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Titre: La physique des micro-états de trous noirs: quelle destinée pour l’horizon?
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Résumé: Les trous noirs sont des objets astro-
physiques qui se forment par l’effondrement grav-
itationnel d’étoiles supermassives. Elles peuvent
être décrites par des solutions de la Relativité
Générale (RG) : l’horizon indique l’endroit à par-
tir duquel rien ne peut échapper. Les considéra-
tions de la mécanique statistique montrent que le
trou noir a une entropie proportionnelle à l’aire de
son horizon. Cependant, la RG n’a pas assez de
degrés de liberté pour décrire les micro-états qui
représentent l’entropie du trou noir. La théorie des
cordes fournit une description des micro-états en
tant qu’états liés de branes à faible couplage de
cordes.

À fort couplage, l’hypothèse des Fuzzballs

s’attend à ce qu’individuellement, les micro-états
de trou noir diffèrent de la solution de trou noir
à l’échelle de l’horizon. Cette hypothèse introduit
un changement de paradigme : puisque l’on ne de-
vrait plus se fier à notre intuition issue de la RG,
les micro-états de trous noirs pourraient ne pas
avoir d’horizon. Motivée par la construction en
Supergravité de solutions similaires aux trous noirs
et sans horizon – les géométries de micro-états –
, l’hypothèse de Fuzzball a également l’avantage
de résoudre, presque par définition, le paradoxe de
l’information de trou noir et le problème de la sin-
gularité de trou noir. Cette thèse vise à étudier
plusieurs aspects de l’hypothèse des Fuzzballs et
des géométries de micro-états.

Title: The physics of black-hole microstates: what is the fate of the horizon?
Keywords: String Theory, Black holes, Supergravity, Fuzzball paradigm, Microstate geometries

Abstract: Black holes are astrophysical objects
formed from the gravitational collapse of super-
massive stars. They can be described by solutions
in General Relativity (GR): the horizon indicates
the locus from which nothing can escape. Consid-
erations from Statistical Mechanics show that the
black hole has an entropy proportional to the area
of its horizon. However, GR does not have enough
degrees of freedom to describe the microstates ac-
counting for the black-hole entropy. String Theory
on the other hand, provides a description of the
microstates as brane bound-states at weak string
(and gravitational) coupling.

At strong gravitational coupling, the Fuzzball
hypothesis expects the individual black-hole mi-
crostates to differ from the black-hole solution at
the scale of the horizon. It introduces a paradigm
shift: Because one should not rely on its intuition
from GR, black-hole microstates may not have a
horizon. Motivated by the construction of black-
hole-like horizonless solutions in Supergravity – the
microstate geometries –, the Fuzzball hypothesis

has also the advantage to solve, almost by defini-
tion, the black-hole information paradox and the
problem of the black-hole singularity.

This thesis aims to study several aspects of the
Fuzzball hypothesis and of microstates geometries.
In particular we will:
1) introduce the Fuzzball hypothesis and some of
its main challenges.
2) investigate the notion of distance on the space
of solutions of a class of microstate geometries –
the bubbling solutions.
3) analyse a family of non-supersymmetric ex-
tremal black holes and their horizonless microstate
geometries in four dimensions, and compute the
gravitational multipole structure.
4) compute the tidal effects on a string following
infalling null geodesics in a family of black hole
microstate geometries – the superstata.
5) construct solutions with zero horizon area that
have the same charges as a three-charge F1-NS5-P
Type-IIA black hole and preserve the black hole’s
spherical symmetry.
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Chapter 0

Introduction en Français

0.1 L’énigme des trous noirs
Les trous noirs sont des objets astrophysiques formés à partir de l’effondrement gravitationnel
d’étoiles supermassives. Elles peuvent être décrites par des solutions en Relativité Générale :
l’horizon indique le lieu d’où rien ne peut s’échapper.

Dans les années 1970, la découverte que le trou noir est un objet statistique a été une percée
qui allait changer dans les décennies suivantes notre compréhension de la Relativité Générale et
de la mécanique quantique. En effet, le trou noir, en tant que solution de la Relativité Générale,
suit des lois thermodynamiques [1,2]. On peut donc lui associer une température et une entropie
thermodynamique (l’entropie de Bekenstein-Hawking), cette dernière étant proportionnelle à la
surface de l’horizon, AH [3, 4]:

SBekenstein−Hawking =
AH
4GN

, (0.1.1)

où GN est la constante de Newton, et où nous prenons des unités comme c = ~ = kB = 1.
La température du trou noir vient du fait que lorsque l’on applique la théorie quantique des

champs sur un fond de trou noir, le calcul de Hawking [5] montre que le trou noir est un corps
noir qui radie à une certaine température T . Ainsi, l’analogie avec les lois thermodynamiques ne
peut donc pas être considérée comme une simple coïncidence : Le trou noir a (physiquement) une
température ; c’est d’ailleurs une machine thermique, caractérisée notamment par une entropie,
et elle satisfait aux lois de la thermodynamique comme tout autre système thermodynamique !

En tant qu’objet statistique et thermique, le trou noir soulève de nombreuses questions.
Énumérons les trois principales énigmes concernant les propriétés de gravité quantique des trous
noirs.

1. L’origine microscopique de l’entropie du trou noir.

Quels sont les degrés de liberté microscopiques qui caractérisent les micro-états
individuels des trous noirs? Et à quoi ressemblent les micro-états responsables de
l’entropie du trou noir?

(0.1.2)
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2. Le paradoxe de l’information du trou noir.

L’entropie du rayonnement sortant suit-elle la courbe de Page, comme le préconise
l’unitarité ? Si oui, quel processus induit ce phénomène ? (0.1.3)

3. La singularité du trou noir.

Quels sont les degrés de liberté permettant de résoudre la singularité du trou noir
? Et si ces degrés de liberté se trouvent au voisinage de la singularité, comment
l’horizon – qui se situe dans son passé causal – est-il au courant de ces degrés de
liberté, comme le suggère la formule de Bekenstein-Hawking (0.1.1)?

(0.1.4)

0.2 Trous noirs en théorie des cordes, fuzzballs et géométries
de micro-états

0.2.1 La réponse de la théorie des cordes à la question de l’entropie

En tant que théorie de la gravité quantique, la théorie des cordes devrait fournir une réponse
aux énigmes des trous noirs de la section précédente.

L’idée de base de la théorie des cordes est que les particules élémentaires (comme l’électron,
le photon, les quarks, etc.), que nous considérons généralement comme ponctuelles, sont en fait
différents modes de vibration d’un objet fondamental étendu : la corde. Un avantage d’avoir
des cordes au lieu de particules ponctuelles est que toutes les divergences UV possibles dans
les amplitudes de diffusion en physique des particules sont automatiquement apprivoisées. En
particulier, les divergences impliquant le graviton sont résolues par l’invariance conforme de la
feuille d’univers (world-sheet) de la corde, ce qui fait de la théorie des cordes une théorie UV-
complète de la gravité quantique.

Les cordes en théorie des cordes peuvent être fermées ou ouvertes. Les cordes fermées et les
cordes ouvertes génèrent différents spectres de champs. L’oscillation des cordes fermées génère
notamment le graviton, alors que les cordes ouvertes génèrent par exemple des champs vectoriels
dans leur spectre sans masse. Les cordes fermées sont des boucles de cordes se terminant sur elles-
mêmes, alors que les extrémités des cordes ouvertes se terminent sur des solutions solitoniques
de la théorie des cordes : les D-branes.

La théorie des cordes est une théorie perturbative de la gravité quantique, dependant en deux
paramètres : la longueur de la corde, ls, et le couplage de cordes, gs.

La longueur de la corde, ls, vient du fait que la corde fondamentale a une tension, τ , qui
peut être exprimée en termes de longueur, la longueur de la corde :

τ ≡ 1

2πα′
=

1

l2s
. (0.2.1)

La longueur de la corde, ls, définit l’énergie à laquelle on mesurerait les modes harmoniques
supérieurs de la corde : Ms ∝ 1

ls
. En revanche, si l’on sonde les cordes à une énergie E �

Ms, on ne sonderait que les modes sans masse de la corde et on ne verrait pas la partie du
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Fig. 2.23 In the limit R4 ! VT 4 we can largely ignore excitation on the torus and the physics is
effectively described by an open string stretched between the D1- and D-5 branes which wrap the
circle. The open string also carries momentum along the S1

the momentum in the open string sector because of fractional momentum quantization
described on the next page.

To arrive at this picture of the black whole we have to go to weak coupling by
tuning gs → 0 such that gs N # 1; in this regime the D-branes are heavy static
objects (their mass goes as N/gs) but they decouple from gravity and are entirely
described weakly interacting open strings ending on them. Moreover because we are
interested in supersymmetric configurations (as our black hole is supersymmetric)
it suffices to restrict to the ground states of the open strings as excited modes break
more supersymmetry (recall from the exercises above that supersymmetry tends to
require minimal energy). Thus the open strings essentially become point particles
connecting two coincident branes. Moreover, at very small gs N the open strings are
essentially free so their wavefunctions are momentum eigenstates on the S1

ψ(x5) =
∑

n

e−
2πn

R x5 . (2.133)

The wave function of a particle normally has to be single valued as we go around
a circle but, because these particles carry additional labels, corresponding to the
D-brane they’re ending on, this is no longer the case. For instance a string ending
on a D1 that wraps twice around the circle carries a coordinate, x (1), its location on
the D1 and this coordinate itself is not single-valued on the S1 (i.e. the coordinate
length is 4π). This lack of single-valuedness may be familiar from fermions which
need not be periodic on a circle because they carry internal (spinorial) indices. Here
the additional internal data is just the coordinate on the brane the string endpoint is
attached to.

Let us now consider a string with two endpoints going around the circle several
times. Take for example a string stretched between a D1 brane that wraps the circle
twice, and a D5 brane that wrap the circle three times.18 If we unwrap the circle, this
configuration looks like Fig. 2.23.

The open string wave function depends on the string coordinate x5 and has two
labels, coordinates on the D1-branes and D5-branes (Fig. 2.24):

18 Note that for “2 D-branes” on a compact circle, we have either 2 distinct D-branes or a D-brane
wrapping the circle 2 times.

Figure 1 – Représentation de cordes ouvertes s’étendant entre une brane D1 et une brane
D5 dans le cercle y, S1. La taille du tore T 4 est supposé paramétriquement plus petit que
celui du cercle S1

y , donc la physique est décrite par une corde D1-D5 effective dans S1
y .

L’image est issue de [6].

spectre correspondant aux modes massifs de la corde. Dans cette limite, on ne peut pas exciter
d’oscillations sur les cordes et les cordes se comportent comme des particules ponctuelles.

Le couplage de la corde, gs, contrôle l’expansion en genre de surface de la feuille d’univers
de la corde. A basse énérgie, E � Ms, le nombre de trous dans ces diagrammes correspond au
nombre de boucles dans les diagrammes de Feynman. De plus, le couplage de cordes définit la
constante de Newton, GN , en D dimensions:

GN ∝ g2
s l
D−2
s . (0.2.2)

La réponse que fournit la théorie des cordes sur la première énigme des trous noirs est la
suivante : En variant la constante de couplage des cordes gs, on peut interpoler entre certaines
configurations particulières de D-brane définies à gsN � 1, et une solution de trou noir en
supergravité définie à gsN � 1. De plus, dans les configurations supersymétriques, en utilisant
des théorèmes d’indice, on peut montrer que le nombre de micro-états est le même dans les
deux régimes. Par conséquent, on peut apprendre beaucoup de choses sur les trous noirs (en
supergravité) à partir de la physique des cordes ouvertes des D-branes.

En effet, l’entropie du trou noir est principalement donné par le nombre de possibilités pour
les cordes ouvertes de s’étendre entre une D1-brane qui entoure N1 fois le cercle et une brane D5
qui entoure N5 fois, pour induire la charge de quantité de mouvement NP . Voir Figure 1.

0.2.2 Le paradigme des Fuzzballs

Nous savons maintenant comment décrire les micro-états dans le régime des cordes ouvertes.
Cependant, le trou noir est défini comme une solution de supergravité, et le paradoxe de
l’information est pertinent dans le régime de validité de la supergravité. Nous pouvons main-
tenant reformuler notre question (0.1.2), que nous avons auparavant listée dans la section Section
1, sous la forme suivante:

Peut-on décrire les micro-états dans le régime de paramètres où la solution du
trou noir est définie (i.e. dans le régime gsN � 1)? dans quelle mesure et en
quoi diffèrent-ils du trou noir?

(0.2.3)
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Une hypothèse formulée pour répondre à cette question est la suivante:

L’hypothèse des Fuzzballs [7–11]
A gsN � 1, les micro-états individuels des trous noirs diffèrent de la solution classique
des trous noirs à l’échelle de l’horizon ; elles n’ont d’ailleurs pas d’horizon et pas de
singularités. De tels micro-états sans horizon sont appelés “Fuzzballs”.

La différence impliquée ici entre les micro-états et le trou noir est d’ordre de O(1), et non pas
de l’ordre de O(e−S) ni de O(e−S/2). Cela doit être mis en contraste avec le point de vue naïf,
où les micro-états ne diffèreraient de la solution du trou noir qu’au voisinage de la singularité.

L’hypothèse ci-dessus introduit un changement de paradigme. Parce que les micro-états et la
solution classique du trou noir diffèrent d’une quantité non négligeable à l’échelle de l’horizon,
on ne peut plus se fier à l’intuition de la Relativité Générale. En particulier, les micro-états de
trous noirs peuvent ne pas avoir d’horizon, même si la relativité générale elle-même reste une
bonne approximation à l’échelle de l’horizon.

Du point de vue de l’hypothèse des fuzzballs, les micro-états individuels n’ont pas d’entropie;
par conséquent, ils n’ont pas d’horizon dans le régime de couplage fort (gsN � 1).

De plus, cela n’a pas de sens de parler de l’intérieur du trou noir pour les micro-états du trou
noir, car l’horizon est remplacé par une autre phase de la matière qui supporte l’effondrement
gravitationnel qui conduirait à un trou noir.

Nous avons introduit l’hypothèse Fuzzball comme une réponse naturelle à la question sur
les micro-états (0.1.2): Les micro-états de trou noir sont des solutions sans horizon qui sont
similaires à la solution de trou noir dans la région asymptotique, mais diffèrent de la solution de
trou noir à l’échelle de l’horizon. Ainsi, la réponse à la question de la singularité du trou noir
(0.1.4) suit immédiatement: L’expression “résoudre la singularité du trou noir” n’a pas de sens,
car les micro-états du trou noir n’ont pas de singularité, et les degrés de liberté distinguant les
micro-états se situent à l’échelle de l’horizon.

À propos du paradoxe de l’information (0.1.3), l’absence d’horizon pour les micro-états des
trous noirs change complètement le problème. La création de paires de particules de Hawking ne
se produit pas avec une géométrie sans horizon. Au lieu de cela, le rayonnement du corps noir d’un
fuzzball (non extrême) se produit comme celui d’une étoile ou d’un morceau de charbon [12]. Par
conséquent, le processus d’évaporation est toujours unitaire et aucun paradoxe de l’information
ne se produit. Le changement de paradigme introduit par l’hypothèse Fuzzball est de comprendre
que la réponse à la question (0.1.2) peut impliquer que les questions (0.1.3) et (0.1.4) sont mal
définies.

Afin de soutenir l’hypothèse des Fuzzballs, de nombreuses solutions sans horizon ont été
trouvées dans la théorie des cordes. En particulier, le Programme des Geometries de Micro-
états [13,14] s’efforce de trouver des solutions sans horizon à la supergravité ; de telles solutions
sont appelées géométries de micro-états. Voir Figure 2.

0.2.3 Contributions de ce manuscrit

Dans le Chapitre 1, nous présentons une introduction en anglais plus complète du sujet.
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Figure 2 – Image schématique d’un trou noir classique (à gauche) et d’une géométrie de
micro-état (à droite). Du point de vue de l’observateur asymptotique, au lieu de l’horizon
des événements situé au fond d’un cou de longueur infinie, une géométrie de micro-états le
remplacerait par une “capsule” lisse située au fond d’un cou de longueur finie. Les images
sont issues de [15].

Dans les Chapitres 2 et 3, nous étudions la notion de distance sur l’espace des solutions d’une
classe de géométries de micro-états – les solutions à bulles. D’une part, l’espace des modules
des géométries de micro-états est considéré comme un espace de phase classique sur lequel la
quantification géométrique donne le nombre de micro-états quantiques du trou noir. D’autre part,
l’espace des modules des compactifications de Calabi-Yau est un espace de théories de champ
effectives dont le domaine de validité peut être délimité par des notions de Swampland.

En nous appuyant sur [16], nous étudions la connexion entre ces deux points de vue, dans
la région de l’espace des modules où les solutions multicentriques dégénèrent dans le trou noir
– la limite d’échelle. Nous montrons, à partir de la structure Kähler de l’espace des phases de
la solution et en utilisant le carquois mécanique quantique, que bien que la composante métrique
dans l’espace des modules explose près de la limite d’échelle, la distance à la limite d’échelle est
étonnamment finie.

En outre, en nous appuyant sur [17], nous confirmons ces résultats en calculant une distance
de DeWitt appliquée à la limite d’échelle. Cependant, à partir d’une autre distance de DeWitt
qui est utilisée dans le cadre du programme Swampland, la distance de la limite d’échelle est
infinie. Cette distance infinie semble naturelle du point de vue de Swampland, car dans la limite
d’échelle, une tour infinie de modes de Kaluza-Klein devient sans masse. Nous commentons les
implications physiques possibles de cette inadéquation.

Dans le Chapitre 4, nous étudions les moments multipolaires gravitationnels qui sont une
classe d’observables permettant de distinguer les géométries de micro-états avec des trous noirs
de la relativité générale. En nous appuyant sur [18], nous analysons une famille de trous noirs
extrémaux non-supersymétriques ainsi que leurs géométries de micro-états sans horizon en quatre
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dimensions, qui fournissent des prototypes intéressants pour étudier les déviations par rapport
aux solutions de Kerr causées par la nouvelle physique à l’échelle de l’horizon. Nous inventons
ensuite une méthode pour calculer analytiquement les multipôles gravitationnels d’une nouvelle
famille de trous noirs rotatifs non supersymétriques à quatre charges et de leurs géométries de
micro-états. Nous montrons en outre que ces trous noirs que nous avons construits à partir
du modèle supergravité STU peuvent avoir la même masse, les mêmes charges et le même spin
qu’un trou noir de Kerr-Newman presque neutre, mais avec une tour très différente de multipôles
gravitationnels. Par conséquent, ce travail met en lumière d’éventuels observables pouvant être
détectés dans un futur proche par le détecteur eLISA.

Dans le Chapitre 5, nous calculons les effets de marée sur une corde suite à sa chute selon une
géodésique nulle dans une famille de géométries de micro-états de trous noirs – les superstata.
En effet, une différence notable entre les corrélateurs holographiques dans un fond de trou noir
et ceux dans une géométrie de micro-états est que ces derniers affichent des échos gravitationnels
dus à la présence de la capsule lisse à la place de l’horizon. Cependant, comme le montre la
littérature antérieure, les corrections de cordes à ces corrélateurs peuvent être importantes, car
les forces de marée excitent les modes massifs d’une corde sans masse tombant dans la géométrie
depuis l’infini, interdisant à la sonde de revenir à l’infini.

Une question intrigante est de comprendre quel est le dual holographique de ces forces de
marée ; la première étape pour résoudre cette énigme est de caractériser leurs effets sur la corde.
Les résultats de la littérature antérieure suggèrent qu’il n’y a pas de forces de marée le long des
directions toroïdales. Cependant, en nous appuyant sur [19], nous montrons qu’il s’agissait d’un
artefact d’une géodésique particulière. Sur une géodésique plus générique, nous prouvons, en
utilisant les limites de Penrose, que la corde subit des contraintes de marée le long de toutes les
directions possibles. De plus, nous montrons que les effets de marée alternent entre compression
et étirement, alors que dans la littérature antérieure, les effets étaient soit l’un soit l’autre.

Dans le Chapitre 6, en nous appuyant sur [20], nous mettons en évidence, en utilisant des
techniques de génération de dualité de cordes, des nouveaux degrés de liberté qui empêchent la
formation d’un horizon macroscopique dans la limite où les superstrates semblent dégénérer en
trous noirs. Pour ce faire, nous construisons des solutions avec une aire d’horizon nulle qui
ont les mêmes charges qu’un trou noir à trois charges F1-NS5-P de Type-IIA, et qui préservent
en plus la symétrie sphérique du trou noir. Les solutions ont des degrés de liberté qui corre-
spondent aux modes locaux de densité de branes le long du cercle commun F1-NS5, et sont des
porteurs d’impulsion qui n’ont pas d’extension dans les directions spatiales non compactes. Nous
soutenons que ces solutions doivent être interprétées comme la limite à long cou des superstrates.
L’existence de ces géométries indique donc qu’un horizon de taille finie n’apparaît pas même dans
les coins singuliers de l’espace des modules des géométries de micro-états à trois charges.
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Chapter 1

Introduction

1.1 Quantum gravity puzzles about black holes
Black holes are astrophysical objects formed from the gravitational collapse of supermassive
stars. They can be described by solutions in General Relativity: the horizon indicates the locus
from which nothing can escape.

In the 1970s, the discovery that the black hole is a statistical object was a breakthrough that
would change in the following decades our understanding of General Relativity and Quantum
Mechanics. Indeed, the black hole, as a solution of General Relativity, follows thermodynamic
laws [1,2]. One can therefore associate to it a temperature and a thermodynamical entropy (the
Bekenstein-Hawking entropy), the latter being proportional to the area of the horizon, AH [3,4]:

SBekenstein−Hawking =
AH
4GN

, (1.1.1)

where GN is Newton’s constant, and where we take units such that c = ~ = kB = 1.
Relating the horizon area with an entropy comes from the following fact. Take a stationary

black hole of mass M , electric charge Q, and angular momentum J . Besides, the black hole
rotates with angular velocity, ΩH , and charged up to an electric potential, ΦH . If some external
work – like someone from outside the black hole sending light rays or matter into the black hole
with a certain angle – forces a small change, (δM, δQ, δJ), in the black hole mass, charge and
angular momentum, then the changes must verify the constraint [4]

dM =
κ

8πGN
dAH + ΩHdJ + ΦHdQ , (1.1.2)

where the constant κ is the surface gravity. By associating a temperature, T and an entropy, S,
as

T = α
κ

8π
, S =

AH
α

, (1.1.3)

both defined up to some numerical factor, α, the relation (1.1.2) is rewritten as the first thermo-
dynamic law:

dE = TdS + +ΩHdJ + ΦHdQ . (1.1.4)

This relation suggests that the black hole behaves as a thermal machine.
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Applying quantum field theory on a black-hole background, Hawking’s calculation [5] found
that the black hole is a black body that radiates at a temperature of

T =
~κ
2π

, (1.1.5)

incidentally fixing the constant α in the temperature (1.1.3) and in the Bekenstein-Hawking
entropy (1.1.1). (We have restored Planck’s constant, ~.) Therefore, the analogy with the
thermodynamic laws cannot be considered as a mere coincidence: The black hole has (physically)
a temperature; it is besides a thermal machine, characterised in particular by an entropy, and it
satisfies the laws of thermodynamics like any other thermodynamic systems!

Before going further, one should stress that the Bekenstein-Hawking entropy (1.1.1) can be
generalised to take into account the matter and gravitons outside of the black hole:

Sgen =
AH

4~GN
+ Soutside . (1.1.6)

Strictly speaking, in presence of matter and gravitons outside of the black hole, the quantity
obeying the second law of thermodynamics is in fact the generalised entropy, Sgen, and not
simply the Bekenstein-Hawking entropy [21]:

∆Sgen ≥ 0 . (1.1.7)

As a statistical and thermal object, the black hole raises numerous questions. Let us enu-
merate the three main puzzles about the quantum-gravity properties of black holes.

1. The microscopic origin of the black-hole entropy.
The inequality (1.1.7) means that the generalised entropy (1.1.6) is the entropy defined

in 19th-century thermodynamics, or coarse-grained entropy. However, from late 19th-century
thermodynamics, the coarse-grain entropy of a gas of molecules for instance also provides a
measure of the total number of degrees of freedom in a given system:

Scoarse−grained = kB log Ω , (1.1.8)

where Ω is the number of microstates – microscopic configurations of the molecules – sharing the
same thermodynamic properties with the gas.

Similarly, one can wonder whether the Bekenstein-Hawking entropy of the black hole is given
by the number of black-hole microstates having the same properties as the black hole: the mass,
M , charges, Q, and angular momentum, J – the unique quantities that can define the black-hole
solution in General Relativity according to Uniqueness theorems. Crucially, if the answer is yes,
then one needs to answer the following intriguing questions:

What are the microscopic degrees of freedom that characterise the individual black-
hole microstates? And what do the microstates accounting for the black-hole en-
tropy look like?

(1.1.9)
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Figure 1.1 – Schematic behaviour of the evolution in time of the entanglement entropy of
the outgoing radiation, Srad. In green, Hawking’s calculation predicts Srad grows monoton-
ically in time, as the black hole evaporates. In orange, the Bekenstein-Hawking entropy
decreases in time, altogether with the area of the black hole. After the Page time, where
the two curves cross, it is not possible for all of the outside radiation to be entangled with
degrees of freedom inside of the black hole, as the number of those degrees of freedom is
bounded from above by eSBekenstein-Hawking . Therefore, if the evaporation process is unitarity,
one expects the entropy of the radiation, Srad, to follow the Page curve, drawn in purple.
The figure is from [24].

2. The black-hole information paradox.
The black hole’s black-body radiation at the Hawking temperature (1.1.5) forces it to lose

energy (and mass) continuously. Eventually, the black hole evaporates (almost) completely – at
least up to a point where the semi-classical approximation breaks down.

If the black hole was simply a star or a piece of coal, there would be no issue. However, the
black hole has a horizon. From the perspective of General Relativity, there is nothing special
happening at the horizon: the Ricci scalar is constant, and there is no matter there, only the
vacuum of quantum field theory. As such, in Hawking’s calculation [22, 23], the black hole’s
black-body radiation comes from the creation of a pair of photon modes across the black hole’s
horizon. While the photon outside of the horizon – these photons constitute the black-body
radiation – escapes towards infinity, the photon inside the horizon falls towards the black-hole
singularity. Crucially, such a pair of modes – the so-called Hawking pairs – are entangled.

Now, one can look at the entanglement entropy (or the so-called fine-grained entropy, or
von Neuman entropy) of the outgoing radiation, Srad. See Figure 1.1. We assume the black
hole has been collapsed from a pure state. Because the outgoing radiation is that of a black
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Figure 1.2 – Penrose diagram of a classical Schwarzschild black hole in flat space. From
General Relativity, any matter crossing the horizon reaches the singularity in a (proper)
time of the scale ∼ M , i.e. the time for light to cross the scale of the horizon. (It
corresponds to ∼ 10−5 seconds for a solar-mass black hole.) Therefore, it seems that any
infalling particle reaches the “end of time” at the singularity. The figure is from [6].

body, the entropy contribution of each photon add up: From Hawking’s calculation, the entropy
monotonically increases with each photon emitted, until the black hole evaporated completely.
However, if the evaporation process is unitary, then the entanglement entropy of the system
{outgoing radiation + black hole} – that is to say the whole universe – is vanishing. Therefore,
the entanglement entropy of the outgoing radiation is equal to that of the black hole: Srad =

Sblack hole. But the black hole’s entanglement entropy is limited by the number of degrees of
freedom of the black hole: Sblack hole cannot exceed the coarse-grained entropy of the black-hole,
SBekenstein-Hawking. Therefore,

Srad ≤ SBekenstein-Hawking . (1.1.10)

As the black hole evaporates, its horizon area and Bekenstein-Hawking entropy decrease – at
least as long as the black hole does not reach Planck-mass scale. It follows that the entropy
of the radiation cannot increase indefinitely until the end of the Hawking process; this is in
contradiction with Hawking’s calculation. Instead, the entropy of the radiation should decrease
after some time, called the Page time, and follow the Page curve [25, 26] (see Fig. 1.1).

This paradox leads to the second set of questions, if one assumes that the evaporation process
is unitary:

Is the entropy of the outgoing radiation following the Page curve, as advocated by
unitarity? If yes, what process makes it happen? (1.1.11)

3. The black-hole singularity.
From General Relativity’s perspective, the black-hole solution is a good description up until

the neighbourhood of the singularity, where the Ricci scalar diverges. In particular, nothing
special should happen at the horizon of large black holes, as the curvature at the horizon is
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proportional to M−2, where M is the mass of the black hole. Besides, the black hole’s Penrose
diagram shows that the singularity implies an end of time at its location. See Figure 1.2.
Therefore, the first expectation one generally makes is that General Relativity is fine up until
the neighbourhood of the singularity, and this singularity should be resolved by a theory of
quantum gravity. Furthermore, understanding the microscopic origin of the black-hole entropy
could tell about what degrees of freedom resolve the black-hole singularity. We end up in the
following questions:

What are the degrees of freedom resolving the black-hole singularity? And if those
degrees of freedom lie in the neighbourhood of the singularity, how does the horizon
– which lies in its causal past – knows about those degrees of freedom, as suggested
by the Bekenstein-Hawking formula (1.1.1)?

(1.1.12)

1.2 The black-hole entropy from String Theory

As a theory of quantum gravity, string theory is expected to provide an answer to the black hole
puzzles in the previous section.

The basic idea of string theory that the elementary particles (like the electron, the photon,
quarks, etc.), that we usually think of as point-like, are actually different modes of vibration of
a fundamental, extended object: the string. An advantage of having strings instead of point-
like particles is that all possible UV-divergences in scattering amplitudes in particle physics are
automatically tamed. In particular, the divergences involving the graviton are resolved by the
conformal invariance of the string’s worldsheet, which makes string theory a UV-complete theory
of quantum gravity.

The strings in string theory can be closed, or open. Closed strings and open strings generate
different spectra of fields. The oscillation of closed strings generate, in particular, the graviton,
whereas open strings generate for instance vector fields in their massless spectrum. The closed
strings are strings loops ending on themselves, whereas the extremities of the open strings end
on solitonic solutions of string theory: the D-branes.

String theory is perturbative theory of quantum gravity, in two parameters: the string length,
ls, and the string coupling, gs.

The string length, ls, comes from the fact that the fundamental string has a tension, τ , which
can be expressed in terms of a length, the string length:

τ ≡ 1

2πα′
=

1

l2s
. (1.2.1)

The string length, ls, sets the energy at which one would measure the higher harmonic modes
of the string: Ms ∝ 1

ls
. On the other hand, if one probes the strings at an energy E �Ms, one

would probe only the massless modes of the string and would not see the part of the spectrum
corresponding to higher modes of the string. In this limit, one cannot excite oscillators on the
strings and the strings behave as point-like particles.

The string coupling, gs, controls the genus expansion of string world-sheets. At low energies,
E �Ms, the holes strings diagrams become loops in Feynman diagrams. In addition, the string
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Fig. 2.22 By dialling the
coupling gs N (while keeping
gs small), we can interpret
the D1-D5-P system as a
black hole or as open strings
stretching between D-branes.
Since the torus volume goes as
VT 4 ∼ Q1/Q5 in string units,
it disappears from the picture
and we only retain the five-
dimensional geometry. Note
that the lower left region is
non-existent (since we always
have that gs N > gs )

interact with closed strings and gravity (and open string perturbation theory is valid
since gs N " 1). This tuning is depicted in Fig. 2.22.

Because the entropy is independent of the coupling, gs , we expect to be able
to reproduce the entropy from a counting of supersymmetric states in the weakly
coupled open string picture. Note that we take gs → 0 throughout this diagram so
closed strings and gravity are always semi-classical but the open string coupling
is gs N so if we also take gs N → 0 open strings become weakly coupled and
furthermore there is no interaction between the closed and open string sector (even
though closed string perturbation theory goes with powers of gs the couplings to N
D-branes goes as gs N so only in this limit do D-branes not source gravitons). Thus
the limit gs → 0 with gs N → 0 gives weakly coupled open strings on D-branes in
flat spacetime.

We summarize:

• If gs → 0, you always suppress closed string loop effects (quantum gravity effects)
• gs N tells you how much closed strings (and gravitons) feel the source. From an

open string perspective tuning gs N is turning open string loop effects on/off.
• If gS N " 1, you can count the number of states of these strings stretching between

the D-branes, because essentially we get a free (open string) theory (loop effects
suppressed). This is reminiscent of holography, where we have gs N " 1 giving
Yang-Mills weakly coupled, no gravity, and gs N $ 1 giving Yang-Mills strongly
coupled, or Ad S5 gravity.

Note that if the entropy did depend on gs , then none of this would make sense.
A toy model will follow with a rigourous proof that it is gs is independent.17

A question from the audience:

• Can we get the gravity solution from open string calculations? Yes you can, but it’s
a pain. Say we want to find the metric. You can expand the gravitational solution

17 Extrapolating from toy models is many a string theoriest’s idea of a mathematical proof of
complicated string theory effects.

N = constant 

Figure 1.3 – Domains of validity of different descriptions of branes in terms of gs and gsN .
Since N ≥ 1, the lower-left corner of the diagram (in blue) does not exist. In the upper-left
corner, where gs � 1 and gsN � 1, the D-branes are described by perturbative open-
string theory; they do not interact with gravitons, which are closed-string excitations. As
one tunes gs to larger values, keeping N fixed, we follow a linear line in the (gsN, gs) plane
with a 1/N slope, depicted here in green. If N is not large enough, the slope of the line is
large and one directly ends up in a quantum spacetime regime (gs � 1) that one does not
know how to describe. If N � 1, the constant-N line crosses a regime where gsN � 1,
but where gs � 1: this regime can be described by supergravity. The figure is adapted
from [6].

coupling sets the Newton’s constant, GN , in D dimensions:

GN ∝ g2
s l
D−2
s . (1.2.2)

The above equation can be understood as follows: A graviton propagator, in field theory, is pro-
portional to GN ; its interpretation in string diagram corresponds to a string exchange diagram,
which involve two factors of gs, one for emitting the closed string and one for absorbing it.

The end-points of opens strings are labeled by the branes on which the strings end. As such,
a stack of N D-branes introduces a degeneracy for one of the open string’s end points. Therefore,
the expansion parameter that controls the genus expansion of open-string world-sheets is gsN
instead of gs for closed strings.

The expansion parameter in perturbative open string theory, gsN , controls also the amplitude
for D-branes to exchange a graviton. In the regime where gsN � 1, the interaction between the
D-branes and closed strings is suppressed. Therefore, the D-brane dynamics are described by
open strings, and the D-branes do not produce a metric. One the other hand, the closed strings
(and graviton) do not feel the source (the D-branes). See Fig. 1.3.

As one increases gs, keeping N fixed, closed strings interact more and more with the open
strings ending on the D-branes, perturbing more and more the dynamics and transverse motion
of the branes, so that the support of the branes’ wavefunctions spread more and more over the
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transverse dimensions of the branes. As a result, one begins to lose the notion of the location of
each individual brane; at the same time, the branes begin to back-react gravitationally.

In the regime where gsN � 1, the open-string picture has broken down for a long time. But
in the regime where we have in addition gs � 1, the branes are can described by the theory
of closed strings, whose collective excitations create a geometry which satisfies the equations of
motions of supergravity.

Crucially, string theory’s point of view on the black-hole physics puzzles the following: By
dialing the string coupling constant gs, one can interpolate between some particular D-brane
configurations defined at gsN � 1 and some black hole solution in supergravity defined at
gsN � 1. Furthermore, in supersymmetric configurations, using index theorems, one can show
that the number of microstates is the same in both regimes. Therefore, one can learn a lot of
insights from black holes (in supergravity) from the open-string physics of D-branes.

1.2.1 The three-charge black hole in String Theory

For more concreteness, let us look at the D1-D5-P system. This is a brane configuration composed
of D1-branes, D5-branes, and momentum P, corresponding to gravitational waves moving in a
given direction in space. In the weak-coupling (gsN � 1) regime, start with a flat space-time of
topology R1,4 × S1 × T 4. Let us label the direction of the circle S1 by the space-like coordinate
y. We wrap the branes and the momentum in the configuration of Table 1.1.

t R4 S1
y T 4

D5 − · − −
D1 − · − ∼
P − · → ∼

Table 1.1 – Brane configuration of the D1-D5-P system. Here, we use the convention
where − indicates that the brane/string is extended in the given dimension(s), · indicates
that it is pointlike, and ∼ indicates that the brane is smeared in the given dimension(s).
The arrow → indicates that the gravitational wave P is moving in one of the directions
(left or right) of the circle, S1

y .

When the coupling constant gs is tuned to larger values so that gsN � 1, the configuration
of Table 1.1 sources a ten-dimensional metric (in the string frame) that depends only on the
coordinates of R4:

ds2 = − 2√
H1H5

[
dt2 + dy2 +

(
1

HP
− 1

)
(dy − dt)2

]
+
√
H1H5 ds

2
R4 + (H1H5)−1/2ds2

T 4 ,

(1.2.3)

where

H1,5,P = 1 +
Q1,5,P

r2
. (1.2.4)
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The supergravity charges can be expressed in terms of the number of branes and momentum
quanta:

Q1 =
gsα
′

v
N1 , Q5 = gsα

′N5 , QP =
(gs)

2α′

vρ2
y

NP , (1.2.5)

where v ≡ V4
(2π)4α′2 is the volume of the four-torus T 4 measured in units of 2πls and ρy ≡ Ry

ls
is

the radius of the y circle measured in units of ls.
What are the regime of validity of the supergravity solution (1.2.3)?
• First, we want to be in a regime where the string loop corrections are small: gs � 1.
• Second, we want the stringy α′ corrections to the geometry to be small. Thus, we require

the curvature invariants to be small everywhere in the geometry. This amounts to con-
strain the supergravity charges to be large: Q1,5,P � α′. In other words, the characteristic
radius, r1,5,P ≡

√
Q1,5,P , of each harmonic function appearing in the geometry is large in

string units, r1,5,P � ls.

The event horizon of the D1-D5-P black hole (1.2.3) lies at r = 0. The area of the horizon
is given by the size of the orthogonal spatial directions to r, at r = 0. The area of the five-
dimensional geometry is

A
(5)
H ∼

√
Q1Q5QP ∼ g2

s(ls)
3
√
N1N5NP , (1.2.6)

but the Bekenstein-Hawking entropy is independent of the string coupling and of the string
length:

SBek.-Hawk. =
A

(5)
H

G
(5)
N

= 2π
√
N1N5NP , (1.2.7)

where G(5)
N is Newton’s constant in five dimensions.

1.2.2 Counting the states of the three-charge black hole

In this subsection, we explain how string theory provides a description of the microstates of the
three-charge black hole, in the weak-coupling regime (gsN � 1) [27,28]. Indeed, a configuration
of branes as described in Table 1.1 backreacts into a black-hole solution in the strong-coupling
regime (gsN � 1).

The brane charges, N1 and N5, in equation (1.2.5), can appear through different string-theory
configurations. For instance, one D1-brane wrapping N1 times the y circle and N1 D1-branes
each wrapping a single time the y circle account for the same supergravity charge, Q1 = gsα′

v N1.
What about the momentum Np along the y circle? The momentum can be carried by closed

strings, open strings, or even D-branes. The dominant contribution to the entropy however,
comes from the open strings stretching between D1- and D5-branes, thanks to the phenomenon
of momentum fractionation [29, 30].

An open string stretching between a singly-wound D1-brane and a singly-wound D5-brane
is free of interactions in the regime gsN � 1, so its wavefunction is written in the basis of
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Fig. 2.23 In the limit R4 ! VT 4 we can largely ignore excitation on the torus and the physics is
effectively described by an open string stretched between the D1- and D-5 branes which wrap the
circle. The open string also carries momentum along the S1

the momentum in the open string sector because of fractional momentum quantization
described on the next page.

To arrive at this picture of the black whole we have to go to weak coupling by
tuning gs → 0 such that gs N # 1; in this regime the D-branes are heavy static
objects (their mass goes as N/gs) but they decouple from gravity and are entirely
described weakly interacting open strings ending on them. Moreover because we are
interested in supersymmetric configurations (as our black hole is supersymmetric)
it suffices to restrict to the ground states of the open strings as excited modes break
more supersymmetry (recall from the exercises above that supersymmetry tends to
require minimal energy). Thus the open strings essentially become point particles
connecting two coincident branes. Moreover, at very small gs N the open strings are
essentially free so their wavefunctions are momentum eigenstates on the S1

ψ(x5) =
∑

n

e−
2πn

R x5 . (2.133)

The wave function of a particle normally has to be single valued as we go around
a circle but, because these particles carry additional labels, corresponding to the
D-brane they’re ending on, this is no longer the case. For instance a string ending
on a D1 that wraps twice around the circle carries a coordinate, x (1), its location on
the D1 and this coordinate itself is not single-valued on the S1 (i.e. the coordinate
length is 4π). This lack of single-valuedness may be familiar from fermions which
need not be periodic on a circle because they carry internal (spinorial) indices. Here
the additional internal data is just the coordinate on the brane the string endpoint is
attached to.

Let us now consider a string with two endpoints going around the circle several
times. Take for example a string stretched between a D1 brane that wraps the circle
twice, and a D5 brane that wrap the circle three times.18 If we unwrap the circle, this
configuration looks like Fig. 2.23.

The open string wave function depends on the string coordinate x5 and has two
labels, coordinates on the D1-branes and D5-branes (Fig. 2.24):

18 Note that for “2 D-branes” on a compact circle, we have either 2 distinct D-branes or a D-brane
wrapping the circle 2 times.

Figure 1.4 – Depiction of open strings stretching between a D1- and a D5-brane in the
y circle, S1. The size of the four-torus T 4 is assumed to be parametrically smaller than
that of the circle S1

y , so the physics is described by an effective D1-D5 string in S1
y . The

figure is from [6].

momentum eigenstates on the S1
y circle, and has the form

ψ(y) =
∑
n∈Z

αn exp

(
2iπn

Ry
y

)
. (1.2.8)

The smallest value of momentum carried by such an open string is 1
Ry

.
Now, consider a D1-brane wrapping N1 times the circle S1

y , and a D5-brane wrapping it N5

times. See Fig. 1.4. An open string stretching between these two branes has a multi-valued
wavefunction on the S1

y circle: it has to go around N1 ∨N5 (denoting the least common multiple
of N1 and N5) times around the S1

y circle to reach the same point in the two branes’ worldvolume
again. For simplicity, we will assume that N1 and N5 are co-prime; then N1 ∨N5 = N1N5. The
momentum eigenstates of this open string are of the form

ψn(y) = exp

(
2iπn

N1N5Ry
y

)
, (1.2.9)

which means that the momentum on such D1-D5 branes is quantized in units of 1
N1N5Ry

– hence
the momentum fractionation.

Each mode ψn carries a momentum amounting to n
N1N5Ry

. Let µ(n) the number of open
strings occupying the mode ψn. In total, the momentum carried by the open strings is equal to
NP
Ry

. Then
∞∑
n=1

µ(n)n

N1N5Ry
=
NP

Ry
. (1.2.10)

In other terms, the number of ways for open strings to realize the total momentum it is the
number of partitions of N1N5NP in integers.

One can show that the entropy corresponding to this number is proportional to
√
N1N5NP .

One then has to take into account that an open string has four bosonic degrees of freedom
corresponding to its free motion along the T 4, and add their four fermionic superpartners, so
that one finds the correct numerical coefficient:

Sopen strings = 2π
√
N1N5NP , (1.2.11)
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which matches the Bekenstein-Hawking entropy (1.2.7).
In a nutshell, the leading order of the black hole’s entropy is given by the number of ways

for open strings, stretching between a D1-brane wrapping N1 times the circle and a D5-brane
wrapping it N5 times, to account for the momentum charge NP .

Let us, for the remaining of the Introduction, denote these D1-D5-P configurations as “Strominger-
Vafa microstates”.

The F1-NS5-P black hole.
Let us note that the brane bound states accounting for the entropy in an other duality

frame could be quite different in nature. By S-dualizing the D1-D5-P black-hole solution, we
get a F1-NS5-P black hole solution, in Type IIB supergravity. Now, the S-dual of the D1-D5-P
microstates gives a D1 brane stretching between a F1 string and an NS5 brane, which is not a
stable configuration. The T-dual along one of the torus directions gives a D2 brane stretching
between an NS5 brane and ... a smeared density (over that same torus direction) of F1 stings,
which is not a stable configuration either.

To account for the entropy of the F1-NS5-P black hole in Type IIA supergravity, one should
rather count the momenta of the little strings [31] living in the worldvolume of an NS5 brane
that wraps the circle S1

y multiple times. To be more precise, take an NS5 brane wrapping the
circle N5 times. The tension of a string bound to the multiply-wound NS5 brane will become
1/N5 times the tension of a normal string, hence the name “little strings” [32, 33]. As such, the
momentum of a string wrapping N1 times the y circle, but bound to the multiply-wound NS5
brane is counted in units of 1

N1N5Ry
for the little strings, instead of 1

N1Ry
for normal strings.

The little strings carry the momentum through their transverse motion in T 4, in the NS5
branes’ worldvolume. This is to be contrasted with the Strominger-Vafa microstates, where the
momentum was carried by open strings stretching between D1- and D5-branes. The moral of
the story is that: The object in string theory that “carries the momentum” along the y circle can
have different avatars in string theory. In other words, the Strominger-Vafa microstates is just
a basis of the Hilbert space of the D1-D5-P black hole. In principle, it is possible to find other
bases of the same Hilbert space with different string-theory ingredients.

1.2.3 But what about gsN � 1?

We now know how to describe the microstates in the open-string picture. However, the black hole
is defined as a solution of supergravity, and the Information Paradox is relevant in the regime of
validity of supergravity. We can now reformulate our question (1.1.9) in Section 1 to:

Can we describe the microstates in the regime of parameters the black hole solution
is defined (i.e. in the gsN � 1 regime)? To what extent and how do they differ
from the black hole?

(1.2.12)

The standard intuition one learns from Section 1.2.2 is the following.
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The standard perspective

The fundamental description of black-hole microstates is from the open-string, or CFT
perspective. In the bulk, supergravity is not able to capture the degrees of freedom ac-
counting for the black-hole microstates. Indeed, at gsN � 1, the microstates differ from
themselves (and to their statistical average, the black-hole solution) only in the vicinity of
the singularity. And the vicinity of the singularity is precisely the space-time region which
is not captured by supergravity.

This perspective seems appealing from the point of view of General Relativity, whose regime
of validity largely contains the horizon region. Nevertheless, this perspective relies on a bias from
General Relativity, and leads to several questions.

A first question comes from the meaning of horizons in statistical mechanics. In the “standard
perspective”, all the microstates have a horizon in the gsN � 1 regime. But if the individual
microstates have a horizon, one could derive the same thermodynamic laws (1.1.2) and (1.1.1)
to each microstate. As such, shouldn’t the microstates carry also some (coarse-grained) entropy
with them? Is this picture in conflict with what a microstate should be?

Secondly, the wavefunctions of the brane configurations spreads to the horizon scale as the
tuning of the coupling constant gs interpolates between the open-string and supergravity regimes.
But from the “standard perspective”, the wavefunctions of different microstates differ only in the
singularity region. They differ only in a localized, singularity region, although they have a macro-
scopic, horizon-scale support. Is there a top-down argument explaining how this phenomenon
happens?

A collection ofN Dp-branes (withN � 1) sources, after gravitational backreaction, a p-brane
solution in supergravity without regions where gtt < 0. The three-charge brane configuration
sources a geometry, whose metric (1.2.3) is a supergravity solution, in the coordinates correspond-
ing to the viewpoint of an asymptotic observer. It turns out this geometry is not geodesically
complete and has a horizon that can be crossed. But do the branes source the geometry inside
the horizon? Or is the inside of the horizon acts as an artificial image for the asymptotic observer,
like when one applies the method of images in electromagnetism?

1.3 The Fuzzball paradigm

Let us quickly recap what we learned from the previous section. We start, in the regime gsN � 1,
with a D1-D5-P brane configuration of Table 1.1 that correspond to microstates of the black hole:
in this introduction, we call them the Strominger-Vafa microstates. As gs grows up until the
regime where gsN � 1, the wavefunction of the brane configuration spreads to the horizon scale
– and once one backreacts gravity, the horizon scale is captured by the supergravity regime.
However, somehow, the Strominger-Vafa microstates become all indistinguishable at the scale of
the horizon.

But what if this was only a coincidence?
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1.3.1 The growth of branes with Newton’s constant

If one starts from a perfectly symmetric brane configuration – point-like in the non-compact
spatial dimension, and independent of the compact dimensions –, one will naturally find, at
gsN � 1, a geometry that is spherically symmetric whose characteristic size is the horizon size.

The Strominger-Vafa microstates correspond to a very particular basis of the Hilbert space of
the black hole microstates in the weak-coupling regime, where the precision about the location
of the brane system (in the non-compact dimensions) is infinite, and where the D1- and D5-
branes are perfectly independent of the compact dimensions. But from Heisenberg’s uncertainty
principle, the Strominger-Vafa microstates receive a size in the non-compact directions. Then
the question becomes: What happens at large gsN if the brane configurations get some size in
the non compact dimensions? What happens if they break a little bit the symmetries?

The computation in [34] provides a toy-model answer to what could happen in a more general
instance. The authors considered a three-charge, stringy configurations that make a circular
profile in the non-compact dimensions. They showed that as one increases gs (or GN ), the size of
the stringy configuration grows with the same rate as the horizon scale. Moreover, the resulting
solution in supergravity has no horizon.

1.3.2 The Fuzzball hypothesis and the paradigm shift

From the previous section, one can naturally formulate the following hypothesis:

At gsN � 1, generically, the individual microstates differ from themselves and from the
classical black-hole solution at the scale of the horizon.

The difference implied here between the microstates and the black hole is of order O(1), and
not of order O(e−S) or O(e−S/2). This is to be contrasted with the “standard perspective”, where
the microstates differ from the black-hole solution only in the vicinity of the singularity.

The hypothesis above introduces a paradigm shift. Because the microstates and the classical
black-hole solution differ by a non-negligible amount at the scale of the horizon, one cannot rely
on the intuition from General Relativity anymore. In particular, black-hole microstates may not
have a horizon, even if General Relativity itself is fine at the scale of the horizon. The Fuzzball
hypothesis, precisely states this.

The Fuzzball hypothesis [7–11]
At gsN � 1, the individual black-hole microstates differ from the classical black-hole
solution at the scale of the horizon; they have furthermore no horizon and no singularities.
Such horizonless microstates are called “fuzzballs”.

From the perspective of the fuzzball hypothesis, individual microstates do not carry coarse-
grained entropy, therefore, they do not have a horizon in the strong-coupling regime (gsN � 1).

Besides, it does not make sense to talk about the black hole interior for black-hole microstates,
as the horizon is replaced by another phase of matter that supports the gravitational collapse
that would lead to a black hole. But how to evade the theorems from General Relativity, that
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stipulate that a horizon and a singularity will form, as soon as matter is compressed in a given
radius?

Well, the black-hole horizon and singularity are, within the Fuzzball hypothesis, artefacts of
a theory – General Relativity – which do not contain enough degrees of freedom to resolve them.
Crucially, one cannot just use General-Relativity theorems to prove that the Fuzzball hypothesis
cannot work, because General Relativity will introduce a bias that will imply the presence of
horizons and singularities.

The Fuzzball hypothesis understands the horizon of the black hole as some average of the
degrees of freedom of string theory describing the microstates ; the interior geometry of the
black-hole solution follows as an artefact of the geodesic completion of the averaged black-hole
geometry.

If the Fuzzball hypothesis is correct, then the Strominger-Vafa microstates would be one
particular basis of the Hilbert space of black-hole microstates at weak coupling. It could be that
generically, a basis of the Hilbert space is composed of horizonless microstates at gsN � 1. But
perhaps a weaker statement which could be sufficient for the Fuzzball hypothesis is: One should
be able to find (at least) one basis of the Hilbert space composed of only horizonless microstates
at gsN � 1.

1.3.3 The Fuzzball hypothesis’ answer to other black-hole puzzles

We have introduced the Fuzzball hypothesis as a natural answer to the question about the
microstates (1.1.9): The black-hole microstates are horizonless solutions which are similar to the
black-hole solution in the asymptotic region, but differ from the black-hole solution at the scale
of the horizon. As such, the answer to the question of black-hole singularity (1.1.12) follows
immediately: The phrase “to resolve the black-hole singularity” does not make sense, as the
black-hole microstates do not have a singularity, and the degrees of freedom distinguishing the
microstates lie at the scale of the horizon.

One can also wonder how the collapse of matter leads to the formation of a fuzzball instead
of a black hole. In particular, if one collapses a perfectly spherical shell of low-density, infalling
matter, how does the matter excite the stringy and non-perturbative degrees of freedom necessary
for fuzzballs to exist? Calculation that attempt to answer this question suggests that there is
a non-zero probability P ∼ e−SBek.−Hawk. for this collapsing matter to tunnel into one particular
fuzzball configuration [35–37]. Therefore, the probability to tunnel into one of the eSBek.−Hawk.

fuzzball microstates is of order 1, thus preventing the horizon to form.
Concerning the Information Paradox (1.1.11), the absence of horizon for black-hole mi-

crostates changes completely the problem. The pair-creation of Hawking particles does not
happen with a geometry without a horizon. Instead, the black-body radiation of a (non-extremal)
fuzzball happens like that of a star, or a piece of coal [12]. Therefore, the evaporation process
is always unitary, and no Information Paradox arises. The paradigm shift introduced by the
Fuzzball hypothesis is to realize that the answer to question (1.1.9) may imply that questions
(1.1.11) and (1.1.12) are ill-defined.

It should be stated that the Fuzzball paradigm can be motivated from the bottom-up perspec-
tive, as it was originally designed as a solution to the Information Paradox. Indeed, according to
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Mathur’s “small-corrections theorem” [9], in order to solve the Information Paradox, one should
give up (at least) one of the following assumptions [9, 38]:
(1) unitarity of quantum mechanics in the presence of black holes
(2) locality of quantum mechanics in the presence of black holes
(3) smoothness of black-hole horizons.

The Fuzzball hypothesis takes the route of giving up assumption (3), as smooth black-hole
horizons are replaced by horizonless microstates.

1.4 The Microstate Geometries programme

In order to support the Fuzzball hypothesis, a lot of horizonless solutions have been found in
string theory. In particular, the Microstate Geometries programme [13, 14] endeavours to find
horizonless solutions of supergravity; such solutions are called microstate geometries. One can
make the following classification of fuzzballs [39]:

1. A microstate geometry is a smooth horizonless solution of supergravity that is valid within
the supergravity approximation to string theory and that has the same mass, charge and
angular momentum as a given black hole.

2. A microstate solution is a horizonless solution of supergravity, or a horizonless, physical
limit of a supergravity solution, that has the same mass, charge and angular momentum
as a given black hole. Microstate solutions are allowed to have singularities that either
correspond to brane sources or can be patch-wise dualized into a smooth solution.

3. A fuzzball is the most generic horizonless configuration in string theory that has the same
mass, charge and angular momentum as a given black hole. It can be arbitrarily quantum
and arbitrarily strongly curved.

Therefore, the set of microstate geometries is contained in the set of microstate solutions, which
is itself contained in the set of fuzzballs. From the Fuzzball hypothesis’ perspective, all black-
hole microstates are fuzzballs, but they do not need to be all microstate geometries or microstate
solutions. Indeed, the most entropically dominant fuzzballs could be string or brane condensates,
with a wavefunction extending to the horizon-scale and which are not described by supergravity.

Nevertheless, the Microstate Geometries programme surely provides the Fuzzball hypothesis
with a concrete mechanism that prevents the gravitational collapse of some phases of matter.

1.4.1 Some families of microstate geometries

Bubbling geometries

To avoid the General-Relativity theorems implying the formation of a horizon when matter is
compressed to black-hole size, the trick of the Microstate Geometries programme is to take
advantage of the hidden dimensions in string theory [14]. For instance, the Lagrangian of five-
dimensional supergravity contains a Chern-Simons term that is inexistent in General Relativity.
The addition of this Chern-Simons term changes the equations of motion so that they enable
non-trivial topological solitons. More generally, a singular brane source can dissolve into fluxes
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Figure 1.5 – Schematic picture of a classical black hole (left) and a microstate geometry
(right). From the asymptotic observer’s point of view, instead of the event horizon lying
at the bottom of a throat of infinite length, a microstate geometry would replace it with
a smooth cap lying at the bottom of a throat of finite length. The figures are from [15].

that thread new topological cycles. The cycles make the geometry smooth and horizonless, and
prevent the collapse of matter into a black hole.

Bubbling geometries [40, 41, 14] are smooth, supersymmetric solutions of five-dimensional,
ungauged, N = 2 supergravity, coupled to vector multiplets. They have the same asymptotics
and asymptotic charges as the three-charge, five-dimensional, supersymmetric black hole (the
BMPV black hole [42]). Unlike the extremal black hole whose horizon lies at the bottom of
an infinitely-long AdS2 throat, the bubbling solutions have a smooth cap at the bottom of a
long, but finite AdS2 throat. See Fig. 1.5. Within the Microstate Geometries programme,
they are considered as coherent superpositions of the black hole microstates [43, 13]. Much like
their corresponding black hole, the bubbling geometries can also be constructed with R1,3 × S1

asymptotics; reduced to four dimensions, they correspond to a class of multi-centered solutions
[44–46], which still have the same asymptotics and asymptotic charges as the four-dimensional
black hole, but are singular from a 4D perspective. Therefore, they are an interesting top-down
model for horizon-scale black-hole phenomenology.

A principle for fuzzballs: the supertube transition

Another principle for making microstate geometries out of black holes in string theory is to make
use of the supertube transition [47–49].

Consider a black hole in string theory which is understood at gsN � 1 as a brane system put
together at a point in the non-compact spatial dimensions (that we will sometimes call the base
space). At gsN � 1, the naïve backreaction of this brane system has a macroscopic horizon.

The idea of the supertube transition is to blow up the brane system in a profile in the
base space. The advantage of this manipulation is that, in the gsN � 1 regime, the fields
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Figure 1.6 – Schematic picture of a singular brane bound-state (left) and its supertube
transition (right). Asymptotically, the two configurations source the same fields. But
locally, the fields sourced by the supertube are less singular than its singular counterpart.

sourced in the vicinity of the branes will be less singular that those sourced by the brane system
localized at a point on the base space, although both configurations source the same fields
asymptotically. Let us also note that the supertube has locally twice as many supercharges as the
original configuration, although both configuration preserve the same number of supersymmetries
globally. See Fig. 1.6. The supertube transition phenomenon is analog to what happens in
electromagnetism: An electric charge, q, defined at a point in (3 spatial dimensions) sources
an electric potential scaling as A(r) ∼ q

r at the vicinity of the point; whereas the same electric
charge smeared on a ring sources an electric potential which behaves like A(r) ∼ q log(r) in the
vicinity of the ring.

Crucially, the less the fields singular are, the less they are likely to source a macroscopic
horizon – and any horizon at all – in the gsN � 1 regime. Sometimes, a simple supertube
transition is not enough to get rid of horizons – the resulting geometry may have a horizon of
zero area – and one needs to perform a “double supertube transition” [49], which corresponds to
giving a thickness to the ring of Fig. 1.6.

Superstrata

Schematically, superstrata [50–53] are microstate geometries whose construction consists in ap-
plying the supertube transition to the D1-D5-P black-hole solution. Start with a D1-D5 brane
configuration and perform the supertube transition in a closed profile in the R4 base space. See
Fig. 1.7.

Because of their tension, the branes have the tendency to shrink the profile in the base space
to zero size. To make the system stable, one has to add an angular momentum along the profile;
the amount of angular momentum needed depends on the size of the profile.

But how does one get the momentum of the D1-D5-P system? In the original proposal for
the superstrata [49,54], the momentum is supposed to be carried by the transverse motion of the
D1-D5 supertube in the base space. The transverse motion constitutes the shape modes, in the
sense that, in a snapshot of the configuration at a given time, the supertube changes its shape
on the base space as one moves along y. As these modes move at the speed of light along y, they
carry a momentum.
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Figure 1.7 – Schematic picture of D1-D5 supertube of a circular shape in the base space.
As one includes the direction of the y circle, the supertube locus corresponds to a cylinder.
For the black hole, the brane system lies instead on a straight line along y.

The superstrata that have been constructed in supergravity [51, 52] correspond to a simpler
version of the more general superstrata proposed in [49,54]. First, one imposes a circular shape
for the supertube in the base space for all y: it is a straight and rigid cylinder, like in Fig. 1.7.
This time, in order to get the momentum, one adds, on top of the D1-D5 supertube, density
modes of D1-D5 branes extended orthogonally to y (and along T 4). It correspond to having an
increment of D1-D5 density at some locations, and a decrease of the D1-D5 density at some other
locations. Because all these density modes are moving at the speed of light along the y circle,
they induce collectively a macroscopic momentum charge, QP , in the supergravity solution.

The constructed superstrata have the same asymptotic charges and asymptotic geometry as
that of the black hole. As such, in the language of microstate geometries, different density modes
of constructed superstrata (or shape modes, for the generalised superstrata) give rise to different
black-hole microstates.

1.4.2 Some challenges of the Microstate Geometries programme

The number of microstates accounted by Supergravity

A first challenge for the Microstate Geometries programme is to answer the following question:

What fraction of the black-hole entropy can microstate geometries describe? Do
they form a basis of the black-hole Hilbert space? (1.4.1)

It has been shown in [55,56] that the constructed superstrata account for an entropy scaling
like

Ssuperstrata ∼ 2π
√
N1N5N

1/4
P , (1.4.2)

which is parametrically less than that of their corresponding BMPV black hole (1.2.7). Of course,
this does not mean that one could never find more microstate geometries than the number
associated to the entropy (1.4.2). But it is not clear whether the microstate geometries actually
need to account for the entirety of the black-hole entropy to be relevant for black-hole physics, as
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microstate geometries could capture many of the physics characterizing fuzzballs although they
do not have the stringy degrees of freedom.

One could see, in the discrepancy between (1.4.2) and (1.2.7), an indication that the metric is
an effective description of collective modes of black-hole microstates, and that most of individual
microstates do not admit a metric. Within this hypothesis, one could hardly make sense of
the Fuzzball hypothesis, as if there is no metric, one cannot define the absence or presence of
a horizon. However, recent developments suggest that “horizonless” in the sense of the metric
could be generalized to a notion which does not involve the metric [57].

Besides, a theorem in quantum mechanics shows that in a finite-dimensional Hilbert space,
one can find an overcomplete basis of coherent states in the Hilbert space [58]. In quantum me-
chanics, the coherent states minimize Heisenberg’s uncertainty principle and follow closely classi-
cal trajectories. For black-hole physics, coherent black-hole microstates could be the microstates
corresponding to the superposition of coherent supergravitons, and that admit subsequently a
metric description.

Furthermore, what would happen when a macroscopic infalling observer interacts with the
black hole? Would the black hole’s wavefunction collapse into that of a coherent state? If yes,
the question whether the observer encounters a smooth horizon or something else does make
sense.

Thus, perhaps the real question about supergravity is the following. Consider all the possible
coherent states of the black hole which admit a metric: Do they account for the black-hole entropy?
Do they have a finite curvature, so that they can be captured by supergravity? For the 2-charge
black hole, for which the number of microstates match the number of Lunin-Mathur geometries
[59–62] one can construct, the most typical states have a curvature that is arbitrarily high,
making them out of range of supergravity description. Nevertheless, the two-charge black hole
has its horizon and singularity at the same location. Therefore it is not clear whether the high-
curvature of the microstates comes from the singularity or from the horizon. A question the
Microstate Geometries programme tries to address concerns the three-charge black holes, whose
horizon and singularity do not lie at the same point: Do the horizonless states admitting a metric
account for the three-charge black-hole entropy, and do they have a low enough curvature to be
described by supergravity?

Before going further, let us note that the above formula (1.4.2) counts the number of super-
strata that have been constructed in [51,52]. The originally designed superstrata, corresponding
to the shape modes along a general supertube profile in the gsN � 1 regime, have an entropy
scaling like [54]

Sshape superstrata ∼ 2π
√
N1N5NP , (1.4.3)

which matches the Bekenstein-Hawking entropy (1.2.7). However, their gravitational backreac-
tion have not been constructed, as their base space metric would not be simply flat, but almost
hyper-Kähler, which introduces a technical difficulty.

Typicality and quantum fluctuations

An important constraint about the basis of the Hilbert space made of fuzzballs or microstate
geometries concerns the typicality of a general quantum state made out of this basis [63]. Sta-
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tistically, a random quantum state should have much similarities with respect to the statistical
average, i.e. the black-hole solution.

Consider a Hermitian operator, A, acting on a finite-dimensional Hilbert space of dimension
eS . The average value of A, 〈A〉, is given by the trace of its product with the density matrix of
the microcanonical ensemble, ρE :

〈A〉 = tr(ρEA) . (1.4.4)

Then, if one embeds the probability distribution, dµΨ, on the set of pure states, one can compute
the average deviation of pure states, |Ψ〉, around the average value, 〈A〉:∫

dµΨ

(
〈Ψ|A|Ψ〉 − 〈A〉

)2
. (1.4.5)

If one assumes dµΨ to be the Haar measure, one can show that [63]∫
dµΨ

(
〈Ψ|A|Ψ〉 − 〈A〉

)2
= O

(
e−S

)
. (1.4.6)

The relation (1.4.6) means that the average displacement of an operator on a pure state with
respect to its value on the maximally mixed state is exponentially suppressed.

The vectors in the basis (|f1〉, . . . , |feS 〉) of the Hilbert space can be more atypical, but they
are expected to satisfy [63]

∣∣〈fi|A|fi〉 − 〈A〉∣∣ = O
(

1√
S

)
. (1.4.7)

However, for the case of fuzzballs, it is not clear which are the correct Hermitian operators,
A, on which one can effectively apply the relations (1.4.6) and (1.4.7). Indeed, how can one
take A to be the metric components one Planck length above the horizon, gµν(rh + lP ), and
then compare the value of A for a black hole and a fuzzball, if Fuzzballs do not have a horizon?
Should one rather define this point in both geometries by sending light rays from the asymptotic
infinity, in which case one needs to send the light rays with a high precision to be able to define
the point just above the horizon?

Another challenge for the Microstate Geometries programme pertains to the quantum fluctu-
ations of such supergravity solutions [64]. Indeed, the solution space of all microstate geometries
of a given black hole should be quantized, as the solutions are described by supergravity. It means
that one particular supergravity solution cannot be defined precisely in a phase-space location,
but rather as a “cell” or a “droplet” occupying a volume of h2m, where h is Planck’s constant and
2m is the dimension of the phase space. However, if two points of the same cell in the phase space
correspond to two geometries that are macroscopically different one another, then it means that
quantum fluctuations are large for any geometry defined in that cell; therefore, the supergravity
description breaks down.

As a consequence, if one happens to find a basis of horizonless solutions from supergravity,
not only should the solutions be typical enough from relation (1.4.7), but they also should not
have too large quantum fluctuations.
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Finally, within the Microstate Geometries programme, one still has to make sense of a quan-
tum superposition of geometries. One may then define the averaging over geometries and answer
to the question:

How does the horizon emerges from averaging over the microstructure defining
the fuzzball? (1.4.8)

Stability of microstate geometries

Large families of microstate geometries have been constructed up to now, and one may one day
construct eS of them. However, could these geometries be in some sense unstable, and that the
horizon-scale microstructure that replaces the horizon evolves into a standard horizon?

Of course, the answer to this question could differ depending on supersymmetric and non-
supersymmetric configurations. Let us, for the following, focus on the supersymmetric case.
For supersymmetric configurations, the solutions are stationary. However, one can model the
instability in the following way. One of the main properties of constructed microstate geometries
is their deep throat and large redshift the bottom to the top of the throat. As such, a small
amount of energy as seen from the asympotics will become large at the bottom of the throat
due to blueshift, and this energy could perturb the structure replacing the horizon, and force the
solution to move in moduli space. This raises two questions:

1. Take p0 and p1 two points in moduli space, corresponding to two microstate geometries
(or more generally, two solutions of string theory). Is there a definition of a distance on
moduli space that characterises the possibility of moving adiabatically from p0 to p1 by
adding a finite amount of energy to p0 and within a finite time? (A finite distance linking
p0 and p1 would mean that it is possible, while an infinite distance means that it is not
possible.)

2. What actually happens when one perturbs the microstate geometry with that energy?
Does this energy dissolves into the numerous degrees of freedom lying at the bottom of the
throat, or is there a mechanism that drives the solution to move in one particular direction
in moduli space? In the latter scenario, could the solution move towards the black-hole
solution and reach it?

General properties of capped geometries

Known microstate geometries look like black holes except in the horizon region where they cap-
off smoothly. The presence of a smooth cap introduces physics that could differ from that of a
classical black hole.

What are the properties of microstate geometries that are similar, or different, from those of
a classical black hole? In particular, do they display gravitational echoes? Do they induce tidal
forces? How long does it take for an infalling particle to scramble into the microstate geometry?
Do microstate geometries display properties of quantum chaos?

Finally, can one observe signatures of a horizonless structure? If fuzzballs and classical black
holes differ in some properties, can one experimentally distinguish them?

26



1.4.3 Contributions of this manuscript

In Chapter 2 and 3, we investigate the notion of distance on the space of solutions of a class of
microstate geometries – the bubbling solutions. On the one hand, the moduli space of microstate
geometries is thought as a classical phase space upon which geometric quantization gives the
number of quantum microstates of the black hole. On the other hand, the moduli space of
Calabi-Yau compactifications is a space of effective field theories whose domain of validity can
be delimited by Swampland notions.

Following [16], we investigate the connection between these two viewpoints, in the region
of the moduli space where multi-centered solutions degenerate into the black hole – the scaling
limit. We show, from the Kähler structure of the solution’s phase space and using quiver quantum
mechanics, that although the metric component in moduli space blows up near the scaling limit,
the distance to the scaling limit is surprisingly finite.

Furthermore, following [17], we confirm these results by computing a DeWitt distance applied
to the scaling limit. However, from another DeWitt distance which is used in the context of the
Swampland programme, the distance of the scaling limit is infinite. This infinite distance seems
natural from the Swampland perspective, as in the scaling limit, an infinite tower of Kaluza-Klein
modes become massless. We comment on the possible physical implications of this mismatch.

In Chapter 4, we study gravitational multipole moments which are a class of observables that
can distinguish microstate geometries with black holes from general relativity. Following [18], we
analyse a family of non-supersymmetric extremal black holes and their horizonless microstate
geometries in four dimensions, which provide interesting prototypes to study deviations from Kerr
solutions caused by new horizon-scale physics. We then invent a method to analytically compute
gravitational multipoles of a new family of four-charge non-supersymmetric rotating black holes
and of their microstate geometries. We further show that these black holes we constructed from
the STU supergravity model can have the same mass, charges and spin as an almost-neutral
Kerr-Newman black hole, but with a very different tower of gravitational multipoles. Therefore,
this work sheds light on possible observables that can be detected in the near-future by the
detector eLISA.

In Chapter 5, we compute the tidal effects on a string following infalling null geodesics in
a family of black hole microstate geometries — the superstata. Indeed, a notable difference
between holographic correlators in a black hole background and those in a microstate geometry
is that the latter display gravitational echoes due to the presence of the smooth cap in place of
the horizon. However, as shown in earlier literature, stringy corrections to these correlators can
be large, as tidal forces excite the massive modes of a massless string falling into the geometry
from infinity, prohibiting the probe to return back to infinity.

An intriguing question is to understand what is the holographic dual of these tidal forces; the
first step for solving this puzzle is to characterize their effects on the string. The results in earlier
literature suggest there are no tidal forces along the toroidal directions. However, following [19],
we show that this was an artefact of a particular geodesic. On a more generic geodesic, we prove,
using Penrose limits, that the string feels tidal stresses along all possible directions. Furthermore,
we show that the tidal effects alternate between compression and stretching, whereas in earlier
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literature the effects were either one or the other. This is important data that informs the picture
of tidal scrambling in the CFT.

In Chapter 6, we follow [20] and bring to light, by using string duality generating techniques,
new degrees of freedom that prevent a macroscopic horizon to form in the limit where superstrata
seem to degenerate into black holes. To do so, we construct solutions with zero horizon area
that have the same charges as a three-charge F1-NS5-P Type-IIA black hole and preserve the
black hole’s spherical symmetry. The solutions have degrees of freedom which correspond to
local brane density modes along the common F1-NS55 circle, and are momentum carriers that
have no extension in the non-compact spatial directions. We argue that these solutions should
be interpreted as the long-throat limit of superstrata. The existence of these geometries thus
indicates that a finite-size horizon does not appear even in the singular corners of the moduli
space of three-charge microstate geometries.
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Chapter 2

Black holes and the Swampland: the
Deep Throat Revelations

2.1 Introduction

The fact that black holes are statistical objects with temperature and entropy raises two key
issues. First, how to describe the microstates accounting for the statistical entropy? Second,
how does the black hole restore the information that falls in it? String Theory’s historical answer
to the first question is to describe the microstates at low string coupling, where all the possible
open strings that stretch between brane bound states have an entropy that matches the statistical
entropy of the black hole. As the string coupling constant is tuned to larger values to a regime
where gravity is dominant, the branes expand in size, so one could expect that the microstates
differ from the black hole at horizon-scale.

The Fuzzball paradigm [7, 8] proposes that black hole microstates do possess a horizon-size
structure that differs from the classical black hole. Within this approach, it is expected that the
black hole evaporation is similar to the burning of a star or a piece of coal [12], differing from
Hawking’s calculation which leads to the Information Paradox. Within the Fuzzball paradigm,
the Microstate Geometries programme [13,14] endeavours to describe these black hole microstates
within the Supergravity approximation of String Theory by smooth horizonless solutions. If one
succeeds in finding a large number — hopefully eS — of them, then one has answered to the
question “What do black hole microstates look like?”.

In many classes of microstate geometries, the infinitely-long throat of an extremal black hole
is replaced by a cap at the end of a long, but finite throat [43, 50, 51] (See Fig. 2.1). The
procedure to construct a large number of Supergravity microstates is the following: Take a black
hole with given charges and angular momenta. Supergravity admits a large number of solutions
with finite throat length, with charges and angular momenta equal to those of the black hole. In
the moduli space (of a particular superselection sector, if any),1 each of these solutions admits

1In some models of microstate geometries, as in Multi-centered bubbling models, there are families of
solutions labeled by the fluxes Γi wrapping the bubbles (see Section 2.2). Inside each of these families,
or superselection sectors [65], there are still real parameters left to characterize the solutions, defining a
moduli space. There are restrictions on the bubble fluxes (and on the superselection sectors) to admit a
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Figure 2.1 – Schematic picture of a classical black hole (left) and a microstate geometry
(right). From the asymptotic observer’s point of view, instead of the event horizon lying
at the bottom of a throat of infinite length, a microstate geometry would replace it with
a smooth cap lying at the bottom of a throat of finite length. In the scaling limit, its
throat length increases to infinity while the cap’s geometry stays constant. The figures
are from [15].

a limit — called the scaling limit — where, from the perspective of an observer at infinity, they
become more and more similar to the black hole; in particular, their throat length increases to
infinity in the scaling limit, while the size of the cap remains fixed.2

In the moduli space of solutions, the scaling limit point plays a particular role, for the fol-
lowing reasons:
(1) The scaling limit lies at the boundary of moduli space where the throat length increases to
infinity.
(2) As we approach the scaling limit, global symmetries of the black hole, which obeys the no-
hair theorem, are restored. For instance, microstate geometries do not generically possess the
SO(3)-rotational symmetry of the black hole.
(3) Everywhere in moduli space, energy excitations at the bottom of the throat of deep mi-
crostates are gapped. Their gap matches that of their dual CFT states [43,68]. However, in the
scaling limit, the mass gaps of these modes decrease to zero, because of the increasing redshift
due to the lengthening of the throat.

Taking the limit to a boundary point of moduli space is reminiscent of the Swampland
Distance Conjecture [69], that we are reformulating hereinbelow. Consider an effective field
theory consistent with quantum gravity, with an arcwise-connected moduli space — a point in

scaling limit; but here, we consider one superselection sector which does.
2Infinitely-long throats arise in extremal black holes, but not in non-extremal ones, so this procedure

to construct microstate geometries a priori applies only for extremal black holes. Although in this paper
we will only consider a class of extremal BPS black holes and their microstate geometries, scaling solutions
can arise in similar non-BPS extremal black holes as well [66, 67,18].
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the moduli space fixes the expectation value of the scalar fields of the EFT. The Swampland
Distance Conjecture states that:
(1) The moduli space is not bounded in terms of its geodesic distance d. In other words, given
p0 a point in the bulk of the moduli space, there exists a family of arcwise-connected points {p}
going from p0 to an infinite geodesic distance with respect to p0.
(2) Global symmetries are restored at infinite distance in moduli space. [70]
(3) Given the point p0 and the path of points {p} defined in (1), there exists α > 0 and there
exists an infinite tower of states with an associated mass scale M(p) such that

M(p) ∼
d(p0,p)→∞

M(p0) e−αd(p0,p) . (2.1.1)

Originally, the distance in moduli space was defined according to the kinetic terms of the
scalar fields in the EFT in the following sense: Consider a d-dimensional EFT whose action in
the d-dimensional Einstein frame is written as

S =

∫
ddx
√−g

[
R

2
− gij

(
φi
)
∂φi∂φj + ...

]
. (2.1.2)

Then gij defines a metric on the moduli space of effective field theories. Following [71], it has
been proposed to generalise the Swampland Distance Conjecture — about moduli spaces of scalar
fields — to a space of metrics. A notion of distance can be defined on a transverse-traceless metric
gµν of a spacetime M of volume VM =

∫
M

√
g [72]

∆generalized = c

∫ τf

τi

(
1

VM

∫
M

√
g tr

[(
g−1 ∂g

∂τ

)2
]) 1

2

dτ . (2.1.3)

This distance boils down to the moduli space of the scalar fields in the case of Calabi-Yau
compactifications on 4-dimensional Minkowski space [73].

Thanks to this notion of distance between two metrics, it was argued in [71] that the vanish-
ing limit of the negative cosmological constant, Λ, in an AdS vacuum in String Theory leads to an
infinite tower of light states — for instance the tower of Kaluza-Klein modes of some decompact-
ifying parts from the internal manifold. Using the distance (3.1.7), the authors of [74] computed
distances on the space of black holes metrics and related the infinite black-hole-entropy limits to
both massless Kaluza-Klein modes of an internal Calabi-Yau manifold and possibly Goldstone
modes of BMS-like transformations on the black hole horizon.

To extend the Swampland Distance Conjecture for metrics to the scaling limit of microstate
geometries, we would like to show that the infinite tower of gapped modes on top of any microstate
geometry collapses, and the masses of all these modes decrease exponentially. In this paper, we
study a class of bubbling microstate geometries, that descend in 4 dimensions to multicentered
solutions [46, 44]. In the scaling limit, different microstate geometries approach the BMPV
black hole [42]. These microstate geometries possess an AdS2 × S3 throat. We will show that,
in the scaling limit, the mass the Kaluza-Klein modes of the S3 measured by an observer at
spacial infinity decrease exponentially with respect to the length of the throat. At the bottom of
this throat lie also non-trivial two-cycles; the mass of the M2 branes wrapping these two-cycles
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decrease exponentially in the same fashion in the scaling limit. By reading off the expression
inside the exponential, one can infer the distance in moduli space ∆exponential that would be
in agreement with the extension of the Swampland Distance Conjecture; one thus expects this
distance to be proportional to the length of the AdS2 throat, which is becoming infinite in the
scaling limit. As a result, our study quite possibly extends the Swampland Distance Conjecture
in a rather unusual way.

In addition, we will also compare this distance with another notion of distance in the moduli
space of solutions, whose computation is independent of Swampland notions. Out of a Lagrangian
theory characterizing a set of fields φA, the symplectic form, Ω, of the theory can be defined,
from the Crnković-Witten-Zuckerman formalism, as an integral over a Cauchy surface Σ [75,76]

Ω =

∫
dΣl δ

(
∂L

∂(∂lφA)

)
∧ δφA . (2.1.4)

If Ω is closed and non-degenerate, the 2m-dimensional solution-space manifold is reinterpreted as
the phase space, whose symplectic volume (in units of hm) gives the number of microscopic ground
states. When the phase-space manifold is furthermore endowed with an integrable complex
structure, J , and if Ω(·, J ·) is a Riemannian metric, the manifold is Kähler and one can define a
distance, ∆phase, on the moduli space of solutions using the Kähler metric Ω(·, J ·). Luckily, the
solution space of three-centered multicenter solutions one constructs as Microstate geometries is
a Kähler manifold [64]; so we will measure the distance to the scaling limit with respect to this
Kähler metric.

Surprisingly, we find that with respect the “canonical” ∆phase that would be in agreement
with computations in [64], the scaling limit lies at finite distance in moduli space, in tension
with the distance ∆exponential. However, the computation of ∆phase is performed at weak string
coupling regime using quiver quantum mechanics, and one can wonder whether this computation
is still reliable in the regime where Supergravity dominates. However, in [64], the authors argue
that the reduced symplectic form does not vary with the string coupling constant thanks to a
non-renormalization theorem, and further conclude that Supergravity is breaking down because
of large quantum fluctuations in scaling geometries, and hence could not be a good description
of these geometries. From the weak-coupling regime, they also infer that the scaling limit, which
was perfectly in reach within Supergravity, is actually prohibited if one accounts for quantum
effects, which prevent the quantum wave functions to populate the region of classical moduli
space close to the scaling limit. Thus, if the correct normalization of distance on moduli space
is given by ∆exponential and not by ∆phase, then the breakdown of Supergravity due to quantum
effects prescribed in [64] would be softened.

The organisation of the paper is the following. In Section 2.2, we review smooth multi-
centered bubbling solutions in five dimensions (and their M-theory uplift) of [43]. In Section 2.3,
we first compute how the throat lengths of bubbling solutions behave in the scaling limit. We
then find an exponential decrease of the S3 Kaluza-Klein mass tower, consistent with a naive
extension of the Swampland Distance Hypothesis to this system. In Section 2.4, we study the
moduli space of three-centre bubbling solutions, independently of the Swampland programme.
Using the results of [64], we determine the metric on moduli space of solutions coming from
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the symplectic form. We show that with this distance, ∆phase, the scaling limit lies at finite
distance in moduli space and that all the moduli space is bounded. In section 2.5, we discuss
the tension between the two distances on moduli space and share some insight about the ability
of Supergravity to describe black hole microstates with arbitrarily deep throats.

2.2 Multicenter bubbling solutions

2.2.1 Multicenter bubbling solutions in 5 and 11 dimensions

Upon compactifying maximal eleven-dimensional Supergravity on Calabi-Yau threefold, the re-
sulting five-dimensional N = 2 supergravity coupled to nV vector multiplets with nV ≤ 2

contains the following bosonic fields:
• a gravitational field, g,
• nV + 1 U(1) vector gauge fields, AIµ, whose field strengths are denoted F I = d5A

I ,
• nV + 1 scalars, XI .

This theory is described by the action

(16πG5)S5 =

∫
d5x
√−g R − QIJ

∫ (
F I ∧ ?5F

J − d5X
I ∧ ?5d5X

J
)

+
CIJK

6

∫
AI∧F J ∧FK ,

(2.2.1)
where CIJK are the structure constants satisfying the fixed-volume constraint

1

6
CIJK X

IXJXK = 1 =⇒ XI =
1

6
CIJK X

JXK , (2.2.2)

and the couplings QIJ depend on the scalars via

QIJ =
9

2
XIXJ −

1

2
CIJKX

K . (2.2.3)

The action admits the following Einstein-Maxwell-scalar equations of motion

Rµν + QIJ

(
∂µX

I∂νX
J + F Iµρ F

J
ν
ρ − 1

6
gµν F

I
ρσ F

Jρσ
)

= 0 ,

d5

(
QIJ ?5 F

J
)

+
1

4
CIJK F

J ∧ FK = 0 ,

−d5 ?5 d5XI +

(
CIJKXLX

K − 1

6
CILJ

)(
FL ∧ ?5F

J − dXL ∧ ?5dX
J
)

= 0 .

(2.2.4)

The most general supersymmetric solution to N = 2 five-dimensional Supergravity coupled
to nV extra gauge fields with structure constant CIJK , admitting a time-like Killing vector ∂t
are characterized by nV + 1 electric warp factors ZI , nV + 1 magnetic self-dual two-forms ΘI ,
an angular momentum one-form ω, and a space-like hyper-Kähler manifold B. The metric and
the field strengths are stationary, and are split in the following way [77,78]:

ds2
5 = −

(
1

6
CIJK ZIZJZK

)− 2
3

(dt+ ω)2 +

(
1

6
CIJK ZIZJZK

) 1
3

ds (B)2 ,

F I = d4A
I = d4

(
Z−1
I (dt+ ω)

)
+ ΘI .

(2.2.5)
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In terms of these new data, the Einstein-Maxwell-scalar equations of motion (B.1.11) are rewrit-
ten as the so-called BPS equations

?4ΘI = ΘI , with d4ΘI = 0 , (2.2.6)

∇4
2V ≡ ?4d4 ?4 d4 ZI =

1

2
CIJK ?4

(
ΘJ ∧ΘK

)
, (2.2.7)

d4ω + ?4d4ω = ZI ΘI . (2.2.8)

The first set of nV + 1 equations (2.2.6) (I = 1, . . . , nV + 1) determine the magnetic two-forms.
The second set of nV + 1 equations (2.2.7) determine the electric warp factors, sourced by the
magnetic fields. The fact that magnetic fluxes source a net electric charge is made possible thanks
to the Cherns-Simons term in the five-dimensional Supergravity action (B.1.9); this is essential
in the construction of smooth solitonic solutions in Supergravity. The last equation (2.2.8) tells
that the angular momentum ω is sourced by electric and magnetic fields, recalling the Poynting
vector in electromagnetism.

We now consider B to be a four-dimensional Gibbons-Hawking space. The Gibbons-Hawking
space is made of multiple centers of Kaluza-Klein monopoles. The Gibbons-Hawking space
possesses non-trivial two-cycles called bubbles, defined by the shrinking of the coordinate ψ
fibered along any line running between a pair of Gibbons-Hawking points in R3. The spatial
part of the metric in (2.2.5) is thus an S1 fibered along R3; it is determined by a harmonic
function V in R3 (∇3

2V ≡ ?3d3 ?3 d3V = 0) and a one-form A (with ∇3A ≡ ?3d3A = d3V ):

ds (B)2 = V −1 (dψ +A)2 + V
[
dρ2 + ρ2

(
dϑ2 + sin2 ϑ dφ2

) ]
. (2.2.9)

The potential V is sourced by a set of n Gibbons-Hawking centres labeled by j, of charge qj :

V (~ρ) = h∞ +
n∑
j=1

qj
ρj
, A =

n∑
j=1

qj cosϑj dφj , (2.2.10)

where (ρj , ϑj , φj) are the shifted spherical coordinates around the jth center. The potential V
is a harmonic function on R3. The Gibbons-Hawking space pinches off smoothly around each
center j: the geometry is a flat R4 modded by Z|qj | along ψ, where qj ∈ Z. Besides, R4 is
asymptotically modded by Z∑ |qj |, so it is convenient to subsequently impose

∑
j |qj | = 1 to have

an asymptotic R4.
We will consider solutions that are independent of ψ. With this assumption, the other

solution data — ZI , Θi and ω — are all given in terms of harmonic functions on R3.
The nV + 1 self-dual magnetic two-forms ΘI are of the form

ΘI = ∂a
(
V −1KI

)
Ωa , (2.2.11)

where (Ω1,Ω2,Ω3) is a basis of self-dual (in 4 dimensions) two-forms and KI are harmonic
functions on R3 of the form

KI = kI∞ +

n∑
j=1

kIj
ρj
. (2.2.12)
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The number kIi − kij is the magnetic flux on the two-cycle between centres i and j.
The nV + 1 warp factors ZI are

ZI = LI +
CIJK

2

KJKK

V
(2.2.13)

where LI is a harmonic function on R3 is

LI = lI∞ +
n∑
j=1

lIj
ρj
. (2.2.14)

From the 5-dimensional Supergravity perspective, lIj is the electric charge of LI at the j
th center.

Finally, the angular-momentum one-form can be decomposed along the U(1) ψ-fiber:

ω =

(
M +

KILI
2V

+
CIJK

6

KIKJKK

V 2

)
(dψ +A) + $ ≡ µ (dψ +A) + $ , (2.2.15)

where $ is a one-form on R3 and M — the harmonic conjugate of ω in (2.2.8) — is a harmonic
function on R3 of the form

M = m∞ +

n∑
j=1

mj

ρj
. (2.2.16)

To put it in a nutshell, the multicenter bubbling solutions are characterized by the harmonic
functions Γ = (V,K1, . . . ,Knv+1;L1, . . . , Lnv+1,M) on R3. Schematically, we can write

Γ = Γ∞ +
n∑
j=1

Γj
ρj
. (2.2.17)

One can define a symplectic product on R2nV +4: for A = (A0, A1, . . . , Anv+1;A1, . . . , Anv+1, A0)

and B = (B0, B1, . . . , Bnv+1;B1, . . . , Bnv+1, B0),

〈A,B〉 ≡ A0B0 −A0B
0 +AIBI −AIBI . (2.2.18)

The absence of Dirac-Misner strings in the multicenter bubbling solutions then leads to con-
ditions on the relative positions of the Gibbons-Hawking centres, the so-called bubble equations,
or Denef integrability equations [46, 41]:

n∑
j=1

〈Γi,Γj〉
ρij

= 〈Γ∞,Γi〉 , for i = 1, . . . n . (2.2.19)

2.2.2 The STU model

The requirement that the five-dimensional geometry be asymptotically flat R1,4 constrains the
asymptotic values of the harmonic functions h∞, l∞ and k∞ such that

V =

n∑
j=1

qj
ρj
, LI = 1 +

n∑
j=1

lIj
ρj
, KI =

n∑
j=1

kIj
ρj
, M = m∞ +

n∑
j=1

mj

ρj
. (2.2.20)
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Besides, requiring the resulting geometry to be smooth in five-dimensions amounts to constraining
the values of the electric and momentum charges in terms of the magnetic and Kaluza-Klein
monopole charges [40,79]:

lIj = −1

2
CIJK

kJj k
K
j

qj
, mj =

1

12
CIJK

kIj k
J
j k

K
j

q2
j

. (2.2.21)

These conditions allow each centre to preserve 16 supercharges; the overall solution, made
of several centres, preserves 4 supercharges as the BMPV black hole [42]. It can be shown that
this solution is equivalent to multiple stacks of D3-branes at angles in a T-dual frame [79].

The N = 2 five-dimensional Supergravity coupled to nV = 2 extra vector fields has a metric
and field strength (2.2.5) that simplify to three-charge solutions:

ds2
5 = − (Z1Z2Z3)−

2
3 (dt+ µ (dψ +A) +$)2 + V −1 (Z1Z2Z3)

1
3 (dψ +A)2

+ V (Z1Z2Z3)
1
3

[
dρ2 + ρ2

(
dϑ2 + sin2 ϑ dφ2

) ]
,

F I = d3

(
Z−1
I (dt+ ω)

)
+ ΘI .

(2.2.22)

This class of horizonless solutions have the same asymptotic geometry as the 4-supercharge five-
dimensional rotating BMPV black holes [42], which have a macroscopic horizon and are described
by the harmonic functions

V =
1

ρ
, LI = 1 +

QI
ρ
, KI = 0 , M =

JL
ρ
. (2.2.23)

Indeed, asympototically, these bubbling solutions behave like a BMPV black hole with charges
QI , and left angular momentum JL:

QI =
n∑
j=1

lIj + CIJK

n∑
(i,j)=1

kJi k
K
j ,

JL =
1

2

n∑
j=1

mj +
1

2

n∑
(i,j)=1

lIi k
I
j +

CIJK
6

n∑
(i,j,k)=1

kIi k
J
j k

K
k .

(2.2.24)

In addition, the bubbling solutions have a right angular momentum JR:

j ≡ JR =
1

2

∣∣∣∣∣∣
∑
i<j

〈Γi,Γj〉 ρ̂ij

∣∣∣∣∣∣ =
1

2

∣∣∣∣∣∑
i

〈Γ∞,Γi〉 ~ρi
∣∣∣∣∣ , with ρ̂ij ≡

~ρi − ~ρj
|~ρi − ~ρj |

. (2.2.25)

Note that the left angular momentum JL is the one on the ψ-fiber, whereas the right angular
momentum JR is understood as the angular momentum on R3. The BMPV black hole does not
have any right angular momentum. Hence, as expected, by taking the scaling limit of multi-
centered solutions, JR vanishes.

The scaling limit is defined as the limit where the inter-centre distances ρij (between centres
i and j) shrinks uniformly to zero. The limit is parameterized by the scaling parameter, λ:
ρij = λdij , with max dij ≡ d = O(1).
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Thus, given some charges QI and an angular momentum JL for a BMPV black hole, there are
various horizonless smooth bubbling solutions of n Gibbons-Hawking centres that have the same
asymptotic charges as the BMPV black hole. Counting how many of these solutions there are
decomposes into two steps. The first step is to count the number of possibilities for the charges
of the GH centres Γj = (qj , k

I
j ; l

I
j ,mj) such that their asyptotic charges (QI , JL) matches the

BMPV black hole’s. Then, each charge configuration (Γj)j=1,...,n defines a superselection sector3

that possesses a connected moduli space of solutions, whose quantization gives the number of
states in that particular superselection sector. Now, right angular-momentum of the bubbling
solutions, JR, is generically different from 0 (the value for the BMPV black hole). So, if one
wishes to count the number of states in a superselection sector that have JR smaller than a
threshold value ε, then one should apply the quantization procedure only in the region of moduli
space where JR < ε, which is in the vicinity of the scaling limit.

2.3 Kaluza-Klein modes at the scaling limit
The scaling limit is a point at the boundary of moduli space that plays a special role in the
construction of microstate geometries. In order to understand the general shape of the vicinity
of the scaling limit, there are two interesting questions. The first is whether the volume of the
entire moduli space is finite. The second is whether the distance in moduli space between the
scaling limit and any point in the bulk moduli space is finite or infinite. As distance on moduli
space is a notion that arises in the Swampland context, we will try to tackle the second question
through the lens of the Swampland programme.

2.3.1 The length of the AdS2 throat in terms of the scaling pa-
rameter

It has been mentioned in the Introduction that in the scaling limit, the throat of microstate
geometries deepens. We would like to estimate the length of the throat of a near-scaling solution
presented in section 2.2.2, in terms of the scaling parameter λ. We will compute the length
of the throat of bubbling solutions approaching the scaling limit, and compare its behaviour
with respect to λ with the logarithmic divergence of the throat length of the BMPV black hole.
The position of the centres in bubbling solutions is arbitrary (insofar as they satisfy the bubble
equations), and different centre configurations will modify the throat length; however, we will
show that this modification is set by the (coordinate) size of the region containing the centres.

For a BMPV black hole, the (radial) throat length is infinite, with the divergence being
logarithmic. In other terms, let us fix a coordinate ρM not too far at infinity (ρM < QI); its
distance to a near-horizon cut-off ρ0 is

LBMPV
throat (ρ0, ρM ) =

∫ ρM

ρ0

V 1/2 (Z1Z2Z3)1/6 dρ =
ρ0→0

(Q1Q2Q3)1/6 ln

(
ρM
ρ0

)
+ F (ρM ) . (2.3.1)

3The term superselection sector is here used in the sense that microstate geometries with different Γj
fluxes — which are quantized — cannot be related from one to another by moving in the moduli space
of solutions [65], except by quantum tunnelling.
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The correction F (ρM ) is of order O
(
ρM
QI

)
and induced by the constant term in ZI . At first order

in ρM , it is equal to ρM−ρ0
Qhar

, where Qhar is the harmonic mean of (Q1, Q2, Q3). This correction
behaves like a constant as ρ0 approaches 0.

Now, consider a family of smooth multi-center bubbling solution in 5D approaching the
scaling limit. The Gibbons-Hawking centres are at a coordinate distance ρij(λ) = λdij of each
other, where d ≡ max dij is of order 1. We choose the origin of the coordinates such that all
the GH centres are within a radius of ρ = λd. We want to know how the throat length scales
with the scaling parameter λ. The throat length shall be computed from the same ρM < QI to
a region at the bottom of the throat at coordinate ρ0(λ) > λd. We shall define for instance

ρ0(λ) = 2 max
i,j

ρij(λ) = 2λd , (2.3.2)

so that we are looking at the distance between the asymptotics and the blob of GH centres. The
point is to keep some distance with respect to each individual GH centres. The length of the
throat in question is

Lthroat(ρ0(λ), ρM ) =

∫ ρM

ρ0(λ)
V 1/2 (Z1Z2Z3)1/6 dρ . (2.3.3)

As the scaling parameter λ is sent to zero, the metric of a bubbling solution approaches that
of a BMPV black hole. The more we are away from the bottom of the throat, the better the
BMPV black hole approximation to the bubbling solution is. More precisely, in the integration
domain of the integral (2.3.3), ρj = ρ+O(λd), and 1

ρj
= 1

ρ

(
1 +O

(
λd
ρ

))
; so the function ZIV

approximates to

ZIV =
QI +O(λd× charges)

ρ2
+

1

ρ
. (2.3.4)

The integrand of (2.3.3) is then

V 1/2 (Z1Z2Z3)1/6 =
(Q1Q2Q3)1/6

ρ

[
1 +O

(
ρ

QI

)
+O

(
λd

charges

)]
. (2.3.5)

The first correction to the logarithm comes from the asymptotic behaviour dominated by the 1/ρ

term in (2.3.4), and is exactly the same one as for the BMPV black hole. The second correction
comes from the fact that the centres are arbitrarily distributed in a region of radius λd. Therefore,
integrating the dominant term and its corrections leads to the following reorganization of terms
4:

Lthroat(ρ0(λ), ρM ) =
λ→0
− (Q1Q2Q3)1/6 ln

(
2dλ

ρM

)
+ F (ρM ) +O

(
λd

charges

)
ln

(
2dλ

ρM

)
. (2.3.6)

Although the positions of the Gibbons-Hawking centres are arbitrary, they lie in a small region
inside ρ < λd. So in the scaling limit, they give rise to the geometry of the BMPV black hole

4Note that we could have taken ρM arbitrarily big. The important point is that integrating the
O
(
ρ
QI

)
term in (2.3.5) gives exactly the function F (ρM ) appearing in (2.3.1).
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outside of the blob region (ρ ≥ 2λd), only up to small corrections. These are dominated by a
λ ln(λ) term whose limit is zero. It was important to know that this correction’s limit is zero, so
that inverting equation (2.3.6) gives

ρ0(λ) ∼
λ→0

ρM exp

(
−Lthroat(ρ0(λ), ρM )− F (ρM )

(Q1Q2Q3)1/6

)
. (2.3.7)

2.3.2 The AdS2 throat and Kaluza-Klein modes

In this section we compute the mass scale of the S3 Kaluza-Klein towers. The five-dimensional
metric (2.2.22) asymptotes to the AdS2 × S3 metric in the throat region. Of course, near the
Gibbons-Hawking centres, the geometry differs, but as long as we do not approach the GH centres
too closely (for example ρ ≥ 10dλ),

ZI =
QI
ρ

(1 +O(ρ)) , V =
1

ρ
(1 +O(ρ)) , (2.3.8)

so that we get the metric of an AdS2 × S3 up to

ds2
5 =−

[
(Q1Q2Q3)−

2
3 ρ2 +O(ρ3)

]
(dt+ ω)2 +

[
(Q1Q2Q3)

1
3

1

ρ2
+O

(
1

ρ

)]
dρ2

+
[
(Q1Q2Q3)

1
3 +O(ρ)

] [
(dψ +A)2 + dϑ2 + sin2 ϑ dφ2

]
.

(2.3.9)

At the location where ρ = ρ0(λ), which, can be understood being roughly the “bottom of the
throat”, there is an infinite tower of Kaluza-Klein modes on the S3, with the lightest mass
measured at the bottom of the throat being

mKK(ρ0(λ)) ∝ 1

RS3(ρ0(λ))
≈ 1

(Q1Q2Q3)
1
6

. (2.3.10)

The mass of the nth Kaluza-Klein mode measured at infinity gets redshifted to

Mn = nmKK
√
gtt|ρ=ρ0(λ) = nmKK (Z1Z2Z3)−1/3 |ρ=ρ0(λ) ≈

nρ0(λ)

(Q1Q2Q3)1/2
. (2.3.11)

Injecting (2.3.7) into (2.3.11), we deduce that the tower of Kaluza-Klein states have masses
that scale like

Mn(Lthroat) ≈
λ→0

nG(ρM )

(Q1Q2Q3)1/2
exp

(
− Lthroat

(Q1Q2Q3)1/6

)
, (2.3.12)

where G(ρM ) = ρM exp
(

F (ρM )

(Q1Q2Q3)1/6

)
5 . This decreasing exponential mass is consistent with

the extension of the Swampland Distance Conjecture to this system that we discussed in the
Introduction.

5The approximation sign ≈ in (2.3.12) is here for the factor nG(ρM )
(Q1Q2Q3)1/2

in front of the exponential,
but the exponential is exact.
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2.3.3 M2 branes at the bottom of the throat

More generally, any locus in the cap verifies the approximation ρi � QI , so although gtt is
not constant in the cap, its dependence with respect to the scaling parameter λ is the same
everywhere in the cap, leading to the same redshift behavior

√
gtt|ρi=λdi ∼

λ→0
f(di)λ . (2.3.13)

The proportionality factor, f(di), depends on the location of the point in the cap and is set by
the charges Γj .

As a result, M2-branes wrapping the two-cycle linking two Gibbons-Hawking centres will
experience a redshift that globally scales like λ in the scaling limit, so using (2.3.7) and dropping
the proportionnality constant gives

MM2 ∼
λ→0

exp

(
− Lthroat

(Q1Q2Q3)1/6

)
. (2.3.14)

We meet again the same exponential mass decrease for the tower of M2 branes.
As we go into the scaling limit and the throat becomes longer and longer, the M2 branes

become also exponentially light.

Our system can be used to extend the Swampland Distance hypothesis. In our example, we
move in the moduli space of metrics. In the scaling limit, the asymptotic geometry is unchanged.
Besides, the size of the cap remains constant, as well as the inter-center physical proper distances
[80], up to order O(λ): the geometry of the cap remains also fixed. In the scaling limit, the only
modulus we are moving is the throat length which grows to infinity.

Let p0 a point in moduli space (a reference point), characterising a solution that possesses a
throat region; and {p(λ)}λ∈(0,λ0] the set of points in moduli space approaching the scaling limit
(λ → 0) from p(λ0) = p0. By reading off the argument inside the exponential, one possible
conclusion is that the distance in moduli space between p0 and p(λ) should be proportional to
the length of p(λ)’s throat, Lthroat(λ):

α∆exponential(p0, p(λ)) ∼
λ→0

Lthroat(ρ0(λ), ρM )

(Q1Q2Q3)1/6
, (2.3.15)

where α corresponds to the mass decay rate of the Swampland Distance Conjecture in (3.1.9).
The distance to the scaling limit would then be infinite.

Note that, instead of having n BPS Gibbons-Hawking centres coming closer to reach the
scaling limit, the limit of n coincident BPS black holes in N = 1 Supergravity merging together
lies also at infinite distance in moduli space [81]. The computation leading to (2.3.12) does
not require the horizonless regularity conditions (3.2.4) at each centre, and Gibbons-Hawking
centres with a horizon going to the scaling limit are actually merging black holes. Our results
thus agree with the infinite distance in moduli space in [81]. However, it is not clear that those
two computations should give the same result. Indeed, the bubble equations (3.2.5) constrains
the relative position of the “Denef black holes” (the Gibbons-Hawking centres with a horizon)
from one another to be dependent of the charges Γi; whereas there is no such a constraint on
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the relative position of the “Michelson-Strominger black holes” of [81].

Interestingly, (Q1Q2Q3)1/6 is approximately the radius of the 3-sphere in the regime ρ0(λ) <

ρ < QI . Indeed, the radius of the 3-sphere is (Q1Q2Q3)1/6 up to corrections of order O
(
ρ
QI

)
near

ρ ∼ QI , and corrections of order the magnitude of the charges Γj in the vicinity of ρ ∼ ρ0(λ); so
the throat looks very much like a cylinder with an S3 base. Let us define the aspect ratio R of
the throat to be the throat length divided by the radius of the S3 base. Then

α∆exponential(p0, p(λ)) ∼
λ→0

Lthroat(ρ0(λ), ρM )

RS3

= R(λ) . (2.3.16)

Note that reading off the argument of the decreasing exponential gives only the distance in
moduli space in the vicinity of the scaling limit, and only in the direction towards the scaling
limit; we do not have any piece of information about how the distance behaves near p0.

2.4 Distance on the Phase space of Multi-centered bub-
bling solutions

The dimensional reduction of the smooth five-dimensional Supergravity solutions of Sections 2.2
and 2.3 along the ψ-fiber leads to the four-dimensional multi-centered solutions [44]. Describing
these centres at equilibrium separations from each other (3.2.5) from Supergravity at gsN � 1

is related to the quiver description of wrapped D-branes at gsN � 1 [82]. As mentioned in
the Introduction, one can compute the symplectic form from the quiver description, and, when
possible, use the compatible complex structure to define a distance on moduli space, ∆phase.

In this section, we wish to check whether the distance ∆phase coincides with the distance
obtained by reading off the exponential decrease.

2.4.1 Symplectic form from Quiver Quantum Mechanics

Given L, the Lagrangian governing the dynamics of n-centered bubbling solutions of four-
dimensional N = 2 Supergravity, coupled to nV gauge fields, and given φA a basis of the fields
apprearing in the Lagrangian, the symplectic form of the Supergravity-solution space is defined
by

Ω ≡
∫
dΣl δ

(
∂L

∂(∂lφA)

)
∧ δφA , (2.4.1)

where Σ is a Cauchy surface (in the 4-dimensional spacetime). We consider Ω̃ the restriction of
the symplectic form Ω to the space of multicentered solutions (which verify the bubble equations).
This consists of changing and restricting the variable fields φA, such that the new fields φ′I define
the 2n− 2-dimensional configuration of the n GH centres.

The symplectic form of BPS solutions in Supergravity is difficult to compute for multi-
centre solutions through the Supergravity action. Nevertheless, in [64], the authors computed
the symplectic form in the open string description, valid when the centres do not backreact
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(gsN � 1). Thanks to a non-renormalization theorem in a similar spirit as [82], this symplectic
form is independent of gs and equal to the symplectic form of BPS Supergravity solutions.

Indeed, the authors of [64, 82, 46] argue that the open string dual of n GH centers in Super-
gravity is described by supersymmetric vacua of a (0+1)-dimensional quiver gauge theory, whose
Coulomb branch consists — after integrating out the massive bifundamentals — of n abelian
vector multiplets. Each of the vector multiplets comprises three scalars (x1, x2, x3) which charac-
terize the positions of the D6 branes in R3, one auxiliary field, D, and one gauge field, A, which
corresponds to the spatial components of the 4D gauge field A in Supergravity. The effective
action of the vector multiplets in the Coulomb branch is determined by the Lagrangian

Lquiver =
n∑
p=1

(−UpDp +Ap · ẋp) + fermions + higher-order terms, (2.4.2)

where Up is found to be

Up = 〈Γp, Hp(xp)〉 ≡
〈

Γp , θ +
∑
q 6=p

Γq
|xp − xq|

〉
. (2.4.3)

The symplectic form can be extracted from Lquiver.
Applying (2.4.1) to Lquiver, the authors of [64] obtain the symplectic form to be of the form∑

p δxp ∧ δAp. The restriction to BPS solutions corresponds, in the open string language, to
restricting the solution space to

⋂
p{Up = 0}. In terms of the Supergravity data, the restricted

symplectic form becomes

Ω̃ =
1

2

∑
p

δxip ∧ 〈Γp, δAid(xp)〉 . (2.4.4)

After calculations detailed in [64], the infinitesimal variations of the field δAid(xp) in (2.4.4) can
be replaced by infinitesimal variations of the locations of the GH centres δxp, such that

Ω̃ =
1

4

∑
p 6=q
〈Γp,Γq〉

εijk(δ(xp − xq)i ∧ δ(xp − xq)j) (xp − xq)k
|xp − xq|3

. (2.4.5)

Because the GH centres satisfy the bubble equations (3.2.5), acting on the positions xp of a
solution with SO(3) rotations gives another configuration satisfying the bubble equations. Thus,
if we impose the variations of the positions of the GH centres to be an infinitesimal rotation
along the n-axis as δxip = εiabnaxbp, and call Xn the vector field corresponding to the rotation,
then the reduced symplectic form satisfies

Ω̃(Xn, ·) = niδJ i , (2.4.6)

where J i are the components of the angular momentum vector

J i =
1

4

∑
p 6=q
〈Γp,Γq〉

xip − xiq
|xp − xq|

. (2.4.7)

Using equation (2.4.6), it is possible to deduce the whole reduced symplectic form for two and
three GH centres. Furthermore, the reduced symplectic form (2.4.5) is closed, so the (2n − 2)-
dimensional solution space can be viewed as a phase space.
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2.4.2 The moduli space of three-centre solutions

We now specialize in a solution with three Gibbons-Hawking centres. In this superselection
sector, the moduli space of solutions, which is also the phase space, has 2n− 2 = 4 dimensions.
Here, we have already set the centre of mass of the three GH points to be at the origin of R3. The
total angular momentum vector J of the three-centre system (2.4.7) is described by its norm, j,
and its direction — parameterized by the (θ, φ) angles in S2. Now, rotating the triangle formed
by the GH centres around the axis of J does not modify the angular momentum vector, so the
fourth real variable that we call σ characterizes this U(1) rotational symmetry.

In a nutshell, (j, θ, φ, σ) are the coordinates on the four-dimensional phase space. Once the
charges on each GH centre are fixed, the intersection products 〈h,Γp〉 and 〈Γp,Γq〉 are also fixed.
Given the length of two sides of the triangle of the GH centres, the third one is determined by the
bubble equations (3.2.5). In other terms, for a given size of the triangle, its shape is determined.
And what controls the size of triangle in these coordinates is the angular momentum j through

j =
1

2

√
−
∑
p<q

〈h,Γp〉〈h,Γq〉 ρ2
pq , (2.4.8)

where p and q label the centres. The angles (θ, φ, σ) then parameterize how the triangle orients
itself in R3. They do not change the nature of the bubbling solution, but they do contribute to
the phase space of solutions.

Using (2.4.6), the symplectic form reduces to [64]

Ω̃ = −d(j cos θ) ∧ dφ− dj ∧ dσ . (2.4.9)

We can then define x ≡ j and y ≡ j cos θ, so that

Ω̃ = −dx ∧ dσ − dy ∧ dφ . (2.4.10)

Note that (x, y;σ, θ) are the symplectic (or action-angle) coordinates, since in these coordinates,
the symplectic form Ω̃ is flat.

On the one hand, the “action” coordinates x and y satisfy the following inequalities

x− j− ≥ 0, j+ − x ≥ 0, x− y ≥ 0, x+ y ≥ 0. (2.4.11)

So on the (x, y)-plane, the solution space is a convex polytope. In particular, when j− = 0,
this is a triangle, as shown in figure 2.2. On the other hand, the “angle” coordinates define a
two-torus fibration over the polytope. On each facet of the polytope, one of the angles σ or φ
becomes degenerate, that is to say the cycle they parameterize shrinks to zero size. Indeed, on
the x − y = 0 and x + y = 0 facets, φ becomes degenerate, whereas on the x − j− = 0 and
j+ − x = 0 facets, σ becomes degenerate.

We consider the instance j− = 0 where scaling solutions are admitted. The polytope of the
(x, y) moduli space is defined by 3 inequalities defining a triangle:

l1(x, y) = −x+ j+ ≥ 0 l2(x, y) = x− y ≥ 0 l3(x, y) = x+ y ≥ 0 . (2.4.12)
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y = j cos θ

x = jj− j+

y = j cos θ

x = jj+

Figure 2.2 – The moduli space on the (x, y)-plane is a polytope, deliminated by the facets
(they are edges too) of the polytope. The picture on the left depicts the moduli space
when j− = 0 while the one on the right applies when j− > 0. We only consider the former
instance. The scaling limit lies at point (0, 0). The figures are from [64].

The scaling limit lies at (0, 0) in the (x, y)-plane. The scaling limit loci lie at (0, 0, σ, φ). As both
φ and σ become degenerate at the scaling point (0, 0), this shows the scaling limit boils down to
one point, at the boundary of moduli space.

The phase space is a convex toric manifold endowed with a closed symplectic form, and
the vertices lie on integer coordinates (so our polytope is a 2-dimensional Delzant polytope 6).
Consequently, the symplectic form is compatible with an integrable complex structure, so that
our phase space is a Kähler manifold [83]. Thus, we can use the following result for Kähler toric
manifolds to determine the Kähler metric:

With the set of p inequalities characterizing the (two-dimensional) polytope P of the Kähler
toric manifold,

li(x) = cxi x+ cyi y − λi ≥ 0 , (2.4.13)

one can define the “canonical potential” of the polytope P

gP (x) =
1

2

p∑
r=1

lr(x) log lr(x) (2.4.14)

whose Hessian G =
(

∂2gP
∂xi∂xj

)
i,j

in the “action” coordinates determines the complex Kähler struc-

ture in the action-angle coordinates [83,84]

J =

(
0 −G−1

G 0

)
. (2.4.15)

6Further details on Kähler toric manifolds and definition of Delzant polytopes can be found in Ap-
pendix B of [64]
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Thus the Riemannian Kähler metric in the action-angle coordinates is

Ω̃(·, J ·) = Gijdx
i ⊗ dxj + (G−1)ijdθ

i ⊗ dθj =

(
G 0

0 G−1

)
. (2.4.16)

Consequently, we apply this result and deduce that the moduli space metric in the symplectic
coordinates is of the form (2.4.16) with

G =
1

x2 − y2

(
2xj+−x2−y2

2(j+−x) −y
−y x

)
, G−1 =

1

2j+ − x

(
2x(j+ − x) 2y(j+ − x)

2y(j+ − x) 2xj+ − x2 − y2

)
.

(2.4.17)
We immediatly see that the G part of the Riemannian metric blows up on all the facets of

the triangle. Thus, the metric is defined only in the interior of the triangle. In this regard, the
scaling limit is not part of the bulk moduli space, but in its boundary.

Actually, the symplectic form on the Kähler toric manifold does not define a unique “poten-
tial” determining J . In fact, J can be defined by any potential g of the form

g = gP + h , (2.4.18)

where h is a smooth function on the whole polytope P satisfying the requirements that [83]:
(1) the Hessian G of g is positive definite on the interior P ◦ of P , and
(2) the determinant of G is of the form

det(G) = γ(x)

(
p∏
r=1

lr(x)

)−1

, (2.4.19)

with γ being a smooth and strictly positive function on the whole P .
The Hessian G =

(
∂2g

∂xi∂xj

)
i,j

defines the compatible toric complex structure J and Riemannian

Kähler metric Ω̃(·, J ·) the same way as in using (2.4.15) and (2.4.16).
Nevertheless, we will continue our computations with the metric defined by the “canonical

potential” gP , as did [64].

2.4.3 The distance to the scaling limit

The volume of the moduli space of the bosonic sector of BPS, classical configurations of Super-
gravity (which is our phase space) naively counts, in units of the Planck constant hn−1 (where
n is the number of GH centres), the number of quantum states in a particular superselection
sector. Indeed,

Vphase = ~2

∫
dx dy dσ dφ

√
det(GG−1) = h2j+

2 (2.4.20)

in the instance where j− = 0. When j− 6= 0, the number of states is j+2 − j−2. This naive
counting, which does not include the fermionic degrees of freedom, matches nevertheless with
the result in [64]. From the symplectic-form derivation, the volume of the entire moduli space is
finite.

45



Imposing that the volume of the entire moduli space is finite has a consequence on the shape
of the vicinity of scaling limit. Indeed, if the length to the scaling limit was infinite, then the
area of its orthogonal directions should shrink at a rate such that the volume remains finite.
Then, for a parametrically small angular momentum, j, in the classical regime, the density of
quantum states at that given phase-space hypersurface (defining a given throat length) would
be parametrically small. Each superselection sector’s vicinity to the scaling limit would have the
shape of a spike of infinite-length and finite volume.

Now we wish to assess whether the geodesic distance in solution space between the scaling
limit and any point in the bulk moduli space is infinite. The symplectic coordinates of the
solution space are bounded, and the metric is not singular in its bulk, so any two points in the
bulk solution space are at finite distance of each other. The only place where the distance could
be infinite is at the facets of the polytope.

The coordinate values of (σ, φ) are chosen in [0, 2π] and their metric is bounded by 2j+ from
above. We will therefore only consider the metric from the (x, y) coordinates.

Consider the straight path between the scaling limit
−→
0 = (0, 0) and the point −→r0 = (x0, y0) =

r0(cosα, sinα), with α ∈ [−π/4, π/4]. The distance of this path is given by

∆phase(
−→
0 ,−→r0) =

∫ r0

0

√
Gab

dxa

dr

dxb

dr
dr . (2.4.21)

In the vicinity of the scaling point, although the metric blows up (Gab dxa

dr
dxb

dr ∼
r→0

cosα
r ), to

compute the distance we integrate its square root:

∆phase(
−→
0 ,−→r0) ∼

r0→0
2
√

cosα
√
r0 = 2

√
x0 . (2.4.22)

Then the distance to the scaling limit ∆phase(
−→
0 ,−→r0) is finite; therefore the geodesic distance

in moduli space is finite too. This contradicts the naive extension of the Swampland Distance
Conjecture.

With similar reasoning, we can show that although the metric is blowing up on the facets of
polytope in the (x, y)-plane, the entire moduli space is bounded. The details are in the Appendix.

We wish now to relate the distance on moduli space with the masses S3 Kaluza-Klein modes.
Recall that the angular momentum j is proportional to the scaling parameter λ:

j =
1

2

√
−
∑
a<b

〈h,Γa〉〈h,Γb〉 ρab(λ)2 , (2.4.23)

where ρab(λ) = λdab is the coordinate distance between centres a and b. We can therefore express
the masses of the Kaluza-Klein modes (2.3.11) in terms of the angular momentum j:

Mn(j) = κnj +O(j2) , (2.4.24)

where κ is a positive constant

1

κ
≈ 1

4d
(Q1Q2Q3)1/2

√
−
∑
a<b

〈h,Γa〉〈h,Γb〉 d2
ab . (2.4.25)
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As we have seen in equation (2.4.22), the distance in moduli space from any point p at finite
angular momentum j to the scaling limit j = 0 is finite. We deduce that as j approaches 0, the
mass of the Kaluza-Klein tower depends quadratically on this distance:

Mn(j) ∼
j→0

κn

4
∆phase(0, j)

2 . (2.4.26)

This quadratic dependence deviates from the exponential dependence advocated by the Swamp-
land Distance Conjecture.7 This indicates that the distance of the moduli space seen as a phase
space computed using the non-renormalization theorem and the canonical potential — according
to [64] — differs from the distance one should use in order to extend the Swampland Distance
Conjecture.

2.5 Discussion
In this paper, we have focused our attention on the scaling limit of a class of microstate geometries
— the bubbling solutions — in the moduli space of solutions. This limit plays a particular
role, as microstates geometries approach the black hole solution from the asymptotic observer’s
perspective. As one moves towards the scaling limit, bubbling solutions develop a throat whose
depth is increasing to infinity. Besides, the deepening of the throat makes the redshift from the
cap to the spatial asymptotics stronger and stronger, so the energy of all excitations lying at the
bottom of the throat decrease to zero.

This decrease of energy excitations at the bottom of the throat is independent of the type of
excitation we consider, as the redshift affecting them, set by √gtt, is the same. In Section 2.3, we

have proved that the redshift decreases the energy excitations by a factor of exp
(
− Lthroat

(Q1Q2Q3)1/6

)
.

Thus, one may argue that our model is a new instance of the Swampland Distance Conjecture
for metrics. If it turns out to be true, one can extract, from the mass decay, a notion of distance
in moduli space, ∆exponential (p(λ0), p(λ)), from a reference solution p(λ0) to a solution p(λ)

approaching the scaling limit (λ→ 0).
As discussed in Section 2.3.3, the Michelson-Strominger derivation of the distance in moduli

space [81] shows that the merging of n BPS black holes happens as well at an infinite moduli
space distance from the bulk, and seems to support the ∆exponential distance. However, it is not
clear that these two distances — one involving black holes with unconstrained positions, and the
other involving charged Gibbons-Hawking centres/black holes whose positions satisfy the Denef
integrability equations — should agree.

A second notion of distance, ∆phase, can be derived from the Kähler metric of the phase space
of three-centre solutions. This distance is a priori computed in the weak coupling regime. The
first question is whether one can extrapolate this distance up to strong string coupling regime.
The non-renormalization theorem of [64] shows that the reduced symplectic form, Ω̃, (2.4.4)
remains the same in the Supergravity regime up to a normalization factor. Nevertheless, the

7Since the distance to the scaling limit is finite here, we are measuring distances from the moving
point p(j) to the scaling limit p(0); while in Section 2.3, as the distance to the scaling limit was infinite,
we were considering distances from the moving point p(j) to a reference point p(j0) at finite angular
momentum.
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potential gP (2.4.14) used to compute the integrable structure J is not unique (2.4.18) — and is
so in all regimes of the string coupling. As a result, in order to assert that the complex structure,
J , and the metric of the moduli space are invariant under the tuning of the string coupling, one
must show that the effects of h in (2.4.18) on the metric on moduli space are dominated by those
of the canonical potential, gP .

We have shown that there exists a tension between the “canonical” distance according to the
phase-space computation, ∆phase, whose distance to the scaling limit is finite, and ∆exponential.
Now, there is only one correct normalization of the distance on the moduli space of bubbling
solutions at strong string coupling: the one from the variations of the effective Supergravity
action. Thus, we have the following possibilities:
(1) Neither ∆phase nor ∆exponential give the correct normalization.
(2) Only the canonical ∆phase gives the correct distance on moduli space, even in the strong

string coupling regime. If the Swampland Distance Hypothesis for metrics is correct, then
it will not apply to our metrics.

(3) The Swampland Distance Hypothesis applies to our solutions, and ∆exponential gives the
correct normalization of the distance to the scaling limit. The use of canonical ∆phase is
not reliable in the strong coupling regime.

If possibility (2) is correct, then our computation gives an explicit example of a metric on
moduli space which blows up at all points on the boundary of moduli space, but where all of
the boundary points lie at finite distance in moduli space. In particular, the scaling limit of
bubbling solutions — at which global symmetries of the Black hole are restored — is within
finite-distance reach from any other point in the moduli space. Besides, the mass decay of the
tower of Kaluza-Klein modes does not behave like a decreasing exponential with respect to the
moduli space distance ∆phase between p(λ0) and p(λ).

Although there is an infinite tower of states whose mass is decaying to zero, the decay is due
to an universal redshift in a fixed-warp region of space-time, and thus does not introduce any
singularities.8 Besides, the three-sphere at the bottom of the throat on which the Kaluza-Klein
modes live is macroscopic and is part and parcel of the five-dimensional Supergravity solution.
Therefore, the example we provide here differs from the usual Swampland picture, in which going
at a corner in moduli space implies the appearance of singularities (for instance the shrinking of
Calabi-Yau cycles in [85]), which involve the breakdown of the effective field theory.

As a result, the Swampland conjectures would not forbid the scaling limit to be accessible
from the bulk moduli space. However, in possibility (2), as argued in [64], quantum mechanics,
by virtue of the uncertainty principle, will imply the breakdown of Supergravity at the scaling
limit.

If possibility (3) is correct, then one cannot extend the “canonical” ∆phase to the strong
coupling regime, because the integrable complex structure, J , is not invariant under the shift of
gs, or because one has to take into account the effect of the additional potential h at weak coupling
in the first place. However, the authors of [64] computed J in the open string picture with the
canonical potential gP , and used it at strong coupling regime. In particular, the probability

8Actually, this argument does not depend on assuming possibility (2).
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distribution e−K of quantum wave functions in the phase space of bubbling solution they derive
depends on the Kähler potential K, whose value will shift if one considers the potential h in
addition of the canonical potential gP .

Therefore, if the canonical ∆phase somehow gives the wrong normalization of distance, some
of the conclusions in [64] could be revisited. The relative coordinate positions of the centers
−→ρij define solutions in Supergravity. In particular, near the scaling limit, the coordinate posi-
tions −→ρij need to be arbitrarily precise. However, because of the form of the symplectic form
(2.4.5) computed from the open string sector, these coordinates do not commute; hence, it is
not possible to localize the positions −→ρij with arbitrarily good precision in coordinate space. In
the closed string sector, the fully back-reacted solution does not require its Gibbons-Hawking
centres to be localized with arbitrarily good precision in the geometry in terms of proper dis-
tance, as the cap keeps its shape in the scaling limit. However, if one follows the logic of [64],
the uncertainty about positions in coordinate space at weak string coupling is transported unto
the phase space of three-centered solutions in Supergravity: one cannot localize any classical Su-
pergravity bubbling solution with arbitrary high precision in phase space. Instead, each classical
Supergravity bubbling solution is defined with some inherent quantum uncertainty and must be
coarse-grained with a “droplet” of solutions around it in a volume hm in the phase space. How
far in the phase space one should apply the coarse-graining depends on the metric/distance in
moduli space around that particular classical Supergravity solution p1.

On the one hand, when the components of the moduli-space metric have small values, as
one schematically moves away from p1 within the coarse-graining droplet region of p1, one can
reach solutions that are very different from p1. In particular, according to the canonical distance
on moduli space that [64] used — where the metric behaves like 1/JR in the vicinity of the
scaling limit — the scaling limit lies at finite distance to any other point in the moduli space, so
the coarse-graining of a solution p1 close to the scaling limit point contains solutions {p} which
possess throats that have very different macroscopic physical lengths. Therefore, Heisenberg’s
uncertainty principle prevents classical solutions from Supergravity to be a good description of
black hole microstates.

On the other hand, when the components of the moduli-space metric are large around the
solution p1, the solutions {p} reached within a distance ∼

√
h look much more like p1. In

particular, with a metric that, in the vicinity of the scaling limit, scales like 1/JR
2 9 as advocated

by the Swampland Distance Hypothesis, the distance in moduli space to the scaling limit is
infinite. Wandering around p1 within a distance

√
h along the angular-momentum coordinate

JR (or equivalently the scaling-parameter coordinate λ) cannot give solutions {p} whose physical
throat length is arbitrarily long. Instead, with ∆exponential, one deduces from (2.3.16) that the
variation of the length of the throat in the set of solutions {p} will be of order

∆Lthroat = αRS3 . (2.5.1)

Whether quantum fluctuations in p1’s coarse-graining droplet are negligible or too large depends
on the value of the mass decay rate α of (2.3.16). If α � 1, the geometries described by
Supergravity are reliable and well-defined. If α is of order one or bigger however — as in the

9This gives the logarithmic dependence of the distance on λ in (2.3.6)

49



context of Calabi-Yau compactifications [86–88] —, quantum fluctuations of the throat length
of each bubbling solution have macroscopic size, so describing those arbitrarily deep geometries
with Supergravity is still not reliable. Nonetheless, in both instances, the breakdown (should
it happen) of Supergravity here is milder than the one from the canonical phase space distance
of [64].

In a nutshell, regardless of the value of α, coarse-graining droplets defined using ∆exponential

contain a much smaller range of solutions than those using the canonical ∆phase. While with
the canonical ∆phase as the correct normalization of distance on the moduli space, the coarse-
graining droplet of a deep-throat bubbling solution could contain the scaling limit point; the
droplet derived from the ∆exponential normalization only contains solutions with similar throat
lengths. Therefore, with ∆exponential, the breakdown of Supergravity at the scaling limit is soft-
ened.

If extending the Swampland Distance Hypothesis to our model is possible, then we have
drawn a parallel between (i) travelling within Planckian field range in field space to avoid the
breakdown of the EFT in the context of the Swampland Distance Hypothesis and (ii) travelling
a distance of

√
h around a classical solution in phase space within the region of its quantum

fluctuations. While the Swampland Distance Hypothesis only considers field ranges that are
isotropic in moduli space, the fundamental quantity on the phase space side is the coarse-grained
volume hm, and the symplectic form defines an anisotropic “droplet” around a classical solution.
In our example, the Swampland Distance Hypothesis could be interpreted as a consequence of
the symplectic form establishing Heisenberg’s uncertainty principle. Whether or not this inter-
pretation is legitimate is a question to explore.

As for Black Hole physics, both possibilities (2) and (3) entail at least some breakdown of
Supergravity as the description of arbitrarily-deep-throat bubbling solutions. As one approaches
the scaling limit from a bubbling solution, the resulting geometry enters into a new phase, whose
precise description may require other tools, for instance perturbative String Theory — that
one uses in the microstate solutions of [89–91, 31, 92]. However, the extent of the breakdown,
depending on which one of possibility (2) or (3) is correct, is very different.

With possibility (2), the bubbling solution acquires a critical maximal throat length after
which supergravity completely breaks down. Thus, the new phase can possess a throat that is
not arbitrarily deep, like in the instances of [93–96] and [90,91,31,92].

With possibility (3), when the Supergravity description of a geometry with a very long throat
(of length Lthroat) becomes unreliable, one has to scramble the initial Supergravity solution with
solutions whose throat length is between Lthroat−αRS3 and Lthroat +αRS3 . Therefore, the new
phase should still possess a throat which can be tuned to be arbitrarily deep. Thus, any complete
description of bubbling solutions up to the scaling limit should still capture the presence of a
cap and an arbitrarily deep throat. Finding such a description beyond Supergravity of those
geometries would then be an interesting direction for the future.
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Chapter 3

An Alliance in the Tripartite Conflict
over Moduli Space

3.1 Introduction
The moduli space of solutions of a given theory describes a set of solutions parameterized by
continuous parameters. For our intuition, it is practical to define a distance on the moduli space
so that similar solutions are close one to another in the space of solutions. There are, in the
literature, three ways to define distances on moduli spaces which come from a priori different
formulas and viewpoints.

1. The phase-space distance. A first way to think about moduli space is to start with a
semi-classical theory; one can define a classical phase space upon which geometric quantization
[97–99] gives the number of quantum states in a given region of the phase space. For instance,
this is the point of view one can take in order to count the number of quantum black-hole
microstates that a given set of supergravity solutions (parameterized by continuous parameters)
account for [100, 101, 64, 56]. In detail, given a Lagrangian theory characterizing a set of fields,
φA, one defines the symplectic form of the theory, Ω, from the Crnković-Witten-Zuckerman
formalism [75,76]:

Ω =

∫
dΣl δ

(
∂L

∂(∂lφA)

)
∧ δφA , (3.1.1)

where the integral is performed over a Cauchy surface Σ in space-time. The fundamental quantity
in phase space is given by the symplectic form, Ω, and there is not necessarily a notion of distance
on it. Nevertheless, the symplectic structure of the manifold is sometimes compatible with an
almost complex structure, J ; then one can define a Kähler metric out of Ω and J :

Gphase = Ω(·, J ·) . (3.1.2)

Given a path, γ, linking two points p1 and p2 on moduli space, one can define the distance along
the path, γ, between the two solutions:

∆phase(p1, p2) =

∫
γ

√
Gab

∂xa

∂τ

∂xb

∂τ
dτ . (3.1.3)
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2. The low-velocity distance. In the context of a solution describing multiple static,
extremal Reissner-Nordström black holes, one can define a distance on the moduli space pa-
rameterized by the distance between the black holes [102,103]. Because each black hole sources
electric and gravitational forces that cancel out one another, the overall system is stable, and any
configuration of those black holes described by their coordinate in space, ~xj , solves the equations
of motion. One can allow the black holes to move with small velocities ~vj ≡ d ~xj

dt , and find the
expansion of the action up to order O(v2). Then, one rewrites this effective action so that it
involves the velocities, ~vi, as an overall factor of the Lagrangian [81,104–106]:

Seff,O(v2) =

∫
dt(vi)

a(vj)
b(Gij)ab , (3.1.4)

from which we deduce the metric of the (dn)-dimensional (where d is the dimension of the
physical space and n is the number of black holes) configuration space of the positions ~xj :

ds2
low−v. = (Gij)ab dxi

a dxj
b . (3.1.5)

Then the moduli space is a submanifold embedded in this configuration space, as it satisfies
additional constraints, such as the conservation of the angular momentum of the whole system
of black holes.

This notion of distance can be extended to other configurations of supersymmetric objects
that satisfy a no-force condition. A geodesic in this moduli space represents the trajectories of
the individual components of the dynamical system in physical space-time [102].

3. The DeWitt distances. Another possibility to define a metric on the moduli space
of metrics has been formulated by DeWitt [72]. The original DeWitt distance applies to the
moduli space of induced metrics on Cauchy slices, but one can generalise it to moduli space of
(Riemannian) metrics on the entire spacetime manifold. There are two possible generalisations:
3a. The DeWitt distance without the volume factor. Given a metric gµν of a spacetimeM, the
distance on a path, γ, parameterized by τ and on which the metric variations are transverse-
traceless, can be defined as [107]

∆DeWitt 1 = c

∫ τf

τi

(∫
M

√
g tr

[(
g−1 ∂g

∂τ

)2
]) 1

2

dτ , (3.1.6)

where c is a constant of order 1, depending on the dimension ofM.
3b. The DeWitt distance with the volume factor. Let VM =

∫
M
√
g be the volume of M.

Another distance on the same path γ can be defined as

∆DeWitt 2 = c

∫ τf

τi

(
1

VM

∫
M

√
g tr

[(
g−1 ∂g

∂τ

)2
]) 1

2

dτ , (3.1.7)

where c is a constant of order 1, depending on the dimension ofM. This distance has been used
in the context of the Swampland programme, in order to formulate the Generalized Distance
Conjecture [71]. The distance (3.1.7) boils down to the moduli space distance of the scalar fields
in the case of Calabi-Yau compactifications on 4-dimensional Minkowski space [73], thus making
the link with the original Swampland distance conjecture [69].
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The “Swampland” perspective on moduli space is that given a set of scalar fields of a d-
dimensional effective field theory, φi, their kinetic terms, Gij , that appear in the action written
in the d-dimensional Einstein frame

S =

∫
ddx
√−g

[
R

2
−Gij

(
φi
)
∂φi∂φj + ...

]
, (3.1.8)

defines a metric on moduli space of the φi’s. The geodesic distance on moduli space, ∆, is then
used to delimit the domain of validity of the space of effective field theories (EFT’s) [86, 108].
Indeed, as one moves away from a point, p0, in the bulk moduli space, there should exist an
infinite tower of states with an associated mass scale, M(p), such that

M(p) ∼M(p0) e−α∆(p0,p) , (3.1.9)

with α a constant of order 1 in Planck units. Thus, the effective field theory defined by p breaks
down if one moves a few Planck units away from the original effective theory, p0. In [71], the
fact that the kinetic terms define a metric on moduli space was extended to the kinetic terms
and the moduli space of all dynamical fields, and was linked to the DeWitt distances (3.1.6,3.1.7).

The previous three/four definitions come from different viewpoints, and are used in different
contexts. Indeed, the moduli space of flux vacua is a space of effective field theories, whereas the
moduli space of multiple extremal black holes or of black hole microstates is a space of solutions
within the same EFT. However, from the string theory perspective, all these moduli spaces are
subsectors of a solution space of the same UV-complete theory. An obvious question is whether
these three different notions of moduli space measure the same distance.

In this letter, we compare these three different notions on a specific space of metrics: the so-
called five-dimensional bubbling geometries, or equivalently, the four-dimensional multi-centered
solutions.

Bubbling geometries [40,41,14] are smooth, supersymmetric solutions of five-dimensional, un-
gauged, N = 2 supergravity, coupled to vector multiplets. They have the same asymptotics and
asymptotic charges as the three-charge, five-dimensional, supersymmetric black hole (the BMPV
black hole [42]). Unlike the extremal black hole whose horizon lies at the bottom of an infinitely-
long AdS2 throat, the bubbling solutions have a smooth cap at the bottom of a long, but finite
AdS2 throat. As such, they are sometimes considered as coherent superpositions of the black
hole microstates [43,13]. Much like their corresponding black hole, the bubbling geometries can
also be constructed with R1,3 × S1 asymptotics; reduced to four dimensions, they correspond to
a class of multi-centered solutions [44–46], which still have the same asymptotics and asymptotic
charges as the four-dimensional black hole, but are singular from a 4D perspective.

One can think the multi-centered solutions as coming from splitting the black hole’s asymp-
totic charges (Q1, Q2, Q3) into local charges at different locations in space, denoted centres. The
centres are located at the coordinates λ ~dj in R3, with j enumerating the centres and λ a positive
parameter. If one wishes the metric to be smooth in five dimensions, then the relative positions
of the centres are constrained.

From the classical point of view, there is no obstruction to send the parameter λ to 0, so
that the coordinates of the centres approach the origin of R3 while approximately keeping their
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collective shape [43]. This limit in the moduli space of bubbling geometries is called the scaling
limit. In this limit, in gravity, the length of the bubbling geometry’s throat increases towards
infinity, while the geometry of the cap remains fixed. This limit constitutes a well-defined path
in moduli space. So, given a solution in the bulk moduli space, p(λ0), it is possible to compute its
distance to a solution approaching the scaling limit, p(λ), with λ→ 0. In this letter, we compare
the distance to the scaling limit from p(λ0) according to the three definitions of distance on
moduli space mentioned above. In particular, the new computation we do in this letter is the
one using the formula with the DeWitt distances (3.1.6) and (3.1.7).

Before computing the distance to the scaling limit in the moduli space of bubbling geometries,
let us recall a good illustrative example where the second DeWitt distance (3.1.7) is used in the
context of the Swampland: Take a family of AdSp × Sq, where the radius of AdS space fixes the
size of the sphere [71]. The limit in moduli space where the value of the cosmological constant
vanishes lies at infinite distance from the bulk moduli space. Besides, while going to that limit,
an infinite tower of Kaluza-Klein (KK) modes of the sphere becomes exponentially massless, in
accordance with the Swampland distance conjecture.

Now, take a family of warped geometries that are asymptotically AdSp × X, where X is a
compact manifold. To compute the exact mass of the KK modes of X, one needs to take a scalar
deformation of the metric, solve the wave equations, and the quantized energies measured at
spatial infinity give the masses of the KK tower [68].

For our bubbling geometries with a long AdS2 × S3 throat, any energy excitation at the
bottom of the throat is redshifted when one measures it at spatial infinity. In the scaling limit,
the redshift becomes stronger and stronger, so the energy measured at spatial infinity gets more
and more suppressed. Moreover, this decay is exponential with respect to the throat length,
Lthroat [16]:

M(Lthroat) ∼
λ→0

exp

(
− Lthroat

(Q1Q2Q3)1/6

)
. (3.1.10)

Knowing the Swampland distance conjecture (3.1.9), it appeared natural to propose that the dis-
tance to the scaling limit in moduli space is given by the argument of the decreasing exponential,
up to some constant factor of order 1 [16]:

∆exponential(λ0, λ) =
|Lthroat(λ)− Lthroat(λ0)|

(Q1Q2Q3)1/6
. (3.1.11)

Thus, with ∆exponential, the distance to the scaling limit would be infinite, as the throat length
increases to infinity to match that of the extremal black hole.

However, this notion of moduli space distance can only be used if one could show that every
tower of massless states emerges at infinite distance: namely, that the converse of the Swampland
distance conjecture applies in this limit.

But it was also shown from [16] that the distance to the scaling limit according to the phase-
space definition (3.1.3) would give a finite distance. This distance was derived at weak string
coupling from quiver quantum mechanics, and, according to [64], can be extrapolated to strong
coupling thanks to a non-renormalization theorem [82, 64]. In the scaling limit, the relevant
metric component on moduli space, Gλλ, blows up like 1/λ, so the phase-space distance behaves
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like

∆phase(λ0, λ) =

∫ λ0

λ
dλ′
√
Gλλ ∝

√
λ0 −

√
λ ≈

√
λ0 (3.1.12)

in the vicinity of the scaling limit.
The phase-space distance indicates that an infinite tower of massless modes can emerge

at finite distance in moduli space. However, the phase-space distance is not the one used to
formulate the Generalized Distance Conjecture [71]. Therefore, in this letter, we compute the
distance to the scaling limit according to the DeWitt distances.

In Section 3.2, we review some properties of bubbling geometries. In Section 3.3, we show that
the first DeWitt distance (without the volume factor) for the scaling limit matches the phase-
space distance (3.1.12), while the second DeWitt distance (with the volume factor) matches the
“exponential” distance (3.1.11). In Section 3.4, we confront these two distances with a distance
computed in the literature [102,106,109] using the low-velocity distance.

3.2 Bubbling geometries
The metric of the bubbling geometries is of the form

ds2
5 =− (ZM )−2 (dt+ ω)2 +

ZM
V

(dψ +A)2

+ V ZM

[
dρ2 + ρ2

(
dθ2 + sin2 θ dφ2

) ]
, (3.2.1)

where the warp factor ZM ≡ (Z1Z2Z3)1/3 is the geometric mean of the functions (Z1, Z2, Z3)

which encode the three asymptotic charges of the black hole.
While the black hole has warp factors ZI sourced by a charge QI at the origin of the four-

dimensional space and which is of the form

ZI = 1 +
QI
ρ
, (3.2.2)

the multi-centered solution are determined by eight harmonic functions on the base R3, (V,KI ;LI ,M) ≡
H, that depend on the location of their poles, in the following generic form:

H = h∞ +

n∑
j=1

hj

|~ρ− λ ~dj |
. (3.2.3)

The integer n denotes the number of centres. The coefficient h∞ is the asymptotic value of
the harmonic function H; collectively, the h∞ are chosen to be h∞ ≡ (v∞, lI∞; kI∞,m∞) =

(1, 1, 1, 1; 0, 0, 0,m∞) for R1,3 × S1 asymptotics. The coefficient hj is the charge associated to
the centre j; collectively, the hj ≡ (vj , l

I
j ; k

I
j ,mj) satisfy

lIj = −|εIJK |
2

kJj k
K
j

qj
, mj =

|εIJK |
12

kIj k
J
j k

K
j

q2
j

, (3.2.4)
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with εIJK being the Levi-Civita symbol. The equations (3.2.4) guarantee the smoothness of the
bubbling geometries in five dimensions. Besides, the absence of Dirac-Misner strings (which give
of closed time-like curves) in bubbling geometries leads to constraints on the relative positions
of the centres, ρij ≡ |λ ~dj − λ ~di|, the so-called bubble equations, or Denef equations [46, 41]:

n∑
j=1

〈hi,hj〉
ρij

= 〈h∞,hi〉 , for i = 1, . . . n . (3.2.5)

Here, the symplectic product, 〈·, ·〉, for A = (A0, AI ;AI , A0) and B = (B0, BI ;BI , B0) is defined
as 〈A,B〉 ≡ A0B0 −A0B

0 +AIBI −AIBI .
The metric of the bubbling geometries (3.2.1) comprises warp factors (and angular momen-

tum) whose building blocks are the harmonic functions (V,KI ;LI ,M):

ZI = LI +
|εIJK |

2

KJKK

V
. (3.2.6)

Asymptotically, the different local charges hj ≡ (vj , l
I
j ; k

I
j ,mj) put on the centres develop into

the black hole’s asymptotic charges, (Q1, Q2, Q3), in the following fashion:

QI =

n∑
j=1

lIj + |εIJK |
n∑

(i,j)=1

kJi k
K
j . (3.2.7)

3.3 The DeWitt distances between deep-throat geome-
tries

a. The metric and its inverse in the throat region. As the cap and the asymptotics are fixed
in the scaling limit, we only need to compare the distance between solutions with throats of
different lengths, using the DeWitt distance (3.1.6).1

The throat region we are interested in is defined to be delimited by ρ ∈ [ρ0(λ), ρM ]. See Fig.
3.1. The upper-bound, ρM , is chosen so that the top of our region of interest is inside the AdS2

throat: ρM � QI . The lower-bound, ρ0(λ), is chosen to be not too close from the centres, say
ρ0(λ) = 2λmax |~dj |. Then in the throat region, the metric is well-approximated by

ds2
5 =− ρ2

Q2
M

(dt+ ω)2 +
QM
ρ2

dρ2 +QMdΩ2
3 , (3.3.1)

where QM ≡ (Q1Q2Q3)1/3 and

dΩ2
3 = (dψ +A)2 + dθ2 + sin2 θ dφ2 , A ≡ cos θdφ . (3.3.2)

In the basis B ≡ (dt+ ω, dρ, dψ +A, dθ, sin θ dφ), the inverse metric is written in diagonal
form:

g−1 = diag

[
(QM )2

ρ2
,
ρ2

QM
,

1

QM
,

1

QM
,

1

QM

]
. (3.3.3)

1The geometry in the cap and in the asymptotic flat region does not depend on the scaling parameter,
λ, so the ∂g

∂λ term in (3.1.6) vanishes in these regions.
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ρ = ρ0(λ)ρ = ρM ρ = 0

Smooth
capAdS2 × S3 throatAsymptotic

R1,3 × S1 region
Infinite

AdS2 × S3 throat

λ→ 0

Figure 3.1 – A schematic depiction of the bubbling geometries. The centres at coordinate
λ ~dj, depicted in red, lie in the cap region. In the scaling limit (λ→ 0), the geometry of
the cap and of the asymptotic region remains fixed, while the throat region delimited by
ρ ∈ [ρ0(λ), ρM ] and shaded in blue, becomes longer and longer.

b. The derivatives in the throat region. Recall that

∂|~ρ− λ ~dj |
∂λ

= −(~ρ− λ ~dj) · ~dj
|~ρ− λ ~dj |

. (3.3.4)

Then, given a harmonic function H of the form (3.2.2), the derivative of H with respect to the
scaling parameter λ is given by

∂H

∂λ
=

n∑
j=1

hj

(
~ρ− λ ~dj

)
· ~dj

|~ρ− λ ~dj |3
. (3.3.5)

In the throat region, as ρ� λ,

∂H

∂λ
∼ ~ρ

ρ3
·

 n∑
j=1

hj ~dj

 = O
(
1/ρ2

)
. (3.3.6)

Thus, the derivative with respect to λ of any harmonic function is an O
(
1/ρ2

)
-function in the

throat region.
Using (3.3.6) and that the harmonic functions are of order O(1/ρ) in the throat region, we

successively deduce, from formula (3.2.6) and ZM ≡ (Z1Z2Z3)1/3, that

∂ZI
∂λ

= O
(
1/ρ2

)
,

∂ZM
∂λ

= O
(
1/ρ2

)
. (3.3.7)

Written in the basis B, the derivative of the metric (3.2.1) with respect to λ gives in the throat
region

∂g

∂λ
= diag

[
O(ρ),O(1/ρ3),O(1/ρ),O(1/ρ),O(1/ρ)

]
. (3.3.8)
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c. The distance to the scaling limit. Combining (3.3.3) and (3.3.8) gives that in the basis B,
∂g

∂λ
g−1 = diag [O(1/ρ),O(1/ρ),O(1/ρ),O(1/ρ),O(1/ρ)] , (3.3.9)

so that

tr

[(
∂g

∂λ
g−1

)2
]

= O(1/ρ2) . (3.3.10)

Therefore, the metric component on moduli space behaves like∫
M

√
g tr

[(
g−1 ∂g

∂τ

)2
]
∝
∫ ρM

ρ0(λ)
dρ

1

ρ2
∝ 1

λ
. (3.3.11)

In the scaling limit, the metric component on moduli space along λ blows up like 1/λ, but this
gives a DeWitt distance (3.1.6) (between a point p(λ0) in bulk moduli space and a point p(λ)

closer to the scaling limit)

∆DeWitt 1(λ0, λ) ∝ c
∫ λ0

λ
dλ′

1√
λ′
∝
√
λ0 −

√
λ , (3.3.12)

which is finite. This dependence in the scaling parameter, λ, matches exactly that of the phase-
space distance (3.1.12)!

Note that if we wanted ∆DeWitt 1 to match the infinite distance of ∆exponential ∼ |Lthroat,i −
Lthroat,f |, we would have needed

∆DeWitt 1, false ∝ − ln

(
λi
λf

)
, (3.3.13)

that is to say

tr

[(
∂g

∂λ
g−1

)2
]
∝ 1

ρ3
. (3.3.14)

This last behaviour is too singular and impossible given (3.3.10), whose most singular power in
ρ near ρ = 0 is at most 1/ρ2.

d. The distance with the volume factor. The volume of the asymptotic R1,3 × S1 region is
infinite, so in the chosen coordinates, the DeWitt distance with the volume factor (3.1.7) between
any two bubbling geometries is 0.

In fact, the distance (3.1.7) is not invariant under diffeomorphisms of the spacetime metric,
and, as explained in [74], one should choose a frame which satisfies the condition of a vanishing
Lie derivative. For metrics parameterized by a single dimensionfull scale, the distance (3.1.7)
computed in such a frame gives a logarithmic divergence [74]. Thus, for a bubbling geometry
approaching the scaling limit and only parameterized by the scaling parameter λ, the distance
to the scaling limit diverges logarithmically:

∆DeWitt 2 ∝ − ln

(
λi
λf

)
. (3.3.15)

This behaviour in λ matches that of the exponential distance (3.1.11).
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3.4 The conflict over moduli space
In this letter, we have compared the distance in moduli space between two bubbling geometries of
different throat lengths, using the two DeWitt distances. Our computation in Section 3.3 shows
an agreement between the distance to the scaling limit according to the phase-space distance
(3.1.3) computed in [16] and to the DeWitt distance without the volume factor (3.1.6). Both
formulas, (3.1.12) and (3.1.6), give a finite result for this distance. On the other hand, the
distance to the scaling limit according to the DeWitt distance with the volume factor (3.1.7) is
infinite and matches with that of the exponential distance (3.1.11).

One of the motivations to take (3.1.7) to be the generalised Swampland distance is that
it gives the exponential mass decrease (3.1.9) with respect to the moduli space distance [74].
But the distance (3.1.6) is also a well-defined distance that can be used in the context of the
Swampland. The two DeWitt distances (3.1.6) and (3.1.7) do not agree, and measure different
physical notions – if they correspond to any physical notions at all. Could the lew-velocity
distance match one of the two DeWitt distances?

At first sight, both the results (3.3.12) and (3.3.15) appear to be in tension with an earlier
works in the literature [109,82], which use the low-velocity distance (3.1.5) of [102].

Our computation in Section 3.3 leading to (3.3.12) did not involve the use of the smoothness
conditions (3.2.4) nor the bubble equations (3.2.5). Indeed, we applied the DeWitt distance to
AdS2 throat regions of different lengths. As the throat is far from the centres, it is insensitive
to the physics at the bottom of the throat. For instance, the throat is insensitive to the details
of the charges hj at the centres, as long as they give the right black-hole asymptotic charges
(3.2.7).

As such, one can take kIj = 0 for all j and I, so that the black-hole charge QI is only given
by the lIj ’s:

QI =
n∑
j=1

lIj , ZI = LI , (3.4.1)

and one would still find the same finite result for the distance to the scaling limit (3.3.12). In
addition to the condition KI = 0, let us take the simple example of a two-center solution and
further impose

V = L1 = L2 = L3 . (3.4.2)

From the four-dimensional point of view, equation (3.4.2) means that the centres of the
multi-centered solutions become extremal Reissner-Nordström black holes at the same coordinate
location. However, this is exactly the system considered in [109] and previously in [102] (see
also [106]). In [109], it was computed that the low-velocity metric in moduli space is

ds2 =
1

2

(l1)3l2 + l1(l2)3

(ρ12)3
(dρ12)2 , (3.4.3)

where ρ12 denotes the distance between centre 1 and 2, and l1, l2 are the respective electric charges
at centre 1 and 2. (The results match the same 1/ρ3 dependence found in [82].) Therefore, the
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distance to the scaling limit is given by

∆low−v.(λ0, λ) ∝
∫ λ0

λ
dλ

1

λ3/2
∝ 1

λ1/2
− 1

λ0
1/2

. (3.4.4)

The distance to the scaling limit is infinite, and blows up like 1
λ1/2

. This is, at first sight,
in contradiction not only with the distance to the scaling limit according to the phase-space
distance (3.1.12) and to the first DeWitt distance (3.3.12), but also with the second DeWitt
distance (3.3.15).

However, there is a subtlety here:2 the low-velocity distance measures the moduli-space
distance on a higher dimensional moduli space. For instance, the dimension of three-centered
solutions before applying the bubble equations (3.2.5) is 6, while after imposing them the di-
mension becomes 4. The low-velocity distance measures distances on the 6-dimensional moduli
space, while the phase-space distance and the two DeWitt distances measure the distance on the
4-dimensional moduli space. This is why the low-velocity distance does not necessarily contradict
both the DeWitt distances.

ρ = ρ0(λ)ρ = ρM

AdS2 × S2 throat
(radius)2 ∼ Q =

∑
lj

Asymptotic
R1,3 region

AdS2 × S2 throats
(radii)2 ∼ lj

λ→ 0

Figure 3.2 – Geometry of multiple near-coincident extremal black holes. The main AdS2

throat, shaded in blue, divides itself into multiple infinite AdS2 throats corresponding to
the individual black holes. In the scaling limit (λ→ 0), only the length of the main throat
increases.

But regardless of the above subtlety, the physical picture of the scaling limit of multiple
extremal black holes is quite similar to that of the smooth cap being pushed deeper by the AdS2

throat. For near-coincident extremal black holes, after the asymptotically flat region, there is a
main AdS2 throat region corresponding to the sum of all the black hole charges, Q =

∑n
j=1 lj .

See Fig. 3.2. This main throat region eventually divides itself into multiple AdS2 throat regions,
corresponding to the different local charges, lj , of the individual extremal black holes [109]. In
the scaling limit, the geometry of the bottom of the throat remains fixed, and only the main
AdS2 throat of the bigger black hole becomes longer and longer [81, 109]. Thus, the main AdS2

throat is insensitive to whether lies at its bottom a smooth cap or a set of black holes: this is
why the computations in Section 3.3 leading to (3.3.12) will give the same result for a deepening

2I would like to thank Micha Berkooz for pointing out this subtlety.
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AdS2 throat with black holes at its bottom.

In this letter, we compared the phase-space distance and the two DeWitt distances, on a
moduli space of geometries developing longer and longer AdS2 throats. In the specific example
of path on moduli space we took, the phase-space distance and the DeWitt distance without the
volume factor agree, while the DeWitt distance with the volume factor disagrees with them:

• According to the phase-space distance and the DeWitt distance without the volume factor,
the locus in moduli space where the lengths of these throats become infinite – i.e. the
scaling limit locus – lies at finite distance in moduli space. Indeed, for both of these
distances, the metric component on moduli space along the scaling parameter, λ, blows
up as 1/λ in the vicinity of the scaling limit (λ → 0), so the distance to the scaling limit
is finite.
In the scaling limit, an infinite tower of KK modes becomes massless due to the increasing
redshift from the cap to the asymptotics. According to the phase-space distance and the
DeWitt distance without the volume factor, this infinite tower of massless states emerges
at finite distance in moduli space. If the DeWitt distance without the volume factor is
the relevant distance to use in the context of the Swampland, these results constitute a
counter-example to the converse of the Generalized Distance Conjecture.

• However, according to the DeWitt distance with the volume factor, the distance in moduli
space to the scaling limit locus is infinite, and scales like log λ. This log λ behaviour would
lead to a tower of KK states whose mass decrease matches the exponential decrease of
the usual Swampland picture, should the converse of the Generalized Distance Conjecture
apply in the scaling limit of deep-throat geometries.

According to the low-velocity distance, the distance in moduli space to the scaling limit locus
is infinite, and scales like 1/λ1/2. However, the low-velocity distance computed here concerns
a higher-dimensional moduli space of solutions on which one has not yet imposed the bubbles
equations. Finding out which are the fields that need to be integrated out in order to get the
lower-dimensional moduli space will indicate the behaviour of the low-velocity distance to the
scaling limit for bubbling geometries. This last result should match one of the two DeWitt
distances, and thus shedding light on the physical interpretation of the matched distance. We
hope to report on this in the future.
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Chapter 4

Gravitational Footprints of Black Holes
and their Microstate Geometries

4.1 Introduction

The observation of gravitational waves by the LIGO collaboration [110] from colliding black holes
has lead to a paradigm shift in how we think about black holes: they are physical objects that can
be observed and studied in nature. Furthermore, gravitational-wave interferometers [111] and
telescope arrays [112] have began to measure effects that are sensitive to possible new physics at
the scale of the horizon, and this sensitivity is only bound to increase with the advent of space-
based gravitational-wave interferometers [113] and third-generation ground-based ones [114].

On the other hand, black holes have served as the primary theoretical lab for exploring
quantum gravity. Their theoretical studies have led to many interesting puzzles and paradoxes
which have offered important windows into quantum gravity; chief among them are the origin of
the microstates that make up the Bekenstein-Hawking entropy, and the unitary problem of black
hole evaporation. The study of microstates is an inherently top-down question as it requires an
understanding of the microscopic degrees of freedom of quantum gravity. In contrast, the unitary
problem can be studied from a bottom-up perspective by exploring consistency of quantum
mechanics near black hole environments. An important lesson from the latter is that black-hole
evaporation is compatible with the standard rules of quantum mechanics only when there is
new structure at the scale of the black horizon [9]. This is also articulated more recently in the
firewall paradox [38].

One of the crowning successes of string theory is reproducing the Bekenstein-Hawking en-
tropy for a wide classes of supersymmetric black holes from stringy microscopic states [28]. A
fundamental question that follows is: What are the gravitational properties of such microstates?
While generically it is hard to characterize their quantum mechanical properties, there can exist
wide classes of microstates that are sufficiently coherent to admit classical descriptions as smooth
horizonless geometries [13, 51]. These states are called microstate geometries. These geometries
are indistinguishable from their corresponding black hole up to the region of the would-be hori-
zon, where the spacetime ends in a smooth horizonless cap that contains non-trivial topological
cycles wrapped by fluxes.
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The key lesson from the top-down studies of microstate geometries and as well as the bottom-
up analysis is: black holes as observed in nature may correspond to ultra compact objects made up
of new phases of matter from quantum gravity. In the fast emerging field of gravitational-wave
astronomy and astrophysics, an important goal will be to characterize the possible deviations
from astrophysical Kerr black holes in general relativity (GR) coming from the new black hole
microstructure in string theory.

An important class of observables that can distinguish microstate geometries with horizon-
size structure from classical GR black holes is the tower of gravitational multipole moments.
These observables are already astrophysically interesting and will become more so in the era
of gravitational-wave astronomy. In this paper, we aim to characterize gravitational multi-
pole moments of microstate geometries that correspond to a class of four-dimensional non-
supersymmetric spinning extremal black holes, dubbed almost-BPS [115,67,66,116,117]. There
are several benefits in studying the almost-BPS black holes and their microstates:

First, almost-BPS black holes and their microstate geometries are constructed from super-
gravity by subtly breaking supersymmetry while maintaining the general linear structure that
allows for solvability [115, 67]. This has several benefits as compared to their widely studied
supersymmetric1 cousins. Indeed, the supersymmetric four-dimensional black holes in string
theory are non-rotating, extremal and carry large charges;2 these features undermine their phe-
nomenological interest. In contrast, almost-BPS black holes can have angular momentum, small
charge-to-mass ratios,3 and can therefore have the same conserved charges as astrophysical black
holes. In this regard, it is phenomenologically relevant to study the multipole structure of these
black holes and compare it to the multipole structure of Kerr black holes. This initial analysis
will provide the baseline to study deviations of multipoles caused by horizon-scale microstructure
in the almost-BPS microstate geometries when compared to the almost-BPS black holes and to
the Kerr black holes.

Another benefit of studying almost-BPS solutions is to contrast them with the phenomenolog-
ical modeling of Exotic Compact Objects (ECOs) [123, 124, 122]. These are bottom-up objects
that force structure at horizon scale and thereby violate black hole no-hair theorems and the
Buchdahl bound [125]. Their description require exotic matter with no UV physics. Almost-
BPS solutions on the other hand can be understood directly in string theory.

The multipole structure of almost-BPS black holes and their microstate geometries is very
rich. This is owed to the non-trivial four-dimensional angular momentum that is absent in the
non-spinning supersymmetric black holes. We show that the multipoles of almost-BPS black
holes have a similar functional dependence on the mass-to-spin ratio as the multipoles of Kerr(-
Newman) black holes. Moreover, unlike the latter, almost-BPS multipoles also have an interesting
dependence on the charge-to-mass ratio. Furthermore, the generic almost-BPS black holes have
all non-zero multipoles, including the odd-parity multipoles which vanish in Kerr; the presence

1For recent study of gravitational multipoles for supersymmetric microstate geometries see [118–121].
For a more general discussion of observables of supersymmeric microstate geometries see [122].

2These charges emerge from string theory and can be associated to dark Maxwell fields.
3Even if almost-BPS black holes are extremal, their four-dimensional charges can be made arbitrarily

small compared to their mass by turning on non-trivial scalar fields that modify the effective electromag-
netic coupling in four dimensions. We discuss this in detail in section 4.3.3.
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of these multipoles indicates a breaking of equatorial symmetry (θ ↔ π − θ) which could have
interesting observable consequences. This is a significant deviation from Kerr black holes.

Multipoles of almost-BPS microstate geometries have a highly non-trivial dependence on
the internal degrees of freedom of the geometry. These deviate from the multipoles of the
almost-BPS black hole at the same scale as the size of the microstructure in the near horizon
region.4 We show that the deviations are rather “random” as they depend on the geometry of
the topologically non-trivial bubbles that give the horizon-scale structure, and they can be either
positive or negative; this is in contrast with the analysis of [119], where the multipoles of certain
microstate geometries were found to be larger than the multipoles of their corresponding black
holes. In a broader scope, our constructions and studies in this paper allow us to understand
the physics of potential microstructure of the Kerr black hole much better than what one could
hope from naively extrapolating the supersymmetric microstate results as was previously done
in [118–121].

The structure of the paper is as follows. In the next subsection we summarize our main results.
In section 4.2, we review non-supersymmetric four-dimensional solutions obtained by the almost-
BPS ansatz and some generalities about the derivation of multipole moments. In section 4.3, we
construct non-supersymmetric rotating almost-BPS black holes that look almost neutral and we
compare their physics to that of Kerr-like GR black holes. In section 4.4, we construct a family
of multicenter microstate geometries and discuss their physics and their multipole structure
with respect to the almost-BPS black holes they correspond to. In particular, we compare and
contrast properties of the almost-BPS microstate multipoles with previous work and conjectures
on (supersymmetric) microstate geometry multipoles. Finally, we conclude in section 4.5 with a
brief overview of possible future directions.

4.1.1 Summary of our results

Using the almost-BPS ansatz in N = 2 four-dimensional supergravity, we construct four-charge
non-supersymmetric rotating black holes and smooth horizonless microstate geometries thereof.
We describe the new (astro)physics brought about by the horizon-scale structure compared to
the classical black holes of general relativity. The expected modifications can be separated in
two categories:

• Deviations between the physics of almost-BPS black holes and the physics of Kerr black
holes.

• Deviations that arise from the presence of a smooth horizonless microstructure replacing
the horizon of almost-BPS black holes.

The physics of almost-BPS black holes

Our discussion starts with non-supersymmetric four-charge extremal black holes constructed
from the almost-BPS ansatz. We highlight the role of a dimensionless parameter, h, that allows
to dial the ratio between the four-dimensional mass and charges. Therefore, our string-theory

4Extremal black holes have a throat of infinite length, that an infalling observer can traverse in finite
proper time, so the“size” of the microstructure above the horizon is subtle to define [126].
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black holes can have the same mass, charges and spin as an almost-neutral Kerr-Newman black
hole.

We first discuss the geometrical differences between the near-horizon regions of these two
solutions. Being extremal, rotating almost-BPS black holes have no ergosphere and the area of
their horizon and their cosmic censorship bounds scale differently with the charges compared to
Kerr black holes. Second, the multipoles of almost-BPS black holes have a similar dependence
on the mass/spin ratio compared to Kerr black holes. However, they also depend non-trivially
on the mass/charge ratio (determined by the parameter h) unlike Kerr(-Newman) solutions.
Moreover, all multipoles of the rotating almost-BPS black hole are non-zero, irrespective of their
parity.

We highlight the important similarities and differences that exist between the multipole
moments of generic almost-BPS black holes in string theory and those of Kerr black holes.

For h = 1, the almost-BPS black hole is the purest spinning black hole: all its multipoles
except the mass and angular momentum vanish. This is unique among rotating gravitational
solutions (for example Kerr has infinite towers of non-zero multipole moments).

The physics of almost-BPS microstate geometries

In the second part of the paper, we discuss the physics of almost-BPS microstate geometries
(near their black hole limit) and compare it to the physics of their corresponding almost-BPS
black holes.

• The multipole moments of microstate geometries are equal to the multipoles of the black
hole they correspond to with deviations proportional to the “size” of the microstructure
above the would-be black-hole horizon. More concretely,

Mult (Microstate) = Mult (BH) (1 + O (δmicro)) , (4.1.1)

where δmicro � 1 is the scale of the solution which characterizes how “close” in moduli space
the microstate geometry is to the black hole [64, 16]. When δmicro → 0, the microstate
geometry becomes identical to the black hole.

• When δmicro is finite, the microstate-dependent contribution proportional to O (δmicro) can
modify the classical-black-hole result. In particular, in [121, 119] an analysis of certain
families of microstate geometries suggested that microstate geometries have bigger multi-
poles than the black hole with the same charges, implying that perhaps the black hole is
an extremum in the phase space of solutions for certain observables.5 We have constructed
a number of almost-BPS microstate geometries that show explicitly that the black hole is
not an extremum in solution phase space, at least not as far as multipoles are concerned.
For the geometries we construct, the multipoles deviate from their expected average black
hole values by O (δmicro) terms that behave as small microstate-dependent “noise-type”
contributions and that can be either positive or negative.

5This conjecture came from comparing supersymmetric non-scaling microstate geometries to Kerr
black holes. As mentioned at the beginning of the summary section, a careful analysis should be done in
two steps: (i) comparing scaling microstate geometries to their corresponding black hole in string theory,
and then (ii) comparing this black hole to the astrophysical Kerr black hole with the same conserved
charges (or at least the same mass and angular momentum).
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4.2 The class of solutions and multipole moments
In this section, we review the construction of non-supersymmetric almost-BPS four-dimensional
solutions and give a few generalities about the computation of gravitational multipole moments.

4.2.1 Almost-BPS solutions

We work with non-supersymmetric solutions of string theory that are asymptotic to four-dimensional
Minkowski space times a six-dimensional CY manifold. More specifically, our solutions fit within
the so-called almost-BPS ansatz, in which one can construct multi-center non-supersymmetric
black holes as well as horizonless microstate geometries [115, 67, 66, 116, 117]. Despite breaking
supersymmetry, the equations governing the solutions in this ansatz can be solved using a linear
algorithm. This linear structure comes because of an underlying nilpotent algebra [127], and is
present in several other ansatze governing non-supersymmetric solutions [128,129].

In general the almost-BPS ansatz can be used obtain solutions to any U(1)n five-dimensional
supergravity, but in this paper we will focus on the STU solutions that arise from a compactifi-
cation of M-theory on T 6× S1 [130–132]. The solutions have a Taub-NUT base space, and have
an additional isometry, which allows us to compactify them to four dimensions. We describe
in detail the four-dimensional STU Lagrangian in appendix B.1, starting from the string theory
realization of these solutions. This Lagrangian contains, besides the four-dimensional metric,
four vector gauge fields (hence generic solutions have four electric and four magnetic charges)
and three complex scalar fields that are all non-trivially coupled.

The metric of an almost-BPS solution is described by eight scalar functions (V,K1,K2,K3, Z1, Z2, Z3, µ),
together with an angular momentum one-form $:

ds2
4 = −I4

− 1
2 (dt+$)2 + I4

1
2 ds2

3 , I4 ≡ Z1Z2Z3V − µ2V 2 , (4.2.1)

where ds2
3 is the metric of a flat three-dimensional base that we parameterize by the spherical

coordinates
ds2

3 = dρ2 + ρ2
(
dθ2 + sin2 θ dφ2

)
. (4.2.2)

The gauge fields and scalars also have a specific form (which depends on all of the functions
(V,K1,K2,K3, Z1, Z2, Z3, µ)), which we give in appendix B.1.3.

These almost-BPS solutions have ten conserved quantities: four electric charges qΛ (Λ =

0, · · · , 3) and four magnetic charges pΛ in addition to a four-dimensional massM and an angular
momentum J . We work in units where Newton’s constant in four dimensions is G4 = 1. Thus,
asymptotically we always have:

I4 ∼ 1 +
4M

ρ
, I−

1
2

4 $
∣∣
dφ
∼ 2J

ρ
sin2 θ , (4.2.3)

The almost-BPS ansatz contains a non-BPS extremal four-charge black hole (the “almost-
BPS black hole”), as well as horizonless solutions that are smooth in string theory6 and allow

6In four dimensions, the centers of these solutions correspond to D6 branes and D4 branes with Abelian
worldvolume flux, hence are singular. However, the metric near each of these centers becomes completely
smooth and non-singular when uplifted to a six-dimensional duality frame.
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scaling limits where they can approach the black hole geometry arbitrarily well [66]. Thus, we
can think about these solutions as “almost-BPS microstate geometries”. Crucially, the equations
of motion for these microstate geometries have an “almost-linear” structure (see (B.1.26)), which
allows one to generate multi-center configurations. In appendix B.3, we review the method to
solve these equations for solutions where all the centers are collinear [67].

4.2.2 Gravitational multipole moments

One important physical property that we will study in detail for almost-BPS solutions is the struc-
ture of their gravitational multipoles. For asymptotically-flat four-dimensional solutions, these
can most easily be read off by using the ACMC-coordinate7 formalism developed by Thorne [133],
which we briefly review here. All of the almost-BPS solutions constructed thus far are stationary
and axisymmetric, so we will only discuss ACMC spacetimes satisfying these symmetries.

We will follow [120] by first writing the metric in AC coordinates: these are asymptotically
Cartesian coordinates that are not necessarily mass-centered. This means that the mass dipole
moment, M̃1, does not necessarily vanish (as it must in ACMC coordinates). One can then
obtain ACMC coordinates from any AC coordinate system by a simple shift of origin.

In such AC coordinates8, the asymptotic expansion of the metric is:

gtt = −1 +
2M

ρ
+
∞∑
`≥1

2

ρ`+1

(
M̃`P` +

∑
`′<`

c
(tt)
``′ P`′

)
, (4.2.4)

gtφ = −2ρ sin2 θ

 ∞∑
`≥1

1

ρ`+1

(
S̃`
`
P ′` +

∑
`′<`

c
(tφ)
``′ P

′
`′

) , (4.2.5)

gρρ = 1 +
∞∑
`≥0

1

ρ`+1

∑
`′≤`

c
(ρρ)
``′ P`′ , gθθ = ρ2

1 +
∞∑
`≥0

1

ρ`+1

∑
`′≤`

c
(θθ)
``′ P`′

 ,
(4.2.6)

gφφ = ρ2 sin2 θ

1 +

∞∑
`≥0

1

ρ`+1

∑
`′≤`

c
(φφ)
``′ P`′

 , gρθ = (−ρ sin θ)

 ∞∑
`≥0

1

ρ`+1

∑
`′≤`

c
(ρθ)
``′ P

′
`′

 ,
The argument of the Legendre polynomials P` (and their derivatives) appearing above is always
cos θ. The terms that contain c(ij)

``′ correspond to non-physical “harmonics”, and depend on the
particular AC(MC)-N coordinates used. Even though these coefficients c(ij)

``′ are unphysical, it
is a condition of ACMC coordinates that only c(ij)

``′ appear with `′ < `.9

7Asymptotically-Cartesian and Mass-Centered
8Note that here we are only discussing ACMC-∞ coordinates, from which all of the multipoles M`, S`

can be read off. More generically, one can also have ACMC-N (or AC-N) coordinate systems from which
we can only read off the multipoles to order N+1. Fortunately, for almost-BPS solutions the coordinates
we find are AC-∞.

9For example, the gρρ component of the Kerr metric in Boyer-Lindquist coordinates does not satisfy
this condition, since there is a gρρ component already at order ρ−2 [133,120].
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As mentioned above, AC coordinates are also ACMC if and only if the mass dipole vanishes,
M̃1 = 0. The gravitational multipoles M`, S` are then simply the M̃`, S̃` quantities appearing
above. However, if our AC coordinate system has M̃1 6= 0, it is easy to obtain ACMC coordinates
by a simple shift of the origin along the z-axis by z0 = −M̃1/M̃0. We can then express the true
multipoles M`, S` in terms of the M̃`, S̃` for any AC coordinate system [120]:

M` =
∑̀
k=0

(
`

k

)
M̃k

(
−M̃1

M̃0

)`−k
, S` =

∑̀
k=0

(
`

k

)
S̃k

(
−M̃1

M̃0

)`−k
(4.2.7)

The coordinate-independent multipoles then consist of the mass multipoles M` (of which the
mass is M0 = M) and the current (or angular momentum) multipoles S` (of which the angular
momentum is S1 = J).

4.3 Almost-BPS extremal black hole
In this section, we review the stationary and axisymmetric almost-BPS black hole constructed
in [66]. We shall add to the solutions of [66] non-trivial asymptotic values for the eight scalar
functions (V,KI , ZI , µ). These asymptotic values, parameterized by h, will add interesting phys-
ical decorations to the black hole solution as they can be used to dial the ratio between the mass
and the charges in four dimensions. We will further compute the multipole moments of this black
hole, and compare them to those of Kerr-Newman black holes.

4.3.1 The solution

We consider a specific family of almost-BPS black holes that has the form (4.2.1), with:

V = h+
Q0

ρ
, ZI =

1

h
+
QI
ρ
, KI = 0 , µ V = m∞+α

cos θ

ρ2
, $ = −αsin2 θ

ρ
dφ .

(4.3.1)
Note that in order to have a physical solution, one needs I4 > 0 in (4.2.1). A necessary condition
is that h and QΛ have the same sign, which we will assume to be positive.
These solutions are asymptotically flat when I4 → 1 in (4.2.1). This requires

h−2 −m2
∞ = 1 ⇐⇒ m∞ = ±

√
1− h2

h
. (4.3.2)

We can define the warp factor

∆ ≡ ρ2
√
V Z1Z2Z3 − µ2V 2

=

√
(Q0 + h ρ)

(
Q1 +

ρ

h

)(
Q2 +

ρ

h

)(
Q3 +

ρ

h

)
− (m∞ ρ2 + α cos θ)2 ,

(4.3.3)

and then express the four-dimensional metric as:

ds2
4 = −ρ

2

∆

(
dt− αsin2 θ

ρ
dφ

)2

+ ∆

[
dρ2

ρ2
+ dθ2 + sin2 θ dφ2

]
, (4.3.4)
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The spherical coordinates we use are isotropic coordinates for the black hole, where the horizon is
at ρ = 0; the timelike Killing vector ∂t vanishes at this locus. As mentioned above, this solution
is supported by three non-trivial complex scalars and four gauge fields, which are given in detail
in appendix B.2.

4.3.2 Properties

The mass and angular momentum of this solution can be read off from (4.2.3) and are:

M =
Q0 + h2(Q1 +Q2 +Q3)

4h3
, J = −α

2
. (4.3.5)

Moreover, the electromagnetic charges pΛ, qΛ sourcing the solutions are given by (see appendix
B.2):

(p0, p1, p2, p3; q0, q1, q2, q3) = (Q0, 0, 0, 0; 0, Q1, Q2, Q3) . (4.3.6)

The black hole thus has one magnetic charge and three electric charges. To consider this black
hole as an astrophysically relevant one, these charges should not be thought of as standard model
charges; rather, they should be viewed as “hidden” or dark charges, and their corresponding gauge
fields considered as dark photons. Interestingly, the bounds on such dark charges (especially if
they only interact gravitationally with standard model fields) from gravitational wave observa-
tions [134] or black hole imaging [135, 136] are still very weak — in particular, black holes with
large (even near-extremal) dark charges have not necessarily been ruled out yet.

The event horizon is located at ρ = 0, and has the topology of an S2. The horizon area is

AH = 4π
√
Q0Q1Q2Q3 − α2 . (4.3.7)

which is the same as the area of the horizon of a supersymmetric extremal D6-D2-D2-D2-D0
black hole in four dimensions. This comes from the fact that the near-horizon geometry of the
almost-BPS black hole is identical to the near-horizon geometry of its BPS cousin when uplifted
to five dimensions.

The metric (4.3.4) is already given in AC coordinates (as introduced in section 4.2.2). We
can then easily read off the coefficients M̃` and S̃`:

M̃0 = M , M̃1 = −1

2
m∞ α , M̃`

∣∣
`≥2

= 0 , (4.3.8)

S̃0 = 0 , S̃1 = J , S̃`
∣∣
`≥2

= 0 . (4.3.9)

Upon using (4.3.2) to express everything in terms of h, the multipoles (4.2.7) become:

M` = (∓1)` (1− `) M
(

1− h2

h2

) `
2
(
J

M

)`
, S` = (∓1)`−1 ` J

(
1− h2

h2

) `−1
2
(
J

M

)`−1

,

(4.3.10)
where the expressions are valid for every ` ≥ 0 and where ∓1 corresponds to the choice of
branches for m∞ in (4.3.2).10 Note that for h = 1, when the mass is determined by the sum
of the charges (4.3.5), all multipoles (except M0 and S1) vanish, despite the presence of a finite
angular momentum. This makes this solution unique among all spinning gravitational solutions
and, as we explained in the Introduction, we can think about it as the purest spinning black hole.

10More precisely, (∓1)
` is (−1)` if m∞ =

√
1−h2

h and (+1)` if m∞ = −
√
1−h2

h .
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4.3.3 Comparing with Kerr black holes

One can see that almost-BPS black holes have a common point with the electrically and magneti-
cally charged Kerr-Newman solution when Q0 = Q1 = Q2 = Q3. Taking in addition α = m∞ = 0

(implying h = 1) gives precisely the extremal Reissner-Nordstrom metric in isotropic coordinates.
However, more generic almost-BPS black holes have significant differences that might affect their
gravitational footprints compared to black holes in general relativity. In this section we compare
the almost-BPS black holes to Kerr and Kerr-Newman black holes in order to further assess their
phenomenological viability.

Cosmic censorship and ergosphere

A Kerr-Newman black hole of massM , angular momentum J and carrying any number of charges
QI has an allowed regime of parameters dictated by the cosmic censorship bound:

M2 −
∑
I

QI −
J2

M2
≥ 0 . (4.3.11)

This is very different from the cosmic censorship bound of the almost-BPS black hole, which
is given by demanding that (4.3.7) remains real and can be expressed in terms of the angular
momentum J and conserved charges p0, qi in (4.3.6) as:

p0q1q2q3 − 4J2 > 0 . (4.3.12)

Note that the mass M does not appear explicitly in this formula.
Moreover, a Kerr-Newman black hole generically has an ergosphere, where the asymptotically

timelike Killing vector ∂t becomes spacelike. The almost-BPS black hole does not have an
ergosphere, despite having a non-zero angular momentum. It would be interesting to understand
how this could give rise to potential dynamical differences between Kerr(-Newman) and almost-
BPS black holes, for example for photon orbits or gravitational-wave emission.

Multipole moments

We calculated the multipoles of the almost-BPS black hole in (4.3.10). We can compare these to
the multipoles of a Kerr(-Newman) black hole, of which the non-zero multipoles can be written
as:

Kerr: MKerr
2` = (−1)`M

(
J

M

)2`

, SKerr
2`+1 = (−1)` J

(
J

M

)2`

, MKerr
2`+1 = SKerr

2` = 0 .

(4.3.13)
Note that the gravitational multipoles of Kerr and (charged) Kerr-Newman are the same, and
thus (perhaps surprisingly) they are independent of the black hole charges [137]. For an almost-
BPS and Kerr-Newman black hole of equal mass M and angular momentum J , we can compare
the even-mass and odd-current multipole moments:

M2`

MKerr
2`

= (−1)`+1 (2`− 1)

(
1− h2

h2

)`
,

S2`+1

SKerr
2`+1

= (−1)` (2`+ 1)

(
1− h2

h2

)`
. (4.3.14)
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We see that the multipoles differ significantly because of the overall sign difference and the
presence of h. As we will discuss below, h is related to the ratio of mass and charges of the black
hole. For example, in the small h limit, 0 < h� 1, the mass M over charge Q (where Q stands
for any of the pΛ, qΛ charges) ratio scales as M/Q ∼ 1/h3 (see (4.3.16)), so that (4.3.14) scales
as:

0 < h� 1 :
M2`

MKerr
2`

∼ (−1)`+1 (2`− 1)

(
M

Q

) 2`
3

. (4.3.15)

Hence, unlike Kerr-Newman black holes, the almost-BPS multipoles have a non-trivial depen-
dence on the charges of the solution, that comes through the dependence on h.

In the opposite regime, h = 1, we see from (4.3.10) that all of the almost-BPS multipoles
vanish with the exception of the mass M0 = M and of angular momentum S1 = J . It is worth
pointing out that this is an unique physical system — to our knowledge, no other known (su-
per)gravity solution can have a non-zero angular momentum S1 6= 0 without any other multipole
turned on. Hence, we can think about the h = 1 black hole as the purest spinning black hole.

We can tune h in (4.3.14) to set the mass quadrupole moments equal, M2 = MKerr
2 ; this sets

h−1 =
√

2. Of course, then the higher-order multipoles will differ by larger and larger factors
as we increase `. We note that while current and near-future observations (will) constrain the
quadrupole moment rather well (constrainingM2/M

3 within 10−4), it is unlikely that for example
eLISA will be able to constrain many higher multipole moments to a similar degree [138–141].11

Finally, we also note that the odd mass multipoles M2`+1 and even current multipoles S2` of
the almost-BPS black hole do not vanish, in contrast to the Kerr(-Newman) black hole. These
multipoles are odd-parity: they correspond to terms in the metric that break the equatorial
symmetry (θ ↔ π − θ) and thus can give rise to interesting new equatorially asymmetric phe-
nomena [142–145]. Heuristically, the presence of these odd-parity multipoles are a consequence
of the curious fact that the center of mass of the black hole is not the same location as the center
of the black hole. The coordinates used in (4.3.4) are centered around the location of the black
hole horizon at ρ = 0. However, as discussed above, these coordinates are AC and not ACMC
(since the mass dipole M̃1 6= 0 in these coordinates). Rather, the ACMC coordinates where the
dipole vanishes are related to these coordinates by a shift of the origin by a distance proportional
to M̃1/M̃0 (see (4.2.7)).

The physics of the h parameter

From the discussions above, it is clear that the parameter h, which can be freely chosen in the
almost-BPS solution (4.3.1) between 0 < h ≤ 1, has a great influence on the physical properties
of the almost-BPS black hole. First of all, it sets the ratio between the mass (4.3.5) and the
conserved charges (4.3.6):

M

(pΛ, qΛ)
= O

h�1

(
1

h3

)
, and

M

4
=
h=1

∑
Λ

(pΛ + qΛ) . (4.3.16)

11Although note that in most if not all such modeling, it is assumed that the odd parity multipoles
M2n+1, S2n vanish, so it is unclear to what extent observations will be able to distinguish spacetimes
where these are non-zero.
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Taking h small introduces a large discrepancy between the four-dimensional mass and the charges,
M � (pΛ, qΛ). Consequently, our solutions can describe black holes with very small charges and
large mass. However, even it these charges are small, our black holes are still extremal.

Similarly, one can compute the ratio of the mass squared over the area of the event-horizon
(4.3.7), assuming that the angular momentum parameter α ∼ O(h0):

M2

AH
= O

h∼0

(
1

h6

)
and

M2

AH
= O

h=1
(1) . (4.3.17)

Therefore, h also changes the relative size of the horizon with respect to the mass; as the mass
becomes much larger than the charges, M � (pΛ, qΛ), the horizon area also becomes relatively
small, AH �M2 (note that the Schwarzschild black hole has AS

H = 16πM2.)

From a four-dimensional perspective, h corresponds to non-trivial profiles for the three scalar
fields of the solutions (B.2.3). Because the STU Lagrangian (B.1.16) has non-trivial couplings
between scalar and gauge fields, these profiles change the effective electromagnetic couplings,
increasing the effect of the charges on the deformation of the spacetime. More precisely, taking
h small increases the impact of a small charge on the geometry.

This parameter h can have great implications in new black hole astrophysics. In this paper,
we have mostly focussed on its effect on the multipole structure of the almost-BPS black holes and
how it differs from that of Kerr black holes. It would be interesting to study further processes,
such as gravitational wave emission, tidal Love numbers, or scattering, to understand further the
implications of this parameter.

Because the almost-BPS and BPS black holes have a similar structure, one can wonder what
the effect would be of such a scalar profile on a four-dimensional supersymmetric black hole. It
appears that a similar parameter h for the BPS solutions can be used to freely dial the ratio
between the four-dimensional mass and charge ratio and construct an effective neutral solution.
However, the magnetic charge (Q0) needs to be turned off for the BPS solutions when h 6= 1, so
the area of the horizon will vanish and the BPS black hole corresponds to a microscopic black
hole (which, although microscopic, would have potentially a large mass and small charges).

4.4 Smooth microstate geometries

The almost-BPS black hole is only one member of the very large family of almost-BPS solutions
[115, 67, 66, 116, 117]. This family of solutions is controlled by a specific ansatz (see (4.2.1),
(B.1.14), and (B.1.15)), and the equations of motion have a nested linear structure (see (B.1.26)),
similar to that of BPS solutions. This allows the construction of almost-BPS multicenter solutions
[67], which include multicenter black holes and black rings, as well as solutions that are smooth,
horizonless microstate geometries. In this section, we will review their construction heuristically
(relegating most of the technical details to the appendices) and discuss some of their basic
properties.
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4.4.1 Construction

In this section, we construct horizonless almost-BPS microstate geometries. First, we review
the principles behind this construction and then we give the specific details of the family of
microstate geometries that we consider in this paper.

Heuristics: blowing up topological cycles

The microstate geometries we are interested in are solutions that match the almost-BPS black
hole up to the region close to the would-be horizon. In this region, the multicenter configuration
has a non-trivial, horizonless structure. In four dimensions, those solutions are singular at all
the almost-BPS centers. When embedded in higher dimensions, these singularities have a very
specific form, and become smooth regions of spacetime in different duality frames.

The construction of such solutions can be rather technical. However, the main philosophy
is simple to depict (see Fig.4.1). By embedding the four-dimensional STU Lagrangian in higher
dimensions, some of the four-dimensional scalars and gauge fields become geometric, correspond-
ing to metric components along the extra dimensions. In particular, certain singularities of the
four-dimensional solution have scalars and gauge fields that diverge in such a way that the uplift
of the solution to higher dimensions is smooth, and the singularity corresponds to an “end of
spacetime”. The best example of this is the D6 brane compactified on a six-torus, which appears
singular from a four-dimensional perspective, but is smooth when uplifted to M-theory.

As depicted in Fig.4.1, having several end-of-spacetime loci gives a bubbling topology induced
by the behavior of the extra dimensions. These bubbles are kept from collapsing by being
wrapped by electromagnetic fluxes, which generate the same asymptotic charges as the four-
dimensional black hole, but without a horizon.

In a sense, the microstate geometry blows up or resolves the black-hole singularity, dissolving
the horizon into smooth topological cycles wrapped by fluxes in higher dimensions. A crucial
point with microstate geometries is that they allow a scaling limit, where the centers can come
arbitrarily close to each other [44, 43, 80] from the point of view of the R3 base of the solution,
|~ρi − ~ρj | ∼ λ � (M,Q, J), which makes the solution resemble the black hole more and more,
but still allows it to end in a smooth horizonless cap [43].

In the almost-BPS Ansatz, the main ingredients that are used as smooth end-to-spacetime
loci are supertube centers and Taub-NUT centers. A Taub-NUT center, located at the position
~ρ0, sources only V and µV (4.2.1) such as

V = . . .+
Q

(0)
0

|ρ− ~ρ0|
+ . . . , µV = . . .+

m(0)

|ρ− ~ρ0|
+ . . . . (4.4.1)

This will end up sourcing a magnetic charge p0 (through the equations of motion, see (B.1.26)).
The ith center is a supertube center of species “I”, with I = 1, 2, 3, located at a position ~ρi. It
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Figure 4.1 – Schematic description of the time-slices of an almost-BPS black hole and
their corresponding multicenter smooth solutions. The horizon is resolved by blowing up
topological cycles wrapped by fluxes in higher dimensions, where K denotes these extra
compact dimensions.

has a source in KI , two sources in ZJ and ZK with I 6= J 6= K, and one source in µV [146]:12

KI = ..+
k(i)

|ρ− ~ρi|
+.. , ZJ = ..+

Q
(i)
J

|ρ− ~ρi|
+.. , ZK = ..+

Q
(i)
K

|ρ− ~ρi|
+.. , µV = ..+

m(i)

|ρ− ~ρi|
+.. .

(4.4.2)
This will source a magnetic charge pI and two electric charges qJ , qK . Therefore, by combining
Taub-NUT centers and supertube centers of at least two species, we will be able to construct
solutions that have the same charges as the almost-BPS black hole.

When embedded in five dimensions, the metric near a Taub-NUT center is that of smooth
R4,1. For each of the species of supertube centers, one can dualize to a six-dimensional super-
gravity where they are smooth [146] providing that their charges satisfy:13

m(1) =
Q

(1)
J Q

(1)
K

2k(1)
. (4.4.3)

12These supergravity sources were shown in [146] to correspond to the backreaction of the supertubes
constructed using the DBI action [47,48].

13At first sight, it may appear that we cannot have a unique duality frame where a solution with
multiple species of supertubes is smooth at each supertube. However, one can perform a “generalized
spectral flow” duality [147], that transforms each type of supertube into a smooth center [148]. These
transformations give a new solution that does not belong to the almost-BPS ansatz [148, 116], but from
a four-dimensional perspective they leave the metric invariant and simply reshuffle the scalars and the
vectors [116]. Hence, for simplicity, we will continue working with almost-BPS supertubes and Taub-NUT
centers.
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Two supertubes in Taub-NUT

We now construct a specific family of horizonless, multicenter geometries that have the same
charges, mass and angular momentum as the almost-BPS black hole. In addition, the family
of solutions we want to construct consists of scaling solutions, which means we can make the
distance between the centers arbitrarily small in the R3 base, so that the multi-center solution
matches the single-center black hole arbitrarily well.

As discussed above, the supertube and Taub-NUT centers of the solution look singular in four
dimensions, but the origin of these singularities is understood: they are 16-supercharge fluxed
D4 or fluxed D6 branes that make perfect sense in string theory, and moreover can be uplifted
to smooth solutions in higher dimensions.

The technical details of the construction can be found in appendix B.3. We will consider
multicentered configurations with centers on the z-axis, so that the resulting solution is ax-
isymmetric. We use the smallest number of ingredients that allow us to construct a horizonless
solution with the same charges as the almost-BPS black hole: one Taub-NUT center and two
supertube centers:

• The Taub-NUT center is at the origin of our spherical coordinates in the R3 base of the
solution. It has charge Q0 in V and a momentum parameter m(0) in µV .

• The first supertube center is of species 2, and is on the z-axis at position z = a2. It carries
a magnetic charge parameter k(2) in K2, two electric charges Q(2)

1 and Q(2)
3 in the harmonic

functions appearing in Z1 and Z3, respectively, and a momentum parameter m(2) in the
harmonic part of µV .

• The second supertube center is of species 3, and is located at z = a3. It has a magnetic
charge parameter k(3) in K3, two electric charges Q(3)

1 and Q(3)
2 in the harmonic functions

appearing in Z1 and Z2, respectively, and a momentum parameter m(3) in the harmonic
part of µV .

The regularity of the supertubes requires, from (4.4.3)

m(2) =
Q

(2)
1 Q

(2)
3

2k(2)
, m(3) =

Q
(3)
1 Q

(3)
2

2k(3)
. (4.4.4)

For simplicity we consider a3 > a2 > 0. We introduce the local spherical coordinates around
the Ith center, (ρI , θI , φ),

ρI ≡
√
ρ2 + a2

I − 2ρaI cos θ, cos θI ≡
ρ cos θ − aI

ρI
.

The interested reader can find details on the resolutions of the equations of motion in ap-
pendix B.3, and the gauge fields and scalars of the three-center solutions in appendix B.3.1. The
metric is still given by (4.2.1):

ds2
4 = −I4

− 1
2 (dt+$)2 + I4

1
2
[
dρ2 + ρ2

(
dθ2 + sin2 θ dφ2

)]
, I4 ≡ Z1Z2Z3V − µ2V 2 ,

(4.4.5)
where now the functions (V,ZI , µ) and the rotation one-form $ are given by:

V = h +
Q0

ρ
, Z1 =

1

h
+

Q
(2)
1

ρ2
+

Q
(3)
1

ρ3
+
(
h+

Q0 ρ

a2 a3

)k(2) k(3)

ρ2 ρ3
,
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Z2 =
1

h
+

Q
(3)
2

ρ3
, Z3 =

1

h
+

Q
(2)
3

ρ2
,

µ V = m∞ +
m(0)

ρ
+
m(2)

ρ2
+
m(3)

ρ3
+

(
k(2)

2hρ2
+

k(3)

2hρ3

)
V +

h

2 ρ2ρ3

(
k(2)Q

(3)
2 + k(3)Q

(2)
3

)
(4.4.6)

− Q0 cos θ

(a3 − a2) ρ2ρ3

(
k(2)Q

(3)
2 − k(3)Q

(2)
3

)
+

Q0 (ρ2 + a2a3)

2(a3 − a2) ρρ2ρ3

(
k(2)

a2
Q

(3)
2 −

k(3)

a3
Q

(2)
3

)
,

$ = −
∑
I=2,3

k(I)

2

[
cos θI +Q0

ρ− aI cos θ

h aIρI

]
dφ + $0 dφ +

(
m(0) cos θ +m(2) cos θ2 +m(3) cos θ3

)
dφ

+
∑
J 6=I

Q
(J)
I k(I)

2(aJ − aI)ρIρJ

[
h(ρ2 + aIaJ − (aI + aJ)ρ cos θ)

−Q0
ρ(aJ + aI cos 2θ)− (ρ2 + aIaJ) cos θ

aI

]
dφ .

There are regularity conditions (see (B.3.19)) that the geometry must satisfy, as well as the
condition to be asymptotic to flat four-dimensional spacetime; together, these give 5 algebraic
conditions. Three directly fix $0, m∞ and m(0); the other are called bubble equations and are
non-linear relations that constrain the distances between the centers:

m2
∞ = ± 1− h2

h2
,

$0 =
k(2)

2

(
hQ

(3)
2

a3 − a2
− Q0

ha2

)
− k(3)

2

(
hQ

(2)
3

a3 − a2
+
Q0

ha3

)
,

m(0)

Q(0)
= − k(2)

2ha2

(
hQ

(3)
2

a3 − a2
+ 1

)
+

k(3)

2ha3

(
hQ

(2)
3

a3 − a2
− 1

)
,

m(2) =
Q

(2)
1 Q

(2)
3

2k(2)
= − 1

2(a3 − a2)

(
k(3)Q

(2)
3

(
h+

Q0

a3

)
− k(2)Q

(3)
2

(
h+

Q0

a2

))
+
k(2)

2h

(
h+

Q0

a2

)
,

m(3) =
Q

(3)
1 Q

(3)
2

2k(3)
=

1

2(a3 − a2)

(
k(3)Q

(2)
3

(
h+

Q0

a3

)
− k(2)Q

(3)
2

(
h+

Q0

a2

))
+
k(3)

2h

(
h+

Q0

a3

)
.

(4.4.7)

We can also calculate the integer magnetic charges of the supertube centers, by integrating the
corresponding gauge field around the centers [67,117]. These magnetic charges, κ(I), are:

κ(I) ≡
(
h+

Q0

aI

)
k(I) . (4.4.8)

The solutions are guaranteed to be physical when the warp factors, ZI , and the quartic
invariant, I4, satisfy everywhere the inequalities [40,79]:

ZI V ≥ 0 , I4 ≡ Z1Z2Z3 V − µ2V 2 ≥ |$|2 . (4.4.9)
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By expanding this expression near each pole one can obtain inequalities constraining the super-
tube charges. The easiest way to satisfy these is to take all electric charges, Q(J)

I , to be positive,
and have one magnetic charge to be negative.14

4.4.2 Properties

The almost-BPS multicenter solutions constructed above have a rather complicated and unintu-
itive form. It is therefore important to point out their key physical properties:

First of all, note that the system is only constrained by the two bubble equations (4.4.7), so
that the phase space of solutions is very large. An important subclass of solutions, called scaling
solutions, are the ones in which the intercenter distances can be made arbitrarily small; we will
mainly be interested in such scaling solutions.

When we approach this scaling limit and bring the centers close to each other, we can call λ
the overall size of the cluster of centers in the R3 base space, so that each center position satisfies
aI = O(λ). Far away from the centers, ρ� λ, the main functions (4.4.6) determining the metric
match the functions that enter in the almost-BPS black hole solution with the same charges, up
to O(λ) corrections. In other words, the solutions are virtually indistinguishable from the black
hole at these scales. In the IR, when ρ = O(λ), the structure of the multicenter configuration
starts to be visible and distinguishable from the black hole horizon. We will quantify these
statements further by comparing the conserved quantities and the multipole moments of the
solutions to the black hole results.

Conserved quantities

We compute the ADM mass, the angular momentum and the four electric and magnetic charges
of the solution. We can again obtain the mass and angular momentum via (4.2.3):

M =
1

4h3

[
Q0 + h2

(
Q

(2)
1 +Q

(3)
1 +Q

(3)
2 +Q

(2)
3 +Q0

k(2)k(3)

a2a3
∓ 2
√

1− h2
(
k(2) + k(3)

))]
,

J =
Q0

4h

(
2h k(3)Q

(2)
3

a3
+ k(2) + k(3)

)
+
h

4

(
k(3)Q

(2)
3 − k(2)Q

(3)
2

)
,

(4.4.10)

where the “∓” depends on which choice of branch have been chosen for m∞ in (4.4.7). Note that
these expressions are obtained “on shell”, after enforcing the bubble equations (4.4.7). The four
magnetic and electric charges are given by (see (B.1.25)):

(p0, p1, p2, p3) =
(
Q0 , 0 , −h k(2) , −h k(3)

)
(q0, q1, q2, q3) =

(
k(2) + k(3)

h
, Q

(2)
1 +Q

(3)
1 +Q0

k(2)k(3)

a2a3
, Q

(3)
2 , Q

(2)
3

) (4.4.11)

Note that there are more charges turned on compared to the almost-BPS black hole solution of
(4.3.6). This is because of the presence of the magnetic dipole charges, k(2) and k(3), which are

14By reshuffling the bubble equations above, one can see that at least one charge needs to be negative.
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crucial elements that allow the spacetime to be smooth around the centers in higher dimensions.
However, although they must be non-vanishing, we can freely take them small compared to the
main charges: ki � Q0, Q

(j)
k . In this limit, the D0 charge can be ignored as well, and we have

(p0, p1, p2, p3; q0, q1, q2, q3) ∼ (Q0, 0, 0, 0; 0, Q
(2)
1 +Q

(3)
1 +Q0

k(2)k(3)

a2a3
, Q

(3)
2 , Q

(2)
3 ) ,

M ∼ 1

4h3

[
Q0 + h2

(
Q

(2)
1 +Q

(3)
1 +Q

(3)
2 +Q

(2)
3 +Q0

k(2)k(3)

a2a3

)]
,

J ∼ h

4

(
k(3)Q

(2)
3 − k(2)Q

(3)
2

)
+Q0

k(3)Q
(2)
3

2a3
,

(4.4.12)

so that the microstate geometry has the same conserved charges as the black hole.

Multipole moments

In appendix B.4, we derive the multipole moments of generic multicenter solutions in Taub-NUT.
In this section, we apply these formulas to our specific three-center solutions.

Note that the coordinates used in the almost-BPS ansatz (4.2.1) are automatically AC coor-
dinates as defined in section 4.2.2. Therefore, one can read off the coefficients M̃`, S̃` from simply
expanding the metric in powers of 1/ρ, and obtain the true multipoles using (4.2.7):

M` =
∑̀
k=0

(
`

k

)
M̃k

(
−M̃1

M̃0

)`−k
, S` =

∑̀
k=1

(
`

k

)
S̃k

(
−M̃1

M̃0

)`−k
. (4.4.13)

For our specific three-center solution, the relevant AC-coordinate frame coefficients, M̃`, are then
given by (B.4.23):

4M̃` =

(
Q0

h3
− 2m∞m(0)

)
a0
` +

3∑
I=2

J,K=1

|εIJK |
2h

(
Q

(I)
J +Q

(I)
K − hm∞

(
k(I) +

Q
(I)
J Q

(I)
K

k(I)

))
aI
`

+
3∑

I,J=2

Q0 |εIJ |
h

[
k(I)k(J)

2aIaJ
q

(2)
` (aI , aJ)− hm∞

k(J)Q
(I)
J

aI − aJ

(
q

(2)
` (aI , aJ)

aJ
− 2`

2`− 1
q

(2)
`−1(aI , aJ)

)]
(4.4.14)

where εIJ and εIJK are the Levi-Civita tensors of dimension two and three respectively and we
have defined a0 = 0 as the coordinate of the Taub-NUT center, with also a0

` ≡ δ`0. We define
the polynomial

q
(2)
` (aI , aJ) ≡

(
2`

`

)−1 ∑
p+q=`

(
2p

p

)(
2q

q

)
aI
paJ

q . (4.4.15)
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The coefficients S̃`, are given by (B.4.33)

4S̃` = − 2m(0) a0
` +

3∑
I=2

J,K=1

|εIJK |
2

(
k(I) − Q

(I)
J Q

(I)
K

k(I)

)
aI
`

−
3∑

I,J=2

Q0 |εIJ |
k(J)Q

(I)
J

aI − aJ

(
q

(2)
` (aI , aJ)

aJ
− 2`

2`− 1
q

(2)
`−1(aI , aJ)

)
.

(4.4.16)

It is of particular interest to consider the scaling limit of (4.4.14)-(4.4.16), or more generally
of (B.4.23)-(B.4.33), when aI = O(λ) and λ → 0. Using the regularity conditions (4.4.7) (or
(B.3.19)), one can see that the AC coefficients behave as (for h 6= 1):

M̃0 = MBH (1 + µ0λ) +O(λ2),

M̃1 = M̃BH
1 (1 + µ1λ) +O(λ2), S̃1 = JBH (1 + σ1λ) +O(λ2),

M̃` = M̃BH
1

(M̃BH
1 )`−1

(MBH)`−1
µ` λ

`−1 +O(λ`), S̃` = JBH (M̃BH
1 )`−1

(MBH)`−1
σ`λ

`−1 +O(λ`),

(4.4.17)

where MBH, M̃BH
1 , SBH

1 = JBH are the non-vanishing AC coefficients for the almost-BPS black
hole with the same charges in (4.3.8) and (4.3.9), and µ`, σ` are microstate-dependent dimen-
sionless numbers. The ACMC multipole moments then behave as:

M0 = MBH (1 + µ0λ) +O(λ2), (4.4.18)

S1 = JBH (1 + σ1λ) +O(λ2), (4.4.19)

M` = MBH
`

(
1 +

[
(1− `)µ0 + `

(
µ1 −

1

2
µ2

)]
λ

)
+O(λ2), (4.4.20)

S` = SBH
`

(
1 +

[
(1− `)µ0 + σ1 + (`− 1)

(
µ1 −

1

2
σ2

)]
λ

)
+O(λ2), (4.4.21)

where the black hole ACMC multipoles MBH
` , SBH

` were given in (4.3.10). Note that (4.4.17)-
(4.4.21) are only valid for h 6= 1; when instead h = 1 and thus m∞ = 0, it is easy to show
that M̃` ∼ O(λ`) and S̃` ∼ O(λ`−1) so that also M` ∼ O(λ`) (for ` 6= 1) and S` ∼ O(λ`−1)

(for ` ≥ 1) — interestingly, this is similar but not exactly the same as the scaling with λ

that one has for multipoles of scaling supersymmetric microstate geometries [118,120], which is
(MSUSY

` , SSUSY
` ) ∼ O(λ`).

We can summarize the behavior of the multipole moments of scaling almost-BPS microstate
geometries in an (intuitive) conjecture:

All multipoles of scaling microstate geometries match the values of the black hole they corre-
spond to, up to small deviations proportional to the scale for which the microstructure starts to
be manifest and resolve the horizon into smooth topologies.

Clearly, smooth horizonless solutions can mimic classical black hole characteristics with a
very high accuracy. As λ gets vanishingly small, this implies that the microstructure of the
microstate geometry can become virtually indetectable, at least as far as the multipole moments
are concerned.
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Moreover, nothing dictates a priori the value of µ` and σ` as they depend on the internal
degrees of freedom of the family of solutions. As we illustrate later, they can either be positive
or negative. In particular, as we show explicitly in section 4.4.4, this leads to counterexamples
to conjectures based on the analysis of [121], where it was suggested that multipole moments of
smooth horizonless geometries will be larger than those of the corresponding black hole.

4.4.3 Explicit examples

We give several examples of three-center almost-BPS microstate geometries, whose general form
is given in (4.4.6). We also give the parameters of the almost-BPS black hole with the same
charges.

Finding explicit parameters that give rise to physical three-center solutions in the family
constructed above is relatively easy. Our family initially contains 16 parameters. After imposing
the supertube regularity (4.4.4) and the regularity conditions (4.4.7), we end up with 9 free
parameters. The physicality condition (4.4.9) gives a bound on the parameters; it is sufficient to
assume that all charges are positive except one magnetic dipole charge, that we will assume to
be κ(2). Moreover, we aim to construct scaling solutions for which the centers can be tuned to
come arbitrarily close to each other.

A simple example

The first solution we consider is given by the following charges:15

−4κ(2) = 4κ(3) = 2Q0 =
4

3
Q

(2)
1 = Q

(3)
1 =

4

3
Q

(2)
3 = 20000 , Q

(3)
2 = 15001 , h = 0.01 ,

(4.4.22)
The bubble equations (4.4.7) fix the distance between the centers

a2 ' 0.21 , a3 ' 0.28 , (4.4.23)

which gives, from (4.4.8)
k(2) ' −0.11 , k(3) ' 0.14 , (4.4.24)

The mass and angular momentum of the solution (4.4.10) are

M ' 2.5× 109 , J = −3.7× 107 , (4.4.25)

and the eight charges (4.4.11) are

(p0, p1, p2, p3) ' (10000 , 0 , 0.0011 , −0.0014)

(q0, q1, q2, q3) ' (3.5 , 32500 , 15001 , 15000)
(4.4.26)

The scaling point can be obtained by shifting Q(2)
3 → 15000 which gives a2, a3 → 0.

The solutions match very closely the non-BPS extremal black hole detailed in section 4.3.1
with a mass and an angular momentum given by (4.4.25), and one magnetic charge Q0 = p0

and three electric charges QI = qI . As detailed in section 4.3.3, the ratio between the mass and
charges is of order h−3 = 106.

15Recall that the effective dipole charges κI are given by (4.4.8).
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A one-parameter family

We can easily expand the above example to a one-parameter family of microstate geometries,
where we allow h to vary while we keep the other charges in (4.4.22) fixed. For example, when
h� 1, the intercenter distances are then approximately:

a2 ' 21h , a3 ' 28h , (4.4.27)

The mass, angular momentum and eight charges of the solutions are, at leading order in h:

M ' 2500

h3
, J ' −3.7× 107 ,

(p0, p1, p2, p3) ' (10000 , 0 , 0 , 0)

(q0, q1, q2, q3) ' (3.5 , 32500 , 15001 , 15000)

(4.4.28)

Interestingly, h does not change the topology of the IR geometry since it acts as a scaling factor.
As expected and discussed above, by fine-tuning h to be small, one can construct solutions that
look almost neutral from a four-dimensional perspective.

4.4.4 Aspects of microstate multipoles

In this section, we discuss some aspects of the gravitational multipoles for the almost-BPS so-
lutions. For the black holes, the multipole formulas were derived in section 4.3.3, whereas the
microstate geometry multipoles can be found in section 4.4.2. We will focus in this section on
discussing multipoles (and certain ratios) as studied in [119,121] for families of supersymmetric
black holes. In appendix B.4.4, we also show that the multipole ratio analysis of [118, 120] for
supersymmetric black holes and their multicentered microstate geometries can also be extended
straightforwardly to the multipole ratios of almost-BPS black holes and their microstate geome-
tries described here. It would be interesting to expand this analysis (in the spirit of [120] for
supersymmetric black holes); we leave this for future work.

It will be convenient to define the following dimensionless, positive quantities:16

M` :=

∣∣∣∣∣M`M
`−1
0

S`1

∣∣∣∣∣ , S` :=

∣∣∣∣∣S`M `−1
0

S`1

∣∣∣∣∣ , (4.4.29)

In [119,121] these multipole ratios were computed for supersymmetric multi-center microstates,
and compared to those of the non-supersymmetric Kerr(-Newman) black holes of the same mass
and angular momentum. Note that for any Kerr(-Newman) black hole, M2n = S2n+1 = 1

and M2n+1 = S2n = 0. The analysis of the families of supersymmetric microstate geometries
in [119,121], had certain striking universalities, which suggests the following conjectures regarding
the universal behavior of multipoles of microstate geometries:

• C.i: GenericallyM2 > 1. In other words, the (absolute value of) the quadrupole moment M2

of microstate geometries is generically larger than that of Kerr with the same mass and
angular momentum. Similar statements are valid for higher-order multipole moments that
are non-zero for Kerr-Newman (in particular, S3 > 1 is mentioned explicitly) [119,121].

16These were denoted by M` and S` in [121].
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• C.ii: BothM` and S` (for any `) are always monotonically increasing functions of the intercenter
distance λ for scaling solutions [121]. In particular, a corollary is that (∂λM`(λ))λ=0 > 0

and similar for S`.
While these conjectures are based on extrapolations of suggestive features of supersymmetric
microstate geometries, here we will show that they are contradicted explicitly by the physics of
the more realistic non-supersymmetric microstate geometries we built.

To illustrate this, we take a family of microstate geometries (as constructed in section 4.4.1)
with charge parameters:17

m∞ = (−1)n
√

1− h2

h
, κ(2) = −7000, κ(3) = 5000,

Q0 = 7000, Q
(2)
1 = 6000x, Q

(2)
3 = 6000,

a0 = 0, a2 = λ, a3 = 2λ.

(4.4.30)

The parameters Q(3)
1 , Q

(3)
2 are then determined by the bubble equations (4.4.7). Thus, this family

of solutions depends on the choice of branch form∞ through n (where n = 1, 2) and has three free
parameters, given by h, x, and the distance λ between centers. The mass, angular momentum,
and electromagnetic charges of this family is given by:

M ' 250

7h3

(
49 + h2 115 + 36x(13x− 3)

6x− 5

)
+O(λ) , J ' −15× 106 +O(λ)

(p0, p1, p2, p3) ' (7000 , 0 , 0 , 0) +O(λ)

(q0, q1, q2, q3) '
(

0 ,
1000

(
36x2 + 25

)
6x− 5

,
36000x

7
− 30000

7
, 6000

)
+O(λ)

(4.4.31)

When the centers merge at λ = 0, the solution corresponds to the almost-BPS black hole with
the conserved charges above. We will show that by varying the parameters h and x in this family
of microstates, one can easily invalidate both conjecture C.i and C.ii.

For the almost-BPS black hole, M`/MKerr
` was calculated in (4.3.14). We can already see

from this expression that the value of, say, M` for the almost-BPS black hole can be made
smaller or larger than the corresponding Kerr(-Newman) value (for a black hole of equal mass
and angular momentum), by adjusting the value of h. For the microstates (whose λ → 0 limit
corresponds to an almost-BPS black hole), this is then obviously also true; see Fig. 4.2. This
shows that conjecture C.i is not generically true for almost-BPS microstates and more generically
for non-supersymmetric microstate geometries.

In Fig. 4.3, we plottedM2 and S3 (normalized by the λ = 0 black hole value) for h = 433/500,
n = 1, and various values of x; we can clearly see thatM2 and S3 are not always a monotonically
increasing function of λ; in particular, these are counterexamples to conjecture C.ii.

Note that the plots in figures 4.2 and 4.3 show the behaviour of the multipole ratios for a
range of center separation λ near the scaling point λ = 0; these plots can be extended for larger

17We wish to thank J. F. Morales for pointing out the unphysicality of the microstate geometry family
we had in an earlier version of this paper.
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Figure 4.2 – Plots ofM2/MKerr
2 and S3/SKerr

3 (where the corresponding Kerr(-Newman)
black hole is chosen to have the same mass and angular momentum as the microstate) as
a function of λ for x = 1 and the different values of h and n indicated by the legend.
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Figure 4.3 – Plots ofM2 and S3 (normalized with respect to their λ = 0 black hole values)
as a function of λ for h = 433/500, n = 1, and x taking on various values indicated by
the legend.

values of λ, although this generally does not show any additional interesting physical phenomena.
The maximum possible value of λ depends also on the details of the microstate. We illustrate
the two main possibilities in figure 4.4 and 4.5. In figure 4.4, we show a choice of parameters for
which there is a maximum possible λ value at which the mass diverges; a consequence is that
considering a microstate with such a λ which is close to this point will no longer have a mass
comparable to that of the corresponding λ = 0 black hole. In figure 4.5, we show a choice of
parameters where there is no maximum for λ: the intercenter distance can be chosen arbitrarily
large without introducing any pathologies; the mass and multipoles all have relatively simple
behaviour as λ gets larger.18

One of the main hopes coming from the conjectures of [119] was that microstate geometries
might be observationally distinguishable from astrophysical (Kerr) black holes by their multipole

18Note that there can be spurious values of λ at which certain multipoles happen to vanish. (For
example, in fig. 4.5, we have M2 = 0 at λ ≈ 421.68.) These values of “accidental symmetry” are an
artifact of the microstate geometry having a low number of centers; see also appendix C of [120].
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Figure 4.4 – For n = 1, h = 69/100, x = 1, we plot the normalized mass M(λ)/M(λ = 0)
and M2/MKerr

2 for the complete allowed range of λ. Note that when λ gets near the
maximal allowed value, it no longer makes any sense to compare the microstate geometry
to the λ = 0 limit as the mass is drastically different.

moments; in particular, (most of) the microstate geometries considered in [119] had quadrupole
moments larger than those of the corresponding Kerr black hole with equal mass and angular
momentum, which in turn led to conjecture C.i. The analysis in [119, 121] and the conjectures
C.i and C.ii seemed to imply that the black hole solution is somehow an extremum on the space
of solutions. However, we show here that there exist microstate geometries for which this is not
true.

In particular, we show that the multipole moments of the almost-BPS black hole and its
microstate geometries can be larger or smaller than those of Kerr for equal mass and angular
momentum. Nevertheless, we want to emphasize that the multipole moments are generically
different from those of the Kerr black hole, so that they remain a good distinguishing criteria
and can be observationally relevant.

4.5 Conclusions

In this paper, we have argued for using the almost-BPS class of black holes and microstate
geometries as phenomenological models of black holes. These solutions have two advantages over
the more commonly-used supersymmetric microstate geometries: First, our solutions are not
supersymmetric and in particular can have a large mass over charge ratio. Second, and most
importantly, the almost-BPS solutions can have arbitrarily large rotation, in stark contrast to the
supersymmetric geometries which have small and limited angular momentum (which moreover
must vanish in the scaling limit).

There has already been a considerable body of work studying supersymmetric microstate
geometries as phenomenological models [122]. While these geometries already give rise to inter-
esting observable phenomena, it is important to start considering string theory geometries that
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Figure 4.5 – For n = 1, h = 433/500, x = 3, we plot the normalized mass M(λ)/M(λ = 0)
andM2(λ)/M2(λ = 0). There is no maximum value for λ in this case. (Note that there
is an “accidental symmetry” at λ ≈ 421.68 at which the quadrupoleM2 happens to vanish
for this microstate geometry.)

are more realistic and can be made to resemble actual astrophysical black holes more closely.
The almost-BPS class of black holes and their microstates thus present a prime target for phe-
nomenological study.

We initiated the phenomenological study of almost-BPS geometries here by describing their
multipoles (and multipole ratios) in some detail. As we have mentioned in section 4.3.3, the
particular family of almost-BPS black holes we have considered can be tuned (by choosing the
parameter h) such that the quadrupole moment matches that of a Kerr black hole (with equal
mass and angular momentum); the deviations of the almost-BPS black hole from Kerr then only
show up at higher multipole moments — such deviations at higher multipole orders will be harder
(but not impossible) to detect at future experiments.

In addition, the almost-BPS black holes break equatorial symmetry θ ↔ π − θ by having
non-zero parity-odd multipoles (M2n+1 and S2n). Equatorial symmetry breaking of black holes
has been largely unexplored phenomenologically; it would be interesting to understand if this
can lead to clear observational signatures [149].

Recent studies of supersymmetric microstate geometries include the analysis of their shadows
and images [150] (relevant for EHT observations), and scalar field echoes on these geometries [151]
(relevant for the ringdown phase in mergers). These studies showed the intricate and subtle
behavior that allows the supersymmetric microstate geometries to behave very similarly to a
black hole, but nevertheless allowing for certain observable signatures when far from the scaling
point. Expanding these studies to include almost-BPS black holes and their microstates would
show how moving away from supersymmetry and adding rotation will alter these mechanisms,
and is an important next step to understand possible observable signatures of string theoretic
black hole models.
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Chapter 5

Toroidal Tidal Effects in Microstate
Geometries

5.1 Introduction

The AdS/CFT duality [152] is one of the major tools to study the black hole information paradox
[5]. The correspondence supports unitary black hole evolution and provides a dual description of
black hole microstates within a non-gravitational theory. For example, a known family of three-
charge horizonless geometries with a cap at the bottom of a long throat is dual to CFT states
which, at the orbifold point, are constructed by acting with momentum-generating operators on
Ramond-Ramond ground states obtained from length-one component strings [51, 52]. Although
such CFT states account only for a parametrically small fraction of the entropy [55,56] of extremal
black holes [28], they may offer insights about generic microstates of the corresponding black
holes within the bulk theory [59, 7–9]. Furthermore, away from the free orbifold point, the
lowest possible mass gap in the strongly-coupled CFT matches that of energy excitations in such
geometries [68].1

A well studied example is the extremal D1-D5-P black hole, with a known match between the
Bekenstein-Hawking entropy and the number of appropriate microscopic brane configurations
[28]. In the D1-D5 system, a large class of capped geometries that have a well-understood
CFT description are superstrata [50–52,153–155,53,156,157], which have the same charges and
asymptotic structure as the black hole [42], but instead of having a horizon and an infinitely long
throat, they cap off smoothly at the end of a long, but finite, AdS2 ×S1

y throat (see figure 5.1).
They are part of the microstate geometries programme which constructs smooth horizonless
solutions within supergravity that represent black hole microstates.

Non-trivial structure at the bottom of the throat implies physics that deviates from that of
a classical black hole, ranging from tidal effects [158–160] to gravitational multipole moments
[118–121, 18]. If capped geometries correspond to typical states of black holes, their inherent
horizonless nature could lead to phenomena observable by future detectors [122], for example in

1However, it is currently unclear how this small mass gap arises by deforming the CFT away from the
free orbifold point.
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r ∼ √n ar ∼ √n b r = 0

Smooth
capAdS2 × S1

y throatAsymptotic
AdS3 region

Infinite BTZ
throat

Figure 5.1 – A schematic depiction of the (1, 0, n) superstrata in the r − y directions.
The red curve depicts a trajectory of an infalling and spiralling null geodesic along which
a string probe is travelling. The details of the microstructure are most prominent at
the bottom of the throat (shaded in blue), where the tidal forces are greatest. The
curve in blue above the geometry illustrates the alternation between tidal stretching and
compressing the string experiences as it approaches the cap region.

gravitational echoes [126], as a massless probe falling into a horizonless geometry reaches the cap
but is able to return to infinity [161,162].

Gravitational echoes are weakened if one considers a stringy probe. Namely, tidal forces
are able to excite massive string modes, causing the probe to get trapped in the cap region
[163]. In that paper, a massless string was sent along a null geodesic into an asymptotically
AdS3 × S3 × T 4 superstratum geometry. It was found that the string gets tidally excited only
along the S1

y direction of AdS3 and the S3, while there are no tidal forces acting along the
toroidal directions. This observation is in tension with insights coming from the dual CFT. There,
excitations along the sphere can be described by fermionic degrees of freedom and excitations
along the torus can be described by bosonic degrees of freedom [164]. Hence, if an infalling string
gets tidally excited only along the S3, the dual excitations are only fermionic in nature. However,
the initial probe propagating within the superstrata geometry has a precise CFT dual. Indeed,
using deformations of the CFT, one can compute transitions from this state to bosonic and
fermionic excitations. These transitions thus appear to be CFT signatures of tidal excitations of
probes in the bulk [165, 166]. As a guiding principle, this suggests that a probe moving within
the superstrata geometries should experience tidal excitations not only along the S3, as shown
in [163], but also along the T 4 directions, thus motivating the investigation of this paper.

We consider a null geodesic in the so-called (1, 0, n) superstratum [50–52]. We choose the
geodesic to be in the θ = π/2 hypersurface of S3. Even though we also choose it to be directed
radially in the asymptotic region, due to the momenta and angular momenta of the underlying
geometry, the geodesic develops a spiral motion along S1

y and S3 as it approaches the smooth
cap (see figure 5.1).

The physical setup we have in mind is that of a massless string propagating along the chosen
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null geodesic. To account for the interaction between the superstratum and the string probe, one
needs to solve the string equations of motion. However, to study the tidal effects felt by a string
as it moves along the geodesic, one can use the Penrose limit [167] to capture local quadratic
environment around a null geodesic. After taking the limit, the metric can be written in the
Brinkmann form and the equations of motion for the k-th string oscillator mode in the light-cone
gauge can be written as

∂2
τw

i + k2wi +
(
α′E

)2Aij(τ)wj + ik α′EBij(τ)wj = 0 , (5.1.1)

where wi denote directions orthogonal to the geodesic, τ is the world-sheet temporal coordinate
and E denotes energy. The matrix Aij encodes tidal forces acting on the string. In the above
equation, it acts as a time dependent mass matrix, most importantly, if it is too negative, the
system becomes unstable and massive string modes get excited. In the above B is the NS 2-form
gauge potential, which will not be considered here.

Our results support the intuition from the CFT picture – as a string propagates towards the
cap, it encounters tidal stresses along all spatial directions, with the tidal forces in the toroidal
directions being of the same order as those in the S1

y and S3 directions. In addition, we show that
the tidal effects display an oscillatory behaviour: a string alternately experiences compression
and stretching. We analyse how these oscillations depend on the various parameters of the
superstrata. We also discuss the interpretation of tidal forces within the dual CFT. There one
can construct a simple state corresponding to a graviton moving within the superstrata geometry.
By turning on an interaction of the theory one can then compute transitions of the initial probe
into multiple excitations which carry polarizations along transverse directions such as the S3 and
the T 4. These amplitudes exhibit a growth in time which is suggestive of tidal effects from the
perspective of the CFT.

In Section 5.2, we review the geometry of (1, 0, n) superstrata and analyse the structure of
infalling null geodesics. In Section 5.3, by using the Penrose limit around a null geodesic at
θ = π/2, we determine and analyse the tidal effects along the chosen trajectory. In Section 5.4,
we discuss the implications of these tidal effects in the CFT picture. We finish with a conclusion
and outlook on future work in Section 5.5.

5.2 Microstate geometry in the string frame

In this section we describe a family of capped and horizonless geometries, called (1, 0, n) super-
strata which have the same charges as the D1-D5-P black hole. Since our aim is to describe how
a massless string interacts with the background as it falls towards the cap region, we consider
the ten-dimensional metric in the string frame. We analyse a particular set of null geodesics and
rewrite the metric in a form that is useful in the study of tidal forces along these geodesics.
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5.2.1 Background geometry

Consider the line element of (1, 0, n) superstrata in the string frame [50–52]

ds2
10 = Π

(
1

Λ
ds2

6 +

√
Q1

Q5
ds2
T 4

)
, (5.2.1)

where ds2
6 is the six dimensional metric in the Einstein frame and ds2

T 4 = δab dz
a dzb denotes the

metric on the four-torus T 4, which we take to be flat. Typically the size of the latter is taken
to be much smaller than the size of the six-dimensional part of spacetime and thus T 4 is often
considered as an internal manifold [62]. We focus on the near-horizon limit of the geometry in
which ds2

6 is asymptotically AdS3 × S3

ds2
6 =

√
Q1Q5

(
ds2

AdS3
+ ds2

S3

)
, (5.2.2)

with ds2
AdS3

and ds2
S3 denoting the asymptotically AdS3 and S3 parts of the spacetime respec-

tively. For the (1, 0, n) superstrata these can be written as

ds2
AdS3

= Λ

[
dr2

r2 + a2
+

2 r2(r2 + a2)

R2
y a

4
dv2 − 1

2R2
y A

4G

(
du+ dv +

2A2r2

a2
dv

)2 ]
, (5.2.3a)

ds2
S3 = Λ dθ2 +

sin2 θ

Λ

(
dϕ1 −

1√
2RyA2

(du+ dv)

)2

+
G cos2 θ

Λ

(
dϕ2 +

1√
2Ry a2A2G

(
a2(du− dv)− b2F dv

))2

, (5.2.3b)

where we have used

u = 1√
2
(t− y) , v = 1√

2
(t+ y) , (5.2.4)

with t being the usual time coordinate and y denoting the compact direction of AdS3 with radius
Ry and is thus periodically identified as y ∼ y + 2πRy.

The detailed microscopic structure of the six dimensional geometry is encoded in what we
call bump functions

F ≡ 1− r2n

(r2 + a2)n
, Γ ≡

√
1− b2

(2a2 + b2)

r2n

(r2 + a2)n
, (5.2.5a)

G ≡ 1− a2 b2

2a2 + b2
r2n

(r2 + a2)n+1
, Λ ≡

√
1− a2 b2

(2a2 + b2)

r2n

(r2 + a2)n+1
sin2 θ . (5.2.5b)

However, the ten-dimensional metric in the string frame (5.2.1) involves an additional bump
function appearing as an overall conformal factor

Π ≡

√√√√1 +
a2 b2

(2a2 + b2)

r2n

(r2 + a2)n+1
sin2 θ cos

(
2
√

2nv

Ry
+ 2ϕ1

)
. (5.2.6)
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As we will show in the next sections, this function contains all information about tidal excitations
in the internal directions.

Finally, the geometry (5.2.1) contains several parameters that characterize its properties. The
asymptotic radii of AdS3 and S3 are determined by Q1 and Q5, which denote the supergravity
charges of the D1 and D5 branes in this system (see for example [8]). Furthermore, the angular
momenta and the momentum are determined by the real-valued parameters a and b and an
integer n as [52]

JL = JR =
Ry
2
a2 , QP = 1

2 n b
2 . (5.2.7)

However, not all parameters are independent as one has to impose

Q1Q5 = a2R2
y A

2 , A ≡
√

1 +
b2

2a2
, (5.2.8)

to ensure that the geometry is smooth everywhere [52].
Crucially, a, b, and n determine the onset of the throat and cap regions in the geometry (see

figure 5.1) [51, 163]. Focusing on the AdS3 part of the metric, asymptotically (r � √n b) the
spacetime is approximately that of the extremal BTZ black hole and is thus locally AdS3. At
r ∼ √n b the geometry transitions into a AdS2 × S1

y throat, just like in the BTZ black hole.
However, unlike in the case of the black hole, the throat region in the superstratum is long, but
finite and ends around r ∼ √na. The bottom of the throat is the region that contains most of the
microstructure – the bump functions have maxima/minima and consequently the superstratum
significantly differs from an ordinary black hole. In fact, for the latter the throat is infinitely
long, while for the superstratum the length of the throat is governed by the ratio b/a, which we
usually take to be large in order to approximate the behaviour of black holes. Finally, in the
region r .

√
na, (5.2.3a) smoothly caps off.

5.2.2 Spiral infall along null geodesics

Our aim is to calculate the tidal forces felt by a massless string as it falls through the throat
region towards the cap. As such we are interested in null geodesics of (5.2.1), which are fully
integrable [168]. For the metric in the string frame (5.2.1) there are six Killing vector fields
K(2) ≡ (∂/∂ϕ2), K(4) ≡ (∂/∂u) and K(a) = (∂/∂za), and two conformal Killing vector fields
K̃(1) ≡ (∂/∂ϕ1) and K̃(3) ≡ (∂/∂v), all of which can be used to form eight scalars which are
conserved along null geodesics

L1 ≡ K̃(1)
M

dxM

dλ
, L2 ≡ K(2)

M

dxM

dλ
, P ≡ K̃(3)

M

dxM

dλ
, Ê ≡ K(4)

M

dxM

dλ
, Pa ≡ T (a)

M

dxM

dλ
,

(5.2.9)

where λ denotes the affine parameter along a null geodesic in the string frame. In addition, one
can find a conformal Killing tensor [168]

Ξ = Q1Q5 Π2

(
dθ

dλ

)2

+
L2

1

sin2 θ
+

L2
2

cos2 θ
, (5.2.10)
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which can be shown to be conserved along null geodesics. Combining all these quantities with
the null condition

gMN
dxM

dλ

dxN

dλ
= 0 , (5.2.11)

allows us to fully parametrise null geodesics in (1, 0, n) superstrata.
In what follows we focus on the set of geodesics with

L1 = L2 = 0 , P = Ê , Pa = 0 , Ξ = 0 . (5.2.12)

Due to the highly non-trivial structure of the metric (5.2.3), this choice does not mean that the
motion is purely along the radial direction. In fact one can use (5.2.9), (5.2.10) and (5.2.11) to
find

du

dλ
= −Ry A

(
a2 + b2F

)
a (a2 + r2) Π

Ê ,
dv

dλ
= − aRy A

(a2 + r2) Π
Ê ,

dr

dλ
= −

√
2AΓ

Π
Ê , (5.2.13a)

dθ

dλ
= 0 ,

dϕ1

dλ
= −

√
2 aAΓ2

(a2 + r2) Π
Ê ,

dϕ2

dλ
= 0 ,

dza

dλ
= 0 , (5.2.13b)

which shows that even if the geodesic is directed radially in the asymptotic region of spacetime,
as it traverses the throat, the momentum and angular momentum of the geometry cause the
trajectory to rotate into other spatial directions – a massless particle travelling along such a
geodesic towards the cap in a helical trajectory (see figure 5.1).

We now perform a change of coordinates so that one of the coordinates is the affine parameter
along the null geodesics with charges (5.2.12). We choose to replace the radial coordinate r with
λ, which induces

v = v(λ) +
t̃+ ỹ√

2
, u = u(λ) +

t̃− ỹ√
2
, r = r(λ) , (5.2.14a)

θ =
π

2
− θ̃ , ϕ1 = ϕ1(λ) + ϕ̃1 , ϕ2 = ϕ̃2 , za = z̃a , (5.2.14b)

where the variables with a tilde correspond to independent coordinates labelling different null
geodesics.2 Inserting (5.2.14) into (5.2.1) and using (5.2.13) yields

ds2
10 = dλ dt̃+ Π

{√
Q1Q5

[
−
(
a2 + r2

)
a2R2

yA
4 Γ2

dt̃2 +
r2Γ2

a2R2
yG

(
dỹ +

b2F

2a2A2Γ2
dt̃

)2

+ dθ̃2

+
cos2 θ̃

Λ2

(
dϕ̃1 −

dt̃

A2Ry

)2

+
G sin2 θ̃

Λ2

(
dϕ̃2 −

Γ2

RyG

(
b2F

2a2A2Γ2
dt̃+ dỹ

))2
]

+

√
Q1

Q5
ds2
T 4

}
,

(5.2.15)

where it should be understood that all bump functions are amended according to (5.2.14) and
furthermore, to avoid clutter we suppress the explicit dependence on the affine parameter, thus
all coordinates without a tilde should be understood as being implicit functions λ according to

2The choice to shift in θ by π/2 is for future convenience.
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(5.2.13). Note that we have also chosen Ê = 1
2
√

2
to set the coefficient of dλ dt̃ to 1. So far, this is

just a rewriting of the initial metric using a set of null geodesics, however this form is convenient
when considering the Penrose limit to focus on the neighbourhood of a particular null geodesic,
which in turn allows us to extract the tidal forces felt by a string as it moves along the chosen
null trajectory.

5.3 Tidal forces

In this section we focus on a particular null geodesic in the (1, 0, n) superstratum and use the
Penrose limit to analyse its neighbourhood. Rewriting the resulting metric in the Brinkmann
form allows us to extract information about the tidal forces felt by an object travelling along
the chosen geodesic. We find that there exist non-vanishing tidal forces along the T 4 directions,
stemming from the overall conformal factor appearing in the string frame metric.

5.3.1 Penrose limit

Let us now consider a null geodesic with (5.2.12) at θ = π/2 or more equivalently θ̃ = 0, and
ỹ = ϕ̃1 = ϕ̃2 = 0. To extract the behaviour of (5.2.15) in the neighbourhood of this geodesic,
we use the Penrose limit [167] which amounts to rescaling3

λ → λ , t̃ → Ω2 t̃ ,
(
ỹ , ϕ̃1 , θ̃

)
→ Ω

(
ỹ , ϕ̃1 , θ̃

)
, ϕ̃2 → ϕ̃2 , (5.3.1)

followed by taking Ω→ 0 and retaining only the terms in the metric which scale as Ω2. Applying
the above scaling to (5.2.15) yields

ds2
10 = dλ dt̃+ Π0

√
Q1Q5

(
r2Γ2

a2R2
yG

dỹ2 +
1

G
dϕ̃1

2 + dθ̃2 + θ̃2dϕ̃2
2

)
+ Π0

√
Q1

Q5
δab dz̃

adz̃b,

(5.3.2)

where we defined

Π0 ≡

√√√√1 +
a2b2

2a2 + b2
r2n

(a2 + r2)n+1 cos

(
2
√

2nv

Ry
+ 2ϕ1

)
, (5.3.3)

which is the leading behaviour of (5.2.6) in the Penrose limit (Π→ Π0 +O(Ω)). It is important
to recall that after the change of coordinates (5.2.14) r, v, and ϕ1 appearing in Π0 (as well
as other bump functions appearing in (5.3.2)) are all implicitly functions of λ. Nonetheless,
using (5.2.13), one can express Π0 as a function of r and we depict its behaviour for some
values of b and n in figure 5.2. By relabelling the eight coordinates transverse to t̃ and λ

3Note that at θ̃ = 0, the ϕ̃2 circle pinches off, hence the latter must not be rescaled in the Penrose
limit as the relevant focusing is already contained within the scaling of θ̃.
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Figure 5.2 – Plots of Π0 as a function of r. Plots on the left correspond to b̃ ≡ b/
√

2a =
100, while b̃ = 200 on the right. In each case we plot the curves for three different values
of n = 4, 9, 16. The dashed curves represent the envelopes of oscillations.

as x̃i = (ỹ, ϕ̃1, θ̃ cos ϕ̃2, θ̃ sin ϕ̃2, z̃
1, z̃2, z̃3, z̃4), where in particular we introduced a set of polar

coordinates x̃3 ≡ θ̃ cos ϕ̃2 and x̃4 ≡ θ̃ sin ϕ̃2, then we can rewrite (5.3.2) in a diagonal form

ds2
10 ≡ dλ dt̃+

8∑
i,j=1

a2
i (λ) δij dx̃

idx̃j , (5.3.4)

where all diagonal entries are functions of λ only.4 For the analysis of the tidal forces acting on
a string, it is convenient to rewrite the metric in the Penrose limit in the Brinkmann form [167]5

ds2
10 = 2dx+ dx− −

 8∑
i,j=1

Aij(x−)wiwj

 (dx−)2 +
8∑

i,j=1

δij dw
idwj . (5.3.5)

Since (5.3.4) is diagonal, the change of coordinates that yields the desired form of the metric is

λ = 2x− , t̃ = x+ +
1

2

8∑
i,j=1

a′i(x
−)

ai(x−)
δij w

iwj , x̃i =
wi

ai(x−)
, (5.3.6)

from which it follows that the matrix Aij is also diagonal

Aij(x−) = − 1

ai(x−)

d2ai(x
−)

d(x−)2
δij . (5.3.7)

In our case the explicit expressions of the mass matrix elements are given by

A11 = −
√

G

r2 Γ2 Π0

d2

d(x−)2

√
r2 Γ2 Π0

G
, A22 = −

√
G

Π0

d2

d(x−)2

√
Π0

G
, (5.3.8)

4Albeit implicitly through r, v, and ϕ1.
5Our sign convention for the matrix Aij follows [163], which is opposite of what is used in [167].
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which correspond to the directions along y and ϕ1 respectively, while the remaining six entries
are equal and given by6

A55 = − 1√
Π0

d2

d(x−)2

√
Π0 . (5.3.9)

These are the elements of the effective mass matrix appearing in the equations of motion (5.1.1)
and thus contain the information about the tidal forces felt by the string as it travels along
the null geodesic. We notice that no direction is flat – the string feels tidal forces in all spatial
directions, including those of the T 4. Furthermore, since the Penrose limit probes only the
immediate neighbourhood of a null geodesic, it is insensitive to the overall size of the manifold.
As a consequence, the mass matrix elements related to the toroidal directions are of the same
order as those of the three sphere, despite the warp factor of T 4 typically being parametrically
smaller compared to the warp factors of S3.

5.3.2 Tidal effects along the geodesic

Tidal stresses along the toroidal directions

Explicit expressions for Aij are not very illuminating thus we do not show them here, however,
we present plots of A11, A22, and A55 for some values of the parameters b and n (see figure 5.3).
We emphasize that the curves are rescaled by b̃2 ≡ (b/

√
2a)2 and given in units of a2, which is

consistent with results in [158]. Thus when b̃ is taken to be large in order to approximate the
infinite throat of a black hole, the tidal forces become large as well. One can observe that the
effective mass terms in all directions are of the same order of magnitude. Most importantly this
implies that tidal stresses along the toroidal directions felt by the infalling string are not negligible
compared to other spatial direction.

We also observe that all mass matrix elements Aii are oscillating. This is a direct consequence
of the spiral motion along the throat and the string frame metric having an overall conformal
factor of Π which oscillates as the string moves in the y and ϕ1 directions (see figure 5.2).
The tidal effects A11 on the string in the y-direction are always positive (see also figure 5.4) –
along this direction the string is always compressed and stabilised. In the remaining directions
tidal effects oscillate between positive and negative values – the string feels an alternation of
compression and stretching. When mass matrix elements are negative and large enough massive
string modes can get get excited [163]. In particular, it follows that due to these oscillations, the
null geodesic eventually passes through a region in which A55 is negative. Therefore, according
to (5.1.1), it is possible for the infalling string to lose its kinetic energy by exciting string modes
along the T 4 directions. This has important consequences in context of the AdS/CFT duality as
excitations along the toroidal directions are identified with bosonic fields in the dual CFT. We
explore this connection further in the next section.

In figure 5.4 we depict the envelopes of the oscillations of the Aii functions for b � a. The
shape of the envelope is determined by the radial direction, r, whereas the oscillations come

6For concreteness we schematically denote with A55 all Akk entries, where k = 3, 4, . . . 8 which includes
the θ and ϕ2 directions. It should be understood that the results presented are valid for any other Akk.

95



0 2 4 6 8

-0.1

0.0

0.1

0.2

0.3

0.4

r/a

n=9
11

22

55

0 2 4 6 8

-0.1

0.0

0.1

0.2

0.3

0.4

r/a

n=16

Figure 5.3 – Plots of A11, A22 and A55 with b̃ ≡ b/
√

2a = 100 and n = 9 (left) and
n = 16 (right). The curves are rescaled by b̃2 and given in units of a2. We observe
oscillatory behaviour in all three mass matrix elements. While A11 is always positive, A22

and A55 are negative in some regions. The tidal forces along the toroidal directions are
not negligible compared to other directions.

from its motion along y and ϕ1. As already mentioned, one observes that despite its oscillatory
behaviour A11 is always positive, while A22 and A55 can be both positive and negative. The
envelopes, and thus the tidal effects, are extremal around r ∼ √na, which is the bottom of the
throat where the microstructure of the superstratum is located.

Again, the envelopes in figure 5.4 are rescaled by b̃2 ≡ (b/
√

2a)2 and given in units of a2,
meaning that at large b̃ the amplitudes of oscillations in Aii scale as b̃2. One can explain this by
noting that as b̃ grows, the length of the throat increases. In the scaling limit,7 b̃ ≡ b/

√
2a→∞,

and the throat deepens to infinity while the geometry of the cap remains fixed [80,16]. A particle
dropped from spatial infinity with fixed energy E encounters the mircrostructure at the bottom
of the throat with higher kinetic energy and thus its interaction with the tidal forces are greater.

The discrete shift-symmetry of the throat length

As b̃ increases, the amplitudes of the tidal forces increase and in addition the crests of the
oscillations within the envelopes shift as well – see figure 5.5. One notices that after the usual
rescaling of the envelope by b̃2, the mass matrices are identical for two different and carefully
tuned throat lengths, b̃0 and b̃1. In fact, one can show that this pattern continues for an infinite
number of throat lengths b̃n. The origin of this behaviour is the v and ϕ1 dependent cosine
function in Π0. For specific values of the throat length b̃n the argument of that cosine function
differs exactly by an integer multiple of 2π for all values of λ (or r). For large b̃ this means that
at specific values b̃n the corresponding mass matrix elements Aii are identical up to an overall
scaling factor of b̃2.

7More precisely, one has to take a→ 0, while keeping b is fixed. But rescaling r with a to get to the
bottom of the throat, is as if one is sending b→∞.
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curves are rescaled by b̃2 ≡ (b/
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Figure 5.5 – Graphs of A11 and A55 for n = 9 and b̃ = 2000, 3000 and 5700. The curves
are rescaled by b̃2 ≡ (b/

√
2a)2 and given in units of a2. For generic values of b̃ the graphs

differ, but for specific values of b̃, such as b̃0 = 2000 and b̃1 = 5700, the plots are identical
– in the above plots, the two curves are actually coinciding.

As b̃ → ∞, the family of trajectories of null geodesics in the ϕ1 direction, {ϕ1(b̃; r)}b̃, con-
verges uniformly to a continuous function. On the contrary, the family of trajectories in the v
direction, {v(b̃; r)}b̃, converges pointwise to a limit function which is not integrable and therefore
the trajectory v(r) (and thus y(r)) varies with b̃. Consequently, when b̃ � 1, increasing the
throat length modifies the trajectory in the v-direction, while leaving the stabilized trajectory in
ϕ1 unchanged. Furthermore, it follows that the oscillations in all Aii, induced by the argument
in the cosine function in (5.2.6), are mainly due to the motion along the y-circle. The change in
position in ϕ1 does not exceed π. This also explains why at large b̃, the number of oscillations
scales with n.

Physically, due to a Z2n-symmetry of the superstrata along
√

2v in the string frame, the
specific values of b̃n correspond to throat lengths such that differences in trajectories along y
between two geodesics is an integer multiple of −2πRy

2n . This precisely induces a phase shift that
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is an integer multiple of 2π at all r in the argument of the cosine function of Π0.

5.4 CFT perspective on tidal effects

The presence of tidal excitations along T 4 can be motivated by considering the dual D1-D5
CFT. It consists of a bound state of D1 and D5 branes wrapping compact dimensions of the
theory, namely the S1

y and T 4. More specifically, the D1 branes wrap S1
y and the D5 branes

wrap S1
y × T 4. The theory is then described by ‘component’ strings composed of the wrapped

D-branes which live on the common direction, S1
y , denoted as the y circle. There is a well

defined map between the superstrata geometries and states within the D1-D5 system (see [169]
and references therein). The degrees of freedom correspond to open string excitations which can
be either bosonic or fermionic. Bosonic excitations, which we schematically write as α−n, are
polarized along the torus and fermionic excitations, which we schematically write as d−r, are
polarized along the torus and the 3-sphere. These bosonic and fermionic degrees of freedom can
be combined into composite operators such as L−n, J−n, G−r (we have suppressed the charge
indices for brevity). The L−n’s are Virasoro operators and are written in terms of the energy
momentum tensor of the theory. The J−n’s are current operators which are written in terms of
composite fermionic degrees of freedom. Finally the G−r’s are supercharge operators which are
written as composites of fermionic and bosonic operators. They exchange fermionic degrees of
freedom for bosonic degrees of freedom and vice versa.8

One can write down the CFT dual of an infalling probe propagating within the superstrata
geometry considered in this paper. In order to understand tidal excitations of the probe, which
is a dynamical process, we must turn on an interaction in the CFT which is schematically given
by the following action

S = S0 + λ

∫
d2wD(w, w̄) , (5.4.1)

where S0 is the action of the free theory. For more work on the deformed CFT see [170–174]. The
parameter λ is the coupling of the interaction and w corresponds to the CFT coordinates which
describe the location of the operator D(w, w̄). This operator consists of two operators which we
write schematically as D = Gσ. G is a supercharge operator described previously and σ is a
twist operator. The twist operator joins and splits component strings wrapping the y circle. The
twisting-untwisting process applied to component strings in the vacuum generate excitations in
the final state.

To study a probe falling into the superstrata geometry one considers an initial excitation
combined with a CFT state which is dual to the superstrata geometry. The CFT dual of the su-
perstrata geometry considered in this paper consists of a left moving momentum wave generated
by [50,52]

|background geometry〉 ∼
(

(L−1 − J3
−1)n|00〉1

)N00
(
|+ +〉1

)N++

. (5.4.2)

8For more details, see for example [164].
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The |00〉1 strands correspond to singly wound vacua which contain no net angular momentum
along S3 with N00 ∝ b2. The | + +〉1 strands correspond to singly wound vacua which contain
angular momenta along S3 with N++ ∝ a2. The CFT dual of the string probe moving within
the superstrata geometry can be schematically given by

|single graviton probe〉 ∼
(

(L−1 − J3
−1)n|00〉1

)N00

α−nᾱ−n

(
|+ +〉1

)N++

, (5.4.3)

where the unbarred notation represents a left mover and the barred notation represents a right
mover. Note that these excitations correspond to deformations of the metric components in
the T 4 directions [175]. A radial infall with no initial motion along y, implies from the CFT
perspective, that the left and right movers have the same energy. There is no net momentum
along the y circle.

In order to investigate tidal effects within the CFT, we need a mechanism which takes an
initial probe and generates further excitations which grow as a function of time, a process remi-
niscent of tidal effects experienced by a string in the bulk. In the CFT this effect is produced by
acting with a pair of operators, DD on the initial state, (5.4.3) for example. The first operator
D twists two smaller component strings in the initial state into a larger component string, and
then the second one untwists the larger copy back into two smaller component strings in the final
state. By applying two D’s, one can compute the transition amplitude for the initial excitation,
one left and right moving boson for example, (5.4.3), to split into multiple excitations in the final
state. Examples of such amplitudes are given by

〈multiple boson state|DD|single graviton probe〉 , (5.4.4a)

〈multiple fermion state|DD|single graviton probe〉 , (5.4.4b)

where for example

|multiple boson state〉 ∼ α−pᾱ−pα−qᾱ−qα−rᾱ−r|background geometry〉 (5.4.5)

corresponds to a final state containing bosonic excitations, and similarly

|multiple fermion state〉 ∼ α−pᾱ−pd−qd̄−qd−rd̄−r|background geometry〉 (5.4.6)

which is a final state containing both bosonic and fermionic excitations. The bosonic mode is
required to obtain a non-zero amplitude. To compute such processes, two D operators are pre-
ferred because their combined action ensures that the initial and final twist sectors are the same.
This provides the best attempt at maintaining a fixed background to cleanly study processes
which happen on top of it. Furthermore, we expect such transitions to occur because the twist
operator dynamically changes the size of the vacuum. Borrowing intuition from quantum fields
in curved space, we know that dynamically changing the vacuum creates particles. The logic
here is similar. In addition, the theory is supersymmetric. Therefore, given an initial state, the
operation of D can produce both bosonic and fermionic excitations.

Recent work [165, 166] suggests that this amplitude should grow in time. This growth in-
dicates the transfer of energy from a single bosonic mode to multiple modes in the final state
which share the initial energy amongst themselves. This includes both bosonic and fermionic

99



excitations. The initial mode contains a large momentum in the supergravity picture. This can
be pictured as an L−1, which functions as a boost generator in AdS, acting many times on an α−1

(similarly for the right-moving sector). The multimode final state, however, roughly corresponds
in the bulk to a graviton which has lost some of its linear momentum in favour of generating a
rest mass, a sign of stringy behaviour. This is suggestive, in the supergravity description, of a
string being tidally excited along transverse directions, including the sphere [163].

Because of the supercharge operator, we expect that transition amplitudes involving the
splitting of an initial bosonic excitation into only bosonic excitations in the final state should
also grow with time, similar to the amplitude containing fermionic excitations. The bosonic
excitations correspond to polarizations along T 4. Therefore the CFT process is suggestive of
a probe moving within the superstratum geometry and becoming tidally excited along the T 4

directions. This is precisely what is suggested by the results of this paper. Tidal effects within
the CFT are currently being investigated [165,166].

5.5 Summary and outlook

We analysed the the tidal forces along an infalling and spiralling null geodesic in the θ = π/2

hypersurface of the (1, 0, n) superstata. Using the Penrose limit, we found that there exist tidal
forces along all spatial directions orthogonal to the direction of the null geodesic. This includes
tidal forces along the internal T 4 directions which scale with the length of the throat and are of
the same order of magnitude as tidal effects in other, non-internal, directions. The elements of
the mass matrix Aii are oscillatory, with the amplitude of oscillation determined by the motion in
the radial direction while the oscillatory behaviour coming from motion along y and ϕ1 directions.

A massless string travelling along such a null geodesic alternately experiences compression and
stretching. The presence of stretching regions in the toroidal directions allows for the possibility
of string excitations along the T 4. In the dual CFT, such excitations correspond to bosonic
degrees of freedom and we discussed the field theory manifestation of tidal forces and their
properties. To conclude, our work supports the hypothesis that the CFT dual of tidal effects on
any graviton probe consists in transition amplitudes between different excitations which exhibit
a growth behaviour. The growth in the amplitude for a single-graviton excitation to transition
into a final state comprising of multiple bosonic excitations suggests that the initial graviton
loses energy, by tidal effects. The bosonic to fermionic amplitudes suggest that the graviton
probe loses energy due to tidal excitations along the S3, while the bosonic to bosonic amplitudes
concern the energy loss along the T 4.

Our analysis suggests a new way in which a string can get trapped inside a capped geometry
– as it spirals down the throat it encounters tidal forces which transform part of its kinetic
energy into internal excitations along the T 4 directions. The superstratum background can thus
be thought of as a viscous fluid in which the string gets captured.

The results presented here are in line with the findings of [163], where tidal excitations were
found to excite an infalling string only along the S3 and S1

y directions. This is a consequence of
analysing geodesics that lie entirely inside the θ = 0 hypersurface. The overall conformal factor
in the metric, Π, is then subleading in the Penrose limit (Π ∼ 1 +O(Ω2)) and thus tidal forces
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along the T 4 are subleading compared to those in the S3 and S1
y directions. However, because

Π is not subleading for any other infalling null geodesic, we believe that the takeaway from
our analysis applies generically – tidal forces along T 4 are important. This would suggest that
all of the ten dimensions are important when considering the scrambling of strings into capped
geometries.

There are still many questions that need to be answered. First, throughout the paper,
we have ignored the contribution from the B-field. This is because in (5.1.1) it merely mixes
different directions, and furthermore, in the (1, 0, n) superstrata the B-field has no legs along
the T 4 directions, hence it should not spoil the results of our analysis. It is also interesting
to observe that the tidal effects are identical between (some) directions in S3 and those of T 4,
despite possible difference in sizes. It would be interesting to see whether subleading effects in
the Penrose limit can observe the overall size of individual spatial directions. Finally, we have
shown that tidal forces along toroidal directions exist and can excite the string, but the exact
fate of the string is yet to be determined. We hope to answer some of these questions in the
future.
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Chapter 6

Resolving Black-Hole Microstructure
with New Momentum Carriers

6.1 Introduction

One of the remarkable achievements of string theory is that it can provide a microscopic descrip-
tion of black-hole entropy. It was found that, at vanishing string coupling, different string/brane
configurations could reproduce the Bekenstein-Hawking entropy of the corresponding black hole
[27, 28]. The black-hole geometry, and its horizon, then emerge as the string coupling, and
hence Newton’s constant, GN , becomes finite. Indeed, the horizon grows with GN [176–178], but
because gravity generically compresses matter, it was believed that all the perturbative string
states would collapse behind a horizon. Thus the perturbative microstates, whose counting gives
the black-hole entropy, would not be visible once gravity takes effect.

Insights from brane physics show that this picture is too naïve. The tension of D-branes
and NS-branes decreases as the coupling increases, and so adding momentum excitations causes
them to spread in directions transverse to their world-volume. Indeed, it was noted in [34] that
three-charge brane configurations carrying momentum would grow with GN at the same rate as
the black-hole horizon. It was then found that three-charge horizonless geometries supported by
topological fluxes have the same behavior [40,79,179]. Thus was born the Microstate Geometry
(MG) Programme in which one constructs smooth, horizonless geometries that approximate the
classical black-hole solution everywhere except at the horizon scale, where MG’s end in a smooth,
horizonless cap.

Microstate Geometries are part of a larger framework, known as the Fuzzball Programme. The
defining ideal of this programme is that individual black-hole microstates, generically referred
to as fuzzballs, must be horizonless because horizons imply entropy and give rise to information
loss [180,38]. Fuzzballs have the same mass, charge and angular momentum as a given black hole
and can be arbitrarily quantum and arbitrarily strongly curved. They describe pure states of the
black hole and, if a holographic description is available, are dual to pure states of the CFT that
can be used to account for the black-hole entropy. Microstate Geometries fit in this paradigm
as the string-theory fuzzballs that are sufficiently coherent as to become well approximated by
smooth solutions of supergravity.
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There also exist fuzzballs that are not smooth supergravity solutions but can be described
using other well-defined limits of string theory. Indeed, this led to the definition of a Microstate
Solution, [39], which is a horizonless solution of supergravity, or a horizonless, physical limit
of a supergravity solution, that has the same mass, charge and angular momentum as a given
black hole. Microstate solutions are allowed to have singularities that either correspond to brane
sources, or can be patch-wise dualized into a smooth solution. In this paper we will refine
this classification further to distinguish microstate solutions corresponding to pure states from
Degenerate Microstate Solutions, which correspond to a limited family of microstates.

It is important to emphasize that Fuzzballs are all, by definition, horizonless, regardless of
whether they can be described within supergravity. In this paradigm, horizons arise only as
a consequence of averaging over microstates and are thus necessarily related to ensembles of
such states. This is what leads to the entropy-area relation. But if pure states correspond to
horizonless microstates, then a solution with a horizon should not describe the physics of any
pure state of the system and should not be holographically related to any pure state of the dual
CFT.1

The purpose of this paper is to make some steps towards the resolution of what appears to be
a counterexample to the Fuzzball paradigm: the possibility that some pure CFT states are dual
to a supergravity solution with a horizon. The putative counterexample comes from a singular
limit of a class of Microstate Geometries known as superstrata.

Superstrata are horizonless solutions that have the same charges as a D1-D5-P supersymmet-
ric black hole. They are, perhaps, the most analyzed and well-studied of all MG’s [50,51,181,52,
159, 153, 161, 154–156, 53, 162, 160, 182, 163, 157, 183, 19, 184, 185], and the holographic dictionary
for these geometries is now well-established [186,62,187–191,169,192]. The corresponding black
holes have an infinitely-long AdS2 throat, but in superstrata, this throat is capped off at a large
but finite depth, which is inversely proportional to a parameter, a, that controls the angular mo-
mentum, and the spatial extent of the configuration. The momentum charge of a superstratum
is carried by flux excitations whose Fourier amplitudes give an additional set of parameters, bn.
The problematic limit, and putative counterexample, arises as one takes a→ 0.

These parameters have a well-understood interpretation in the dual D1-D5 CFT [190]. The
CFT states dual to superstrata are constructed starting from RR-ground states that are usually
described as having (+,+) strands and (0, 0) strands.2 The former carry angular momentum but
no momentum, and their number is proportional to a2. The (0, 0) strands have vanishing angular
momentum but, in the superstratum, carry momentum excitations with a quantum number, n.
The number of such excited strands is proportional to b2n and the total momentum charge is
given by:

QP ∼
∞∑
n=1

n b2n . (6.1.1)

Requiring the superstrata to be smooth and free of closed time-like curves imposes a constraint

1This has only been shown so far for (0+1)-dimensional CFT’s dual to asymptotically-AdS2 spacetimes
[68].

2For explanation of this notation, see, for example, [164,50].

104



of the schematic form:

Q1Q5

R2
y

= a2 +
1

2

∞∑
n=1

b2n , (6.1.2)

where Q1 and Q5 are the supergravity D1 and D5-brane charges and Ry is the asymptotic radius
of the common D1-D5 direction. The important point is that adding more momentum-carrying
modes (by increasing the bn’s) makes a smaller, so the AdS2 throat becomes longer, capping off
at higher and higher red-shifts. In the a → 0 limit, the cap moves to infinite redshift and the
superstratum solution appears to become identical to the classical extremal D1-D5-P black hole.

From the perspective of the dictionary to the dual CFT, this limit appears well-defined and
corresponds to a pure state with only (0, 0) strands. Thus it appears that as one moves in the
space of CFT states dual to superstrata, one encounters some pure states whose bulk dual has
a horizon. This violates the basic principle of the Fuzzball/MG programme: Pure states should
not be dual to a configuration that has a horizon.

As we discuss in Section 6.2, the appearance of a horizon is explained by noting that in
the D1-D5-P frame, the standard superstratum construction not only restricts the momentum-
carrying excitations, but also involves a smearing operation. This smearing preserves the details
of the microstructure only when a 6= 0, while in the a → 0 limit it averages over distinct
momentum-carrying configurations and this gives rise to a solution with a horizon. If one avoids
this smearing, and takes into account the degrees of freedom this smearing erases, the geometry
remains horizonless even as a→ 0.

In this paper we show how this can be achieved by constructing a new class of three-charge
solutions with vanishing horizon area that go beyond the standard superstratum construction by
incorporating additional momentum-carrying excitations. We do this by working in the Type IIA
F1-NS5-P duality frame, and the new momentum carriers that can resolve the microstructure are
D0-brane and D4-brane charge densities that vary along the common F1-NS5 direction. These
excitations have the important property that, unlike all other microstate geometries, they carry
momentum without expanding the branes in directions transverse to their world-volume. Hence,
one can think of them as giving rise to a longitudinally polarized momentum wave on branes that
remain localized at a single point in the transverse directions, and do not break the rotational
SO(4) symmetry of the black-hole solution.

Since duality transformations preserve degrees of freedom while encoding them in different
ways, our Type IIA F1-NS5-P supergravity solutions must have counterparts in the D1-D5-P
frame. However, to get from one frame to the other, one must perform a T-duality along the
common F1-NS5 direction, and the solutions we construct depend explicitly on this direction.
As a result, our Type IIA supergravity solutions become configurations involving a coherent set
of higher Kaluza-Klein modes, and thus cannot be described as D1-D5-P solutions in Type IIB
supergravity.3

The main result of this paper is the solution given in equation (6.3.12): It represents a
family of three-charge F1-NS5-P solutions with D0 and D4 densities and no macroscopic horizon.

3It is also interesting to note that the exact same phenomenon happens when one tries to dualize
D1-D5-P superstrata that depend on the common D1-D5 direction to the IIA F1-NS5-P duality frame
we consider: the smooth geometries are dualized into microstate solutions that contain excited towers of
KK modes and are not describable in supergravity.
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Globally, this solution preserves the four supercharges of the corresponding three-charge black
hole. However, if we zoom in at a fixed location along the F1 and NS5-branes, we find that the
configuration locally preserves eight supercharges. In this limit, the local D0 and D4 densities
are approximately constant and the solution preserves eight Killing spinors, four of which are
identical to those of the F1-NS5-P black hole. Hence, near the brane sources the solution behaves
locally like a two-charge system with a vanishing horizon area.

It is important to emphasize that the solution presented here is a singular brane configuration
with vanishing horizon area, and its role as a fuzzball needs clarification. As originally conceived,
a Microstate Solution is a horizonless, but singular, brane configuration that corresponds to a
black-hole microstate that can be fully resolved in string theory. We need to broaden this idea to
include Degenerate Microstate Solutions. Such an object is defined to be a singular supergravity
solution with the following properties:

• It must have vanishing horizon area.
• The source must correspond to a well-defined family of branes.
• The microstructure of the brane source can be revealed, and counted, through standard

string theory methods.
• There must be geometric deformations, or transitions, that can resolve the solution into

microstate solutions or microstate geometries.
One of the features of microstate solutions, and microstate geometries, is that if one zooms

into their cores, the underlying geometric elements are “locally primitive,” which means that
they locally preserve 16 supercharges. Taken as a whole, the complete solution preserves only
a subset of these supercharges. By contrast, the cores of degenerate microstate solutions will
typically preserve only 8 supercharges. This is too much supersymmetry for the configuration to
generate a horizon, and so the underlying structure can still be accessed and probed by string
theory. However, the reduction from 16 supercharges to 8 supercharges reflects the fact that
such solutions still correspond to a family of individual microstates, but this family is too small
to generate a horizon in supergravity.

In the past, the configurations we are classifying as degenerate microstate solutions have
sometimes been said to have “small” (string-scale) horizons because they represent stringy en-
sembles of states. We prefer the defining ideas of degenerate microstate solutions because they
accentuate the accessibility of the microstructure to stringy analysis and geometric resolutions,
while the cloaking of such things in horizons is, once again, just code for ensemble averaging of
microstructure.

The archetype of a degenerate microstate solution is, of course, the pure D1-D5 solution,
whose microstructure has been throughly understood in string theory [193, 60, 194]. As we will
discuss, the degenerate microstate solutions that we will construct in this paper are, at their
core, equivalent to D1-D5 degenerate microstate solutions. In subsequent work we plan to ex-
plore geometric transitions that will resolve these degenerate microstate solutions into microstate
solutions and microstate geometries.

In Section 6.2 we describe the general features of the standard superstratum construction and
how it neglects some degrees of freedom and necessarily results in smearing in the a → 0 limit.
We also discuss the supersymmetries preserved by the solution. In Section 6.3 we describe the
construction of the eight-supercharge NS5 solution with D0-D4 charges that carry momentum

106



without transverse fluctuations. We then add coherent F1-string excitations to this system, and
obtain the complete supergravity description. It is this microstate solution that provides the
resolution of the a → 0 limit: a solution with black-hole charges, vanishing horizon area, and
SO(4) symmetry.

In Section 6.4 we analyze this new geometry and compare it to the three-charge black-
hole solution. Section 6.5 contains a discussion of our results and an outline of possible future
research. Some of the details of the construction that are omitted in Section 6.3 are presented in
Appendix C.1. In Appendix C.2 we collect some of the conventions used throughout the paper.

6.2 Momentum carriers on superstrata

In five dimensions, a BPS black hole only has a finite-sized horizon if it has three charges
and thus preserves four supercharges (1

8 -BPS). The corresponding microstate geometries and
microstate solutions must globally preserve the same supercharges, however their cores can have
more supersymmetries locally. Indeed, their fundamental building blocks are locally primitive
and have 16 supercharges [49], but have fewer supersymmetries when considered globally because
their shapes and dipolar charge distributions break the supercharges down to the universal subset
that is common to the entire configuration.

Since microstate geometries and microstate solutions are supported by sources that have lo-
cally more supersymmetries than the black hole, they do not have in general an event horizon.
Indeed, the existence of superstrata was originally conjectured based on a double-bubbled geo-
metric transition of the D1-D5 system [49]. Specifically, if one starts with a stack of D1-branes
and adds a momentum wave, then the configuration is globally 1

4 -BPS but locally 1
2 -BPS. If one

then combines a D1-brane with a profile carrying a momentum wave with a D5-brane with the
same profile, the system is globally 1

8 -BPS but locally 1
4 -BPS. By adding angular momentum

and a KKM dipole charge, one can make a geometric transition to a momentum carrying object
that is globally 1

8 -BPS but locally 1
2 -BPS. The result is a superstratum [50].

To make a smooth geometry, the “special direction” of the KKM must coincide with the
common D1-D5 direction, which we parameterize with the coordinate v.4 However, the standard
Kaluza-Klein Monopole (KKM) geometry must be v-independent,5 and this conflicts with the
addition of momentum excitations, which necessarily depend on v. Indeed, the v-circle pinches
off at the KKM location, and so one cannot source v-dependent fluctuations on the KKM locus
without creating a singularity.

This difficulty was resolved in [195] and is best understood by starting from the standard,
maximally-spinning supertube [47,48]. One takes the D1-D5 system and adds a KKM dipole and
angular momentum so that the supertube wraps a circle in an R2 of the R4 transverse space. The
angle along this circle is denoted by φ, and the solution is independent of (φ, v). This describes

4To be more precise, the common D1-D5 direction is described by a periodic coordinate y, while v is
a null coordinate: see equation (6.3.3). Supersymmetry requires the solution to be independent of the
other null coordinate, u, and one can think of the latter as describing “time” while v denotes the “spatial”
coordinate (see also [181] for a more careful discussion).

5One can obviate this difficulty by allowing higher Kaluza-Klein modes in the monopole, but this takes
us outside of Type-IIB supergravity.
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the maximally-spinning 1
4 -BPS supertube and it corresponds to a coherent superposition of RR

ground states in the CFT consisting of only (+,+) strands. One can now allow the density of
D1- and D5-branes to vary along the φ direction of the supertube. In terms of the standard mode
numbers inherent in superstrata, (k,m, n), this density fluctuation corresponds to a (k, 0, 0)

excitation. The result is still a 1
4 -BPS supertube, and it is still v-independent, but it is now a

mixture of (+,+) and (0, 0) strands (of length k). The numbers of such strands is determined
by Fourier coefficients, a and bk,m=0,n=0.

In superstrata one can think of the (0, 0) strands (or the φ-dependent density fluctuations
in the (k, 0, 0) solution) as the “medium” that carries the momentum, and the solutions where
these modes are excited have generic values of (k,m, n). One necessarily has k > 0 because the
momentum is being carried by the density fluctuations around φ. As discussed in detail in [195],
the v-dependent fluctuations are not, and cannot be, sourced on the original supertube locus:
these fluctuations are delocalized in the fluxes and geometry of the topologically-non-trivial
three-cycles of the D1-D5-KKM solution.

The a→ 0 limit of superstrata is motivated by the desire to construct solutions with vanishing
angular momentum that resemble a black hole with arbitrary precision.6 In view of the previous
discussion it is now evident just how pathological this limit is for standard superstrata. Namely,
by keeping the UV unchanged and taking a→ 0, one is collapsing both the supertube that defines
the momentum carriers and the topological bubble that supports the momentum-carrying fluxes.
The end result is to push the KKM locus and the center of the R4 base-space of the solution to a
point, while keeping the momentum fixed. Since the KKM forces v-independence, the momentum
charge only survives in this limit because the momentum carriers are smeared along the v-circle
and as a result the geometry develops a horizon. Hence, the standard superstratum momentum
carriers, which are v-dependent and have polarizations in the R4 directions are crushed to a point
in the transverse space and smeared along the v-direction in the a→ 0 limit.

In the dual CFT picture, the a → 0 limit of various superstratum solutions corresponds to
various states that only have (0, 0) but no (+,+) strands, and hence have no angular momentum.
Hence, these pure states appear naively to be dual to a bulk solution with a horizon. Further-
more, the bulk information that distinguishes these pure states from one another appears to
vanish in this limit. Thus in the limit of vanishing angular momentum, the superstratum holo-
graphic dictionary appears to break down. In order to solve this puzzle, and the apparent loss of
information in the holographic dictionary, we need to consider all possible momentum carriers of
the system, and, in particular, find the modes that carry momentum and have vanishing angular
momentum in the space-time. The simplest duality frame in which one can build these modes
is the Type IIA frame in which the three charges of the black hole correspond to F1 strings,
NS5-branes and momentum.7

6As explained in [68], there are two such limits. In the first limit, one keeps finite the energy of
asymptotic observers and the asymptotic structure of spacetime, and the AdS2 throat becomes longer
and longer and its cap becomes deeper and deeper, approaching the infinite throat of the supersymmetric
black hole. In the second limit, one keeps finite the energy of an observer in the cap, and in this limit the
cap remains fixed, while the asymptotic structure of the solution becomes AdS2 times a compact space.
This discussion is about the first limit.

7It is also possible to add such fluctuations in the D1-D5-P duality frame, but these correspond to
fluctuations of brane and string densities that wrap partially the T 4 compact space, and hence break the
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x10

v

M5

P

M2

Figure 6.1 – Initial configuration in the M-theory frame: M2-branes (green) are wrapping
the S1(v) × S1(x10) circles, while the M5-branes (blue) wrap the S1(v) × T 4 (T 4 is not
pictured) and have a wave carrying a momentum, P , along v. The M5-branes with a
momentum wave have a non-trivial profile in the S1(v) × S1(x10) plane, and hence have
locally non-zero M5 charges parallel to the x10 direction, as well as non-trivial momentum
along x10. When one compactifies this M-theory solution to Type IIA along x10, these
charge components become D4 and D0 charge densities respectively.

One can relate this frame very easily to the normal IIB D1-D5-P frame by an S-duality to a
Type IIB F1-NS5-P system, followed by a T-duality. In this duality frame, the NS5-brane can
carry momentum along the common F1-NS5 direction by the excitation of the internal scalar
field of the Type IIA NS5-brane. This corresponds in supergravity to turning on fluctuating
Ramond-Ramond fields C1 and C3, that can be thought of as coming from D0- and D4-brane
density fluctuations inside the NS5-brane. These density fluctuations can be chosen to integrate
to zero, so that the total solution only has F1, NS5 and P charge. These momentum-carrying
excitations have vanishing angular momentum in the transverse R4 space and are well-defined
even in the a→ 0 limit.

The fact that adding D0-D4 dipole charges to the F1-NS5 system is natural is perhaps best
understood by going to the M-theory frame. Consider Type IIA theory on R1,4 × S1(v) × T 4

and denote the M-theory circle by S1(x10). The F1-NS5 system lifts to a configuration of M5
and M2-branes, where the M5-branes wrap T 4×S1(v) and the M2-branes wrap S1(x10)×S1(v).
The D0-D4 densities carry momentum as a longitudinal wave along the common direction in
the F1-NS5 system. In M-theory the NS5-D0-D4-P subsystem uplifts to a momentum-carrying
wave on the M5-brane, whose transverse polarization is strictly in the M-theory direction. This
M5-brane has 8 supersymmetries, but if one zooms near the profile at a specific location one finds
an M5-brane with orthogonal momentum, which preservers 16 supercharges. When one reduces
this configuration along the x10 direction to ten-dimensional Type IIA theory, the momentum
and M5-charge polarized along the x10 become D0 and D4 charge densities.

This leads to the starting point of our analysis: Our aim is to construct three-charge Type

isotropy of the torus. The advantage of the IIA F1-NS5-P frame is that these modes preserve the T 4

isotropy.
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IIA supergravity solutions with F1-NS5-P charges, where the momentum is carried by fluctuating
D0-D4 density waves. In contrast to all the three-charge horizonless solutions constructed so far,
our solutions are SO(4) singlets under rotations on the R4 base space, exactly as the black hole.
Furthermore, these solutions are 1

8 -BPS (4 supercharges) globally, but 1
4 -BPS (8 supercharges)

locally, and hence have a vanishing horizon area. But as we explained earlier, the result of our
analysis will be a new family of degenerate microstate solutions.

6.3 Construction of the new three-charge solution

Our construction starts from the well-known solution for the F1-P system in Type IIB super-
gravity in ten dimensions. We then use a series of S-dualities and T-dualities (whose details are
presented in Appendix C.1) to arrive at the geometry corresponding to the two-charge NS5-P
system with local D0-D4 charges. We then add a fundamental string charge to this system. We
do this by applying an S-duality and then a T-duality to the initial frame which results in a sys-
tem with D5 and P charges. In that duality frame one can add a D1 charge in a straightforward
manner. After we add the D1 charge, reversing the last duality chain takes us to the solution we
are seeking: One which carries F1-NS5-P charges, has SO(4) spherical symmetry and vanishing
horizon area.

6.3.1 Generating an NS5-P solution with local D0-D4 charges

Starting point: the F1-P solution with a non-trivial T 4 profile

The solution in D spacetime dimensions sourced by a fundamental string carrying momentum
lies entirely in the NS sector of the theory, and is given by [196,197]:

ds2 = − 2

H
dv

[
du− Ḟ 2(v)

2
(H − 1) dv + ḞM (v) (H − 1) dxM

]
+ δMNdx

M dxN , (6.3.1a)

B = −
(

1− 1

H

) [
du ∧ dv + ḞM (v) dv ∧ dxM

]
, e2φ =

1

H
, (6.3.1b)

with all other fields vanishing. The coordinates u and v define the light-cone directions along the
world-sheet of the string. The remaining transverse directions are parameterized by Cartesian
coordinates, xM , with M = 1, . . . D − 2. The shape of the string is given by profile functions,
FM (v), with the dot denoting the derivative with respect to v. The string sources a warp factor
which is a harmonic function, H, in the D − 2 dimensional transverse space:

H ≡ 1 +
Q

|xM − FM (v)|D−4
, (6.3.2)

where Q is the supergravity charge associated to the fundamental string and is proportional to
the ADM mass per unit length [197].

We take the space-time to be ten-dimensional with the topology Rt × R4 × S1(y)× T 4. We
will refer to the R4 as the base space, and it will be parameterized by xi, with i = 1, 2, 3, 4, while
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z9

y

F1

P

F (v)

Figure 6.2 – The shape of the fundamental string in the y−z9 plane at a fixed time t. The
string is wrapping the y-circle while its profile in the z9 direction is given by an arbitrary
periodic function F (v). The system has a global F1 charge and a global momentum
charge, denoted by P . Finally, the profile is smeared on the S(z9) circle, the smearing
process being here depicted with the dotted lines. The non-trivial profile results in local
variations of the charges in the z9 and y directions.

the T 4 will be parameterized by za with a = 6, 7, 8, 9. We take the radius of the circle S1(y)

to be given by Ry, and the coordinate y is periodically identified with y ∼ y + 2π Ry. The null
coordinates appearing in (6.3.1) are related to the usual spacetime coordinates through:8

v =
t+ y√

2
, u =

t− y√
2
. (6.3.3)

We choose the momentum-carrying string to wrap the compact y direction and to be localized
at the origin of R4. For simplicity, we take the string to oscillate along one of the directions of
the torus, z9. Since we are interested in a solution that is isotropic along the torus, we smear
the string source along the full T 4. The corresponding profile function is

FM (v) = δMa ca + δM9 F (v) , (6.3.4)

where F (v) is an arbitrary periodic function of period
√

2πRy and we include constants ca which
are integrated over in the process of smearing. The solution after smearing on the torus (see also
Figure 6.2) is

ds2 = − 2

H5
dv

[
du− Ḟ 2(v)

2
(H5 − 1) dv + Ḟ (v) (H5 − 1) dz9

]
+ dxi dxi + dza dza , (6.3.5a)

B = −
(

1− 1

H5

) [
du ∧ dv + Ḟ (v) dv ∧ dz9

]
, e2φ =

1

H5
, (6.3.5b)

where the harmonic function (6.3.2) is now given by9

H5(r) = 1 +
Q5

r2
, r2 = xi xi . (6.3.6)

8Note that compared to [196,197], we have rescaled u and v by a factor of
√

2.
9The label is added to the harmonic function and to the charge for future convenience.
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F1

F1(y)

F1(z9)

P

P (y)

P (z9)z9

y

Figure 6.3 – Zoom in on a local piece of the fundamental string presented in Figure 6.2.
We decompose the string charge F1 (directed along the string direction) and momentum
P (directed transverse to the string) into components along the y and z9 directions:
They source the metric and B-field along these directions. Different charge components
transform into different objects upon S and T-dualization.

The profile of the momentum-carrying wave, F (v), is arbitrary in the y−z9 plane, so the system
has locally varying F1 and momentum charge densities, which generically source the metric and
B-fields with components both along the y-direction and along the z9-direction. We denote these
configurations as F1(y), P(y), and F1(z9), P(z9), respectively (see figure 6.3). Since the string
does not wind around the z9 direction, the total value of the P(z9) and F1(z9) charges is zero.
Only F1(y) and P(y) correspond to charges measured at infinity.

NS5-P solution with local D0-D4 charges

We now perform a series of S-dualities and T-dualities that take us to a solution with global NS5-P
charges and local D0-D4 charges. We give here only the duality chain and the explicit expression
for the final solution, leaving the solutions obtained at intermediate steps to Appendix C.1.

The duality chain starts from the type-IIB solution in Equation (6.3.5):
F1(y)

P (y)

F1(z9)

P (z9)


IIB

S←→


D1(y)

P (y)

D1(z9)

P (z9)


IIB

T(z9)←−−−→


D2(y, z9)

P (y)

D0

F1(z9)


IIA

T(z8,z7,z6)←−−−−−−→


D5(y, T 4)

P (y)

D3(z6, z7, z8)

F1(z9)


IIB

S←→


NS5(y, T 4)

P (y)

D3(z8, z7, z6)

D1(z9)


IIB

T(z9)←−−−→


NS5(y, T 4)

P (y)

D4(T 4)

D0


IIA

. (6.3.7)
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The columns depict the objects appearing in each of the solutions, with the upper two entries
denoting the charges that can be seen at infinity while the lower entries denote the local charges
(which are the duals of the F1(z9) and P (z9) local charges in the solution (6.3.5)). Above
the double-headed arrows we write the duality that connects the two solutions, and show the
direction along which we T-dualize. The subscripts of the parentheses denote the theory in which
the solution exists.

At the end of the chain we obtain a solution corresponding to NS5-branes that wrap all five
compact directions, momentum P along the y direction, as well as D4-branes wrapping the T 4

and D0-branes. Note that the solution has arbitrary and equal D0 and D4 charge densities,
which can either integrate to finite values or to zero. Since we are trying to construct microstate
geometries for the F1-NS5-P black hole, we choose an F (v) profile that does not wind along the
z9 direction, and which gives a solution in which the total D0 and D4 charges vanish.

Following the rules of S-dualities and T-dualities (summarized in Appendix C.2, together
with the democratic formalism [198] that we use to present the solution), we find that fields
associated with the NS5-P solution with D0-D4 charges are given by

ds2 = −2dv

[
du− Ḟ (v)2

2

(
1− 1

H5

)
dv

]
+H5 dx

i dxi + dza dza , (6.3.8a)

B2 = γ , e2φ = H5 , (6.3.8b)

C1 = −Ḟ (v)

(
1− 1

H5

)
dv , (6.3.8c)

C3 = −Ḟ (v) γ ∧ dv , (6.3.8d)

C5 = −Ḟ (v)

(
1− 1

H5

)
dv ∧ v̂ol4 = C1 ∧ v̂ol4 , (6.3.8e)

C7 = −Ḟ (v) γ ∧ dv ∧ v̂ol4 = C3 ∧ v̂ol4 , (6.3.8f)

where the two-form γ is defined by

dγ ≡ ∗4dH5 , (6.3.9)

and v̂ol4 denotes the volume form of the torus. One should note that even though we started
with a F1-P profile that was not isotropic along the T 4, through the chain of dualities (6.3.7) we
arrive at (6.3.8) where the torus only appears through its volume form.

It is useful to note that our solution exhibits the expected features. The harmonic function
H5 appears in the solution in the way one expects for an NS5-brane: it multiplies the part of the
metric that is transverse to the brane, it shows up in the expression for the dilaton (which diverges
as one approaches the NS5-brane), and it determines the NS-NS two form which is sourced
magnetically by the NS5-brane (see (6.3.9)). The solution also has non-vanishing momentum,
which can be read off from the gvv component of the metric. This momentum arises from the
non-trivial profile function, F (v), which also enters in the expression of the Ramond-Ramond
gauge fields. Since the local contribution to the momentum of the solution is proportional to
Ḟ (v)2, the total momentum is always positive for any non-constant profile function.

When F (v) is a constant, the solution reduces to that of a stack of NS5-branes at the origin of
R4. When the profile function is linear in v, the solution describes an NS5-brane with constant
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D0, D4, and momentum charges. The D0-branes source C1 electrically and C7 magnetically,
while the D4-branes source C3 electrically and C5 magnetically. These gauge fields have the
structure Cp+4 = Cp ∧ v̂ol4, which is a consequence of the fact that in our solution the D0 and
D4 charges are locked and is related to the enhanced supersymmetry one observes when Ḟ (v) is
constant.

It is interesting to observe that the solution with a non-trivial F (v) profile can be written in
a much simpler fashion by redefining ṽ ≡ F (v). Since F (v) is periodic, and not monotonic, this
re-definition is only locally well-defined, but it allows one to transform (6.3.8) into a solution in
which all the fields and metric components except guṽ are independent of the choice of profile.
Hence, the only difference between the solution with a linear F (v) profile and the v-dependent
solution with an arbitrary profile comes from multiplying guv with an arbitrary function of v.
The fact that this multiplication transforms a solution into another solution points to the possible
existence of a simple method to add null waves on certain solutions, which we plan to further
explore in future work.

6.3.2 Generating the F1-NS5-P solution with local D0-D4 charges

The solution (6.3.8) with a periodic F (v) only has global NS5 and P charges and can be thought
of as describing a microstate of the two-charge system. To add a third charge, we add a stack
of fundamental strings on top of the NS5-P-D0-D4 solution. These strings will wrap the S1(y)

circle along which the momentum is oriented, and will be smeared along the four-torus. To add
this F1 charge we perform a duality chain on the solution in (6.3.8), we transform it to a certain
class of D1-D5-P supersymmetric solutions [199], add an extra charge, and dualize back.

The most obvious way to dualize from the Type IIA F1-NS5-P frame to the D1-D5-P frame
is to do a T-duality along the y direction, followed by an S-duality. However, this supergravity
duality cannot be performed on (6.3.12), except upon smearing the profile F (v), which results
in a trivial solution with no v dependence. To preserve the non-trivial v-dependent information,
one needs to T-dualize along another isometry direction.

We will use instead an isometry of the transverse space: Rewrite the flat metric on R4 in the
Gibbons-Hawking form [200]

dxi dxi =
1

V
(dψ +A)2 + V ds2

3 , (6.3.10)

where ψ is the Gibbons-Hawking fiber, ds2
3 is the line-element of flat R3, V is a scalar function

and A a one-form on this three-dimensional space, satisfying the relation ∗3dA = dV . Since the
Gibbons-Hawking fiber is periodic, one can T-dualize along it without losing information about
the local charges along the S1(y) circle, but at the cost of destroying the asymptotic structure
of the solution. However, this does not cause any problems, since we only use this duality as a
tool for introducing the F1 charge: The asymptotic behavior is restored after we dualize back to
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the original frame. Hence the chain of dualities we consider is

NS5(y, T 4)

P (y)

D4(T 4)

D0

F1(y)


IIA

T(ψ)←−−−→



KKM(y, T 4;ψ)

P (y)

D5(T 4, ψ)

D1(ψ)

F1(y)


IIB

S←→



KKM(y, T 4;ψ)

P (y)

NS5(T 4, ψ)

F1(ψ)

D1(y)


IIB

, (6.3.11)

where the KKM(y, T 4;ψ) denotes a KKM charge with special direction ψ that is distributed along
the S1(y) circle and the torus. Note that the interpretations of these charges is heuristic, since
the NS5-brane sits at a fixed point of the isometry of the T-duality along ψ, and the asymptotic
structure is singular. Below the line we describe the duality chain for the fundamental string
that we want to add to (6.3.8). In the final frame (which is often called the D1-D5 frame and is
commonly used in the superstrata constructions) this corresponds to adding a D1-brane wrapped
along the y circle. Since all the torus-independent supersymmetric solutions in this frame are
perfectly understood [199], we know the precise way in which to add such a D1-brane to the
dual of our initial two-charge configuration, and we present the details of the calculation in
Appendix C.1.

After adding the D1-brane in the D1-D5 frame (6.3.11) and performing the duality transfor-
mations backwards (from right to left), we obtain the following solution describing an F1-NS5-P
system with non-trivial D0-D4 density wave, localized at the origin of the flat R4 base (see also
figure 6.4):

ds2 = − 2

H1
dv

[
du− Ḟ (v)2

2

(
1− 1

H5

)
dv

]
+H5 dx

i dxi + dza dza , (6.3.12a)

B2 = − 1

H1
du ∧ dv + γ , e2φ =

H5

H1
, (6.3.12b)

C1 = −Ḟ (v)

(
1− 1

H5

)
dv , (6.3.12c)

C3 = −Ḟ (v) γ ∧ dv , (6.3.12d)

C5 = −Ḟ (v)

(
1− 1

H5

)
dv ∧ v̂ol4 = C1 ∧ v̂ol4 , (6.3.12e)

C7 = −Ḟ (v) γ ∧ dv ∧ v̂ol4 = C3 ∧ v̂ol4 , (6.3.12f)

where we have introduced a new harmonic function associated with the F1 charge

H1(r) = 1 +
Q1

r2
, (6.3.13)

and the two-form γ is defined through (6.3.9). This solution is the main result of our construction.
Note that this solution can be simplified locally in the same way as (6.3.8), by redefining the v
coordinate as ṽ = F (v) and seeing that all the non-trivial fluctuations along the null direction
can be absorbed into a fluctuation of guṽ.

In the next section we perform a detailed analysis of the this solution and compare it to the
three-charge F1-NS5-P black-hole solution.
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D0-D4

y

NS5

P

F1

Figure 6.4 – A constant-time snapshot of the periodic y direction at the origin of R4. We
have fundamental strings (F1, blue) and NS5-branes (green) wrapping the y circle with
momentum-carrying D0-D4 charges densities (red density plot) living on the world-volume
of the NS5-brane. The D0 and D4 charges have the same y (or v) dependence, given by
the profile function F (v), which is necessary for the configuration to be supersymmetric.

6.4 Analysis and comparison

In this section we compare the newly obtained three-charge solution (6.3.12) to the three-charge
F1-NS5-P black-hole that has a finite-size horizon. We begin by reviewing this black hole,
focusing on the behavior of the solution near the horizon. We then perform a similar analysis on
the solution constructed above, and compare and contrast the results. We find that, while the
two solutions asymptotically look alike, they differ drastically in the near-horizon region. In the
black-hole solution the singular source appearing in the harmonic function associated with the
momentum is responsible for stabilizing the y-circle thus giving rise to an event horizon with a
finite area. This does not happen in the new solution (6.3.12), where the momentum is produced
by the fluctuations of the local D0 and D4 charges, whose corresponding function remains finite
at the location of the F1 and NS5-brane sources. As a consequence, the y-circle pinches off and
the horizon area vanishes. The existence of our solution indicates that if one considers all the
degrees of freedom of the system, an event horizon does not form even when the system has no
transverse fluctuations.

6.4.1 The F1-NS5-P three-charge black hole

The F1-NS5-P three-charge black hole is obtained by superimposing a stack of NS5-branes (wrap-
ping S1(y) × T 4) and a stack of F1-strings (wrapping S1(y)), both of which are located at the
origin of R4, and allowing for additional momentum charge in the y direction [201]. This yields
the solution:10

ds2 = − 2

H1
dv

(
du+

F
2
dv

)
+H5 dx

i dxi + dza dza , (6.4.1a)

B2 = − 1

H1
du ∧ dv + γ , e2φ =

H5

H1
, (6.4.1b)

with all other fields vanishing.
The harmonic functions associated to the NS5-branes and F1-strings, H5 and H1, are given

by the expressions (6.3.6) and (6.3.13). Furthermore, the magnetic component of B2, which is

10Throughout section 6.4 we are working with string-frame metrics, unless explicitly stated otherwise.
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sourced by the NS5-branes is given by the expression (6.3.9). The harmonic function associated
to the momentum, F , has a δ-function source at the origin of R4, whose strength is proportional
to the momentum charge as measured at spatial infinity, QP :

F = −2QP
r2

. (6.4.2)

In the backreacted solution, there is an event horizon at r = 0. To calculate its area one
needs to look at the size of the orthogonal dimensions as one approaches it. One can show that
the radius of the S1(y) circle at an arbitrary value of r is

Ry(r) =

√
QP + r2

Q1 + r2
Ry , (6.4.3)

where, as before, Ry denotes the value of this radius at infinity. We can see that the y-circle
remains finite in size as we approach the horizon at r = 0. Combining this with the finite size of
the S3 of the R4, we find that (6.4.1) has a non-zero horizon area. This is a direct consequence
of the stabilization of the S1(y) circle at the location of the horizon, caused by the balancing
between the effect of the momentum, which exerts a centrifugal force towards a large radius,
and the tension of the branes wrapping the circle, which try to shrink it. In the absence of
momentum (QP = 0), one can see from (6.4.3) that the S1(y) circle wrapped by the NS5-branes
and F1-strings pinches off as r → 0 and thus the horizon area vanishes.

Finally, we note that the metric is actually smooth at the horizon, and it can be smoothly
continued across it. As one would expect, the curvature invariants remain finite:

R = −20
Q1 −Q5

Q1Q2
5

r2 +O
(
r3
)
, (6.4.4a)

Rµν R
µν =

24

Q2
5

+O
(
r2
)
, (6.4.4b)

Rµνρσ R
µνρσ =

24

Q2
5

+O
(
r2
)
. (6.4.4c)

6.4.2 The new three-charge solution with local D0-D4 charges

We can write the metric of our new solution (6.3.12) as

ds2 = − 2

H1
dv

[
du− Ḟ (v)2

2

(
1− 1

H5

)
dv

]
+H5 dx

i dxi + dza dza , (6.4.5a)

=
1

H1

[
−dt2 + dy2 +

Ḟ (v)2

2

(
1− 1

H5

)
(dt+ dy)2

]
+H5 dx

i dxi + dza dza , (6.4.5b)

where we used (6.3.3) to obtain the second line. If the harmonic functions H1 and H5 contain a
constant, the geometry is asymptotically flat R4,1×Sy×T 4. The main difference with the black
hole comes from the behavior of the gvv component of the metric, which contains the information
about the momentum of the system. In contrast to (6.4.1), this metric does not contain a freely
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choosable harmonic function, F , with an independent charge QP . Rather, the momentum is
encoded in the profile F (v) and the combination (1 − H−1

5 ), which, as already mentioned, is
finite everywhere in the base space. This is because the momentum is carried in a fundamentally
different way compared to the black-hole solution. The finiteness of (1−H−1

5 ) suggests an absence
of a localized source for the momentum. This is in conflict with the naive “NS5 world-volume
intuition," according to which the momentum is sourced by longitudinal fluctuations of the D0
and D4 densities inside the NS5-brane world-volume, and hence it should also be sourced at the
location of the NS5-brane. Of course, the NS5 world-volume intuition ignores back-reaction, so
it is not the appropriate intuition for the the full supergravity solution. But it is rather puzzling
that other aspects of this world-volume intuition are described correctly in supergravity, while
this particular aspect is not.

The asymptotics

Despite the absence of a singular source, one can calculate the value of the momentum along the
y direction in this solution from the asymptotic expansion [202,155]:

gvv ≈
1

r2
(2QP + oscillating terms) +O

(
r−3
)
. (6.4.6)

Thus we can read off

gvv =
Ḟ (v)2

H1

(
1− 1

H5

)
≈ Q5 Ḟ (v)2

r2
+O

(
r−3
)
, (6.4.7)

from which we extract the non-oscillating part by averaging over the y-circle:

QP =
Q5

2

1√
2πRy

∫ √2πRy

0
Ḟ (v)2 dv . (6.4.8)

Note that if the profile function admits a decomposition as a Fourier sum

F (v) = Ry a0 +Ry

∞∑
n=1

[
an
n

cos

(√
2nv

Ry

)
+
bn
n

sin

(√
2nv

Ry

)]
, (6.4.9)

then one can evaluate the integral in (6.4.8) and obtain

QP =
Q5

2

∞∑
n=1

(
a2
n + b2n

)
. (6.4.10)

Thus, different solutions in the family we constructed (6.3.12), parameterized by different profile
functions F (v), have the same asymptotic momentum charge, QP , as the black hole (6.4.8).
However, while the gvv component of the black-hole solution only contains a harmonic function
proportional to QP

gBH
vv =

1

H1

2QP
r2

, (6.4.11)
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the metric of our solutions deviate from that of the black hole at higher order in the asymptotic
expansion in r, because of the (1−H−1

5 ) term in gvv (6.4.7):

gvv(v) =
Ḟ (v)2

H1

(
Q5

r2
− Q2

5

r4
+O

(
r−6
))

. (6.4.12)

Averaging (6.4.12) over v suggests that the higher multipoles of our solutions may be different
from those of the black hole:

〈gvv〉v ≡
1√

2πRy

∫ √2πRy

0
gvv(v) dv =

1

H1

(
2QP
r2
− 2Q5QP

r4
+O

(
r−6
))

. (6.4.13)

Hence, our solution deviates from the black-hole metric via Q5QP

r4
and higher terms in gvv, which

indicates that the momentum wave of the microstructure in the backreacted solution develops a
finite size. This will be further confirmed in Section 6.4.2.

The vanishing-area horizon

Much like in the two-charge F1-NS5 solution, one finds that gtt goes to zero at r = 0, the location
of the pole of the brane harmonic functions. Furthermore, the curvature invariants are finite at
this point and are equal to those of the F1-NS5 two-charge solution11 and those of the F1-NS5-P
three-charge black hole (6.4.4). The crucial difference comes from behavior of the length of the
y-circle near the brane sources, which we calculate using (6.4.5)

Ly =

√
2

H1

∫ √2πRy

0

√
1 +

Ḟ (v)2

2

(
1− 1

H5

)
dv ≈ r

√
2

Q1

∫ √2πRy

0

√
1 +

Ḟ (v)2

2
dv , (6.4.14)

where we have expanded around r = 0. Since the integrand is a strictly positive function, we find
that near the origin the y-circle pinches off, despite the fact that the solution has a non-trivial
momentum along that direction. One can show that, as r → 0, all other dimensions are finite
in size.12 Therefore, (6.3.12) has a singularity that can be thought of as a zero-area horizon.
This is the same type of singularity as in the F1-NS5 or D1-D5 two-charge solutions. Our new
solution is thus very peculiar: For a non-trivial profile F (v), we can see from (6.4.8) that it
contains momentum along with F1 and NS5 charges, making it a three-charge solution. On the
other hand, one can see from (6.4.14) that the y-circle shrinks at the origin, which gives rise to
a singularity of the type present in two-charge solutions.

11One should remember that the near-brane limit of the two-charge solution is, locally, like Poincaré
AdS3 ×S3, and so the curvature invariants are all well-behaved. What makes the solution singular is the
fact that the S1 pinches off in the r → 0 limit, where gtt also vanishes.

12One can show that the three-sphere which appears in the base space has an area of Area(S3) =

2π2
(
r2H5

) 3
2 ≈ 2π2Q

3
2
5 , where we have expanded near r = 0. Furthermore, the volume of the T 4

is independent of r and is taken to be finite. Then the string-frame area of the would-be horizon is
AH = Ly Area(S3) Vol(T 4), which vanishes as one approaches the brane sources because of the pinching
of the y-circle.
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The near-horizon behavior - a first pass

There exist two ways to analyze the near-horizon behavior of the solution. One can, as we discuss
in this subsection, focus on the region where

r2 � Q1, Q5 . (6.4.15)

By expanding (6.3.12) in small r, one can probe the solution in the vicinity of the brane sources.
The expansion of the metric is, up to order O(r2), given by:

ds2 =

√
Q5

Q1

[
− 2 r2

√
Q1Q5

dv

(
du− Ḟ 2(v)

2
dv

)
+

√
Q1Q5

r2
dr2 +

√
Q1Q5 dΩ2

3

]
+ dŝ2

4 , (6.4.16)

which is locally AdS3×S3× T 4, as can be seen more explicitly by introducing a new coordinate

w ≡ u−
∫
Ḟ (v)2

2
dv , dw = du− Ḟ (v)2

2
dv . (6.4.17)

Thus, near the brane sources, the solution is locally simply empty AdS. The transformation
(6.4.17) removes the metric component gvv ∝ Ḟ 2(v) r2, which is the only term in the near-
horizon region sensitive to Ḟ 2(v). This metric component vanishes at r → 0, but grows as r2

with increasing radius. Therefore, it does not vanish at the boundary of AdS3 (r → ∞), but
corresponds to a non-trivial deformation of the boundary metric.

The growing behavior of gvv as one is increasing the radius implies that the momentum is
not localized in the interior of the AdS region. Since the asymptotically-flat solution (6.3.12)
contains non-vanishing momentum charge, the momentum wave must be located in the transition
zone between the AdS3 near-horizon region and the flat space region. This explains why our new
solution has a momentum that can be measured at infinity (6.4.8), despite the absence of a
no momentum-charge source at r = 0. Indeed, as can be seen from figure 6.5, which depicts
the gvv for arbitrary values of r, (6.4.16) captures only the leading near-horizon behavior but
fails to capture the asymptotic fall-off. Furthermore, in the string frame the maximum of gvv is
located at r2 =

√
Q1Q5, providing further evidence that the momentum wave is localized in the

transition region between AdS3 and flat space.
Finally, let us note that the metric (6.4.16) does not correspond to the results from the

heuristic method of taking a near-horizon limit by “dropping the 1” in the harmonic functions.
This method gives a metric which has an additional term:

ds2 =

√
Q5

Q1

[
− 2 r2

√
Q1Q5

dv

(
dw +

Ḟ 2(v) r2

2Q5
dv

)
+

√
Q1Q5

r2
dr2 +

√
Q1Q5 dΩ2

3

]
+ dŝ2

4 ,

(6.4.18)

where we have used the shifted coordinate (6.4.17). This metric corresponds holographically to
a deformation of AdS3 × S3 × T 4 with a non-normalizable mode corresponding to an irrelevant
operator of the dual CFT. Furthermore, the metric is no longer locally AdS: the additional term
in gvv that scales as r4 and diverges at the boundary of AdS cannot be reabsorbed by a coordinate
transformation.
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Ḟ 2(v)

F1-NS-P-D0-D4 Solution
F1-NS-P Black Hole

Figure 1: The schematic behavior of the metric component gvv as a function of the radial
coordinate. On the left is the plot of the exact expression (modulo the Ḟ 2(v) function)
for the new F1-NS5-P-D0-D4 solution (??) (black) and the F1-NS5-P black hole (red).
The momentum charge of the latter is taken to be such that the asymptotic behavior of
the two solutions match. In the bulk the two solutions differ significantly: At r = 0 the
black hole has a finite value for gvv which is related to the finite size of the horizon, while
in the new solution this metric component vanishes and the S1(y) circle pinches off. On
the right, we have a close-up of the solution with local D0-D4 charges, superposed with
the asymptotic and near-brane behavior in blue. The momentum is localized away from
the brane sources, with the maximum located at r = RAdS.

?〈fig:Plotgvv〉?

1

Figure 6.5 – The schematic behavior of the metric component gvv as a function of the radial
coordinate. On the left is the plot of the exact expression (modulo the Ḟ 2(v) function)
for the new F1-NS5-P-D0-D4 solution (6.4.7) (black) and the F1-NS5-P black hole (red).
The momentum charge of the latter is taken to be such that the asymptotic behavior of
the two solutions match. In the bulk the two solutions differ significantly: At r = 0 the
black hole has a finite value for gvv which is related to the finite size of the horizon, while
in the new solution this metric component vanishes and the S1(y) circle pinches off. On
the right, we have a close-up of the solution with local D0-D4 charges, superposed with
the asymptotic and near-brane behavior in blue. The momentum is localized away from
the brane sources, with the maximum at r2 =

√
Q1Q5.

This deformation of the metric is accompanied by a non-vanishing deformation of the RR
gauge fields:

C1 =

(
1− r2

Q5

)
Ḟ (v) dv , C3 = −Q5 Ḟ (v) γ′ ∧ dv , (6.4.19)

and all higher order forms can be obtained by using the self-duality conditions (C.2.3). In C3 we
have used the fact that when writing R4 in spherical coordinates, dγ = ∗4dH5 = 2Q5 vol

(
S3
)
.

Thus it is convenient to define a new, “bare”, two-form γ′ such that dγ′ ≡ 2 vol
(
S3
)
. It then nat-

urally follows that C3 remains unchanged in the near-horizon expansion, since it is independent
of the radial coordinate. Finally, the NS-NS gauge field is the same as in the standard decoupling
limit and the corresponding field strength supports the AdS3 × S3 structure.

The near-horizon behavior - a second pass

Another way of decoupling the near-horizon region from the asymptotically flat region and obtain
a background that is holographically dual to the low-energy physics of a brane system is to take
a double-scaling limit [152] involving α′ and the transverse radial direction. To do this we need
to first express the charges appearing in the supergravity solution, Q1 and Q5, in terms of the
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moduli and the quantized numbers of F1 strings, N1, and NS5-branes, N5:

Q1 =
g2
s α
′3

V4
N1 , Q5 = α′N5 , (6.4.20)

where gs is the string coupling constant, α′ is the Regge slope, and V4 is the coordinate volume
of the four-torus divided by (2π)4. The double scaling limit is [152]

α′ → 0 , U ≡ r

α′
= fixed , v4 ≡

V4

α′2
= fixed , g6 ≡

gs√
v4

= fixed , (6.4.21)

and it yields the ten-dimensional string frame metric:

ds2

α′
= N5

[
− 2U2

g2
6 N1N5

dv

(
du− Ḟ 2(v)

2
dv

)
+
dU2

U2
dU2 + dΩ2

3

]
+ dza dza . (6.4.22)

This result is consistent with the near-brane expansion of the metric (6.4.16), provided one makes
the substitutions Q1 → g2

6 N1 and Q5 → N5. Thus, as before, the metric in the decoupling limit
corresponds to locally empty AdS, with a deformation that is non-trivial at the asymptotic
boundary. Performing the same scaling on the gauge fields in the solution (6.3.12), one finds
that the NS-NS two-form becomes such that the corresponding field strength is comprised of a
part proportional to the volume form of AdS3 and a part proportional to the volume form of S3.
On the other hand, the RR gauge fields Cp are such that all field strengths, Fp+1, vanish in this
limit.

It is important to note that the double scaling limit (6.4.21) and the near-brane expansion
considered in (6.4.16) lose all information about the harmonic function H5 appearing in gvv and
about the nontrivial RR fields of the solution. It is interesting to try to construct a decoupling
limit which does not erase this information. It is not hard to see that such a limit combines
(6.4.21) with a scaling of the null coordinates defined in (6.4.17), while keeping fixed

dṽ ≡
√
α′dv = fixed , dw̃ ≡ dw√

α′
= fixed . (6.4.23)

This results in a metric13

ds2

α′
= N5

[
− 2U2

g2
6 N1N5

dṽ

(
dw̃ +

Ḟ 2(ṽ)U2

2N5
dṽ

)
+
dU2

U2
+ dΩ2

3

]
+ dza dza , (6.4.24)

corresponding to a non-trivial deformation of AdS3 × S3 × T 4. We also find the non-trivial RR
gauge fields

C1 = −U
2

N5
Ḟ (ṽ) dṽ , C3 = −N5 Ḟ (ṽ) γ′ ∧ dṽ , (6.4.25)

where in writing the latter expression we again used the two-form γ′, as defined in (6.4.19).
All higher-order forms can be obtained from these by using the democratic formalism. It is

13Note that despite the scaling (6.4.23) we keep Ḟ (v) fixed. This can be achieved by scaling F (v) in a
way which cancels out the scaling of v coming from the differentiation.

122



interesting to observe that despite the non-trivial scaling of the coordinates w̃ and ṽ, the final
result matches the one obtained by simply “dropping the 1” in the harmonic functions (6.4.18),
if one appropriately identifies coordinates and moduli of the two solutions.

Finally, let us note that the same results can be obtained by another scaling limit which
is more commonly used in the F1-NS5-P system [90, 91, 203]. Begin by defining dimensionless
coordinates ũ ≡ u/Ry and ṽ ≡ v/Ry. Then one takes the AdS3 decoupling limit14 by scaling
gs → 0 and Ry →∞, while keeping fixed the supergravity charges, Q1 and Q5, the coordinates
ũ, ṽ, and r/gs, and the remaining string moduli. In practice, we can implement this limit by
making the replacements [91]

r → ε r , Ry →
Ry
ε
, (6.4.26)

followed by sending ε → 0.15 One finds that the resulting metric is exactly equal to (6.4.16),
obtained by the near-brane expansion of the full asymptotically flat geometry. If, on the other
hand, one first performs the transformation (6.4.17), defines w̃ ≡ w/Ry, and, in addition to
(6.4.26), scales

w̃ → ε w̃ , ṽ → ṽ

ε
, (6.4.27)

then the ε→ 0 limit yields the solution obtained by “dropping the 1” in the Harmonic functions
(6.4.24).

6.4.3 Supersymmetries and singularities

Since our NS5-P-D0-D4 solution is a dual of the F1-P string, it must have eight supersymmetries,
which are identical to the common supersymmetries preserved by NS5-branes and a momentum
wave. Moreover, if one zooms in locally, the function, F (v), becomes approximately linear in
v, and the resulting solution has 16 supersymmetries. One can also confirm this by directly
calculating the brane projectors, like in [49]. Alternatively, this can be seen by noting that
such a linear solution comes from dualizing a tilted fundamental string boosted orthogonally,
or equivalently, by uplifting to 11 dimensions, where the linear system becomes an M5-brane
with orthogonal momentum, as depicted in Figure 6.1. Both such configurations preserve 16
supersymmetries.

It is natural to ask how the NS5-P-D0-D4 solution can preserve the same supersymmetries
as the NS5-P system, despite the presence of D0 and D4 densities. This is achieved because
the D0 and D4 densities have the same distribution on the S1(y)-circle, which makes their
joint contribution to the supersymmetry projector compatible with the Killing spinors preserved
by NS5-branes and momentum. This phenomenon was observed in the construction of the

14For the F1-NS5-P system there exists an additional linear-dilaton region [33] which is obtained by
taking only gs → 0 while keeping the ratio r/gs fixed. As can be seen from (6.4.20), this limit focuses
on the region of spacetime where Q1 � r2 � Q5. We are interested in the scaling which accesses the
region (6.4.15), which is achieved by the scaling described in the main text. We would like to thank
David Turton and Soumangsu Chakraborty for helpful discussions on this point.

15Again we keep Ḟ (v) fixed in this scaling.
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magnetube [204], and it is not hard to see that if one T-dualizes our solution twice along the
D4-brane world-volume, one obtains an NS5-D2-D2-P brane configuration that uplifts to the
M5-M2-M2-P magnetube of [204].

Upon adding F1-strings to the NS5-P-D0-D4 solution, the supersymmetry is reduced to half.
Thus, the resulting solution has globally four supercharges, but if one zooms near the source (or
considers a solution with a linear F (v)) the number of supercharges is enhanced to eight. This is
consistent with the fact that the singularity in this solution is the same as that of a two-charge
single-center solution.

6.5 Conclusion and discussion

The Fuzzball and Microstate Geometry Programmes exist precisely because string theory and
supergravity have a rich variety of degrees of freedom that can be used to evade the formation
of horizons. A recent, but illustrative example is the long-term trapping [205] near evanescent
ergosurfaces which was believed to lead to Aichelburg-Sexl shockwaves and horizon formation.
However, a more detailed analysis showed that this would actually result in scrambling into more
and more typical modes of the solution [206]. Furthermore, the extremely long-term trapping
needed to create singularities requires sub-stringy wavelengths for the modes [162]. In short, the
stringy degrees of freedom are activated before horizons develop and one must explore the full
range of supergravity and stringy phase space or one risks mimicking the limitations of General
Relativity and concluding that horizons are inevitable.

In this work we examined another manifestation of this phenomenon: In the D1-D5 frame,
a family of smooth, three-charge Microstate Geometries (the superstrata family) appears to
develop a horizon in the limit of vanishing angular momentum (a → 0). We have now given
strong evidence that the horizon only emerges because one has neglected degrees of freedom that
are essential in the a → 0 limit. Indeed, we incorporated some of these degrees of freedom by
introducing D0- and D4-brane densities in the Type IIA F1-NS5 frame and showed that these
resulted in a solution that has a vanishing horizon area.

We have also understood that reason behind the failure of the naïve intuition according to
which a→ 0 D1-D5-P superstrata appear to collapse into a black hole. The momentum of these
superstrata is only carried by D1 and D5 dipole-charge distributions [195,50] that are compressed
to zero size in the a → 0 limit.16 If one takes into account all possible momentum carriers, no
such collapse happens.

Indeed, the D1-D5 configuration on which one builds the microstate geometries comes from
dualizing an F1-string with momentum, and since the F1-string only carries momentum waves
that are transversely polarized [193], this configuration has finite size. By contrast, we find that
NS5-branes can carry momentum also through longitudinal fluctuations, via a non-trivial profile
of world-volume fluxes corresponding to D0- and D4-brane densities. It is this fact that allows
us to construct 3-charge zero-horizon-area solutions, despite the NS5-branes being localized at
a single point in the R4 base space. Hence, our solutions are SO(4) singlets under rotations on

16Furthermore, in bubbling solutions [40, 79] the momentum charge comes from the non-trivial dipole
fluxes, which also vanish when a→ 0.
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the R4, exactly as the usual three-charge black hole solution.
An interesting observation, which only emerges from analyzing the full supergravity solution,

is that the momentum “carried” by the D0 and D4 charge densities inside the NS5 world-volume
is not localized near the NS5-brane source, but resides in the transition region between the near-
horizon AdS3 × S3 and the asymptotically flat region. As such, this momentum cannot prevent
the S1(y) wrapped by the F1-strings and the NS5-branes from collapsing at the location of the
brane sources, which in turn causes the horizon area to vanish.

As we remarked earlier, there is an important distinction between microstate solutions and
degenerate microstate solutions. Both have vanishing horizon area, but the former represent
pure states, whereas the latter encode a large number of microstates. The singularities of two-
charge solutions, like the F1-NS5 singularity, or the D1-D5 singularity, and the singular core of
our F1-NS5-P-D0-D4 solution are, in this sense, degenerate microstate solutions, and their cores
represent ensembles of microstates that have neither the charges nor the degrees of freedom to
create a macroscopic horizon.

Degenerate microstate solutions are also required to have microstructure that can be un-
derstood using string theory. Resolving the microstructure of the singular D1-D5 system was
the focus of the original fuzzball program [193, 60]. More recently, our understanding of the
microstructure of the F1-NS5 system has been greatly advanced using world-sheet methods
[90,91,31,207,203].

Our work has enriched the “landscape” of superstrata by expanding the range of momentum
carriers on the branes. As we have seen, the addition of the D0-D4 excitations reveals how
the fuzzball paradigm works even in the singular corners [208, 16, 17] of the moduli space. This
also suggests several interesting areas for further investigation: we expect that there are whole
new classes of microstate geometries that come from the geometric transition of our degenerate
microstate solutions. Another intriguing question is whether there are such transitions that only
involve the T 4, and achieve this in a way that preserves the space-time SO(4) invariance and
the vanishing angular momentum.

It would also be interesting to see, in detail, how the solutions obtained in this paper emerge
as a limit of smooth microstate geometries. In particular, one should be able to construct
superstrata, with a > 0, that contain both “standard” momentum carriers and D0-D4 momentum
carriers. In such a generalized superstratum with a > 0, the y-circle should pinch off smoothly,
making a smooth cap at the bottom of a long BTZ-like throat. It would be interesting to
construct this Type-IIA superstratum with F1-NS5-P charges, and to explore its a → 0 limit
and the relation of this limit to the solutions we construct in this paper.

In particular, if there exist Type IIA superstrata that limit to our solutions, there is then
the question of what happens to the long BTZ throat. Do our solutions emerge in the center
of a cap at the bottom of a long throat, or does the throat become much shallower? Indeed,
this is directly related to the results presented in Section 6.4.2, where we showed that in the
full supergravity solution, the momentum charge comes from modes localized in the junction
between the near-horizon AdS3 × S3 region and the asymptotic flat space. In a generalized
superstratum, with D0-D4 momentum carriers and with a > 0, we would still expect that, like
in the original superstrata, all the momentum waves should localize in a band that creates the
transition between the horizonless cap and the long AdS2 × S1 region of the BTZ throat. It
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would be very interesting to see whether and how the location of the momentum waves shifts in
the a→ 0 limit of the generalized superstratum.

Even though our solutions have the same spherical symmetry as a single-center black hole
with the same charges, their asymptotic expansions are different. This happens because the
momentum is carried by null waves located at the top of the AdS3 × S3 throat, and hence there
is no limit of our solutions where they approach those of the black-hole solution to arbitrary
precision. This makes them different from the usual microstate geometries which have a “scaling”
parameter controlling the depth of the throat, that can be tuned so that their metric and the
gravitational multipoles approach those of the black hole [120,18]. Our new solutions do not have
such a parameter and hence we expect them to have a metric whose asymptotics differs from
that of the black-hole solution at higher orders in the radial distance. Furthermore, although the
extra fields in our solutions fluctuate along a null coordinate, they all contribute to the metric
with the same sign. Hence, even if one considers an ensemble of our new solutions with D0-D4
modes, these features will not average to zero, and the 1/r-expansion will still differ from that
of the black hole.

The location of the momentum also presents a puzzle in terms of the dual CFT picture.
As discussed in the introduction, we expect that, in the a → 0 limit, the state dual to the
superstratum consists of momentum-carrying (0, 0) strands and no (+,+) strands. However, in
our solution taking the standard decoupling limit results in a locally AdS3× S3× T 4 spacetime,
(6.4.22) with a deformation to the metric at the boundary of the spacetime. Furthermore,
performing an alternative scaling, one can obtain an AdS3 × S3 × T 4 solution deformed with
an non-normalizable momentum-carrying mode dual to an irrelevant deformation of the CFT.
If, as mentioned above, in a generalized superstratum one were to find some microstructure
at the center of a smooth cap, then there should exists an equivalent description in the dual
CFT. Establishing the precise holographic dictionary for both the new microstate solution and
potential generalized superstrata, is thus of great interest.

From a technical point of view, constructing generalized superstrata requires solving a new
set of non-trivial BPS equations. From the perspective of six-dimensional supergravity, the ten-
dimensional fields sourced by the D0 and D4 charge densities are encoded in a U(1) gauge field.
Furthermore, the equations governing six-dimensional supersymmetric solutions with tensor and
vector gauge fields were derived in [209]. It is important to remember that the construction of the
original superstrata relied on the hidden linear structure of the BPS equations of six-dimensional
supergravity with tensor fields, but no gauge fields [210, 50]. In a recent paper [211] it has been
shown that such a linear structure persists when one adds U(1) gauge fields. This should alleviate
some technical issues in the path of constructing smooth geometries in the F1-NS5-P frame.

Finally, in our analysis, we focused only on momentum-carrying modes that preserve the
isometry of the T 4. It would be interesting to consider momentum-carrying waves coming from
fluctuations of branes along some of the torus directions, and which break this isometry. These
fluctuations give rise to U(1) vector fields even in the D1-D5-P duality frame. Furthermore,
one can obtain examples of such solutions by performing a 9-11 flip on our solutions with D0-D4
density modes. Thus, the solutions we have constructed provide a simple way to access dynamics
of compactification tori, while also preserving the isotropy of the T 4. We therefore expect the D0-
D4 fluctuations to provide qualitatively similar results to analyzing more complicated excitations
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on the T 4 of IIA or IIB supergravity [62,212,213].
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Appendix A

Appendix for Chapter 2

A.1 Appendix: Boundedness of the moduli space of 3-
centre solutions from the phase space distance

To show that the entire moduli space is bounded using the canonical ∆phase, we will probe the
asymptotic behaviour of the metric at all the different facets and vertices of the polytope: the
vertex at (0, 0), (j+, j+) and (j+,−j+), and the facets at x = j+, x− y = 0 and x+ y = 0.

The vertex at (0, 0) (the scaling limit). This instance has already been studied in the
subsection 2.4.2.

The facets x − y = 0 and x + y = 0. Given xF ∈ (0, j+), we approach any point
MF (xF ,±xF ) on the facets by a straight horizontal line from a point M0(x0,±xF ) in the bulk.
On the path, at the point M(x,±xF ),

Gxx ∼
M→MF

j+xF − x2
F

2(j+ − xF )xF

1

x− xF
=

1

2(x− xF )
(A.1.1)

giving a square-root behaviour to the path distance

∆(MF ,M0) ∼
M0→MF

√
2(x0 − xF ) . (A.1.2)

Therefore the distance in moduli space is finite.
Note that this computation does not take into account the scaling-limit point, as we used

xF 6= 0 in our equations.

The facet x = j+. Given yF ∈ (−j+, j+), we approach any point MF (j+, yF ) on the facet
by a straight horizontal line from a point M0(x0, yF ) in the bulk. On the path, at the point
M(x, yF ),

Gxx ∼
M→MF

1

2(j+ − x)
(A.1.3)
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gives a square root behaviour to the path distance

∆(MF ,M0) ∼
M0→MF

√
2(j+ − x) . (A.1.4)

Therefore the geodesic distance in moduli space is finite.

The vertex at (j+, j+). We approach this limit from the point M0 of coordinates
(j+ − r0 cosα, j+ − r0 sinα), with α ∈ (π/4, π/2). Near the vertex, the metric behaves like

Gij
dxi

dr

dxj

dr
∼
r→0

sinα

2r
, (A.1.5)

so the path length is finite.

The vertex at (j+,−j+). We approach this limit from the point M0 of coordinates
(j+ − r0 cosα,−j+ + r0 sinα), with α ∈ (π/4, π/2). Near the vertex, the metric also behaves
like

Gij
dxi

dr

dxj

dr
∼
r→0

sinα

2r
, (A.1.6)

so the path length is finite.
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Appendix B

Appendix for Chapter 4

B.1 The almost-BPS ansatz in different dimensions

Our microstate geometries can be dualized to many duality frames, some of which are better suited
for their description than others. In particular, in the duality frame in which the charges of the black
hole correspond to D1 branes, D5 branes, momentum and KKM charge, some of the supertube centers
that appear singular from a four- or five-dimensional perspective are smooth. These IIB solutions on
T4 can be trivially truncated to six-dimensional N = (1, 0) supergravity coupled to one extra tensor
multiplet, which then can be reduced to four-dimensional N = 2 supergravity with three extra vector
multiplets.

B.1.1 Six-dimensional frame

Six-dimensional N = (1, 0) supergravity coupled to a tensor multiplet has the following bosonic fields
coming from the graviton multiplet and the extra tensor multiplet [214–216,209]:

• A gravitational field gµν .
• 2 two-form gauge fields BI

µν and their field strengths GI = d6B
I .

• 2 scalars vI in the coset space SO(1, 1)/SO(1). It is convenient to group them into a constrained
SO(1, 1) matrix:

S =

(
vI

xI

)
, I = 0, 1 ,

vIv
I = 1 , vIvJ − xIxJ = ηIJ , vIxI = 0 ,

(B.1.1)

where the scalar indices, I or J , are raised by the SO(1, 1) Minkowski metric in light-cone
coordinates with the mostly-minus signature,

η =

(
0 1

1 0

)
. (B.1.2)
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The scalars are involved in the tensor dynamics through the metric

MIJ =
(
ηSTSη

)
IJ

= vIvJ + xIxJ = 2 vIvJ − ηIJ ,

which dictates the twisted self-duality conditions of the tensors

MIJG
J = ηIJ ?6 G

J . (B.1.3)

This implies that the tensor vIGI is self-dual and belongs to the gravity multiplet whereas the tensor
xIG

I is anti self-dual and belongs to the tensor multiplet. One can write down a “pseudo-action"
[215,209]

(16πG6)S6 =

∫
d6x
√−g

(
R − ηIJ ∂µv

I∂µv
J − 1

3
MIJ G

I
µνρG

J µνρ

)
, (B.1.4)

The dynamics of the solutions of the action given in (B.1.4) is governed by the following Einstein-
Maxwell-scalar equations [215,209]1

Rµν + ∂µv
I∂νvI − MIJ G

I
µαβG

J
ν
αβ

= 0 ,

xMI d6 ?6 d6v
I + 4xMI vJ G

I ∧ ?6G
J = 0 ,

d6G
I = 0.

(B.1.5)

We work with the floating-brane ansatz [148] that encompasses BPS and almost-BPS solutions. The
axisymmetric solutions we consider have three spatial isometries and a flat three-dimensional base.
The two isometries are parametrized by the coordinate y and the angle ψ, whereas the flat space is
parameterized by the spherical coordinates (ρ, θ, φ):

v1 =

√
Z2

2Z1
, G1 =

1√
2

[
?4d4Z2 − d6

(√
Z2

Z1
(dt+ ω) ∧ (dy + β)

)
+ (dy + β) ∧Θ1

]
,

v2 =

√
Z1

2Z2
, G2 =

1√
2

[
?4d4Z1 − d6

(√
Z1

Z2
(dt+ ω) ∧ (dy + β)

)
+ (dy + β) ∧Θ2

]
,

ds2
6 = − 1

Z3

√
Z1Z2

(dt+ ω)2 +
√
Z1Z2 ds4(B)2 +

Z3√
Z1Z2

(dy + β − Z−1
3 (dt+ ω))2 ,

(B.1.6)

where ds4(B)2 is a Gibbons-Hawking metric

ds4(B)2 = V −1(dψ − w0)2 + V
(
dρ2 + ρ2(dθ2 + sin2 θ dφ2)

)
, ?3d3w

0 = ± d3V (B.1.7)

and we have defined

ω = µ(dψ − w0) + $ , β = K3 (dψ − w0) + w3 , Θa = d4

(
Ka (dψ − w0) + wa

)
. (B.1.8)

The “±” for the connection w0 corresponds to different choice of orientation that leads to different
types of solution. In our conventions the minus sign gives supersymmetric solutions while the plus sign
gives almost-BPS solutions [115,116].

1We used the self-duality condition to simplify the equations. This also reduces the usual Maxwell equations
for the tensor fields to the Bianchi identity.
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B.1.2 Five-dimensional frame

The STU model can be embedded in five-dimensional N = 2 supergravity coupled to two extra vector
multiplets. It can be obtained from a KK reduction along y of the six-dimensional frame studied
above [217] or more generically from the low-energy limit of M theory on T6 [218].

Five-dimensional N = 2 supergravity coupled to 2 vector multiplets has the following bosonic-field
content:

• One gravitational field gµν .
• Three U(1) vector gauge fields AIµ and their field strengths F I = d5A

I . One is coming from the
graviton multiplet and is usually referred as the “graviphoton" and the others come from the
extra vector multiplets.

• Three scalars XI in the symmetric space SO(1, 1)× (SO(1, 2)/SO(2)).
One can write down the five-dimensional action for the bosonic fields [219,220]

(16πG5)S5 =

∫
d5x
√−g R − QIJ

∫ (
F I ∧ ?5F

J − d5X
I ∧ ?5d5X

J
)

+
|εIJK |

6

∫
AI ∧ F J ∧ FK ,

(B.1.9)
where εIJK is the antisymmetric Levi-Civita tensor and the coupling QIJ depends on the scalars
via [219,220]

QIJ =
9

2
XIXJ −

1

2
|εIJK |XK . (B.1.10)

The dynamics of solutions of the action given in (B.1.9) is governed by the following Einstein-Maxwell-
scalar equations [77]

Rµν + QIJ

(
∂µX

I∂νX
J + F Iµρ F

J
ν
ρ − 1

6
gµν F

I
ρσ F

Jρσ
)

= 0 ,

d5

(
QIJ ?5 F

J
)

+
1

4
CIJK F

J ∧ FK = 0 ,

−d5 ?5 d5XI +

(
CIJKXLX

K − 1

6
CILJ

)(
FL ∧ ?5F

J − dXL ∧ ?5dX
J
)

= 0 .

(B.1.11)

In the floating-brane ansatz [148], we have

XI =
ZI

(Z1Z2Z3)1/3
= (XI)−1 , F I = d5A

I = d5

(
−dt+$

ZI
+

(
KI − µ

ZI

)(
dψ − w0

)
+ wI

)
,

ds2
5 = − (Z1Z2Z3)−

2
3
(
dt+ µ (dψ − w0) +$

)2
+ (Z1Z2Z3)

1
3 ds(B)2 ,

(B.1.12)

where ds(B)2 is the Gibbons-Hawking metric (B.1.7).

B.1.3 Four-dimensional frame and the STU model

The further reduction along the ψ isometry direction leads to four-dimensional N = 2 supergravity
coupled to three vector multiplets. Now, there are four gauge fields, AΛ, for Λ = {0, I} = {0, 1, 2, 3},
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with one belonging to the supergravity multiplet (A0 is induced by the metric fibration along ψ in five
dimensions). The four-dimensional metric for the floating-brane ansatz takes the form

ds2
4 = −I4

− 1
2 (dt+$)2 + I4

1
2 ds2

3 ,

I4 = Z1Z2Z3V − µ2V 2 .
(B.1.13)

We have three complex scalars

zI = KI − µ

ZI
− i

√I4

V ZI
, (B.1.14)

Then, the four gauge fields are

A0 =
µV 2

I4
(dt+$) + w0 , AI = − V

I4 ZI

(
Z1Z2Z3 − µV KIZI

)
(dt+$) + wI . (B.1.15)

More generally, the reduction to four dimensions leads to the four-dimensional STU model, for a
Lagrangian of the form

L4 =
1

2
R− gIJ∂µzI∂µz̄J +

1

8
IΛΣF

Λ
µνF

Σµν +
1

8
RΛΣF

Λ
µν (∗4F )Σµν (B.1.16)

with (∗4F )µν = 1
2

√−gεµνρσF ρσ and FΛ = dAΛ. Relabelling the scalar fields as zI = {S = σ− is, T =

τ − it, U = v − iu}, the metric of the scalar σ -model gIJ follows from the Kähler potential

K = − log(8stu) (B.1.17)

the gauge kinetic couplings are

I = −stu


1 + σ2

s2
+ τ2

t2
+ v2

u2
− σ
s2
− τ
l2
− v
u2

− σ
s2

1
s2

0 0

− τ
l2

0 1
t2

0

− v
u2

0 0 1
u2

 (B.1.18)

and the axionic couplings are

R =


2στv −τv −σv −στ
−τv 0 v τ

−σv v 0 σ

−στ τ σ 0

 (B.1.19)

We are interested in computing electric and magnetic charges in four dimensions, which requires
us to compute the electromagnetic dual of AΛ, AΛ. From the Lagrangian, we see that the dual field
strength is not simply given by the Hodge star of F . Instead, we have

GΛ = dAΛ = RΛΣ F
Σ − IΛΣ ∗4 FΣ . (B.1.20)
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One can then rewrite the STU Lagrangian with the dual field and obtain a more usual Maxwell term,
with a trivial electric coupling:

L4 =
1

2
R− gIJ∂µzI∂µz̄J +

1

8
FΛ
µν (∗4GΛ)µν (B.1.21)

This non-trivial electromagnetic duality gives a non-standard charge lattice obtained from

Γ = − 1

4π

∫
S2
∞

F =


q0

qI

pI

p0

 , (B.1.22)

where S2
∞ is the asymptotic two-sphere parametrized by θ and φ and where

Fµν =

(
GΛµν

FΛ
µν

)
. (B.1.23)

Thus, we need to compute the value of AΛ as well. We have

AΛ = ζΛ(dt+$) + vΛ , (B.1.24)

where the important parts encoding the electric charges, vΛ, are present in the expressions of the
tensors of the six-dimensional solution described above.

The magnetic charges pΛ and the electric charges qλ are obtained by integrating:

pΛ = − 1

4π

∫
S2
∞

dAΛ = − 1

4π

∫
S2
∞

dwΛ , qλ = − 1

4π

∫
S2
∞

dAΛ = − 1

4π

∫
S2
∞

dvΛ . (B.1.25)

B.1.4 Equations of motion

The almost-BPS solutions are stationary solutions governed by the following reduced equations of
motion

d ?3 dZI =
|εIJK |

2
V d ?3 d(KJKK) , d(µV ) − ?3d$ = V ZI dK

I ,

?3 dw
0 = dV , ?3dw

I = KI dV − V dKI ,

?3 dv0 = ZIdKI −KIdZI + V d(K1K2K3)−K1K2K3 dV ,

?3 dvI = dZI −
|εIJK |

2

(
V d(KJKK)−KJKK dV

)
,

(B.1.26)

where εIJK is the three-dimensional Levi-Civita tensor and ?3 is the Hodge star in the three-dimensional
flat base. When considering more general U(1)N supergravities in five dimensions and the four-
dimensional reductions thereof, |εIJK | is replaced by the corresponding symmetric tensor CIJK .
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By resolving these equations, one can extract the four-dimensional metric (B.1.13), the three scalars,
zI (B.1.14), the four gauge fields, AΛ (B.1.15), and their duals AΛ (B.1.24), using the fact that [116]

ζ0 = I4
−1

[
Z1Z2Z3 − µV

(
V K1K2K3 +

∑
I

ZIK
I

)
+ V

∑
J<K

KJKKZJZK

]
,

ζI = I4
−1

ZI
µ−∑

J 6=I
KJZJ

 +
|εIJK |

2
V µKJKK

 . (B.1.27)

B.2 Almost-BPS black hole: details

To complement the presentation of the metric of the almost-BPS black hole in the four-dimensional
frame on section 4.3.1, we give the relevant expressions for the gauge fields and scalars. We have
considered a single-center solution given by

V = h+
Q0

ρ
, ZI =

1

h
+
QI
ρ
, KI = 0 , µ V = m∞ + α

cos θ

ρ2
, $ = −αsin2 θ

ρ
dφ .

(B.2.1)
The equations of motion (B.1.26) are solved by

$ = −αsin2 θ

ρ
dφ , w0 = Q0 cos θ dφ , wI = 0 , v0 = 0 , vI = QI cos θ dφ . (B.2.2)

Scalars

The three scalars are given by (B.1.14), which gives for the almost-BPS black hole:

zI = − m∞ ρ2 + α cos θ

(Q0 + hρ)
(
QI + ρ

h

) − i
∆

(Q0 + hρ)
(
QI + ρ

h

) , (B.2.3)

where ∆ has been defined in (4.3.3).

Gauge fields

The gauge fields are given by the generic equation (B.1.15), which for the black hole gives2

A0 = Q0 cos θ dφ +
(m∞ ρ2 + α cos θ)(Q0 + h ρ)

∆2

(
ρ dt− α sin2 θ dφ

)
− hm∞ dt ,

AI = −Q0 + h ρ

∆2

∏
J 6=I

(QJ +
ρ

h
)
(
ρ dt− α sin2 θ dφ

)
+ h−1 dt .

(B.2.4)

2Note that we have gauged away the irrelevant asymptotics of the gauge fields by adding −hm∞dt and h−1dt
to A0 and AI respectively.
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Using (B.1.24), we can also derive the dual gauge fields, AΛ:

A0 =

∏
I(QI + ρ

h)

∆2

(
ρ dt− α sin2 θ dφ

)
− h−3 dt ,

AI = QI cos θ dφ +
(m∞ ρ2 + α cos θ)(QI + ρ

h)

∆2

(
ρ dt− α sin2 θ dφ

)
− h−1m∞ dt .

(B.2.5)

B.3 Axisymmetric almost-BPS multicenter solutions in Taub-
NUT

In this section, we review the solutions derived in [67] for axisymmetric multi-center configurations in
Taub-NUT where the centers are at positions aj on the z axis of the R3 base, j = 1...n. We consider
the Taub-NUT harmonic function sourced at the center of the R3 spherical coordinates (ρ, θ, φ):

V = h+
Q0

ρ
, w0 = Q0 cos θ dφ .

We assume that the centers that source the vector fields are all distinct from the Taub-NUT center,
aj 6= 0. The shifted spherical coordinates around the jth center, (ρj , θj , φ), are given by

ρj =
√
ρ2 + a2

j − 2ρ aj cos θ cos θj =
ρ cos θ − aj

ρj
. (B.3.1)

We will sometimes use the index j = 0 to denote the Taub-NUT center (ρ0, θ0) = (ρ, θ) and a0 = 0.
We proceed step by step by solving first the magnetic field strengths before the warp factors and the
angular momentum one-form. We end the discussion by deriving the regularity constraints.
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• The anti-self dual magnetic two-forms ΘI :
The two-form field strengths, ΘI , are given by (B.1.8) with Θ3 = dβ. We will assume for simplicity

that the KI are harmonic with no constant terms and no source at the Taub-NUT center

KI =

n∑
j=1

k
(j)
I

ρj
. (B.3.2)

For axisymmetric center configurations, we have

∗3dwI = KIdV − V dKI ⇒ wI = −
n∑
j=1

k
(j)
I

(
h cos θj + Q0

ρ− aj cos θ

ρj aj

)
dφ . (B.3.3)

• The warp factors ZI :
The warp factors, ZI , are determined by the harmonic equations with quadratic sources (B.1.26).

For axisymmetric centers in Taub-NUT, the generic solutions are

ZI = LI +
|εIJK |

2

n∑
j,k=1

(
h+

Q0 ρ

ajak

)k(j)
J k

(k)
K

ρjρk
. (B.3.4)

The functions LI are the electric harmonic functions one can freely add to the ZI :

LI = l∞I +
Q

(0)
I

ρ
+

n∑
j=1

Q
(j)
I

ρj
.

• The angular momentum one-form ω:
The last equation of the first line in (B.1.26) determines the two components, µ and $, of the

angular momentum one-form, ω. The source terms are

V ZId3K
I =

n∑
j=1

l∞I k
(j)
I

(
h s

(1)
j +Q0 s

(2)
j

)
+

n∑
j=1

Q
(j)
I k

(j)
I

(
h s

(3)
j +Q0 s

(4)
j

)
+

n∑
i=0

n∑
j=1,j 6=i

Q
(i)
I k

(j)
I

(
h s

(5)
ij +Q0 s

(6)
ij

)
+
|εIJK |

2

n∑
i,j,k=1

k
(i)
I k

(j)
J k

(k)
K

(
h2 s

(7)
ijk +Q2

0 s
(8)
ijk + hQ0 s

(9)
ijk

)
.

(B.3.5)

where we have defined 9 generating functions, s(α),

s
(1)
j ≡ d3

(
1

ρj

)
, s

(2)
j ≡ 1

ρ
d3

(
1

ρj

)
, s

(3)
j ≡ 1

ρj
d3

(
1

ρj

)
, s

(4)
j ≡ 1

ρ ρj
d3

(
1

ρj

)
,

s
(5)
ij ≡

1

ρi
d3

(
1

ρj

)
, s

(6)
ij ≡

1

ρ ρi
d3

(
1

ρj

)
, s

(7)
ijk ≡

1

ρi ρj
d3

(
1

ρk

)
+ perm. ,

s
(8)
ijk ≡

1

ai ajρi ρj
d3

(
1

ρk

)
+ perm. , s

(9)
ijk ≡

(
1

ρ
+

ρ

ai aj

)
1

ρi ρj
d3

(
1

ρk

)
+ perm. .

(B.3.6)
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We define the corresponding pairs of solutions (f (α), t(α)) that solve

d3 f
(α) − ?3d3 t

(α) = s(α) .

One can also freely add the pair of solution (f (10), t(10)) of the homogeneous equation

f (10) = M , ?3d3t
(10) = d3M , (B.3.7)

where M is a harmonic function that generically takes the form

M = m∞ +
m(0)

ρ
+ α

cos θ

ρ2
+

n∑
j=1

m(j)

ρj
+ αj

cos θj
ρ2
j

, (B.3.8)

which leads to

t(10) = $0 dφ + m(0) cos θ dφ − α
sin2 θ

ρ
dφ +

∑
j

(
m(j) cos θj − αj

ρ2 sin2 θj
ρ3
j

)
dφ (B.3.9)

Solving for each generating functions s(α) gives

f
(1)
j =

1

2 ρj
, t

(1)
j = −1

2
cos θj dφ , f

(2)
j =

1

2 ρ ρj
, t

(2)
j = −1

2

ρ− aj cos θ

aj ρj
dφ ,

f
(3)
j =

1

2 ρj2
, t

(3)
j = 0 , f

(4)
j =

cos θ

2 aj ρj2
, t

(4)
j = −ρ sin2 θ

2 aj ρj2
dφ ,

f
(5)
ij =

1

2 ρi ρj
, t

(5)
ij =

ρ2 + aiaj − (ai + aj)ρ cos θ

2(ai − aj)ρiρj
dφ , f

(7)
ijk =

1

ρiρjρk
, t

(7)
ijk = 0 ,

f
(6)
ij =

ρ2 + aiaj − 2ajρ cos θ

2 aj (ai − aj)ρρiρj
, t

(6)
ij =

ρ (ai + aj cos 2θ)−
(
ρ2 + aiaj

)
cos θ

2aj(aj − ai)ρiρj
dφ ,

f
(8)
ijk =

ρ cos θ

aiajakρiρjρk
, t

(8)
ijk = − ρ2 sin2 θ

aiajakρiρjρk
dφ ,

f
(9)
ijk =

ρ2 (ai + aj + ak) + aiajak
2aiajak ρ ρiρjρk

,

t
(9)
ijk = −ρ

3 + ρ (aiaj + aiak + ajak)−
(
ρ2(ai + aj + ak) + aiajak

)
cos θ

2aiajak ρiρjρk
dφ ,

(B.3.10)

The complete expression for µ and $ is then

µ =

n∑
j=1

l∞I k
(j)
I

2ρj
+

n∑
j=1

Q
(j)
I k

(j)
I

2V ρ2
j

(
h+

Q0 cos θ

aj

)
+

n∑
i=0

n∑
j=1,j 6=i

Q
(i)
I k

(j)
I

2V ρiρj

(
h+Q0

ρ2 + aiaj − 2ajρ cos θ

aj(ai − aj) ρ
)

+
n∑

i,j,k=1

k
(i)
1 k

(j)
2 k

(k)
3

V ρiρjρk

(
h2 +Q0

2 ρ cos θ

aiajak
+ hQ0

ρ2(ai + aj + ak) + aiajak
2aiajakρ

)
+
M

V
, (B.3.11)

$ = −
n∑
j=1

l∞I k
(j)
I

2

(
h cos θj +Q0

ρ− aj cos θ

ajρj

)
dφ−

n∑
j=1

Q
(j)
I k

(j)
I

Q0 ρ sin2 θ

2ajρ2
j

dφ
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+
n∑
i=0

n∑
j=1,j 6=i

Q
(i)
I k

(j)
I

2(ai − aj)ρiρj

(
h(ρ2 + aiaj − (ai + aj)ρ cos θ) (B.3.12)

−Q0
ρ(ai + aj cos 2θ)− (ρ2 + aiaj) cos θ

aj

)
dφ

−
n∑

i,j,k=1

k
(i)
1 k

(j)
2 k

(k)
3

aiajakρiρjρk

(
Q0

2ρ2 sin2 θ

+hQ0
ρ3 + ρ(aiaj + aiak + ajak)− (ρ2(ai + aj + ak) + aiajak) cos θ

2

)
dφ

+$0 dφ + m(0) cos θ dφ − α
sin2 θ

ρ
dφ +

n∑
j=1

(
m(j) cos θj − αj

ρ2 sin2 θj
ρ3
j

)
dφ .

• The electric one-forms vΛ:
Since we are interested in the profile of the solutions in four dimensions, we need to derive the electro-
magnetic dual gauge fields AΛ (B.1.24). For this purpose we need to integrate the equations for the
one-forms vΛ (B.1.26). We first decompose the source terms by defining some generating functions:

?3d3vI = Q
(0)
I ?3 d3T

(0) +
n∑
j=1

Q
(j)
I ?3 d3T

(1)
j +

|εIJK |
2

n∑
j,k=1

Q0k
(j)
J k

(k)
K

ajak
?3 d3T

(3)
jk ,

?3d3v0 = l∞I

n∑
j=1

k
(j)
I ?3 d3T

(1)
j + Q

(0)
I

n∑
j=1

k
(j)
I ?3 d3T

(2)
j +

n∑
j,k=1

Q
(j)
I k

(k)
I ?3 d3T

(4)
jk

+
|εIJK |

6

n∑
i,j,k=1

Q0k
(i)
I k

(j)
J k

(k)
K ?3 d3T

(5)
ijk ,

(B.3.13)

where T (0), T (1)
j , T (2)

j , T (3)
jk , T (4)

jk and T (5)
ijk satisfy

?3dT
(0) = d

(
1

ρ

)
, ?3dT

(1)
j = d

(
1

ρj

)
, ?3dT

(2)
j =

1

ρ
d

(
1

ρj

)
− 1

ρj
d

(
1

ρ

)
,

?3dT
(3)
jk =

(
1− ajak

ρ2

)
d

(
ρ

ρjρk

)
, ?3dT

(4)
jk =

1

ρj
d

(
1

ρk

)
− 1

ρk
d

(
1

ρj

)
, (B.3.14)

?3dT
(5)
ijk =

(
1

aiaj
+

1

ρ2
− 1

aiak
− 1

ajak

)
ρ

ρiρj
d

(
1

ρk

)
+

(
1

aiak
+

1

ρ2
− 1

aiaj
− 1

ajak

)
ρ

ρiρk
d

(
1

ρj

)
+

(
1

ajak
+

1

ρ2
− 1

aiaj
− 1

aiak

)
ρ

ρjρk
d

(
1

ρi

)
+

(
− 1

ρ2
+

1

aiaj
+

1

aiak
+

1

ajak

)
ρ2

ρiρjρk
d

(
1

ρ

)
.

(B.3.15)

140



We find

T (0) = cos θ dφ , T
(1)
j = cos θj dφ , T

(2)
I =

ρ− aj cos θ

aj ρj
dφ ,

T
(3)
jk =

(ρ2 + ajak) cos θ − (aj + ak)ρ

ρjρk
dφ , T

(4)
jk =

ρ2 + ajak − (aj + ak)ρ cos θ

(ak − aj) ρjρk
dφ , (B.3.16)

T
(5)
ijk =

ρ3 + ρ(aiaj + aiak + ajak)−
(
ρ2(ai + aj + ak) + aiajak

)
cos θ

aiajak ρiρjρk
dφ .

Thus, v0 and vI are given by

vI = Q
(0)
I cos θ dφ +

n∑
j=1

Q
(j)
I cos θj dφ +

|εIJK |
2

n∑
j,k=1

Q0k
(j)
J k

(k)
K

(ρ2 + ajak) cos θ − (aj + ak)ρ

ajak ρjρk
dφ ,

v0 = l∞I

n∑
j=1

k
(j)
I cos θj dφ + Q

(0)
I

n∑
j=1

k
(j)
I

ρ− aj cos θ

aj ρj
dφ +

n∑
(j 6=k)=1

Q
(j)
I k

(k)
I

ρ2 + ajak − (aj + ak)ρ cos θ

(ak − aj) ρjρk
dφ

+
|εIJK |

6

n∑
i,j,k=1

Q0k
(i)
I k

(j)
J k

(k)
K

ρ3 + ρ(aiaj + aiak + ajak)−
(
ρ2(ai + aj + ak) + aiajak

)
cos θ

aiajak ρiρjρk
dφ .

(B.3.17)

• The regularity constraints:
The solutions constructed above are regular if:

- The one-form $ does not have Dirac-Misner string and must vanish on the z-axis.
- The absence of closed timelike curves requires the positivity of some metric components. It leads
to

ZI V ≥ 0 , I4 ≡ Z1Z2Z3 V − µ2V 2 ≥ |$|2 . (B.3.18)

The first condition implies n + 1 algebraic equations. One can make these constraints explicit, for
example, by solving them with respect to the n+ 1 variables $0, m(0) and m(i) for i = 1, . . . , n. If one
considers, for definiteness, a configuration in which all the poles ai lie on one side of the Taub-NUT
center (0 < a1 < . . . < an), then the regularity constraints are:

$0 = Q0

n∑
j=1

l∞I k
(j)
I

2aj
+ h

n∑
i=0

n∑
j=1,j 6=i

Q
(i)
I k

(j)
I

2(aj − ai)
+ hQ0

n∑
i,j,k=1

k
(i)
1 k

(j)
2 k

(k)
3

2aiajak
,

m(0) = −Q0

n∑
j=1

l∞I k
(j)
I

2aj
− h

n∑
j=1

Q
(0)
I k

(j)
I

2aj
+Q0

n∑
i=0

n∑
j=1,j 6=i

Q
(i)
I k

(j)
I

2aj(aj − ai)
− hQ0

n∑
i,j,k=1

k
(i)
1 k

(j)
2 k

(k)
3

2aiajak
,

m(i) =
l∞I k

(i)
I

2

(
h+

Q0

ai

)
+

n∑
j=1

1

2|ai − aj |
[
Q

(j)
I k

(i)
I

(
h+

Q0

ai

)
−Q(i)

I k
(j)
I

(
h+

Q0

aj

)]

+
hQ0

2

[k(i)
1 k

(i)
2 k

(i)
3

a3
i

+
|εIJK |

2

k
(i)
I

ai

n∑
j,k=1

sign(aj − ai)sign(ak − ai)
k

(j)
J k

(k)
K

ajak

]
(i ≥ 1) .(B.3.19)

Those equations are equivalent to the Denef equations or bubble equations [46, 82,44] but for almost-
BPS solutions. The requirement that the quartic invariant be everywhere positive does not translate
in a set of algebraic conditions and must be verified for all (ρ, θ).
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B.3.1 Three-center solution

For the family of three-center solutions used in the text in section 4.4.1, the one-forms (vΛ, w
Λ) that

encodes the charges of the gauge fields are given by:

w0 = Q0 cos θ dφ, w1 = 0 ,

w2 = −k(2)

(
h cos θ2 +Q0

ρ− a2 cos θ

ρ2a2

)
dφ , w3 = −k(3)

(
h cos θ3 +Q0

ρ− a3 cos θ

ρ3a3

)
dφ ,

v0 =
k(2)

h
cos θ2 dφ +

k(3)

h
cos θ3 dφ −

(
k(2)Q

(3)
2 − k(3)Q

(2)
3

) ρ2 + a2a3 − (a2 + a3)ρ cos θ

(a3 − a2) ρ2ρ3
dφ ,

v1 = Q
(2)
1 cos θ2 dφ + Q

(3)
1 cos θ3 dφ + Q0k

(2)k(3) (ρ2 + a2a3) cos θ − (a2 + a3)ρ

a2a3 ρ2ρ3
dφ ,

v2 = Q
(3)
2 cos θ3 dφ , v3 = Q

(2)
3 cos θ2 dφ .

(B.3.20)

B.4 Multipole moments of multicenter almost-BPS solu-
tions in Taub-NUT

In this section, we will compute the multipole moments of axisymmetric multicenter almost-BPS
solutions. Given the expression of the fields ZI (B.3.4) and µ B.3.11), the procedure constructed
in [120] to compute multipole moments of BPS multicenter solutions does not apply here, so in the
following we generalize this procedure to almost-BPS multicenter solutions.

B.4.1 Algebra of multipole-decomposable functions

We expand every pole 1/ρi on the z-axis with the multipole expansion in Legendre polynomials Pl:

1

ρi
=

1√
ρ2 + a2

i − 2rai cos θ
=
∞∑
l=0

ai
lPl(cos θ)

ρl+1
. (B.4.1)

Let F be a function such as

F = f∞ +
∞∑
l=0

1

ρl+1
[Pl(cos θ)Dl(F ) + (lower harmonics than Pl(cos θ))] , (B.4.2)

where the “lower harmonics” are comprised of products of Legendre polynomials Pl1 . . . Plm with
∑

j lj <

l. In other terms, the polynomial degree of lower harmonic terms Pl1 . . . Plm is at most X l−1. We say
that these functions “decompose into a multipole expansion”, and will call the class of these functions
to be “multipole-decomposable”. For instance, a harmonic function G expands as

G = g∞ +
∑
i

g(i)

ρi
= g∞ +

∑
i

g(i)
∞∑
l=0

ai
lPl(cos θ)

ρl+1
, (B.4.3)
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so H is multipole-decomposable and its multipole decomposition at order l is Dl(H) =
∑

i g
(i)ali.

Applied on the vector space of multipole-decomposable functions, the multipole decomposition
operator Dl satisfies linearity. When we multiply two multipole-decomposable functions together, at
O(ρ−(l+1)) we get:

(FAFB)O(ρ−l−1) = (f∞A Dl(FB) + f∞B Dl(FA))
Pl(cos θ)

ρl+1
+
LHl
ρl+1

, (B.4.4)

where LHl denotes terms with lower harmonics than Pl (which are polynomials in cos θ of degree less
or equal to l − 1). Thus, the vector space is an algebra and we read

Dl(FAFB) = f∞A Dl(FB) + f∞B Dl(FA) . (B.4.5)

To extract the l-th multipole from a generic functional f(F1, . . . , FN ) of multipole-decomposable
functions FA, the formula above generalizes to:

Dl [f(F1, . . . , FN )] =
N∑
B=1

∂f∞B [f(F1, . . . , FN )∞]Dl(FB) , (B.4.6)

where we introduced the notation f(F1, . . . , FN )∞ := limr→∞ f(F1, . . . , FN ) to denote the functional
evaluated when the radius r is taken to infinity; this can be thought as a function of the moduli f∞A .

B.4.2 Mass multipoles

We want to compute the multipole moments of a class of almost-BPS bubbling multi-center solutions
whose four-dimensional metric is:

ds2 = −(Q(FI))
−1/2(dt+ ω)2 + (Q(FI))

1/2
(
dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2

)
, (B.4.7)

where the warp factor of the four-dimensional solution Q(H) is given by the expression:

Q(F1, . . . , FN ) = Z1Z2Z3V − (µV )2. (B.4.8)

In this class of almost-BPS solutions, only five moduli f∞ are potentially turned on: l∞1 , l∞2 ,
l∞3 , h ≡ v∞ and m∞.3 Therefore, we will use the following five multipole-decomposable functions

3By comparison, the class of BPS solutions in the same STU model will admit in addition the magnetic
moduli k∞1 , k∞2 , k∞3 .
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FI = (Z1, Z2, Z3, V, µV ):

ZI = l∞I +
Q

(0)
I

ρ
+

n∑
j=1

Q
(j)
I

ρj
+
|εIJK |

2

n∑
j,k=1

(
h+

Q0 ρ

ajak

)k(j)
J k

(k)
K

ρjρk
,

V = h +
Q0

ρ

µV = m∞ +
m(0)

ρ
+

n∑
j=1

m(j)

ρj
+ α

cos θ

ρ2
+

n∑
j=1

αj
cos θj
ρ2
j

+
∑
j

l∞I k
(j)
I

(
h f

(1)
j +Q0 f

(2)
j

)
+
∑
j

Q
(j)
I k

(j)
I

(
h f

(3)
j +Q0 f

(4)
j

)
+

n∑
i=0

n∑
j=1,j 6=i

Q
(i)
I k

(j)
I

(
h f

(5)
ij +Q0 f

(6)
ij

)
+
CIJK

6

∑
i,j,k

k
(i)
I k

(j)
J k

(k)
K

(
h2 f

(7)
ijk +Q0

2 f
(8)
ijk + hQ0 f

(9)
ijk

)
(B.4.9)

where the functions f (m)
i , f (m)

ij and f (m)
ijk are given in appendix B.3 and are multipole-decomposable.

We wish to apply (B.4.6) with f(Z1, Z2, Z3, V, µV ) = −Q− 1
2 = −

(
Z1Z2Z3V − (µV )2

)− 1
2 . As the

quartic invariant at infinity equals

Q∞ = l∞1 l
∞
2 l
∞
3 h−m∞2 , (B.4.10)

we deduce

Dl

[
−Q− 1

2

]
=

1

2
l∞1 l
∞
2 l
∞
3 Dl[V ]+

1

2
h (l∞1 l

∞
2 Dl[Z3] + l∞2 l

∞
3 Dl[Z1] + l∞3 l

∞
1 Dl[Z2])−m∞Dl[µV ] , (B.4.11)

where we have used that Q−
3
2∞ = 1 since we want to have an asymptotic flat space R3. Thus, it remains

to compute Dl[FI ]; by linearity, we only need to compute Dl[f
(m)
i ], Dl[f

(m)
ij ] and Dl[f

(m)
ijk ].

By reading off the coefficient of the leading-degree monomial in cos θ, we deduce that 1
ρiρj

expands
as

1

ρiρj
=
∞∑
l=1

1

ρl+1

p,q≥0∑
p+q=l−1

ai
paj

qPpPq

=
∞∑
l=1

1

ρl+1

[
q

(2)
l−1(ai, aj)Pl−1 + LHl−1

]
,

(B.4.12)

where the bivariate polynomial q(2)
n is defined as

q(2)
n (ai, aj) ≡

1(
2n
n

) ∑
p+q=n

(
2p

p

)(
2q

q

)
ai
paj

q . (B.4.13)

Similarly, we define the multivariate polynomial q(3)
n :

q(3)
n (ai, aj , ak) ≡

1(
2n
n

) ∑
p+q+s=n

(
2p

p

)(
2q

q

)(
2s

s

)
ai
paj

qak
s . (B.4.14)
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Note that
q(2)
n (1, 1) =

4n(
2n
n

) , q(3)
n (1, 1, 1) = 2n+ 1 . (B.4.15)

The following functions then expand as

ρ

ρiρj
=

∞∑
l=0

1

ρl+1

[
q

(2)
l (ai, aj)Pl + LHl

]
(B.4.16)

1

ρiρjρk
=

∞∑
l=2

1

ρl+1

[
q

(3)
l−2(ai, aj , ak)Pl−2 + LHl−2

]
(B.4.17)

ρ

ρiρjρk
=

∞∑
l=1

1

ρl+1

[
q

(3)
l−1(ai, aj , ak)Pl−1 + LHl−1

]
(B.4.18)

ρ2

ρiρjρk
=

∞∑
l=0

1

ρl+1

[
q

(3)
l (ai, aj , ak)Pl + LHl

]
. (B.4.19)

Following Bonnet’s recursion formula, we have, for l ≥ 1, XPl−1 = l
2l−1Pl + LHl. We deduce

cos θ

ρiρj
=

∞∑
l=1

1

ρl+1

[
q

(2)
l−1(ai, aj)

l

2l − 1
Pl + LHl

]
(B.4.20)

ρ cos θ

ρiρjρk
=

∞∑
l=1

1

ρl+1

[
q

(3)
l−1(ai, aj , ak)

l

2l − 1
Pl + LHl

]
(B.4.21)

cos θi
ρ2
i

=
r cos θ − ai

ρ3
i

=
∞∑
l=1

1

ρl+1

[
q

(3)
l−1(1, 1, 1)

l

2l − 1
al−1
i Pl + LHl

]
. (B.4.22)

Thus, we deduce the expansions Dl[f
(m)
i ], Dl[f

(m)
ij ] and Dl[f

(m)
ijk ], which in turn, provide the mass

multipoles from (B.4.11):

4M̃l = l∞1 l
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2 l
∞
3 Q0a0
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|εIJK |
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l∞I l
∞
J
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(
q
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(2)
l−1(ai, aj)

ai − aj

)

− 2m∞Q0
2

∑
1≤i,j,k≤n

k
(i)
1 k
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(B.4.23)

The position of the Taub-NUT center is fixed at a0 = 0, and a0
l = δl,0. The binomial coefficient in the

third line of (B.4.23) is not defined for l = 0 but, as it is multiplied by l, one can set this term to be
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zero for l = 0 and extend the formula (B.4.23) for all l ∈ N. In particular,

4M̃0 = l∞1 l
∞
2 l
∞
3 Q0 + h

|εIJK |
2

l∞I l
∞
J

n∑
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Q
(j)
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∞
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J k

(k)
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1
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(j)
I −m∞Q0
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n∑
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Q
(i)
I k
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1
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(B.4.24)

and

4M̃1 =h
|εIJK |

2
l∞I l
∞
J
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Q
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n∑
j=1,j 6=i

Q
(i)
I k

(j)
I

(
ai + aj

2aj(ai − aj)
− 1

ai − aj

)
− 2m∞Q0

2
∑

1≤i,j,k≤n

k
(i)
1 k

(j)
2 k

(k)
3

aiajak
.

(B.4.25)

In the scaling limit, we scale the intercenter distances ai → λdi, with di ∼ O(1), and we keep
the charges κ̂(j)

I ≡ k
(j)
I /aj fixed, according to (4.4.8). The last term of (B.4.24) naively scales like

−λ−1m∞Q0
∑n

i=0

∑n
j=1,j 6=iQ

(i)
I κ̂

(j)
I (di − dj)−1. However, using the regularity constraint (B.3.19), the

scaling limit of the mass multipole M0 = M̃0 has no λ−1 term and is in fact of the form

M̃0 = M̃
(0)
0 + λM̃

(1)
0 . (B.4.26)

We see from (B.4.23) that in the scaling limit, the dominant term in M̃l is of order λl−1 for l ≥ 1.

B.4.3 Current multipoles

To get the expression of the current multipoles S̃l defined in (4.2.5), we need to determine the
sin2 θP ′l (cos θ) expansions in 1/ρl (l ≤ 0) of $ ≡ ωφ dφ in (B.3.12)

ωφ =
∑
j

l∞I k
(j)
I

(
h τ

(1)
j +Q0 τ
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j

)
+
∑
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Q
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j +Q0 τ
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+
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Q
(i)
I k

(j)
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(
h τ
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ij +Q0 τ
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ij
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+
CIJK
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i,j,k
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(i)
I k

(j)
J k

(k)
K

(
h2 τ

(7)
ijk +Q0

2 τ
(8)
ijk + hQ0 τ

(9)
ijk

)
+ τ (10) ,

(B.4.27)

where the one-forms τ (m)dφ ≡ t(m) are given in equations (B.3.10) and (B.3.9).
The additional difficulty in the computation of the current multipoles with respect to the mass

multipoles is that in order to check that the the metric is AC-∞ in its gtφ part, one needs to be
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able to factorize by sin2 θ in the multipole development of gtφ. To do this, we consider ωφ as a
polynomial in X ≡ cos θ, before doing any expansion in 1

ρl
. The charges and the poles ai satisfy the

regularity constraints in the like of (B.3.19) to avoid Dirac-Misner strings on the z-axis, that is to say
ωφ(cos θ = 1) = 0 and ωφ(cos θ = −1) = 0. Therefore ωφ is divisible by (1−X)(1+X) = 1−X2 = sin2 θ.

We can now read off all the current multipoles simply by looking at the coefficient in front of
the dominant term, X l+1. Any polynomial of degree l or less is then counted among the the lower
harmonics. For instance,

ρ2

ρiρj
=

∞∑
l=0

1

ρl

[
q

(2)
l (ai, aj)Pl + LHl

]
(B.4.28)

is counted among the lower harmonics LHl+1 and does not contribute to the current multipole. It is
easy to see that a generic function of the form

ρn cosm θ

ρi1 · · · ρip
=

∞∑
l=p−n

1

ρl

[
q

(p)
l+n−p(ai1 , . . . , aip)XmPl+n−p + LHl+n+m−p

]
(B.4.29)

contributes to a polynomial of degree l + (n + m − p) in the 1
ρl
-expansion. (In practice, m = 1 or

m = 2.) The dominant multipole is a polynomial of degree l+1, which is achieved when n+m−p = 1.
The last paragraph shows that in the expression gtφ = −2Q−1/2ωφ, Q−1/2 does not contribute to

the current multipoles. Indeed, because Q∞ = 1, we can write Q = 1 +R, where R comprises only
functions of the form (B.4.29) with n+m−p ≤ −1. Thus, the same applies to Q−1/2, and the functions
of R are absorbed in the lower harmonics of ωφ, whose highest harmonic generating functions verifiy
n+m− p = 1.

The relation between Pn and P ′n

X2 − 1

n
P ′n = XPn − Pn−1 (B.4.30)

ensures that

XmPl+n−p = (X2 − 1)
cl+n−p

cl+n−p+m−1

1

l + n− p+m− 1
P ′l+n−p+m−1 + LHl+n+m−p , (B.4.31)

where cn = 1
2n

(
2n
n

)
is the coefficient of the leading order Xn in Pn. In practice, the functions that

contribute to the dominant current multipole can be developed as

ρp cos θ

ρi1 · · · ρip
= cos θ +

∞∑
l=1

1

ρl

[
(X2 − 1)

1

l
q

(p)
l (ai1 , . . . , aip)P ′l + LHl+1

]
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ρp−1 cos2 θ

ρi1 · · · ρip
=

∞∑
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1

ρl

[
(X2 − 1)

1

2l − 1
q

(p)
l−1(ai1 , . . . , aip)P ′l + LHl+1

]
.

(B.4.32)

Notice that XP0 = X = cos θ is not divisible by X2 − 1, so it cannot contribute to any current
multipole.

Using (B.4.32), one can derive the expansion of the functions appearing in $ involving a degree
l+ 1 polynomial, and by linearity, the expansion of ωφ itself. Finally, factorizing gtφ = −2Q−1/2ωφ by
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sin2 θ, one deduces the current multipoles from (4.2.5)
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(B.4.33)

It is easy to check that in the scaling limit, one gets the equality

M̃1 = m∞S̃1 , (B.4.34)

which is consistent with equations (4.3.8) and (4.3.9) for the almost-BPS black hole (4.3.4) with a
parameter α.

B.4.4 Multipole ratios

As it was shown in [118,120], if one wants to calculate ratios of vanishing multipoles for certain black
holes, there exist two methods: the indirect and the direct one. In this section we review these methods
and apply them briefly to almost-BPS black holes, as a proof of concept that the analysis of [118,120] for
supersymmetric black holes and their multicentered microstates can be straightforwardly generalized
to the almost-BPS case (albeit only for h = 1).

Brief overview of indirect and direct methods

In the indirect method, we consider a generic STU black hole in maximal ungauged supergravity [132];
these black holes are characterized by 10 parameters: a non-extremality parameter, m, a rotation pa-
rameter, a, and four electric and four magnetic charge parameters, δI , γI . For such a generic STU black
hole, all of the multipoles M`, S` are non-zero, and so any multipole ratio, which we can generically
denote asM, is well-defined. Then, one can take the limit ofM as we go from the generic STU black
hole to the black hole in question. Defined in this way as a limit, any ratio of vanishing multipoles,
M, becomes well-defined for any black hole. For example, in [118,120] it was found that:

M2S2

M3S1
= 1, (B.4.35)

for any black hole; this includes the Kerr black hole for which this ratio is strictly speaking undefined
(since S2 = M3 = 0 for Kerr). The multipoles of a generic STU black hole can be seen as functions
of four variables: the mass, M , the angular momentum, J , the rotation parameter, a, and the dipole
moment, M1.4 The indirect method of calculating a ratio of vanishing multipoles,M, for a black hole

4Note that we are using a slightly different parameterization than in [120], where D = M1/a was used
instead; the one we use here is more natural for almost-BPS black holes and microstate geometries.

148



with parameters (M0, J0, (M1)0, a0) can then be summarized as:

Mind (M0, J0, (M1)0, a0) = lim
(M,J,M1,a)→(M0,J0,(M1)0,a0)

M (M,J,M1, a) . (B.4.36)

For further discussion, see [120] (and especially appendix B therein for the subtleties of this indirect
method).

The direct method instead uses scaling microstate geometries which tend to the black hole geometry
in the scaling limit λ→ 0. This method calculates the ratios of vanishing multipoles,M, by considering
the multipole ratios of microstate geometries as one takes the scaling limit:

Mdir = lim
λ→0
M(λ). (B.4.37)

It was shown in [118, 120] that ratios of vanishing multipoles can be computed in this way for super-
symmetric black holes, in which all all multipole moments (except M0) vanish.

Almost-BPS multipole ratios at h = 1

The Chow-Compere STU black holes [132] and thus the indirect method [118,120] are only defined for
the family of our almost-BPS black holes and microstates when we take the 4D modulus h = 1.5 We
therefore restrict ourself to these solutions; as mentioned above in section 4.4.2, this impliesM` ∼ O(λ`)

and S` ∼ O(λ`−1) for microstate geometries in the scaling limit λ→ 0.
The generic underrotating limit (to which the almost-BPS black hole belongs) of the generic STU

black hole family with parameters (M,J,M1, a) corresponds to the a→ 0 limit keepingM,M1, J finite.
However, as we saw in (4.3.10), our almost-BPS black hole with h = 1 has all multipoles vanishing
except M0 and S1. Thus, the indirect limit for our almost-BPS black hole family involves also taking
the limit M1 → 0, which we will always consider taking after the underrotating limit.

Note that, precisely because all multipoles (except M0, S1) vanish for our almost-BPS black holes
with h = 1, any multipole ratio that involves two monomials inM`, S` is a non-trivial quantity that we
can compute and compare using both the direct and indirect method. This is similar to the analysis
of the difference between the indirect and direct calculations of multipole ratios for supersymmetric
black holes, which was discussed in detail in [118,120]. There, it was found that the two methods only
gave (closely) matching results for certain classes of (SUSY) black holes.

As an example, let us consider the following three multipole ratios:

M(A) ≡
M2M4

M3M3
, M(B) ≡

S2S4

S3S3
, M(C) ≡

M2S2

M3S1
. (B.4.38)

These have simple values when calculated with the indirect method:

Mind
(A) ≡ lim

M1→0
lim
a→0

M2M4

M3M3
=

3

4
, Mind

(B) =
8

9
, Mind

(C) = 1. (B.4.39)

Note that these indirect ratios are pure numbers and do not depend on the charges of the black hole;
this is a general feature of indirect ratios for the almost-BPS black hole we consider here. However,

5This can be seen for example by comparing the asymptotic values of the matrices of scalar couplings
(B.1.18)-(B.1.19) for our ansatz to that of the STU black hole in [132].

149



the same ratios calculated in the direct method do depend on the specifics of the microstate. As an
illustration, in fig. B.1 we consider the three ratiosM(A,B,C) for the family of microstates defined by
(4.4.30) with varying x (and h = 1).
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Figure B.1 – Plots of the direct method ratios Mdir
(A,B,C) (red lines) for the microstate family

(4.4.30) with h = 1 as a function of x. The blue dashed lines indicate the indirect method
values given in (B.4.39).

Clearly, the indirect and direct methods do not necessarily agree with their predictions for the
values of multipole ratios of the almost-BPS black hole. It would be interesting to conduct an analysis
similar to [118, 120] to understand if there is a certain condition that the black hole must satisfy in
order for the two methods to give similar answers; we leave this for future work.
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Appendix C

Appendix for Chapter 6

C.1 Chain of dualities

In this appendix we present the explicit solutions for the intermediate steps in the two duality
chains that we discussed in section 6.3. In the first part we present the steps (6.3.7) that lead
from the F1-P system with a non-trivial profile (6.3.5) to the NS5-P system with local D0-D4
charges (6.3.8). In the second subsection we then present the chain of dualities (6.3.11) which is
used to write the latter solution in the D1-D5 frame of [199]. This allows us to consistently add
a D1-brane charge which corresponds to adding an F1 charge in the F1-NS5 frame.

C.1.1 Generating the NS5-P-(D0-D4) solution

F1-P

The starting point is the F1-P configuration in Type IIB theory depicted in figure 6.2: Take
the fundamental string to wrap the S1(y) circle and have a non-trivial profile F (v) along one of
the directions of the T 4, which we call z9. Add momentum along the y direction and distribute
(smear) the string charge along the four-torus while keeping all the charge localized at a point
in R4. The supergravity solution corresponding to such a configuration is given by [196,197]

ds2 = − 2

H5
dv

[
du− Ḟ 2(v)

2
(H5 − 1) dv + Ḟ (v) (H5 − 1) dz9

]
+ dxi dxi + dza dza , (C.1.1a)

B = −
(

1− 1

H5

) [
du ∧ dv + Ḟ (v) dv ∧ dz9

]
, e2φ =

1

H5
, (C.1.1b)

with all other fields vanishing. In the above, u and v are null coordinates (6.3.3) and H5 is a
harmonic function associated with the F1-string and is given by (6.3.6).
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S-duality to D1-P

The next step is to perform an S-duality (C.2.8) which yields

ds2 = − 2√
H5

dv

(
du+

Ḟ 2(v)

2
(1−H5) dv − Ḟ (v) (1−H5) Ḟ (v) dz9

)
+
√
H5

(
dxi dxi + dza dza

)
, (C.1.2a)

B = 0 , e2φ = H5 , (C.1.2b)

C0 = 0 , (C.1.2c)

C2 =

(
1− 1

H5

)
du ∧ dv + Ḟ (v)

(
1− 1

H5

)
dv ∧ dz9 , (C.1.2d)

C4 = 0 , (C.1.2e)

C6 = γ ∧
(
Ḟ (v) dv ∧ dz6 ∧ dz7 ∧ dz8 + v̂ol4

)
, (C.1.2f)

where we have introduced a two-form γ such that

dγ ≡ ∗4dH , (C.1.3)

and used the volume form of the T 4

v̂ol4 ≡ dz6 ∧ dz7 ∧ dz8 ∧ dz9 . (C.1.4)

This solution describes a D1-brane wrapping the S1(y) circle and carrying momentum along
that direction. The D1-brane is smeared along the T 4, with a non-trivial profile along the z9,
while being located at the origin or the base space. We use the democratic formalism (see
Appendix C.2), which we have used to determine C6 by imposing the duality condition between
F3 and F7.

T-dual along z9 to D2-P with local D0-F1 charges

Next we perform T-dualities (C.2.14) along all four directions of the torus, and we begin with
the “special” direction z9. When performing this duality, following Figure 6.3, the decomposition
of the local charges into those along the y and the z9 direction become important. The result
is a configuration in Type IIA theory: a D2-brane (wrapping the y and z9 directions) with a
momentum along y, on which we find D0 and F1 charges (the latter wrapping the z9 direction),
which have varying densities along the y direction. The corresponding supergravity solution is

ds2 = − 2√
H5

dv

[
du− Ḟ 2(v)

2

(
1− 1

H5

)
dv

]
+
√
H5

(
dxi dxi +

8∑
a=6

dza dza

)

+
1√
H5

(
dz9
)2
, (C.1.5a)

B2 = Ḟ (v)

(
1− 1

H5

)
dv ∧ dz9 , e2φ =

√
H5 . (C.1.5b)

C1 = Ḟ (v)

(
1− 1

H5

)
dv , (C.1.5c)
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C3 =

(
1− 1

H5

)
du ∧ dv ∧ dz9 , (C.1.5d)

C5 = γ ∧ dz6 ∧ dz7 ∧ dz8 , (C.1.5e)

C7 =
Ḟ (v)

H5
γ ∧ dv ∧ v̂ol4 . (C.1.5f)

In the above solution, the y-, or more appropriately v-, dependent distribution of D0 and F1
charges is seen in the dependence on Ḟ (v) that appears in B2, which is sourced by fundamental
strings, and C1 (C7) which is electrically (magnetically) sourced by D0-branes. On the other
hand, C3 and C5, which are sourced by D2-branes, are independent of Ḟ (v).

T-dualities along z8, z7 and z6 to the D5-P with local D3-F1 charges

The three T-dualities along z8, z7, and z6 (in that order) are very similar and thus we perform
them together. The final result is a configuration in Type IIB theory where the D2-brane now
becomes a D5-brane wrapping the S1(y) circle and all four directions of the T 4, while the Ḟ (v)

dependent fields are now sourced by local D3 and F1 charges:

ds2 = − 2√
H5

dv

[
du− Ḟ 2(v)

2

(
1− 1

H5

)
dv

]
+
√
H5dx

i dxi +
1√
H5

dza dza , (C.1.6a)

B2 = Ḟ (v)

(
1− 1

H5

)
dv ∧ dz9 , e2φ =

1

H5
, (C.1.6b)

C0 = 0 , (C.1.6c)

C2 = γ , (C.1.6d)

C4 = − Ḟ (v)

H5
γ ∧ dv ∧ dz9 − Ḟ (v)

(
1− 1

H5

)
dv ∧ dz6 ∧ dz7 ∧ dz8 , (C.1.6e)

C6 =

(
1− 1

H5

)
du ∧ dv ∧ v̂ol4 , (C.1.6f)

C8 = 0 . (C.1.6g)

S-duality to NS5-P with local D3-D1 charges

Since our aim is to obtain a solution corresponding to a configuration with NS5-P charges, we
continue with another S-duality. Essentially, this only exchanges the D5-brane for an NS5-brane
and the D1 local charges with F1 charge distribution:

ds2 = −2dv

[
du− Ḟ 2(v)

2

(
1− 1

H5

)
dv

]
+H5 dx

i dxi + dza dza , (C.1.7a)

B2 = γ , e2φ = H5 , (C.1.7b)

C0 = 0 , (C.1.7c)

C2 = −Ḟ (v)

(
1− 1

H5

)
dv ∧ dz9 , (C.1.7d)
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C4 = −Ḟ (v) γ ∧ dv ∧ dz9 − Ḟ (v)

(
1− 1

H5

)
dv ∧ dz6 ∧ dz7 ∧ dz8 , (C.1.7e)

C6 = −Ḟ (v) γ ∧ dv ∧ dz6 ∧ dz7 ∧ dz8 , (C.1.7f)

C8 = 0 . (C.1.7g)

T-duality to NS5-P with local D0-D4 charges

Finally, we perform another T-duality along z9, which lands us in the desired configuration: an
NS5-brane with momentum along the y-direction with D0- and D4-brane charges which vary
along the S1(y) circle

ds2 = −2dv

[
du− Ḟ (v)2

2

(
1− 1

H5

)
dv

]
+H dxi dxi + dza dza , (C.1.8a)

B2 = γ , e2φ = H5 , (C.1.8b)

C1 = −Ḟ (v)

(
1− 1

H5

)
dv , (C.1.8c)

C3 = −Ḟ (v) γ ∧ dv , (C.1.8d)

C5 = −Ḟ (v)

(
1− 1

H5

)
dv ∧ v̂ol4 = C1 ∧ v̂ol4 , (C.1.8e)

C7 = −Ḟ (v) γ ∧ dv ∧ v̂ol4 = C3 ∧ v̂ol4 , (C.1.8f)

which is the solution (6.3.8) presented in the main text. Unlike any of the previous solutions
presented in this appendix, (C.1.8) depends on the T 4 only through its volume form (C.1.4).

C.1.2 Adding F1 charge by using a Gibbons-Hawking base

The solution (C.1.8) (or equivalently (6.3.8) of the main text) is asymptotically a two-charge
solution. To make contact with the microstate geometries programme, we would like to con-
struct a solution which has three charges. We choose to add to the configuration an additional
fundamental string that wraps the S1(y) circle and is smeared along the T 4.

We do so in a roundabout way: We write the four-dimensional flat metric in Gibbons-
Hawking form and T-dualize along the Gibbons-Hawking fiber. If we then perform an S-duality,
the resulting configuration should be described in terms of the complete ansatz for the D1-D5
system constructed in [199]. Adding a source corresponding to a D1-brane in this duality frame is
equivalent to adding a fundamental string in the NS5-P frame, only that in the former frame we
know all fields which get excited as a consequence of adding a new object into the configuration.
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Begin by writing the flat base space metric in (C.1.8) as1

dxi dxi =
1

V
(dψ +A)2 + V ds2

3 , (C.1.10)

where ds2
3 denotes the flat metric on R3. Recall that we need to impose the following constraints

on the function V and one-form A

∗3dA = dV , =⇒ ∗d ∗ dV = 0 , d ∗ dA = 0 , (C.1.11)

which also means that the warp factor, V , is a harmonic function in R3. The metric (C.1.10)
is invariant under a simultaneous rescaling of the coordinates, the function V , and one-form A,
which we can fix by setting the periodicity of ψ to be 4π.

Now assume that ψ denotes an isometry direction of the solution. Then one can decompose

∗4dH5 = (dψ +A) ∧ ∗3dH5 , (C.1.12)

and2

γ ≡ − (dψ +A) ∧ γ(1) + γ(2) , (C.1.13)

where the one-form γ(1) and the two-form γ(2) are determined from the definition (6.3.9) by

dγ(1) = ∗3dH5 , dγ(2) = ∗3dV ∧ γ(1) . (C.1.14)

T-duality along the Gibbons-Hawking fiber

We now use the T-duality rules to dualize along the Gibbons-Hawking fiber ψ. However, after
performing the transformation, we need to change the sign of ψ

ψ → −ψ , (C.1.15)

to obtain

ds2 = −2 dv

[
du− Ḟ 2(v)

2

(
1− 1

H5

)
dv

]
+ V

[
1

H5

(
dψ + γ(1)

)2
+H5 ds

2
3

]
+ ds2

4 , (C.1.16a)

1 In what follows we do not specify the coordinates used in the Gibbons-Hawking ansatz. However,
one can introduce spherical coordinates for R4 whose metric can be written as

ds24 = dr2 + r2
(
dθ2 + sin2 θ dϕ2

1 + cos2 θ dϕ2
2

)
.

To rewrite this metric in the Gibbons-Hawking form, we introduce new coordinates as r ≡ 2
√
ρ, θ̃ ≡ 2θ,

ψ ≡ ϕ1 + ϕ2, and φ ≡ ϕ2 − ϕ1, where the ranges of various coordinates are taken to be ϕ1,2 ∈ [0, 2π),
ψ ∈ [0, 4π), and φ ∈ [0, 2π), while r and ρ are both taken to be non-negative. The metric becomes

ds24 = ρ (dψ + cos θ̃ dφ)2 +
1

ρ

(
dρ2 + ρ2

(
dθ̃2 + sin2 θ̃ dφ2

))
, (C.1.9)

and one can read off that V = ρ−1 and A = cos θ̃ dφ. Furthermore H5 = 1 + Q5

4ρ , and is thus harmonic
even in R3.

2For example, in spherical coordinates (see footnote 1) γ(1) = 1
4 Q5 cos θ̃ dφ and γ(2) = 0.
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B2 = A ∧ dψ + γ(2) , e2φ = V , (C.1.16b)

C0 = 0 , (C.1.16c)

C2 = Ḟ (v)

(
1− 1

H5

)
dv ∧ (dψ + γ(1))− Ḟ dv ∧ γ(1) , (C.1.16d)

C4 = Ḟ (v) dv ∧
(
dψ + γ(1)

)
∧ γ(2) , (C.1.16e)

where the sign flip (C.1.15) ensures that the first equation of (C.1.14) now serves as the constraint
between the one-form and scalar function in the new Gibbons-Hawking base-space metric.

S-duality to the D1-D5 frame

S-dualizing the above solution puts us in the D1-D5 frame, and the resulting configuration fits
within the ansatz of [199]. In this transformation, and only in this transformation alone, we
choose b = −c = −1 when performing the S-duality (C.2.8). This allows us to compare the
resulting solution with the complete ansatz of [199] without changing the signs of the fields and
furthermore, when transforming back to the NS5-P system we can take b = −c = 1 which is the
inverse transformation. We find

ds2 = − 2√
V
dv

[
du− Ḟ 2(v)

2

(
1− 1

H5

)
dv

]
+
√
V

[
1

H5

(
dψ + γ(1)

)2
+H5 ds

2
3

]
+

1√
V
dŝ2

4 , (C.1.17a)

B2 = Ḟ (v)

[(
1− 1

H5

) (
dψ + γ(1)

)
− γ(1)

]
∧ dv , e2φ =

1

V
, (C.1.17b)

C0 = 0 , (C.1.17c)

C2 = A ∧
(
dψ + γ(1)

)
+ γ(2) −A ∧ γ(1) , (C.1.17d)

C4 = −Ḟ (v)

[
1

H5

(
dψ + γ(1)

)
∧
(
γ(2) −A ∧ γ(1)

)
+ γ(1) ∧ γ(2)

]
∧ dv . (C.1.17e)

At this point one can recombine the Gibbons-Hawking decomposition of the base space (including
the forms), compare the solution (C.1.17) with the complete ansatz of [199] and read off the ansatz
quantities,3 however, this is not central to our analysis.

Adding a D1 charge

What is important for us is that the harmonic function corresponding to D1-brane sources is
precisely known in the complete ansatz [199].4 Thus denoting this harmonic function with H1

3Once this is done, one can check that the read-off quantities solve the BPS equations [210,199].
4In the notation commonly used in the microstate geometries literature dealing with the D1-D5 system

[210, 221, 50, 52] (see also appendix E.7 of [199]), this is the scalar function Z1. Note that in addition
one would need to turn on a contribution to the gauge field C6, which would ensure, in the democratic
formalism, appropriate self-duality properties of the gauge field strengths. However, we will determine
higher-order gauge fields only after the last duality transformation.
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(see (6.3.13)), we find that the new solution is given by

ds2 = − 2√
V H1

dv

[
du− Ḟ 2(v)

2

(
1− 1

H5

)
dv

]
+
√
V H1

[
1

H5

(
dψ + γ(1)

)2
+H5 ds

2
3

]

+

√
H1

V
dŝ2

4 , (C.1.18a)

B2 = Ḟ (v)

[(
1− 1

H5

) (
dψ + γ(1)

)
− γ(1)

]
∧ dv , e2φ =

H1

V
, (C.1.18b)

C0 = 0 , (C.1.18c)

C2 = − 1

H1
du ∧ dv +A ∧

(
dψ + γ(1)

)
+ γ(2) −A ∧ γ(1) , (C.1.18d)

C4 = −Ḟ (v)

[
1

H5

(
dψ + γ(1)

)
∧
(
γ(2) −A ∧ γ(1)

)
+ γ(1) ∧ γ(2)

]
∧ dv . (C.1.18e)

It is straightforward to check that this supersymmetric torus-independent D1-D5-frame solution
(C.1.18) solves the equations governing all such solutions [199].

S-dual to F1-NS5 frame in Type IIB

To return to the NS5-P system, we need to first perform an S-duality and then a T-duality along
ψ. Using b = −c = 1, which ensures that this is the inverse transformation of the one used to
arrive at (C.1.17), we obtain

ds2 = − 2

H1
dv

[
du− Ḟ 2(v)

2

(
1− 1

H5

)
dv

]
+ V

[
1

H5

(
dψ + γ(1)

)2
+H5 ds

2
3

]
+ ds2

4 , (C.1.19a)

B2 = − 1

H1
du ∧ dv +A ∧ dψ + γ(2) , e2φ =

V

H1
, (C.1.19b)

C0 = 0 , (C.1.19c)

C2 = −Ḟ (v)

[(
1− 1

H5

) (
dψ + γ(1)

)
− γ(1)

]
∧ dv , (C.1.19d)

C4 = −Ḟ (v)
(
dψ + γ(1)

)
∧ γ(2) ∧ dv . (C.1.19e)

T-dual to the F1-NS5 system in Type IIA

To return to the original system we perform a final T-duality along the ψ direction, which has
to be again followed by a sign flip (C.1.15). Furthermore, in order to compare the final solution
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to the two-charge case (C.1.8), we also exchange Ḟ (v)→ −Ḟ (v). Then one finds

ds2 = − 2

H1
dv

[
du− Ḟ (v)2

2

(
1− 1

H5

)
dv

]
+H5 dx

i dxi + dza dza , (C.1.20a)

B2 = − 1

H1
du ∧ dv + γ , e2φ =

H5

H1
, (C.1.20b)

C1 = −Ḟ (v)

(
1− 1

H5

)
dv , (C.1.20c)

C3 = −Ḟ (v) γ ∧ dv , (C.1.20d)

where we have recombined the decompositions along the Gibbons-Hawking fiber. After the
remaining RR gauge fields are computed, this solution matches the one presented in the main
text in Equation (6.3.12).

C.2 Conventions

Democratic formalism

When dealing with brane sources it is useful to introduce the democratic formalism [198] which
effectively doubles the number of gauge fields in the theory, but introduces self-duality constraints
on the field strengths so that the number of degrees of freedom remains unchanged. This democ-
racy is imposed only on the Ramond-Ramond gauge fields Cp, while we keep only one NS-NS
gauge field B, with a three-form field strength

H3 = dB . (C.2.1)

The RR field strengths are defined as

Fp ≡ dCp−1 −H3 ∧ Cp−3 , (C.2.2)

which satisfy modified Bianchi identities dFp = H3 ∧ Fp−2.
In each of the Type II theories, we introduce additional RR gauge field potentials, so that

for Type IIA we consider {C1, C3, C5, C7} and {C0, C2, C4, C6, C8} for Type IIB. However, the
number of degrees of freedom is kept constant by imposing

(IIA) : F2 = ∗F8 , F4 = − ∗ F6 , F6 = ∗F4 , F8 = − ∗ F2 , (C.2.3a)

(IIB) : F1 = ∗F9, F3 = − ∗ F7, F5 = ∗F5, F7 = − ∗ F3, F9 = ∗F1 , (C.2.3b)

which imply that the field strengths Fp and F10−p essentially convey the same information. Note
that we follow the conventions of [199], where the Hodge dual of a k-form in a D-dimensional
spacetime is given by

∗Xk ≡
1

k!(D − k)!
εm1...mD−k,nD−k+1...nD X

nD−k+1...nD em1 ∧ . . . emD−k . (C.2.4)

Furthermore, we choose the orientation

ε+−12346789 = ε1234 = 1 . (C.2.5)
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S-duality

Define a complex field as a combination of the axion field and the dilaton and combine the
two-form gauge potentials into a vector

λ ≡ C0 + i e−φ , T =

(
B2

C2

)
. (C.2.6)

Type IIB theories are invariant under a transformation generated by U ∈ SL(2,R)

U =

(
a b

c d

)
, with a d− b c = 1 , (C.2.7)

such that

λ→ λ̃ =
aλ+ b

cλ+ d
, T → T̃ = U T , (C.2.8)

while the five-form gauge field strength, F5, and the ten-dimensional metric in the Einstein frame
are invariant.

In the main text we consider only a Z2 subgroup of SL(2,R) transformations where

a = d = 0 , b = −c = ±1. (C.2.9)

Unless explicitly stated otherwise, we choose b = −c = 1 whenever we perform an S-duality
transformation. In addition, in all of the solutions considered, the axion field C0 is vanishing.
Then the effect of such a transformation, with either choice of sign for b and c, results in the
inversion of the dilaton field

φ̃ = −φ , (C.2.10)

and the following change of the metric in the string frame

G̃µν = e−φGµν . (C.2.11)

Furthermore, the two-form gauge fields are interchanged up to a minus sign

B̃2 = ±C2 , C̃2 = ∓B2 , (C.2.12)

where the upper (lower) sign corresponds to b = +1 (b = −1). For either sign, the invariance of
F5 implies that the four-form gauge field transforms as

C̃4 = C4 −B2 ∧ C2 . (C.2.13)

Higher-form gauge fields can be calculated by using the duality rules of the democratic formalism
(C.2.3) and (C.2.2). The effect of this particular transformation is thus to effectively exchange
the two-form gauge potentials.
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T-duality

For performing T-duality transformations we use the conventions of [116], which are convenient
when one works in the democratic formalism. Assume that we are performing a T-duality along
an isometry direction coordinatized by y. Rewrite the initial string frame metric and gauge fields
as

ds2 = Gyy (dy +Aµ dx
µ)2 + ĝµν dx

µ dxν (C.2.14a)

B2 = Bµydx
µ ∧ (dy +Aµ dx

µ) + B̂2 , (C.2.14b)

Cp = Cyp−1 ∧ (dy +Aµ dx
µ) + Ĉp , (C.2.14c)

where the forms B̂2, Ĉp and Ĉyp−1 do not have any legs along y. After applying the rules of a
T-duality transformation [222,223], the new fields (denoted with the tilde) are

ds̃2 = G−1
yy (dy −Bµy dxµ)2 + ĝµν dx

µ dxν (C.2.15a)

B̃2 = −Aµdxµ ∧ dy + B̂2 , (C.2.15b)

C̃p = Ĉp−1 ∧ (dy −Bµy dxµ) + Cyp , (C.2.15c)

e2φ̃ = G−1
yy e

2φ . (C.2.15d)
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