 wine

year were lower than in the previous year (-10%) for all wine categories. Along with a reduced

dynamic of foreign trade, prices of AOC wine felt sharply at the beginning of the year before

stabilising, while they increased for other wines. Year 2015 was characterised by a slight

increase in harvest levels but stable and limited availability, especially for AOC wines. Prices

increased slightly compared to 2014. In 2016, several vineyards were severely affected by

several weather accidents and the impact on harvests was very significant. However, in the

6The concept of ”terroir” was first developed in the 14th century in the Bourgogne region of France, to
identify the qualities of wines in terms of geoclimatic origin and authentic production methods (Whalen, 2009).

7The Appellation d’Origine Contrôlée is a French label that guarantees the place of origin and defines a
set of production requirements to identify the quality.

8See the reports on the agricultural economic situation in France for 2014 https://agreste.agriculture.

gouv.fr/agreste-web/disaron/BilanConj2014/detail/ and 2015 https://agreste.agriculture.gouv.fr/

agreste-web/disaron/BilanConj2015/detail/ (in French).
9See the report on the agricultural economic situation in France for 2016 https://agreste.agriculture.

gouv.fr/agreste-web/disaron/BilanConj2016/detail/ (in French).

https://agreste.agriculture.gouv.fr/agreste-web/disaron/BilanConj2014/detail/
https://agreste.agriculture.gouv.fr/agreste-web/disaron/BilanConj2014/detail/
https://agreste.agriculture.gouv.fr/agreste-web/disaron/BilanConj2015/detail/
https://agreste.agriculture.gouv.fr/agreste-web/disaron/BilanConj2015/detail/
https://agreste.agriculture.gouv.fr/agreste-web/disaron/BilanConj2016/detail/
https://agreste.agriculture.gouv.fr/agreste-web/disaron/BilanConj2016/detail/
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first nine months, prices of AOC wine were dynamic (+7.5% year-on-year), and systematically

above the 2015 prices.

The following table summarises the situation of local crop yields and prices fluctuations in

the global market for cereals and the local market for wine.

Crop Risk 2014 2015 2016

Wheat
Yield + Production rise + Production rise − Production drop
Price − Abundant world

production
− Abundant world

production
− Abundant world

production

Maize
Yield + Production rise − Production drop − Production drop

Price
− Abundant world

production
− Production drop

but high stocks
− Abundant world

production

Wine
Yield + Production rise + Production rise − Production drop
Price 0 Stable prices − Prices drop + Controlled prices

Table 1.2. Crop yields and financial market prices situation of the cereal and wine
sectors from 2014 to 2016. Increase: +, Decrease: −, Same level as the previous
year: 0.

Variables description. We chose a wide range of potential factors, including agricultural

inputs, insurance, production costs and meteorological variables. The list of variables involved

in the work of this thesis is given in Table 1.3.
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Variable Unit Description

Farm specialisation - 3 types (wheat, maize, quality wine-growing)
Gross product Euro Gross product of the considered crop
Gross yield Quintal or hL Gross yield of the considered crop
Harvested acreage ha Cultivated area of the considered crop
Altitude - Altitude of the farm (3 classes)
Yield Quintal or hL/ha Yields divided by the acreage
Price Euro/Quintal or hL Gross product divided by quintals or hectolitres sold
Pesticide Euro/ha Pesticide price/Cultivated area
Fertilizer Euro/ha Fertiliser price/Cultivated area
Crop insurance 1/0 The Farm purchased or not a crop insurance policy
Premiums Euro/ha Crop insurance premiums/Cultivated area
Claims 1/0 The Farm received or not some crop insurance claims
Insurance claims Euro/ha Crop insurance claims received/Cultivated area
Other premiums Euro/ha Other insurance premiums/Cultivated area
Subsidy Euro/ha Farm subsidies/Cultivated area
Seeds and plants Euro/ha Seeds and plants costs/Cultivated area
Works and services Euro/ha Works and services costs/Cultivated area
Income taxes Euro/ha Taxes expenses/Cultivated area
Personal costs Euro/ha Personal social security costs/Cultivated area
Temperature °C Deviation from the average of the last five years
Precipitation mm Deviation from the average of the last five years
Sunshine duration Hour Deviation from the average of the last five years

Table 1.3. Database description
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1.2 Introduction to dependence modelling and copulas

The concept of copulas was introduced in 1959 by Abe Sklar. During the financial crisis

of 2007 and 2008, copulas have come to the attention of the general public due to their use

in the modelling of multidimensional phenomena, mainly in the realm of quantitative risk

management. They are a flexible tool for studying the dependence between several random

variables, with the idea that this dependence should not contain any information from the

marginal distributions of the variables. Their applications are widespread in many fields

such as insurance (Diers et al., 2012), finance (Salmon and Schleicher, 2006), economics

(Wali et al., 2018), hydrology (De Michele et al., 2005), biology (Emura and Michimae,

2017), etc. In agriculture sector, the risks linked to climate disruption and financial market

deregulation are multidimensional and therefore require the joint modelling of several random

variables. Usually, the classical families of bivariate distributions are used to meet this need,

for instance, we can mention the bivariate Normal, Log-normal, Gamma and extreme-value

distributions (Genest and Favre, 2007). The main limitation in such approaches is that the

individual behaviour of each variable has to be characterised by the same parametric family

of univariate distributions. Copula models avoid this restriction and have thus become widely

used in the literature.

In Paragraph 1.2.1, we give the definition of a Copula and some basic properties. Some

dependence measures are provided in Paragraph 1.2.2 and the main classes of copulas are

discussed in 1.2.3. Then, we present some methods to estimate Copulas in Paragraph 1.2.4

and Goodness-of-fit tests in 1.2.5. Finally, in Paragraph 1.2.6, we present Copula conditionally

on covariates.

1.2.1 Definition and basic properties

By definition, a copula is a multivariate distribution function with standard uniform uni-

variate margins. For the sake of simplicity, let us focus on the bivariate case.

Definition 1.2.1. A copula of dimension 2, C(u, v) is a function of [0, 1]2 → [0, 1] such that:

• (Uniform marginals) ∀u, v ∈ [0, 1],

C(u, 0) = 0, C(u, 1) = u,C(0, v) = 0, C(1, v) = v.

• (Increasing) ∀u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− (C(u1, v2)− C(u1, v1)) ≥ 0.
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We consider a pair of continuous random variables X and Y marginally distributed accord-

ing to F (x) = P(X ≤ x) and G(y) = P(Y ≤ y). Let H(x, y) = P(X ≤ x, Y ≤ y) be their

joint distribution function. Sklar’s theorem (Sklar, 1959) is the basis of Copulas and is stated

as follows:

Theorem 1.2.1 (Sklar). There exists a copula C : [0, 1]2 → [0, 1] such that:

H(x, y) = C(F (x), G(y)), for all (x, y) ∈ R2. (1.1)

If F and G are continuous, then C is unique. Otherwise, C is uniquely determined on Ran

F× Ran G (Ran F = support of F ).

Conversely, for any univariate distribution functions F and G and any copula C, the function

H is a two-dimensional distribution function with marginals F and G.

The copula C is the bivariate cumulative distribution function (cdf) of the random vector

(F (X), G(Y )) with uniform margins on [0, 1]. The mappings X 7→ U := F (X) or Y 7→ V :=
G(Y ) are usually referred to as the probability-integral transformations (to uniformity), if

X and Y are continuous, and are standard tools for simulation purposes. Theorem 1.2.1

implies that for a continuous multivariate joint distribution, the margins and the dependence

structure can be uniquely dissociated. Moreover, the dependence structure is represented by

the copula C.

Theorem 1.2.2 (Fréchet-Hoeffding bounds). Let M(u, v) = min(u, v) and W (u, v) = max(u+
v − 1, 0). Thus for every Copula C and every (u, v) ∈ [0, 1]2,

W (u, v) ≤ C(u, v) ≤M(u, v). (1.2)

We refer to M as the Fréchet-Hoeffding upper bound, which represents the perfect positive

dependence copula, and W as the Fréchet-Hoeffding lower bound, representing the perfect

negative dependence (the perfect dependence property is also called co-monotonicity). In

the case of independence, the copula is given by C(u, v) = uv and is denoted by the sym-

bol Π, i.e. Π(u, v) = uv. Moreover, Copulas are invariant under monotonically increasing

transformations of their margins.

1.2.2 Bivariate dependence measures

Several measures of association between the components of a random pair can be consid-

ered, Kendall’s Tau (Nelsen, 2007) [paragraph 5.1.1], and Spearman’s Rho (Nelsen, 2007)

[paragraph 5.1.2] being the most popular ones. The difference between these two coefficients

and the usual ”correlation coefficient” is that the second term refers usually to the linear
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dependence between random variables, for instance Pearson’s correlation coefficient. In con-

trast, these two measures are used rather to measure the ”association”. They are invariant

to strictly increasing functions and can be interpreted as probabilities of concordance minus

probabilities of discordance of two random pairs. Both of them can be written only in terms

of the copula C:

τ = 4E(C(U, V ))− 1 = 4
∫ 1

0

∫ 1

0
C(u, v) dC(u, v)− 1, (1.3)

ρ = 12E(UV )− 3 = 12
∫ 1

0

∫ 1

0
uv dC(u, v)− 3. (1.4)

These two dependency coefficients are equal to 1 when the dependency is positive and per-

fect, −1 when the dependency is negative and perfect, and 0 in the case of independence.

Let us note that ρ coincides with the correlation coefficient between the uniform marginal

distributions. Another measure of association based on concordance called medial correlation

coefficient, was proposed by Blomqvist (Nelsen, 2007) [paragraph 5.1.4], and is given by:

β = 4C
(1

2 ,
1
2

)
− 1. (1.5)

This parameter quantifies the probability that X and Y would jointly exceed their median

value. There is also the tail dependence coefficient to measure the degree of dependence

in the upper right or lower left quadrant of a bivariate distribution. This concept is based

on the study of the dependence between the extreme values. The coefficient of upper tail

dependence of (X,Y ) is given by:

λU = lim
u↗1

P{Y > G−1(u)|X > F−1(u)} (1.6)

= lim
u↗1

1− 2u− C(u, u)
1− u . (1.7)

If λU ∈ (0, 1] then X and Y are said to be asymptotically dependent in the upper tail.

Otherwise, if λU = 0 then they are said to be asymptotically independent in the upper tail.

Similarly, we define the lower tail dependence coefficient:

λL = lim
u↘0

P{Y ≤ G−1(u)|X ≤ F−1(u)} (1.8)

= lim
u↘0

C(u, u)
u

. (1.9)
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1.2.3 Main Copula models

Numerous parametric families of copulas can be found in the literature. Elliptical and

archimedian Copulas are the two most popular models. Elliptical copulas (Frahm et al.,

2003) are built from elliptical distributions thanks to an uniformization of their margins.

The level sets of an elliptical distribution density are ellipses whose shape is determined

by a (kind of) covariance matrix. This family has a lot of properties in common with the

multivariate normal distribution. Important examples in this family are the Gaussian and

the Student copulas.

Definition 1.2.2 (Bivariate Gaussian Copula). The Gaussian copula is defined as:

CGr (u, v) = Φr

(
Φ−1(u),Φ−1(v)

)
(1.10)

Φ−1 and Φr refer to the inverse distribution of the standard normal distribution and the

bivariate standard normal distribution with linear correlation r. Thus,

Φr

(
Φ−1(u),Φ−1(v)

)
= 1

2π
√

1− r2

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
exp

(
−x

2 − 2rxy + y2

2(1− r2)

)
dxdy.

Kendall’s tau and Spearman’s rho for a Gaussian Copula are given by:

τ = 2
π

arcsin r (1.11)

ρ = 6
π

arcsin r2 . (1.12)

There is no explicit form to the distribution function of the bivariate normal distribution.

Moreover, Gaussian Copulas do not catch the dependence in the distributions tails: both the

lower and upper tail dependence parameters λU and λL are null.

Definition 1.2.3 (Bivariate Student Copula). The Student-tr,ν Copula is defined as:

Ctr,ν(u, v) = tr,ν
(
t−1
ν (u), t−1

ν (v)
)
. (1.13)

tν is the distribution function of the univariate Student distribution with ν is degrees of

freedom and tr,ν is the bivariate Student distribution function, with the dependency parameter

r, defined as:

tr,ν
(
t−1
ν (u), t−1

ν (v)
)

=
Γ(ν+2

2 )
2πΓ(ν2 )

√
1− r2

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

(
1 + x2 − 2rxy + y2

ν(1− r2)

)− ν+2
2

dxdy.

To our knowledge, there is no formula that gives the equivalent between the linear cor-
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relation coefficient r and Spearman’s rho for Student distributions. For Kendall’s tau we

have,

τ = 2
π

arcsin r. (1.14)

The lower and upper tail dependence parameters are expressed as

λU = λL = 2tν+1

(
−
√
ν + 1

√
1− r
1 + r

)
(1.15)

In the limit, when ν →∞, the Student Copula tends towards the Gaussian Copula. As with

the Gaussian Copula, the Student Copula has no explicit form.

The family of Archimedean Copulas (Naifar, 2011) is an important class with a large variety

of parametric families and a large possibility of dependence structures (Genest, 1987). They

are determined by a univariate function, called the generator, whatever the dimension is.

Definition 1.2.4. A copula C is said to be Archimedean if there exists a convex, decreasing

function φ : [0, 1]→ [0,∞) such that φ(1) = 0 and

C(u, v) = φ−1(φ(u) + φ(v)). (1.16)

A number of generators have been proposed, involving on one or two parameters and tuning

the dependence strength between the marginals. Table 1.4 gives the generator φ and an

expression for τ and ρ for the three Archimedean models: Gumbel, Frank, and Clayton

(Beck, 2015) [pages 17-21]. The parameter of the Copula is called θ.

Family Generator Parameter Kendall’s tau Spearman’s rho

Gumbel | log(t)|θ θ ≥ 1 [0, 1[ [0, 1[
Frank − log( e−θt−1

e−θ−1 ) θ ∈ R ]− 1, 1[ ]− 1, 1[
Clayton (t−θ − 1)/θ θ ≥ −1 [−1, 1[ ]− 1, 1[

Table 1.4. Three families of Archimedean Copulas with their generator,
parameter space and Kendall’s Tau and Spearman’s rho space.

1.2.4 Estimation of copulas

Starting from a sample (U1, V1), . . . , (Un, Vn) of independent observations from C, Spearman

ρ and Kendall τ can be estimated by its empirical counterparts as

ρ̂ = 12
n

n∑

i=1
UiVi − 3. (1.17)
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τ̂ = 4
n

n∑

i=1
UiVi − 1. (1.18)

Three main approaches have been proposed for estimating copulas: parametric, semi-

parametric and non-parametric methods (Genest and Favre, 2007). First, the parametric

approach is based on the estimation of the parameters(s) θ of the copula assumed to belong

to some parametric family {Cθ, θ ∈ Θ}. The estimation of the parameter(s) θ can be done

for instance using the maximum likelihood method or the method of moments. In the latter

case, θ is estimated by minimizing a given distance between the empirical τ̂ and ρ̂ computed

from Equations (1.17)-(1.18) and the theoretical ones τ(θ) and ρ(θ) calculated according to

Equations (1.3) and (1.4) under the model Cθ.

Second, the semi-parametric approach does not assume that the margins F and G belong

to any parametric family. They are estimated directly by the non-parametric estimator given

by,

F̂ (x) = 1
n+ 1

n∑

i=1
1{Xi≤x}. (1.19)

Then, to estimate the parameter θ, there are two main strategies. The first is based on

maximising a certain likelihood function, and the second is a method of moments based on

dependence coefficients.

Third, to dispense with the assumption that the Copula belongs to a parametric family,

one can use non-parametric approach for estimation (Deheuvels, 1981). Most of methods are

based on the empirical copula defined by,

Ĉ(u, v) = Ĥ
(
F̂−1(u), Ĝ−1(v)

)
, (1.20)

where Ĥ is the estimator of the distribution function H, for example the empirical distribu-

tion function or an estimator constructed using a kernel. F̂−1 and Ĝ−1 are non-parametric

estimators of the quantile function.

1.2.5 Goodness-of-fit tests

Two main techniques can be used to select the copula that fits best a dataset. First,

one can use graphical diagnostics such as Rosenblatt’s transformation (Hofert and Mächler,

2014). The main idea is to transform pairs of data columns towards bivariate standard

uniform distributions under the null hypothesis C ∼ C0 where C is represented by a specific

copula C0. Then, the p-value of an independence test is computed and encoded as background

color (Hofert and Mächler, 2014). This method is usually used in higher dimensions to detect

the pair that violate the null hypothesis.
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Second, one may use a goodness-of-fit test based on Kendall’s distribution function K (also

called multivariate probability integral transformation) (Genest et al., 2009) defined as,

K(t) = P(C(U, V ) ≤ t) =
∫ 1

0

∫ 1

0
1{C(u,v)≤t}dC(u, v). (1.21)

The theoretical Kendall distribution under the null hypothesis (U, V ) ∼ C0 is compared to

its sample version thanks to a Cramér–von Mises statistics (Genest and Favre, 2007) and the

associated p-value is computed. The Cramér–von Mises statistic is given by:

Sn = n

∫ 1

0
{Kn(w)−Kθn(w)}2dw, (1.22)

where Kn is the empirical Kendall distribution function and Kθn denotes the parametric

Kendall cumulative function under the null hypothesis with θn a consistent estimator of its

parameter θ. The computation of p-values requires a bootstrap method to find the underlying

distribution of the statistics Sn under the null hypothesis (i.e when the data are described by

the copula).

1.2.6 Conditional copulas

In some cases, the dependence structure of the random pair (X,Y ) may depend on an

external (possible multivariate) random variable Z. Conditional copulas were introduced to

tackle this issue (Gijbels et al., 2011). Similarly to Equation (1.1), one can write the joint

and marginal distribution functions of (X,Y ) conditionally on Z = z, as:

Hz(x, y) = P(X ≤ x, Y ≤ y|Z = z) = Cz(Fz(x), Gz(y)) (1.23)

where Fz(x) = P(X ≤ x|Z = z) and Gz(y) = P (Y ≤ y|Z = z). In this context, Cz is referred

to as a conditional copula. Starting from a set of observations (X1, Y1, Z1), ..., (Xn, Yn, Zn),
a non-parametric estimator of Cz(u, v) can be considered (Gijbels et al., 2011):

Ĉz(u, v) =
n∑

i=1
wi(z, h)1{F̂z(Xi)≤u,Ĝz(Yi)≤v}. (1.24)

Here, wi(z, h) is a sequence of weights selecting the observations (Xi, Yi) such that the asso-

ciate covariate Zi is close to the estimation point z. The range of the selected points is tuned

by the parameter h called the bandwidth. The margin distributions Fz and Gz are estimated

using similar smoothing techniques:

F̂z(x) =
n∑

i=1
wi(z, h)1{Xi≤x}, Ĝz(y) =

n∑

i=1
wi(z, h)1{Yi≤y}. (1.25)
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The conditional copula can be used to estimate conditional Spearman’s ρ and Kendall’s τ pro-

viding then association measures depending on the covariate Z. As an example, Spearman’s

ρ (1.4) is extended to the conditional framework as

ρ(z) = 12
∫ 1

0

∫ 1

0
Cz(u, v)dudv − 3, (1.26)

and the associated estimator ρ̂(z) is obtained by plugging the estimated conditional cop-

ula (1.24) in the previous Equation (1.26).

1.3 Dimension reduction

Regression analysis is widely used to study the relationship between a response variable Y

and a p-dimensional vector X of covariates starting from a n-sample. When the dimension

p grows, it is well-known that the space becomes sparsely populated with data points. This

issue is referred to as the ”curse of dimensionality”. Thus, in a large dimension setting,

a dimension reduction becomes necessary to overcome the curse and to reveal the most

relevant directions of the high-dimensional covariate space. In the statistical literature, there

are three important classes of dimension reduction methods in regression problems. The

first is the variables selection method, where only a few variables are selected that are truly

related to the response variable Y . Second, the shrinkage approach consists of fitting a model

with all covariates using a technique that regularises or reduces the coefficient estimates

towards zero. Depending on the type of shrinkage (also called regularisation) performed,

some of the coefficients can be estimated as exactly zero. The third approach is called

the projection method, which assumes that Y relates to only a few linear combinations of

covariates. Thus, it is possible that all covariates have an explanatory effect, but only a

few linear combinations represent this effect. First, we briefly introduce in Paragraph 1.3.1

a number of approaches to variables selection. We then describe each of the approaches,

namely shrinkage in Paragraph 1.3.2 and projection methods in Paragraph 1.3.3.

1.3.1 Variables selection

With variables selection, we keep only a subset of the variables that exhibit the strongest

effects and eliminate the rest in the model. There are a number of different strategies for

selecting these variables. Best subset selection is a classical method in statistics which dates

from at least (Hocking and Leslie, 1967; Beale et al., 1967). The stepwise approach is a

method where variables are selected for inclusion or elimination from the model in a sequential

way (Draper and Smith, 1998). There exist many variations of this approach but the two

main ones are: forward selection and backward elimination (Hastie et al., 2001, Chapter 3).
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1.3.2 Shrinkage methods

The problem of dimension reduction is considered through the following regression model:

Y = g(βtX) + ε, (1.27)

where ε ∈ R is the noise, Y is a real random variable, g : Rr → R is a possibly unknown

link function, β ∈ Rp×r are unknown directions. Note that the link function g belongs to a

space of infinite dimension, and in this case this approach is referred to as semi-parametric.

In the literature, this regression model is called Sufficient Dimension Reduction (Cook and

Ni, 2005). This model is guided by a major issue, namely the estimation of the dimension

reduction space. Shrinkage methods aim at reducing the dimension of the covariate by se-

lecting variables that are relevant for the model. The main idea of this approach is to add

a penalty term to the minimisation of the sum of squared residuals, in order to shrink the

small coefficients towards zero while leaving the large coefficients. One can mention Ridge

regression (Hoerl and Kennard, 1970) who shrinks the regression coefficients by imposing a L2

penalty on their size. Considering the regression model (1.27) where g is the linear function

and β ∈ Rp (r = 1), the ridge coefficients minimise the following penalised residual sum of

squares:

β̂Ridge = arg min
β

{
‖Y −Xβ‖22 + λ‖β‖22

}
, (1.28)

where ‖β‖22 = ∑p
j=1 β

2
j is the L2 norm of β and λ ≥ 0 is a tuning parameter that controls

the amount of shrinkage. The larger the value of λ, the greater the amount of shrinkage.

The L2 penalisation has the particularity of not cancelling the β coefficients but rather of

reducing them and making them tend towards 0. This is referred to as the ”shrinking” of the

coefficients. The Lasso method (Tibshirani, 1996) penalises regression coefficients similarly

to ridge regression (Hoerl and Kennard, 1970) but replacing the L2 penalisation by the L1

counterpart. The lasso estimate is defined by:

β̂Lasso = arg min
β

{
‖Y −Xβ‖22 + λ‖β‖1

}
. (1.29)

where ‖β‖1 = ∑p
j=1 |βj | is the L1 norm of β. In contrast to the L2 penalisation, for large

values of the L1 type penalty parameter λ some coefficients of β are set exactly to 0, which

allows the selection of more parsimonious models. An extension of the Lasso method, called

Elastic net, has been proposed in Zou and Hastie (2005) combining the two penalisation

methods presented above. The Elastic Net estimate is defined as follows:

β̂EN = arg min
β

{
‖Y −Xβ‖22 + λ1‖β‖1 + λ2‖β‖22

}
. (1.30)
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Other extensions of Lasso method have been proposed and include for instance Adaptative

Lasso (Zou, 2006) that assigns different weights to different coefficients of β, Fused lasso (Tib-

shirani et al., 2005) which penalises both the coefficients and their successive difference and

Group Lasso (Yuan and Lin, 2006) who uses an intermediate penalty between the L1 and

L2 penalisations which selects variables at group level. Many other shrinkage and variable

selection methods are discussed in Hastie et al. (2001, Chapter 3).

1.3.3 Projection methods

One of the most popular methods is Partial least squares (PLS) regression, introduced

by Wold (1975), that combines characteristics of Principal component analysis (PCA) for

dimension reduction and multiple regression. The development of PLS regression has been

initiated within the chemometrics field, see the reference book Martens and Naes (1992).

Since then, PLS has also received attention in the statistical literature. For example, Helland

(1990) discusses the statistical properties of the PLS procedure under a factor analysis model,

while Frank and Friedman (1993) provides a comparison between PLS and Principal compo-

nent regression (PCR) from various perspectives. See also Cook et al. (2013) for a connection

between PLS regression and envelopes and Chun and Keleş (2010) for a sparse version of PLS.

The basic idea of PLS regression is to seek directions, i.e. linear combinations of X, called

latent variables, coordinates having both high variance and high correlation with Y , unlike

PCR method which only takes into account high variance components (Frank and Friedman,

1993; Stone and Brooks, 1990). Considering the regression model (1.27) where X is centred

and β ∈ Rp×r, the PLS consists in finding latent variables Xβ where β = (β(1), . . . , β(r)) are

solutions of the following optimisation problem:

arg max
‖β(`)‖=1

Cov(Xβ(`), Y ), for ` = 1, . . . , r. (1.31)

The matrix β is obtained via an iterative approach by calculating the regression of Y on the

r constructed centred latent variables.

Sliced inverse regression (SIR) Li (1991) is an alternative method that takes profit of the

simplicity of the inverse regression view of X against Y . It aims at replacing X by its

projection onto a subspace of smaller dimension without loss of regression information. We

consider a generalisation of the model (1.27) in which the noise is not necessarily additive:

Y = g(βtX, ε), (1.32)

where X satisfy the so-called linearity condition. We note that the noise is independent of

X. Given independent observations (yi, xi)1≤i≤n, SIR first divides the range of the y into H
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disjoint slices, denoted as I1, . . . , IH , and computes xh = 1/nh
∑
yi∈Ih xi, where nh is the

number of yi in Ih and h = 1, . . . ,H. Then SIR estimates the variance of the conditional

expectation E(X|Y ) by M̂ = 1/n∑H
h=1 nh(xh − x)(xh − x)t and Cov(X) by the sample

covariance matrix Σ̂. The conditional expectation E(X|Y ) is called the inverse regression

curve which is contained in the dimension reduction subspace. Finally, SIR uses the R

largest eigenvectors of Σ̂−1M̂ , denoted by η̂`(` = 1, . . . , R), to estimate the SDR directions

β(`). Thus, we have β̂(`) = η̂`Σ̂−1/2 where ` = 1, ..., R.

Despite the successful use of SIR for dimension reduction in many applications, it has some

drawbacks. Indeed, only one direction can be obtained as SIR method only uses E(X|Y )
to extract the information in the slice. This information is not sufficient for non-linear

structures. A Generalisation of SIR such as SAVE (Cook and Ni, 2006), among others,

proposed to add second moment information on the conditional distribution of X given Y .

Various extensions of SIR have been proposed. Some of them were developed to perform

dimension reduction and variable selection simultaneously. For instance, Li et al. (2005)

proposed a backward subset selection approach based on Cook (2004) and Li (2007) developed

the sparse SIR to obtain shrinkage estimators of the SDR directions under L1 norm. Other

extensions of SIR have been proposed such as Partial inverse regression handling the p >

n situation (Li et al., 2007), Kernel sliced inverse regression allowing the estimation of a

nonlinear subspace (Wu, 2008), Student sliced inverse regression dealing with non-Gaussian

and heavy-tailed errors (Chiancone et al., 2017), and Sliced inverse regression for multivariate

response (Coudret et al., 2014).

Single-index models provide additional practical tools to overcome the curse of dimensionality,

by modelling the non-linear relationship between Y and X through an unknown link function

and a single linear combination of the covariates referred to as the index, see Horowitz (2009a,

Chapter 2). As such, they provide a reasonable compromise between non-parametric and

parametric approaches. Among the numerous works dedicated to the estimation of the index

and the link function, the most popular are the average derivative estimation method in

the context of kernel smoothing (Härdle and Stoker, 1989; Powell et al., 1989), and the M-

estimation technique based on spline regression (Wang and Yang, 2009; Yu and Ruppert,

2002). One can also mention Kong and Xia (2012); Wu et al. (2010) who considered single-

index models for the estimation of conditional quantiles.

1.4 Bayesian statistics

In statistical modelling, there are two main viewpoints, namely the frequentist approach and

the Bayesian approach. In the frequentist approach, the parameters of a statistical model are
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considered to be unknown fixed constants and one tries to estimate them using observed data

X. In contrast, the Bayesian approach models all unknown parameters as random variables.

The idea behind this approach is that instead of modelling unknown quantities by numbers,

it might be interesting to model them by probability distributions. We consider the following

identifiable statistical model:

P = {Pθ, θ ∈ Θ}, (1.33)

where Θ is a parameter space. The way to formalise the Bayesian approach is to assume

that the unknown parameter θ of the model P is random, with a distribution called a prior

distribution. The latter reflects our prior knowledge and beliefs on the parameter θ. Then,

using the observed data X1, ..., Xn, the Bayesian approach consists in updating the prior

distribution using the information contained in the data. Thus, we obtain a new distribution,

called a posterior distribution, which is the update of the prior distribution once the data

have been observed.

In Paragraph 1.4.1, we introduce the probabilistic inference of the theory of Bayesian mod-

elling. Then, some sampling techniques for implementing Bayesian inference are given in

Paragraph 1.4.2. We refer to the reference book Robert and Casella (2004) to present the

basic elements of the Bayesian approach.

1.4.1 Bayesian inference

We consider a random variable X with values in a space E provided with a σ-algebra E ,

and the statistical model P defined in (1.33) where θ ∈ Θ ⊂ Rd with d ≥ 1 fixed. We suppose

that all Pθ distributions have a density fθ with respect to a positive σ-finite measure µ on E

such that dPθ = fθdµ. Also, suppose that prior knowledge about θ can be formulated and

expressed by a probability distribution Π, with a density function π with respect to a positive

σ-finite measure ν on Θ such that dΠ = πdν. Thus the distribution of observations of X is

conditional on θ and denoted by fθ(x).

Definition 1.4.1 (Bayesian model). A Bayesian model is defined, for a given random variable,

by a likelihood and a prior distribution:

θ ∼ Π (1.34)

X|θ ∼ Pθ. (1.35)

From a Bayesian model, we can calculate the posterior distribution on θ, which is defined

on Θ and denoted by Π[.|X].

Definition 1.4.2 (Posterior distribution). Using Bayes theorem, the posterior distribution has
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a density with respect to ν given by:

fθ|X=x(θ) = fθ(x)π(θ)∫
Θ fθ(x)π(θ)dθ . (1.36)

The function π(θ)fθ(x) is the joint density of (X, θ) with respect to µ
⊗
ν, and the integra-

tion of the latter (denominator) is the marginal distribution density of X.

In the case of a statistical sampling experiment where x = (x1, . . . , xn) are realisations of

X = (X1, . . . , Xn) and Pθ = ⊗n
i=1 Pθ, the posterior distribution has a density with respect

to ν given by:

fθ|X1=x1,...,Xn=xn(θ) =
∏n
i=1 fθ(xi)π(θ)∫

Θ
∏n
i=1 fθ(xi)π(θ)dθ , (1.37)

where
∏n
i=1 fθ(xi)π(θ) is the joint density of (X, θ) with respect to µ

⊗
n⊗ ν. The posterior

distribution can be rewritten as:

fθ|X1=x1,...,Xn=xn(θ) ∝
n∏

i=1
fθ(xi)π(θ). (1.38)

The latter is the product of the likelihood and the prior density.

Note that most of the time µ and ν are taken to be equal to the Lebesgue measure on R, or

to a discrete measure such as counting measure for integers.

Several aspects of the posterior distribution could be of interest and are presented in the

following definition.

Definition 1.4.3. Let X be a random variable, P = {Pθ, θ ∈ Θ}, Π a prior distribution of θ,

and Π[.|X] the corresponding posterior. We define the following quantities, if they exist:

• Posterior mean:

θ(X) =
∫
θdΠ[θ|X]. (1.39)

• Posterior mode: which is a point θ̂m(X) where the maximum of the posterior density

is reached. It is given by:

θ̂m(X) = arg max
θ∈Θ

fθ|X(θ). (1.40)

• Posterior variance: if Θ ⊂ Rd,

v(X) =
∫

(θ − θ(X))(θ − θ(X))tdΠ[θ|X]. (1.41)

• Posterior quantiles: let Θ ⊂ Rd and Fθ|X(.) be the distribution function of the

posterior Π[.|X], which admits a reciprocal function F−1
θ|X . The posterior quantiles are
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defined as, for all t ∈ [0, 1],
qθ|X(t) = F−1

θ|X(t). (1.42)

• Posterior median:

θ̂med(X) = qθ|X(1/2). (1.43)

The choice of a prior distribution is a crucial step in Bayesian statistics. The different

possible choices can be motivated by different points of view. The first one is the choice based

on past experience, expertise of specialists in a certain field or statistician’s intuition. For

example, if we are in financial agriculture field, we will rely on the knowledge of agricultural

experts and farmers to determine a prior distribution. If there are several distinct experts

opinions, they can be weighted using a hierarchical model.

The second choice is based on the feasibility of the calculations. One can mention the notion

of conjugate distributions.

Definition 1.4.4. A family F of a prior distributions is said to be conjugate with respect to

the model P = {Pθ, θ ∈ Θ}, if for any Π ∈ F , the associated posterior distribution Π[.|X]
also belongs to F .

The advantage of conjugate distributions is to simplify the calculations. Another interest

is that the parameters of the a prior distribution are simply updated using the data and thus

the interpretation is much easier.

The last choice is based on uninformative distributions. This is the case where we have little

information about θ, and therefore we can not bring new information that could bias the

estimation. One can choose a prior distribution said to be uninformative. Intuitively, if one

does not want an informative prior, one might think of considering the uniform distribution

on Θ. One can also mention Jeffreys prior distribution (Jeffreys, 1946) which is based on

Fisher information and is invariant by the change of parametrisation.

1.4.2 Bayesian computational methods

Bayesian statistics often require potentially heavy or unfeasible calculations if simple exam-

ples are not used. It is often necessary to use numerical resolution methods which allow to

obtain numerical approximations in reasonable time. Let consider the posterior distribution

presented in (1.37) and denote by I the renormalisation constant:

I =
∫

Θ

n∏

i=1
fθ(xi)π(θ)dθ.
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In practice, the calculation of this integral is potentially problematic, especially when Θ is

high dimensional. The first idea is based on Monte-Carlo method which allows to approximate

numerically this integral. More generally, we aim to approximate:

J = E[h(θ)] =
∫

Θ
h(θ)f(θ)dθ,

where h : Rd → R and f is a density of θ (known) and
∫ |h|f < ∞. Assume that θ1, ..., θN

are i.i.d with the distribution density f . The law of large numbers gives:

ĴN = 1
N

N∑

i=1
h(θi)→

∫

Θ
h(θ)f(θ)dθ = J, (1.44)

almost surely. Moreover, if
∫
h2f < ∞, the central limit theorem gives the asymptotic

normality of the estimator. Three sampling methods are presented here: Acceptance-rejection

algorithm, Importance sampling, Markov Chain Monte Carlo (MCMC).

1.4.2.1 Acceptance-rejection

The standard acceptance-rejection sampling is an important and commonly used general

simulation method. The idea of this method is to generate sampling values from the target

density fθ|X(θ) by using a proposal density ρ(θ) (referred to as candidate also) with a support

Sρ. Thus we can sample from ρ(θ) directly and then ”accept” the samples with the probability

fθ|X(θ)/Kρ(θ) where K ≥ 1 is a constant. For this method to be efficient, K must be carefully

selected, because the expected number of iterations required to accept a candidate is given

by 1/K. Thus, the rejection method is optimized by setting:

K = sup
θ∈Sf

fθ|X(θ)
ρ(θ) ,

where Sf is the support of f such that Sf ⊂ Sρ. We can therefore propose the following

acceptance-rejection algorithm:
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Algorithm 1: Acceptance-rejection algorithm

1. Simulate θ according to the candidate distribution ρ(θ);

2. Simulate u according to the uniform distribution U [0, 1] independently;

3. Test:

if u ≤ f(θ|X)
Kρ(θ) then accept θ ;

otherwise reject θ and go back to step 1 and iterate until the desired number of

realisations is obtained.

1.4.2.2 Importance sampling

Importance sampling is another simulation technique based on so-called importance func-

tions. It is useful when the area of interest may be in a region with a low probability of

occurrence. Indeed, if K is much larger than 1, acceptance-rejection method will generate

many candidates from ρ and eventually reject most of them. Importance sampling overcomes

this problem by sampling from the candidate distribution ρ and then weights these samples

again by fθ|X(θ)/ρ(θ). Given a sample (θ1, . . . , θN ) from the candidate density ρ(θ), the

importance weights is defined as:

q` =
fθ`|X(θ`)
ρ(θ`) ,

where ` = 1, . . . , N . Since the target fθ`|X(θ`) is known only up to a normalising constant,

we can normalize q` such as,
∼
q ` = q`∑N

j=1 qj
.

Then we reweight the sample (θ1, . . . , θN ) by (∼q1, . . . ,
∼
qN ). Finally, we can propose the

following importance-sampling algorithm for ` ∈ {1, . . . , N}:

Algorithm 2: Importance sampling algorithm

1. Simulate θ` according to the candidate distribution ρ(θ);

2. For each θ` compute the importance sampling weight q` =
f
θ`|X(θ`)
ρ(θ`) and then the

normalised sampling weight
∼
q ` = q`∑N

j=1 qj
;

3. Reweight each of the candidates θ` generated from ρ(θ) by
∼
q `.
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1.4.2.3 MCMC

The aim of MCMC methods is to approximate a distribution or an integral using a Markov

chain with invariant measure. Suppose one wants to either simulate according to a distri-

bution of density f , or to evaluate an integral of the type J =
∫
h(t)f(t)dt. One need only

construct a chain (ZN ) of stationary density f . Thus, the distribution of (ZN ), when N

is large, will be close to the density distribution f , while the mean 1
N

∑N
i=1 h(Zi) will ap-

proach the integral J . There exist many MCMC techniques of which two are described here:

Metropolis Hastings and Gibbs. There is many literature about the theory behind MCMC

techniques and on their applications. Introductions are provided by Besag et al. (1995);

Gamerman and Lopes (2006); Besag (2001).

Metropolis-Hastings algorithm. The Metropolis-Hastings method comes from work by Metropo-

lis et al. (1953); Hastings (1970). Let q(.|x) be a collection of conditional densities that we

know how to simulate. For example, one can consider the distribution N (x, v) for q(.|x) with

v a positive constant. In this case, the algorithm is called Random Walk Metropolis-Hastings.

Let fθ|X be the posterior density that we aim to simulate.

Algorithm 3: Metropolis-Hastings algorithm

Suppose that Z1, ..., Zi have been generated. Zi+1 is generated as follows:

1. Generate Y ∼ q(.|Zi);

2. Let r = r(Zi, Y ) such that

r(z, y) = min
(
fθ|X(y)q(z|y)
fθ|X(z)q(y|z) , 1

)
;

3. Set

Zi+1 =




Y with probability r

Zi with probability 1− r.

By construction (ZN ) is a homogeneous Markov chain, since L(Zi+1|Zi = x) depends only

on z and not on i.

Gibbs algorithm. The Gibbs sampling was used by (Geman and Geman, 1984) for models

with the Gibbs distribution and was extended to the general form (Gelfand and Smith,

1990). This algorithm is particularly useful in hierarchical models. Thus, if one knows how

to simulate according to the distributions L(θ|α,Z) and L(α|θ, Z), the Gibbs algorithm allows

to simulate according to an approximation of L(θ, α|Z). For the sake of simplification, we
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suppose that we want to simulate according to the pair (Z, Y ) distribution, in a framework

where it is easy to simulate according to the conditional distributions L(Z|Y ) and L(Y |Z).

Algorithm 4: Gibbs algorithm

Suppose that (Z1, Y1), ..., (Zi, Yi) have been generated. (Zi+1, Yi+1) are generated as

follows:

1. Generate Zi+1 ∼ L(Z|Y = Yi);

2. Generate Yi+1 ∼ L(Y |Z = Zi).

The sequence (Zi, Yi)i≥1 is a homogeneous Markov chain, where L((Z, Y )) is a stationary

distribution. Thus for a large N , the distribution of (ZN , YN ) will be a good approximation

of the distribution of (Z, Y ).

1.5 Extreme Value Theory

Most of classical statistical approaches focus on the study of the average behaviour of ob-

served phenomena using some probabilistic tools such as the well-known central limit theorem.

However, these approaches do not address the behaviour of rare or extreme events found in

the tails of probability distributions. Hence, the extreme value theory comes to study these

events in order to understand and characterise their behaviour. This theory consists in solving

one of the following two problems: (i) first assess the probability of observing the occurrence

of an event whose amplitude is greater than a given sample value, (ii) second determine the

amplitude of the event that is exceeded with a low probability. The first problem concerns

calculating a low probability associated with an extreme event. The second problem is about

quantifying the value of an extreme event (called quantile), i.e. an event whose probability

of occurrence is low by definition. The main results of the extreme value theory are based

on the theorem of Fisher and Tippett (1928) and Gnedenko (1943) on the convergence in

distribution of the maximum value of a sequence of independent and identically distributed

random variables, then on the result of Pickands (1975) on the convergence in distribution of

excesses above a threshold.

We start by studying the asymptotic behaviour of extreme values of a sample, in Para-

graph 1.5.1, by first looking at the law of the maximum of a sample then by considering

the excesses above a given threshold. Then, we give the characterisations of the domains

of attraction, in Paragraph 1.5.2, as well as the definition and some properties of functions

with regular variations. In paragraph 1.5.3, we recall the different methods of estimation

of extreme quantiles. Finally, we consider the presence of a covariate and recall different
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approaches for conditional extreme quantile estimation, in last Paragraph 1.5.4. We also re-

view the literature on dimension reduction and Bayesian statistics in the extreme regression

context in this last paragraph.

1.5.1 Asymptotic behaviour of extreme values of a distribution

We consider n real random variables Y1, . . . , Yn independent and identically distributed

(i.i.d) with a distribution function F (y) = P(Y ≤ y) and a survival function F̄ (y) = 1−F (y).
Let consider Y1,n ≤ · · · ≤ Yn,n the order statistics of the sample. Two order statistics are

particularly interesting for the study of extreme events: the minimum and the maximum

denoted respectively by Y1,n = min(Y1, . . . , Yn) and Yn,n = max(Y1, . . . , Yn). In the following,

we focus on the study of the maximum, since the results for the minimum can be deduced

directly from the results for the maximum by considering the opposite series −Y1, . . . ,−Yn,

according to the following equality:

Y1,n = −max(−Y1, . . . ,−Yn).

The distribution function of the maximum Yn,n is given by:

FYn,n(y) := P(Yn,n ≤ y)

= P(Y1 ≤ y, ..., Yn ≤ y)

=
n∏

i=1
P(Yi ≤ y)

= Fn(y). (1.45)

This result is not useful in practice, since the distribution function F is unknown. However,

from (1.45), we can conclude about the form of the limit distribution of Yn,n when n→∞:

lim
n→∞

FYn,n(y) = lim
n→∞

Fn(y) = 1{y≥yF } =





1 if y ≥ yF
0 if y < yF

(1.46)

where yF = sup{y ∈ R, F (y) < 1} is the endpoint of F . The result (1.46) shows that the

distribution of the maximum Yn,n is degenerated since it reduces to a Dirac mass at yF .

This result provides limited information on the behaviour of Yn,n. Therefore, to find a non-

degenerated limit distribution, we need to transform Yn,n. The simplest transformation that

one can imagine is a normalisation operation. The variable Yn,n is adjusted with a scale

parameter an, assumed positive, and a location parameter bn. In the next pragraph, we state

the theorem that gives the form of the limit distibution of (Yn,n − bn)/an.
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1.5.1.1 Asymptotic behaviour of maximum (GEV)

The works of Fisher and Tippett (1928) and Gnedenko (1943) give the following theorem

which is fundamental in extreme value theory as it establishes the asymptotic distribution of

the normalised maximum.

Theorem 1.5.1 (Fisher–Tippett–Gnedenko). Let (Yn)n≥1 be a sequence of i.i.d random vari-

ables with a distribution function F . Suppose there exist sequences (an)n≥1 > 0, (bn)n≥1 ∈ R

and a non-degenerate distribution Gγ such that ∀y ∈ R:

lim
n→∞

P
(
Yn,n − bn

an
≤ y

)
= lim

n→∞
Fn(any + bn) = Gγ(y),

Then, up to location and scale parameters,

Gγ(y) =





exp
(
− (1 + γy)−1/γ

+

)
if γ 6= 0

exp (− exp (−y)) if γ = 0,
(1.47)

where γ ∈ R and z+ = max(0, z).

The above theorem is an equivalent of the central limit theorem for the maximum of n i.i.d.

random variables. It states that the asymptotic behaviour of the renormalized maximum Yn,n

is governed by a single distribution Gγ called the Generalized Extreme Value distribution

(GEV). The GEV distribution is based on a shape parameter γ, called the extreme-value

index or the tail-index, which characterises the behaviour of the tail of the distribution of F .

We distinguish three different forms for the law of Gγ , according to the sign of γ, which are

called domains of attraction:

• if γ > 0, F is said to belong to the Fréchet domain of attraction (Fréchet, 1927), denoted

by D(Fréchet). This domain of attraction includes distributions with heavy tails such as

Pareto, Student, Burr, Fréchet, whose survival function decreases as a power function.

• if γ = 0, F is said to belong to the Gumbel domain of attraction (Gumbel, 1958),

denoted by D(Gumbel). This domain of attraction contains distributions with light

tails such as Gaussian, Exponential, Gamma, Weibull, whose survival function decreases

exponentially fast.

• if γ < 0, F is said to belong to the Weibull domain of attraction (Weibull, 1951),

denoted by D(Weibull). This domain of attraction includes distributions with short

tails such as Beta, ReverseBurr, Uniform, which have a finite endpoint.

Several examples of distributions per domain of attraction are available in Embrechts et al.

(2013) page 145.
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Considering only the sample maximum to model the behaviour of the extreme values leads

to a loss of the information contained in the other large values of the sample. The method

of excesses over a high threshold is an alternative to the GEV approach based on the large

values of the sample.

1.5.1.2 Asymptotic behaviour of excesses over threshold (POT)

The excesses over a high threshold approach, called also Peaks-Over-Threshold (POT),

consists in keeping only the observations that exceed a certain threshold. We assume a

sample of random variables i.i.d Y1, . . . , Yn and define a fixed threshold u(u < yF ). Let us

consider Nu observations Yi1 , . . . , YiNu exceeding the threshold u and define the excesses over

the threshold u by Zj := Yij − u with j = 1, . . . , Nu. We denote by Fu the distribution

function of the excess Z above the threshold u defined as follows, for y ≥ 0:

Fu(y) = P(Z ≤ y|Y > u) = P(Y − u ≤ y|Y > u) = F (u+ y)− F (u)
1− F (u) ,

or equivalently for the survival function:

F u(y) = P(Z > y|Y > u) = 1− Fu(y) = F (u+ y)
F (u)

. (1.48)

The works of Balkema and de Haan (1974) and Pickands (1975) give the following theorem

that establishes the existence of a limit distribution for excesses when the threshold u is close

to the endpoint yF .

Theorem 1.5.2 (Pickands–Balkema–de Haan). The distribution function F belongs to the

maximum domain of attraction Gγ if and only if there exist σ > 0 and γ ∈ R such that:

lim
u→yF

sup
y∈(0,yF−u)

|Fu(y)−Hγ,σ(y)| = 0,

where Hγ,σ is the Generalized Pareto Distribution (GPD) defined as follows:

Hγ,σ(y) =





1− (1 + γ yσ
)−1/γ

if γ 6= 0
1− exp

(− y
σ

)
if γ = 0,

(1.49)

with y ∈ R+ and 0 ≤ y ≤ −σ
γ if γ < 0.

The above Theorem presents an equivalent to Theorem 1.5.1 and establishes the convergence

in distribution of excesses over a high threshold to a GPD Hγ,σ(y).
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Remark 1.5.1.

1. When γ = 0, Hγ,σ(y) corresponds to the Exponential distribution with parameter 1/σ.

2. When γ = −1, Hγ,σ(y) corresponds to the Uniform distribution on [0, σ].

3. The tail-index γ is identical for both distributions GEV and GPD.

In the following paragraph, we give the conditions for F to belong to one of the three

previously defined domains of attraction.

1.5.2 Characterisation of domains of attraction

First, we recall the notions of slowly varying functions and regularly varying functions which

will be useful for the characterisation of the three domains of attraction. Several detailed

results on functions with regular variations are given in Bingham et al. (1987).

1.5.2.1 Slowly varying functions

Definition 1.5.1. A Lebesgue measurable function ` > 0 is slowly varying at infinity, denoted

by ` ∈ RV0, if ∀λ > 0:

`(λy)
`(y) → 1 as y →∞.

We can characterise slowly varying functions more precisely using the following representa-

tion of Karamata (Bingham et al., 1987)[Theorem 1.3.1].

Theorem 1.5.3 (Karamata’s representation). The function ` is slowly varying if and only if

it may be written in the form

`(y) = c(y) exp
{∫ y

a

ε(u)
u

du

}
,∀y ≥ a > 0,

where ε(.), c(.) are measurable and c(y)→ c0 ∈ (0,+∞), ε(y)→ 0 as y →∞.

If the function c is constant, the function ` is said to be normalized and it is differentiable

with derivative `′ for all y > 0,

`′(y) = ε(y)`(y)
y

.

In particular, we have y`′(y)/`(y) = ε(y)→ 0 as y →∞.

Using the representation Theorem 1.5.3, one can mention some specific examples of functions

with slow variations at infinity: for instance, the logarithm function `(y) = log y, the iterates

`(y) = log log y, or functions of the form `(y) = exp(log(y)d) with 0 < d < 1.
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Finally, we recall some elementary properties of slowly varying functions, see Bingham et al.

(1987)[Proposition 1.3.6].

Proposition 1.5.1.

1. If ` ∈ RV0, then log `(y)/ log(y)→ 0 as y →∞.

2. If ` ∈ RV0, then ∀α ∈ R, (`(y))α ∈ RV0.

3. If ` ∈ RV0 and α > 0, then

yα`(y)→∞ and y−α`(y)→ 0 as y →∞.

4. If `1 and `2 vary slowly, then `1 + `2 ∈ RV0 and `1`2 ∈ RV0. Moreover, if `2(y) →
∞ as y →∞, then `1 ◦ `2 ∈ RV0.

1.5.2.2 Regularly varying functions

Regularly varying functions characterise functions that behave like a power function at

infinity. Let us recall the definition of a regularly varying function (Bingham et al., 1987)[Page

18].

Definition 1.5.2. A Lebesgue measurable function f > 0 is called regularly varying with index

ρ ∈ R at infinity, denoted by f ∈ RVρ, if ∀λ > 0:

f(λy)
f(y) → λρ as y →∞. (1.50)

We note that if ρ = 0, then f ∈ RV0, i.e f is a slowly varying function at infinity (see

Paragraph 1.5.2.1). Besides, any regularly varying function of index ρ ∈ R can be written

as f(y) = yρ`(y), with ` ∈ RV0. Some examples of regularly varying functions with index ρ

are: f(y) = yρ and f(y) = yρ(log(y))γ , f(y) = yρ(log log(y))γ , for y > 1, ρ ∈ R and γ ∈ R.

An important result is given in the following theorem, stating that convergence in (1.50) is

uniform on each interval of (0,∞) (see de Haan and Ferreira (2007)[Theorem B.1.4]).

Theorem 1.5.4. If f ∈ RVρ, then for all 0 < a < b <∞:

f(λy)
f(y) → λρ as y →∞ , uniformly in λ ∈ [a, b]. (1.51)

Some properties of regularly varying functions are presented in the following proposition

(we refer to de Haan and Ferreira (2007)[Proposition B.1.9]).
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Proposition 1.5.2.

1. If f ∈ RVρ, then log f(y)/ log(y)→ ρ as y →∞. This implies

lim
y→+∞

f(y) =





0 if ρ < 0
+∞ if ρ > 0.

2. If f ∈ RVρ and α ∈ R, then (f(y))α ∈ RVαρ.

3. If f1 ∈ RVρ1 and f2 ∈ RVρ2, then f1 + f2 ∈ RVmax(ρ1,ρ2). Moreover, if f2(y) →
∞ as y →∞, then f1 ◦ f2 ∈ RVρ1ρ2 .

4. Suppose F (y) =
∫ y

0 f(t)dt. If F ∈ RVρ with ρ 6= 0 and f is monotone at infinity, then

f ∈ RVρ−1.

5. If f ∈ RVρ, with ρ ≥ −1, is integrable on finite intervals of R+, then
∫ y

0 f(t)dt ∈ RVρ+1.

Besides, if f ∈ RVρ, with ρ < −1, then
∫∞
y f(t)dt ∈ RVρ+1.

6. (Potter Bounds) Suppose f ∈ RVρ and δ1 > 0, δ2 > 0. Then, there exists t0 > 0 such

that for t ≥ t0, ty ≥ t0,

(1− δ1)yρ min(yδ2 , y−δ2) < f(ty)
f(t) < (1 + δ1)yρ max(yδ2 , y−δ2).

Statements 4 and 5 of Proposition 1.5.2 characterise the derivative and the primitive of

a regularly varying function. They indicate that the derivative or primitive of a regularly

varying function of index ρ is usually also a regularly varying function, but of index ρ− 1 or

ρ+ 1. The following proposition concerns the limit of yf ′(y)/f(y) with f ∈ RVρ.

Proposition 1.5.3. Let F (y) =
∫ y

0 f(t)dt, with derivative f(y). If F ∈ RVρ, ρ ∈ R, and f is

monotone at infinity, then yf(y)/F (y)→ ρ as y →∞.

Potter bounds in the statement 6 of Proposition 1.5.2 can be used to prove that regularly

varying functions preserve equivalences:

Proposition 1.5.4. If f ∈ RVρ, with ρ ∈ R, un →∞ and vn∼un as n→∞, then f(vn)∼f(un)
as n→∞.

Let us recall that the generalised inverse of an increasing function f is defined as:

f←(y) = inf{t, f(t) ≥ y}, (1.52)

and it coincides with the classical inverse f−1 when f is continuous and strictly increasing.
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Proposition 1.5.5.

1. If f ∈ RVρ with ρ > 0, then f←(·) ∈ RV1/ρ.

2. If f ∈ RVρ with ρ < 0, then (1/f)←(·) ∈ RV−1/ρ.

1.5.2.3 Fréchet domain of attraction

We recall that the Fréchet domain of attraction contains heavy-tailed distributions, i.e.

distributions whose survival function decreases as a power function.

Theorem 1.5.5. The distribution function F is in the Fréchet domain of attraction, F ∈
D(Fréchet), with index γ > 0, if and only if the endpoint yF = ∞ and F ∈ RV−1/γ, i.e

∀y > 0:
F (ty)
F (t)

→ y−1/γ , as t→∞.

Using Proposition 1.5.5, F ∈ D(Fréchet) can be rewritten as:

F (y) = 1− y−1/γ`(y) with ` ∈ RV0. (1.53)

The normalisation sequences an and bn are given by:

an = F←(1− 1/n) , bn = 0.

Note that all distribution functions belonging to the Fréchet domain of attraction have an

infinite endpoint. Besides, a characterisation of the quantile function in the Fréchet attraction

domain can be obtained by: q(α) := F←(1− α) with α ∈ (0, 1). Using Proposition 1.5.5, we

can show that expression (1.53) is equivalent to:

q(α) = α−γ`(α−1), with ` ∈ RV0. (1.54)

Finally, the Fréchet domain of attraction only contains heavy-tailed distributions such as

Pareto, Student, Burr, Fréchet, Log-gamma, Cauchy, etc. It is used in several applications

including meteorology (Gardes and Girard, 2010; El Methni et al., 2014), hydrology (Anderson

and Meerschaert, 1998; El Methni et al., 2012) and insurance (Matthys et al., 2004; Ahmad

et al., 2019).

1.5.2.4 Weibull domain of attraction

It is recalled that distributions belonging to the Weibull domain of attraction have a short

tail with finite endpoint yF .
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Theorem 1.5.6. The distribution function F is in the Weibull domain of attraction, F ∈
D(Weibull), with extreme-value index γ < 0, if and only if the endpoint yF < ∞ and the

distribution function F∗ defined by:

F∗(y) =





0 if y ≤ 0
F (yF − 1/y) if y > 0,

(1.55)

belongs to the Fréchet domain of attraction with index −γ > 0, i.e

∀y > 0, lim
t→∞

F (yF − 1/(ty))
F (yF − 1/t)

= lim
t→∞

F ∗ (ty)
F ∗ (t)

= y1/γ .

Thus, a distribution function F ∈ D(Weibull) can be written as, for y ≤ yF :

F (y) = 1− (yF − y)−1/γ`((yF − y)−1), (1.56)

where ` ∈ RV0. Besides, a possible choice of normalizing sequences (an) and (bn) is:

an = yF − F←(1− 1/n) , bn = yF .

In addition, a characterisation of the associated quantile function is given by:

q(α) = yF − α−γ`(1/α), with ` ∈ RV0 and α ∈ (0, 1). (1.57)

Finally, the Weibull domain of attraction includes short tails distributions as for example

Uniform, Beta, ReverseBurr. It is used in many applications such as the estimation of the

maximal life span of humans (Aarssen and de Haan, 1994) or in hydrology (Durrans, 1996).

This domain of attraction has also been considered by Falk (1995); Hall and Park (2002);

Girard et al. (2012) for the estimation of the endpoint yF .

1.5.2.5 Gumbel domain of attraction

The Gumbel domain of attraction contains light-tailed distributions, i.e distributions whose

survival functions decrease exponentially fast. This domain covers a wide range of distribu-

tions which are difficult to characterise in a simple way.

Theorem 1.5.7. The distribution function F is in the Gumbel domain of attraction, F ∈
D(Gumbel), with index γ = 0, if and only if there exists t < yF ≤ ∞ such that:

F (y) = c(y) exp
{
−
∫ yF

t

g(t)
a(t)dt

}
, t < y < yF , (1.58)
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where c, g are measurable and a, c and g are three functions verifying a′(y)→ 0, c(y)→ c > 0
and g(y)→ 1 as y → yF .

A possible choice of the normalizing constants is:

an = q(1/n) = F←(1− 1/n) , bn = 1
F (an)

∫ yF

an
F (t)dt.

It is difficult to characterise the quantile function of distributions belonging to the Gumbel

attraction domain. The result of Theorem 1.5.7 gives a precise characterisation of F (see

(Resnick, 1987)[Proposition 1.4]), but it is difficult to implement for quantiles which reflects

the complexity of this domain. However, we can find in the literature several characterisa-

tions proposed for subfamilies of distributions derived from the latter such as the family of

distributions with a Weibull tail (Galambos, 1977; Girard, 2004; Gardes et al., 2011; Gardes

and Girard, 2013). This family includes several usual distributions, including the Gaussian,

Exponential, Gamma and Weibull.

Definition 1.5.3. The distribution function F is said to have a Weibull tail if there exists

β > 0 such that ∀y > 0,
− logF (ty)
− logF (t)

→ y1/β as t→∞.

The shape parameter β > 0, called Weibull tail-index, controls the decay of the tail. Thus,

the survival function of a Weibull tail distribution can be given by:

F (y) = exp
(
−y1/β`(y)

)
with ` ∈ RV0. (1.59)

A characterization of the associated quantile function can also be obtained:

q(α) = (− log(α))β`(− log(α)) with ` ∈ RV0 and α ∈ (0, 1). (1.60)

This family of distributions is used in many applications such as insurance (Beirlant and

Teugels, 1992), hydrology (Gumbel, 1941; Diebolt et al., 2008), Bayesian neural network

models (Vladimirova et al., 2020).

1.5.2.6 General characterisation of maximum domains of attraction

A common characterisation of the three previous domains of attraction is given in the

following theorem (see (de Haan and Ferreira, 2007)[Theorem 1.1.6]).

Theorem 1.5.8. For γ ∈ R the following statements are equivalent:
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1. There exist (an)n≥1 > 0 and (bn)n≥1 ∈ R such that for y > 0 with 1 + γy > 0:

Fn(any + bn)→ Gγ(y) = exp
(
−(1 + γy)−1/γ

)
, as n→∞.

2. There exists a positive function a such that for y > 0:

lim
t→∞

q(1/(ty))− q(1/t)
a(t) =





yγ−1
γ if γ 6= 0

log y if γ = 0.
(1.61)

3. There exists a positive function f such that for y > 0 with 1 + γy > 0:

lim
t↑yF

F (t+ yf(t))
F (t)

=





(1 + γy)−1/γ if γ 6= 0
e−y if γ = 0.

(1.62)

Once we have seen how to model the behaviour of the extreme values of a sample through

the GEV and GPD approaches, now we focus on the estimation of extreme quantiles.

1.5.3 Estimation of extreme quantiles

We begin by defining the notion of quantiles and extending it to extreme quantiles before

discussing their estimation.

Definition 1.5.4. The quantile q of order α associated with the distribution function F is

defined by:

q(α) := F←(1− α) = inf {y, F (y) ≥ 1− α} with α ∈ (0, 1), (1.63)

where F← represents the generalized inverse of F .

We refer to an extreme quantile if we replace its order α by a sequence αn → 0 when

n→∞.

Definition 1.5.5. The extreme quantile q of order αn associated with the distribution function

F is defined by:

q(αn) := F←(1− αn) with αn → 0 when n→∞. (1.64)

In the context of insurance and finance, an extreme quantile can be interpreted as the

”Value-at-Risk” of an extreme loss (McNeil et al., 2005), or as the return level in hydrology

associated with a climatic event (Jagger and Elsner, 2006; Coles et al., 2003).

Statistically speaking, problem (ii), posed at the very beginning of the Paragraph 1.5, relates
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to the estimation of a small probability, or equivalently in hydrology to a return period10.

As for problem (i), it refers to the estimation of an extreme quantile or return level11 in

hydrology. Now, one can ask what is the probability that the extreme quantile is greater

than the sample maximum?

Since the random variables are i.i.d and F is continuous, then when αn → 0, this probability

is written as:

P(Yn,n < q(αn)) = P
(

n⋂

i=1
{Yi ≤ q(αn)}

)

=
n∏

i=1
P(Yi ≤ q(αn))

= Fn(q(αn))

= (1− αn)n

= exp(n log(1− αn))

= exp(−nαn(1 + o(1)).

Thus, we see that the probability that the extreme quantile is greater than the sample maxi-

mum depends on the asymptotic behaviour of nαn. Therefore, one must distinguish between

two cases depending on the speed of convergence of αn → 0.

In the first case, when nαn → ∞, then P(Yn,n < q(αn)) → 0. The quantile to be estimated

is with high probability within the sample. We are in the case where αn converges slowly

to 0. The estimation of the extreme quantile can be achieved thanks to an interpolation

within the sample. The bnαncth largest observation can be the estimator of this quantile,

i.e q̂(αn) = Yn−bnαnc,n. This estimator is obtained by inverting the empirical distribution

function:

Fn(y) = 1
n

n∑

i=1
1{Yi≤y},

and this latter is asymptotically Gaussian (see de Haan and Ferreira (2007)[Theorem 2.2.1]).

In the second case, when nαn → 0, then P(Xn,n < q(αn))→ 1. The quantile to be estimated

is with high probability outside the sample. The inversion of the empirical distribution func-

tion can not be used to estimate q(αn) since F̂n(y) = 1 for y ≥ Yn,n. In the case where αn

converges quickly to 0, this requires extrapolating out of the sample to estimate q(αn).
In extreme value theory, there exist three different approaches to estimate the extreme quan-

tile: GEV, GPD and semi-parametric methods.

10The return period function is given by: T (y) = 1/F (y).
11The return level function can be defined as the inverse of the return period: y(T ) = F←(1 − 1/T ). It

represents the level that is exceeded with return period T .
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1.5.3.1 GEV approach

To estimate the quantile q(αn) with GEV approach, we use Theorem 1.5.1. One has the

following approximation

P (Yn,n ≤ any + bn) = Fn(any + bn) ' Gγ(y), (1.65)

which can be rewritten as:

n log
(
1− F (any + bn)

)
' logGγ(y).

when n → ∞. Since F (any + bn) → 0, as any + bn → yF when n → ∞, one can use the

Taylor expansion of log(1 + y) to first order and a change of variable. Thus, we have

F (y) ' − 1
n

logGγ
(
y − bn
an

)
.

Using the expression for Gγ given in (1.47), we obtain

F (y) '





1
n

(
1 + γ

y − bn
an

)−1/γ
if γ 6= 0

1
n

exp
(
−y − bn

an

)
if γ = 0,

(1.66)

an approximation of the distribution tail of F . Then, we can approximate the quantile q(αn)
by inverting the equation (1.66) and we get:

q(αn) '



bn + an

γ

((
1

nαn

)γ
− 1

)
if γ 6= 0

bn − an log(nαn) if γ = 0.
(1.67)

From the above approximation, we can obtain an estimator of the extreme quantile, defined

as follows:

q̂GEV (αn) =




b̂n + ân

γ̂n

((
1

nαn

)γ̂n − 1
)

if γ 6= 0

b̂n − ân log(nαn) if γ = 0,
(1.68)

where ân, b̂n and γ̂n are respectively estimators of the unknown parameters an, bn and γ.

In order to estimate these parameters, Gumbel (1958) proposes the block maxima approach.

The idea of the latter is to divide the sample into m disjoint blocks of approximately equal

size. For each of these blocks, the largest observation is considered. Thus, we obtain a

sample of block maxima whose siqtribution can be approximated by a GEV distribution (see

equation (1.47)). Hence, the parameters an, bn and γ can be estimated by several methods

proposed in the literature. One can mention two well-known methods, the first is maximum
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likelihood (Prescott and Walden, 1980, 1983), and the second is weighted moments (Hosking

et al., 1985). The method of weighted moments is more popular because it gives better results

than the method of maximum likelihood on small samples. In addition, weighted moment

estimators have an analytical expression, simple to calculate.

1.5.3.2 GPD approach

The excesses over threshold approach consists of approximating the distribution of excesses

by a GPD distribution (see Theorem 1.5.2). Using equation (1.48), for all z ≥ 0, we have

F (z + un) = F (un)F un(z). (1.69)

We perform a change of variable y = z + un and we get:

F (y) = F (un)F un(y − un). (1.70)

Using Theorem 1.5.2, for a large threshold un such that F (un) = P(Y > un) = pn, where pn

is the probability that Y exceeds un, we obtain an approximation of the tail survival function:

F (y) '





pn

(
1 + γ

y − un
σn

)−1/γ
if γ 6= 0

pn exp
(
−y − un

σn

)
if γ = 0.

(1.71)

Then, we approximate the quantile q(αn) by inverting equation (1.71) and we get:

q(αn) '





un + σn
γ

[(
pn
αn

)γ
− 1

]
if γ 6= 0

un + σn log
(
pn
αn

)
if γ = 0.

(1.72)

Thus, we obtain an estimator for the extreme quantile q(αn) based on the GPD approach

and defined by:

q̂GPD(αn) = ûn + σ̂n
γ̂n

((
pn
αn

)γ̂n
− 1

)
, (1.73)

where ûn, σ̂n and γ̂n are respectively estimators of the unknown parameters un, σn and γn.

The threshold un is a quantile which is within the sample and can be estimated by inversion

of the empirical survival function. In particular, if we set pn = kn/n, where kn is the number

of excesses, then un = F←(1− pn) can be estimated by ûn = Yn−kn+1,n. The parameters σ̂n

and γ̂n can be estimated by the maximum likelihood (Smith, 1987; Davison and Smith, 1990)

and the method of moments or weighted moments (Hosking and Wallis, 1987).
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1.5.3.3 Semi-parametric approach

The semi-parametric approach is based on the characterisation of the considered domain of

attraction in order to propose estimators of the extreme quantiles. If we consider the Fréchet

domain of attraction, F ∈ D(Fréchet) (see Paragraph 1.5.2), the quantile function is given

by (see equation (1.54)), for some γ > 0:

q(αn) = α−γn `(α−1
n ), with ` ∈ RV0, (1.74)

q(βn) = β−γn `(β−1
n ). (1.75)

From this expression, Weissman proposed a semi-parametric estimator of the extreme quan-

tile (Weissman, 1978), by dividing (1.75) by (1.74). We get, for a small βn and αn ≤ βn:

q(αn) ' q(βn)
(
βn
αn

)γ
. (1.76)

Thus, we obtain the Weissman estimator defined by:

q̂W (αn) = q̂(βn)
(
βn
αn

)γ̂n
. (1.77)

For more details on the properties of Weissman estimator, see Embrechts et al. (2013); Weiss-

man (1978). Weissman proposes to estimate q(βn) by its empirical equivalent q̂(βn) =
Yn−bnβnc+1,n. There exist several semi-parametric methods dedicated to the estimation of

the tail-index γ in the literature, the best known being the Hill estimator. This estimator

was introduced by Hill (1975) to estimate in a non-parametric way the tail parameter of

distributions belonging to the Fréchet domain of attraction. The Hill estimator is defined by:

γ̂Hn = 1
kn − 1

kn−1∑

i=1
log (Yn−i+1,n)− log (Yn−kn+1,n) , (1.78)

where 1 < kn < n. The method for constructing the Hill estimator is given in de Haan and

Ferreira (2007)[Page 69]. Properties of Hill’s estimator are the subject of many works, such

as Mason (1982); Deheuvels et al. (1988) on weak and strong consistency, or the asymptotic

normality (Haeusler and Teugels, 1985; de Haan and Resnick, 1998; Smith, 1987).

For distributions belonging to the Gumbel domain of attraction, F ∈ D(Gumbel), the semi-

parametric estimation of extreme quantiles is based on subfamilies of distributions, in par-

ticular those with a Weibull tail (Beirlant et al., 1996). According to the expression of the

quantile function given in equation (1.60), for some β > 0, we have:

q(αn) = (− log(αn))β`(− log(αn)) with ` ∈ RV0. (1.79)
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We take the logarithm and divide (1.79) by log(log(1/αn)) and we get:

log q(αn)
log(log(1/αn)) = β + log `(log(1/αn))

log(log(1/αn)) .

According to the statement 1 of Proposition 1.5.1, log `(log(1/αn))/(log(log(1/αn)) −→
n→∞

0,

thus we have, when n→∞:

log q(αn) ' β log(log(1/αn)). (1.80)

Consider a sequence (kn), such that kn →∞ and kn/n→ 0 when n→∞ and let pn = kn/n,

and we write:

log(q(pn)) ' β log(log(1/pn)). (1.81)

Subtracting (1.81) from (1.80) and by switching to exponential, we obtain:

q(αn) ' q(pn)
( log(1/αn)

log(1/pn)

)β
. (1.82)

Hence, (Beirlant et al., 1996) propose the following extreme quantile estimator:

q̂(αn) = q̂(pn)
( log(1/αn)

log(1/pn)

)β̂n
. (1.83)

To estimate q(pn), we use its empirical equivalent q̂(pn) = Yn−kn+1,n. For the Weibull tail

coefficient β, there exists many estimators dedicated to the estimation of this coefficient such

as the approach based on the logarithms of the excesses above a threshold (Beirlant et al.,

1995, 2006; Broniatowski, 1993) or the approach based on spacing between logarithms (log-

spacings) (Beirlant et al., 1996; Gardes and Girard, 2011; Girard, 2004; Gardes and Girard,

2008a). For example, Girard (2004) proposed an estimator for β given by:

β̂Gn = 1
∑kn
i=1 [log(log(n/i))− log(log(n/kn))]

kn∑

i=1
[log(Yn−i+1,n)− log(Yn−kn,n)] . (1.84)

The method of construction of this estimator is detailed in (Girard, 2004).

If we are restricted to the Weibull domain of attraction, equation (1.57) gives a characterisa-

tion of the quantile function for F ∈ D(Weibull).

1.5.4 Estimation of conditional extreme quantiles

In this section, we focus on the case where the random variable of interest Y depends on a

explanatory vector X, called covariate. The goal is to describe how tail characteristics such as

extreme quantiles of Y may depend on X. In contrast to classical regression, the estimation of
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extreme conditional quantiles has been little studied. In practice, there is a growing interest

in many applications for the estimation of conditional extremes quantiles in the regression

context. One can mention, for example, the study of the influence of meteorological param-

eters (temperature, humidity, sunshine, etc), agricultural inputs (pesticides, fertilisers, etc)

and risk management (insurance premiums, subsidies, etc) on the low values of crop yields.

Further motivations in other fields include the study of extreme temperatures as a function of

several topological parameters (Ferrez et al., 2011), the modelling of the conditional quantiles

of hedge fund returns using a set of risk factors (Meligkotsidou et al., 2009), or the analysis of

extreme earthquakes as a function of location (Pisarenko and Sornette, 2003), to name a few.

Such situations require the estimation of conditional extreme quantiles in order to quantify

the relationship between Y and X.

Definition 1.5.6. The conditional extreme quantile of order αn associated with the conditional

distribution function F (·|x) is defined by:

q(αn|x) := F←(1− αn|x) = inf {y, F (y|x) ≥ αn} with 1− αn → 0 as n→∞. (1.85)

To estimate the conditional extreme quantiles in the presence of a covariate X, it is neces-

sary to use estimators of the parameters of the GEV and GPD distributions adapted to the

conditional case. In the literature, estimation of conditional extreme quantiles has been stud-

ied from various points of view: parametric, non-parametric and semi-parametric approaches.

In the framework of these approaches, three cases are distinguished according to the nature

of the covariate X: the ”fixed design” setting where X is non-random, the ”random design”

setting where X is random and the ”functional covariates” setting when X is functional.

1.5.4.1 Parametric approach

This approach model extreme conditional quantiles by fitting parametric distributions, see

for instance Chernozhukov (2005) who deals with extreme quantiles in the linear regression

model and derives their asymptotic behaviour under several error distributions. The work

of Smith (1989) proposes to model the maxima by an extreme values distribution whose

parameters are functions of the covariate and the estimation is performed by maximum

likelihood or least squares. Then, Davison and Smith (1990) propose to model exceedances

above a high threshold by a GPD distribution whose parameters are also functions of the

covariate which are estimated by maximum likelihood. Other parametric models are proposed

in Chavez-Demoulin and Davison (2005); Wang and Li (2013) using extreme-value techniques

to model exceedances above a high threshold.
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1.5.4.2 Semi-parametric approach

Semi-parametric approaches have also been considered for modelling trends in extreme

values. One can mention Beirlant and Goegebeur (2003) who derived a semi-parametric ap-

proach by transforming the data and then using them in an exponential regression model,

where the parameters are estimated by the maximum likelihood method. Hall and Tajvidi

(2000) proposed the non-parametric estimation of the time trend when fitting parametric

models to the extreme values of a weakly dependent time series. A semi-parametric approach

to modeling trends in extremes values, based on local polynomial fitting of the Generalized

extreme-value distribution, is introduced in (Davison and Ramesh, 2000). Another Local

polynomial fitting of extreme-value models has been developed in (Beirlant and Goegebeur,

2004), where the regression is based on a Pareto-type conditional distribution of Y . Ah-

mad et al. (2020) also adopts a semi-parametric approach by proposing a location-dispersion

regression model for heavy-tailed distributions.

1.5.4.3 Non-parametric approach

The non-parametric estimation of conditional extreme quantiles has been the subject of

several works. Thus, we will distinguish the existing works in the literature according to the

three categories defined above, namely fixed design, random design and functional covariates

setting.

Estimation in a fixed design setting. Non-parametric estimation of conditional extreme

quantiles has been first introduced in Davison and Ramesh (2000), where the authors use

a local polynomial modeling of the extreme observations. Spline estimators of conditional

extreme quantiles are used in Chavez-Demoulin and Davison (2005) through a penalised

maximum likelihood method. These results are extended to multidimensional covariates case

in Beirlant and Goegebeur (2004) where the asymptotic properties of the local polynomial

estimators are established. Gardes and Girard (2010) proposed a nearest neighbour tech-

nique for conditional extreme quantiles estimators. The authors consider independent copies

(Yi, xi)1≤i≤n of the random pair (Y, x) ∈ Rd, where the conditional distribution function of

Y is heavy-tailed and x is a deterministic covariate defined on a metric space E associated to

a distance d. For a given t ∈ E, they propose to estimate the conditional extreme quantiles

q(αn,t, t) when αn,t → 0 as n → ∞. Let (mn,t) be a sequence such that 1 < mn,t < n and

let {x∗1, ..., x∗mn,t} be the mn,t nearest covariates of t (with respect to the distance d). The

associated observations taken from Yi are denoted by {Zi(t), i = 1, . . . ,mn,t}. Denoting the

corresponding order statistics by Z1,mn,t ≤ ... ≤ Zmn,t,mn,t , the conditional extreme quantiles
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estimator is given by:

q̂W (αn,t, t) = Zmn,t−kn,t+1,mn,t(t)
(

kn,t
mn,tαn,t

)γ̂n(t)

, (1.86)

where (kn,t) is a sequence such that 1 < kn,t < mn,t, and γ̂n(t) is an estimator of the

conditional tail-index. The estimator proposed above is in the same spirit as the quantile

estimator proposed by Weissman (see (1.77)). Moreover, the authors proposed to estimate

the conditional tail-index by the Hill estimator adapted to the conditional framework. Gardes

and Girard (2008b) proposed also a tail-index estimator using a moving window approach

and extended the estimators proposed in Beirlant et al. (2002) to the conditional context.

Estimation in a random design setting. One can cite Daouia et al. (2011); Goegebeur et al.

(2014) who studied the estimation of extreme quantiles under a conditional heavy-tail model,

later extended in Daouia et al. (2013) to conditional distributions belonging to any maximum

domain of attraction. For instance, the authors in Daouia et al. (2011) propose a kernel esti-

mation of the extreme quantiles in the presence of a finite dimension covariate. Considering

(Yi, Xi)1≤i≤n independent copies of the random pair (Y,X) ∈ R×Rp, where Y is heavy-tailed

with a conditional survival function F (y|x), they propose the following estimator:

F̂n(y|x) =

n∑
i=1

K(x−Xih )1{Yi>y}
n∑
i=1

K(x−Xih )
,

where K is a probability density on Rd, called kernel, and h = hn is a non-random sequence

(called window-width) such that hn → 0 as n → ∞. Then, to estimate the conditional

extreme quantiles, they propose a Weissman estimator (see (1.77)) adapted to the conditional

case given by:

q̂Wn (βn|x) = q̂n(αn|x)
(
αn
βn

)γ̂n(x)
, (1.87)

where q̂n(αn|x) = F̂←n (1−αn|x) = inf
{
y, F̂n(y|x) ≥ 1− αn

}
is the intermediate conditional

extreme quantile estimator and γ̂n(x) is an estimator of the tail-index. A Hill estimator γ̂Hn

adapted to the conditional framework was also proposed to estimate the tail-index. Gardes

and Stupfler (2014) also considered the estimation of the conditional tail-index by proposing a

smoothed local Hill estimator adapted to the presence of a finite dimension covariate. One can

mention also Goegebeur et al. (2014) who introduced a family of non-parametric estimators

of the conditional tail-index in the presence of a random covariate.
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Estimation in a functional covariates setting. In the case of functional covariate of infinite

dimension, Gardes and Girard (2012) have proposed a functional kernel estimators of con-

ditional extreme quantiles based on a functional Weissman estimator. They also proposed

functional versions of the Hill and Pickands estimators for the tail-index. Gardes et al. (2010)

have addressed conditional extreme quantiles estimators using the moving window approach.

They proposed an adaptation of Weissman estimator in the case where covariate information

is functional.

1.5.4.4 Dimension reduction in the extreme values framework

Nowadays, large volumes of data are stored and high-dimensional covariates problems are

encountered. In such situations, inference on the tail distribution of Y given X becomes

difficult since the space is sparsely populated with data points. Indeed, only a few points can

be considered to estimate the quantiles and classical estimators become inefficient, unless the

sample size is very large. This is the so-called ”curse of dimensionality”. Thus, a dimension

reduction becomes necessary to overcome the latter and to reveal the most relevant directions

of the high-dimensional covariate space. In practice, there is a growing interest in many

applications to combine dimension reduction methods with conditional extremes quantiles.

However, there is a limited literature on the combination of these two lines of work.

One can mention Gardes (2018) who established a dimension reduction method suited to

the case where the tail distribution of Y depends on the projection of the covariates on a

lower dimensional subspace. A classical approach is to assume the existence of a p × q full

rank matrix B, with q < p, such that X and Y are independent conditionally on BtX. As

mentioned in Gardes (2018), this assumption can be strong when we are concerned with the

tail of the conditional distribution. Thus, the author introduces a notion of tail conditional

independence. In other words, he assumes the existence of a Tail Dimension Reduction

subspace12 spanned by B, such that the tail of the conditional distribution of Y given X can

be approximated by the tail of the conditional distribution of Y given BtX. Then, a new

kernel estimator of conditional extreme quantiles is proposed. In the same vein, Aghbalou

et al. (2021) also address dimensionality reduction for quantile regression by considering a

low-dimensional orthogonal projection to explain the tail distribution of Y . The authors

developed a model based on sliced inverse regression (SIR) method, using the notion of tail

conditional independence in order the Extreme Sufficient Dimension Reduction space13.

In Xu et al. (2020) a semi-parametric approach is introduced for the estimation of extreme

12Tail Dimension Reduction subspace is an adaptation of the Dimension Reduction subspace introduced
by Li (1991) to extreme case.

13Extreme Sufficient Dimension Reduction space is tail version of classical Sufficient Dimension Reduction
space (Cook and Ni, 2005).
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conditional quantiles q(α|x) basing on a tail single-index model. Considering independent

copies (Yi, Xi)1≤i≤n of the random pair (Y,X) ∈ R× Rp, where the conditional distribution

function of Y is heavy-tailed, they estimate the dimension reduction direction β under the

global single-index quantile regression model and the conditional mean linearity assumption,

which is satisfied when X is elliptically distributed. Indeed, β is estimated through fitting

a misspecified linear quantile regression model, i.e. by solving the following optimisation

problem:

arg min
u,β

1
n

n∑

i=1
ρα(Yi − u−Xt

iβ), (1.88)

where ρα(r) = r(α − 1{r<0}) is the quantile check loss function (Koenker et al., 2005) and

u is the intercept. Secondly, they estimate the conditional quantile at intermediate quantile

levels q(α|Xtβ) by applying a local linear quantile regression and then estimate the tail-index

through a Hill-type estimator. Then, they use extrapolation, from the intermediate quantile

level to the extreme tail, to estimate the extreme conditional quantile by adapting Weissman’s

estimator. Finally, another approach proposed by Drees and Sabourin (2021); Cooley and

Thibaud (2019) consists in adapting the (unsupervised) dimension reduction method PCA

to an extreme setting.

1.5.4.5 Bayesian inference in the extreme values framework

The issues with extreme value methods are characterised by the scarcity of extreme events

which limits the available data, and the requirement to model where the data are most sparse.

The use of Bayesian inference would allow to deal with problems with a very small amount

of data and to incorporate any available information or beliefs as prior information. Thus,

if an expert can provide meaningful prior information on the data, the quality of inference

could be improved in extreme values problems. Examples in the literature include: Coles

and Tawn (1990) integrated expert knowledge formulated into prior information as the basis

for a Bayesian analysis of extreme rainfall, Walshaw (2000) proposed a mixture model for

extreme wind speeds which incorporates the prior distribution, Smith and Goodman (2000);

Bottolo et al. (2003) discussed the choice of prior and posterior evaluation for hierarchical

modelling of extreme values in insurance problems, Smith (1998) compared the predictive

inference aspects of Bayesian and frequentist approaches and Engelund and Rackwitz (1992)

used Bayesian approach to estimate parameters of a three extreme value distributions.

There exist other works in the literature relating the topics of extreme value modelling and

Bayesian inference, which can be split into three categories. The first category includes the

Peak-Over-Threshold model (which corresponds to GPD distributions). One can mention
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for example: Pickands (1994) considered Bayesian estimation of extreme quantiles in the

GPD model with uninformative independent priors for parameters, de Zea Bermudez and

Turkman (2003) proposed using a vague proper prior for GPD parameters, de Zea Bermudez

et al. (2001) used a Bayesian predictive approach to the peaks over threshold method through

a hierarchical Bayesian model, Behrens et al. (2004) proposed an elicitation technique to

obtain a prior distribution on GPD parameters, Diebolt et al. (2005) proposed a quasi-

conjugate Bayesian inference approach for estimating GPD parameters, distribution tails

and extreme quantiles, Castellanos and Cabras (2007) considered a default Bayesian method

for GPD parameters estimation when prior information is not available using Jeffreys’s prior.

The second category covers Block Maxima (which corresponds to a GEV distribution). For

instance, Coles et al. (2001) (Chapter 9) used GEV model for annual maximum sea levels

and placed independent normal priors on the parameters of the model, Rostami and Adam

(2013) considered the estimation of GEV parameters, Coles and Tawn (1996) constructed the

prior for the GEV model, Northrop and Attalides (2016) used improper priors for the GEV

model (respectively for GPD model) parameters, including Jeffreys prior, the maximal data

information (MDI) prior and independent uniform priors. Finally, for the Poisson Process

category, one can mention Sharkey and Tawn (2017) who presented a Bayesian approach for

estimation of the Poisson process model parameters.
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Abstract

In a conditional extremes setting, where the extreme values of the response variable Y ∈ R

depend on the covariate vector X ∈ Rp, the conditional distribution of Y given X is difficult

to estimate when p is very large compared to the sample size. This problem is particularly

accentuated in the case of extreme value analysis where the number of largest observations,

considered as representative of the tail of the distribution, is small. Thus, dimensionality

reduction is a key step in the extreme value analysis framework. In this chapter, we propose

a new approach, called Extreme-PLS, which combines the partial least squares dimension

reduction method and extreme value analysis, in the context of a nonlinear inverse regression

model. This chapter is presented as an article submitted for publication (Bousebata et al.,

2021). After introducing the background of the study (Section 2.1), the Extreme-PLS approach

is presented in the context of a single-index non linear inverse regression model and heavy-

tailed distributions (Section 2.2). The approach estimates the reduction dimension direction,

by maximizing the covariance between a linear combination of X and Y given large values of

Y . The associated empirical estimator is exhibited in Section 2.3 and its asymptotic normality

is established. An iterative procedure to adapt the approach to the multiple-index situation

is presented in Section 2.4. We illustrate the performance of the approach by applying it to

simulated data in Section 2.5. In particular, we show that it performs well in high dimension,

whether or not linearity or independence assumptions are satisfied. It is also shown that the

Extreme-PLS estimator is more efficient than the proposed estimator of (Xu et al., 2020) in

some situations. Then, we perform an application on real data of French farm income, in

Section 2.6, to analyse the lowest cereal yields given different factors. A discussion is provided

in Section 2.7 and proofs are postponed to the Appendix.
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Resumé

Dans un contexte des extrêmes conditionnelles, où les valeurs extrêmes de la variable de

réponse Y ∈ R dépendent d’un vecteur de covariables X ∈ Rp, la distribution conditionnelle

de Y ∈ R étant donné X ∈ Rp est difficile à estimer lorsque p est très grand par rapport à la

taille de l’échantillon. Ce problème est particulièrement accentué dans le cas de l’analyse des

valeurs extrêmes où le nombre d’observations les plus grandes, considérées comme représenta-

tives de la queue de la distribution, est faible. Ainsi, la réduction de la dimensionnalité est une

étape essentielle dans le cadre de l’analyse des valeurs extrêmes. Dans ce chapitre, nous pro-

posons une nouvelle approche, appelée Extreme-PLS, qui combine la méthode de réduction de

dimension ”partial least squares” et l’analyse des valeurs extrêmes, dans le contexte d’un mod-

èle de régression inverse non linéaire. Ce chapitre est présenté comme un article soumis pour

publication (Bousebata et al., 2021). Après avoir introduit le contexte de l’étude (Partie 2.1),

l’approche Extreme-PLS est présentée dans le contexte d’un modèle de régression inverse non

linéaire à indice unique et de distributions à queue lourde (Partie 2.2). L’approche estime la

direction de la réduction de dimension, en maximisant la covariance entre une combinaison

linéaire de X et Y étant donné de grandes valeurs de Y . L’estimateur empirique associé est

présenté à la Partie 2.3 et sa normalité asymptotique est établie. Une procédure itérative

permettant d’adapter l’approche à la situation des indices multiples est ensuite présentée à

la Partie 2.4. Nous illustrons les performances de l’approche en l’appliquant à des données

simulées dans la Partie 2.5. En particulier, nous montrons qu’elle est performante en haute

dimension, que des hypothèses de linéarité ou d’indépendance soient satisfaites ou non. Il a

également été montré que l’estimateur Extreme-PLS est plus efficace que l’estimateur proposé

de (Xu et al., 2020) dans certaines situations. Ensuite, nous réalisons une application sur des

données réelles du revenu agricole français, dans la Partie 2.6, pour analyser les rendements

céréaliers les plus faibles en fonction de différents facteurs. Une discussion est fournie dans

la Partie 2.7 et les preuves sont reportées en Annexe.
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2.1 Introduction

One of the main goals of statistical analysis is to seek a relationship between a response

variable Y and a p-dimensional vector X of covariates starting from a n-sample. A common

way to describe the possible link is to use the regression function E(Y |X). However, in many

situations, the entire conditional distribution of Y given X may be of interest, rather than

the only central part. This has led to the development of conditional quantiles, or regression

quantiles, as an alternative to the conditional mean. Quantile regression was introduced

by (Koenker and Bassett Jr, 1978) in a parametric framework. Since then, non-parametric

regression methods have been considered in the literature. Among others, (Bhattacharya

and Gangopadhyay, 1990) studied kernel and nearest neighbour estimators of conditional

quantiles while (He et al., 1998) focused on spline methods.

A complementary way to investigate the relationship between Y and X is to focus on condi-

tional extremes. The goal is then to describe how tail characteristics such as extreme quantiles

of Y may depend on the explanatory vector X. One motivating example in agricultural risk

management is the study of the influence of meteorological parameters (temperature, humid-

ity,...), agricultural inputs (pesticides, fertilisers,...) and risk management tools (insurance

premiums, subsidies,...) on low values of crop yields (see Section 2.6). Other motivations

can be found in finance (Meligkotsidou et al., 2009), climatology (Jagger and Elsner, 2009),

hydrology (Gardes and Girard, 2010) and environment (Smith, 1989), to name a few. In

these applications, the estimation of extreme conditional quantiles is a crucial issue that has

been studied from various points of view. One first approach relies on the fit of a parametric

model, see for instance (Chernozhukov, 2005) who deals with extreme quantiles in the linear

regression model and derives their asymptotic behaviour under several error distributions.

Other parametric models are proposed in (Chavez-Demoulin and Davison, 2005; Davison and

Smith, 1990; Smith, 1989) using extreme-value techniques to model exceedances above a high

threshold. A second line of work relies on non-parametric approaches that can be split into

three main categories: fixed design, random design, and functional covariates. Fixed design

methods aim at estimating conditional extreme quantiles depending on a non-random covari-

ate, see (Gardes and Girard, 2010) for a nearest neighbors technique. In the random design

setting, one can cite (Daouia et al., 2011; Goegebeur et al., 2014) who studied the estimation

of extreme quantiles under a conditional heavy-tail model, later extended in (Daouia et al.,

2013) to conditional distributions belonging to any maximum domain of attraction. Finally,

see (Gardes and Girard, 2012) for the functional covariate situation. Semi-parametric ap-

proaches have also been considered for trend modelling in extreme values. Local polynomial

fitting of extreme-value models is investigated in (Beirlant and Goegebeur, 2004; Davison
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and Ramesh, 2000), a non-parametric estimation of the temporal trend is combined with

parametric models for extreme values in (Hall and Tajvidi, 2000), and a location-dispersion

regression model for heavy-tailed distributions is introduced in (Ahmad et al., 2020).

In a high dimensional context, i.e. when the dimension p of X is large, the above mentioned

estimation methods may suffer from the so-called ”curse of dimensionality”. This phenomenon

results in an exploding variance of the estimators, thus impeding the inference in practice. A

number of statistical approaches to dimension reduction were introduced to circumvent this

issue and to reveal the most relevant directions in the high-dimensional covariate space. One

of the most popular ones is Partial least squares (PLS), introduced by (Wold, 1975), that

combines characteristics of Principal component analysis (PCA) for dimension reduction and

multiple regression. The development of PLS has been initiated within the chemometrics

field, see the reference book (Martens and Naes, 1992). Since then, PLS has also received

attention in the statistical literature. For example, (Helland, 1990) discusses the statistical

properties of the PLS procedure under a factor analysis model, while (Frank and Friedman,

1993) provides a comparison between PLS and Principal component regression (PCR) from

various perspectives. See also (Cook et al., 2013) for a connection between PLS approach

and envelopes and (Chun and Keleş, 2010) for a sparse version of PLS. The basic idea of

PLS is to seek directions, i.e. linear combinations of X coordinates having both high vari-

ance and high correlation with Y , unlike PCR method which only takes into account high

variance components (Frank and Friedman, 1993; Stone and Brooks, 1990). Sliced inverse

regression (SIR) (Li, 1991) is an alternative method that takes advantage of the simplicity

of the inverse regression view of X against Y . It aims at replacing X by its projection onto

a subspace of smaller dimension without loss of regression information. Many extensions of

SIR have been proposed (Girard et al., 2022) such as Partial inverse regression handling the

p > n situation (Li et al., 2007), Kernel sliced inverse regression allowing the estimation of

a nonlinear subspace (Wu, 2008), Student sliced inverse regression dealing with heavy-tailed

errors (Chiancone et al., 2017), Sliced inverse regression for multivariate response (Coudret

et al., 2014), among others. Single-index models provide additional practical tools to over-

come the curse of dimensionality, by modelling the non-linear relationship between Y and X

through an unknown link function and a single linear combination of the covariates referred

to as the index, see (Horowitz, 2009b, Chapter 2). As such, they provide a reasonable com-

promise between non-parametric and parametric approaches. Among the numerous works

dedicated to the estimation of the index and the link function, the most popular ones are the

average derivative estimation method in the context of kernel smoothing (Härdle and Stoker,

1989; Powell et al., 1989), and the M-estimation technique based on spline regression (Wang

and Yang, 2009; Yu and Ruppert, 2002). One can also mention (Kong and Xia, 2012; Wu
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et al., 2010) who considered single-index models for the estimation of conditional quantiles.

In (Naik and Tsai, 2000), it is proved that PLS provides a consistent estimator of the direc-

tion when Y given X follows a single-index model and when n→∞ with a fixed dimension

p, under the additional assumption of independence between noise and covariates. From the

practical point of view, it is also shown that PLS can perform better than SIR even though

the link function is non-linear. This result is extended in (Chun and Keleş, 2010) to the

multiple-index situation and when both n→∞ and p→∞ with p/n→ 0. It is also shown

that, in contrast, the PLS estimator is no more consistent in the case where p/n→ k > 0, and

a sparse version of PLS is introduced to avoid this vexing effect. More recently, (Cook and

Forzani, 2018) tempered this conclusion by exhibiting some designs under which single-index

PLS is consistent in the linear regression situation, when both n→∞ and p→∞, regardless

of the alignment between n and p.

Finally, the curse of dimensionality may also be tackled using shrinkage methods which

aim at reducing the complexity of the inference by variable selection. As an example, Lasso

method (Tibshirani, 1996) penalizes regression coefficients similarly to ridge regression (Hoerl

and Kennard, 1970) but replacing the L2 penalization by the L1 counterpart. Some extensions

include Fused lasso (Tibshirani et al., 2005) and Elastic net (Zou and Hastie, 2005) to deal

with the case where p is larger than n. Many other shrinkage and variable selection methods

are discussed in (Hastie et al., 2001, Chapter 3).

Dimension reduction dedicated to conditional extremes is limited in the literature, and only

a few recent works have been devoted to it. One can mention (Gardes, 2018) where a di-

mension reduction framework adapted to conditional tail distributions is developed assuming

that, when Y is large, X and Y are independent conditionally on a linear combination of

the covariates. Another approach (Cooley and Thibaud, 2019; Drees and Sabourin, 2021)

consists in adapting the (unsupervised) dimension reduction method PCA to the extreme

setting. In (Xu et al., 2020), a semi-parametric approach is introduced for the estimation

of extreme conditional quantiles based on a tail single-index model. The authors propose

to estimate the dimension reduction direction β using local linear quantile regression. The

method is developed under the tail single-index model and a conditional mean linearity as-

sumption, which is satisfied, for instance, when X is elliptically distributed (the method is

described in further details in Section 2.5).

We introduce a new approach, referred to as extreme-PLS (EPLS), for dimension reduction

in an extreme conditional setting. The underlying idea is to look for linear combinations

of covariates that best explain the extreme values of Y . More precisely, we first propose

a single-index approach to find a direction β̂ maximizing the covariance between βtX and

Y given Y exceeds a high threshold y. An iterative procedure is then exhibited to adapt
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the method to the multiple-index situation. In practice, β̂ allows to quantify the effect

of the covariates on the extreme values of Y in a simple and interpretable way. Plotting Y

against the projection β̂tX provides a visual interpretation of conditional extremes. Moreover,

working on the pair (β̂tX,Y ) should yield improved results for most estimators dealing with

conditional extreme values thanks to the dimension reduction achieved in the projection

step. From the theoretical point of view, the asymptotic properties of the EPLS estimator

are established under an inverse single-index model and a heavy tail assumption, without

recourse to linearity as in (Xu et al., 2020) nor independence assumptions as in (Gardes,

2018). It appears on simulated data that the EPLS estimator provides promising results in

high-dimensional settings and outperforms the estimator proposed in (Xu et al., 2020) in a

wide range of situations.

The paper is organized as follows. In Section 2.2, the EPLS approach is introduced in

the framework of a single-index model and heavy-tailed distributions. Some preliminary

properties are stated in order to justify the above heuristics from a theoretical point of

view. The associated estimator is exhibited in Section 2.3 and its asymptotic distribution

is established under mild assumptions. This approach is extended to the multiple-index

setting in Section 2.4. The performances of the method are investigated through a simulation

study in Section 2.5. EPLS approach is then applied in Section 2.6 to assess the influence of

various parameters on cereal yields collected on French farms. A small discussion is provided

in Section 2.7 and proofs are postponed to the Appendix. A Supplementary material is

also provided to complete the simulation study. Data and R code are available at https:

//github.com/meryembst/EPLS.

2.2 Single-index EPLS approach

Let Y be a real random response variable and X a p-dimensional random covariate. We

denote by w(y) the unit vector maximizing the covariance between wtX and Y given that Y

exceeds a large threshold y:

w(y) = arg max
‖w‖=1

cov(wtX,Y |Y ≥ y). (2.1)

This linear optimization problem under a quadratic constraint benefits from a closed-form

solution obtained with Lagrange multipliers method and given in the next Proposition. For

all y ∈ R, introduce F̄ (y) = P(Y ≥ y) the survival function of Y and consider the three

tail-moments, whenever they exist, mY (y) = E(Y 1{Y≥y}) ∈ R, mX(y) = E(X1{Y≥y}) ∈ Rp,

mXY (y) = E(XY 1{Y≥y}) ∈ Rp.

https://github.com/meryembst/EPLS
https://github.com/meryembst/EPLS
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Proposition 2.2.1. Suppose that E(‖X‖1{Y≥y}) <∞, E(|Y |1{Y≥y}) <∞ and E(‖XY ‖1{Y≥y}) <
∞ for all y ∈ R. Then, the unique solution of the optimization problem (2.1) is given for all

y ∈ R by:

w(y) = v(y)/‖v(y)‖ where v(y) = F̄ (y)mXY (y)−mX(y)mY (y). (2.2)

Let us note that solution (2.2) is invariant with respect to the scaling and location of X.

In the following, we aim at investigating the behaviour of w(y) for large thresholds, i.e. as

y →∞. To this end, consider the following single-index non linear inverse regression model:

(M1) X = g(Y )β + ε, where X and ε are p-dimensional random vectors, Y is a real random

variable, g : R→ R is an unknown link function, β ∈ Rp is an unknown unit vector.

Let us highlight that no independence assumption is made on the pair (X, ε). However,

in the particular case where ε is centered and independent of Y , we recover the classical

PLS framework and it is easily shown that w(y) = ±β for all y ∈ R. Model (M1) is

referred to as an inverse regression model since the covariates are written as functions of

the response variable. Similar models were used to establish the theoretical properties of

SIR, see for instance (Bernard-Michel et al., 2009; Cook, 2007). Under model (M1), when

Y is large, provided the distribution tail of ε is negligible, one has X ' g(Y )β leading to

the approximate single-index forward model Y ' g−1(βtX). Our first goal is to establish

the convergence of w(y) towards β, as y → ∞, without resorting to a linear conditional

expectation assumption as in (Xu et al., 2020) nor a conditional independence assumption as

in (Gardes, 2018; Saracco, 1997). In contrast, additional assumptions on the link function g

and the distribution tail of Y are considered:

(A1) Y is a real random variable with density function f regularly varying at infinity with

index −1/γ − 1, γ ∈ (0, 1) i.e. for all t > 0,

lim
y→∞

f(ty)
f(y) = t

− 1
γ
−1
.

This property is denoted for short by f ∈ RV−1/γ−1.

(A2) g ∈ RVc with c > 0.

(A3) There exists q > 1/(γc) such that E(‖ε‖q) <∞.

Let us note that (A1) implies that F̄ ∈ RV−1/γ in view of Karamata’s theorem (Bingham

et al., 1987, Theorem 1.5.8). In other words, (A1) entails that Y has a right heavy-tail. This

is equivalent to assuming that the distribution of Y is in the Fréchet maximum domain of
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attraction, with tail-index γ > 0, see (de Haan and Ferreira, 2007, Theorem 1.2.1). This

domain of attraction includes for Pareto, Burr and Student distributions, see (Beirlant et al.,

2004) for further examples of heavy-tailed distributions. The restriction to γ < 1 ensures that

E(|Y |1{Y≥y}) exists for all y ∈ R. Assumption (A2) means that the link function ultimately

behaves like a power function. Finally, (A3) can be interpreted as an assumption on the

tails of ‖ε‖. It is satisfied, for instance, by distributions with exponential-like tails such as

Gaussian, Gamma or Weibull distributions. More specifically, E(‖ε‖q) <∞ implies that the

tail-index, say γ‖ε‖, associated with ‖ε‖ is such that γ‖ε‖ < 1/q. Besides, it can readily be

shown that g(Y ) is heavy-tailed with tail-index γg(Y ) := cγ. Condition (A3) thus imposes

that γg(Y ) > γ‖ε‖, meaning that g(Y ) has an heavier right tail than ‖ε‖. In model (M1), the

tail behavior of |βtX| and ‖X‖ is thus driven by g(Y ) rather than by |βtε|, i.e. γ‖X‖ = γg(Y ),

which is the desired property.

In order to assess the convergence of w(y) to β as y →∞, we let

∆(w(y), β) := 1− cos2(w(y), β) = 1− (w(y)tβ)2. (2.3)

A value close to 1 implies a low colinearity (w(y) is almost orthogonal to β) while a value

close to 0 means a high colinearity.

Proposition 2.2.2. Assume (M1), (A1), (A2) and (A3) hold with γ(c+ 1) < 1. Then,

∆(w(y), β) = O





(
1

g(y)F̄ 1/q(y)

)2


→ 0 and ‖w(y)− β‖ = O

(
1

g(y)F̄ 1/q(y)

)
→ 0,

as y →∞.

It should be noted that, since ‖w(y)− β‖ → 0 as y →∞, the EPLS axis has asymptotically

the same direction as β (without sign issue). Besides, in view of assumptions (A1) and (A2),

the function y 7→ g(y)F̄ 1/q(y) is regularly varying with index c − 1/(qγ) > 0 from (A3).

Unsurprisingly, the above convergence rates are large when c is large (i.e. the link function is

rapidly increasing), q is large (i.e. the noise ε is small) or/and γ is large (i.e. the tail of Y is

heavy). The inference from data distributed from model (M1) is addressed in the following

section.

2.3 Single-index EPLS: Estimators and main properties

Let (Xi, Yi), 1 ≤ i ≤ n be independent and identically distributed random variables from

model (M1) and let yn → ∞ as the sample size n tends to infinity. The solution (2.2) is
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estimated by its empirical counterpart introducing

v̂(yn) = ˆ̄F (yn)m̂XY (yn)− m̂X(yn)m̂Y (yn), (2.4)

with ˆ̄F the empirical survival function and

m̂XY (yn) = 1
n

n∑

i=1
XiYi1{Yi≥yn}, m̂Y (yn) = 1

n

n∑

i=1
Yi1{Yi≥yn}, m̂X(yn) = 1

n

n∑

i=1
Xi1{Yi≥yn}.

For all j = 1, . . . , p, let us denote by X.,j the jth coordinate of X. It readily follows that the

jth coordinates of mX(yn) and mXY (yn) are respectively given by mX.,j (yn) and mX.,jY (yn).
We first provide a tool establishing the joint asymptotic normality of ˆ̄F (yn), m̂XY (yn),

m̂Y (yn) and m̂X(yn) when yn →∞ and nF̄ (yn)→∞. This latter condition ensures that the

rate of convergence, which is driven by the number of effective observations nF̄ (yn) used in

the estimators, tends to infinity as the sample size increases.

Proposition 2.3.1. Assume (M1), (A1), (A2) and (A3) hold with 2γ(c+1) < 1. Let us denote

by d the number of non-zero βj coefficients in β ∈ Rp, and assume for the sake of simplicity

that βj 6= 0 for all j = 1, . . . , d and βd+1 = · · · = βp = 0. Let yn →∞ such that nF̄ (yn)→∞
and introduce the R2(d+1)− random vector

Λn :=








ˆ̄F (yn)
F̄ (yn)

− 1


 ,
(
m̂Y (yn)
mY (yn) − 1

)
,

(
m̂X.,j (yn)
mX.,j (yn) − 1

)

1≤j≤d
,

(
m̂X.,jY (yn)
mX.,jY (yn) − 1

)

1≤j≤d



 .

Then, √
nF̄ (yn)Λn d−→ N (0, B),

where B is the 2(d+ 1)× 2(d+ 1) covariance matrix defined by

B =




1 1 1 . . . 1 1 . . . 1

1 b22 b23 . . . b23 b24 . . . b24

1 b23 b33 . . . b33 b34 . . . b34
...

...
...

...
...

...

1 b23 b33 . . . b33 b34 . . . b34

1 b24 b34 . . . b34 b44 . . . b44
...

...
...

...
...

...

1 b24 b34 . . . b34 b44 . . . b44
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and where

b22 = (1− γ)2

1− 2γ , b23 = (1− γ)(1− γc)
1− γ(c+ 1) ,

b33 = (1− γc)2

1− 2γc , b24 = (1− γ(c+ 1))(1− γ)
1− γ(c+ 2) ,

b44 = (1− γ(c+ 1))2

1− 2γ(c+ 1) , b34 = (1− γc)(1− γ(c+ 1))
1− γ(2c+ 1) .

Let us remark that the above result only provides the (joint) asymptotic distribution of

m̂XY (yn) and m̂X(yn) in the directions associated with non-zero βj . It is however sufficient

to establish the asymptotic normality of v̂(yn) centered on v(yn), the direction provided by

the EPLS criterion, see Proposition 2.2.1.

Proposition 2.3.2. Assume (M1), (A1), (A2) and (A3) hold with 2γ(c+ 1) < 1. Let yn →∞
such that nF̄ (yn)→∞. Then,

√
nF̄ (yn)

(
v̂(yn)− v(yn)
‖v(yn)‖

)
d−→ ξβ,

where ξ ∼ N (0, λ(c, γ)) and

λ(c, γ) = a2
1(3 + b44) + a2

2(2b23 + b22 + b33)− 2a1a2(2 + b24 + b34), (2.5)

with a1 = (1− γ)(1− γc)/(γ2c) and a2 = (1− γ(c+ 1))/(γ2c).

Figure 1 Asymptotic variance (c, γ) ∈ [1/2, 2]× [0, 1/2] 7→ λ(c, γ) given in Proposition 2.3.2,
Equation (2.5), on a logarithmic scale.

The asymptotic variance λ(c, γ) is plotted on Figure 1 as a function of (c, γ) ∈ [1/2, 2]×[0, 1/2]
and under the constraint 2γ(c+ 1) < 1. This condition imposes an upper bound on the tail-

index of ‖X‖: γ‖X‖ < c/(2(c+ 1)), see Section 2.2. Similarly, asymptotic properties of usual

dimension-reduction methods are established under the assumption that E(‖X‖4) <∞ which
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implies γ‖X‖ < 1/4, see (Saracco, 1997) in the SIR case. The latter bound is the strongest

one when c > 1.

It appears from Proposition 2.3.2 that the asymptotic distribution of v̂(yn) is Gaussian and

degenerated in every direction orthogonal to β. Combining the above result with Proposi-

tion 2.2.2 provides an asymptotic normality result for v̂(yn) centered on the true direction

β.

Theorem 2.3.1. Assume (M1), (A1), (A2) and (A3) hold with 2γ(c + 1) < 1. Let yn → ∞
such that nF̄ (yn)→∞ and nF̄ (yn)1−2/q/g2(yn)→ 0 as n→∞. Then,

√
nF̄ (yn)

(
v̂(yn)
‖v(yn)‖ − β

)
d−→ ξβ,

with ξ ∼ N (0, λ(c, γ)) and where λ(c, γ) is defined in (2.5).

Assumption nF̄ (yn) → ∞ ensures that the variance of the estimator tends to zero while

condition nF̄ (yn)1−2/q/g2(yn)→ 0 entails that the bias (bounded above by 1/(g(yn)F̄ 1/q(yn)),
see Proposition 2.2.2) is asymptotically small compared to the standard deviation 1/

√
nF̄ (yn).

Choosing yn = F̄−1(τn) with τn = n−ν , these conditions are fulfilled provided that ν ∈(
q

(2γc+1)q−2 , 1
)

since both functions g and F̄ are assumed to be regularly-varying. Let us also

highlight that the above interval is not empty under (A3). Finally, Theorem 2.3.1 shows that

the estimated direction v̂(yn) is asymptotically aligned with the true direction β.

2.4 Extension to several directions

The single-index model (M1) can be extended to a multi-index setting by considering, for

some K ≥ 1:

(MK) X = ∑K
`=1 g`(Y )β(`) + ε, where X and ε are p-dimensional random vectors, Y is a

real random variable, g` : R → R are unknown link functions, β(`) ∈ Rp are unknown

orthogonal unit vectors.

Denoting by Y a set of candidate values for yn, the following iterative procedure is considered

to estimate β(1), . . . , β(K):

1. Initialization: Set R
(0)
i := Xi for all i = 1, . . . , n.

2. For ` ∈ {1, . . . , p},

• Estimation of the `th direction for all yn ∈ Y:

v̂(`)(yn) = ˆ̄F (yn)m̂R(`−1)Y (yn)− m̂R(`−1)(yn)m̂Y (yn).
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• Computation of the threshold maximizing the conditional correlation:

y(`) = arg max
yn∈Y

ρ

((
R(`−1)

)t
v̂(`)(yn), Y |Y ≥ yn

)

= arg max
yn∈Y

cov

((
R(`−1)

)t
v̂(`)(yn), Y |Y ≥ yn

)

σ
((
R(`−1))t v̂(`)(yn)|Y ≥ yn

)
σ (Y |Y ≥ yn)

, (2.6)

and recording of the optimal value: Ξ` = ρ

((
R(`−1)

)t
v̂(`)(y(`)), Y |Y ≥ y(`)

)
.

• Update of the residuals: for all i = 1, . . . , n:

R
(`)
i := R

(`−1)
i −

v̂(`)(y(`))
(
v̂(`)(y(`))

)t

‖v̂(`)(y(`))‖2 R
(`−1)
i .

The idea is the following. At the first iteration, v̂(1)(yn), yn ∈ Y, corresponds to the es-

timator associated with the single-index model computed by (2.4). Then, the threshold

y(1) maximizing w.r.t. yn ∈ Y the correlation between the projected covariate Xtv̂(1)(yn)
and the response variable Y given Y ≥ yn is computed and the maximum correlation Ξ(1)

is recorded. From model (MK), in view of the orthogonality of the directions, one has

Xtv̂(1)(y(1)) ' ‖v̂(1)(y(1))‖Xtβ(1) ' ‖v̂(1)(y(1))‖g1(Y ) and thus the residual

R(1) := X −
v̂(1)(y(1))

(
v̂(1)(y(1))

)t

‖v̂(1)(y(1))‖2 X ' X − g1(Y )β(1) =
K∑

`=2
g`(Y )β(`) + ε

approximately satisfies the same inverse regression model with K − 1 directions. It is then

natural to iterate the process and estimate β(2) from (2.4) computed on the residuals R(1).

Moreover, since these residuals are by construction orthogonal to v̂(1)(y(1)), one necessarily

has v̂(2)(y(2)) ⊥ v̂(1)(y(1)). Thanks to the above orthogonality property, the estimated number

of directions can be upper bounded by p. We refer to (Helland, 1990) for a similar result on

the original PLS method. The estimation of the number K of directions can be achieved by

a visual inspection of the scree plot ` ∈ {1, . . . , p} 7→ Ξ(`). The estimated K̂ is defined as

an elbow in the above graph, which is detected using Cattell’s method (Cattell, 1966), see

Figure 4 for an illustration on the real data experiment (Section 2.6).

2.5 Validation on simulations

Let us consider a sample of size n = 1000 and dimension p from model (M1) with a

power link function g(t) = tc, t > 0, c ∈ {1/4, 1/2, 1, 3/2}. The behavior of the EPLS

estimator v̂(yn) is illustrated on this inverse regression model and compared to the estimator
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introduced in (Xu et al., 2020) referred to as SIMEXQ (single-index model extreme quantile)

in the sequel. SIMEXQ method is an extension of the global single-index quantile regression

model developed in (Zhu et al., 2012) where β is estimated by the slope obtained by fitting a

misspecified linear quantile regression model to the data. In the SIMEXQ methodology, it is

shown that β can be similarly estimated under the weaker assumption of a tail single-index

model and a conditional mean linearity assumption. In practice, it is sufficient to narrow the

fit of the misspecified linear quantile regression model to the exceedances.

Two heavy-tailed distributions are selected for the response variable Y :

• a Pareto distribution with survival function F̄ (y) = (y/2)−5, y ≥ 2,

• a Student t5 distribution with 5 degrees of freedom.

Let us stress that, in both cases, the tail-index of Y is γ = 1/5 and does not depend on the

covariate. Two dimensions of the covariate are considered:

• p = 3 with β = (1, 1, 0)t/
√

2,

• p = 30 with β = (1, . . . , 1, 0, . . . , 0)t/
√

15.

Each component ε(j), j = 1, . . . , p of the error ε is simulated from the N (0, σ2) distribution

and depending on Y using a copula. Two copula models are investigated:

• the Frank copula defined for all (u1, u2) ∈ [0, 1]2 by

Cθ(u1, u2) = −1
θ

log
(

1 + (e−θu1 − 1)(e−θu2 − 1)
e−θ − 1

)
,

where θ ∈ R is a parameter tuning the dependence between the margins. Frank copula

is an Archimedean copula, see (Nelsen, 2007, Section 4.2), able to model the full range

of dependence: θ → −∞ yields the counter-monotonicity copula, θ → +∞ yields the

co-monotonicity copula while θ = 0 corresponds to independence. Here, we choose

θ ∈ {0, 10, 20} corresponding to the association measure Kendall’s τ ∈ {0, 0.67, 0.82},
see (Nelsen, 2007, Section 5.1).

• the Gaussian copula defined for all (u1, u2) ∈ [0, 1]2 by

Cθ(u1, u2) = ΦRθ(Φ−1(u1) + Φ−1(u2)) with Rθ =


1 θ

θ 1


 ,

where Φ and ΦRθ are respectively the cumulative distribution functions of the standard

univariate Gaussian distribution and bivariate centered Gaussian distribution with co-

variance matrix Rθ, θ ∈ (−1, 1). Here θ → −1 yields the counter-monotonicity copula,
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θ → 1 yields the co-monotonicity copula while θ = 0 corresponds to independence. We

choose θ ∈ {0, 0.87, 0.96} corresponding to the same Kendall’s τ ∈ {0, 0.67, 0.82} as

above.

The standard deviation σ is selected such that the Signal to Noise Ratio (SNR) defined as

SNR:= g(F̄−1(1/n))/σ is equal to 10. Note that g(F̄−1(1/n)) represents the approximate

maximum value of g on a n-sample from the distribution with associated survival function

F̄ . Finally, the mean proximity criterion between v̂(yn) and β is computed on N = 100
replications as follows:

PC(yn) = 1
N

N∑

r=1
cos2(v̂(yn)[r], β) = 1− 1

N

N∑

r=1
∆(v̂(yn)[r], β), (2.7)

where ∆(·, ·) is defined in (2.3) and v̂(yn)[r] denotes the estimator (2.4) computed on the

rth replication. The closer PC(yn) is to 1, the better the estimator is. The performance of

EPLS and SIMEXQ methods are compared by computing (2.7) in the 4× 2× 2× 2× 3 = 96
considered situations. To this end, denoting by Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n the order statistics of

the sample (Y1, . . . , Yn), the quality measure PC(Yn−k+1,n) is plotted in Figure 2 as a function

of the number of exceedances k ∈ {1, . . . , 200} in the Pareto + Frank case with p = 3. Other

situations including the Student distribution, the Gaussian copula and a larger dimension

p = 30 are reported in Figures 6–12 of the Supplementary material.

It first appears that the performance of the EPLS estimator does not depend on the dis-

tribution of the response variable. Besides, in small dimension (p = 3), the EPLS method

yields very accurate results (with PC≥ 0.8) for a wide range of choices of k and whatever the

exponent c and the dependence coefficient are. In contrast, the SIMEXQ method appears

to be very sensitive to the distribution of Y and to the dependence strength. In this small

dimension situation, EPLS outperforms SIMEXQ as soon as independence does not hold. In

a high dimension setting (p = 30), EPLS still provides very good results (with PC≥ 0.8) for a

wide range of choices of k when c ≥ 1 for all dependence situations. Good results (PC≥ 0.6)

can also be obtained when c = 1/2 for well-chosen values of k. Here again, the SIMEXQ

method is not robust to dependence and is outperformed by EPLS. Finally, it appears that

the choice of the number of exceedances k may be a crucial point in difficult situations (high

dimension p, high dependence and c small). The selection of k using the procedure described

in Section 2.4 is illustrated in the next section on a real dataset.
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Figure 2 Finite sample behaviour of EPLS v̂(Yn−k+1,n) (left) and SIMEXQ (Xu et al., 2020)
(right) estimators, on simulated data from a Pareto distribution, Frank copula, dimension
p = 3. Horizontally: number k ∈ {1, . . . , 200} of exceedances, vertically: PC(Yn−k+1,n)
quality measure. From top to bottom, Frank copula parameter θ ∈ {0, 10, 20}. The powers
c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc are displayed in {black, yellow, green,
red}.
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2.6 Application to farm income modelling

Our approach is applied to data extracted from the Farm accountancy data network1, an

annual database of commercial-sized farm holdings. This dataset of size n = 949 contains

significant accounting and financial information about French farm incomes in 2014. Our

goal is to investigate the relationship between low yields and various factors.

The response variable Y is the inverse of the wheat yield (in quintals/hectare), as we focus

on the analysis of low yields, and the covariate X includes 12 continuous variables: selling

prices (euro/quintal), pesticides, fertilizers, crop insurance purchase, insurance claims, farm

subsidies, seeds and seedlings costs, works and services purchase for crops, other insurance

premiums, farm income taxes, farmer’s personal social security costs (euro/hectare) and av-

erage temperature (degree Celsius). We first carry out, in Figure 3, a number of visual checks

of whether the heavy-tailed assumption makes sense for these data. First, the histogram of

the Yi (top left panel) gives descriptive evidence that Y has a heavy right tail. The second

step consists in drawing a Hill plot:

(
k, γ̂k = 1

k

k∑

i=1
Zi,n

)
, k = 1, . . . , 150,

where Zi,n := log(Yn−i+1,n/Yn−k,n), i ∈ {1, . . . , k} denote the log-excesses computed from

the consecutive top order statistics. The Hill statistics γ̂k (Hill, 1975) aims at estimating the

tail index γ under the semi-parametric model (A1). In this situation, for small i, the Zi,n

are approximately independent copies of an exponential random variable with mean γ, see

for instance (Beirlant et al., 2004, pp.109–110), and γ̂k thus estimates γ using the empirical

mean. The resulting graph (top right panel) shows a nice stability of γ̂k as a function

of k ∈ {50, . . . , 150} pointing towards γ ' 0.25. To further confirm that the heavy-tailed

framework is appropriate, we draw a quantile-quantile plot of the log-excesses against the

quantiles of the unit exponential distribution (bottom panel of Figure 3) for k = 150. The

relationship appearing in this plot is approximately linear, which constitutes an empirical

evidence that the heavy-tail assumption on Y makes sense.

We thus set Y := {Yn−k+1,n, k = 50, . . . , 150} and compute v̂(`)(yn) for yn ∈ Y using the

procedure described in Section 2.4. The top left panel of Figure 4 displays the conditional

correlation (2.6) between the projected residuals and the high values of the response variable

Y . All graphs benefit from a stable behaviour with respect to the threshold yn ∈ Y, confirming

together with the previous Hill-plot and quantile-quantile plot that the associated range of

number of exceedances is well-suited to the dataset. It also appears that the first index

1A detailed presentation of the database can be found at: http://agreste.agriculture.gouv.fr (in
French).

http://agreste.agriculture.gouv.fr
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Figure 3 Farm income data. Top left panel: Histogram of the inverse yields Yi, i = 1, . . . , n.
Top right panel: Hill plot (Horizontally: k ∈ {1, . . . , 150}, vertically: Hill estimator γ̂k,
dashed blue line: empirical 95% confidence interval). Bottom panel: quantile-quantile plot
(horizontally: log(k/i), vertically: log(Yn−i+1,n/Yn−k,n) for i ∈ {1, . . . , k = 150}, red: regres-
sion line).
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captures about Ξ1 = 59% of the correlation (with k(1) = 97, blue curve), while the second

index fails to represent a significant correlation (Ξ2 = 13%, k(2) = 58, red curve). The

second direction is thus discarded in the sequel. The top right panel of Figure 4 represents

the conditional correlation between the projected covariate Xtv̂(1)(yn) on the first direction

and each coordinate X(j) of the covariate as a function of yn ∈ Y. One can note that

small yields are mainly linked to operating costs that can be divided into two categories:

agricultural inputs (fertilisers, pesticides, seeds and seedlings, works and services purchase,

personal social security costs) and risk management (claims, crop insurance purchase, farm

subsidies). This result could be expected since, in 2014, yields were strongly impacted by

agricultural inputs, despite mild winter temperatures (which are favourable for wheat crops)2.

Besides, the effect of crop insurance purchase could be explained by moral hazard that leads

insured farmers to use fewer agricultural inputs (Smith and Goodwin, 1996).

The projected scatter plot (Yi, Xt
i v̂

(1)(y(1))), i = 1, . . . , n is displayed in a logarithmic scale

for the visualization sake on the top panel of Figure 5 together with two estimations (linear

and non-linear) of the conditional mean E(Xt v̂(1)(y(1)) |Y ). A positive trend appears for

large values of Y in accordance to the inverse regression model (M1). Let us now focus

on the conditional quantiles q̂(α |Xtv̂(1)(y(1))) computed through a kernel estimator of the

conditional survival function (Daouia et al., 2011). The results are reported in the bottom

panel of Figure 5 together with the scatter plot (Xt
i v̂

(1)(y(1)), Yi), i = 1, . . . , n. The vertical

and horizontal axes are represented in a logarithmic scale. Both curves of the conditional

quantiles associated with levels α = 0.15 (blue line) and α = 0.05 (red line) behave in

a similar way. The estimated conditional quantiles of inverse yields feature an increasing

shape for log(Xt v̂(1)(y(1))) ≤ 9.5: Lowest yields are (mainly) linked to high operating costs.

The interpretation of the results for log(Xt v̂(1)(y(1))) > 9.5 is difficult, the estimation being

unreliable for large values of the covariate because of data sparsity in this area and boundary

effects of kernel estimators, see for instance (Kyung-Joon and Schucany, 1998).

2.7 Discussion

We introduced a new approach EPLS for dimension reduction adapted to distribution tails.

It allows to quantify the effect of covariates X on the extreme values of Y in a simple and

interpretable way. The asymptotic properties of the estimated direction are established under

an inverse single-index model and a heavy tail assumption but without recourse neither to

linearity nor to independence assumptions. An extension to the multi-index setting is pro-

posed together with a data-driven method for selecting the number of directions to estimate.

2http://agreste.agriculture.sg-ppd.maaf.ate.info/IMG/pdf/conjbilan2014.pdf (in French).

 http://agreste.agriculture.sg-ppd.maaf.ate.info/IMG/pdf/conjbilan2014.pdf
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Figure 4 Farm income data. Top left panel: Graph of the estimated conditional correlation
function yn ∈ Y 7→ ρ((R(`−1))tv̂(`)(yn), Y |Y ≥ yn) for ` = 1, . . . , 12 and top right panel:
Graph of the estimated conditional correlation function yn ∈ Y 7→ ρ(Xtv̂(1)(yn), X(j)|Y ≥ y)
for j = 1, . . . , 12 (horizontally: number of exceedances k, vertically: conditional correlation
estimated by its empirical counterpart using the threshold yn = Yn−k+1,n). Bottom panel:
Scree plot of ` ∈ {1, . . . , 12} 7→ Ξ` (horizontally: iteration `, vertically: maximum correlation
Ξ`.
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Figure 5 Farm income data. Top: scatter-plot (Yi, Xt
i v̂

(1)(y(1))), i = 1, . . . , n in log scale
(horizontally: Yi, vertically: Xt

i v̂
(1)(y(1))). The regression line (red) and a kernel estimate

of the link function (blue) are superimposed. Bottom: scatter-plot (Xt
i v̂

(1)(y(1)), Yi), i =
1, . . . , n in log scale (horizontally: Xt

i v̂
(1)(y(1)), vertically: Yi). The estimated conditional

quantiles x 7→ q̂(α|xt v̂(y(1))) are superimposed (α = 0.15: blue line, α = 0.05: red line).
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The proposed method can then be used to facilitate the estimation of extreme conditional

quantiles or expectiles, thanks to the dimension reduction which circumvents the curse of

dimensionality. Quantifying the gain in terms of convergence rates would be of great interest

and is the subject of our current work, leveraging the theoretical tools introduced in (Girard

et al., 2021).
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2.A Appendix: Proofs

Some preliminary lemmas are first provided in 2.A.1. They will reveal useful in the proofs

of the main results collected in 2.A.2.

2.A.1 Preliminary results

We begin with a technical tool to compute limits of integrals involving a regularly varying

function.

Lemma 2.A.1. Let q2 > 0 and suppose Y is a random variable satisfying (A1) with γq2 < 1.

Let φ(·) be a continuous function on [1,∞) such that φ(t)→ κ > 1 as t→∞. Then,

lim
t→∞

∫ +∞

1
|x− φ(t)|q2 f(tx)

f(t) dx =
∫ +∞

1
|x− κ|q2x

− 1
γ
−1
dx <∞.

Proof. Potter bounds entail that for all ε > 0, x ≥ 1 and t large enough:

0 ≤ f(tx)
f(t) ≤ (1 + ε)x−

1
γ
−1+ε

, (2.8)

see for example (de Haan and Ferreira, 2007, Proposition B.1.9). Besides, for t large enough,

κ/2 ≤ φ(t) ≤ 2κ, and therefore:

(1− 2κ)x ≤ x− 2κ ≤ x− φ(t) ≤ x− κ/2 ≤ x ≤ (2κ− 1)x.

It follows that |x− φ(t)| ≤ (2κ− 1)x and, since q2 > 0, we have: |x− φ(t)|q2 ≤ (2κ− 1)q2xq2 .
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Collecting the latter inequality with (2.8) yields:

0 ≤ |x− φ(t)|q2 f(tx)
f(t) ≤ (2κ− 1)q2x

q2− 1
γ
−1+ε

.

Recalling that 1/γ − q2 > 0, one can choose 0 < ε < 1/γ − q2 such that x 7→ x
q2− 1

γ
−1+ε

is integrable on [1,∞). Then, Lebesgue’s dominated convergence theorem together with the

regular variation property of f conclude the proof.

The next lemma is an adaptation of (Bingham et al., 1987, Proposition 1.5.10) to our setting.

It provides an asymptotic equivalent of conditional expectations above a large threshold.

Lemma 2.A.2. Suppose ρ ∈ RVµ with µ ≥ 0 and Y is a random variable satisfying (A1) with

γµ < 1. Then, as y →∞,

E [ρ(Y )|Y ≥ y] ∼ 1
1− γµρ(y).

Proof. Let us consider

E [ρ(Y )|Y ≥ y] = 1
F̄ (y)

∫ +∞

y
ρ(t)f(t)dt.

Since ρ(·)f(·) ∈ RVµ−1/γ−1, there exists a slowly-varying function L such that ρ(t)f(t) =
t
µ− 1

γ
−1
L(t). Then, (Bingham et al., 1987, Proposition 1.5.10) shows that, as y →∞,

E [ρ(Y )|Y ≥ y] ∼ 1
F̄ (y)

y
µ− 1

γL(y)
1/γ − µ = γ

1− γµ
yρ(y)f(y)
F̄ (y)

.

Recalling that f ∈ RV−1/γ−1 and using again (Bingham et al., 1987, Proposition 1.5.10) prove

that γyf(y) ∼ F̄ (y) as y → ∞. Finally, E [ρ(Y )|Y ≥ y] ∼ ρ(y)/(1− γµ), as y → ∞ and the

conclusion follows.

The following lemma establishes sufficient conditions such that the moment conditions of

Proposition 2.2.1 hold in the context of the inverse regression model (M1).

Lemma 2.A.3. Assume (M1), (A1), (A2) and (A3) hold with γ(c+1) < 1. Then, E(|Y |1{Y≥y}) <
∞, E(‖XY ‖1{Y≥y}) <∞ and E(‖X‖1{Y≥y}) <∞ for all y ∈ R.

Proof. Let y ∈ R. First, let us recall that the existence of E(|Y |1{Y≥y}) in the Fréchet

maximum domain of attraction is a consequence of γ < 1. Second, the triangle inequality

yields:

E(‖X‖1{Y≥y}) < E(|g(Y )|1{Y≥y}) + E‖ε‖.

Let us note that E(|g(Y )|1{Y≥y}) < ∞ since cγ < 1. Besides, for all q ≥ 1/(γc) ≥ 1,

Jensen’s inequality entails (E‖ε‖)q ≤ E(‖ε‖q) < ∞ under (A3). Hence, E‖ε‖ < ∞ and
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E(‖X‖1{Y≥y}) <∞. Third,

E(‖XY ‖1{Y≥y}) < E(|Y g(Y )|1{Y≥y}) + E(‖Y ε‖1{Y≥y}),

and E(|Y g(Y )|1{Y≥y}) < ∞ in view of γ(c + 1) < 1. Furthermore, Hölder inequality shows

that

E(‖Y ε‖1{Y≥y}) < [E(‖ε‖q)]1/q[E(|Y |q21{Y≥y})]1/q2 ,

for all q2 ≥ 1 such that 1/q + 1/q2 = 1. As already remarked, E(‖ε‖q) < ∞ from (A3)

with q > 1/(γc). Moreover, taking account of condition γ(c + 1) < 1 yields q > 1/(1 − γ)
which is equivalent to q2 < 1/γ, and therefore E(|Y |q21{Y≥y}) <∞ as well. As a conclusion,

E(‖XY ‖1{Y≥y}) <∞ and the result is proved.

Lemma 2.A.4 provides, in the framework of model (M1), an alternative expression of v(y)
defined in Proposition 2.2.1.

Lemma 2.A.4. Assume (M1) and the assumptions of Proposition 2.1 hold. Then, for all

y ∈ R, v(y) can be rewritten as

v(y) = F̄ (y)E[g(Y )Ψy(Y )] (β + η(y)) , (2.9)

where

η(y) := E[εΨy(Y )]
E[g(Y )Ψy(Y )] and Ψy(Y ) :=

(
Y − mY (y)

F̄ (y)

)
1{Y≥y}. (2.10)

Proof. Proposition 2.1 states that v(y) = F̄ (y)E[XY 1{Y≥y}]−E[X1{Y≥y}]mY (y). Recalling

that X = g(Y )β + ε from model (M1) yields

v(y) = F̄ (y)E[(g(Y )β + ε)Y 1{Y≥y}]− E[(g(Y )β + ε)1{Y≥y}]mY (y)

= βE[g(Y )1{Y≥y}(F̄ (y)Y −mY (y))] + E[ε1{Y≥y}(F̄ (y)Y −mY (y))]

= βF̄ (y)E[g(Y )Ψy(Y )] + F̄ (y)E[εΨy(Y )]

= F̄ (y)E[g(Y )Ψy(Y )]
(
β + E[εΨy(Y )]

E[g(Y )Ψy(Y )]

)
.

Hence the result.

We first establish a precise control of the moments of the random variable Ψy(Y ) appearing

in the numerator of the remainder term η(y), see (2.10) in Lemma 2.A.4.

Lemma 2.A.5. Let q2 > 0 and suppose Y is a random variable satisfying (A1) with γq2 < 1.
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Then,

E (|Ψy(Y )|q2) ∼ λ1(γ, q2)yq2+1f(y),

as y →∞ and where λ1(γ, q2) is a positive constant.

Proof. From (2.10), one has

E|Ψy(Y )|q2 =
∫ +∞

y

∣∣∣∣∣t−
mY (y)
F̄ (y)

∣∣∣∣∣

q2

f(t)dt = yq2+1f(y)
∫ +∞

1

∣∣∣∣x−
1
y
E[Y |Y ≥ y]

∣∣∣∣
q2 f(yx)

f(y) dx,

thanks to the change of variable x = t/y and recalling that mY (y)/F̄ (y) = E[Y |Y ≥ y]. Since

f ∈ RV−1/γ−1, γ ∈ (0, 1), Lemma 2.A.2 applied with ρ(t) = t and µ = 1 entails that

φ(y) := 1
y
E[Y |Y ≥ y]→ 1

1− γ =: κ ≥ 1,

as y →∞. Lemma 2.A.1 then yields, as y →∞,

∫ +∞

1

∣∣∣∣x−
1
y
E[Y |Y ≥ y]

∣∣∣∣
q2 f(yx)

f(y) dx→
∫ +∞

1

∣∣∣∣x−
1

1− γ

∣∣∣∣
q2
x
− 1
γ
−1
dx =: λ1(γ, q2),

As a conclusion, E (|Ψy(Y )|q2) ∼ λ1(γ, q2)yq2+1f(y), as y →∞ and the result is proved.

Similarly, we provide an asymptotic equivalent of the moments of the random variable

g(Y )Ψy(Y ) appearing in the denominator of the remainder term η(y), see (2.10) in Lemma 2.A.4.

Lemma 2.A.6. Let Y be a random variable satisfying (A1) and (A2) with γ(c+1) < 1. Then,

E[g(Y )Ψy(Y )] ∼ λ2(γ, c) yg(y)F̄ (y),

as y →∞ and where λ2(γ, c) := γ2c
(1−γ(c+1))(1−γc)(1−γ) .

Proof. From (2.10), we have:

E[g(Y )Ψy(Y )]
F̄ (y)

=
E[Y g(Y )1{Y≥y}]

F̄ (y)
− E[Y 1{Y≥y}]

F̄ (y)
E[g(Y )1{Y≥y}]

F̄ (y)

= E[Y g(Y )|Y ≥ y]− E[Y |Y ≥ y]E[g(Y )|Y ≥ y].

Let us consider ρ1(y) = yg(y) ∈ RVc+1, ρ2(y) = y ∈ RV1 and ρ3(y) = g(y) ∈ RVc.
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Lemma 2.A.2 entails as y →∞:

E(ρ1(Y )|Y ≥ y) ∼ 1
1− γ(c+ 1) yg(y),

E(ρ2(Y )|Y ≥ y) ∼ 1
1− γ y,

E(ρ3(Y )|Y ≥ y) ∼ 1
1− γc g(y),

which concludes the proof.

The next lemma applied successively with ζ = 0 and ζ = 1 yields asymptotic equivalents for

these two quantities in the two situations where βj = 0 and βj 6= 0.

Lemma 2.A.7. Assume (M1), (A1), (A2) and (A3) hold with γ(c + 1) < 1. Let ζ ∈ {0, 1}.
Then,

(i) For all j ∈ {1, . . . , p} such that βj 6= 0, we have

mX.,jY ζ (y) := E(X.,jY
ζ1{Y≥y}) ∼

βj
1− γ(c+ ζ) y

ζg(y)F̄ (y),

as y →∞.

(ii) For all j ∈ {1, . . . , p} such that βj = 0, we have

mX.,jY ζ (y) := E(ε.,jY ζ1{Y≥y}) = O
(
yζF̄ (y)1−1/q

)
,

as y →∞.

Remark that, in view of the above lemma, condition (A3) implies that, for all j ∈ {1, . . . , p}
such that βj = 0, mX.,jY ζ (y) is negligible compared to each mX.,`Y ζ

(y) associated with β` 6= 0.

Proof. From (M1), we have:

E(X.,jY
ζ1{Y≥y}) = E(Y ζg(Y )1{Y≥y})βj + E(Y ζε.,j1{Y≥y})

= E(Y ζg(Y )|Y ≥ y)F̄ (y)βj + E(Y ζε.,j1{Y≥y})

= βj
1− γ(c+ ζ) y

ζg(y)F̄ (y)(1 + o(1)) + E(Y ζε.,j1{Y≥y}), (2.11)

in view of Lemma 2.A.2. Let q2 ≥ 1 such that 1/q + 1/q2 = 1. Combining Hölder inequality
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with (A3) yields:

E|ε.,jY ζ1{Y≥y}| ≤ [E|ε.,j |q]1/q [E(|Y |ζq21{Y≥y})]1/q2

= [E|ε.,j |q]1/q [E(|Y |ζq2 |Y ≥ y)]1/q2F̄ (y)1/q2

= [E|ε.,j |q]1/q
(
|y|ζq2

1− q2ζγ

)1/q2

F̄ (y)1/q2(1 + o(1))

= O
(
yζF̄ (y)1−1/q

)
, (2.12)

as y → ∞, according to Lemma 2.A.2 and since q2ζγ < 1. This proves (ii) when βj = 0.

Focusing on the situation where βj 6= 0, we have from (2.11) and (2.12),

E(X.,jY
ζ1{Y≥y}) = βj

1− γ(c+ ζ) y
ζg(y)F̄ (y)(1 + o(1)) +O(yζF̄ (y)1−1/q)

= βj
1− γ(c+ ζ) y

ζg(y)F̄ (y)
(

1 + o(1) +O

(
1

F̄ (y)1/qg(y)

))
.

As a consequence of (A1) and (A2), F̄ (·)1/qg(·) is a regularly varying function with index

c− 1/(qγ) > 0. Therefore, F̄ (y)1/qg(y)→∞ when y →∞ and (i) is proved.

The last lemma proves that the noise term ε does not contribute to the asymptotic distribution

of the estimators.

Lemma 2.A.8. Assume (M1), (A1), (A2) and (A3) hold with 2γ(c+1) < 1. For all ζ ∈ {0, 1}
let

T (ζ)
.,n =

√
F̄ (yn)


∑

βj 6=0

α
(ζ)
j ε.,j

mX.,jY ζ (yn)


Y ζ1{Y≥yn},

where α
(ζ)
j ∈ R for all j = 1, . . . , p. Then, χ

(ζ)
n := 1√

n

∑n
i=1(T (ζ)

i,n − E(T (ζ)
i,n )) P−→ 0.

Proof. Clearly, χ
(ζ)
n is centered by definition. Let us consider its variance:

var(χ(ζ)
n ) = var(T (ζ)

.,n )

=
∑

βj 6=0

∑

β` 6=0

α
(ζ)
j α

(ζ)
` F̄ (yn)

mX.,jY ζ (yn)mX.,`Y ζ
(yn)cov(ε.,jY ζ1{Y≥yn}, ε.,`Y

ζ1{Y≥yn})

∼ (1− γ(c+ ζ))2

y2ζ
n g(yn)2F̄ (yn)

∑

βj 6=0

∑

βl 6=0

α
(ζ)
j α

(ζ)
`

βjβ`
cov(ε.,jY ζ1{Y≥yn}, ε.,`Y

ζ1{Y≥yn}),

as n→∞, from Lemma 2.A.7(i). The covariance can be expanded as

cov(ε.,jY ζ1{Y≥yn}, ε.,`Y
ζ1{Y≥yn}) = E(ε.,jε.,`Y 2ζ1{Y≥yn})− E(ε.,jY ζ1{Y≥yn})E(ε.,`Y ζ1{Y≥yn}).

The first term is bounded using Hölder inequality, applied for all q3 ≥ 1 such that 2/q+1/q3 =
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1:

E(ε.,jε.,`Y 2ζ1{Y≥yn}) ≤ [E|ε.,j |q]1/q[E|ε.,`|q]1/q[E|Y 2ζ1{Y≥yn}|q3 ]1/q3

≤ [E|ε.,j |q]1/q[E|ε.,`|q]1/q[E|Y 2ζq3 |Y ≥ yn|]1/q3F̄ (yn)1/q3

= [E|ε.,j |q]1/q[E|ε.,`|q]1/q
(

y2ζq3
n

1− 2ζγp′

)1/q3

F̄ (yn)1/q3(1 + o(1))

= O
(
y2ζ
n F̄ (yn)1−2/q

)
, (2.13)

in view of Lemma 2.A.2 and (A3). Indeed, condition 2γ(c + 1) < 1 is equivalent to γc <

1/2 − γ. Besides, from (A3), q > 1/(γc) and thus q > 2/(1 − 2γ) leading to 2γq3 < 1. The

second term is controlled with Lemma 2.A.7(ii) and is negligible compared to the first one:

|E(ε.,jY ζ1{Y≥yn})E(ε.,`Y ζ1{Y≥yn})| = O(y2ζ
n F̄ (yn)2−2/q) = o

(
y2ζ
n F̄ (yn)1−2/q

)
. (2.14)

Taking account of (2.13) and (2.14) yields

cov(ε.,jY ζ1{Y≥yn}, ε.,`Y
ζ1{Y≥yn}) = O

(
y2ζ
n F̄ (yn)1−2/q

)
, (2.15)

and therefore

var(χ(ζ)
n ) = O

(
1

F̄ (yn)2/qg(yn)2

)
→ 0,

as n→∞ since F̄ (·)2/qg(·)2 is regularly-varying with index 2(c−1/(qγ)) > 0. The conclusion

follows.

2.A.2 Proofs of main results

Proof of Proposition 2.2.1. Let us rewrite the optimization problem as

w(y) = arg max
‖w‖=1

cov(wtX,Y |Y ≥ y)

= arg max
‖w‖=1

E(wtXY 1{Y≥y})
F̄ (y)

− E(wtX1{Y≥y})E(Y 1{Y≥y})
F̄ (y)2

= arg max
‖w‖=1

F̄ (y)wtmXY (y)− wtmX(y)mY (y)

= arg max
‖w‖=1

wtv(y).

This constrained optimization problem is solved using Lagrange multipliers method. Intro-

ducing

L(w, λ) = wtv(y)− λ

2 (||w||2 − 1), λ ∈ R,
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and setting the partial derivatives to zero yield λ = ‖v(y)‖ and w = v(y)/‖v(y)‖.

Proof of Proposition 2.2.2. From Lemma 2.A.3, E(|Y |1{Y≥y}), E(‖XY ‖1{Y≥y}) and

E(‖X‖1{Y≥y}) exist for all y ∈ R. We may then apply Lemma 2.A.4 to get:

cos(w(y), β) = w(y)tβ = sign(E[g(Y )Ψy(Y )]) 1 + βtη(y)
‖β + η(y)‖ , (2.16)

with η(y) = E[εΨy(Y )]/E[g(Y )Ψy(Y )], see (2.10), and where sign(u) = 1 is u ≥ 0 and

sign(u) = −1 otherwise. Straightforward calculations yield

cos2(w(y), β)− 1 = (βtη(y))2 − ‖η(y)‖2
‖β + η(y)‖2 ,

and therefore it is sufficient to prove that ‖η(y)‖ → 0 as y →∞ to get

1− cos2(w(y), β) = O(‖η(y)‖2), (2.17)

as y → ∞. Under assumption (A3), there exists q > 1/(γc) such that E‖ε‖q < ∞. Hölder

inequality thus yields

‖E[εΨy(Y )]‖ ≤ [E‖ε‖q]1/q[E|Ψy(Y )|q2 ]1/q2 ,

for all q2 ≥ 1 such that 1/q + 1/q2 = 1. As a consequence, γ(c+ 1) < 1 and γc > 1/q imply

γq2 < 1 and then Lemma 2.A.5 shows that E|Ψy(Y )|q2 ∼ λ1(γ, q2)yq2+1f(y) as y →∞, with

λ1(γ, q2) > 0. Therefore,

‖E[εΨy(Y )]‖ ≤ [E‖ε‖q]1/q(λ1(γ, q2))1/q2y1+1/q2f(y)1/q2 . (2.18)

and Lemma 2.A.6 shows that, as y →∞,

E[g(Y )Ψy(Y )] ∼ λ2(γ, c)yg(y)F̄ (y), (2.19)

with λ2(γ, c) > 0. Collecting (2.18) and (2.19) thus yields:

‖η(y)‖ ≤ [E‖ε‖q]1/q(λ1(γ, q2))1/q2

λ2(γ, c)
(yf(y))1/q2

g(y)F̄ (y)
(1 + o(1)) = O

(
1

g(y)F̄ 1/q(y)

)
. (2.20)

Under assumptions (A1) and (A2), F̄ ∈ RV−1/γ and g ∈ RVc so that y 7→ g(y)F̄ 1/q(y)
is also regularly varying with index c − 1/(qγ) > 0. As a consequence, ‖η(y)‖ → 0 as

y → ∞ and the first part of the result is proved. Second, (2.19) shows that, for y large

enough, E[g(Y )Ψy(Y )] > 0. Consequently, cos(w(y), β) ≥ 0 eventually in view of (2.16), and
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then (2.17) entails that cos(w(y), β)→ 1 as y →∞ leading to

‖w(y)− β‖ =
√

2(1− cos(w(y), β)) ∼
√

1− cos2(w(y), β) = O(‖η(y)‖) = O

(
1

g(y)F̄ 1/q(y)

)
,

as y →∞, from (2.20). The result is proved.

Proof of Proposition 2.3.1. To establish the joint asymptotic normality of the 2(d+ 1)−
random vector Λn, we shall prove that any non-zero linear combination of its components is

asymptotically Gaussian.

Set α = (α1, α2, α3,1, . . . , α3,d, α4,1, . . . , α4,d)t ∈ R2(d+1) and let us investigate the asymptotic

distribution of χn defined as follows:

χn =
√
nF̄ (yn)



α1




ˆ̄F (yn)
F̄ (yn)

− 1


+ α2

(
m̂Y (yn)
mY (yn) − 1

)


+
√
nF̄ (yn)





d∑

j=1
α3,j

(
m̂X.,j (yn)
mX.,j (yn) − 1

)
+ α4,j

(
m̂X.,jY (yn)
mX.,jY (yn) − 1

)
 ,

and which can be rewritten as χn = ∑n
i=1 χi,n := ∑n

i=1(Zi,n − E(Zi,n)), where

Zi,n =

√
F̄ (yn)
n


 α1

F̄ (yn)
+ α2Yi
mY (yn) +

d∑

j=1

α3,jXi,j

mX.,j (yn) +
d∑

j=1

α4,jXi,jYi
mX.,jY (yn)


1{Yi≥yn}.

Under model (M1), Xi,j = g(Yi)βj + εi,j , for j ∈ {1, . . . , d} and i ∈ {1, . . . , n}, we get the

following decomposition:

Zi,n
d= 1√

n
(T1,i,n + T2,i,n + T3,i,n + T ′3,i,n + T4,i,n + T ′4,i,n),

where

T1,i,n = α1√
F̄ (yn)

1{Yi≥yn}, T2,i,n =
√
F̄ (yn) α2

mY (yn)Yi1{Yi≥yn},

T3,i,n =
√
F̄ (yn)




d∑

j=1

α3,jβj
mX.,j (yn)


 g(Yi)1{Yi≥yn}, T ′3,i,n =

√
F̄ (yn)




d∑

j=1

α3,jεi,j
mX.,j (yn)


1{Yi≥yn},

T4,i,n =
√
F̄ (yn)




d∑

j=1

α4,jβj
mX.,jY (yn)


Yig(Yi)1{Yi≥yn}, T ′4,i,n =

√
F̄ (yn)




d∑

j=1

α4,jεi,j
mX.,jY (yn)


Yi1{Yi≥yn}.
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Substituting yields χn = χ′0,n + χ′3,n + χ′4,n where

χ′0,n = 1√
n

n∑

i=1

4∑

`=1
(T`,i,n − E(T`,i,n)),

χ′3,n = 1√
n

n∑

i=1
(T ′3,i,n − E(T ′3,i,n)),

χ′4,n = 1√
n

n∑

i=1
(T ′4,i,n − E(T ′4,i,n)).

Lemma 2.A.8 shows that both χ′3,n and χ′4,n converge in probability to zero and we therefore

focus on the limiting distribution of χ′0,n. Clearly, E(χ′0,n) = 0. Turning to the variance of

χ′0,n and, since we deal with independent and identically distributed random variables, one

has

var(χ′0,n) = var

( 4∑

`=1
T`,i,n

)
=

4∑

`=1
var (T`,i,n) + 2

∑

1≤`<m≤4
cov (T`,i,n, Tm,i,n) ,

for all i ∈ {1, . . . , n}. As a preliminary result, the following asymptotic equivalent holds for

all (ζ, ω) ∈ {0, 1, 2}2:

E(Y ζg(Y )ω1{Y≥yn}) ∼
1

1− γ(ωc+ ζ) y
ζ
ng(yn)ωF̄ (yn), (2.21)

as n→∞, in view of Lemma 2.A.2 and assumption 2γ(c+ 1) < 1. Moreover, Lemma 2.A.2

and Lemma 2.A.7(i) yield the following asymptotic equivalents:

mY (yn) ∼ 1
1− γ ynF̄ (yn), (2.22)

mX.,j (yn) ∼ βj
1− γcg(yn)F̄ (yn), (2.23)

mX.,jY (yn) ∼ βj
1− γ(c+ 1)yng(yn)F̄ (yn), (2.24)

which will reveal useful in evaluation of variances and covariances below. We shall also use

the notation 〈α`〉 = ∑d
j=1 α`,j for ` ∈ {3, 4}. A straightforward calculation yields:

var(T1,i,n) = α2
1(1− F̄ (yn))→ α2

1 as n→∞.

Combining (2.21) and (2.22) leads to:

var(T2,i,n) = α2
2F̄ (yn)

(
E(Y 21{Y≥yn})

m2
Y (yn) − 1

)
→ b22 α

2
2 as n→∞.
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Similarly, and taking account of Lemma 2.A.2 and Lemma 2.A.7(i), one has:

var(T3,i,n) =



√
F̄ (yn)

d∑

j=1

α3,jβj
mX.,j (yn)




2 [
E(g(Y )21{Y≥yn})− E(g(Y )1{Y≥yn})2

]

∼ (1− γc)2〈α3〉2
g(yn)2F̄ (yn)

(
g(yn)2F̄ (yn)

1− 2γc − g(yn)2F̄ (yn)2

(1− γc)2 (1 + o(1))
)

→ b33〈α3〉2 as n→∞,

var(T4,i,n) =



√
F̄ (yn)

d∑

j=1

α4,jβj
mX.,jY (yn)




2 [
E(Y 2g(Y )21{Y≥yn})− E(Y g(Y )1{Y≥yn})2

]

∼ (1− γ(c+ 1))2〈α4〉2
y2
ng(yn)2F̄ (yn)

(
(yng(yn))2F̄ (yn)

1− 2γ(c+ 1) − (yng(yn)F̄ (yn))2

(1− γ(c+ 1))2 (1 + o(1))
)

→ b44〈α4〉2 as n→∞.

The covariances are evaluated in a similar way. First, terms involving T1,i,n can be readily

calculated:

cov(T1,i,n, T2,i,n) = cov


 α1√

F̄ (yn)
1{Y≥yn},

√
F̄ (yn) α2

mY (yn)Y 1{Y≥yn}




= α1α2(1− F̄ (yn))

→ α1α2 as n→∞,

cov(T1,i,n, T3,i,n) = cov


 α1√

F̄ (yn)
1{Y≥yn},

√
F̄ (yn)




d∑

j=1

α3,jβj
mX.,j (yn)


 g(Y )1{Y≥yn}




∼ (1− γc)α1〈α3〉
g(yn)F̄ (yn)

E(g(Y )1{Y≥yn})(1− F̄ (yn))

→ α1〈α3〉 as n→∞,

cov(T1,i,n, T4,i,n) = cov


 α1√

F̄ (yn)
1{Y≥yn},



√
F̄ (yn)

d∑

j=1

α4,jβj
mX.,jY (yn)


Y g(Y )1{Y≥yn}




∼ (1− γ(c+ 1))α1〈α4〉
yng(yn)F̄ (yn)

E(Y g(Y )1{Y≥yn})(1− F̄ (yn))

→ α1〈α4〉 as n→∞.
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Second, the remaining terms require repeated uses of Lemma 2.A.7(i):

cov(T2,i,n, T3,i,n) = cov



√
F̄ (yn) α2

mY (yn)Y 1{Y≥yn},



√
F̄ (yn)

d∑

j=1

α3,jβj
mX.,j (yn)


 g(Y )1{Y≥yn}




∼ (1− γ)(1− γc)α2〈α3〉
yng(yn)F̄ (yn)

[
E(Y g(Y )1{Y≥yn})− E(Y 1{Y≥yn})E(g(Y )1{Y≥yn})

]

∼ (1− γ)(1− γc)α2〈α3〉
yng(yn)F̄ (yn)

(
yng(yn)F̄ (yn)
1− γ(c+ 1) −

yng(yn)F̄ (yn)2

(1− γ)(1− γc)(1 + o(1))
)

→ b23 α2〈α3〉 as n→∞,

cov(T2,i,n, T4,i,n) = cov



√
F̄ (yn) α2

mY (yn)Y 1{Y≥yn},



√
F̄ (yn)

d∑

j=1

α4,jβj
mX.,jY (yn)


Y g(Y )1{Y≥yn}




∼ (1− γ(c+ 1))(1− γ)α2〈α4〉
y2
ng(yn)F̄ (yn)

×
[
E(Y 2g(Y )1{Y≥yn})− E(Y 1{Y≥yn})E(Y g(Y )1{Y≥yn})

]

∼ (1− γ(c+ 1))(1− γ)α2〈α4〉
y2
ng(yn)F̄ (yn)

×
(
y2
ng(yn)F̄ (yn)
1− γ(c+ 2) −

y2
ng(yn)F̄ (yn)2

(1− γ)(1− γ(c+ 1))(1 + o(1))
)

→ b24 α2〈α4〉 as n→∞,

cov(T3,i,n, T4,i,n) = cov



√
F̄ (yn)

d∑

j=1

α3,jβj
mX.,j (yn)g(Y )1{Y≥yn},

√
F̄ (yn)

d∑

j=1

α4,jβj
mX.,jY (yn)Y g(Y )1{Y≥yn}




∼ (1− γc)(1− γ(c+ 1))〈α3〉〈α4〉
yng(yn)2F̄ (yn)

×
[
E(Y g(Y )21{Y≥yn})− E(g(Y )1{Y≥yn})E(Y g(Y )1{Y≥yn})

]

∼ (1− γc)(1− γ(c+ 1))〈α3〉〈α4〉
yng(yn)2F̄ (yn)

×
(
yng(yn)2F̄ (yn)
1− γ(2c+ 1) −

yng(yn)2F̄ (yn)2

(1− γc)(1− γ(c+ 1))(1 + o(1))
)

→ b34 〈α3〉〈α4〉 as n→∞.

Finally, it follows that, as n→∞,

var(χ′0,n) → α2
1 + b22α

2
2 + b33〈α3〉2 + b44〈α4〉2 + 2α1 (α2 + 〈α3〉+ 〈α4〉) + 2α2 (b23〈α3〉+ b24〈α4〉)

+ 2b34〈α3〉〈α4〉

= αtBα,
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where B is given in the statement of the Proposition. Remarking that χ′0,n is the sum of

a triangular array of independent, identically distributed and centered random variables,

one may use Lyapunov criterion (Billingsley, 1995, Theorem 27.3), to prove its asymptotic

normality. To this end, consider δ ∈ (0, 1
2(c+1) − γ) and let us show that

nE
∣∣∣∣∣

4∑

`=1

T`,1,n − E(T`,1,n)√
n

∣∣∣∣∣

2+δ

→ 0 as n→∞. (2.25)

Using both triangle and Jensen inequalities, we get



E

∣∣∣∣∣
4∑

`=1
[T`,1,n − E(T`,1,n)]

∣∣∣∣∣

2+δ


1/(2+δ)

≤
4∑

`=1

(
{E|T`,1,n|2+δ}1/(2+δ) + E|T`,1,n|

)

≤ 8 max
1≤`≤4

{E|T`,1,n|2+δ}1/(2+δ).

Lemma 2.A.2 and Lemma 2.A.7(i) yield, as n→∞,

E|T1,1,n|2+δ = F̄ (yn)−δ/2 |α1|2+δ,

E|T2,1,n|2+δ ∼ F̄ (yn)−δ/2 |α2|2+δ (1− γ)2+δ

1− γ(2 + δ) ,

E|T3,1,n|2+δ ∼ F̄ (yn)−δ/2 |〈α3〉|2+δ (1− γc)2+δ

1− γc(2 + δ) ,

E|T4,1,n|2+δ ∼ F̄ (yn)−δ/2 |〈α4〉|2+δ (1− γ(c+ 1))2+δ

1− γ(2 + δ)(c+ 1) ,

leading to

nE
∣∣∣∣∣

4∑

`=1

T`,1,n − E(T`,1,n)√
n

∣∣∣∣∣

2+δ

= O
(
[nF̄ (yn)]−δ/2

)
→ 0 as n→∞,

which proves (2.25). As a conclusion, χ′0,n
d−→ N (0, αtBα) and

√
nF̄ (yn)Λn d−→ N (0, B).

Proof of Proposition 2.3.2. Let us denote by σ−1
n :=

√
nF̄ (yn) and prove in a first step

that

σ−1
n

(
v̂j(yn)− vj(yn)
‖v(yn)‖

)

1≤j≤d

d−→ ξ (βj)1≤j≤d with ξ ∼ N (0, λ(c, γ)) , (2.26)

using the notations introduced in Proposition 2.3.1. Denoting by ϑn := σ−1
n Λn, Proposi-

tion 2.3.1 shows that:

ˆ̄F (yn) = F̄ (yn)(1 + σnϑ1,n), m̂Y (yn) = mY (yn)(1 + σnϑ2,n),

m̂X.,j (yn) = mX.,j (yn)(1 + σnϑj+2,n), m̂X.,jY (yn) = mX.,jY (yn)(1 + σnϑj+2+d,n),
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for all j ∈ {1, . . . , d} and with ϑn
d−→ N (0, B). Substituting in (2.4), we get

v̂j(yn) = ˆ̄F (yn)m̂X.,jY (yn)− m̂X.,j (yn)m̂Y (yn)

= F̄ (yn)mX.,jY (yn)−mX.,j (yn)mY (yn)

+ F̄ (yn)mX.,jY (yn)σn [ϑ1,n + ϑj+2+d,n + σnϑ1,nϑj+2+d,n]

− mX.,j (yn)mY (yn)σn [ϑ2,n + ϑj+2,n + σnϑ2,nϑj+2,n] ,

and taking account of vj(yn) = F (yn)mX.,jY (yn)−mX.,j (yn)mY (yn) and σn → 0 yields

σ−1
n (v̂j(yn)− vj(yn)) = F̄ (yn)mX.,jY (yn) [ϑ1,n + ϑj+2+d,n + oP (1)]

− mX.,j (yn)mY (yn) [ϑ2,n + ϑj+2,n + oP (1)] .

From (2.22)–(2.24) in the proof of Proposition 2.3.1, it follows that, for all j ∈ {1, . . . , D}:

σ−1
n

yng(yn)F̄ (yn)2 (v̂j(yn)− vj(yn)) = βj
1− γ(c+ 1) [ϑ1,n + ϑj+2+d,n + oP (1)]

− βj
(1− γ)(1− γc) [ϑ2,n + ϑj+2,n + oP (1)] . (2.27)

Besides, Lemma 2.A.4 yields

‖v(yn)‖ = F̄ (yn)E[g(Y )Ψyn(Y )]‖β + η(yn)‖,

with E[g(Y )Ψyn(Y )] ∼ λ2(γ, c) yng(yn)F̄ (yn) and ‖β + η(yn)‖ → ‖β‖ = 1 as yn → ∞,

from (2.19) and (2.20) in the proof of Proposition 2.2.2. It follows that

‖v(yn)‖ = λ2(γ, c)yng(yn)F̄ 2(yn)(1 + o(1)). (2.28)

Collecting (2.27) and (2.28) entails, for all j = 1, . . . , d:

σ−1
n

‖v(yn)‖ (v̂j(yn)− vj(yn)) = βj [a1(ϑ1,n + ϑj+2+d,n)− a2 (ϑ2,n + ϑj+2,n)] + oP (1),

where we have defined a1 = (1−γ)(1−γc)/(γ2c) and a2 = (1−γ(c+1))/(γ2c). Consequently,

we have proved that

σ−1
n

‖v(yn)‖ (v̂j(yn)− vj(yn))1≤j≤d
d−→ N

(
0,diag(β1, . . . , βd)ABAtdiag(β1, . . . , βd)

)
, (2.29)
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where A is the d× 2(d+ 1) matrix defined as follows

A =




a1 −a2 −a2 0 . . . . . . 0 a1 0 . . . . . . 0

a1 −a2 0 −a2
. . . 0 0 a1

. . . 0
...

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

...
...

. . . −a2 0
...

. . . a1 0
a1 −a2 0 . . . . . . 0 −a2 0 . . . . . . 0 a1




.

Straightforward algebra shows that

diag(β1, . . . , βd)ABAtdiag(β1, . . . , βd) = λ(c, γ)(β1, . . . , βd)t(β1, . . . , βd),

so that the limiting Gaussian distribution is non-degenerated in the only direction (β1, . . . , βd)t.
Therefore, the convergence in distribution (2.29) can be rewritten as in (2.26). The second

step consists in proving that

σ−1
n

(
v̂j(yn)− vj(yn)
‖v(yn)‖

)

d+1≤j≤p

P−→ 0. (2.30)

For all j = d+ 1, . . . , p and ζ ∈ {0, 1}, the inverse model (M1) shows that

m̂X.,jY ζ (yn) = 1
n

n∑

i=1
XijY

ζ
i 1{Y ζi ≥yn}

= 1
n

n∑

i=1
εijY

ζ
i 1{Y ζi ≥yn}

.

Moreover, from (2.15) in the proof of Lemma 2.A.8, we have

var(m̂X.,jY ζ (yn)) = O

(
y2ζ
n F̄ (yn)1−2/q

n

)
,

and recalling that E
(
m̂X.,jY ζ (yn)

)
= mX.,jY ζ (yn), a straightforward application of Markov

inequality yields

m̂X.,jY ζ (yn) = mX.,jY ζ (yn) +OP


y

ζ
nF̄ (yn)

1
2−

1
q

√
n


 .
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Substituting in (2.4) and taking into account Lemma 2.A.7(ii) yield

v̂j(yn) = ˆ̄F (yn)m̂X.,jY (yn)− m̂X.,j (yn)m̂Y (yn)

= F̄ (yn)(1 + σnϑ1,n)


mX.,jY (yn) +OP


ynF̄ (yn)

1
2−

1
q

√
n






− mY (yn)(1 + σnϑ2,n)


mX.,j (yn) +OP


 F̄ (yn)

1
2−

1
q

√
n






= vj(yn) +OP


ynF̄ (yn)

3
2−

1
q

√
n


 .

Therefore, in view of (2.28), we have

σ−1
n

‖v(yn)‖(v̂j(yn)− vj(yn)) = OP

(
1

g(yn)F̄ (yn)1/q

)
,

for all j ∈ {d + 1, . . . , p}, as n → ∞ and since F̄ (·)1/qg(·) is regularly-varying with index

c− 1/(qγ) > 0. Finally, we can then infer that (2.30) holds, hence the result.

Proof of Theorem 2.3.1. Let us recall that σ−1
n =

√
nF̄ (yn) and consider the expansion

σ−1
n

(
v̂(yn)
‖v(yn)‖ − β

)
= σ−1

n

(
v̂(yn)
‖v(yn)‖ − w(yn)

)
+ σ−1

n (w(yn)− β) .

First, Proposition 2.3.2 shows that

σ−1
n

(
v̂(yn)
‖v(yn)‖ − w(yn)

)
d−→ ξβ,

where ξ ∼ N (0, λ(c, γ)). Second, Proposition 2.2.2 entails that

σ−2
n ‖w(yn)− β‖2 = O

(
nF̄ 1−2/q(yn)

g2(yn)

)
→ 0,

as yn →∞, and the result is proved.

2.A.3 Supplementary material for simulations

This Supplementary material includes additional results on simulated data (Section 2.5

of the main paper). The finite sample behavior of the EPLS estimator v̂(yn) is illustrated

and compared to SIMEXQ (single-index model extreme quantile) estimator. Seven cases are

investigated:

• dimension p = 3, Frank copula and Student distribution (Figure 6),
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• dimension p = 30, Frank copula and Pareto distribution (Figure 7),

• dimension p = 30, Frank copula and Student distribution (Figure 8),

• dimension p = 3, Gaussian copula and Pareto distribution (Figure 9),

• dimension p = 3, Gaussian copula and Student distribution (Figure 10),

• dimension p = 30, Gaussian copula and Pareto distribution (Figure 11),

• dimension p = 30, Gaussian copula and Student distribution (Figure 12),

while the remaining case (p = 3, Frank copula and Pareto distribution) is presented in

Figure 2 of the main paper.
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Figure 6 Finite sample behaviour of EPLS v̂(Yn−k+1,n) (left) and SIMEXQ (right) esti-
mators, on simulated data from a Student distribution, Frank copula, dimension p = 3.
Horizontally: number k ∈ {1, . . . , 200} of exceedances, vertically: PC(Yn−k+1,n) quality
measure. From top to bottom, Frank copula parameter θ ∈ {0, 10, 20}. The powers
c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc are displayed in {black, yellow, green,
red}.
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Figure 7 Finite sample behaviour of EPLS v̂(Yn−k+1,n) (left) and SIMEXQ (right) esti-
mators, on simulated data from a Pareto distribution, Frank copula, dimension p = 30.
Horizontally: number k ∈ {1, . . . , 200} of exceedances, vertically: PC(Yn−k+1,n) quality
measure. From top to bottom, Frank copula parameter θ ∈ {0, 10, 20}. The powers
c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc are displayed in {black, yellow, green,
red}.
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Figure 8 Finite sample behaviour of EPLS v̂(Yn−k+1,n) (left) and SIMEXQ (right) esti-
mators, on simulated data from a Student distribution, Frank copula, dimension p = 30.
Horizontally: number k ∈ {1, . . . , 200} of exceedances, vertically: PC(Yn−k+1,n) quality
measure. From top to bottom, Frank copula parameter θ ∈ {0, 10, 20}. The powers
c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc are displayed in {black, yellow, green,
red}.
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Figure 9 Finite sample behaviour of EPLS v̂(Yn−k+1,n) (left) and SIMEXQ (right) esti-
mators, on simulated data from a Pareto distribution, Gaussian copula, dimension p = 3.
Horizontally: number k ∈ {1, . . . , 200} of exceedances, vertically: PC(Yn−k+1,n) quality mea-
sure. From top to bottom, Gaussian copula parameter θ ∈ {0, 0.87, 0.96}. The powers
c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc are displayed in {black, yellow, green,
red}.
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Figure 10 Finite sample behaviour of EPLS v̂(Yn−k+1,n) (left) and SIMEXQ (right) esti-
mators, on simulated data from a Student distribution, Gaussian copula, dimension p = 3.
Horizontally: number k ∈ {1, . . . , 200} of exceedances, vertically: PC(Yn−k+1,n) quality mea-
sure. From top to bottom, Gaussian copula parameter θ ∈ {0, 0.87, 0.96}. The powers
c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc are displayed in {black, yellow, green,
red}.
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Figure 11 Finite sample behaviour of EPLS v̂(Yn−k+1,n) (left) and SIMEXQ (right) esti-
mators, on simulated data from a Pareto distribution, Gaussian copula, dimension p = 30.
Horizontally: number k ∈ {1, . . . , 200} of exceedances, vertically: PC(Yn−k+1,n) quality mea-
sure. From top to bottom, Gaussian copula parameter θ ∈ {0, 0.87, 0.96}. The powers
c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc are displayed in {black, yellow, green,
red}.
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Figure 12 Finite sample behaviour of EPLS v̂(Yn−k+1,n) (left) and SIMEXQ (right) esti-
mators, on simulated data from a Student distribution, Gaussian copula, dimension p = 30.
Horizontally: number k ∈ {1, . . . , 200} of exceedances, vertically: PC(Yn−k+1,n) quality mea-
sure. From top to bottom, Gaussian copula parameter θ ∈ {0, 0.87, 0.96}. The powers
c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc are displayed in {black, yellow, green,
red}.
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Abstract

The application of Bayesian inference in the context of extreme values is of great interest as

it allows to deal with data scarcity problems. In this chapter, we adopt a Bayesian approach to

the Extreme-PLS model, presented earlier in Chapter 2, to identify the direction of dimension

reduction and introduce prior information on it. This chapter is the subject of a paper to be

submitted for publication in the near future. Section 3.1 begins with a short introduction to

the background of the Bayesian Extreme-PLS model. Section 3.2 proposes an adaptation of

the von-Mises Fisher distribution, considered as a natural distribution for directional data,

from the unit hypersphere to the hyperball. We propose in Section 3.3 a Bayesian formulation

of the Extreme-PLS model and compute the posterior distribution of the dimension reduction

direction. The associated likelihood function is derived from the data and is characterised

by the von Mises-Fisher distribution adapted to a hyperball. Then we present three possible

choices of the prior distributions, namely conjugate, hierarchical and sparse priors. The

maximum a posteriori estimator of the direction is explicit for the conjugate and sparse priors

case, while it has to be computed by MCMC sampling, for example, in the hierarchical one.

The performance of the approach is studied through a simulation study in Section 3.4. We

show that the proposed estimator is more efficient than Extreme-PLS in some situations,

especially on small datasets. Section 3.5 illustrates the use of this approach on a French farm

income dataset, to explain the lowest cereal yields given other factors. We conclude with a

brief discussion in Section 3.6. The proofs are given in the Appendix.
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Resumé

L’application de l’inférence bayésienne dans le contexte des valeurs extrêmes est d’un grand

intérêt car cela permet de pallier les problèmes de rareté des données. Dans ce chapitre, nous

adoptons une approche bayésienne du modèle Extreme-PLS, présenté précédemment dans le

Chapitre 2, pour identifier la direction de la réduction de dimension et introduire des in-

formations a priori à ce sujet. Ce chapitre fait l’objet d’un article qui sera soumis pour

publication dans un avenir proche. La Partie 3.1 commence par une brève introduction au

contexte du modèle Bayesian Extreme-PLS. La Partie 3.2 propose une adaptation de la dis-

tribution de von Mises-Fisher, considérée comme une distribution naturelle pour les données

directionnelles, de l’hypersphère unité à la boule. Dans la Partie 3.3, nous proposons une

formulation bayésienne du modèle Extreme-PLS et calculons la distribution postérieure de la

direction de la réduction de dimension. La fonction de vraisemblance associée est dérivée

des données, et est caractérisée par la distribution de von Mises-Fisher sur la boule. Nous

présentons ensuite trois choix possibles de lois a priori, à savoir loi conjuguée, hiérarchique et

sparse. L’estimateur maximum a posteriori de la direction est explicite pour les lois a priori

conjuguées et sparse, tandis qu’il doit être calculé par échantillonnage MCMC, par exemple,

pour la loi a priori hiérarchique. La performance de l’approche est évaluée par une étude

sur simulations dans la Partie 3.4. Nous montrons que l’estimateur proposé est plus efficace

que le modèle Extreme-PLS dans certaines situations, en particulier sur les données de petite

taille. La Partie 3.5 illustre l’utilisation de cette approche sur un ensemble de données de

revenus agricoles français, pour expliquer les rendements céréaliers les plus faibles compte

tenu d’autres facteurs. Nous concluons par une brève discussion dans la Partie 3.6. Les

preuves sont données en Annexe.
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3.1 Introduction

In statistical regression for extreme values, one has to deal with problems where the

scarcity of extreme events limits the available data to provide a robust regression. Further-

more, the number n of available observations is usually much smaller than the dimension p

and thus one also has to deal with the well-known ”curse of dimensionality”.

Extracting and identifying a low-dimensional subspace of the covariates X, that maintains

a high relationship between X and the response variable Y , is a crucial step. Partial least

squares (PLS) regression (Wold, 1975) is one of the most popular methods combining princi-

pal component analysis (PCA) for dimension reduction and multiple regression. Sliced inverse

regression (SIR) (Li, 1991) is also a very popular class of methods that estimates a central

dimension reduction (DR) subspace based on the conditional distribution of X given Y , i.e.

inverse regression. Several extensions have been developed for SIR (Li et al., 2007; Wu, 2008;

Chiancone et al., 2017; Coudret et al., 2014) and PLS (Cook et al., 2013; Chun and Keleş,

2010), among others (see Section 1.3). While all these dimension reduction methods adopt

the frequentist approach, there exists some works in the literature that use the Bayesian ap-

proach to estimate the reduction dimension space. In Reich et al. (2011), the authors propose

a Bayesian method of dimension reduction by placing a prior on the central subspace, Mao

et al. (2010) propose a Bayesian framework for dimension reduction using a nonparametric

Bayesian mixture modeling approach, Cai et al. (2021) considers a Bayesian approach to

calculate the conditional distribution of X given Y and perform dimension reduction.

On the other side, there are some few works in the literature on dimension reduction dedicated

to extreme conditional quantiles (see Paragraph 1.5.4.4). One can mention Gardes (2018)

who proposes a dimension reduction method and a conditional extremal quantile estimator

by considering the tail dimension reduction subspace. The work of Xu et al. (2020) introduces

a semi-parametric approach for the estimation of extreme conditional quantiles basing on a

tail single-index model. The dimension reduction direction β is estimated through fitting a

misspecified linear quantile regression model. Extreme-PLS model, proposed in Chapter 2,

is a dimension reduction method based on PLS to find the linear combinations of covariates

X that best explain the extreme values of Y . To our best of knowledge, there is no existing

work that adopts the Bayesian approach for dimension reduction in the regression context

and conditional extremes. The latter is of great interest as it allows us to deal with prob-

lems with a very small amount of data, or to incorporate domain knowledge of covariates

structures by using appropriate priors.

In this work, we develop a Bayesian methodology, called Bayesian Extreme-PLS, which

extends the model-based approach proposed in Chapter 2 to make it more efficient for small
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data problems. In particular, we remain within the Extreme-PLS framework to identify the

dimension reduction direction and introduce some prior information on it. First, a Bayesian

formulation is provided for computing the posterior distribution of β. To this end, the

likelihood function of X given Y and β is derived from the data and is characterised by

the von Mises-Fisher distribution. This distribution, which naturally arises for directional

data distributed on the unit sphere (Mardia and Jupp, 2009) is here adapted to hyperballs.

Then, we establish the posterior distribution of β from the likelihood function and a desired

prior distribution. Several criteria are investigated for the prior distribution, including for

instance a sparsity assumption, where only certain coordinates of X will be useful to explain

Y . Second, once the posterior distribution is computed, one can use some usual statistics,

such as the posterior mean or mode to estimate β in a Bayesian way.

This chapter is organized as follows. First, we propose in Section 3.2 an adaptation of the

von Mises-Fisher distribution from the hypersphere to the hyperball. Bayesian inference on

the Extreme Partial Least Squares model is described in Section 3.3, where three possible

priors on the direction β are discussed. The behaviour of Bayesian estimators is illustrated on

simulated data in Section 3.4, while an application on French farm income data is described

in Section 3.5. A discussion is provided in Section 3.6 and proofs are postponed to the

Appendix.

3.2 von Mises-Fisher distribution: From the hypersphere to the hy-

perball

The von Mises-Fisher distribution (Mardia, 1975) is a fundamental probability distribution

used in the analysis of directional data, and it is considered as a spherical analogue of the

multivariate Gaussian distribution in Rp. This distribution was introduced by Watson and

Williams (1956) and has been discussed in details by Mardia (1975). We focus on the use

of the von Mises–Fisher distribution since it appears naturally for directional data, and then

we propose an extension of this distribution from the hypersphere to the hyperball.

3.2.1 von Mises-Fisher distribution on the unit hypersphere

A p-dimensional unit random vector X is said to have a p-variate von Mises-Fisher distri-

bution vMF/S(µ, κ) on the unit hypersphere Sp−1 = {x ∈ Rp/‖x‖ = 1}, if its probability

density is given for all x ∈ Sp−1 by:

f(x|µ, κ) = cp(κ)eκµtx, (3.1)
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where µ ∈ Sp−1, κ ≥ 0, p ≥ 2. The normalising constant cp(κ) is given by:

cp(κ) = κp/2−1

(2π)p/2Ip/2−1(κ)
, (3.2)

where Ip(·) is the modified Bessel function of the first kind and order p, defined as (Abramowitz

and Stegun, 1964):

Ip(κ) =
∑

l≥0

1
Γ(p+ l + 1)l!

(
κ

2

)2l+p
, (3.3)

where Γ(·) is the Gamma function which verifies the property: Γ(p + 1) = pΓ(p). The

density f(·|µ, κ) is parameterised by the a location parameter µ (µ is the modal location on

the hypersphere, see the following Lemma 3.2.1), and the concentration parameter κ which

characterises the degree of concentration of the unit vectors drawn from f(·|µ, κ) around µ.

Large values of κ imply a strong concentration around the modal location µ. In contrast,

when κ = 0, f(x|µ, κ) reduces to the uniform density on Sp−1.

The following Lemma gives the mode and the first moment of a von Mises-Fisher distribu-

tion.

Lemma 3.2.1. Let X be a p-dimensional unit vector having a von Mises-Fisher distribution

vMF/S(µ, κ) on the unit hypersphere Sp−1, with µ ∈ Sp−1 and κ ≥ 0. Then,

(i) The mode of X is µ.

(ii) E(X) = µAp(κ), where Ap(κ) = Ip/2(κ)/Ip/2−1(κ).

Note that the von Mises-Fisher distribution is unimodal with mode µ. The expectation of

the latter is collinear with µ and since Ap(κ) is the ratio of Bessel functions, we cannot obtain

a closed form. Nevertheless, using the asymptotic expansion of the modified Bessel function

(see Abramowitz and Stegun (1964), p. 377) when κ→∞, given by

Ip(κ) = eκ√
2πκ

(
1− 4p2 − 1

8κ

)
+O

( 1
κ2

)
, (3.4)

the following expansion of Ap(κ) can be established:

Ap(κ) = 1− p− 1
2κ + (p− 1)(p− 3)

8κ2 +O

( 1
κ3

)
, (3.5)

as κ → ∞, see Chatelain and Le Bihan (2013). As a result, when κ → ∞, E(X) → µ.

Besides, in view of (3.3), one also has, when κ→ 0,

Ip(κ) = κp

2pp! + κ2+p

2p+2(1 + p)! +O
(
κp+4

)
, (3.6)
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leading to

Ap(κ) = κ

p
+O

(
κ3
)
, (3.7)

as κ→ 0 and in this case E(X) ∼ µκ/p.

3.2.2 von Mises-Fisher distribution on the hyperball

Our goal is to define a similar distribution on the hyperball of radius r > 0 denoted by

Bp(r) = {x ∈ Rp/‖x‖ ≤ r}. To this end, it is sufficient to adapt the von Mises-Fisher

distribution defined on the unit hypersphere Sp−1 to the hyperball Bp(r) by considering for

all x ∈ Bp(r),

f(x|µ, κ, r) =
c′p(κ)
rp

eκµ
tx/r, (3.8)

with µ ∈ Sp−1, κ ≥ 0, r > 0, p ≥ 2 and where c′p(κ) is the normalizing constant to be

determined.

Lemma 3.2.2. The normalizing constant of the von Mises-Fisher distribution defined on the

hyperball Bp(r) is given by:

c′p(κ) = 2πcp+2(κ). (3.9)

The von Mises-Fisher distribution on the hyperball Bp(r) is denoted by vMF/B(µ, κ, r).

3.3 Bayesian inference for Extreme Partial Least Squares

3.3.1 Framework

In the framework of the adaptation of Partial Least Squares to the extreme-value case, the

following single-index non linear inverse regression model is introduced in Section 2.2:

(M) X = g(Y )β + ε, where X and ε are p-dimensional random vectors, Y is a real random

variable, g : R→ R is an unknown link function, β ∈ Rp is an unknown unit vector.

Here, Y is the response variable, X is the multidimensional covariate and ε is a multidimen-

sional error term. Model (M) is referred to as an inverse regression model since the covariates

are written as functions of the response variable. Considering (Xi, Yi), i ∈ {1, . . . , n} a n sam-

ple with same distribution as (X,Y ), the Extreme-PLS estimate of the direction β ∈ Sp−1 is

obtained by maximizing the covariance between β̂tX and Y conditionally on large values of

Y :

β̂(y) = argmax
‖β‖=1

βt
{ ˆ̄F (y)m̂XY (y)− m̂X(y)m̂Y (y)

}
, (3.10)
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with ˆ̄F the empirical survival function of Y ,

m̂XY (y) = 1
n

n∑

i=1
XiYi1{Yi≥y}, m̂Y (y) = 1

n

n∑

i=1
Yi1{Yi≥y}, m̂X(y) = 1

n

n∑

i=1
Xi1{Yi≥y},

as y is some high threshold, see Section 2.3 for details. Here, we aim at introducing a prior

probability distribution on the direction β. The latter may reflect our prior information on

this direction. Then, we update the prior distribution using the information contained in the

observed data to obtain the so-called posterior distribution. To do so, one can rewrite the

optimization problem (3.10) as follows:

β̂(y) = argmax
‖β‖=1

exp
(
βt
{

1
n

n∑

i=1
Xi1{Yi≥y}

[ ˆ̄F (y)Yi − m̂Y (y)
]})

= argmax
‖β‖=1

n∏

i=1
exp

(
βtXiΦy(Y1:n)

)
, (3.11)

where Y1:n denotes the vector (Y1, . . . , Yn)t ∈ Rn and Φy(Y1:n) = 1
n1{Yi≥y}[

ˆ̄F (y)Yi − m̂Y (y)].
Remarking that, under model (M) and using the triangle inequality, ‖Xi‖ ≤ |g(Yi)| + ‖εi‖,
the optimization problem (3.11) can be interpreted in terms of density associated with the

vMF/B distribution

β̂(y) = argmax
‖β‖=1

n∏

i=1
fvMF/B (Xi|β, κ = Φy(Y1:n)(|g(y)|+ ‖εi‖), r = |g(y)|+ ‖εi‖) .

It appears that β̂ can be interpreted as the estimator maximizing the likelihood conditionally

on Y1:n and ε1:n. Since the distribution p(·, ·) of (Y1:n, ε1:n) does not depend on β, one also

has

β̂(y) = argmax
‖β‖=1

(
n∏

i=1
fvMF/B (Xi|β, κ = Φy(Y1:n)(|g(y)|+ ‖εi‖), r = |g(y)|+ ‖εi‖)

)
p(Y1:n, ε1:n),

and β̂(y) can also be viewed as the unconditional maximum likelihood estimator of β. Thus,

by introducing a prior distribution π(·) on β, denoted by π(β), and in view of Bayes’ rule,

the corresponding posterior distribution of β is given by

p(β|X1:n, Y1:n, ε1:n) ∝
n∏

i=1
fvMF/B (Xi|β, κ = Φy(Y1:n)(|g(Yi)|+ ‖εi‖), r = |g(Yi)|+ ‖εi‖)

× p(Y1:n, ε1:n)π(β).
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Since p(Y1:n, ε1:n) does not depend on β, the posterior distribution can be simplified as

p(β|X1:n, Y1:n, ε1:n) ∝ π(β)
n∏

i=1
fvMF/B (Xi|β, κ = Φy(Y1:n)(|g(Yi)|+ ‖εi‖), r = |g(Yi)|+ ‖εi‖) .

This formalism opens the door to the construction of Bayesian estimators for β. Let us

remark that, the posterior distribution can be further simplified as

p(β|X1:n, Y1:n, ε1:n) ∝ π(β)
n∏

i=1
exp

(
βtXiΦy(Y1:n)

)
= π(β) exp

(
βtSn(y)

)
, (3.12)

where we have defined Sn(y) = ∑n
i=1XiΦy(Y1:n).

Let us now discuss the choice of the prior distribution π(·) which is a crucial step in Bayesian

approaches. There are several possible criteria for choosing the prior distribution. Some

are based on practical considerations. For example, some prior distributions lead to simple

computational posterior distributions, such as the conjugate family case. Using a family of

conjugate distributions makes the calculations quite simple when the posterior parameters

are explicitly expressed in terms of the prior parameters and the data. Indeed, if one knows

how to simulate according to the considered distribution, or compute some aspects such as

the mean or the mode, the simulation according to the posterior distribution is a special case

and can be less complex. This situation is illustrated in Paragraph 3.3.2. It is also possible

to use several levels of prior distributions, which leads to so-called hierarchical methods, see

Paragraph 3.3.3. Another criteria is based on past experience, the expertise of specialists in a

certain field or the intuition of the statistician. Some ideas for selecting variables, regularising

or encouraging the estimator to be sparse can be expressed through a well chosen prior

distribution (Van Erp et al., 2019). Such an example is derived in Paragraph 3.3.4.

3.3.2 Conjugate prior

Using the fact that the vMF distribution belongs to the exponential family, one may take the

corresponding conjugate standard prior for β, see Nunez-Antonio and Gutiérrez-Pena (2005).

Indeed, it is convenient for Bayesian inference to have conjugate priors for the parameters of

a distribution since posterior distributions remain in the same class as the prior distribution.

We thus assume a vMF/S prior distribution for the direction β on the hypersphere Sp−1, with

location vector µ ∈ Sp−1 and concentration parameter κ1 ≥ 0. Using (3.12), the posterior is

written as:

p(β|X1:n, Y1:n, ε1:n) ∝ exp(κ1β
tµ) exp

(
βtSn(y)

)

= exp
(
βt {Sn(y) + κ1µ}

)
. (3.13)
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Note that the posterior is a von Mises-Fisher distribution with location parameter (Sn(y) +
κ1µ)/‖Sn(y)+κ1µ‖ and concentration ‖Sn(y)+κ1µ‖. In this case, the maximum a posteriori

(MAP) estimator coincides with the mode of the vMF/S distribution:

β̂CMAP = Sn(y) + κ1µ

‖Sn(y) + κ1µ‖
,

from Lemma 3.2.1. The MAP estimator is a linear combination of the prior direction µ with

the Extreme-PLS estimator Sn(y)/‖Sn(y)‖. Setting κ1 = 0 amounts to assuming an uniform

prior distribution for the direction β and we thus recover the Extreme-PLS framework. In

contrast, letting κ1 →∞ yields β̂CMAP → µ.

3.3.3 Hierarchical prior

In Bayesian statistics, recall that it is assumed that the data distribution is driven by a

parameter β which is itself random and following a prior distribution. In some situations, the

distribution of β may in turn depend on a parameter µ which is unknown. A fully Bayesian

approach consists in considering µ itself random and choosing a prior distribution on µ. The

parameter µ is called a hyperparameter.

vMF/S(µ, κ1) prior for β with κ1 fixed and uniform prior on µ. Assume that β given µ fol-

lows a vMF/S(µ, κ1) distribution and that µ is uniformly distributed on the unit hypersphere

Sp−1. The prior density of µ is constant over Sp−1 and we have:

p(β, µ|X1:n, Y1:n, ε1:n) ∝ exp
(
βt {Sn(y) + κ1µ}

)
,

in view of (3.13). Thus, the posterior distribution is defined by

p(β|X1:n, Y1:n, ε1:n, µ) =
∫

Sp−1
p(β, µ|X1:n, Y1:n, ε1:n)dµ

∝ exp
(
βtSn(y)

) ∫

Sp−1
exp

(
κ1β

tµ
)
dµ

∝ exp
(
βtSn(y)

)
.

As a consequence, the posterior distribution of β coincides with the likelihood, the prior

distribution is not taken into account in the estimation.

vMF/S(µ, κ1) prior for β with prior on (µ, κ1). Assume that β given µ follows a vMF/S(µ, κ1)
distribution, that µ given κ1 follows a vMF/S(µ0, κ1q0) distribution and that κ1 is Gamma

distributed:

p(µ, κ1) = p(µ|κ1)p(κ1) = fvMF/S(µ|µ0, κ1q0)fG(κ1|a0, b0),
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where µ0 ∈ Sp−1, q0 ≥ 0 and fG(·|a0, b0) is the Gamma density function with shape parameter

a0 > 0 and inverse scale parameter b0 > 0. The choice of Gamma distribution is motivated

by the fact κ1 is scalar and positive. Moreover, the Gamma density is flexible enough to

approximate well the posterior marginal density of κ1 (see Taghia et al. (2014), p. 1703).

Note that when q0 = 0, we recover a uniform distribution on Sp−1 for µ, as seen above.

From (3.12), one has

p(β, µ, κ1|X1:n, Y1:n, ε1:n) ∝ fvMF/S(β|µ, κ1)fvMF/S(µ|µ0, κ1q0)fG(κ1|a0, b0)p(β|X1:n, Y1:n, ε1:n)

∝ cp(κ1) exp
(
βtSn(y)

)
exp

(
µt{κ1β + q0κ1µ0}

)
exp(−b0κ1)κa−1

1 .

Integrating with respect to µ and κ1, the posterior distribution is given by

p(β|X1:n, Y1:n, ε1:n, µ, κ1) =
∫ ∞

0

∫

Sp−1
p(β, µ, κ1|X1:n, Y1:n, ε1:n)dµdκ1

∝ eβ
tSn

∫ ∞

0
cp(κ1)e−b0κ1κa−1

1

∫

Sp−1
exp

(
µt{κ1β + q0κ1µ0}

)
dµ dκ1.

Moreover, in view of Section 3.2.1, we have:

∫

Sp−1
exp

(
µt{κ1β + q0κ1µ0}

)
dµ =

∫

Sp−1
exp

(
‖κ1β + q0κ1µ0‖µt

κ1β + q0κ1µ0
‖κ1β + q0κ1µ0‖

)
dµ

= 1/cp(κ1‖β + q0µ0‖),

and therefore

p(β|X1:n, Y1:n, ε1:n, µ, κ1) ∝ eβ
tSn

∫ ∞

0

cp(κ1)
cp(κ1‖β + q0µ0‖)

e−b0κ1κa−1
1 dκ1.

It appears that the posterior distribution is not explicit. The computation of the MAP

should then rely on simulation methods such as Importance Sampling or Monte-Carlo Markov

Chains (Besag, 2001; Gamerman and Lopes, 2006; Hastings, 1970; Metropolis et al., 1953)

presented in Section 1.4.1. This will be the subject of our future work.

3.3.4 Sparse prior

The Extreme-PLS method can be improved by combining the assumption that only a few

covariates X are useful to explain the response variable Y . Thus, our goal is to impose sparsity

on the direction of dimension reduction β. Introducing a sparsity prior on β corresponds to

the assumption that many coordinates βj can be set to zero without affecting the fit of the

model. Let us consider a Laplace distribution π(β|λ) = bp(λ) exp(−λ‖β‖1) as a prior for

β ∈ Sp−1, with ‖β‖1 = ∑p
j=1 |βj | is the L1 norm, λ ≥ 0 is a concentration parameter and

bp(λ) is an appropriate normalizing constant. Such a prior on β is likely to induce sparsity
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since the shape of Laplace distribution has a peak at zero. Indeed, robust Lasso regression

(L1 regularization) in a Bayesian setting is equivalent to using a Laplace prior (see Tibshirani

(1996), p. 277). From (3.12), the posterior is written as:

p(β|X1:n, Y1:n, ε1:n) ∝ exp
(
βtSn − λ‖β‖1

)
. (3.14)

In this case, taking the logarithm, the MAP can be interpreted as penalizing the covariance

with a L1 term to enforce sparse solutions. The MAP estimator is given by:

β̂SMAP (y) = argmax
‖β‖2=1

βtSn(y)− λ‖β‖1, (3.15)

This linear optimization problem under a quadratic constraint benefits from a closed-form

solution obtained with Lagrange multipliers method and given in the next Proposition.

Proposition 3.3.1. The unique solution of the optimization problem (3.15) is given, for all

y ∈ R and λ ≥ 0, by:

β̂SMAP (y) = β̃(y)/‖β̃(y)‖, where β̃j(y) = Gλ(Sn,j(y)), (3.16)

for j ∈ {1, . . . , p}, and Gλ is the shrinkage operator defined as

Gλ(x) = sign(x) (|x| − λ)1{λ<|x|}, (3.17)

see Figure 1 for an illustration.

Note that solution (3.16) is given by shrinking the coordinates of Sn(y) (which are associated

with the Extreme-PLS estimator) towards zero. Besides, when the concentration parameter

λ = 0, we recover the Extreme-PLS method. In the non-extreme case, a sparse extension of

PLS was proposed in Chun and Keleş (2010), which uses the lasso to promote sparsity in the

dimension reduction step.

3.4 Illustration on simulated data

Let us consider the simulation framework of Extreme-PLS (see Section 2.5) based on a

sample of size n = 1000 and dimension p = 30 from model (M) with a power link function

g(t) = tc, t > 0, c ∈ {1/4, 1/2, 1, 3/2}. The behaviour of the Bayesian Extreme-PLS estimator

is illustrated on this regression model where Y is heavy-tailed, with tail-index γ = 1/5,

distributed from a Pareto distribution with survival function F̄ (y) = (y/2)−5, y ≥ 2. Each

component ε(j), j = 1, . . . , p of the error ε is simulated from the N (0, σ2) distribution and
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Figure 1 Plot of the shrinkage operator for a fixed value of λ.

depending on Y using Frank copula defined for all (u, v) ∈ [0, 1]2 by

Cθ(u, v) = −1
θ

log
(

1 + (e−θu − 1)(e−θv − 1)
e−θ − 1

)
,

where θ ∈ R is a parameter tuning the dependence between the margins. Frank copula is

an Archimedean copula, see for instance (Nelsen, 2007, Section 4.2), able to model the full

range of dependence: θ → −∞ yields the counter-monotonicity copula, θ → +∞ yields the co-

monotonicity copula while θ = 0 corresponds to independence. Here, we choose θ ∈ {0, 10, 20}
corresponding to Kendall’s τ ∈ {0, 0.67, 0.82}. The standard deviation σ is selected such that

the Signal to Noise Ratio (SNR) defined as SNR:= g(F̄−1(1/n))/σ is equal to 10. Note

that g(F̄−1(1/n)) represents the approximate maximum value of g on a n-sample from the

distribution with associated survival function F̄ . We denote by Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n the

order statistics of the sample (Y1, . . . , Yn). The performance of the Bayesian Extreme-PLS

estimator is investigated using the conjugate prior with β = β1 = (1, . . . , 1, 0, . . . , 0)t/
√

15
and the sparse prior with β = β2 = (1, 1, 0, . . . , 0)t/

√
2.

Finally, the proximity between β̂MAP (y) and another vector β computed on N = 100
replications is defined as follows:

PC(y) = 1
N

N∑

r=1
cos2

(
β̂

(r)
MAP (y), β

)
. (3.18)

The closer PC is to 1, the larger the proximity is.
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Conjugate prior. The location parameter of the prior vMF/S distribution is set to µ =
(1, . . . , 1)t/

√
30, see Paragraph 3.3.2 for details.

In Figures 2–4, the proximity criterion PC(Yn−k+1,n) is displayed as a function of the

number of exceedances k ∈ {1, . . . , 200}, along various scenarios including: PC(Yn−k+1,n)
between β̂CMAP and β1 (first column), PC(Yn−k+1,n) between β̂CMAP and µ (second column),

small to large concentrations κ1 ∈ {0, 10−4, 10−3, 10−2} (represented in each row), low to high

dependence θ ∈ {0, 10, 20} (depicted in each figure).

Let us first recall that, in the top panels, corresponding to κ1 = 0, we find back the

Extreme-PLS estimator. In comparison, it appears that the Bayesian Extreme-PLS es-

timator β̂CMAP improves the estimation of β1 for small numbers of exceedances (first col-

umn). Indeed, whatever the dependence coefficient θ and when the concentration increases

κ1 ∈ {10−4, 10−3, 10−2}, the Bayesian method yields accurate results (PC≥ 0.8 for c ≥ 1
and PC≥ 0.5 for c ≤ 1/2) for a wide range of choices of k, particularly for small values.

In contrast, when the concentration parameter becomes large κ = 10−2, the curves become

smoother and PC tends to decrease. At the same time, we can see that the PC between β̂CMAP

and µ (second column) gets closer to 1 as κ increases. This is due to the fact that larger values

of κ1 imply a stronger concentration around the prior direction µ (see Subsection 3.2.1).

Figures 5–7 provide another representation of the proximity criterion PC(Yn−k+1,n) between

β̂CMAP and β1 as a function of both the number of exceedances k ∈ {1, . . . , 200} and the con-

centration parameter κ1 ∈ {0, 10−4, 2.10−4, . . . , 10−2}. The purple and blue bands represent

respectively a PC≥ 0.8 and PC≥ 0.6. One can see that this band is quite large for a wide

range of choices of κ1 and k. When κ1 → 0, this implies that no prior is considered and that

the EPLS estimator is recovered, while κ1 →∞ implies that β̂CMAP → µ. The Bayesian EPLS

improves clearly the estimation of β, compared to EPLS, especially with exponent c ≤ 1/2,

for a well chosen κ1 and k, i.e. not very large κ1 and not very small k. Therefore, there is a

trade-off between the choice of the concentration parameter and the number of exceedances.

Sparse prior. In Figures 8–10, the proximity criterion PC(Yn−k+1,n) between β̂SMAP (see

Paragraph 3.3.4) and β2, and the norm ‖β2‖1 are plotted respectively in the first and second

column, as a function of the number of exceedances k ∈ {1, . . . , 200}. The graphs are similar

to the ones drawn before, except we use the concentration parameter λ ∈ {0, 10−5, 10−4, 10−3}.
In particular, top panels represent the Extreme-PLS estimator obtained when λ = 0. When

the concentration parameter increases, λ ∈ {10−5, 10−4}, the Bayesian EPLS estimator β̂SMAP

provides very good results, with a clear improvement in terms of proximity criterion (PC≥ 0.8)

for small values of k when c ≥ 1 for all dependence situations. Good results (PC≥ 0.6) can

also be seen when c = 1/2 for well-chosen values of k. On the other hand, we can see that
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when the concentration parameter is large (λ = 10−3), the model still provides good results

for exponents c ≥ 1 for a limited choices of k, but seems to be very sensitive to small ex-

ponents such as c = 1/4. Indeed, the L1 norm penalty in the prior enforces sparsity in the

estimated direction. Therefore, when λ becomes very large, it is more likely that β coefficients

are all equal to zero and then the proximity criterion gets closer to 1.

Figures 11–13 represent the proximity criterion PC(Yn−k+1,n) between β̂SMAP and β2 as a

function of both the number of exceedances k ∈ {1, . . . , 200} and the concentration parame-

ter λ ∈ {0, 10−5, 2.10−5, . . . , 10−3}. The introduction of the sparsity assumption in the prior

improves the estimation of β compared to EPLS (large purple band for well-chosen λ and k).

3.5 Application to farm income modelling

In the context of farm income modelling, we aim to investigate the impact of various factors

on low yields. Our approach is applied to data extracted from the FADN used in the numerical

example of the Chapter 2. This dataset contains 949 farms described by 13 continuous

attributes in 2014. Recall that the response variable Y is the inverse of the wheat yield (in

quintals/hectare) and the covariate X includes 12 variables: selling prices (euro/quintal),

pesticides, fertilizers, crop insurance purchase, insurance claims, farm subsidies, seeds and

seedlings costs, works and services purchase for crops, other insurance premiums, farm income

taxes, farmer’s personal social security costs (euro/hectare) and temperature average (degree

Celsius).

A number of checks have been carried out, in Section 2.6 of Chapter 2, to verify whether the

heavy tail hypothesis of Y makes sense using the Hill plots and the quantile-quantile plots.

It appears that the heavy-tailed assumption on Y is appropriate. Furthermore, the number

of exceedances has been set at k = 97, since it corresponds to the highest correlation between

Xtv̂(y) and Y , with v̂(y) the Extreme-PLS estimator (see Section 2.6 for more details). As

the number of exceeds has been set, the choice of the concentration parameters κ1 and λ,

for both conjugate and sparse priors, remains to be discussed. We firstly compute the two

MAP estimators βCMAP (y) and βSMAP (y) corresponding to conjugate and sparse priors, with

y = Yn−97+1,n, κ1 ∈ {0, 10, . . . , 3 × 103} and λ ∈ {0, 0.01, . . . , 0.3}. Secondly, we define the

following two conditional correlations:

ρ(Xtβ̂MAP (y), Y |Y ≥ y) = cov(Xtβ̂MAP (y), Y |Y ≥ y)
σ(Xtβ̂MAP (y)|Y ≥ y)σ(Y |Y ≥ y)

, (3.19)

ρ(Xtβ̂MAP (y), X(j)|Y ≥ y) = cov(Xtβ̂MAP (y), X(j)|Y ≥ y)
σ(Xtβ̂MAP (y)|Y ≥ y)σ(X(j)|Y ≥ y)

. (3.20)
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The results are depicted on Figures 14 and 15. For the conjugate prior, the location parame-

ter of the vMF/S distribution is set to µ = (0, 0, 1, 0, . . . , 0, 1)t/
√

2. Indeed, according to the

agricultural expert, it has been observed that wheat yields are affected by financial market

prices and weather conditions such as temperature. Therefore, we have assigned a weight of 1
to these two variables. The top panel of Figure 14 displays the conditional correlation (3.19)

between the projected covariate Xtβ̂CMAP (y) and the response variable Y . It appears that

introducing the prior information on the data, the correlation increases from 0.59 to 0.64 for

a concentration parameter ranging from 0 to 220. While for the sparse prior, the correlation

between Xtβ̂SMAP (y) and Y , represented in the top of Figure 15, remains stable with respect

to the choice of the concentration until λ = 0.16 and then it drops to 0 since β̂SMAP (y) = 0
in this area. The coordinates of |β̂SMAP (y)| are represented in the bottom of Figure 15 as

functions of the concentration λ. One can see on the regularization path that when the con-

centration parameter λ increases, the coordinates of β̂SMAP (y) gradually decrease towards 0.

Low crop yields are mainly correlated with farm subsidies. In the following, we only consider

the MAP estimator β̂CMAP (y) corresponding to the conjugate prior as it gives the highest

correlation between the projected covariate and Y .

The conditional correlation (3.20) between the projected covariate Xtβ̂CMAP (y) and each co-

ordinate X(j) of the covariate is presented in the bottom panel of Figure 14. When κ1 = 220
fixed, small yields are mainly related to agricultural inputs (fertilisers, pesticides, seeds and

seedlings, purchases of works and services, personal social charges) and risk management

(claims, purchase of crop insurance, agricultural subsidies). Indeed, yields were strongly im-

pacted by agricultural inputs in 2014, despite mild winter temperatures. When κ1 increases,

becomes very large, one can see that the effect of all the variables mentioned previously de-

creases and the effect of the price and temperature variables increase. This is reasonable, as

larges values of the concentration parameter yield β̂CMAP → µ.

In the following, we select κ1 = 220 which corresponds to the highest correlation between

Xtβ̂CMAP (y) and Y . The projected scatter plot
(
Yi, β̂

C
MAP (y)tXi

)
, i = 1, . . . , n is displayed

in a logarithmic scale for the visualization sake on the top panel of Figure 16 together with

two estimations (linear and non-linear) of the conditional mean E(β̂CMAP (y)tX|Y ). The con-

ditional quantiles q̂(α|β̂CMAP (y)tX), computed through a kernel estimator of the conditional

survival function, are reported in the bottom panel of Figure 16 together with the scatter

plot
(
β̂CMAP (y)tXi, Yi

)
, i = 1, . . . , n. The vertical and horizontal axes are represented in a

logarithmic scale. One can see that both curves of the conditional quantiles corresponding

to levels α = 0.15 (blue line) and α = 0.05 (red line) behave in a same way. The estimated

conditional quantiles of inverse yields show an increasing trend for log(β̂CMAP (y)tX) ≤ 3.6:

low yields are linked to agricultural inputs and risk management. For log(β̂CMAP (y)tX) > 3.6,
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the interpretation of the results becomes difficult, as the estimation is not reliable for large

values of the covariate, due to the scarcity of data in this area and the boundary effects of

kernel estimators.

3.6 Discussion

In this work, we propose a Bayesian approach for the Extreme-PLS model to identify the

direction of dimension reduction and introduce prior information about it. We present some

criteria for choosing a prior distribution, such as incorporating the sparsity of the direc-

tions with the Bayesian Lasso prior. Numerical examples show that the proposed method

is particularly effective for problems with very small data sets. In future work, the poste-

rior distribution with the hierarchical prior (see Section 3.3.3) can be computed directly by

Importance Sampling or Monte-Carlo Markov Chains sampling. Furthermore, it would be

interesting to test other priors such as an uninformative distribution (Jeffreys, 1946) or other

shrinkage priors that aim to reduce small effects towards zero, e.g. ridge or elastic-net pri-

ors (Van Erp et al., 2019). It would also be interesting to see how the introduction of prior

information on the dimension reduction direction could improve the estimation of extreme

conditional quantiles on small samples.

3.A Appendix: proofs

Proof of Lemma 3.2.1. (i) The mode of von Mises-Fisher distribution is given by the

argmax of the probability density function. Thus, the constrained optimization problem is:

x̂ = argmax
‖x‖=1

eκµ
tx,

which is equivalent to

x̂ = argmax
‖x‖=1

κµtx,

and can be solved using Lagrange multipliers method by introducing:

L(x̂, λ) = κµtx̂− λ

2 (||x̂||2 − 1), λ ∈ R,

and setting the partial derivatives to zero yield:




∇λL(x̂, λ) = −1

2(‖x̂‖2 − 1) = 0,
∇x̂L(x̂, λ) = κµ− λx̂ = 0,
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or equivalently,




‖x̂‖2 = 1,
x̂ = κµ/λ.

It straightforwardly follows that λ = κ and x̂ = µ.

(ii) For the expectation, we have:

E(X) = cp(κ)
∫

Sp−1
xeκµ

txdx.

Let b ∈ Rp an arbitrary test vector and consider

btE(X) = cp(κ)bt
∫

Sp−1
xeκu

txdx = cp(κ)
∫

Sp−1

p∑

j=1
xj(bjeκu

tx)dx.

Now, the divergence theorem allows to transform the surface integral over Sp−1 into a volume

integral over Bp(1):

btE(X) = cp(κ)
∫

Bp(1)

p∑

j=1

∂

∂xj

(
bje

κutx
)
dx

= cp(κ)
∫

Bp(1)

p∑

j=1
bjκµje

κutxdx

= cp(κ)
∫

Bp(1)
κbtµeκu

txdx

= κbtµcp(κ)
∫

Bp(1)
eκu

txdx.

Using the normalization condition for a vMF distribution over the unit hyperball Bp(1),
defined in Section 3.2.2, and from (3.9) we have,

∫

Bp(1)
eκµ

txdx = 1
c′p(κ) = 1

2πcp+2(κ) ,

and taking account of (3.2) yields

btE(X) = btµ
κcp(κ)

2πcp+2(κ) = btµ
Ip/2(κ)
Ip/2−1(κ) .

Since the test vector b is arbitrary, it follows

E(X) = µ
Ip/2(κ)
Ip/2−1(κ) = µAp(κ),

and the result is proved.
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Proof of Lemma 3.2.2. The normalizing constant c′p(κ) is derived using the fact that:

1/c′p(κ) =
∫

Bp(r)

1
rp
eκµ

tx/rdx =
∫

Bp(1)
eκµ

txdx.

Two successive changes of variable yield

1/c′p(κ) =
∫

Bp(1)
eκµ

txdx

=
∫ 1

0
ρp−1

∫

Sp−1
e(ρκ)µtududρ,

=
∫ 1

0

ρp−1

cp(ρκ)dρ

= (2π)p/2
κp/2−1

∫ 1

0
ρp/2Ip/2−1(ρκ)dρ

= (2π)p/2
κp

∫ κ

0
tp/2Ip/2−1(t)dt.

From definition (3.3) of the modified Bessel function and using the fact that Ip(t) is a power

series of infinite radius of convergence, we have:

∫ κ

0
tp+1Ip(t)dt =

∑

l≥0

1
Γ(p+ l + 1)l! ×

1
22l+p

∫ κ

0
t2l+2p+1dt

=
∑

l≥0

1
Γ(p+ l + 1)l! ×

1
22l+p ×

κ2l+2p+2

2(l + p+ 1) ,

and using the fact that Γ(p+ l + 2) = (p+ l + 1)Γ(p+ l + 1), we get

∫ κ

0
tp+1Ip(t)dt = κp+1∑

l≥0

1
Γ(p+ l + 2)l!

(
κ

2

)2l+p+1
= κp+1Ip+1(κ).

It follows that, ∀p ≥ 2: ∫ κ

0
tp/2Ip/2−1(t)dt = κp/2Ip/2(κ),

leading to

1/c′p(κ) = (2π)p/2
κp/2

Ip/2(κ),

or, equivalently,

c′p(κ) = 2πcp+2(κ),

which concludes the proof.
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Proof of Proposition 3.3.1. The optimization problem can be rewritten as

β̂SMAP (y) = argmin
‖β‖2=1

λ‖β‖1 − βtSn(y)

= argmin
‖β‖2=1

p∑

j=1
λ|βj | − βjSn,j(y)

= argmin
‖β‖2=1

p∑

j=1
|βj | (λ− sign(βj)Sn,j(y)) .

Introducing bj = |βj | and sj =sign(βj), the above optimization problem can be rewritten as

β̂SMAP (y) = argmin
b,s





p∑

j=1
bj(λ− sjSn,j(y)) s.t. ‖b‖2 = 1, bj ≥ 0, |sj | = 1, j = 1, . . . , p



 .

Clearly, the solution w.r.t. s is given by sj = sign(Sn,j) for all j = 1, . . . , p and therefore

β̂SMAP (y) = argmin
b





p∑

j=1
bj(λ− |Sn,j(y)|) s.t. ‖b‖2 = 1, bj ≥ 0, j = 1, . . . , p



 .

The Lagrangian is given by

L(b, α1, . . . , αp+1) = −
p∑

j=1
bj (λ− |Sn,j(y)|) +

p∑

j=1
αjbj + αp+1(‖b‖2 − 1),

with associated Karush-Kuhn-Tucker conditions





|Sn,j(y)| − λ+ αj + 2αp+1b̂j = 0,
αj b̂j = 0, αj ≥ 0, j = 1, . . . , p,
‖b̂‖2 − 1 = 0.

(3.21)

Multiplying the first equation in (3.21) by b̂j and summing yield

αp+1 = 1
2

p∑

j=1
b̂j(λ− |Sn,j(y)|). (3.22)

Then, two cases arise. (i) If λ < |Sn,j(y)|, then one can fix αj = 0 and (3.21) implies

b̂j = (λ−|Sn,j(y)|)/(2αp+1). (ii) Conversely, if λ ≥ |Sn,j(y)|, then one can fix b̂j = 0 and (3.21)

implies αj = λ − |Sn,j(y)| ≥ 0. Replacing in (3.22) yields 2α2
p+1 = ‖b̂‖2. Taking account of

b̂j ≥ 0, this implies αp+1 = −
√

2‖b̂‖. Summarizing, one has β̂SMAP (y) = β̃(y)/‖β̃(y)‖ with

β̃j(y) = sign(Sn,j(y)) (|Sn,j(y)| − λ)1{λ<|Sn,j(y)|}
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for all j = 1, . . . , p and the result is proved.
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Figure 2 Finite sample behaviour of Bayesian EPLS, with conjugate prior, on simulated
data from a Pareto distribution (γ = 1/5, a = 2) and a Frank copula parameter θ = 0.
PC(Yn−k+1,n) between β̂CMAP and β1 (left) and PC(Yn−k+1,n) between β̂CMAP and µ (right)
as a function of the number k ∈ {1, ..., 200}. From top to bottom, concentration parameter
κ1 ∈ {0, 10−4, 10−3, 10−2}. The powers c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc

are displayed in {black, yellow, green, red}.
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Figure 3 Finite sample behaviour of Bayesian EPLS on simulated data, with conjugate
prior, from a Pareto distribution (γ = 1/5, a = 2) and a Frank copula parameter θ = 10.
PC(Yn−k+1,n) between β̂CMAP and β1 (left) and PC(Yn−k+1,n) between β̂CMAP and µ (right)
as a function of the number k ∈ {1, ..., 200}. From top to bottom, concentration parameter
κ1 ∈ {0, 10−4, 10−3, 10−2}. The powers c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc

are displayed in {black, yellow, green, red}.
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Figure 4 Finite sample behaviour of Bayesian EPLS, with conjugate prior, on simulated
data from a Pareto distribution (γ = 1/5, a = 2) and a Frank copula parameter θ = 20.
PC(Yn−k+1,n) between β̂CMAP and β1 (left) and PC(Yn−k+1,n) between β̂CMAP and µ (right)
as a function of the number k ∈ {1, ..., 200}. From top to bottom, concentration parameter
κ1 ∈ {0, 10−4, 10−3, 10−2}. The powers c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc

are displayed in {black, yellow, green, red}.
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Figure 5 Finite sample behaviour of Bayesian EPLS, with conjugate prior, on simulated
data from a Pareto distribution (γ = 1/5, a = 2) and a Frank copula parameter θ = 0.
PC(Yn−k+1,n) between β̂CMAP and β1 as a function of the number k ∈ {1, ..., 200} and the
concentration parameter κ1 ∈ {0, 10−4, 2.10−4, . . . , 10−2}. From top left to bottom right, the
powers c ∈ {3/2, 1, 1/2, 1/4} of the link function g(t) = tc.
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Figure 6 Finite sample behaviour of Bayesian EPLS, with conjugate prior, on simulated
data from a Pareto distribution (γ = 1/5, a = 2) and a Frank copula parameter θ = 10.
PC(Yn−k+1,n) between β̂CMAP and β1 as a function of the number k ∈ {1, ..., 200} and the
concentration parameter κ1 ∈ {0, 10−4, 2.10−4, . . . , 10−2}. From top left to bottom right, the
powers c ∈ {3/2, 1, 1/2, 1/4} of the link function g(t) = tc.
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Figure 7 Finite sample behaviour of Bayesian EPLS, with conjugate prior, on simulated
data from a Pareto distribution (γ = 1/5, a = 2) and a Frank copula parameter θ = 20.
PC(Yn−k+1,n) between β̂CMAP and β1 as a function of the number k ∈ {1, ..., 200} and the
concentration parameter κ1 ∈ {0, 10−4, 2.10−4, . . . , 10−2}. From top left to bottom right, the
powers c ∈ {3/2, 1, 1/2, 1/4} of the link function g(t) = tc.
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Figure 8 Finite sample behaviour of Bayesian EPLS, with sparse prior, on simulated data
from a Pareto distribution (γ = 1/5, a = 2) and a Frank copula parameter θ = 0.
PC(Yn−k+1,n) between β̂SMAP and β2 (left) and ‖β2‖1 (right) as a function of the number
k ∈ {1, ..., 200}. From top to bottom, concentration parameter λ ∈ {0, 10−5, 10−4, 10−3}.
The powers c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc are displayed in {black,
yellow, green, red}.
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Figure 9 Finite sample behaviour of Bayesian EPLS, with sparse prior, on simulated data
from a Pareto distribution (γ = 1/5, a = 2) and a Frank copula parameter θ = 10.
PC(Yn−k+1,n) between β̂SMAP and β2 (left) and ‖β2‖1 (right) as a function of the number
k ∈ {1, ..., 200}. From top to bottom, concentration parameter λ ∈ {0, 10−5, 10−4, 10−3}.
The powers c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc are displayed in {black,
yellow, green, red}.
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Figure 10 Finite sample behaviour of Bayesian EPLS, with sparse prior, on simulated data
from a Pareto distribution (γ = 1/5, a = 2) and a Frank copula parameter θ = 20.
PC(Yn−k+1,n) between β̂SMAP and β2 (left) and ‖β2‖1 (right) as a function of the number
k ∈ {1, ..., 200}. From top to bottom, concentration parameter λ ∈ {0, 10−5, 10−4, 10−3}.
The powers c ∈ {1/4, 1/2, 1, 3/2} of the link function g(t) = tc are displayed in {black,
yellow, green, red}.
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Figure 11 Finite sample behaviour of Bayesian EPLS, with sparse prior, on simulated
data from a Pareto distribution (γ = 1/5, a = 2) and a Frank copula parameter θ = 0.
PC(Yn−k+1,n) between β̂SMAP and β2 as a function of the number k ∈ {1, ..., 200} and concen-
tration parameter λ ∈ {0, 10−5, 2.10−5, . . . , 10−3}. From top left to bottom right, the powers
c ∈ {3/2, 1, 1/2, 1/4} of the link function g(t) = tc.
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Figure 12 Finite sample behaviour of Bayesian EPLS, with sparse prior, on simulated
data from a Pareto distribution (γ = 1/5, a = 2) and a Frank copula parameter θ = 10.
PC(Yn−k+1,n) between β̂SMAP and β2 as a function of the number k ∈ {1, ..., 200} and concen-
tration parameter λ ∈ {0, 10−5, 2.10−5, . . . , 10−3}. From top left to bottom right, the powers
c ∈ {3/2, 1, 1/2, 1/4} of the link function g(t) = tc.
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Figure 13 Finite sample behaviour of Bayesian EPLS, with sparse prior, on simulated
data from a Pareto distribution (γ = 1/5, a = 2) and a Frank copula parameter θ = 20.
PC(Yn−k+1,n) between β̂SMAP and β2 as a function of the number k ∈ {1, ..., 200} and concen-
tration parameter λ ∈ {0, 10−5, 2.10−5, . . . , 10−3}. From top left to bottom right, the powers
c ∈ {3/2, 1, 1/2, 1/4} of the link function g(t) = tc.
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Figure 14 Farm income data with conjugate prior. Top: Graph of the estimated conditional
correlation ρ̂(Xtβ̂CMAP (y), Y |Y ≥ y) with y = Yn−97+1,n. Bottom: Graph of the estimated

conditional correlation ρ̂(Xtβ̂CMAP (y), X(j)|Y ≥ y) with y = Yn−97+1,n for j = 1, . . . , 12
(horizontally: concentration κ1, vertically: conditional correlation estimated by its empirical
counterpart).
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Figure 15 Farm income data with sparse prior. Top: Graph of the estimated conditional
correlation ρ̂(Xtβ̂SMAP (y), Y |Y ≥ y) with y = Yn−97+1,n as a function of the concentration

λ. Bottom: Graph of the coordinates |β̂SMAP,j(y)| with y = Yn−97+1,n for j = 1, . . . , 12, as
functions of the concentration λ.
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Figure 16 Farm income data. Top: scatter-plot
(
Yi, β̂

C
MAP (y)tXi

)
in log scale obtained for

y = Yn−k+1,n with k = 97 and κ1 = 2× 108. The regression line (red) and a kernel estimate

of the link function (blue) are superimposed. Bottom: scatter-plot
(
βCMAP (y)tXi, Yi

)
in log

scale obtained for y = Yn−k+1,n with k = 97 and κ1 = 2 × 108. The estimated conditional

quantiles q̂(α|β̂CMAP (y)tX) are superimposed (α = 0.15: blue line, α = 0.05: red line).



Chapter 4
Yield and price dependence structures:

A copula-based model of French farm

income

Abstract

Revenue insurance is an agricultural risk management tool that provides farmers with joint

coverage for yield and price risks. When designing this type of insurance product, it is im-

portant to model the variability of revenue risks by evaluating the interaction between crop

yields and prices. This chapter presents a study on the evaluation of the dependence structure

between prices and yields in the cereal and wine sectors in France, using copulas tool. This

study also evaluates the conditional dependence given other factors, and provides implications

for the evaluation of the possibility of establishing a revenue insurance contract. This chapter

is presented as an article published in ”2020-Annual Meeting of the Agricultural and Ap-

plied Economics Association” (Bousebata et al., 2020). We show that the dependence between

prices and yields is relatively high and can be described by the Frank copula. We find that

this dependence structure is unstable for cereals (wheat and maize) because they are standard

crops whose prices follow world market trends. Wine always shows a negative correlation,

as this sector is structured in terms of territory and quality and prices are controlled locally.

This study also shows that French cereal and wine production is strongly influenced by ex-

treme weather conditions, such as drought. These results are crucial for better management

of price and yield risks, especially for cereal producers. They support the idea of the possibility

of implementing revenue insurance in France that takes into account the correlation between

prices and yields, and also the impact of other external factors such as weather indicators.
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Resumé

L’assurance revenu est un outil de gestion des risques agricoles qui offre aux agriculteurs

une couverture conjointe des risques de rendement et de prix. Lors de la conception de ce

type de produit d’assurance, il est important de modéliser la variabilité des risques de revenu

en évaluant l’interaction entre les rendements et les prix des cultures. Ce chapitre présente

une étude sur l’évaluation de la structure de dépendance entre les prix et les rendements

dans les secteurs céréaliers et viticoles en France, en utilisant l’outil des copules. Cette

étude évalue également la dépendance conditionnelle en fonction d’autres facteurs, et fournit

des implications pour l’évaluation de la possibilité de mettre en place un contrat d’assurance

revenu. Ce chapitre est présenté comme un article publié dans ”2020-Annual Meeting of the

Agricultural and Applied Economics Association” (Bousebata et al., 2020). Nous y montrons

que la dépendance entre les prix et les rendements est relativement élevée et peut être décrite

par la copule de Frank. Nous constatons que cette structure de dépendance est instable pour

les céréales (blé et mäıs) car ce sont des cultures standard dont les prix suivent les tendances

du marché mondial. Le vin montre toujours une corrélation négative, comme ce secteur est

structuré en termes de territoire et de qualité et les prix sont contrôlés localement. Cette étude

montre également que la production céréalière et viticole française est fortement influencée par

des conditions climatiques extrêmes, telles que la sécheresse. Ces résultats sont cruciaux pour

une meilleure gestion des risques de prix et de rendement, notamment pour les producteurs

de céréales. Ils soutiennent l’idée de la possibilité de mettre en place une assurance revenu

en France qui tienne compte de la corrélation entre les prix et les rendements, mais aussi de

l’impact d’autres facteurs externes tels que les indicateurs météorologiques.



Yield and price dependence structures:

A copula-based model of French farm income

Abstract

This paper aims to assess and model the dependence structure between crop yields and

prices, by using a copula approach. The study is conducted on a database of French farms

by considering cereal and wine-growing productions for years 2014 to 2016. We find that

the dependence between prices and yields can be modelled with the Frank copula. This

dependence is relatively high and influenced by high temperatures. The results highlight

some implications for the development of revenue insurance policies aimed at improving the

hedging of cereal production.

Keywords Farm income · Dependence structure · Copulas · Crop insurance · France

1 Introduction

Agriculture is a sector where income is subject to a wide variety of risks arising from large-scale natural

events (Goodwin and Hungerford 2014; Wang et al. 2020) and the variability of agricultural commodity prices

(Johnson 1975). Thus, farm income confronts two main types of risks related to yield and price volatility.

The risk of poor yield is mainly due to weather events such as drought, frost, insect infestation, diseases

and agricultural techniques implemented by farmers (Coble and Knight 2002) and it is increased by climate

change (Kapphan et al. 2012). Price risk is rather linked to the deregulation of financial markets (Chavas

2011) and explained by the fact that most European countries have shifted from market-based support to

decoupled direct payments. Then, producers are exposed to high price volatilities on world commodity

markets (El Benni et al. 2016).

Conforming to this framework, the European Union has defined, particularly during the reform of the

Common Agricultural Policy (CAP) in 2013, some risk management tools including subsidised crop insurance,

mutual funds and income stabilisation tools (IST) (Hine et al. 2016; Meuwissen et al. 2018; El Benni

et al. 2016). However, agricultural insurance plays a limited role with regard to the hedging of price risk and

most IST tools have not yet been implemented (DG-AGRI 2017). Therefore, it appears necessary to carry
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out evaluations of the European case because the underlying design of the IST proposed in Europe is different

from that of the USA. For instance, the Farm Bill comprises several insurance systems which hedge yield and

revenue losses. Premiums are affordable for farmers because they are highly subsidised (Smith et al. 2014).

In France, no such tool is available to farmers (El Benni et al. 2016). France has set up only a private crop

insurance system, where premiums can be subsidised up to 65%, and a national public fund for the mutuali-

sation of health and environmental risks (FMSE, Fonds de Mutualisation Sanitaire et Environnementale).

Moreover, these two risk management tools have a limited effect, as French producers continue to receive

European payments from the CAP of around 7 billion € per year, disconnected from market and weather

trends (Lidsky et al. 2017). Insurance coverage remains quite low despite the important subsidies dedicated

to multi-peril crop insurance.

Ongoing reforms, currently being carried out by the Common Organisation of Agriculture and Agro-industry

Markets, are encouraging professional bodies and governments to develop new agricultural insurance products

taking into account both yield and price risks, which are key determinants of revenue. They aim at increasing

the attractiveness of revenue insurance compared to other risk management tools implemented for different

reasons. First, public subsidies for revenue insurance seem justified because the risk covered is probably

systemic, i.e. many farmers are exposed to the risk at the same time, thus allowing for public transfers

(Meuwissen et al. 2003). Second, correlations between prices and yields are implicitly considered by a farm

revenue insurance (El Benni et al. 2016), which seems advantageous compared to separate yield or price risk

management instruments.

Some studies have considered actuarial assessments of potential revenue insurance, the resulting costs

for the government, potential beneficiaries and conceptual studies on adverse selection and moral hazard

issues. However, these studies do not focus on the application of revenue insurance and the modelling of

its underlying risks (yields and prices) (Meuwissen et al. 2003; Mary et al. 2013). It is therefore relevant to

model the dependence of yields and prices.

Modelling this dependence is of great concern as it may have implications for the eventual implementation

of revenue insurance that would address the risks of farm production (Ahmed and Serra 2015). Indeed, it

should provide an understanding of the distributions of yield and price risks, which interact simultaneously.

Ignoring the dependence between these two risk factors could lead to an overestimation of risk for the insurer.

For example, in the case of a “natural” hedge, revenue is stabilised due to the negative relationship between

crop yields and prices. Conversely, the case of the positive relationship between yields and prices in a low-price

market environment may result an under-hedging of revenue for the producer.
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In the statistics literature, there exist several models for dependence structure between price and yield risks.

The problem of such approaches is that the individual behaviour of each variable has to be represented by

the same parametric family of univariate distributions (Genest and Favre 2007). Thus, it becomes necessary

to construct new multivariate distributions with fixed margins and fixed dependencies properties (Kazi-Tani

and Rullière 2019). In order to develop a multivariate model with given marginals, a copula approach can be

used to characterise the joint distribution of different risks, thus offering considerable flexibility in empirical

research. Copulas have recently become a part of the toolkit for applied economic research, resulting in an

increasing need for the modelling of multivariate risk factors and their interaction (Woodard et al. 2011).

For instance, Emmanouilides and Fousekis 2014 studied the structure of price dependence along the beef

supply chain in the USA while Fousekis and Grigoriadis 2017 analysed the strength and the pattern of price

relationships for the different types of coffee. With regard to farm revenue insurance, joint modelling of price

and yield risks using copulas has been the subject of few studies, and those that exist are mainly in the USA.

Zhu et al. 2008 used copulas to model the interaction between prices and yields in order to design an efficient

whole farm insurance contract.

The novelty of this research is to investigate and model the pattern of price and yield dependence on a real

data set of French farm income extracted from the Farm Accountancy Data Network (FADN). Two types of

crops are considered: cereals (wheat and maize) and wine growing. The objective of this research is pursued

using the statistical tool of copulas. Various copula models are tested for their ability to model yield and

price risks. We also model the dependence structure conditionally on other covariates such as crop insurance

purchase, insurance claims, temperatures and sunshine, in order to measure the influence of these factors

using conditional copulas. Then, an insight related to the potential to establish a farm revenue insurance

that would address the risks of cereal and wine productions, is proposed.

The rest of the article is organised as follows: in Section 2, we develop the methodological tools to perform

the copula analysis. Once these tools are available, we present the data in Section 3 and the empirical results

in Section 4. Finally, Section 5 concludes this study.

2 Empirical framework

2.1 Copulas

The concept of copulas was introduced in 1959 by Abe Sklar. During the financial crisis of 2007 and 2008,

copulas have come to the attention of the general public due to their use in the modelling of multidimensional

phenomena, mainly in the realm of quantitative risk management. They are a flexible tool that can be used

to realistically represent risk dependence.
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By definition, a copula is a multivariate distribution function with standard uniform univariate margins.

Thus it contains all the information on the dependence structure of the model. For the sake of simplicity,

let us focus on the bivariate case, in which we consider a pair of continuous random variables X and Y

marginally distributed according to F (x) = P(X ≤ x) and G(y) = P(Y ≤ y). Let H(x, y) = P(X ≤ x, Y ≤ y)

be their joint distribution function. According to Sklar’s theorem (Sklar 1959), there exists a unique function

C : [0, 1]2 → [0, 1] such that:

H(x, y) = C(F (x), G(y)), for all (x, y) ∈ R2. (1)

The function C is referred to as the copula associated with H. It is the bivariate cumulative distribution

function (cdf) of the random vector (F (X), G(Y )) with uniform margins on [0, 1]. The mappings X 7→ U :=

F (X) or Y 7→ V := G(Y ) used in the above representation are usually referred to as the probability-integral

transformations (to uniformity) and are standard tools for simulation purposes.

2.2 Dependence measures

Several measures of association between the components of a random pair can be considered, Kendall’s

Tau (Nelsen 2007) [paragraph 5.1.1], and Spearman’s Rho (Nelsen 2007) [paragraph 5.1.2] being the most

popular ones. These measures are invariant to strictly increasing functions and can be interpreted as

probabilities of concordance minus probabilities of discordance of two random pairs. Both of them can be

written only in terms of the copula C:

τ = 4
∫ 1

0

∫ 1

0
C(u, v) dC(u, v)− 1, (2)

ρ = 12
∫ 1

0

∫ 1

0
C(u, v) dudv − 3. (3)

Let us note that ρ coincides with the correlation coefficient between the uniform marginal distributions.

Starting from a sample (U1, V1), . . . , (Un, Vn) of independent observations from C, it can be estimated by its

empirical counterpart as

ρ̂ = 12
n

n∑

i=1
UiVi − 3. (4)

A similar formula holds for τ̂ . Another measure of association based on concordance called medial correlation

coefficient, was proposed by Blomqvist (Nelsen 2007) [paragraph 5.1.4], and is given by :

β = 4C
(

1
2 ,

1
2

)
− 1. (5)

This parameter quantifies the probability that X and Y would jointly exceed their median value.
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2.3 Inference

Three main approaches have been proposed for estimating copulas: parametric, semi-parametric and

non-parametric methods (Genest and Favre 2007). In our context, we advocate for the parametric approach

which is based on the estimation of the parameters(s) θ of the copula assumed to belong to some parametric

family {Cθ, θ ∈ Θ}.

Numerous parametric families of copulas can be found in the literature. Let us focus on two popular

models: Elliptical and Archimedean copulas. Elliptical copulas (Frahm et al. 2003) are built from elliptical

distributions thanks to an uniformization of their margins. The level sets of an elliptical distribution density

are ellipses whose shape is determined by a (kind of) covariance matrix. Important examples in this family

are the Gaussian and the Student copulas. Archimedean copulas (Naifar 2011) are determined by a univariate

function, called the generator, whatever the dimension is. A number of generators have been proposed,

involving on one or two parameters and tuning the dependence strength between the marginals. In this

study, we focus on three Archimedean copulas: Gumbel, Frank, and Clayton (Beck 2015) [pages 17-21]. The

estimation of the parameter(s) θ can be done for instance using the maximum likelihood method or the

method of moments (Mazo et al. 2014). In the latter case, θ is estimated by minimizing a given distance

between the empirical τ̂ and ρ̂ computed from Equation (4) and the theoretical ones τ(θ) and ρ(θ) calculated

according to Equations (2) and (3) under the model Cθ.

2.4 Goodness-of-fit tests

Two main techniques can be used to select the copula that fits best a dataset. First, one can rely on visual

diagnostics. The idea is to use Rosenblatt’s transformation (Hofert and Mächler 2014) to transform, under

the null hypothesis (U, V ) ∼ C0, the pairs (Ui, Vi) towards independent observations. Then, the p-value of an

independence test is computed and encoded as a color, see Figure 2 for examples, in the empirical results

section. Second, one may use a goodness-of-fit test based on Kendall’s distribution function K (also called

multivariate probability integral transformation) (Genest et al. 2009) defined as

K(t) = P(C(U, V ) ≤ t) =
∫ 1

0

∫ 1

0
1{C(u,v)≤t}dC(u, v). (6)

The theoretical Kendall distribution under the null hypothesis (U, V ) ∼ C0 is compared to its sample version

thanks to a Cramér–von Mises statistics (Genest and Favre 2007) and the associated p-value is computed.

2.5 Covariates

In some cases, the dependence structure of the random pair (X,Y ) may depend on an external (possible

multivariate) random variable Z. Conditional copulas were introduced to tackle this issue (Gijbels et al. 2011).
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Similarly to Equation (1), one can write the joint and marginal distribution functions of (X,Y ) conditionally

on Z = z, as:

Hz(x, y) = P(X ≤ x, Y ≤ y|Z = z) = Cz(Fz(x), Gz(y)) (7)

where Fz(x) = P(X ≤ x|Z = z) and Gz(y) = P (Y ≤ y|Z = z). In this context, Cz is referred to as

a conditional copula. Starting from a set of observations (X1, Y1, Z1), ..., (Xn, Yn, Zn), a non-parametric

estimator of Cz(u, v) can be considered (Gijbels et al. 2011):

Ĉz(u, v) =
n∑

i=1
wi(z, h)1{F̂z(Xi)≤u,Ĝz(Yi)≤v}. (8)

Here, wi(z, h) is a sequence of weights selecting the observations (Xi, Yi) such that the associate covariate Zi

is close to the estimation point z. The range of the selected points is tuned by the parameter hn called the

bandwidth. The margin distributions Fz and Gz are estimated using similar smoothing techniques:

F̂z(x) =
n∑

i=1
wi(z, h)1{Xi≤x}, Ĝz(y) =

n∑

i=1
wi(z, h)1{Yi≤y}. (9)

The conditional copula can be used to estimate conditional Spearman’s ρ and Kendall’s τ providing then

association measures depending on the covariate Z. As an example, Spearman’s ρ (3) is extended to the

covariate framework as

ρ(z) = 12
∫ 1

0

∫ 1

0
Cz(u, v)dudv − 3, (10)

and the associated estimator ρ̂(z) is obtained by plugging the estimated conditional copula (8) in the previous

Equation (10).

3 Data

3.1 Database

In order to model farm revenue for different types of crops, this work is based on an empirical data

extracted from the Farm Accountancy Data Network1 (FADN). This exhaustive dataset surveys around 7 000

commercial-sized farm holdings every year. It comprises significant accounting and financial information

about French professional farms along with individual and structural data. Particular attention is paid to

the years 2014 and 2015 when French cereal production reached a high record in a market context with low

prices (Rodier et al. 2015). We also pay attention to 2016, which was a year characterised by a decline in

harvests, due to spring storms and summer drought (Triquenot et al. 2016).

1. A detailed presentation of the database can be found at: http://agreste.agriculture.gouv.fr
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Modelling the pair (price, yield) for a specific type of crops is a relevant way to learn more about farm

revenue generation. We also model this pair conditionally to other covariates. The list of variables involved

in our study is given in Table 1.

Table 1. Database description

Variable Definition Unit
Farm specialisation 3 types (wheat, maize, quality wine-growing) Class
Gross product Gross product of the considered crop Euro
Gross yield Gross yield of the considered crop Quintal or Hectolitre
Harvested acreage Cultivated area of the considered crop Hectare
Yields Yields divided by the acreage Quintal or Hectolitre/Hectare
Price Gross product divided by quintals or hectolitres sold Euro/Quintal or Hectolitre
Crop insurance The Farm purchased or not a crop insurance policy Yes/No
Insurance claims The Farm received or not some crop insurance claims Yes/No
Temperature Deviation from the average of the last five years °C
Precipitation Deviation from the average of the last five years mm
Sunshine duration Deviation from the average of the last five years Hour

Notes: Temperature, precipitation and sunshine are continuous variables. Crop insurance and claims are discrete
variables.

In order to overcome any operational error during data collection, it was necessary to preprocess raw data

and conduct control and consistency tests to deal with outliers or missing data that could bias our study and

then ensure the robustness of our results.

3.2 Choice of considered sectors

We selected three different types of crops : wheat, maize and quality wine-growing. Wheat is the prominent

cereal produced in France. It is mostly located in the West of France and around the Parisian basin2. France

is the first European producer and exporter of wheat and it is ranked fifth largest country in the world in

terms of national wheat production (Ben-Ari et al. 2018). This is due to very high yields, about 7.4 t/ha,

compared to the world’s four largest wheat producers, such as Russia and the United States, which harvest

about 5 and 3 t/ha of wheat respectively. Maize is the second largest crop production in France, cultivated on

more than 3 million hectares in 2016. Thanks to favourable soil and climate conditions and the performance

of producers. France is also the world’s largest exporter of maize seeds (Ben-Ari et al. 2018).

Weather conditions in autumn 2014 and summer 2015 had very contrasting effects on cereals (Delort

et al. 2014; Rodier et al. 2015). Winter crops such as wheat had high yields, unlike autumn crops such

as maize which suffered from drought and summer heat waves. However, the French wheat record harvest

occurred within an abundant global context. Thus, wheat price dropped at the same time on global markets.

However, the drop of the euro against the dollar supported the prices of agricultural commodities exchanged

2. More details can be found at: https://agriculture.gouv.fr/overview-french-agricultural-diversity
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in euros. For maize, despite the decrease in production, global stocks remained high (Rodier et al. 2015).

In 2016, cereal production suffered greatly in France due to climatic conditions (bad weather in spring and

drought in summer) which led to significant yield decline. Despite the poor harvests in France, cereal prices

remained low, due to the abundance of world production (Triquenot et al. 2016).

Wine-growing comes in second place after cereals in terms of yields. The production value amounts to

over 12,4 billion euros (among which 79% for quality wines). In terms of wine production, France occupies

the first place worldwide along with Italy and Spain, depending on years. French viticulture is a leading

production mostly based on family farms. In spite of the slight decrease of wine consumption every year,

prices increase regularly thanks to exports. The two main concepts related to French quality wines are the

concept of terroir and the controlled designation of origin system (Appellation d’Origine Contrôlée - AOC).

Appellation rules define which grape varieties and winemaking practices are approved for classification in

each of France’s geographically defined "appellations".

Thanks to mild temperatures in winter and spring 2014, wine production increased by 17% for AOC

wine. At the same time, production stocks at the beginning of the 2014/2015 wine year were lower than in

the previous year (-10%) for all wine categories. Along with a reduced dynamic of foreign trade, prices of

AOC wine felt sharply at the beginning of the year before stabilising, while they increased for other wines

(Rodier et al. 2015). Year 2015 was characterised by a slight increase in harvest levels but stable and limited

availability, especially for AOC wines (Rodier et al. 2015). Prices increased slightly compared to 2014. In

2016, several vineyards were severely affected by several weather accidents and the impact on harvests was

very significant. However, in the first nine months, prices of AOC wine were dynamic (+7.5% year-on-year),

and systematically above the 2015 prices (Triquenot et al. 2016).

4 Empirical results

4.1 Joint modelling of yields and prices

Before performing copula fitting techniques, we first examine how wheat, maize and wine productions

are distributed. Scatter plot and histograms of yields per hectare and prices for respectively 2014, 2015

and 2016 are given in Figure 1. It appears that prices and yields per hectare for wheat and maize crops

are symmetrically distributed, while they are not for wine crops. Scatter plot for wine follows a downward

trend in yields when prices rise for the three years. For cereals, a non-linear relationship is identified, hence

confirming the need to use copula to model the dependency.
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Fig. 1. Histograms and Scatter plot of (prices, yields) for considered productions

2014

2015

2016

It is also interesting to use Kendall’s τ or Spearman’s ρ statistic to estimate a rank-based measure of

association on the pair (price, yield). Table 2 gives a summary of Spearman’s ρ coefficient, a rank-based

measure of association on the pair (price, yield), and the p-value associated with the correlation tests.

For wheat, we notice a strong negative correlation between yields and prices in 2015 based on Spearman’s

method, of about −0.19. The test of association between paired samples gives a p-value 4×10−9 which means

that the null hypothesis (which supposes that prices and yields are independent) is rejected at the 5% level.

The negative correlation means that yields per hectare and prices vary in opposite ways. This is consistent
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Table 2. Summary of independence tests of (prices, yields)

Wheat Maize Wine
Year Spearman’s ρ P.value Spearman’s ρ P.value Spearman’s ρ P.value
2014 -0.0853 0.0086 0.0042 0.9220 -0.3051 0.0000
2015 -0.1893 0.0000 0.0747 0.0938 -0.2773 0.0000
2016 0.0631 0.0593 0.1473 0.0013 -0.3394 0.0000

Notes: The null hypothesis H0 of Spearman rank correlation test assumes that prices and yields are independent and
it is considered at the 5% level.

with the hypothesis of efficient markets assuming that prices and yields tend to move in opposite directions.

This negative correlation is particularly obvious in 2014 and especially 2015, as abundant wheat harvests

and higher yields (Delort et al. 2014; Rodier et al. 2015) led to commensurate market prices decreases. This

effect is called the "natural hedge" (Sherrick 2012). The correlation dropped in 2016 because of unfavourable

meteorological conditions that penalised the harvesting of wheat in France (Triquenot et al. 2016). In contrast

to the French situation, the world cereal harvest reached a record level, putting pressure on prices. Despite

low yields in France, prices remained as low as before, hence the positive correlation.

The same reasoning applies for maize, with a positive correlation. For two consecutive years, 2015 and

2016, the lack of rain and summer heat hampered maize development. The production performance declined

below the five-year average, and total maize exports and stocks declined due to lower production. However,

prices did not rise, as global stocks were high during 2016.

For wine production, Spearman’s ρ shows that there exists a very strong dependence between yields and

prices. In 2014 and 2015, the harvests were slightly higher with stable and limited stocks, while prices of

AOC wine were lower (Rodier et al. 2015). This explains the very strong negative correlation conversely

between yield and prices. For year 2016, following the succession of weather hazards, wine production was

severely affected (Triquenot et al. 2016). The historical decline in French harvest took place in a context of a

decline of world production. Yet, production stocks increased in 2016 for AOC wines as a result of the good

harvests in 2014 and 2015. These stocks largely offset the negative impact of a reduced production in 2016.

Elasticity is another interesting economic measure to quantify the yield and price sensitivity from one year

to another. It is defined as a ratio of two variations:

elasticity = price growth rate
yield growth rate (11)

Table 3 shows that the wine price is highly elastic. In 2014/2015, prices changed relatively faster than

yields. This is consistent in the case of wine where, despite low harvests, wine lovers are willing to pay high
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prices for high quality wine. As a result, we observe a super negative elasticity. For 2015/2016, elasticity

is rather positive, which means that yield increases caused similar trends in prices. This may seem rather

paradoxical given the decline in harvests in 2016, but as already mentioned above, thanks to the good harvests

in 2014-2015, the stocks could compensate this decline. Wine prices seem to be very dependent on quality

rather than on quantity, and also on the annual effects of stocks.

Table 3. Elasticity measures

Elasticity
year Wheat Maize Wine
2014/2015 -0.42 -0.95 -9.07
2015/2016 0.27 0.18 5.15

Notes: Elasticity measures how much prices change fractionally when yields change fractionally.

Hence, since the pair (prices, yields) is dependent for wheat, maize and wine, copulas are fitted in the next

paragraph to model this dependence.

4.2 Price and yield modelling copula

Several goodness-of-fit (GOF) tests are performed with the Gumbel-Hougaard, Clayton, Frank, Normal

and Student copulas as candidate families. Here both formal and informal ways to select the modelling copula

will be discussed in turn.

First, the informal way relies on graphical diagnostics. We focus on the method based on Rosenblatt’s

transformation (Hofert and Mächler 2014). The observations are used to compute the pairwise Rosenblatt

transformed data under different hypothesis, meaning different copulas. Here we test the GOF with Gumbel,

Clayton, Normal and Frank copulas. Afterwards, we apply the pairwise test of independence to compute a

matrix of p-values, converted to colours as shown on Figure 2. These figures display the transformation of

the pairwise scatter plots to pairwise QQ-plots for the four copulas. We conclude that Frank copula fits best

wheat for the three different years (Figure 2). For wine, the pairwise Rosenblatt transformed data under

different hypothesis (Figure A2 in Appendix) show that Frank copula does not fit well the model. However,

in terms of empirical quantiles, this copula fits almost with the theoretical ones. Figure A1 (see Appendix)

shows that apparently Normal, Gumbel and Frank copulas match well the observations of maize. Hence, it is

preferable to use a formal test for GOF to come up with a more precise conclusion.

Second, focusing on the formal tests of GOF, Table 4 summarises the resulting p-values using different

copulas for each crop. As it can be seen from the summary, for all five tested families, Frank copula is the

best one since it has the highest p-value showing that it is not rejected at the 5% significance level. This

seems consistent with the graphical approach.
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Fig. 2. QQ-plot Pairwise Rosenblatt transformed observations of wheat

2014

2015

2016

Notes: Orange to white colours for p-values ≥ 5% which is the chosen significant level, and blue to red for p-values ≤
5%.

Table 4. Goodness of fit tests p-values of (prices, yields) for considered productions

Wheat Maize Wine
year Gumbel Clayton Frank Normal Student Gumbel Clayton Frank Normal Student Gumbel Clayton Frank Normal Student
2014 0.00 0.00 0.20 0.01 0.01 0.09 0.07 0.35 0.06 0.05 0.00 0.00 0.01 0.00 0.00
2015 0.00 0.00 0.01 0.00 0.00 0.01 0.03 0.22 0.01 0.03 0.00 0.00 0.00 0.00 0.00
2016 0.00 0.00 0.06 0.00 0.00 0.35 0.02 0.65 0.28 0.14 0.00 0.00 0.00 0.00 0.00

Notes: p-values for the test statistic are obtained by means of a multiplier approach Genest et al. 2009 with 10 000 replications.

4.3 Influence of covariates

As mentioned above, different elements can play a role to explain how these two marginal probability

functions are tied together. Here, we consider two types of covariates: discrete (crop insurance purchase and

insurance claims) and continuous (temperature and sunshine). Each one will be considered in a separate way.

Crop insurance purchase and claims
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Crop insurance and claims are classified into two binary classes : farmers who purchased or not a

crop insurance and farmers who received or not claims. First of all, we use a multivariate analysis of

variance (MANOVA)3 to determine whether these different classes, and also their combinations, influence the

relationship between prices and yields. In this analysis, the null hypothesis assumes that the class does not

affect the pair. The p-value allows to choose classes having a strong effect on the joint distribution. Therefore,

we consider a classification according to insurance purchase and claims for each crop and for each year of the

study. According to the formal tests of GOF for each class (Table A1 in Appendix), it appears that Frank’s

copula fits best in most cases, as it has the highest p-value.

To determine whether the classification made according to crop insurance purchase and claims, is efficient

or not, the parameter of Frank copula θ and the medial correlation coefficient β are estimated in each case

and we notice whether they differ significantly or not.

Table 5. Estimation of the parameters and the dependence measures of the selected Frank Copula

Wheat Maize Wine
year class θa ρb βc θ ρ β θ ρ β

2014
No class -0.53 -0.09 -0.07 0.04 0.00 0.00 -1.93 -0.31 -0.23
No insurance -0.05 0.00 -0.01 NS NS
With insurance -0.57 -0.09 -0.07 NS NS

2015

No class -1.18 -0.19 -0.14 0.47 0.07 0.06 -1.73 -0.28 -0.21
No insurance -0.93 -0.15 -0.11 NS -2.11 -0.33 -0.25
with insurance -1.17 -0.19 -0.14 NS -1.29 -0.21 -0.16
No claims NS 0.86 0.14 0.11 NS
With claims NS 0.13 0.02 0.02 NS
No insurance No claims NS N.S -2.26 -0.35 -0.27
No insurance With claims NS N.S -1.88 -0.28 -0.23
With insurance No claims NS N.S -1.57 -0.25 -0.19
With insurance With claims NS N.S -0.94 -0.16 -0.12

2016
No class 0.40 0.06 0.05 0.90 0.15 0.11 -2.15 -0.34 -0.26
No insurance 0.13 0.02 0.02 NS -2.57 -0.40 -0.30
with insurance 0.46 0.07 0.06 NS -1.68 -0.27 -0.20
No claims 0.75 0.12 0.09 NS NS
With claims 0.14 0.02 0.02 NS NS

Notes: a Theta is Frank copula parameter, b rho is Spearman rank correlation, c beta is the medial correlation
coefficient. NS indicates not significant parameters (for the sake of clarity, only the lines with significant parameters
are displayed).

Table 5 shows how parameters θ and β change according to different classes of significant variables. It

appears that the insured farms are those that have a strong negative dependence β between prices and

yields, for wheat in 2014/2015 and very strong for wine in particular in 2015/2016. This is due to a perfect

match between supply and demand. Indeed, on a perfect market, prices are expected to move downwards

when yields are better and vice versa, which means the balance between supply and demand determines the

3. Multivariate Analysis of Variance is a statistical test that stands for multivariate analysis of variance for multiple
dependent variables.
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price. This was the case for wheat, as production was at a world record, resulting in lower market prices (as

explained earlier). Because wine is a very particular asset, out of global markets, it behaves in a different

way, linked to an elastic market impacted by quality and stocks. The correlation becomes positive in 2016 for

wheat, while there is no insurance effect for maize.

As a conclusion, we note that insured wheat producers are those with the most volatile pair (price,yield),

and conversely for wine. This can result in a slight adverse selection effect, because the farmer observes his

yields (over the last 3 years for example) and can anticipate a future potential use of crop insurance. We also

note that existing crop insurance contracts (which hedge only yield risks) are more adapted to wine than to

field crops, as wine prices are determined on productive regions and follow closely yield trends. Conversely,

setting up a revenue insurance appears more conceptually adapted to the hedging of cereal production rather

than wine production.

Temperature and sunshine deviations

Figure 3 and 4 display the estimated parameter of the Frank copula according to temperature and sunshine

deviations for wheat, maize and wine. We extract a relationship between these covariates and the structure

of yield and price dependence using Spearman’s ρ. To do so, we use the approach based on the conditional

copula estimation described previously.

Fig. 3. Spearman’s ρ conditionally on temperature deviation

(a) (b) (c)

For wheat, Figures 3 (a), (b), (c) display respectively an increasing function of Spearman’s ρ depending on

the temperature deviation of 2014 compared to the average of the last five years, a slight upward trend

in 2015 but still a negative correlation, and stabilisation around a very low dependency in 2016. This

means that when the gap increases, wheat yields and prices tend to vary in the same direction. A visual
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Fig. 4. Spearman’s ρ conditionally on sunshine deviation

(a) (b) (c)

inspection of Figure 4 reveals a downward trend for large number of days of sunshine as in 2015, and an

upward trend for little sunshine in 2016 (the difference between this year’s average and the average of the

last 5 years is lower than 0). The reason behind this trend is that wheat crops are very sensitive to a change

in weather conditions. In fact, price volatility and the decrease in agricultural yields are closely linked to

natural hazards, such as record temperatures (2016 was an extremely hot year). Existing studies indicate

that yields decline with higher temperatures and decreased precipitation (as in 2016) and increase with

higher precipitation (as in 2015) (Pirttioja et al. 2015). The drought in 2016 had a strong impact on wheat

(Ciais et al. 2005), as a lack of water occurred during the in early autumn, which is a critical period.

For wine, Figures 3 (a), (b) and (c) exhibit different trends : a decreasing one for 2014, an in-

creasing one in 2015 and in 2016 with some fluctuations. They show clearly that the correlation seems

to be very strong and negative when the temperature deviation increases until 1.2 C°. Spearman’s ρ for

sunshine deviation in Figure 4 tends to decrease for long periods of sunshine. Vines requires good sunshine,

average high temperatures and regular rainfall for their growth. Solar radiation is an important element

of photosynthesis that allows the vine to accumulate reserves (sugars) in its fruits. However, the vine is

sensitive to very high temperatures accompanied by long periods of drought because it causes a slowdown or

even a halt in the growth of leaves and grapes 4. For this reason, extreme temperatures reduce the chance to

produce a quality wine (White et al. 2006).

4. More details on this topic can be found at: https://www.oenologie.fr/climat-pour-le-vin
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5 Conclusion

This paper aimed at modelling the dependence structure between yields and prices using a copula model

approach. The study used a real data set of French farms extracted from the Farm Accountancy Data

Network (FADN) considering two main productions: cereals (wheat and maize) and wine growing.

The results show that the dependence between prices and yields is relatively high and it can be described

with a Frank Copula, regardless the type of crop. Moreover, the two variables show different types of

dependence for each crop, according to events related to the year of the study : local climatic change affecting

local production and yields, or global fluctuations of commodity markets as a result of global production and

other external factors. We showed that the dependence structure between prices and yields is unstable for

wheat and maize, while wine-growing has always a negative correlation. This reflects the organisation of the

wine-growing sector, which is structured in terms of territory and quality. This is not the case for wheat and

maize, which are completely standard cereals whose prices follow world market trends. On perfect markets,

prices and yields use to vary in opposite directions.

This study also examined the effectiveness of existing insurance contracts. The empirical analysis showed

that existing crop policies are more suited to wine than to cereals because they only hedge directly yield

and not price risks. Indeed, ignoring the dependence between price risk and yield risk could lead to an

overestimation of the cereal revenue risk, in the case of “natural hedge” where revenue is stabilised due to the

negative relationship between crop yields and prices. Conversely, in the case of a positive relationship between

yields and prices (for instance, in a low-price market environment), this may lead to an under-hedging of

revenue for the producer. This study also shows that French cereal and wine productions are significantly

influenced by extreme weather. Crop yields were indeed sensitive to very high temperatures in 2016.

For future studies, this work offers many insights, such as an overview related to the development and

pricing of farm revenue insurance that would be more suitable for the protection of cereal . The results of

this analysis support the idea of combining price and yield risk hedging into a single revenue insurance policy

that would provide increased insurance coverage, especially for cereal producers.
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Appendix

Fig. A1. QQ-plot Pairwise Rosenblatt transformed observations of maize

2014

2015

2016

Notes: Orange to white colours for p-values ≥ 5% which is the chosen significant level, and blue to red for p-values ≤
5%.
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Fig. A2. QQ-plot Pairwise Rosenblatt transformed observations of wine

2014

2015

2016

Notes: Orange to white colours for p-values ≥ 5% which is the chosen significant level, and blue to red for p-values ≤
5%.

165



Ta
bl
e
A
1.

G
oo

dn
es
s
of

fit
te
st
s
p-
va
lu
es

fo
r
ea
ch

cl
as
sifi

ca
tio

n
ac
co
rd
in
g
to

cr
op

in
su
ra
nc

e
pu

rc
ha

se
an

d
cl
ai
m

cl
as
se
s

W
he

at
M
ai
ze

W
in
e

ye
ar

cl
as
s

G
um

be
lC

la
yt
on

Fr
an

k
N
or
m
al

St
ud

en
t
G
um

be
lC

la
yt
on

Fr
an

k
N
or
m
al

St
ud

en
t
G
um

be
lC

la
yt
on

Fr
an

k
N
or
m
al

St
ud

en
t

N
o
cl
as
s

0.
00
00

0.
00
00

0.
20
32

0.
01

03
0.
00
76

0.
08
71

0.
07
48

0.
34
52

0.
06
43

0.
04
66

0.
00
00

0.
00
01

0.
01
14

0.
00
00

0.
00

00
N
o
in
s

0.
09

05
∗

0.
12

06
∗

0.
29

51
∗

0.
06

24
∗

0.
04

49
∗

0.
55
09

0.
82
41

0.
76
32

0.
52
21

0.
39
77

0.
00
00

0.
00
07

0.
02
02

0.
00
00

0.
00

00
W

ith
in
s

0.
00

00
∗

0.
00

37
*

0.
42

99
∗

0.
08

72
∗

0.
07

73
∗

0.
04
23

0.
03
62

0.
24
08

0.
02
67

0.
03
88

0.
00
00

0.
00
12

0.
05
88

0.
00
09

0.
00

09
N
o
in
de

m
0.
00
01

0.
00
26

0.
22
83

0.
02

60
0.
02
14

0.
25
83

0.
18
81

0.
53
41

0.
19
59

0.
20
70

0.
00
00

0.
00
00

0.
01
69

0.
00
00

0.
00

00
20
14

W
ith

in
de

m
0.
00
71

0.
03
14

0.
53
50

0.
16

11
0.
21
40

0.
38
80

0.
35
40

0.
54
31

0.
23
47

0.
21
43

0.
00
00

0.
04
23

0.
16
38

0.
02
34

0.
02

30
N
o
in
s
N
o
in
de

m
0.
28
92

0.
18
44

0.
39
96

0.
12

98
0.
08
94

0.
26
94

0.
55
80

0.
54
43

0.
24
14

0.
22
27

0.
00
00

0.
00
01

0.
01
49

0.
00
01

0.
00

00
N
o
in
s
W

ith
in
de

m
0.
09
51

0.
93
68

0.
33
74

0.
14

51
0.
14
06

0.
12
18

0.
83
90

0.
21
04

0.
10
74

0.
08
32

0.
05
18

0.
56
58

0.
36
30

0.
14
46

0.
17

01
W

ith
in
s
N
o
in
de

m
0.
00
61

0.
03
81

0.
44
16

0.
15

13
0.
14
84

0.
14
92

0.
10
02

0.
40
65

0.
11
04

0.
16
58

0.
00
00

0.
00
23

0.
14
79

0.
01
11

0.
01

11
W

ith
in
s
W

ith
in
de

m
0.
00
24

0.
04
90

0.
67
92

0.
26

79
0.
31
47

0.
28
00

0.
24
77

0.
43
52

0.
14
21

0.
16
48

0.
00
83

0.
09
15

0.
22
82

0.
04
03

0.
03

75
N
o
cl
as
s

0.
00
00

0.
00
00

0.
01
43

0.
00

00
0.
00
00

0.
01
11

0.
02
70

0.
22
06

0.
01
35

0.
03
07

0.
00
00

0.
00
00

0.
00
06

0.
00
00

0.
00

00
N
o
in
s

0.
11

44
∗

0.
07

23
∗

0.
44

03
∗

0.
14

87
∗

0.
18

22
∗

0.
26
05

0.
39
10

0.
48
53

0.
19
94

0.
17
20

0.
00

00
∗

0.
00

25
∗

0.
01

03
∗

0.
00

00
∗

0.
00

00
∗

W
ith

in
s

0.
00

00
∗

0.
00

00
∗

0.
01

05
∗

0.
00

00
∗

0.
00

00
∗

0.
01
45

0.
02
18

0.
18
72

0.
01
31

0.
03
72

0.
00

00
∗

0.
00

36
∗

0.
04

39
∗

0.
00

04
∗

0.
00

04
∗

N
o
in
de

m
0.
00
00

0.
00
00

0.
04
22

0.
00

06
0.
00
08

0.
07

58
∗

0.
32

75
∗

0.
47

33
∗

0.
14

95
*

0.
24

05
∗

0.
00
00

0.
00
02

0.
00
36

0.
00
00

0.
00

00
20
15

W
ith

in
de

m
0.
00
00

0.
00
04

0.
10
48

0.
00

14
0.
00
30

0.
21

32
∗

0.
22

16
∗

0.
51

67
∗

0.
18

03
∗

0.
27

36
∗

0.
00
00

0.
00
36

0.
06
28

0.
00
14

0.
00

17
N
o
in
s
N
o
in
de

m
0.
12
64

0.
10
61

0.
38
57

0.
12

52
0.
14
12

0.
46
47

0.
90
12

0.
71
32

0.
44
12

0.
43
18

0.
00

00
∗

0.
01

43
∗

0.
01

76
∗

0.
00

01
∗

0.
00

00
∗

N
o
in
s
W

ith
in
de

m
0.
22
96

0.
30
85

0.
27
38

0.
05

47
0.
05
79

0.
18
57

0.
50
05

0.
24
01

0.
08
10

0.
07
80

0.
00

04
∗

0.
19

03
∗

0.
41

04
∗

0.
10

83
∗

0.
09

43
∗

W
ith

in
s
N
o
in
de

m
0.
00
00

0.
00
00

0.
01
15

0.
00

01
0.
00
00

0.
07
96

0.
30
99

0.
46
14

0.
14
23

0.
25
64

0.
00

00
∗

0.
01

24
∗

0.
12

35
∗

0.
00

72
∗

0.
00

53
∗

W
ith

in
s
W

ith
in
de

m
0.
00
00

0.
00
41

0.
18
05

0.
00

93
0.
01
20

0.
19
92

0.
21
80

0.
50
45

0.
16
79

0.
29
67

0.
01

25
∗

0.
02

89
∗

0.
13

37
∗

0.
00

99
∗

0.
01

73
∗

N
o
cl
as
s

0.
00
00

0.
00
14

0.
06
05

0.
00

02
0.
00
01

0.
34
81

0.
02
32

0.
65
13

0.
27
60

0.
13
95

0.
00
00

0.
00
00

0.
00
01

0.
00
00

0.
00

00
N
o
in
s

0.
31

74
∗

0.
51

13
∗

0.
62

18
∗

0.
29

94
∗

0.
42

44
∗

0.
44
97

0.
73
11

0.
77
13

0.
45
91

0.
50
29

0.
00

00
∗

0.
00

00
∗

0.
00

26
∗

0.
00

00
∗

0.
00

00
∗

W
ith

in
s

0.
00

05
∗

0.
00

29
∗

0.
08

10
∗

0.
00

06
∗

0.
00

01
∗

0.
51
43

0.
01
80

0.
64
24

0.
31
66

0.
17
82

0.
00

00
∗

0.
00

01
∗

0.
02

91
∗

0.
00

01
∗

0.
00

03
∗

N
o
in
de

m
0.

00
88
∗

0.
09

54
∗

0.
25

21
∗

0.
02

81
∗

0.
02

13
∗

0.
55
83

0.
02
00

0.
62
86

0.
26
60

0.
24
64

0.
00
00

0.
00
00

0.
00
17

0.
00
00

0.
00

00
20
16

W
ith

in
de

m
0.

00
49
∗

0.
00

71
∗

0.
12

61
∗

0.
00

36
∗

0.
00

20
∗

0.
60
79

0.
54
53

0.
85
67

0.
65
87

0.
50
63

0.
00
00

0.
00
00

0.
01
05

0.
00
00

0.
00

00
N
o
in
s
N
o
in
de

m
0.
18
25

0.
54
66

0.
58
63

0.
25

08
0.
31
12

0.
32
16

0.
45
76

0.
59
07

0.
28
45

0.
30
85

0.
00
00

0.
00
00

0.
00
73

0.
00
01

0.
00

00
N
o
in
s
W

ith
in
de

m
0.
02
72

0.
34
85

0.
51
26

0.
21

15
0.
20
98

0.
20
02

0.
70
98

0.
43
68

0.
17
88

0.
20
68

0.
00
07

0.
01
09

0.
08
51

0.
00
51

0.
00

46
W

ith
in
s
N
o
in
de

m
0.
02
44

0.
12
61

0.
28
77

0.
04

18
0.
03
52

0.
73
33

0.
02
11

0.
67
10

0.
33
60

0.
30
81

0.
00
00

0.
00
05

0.
12
25

0.
01
25

0.
01

45
W

ith
in
s
W

ith
in
de

m
0.
00
04

0.
00
16

0.
06
90

0.
00

06
0.
00
02

0.
62
62

0.
35
12

0.
82
50

0.
60
51

0.
40
63

0.
00
01

0.
00
23

0.
06
48

0.
00
07

0.
00

11

N
ot

es
:
p-
va
lu
es

fo
r
th
e
te
st

st
at
ist

ic
ar
e
ob

ta
in
ed

by
m
ea
ns

of
a
m
ul
tip

lie
r
ap

pr
oa

ch
G
en

es
t
et

al
.2

00
9
w
ith

10
00

0
re
pl
ic
at
io
ns
.
C
la
ss
es

th
at

ha
ve

an
in
flu

en
ce

ar
e

m
ar
ke
d
w
ith

∗
at

th
e
5%

le
ve
lo

r
le
ss

an
d
th
e
an

al
ys
is

st
ud

ie
s
w
ill

be
pe

rf
or
m
ed

on
th
em

.

166



Chapter 5
The effects of natural hedge on revenue

stability and implications for pricing the

revenue insurance contract using
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Abstract

The natural hedge mechanism occurs when crop yields and prices are negatively correlated.

An effective implementation of a revenue insurance policy requires to take into account this

mechanism. In this chapter, we aim to empirically characterise the degree of the natural hedge

in the wheat, maize and wine sectors, using copulas. We also aim to analyse its effect on

the value of actuarially fair premiums of a revenue insurance policy. We start by introducing

the context of the study in Section 5.1. The methodological approach and the description of

the variables used in the analyses are presented in Section 5.2. Section 5.3 is devoted to

the analysis of the natural hedge effects on income stability and crop insurance participation.

Finally, we present in section 5.4 the implications of the results for the implementation of a

revenue insurance policy in France. We conclude with some final remarks in Section 5.5.
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Resumé

Le mécanisme de couverture naturelle se produit lorsque les rendements et les prix des

cultures sont négativement corrélés. Une mise en œuvre efficace d’un système d’assurance

revenu nécessite de prendre en compte ce mécanisme. Dans ce chapitre, nous visons à car-

actériser empiriquement le degré de couverture naturelle dans les secteurs du blé, du mäıs

et du vin, en utilisant des copules. Nous visons également à analyser son effet sur la valeur

des primes actuariellement justes d’une police d’assurance revenu. Nous commençons par

présenter le contexte de l’étude dans la Partie 5.1. L’approche méthodologique et la descrip-

tion des variables utilisées dans les analyses sont présentées dans la Partie 5.2. La partie 5.3

est consacrée à l’analyse des effets de la couverture naturelle sur la stabilité du revenu et la

participation à l’assurance récolte. Enfin, nous présentons dans la Partie 5.4 les implications

des résultats pour la mise en place d’une assurance revenu en France. Nous concluons par

quelques remarques finales dans la Partie 5.5.
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5.1 Introduction

Agriculture is generally subject to multiple and increasing risks. The two main risks are

the risk of low yields, linked to climate change and natural perils (Anandhi et al., 2016;

Moschini and Hennessy, 2001; Ullah et al., 2016), and the risk of low prices, related to the

financial markets deregulation (Ortmann et al., 1992; Ullah et al., 2016). Protection against

natural, climatic and market risks falls within the realm of good risk management to bet-

ter cover farmers (Hardaker et al., 2015). A non-exhaustive list of risk management tools

includes diversification, irrigation, agricultural inputs, futures hedging, forward contracting

or insurance contracts (see Section 1.1.2 of the State of the Art). The latter is the subject

of our study. There are several types of crop insurance schemes, such as yield and revenue

insurance (Kang, 2007). Revenue insurance policy is more effective as it covers the overall

farm income, whereas crop insurance policy only covers crop yields. It provides better protec-

tion against both yield and price risks than individual crop insurance contracts. In addition,

revenue insurance also takes into account the ”natural hedge” effect, when prices and yields

are inversely correlated, which moderates revenue variability and has some implication on

the premium calculation (Feng et al., 2014).

Natural hedge has received much attention in the analysis of agricultural risk manage-

ment (Kimura et al., 2010; Finger, 2012; Ramsey et al., 2019). It is defined as a negative

correlation between prices and yields. This inverse dependence could smooth out the revenue

variations and thus reduce farmers demand for insurance solutions (Kimura et al., 2010).

Furthermore, the degree of this dependence is of great practical importance for the revenue

insurance design. Indeed, pricing these contracts requires calculating the probability of loss,

which depends on the joint distribution function of yields and prices. This probability is then

used to calculate the actuarially fair premium rate which is important for an efficient insur-

ance program. Therefore, it must be evaluated accurately as an under- or over-evaluation

could lead to several adverse consequences such as distorting the insurance demand and sup-

ply and harming the business of insurers. Thus, the dependence between yield and price risks

must be taken into account when designing revenue insurance products. In the case of neg-

ative dependence, natural hedge would have the potential to make premiums less expensive

for producers, on the one hand, and less costly for insurers, on the other hand, as the number

of claims would be lower.

Most of existing studies estimate the natural hedge, more generally the correlation between

yield and price, in terms of Pearson correlation coefficient (Finger, 2012; Embrechts et al.,

2002; Coble et al., 2000). However, there is little evidence that the dependence between these

two risks is linear. Alternatively, the correlation was estimated with non-parametric measures
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of association such as the Spearman rank correlation (Finger, 2012; Ramsey et al., 2019). The

latter is invariant to monotonic transformations and does not rely on a linearity assumption.

However, these correlations are limited as they do not characterise the dependence of risks in

the distribution. Insurance contracts are often affected by the occurrence of extreme events,

such as the severe drought that happened in France in 2016 (Ben-Ari et al., 2018). Moreover,

the joint distribution between yields and prices must be calculated for the insurance pricing

issue discussed earlier. This joint distribution and the associated dependence structure can be

characterised by copula functions. Copulas present a framework for considering both linear

and non-linear dependence as well as the dependence of the distribution tails. They have

been widely used to analyse financial series and risk factors. In the case of revenue insurance,

a small number of studies have been developed such as Duarte and Ozaki (2019); Ramsey

et al. (2019); Rusyda et al. (2021); Ahmed and Serra (2015).

Based on this background, the objective of this study is to estimate the natural hedge using

copulas. We examine different parametric copulas for modelling the joint distribution between

crop yields and prices. Then, to highlight the relevance of using natural hedge in the design

of a revenue insurance, we provide empirical analyses to analyse the effect of natural hedge

on revenue variability, insurance premiums and claims. Finally, we propose an insurance

solution by integrating yields and prices correlations in the pricing, through simulations.

Our analysis is based on a French farm income dataset extracted from the Farm Accoun-

tancy Data Network (FADN). This choice is motivated by the fact that there is currently

no revenue insurance scheme in France for farmers. In addition, existing insurance policies,

such as multi-peril crop insurance, provide low levels of coverage despite the significant subsi-

dies (Lidsky et al., 2017). A better understanding of the dependence structure between prices

and yields, especially of natural hedge effects, would improve analyses for the potential im-

plementation of a revenue insurance contract for French farmers. Our empirical analyses are

based on the wheat, maize and wine productions, which represent the three most important

crops in French agriculture.

5.2 Methodology

This section provides a brief introduction to the copula tool used to model the dependence

structure between yields and prices (see State of the Art Section 1.2 for more details). It

then presents the procedure for modelling indemnities and setting premiums in a revenue

insurance scheme.
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5.2.1 Measures of dependence and Copulas

By definition, a copula is a multivariate distribution function with standard uniform univari-

ate margins. Thus it contains all the information on the dependence structure of the model.

For the sake of simplicity, let us focus on the bivariate case, in which we consider a pair of

continuous random variables X and Y marginally distributed according to F (x) = P(X ≤ x)
and G(y) = P(Y ≤ y). Let H(x, y) = P(X ≤ x, Y ≤ y) be their joint distribution function.

According to Sklar’s theorem, Sklar (1959), there exists a unique function C : [0, 1]2 → [0, 1]
such that:

H(x, y) = C(F (x), G(y)), for all (x, y) ∈ R2. (5.1)

The function C is referred to as the copula associated with H. It is the bivariate cumulative

distribution function (cdf) of the random vector (F (X), G(Y )) with uniform margins on

[0, 1]. The mappings X 7→ U := F (X) or Y 7→ V := G(Y ) used in the above representation

are usually referred to as the probability-integral transformations (to uniformity) and are

standard tools for simulation purposes.

Several measures of association between the components of a random pair can be consid-

ered, Kendall’s Tau (Nelsen, 2007) [paragraph 5.1.1], and Spearman’s Rho (Nelsen, 2007)

[paragraph 5.1.2] being the most popular ones. These measures are invariant to strictly in-

creasing functions and can be interpreted as probabilities of concordance minus probabilities

of discordance of two random pairs. Both of them can be written only in terms of the copula

C:

τ = 4
∫ 1

0

∫ 1

0
C(u, v) dC(u, v)− 1, (5.2)

ρ = 12
∫ 1

0

∫ 1

0
C(u, v) dudv − 3. (5.3)

Let us note that ρ coincides with the correlation coefficient between the uniform marginal

distributions. Starting from a sample (U1, V1), . . . , (Un, Vn) of independent observations from

C, it can be estimated by its empirical counterpart as

ρ̂ = 12
n

n∑

i=1
UiVi − 3. (5.4)

A similar formula holds for τ̂ .

Three main approaches have been proposed for estimating copulas: parametric, semi-

parametric and non-parametric methods (Genest and Favre, 2007). In our context, we advo-

cate for the parametric approach which is based on the estimation of the parameters(s) θ of
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the copula assumed to belong to some parametric family {Cθ, θ ∈ Θ}.
Numerous parametric families of copulas can be found in the literature. Let us focus on

two popular models: Elliptical and Archimedean copulas. Elliptical copulas (Frahm et al.,

2003) are built from elliptical distributions thanks to an uniformisation of their margins.

The level sets of an elliptical distribution density are ellipses whose shape is determined

by a (kind of) covariance matrix. Important examples in this family are the Gaussian and

the Student copulas. Archimedean copulas (Naifar, 2011) are determined by a univariate

function, called the generator, whatever the dimension is. A number of generators have been

proposed, involving on one or two parameters and tuning the dependence strength between

the marginals. In this study, we focus on three Archimedean copulas: Gumbel, Frank, and

Clayton (Beck, 2015) [pages 17-21]. The estimation of the parameter(s) θ can be done for

instance using the maximum likelihood method or the method of moments (Mazo et al.,

2015). In the latter case, θ is estimated by minimising a given distance between the empirical

τ̂ and ρ̂ computed from Equation (1.17) and the theoretical ones τ(θ) and ρ(θ) calculated

according to Equations (1.3) and (1.4) under the model Cθ.

One technique can be used to select the copula that fits best a dataset is the goodness-of-fit

test based on Kendall’s distribution function K (also called multivariate probability integral

transformation) (Genest et al., 2009) defined as

K(t) = P(C(U, V ) ≤ t) =
∫ 1

0

∫ 1

0
1{C(u,v)≤t}dC(u, v). (5.5)

The theoretical Kendall distribution under the null hypothesis (U, V ) ∼ C0 is compared to

its sample version thanks to a Cramér–von Mises statistics (Genest and Favre, 2007) and the

associated p-value is computed.

5.2.2 Indemnity modelling and pricing in revenue insurance

In the literature, revenue insurance rate calculation adopts three main steps: fitting marginal

distribution functions of yields and prices, selecting the best fitting Copula model, and Monte

Carlo simulation (Zhu et al., 2008; Walters and Preston, 2018; Ahmed and Serra, 2015). These

three steps are explained below.

First, modelling observed crop yields and prices over time involves adjusting for trends.

Indeed, yields and prices series can exhibit deterministic changes, which can influence the

modelling of the dependence structure. For instance, in the case where decreasing price

levels accompany increasing yield levels, the natural hedge could be overestimated. The

most common approach in agricultural economics in practice for estimating the trend is the

”ad hoc” detrending method (Finger, 2012; Zhu et al., 2008). The approach consists first of
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detrending the time series of yields and prices data. To this end, we regress yields and prices

on a quadratic time trend given by yt = c+ a1t+ att
2 + εt, where yt is the observation data

in year t. Then, residuals ε̂t and predicted observations for the year of reference 2017, ŷ2017,

can be calculated and detrended data are given by the following:

ỹt = ŷ2017

(
1 + ε̂t

ŷt

)
. (5.6)

In our study, we apply a robust regression, MM estimation, to detrend yields and price (Fin-

ger, 2012). The latter is an important tool for the analysis of data affected by outliers or when

the distribution of residual is not normal. One of the robust regression estimation methods

is M estimation (Huber, 1973), which is an extension of the maximum likelihood estimation

method and a robust estimate. S-estimation (Rousseeuw and Yohai, 1984), based on the scale

of the residuals of the M-estimate, is also provided in regression robust. Then it comes MM

estimation procedure which combines both S estimation and M estimation procedure (Yohai,

1987).

The second stage of the ”ad hoc” approach is to estimate the marginal distribution of yield

and prices using detrended data as a reference. There are several approaches, parametric and

non-parametric, to crop modelling in the agricultural economics literature (see Section 1.1.4

for an overview of these methods). We focus here on the parametric approach and select the

main distributions used in practice. Then we estimate the parameters and assess the goodness

of fit. The candidate distributions are: Normal (Ozaki et al., 2008), Lognormal (Stokes, 2000),

Skewnormal (Duarte and Ozaki, 2019), Weibull (Chen and Miranda, 2004) and Gamma (Gal-

lagher, 1986) for yield modelling and Normal, Lognormal (Samuelson, 2015) and Burr (Tejeda

and Goodwin, 2008) for price modelling.

The second step consists of modelling the dependence structure between crop yields and

prices. Indeed, the pricing of revenue insurance policies is an actuarial problem that consists

in calculating a joint distribution of yields and prices. This joint distribution corresponds to

the revenue distribution and can be calculated using the copulas presented above.

In the third step, a Monte Carlo simulation method is used to derive the actuarially fair

premium rate for the revenue insurance contracts (Zhu et al., 2008; Walters and Preston,

2018; Ahmed and Serra, 2015). To this end, we use the United States revenue insurance

programme (RA) as a reference in the insurance model used hereafter. Let consider the

revenue R as a function of two variables, the yield Y and the price P , whose expression is

R = Y P . The RA indemnity is given by (Zhu et al., 2008):

max {(λiRe −Ri), 0} , (5.7)
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where Ri is total annual revenue with i ∈ {wh,ma,wi} (wheat, maize, wine), Re = E(Ri) is

the expected revenue and λi ∈ (0, 1) is the coverage level percentage. If the actual rev-

enue Ri ≤ λiR
e, then the farmer is compensated from the insurer with the amount of

(λiRe − Ri). Then, the actuarially fair premium, which is equal to the expected loss of

this contract (Musshoff et al., 2011), is given by:

EL(Ri) = E
[
(λiRe −Ri)1{Ri≤λiRe}

]
, (5.8)

where 1{Ri≤λiRe} is an indicator equal to one if farmer is indemnified, and zero otherwise.

Finally, we perform a Monte Carlo method to simulate the yields and prices based on the

selected copula. From the parameters estimate of this copula, two sets of random sequences

U and V are generated as the distribution of the unit yield and price. Then, using the inverse

transformation of the estimated cumulative distribution function F−1
y (U) and F−1

p (V ), we

obtain the yield and price series. The average of the revenue series, obtained by multiplying

yields and prices, is used as the expected revenue value Re. Thus, the expected loss is derived

from equation (5.8). We repeat this process 10,000 times to derive the revenue insurance

premium using Monte Carlo simulations.

5.2.3 Data

Our analysis is based on French farm income dataset extracted from the FADN (See Sec-

tion 1.1.5) over the period 2000-2017. We focus on wheat, maize and wine (excluding cham-

pagne) productions, which represent the three most important crops in French agriculture.

Within the original dataset, we select only the farms that appeared for at least 10 years in the

sample during the period 2000-2017. Our sample finally includes 615 wheat producers (with

a total of 8480 annual observations), 299 maize producers and 410 wine producers (with a

total of 5472 annual observations). The main variables used into the analysis are given in the

Table 5.1. We note that the variability of revenue (as well as price and yield) is calculated

by considering the growth rate ∆R between each year, defined as:

∆R = (RN −RN−1)/RN−1.

To remove the effect of farm size, most variables are standardised by dividing them by the

cultivated area. We also lagged insurance premiums and claims to avoid endogeneity is-

sues (Goodwin, 1993). Finally, the price series for each crop were deflated using the agricul-

tural producer price index (IPPAP, IPAMPA - Base 2015) available at INSEE1.

1https://www.insee.fr/fr/statistiques/series/109144301

https://www.insee.fr/fr/statistiques/series/109144301
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Variable Unit Description

Farm specialisation - 3 types (wheat, maize, quality wine-growing)
Gross product Euro Gross product of the considered crop
Gross yield Quintal or hL Gross yield of the considered crop
Harvested acreage ha Cultivated area of the considered crop
Yield Quintal or hL/ha Yield/Acreage
Yield variability % Annual variation of yields
Price Euro/Quintal or hL Gross product/Quintals or hectolitres sold
Price variability % Annual variation of price
Revenue Euro/ha Revenue of the farm
Revenue variability % Annual variation of revenue
Premiums Euro/ha Crop insurance premiums/Cultivated area
Insurance claims Euro/ha Crop insurance claims received/Cultivated area

Table 5.1. List of variables

5.3 Natural hedge effects

Intuition suggests that natural hedge has a stabilising effect on farm revenues and a reducing

effect on the demand for insurance solutions. However, few empirical studies are showing such

an effect. In this study, we investigate the effect of natural hedge on revenue variability and

participation in crop insurance.

Yield, price and revenue variability. Annual variations in yield, price, and farm revenue for

the three crops, wheat, maize and wine, are presented in Figure 1. This graphical represen-

tation shows that revenue variability has broadly the same trend as price variability, which

asserts that revenue is strongly affected by financial market risk. Moreover, revenue vari-

ability is much higher for cereals than for wine. Since wheat and maize are standard crops,

they are highly affected by financial market trends. We can see a peak around 2007-2008

where prices increased by about 176% for wheat and 95% for maize. Indeed, the spike in

international cereal prices over 2007 and 2008 constituted a global food crisis. Between 2003

and their peak in mid-2008, international maize and wheat prices roughly doubled (Headey,

2011). Since 2008, price level variations have been more persistent. We can see a significant

drop in yields in 2016, accompanied by a decline in revenues of approximately 31% for wheat,

20% for maize and 11% for wine. Indeed, it was a year of severe drought that penalised

France’s wheat harvest. Contrary to the French situation, the World cereal harvest reached a

record level, leading to a drop in prices. Therefore, farmers suffered double losses, low yields

and low prices. Wine production was also affected by drought. However, wine prices follow

closely the evolution of wine production since it is a local market. Indeed, the wine industry
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is a particular market, driven by the concept of ”terroir”2 and quality rather than quantity.

Figure 1 Yield, price and revenue variations for wheat, maize and wine.

Natural Hedge estimate per year and regions. We aim to estimate the correlation between

crop yields and prices from 2000 to 2017 to identify the presence of a potential natural hedge

over the years. Then we analyse the natural hedge effects according to the regions. We use

copulas to model this dependence, and we run a Goodness-of-fit test using Cramér–von Mises

statistics, within the time frame 2000-2017, to select the suitable copula model. Table 5.9

summarises the p-values obtained using five parametric copulas (Frank, Clayton, Gumbel,

Normal, Student) for each crop. The test shows that Frank copula is the common model

for all years for wheat and maize crops since it has the highest p-value. Wine production

can also be modelled by a Frank copula for 2000, 2005 and 2014, whereas none of the five

copula models shows a matching for the other years. Notwithstanding the insignificant p-

value, the Frank copula is assumed to remain suitable for wine since this model allows any

dependence structure ranging from complete negative rank correlation to complete positive

rank correlation. The parameter estimates of the Frank copula are presented in Table 5.2.

This table also shows the empirical Spearman coefficient with a significance test at the 5%

level. It can be seen that the Spearman coefficient is consistent with the one computed

through the Frank copula parameter. Figure 2 displays the evolution of the natural hedge

2The concept of ”terroir” was first developed in the 14th century in the Bourgogne region of France to
identify the qualities of wines in terms of geoclimatic origin and authentic production methods (Whalen,
2009).
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over the years. The results show that prices and yields are negatively correlated for wheat

production for all years. In contrast, the correlation for maize is variable over the years.

Regarding wine, the correlation between yields and prices is mainly negative and particularly

strong in 2015-2016. This is due to the slightly high harvest in 2015 with stable stocks,

accompanied by low prices for quality wines. For 2016, adverse weather conditions have

strongly affected wine and cereal productions.

Figure 2 Annual correlations between yields and prices using Frank copula

Figures 4 and 5 present the correlations between crop yields and prices at the regional level

with a Frank copula. The latter is used as it covers a wide range of dependence possibilities,

including the lower and upper Fréchet bounds and the independent copula. The correlation

is represented by the Spearman coefficient computed through the Frank copula. The Figure

describes the correlation variation ρ̂C in French regions where the strong negative (resp. high

positives) correlations are in dark green and ranging between [−1, 0.3[ (resp. dark red and

ranging between [0.3, 1[). For example, for maize crop in 2017, the regions that show nega-

tive values of ρ̂C are mainly in Nord-Pas-de-Calais, Provence-Alpes-Côte d’Azur, Lorraine,

Ile-de-France and Bourgogne. Indeed, agriculture occupies 53.2% of the Metropolitan France

territory and almost 75% in regions such as Nord-Pas-de-Calais and Centre. As these areas

represent a significant part of the production, the correlation between prices and yields is

expected to be strong. However, the correlation between cereals prices and yields at the

regional level is very volatile over the years. Indeed, cereal prices and production quantities

move in very different ways. Cereal prices are driven by global market trends, whereas pro-

duction evolves locally and is strongly influenced by regional weather conditions. Regarding

the wine sector, it is shown that natural hedge is more widespread and stable over the years

than in the cereal sector.

The occurrence of natural hedge in the graphical representations is consistent with wine
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Wheat Maize Wine

Year θ ρ̂C ρ̂ p-value θ ρ̂C ρ̂ p-value θ ρ̂C ρ̂ p-value

2000 −0.73 −0.12 −0.12∗ 0.02∗ 0.18 0.03 0.03 0.74 −0.15 −0.03 −0.03 0.70
2001 −1.24 −0.20 −0.20∗ 0.00∗ 0.38 0.06 0.07 0.34 0.09 0.02 0.01 0.94
2002 −1.09 −0.18 −0.17∗ 0.00∗ 1.17 0.19 0.19∗ 0.01∗ −0.65 −0.11 −0.12 0.06
2003 −0.64 −0.11 −0.10∗ 0.03∗ −0.22 −0.04 −0.04 0.59 −0.85 −0.14 −0.15∗ 0.01∗
2004 −2.08 −0.33 −0.32∗ 0.00∗ 0.16 0.03 0.03 0.66 −0.83 −0.14 −0.15∗ 0.01∗
2005 −1.22 −0.20 −0.20∗ 0.00∗ 0.16 0.03 0.03 0.70 0.42 0.07 0.06 0.31
2006 −0.51 −0.08 −0.08 0.07 −0.31 −0.05 −0.05 0.43 −0.01 −0.00 −0.01 0.81
2007 −0.50 −0.08 −0.08 0.06 0.04 0.01 0.01 0.91 −0.00 −0.00 −0.01 0.83
2008 −0.49 −0.08 −0.08∗ 0.05∗ 0.69 0.11 0.12∗ 0.05∗ 0.49 0.08 0.08 0.11
2009 −0.70 −0.12 −0.12∗ 0.00∗ 0.55 0.09 0.09 0.13 −0.17 −0.03 −0.03 0.53
2010 −0.41 −0.07 −0.07 0.11 −0.43 −0.07 −0.07 0.25 −0.72 −0.12 −0.13∗ 0.02∗
2011 −0.96 −0.16 −0.16∗ 0.00∗ 0.60 0.10 0.10 0.13 −0.55 −0.09 −0.09 0.10
2012 −0.59 −0.10 −0.10∗ 0.03∗ 0.15 0.03 0.02 0.81 −0.66 −0.11 −0.12∗ 0.02∗
2013 −0.25 −0.04 −0.04 0.36 0.42 0.07 0.07 0.32 −0.72 −0.12 −0.13∗ 0.02∗
2014 −0.46 −0.08 −0.07 0.11 0.15 0.02 0.02 0.74 −1.57 −0.25 −0.25∗ 0.00∗
2015 −1.23 −0.20 −0.20∗ 0.00∗ 0.30 0.05 0.04 0.54 −1.86 −0.30 −0.30∗ 0.00∗
2016 −0.23 −0.04 −0.04 0.42 0.92 0.15 0.15∗ 0.04∗ −2.13 −0.34 −0.35∗ 0.00∗
2017 −1.29 −0.21 −0.21∗ 0.00∗ 0.35 0.06 0.05 0.51 −1.63 −0.26 −0.27∗ 0.00∗

Table 5.2. Yield and price correlations estimates through a Frank copula. θ is the Frank
copula parameter, ρ̂C is the Spearman rank correlation estimated using Frank copula, ρ̂
is the Spearman rank correlation estimated empirically and p-value is its associated test
significance measure. The null hypothesis H0 of Spearman rank correlation test assumes that
prices and yields are independent and it is considered at the 5% level.

production areas. As the most prominent French wine-growing region, Aquitaine represents

more than 30% of the French wine production, with nearly 140 000 hectares of vineyards

and a production of about 8 million hectolitres per year. This is most probably the reason

why the Spearman correlation coefficient in this region has a high negative value. Alsace,

Champagne-Ardenne, Burgundy and Franche-Comté are the regions where wine production is

the second most important agricultural product in France. Finally, the results show a strong

evidence of natural hedge in the main wine producing regions. This is due to the perfect

balance between supply and demand, as the wine market is elastic and influenced by quality

and stocks. However, the same cannot be said for wheat and maize, whose prices are closely

tied to the evolution of the international market, and yields are related to local production

conditions. Consequently, the correlation between prices and yields is erratic. Hence, the

need to to devote a special attention to the dependence structure between prices and yields.

Natural hedge effect on revenue variability and crop insurance To study the effect of natural

hedge on revenue variability, insurance premiums and claims, we calculate the correlation

between prices and yields at the farm level. First, we detrend the yield and price series to

remove the time bias (see Section 5.2.2). To do this, we use the estimated trends at the

aggregate level, presented in Table 5.4, to detrend the price and yield series at the individual
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farm level (Finger, 2012). Then, the correlation estimation is performed for each farm using

Frank copula. Figure 3 displays the distribution of the estimated correlation between yields

and prices for each crop. As can be seen, the correlation between yields and prices is slightly

shifted to the left for wheat and centred around −0.16, while it is symmetric for maize crop.

The curve slopes steeply to the left for wine and shows a high concentration in the natural

hedge side around −0.58, and a mild one on the right side 0.25. The estimated correlation at

the farm level is then used as an explanatory variable for the variability of revenue, insurance

premiums and indemnities and the area covered. Since each farm corresponds to a single

observation in the dataset, the variables of interest are calculated as the average of the

available observations for the period 2000 to 2017 (Finger, 2012). Then, we use several

regression models which are presented in the Table 5.3. To reduce the potential influence of

outliers, we use a robust regression with an MM estimator. The Natural hedge is negatively

correlated with measures of insurance participation (insurance premiums, claims and area

covered). The natural hedge does not have the expected effect on insurance premiums. In

general, the concept of a natural hedge is expected to reduce insurance premiums, which is

not the case here. This can be explained by the inefficiency of existing insurance products, as

they do not consider the correlation between prices and yields. Indeed, the current insurance

market offers crop insurance products that only cover yield risk. As for the revenue variability,

the latter is positively correlated with the natural hedge of wheat and maize and negatively

correlated with wine. The negative relationship implies that the higher the natural hedge,

the lower the variability. Thus, the natural hedge measure has a moderating effect on the

volatility of wine revenues.

These results highlight the organisation of the wine sector again and, conversely, the volatility

of the cereal sector, which is influenced by the global financial markets. Then, it seems

essential to set up an insurance scheme adapted to each sector’s characteristics and consider

the natural hedge effect.
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Figure 3 Yield and price correlations at the farm level for wheat, maize and wine-growing.

Revenue variability Log premiums Log indemnities Log area covered
(euros/ha) (euros) (euros) (ha)

Wheat

NH(price, yield) 0.24∗∗ −0.61∗∗∗ −0.24∗∗∗ −0.26∗
Constant 0.05∗∗∗ −3.18∗∗∗ 2.02∗∗∗ 3.91∗∗∗

State of influence Yes Yes Yes Yes
Observations 615 615 615 615

R2 0.30 0.29 0.34 0.36

Maize

NH(price, yield) 0.16∗∗∗ −0.68∗∗∗ −0.59∗∗∗ 0.28∗∗∗
Constant 0.06∗∗ 3.11∗∗∗ 2.25∗∗∗ 3.37∗∗∗

State of influence Yes Yes Yes Yes
Observations 299 299 299 299

R2 0.33 0.34 0.31 0.32

Wine

NH(price, yield) −0.07∗∗∗ −0.87∗∗∗ −0.2∗∗∗ −0.77∗∗∗
Constant 0.04 2.35∗∗∗ 3.82∗∗∗ 4.98∗∗∗

State of influence Yes Yes Yes Yes
Observations 410 410 410 410

R2 0.57 0.48 0.47 0.43

Table 5.3. Regression models explaining observed price and yield correlations at farm level
for wheat, maize and wine. Statistical significance at the 10%, 5%, and 1% are denoted by
∗, ∗∗, and ∗ ∗ ∗.
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Figure 4 Yield and price correlations at the region level for wheat (first column), maize (sec-
ond column), wine-growing (third column) for years 2014 (first row), 2015 (second row). Dark
green represents large negative correlations. Dark red represents large positive correlations.
Regions depicted in white reflect no production or lack of data.
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Figure 5 Yield and price correlations at the region level for wheat (first column), maize (sec-
ond column), wine-growing (third column) for years 2016 (first row), 2017 (second row). Dark
green represents large negative correlations. Dark red represents large positive correlations.
Regions depicted in white reflect no production or lack of data.
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5.4 Design of a revenue insurance

For each crop, we use area-weighted averages for all farms to obtain annual yields and prices.

Table 5.4 presents the descriptive statistics for crop yields and prices series and the robust

regression model estimates for detrending. The mean of annual wine production prices (360

euros/hectare) and standard deviation (134) implicitly reveal a quite significant fluctuation.

Indeed, some wines may meet quality criteria, such as the production region, appellation,

vintage, producer reputation and the number of bottles produced, which influence prices and

explain the fluctuations. Wheat and maize yields are characterised by a negative value of

skewness which indicates that the data are tilted to the left. Except for wheat yields, the

normality test confirms the normality of the data. The regression results show a first-order

linear trend for all yield and price series except for wheat and maize yields. There is also a

second order trend for the wine price series. Although the trends for wheat and maize yields

are not significant, they are removed to ensure that we do not overestimate the negative

correlations between yields and prices. Figure 6 shows the original and detrended yield and

price series. We also test the dependence and heterogeneity of variances over time, using the

Ljung Box test, for the detrended series and their squares. It turns out that the series, at the

1% level, do not exhibit these two properties.

Wheat Maize Wine

Yields Prices Yields Prices Yields Prices

Descriptive statistics

Mean 68.88 15.37 93.64 14.54 46.24 360.17
Standard deviation 5.22 7.34 7.17 6.73 4.21 134.44
Skewness -1.43 1.00 -0.37 1.30 0.88 1.41
Kurtosis 5.27 3.05 4.15 3.88 1.33 2.53
Jarque–Bera test 0.01 0.22 0.49 0.06 0.07 0.05

Regression model
Intercept 69.86∗∗∗ 14.25∗∗∗ 94.23∗∗∗ 12.60∗∗ 46.26∗∗∗ 358.99
Trend order 1 1.318 10.26∗ 8.39 6.84∗ -12.58∗ 392.01∗∗∗

Trend order 2 3.863 -5.64 2.25 -1.9 1.45 305.54∗∗∗

Ljung-Box test
Detrended series 0.24 0.61 0.66 0.57 0.71 0.54
Detrended series2 0.21 0.88 0.66 0.68 0.71 0.52

Table 5.4. Descriptive statistics, regression model results and Ljung-Box test for detrended
crop yields and prices series. Statistical significance at the 10%, 5%, and 1% are denoted by
∗, ∗∗, and ∗ ∗ ∗. The Jarque-Bera test is a normality test based on skewness and kurtosis of
the data.

Dependence modelling. Once the time bias in the data has been removed, we estimate the

dependence structure between yields and prices using copulas. Table 5.5 summarises the

p-values of Goodness of fit for different copulas. As can be seen in the summary, for the

five families we tested, Frank copula fits best to wine as it has the highest p-value and is
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Figure 6 Original and detrended yield and price series

above 5%, while Clayton copula fits best to wheat and maize. The Clayton copula can be an

intuitive choice at the aggregate level modelling (area-weighted averages of yields and prices

over all farms) as extreme events such as widespread droughts or other natural perils reducing

yields would lead to a lower tail dependence. This is in line with the fact that the Clayton

copula is an asymmetric archimedean model, with a higher dependence in the negative tail

than in the positive tail. Furthermore, the Clayton copula is preferred in the agricultural

economics literature when dealing with the aggregate level (regional or national) (Goodwin

and Hungerford, 2014). The parameter estimates of the selected copulas models are given in

Table 5.6. The estimation results show that prices and yields are negatively correlated for

wheat and wine. The correlation is rather positive for maize but not significant at the 5%

level.

Crops Gumbel Clayton Frank Normal Student

Wheat 0.10 0.78 0.44 0.05 0.04
Maize 0.09 0.23 0.19 0.07 0.07
Wine 0.00 0.13 0.14 0.03 0.02

Table 5.5. Goodness of fit tests p-values of yields and prices correlations. p-values for the test
statistic are obtained by means of a multiplier approach (Genest et al., 2009) with 10 000
replications.
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Crops Copula model Parameter ρ̂c ρ p-value

Wheat Clayton −0.28 −0.24 −0.24 0.04
Maize Clayton 0.13 0.09 0.11 0.07
Wine Frank −0.81 −0.80 −0.82 0.00

Table 5.6. Yield and price correlation estimates. ρ is Spearman rank correlation and p-value is
its associated test significance measure. The null hypothesis H0 of Spearman rank correlation
test assumes that prices and yields are independent and it is considered at the 5% level. ρ̂C
is Spearman rank correlation estimated using the selected copula model.

Marginal distribution of yields and prices. Table 5.7 presents the fitting procedures for se-

lecting the yield and price models for wheat, maize and wine. To select the model that

best fits the data, we used two statistical criteria: Akaike Information Criterion (AIC)

and Bayes Information Criterion (BIC). For yield, Weibull(k, δ) distribution is chosen for

wheat and maize while Normal N (µ, σ) distribution is selected for wine, for having pre-

sented the lowest value for the AIC and BIC statistics. Following the same criteria, the

model chosen for the price series is the Lognormal Log-N (µi, σi) distribution for wheat

(i = we), maize (i = m) and wine (i = wi). The maximum likelihood estimates of

the parameters of the yield and price distributions for wheat, maize and wine are respec-

tively: Ywe ∼ Weibull(19.44, 73.23), Ym ∼ Weibull(17.01, 100.83), Ywi ∼ N (42.18, 2.12),
Pwe ∼ Log-N (2.75, 0.39), Pm ∼ Log-N (2.73, 0.35) and Pwi ∼ Log-N (6.73, 0.15).

Wheat Maize Wine

Model AIC BIC AIC BIC AIC BIC

Yields

Normal 115.48 117.27 123.818 125.59 83.54 85.32
Log Normal 118.11 119.89 124.82 126.59 83.84 85.62
Skew Normal 110.56 111.76 124.68 125.88 85.13 86.33
Gamma 117.18 118.96 124.45 126.23 83.73 85.51
Weibull 109.38 111.16 122.87 124.65 83.88 85.66

Prices
Normal 121.76 123.54 122.22 124.01 222.46 224.24
Log Normal 119.91 121.7 116.22 118.00 222.25 224.03
Burr 120.96 122.74 120.99 122.77 223.11 224.89

Table 5.7. Information criteria AIC and BIC for marginal distribution of yields and prices

Simulation study and policy implication. In order to estimate the actuarially fair premiums,

we perform a Monte Carlo simulation method (presented in Section 5.2). Two scenarios are

considered to compare premiums: natural hedge is not taken into account, natural hedge is

taken into account. The dependence structure is described by the Frank copula for wine and

the Clayton copula for wheat. We use these copulas to draw 10 000 revenues series. The
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expected loss, given in equation 5.8, is calculated at different coverage levels. Then we derive

the actuarially fair premium, which is the expected loss ratio to the liability. The level of

coverage considered is λi ∈ {70, 80, 90}% and the year 2017 is taken as a reference for the

simulation.

Table 5.8 presents the actuarially fair premium values of a revenue insurance contract for

wheat, maize and wine crops in France. The results show that if the price and yield correlation

is ignored, the premiums values of wheat revenue insurance at levels 70%, 80% and 90% are

respectively 7.45, 14.70 and 32.08 euros/hectare. In contrast, in the case where correlations

are used, the fair insurance premiums are 5.99, 12.66 and 25.48 euros/hectare corresponding

respectively to the coverage levels of 70%, 80% and 90%. These results show that ignoring the

natural hedge leads to an overestimation of the risks by the insurer and thus the premiums

will be increased by +20%. Therefore, the demand for insurance solutions would be low.

For a coverage level of 80%, the actuarially fair premium for a maize revenue insurance

programme is 28.25% euros/hectare when dependence between yields and prices is taken into

account, otherwise it is 30.49% euros/hectare. Although the correlation is positive (Spearman

coefficient about 0.09), the premiums are nevertheless reduced by 7.35%. This result is

suspicious since the statistical test is not significant (see Table5.6). For wine, the actuarially

fair premiums are reduced when the natural hedge effect is taken into account. At the 80%

coverage level, the premium of revenue insurance is 41% less expensive than an insurance

contract without the natural hedge consideration. This is due to the fact that the natural

hedge level of wine estimated by Frank copula is very high. The expected losses for wine

are quite high because of the strong regional differences. Indeed, the areas of production are

more or less expensive depending on the ”terroir”. In case of a renowned terroir, where the

cultivation of vines is favourable and qualitative, then the price per hectare will quickly rise.

Coverage 70% Coverage 80% Coverage 90%

Crops Revenue insurance EL Premium % Premium EL Premium % Premium EL Premium % Premium

Wheat
With NH 135.26 4.43 5.99 168.48 7.51 12.66 216.17 11.79 25.48
Without NH 148.24 5.03 7.45 181.36 8.10 14.70 243.20 13.19 32.08

Maize
With NH 245.05 5.74 14.06 288.49 9.79 28.25 340.53 14.41 49.06
Without NH 249.32 6.36 15.87 295.61 10.32 30.49 352.71 14.56 51.37

Wine
With NH 10803.73 1.26 136.13 12374.17 1.26 156.49 14671.98 1.43 209.81
Without NH 10815.42 2.02 218.01 17203.47 1.48 427.55 19705.03 1.56 504.14

Table 5.8. Actuarially fair premium rate of a revenue insurance contract. NH is the natural
hedge and EL is the expected loss.
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5.5 Discussion

In this study, we used several copulas to empirically characterise natural hedging for wheat,

maize and wine from 2000 to 2017. We first investigated the impact of natural hedge on

revenue variability and insurance participation. The results indicate that the natural hedge

has a moderating effect on revenue variability in the wine sector. However, it does not have

the expected effect on insurance premiums and claims as well as income variability for wheat

and maize, which may denote a lack of efficiency of existing contracts. Second, we assessed

whether farm revenue insurance contracts are likely to reduce the cost of insurance purchase

when the natural hedge is taken into account. To do this, we modelled the joint distribution

of price and yield risks using copulas as well as the marginal distributions. Then we used

Monte Carlo simulations that allowed us to obtain the expected revenue, expected loss and

then the premium rates. It turns out that revenue insurance provides lower premiums - a

decrease of about 13.9% for wheat and 63% for wine with a 80% coverage - than an insurance

contract without natural hedge consideration. However, the variation appeared to be smaller

for maize, in line with the non- significance of statistical tests on copulas. These results

provide an interesting starting point for developing a revenue insurance policy in France

that offers better yield and price risk management, particularly for wheat and wine-growing

farmers.

Nevertheless, the measurement of the natural hedge degree may differ depending on the

level of aggregation, i.e. national, regional or farm level. At a national level, the effect of

natural hedge could be overestimated, and the variability of income at the farm level would

therefore be underestimated. To overcome the potential problems of an overestimation, the

natural hedge should also be quantified at the farm level and incorporated into pricing. This

is the subject of our ongoing work.
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Table 5.9. Goodness of fit tests p-values of yields and prices correlations for considered pro-
ductions. p-values for the test statistic are obtained by means of a multiplier approach (Genest
et al., 2009) with 10 000 replications.
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Conclusion and perspectives

The conclusion is organised around the two main topics that have been addressed through-

out this thesis: conditional extreme values in high dimensions and dependence modelling in

the design of revenue insurance. For each topic, we present a summary of the work carried

out and the research perspectives open to us.

Conditional extreme values in high dimensions

Summary of contributions

In the context of conditional extremes, this thesis first introduced a new approach, called

Extreme-PLS in Chapter 2. This model combines the partial least squares (PLS) dimension

reduction method and distributions tails modelling, in a non-linear inverse regression frame-

work. The main advantage of using Extreme-PLS and inverse regression is to circumvent

the well-known curse of dimensionality. Regressing X against Y leads to a one-dimensional

regression problem. The latter allows to quantify the effect of covariates X on the extreme

values of Y in a simple and interpretable way. Moreover, a visual presentation of the condi-

tional extreme quantiles can be provided. From the theoretical point of view, the asymptotic

properties of the Extreme-PLS estimator are established under an inverse single-index model

and a heavy tail assumption, without recourse to linearity nor independence assumptions. In

addition, the rate of convergence of the proposed estimator is 1/
√
k, where k is the number

of exceedances (observations considered as extreme), thanks to the dimension reduction. We

also considered an iterative procedure in a multi-index setting to estimate other directions

of dimension reduction space. Numerical simulations of the Extreme-PLS estimator provides

promising results in a high-dimensional setting and also outperforms the proposed estimator

in Xu et al. (2020), as soon as the independence assumption is not satisfied. Our method

provides a practical and flexible tool for analysing the lowest crop yields by considering the

effects of multiple factors whose dimensionality is moderately high.
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Second, we have proposed an extension of the Extreme-PLS model in the Bayesian frame-

work in Chapter 3. We retain the Extreme-PLS framework to identify the direction of di-

mension reduction β by introducing some prior information on it. Our method proposed a

Bayesian formulation to compute the posterior distribution of β. We adapted the von Mises-

Fisher distribution over the unit sphere (Mardia and Jupp, 2009) to hyperballs for use in

characterising the likelihood function of X given Y and β. Then we derived the posterior dis-

tribution of β from the likelihood function and a desired prior distribution. We have chosen

three possible prior distributions, namely conjugate, hierarchical and sparse. The maximum

a posteriori estimator of β is explicit for the conjugate and sparse priors, while it is not for the

hierarchical prior. Numerical examples showed that the proposed method is efficient when

the sample size is very small. It allowed us to integrate some relevant prior information,

provided by experts in the field of agricultural economics, on the French farm income data.

Perspectives

These two new lines of research offer many perspectives in the theoretical and application

frameworks. Regarding the first contribution, we could estimate classical risk indicators,

such as the conditional tail index and extreme conditional quantiles, thanks to the dimension

reduction that overcome the curse of dimensionality. Working on the pair (β̂tX,Y ) should

yield improved results for most estimators dealing with conditional extreme values. It would

then be very interesting to quantify the gain in terms of convergence rate. The Extreme-

PLS model can also be extended to general cases with γ ∈ R, i.e. expand to all domains of

attraction (Gumbel and Weibull). This extension would offer a wide range of statistical tools

for estimating risk measures in the presence of a high dimensional covariate X. For example,

we could refer to the results of Daouia et al. (2013), who generalise conditional extreme

value estimators for heavy-tailed distributions in any domain of attraction, to introduce the

dimension reduction space proposed by our model.

In the multi-index framework, the selection of the number of the most relevant directions

is of great importance and deserves further investigation. Another direction to consider is

the optimal choice of the threshold y, which is a crucial point. The choice of an optimal

threshold boils down to choosing the number of exceedances k. This choice is a difficult task

in practice. However, it is has been discussed in several articles in the literature (Guillou and

Hall, 2001; Caeiro and Gomes, 2015; Lee et al., 2015).

Within this model, one can also investigate the extreme behaviour of X, i.e. study how the

extreme values of Y may depend on the extreme values of X. For example, low yields are often

linked to a series of simultaneous extreme events, such as floods and drought accompanied

by a price spike in the financial markets. Thus, identifying the joint extreme directions in the
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data is crucial for assessing risk. We could rely on the recent work of Meyer and Wintenberger

(2020) who deals with tail dependence in a high dimensional context by identifying the most

relevant extreme directions.

For the second contribution, we are currently considering the computation of the posterior

distribution associated with hierarchical prior of β directly by importance sampling or Monte

Carlo Markov chain (Besag, 2001; Gamerman and Lopes, 2006; Hastings, 1970; Metropolis

et al., 1953). We are also considering introducing other priors such as an uninformative

distribution (Jeffreys, 1946) or other shrinkage priors such as the ridge or elastic-net (Van Erp

et al., 2019). As before, it would be interesting to estimate the extreme conditional quantiles

and to investigate how introducing the prior information on the dimension reduction direction

could sharpen the estimators on small samples. Another important issue to be addressed is the

optimal choice of both the concentration parameter of the prior distribution and the number

of exceedances. This optimal dual choice is a challenging task in practice and deserves to be

investigated (Rootzén and Tajvidi, 2006).

From a practical point of view, we can apply these two models in the analysis of the high-

est/lowest crop yields depending on other financial and weather variables, in other production

sectors such as wheat, maize, wine and over additional years. One could select a wide range

of potential factors from the large database of French farm income (FADN) presented in Sec-

tion 1.1.5. In our application, the developed models allow us to understand and determine

the factors that generally influence the smallest crop yields of wheat. We can enhance this

application and perform more refined analyses. As an example, in view of climate disruption

and its impact on reducing agricultural production, a fruitful line of work would be to col-

lect enough climate data to design a model of the influence of weather parameters on small

yields. Using monthly weather indicators to analyse wheat yields, particularly in the fall and

winter, could be useful. Another example is to study the effect of chemical input use, such

as fertilisers and pesticides, on high yields. Such analysis is important to assess the trade-off

between high yields and the potential environmental damage resulting from farmers excessive

use of these inputs. This analysis would have direct implications for strengthening the insur-

ance system by providing better coverage. Another important application is to quantify the

right tail of cereal prices distributions as function of other variables to tackle the global food

security issue effectively. Finally, it would also be interesting to apply these two approaches

to a new dataset and to estimate risk measures in other application fields, such as actuarial

and financial sciences.
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Dependence modelling in the design of revenue insurance

Summary of contributions

In the context of the design of a revenue insurance scheme, we have first focused, in Chap-

ter 4, on evaluating and modelling the risks of wheat, maize and wine production in France

over the period 2014-2016. The growing need to model the joint distribution of yield and

price risk and their dependence structure motivated this study to use the copula approach.

We used various parametric copula models (Normal, Student, Gumbel, Clayton and Frank)

and then performed goodness-of-fit tests to select the most suitable one. Frank Copula seems

to describe well the dependence between yields and prices, which is relatively high. Then, we

analysed the impact of crop insurance purchase and weather indicators, such as temperature

and drought, on the correlation between prices and yields using conditional copulas. This

correlation is more volatile for wheat, for both insured and uninsured, while it is stable and

always negative for wine. While wine prices are determined locally and closely follow yields

evolution, global markets drive wheat prices. Therefore, we have shown that the existing

crop insurance contracts are more adapted to wine than cereals crops. It is also shown that

both cereal and wine production are significantly impacted by extreme weather conditions,

especially by the severe drought of 2016. Finally, the results highlight the importance of

developing revenue insurance policies in France to improve the hedging of cereal production.

Second, in Chapter 5, we have used Frank copula to characterise empirically the natural

hedge in the wheat, maize and wine sector from 2000 to 2017. Then, we studied the impact

of natural hedge on revenue variability, insurance premiums and claims. The results showed

that the natural hedge measure has a moderating effect on wine but not on wheat and maize.

Furthermore, it does not have a reducing impact on insurance participation for all crops.

This is due to the inefficiency of existing yield insurance policies that do not hedge prices and

therefore do not consider the consequent correlation. Finally, we analysed the natural hedge

effect on the value of the actuarially fair premium for pricing a revenue insurance contract.

The results indicated that revenue insurance is likely to reduce agricultural insurance premi-

ums in France. For example, at a 80% coverage, revenue insurance offers lower premiums,

such a decrease of about 13.9% for wheat, compared to an insurance policy that does not

take natural hedge into account.

Perspectives

The first contribution offers many insights, such as an overview of the development and

pricing of farm revenue insurance contracts. The latter would allow for better insurance
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coverage, especially for cereal producers. The study also provides an overview of developing

an income insurance scheme that covers agricultural costs in addition to prices and yields. The

analysis carried out could be extended to other years and by considering other explanatory

variables derived from weather (temperature, precipitation, drought at monthly scale) or

risk management tools (chemical inputs, technology used, insurance measures, etc.), using

the multivariate conditional copula. For example, one could analyse the effect of chemical

inputs use, such as fertilisers and pesticides, on the interaction between prices and yields

regarding the development of organic agriculture. This would provide a better understanding

of the income generation of organic farms. This analysis could be used to conduct more

in-depth studies on crop insurance policies, including small-scale and organic farmers. One

critical point about the data used here is that it is counted annually from a representative

sample of farms, which can be considered commercial in size. Therefore, small farms and

organic production are neglected as well as some farms that do not appear continuously in

the database. The FADN data represents the only opportunity we had at this stage, as the

data held by insurers is not freely available.

For the second contribution, our ongoing work aims at improving the design of revenue

insurance by pricing policies at the farm level. This is very important to overcome a potential

natural hedge overestimation issue and avoid insurance market failures. In the next steps, we

could improve the model by integrating other information that could potentially affect the

natural hedge, such as cultivated area, financial or weather indicators. We would also like

to improve marginal distribution fitting models using other parametric techniques and the

non-parametric kernel estimator. Fitting agricultural data with distributions that adequately

represent the tails of the low yield and high price distributions deserves to be investigated.

Another research topic to be pursued is to model the correlation in the tails of price and yield

distributions using extreme copulas and study their effects on revenue insurance pricing.
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Embrechts, P., Klüppelberg, C., and Mikosch, T. (2013). Modelling extremal events: for

insurance and finance, volume 33. Springer Science & Business Media. 4, 41, 53

Embrechts, P., McNeil, A., and Straumann, D. (2002). Correlation and dependence in risk

management: properties and pitfalls. Risk Management: Value at Risk and Beyond, 1:176–

223. 3, 16, 170

Emura, T. and Michimae, H. (2017). A copula-based inference to piecewise exponential mod-

els under dependent censoring, with application to time to metamorphosis of salamander

larvae. Environmental and Ecological Statistics, 24(1):151–173. 22

Engelund, S. and Rackwitz, R. (1992). On predictive distribution functions for the three

asymptotic extreme value distributions. Structural Safety, 11(3-4):255–258. 59



BIBLIOGRAPHY 204

Enjolras, G. and Sentis, P. (2011). Crop insurance policies and purchases in France. Agri-

cultural Economics, 42(4):475–486. 14

Falk, M. (1995). Some best parameter estimates for distributions with finite endpoint. Statis-

tics: A Journal of Theoretical and Applied Statistics, 27(1-2):115–125. 47

Feng, S., Patton, M., Binfield, J., and Davis, J. (2014). Uneven natural hedge effects in the

wheat sector and implications for risk management tools. EuroChoices, 13(3):19–25. 170

Ferrez, J., Davison, A., and Rebetez, M. (2011). Extreme temperature analysis under forest

cover compared to an open field. Agricultural and Forest Meteorology, 151(7):992–1001. 55

Finger, R. (2012). Effects of crop acreage and aggregation level on price-yield correlations.

Agricultural Finance Review, 72(3):436–455. 2, 170, 171, 173, 174, 180

Finger, R. and El Benni, N. (2014). Alternative specifications of reference income levels in

the income stabilization tool. In Agricultural Cooperative Management and Policy, pages

65–85. Springer. 14

Finocchio, R. and Esposti, R. (2008). Determinants of farm diversification and interaction

with the CAP. An application to FADN of Marche region (Italy). In 2008 International

Congress. European Association of Agricultural Economists. 13

Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of

the largest or smallest member of a sample. In Mathematical proceedings of the Cambridge

philosophical society, volume 24, pages 180–190. Cambridge University Press. 39, 41

Foudi, S. and Erdlenbruch, K. (2012). The role of irrigation in farmers’ risk management

strategies in France. European Review of Agricultural Economics, 39(3):439–457. 13

Fousekis, P. and Grigoriadis, V. (2017). Joint price dynamics of quality differentiated com-

modities: copula evidence from coffee varieties. European Review of Agricultural Eco-

nomics, 44(2):337–358. 3

Frahm, G., Junker, M., and Szimayer, A. (2003). Elliptical copulas: applicability and limi-

tations. Statistics & Probability Letters, 63(3):275–286. 25, 173

Frank, L. E. and Friedman, J. H. (1993). A statistical view of some chemometrics regression

tools. Technometrics, 35(2):109–135. 31, 65
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