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THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
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m’épanouir professionnellement et humainement. Merci de m’avoir toujours encour-
agée dans mes initiatives (je ne compte plus les lettres de recommandations) et de
m’avoir ouvert de nombreuses opportunités: conférences, événements de vulgarisation
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sans limite et son bon esprit sportif, les co-bureaux : Stéphane mon phare dans la nuit
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Résumé substantiel

Thermodynamique stochastique: pilotage de micro-oscillateurs et
application à l’étude et l’optimisation du traitement de l’information.

En 1832, le botaniste Robert Brown observa au microscope des graines de pollen
en suspension dans l’eau et remarqua la présence de très petites particules s’agitant
dans tous les sens [1]. Cette marche aléatoire de petits objets, appelé ”mouvement
brownien” demeura inexpliquée pendant quatre-vingt ans avant qu’Albert Einstein ne
modélise le mouvement des particules comme un déplacement induit par l’action des
molécules d’eau voisines [2], confirmant indirectement au passage l’existence des atomes
et des molécules. En effet, même si un fluide ou un gaz est au repos du point de
vue macroscopique, ses molécules microscopiques sont en permanence en mouvement
dans des directions aléatoires. C’est pourquoi tout objet immergé dedans est poussé
aléatoirement, donnant ainsi lieu à un mouvement brownien de l’objet quand ce dernier
est suffisamment petit pour être déplacé par les collisions. Le terme de bruit thermique
ou de fluctuation thermique est souvent utilisé pour décrire cette agitation de la matière,
car son amplitude crôıt avec la temperature.

Que ce soit en biologie, chimie, mécanique ou électronique, les avancées tech-
nologiques tendent vers des dispositifs de plus en plus petits ou des échelles de mesure
atteignant le royaume microscopique, gouverné par les fluctuations thermiques. En
effet, ces systèmes évoluent à des échelles d’énergie si petites que les conséquences du
bruit thermique ne peuvent plus être négligées. Il devient alors crucial de contrôler le
bruit thermique pour pouvoir piloter des micro-systèmes browniens dans le cadre de
la physique statistique hors équilibre, et les utiliser pour des applications pratiques.
Dans cette perspective, le contrôle des systèmes browniens abordés dans cette thèse
est appliqué au traitement de l’information dans le but de créer des micro-dispositifs
rapides et économes en énergie.

Pour atteindre cet objectif, il est indispensable d’explorer le lien entre la Thermo-
dynamique et l’Information. Une des pierres fondatrices de ce sujet de recherche a été
posée par Ralf Landauer en 1961 lorsqu’il a borné le coût du traitement de l’information
par une limite basse fondamentale. Il prédit que l’effacement d’1-bit d’information né-
cessite au minimum une énergie kBT0 ln 2, T0 étant la température de la mémoire à 1-bit,
et kB la constante de Boltzmann. Cette limite représentant une très petite quantité
d’énergie (seulement 3× 10−21 J à temperature ambiante) est complètement générale
et ne dépend pas du type de mémoire utilisée ou de la procédure d’effacement. En
d’autres termes, l’information est physique et cela doit être pris en compte lors de la
conception d’ordinateurs. Si les avancées technologiques continuent de suivre la crois-
sance actuelle, ce minimum fondamental sera atteint par les micro-processeurs d’ici 40
ans.

Dans ce contexte, nous étudions expérimentalement et théoriquement le coût én-
ergétique du traitement de l’information, dans le but d’optimiser la consommation
énergétique et la rapidité d’une porte logique à 1-bit. Cette dernière est construite
grâce à une méthode de contrôle innovante permettant de piloter un micro-système
obéissant à une dynamique stochastique sous-amortie, utilisé comme mémoire à 1-bit.
Nous quantifions et modélisons la consommation énergétique de la porte logique dans le
cadre de la thermodynamique stochastique, ce qui ouvre la voie à de nouvelles stratégies
d’optimisation basées sur la connaissance fine des échanges d’énergie.

Dans le premier chapitre de la thèse, nous introduisons le cadre expérimental et
théorique nécessaire à la bonne compréhension. Nous rappelons les bases de la physique
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statistique et en particulier les équations qui régissent l’évolution des systèmes brown-
iens dans tous les régimes d’amortissement, ansi que l’équipartition de l’énergie. Pour
décrire proprement la mémoire à 1-bit utilisée dans la suite, nous exprimons également
le taux de commutation d’un système sous-amorti évoluant dans un double puit de po-
tentiel quelque soit la hauteur de la barrière énergétique, en combinant la description
de Kramer valide pour les hautes barrières, avec un modèle plus adapté aux petites
barrières. Ensuite, nous présentons les deux systèmes expérimentaux (sous-amorti et
sur-amorti) utilisés dans la thèse ainsi que leurs méthodes de piégeage respectives.
Enfin, nous utilisons le formalisme de la thermodynamique stochastique pour définir
et donner une expression simplifiée de quantités thermodynamiques utiles lorsque les
fluctuations thermiques dominent (chaleur et travail stochastique, température ciné-
tique. . . ). Nous revenons aussi rapidement sur l’état de l’art de la limite de Landauer
qui borne l’énergie nécessaire au traitement de l’information. Nous concluons en intro-
duisant des notations adimensionnées utilisées dans tout le manuscrit.

Dans le deuxième chapitre, nous abordons des procédures de raccourci à l’équilibre,
appelées ’Engineered Swift Equilibration’ (ESE), représentant une piste prometteuse
pour réduire le temps de traitement des opérations effectuées sur des micro-dispositifs.
L’objectif de ces nouvelles méthodes est en effet de réduire les transitoires et de faire
relaxer les systèmes browniens plus rapidement vers le nouvel équilibre après le change-
ment d’un paramètre de contrôle. À cet effet, le potentiel dans lequel évolue le système
est piloté entre sa valeur initiale et finale selon un profil spécifique. Les profils ESE
peuvent être calculés à l’aide d’outils théoriques de physique statistique hors équilibre,
puis testés sur des systèmes réels tels des particules collöıdales uniques sur-amorties,
piégées et contrôlées par des pinces optiques. Nous ajoutons ici un nouveau degré de
liberté (DOF), que ce soit en introduisant un couplage hydrodynamique avec une sec-
onde particule, ou en travaillant dans le régime sous-amorti qui introduit le DOF de
vitesse. Ces systèmes plus complexes nécessitent des procédures de raccourci adaptées,
c’est pourquoi nous construisons de nouvelles familles de protocoles ESE. Enfin, nous
relevons le défi expérimental de commander la raideur du potentiel dans laquelle évolue
un micro-résonateur sous-amorti à l’aide d’une boucle de rétroaction. Des résultats en-
courageants sont obtenus, ouvrant la voie à la validation expérimentale de protocoles
ESE sous-amortis.

Fort de la démonstration expérimentale du contrôle par rétroaction de l’oscillateur
sous-amorti, nous nous attaquons dans le troisième chapitre à la construction d’un dou-
ble puit de potentiel virtuel. Nous étudions et modélisons le comportement du système
en réponse à la rétroaction afin d’identifier les contraintes expérimentales nécessaires à
la création d’un potentiel virtuel approprié. Nous proposons ensuite deux boucles de
rétroaction pour commander l’oscillateur sous-amorti sans biais : une boucle analogique
adaptée à un amortissement modéré, et une boucle numérique (utilisant un dispositif
FPGA) adaptée au régime hautement sous-amorti.

Utilisant un oscillateur micro-mécanique sous-amorti confiné dans le double puit
virtuel comme mémoire à 1 bit, nous explorons au quatrième chapitre le lien entre
information et thermodynamique en mesurant le travail et la chaleur stochastiques
d’un effacement (opération [RESET]). Nous étudions en particulier l’effet de l’inertie
sur le coût de l’effacement et démontrons expérimentalement que la limite de Landauer
est atteinte avec des protocoles aussi courts que 100 ms, c’est-à-dire plusieurs ordres
de grandeur plus vite que les mémoires sur-amorties de l’état de l’art. Supprimer la
dissipation pour réduire le prix énergétique des opérations rapides semble donc être une
stratégie gagnante, mais nous montrons qu’à faible amortissement, un autre mécanisme
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couteux en énergie apparâıt: le réchauffement du système. Nous étudions alors les
échanges d’énergie lors des processus d’effacement et prédisons quantitativement le coût
des opérations rapides : pour la première fois, l’écart à la limite de Landauer lorsque
la vitesse du pilotage augmente est entièrement modélisé, en accord avec les résultats
expérimentaux et de simulation. Enfin, afin d’ouvrir la voie à une utilisation concrète
de la mémoire à 1 bit, nous proposons quelques nouvelles stratégies d’optimisation,
avant d’étudier sa réponse à des opérations successives.

Dans le cinquième chapitre, nous examinons de plus près le lien entre information
et thermodynamique en cherchant comment cette dernière est affectée lorsque la con-
naissance de la position passée du système est utilisée par le contrôle de rétroaction.
Nous étudions en particulier les conséquences d’une hystérésis dans la rétroaction sur
la température d’équilibre du système dans le double puit de potentiel virtuel. Enfin,
nous démontrons que la limite fondamentale à la manipulation d’information trouvée
par Landauer peut être battue en présence d’hystérésis créant un bain thermique hors
équilibre.

Dans le dernier et sixième chapitre, nous traitons l’opération logique réversible
[NOT] (bit-flip) pour compléter l’étude de l’ensemble des opérations à 1 bit effectuées
sur la porte logique sous-amortie. Nous discutons de la faisabilité du bit-flip en fonction
du régime d’amortissement et proposons un protocole de bit-flip réversible (dans le
sens de la réversibilité physique) spécialement conçu pour les mémoires sous-amorties.
Ce dernier tire parti du degré de liberté de vitesse pour effectuer le bit-flip en un
temps très court, seulement la moitié de la période du micro-oscillateur, pour un coût
énergétique très faible provenant de l’amortissement résiduel. Enfin, nous proposons un
modèle correspondant parfaitement aux observations, et offrant de nouvelles stratégies
d’optimisation adaptées aux exigences de l’opérateur.

Dans une dernière section, nous concluons en résumant les résultats obtenus et
en présentant quelques ouvertures. Nous discutons en particulier de la façon dont de
nouvelles formes de mémoire, différentes des double puits quadratiques, ainsi que des
protocoles de raccourci à l’équilibre pourraient conduire à une optimisation du traite-
ment de l’information. En outre, nous soulevons des directions à explorer concernant
le possible compromis entre énergie et information dans la boucle de rétroaction de la
porte logique.
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Abstract

Stochastic thermodynamics: driving of micro-oscillators applied to the
study and the optimisation of information processing.

This thesis extends by theoretical and experimental studies our understanding of
the dynamics of systems ruled by thermal fluctuations in order to better control them
and, in particular, use them as 1-bit logic gates. This work falls within the framework
of out-of-equilibrium statistical physics and of thermodynamics of information based
on stochastic thermodynamics. In this respect, we study the minimal work required to
perform irreversible operations on 1-bit of information ([RESET] to 0 or 1), or reversible
ones ([NOT] operation), and we aim to optimise the energetic cost and the speed of
these processes. Our strategy to enhance the processing efficiency and speed consists in
using as 1-bit memory a low dissipation micro-mechanical oscillator, therefore evolving
at much smaller time-scales than the over-damped test systems used to date (colloidal
particles in solution). The feedback control designed to create a virtual energy potential
in which evolves the micro-resonator is a major step forward in coding and handling the
1-bit information: it represents the fastest and most energy-efficient device among those
which perform logic operations at the thermal energy scale. We furthermore provide
a solid theoretical basis, validated by experimental and numerical simulation results,
to model energy exchanges. Taken as a whole, this work results in the theoretical
prediction of the energetic cost of any logical operation and opens perspectives for
information processing optimisation in term of reliability, speed and energy saving.

Résumé

Thermodynamique stochastique: pilotage de micro-oscillateurs et
application à l’étude et l’optimisation du traitement de l’information.

Cette thèse approfondit par des études expérimentales et théoriques les connaissances
sur la dynamique de systèmes soumis au bruit thermique afin de mieux les manipuler
et notamment de les utiliser comme porte logique à 1-bit. Ces travaux relèvent de la
physique statistique hors équilibre et de la thermodynamique stochastique appliquée à
la théorie de l’information. Nous étudions ainsi l’énergie minimale qu’un opérateur doit
fournir pour manipuler 1 bit d’information de manière irréversible (opération [RESET]
à 0 ou 1), ou réversible (opération [NOT]), et cherchons à optimiser le coût et la durée
de ces opérations. Notre stratégie pour gagner en efficacité et en rapidité est d’utiliser
comme mémoire un micro levier à faible dissipation, évoluant à des échelles de temps
bien plus rapides que les systèmes modèles sur-amortis utilisés jusqu’ici (collöıdes en
solution). La conception d’une rétroaction pour créer un potential d’énergie virtuel
dans lequel évolue le micro-oscillateur constitue une avancée expérimentale majeure,
permettant de coder et manipuler le bit d’information: il s’agit de la porte logique
classique la plus économe et la plus rapide démontrée à ce jour. Nous déployons par
ailleurs une base théorique solide, validée par les résultats d’expériences et de simu-
lations numériques, pour modéliser les échanges énergétiques. Ces travaux dans leur
ensemble permettent de prédire théoriquement le coût de toute opération logique, et
ouvrent de nombreuses perspectives d’optimisation du traitement de l’information en
terme de fiabilité, rapidité et coût énergétique.



Introduction

13



Introduction 14/ 141

In 1828, the botanist Robert Brown observed with a microscope that tiny particles
in pollen grains suspended in water have a surprising random motion [1]. This ran-
dom walk of small objects, called ”brownian motion” remained unexplained for eighty
years until Albert Einstein’s proposal to model the motion of the particles as being
moved by water molecules [2], hence indirectly confirming the existence of atoms and
molecules. Indeed even if a fluid or a gas is at rest from the macroscopic point of view,
its microscopic molecules are constantly moving in random directions, so that any ob-
ject immersed in it is randomly hit, leading to the brownian behavior when the latter
is small enough to be moved by the collisions. The terms thermal noise or thermal
fluctuations are often used to describe this agitation as its amplitude grows with the
temperature.

Whether it is in biology, chemistry, mechanics or electronics, technological advances
result in smaller and smaller devices or measurement scales reaching the microscopic
realm, ruled by thermal fluctuations. Indeed, those systems evolve at energy scales
so small that the consequences of the thermal noise prevail on their behavior. It
is consequently crucial to harness the thermal noise within the framework of out of
equilibrium statistical physics in order to drive brownian micro-objects and use them
for concrete applications. In this respect, the control of brownian systems addressed
in this thesis is applied to information processing for the purposes of creating fast and
energy-efficient micro-devices.

This goal requires to explore the link between thermodynamics and information.
One of the foundation of this topic of research was laid by Ralf Landauer in 1961 when
he predicted a fundamental lower limit to the cost of information processing. He stated
that the erasure of 1-bit of information requires an energy of at least kBT0 ln 2, T0 being
the 1-bit memory temperature, kB the Boltzmann constant. This lower bound, repre-
senting only a tiny amount of energy (3× 10−21J at room temperature) is completely
general and doesn’t depend on the type of memory used, neither on the erasure proce-
dure. In other words, information is physical and it has to be taken into account when
conceiving computers. If the technological advances keep following the current trend,
this fundamental minimum will be reached by micro-processors within 40 years.

In this context, we study experimentally and theoretically the energetic cost of in-
formation processing, in order to optimise the frugality and the speed of a 1-bit logic
gate. Indeed these two challenges are complementary in so far as optimizing the en-
ergetic consumption at very low operating speed is of little interest. The logic gate
is based on innovative control methods allowing the precise driving of a micro-system
governed by underdamped stochastic dynamics and used as 1-bit memory. We quantify
and model the logic gate energetic consumption within the stochastic thermodynamics
framework, paving the way to new optimisation strategies based on the thorough un-
derstanding of the energy exchanges.

The manuscript is organized as follow:

1. In the first chapter, we introduce some useful theoretical and experimental back-
ground. We recall the basics of statistical physics, in particular the evolution
equations of brownian systems in all damping regimes and the energy equiparti-
tion. To properly describe the 1-bit memory in the next chapters, we also express
the switching time of an underdamped system evolving in a double-well for all
barrier heights, combining for the first time Kramer’s description, valid at high
barriers, with an adjusted model for lower ones. Then we present the two com-
plementary experimental test systems (over-damped and under-damped) used in
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the thesis, and their respective trapping methods. Finally we use the stochas-
tic thermodynamics formalism to define and give simplified expressions of useful
thermodynamic quantities in the thermal fluctuation realm (stochastic heat and
work, kinetic temperature. . . ). The state-of-the-art on the Landauer’s limit that
bounds the energetic cost of information processing is also quickly reviewed. We
conclude by introducing dimensionless notations used in all the manuscript.

2. In the second chapter, we address shortcut procedures, called Engineered Swift
Equilibration (ESE), representing a very promising path to cut the processing
time of operations conducted on micro-devices. The point of these emerging
methods is indeed to reduce the transients of systems and make them relax faster
to equilibrium after a change of a control parameter. For this purpose, the poten-
tial energy is controlled between its initial and final values according to specific
profiles. The ESE profiles can be computed using theoretical out-of-equilibrium
statistical physics tools and then tested in actual over-damped systems of single
colloidal particles trapped by optical tweezers. We add a new degree of freedom
(DOF), whether it is by introducing hydrodynamic coupling with a second par-
ticle, or by working in the underdamped regime with the velocity DOF. These
more complex systems need adapted shortcut procedures, and that is why we
build new families of ESE protocols. Finally, we take up the experimental chal-
lenge of driving the potential energy stiffness in which evolves an underdamped
micro-oscillator using a feedback loop. Encouraging results are obtained, paving
the way for experimental implementations of underdamped ESE procedures.

3. Strong of the experimental demonstration of the underdamped resonator feedback
control, we tackle in the third chapter the construction of a virtual double-well
potential. We study and model the behavior of the system in response to a feed-
back in order to identify the experimental contraints necessary to create a proper
virtual potential. Then we propose two feedback loops to drive the underdamped
oscillator without bias: an analogical one at moderate damping and a digital one,
using a FPGA device, in the highly underdamped regime.

4. Using as a 1-bit memory an underdamped micro-mechanical oscillator confined in
the virtual double-well potential, we explore in the fourth chapter the link between
information and thermodynamics by measuring the stochastic work and heat of
an erasure ([RESET] operation). We study in particular the effect of inertia
on the erasure cost and demonstrate experimentally that the Landauer’s bound
(LB) is reached with protocols as short as 100 ms, that is to say several order
of magnitude faster than the state-of-the-art over-damped memories. Removing
dissipation to cut energy expenses for fast operations hence seems a winning
strategy but we show that, at low damping, another limiting mechanism occurs:
the warming of the system. In this context, we study the energy exchanges during
erasure processes and predict quantitatively the cost of fast operations: for the
first time, the divergence from Landauer’s bound when the driving speed increases
is fully modeled in agreement with experimental and simulation results. Finally,
in order to pave the way to a practical use of the 1-bit memory we propose some
new optimisation strategies before studying its response to repeated operations.

5. In the fifth chapter, we examine further the link between information and thermo-
dynamics by investigating how the latter is impacted when the knowledge of the
system past position is used by the feedback control. In particular we investigate
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the consequences of feedback hysteresis on the system equilibrium temperature
in the virtual double-well potential. Ultimately we demonstrate that the funda-
mental lower limit to information irreversible manipulation found by Landauer
can be beaten in the presence of hysteresis, using an out-of-equilibrium thermal
bath.

6. In the last and sixth chapter, we handle the logically reversible [NOT] operation
(bit-flip) to complete the study of all 1-bit operations conducted on the under-
damped logic gate. We discuss the feasibility of the bit-flip depending on the
damping regime and propose a physically reversible bit-flip protocol designed for
underdamped memories. The latter takes advantage of the speed degree of free-
dom of the underdamped system to perform the bit-flip in a very small amount
of time, half the micro-oscillator period, for a very small energetic price origi-
nating from the residual damping. Finally, we propose a model that perfectly
matches the observations and paves the way to optimisation strategies adapted
to operator requirements.

In the conclusion, we summarize the results and presenting some perspectives
opened by this wok. We discuss in particular how new memory shapes different from
the quadratic wells and shortcut procedures could be promising steps forward in terms
of information processing optimisation. Besides, we raise directions to explore regard-
ing the possible trade off between energy and information in the logic-gate feedback
loop.
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1.1 Statistical Physics Tool Box

Classical dynamical systems can be described from different perspectives. At the more
detailed level stands the Hamiltonian dynamics predicting the evolution of all the
degrees of freedom of the system in a deterministic approach. On the other hand
the macroscopic level uses the thermodynamics formalism [1]. The intermediate level
between them would be the stochastic dynamics, not deterministic because of the
introduction of an external random force of which only the probability distribution is
known. The latter leads us to consider the possibility of describing the dynamics of the
system in a direct probabilistic way so that we have a stochastic differential equation
for the path [2]. We feature in the following the stochastic dynamic framework used to
describe micro-systems behaviors.

1.1.1 Langevin equation and damping regimes

We consider a Brownian system of mass m in a bath at temperature T0 characterized
by its position ~x and speed ~v. Its dynamic into a potential energy U(~x) is described
by the 3-dimension Langevin equation [3],

m
d~v

dt
= −~∇U(~x)− γ~v + γ

√
D~ξ(t). (1.1)

In the following, we restrict the description to one dimension: position x and speed
v = ẋ, so that the Langevin equation in 1D is given by:

mẍ+ γẋ = −dU
dx

+ γ
√
Dξ(t). (1.2)

The friction coefficient γ of the environnement, the bath temperature T0 and Boltz-
mann’s constant kB define the diffusion constant through the Einstein relation: D =
kBT0/γ. The thermal noise, ξ(t), is a δ-correlated white Gaussian noise:

〈ξ(t)ξ(t+ t′)〉 = 2δ(t′). (1.3)

For clarity purposes we introduce the thermal force Fξ defined by:

Fξ = γ
√
Dξ. (1.4)

Langevin’s equation is a stochastic differential equation: each solution represents a
different random trajectory.

If the potential is harmonic, U(x) = 1
2kx

2, the Langevin equation (1.2) simplifies
into:

ẍ+ γ

m
ẋ+ k

m
x = Fξ(t)

m
, (1.5)

ẍ+ ω0

Q
ẋ+ ω2

0x = Fξ(t)
m

, (1.6)

with Q = ω0m/γ the quality factor and ω0 =
√
k/m the angular resonance frequency.

In practice depending on the system mass and the bath viscosity, the corresponding
over-damped or underdamped description leads to different dynamics. We distinguish
two regimes: the over-damped regime where the damping force exceeds the inertia
(Q� 1) and the under-damped one where it is the contrary (Q > 1).
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In the over-damped regime, the inertial term mẍ is neglected and the Langevin
equation reads:

γẋ = −dU
dx

+ Fξ(t). (1.7)

In the harmonic potential case, it simplifies into

ẋ = −k
γ
x+
√
Dξ(t). (1.8)

1.1.2 Ito’s Calculus

The Langevin equation most often studied is the over-damped one, Eq. (1.7), that can
be written in the general form:

ẋ = a(x, t) + b(x, t)ξ(t). (1.9)

The corresponding integral equation is therefore:

x(t)− x(0) =
∫ t

0
a(x(s), s)ds+

∫ t

0
b(x(s), s)ξ(s)ds. (1.10)

We introduce the integral of the thermal noise ξ(t) interpreted as the Wiener process
W (t):

W (t) =
√

2 1√
2

∫ t

0
ξ(t′)dt′, (1.11)

so that the second integral in Eq. (1.10) becomes:∫ t

0
b(x(s), s)dW (s). (1.12)

The above demonstrates the importance of building a proper formalism to address
the manipulation of stochastic quantities (integral, derivation. . . ). In particular, to
carry out such a stochastic integral, one has to be cautious regarding the discretization.
In all the manuscript we will stick to the Ito stochastic integral [4] that prescribes for
a function G(t): ∫ t

t0
G(s)dW (s) = lim

n→∞

n∑
i=1

G(ti−1)× [W (ti)−W (ti−1)]. (1.13)

with the ti the subdivision of the interval [t0, t] into n subintervals.
The general differentiation rule for any function f(W (t), t) stems from the Ito

stochastic integral (Eq. (1.13)):

df [W (t), t] = (∂tf + 1
2
∂2f

∂W 2 )dt+ ∂f

∂W
dW (t) (1.14)

Let us also point out here the two following properties:

dW (t)2 = dt, (1.15)

and for nonanticipating function G(t) (for example x(t) or v(t)), in the Ito framework:

〈
∫ t

t0
G(s)dW (s)〉 = 0 (1.16)
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We conclude this section by deriving the so called Ito’s formula from a change of
variable on Eq. (1.14). We expand the expression of the derivative of any stochastic
function f(x(t)) of the trajectory x(t) governed by the general over-damped Langevin
equation in Eq. (1.9):

df(x(t)) = {a(x, t)f ′ + 1
2b(x, t)

2f ′′}dt+ b(x, t)f ′dW (t) (1.17)

where spaces derivatives are denoted by a dash.

1.1.3 Fokker-Plank and Kramers Equation

If we introduce the probability density function P (x, v, t) for finding the Brownian
system in position x, and velocity v at time t, we can describe the dynamics through
the Kramer’s equation [5]:

∂tP + v∂xP −
∂xU

m
∂vP = γ

m
∂v(vP ) + γ2

m2D∂
2
vP, (1.18)

The Langevin’s equation (1.2) and Kramer’s equation (1.18) are equivalent and both
characterize the stochastic process. In fact the Kramer’s equation derives from the
Langevin’s equation by considering the time development of an arbitrary function of
f(x(t)), on average, using Ito’s formula in Eq. (1.17).

At thermal equilibrium, the solution of Eq. (1.18) simply gives the Boltzmann law:

Peq(x, v) = P0 exp
{
−U(x)
kBT0

− mv2

2kBT0

}
(1.19)

In the over-damped regime, the velocity degree of freedom disappears and the whole
dynamic is described by the probability density function ρ(x, t) =

∫
Pdv. The Kramer’s

equation Eq. (1.18) then turns into the Fokker-Plank equation [6; 7] (noted FP equa-
tion) governing the time evolution:

∂tρ = 1
γ
∂x(ρ∂xU) +D∂2

xρ. (1.20)

In a harmonic potential, the FP equation is:

∂tρ = k

γ
∂x(xρ) +D∂2

xρ. (1.21)

The equilibrium solution of the FP equation again corresponds to the Boltzmann law:

ρeq(x) = ρ0 exp
{
−U(x)
kBT0

}
= ρ0 exp

{
− kx2

2kBT0

}
(1.22)

1.1.4 Equipartition theorem

The total energy of the system E = U + K (with the kinetic energy K = 1
2mv

2) is
given at thermal equilibrium (at bath temperature T0) by the very general equipartition
formula :

〈xm
∂E

∂xn
〉 = δnmkBT0, (1.23)
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where the xn are the degrees of freedom of the system. In our 1D description we have
only two degrees of freedom : the velocity v = ẋ and the position x, and the potential
U(x) is considered to be independent of v. The equipartition theorem (1.23) applied
to the first degree of freedom therefore results in:

〈v∂E
∂v
〉 = kBT0, (1.24)

〈v∂K
∂v
〉 = kBT0, (1.25)

〈K〉 = 1
2kBT0. (1.26)

For the second degree of freedom we derive :

〈x∂E
∂x
〉 = kBT0, (1.27)

〈x∂U
∂x
〉 = kBT0. (1.28)

Hence, in the case of an harmonic potential U = 1
2kx

2, we have:

〈U〉 = 1
2kBT0. (1.29)

Eqs. (1.26) and (1.29) defines the equilibrium velocity and position variances:

σ2
v,0 = 〈v2〉 = kBT0

m
, σ2

0 = 〈x2〉 = kBT0

k
. (1.30)

In the following, we will consider quadratic double well potentials defined by U1(x, x1) =
1
2k(|x| − x1)2 with two wells centered in −x1 and x1. If we apply the equipartition
theorem, the kinetic energy is unchanged, but the potential energy at equilibrium is
not given by Eq. (1.29) anymore and depends on the distance 2x1 between the wells.
Indeed, the equipartition for the position degree of freedom in Eq.(1.28) gives:

〈x∂U1

∂x
〉 = k〈x2 − |x|x1〉 = kBT0 (1.31)

2〈U1〉+ kx1(〈|x|〉 − x1) = kBT0 (1.32)

The term 〈|x|〉 can be computed using the equilibrium probability distribution, as
detailed in the Supplementary Materials of Ref. 8 reproduced in Appendix C:

〈|x|〉 = σ0

√
2
π

e
−
x2

1
2σ2

0

(1 + erf x1√
2σ0

) + x1 (1.33)

Finally, plugging in the above expression into Eq. (1.32) gives the mean potential
energy:

〈U1〉 = kBT0(1
2 −

x1

σ0

e
−
x2

1
2σ2

0
√

2π(1 + erf x1√
2σ0

)
) (1.34)

Eq. (1.34) is not intuitive because we are used to the equipartition result in the harmonic
potential case: 〈U〉 = 1

2kBT0. Nevertheless for a double well quadratic potential the



Chapter 1 22/ 141

equipartition theorem leads to this more complex expression. The equipartition in the
double well is displayed in Fig. 4.6a) and b): the kinetic energy remains unchanged
as the velocity degree of freedom conserves a quadratic contribution, meanwhile the
potential energy has lower values depending on x1 (following Eq. (1.34)) to satisfy the
equipartition. Let us point out here that for x1 = 0 and x1 � σ0, Eq. (1.34) tends to
the harmonic result: we have either a single well (x1 = 0) or two no overlapping ones
(x1 � σ0).

1.1.5 Switching rate in a bi-quadratic potential

When the Brownian system of mass m evolves in a bi-quadratic potential of stiffness
k, U1(x, x1) = 1

2k(|x| − x1)2, it is worth wondering what is its switching rate between
the two wells. In the following we are only interested in underdamped limit (Q > 1),
as the systems trapped in double-well potentials tackled in this work will always be
weakly damped with their environnement. Kramer’s theory [5] prescribes the escape

rate Γ(t) = ω0
2πe
−B/kBT0 [9], with the potential barrier B = 1

2kx
2
1, and ω0 =

√
k/m the

resonance frequency in the initial quadratic well of stiffness k. Nevertheless, this ex-
pression doesn’t hold for low barrier (B < kBT0), as shown in Fig. 1.1. That is why we
propose in the following an expression of the average switching rate in a double well
potential valid in very good approximation for all barrier heights.

In the limit of weak damping, the total energy of the system E = U+K is conserved,
and its motion in the trapping potential U1 is periodic in time. The period of oscillation
T depends on the value of E with respect to the barrier height B. If E < B, then the
motion is confined to a single well, there is no switch, and the period is T0 = 1/f0. If
E > B, the system visits both wells every period, so there are 2 switches every period,
with

T (E,B) = 2
∫ xM

−xM

√
m

2(E − U(x, x1))dx (1.35)

= 2
ω0

∫ xM

−xM

1√
(xM − x1)2 − (|x| − x1)2

dx (1.36)

= 2
ω0

π + 2 sin−1

√B
E

 , (1.37)

where xM = x1 +
√

2E/k is the maximum excursion of the system. This period is twice
T0 when E & B, and tends to T0 for E � B.

In equilibrium, the statistics of the total energy E is ruled by the Boltzmann distri-
bution: P (E) = e−E/kBT/kBT . We deduce the average switching rate Γ by weighting
the 2 switches per period for E > B by this probability:

Γ(B, T ) =
∫ ∞
B

2
T (E,B)

exp(−E/kBT )
kBT

dE (1.38)

= ω0
B
kBT

∫ ∞
1

exp
(
−ε B

kBT

)
π + 2 sin−1(ε−1/2)dε (1.39)

For finite damping, the energy is not conserved along single trajectories, but still
is in average thanks to the equilibrium with the thermostat. Eq. (1.39) is therefore
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a good approximation of the switching rate between the two wells for a given barrier
height B and system temperature T . In Fig. 1.1, we superimpose the result of numerical
simulation with both the Kramer’s theory (dotted black) and our model. It highlights
the fact that Kramer’s simple formula doesn’t work for low energy barriers and justifies
the use of Eq. (1.39) in all the following.
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Figure 1.1 – Switching rate Γ as a function of the half distance x1 between the wells: for
high energy barriers B = 1

2kx
2
1, the simple Kramer’s model in dashed black line holds and

perfectly matches the simulation data from N = 100 iterations of 30T0 long trajectories in
blue line. However, for smaller barrier height the model Γ(B, T0) of Eq. (1.38) in red dashed
line provides a better prediction. The numerical simulation detailed in Appendix E is run
here for an underdamped system (Q = 10). The numerical simulation gives the same result
for a wide panel of damping regimes (0.1 ≤ Q ≤ 1000).

1.2 Brownian systems

Depending on the damping regime one wants to investigate, it is interesting to study
different Brownian systems. We will present in the following the two ones tackled
during my thesis: colloidal particles in water and a micro-cantilever.

1.2.1 Over-damped colloidal particles

Colloidal particules in solution are broadly used systems to explore statistical physics
in the over-damped regime. As sketched in Fig. 1.2, let us consider a colloidal particle
of position x (1D description) in a fluid at temperature T0 trapped in an harmonic
potential U(x, t) = 1

2kx
2 by optical tweezers (as detailed later in paragraph 1.3.1). The

usual stiffness for such optical traps is 0.5 pN/µm < k < 50 pN/µm. We use in all the
following silica beads of density µ = 3× 103 kg m−3 and radius r ∼ 1µm. The Stokes
friction coefficient in the bath writes γ = 6πηr, with η = 10−3 Pa s the kinetic viscosity
for usual fluids like water. The diffusion coefficient of the silica bead in the surrounding
fluid is therefore D = kBT0/(6πηr).

The influence of the inertia lasts on a characteristic time τinertia = m/γ = 2µr2/(9η).
To evaluate the impact of inertia on the colloid’s dynamics, we compare the latter to
the time needed for a particle to diffuse on a distance equivalent to its diameter,
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x
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Figure 1.2 – Schematic overview of an over-damped colloidal particle trapped by
optical tweezers creating an harmonic potential U(x) = 1

2kx
2.

τdiff = (2r)2/D. We compute that the region where τinertia � τdiff corresponds to
r � 0.01 pm. Hence, for the silica beads whose typical radius is r = 1µm, the inertia
fades too fast compared to the other phenomena to be noticed and to the acquisition
time: τinertia ∼ 0.7µs and τdiff ∼ 1 s. Moreover, the period of the harmonic oscillator

0.1 ms < 2π/ω0 = 2π
√
m/k < 1 ms is always smaller than the trap characteristic time

τtrap = 2πγ/k, which is in the range 1 ms < τtrap < 0.1 s. In other words, the time
scales ratio corresponding to the quality factor is very small: Q = k/(γω0) ∼ 10−2 � 1.
Hence, the regime is strongly over-damped and its dynamic is described by the Langevin
Equation (1.8). That is why colloidal particules are often used as proof of over-damped
statistical physics principles, whether it concerns shortcuts to equilibrium [10] or infor-
mation theory [11–14].

1.2.2 Under-damped micro cantilever

Since its invention by Binnig, Quate and Gerber [15] more than 35 years ago, Atomic
Force Microscopy (AFM) has turned into a mature technique widely spread in many
domains (material sciences, biology, nanotechnology...). The AFM tip is attached to
a micro-cantilever which behaves as a micro-oscillator evolving at room temperature.
The cantilever is therefore sensitive to thermal noise. Its deflection x can be measured
with very high accuracy and signal-to-noise ratio by a differential interferometer [16].
That is why such cantilevers are relevant systems to explore stochastic dynamics.

We use conductive cantilevers to take advantage of the electrostatic force that can be
easily applied to them: we approach a metallic surface a distance d from the cantilever’s
tip, and tune the force at will through the voltages applied, as sketched in Fig. 1.3.
Indeed if a voltage V is applied to the cantilever while the facing electrode is kept at a
voltage V0, the voltage difference V0− V creates an electrostatic attractive force, Fel =
1
2∂dC(d)(V0−V )2 [17], where C(d) is the cantilever-electrode capacitance. The distance
is chosen high enough compared to the characteristic fluctuations of the cantilever,
d� σ0, so that ∂dC(d) can be assumed constant. That is why we can introduce in the
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Étude numérique de la limite de Landauer appliquée à un oscillateur sous-amorti Nicolas Barros

Figure 2 – Schéma du montage expérimental utilisé par l’équipe d’encadrement. � représente la
déflexion, � la distance entre la pointe du levier et une contre électrode, � la tension appliquée. Deux
faisceaux laser sont utilisés pour mesurer la déflexion � via un interféromètre différentiel [10].

2 Méthode numérique

J’ai principalement réalisé des simulations dans le but d’anticiper le comportement d’un système
sous-amorti soumis à divers sollicitations. Ce travail de simulation a été mené en étroite collaboration
avec l’étude expérimentale en laboratoire menée sur levier AFM afin de pouvoir guider, et dans l’idéal
corroborer, l’expérience.

2.1 Mise en équation et adimensionnalisation

On cherche à mettre en équation le comportement de la position de l’extrémité du levier soumis
à une force de rappel élastique, aux frottements de l’air supposés linéaires et à l’agitation thermique.
On suppose que le mouvement du levier ne se fait qu’en une dimension, uniquement selon son mode
fondamental de vibration : on néglige les modes supérieurs et les modes de torsion. En conséquence, ce
modèle n’est pas spécifique à l’étude d’un levier, et décrit donc un modèle général de dynamique d’un
oscillateur harmonique dans un régime sous-amorti. Dans le cas où la position d’équilibre est fixée en
x=0, l’application du Principe Fondamental de la Dynamique donne :� �� = ��� � � �� + ��� (2)

avec � la position de l’extrémité du levier, � la constante de raideur du levier, � le coefficient de
viscosité dans l’air, �� = ���� , �� = �2���2 , et ��� la force thermique modélisée par un bruit blanc gaussien.

Dans l’optique de simplifier ces expressions et de préparer l’implémentation numérique, nous pou-
vons adimensionner cette équation à l’aide des grandeurs naturelles du système : la variance en position� = � ���� , la pulsation propre �0 = � �� et le facteur de qualité � = ���0 . En posant � = �� , �� = �0�,�� = ����� , �� = �2����2 et � �� = ����� , l’équation 2 devient :

�� = �� � 1� �� + ��� (3)

Comme nous le verrons par la suite, cet adimensionnement permettra d’exprimer directement toutes
les unités d’énergie en terme de �B� , par exemple le travail sur un cycle ou les barrières énergétiques,
et facilitera l’application du théorème d’équipartition. Dans la suite du rapport, � désignera sauf
précision la position adimensionnée �� , t le temps adimensionné et toutes les énergies
seront exprimées en unité de �B� . Sauf mention contraire, la valeur du facteur de qualité est
fixée à Q=10, proche de la réalisation instrumentale.

5

V
<latexit sha1_base64="MEKCpcGl0c2gLohSRSHPNSS8otE="></latexit>Fel = ↵(V � V0)

2
<latexit sha1_base64="yd6Pv8SRThk/wNs6OqnhmNgOX0I="></latexit>

V0
<latexit sha1_base64="iaLvecov7Z4m3N32GTPvZAYDbcw="></latexit>

d
<latexit sha1_base64="1EF/9oh4t9nkimMcojgqLjJXlSM="></latexit>

x
<latexit sha1_base64="NpAVSBJItmJONAkOnR/bw9tjIT4="></latexit>

Figure 1.3 – Schematic overview of an under-damped micro cantilever set-up. The
conductive cantilever at voltage V , whose deflection x is measured by a differential interfer-
ometer using two laser beams focused respectively on its base and in its tip, is at distance d
from a conductive surface kept at voltage V0. The voltage difference V − V0 between the two
electrodes creates an attractive electrostatic force Fel = α(V0 − V )2.

following the parameter α:

Fel = α(V0 − V )2, with α = 1
2∂dC(d). (1.40)

As shown by the fluctuation dissipation theorem (FDT) [18], the thermally induced
fluctuations are linked to the mechanical response function of the system. Indeed, if
we define in Fourier’s space the mechanical response function linking the external force
F and the deflection x as:

G(ω) = F (ω)
x(ω) , (1.41)

the FDT stands that the Power Spectral Density (PSD) Sξ of thermal fluctuations of
the force satisfies:

Sξ(ω) = 2kBT0

πω
Im(G(ω)). (1.42)

And as a consequence, the PSD Sx of the thermal fluctuations of x is:

Sx(ω) = 1
|G(ω)|2 × Sξ(ω) = 2kBT0

πω
Im( 1

G(ω)). (1.43)
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We experimentally illustrate the FDT in Fig. 1.4 by superimposing the imaginary part
of the cantilever response function on its natural thermal deflexion PSD. The response
function G−1(ω) is obtained by measuring the response of the system to a white noise
electrostatic force.

102 103 104 105
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Figure 1.4 – Fluctuation Dissipation experimental illustration. Sx(ω) (red) is inferred
from a 10s acquisition of the cantilever’s deflexion fluctuation in response to the thermal noise
at room temperature T0, in air. As predicted by the FDT, it matches 2kBT0

πω Im(G−1(ω))
(blue). The latter is computed by imposing an intense white noise electrostatic force and
measuring the system’s response to obtain the transfer function G−1(ω) = x(ω)/F (ω).

It remains to be seen what is the expression of the mechanical response function
G(ω). Many models have been proposed to account for the numerous physical sources
of dissipation [19], but in a first approximation the AFM cantilever can be modeled by a
damped spring-mass system. The displacement of the punctual mass in the model will
correspond to the deflexion x of the cantilever, the spring constant k to the response
to the external force F acting on its tip, the mass m to the inertia of the mechanical
beam, and the damping coefficient γ to the dissipation processes due to the surrounding
atmosphere and internal losses. This Simple Harmonic Oscillator (SHO) responds to

the following equation of motion, with ω0 =
√
k/m and Q = mω0/γ:

mẍ = −kx− γẋ+ F (1.44)

ẍ+ ω0

Q
x+ ω2

0x = F

m
(1.45)

When the external force consists only in the thermal force Fξ, Eq. (1.45) corresponds
to the Langevin equation Eq. (1.6). Here, the regime is underdamped as the damping
in the air leads to a viscous force comparable to the inertia. We deduce from Eq. (1.45)
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the response function in the SHO model:

GSH0(ω) = k(1− u2 + u

Q
), (1.46)

where u = ω/ω0 is the reduced frequency. We can therefore express the PSD Sξ when
the force originates only from the thermal noise by applying the FDT in Eq. (1.42):

SSHO
ξ (ω) = 2kBT0

π
γ. (1.47)

Similarly, we obtain the PSD Sx of the thermal fluctuation in x by applying the FDT
in Eq. (1.43):

SSHO
x (ω) = 2kBT0

πω0k

1/Q
(1− u2)2 + u2/Q2 (1.48)

Let us point out that the Equipartition theorem prescribes (from Eq. (1.30)):

∫ ∞
0

Sx(ω)dω = 〈x2〉 = σ2
0 = kBT0

k
. (1.49)

The SHO model applies for the fundamental deflexion mode of the cantilever to a
very good approximation. If one wants to depict the various modes of oscillation [20]
and other mechanical and coupling effects, some other theoretical models have been
proposed, including Sader’s model [21–23]. In particular the decomposition of the
cantilever behavior in normal mode is derived by a clamped-free beam description in
an Euler-Bernoulli framework [19; 20].

1.3 Trapping methods

As we are considering micro-size objects, the question of control arises: we will show
in the following some trapping methods to control Brownian systems.

1.3.1 Optical tweezers

Optical traps (also called optical tweezers) as the one sketched on Fig. 1.2 allow for
trapping and manipulating dielectric particles, with sizes from 10 nm to 10µm, thanks
to the radiation pressure exerted by light on matter. The first experimental realiza-
tion was done by Ashkin in 1969 [24], using two counter-propagating laser beams to
trap micron-sized particles. Then the technology evolved rapidly and successfully, and
optical tweezers are nowadays widely used scientific tools, especially in fields like bi-
ology, colloids physics and microfluidic [25; 26]. Thanks to a highly focused beam
(with a high numerical aperture microscope objective), the gradient force pushing to-
ward the region of high intensity exceeds the scattering force and the particle ends up
trapped in the laser beam [27]. All in all, near the center of the beam, the optical
tweezer creates an harmonic potential U(x) = 1

2kx
2. Typical siffnesses are in the range

0.5 pN/µm < k < 50 pN/µm.
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1.3.2 Virtual potentials

Feedback traps have been demonstrated to trap and manipulate Brownian particles in
solution, and explore fundamental questions in non-equilibrium statistical mechanics of
small systems [13; 28–30]. Indeed, by controlling an external force acting on a colloidal
particle as a function of its measured position, one can create a virtual potential. This is
a very powerful tool, more flexible [12; 14; 31] than its physical counterparts consisting
of localized potential forces created by optical or magnetic tweezers [11; 14; 32–34].

Virtual potentials can also be used for underdamped systems but the implementa-
tion is not an easy task, especially within the stochastic thermodynamics framework
that requires a high measurement precision to resolve the kBT0 scale. Indeed, at low
damping, systems are resonant and very sensitive to perturbation, noise or drift. Fur-
thermore, the characteristic time scale of underdamped systems being significantly
lower, the feedback update delay can have strong consequences on the coupling be-
tween the system and the thermal bath [30; 35].

1.4 Information and thermodynamics

1.4.1 Context

Stochastic thermodynamics comes into play to extend traditional thermodynamic laws -
the field of physics focused on how heat and energy move and transform - to account for
small-scale fluctuations [36]. Indeed, thermodynamic quantities such as internal energy,
applied work, exchanged heat or entropy production cannot be characterized only by
their mean values, but their fluctuations and probability distributions become also
relevant. The prominent relations providing general laws applicable to non-equilibrium
systems, particularly relevant for Brownian systems are reviewed in Ref. 37.

In particular, for driven Brownian motion, Sekimoto gave birth in Refs. 1 and 38 to
the stochastic energetics ruling the first law for fluctuating quantities. Ultimately, the
definition of a stochastic entropy [39] paved the way for the “fluctuating” second law
and the unifying perspective of these two developments has been called the stochastic
thermodynamics [40].

Let us point out here that, in most experiments on stochastic thermodynamics,
the conclusions about energetic costs (applied work, exchanged heat, kinetic temper-
ature. . . ) rely on precise modeling of the system and measurements of associated
quantities, and not on direct calorimetric experiments. For example, in this thesis, we
measure the system position x and deduce its velocity v. At the same time, we record
the driving parameters of the potential U . From the precise description of the under-
damped system, we can then compute the energetic quantities with the expressions
given in the next paragraphs.

1.4.2 Stochastic thermodynamics

Over-damped stochastic thermodynamics

We consider an over-damped Langevin description in a potential U(x):

γẋ = −dU
dx

+ γ
√
Dξ(t). (1.50)
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Following Refs 36–38; 41; 42, we multiply Eq. (1.50) by ẋ:

dU

dx
ẋ = −γ(ẋ−

√
Dξ(t))ẋ (1.51)

The term γ(ẋ −
√
Dξ(t))ẋ corresponds to the force exerted by the heat bath on the

system, so that Eq. (1.51) defines the first law of thermodynamics for stochastic dy-
namics:

dU

dt
= −dQ

dt
(1.52)

where U̇ is the internal energy variation, and the stochastic dissipated heat Q into the
surrounding environment is defined by:

dQ
dt
≡ γ(ẋ−

√
Dξ(t))ẋ. (1.53)

Now, if there is an external operator acting on the potential U(x, λ) through a
control parameter λ, we can similarly define the stochastic work performed by the
operator. Indeed Eq. (1.51) is consequently amended:

∂U

∂x
ẋ = γ(−ẋ+

√
Dξ(t))ẋ (1.54)

dU(x, λ)
dt

= −γ(ẋ−
√
Dξ(t))ẋ+ ∂U

∂λ
λ̇ (1.55)

dU(x, λ)
dt

= −dQ
dt

+ ∂U

∂λ
λ̇ (1.56)

Therefore it is natural to define the workW done by the operator through the variations
the external parameter λ as:

dW
dt
≡ ∂U

∂λ
λ̇ (1.57)

We recover a proper energy balance equation:

dU

dt
= dW

dt
− dQ

dt
. (1.58)

As U̇ = ∂xUẋ+ ∂λUλ̇, we can rewrite the stochastic heat as:

dQ
dt
≡ −∂U

∂x
ẋ (1.59)

All in all, if the trajectory of the system x(t) is described by the Langevin equation
Eq. (1.50), the stochastic required work W and the stochastic dissipated heat Q are
obtained by integrating Eqs. (1.57) and (1.59) on the duration of the experiment. As
they are fluctuating quantities, depending on the stochastic trajectory x, the relevant
quantities are often the probability distribution functions and the average values: 〈W〉
and 〈Q〉, where 〈.〉 denotes the ensemble average over all possible trajectories.

General formulation

As we are tackling both over-damped and underdamped systems, the stochastic ther-
modynamics framework has to be extended to the underdamped regime. We follow the
same steps than in the previous paragraph including this time the inertial terms and
the kinetic energy K = 1/2mẋ2.
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As the total energy is now worth E = U+K, the energy balance equation becomes:

dK

dt
+ dU

dt
= dW

dt
− dQ

dt
, (1.60)

with W still defined by Eq. (1.57) and,

dQ
dt
≡ −

∫ ∂U

∂x
ẋ− dK

dt
. (1.61)

The computation of an explicit expression of the mean dissipated heat requires to
write the general Langevin equation of an underdamped system in a potential U :

mẍ = −∂U
∂x
− mω0

Q
ẋ+ γ

√
Dξ(t) (1.62)

We again multiply Eq.(1.62) by ẋ and identify the stochastic heat defined in Eq. (1.61):

dQ
dt

= mẍẋ− dK

dt
+ mω0

Q
ẋ2 − γ

√
Dξ(t)ẋ (1.63)

= mẍẋ− dK

dt
+ 2ω0

Q
K2 − γ

√
Dξ(t)ẋ (1.64)

The term mẍẋ involves a product of stochastic quantities, and in that respect cannot be
identified with the derivative of K using the Ito derivation rules. Indeed some caution
is required and we obtain after discretizing (when the dt tends to 0 limit), taking the
average value (to remove all terms of the form of Eq. (1.16)):

d〈K〉
dt

= m〈ẍẋ〉+ kBT0
ω0

Q
(1.65)

Hence, Eq. (1.64) simplifies on average into:

d〈Q〉
dt

= d〈K〉
dt
− kBT0

ω0

Q
− d〈K〉

dt
+ 2ω0

Q
〈K〉 − 0 (1.66)

= ω0

Q
(2〈K〉 − kBT0) (1.67)

This expression is completely general and doesn’t depend on the potential shape or
current transformations occurring in the system. It also highlights that for a large
quality factor Q, the heat exchanges with the thermal bath are reduced. Finally,
at equilibrium when the equipartition theorem prescribes Keq = 1

2kBT0, there are in
average no heat exchanges, as expected.

1.4.3 Kinetic temperature

We define the kinetic temperature T of the first deflection mode of the system through
the velocity variance σ2

v = 〈v2〉 − 〈v〉2:

T = m

kB
σ2
v . (1.68)

Therefore, the average heat can be expressed from Eq. (1.67) as:

d〈Q〉
dt

= ω0

Q

(
m〈v〉2 + kB(T − T0)

)
. (1.69)
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At equilibrium in a potential that does not depends on the velocity, the kinetic tem-
perature should match the bath temperature T0 as prescribed by the equipartition
(Eq. (1.30)). Besides, when the deterministic terms are negligible compared to the
thermal ones, 〈v〉2 � σv, the average kinetic energy is proportional to the kinetic
temperature, 〈K〉 = 1

2kBT , and the average heat simplifies into:

d〈Q〉
dt

= ω0

Q
kB(T − T0) (1.70)

1.4.4 Cost of information

The thermodynamic energy cost of information processing is a widely studied subject
both for its fundamental aspects and for its potential applications [43–51]. This energy
cost has a lower bound, set by Landauer’s principle [52]: at least kBT0 ln 2 of work is
required to erase one bit of information from a memory at temperature T0, with kB
the Boltzmann constant. This is a tiny amount of energy, only ∼ 3× 10−21 J at room
temperature (300 K), but it is a general lower bound, independent of the specific type of
memory used. The Landauer bound (LB) has been measured in several classical exper-
iments, using optical tweezers [11; 32], an electrical circuit [53], a feedback trap [12–14]
and nanomagnets [33; 34] as well as in quantum experiments with a trapped ultracold
ion [54] and a molecular nanomagnet [55]. The LB can be reached asymptotically in
quasi-static erasure protocols whose duration is much longer than the relaxation time
of the above mentioned systems used as one-bit memories.

1.5 Dimensionless notations

Quantity Symbol Dimensionless quantity
System’s position x z = x/σ0

Potential well position x1 (respectively X1) z1 = x/σ0 (respectively Z1)
Bi-quadratic potential barrier position x0 z0 = x/σ0

Comparator hysteresis h h = h/σ0
System’s velocity v = ẋ v = v/(σ0ω0)

Potential driving velocity v1 = ẋ1 v1 = ż1/ω0
Total Energy E E = E/(kBT0)

Kinetic Energy K K = K/(kBT0)
Potential Energy U U = U/(kBT0)

Barrier height Energy B B = B/(kBT0)
Work W W =W/(kBT0)
Heat Q Q = Q/(kBT0)

Temperature T = mσ2
v/kB θ = T/T0 = 〈σ2

v〉

Table 1.1 – Dimensionless notations

In the following, it is sometimes easier to use σ0 as length scale, ω−1
0 as time scale,

T0 as temperature scale, and kBT0 as energy scale. Let us point out that natural the
velocity scale is therefore σ0ω0, matching the equilibrium velocity standard deviation
σv,0 defined in Eq. (1.30).
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For clarity purposes we list in Tab. 1.1 the matching between each quantity used
in the following and its dimensionless counterpart, which is written using a bold font
(except for z = x/σ0).
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2.1 Engineered Swift Equilibration (ESE)

Speeding-up an equilibration process is a delicate task, because the relaxation time is
an intrinsic property of a system which depends on parameters such as the dissipation,
the potential strength, the inertia, or the number of degrees of freedom. Furthermore,
when a control parameter is suddenly changed, the system may pass from states that
widely differ from the target one. One way of speeding up a specific transformation
between well defined equilibrium states is to apply complex protocols in which the time
dependence of one or several control parameters is tuned in a highly specific fashion,
to reach the final target in a selected short amount of time. This problem, related to
optimal control theory, can be traced back to Boltzmann [1–3]. It has recently received
sustained attention within the framework of the so-called “Shortcut To Adiabaticity”
protocols, which study such complex procedures for specific transformations [4].

We are interested here in over-damped systems in contact with a thermostat, for
which we can define protocols of Engineered Swift Equilibration (ESE) that shortcut
time-consuming relaxations. We apply ESE to Brownian particles trapped by optical
tweezers introduced in section 1.2.1 and sketched in Fig. 1.2. The optical trap properties
can be controlled in time [5] using experimental set-ups similar to the one described
in Appendix B. For example, one can perform the compression of a single particle
trapped in an harmonic potential by increasing its stiffness k between an initial state
in equilibrium at ki and a final state in equilibrium at kf . After a sudden change in
k (STEP protocol) the bead will equilibrate with its natural relaxation time (τrelax ∼
15 ms). Using an ESE protocol for the time evolution of k(t), the same final equilibirum
state can be reached several order of magnitude faster than STEP [5].

We consider as a benchmark the ESE protocol designed in Ref. 5 for a single particle
trapped in the potential U(t) = 1

2k(t)x2 evolving in water at temperature T0. Its over-
damped dynamics is described by a the over-damped Langevin equation (1.8) (that can
be recast into the Fokker-Planck equation (1.21) for the probability density ρ(x, t)).
The single particle ESE consists in changing the stiffness over a period of time tf
to reach a new equilibrium at kf . The corresponding stiffness profile, illustrated in
Fig. 2.1a) is:

κ(s) = 1 + (κf − 1)(3− 2s)s2 − 3Γ(κf − 1)(s− 1)s
1 + (κf − 1)(3− 2s)s2 , (2.1)

using the dimensionless quantities κ(t) = k(t)/ki (in particular κf = kf/ki), s =
t/tf and Γ = γ/(kitf ) (ratio of relevant timescales). Indeed, plugging the quadratic
potential stiffness driving of Eq. (2.1) into the Fokker-Plank equation (1.21) results

into a gaussian probability distribution ρ(x, t) =
√

1
2πσ(t)2 e

− x2
2σ(t)2 of variance evolution:

σ(s)2 = kBT0

ki

1
1 + (κf − 1)(3s2 − 2s3) . (2.2)

Eq. (2.2) demonstrates that the Boltzmann equilibrium is reached in the initial and final
states, as the variance satisfies σ(0)2 = kBT0/ki and σ(tf )2 = kBT0/kf , while keeping a
smooth profile in between (in particular vanishing derivatives in 0 and tf ) as shown in
Fig. 2.1c). Actually the ESE protocols are precisely computed by demanding a smooth
evolution of the probability density between the two Boltzmann equilibrium states
enforced by Eq. (2.2), and deducing the corresponding stiffness profile using Eq. (1.21).
Different choices of variance profiles (always satisfying the boundary conditions) would
lead to different ESE solutions.
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a) b)

c) d)

Figure 2.1 – ESE compression of parameters κf = 2, Γ = 3.8 and tf = 1 ms. a) ESE
stiffness driving κ(t) = k(t)/ki for a compression aiming to double the stiffness (κf = 2)
in a short time tf = 1 ms � τrelax = 15 ms. The stiffness goes through a maximum in
t∗ = 0.47 ms before reaching the desired final value. b) Driving potential U(x, t) at the
initial (blue) and final (red) states, and at the transient state in which the stiffness is maximal:
t = t∗. c) Time evolution of the variance σ2(t) of the probability distribution ρ(x, t)
in response to the ESE protocol in b). It corresponds to the simplest polynomial form (for
1/σ2) enforcing the two Boltzmann equilibriums (in dashed blue, and dashed red σ2

f = σ2
i /2)

and the constraint of the derivatives (null in 0 and tf ). d) Probability density ρ(x, t) at
the initial (blue) and final (red) states, and at the transient state in which the stiffness is
maximal: t = t∗.
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2.2 ESE for over-damped coupled particles

When designing these protocols, one of the key questions lies in the stability against
external perturbations. In this context, we tackle the case of two particles trapped in
different potentials but hydro-dynamically coupled all the more when their separation
d decreases. On the first hand we study to what extent the equilibration dynamics
imposed by the single particle ESE in Eq. (2.1) is modified by the hydrodynamic
interactions with another bead. On the other hand we build and test experimentally
a new family of ESE protocols specifically designed for such a more complex system.
Our work in this context is extensively covered in Ref. 6 (reproduced in Appendix A),
except for the details of the experimental set up that we present in Appendix B. We
refer the reader to those two appendices for the complete study, and we only summarize
below the main results of Ref. 6:

• The experimental set-up detailed in Appendix A and B allows the study of two
hydro-dynamically coupled particles, and the driving of two independent trapping
potentials.

• In very good agreement with the model, experiments prove the relative robustness
of the single particle ESE of section 2.1 applied to the coupled system. The
perturbation due to the coupling deviates the response of only around 10% from
the 0-coupling case even when d is smaller than the bead radius r (d = 0.8 r).

• It is nevertheless possible to work out explicitly ESE solutions that take due
account of the coupling, and are therefore immune to it.

• In particular, a protocol enforces independence between the particles is proposed
and experimentally validated. It is very robust as it is independent on d.

• Other solutions can be investigated such as a symmetric protocol designed for
coupled particles. The latter is more difficult to implement because it requires a
precise knowledge of d.

2.3 ESE in the underdamped regime

The ESE protocols addressed in the previous sections are designed for over-damped
confined Brownian object. It is desirable to study the generalization of the idea to
underdamped situations, when inertial effects are no longer negligible (such as for
the AFM cantilever). In the underdamped regime, one should include the velocity
degree of freedom v in the description, and the probability density function P (x, v, t)
now obeys Kramer’s equation (1.18). Many transformations can be addressed with
ESE protocols, for example transport of an underdamped oscillator as been studied in
Ref. 7. We focus here on protocols similar to those of previous section: compression of
the trapping potential. For a compression in a time dependent harmonic potential the
dynamics is entirely described by three moments [8], θx(t) = 1/(2σ2

x), θv(t) = 1/(2σ2
v)

and θxv(t) defined by:

P (x, v, t) = P0(t) exp
{
−θx(t)x2 − θy(t)v2 − θxv(t)xv

}
(2.3)
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In order to shortcut the relaxation to a stiffness change from ki to kf in a duration
tf , the boundary conditions on the moments are imposed according to the Boltzmann
equilibrium:

θx(0) = ki
kBT0

θx(tf ) = kf
kBT0

(2.4)

θv(0) = m

kBT0
θv(tf ) = m

kBT0
(2.5)

θxv(0) = 0 θxv(tf ) = 0 (2.6)

Following to the over-damped method, ESE protocols are obtain by reverse computa-
tion using Kramer’s equation, but the resolution is much more complex. In Ref. 8 are
proposed several families of explicit protocols, depending once again on the moments’
chosen profile meeting the boundary conditions. M. Chupeau and coworkers manage
to exhibit ESE protocols for which the only quantity that has to be driven is the trap
stiffness k(t). Depending on the system properties (damping, initial stiffness, mass. . . ),
the stiffness profile can be irregular and sometimes have negative values.

Let us compute an example of ESE protocol designed for a highly underdamped
micro-mechanical oscillator, following step by step the method in Ref. 8. We choose
parameters consistent with the micro cantilever used in the following: f0 = 12 kHz,
ki = 0.12 N/m and Q = 53. The characteristic relaxation time of the cantilever in
the exponential decay is τr = 2Q/ω0 ∼ 2 ms. We propose in Fig. 2.2a) the ESE
stiffness driving to compress the system by a factor 2 and shortcut the relaxation to
tf = 0.7 ms ∼ τr/3. We compare in Fig. 2.2b) c) and d) the moments evolution in
response to the ESE, with the response to a STEP (sudden change in stiffness). Both
were obtained by solving numerically Kramer’s equation with the ESE stiffness driving
of Fig. 2.2a). The system natural relaxation consists in decaying oscillations (at its
resonance frequency), before reaching the new equilibrium after almost 3τr ∼ 9tf . On
the contrary, the ESE protocol successfully shortcuts the relaxation to tf and removes
the transient oscillations, at the expense of a high stiffness maximum in the ESE profile.
Of course, contrary to over-damped system the natural relaxation time of underdamped
oscillators is already very small, so that the gain in time is less impressive. Larger
accelerations could be computed, but it would require a control range for the stiffness
beyond what would be reasonably accessible in experiments.

All in all, the ESE presented in Fig. 2.2 would be a concrete application of the
extension of ESE to the underdamped regime, achievable for the our experimental un-
derdamped system. In this perspective, we study in section 2.4 the feasibility of driving
the potential stiffness in which evolves the AFM cantilever whose natural stiffness is
fixed by its mechanical properties.
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Figure 2.2 – a) ESE protocol for the underdamped cantilever. The ESE is designed to
double the stiffness: kf = 2ki, in tf = 0.7 ms (used to define the normalized time s = t/tf ).
The systems parameters required to compute the ESE protocol are chosen to match the
micro cantilever characteristics: ki = 0.12 N/m, ω0 =

√
ki/m = 7.5× 104 rad s−1, and Q =

mω0/γ = 53 so that Γ = γ/(kitf ) = 3.6× 10−4. The ESE normalized stiffness κ(s) = k(s)/ki
goes through a maximum κ = 35 before reaching k(tf ) = 2. b) c) and d) Evolution
of the moments in response to an ESE, and a STEP, inferred from the numerical
resolution of the Kramer’s equation with the stiffness profiles in a). As expected the ESE
responses are shortcut to tf , while on the contrary the relaxation oscillations the STEP decays
exponentially with a time constant of τr = 3tf .
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2.4 Prototype of experimental demonstration

2.4.1 Underdamped micro-mechanical oscillator

The underdamped oscillator is a conductive cantilever1 which is weakly damped by
the surrounding air. Its deflection x is measured with very high accuracy and signal-
to-noise ratio by a differential interferometer [9]. The Power Spectral Density (PSD)
of the thermal fluctuations of x is plotted in Fig. 2.3(a). The fit with the thermal
noise spectrum of a Simple Harmonic Oscillator (SHO) (Eq. (1.48)) gives the system’s
resonance frequency f0 = ω0/2π = 11.76 kHz, and quality factor Q = 65. From the
PSD we also compute the variance σ2

0 = 〈x2〉 = (0.14 nm)2 used to normalize measured
quantities and deduce the stiffness k = kBT0/σ

2
0 = 0.22 N/m. A voltage V is applied

to the cantilever, and the facing electrode at a distance d is kept at a voltage V0. Since
d� σ0 the resulting electrostatic force is given by Eq. (1.40): Fel = α(V0 − V )2.

2.4.2 How to drive the potential stiffness using a feedback-
loop

In the following sections we detail the creation of a virtual harmonic potential whose
stiffness can be tuned at will. The principle of the feedback-loop is displayed on
Fig. 2.3b): a voltage proportional to the measured position is applied to the con-
ductive cantilever, V ∝ x. If V0 � V the electrostatic force can be linearized:
Fel = αV 2

0 −2αV0V . In the following we systematically ignore the first static term as we
only pay attention to the potential stiffness. We therefore have a force proportional to
the deflexion: Fel(x) = −kelx, with kel growing linearly with V0. The system response
to the feedback electrostatic force ruled by the SHO equation of motion (Eq. (1.44))
obeys:

mẍ = −kx− γẋ+ Fel(x) + Fξ (2.7)

= −(k + kel)x− γẋ+ Fξ, (2.8)

where the thermal force is defined in Eq. (1.4). As a consequence the system behaves
as an underdamped oscillator in a virtual potential of effective stiffness keff = k + kel,
where kel ∝ V0 can be tuned at will.

2.4.3 Practical implementation and model of the feedback-
loop

The block diagram in Fig. 2.4 summarizes the feedback-loop design that results in
the desired virtual potential. First, the photodiodes signals are combined to obtain a
voltage Vx proportional to the system position: the proportionality constant is called
β so that Vx = βx. To remove the drifts and the static terms, the signal Vx then enters
a high pass filter of cutoff frequency fhp = 1

τhp
= 1 Hz, whose transfer function is given

by:

Hhp(ω) = V (ω)
Vx(ω) = iωτhp

1 + iωτhp

. (2.9)

1Doped Chromium and Platinium coated cantilever Budget Sensor All in One.
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Figure 2.3 – a) Measured Power Spectrum Density (PSD) of the cantilever deflection
thermal noise with no feedback (V0 = 0, blue), and best fit by the theoretical thermal noise
spectrum of a Simple Harmonic Oscillator (following Eq. (1.48), dashed red). Up to 50 kHz,
the cantilever behaves like a resonator at f0 = 11.76 kHz, with a quality factor Q = 65. We
infer from this measurement the variance σ2

0 = 〈x2〉 = kBT0/k. b) Schematic diagram
of the experiment. The conductive cantilever is sketched in yellow. Its deflection x is
measured with a differential interferometer [9], through two laser beams focused respectively
on the cantilever and on its base. The cantilever at voltage V ∝ x is facing an electrode
at V0 � V . The voltage difference V0 − V between them creates an attractive electrostatic
force Fel = α(V0 − V )2 ' −kelx (up to a static force). The dashed box encloses the feedback
controller, consisting in the photodiode signals processing and filtering.



Chapter 2 43/ 141

F⇠
<latexit sha1_base64="XKu0htjDw6p4KsP/Zg5r979WZw0="></latexit>

Vx
<latexit sha1_base64="G0Jza7BzHYykwmWgIZWE9R6XAo0="></latexit>

�
<latexit sha1_base64="Vhd/Ogt+Cr6xlMu5gMGEA1wRysU="></latexit>

x
<latexit sha1_base64="ygOcvjJDo1U1Pc5jEuR8ZXzo9/Q="></latexit>

V
<latexit sha1_base64="KFXs4Rm0dE2eo7B+vyXJ5GYQGaI="></latexit>

1

GSHO
=

1/k

1 � u2 + i u
Q

<latexit sha1_base64="mllNKRtmiw0mxtvVb5NaJ/BviVk=">AAADKnicjVLLThRBFD20goCAoy7ddJyQmBiG7tFEXZhM4sLZCdEBEgZId1EDlelXqqsMpFPfwg/wG241cUfYutAF/8Ctokh4hGB1uvvUuefcW7eq0ioTtYqik4ngwcPJqUfTM7OP5+YXnrSePlurSy0ZH7AyK+VGmtQ8EwUfKKEyvlFJnuRpxtfT8ScbX//OZS3K4ps6rPhWnuwVYiRYoojaaX0YjmTCmtg0n7eboeIHSubN1/4XY8xHH1oemyZe0tvd1+KC0aZZNWan1Y46kRvhbRB70IYfK2XrDEPsogSDRg6OAopwhgQ1PZuIEaEibgsNcZKQcHEOg1nyalJxUiTEjum7R7NNzxY0tzlr52ZUJaNXkjPEInlK0knCtlro4tpltuxduRuX067tkP6pz5UTq7BP7H2+S+X/+mwvCiO8dz0I6qlyjO2O+Sza7YpdeXilK0UZKuIs3qW4JMyc83KfQ+epXe92bxMX/+uUlrVz5rUa/9wq7+6vphqatILUB3ZldBnim0d/G6x1O/GbTnf1bbvX8ddiGi/wEq/o7N+hhz5WMKBKR/iBn/gVHAe/g5Pg9EIaTHjPc1wbwZ9zP0SxIA==</latexit>

x
<latexit sha1_base64="ygOcvjJDo1U1Pc5jEuR8ZXzo9/Q="></latexit>

Fel = �k0x
<latexit sha1_base64="JqUjmnUMnD3hCO4Oco8NPz/x9EI="></latexit>

Fel + F⇠
<latexit sha1_base64="mjqbZJX4j/O8oCmtfYq8P6vJGe4="></latexit>

+
<latexit sha1_base64="rs5x1tyBvVWakeUeuY5OUDGl+qU="></latexit>

+
<latexit sha1_base64="rs5x1tyBvVWakeUeuY5OUDGl+qU="></latexit>

Hel = �2↵V0
<latexit sha1_base64="IznxlSg6PIPetCNGOFTArCRr9rU="></latexit>

Hhp =
i!⌧hp

1 + i!⌧hp
<latexit sha1_base64="61o6VWMegPUD/6osehVvzuAiy04="></latexit>

Figure 2.4 – Feedback-loop block diagram. The position x with feedback off only consists
into the mechanical SHO response to the thermal force Fξ. In contrast, with the feedback
on, the response of the system is modified and is given by the feedback transfer function
H(ω) = x(ω)/Fξ(ω). H can be deduced from the diagram and the block expressions, with
u = ω/ω0. The feedback consists in converting the position x into a voltage Vx (block β),
then filtering the static contribution to obtain the voltage V (block Hhp), before polarizing
the cantilever to create the electrostatic force Fel (block Hel).

At high frequency (around the resonance), Hhp ∼ 1 so that this is transparent for the
filtered voltage called V which is finally applied to the cantilever. As long as we impose

V0 �
√
〈V 2〉 ∼ 10 mV, the resulting electrostatic force can be linearized and is worth

Fel = −2αβV0x, up to a static term. In Fourier’s space Fel(ω) = Hel × β × x(ω) with
Hel = −2αV0. The stiffness kel defined in the above section is therefore:

kel = 2αβV0. (2.10)

Before computing the whole transfer function with the feedback on, it should be re-
membered that the mechanical response of the system to any external force is given by
the mechanical response function defined in Eq. (1.46):

x(ω) = 1
GSHO(ω)F (ω) (2.11)

All the feedback steps detailed above are expressed in Fourier’s space in the diagram
structure of Fig. 2.4. Using block diagram reduction rules we are able to model the
system response to the thermal force with the feedback on. Indeed the feedback whole
transfer function H(ω) can be simplified into:

H(ω) = x(ω)
Fξ(ω) (2.12)

= 1/GSHO

1− 1/GSHO × β ×Hhp ×Hel

(2.13)

= 1
GSHO + kel( iωτhp

1+iωτhp
)

(2.14)
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As we are only interested in the system dynamic response, we will consider ω � 1/τhp = 1
in the following, so that Eq. (2.14) becomes:

H(ω) = 1
GSHO + kel

(2.15)

= 1
k(1− u2 + i u

Q
) + kel

with u = ω

ω0
(2.16)

= 1
keff −mω2

0,eff + iω0,effγ
= 1
GSHO

eff

, (2.17)

Hence, the feedback modeled in Fig. 2.4 corresponds to an effective SHO model of
same mass m, same damping γ and effective stiffness: keff = k + kel, so that ω0,eff =√
keff/m =

√
keff/k × ω0, and Qeff =

√
keff/k ×Q

2.4.4 Calibration and Experimental results

To fully characterize the feedback operations, we need to calibrate the β and α param-
eters that govern the effective stiffness through Eq. (2.10). As α corresponds to the
electrostatic force pre-factor (introduced in Eq. (1.40)), it can be deduced by measur-
ing the mean position for growing polarisations V0, with the feedback off (V = 0 V).
Indeed, the average position (set to the origin for V0 = 0 V) is 〈x〉 = αV 2

0 /k. The
calibration line in Fig. 2.5a) results in α = 9.7× 10−12 N/V2.

Furthermore, the parameter β defines the measurement sensitivity and depends on

both the interferometer and the photodiodes signals conversion. We measure
√
〈V 2

x 〉 =
13 mV, and knowing that σ0 = 0.14 nm, we directly deduce β = 9× 107 V/m. We con-
sider here that the detection system calibration does’t depend on cantilever’s position,
that is to say that we assume β to remain constant.

We compare in Fig. 2.6 the experimental PSD of thermal fluctuation Sx, to the
model (with no adjustable parameters) for a wide panel of V0 values. The theoretical
PSD, Sth, is computed using the feedback response function expressed in Eq. (2.14)
and the thermal force PSD defined in Eq. (1.47):

Sth(ω) = |H(ω)|2 × Sξ(ω) (2.18)

= 2kBT0

π
γ × |H(ω)|2 (2.19)

We have shown that for ω � 1, H(ω) simplifies into Eq. (2.17) so that Sth corre-
sponds the thermal noise spectrum of a Single Harmonic Oscillator of angular resonance

frequency ω0,eff =
√

(k + kel)/m. Fig. 2.6 highlights that the model, using the calibra-
tion parameters, fits the experimental curves: the systems behaves as an effective
oscillator whose stiffness can be tuned in a wide range with −120 V < V0 < 120 V.

From the spectrums in Fig. 2.6, the model seems reliable to characterize the resulting
effective frequency with the feedback on. To confirm this observation, we plot on
Fig. 2.5c) the measured resonance frequencies and the corresponding stiffnesses. As
predicted by the model, keff = k+ kel increases linearly with V0, and perfectly matches
Eq. (2.10) with α and β from calibration. Besides for V0 = 0 V, there is no feedback
anymore, so that we recover the natural stiffness of the cantilever k = 0.22 N/m.

To put it in a nutshell, the implementation of the feedback loop successfully re-
sults in a harmonic oscillator behavior with an effective stiffness tuned within a wide
range, as confirmed by the experimental potentials shapes plotted in Fig. 2.5. Indeed,
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b)

c)

a)

Figure 2.5 – a) Calibration of the electrostatic force pre-factor α. With the feedback
off (V = 0), the electrostatic force is Fel = 1

2∂dC(d)V 2
0 = αV 2

0 , so that 〈x〉 = αV 2
0 /k. The

linear fit (red) to the experimental calibration points (blue) confirms the expression of the
force and results in α = 9.7× 10−12 N/V2. b) Measured potential energy (bold lines)
obtained with the feedback on and V0 from −120 V to 120 V. The potentials (centered on
0) are inferred from the measured Probability Density Function (PDF) of x during a 10 s
acquisition and the Boltzmann distribution. The model U(x) = 1

2keffx
2 with keff = k + kel =

k+2αβV0 is superimposed in dashed line: using the α and β calibration values, the model is in
perfect agreement with the experimental curves. The black lines corresponds to the physical
potential with no feedback c) Effective resonance frequency and effective stiffness
tuned via V0. f0,eff (blue) and keff (green) are inferred from the experimental spectrums
in Fig. 2.6: they cover respectively 3% < keff/k < 200% and 9% < f0,eff/f0 < 142% when
−120 V < V0 < 120 V, and are worth the natural system characteristics (f0 = 11.76 kHz and
k = 0.22 N/m) when V0 = 0. The model (dashed red), using calibration parameters, perfectly
matches the experimental points.
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Figure 2.6 – Thermal deflexion PSD with the feedback on. The experimental PSD, Sx,
demonstrate the success of the feedback loop: for negative V0 (blue) the stiffness is virtually
decreased and the resonance peak drift towards the low frequencies, and on the contrary
for positive V0 (red) the stiffness is virtually increased and the peaks drift toward the high
frequencies. The black curve corresponds to the system natural PSD with the feedback
off. The model Sth of Eq. (2.19) (with no adjustable parameters) is superimposed in bold
transparent lines: it successfully predicts modification of the resonance. Nevertheless, the
sharpness of the peaks is not perfectly modeled. Indeed the system response deviate from the
model as it seems to diverge at the resonance for highly positive V0, meanwhile it is smoothed
for highly negative V0.
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for −120 V < V0 < 120 V the stiffness evolves between 3% and 200% of its natural
value (see Fig. 2.5c)).The model of the system response with feedback detailed in sec-
tion 2.4.3, is in perfect agreement with the experimental results (in Fig. 2.5b), c) and
Fig. 2.6) as regards the effective stiffness, therefore allowing a reliable control.

Nevertheless, we see on Fig. 2.6 that even if the resonance frequency is successfully
predicted, the model doesn’t describe properly the sharpness of the resonance, mostly
for the highest effective frequencies. Experimentally we indeed observe that for high
V0, the system response tends to diverge as the resonance becomes very peaked. We
will show in the next section how to include this effect into the model, by studying the
consequences of a feedback-delay.

2.4.5 Consequences of a feedback-delay

Refined model

The divergence of the resonance observed in the experimental spectrums of Fig. 2.6

corresponds to the rise of the quality factor Q =
√
km
γ

coming along with the stiffness
increase. Actually, when the stiffness is modified by the feedback, the damping also
is affected and the effective damping γeff evolves conversely. This unwanted damping
contribution comes from the phase introduced during the feedback operations. Indeed
the detection devices that converts the photodiode signals into the position voltage Vx
has a finite pass band. It behaves as a low-pass filter of characteristic time τ :

Fel(ω) = − kel

1 + iωτ
x(ω) (2.20)

= − kel

1 + (ωτ)2x−
kelτ

1 + (ωτ)2 iωx (2.21)

As a consequence, the resulting electrical force is no longer proportional to the position
only, but also involves the position time derivative (in the Fourier’s space ẋ = iωx).
Since we considered a frequency range (near the resonance) much lower than the feed-
back band pass, ωτ � 1, Eq. (2.21) simplifies into:

Fel(ω) = −kelx− kelτiωx, (2.22)

and the equation of motion (2.7) becomes:

mẍ = −(k + kel)x− (γ − kelτ)ẋ+ Fξ (2.23)

= −keffx− γeffẋ+ Fξ, (2.24)

with γeff = γ − kelτ , and as previously keff = k + kel.
All in all this model refinement explains why when the potential stiffness is virtu-

ally increased, the damping is on the contrary virtually decreased. When it vanishes,
the resonance culminates and the system diverges, reaching a self oscillating state for
negative damping.

Bias of the PSD in the virtual potential

When there is delay in the feedback, the position PSD in the virtual potential deviates
from the SHO model. In other words, the virtual potential is not perfectly equivalent
to a physical potential with tunable effective parameters.
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Indeed, the system response model in Eq. (2.17), is modified to account for the
feedback delay τ :

H̃(ω) = 1
k −mω2 + iγωkel − ikelτω

(2.25)

= 1
keff −mω2

eff + iγeffωeff

(2.26)

= 1
keff(1− u2

eff + i ueff

Q̃eff
) = 1

G̃SHO
, (2.27)

introducing G̃SHO the SHO mechanical response function of parameters keff, ω0,eff (so
that the reduced frequency is ueff = ω/ω0,eff) and Q̃eff = mω0,eff/γeff. However, the
thermal force PSD Sξ remains the same (Eq. (1.47)), involving the bath damping γ
rather than the virtual effective one γeff. Hence, the system thermal fluctuations PSD
in the virtual potential becomes in the presence of feedback delay:

S̃th(ω) = |H̃(ω)|2Sξ(ω) (2.28)

= γ

γeff

× 2kBT0

πω0,effkeff

1/Q̃eff

(1− u2
eff)2 + ( ueff

Q̃eff
)2 (2.29)

= γ

γeff

× SSHO,eff
x . (2.30)

S̃th(ω) differs from the SHO model, of the form of Eq. (1.48) with effective parameters,
by a factor γ

γeff
. The delay in the feedback loop virtually affects the effective temperature

as well, with Teff = γ/γeffT0 = 1/(1 − kelτγ)T0. To phrase it differently, the FDT
doesn’t apply in the virtual potential as it would do for a physical one with the same
characteristics and temperature.

Comparison with experimental results

We fit the experimental PSD’s (plotted again on Fig. 2.8) with the theoretical expres-
sion in Eq. (2.29) with Q̃eff as only free parameter (keff = k + kel and consequently ueff

are fixed following Eq. (2.10)). We plot the corresponding damping, γeff = mω0,eff/Q̃eff,
as a function of kel in Fig.2.7a): the linear behavior demonstrates the validity of the
model γeff = γ − kelτ . Hence, the feedback delay τ is deduced from the best linear fit
(dashed red): τ = 0.23µs. This delay in the feedback is likely to come from the cut off
frequency of the photodiodes’ current to voltage amplifiers, fc ∼ 4 MHz.

To complete the analysis, we highlight in Fig.2.7b) that Q̃eff varies on a very wide
range, between Q̃eff = 6 and Q̃eff = 12400 respectively reached for V0 = −120 V and
V0 = 120 V, therefore explaining the depletion and the divergence of the resonance
observed on the experimental PSD.

To conclude, we compare in Fig. 2.8 the refined model prediction of Eq. (2.29)
(using calibration values for α, β and τ) to the experimental PSD. This time, the model
perfectly accounts for both the resonance frequency modification and the associated
evolution of the resonance sharpness.

2.4.6 Limitations and perspectives

The experiment conducted here is only preliminary, but turns out to be very encour-
aging. Indeed the feedback control of the potential allows to tune the stiffness within
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a)

b)

Figure 2.7 – a) Effective damping evolution: γeff (blue), inferred from the fit of the
experimental PSDs following Eq. (2.29) (with keff fixed to its theoretical value), is plotted as
a function of kel = 2αβV0. The best linear fit (dashed red) validates the model prediction
γeff = γ − τkel with γ = mω0/Q = 4.6× 10−8 Ns/m (dashed black), and allows to calibrate
the time delay: τ = 0.23µs. b) Quality factor evolution with the feedback intensity.
Q̃eff (blue) is the only fitted parameter of the experimental PSD following Eq. (2.29). The
feedback strongly modify its natural value Q = 65 (in dashed black): it goes from Q̃eff = 6
for V0 = −120 V, to Q̃eff = 12400 when V0 = 120 V (divergence for γeff = 0). The model
using the calibrated parameters α, β and τ (dashed red) perfectly matches the experiment.
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Figure 2.8 – Refined model of the thermal deflexion PSD accounting for feedback
delay. The theoretical PSD, S̃th expressed in Eq. (2.29) (transparent thick lines) is in very
good agreement with the experimental PSD, Sx (plain lines). S̃th is computed with no
adjustable parameters, using only the calibrated parameters α, β and τ . Contrary to the first
model displayed in Fig. 2.6, the refined model takes into account the delay τ in the feedback
operations and therefore successfully predicts the resonance shape. For positive V0 (red)
both the resonance frequency and the resonance sharpness, ruled by the effective damping,
increase, meanwhile the reverse occurs for negative V0 (blue).
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a wide range of value. Besides the model of the feedback, proven to be in very good
agreement with experimental results, paves the way to a reliable and accurate control.

Nevertheless, the experimental implementation has two important limitations: on
the one hand, the phase introduced in the feedback operation results in the modification
of the effective damping. That is why the stiffness cannot be tuned to extremes values
without degrading or enhancing the resonance amplitude, up to the divergence. Indeed
even though the feedback delay remains small (ω0τ ∼ 2 × 10−2 � 1) and has no
noticeable effects on keff, it changes dramatically γeff and Qeff. It stems from the fact
that effective dissipation is ruled by (keff/k)Qω0τ ∼ 1, so that the effect of the low
pass filter is important on the effective temperature, thus on the velocity distribution.
On the other hand, the static terms were left aside in the study, but the center of the
potential actually drifts along with V0 (〈x〉 ∝ V 2

0 ). If one wants to tune the potential
stiffness without moving the system, the relevant control parameter should be the
amplification of the position signal (through β) rather that V0. Indeed maintaining
V0 = 100 V � Vx while only tuning the Vx = βx amplitude from negative to positive
values would achieve exactly the same result as the above.

As a conclusion, this set-up cannot to be used yet for the underdamped ESE demon-
stration: such protocols are too sensitives to allow damping unwanted changes. How-
ever, those preliminary tests are very promising concerning the use of feedback control
on underdamped systems. Indeed, with a better device (such as an FPGA target
tackled in section 3.4) allowing to control both the amplification and the phase of the
feedback output, respectively the stiffness and the damping could be tuned indepen-
dently. This additional driving degree of freedom could lead to more regular protocols,
with the stiffness ensuring the compression in the position space while the velocity
degree of freedom would be taken care of through the damping. All in all, as suggested
in Ref. 8, two control parameters would open interesting perspectives in terms of ESE
protocols for compression, decompression or transport.

In the following, we will follow the lead of the feedback control of the potential but
with a simpler purpose: creating a double-well potential.
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[4] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Mart́ınez-Garaot,
and J. G. Muga, Rev. Mod. Phys. 91, 045001 (2019).
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3.1 Context

Feedback loops on the system’s position are used in the literature to study Landauer’s
principle by creating double-well potentials and using the trapped particle as a mem-
ory [1; 2]. To extend this study to the underdamped regime, we propose in this chapter
an electrostatic feedback designed to create virtual double-well potentials acting on
a micro-cantilever, which serves as an underdamped mechanical oscillator. The sys-
tem offers a state-of-the-art flexibility and precision, with excellent quality in terms
of position measurement and force tuning. Thanks to the thorough study of the feed-
back effects, we are able to create clean, reliable and tunable double-well potentials
which outperform those produced by optical and magnetic tweezers (either physical or
virtual), and have the added advantage of being analytically tractable.

The chapter is organised as follows: we first present in section 3.2 the experimental
system and the principle of the feedback loop. We then refer to Ref. 3 that explores the
non-idealities of a real-life analogical implementation for a quality factor Q ∼ 10. In
particular, it shows how an hysteresis in the switches between the wells, or, equivalently,
a delay in the actuation, results in a bias of the energy exchanges with the thermal bath,
effectively warming or cooling the oscillator Brownian noise (note that this subject will
be raised again in chapter 5). The requirements that need to be met to mitigate
imperfections in the analogical implementation are recalled in section 3.3. In order to
conduct experiments at lower damping, Q ∼ 100, we propose in section 3.4 to replace
the analogical devices by a FPGA card which overcomes its predecessor limitations.
Lastly we demonstrate the efficiency of the FPGA feedback at very low damping.

3.2 Virtual double well potential: principle

As sketched in Fig. 3.1, the underdamped oscillator is a conductive cantilever which
is weakly damped by the surrounding air at room temperature T0. Its deflection x is
measured with very high accuracy and signal-to-noise ratio by a differential interferom-
eter [4]. The Power Spectral Density (PSD) of the thermal fluctuations of x is plotted
in Fig. 3.2: the fundamental mode dominates by 3 orders of magnitude the higher-order
deflection modes of the cantilever. The second deflection mode at 8 kHz is conveniently
removed from the measured signal by focusing the sensing laser beam on its node, at
around 0.78% of the cantilever length. This adjustment helps in having a physical
system very close to an ideal Simple Harmonic Oscillator (SHO). The fit of this PSD
with the theoretical thermal noise spectrum of a SHO leads to its resonance frequency
f0 = ω0/2π = 1270 Hz and quality factor Q = 10. The slight difference between the
measurement and the model is due to frequency dependence of the viscous damping
of the cantilever in air [5; 6]. From the PSD we compute the variance at equilibrium
σ2

0 ∼ 1 nm2, which is used as the length scale (see section 1.5).

In order to use the cantilever as a one-bit memory (see following chapters), we need
to confine its motion in an energy potential consisting of two wells separated by a
barrier, whose shape can be tuned at will. This potential U is created by a feedback
loop, which compares the cantilever deflection x to an adjustable threshold x0. After
having multiplied the output of the comparator by an adjustable voltage V1, the result
is a feedback signal V which is +V1 if x > x0 and −V1 if x < x0. The voltage V
is applied to the cantilever and the facing electrode is kept at V0 ∼ 100 V � V1 so
that, to a good approximation, Fel ∝ ±V1 up to a static term. All in all, this feedback
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Figure 3.1 – Experimental system. The conductive cantilever is sketched in yellow. Its
deflection x is measured with a differential interferometer [4], by two laser beams focused
respectively on the cantilever and on its base. The cantilever at voltage V = ±V1 is facing an
electrode at V0. The voltage difference V −V0 between them creates an attractive electrostatic
force Fel = α(V − V0)2. The dashed box encloses the feedback controller, consisting of a
comparator and a multiplier, which create the double-well potential.
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Figure 3.2 – Power Spectral Density (PSD) of the cantilever deflection in a single
well, in air. Measured PSD of the thermal noise driven deflection with no feedback (V1 = 0,
solid lines), and best fit by the theoretical spectrum of a Simple Harmonic Oscillator (SHO,
dashed line). The second deflection mode, visible at 8 kHz when the laser beam is focused at
the free end of the cantilever (magenta), is successfully hidden by focusing the laser beam on
the node of this mode (blue). At frequencies up to 10 kHz, the cantilever behaves like a SHO
at f0 = 1270 Hz, with a quality factor Q = 10. We infer from this measurement the variance
σ2

0 ∼ 1 nm2
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loop consists in the application of an external constant force whose sign depends on
whether the cantilever is above or below the threshold x0. As long as the reaction
time of the feedback loop is very short (around 10−3f−1

0 ), the switching transient is
negligible thanks to the inertia of the cantilever. As a consequence, the oscillator
evolves in a virtual static double-well potential, whose features are controlled by the
two parameters x0 and V1. Specifically, the barrier position is set by x0 and its height
is controlled indirectly by V1, which sets the wells centers ±x1 with:

x1 = 2αV0

k
× V1, (3.1)

where α is the proportionality constant introduced in Eq. (1.40). The potential energy
constructed by this feedback is:

U(x, x0, x1) = 1
2k
(
x− S(x− x0)x1

)2
, (3.2)

where S is the sign function: S(x) = −1 if x < 0 and S(x) = 1 if x > 0. In the
following, unless we specify otherwise, we will always consider the case of a symmetric
potential, corresponding to x0 = 0.

The potential energy in Eq. (3.2) can be experimentally measured from the Prob-
ability Distribution Function PDF(x) and the Boltzmann equilibrium distribution:
PDF(x) ∝ e−U(x)/kBT0 . Fig. 3.3 presents two examples of an experimental symmet-
ric double-well potential generated by the feedback loop, tuned to have a barrier of
1
2kx

2
1 = 5kBT0 and 0.5kBT0 (respectively x1 =

√
10σ0 and x1 = σ0). The dashed red

line is the best fit with Eq. (3.2), demonstrating that the feedback-generated potential
behaves as a static one, in terms of the position PDF.

The second degree of freedom of the underdamped system is the velocity v = ẋ, and
it is also expected to satisfy the Boltzmann equilibrium distribution. As the potential
U(x, x0, x1) does not depend on the speed, the equilibrium PDF of the velocity in the
double-well is the same as the one in a single harmonic well and should be a Gaussian
of variance σv,0 (defined in Eq. (1.30)): PDF(v) ∝ e−mv

2/(2kBT0). The experimental
challenge undertaken in Ref. 3 and in the following is to build a proper virtual potential
identical to a physical one: the feedback loop should have no noticeable effect on the
position and velocity equilibrium distributions.
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a)

b)

Figure 3.3 – (a) Probability Density Function (PDF) of x. The PDF of x (blue)
measured during a 10 s acquisition with the feedback on, with x0 = 0 and two values of
V1 adjusted to have respectively a 5 kBT0, and a 0.5 kBT0 energy barrier height. The fit
using the Boltzmann equilibrium distribution with the potential shape in Eq. (3.2) (dashed
red) is excellent. (b) Double-well potential energy. The measured potentials (blue) are
inferred from the above measured PDF of x and the Boltzmann distribution: we obtain as
expected the 5 kBT0 and 0.5 kBT0 barriers corresponding to the two values of V1. The fits
using Eq. (3.2) are again excellent (dashed red).
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3.3 Analogical implementation

The analogical implementation is fully detailed in Ref. 3, reproduced in Appendix D.
One of its main conclusion is that any switching delay or hysteresis in the feedback
results in the cooling of the memory. Indeed the kinetic temperature T defined in
Eq. (1.68), matching the bath T0 at equilibrium in a physical bi-quadratic potential as
prescribed by the Boltzmann distribution, decreases when the output voltage switch
lags behind the barrier crossing. The consequence of an hysteresis on the system’s
temperature will be addressed in more details in chapter 5. For clarity purposes we
only list the experimental constraints given in Ref. 3 to maintain T = T0 within 5%,
for a quality factor Q = 10:

• The hysteresis of the comparator has to be lower than 2% of σ0.

• A temporal lock-up has to be implemented to remove parasitic switching, by
freezing the comparator output after a switch during 1/4 of the oscillator’s natural
period.

• The position signal has to be filtered to remove high frequency noise and higher
order deflexion modes’ contributions.

• The phase introduced by the filter should correspond to a feedback delay much
lower than τd = 1/(g∗Qω0) with g∗ = 0.21. It bounds the cut-off frequency of the
low pass filter by fc � 5g∗Qf0 = 13 kHz.

Nevertheless, the requirements listed above become more restrictive if the quality
factor is increased. For example, if Q ∼ 100, the response time of the feedback has
to remain much lower than τd = 1/(g∗Qω0) = 6µs (fc � 130 kHz), and the hysteresis
lower than 0.1% of σ0, to keep the velocity distribution in the virtual potential unbi-
ased (less than 5% cooling): the analogical implementation of Ref. 3 doesn’t meet the
requirements anymore.

3.4 Digital implementation: FPGA card

To work at very low damping (Q ∼ 100), we need the feedback operations to be
performed without introducing any delay neither during the comparison nor the filtering
step. That is why we turned to a digital implementation of the feedback, allowing
to perform operations clocked up to 10 ns (100 MHz acquisition frequency, 200 MHz
onboard clock) using a Fast Programming Gate Array (FPGA).

A Labview-based FPGA data acquisition system (FPGA 7975R + Adapter module
Ni 5783) collects the voltage signals from the photodiodes and sends the feedback
voltage to the cantilever. The FPGA card runs the control protocol (input, signal
conversion using calibration, filtering, comparison and output) with a deterministic
time step of 1.3µs. Indeed, each basic operations takes a fixed tick number to be
conducted and the overall feedback operations performed on the FPGA (including the
analog to digital (ADC) and digital to analog (DAC) conversion steps accounting each
for 25 ticks) lasts around 130 ticks. We detail in the following the digital feedback
tasks illustrated in Fig. 3.4a).
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Figure 3.4 – a) Schematic diagram of the experiment: the conductive cantilever is
sketched in yellow. The detection system is the same but the photodiodes signals are directly
sent to the FPGA card that proceeds with the calibration, the filtering of x used for the
comparison to x0(t), and the computation of the output voltage V (x). All the signals are
saved in the host PC. All in all, the FPGA operations result in an output voltage ±V1
depending on the protocol and the measured position. b) Measured PSD at very low
damping of the cantilever thermal noise driven deflection with no feedback. The laser beam
is focused on the node of the second deflexion mode to suppress its contribution. We compare
the PSD in vacuum (P = 1 mbar, blue) with the one at ambiant pressure (P0 = 1 bar, grey):
removing the viscosity increases the amplitude and the sharpness of the resonances. The
best fit by the theoretical spectrum of a Simple Harmonic Oscillator (SHO, dashed red line)
confirms that up to 10 kHz the cantilever behaves in vacuum like a resonator at f0 = 1353 Hz,
with a quality factor Q = 80.
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Before the experiment: calibration

We first perform a calibration step implementing in the FPGA the calibration co-
efficients to convert the interferometer four photodiodes voltage signals to an actual
position x in nm [4]. We then apply a ramp in the voltage V applied to the tip and
read the cantilever average position 〈x〉, to convert V1 into x1 and vice-versa (propor-
tionality coefficient 2αV0/k in Eq. (3.1)). The origin of the x axis is periodically (every
protocol) set to (〈x〉 = 0, V = 0) in order to remove the drift in position during long
experiments.

Position signal treatment: filtering

The photodiodes signals are acquired and converted into the deflexion signal x using the
calibration parameters, but x remains to be filtered to remove higher order deflexion
modes’ contribution and the high frequency noise as specified in section 3.3. To do
so, we design a low pass filter of cutoff frequency fc ∼ 10 kHz. Such a drastic filtering
couldn’t be simply implemented analogically without a prohibitive feedback delay [3].
Nevertheless, it is possible to design a numerical filter removing the noise above fc
without impacting the phase at the cantilever natural resonance frequency f0. Indeed
IIR filters (Infinite Impulse Response filters working with the memory of previous
outputs) can be tuned to have zero-phase at f0. Moreover, such an IIR filter can
be used to also compensate the delay of the other FPGA operations. In practice,
the FPGA position signal filter is meant to correct the 1.3µs feedback delay, so that
the overall phase of FPGA feedback vanishes around the cantilever’s resonance (see
Fig. 3.5b)). Let us detail the key steps of the method followed to build the FPGA IIR
filter:

• We compute the filtered position using a low pass Butterworth filter: x̃ = BW⊗x.

• We compute the speed ṽ = ˙̃x of the system, to anticipate the system’s position
after the overall τd ∼ 1.3µs feedback delay.

• We compensate the feedback delay in the final filtered position: xf = x̃ + ṽτd.
Hence in Fourier space: xf (ω) = (1 + iωτd)BW (ω)x(ω).

• The parameter τd is chosen to have zero phase at the cantilever’s resonance fre-
quency: τd is solution of Im{xf (ω0)/x(ω0)} = Im{(1 + iω0τd)BW (ω0)} = 0.

All in all the filter transfer function is IIR(ω) = (1 + iωτd)BW (ω), whose anticipa-
tion coefficient τd is in practice fine tuned experimentally to enforce an unbiased velocity
PDF in the resulting double-well potential. The Bode diagram of the overall FPGA
operations on the position signal (ADC, conversion of the photodiode outputs into x
signal, IIR filter and DAC) is displayed in Fig. 3.5a) and b). It consists in the gain and
the phase of the transfer function between the real time position directly inferred from
the photodiode outputs (no real time conversion, nor filtering, but only post treatment
operations), and the position signal acquired, reconstructed, filtered and output by the
FPGA card, xf . We see in Fig. 3.5b) that the phase of the feedback is small enough at
the resonance to limit the temperature cooling to the acceptance range of 5% required
in section 3.3, even for Q ∼ 100. It is worth noticing on Fig. 3.5a) that this real time
zero-phase -at ω0- filtering is performed at the expense of a very small resonance in the
filter gain, which has negligible consequences on our experiments.
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a) b)

Figure 3.5 – a) Gain of the FPGA position signal treatment. As expected the gain of
the feedback operations on the position signal (ADC, conversion of the photodiode outputs
into x signal, IIR filter and DAC) is worth 1 (horizontal dashed black) within the frequency
range of interest (f0 in vertical dashed black), and is then filtered above fc = 10 kHz to remove
the 3rd deflexion mode contribution. We notice that there is a slight amplification above f0
due to the resonance of the IIR filter. b) Phase of the FPGA position signal treatment:
the IIR filter is designed to have a 0 phase for the overall processing of the position signal at f0
(vertical dashed black), to avoid switching advance or delay, and hence meet the T = T0±5%
requirement on the kinetic temperature. The authorized range (computed following Ref. 3)
corresponds to the interval between the red dashed lines for Q ∼ 100, and between the dotted
lines for Q ∼ 10.

Let us also point out that the above IIR filter requires 9 FPGA clock ticks to
operate, so that the input signal has to be first filtered against aliasing by a simple
moving average FIR (Finite Impulse Filter) at 100 MHz/9.

Protocol computation

Once filtered, the position is compared the barrier position x0, and the FPGA outputs
the corresponding voltage V that tunes the well center position ±x1. The operator
has full control on the x0 and x1 profiles from the host computer. Similarly to what is
done in the analogical implementation [3], we add in the protocol a switching lock-up
(mentioned in section 3.3) to remove parasitic switches. This time, it is all digital so
that the operator can fine tune the lock-up time from the computer.

Recording and post-treatment analysis

To avoid saturating the FPGA card host computer bandwidth, we downsample the
signals at fs = 2 MHz. Therefore, the signals sent from the FPGA to the host PC have
to be filtered for antialiasing purposes. We program on the FPGA a distinct third order
Butterworth filter of cutoff frequency fc,acq = fs/3 = 667 kHz. All the signals, either
the command ones x0 and x1, the measured position xacq (only filtered for antialiasing
purposes), the filtered position xf (filtered by the real time FPGA filter and used to
compute the feedback output voltage), the output volage V , and the calibration data
are recorded by the host PC.



Chapter 3 62/ 141

To compute the thermodynamics quantities we use the measured position xacq prop-
erly filtered above 10 kHz in post-treatment analysis using a zero-phase filtering (pro-
cessing the data in both the forward and reverse direction). This post-acquisition filter
is better than the real time FPGA one (because it enforces 0 phase for all frequen-
cies and not only f0), that is why we do not use directly xf for the analysis. Let us
note that such zero phase filtering is not causal and thus cannot be implemented on
the FPGA for real time operations. Thanks to the calibration of the data, no further
post-treatment is required.

Results in the very low damping limit and perspectives

The FPGA reproduces with more flexibility, more control and more accuracy the results
obtained using the analogical feedback loop. Thanks to the tunable IIR filter, no more
caution is needed regarding the feedback delay, making it a very powerful tool to explore
the very under-damped regime that was not accessible using the analogical counterpart.

Removing the air in the cantilever’s chamber enhances the quality factor of the
underdamped oscillator: as shown in Fig. 3.4b), at pressure P = 1 mbar the cantilever
behaves like a SHO of quality factor Q = 80. We illustrate in Fig. 3.6a) and b) the
very good results obtained using the digital feedback in these experimental conditions.
Moreover, the velocity PDFs analysis in Fig. 3.6c) and d) confirms that the virtual
potential behaves like a physical one without introducing any bias on the system tem-
perature (within the 5% acceptance range).

Besides, as the operator can design the FPGA operations at will, it opens many
possibilities regarding virtual potentials beyond the simple bi-quadratic shape. Indeed,
if the center of the well is no more defined by only two x regions (x1(x > 0) = +X1,
x1(x < 0) = −X1), but for every possible position (x1(x) function implemented as
an array), the potential can be shaped at will. In particular x1(x) = kFB × x would
result in a tunable virtual stiffness, and x1(x) = γFB × ẋ in a tunable virtual damping,
therefore paving the way to ESE protocols (see section 2.3).
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a) b)

d)c)

Figure 3.6 – a)Virtual potential inferred from the position PDF and the Boltzmann equi-
librium distribution, for growing distances x1 between the wells with x0 = 0. The numerical
feedback works perfectly for low damping, here Q = 80. b) Same as a) for growing po-
sition barrier x0, with x1 = 2σ0. c) Velocity PDF at Q = 80 for growing half-distances
x1 between the wells. It confirms that the FPGA does not bias the equilibrium distribution
emphasized in dashed black. d) Kinetic equilibrium temperature T = σ2

v × T0 for
growing x1 inferred from the variances of the PDFs in e). The FPGA feedback successfully
creates a virtual bistable potential at Q = 80 without more than 5% cooling, or warming
(dashed red interval).
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4.1 Introduction

As introduced in section 1.4.4, erasing 1-bit of information costs at least the Lan-
dauer bound (LB): kBT0 ln 2. This bound is reached asymptotically in the quasi-static
regime, that is to say for slow erasures. In practice, finite time implementations require
an overhead to Landauer’s Bound (LB), observed to scale as kBT0 × B/τ , with τ the
protocol duration and B close to the system relaxation time [1; 2]. Most experiments
use overdamped systems, for which minimizing the overhead means minimizing the
dissipation. Underdamped systems [3; 4] therefore seem natural to reduce this ener-
getic cost: that is why we use as one-bit memory the underdamped micro-mechanical
oscillator confined in a virtual double-well potential.

This chapter is organized as followed: in section 4.2 we demonstrate experimen-
tally that the Landauer’s bound is reached in our underdamped system with a 1 %
uncertainty, with protocols as short as 100 ms (compared to the 30 s [5] previously
needed). Besides we measure the divergence from LB for fast erasures, and estimate
the parameter B ruling the overhead to LB in section 4.2.5. It remains to be seen
what are the origins of this overhead: we therefore study the energy exchanges during
erasure processes, and model quantitatively the cost of fast operation in section 4.3.
The model, in very good agreement with experiments and numerical simulations paves
the way to new optimisation strategies addressed in section 4.4, based on the thorough
understanding of the energy exchanges. Ultimately, we study the robustness of the
underdamped memory and the erasure cost evolution when it is used repeatedly in
section 4.5.

4.2 Experimental demonstration of the Landauer’s

bound using an underdamped oscillator

4.2.1 Context and experimental set-up

Erasure procedures in underdamped systems have never been studied before, and it is
interesting to verify the LB for a weak coupling to the thermostat. Both the relaxation
time and the coupling to the bath of our system are orders of magnitude smaller than
those of the overdamped systems of previous demonstrations, therefore allowing us to
accumulate much more statistics. Furthermore, the virtual confining potential (see
chapter 3) allows both a precise experimental control and an analytical computation
of the work and heat on a trajectory.

The underdamped oscillator is the one introduced in section 1.2.2 and the experi-
mental set-up corresponds to Fig. 2.4. We recall the system’s characteristics at ambient
pressure (from the spectrum in Fig. 3.2): f0 = 1270 Hz, Q = 10 and σ2

0 ∼ 1 nm2. The
latter is used to normalize the deflexion, z = x/σ0, and express energetic quantities in
kBT0 units (using notations summarized in Tab. 1.1). In order to use the cantilever
as a one-bit memory, we confine its motion in the virtual double-well energy potential
displayed in Fig. 3.3. As we are for now working at Q = 10, the analogical imple-
mentation of the feedback is enough to provide an unbiased bi-stable potential whose
equation is given by:

U(z, z0, z1) = 1
2
(
z − S(z − z0)z1

)2
, (4.1)

with z0 the barrier position and ±z1 the center of the wells.
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Figure 4.1 – a) 3D spatio-temporal representation of the erasure protocol. The
two wells initially centered in ±Z1, far enough to secure the bit initial value (barrier height
B = 1

2Z
2
1 ), are brought together during stage 1 until they merge into one single well in

z1 = 0. Then, during stage 2, the memory is reset by bringing back the well center to −Z1,
before rebuilding the bi-stable potential with the barrier at position z0 = 0. A trajectory
is superimposed on the energy surface in a 3D spatio-temporal plot. b) Evolution of
the potential U(z, z0, z1) and of the static PDF P (z, z0, z1). Experimental static PDF
P (z, z0, z1) (blue), best fit to the Boltzmann distribution (red), and position of the threshold
z0 (dashed green)

4.2.2 Protocol

The erasure protocol corresponds to the potential evolution described in Fig. 4.1, with
the associated experimental static position distribution P (z). Initially, the system is
at equilibrium either in the state 0 (left-hand well centered in −Z1) or in the state 1
(right-hand well centered in Z1) with a probability pi = 1

2 . Z1 sets the height of the
barrier in the initial state B = 1

2Z
2
1 , chosen high enough to secure the initial and final

states. The process must result in the final state 0 with probability pf = 1, to perform a
reliable erasure process. To do so, during the first stage we drive the wells closer until
they merge into one single harmonic well centered in 0. After a short equilibration
time, the barrier position (dashed green line) is pushed away to prevent the cantilever
from visiting the right hand well (black parabola). It thus remains in the left hand
well (red line), which is driven back to its initial position in −Z1. The so-called stage 2
ends when the threshold is brought back in 0, to reach the final state 0 in the bi-stable
potential, regardless of the initial state.

To implement the erasure procedure, the position of the center of the wells ±z1
(black and red parabolas), and the barrier position z0 (green dashed line) are driven
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Figure 4.2 – Slow erasure cycle. Time recording of the cantilever deflection z = x/σ0
on a single trajectory (blue, starting in state 1 in this example), superposed with the two
wells’ centers +z1 (black) and −z1 (red), and the threshold z0 (dashed green). Stage 1 (red
background) et 2 (green background) both last τ = 200 ms. τ is very long compared to the
natural relaxation time τr = 2Q/ω0 of the cantilever: τω0 ∼ 1.5 × 103 � τrω0 = 2Q ∼ 20.
The equilibrium periods around stages 1 and 2 are chosen freely as long as they allow the
cantilever to relax, in this example τ0 = 50 ms� τr.

accordingly to the profiles in Fig. 4.2. Initial equilibrium is ensured by a steady po-
tential for a duration of τ0, chosen longer than the natural relaxation time of the
system τr = 2Q/ω0 = 2.5 ms. For clarity purposes, τ0 = 50 ms in Fig. 4.2. During
stage 1 (red background), the system is confined in the symmetric double-well poten-
tial U1(z, z1) = 1

2(|z| − z1)2, whose center of the wells moves linearly from the initial
state z1(0) = Z1 ∼ 5 to z1(τ) = 0 in a time τ = 200 ms. When the two wells are
close enough, the cantilever starts switching from one well to the other: the informa-
tion is progressively lost. The cantilever is then allowed to relax at equilibrium in this
single well for 3τ0. During stage 2 (green background), the threshold z0 is set at a
large value (of order Z1 or higher): the cantilever can no longer switch to the right
hand side well. The cantilever is then brought back to the state 0 in the single well
U2(z, z1) = 1

2(z + z1)2, as z1 follows a linear ramp from 0 to Z1, in the same time τ .
The protocol ends at τf = 2τ + 5τ0 & 2τ + 15τr 1, after letting the system relax during
τ0 and bringing back z0 to 0.

4.2.3 Work and Heat measurement

The data plotted in Fig. 4.2 contains all we need to compute the stochastic work and
heat along a single trajectory (using Eq. (1.57) and Eq. (1.61) applied to the potential

1To set τ0, we use the rule of thumb that a perturb system returns to equilibrium after 3τr, with
τr the characteristic relaxation time in the exponential decay.



Chapter 4 69/ 141

U(z, z0, z1) of Eq. (4.1)):

W =
∫ τf

0

∑
i=0,1

∂U
∂zi

żidt =
∫ τf

0

(
S(z−z0)z − z1

)
ż1dt (4.2)

Q = −
∫ τf

0

∂U
∂z

żdt−
[
K
]τf

0

=
∫ τf

0

(
S(z − z0)z1 − z

)
żdt− 1

2ω2
0

[
ż2
]τf

0
.

(4.3)

Indeed, the term (∂U/∂z0)ż0 ∝ δ(z− z0)z1ż0 disappears in the work expression: in our
protocol ż0 = 0, except at two particular times corresponding to the beginning and
end of stage 2. The former corresponds to z1 = 0, and the latter corresponds to the
situation where z and z0 cannot cross, which constrains this term to 0. Similarly, in
the heat expression, the contribution of the ∂S/∂z term in (∂U/∂z)ż is proportional
to δ(z− z0)z1zż and vanishing as well: assuming that z(t) and z0(t) intersect at t = t0,
this contribution is ∫

∼t0
δ(z − z0)z1zżdt = z1(t0)z(t0)ż(t0)

ż(t0)− ż0(t0) = 0, (4.4)

since during our protocol z and z0 only intersect during stage 1 where ż0 = 0 at all
times. The above simplifies in the case of a symmetric double well potential (z0 = 0):

W =
∫ τf

0

(
|z| − z1

)
ż1dt (4.5)

Q =
∫ τf

0

(
S(z)z1 − z

)
żdt− 1

2ω2
0

[
ż2
]τf

0
. (4.6)

Since at τf the system has relaxed to equilibrium, and the initial and the final states
of the protocol are the same, 〈∆U〉 = 〈∆K〉 = 0, thus the energy balance equation
Eq. (1.60) states that on average 〈W〉 = 〈Q〉.

It should be noted that in the computation of the mean dissipated heat, we did
not include the kinetic term which vanishes on average. These general expressions
can be used to deduce work and heat during stage 1 or during stage 2, by adapting
the integration bounds. It is straightforward to compute W , since ż1 = 0 outside
the ramps. For Q, we add at least 5 ms after reaching the final state, i.e. at least 2
relaxation times, so that the system is very close to equilibrium.

4.2.4 Experimental demonstration of the Landauer’s bound

Long protocols satisfying τ � τr can be considered as quasi-static erasures, hence we
present in Fig. 4.3 the results obtained from 2000 trajectories, equivalent to the one
of Fig. 4.2. It should be emphasized that the protocol is perfectly reliable from an
information processing point of view: all 2000 trajectories ended in the prescribed well,
regardless of the initial condition. As expected for a slow translation of a single well,
stage 2 requires nearly no power: 〈W2〉 = 0 ± 0.008. During stage 1 however, the
power increases when the cantilever starts switching between the wells. Of course, the
equilibrium stage never contributes to the erasure work. Summing the dissipated power
along the process gives: 〈W1〉 = 0.702± 0.006 as shown in Fig. 4.3b).

Furthermore, we superimpose on Fig. 4.3c) the work and the heat distributions. The
work distribution is gaussian. Meanwhile, the heat distribution presents exponential
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Figure 4.3 – a) Time evolution of the mean power over 2000 trajectories following the
slow protocol of Fig. 4.2. The work takes off when the cantilever starts switching between
the wells, during stage 1 (red background). Since the process is quasi-static, stage 2 (green
background) doesn’t contribute on average. The red dashed line is the analytical prediction
in the quasi-static regime (see section 4.3). b) Work distributions for step 1 and step
2. The distributions are inferred from the 2000 trajectories during stage 1 (W1, red) and 2
(W2, green) fitted by gaussians (plain lines). As theoretically predicted for a slow erasure,
stage 1 reaches LB of 0.693 (dashed red) while stage 2 requires negligible work (dashed
green). c) Work and Heat distribution. The total work (dark blue) and heat (light blue)
distributions are respectively centered on 〈W〉 = 0.702 ± 0.006 and 〈Q〉 = 0.68 ± 0.03, in
very good agreement with LB (dotted black vertical line). The gaussian shape of the work
PDF is highlighted by the best fit to a gaussian distribution (dashed red line). The heat is
far more dispersed than the work and presents exponential tails.

tails. This observation is in agreement with the study of Ref. 6: Q is the convolution
product of a gaussian and an exponential distribution. Besides, both distributions
are centered on LB as the mean dissipated heat during the whole procedure is worth
〈Q〉 = 0.68±0.03. These results are in perfect agreement with the Landauer principle:
in a quasi-static process, the mean work or heat required to erase 1 bit of information
is ln 2 = 0.693.

4.2.5 Fast erasures and divergence from LB

After providing experimental evidence that our system matches LB in the quasi-static
limit, we study how fast the procedure can be performed before paying an extra en-
ergetic cost for the erasure. We therefore repeat the experiment for increasing speeds,
and report the results in Figs. 4.4 and 4.5. The initial distance between the wells
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may vary slightly from one set of experiments to the other (Z1 = 5 to 6, but Z1
is constant for the 2000 experiments of any given τ), so we use the driving speed
v1 = Z1/(τω0) (dimensionless quantity defined in Tab. 1.1) to represent how far from
a quasi-static protocol we stand. For example the quasi-static erasure in Fig. 4.2 cor-
responds to v1 = 3.8× 10−3, three order of magnitudes lower than the rms thermal
velocity at rest (σv = 1). The fastest erasure expressed in Fig. 4.4 corresponds to
v1 = 0.12. As expected, the slow procedures meet the LB and quick ones require an
extra cost. For finite τ , it has been reported in earlier demonstrations of the LB [7; 8]
that 〈W〉 ∼ (ln 2 + B/τ), with B a constant depending on the system and applied
protocol. More generally, this 1/τ asymptotical behavior is expected for the mean
stochastic work or heat for finite time transformations both in overdamped [1; 9; 10]
and underdamped [11] systems. This suggests a fit of our results with L∞ + B′Z1/τ .
It leads to B′ = (3.43 ± 0.21)ω−1

0 = (437 ± 27) µs and L∞ = 0.695 ± 0.012, which
validates, again with great accuracy, the Landauer principle. It is noteworthy that
using protocols of only τf ∼ 100 ms (with τ = 30 ms, that is to say speed v1 = 0.02,
and τ0 = 3τr = 7.5 ms), the energy cost of erasure is only 10% larger than the LB. We
didn’t explore here cycles faster than v1 = 0.12 per ramp, which already corresponds
to τ ∼ 40ω−1

0 , only twice the relaxation time τr = 2Qω−1
0 .

One may wonder if the extra cost at high speed is due either to the erasure protocol
itself, or to the damping losses during the ramps. In the inset of Fig. 4.5, we plot the
contribution W2 or Q2 of the ramp of stage 2. In a first approximation (neglecting
transients), the cantilever follows the well center z1 at the driving speed v1, while
experiencing a viscous drag force γv1σ0ω0 = kσ0v1/Q. We thus expect the ramp cost
to be 〈W2〉 = 〈Q2〉 ∼ B′2Z1/τ , with B′2 = Z1/(Qω0). This approximation with no
adjustable parameters is reported in the inset of Fig. 4.5 (dotted red), and matches
perfectly the experimental data within the erasure speed under study here (v1 < 0.1).
We compute B′2 ∼ 0.6ω−1

0 = 75 µs for Z1 ∼ 6: the ramp contribution is not enough to
explain the extra cost of fast erasures, since 2B′2 (one contribution for each stage) would
explain only 30 % of the overhead to ln 2. Indeed, contrary to the over-damped regime
in which the overhead to LB mainly comes from the dissipation, in the underdamped
regime it stems from the heating of the memory we will explain in the next section.
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Figure 4.4 – Fast erasure cycle. Time recording of the cantilever deflection z on a single
trajectory (blue, starting in state 1 in this example), superposed with the centers of two
wells: +z1 (black) and −z1 (red) initially being worth ±Z1 = ±6. Stage 1 (red background)
et 2 (green background) both last τ = 5 ms, so that the driving speed is worth v1 = 0.12.
The grey map corresponds to the position PDF, computed from N = 2000 experimental
trajectories of the erasure process.
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Figure 4.5 – Divergence from Landauer’s limit for fast erasures. Energy cost (〈W〉
and 〈Q〉) for erasure protocols at different driving speeds v1, with Z1 ∼ 6. Experimental data
(blue) are fitted by L∞ + B′Z1/τ (dotted red), with B′ = (3.43 ± 0.21)ω−1

0 = (437 ± 27) µs
and L∞ = 0.695 ± 0.012. It is in good agreement with the model of section 4.3(red line).
Inset: same considering only the translational motion in step 2 at different speeds. The
theoretical prediction B′2Z1/τ (dashed red) with B′2 = Z1/Qω0 works perfectly (no adjustable
parameters) within the erasure speed range under study in this section. For very fast motion
v1 > 0.1, the transient must be accounted for with the theoretical model detailed in section 4.3
(red line).
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4.3 Energetic study

4.3.1 Fast Erasures model (FE Model)

In the following, we explain the origin of the overhead to LB increasing with the speed:
it comes in underdamped memories from the transient rise of the effective temperature
Teff, a source of energy loss that fundamentally differs from the viscous dissipation
contribution of overdamped systems.

For this purpose, we measure the mean kinetic and potential energy during either
a quasi-static erasure (Fig. 4.6a-b) and a fast one (Fig. 4.6c-d). When we proceed in a
quasi-static fashion, the mean kinetic energy stays as expected at its equilibrium value
1
2kBT0, while the odd evolution of the mean potential energy complies with equiparti-
tion for the bi-quadratic shape of U1 as detailed in section 1.1.4 and in Eq. (1.34). For
fast operations, the energy profiles are completely different: in particular they strongly
increase during stage 1, before relaxing during the equilibration step. K can be decom-
posed into 〈K〉 = 1

2m(〈v〉2 + σ2
v), summing the contribution of the velocity mean value

〈v〉 that reflects the response to the well motion, and the velocity variance σ2
v which

defines the kinetic temperature (following Eq. (1.68)). The first term is responsible for
the transient oscillations at the beginning of step 1 and during step 2, but the energy
rise during step 1 mainly comes from the thermal term: 1

2m〈v〉
2 ∼ 1

2kBT0v2
1 � 1

2kBT0.
It therefore demonstrates a transient temperature rise.

This warming and its consequences on the operation cost can be interpreted using
a simple analogy: during step 1, the system behaves as a single-particle gas [12] at
pressure p, compressed so that the available volume V is divided by 2 as illustrated
on Fig. 4.7. The infinitesimal work required for the compression is dWc = −pdV =
−kBTd lnV . If the transformation is quasi-static, T = T0 and the work simplifies into
Wc = kBT0 ln 2. On the contrary, if the process is too fast to allow heat exchanges
with the surrounding thermostat, the transformation is adiabatic, and the temperature
T of the gas increases during the compression. Hence, the compression work for fast
operations writes:

Wc = kB

∫ τ

0
Td lnV = kBTeff ln 2, (4.7)

with Teff ≥ T0. The heat exchanges after the adiabatic compression will then allow the
system to thermalize at T0.

Following the analogy sketched in Fig. 4.7, we will also call ”compression” the re-
duction of the phase space volume explored when the bi-stable potential progressively
shrinks until reaching a single well during step 1. This analogy highlights the fact
that the warming during the compression is specific to the underdamped system, and
would not exist if a strong coupling to the bath allowed efficient heat exchanges. The
objective of the following sections is to build a model which describes both the com-
pression and translational motion as observed in experiment. The heat 〈Q〉 is given
by Eq. (1.69). To compute the other energetic terms (〈W〉, 〈K〉 and 〈U〉), we rely on
the PDF of position x and speed v. Let us introduce this PDF during the compression
stage, supposing that the system is at equilibrium: it is governed by the Boltzmann
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a) b)

c) d)

Figure 4.6 – Energy evolution during an erasure procedure. (a) In blue, the time
evolution of the mean kinetic energy 〈K〉 over N = 2000 iterations of a quasi-static erasure
(v1 � 1): stage 1 and stage 2 (red and green backgrounds) both last τ = 100 ms. The red line
corresponds to the equipartition detailed in section 1.1.4. (b) Same, with the mean potential
energy 〈U〉. The dip in the potential matches the equipartition in a double well (rather than
in a single quadratic one) as highlighted by the red line corresponding to Eq. (1.34) (c) and
(d) Same for a fast erasure: τ = 5 ms (v1 = 0.12). The red line corresponds to the theoretical
prediction detailed in the section 4.3. We add in purple line the results of a numerical
simulation for step 1 that provides more samples than the experiment, Nsim = 5× 106, and
is thus free of statistical uncertainty.
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distribution

P c(x, v) = 1
Zc
e−

1
2βmv

2
e−

1
2βk(|x|−x1)2

(4.8a)

Zc(β, x1) = 2π√
kmβ

V , V = 1 + erf
√kβ

2 x1

 , (4.8b)

with β = 1/(kBT ), Zc the partition function, and V a volume-like function that shrinks
by a factor 2 when x1 decreases from X1 to 0. We can directly apply this PDF to the
slow erasures, in equilibrium at temperature T0 at all time. We extend the use of this
PDF to the case of fast erasures as well, under the hypotheses that (i) the cantilever
oscillates several times in the double-well before its shape changes significantly (|v1| �
1), so that the phase space is adequately sampled and (ii) a Boltzmann-like distribution
still holds. In this case, however, we let the temperature T as a parameter free to evolve
due to a possible heating. Note that the PDF P c(x, v) only describes the volume
compression and does not include any transients, leaving aside any coupling between
x and v. The main transient, due to the translational motion of the wells, is addressed
in the next paragraph. In Appendix F, we compare the PDF of our ansatz with one
sampled on a large numerical simulation, demonstrating its relevancy.

During stage 2, or at the beginning of stage 1 before the oscillator crosses the
barrier, the dynamics is ruled by a linear Langevin equation: the potential energy is
quadratic (no switching). x(t) is therefore the sum of the stochastic response to the
thermal fluctuations, and of the deterministic response ±xD(t) to the driving force
FD(t) = ±kx1(t) (the sign depending of which well is considered). xD(t) can be easily
computed for our simple x1(t) ramps, and the PDF P t(x, v) which determines the
translational motion is then described by [13; 14]:

P t(x, v) = 1
Zt
e−

1
2βm(v−ẋD)2

e−
1
2βk(x−xD)2

(4.9a)

Zt = 2π√
kmβ

V , V = 1. (4.9b)

We easily retrieve 〈x〉 = xD and 〈v〉 = ẋD. In complement to Eq. (1.69) for the mean
heat, the knowledge of the PDF allows the computation of all mean energetic quantities.



Chapter 4 77/ 141

During compression for example, the mean energy is 〈Ec〉 = −∂ lnZc/∂β, while the
mean work derivative is 〈Ẇc〉 = 〈∂U/∂x1〉ẋ1 = −ẋ1/β ∂ lnZc/∂x1. In Appendix F, we
derive the following expressions, valid for all stages:

d〈Q〉
dt

=ω0

Q

(
2KD + kBT − kBT0

)
(4.10a)

d〈W〉
dt

=dWD

dt
− kBT

∂ lnV
∂x1

ẋ1 (4.10b)

〈K〉 =KD + 1
2kBT (4.10c)

〈U〉 =UD + 1
2kBT + kBT

2∂ lnV
∂T

(4.10d)

where WD, KD and UD are respectively the deterministic work, kinetic and potential
energy which vanish in the quasi-static regime. With Eq. (4.10b) for a quasi-static
compression in equilibrium at T0, we recover the gas analogy dWc = −kBT0d lnV ,
hence LB: 〈Wc〉 = kBT0 ln 2. Fig. 4.3 highlights the very good agreement between the
model and the experimental results.

Using the energy balance, Eq.(1.60), and Eqs.(4.10), we derive a differential equa-
tion governing the time evolution of the temperature: the deterministic terms cancels
out, since they comply to the energy balance as well, and we’re left with

d〈E〉
dt

= ∂〈E〉
∂T

Ṫ + ∂〈E〉
∂x1

ẋ1 = −kBT
∂ lnV
∂x1

ẋ1 + kBω0

Q
(T − T0). (4.11)

Explicit formulas for ∂〈E〉/∂T and ∂〈E〉/∂x1 are readily computed from Eqs. (4.10c-
4.10d). When we proceed in a quasistatic fashion (ẋ1 ∼ 0), or when the volume is
constant (∂/∂x1 = 0) , we observe no heating: T = T0. For fast compressions, this
equation can be solved numerically and leads to the evolution of the kinetic temperature
T (t).

Thanks to the knowledge of T (t), our model describes the evolution of all ener-
getic quantities in Eqs. (4.10) during the erasure process. For slow erasures, kinetic
(Fig. 4.8a) and potential (Fig. 4.8b) energies comply as expected with equipartition. For
fast erasures, we obtain a strong temperature increase2 during step 1, visible on both
energy profiles. The system then thermalizes, before responding to the translational
motion of step 2 with transient oscillations. Those theoretical results superimposed on
Fig. 4.6 in red lines are in very good agreement with the experimental observations
for both slow and fast erasures, with no adjustable parameters. We supplemented the
model validation by numerical simulation data (see Appendix E): the black curve on
Fig. 4.6c-d closely matches the model, except for tiny ripples during the thermalization
that correspond to transients unaccounted for. Additionally, the model predicts that a
fast erasure cycle will cause a mean power evolution that displays transient oscillations
and a rise during compression, both of which are consistent with the experimental data
of Fig. 4.8c, and perfectly matches the simulation results.

All in all, we propose an efficient theoretical framework to predict the energy ex-
changes and explore the fast information erasure cost. The model called the FE model
only requires the system parameters (ω0 and Q) and the protocol ones (X1 and τ) to
estimate the erasure cost. As a further illustration of the model reliability, in Fig. 4.5

2Since 〈v〉2 � σv, < K >∼ 1
2kBT and the temperature profile can be read directly on the kinetic

energy curve.
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a) b)
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Figure 4.8 – a) Model prediction: Time evolution of the mean kinetic energy 〈K〉
for different duration τ of the erasure steps computed from Eq. (4.10c). For small τ , 〈K〉
is affected during step 1 (red background) by a transient oscillation due to the dragging,
followed by a strong rise in temperature. Only the dragging transient appears during step 2
(green background). b) Same plot for the potential energy 〈U〉 from Eq. (4.10d). c)
Stochastic work profile. Time evolution of the mean power over 2000 trajectories, following
the fast protocol (τ = 5 ms) corresponding to Fig. 4.4 (blue). The red line is computed using
Eq. (4.10b) and closely matches the experimental results. Results of a numerical simulation
(purple), corresponding to 5× 106 trajectories, match the model so well that we cannot
distinguish the curves.
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we compute the erasure cost for growing driving speeds and compare this prediction
with the experimental points. The obtained theoretical curve is also compared with the
empirical description of the overhead scaling as 〈W〉 = ln 2+B/τ : it successfully quan-
tifies the divergence from LB as the speed is increased. The remaining difference may
result from calibration drifts or experimental imperfections (see Ref. 15 reproduced in
Appendix D), or from the shortcomings of the model with respect to transients.

Furthermore, the model distinguishes the part of the overhead due to the compres-
sion to the one due to the translational motion. The latter expressed in Eq. (F.9) and
plotted in the inset of Fig. 4.5, behaves at first order as (Z1/Q × v1)kBT0. On the
contrary, the former increases with the quality factor Q: it behaves as kBTeff ln 2, with
Teff > T0 the effective temperature during the process (details in Appendix F), rising
when the heat exchanges with the bath are reduced (at high speeds or high Q).

4.3.2 Adiabatic limit

For large quality factors, heat exchanges with the bath are negligible: d〈Q〉 = 0. Such
compressions, called adiabatic compressions (or mean adiabatic [16]), correspond to
the highest temperature rise because the kinetic temperature of the system cannot
dissipate in the bath. Let us remind that the entropy variation during an adiabatic
compression (assumed reversible) vanishes: dS = d〈Q〉/T = 0. Consequently, we have
by definition of the entropy (using the partition function in Eq. (4.8b)):

∆S = ∆(kB lnZc + 〈E
c〉
T

) = 0 (4.12)

As for X1 � σ0 the system starts and ends in the same quadratic potential, the
energy in the initial and final states satisfies 〈Ec

i 〉/T0 = 〈Ec
f〉/Tf = kB (derived from

equipartition, or equivalently from 〈Ec〉 = ∂ lnZc/∂β).
Therefore, only remains in Eq. (4.12) the variation of the compression partition

function written in Eq. (4.8b):

∆(kB lnZc) = 0 → ∆(TV) = 0 (4.13)

As the volume is divided by two, the temperatures doubles during the adiabatic com-
pression: Tf = 2T0 = Ta. The corresponding work is given by the first law of thermo-
dynamics (with 〈Q〉 = 0):

〈Wc〉 = ∆〈Ec〉 (4.14)

= kBTf − kBT0 (4.15)

= kBT0 =Wa (4.16)

Hence, an adiabatic compression results in doubling the system temperature (and
therefore the kinetic energy, Ka = kBT0) and requires on average Wa = kBT0 of work,
as the conservation of the phase space volume enslave the variations of the temperature
to those of the volume. Let us point out that the adiabatic limit can be reached even
for moderate quality factor Q ∼ 10 if the erasure speed is high enough: in such case
the heat exchanges are negligible during the compression step, and delayed to the
relaxation period after step 1.

These considerations and the model built to predict the overhead to the LB for fast
erasures open several possibilities to optimise the information processing.
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Figure 4.9 – Erasure cost table from the FE Model. Average work required for an
erasure as a function of the protocol driving speed v1 = Z1/(τω0) and the memory quality
factor Q, using the FE model detailed in section 4.3. The white curve corresponds to the
quality factor minimizing the erasure cost. On the first hand, optimizing very fast erasures
(v1 > 0.1) means enhancing the quality factor. On the other hand, for moderate speeds
(v1 < 0.1) the optimal damping is around Q = 10.

4.4 Optimisation

4.4.1 Strategy 1: Quality factor optimisation

Principle

There are three sources of energetic losses during an erasure: first, the very well known
entropic part that accounts for kBT0 ln 2; second, the dissipative cost coming from
the translational motion of the system in the bath (mentioned in the literature for
over-damped dynamics); and third the cost from the heating of the memory. As the
first contribution cannot be avoided, we want to minimize the contribution of the
dissipative and the warming terms. On the first hand the work required to compensate
the viscosity analytically expressed in Appendix F.2 behaves as 1/Q, and is therefore
minimized at low damping. On the other hand we demonstrated in section 4.3.2 that
the thermal contribution is bounded by the adiabatic limit (when there are no heat
exchanges during the procedure), so that at very high quality factor the work from
the compression cannot overreach kBT0. These considerations are summarized by the
erasure cost table built using the FE model plotted in Fig. 4.9. It shows that working
at very low damping should optimize very fast erasures for which the adiabatic limit
is always reached (v1 > 0.1). On the contrary, for moderate speeds (v1 < 0.1), the
optimal damping is around Q = 10, corresponding to the best balance between the
warming and the damping contribution.
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Experimental results at very low damping

We experimentally implement the erasure protocol at higher quality factor to confirm
the above conclusions. To do so, we turn to the experimental set-up of Fig. 3.4 (f0 =
1.3 kHz, Q = 80) using the FPGA feedback better suited for high quality factors. Let
us point out that this second set-up allows us to explore a wider panel of erasure speeds,
up to τ ∼ 1 ms. The experimental results perfectly match the FE model predictions
for both the temperature and work evolutions as illustrated respectively in Fig. 4.10
and Fig. 4.11.

On the first hand, we see in Fig. 4.10a) that the kinetic energy nearly reaches the
adiabatic limit Ka = kBT0 for τ = 5 ms (v1 = 0.12), hence greatly exceeding the
results obtained at lower quality factor. It confirms that increasing Q enhances the
compression warming, up to the adiabatic limit reached for τ = 2 ms (v1 = 0.3) in
Fig. 4.10b). All in all the results from experiments and from simulations validate the
FE model at higher quality factor, and illustrate the adiabatic limit.

On the other hand, the experimental results in Fig. 4.11 validate the erasure cost
table stemmed from the model (Fig. 4.9) and the conclusion drawn in terms of quality
factor optimisation.

4.4.2 Strategy 2: optimal protocol for the translational mo-
tion

The oscillations in the work visible in both Fig. 4.9 and Fig. 4.11 come from the
dissipative cost that oscillates with the translational motion speed (see Eq. (F.9)).
Another optimisation strategy (that can be combined with the first one) therefore
consists in adapting the translational driving to always minimize the viscous work. In
Ref. 2 one can find an optimal erasure designed for over-damped systems that cuts the
dissipative cost by reducing the translational driving amplitude at the expense of an
out-of-equilibrium final state.

Using a different approach we aim here to replace all the linear translational drivings
by optimal protocols explicitly computed in Ref. 11 (and also tackled in Ref. 17).
Basically, the deterministic translational motion is now done at an optimal constant
speed, getting rid of the transient oscillations, by applying force peaks at the initial and
final instant of the ramp as displayed on Fig. 4.12a). As demonstrated in Fig. 4.12b)
the optimal protocol successfully forces the cantilever to move at constant (mean) speed
and suppresses the dragging oscillations visible in response to the linear driving. The
lowest possible work required to move the underdamped system of a distance Z1 in a
time τ is therefore obtained using this optimal protocol, and is worth:

WD,opt = Z2
1

2 +Qτω0
, (4.17)

We numerically simulate (following the method in Appendix. E) our erasure pro-
tocol after replacing all the linear translational drivings by optimal ones expressed in
Refs. 11. Let us point out that the final force peak designed to brake the system after
the translational motion is not adapted to step 1, at the end of which the system can
switch between the two moving wells. Nevertheless, we see in Fig. 4.13a) that the
resulting optimal erasure protocol still significantly reduces the work required for very
fast erasures.



Chapter 4 82/ 141

0 10 20 30 40 50 60 70 80
0.4

0.6

0.8

1

a)

0 10 20 30 40 50 60 70 80
0.4

0.6

0.8

1

1.2b)
b)

Figure 4.10 – a) Kinetic energy during a fast erasure process (v1 = 0.12) at high
quality factor (Q = 80). Step 1 in red background lasts τ = 5 ms (with Z1 = 5) and results
in a strong temperature rise visible on the kinetic energy profile: 〈K〉 culminates at 0.92 kBT0,
ie at 92% of the adiabatic limit Ka = kBT0. At the end of the compression step, the system
thermalizes with the surrounding bath in τrelax ∼ 20 ms so that the kinetic energy relaxes
to its equilibrium value Keq = 1

2kBT0. Then, the translational motion of duration τ (step
2 in green background) only produces tiny oscillations. The experimental curve averaged
from N = 1000 trajectories (blue), nicely matches the model detailed in previous chapters
(red) and the simulation result for step 1 (purple) obtained from Nsimu = 105 simulated
trajectories. The measurement at the same speed but for Q = 10 is reported from Fig. 4.6c)
for comparison. b) Kinetic energy in the adiabatic limit: v1 = 0.3 and Q = 80. This
time the adiabatic limit is reached during the compression of duration τ = 2 ms as predicted
by the model and confirmed by the numerical simulation. The average kinetic energy even
exceeds Ka = kBT0 because of the transient oscillations from deterministic contribution KD.
Step 2 translational motion also triggers larger oscillations that the one observed in a).
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Figure 4.11 – Influence of the damping on the divergence from Landauer’s limit
for fast erasures. As for the results at Q = 10 (results from Fig. 4.5 reproduced in grey),
the experimental points (blue crosses) obtained at lower damping Q = 80 (and Z1 ∼ 5) again
validate FE Model (red). We identify two speed regions in which the optimisation strategy
in terms of quality factor differs. In the moderate speeds region v1 < 0.1 (here Z1 ∼ 5
so that it corresponds to τ < 6 ms), the optimal damping corresponds to Q = 10, since at
higher quality factor Q = 80 what is won on the viscous work is lost by the more substantial
warming cost. On the contrary, for very fast erasures (v1 > 0.1), the overall cost is lower
at Q = 80, as it is ruled by the dissipative term only, the compression contribution being
bounded by Wa = kBT0.



Chapter 4 84/ 141

Figure 4.12 – a) Optimal translational driving of the center of the well, z1, computed from
Ref. 11 to move a underdamped system of quality factor Q = 80 from 0 to Z1 = 6.5 in a time
3 ms at a minimal cost given in Eq. (4.17). This optimal protocol forces the mean velocity
to instantly jump at the beginning of the process from its initial equilibrium value (〈v〉 = 0)
to the optimal constant speed. The final peak corresponds to setting the final velocity back
to zero. The amplitude of the delta peaks depends on the quality factor, the amplitude and
the duration of the translational driving. b) Response to the optimal translational
driving. Both for the experimental results (blue) and the simulation ones (dotted red), the
optimal protocol drives the system at the optimal constant mean velocity which minimises
the dissipation. Indeed the optimal protocol in a) suppresses the transient oscillations in the
mean position 〈z〉 of the system visible in the response to the basic linear driving computed
from Nsimu = 104 trajectories and plotted in grey. The zoom window in yellow background
emphasizes the difference between the linear and optimal driving responses.
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Figure 4.13 – a) Numerical Simulation of the optimal protocol for Q = 80. Simulation
results (red circles) of the optimal protocol in which all the translational drivings are replaced
by optimal drivings designed to minimize the dissipative cost such as the one displayed on
Fig. 4.12a). The optimal erasure is more efficient than the previous non optimal protocol
(grey), in particular at very high speeds (v1 > 0.1) when the viscous work prevails. For
both the non optimal and the optimal protocol, the simulation results (circles) and the model
(line) are in good agreement. In the very high speeds region, when the assumption v1 � 1 is
no longer valid, the model starts deviating from the simulation. b) Optimal erasure cost
table obtained using the FE model adapted to the optimal protocol, with the quality factor
minimizing the erasure cost highlighted in white. The optimal protocol gives better results
than the classic one whose cost table is in Fig. 4.9. The same color scale is used for easier
comparison.

We extend the FE model to the optimal erasure protocol by 1) replacing the de-
terministic contribution WD by the optimal translational cost WD,opt expressed in
Eq. (4.17); and 2) adding the kinetic energy given to the system through the initial
force peak at the beginning of step 1, and assumed to not be recovered through the
final force peak at the final instant. These modifications of the FE Model perfectly
describe step 2, and approximate well the system’s response during step 1: we illustrate
in Fig. 4.13a) its good agreement with the simulation results. The slight overestima-
tion of the optimal erasure cost observed on Fig. 4.13a) is likely to come from the fact
that the final force peak is not totally inefficient to bring back the average velocity
to 0 after step 1 as assumed in the model. Furthermore, at high speeds the model
assumption v1 � 1 stops being true, causing the deviation from the simulation results.
Despite these small approximations, the model is reliable enough to draw the optimal
erasure cost table in Fig. 4.13b): we see that in the high speed region v1 > 0.1, the
optimal protocol strongly minimizes the erasure cost compared to the classic protocol
in Fig. 4.9.

As a conclusion, implementing optimal driving for translational motions in the
erasure protocol (strategy 2), and working in the underdamped regime Q > 1 is the
most efficient way to erase a bit. Depending on the erasure speed, the quality factor
can be tuned to minimize the erasure cost (strategy 1): at moderate speeds Q ∼ 10
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seems a good compromise while at very high speeds Q should be increased as much as
possible.

4.5 Repeated use of the memory

4.5.1 Context

The erasure of 1-bit of information in the underdamped regime has been thoroughly
studied, and a wide panel of erasure speed is covered in previous sections. It was
demonstrated that for fast operations the kinetic energy rises as a consequence of the
memory heating. This phenomenon is amplified when the damping decreases so that
at very high quality factor (Q ∼ 90), we show in section 4.3.2 that the memory’s
temperature rise saturates at the adiabatic limit Ta = 2T0 for high erasure speeds. As
illustrated on Fig. 4.10a) for v1 = 0.12, the kinetic energy K = 1

2kBT grows during
step 1 and approaches the adiabatic limit Ka = 1

2kBTa = kBT0, then it relaxes to the
equilibrium value Keq = 1

2kBT0 during the thermalization. During step 2, we observe
only transient oscillations due to the deterministic contribution of the translational
motion.

Even though the underdamped regime reduces the cost of fast erasures, the low
heat exchanges with the bath slow down the thermalization (scaling as Q/ω0), therefore
imposing a long relaxation stage to reach the equilibrium before each step. Only then,
the memory can perform successive and equivalent erasures, maintaining a constant
operation cost. Nevertheless, one may wonder on a practical point of view, what
happens if the erasures are repeated without waiting for equilibrium before each steps.
Such a procedure would get rid of the long relaxation times (for example 20 ms in
Fig. 4.10) and significantly shorten the process.

At high damping, the instant thermalization allows us to sequence erasures without
consequences on the thermodynamics, but faster erasure requires a huge energetic cost
(to compensate the viscosity). That is why, to optimize the information processing
speed and cost it is worth considering the very low damping regime. In this context,
we will detail in the following how the erasure cost is impacted by the removal of
equilibration steps and by the repetition. In the light of previous findings, for fast
erasures we expect the temperature to increase continuously in average: rising during
the compression without enough time to relax to T0 before a new compression. The
temperature increments could nevertheless saturate at one point, if the energy surplus
stored at each compression is compensated by the heat exchanges with the bath.

4.5.2 Protocol and analysis criteria

The experimental set-up is the one illustrated Fig. 3.4: the cantilever evolves in vacuum
(P ∼ 1 mbar) corresponding to a quality factor Q ∼ 90 deduced from the best fit of
PSD. The tunable virtual potential is created using the FPGA card that processes
the feedback operations fast enough to work at very low damping. Similarly to the
previous chapter, we call ±X1 = ±5σ0 the initial position of the wells’ centers providing
a barrier B = 1

2kX
2
1 = 12.5kBT0 high enough to safely encode the information in the

memory; x0 the barrier position; and ±x1 the wells position. The cantilever evolves
in the potential U(x, x1, x0) = 1

2k(x − S(x − x0)x1)2, which simplifies into the double
well potential U1(x) = 1

2k(|x| − x1)2 during step 1 (x0 = 0), and into a single well
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U2(x) = 1
2k(x± x1)2 during step 2 when the barrier is driven out of range (x0 = ±6σ0

depending desired final state).

To explore the sustainability of repeated operations in a small amount of time, we
implement in the FPGA a protocol of 45 successive erasures as the one sketched in
Fig. 4.14a). One erasure consists in 1) starting in the double well potential U0

1 (x) =
1
2k(|x| −X1)2 before merging the wells together during stage 1 (duration τ); 2) imme-
diately starting stage 2 and bringing back the system in a single well to the reset state
(duration τ); 3) recreating, after 0.5 ms in the single well, the initial double well po-
tential and impose 1.5 ms free evolution into U0

1 to evaluate the success of the erasure.
We introduce τr = 2 ms the duration of the third stage.

Contrary to the previous protocol for one erasure, there is no equilibration step
between stage 1 and 2, and the final state is not systematically the state 0. Indeed we
tackle the 2 erasures procedures (0, 1) → 0 and (0, 1) → 1, that reset the memory to
respectively state 0 or state 1. As we sequence the operations, the initial state of one
erasure corresponds to the final state of the previous one: to cover equivalently the
whole (0, 1) initial state space (and provide for each reset state pi = 0.5→ pf = 1) we
choose to cycle on 4 erasures 1 ! 0 ! 0 ! 1

<latexit sha1_base64="2SKjuo9+fPQynnY09UvsD/1bC5M="></latexit>

. The choice of the final state does’t make
any differences in the thermodynamics because our erasing procedure is symmetric:
any configuration therefore contributes evenly to the statistics.

Fig. 4.14b) shows a cycle of four successful operations, the first two erasing to state
0 and the last two to state 1. In contrast, we plot on Fig. 4.14c) an erasure failing: the
system ends up with more energy than the barrier B so that the final state (state 0
here) is not secure. As a consequence, during the 1.5 ms free evolution in U0

1 before the
next repetition starts, the systems switches between state 0 and state 1. This erasure
is classified as a failure. When the procedure fails once, we consider all the subsequent
erasures as failures as well.

Fig. 4.14c) is a zoom on the first failure of the protocol plotted in Fig. 4.14a). We see
indeed the deflection excursion growing progressively, until the systems no longer ends
in a secured final state after i = 22 erasures. We note Ni the number of trajectories
ensuring a successful outcome of the erasure i. We deduce from the Ntot = 2000
protocols the average success rate at each repetition: Rs

i = Ni/Ntot. When an erasure
is a success we compute the stochastic work and heat, and deduce the average values
from the Ni trajectories.

4.5.3 Experimental results

The goal of the experiment is to explore the robustness of the memory to repeated
erasures depending on the speed imposed to perform one operation. That is why we
compare the response for τ = 6 ms, τ = 4 ms, τ = 3 ms and τ = 1 ms, tackling the
speed high limit of our set-up. It correspond to v1 = 0.1, v1 = 0.15, v1 = 0.2 and
v1 = 0.58, so that the last dataset allows only one oscillation for each step. Let us
point out that the total erasure duration is worth 2τ + τr with τr fixed to 2 ms.

For different speeds we compute the success rate Rs
i of the erasure i, the probability

density in position P (x, t), the average kinetic energy evolution 〈K〉, and the average
work 〈W〉 required for each successful erasure.

Let us first tackle the success rate and the probability density plotted respectively
on Fig. 4.15a) and b). Without surprise, the faster the information is processed, the
less reliable the operation becomes. Indeed for τ = 6 ms and τ = 4 ms the success
rate after 45 repeated erasures stays above 70%; meanwhile for τ = 3 ms and τ =
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Figure 4.14 – a) Protocol of 45 repeated erasures with τ = 4 ms. The compression and
translational stage of each erasures (duration τ) are respectively highlighted in red background
for step 1 and green one for step 2. During step 1 switches between the wells are allowed
in the double well potential, whereas during step 2 the cantilever is supposed to be brought
back to the desired final state without switching. At all time, the trajectory of the cantilever
(blue) evolves into the well centered in S(x−x0)×x1 (red). During the first 280 s, 22 erasures
are performed successfully. Afterwards, the operation fails several times because the system
energy has become too high. b) Zoom on the 4 first successful erasures. The cycle
covers all combinations (0, 1) → 0 and (0, 1) → 1. Each erasure starts with a double well
potential U0

1 (x0 = 0, X1 = 5σ0), then merged into one single well during step 1 (x0 = 0,
x1 → 0), driven back to the final state (state 0 for the first two and state 1 for the last two)
during step 2 (x0 = ±6σ0 depending on the final state, x1 → X1), and finally recreated. After
step 2, we wait 0.5 ms before recreating U0

1 (x0 → 0), and then we let the system freely evolve
into U0

1 during 1.5 ms to evaluate the success of the erasure. At all time the actual center of
the potential seen by the cantilever writes S(x − x0) × x1 (red) and depends on the barrier
position x0 (dashed green), the wells half distance x1 (light red and black) and the cantilever
position x (blue). c) Zoom on the first failure at 280 s. During the free evolution in the
final double well (white area) the cantilever escapes the final state (here state 0): the erasure
fails.
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1 ms it immediately collapses after a few erasures and the probability to complete the
whole protocol is null. These two driving speed regimes (v1 < 0.2 called region C
for Converging and v1 ≥ 0.2 called region D for Diverging) are also visible on the
probability density in Fig. 4.15b). Within the speed region C (τ = 6 ms and 4 ms)
the cantilever trajectories remains contained by the double well barrier height and the
information isn’t lost (Rs

45 > 70%). On the contrary, very fast procedures (speed region
D, τ = 3 ms and 1 ms) result in the blurring of P (x, t), because the cantilever escapes
more and more often the double well potential: the reset systematically fails at the end
of the protocol (Rs

45 < 2%).

The success rate can be explained by the temperature profile of the memory visible
through the average kinetic energy plotted in Fig. 4.17. During the first repetitions, the
temperature nearly doubles at each compression, and decreases afterward without fully
thermalizing. For τ = 6 ms and τ = 4 ms it finally stops increasing by step and reaches
a permanent regime below the barrier allowing a secure encoding of the information.
On the other hand, for τ = 3 ms and τ = 1 ms the kinetic energy skyrockets and exceeds
the energy barrier. We recover through the temperature behavior the two speed regions
identified when analyzing the success rate.

When the erasure succeeds, it is also interesting to quantify the work required on
average. Indeed at the same speed, we expect the work after a repeated use of the
memory to be higher than the one required for a single erasure studied in section 4.3.2.
As we tackle the erasure work, we restrict the study to region C where there are enough
successful operations to compute properly the erasure cost for the 45 iterations: the
operation cost for speeds τ = 6 ms and τ = 4 ms is displayed in Fig. 4.16. It highlights
that not only the failure rate increases with the speed, but also the work required to
process the information. Indeed after a quick transient, the work reaches a plateau
whose value grows with the speed of the process. We detail in the next sections first a
simple model that helps understanding and predicting the energy behavior, and second
a more complete description to provide quantitative results.

Before that, let us make a parenthetical remark: for cycle processes starting and
ending in a similar equilibrium state, the heat equals the work on average. Indeed
as the energy balance of the system imposes ∆U + ∆K = W − Q, when the en-
ergy equipartition imposes the same initial and final values of 〈U〉 and 〈K〉, we have
straightforwardly 〈W〉 = 〈Q〉. Nevertheless, for the processes under scrutiny starting
and ending out of equilibrium there are substantial and varying ∆〈K〉 and ∆〈U〉, even
in the permanent regime because of the different deterministic contributions during the
4 erasures cycle. This is why the heat is not anymore equal to the work on average on
a single cycle, and comparing the measure of the heat with the work as it was done in
previous sections is not relevant anymore.

4.5.4 Simple Model

The goal of this section is to propose a very simple model to grasp the behavior of the
memory in response to successive use, and in particular to understand the two speed
regimes observed experimentally. Indeed within region D the kinetic energy widely
exceeds the barrier, leading to the systematic failure of the protocol after several repe-
titions. On the other hand erasures in region C has a kinetic energy converging below
the barrier and a good success rate. This behavior can be explained by the balance
between the warming during the compression and the heat released into the bath after-
wards. Depending on the relative importance of this two opposite phenomenon appears
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Figure 4.15 – a) Success of repeated erasures for different operation speeds. Success
rate of the iteration i of the 45 repeated erasures: Rs

i = Ni/Ntot, computed from Ntot = 2000
procedures at τ = 6 ms, τ = 4 ms, τ = 3 ms and τ = 1 ms. An erasure is classified as a success
as long as the cantilever stays in the desired final state during the 1.5 ms free evolution in
U0

1 at the end. We distinguish the speed region C (v1 < 0.2, corresponding here to τ = 4 ms
and 6 ms) resulting for the major part in a protocol success (Rs

45 > 70%), from the region
D (v1 ≥ 0.2, corresponding to τ = 1 ms and 3 ms) in which the memory fails to repeat
successfully the operation (Rs

45 < 2%). b) Measured probability density P (x, t) inferred
from Ntot = 2000 trajectories for different speeds. P (x, t) is normalized at each time step.
The blurring of the probability density is consistent with the success rate: when the excursion
goes huge, the trajectories escape the driving and the information is lost.
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Figure 4.16 – Average work required for the 45 repeated erasures for τ = 4 ms
and τ = 6 ms. 〈W〉 of the erasures i is inferred from the Ni successful trajectories, for the 2
erasure speeds in region C allowing enough successful erasures. After a couple of repetition the
average work reaches a plateau depending on τ : Wsat(τ = 6 ms) = 1.5 kBT0, and Wsat(τ =
4 ms) = 1.9 kBT0. The model (dashed line) successfully predicts the converging behavior and
is in reasonable agreement with the experimental result considering the approximations made
and the fact that near the region boundary it is very sensitive to the calibration parameters.
The quality factor Q used for the model is the same as the one tuned to match the kinetic
energy profile in Fig. 4.20 and Fig. 4.19.
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Figure 4.17 – Average kinetic energy evolution during 45 successive erasures for
different duration. For speed region C (v1 ≤ 0.2), 〈K〉 starts from its equilibrium value
(1

2kBT0 in dashed line) and nearly doubles during the first successive adiabatic compressions.
The thermalization afterward is very partial and is not enough to stabilize the temperature
for the first iterations. Eventually the kinetic energy converges to a plateau after a couple
of erasures; the higher the speed the higher the saturation value. On the other hand, for
speed region D (v1 > 0.2) the kinetic energy strongly increases and overreaches the barrier
height (dotted blue): the thermalization doesn’t balance the compression warming anymore.
Moreover, if the operation fails the systems in the wrong well takes an energy kick when the
potential U0

1 is rebuilt. As a consequence, a runaway occurs because more failures result in
energy peaks and energy rise leads to more failures. The simple model successfully predicts
these two regimes with the indicator A (computed with Eq. (4.27) assumingQ = 90): A < 1 in
speed region C (Convergence to a plateau below B) and A > 1 in speed region D (Divergence
beyond B).
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Figure 4.18 – Schematic description of the simple model. We decompose the protocol
in successive step 1 (red segments, duration τ), followed by step 2 and resting step (green
segments, duration τr = 2 ms + τ). For each erasure i we call Ti the temperature after step
1 and T̃i the temperature after the relaxation. After some repetitions the temperature can
either converge and saturate to a permanent regime, or diverge and exceed the barrier.

or not a saturation temperature allowing the two to compensate each-other.
To build the simple model we start with the energetic balance of the system:

d〈E〉
dt

= d〈W〉
dt
− d〈Q〉

dt
(4.18)

Several assumptions justified by the high speed and quality factor are made to simplify
the description:

(i) The work expression in the adiabatic limit holds

(ii) Deterministic contributions (KD and UD) are neglected

(iii) The time derivatives in Eq. (4.18) are approximated at first order

(iv) The first erasure is adiabatic

(v) Step 2 does not require work.

The erasures are decomposed into the compression, step 1 lasting τ ; and the ther-
malization, consisting in the translational motion in step 2 followed by the resting step,
therefore of overall duration τ + τr. We introduce the following notations (illustrated
on Fig. 4.18): the maximum temperature of erasure i reached at the end of the step 1
is written Ti = αiT0, and the temperature at the end of the thermalization is written
T̃i.

Hypothesis (ii) and (v) allow to simplify Eq. (4.18) during the thermalization into
(using again the general expression of the heat derivative of Eq. (1.70)):

d〈E〉
dt

= −d〈Q〉
dt

(4.19)

dT

dt
= −ω0

Q
(T (t)− T0). (4.20)
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Therefore the temperature initially at Ti relaxes during τ + τr to T̃i (green segments in
Fig. 4.18), and T̃i is deduced from Eq. (4.20):

T̃i = (Ti − T0)× e−
(τr+τ)ω0

Q + T0 (4.21)

= (1− r)T0 + rTi , with r = e−
(τr+τ)ω0

Q (4.22)

= T0 × [1 + r(αi − 1)]. (4.23)

Furthermore, we address the erasures step 1 (red segments in Fig. 4.18). On the
basis of hypothesis (i) we can express the work required for the fast compression i+ 1
assumed adiabatic and starting at temperature T̃i : 〈Wi+1〉 = kBT̃i. Finally assuming

(iii) in Eq. (4.18), and taking as relevant heat derivative its initial point (d〈Q〉
dt

(t) '
kB

ω0
Q

(T̃i − T0)), we obtain:

kB
Ti+1 − T̃i

τ
= −ω0

Q
kB(T̃i − T0) + 〈Wi+1〉

τ
(4.24)

αi+1 − 1− r(αi − 1)
τ

= −ω0

Q
r(αi − 1) + 1 + r(αi − 1)

τ
(4.25)

αi+1 = r(2− ω0τ

Q
)(αi − 1) + 2 (4.26)

We recognize geometric a serie: αi+1 = A× αi +B, with α0 = 1, B = 2− A and:

A = e−
(τr+τ)ω0

Q (2− ω0τ

Q
). (4.27)

Let us point out that α1 = 2 is consistent with assumption (iv). All in all the model,
exhibits two regimes: if A < 1 the warming and thermalization compensates after
some iteration, so that the temperature converges to Tsat = (1 + 1

1−A) × T0; and if
A > 1, the heat exchange is inefficient to compensate the energetic influx from the
successive compressions and the temperature diverges. The parameter A controlling
the convergence, decreases with τ and increases with Q: these dependences fit with
the experimental observations. We apply the simple model (assuming Q = 90) and
compute A with Eq. (4.27) for the different experimental durations in Fig. 4.17: the
model successfully predicts the booming of the energy in region D.

As a conclusion, the simple model proposed in this section includes a lot of approx-
imation but turns out to be enough to recover the speed region C and D corresponding
to a converging or diverging evolution of the energy (respectively A < 1 and A > 1).
The frontier A = 1 corresponds to τ = 3.34 ms which is again in very good agreement
with the experimental results. Nevertheless in the very fast and very slow limits, most
of the assumptions made stop being relevant. In particular, the systems doesn’t actu-
ally diverges when A > 1 as predicted by the model but reaches a very high plateau.
Indeed, if the system’s energy broadly exceeds the barrier height, the potential driv-
ing protocol impact on the system’s behavior becomes negligible, therefore making the
above model meaningless. In particular the peaks observed in the permanent kinetic
energy profile for region D in Fig. 4.17 no longer comes from the compression, but
from the energy kicks given to the system when the barrier is restored to x0 = 0 if the
cantilever ended up in the wrong well.

4.5.5 Quantitative Model

In this section we propose a more detailed and complete model designed to quanti-
tatively predict the system behavior in the converging region C. Indeed now we have
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identified the speed interval allowed to successfully process repeated erasures, the point
is to quantitively estimate the corresponding energetic cost and temperature evolution.
In all the following we restrict the study to speed region C, and consider only success-
ful erasures: in particular the average experimental kinetic energy 〈K〉 is now inferred
from the successful operations only.

At the basis of the quantitative description is the model developed in previous sec-
tions to describe Landauer’s fast erasures (FE model built in section 4.3). It has proven
reliable to describe a single erasure starting at equilibrium and including an equilibra-
tion step between stage 1 and 2. We modify the FE model to remove the equilibration
step: while the thermal contribution relaxes from step 1, there are transient oscillations
due to the translational motion deterministic contribution. Doing so we successfully
describe the first erasure and obtain the final temperature T̃1. The strategy is then to
use the FE model with a different initial condition: the initial temperature is no more
set to T0 but to T̃1. All in all, the quantitative model of Repeated Erasure called RE
model consists in applying the FE model successively starting each time with the final
temperature T̃i as initial temperature for the next iteration. Fig. 4.19 and Fig. 4.20
compare the RE model (red curve) to the experimental data (blue curve) for τ = 6 ms
and τ = 4 ms. All the parameters are taken from the experimental data (ω0, τ , τr and
X1) except from the quality factor that is being tuned within the interval 80 < Q < 100
to provide the best fit to the experimental curves. Indeed the experimental PSD of
position doesn’t allow a high accuracy on the quality factor estimation, and the RE
model becomes quite sensitive to the Q value near the divergence.

The RE model also computes the average work required for the repeated use of
the memory: the prediction plotted in dashed lines on Fig. 4.16 is reasonable (taking
the same parameters as the one for the kinetic energy profile). Hence, the operator
can theoretically estimate the excess of work required to perform successive erasure
compared to a single one, and the number of repetition before reaching a permanent
regime. However, even though the RE model has proven effective, it has some limi-
tations. The deterministic part of the kinetic energy and of the work is inferred from
translational motions starting from equilibrium, whereas in reality whether it is during
step 1 or step 2 the systems is always out of equilibrium. For example, this approxima-
tion hides the 4-repetition cycling pattern. Besides, the model is inefficient to predict
the consequences of an operation failure on the energy divergence: it only describes
successful erasures.

Strong of the theoretical knowledge of the temperature profile we are also able to
approximate the success rate Rs

i of i successful repetitions of the operation. Indeed,
the ratio kBT/B is all we need to compute the escape rate in the final double well
potential, using the expression of Γ(B, T ) derived in Eq. (1.39). If we assume that the
temperature during the 1.5 ms final free evolution in U0

i is being worth T̃i (computed
with the RE Model) we obtain the following success rate:

Rs
i =

i−1∏
k=0

(1− Γ(B, T̃k)). (4.28)

The result plotted on Fig. 4.21 is consistent with the experimental observations
and quantify the consequence of the temperature rise on the success of the operation.
Nevertheless, the Eq. (1.39) accounts for the average escape time of a system at equi-
librium in the initial well (at effective temperature T ), while in reality there is a strong
deterministic contribution just after step 2 that tends to push the system far from the
barrier.
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Figure 4.19 – a) Kinetic energy evolution for 45 repeated erasures of duration
τ = 6 ms. The average kinetic energy 〈K〉 during the whole protocol (blue) is inferred from
the Ni successful trajectories of the erasure i (as we are in speed region C, Ni ∼ Ntot).
Initially at the equilibrium value (1

2kBT0 in dashed line), 〈K〉 nearly doubles during the 3
first compressions without fully thermalizing in-between, and eventually reaches a plateau
around Ksat = 1.3kBT0. The quantitative model (red) is in very good agreement with the
experimental result with no adjustable parameters except from the tiny adjustment of the
quality factor: Q = 100. b) Saturation profile of the kinetic energy. When the
permanent regime is established, 〈K〉 follows a repeated pattern every 2τ + τr: these similar
profiles are superimposed in grey lines. The saturation curve (blue) is the average of the
permanent regime profiles of the 40 last operations. The systems first continues to relax from
1.1kBT0 at the beginning of step 1 (transient oscillations appear due to the translational
motion), until the compression actually starts (when the two wells get close enough) and
provokes the temperature rise. During step 2 (green background) the system thermalizes
with again transient oscillations, and keep on relaxing during the final τr = 2 ms rest. The
quantitive model (red) nicely matches the experimental curve: it consists in the theoretical
model of Landauer’s erasure (FE Model) using as initial kinetic temperature the experimental
value Tsat = 2.2T0 measured on the permanent regime profile.
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Figure 4.20 – a) Kinetic energy evolution for 45 repeated erasures of duration
τ = 4 ms. Same as Fig. 4.19a): the kinetic energy saturates around Ksat = 1.8kBT0 after
5 iterations. The quantitative model again matches the experiment assuming Q = 88. b)
Saturation profile of the kinetic energy. Same as Fig. 4.19b) but for τ = 4 ms.

0 5 10 15 20 25 30 35 40 45
0

50

100

Figure 4.21 – Theoretical prediction of the erasure success rate for different speeds.
Assuming Q = 90, we compute the escape rates Γ(B, T̃k) using for T̃k the temperature
theoretical profile (red in Fig. 4.20 and Fig. 4.19), and deduce from Eq. (4.28) the success
rate Rsi after i erasures for the different τ . Hence the model results in the probability of loosing
the final information during the 1.5 ms free evolution in the final potential. As expected Rsi
is lower for higher speeds, and we identify region D in which the probability to successfully
finish the whole protocol is null.
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4.5.6 Discussion

Based on the previous study of the energetic exchanges in an underdamped memory, we
are able to grasp the consequences of its repeated use. Even though the low damping
allows fast erasing at low energetic cost, the price to pay lies in the warming of the
memory. As a consequence, if the memory is used straight after a previous operation
without letting the system thermalizing with its environnement, the temperature will
rise by step so that the thermal energy can exceed the memory encoding barrier. The
success of repeated operations therefore depends on the damping and the speed. On
the first hand, the lower the damping the longer the thermalization and the higher
the compression warming: for a fixed speed, reducing the damping enhances the tem-
perature diverging behavior. On the other hand, the higher the speed, the higher the
compression warming and the shorter the time allowed to thermalize: high speeds also
favor the divergence.

As a conclusion, on a practical point of view, the underdamped regime is the best
choice to perform fast and repeated use of the memory at low cost. Indeed, the un-
derdamped systems turns out to be very robust to continuous information processing
at high speed (up to 10 ms operations) at a stable and rather moderate cost (below
2kBT0). But depending on the number of successive erasures one wants to perform
and on the success rate required, the quality factor or the speed of the erasure have
to be tuned to avoid divergences. We developed an efficient tool (the simple model)
to predict the divergence of the energy, and therefore deduce the speed region allowed
to ensure a good success rate. Moreover, a more complete model can be used (the
RE model) to quantitively estimate the energy and work evolution profile in response
to repeated uses, and in particular the permanent regime reached after a couple of
iterations.
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5.1 Context

In Ref. 1 we study how experimental biases can impact the equilibrium velocity dis-
tribution. We conclude that the feedback devices have to meet strict requirements in
terms of switching delay when the cantilever switches from one well to the other, in
order to create a proper virtual potential perfectly equivalent to a physical one. In
particular, the comparator hysteresis is one source of switching delay, and is carefully
addressed in the feedback implementations proposed in chapter 3. Hence, in the LB
study of chapter 4, the feedback is completely transparent and has no consequences on
the thermodynamics.

In a totally different perspective, we now aim to further explore the consequences
of a feedback hysteresis on the system’s behavior. We demonstrate in Ref. 1 that the
kinetic temperature varies in the presence of hysteresis. In other words, if the feedback
potential depends on the memory of the system’s position, the overall thermodynamic
is impacted by an higher or lower temperature. This chapter’s goal is to explore in
greater details the link between the amount of hysteresis (memory information used by
the feedback), and the thermodynamic of the system evolving in the resulting virtual
potential.

To do so, we first study experimentally the consequences of the hysteresis (positive
and negative) on the system’s kinetic temperature in a static double well potential in
section 5.2.1, and propose in section 5.2.2 a complete theoretical model that supports
the experimental results. Then we investigate in section 5.3 how the energy exchanges
during a Landauer erasure, and therefore the erasure cost, are affected by an hysteresis.
We will ultimately initiate a discussion on a possible interpretation considering the
feedback as a Maxwell demon [2; 3].

5.2 Consequence of a feedback hysteresis on the

temperature

5.2.1 Experimental observations

In all the following the experimental system is a cantilever of resonance frequency
f0 = 1270 Hz, and position variance at rest σ2

0 ∼ 1 nm2. The quality factor is Q = 10
at atmospheric pressure, and can be increased to Q = 70 by removing the air in the
cantilever’s chamber. The trapping double well potential is created by feedback: the
cantilever evolves in a physical harmonic potential centered in ±x1 and whenever it
crosses the barrier position x0 = 0 the potential switches to an harmonic potential
centered in the opposite position ∓x1 (see chapter 3).

The FPGA feedback addressed in section 3.4 allows a full control on the feedback
parameters. In particular, contrary to the analogical implementation, we are able to
fine tune the comparator hysteresis (parameter h). Instead of triggering the potential
change exactly when the cantilever crosses the 0, the switching position is modified
into ±h depending on whether the system comes from the left or the right hand well.
As sketched on Fig. 5.1, when h is positive, it means that the system overreaches the
barrier at each crossing, and on the contrary when h is negative the system anticipates
the switch. The latter case is only possible because we forbid successive switches too
close in time (temporal lock up for a quarter of period, see section 3.3).

To evaluate the impact of the hysteresis h, we measure the velocity PDFs in the
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double well for hysteresis varying between h = −22%σ0 and h = 32%σ0, and plot it
on Fig. 5.2a). The half distance between the wells is chosen to be x1 = σ0 to maximize
the temperature variations (the dependency on x1 is addressed in the following). While
the speed distributions keep a satisfactory Gaussian shape with hysteresis, its variances
are altered compared to the Boltzmann equilibrium distribution perfectly matched for
h = 0: the velocity PDF for h < 0 and h > 0 is respectively wider (higher variance)
and sharper (lower variance).

Therefore the kinetic temperature (T defined in Eq. (1.68)) turns out to be an
adequate observable to summarize the effect of the hysteresis on the thermodynamic:
h > 0 cools down the system whereas h < 0 warms it up. We use the dimensionless
temperature θ = T/T0 = σ2

v defined in Tab. 1.1 to quantify the warming or cooling effect
as a function of the hysteresis in Fig. 5.2b). The system’s temperature can be tuned
between 70%T0 and 155%T0 by imposing h = h/σ0 between respectively h = 0.32
and h = −0.22. Besides we see on Fig. 5.2c) that the consequences of the hysteresis
on the temperature are much more important at high quality factor (Q = 70 here):
the temperatures is divided by two for h = 0.16 and multiplied by 6 for h = −0.16.
Let us point out that when the kinetic temperature exceeds 3T0 the PDF is not a
proper gaussian anymore, so that T = σ2

v × T0 can no longer be simply interpreted as
a temperature.

Furthermore, we study in Fig. 5.3 the intensity of the cooling/warming effect de-
pending on the half-distances between the wells, x1. In the following we stay at air
pressure (Q = 10) to limit the temperature variations in a reasonable range, and avoid
deviating from the gaussian shape of the velocity PDF. For all distances between the
wells, the temperature evolution with the hysteresis has a profile similar to the one
in Fig. 5.2b), but the intensity of the warming or cooling varies with x1. We observe
Fig. 5.3 that the effect is the greatest when x1 ∼ σ0, and vanishes at both very small
and high distances.

To put it in a nutshell, depending on x1 and h appears a non-equilibrium steady
state of modified temperature T , similarly to what can be obtained by feedback cool-
ing [4; 5]. In the next section we develop a model that supports all these experimental
observations.

5.2.2 Theoretical model

The energy balance of Eq. (1.60) is again the starting point of the model developed in
the following to link the feedback hysteresis to the system temperature. In a stationary
state when no external work is performed, there is no average kinetic energy changes
nor deterministic terms. Nevertheless we have to consider potential energy variations
(because of the hysteresis), that are related only to the heat expressed in Eq. (1.70),
hence Eq. (1.60) reduces to:

〈dU
dt
〉 = ω0

Q
kBT0(1− θ) (5.1)

If there is a switching hysteresis, the comparator triggers only when x = ±h (sign
depending on the previous position) instead of x = 0: the cantilever overreaches (or
anticipates if h < 0) the barrier at each crossing. As sketched in Fig. 5.1 this extra-
distance traveled by the system (positive or negative) corresponds to a potential energy
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h = 0
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Figure 5.1 – Schematic overview of a potential switch with hysteresis. When h < 0
(red, left) the systems triggers the switch before the barrier position (green line), and ends
up in a lower potential energy: ∆Uh < 0. At each switch the corresponding energy is gained
by the system: it is a warming process. Without hysteresis h = 0 (black, middle), the double
well potential is symmetric and unbiased. Finally, when h > 0 (blue, right) the systems
overreaches the barrier position and finishes in the second well at a higher potential energy:
∆Uh > 0. Therefore at each crossing the system looses energy to ”climb up” the potential
ladder: it is a cooling process.

step:

∆Uh = 1
2k
[
(x1 + h)2 − (x1 − h)2

]
= 2kx1h (5.2)

This amount of potential energy is exchanged each time the cantilever crosses the
barrier: if ∆Uh > 0 the corresponding energy is lost by the system; if ∆Uh ≤ 0 it is
gained by the system. To express the energy balance of the system, we need to quantify
how often on average the cantilever crosses the threshold. In Eq. (1.38), we derive the
crossing rate Γ(B, T ) of the potential barrier B for a system at temperature T . Using
Eq. (1.38) applied to the actual barrier energy B = 1

2k(x1 + h)2, we can express the
potential contribution in Eq. (5.1) and derive:

Γ(1
2k(x1 + h)2, θT0)×∆Uh = ω0

Q
kBT0(1− θ)

Γ(1
2k(x1 + h)2, θT0)× 2kx1h = ω0

Q
kBT0(1− θ) (5.3)

Eq. (5.3) corresponds to the balance between the energy taken from the system to
climb up the potential steps at each switch (respectively gained by the system if it
goes down the potential ladder), and the energy refill from the bath through the heat
transfer (respectively the energy leak into the bath). The system temperature is the
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a)

b) c)

Figure 5.2 – a) Experimental velocity PDF with feedback hysteresis, for Q = 10.
The distribution of v (dimensionless quantity defined in Tab. 1.1) is inferred from a 10 s
free evolution in the static double-well potential of centers ±x1 = ±σ0 with a feedback
hysteresis h. The speed PDFs keep satisfactorily Gaussian shapes: for negative hysteresis
the velocity variance is increased, and on the contrary for positive hysteresis it is reduced,
as highlighted by the corresponding points in b)(blue crosses). It is worth noticing that for
h = 0 we recover the Boltzmann equilibrium distribution of variance σ2

v = 1 (dashed black).
b) Consequence of the feedback hysteresis on the kinetic temperature for Q = 10
and x1 = σ0. θ = T/T0 is obtained from the velocity PDF (θ = σ2

v) as the ones displayed a).
Negative hysteresis warms up the system while positive one cools it down. The chosen half
distance between the wells, x1 = σ0, maximizes the hysteresis impact, as demonstrated in
Fig. 5.3. The theoretical model (dashed red) provided by Eq. (5.3) is in very good agreement
with the experimental data. c) Same as b) for Q = 70. The temperature bias is increased
compared to Q = 10, all the more for negative hysteresis (note that the scale of both axes is
different from panel b)). The theoretical model (dashed red) is again in very good agreement
with the experimental data.

implicit solution of Eq. (5.3) and allows the two fluxes to compensate:

θ = T

T0
= f(x1, h) (5.4)

Eq. (5.3) is numerically solved and T (x1, h) = f(x1, h) × T0 is plotted on Fig. 5.3 as
a function of x1: the kinetic temperature variation culminates around x1 . σ0, all
the more when |h| is high. These trend can be easily understood (taking h > 0 for
example): firstly, the larger the hysteresis, the greater the energy loss at each switch,
and, therefore, the lower the system temperature. Secondly, the energy loss per switch
is proportional to x1, but the barrier crossing rate decreases with x1: in the high barrier
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Figure 5.3 – Kinetic temperature with feedback hysteresis as a function of z1. θ is
plotted as a function of the half-distance between the wells z1. For positive hysteresis (blue
markers), h = 0.17, h = 0.06 and h = 0.04, the system’s temperature is decreased below
the bath temperature T0. On the contrary for negative hysteresis (red markers) h = −0.10,
the system is warmed up, and as expected for h = 0 (black markers) we recover θ = 1.
The dependance on x1 comes from the balance between the barrier crossing rate (decreasing
with x1) and the energy step due to the hysteresis at each switch (increasing with x1). The
theoretical model in plain lines provided by Eq. (5.3) matches the experimental results for all
hysteresis values.

limit there are no more switches and T = T0, and in the low barrier limit there is no
more energy step at the switch, so that T = T0 as well. The effect on the temperature
is maximized for x1 ∼ σ0 when the two opposing effects counteract each other the
most. The same reasoning holds for negative hysteresis to explain the warming effect
dependency on x1 and h.

To conclude, let us emphasize that the model (Eq. (5.4)), matches the experimental
data in Fig. 5.3 and in Fig. 5.2b) and c), for both moderate and low damping (Q = 10
and Q = 70). On the latter, we see that the temperature bias is all the more important
that the exchanges with the bath are reduced. Indeed, at larger quality factor the heat
exchanges with the bath are less efficient to compensate the energy ∆Uh lost or gained
at each switch, so that a higher temperature difference is required to reach the balance
between the two energetic fluxes.

5.2.3 Conclusion

We have demonstrated adding small hysteresis into a feedback virtual double-well po-
tential results in a steady state at temperature T 6= T0, cooling down or warming up
the system depending on its sign. The system’s equilibrium kinetic temperature is set
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by the hysteresis and the distance between the well: T (x1, h) as modeled by Eq. (5.4).
Of course it also depends on the system parameters, ω0 and Q, and in particular the
temperature variation is enhanced when Q is high.

Let us conclude this section with two remarks. On the one hand, the position PDF
is similarly impacted by the hysteresis and consists in the Boltzmann distribution at
temperature T rather than T0. Nevertheless, as the PDF in the double well potential
is complex, it is more immediate to look at the gaussian velocity PDF to study the
consequences of the hysteresis. And on the other hand, for the system to behave as
it would in equilibrium with a thermostat at T , the temperature difference with the
actual bath, T −T0 shouldn’t be too high. Indeed, if T > 3T0, the system velocity and
position distributions no longer keep their equilibrium shapes.

5.3 Landauer’s erasure

It remains to see whether the impact on the thermodynamic observed in the static
case is still visible during information processing. Indeed if the system’s temperature
is tuned by the hysteresis, will the Landauer limit varies accordingly? In particular,
is it possible to artificially beat the LB by cooling down a memory using feedback
hysteresis? To answer these questions, we implement Landauer’s erasures of Fig. 4.1
using a virtual double well potential biased with an hysteresis h for step 1. We start
by studying the temperature profile during a quasi-static erasure, through the kinetic
energy measurement.

5.3.1 Kinetic energy profile

Theoretical description

For quasi-static erasures we expect the average kinetic energy to be worth its equilib-
rium value Keq = 1

2kBT0 during the whole procedure. Nevertheless, in the presence
of hysteresis, the kinetic temperature T varies during step 1 with the half-distance
between the wells: x1(t) = X1(1 − t/τ). In the quasi-static regime, the static model
in Eq. (5.3) holds for step 1, as the system is assumed to be in equilibrium at all time
in U1(x, x1(t)): the temperature profile is given by T (x1(t), h). Let us note that the
temperature profile is expected to peak around time t∗ = (1− σ0/X1)× τ as the hys-
teresis cooling/warming effect culminates when x1 ∼ σ0. During step 2, the potential
simplifies into a single well potential and the system thermalizes: T = T0.

Experimental results

We apply the erasure protocol of Fig. 4.1 with X1 = 5σ0 and τ = 1 s (quasi-static
erasure) to the cantilever of parameters f0 = 1270 Hz and Q = 10. The average kinetic
energy profiles for hysteresis h = 0.17 and h = −0.1 are plotted in Fig. 5.4. Let us
note that these hysteresis values are studied in Fig 5.3 within the static framework.

As 〈K〉 = 1
2θ, we can follow in Fig. 5.4 the temperature evolution during a quasi-

static erasure: for h = −0.1 the warming reaches 125% of the bath temperature,
while for h = 0.17 the cooling gets down to 65%. Both extrema are observed around
t∗ = 0.8 s as predicted by the theoretical analysis above. The static model T (x1(t), h)
from Eq. (5.3) matches the experimental data. The small difference between the two
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Figure 5.4 – Kinetic energy profile for quasi-static erasures with feedback hystere-
sis. During stage 1 lasting τ = 1 s and starting from X1 = 5σ0 (red background), the hystere-
sis h impacts the system temperature and consequently the average kinetic energy 〈K〉 = 1

2θ.
Both the warming for h = −10% (red) and the cooling for h = 17% (blue) observed experi-
mentally are supported by the static model (dashed), as expected in the quasi-static regime
(τω0 � 1). The small amount of experimental trajectories used to compute the average for
h = −0.10 (N = 500) is much smaller than for h = 0.17 (N = 2000), what explains the
higher fluctuations visible on the red experimental curve.

may come from the fact that even though τω0 � 1 the system behavior deviates from
the static description.

5.3.2 Effective Landauer Bound

Theoretical description

Following our reasoning in chapter 4 for fast erasures, if the system temperature varies,
the erasure cost should be impacted accordingly and be worth kBTeff ln 2, where Teff

is a weighted average of the actual temperature of the memory during the process.
In the fast erasures context addressed in section 4.3, the Teff originates into the fast
compression warming, so that for slow erasures the LB remains unchanged: Teff = T0.

On the contrary, in the presence of hysteresis the temperature is modified for quasi-
static erasures, being worth T (x1(t), h) during step 1. The origin of the temperature
variation is different, but the formalism developed in section 4.3 to quantify its conse-
quences on the erasure cost remains the same. In particular, as only step 1 contributes
for slow erasures, the overall erasure work is given by Eq. (F.16):

〈W〉 = −kB
∫
T
d lnV
dt

(
1 + d lnT

d ln(x2
1/T )

)
, (5.5)
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with x1 = X1(1 − t/τ) during step 1, V = 1 + erf (
√

k
2kBT x1) defined in Eq. (4.8b),

and T = T (x1, h) modeled using Eq. (5.3) in very good agreement with experimental
results as shown in Fig. 5.4. The above amount of work is required in the quasi-static
regime and therefore corresponds to a lower bound. That is why we define the effective
LB in the presence of hysteresis as:

Lh = kBTh ln 2 = −kB
∫
T
d lnV
dt

(
1 + d lnT

d ln(x2
1/T )

)
(5.6)

In a nutshell, in the presence of hysteresis the LB, L0 = kBT0 ln 2, becomes an
effective LB, Lh = kBTh ln 2, introducing Th the effective temperature with hysteresis
with Eq. (5.6). Th is a weighted average on the T (x1, h) profile, so that Th > T0
for negative hysteresis and Th < T0 for positive ones. This prediction is validated
experimentally in the next section.

Experimental results

Figure 5.5 – Work and heat distribution for quasi-static erasures with hysteresis
h = 0.17 and h = −0.10. The average heat (PDF in dotted lines) perfectly matches the
average work (PDF in plain lines) in both cases. For h = 0.17 (blue), the system is cooled
down and the quasi-static erasure (duration τ = 1 s, same as Fig. 5.4) requires on average
(dashed blue vertical line): 〈W〉 = 0.53± 0.005 and 〈Q〉 = 0.54± 0.02, in perfect agreement
with the effective LB predicted by the model in Eq. (5.7). For h = −0.10 (red), the system
is warmed up and we measure the average energy cost (dashed red vertical line), again in
reasonable agreement with the model in Eq. (5.8): 〈W〉 = 0.89±0.015 and 〈Q〉 = 0.91±0.02.
Similarly to the what we observed in Fig. 4.3c) without hysteresis, the heat distribution is
wider than the work PDF and has exponential tails.

We plot in Fig. 5.5 the work and heat distributions inferred from quasi-static era-
sures with hysteresis h = 0.17 and h = −0.10. The LB is beaten by 22% when the
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system is cooled down by h = 0.17: 〈W〉 ≈ 〈Q〉 ≈ 0.54 kBT0. On the contrary when
the system is warmed up by the negative hysteresis h = 0.10, the LB is exceeded of
30%: 〈W〉 ≈ 〈Q〉 ≈ 0.9 kBT0. Besides, the distributions shapes seem also affected by
the temperature changes: the cold system provides sharper distributions than the hot
one. Nevertheless more statistics are required to address this aspect (the h = −0.1
distributions are drawn from N = 500 trajectories only) and we for now restrict the
study to the average values.

Let us compare the experimental erasure costs with the model prediction of the
effective LB in Eq. (5.6):

Lh = 0.54 kBT0 = 78%L0 for h = 0.17 (5.7)

Lh = 0.84 kBT0 = 120%L0 for h = −0.10 (5.8)

Hence, the experimental results displayed in Fig. 5.5 validates the effective LB model
as the average match respectively Eq (5.7) and Eq. (5.8). The tiny error made for
h = −0.10 (〈W〉 = 0.89 & Lh = 0.84) can be a repercussion of the difference between
the measured temperature profile and the theoretical expression used in the model
already visible in Fig. 5.4.

All in all, the above confirms that the fundamental limit of Landauer can be tuned
by cheating on the system temperature using feedback hysteresis.

5.3.3 Approach to the effective LB

A last question arises: does the erasure with hysteresis perfectly mimics an erasure at
temperature Th ? In particular, is the divergence from the effective LB similar when
the speed increases?

In section 4.2.5 we fit the divergence from the LB plotted in Fig. 4.5 by:

〈W〉 = kBT0 × (L∞ + B′
Z1

τ
) (5.9)

with B′ = (437 ± 27) µs and L∞ = 0.695 ± 0.012, which is consistent with the LB
L0 = kBT0 ln 2 when τ → ∞. We compare these previous results to results obtained
with an hysteresis h = 0.17 in Fig. 5.6. The effective temperature Th is deduced for
h = 0.17 from the model in Eq. (5.6),

Lh = kBTh ln 2 with Th = 0.78T0. (5.10)

Hence we fit the divergence from the effective LB with the same scaling as Eq. (5.9):

〈W〉 = kBTh × (Lh,∞ + B′h
Z1

τ
). (5.11)

We obtain B′h = (320 ± 40)µs and Lh,∞ = 0.68 ± 0.01. The asymptotic limit of the
fit set by Lh,∞ = 0.68 is consistent with the effective LB Lh = kBTh ln 2 predicted
by the model, and measured in Fig. 5.5. Furthermore, the scaling parameters B′h
and B′ are of the same order of magnitude: the divergence from the effective LB in
the presence of hysteresis is similar to the divergence from the natural LB. The small
discrepancy between the two values may have physical origin, or may just come from a
small deviation in the experimental conditions between the two series of measurements
(different cantilever, hence slightly different resonance frequencies f0 and quality factors
Q, and small changes in the initial distance Z1 ∼ 5).
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To conclude, in first approximation, erasing 1-bit of information with positive hys-
teresis in the feedback is equivalent to cooling down the bath from T0 to Th defined in
Eq. (5.6). Indeed the erasure cost lower bound reached for slow erasures in decreased
accordingly, the effective LB being worth Lh = kBTh ln 2, and the extra-cost required
to increase the driving speed follows the same scaling in B/τ . However, there is some
limitation to this equivalence: the hysteresis effect on the temperature is derived in the
static case and may not be perfectly accurate when the erasure speed increases.

Figure 5.6 – Divergence from the effective LB for fast erasures. Energy cost 〈W〉 and
〈Q〉 for erasure protocols at different driving speeds v1 with feedback hysteresis h = 0.17.
Experimental data (blue) are fitted by kBTh × (Lh,∞ + B′Z1/τ) (red), with Th = 0.78T0
deduced from the model in Eq. (5.6). We obtain B′h = (320± 40)µs and Lh,∞ = 0.68± 0.01.
The asymptotic limit Lh,∞ when v1 → 0 is consistent with the effective LB, Lh = kBTh ln 2,
predicted by the model (dotted blue line). The scaling when the speed increases is similar to
the one observed in the case without hysteresis reproduced in grey from Fig. 4.5.

5.4 Perspectives

The underdamped regime offers new insights on a wide variety of fundamental questions
on the connections between feedback and thermodynamics [6–9]. For example, articles
by Rosinberg and coworkers study the effect on entropy and information in the presence
of a continuous feedback [10–13] introducing the concept of mutual information.

We demonstrate in this chapter that the fundamental lower limit to information
processing, directly related to the free energy variation, can be tuned by the hysteresis
of the potential in which evolves the memory. As the hysteresis doesn’t not require work
(using the Sekimoto’s definition of work), the gain in the erasure cost can be considered
as the work of a demon (an intelligent creature able to monitor the system). In other
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word, the feedback would be acting as a demon through the knowledge of the position
memory before the barrier crossing (hysteresis), hence reducing the work the operator
has to pay to perform the Landauer erasure. From that point of view, the information
used by the feedback remains to be linked to the hysteresis in the double-well potential.
The concept of mutual information seems to be a promising tool to build a formalism
around these observations, following the theory around the Sagawa’s demon [14]. Once
properly understood, the hysteresis in the virtual double-well potential could also be
used to enhance stochastic engines efficiency [15].
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6.1 Context and experimental framework

In this section we complete the study of all 1-bit operations with the implementation of
operation NOT. Indeed, starting from (0, 1), only four outcomes are possible: (0, 1)→
(0, 1) [HOLD], (0, 1)→ (0, 0) [RESET to 0], (0, 1)→ (1, 1) [RESET to 1] and (0, 1)→
(1, 0) [NOT]. The first one is trivial (do nothing), the second and the third are erasures
studied in previous chapters, and the last is a bit-flip. Contrary to the erasure of 1-bit
of information which is logically irreversible, the bit-flip is fully reversible as it does
not comes with any information loss. We will explore in the following the physical
reversibility of the bit-flip. Indeed as there is no entropic loss, there should be a way
to operate in a physically reversible fashion: that is to say without any energetic loss
nor work required to proceed.

Following the reasoning of Ref. [1], the bit-flip operation in stochastic but Markovian
1D memories (highly damped memories, Q� 1), whose dynamics only depends on the
current state, is impossible. Indeed, as sketched in Fig. 6.1, the bit-flip protocol using
only one degree of freedom (DOF) has to pass through the same state in the phase space,
weither the system is initially in state 0 or state 1: the information is lost. That is why,
a second degree of freedom is required to proceed: it can be a second spatial dimension
y, but if we stick to a 1-dimensional memory it has to be the speed v = ẋ. Therefore
being in the underdamped regime (Non-Markovian dynamics), where the inertia allows
the control of the speed, is a mandatory requirement. That is why we work with an
underdamped system ensuring a quality factor Q = 100. The experimental set-up is
the same as the one used in section 3.4 with a slightly stronger vacuum, and with a
cantilever of resonance frequency f0 = 1.39 kHz (ie a period T0 = 0.68 ms ).

In that context, to meet success rate requirements, the bit-flip protocol has to be
designed to avoid the overlap of the two possible informations in the phase space.
Indeed a full overlap would result in the impossibility mentioned for the single degree
of freedom case, while a partial overlap (when the speed is bounded by a moderate
damping, Q ∼ 1) would damage the success rate, because the information is likely to
’slip’ to the wrong state. In the following, we impose as safety criterion that the two
states’ PDF must be separated at all time by 10 times their characteristic spreading in
the phase space (2D gaussian in Fig. 6.1), that is to say the position and speed standard
deviation along the two axis (respectively σ0 and ω0σ0). From that perspective, in
the experimental set-up, the initial information is encoded in a double well potential
Ui = 1/2k(|x| − X1)2, with the center of the wells ±X1 ∼ 5σ0 meeting the above
criterion and maintaining an energy barrier B = 1

2kX
2
1 ∼ 12.5kBT0.

Let us point out that there are usually two strategies to reduce the energetic cost:
proceeding at low speed in a quasi-static fashion, or work at very low damping. Here, we
have to eliminate the first one because a reasonable speed is imposed to safely convey
the information: when 〈x〉 = 0, the safety criterion translates into 〈|v|〉 > 5σ0ω0.
Therefore, to maintain physical reversibility without damaging the success rate, the
viscous damping of the environment must be removed (Q� 1).

We propose in the next section a protocol meeting the bit safety criterion, and
designed to be physically reversible.
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Figure 6.1 – Schematic overview of the bit-flip success requirements. The system
two-dimensional PDF are sketched by red (state 0 initial information) and blue 2D gaussians
(state 1 initial information) in the phase space (x,v). On the first hand, using only one DOF
(if Q � 1, only the position can be driven) makes the bit-flip operation impossible: when
the system passes through the phase space central point, the Markovian dynamic makes
the information indistinguishable. On the other hand, the underdamped regime opens a
second DOF to process the information: the speed v = ẋ. Moderate damping (Q ∼ 1)
limits the velocity range accessible and results in a partial overlap of the memory PDF in
the two different states: the operation can fail. To prevent the overlap and ensure a 100%
success rate, we impose the two states to be separated by a minimal distance, hence we fix:
(xDσ0

)2 + ( vDσv,0 )2 > 5 as safety criterion, σ2
0 and σ2

v,0 = (σ0ω0)2 being the position et velocity

variance. Bit-flips protocol allowing such velocities requires the memory quality factor to be
high enough ( Q� 1).
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6.2 Reversible bit-flip protocol

Following Ref. 1, the operation consists in suddenly moving both the wells’ center
to ±x1(t+i ) = 0: the potential becomes a single harmonic well U(t+i ) = 1

2kx
2. The

starting time of each bit-flip operation is called ti and is aligned to ti = 0 ms in all the
experimental data. After half a cantilever period T0/2, the wells’ center are brought
back to ±x1(ti +T0/2+) = ±X1 to rebuild Ui. In the following we introduce tf = T0/2.
The x1(t) monitoring is displayed in grey line on Fig. 6.2. An example of a single
system trajectory in blue, and the corresponding trapping well center (S(x) × x1 in
red) demonstrate the success of the bit-flip operation (here a 0→ 1 bit-flip).

The above bit-flip protocol sketched in Fig. 6.3a) has been design to be physically
reversible when the dissipation can be neglected (Q→∞). For clarity purposes, let us
consider that the system is initially in state 0: 〈x〉i = −X1 and 〈v〉 = 0. After the first
potential change, the cantilever starts an oscillation into the single well potential, and
after half a period it reaches without speed the opposite maximal position: 〈x〉f = +X1.
Therefore, the second change in potential at this exact moment doesn’t affect the
average position of the system, nor its velocity. Let us point out that between the
two changes, the velocity reaches 〈|v|〉 = 5σv,0 when 〈x〉 = 0 as required by the safety
criterion recalled in Fig. 6.1. The operation results in changing the position of the
cantilever from 〈x〉i = −X1 to 〈x〉f = +X1 using only the free evolution of the system
inside the potential: it is a reversible bitflip.

Regarding the theoretical formalism, as the cantilever initial and final state is at
equilibrium in Ui, the average heat dissipated during the procedure is equal to the
average work required : 〈Q〉 = 〈W〉. Besides, as the potential remains quadratic
during the operation, the Fokker-Planck equation ruling the stochastic dynamic is
linear: the system response is at all time the sum of the deterministic contribution
and the thermal stochastic one: x = xth + xD, with xD = 〈x〉. As the system always
evolves in an harmonic potential of constant stiffness (indeed, in Ui the second well is
inaccessible), the thermal contribution is not impacted by the bit-flip operation and
remains at equilibrium: 〈x2

th〉 = kBT0/k. Therefore the bit-flip response is ruled by the
deterministic trajectory of the cantilever.

In the ideal case without any dissipation, the energy given to the system at the
first potential change is fully recovered when Ui is restored: the operation is reversible
and no work is required for the process. Formally if the changes are instantaneous the
work corresponds to the potential loss during the flip called 〈∆Uflip〉. Indeed the work
can be expressed using from the work definition in Eq. (4.2) and the control parameter
derivative, ẋ1 = −δ(t− ti)X1 + δ(t− ti − tf )X1:

〈W〉 = −〈U〉(t+i ) + 〈U〉(t−f ) (6.1)

= −〈∆Uflip〉 (6.2)

Hence without dissipation we have:

〈U〉(t+i ) = 1
2kxD(t+i )2 + 1

2kBT0 = 1
2(kX2

1 + kBT0) (6.3)

and 〈U〉(t−f ) = 1
2k(|xD(t−f )| −X1)2 + 1

2kBT0 = 1
2(kX2

1 + kBT0) (6.4)

so that the average work vanishes.
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Figure 6.2 – Experimental response to the bit-flip protocol. The bit-flip started at
ti = 0 ms successfully drives the system from its initial state 0 to state 1 in half a period,
T0/2 = 0.34 ms. The bit-flip protocol consists in suddenly changing the well center position
x1 from x1(t−i ) = X1 to x1(t+i ) = 0, and changing it back to X1 after half a period. Doing
so, the cantilever trajectory (blue) starts in equilibrium at 〈x〉i = −X1, naturally evolves in
the transient single well and ends up at 〈x〉f = +X1. The center of the well in which the
cantilever is trapped is plotted in dashed red.
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a) b)

Figure 6.3 – Schematic overview of the bit-flip protocol. a) Reversible operation in
the ideal case without damping. The systems starts in state 0 in the encoding potential
Ui. The operation starts with a sudden change of the potential into a single well centered in
0. The system without velocity on average therefore initiates an oscillation at the resonance
frequency f0 from the average position −X1. After half a period T0/2, the trajectory reaches
on average the opposite position +X1 without velocity. At this exact moment, the potential
Ui is restored, so that the system ends up at equilibrium in state 1. b) Origin of the
irreversibility. When the system oscillation is damped by the viscous force, the system
cannot reach +X1 and culminates at X1 − ∆X. Therefore the operator has to pay for
the potential energy difference 〈∆Uflip〉. Besides, the system doesn’t not finish in perfect
equilibrium in state 1 and has to relax to the well center.



Chapter 6 119/ 141

6.3 Experimental result

The initial distance is calibrated using the position signal during the equilibrium steps:
X1 = 5.3σ0, so that B = 14 kBT0. We record Ntot = 2000 trajectories, alternating
between 0 → 1 and 1 → 0 operations, with 100% of success, to compute the average
potential and kinetic energy displayed on Fig. 6.4. Both energetic quantities rises when
the bit-flip begins (at ti = 0 ms), and immediately go back to their equilibrium value
prescribed by the equipartition (Keq = Ueq = 1

2kBT0) at the end of the protocol (at
tf = T0/2). We distinguish the two peaks in the potential profile corresponding to the
two extreme positions of the system in the single well potential.

Furthermore, we compute the stochastic work and heat using the expression in
Eq. (4.5) and Eq. (4.6) and compute the mean values from the Ntot trajectories. In
the data analysis, the ẋ1 term involved in the work expression is not composed of
real Dirac’s functions, because the steps in x1 are actually steep slopes from which
a non infinite derivative can be deduced. Let us point out that the work could be
inferred from the potential energy measure using Eq. (6.2), but we prefer to provide
two independent values for the potential energy and the work computations.

The work and heat distributions are displayed on Fig. 6.5: we deduce 〈W〉 =
0.46 ± 0.02kBT0 and 〈Q〉 = 0.43 ± 0.03kBT0. These non null values can be explained
by the small damping at the origin of the irreversibility, as detailed in section 6.4.
Nevertheless the experimental bit-flip still requires less than the lowest possible cost for
irreversible operation on a 1-bit memory, the Landauer’s bound kBT0 ln 2 ∼ 0.69kBT0.
Furthermore, this logically reversible operation can be conducted in a very small time
(0.34 ms here), contrary to irreversible operations such as erasures for which operating
fast requires to exceed the LB by several kBT0. Finally, the equilibrium is restored just
after the procedure, so that bit-flips can be repeated successively without worsening
the memory response.
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Figure 6.4 – a) Average potential energy. 〈U〉 (blue), inferred from Ntot = 2000 tra-
jectories, starts at thermal equilibrium and jumps at ti = 0 ms when the bit-flip begins.
At tf = T0/2 = 0.34 ms, the potential energy recovers its equilibrium value. The peaked
evolution in between is detailed in c). The very good accuracy of the calibration and the
measurements, results in the perfect agreement between the experimental curves during the
equilibration steps and the equipartition prescription Ueq = 1

2kBT0 in red line. b) Average
kinetic energy. 〈K〉 matches also perfectly the thermal equilibrium value (Keq = 1

2kBT0
in red line), except during the bit-flip operation where the deterministic speed contribution
prevails. c) Irreversibility in the average potential energy during the damped bit-
flip. We zoom on the experimental potential (blue) and kinetic (black) evolution during the
T0/2 = 0.34 ms bit-flip step: as expected for a free oscillator the kinetic and the potential
energy has opposite profiles. Both consist in the sum of the thermal contribution being worth
1
2kBT0 (red line) and the deterministic one during the transient evolution in the single well,
UD = 1

2kx
2
D and KD = 1

2mv
2
D. Regarding the kinetic energy, the system starts with no veloc-

ity on average at the edge of the single well potential, so that during the half oscillation the
speed increases and culminates in the center of the well at t = T0/4, before decreasing again
and vanishing at the opposite edge. On the contrary, regarding the potential energy, the sys-
tems gains the barrier energy (dashed blue line) when the double well potential is suddenly
changed into a single well centered on 0 at ti = 0 ms: UD(ti) = B. The experimental value
of the first peak measured at 14.5kBT0 therefore perfectly matches the barrier calibration
B = 14kBT0. Then, the systems half oscillation reaches a potential minimum (UD(T0/4) = 0),
before stopping with no speed at the second potential peak (green dashed line). Because of
the damping we measure a potential energy difference 〈∆Uflip

meas〉 = −0.450 ± 0.002 between
the two extreme potential values.
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Figure 6.5 – Work and Heat distribution. The work (blue) and heat (green) mean values
and their confidence interval are computed from the Ntot = 2000 bit-flip trajectories.

6.4 Origin of the irreversibility

We tackle in this section the origin of the irreversibility detected through the work
and heat mean values: it is the residual damping in the vacuum in which evolves the
cantilever. Indeed because of the dissipation during the half oscillation, the potential
energy given back by the system is lower than the one initially given by the operator,
so that in total, work is required to proceed. To phrase it differently: the damped
oscillator launched in −X1 stops at zero speed after half a period a little bit before the
exact opposite position as sketched on Fig. 6.3b). To provide a quantitive description,
let us express the deterministic term of trajectory xD during a 0 → 1 operation. The
oscillation initiated in xD(0) = −X1 and vD(0) = 0 obeys :

xD(t) = X1e
−tω0

2Q ( ω0

2QΩ sin Ωt− cos Ωt) (6.5)

where Ω = ω0

√
1− 1/(4Q)2 can be assimilated to ω0 at high quality factor. Hence,

after half a period the cantilever reaches on average the extreme position:

〈x〉f = xD(T0

2 ) = X1e
− π

2Q (6.6)

Without damping, Q→∞ so that we recover 〈x〉f = X1 and consequently a reversible
behavior. Meanwhile in a viscous environment, the cantilever undershoots the targeted
position by ∆X = X1(1 − e−

π
2Q ) ' π

2QX1. For Q = 100, we have ∆X/X1 = 1.56%.

As a consequence, there is a potential energy loss 〈∆Uflip〉 (illustrated on Fig. 6.3b))
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being worth:

〈∆Uflip〉 = 1
2k(X1 −∆X)2 − 1

2kX
2
1 (6.7)

= −B(1− e−
π
Q ) ' − π

Q
B (6.8)

= −0.44kBT0 (6.9)

The value in Eq. (6.9) corresponds to the theoretical prediction knowing the parameters
Q = 100 and B = (14±0.05)kBT0 from calibration. We compare it with the experimen-
tal value measured on the zoom picture of the experimental potential energy evolution
displayed on Fig. 6.4c): 〈∆Uflip

meas〉 = (−0.450 ± 0.002)kBT0. The errors are inferred
from the error on σ0 calibrated before each of the Ntot operations. The theory and the
experiment are in very good agreement. Besides, the first peak value in Fig. 6.4c) is
also consistent with the model, being worth the thermal energy plus the barrier energy
(deterministic contribution): B+ 1

2kBT0 = 14.5 kBT0. All in all, taking into account the
damping in the theoretical analysis perfectly explains the experimental observations.

6.5 Conclusion and optimisation perspectives

We have experimentally illustrated the connection between physically reversibility and
logically reversibility in information processing. The bit-flip protocol designed to be
secure and cost-free [1] has been tested experimentally: it successfully performs the
NOT operation in T0/2 = 0.34 ms for a very small amount of work. Indeed contrary
to irreversible operations requiring at least the LB, the cost here doesn’t exceeds 66%
of the LB. The deviation from the desired zero-work operation is fully explained by
the coupling of the memory to the surrounding bath: even very low damping intro-
duces irreversibility. The theoretical description has proven reliable to quantify the
irreversibility, measured with high accuracy in our experimental set up through the
energetic quantities. We summarize in the list below the agreement between the ex-
perimental results obtained from independent data analysis, and the model results (in
kBT0 units):

• 〈W〉 = 0.46± 0.02 ' −〈∆Uflip
meas〉 = 0.450± 0.002

• 〈W〉 = 0.46± 0.02 ' 〈Q〉 = 0.43± 0.03

• 〈U〉(t+i ) = 14.5± 0.002 ' B + 1
2 = 14.55

• 〈∆Uflip
meas〉 = −0.450± 0.002 ' π

Q
B = −0.44

To conclude, let us emphasize the parameters to be tuned in order to approach the
reversibility while maintaining a good success rate. We recall the average work in the
presence of damping (from Eq. (6.2) and Eq. (6.8)): 〈W〉 = π

Q
B. But if we want to

comply with the safety criterion, that is to say maintaining at least 〈x〉(tf ) = ±5σ0, the

distance between the wells in Ui has to be higher than Z1 = 5 and be worth Z̃1 = 5×e
π

2Q

(increasing with the damping). The cost required to proceed with the bit-flip while
meeting the safety requirement is therefore:

〈W〉 = π

Q
B̃ , with B̃ = 1

2Z̃
2
1 = Be

π
Q (6.10)
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Hence, the best way to cut the bit-flip cost is to enhance the quality factor as displayed
in Fig. 6.6. In particular, to ensure less than 5% of the LB, the quality factor has to
exceed Q = 1000.

On the opposite trend for dissipation, our protocol flipping the states in the (x, v)
plane cannot work for Q < 0.5, because it needs the system to oscillate. That is why, as
mentioned in the introduction, using a second spatial DOF1 instead of the speed DOF
would be an alternative. Maintaining the bit-flip success rate ensured by the safety
criterion (10σ0 between the two states at all time) would in this case cost at least the
work required to proceed a circle in the (x, y) 2D plane (from Eq. (F.9)):

〈W〉 = k(10πσ0

τ
× 10πσ0

Qω0
) (6.11)

= (50π
Q
× T0

τ
)kBT0 (6.12)

For operations as fast as τ = T0/2, our protocol in the (x, v) plane (only possible for
Q > 0.5) is always better than its spatial (x, y) counterpart, as illustrated on Fig. 6.6.
However, the bit-flip in the (x, y) plane allows to reduce the operation speed and get
close to a quasi-static motion of the system in the viscous bath. As shown in Fig. 6.6, if
one accepts to extend the duration to τ = 50T0, then the (x, y) bit-flip protocol becomes
the optimal process. In particular, contrary to our protocol, the (x, y) bit-flip would
reached the quasi-reversibility (〈W〉 < 5%LB) at Q = 100 used in the experimental
study.

1For a colloidal particle optically trapped, the y coordinate is a natural second DOF. For a micro-
beam oscillator, this could also be the case for a rod (instead of a cantilever), with equivalent stiffness
in the 2 directions perpendicular to its length.
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Figure 6.6 – Work of a Bit-flip protocol depending on the quality factor Q and
the operation duration τ . Our protocol (plain blue), corresponding to a bit-flip in the
(x, v) plane whose cost to ensure the safety criterion is given by Eq. (6.10), allows very
fast erasures: τ = T0/2. Increasing the quality factor reduces the bit-flip cost: the quasi-
reversibility (〈W〉 < 5%LB in dotted black) is reached for Q > 1000. Proceeding at the
same speed using the 2D spatial alternative (bit-flip in the (x, y) plane, dashed blue) requires
much more energy, as expressed in Eq. (6.12). However, the (x, y) bit-flip allows to reduce
the operation speed and therefore significantly cut the bit-flip cost. For a slower operation,
τ = 50T0, the (x, y) bit-flip becomes optimal, reaching the quasi-reversibility for Q = 90.
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In conclusion, we have met the experimental challenge of driving brownian systems
affected by thermal fluctuations, which allows us to explore fundamental principles in
statistical physics. All our findings pave the way to fast and optimal control of micro-
objects, with great applications in information processing. In the following, we put into
perspective the main results of the thesis and suggest some ways forward by outlining
avenues for further research.

Driving micro-systems

In my thesis, I propose different experimental set-ups designed to drive brownian sys-
tems with great accuracy. On the first hand, I use in chapter 2 tunable optical tweezers
to trap coupled over-damped colloidal particles and drive them independently. On the
other hand, I build a tunable virtual potential to control an underdamped micro-
resonator in chapter 2 (stiffness driving) and chapter 3 (double-well potential driving).
These two complementary experiments allow us to examine in depth fundamental sta-
tistical physics principles ruling the behavior of over-damped and underdamped brown-
ian objects. In particular, we show in chapter 2 that specific protocols (ESE protocols)
designed to shortcut the system relaxation after a change in a control parameter can
be deduced from the system evolution equations and experimentally applied on hydro-
dynamically coupled particules. ESE processes designed for the underdamped regime
are harder to implement experimentally, but we propose in chapter 2 all the building
blocks to achieve it in the future.

Cost of information processing

The precise control of the underdamped micro-resonator detailed in chapter 3 opens
new possibilities in terms of information processing, using the latter as 1-bit mem-
ory. Indeed, we conduct with our experimental set-up all possible logical opera-
tions: (0, 1) → (0, 1) [HOLD] (obvious implementation), (0, 1) → (0, 0) [RESET to
0], (0, 1)→ (1, 1) [RESET to 1] and (0, 1)→ (1, 0) [NOT].

In chapter 4 we tackle [RESET] operations: the underdamped cantilever turns out
to be the fastest and the most efficient classical 1-bit logic gate, reaching LB 300
times faster than the state-of-the-art based on over-damped memories. The precision
of the measurements allows us to model the energy exchanges during the [RESET]
and deduce the cost of fast operations, displayed in Fig. Cl.1a as a function of the
damping and erasure speed. In particular we show that weakly damped memories tend
to warm up when irreversible logical operations are performed at high speeds. This
thorough understanding of the source of energy loss opens up exciting new optimisation
approaches: choosing the optimal damping (accordingly to the white line in Fig. Cl.1a),
implementing optimal translational driving protocols (Fig. Cl.1b), or doing both (white
line on Fig. Cl.1b). Besides, let us also mention that adjusting the relative duration
of step 1 and step 2 (while keeping the overall erasure duration constant) on the basis
of the model prediction of the compression and translational motion respective costs is
another optimisation strategy very simple to implement.

Finally we explore in chapter 6 the [NOT] operation and propose an efficient bit-flip
protocol that takes advantage on the velocity degree of freedom of the underdamped
system to process the operation very fast, in only T0/2 = 0.4 ms. Even if the operation
is logically reversible, physical sources of irreversibility result in a small energetic cost,
successfully modeled in chapter 6. Fig. Cl.2a) gives the optimal bit-flip cost increasing
with the damping and the operation speed. We also point out that at high speeds the
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bit-flip using the velocity degree of freedom is optimal, meanwhile for slow operations
an alternative protocol using two spatial degrees of freedom would be more efficient.

Figure Cl.1 – a) Energetic consumption of a [RESET] operation, computed from the
model detailed and experimentally validated in chapter 4 (same as Fig. 4.9). The average
work required to erase 1-bit of information is displayed as a function of the driving speed
v1 = Z1/(τω0) and the memory quality factor Q. The optimal damping is emphasized in
white: it results from a balance between the price of the compression warming prevailing when
Q is high (but bounded by the adiabatic limit), and the dissipation cost prevailing when Q is
low. Let us point out that as the operation is logically irreversible the energetic consumption
is bounded by the Landauer’s fundamental lower limit. b) Energetic consumption of an
optimal [RESET] operation computed from the model adapted to the optimal protocol,
and validated by simulation results (same as Fig. 4.13b)). Applying optimal translational
drivings substantially reduces the erasure cost for all damping regimes and driving speeds as
highlighted by the common color scale used for a) and b). Similarly to the observations in a),
the optimal quality factor (white line) is around Q = 8 at low speed, and increases strongly
for fast operations.

Towards faster and more energy efficient logic-gates

In a very practical perspective, we have to wonder about the stability of the under-
damped memory in response to frequent and repeated uses. We show in section 4.5 that
working at high quality factor tends to minimize the erasure cost of a single erasure
but may provoke a huge failure rate if the device repeats the operation several times.
Again, we are able to model the response of the underdamped memory to successive
erasures: its energy consumption (per operation) and its reliability are illustrated in
Fig. Cl.2b.

All in all, if one wants to use the micro-resonator as a 1-bit logic gate, the perfor-
mance of the device will be quantified through its energy consumption and its margin
of error. As the [HOLD] operation is free, the power consumption of the logic gate
can be given by the average between the energetic cost of successive [RESET] and
[NOT] operations (assuming equivalent usage of both operations). We are therefore
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able to draw in Fig. Cl.3 the energy consumption table of our logic-gate, weighted by
the robustness of the information processing. We can conclude that, to our knowledge,
a micro-system of quality factor Q ∼ 40 (white line on Fig. Cl.3) happens to be the
most energy efficient 1-bit memory. A compromise should be made at high speed by
lowering the quality factor to keep the information processing safe.

Figure Cl.2 – a) Energetic consumption of an optimal [NOT] operation meeting
strong reliability requirement, computed with the model built in chapter 6 in agreement with
experimental observations. The operation being logically reversible, there is no fundamental
lower bound and we can reach the physical reversibility (almost no work required in the
blue area) at high quality factor. Depending on the desired operation speed, the protocol
resulting in the most energy efficient bit-flip differs. That is why for every parameters choice
(Q and v1) we use the optimal protocol to compute the energetic cost, and the dashed
line separates the regions where each one of the two possible protocols is the best. Indeed,
for very fast operation (right hand side of the dashed line) the optimal protocol is the one
using the speed degree of freedom (that is to say in the (x, v) plan) studied in chapter 6,
meanwhile for slower operations (left hand side) it is the alternative protocol using 2 spatial
degrees of freedom (that is to say in the (x, y) plan) mentioned in the end of the chapter. b)
Energetic consumption of repeated [RESET] operations (in the permanent regime)
computed with the model in chapter 4 proven to be in very good agreement with experimental
results. The energetic cost is again encoded by the colormap (red area corresponding to very
consuming procedures and blue ones corresponding to frugal ones), and the shading gives the
success rate of the operation (black area corresponding to a success rate below 90%). Indeed
we demonstrate that a repeated use of the memory without relaxation steps, differs from
single [RESET] operations, and may lower the success rate of the information processing. In
particular, we observe that successive operations fail at very high quality factor, contrary to
single erasures where enhancing the quality factor reduces the energetic cost. Therefore the
optimal damping for sustainable and continuous 1-bit erasures is around Q = 10 (white line).
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Figure Cl.3 – Overall performance of the logic gate. The [HOLD] operations being free,
the average energetic consumption of the 1-bit memory for continuous information processing
is deduced from the mean energetic cost of [RESET] operations (within the repeated use
framework) and [NOT] operations (the dashed line separating the two optimal protocols).
The sustainability of the logic gate is given by the operation success rate encoded by the map
shading: the opaque black area corresponds to a success rate lower than 90% after several
uses. The most energy efficient memory (white line) has a quality factor of Q ∼ 40, which
may be chosen smaller at very high speeds to maintain a reasonable margin of error in the
information processing.

Other optimisation perspectives

We demonstrate in chapter 4 that the erasure price of fast operations saturates at high
quality factors: it is the adiabatic limit corresponding to Wa = 1

2kBTa = kBT0. This
is fundamentally linked to the relation between the temperature and the phase space
volume evolution during the irreversible operation. In quadratic potentials, adiabatic
transformations maintain the product TV constant, so that dividing the volume by
two during the erasure makes the temperature double: Ta = 2T0. However, a non-
quadratic potential shape would lead to a different relation between temperature and
volume in the adiabatic limit. In other words, the thermal capacity of the memory can
be tuned by shaping the bi-stable potential. In particular, triangle double-wells would
result in the conservation of the product TV 2

3 so that the warming effect, bounded by
the adiabatic case, would be diminished compared to the bi-quadratic shape. Indeed
the adiabatic temperature becomes Ta = 2 2

3T0, and the adiabatic energy cost is Wa =
0.79kBT0. Testing this optimisation experimentally is perfectly achievable using the
FPGA (Fast Programming Gate Array) feedback loop: a triangular potential of the
form U(x, x1) = F0||x| − x1| can be easily implemented with a comparator switching
between constant forces ±F0.

Besides, once the compression cost (bounded by the adiabatic limit) carefully min-
imized by shaping the bi-stable potential, it remains to address the relaxation time
after the operation to envision fast successive operations without damaging the suc-
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cess rate. Indeed fast erasures end up out of equilibrium at temperature Ta, and the
subsequent thermalization is all the more slow since heat exchanges with the bath are
reduced at high quality factors. That is why it would be a huge advance to shortcut
the relaxation of the system and prepare the memory for another operation in a very
small amount of time. For this end, ESE protocols are a very promising path towards
faster and more reliable information processing. The stiffness of the bi-stable potential
could for example be tuned following an ESE procedure, in addition to conducting
the erasure compression by bringing the two wells together. The FPGA feedback in-
troduced in chapter 3 is a tool powerful enough to implement ESE protocols in the
information manipulation, in keeping with the work done in chapter 2. Of course, such
ESE procedures require energy (increasing with the desired equilibration speed), and a
compromise should be found between accelerating successive use of the logic gate, and
maintaining a low energy consumption.

The above discussion on fast erasures optimisation perspectives is summarized in
Fig. Cl.4.

Thermalization
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 Translational motion

ESE protocol
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Figure Cl.4 – Schematic overview of fast erasures optimisation perspectives. On
the first hand, changing the shape of the bi-stable potential, for example from quadratic to
triangular wells, modifies the adiabatic limit of the compression warming: Ta = 2

2
3T0 for

triangular wells is lower than Ta = 2T0 observed using quadratic ones. Other shapes may
also be investigated. On the other hand, implementing ESE protocols to restore quickly the
equilibrium of the memory after the compression warming is a promising strategy to optimize
its repeated use. Those protocols could be implemented by imposing specific profiles on the
potential shape either in addition to compression process during step 1, or in addition to the
translational driving during step 2, or in between the two steps.
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Harvesting energy from information

Finally, studying the link between information and thermodynamics has raised some
interesting possibilities to convert information into energy. This kind of approach cor-
responds to the Maxwell demon paradox: if the thermal energy is by essence impossible
to convert into work because of its random nature, removing the uncertainty using in-
formation on the system allows the harvesting of the work from the thermal noise. In
other words, it is possible to extract useful mechanical work from a system just by
observing its state. The knowledge of the system position comes from the demon and
appears to be free. But in reality, the demon work can be quantified through the con-
cept of mutual information and be explicitly incorporated into the second law. That is
why information, entropy and energy should be treated on equal footings [1]. Within
this framework, the efficiency of a Carnot engine could be beaten and work could even
be extracted from a single reservoir using feedback (source of mutual information) [2],
which would be impossible in standard thermodynamics.

These considerations opens a lot of promising perspectives in terms of generic infor-
mation engines based on feedback processes. Besides, this trade off between feedback
information and energy may also be used to build more energy efficient logic gates as
it is suggested in chapter 5. Indeed we already demonstrate that the fundamental limit
for the energetic cost of information processing is beaten in the presence of hysteresis
in the feedback: in a way, the information contained in the hysteresis partially replaces
the operator work.
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Hartmann, F., Emmerling, M., Höfling, S., Worschech, L., Carlotti, G.: Experi-
mental and theoretical analysis of landauer erasure in nano-magnetic switches of
different sizes. Nano Energy 19, 108 – 116 (2016), https://doi.org/10.1016/j.
nanoen.2015.10.028

• Mel’nikov, V.: The Kramers problem: Fifty years of development. Physics Reports
209(1-2), 1–71 (Dec 1991), https://doi.org/10.1016/0370-1573(91)90108-X

• Munakata, T., Rosinberg, M.L.: Entropy production and fluctuation theorems under
feedback control: the molecular refrigerator model revisited. Journal of Statistical
Mechanics: Theory and Experiment 2012(05), P05010 (May 2012), https://doi.
org/10.1088/1742-5468/2012/05/p05010

• Munakata, T., Rosinberg, M.L.: Feedback cooling, measurement errors, and entropy
production. Journal of Statistical Mechanics: Theory and Experiment 2013(06),
P06014 (Jun 2013), https://doi.org/10.1088/1742-5468/2013/06/p06014

• Muratore-Ginanneschi, P., Schwieger, K.: An application of pontryagin’s principle
to brownian particle engineered equilibration. Entropy 19(7), 379 (2017), https:

//doi.org/10.3390/e19070379

• Orlov, A.O., Lent, C.S., Thorpe, C.C., Boechler, G.P., Snider, G.L.: Experimental
test of landauer’s principle at the sub-kbt level. Japanese Journal of Applied Physics
51(6S), 06FE10 (2012), https://doi.org/10.1143/jjap.51.06fe10

• Padgett, M., Molloy, J., McGloin, D.: Optical Tweezers: Methods and Applications.
Chapman and Hall/CRC (2010), https://doi.org/10.1201/EBK1420074123

https://doi.org/10.1038/nphys3491
https://doi.org/10.1038/ncomms12068
https://doi.org/10.1038/ncomms12068
https://doi.org/10.1063/PT.3.2912
https://doi.org/10.1038/nphys3758
https://doi.org/10.1103/PhysRevLett.114.120601
https://doi.org/10.1103/PhysRevLett.114.120601
https://doi.org/10.1016/j.nanoen.2015.10.028
https://doi.org/10.1016/j.nanoen.2015.10.028
https://doi.org/10.1016/0370-1573(91)90108-X
https://doi.org/10.1088/1742-5468/2012/05/p05010
https://doi.org/10.1088/1742-5468/2012/05/p05010
https://doi.org/10.1088/1742-5468/2013/06/p06014
https://doi.org/10.3390/e19070379
https://doi.org/10.3390/e19070379
https://doi.org/10.1143/jjap.51.06fe10
https://doi.org/10.1201/EBK1420074123


Bibliography 140/ 141

• Paolino, P., Aguilar Sandoval, F., Bellon, L.: Quadrature phase interferometer for
high resolution force spectroscopy. Rev. Sci. Instrum. 84, 095001 (2013), https:

//doi.org/10.1063/1.4819743

• Park, J.M., Lee, J.S., Noh, J.D.: Optimal tuning of a confined brownian information
engine. Phys. Rev. E 93, 032146 (Mar 2016), https://doi.org/10.1103/PhysRevE.
93.032146

• Parrondo, J.M.R., Horowitz, J.M., Sagawa, T.: Thermodynamics of information.
Nature Physics 11(2), 131–139 (2015), https://doi.org/10.1038/nphys3230

• Planck, M.: Über einen datz der statistischen dynamik und seine erweiterung in
der quantentheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wis-
senschaften zu Berlin. 24, 324–341 (1917)

• Proesmans, K., Ehrich, J., Bechhoefer, J.: Finite-time landauer principle. Phys. Rev.
Lett. 125, 100602 (2020), https://doi.org/10.1103/PhysRevLett.125.100602

• Ray, K.J., Wimsatt, G.W., Boyd, A.B., Crutchfield, J.P.: Non-Markovian Momen-
tum Computing: Universal and Efficient. Phys. Rev. Research 3(2), 023164 (Jun
2021), https://doi.org/10.1103/PhysRevResearch.3.023164
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Engineered swift equilibration of
brownian particles: consequences
of hydrodynamic coupling

We attach in this section our article in Ref. 1.
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Abstract

We present a detailed theoretical and experimental analysis of Engineered Swift Equi-
libration (ESE) protocols applied to two hydrodynamically coupled colloids in optical
traps. The second particle disturbs slightly (10% at most) the response to an ESE com-
pression applied to a single particle. This effect is quantitatively explained by a model
of hydrodynamic coupling. Then we design a coupled ESE protocol for the two parti-
cles, allowing the perfect control of one target particle while the second is enslaved to
the first. The calibration errors and the limitations of the model are finally discussed in
detail.
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1 Introduction

Speeding-up an equilibration process is a delicate task, because the relaxation time is an in-
trinsic property of a system which depends on parameters such as the dissipation, the potential
strength, the inertia, or the number of degrees of freedom. Furthermore, when a control pa-
rameter is suddenly changed, the system may pass through states that differ widely from the
target one. One way of speeding up a specific transformation between well defined equilib-
rium states is to apply complex protocols in which the time dependence of one or several
control parameters is tuned in a highly specific fashion, to reach the final target in a selected
short amount of time. This problem, related to optimal control theory, can be traced back to
Boltzmann [1–3]. It has recently received sustained attention within the framework of the so-
called “Shortcut To Adiabaticity” protocols, which study such complex procedures for specific
transformations [4,5].

We are interested here in overdamped systems in contact with a thermostat, for which we
have defined protocols of Engineered Swift Equilibration (ESE) that have been applied to the
control of Brownian particles trapped by optical tweezers [6]. For example, one can achieve
the compression of a single particle trapped in an harmonic well by increasing the potential
stiffness K between an initial state in equilibrium at Ki and a final state in equilibrium at K f .
After a sudden change in K (STEP protocol) the bead will equilibrate in its natural relaxation
time. Using an ESE protocol for the time evolution of K(t), the same final state can be reached
several orders of magnitude faster than STEP [6]. We will refer to this fast compression pro-
tocol as the basic ESE. When designing these protocols, one of the key questions lies in the
stability against external perturbations. In this context, we tackle in this article the case of two
hydro-dynamically coupled particles trapped in different potentials, to understand to what
extent the equilibration dynamics imposed by the basic ESE is modified by the hydrodynamic
interactions with another bead. A deep understanding of the physical consequences of the
coupling on the particles behaviour (correlation) is necessary to work out the consequences of
this perturbation. The goal here is twofold: on the one hand, it is a simple test bench to probe
the robustness of the basic ESE. Indeed, we can see the second particle as a perturbation to the
first, and monitor how far the protocol misses its target if we neglect this perturbation. And
on the other hand, it is a first step towards the control of more complex systems with several
degrees of freedom.

The article is organised as follows: in a first part, we investigate robustness of the basic
ESE to the coupling interaction. To do so, we conduct experiments using the experimental set
up described in section 2, and present the results in section 3. To support our experimental
results, we then use in section 4 a simple model from refs. [7–10] to describe the coupled
system, and predict the dynamics of the correlations at equilibrium and the general dynamics
of the moments. We subsequently turn to the second goal of the paper: extending the scope
of ESE protocols to more complex systems. The model used is precise enough to provide a
basis for the construction of new ESE protocols adapted to the coupled system. In particular
we explore in section 5 the construction of ESE protocols that do not depend on the coupling
intensity, and are thus very robust. Then we demonstrate experimentally the validity of this
extension. Finally we draw the experimental limits of this new strategy in section 6.

2 Experimental set up and method

To test the robustness of the basic ESE to the coupling interaction, we conduct experiments on
two silica beads of radius r = 1µm immersed in miliQ water (to avoid trapping impurities) at
a temperature T and trapped by two optical tweezers separated by the distance d (see Fig. 1).
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Figure 1: Two Brownian particles trapped by optical tweezers into two harmonic
potentials of stiffness K1 and K2. x j represents the position of the particle j = 1, 2
relative to the trap center x0

j , and in the following, ex j = x j + x0
j represents the

absolute position. d is the mean distance to contact between the two particles of
radius r = 1µm: d = |x0

2 − x0
1 | − 2r.

We use a very small concentration of silica micro-spheres in water and a specific design of the
cell containing the particles, in order to have very few beads in the measuring volume. This
enables us to take long measurements without any spurious perturbation. The two beads are
trapped at 20 µm from the bottom plate of the cell. The traps are realized using a near-infrared
single mode DPSS laser (Laser Quantum, λ= 1064 nm used at a power of 1 W) expanded and
injected through an oil-immersed objective (Leica, 63 × NA 1.40) into the fluid chamber. An
Acousto-Optic Deflector (AOD) controls the intensity and the position of the trapping beams
with the amplitude and frequency of the control signal, respectively. We thus create two har-
monic potentials at a distance d along the x direction U j( ex j , t) = −K j(t)( ex j − x0

j )
2/2, with

j = 1, 2, where ex j are the absolute particle positions. The potential minimum x0
j and stiffness

K j are controlled respectively by the frequency and amplitude of the AOD input signal. As
the AOD responds linearly, a sum of sine waveforms of different frequencies results in two
potentials U j=1,2 separated by a distance proportional to the difference between the sine fre-
quencies. We can also use a second version of the setup with two AODs (one for each trap) to
have two perfectly uncoupled static traps with orthogonally polarized beam (which is needed
in particular when K1(t) 6= K2(t)). The detection of the particle position is performed using a
fiber coupled single mode laser diode (Thorlabs, λ= 635 nm, power 1 mW lowered to 100µW
with a neutral density filter) which is collimated after the fiber and sent through the trapping
objective. The forward-scattered detection beam is collected by a condenser (Leica, NA 0.53),
and its back focal-plane field distribution projected onto a four quadrant detector (QPD from
First Sensor with a bandpass of 1 MHz with custom made electronic) which gives a signal pro-
portional to the particle position. Before every acquisition, a calibration procedure described
in Appendix A.1 is conducted.

As regards the acquisition process, the approach consists in comparing the situation when
the particles are strongly coupled (d ® r), with the situation when the coupling is negligi-
ble (d � r), in order to conclude on the perturbation induced by the coupling. Because
the procedure is very sensitive to the instrument calibration and to the external parameters,
to compare properly the 2 cases described above, we apply the following protocol: we start
at small distance and record the particle position during a dozen of ESE protocols, then we
smoothly separate the 2 particles and record again a dozen protocols, before bringing again
the 2 particles closer and restart the cycle. Doing so enables us to compare the response to the
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ESE protocol in the coupled and uncoupled cases in the same experimental conditions. The
recording lasts 10000 protocols to reduce statistical uncertainty. The same approach can be ad-
justed for other comparisons, the point being always to maintain the same working conditions
between the two acquisitions.

3 Consequences of coupling perturbation on the basic ESE proto-
col

This section aims to see to what extent the response of the particle to the basic ESE deviates
from the 0-coupling case successfully tested in ref. [6], when it is affected by the coupling
perturbation created by another particle at distance d.

Indeed, the basic ESE defined in ref. [6] is designed for a single particle trapped in the po-
tential U(t) = 1

2 K(t)x2, and whose over-damped dynamics is described by a Langevin equation
that introduces the friction coefficient γ = 6πηr, η being the kinetic viscosity and r = 1µm
the radius of the particle. The basic ESE consists in changing the stiffness over a period of
time t f to reach a new equilibrium at K f . The corresponding stiffness profile is the following,
using the dimensionless quantities k(t) = K(t)/Ki (in particular k f = K f /Ki), s = t/t f and
Γ = γ/(Ki t f ) (ratio of relevant timescales):

k(s) = 1+ (k f − 1)(3− 2s)s2 − 3Γ (k f − 1)(s− 1)s

1+ (k f − 1)(3− 2s)s2
. (1)

One may expect that if the ESE final time t f is small enough compared to the characteristic
correlation time τcorr, the particles will behave as in the free case. To test this hypothesis we
study the evolution of the variance of the first particle during what we call the symmetric pro-
tocol: the stiffness of both wells is simultaneously driven (K1(s) = K2(s) = K(s)) according to
the basic ESE of eq. (1). In what follows we associate with the first particle variance 〈x2

1〉 the di-
mensionless quantity σ11 = Ki〈x2

1〉/(2kB T ). In the symmetric protocol context σ11 = σ22 = σ.
We carry out this procedure for an ESE time t f one order of magnitude smaller than the typical
characteristic times τcorr ∼ τrelax ∼ 15 ms. To cycle the procedure we use the stiffness profile
of Fig. 2 (left) for both traps: a simple step decompression followed by the basic ESE compres-
sion. The experimental results are plotted in plain lines on Fig. 2 (right), in purple for a small
distance and in black for a large distance. Since we look for tiny effects, all results in the article
are plotted using the normalised variance σn = (σ(t)−σ f )/(σi−σ f ). In response to the step
decompression, the particle reaches equilibrium in its natural relaxation time τrelax. We notice
that the coupling also affects this natural relaxation (by slightly slowing it down). Then we
apply the basic ESE protocol to both wells, and we observe that at small d the coupling induces
a rebound in the variance evolution (indicated by the red arrow on the figure) and prevents
the particle to reach equilibrium in the expected time. The ESE is also very sensitive to other
external perturbations, indeed a small drift in calibration may be responsible for the very small
slip of the black curve under its final value at t f . These observations are very reproducible and
one may see in Appendix A.2 complementary results highlighting the increase of the rebound
height with the intensity of the coupling.

To put it in a nutshell, Fig. 2 highlights that even though the protocol is designed to be much
faster than the coupling characteristic time, the coupling perturbation impacts the response
to the basic ESE. Our sensitive experimental setup enables us to observe experimentally the
tiny effect of hydrodynamic coupling: the particle variance features a rebound at t f and will
not reach equilibrium before its natural relaxation time. Nevertheless the basic ESE is rather
robust, as for moderate coupling, this bounce is modest compared to the natural relaxation
amplitude evolution. Indeed basic ESE still provides correct results, with a 10% deviation to
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Figure 2: On the left, the stiffness profile applied to both wells: a STEP decompres-
sion at t = −140 ms followed by a basic ESE protocol for compression for 0< t < t f .
This procedure is called the symmetric protocol. At t = −140ms, the stiffness jumps
from k f = 2.3 to ki = 1. At t = 0 the particle is thus in its initial equilibrium when we
apply an ESE protocol finishing at t f to bring back the particle to its final state at k f .
The ESE parameters are: t f = 2.5ms, Ki = 4× 10−7 N/m, k f = 2.3, and Γ = 18.9.
This stiffness profile emphasizes the difference between the relaxation after a step
function, and the response to the ESE protocol. On the right, normalized variance of
the first particle σn = (σ(t) −σ f )/(σi −σ f ), corresponding to the symmetric pro-
tocol on the left. The plain lines are the experimental results with their error bars.
The dashed curves are numerically computed from the theoretical analysis of section
4, plugging the experimental parameters from the calibration. The same process is
applied for particles separated by d = 5µm (black) and d = 0.7µm (purple) corre-
sponding respectively to a coupling constant (introduced in section 4) ε = 0.21 and
ε = 0.5. A small rebound (around 10% of the step) pointed by the red arrow and
long relaxation time are visible for close particles.

the 0-coupling case. Within this framework a measure with a poor statistics will hide the effect
inside the statistical error.

It remains to be seen whether this experimental results can be supported by a theoretical
analysis. To this end we devote the next section to study the coupled system’s dynamics, first
in equilibrium and then when driven by the symmetric protocol.

4 Theoretical analysis

To describe the evolution of two trapped brownian particles which are hydrodynamically cou-
pled, we write the coupled Langevin equations,

�
ẋ1
ẋ2

�
=H

�
F1
F2

�
, (2)

where x j is the position of the particle j = 1, 2 relative to its trapping position (see Fig. 1),
ẋ j is the time derivative of x j , and H is the hydrodynamic coupling tensor. The Langevin
equations govern the system evolution in general whether or not it is at equilibrium. Besides,
the Langevin equations (2) do not include any acceleration term: we assume the over-damped
regime which is fully justified for colloidal objects (see Appendix A.3). At equilibrium the forces
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acting on the particles are:
F j = −K j x j + f j , (3)

where K j is the stiffness of the trap j and f j is the Brownian random noise. For two identical
particles of radius r separated by a distance d (see Fig. 1), assuming that their displacements
are small compared to the mean distance between them, the hydrodynamic coupling tensor
reads [7–10]:

H = 1
γ

�
1 ε

ε 1

�
. (4)

In some approximations described in Appendix A.4 we can write ε = 3
2ν − ν3, where

ν= r/(2r + d).
Let us first study how the particles behave at equilibrium (K j constant in time), and in

particular how they influence their neighbour. At equilibrium the two particles are statistically
independent: 〈x1 x2〉eq = 0, 〈x2

1〉eq = kB T/K1, and 〈x2
2〉eq = kB T/K2 (with kB the Boltzmann’s

constant and T the bath temperature). However, the 2 particles are coupled by eq. (2). Extend-
ing the computation of refs. [9, 11] to the more general case of two potentials with different
stiffnesses, we show in Appendix A.5 that, at equilibrium, auto-correlations 〈x j(0)x j(t)〉 and
cross-correlations 〈x j(0)xk(t)〉 (with j 6= k) of positions read as:

〈x1(t)x1(0)〉=
kB T
2K1κ

�
e−

t
τ+ (K1 − K2 + κ) + e−

t
τ− (K2 − K1 +κ)

�
, (5)

〈x2(t)x2(0)〉=
kB T
2K2κ

�
e−

t
τ+ (K2 − K1 + κ) + e−

t
τ− (K1 − K2 +κ)

�
, (6)

〈x1(t)x2(0)〉=
εkB T
κ

�
e−

t
τ+ − e−

t
τ−
�

, (7)

with

κ=
Æ
(K1 − K2)2 + 4ε2K1K2 , (8)

τ− =
2γ

K1 + K2 −κ
, (9)

τ+ =
2γ

K1 + K2 +κ
. (10)

We report the computed behaviour in Fig. 3. Those correlation functions involve two char-
acteristic times τ+ and τ− that are very close to the natural relaxation time of the harmonic
well τrelax = γ/K1 ∼ 15ms. We consequently introduce a slow mode and a fast mode asso-
ciated respectively with τ− and τ+. The slow mode vanishes when x1 ∝ x2, and the fast
mode when x1 ∝ −x2: ie correlation enhances the fast mode (correlated mode) and anti-
correlation the slow mode (anti-correlated mode). In the symmetric case, the two modes may
be interpreted as the barycentre of the system xM = (x1 + x2)/2, and the particles separation
xµ = (x2 − x1)/2. Naturally, xµ embodies the slow mode and xM the fast one, as the evolu-
tion of xµ requires a fluid displacement between the particles, while the barycentre evolution
relies on the fact that one sphere tends to drag the other in its wake (details in [9]). As far as
auto-correlation functions are concerned, the shape of decaying exponential in Fig. 3 is rather
common. The negative cross-correlation might however be surprising. This feature stems first
from the fact that the cross-correlation has to vanish at t = 0 (a consequence of independence
at equilibrium), and second from the fact that the anti-correlated mode (associated with xµ)
lives longer than the correlated mode (associated with xM ).

We now focus on the dynamics of the particles when the potentials change with time. It
proves convenient to convert the coupled Langevin equations into equations describing the
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Figure 3: Auto- and cross-correlation functions normalized by 〈x2
1〉eq as a function

of time, when γ = 1.88× 10−8 sN/m, K1 = K2 = 10−6 N/m and d = 1µm, so that
σ11,eq = kB T/K1 = 4× 103 nm2 and ε = 0.46. We recover at t = 0 the values of the
moments at equilibrium, in particular σ12,eq = 0.

dynamics of the moments 〈x2
1〉(t), 〈x2

2〉(t) and 〈x1 x2〉(t). Using the dimensionless quantities
σ jk = K1,i〈x j xk〉/(2kB T ), we obtain the following system to describe the evolution of the
moments (see Appendix A.6):

Γ
dσ11

ds
= −2k1σ11 − 2εk2σ12 + 1 , (11)

Γ
dσ22

ds
= −2k2σ22 − 2εk1σ12 + 1 , (12)

Γ
dσ12

ds
= −(k1 + k2)σ12 − ε(k2σ22 + k1σ11 − 1) , (13)

where s = t/t f as before, k j(s) = K j(s)/K1,i (K1,i being the initial stiffness of the first well),
and Γ = γ/(K1,i t f ). The above equations contain all the information about the dynamics of the
system, as the joint probability distribution remains Gaussian out of equilibrium (see Appendix
A.7) and is thus fully described by σ11, σ22 and σ12. The basic ESE in eq. (1) is defined in
ref. [6] using eq. (11) without the cross term εσ12 term. Therefore it cannot be operational
for the coupled system.

We compute numerically the evolution of the first particle variance corresponding to the
symmetric protocol where the stiffness of both wells is simultaneously driven according to the
basic ESE. The results of these computations are summarized in Fig. 4: it should be recalled that
in the symmetric protocol context (K1 = K2 = K), the above equations simplify and σ11 = σ22
can be written σ.

The theoretical predictions of Fig. 4 seem to be consistent with the experimental conclu-
sions drawn in section 3. To confirm that the model prediction and the experimental curves
match, we superimpose in dashed lines on Fig. 2 the theoretical curves obtained using the
same ESE parameters and the external parameters from calibration. We see that the results
are in very good accordance. Besides, the validity of the theory during the STEP to prepare
the system at Ki confirms that the calibration is relevant to estimate the external parameters
during the experiment.

The model of the hydrodynamic coupling proves to be precise enough to be used for ESE
computations. We are thus equipped to propose a new strategy to drive a coupled system
without any compromise on the shortcut efficiency. Indeed we can take into account the hy-
drodynamic coupling in the construction of a new ESE protocol thereby eliminating the small
although spurious bounce identified above.
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Figure 4: Evolution of the normalized variance σn = (σ(t)−σ f )/(σi −σ f ) of one
particle in response to the symmetric protocol for different values of the distance d
between the particles. The parameters of the ESE protocol (shaped as in Fig. 2) are
the following: t f = 2ms, k f = K f /Ki = 1.5, Ki = 10−6 N/m, and Γ = 9.42. Without
coupling (when d =∞) the response to the ESE is shortcut to t f . The hydrody-
namic coupling results in a rebound on the variance curve, which no longer reaches
its equilibrium value at t f , but after a few natural relaxation times τrelax ≈ 15 ms.
As expected from experimental results, the smaller the distance d, the higher the
rebound and so the deviation from the 0-coupling case.

5 Coupled ESE protocol

Our strategy to design a coupled protocol is now to look for an ESE scheme that would drive
the first particle from (t i = 0, Ki) to (t f , K f ) while being robust to coupling interaction. A so-
lution to achieve this requirement is to design a protocol that does not depend on the coupling
intensity (ie independent of the ε parameter). This strong constraint can be met if we require
particle independence at all time, that is to say 〈x1 x2〉(t) = 0 during all the process and not
only at equilibrium states. Indeed insofar as we require independence, the results no longer
depend on the strength of the coupling.

As detailed in Appendix A.8, the independence requirement (σ12 = 0 during the process)
enables us to simplify the evolution equations eq. (11)-(13) and to find an ESE protocol that
meets the requirements detailed above: we find a shape for k1(s) and k2(s) independent of
ε that satisfies the equilibrium at t f of both particles (see Fig. 5). The expression of k1(s)
is therefore the same as in the single particle case, but the second potential has to be driven
appropriately with a different stiffness profile k2(s).

The price to pay to drive the particle 1 from K1,i to K1, f is to enforce a nearly opposite
profile on the second potential. In particular the final value of the second well stiffness K2, f
is imposed by the parameters chosen for the first particle and is therefore not chosen a priori.
Besides, a sum rule ensues, such that k1σ11+ k2σ22 is conserved. To maintain independence,
the two wells tend to evolve in opposition because of the correlation due to the coupling.
Indeed the coupling term εF1 in eq. (2) can be interpreted as an extra random noise:

γ ẋ2 = −K2 x2 + f2 + εF1 . (14)

This coupling term behaves as the random noises with the following characteristics (at equi-
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Figure 5: (Left) Profiles k1(s) and k2(s) computed for the coupled ESE protocol
that maintains independence between the particles for parameters: k f = 1.4,
Ki = K2,i = 1.8× 10−6 N/m, t f = 2.5ms, and Γ = 4.19. While k1 (red) reaches
the target value at s = 1, the second well stiffness k2 (blue) has to adapt itself. In
particular its final stiffness value is determined by the other parameters of the ESE:
k2 f = k2ik f /(k2ik f + k f − k2i). This protocol does not depend on the coupling con-
stant ε and so works for any distance d between the particles. (Right) Result of
the computation for the dimensionless variances of the two particles using the ESE
protocol on top: σ11 in red, and σ22 in blue. The plot confirms that Boltzmann equi-
librium (horizontal grey lines) is reached for both particles at initial and final times.
Let us remind that σ12 = 0 all along.

librium),
〈εF1〉= −εK1〈x1〉+ ε〈 f1〉= 0 , (15)

〈ε2F2
1 〉= ε2k2

1〈x2
1〉+ ε2〈 f 2

1 〉= ε2kB T k1 + ε
2〈 f 2

1 〉 . (16)

Thus if k1 increases, the noise imposed to particle 2 by the coupling increases as well, and con-
sequently so does the variance of particle 2. To pretend that the two particles are independent
and that this increase in the particle 2 variance is not due to the behaviour of the particle 1,
the second well should open up. That is why to maintain a vanishing cross term σ12 = 0 the
second well should behave in opposition to the first one (see Fig. 5).

The experimental implementation of the coupled protocol is illustrated in Fig. 6. The dis-
tance between the particles is set to d = 0.8µm to ensure strong coupling. We compare the
response of the system to the symmetric protocol in which the two potentials are driven simi-
larly, with the response to the coupled ESE.

In this new set of experiments, the rebound in response to the symmetric protocol is natu-
rally still present, but disappears when applying the coupled ESE protocol. This result validates
the efficiency of enforcing independence for coupled particles. Indeed this protocol is very sta-
ble against the coupling interaction because it does not depend on the strength of the coupling
(ε in our model). Thanks to this process we achieve the same efficiency of shortcut to equilib-
rium we had for a single particle, but now for coupled ones. This extension of the validity of
ESE protocol has nevertheless a cost: the second particle, coupled to the particle of interest,
has to be driven to a final equilibrium state defined by the other parameters of the protocol
(K2i and k f ).
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Figure 6: Normalized variance σn = (σ(t) − σ f )/(σi − σ f ) of the first parti-
cle when the potentials are driven by the symmetric protocol (purple) or by the
coupled ESE protocol (black). The parameters of the experiment are: k f = 1.4,
K1,i = K2,i = 1.8× 10−6 N/m, t f = 2.5ms, d = 0.8µm, and thus ε = 0.49 and
Γ = 4.19. The symmetric protocol leads to the rebound predicted in section 4. On
the contrary the coupled protocol designed to cancel the correlations between the
particles works as expected: the rebound is essentially suppressed and the particle
reaches equilibrium at t f . Furthermore, the experimental results (plain lines) are
again consistent with the theoretical predictions (dashed lines) based on measured
parameters only and not on adjustable ones.

6 Limits and other approaches

We are experimentally facing two limitations in the implementation of the Coupled ESE. First,
stiffnesses have to remain positive (ie attractive potentials), and second they cannot exceed
maximum values above which the particles can be damaged. Actually it is possible to mimic
repulsive potentials and go beyond the first constraint [12], but considering our basic optical
tweezers set up, it is far more convenient to stick to positive stiffness. In the case of the Coupled
ESE, assuming that k2,i = 1 and k f > 1, these limitations translate into k2 > 0 and k1 < kmax.
Using the expression of k2(s) and k1(s) the first limit can be expressed as a constraint on the
acceleration factor Γ , or equivalently on t f and Ki as Γ = γ/(Ki t f ). Indeed maintaining k2 > 0
requires

Γ < Γlim,1 =min[− 1
σ̇11(s)

, 0< s < 1] . (17)

Γlim,1 depends on k f (yellow curve in Fig. 7): the more one wants to compress the well, the
smaller Γ should be, and so the higher t f will be.
Concerning the second limit k1 < kmax a similar computation gives us the corresponding con-
straint on Γ . We introduce:

Γlim(s) =
((k f − 1)s2(2s− 3)− 1)(kmax − 1+ (k f − 1)s2(2s− 3))

3(k f − 1)s(s− 1)
, (18)

Then,
Γlim,2 =min[Γlim(s), 0< s < 1] . (19)
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Figure 7: Experimental limits of the coupled ESE protocol in terms of the speed-up pa-
rameter Γ for a compression of the first particle (k f > 1). The yellow line represents
the higher limit Γ should not exceed to maintain k2 > 0, the red one to maintain
k1 < 5 and the blue one to maintain k1 < 10. The requirement k2 > 0 being the
most restrictive, the limit to respect during experiments is the yellow line that corre-
sponds to Γl im,1. In other words, the working region where all the constraints are met
is the green region. The yellow, red and blue regions delineate the domains where
the respective requirements are not met anymore.

To summarize, we plot in the Fig. 7 the maximum boundary Γlim to comply with the constraints
k2 > 0 (yellow curve) and k1 < kmax for kmax = 5 (red curve) and kmax = 10 (blue curve). As
expected, the stronger is the compression, the smaller is the region accessible for Γ , because
it has to remain under Γlim. The limit k2 > 0 is the most restrictive, and that is why Γlim,1 in
yellow delimits the working region. To provide shortcuts outside the accessible region, some
new strategies should be developed such as what has been done in ref. [13] for the basic ESE.

Enforcing independence through the coupled ESE protocol is a successful strategy to ex-
tend the family of ESE protocols to more complex systems which cannot be managed with
full efficiency by the basic ESE. Within the limits we highlighted above, this particular solution
independent of ε turns out to be very powerful. Yet, the solution panel to the coupled case
problem is wide, and there is more to find in this direction. In particular, it is possible to guide
the two particles with the same stiffness profile to a chosen target state. This symmetric cou-
pled ESE protocol detailed in Appendix A.9 has nevertheless a cost: cross-correlations appear
during the process and vanish only at equilibrium. Therefore, the independency is no longer
required in this protocol, which makes it depend on the coupling intensity. That is why this ε
dependent protocol is harder to implement experimentally. Further work is required to extend
ESE protocols to more complex systems, and every solution will have specific advantages and
limits.

7 Conclusion

In conclusion, we explored shortcut to adiabadicity schemes for coupled systems: in particular
two hydro-dynamically coupled particles. The first objective of this paper was to test the
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stability of the basic ESE protocol designed for single systems against the coupling interaction.
Our experiments, in very good accordance with the model, proved its relative robustness:
the coupling perturbation deviates the response of a dozen of percents compared to the 0-
coupling case. It is nevertheless possible to work out explicitly ESE solutions that take due
account of the coupling, and are therefore immune to it: this is the second message of this
article. The model used to describe the coupling proved reliable enough to build a new family
of ESE solutions with the same method of retro-computing used to find the single particle
ESE protocol. We thus propose a very robust protocol, because ε independent, that enforces
independence between the particles. Experimental tests confirm the efficiency of this shortcut
strategy within the experimental limits described in the last part of the paper. Other solutions
can be investigated such as a symmetric protocol designed for coupled particles (more difficult
to implement because ε dependent).
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A Appendix

A.1 Calibration procedure

As the effect under scrutiny is tiny, a very accurate calibration is necessary to observe it. Thus
we detail in this section the calibration procedure conducted before the experimental tests of
ESE protocols. It is performed as follows: first we have to find the connection between the
amplitude A of the sine wave driving the AOD and the stiffness K applied by the optical trap to
the particle. To do so, we acquire the position variance (σ2 = kB T/K) for different amplitudes
A. This calibration curve enables us to convert the ESE protocol in driving amplitude for
the AOD. Then, the only dependence on external parameters of the ESE protocol lies in the
parameter Γ = γ/(Ki t f ). To estimate Γ we conduct the acquisition of the cut off frequency [14]
( f0 = K/(2πγ)) when the particle is in the initial state of the ESE, f0,i , through the particle’s
Brownian noise spectrum in position corresponding to the initial value of amplitude Ai . Then
we deduce Γ = 1/(2π f0,i t f ).

One may now wonder to what extent small drifts in calibration may impact the experimen-
tal results. Indeed during the typical time of our experiments (up to a few hours), we observe
that the stiffness K and the parameter Γ decrease by a small amount: 4% at most. The stiff-
ness variation can be a consequence of the variation of the AOD efficiency because the AOD
warms up with time. On the other side, Γ is modified because of the following phenomena:
the stiffness variation, the water viscosity dependency on the temperature, and the damping
coefficient correction due to the distance h to the cell walls. Indeed at first order in r/h we can
expand [15] γ(T, h) = 6πrη0(T )× (1+ 9/16× r/h), with η0(T ) decreasing of 2% per Kelvin,
and the term in r/h leading to an additional 1% per 5µm in h.
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Those variation in K and Γ are small, leading to a small error on the ESE protocols them-
selves. Moreover, our cycle procedure of acquisition makes the comparison of protocols in
equivalent experimental conditions. Drifts in Γ have the same consequences on the different
responses we compare: the relative differences between the curves are only weakly sensitive to
variations in Γ . Finally, drifts in Ki , K f (thus σi , σ f ) are wiped out by plotting the normalised
variance.

Furthermore, the local drift of the bath temperature due to the power of the lasers (mea-
suring laser and trapping laser), amplifies the deviation of the particle variance also affected
by the stiffness drift. Indeed the standard deviation σ can increase up to 2% during an acqui-
sition. As we are studying σ jumps of 20% with ESE, it is better to get rid of the 2% error due
to external parameters small deviations. To do so, we normalize the results at regular time
intervals to minimize the drift effect in the results.

A.2 Complementary experimental results

-10 0 10 20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

Figure 8: Same as Fig. 2 but with three distances: d = 5µm in black, d = 0.83µm
in green and d = 0.7µm in purple.

As a complement to the results presented in Fig. 2, we propose another experimental result
in Fig. 8. All the parameters are the same as in Fig. 2 but the experiment is performed with 3
different distances between the particles. From it, we can affirm first that the results are very
reproducible and always consistent with the theory, and second that the rebound decreases
with the coupling as pointed out in Fig. 4.

A.3 Over-damped regime

The influence of the inertia lasts on a characteristic timeτinertia = m/γ= 2µr2/(9η), withµ be-
ing the volumic mass of the particles. As we consider usual fluids such as water, η= 10−3 Pa s,
and µ= 103 kgm−3. The point is then to compare τinertia with the time needed for the particle
to diffuse over a distance equivalent to its diameter, τdiff. In a usual diffusion process we have,
τdiff = (2r)2/D, using the diffusion coefficient D = kB T/(6πηr). Therefore, on the one hand,
the r region where τinertia� τdiff corresponds to r � 0.01 pm.

On the other hand, to get an upper limit, we compare τinertia to the characteristic time of the
experiment τESE = 1 ms. Indeed in the context of shortcuts, the time of the ESE is more restric-
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tive than the natural relaxation time τrelax = γ/K ∼ 15ms. The assumption τinertia � τESE
remains valid while r � 70µm. To conclude, the r region of the over-damped regime is
0.01 pm� r � 70µm.

We are thus working in the r region where the inertia faded too fast as compared to the
other phenomena to be noticed (indeed for r = 1µm, τinertia ∼ 0.2µs and τdiff ∼ 20 s): the
regime is over-damped.

A.4 Model for Hydrodynamic coupling

The hydrodynamic interactions of the particles with the surrounding fluid are described by
their mobility matrix H (eq. (4)), which is also known as the Rotne-Prager diffusion tensor [7–
9]. The Rotne-Prager diffusion tensor consists in adding third order correction in (r/d)3 to the
off-diagonal elements of the Oseen tensor. Under our experimental conditions, this corrections
is always smaller than 3.5%. The form of the coupling parameter ε depends on different
approximations. Here we assume ε to be constant: it involves only the distance between the
wells d and not the distance between the particles (x1− x2)(t). This assumption is supported
by the following order of magnitudes: one particle can diffuse up to its rms displacement
δxrms =

p
kB T/k ∼ 60 nm � d, so that in first approximation |x1 − x2| = d and ε = f (d).

The expression of ε= f (d) is given by the Rotne-Prager approximation: for particle distances
larger than d = r, we can write ε= 3

2ν−ν3, where ν= r
d . The term ν becomes more important

when particles are close to each other. At very short distances, when d ® r/10, lubrication
forces would have to be taken into account explicitly. On the contrary, in the small ν limit, we
reach the Oseen approximation where ε= 3

2ν.

A.5 Auto and Cross-Correlation

We start from the coupled Langevin equations (2):

γ ẋ1 = −K1 x1 − εK2 x2 + f1 + ε f2 , (20)

γ ẋ2 = −K2 x2 − εK1 x1 + f2 + ε f1 , (21)

and we use the Laplace Transform:

bx(s) =
∫ +∞

0

x(t)e−st d t . (22)

After having Laplace transformed the system (20), (21) we obtain (to simplify we stop indi-
cating variables s and t, bx transformed functions implies s variable, and x functions t):

γ(scx1 − x1(0)) = −k1cx1 − εk2cx2 + Òf1 + εÒf2 , (23)

γ(scx2 − x2(0)) = −k2cx2 − εk1cx1 + Òf2 + εÒf1 . (24)

We then multiply the two above equations by x2(0) and take the mean value:

γ(s〈cx1 x2(0)〉 −σ2
12) = −k1〈cx1 x2(0)〉 − εk2〈cx2 x2(0)〉 ,

γ(s〈cx2 x2(0)〉 −σ2
22) = −k2〈cx2 x2(0)〉 − εk1〈cx1 x2(0)〉 .

This system is now easy to solve (knowing the values of σ22 and σ12 at equilibrium at t = 0).
The last step only consists in taking the Inverse Laplace Transform of the expressions obtained,
that leads to the expression of 〈x1(t)x2(0)〉 and 〈x2(t)x2(0)〉 of eqs. (7) and (6). We can repro-
duce the procedure by multiplying this time by x1(0) to obtain the expression of 〈x1(t)x1(0)〉
of eq. (5).
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A.6 Evolution of the moments

To meet the Boltzmann equilibrium prediction the random noises f j in eq. (2) and in eqs. (20)-
(21) should verify:

〈 f1(0) f1(t)〉= 2kB Tγ
1

1− ε2
δ(t) = 〈 f2(0) f2(t)〉 , (25)

〈 f1(0) f2(t)〉= −2kB Tγ
ε

1− ε2
δ(t) . (26)

Then, starting with the coupled Langevin equation (2), we want to deduce the evolution
of the moments of the joint probability in position. To do so we follow the Ito prescription
(〈 f1(t)x1(t)〉 = 0) and apply the Ito chain rule on x2

1(t). Combined with equation (2), and
after taking the mean value, we obtain:

γ〈x1
d x1

d t
〉= −K1〈x2

1〉 − εK2〈x1 x2〉+ ε2〈 f 2
2 〉+ 〈 f 2

1 〉+ 2ε〈 f1 f2〉 . (27)

Using the auto-correlation values of the f j ’s in (25) and (26), we readily obtain:

γ

2

d〈x2
1〉

d t
= −K1〈x2

1〉 − εK2〈x1 x2〉+ kT . (28)

Finally we reproduce the procedure for the other moments and using again dimensionless
quantities (σ jk = 〈x j xk〉 K1,i

2kB T ) we obtain the system to describe the dynamics of the moments
given above in eqs. (11), (12) and (13).

A.7 Gaussian behaviour of the coupled particles joint probability distribution

Similarly to the single particle case, we can describe the system through the evolution of its
probability density to find the first particle in x1 and the second in x2 at time t, P(x1, x2, t). The
time evolution of the joint Probability P(x1, x2, t) is governed by the Fokker-Planck equation:

∂ P
∂ t
= −

j=2∑
j=1

∂ g j P

∂ x j
−

j,k=2∑
j,k=1

θ jk
∂ 2P
∂ x j∂ xk

, (29)

where,

g1 = −
1
γ

K1 x1 −
ε

γ
K2 x2 , (30)

g2 = −
1
γ

K2 x2 −
ε

γ
K1 x1 , (31)

θ j j =
kB T
γ

, (32)

θ jk =
kB Tε
γ

for j 6= k . (33)

In order to prove the Gaussian behaviour of the joint Probability, we propose a 2D generalisa-
tion of the computation made in ref. [16]. We introduce the 2D Fourier Transform:

G(p1, p2, t) =

∫∫ +∞

−∞
eip1 x1 eip2 x2 P(x1, x2, t)d x1d x2 . (34)
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We apply this Fourier Transform to Fokker-Plank eq. (29)

∂ G
∂ t
= −K1(p1 + εp2)

γ

∂ G
∂ p1
− K2(p2 + εp1)

γ

∂ G
∂ p2
− kB T
γ

G[(p2
1 + p2

2) + εp1p2] , (35)

∂ ln G
∂ t

= −K1(p1 + εp2)
γ

∂ ln G
∂ p1

− K2(p2 + εp1)
γ

∂ ln G
∂ p2

− kB T
γ
[(p2

1 + p2
2)− 2εp1p2] . (36)

On the one hand, the expansion of G generates the moments
µn,m = 〈xn

1 xm
2 〉, since G(p1, p2, t) =

∑+∞
n,m=0(ip1)n(ip2)mµn,m(t)/n!m!. On the other hand

the expansion of ln(G) generates the cumulants χn,m(t):

ln G(p1, p2, t) =
+∞∑

n,m=1

(ip1)n(ip2)m

n!m!
χn,m(t) . (37)

In particular, the two first cumulants in n are the mean and the variance of the first particle
position: χ1,0 = µ1,0 = 〈x1〉= 0 and χ2,0 = µ2,0−µ2

1,0 = 〈x2
1〉−〈x1〉2 = 〈x2

1〉. Thus we identify
the power of p1 and p2 in eq. (36) and we deduce:

γχ̇nm =− (nK1 +mK2)χnm − ε(mK1χn+1,m−1 + nK2χn−1,m+1)

+ 2kB T (δn,2δm,0 +δm,2δn,0 + εδm,1δn,1) . (38)

For (n, m) = (2,0) (that corresponds to σ11), (n, m) = (0, 2) (σ22), and (n, m) = (1, 1) (σ12),
we recover the evolution equations eq. (11)-(13). But in addition, eq. (38) for (n + m) > 2
entails that an initially Gaussian distribution remains Gaussian at all times. Indeed it can
be easily deduced that if χn,m(0) = 0 for all (n + m) > 2 in the equilibrium state, we have
χn,m(t) = 0 for all time for all (n+m)> 2.

A.8 Coupled ESE enforcing independence

Requiring particle independence at all times consists in demanding σ12 = 0. The evolution
eqs. (11)-(13) can then be simplified into:

Γ
dσ11

ds
= −2k1σ11 + 1 , (39)

Γ
dσ22

ds
= −2k2σ22 + 1 , (40)

1= k2σ22 + k1σ11 . (41)

We straightforwardly deduce how the second particle variance is linked to the first and how
the two stiffness profiles are related,

σ22(s) = −σ11(s) +
1
2
+

1
k2i

, (42)

k2(s) =
2k2i(1− k1(s)σ11(s))
k2i − 2k2iσ11(s) + 2

. (43)

Moreover, we observe that eq. (39) that describes the σ11 evolution is the same as in the single
particle case. Thus if the same ESE profile is imposed on k1(s), the equilibrium requirements
on the 1st particle will be met. The corresponding k2(s) can be deduced from eq. (43). We
finally obtain for the coupled particles ESE protocol:

k1(s) = 1+ (k1 f − 1)(3− 2s)s2 − 3Γ (k1 f − 1)(s− 1)s

1+ (k1 f − 1)(3− 2s)s2
, (44)

k2(s) = 1+ (k1 f − 1)(3− 2s)s2

+
3Γ (k1 f − 1)(s− 1)s

1+ (k1 f − 1)(3− 2s)s2

k2i

1+ (1+ k2i)(k1 f − 1)(3− 2s)s2
. (45)
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A.9 Symmetric coupled ESE solution

We explored a new family of ESE solutions adapted to the coupled system by proposing the
coupled ESE that enforces independence between the particles. But it was at the expense
of having the evolution of particle 2 enslaved to that of particle 1, and thereby not a priori
controlled. This results in the fact that the two particles cannot be treated symmetrically. It
is thus interesting to look for another solution to the coupled problem: an ESE protocol that
jointly drives the two potentials and treats the two particles in a symmetric fashion. Contrary
to the coupled ESE, such a protocol will introduce cross-correlations between particles.
Now that we require for all time K1(t) = K2(t) = K(t) (and so σ11(t) = σ22(t)), two modes
arise from evolution equations, u = σ11 + σ12 and v = σ11 − σ12 that satisfy the following
decoupled system:

Γ
du
ds
= −2k(s)(1+ ε)u(s) + (1+ ε) , (46)

Γ
dv
ds
= −2k(s)(1− ε)v(s) + (1− ε) . (47)

The modes evolve following the same form of equation with 2 different time scales τu < τv
that correspond to the τ− and τ+ appearing into the correlation functions for the symmetric
case. Indeed one may notice that u = σ11 + σ12 = 2〈x2

M 〉 and v = σ11 − σ12 = 2〈x2
µ〉.

We naturally recover the modes corresponding to the barycentre and the particles separation
evolution, with the barycentre moving faster because it does not require displacement of the
fluid between the particles to do so.
The strategy to outline an ESE protocol from eqs. (46)-(47) is the following: first we propose a
fifth order polynomial form of v(s) with one degree of freedom (called parameter p) satisfying
initial and final conditions of equilibrium. Secondly, we find the expression of u(s) as a function
of v(s, p):

u(s) =
1

I(s)

�
1+

2(1+ ε)
Γ

�∫ s

0

I(y)d y , (48)

with

I(y) = exp

�
2(1+ ε)
Γ

∫ y

0

k(x)d x

�
= exp

�
1+ ε
1− ε

∫ y

0

(1− v̇(x))
v(x)

d x

�
. (49)

Finally, we tune the parameter p of the ansatz of v(s) to satisfy boundary conditions for
u(s) from eq. (48). A simple procedure of dichotomy that iterates on the value of the p param-
eter does the job. Knowing the expression of u(s) and v(s), the stiffness profile can be easily
deduced from eq. (46).
Fig. 9 plots an example of symmetric coupled ESE protocol obtained with this procedure. It
is important to point out that this protocol which guides jointly the two particles of a cou-
pled system depends on the coupling intensity (ε). This property makes it hard to implement
experimentally.
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Figure 9: Stiffness profile for the symmetric coupled ESE treating particles distant by
d = 0.7µm (coupling constant ε = 0.5). Both potentials are controlled by the same
protocol which is meant to drive the particles from Ki to K f = k f × Ki in the desired
time t f . The parameters of the ESE plotted here are: t f = 3 ms, Ki = 2.5× 10−6 N/m,
k f = 1.4 and Γ = 2.5
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Appendix B:

Experimental set-ups for ESE pro-
tocols on over-damped particles

The single particle ESE efficiency was experimentally demonstrated in Ref. 2, and we
are able to reproduce these results using the set-up 1 of Fig. B.1. To test the ESE
designed for coupled systems, set-up 1 has to be improved to create not only one but
two harmonic traps that can be controlled independently. That is why we built set-up
2, successfully used in Ref. 1 to investigate the robustness of single particle ESE to
coupling perturbation, and to validate our new families of ESE for coupled systems.

Set-up 1 and set-up 2 are sketched in Fig. B.1 and respectively create one or two
tunable traps using optical tweezers. In set-up 1, the single trap is realized using a
near-infrared single mode DPSS laser (Laser Quantum, λ = 1064 nm used at power of
1W) expanded through a magnifying telescope and injected through an oil-immersed
objective (Leica, 63× NA 1.40) into the fluid chamber. In the cell of miliQ water
(to avoid trapping impurities) are immersed silica beads of radius r = 1µm. The
beads are trapped at 20µm from the bottom plate of the cell thanks to the focusing
lens L1. We use a very small concentration of colloids in water and a specific design
of the cell containing the particles in order to have very few beads in the measuring
volume. This enables us to take long measurements without any spurious perturbation.
Two Acousto-Optic Defectors (AOD X and AOD Y on Fig. B.1) controls the intensity
and the 2D position of the trapping beam with the amplitude and frequency of the
control signal, respectively. Let us point out that each AOD changes the polarisation
(highlighted in red and green on the diagram) so that they compensates each other.
We therefore create an harmonic potential whose center and stiffness are controlled
respectively by the frequency and amplitude of the AODs’ input signals.

Set-up 2 allows us to create two perfectly uncoupled traps separated by a tunable
distance. To do so we split the initial beam in two and use a half-wave plate to
change the polarisation of the second beam. Then we use two AODs (one for each
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Figure B.1 – Optical tweezers Set-up 1 and set-up 2 are designed to create respectively one
or two tunable harmonic potentials to trap silica micro-beads.

traps) to control the intensity and position of the two orthogonally polarized beams,
recombined afterwards in the polarizing beam splitter without risk of interferences.
The two superposed laser beams then follow the same path as for set-up 1 (through
mirror M1, lens L1, dichroic mirrors DM1 and DM2 and the oil immersed objective)
and create two harmonic traps whose stiffnesses and respective position on the x axis
are fully tunable using the AODs input signals.

The detection of the particle position (only one can be measured in our set-up) is
performed using a fiber coupled single mode laser (Thorlabs, λ = 635 nm, power 1mW
lowered to 100µW with a neutral density filter) which is collimated after the fiber and
sent through the trapping objective through dichroic mirrors (DM 1 and DM 2). The
forward -scattered detection beam is collected by a condenser (Leica, NA 0.53), and its
back focal-place field distribution projected (with lens L2) onto a four quadrant detector
(QPD from First Sensor with a bandpass of 1 MHz with custom made electronic) which
gives a signal proportional to the particle position. The trapping infrared beam is filtred
(IF) to ensure that only the detection beam can reach the QPD.

Besides we add a camera enlighten by a white light source, that helps positioning
the cell to trap the beads. The camera could be used to detect the particles positions
and allows to measure both positions, but it is much less accurate and slower than the
detection laser method detailed above.
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We attach in this section the Supplementary Material of our article in Ref. 3.
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FEEDBACK AND DOUBLE WELL POTENTIAL

To create the virtual double well potential energy
U(z, z0, z1), we use a feedback loop as sketched in Fig. 1
of the letter, which must meet two criteria: no hystere-
sis (z0 is independent of z), and negligible delay τFB.
The latter necessitates a loop response time much shorter
than the natural response time of the system. This is
achieved with a high-speed comparator (τFB ∼ 10 ns)
and a slow cantilever (natural free oscillation period
f−10 ∼ 0.8 ms). Implementing a comparator without any
hysteresis is less straightforward, since we must prevent
the detection noise of the system from causing the com-
parator to switch back-and-forth when the cantilever is
near the threshold. Indeed, this fast switching could re-
sult in a mean voltage V actually stabilizing the can-
tilever around z0 ! We solve this issue by implementing
a temporal lock-up that prevents the comparator from
switching back for f−10 /4: if the oscillator crosses the
threshold, it will evolve in the new well for at least a
quarter of its natural period. Consequently, the oscilla-
tor has time to reach the well center, far enough from z0
that detection noise cannot cause subsequent switching.
By the time the dynamics brings the cantilever back to
the threshold, the comparator will be functional again.

The distance between the wells 2z1 is driven by the
voltage V1. When V1 � V0 we can consider that the
electrostatic force F , and as a consequence z1, is propor-
tional to V1. To confirm this linear behavior, we plot in
Fig. S1 the half distance between the wells z1 returned
by the fit of the static distribution function of positions
P (z, z0, z1) ∝ e−U(z,z0,z1), as a function of the voltage V1.
The expected linearity is checked, and z1 can be precisely
set during the experiments.

One may wonder whether the feedback loop perturbs
the system and impacts its exchange with the thermal
bath, and therefore its kinetic energy Ek = 1

2 ż
2/ω2

0 . Fig-
ure S2 aims at showing that the system behaves as in
a real potential, whatever the strength of the feedback.
A good indicator that this is the case is whether 〈Ek〉
remains equal to 1/2 according to the energy equiparti-
tion. The experimental results confirm that the velocity
distribution remains gaussian and that 〈Ek〉 = 1/2 for
any z1.

FIG. S1. Half distance between the wells z1 returned by the fit
of the static probability density function of the cantilever, as
a function of the adjustable voltage V1. The linear fit (dashed
red) is in good agreement with the experimental points (blue).

0 1 2 3 4 5

FIG. S2. (Top) PDF of the dimensionless velocity of the can-
tilever ż/ω0 for increasing values of z1 (from 0 in blue to 5.5
in red) imposed by the feedback loop. The blue curve cor-
responds to z1 = 0 (no feedback). The red line corresponds
to very separated double wells: z1 = 5.5. For each distance
between the wells, the experimental PDF fits to the stan-
dard normal distribution expected (dashed black). (Bottom)
Mean kinetic energy 〈Ek〉 = 1

2
〈ż2〉/ω2

0 for increasing distance
between the wells. Ek is not influenced by the feedback loop,
and it matches the value one would expect from the equipar-
tition theorem.
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STOCHASTIC WORK AND HEAT
EXPRESSIONS

The underdamped system evolves in a potential
U(x, xi(t)), where xi(t) are the external control parame-
ters of the potential. Noting that

U̇(x, xi) =
∂U

∂x
(x, xi)ẋ+

∑

i

∂U

∂xi
(x, xi)ẋi, (S1)

we obtain:

Ėk + U̇ =
∑

i

∂U

∂xi
ẋi +

∂U

∂x
ẋ+

dEk
dt

(S2)

Integrating this equation leads to the energy balance of
the system (with the positive exit heat flux convention)

∆U + ∆Ek =W −Q, (S3)

where the heat and the work have been defined as (fol-
lowing Refs. 1 and 2):

W =

∫ ∑

i

∂U

∂xi
ẋidt (S4)

Q = −
∫
∂U

∂x
ẋdt−∆Ek (S5)

In our experiment, the potential energy U is given by

U(z, z0, z1) =
1

2

(
z − S(z − z0)z1

)2
. (S6)

The contribution of (∂U/∂z0)ż0 ∝ δ(z − z0)z1ż0 disap-
pears in the work expression: in our protocol ż0 = 0,
except at two particular times corresponding to the be-
ginning and end of stage 2. The former corresponds to
z1 = 0, and the latter corresponds to the situation where
z and z0 cannot cross, which constrains this term to 0. In
the heat expression, the contribution of the ∂S/∂z term
in (∂U/∂z)ż is proportional to δ(z − z0)z1zż and van-
ishing as well: assuming that z(t) and z0(t) intersect at
t = t0, this contribution is

∫

∼t0
δ(z − z0)z1zżdt =

z1(t0)z(t0)ż(t0)

ż(t0)− ż0(t0)
= 0, (S7)

since during our protocol z and z0 only intersect during
stage 1 where ż0 = 0 at all times.

Eventually W and Q write:

W = −
∫ τf

0

(
S(z − z0)z − z1

)
ż1dt (S8)

Q =

∫ τf

0

(
S(z − z0)z1 − z

)
żdt− 1

2ω2
0

[
ż2
]τf
0
. (S9)

It should be noted that in the computation of the mean
dissipated heat, we did not include the kinetic term which
vanishes on average. These general expressions can be

used to deduce work and heat during stage 1 or dur-
ing stage 2, by adapting the integration bounds. It is
straightforward to compute W, since ż1 = 0 outside the
ramps. For Q, we add at least 5 ms after reaching the
final state, i.e. at least 2 relaxation times so that the
system is very close to equilibrium.

During stage 1 we have z0 = 0 and z1 = Z1(1− t/τ),
the potential energy is therefore simply

U1(z, z1) =
1

2

(
|z| − z1)2. (S10)

The work is then expressed:

W1 = −
∫ τ

0

(
|z| − z1

)
ż1dt (S11)

=

∫ Z1

0

(|z| − z1)dz1. (S12)

For slow protocols (τf0 � Q), we can assume that the
PDF P (z) satisfies at all times the static expression given
by the Boltzmann distribution:

P (z) =
1

Z e
−U1(z,z1) =

1

Z e
− 1

2 (|z|−z1)2 , (S13)

where

Z =
√

2π
(

1 + erf(z1/
√

2)
)
. (S14)

P (z) is even, so we can deduce that:

〈|z|〉 =

∫ ∞

−∞
|z|P (z)dz = 2

∫ ∞

0

zP (z)dz (S15)

=
2

Z

∫ ∞

0

ze−
1
2 (z−z1)2dz (S16)

=
2

Z

(
z1

∫ ∞

0

P (z)dz −
[
e−

1
2 (z−z1)2

]∞
0

)
(S17)

= z1 +

√
2

π

e−
1
2 z

2
1

1 + erf(z1/
√

2)
(S18)

All in all, we have the mean work in stage 1:

〈W1〉 = 〈
∫ Z1

0

(|z| − z1)dz1〉 (S19)

=

√
2

π

∫ Z1

0

e−
1
2 z

2
1

1 + erf(z1/
√

2)
dz1 (S20)

= ln
(

1 + erf(Z1/
√

2)
)
−→
Z1�1

ln 2. (S21)

For a robust 1-bit of information, and equivalently, for
a complete and reliable erasure, we should take Z1 � 1
in the initial state. As a result, for quasi-static erasure
processes of 1 bit, 〈W1〉 = kBT ln 2.
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During the quasi-static merging of the wells, we can
also compute the average instantaneous power:

〈 ∂U
∂z1

ż1〉 = −〈
(
|z| − z1

)
ż1〉 (S22)

=

√
2

π

e−
1
2 z

2
1

1 + erf(z1/
√

2)

Z1

τ
. (S23)

This expression is plotted in Fig. 4 of the letter, and it
closely follows the experimental data.

During stage 2, the cantilever no longer sees the sec-
ond well and S(z − z0) = −1, so that the potential sim-
plifies into:

U2(z, z1) =
1

2
(z + z1)2. (S24)

The mean work becomes

〈W2〉 = 〈−
∫ τ

0

(
z + z1

)
ż1dt〉 (S25)

= −
∫ τ

0

(
〈z〉+ z1

)
ż1dt. (S26)

During the quasi-static translation, 〈z〉 = −z1, and so
〈W2〉 = 0.

FAST ERASURE PROTOCOLS

In this section, we reproduce the results presented in
Fig. 3 and Fig. 4 of the article, but for protocols that can
no longer be considered as quasi-static. For fast protocols
corresponding to a few oscillations of the cantilever such
as the one in Fig. S3, the system can switch only once
or twice between the wells. The work required is above
the Landauer limit as pointed out in Fig. S4. Fig. S5
details the mean power required during the process: stage
1 power exceeds the quasi-static curve and the stage 2
contribution no longer vanishes.
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FIG. S3. Fast erasure protocol: the stage 1 and stage 2 du-
ration is τ = 5ms, that is to say f0τ = 6.4.
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FIG. S4. Work distribution of 2000 iterations of the fast pro-
tocol of Fig. S3. For fast erasure, stage 2 contribution is no
longer negligible: 〈W2〉 = 0.111±0.015 is close to the expected
asymptotic behavior Z2

1/(Qω0τ) = 0.091, represented by the
dashed green line. Stage 1 mean work 〈W1〉 = 1.12 ± 0.02 is
now clearly above the LB represented by the red dashed line.

FIG. S5. Time evolution of the mean power over 2000 trajec-
tories following the fast protocol of Fig. S3. The red dashed
line corresponds to the quasi-static regime prediction for stage
1 (Eq. S21) and to the asymptotic mean power value for stage
2: Z2

1/(Qω0τ
2).

HEAT AND WORK DISTRIBUTION

We present in Fig. S6 the distribution of the work
and the heat of 2000 iterations of the erasure with the
slow protocol detailed in the letter Fig. 3. The work
distribution is gaussian. Meanwhile, the heat distribu-
tion presents exponential tails. This observation is in
agreement with the study of Ref. 3: Q is the convolution
product of a gaussian and an exponential distribution.
Besides, both distributions are centered on the LB be-
cause the protocol under study is close to the quasi-static
regime.
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FIG. S6. Work (dark blue) and heat (light blue) distributions
of 2000 erasure procedures of Fig. 3 of the letter. The gaussian
shape of the work PDF is highlighted by the best fit to a
gaussian distribution (dashed red line). The heat is far more
dispersed than the work and presents exponential tails. Since
it is a slow protocol, both are centered on the LB (dotted
black vertical line).
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Appendix D:

Virtual double-well potential for
an underdamped oscillator created
by a feedback loop

We attach in this section our article in Ref. 4.
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Virtual double-well potential for an underdamped oscillator created by a feedback loop

Salambô Dago, Jorge Pereda, Sergio Ciliberto, and Ludovic Bellon∗
Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France

Virtual potentials are a very elegant, precise and flexible tool to manipulate small systems and
explore fundamental questions in stochastic thermodynamics. In particular double-well potentials
have applications in information processing, such as the demonstration of Landauer’s principle.
Nevertheless, virtual double-well potentials had never been implemented in underdamped systems.
In this article, we detail how to face the experimental challenge of creating a feedback loop for an
underdamped system (exploring its potential energy landscape much faster than its over-damped
counterpart), in order to build a tunable virtual double-well potential. To properly describe the
system behavior in the feedback trap, we express the switching time in the double-well for all
barrier heights, combining for the first time Kramer’s description, valid at high barriers, with an
adjusted model for lower ones. We show that a small hysteresis or delay of the feedback loop in the
switches between the two wells results in a modified velocity distribution, interpreted as a cooling
of the kinetic temperature of the system. We successfully address all issues to create experimentally
a virtual potential that is statistically indistinguishable from a physical one, with a tunable barrier
height and energy step between the two wells.

I. INTRODUCTION

Feedback traps are widely used to trap and manip-
ulate Brownian particles in solution, and explore funda-
mental questions in non-equilibrium statistical mechanics
of small systems [1–4]. Indeed, by controlling an exter-
nal force acting on a colloidal particle as a function of
its measured position, one can create a virtual poten-
tial. This is a very powerful tool, more flexible [5] than
its physical counterparts consisting of localized poten-
tial forces created by optical or magnetic tweezers [6–
10]. Feedback loops on the system’s position are used
in particular to study Landauer’s principle, by creating
double-well potentials and using the trapped particle as
a memory [10, 11]. Within the information processing
framework, lowering the dissipation seems a promising
path to reduce energy costs [12–15]. Working with vir-
tual potentials within underdamped dynamics thus ap-
pears as a natural endeavor. Moreover, the underdamped
regime offers new insights on a wide variety of fundamen-
tal questions on the connections between feedback and
thermodynamics [16–19].

Nevertheless, implementing virtual potentials in the
underdamped regime is not an easy task, especially
within the stochastic thermodynamics framework that
requires a high measurement precision to resolve the kBT
scale. Indeed, at low damping, systems are resonant and
very sensitive to perturbation, noise or drift. Moreover,
the feedback update delay can have strong consequences
on the coupling between the system and the thermal
bath [4, 19].

We propose in this article an electrostatic feedback de-
signed to create virtual double-well potentials acting on
a micro-cantilever, which serves as an underdamped me-
chanical oscillator. The system offers a flexibility and

∗ ludovic.bellon@ens-lyon.fr

a precision never achieved before, with excellent qual-
ity in terms of position measurement and force tuning.
Thanks to the thorough study of the feedback effects
detailed in this article, we are able to create clean, re-
liable and tunable double-well potentials which outper-
form those produced by optical and magnetic tweezers
(either physical or virtual), and have the added advan-
tage of being analytically tractable. Therefore, this ex-
perimental work presents an unprecedented experimental
tool to explore information thermodynamics, and in par-
ticular Landauer’s principle in the underdamped regime.

In the following, we detail the experimental challenges
we faced to remove any bias introduced by the feedback
loop. To put these challenges in context, we present a
study of the response of underdamped systems to a feed-
back control. This study incorporates experimental and
numerical simulation results, as well as a comprehensive
theoretical model. The latter includes the unified and
complete description of the switching time of the can-
tilever in the double-well potential: our expression tends
towards Kramer’s escape time in the high-energy barrier
limit, but it also provides an adjusted model for barriers
lower than the thermal energy, where Kramer’s formula
is no longer valid.

The article is organised as follows: we first present the
experimental system and the principle of the feedback
loop (section II), before exploring the non-idealities of a
real-life implementation (section III). In particular, we
analyse how an hysteresis in the switches between the
wells, or, equivalently, a delay in the actuation, results in
a bias of the energy exchanges with the thermal bath,
effectively warming or cooling the oscillator Brownian
noise. From this comprehensive analysis, we define in
section IV the requirements that need to be met to mit-
igate imperfections. Lastly, section V describes the final
implementation of the feedback loop, and shows that this
loop creates a virtual potential indistinguishable from an
equivalent physical one.
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Differential 
interferometer

FIG. 1. Experimental system. The conductive cantilever
is sketched in yellow. Its deflection x is measured with a
differential interferometer [20], by two laser beams focused
respectively on the cantilever and on its base. The cantilever
at voltage V = ±V1 is facing an electrode at V0. The voltage
difference V − V0 between them creates an attractive elec-
trostatic force F ∝ (V − V0)2. The dashed box encloses the
feedback controller, consisting of a comparator and a multi-
plier, which create the double-well potential.

II. VIRTUAL DOUBLE-WELL POTENTIAL:
PRINCIPLE

As sketched in Fig. 1, the underdamped oscillator is
a conductive cantilever [21] mounted in a closed airtight
chamber at room temperature T0. The chamber min-
imises all air flows induced drifts in the measurement,
and can also used as a vacuum chamber to modulate
the pressure, thus the resonator quality factor, at will.
The cantilever deflection x is measured with very high
accuracy and signal-to-noise ratio by a differential inter-
ferometer [20]. The Power Spectral Density (PSD) of
the thermal fluctuations of x is plotted in Fig. 2: the
fundamental mode dominates by 3 orders of magnitude
the higher-order deflection modes of the cantilever. The
second deflection mode at 8 kHz is conveniently removed
from the measured signal by focusing the sensing laser
beam on its node, at around 0.78% of the cantilever
length. This simple adjustment helps in having a phys-
ical system very close to an ideal Simple Harmonic Os-
cillator (SHO). The fit of this PSD with the theoreti-
cal thermal noise spectrum of a SHO leads to its res-
onance frequency f0 = ω0/2π = 1270 Hz and quality
factor Q = mω0/γ = 10, where m, k = mω2

0 and γ
are respectively: the mass, stiffness and damping co-
efficient of the SHO. The slight difference between the
measurement and the model is due to frequency depen-
dency of the viscous damping of the cantilever in air [22].
From the PSD we compute the variance at equilibrium
σ2
0 = 〈x2〉 = kBT0/k ∼ 1 nm2, which is used as length

scale.
Two time scales typically describe an underdamped

system: its natural oscillation period T0 = f−10 ∼ 0.8 ms
(comparing the inertial and elastic terms), and its relax-
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FIG. 2. Power Spectral Density (PSD) of the can-
tilever deflection in a single well. Measured PSD of the
thermal noise driven deflection with no feedback (V1 = 0, solid
lines), and best fit by the theoretical spectrum of a Simple
Harmonic Oscillator (SHO, dashed line). The second deflec-
tion mode, visible at 8 kHz when the laser beam is focused at
the free end of the cantilever (magenta), is successfully hidden
by focusing the laser beam on the node of this mode (blue).
At frequencies up to 10 kHz, the cantilever behaves like a SHO
at f0 = 1270 Hz, with a quality factor Q = 10. We infer from
this measurement the variance σ2

0 = 〈x2〉 = kBT0/k, used to
normalize all measured quantities.

ation time τr = 2Q/ω0 ∼ 2.5 ms (comparing the inertial
and damping terms). We add a third one, the time scale
of position relaxation [23], which compares the damping
and elastic terms: τγ = γ/k = 1/(Qω0) ∼ 13µs. Due to
its oscillating nature, the resonator explores the potential
energy landscape typically every T0, and the dissipative
part can be sensitive to changes in energy down to τγ .
This position relaxation τγ is much faster than that of
most over-damped systems used to create double wells
in stochastic thermodynamics, namely colloidal particles
optically trapped in water. Since inertia can be neglected
in these systems, their response time is set by τγ , and
typically amounts to 30 ms [24].

In order to use the cantilever as a one-bit memory, we
need to confine its motion in an energy potential con-
sisting of two wells separated by a barrier, whose shape
can be tuned at will. This potential U is created by a
feedback loop, which compares the cantilever deflection
x to an adjustable threshold x0. After having multiplied
the output of the comparator by an adjustable voltage
V1, the result is a feedback signal V which is +V1 if
x > x0 and −V1 if x < x0. The voltage V is applied
to the cantilever which is at a distance d from an elec-
trode kept at a voltage V0. The cantilever-electrode volt-
age difference V0 ± V1 creates an electrostatic attractive
force F = 1

2∂dC(d)(V0 ± V1)2 [25], where C(d) is the
cantilever-electrode capacitance. Since d � σ0, ∂dC(d)
can be assumed constant. We apply V0 ∼ 100 V and
V1 � V0 so that, to a good approximation, F ∝ ±V1
up to a static term. This feedback loop results in the
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a)

b)

FIG. 3. (a) Probability Density Function (PDF) of x.
The PDF of x (blue) measured during a 10 s acquisition with
the feedback on, with x0 = 0 and two values of V1 adjusted
to have respectively a 5 kBT0, and a 0.5 kBT0 energy barrier
height. The fit using the Boltzmann equilibrium distribution
with the potential shape in Eq. (1) (dashed red) is excellent.
(b) Double-well potential energy. The measured poten-
tials (blue) are inferred from the PDF of x in a) and the
Boltzmann distribution. The high noise level for large val-
ues of U stems from the bad sampling of regions with low
probability. We obtain as expected the 5 kBT0 and 0.5 kBT0

barriers corresponding to the two values of V1. The fits using
Eq. (1) are again excellent (dashed red).

application of an external force whose sign depends on
whether the cantilever is above or below the threshold
x0. As long as the reaction time τd of the feedback loop
is very fast (at most a few µs), the switching transient
is negligible: τd � τγ , T0, τr. As a consequence, the os-
cillator evolves in a virtual static double-well potential,
whose features are controlled by the two parameters x0
and V1. Specifically, the barrier position is set by x0
and its height is controlled indirectly by V1, which sets
the wells centers ±x1 = ±V1∂dC(d)V0/k. The potential
energy constructed by this feedback is:

U(x, x0, x1) =
1

2
kx
(
x− S(x− x0)x1

)2
, (1)

where S is the sign function: S(x) = −1 if x < 0 and
S(x) = 1 if x > 0. In the following, unless we specify
otherwise, we will always consider the case of a symmetric
potential, corresponding to x0 = 0.

The two degree of freedom of the underdamped system,
the deflection x and the velocity v = ẋ, are considered
as random variables of a stochastic process. They are
ruled by a Langevin equation (Eq. (A2) in appendix A),

or equivalently characterized by the Probability Density
Function (PDF) P (x, v, t) for finding the cantilever in
position x, and velocity v at time t, whose dynamics is
given by Kramer’s equation [26]:

∂tP + v∂xP −
∂xU

m
∂vP =

γ

m
∂v(vP ) + kBT0

γ

m2
∂2vP,

(2)

As the potential U(x, x0, x1) does not depend on the
speed, the equilibrium PDF of the velocity in the double-
well is the same as the one in a single harmonic well and
scales as a Gaussian of variance kBT0/m: PDF(v) ∝
e−mv

2/(2kBT0). The stationary Boltzmann distribution
therefore factorizes the equilibrium x and v PDF:

Peq(x, v) = PDF(x)× PDF(v) (3)

∝ e−
U(x)
kBT0 × e−

mv2

2kBT0 (4)

The potential in Eq. (1) can be experimentally mea-
sured from the PDF of x and the Boltzmann equilib-
rium distribution: U(x) = U0 − kBT0 ln[PDF(x)], with
U0 an arbitrary constant. Fig. 3 presents two examples
of an experimental symmetric double-well potential gen-
erated by the feedback loop, tuned to have a barrier of
1
2kx

2
1 = 5kBT0 and 0.5kBT0 (respectively x1 =

√
10σ0

and x1 = σ0). The dashed red line is the best fit with
Eq. (1), demonstrating that the feedback-generated po-
tential behaves as a static one, in terms of the position
PDF.

The experimental challenge undertaken in this work is
to build a proper virtual potential identical to a physical
one: the feedback loop should have no noticeable effect
on the position and velocity equilibrium distributions.

III. VIRTUAL DOUBLE-WELL POTENTIAL:
PRACTICAL NON-IDEALITIES

Setup Comparator Filter Defect Main bias
bandpass

1 TS3022 1 MHz Hysteresis: Cooling
h = 0.15σ0

2 LM219 No Filter Early trigger: Warming
h < 0

Final LM219 1 MHz h ∼ 0 No bias

TABLE I. Setup 1, setup 2, and final setup distinctive fea-
tures.

An ideal feedback loop comparator satisfies three re-
quirements: it presents no measurement noise, it is im-
mediate, and it always switches exactly at the prescribed
x0 position. In real comparators, however, those three
requirements compete with each other, and a tradeoff
between them needs to be found. For example, a high-
frequency measurement noise causes the comparator to
switch at inexact positions. It is therefore common to low
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pass filter the input signal to remove this noise, at the ex-
pense of introducing a delay in the switching time. Alter-
natively, one can reduce the effect of noise by introducing
an artificial hysteresis around the threshold, larger than
the noise amplitude, but in this case the switching be-
tween wells doesn’t occur at the appropriate position. In
the next subsections, we study the consequences of each
of these non-idealities.

A. Hysteresis

1. Experimental observation

One major experimental challenge lies in the compara-
tor hysteresis. To illustrate its consequences, we use the
setup 1 whose circuit is detailed in section V (see Tab. I
and Fig. 7). In this case we measure an average hystere-
sis of h = 0.15σ0: the voltage switches upward from −V1
to V1 when the position crosses x0 + h from below, and
downward when crossing x0 − h from above. This hys-
teresis is likely due to the use of the comparator outside
its nominal regime in terms of voltage ranges.

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 4. PDF of the oscillator speed. Experimental PDF
of v for x1 = σ0 inferred from a 10 s acquisition using setup 1,
setup 2 and the final setup (see Tab. I), respectively in blue,
orange and black markers. Each time, the best Gaussian fit is
superimposed in plain line: the fit is excellent for the setups
with positive or zero hysteresis (setup 1 and final setup). Re-
garding setup 2 (negative hysteresis), the Gaussian fit is not
as good, but remains satisfactory, and the higher moments
of the experimental PDF are close to the Gaussian vanish-
ing values: respectively −0.08 and −0.3 for the skewness and
the excess kurtosis. Finally, we superimpose in grey thick
line the experimental PDF without feedback, which perfectly
matches the equilibrium distribution (dashed red line). It is
worth noticing that the final setup (black) also ideally repro-
duces the equilibrium distribution.

A comparator hysteresis has an effect on the velocity
distribution of the system, as illustrated in Fig. 4. While

the speed PDF keeps a satisfactorily Gaussian shape for
the different setups, its variances are altered compared to
the equilibrium distribution perfectly matched without
feedback. Therefore, the velocity variance turns out to
be an adequate observable to summarize the effect of the
hysteresis on the velocity distribution. The hysteresis
should also alter the PDF of position for nearby wells, in
particular around the threshold cusp (rounding effect),
but it is a tiny effect, hard to observe experimentally.

Let us introduce the kinetic temperature T of the sys-
tem defined through the velocity variance: σ2

v = 〈v2〉 =
kBT/m. At equilibrium in a bi-quadratic potential, the
kinetic temperature should match the bath temperature
T0 as prescribed by the Boltzmann distribution. To fa-
cilitate the reading we introduce the ratio θ = T/T0,
so that the velocity standard deviation simplifies into
σv =

√
θω0σ0.

We measure the kinetic temperature evolution through
the velocity variance for different distances between the
wells. The experimental results plotted on Fig. 5 show
a cooling of the system when the wells are close. We
propose in the next paragraphs a theoretical model that
supports this observation.

0 1 2 3 4 5
0.7

0.8

0.9

1

1.1

FIG. 5. Kinetic temperature with hysteresis (setup
1). The ratio θ = T/T0 is plotted as a function of the dis-
tance between the wells x1. Blue markers: experimental data
obtained from setup 1 with a typical hysteresis h = 0.15σ0

at each switch. Grey line: simulation data from Nsim = 200
iterations of 30/f0 long trajectories of the cantilever evolving
in a potential created with a h = 0.15σ0 hysteresis on the
threshold. Dashed red line: the numerical solution of Eq. (9)
perfectly predicts the hysteresis consequences on the temper-
ature.

2. Theoretical model

We model the consequences on the system tempera-
ture using the infinitesimal energy balance equation, with
K = 1

2mv
2 the kinetic energy,W the stochastic work and
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Q the stochastic heat [12, 16, 27, 28]:

dU

dt
+
dK

dt
=
dW
dt
− dQ

dt
(5)

This energy balance is the starting point of the model
developed in this article to link the feedback hystere-
sis to the system temperature, similarly to the approach
followed in the theoretical description of feedback cool-
ing [14, 15].

In a stationary state when no external work is per-
formed (〈W〉 = 0) there is no kinetic energy evolution
on average (〈dK/dt〉 = 0), so that using the heat expres-
sion (A7) derived in Appendix A, Eq. (5) reduces to:

〈dU
dt
〉 =

ω0

Q
kBT0(1− θ) (6)

If there is a switching hysteresis, the comparator trig-
gers only when x = ±h (sign depending on origin) instead
of x = x0 = 0. The cantilever overreaches the barrier at
each crossing. This implies an extra distance travelled by
the cantilever in the initial well (centred on ±x1) before
the feedback makes it switch in the second well. This
extra distance corresponds to a potential energy step:

∆Uh =
1

2
k
[
(h+ x1)2 − (h− x1)2

]

= 2kx1h (7)

This amount of potential energy is lost each time the can-
tilever crosses the barrier. Between the crossings, the sys-
tem thermalizes in contact with the heat bath. Thus the
system is always out-of-equilibrium and reaches a steady
state characterized by the kinetic temperature T . The
latter allows the warming heat influx from the thermo-
stat to compensate on average the energetic losses caused
by the hysteresis at each barrier crossing. It only remains
to express the average heat flux corresponding to these
discrete energetic losses: we need to quantify how often
on average the cantilever crosses the threshold. In ap-
pendix B, we derive the crossing rate Γ of the potential
barrier B for a system at temperature T :

Γ(B, T ) = ω0
B
kBT

∫ ∞

1

exp(−ε BkBT )

π + 2 sin−1(ε−1/2)
dε (8)

Using Eq. (8) applied to the barrier energy B =
1
2k(x1 + h)2, we can express the potential contribution
in Eq. (6) and derive:

Γ(
1

2
k(x1 + h)2, θT0)×∆Uh =

ω0

Q
kBT0(1− θ) (9)

The temperature solution of Eq. (9) allows the system
to reach a steady state in which the average heat flux lost
by the system (Γ∆Uh), and the heat influx from the heat
bath (proportional to T − T0) equilibrate. The numer-
ical solution of Eq. (9) is plotted on Fig. 6: the kinetic
temperature presents a minimum around x1 . σ0, which

FIG. 6. Consequences of an hysteresis on the kinetic
temperature. θ = T/T0 is plotted as a function of the dis-
tance x1 between the wells. The colormap is drawn with the
model prediction provided by Eq. (9): positive hysteresis h
cools the system down, while negative hysteresis warms the
system up. The dependance on x1 comes from the balance
between the barrier crossing rate and the energy step due
to the hysteresis at each switch. The blue, black and orange
points correspond respectively to the experimental results ob-
tained with the three setups addressed in this paper: setup 1
(h = 0.15σ0), final setup (tiny hysteresis), and setup 2 (early
trigger).

deepens as the hysteresis h increases. These trends can
be easily understood: firstly, the larger the hysteresis, the
greater the energy loss at each switch, and, therefore, the
lower the system temperature. Secondly, the energy loss
per switch is proportional to x1, but the barrier crossing
rate decreases with x1: in the high barrier limit there are
no more switches and T = T0, and in the low barrier limit
there is no more energy step at the switch, so that T = T0
as well. The effect on the temperature is maximized for
x1 ∼ σ0 when the two opposing effects counteract each
other most. The model, applied to the setup 1 measured
hysteresis, is in perfect agreement with the experimen-
tal data as highlighted in Fig. 5. Let us also point out
that the same description holds for negative hysteresis:
early switches make the system warm up, as shown in
red on Fig. 6. In conclusion, removing all hysteresis at
the barrier crossing is mandatory to maintain a proper
equilibrium in the double-well potential, instead of cre-
ating an out-of-equilibrium steady state characterized by
a temperature T 6= T0.

3. Simulation confirmation

We complete the study by simulating Nsim = 200 tra-
jectories of the cantilever evolving in a potential created
with h = 0.15σ0 hysteresis on the threshold. The numer-
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ical simulation is in very good agreement with both the
model and the experimental data (see Fig. 5).

B. Switching delay

A time delay between the cantilever crossing the bar-
rier and the force switching is inevitable because real
comparators have finite switching speed, but also due to
the delay inherent to the low-pass filter applied to the po-
sition measurement. The effect of such a delay is similar
to that of an hysteresis. Indeed, if there is a time delay
τd, the cantilever overreaches the barrier of a distance
hd on average at each passage, that can be computed
knowing the speed PDF:

hd = 〈|v|〉τd =

∫ ∞

0

|v| e
− v2

2σ2v

σv
√

2π
dvτd (10)

=

√
2θ

π
σ0ω0τd (11)

The absolute value in the average of v comes from the
fact that only the velocity sign that matches the barrier
crossing is considered (for example positive velocity for
upward crossing). The time delay can thus be treated as
a mean hysteresis hd, associated to an energy step ∆Ud =
2kx1hd, leading to an equation equivalent to Eq. (9) with
an updated barrier height:

Γ(
1

2
kx21, θT0)×∆Ud =

ω0

Q
kBT0(1− θ) (12)

Thus, the temperature of the system trapped in a double-
well potential with switching time delay τd is a solution
of the following equation, derived from Eq. (12):

g

(
x1

σ0
√

2θ

)
Qω0τd θ = 1− θ (13)

where

g(z) =
4√
π
z3
∫ ∞

1

exp(−εz2)

π + 2 sin−1(ε−1/2)
dε (14)

The numerical solution of Eq. (13) has a profile similar
to the solutions of Eq. (9) plotted on Fig. 6.

The function g(z) presents a global maximum g∗ =
0.21 in z∗ = 0.64, allowing to compute the minimum
temperature and corresponding well distance

θmin =
1

1 + g∗Qω0τd
=

1

1 + g∗τd/τγ
(15)

x1,min = z∗σ0
√

2θmin (16)

The minimum temperature is thus a function of the ratio
between the switch delay τd and the smallest intrinsic
time of the resonator, τγ : no kinetic temperature change
is expected if the former is much smaller than the latter.

C. Measurement noise

The PSD in Fig. 2 demonstrates that, in a single well,
the thermal noise of the cantilever is very close to that of
an ideal SHO, on a wide frequency range. Nevertheless,
2 sources of deviation can be noticed. First, higher-order
deflection modes (from the third up) are clearly visible,
and contribute to the measured signal by adding high fre-
quency noise accounting for 0.05σ0. Second, some back-
ground noise remains, due to higher conditioning elec-
tronic noise and to the shot noise of the photodiodes of
the interferometer. At high frequencies, this noise floor,
around 3× 10−9 σ2

0/Hz, supersedes the signal from the
first deflection mode. Integrated on the 1 MHz band-
width of the final setup filtering (detailed later in section
VC), this background noise contributes up to 0.05σ0.
This measurement noise reaching in total 0.07σ0 has two
unwanted consequences on the feedback generated poten-
tial: parasitic switches and early triggering.

1. Parasitic swiches

If the apparatus compares the raw deflection signal Vx
from the interferometer directly to the threshold Vx0 , the
noise in the input signals produces multiple transitions at
the crossing. As a consequence, the feedback loop output
voltage V oscillates rapidly between positive and nega-
tive values, so the mean voltage seen by the electrode
vanishes. Because of these parasitic switches of the com-
parator, the cantilever ends up trapped at the threshold
position x0 = 0, in between the two desired equilibrium
ones ±x1.

2. Early triggering

The high frequency noise triggers the switch before
the signal of interest (the position of the first deflection
mode) actually crosses the threshold, and therefore in-
duces early switches. In setup 2 (whose circuit is de-
tailed in Fig. 7, and summarized into Tab. I), the high
frequency noise is not removed, so that a negative hys-
teresis appears due to the early triggers. Consequently
the system temperature rises in accordance with the pre-
diction of previous sections. The experimental evidence
of the temperature rise in setup 2 is superimposed with
orange crosses to the theoretical curves in Fig. 6.

IV. REQUIREMENTS

To mitigate the consequences of the experimental non-
idealities listed above, we need to adapt the experimental
setup. We detail in this section the essential experimental
constraints to create a proper virtual potential.
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A. Limiting the hysteresis

To maintain the velocity equilibrium distribution in
the virtual potential, and to limit the cooling to 5%, from
Fig. 6 we deduce that the hysteresis has to be lower than
0.02σ0. Note that this value, deduced from the model
summarized in Eq. (9), is computed for a quality factor
of 10, and higher values of Q would result in an even more
stringent requirement. As regards the cooling effect, one
would wish to suppress the hysteresis altogether, but a
tiny hysteresis is nevertheless needed for stability pur-
poses: the output of the comparator circuit is unstable
if no reference to the input is introduced. All in all, the
hysteresis of the comparator should remain between 0.5%
and 2% of σ0.

B. Removing parasitic switches: temporal lock-up

The common workaround to the issue of repeated fast-
switches is to introduce an hysteresis through a positive
feedback of the output on the comparator threshold. To
be effective, this strategy requires an hysteresis wider
than the measurement noise, hence larger than 0.07σ0
(see section III C). Such a large hysteresis is prohibitive
in our case because of the cooling effect. As an alter-
native, we implement a temporal lock-up to freeze the
comparator state after a switch, for roughly 1/4 of the
oscillator’s natural period 1/f0. By the time the com-
parator is active again, the cantilever has evolved in the
new well –on average– long enough to reach the bottom
of the well, and is therefore far enough from the threshold
that an undue noise-induced switch is improbable. One
drawback is that short excursions in the other well are
forbidden as well. However, these events –indeed present
in a real double-well potential– are unlikely enough that
removing them has no noticeable effect of the statistical
properties of the virtual potential.

C. Removing early triggering: low-pass filtering

To correct early switches (occurring in setup 2), we
must filter the high-frequency noise. The second mode
contribution is hidden by focusing the laser on the mode
vibration node. The higher-order modes and the elec-
tronic shot noise are low-pass filtered. When designing
this filter, the concern is the delay introduced, since it
will induce an hysteresis, possibly cooling the system.

On the one hand the filter has to cut the high frequency
noise over 1000f0 to limit the background noise contri-
bution (increasing at high frequencies) to 0.05σ0. But on
the other hand the filter response time τd has to remain
much lower than τγ/g

∗ to limit the cooling effect: this
bound corresponds to 1− θ � 1 using Eq.(15). To sum-
marize, using the relation between the cutoff frequency
fc of a first order low-pass filter and its response time
τd ∼ 5

2πfc
(the relation holds for higher-order filters in

first approximation), fc is bounded by:

5g∗Qf0 � fc < 1000f0 (17)

With a quality factor Q = 10 and a resonance fre-
quency f0 = 1.2 kHz, the interval reads: 13 kHz � fc <
1.2 MHz.

D. Characteristics of the cantilever

The cantilever is chosen to meet the requirements of
the filter cutoff frequency and the comparator hysteresis,
expressed in Eq.(17): by selecting a low Q and low f0, we
minimize the cooling, and alleviate the constraints on the
feedback characteristics. We thus choose Q = 10 and a
relatively slow oscillator: f0 = 1.2 kHz. Furthermore, we
choose a low stiffness k ∼ 5× 10−3 N/m to have a large
thermal noise, thus a large signal (Brownian) to noise
(background) ratio.

V. FINAL SETUP

We detail in this section the final experimental setup
designed to meet all the requirements previously listed.
The feedback circuit diagram is detailed in Fig. 7: it
contains the basic components (comparator and multi-
plier) on which some elements are added to ensure its
efficiency. The deflection signal from the interferometer
Vx is filtered by a low-pass filter (green) before entering
the comparator device (red). The tunable threshold Vx0

is biased by the voltage Vlock resulting from the lock-up
feedback loop (blue components) before being compared
to Vx. The comparator output voltage is then multiplied
by the adjustable voltage V1.

A. Stability

To ensure the stability of the comparator output, we
introduce a tiny hysteresis corresponding to Ri/Rh =
1.2 kΩ/3.2 MΩ fraction of the output fed on the posi-
tive input (see Fig. 7). As the position signal scales as
σ0 (in V) =

√
〈V 2
x 〉 ∼ 50 mV, the hysteresis has to stay

between 0.5%σ0 = 0.25 mV and 2%σ0 = 1 mV to meet
the requirements of section IVA. With the ±1 V power
supply voltage of the comparator device, the hysteresis
amplitude of our final design reaches 0.37 mV and there-
fore remains in the range specified.

B. Temporal lock up

The temporal lock-up feedback is implemented
through a follower assembly and a capacitor (blue com-
ponents on Fig. 7). The comparator (red device on
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FIG. 7. (a) Electrical diagram of the feedback loop.
The cantilever deflection signal Vx from the interferometer
passes through a low pass filter (fc = 1 MHz, model SR560,
green) before entering the LM219 comparator (red). The
threshold signal Vx0 is momentarily modified by Vlock after
each switching of the comparator. Vlock is the result of a
lock-up feedback consisting in a follower assembly and a ca-
pacitive circuit built with the following components: opera-
tional amplifier LT131, capacity Clock = 4.7 nF, resistances
Rlock1 = 20 kΩ and Rlock2 = 1.2 kΩ. The output of the com-
parator is then multiplied by V1 to modulate the final voltage
V (using an AD633-EVALZ analog multiplier). With respect
to this design (denoted as final setup), we call setup 1 the same
circuit but with a TS3022 comparator leading to a switching
hysteresis h = 0.15σ0. Similarly we call setup 2 the final
circuit without the low-pass filter leading to early triggers
(negative hysteresis). The setups’ distinctive characteristics
are summarized in table I. (b) Example of signals. The
cantilever deflection signal Vx is plotted in black, the lock-up
voltage Vlock in blue and the output voltage V in red (with
V1 = 2V ). The threshold Vx0 is set to 0.

Fig. 7) compares Vx/2 to (Vx0
+ Vlock)/2, without be-

ing affected by the temporal lock-up components val-
ues thanks to the impedance conversion provided by the
buffer. The purpose of this is to bias the threshold Vx0

during the discharge time of the capacitor Clock, in order

to prevent the comparator switching back right after a
switch. In the static regime without switches, the out-
put is constant for example at +Vsat = 1 V, which cor-
responds to the charged capacity that acts as an open
circuit so that Vlock = 0. Right after a switch of the
output voltage, the capacity starts reversing its charge
through Rlock2 +Rlock1, and Vlock moves immediately to
2Rlock2/(Rlock2 + Rlock1)Vsat = 110 mV, before decreas-
ing to 0. As long as Vlock remains large, it prevents any
switch. The capacity Clock = 4.7 nF rules the Vlock re-
laxation time τlock = (Rlock1 + Rlock2)Clock = 0.1 ms.
It is chosen to freeze the comparator during approxi-
mately a quarter of the cantilever period: 3 × τlock =
0.3 ms ∼ 1/(4f0). Indeed, we verify on Fig. 7 b) that
when Vx (black line) crosses the threshold Vx0

= 0, the
comparator properly switches only once from V = −V1
to V = +V1 (red line), as Vlock (blue line) becoming tran-
siently positive significantly increases the threshold value
for approximately 0.3 ms.

C. Devices characteristics

To maintain less than 5% cooling in the final setup,
we use a LM219 comparator that has no hysteresis and a
typical 80 ns response in the working conditions. A tiny
hysteresis of 0.37 mV is added through feedback resis-
tances to guarantee stability: Ri/Rh = 1.2 kΩ/3.2 MΩ.
Finally, the low-pass filter added to remove early trig-
gers has its cutoff frequency chosen within the prescribed
range: fc = 1 MHz. A smaller cutoff frequency could be
chosen (down to ∼ 500 kHz as prescribed by Eq.(17)), to
lower the background noise contribution even more (re-
duced to 4%σ0 for a 500 kHz bandwidth). In the final
setup, we use a SR560 model containing two identical
tunable cutoff frequencies 1st-order R-C filters, to pro-
vide first or second-order filtering at fc = 1 MHz.

D. Virtual potential characteristics

The position distribution of the cantilever trapped in
the virtual potential produced with the final setup per-
fectly matches the expected equilibrium distribution in a
double-well, as illustrated in Fig. 3. Moreover, we show
in Fig. 4 that the velocity distribution in closely-spaced
wells (x1 = σ0) is also in excellent agreement with the
equilibrium expectation (without feedback), contrary to
the two previous setups, for which the velocity PDF is
clearly modified by the feedback. To complete the ex-
perimental verification, we measure the velocity variance
for different distances between the wells. Fig. 6 (black
markers) shows that the velocity distribution in the vir-
tual double-well potential of the final setup is not biased.
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FIG. 8. Double-well potential tuning. U(x0, x1, x) is
computed through the measured PDF of x during 10 s acquisi-
tions and the equilibrium Boltzmann distribution for different
values of the controlled parameters x0 and x1. The top graph
corresponds to x0 = 0 and x1 ∈ [0, 4]σ0, the bottom one to
x0 ∈ [−1.25, 1.25]σ0 and x1 = 2σ0. The two parameters al-
low to explore different barrier height and potential energy
step between the two wells. The high noise level for large
values of U stems from the low sampling of regions with low
probability.

VI. CONCLUSION

This underdamped system has the strong merits of a
short relaxation time and a highly precise deflection mea-
surement, but controlling its virtual potential requires
special caution on the feedback control. Namely, the un-
derdamped regime makes the response much more sensi-
tive to any noise or delay in the driving force. The thor-
ough study of the effects of experimental non-idealities
enables us to identify the key requirements needed to
create a proper virtual potential. The experimental chal-
lenge that ensues is successfully addressed by the final
setup. Ultimately, we demonstrate that the response of
the system in the double-well potential built this way is
statistically equivalent to the one expected at equilibrium
in a physical potential.

Additionally, this virtual potential can be precisely
controlled through the tuneable parameter x0 which sets
the barrier position, and the parameter x1 which defines
the distance between the wells. Fig. 8 shows the influ-
ence of the above mentioned parameters on the potential
shape. The wells curvature is not tuneable as solely set

by the cantilever stiffness, and the barrier height is en-
slaved to all other parameters.

The experimental work detailed in this article opens a
wide range of possibilities in the field of underdamped
system control, and allows high accuracy exploration
of statistical physics in the underdamped regime (and
in particular stochastic thermodynamics). The analysis
presented holds at even lower damping Q � 1, achiev-
able by placing the cantilever in vacuum. This configu-
ration simply imposes more stringent constraints on the
feedback time delay. Finally, this electrical circuit paves
the way to the use of a field-programmable gate array
(FPGA) configured to perform all the calibration and
feedback operations, improving reliability and accuracy.
Indeed, such a digital controller can readily give microsec-
ond response (or even faster) and would meet easily the
experimental requirements listed here, even in the highly
underdamped regime. Besides, more complex configura-
tions of the FPGA target (associating a specific output
voltage to every position) would even allow to create any
arbitrary non-linear potential shape, with several appli-
cations from optimal protocols for minimizing the work
in finite-time operations [29, 30], to the exploration of
non-equilibrium extensions of Landauer’s theory [31, 32].
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Appendix A: Mean Heat

We derive in this section the very general expression of
the average heat over an underdamped stochastic process
following Ref. 27.

Applying to the underdamped regime the generic com-
putations of stochastic energy exchanges [12, 16, 27, 30,
34], we have:

dQ
dt

= −∂U
∂x

ẋ− dK

dt
. (A1)

The computation of the mean dissipated heat re-
quires writing the general Langevin equation of an un-
derdamped system in a potential U :

mẍ = −∂U
∂x
− γẋ+ Fth, (A2)

where Fth is a delta correlated white Gaussian noise
corresponding to the forcing due to the thermal bath:
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〈Fth(t)Fth(t + t′)〉 = 2kBT0γδ(t
′). Multiplying Eq.(A2)

by ẋ leads to the dissipated heat defined by Eq. (A1):

dQ
dt

= mẍẋ− dK

dt
+ γẋ2 − Fthẋ. (A3)

Some caution is required before taking the mean value
of the above expression, because it involves products of
stochastic quantities: in that respect, the Ito discretiza-
tion prescribes for a stochastic function K(v),

dK

dt
=
∂K

∂v
v̇ +

1

2

∂2K

∂v2
v̇2dt. (A4)

We apply Eq. (A4) to K = 1
2mv

2, and use Eq. (A2) to
compute the v̇2 term:

dK

dt
= mvv̇ +

1

2m

(
−∂U
∂x
− γẋ+ Fth

)2

dt (A5)

When taking the mean value and letting dt tend to 0,
most terms simplify out. Indeed, only remain the terms
that involve the thermal noise Fth scaling in 1/

√
dt, some

of which are cancelled by the Ito prescription: 〈Fthv〉 =
〈Fthx〉 = 0. Finally, we obtain the relation: d〈K〉/dt =
m〈ẍẋ〉+ kBT0γ/m. Eq. (A3) then simplifies into:

d〈Q〉
dt

=
γ

m
(2〈K〉 − kBT0). (A6)

Using the definition of the kinetic temperature T =
2〈K〉/kB , and introducing the quality factorQ = mω0/γ,
Eq. (A6) becomes:

d〈Q〉
dt

=
ω0

Q
kB(T − T0). (A7)

This expression is completely general and highlights that
the heat exchanges are reduced at high Q [13].

Appendix B: Switching rate

In the limit of weak damping, the total energy of the
cantilever E = U + K is conserved, and its motion is
periodic in time. The period of oscillation T depends on
the value of E with respect to the barrier height B =
1
2kx

2
1. If E < B, then the motion is confined to a single

well, there is no switches, and the period is T0 = 1/f0. If
E > B, the cantilever visits both wells every period, so
there are 2 switches every period, with

T (E,B) = 2

∫ xM

−xM

√
m

2(E − U(x, x1))
dx (B1)

=
2

ω0

∫ xM

−xM

1√
(xM − x1)2 − (|x| − x1)2

dx

(B2)

=
2

ω0

[
π + 2 sin−1

(√
B
E

)]
, (B3)

where xM = x1 +
√

2E/k is the maximum excursion of
the cantilever. This period is twice T0 when E & B, and
tends to T0 for E � B.

In equilibrium, the statistics of the total energy
E is ruled by the Boltzmann distribution: P (E) =
exp(−E/kBT )/kBT . We deduce the average switching
rate Γ by weighting the 2 switches per period for E > B
by this probability:

Γ(B, T ) =

∫ ∞

B

2

T (E,B)

exp(−E/kBT )

kBT
dE. (B4)

For finite damping, the energy is not conserved along
single trajectories, but still is in average thanks to the
equilibrium with the thermostat. Eq. (B4) is therefore
a good approximation of the switching rate between the
wells for a given barrier height and system temperature.

In Fig. 9, we superimpose the switching rate com-
puted with Eq. (B4) and the results of a simulation
with or without hysteresis. The good agreement be-
tween the simulation and the model justifies the use of
the Γ(B, T ) expression to derive the temperature evo-
lution of the system in a double-well potential with
switching delay. Besides, the dotted red line corre-
sponds to Kramer’s theory [26] prescribing the escape
rate ΓK(B, T ) = ω0

2π e
−B/kBT [35]. Hence, Fig. 9 high-

lights the fact that Kramer’s simplest formula ΓK doesn’t
work for low energy barriers.

0 1 2 3 4
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FIG. 9. switching rate Γ as a function of the distance x1
between the wells without switching delay, for two hysteresis:
h = 0 and h = 0.15σ0. For h = 0 and high energy barriers
B = 1

2
x21, Kramer’s simplest model in dashed red line holds

and perfectly matches the simulation data from N = 100
iterations of 30/f0 long trajectories in black line. However, for
smaller barrier height the model Γ(B, T0) of Eq. (B4) in black
dashed line provides a better prediction. For a h = 0.15σ0

hysteresis, the simulation data from N = 100 iterations of
30/f0 long trajectories in blue line is in very good agreement
with the model Γ(B′, T ) with parameters T = θhT0 solution
of Eq. (9) and B′ = 1

2
(x1 + h)2.
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Appendix E:

Numerical simulation of the un-
derdamped oscillator

The experimental results are supplemented by a numerical simulation providing a large
number of trajectories (N sim = 5× 106) without any calibration drift in the initial
position X1. The simulation is meant to mimic the experimental system during step 1,
and therefore uses the experimental parameters ω0, m, Q, X1 and τ . The simulation
code consists in integrating the Langevin equation that rules the cantilever position:

ẍ+ ω0

Q
ẋ+ ω2

0x = Fξ
m

+ ω2
0S(x)(X1 −

X1

τ
t), (E.1)

where Fξ the stochastic forcing from the bath defined in Eq. (1.4). Fξ is imple-
mented as a random number normally distributed around 0, with a standard deviation√

2kBT0mω0/(Q∆t), with ∆t the simulation time step. We choose the symplectic Eu-
ler method [5], better suited to stochastic differential equation than the Runge-Kutta
one [6], to solve numerically Eq. (E.1) and output the position and speed of the can-
tilever at every time step. We display in Listing E.1 the first steps of the symplectic
Euler method with normalized quantities, z = x/σ0, s = ω0t and f = Fξ/(kσ0):

1 f=sqrt (2/(Q*ds))*randn(N)

2 for i in range(N-1)

3 z[i+1]=z[i]+v[i]*ds

4 dz=z[i+1]-sign(z[i+1])*z1[i+1]

5 v[i+1]=v[i]-(dz+v[i]/Q+f[i])*ds

Listing E.1 – Symplectic Euler method

The initial position and speed are distributed according to the Boltzmann equilib-
rium distribution, corresponding to Eq. (4.8) with β = 1/(kBT0) and x1 = X1.
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Appendix F:

Fast Erasure model (FE model)

In all the following we no longer use the dimensionless positions z = x/σ0, to better
highlights that the position variance during the protocol can differ from the position
variance at rest σ2

0 = kBT0/k.

F.1 Mean work, potential and kinetic energy

Let us split the PDF P c(x, v) describing compression and its associated partition func-
tion Zc of Eqs. (4.8) into their kinetic and potential contribution:

P c
K(v) = e−βK

c

Zc
K

, Zc
K =

∫ +∞

−∞
e−βK

c

dv =
√

2π
mβ

(F.1a)

P c
U(v) = e−βU

c

Zc
U

, Zc
U =

∫ +∞

−∞
e−βU

c

dx =
√

2π
kβ
V. (F.1b)

We now easily compute the mean values of K and U :

〈Kc〉 =
∫ +∞

−∞
Kc e

−βKc

Zc
K

dv = −∂ lnZc
K

∂β
= 1

2β , (F.2a)

〈U c〉 =
∫ +∞

−∞
U c e

−βUc

Zc
U

dx = −∂ lnZc
U

∂β
= 1

2β −
∂ ln V
∂β

. (F.2b)

Because there are no deterministic terms (〈x〉 = 0 and 〈v〉 = 0) in the compression
framework, those equations equivalently arise from Eqs. (4.10c-4.10d). The mean work
time derivative is computed from Eq. 4.2:

〈dW
c

dt
〉 =

∫ +∞

−∞

∂U c

∂x1

e−βU
c

Zc
U

dxẋ1 = − 1
β

∂ lnZc
U

∂x1
ẋ1, (F.3)
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which is again equivalent to Eq. (4.10b) in the absence of deterministic work.
The case of translation follows a similar pattern, except that we now need to include

deterministic terms, since here 〈x〉 = xD and 〈v〉 = ẋD. We then rewrite the energies
as:

〈Kt〉 =〈12mv
2〉

=〈12m(v − ẋD)2 +mẋD(v − 1
2 ẋD)〉

=〈12m(v − ẋD)2〉+ 1
2mẋ

2
D (F.4)

〈U t〉 =〈12k(x− x1)2〉

=〈12k(x− xD)2 + 1
2k(xD − x1)2 + k(x− xD)(xD − x1)〉

=〈12k(x− xD)2〉+ 1
2k(xD − x1)2 (F.5)

The mean values of the energies are thus the sum of a deterministic and a stochastic
term. The expressions of latter and of the PDF P t(x, v) in Eq. (4.9a) are those of
an harmonic oscillator in the referential centered in xD, which directly lead to the
equipartition. Since V = 1 during a translation, we recover the mean values anticipated
by Eqs. (4.10c-4.10d). The mean work time derivative is again computed from Eq. 4.2:

〈dW
t

dt
〉 = 〈∂U

t

∂x1
〉ẋ1 = −k(xD − x1)ẋ1 (F.6)

In this case, the mean work is purely deterministic, as expected in Eq. (4.10b) with
V = 1. The ansatz for the PDF in the compression or translation stages thus lead to
the Eqs. (4.10) describing all the energetic terms is any situation.

F.2 Deterministic terms

The trajectory x(t) in a moving well decomposes into the stochastic response to the
thermal fluctuations, which vanishes on average, and the response to the driving force
ramp which is the solution of the following deterministic equation:

ẍD + ω0

Q
ẋD + ω2

0xD = ω2
0x1(t) (F.7)

with x1(t) = X1(1 − t/τ) decreasing from X1 to 0 during step 1. We solve the above

equation of motion, introducing Ω = ω0

√
1− 1/(4Q2), and obtain the deterministic

trajectory ±xD(t) (the sign depending of which well is considered):

xD(t) = x1(t) + X1

τ

[
1

Qω0

(
1− e−

tω0
2Q cos Ωt

)
− 1− 2Q2

2Q2Ω e−
tω0
2Q sin Ωt

]
(F.8)

Therefore, using Eq. (F.6) the work required to move the system on a distance X1 in
a duration τ is:

〈W t〉 = k
X2

1
τ 2ω2

0
[τω0

Q
+ (1− 1

Q2 )(1− e−
τω0
2Q cos Ωτ) + e−

τω0
2Q

2QΩ ( 1
Q2 − 3) sin Ωτ ] (F.9)
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In the small speed limit (v1 � 1), Eq. (F.9) becomes:

〈W t〉 ∼ k
X1

τ
× X1

Qω0
= (Z1

τ
× Z1

Qω0
)kBT0 (F.10)

Those results can be applied for the translational motion during step 2, and at the
beginning of step 1. Indeed, as long as the cantilever hasn’t left its initial well, the above
description holds during step 1. After the first switch, the cantilever switches frequently
between the symmetric wells so that the deterministic terms can be neglected. We
therefore introduce Π(t) the probability that the cantilever remains in its initial well
until time t, in order to modulate the deterministic contribution accordingly. The
probability that a trajectories hasn’t commuted at time t derives from the switching
rate Γ(t) = Γ(B(t), T (t)) in Eq. (1.38):

Π(t) = e−
∫ t

0 Γ(u)du. (F.11)

The deterministic work, kinetic and potential energies are then given by:

dWD

dt
=− k(xD − x1)ẋ1 × Π(t) (F.12a)

KD(t) =1
2mẋD × Π(t) (F.12b)

UD(t) =1
2k(xD − x1)2 × Π(t) (F.12c)

During step 2, xD(t) is still described by Eq. (F.8) with x1(t) = −X1t/τ , and the
energetic terms correspond at all time to Eqs. (F.12) with Π(t) = 1 as the cantilever
remains in the single well allowed.
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Figure F.1 – Comparison of the PDFs Pmodel(x, v, t) from our ansatz and
P sim(x, v, t) from a numerical simulation. This frame is captured from the movie
PDF_erasure_process.mov available in Supplemental Materials of Ref. 7, corresponding
to t = 4.5f−1

0 . (a) Mean kinetic energy 〈K〉 vs time from the simulation and the model.
The quasistatic case is shown for comparison. (b) Average absolute value of the position
〈|x|〉 vs time (c) 2D representation of the PDF P sim(x, v, 4.5f−1

0 ) with the color scale on
top. (d) PDFs in position (obtained by integrating over all speeds the 2D PDF) from
the simulation and the model. The quasistatic case is shown for comparison. (e) PDFs
in speed (obtained by integrating over all positions the 2D PDF). (f) Ratio of the PDFs
P sim(x, v, 4.5f−1

0 )/Pmodel(x, v, 4.5f−1
0 ) in a 2D representation using the color scale on top.

F.3 Validation of the PDF ansatz

Using the PDFs of Eqs. (4.8) and (4.9) is based on some approximations: the drag-
ging effect is assumed to vanish after the first switch of the system. We unavoidably
leave aside some transients mixing position and speed during compression. In order to
investigate on the validity of this approach we compare the numerical simulation data
to the PDF models, using the following ansatz

Pmodel(x, v, t) = Π(t)P t(x, v) + [1− Π(t)]P c(x, v) (F.13)

P c(x, v) = 1
Zc
e−

1
2βmv

2
e−

1
2βk(|x|−x1)2

(F.14)

P t(x, v) = 1
Zc
e−

1
2βm(v−S(x)ẋD)2

e−
1
2βk(|x|−xD)2

(F.15)

with S(x) the sign of x. The PDF P sim(x, v, t) is computed from 5× 106 trajectories,
half of them starting from each well, with X1 = 5σ0 and τ = 6f−1

0 corresponding to
v1 = 0.13. We can then study the relevance of our model by comparing the PDFs. This
is done in the movie PDF_erasure_process.mov available in Supplemental Materials
of Ref. 7, a frame of which is shown as an example in Fig. F.1 corresponding to t =
4.5f−1

0 . It demonstrates how good is the model to estimate the position and velocity
distribution: the oscillations due to the dragging force are replaced by the temperature
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rise predicted by the compression model. The relaxation in temperature after step
1 predicted by the model also matches the simulation data, except for the transient
relaxation oscillations which are not included in the model after the 1st switch of the
system during step 1. The comparison of the PDFs by their ratio in panel (f) also
demonstrates that for statistically relevant portion of the phase space, the agreement
between the two is better than 20%. The main deviations occur in the middle of step 1
in the bottom left and top right corner areas. These areas corresponds to trajectories
where the system has switched once and presents a mean velocity component from
motion of the well it has switched to. The deviation is therefore explained by the fact
that the model PDF doesn’t includes the mean driving velocity after the first switch.
But because the error made is symmetrical with the initial state, it doesn’t impact the
computation of average values such as the velocity variance.

F.4 Teff approximation

To retrieve the gas analogy, we apply Eq. (4.10b) to the step 1 compression (no deter-
ministic work), and reframe it to identify the volume total derivative:

〈dW
c
1

dt
〉 = −kBT

∂ lnV
∂x1

ẋ1 (F.16)

= −kBT
d lnV
dt

(
1 + d lnT

d ln(x2
1/T )

)
(F.17)

The second term in the parenthesis on the right hand side can be evaluated from our
model once the time evolution of the temperature has been numerically computed.
After integration, it represents at most 10% of the final result (upper limit reached
for the highest temperature rise in the adiabatic limit). The work required for a fast
compression can therefore be approximated by 〈Wc

1〉 ∼ kBTeff ln 2, and meet the gas
analogy with the effective temperature being worth

Teff = 1
ln 2

∫
Td lnV . (F.18)

For the erasure cycle in Fig. 4.4, we derive Teff = 1.35T0 which gives the compression
work with a 6% error.
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[1] S. Dago, B. Besga, R. Mothe, D. Guéry-Odelin, E. Trizac, A. Petrosyan, L. Bellon,
and S. Ciliberto, SciPost Phys. 9, 64 (2020).
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Stochastic thermodynamics: driving of micro-oscillators

applied to the study and the optimisation of information

processing.

This thesis extends by theoretical and experimental studies our understanding of the dynamics
of systems ruled by thermal fluctuations in order to better control them and, in particular, use them
as 1-bit logic gates. This work falls within the framework of out-of-equilibrium statistical physics
and of thermodynamics of information based on stochastic thermodynamics. In this respect,
we study the minimal work required to perform irreversible operations on 1-bit of information
([RESET] to 0 or 1), or reversible ones ([NOT] operation), and we aim to optimise the energetic
cost and the speed of these processes. Our strategy to enhance the processing efficiency and speed
consists in using as 1-bit memory a low dissipation micro-mechanical oscillator, therefore evolving
at much smaller time-scales than the over-damped test systems used to date (colloidal particles in
solution). The feedback control designed to create a virtual energy potential in which evolves the
micro-resonator is a major step forward in coding and handling the 1-bit information: it represents
the fastest and most energy-efficient device among those which perform logic operations at the
thermal energy scale. We furthermore provide a solid theoretical basis, validated by experimental
and numerical simulation results, to model energy exchanges. Taken as a whole, this work results
in the theoretical prediction of the energetic cost of any logical operation and opens perspectives
for information processing optimisation in term of reliability, speed and energy saving.


	Contents
	Abstract/Résumé
	Introduction
	State of the art
	Statistical Physics Tool Box
	Brownian systems
	Trapping methods
	Information and thermodynamics
	Dimensionless notations
	References

	Shortcuts to equilibrium
	Engineered Swift Equilibration (ESE)
	ESE for over-damped coupled particles
	ESE in the underdamped regime
	Prototype of experimental demonstration
	References

	Virtual double-well potential for an underdamped oscillator created by a feedback loop
	Context
	Virtual double well potential: principle
	Analogical implementation
	Digital implementation: FPGA card
	References

	Erasure cost of a 1-bit memory
	Introduction
	Experimental demonstration of the Landauer's bound using an underdamped oscillator
	Energetic study
	Optimisation
	Repeated use of the memory
	References

	Consequences of a feedback bias on thermodynamics
	Context
	Consequence of a feedback hysteresis on the temperature
	Landauer's erasure
	Perspectives
	References

	Logical and physical reversibility
	Context and experimental framework
	Reversible bit-flip protocol
	Experimental result
	Origin of the irreversibility
	Conclusion and optimisation perspectives
	References

	Conclusion
	Bibliography
	Appendix Engineered swift equilibration of brownian particles: consequences of hydrodynamic coupling
	Appendix Experimental set-ups for ESE protocols on over-damped particles
	Appendix Supplementary Material - Information and thermodynamics: fast and precise approach to Landauer’s bound in an underdamped micro-mechanical oscillator
	Appendix Virtual double-well potential for an underdamped oscillator created by a feedback loop
	Appendix Numerical simulation of the underdamped oscillator
	Appendix Fast Erasure model (FE model)
	Mean work, potential and kinetic energy
	Deterministic terms
	Validation of the PDF ansatz
	Effective temperature approximation


