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Abstract

The motion of a liquid-filled microcapsule flowing in a microchannel is a complex problem to

simulate. Two innovative reduced-order data-driven models are proposed to replace the Fluid-

Structure Interaction (FSI) model using a collected database from high-fidelity simulations. The

objective is to replace the existing Full Order Model (FOM) with a fast-simulation model that can

simulate the capsule deformation in flow at a low cost in terms of time and calculation. The first

model consists in building from a space-time-parameter datacube a reduced model to simulate

the deformation of the microcapsule for any admissible configuration of parameters. Time evo-

lution of the capsule deformation is treated by identifying the nonlinear low-order manifold of

the reduced variables. Then, manifold learning is applied using the Diffuse Approximation (DA)

method to predict capsule deformation for a query configuration of parameters and a chosen

time discretization. The second model is based on rewriting the FSI model under the form of a

reduced-order dynamic system. In this latter, the spectral displacement and velocity coefficients

are related through a dynamic operator to be identified. To determine this operator, we suggest

the use of a dynamic mode decomposition approach.

Numerical validations prove the reliability and stability of the two new models compared to the

high order model. A software application has been developed to explore the capsule deformation

evolution for any couple of admissible parameters.

Keywords: data-driven model, model order reduction, proper orthogonal decomposition,

manifold learning, diffuse approximation, microcapsule suspension, dynamic mode decomposi-

tion.
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Résumé

La déformation d’une capsule en écoulement dans un canal micro-fluidique est un problème

compliqué à simuler numériquement. Nous proposons deux modèles innovants de pilotage de

données d’ordre réduit pour simuler le problème spatio-temporel à partir d’une base de don-

nées collectée des simulations réalisées avec un modèle d’ordre élevé. L’objectif est de remplacer

le modèle numérique haute-fidèlité existant par un modèle d’ordre réduit capable de simuler

l’évolution de déformation des capsules en écoulement à faible coût en temps et en calcul. Le

premier modèle consiste à construire à partir d’un cube de données espace-temps-paramètre un

modèle réduit pour simuler la déformation de la microcapsule pour n’importe quelle configura-

tion admissible de paramètres. La prédiction de l’évolution temporelle de la capsule pour une

configuration donnée de paramètres et un pas de discrétisation temporelle choisi se fait à l’aide

d’un apprentissage sur des variétés du modèle réduit. Le deuxième modèle se base sur l’idée de

réécrire le problème sous forme d’un système dynamique d’ordre réduit dans lequel les coeffi-

cients spectraux des déplacements et les champs des vitesses sont reliés à travers d’un opérateur

dynamique à identifier. Pour déterminer ce dernier, nous suggérons l’utilisation d’une approche

de décomposition en modes dynamiques.

Des validations numériques confirment la fiabilité et stabilité des deux nouveaux modèles par

rapport au modèle d’ordre élevé. Une application informatique est également mise au point

afin d’explorer l’évolution de déformation des capsules pour toute configuration de paramètres

admissibles.

mots-clés: Pilotage des données, modèle d’order reduit, decomposition orthogonale propre,

apprentissage geometrique, approximation diffuse, microcapsule en suspension, décomposition

en modes dynamiques.
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Chapter 1
General introduction

In the last decades, an unprecedented increase in computation ability has been achieved until

the point of simulating complex systems in a high-fidelity manner. Such advancement is driving

a paradigm shift across many fields such as health, engineering, and technology more rapidly

than ever before. However, the high-fidelity simulation aspect of these systems becomes com-

putationally expensive and, thus, makes intractable many decision-making applications, such as

code parallelization with High-Performance Computing (HPC) (Nielsen, 2016), inverse problems

(Belov, 2012), and uncertainty quantification with Monte-Carlo-like approaches (Hastie et al.,

2009). For most applications, even with HPC facilities, the resolution of high dimensional multi-

coupled problems may be obtained in an unreasonable amount of time and computation.

To compensate the computational expense issue, many surrogate models have been devel-

oped, such as Model Reduction order (MOR) and machine learning that extract meaningful

spatiotemporal patterns of a stored database from the Full Order Model (FOM) and use it in

future case studies. This leads to less redundant computations while the model continues to

seek the best result with the lowest cost possible. The resolution of physical systems using

this kind of approaches has gained significant interest in the last couple of years, especially

with the emergence of Physics-Informed Neural Networks (PINN), where the ANN is trained

using a loss function that includes physical information (Raissi et al., 2019). The data-driven

model order reduction techniques are a popular class of ’machine learning’ methods that use

data generated from a time evolution FOM (Benjamin & Karen, 2015, 2016; Pawar et al., 2019;

Xiao et al., 2017). Reduced Order Models (ROMs) usually perform a dimensionality reduction

through suitable reduced bases. This can be achieved through different approaches such as

the Proper Orthogonal Decomposition (POD) (Cordier, 2008; Benner et al., 2015; Silva & Alvaro,

2015), piecewise tangential interpolation (Gallivan et al., 2004), Proper Generalized Decompo-
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sitions (PGD) (Chinesta et al., 2011, 2010; Ghnatios et al., 2012), Empirical Interpolation Meth-

ods (EIM) (Maxime et al., 2004; Chaturantabut & Sorensen, 2010; Xiao et al., 2014) or via different

greedy procedures (Lappano et al., 2016).

This work aims to treat the dynamics of dilute suspensions of a liquid core microcapsule in

a microfluidic channel. Encapsulation technology has promising applications in the bioengineer-

ing and pharmaceutical industry sectors. It is used to protect and deliver active substances from

the external suspending fluid until their liberation in a targeted location (del Burgo et al., 2015;

Rabanel et al., 2009). Understanding, modeling, and tracking the capsule behavior in such a con-

text remains a challenging problem in current research topics, whether by running experiments

or by simulating the problem numerically.

From a numerical point of view, a dilute suspension of spherical micrometric capsules in a mi-

crofluidic channel is a complex three-dimensional inertialess fluid-structure interaction problem

that interestingly depends on two main variables: the capillary number Ca and the confinement

ratio a/ℓ. Ca is a non-dimensional number that estimates the order of magnitude of the viscous

forces acting on the capsule with respect to the elastic forces that build up in the membrane, and

a/ℓ is the ratio between the initial capsule diameter and the channel width.

This thesis is a part of a European project, "MultiphysMicroCaps", funded by the European

Research Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-

gram (Grant agreement No. ERC-2017-COG - MultiphysMicroCaps). This project is about study-

ing microcapsules with numerical simulations and experiments in order to propose advanced

models for microfluidic applications. One of its leading research axes focuses on developing new

numerical approaches that provide this thesis’s main setting.

Objective of the Ph.D. thesis

The objective of the thesis is to explore the use of reduced-order modeling approaches to enable

fast-time simulations. This allows replacing the existing model, which despite its efficiency, it

suffers from the expensive cost in terms of computation time to simulate the deformability be-

havior of capsules flowing in a microfluidic channel. Therefore, we are interested in investigating

whether the Reduced Order Model (ROM) would be an efficient alternative to the high fidelity

approach. The Ph.D. thesis thus serves the following purposes:

• The first one is proposed for a space-time-parameter mechanical problem involving spatial

fields, timeline, and design variables. A Proper Orthogonal Decomposition (POD) strategy
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of the capsule-fluids interactions is elaborated, so it provides the time-evolution prediction

of the capsule shape for any parameter values. The efficiency of POD has been proven in

building reduced-order models (ROM) of microcapsules (Quesada et al., 2021), but so far,

no model capable of predicting capsule dynamics currently exists hence the particularity

of our work. The post-treatment of the capsule shape allows deducing all the quantities

of interest such as viscous load, internal tensions within the membrane, membrane energy,

etc. Tracking the capsule node position field is obtained by integrating the velocity field

over time. Nevertheless, the correlation of the two fields needs special care, where we deal

with it using the principal modes of both fields obtained by POD decomposition through

the Diffuse Approximation (DA) method and manifold learning strategy (Breitkopf et al.,

2002; Savignat, 2000; Raghavan et al., 2013).

• The second approach expresses the FSI problem by identifying a low order nonlinear dif-

ferential dynamic system. The latter describes the mechanical equilibrium law and the

evolution of capsule shape. POD is used to determine reduced variables from the posi-

tion and velocity collected data from FOM simulations. DMD-based model is then used

to build a dynamic data-driven model verifying the kinematics and membrane equilibrium

equations.

• Build a software tool that allows users to use the new model and simulate in 3D the time-

evolution of the capsule shape in a microfluidic channel for any values of the parameter

couple (Ca, a/ℓ) in few seconds.

Outline

The present manuscript is organized into four chapters. The next chapter presents the state-of-art

and it is divided into two main parts. The first part defines microcapsules and gives a synthesis of

their main interests. The second part consists of presenting an overview of the various modeling

approaches that have been used to solve the capsule dynamics in a microfluidic channel in the

literature.

In the chapter 3, we present the methods that are used in this work. That includes the problem

assumptions, the summary of the integral boundary formulation and the membrane mechanics,

the full order model solution, and the methods and tools used in constructing the new model.

In chapter 4, we construct a data-driven reduced-order model coupled with a manifold learn-

ing approach. The model in divided into two phases: offline and online phases. In the offline



22 Chapter 1 – General introduction

phase, we construct a couple of parametric and spatial reduced-order models for displacement

and velocity of the capsule membrane using a set of pre-computed simulations. These two re-

duced order model couples are then used to build reduced-order bases that describe the capsule

displacement and velocity of any parameter vector of Ca and a/ℓ values at a selection of snap-

shots. In the online phase, we use a Diffuse Approximation procedure to estimate the principal

components vector that corresponds to any admissible parameter vector of Ca and a/ℓ values.

This allows building displacement and velocity snapshot matrices that are then used in mani-

fold learning procedure to predict the deformation of the capsule in the flow for a chosen time

discretization. The efficiency of the model is studied and validated numerically. A software

tool is created based on the model in order to give the possibility to predict the time-evolution

of capsule deformation in a microfluidic channel for any set of parameters from an admissible

parametric space. Moreover, it provides visualizations of the capsule deformation and its cor-

responding dimensional characteristics. The model has been published in the Entropy journal

(Boubehziz et al., 2021).

In chapter 5, we present a dynamic reduced model using the DMD approach. In this model,

we considered a reduced-order model of microcapsule dynamics under the form of a reduced

dynamic system. In this latter, the motion of the capsule deformation is expressed through a

Koopman operator that is identified using a dynamic mode decomposition approach. Numerical

validations of the model are conducted to prove its accuracy and efficiency by comparing the

obtained results to the full-order ones. Lastly, in conclusion, we summarize the contributions in

these works and we discuss the perspectives opened by the thesis.
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In this chapter, we start by reviewing the concept of microcapsules and their fields of ap-

plication. In section 2, we give insight into the experimental studies and the important role of

numerical modelling when studying microcapsules. In section 2.2, we present the state-of-art of

the used numerical models to deal with capsule in a microfluidic channel. Finally, in section 3,

we give the state of art of reduced order modeling and dynamic mode decomposition that we

will used in the construction of new numerical models.

1 Encapsulation: definition and applications

Encapsulation technology consists of enclosing fluid droplets in a thin elastic membrane that

controls exchanges between the external and the internal of a capsule. This latter ranges from

1 µm to 1000 µm, and it is inspired from nature, where it can be found in the form of cells,

bacterias, or eggs. For instance, red blood cells are an example of natural capsules with a lipid

23
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bilayer membrane supported by an actin cytoskeleton that provides wall elastic properties. It

protects the hemoglobin, which is the protein responsible for transporting oxygen and the control

of gas transfer to and from the tissue through the capillaries with 4 − 5 µm in diameter. In

industrial applications, the capsules are composed of an inner core that may take different forms

(solid, liquid, and solid particle) (Singh et al., 2010) and a thin elastic membrane made of a solid

material that protects the inner core from the external environment.

(a) (b) (c)

solid core liquid core solid particle

Figure 1.1: Illustration of microcapsules with a solid core (a), a liquid core (b), and solid mi-

croparticle (c).

We will restrict this study to the case of capsules with an inner liquid core. This latter has to

be distinguished from vesicles and lipid bilayer membrane as red blood cells. Vesicles deform

under constant volume and surface. The deformation is made possible at a low energy cost by

the excess area of the membrane. Capsules, however, deform under a constant volume with

their surface varying as a function of the membrane resistance to shear and area dilation (Abreu

et al., 2004). One of the earliest use of capsules in the industrial field appeared in the 1930s to

copy typewritten material. Since then, encapsulation techniques have gained huge interest in

many industrial domains such as printing (She et al., 2012), biotechnology (Popel & Johnson,

2005), pharmaceutics, food industries to preserve the nutritional components and healthiness of

ingredients, control their release, and mask/preserve flavors (Yang et al., 2014; Nazzaro et al.,

2012).

One of the high potential applications of this technology is the use of liquid-core microcap-

sules for active-substance targeting.

This technique provides a promising solution to many biotechnological challenges (Fernan-

des & Gracias, 2012; Onwulata, 2012) such as neurological diseases, cancer therapy (Demirgöz

et al., 2009), and ischemic myocardial tissue (Ma & Su, 2013; Orive et al., 2014) with effenciency.

Hence, increasing therapeutic efficiency, bioavailability, and minimizing environmental damages

(Ghirardi et al., 1977). However, scientific challenges at this point remain to be met, such as

controlling the moment of releasing and finding the optimal compromise between payload and
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(a) (b)

Figure 1.2: Examples of artificial microcapsules: (a) Coffee capsules containing droplets of carrier-

free liquid aromas (Sobel, 2014). (b) Islet encapsulated in alginate microcapsules for Bio-artificial

pancreatic (Ma & Su, 2013).

membrane resistance. Furthermore, when the capsules are injected into the flow, they are ex-

posed to hydrodynamic loading forces that induce large membrane deformations.

2 Modeling the capsule dynamics in channel flow

Since the early 1990s, the trend toward miniaturization has made it possible to reduce the size

of systems such as mechanical and fluidic systems on a micrometric scale. The design of small

factor fluidic systems has allowed to study various applications in the biomedical field (Jiang

et al., 2016; Sandoval & Tobias, 2021; Di Natale et al., 2021). The dynamics of a liquid-filled

capsule in a microfluidic channel is one of the topics that have been the subject of many studies

(Kuriakose & Dimitrakopoulos, 2011; Hu et al., 2012; Lefebvre et al., 2008). Understanding the

membrane mechanical properties and flow strength on the capsule dynamics is done by studying

them either experimentally or numerically. A comparison of experimental and numerical results

allows to determine the membrane mechanical properties of the liquid-filled capsule.

We summarize experimental and numerical studies of capsule flow in a straight channel.

2.1 Experimental observations

When the capsule flows through the channel, it is exposed to hydrodynamic loading forces that

induce large membrane deformations. This latter is characterized by a larger convex membrane

curvature at the front and a concave curvature at the rear. The shapes of the deformed capsules

are commonly called the parachute shape. To determine the membrane properties several tech-
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niques have been developed such as static compression and shear flow fields (Carin et al., 2003;

Chang & Olbricht, 1993; Pieper et al., 2005), flow in microfluidic channels, micropipette (Hsu

et al., 2004; Heinrich & Rawicz, 2005) and atomic force microscopy (Rugar & Hansma, 1990).

The characterization of the membrane properties is done through several methods. For in-

stance, Lefebvre et al. (2008) proposed observing the deformation of capsules in flow into a

microfluidic channel of comparable dimensions. The observations are done as a function of the

flow rate, and by using an inverse method based on a numerical model of the flowing capsule,

They could deduce the membrane elastic modulus of the membrane.

Exp
Num

Figure 2.1: Capsule profile extraction from an experimental image: (a) experimental image; (b)

profile extraction compared to simulated profile (Hu et al., 2013).

De Loubens et al. (2014) used an elongational flow to characterize cross-linked serum albumin

microcapsules. The elastics shear modulus Gs was derived from direct measurement of the

deformation in function of size and albumin concentration. However, due to the limitation of

the method to small deformations, it was not possible to conclude on the mechanical behavior of

the membrane. The phenomenon has been widely observed in various experiments (Chu et al.,

2011) and is explained by the constant internal pressure at the equilibrium state, which forces

the capsule profile to take a more significant curvature in the front than in the rear to fit with the

viscous pressure drop of the external flow. The parachute form of the capsule is accompanied by

foldings on the membrane (Cerda & Mahadevan, 2003; Luo & Pozrikidis, 2007).

2.2 Numerical models

The numerical simulations allow quantifying measurements that are usually inaccessible with

experimental studies. In the literature, the motion of capsule deformability in flow is generally

treated as 2D and 3D problems. The two-dimensional resolutions are simplified models that

treat the problem for reasonable computation cost. Although the 2D models can provide accu-
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rate results of several aspects of the motion of a capsule, it remains unable to give a complete

understanding of the problem as the 3D models (Secomb & Skalak, 1982).

The three-dimensional model was suggested for the first time by Pozrikidis (2005) in the case

of modeling capsule dynamics in a simple shear flow. Since then, many variants have then been

proposed to simulate solid-fluid problems. They have a commonly based on the coupling solid

and fluid problems (Li et al., 1988) but they differ in the way how to resolve the solid and fluid

problems.

2.2.1 Numerical modeling of the wall Mechanics

Solving the solid mechanics of the capsule membrane with a suitable model is a crucial part of the

overall accuracy resolution. Since the membrane thickness is considered infinitely thin, several

two-dimensional constitutive laws have been proposed to model the mechanical behavior of the

membrane. To find the viscous load exerted by the fluids on the membrane, two approaches are

frequently used.

• The strong form of membrane equilibrium is solved locally at each point of the capsule

wall using several approaches. Kessler et al. (2008) used the spectral method, which is

based on the projection of the solid domain on the basis of spectral functions. The method

appears to be effective, but has so far only been used in areas of small strain. (Ramanujan

& Pozrikidis, 1998; Pozrikidis, 2005) treat the motion of elastic capsule membrane in a

cylindrical tube, where the capsule membrane mechanics is coupled with the interior and

exterior hydrodynamics by means of surface equilibrium expressed in global Cartesian

coordinates, and the flow of capsule is resolved with a boundary element method. Lac et al.

(2004) studied the case of a filled-liquid capsule suspended in an unbounded shear using

the boundary-element method is used in conjunction with surface interpolation through

local bicubic B-splines.

• The weak form of membrane equilibrium where a Finite Elements Method (FEM) is then

used to find the viscous load exerted by the fluids on the membrane. Doddi & Bagchi (2008)

coupled FEM through Immersed boundary method (IBM) with finite difference method.

Sui et al. (2008) used a numerical method for large deformation of capsules based on a

mixed finite-difference Fourier transform method for the flow solver and a front-tracking

method for deformable interfaces. Hu et al. (2012) used the Boundary Integral Method

(BIM) to solve the fluid problem.
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The membrane deformation has been studied in various configurations, such as simple shear

flow (Lac et al., 2004; Li & Sarkar, 2008; Kessler et al., 2008; Pozrikidis, 1995; Ramanujan &

Pozrikidis, 1998), Poiseuille tube flow (Doddi & Bagchi, 2008; Lefebvre & Barthès-Biesel, 2007;

Doddi & Bagchi, 2008), elongational flow (Diaz et al., 2000; Dodson & Dimitrakopoulus, 2009),

effect of the membrane law on the capsule deformation (Hu et al., 2013), and taking into account

the membrane bending stiffness (Kwak & Pozrikidis, 2001).

2.2.2 Numerical modeling of fluid mechanics

The fluid velocity field is governed by the Stokes equations and it can be solved through several

approaches.

• The Boundary Integral Method (BIM) The evaluation of the velocity field is done on the

boundaries of the fluid domain with 2D integrals (Ladyzhenskaya, 1969). This approach

has been used by Pozrikidis (2005) including the capsule suspended in a simple shear flow.

It allows to express the velocity of the discretized membrane as a function of an integral

on the problem boundary. The discretization is applied only to the membrane, so that no

remeshing of the fluid domains is needed. The method has been largely used to study the

deformation and motion of the capsules in different configurations of fluid flow: simple

shear flow (Ramanujan & Pozrikidis, 1998; Walter et al., 2011; Foessel et al., 2011) plane

hyperbolic flow (Lac et al., 2004; Dodson & Dimitrakopoulos, 2008; Walter et al., 2010; Hu

et al., 2012).

• The Lattice-Boltzmann method (LBM) is a kinetic based approach for simulating fluid

flow. It considers the fluid domains as fictive particles that interact according to the applied

forces. It has been proved to be an efficient efficient method for solving complex fluid

systems (Chen & Doolen, 1998). This allows treating complex boundaries, incorporating

microscopic interactions.

2.2.3 Application to capsule flowing into a straight channel

In the literature, several studies are done coupling the above-presented methods to deal with the

deformation of a capsule flowing into a channel. For instance, Doddi & Bagchi (2008) studied

the lateral migration of a capsule in a plane Poiseuille by solving the fluid problem with the

FE method coupled through Immersed Boundary Method (IBM) with finite difference method.

Hu et al. (2012); Kuriakose & Dimitrakopoulos (2011) investigated the motion of an elastic cap-
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sule motion in the cases of square microfluidic channel and a cylindrical tube. These studies

concluded that the confinement involves a large deformation of the capsule, where the capsule-

dynamics are governed by the flow strength and the size ratio between the capsule and the

channel. The deformation of the capsule is presented by an inversion of the back curvature,

usually called parachute shape and bending. In addition, it found that capsule deformation can

reach a steady-state according to Ca limitation values due to the NEO-Hookean law. FSI numer-

ical resolutions variants are generally reliables to deal with capsule deformation (Sévénié et al.,

2015), whereas some of them suffer from instability and limitations issues, such as the model

given by Pozrikidis (2005) where it shows numerical instability when negative tensions have oc-

curred, Even for effective FOMs as the model that is given by Sévénié et al. (2015), the resolution

is expensive in computation time. This can be a significant limitation, for instance, when identi-

fying the membrane mechanical properties from experimentations. To overcome this constraint,

some surrogate models based on reduced-order modeling appeared as a promising alternative

that has been proven as efficient in reducing computation costs.

3 Reduced Order Modeling (ROM)

The simulation of the capsule motion in a microfluidic channel using the FSI model entails expen-

sive in time and computation resources (Cottet et al., 2008). An alternative technique, so-called

reduced-order model (ROM), is used to reduce the dimensionality of the numerical model while

preserving the system’s main characteristics. It consists in building a reduced set of orthogonal

bases that retains main variations in a large set of variables. The main interest of using a ROM is

to provide a solution as close as possible to the full-order model (FOM) (Benjamin & Karen, 2015,

2016) solution with a low cost in time and computational resources. Several approaches exist to

perform model reduction can be categorized according to two classifications: a priori/a posterior

and intrusive/non-intrusive. A posteriori methods build a Reduced Order Model (ROM) based

on a previously collected database, whereas a priori methods build prior data by relying on the

knowledge of the governing equations and numerical methods used in the model. Non-intrusive

methods use the simulation model as a black box, while intrusive methods involve changes to

the simulation model.

One of the most popular variants of non-intrusive ROMs is meta-modeling, in which collected

simulation results are used as a design of experiment to fit a surrogate model (Kriging (Cressie,

1988), Neural Network (NN) (Papadrakakis et al., 1998), Non-intrusive Proper Orthogonal De-

composition (NiPOD) (Iuliano & Quagliarella, 2013; Xiao et al., 2015)). Thus, meta-modeling
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methods are posterior non-intrusive methods. On the flip side, the Projected Reduced Order

Model (PROM) is the intrusive method that approximates the unknown as a linear combina-

tion of Reduced Basis (RB) vectors. This kind of method is usually coupled with a method that

approximates the projection of internal variables such as the Discrete Empirical Interpolation

Method (DEIM) (Chaturantabut & Sorensen, 2010) and the Hyper-Reduction (HR).

In the model mentioned above, order reduction methods are applicable to fixed-domain prob-

lems, which is not the case for the FSI model, where this latter also needs to derive the ROM.

The data-driven and non-intrusive reduced-order models (ROM) can be seen as supervised ANN

(Pawar et al., 2019; Xiao et al., 2017). For parametrized partial differential problems, ROMs usu-

ally perform a dimensionality reduction through suitable reduced bases. This can be achieved

via different approaches such as the Proper Orthogonal Decomposition (POD) (Cordier, 2008;

Benner et al., 2015; Silva & Alvaro, 2015), piecewise tangential interpolation (Gallivan et al., 2004),

Proper Generalized Decompositions (PGD) (Chinesta et al., 2011, 2010; Ghnatios et al., 2012), Em-

pirical Interpolation Methods (EIM) (Maxime et al., 2004; Chaturantabut & Sorensen, 2010; Xiao

et al., 2014) or via different greedy procedures (Lappano et al., 2016). Then one has to find the

manifold that maps the parameters to the coefficients of a linear combination of the reduced basis

functions. For example, this can also be supervised using universal approximation techniques

like diffuse approximation (Breitkopf et al., 2002). Using ROMs may lead to substantial speedups

as compared to FOM.

3.1 Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition (POD) method is a statistical data analysis tool intro-

duced by Lumley (1967) for analyzing turbulent flows. He showed that the principal components

corresponded to some coherent spatial structures that occurred cyclically in time.

Later, with the introduction of the Galerkin approximation, the idea to approximate the so-

lution in the space generated by a finite number of principal components came to light. For a

few decades now, researchers have developed several variants of this approach. For instance,

Sirovich (1987) suggested an alternative way to construct POD modes using snapshots collected

from numerical or empirical data. Aubry et al. (1988) gave a first model that could reproduce re-

alistic low-dimensional ODE systems for a turbulent flow model. Then Aubry (1991) proposed a

deterministic space-time symmetric version of the POD by using a bi-orthogonal decomposition

that expands orthogonal modes in time and space. Christensen et al. (1999) suggested relying

on snapshots with weights to obtain more relevant modes. Sieber et al. (2016) proposed involv-
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ing an additional temporal constraint that enables a clear separation of phenomena that occur

at multiple frequencies and energies. In the following, we give interest to the snapshot-POD

variant, which is based on building an orthogonal basis by extracting relevant information from

pre-computed snapshots. This latter is usually collected from specific numerical or experimental

observations and gathered in a snapshot matrix. The POD basis is obtained by performing a

singular value decomposition (SVD) involving a reduced number of snapshots (Nayroles et al.,

1992).

3.2 Dynamic Method Decomposition (DMD)

DMD was introduced in the fluid mechanic community by Schmid (2010) as a generalization of

linear stability analysis, and it can handle nonlinear systems. Since then, it has quickly gained

popularity and has emerged as a powerful alternative tool to POD for analyzing the dynam-

ics. While POD modes reconstruct a dataset with the modes ranked in terms of energy content,

the DMD modes and eigenvalues describe the dynamics observed in the time series in terms

of oscillatory components Schmid (2010). We also refer to Rowley et al. (2009) DMD variant,

where the decomposition is done by considering DMD modes as a subset of Koopman modes.

Furthermore, the DMD model has gained a growing interest that is expressed through multi-

ple variants of the method. For instance, Chen et al. (2012) proposed an optimized DMD that

can better identify characteristic flow frequencies in some cases. Williams et al. (2015) gave an

improved version of DMD called the Extended DMD (EDMD) method, in which the Koopman

decomposition is approximated using nonlinear observables that spans a subspace of the space

of scalar observables. However, this variant suffers from the fast increase in computational cost.

To circumvent this issue, kernel DMD (KDMD) (Kevrekidis et al., 2016) proposed as an alterna-

tive, which uses a kernel function to implicitly include nonlinear snapshots set while keeping the

computational cost of standard DMD. Héas & Herzet (2017) suggested an improved version of

KDMD called optimal KDMD, in which Noack et al. (2016) developed a recursive dynamic mode

decomposition (RDMD) that combines POD with DMD. Le Clainche & Vega (2017) proposed

an extension called High order DMD where Erichson et al. (2019) suggested randomized DMD

where a low-rank matrix is computed from a high dimensional matrix.

DMD has been used in several examples. We mention the work of Muld et al. (2012), where

they applied DMD to the flow around high-speed trains. Wu & Martin (2007) treated shock-

turbulent boundary layer interactions. Seena & Sung (2011) used DMD to identify the large-
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scale vortical structures responsible for hydrodynamic oscillations to the pressure fluctuations of

incompressible turbulent flows over an open cavity.

4 Conclusion

This chapter gave an overview of the definition of a microcapsule and the main interest applica-

tion of this technology. We have also reviewed different models to model the deformation of a

liquid-filled capsule in flow numerically. We could notice that the most reliable three-dimensional

models that simulate capsule deformability in flow, are so expensive in term of computation time.

The reduced-order model approach and the reduced dynamic system can be effective alternatives

to the 3D high-fidelity models. Especially since Quesada et al. (2021) have proved the effectiveness

of the reduced-order model approach to simulate capsule deformability in a microfluidic channel

at the state-state. In the next chapter, we will give the problem statement and the main ingredi-

ents to build two ROMs that can handle the time-evolution problem of capsule deformation in a

microchannel.
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This chapter introduces the mathematical model of a spherical capsule flowing in a square

channel. We start section 1 by giving the problem statement describing the behavior of a capsule

in the channel based on a fluid-structure interaction model proposed by (Hu et al., 2012). The res-

olution is done by coupling two problems: A solid problem that describes the capsule membrane

deformation through a variational form and a fluid problem in which the internal and external

flows are described using the boundary integral method (BIM). Then, we highlight in section 2

33
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the general numerical schemes of Fluid-Structure Interaction (FSI) to simulate the capsule motion

in a square channel. Furthermore, we also present the main tools for the construction of the new

fast time simulation models as Proper Orthogonal Decomposition (POD), Dynamic Mode De-

composition (DMD), and some manifold learning. We finish the chapter by giving the accuracy

criteria that will be used to validate the new model.

1 Problem statement

Let us consider a spherical capsule of radius a freely placed in a three-dimensional channel with

a square cross-section of length 2ℓ (see Figure 1.1). The choice of using a square-section channel

rather than a cylindrical one is based on the idea to compare numerical with experimental results

where microfluidic channels are created using soft-lithography technique, which is the same

as the one used to print electronic circuits. The capsule and the channel are filled with an

incompressible Newtonian fluid of the same constant density ρ and dynamic viscosity µ. The

capsule is enclosed by a thin hyperelastic isotropic membrane (surface shear modulus Gs, area

expansion modulus Ks = 3Gs). It is subjected to a Poiseuille flow of mean velocity V.

Figure 1.1: Initial configuration of a spherical capsule flowing in a square channel.

The problem is governed by two dimensionless numbers:

• The confinement ratio a/ℓ, ratio of the capsule to tube sizes;

• The capillary number Ca = µV/Gs, ratio of the viscous forces onto the capsule membrane

to the membrane elastic forces.

The flow Reynolds number is assumed to be very small, inertia being negligible. Hence, the flow

in the internal (β = in) and external (β = ex) fluids are described by the Stokes equations:

∇ · vβ = 0, ∇ · σβ = 0, β = in, ex. (1.1)
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where σβ is the stress tensor in the fluids. The Stokes equations are defined in the domains

bounded by the capsule membrane for β = in and the channel wall for β = ex. The inlet Γin

and outlet Γout cross-sections of the channel are assumed to be far from the capsule (10ℓ). The

reference frame (O, x, y, z) is fixed on the capsule center of mass O at each time step. For the

velocity vector field vβ and the pressure field pβ, we consider the following boundary conditions:

• The flow perturbation induced by the capsule vanishes at Γin and Γout:

vex (x, t)→ v∞ (x) , when x ∈ Γin ∪ Γout, (1.2)

where v∞ is the flow velocity of the suspending fluid in the absence of capsule.

• Uniform pressure at Γin and Γout:

pex (x, t) = 0, x ∈ Γin, (1.3)

pex (x, t) = ∆p (t) + ∆p∞, x ∈ Γout, (1.4)

where ∆p∞ is the undisturbed suspending pressure drop in the absence of capsule and ∆p

is the additional pressure drop due to the capsule.

• No slip on the channel wall W:

vex (x, t) = 0, for x ∈W (1.5)

• No slip on the capsule membrane C:

vin (x, t) = vex (x, t) =
∂

∂t
x (X, t) , for x ∈ C, (1.6)

where ∂
∂t x (X, t) is the membrane velocity at position x at time t, and X is the reference

position vector of the capsule membrane.

• The normal loading continuity indicates that the load q on the membrane is due to the

viscous traction jump [
σex (x)− σin (x)

]
· n = q, for x ∈ C, (1.7)

where n is the outward unit normal vector.

As the membrane thickness is negligibly small compared to the capsule dimensions, the

membrane can be considered as a hyperelastic surface devoid of bending stiffness. The in-plane
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deformation is then measured by the principal extension ratios λ1 and λ2, which measure the

in-plane deformation. The capsule can be highly deformed due to the combined effects of hydro-

dynamic forces, boundary confinement, and membrane deformability. Consequently, the choice

of membrane constitutive law is essential. We consider the Neo-Hookean (NH) constitutive law

that models the membrane as an infinitely thin sheet of a three-dimensional isotropic and incom-

pressible material. It was indeed shown to adequately model microcapsules with a cross-linked

protein membrane (Chu et al., 2011; Hu et al., 2013; Wang et al., 2021). The principal Cauchy

in-plane tensions τi (i = 1, 2) (forces per unit arc length of deformed surface curves) can be

expressed as a function of the principal extension ratios:

τ1 =
Gs

λ1λ2

[
λ2

1 −
1

(λ1λ2)
2

]
( likewise for τ2). (1.8)

1.1 Solid problem: Membrane mechanics

The capsule motion is a complex fluid-structure interaction problem. We highlight in this section

the most relevant fundamental concepts such as the description of membrane deformation, the

constitutive laws, and membrane equilibrium (Walter et al., 2010).

1.1.1 Membrane deformation

The thin membrane of the capsule is considered in the problem as an impermeable hyperelastic

isotropic elastic surface with surface shear elastic modulus G and area dilatation modulus K. The

membrane deformation is determined through the local covariant and contravariant bases that

are constructed from the surface curvilinear coordinates (Green et al., 1971; Walter, 2009). Let X

the position of a membrane material point in the reference state, and x (X, t) is its displacement

position in the deformed state. The local deformation of the membrane surface can be measured

by the Green-Lagrange strain tensor

e =
1
2

(
FT · F − I

)
, (1.9)

where I is the identity tensor and F = ∂x
∂X is the gradient transformation. The membrane de-

formation can be determined by the principal dilatation ratios λ1, and λ2 in its plane, which

correspond to two eigenvalues of e. The invariants of the transformation are given

I1 = λ2
1 + λ2

2 − 2, I2 = (λ1λ2)
2 − 1 = J2

s − 1, (1.10)
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where the Jacobian Js = det(F) = λ1λ2 measures the ratio of deformed membrane area to the

reference area.

1.2 Membrane constitutive laws

The material mechanical properties are given by the strain energy function ws(Is1, Is2) per unit

area of the undeformed membrane. Since the capsule membrane is infinitely thin, the elastic

stresses in the membrane are replaced by Cauchy tension tensors T̂ , corresponding to forces per

unit arc length measured in the plane of the membrane deformation. The Cauchy tension tensor

T is related to a strain energy function to ws (I1, I2) per unit deformed surface area (Green &

Adkins, 1970; Walter, 2009):

T̂ =
1
Js

Fs ·
∂ws

∂es
· FT

s , (1.11)

where ∂ws
∂es

is the Piola–Kirchhoff tension tensor.

The membrane constitutive law is defined by the relation between the membrane stresses T̂

and the two principal extension ratios in the membrane plane λ1 and λ2. According to the ma-

terial membrane behavior, an adapted constitutive law can be used to model capsule membrane

(Barthès-Biesel et al., 2002). There are two most commonly used membrane constitutive laws

to describe the mechanics of a thin membrane: The strain-softening neo-Hookean law and the

strain-hardening Skalak law.

1.2.1 The neo-Hookean law

This law follows the assumption that the membrane is an infinitely thin sheet of a three-dimensional

isotropic and incompressible material. It is appropriate to model the behavior of protein-reticulated

membrane (Carin et al., 2003; Chu et al., 2011) where for a two-dimensional material, the strain

energy function of the neo-Hookean law is given by

wNH
s =

GNH
s
2

(
Is1 − 1 +

1
Is2 + 1

)
. (1.12)

The area dilatation is balanced by membrane thinning because of the volume incompressibil-

ity. The link between the area dilatation modulus and the surface shear modulus is KNH
s = 3GNH

s

when νs = 0.5.

1.2.2 Membrane equilibrium

Under the assumption of an infinitely thin membrane, the capsule membrane is considered an

impermeable hyperelastic isotropic surface with surface shear elastic modulus Gs and area di-
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latation modulus Ks. The membrane behavior is governed by the local equilibrium equation

∇s · T + q = 0, (1.13)

where ∇s is the surface divergence operator in the deformed configuration and q is the external

load on the membrane.

The weak form of the equation can be written according to the principle of virtual work,

where the virtual work of external and internal fluid forces are balanced for any virtual displace-

ment field û (Walter, 2009). ∫
S(t)

û · qdS +
∫

S(t)
ϵ̂ (û) : TdS = 0, (1.14)

where ϵ̂ (û) = 1
2

(
∇sû +∇sûT) denotes the virtual deformation tensor and û a virtual deforma-

tion. The first term corresponds to the virtual work of the external fluid forces, while the second

side corresponds to the virtual work of the membrane elastic forces.

1.3 Fluid problem: Boundary Integral formulation for confined capsule flow

In order to give the fluid formulation of the three-dimensional motion of the internal and external

fluids, we consider the capsule placed in a microfluidic channel to be composed of two parts

(Pozrikidis, 2005): the undisturbed channel flow in the absence of the capsule, and the disturbed

channel flow in the presence of the capsule. Hence the velocity v(x) at any point x in the fluid

domain of a confined capsule flow is given by:

v (x) = v∞ (x)− 1
8πµ

[∫
C

J̃ (r) · qdS (y) +
∫

W
J̃ (r) · f̃ dS (y)− ∆P

∫
Γout

J̃ (r) · ndS (y)
]

(1.15)

where f̃ is the disturbance wall friction due to the capsule presence, v∞ denotes the undisturbed

flow in the absence of capsule, J̃ and K denote the Green kernels defined by

J̃(r) =
1
r
I+ r⊗ r

r3 , K = −6
r⊗ r⊗ r

r5 (1.16)

where r = ys − xs represents the distance of a point ys on the capsule surface St from a point xs,

where the velocity vector is computed. The uniform axial velocity distribution v∞ = v∞(z, y)e, is

given by

v∞ (x, y) =
πV

∞

∑
n

1
n3

[
1− cosh nπx/ℓ

cosh (nπ/2)

]
sin nπ (y/ℓ+ 1/2)

2

[
π4

96
−

∞

∑
n

tanh (nπ/2)
n5π/2

] n = 1, 2, 3, . . . (1.17)
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Applying the reciprocal theorem to the flow with and without the capsule gives∫
C

[
σ(1) · n

]
· v∞dS− (∆P + ∆P∞) Q =

∫
C
[σ∞ · n] · v(1)dS− ∆P∞Q, (1.18)

where the flow rate Q is the same with and without the capsule, and the velocity is zero on

W. By applying the reciprocal theorem to (v∞, σ∞) and
(

v(2), σ(2)
)

in the internal flow domain

bounded by C, we get ∫
C

[
σ(2) · n

]
· v∞dS =

∫
C
[σ∞ · n] · v(2)dS. (1.19)

with the assumption of no-slip condition on the capsule membrane surface, we find that the

additional pressure drop caused by the capsule is simply given by

∆P =
1
Q

∫
C

v∞ (x) · qdS (y) . (1.20)

Once the value of the pressure disturbance ∆P is known, the equation 1.15 at x ∈W becomes

0 =
∫

C
J (r) · qdS (y) +

∫
W

J̃ (r) · f dS (y)− ∆P
∫

Γout

J̃ (r) · ndS (y) (1.21)

which can be solved numerically.

2 Fluid-Structure Interaction (FSI) model

The Fluid-Structure Interaction (FSI) problem is solved numerically by coupling the Finite Ele-

ment Method (FEM) that solves the membrane mechanical problem (Walter et al., 2010; Hu et al.,

2012) with the Boundary Integral Method (BIM) that solves the fluid equations for the internal

and external flows using the Caps3D in-house code. The unknowns are the discrete displacement

field {u} and the discrete velocity field {v} at the nodes of the membrane mesh. The equation

of kinematics states that d
dt{u} = {v}. The forces exerted onto the membrane are computed by

the FEM. The deformation of the membrane is computed from the velocity vector field obtained

at the membrane nodes by solving the Stokes equations with the BIM, leading to a nonlinear

relation written in abstract form {v} = φ({u}).

The numerical resolution is done by discretizing the capsule membrane surface by 3Nx nodes

and NE elements. The coupled resolution BI+FE process as follows:

1. From an initial position {x} ({X}, t0), the weak form of the wall equilibrium equation (1.14)

is solved to determine the unknown viscous load q exerted by the fluids on the wall.
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Figure 2.1: An illustration of Fluid-Solid Interaction (FSI) resolution.

2. The viscous load on the membrane {q} = [σ] · {n} is computed from the deformed shape

and used to modify the fluid flows.

3. Once the viscous load {q} is known, the fluid velocity at the nodes is obtained from the

boundary integral equation (1.15).

4. The fluid velocity is integrated in time to deduce the displacement of the mesh nodes. The

positions of the nodes are updated for the next loop.

2.1 Pre-deformation for large capsules a/ℓ > 0.95

When the capsule’s initial size is larger than the channel cross dimension, the capsule needs to

be pre-deformed to fit inside the channel. This is be done by applying on the capsule nodes with

the locations ({x}, {y}, {z}) a transformation such that

˜{x} = k1{x}, ˜{y} = k1{y}, and ˜{z} = k2{z}, (2.1)

where k2
1k2 = 1 and k1 is chosen such that {y}/ℓ = 0.95 in order to avoid contact between the

membrane and the channel wall and give more stale simulations.

2.2 Discrete full order model (FOM)

The Fluid-Structure Interaction (FSI) problem is numerically modeled by coupling the Boundary

Integral Method (BIM) that solves the fluid equations with the Finite Element Method (FEM) that
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Figure 2.2: Initial spherical capsule with size ratio a/ℓ ≥ 0.95 in order to fit inside the channel.

solves the membrane mechanical problem (Walter et al., 2010; Hu et al., 2012) using the Caps3D

in-house code. For a given parameter vector θ = (θ1, θ2)
T, where θ1 = Ca and θ2 = a/ℓ, the

time-continuous semi-discrete FSI scheme reads in abstract form

d
dt
{u}(t) = {v}(t),

{v}(t) = {φ}({u}(t), θ), t ∈ (0, Tf ],

{u}(0) = {0}, {v}(t) = {φ}({0}, θ)

where {u}(t) and {v}(t) represent the discrete FE displacement and velocity fields at continuous

time t, and Tf is the final time. For time discretization, either a forward Euler scheme or a second

order Runge-Kutta scheme is used with a suitable constant time step δt > 0. The Euler scheme

reads

{ui+1} = {ui}+ δt {vi},

{vi+1} = {φ}({ui+1}, θ),

{u0} = {0}, {v0} = {φ}({0}, θ)

where {ui} and {vi} represent the discrete FE displacement and velocity fields at discrete time

ti,δ = i δt ≤ Tf . For second-order accuracy in time, a Runge-Kutta Ralston scheme is used:

{ûi+2/3} = {ui}+ 2
3

δt {vi},

{v̂i+2/3} = {φ}({ûi+2/3}, θ),

{ui+1} = {ui}+ δt
4

(
{vi}+ 3{v̂i+2/3}

)
,

{vi+1} = {φ}({ui+1}, θ),

{u0} = {0}, {v0} = {φ}({0}, θ).
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Because of the explicit nature of the numerical schemes for the equation of kinematics, the time

step is subject to a Courant-Friedrichs-Lewy (CFL)-like stability condition

γ̇ δt < C
∆hC

ℓ
Ca, (2.2)

where γ̇ = V/ℓ, C > 0 is a known constant and ∆hC is the typical mesh size (see (Walter et al.,

2010)).

Proper Orthogonal Decomposition has been shown to be particularly suitable to build re-

duced order models (ROM) of microcapsules (Quesada et al., 2021), but so far no model capable

of predicting capsule dynamics currently exists. The originality of the paper is to propose a ROM

of the capsule-fluids interactions which provides the time-evolution of the capsule shape for any

parameter values. From the capsule shape, it is indeed possible to deduce all the quantities of

interest (viscous load, internal tensions within the membrane, membrane energy, etc) in post-

treatment. The ROM is inspired from the physical problem, in which the boundary condition

stipulates that the fluid velocity equals the capsule membrane velocity. The correction of the

capsule node position field can thus be obtained by integrating the velocity field over time. The

challenge remains to correlate the position and velocity fields, which we propose to do with dif-

fuse approximation and manifold learning (Breitkopf et al., 2002; Savignat, 2000; Raghavan et al.,

2013) using the principal modes of both fields obtained by POD decomposition.

3 Proper Orthogonal Decomposition

Reduced order modeling aims at deriving a lightweight model of low-order dimension from so-

lutions obtained by the FOM, while trying to keep the same order of accuracy. There are many

reasons for doing that. In particular, parameter exploration and sensitivity analysis are made

easier because of large speedups using the ROM compared to the prohibitive FOM computa-

tional time. One can also imagine real-time parameter exploration and visualization of capsule

evolution.

3.1 Definition

The Proper Orthogonal Decomposition is an "a posteriori" method for model order reduction. It

aims to construct a low-dimensional approximate model by finding an orthonormal basis consid-

erably smaller than the high fidelity model. This low-dimensional approximation model f (x, t)

is constructed using the information extracted from previously computed simulations, and it is

defined over the spatio-temporal domain of interest through a linear combination
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f ({X}, t) ≃
Nb

∑
k=1

αk (t)ψk ({X}) , (3.1)

where α (t) is the vector of temporal coefficients and ψ ({X}) is an orthogonal basis. The formula

3.1 becomes exact when Nb → ∞. The proper orthogonal decomposition consists in finding the

orthogonal basis (ψk)k=1:Nb
where ψk ∈ RN

x and Nx is its dimension.

α1 +α2 +α3 + · · · − =

Figure 3.1: An illustration of the linear combination 3.1 between coefficients (αk)k=1,...,Nb
and

modes (ψk)k=1,...,Nb
at time t.

To compute the orthogonal basis (ψk)k=1:Nb
, we give the snapshot matrix A ∈ RNx×Nt as follows

A =
[

f ({X}, t1) f ({X}, t2) · · · f ({X}, tNt)
]

, (3.2)

Hence, by applying Singular Value Decomposition (SVD) (Golub & Reinsch, 1971), A can be

written as

A = UΣV̂T (3.3)

where U ∈ MNx ,Nx (R) and V̂ ∈ MNt,Nt (R) are orthogonal matrices, and Σ = diag (σ1, . . . , σr) ∈

MNx ,Nt (R) with σ1 ≥ σ2 ≥ . . . ≥ σr. Here r ≤ min(Nx, Nt) denotes the rank of A, which is

strictly smaller than Nt if the snapshot vectors are not all linearly independent. Then, we can

write

Aψi = σiαi and ATαi = σiψi, i = 1, . . . , r (3.4)

or, equivalently,

AT Aψi = σ2
i ψi and AATαi = σ2

i αi, i = 1, . . . , r (3.5)

i.e. σ2
i , i = 1, . . . , r, are the nonzero eigenvalues of the matrix AT A (and also of AAT), listed in

increasing order. The matrix Ĉ = AT A ∈ MNt (R) is called correlation matrix; its elements are

given by

Ĉij = f (x, ti)
T f

(
x, tj

)
, 1 ≤ i, j ≤ Nt. (3.6)
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For any Nb ≤ Nt, the POD basis V̂ ∈ MNx ,Nb (R) is defined as the set of the first Nb left singular

vectors of U or, equivalently, the set of vectors

αj =
1
σj

Aψj, 1 ≤ j ≤ Nb, (3.7)

obtained from the first Nb eigenvectors of the correlation matrix Ĉ.

4 Dynamic Decomposition Model definition

Let us give the standard definition of DMD by assuming a sequential set of data vectors z1, . . . , zNt

in which the order of zk (n× 1)− vector for k = 1, . . . , Nt is crucial (Schmid, 2010). We then de-

fine DMD in terms of the n×m data matrices with m = Nt − 1 by considering data pairs (X; Y)

where they are defined as follows:

X = [z1, . . . , zm−1] and Y = [z2, . . . , zm] (4.1)

The standard DMD procedure assumes that for a some (unknown) matrix A satifies:

A = YX† (4.2)

where X† is the pseudo-inverse of X. The dynamic mode decomposition of the pair (X, Y) is

given by the eigen-decomposition of A. That is, the DMD modes and eigenvalues are the eigen-

vectors and eigenvalues of A.

When n ≥ m, the above algorithm can be modified to reduce computational costs. For instance,

the SVD of X in rank-r truncation can be computed efficiently.

X = UrΣrVT
r (4.3)

So, we define the matrix Ã as

Ã = UT
r YVrΣ−1

r (4.4)

Compute eigenvalues and eigenvectors of Ã, writing ÃW = ΛW, so that Λ is a diagonal matrix

containing eigenvalues λk and the columns of W are the eigenvectors.
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Each nonzero eigenvalue λ is a DMD eigenvalue and the DMD mode corresponding to λ is

then given by

Φr = UT
r YVrΣ−1

r W (4.5)

When n ≥ m, the above algorithm can be modified to reduce computational costs. For

instance, the SVD of X can be computed efficiently using the method of snapshots. We then can

predict the solution of z at time tN+1 as follows:

zN+1 = ΦreΩtN+1
br (4.6)

where Ω := 1
δt ln(Λ) and br := Φ†

r z1.

5 Predictions of capsule deformation for query configuration

The construction of the ROM model from a set of configurations allows constructing a common

basis of modes that correspond to an admissible set of solutions. This allows us to predict, not

just the already known capsule deformation but also any admissible configuration using some

manifold walking schemes (Paolella, 2018; Dikshit & Powar, 1982; Savignat, 2000; Nayroles et al.,

1992). The key idea of this approach is based on searching approximated solution using an

admissible manifold of solutions. The prediction of query configuration, that is not stored in the

database, consists of finding its corresponding principal components using some manifold-based

prediction approaches such as Surface Interpolation approach (SI) and Diffuse Approximation

approach (DA).

5.1 Surface Interpolation (SI) approach

The key idea behind applying this technique is to construct a hypersurface Sm (θ) for a set of

principal components (modes) m = 1, . . . , r at time t and θ is a parameter vector that will be

defined in next chapter. From the surface Sm, a query mode ψq can be obtained for any desired

configuration ψq = Sm
(
θq
)
. To achieve this goal, a piecewise interpolation can be employed. In

this work, we use linear interpolation and a cubic spline interpolation (Hastie et al., 2009) which

provides a smoother surface due to the continuity of the first derivatives and the cross-derivative

of Sm.
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Figure 5.1: A manifold of admissible mode components ψ of all the capsule shapes. The blue

dots are the database parameter modes.

As an example, figure 5.1 illustrates a manifold created from the values of ψ at Ca and a/l

using the cubic interpolation approach. The construction of a manifold of admissible coefficients

allows determining a configuration of interest ψq which will be located by the projection of the

desired configuration θq on the manifold. This procedure will be repeated for a fixed number of

modes m. From this latter and with the common principal component vectors, the shape of the

capsule for the desired configuration can be constructed by the formula 3.1.

5.2 Diffuse Approximation (DA) method

The diffuse approximation approach, also known as moving least squares (MLS) approximation,

is a method of reconstructing continuous functions from a parametric space via the calculation

of a weighted least squares measure biased towards the region around the point at which the

reconstructed value is requested (Lancaster & Salkauskas, 1981; Nayroles et al., 1992; Breitkopf

et al., 2005). The concept of diffuse approximation is about introducing a local weighted least

squares fitting in a small neighborhood of a point and based on m-th nodes close to this point.

To local approximate a function f at a point x, based on a set of sampling points S =

{(xi, fi) | f (xi) = fi}. The unknown f is approximated in the vicinity of x by

f (x) ≃ fapp = pT (x) a (x) (5.1)
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where pT (x) is a polynomial basis function and a the matrix of coefficients that are expressed by

the minimization of the norm of the weighted difference between the estimated value at nodes

and the nodal values fi.

Jx (a) =
1
2 ∑

i
wi (xi, x)

(
pT (xi) a− fi

)2
(5.2)

where w is the weighting function that weights each nodal value to the approximation.

There are different ways to choose the weighting function. A simple choice for this latter is to

choose a polynomial function rather than an exponential function as exp(−d2) for computation

purposes. The weight functions are constructed from the reference windows functions wre f such

that it verifies wre f (xi, ·) > 0 inside the domain of interest of the node i and wre f (xi, ·) = 0

otherwise. A polynomial function

wre f =

 2d3 − 3d2 + 1, if d ≤ 1

0, otherwise
,

Unlike surface interpolation and polynomial regression approaches, which operate one by

one with the principal components of the manifold, DA (Nayroles et al., 1992) is used as a method

for accurately mapping a point θ′ in the parametric space P into a point in the manifold.

For relaibility reasons, in the construction of our model, we give preference to DA method

over SI method.

6 Elements of analysis - Accuracy criteria

In order to measure the approximation error generated by the data dimensionality process, we

introduce the classical Relative Information Content (RIC) (see for example (Silva & Alvaro,

2015)), which is computed as:

RIC(K) =

r

∑
k=K+1

σ̃2
k

r

∑
k=1

σ̃2
k

, K = 1, . . . , r, (6.1)

where σ̃k is the k-th singular value from the SVD decomposition, r is the rank of the matrix of

study (Sϱ or Tϱ) and K is the truncation rank. A supplementary indicator is the ratio

K 7→ σ̃K

σ̃1
(6.2)
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that gives an idea of the decay rate of the singular values.

The second criterion directly measures the error between the shape predicted by the ROM

and the shape computed by the FOM. This is achieved by using the so-called Modified Hausdorff

distance dMH (Dubuisson & Jain, 1994) that we normalize by the capsule radius a. The modified

Hausdorff distance computes the distance between two finite sets F and G of a normed space of

norm ∥.∥, and is defined as

dMH (F ,G) = max (dh (F ,G) , dh (G,F )) , (6.3)

with

dh (F ,G) = 1
NF

∑
pF∈F

ds (pF ,G) (6.4)

where NF is the number of points in the set F and ds (pF ,G) is the distance between pF and the

set G, which is defined as

ds (pF ,G) = min
pG∈G

∥pF − pG∥. (6.5)

7 Conclusion

In this chapter, we have presented the statement of the problem, the resolution strategy of the

full order model, and the main tools of order reduction models. This latter will be used in the

next chapter to introduce a new numerical method that can replace the FSI resolution.
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1 Introduction

In this chapter, we propose two data-driven reduced-order modeling variants to simulate the

capsule deformability behavior in a square channel. The first one consists of predicting capsule

49



50 Chapter 4 – Deformation prediction of a capsule flowing into a microfluidic channel

dynamics using a combination of ROMs and manifold learning. This combination is for a goal

to deal with the space-time-parameter simulations database (Figure 1.1) that are pre-computed

from FOM (section 2.2).

Time

Space

Parameters

Data cube

Figure 1.1: Space-time-parameter data cube

The second model is a dynamic data-driven reduced-order model. It describes the deforma-

bility evolution of a capsule in the form of a dynamic system using POD of the position and

velocity pre-computed FOM simulations. Then, a DMD base model is used to determine the

Koopman operator that allows predicting the capsule deformability at time tn+1 from its previ-

ous state at time tn.

2 Database of FOM results

2.1 Design of experiment

Simulations of the FOM problem have been run varying the two governing parameters in the

range [0; 0.2] for the capillary numberCa and [0.75; 1.2] for the confinement ratio a/ℓ. Only the

simulations for which a steady-state shape was reached were retained in the database. The

resulting numerical database, composed of Nc = 118 (Ca, a/l) samples (Figure 2.1), describes the

time-evolution of the three-dimensional position vectors of the capsule membrane nodes (Figure

2.2).
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Figure 2.1: Values of Ca and a/l that are included in the FOM database for which an initially

spherical capsule flows in a square-section microfluidic channel. No steady-state deformation

can be obtained above the red dotted line for the neo-Hookean constitutive law.

Above the red dotted line in figure 2.1, the capsules exhibiting continuous elongation owing

to the strain-softening behavior of the membrane law (Barthès-Biesel, 2011).

3 Data-driven model reduced-order model with manifold learning

The proposed model involves the construction of two PODs: parametric and spatial reduced-

order models. A global reduced-order basis has then introduced the displacement and velocity

of a capsule at a selection of snapshots (section 3). This allows introducing a reduced model

that corresponds to any parameter vector of Ca and a/ℓ values by estimating its corresponding

principal components (section 3.4). Then, with the use of a Diffuse Approximation (DA) method,

we adopt a data-driven manifold learning to predict the deformation of the capsule in the flow

for a chosen time discretization. A numerical validation demonstrates the new model’s efficiency

and accuracy compared to the full-order simulations. A sensibility analysis is also provided to

prove the robustness of the approach.
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Figure 2.2: Illustration for time evolution cases of capsule deformations flowing in microfluidic

channel with numbers in figure 2.1. The capsule is pre-deformed into an ellipsoid when a/ℓ ≥

0.95.

3.1 Overview

We give below a short overview of the proposed data-driven model order reduction methodology.

The approach is divided classically into two stages: An offline stage for the search of the principal

components and POD coefficient matrices of the FOM solutions, then an online stage where a

low-order system is used to simulate the problem for a configuration of parameter (Ca, a/ℓ).

1. Offline stage. We build two POD bases for space and parameter variables. The displace-

ment field is represented as

{u}({X}, t, θ) =
Kx

u

∑
k=1

Kc
u

∑
ℓ=1

Akℓ(t) {Φr
u}k (ψu (θ))ℓ, (3.1)

where {Φr
u}k ∈ R3Nx are the spatial POD modes, ψu (θ) ∈ RKc

u the parameter modes and

Akℓ(t) scalar coefficients depending on time t. The truncation ranks are Kx
u and Kc

u, respec-

tively (the ’x’ superscript stands for ’space’ and the ’c’ superscript for ’configuration’). We

use a similar representation for the velocity field:

{v}({X}, t, θ) =
Kx

v

∑
k=1

Kc
v

∑
ℓ=1

Bkℓ(t) {Φr
v}k (ψv(θ))ℓ . (3.2)
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The two POD bases are determined using singular value decomposition (SVD) from the

datacube with different data rearrangements in stacked matrix form. The truncation ranks

Kx
u, Kc

u, Kx
v , Kc

v are expected to be rather small while ensuring the accuracy of the represen-

tations.

2. Online stage. For any query configuration of parameters θq in the parameter domain:

(a) Estimate the displacement field {u}({X}, t, θq) from expression (3.1) through an inter-

polation process at θ = θq. For that, we use a diffuse approximation technique (Bre-

itkopf et al., 2002) that can be used for any parameter space dimension;

(b) From the displacement {u}({X}, ti, θq) and velocity {v}({X}, ti, θq) fields estimated

at different instants ti ∈ [0, Tf ], compute their corresponding low-order reduced basis

by singular value decomposition. Then, we get the low-order representations of both

displacements and velocities:

{u}({X}, t, θq) =
mu

∑
k=1

αk(t) {φk}(θq), (3.3)

{v}({X}, t, θq) =
mv

∑
k=1

ξk(t) {γk}(θq), (3.4)

(c) Manifold learning online stage: with the use of diffuse approximation method, we

determine the low-order manifold M that relies displacements and velocities in the

(reduced-order) state space:

ξ =M(α, θq);

(d) Derivation of a low-order dynamical system: we then derive a lightweight differential-

algebraic dynamical system, for θ = θq, solve

dα

dt
= Q ξ(t),

ξ(t) =M(α(t), θq).

The high-dimensional displacement and velocity fields can then be reconstructed ac-

cording to (3.3) and (3.4).

In the next section, we give all the details of the ROM methodology.
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3.2 Offline stage

3.2.1 Global Parametric Reduced Basis (GPRB)

This first step consists in computing a parametric reduced basis in the whole parameter do-

main from the database of FOM results (see Section 2.3). For simplification reasons, we use the

subscript ϱ that can be either u or v to express displacements and velocity respectively in the

formulas.

Time

Space

Parameters

Figure 3.1: FOM data rearrangements for parametric data set selection.

Let Si
u ∈ M3Nx ,Nc (R) be the matrix of capsule displacement fields {u} and Si

v ∈ M3Nx ,Nc (R)

the matrix of the velocity fields {v} at time ti, i = 1, ..., Nt (Figure 3.2a), considering all the

configurations θj for j = 1, . . . , Nc of the database, i.e.

Si
u =

[
{u}

(
{X}, ti, θ1

)
, . . . , {u}

(
{X}, ti, θNc

)]
,

and

Si
v =

[
{v}

(
{X}, ti, θ1

)
, . . . , {v}

(
{X}, ti, θNc

)]
.

Then we stack all the matrices Si
ϱ for i = 1, . . . , Nt into a big matrix Sϱ ∈ M3Nx×Nt,Nc (R):
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Sϱ =


S1

ϱ

S2
ϱ

...

SNt
ϱ

 for ϱ = u, v.

We then apply SVD (Golub & Reinsch, 1971) and get:

Sϱ = Uϱ ΣSϱ
ΨT

ϱ , for ϱ = u, v, (3.5)

where Uϱ ∈ M3Nx Nt,Nc (R), Ψϱ ∈ MNc (R) are semi-orthogonal and orthogonal matrices, re-

spectively, and ΣSϱ ∈ MNc (R) is the diagonal singular value matrix. The matrix Ψϱ of discrete

parameter modes can be truncated according to Kc
ϱ parameters, so we note:


Ψr

ϱ =

[
(Ψϱ)1, ..., (Ψϱ)Kc

ϱ

]
∈ MNc,Kc

ϱ
(R),

with (Ψϱ)k ∈ MNc,1 (R) for k = 1, . . . , Kc
ϱ, and ϱ = u, v.

(3.6)

The orthogonality property ensures that
(

Ψr
ϱ

)T
Ψr

ϱ = IKc
ϱ
.

3.2.2 Global Spatial Reduced Basis (GSRB)

Similarly, we build a global spatial reduced basis that captures the spatial data of capsule dis-

placements.

Let T j
u ∈ M3Nx ,Nt (R) be the displacement matrix and T j

v the velocity matrix for the j-th

configuration θj, for j = 1, . . . , Nc at all time instants ti, i = 1, . . . , Nt (Figure 3.2b):

T j
u =

[
{u}

(
{X}, t1, θj

)
, . . . , {u}

(
{X}, tNt , θj

)]
,

and

T j
v =

[
{v}

(
{X}, t1, θj

)
, . . . , {v}

(
{X}, tNt , θj

)]
.

Then we define the global matrix Tϱ ∈ M3Nx ,Nt×Nc (R) that horizontally gathers all the matrices

T j
ϱ for j = 1, ..., Nc and ϱ = u, v, respectively:

Tϱ =
[

T1
ϱ , T2

ϱ , . . . , T Nc
ϱ

]
, for ϱ = u, v.

The SVD decomposition is applied on Tϱ to get
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Time

Space

Parameters

Figure 3.2: FOM data rearrangements for spatial data set selection.

Tϱ = Φϱ ΣTϱ VT
ϱ , for ϱ = u, v, (3.7)

where Φϱ ∈ M3Nx (R), Vϱ ∈ MNc Nt,3Nx (R) are orthogonal and semi-orthogonal matrices, respec-

tively, and ΣSϱ ∈ M3Nx (R) is the diagonal singular value matrix with singular values organized

in decreasing order. We can also apply a spatial basis truncation at a range of Kx
ϱ for a specified

accuracy threshold. The reduced spatial POD basis is stored in the matrix:

Φr
ϱ =

[
{ϕϱ}1, . . . , {ϕϱ}Kx

ϱ

]
∈ M3Nx ,Kx

ϱ
(R) (3.8)

with the orthogonality property
(

Φr
ϱ

)T
Φr

ϱ = IKx
ϱ
, ϱ = u, v.

3.3 Data dimensionality reduction

Once the POD modes of Sϱ and Tϱ for the displacement fields (ϱ = u) and the velocity fields

(ϱ = v) are computed, one can summarize (approximate) capsule displacement and velocity

fields of the database at any discrete time ti (i = 1 . . . , Nt) as

{u}
(
{X}, ti, [θ1, ..., θNc ]

)
≈ Φr

u A(ti) (Ψr
u)

T ∈ M3Nx ,Nc(R), (3.9)
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{v}
(
{X}, ti, [θ1, ..., θNc ]

)
≈ Φr

v B(ti) (Ψr
v)

T ∈ M3Nx ,Nc(R), (3.10)

where A(ti) ∈ MKx
u,Kc

u (R) and B
(
ti) ∈ MKx

v ,Kc
v (R) are some coefficient matrices depending

on time ti. If the approximation is chosen as the orthogonal projection over the vector spaces

spanned by the POD modes, the coefficient matrices are computed as follows for i = 1 . . . , Nt:

A(ti) = (Φr
u)

T︸ ︷︷ ︸
Kx

u×(3Nx)

{u}
(
{X}, ti, [θ1, ..., θNc ]

)
︸ ︷︷ ︸

(3Nx)×Nc

Ψr
u︸︷︷︸

Nc×Kc
u

, (3.11)

B(ti) = (Φr
v)

T︸ ︷︷ ︸
Kx

v×(3Nx)

{v}
(
{X}, ti, [θ1, ..., θNc ]

)
︸ ︷︷ ︸

(3Nx)×Nc

Ψr
v︸︷︷︸

Nc×Kc
v

. (3.12)

The outputs of the offline stage are respectively the POD matrices Φr
u, Φr

v, Ψr
u, Ψr

v and the

small matrices A(ti), B(ti), i = 1, ..., Nt. The next online stage will operate on the summarized

data (3.9),(3.10) with coefficients matrices (3.11),(3.12). The algorithm of the offline phase is

summarized in Algorithm 1.
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Algorithm 1 Offline phase
Require: database of θk for k = 1, . . . , Nc, truncations Kc

ϱ, number of snapshots Nt.

for i← 1, . . . , Nt do

if (ϱ = u) then

Si
u ←

[
{u}

(
{X}, ti, θ1

)
, . . . , {u}

(
{X}, ti, θNc

)]
; Su ← [Su; Si

u];

else

Si
v ←

[
{v}

(
{X}, ti, θ1

)
, . . . , {v}

(
{X}, ti, θNc

)]
; Sv ← [Sv, Si

v];

end if

end for

for j← 1, . . . , Nc do

if (ϱ = u) then

T j
u ←

[
{u}

(
{X}, t1, θj

)
, . . . , {u}

(
{X}, tNt , θj

)]
; Tu ← [Tu, T j

u];

else

T j
v ←

[
{v}

(
{X}, t1, θj

)
, . . . , {v}

(
{X}, tNt , θj

)]
; Tv ← [Tv, T j

v];

end if

end for

Φϱ ← SVD(Sϱ), Ψϱ ← SVD(Tϱ), for ϱ← u, v;

for i = 1, . . . , Nt do

A(ti)← (Φr
u)

T {u}
(
{X}, ti, [θ1, ..., θNc ]

)
Ψr

u;

B(ti)← (Φr
v)

T {v}
(
{X}, ti, [θ1, ..., θNc ]

)
Ψr

v;

end for
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3.4 Online stage: search for an approximate solution

In the online stage, a user will ask for an approximate solution at a new (query) configuration

θ = θq that has not been already computed by the FOM solver or is not stored in the database.

Ingredients of the online stage will be: i) the data summarization of the previous offline stage;

ii) a first estimation of the spatio-temporal solution at θ = θq; iii) the computation of a low-

dimensional spatial reduced basis suitable for θ = θq; iv) the construction of a manifoldM that

links variables of displacements and velocities in the low-order state space to solve the equation of

membrane mechanics; v) finally, the building of a low-order differential-algebraic (DAE) system

of equations that defines the reduced-order model. Substeps ii) and iv) will make use of diffuse

approximation (DA) as a universal approximator for multivariate functions.

3.4.1 First estimation of the solutions at θ = θq

As an introduction, let us assume that, from the parameter sampling {θ1, ..., θNc}, we consider a

polynomial Lagrange interpolation with Lagrange polynomials denoted by Li(θ) such that the

Lagrange property

Li(θj) = δij, 1 ≤ i, j ≤ Nc

is fulfilled (δij is the standard Kronecker symbol). Let us denote by L(θ) = (Lj(θ))j=1,...,Nc ∈ RNc

the vector that stores the Lagrange polynomials. Then

I{u}
(
{X}, ti, θq

)
:= {u}

(
{X}, ti, [θ1, ..., θNc ]

)
L(θq) ∈ R3Nx

is an interpolated displacement field at parameter θ = θq and discrete time t = ti. One can of

course do the same for the velocity field.

Unfortunately, Lagrange polynomial interpolation is not suitable for parameter spaces of arbi-

trary dimension because of the curse of dimensionality and because it may suffer from instability

issues (Runge phenomenon). Rather than using polynomial interpolation, we propose to use a

Diffuse Approximation (DA) technique (Breitkopf et al., 2002; Quesada et al., 2021) which is an

approximation method based on local low-order polynomial reconstruction (of order one or two)

using a compactly-supported kernel function and weighted least squares. The DA method is

known to be a robust and reliable approach which is less sensitive to the location of the sampling

points. Moreover, it can be applied to multivariate functions of arbitrary dimensions, which is

interesting for larger or more general parameter spaces.

To estimate the displacement field for θ = θq, we look for a vector ψu(θq) ∈ RKc
u such that

{u}({x}, ti, θq) = Φr
u A(ti)ψu(θq) (3.13)
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returns an approximation of the displacement field at θ = θq. Similarly for the velocity field, we

search for a vector ψv(θq) ∈ RKc
v that gives

{v}({x}, ti, θq) = Φr
v B(ti)ψv(θq). (3.14)

Each vector ψϱ(θq) ∈ RKc
ϱ can be locally approximated by

Ψϱ(θq) = Aϱ p(θq), for ϱ = u, v, (3.15)

where the matrix Aϱ ∈ MKc
ϱ,m (R) (to be determined) is the approximation coefficient matrix and

p
(
θq
)
∈ Rm is a vector of independent polynomial functions, where

p (θ) =

[
1 Ca a/ℓ

]T

, m = 3 for first order DA,

p (θ) =

[
1 Ca a/ℓ Ca (a/ℓ) (Ca)2 (a/ℓ)2

]T

, m = 6 for second order DA.
(3.16)
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Figure 3.3: (a) DA elliptical region of interest (dashed line) defined around the point θq =

(Ca = 0.055, a/ℓ = 0.95) in the parametric space with M = 10 neighbors; (b) Weight function

w(d).

To approximate ψϱ(θq), let us consider a neighborhood S (θq) centered on θq containing M

neighboring points (Figure 3.3a). It is an ellipse of equation(
θ1 − (θq)1

)2
+ r̃2 (θ2 − (θq)2

)2
= R2

where r̃ is fixed (equal to 1.9 in Figure 3.3a) and R is chosen such that the ellipse contains M

points (M being chosen by the operator). In other words, the distance between θ = (θ1, θ2)T and

θq is

d =
((

θ1 − (θq)1
)2

+ r̃2 (θ2 − (θq)2
)2
) 1

2
/R. (3.17)
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One can use the candidate weight function (Figure 3.3b)
w (d) = 2 d3 − 3 d2 + 1, d ≤ 1,

0, otherwise.
(3.18)

Diffuse approximation consists in minimizing the weighted least square problem

min
Aϱ∈MKc

ϱ ,m(R)
Jθq

(
Aϱ

)
:=

1
2 ∑

θ∈S (θq)

w (d(θ))
∥∥∥Aϱ p (θ)− [Ψr

ϱ (θ)]
T
∥∥∥2

RKc
ϱ

(3.19)

where [Ψr
ϱ (θ)]

T is the truncated matrix of modes that correspond to couples θk, k = 1, . . . , Nc.

The solution Aϱ (ϱ = u, v) of the weighted least square problem (3.19) is then

Aϱ = (Ψr
ϱ)

TWP
(
PTWP

)−1
∈ MKc

ϱ,m(R) (3.20)

where the matrix P ∈ MNc,m (R) and the diagonal matrix of weights W ∈ MNc (R) are defined

as

P =


p (θ1)

T

...

p (θNc)
T

 andW =


w1 0 · · · 0

0 w2
...

...
. . .

0 · · · wNc

 . (3.21)

3.4.2 Construction of a low-order reduced basis suitable for θ = θq, data generation

From (3.13) and (3.14), one can easily generate some pseudo-snapshot matrices U (θq) and V(θq)

that gather the estimated displacements and velocities at Nt discrete times, respectively:


U (θq) =

[
{u}

(
{X}, t1, θq

)
, ..., {u}

(
{X}, tNt , θq

)]
,

V(θq) =

[
{v}

(
{X}, t1, θq

)
, ..., {v}

(
{X}, tNt , θq

)]
.

(3.22)

One can then apply a new SVD decomposition of matrices U (θq) and V(θq) respectively

to get spatial POD modes {ϕk}(θq) ∈ R3Nx , k = 1, ..., mu for {u} and velocity POD modes

{γk}(θq) ∈ R3Nx , k = 1, ..., mv for {v}.

POD
(
U (θq)

)
→ {ϕ1}(θq), ..., {ϕmu}(θq) (3.23)

POD
(
V(θq)

)
→ {γ1}(θq), ..., {γmv}(θq) (3.24)

where mu and mv are the truncation ranks of displacement and velocity modes determined in the

next section on numerical experiments. One can then search the displacement and velocity fields
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at θ = θq as

{u}
(
{X}, t, θq

)
=

mu

∑
k=1

αk (t) {φk}
(
θq
)

, (3.25)

{v}
(
{X}, t, θq

)
=

mv

∑
k=1

ξk (t) {γk}
(
θq
)

. (3.26)

By denoting

Φ(θq) =
[
{φ1}

(
θq
)

, ..., {φmu}
(
θq
)]
∈ M3Nx,mu(R), (3.27)

Γ(θq) =
[
{γ1}

(
θq
)

, ..., {γmv}
(
θq
)]
∈ M3Nx,mv(R) (3.28)

and α(t) = [α1(t), ..., αmu(t)]T ∈ Rmu , ξ(t) = [ξ1(t), ..., ξmv(t)]T ∈ Rmv , we have the vector formulas

{u}
(
{X}, t, θq

)
= Φ(θq) α(t), {v}

(
{X}, t, θq

)
= Γ(θq) ξ(t). (3.29)

The mode matrices Φ(θq) and Γ(θq) are assumed to be orthonormal (w.r.t the natural Euclidean

inner product), so we have [Φ(θq)]T Φ(θq) = Imu and [Γ(θq)]T Γ(θq) = Imv .

3.4.3 Toward a physically consistent dynamical reduced-order model

Consider now the forward Euler scheme on the FSI system with a ROM time step δtROM > 0: at

time ti+1,ROM = ti,ROM + δtROM, the numerical scheme is

{ui+1} = {ui}+ δtROM {vi}, (3.30)

{vi+1} = {φ}({ui+1}, θq). (3.31)

Let us emphasize that the equation of local mechanical equilibrium depends on the parameter θq.

For the reduced-order model, we would like to have a similar algebraic structure to (3.30),(3.31)

but formulated as a low-dimensional system. If {ui} and {vi} are searched in the form {ui} =

Φ̃(θq) αi and {vi} = Γ(θq) ξi, respectively, equation (3.30) becomes

Φ̃(θq) αi+1 = Φ̃(θq) αi + δtROM Γ(θq) ξi.

By multiplying by [Φ̃(θq)]T on the left, we get the system of mu equations

αi+1 = αi + δtROM Q(θq) ξi, (3.32)

where Q(θq) = [Φ̃(θq)]TΓ(θq). Equation (3.31) is replaced by

Γ(θq) ξi+1 = {φ}(Φ̃(θq) αi+1, θq).
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By multiplying by [Γ(θq)]T on the left, we get

ξi+1 =M(αi+1, θq)

where

M(αi+1, θq) = [Γ(θq)]
T{φ}(Φ̃(θq) αi+1, θq). (3.33)

3.4.4 Manifold learning

Because of nonlinear terms, the direct computation ofM(αi+1, θq) in (3.33) requires high-dimensional

computations, which makes the ROM irrelevant from a performance point of view. To "identify"

a low-order manifold M, we rather adopt a data-driven approach based once again of diffuse

approximation. We link the entry data αD
k (t

i), k = 1, ..., mu, i = 1, ..., Nt to the output data

ξD
k (t

i), k = 1, ..., mv, i = 1, ..., Nt (’D’ stands for ’data’). For that, one can compute the orthogonal

projections of the pseudo-snapshots over the POD bases, leading to the formulas

αD
k (t

i) = ⟨{u}({X}, ti, θq), {φk}(θq)⟩

and

ξD(ti) = ⟨{v}({X}, ti, θq), {γk}(θq)⟩

at instants ti = i∆t. Manifold learning consists in achieving a (nonlinear) regression method that

links entry and output data. We are looking for a manifold representation ξ =M(α, θq) in the

form

ξk = p(α)Tak, k = 1, ..., mv (3.34)

where p(α) is the vector made of monomials in α of order zero and one, and ak ∈ Rmu+1 is a

vector of coefficients to be determined from the data. This corresponds to a local linear embed-

ding process. For each k = 1, ..., mv, one looks for a coefficient vector ak(t) ∈ Rmu+1 solution of

the weighted least square problem

ak(t) = arg min
a∈Rmu+1

1
2

Nt

∑
i=1

w
(
|t− ti|

R

) (
p(αD(ti))T a− ξD

k (t
i)
)2

(3.35)

where t ∈ [0, Tf ], w = w(d) is the weight function defined in Figure 3.3b and d = |t−ti |
R . This

returns a regression function

ξk = ξk(t, α(t)) = p(α(t))T ak(t). (3.36)
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3.4.5 Low-order dynamical reduced order model

The resulting time-discrete reduced-order model is then

ti+1,ROM = ti,ROM + δtROM, (3.37)

αi+1 = αi + δtROM Q(θq) ξi, (3.38)

ξ i+1
k = p(αi+1)T ak(ti+1,ROM) ∀k ∈ {1, ..., mv}. (3.39)

High-dimensional displacement and velocity fields can be reconstructed as follows:

{u}
(
{X}, ti+1,ROM, θq

)
= Φ̃(θq) αi+1, {v}

(
{X}, ti+1,ROM, θq

)
= Γ(θq) ξi+1.

The online stage of the reduced-order model is summarized in Algorithm 2.

Algorithm 2 Online phase

Require: choose a query parameter θq, choose a time step δtROM > 0.

Initialization: t = t0,ROM = 0, α0 = 0, ξ0 = ξD(0);

Compute Φ(θq) from the diffuse approximation approach;

for i = 1 . . . , Nt do

{u}({x}, ti, θq)← Φr
u A(ti)Ψu(θq);

{v}({x}, ti, θq)← Φr
v B(ti)Ψv(θq);

end for

U (θq)← [{u}({x}, t1, θq), . . . , {u}({x}, tNt , θq)];

V(θq)← [{v}({x}, t1, θq), . . . , {v}({x}, tNt , θq)];

Compute Φ̃(θq), Γ(θq), Q(θq), αD(ti) and ξD(θi), i = 1, ..., Nt;

while t < Tf do

t← t + δtROM; ti+1,ROM = ti,ROM + δtROM;

αi+1 = αi + δtROM Q(θq)ξi;

Compute ak(ti+1,ROM), k = 1, ..., mv from the diffuse approximation approach;

ξ i+1
k = p(αi+1)T ak(ti+1,ROM);

If needed, reconstruct the high-dimensional displacements/velocity fields:

{u}
(
{X}, ti+1,ROM, θq

)
= Φ̃(θq) αi+1;

{v}
(
{X}, ti+1,ROM, θq

)
= Γ(θq) ξi+1;

end while

We give below figure 3.4 the execution structure of the main steps of the prediction model.
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Figure 3.4: Illustration of the main step in the prediction model.

4 Numerical results

4.1 Study case

We consider a capsule flowing in a square-base microchannel of base edges of length 2ℓ. We want

to capture the capsule dynamics for capillary numbers Ca belonging to the interval [0.005, 0.2]

and aspect ratios a/ℓ in the interval [0.75, 1.2] for which a steady state shape is reached. The

Caps3D code (Walter et al., 2010; Hu et al., 2012) is then used as FOM solver. The total non-

dimensional time for simulation is T = 20. For any capillary number and aspect ratio, the

capsule is discretized with the same mesh resolution and connectivity, consisting of Nx = 2562

nodes (corresponding to 1280 triangular elements), with a capsule mesh size ∆hC = 0.075 a (see

Figure 4.1). A second-order RK2 Ralston scheme is used for time integration. The dimensionless
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time step is γ̇δt = 5 10−4 for Ca > 0.01 and γ̇δt = 10−4 for Ca ≤ 0.01 .

Figure 4.1: Three-dimensional representation of a capsule flowing in a square microchannel.

4.2 FOM result database generation

A database of FOM results is generated from a sampling of the parameter domain (see Figure

4.2). It is observed that configurations for which a shape steady state is reached before the non-

dimensional final time of 20 correspond to couples (Ca, a/ℓ) in the parameter plane below the

dashed red line of Figure 4.2. Using a Cartesian parameter sampling with step sizes of 0.01 in Ca

and 0.05 in a/ℓ, plus few additional points at Ca = 0.005, we get a database made of Nc = 118

configurations. From Caps3D FOM solutions, we pick up time-snapshot solutions every time

step ∆t = 0.2 in non-dimensional time scale, corresponding to Nt = 100. This makes a datacube

made of 2× 3Nx NcNt ≈ 1.81 108 double precision float numbers taking about 1.45 GB of memory.

4.2.0.1 Clustering strategy For the sake of memory storage complexity, we adopt a strategy of

data clustering with two weakly-overlapping clusters chosen manually, represented in Figure 4.2.

A clustering study has been done in order to identify the best criteria and the optimal number

of clusters (see appendix A) For each cluster, a data dimensionality reduction is done following

the offline-stage algorithm presented in Section 3. That means that two families of reduced-order

models are actually computed. In the online stage, for a new query parameter vector θq, one has

to determine the cluster of belonging.
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Figure 4.2: Design of computer experiment with sampling in the admissible parameter domain.

The parameter domain is divided into two overlapping clusters: cluster 1 (squares), cluster 2

(crosses), and overlapping region (mixed squares and crosses)

4.3 Numerical validation of data-driven reduced-order model

4.3.1 Dimensionality reduction analysis

A singular value decomposition analysis is first performed on the matrices Su and Sv, and then

on Tu and Tv. In Figure 4.3(a), we plot the indicator (1− RIC) (see (6.1)), as a function of the

truncation rank K, for Su and Sv. What can be seen is that (1− RIC) rapidly converges towards

the value 0 in all cases. An expected (1− RIC) of 10−7 is reached for a truncation rank Kc
u (resp.

Kc
v) of 7 for the displacement (resp. 23 for the velocity). Similarly in Figure 4.3(b), we plot the

indicator (1 − RIC) for Tu and Tv. The number of modes Kx
u (resp. Kx

v) needed to reach the

threshold of 10−7 is 7 for the displacement (resp. 56 for the velocity).

As supplementary indicators, the singular values σ̃K normalized by σ̃1 are plotted in Fig-

ure 4.4(a) (resp. Figure 4.4(b)) for both matrices Su and Sv (resp. Tu and Tv) in log10 scale. One

can first observe a lower decay rate for the velocity fields compared to the displacements, mean-

ing a greater information complexity for the velocity. Secondly, the decay rate is lower for the

global spatial mode than for the parametric modes, indicating a larger entropy of information on

the whole parameter domain. That justifies the derivation of suitable lower order spatial basis at

a query parameter θq in the online stage.
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Figure 4.3: behavior of the relative information content of the matrices Su and Sv (a) and Tu

and Tv (b) is shown in the form (1− RIC) as a function of the truncation rank K. The red line

corresponds to (1− RIC) = 10−7.
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Figure 4.4: (a): Parametric normalized singular values σ̃K/σ̃1 for Su and Sv; (b): Spatial normal-

ized singular values σ̃K/σ̃1 for Tu and Tv.

At the beginning of the online stage, for a query parameter θq, an interpolated approximate

solution is computed thanks to a diffuse approximation reconstruction. This allows us to get

pseudo-snapshots in time for both displacements and velocities, stored in matrices U (θq) and

V(θq), respectively. We assess the RIC for the two matrices, from an experimental parameter

vector θq = (0.10, 0.90). The comparison of the time evolution of POD coefficients between FOM

and ROM models shows a high accuracy (see Figure 4.5). and Figure 4.6 shows that the RIC

rapidly converges to 1. An expected RIC greater than 1 − 10−7 returns a truncation rank mu

(resp. mv) of value 3 (resp. 8).
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(a) (b)

Figure 4.5: FOM versus ROM comparison of the time evolution of the first three displacements

(a) and velocity (b) POD coefficients for the query parameter θq = (0.10, 0.90).
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Figure 4.6: Online stage: behavior of the relative information content of the matrices U (θq)

and V(θq) shown in the form (1 − RIC) for query parameter θq = (0.10, 0.90). The red line

corresponds to (1− RIC) = 10−7.

4.3.2 Offline sensitivity analysis

In this section, we study the effect of the different parameters on the prediction by comput-

ing dMH/a between the predicted and high-resolution shapes of a capsule. The study is done

using the configuration θq = (a/ℓ = 0.90, Ca = 0.10) as an example test which located in clus-

ter 1 (figure 4.2). The default values of the parameters are the following: (Kx
u, Kc

u) = (40, 75),
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(Kx
v , Kc

v) = (40, 75), M = 12, (mu, mv) = (10, 10), and Ny = 4.

We start by studying the effect of parametric truncation values Kc
ϱ for ϱ = u, v on the predic-

tion performance. Figures 4.7 shows that 25 parametric modes are enough to reach an error of

0.2% for the displacement model and around 50 modes for the velocity model to reach the same

amount of error.
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Figure 4.7: The effect of Kc
ϱ parametric truncation parameters on the prediction.

Figures 4.8 shows the effect of spatial truncation parameters on the prediction for different values

of Kx
u and Kx

v . As it is shown, the prediction accuracy is proportional to the number of taken

modes, and it is relatively identical for displacement and velocity parameters.
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Figure 4.8: The effect of Kx
ϱ parametric truncation parameters on the prediction.

We also study the effect of the number of neighbors that are used in the 2nd order DA method
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to estimate {ψ}q,ϱ. Figure 4.9 shows the effect of the number of neighbors on the accuracy of

prediction, which is measured by computing normalized Modified Hausdorff distance between

high fidelity and reconstructed capsule shapes at several transient states. As the figure shows,

the best prediction can be reached when neighbors are under 10 neighbors.
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Figure 4.9: The effect of the number of neighbors on the prediction accuracy in the offline phase.

4.3.3 Online sensitivity analysis

At the online phase, we investigate the effect that 3 parameters have on the manifold learning: the

truncation parameters for displacement and velocity fields (mu, mv) and the number of neighbors

for DA method.
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Figure 4.10: The effect of the number of modes on the prediction in the online phase.

Figures 4.10 present the effect of the number of modes mu and mv on the prediction where

five modes of U are good enough, unlike V who needs more modes to reach the best accuracy

possible of prediction.

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

m
n
= 3

m
n
= 4

m
n
= 5

m
n
= 10

m
n
= 12

Figure 4.11: The effect of the number of neighbors in the online phase.

Figure 4.11 shows the number of neighbors mn effect on the prediction where the accuracy of

this latter decreases when the number of neighbors rises.
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4.3.4 ROM accuracy analysis

The reduced-order model algorithm is applied with the following parameters and options:

- For global POD modes: Kx
u = 40, Kc

u = 40, Kx
v = 50, Kc

v = 50;

- For DA in (3.15),(3.20): local second order polynomial reconstruction, M = 12;

- For local POD modes: mu = 10, mv = 10;

- For DA in (3.35),(3.36): local first order polynomial reconstruction, R = 2∆t.

The resulting time-evolution of the three-dimensional capsule shape, that is reconstructed

with the ROM model, is illustrated in Figure 4.12 for the query couple θq = (0.10, 0.90). The

steady-state is reached before γ̇t = 3, which explains that the capsule shape is the same for

γ̇t = 3, 6, 9.

Figure 4.12: A three-dimensional shape of a capsule flowing in a square microchannel, recon-

structed with the ROM model for θ = (Ca = 0.10, a/ℓ = 0.90) and shown at γ̇t = 0, 0.4, 3, 6, 9.

The capsule initial shape is shown in transparency.

We now focus on the accuracy analysis of the proposed reduced-order model. The methodol-

ogy for error measurement is based on a ’Leave-one-out’ cross-validation procedure, where each

sample FOM solution is taken out from the database and then evaluated by the ROM model and

compared to the original FOM one. The error is measured using the modified Hausdorff distance

calculated on the capsule shapes at different instants.
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a) b)

c) d)

Figure 4.13: Heat maps of the normalized Hausdorff Distance dMH/a of configuration prediction

shapes over the parametric space at different transient states: a) γ̇t = 1; b) γ̇t = 2; c) γ̇t = 4; and

d) γ̇t = 8. Note that the maximum error is 3.26% in d).

Figure 4.13 shows the heat maps of the FOM-vs-ROM error computed over the parameter

space at the time instants γ̇t = 1, 2, 4 and 8. Figure 4.13 shows that the predicted ROM solutions

are very accurate with a mean relative error below 0.2%. The maximum relative errors are

below 3.5%: they occur along the boundary of the parameter domain, which is the only location

where the predictions slightly lose in accuracy. This is probably due to a lack of well-distributed

neighbors close to the boundaries, which affects the accuracy of the DA reconstruction (off-centre

approximation). One can also notice that the accuracy of predictions decreases in time.

The capsule cross-section profiles predicted by the ROM (red dots) are compared to the ref-

erence FOM solutions (solid black line) in Figure 4.15 at different time instants (γ̇t = 0, 1, 2 and

8) for the 6 configurations, selected as illustration in Figure 2.2.

To seek this purpose, we apply a vertical cutting plane on the 3D capsule shape figure 4.14.

We observe that the reduced-order model returns very accurate solutions in terms of capsule

shape as well-as axial position in the channel.
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Figure 4.14: A microcapsule of θ = (0.068, 1.077) flowing in a square microchannel simulated by

FOM with a vertical cutting plane represented in grey.

From the computing performance point of view, ROM-vs-FOM speedups are observed to

be of order 10,000 with almost the same accuracy, making interactive exploration and real-time

visual rendering possible.
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Figure 4.15: Comparison between the ROM (red dots) and FOM solutions (black line) of the

capsule cross-section shapes in the plane y = 0 at the times γ̇t = 0, 1, 2, and 8, respectively, for

the 6 parameter couples selected in Figure 2.1. The horizontal lines correspond to the channel

walls.
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(a) (b)

(c) (d)

Figure 4.16: Time evolution of the first 3 POD coefficients of the displacement (a,c) and velocity

(b,d) for the selected query parameters of Figures 2.2-4.15. The black arrows indicate the time-

evolution direction.

5 Software tool presentation

We have developed a software tool CapsuleExplorer based on the data-driven ROM to pro-

vide 3D microcapsule deformation for any couple (Ca, a/ℓ) in the admissible parameter space

(figure 2.1) at any time γ̇t. The tool allows to select a couple (Ca, a/ℓ) and explores in real-time

its corresponding capsule deformation through time, either in 3D or 2D with longitudinal or

transversal cross-sectional view. It uses an optimal experimental design for a faster resolution

(see the appendix B). In the following, we explain how to use the software interface.

1. Entering a capillary number Ca and a confinement ratio a/ℓ can be done either using the

spinners or by activating the cursor mode switcher and clicking directly with the mouse
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Figure 5.1: Selecting capillary number and confinement ratio using cursor mode.

cursor on the white zone shown on the right of figure 5.1. The selected configuration can

only be in the white zone, as it is the region of the parametric domain where a capsule

obeying the Neo-Hookean law reaches a steady-state shape.

2. Click on "Simulate". Once the “Displayer”, located at the bottom left of the screen, indicates

Figure 5.2: Initial capsule shape in 3D view.

the end of the calculation, the 3D capsule shape appears automatically on the right (in its

initial spherical shape). It can be viewed at any other time using the timer slider located
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Figure 5.3: Dynamic 3D capsule view.

below the figure.

Figure 5.4: Dynamic 2D cross-section longitudinal view.

3. In the 2D view, one can visualize the cross-cut profiles of the capsule by choosing the

(y− z)−view or its transverse view by selecting the (x− y)−view from the radio buttons,

located below the “Displayer” (figure 7). As shown in figures 5.4 and 5.5, the "Displayer"

provides, at each chosen time instant (V/ℓ) t, the values of the geometrical parameters

defined in figure 2.1.
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Figure 5.5: Dynamic 2D cross-section transversal view.

4. one can also save visulaized capsule shape by selecting "save as" option.

Figure 5.6: Saving the capsule shape.

5. To launch a new simulation, click on the "Reset" button.
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6 Concluding remarks

This chapter presents an innovative data-driven reduced-order model that enables the fast-

simulation of capsule deformation flowing in a microfluidic channel. It consists of building a

data-driven ROM approach that allows predicting the time evolution of the capsule deformation

behavior for any couple of parameters for the admissible parametric space. Numerical valida-

tions confirm the efficiency of the two methods. For the ROM model, speedups are observed to

be of order 10, 000 compared to FOM, with an average accuracy of 0.3%.





Chapter 5
A non-intrusive kinematics-consistent

dynamic reduced-order model

1 Introduction

In this chapter, we propose a dynamical time-space order reduction model for the deformable

microcapsules in microfluidic channel. This model uses displacement and velocity snapshot ma-

trices extracted from FOM simulations following the work of De Vuyst et al. (2022). The approach

combines Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD)

and is used to build a dynamical system able to predict the capsule deformability in time. A first

model of that kind was recently proposed by Dupont et al. (2021) where they showed how accu-

rate POD-DMD reduced order model was to predict the capsule dynamics. The objective is now

to investigate what happens when the matrix of the DMD model has non constant coefficient and

whether it adds even more precision.

We start the chapter by giving a differential algebraical system that expresses the FSI prob-

lem. We formulate then a dynamical system that describes the capsule deformation dynamic

through a non constant dynamic operator. This latter is identified in section 3 using the Dynamic

Decomposition Method. In section 4, we only show results for the first and the second iterations,

as the model crashes at the following one.

2 Differential algebraical system

As we did for the first model, we start from FSI resolution database, where the relationship

between the evolution of the capsule displacement u and its velocity v can be described through

83
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an Algebraic Differential Equation (DAE)

{u̇} = {v}, t ∈ (0, T]

{v} = ϕ ({u}) ,

{u} (0) = 0,

(2.1)

where ϕ is a nonlinear application and with the reconsideration of the velocity {v} linear combi-

nation formula for any configuration of parameters θ

{v} (t) ≃
K

∑
k=1

ξk (t) {γ}k (θ) . (2.2)

From kinematic equation 2.1, the integration of the formula (2.2) in time allows us to have a

reduced formula of capsule displacement

{u} (t) =
∫ t

0
ξk (s) {γ}k (θ) ds. (2.3)

It can be written in the from

{u} (t) ≃
K

∑
k=1

αk (t) {γ}k (θ) , (2.4)

where αk (t) =
∫ t

0 ξk (s) ds. With the Galerkin projection of the system 2.1 on the POD basis, we

can rewrite the DAE system as

α̇ (t) = ξ (t) ,

ξk = ⟨{γ}k, ϕ
(

∑K
k=1 αk (t) {γ}k

)
⟩, k = 1, . . . , K.

(2.5)

it can also be written implicitly in the form

α̇ (t) = ξ (t) ,

ξ (t) = ϕr (α (t)) , with α (0) = 0,
(2.6)

where ϕr is an unknown nonlinear function in RK. The evaluation of ϕr usually requires high-

dimensional operation which making the approach losing its dimensional reduction benefit. Al-

ternatively, it can be identified using FOM simulation results. For that, the reformulation of DAE

system to an Ordinary Differential Equation (ODE) is proposed in the next section.

2.1 ODE system transition

The DAE system (2.1) can be transformed to an Ordinary Differential Equation (ODE) system, as

follows:
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α̇ (t) = ξ (t) ,

ξ̇ (t) =
(

∂ϕr
∂α

)
α=α(t)

α̇ (t) =
(

∂ϕr
∂α

)
α=α(t)

ξ (t) ,
(2.7)

where
(

∂ϕr
∂α

)
α̇ is the jacobian matrix of ϕr ∈ RK×K at the point α. For simplification reason we

note:

A (α) =

(
∂ϕr

∂α

)
(α̇) . (2.8)

By replacing (2.8) in (2.7), we obtain the ODE system:

α̇ (t) = ξ (t) ,

ξ̇ (t) = A (α) ξ (t)
(2.9)

with the limite conditions ξk (0) = ⟨{γ}k, ϕ ({X})⟩, k = 1, . . . , K.

3 Identification of the dynamic operator

The system 2.9 can be solved if and only if the matrices A (t) are determined. One way to identify

the matrices is by minimizing the least square functional

min
A(t)∈MK(R)

1
2

∫ T

0

∥∥∥∥ξ̇ (t)− A (t) ξ (t)
∥∥∥∥2

dt, (3.1)

where a simpler case in which A (t) can be determined using 3.1 is when it is considered as a

constant matrix A.

3.1 Identification of A (α) as a constant matrix

From the FOM database, the identification of the constant matrix A can be done using a dis-

cretization in time tn = n∆t where ∆t is the time step which leads to write:

min
A∈MK(R)

1
2

N−1

∑
n=1

∥∥∥∥ξn+1 − ξn

∆t
− Aξn

∥∥∥∥2

, (3.2)

where ξn+1−ξn

∆t is a forward the finite difference approximation of ξ̇ at time tn. The minimization

problem 3.2 can be written in condensed matrix form

min
A∈MK(R)

1
2
∥Y− AX∥2

F, (3.3)

where ∥ · ∥F is the Frobenius norm and the two data matrices

X =

[
ξ2 − ξ1

∆t
, . . . ,

ξN − ξN−1

∆t

]
, Y =

[
ξ1, . . . , ξN−1

]
. (3.4)
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The solution of the quadratic problem is given by

A = YX†, (3.5)

where X† = X
(
XXT)−1 is the pseudo-inverse matrix. With the identification of A, the system

(2.9) can be resolved through a numerical scheme as an explicit Euler scheme which gives

αn+1 = αn + ∆tξn,

ξn+1 = ξn + ∆tAξn.
(3.6)

The stability of the discrete system depends on the spectral proprieties of A. A regularization of

A can be used to get a more robust system by adding a Tikhonov regularization term

min
A∈MK(R)

1
2
∥Y− AX∥2

F +
µ

2
∥X∥2

F∥A∥2
F, (3.7)

where the scalar µ > 0 is the regularization coefficient (Dupont et al., 2021)). The solution Aµ of

the formula 3.7 is given by

Aµ = YXT
(
XXT + µ∥X∥2

F IK

)−1
. (3.8)

Since the matrix Aµ depends on the regularization coefficient µ, the optimal choice of this latter

should be taken by considering the approximation quality estimated by ∥Y − AµX∥2
F and the

norm solution ∥Aµ∥2
F. The optimal value of µ is located at the corner of the L−curve that is

plottes the values of µ→ ∥Y− AµX∥2
F according to the residual µ→ ∥Aµ∥2

F.

3.2 Identification of A (α) with DMD approach

To build a dynamic data-driven system from the system 2.9, one can decompose the matrix A (α)

under a dense base. For that, let
(
Ei,j

)
i,j=1,...,K the canonical base of MK (R), and aij (α) ∈ R an

elements of A (α), so we have

A (α) =
K

∑
i=1

K

∑
j=1

aij (α) Eij (3.9)

and by considering the all functions α→ aij (α) belong to a Banach space E . Let (α→ ϕk (α))k≥0

a dense family in E . Now, by assuming that each mapping aij (α) acquires the decomposition

aij (α) = ∑
k≥0

aij;k (α) . (3.10)

We can rewrite (3.9) as

A (α) =
K

∑
i=1

K

∑
j=1

∑
k≥0

aij;k (α) Eij. (3.11)
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The permutation of summation operators in formula (3.11) allows to write the following decom-

position

A (α) = ∑
k≥0

Akϕk (α) , (3.12)

where the constants matrices

Ak =
K

∑
i=1

K

∑
j=1

aij;kEij. (3.13)

The A (α) can be determined knowing Ak matrices and ϕk (α) functions which should be chosen.

For that, we can propose an iterative algorithm of the presented approach above with considering

ϕk (α) = αk. This latter represent the features that allow to identify A (α) through the formula

3.12. There is no trivial way to choose these features. In the literature, there are number of

techniques for constructing the feature space (Ham et al., 2004; Cavoretto & De Rossi, 2016). For

instance, a simple choice can be done by considering

α0 = 1, αk (α) = α · ek = αk, for k = 1, . . . , K, (3.14)

where ek are the vectors of the canonic base in RK (Erichson et al., 2019). From the two prece-

dent sections, one can suggest an iterative algorithm in which the matrices Ak are computed

successively. So, from the formula 3.9 we have
Ak (α) = A(k−1) (α) + αk Ak, for k = 1, . . . , K.

A0 (α) = A0

(3.15)

where A0 can be computed either with the formulas 3.3 or 3.8. Ak is estimated by minimizing

the least square objective function

min
Ak

1
2

N−1

∑
n=1
∥ (Y)n −

(
A(k−1) (α) + Akαn

k

)
(X)n ∥2

F, (3.16)

where (Y)n and (X)n are the n−th column of the matrices Y and X, respectively. Once the matrix

A (α) is identified, the system (2.9) can be resolved through a numerical scheme as explicit Euler

scheme which gives

αn+1 = αn + ∆tξn,

ξn+1 = ξn + ∆tA (α) ξn,
(3.17)

where the stability properties of the discrete system depend on the spectral properties of the

matrix

A∆ (α) =

 IK ∆tIK

[0]K (IK + ∆tA (α)) .

 (3.18)
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The system 3.17 is unconditionally stable in time if and only if the eigenvalues of IK + ∆tA (α)

are in the unit disk of the complex plane.

4 Numerical validation on a given configuration

In order to prove the efficiency of the DMD model, we consider the dynamics of a capsule flow-

ing in a microfluidic channel for θ = (Ca = 0.1, a/ℓ = 0.9) and ∆t = 0.04. The DMD method has

been applied by considering the evolution of capsule deformability over a non-dimensional time

γ̇t ∈ [0, 10]. The POD is applied to the displacement snapshot matrix U . We start the validation

by performing a singular value decomposition analysis on the displacement snapshot matrix. A

determination of the truncation rank is possible by studying the behavior of the relative informa-

tion content (1−RIC).
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Figure 4.1: The behavior of the relative information as function of truncation rank on the number

of modes for the configuration (Ca = 0.1, a/ℓ = 0.9).

Figure 4.1 illustrates the evolution of POD of the displacement snapshot matrix according to

number of modes. It shows that one mode allows retaining 99% of the total information. We take

for our validations 20 modes which correspond to 10−6 of accuracy.
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4.1 Dynamic mode decomposition resolution

In order to determine the matrix A, we construct the matrices X and Y as they are expressed in

the formulas 3.4. The condition numbers of the matrices X and XXT give 7.9× 105 and 6.3× 109,

respectively. These numbers are very high, which may affect the resolution’s robustness when

it comes to the identification of A (α). In order to check the stability of the model, we plot the

eigenvalues of the matrix A1 (α) = A0 + α1A1 for 20 modes.
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Figure 4.2: Complex eigenvalues λk = Re (λk) + iImag (λk), for k = 1, . . . , 20 of the matrix

A1 (α) = A0 + α1A1 when θ = (Ca = 0.1, a/ℓ = 0.9) and 20 modes are considered.

Figure 4.2 shows that the complex eigenvalues of A1 (α) have negative real parts which ensure the

stability of the system. We also study the stability of the system with Tikhonov regularization 3.8

which is applied according to the regularization coefficient µ. To determine this latter, we plot the

residual ∥Y− A1,µ (α)X∥2
F as a function of the norm ∥A1,µ (α) ∥2

F where A1,µ (α) = A0,µ + α1A1.
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Figure 4.3: Evolution of the residual ∥A1,µ (α) X − Y∥F as a function of the norm solution

∥A1,µ (α) ∥F when θ = (Ca = 0.1, a/ℓ = 0.9) and 20 modes are considered.

Since the choice of the regularization must be made while guaranteeing the system stability, we

plot the eigenvalues of the matrix A1,µ (α) for a different values of µ and 20 modes.
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Figure 4.4: Eigenvalues of A1,µ (α) with r = 20 modes for :(a) µ = 10−5; (b) µ = 10−6.
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Figure 4.5: Eigenvalues of A1,µ (α) with r = 20 modes for :(c) µ = 10−5; (d) µ = 10−8.

Figures 4.4-4.5 show that the system becomes stable with very small regularization µ < 10−5.

4.2 DMD prediction accuracy

The DMD model allows the prediction of capsule deformability through time. It predicts the

state of capsule displacement at tn+1 from the previous state at tn. To check the accuracy of the

model, we compare the DMD capsule deformation results with FOM simulations. We perform

a prediction of the capsule deformation beyond the considered non-dimensional time γ̇t = 10

in the database. The prediction test accuracy is done by estimating the capsule deformation

for γ̇t = 15. The test is done with and without regularization. The prediction accuracy over

time is measured by computing normalized Modified Hausdorff distance between the obtained

predicted capsule shapes and FOM results.
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Figure 4.6: Accuracy evolution of the capsule shape prediction for the configuration θ =

(Ca = 0.1, a/ℓ = 0.9) using DMD model with 20 modes. (continuous line) prediction in the

database time interval; (dashed-line) prediction out of the database time interval. (black-red line)

A (α) = A0 + αA1 computed without regularization formula 3.8. (blue line) Aµ (α) = Aµ + αA1

computed using regularization formula where µ = 10−8 and γ̇ = V/ℓ.

The figure 4.6 illustrates the prediction accuracy against FOM solutions. As shown, the

Tikhonov regularization gives a less accurate prediction than the case without regularization

at the database interval. However, beyond the database time interval γ̇t = 10, the regularization

allows having relatively more accurate prediction beyond the database time interval. This differ-

ences are due to the taken trade-off between the residual ∥Y− A (α)X∥2
F and the norm solution

∥A (α) ∥2
F.

We investigate the effect of A (α) order on the DMD model efficiency. In figure 4.7, we measure

the prediction accuracy through time without regularization for 3 cases: A0 (α), A1 (α), and

A2 (α).
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Figure 4.7: Accuracy evolution of the capsule shape prediction for the configuration θ =

(Ca = 0.1, a/ℓ = 0.9) using DMD model with 20 modes using A0 (α) = A0 (black line), A1 (α) =

A0 + α1 A1 (red dash-line), and A2 (α) = A0 + α1A1 + α2A2 (blue line).

As it can be noticed, the accuracy of the model remains the same when A0 (α) and A1 (α)

are considered. However, the prediction becomes less accurate for the second iteration A2 (α).

The accuracy of prediction is decreased to 1.5%. Beyond the second iteration An (α), for n > 2,

the model fails to predict the capsule shape evolution totally. Similar remarks are taken when

Tikhonov regularization is considered. The model was unable to perform prediction for n ≥ 1.

The comparison is done for the configuration θ = (Ca = 0.1, a/ℓ = 0.9) at different states

γ̇t = 0, 1, 2, 8. Figure 4.8 visualize the excellent prediction of the capsule deformation using the

DMD approach compared to reference capsule deformation with FOM.

γ̇t = 0 γ̇t = 1 γ̇t = 2 γ̇t = 15

Figure 4.8: Comparison of the capsule profile between the FOM (black dashed line) and the DMD

predicted (red dashed line) solutions for θ = (Ca = 0.1, a/ℓ = 0.9) at times γ̇t = 0, 1, 2 and 15

respectively. The horizontal lines correspond to the channel walls.
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5 Concluding remarks

In this chapter, we presented a dynamic mode decomposition model (DMD-ROM) to simulate

capsule deformability in a microfluidic channel. It involves the construction of a reduced-order

dynamic system using a POD procedure. The system is constructed with a non-constant matrix

A (α) that expresses the dynamic of capsule deformation in time. To identify the matrix A (α)

a dynamic mode decomposition method is used. The nonconstant matrix A (α) is computed

under the form of Ak (α) = A0 + ∑K
k≥1 αk Ak. It has been shown that the eigenvalues of A (α)

have negative real parts, which ensure the stability of the dynamic system. For stability reasons

A (α) is constructed at just one iteration. Any extended form has led to divergent results. The

numerical validation of the model gives clear evidence of its reliability in predicting the capsule

deformation of any desired state with an acceptable error rate.



Chapter 6
Conclusions et perspectives

Throughout this thesis dissertation, we aimed to propose alternative fast-simulation models to

the high-fidelity model used to solve the problem of deformable capsules flowing in microfluidic

channels. To seek this objective, we were interested in exploring data-driven approaches based on

ROM+manifold learning and ROM+DMD techniques. The ROM+manifold learning approach is

based on the construction of a low-order space-time-parameter basis model. This latter allows the

prediction of any query admissible couple θq = (Ca , a/ℓ) in the parameter domain. A manifold

learning is then achieved by the use of time-snapshot data of the interpolated solution at θ = θq.

One of the most outstanding features of this approach is fast-simulation computations that can

be done in few seconds, which sharply contrasts with the days required by the FOM method.

The Data-driven ROM+DMD approach is based on constructing a ROM dynamic system

of the treated problem. The dynamic system describes the dynamic relationship between the

spectral coefficients of the POD decompositions for the displacements and velocity fields. The

key idea is the identification of a dynamic operator that expresses the dynamic relation, where

we suggested using a dynamic mode decomposition approach.

As far as we know, the first model is the first dynamic reduced-order models for treating

the time-evolution of capsule deformability. Numerical validations confirm the efficiency of the

two methods where the simulation speedups are observed to be of order 10,000 with less than

0.3% in error average for ROM+manifold learning and less than 0.2% as a maximum error for

ROM+DMD method.

We also developed a relevant software tool with an intuitive interface to explore the time

evolution of capsule deformation for any desired admissible values of capillary number and

confinement ratio. This software tool uses the data-driven reduced model technique to predic-

tion the three dimensional deformation of capsule flowing in microfluidic channel very quickly.

95
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Furthermore, we believe that the proposed approaches in this thesis can be applied to a broad

range of multiphysics problems such as fluid-structure interactions, structural dynamics using

quasi-static structural mechanics models, and related problems.

As far as possible future work perspectives are concerned, several interesting research avenues

have been identified throughout the present thesis work. We aim to use the fast-simulation tools

to identify the mechanical properties from experimental results of capsule deformation. The

properties will be determined by fitting the deformed capsule shape predicted by the reduced-

order models to the experimental one using diffuse approximation techniques. The case of more

complex FSI configurations, such as the deformation of capsules flowing through a Y-shaped mi-

crochannel bifurcation, will be investigated in future work. For the dynamic data-driven model,

the method is not fully optimized to be more efficient. Nevertheless, improvements should be

brought to the approach before going to the next level. For instance, we plan to construct a

dynamic global model enabling the prediction of any parameter vector from the admissible para-

metric space. Finally, we are also interested in using artificial neural networks (ANN) as an

alternative to the DMD approach to deal with a nonlinear algebraic system.



Appendix A
Inverse analysis of capsule mechanical

properties flowing in a microfluidic

channel

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2 Database of FOM results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.1 Membrane characteristics of numerical results . . . . . . . . . . . . . . . . . 98

3 Clustering of parametric space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.1 K-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2 Identification of clustering criteria . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3 Overlapping clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

1 Introduction

The behavior of a capsule flowing through a microfluidic channel lies mainly on the hydro-

dynamics of the flow that it is subjected to and its membrane mechanical properties. In this

chapter, we post-process the obtained data set from FOM to investigate the link between the

measurement of characteristic lengths on the capsule deformed profiles and their capillary num-

ber and confinement ratio. The data set of FOM resolutions forms an admissible domain for
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space-time-parameters solutions. We will also try to gather similar cases into clusters that will

be helpful in performing the ROM model in the next chapter.

2 Database of FOM results

2.1 Membrane characteristics of numerical results

In this section, we study the numerical results of FOM to determine the mechanical properties of

capsules flowing in a square-section microfluidic channel.

We take the measurements presented in figure 2.1 from the capsule profile.

Figure 2.1: The capsule membrane measurement dimensions in profile presentation.

• S/ℓ2: the surface of the profile.

• L/ℓ: the total length.

• La/ℓ: the axial length.

• Lp/ℓ: the parachute depth which is given by Lp = L− La.

The results of the numerical model are gathered in charts, where the main output parameters,

i.e., total length L/ℓ, parachute depth Lp/ℓ are plotted as functions of Ca and a/ℓ for capsules

with a NH membrane.

We note that the capsule elongation is proportional to the capillary number and aspect ratio.

Meanwhile, the capsules width decreases relatively for those with a confinement ratio under

a/ℓ < 0.95, which becomes much important otherwise.
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Figure 2.2: Capsule total length L/ℓ, (b) axial width Ly/ℓ at steady-state flowing in a square-

channel.
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Figure 2.3: (c) parachute depth Lp/ℓ; (d) surface of capsule profile S/ℓ2.

Figure 2.3 shows that the parachute depth depends mainly on the capillary number, where the

higher the capillary number, the more the parachute shape becomes more shaped. The surface

depends on the initial size of the capsule. The relative decrease of the surface size in most cases

is related to the deformation of the membrane surface, and the increase of the same quantities

for some cases is done due to the elongation phenomena it started to appear at high capillary

number values. Furthermore, the presented numerical results in figures 2.2-2.3 can be used to

determine physical proprieties as the shear modulus Gs through an inverse analysis (Hu et al.,

2013; Sévénié et al., 2015), or an artificial neural network approach.



100
Appendix A – Inverse analysis of capsule mechanical properties flowing in a microfluidic

channel

3 Clustering of parametric space

Clustering or unsupervised classification is a technique to group similarities in separable clusters

(Fraley & Raftery, 1998). Partitioning Clustering aims to partition n objects into k clusters based

on a measure of similarity such that similarities between data in the same group are high while

similarities between data in different groups are low. Thus, clustering parametric space allows

maximizing the efficiency of the reduced-order model since it will be applied to similar cases.
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Figure 3.1: Spectrum singular values behavior according to the number of clusters. The clustering

is applied using the K-means algorithm, and capsules positions fields at the steady-state γ̇t = 20.

Figure 3.1 shows that spectrum of singular values decreases more quickly by clustering rather

than taking all the parametric space. In addition, clustering can reduce computation costs of

constructing the data-driven reduced bases, as will be detailed in the next chapter.

Many clustering algorithms of partitioning are done by creating disjoint clusters, which

means that each object is assigned to one cluster. For instance, K-means is one of the most

popular partitioning clustering algorithms (Jian, 2009). However, it would be recommended for

many clustering applications to tolerate overlaps between clusters so that an object may belong

to one or more clusters. Overlapping clustering has been studied through various approaches

during the last decades, which can be divided into two main categories: hard memberships and

uncertain memberships (Cleuziou, 2007; Afridi et al., 2020). Hard memberships or k-means-like

approaches are one of the widely used approaches. They are based on Euclidean distance func-
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tion, and their particularity resides in their fast and low computational complexity, making them

suitable for mining large data sets. Uncertain memberships can be denoted as the solutions

which model clusters memberships for each data object as uncertainty function using fuzzy or

possibilistic (Höppner et al., 1999; Hruschka et al., 2009). In the following sections, we use, for

simplicity reasons, k-means variants to clustering the parametric space 2.1 at the steady-state.

3.1 K-means clustering

K-means proposed 50 years ago (Ball & Hall, 1965), it aims to find k centroids, such that one

element for each cluster. It is done by minimizing the sum of the distance of each datum from

its respective cluster centroid. In other words, for xi ∈ X, we can write:

argmin
{C1,...,Ck}

k

∑
j=1

∑
xi∈Cj

d
(
xi, cj

)
(3.1)

where (C1, . . . , Ck) are k non-overlapping clusters, cj is the representative of cluster Cj, and d is a

distance function.

3.2 Identification of clustering criteria

A suitable clustering depends on the used considered geometrical propriety ({x}, Lp, La, etc).

In this section, we initially perform a k-means clustering for a fixed number of clusters (k = 3)

and different measures. This allows to investigate the best measure to use for clustering the

parametric space.

At the steady-state, visually one can distinguish 3 main categories of the capsules shape in

the parametric space:

• capsules with less deformation are the ones who have a small capillary number.

• capsules with a parachute shape are the ones with significant capillary number.

• capsules with an elongated shape are located above a/ℓ ≥ 0.95.

From these observations, one can determine the most relevant clustering in figures 3.2-3.3 are

the clustering with the positions of membrane nodes at the steady-state. In the next section, we

study the use of overlapping clustering with NEO-k-means approach.
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Figure 3.2: Clustering of parametric space to 3 clusters according to (a) La the axial length (b) Ly

the axial width; (d) (S) the surface of the profile in the axial plane.

3.3 Overlapping clustering

The use of an overlapping clustering approach is highly recommended for our needs since the

prediction of parameter vector at the border of a domain may leads to less accurate results.

For that we use Non-Exhaustive Overlapping k-means clustering (Whang et al., 2019) which is

approach based on the introduction of an assignment matrix U = [uij]n×k such that

uij =

 1 if xi ∈ jth cluster

0 otherwise.
(3.2)

this means that there is no restrictions on the assignment matrix U, in such way a data point

can belong to multiple clusters. For that, it is mandatory to fix the number of assignments.

To control the number of additional assignments, a constraint will be added to the total of as-

signments in U should be equal to n + αn. The application of this constraint alone can lead
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Figure 3.3: Clustering of parametric space to 3 clusters according to (e) L total length; (f) x

position of the membrane nodes; (g) [Ly, L] axial width with the total length (h) [La, Lp] axial

length with the parachute depth.

to false outliers. To avoid that another constraint will be introduced to control the degree of

non-exhaustiveness. So, the NEO-k-Means objective function can be given as:

min
U

k

∑
j=1

n

∑
i=1

uij∥xi −mj∥2, where mj =
∑n

i=1 uijxi

∑n
i=1 uij

(3.3)

such that trace
(
UTU

)
= (1 + α) n, ∑n

i=1 I{(U1)i = 1} ≤ 0, where

I (expression) =

 1 if expression is true

0 otherwise.
(3.4)

and the vector U1 denotes the number of clusters to which each data point belongs where m1

denotes a k× 1 column vector having all the elements equal to one. Thus, (Um1)i = 0 means that
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xi does not belong to any cluster. The parameter α allows capturing the degree of overlap and

non-exhaustiveness. If α = 0 the NEO-K-Means objective function is equivalent to the standard

k-means.

The application of Neo-K-means according to the positions /bx at the steady-state for differ-

ent number of clusters

We performed neo-kmeans on capsule positions at the steady-state (γ̇t = 20) of parametric

space with α = 2.5.
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Figure 3.4: Partitioning the parametric domain for a different number of clusters using NEO-k-

means according to membrane node positions at the steady-state. (a) 2 clusters; (b) 3 clusters; (c)

4 clusters; (d) 5 clusters.

As figure 3.4 shows, the more the number of clusters increases, the more the clustering is

determined through more details of the capsule shapes. For instance, the partitioning with

two clusters gives two subdomains divided at the pre-deformed zone limit a/ℓ = 0.95, figure

3.4(a). For 3 or 4 clusters, in addition to the previous partitioning, the new cluster compromises

parachute shapes at the right of the domain 3.4(b-c). For 5 clusters, a new cluster takes the left
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middle of the domain figure 3.4(d).

4 Conclusion

In this chapter, we have studied the characteristic dimensions of obtained FOM simulation re-

sults. This latter constitutes a parametric domain of admissible solutions that represents a crucial

element in the construction of a ROM approach. The clustering of the parametric domain is a

relevant task since it can maximize the new model’s performance. There are different clustering

methods; for our need, we choose non-Exhaustive Overlapping K-means clustering since it en-

sures a partitioning of the parametric domain with overlapping sections. Furthermore, this will

ensure a good inspection of the cases located at the border of the clusters. The deployment of

the clustering procedure needs mainly to determine two parameters: the clustering criteria and

the number of clusters. The investigation of clustering with different parameters shows that the

position field gives the partitioning with the best description of the parametric domain.
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Appendix B
Optimal Experimental Design (OED)

Despite the outperforming results obtained with the data-driven reduced-order model compared

to the full order model, some adjustments are needed to allow the software tool presented above

to be the fastest possible. One of them is the optimization of the parametric design (OPD) instead

of the full experimental design (FED). The OPD allows decreasing the computation cost much

more. To seek this goal, we suggested using experimental design (OED) generation techniques

as Latin Hypercube design. This latter allows constructing an OED with a minimum number of

configurations while maintaining accurate predictions.

1 Construction of an Optimal Experimental Design (OED)

The construction of OED is done through the code that uses the native MATLAB function lhs. It

takes as inputs the number of generated configurations n, its dimensions p, the minimization that

is used to compute the sum between-column squared correlations, and the number of iterations

to improve the criterion.

It returns a Latin hypercube matrix X of size n × p. Each column of X contains n ran-

domly distributed values with one from each interval (0, 1/n), (1/n, 2/n), . . . , (1− 1/n, 1), and

randomly permuted.
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Figure 1.1: Experimental design with Latin Hypercube design.

By limitation of the region of interest, the code gives a first optimal experimental design (see

figure 1.2).
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Figure 1.2: Experimental design with 32 generated configurations.

The generation of OED can be repeated if it is needed. Once the initial OED is fixed, the

code proceeds to fit it to the existing database of 118 configurations using a nearest to the nearest

procedure:
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Figure 1.3: Latin Hypercube design is fitted to the existing database.

The code allows then the user to enrich the obtained OED or exclude not desired configura-

tions.
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Figure 1.4: Modified Latin Hypercube design. ◦ : generated configuration; × : excluded config-

urations; + : new configurations.

As a result, user get the final OED presented in figure-(1.5) in mat-file form.
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Figure 1.5: Optimal experimental design.
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