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Résumé : La conservation préventive est le contrôle 

continu de l'état d'une œuvre d'art pour réduire le 

risque de dommages et minimiser les restaurations. 

De nombreuses méthodes ont été proposées pour 

atteindre cet objectif, soit à partir de données 

unimodales,  soit par combinaison de différentes 

techniques d'analyse. Dans ce travail, nous 

présentons deux algorithmes probabilistes de 

clustering pour la détection d'altérations sur des 

surfaces vernies, telles que celles des instruments de 

musique historiques. Les deux méthodes sont 

reposent sur une approche a-contrario et le critère 

Nombre de Fausses Alarmes (NFA). La première 

méthode aborde le problème de la détection de 

changement entre une paire d'images couleur en 

analysant leur image de différence. Il considère 

simultanément l'information spectrale et spatiale 

avec un seul modèle de bruit. 

Le deuxième méthode travaille avec une séquence 

d'images et analyse l'évolution de les zones 

altérées entre les images. Les deux méthodes sont 

robustes au bruit et évitent réglage des paramètres 

ainsi que toute hypothèse sur la forme et la taille 

de la modification domaines. Dans les deux cas, des 

tests ont été effectués sur des séquences d'images 

UVIFL (images de fluorescence induite par les UV) 

incluses dans le jeu de données "Violins UVIFL 

imagery". UVIFL est une technique de diagnostic 

bien connue, utilisée pour voir les détails d'une 

surface qui ne sont pas perceptibles à la lumière 

visible. Les résultats obtenus prouvent la capacité 

de l'algorithme pour détecter correctement les 

régions altérées. Des comparaisons avec d'autres 

les méthodes de clustering de pointe montrent une 

amélioration à la fois de la Precision et du Recall. 
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Abstract : Preventive conservation is the constant 

monitoring of the state of conservation of an artwork 

to reduce the risk of damage in order to minimise the 

necessity of restorations. Many methods have been 

proposed to achieve this goal, generally including a 

mix of different analytical techniques. In this work, we 

present two probabilistic clustering algorithms for 

the detection of alterations on varnished surfaces, in 

particular those of historical musical instruments. 

Both methods are based on the a-contrario 

framework and the Number of False Alarms (NFA) 

criterion. The first one tackles the problem of 

detecting changes between a pair of colour images 

by analysing their difference map. It considers 

simultaneously grey-level and spatial density 

information with a single background model.  

The second method works with a sequence of 

images and analyses the evolution of the changed 

areas between frames. Both methods are robust to 

noise and avoid parameter tuning as well as any 

assumption about the shape and size of the 

changed areas. In both cases, tests have been 

conducted on UV-induced fluorescence (UVIFL) 

image sequences included in the “Violins UVIFL 

imagery” dataset. UVIFL photography is a well-

known diagnostic technique used to see details of 

a surface not perceivable with visible light. The 

obtained results prove the capability of the 

algorithm to properly detect the altered regions. 

Comparisons with other state-of-the-art clustering 

methods show improvement in both precision and 

recall. 

  

 



Abstract

Preventive conservation is the constant monitoring of the state of conservation

of an artwork to reduce the risk of damage in order to minimise the necessity of

restorations. Many methods have been proposed to achieve this goal, generally

including a mix of different analytical techniques. In this work, we present two

probabilistic clustering algorithms for the detection of alterations on varnished

surfaces, in particular those of historical musical instruments. Both methods

are based on the a-contrario framework and the Number of False Alarms (NFA)

criterion. The first one tackles the problem of detecting change between a pair

of colour images by analysing their difference map. It considers simultaneously

grey-level and spatial density information with a single background model. The

second method works with a sequence of images and analyses the evolution of

the changed areas between frames. Both methods are robust to noise and avoid

parameter tuning as well as any assumption about the shape and size of the changed

areas. In both cases, tests have been conducted on UV induced fluorescence

(UVIFL) image sequences included in the “Violins UVIFL imagery” dataset. UVIFL

photography is a well known diagnostic technique used to see details of a surface

not perceivable with visible light. The obtained results prove the capability of

the algorithm to properly detect the altered regions. Comparisons with other the

state-of-the-art clustering methods show improvement in both precision and recall.

iii



iv



Résumé

La conservation préventive est le contrôle continu de l’état d’une œuvre d’art pour

réduire le risque de dommages et minimiser les restaurations. De nombreuses

méthodes ont été proposées pour atteindre cet objectif, soit à partir de données

unimodales, soit par combinaison de différentes techniques d’analyse. Dans

ce travail, nous présentons deux algorithmes probabilistes de clustering pour la

détection d’altérations sur des surfaces vernies, telles que celles des instruments

de musique historiques. Les deux méthodes sont reposent sur une approche

a-contrario et le critère Nombre de Fausses Alarmes (NFA). La première méthode

aborde le problème de la détection de changement entre une paire d’images couleur

en analysant leur image de différence. Il considère simultanément l’information

spectrale et spatiale avec un seul modèle de bruit. Le deuxième méthode travaille

avec une séquence d’images et analyse l’évolution de les zones altérées entre les

images. Les deux méthodes sont robustes au bruit et évitent réglage des paramètres

ainsi que toute hypothèse sur la forme et la taille de la modification domaines.

Dans les deux cas, des tests ont été effectués sur des séquences d’images UVIFL

(images de fluorescence induite par les UV) incluses dans le jeu de données "Violins

UVIFL imagery". UVIFL est une technique de diagnostic bien connue, utilisée pour

voir les détails d’une surface qui ne sont pas perceptibles à la lumière visible. Les

résultats obtenus prouvent la capacité de l’algorithme pour détecter correctement

les régions altérées. Des comparaisons avec d’autres les méthodes de clustering de

pointe montrent une amélioration à la fois de la Precision et du Recall.
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Synthèse de la thèse

L’étude actuelle a été réalisée en collaboration avec le laboratoire Arvedi de

diagnostic non invasif de l’université de Pavie en Italie. L’objectif principal était

d’utiliser la vision par ordinateur pour surveiller les violons historiques et détecter

tout dommage croissant sur leur surface. Le Museo del Violino de Crémone, en

Italie, abrite plusieurs violons historiques de premier plan à différents stades de

conservation. Tout type d’utilisation use progressivement la surface des violons,

enlevant la couche protectrice de l’instrument et exposant la couche de bois à

l’air. Les études et les efforts visant à détecter ces parties endommagées le plus tôt

possible relévent de la "conservation préventive".

La conservation préventive est une procédure cruciale dans le domaine du

patrimoine culturel et consiste, en général, à surveiller les œuvres d’art et les

monuments afin de minimiser les restaurations dont ils font l’objet. Cette pratique

est particulièrement complexe et nécessite une approche interdisciplinaire pour

interpréter correctement et gérer les effets des altérations chimiques, physiques et

biologiques.

Les instruments de musique historiques en bois (tels que les violons ou les

altos) sont des œuvres d’art particulières, principalement parce qu’ils sont à la

fois conservés dans des musées et joués lors de divers événements. Cela entraîne

un risque important d’usure mécanique dans les zones en contact direct avec le

corps des musiciens. Des travaux antérieurs ont proposé de multiples techniques

analytiques pour aborder la surveillance de ces instruments. Mais, bien qu’elles

soient assez précises, elles prennent souvent plus de temps que souhaité. Une

procédure plus efficace en termes de temps consistera à analyser régulièrement les

images pour identifier rapidement les éventuelles zones altérées, puis à appliquer

des techniques spectroscopiques à titre de confirmation.

Pour un contrôle purement optique, nous utilisons des images de fluorescence

induite par les UV (UVIFL) prises sur des surfaces en bois présentant une usure

croissante. L’idée principale est de tirer parti de la différence entre l’effet de

réémission des zones usées et vernies. En outre, contrairement aux images

ordinaires en lumière visible, les images UVIFL cachent les altérations superficielles

telles que les empreintes digitales et la poussière.
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Le processus général de surveillance consiste à capturer régulièrement des

images UVIFL pendant une période prolongée au cours de laquelle l’échantillon

est susceptible d’être endommagé. Une image originale est prise au début pour

enregistrer l’état initial de l’échantillon. Les images ultérieures sont comparées à

cette image originale à l’aide d’un algorithme de détection des changements. Toute

zone significativement modifiée (jugée comme n’étant pas du bruit ou un artefact)

soulignera une possible usure émergente ou croissante.

Dans les images UVIFL, le bruit peut provenir de différentes sources, mais

principalement de la réflectance du vernis et aussi d’une erreur d’enregistrement

(pour éviter d’endommager le vernis, les violons ne peuvent pas être fixés de

manière rigide à une structure de support). De plus, l’usure du vernis peut

évoluer de différentes manières en fonction des conditions initiales de la surface

et des différentes substances présentes. Cela entraîne plusieurs limitations pour

l’algorithme de détection des changements : le nombre de régions modifiées n’est

pas connu à l’avance; les régions modifiées peuvent prendre n’importe quelle forme

ou taille; et, le bruit et les artefacts doivent être différenciés des zones modifiées. Par

conséquent, pour contrôler la qualité de la surface en bois des violons, nous avons

besoin d’une procédure de détection rapide des changements qui soit robuste au

bruit et qui suppose aussi peu d’informations préalables que possible.

Une comparaison pixel par pixel entre une image donnée de la séquence et

l’image originale nous donne une carte de différence en niveau de gris. Cette

thèse se concentre sur l’analyse de la carte des différences produite afin de

trouver et de regrouper les régions de changement possible, d’attribuer des scores

relatifs à chacune d’elles et enfin de suivre leur évolution dans la séquence. Des

comparaisons qualitatives et quantitatives ont été faites avec les méthodes de

clustering existantes.

Notre travail, présenté dans les chapitres suivants, est principalement basé sur le

cadre a-contrario proposé par Desolneux pour trouver des structures significatives

dans une image numérique. Le cadre a-contrario est basé sur les lois perceptives de

la vision humaine et sur le fait que nous ne percevons aucune structure dans une

image avec des valeurs purement aléatoires. La signification de toute structure peut

donc être déterminée par la probabilité que cette structure ne soit pas le fruit du

hasard.

En résumé, nous apportons plusieurs contributions au problème de la détection

de l’usure dans la surveillance optique : Premièrement, englober dans un seul

modèle les critères spatiaux et radiométriques que présentent les zones changées

afin de comparer une paire d’images UVIFL. Ensuite, proposer un processus de

décision basé sur la signification permet de s’affranchir des seuils et des paramètres

caractérisant les zones modifiées (forme, nombre, position, etc.). Enfin, proposer
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une méthode permettant de prendre en compte l’information temporelle présente

dans les séquences d’images UVIFL pour différencier les artefacts statiques des

régions d’usure croissantes.
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Introduction

Overview

The current study has been performed in collaboration with the Arvedi Laboratory

of Non-Invasive Diagnostics, University of Pavia in Italy. The main objective was set

to using computer vision to monitor the historical violins and detect any growing

damage on their surface. Museo del Violino in Cremona, Italy houses several high

profile historical violins in different stages of preservation. Some examples are

shown in Figure 1. Any kind of usage gradually wears the surface of the violins

removing the protective layer of the instrument and exposing the wooden layer to

air. Studies and efforts to detect these damaged parts as soon as possible fall under

the term “preventive conservation”.

Preventive conservation is a crucial procedure in cultural heritage and in

general, consists of the monitoring of artworks and monuments to minimise

restorations on them [9, 57]. This practice is particularly complex and requires

an interdisciplinary approach to correctly interpret and to manage the effects of

chemical, physical and biological alterations [39, 70].

Specifically, historical wooden musical instruments (such as violins or violas)

are special case artworks; mainly, because they are both held in museums and

played in various events. This leads to a major risk of mechanical wear in the

areas in direct contact with the musicians’ bodies. Previous works have proposed

multiple analytical techniques to tackle the monitoring of these instruments [32,

79]. But, although they are quite accurate, they are often more time consuming

than desired. A more time efficient procedure will consist in regular analysis of the

images to quickly identify possible altered areas, followed by applying spectroscopic

techniques as confirmation.

For a purely optical monitoring, we use UV induced fluorescence (UVIFL)

images taken from wooden surfaces containing a growing wear. The main idea

is to capitalise on the difference between the re-emission effect of worn-out and

varnished areas. In addition, as opposed to regular visible light images, UVIFL

images hide superficial alterations such as finger prints and dust.

The general monitoring process is to capture UVIFL images regularly during

1
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Figure 1: Museo del Violino in Cremona, Italy houses many historical violins in need of
monitoring.

an extended period of time in which the sample is prone to damage. An original

image is taken in the beginning to record the initial state of the sample. Subsequent

images are compared to this original image using a change detection algorithm. Any

significant changed area (judged not to be noise or artefact) will underline a possible

emerging or growing wear.

In UVIFL images, noise may be produced from different sources, but mainly

reflectance from the varnish and also registration error (to avoid damage to the

varnish, violins cannot be rigidly fixed to a support). Moreover, varnish wear can

evolve in different ways depending on the initial conditions of the surface and on

the different substances present. This produces several limitations for the change

detection algorithm:

• Number of changed regions is not known before hand.

• Changed regions can assume any shape, form or size.

• Noise and artefacts have to be differentiated from changed areas.

Therefore, to monitor the quality of the wooden surface of the violins, we are in need

of a fast change detection procedure which is robust to noise and which assumes as

little prior information as possible.

A pixel by pixel comparison between a given frame in the sequence and the

original image gives us a difference map in grey-level. This thesis is focused on

analysing the produced difference map in order to find and cluster regions of
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possible change, assign relative scores to each and finally follow their evolution

through the sequence. Qualitative and quantitative comparisons have been made

to the existing clustering methods.

Our work, presented in the following chapters, is mainly based on the

a-contrario framework proposed by Desolneux [21] to find meaningful structures

in a digital image. The a-contrario framework is based on perceptual laws of human

vision and the fact that we do not perceive any structures in an image with purely

random values. The significance of any structure, therefore, can be determined by

how unlikely it is for that structure to happen by chance.

In short, we make several contributions to the problem of wear detection in

optical monitoring:

• Encompassing in a single model both spatial and radiometric criteria that

changed areas present in order to compare a pair of UVIFL images.

• Proposing a significance based decision process allowing us to be free

from thresholds and parameters characterising the changed regions (shape,

number, position etc.).

• Proposing a method to take into account the temporal information present in

UVIFL image sequences to differentiate between static artefacts and growing

wear regions.

In the following, we present a brief introduction of the problem domain in

Chapter 1, a survey of existing clustering algorithms in Chapter 2, and a theoretical

overview of the a-contrario framework in Chapter 3. Then, in Chapter 4 we

introduce our change detection and clustering process between a pair of colour

images. Finally, Chapter 5 contains our proposition for detecting growing changes

across a multi-modal image sequence.

Publications

This is the list of the publications done during this study:

• 3D clustering for detection of alterations in multi-temporal images of

historical violins, Revision in progress, ACM Journal on Computing and

Cultural Heritage, 2021, Alireza Rezaei, Sylvie Le Hégarat-Mascle, Emanuel

Aldea, Piercarlo Dondi and Marco Malagodi

• A-contrario framework for detection of alterations in varnished surfaces,

Journal of Visual Communication and Image Representation, 2021, Alireza

Rezaei, Sylvie Le Hégarat-Mascle, Emanuel Aldea, Piercarlo Dondi and Marco

Malagodi
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• Analysis of multi-temporal image series for the preventive conservation of

varnished wooden surfaces, International Symposium on Visual Computing,

2021, Alireza Rezaei, Sylvie Le Hégarat-Mascle, Emanuel Aldea, Piercarlo

Dondi and Marco Malagodi

• One step clustering based on a-contrario framework for detection of

alterations in historical violins, International Conference on Pattern

Recognition, 2020, Alireza Rezaei, Sylvie Le Hégarat-Mascle, Emanuel Aldea,

Piercarlo Dondi and Marco Malagodi

• Detecting alterations in historical violins with optical monitoring, Quality

Control by Artificial Vision, 2019, Alireza Rezaei, Emanuel Aldea, Piercarlo

Dondi, Marco Malagodi and Sylvie Le Hégarat-Mascle
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Chapter 1

Optical monitoring of historic musical

instruments

Contents
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1.4 Notations and basic assumptions . . . . . . . . . . . . . . . . . . . 15

1.5 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Difference Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 Preventive conservation

The main aim of preventive conservation procedures is to reduce the risk of

alteration of historical artefacts and to avoid the natural ageing of materials (such

as pigments, organic binders, or protective layers), with the consequence of a

general reduction of the need to carry out operations of restoration. A preventive

conservation plan involves several different operations including the study of the

environmental areas of buildings, micro-climatic conditions, materials, airborne

pollutants, and even the effect of the visitors in the museum [99].

Preventive conservation procedures have been carried out since 1980s, and thus,

nowadays, there is an extensive scientific literature concerning the evaluation of

the indoor micro-climatic conditions in museums, ancient palaces, or depositories

[9, 86, 89], and it is now well known that the main factors that can accelerate the

degradation processes of artworks are temperature, dampness, relative humidity,
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and pollutants. Bad conservative conditions can increase the risk of damages to the

materials of the exposed artworks, leading, for example, to chromatic variations,

modifications in the organic structures of the binders or mechanical alterations of

the stratigraphic system.

In the last years, the research for preventive conservation plans has aimed

to develop new standards and protocols to control the indoor environmental

parameters and, at the same time, to check day by day the conservation state of

artworks and of their original materials [18, 50, 70].

During the centuries, a lot of cultural assets, such as furniture or archaeological

finds, have lost their original employment and today they are preserved as historic

and artistic exemplars from the past centuries. Nowadays, those kinds of objects

are considered at the same level of other more “standard” artworks, like paintings

or statues, and thus they are included in preventive conservation plans. However,

in some cases, the use of those objects can still be performed, as for musical

instruments in general and violins specifically. Musical instruments represent a

particular class of artworks, on which conservation is not limited to their materials

but also concerns the preservation of their acoustic quality [11, 34]. The regular use

of these instruments brings about new problems concerning the conservation of

materials:

• Dirt deposits on the musical instruments, depending on the climatic

conditions such as the presence of pollutants, the dirt particle size, or the

varnish surface roughness.

• Direct contact with the player that may prompt dirt deposition and adhesion

on the surface, due to the exposure to bad conditions during the performance.

• Varnish wear due to direct contact with the violinist’s skin which contains

sweat and acid compounds.

Furthermore, the analysis of their surface is particularly challenging. First of

all, the varnishes are generally highly reflective, thus, noisy reflections, that can be

confused for alterations, are common during photo acquisition. Secondly, varnish

wear can evolve in different ways depending on both the initial conditions of

the surface and on the different substances present. Finally, the surface can be

very complex and stratified due to multiple restorations having occurred during

centuries (which is very common for historical violins).

As a result of these conditions, it became important to develop innovative

non-invasive diagnostic procedures to monitor material transformation and to

check the conservation state of the musical instruments, especially regarding the

wearing of the varnishes. The combined use of multiple analytical techniques

6



CHAPTER 1. OPTICAL MONITORING OF HISTORIC MUSICAL
INSTRUMENTS

Figure 1.1: A typical monitoring plan using multiple techniques in short-term (STM) or
long-term (LTM) [32].

has been proved beneficial for handling of these issues [32, 79]. For example,

a non-invasive monitoring process proposed in [32] consists of three different

techniques (illustrated in Figure 1.1) performed in a long-term format (every two

months) or short-term (before/after a concert). These methods include:

• UV fluorescence imaging. In this technique, the sample is illuminated by UV

light and the re-emission is captured by a RGB camera. Section 1.2 goes into

more details about this method.

• Colourimetry. This analysis is done by measuring the colour difference (∆E)

of selected group of points between two different times using for example a

portable spectrophotometre. The colour data is gathered usually in the L*a*b*

colour space and the differences are calculated using a preferred formula.

High difference values may indicate change in those specific points [32].

Figure 1.2c illustrates colour difference values for six different spots on the

surface of a historical violin when measured before and after a concert.

• Chemical composition analysis (XRF and FTIR). X-ray fluorescence (XRF) is

an analytical technique used to determine the elemental composition of

materials. Comparison of XRF findings in different times can give us an

indication of the changes the material has gone through (Figure 1.2a).

Fourier transform infrared spectroscopy (FTIR) is a method used to acquire

an infrared (IR) spectrum of emission and absorption of the sample. First,

the IR radiation is passed through the sample and then, the detector picks up

the resulting signal. The absorbed and transmitted portions of the radiation

depend on the chemical composition of the sample. Studying the variations of
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the output spectrum between different times is a reliable way to detect surface

change on the sample (Figure 1.2b).

While chemical analysis gives us more exact information about the variations

of the surface, it is not always easy to interpret those findings specially

because each method is strong in some areas but weak in others.

(a)

(b) (c)

Figure 1.2: An example of (a) XRF, (b) FTIR, and (c) colourimetry analysis [32].

However, this preventive conservation approach is very time consuming and

can become tedious and prone to human errors if multiple instruments are

being monitored at the same time. A more efficient procedure should consist

of regular but rapid optical analyses of images of instruments to quickly identify

the possible altered areas. The result of this analysis will indicate where a more

thorough multi-modal analysis (i.e., the application of spectroscopic examinations)

is needed. Image acquisition is very fast compared to other chemical-physical

examinations, thus, ideally, using image processing, it would be possible to

frequently examine in a limited time the state of conservation of one or more

8
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artworks, focusing the human attention only on those that are genuinely at risk.

1.2 UV Induced Fluorescence (UVIFL) Photography

In the Cultural Heritage field, UVIFL photography is one of the most commonly

employed non-invasive diagnostic techniques. It is based on the properties of some

organic substances that react to UV radiation (generally in the UV-A range, between

315 and 400 nm), re-emitting radiations in the visible spectrum (400 - 700 nm)

[46, 87]. This process allows us to see details not visible with a standard illumination,

such as, in the case of historical violins, substances commonly adopted as binders,

pigments, adhesives, or material used for retouching [10].

Figure 1.3: Example of alteration growing on the top left side of a sample violin back
plate (real alterations are highlighted in red, noisy reflections in green): (a) the initial state,
reference UVIFL image; (b) same region with some alterations in an early stage, i.e. having
limited colour variations that can be confused with noise; (c) same region with a large
alteration in an advanced stage exhibiting clear variations in both shape and colour with
respect to the reference image.

However, even if fluorescent materials produce characteristic colour responses

(e.g., a yellow fluorescence can be attributed to oils and a green one to protein

substances such as hide glues [8]), the fluorescence phenomenon alone is not

sufficient to unambiguously identify materials. In fact, the varnishes adopted in

violin making include very heterogeneous mixtures of substances, that, added to

the various restorations occurred during centuries, create very complex emission

spectra. Hence, there is not a unique colour-substance match. Moreover, UV

radiation penetrates only the superficial layers of varnishes, thus the underlying

ones cannot be detected by this technique. Given these limitations, UVIFL images

are mainly employed as a preliminary analysis [26] to spot some regions of interest

where to apply more precise, but slower, spectroscopic techniques, such as XRF [80],

or FTIR spectroscopy [44], to fully characterise the materials present.
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In the current scenario of a constant monitoring process, UVIFL photography

can be particularly helpful to spot new superficial alterations, since, when the

wear removes the outer layers of varnishes, the lower layers start becoming visible

producing slightly different fluorescence colours. Thus, the occurrence of a colour

variation in a region while the surroundings remain unchanged is a clear hint

of a possible alteration. Of course, it is important to take into account the

possible presence of noisy reflections (due to the high reflective varnishes), that

can sometimes occur even with a rigorous acquisition process and that can be

mistakenly interpreted as alterations, especially in the early stages, as illustrated on

Figure 1.3.

1.3 Violins UVIFL imagery dataset

In this study, we use UV induced fluorescence (UVF or UVIFL) images collected

in the “Violins UVIFL imagery” dataset1 [27]. This dataset contains UVIFL images

of both historical and sample violins. Regular acquisitions have been performed

on two historical violins held in Museo del Violino in Cremona (Italy), “Carlo IX”

(c.1566) made by Andrea Amati and “Vesuvio” (1727) made by Antonio Stradivari.

However, they did not show any new wear areas (only “Vesuvio” showed a very slight

alteration on its back plate). Thus, for the wear monitoring purpose, we considered

four artificially created sample sequences containing images of artificially altered

samples for the study of various possible alterations over a long-term use.

The alterations were created scrubbing the surface with a cloth damped with

alcohol to reproduce, as faithfully as possible, the effect of mechanical wear during

playing (Figure 1.4). The alteration process was repeated multiple times. At each

step we took (at least) three photos of the samples, for safety, to exclude errors due

to accidental wrong acquisitions.

The first artificial sequence, called WS01 and shown on Figure 1.5, is a wood

sample which simulates an alteration in an area with intact varnish. This set

contains one reference image of the initial state of the sample and 20 altered frames.

The second artificial sequence, called WS02 (cf. Figure 1.6), is a wood sample

which simulates an alteration in an area with a thin layer of varnish. This set

contains one reference image of the initial state of the sample and 8 altered frames.

The third sequence, called SV01 (cf. Figure 1.7), contains images of the lower

part of the back plate of a sample violin. This set simulates the growing of wear

starting from an area already ruined and consists of one reference image and 20

altered frames.

The fourth sequence, called SV02 (cf. Figure 1.8), contains images of the top left

1https://vision.unipv.it/research/UVIFL-Dataset/

10



CHAPTER 1. OPTICAL MONITORING OF HISTORIC MUSICAL
INSTRUMENTS

Figure 1.4: Cloths dampened with alcohol for each step of the wearing process.

part of the back plate of a sample violin. This set simulates a very slow alteration on

a region with a thick layer of intact varnish. This sequence contains one reference

image and 35 altered frames.

All the images were acquired following a rigorous acquisition protocol designed

to minimise, as much as possible, the presence of ambient noise [28, 29]. The wood

samples were placed on a small support to maintain them stable during the shot,

while the instruments were placed on an ad-hoc rotating platform that allow us to

move them precisely at the needed angle. The photos were taken with a Nikon D4

full-frame digital camera with a 50 mm f /1.4 Nikkor objective, 30s exposure time,

aperture f /8, ISO 400. We used two wooden lamp tubes (Philips TL-D 36 W BBL IPP

low-pressure Hg tubes, 40 Watt, emission peak ∼ 365nm) as UV-A lighting source.

The lamps were oriented at 45 degrees to uniformly illuminate all the surface of the

samples/instruments. Note that, even with such a rigorous acquisition protocol,

some noise can still occur, especially in the most rounded part of the violins.

Finally, to make the evaluation of the algorithm possible, the ground truth

for each frame has been created manually from careful visual inspection. In the

absence of any exact (due intrinsically to the wear construction process) knowledge

on the boundaries of wear regions, they have been intentionally overestimated. In

other words, the produced ground truth masks can look different if done by another

expert; so, a loose interpretation of the wear boundaries is necessary.

11



CHAPTER 1. OPTICAL MONITORING OF HISTORIC MUSICAL
INSTRUMENTS

Figure 1.5: The WS01 sequence.
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Figure 1.6: The WS02 sequence.

Figure 1.7: The SV01 sequence.
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Figure 1.8: The SV02 sequence.
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1.4 Notations and basic assumptions

Some notations have already been introduced. Let us recall and complete them:

• K ⊊ N+ denotes the set of image indices; For notation convenience, in the

following we assume K = �0,K−1�;

• I = {Ii , i ∈K } is the image series, so that I0 is the original image, that all the

subsequent frames will be compared with;

• ∆I = {∆Ii , i ∈ �1,K−1�} is the difference map series.

Wear detection is a semantic segmentation problem with two semantic classes

which are the unchanged areas and the wear region(s). However, due to some

noise or artefact, such a problem is not straightforward. Indeed, considering images

independently, some artefacts cannot be distinguished from wear, so that only the

temporal evolution of such areas allows for their distinction. Specifically, let us

denote by C1 the unchanged areas, background or untouched wooden surface, by

C2 the noise or artefacts due to reflectance, device error or human error, and by C3

the surface wear.

Based on the considered application, we can make the following assumptions:

• If C3 areas exist, they are at least a few pixels large;

• Two C3 areas are considered as separate clusters if they are divided by enough

empty space;

• ∀i ∈K , if a C3 area is present in image Ii , it will also be present in subsequent

images I j , j ∈ {i +1, . . . ,K−1});

• ∀i ∈ {1, . . . ,K−2}, C2 areas do not grow from image Ii to Ii+1.

We specifically avoid to make any assumption about the distribution of the

change values, explicit shape of the wear, and number of the wear regions. As a

result, searching for a parametric form (such as disk, tile, etc.) will not solve our

problem.

Therefore, in this work, we propose to split our initial problem into two

sub-problems as follows:

1. Semantic segmentation of each image in ∆I considering the two

following classes: C1 and the disjunction {C2,C3} (since they are assumed

indistinguishable);

2. From areas labelled {C2,C3}, construct spatio-temporal clusters in P K−1 and

refine their label between C2 or C3.
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1.5 Data pre-processing

In a typical optical monitoring process for cultural heritage objects, images are

taken every few weeks or months (or any predefined period of time). This helps us

to find any unwanted change on the subject but it also presents many challenges:

the image acquisition is done potentially by different operators and under different

environmental conditions; therefore, it is natural to find spatial and spectral

inconsistencies between images. The following are the most common sources of

this problem:

1. Illuminant, camera and sample position/orientation. Any small change to

the position or the orientation of the camera (sample, or the illuminant) can

produce misalignment and more importantly reflection artefacts. Careful

documentation of the process can alleviate (or perhaps eradicate) these

issues.

2. Equipment deterioration over time. Depending on the overall length of

the monitoring process, we may encounter gradual deficiencies in the

performance of the camera or the illuminant. It is vital to detect these issues

beforehand and replace the faulty equipment.

3. Human error. The capturing process itself may introduce noise, artefacts or

spatial/spectral misalignment; mainly through the mistakes of the operator.

An effective way to limit these issues is to repeat each capture a few times and

choose the best one later in the computation phase.

In addition to careful consideration of the previous points during the

acquisition, we perform several pre-processing steps to align the images as best as

possible. The details of these steps depend on the application, i.e. the surface which

we are monitoring. In the current work, our data only contains images of varnished

wooden surfaces, applicable to various historical music instruments. The following

steps are designed for this specific application:

1. Illumination correction. Despite setting the same illumination hardware

setup and configuration for each image capture, the illumination variation

from one acquisition session to another may be of same order of magnitude

as the colour variations due to wear appearance or increase. Then, for each

frame It , t > 0, for each colour channel, we normalise the mean pixel values

with the reference frame I0 value, i.e. subtract the difference between means

(E[It ]−E[I0], where E[.] is the expectation operator approximated here by the

average of image pixels).
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(a) (b) (c)

Figure 1.9: An example of spatial registration: (a) matched SIFT feature points; (b)
difference of two frames before registration; (c) difference of two frames after registration.
Brighter locations indicate higher differences.

2. Spatial registration. In order to spatially match the samples, we rely on

extracting and matching SIFT [56] features in the original image and also in

the subsequent frames. Many approaches exist for registering deformable

objects performing general transformations[19, 101], however our captures

have been performed on a rigid object in a controlled environment. Although

some residual rotations may subsist, the transformation for each image

pair may be approximated using small translation and scaling components

(the proper alignment of the samples with respect to the camera is easier

to perform during the capturing process). Figure 1.9 shows the detected

SIFT features in a sample pair of images and the result of the registration.

The figure also illustrates the pairs of matched features which are, in our

case, very tightly coupled. These matched points are used to estimate a

proper transformation between the two frames using a robust estimation

method [90]. After estimating the right transformation from the matched

features and applying it to the moving image we assume that the alignment

is achieved at pixel level.

3. Reflection removal. The UV reflection on the surface of the samples usually

appears in the purple/blue section of the visible range. Therefore, to remove

the most intrusive reflections in our RGB images, we filter out the pixels

that have significantly higher blue values than green (B ≫ G) or have higher

red and blue than green (B > G & R > G). Note that, depending on the

application, these operations might or might not be necessary, and that the

general aim is simply to increase the correlation between change and the

investigated process (in our case, the wear). Figure 1.10 shows the result of

this process on a sample UVIFL image.
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(a) (b)

Figure 1.10: An example of reflection removal. (a) the sample frame (b) the produced mask
showing the UV artefact pixels.

1.6 Difference Map

The first step in our change detection process is to calculate the difference map

sequence ∆I. Each ∆Ii is a pixel by pixel difference map between any considered

frame Ii and the reference frame I0. The image ∆Ii should be a grey-level image

defined on the pixel domain P ⊊N2.

There are many different ways to derive the difference maps depending on the

application and the sample being monitored. Change detection neural networks,

for example, can be used to produce such a map [65, 96, 110] but they are useful only

in specific applications with considerable amount of labelled data, which clearly is

not our case.

In the case of varnished wooden surfaces, since pixel-level alignment can

be achieved quite easily, we can consider pixel by pixel colour difference as a

reasonable metric. When comparing the colour of two pixels, we are interested in

how similar or different they are perceived to the human eye. The L*a*b* colour

space is designed to relate visual differences between two colours to a measure of

Euclidean distance. The colour difference formulas associated with L*a*b* gives us

a quantitative representation of this visual difference. In the current work, we have

used the CIEDE2000 [58] formula to compute the difference map.

The captured images are all in conventional RGB format, so the first step is

to convert the RGB values into the L*a*b* colour space. From there, we use

the CIEDE2000 [58] formula with all its constants set to 1. Figure 1.11 gives an

example of difference map for one single frame compared to the reference frame.

There are two things to note in this figure: firstly, the obvious reflection areas

including the background have been removed in the pre-processing step; so they

appear completely black; Secondly, even the unchanged areas on the surface of the

violin produce some values in the difference map (values > 0). Then, any further

developed method will have to consider the presence of such background noise,

e.g. by comparing pixel local values with respect to the rest of the image.
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(a) (b) (c)

Figure 1.11: An example of colour difference map; (a) reference frame I0, (b) frame I27, (c)
the difference map produced from CIEDE2000 [58].

It is worth noting that, in our experience, all three CIELAB-based colour

difference formulas CMC [16], CIE94 [60] and CIEDE2000 [58] work correctly for

our application. They do not produce identical values but give us the same relative

relationship between the pixels. In addition, more in-depth colour difference

models specific to the wooden surfaces can be developed to potentially boost the

performance of the wear detection. This, however, falls outside the scope of the

current study.

1.7 Conclusion

In this chapter, we presented a quick introduction to preventive conservation

and optical monitoring to specify the challenges and limitations which make

this study necessary. In addition, the wear detection problem was introduced

formally along with several notations used in the following chapters. Several data

pre-processing steps were explained which are responsible for calculating the input

to our proposed clustering algorithms in Chapters 4 and 5 .

To demonstrate the difficulties of clustering a given dataset, the next chapter

goes through several families of clustering algorithms and iterates their strengths

and weaknesses.
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Data clustering algorithms
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In this work, we are interested in unsupervised classification or clustering of

the input data, which means that no labelled data is available for learning. More

formally, clustering is a way of separating a finite unlabelled dataset in an unknown

area into a finite set of structures such that [45, 106]:

• points (or objects), in the same cluster, are as similar to each other as possible;

• points, in different clusters, are as different as possible to each other;

• and finally, similarity and dissimilarity is measured in a clear and well-defined

manner.

A typical clustering process involves the following steps [106]:
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• Selecting a set of object representative features from the input dataset. These

features are used to distinguish between patterns of different clusters. In

general, they need to be robust to noise and easy to interpret. Proper selection

of features can simplify the following steps in the design process.

• Clustering the data based on derived object features and application domain

characteristics.

• Evaluating the results using a predefined metric.

• Explaining the acquired results in a practical sense; what does each cluster

represent?

In this chapter, we take a quick look at several families of clustering algorithms.

Each one performs using specific features of the targeted data. In addition, they

present different benefits and shortcomings.

2.1 Hierarchical clustering

The goal of this family of clustering methods is to organise the dataset into a

hierarchical structure based on a proximity matrix. The output is usually depicted

as a binary tree or a dendogram where the root note represents the whole dataset

and the leaf nodes are each individual objects, called points in the following. Each

horizontal cut of this structure will represent a possible flat (non-hierarchical)

clustering of the data. There are two main ways to generate this structure:

agglomerative or divisive clustering methods. Agglomerative clustering starts from

a state in which every single point is a cluster; then step by step, it merges the closest

clusters together until only one cluster is left which comprises all points. Divisive

clustering operates in the opposite way and starts with the whole data as one cluster.

Successive divisions are performed until every cluster has only one point [106]. In

practice, agglomerative methods are mostly preferred to the divisive methods.

Here, we take a look at some widely-used agglomerative clustering algorithms.

The general process shared by all methods in this family is as follows [106]:

1. Starting from N points as singleton clusters, we calculate the proximity matrix.

2. Find the two closest clusters based on the proximity matrix and merge them

into a new cluster.

3. Update the proximity matrix for the new clusters.

4. Repeat steps 2 and 3 until we have only one cluster containing all the objects.
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Table 2.1: Several linkage definitions for agglomerative hierarchical clustering.

Name Formula Explanation

Single linkage d(A,B) = mina∈A,b∈B d(a,b) The distance between two
clusters is the distance
between their closest
members.

Complete linkage d(A,B) = maxa∈A,b∈B d(a,b) The distance between two
clusters is the distance
between their most
dissimilar members.

Average linkage d(A,B) =
1

|A|× |B|
∑

a∈A,b∈B d(a,b) The distance between two
clusters is the average
distance between their
members.

Centroid linkage d(A,B) = d(ā, b̄) The distance between two
clusters is the distance
between their respective
centroids.

The differentiating factor is the way they compute the distance between two

clusters, called linkage. Some widely used linkage definitions include single,

average, complete and centroid linkage [31]. Table 2.1 explains these definitions

in more detail.

Hierarchical clustering methods, in general, are not robust to noise and outliers;

therefore, without additional features, they are expected to perform poorly on

datasets with noisy data. In addition, as the clustering process suggests, each object

is considered only once and assigned to a particular cluster; therefore, a possible

mistake will not be corrected later on [106]. Depending on the application, another

disadvantage can be their requirement for the number of clusters as input. On

the other hand, they have the advantage of unveiling the inherent hierarchical

relationships present in the input data. They, also, can be used for datasets with

any arbitrary shapes [105].
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2.2 Partition-based clustering

Partition based methods produce a flat (non-hierarchical) clustering in an iterative

manner, by computing, in each step, a cluster representative for each cluster based

on the data points in that cluster. K-means [59] is the most famous example of this

family [105]. The general process for K-means is as follows:

1. Choose k centres ci ,0 < i ≤ k randomly or based on prior knowledge from the

set of data points X .

2. Assign each point in X to the cluster with the nearest centre ci .

3. Compute for each cluster Ci its new centre: ci =
1

|Ci |
∑

x∈Ci
x.

4. Repeat steps 2 and 3 until there is no change for any cluster.

As we can see, the general process is very simple to implement and execute. This

makes it an attractive choice for datasets containing compact and (hyper)spherical

clusters. In addition, since it can be executed very rapidly, it is a viable choice for

large datasets [105].

The standard version of the algorithm comes with several downsides; as a result,

many extensions and variants have been proposed to rectify these issues. The first

issue is the selection of the initial set of partitions, i.e. seed selection. The final

clustering result can vary depending on the choice of initial seeds. Different seed

selection alternatives have been proposed [36, 48, 59], which try to replace the

random selection with their own process and as a result improve the algorithm’s

robustness, effectiveness and convergence speed. The second important issue of

k-means is its sensitivity to outliers and noise. Even a single outlier, far from the

centre, can distort the shape of a cluster and as a result change outcome of the

algorithm. Variants such as [7] and [48] try to improve this aspect of the algorithm

by ignoring the clusters with few points or by considering only actual data points as

centres for each cluster [106].

A widely implemented variant of k-means is K-means++ [5]. This algorithm

adds a randomised seeding technique and improves the accuracy and speed in most

cases. Specifically, it chooses the starting centres at random from the points in the

dataset, but with each point weighted based on its proximity to the closest centre

already chosen. More specifically, replace the first step of the classic K-means with

the following:

1. Select one centre c1 randomly from the set of data points X .
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2. Let D(x) be the distance from the data point x to the closest centre already

chosen. Select a new centre ci by choosing x from X with probability
D(x)2∑

x∈X D(x)2
.

3. Repeat step 2 until k centres have been chosen.

An important subset of partition-based algorithms is the affinity propagation

(AP) methods. Similarly to k-means, these methods (in an iterative fashion) search

for a set of exemplar data points to represent a good partitioning of the data. The

difference, however, is that they do not require an initial guess for the representative

data points (cluster centres in k-means). This way, they avoid the problems

associated with sensitivity to the initial guess. The basic AP process considers all

data points simultaneously as potential representative points. Then, assuming each

data point is a node in a network, it recursively sends (propagates) real-valued

messages between nodes until a good set of representative data points and their

corresponding clustering is found [37].

As input, AP takes the similarity matrix S where s(i ,k) shows how well the

data point xk is suited to represent data point xi ; and, for example, it can be set

to negative squared euclidean distance: s(i ,k) = −|xi − xk |2. In addition, if i = k

then s(k,k) is an input value for xk which indicates how suitable it is to be a

representative point. If there is no a-priori knowledge, then, every s(k,k) is set to

a common value. This value can influence the number of clusters produced by

the algorithm (for example, if it is set to the minimum of input similarities, AP will

produce a small number of clusters) [37].

The propagation process involves two kinds of messages: the responsibility

and the availability. The responsibility message r (i ,k) from node i to candidate

representative node k conveys how well-suited node k is to represent node i taking

into consideration all the other candidates for node i . The availability message

a(i ,k) from candidate representative node k to node i conveys how suitable it would

be for node i to choose node k as its representative taking into consideration the

support other nodes give to node k. In the first iteration, the availabilities are set to

zero and the responsibilities are computed as follows [37]:

r (i ,k) = s(i ,k)−max
j : j ̸=k

(
a(i , j )+ s(i , j )

)
. (2.1)

Then, the availabilities are updated for node k by adding the self-responsibility

r (k,k) to the sum of positive responsibilities received from other points:

a(i ,k) =

min
{
0,r (k,k)+∑

j : j∉{i ,k} max
(
0,r ( j ,k)

)}
, if i ̸= k∑

j : j ̸=k max
(
0,r ( j ,k)

)
, otherwise.

(2.2)
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At the end of each iteration, the combined value of availability and responsibility

for each node suggests its suitable representative: for node i , the value of k that

maximises a(i ,k)+ r (i ,k) indicates its representative (which can be i itself). The

message passing continues until a convergence condition is reached; meaning that

the representative decisionsed not change anymore [37].

In general, AP algorithms have the advantage of being simple and easy to

implement while showing good robustness to outliers. In addition, the exact

number of clusters is not required to be set in advance. On the other hand,

AP suffers from high computational complexity and therefore is not suitable for

very large data sets. It is also worth noting that AP can be sensitive to the input

parameters s(k,k) discussed earlier [105].

2.3 Density-based clustering

Density-based (DB) clustering approach relies on the idea that high density areas

present in the data represent each cluster. Compared to some other clustering

families, DB methods do not need the number of clusters as input, nor do they

produce results with low within-cluster dissimilarities. This means the output

clusters can be of any shape (convex or concave). Each cluster is a set of data

points spread over the data space separated from other clusters by regions of low

density data points. In an ideal clustering, noise and outliers remain outside of all

clusters [13].

Considering the probability density function for the data set, a density-based

clustering output can be viewed as a threshold through the function. Regions

with higher probability density are the resulting clusters and the rest of the data is

ignored as outliers [13]. Figure 2.1 shows a sample 2D data set and its corresponding

density distribution. In this case, the density threshold has produced two clusters

and a large number of discarded points.

DB algorithms usually only differ in the definition of density and how to

consider two objects connected. The main classic examples include: DBSCAN [30],

OPTICS [4] and Mean-shift [17]. In general, these methods have medium to high

time complexity; and their main challenge is to find suitable density threshold(s),

either local or global. Many improvements have been proposed to alleviate this

issue and introduce new benefits. For example, hierarchical DB methods can help

with the density threshold problem. HDBSCAN [14] or “Hierarchical Density-Based

Spatial Clustering with Application with Noise” is an example of these methods.

It provides a complete clustering hierarchy of all possible density based clusters.

In addition, it can produce a non-hierarchical clustering without the need for the

number of clusters as input by maximising the overall stability of the extracted
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(a) (b)

Figure 2.1: (a) Density distribution of a sample data set with a high threshold and (b) its
resulting clustering into two clusters (blue and green) and noise (red) [13].

clusters.

Another clustering algorithm with similar ideas to density-based methods is

“Clustering by fast search and find of density peak” [77]. This method combines

distance and density for its clustering criterion. More specifically, it assumes the

following about the cluster centres:

• they have a higher local density than their neighbours;

• they are far from points with higher densities.

Based on these two ideas, the algorithm constructs a decision plot which shows the

local density of each data point and the shortest distance between that point and

points with higher local density. In the end, data points with relatively high values

for both criteria become the cluster centres and the remaining points are added to

the closest cluster [77].

This method has the advantage of simplicity and robustness to outliers; and in

addition, can work with arbitrarily shaped clusters. However, its time complexity is

relatively high; and the process of choosing centres from the decision plot can be

very subjective [105].

2.4 Distribution-based clustering

This family of methods assumes that in a dataset containing points generated from

different probability distributions, and the clustering objective is that the points

following the same distribution should belong to the same cluster [105]. The

clusters can represent varying distribution types, or alternatively the same type
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but with different parameters. If we assume (or know) the distribution type before

hand, then the clustering would be equal to estimating the parameters of several

distributions present in the data [106].

Formally, consider for each cluster Ci , i ∈ [1,K], the prior probability P(Ci )

and the conditional probability p(x|Ci ,θi ), where θi is the parameter vector to be

estimated. The mixture probability density for the whole dataset is computed as:

p(x|θ) =
K∑

i =1
p(x|Ci ,θi )P(Ci ), (2.3)

where θ = (θ1, ...,θK).

To find the posterior probability for assigning a data point to a particular cluster,

we only need the parameter vector θ. To construct the mixture densities, the most

important and widely used type is the Gaussian mixtures. This is mainly due to its

simple and concise representation which requires only two parameters: the mean

and the variance. Furthermore, the Gaussian density is symmetric and assumes the

least prior knowledge when estimating an unknown probability density with a given

mean and variance [113].

To estimate the parameters θ, the most popular statistical approach is the

Maximum likelihood (ML) estimation. To that end, the algorithm finds the

parameters which maximise the probability of generating all the observations. This

probability is given by the following joint density function:

p(x1, ..., xN|θ) =ΠN
j =1p(x j |θ); (2.4)

or its logarithmic version:

l (θ) =
N∑

j =1
ln p(x j |θ). (2.5)

Generally, the solution to this maximisation problem cannot be found

analytically; therefore, sub-optimal estimation methods are needed to obtain an

acceptable approximation [106]. However, there exist many practical problems with

the approximation process [113]:

• The log-likelihood function (Eq. 2.5) can have non-unique solutions; meaning

that multiple sets of parameters produce largest local maximum.

• There is a possibility for numerous local maximum solutions which are not

the global maximum.

• The numerical methods used to solve the maximum likelihood problem may

be sensitive to the initial values and produce different solutions each time.

• The number of components in the mixture must be known before hand.
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The most popular approximation method for solving Equation 2.5 is the

Expectation Maximisation (EM) algorithm. EM consists of two main parts: an

expectation step and a maximisation step. The first step (E-step) provides an

expectation of the unknown variables using the current estimate of the parameters;

then, the maximisation step (M-step) calculates a new estimate of the parameters.

Both steps are repeated until convergence to a solution [64]. The EM process

considers the dataset to be incomplete and divides each data point into two parts:

the observable features and the missing data [106]. Following this assumption, it

produces a series of parameter estimates {θ0,θ1, ...,θT}, where T is the convergence

state reached by the following steps [64]:

1. Set t = 0. Choose initial parameter θ0.

2. E-step: estimate the unobserved data using θt .

3. M-step: Compute maximum likelihood estimate of parameter θt+1 using the

estimated data.

4. t = t +1. Go to step 2 if not converged.

As mentioned before, the EM process suffers from sensitivity to the initial

parameter choice (θ0), converging to a non-optimum answer, and a low

convergence speed [106].

2.5 Fuzzy theory based clustering

Unlike the previously mentioned algorithms, fuzzy clustering methods assign each

point to every cluster with a varying degree of membership. This is opposite to hard

or crisp clustering which assigns each point to at most one cluster. This is mostly

useful in cases where there is ambiguity in the data and the boundaries among the

clusters are not well defined [106].

A classic example of fuzzy methods is Fuzzy c-means or FCM. In short, FCM

tries to assign membership to each data point based on the its distance to the

cluster centres. The closer each data is to a particular cluster centre the higher its

membership will be to that cluster. The membership values for each data point are

real values belonging to [0,1] and add up to 1.0. The process of finding the cluster

centres and updating the membership values is repeated until convergence. The

following is the general steps of FCM [88]:

1. initialise the matrix U(0) = [ui j ]. ui j is the membership value of data point xi

in the cluster j .
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2. Calculate the centres vector C(k) based on U(k).

3. Compute U(k+1) based on new cluster centres.

4. if |U(k+1) −U(k)| > ϵ then k = k +1 and go to step 2.

This basic FCM process suffers from the following limitations [88]:

• sensitivity to the initial membership values U(0);

• high time complexity;

• inability to deal with noise and outliers (points with low membership values).

Various alterations and extensions have been proposed to deal with the problem

of time complexity and noise sensitivity of FCM [12, 15, 40]. In a recent example,

in the specific case of image segmentation, [52] proposes FRFCM (Fast and

Robust FCM), an improved version of FCM which have two advantages: firstly,

reducing the time complexity by using a faster membership filtering instead of

distance calculations between data points and cluster centres; and secondly,

increasing the robustness to noise by smoothing the input data with morphological

reconstruction [93].

2.6 Dimensionality reduction and feature

transformation

Most conventional clustering methods struggle to produce acceptable results for

high dimensional data. The main reason is the inefficiency of their similarity

measures in finding the existing patterns in the data. Additionally, high dimensions

can cause high computational complexity when clustering a large dataset. To deal

with these problems, there exist several methods for dimensionality reduction and

feature transformation where the original data is mapped to a new feature space.

In this space, the data would be easier and/or faster to separate using the existing

conventional measures [63]. In the following sections, we go through several linear

and non-linear transformation techniques.

2.6.1 Principle Component Analysis

Principle Component Analysis (PCA) is a linear multivariate technique which

analyses a given dataset and extracts its important information. It provides a new set

of orthogonal variables called principal components which act as a low dimensional

version of the original dataset. Each principal component is a linear combination
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of the input data points. The first component has the highest possible variance;

the second one has to be orthogonal to the first and again with the highest possible

variance. The other components follow the same pattern [1].

Given a d-dimensional input dataset {xi }, i ∈ �1,n�, the transformed data {yi } is

computed as:

yi = AT(xi −µ), (2.6)

where µ is the sample mean of the input data. To construct the orthogonal

transformation matrix A (whose dimensionality is d ×d) the eigenvectors of sample

covariance matrix Q are used. Q is computed as:

Q =
1

n

n∑
i =1

(xi −µ)(xi −µ)T. (2.7)

Eigenvalue decomposition of Q = AVAT gives the eigenvectors of Q. The diagonal

matrix V holds the eigenvalues of Q which describe the variance of observations

towards the corresponding eigenvector. The largest eigenvalues indicate their

eigenvectors as principal components of the input data. By choosing the first d ′

(d ′ < d) principal components we can map the input data into a low dimension

space. The ideal value for d ′ is chosen by minimising the squared reconstruction

error Er given as:

Er = ∥x −µ− y Ad ′∥2, (2.8)

where Ad ′ is the transformation into the ideal sub-space and constructed by the first

d ′ eigenvectors [49]. In clustering, PCA can be used as a pre-processing tool to make

the input dataset less complex by producing a low-dimensional representation.

However, PCA is only able to consider second order correlation between data points;

non-linear methods are able to take into account higher order correlations.

2.6.2 Spectral Graph theory

The main idea in graph-based clustering techniques is to consider each point in

the data set as a node or vertex and the similarity values between them as weighted

edges. This way, the clustering problem transforms into a graph partition problem.

Therefore, the clustering result should minimise the total weight of connections

between clusters while maximising the total weight of connections within each

cluster [94, 105].

In addition, spectral clustering methods have the ability to deal with high

dimensional datasets by producing an alternate set of data points with lower (and

manageable) dimensionality (using a non-linear transformation). The general

process of spectral clustering can be summarised in the following [69]:
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1. Define the similarity matrix A describing the similarity between each two

points in the dataset.

2. Calculate the Laplacian matrix L using the similarity matrix A.

3. Calculate the first k eigenvectors of L.

4. In the matrix Y formed by each eigenvector as a column, consider the rows

as new data points and cluster them using another clustering method, e.g.

k-means.

5. Assign the original data point si to cluster j if and only if the i th row of Y

belongs to cluster j .

Note that applying k-means from the beginning on the input dataset may result

in unsatisfactory results because of the general shape of the clusters present in the

data.

Several studies have proposed improvements on different parts of the general

process. We can divide these improvements into two sets depending on which step

of the original algorithm they target. The first set of algorithms [71, 72, 95] tries to

improve the construction of the data affinity graph in the first step to make it robust

to noise and outliers and to ultimately improve the clustering results. The second

group [69, 83, 103] tries to improve data grouping after the data affinity graph is

constructed [112].

In the first group, the performance of spectral clustering greatly depends on the

choice of the data affinity graph (the similarity matrix). Constructing this graph

is not a trivial task due to the inherent ambiguity and complexity of the input

data. For example, [112] proposes a robust affinity graph which takes into account

only the most informative features in the feature space. The method works in an

unsupervised manner (i.e. no need for ground truth annotation); and in addition, it

is robust to noise and irrelevant features.

In general, spectral clustering methods are suitable for data sets with arbitrary

shapes and high dimension. On the other hand, they suffer a high time complexity,

unclear process of similarity matrix construction and eigenvector selection; and

they need the number of clusters as an input [105].

2.6.3 Kernel algorithms

As mentioned earlier, many conventional similarity measures are incapable of

finding complex patterns present in the data. Kernel-based methods try to solve this

problem by transforming the data to a higher dimensional space. In other words,
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it is possible to linearly separate non-linear patterns present in the data by first,

non-linearly transforming it to a higher feature space [106].

Let us first define a positive definite kernel, also called a Mercer kernel:

Definition 1. Let X = {x1, ..., xn} , xi ∈ Rd be a nonempty set. Function K : X×X → R is

called a positive definite kernel if and only if:

1. K(x, y) = K(y, x),

2.
∑n

i =1

∑n
j =1 ci c j K(xi , x j ) ≥ 0, ∀n ≥ 2,

where cr ∈R ∀r = 1, ...,n.

Let φ : X → F be a mapping from input space X to a high dimension feature

space F ; then, a positive definite kernel K can be computed as [33]:

K(xi , x j ) =φ(xi ) ·φ(x j ). (2.9)

In practice, one important feature that makes the kernel method work is the fact

that we are able to compute the Euclidean distances in F without knowing φ [33,

67]:

∥φ(xi )−φ(x j )∥2 =
(
φ(xi )−φ(x j )

) · (φ(xi )−φ(x j )
)

=φ(xi ) ·φ(xi )+φ(x j ) ·φ(x j )−2φ(xi ) ·φ(x j )

= K(xi , xi )+K(x j , x j )−2K(xi , x j ).

(2.10)

This means that a distance in the target feature space is a function of the input

data points. There are several examples of Mercer kernel function, including [33]:

• linear kernel: K(1)(xi , x j ) = xi · x j which results in φ = I, the identity function;

• polynomial kernel of degree p: K(p)(xi , x j ) = (1+xi · x j )p , p ∈N;

• Gaussian kernel: K(g )(xi , x j ) = e

−∥xi −x j∥2

2σ2


,σ ∈R.

Using the kernel method, there are two main ways to adapt the conventional

clustering methods: firstly, by kernelisation of the metric, which means we look for

cluster centres in input space but we compute the distances in the feature space;

and secondly, by computing the cluster centres in feature space [33].

To summarise, the kernel methods can help conventional clustering techniques

to be more successful with complex datasets. In addition, they can help with

analysing noise and separating overlapping clusters. Kernel FCM [102, 111] and

Kernel k-means [81] are examples of this process. On the other hand, they can

be sensitive to the type of kernel function and its parameters. In general, kernel

methods suffer from high computational complexity [105].
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2.6.4 Deep neural networks

Owing to its property of highly non-linear transformation, deep neural networks

can be used to transform a complex dataset into a more clustering-friendly

space [63]. There are several different network architectures which have been

proposed to derive this feature representation. We go through the most widely used

architectures in the following sections.

2.6.4.1 Autoencoder

Autoencoder (AE) is a useful tool for unsupervised data representation. An AE

consists of two main parts: an encoder which maps the input data into the target

feature space; and a decoder which reconstructs the data using the target features.

The aim is to minimise the reconstruction loss. Normally, the target representation

has a smaller dimentionality than the input data; therefore, an AE is likely to extract

the most salient features of the data [63].

Given fφ as the encoding function and gθ as the reconstruction function, the

objective is to achieve the following minimisation [63]:

min
φ,θ

Lr ec = min
1

n

n∑
i =1

∥xi − gθ( fφ(xi ))∥2, (2.11)

where {xi , i ∈ �1,n�} is the set of input data points, and φ and θ are the function

parameters to be optimised. The clustering based on an AE works by joint

training on reconstruction loss (Lr ec ) and a clustering loss (Lc ). The clustering

loss can be any of the conventional clustering metrics: k-means, agglomerative,

etc. (cf. Figure 2.2). Deep Clustering Network (DCN) [108], Deep Embedding

Network (DEN) [43], Deep Continuous Clustering (DCC) [82], and Deep Embedded

Regularised Clustering (DEPICT) [38] are some examples of clustering networks

based on autoencoders.

In general, AE based methods have the advantage of being easy to implement

and to explain; meaning that they can be combined with almost all clustering

methods. As a result, they are the most common deep clustering network

architectures. The use of reconstruction loss is another advantage which guaranties

that the solutions are non-trivial and feasible. The computational complexity

depends mainly on the clustering loss utilised for the training. However, the

network is limited in term of depth to remain computationally feasible. The training

based on both reconstruction and clustering losses also means that the parameter

to balance the two needs extra fine tuning [63].
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Figure 2.2: Architecture of a typical clustering based autoencoder [63].

2.6.4.2 Clustering Deep Neural networks

Clustering deep neural networks (CDNN) use only a clustering loss (Lc ) to train

the network which can be a fully connected network, a convolutional network, or

another choice. The training is done in three main ways [63]:

• Unsupervised pre-trained network: Training a network on the input data

for feature extraction; then fine tuning it using the clustering loss. As an

example, Deep Embedded Clustering (DEC) [104] uses an autoencoder to

learn a mapping from the data space to lower dimensional feature space and

then, in the feature space, iteratively minimises the clustering loss.

• Supervised pre-trained network: Combining networks pre-trained on a

dataset (e.g., ImageNet) and classical clustering algorithms. For example, in

the domain of image clustering, Clustering Convolutional Neural Network

(CCNN) [42] uses a pre-trained convolutional network (from ImageNet) to

extract the features of its candidate cluster centres, while using K-means to

update input samples of each cluster.

• Non-pre-trained network: Using only a well-designed clustering loss for

feature extraction. As an example, for image clustering, Joint Unsupervised

Learning (JULE) [109] tries to combine a convolutional network for

representation learning and agglomerative clustering for assigning those

representations to proper clusters in a hierarchical structure. During the

training, the image representations and clusters are updated jointly in a

recurrent process, such that better representations lead to better clustering

and better clustering provides better image representations.

Unlike autoencoders, CDNN-based methods do not use any reconstruction loss

to ensure non-trivial solutions; so the responsibility falls to the way they design the
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Figure 2.3: General architecture of CDNN-based clustering methods [63]. The network
architecture varies between algorithms.

clustering loss and how they initialise the network (one of the three ways mentioned

above). In addition, compared to AE methods, they have the capacity to run deeper

networks and use pre-trained networks to extract more discriminative features;

which means they are particularly suitable for large-scale datasets.

2.6.4.3 Generative Adversarial Network

A Generative Adversarial Network (GAN) consists of two networks: a generator

network which generates new data from the input samples; and a discriminator

network which tries to judge if an input is a real sample or it is generated [47].

The discriminator produces a real-valued score between 0 and 1 specifying how

likely it is that the sample is real (scoring 1 when it considers the sample an

actual data sample). Both networks play an adversarial game where the generator’s

objective is to fool the discriminator by producing better and better samples, and

the discriminator improves its understanding of the data to be able to identify

generated samples [47, 63]. The adversarial game can be formulated as a minmax

optimisation [63]:

min
G

max
D

Ex
[
logD(x)

]+Ez
[
log(1−D(G(z)))

]
, (2.12)

where x is a data sample, z is a generated sample, D is discriminator and G is the

generator.

As an example, Categorical Generative Adversarial Network (Cat-GAN) [85] is a

clustering method which applies the GAN framework to multiple classes instead

of two (generated or real). In Cat-GAN the discriminator D classifies the real data

points into a given number of clusters k and stays uncertain about the samples
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produced by the generator. Meanwhile, the generator G tries to generate data points

belonging to exactly one specific cluster.

In general, GAN-based methods suffer from high computational complexity and

may even fail to converge to a solution. Furthermore, the generator network may

produce a very plausible output and decide to continuously generate the same

output (or a small set of outputs). This is a specific failure called mode collapse.

Another convergence failure is when the discriminator is too good and it provides

not enough information for the generator to train [63].

2.7 Evaluation metrics

To compare the performance of any two clustering algorithms, we need some

objective evaluation metrics. There are four widely used indicators which use

the final clustering output to compute a performance score allowing comparison

between any two algorithms. The building blocks of all four indicators are the

measurements of true positives (TP), false positives (FP), true negatives (TN) and

false negatives (FN). These measurements are done by making use of the ground

truth provided for the input dataset. Table 2.2 shows these four evaluation

indicators and their formulas.
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Table 2.2: Clustering evaluation indicators [105].

Name Formula Explanation

F score 

P =
TP

TP+FP
,

R =
TP

TP+FN
,

Fβ =
(β2 +1)×P×R

β2 ×P+R

P is the precision, and R is the
recall. β is a constant which
indicates the importance of P and
R with respect to each other. β =
1 gives the F1 score in which
precision and recall have the same
importance.

Rand indicator RI =
TP+TN

TP+FP+FN+TN
The denominator is equal to the
total number of points in the
dataset.

Jaccard indicator J (A,B) =
|A∩B|
|A∪B| =

TP

TP+FP+FN
Measures the similarity of two sets
A and B. |X| is the number of
elements in the set X. 0 ≤ J(A,B) ≤
1.

Fowlkes Mallows
indicator

FM =
p

P×R =√
TP

TP+FP
× TP

TP+FN

P is the precision, and R is the
recall. Higher FM values indicate
greater similarity to the ground
truth clustering.

2.8 Conclusion

In this chapter, we presented a quick survey of several widely used families of data

clustering algorithms. From classic methods such as k-means and fuzzy c-means to

more recent propositions based neural networks, we demonstrated the difficulties

faced by these algorithms to properly perform clustering.

The quality of the clustering is judged based on several factors. Firstly, how close

the produced cluster are to real relations between the data points, measured by one

of the introduced metrics. Secondly, how robust is the process to noise and outlier

data? The algorithms that can deal with outliers better, find inherent relationships

among data points easier. Finally, is it extendable to large datasets with high

dimensional data? Many classic methods work very well on regular datasets but fail

to perform on higher dimensions or when processing high number of data points.

To solve this problem, several methods was introduced for dimensionality reduction

and feature transformation.
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In addition, each clustering algorithm comes with certain limitations: some

need the number of clusters present in the data as input; some need initial guesses

for different parameters; and some perform with a high time complexity. For each

family of data clustering methods, strengths and weaknesses was mentioned to

demonstrate their possible applications.

The next chapter introduces the a-contrario framework and the number of false

alarms criterion which is the basis of our proposed clustering algorithm.
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3.1 Gestalt theory

One of the oldest questions tackled by psychologist was: Why and how we

interpret stimuli arriving at our eyes as familiar shapes (e.g., straight lines, polygons

and curves)? After all, every scene produced in our eyes and brain consists

of only a set of dots each corresponding to a retina cell. How a set of dots

is related to the mathematical representation of an infinitely continuous line?

Therefore, the problem consists of the identification between a group of incoming

stimuli and a physical object or mathematical representation of a shape. This

identification process follows a set of general laws called the principles of visual

reconstruction [23].

The Gestalt theory is an attempt to state and explain the principles of visual

reconstruction. In his paper in 1923, Max Wertheimer goes through two sets
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of organising laws: grouping laws and the principles governing the interaction

(collaboration and conflicts) of grouping laws. These grouping laws start from the

lowest level and recursively make more complicated groupings [23]. Decades of

research in Gestalt theory have given us a rich collection of different grouping laws.

Most of the initial research was done on human perception and not on computer

vision. However, apart from some specific details, the Gestalt grouping laws can be

just as useful when working with camera frames.

Working with the pixels of a digital image as the starting point, every time a

group of points or previously formed groups have some characteristics in common,

they join and form a larger visual object, a gestalt. The followings are the basic

grouping laws [23]:

• Colour constancy: Regions where luminance or colour does not change

strongly are seen as a whole (Figure 3.1a).

• Vicinity: Objects with small distance to each other with respect to the rest are

grouped together (Figure 3.1b).

• Similarity: Similar looking objects are grouped together to form a higher level

object (Figure 3.1c).

• Closure: Interior of a closed curve is seen as a separate object from the

background (Figure 3.1d).

• Good continuation: We tend to perceive objects in alignment as smooth,

uninterrupted contours (Figure 3.1e).

• Amodal completion: If one curve stops another curve (creating a T-junction),

we interpret the interrupted curve as a part of the boundary of an object partly

occluded (Figure 3.1f).

• Constant width: Two parallel curves are perceived as the boundaries of an

object with a constant width (Figure 3.1g).

• Symmetry: A set of objects which are symmetric with respect to a straight line

are grouped together (Figure 3.1h).

• Convexity: Any convex curve (not necessarily closed) indicate the boundary

of a convex object against the background (Figure 3.1i).

• Perspective: A group of concurring lines are perceived as parallel lines in a 3D

scene and their meeting point as a vanishing point of the scene (Figure 3.1j).
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To perceive a complex visual object, these grouping laws cooperate from small

to large scale. As a result, they may agree or conflict with each other along the

way. Conflicts give rise to different interpretations and groupings of the same

objects. These interpretations can be valid simultaneously (Figure 3.2a) or one

interpretation may invalidate the other ones (cf. Figure 3.2b) [23].

In computer vision, when working with a digital image, pixels are the starting

points for the gestalt grouping procedure. An image is finite and the data it provides

is discrete; therefore, the geometric information extracted from an image is never

certain. Every detection and localisation of a shape (e.g., lines, angles, curves,

polygons) comes with a degree of precision [23]. In short, in computer vision,

perceptual organisation is the process of evaluating and assigning significance to

every potential grouping of features in an image [55].
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(a) (b) (c)

(d) (e) (f ) (g)

(h) (i) (j)

Figure 3.1: Gestalt’s grouping laws [23]: (a) the colour constancy law means we see one
single black object instead of many connected ones; (b) with the vicinity law we group
these objects into two higher level visual objects; (c) we separate this circular area into two
regions with different textures according to the similarity law; (d) we perceive a single object
against the white background according to the closure law; (e) dark objects are perceived as
a curve with the good continuation law; (f) the butterfly shaped dark objects on the left are
covered with white rectangles on the right, they are now perceived as disks half occluded
by the rectangles, in line with the amodal completion law; (g) we perceive the two parallel
curves as the edges of an arm-shaped object with a constant width; (h) the dark objects are
symmetrical with respect to a vertical line and perceived together as one object according
to the symmetry law; (i) we can interpret the shapes as white ovals on black background or
black triangles on white background, the convexity law favours the first option; (j) with the
perspective law, we perceive this shape as a 3D object with point d as a vanishing point.
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(a) (b)

Figure 3.2: Two examples of grouping laws giving rise to different interpretations [23]: (a)
the white dots are perceived, simultaneously, as a part of the grid and as a part of a curve; (b)
two incompatible interpretations: the shape to the left can be perceived as two overlapping
shapes or merge of two symmetrical shapes given on the right side.
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3.2 The Helmholtz principle

The Helmholtz principle, in its simplest form, states that we do not perceive any

structure in a random image. Alternatively, it says that a structure is perceived

when a significant deviation from randomness occurs [6, 23]. Figure 3.3 provides

an example of this principle: We can perceive the four segment alignment in

Figure 3.3b but not in Figure 3.3a. This is due to the fact that the alignment in

Figure 3.3a is not exceptional considering the total number of segments present;

i.e. it could have happened by chance. The same cannot be said about Figure 3.3b;

here, there are only 31 segments present, so the alignment of four of them cannot

be coincidental.

(a) (b)

Figure 3.3: An example of Helmholtz principle in action [23]: A set of four aligned line
segments exists in both (a) and (b); however it can only be perceived in image (b).

Given a group of n objects O1,O2, ...,On in an image, we may observe a common

quality in k of these objects. A valid question at this point is to ask “has this

quality appeared by chance or is it significant?”. If it is, then we can meaningfully

group those objects together. The Helmholtz grouping principle states that if the

expectation of observing such arrangement is low enough then their grouping is

considered meaningful [20]. Then, a very useful process, proposed by A. Desolneux

in her seminal work [23], would be:

• to assume a-priori that the considered quality is uniformly and randomly

distributed over all n objects;

• under this assumption, check if the observed states of the objects are likely to

occur or not;

• if not, surmise a-contrario that the observation is the result of a grouping

process (a gestalt).

As a result, we can divide image objects or relationships between objects into

two sets: those which occur through accident and those which are the result of a

meaningful structure [55]. Formally, a meaningful event is defined as:
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Definition 2 (ϵ-meaningful event [20]). An event is ϵ-meaningful if the expectation

of the number of occurrences of this event is less than ϵ under the a contrario uniform

random assumption. If ϵ≤ 1 then the event is simply meaningful.

The expectation mentioned in Definition 2 can only be calculated in the context

of some assumption regarding the distribution of surrounding objects [55]. This

assumption is called the naïve assumption or the naïve model. Knowing the

probability of a given arrangement happening by chance, it is obvious that a smaller

value for this probability entails a causal interpretation for that arrangement [55]. As

we are interested to find any causal links in an image, therefore we can simply look

for any sign of non-independence. Naturally, a suitable naive model would be the

independently and randomly positioned objects in the image [55, 100]. Obviously,

this model is neither accurate nor realistic; it simply describes an image in which no

structure will be detected [41].

3.3 The number of false alarms

Assuming a generic quality observable in an image, the Definition 2 can be

formulated in the following way. Given the objects Oi , i ∈ �1,n� present in an image,

the probability of object Oi having the considered quality is denoted by p. Since we

have an independence assumption, the probability of at least k objects having the

same quality is computed by the tail of the binomial distribution [21]:

B(p,n,k) =
n∑

i =k

(
n

k

)
p i (

1−p
)n−i . (3.1)

Then, the expectation of the considered quality happening by pure chance, or

the number of false alarms (NFA) is calculated by multiplying Equation 3.1 by the

number of tests (NT) performed on the image. The value of NT will depend on the

considered quality and the way testing is performed on the image. In the end, an

event is ϵ-meaningful if [21]:

NFA(p,n,k) = NTB(p,n,k) ≤ ϵ. (3.2)

Different arrangements in an image can be evaluated using the NFA criterion.

Evidently, we can compare the meaningfulness of two arrangements A and B by

comparing their NFA values: A is more meaningful if and only if NFAA < NFAB.

Then, all the arrangements present in an image can be sorted based on their

meaningfulness; however, to filter out overlapping arrangements the concept of

maximal meaningful events is introduced:
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Definition 3 (Maximal meaningful event [20]). An event A is maximal if

1. ∀B ⊂ A,NFA(B) ≥ NFA(A),

2. ∀B ⊃ A,NFA(B) > NFA(A).

A is maximal meaningful if it is both maximal and meaningful.

Maximal meaningful events, i.e. lines, segments, edges, clusters, etc. form the

results of an a-contrario detection process on an image.

3.4 Applications of the a-contrario framework in

computer vision

The a-contrario framework introduced by Desolneux et al. [20] has proven its

efficiency in image and video analysis in a variety of detection problems. Generally,

the detection is performed by rejecting a naive model which describes the statistic

of the unstructured data also known as a noise model.

For example, in texture analysis, [41] introduces a noise model with and without

colour for detection of spots in a textured background in two applications: medical

mammograms and stains on pieces of clothing.

In motion detection, [91] proposes a naive model to describe a scene without

any moving objects. Then it uses the a-contrario framework to detect and localise

the moving objects in the image. [92] extends this method to work with a temporal

image sequence of moving objects.

Another application is for edge and line detection. Several methods use the

naive assumption that observing an edge is very unlikely in a randomly and

independently distributed image. In [98], the authors propose the addition of high

level features to the a-contrario framework by using ’edgelets’ (a set of connected

pixels) instead of individual pixels. In a similar work, [2] proposes EDLines: a fast

line segment detector which includes a line validation step based on the Helmholtz

principle to help prune any false detection. Another work in quality inspection field,

[3] proposes a crack detection algorithm based on a-contrario modelling which is

robust to motion blur and works with different crack shapes. Finally, [54] proposes

a line segment detector for SAR (Synthetic Aperture Radar) images which is able to

withstand the strong multiplicative noise characteristic of these images. To achieve

this, they introduce a novel background model which is specific to SAR images

instead of the existing models which work with optical images. This model takes

into account the spatial dependencies between local orientations using Markov

chain (as opposed to the Independence assumption).
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The a-contrario framework has also been used in structure from motion (SfM)

algorithms. In [66], the authors use the a-contrario methodology to propose

adaptive thresholds for model estimation in SfM in place of the usual globally-fixed

thresholds. They reach a better precision using adaptive thresholds and remove the

need for an initial guess for the threshold values.

In a similar fashion, gestalt grouping principles have been used in computer

vision for tasks related to the higher level perceptual organisation of scenes. For

example, [62] uses large scale perceptual grouping principles in combination with

pixel-wise spectral analysis to process geographic thermal data. In another work,

[107] uses gestalt laws to create a model of visual attention from low level to high

level (a bottom-up model).

In the current study, we are interested in the applications dealing with the

detection of changed areas across multi-temporal images. In early studies, the

a-contrario framework and spectral invariant features have been used to detect

meaningful changes between two satellite images of the same area taken at different

times [53]. An a-contrario approach has also been proposed for change detection

in three dimensional multi-modal medical images such as Magnetic Resonance

sequences [78]. In another study, [76] uses the a-contrario framework for the

definition of a criterion assessing the level of coherence in a sequence of images

for detecting sub-pixel changes in a time-series of satellite images. Similarly, [35]

further investigates this approach by using exchangeable random variables instead

of relying on the independent and identically distributed assumption. All these

works focus on the grey level values (and their changes) so that the considered naive

model deals with grey level discrepancy.

3.5 Change detection using the a-contrario framework

In this section, to demonstrate the power of the a-contrario framework, we present

an initial solution to our change detection problem. The process consists of two

different naive models and two separate computations of NFA which are based on

existing works of Desolneux et. al [21] and Robin et al. [76]. The following is written

based on our paper named “Detecting alterations in historical violins with optical

monitoring” [74].

In order to instantiate the a-contrario perception concept through a NFA

criterion, two elements have to be defined: the ‘naive’ model that represents the

statistics of the model to reject (the H0 hypothesis) and the feature on which these

statistics apply. Both depend on the considered data. However, since the naive

model represents the absence of structure, we can choose it as representing the wide

spreading of the samples, so that it will be rejected once the observations appear
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unlikely close with respect to the naive model.

Dealing with change detection, the decision of a change is due to the

observation of a surprisingly high density of differences within local features.

Such a definition can be interpreted as gathering two criteria: at pixel scale, high

differences in feature images and, at region/area scale, high density of previously

detected ‘high differences’. In other words, we propose a two-step approach that

firstly detects seeds as pixels likely to belong to a change area, and secondly detects

dense areas of seeds. For each step, we use a specific NFA criterion.

3.5.1 Seed detection

Starting from the colour difference image ∆I (Section 1.6) defined on the pixel

domain P ⊂N2, we consider the naive model Mcol to derive the set of seeds, called

S ⊆ P , representing the pixels likely to belong to the changed areas. Specifically,

denoting by |X| the cardinality of a set X,

Definition 4 (Naive model Mcol ). The image∆I is a random field of |P | independent

centred Gaussian variables N
(
0,σ2

)
.

According to Mcol , the distribution of the sum of the squared values (SSV) on

a sub-domain D ⊆ P , υD =
∑

s∈D [∆I(s)]2, is a χ2 law with |D| degrees of freedom.

Then, the probability PMcol (υD ,σ) of observing a SSV lower than υD by chance is

given by the regularised incomplete Gamma function, and the Number of False

Alarms associated to a sub-domain D having υD SSV is [3, 76]

NFA1 (D,σ, |P |) = |P |(|P |
|D|

)
PMcol (υD ,σ) (3.3)

where
(a

b

)
is the binomial coefficient.

Then, minimising NFA defined by Equation (3.3), the result depends on the

parameter σ that controls the noise level in Mcol . In this study, similarly to prior

works [3, 76], it is computed by calculating the second moment of the image:

σ2 = E(x −µ)2 where µ is the statistical mean of the pixel values of the image ∆I.

Therefore, Equation 3.3 will turn to:

NFA1 (υD , |D| ,σ, |P |) = |P |
(
|P |
|D|

)
1

Γ

( |D|
2

) ∫ υD

2σ2

0
e−t t

|D|
2

−1
d t , (3.4)

where Γ(x) is the gamma function.

Assuming D̂ = argminD⊂P NFA1 (D,σ, |P |). Since the naive model represents

the inconsistency in the data, D̂ is the set of pixels that are ‘surprisingly’ structured

under the naive model assumption Mcol , i.e. the pixels presenting ‘surprisingly’ low
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∆I values, so that the set of seeds S is the complementary of D̂ with respect to set

P : S = P \ D̂. Algorithm 1 explains this process in more detail.

3.5.2 Clustering the seeds

Then, having derived S and represented it under the form of a binary image, we

aim to detect the most significant cluster(s) of seeds. In this study, we compare two

approaches: the first one assumes a parametric geometric shape of the changed

areas (e.g. rectangular tiles, strips, rings, etc. like in Le Hégarat-Mascle et al. [51]),

while the second approach considers a general shape clustering scheme proposed

in Desolneux et al. [21]

In both cases, the considered naive model Mbi n represents the absence of

spatially consistent subset(s) of seeds. Specifically,

Definition 5 (Naive model Mbi n). The set of seeds S is a random set of |S |
independent uniformly distributed variables over the image lattice P .

Under uniform distribution model Mbi n , denoting by pO, the prior probability

that a seed belongs to a parametric object O, the probability PMbi n

(
pO, |S | ,κ)

of observing κ seeds within O by chance is given by the tail of the binomial

distribution, and the Number of False Alarms [21] is

NFA2
(
pO, |S | ,κ)

= Ntest
∑|S |

i =κ

(|S |
i

)
p i

O

(
1−pO

)|S |−i (3.5)

In the previous equation, pO is estimated by the ratio between the area of object

O with respect to the whole image area. Note the slight difference with a NFA like

in [25] derived assuming a Bernoulli distribution of parameter p for pixel binary

values, so that the probability to have a given number κ of seeds among a given

number ♯O of pixels is a Binomial distribution of parameter p and NFA2
(
p,♯O,κ

)
=

Ntest
∑♯O

i =κ

(♯O
i

)
p i

(
1−p

)♯O−i , with p approximated by the ratio between the seed and

the pixel numbers and ♯O the pixel number of object O.

In the case of a clustering approach, instead of constraining the object in terms

of parametric form, a thick low resolution curve free of any seed and surrounding

the object is required. Thus, denoting by C a cluster, its relative area a(C ) with

respect to the whole image area is also the probability of a seed to belong to C under

the naive model Mbi n , whereas the probability of a seed not to belong to C is 1−
a(C )− a(δC ), where a(δC ) is the relative area of the empty thick low resolution

contour surrounding C . Transposing Desolneux’ formula [21] with our notations,

NFA2 (|C | , |S | , a(C ), a(δC )) = Mtest
∑|S |

i =|C |
(|S |

i

)
[a(C )]i [1−a(C )−a(δC )]|S |−i(3.6)
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Algorithm 1 Estimation of seeds: pixels likely to be changed. Input: grey-level
difference image ∆I

1: n ←|∆I|
2: υ← a vector of size n
3: υ←∆I./max(∆I)
4: υ← υ2

5: υ← sor t (υ)
6: for i ← 2 : n do
7: υ(i ) ← υ(i )+υ(i −1)
8: nfa(i ) ← compute NFA using the Equation 3.4 with its parameters set as

(υ(i ), i +1,σ,n)
9: end for

10: (minNFA,minNFAIndex)← min(nfa)
11: D̂ ← set of minNFAIndex pixels with the lowest values in ∆I
12: S ← pixels in ∆I but not in D̂

In Eq. (3.5) and (3.6), Ntest and Mtest are the numbers of tests that control the

average number of false alarms [23]. Conversely to the case of the first NFA (cf.

Section 3.5.1), here, like in Desolneux et al. [21], we take these numbers constant

for a given image, i.e. independent of O of C , so that they are not involved in NFA

minimisation.

Numerically, each cluster C is formed by traversing the minimum spanning tree

created from the seed points S . Then using Eq. 3.6, for each cluster we compute

the meaningfulness (Equation 3.7). Finally, the detected areas are separate clusters

with maximum meaningfulness.

S (|C | , |S | , a(C ), a(δC )) = −l og (NFA2 (|C | , |S | , a(C ), a(δC ))) (3.7)

3.6 Conclusion

In this chapter, we presented a theoretical background on the a-contrario

framework in computer vision and its roots in Gestalt psychology. Gestalt principles

of perception govern how we group structures together and make higher level

objects. We introduced the Helmholtz principle which states that we perceive a

structure when a significant deviation from randomness occurs (in a live scene or a

digital image). This helps computer vision researchers to judge whether or not an

arrangement in an image is meaningful or has happened by chance.

In addition, we iterated several applications of the a-contrario framework for

detection tasks such as the detection of lines, edges and textures. In relation to

our problem of change detection, we presented a two-step approach for clustering
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a grey level image. This method is based on existing literature on the a-contrario

framework and uses two separate NFA computation processes.

In the next chapter, we propose a one-step clustering algorithm along with

extensive quantitative evaluations using simulated and real images.
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A-contrario framework for cluster

detection
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In Section 3.5, we described a two step clustering method based on two separate

naive models and computations of NFA. This approach works well enough as long as

the seed detection step does not miss any wear pixels. To make the wear detection

process more consistent and robust to noise, we propose a one step approach in

which the clustering takes into account the spatial and the spectral features at the

same time. This way, the difference image ∆I is used as an input straight to the

clustering algorithm without the need to first use a thresholding method on the

values.
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This chapter is written based on our paper “A-contrario framework for detection

of alterations in varnished surfaces” [75] published in the journal of Journal of Visual

Communication and Image Representation (JVCIR).

4.1 Clustering in one step

Our problem boils down to segmenting the difference image ∆I (Section 1.6), with

respect to semantic classes, one of which representing the unchanged area. As

previously stated, we propose to rely on a single naive model which will account

for both radiometric and spatial criteria characterising a wear area that is present in

∆Ii images.

The basic idea is to extend the meaningfulness concept specifying that a cluster

is all the more significant that it is very dense (i.e., its points are ‘surprisingly’

close) not only spatially but also in terms of grey-level differences. Now, to include

grey-level features in a-contrario detection, we could either adapt the naive model

to grey-level features in case of unstructured data (no change in our case), or adapt

the grey-level values so that the uniform distribution can be used as naive model as

usual. In this work, we adopt the second approach.

Considering grey-level differences, low values correspond (mainly) to no change

and high values (mainly) to changes, so that a grey-level transform is required to

meet the assumption that a change can be detected as surprisingly structured or

dense. Then, using the cluster NFA based on distance (described in Section 3.5.2),

the proposed method also needs the specification of the considered distance. These

two points are presented in the next subsections before the presentation of the NFA

computation and the cluster detection algorithm.

4.1.1 Grey-level transformation

Let us first enumerate the desirable properties of the required grey-level

transformation for ∆I pixel values: following the transformation, (i) the grey-level

values of pixels belonging to unchanged areas should be stretched, (ii) the grey-level

values of pixels belonging to change areas should be similar and (iii) close to zero.

This last property aims at controlling not only the relative values of grey-level

differences but also their absolute values. Then, the grey-level function ( f ) that we

can consider has to:

• be decreasing;

• spread not significant grey-level differences so that uniform distribution will

be acceptable.
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In this study, two f functions, denoted here by f1 and f2, were evaluated: ∀x ≥
τ, f1(x) = 1

x−τ , f2(x) = 1+ tanh(τ− x),∀x < τ, f1(x) = f2(x) = +∞. The parameter τ

has been introduced to allow us to control the number of points considered in the

following steps of the algorithm. Indeed, the values of∆I which are lower than τwill

result in an infinite distance (cf. Section 4.1.2) so that they are simply discarded;

therefore, the higher the τ the less points the algorithm considers. Note that, in

order to remain parameter free (but at the expense of memory and computational

resources), one can set this parameter equal to zero.

(a) (b)

Figure 4.1: Comparison for τ = 3.0 between (a) f1(x) = 1
x−τ and (b) f2(x) = 1+ tanh(τ−x).

(a) (b) (c)

Figure 4.2: 3D point cloud (a) before applying the function f , (b) after applying f1(x) = 1
x−τ

and (c) after applying f2(x) = 1+ tanh(τ− x). The vertical axis represents the (transformed)
grey-level values while the other two axis originate from the 2D image plane.

We focus on these two functions since, while having the desirable properties,

the resulting value spread is quite different. The inverse function gives a gradual

decline while the tanh function provides a more sudden drop for high values (see

Figure 4.1). The point clouds provided considering respectively each of the two

functions are shown in Figure 4.2; both provide the expected discrepancy of the

difference values, the tanh function result appearing somehow more uniformly

distributed. Therefore, in our experiments, we use the tanh function allowing better

consistency with the considered naive model.
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4.1.2 Distance between two points

The cluster detection using the a-contrario approach is based on point distance [23].

In order to take into account both spatial proximity and (transformed) grey-level

differences, the proposed distance is a weighted sum of two terms: the 2D

spatial distance and a term representing the modified grey-level of each point.

Thus, the proposed distance is defined as the minimal path length among the

paths relating two points and passing through the z = 0 plane with z being the

grey-level axis. In this way, we can enforce that points with higher grey-level values

after f -transformation be considered farther apart compared to points with lower

f -transformed grey-level values. Since the grey-level values and spatial distance are

inherently in different scales, we use the scale factor c ∈ R+ to control the weight of

the spatial term with respect to the grey-level one in the distance definition. The

choice of c value is further discussed in Section 4.1.6.

Denoting by yi the value at pixel i ∈ P , by zi = f
(
yi

)
its transformed grey-level

value and by Dsp (i , j ) the 2D spatial distance between the locations of pixels i and

j , ∀(i , j ) ∈P 2, if i = j ,D(i , j ) = 0, and otherwise

D(i , j ) =

√(
Dsp (i , j )

)2 + c ×
(
z2

i + z2
j

)
. (4.1)

Let us specify that, without the constraint “if i = j ,D(i , j ) = 0”, D would be only a

meta-metric. Specifically, among the three properties that a distance metric should

satisfy: 1. symmetry, 2. identity of indiscernibles and 3. triangle inequality, the

second one is not verified. For triangle inequality, using the positiveness of D, then

the fact that 2D spatial distance (Euclidean or approximation) is a metric and finally

the positiveness of square function, we have: ∀(i , j ,k) three different pixels,

(
D(i , j )+D( j ,k)

)2 = D2(i , j )+D2( j ,k)+2D(i , j )×D( j ,k),

≥ D2(i , j )+D2( j ,k),

D2(i , j )+D2( j ,k) = D2
sp (i , j )+D2

sp ( j ,k)+ c ×
(
z2

i + z2
j + z2

j + z2
k

)
,

≥ D2
sp (i ,k)+ c ×

(
z2

i +2z2
j + z2

k

)
,

≥ D2
sp (i ,k)+ c × (

z2
i + z2

k

)
.

Therefore
(
D(i , j )+D( j ,k)

)2 ≥ D2(i ,k), from which we get D(i , j )+D( j ,k) ≥ D(i ,k)

since the square function is an increasing function.

However, the identity of indiscernibles does not hold since D(i , j ) = 0 ⇒ i = j ,

but the opposite (i = j ⇒ D(i , j ) = 0) is not true except for pixels such that zi = z j = 0.

Finally, a cluster C ⊆ P is defined as a set of close points with respect to the
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distance value d : C ⊆P is the set of points i such that

∀i ∈C ,

{
∃ j ∈C s.t. D(i , j ) ≤ d ,

∀ j ′ ∈P \C ,D(i , j ′) > d .

Note that for a given d there may be several distinct clusters satisfying the

previous definition. Inversely, for a given cluster C , there is a range of distances

leading to C that allows us to associate an inner border and an outer border to

cluster C . In the following, we denote dmi n(C ) and dmax(C ) the bounds of this

interval.

4.1.3 Number of False Alarms

The Number of False Alarms (NFA) is based on the considered naive model which

in our case is the uniform distribution:

Definition 6 (Naive model M ). The set of points S is a random set of |S |
independent uniformly distributed variables over the 3D (2D + grey-level) space of

the image.

Note that a key point of a-contrario approaches is that the naive model does

not have to be accurate, but it only has to be contradicted in the case of the target

structured data (wear in our application).

The Number of False Alarms is computed by extending the NFA proposed

in [21] for 2D cluster detection. Considering here a 3D space, the 2D surface

areas are replaced by 3D volumes and the 2D distance by the distance defined in

Equation (4.1) so that, for any cluster C of 3D (2D + grey-level) points,

NFAM (C ,M) = Ntest

M∑
i =k

(
M

i

)
Vi

C (1−VC )M−i , (4.2)

where k is the number of points in the cluster, M is the total number of points and

VC and VC are the lower and upper bounds of the relative volume of the cluster with

respect to the whole image cube volume. Therefore 1−VC represents the volume

of the region that is definitely outside the cluster while VC represents the volume

of the region which is definitely inside the cluster. These volumes are obtained by

relying on morphological operations as specified in the next section. Finally, Ntest

that is a normalisation term equivalent to the number of tests coefficient is set as

a constant so that it does not impact the NFA minimisation and can be discarded

if one is interested only in the cluster ordering with respect to their NFA-based

meaningfulness, which is actually our case.
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4.1.4 Calculating the lower and upper volumes

Let us first define the distance between a cluster C and a single point i as the

minimum distance between all the points in C and i :

D(i ,C ) = min
j∈C

D
(
i , j

)
.

Then, we define δ(C ) as the radius of the cluster C . Let P (i , j ) be a path

between two given points i and j , i.e. an ordered list of successive points with

the first one being i and the last one being j : P (i , j ) = (k0,k1, . . . ,kl ),k0 = i ,kl = j ;

and assume kn and kn+1 are any two consecutive points on the path P (i , j ). Then,

we denote by δ(P ) the maximum distance between two consecutive points on P :

δ(P ) = max kn−1,kn ,
n∈{1,|P |}

D(kn−1,kn) the value for δ is computed as follows:

δ(C ) = max
(i , j )∈C 2

(
min
P (i , j )

(
δ(P (i , j ))

))
.

In practice, δ(C ) can be computed more easily using an iterative hierarchical

structure for all the possible clusters present in the data. Section 4.1.6 describes this

process in more detail.

We also define δ′(C ) as the distance between C and the closest point outside C

δ′(C ) = min
j∉C

D
(

j ,C
)

.

The lower and upper volumes of C are computed by performing a 3D

mathematical morphological dilation [84]:

• The lower region is the dilation of the union of the points in C by a ball

structuring element having the radius δ/2. Let us then denote by VC the

volume of this region divided by the volume of the image cube.

• The upper region is the dilation of the union of the points in C by a ball

structuring element having the radius δ′. Let us then denote by VC the volume

of this region divided by the volume of the image cube.

It is worth noting that since we have used a modified distance formula

(Equation 4.1), all dilation operations have to be done using this custom distance.

Further details will be discussed in Section 4.1.6.

4.1.5 Most meaningful clusters

After each cluster has an assigned NFA, we compute the meaningfulness for each

cluster:

SM (C ,M) = − log(NFAM (C ,M)). (4.3)
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In the following, only comparing cluster significance values at given value M and

naive model M , we shorten significance notation as S (C ) = SM (C ,M).

By construction of the minimum spanning tree, for any pair of considered

clusters C and K , either C ∩K = ; or C ⊊K or K ⊊C . Then, to avoid redundant

results (detection of the same cluster several times), we focus on maximal clusters

such that a cluster C ⊂P is said maximal if [21]{
∀K ⊊C , S (K ) <S (C ), and

∀K ⊋C , S (K ) ≤S (C ).

In Algorithm 2, meaningfulness maximality is handled as a constraint: to be

added to the list of maximal meaningful clusters C, a cluster must not intersect any

of the clusters already in C.

4.1.6 Implementation

The algorithm starts with the creation of a minimum spanning tree using the

points derived from the difference image ∆I (computed using Equation (4.1)). The

spanning tree is constructed as follows [21]: we initialise a graph whose nodes

are finite-coordinate points, there are no edges, and all distances between pairs of

points are pre-computed. The spanning tree is then constructed in an iterative way,

during which, at each iteration

• (i) we select the two nearest nodes among the unconnected nodes and

• (ii) we create an edge between these two nodes.

For an easier derivation of clusters of connected points, we also introduce a

hierarchical representation of this iterative process, in which, at each iteration,

the nearest nodes A and B are merged in a parent node which stores as well, the

minimum distance between pairs of points one in A and one in B. In the algorithm 2,

we call a node along with all its children nodes a subtree.

Then, each node is considered as a potential cluster. As mentioned earlier, for

each cluster, we compute two separate dilations, one being performed for the lower

bound and one for the upper bound region. These dilations are done in 3D by using

Equation (4.1) as the distance. As expected, this step produces different shapes

than those obtained by using the standard dilation based on a 3D-ball structuring

element or Euclidean distance. The volumes of these regions are involved in the

computation of the NFA and of the meaningfulness values for each cluster. For

saving computational time (and since preliminary tests did not show a difference

in the derived ordering of the clusters), we only compute NFA up to scale owing

to Ntest which boils down to deriving meaningfulness values up to a shift. The
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(a) (b) (c) (d) (e)

Figure 4.3: Detection of a single cluster when (a) c = 0.001, (b) c = 0.1, (c) c = 1, (d) c = 10 and
(e) c = 500; with the meaningfulness values of (a) 1228.90, (b) 466.06, (c) 161.74, (d) 7.35, (e)
1.62. The blue circle and the red number indicate the detection of only one cluster.

final step is to find the maximal clusters. Starting with an empty set C and the

list of clusters Ci ranked in decreasing order of meaningfulness, at each step, we

increment i to select the next cluster Ci , and, only if it is disjoint from any cluster

already stored in C, we add it to C. In the end, C represents the output of the

algorithm which is the ranked list of detected clusters based on their S value.

Let us finally provide some practical notes:

• Regarding the c parameter in Equation (1), it allows us to weight the spatial

term with respect to the radiometric one in the distance definition. When

c ≳ 0, the clusters would be spatially large and very dense including pixels j

almost irrespective of their grey-level transformation value f
(
y j

)
. Conversely,

when c ≫ 0, the clusters would be spatially scattered and very sparse only

including pixels j with very low values f
(
y j

)
. This behaviour is illustrated on

Figure 4.3 which represents a 2D Gaussian function. In practice, c parameter

is set based on image spatial and radiometric features. Based on performed

experiences, we set c = 0.1 as default value (used in all our experiments).

• When computing Equation (4.2), intermediate values of
(M

k

)
can get very large

and generate overflows. In cases with a small M (around 2000 or lower), we

can deal with this by using Big number data types. Otherwise, instead we can

approximate Equation (4.3) using the Hoeffding approximation like in [24]:

−l og (NFAM (M,k,VC ,VC )) ≈ M

[
k

M
log

(
k

M∗VC

)
+

(
1− k

M

)
log

(
1−k/M

1−VC

)]
(4.4)

• Decreasing the quantisation level for the grey-level values (e.g. 128 levels

instead of 256) can help improve the computational complexity of the

algorithm by reducing the number of calculations in the 3D morphological

operations.

• In practice, the parameter τ can also be set to higher values to reduce the

number of points M (cf. Equation (4.2)). This will not affect the output as long
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as the omitted points have colour difference values less than the minimum

amount of difference perceivable (this value depends on the application,

amount of noise present and the colour difference formula used). In all our

experiments, we set τ = 3 which allows us to focus on only 20% of the pixels

(which is still much more important that the wear areas that represent only

up to a few percents of the whole image).
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Algorithm 2 Change detection between the current frame I and the reference frame
I0.

1: Compute the colour difference map ∆I between I and I0

2: for each pixel j in ∆I do
3: ∆I( j ) = f (∆I( j ))
4: end for
5: P ← 3D points derived from pixels j such that ∆I( j ) <+∞
6: M ←|P |
7: for each pair of points i and j in P 2 do
8: Compute D(i , j ) according to Eq. (4.1)
9: end for

10: Compute the minimum spanning tree for the P points based on D(i , j ) so
that each subtree in hierarchical representation stores in its root the distance
between its two children.

11: VP ← volume of image cube
12: for each subtree T do
13: C ← cluster of points in T
14: δ← value stored in the root of T
15: δ′ ← value in the parent node of T
16: VC ← [vol ume o f di l ate(C ,δ/2)]/VP

17: VC ← [vol ume o f di l ate(C ,δ′)]/VP

18: k ← the number of points in C

19: Compute NFA value (up to scale owing to Ntest ) according to Eq. (4.2) using
values k, M, VC and VC

20: S ←− log(NFA)
21: end for
22: J ← list of indices of the clusters sorted according to S

23: C ←;
24: for each index j in J do
25: C j ← j th cluster according to J

26: if ∀Cl ∈ C,C j ∩Cl = ; then
27: C ← C∪ {C j }
28: end if
29: end for
30: C is the list of detected clusters
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4.2 Robustness evaluation using simulated data

One of the beneficial features of the a-contrario framework is its robustness to

noise. To evaluate our proposed algorithm against variable amounts of noise, we

use simulated data in the next two experiments. This way, we can control the level of

the noise present in the difference image and compare the result to an exact ground

truth; two features that are not possible with real captured data.

To produce the simulated data, firstly, we created a binary map which serves as

ground truth to distinguish the background and the foreground. The foreground

region was hand drawn to represent two clusters with complex shapes. Then,

the pixel values in both regions were randomly selected following two different

heavy-tailed distributions. We chose a heavy-tailed distribution because a) it

simulates the kind of noise present in the background that is more disruptive than

Gaussian noise for instance and b) it allows us to illustrate that the naive model M

(Definition 6) does not need to be exact. Specifically, since the drawn values have

to simulate colour difference values that are strictly non-negative, we focused on

a Nakagami distribution in both cases (however any similar distribution with the

adequate parameters can be used here). For the foreground, we use a Nakagami

distribution plus a shift value which allows us to easily control the mean without

changing the shape of the distribution. To represent realistic data with respect to

our application, the background is a spread out distribution near zero and a tail

with high values while the foreground, much less spread out, has a higher mean

value than the background. Then, the aim is to detect the two clusters present in

the image and to evaluate the result using the binary map as the ground truth.

For a quantitative evaluation of the proposed algorithm, we simulate data

considering a large range of mean and standard deviation values for the foreground

and the background. Specifically, we consider the two following experiments:

• Experiment 1: we increase progressively the spread of the background with

respect to fixed foreground distribution parameters;

• Experiment 2: we vary the mean value of the foreground with respect to fixed

background distribution parameters.

The Nakagami distribution has two parameters, denotedµ andω, which control

the shape and spread of the distribution, respectively. In the first experiment, we

change the spread ω0 of the background (from 2.0 to 11.0 by steps of 0.5; and then

to 15 by steps of 1.0) while keeping the shape of the background µ0 constant. The

parameters of the foreground (ω1 and µ1) are also kept constant (Figure 4.4). From

the shape and spread of the distribution, we can derive the mean of the background

that is found to vary from 1.16 in the first step to 3.19 in the last. Since the mean of
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(a) (b)

Figure 4.4: Experiment 1: a) histogram of the foreground (grey) and background (black) in
the first step and b) the last step.

(a) (b)

Figure 4.5: Experiment 2: a) histogram of the foreground (black) and background (grey) in
the first step and b) the last step.

the foreground is constant at 4.42 we expect the detection to become progressively

harder as the two means get closer.

In the second experiment, given constant parameters for both regions, the

distribution of the foreground is progressively shifted towards higher values, which

results in a gradual increase of the mean of the foreground from near zero to higher

values. This allows us to evaluate the performance with respect to the overlapping

between background and foreground distributions. Specifically, the background

shape µ0 is set to 0.6 and ω0 to 6.0. This results in a mean of nearly 2.0 and a

standard deviation of nearly 1.4 . For the foreground, the mean will progressively

increase from 1.92 to 8.42 in steps of 0.5 (Figure 4.5).

In both experiments, for each simulated image corresponding to a gradual

change of parameters, we apply our algorithm to detect the clusters. Besides, to get

statistically significant results, 10 image realisations are considered for each given

set of distribution parameters. From the ground truth binary map, the detection

results are evaluated in terms of F-score that is computed from precision and recall

values as explained in Section 2.7: The evaluation results using the F-score are
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(a) (b)

Figure 4.6: The F-score for the results of the algorithm with different (a) spread for the
background (Experiment 1) and (b) mean for the foreground (Experiment 2).

(a) (b) (c) (d) (e) (f )

Figure 4.7: Experiment 1: the detected clusters from (a) to (f) in steps 1,8,12,17,21 and 27.
(a) shows the perfect segmentation.

(a) (b) (c) (d) (e) (f )

Figure 4.8: Experiment 2: the detected clusters from (a) to (f) in steps 1,2,3,6,9 and 14. (f)
shows the perfect segmentation.

shown in Figure 4.6 for each experiment. In each step, the range observed during

the repetitions, along with their average and outliers (if any) have been shown.

According to these charts, Experiment 1 produces an F-score (on average) higher

than 0.8 until step 12 for which the mean of the background is 2.24; and higher than

0.7 until step 20 for which the mean of the background is 2.85. In Experiment 2, the

algorithm provides F-scores (in average) higher than 0.8 from step 4 for which the

mean of the foreground is 3.42. Considering the fact that the background is chosen

to not represent the naive model, thus providing a greater challenge, we find rather

satisfying that the F-score plummets only in cases with extreme amount of high

value pixels in the background.

Figures 4.7 and 4.8 show examples of the output of the algorithm for each

experiment. Ideally, in each frame two separate clusters should be detected, namely

one bigger to the left and one smaller. In addition, we expect that the red colour,
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which indicates the most significant cluster, highlight the bigger one. In both cases,

the algorithm shows resilience to the presence of the noise until the background

and foreground become indistinguishable from each other.

These two experiments show the resilience of the algorithm to background

noise and how well it can detect minute differences between the background and

foreground. It is worth mentioning that these simulations aim at evaluating the

proposed approach in a worst case scenario, since we expect actual data be less

noisy and/or pre-processed by a noise removal process.

4.3 Performance on actual data

4.3.1 Evaluation regarding 3D clustering

Figure 4.9 shows the result of the proposed NFA-based clustering for four sample

frames of WS01. In each frame the top 4 significant clusters have been indicated

by their borders. The blue border shows the most meaningful cluster. As we can

see, small noises change from frame to frame, big artefacts have a constant size and

location, and the wear area grows over time. In all cases, small noises have been

ignored and significant high change areas have been identified.

We have compared the clustering output of our algorithm with several other

clustering methods, namely:

• Agglomerative hierarchical clustering with complete linkage [68];

• Kmeans++ [5], an extension of classic K-means;

• Robust spectral clustering [112], a recent improvement on the classic spectral

clustering;

• Expectation Maximisation for Gaussian Mixture models (EM GM) [61];

• Clustering by fast search [77], a novel approach based on density and distance

(cf. 2.3);

• GBKmeans [73], a recent improvement on K-means;

• Clustering by local gravitation [97], clustering by considering each point as an

object with mass and studying local forces among neighbours;

• HDBSCAN [14] (Hierarchical Density-Based Spatial Clustering with

Application with Noise).
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(a) (b)

(c) (d)

Figure 4.9: Clustering output from frames 3, 9, 15 and 20 of set WS01 using the proposed
NFA clustering (Algorithm 2).

Chapter 2 has explained these methods in more details.

As we can see, the chosen algorithms belong to different families of clustering

methods and include both established approaches and more recent works. Each of

these algorithms has its own strengths and weaknesses such as their robustness to

noise and their need to set the number of clusters as input. To make the comparison

feasible we have set the number of clusters k equal to 4 whenever needed. Also, we

have chosen manually the best cluster in the output to ensure to get an upper bound

for performance metrics of the considered algorithm.

Figure 4.11 shows an example of the clustering output of each algorithm using

the sequence WS01. The ideal clustering, in this example, would isolate the

spherical group of points on the left (the wear) from the random noise and artefacts

(the points on the left, right, and upper edge). As we can see, algorithms like

kmeans++ and agglomerative-complete fail to separate the wear area from the left

border points. Spectral clustering is more successful in that regard, but fails to

ignore some random noise around the wear region. The overall best result, for this

example, comes from HDBSCAN and local gravitation algorithms, partly thanks to

their ability to determine the best number of clusters.

Each sequence and each frame within it presents its own challenges for

clustering; therefore, it is important to perform the comparison over every frame

containing wear using a impartial quantitative metric. Considering every frame

present in the three sequences WS01, WS02, and SV01, the precision, recall and

F-score metrics (Table 2.2) have been computed for each clustering result. As an

example, Figure 4.10 shows the F-score values for the sequence WS01 and each

algorithm including our proposal (last column). The values are colour coded to
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Frame
agglomerative

[complete]
Kmeans++

Robust 

Spectral
EM GM

Fast 

Search
GBKmeans

Local 

gravitation
HDBSCAN NFA

8 0.4813 0.2443 0.4583 0.3535 0.2436 0.2340 0.7559 0.4045 0.8615
9 0.3468 0.2717 0.3924 0.3525 0.2361 0.2083 0.5753 0.4802 0.8914

10 0.4249 0.4352 0.5182 0.4348 0.3101 0.3061 0.7453 0.5316 0.6963
11 0.4259 0.4858 0.7724 0.7484 0.4250 0.3443 0.7727 0.5737 0.8421
12 0.5650 0.5650 0.7206 0.7675 0.5423 0.4838 0.7707 0.8550 0.8433
13 0.6369 0.4990 0.6401 0.5692 0.5040 0.3700 0.5714 0.6705 0.8571
14 0.6202 0.5715 0.8002 0.6166 0.5189 0.4074 0.7732 0.5443 0.8889
15 0.6296 0.5661 0.8469 0.5660 0.5525 0.3914 0.6672 0.7323 0.8753
16 0.6192 0.5448 0.7970 0.5363 0.5544 0.4250 0.7596 0.5610 0.8791
17 0.5780 0.5590 0.8229 0.4350 0.3180 0.5003 0.5165 0.7952 0.8388
18 0.4953 0.4903 0.7630 0.6765 0.4016 0.3386 0.7159 0.5889 0.8444
19 0.4979 0.5569 0.7860 0.7479 0.4087 0.4101 0.6407 0.7658 0.8605
20 0.5929 0.5981 0.6727 0.5638 0.4794 0.4108 0.7566 0.6505 0.8616

Avg 0.5318 0.4914 0.6916 0.5668 0.4227 0.3715 0.6939 0.6272 0.8493
Std 0.0935 0.1129 0.1479 0.1437 0.1150 0.0858 0.0902 0.1319 0.0492

Figure 4.10: F-score values generated for each frame of the sequence WS01 using different
algorithms.

show the best results in green and the worst in red. As we can see, Kmeans++,

GBKmeans, Fast search, and agglomerative clustering consistently fail to produce

acceptable clustering results. Spectral clustering, EM GM, HDBSCAN and Local

gravitation produce good results for some frames but fail on others. Only NFA

clustering produces acceptable and consistent results across all frames. This can

also be seen by the high average F-score and low standard deviation.

To compare F-score values between sequences, Table 4.1 summarises the

obtained results in terms of the average and standard deviation of F-score values.

The NFA clustering performs well for all three sequences (high average F-score);

and maintains that performance for each frame in the sequence (very low standard

deviation).

Furthermore, it appears that the performance of each clustering method (except

the proposed NFA-based one) varies from one sequence dataset to another and the

best alternative to our algorithm is different for each sequence. This is due to the

volatile nature of the noise and artefacts present in our data. Therefore, it is certainly

difficult to choose, among previous works, a clustering method which consistently

manages different types of noise.

4.3.2 Comparison with 2D segmentation

An alternative to clustering is ∆I image segmentation (to detect the altered areas)

followed by labelling of cluster components. Therefore, we also evaluate our
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Table 4.1: Average and standard deviation of F-score values for different clustering
algorithms on Seq. WS01, WS02 and SV01. Best results are in bold, second best results
are underlined.

WS01 WS02 SV01

Algorithm Avg Std Avg Std Avg Std

Agglomerative

[complete] [68]
0.5318 0.0935 0.6160 0.0848 0.6065 0.1023

Kmeans++ [5] 0.4914 0.1129 0.6769 0.0665 0.5930 0.0912

Robust Spectral [112] 0.6916 0.1479 0.6475 0.0665 0.6753 0.1177

EM GM [61] 0.5668 0.1437 0.6379 0.0798 0.7503 0.1157

Fast Search [77] 0.4227 0.1150 0.5273 0.0620 0.5828 0.0799

GBKmeans [73] 0.3715 0.0858 0.4870 0.0559 0.5760 0.1051

Local Gravitation [97] 0.6939 0.0902 0.6569 0.1213 0.6139 0.0936

HDBSCAN [14] 0.6272 0.1319 0.5968 0.0477 0.6418 0.0866

NFA(Alg. 2) 0.8493 0.0492 0.7634 0.0382 0.8018 0.0530

proposal against a two-step method: a binary segmentation, namely FRFCM [52],

followed by a 2D clustering using HDBSCAN [14] (cf. Chapter 2).

Applied to our data, FRFCM provides rather good separation between

background and foreground. Then, to spatially cluster the points produced from

FRFCM we use HDBSCAN. This means we can evaluate our automatic process

(regarding the number of clusters) with a direct comparison of resulting clusters

from both methods. In addition, for each frame, the closest cluster to the ground

truth is selected manually for the calculation of the performance metrics.

Tables 4.2, 4.3 and 4.4 show three sample frames from each dataset: their ground

truth and output of each method. Also, for comparison with earlier attempts at wear

detection on the same dataset, we included the results obtained from the process

proposed in [27]. This solution was based on histogram quantisation and genetic

algorithm, and was designed to minimise the false positive detection and to quickly

give a rough estimation of the likely position of the altered region(s).

A qualitative analysis of the results from all three methods indicates that we

have successfully dealt with background noise and artefacts from UV reflections

in the majority of cases. For example, in the sequence SV01, reflections on the

border of the violin are very close to the actual wear region. The NFA clustering

has managed to avoid them (almost) completely, while FRFCM+HDBSCAN have

grouped them together with the wear in a few cases. We have also improved the

results with respect to [27], that, even if generally less prone to false detection
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Table 4.2: Comparison between the proposed NFA clustering, Dondi et al. [27],
FRFCM+HDBSCAN clustering and the ground truth for some sample frames from set WS01.

No. Ground truth NFA clustering (Ours) Dondi et al. [27] FRFCM+HDBSCAN
S1 : 9

S1 :
15

S1 :
20

than FRFCM+HDBSCAN, is also less effective that NFA in properly identifying

the boundaries of the altered regions. Inherently the NFA clustering allows for

controlling the number of false alarms. This results in globally better wear detection

(lower number of false positives).

To summarise both experiments, we compare the performance of two of the 3D

clustering methods mentioned above (Local Gravitation [97] and robust spectral

clustering [112]); FRFCM+HDBSCAN [14, 52] and our proposal (Algorithm 2).

Figure 4.12 shows the precision/recall charts for sequences WS01, WS02 and SV01.

In all three sets, the proposed NFA clustering has better precision while maintaining

an acceptable recall in most cases. As we can see, the FRFCM+HDBSCAN method

tends to have good recall values but with poor precision i.e high false positives. This

is due to the fact that the binary segmentation step only filters out the low value

noise present in the image. Therefore, in the clustering step, the high value artefacts

are hard to separate from the actual wear. As a result, it is vital to consider the

grey-level values at the same time as the spatial information.
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Table 4.3: Comparison between the proposed NFA clustering, Dondi et al. [27],
FRFCM+HDBSCAN clustering and the ground truth for some sample frames from set WS02.

No. Ground truth NFA clustering (Ours) Dondi et al. [27] FRFCM+HDBSCAN
S3 : 4

S3 : 7

S3 : 9

Table 4.4: Comparison between the proposed NFA clustering, Dondi et al. [27],
FRFCM+HDBSCAN clustering and the ground truth for some sample frames from set SV01.

No. Ground truth NFA clustering (Ours) Dondi et al. [27] FRFCM+HDBSCAN
S2 : 9

S2 :
15

S2 :
20
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(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 4.11: Clustering result of several chosen algorithms performed on the frame 12 of
sequence WS01.

74



CHAPTER 4. A-CONTRARIO FRAMEWORK FOR CLUSTER DETECTION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
EC

A
LL

PRECISION

Robust Spectral

Local gravitation

FRFCM+HDBSCAN

NFA

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
EC

A
LL

PRECISION

Robust Spectral

Local gravitation

FRFCM+HDBSCAN

NFA

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
EC

A
LL

PRECISION

Robust Spectral

Local gravitation

FRFCM+HDBSCAN

NFA

(c)

Figure 4.12: Precision-Recall plot for WS01 (a), WS02 (b) and SV01 (c). For a given algorithm
(indicated by the colour), each point highlights the performance at a specific time-step of
the sequence.
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4.4 Conclusion

In this chapter, we proposed an algorithm for change detection between two

images by clustering their grey-level difference map. The algorithm is based on

the a-contrario framework and works with a single naive model which takes into

account both spatial and spectral dimensions.

Two experiments were described using simulated difference maps in order to

test the robustness of the method to different levels of noise. In addition, the

algorithm was applied on several sequences of UVIFL images. The results of the

clustering for each sequence were compared to several existing data clustering

methods. Improvement was shown for both precision and recall.

The next chapter tackles the problem of differentiating between static artefacts

and wear regions by incorporating the time dimension and using more than one

pair of images from the sequence.
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Recalling the problem definition from Section 1.4, we divided our wear detection

problem into two sub-problems: firstly, to detect changed areas between two image

frames (whether or not those changed areas are actually wear or not); and secondly,

to differentiate between growing wear regions and static artefacts. Until now, we

have proposed a solution to the first sub-problem by detecting the meaningful

clusters of points in the difference map of two image frames. The best way to tackle

the second sub-problem would be to introduce the time dimension to our clustering

algorithm. As mentioned in Section 1.4, the wear regions are assumed to persist

once they appear. They also do not shrink in size and usually get bigger through

time. This chapter proposes a clustering algorithm in three dimensions; i.e. image

spatial dimensions + time.

5.1 From input data to 3D point cloud

The raw data are a series of K multi-temporal RGB images of varnished wooden

samples and violins (see Section 1.3 for the dataset specifications); I0 being
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the reference image. After performing the necessary pre-processing steps (cf.

Section 1.5), we will have a time series of K colour images (including the reference

image) of spatial size w ×h pixels; i.e. the input volume would be w ×h ×K×3.

Now, the optical monitoring of a varnished wooden surface is an ongoing

process meaning that the number of available frames and the accuracy of the

detection increases as the time goes on. At some point in time, the number of

available frames becomes too large. To keep only the most relevant information, we

maintain a sliding window of the last n frames with n ≤ K−1 (K being the number of

frames, the maximal number of frames to compare to the reference one I0 is K−1).

Then, in order to reduce this data volume without harming the wear detection,

we propose an extraction of the points likely to belong to wear, i.e., the points of

interest. To extract these points, we could either rely on wear colour features (if

learned for instance) or on change detection with respect to reference image I0. Due

to the lack of sufficient labelled data and in order to be robust to the variability of

the material, varnish and pigments present on the instruments, we focus on change

detection approaches. That means we are only interested in new wear regions or the

increase in area of the existing ones with respect to I0. Then, considering each pair

of frames (It , I0), t > 0, we derive a binary image of the points, i.e. the pixels likely

to belong to a wear region. This step can be done using the proposed approach

outlined in Chapter 4. However, alternatives such as a simple fixed thresholding,

clustering or binary segmentation can be considered depending on the contrast

between the wear and normal areas. In any case, the result is a set of binary images

denoted {Bt , t ∈ �1,n�}.

Considering the whole series {Bt , t ∈ �1,n�}, we create the 3D point cloud P ⊂R3

with two spatial dimensions defined by the image domain along with time as the

third dimension:

P =

{
(x, y, z), x ∈ �1, w�, y ∈ �1,h�,

z

ct
∈ �1,n�

}
, (5.1)

where ct ∈ R>0 is the time coefficient that controls the importance of a distance

in time compared to a distance in the image space. If ct = 1, then we give the same

importance to both. Then, the 3D volume of the cuboid from which P was extracted

is VP :

VP = w ×h × (nct ). (5.2)

The derived 3D point cloud P along with VP are the input of the proposed

clustering algorithm presented in the next section.
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5.2 Clustering the 3D point cloud

Algorithm 3 details the clustering method that we propose to detect and rank the

clusters of points within the point cloud. The ranking is based on the significance of

each cluster both in space and time. This algorithm represents a methodological

contribution, here applied to wear detection, but which could be adapted to

the detection of any other “objects” of interest characterised by spatio-temporal

consistency.

Algorithm 3 Detecting and ranking clusters; inputs: 3D point cloud P and original
3D volume VP ; output: list of detected clusters C

1: for each pair of points j and j ′ in P do
2: Compute 3D distance D( j , j ′)
3: end for
4: Compute the minimum spanning tree for the points in P based on D( j , j ′) so

that each subtree in hierarchical representation stores in its root the distance δ
of the associated cluster

5: i ← 1
6: for each subtree T do
7: Ci ← cluster of points in T
8: δ← value stored in the root of T
9: δ′ ← value in the parent node of T

10: V (Ci ) ← dilation of Ci with radius δ/2
11: ρ← δ′−δ
12: Compute volumes VC and V

C
according to Eq. (5.5)

13: Si ← S(Ci ) computed using Eq. (5.6) and logarithm function
14: i ← i +1
15: end for
16: I ← list of indices of the clusters sorted according to decreasing values of Si

17: C ←;
18: for each index j in J do
19: C j ← j th cluster according to J

20: if ∀Cl ∈ C,C j ∩Cl = ; then
21: C ← C∪ {C j }
22: end if
23: end for
24: return C

The proposed approach relies on the a-contrario detection which permits

evaluating the significance of any clusters based on distances between each pair

of points [23] (cf. chapter 3.5.2). In this chapter, since Equation (5.1) has already

integrated the desired balance between spatial and temporal aspect, we can simply

consider the 3D Euclidean distance between the points of P : For any pair of 3D

points,
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∀(
(xa , ya , za), (xb , yb , zb)

) ∈P 2,D(a,b) =
√

(xa −xb)2 + (ya − yb)2 + (za − zb)2.

In Algorithm 3, the distances are computed in the first for loop.

Then, the clusters are defined based on the distance as follows: for a given

distance δ, a cluster C is a subset of P such that for any point in C there is another

point in C at a distance lower than δ and there is no other point in P \C at a distance

lower than δ: {
∀p ∈C , ∃p ′ ∈C such that D(p, p ′) ≤ δ,

∀p ′′ ∈P \C , ∄p ′ ∈C such that D(p ′′, p ′) ≤ δ. (5.3)

Note that with such a definition, not all subsets of P are clusters. From now on,

a “well-defined” cluster C follows the previous definition, and among the range of

values δ consistent with C , we chose the minimum:

δ = max
p∈C

min
p ′∈C \{p}

D(p, p ′). (5.4)

The measure of significance of such a well-defined cluster involves the

computation of two normalised volumes (defined from 3D closed shapes in R3).

The first one represents the volume associated to cluster C . Since the points in C

are connected up to distance δ (defined in Equation 5.4), the dilation of every C

point with a radius δ/2 provides a 3D connected component in R3, called V (C ). To

ensure that V (C ) is a closed area, we finally perform a morphological closing of this

latter. The closing radius ρ is chosen as the maximum value which will not add any

point to V (C ), i.e. the difference between δ and the distance δ′ to the closest point

not in C :

δ′ = min
(p,p ′)∈C×(P \C )

D(p, p ′),

ρ = δ′−δ.

Then, C volume is approximated by the 3D volume of V (C ) after closing.

The second volume of interest is the one of the points not in C , i.e. the points

in P \C . It is evaluated as the complementary with respect to the initial 3D cuboid,

of the dilation of V (C ) with radius ρ, i.e. up to its closest point in P \C , so that the

empty space around C does not belong to the volume of the points in P \C . Then,

the two volumes of interest are computed according to:{
VC = 1

VP
× [

volume of V (C ) after closing with radius ρ
]

,

V
C

= 1
VP

× [
volume of V (C ) after dilation with radius ρ

]
.

(5.5)

80



CHAPTER 5. ANALYSING A MULTI-TEMPORAL IMAGE SEQUENCE

Then, for any well-defined cluster C ⊆ P having |C | points among the total

number of points |P |, we are able to compute the Number of False Alarms (NFA)

criterion as:

NFA(C ) ∝
|P |∑

j =|C |

(
|P |

j

)
V j

C
(1−V

C
)|P |− j , (5.6)

where
(k

j

)
denotes the binomial coefficient equal to k !

j !×(k− j )! with n! = n × (n −
1) × . . .2 × 1. This formula comes from the assumption that in absence of any

structure points are uniformly distributed [22] within a space that, in our case, is

the 3D cuboid w ×h × (nct ). Then the significance of a cluster C is evaluated as

S(C ) = −log (NFA(C )), i.e., the higher this significance value, the more likely the

cluster is not a false alarm, but a real wear area characterised by points both spatially

close and time-consistent. In Algorithm 3, the significance values of all well-defined

clusters are computed in the second for loop.

The last part of Algorithm 3 (including the last for loop) aims at only keeping

the most significant clusters that are not redundant, i.e., that correspond to disjoint

subsets of points. Indeed, our objective is to get a partition of P . Therefore, from all

the derived clusters Ci , only the ones not intersecting another well-defined cluster

having a higher significance value are kept. This corresponds to keeping only the

maximal clusters as defined in [21]. Then, the list of these maximal clusters sorted

by their significance value is the output of the algorithm.

5.3 Changed area ranking

After running Algorithm 3 we get a sorted list of spatio-temporal clusters with the

most significant cluster in first rank, the second most significant disjoint cluster in

second rank, and so on.

Significance is higher for more compact or dense clusters of points which

indicate individually a local change with respect to the reference frame. Based on

the assumptions that wear areas are linked to colour change, and that compact

or dense clusters emphasise time-persistent changes, we argue that the derived

significance values provide a relevant ranking of the likelihood of the wear areas.

In the experiments presented in next section, from the ranked set C (output of

Algorithm 3), we keep the three most meaningful clusters along with their respective

rank that can be used in the evaluation. We also underline that, in contrast

to clustering algorithms, providing such a ranking is a strength of the proposed

method.

Finally, considering the temporal evolution of the clusters, we can further refine

the results and identify more reliably the wear region(s). For example, a small but

constantly growing cluster is more likely to be a worn-out area with respect to a large
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but stable cluster.

5.4 Experiments and the benefits of the multitemporal

aspect

For each frame in the sequences WS01, SV01 and SV02, we generate a binary

change image with respect to the reference frame of the respective sequence

applying the method described in Chapter 4. By accumulating the change detection

results of all frames, we create a 3D point cloud for each sequence (Figure 5.1). The

coefficient ct is set to 2, in order to give slightly more importance to spatial proximity

over time proximity, to penalise the clusters which disappear in some frames and to

keep the size of the representation domain small enough for a better performance.

The time domain is the upward axis in all visualisations. From this figure it clearly

appears that there is a considerable amount of noise present in all point clouds. In

addition, there are artefacts present in the left and right sides of all sequences, which

are related to the UV reflections from the the wooden sample.

Figure 5.1: Point clouds P derived from the sequences WS01 (left), SV01 (middle) and SV02
(right). X and Y axes are in pixels, while the time dimension (Z axis) depends on the factor
ct (in these experiments ct = 2).

To simulate a practical optical monitoring process and to analyse different

detection results in any given point in time, we start the experiment with the first
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two frames for each sequence; then, we run the algorithm repeatedly adding one

more frame each time until we reach n frames. From then on, we keep only the last

n frames; basically, adding a new frame and removing the oldest one in each step.

(a) t ∈ [1,5] (b) t ∈ [1,10]

(c) t ∈ [6,15] (d) t ∈ [11,20]

Figure 5.2: Evolution of the detection by using the later time frames t in the sequence WS01.
Colour code gives the rank according to significance: red first, green second, blue third. The
time domain is the upward axis.

Each run outputs a list of clusters sorted according to their meaningfulness

value. Since each run uses the frames situated later in time, the rank of each

cluster within the whole set of clusters and its associated meaningfulness value

evolve depending on the nature of the cluster. In general, assuming that a wear

region expands over time, our expectation is that a wear cluster starts in lower ranks

and steadily rises to the first rank. Similarly, we expect that the significance of a

wear region increases over time. Conversely, the meaningfulness value for the noise

and artefact clusters should remain nearly constant or change randomly. Another

difference between the wear region and the rest is that it should be present in every

frame after its first appearance. For other non-wear areas, it is possible that they

divide into two or more clusters along the time axis. In that case, for time evolution

analysis, we only take into account the one with the highest meaningfulness.
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(a) t ∈ [1,5] (b) t ∈ [1,10]

(c) t ∈ [6,15] (d) t ∈ [11,20]

Figure 5.3: Evolution of the detection by using the later time frames t in the sequence SV01.
Same conventions as Figure 5.2.

Figures 5.2, 5.3 and 5.4 illustrate the detection results for each sequence through

time, i.e., based on the current last frame used as input. In each case, the top three

clusters have been shown. It is noticeable that, firstly, only the clusters which are

consistent have been detected. Minor artefacts and small noises have been ignored,

a fact which is a very desirable behaviour when multi-temporal information is

available. Secondly, the region of interest which is the wear area has been chosen by

the end of the sequence as the most significant cluster.

For a more in-depth analysis, we can follow the meaningfulness evolution in

time of both the wear and the artefacts for each sequence. Observing Figure 5.5a,

we can infer that in sequence WS01 the meaningfulness of the most significant

noise cluster (the orange line) remains very low and does not change throughout

the experiment. This is expected because the noise regions are fairly small and do

not grow over time. The cluster indicating the wear region (the blue line) starts from

frame seven when the wear appears and consistently increases over time. This is
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(a) t ∈ [5,14] (b) t ∈ [17,26]

(c) t ∈ [21,30] (d) t ∈ [26,35]

Figure 5.4: Evolution of the detection by using the later time frames t in the sequence SV02.
Same conventions as Figure 5.2.

in line with our expectation about an “ideal” wear that keeps growing. In practice,

the wear may not expand over multiple acquisitions which will appear as a plateau.

However, it will never shrink or disappear so the values should remain increasing

overall.

In the same manner, we can interpret Figure 5.5b for sequence SV01. The

wear cluster (the blue line) appears from the beginning and always has the

highest meaningfulness. This latter increases in each step as the wear area

grows through time. This fast growing is coherent with the characteristics of the

sequence, that shows the worsening of an already present worn-out region. The

two distinct artefact clusters (the grey and orange lines) present in the sequence

have meaningfulness values which change randomly from one step to another and

sometimes disappear altogether. This is again in line with our expectation of a

typical artefact region.

Finally, Figure 5.5c shows the results for sequence SV02, the most complex one.

In the first 10 frames we have two artefact clusters which appear to have increasing
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(c) Sequence SV02

Figure 5.5: The evolution of the meaningfulness value of sample clusters in different runs
of the algorithm for sequence WS01 (a), SV01 (b) and SV02 (c). In each run, at most the last
10 frames have been used.

meaningfulness. This can lead to a false positive detection until we have enough

frames to distinguish their actual behaviour. Artefact 2 (the grey line) is proven to

be an artefact after frame 6. The same applies for artefact 1 (the orange line), after

frame 12. On the other hand, the wear cluster (the blue line) has a meaningfulness

value which continues to increase from its appearance around frame 20 until the

end. More importantly, by the time the wear appears, we have already dismissed

the other two clusters as artefacts; therefore, automatically, it becomes the sole

candidate wear region.

Overall, the study of evolution of meaningfulness values helps us to quickly

identify the wear region as the correct area of interest even if it is smaller than the

artefacts present on the surface, in full agreement with the preventive conservation

principles. Comparing to the method presented in Chapter 4 which makes use

of single change maps, the current analysis based on the temporal dynamics

of the changes is able to pinpoint more reliably the emergence of a wear, also

reducing the false positive detection. Figure 5.6 illustrates the improvements made

by the multi-temporal analysis with respect to the single change map detection.
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Comparing the results achievable by using only two frames at a time (second row),

with the outcomes of this chapter’s proposal (third row), we can notice how the

multi-temporal analysis clearly improves the change detection by removing all the

artefacts which do not grow over time and/or are not consistently present in every

frame.

5.5 Comparative performance evaluation

In this section, we have made a quantitative comparison between our proposed

multi-temporal 3D clustering algorithm and several other clustering methods,

namely: Agglomerative hierarchical clustering with complete linkage [68],

Kmeans++ [5], robust spectral clustering [112], Expectation Maximisation for

Gaussian Mixture models (EM GM) [61], GBKmeans [73] and clustering by local

gravitation [97]. These methods have been described in depth in Chapter 2.

All methods have been applied on the point cloud P (Equation 5.1) generated

from the input binary images. If the algorithm requires the total number of

clusters as input, we set it to 4. Each method would cluster the point cloud P

into several clusters. Since none of the considered clustering approaches have a

built-in feature for ranking the output clusters, and to perform a fair comparison

among the algorithms, we evaluated every cluster they produce with our metric and

selected the most performing one. As metric for the comparison, we use the F-score

(F1 indicator) described in Section 2.7. To compute the precision and recall, the

obtained results of each algorithm have been compared with the ground truth of

each sequence (Figure 5.6).

For each sequence, after computing the F-score for every frame containing

any wear, we calculated the average and the standard deviation. The results are

summarised in Table 5.1. As we can see, our proposal performs better than all the

other state-of-the-art solutions in all three sequences, by having the highest average

F-score while maintaining a low standard deviation. It should also be noticed that

the second-best algorithm is different for each sequence, meaning that there is no

alternative method with consistent performance in all the considered conditions.

Although this comparison is performed at pixel level, at object level the benefit

of our approach will be even more visible. Indeed F-score aims to measure the

method’s ability to detect all the wear pixels, but it does not directly reflect the

algorithm’s capability to early detect worn-out regions. In fact, although it is

important to be able to identify as much wear pixels as possible, in a monitoring

process we can afford to lose or mislabel some boundary pixels, if we properly spot

the correct position of the wear clusters and avoid the noise. Thus, at pixel level we

prefer a high Precision (to guarantee noise avoidance), while at cluster level a high
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Table 5.1: The average and standard deviation of F-score values for the 3D clustering of
each sequence using the proposed algorithm as well as six other clustering methods. First
and second-best results are highlighted in green and light green respectively.

Algorithm
WS01 SV01 SV02

avg std avg std avg std

Agglomerative[complete] [68] 0.657 0.088 0.707 0.128 0.820 0.124

Kmeans++ [5] 0.694 0.128 0.709 0.129 0.727 0.273
Robust Spectral [112] 0.699 0.108 0.716 0.076 0.564 0.270

EM GM [61] 0.756 0.126 0.810 0.083 0.630 0.263
GBKmeans [73] 0.630 0.116 0.585 0.144 0.646 0.193
Local gravitation [97] 0.773 0.119 0.796 0.081 0.703 0.137

NFA (Ours) 0.784 0.119 0.812 0.113 0.858 0.130

Recall (to not miss any wear cluster). This is highlighted in Figure 5.5 and 5.6, where

we can see that in all three sequences the proposed algorithm was able to properly

identify the wear position, and to distinguish it from any noise cluster(s), in a few

frames from its appearance.
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WS01 SV01 SV02

Figure 5.6: Comparison, on sample frames of each sequence, between a wear detection
performed considering only two frames at a time and the multi-temporal approach: first
row, original UVIFL image; second row, detected clusters as in Chapter 4; third row, detected
clusters applying the multi-temporal analysis; fourth row, ground truth showing the actual
worn-out regions.
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5.6 Conclusion

In this chapter, we presented the final part of our wear detection algorithm. A

3D clustering method was described which works over the spatial and temporal

dimension of an image sequence. The benefits of using the temporal information

was demonstrated by comparing the results to those of Chapter 4. Once again,

quantitative comparisons between our algorithm and several other clustering

methods showed improvements for both precision and recall.
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Conclusion and future work

Summary

In this study, we tackled the problem of optical monitoring for historic musical

instruments, and more specifically violins. These instruments are susceptible to

surface varnish wear because of their constant use by musicians. Chemical methods

and spectroscopy can be used for wear detection but optical monitoring provides a

faster preliminary check. Scarcity of annotated data, prevalent presence of noise

and lack of a-priori knowledge about the shape and number of wear regions make

this study challenging and at the same time necessary.

Chapter 1 gave a brief introduction to the field of preventive conservation and

iterated over our data pre-processing steps. Then, we presented a brief survey

on existing clustering methods (and their strengths and weaknesses) in Chapter 2.

Chapter 3 contained some theoretical background information on the a-contrario

framework and its connection to Gestalt psychology.

In Chapter 4, we proposed a probabilistic algorithm to detect clusters of change

between two temporally different images of the same scene. Our proposal is

based on an a-contrario framework and performs the clustering process directly

on the grey-level difference image, while dealing with the background noise and

artefacts. Simulated test cases generated stochastically were used to test extensively

the behaviour and limitations of the method, and showed flexibility to background

noise and the ability to detect minute differences. Moreover, comparisons with

recent clustering methods show meaningful improvements in precision and recall

while providing the benefit of an inherent ranking criterion for the resulting clusters.

In Chapter 5, we introduced our a-contrario 3D clustering method for detecting

new alterations on varnished surfaces starting from a multi-temporal series of

images. This algorithm works based on a single naive model describing both the

spatial and temporal information. Once again, tests conducted on UVIFL image

sequences showed a good performance comparing to the other state-of-the-art

clustering algorithms.
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Contributions

Both of our algorithms provide the following advantages:

• We propose a process which is free from parameters characterising the

changed regions (shape, number, position, growth pattern, etc.).

• In contrast to other statistical learning-based and deep learning methods, our

algorithms, rooted in the Gestalt theory, do not need precise annotations, and

can properly work even with few data. These are both important properties

in the Cultural Heritage field, where a limited availability of data and a lack of

proper annotations are common.

• Our approach can be used in preventive conservation as a fast, preliminary

examination of the surface of a violin able to identify the most likely altered

areas. Thus, a verification using more precise but slower techniques (like

spectroscopic analyses) will be done only on the detected areas, reducing the

time needed for completing the monitoring procedures.

• Finally, even though we focused on the case of historical violins, our methods

can be adapted to work on other kinds of relics with few modifications, which

will be needed mostly in the preliminary processing of the input images.

Future works

For future studies, a vital task is to perform a long-term (more than one or two years)

monitoring process considering real historical violins which are played weekly.

Beside creating a valuable dataset for the community, this will allow the researchers

to validate any wear detection algorithm on real wear patterns. In addition, a

long-term image acquisition plan may create more challenging conditions for the

wear detection algorithm. For example, different people capturing the photos at

different times may result in more human errors or equipment may deteriorate after

months of use. This task will be possible as soon as the concert season restarts at

the same frequency as during the pre-pandemic period.

Regarding the time complexity of both proposed algorithms, the current version

can benefit from parallel implementation and alternative methods for faster 3D

dilation operations.

Finally, every computational algorithm needs a user friendly interface to be

beneficial to the experts in the problem domain. In our case, the method should

be usable by conservation experts who may or may not be familiar with computer

vision applications.
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