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Time is the means by which God realized the inconceivable that P and non-P are both true.
Kurt Gödel

Causal and Logical Loops from Quantum Theory (in the style of Van Gogh) ,
VQGAN+CLIP.
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Abstract

The fundamental nature of causality has been challenged by quantum theory. In par-
ticular, recent developments have shown that by relaxing the standard assumption that
quantum events are embedded in a fixed background causal structure, a new kind of causal
relations, indefinite, can emerge. These indefinite causal structures have been interpreted
as causal loops allowing for the violation of a form of causality without paradoxes. On the
other hand, quantum contextuality shows that any attempt to extend quantum theory
such that classical logic holds in the extended domain fails due to the rise of inconsistent
logical loops. There has been increasing evidence that it is a key feature in the under-
standing of quantum paradoxes. This thesis aims at improving our understanding of
indefinite causal orders and quantum paradoxes in order to address the question: “Could
the non-fundamental nature of causality be related to a form of contextuality ?”

The process matrix formalism is a mathematical framework which, in analogy with
entanglement and the violation of Bell inequalities (nonlocality), offers new tools — wit-
nesses of causal nonseparability and the violation of causal inequalities with noncausal
correlations — to study and identify indefinite causal orders. In a bottom-up approach,
I have studied a large class of physically implementable processes, the quantum circuits
with quantum control of causal order (QC-QCs), that includes causally nonseparable pro-
cesses such as the celebrated “quantum switch”. However these circuits cannot be used to
violate causal inequalities. Nevertheless, in another work, I have proposed a significant
relaxation of assumptions to certify the causal nonseparability of many processes, showing
that it can be done in a semi-device-independent scenario with untrusted local operations
and trusted quantum inputs. In particular, I have shown that the quantum switch can
generate noncausal correlations in this kind of scenario.

In order to refine my understanding of quantum contextuality, I have investigated the
origins of the Kochen-Specker theorem and I have analysed how the Hardy paradox en-
tails a form of logical contextuality. I have identified that the two possible intermediate
measurements involved in a pre-post-selection version of the paradox differ causally from
each other. This analysis might be useful to study the Frauchiger-Renner paradox, a
“meta-version” of the Hardy paradox. On a more metaphysical aspect, I have argued for
a “Gödelian hunch” from quantum theory, the idea that quantum paradoxes emerge from
a lack of distinction between theoretical and metatheoretical objects.

Finally, in order to establish a link between indefinite causal orders and contextuality, I
have proposed a new causal game, in which the grandfather paradox is formalized in terms
of a logical inequality. Some process matrices can violate the causal inequality without
violating the logical one. I suggest that the emergence of logical inconsistencies induced
by the violation of a logical inequality might be interpreted as a form of contextuality.
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Résumé

La nature fondamentale de la causalité a été remise en cause par la théorie quantique. En
particulier, des développements récents ont montré qu’en abandonnant l’hypothèse stan-
dard selon laquelle les événements quantiques sont intégrés dans une structure causale
fixe, un nouveau type de relations causales, indéterminées, peut émerger. Ces structures
causales indéterminées ont parfois été interprétées comme des boucles causales perme-
ttant de violer une forme de causalité sans paradoxes. D’autre part, la contextualité
quantique montre que toute tentative d’extension de la théorie quantique de sorte que la
logique classique s’applique dans le domaine étendu échoue en raison de l’émergence de
boucles logiques incohérentes. Il y a de plus en plus de preuves que cette caractéristique
constitue un élément clé dans la compréhension des paradoxes quantiques. Cette thèse
vise à améliorer notre compréhension des ordres causaux indéterminés et des paradoxes
quantiques afin de répondre à la question : “La nature non fondamentale de la causalité
pourrait-elle être liée à une forme de contextualité ?”

Le formalisme des matrices de processus est un cadre mathématique qui, par analogie
avec l’intrication et la violation d’inégalités de Bell (non-localité), offre de nouveaux outils
- témoins de non-séparabilité causale et violation d’inégalités causales avec des corréla-
tions non-causales - permettant d’étudier et d’identifier les ordres causaux indéterminés.
Dans une approche ascendante (bottom-up), nous avons identifié une grande famille de
processus physiquement implémentables, les circuits quantiques avec contrôle quantique
d’ordres causaux (QC-QCs), qui incluent des processus causalement non-séparables tels
que le célèbre “quantum switch”. Cependant, ces circuits ne peuvent pas être utilisés
pour violer des inégalités causales. Néanmoins, dans un autre travail, en assouplissant
significativement les hypothèses permettant de certifier la non-séparabilité causale de nom-
breux processus, j’ai montré que cette certification pouvait être réalisée dans un scénario
“semi-device-independent” avec des opérations locales non fiables et des entrées quantiques
fiables. En particulier, j’ai montré que le quantum switch peut générer des corrélations
non-causales dans ce type de scénario.

Afin d’affiner ma compréhension de la contextualité quantique, j’ai enquêté sur les
origines du théorème de Kochen-Specker et j’ai analysé comment le paradoxe de Hardy
implique une forme de contextualité logique. J’ai identifié que les deux mesures intermé-
diaires possibles impliquées dans une version “pré-post-sélection” du paradoxe diffèrent
causalement l’une de l’autre. Cette analyse pourrait être utile à l’étude du paradoxe de
Frauchiger-Renner, une “méta-version” du paradoxe de Hardy. Sur un aspect plus méta-
physique, j’ai plaidé en faveur d’une “intuition gödelienne” issue de la théorie quantique,
l’idée que les paradoxes quantiques émergent d’un manque de distinction entre objets
théoriques et méta-théoriques.
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Enfin, afin d’établir un lien possible entre les ordres causaux indéterminés et la con-
textualité, j’ai proposé un jeu causal original, dans lequel le paradoxe du grand-père
est formalisé en termes d’inégalité logique. Certaines matrices de processus peuvent
violer l’inégalité causale sans violer l’inégalité logique. J’ai suggéré que l’émergence
d’incohérences logiques issue de la violation d’une inégalité logique pourrait être inter-
prétée comme une forme de contextualité.
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In his novel “Le Voyageur imprudent” (“Future Times Three”, 1944) [1], French author
René Barjavel tells the story of a misfortuned time traveler, Pierre Saint-Menoux, who
accidentally kills his ancestor in the past. This is the first appearance of the grand-father
paradox, a scenario in which an effect suppresses its own cause. In a 1958 post-scriptum
entitled “To be and not to be” (1958), Barjavel writes:

“However, for Pierre Saint-Menoux there can be no end. Think about it:
he killed his ancestor before the latter had time to marry and have children.
So he disappears, that’s understood. He doesn’t exist, he never existed. There
never was a Pierre Saint-Menoux. Good ... But if Saint-Menoux does not
exist, if he never existed, he could not have killed his ancestor! ...” “To be
or not to be ? Hamlet wondered. To be and not to be, replies Saint-Menoux.
[...] I do not know what to tell you. It is impossible for me to imagine his
condition. For our human mind, limited, crippled, only the “or” of Hamlet is
apprehensible. It is already, alas, enough anguish. The “and” of Saint-Menoux
makes us lose our balance. We are at the extreme edge of our rational universe.
One more step, one more word, and this is the beginning of abysses, the logic
of the absurd, and the proven evidence of the possibility of the impossible.
([1], personal translation)1”

This could be waved aside as a mere science-fiction fantasy, irrelevant for physicists.
However, in 1949, Kurt Gödel discovered solutions of general relativity containing closed
time-like curves (CTCs), objects that would theoretically allow an observer to travel back
into her own past [2]. Despite the hypothetical nature of their existence, CTCs have
thus lead physicists to consider the possibility of “time-travel paradoxes” such as the
grandfather inconsistency, and lead them to find solutions to avoid it [3, 4].

Furthermore, interestingly, Barjavel refers to quantum theory as a possible loophole
allowing to “vaguely” understand the paradox:

“No metaphor can help us. His quality of being is unknowable to us. Only
the great physicists of our time, specialists of the constituent particles of the
atom, could perhaps have a very vague idea about it.
([1], personal translation)2”

Let us take Barjavel’s intuition “seriously”, and use it as a guideline to this thesis,
asking ourselves:

How can the grand-father paradox be related to quantum theory ?

1“Pourtant, pour Pierre Saint-Menoux il ne saurait y avoir de fin. Réfléchissez: il a tué son ancêtre
avant que celui-ci ait eu le temps de prendre femme et d’avoir des enfants. Donc il disparaît, c’est
entendu. Il n’existe pas, il n’a jamais existé. Il n’y a jamais eu de Pierre Saint-Menoux. Bon... Mais
si Saint-Menoux n’existe pas, s’il n’a jamais existé, il n’a pas pu tué son ancêtre!... [...] Être ou ne pas
être ? se demandait Hamlet. Être et ne pas être, réplique Saint-Menoux. Je ne sais que vous dire. Il
m’est impossible d’imaginer son état. Pour notre esprit humain, limité, infirme, seul le « ou » d’Hamlet
est préhensible. C’est déjà, hélas, bien assez d’angoisse. Le « et » de Saint-Menoux nous fait perdre
l’équilibre. Nous sommes à l’extrême bord de notre univers rationnel. Un pas de plus, un mot de plus,
et c’est le commencement des abîmes, la logique de l’absurde, et l’évidence démontrée de la possibilité de
l’impossible.”

2“Aucune métaphore ne peut nous aider. Sa qualité d’être nous est inconnaissable. Seuls pourraient
peut-être s’en faire une très vague idée les grands physiciens de notre temps, spécialistes des particules
constituantes de l’atome.”
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• A first track is to look at what quantum theory has to say about causality.

Causality is the idea that events in the present are caused by events in the past and
act as causes for events in the future. An event cannot be influenced by events in its
future. This is considered as one of the most fundamental concepts in science. However
the stability of this pillar of physics has been threatened by the counter-intuitive features
of quantum theory. Facing quantum indeterminacy, which prevent from “know[ing] the
present in detail” [5] and thus from “predicting the future”, Bohr proposed to overcome
the “failure of causality” by replacing it with his concept of complementarity [6], as a
new relationship between events to account for phenomena. The nonlocal correlations of
quantum theory [7, 8] also put the fundamental nature of causality in a difficult position.
In fact, they can only satisfy the very natural Reichenbach’s principle of a common cause
- “according to which correlations among events that are not related as cause and effect
are explained by a common cause in their joint past that screens off the correlation” [9]
- at the cost of exotic characteristics such as superluminal or retrocausal signalling [10].
These considerations motivate the first question of this thesis:

Is causality fundamental ?

To tackle this issue, one can for example consider relaxing an assumption from the
standard formulation of quantum theory that quantum events are embedded in a fixed
background causal structure. One can then imagine extending quantum indeterminacy -
which applies to physical quantities such as the position, the momentum or the spin of a
particle - to the causal relations between events themselves. Intuitively, for two events A
and B in a causal relation with each other, in addition to the well defined causal relations
“A is in the causal past of B.” and “B is in the causal past of A.”, this relation may now
also be indeterminate.

In 2005, Lucien Hardy paved the way for this new quantum approach of causality by
introducing formalisms in which the causal orders were not fixed a priori [11, 12]. Seven
years later, among other alternatives [13, 14], Oreshkov, Costa and Brukner also proposed
a framework that relies on relaxing the traditional assumption of predefined global causal
order, while parties in distinct laboratories can still perform arbitrary local quantum
operations: the process matrix formalism [15]. While it provides a unified description of
standard quantum resources compatible with a definite causal order, such as entangled
states and quantum channels, the process matrix formalism also allowed to identify a new
kind of objects (process matrices) with indefinite causal orders. New conceptual tools
were developed to study and identify these indefinite causal orders: causal nonseparability,
which can be certified in a device-dependent way by constructing causal witnesses [16,
17], and noncausality, a device-independent certification based on the violation of causal
inequalities [15, 18]. These are direct analogies to the famous quantum entanglement (also
sometimes called quantum nonseparability) and famous violation of Bell’s inequalities by
quantum correlations, which discriminates correlations that fulfil the condition of local
causality from those that do not [7, 8, 19].

An important and simple example of a causally nonseparable quantum resource, i.e.
incompatible with a definite causal order, is the ’quantum switch’ [13], a causal variation
of Schrödinger’s cat in which the order of two quantum operations (instead of the “life or
death” state of a cat) is entangled with a quantum system. Despite being causally non-
separable and allowing for the realization of new information tasks which are impossible
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with standard quantum circuits [16, 20], this process cannot generate noncausal correla-
tions that violate a causal inequality [16, 21]. The new formalism suggests that certain
mathematical solutions may allow to do so [15, 18, 22]. However, the question of the
physical realization of such processes remains open [23].

Remarkably, process matrices were shown to correspond to a specific kind of CTC
based on post-selection and quantum teleportation [24, 25]. They are thus sometimes
said to be causal loops allowing one to “send information backward in time without
paradoxes” [15, 26]. The logical inconsistencies are in fact avoided by a consistency prin-
ciple, imposing that processes generate non-negative and normalized probabilities under
any choice of the parties’ operations. Logical consistency arises then as a more funda-
mental notion than causality [27].

• Another path is to interpret the grandfather paradox as a (speculative) physical real-
ization of a self-contradiction, and highlight how quantum theory might be characterized
by a similar logical structure.

Quantum indeterminacy is often presented as the fact that “the result of a quantum
measurement depends on the experimental context.” This vague adage inspired by Bohr’s
philosophical concept of complementarity [6], finds strong mathematical grounds from
the Kochen-Specker theorem [28]. The latter shows that quantum theory is incompat-
ible with the view that physical observables possess pre-existing values independent of
the measurement context, a feature called quantum contextuality. After various works
consisting in simplifying the proof of the theorem [29, 30, 31, 32, 33, 34, 35], increas-
ing evidence have highlighted that contextuality might be a central notion that captures
precisely what makes quantum theory fundamentally different from classical physics ; a
witness of quantum weirdness [36]. Quantum contextuality has for example been iden-
tified as an important ingredient in the quest for the recipe that will allow to reach the
Holy Grail of universal quantum computation [37, 38]. Furthermore, recent results sug-
gest that contextuality may be more fundamental than Bell nonlocality, which can be
seen, in some sense, as a particular case of contextuality. Graphical generalisations of
the Kochen-Specker result have allowed to established connections between nonlocal and
contextual correlations [39], and identify how nonlocality can be expressed in a contex-
tuality scenario [40]. Another approach initiated by Robert Spekkens [41], generalises
the notion of measurement contextuality from the Kochen-Specker theorem to any kind
of experimental procedure (preparations, transformations) in a theory-independent way,
allowing to directly compare this “universal” contextuality with Bell’s assumption of local
causality [8]. Finally, contextuality and its relation with nonlocality have also been stud-
ied in topological approaches [42, 43, 44]. In [45], contextuality emerges when data are
locally consistent, but globally inconsistent, and it shares a similar logical structure with
famous semantic paradoxes such as the Liar paradox. This brings us to another main
issue motivating this thesis:

Is physics paradoxical ?

In other words, does Nature entail logically inconsistent phenomena ? The Kochen-
Specker theorem has shown that quantum theory is not only counter-intuitive, but goes
against our own logic: any attempt to extend it such that classical logic holds in the
extended domain fails due to the rise of inconsistent logical loops. Recent new quantum

13



paradoxes [46, 47], that involve these quantum logical loops as well as observers who can
perform a quantum measurement on other observers who measure themselves quantum
systems, have been interpreted as showing that “quantum theory cannot consistently de-
scribe the use of itself” [47]. These bring up to date previous analyses [48, 49, 50, 51, 52]
of the famous measurement problem, which asks whether a quantum state is projected or
not during a measurement. In such analyses, the problem arises from a self-reference, a
mere logical error in which the observer is both an object and a user of the theory.

• Finally, we can examine the interplay between quantum causality and contextuality.

As Bell nonlocality may be seen as a kind of contextuality, and because of the analogy
between nonlocality and noncausality, one could expect the existence of a link - yet to be
explored - between indefinite causal relations and contextuality in quantum theory, thus
raising the question:

Could the non-fundamental nature of causality be related to a form of contextuality ?

0.1 General Remarks

0.1.1 Disciplinary identity of the dissertation

This dissertation belongs to the field of Quantum Foundations. This field aims at better
understanding what quantum theory means, or as Wheeler puts it:

“Why the Quantum ? ” [53]

Quantum physics is “strange”. At least, that is how it seems to be perceived by society,
the popular science press, and most of the scientific community. While physics usually
aims to describe the world and to dissolve its strangeness, or at least to familiarize with
it, quantum theory is surrounded by a certain aura of complexity and stupor. Penrose
has declared that “Quantum mechanics doesn’t make any sense.” ; Feymann observed
that “nobody really understands quantum mechanics” ; Bohr would have advocated that
“Those who are not shocked when they first come across quantum theory cannot possibly
have understood it.” [54] and finally Greenberger likes to say that “Quantum mechanics is
magic.” [55]. Why is quantum theory so strange ? After the (very often decontextualized
as above) authority argument, come the examples. An anthology of “quantum phenom-
ena”, each one more fantastic and bizarre than the others, are invoked: the elusive nature
of light and matter, “sometimes waves, sometimes corpuscles”; Schrödinger’s “undead” cat,
or the facetious “hidden and conspiratorial influences” from quantum nonlocality.

The uncanny (“Unheimliche”) feeling of weirdness that may shine out from quantum
theory is often attenuated by relegating its scope to “the world of the infinitely small”. This
conveys the ambiguous idea that as strange as quantum theory may be, we would never
have to be directly confronted with its fantasies. In short, something occult, invisible to
our gaze. Could quantum magic be reduced to a matter of scale ? Are there effectively
two worlds - a classical macroscopic one, the one we live in, and the microscopic “quantum
world” - connected with each other by a secret bridge, hidden on the intermediate meso-
scopic scale ? Some alternative quantum-based theories, e.g. the “spontaneous-collapse”
ones [56, 57], argue for this kind of scission. However the wall separating the quantum
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world from our own may seem porous. While quantum theory was born in an atomistic
context, its formalism does not explicitly discriminate microscopic from macroscopic ob-
jects. It does not indicate either which objects shall be treated as quantum, and which
cannot. This was the reason for the trouble of Schrödinger, who seemed to deplore that
a quantum state could be associated with a cat as well as a radioactive atom [58, 59]. On
the contrary, Bohr was wary of this scale-based distinction, and advocated looking for the
border in “the use of ordinary language terms to describe the properties of an object.” [54]

Our ordinary classical concepts do not seem to apply to quantum objects. Worse,
quantum theory seems still desperately silent when it comes to extract meaning from its
equations, even though its mathematical grounds have been fixed almost a century ago
by von Neumann [60]. As pointed out by Mermin,

“[Q]uantum theory is the most useful and powerful theory physicists have
ever devised. Yet today, nearly 90 years after its formulation, disagreement
about the meaning of the theory is stronger than ever. New interpretations
appear every day. None ever disappear.” ([61] as cited in [62])

Roughly, two opposite interpretative factions can be identified:

• the “realists” (associated with the terms “strong”, “intrinsic”, or “naive” realism),
who believe that quantum mechanics must, like any other physical theory, describe
a world independent of any observer. If it cannot manage to do so, it means that
quantum theory is either incomplete or false. Bohmian mechanics [63], spontaneous
collapse thoeries [57] or again the Many-Worlds interpretation [64, 65] belong to this
category;

• the “(neo-)Copenhagen” interpretations (associated with the terms “anti-realism”,
“weak” or “participatory realism” [66]), in which quantum theory describes the state
of knowledge (or belief, or information) of an observer who “participates” in the stud-
ied experimental implementations. Copenhagen interpretations (e.g. those of Bohr,
Heisenberg and Pauli), the relational interpretation of Carlo Rovelli [67, 68], the
information-based interpretations of Jeff Bub [69] and Brukner [70, 71], or QBism
[72] fall into this class.

Metaphysical investigations, discussing the ontology (literally aiming at giving a dis-
course (λόγος) on the Being (ὄντος), what is) and the nature of quantum theory are a
first line of work in quantum foundations. In fact, while quantum foundations was inex-
tricably born with quantum theory, it has been relegated to a lower priority by physicists
as a field dealing with mere philosophical issues. This status lasted for a long period of
time after the elaboration of the theory, with some exceptions, such as Bohm’s [63] and
Everett’s [64], and the Bohr-Einstein debate [73, 6]. The area of research was revived by
Bell’s work [7] and Aspect’s experiments [74] on quantum entanglement and nonlocality.

On the one hand, their works have sparked a renewed interest in quantum foundations
and understanding the weird phenomena of quantum theory. Beyond the (sometimes
vain) metaphysical debates, some have attempted to rebuild the foundations of the the-
ory by deriving its unsympathetic mathematical axioms from physical principles based on
the notion of “information” [75, 67]. Hardy has for instance identified a set of postulates
specific to quantum theory and classical probability theory. In order to distinguish clearly
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quantum theory, i.e. what differentiates it from other theories, one “just needs” to add
any quantum principle that is inconsistent with classical probability theory to the list
[76, 77]. Such principles may be identified by exploring generalisations or alternatives of
quantum theory, foil theories [78]. These “science-fiction mathematics” are not physical
theories in the sense that they are not empirically valid. However, if such an alternative
theory shares a set of features with quantum theory, then this set is not sufficient to
completely characterize the axioms of quantum theory. For instance, Spekkens has shown
that a large number of supposedly “strange” quantum characteristics - non-commutativity,
coherence, collapse, interference, teleportation, post-selection effects, no-cloning theorem
and many others - could emerge from classical statistical theories to which an episte-
mological restriction condition has been added, i.e. a restriction on the ability to know
the state of the studied system [79]. These “epistricted” theories are however unable to
reproduce quantum nonlocality [7] and contextuality [28], which may hint at the fact that
these features are more fundamental, more “specific” to quantum theory than the oth-
ers. Other important results have lead to clarify what type of ontology is adequate with
quantum theory, such as the Pusey-Barrett-Rudolph (PBR) theorem, that shows under
natural assumptions that “[ontological] models in which the quantum state is interpreted
as mere information about an objective physical state of a system cannot reproduce the
predictions of quantum theory.” [80] ; and other lines of work have focused on the develop-
ment of the understanding of strange quantum phenomena, such as quantum nonlocality
[19, 81], contextuality [36, 82] or causality [26]. Note that the meaning of quantum theory
is not the only issue at stake. The field of research is also oriented towards a final goal,
hoping that a better understanding of quantum theory might be a crucial step towards
the elaboration of a theory of quantum gravity [83].

On the other hand, note that any breakthrough and result in quantum foundations is
(very often) Janus-faced. While quantum foundations, as being a part of foundations of
physics, lies at the interplay between physics and philosophy of science, it also has a deep
impact on the field of quantum information. Indeed, by better understanding what makes
quantum theory so strange and special, we pave the way for using its “weirdness”. Bell
and Aspect’s works have for instance led to consider quantum entanglement and nonlocal-
ity as resources for various information protocols such as quantum teleportation [84, 19].
The atomistic occultness of quantum theory has become a source of computing power.
Its nonclassicity is no longer seen as a mere restriction on our ability to apprehend an
hypothetical “quantum world”. It has become a catalyst for extraordinary new computing
possibilities, tasks that cannot be carried out classically. Of course, the influence is dual,
as quantum information raises foundational issues such as “What physical principles of
quantum theory allow for such advantages?” or “Is quantum theory the only theory from
which emerge these advantages?” These are questions that now drive not only researchers,
but also industrialists, competing in the quest of new quantum technologies in communi-
cations, cryptography, metrology and computing [85].

This dissertation subscribes to all the stakes and lines of work presented above. While
my main motivation is to understand and study the strange phenomena of quantum the-
ory, focusing here on quantum causality and contextuality, this cannot be done without
taking a mathematical step back (e.g. studying generalisations of the theory like the
process matrix formalism [15]), as well as taking some metaphysical distance in order
to give meaning and truly understand our results, and finally reflecting on the possible
pragmatical impact of some of our results as useful tools for quantum information.
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0.1.2 Goals and results

The goal of this thesis is to contribute in answering the three issues given above.

Firstly, “Is causality fundamental ?”. While various results have been obtained in un-
derstanding processes with indefinite causal orders, the question of which processes are
effectively physical and whether these processes can violate causal inequalities is still open.
Identifying and characterizing these processes will not only improve our comprehension of
causal nonseparability, but it can also suggest how to use it in quantum information. The
first objective of my project was then to investigate the possible causal relations between
events that can exist in the quantum world, and see how they differ from classical rela-
tions. In particular, the objective was to contribute to characterise the processes (building
e.g. on the “quantum switch” mentioned above) that can be realised experimentally, to
study how these processes differ from processes with a well-defined causal structure (i.e.
standard quantum circuits), and whether the generated correlations might violate causal
inequalities. From these results, the goal was then to explore if these new causal relations
can yield new possibilities in information processing tasks.

This topic constituted the vast majority of my thesis. I have participated in developing
a new class of physically implementable quantum processes that includes the quantum
switch as a special case: quantum circuits with quantum control of causal orders. In par-
ticular, I have characterized the quantum switch as such a circuit, and I have proposed
a new implementation of this process, which require fewer degrees of freedom than pre-
vious realizations. The new class also allows one to design new kinds of indefinite causal
structures, and I have studied new examples of physically implementable and causally
nonseparable processes beyond the quantum switch based on an original idea from Cyril
Branciard. Furthermore, Julian Wechs and I have found several examples of tasks for
which quantum circuits with quantum control of causal orders provide an advantage over
circuits with definite causal order. However, like the quantum switch, our class of quantum
processes cannot generate noncausal correlations. Nonetheless, resorting to the analogy
with entanglement and Bell nonlocality, I have explored a form of certification of causal
nonseparability in a semi-device-independent scenario where the involved parties receive
trusted quantum inputs, but whose operations are otherwise uncharacterised. To do so, I
have defined, with my coauthors, the notion of causally nonseparable distributed measure-
ments, paving the way for a resource theory of causal nonseparability. I have shown that
certain causally nonseparable processes which cannot violate any causal inequality, such
as the quantum switch, can generate noncausal correlations in such a scenario. Moreover,
by further imposing some natural structure to the untrusted operations, I have shown that
all bipartite causally nonseparable process matrices can be certified with trusted quantum
inputs.

This first part of the thesis is based on the papers associated with these results. It
comprises (but does not reduce to) literal excerpts from the following works that have
already been published or submitted for publication:
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• J. Wechs,H. Dourdent, A. A. Abbott, and C. Branciard, “Quantum Circuits
with Classical Versus Quantum Control of Causal Order,” PRX Quantum 2
(2021) 030335. [86]

• H. Dourdent, A. A. Abbott, N. Brunner, I. Šupić, and C. Branciard,“Semi-
device-independent Certification of Causal Nonseparability with Trusted
Quantum Inputs,” arXiv:2107.10877 [quant-ph] (submitted) [87]

These manuscripts have been reworked to a varying extent, in order to embed them
into a coherent whole. That is, some modifications have been made in order to avoid rep-
etitions, some relevant details, explanations and remarks as well as new figures have been
added, where appropriate, for the sake of contextualisation and clarification. A note is
included at the beginning of each of these chapters, describing the precise correspondence
between its content and the respective publication.

In the prospect of establishing a possible link between indefinite causal orders and
contextuality by resorting to the analogies between noncausal, Bell and Kochen-Specker
correlations, the study of quantum contextuality - guided by the issue “Is physics para-
doxical ?” - constitutes a natural intermediate step.

To this end, an objective is to explore new generalisations and results [42, 40] con-
cerning the Kochen-Specker theorem [28], in the light of personal intuitive evidences that
contextuality might also be the key to understand how quantum causal relations differ
from classical ones, and how some processes can violate causal inequality and avoid at
the same time causal loops and paradoxes. One intuition behind the connection to be
established is that it appears that contextuality arises when there is local consistency and
global inconsistency of data [42], while the process framework is built on a similar idea that
one may not obtain a well-defined global causal structure from local ones [15]. Another
reason that suggests a link between contextuality and the process matrix framework is
that process matrices are equivalent to particular class of pre- and post-selected quantum
states [88], while it has been shown [89] that anomalous weak values (quantities accessed
through quantum experiments involving weak measurements and post-selection that lie
beyond the eigenvalue range of the corresponding operator [90]) arising from pre- and
post-selection are a proof of a generalised notion of contextuality [41]. Finally, it should
be possible to extend the direct analogy between causal inequalities and Bell inequalities
to contextuality tests, building on the recent result that a Bell scenario is a specific prod-
uct of contextuality scenarii, involving the union of the edges of one-way signalling (i.e.
fixed causal structure) hypergraphs [40]. On a more conceptual level, another objective
is to understand how a notion of contextuality might be related with the fundamental
issues of quantum theory such as the measurement problem [60] and the Wigner’s friend
thought experiment [91], as well as recent variants such as Brukner’s “no-go theorem for
observer-indepedent facts” [46] and the Frauchiger-Renner paradox [47].

While most of my PhD thesis was dedicated to quantum causality, I have neverthe-
less kept an interest for contextuality, which started during my Master studies and the
writing of a bibliographical review on the matter [36]. On the one hand, in the light
of the intuitions enunciated above, I have carefully analysed the Hardy paradox [92],
as a canonical example of a quantum scenario at the crossroads of distinct approaches
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of contextuality [42, 40]. I have identified three derivations of the logical contradiction
underlying the logical contextuality of the paradox. Two arguments are based on Liar
cycles, and one is a combination of both. Using a connection between contextuality and
pre-post-selection paradoxes [93, 94, 95, 89], I have given a hypergraph depiction of a
post-selection version of the paradox [96], and I have shown how it is related to the causal
relations of intermediate measurements. I have identified how a combination of the Liar
cycles underlying the paradox is directly related to the emergence of an anomalous weak
value. On the other hand, inspired by the works of Szangolies [97], Brukner [70, 46] and
Grinbaum [98, 99], I have identified how quantum contextuality, Wigner’s friend and their
variations are related with self-contradictory logical loops, and I have defined the notion of
meta-contextuality as the main characteristic of neo-Copenhagen interpretations of quan-
tum theory. I have analysed the Frauchiger-Renner paradox [47] as an hybrid scenario,
merging the contextuality of the Hardy paradox with the meta-contextuality underlying
Wigner’s friend.

This work gave rise to a published essay which won the third prize in the FQXi 2020
Essay Contest “Undecidability, Uncomputability, and Unpredictability”.

• H. Dourdent, “A Gödelian Hunch from Quantum Theory,” pp. 97–113, In:
Aguirre A., Merali Z., Sloan D. (eds) Undecidability, Uncomputability, and
Unpredictability. The Frontiers Collection. Springer, Cham., 2021. [100]

The version of this essay presented in this manuscrit has been extended and modified,
based on an introductory lecture on “Anti-realist interpretations of quantum theory” that
I gave to Bachelor students in philosophy.

Finally, the final objective of this PhD was to give some answers to the endgame ques-
tion “Could the non-fundamental nature of causality be related to a form of contextuality
?” Despite the fact that I did not produce any published nor pre-published paper on the
matter, a work in progress akin to it. In particular, I have formalized a grandfather-Liar-
like paradox in terms of a causal game with causal and logical inequalities. I have shown
that the causal inequality is violated by some process matrices without logical paradoxes
nor strong pathologies, and I have speculated that a violation of the logical inequality,
which might be interpreted as an empirical test of classical logic, would imply a form of
contextuality.

• H. Dourdent and C. Branciard, “Violation of causal and logical inequalities
in a causal game,” (in preparation)

This work has been presented in ETH Zurich 2021 Workshop: “Time in Quantum
Theory: from mathematical foundations to operational characterization” and in the 20th
European Conference on Foundations of Physics (Paris, 2021).
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0.1.3 Outline

This dissertation is divided in three parts3, following my three motivation issues. Their
lengths are unequal, as they reflect the amount of time that I dedicated to each one of
them during my PhD. A take-away and perspectives are given at the end of most of the
chapters.

In “Part I: Quantum Causality”, I present my work on indefinite causal orders. In
Chapter 2, I start by introducing the process matrix formalism. This framework allows
to describe the most general standard quantum communication resources - the so-called
quantum channels with memory - and more: some solutions - like the quantum switch
- were shown to be incompatible with a definite causal order. Could we go beyond the
quantum switch, and find other examples of processes incompatible with a definite causal
order that are not mathematical chimeras ? In Chapter 3, I present our new class of
physically implementable quantum processes that includes the quantum switch as a spe-
cial case: quantum circuits with quantum control of causal order [86]. These allow one to
imagine and conceive new kind of indefinite causal structures beyond the quantum switch.
However, like the quantum switch, they cannot generate noncausal correlations. Nonethe-
less, I show in chapter 4 that certain causally nonseparable processes which cannot violate
any causal inequality, such as the quantum switch, can generate noncausal correlations in
a semi-device-independent scenario where the involved parties receive trusted quantum
inputs, but whose operations are otherwise uncharacterised [87].

“Part II: Quantum Contextuality”, is dedicated to my work on the Kochen-Specker
theorem, the Hardy paradox and meta-contextuality. I start by introducing the Kochen-
Specker theorem (Chapter 6) and a personal investigation on its origins. In Chapter 7, I
show how the Hardy paradox [92, 101] can be seen as a canonical example at the cross-
roads of distinct approaches of contexutality [42, 40]. I analyze how contextuality emerges
from a formulation of the paradox with post-selection [96], based on [93, 94, 89, 95]. In
Chapter 8, I present the notion of meta-contextuality as the main characteristic of neo-
Copenhagen interpretations of quantum theory, based on my essay “A Gödelian Hunch
from Quantum Theory” [100].

Finally, “Part III: “Time-Travel without Paradoxes” ” is dedicated to work in progress
and speculations on a possible relation between (non)causality and contextuality. In
Chapter 10, I extend my “Gödelian hunch from quantum theory” to a specific notion
of time, based on an analysis of the grandfather paradox. In Chapter 11, I speculate
on a possible relation between quantum causality and contextuality and propose some
line of thoughts for future investigations. In Chapter 12, I present an original causal
game that quantifies a Novikov-like consistency principle in terms of a logical inequality
in addition to a causal inequality. I show that the maximal probability of success with
indefinite causal orders lies between the causal and logical bounds, thus illustrating that
noncausality does not imply logical inconsistency. In the end, I speculate on the idea that
the violation of a logical inequality might be interpreted as a form of contextuality.

3Four illustrations, generated by VQGAN+CLIP (Vector Quantized Generative Adversarial Network
+ Contrastive Language–Image Pre-training), are attached to each part of this thesis, and I would like
to credit Katherine Crowson and Somewhere Systems for the open source code that I used to generate
them. The illustrations of Alice and Bob were drawn by myself, and were inspired by the characters of
Hollow Knight by Ari Gibson.
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0.2 Philosophy of this dissertation
The uncanniness of quantum theory is the main reason that led me to study quantum
foundations. I have always been fascinated by the absurd, the paradoxical, by stories that
push us to the edge of the precipice of rationality and lead us to question our reassuring
preconceived ideas. The complementarity and the interplay between physics and philoso-
phy is also a crucial motivation in my work [102]. While most of the chapters of this PhD
are rather “metaphysically-free”, Chapters 8 and 10 come within the scope of my affinity
towards the neo-Copenhagen interpretations of quantum theory. In Sections 8.1 and 8.2
in particular, I develop the idea that fundamental quantum paradoxes might emerge from
a desperate mathematical attempt of the physicists to “break the fifth wall”.

Quantum undecidability is a metaphysical warning for physicists: you cannot take a
transcendent position with respect to Nature and at the same time ignore the fact that
you are yourself part of It and mechanically include yourself in your theoretical descrip-
tion. In other words: “You are not Gods, don’t get cocky.” Either you decide to look
from outside, and cut yourself from the world, giving up the desire to be able to describe
everything ; or you decide to look from inside, a perspective from which you can study
everything, but everything is not fully accessible experimentally. In both cases, some
questions will necessary remain unanswered.

Trying to break the fifth wall exposes you to self-referential structure, i.e. logical loops
and thus logical paradoxes. If two observers, Alice and Bob, include each others in their
respective descriptions, they may end up describing themselves. One needs to “cut the
logical loop”, i.e. to meticulously choose one perspective, and avoid asking about what
the other has to say, in this context. Imagine now two parties, Alice and Bob, trapped in
a causal loop. Are they not facing an analogous situation ? Inside the loop, any notion of
order is undefinable. Nevertheless, you may “cut the causal loop” and define a perspectival
causal relation: in one context (one position of the cut), Alice precedes Bob, while in the
other, Bob precedes Alice.

« Causal Loop » « A causes B » « B causes A »
Whether Alice and Bob are trapped in a causal or a logical loop, a similar solution

appears. This analogy makes me wonder about the nature of the blurred line between
logical and causal relations. It gives me a hunch that they might be two sides of the same
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coin. Remarkably, Gödel, as the father of the incompleteness theorem and one of the
discoverer of closed time-like curves, appears as a guide in both cases. His statement

“Time is the means by which God realized the inconceivable that P and
non-P are both true.” [103]

is the motto of this PhD thesis.
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Part I

Quantum Causality
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I don’t see how he can ever finish, if he doesn’t begin. Alice [104]

Quantum Causality (in the style of Dali), VQGAN+CLIP.
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Chapter 1

Causality and Quantum Theory

The law of causality, I believe, like much that passes muster among philoso-
phers, is a relic of a bygone age, surviving, like the monarchy, only because it
is erroneously supposed to do no harm. Bertrand Russel [105]

Causality is arguably a primitive concept for physics: explaining a phenomenon amounts
to finding “what causes it”. Historically, causality was thus often intertwined with the no-
tion of determinism, the fact that given an initial state for a physical system, there is one
and only one possible evolution for this system. The chimerical dream of classical physics
that any event is caused by an earlier one according to the laws of nature culminates
in Leibiniz’s principle of sufficient reason that stipulates that “nothing happens without
it being possible for one who knows things enough to give a reason which is sufficient
to determine why it is so, and not otherwise.” [106] To illustrate his principle, Leibniz
imagined a scientist who has become a prophet, being able to predict the future from a
complete knowledge of the present:

“We see [...] that everything is mathematical, that is to say, that everything
happens infallibly in the vast whole world, so that, if someone could have a
sufficient view of the interior parts of things and at the same time sufficient
memory and understanding, he would be a prophet and would see the future in
the present as in a mirror. (personal translation)”1

Leibniz’s prophet will later be taken up by Pierre-Simon Laplace, and will enter into
posterity under the name of “Laplace’s demon”, a being able to have access with infinite
precision to the current state of the world, and is thus able to compute its evolution for
any time in the future or the past:

“The present events have, with the preceding ones, a connection founded
on the evident principle, that a thing cannot begin to be, without a cause that
produces it. This axiom, known as the principle of sufficient reason, extends to
the very actions that are considered irrelevant [...]. We must therefore consider
the present state of the universe, as the effect of its previous state, and as the
cause of the one to follow. An intelligence which, for a given moment, would
know all the forces with which nature is animated, and the respective situation

1Originally in French: “On voit [...] que tout est mathématique, c’est-à-dire, que tout arrive infailli-
blement dans le vaste monde tout entier, de telle sorte que, si quelqu’un pouvait avoir une vue suffisante
des parties intérieures des choses et en même temps suffisamment de mémoire et de compréhension, il
serait un prophète et verrait le futur dans le présent comme dans un miroir.” [107]

25



of the beings which compose it, if moreover it were large enough to submit
these data to analysis, would embrace in the same formula the motions of the
largest bodies in the universe and those of the lightest atom: nothing would be
uncertain for her, and the future, like the past, would be present to her eyes.
(personal translation)”2

This standard deterministic approach of causality lead to the well-known causality
principle: every event has a cause, and the cause of an event is necessarily prior to the
event itself. Causality acts underground in all things and before any event, so that there
is no space left for contingency (i.e. uncertain conditional dependence). Even if an event
cannot be assigned with an identifiable cause, it still, necessarily, has one, which is hidden.
This statement has been formalized in 1956 by Hans Reichenbach, through his Common
Cause Principle [109]: If there is a correlation between two events A and B and a direct
causal connection between the correlated events is excluded then there exists a common
cause C of the correlation such that the probability for events A and B to occur condi-
tioned on C is given by p(A,B|C) = p(A|C)p(B|C).

However, during the XXth century, quantum theory has been said to have delivered
a decisive blow to this deterministic approach of causality. For instance, the “failure of
causality” was highlighted by Heisenberg, in the light of his indeterminacy principle :

“In all cases in which relations exist in classical theory between quantities
which are really all exactly measurable, the corresponding exact relations also
hold in quantum theory (laws of conservation of momentum and energy). But
what is wrong in the sharp formulation of the law of causality, "When we know
the present precisely, we can predict the future," it is not the conclusion but
the assumption that is false. Even in principle we cannot know the present in
all detail. For that reason everything observed is a selection from a plenitude
of possibilities and a limitation on what is possible in the future. [...] Because
all experiments are subject to the laws of quantum mechanics, [...], it follows
that quantum mechanics establishes the final failure of causality.” [5]

The noncommutativity of quantum observables translates the inexhaustibility of in-
formation [110]: “even when we have gathered maximum information about an object it
is still possible to learn something unexpected about it. The future is not determined
by the past.” Bohr proposed his concept of complementarity has a new relationship to
account for phenomena, and bury the old fashioned causality [6]. It might nevertheless
be premature to argue that Bohr and Heisenberg have definitively slayed Laplace’s de-
mon, since their arguments mainly relies on metaphysical ground. One might also argue
that what Bohr and Heisenberg are targeting should rather be called causal determinism,
leaving a more operational notion of causality untamed, in line with Hermann’s position:

2Originally in French: “Les événemens actuels ont, avec les précédens, une liaison fondée sur le principe
évident, qu’une chose ne peut pas commencer d’être, sans une cause qui la produise. Cet axiome, connu
sous le nom de principe de la raison suffisante, s’étend aux actions mêmes que l’on juge indifférentes [...].
Nous devons donc envisager l’état présent de l’univers, comme l’effet de son état antérieur, et comme
la cause de celui qui va suivre. Une intelligence qui, pour un instant donné, connaîtrait toutes les forces
dont la nature est animée, et la situation respective des êtres qui la composent, si d’ailleurs elle était
assez vaste pour soumettre ces données à l’analyse, embrasserait dans la même formule les mouvemens
des plus grands corps de l’univers et ceux du plus léger atome : rien ne serait incertain pour elle, et
l’avenir comme le passé, serait présent à ses yeux.” [108]
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“The theory of quantum mechanics forces us [...] to drop the assumption of the absolute
character of knowledge about nature, and to deal with the principle of causality indepen-
dently of this assumption. Quantum mechanics has therefore not contradicted the law of
causality at all, but has clarified it and has removed from it other principles which are not
necessarily connected to it.” [111]

Nevertheless the apparent tension between causality and quantum theory still remains.
In particular, Bell’s theorem [7, 8], which relies on correlations between two observers’s
choices and results, has been analyzed in the light of causality. Wiseman and Cavalcanti
[112] have argued that the violation of Bell inequalities can be explained by the incompat-
ibility between “relativistic causality, according to which an event’s causal past is its past
lightcone; free choice, which states that measurement settings can be freely chosen and,
hence, have no causes within the system under consideration; and Reichenbach’s principle
of a common cause, according to which correlations among events that are not related as
cause and effect are explained by a common cause in their joint past that screens off the
correlation.” [9] Maintaining causality is still possible, but at the cost of superluminal
and/or retrocausal signalling, which entails a form of fine-tuning, i.e. the fact that some
causal dependence might not imply a probabilistic dependence, as shown by Wood and
Spekkens [10].

These studies do not necessarily spell “the end of causality”. However they hint at
the fact that a classical standard approach of causality might be challenged when it is
put in perspective with quantum phenomena. This motivates the study of more general
causal structures, quantum causal models [113], or theoretical framework in which causal
relations are themselves subject to quantum indeterminacy [26].

In 2005, Lucien Hardy paved the way for this new quantum approach of causality
in the context of quantum gravity, by introducing formalisms in which the causal or-
ders were not fixed a priori, unlike in standard quantum theory [11, 12]. He introduced
a new mathematical object, the “ ‘causaloid”, which encapsulates information about the
causal structure that interconnects different space–time regions. “Since then, researchers,
particularly in Pavia [13], Vienna [15] and the Perimeter Institute [14], have applied the
powerful tools and concepts of quantum information to shed new light on the relation
between the nature of time, causality and the formalism of quantum theory.”[26] The
process matrix formalism, developed in [15] and mainly used in this thesis, is one of these
frameworks for quantum causality.

A simple illustration which might give an intuitive picture of these “indefinite causal
orders” is to imagine two parties, Alice and Bob, trapped inside a causal loop. “...
Alice who is in the causal past of Bob who is in the causal past of Alice ...” In
such loop, notions like causality and time cannot be properly defined. The loop
needs to be “cut” in order to defined a consistent causal relation between Alice and
Bob. Indeed, the cut provides an entrance point (the “global past P ”) and an exit
point (the “global future F ”) to the loop. Its position is directly correlated with the
causal relation between Alice and Bob’s operations, cf. Fig.1.1. Imagine now that
the position of the cut is subject to quantum indeterminacy. The causal ordering
of Alice and Bob’s operations would become indefinite.
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Figure 1.1: A causal loop model: Trapped inside a causal loop, Alice and Bob’s operations
cannot be causally ordered. The introduction of a cut defines a global past and a global
future, and thus a well-defined causal relation between Alice and Bob. If the cut is put
between Bob’s output space and Alice’s input space, the causal order “Alice is in the
causal past of Bob” is defined. If it is put between Alice’s output space and Bob’s input
space, the causal order “Bob is in the causal past of Alice” is defined. Making the position
of the cut undetermined leads to an indefinite causal relation.

The study of indefinite causal orders raises new challenging and exciting questions.
For instance, what would be the consequences of having indefinite causal orders ? could
they be the “missing link” between quantum theory and gravity ? what kind of new
phenomenology would they give rise to, and could they be related with already known
quantum phenomena like nonlocality and contextuality ? do they give any advantages in
information processing ? and finally, are they physical, i.e. do they exist in Nature, or
are they merely mathematical artefacts ?

In this first part of the thesis, I will present work that aimed at answering such
questions. In chapter 2, I will start by introducing the process matrix formalism, a gen-
eralisation of standard quantum theory that relies on relaxing the traditional assumption
of predefined global causal order, while parties in distinct laboratories can still perform
arbitrary local quantum operations. This framework allows to describe the most general
standard quantum communication resources - the so-called quantum channels with mem-
ory - and more: some solutions were shown to be incompatible with a definite causal
order. Noteworthy, the tools introduced to identify this causal indefiniteness - causal
nonseparability [15, 16] and causal inequalities [15, 18] - have been developed by anal-
ogy with quantum entanglement and Bell inequalities. So-far, the only known physically
implementable example of a process matrix with indefinite causal structure was the “quan-
tum switch” [13], a process in which the causal order between two quantum operations is
coherently controlled by a qubit. While this process is causally nonseparable, it cannot
generate noncausal correlations, i.e. correlations that violate a causal inequality. Could
we go beyond the quantum switch, and find other examples of processes incompatible with
a definite causal order that are not mathematical chimeras ? In chapter 3, I will present
a new class of physically implementable quantum processes that includes the quantum
switch as a special case: quantum circuits with quantum control of causal order [86].
These allow one to imagine and conceive new kind of indefinite causal structures beyond
the quantum switch. However, like the quantum switch, they cannot generate noncausal
correlations. Although noncausal mathematical solutions have been found [15, 18], the
question of the physical realization of such a process remains open. Nonetheless, I will
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show in chapter 4 that certain causally nonseparable processes which cannot violate any
causal inequality, such as the quantum switch, can generate noncausal correlations in a
semi-device-independent scenario where the involved parties receive trusted quantum in-
puts, but whose operations are otherwise uncharacterised [87]. To do so, we define the
notion of causally nonseparable distributed measurements, paving the way for a resource
theory of causal nonseparability.
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Chapter 2

Preliminaries

In this chapter, I introduce the basic concepts and mathematical tools that I used in my
study of quantum scenarii with indefinite causal orders. For simplification purposes, I
will start by considering bipartite scenarii. I will present the process matrix framework
(Section 2.1, Section 2.2, Section 2.3), and two certifications of causal nonseparability
(Section 2.4), i.e. the incompatibility with a definite causal order: the construction of a
causal witness in a device-dependent scenario, and the generation of noncausal correlations
in a device-independent scenario. I then present a canonical example of an implementable
causally nonseparable process, the quantum switch (Section 2.5). Finally, I will conclude
by speculating on the nature of process matrices, based on recent advances in the literature
(Section 2.6).

2.1 From Operational Quantum Theory to the Process
Matrix Formalism

In what follows, the notions of causality and events considered will be employed in a
purely operational sense, without any reference to a space-time structure.

In an operational theory, primitive concepts, the events, are procedures of prepara-
tion, transformation, and measurement, each understood as a list of instructions that
an experimenter must follow. The theory gives a mathematical algorithm that fixes the
probability distribution on the results of a given measurement, for all possible prepara-
tions and transformations. Various operational theories are then distinguished by the
type of experimental statistics that they allow. Thus, one can, in such an operational
framework, study generalizations of quantum theory by analyzing conditions on probabil-
ity distributions and the obtained correlations. Intuitively, the information related to the
correlations between the observer’s chosen inputs and the obtained outputs is assumed
to be carried by physical systems. These are often represented by “wires”, connecting
“boxes” symbolizing various operations performed by observers on available information.

Quantum theory can be formalized in such a framework1, (cf. Appendix A). In 1925,
Heisenberg performed a revolution in the history of physics: he developed a theory solely

1It is important to emphasize that the operationalization of a theory is not related to a philosophical
interpretation, but it is an explanatory mode of the theory. An operational theory is therefore not the
equivalent of an instrumentalist interpretation of the type "Shut up and calculate".

30



based on variables which can be observed, “observables”. These physical variables were
mathematically formalized as matrices. A matrix formalism, where physics is anchored in
tables of numbers. Few years later, Dirac and Von Neumann establish the Hilbert-space-
based formalism of quantum theory that physicists still use to this date. However the
development and understanding of formalizing quantum theory did not remain stagnant.
Following Von Neumann’s “immoral confession” in a letter to Birkhoff that he did not
“believe absolutely in Hilbert space no more” [114] various attempts have been made to
revisit the mathematical structure of quantum theory. Mathematical tools from computer
science have been particularly useful to do so. As an example, the linear algebra of finite
dimensional Hilbert spaces strongly relates to the pictorial representation of monoidal
category theory, which allows one to describe all kind of processes [115, 116].

In fact, the operationalisation of quantum formalism has enabled to study information
theory in the light of quantum theory. Classically, computer circuits consist of wires, used
to carry information around the circuit, and logic gates, which perform manipulations of
the information. By analogy, quantum circuits are made of wires and elementary quan-
tum gates which respectively carry around and manipulate quantum information.

Intrinsically, quantum circuits do not allow for feedback from one part to another: the
quantum gates are causally ordered, i.e. a certain quantum gate is always applied either
before or after another gate. In an operational framework, causality is thus simply the
ordering of events, and can be encapsulated in (non)signalling constraints. Relaxing this
fundamental characteristic allows to go beyond the standard quantum theory, and study
its relation with causality.

The process matrix formalism was developed by Oreshkov, Costa and Brukner [15]
as a framework allowing to describe processes - i.e. resources relating local quantum
events with each other - that are not necessarily compatible with a definite causal order.
As mentioned above, the standard quantum processes are either no-signalling (entangled
state) or one-way-signalling (quantum channel) resources, only compatible with scenarii
with a definite global causal structure. One typically prepares quantum states, applies
some quantum operations (or “quantum gates”) in a well-defined order, and then makes
a measurement. The process matrix formalism allows to study all these standard causal
scenarii. However, by relaxing the assumption that there is a definite global causal struc-
ture a priori, it also opens the possibility to find new causal resources which might be
themselves subject to quantum indeterminacy.

2.2 Local Quantum Operations
For the sake of clarity, we will introduce the formalism by focusing on the bipartite case.
We consider two parties, Alice (A) and Bob (B), who each resides in a closed laboratory.
In a single run of the experiment, the entrance of the laboratories opens to let a physical
system enter in. The parties perform a local operation on it, during which the laboratories
are closed again, i.e. have no interaction with any other object. They only reopen to let
a physical system go out after the operations. Alice and Bob’s operations produce an
outcome, denoted by classical bits a and b respectively.

We assume that Alice and Bob perform local quantum operations. We consider some
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input Hilbert spaces HAI ,HBI (for some quantum system entering their laboratory) and
some outputs Hilbert spaces HAO ,HBO (for some quantum system exiting their labora-
tory). In addition, we allow Alice and Bob’s operations to also act on some auxiliary
systems with Hilbert spaces HÃ and HB̃, and have access to some auxiliary (potentially
entangled) quantum state ρ̃ÃB̃ ∈ L(HÃ ⊗ HB̃) (where L(H) denotes the space of linear
operators acting on H)2.

The most general description of a quantum operation is given by a quantum instru-
ment : a set of completely positive (CP) mapsMÃA

a : L(HÃ⊗HAI )→ L(HAO) associated
to all measurement outcomes a, whose sums

∑
aMa are completely positive trace preserv-

ing (CPTP) maps. Quantum instruments can be seen as a generalization of the notion of
Positive Operator-Valued Measure (POVM)3 which captures more general scenarii than
detection, such as transformations of the system. A convenient representation of these
operations is given by the Choi-Jamiołkowski (CJ) isomorphism [117, 118].

Intuitively, The CJ isomorphism simply consists in “turning a bra into a ket” [119]:

|i〉 〈k| ≡ |k〉 ⊗ |i〉

Therefore, it allows to express linear operators as pure states4, and maps as density
matrices, the “Choi matrices”. For a given linear map M : L(HX) → L(HY ), its Choi
matrix can be defined as

MXY := (IX ⊗M)(|1〉〉〈〈1|X)

=
∑
i,i′

|i〉〈i′|X ⊗M(|i〉〈i′|X) ∈ L(HXY ) (2.1)

where IX is the identity map on L(HX), |1〉〉X :=
∑

i |i〉
X ⊗ |i〉X and {|i〉X}i is a fixed

(so-called “computational”) basis of HX .5 A linear map M : L(HX) → L(HY ) is com-
pletely positive if and only if its Choi matrix MXY ∈ L(HXY ) is positive semidefinite;
it is trace-preserving if and only if its Choi matrix satisfies TrY M

XY = 1
X (where TrY

denotes the partial trace over HY ).

Thus, a quantum instrument {MÃA

a }a can be represented as a set of matrices {M ÃA
a }a

such that

M ÃA
a ≥ 0 , T rAO

∑
a

M ÃA
a = 1

ÃAI (2.2)

Another important tool that I will use in this section is the so-called “link product”,
who was originally introduced in [120, 121] to describe the composition of linear maps in

2Notations: for some Hilbert space HX , L(HX) denotes the space of linear operators on HX . For
two Hilbert spaces HX and HY , we write HXY = HX ⊗ HY . For brevity we also write HA = HAIAO ,
HB = HBIBO . Superscripts are typically used (when useful) to clarify the spaces on which the operators
act; e.g., 1X denotes the identity operator on HX .

3A POVM can be seen as a special case of quantum instrument with a trivial output Hilbert space,
i.e. its dimension is d(HAO ) = 1.

4This isomorphism corresponds to the vectorization of a matrix (cf. Appendix A).
5Note that the version of the Choi isomorphism that we use here differs from that originally used in

the process matrix framework [15] by a transpose.
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the Choi matrix representation. This product is particularly convenient and elegant, since
it can be intuitively interpreted as linking “quantum boxes” (quantum operations) with
each other by connecting their “wires” labeled with the same Hilbert space (cf. Appendix
A).

Consider two composite Hilbert spaces HXY = HX ⊗HY and HY Z = HY ⊗HZ that
share the same (possibly trivial) space factor HY (while HX and HZ do not overlap).
The link product of two matrices MXY ∈ L(HXY ) and NY Z ∈ L(HY Z) is then defined
as [120, 121, 86]

MXY ∗NY Z := TrY [(MXY ⊗ 1
Z)TY (1X ⊗NY Z)]

= (1XZ⊗〈〈1|Y)(MXY⊗NY Z)(1XZ⊗|1〉〉Y) ∈ L(HXZ) (2.3)

where TY is the partial transpose over HY (defined in the computational basis).

Up to reordering of the Hilbert spaces, the link product is commutative. Moreover, it
is also associative, provided each Hilbert space involved in a multiple link product appears
at most twice in all factors. Noteworthy, the product simplifies to a full trace

MY ∗NY := Tr
[
(MY )TNY

]
when HX and HZ are trivial, and to a mere tensor product

MX ∗NZ := MX ⊗NZ

when HY is trivial. It is also useful to note that

MXY ∗ 1Y = TrY M
XY ,

and that the link product of two positive semidefinite matrices is also positive semidefinite
(or a nonnegative scalar for trivial HX and HZ). Thus, Eq.(2.4) can be rewritten as

M ÃA
a ≥ 0 ,

∑
a

M ÃA
a ∗ 1AO = 1

ÃAI (2.4)

2.3 Process Matrices
The physical “process” of such scenario is entirely encapsulated in the probability distri-
bution P (a, b) established by Alice and Bob, usually referred to as correlations. Assuming
that Alice and Bob perform local quantum operations which can be described as prob-
abilistic mixtures of quantum instruments, this imposes that the probabilities should be
bilinear functions of these operations [15]. Moreover, the probabilities should be non-
contextual: the correlations should only depend on Alice’s and Bob’s CP maps rather
than on the whole instruments. Within the process matrix framework, these correlations
are given by the “generalised Born rule”

P (a, b) = Tr
[
(M ÃA

a ⊗M B̃B
b )T (ρÃB̃ ⊗WAB)

]
, (2.5)

where WAB ∈ L(HAB) is a Hermitian operator, the so-called process matrix. It can be
interpreted as a multipartite resource that encapsulates the notion of quantum state and
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quantum channel but also extends to describe more general causal structures (cf. Sec-
tion 2.6 for a discussion on the nature of process matrices).

Valid process matrix

To ensure that Eq. (2.5) always defines valid probabilities (non-negative summing
up to 1), even when Alice and Bob shares auxiliary input states, a valid WAB must

• be positive semidefinite (W ≥ 0),

• satisfy the normalisation Tr(W ) = dAOdBO , where we used the notation dX =
d(HX) for the dimension,

• belong to the nontrivial subspace LV of L(HAB) [15] defined by the con-
straints:

[1−AO]BIBOW = 0 (2.6)

[1−BO]AIAOW = 0 (2.7)

[1−AO][1−BO]W = 0 (2.8)

where we use the “trace-and-replace” notation of [16],

XW =
1
X

dX
⊗ TrXW, [1−X]W = W −X W (2.9)

Eq. (2.6) means that after tracing out Bob’s input BI and output BO Hilbert spaces,
the reduced process matrix carries out an identity operator on Alice’s output space AO.
This can be interpreted as “ignoring Bob’s operations, the reduced process on Alice’s
systems is still valid: Alice’s input precedes her output, i.e. the reduced process is com-
patible with Alice performing a quantum operation from the input space AI to the output
space AO, and thus avoids “post-selection” and “local loops” on Alice’s systems. Similarly,
Eq. (2.7) checks if after ignoring Alice’s operations, the reduced process on Bob’s systems
is valid and thus compatible with quantum operations from BI to BO, avoiding “post-
selection” and “local loops” on Bob’s systems. Finally, Eq. (2.8) checks that the process
matrix is not post-selecting on the output space AO ⊗ BO, nor it is a global loop on
AI ⊗ AO ⊗ BI ⊗ BO. Hence, satisfying Eq. (2.6)-(2.8) amounts to avoiding paradoxical
processes (cf. Part 3 “Time-Travel without Paradoxes”).

2.4 Causal nonseparability
A process is said to be compatible with the causal order where Alice acts before Bob
(noted A ≺ B) if it does not allow Bob to signal to Alice. It can be shown [16] that a
valid process matrix WA≺B compatible with this order is necessarily of the form

WA≺B = WA≺BI ⊗ 1
BO .

Analogously, a valid process matrix compatible with the causal order B ≺ A is of the
form WB≺A = WB≺AI ⊗ 1

AO .
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Causally separable bipartite process matrix

Definition 1. A bipartite process matrix is said to be causally separable if it is
compatible with a fixed causal order A ≺ B or B ≺ A, or a probabilistic mixture
of both, i.e. if it is compatible with a well-defined causal structure. Such a process
can be described as a convex mixture

W sep = qWA≺BI ⊗ 1
BO + (1− q)WB≺AI ⊗ 1

AO (2.10)

with q ∈ [0, 1], and with WA≺BI ,WB≺AI ≥ 0 valid causally-ordered process matri-
ces, hence satisfying

[1−AO]BIW
A≺BI = 0, [1−BO]AIW

B≺AI = 0. (2.11)

It can be shown that the set of (non-normalised) causally separable process matrices
defines a closed convex cone, noted Wsep. There exist valid processes that do not satisfy
Eq. (2.10), and thus are not included in Wsep. Such processes are called causally nonsep-
arable. They are incompatible with any definite causal structure.

The notion of causal nonseparability has been generalised to multipartite scenarii,
where more than two parties are involved. The simplest generalisation is to consider a
specific tripartite scenario, noted (2 +F ), that involves Alice, Bob, and third party Fiona
(F ), who is always last. Her output Hilbert space is trivial, dFO = 1, such that we will
note her input space F = FI , which can be interpreted as a global future with respect to
Alice and Bob’s operations. Hence, only two fixed causal orders are involved A ≺ B ≺ F
and B ≺ A ≺ F . In such scenario, causal (non)separability is defined as follows.

Causally separable (2 + F )−partite process matrix

Definition 2. A (2 + F )−partite process matrix is said to be causally separable
if it is compatible with some well-defined causal structure. Such a process can be
described as a convex mixture

W sep = qWA≺B≺F + (1− q)WB≺A≺F (2.12)

with q ∈ [0, 1],WA≺B≺F ,WB≺A≺F ≥ 0 and such that after tracing out Fiona’s space
F , the reduced process matrices on Alice and Bob is valid and compatible with a
well-defined causal order, TrF W

A≺B≺F = WA≺B and TrF W
B≺A≺F = WB≺A.

Beyond this simple scenario, the generalisation is less trivial. In fact, the multipartite
notion of causal nonseparability also needs to encapsulate the possibility of a dynamical
construction of the causal order. For example, imagine a general tripartite scenario, with
Alice, Bob, and Charlie. One can imagine a scenario where Alice performs her operation
first, and, depending on the produced outcome, the system either goes first to Bob and
then Charlie, or vice-versa. A definition and characterisation of causal (non)separability
is given for the N−partite case in [21, 122]. In the general tripartite case, a causally
separable process matrix is characterized as the following:
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Causally separable tripartite process matrix

Characterisation 3. A 3-partite process matrix is causally separable if and only
if it can be decomposed as

W sep = W(A) + W(B) + W(C)

=
︷ ︸︸ ︷
W(ABC) +W(ACB) +

︷ ︸︸ ︷
W(BCA)+(BAC) +

︷ ︸︸ ︷
W(CAB) +W(CBA) (2.13)

where, for each permutation of the three parties (X, Y, Z), W(X,Y,Z) and W(X) :=
W(X,Y,Z) +W(X,Z,Y ) are positive semidefinite matrices satisfying

[1−XO]Y ZW(X) = 0 [1−YO]ZW(X,Y,Z) = 0, [1−ZO]W(X,Y,Z) = 0 (2.14)

Note that I did not write the weights explicitly. Instead, for convenience, W sep is
decomposed in terms of three nonnormalised process matrices W(X), which can be inter-
preted as a process compatible with “the party X acts first”. Note also that the W(X,Y,Z)

are not necessarily valid process matrices. Thus, a causally nonseparable tripartite pro-
cess matrix is the convex mixture of the three valid process matrices each associated with
a different first party.

2.4.1 Device-Dependent Certification: Causal Witnesses

In analogy with entanglement witnesses, the notion of causal witness (or witnesses of
causal nonseparability) was introduced [16, 17] in order to identify if a given process
matrix is causally separable or not. This certification is device-dependent, i.e., it requires
to perfectly trust the implementation of the operations to be performed by Alice and Bob.
The set of causal witnesses is the set of Hermitian operators which define the dual cone
(which we denote using an asterisk) of the cone of Wsep, i.e.

(Wsep)∗ = {S | ∀W ∈ Wsep, Tr
(
STW

)
≥ 0} (2.15)

Since the set of causally separable process matrices Wsep is convex, according to
the separating hyperplane theorem [123], there exists a hyperplane that separates any
causally nonseparable process matrix from all causally separable process matrices. In
other words, there exists a “witness” S ∈ (Wsep)∗ for any causally nonseparable process
matrix W ns /∈ Wsep such that, 〈S〉 = Tr(STW ns) < 0. By characterizing the set of all
causal witnesses in terms of linear constraints on a convex cone, a witness can be found
by solving a semidefinite program6 (SDP) [16].

A witness can be measured on a given process by combining the statistics of a set
of quantum operations. In fact, it can be decomposed in terms of various operations
MA

a|x,M
B
b|y ≥ 0 (we don’t need Ã, B̃ here),

S =
∑
x,y,a,b

γx,y,a,bM
A
a|x ⊗MB

b|y (2.16)

for some real coefficients γx,y,a,b, where x and y can be interpreted as classical inputs
given to Alice and Bob indicating which instruments MA

|x = {MA
a|x}a and MB

|y = {MB
b|y}b,

6Semidefinite programs are a specific type of convex optimisation problem which can be solved effi-
ciently in various cases of interest (cf. Annex A of [124] for a nice introduction).
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Figure 2.1: The set of causally separable processes Wsep is a closed convex cone (repre-
sented by the purple inner cone). The separating hyperplane theorem guarantees that for
any causally nonseparable process W ns in the larger (blue) set of valid process matrices
W , there is a hyperplane that separates it fromWsep. In other words, there always exists
a witness certifying the causal nonseparability of any W ns /∈ Wsep.

with classical outputs a, b, they should perform. By implementing the corresponding
instruments MA

|x and MB
|y , one can measure the expectation value 〈S〉, which can be

expressed as a combination of the joint probabilities of obtaining outcomes a and b from
these operations, conditioning on the choice of instrument made explicit by the labels x
and y,

Tr
(
STW

)
= S ∗W =

∑
x,y,a,b

γx,y,a,b P (a, b|MA
|x,M

B
|y ) (2.17)

For a given process matrix W , we typically investigate the causal nonseparability of
the unnormalized7 noisy process

W (r) = W + r1◦ (2.18)

with 1
◦ = 1

AB/dAIBI the process matrix that can be interpreted as a “white noise”, since
it amounts to completely “ignore” (trace out) both Alice and Bob’s incoming systems.

On can define the following optimisation problem that consists in minimizing the
amount of white noise added to the process such that the noisy process is causally sepa-
rable:

min r
s.t. W + r1◦ ∈ Wsep (2.19)

Using the definition Def.(1) and noting that for W ∈ LV , W + r1◦ is automatically in
LV , on can see that this is a SDP problem, i.e. it can be expressed with explicit positive

7The normalization W (r) = 1
1+r (W + r1◦) is irrelevant in order to check whether the process is in the

convex cone Wsep.
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semidefinite constraints in the bipartite8 case:

min r
s.t. W + r1◦ = WA≺B +WB≺A,

WA≺B ≥ 0, [1−BO]W
A≺B = 0,

WB≺A ≥ 0, [1−AO]W
B≺A = 0

r ≥ 0 (2.20)

One can show that the constraints [1−AO]BIBOW
A≺B = 0 and [1−BO]AIAOW

B≺A = 0 can
be omitted if W is already assumed to be valid, i.e. to be part of LV .

This primal SDP problem is intimately linked to its dual problem:

min Tr
(
STW

)
s.t. S ∈ (Wsep)∗, Tr

(
ST .1◦

)
≤ 1 (2.21)

which can also be expressed with positive semidefinite constraints:

min Tr
(
STW

)
s.t. S = SP + S⊥

BOS
P ≥ 0, AOS

P ≥ 0, LV (S⊥) = 0

Tr
(
ST1◦

)
≤ 1 (2.22)

where LV is the projector onto the linear subspace LV (= {S|LV (S) = S})9.

The optimal solutions of the primal and dual problems, r∗ and S∗, are related by the
duality theorem for SDP problems [125]:

r∗ = −Tr(S∗W ) (2.23)

where r∗ can be interpreted as the random robustness [16, 17], i.e. a quantifier of the
robustness of the process W with respect to white noise. In particular, r∗ > 0 implies
that the process W is causally nonseparable. Thus, the optimal solution of the dual prob-
lem S∗, in the case where Tr(S∗.W ) < 0, provides a witness of causal nonseparability ofW .

The first causally nonseparable process matrix formulated in the literature by Ore-
shkov, Costa and Brukner (OCB) [15], is

WOCB =
1

4

(
1
AB +

1√
2

(1AIZAOZBI1
BO + ZAI1

AOXBIZBO)

)
(2.24)

with the Pauli operators Z =

(
1 0
0 −1

)
and X =

(
0 1
1 0

)
.

8The constraints are similar in the (2 + F )−partite case, with W replaced by FW , cf. [16, 17].
9It can be written as LV (W ) =[1−[1−BO]AIAO−[1−AO]BIBO−[1−AO][1−BO]] W .
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Up to a certain amount of white noise added to the process WOCB, quantified by r∗,
the noisy process becomes causally separable, i.e. compatible with a definite causal order:

1

r∗ + 1
(WOCB + r∗1◦) =

1

2
WA≺B +

1

2
WB≺A (2.25)

with r∗ =
√

2− 1 ; WA≺B = 1
◦ + 1

4
1
AIZAOZBI1

BO and WB≺A = 1
◦ + 1

4
ZAI1

AOXBIZBO

2.4.2 Device-Independent Certification: Non-causal correlations

The compatibility of a process with indefinite causal order can also be demonstrated in a
device-independent manner. In this setting, the instruments performed are identified only
by their labels x, y, but we make no assumption about which physical instruments these
labels correspond to. This certification relies on the correlations established by Alice and
Bob, described by the joint probability distribution P (a, b|x, y), after multiple runs of the
experiment.

If Alice’s operation precedes Bob’s in each run so that Bob cannot signal to Alice, the
correlations are compatible with the causal order A ≺ B and satisfy

∀x, y, y′, a
∑
b

PA≺B(a, b|x, y) =
∑
b

PA≺B(a, b|x, y′) (2.26)

Similarly, correlations compatible with the causal order B ≺ A satisfy the no-signalling
constraint

∀x, x′, y, b
∑
a

PB≺A(a, b|x, y) =
∑
a

PB≺A(a, b|x′, y) (2.27)

Causal and noncausal correlations

Definition 4. Following [15], bipartite correlations are called causal if they can be
written as a convex mixture of probability distributions compatible with A ≺ B or
B ≺ A, with q ∈ [0, 1]:

P (a, b|x, y) = qPA≺B(a, b|x, y) + (1− q)PB≺A(a, b|x, y) (2.28)

Correlations that cannot be written as in Eq. (2.28) are said to be noncausal.
In analogy with nonlocal correlations and Bell inequalities, the noncausality of
correlations can be guaranteed via the violation of causal inequalities.

A causal inequality is an inequality that is satisfied by any causal correlations, i.e.
of the form Eq. (2.28). They can be written as a linear combination of correlations
p(a, b|x, y), constrained by the “rules” of a causal game, a scenario in which two parties
must perform a task that involves communication (unlike Bell scenarii, where the parties
cannot signal to each other).

From the seminal paper [15], the violation of a causal inequality implies the incom-
patibility of the three following assumptions, meaning that at least one of them should
be discarded:
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• Causal Structure (CS): Alice and Bob’s operations are localized in a causal
structure.

• Free Choice (FC): each input bit can only be correlated with events in its
causal future.

• Closed Laboratories (CL): the outcome a (resp. b) can be correlated with the
input y (resp. x) only if the latter is generated in the causal past of the system
entering Alice (resp. Bob)’s laboratory.

As shown in [18], the set of causal correlations forms a polytope, whose non-trivial
facets define causal inequalities, in analogy with the local polytope and Bell inequalities.

Clearly, the correlations obtained from a causally separable process matrix are neces-
sarily causal. Hence, within the process matrix framework a violation of a causal inequal-
ity certifies that the process involved is causally nonseparable. A causally nonseparable
process matrix that can generate noncausal correlations is a noncausal process matrix.
This is the case for the “OCB process” in Eq. (2.24). However, importantly, there are
causally nonseparable process matrices which can never generate non-causal correlations
[16, 15, 126, 86, 127].

Example: The Guess Your Neighbour Input game

A simple example of a causal inequality can be obtained from the Guess Your Neighbour
Input (GYNI) game [18]. In this scenario, Alice and Bob have both a binary input,
respectively x and y, uniformly distributed (p(x) = p(y) = 1/2), according to which they
chose their respective operation, as well as a binary output, respectively a and b. The task
of each player is to guess the input of the other player. For example, let us assume that
Alice is in the past of Bob. Thus, Alice can signal to Bob, and Bob cannot signal to Alice.
Assuming Alice signals the value of her input to Bob, Bob’s guess will always be right in
this particular case, and he can always output Alice’s input: b = x. However, because
Bob’s input is random, Alice’s guess will always succeed with probability 1/2. The overall
success probability for the parties to win the game is thus bounded by 1/2. The same is
true in the case of Bob being in the past of Alice, or for a probabilistic mixture of the two
cases. Thus, Alice and Bob’s probability of winning is bounded by the causal inequality :

P causal(a = y, b = x) =
1

4

∑
x,y,a,b

δa,yδb,xP (a, b|x, y) ≤ 1/2 (2.29)

It was shown in [18] that given the causally nonseparable process matrix:

WGY NI =
1

4

(
1
AB +

1√
2

(ZAIZAOZBI1
BO + ZAI1

AOXBIXBO)

)
(2.30)
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and the instruments:

MA
0|0 = MB

0|0 = 0 (2.31)

MA
1|0 = MB

1|0 = |1〉〉〈〈1| (2.32)

MA
0|1 = MB

0|1 = |0〉〈0| ⊗ |0〉〈0| (2.33)

MA
1|1 = MB

1|1 = |1〉〈1| ⊗ |0〉〈0| (2.34)

one finds

P (a = y, b = x) =
5

16

(
1 +

1√
2

)
≈ 0.5335 > 1/2 (2.35)

thus violating the causal inequality.

Such non-causal correlations exist theoretically. However, so far, no physically im-
plementable resource able to generate them without a “trivial” violation of one of the
assumptions (CS, FC,CL) - e.g. via post-selection [20, 21], two-way signalling [128] -
has been found. Whether causal-inequality-violating processes can indeed be realized in
practice remains an open question.

Maximum violation of causal inequalities

Based on Appendix B of [18].

One may wonder what is the maximum violation of causal inequalities by correlations
generated from the action of local quantum operations on a process matrix. To answer
this question, we follow the method of [18], itself inspired by [129].

As explained in [18], “maximizing the violation of a causal inequality over the process
matrix and the instruments is a nonlinear problem, which makes it intractable directly.”
To optimize the process matrix correlations for some HAI , HAO , HBI , HBO of a given
dimension, the idea is to perform the following see-saw algorithm.

Let I(W, {MA
a|x}a, {MB

b|y}b) be the value taken by the combination of probabilities in
the causal inequality (e.g., in the GYNI game, I(W, {MA

a|x}a, {MB
b|y}b) = P process(a =

y, b = x)), a function of the process matrix and Alice and Bob’s instruments.
Assume first that Alice and Bob’s operations are fixed: we generate some random sets

of instruments {MA
a|x}◦a and {MB

b|y}◦b . Then, I(W, {MA
a|x}◦a, {MB

b|y}◦b) is a linear function of
the process matrix W , and its maximization is the SDP problem

max I(W, {MA
a|x}◦a, {MB

b|y}◦b)
s.t. W ∈ Wsep (2.36)

which can be solved efficiently.

The next step is to fix the process matrix with the optimal solution W ◦ found previ-
ously, as well as one of the partie’s operations (e.g. Alice’s). This time I(W ◦, {MA

a|x}◦a, {MB
b|y}b)

is a linear function of Bob’s instruments {MB
b|y}b, and its maximization is the SDP problem

max I(W ◦, {MA
a|x}◦a, {MB

b|y}b)

s.t. ∀ y, b MB
b|y ≥ 0 ,

∑
b

MB
b|y ∗ 1BO = 1

BI . (2.37)
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The last step consists in fixing both W ◦ and {MB
b|y}◦b . I(W ◦, {MA

a|x}a, {MB
b|y}◦b) is a

linear function of Alice’s instruments {MA
a|y}a, and its maximization is the SDP problem

max I(W ◦, {MA
a|x}a, {MB

b|y}◦b)

s.t. ∀ x, a MA
a|x ≥ 0 ,

∑
a

MA
a|x ∗ 1AO = 1

AI . (2.38)

This three steps are repeated - using the optimal W ◦, {MA
a|x}◦a and {MB

b|y}◦b to initialize
the next iteration - until the solution converges.

Importantly, “note that because the optimization problem is nonconvex, the algorithm
is not guaranteed to converge to a global maximum” [18]. Nevertheless, at least for small
enough dimensions (e.g. qubits), we can conjecture that the global maximum can be found
by repeating the see-saw algorithm for different random initializations multiple times.

2.5 Physical Indefinite Causal Orders: the Quantum
Switch

A canonical example of a physical quantum process incompatible with a definite causal
order is the so-called quantum switch [13] (its implementation is discussed in Section
3.4.1). The considered scenario involves (2 + F ) parties: Alice, Bob and Fiona. Alice
and Bob can perform respectively a unitary operation UA and UB on a “target qubit”
|ψ〉t. The order of their operations is coherently controlled by another degree of freedom,
the so-called “control qubit” |φ〉c. Fiona recovers the global compound system of the
target and the control, and can perform measurements on it. Therefore, the order in
which the gates are performed is coherently controlled by a quantum system. Initially,
the description of the global system {control-target} takes the form: |φ〉c ⊗ |ψ〉t. If the
control qubit is in the initial state |0〉c, Alice applies an operation on the target before
Bob, and Fiona recovers the final state: |0〉c ⊗ UBUA |ψ〉t. If the control qubit is in the
initial state |1〉c, Bob applies an operation on the target before Alice, and Fiona recovers
the final state: |1〉c ⊗ UAUB |ψ〉t. If the control qubit is in the superposed initial state
|+〉c = 1√

2
(|0〉c + |1〉c), Fiona recovers the final state:

|+〉c ⊗ |ψ〉t →
1√
2

(|0〉c ⊗ UBUA |ψ〉t + |1〉c ⊗ UAUB |ψ〉t) (2.39)

In this case, Alice and Bob’s operations are often referred as being in a “superposition
of orders”. Note that this is a misnomer: the causal order is entangled with / coherently
controlled by a quantum system, rather than being itself in superposition10. Further-
more, a no-go theorem shows that a pure superposition of causal orders is not possible
for a broad class of processes [130].

The causal structure underlying the quantum switch can be expressed in the pro-
cess matrix formalism. Alice and Bob’s operations are associated with Hilbert spaces

10Note that the same misnomer commonly appears when the Schrödinger’s cat is said to be in a
superposition of “alive” and “dead”. One should rather say that the state of the cat is entangled with /
coherently controlled by a quantum system.
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HAI ,HAO and HBI ,HBO , and Fiona’s measurement with the input Hilbert spaces HF t

(for the target) and HF c (for the control).

The Quantum Switch

The process matrix of the quantum switch is convienently considered to be the
reduced tripartite process matrix:

WABF c

switch = TrF t |w〉 〈w|ABF
tF c (2.40)

with the process vectora:

|w〉ABF
tF c =

1√
2

(
|w〉A≺B≺F

tF c + |w〉B≺A≺F
tF c
)

=
1√
2

(
|ψ〉AI |1〉〉AOBI |1〉〉BOF

t

|0〉F
c

+ |ψ〉BI |1〉〉BOAI |1〉〉AOF
t

|1〉F
c
)

(2.41)

with implicit tensor products. The unnormalized Bell state |1〉〉XOYI =
∑

i |i〉
XO ⊗

|i〉YI , for a fixed orthonormal basis {|i〉X}i (the computational basis of HX) rep-
resents an identity channel between party X’s output Hilbert space XO and party
Y ’s input Hilbert space YI .

a“In some cases, the process matrix turns out to be a rank-one projector. If the CJ operators
representing the local operations are also rank-one projectors, as is the case for unitaries and
projective measurements followed by pure repreparations, it is convenient to work at the level of
vectors and of probability amplitudes.” [16], cf. Definition 6.

In fact, a process vector of the form

|w〉A≺B≺F
tF c = |ψ〉AI |1〉〉AOBI |1〉〉BOF

t

|0〉F
c

(2.42)

can naively be understood as the following: the target qubit |ψ〉t enters Alice’s laboratory
(and thus evolves in the space HAI ). After Alice’s operation, it leaves her laboratory and
is sent to Bob’s without intermediate transformation: hence the identity channel from
Alice’s output space to Bob’s input space |1〉〉AOBI . Bob performs in turn an operation on
the target, and, finally, the system is sent to Fiona, without intermediate transformation,
|1〉〉BOF

t

. This process is correlated with the control qubit in state |0〉c. Being unaltered
and unseen by Alice and Bob during the process, one can consider that the latter is di-
rectly sent to Fiona. It thus evolves in the Hilbert space HF c .

Therefore, Eq.(2.40) can be written as:

WABF c

switch =
1

2
TrF t(W

A≺B≺F tF c +WB≺A≺F tF c ...

...+ |w〉A≺B≺F
tF c 〈w|B≺A≺F

tF c + |w〉B≺A≺F
tF c 〈w|A≺B≺F

tF c) (2.43)

withWA≺B≺F tF c = |w〉A≺B≺F
tF c 〈w|A≺B≺F

tF c andWB≺A≺F tF c = |w〉B≺A≺F
tF c 〈w|B≺A≺F

tF c ,
corresponding to well defined causal orders. Intuitively, Eq. (2.43) can thus be interpreted
as the sum of two causally ordered process matrices,WA≺B≺F tF c andWB≺A≺F tF c , and two
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“interference” / coherence terms, |w〉A≺B≺F
tF c 〈w|B≺A≺F

tF c and |w〉B≺A≺F
tF c 〈w|A≺B≺F

tF c .
Because this process matrix is a rank-1 projector (it is “pure”, cf. Definition 6), it cannot
be decomposed as a convex mixture of nontrivial process matrices. Thus it follows that
the process matrix W is causally nonseparable.

The causal nonseparability of the quantum switch can be certified by constructing a
causal witness, with a random robustness [16, 17]

r∗ ≈ 1, 576. (2.44)

Nevertheless, it cannot violate a causal inequality, as shown in [16, 21]. In fact, the
last party, Fiona, cannot signal to Alice nor Bob. Therefore, the correlation generated by
the process matrix W of the quantum switch takes the form:

p(a, b, f |x, y, z) =
∑
f ′

p(a, b, f ′|x, y, z)
p(a, b, f |x, y, z)∑
f ′′ p(a, b, f

′′|x, y, z)

= ((MA
a|x ⊗MB

b|y ⊗
∑
f ′

MF
f ′|z) ∗WABF )p(f |a, b, x, y, z)

= ((MA
a|x ⊗MB

b|y ⊗ 1
F ) ∗WABF )p(f |a, b, x, y, z)

= (MA
a|x ⊗MB

b|y) ∗ (TrF W
ABF )p(f |a, b, x, y, z)

= p(a, b|x, y)p(f |a, b, x, y, z) (2.45)

where the probability distribution p(a, b|x, y) is generated by the causally separable pro-
cess matrix

TrF W
ABF =

1

2

(
WA≺B +WB≺A) (2.46)

with WA≺B = TrF tF cW
A≺B≺F tF c and WB≺A = TrF tF cW

B≺A≺F tF c . In fact, the “interfer-
ence” terms that were responsible of the causal nonseparability of the quantum switch are
killed when the control Hilbert space HFc is traced out. Therefore, the reduced process
generates causal correlations.

Causal and noncausal correlations - (2 + F ) scenario

Definition 5. Following [16, 17], (2 + F ) correlations are called causal if they
can be written as a convex mixture of probability distributions compatible with
A ≺ B ≺ F or B ≺ A ≺ F , with q ∈ [0, 1]:

P (a, b|x, y) = qPA≺B≺F (a, b|x, y) + (1− q)PB≺A≺F (a, b|x, y) (2.47)

Correlations that cannot be written as in Eq. (2.47) are noncausal.

It follows that the probability distribution p(a, b, f |x, y, z) of Eq. (2.45) is causal as
well. Thus, the correlations generated by the quantum switch cannot violate a causal
inequality, although the process matrix is causally nonseparable. This is analogous with
certain entangled states that, although being nonseparable, cannot violate a Bell inequal-
ity [131] (cf. Chapter 4).
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As we will see in more details in Section 3.5, processes with indefinite causal orders can
achieve some computational advantages over processes with a fixed causal order. A simple
example of such advantage can be obtained with the quantum switch. Assume that Alice
and Bob’s unitary operations11 on the target either commute [UA, UB] = UAUB−UBUA =
0, or anticommute, {UA, UB} = UAUB + UBUA = 0. The goal of the task is to determine
which one is true. Writing the output state of the quantum switch Eq.(2.39) with the
control qubit in the diagonal basis {|±〉 = 1√

2
(|0〉 ± |1〉)}, we have

|+〉c ⊗ |ψ〉t →
1

2
(|+〉c ⊗ {UA, UB} |ψ〉t − |−〉c ⊗ [UA, UB] |ψ〉t) (2.48)

If the control is found in state |+〉c, then Alice and Bob’s operations commute with
certainty. If it is found in state |−〉c, Alice and Bob’s operations anticommute with
certainty. Thus, only one application of each operation is necessary to realize the task.
This is not possible when UA and UB are implemented in a quantum circuit with a fixed
causal order [16, 20]. Therefore, the causal nonseparability of the quantum switch can be
used as a new quantum computational resource12.

2.6 What are process matrices ?
In this section, I present some personal reflections on the nature of process matrices based
on the literature.

Process matrices were constructed based on mathematical considerations. A process
matrix can be seen as a multipartite resource that encapsulates the notion of quantum
state and quantum channel with memory, but also extends to describe more general causal
structures. In the seminal paper by Oreshkov, Costa and Brukner [15], it is defined as a
functional on quantum instruments such that the generated correlations are well-defined
for all instruments, including situations in which the parties share entangled auxiliary
systems, and thus do not generate logical paradoxes (cf. Part III “Time Travel without
Paradoxes”). The process matrix can also be seen as a “supermap”, mapping the local
quantum operations of the parties into a CPTP map from a past Hilbert space HP into a
future Hilbert space HF [86, 132] (cf. Section 3.1). A process matrix is thus a map from
the past HP and output Hilbert spaces HAO ,HBO to the future HF and the input Hilbert
spaces HAI ,HBI .

But beyond their mathematical formulation, what are process matrices ? Can they
all be realized in a laboratory ? Are they all physical ? Are there physical processes that
could violate a causal inequality ?

The process matrix formalism goes beyond the quantum formalism in the sense that, by
relaxing the assumption of a predefined causal order between Alice and Bob’s operations, it
allows the description of resources which can go beyond definite causal order. For instance,
the quantum switch is such a resource, incompatible with a definite causal order. But, the
quantum switch is, as its name suggests, quantum: it is compatible with quantum theory,

11Note that the quantum switch can be defined for operations that are not unitaries.
12In fact, it was shown in [16] that this task could be used to construct a causal witness in order to

certify the causal nonseparability of the quantum switch.
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and thus does not require to be expressed in the process matrix formalism. The latter
is convenient -not to say essential- to study its causal indefiniteness, i.e. to define and
certify causal nonseparability. However, while all quantum operations can occur inside
Alice and Bob’s laboratories, not all quantum transformations have a representation in
the process matrix formalism. This is the case for example for the “ ‘half switch”, which
describes the evolution

|+〉c ⊗ |ψ〉t →
1√
2

(|0〉c ⊗ UA |ψ〉t + |1〉c ⊗ UB |ψ〉t) (2.49)

This transformation is ill-defined in the process matrix formalism because only one of
Alice or Bob’s operation is performed. They do not “both act once and only once”.

De facto, the process matrix does not generalise quantum theory at the level of quan-
tum operations, but at a higher level of abstraction, at the level of the (causal) resources
relating quantum events with each other. It is a theory of higher-order multipartite op-
erations. In a sense, the process matrix formalism should arguably be presented as a
meta-theory of quantum theory rather than a generalisation of it: a process matrix is a
meta-theoretical object rather than an object of quantum theory (cf. Chapter 8).

Which processes can be implemented in a laboratory and which are mere mathematical
artefacts is a non-trivial question. For instance, it was shown that all process matrices
can be realized under a suitable post-selection [133, 88, 134]. The set of process matrices
was also found to be equivalent with the set of linear post-selection-closed-timelike curves
(P-CTC) [25, 24] (cf. Chapter 12). However the fact that all processes matrices can be
simulated with an experimental post-selection, or could be found in hypothetical exotic
systems involving a fundamental post-selection (cf. Section 7.3), does not answer the
question about their “physicality” in a satisfactory way. In fact, some post-quantum
resources such as the Popescu-Rohrlich (PR) boxes [135, 81] - known to be maximally
non-local (they allow to win the CHSH game with certainty)- can be simulated with a
post-selection [136, 137, 138, 139]. Nevertheless, this does not suggest that they can be
realizable in Nature without cheating.

The notion of purifiability (also called unitary extendibility) has been proposed as
a criterion of physicality for processes [23]. Purifiable processes are those than can be
obtained from some pure processes after tracing out on some involved Hilbert spaces. A
pure process is defined as being compatible with the reversibility of the parties’ operations.
In other words, if unitary operations are applied in the local laboratories, then the global
induced map from the past P to the future F is also a unitary transformation.

Pure process matrix

Definition 6. A bipartite process matrixW PABF is pure if, for all auxiliary Hilbert
spacesHA′I ,HA′O , HB′I ,HB′O (with dimensions satisfying dAIdA′I = dAOdA′O , dBIdB′I =

dBOdB′O and dPdA′IdB′I = dFdA′OdB′O) and all unitaries UA : HAIA
′
I → HAOA

′
O , UB :

HBIB
′
I → HBOB

′
O , the resulting transformation is a unitary channel G : HPA′IB

′
I →

HFA′OB
′
O with the Choi representation

GPA′B′F = W PABF ∗ (|UA〉〉 〈〈UA|AA
′
⊗ |UB〉〉 〈〈UB|BB

′
) (2.50)

with |UA〉〉 〈〈UA|AA
′
and |UB〉〉 〈〈UB|BB

′
the Choi representations of the unitaries.
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Pure processes can be characterized as the processes that can be written as a rank-1
projector W = |Uw〉〉 〈〈Uw| for some unitary Uw : HPAOBO → HFAIBI , e.g. the quan-
tum switch. However, in contrast with the purification of mixed state and the dilation of
quantum channel into a unitary channel, there exist processes that do not admit a unitary
extension. The OCB process of Eq. (2.24) [15], the GYNI process of Eq. (2.30) [18], as
well as all bipartite causally nonseparable process matrices are not purifiable [23, 140].
If the notion of purifiability is accepted as a necessary or at least a reasonable notion
for physicality “because the irreversibility that occurs within them can be interpreted as
arising from forgetting degrees of freedom in a fundamentally reversible process” [141],
then physical examples of causally nonseparable processes do not exist in the bipartite
case.

This negative result does not mean that the violation of causal inequality is not phys-
ical. In fact, a tripartite noncausal process found by Araújo and Feix and then published
and further studied by Baumeler and Wolf [142, 24, 22], called the Lugano process, was
shown to be purifiable. Interestingly, this process matrix is “classical”, in the sense that
it is diagonal in the computational basis. This suggests that causal nonseparability is not
uniquely a quantum feature, as it can also manifest in classical processes. The Lugano
process can be written as

WABC =
∑
a,b,c

|a, b, c〉 〈a, b, c|AOBOCO ⊗ |¬b ∧ c,¬c ∧ a,¬a ∧ b〉 〈¬b ∧ c,¬c ∧ a,¬a ∧ b|AIBICI

=
∑
a,b,c

|¬b ∧ c〉 〈¬b ∧ c|AI ⊗ |a〉 〈a|AO ⊗ |¬c ∧ a〉 〈¬c ∧ a|BI ⊗ |b〉 〈b|BO ...

...⊗ |¬a ∧ b〉 〈¬a ∧ b|CI ⊗ |c〉 〈c|CO (2.51)

Its purified extension is given by

W PABCF
L = |wL〉 〈wL| (2.52)

with the process vector

|wL〉 =
∑

a,b,c,i,j,k

|i, j, k〉P ⊗ |i⊕ ¬b ∧ c〉AI ⊗ |a〉AO ⊗ |j ⊕ ¬c ∧ a〉BI ⊗ |b〉BO ...

...⊗ |k ⊕ ¬c ∧ a〉CI ⊗ |c〉CO ⊗ |a, b, c〉F (2.53)

In this process, the state observed by each party - Alice, Bob and Charlie - depends
non-trivially on the states prepared by all the others. All of them can verify to be both
in the past and the future of each other, without any restriction on the local operations
they can perform and without logical paradoxes. This process has been formalised and
generalised in a classical version of the process matrix formalism [143, 144, 145].

Physical processes with indefinite causal orders have also been interpreted in terms of
timedelocalized subsystems [146] and observer-dependent local events [141]. It was shown
that there is a one-to-one correspondence between pure processes and consistent causal
reference frames, which are the processes that allow a description in terms of a quantum
system evolving in time. In such approaches, the operation of a party can be taken as ref-
erence and is always localised. For causally separable (pure) processes, the other parties’
operations are also localised, independently of the reference. But in the case of causally
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Figure 2.2: Circuit representation of the purified Lugano process WL, from [25].

nonseparable (pure) processes, the other parties’ operations are “ “smeared out” in the
future and in the past” [141]. Furthermore, these processes - including the “noncausal”
ones that violate a causal inequality, like the Lugano process - admit a causal explanation
in terms of cyclic causal models [140].
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Chapter 3

Beyond the Quantum Switch: Quantum
Circuits with Quantum Control of
causal orders

This chapter is taken from and based on our publication [86]. A similar presentation was
made by Julian Wechs in his PhD thesis [147]. In particular, I have characterized the
quantum switch as a quantum circuits with quantum control of causal orders (QC-QC)
(Section 3.4), as well as straightforward generalisations (Section 3.4.2). I have proposed
a new implementation of the quantum switch, which require fewer degrees of freedom than
previous realizations (Section 3.4.1). I have also studied new examples of QC-QCs based
on an original idea from Cyril Branciard (Section 3.4.3). Finally, Julian Wechs and I
have found several examples of tasks for which QC-QCs provide an advantage over circuits
with definite causal order (Section 3.5).

One of the main open questions in the field of quantum causality is to identify which
causally nonseparable process matrices have a physical realization, and more specifically
if there exist physical causally nonseparable processes able to violate a causal inequal-
ity. This question can be studied in a top-down approach, i.e. answering directly the
question “Which process matrices are physical ?”. The main difficulty of this task is to
find a satisfactory criterion for physicality. In [23], a purification postulate is proposed:
“process matrices are physical only if they are purifiable”, and some processes, like the
OCB process of Eq. (2.24) [15] and the GYNI process of Eq. (2.30), do not satisfy the
associated conditions (cf. Section 2.6).

The question can also be studied in a bottom-up approach. Process matrices that can
be realized with a quantum circuit as quantum supermaps (Section 3.1) are straightfor-
wardly physical. Thus the question: “What kind of quantum circuits are incompatible
with a definite causal order ?”.

Standard quantum circuits are compatible with a fixed causal order (QC-FO) (Section
3.2). They correspond to the so-called quantum combs, in which open slots into which
variable external operations can be inserted in a fixed order [148, 120, 121]. Building on
the idea, we introduce a new class of quantum circuits where the causal order is established
dynamically, controlled by the classical inputs and outputs of the external operations as
they are performed on the fly: quantum circuits with classical control (QC-CC) (Section

49



3.3). However these are all compatible with a definite causal order, i.e. the corresponding
process matrices are all causally separable.

So far, the quantum switch - with some rather straightforward multipartite generali-
sations [149, 150] or combinations [151, 152] - was the only practical example of a causally
nonseparable process that has been proposed in the literature. It is a quantum circuit
in which the causal order is coherently controlled. Building on this canonical example,
we proposed new classes of experimentally realisable process matrices, corresponding to
quantum circuits with quantum control of causal orders (QC-QC) (Section 3.4). This new
type of circuits, for which some are incompatible with a definite causal order) offers ad-
vantages over QC-FOs and QC-CCs in some specific information processing tasks (Section
3.5). However, despite the fact that some QC-QCs are causally nonseparable, they are all
causal, i.e. they cannot generate noncausal correlations (Section 3.6).

3.1 Quantum Circuits and Process Matrices as Quan-
tum Supermaps

In analogy with how a classical computer is based on an electrical circuit made of wires
connecting logical gates, quantum computation can be modeled by quantum circuits, made
of wires - systems carrying around quantum information - and quantum operations - that
manipulate them. In such a circuit, some operations might be interpreted as being “exter-
nal”, as they can freely chosen. The quantum circuit is thus built on the other, “internal”
operations, with empty slots containing pins, on which the free operations are plugged in.
From such perspective, a quantum circuit can be seen as a higher-order operation, map-
ping external quantum operations (CP maps) into a global CP map: a so-called quantum
supermap.

Process matrices as previously defined, i.e. as higher-order operations transforming CP
maps into probabilities - CP maps with trivial (1-dimensional) input and ouptut spaces -
can be interpreted as such quantum supermaps. Previously presented in the bipartite case,
here we will consider the multipartite generalisation of process matrices as quantum su-
permaps takingN external locally quantum operations, CP mapsAk : L(HAIk)→ L(HAOk )
(with input and output Hilbert spaces HAIk and HAOk with finite dimensions dAIk and dAOk
respectively, and k ∈ N := {1, . . . , N}) into a global CP map M operating from some
“global past space” HP to a “global future space” HF , cf. Fig. 3.1. These global spaces
can be interpreted respectively as a space where an input system is prepared and a space
where a final measurement might be performed on the output system, respectively.

Note that we impose that the considered quantum supermaps should be completely
CP-preserving (CCP) [132, 120]. The supermaps should be linear, i.e. if a given opera-
tion Ak is obtained as a probabilistic mixture of some operations A(j)

k , then the resulting
map M should also be obtained as the corresponding probabilistic mixture. Moreover,
if the local CP maps Ak shall be extended with some auxiliary spaces HAI

′
k and HAO

′
k

into extended maps A′k : L(HAIkA
I′
k )→ L(HAOk A

O′
k ), we impose that the application of the

quantum supermap on such operations should still give valid CP maps. This imposes that
the process matrix W should be positive semidefinite (cf. Section 2.3).
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Figure 3.1: A CP mapM from the “global past” HP to the “global future” HF is induced
by the action of a completely CP-preserving quantum supermap that takes N quantum
operations as inputs —i.e., CP maps—Ak (for k = 1, . . . , N) with input and output
Hilbert spaces HAIk and HAOk [15, 23]. The Choi representation M of the global mapM
is obtained from the Choi representations Ak of the maps Ak according to Eq. (3.1), in
terms of the process matrix W (represented by the salmon-coloured area).

Like in the process matrix formalism introduced previously, the local CP maps Ak
should be trace-nonincreasing, but not necessarily trace-preserving (TP): indeed in the
general case, these external operations are part of some quantum instruments (sets of CP
maps summing up to a CPTP map) and generate some classical outcome.

In this thesis, I will focus on the seminal case where the internal circuit is a deter-
ministic supermap, such that if all CP maps Ak are trace-preserving (TP), then so must
be the induced mapM (they have thus sometimes been called superchannels [153, 127]).
As explained above, this condition imposes some “validity constraints” on the allowed
process matrices W—namely, that they must belong to some particular subspace LV of
L(HPAION F ), and be normalised such that TrW = dP (Πk∈N d

O
k ) [15, 16, 23, 21].

Note that in our work [86], we also consider probabilistic process matrices which turn
TP maps into a trace-nonincreasing induced map, and which may be part of a so-called
quantum superinstrument [154]—namely, sets of probabilistic process matrices summing
up to a deterministic one. I will briefly introduce these in Section 3.5.

Using the link product, the Choi representation M ∈ L(HPF ) of the induced global
mapM is the composition of the Choi representations Ak of the N local operations
Ak on the process matrix W :

M = (A1 ⊗ A2 ⊗ ...⊗ AN) ∗W (3.1)

In what follows, I will present three specific classes of generalised quantum circuits
(represented in Fig. 3.2), i.e. three types of CCP quantum supermaps, into which the
free, “external” operations Ak can be “plugged in” in either a fixed, a classically-controlled,
or a coherently controlled causal order, with the last two being new families of quantum
supermaps. Remarkably, the latter can lead to causally nonseparable process matrices,
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Figure 3.2: Venn diagram of the classes of quantum supermaps studied in [86]. QC-
FOs are quantum circuits compatible with a single, fixed, causal order (Sec. 3.2), such
as the process WP →A1→A2→F described in Eq. (3.8). These circuits form a non-convex set
since a mixture of QC-FOs compatible with different orders is, in general, not compatible
with any single order. QC-CCs are quantum circuits with classical control of causal
order (Sec. 3.3), such as the “classical switch” WCS (Eq. (3.19)); all QC-CCs are causally
separable processes. QC-QCs are quantum circuits with quantum control of causal order
(Sec. 3.4), such as the quantum switch WQS (Eq. (3.37)) and the new quantum process
WD that we describe in Eq. (3.47), both of which are causally nonseparable. QC-QCs are
a strict subset of all quantum supermaps: those violating causal inequalities, such as the
WOCB of Eq. (2.24) [15] cannot be described as QC-QCs.

defining a broad new class of such supermaps which, by construction, can be meaningfully
interpreted.

3.2 Quantum Circuits with Fixed Causal Order
A quantum circuit is generally represented as a sequence of quantum operations per-
formed in a well defined causal order, i.e. each one applied one after the other. These
are the so-called quantum combs [120, 121], quantum supermaps transforming a fixed set
of ordered external operations into a global CP map, that we call here quantum circuits
with fixed causal order (QC-FO). Indeed, these circuits can be represented in the shape
of a “comb”, with an ordered sequence of slots.

Consider a quantum circuit with N “open slots” into which the CP maps A1, . . . ,AN
are placed in a fixed order (so as to define the global map M, as described above).
We will denote, for example, the ordering in which A1 is applied first, then A2, etc., as
(A1,A2, . . . ,AN). The building blocks of the QC-FO are internal operationsM1, . . . ,MN+1

that take the output of each external map to the input of the following one, as shown in
Fig. 3.3.

Because we consider deterministic circuits, the internal operationsMk must preserve
the trace of their input states, i.e. they are CPTP maps. Note that these internal oper-
ations may also act upon some “memories”, additional auxiliary systems living in Hilbert
spaces Hαk that are entangled with the “target systems” that the external CP maps act
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Figure 3.3: Quantum circuit with fixed causal order (“quantum comb”), here with the
order of operations (A1,A2, . . . ,AN). Its process matrix representation (salmon-coloured
area) is given by Eq. (3.5).

upon. The most general case of QC-FO is in fact often referred to as “quantum channel
with memory” [121, 120, 155].

The mapsM1,Mn+1, andMN+1 above have Choi representations M1 ∈ L(HPAI1α1),
Mn+1 ∈ L(HAOn αnA

I
n+1αn+1), and MN+1 ∈ L(HAONαNF ), respectively.

A QC-FO is built as the following:

• a first CPTP mapM1 : L(HP )→ L(HAI1α1) starts the circuit by acting on the global
past HP and outputs a state in the input Hilbert space HAI1 of the first operation A1

(the target system), which in general may be entangled with an auxiliary system in
some Hilbert space Hα1 , the corresponding TP condition in the Choi representation
being

TrAI1α1
M1 = 1

P , (3.2)

• then, for 1 ≤ n ≤ N − 1, a CPTP map Mn+1 : L(HAOn αn) → L(HAIn+1αn+1) is
performed on the output state of each external CP map An in the Hilbert space
HAOn and the auxiliary system in Hαn , and outputs a state in the the input Hilbert
space HAIn+1 of An+1 and an auxiliary system in some Hilbert space Hαn+1 . it can
be shown [86] that the corresponding TP condition is:

∀n = 1, . . . , N−1, TrAIn+1αn+1
(M1 ∗ · · · ∗Mn ∗Mn+1) = Trαn(M1 ∗ · · · ∗Mn)⊗ 1

AOn

(3.3)

• finally, after the last internal operation AN , the last internal CPTP map of the QC-
FO,MN+1 : L(HAONαN )→ L(HF ), drives the output state of AN in HAON , together
with the auxiliary state in HαN , to the global output state of the full circuit in the
global future HF , with the TP condition1

TrF (M1 ∗ · · · ∗MN ∗MN+1) = TrαN (M1 ∗ · · · ∗MN)⊗ 1
AON (3.4)

1Note that the TP conditions Eq. (3.3)-(3.4) are weaker than (and indeed implied by) the TP assump-
tions applied to the full input spaces of the operationsMn (which can be written as TrAI

n+1αn+1
Mn+1 =

1
AO

nαn for n = 1, . . . , N−1, and TrF MN+1 = 1
AO

NαN ). Indeed, we only require trace-preservation for the
inputs spaces of the internal operations for the subspace of L(HA

O
n−1αn−1) that can actually be populated

following the internal and external circuit operations previously applied.
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QC-FO as a process matrix

The QC-FO, being a specific CCP quantum supermap, have a representation as a process
matrix.

Process matrix description of QC-FOs

Proposition 7. The process matrix corresponding to the quantum circuit of
Fig. 3.3, with the fixed causal order (A1,A2, . . . ,AN), is

W = M1 ∗M2 ∗ · · · ∗MN ∗MN+1 ∈ L(HPAION F ). (3.5)

Proof. Recall firstly that the Choi matrix of the sequential composition of quantum oper-
ations is obtained by link-multiplying the composite operations. Using the commutativity
and associativity of the link product, and the fact that it reduces to tensor products for
non-overlapping Hilbert spaces, we can write the Choi matrixM ∈ L(HPF ) of the induced
global mapM : L(HP )→ L(HF ) as

M = M1 ∗ A1 ∗M2 ∗ · · · ∗MN ∗ AN ∗MN+1

= (A1 ⊗ · · · ⊗ AN) ∗ (M1 ∗M2 ∗ · · · ∗MN ∗MN+1) (3.6)

Recalling Eq. (3.1), this allows us to identify the process matrixW as the unique operator
corresponding to the second term in parentheses above. This is illustrated in Fig.3.3.

Characterisation

The previous description of QC-FO allows us to obtain a characterisation in terms of
constraints on process matrices, i.e. given a process matrix, if it satisfies the relevant
constraints, one can infer that it describes a QC-FO.

Characterisation of QC-FOs

Proposition 8. For a given matrix W ∈ L(HPAION F ), let us define the reduced
matrices (for 1 ≤ n ≤ N , and relative to the fixed order (A1,A2, . . . ,AN)) W(n) :=

1
dOn d

O
n+1···dON

TrAOnAIO{n+1,...,N}F
W ∈ L(HPAIO{1,...,n−1}A

I
n).

The process matrix W ∈ L(HPAION F ) of a quantum circuit with the fixed causal order
(A1,A2, . . . ,AN) is a positive semidefinite matrix such that its reduced matrices
W(n) just defined satisfy

TrAI1 W(1) = 1
P ,

∀n = 1, . . . , N − 1, TrAIn+1
W(n+1) = W(n) ⊗ 1

AOn ,

and TrF W = W(N) ⊗ 1
AON . (3.7)

Conversely, any positive semidefinite matrix W ∈ L(HPAION F ) whose reduced ma-
trices W(n) satisfy the constraints of Eq. (3.7) is the process matrix of a quantum
circuit with the fixed causal order (A1,A2, . . . ,AN).
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Figure 3.4: In the QC-FO WP →A1→A2→F , the CP maps A1 and A2 are applied succes-
sively to a system initially provided in the global past HP . The internal operations
M1,M2,M3 are simply identity channels between the respective (isomorphic) Hilbert
spaces (cf. Fig. 3.3).

A self-contained proof2 is given in [86, 148, 120, 121].

Note that the set of (process matrices of) QC-FO’s, for a given order, is convex.
Furthermore, one can write a SDP problem and, in the same spirit as causal witnesses,
one can obtain “witnesses for non-QC-FO’s”, allowing to directly verify that a given process
is not a QC-FO for a given, fixed causal order.

Example

For the sake of clarity, we give a simple, canonical example of bipartite QC-FO compatible
with the causal order (A1,A2), corresponding to a composition of identity channels (with-
out memory) sending an input system from a global past through two successive external
operations A1 and A2, and outputting a system in a global future. With isomorphic
Hilbert spaces HP and HAI1 , HAO1 and HAI2 , and HAO2 and HF , and the Choi matrix of an
identity channel I : L(HX) → L(HY ) of the form |1〉〉〈〈1|XY , the corresponding process
matrix, as per Proposition 7, is

WP →A1→A2→F = |1〉〉〈〈1|PA
I
1 ⊗ |1〉〉〈〈1|A

O
1 A

I
2 ⊗ |1〉〉〈〈1|A

O
2 F , (3.8)

with M1 = |1〉〉〈〈1|PA
I
1 ; M2 = |1〉〉〈〈1|A

O
1 A

I
2 and M3 = |1〉〉〈〈1|A

O
2 F .

The circuit is represented in Fig.3.4.

3.3 Quantum Circuits with Classical Control of causal
order

The family of QC-FO is a well-known class of quantum supermaps. However it does not
entail the totality of causally separable supermaps. In fact, one could imagine a quantum
circuit corresponding to a probabilistic mixture of QC-FO with different causal orders ;
or a quantum circuit compatible with a well-defined causal order, but in which the latter
is established dynamically, i.e. where the application of internal operations might depend

2Note that the necessary condition of the proof follows trivially from Eq.(3.2)-(3.4), as for a QC-FO
as defined above, the reduced process matrices are W(n) = Trαn

(M1 ∗ · · · ∗Mn).

55



on the previous implemented ones. Inspired by a preliminary formulation in Ref. [21],
we present a circuit model encompassing such prospects. We introduce the new class
of quantum circuits with classical control of causal order (QC-CCs), in which the causal
order it can be established dynamically, with the operations in the past determining the
causal order of the operations in the future. Note however that it is still unclear if this
new class is equivalent with the full set of causally separable supermaps.

Consider a quantum circuit with N “open slots” at different time slots tn (1 ≤ n ≤ N).
At each time slot, one (and only one) external operation Ak will be applied (and each
operation Ak can a priori be applied at any time slot tn). In a QC-FO, the internal
operationsMn were used to link the external operations with each other in a predefined
order. In order to now allow for dynamical orders, the internal operations of the QC-CC
determine which external operation should be applied next before the first time slot t1,
and between each pair of consecutive time slots tn, tn+1 (for 1 ≤ n ≤ N − 1), while also
transforming its input state and, potentially, additional auxiliary systems. Thus, instead
of CPTP maps, we now consider internal operations that produce a classical outcome,
indicating which is the subsequent external operation to be applied. The internal opera-
tions are thus described by quantum instruments M→kn

(k1,...,kn−1), sets of CP maps with one
outcome kn for each possible operation that may come next that sums up to a CPTP map,
given that the previous external operations (Ak1 , . . . , Akn−1) have been applied. Indeed,
the internal circuit operations should somehow “know” (and depend on) which external
operations have been applied before, so as to avoid picking, as the next operation, one
that has been applied already. Note that QC-FOs are a special case of QC-CCs as the
internal CPTP maps of a QC-FO can be seen as instruments with only one non-trivial
classical output.

Figure 3.5: Quantum circuit with classical control of causal order (QC-CC) leading to
a final causal order (k1, k2, . . . , kN−1, kN). This causal order is established dynamically,
controlled by the outcomes kn of the internal operationsM→kn

(k1,...,kn−1). In a QC-CC, any
external operation Ak can a priori be applied at any time slot tn. This is illustrated
by superimposed boxes Akn at each time slot. The salmon-coloured area represents the
process matrix W , which corresponds to a (classical) combination of the different contri-
butions associated with the various (dynamically established) orders (k1, . . . , kN). It is
given by Eq. (3.12).

More precisely, a QC-CC is built as the following:

• the circuit starts by applying some internal quantum instrument {M→k1
∅ }k1∈N ,

where each operationM→k1
∅ : L(HP )→ L(HAIk1

α1), attached to the classical output
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k1 that “controls” which external operation shall be applied at the first time slot t1
maps the circuit’s input in HP to the incoming space HAIk1 of the operation Ak1
and (possibly) also to some auxiliary system in some Hilbert space Hα1 , with the
corresponding TP condition in the Choi representation:∑

k1

TrAIk1α1
M→k1
∅ = 1

P , (3.9)

• then, for the time slots tn and tn+1, for 1 ≤ n ≤ N − 1, a quantum instrument
{M→kn+1

(k1,...,kn)}kn+1∈N\{k1,...,kn} is performed, given the sequence (k1, . . . , kn) of opera-
tions that have already been performed. Each operationM→kn+1

(k1,...,kn) : L(HAOknαn)→
L(HAIkn+1

αn+1), attached to the classical output kn+1 indicating the next operation to
apply, is performed on the output system of the last external operationAkn , together
with the auxiliary system in Hαn , and output a state in the incoming space HAIkn+1

of some yet unperformed operation Akn+1 (hence with kn+1 ∈ N\{k1, . . . , kn}) and
an auxiliary system in some Hilbert space Hαn+1 . The corresponding TP condition
in the Choi representation is:

∀n = 1, . . . , N−1, ∀ (k1, . . . , kn),∑
kn+1

TrAIkn+1
αn+1

(
M→k1
∅ ∗· · ·∗M→kn

(k1,...,kn−1)∗M
→kn+1

(k1,...,kn)

)
= Trαn

(
M→k1
∅ ∗ · · · ∗M→kn

(k1,...,kn−1)

)
⊗1AOkn, (3.10)

• finally, before the last external operation AkN at the time slot tN , the instruments
{M→kN

(k1,...,kN−1)} only have one possible outcome kN driving the system to the latter.
After tN all external operations Ak have been performed exactly once. A CPTP
mapM→F

(k1,...,kN ) : L(HAOkN
αN ) → L(HF ) ends the circuit, taking the output system

of AkN , together with the auxiliary state in HαN , to the global output space HF ,
with the TP condition:

∀ (k1, . . . , kN),

TrF
(
M→k1
∅ ∗ · · · ∗M→kN

(k1,...,kN−1)∗M
→F
(k1,...,kN )

)
= TrαN

(
M→k1
∅ ∗ · · · ∗M→kN

(k1,...,kN−1)

)
⊗1A

O
kN. (3.11)

QC-CC as a process matrix

The QC-CC, being a specific CCP quantum supermap, have a representation as a process
matrix.
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Process matrix description of QC-CCs

Proposition 9. The process matrix corresponding to the quantum circuit with clas-
sical control of causal order depicted in Fig. 3.5 is

W =
∑

(k1,...,kN )

W(k1,...,kN ,F ) (3.12)

where

W(k1,...,kN ,F ) := M→k1
∅ ∗M→k2

(k1) ∗M
→k3
(k1,k2) ∗ · · · ∗M

→kN
(k1,...,kN−1) ∗M

→F
(k1,...,kN ) ∈ L(HPAION F ).

(3.13)

Proof. In the case where the internal operationsM→k1
∅ ,M→k2

(k1) ,M
→k3
(k1,k2), . . . ,M

→kN
(k1,...,kN−1)

and M→F
(k1,...,kN ) are applied in between the external operations Ak—which thus end up

being applied in the dynamically established order (k1, k2, . . . , kN)—the Choi matrix of
the global CP map induced by the circuit is obtained as the link product

M→k1
∅ ∗ Ak1 ∗M→k2

(k1) ∗ Ak2 ∗M
→k3
(k1,k2) ∗ · · · ∗M

→kN
(k1,...,kN−1) ∗ AkN ∗M

→F
(k1,...,kN )

= (A1 ⊗ · · · ⊗ AN) ∗
(
M→k1
∅ ∗M→k2

(k1) ∗M
→k3
(k1,k2) ∗ · · · ∗M

→kN
(k1,...,kN−1) ∗M

→F
(k1,...,kN )

)
, (3.14)

where we used in particular the fact that each operation Ak appears once and only each
in Ak1 ∗ Ak2 ∗ · · · ∗ AkN to reorder these terms. This induced map is conditioned on the
causal order ending up being (k1, k2, . . . , kN).3 In order to not “post-select” on this order,
we need to sum Eq. (3.14) above over all possible orders (k1, k2, . . . , kN) to obtain the
induced global map:

M =
∑

(k1,...,kN )

M→k1
∅ ∗ Ak1 ∗M→k2

(k1) ∗ · · · ∗M
→kN
(k1,...,kN−1) ∗ AkN ∗M

→F
(k1,...,kN ) ∈ L(HPF ).

(3.15)

Noting that the sum can be applied only to the second term in parentheses in Eq. (3.14)
(which, for each (k1, . . . , kN), belongs to the same space L(HPAION F )), and that the induced
map is then written in the form of Eq. (3.1), we can directly identify the process matrix
W .

Characterisation

The previous description of QC-CC allows us to obtain a characterisation in terms of
constraints on process matrices, i.e. given a process matrix, if it satisfies the relevant
constraints, one can infer that it describes a QC-CC.

3Note that this induced map is not TP; instead, the trace of its output equals the trace of its input,
multiplied by the probability that the causal order of operations indeed ends up being (k1, . . . , kN ).
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Characterisation of QC-CCs

Proposition 10. The process matrix W ∈ L(HPAION F ) of a quantum circuit with
classical control of causal order can be decomposed in terms of positive semidefinite
matrices W(k1,...,kn) ∈ L(HPAIO{k1,...,kn−1}

AIkn ) and W(k1,...,kN ,F ) ∈ L(HPAION F ), for all
nonempty ordered subsets (k1, . . . , kn) of N (with 1 ≤ n ≤ N , ki 6= kj for i 6= j), in
such a way that

W =
∑

(k1,...,kN )

W(k1,...,kN ,F ) (3.16)

and
∑
k1

TrAIk1
W(k1) = 1

P ,

∀n = 1, . . . , N−1, ∀ (k1, . . . , kn),
∑
kn+1

TrAIkn+1
W(k1,...,kn,kn+1) = W(k1,...,kn) ⊗ 1

AOkn ,

∀ (k1, . . . , kN), TrF W(k1,...,kN ,F ) = W(k1,...,kN ) ⊗ 1
AOkN . (3.17)

Conversely, any Hermitian matrix W ∈ L(HPAION F ) that admits a decomposition
in terms of positive semidefinite matrices W(k1,...,kn) ∈ L(HPAIO{k1,...,kn−1}

AIkn ) and
W(k1,...,kN ,F ) ∈ L(HPAION F ) satisfying Eqs. (3.16)–(3.17) above is the process matrix
of a quantum circuit with classical control of causal order.

A self-containted proof4 is given in [86].

Note that the set of (process matrices of) QC-CC’s is convex. Furthermore, one can
write a SDP problem and, in the same spirit as causal witnesses, one can obtain “witnesses
for non-QC-CC’s”, allowing to directly verify that a given process is not a QC-CC.

Note also that ifW is a well-defined process matrix, the individual matricesW(k1,...,kN ,F )

in Proposition 10 may or may not be valid (deterministic) process matrices. If they are
valid (up to normalisation), i.e. each corresponding to a process matrix compatible with
the fixed causal order (k1, . . . , kN) respectively, then W is simply a probabilistic mixture
of quantum circuits with different fixed causal orders. Moreover, if the sum only contains
one term, the circuit is a QC-FO. If the W(k1,...,kN ,F )’s are not valid process matrices,
then the causal order is established “dynamically”: it depends, at least in part, on the
input state of the circuit (in the global past space HP ) and on the external operations
An inserted in the slots of the QC-CC. Finally, if the global past and future Hilbert
spaces HP and HF are trivial (dP = dF = 1), i.e. if we consider the “original” version of
process matrices as supermaps that take linear CP maps to probabilities [15]—then the
characterisation of Proposition 10 coincides precisely with the sufficient condition for the
causal separability of general N -partite process matrices obtained in Ref. [122]. Hence,
unsurprisingly, all QC-CCs (even if HP and HF are nontrivial) define causally separable
processes.

4Note that the necessary condition of the proof follows trivially from Eq.(3.9)-(3.11), as for a QC-CC
as defined above, the reduced process matrices are W(n) = Trαn(M1 ∗ · · · ∗Mn).
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Example: the classical switch

A canonical example of QC-CC is the “classical switch” [13], in which the causal order of
two external operations A1 and A2 performed on a “target system” is incoherently con-
trolled by a “classical control system”, cf. Fig. 3.6. The initial systems are prepared in the
global past HP = HPt ⊗ HPc , with Pt the target space, and Pc the control space. After
a measurement on the control system, depending on the classical measurement outcome,
the target is sent-via identity channels- first to A1 and then A2 (outcome “1”) or vice-versa
(“outcome 2”). The causal order is not fixed a priori, but is established on the fly, through
the preparation of the control system in the global past. Finally, the target and control
systems are sent to the global future HF = HFt ⊗HFc .

The classical switch can be described as a QC-CC, by taking the following internal
circuit operations (in the Choi representation):

M→k1
∅ = |1〉〉〈〈1|PtAIk1 ⊗ |k1〉〈k1|Pc ,

M→k2
(k1) = |1〉〉〈〈1|A

O
k1
AIk2 ,

M→F
(k1,k2) = |1〉〉〈〈1|A

O
k2
Ft ⊗ |k1〉〈k1|Fc . (3.18)

We can give an intuitive interpretation to these operations: M→k1
∅ is an identity channel

sending the initial target system in HPt to the input space of the first operation Ak1 , post-
selected on the outcome k1 of the measurements on HPc ; M→k2

(k1) is an identity channel
sending the target from the output of Ak1 to the input of Ak2 ; and M→F

(k1,k2) sends the
output of the second operation to the global future, while preparing the control system
in HFc in the appropriate state, |k1〉〈k1|. These operations satisfy the TP conditions of
Eqs. (3.9)–(3.11).

The associated process matrix WCS ∈ L(HPcPtAIO1 AIO2 FtFc) describing the classical
switch defined by the operations (3.18) is thus

WCS =M→1
∅ ∗M→2

(1) ∗M→F
(1,2) +M→2

∅ ∗M→1
(2) ∗M→F

(2,1)

= |1〉〈1|Pc |1〉〉〈〈1|PtAI1 |1〉〉〈〈1|A
O
1 A

I
2 |1〉〉〈〈1|A

O
2 Ft |1〉〈1|Fc

+|2〉〈2|Pc|1〉〉〈〈1|PtAI2 |1〉〉〈〈1|A
O
2A

I
1 |1〉〉〈〈1|A

O
1Ft|2〉〈2|Fc (3.19)

(where the tensor products are implicit).

Indeed, WCS satisfies the characterisation of Proposition 10, with W(k1) = M→k1
∅ ,

W(k1,k2) = M→k1
∅ ⊗M→k2

(k1) , and W(k1,k2,F ) = M→k1
∅ ⊗M→k2

(k1) ⊗M→F
(k1,k2).

QC-CC, Mark 2

Note that the above description of QC-CCs can be revisited so as to include the control
more explicitly as a physical system. In particular, the dependency of each internal
quantum instrument on the order (k1, . . . , kn) of the previously applied external operations
Ak, as well as the dependency of which external operation Akn is applied at time tn
with respect to the outcome of the previous internal instrument, can be included in
the description of the internal quantum operations building the circuit. Indeed, we can
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Figure 3.6: The two possible realisations of the classical switch. In this QC-CC, the order
of the two CP maps A1 and A2 is controlled incoherently through a “control system” in
HPc , which is measured as part of the first internal circuit operation. The process matrix
is the sum of the contributions W(1,2,F ) and W(2,1,F ) corresponding to the two possible
orders (cf. Eq. (3.19)).

introduce some “control system” Cn living in some Hilbert space HCn that stores on the
fly the dynamically established causal order in some state

|((k1, . . . , kn))〉Cn (3.20)

The full order of the preceding (and currently applied) external operations is thus
encoded in the computational basis states |(k1, . . . , kn)〉Cn of some Hilbert space HCn (for
1 ≤ n ≤ N). For convenience it is useful to define the following notation:

[[(k1, . . . , kn)]]Cn := |(k1, . . . , kn)〉〈(k1, . . . , kn)|Cn. (3.21)

At each time slot tn (for 1 ≤ n ≤ N), the external operations Akn can be embedded
into some “larger” conditional operations Ãn which use the control system to apply the
correct one:

Ãn :=
∑

(k1,...,kn)

Akn ⊗πCn→C′n
(k1,...,kn) : L(HÃInCn)→ L(HÃOnC

′
n), (3.22)

where πCn→C′n
(k1,...,kn) is the (classical) map that projects the control system onto the state

[[(k1, . . . , kn)]]Cn , while re-labelling the control system Cn to C ′n which denotes the control
system just after the external operation Akn . The corresponding Choi matrix of Ãn is

Ãn =
∑

(k1,...,kn)

Akn ⊗ [[(k1, . . . , kn)]]Cn ⊗ [[(k1, . . . , kn)]]C
′
n ∈ L(HÃInCnÃ

O
nC
′
n). (3.23)

Similarly, the internal circuit operationsM→kn+1

(k1,...,kn) can be embedded into some “larger”
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operations that also involve the control systems, as shown in Fig. 3.7, by defining

M̃n+1 :=
∑

(k1,...,kn,kn+1)

M→kn+1

(k1,...,kn) ⊗π
C′n→Cn+1

(k1,...,kn),kn+1
: L(HÃOn αnC

′
n)→ L(HÃIn+1αn+1Cn+1),

(3.24)

whereπC′n→Cn+1

(k1,...,kn),kn+1
: L(HC′n)→ L(HCn+1) is the (classical) map that projects the control

system onto [[(k1, . . . , kn)]]C
′
n and updates it to [[(k1, . . . , kn, kn+1)]]Cn+1 . The corresponding

Choi representation Mn+1 ∈ L(HÃOn αnC
′
nÃ

I
n+1αn+1Cn+1) is:

M̃n+1 =
∑

(k1,...,kn,kn+1)

M
→kn+1

(k1,...,kn) ⊗ [[(k1, . . . , kn)]]C
′
n ⊗ [[(k1, . . . , kn, kn+1)]]Cn+1 (3.25)

with M̃1 =
∑
k1

M→k1
∅ ⊗ [[(k1)]]C1 ∈ L(HPÃI1α1C1)

M̃N+1 =
∑

(k1,...,kN )

M→F
(k1,...,kN ) ⊗ [[(k1, . . . , kN)]]C

′
N ∈ L(HÃONαNC

′
NF )

for the first and last internal operations respectively.

Note that there is in fact an abuse of notation in the equations Eq. (3.22)-(3.25), as
the input and output spaces of the internal and external operations are a priori not the
same for the different values of the control. This can however be made more rigorous by
artificially increasing all dimensions and trace out some unused systems. This way, we
can introduce “target system” input and output (tilde) Hilbert spaces, isomorphic with
the external operations spaces (cf. [86]).

Note also that the extended operations M̃n+1 and Ãn are CPTP maps, so that the
global circuit defines a CPTP map M whenever all external operations Ak are CPTP
maps.

The Choi matrix M ∈ L(HPF ) of the global map M can then be obtained by link-
mutiplying all these operations:

M = M̃1 ∗ Ã1 ∗ M̃2 ∗ · · · ∗ M̃N ∗ ÃN ∗ M̃N+1

=
∑

(k1,...,kN )

M̃→k1
∅ ∗ Ãk1 ∗ M̃→k2

(k1) ∗ · · · ∗ M̃
→kN
(k1,...,kN−1) ∗ ÃkN ∗ M̃

→F
(k1,...,kN )

=
∑

(k1,...,kN )

M→k1
∅ ∗ Ak1 ∗M→k2

(k1) ∗ · · · ∗M
→kN
(k1,...,kN−1) ∗ AkN ∗M

→F
(k1,...,kN ) (3.26)

We thus recover Eq. (3.15) from the previous description of QC-CCs, and consequently
the same process matrix description of our QC-CC as in Proposition 9, as well as the same
characterisation of QC-CC process matrices as in Proposition 10.

Intuitively, as explained above, this classical control of causal order driven by a physical
system cannot lead to interesting exotic causal structures, i.e. causally nonseparable
processes. To obtain an instance of “quantum causality”, let’s make the control system
quantum, and make the different possible causal orders interfere.
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Figure 3.7: Quantum circuit with classical control of causal order, alternative version
(equivalent to Fig. 3.5). In this other formulation, the transmission of the classical in-
formation about the causal order is made explicit (double-stroke lines) . It is established
dynamically and stored on the fly in the states [[(k1, . . . , kn)]]C

(′)
n of some control system.

It allows to control which external operation Akn is to be applied at each time slot tn.
One can thus embed this operation in a joint operation Ãn of Eq. (3.22) on the target
and control systems. The classical control is also used to decide which internal circuit
operations M→kn+1

(k1,...,kn) is implemented, defining the joint operations M̃n+1 of Eq. (3.24)
on the target, auxiliary and control systems.

3.4 Quantum Circuits with Quantum Control of causal
order

In order to simplify going from circuits with classical to quantum control of causal order,
we consider the following “purification” of the internal operations. Because no specific
assumption is made on the auxiliary Hilbert spaces Hαn (e.g. on their dimension), they
can be used to “purify”5 all the internal operations M→k1

∅ : L(HP ) → L(HAIk1
α1) and

M→kn
(k1,...,kn−1) : L(HAOkn−1

αn−1)→ L(HAIknαn) for 1 ≤ n ≤ N . Similarly, for the final opera-
tionsM→F

(k1,...,kN ), one can introduce an auxiliary Hilbert space HαF so as to purify these
operations before tracing out the auxiliary system αF .

Without loss of generality, we can thus assume they consist of the application of just
one Kraus operator, which we shall denote V →kn(k1,...,kn−1) : HAOkn−1

αn−1 → HAIknαn (so that
M→kn

(k1,...,kn−1)(%) = V →kn(k1,...,kn−1)%V
→kn †

(k1,...,kn−1)); the Choi representations of the operations are
then simply

M→kn
(k1,...,kn−1) = |V →kn(k1,...,kn−1)〉〉〈〈V

→kn
(k1,...,kn−1)| , (3.27)

M→F
(k1,...,kN ) = TrαF |V →F(k1,...,kN )〉〉〈〈V →F(k1,...,kN )| (3.28)

where |V →kn(k1,...,kn−1)〉〉 ∈ H
AOkn−1

αn−1AIknαn (or |V →k1∅ 〉〉 ∈ HPAIk1
α1 for n = 1), |V →F(k1,...,kN )〉〉 ∈

HAOkN
αNFαF are the Choi vector representation of V →kn(k1,...,kn−1) and V

→F
(k1,...,kN ).

5In particular, according to Stinespring’s dilation theorem [156], for any CP map M : L(HX) →
L(HY ) there exists an auxiliary Hilbert space Hα and a linear operator V : HX → HY α such that
M(ρ) = Trα(V ρV

†) ∀ρ. In the case of the generalised quantum circuits we consider here, the auxiliary
“purifying” systems can be carried through the circuit via the auxiliary systems Hαn before being traced
out at the very end.
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It will similarly be convenient to assume that the external operations Ak : L(HAIk)→
L(HAOk ) correspond to the application of a single Kraus operator Ak : HAIk → HAOk (with
a slight but unambiguous enough conflict of notation) so that Ak(ρ) = AkρA

†
k. In the

Choi representation, the Kraus operator is represented by the Choi vector |Ak〉〉 ∈ HAIkA
O
k ,

so that the Choi matrix of the map Ak is |Ak〉〉〈〈Ak| ∈ L(HAIkA
O
k )).

These simplifications will allow to make the calculation of the induced global map
M significantly easier. More importantly it will allow us to directly study a pure global
map V : HP → HFαF , with Choi vector |V 〉〉 ∈ HPFαF as a function of all pure exter-
nal and internal operations (and only trace out the HαF auxiliary system at the very end).

We can now turn the classical control of the QC-CCs into a quantum control, and
thus define a new class of processes, the quantum circuits with quantum control of causal
order (QC-QCs). Similarly with the previous case, we need to assume that each opera-
tion is applied once and only once, so that the circuit define valid quantum supermaps.
Thus, like in the classical case, the control system needs to remember which operations
has already been been applied. However, in order to obtain “interferences” between the
causal orders (k1, . . . , kn−1) and (k′1, . . . , k

′
n−1) corresponding to the same unordered set

Kn−1 = {k1, . . . , kn−1} = {k′1, . . . , k′n−1}, and thus make the causal order indefinite, we
don’t want the control system Cn to record the whole causal order (k1, . . . , kn) any-
more. We do not require that it keep track of the order in which the previous operations
were applied, but only need it to register the minimal information of the unordered set
Kn−1 = {k1, . . . , kn−1} of operations already applied. Hence, at each time slot tn and
in each coherent “branch” of the computation, an operation is applied that has not pre-
viously been used in that branch. We thus now consider a control system of the form
|Kn−1, kn〉Cn , defining the computational basis of HCn , which encode which operation Akn
should be applied next and the unordered set Kn−1 of already applied ones.

We can now construct QC-QCs by generalising QC-CCs as follows, cf. Fig.3.8.

• before the time slot t1, the circuit transforms the input state into a state that is
sent coherently to all operations Ak1 and, possibly, also to some auxiliary system
in Hα1 , while accordingly attaching the control state |∅, k1〉C1 to each component
of the superposition. That is, instead of the operation M̃1 in the QC-CC case, the
circuit now applies a (pure) operation of the form

Ṽ1 :=
∑
k1

Ṽ →k1∅,∅ ⊗ |∅, k1〉C1 : HP → HÃI1α1C1 . (3.29)

• between the time slots tn and tn+1, for 1 ≤ n ≤ N − 1, the internal operations are
applied coherently on the target, auxiliary, and control systems. The circuit coher-
ently controls the operation V →kn+1

Kn−1,kn
to apply depending on the state |Kn−1, kn〉C

′
n

of the control system, before coherently sending the target system to all remaining
Akn+1 ’s (with kn+1 /∈ Kn−1 ∪ kn) and, possibly, an auxiliary system in Hαn+1 , while
updating the control system to |Kn−1 ∪ kn, kn+1〉Cn+1 , thereby encoding the next
operation to apply, kn+1 and erasing the information about the specific previous
operation kn (among all the previously applied operations) by just recording the
whole set of previously applied operations Kn := Kn−1 ∪ kn. Formally, the circuit
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applies the operation

Ṽn+1 :=
∑
Kn−1,
kn,kn+1

Ṽ
→kn+1

Kn−1,kn
⊗ |Kn−1 ∪ kn, kn+1〉Cn+1 〈Kn−1, kn|C

′
n :

HÃOn αnC
′
n → HÃIn+1αn+1Cn+1 , (3.30)

• finally, after time slot tN , the application of the operations V →FKN−1,kN
(with KN−1 =

N\kN) is coherently controlled on the control system, taking the output of AkN ,
together with the auxiliary state in HαN , to the global output of the circuit in HF

and, possibly, an auxiliary system in HαF . The circuit thus applies the operation

ṼN+1 :=
∑
kN

Ṽ →FN\kN ,kN ⊗ 〈N\kN , kN |
C′N : HÃONαNC

′
N → HFαF . (3.31)

Figure 3.8: Quantum circuit with quantum control of causal order (QC-QC). We re-
placed the classical control system of Fig. 3.7 by a quantum control system with ba-
sis states |{k1, . . . , kn−1}, kn〉Cn , which only store information about which operations
({k1, . . . , kn−1}) have already been applied (but not about their order) and the currently
performed operation (kn). (Note that in contrast to the previous figures, the “boxes”
are labelled by linear operators, rather than linear CP maps). We illustrate here the
component |w(k1,...,kN ,F )〉 of the process, corresponding to the order (k1, . . . , kN)—which is
coherently superposed with other components, corresponding to different orders, in order
to obtain the process matrix W from the internal operations V →kn+1

Kn−1,kn
of the circuit; see

Proposition 11.

Note that because we require these operators to act as isometries, they shall satisfy
some TP conditions (cf. [86]).

QC-QC as a process matrix

The QC-QC, being a specific CCP quantum supermap, have a representation as a process
matrix.
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Process matrix description of QC-QCs

Proposition 11. The process matrix corresponding to the quantum circuit with
quantum control of causal order depicted on Fig. 3.8 is

W = TrαF |w(N ,F )〉〈w(N ,F )|

with |w(N ,F )〉 :=
∑

(k1,...,kN )

|w(k1,...,kN ,F )〉 (3.32)

and with

|w(k1,...,kN ,F )〉 := |V →k1∅,∅ 〉〉 ∗ |V
→k2
∅,k1 〉〉 ∗ |V

→k3
{k1},k2〉〉 ∗ · · ·

· · · ∗ |V →kN{k1,...,kN−2},kN−1
〉〉 ∗ |V →F{k1,...,kN−1},kN 〉〉 ∈ HPAION FαF . (3.33)

Proof. We proceed analogously to the previous sections. Indeed, note that as in the
previous cases, the operations Ṽn and Ãn are applied in a well-defined order. The global
operation V : HP → HFαF induced by the circuit (prior to tracing out HαF ) when the
external operations Ak are applied is obtained by composing all these operations Ṽn and Ãn
in that well-defined order. Its Choi vector |V 〉〉 ∈ HPFαF is obtained by link-multiplying
the Choi vectors6 of all these operations:

|V 〉〉 = |Ṽ1〉〉 ∗ |Ã1〉〉 ∗ |Ṽ2〉〉 ∗ · · · ∗ |ṼN〉〉 ∗ |ÃN〉〉 ∗ |ṼN+1〉〉

=
∑

(k1,...,kN )

|Ṽ →k1∅,∅ 〉〉 ∗ |Ãk1〉〉 ∗ |Ṽ
→k2
∅,k1 〉〉 ∗ · · · ∗ |Ṽ

→kN
{k1,...,kN−2},kN−1

〉〉 ∗ |ÃkN 〉〉 ∗ |Ṽ →F{k1,...,kN−1},kN 〉〉

=
∑

(k1,...,kN )

(
|A1〉〉 ⊗ · · · ⊗ |AN〉〉

)
∗ |w(k1,...,kN ,F )〉

=
(
|A1〉〉 ⊗ · · · ⊗ |AN〉〉

)
∗ |w(N ,F )〉 ∈ HPFαF (3.34)

We can identify |w(N ,F )〉 as a “process vector” describing the QC-QC in the pure Choi
representation prior to HαF being discarded.

Note that unlike the process matrix description of a QC-CC, here W is obtained
by coherently superposing different terms corresponding to different orders (k1, . . . , kn)
rather than by summing them in an incoherent manner. In fact, this reflects the quantum
behavior of the control system in a QC-QC. However, if the control systems decoheres,
—e.g. if some information about the full order leaks to the environment via the auxiliary
system αN+1 and is traced out—then the QC-QC reduces to a QC-CC.

Characterisation

The previous description of QC-QC allows us to obtain a characterisation in terms of
constraints on process matrices, i.e. given a process matrix, if it satisfies the relevant

6The link product of any two vectors |a〉 ∈ HXY and |b〉 ∈ HY Z is defined (with respect to the
computational basis {|i〉Y }i of HY ) as |a〉 ∗ |b〉 :=

(
1
XZ ⊗〈〈1|Y Y

)
(|a〉⊗ |b〉) =

∑
i |ai〉

X ⊗|bi〉Z ∈ HXZ

with |ai〉X := (1X ⊗ 〈i|Y ) |a〉 ∈ HX and |bi〉Z := (〈i|Y ⊗ 1Z) |b〉 ∈ HZ (so that |a〉 =
∑
i |ai〉

X ⊗ |i〉Y and
|b〉 =

∑
i |i〉

Y ⊗ |bi〉Z).
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constraints, one can infer that it describes a QC-QC.

Characterisation of QC-QCs

Proposition 12. The process matrix W ∈ L(HPAION F ) of a quantum circuit with
quantum control of causal order is such that there exist positive semidefinite matrices
W(Kn−1,kn) ∈ L(HPAIOKn−1

AIkn ), for all strict subsets Kn−1 of N and all kn ∈ N\Kn−1,
satisfying∑

k1∈N

TrAIk1
W(∅,k1) = 1

P ,

∀ ∅ ( Kn ( N ,
∑

kn+1∈N\Kn

TrAIkn+1
W(Kn,kn+1) =

∑
kn∈Kn

W(Kn\kn,kn) ⊗ 1
AOkn ,

and TrF W =
∑
kN∈N

W(N\kN ,kN ) ⊗ 1
AOkN . (3.35)

Conversely, any Hermitian matrix W ∈ L(HPAION F ) such that there exist posi-
tive semidefinite matrices W(Kn−1,kn) ∈ L(HPAIOKn−1

AIkn ) for all Kn−1 ( N and
kn ∈ N\Kn−1 satisfying Eq. (3.35) is the process matrix of a quantum circuit with
quantum control of causal order.

A self-containted proof is given in [86].

Note that the set of (process matrices of) QC-QC’s is convex. Furthermore, one can
write a SDP problem and, in the same spirit as causal witnesses, one can obtain “witnesses
for non-QC-QC’s”, allowing to directly verify that a given process is not a QC-QC.

Example: The quantum switch as a QC-QC

The canonical example of a QC-QC incompatible with a definite causal order is the quan-
tum switch, already presented in Section 2.5. Let us recall that it consists in a quantum
circuit in which the causal order of two external operations A1 and A2 (corresponding to
Alice and Bob’s operations A and B, I will use the two notations interchangeably) applied
on some target system coherently controlled by a qubit system. As explained in Section
3.1, process matrices were first introduced as higher-order operations transforming CP
maps into probabilities, but can be seen as quantum supermaps, transforming CP maps
into a global CP map from a global past to a global future. Thus, the process matrix
of the quantum switch introduced in Section 2.5 can be reformulated as such a quantum
supermap. To do so, we introduce the global past Hilbert spaces HPt and HPc , in which
the target system and control qubit are prepared, respectively. The circuit thus coherently
sends via identity channels the target system to A1 and then A2 if the “control qubit” is
in state |1〉Pc , and to A2 and then A1 if it is in state |2〉Pc .

Importantly, what is generally referred to as the “control qubit” in the literature - i.e.
the state prepared in HPc and later recovered in HFc , is distinct from what we call the
control system in the Hilbert spaces HC

(′)
n in the description of a QC-QC, even though in

the special case of the quantum switch, their roles might be effectively equivalent.
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The quantum switch can be described as a QC-QC, by taking the following internal
operations (in their Choi representation):

|V →k1∅,∅ 〉〉 = |1〉〉PtAIk1 ⊗ |k1〉Pc ,

|V →k2∅,k1 〉〉 = |1〉〉A
O
k1
AIk2 ,

|V →F{k1},k2〉〉 = |1〉〉A
O
k2
Ft ⊗ |k1〉Fc . (3.36)

These can be interpreted intuitively: V →k1∅,∅ is an identity channel sending the initial
target system in HPt to the input space of Ak1 when the state in HPc is |k1〉; V →k2∅,k1 is
an identity channel sending the output of Ak1 to the input of Ak2 ; and V →F{k1},k2 sends the
output of Ak2 to the global future HFt , while recording coherently |k1〉 in HFc , thereby
completing the transmission of the control qubit initially provided in HPc (and whose
state is transferred via the enlarged operations Ṽ1 and Ṽ2, as these update the control
systems to |∅, k1〉C1 and |{k1}, k2〉C2).

From Eq.(3.32) and (3.33), the process matrix of the quantum switch is thus

WQS = |wQS〉 〈wQS| with |wQS〉 =
∑

(k1,k2)

|w(k1,k2,F )〉 〈w(k1,k2,F )|

where |w(k1,k2,F )〉 = |V →k1∅,∅ 〉〉 ∗ |V
→k2
∅,k1 〉〉 ∗ |V

→F
{k1},k2〉〉 given in Eq. (3.36) (3.37)

We see clearly that we have a coherent superposition of terms corresponding to differ-
ent causal orders, in contrast to the incoherent mixture in the process matrix WCS of the
classical switch in Eq. (3.19). Indeed, one recovers the classical switch WCS by projecting
the systems in HPc and/or HFc onto the basis {|1〉 , |2〉}, or, similarly, by decohering the
control system on the QC-QC.

3.4.1 A new implementation of the quantum switch

The first proposal of a physical implementation of the quantum switch made in [149] and
realised experimentally in [157, 158] is a photonic circuit, in which the target system is
encoded in an internal degree of freedom of a photon, and the control system is copied
(coherently) from the polarisation to the path degrees of freedom of the same photon, cf.
Fig.3.9.

Nevertheless, this copy of the control induces a redundancy in the implementation. In
fact, with the control systems encoded in the path of the photons (such that |∅, k1〉C1 =

|k1〉C
path
1 and |{k1}, k2〉C2 = |k2〉C

path
2 ), the implementations of [149, 157, 158] could be

written as QC-QCs by taking (instead of Eq. (3.36) above)

|V →k1∅,∅ 〉〉 = |1〉〉PtAIk1 ⊗ |k1〉Pc ⊗ |k1〉α1 ,

|V →k2∅,k1 〉〉 = |1〉〉A
O
k1
AIk2 ⊗ |k1〉α1 ⊗ |k1〉α2 ,

|V →F{k1},k2〉〉 = |1〉〉A
O
k2
Ft ⊗ |k1〉Fc ⊗ |k1〉α2 (3.38)
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Figure 3.9: Standard optical implementation of the quantum switch. The target system
is encoded in, for example, the orbital angular momentum of a photon, on which Alice
and Bob perform an operation. The control qubit system is encoded in the polarisation
of the photon, such that the system can be routed via polarising beam splitters (PBS).
If the photon is prepared in a horizontally polarized state |0〉c = |H〉c, the photon is
transmitted by the PBSs. The photon is then first transmitted to Alice’s, and then
transmitted back to Bob, A ≺ B. A vertically polarized photon |1〉c = |V 〉c is reflected
by both PBS, leading to the causal order B ≺ A. If the photon is initially diagonally
polarized |+〉c = (|H〉c + |V 〉c)/

√
2, the quantum switch is realized.

with |k1〉Pc/αn/Fc = |H〉 for k1 = 1, or |V 〉 for k1 = 2. Here, the control system gets
redundantly copied onto and transferred through the auxiliary systems αn, encoding
the polarisation of the photons. Thus most of the implementations of the quantum
switch [159, 151, 160, 157, 158, 161, 162] display such redundancy, illustrating the fact
that the same process can be given different descriptions in terms of a QC-QC.

We propose an implementation that actually realize the QC-QC description of the
quantum switch given in Eq. (3.36), involving only two degrees of freedom, and thus
ensuring that the internal operations are applied to photons in the same spatial modes
(although at different times), and thus ensuring that the applications of each Ak at dif-
ferent time slots are truly indistinguishable.

The “philosophy” of this new implementation can be understood as following our intu-
ition on “indefinite causal orders” in Section 1. Assume that Alice and Bob’s laboratories
are put inside a “closed global causal loop”: Alice’s output space is connected to Bob’s
input space, and vice-versa, so that the exchanged information is trapped. In such loop,
notions like causality and time cannot be defined. The loop needs to be “cut” in order to
define a consistent causal relation between Alice and Bob. Note that the causal loop and
the cut can be interpreted as primitives, making the notions of causality and time emer-
gent. Indeed, the cut introduces a temporality, giving an entrance point (the “global past
P ”) and an exit point (the “global future F ”) to the loop. The position of the cut defines
the causal relation between Alice and Bob’s operations, cf. Fig.1.1. If the position of the
cut is undetermined, the causal ordering of Alice and Bob’s operations becomes indefinite.

In a photonic circuit, the cut could be physically implemented by fast-switching re-
movable mirrors, which are momentarily removed between the application of Alice and
Bob’s operations, such that both are applied, cf. Fig.3.10. In such new implementa-
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2

P
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Figure 3.10: A new possible photonic implementation of the quantum switch, in which
the control qubit gets encoded in the path degree of freedom, and the target system in an
internal degree of freedom of the photon. The dashed optical elements ( ) are reflecting
mirrors, which are momentarily removed between the time slots t1 and t2 (i.e., between
the applications of the operations A and B, in either order). Example operations in the
global past P (the preparation of an initial target state |ψt〉Pt and the control qubit in
a superposition state |ϕc〉Pc , see Sec. 2.5) and future F (the measurement of the final
control system in Fc in a superposition basis) are shown in grey for clarity.

tion, the external operations are thus implemented in different spatial locations. They
are applied on a target system that gets encoded in an internal degree of freedom of the
photon. The control qubit gets encoded in the path degree of freedom cf. Fig.3.10. In
the general N−partite case, the control systems can thus be taken to be of the form
|Kn−1, kn〉Cn = |Kn−1|kn〉C

past ops.
n ⊗ |kn〉C

path
n , where |kn〉C

path
n denotes the path kn of the

carrier that undergoes operation Ak at time tn, and |Kn−1|kn〉C
past ops.
n is the state of some

complementary control system that records the required information about the previously
applied operations Kn−1 (which, in general, may be encoded differently for different kn).
Note however that here, in the N = 2 case, the latter is not needed, so that the control
can be taken to be |kn〉C

path
n . The internal circuit operations Ṽn routes the photon while

performing the operations V →kn+1

Kn−1,kn
, i.e., act jointly on the path and internal degrees of

freedom of the photon, so as to recover Eqs. (3.29)–(3.31).

Note that one could avoid using fastswitching elements by introducing an additional
system that acts as a “timer” (of dimension at most N + 1), to be “incremented” at every
time slot tn, and which also controls (in an essentially classical manner) the application of
the correct internal circuit operation. Here for instance, the polarisation could be used as
such a “timer” by initially preparing it in the state |V 〉c replacing the removable mirrors
in the setup by PBS and adding wave plates at the exit ports of A and B that switch the
polarisation, |V 〉c ↔ |H〉c (so as to “increment” the timer), cf. Fig.3.11. We then simply
have a passive optical circuit as in [149, 157, 158], although in a structurally different
manner.

The question of whether the experiments [159, 151, 160, 157, 158, 161, 162] are actual
implementation of the quantum switch or mere simulations, has been debated [163, 146,
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141, 164, 165, 166]. In fact, one could argue that such experiments can be described with
a space-time diagram that involves two events per party rather than one. In my opinion,
this debate is based on semantics differences. If causality and events are understood in the
“(operational) quantum way”, i.e. independent of space-time structure, one might argue
that the timedelocalized nature [146, 141] of the quantum switch has been effectively
realised. However, if events are defined as space-time points and are thus embedded in a
space-time structure, then, one can argue that a genuine implementation of the quantum
switch would need to involve specific gravitational features [165].

v

3

P

F

𝜓𝑡|ۄ ⊗ 𝑉|ۄ ⊗ 𝜑𝑐|ۄ

Figure 3.11: Photonic implementation of the quantum switch based on the “causal loop
model” of Fig.1.1, where the potential cuts are realized by PBS and the polarization of
a photon is taken as a “timer”, initially prepared in the state |V 〉c, and “incremented”
by waveplates (represented by “

⊕
”) after each external operation applied on a internal

degree of freedom of a photon. After the first operation, at time t1, a first “
⊕

” leads
to |V 〉c → |H〉c, such that the photon is transmitted by the second PBS and thus sent
to the other external operation without exiting the loop. After the second operation, at
time t2, a second “

⊕
” leads to |H〉c → |V 〉c such that the photon exits the loop and is

sent to the global future, ensuring that Alice and Bob’s operations are both applied once
and only once. The control is simply encoded on the path: if the loop is entered from the
PBS preceding Alice, the causal order A ≺ B is realised. If the loop is entered from the
PBS preceding Bob, the causal order B ≺ A is realised. Finally, if the loop is entered by
“both” in superposition, the quantum switch is realised.

3.4.2 The “quantum N-switch” and other simple generalisations

The quantum switch admits a “trivial generalisation”, involving N operations Ak (all with
isomorphic dt-dimensional input and output Hilbert spaces, for simplicity) instead of two,
the so called “quantum N -switch” [167, 149, 168, 150, 169, 170, 171, 172, 173, 174]. This
circuit requires, in general, a control system of dimension N ! so as to encode each of the
possible N ! permutations π := (k1, . . . , kN) of orders of the N operations (or some subset
thereof).

TheN−switch can be obtained as a QC-QC, for instance by introducing dt-dimensional
Hilbert spaces HPt and HFt (for the “target” systems in the global past and future) and
N !-dimensional isomorphic Hilbert spaces HPc , HFc and Hαn (for the global past/future
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“control” and for the auxiliary systems) with orthonormal bases {|π〉}π∈ΠN , with ΠN de-
noting the set of all permutations π = (π(1), . . . , π(N)) = (k1, ..., kN) of N , and by taking

∀ k1, |V →k1∅,∅ 〉〉 = |1〉〉PtAIk1 ⊗
∑
π∈ΠN :
π(1)=k1

|π〉Pc ⊗ |π〉α1

∀Kn−1, kn, kn+1, |V →kn+1

Kn−1,kn
〉〉 = |1〉〉A

O
kn
AIkn+1 ⊗

∑
π∈ΠN :

{π(1),...,π(n−1)}=Kn−1,
π(n)=kn,π(n+1)=kn+1

|π〉αn⊗|π〉αn+1

∀ kN , |V →FN\kN,kN 〉〉 = |1〉〉A
O
kN
Ft ⊗

∑
π∈ΠN :
π(N)=kN

|π〉αN⊗|π〉Fc (3.39)

The corresponding process matrix is given by W
(N)
QS = |w(N)

QS 〉〈w
(N)
QS | ∈ HPcPtAION FtFc

with

|w(N)
QS 〉 :=

∑
(k1,...,kN )=:π

|π〉Pc |1〉〉PtAIk1 |1〉〉A
O
k1
AIk2 · · · |1〉〉A

O
kN−1

AIkN |1〉〉A
O
kN
Ft |π〉Fc (3.40)

according to Proposition 11.

Note that in the quantum N -switch, while the causal order is indeed controlled coher-
ently (“quantumly”), and thus give rise to an indefinite causal order, the latter is not es-
tablished “dynamically”, but is fixed from the beginning, as the full order π := (k1, . . . , kN)

corresponding to each component |π〉Pc |1〉〉PtAIk1 · · · |1〉〉A
O
kN
Ft |π〉Fc of |w(N)

QS 〉 is already en-
coded in the state of the control system at the start of the circuit (and, with the choice of
Eq. (3.39), is transmitted, untouched, throughout the circuit by the auxiliary states |π〉αn).

Similarly with the case for the quantum switch (i.e., when N = 2), tracing out the
“control qubit” , i.e. the system in HFc , from the quantum N -switch, TrFc W

(N)
QS , leads

to a “classical N -switch”, i.e. an incoherent mixture of terms corresponding to the N !
different orders.

The quantum N -switch is not the only straightforward generalisation of the quantum
switch. Another simple possibility, which also give QC-QCs, is for example to replace
all the identity channels in the quantum N -switch (i.e., the |1〉〉’s in Eq. (3.39) or (3.40))
applied to the target system by any, potentially different, arbitrary unitaries (or even,
taking the external operations to have non-isomorphic input and output Hilbert spaces,
isometries), as was considered, for instance, for the case of N = 2 in [175, 176]. One
could also introduce further auxiliary systems α′n to act as “memory channels” across the
different time slots.

Like the quantum N -switch, these generalisations do not exhibit any form of really
dynamical causal order. Instead, they only exploit coherent control conditioned on some
quantum system, the causal order thus being fixed from the start of the process.

3.4.3 New examples of causally nonseparable QC-QCs

So far, the quantum switch - and trivial generalisations presented above - was the only
known example of a physically achievable implementation of indefinite causal orders. Our
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characterisation of the whole class of realisable quantum circuits with quantum control
of causal order enables the investigation of new feasible causally nonseparable processes.
Here, we present a new type of implementable QC-QC for N = 3 external operations,
distinct from the 3-switch: it allows for the causal order to be established “dynamically”,
depending (coherently) on the output of external operations, and not only a subsystem of
HP . Remarkably, its process matrix remains causally nonseparable, with no well-defined
“final” operation, despite having only a trivial global future HF .

A new family of causally nonseparable and dynamical QC-QCs

We consider QC-QCs with N = 3 operations A1, A2, A3. Assume, for simplicity, that all
input and output Hilbert spaces HAIk and HAOk are of the same dimension dt. We con-
sider a nontrivial global past P := PtPc (with corresponding Hilbert space HP := HPtPc ,
dPt = dt and dPc = 3) and global future F := FtFαFc (with corresponding Hilbert space
HF := HFtFαFc , dFt = dt, dFα ≥ 2 and dFc = 3).

Consider a QC-QC built on operators V →k1∅,∅ , V →kn+1

Kn−1,kn
and V →FN\kN ,kN of the form

V →k1∅,∅ := 1
Pt→AIk1 ⊗ 〈k1|Pc , (3.41)

V →k2∅,k1 := (1A
I
k2 ⊗ 〈σ(k1,k2)|α)Vk1 , (3.42)

V →k3{k1},k2 := V ′k3(1
AOk2 ⊗ |σ(k1,k2)〉α

′
), (3.43)

V →F{k1,k2},k3 := 1
AOk3
→Ft ⊗ 1

α3→Fα ⊗ |k3〉Fc . (3.44)

for some isometries7 Vk1 : HAOk1 → HAIk2
α, where we introduced a 2-dimensional auxiliary

Hilbert space Hα with orthonormal basis {|0〉α , |1〉α}, which encodes the “signature” of
the order (k1, k2) in such a way that σ(k1,k2) := 0 if k2 = k1 + 1 (mod 3), and σ(k1,k2) := 1
if k2 = k1 + 2 (mod 3) (and such that ∀ k1,

∑
k2
|σ(k1,k2)〉〈σ(k1,k2)|α = 1

α); and for some
isometries V ′k3 : HAOk2

α′ → HAIk3
α3 , where we similarly introduced a 2-dimensional auxil-

iary Hilbert space Hα′ , as well as an auxiliary (dFα-dimensional) system α3.

Intuitively, these internal operations can be interpreted as follows:

• V →k1∅,∅ sends some “target” system prepared in the global past to the first Ak1 oper-
ation via an identity channel when the state in HPc is in |k1〉 (Eq. (3.41));

• V →k2∅,k1 performs an isometry Vk1 on the target after the first external operation and
coherently routs it to the next operation based on the auxiliary state |σ(k1,k2)〉α
(Eq. (3.42)). For example, assuming that Ak1 = A1, if |σ(k1,k2)〉α = |0〉α, the system
is routed to A2 (and then A3) ; if |σ(k1,k2)〉α = |1〉α, the system is routed to A3 (and
then A2). This “signature” allows the causal order to be established dynamically;

7Vk1 : HA
O
k1 → HA

I
k2
α may depend, as indicated by its subscript, on k1, but it must have the same form

for both values of k2 6= k1 (recall that allHA
I
k2 ’s are isomorphic). Similarly below, V ′k3 : HA

O
k2
α′ → HA

I
k3
α3

may depend on k3, but for a given k3 it must have the same form for both initial orders (k1, k2) (with all
HA

O
k2 ’s being isomorphic).
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• V →k3{k1},k2 performs an isometry V ′k3 on the target and routs it coherently to the last
external operation, where the auxiliary |σ(k1,k2)〉α

′
ensures that each operation is

applied once and only once (Eq. (3.43));

• V →F{k1,k2},k3 drives the system output by the last operation in HAOk3 and the auxiliary
living in Hα3 to the global future spaces HFt and HFα respectively, while recording
coherently |k3〉 in HFc (Eq. (3.44)).

According to Proposition 11, the process matrix corresponding to the choice of oper-
ators above is then W = |w〉〈w| with |w〉 :=

∑
(k1,k2,k3) |w(k1,k2,k3,F )〉 and

|w(k1,k2,k3,F )〉 = |V →k1∅,∅ 〉〉 ∗ |V
→k2
∅,k1 〉〉 ∗ |V

→k3
{k1},k2〉〉 ∗ |V

→F
{k1,k2},k3〉〉

= |k1〉Pc ⊗ |1〉〉PtAIk1 ⊗
(
|Vk1〉〉

AOk1
AIk2

α ∗ |σ(k1,k2)〉α
)

⊗
(
|V ′k3〉〉

AOk2
α′AIk3

α3 ∗ |σ(k1,k2)〉α
′
∗ |1〉〉α3Fα

)
⊗ |1〉〉A

O
k3
Ft ⊗ |k3〉Fc .

(3.45)

Referring to the same argument as for the “pure” quantum switch [16, 21] (cf. Section
2.5), because W = |w〉〈w| is a rank-1 process matrix and there exists some preparation
of states in the global past such that the induced process is not compatible with any
given operation being applied first, then it follows that the process matrix W is causally
nonseparable.

Example

Several examples of new QC-QCs incompatible with a definite and fixed causal order can
be now found based on the construction above by fixing the preparation of some partic-
ular global past state and/or trace out some systems in the global future. The causal
nonseparability of the process matrix will then depend on this choice of initial state as
well as the choice of isometries Vk1 and V ′k3 .

For example, one can choose the initial input state |ψ〉Pt ⊗ 1√
3

∑
k1
|k1〉Pc , where |ψ〉Pt

is an arbitrary qubit state ; choosing Vk1 = VCopy and V ′k3 = VCNot and tracing out F
completely, which indeed results in a causally nonseparable process.
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The QC-QC realisation of this circuit is given by:

V →k1∅,∅ = 1√
3
|ψ〉A

I
k1 ,

V →k2∅,k1 =

{
|0〉A

I
k2 〈0|A

O
k1 if k2 = k1 + 1 (mod 3)

|1〉A
I
k2 〈1|A

O
k1 if k2 = k1 + 2 (mod 3)

,

V →k3{k1},k2 =


|0〉A

I
k3 |0〉α3 〈0|A

O
k2 + |1〉A

I
k3 |1〉α3 〈1|A

O
k2

if k2 = k1 + 1 (mod 3)

|0〉A
I
k3 |1〉α3 〈0|A

O
k2 + |1〉A

I
k3 |0〉α3 〈1|A

O
k2

if k2 = k1 + 2 (mod 3)

,

V →F{k1,k2},k3 = 1
AOk3

α3→α(1)
F ⊗ |k3〉α

(2)
F , (3.46)

where we introduced an auxiliary 2-dimensional system α3 (but no α1, α2), a 4-
dimensional system α

(1)
F and a 3-dimensional system α

(2)
F , defining αF := α

(1)
F α

(2)
F

(with corresponding Hilbert spaces HαF := Hα
(1)
F α

(2)
F ), and |ψ〉 is an arbitrary qubit

state.

These operations can be interpreted as follows. V →k1∅,∅ sends the state |ψ〉 to Ak1 (and to
each choice of k1 with equal weight, in a superposition). V →k2∅,k1 sends the output of Ak1 to
one of the remaining operations Ak2 (for k2 6= k1) dynamically and coherently depending
on the state of said output: the component in the state |0〉A

O
k1 is sent to Ak1+1 (mod 3), while

the component in the state |1〉A
O
k1 is sent to Ak1+2 (mod 3). V →k3{k1},k2 then sends the output

of Ak2 to the remaining operation Ak3 and attaches an auxiliary state |0〉α3 if k2 = k1 + 1

(mod 3) or |1〉α3 if k2 = k1 + 2 (mod 3), that is then flipped if AIk3 is in the state |1〉A
I
k3

(i.e., a controlled Not gate is applied).8 Finally, V →F{k1,k2},k3 sends the output of Ak3 along
with the system in Hα3 to α(1)

F , while |k3〉 is sent to α(2)
F .

The (tripartite) process matrix of this QC-QC, according to Proposition 11, is

W = TrαF |w〉〈w|

with |w〉 =
∑

(k1,k2,k3)

|V →k1∅,∅ 〉〉 ∗ |V
→k2
∅,k1 〉〉 ∗ |V

→k3
{k1},k2〉〉 ∗ |V

→F
{k1,k2},k3〉〉 . (3.47)

Using the technique of causal witnesses [16, 17, 122], one can check, for any fixed but
arbitrary state |ψ〉, that this process matrix is causally nonseparable9.

8Note that introducing the auxiliary system α3 in such a nontrivial way—in particular, with its state
depending on whether k2 = k1 + 1 (mod 3) or k2 = k1 + 2 (mod 3)—is indeed necessary (despite the
fact that α3 is ultimately discarded) to ensure the internal operation Ṽ3 acts as an isometry on its input
spaces.

9We investigated the causal nonseparability of such QC-QCs by solving SDP problems numerically
with CVX [177]. More specifically, we computed the random robustness [16, 17, 122] for 1000 random
qubit states |ψ〉 via SDP, and always found values in the interval [0.51, 0.53], which indeed certifies causal
nonseparability.
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Note again that here the global future F is completely traced out. Moreover, tracing
out αF (or even just α(2)

F ) turns W into an (incoherent) sum of three matrices (one for
each value of k3), these three matrices are not themselves valid process matrices, i.e. the
reduced process is not a QC-QC. Unlike the “3-switch”, here W is not simply a convex
mixture of 3 tripartite process matrices, each compatible with one operation Ak3 being
applied last. This is due to the fact that the causal order here is established dynamically:
in fact, which operation is applied last is not predetermined (even probabilistically), but
depends on the operations A1, A2, A3.

Again, note that the causal nonseparability of the reduced process TrF W depends
crucially on the choice of isometries V ′k1 and V ′k3 . With the same initial state prepa-
ration and the same Vk1 but removing the CNot gates, i.e. choosing for instance
V ′k3 = 1

AOk2
→AIk3 ⊗ 1

α′→α3 , the resulting process matrix after tracing out F would have
become causally separable.

Our general description of the QC-QC class thus allowed us to present here a new
class of causally nonseparable quantum supermaps with concrete interpretations that go
beyond the well-studied quantum switch and its generalisations. This new family exhibit
a range of different behaviours, as it combines both a coherent and dynamical control of
causal order. One can imagine yet further generalisations, for example by introducing
further auxiliary systems in a nontrivial way. Exploring such possibilities and completely
new families of causally nonseparable QC-QCs provides an important direction for future
research.

Possible implementation

The previous implementation procedure presented for the quantum switch can be gener-
alized and apply to this new QC-QCs examples. We propose a possible photonic circuit
depicted in Fig. 3.12-3.13 in which a 2-dimensional target system (initially in the state
|ψ〉t, in the generic target space Ht) is encoded in some internal degree of freedom of a
photon (e.g., its orbital angular momentum). The control systems C1 and C3 are encoded
in the path of the photon, such that |∅, k1〉C1 = |k1〉C

path
1 and |{k1, k2}, k3〉C3 = |k3〉C

path
3 .

In order to define the control system C2 on the other hand, we encode the system α
in the polarisation of the photon (with basis states |0〉α = |V 〉 , |1〉α = |H〉), such that
|{k1}, k2〉C2 = |0〉α ⊗ |k2〉C

path
2 if k2 = k1 + 1 (mod 3), |{k1}, k2〉C2 = |1〉α ⊗ |k2〉C

path
2 if

k2 = k1 + 2 (mod 3). The auxiliary system α3 is also taken to be the polarisation.
The dynamical construction of the causal order is particularly made explicit in this

implementation: after the first operation Ak1 , the corresponding output is “copied” onto
the polarisation of the photon (in the {|0〉 , |1〉} basis) by VCopy. the photon is then routed
to the next operation Ak2 based on this polarisation state (with |V 〉 being reflected, |H〉
being transmitted at the polarising beam-splitters (PBS)), whose configuration guaran-
tees that each operation is applied once and only once on each path. Note that the figures
Fig. 3.12 and 3.13 depict the same circuit. In Fig. 3.12, the circuit is “unfolded”, for
clarity. As in the “folded” one (Fig. 3.13), each external operation is applied once and
only once. Each box depicted in this circuit is thus identified as a single timedelocalized
operation [21].

While the realisation of this QC-QC in the lab would undoubtedly be a major chal-
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PBS

𝑉𝑘1

𝑉𝑘1

𝑉𝑘1

𝑉𝑘3

𝑉𝑘3

𝑉𝑘3

Figure 3.12: Unfolded scheme of our new implementable QCQC for N=3. The system is
sent to the first operation based on the state of the control system, i.e. the path of the
photon. The operations A1, A2, A3 act (once and only once) on the target qubit, some
internal degree of freedom of a photon. The Vk1 and Vk3 gates implement the isometries
V ′k1 and V

′
k3
. In the specific example given above a “Copy” and “CNot” gates implement

the operations VCopy =
∑

i=0,1 |i〉
t |i〉α 〈i|t and VCNot =

∑
i,j=0,1 |i〉

t |i⊕ j〉α 〈i|t 〈j|α (with
⊕ denoting addition modulo 2), respectively. Based on the state of the polarisation, the
system is then routed to the second operation by polarizing beam splitters (PBS’s). It
is reflected if |V 〉, and transmitted if |H〉. After the second operation, PBS’s finally rout
the system to the last unitaries and the third operation.

𝑉𝑘1

𝑡𝑘1

𝑉𝑘3

𝐴2𝐴1 𝐴3

𝑉𝑘1 𝑉𝑘3 𝑉𝑘3𝑉𝑘1

𝑡{𝑘1},𝑘2 𝑡{𝑘1},𝑘2 𝑡{𝑘1},𝑘2𝑡𝑘1 𝑡𝑘1

Figure 3.13: Folded scheme of the new example of QC-QC, based on the implementation
of the quantum switch presented in Section 3.4.1. The structure of the photonic is the
same: A1, A2 and A3 are “inside a loop”, entered by the photon via fast switching mirrors.
The photon is also routed to the isometries, applied at specific time (after Ak1 , at “tk1” for
V ′k1 ; before Ak3 , at “t{k1},k2” for V ′k3), using such fastswitching mirrors. A “cascade” of
PBS allows to rout the photon dynamically and coherently to one operation to another,
while making sure that each operation is applied once and only once.

lenge, it would represent a major step towards showing that more general QC-QCs exploit-
ing dynamical, coherent control of causal order can be realised and, eventually, exploited
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in the laboratory, and we challenge experimental groups to the task.

3.5 Applications
In addition to the fundamental interest in the study of new features of Nature, another
motivation for investigating quantum causal structures is the prospect that indefinite
causal orders could offer new advantages in quantum information processing tasks. This
way, causal nonseparability can be exploited as a new information processing resource [13].

Indeed, the quantum switch and the N−switch have been shown to enable new advan-
tages in regard for instance to to quantum query complexity [20, 167, 149, 168, 170], quan-
tum communication complexity [178, 179] and other information processing tasks [180,
181, 182, 183, 184, 150, 185, 186, 187, 188, 169, 189, 190, 191, 172, 173]. The identification
of new physical causally nonseparable processes beyond the quantum switch enabled by
our characterisation of QC-QCs allows to broaden the search for new advantageous uses of
causal nonseparability, by finding, more systematically, tasks for which QC-QCs provide
an advantage over circuits with definite causal order.

The canonical example of perfect discrimination between commuting and anticom-
muting unitaries enabled by the quantum switch considered above (cf. Section 2.5) is
an example of a “higher-order quantum computation” problem among others, such as the
cloning [120], the storage and retrieval [120], or the replication of the inverse or trans-
pose [192, 193, 127] of some undisclosed, black-box operation of which one or multiple
copies are available. In fact, it is natural to study this type of information processing
tasks in the context of higher-order maps such as the studied quantum supermaps i.e.
involving transformation of transformations.

The performance of a given class of circuit for a given task can be quantified by
optimising over the corresponding higher order transformations and find the “best” circuit,
i.e. the one that maximises some figure of merit, e.g. the success probability of the task.
This circuit can be efficiently found using the characterisations of QC-FO, QC-CC, QC-
QC presented above, by exploiting, in many cases of interest, semidefinite programming
(SDP) techniques for optimisation. In particular, the performances of all these classes
can be compared for a given task.

3.5.1 Probabilistic quantum circuits

In order to quantify the advantage of our new circuits in terms of probabilities of suc-
ceeding in such discrimination task, we need to consider a probabilistic version of these
quantum circuits, generalising the concept of “quantum testers” [121] or “quantum su-
perinstruments” [193] providing some classical outcome (e.g., ‘success’ or ‘fail’). A de-
tailed description and characterisation of these probabilistic quantum circuits is given in
our paper [86].

The generalisation consists in replacing each internal CPTP map in the above de-
scriptions by a quantum instrument, i.e. set of (trace non-increasing) CP maps (each
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corresponding to a given outcome) that sum up to a CPTP map. Without loss of gen-
erality, one can note that the classical outcomes can always be encoded onto suitable
orthogonal states of the auxiliary systems, and the post-selection can be performed at the
end as part of the last internal operation (before F ). This way all the internal operations
can remain deterministic except for the last one. One can thus define, from [86]:

• Probabilistic QC-FO : here, The CPTP map MN+1 is replaced by an instrument
{M[r]

N+1}r, such that the probabilistic process matrix describing the specific realisa-
tion of such a pQC-FO, corresponding to the classical outcome r, is

W [r] = M1 ∗M2 ∗ · · · ∗MN ∗M [r]
N+1 ∈ L(HPAION F ) (3.48)

The entire pQC-FO is described by the set {W [r]}r of all such probabilistic process
matrices, for all classical outcomes r;

• Probabilistic QC-CC : the last internal operation of a QC-CC probabilisticM→F
(k1,...,kN ) →

{M→F [r]
(k1,...,kN )}r to define a pQC-CC. The probabilistic process matrix describing the

specific realisation of such a pQC-CC, corresponding to the classical outcome r, is
given by

W [r] =
∑

(k1,...,kN )

W
[r]
(k1,...,kN ,F ) (3.49)

with W
[r]
(k1,...,kN ,F )

:= M→k1
∅ ∗M→k2

(k1) ∗M
→k3
(k1,k2) ∗ · · · ∗M

→kN
(k1,...,kN−1) ∗M

→F [r]
(k1,...,kN )

(3.50)

The entire pQC-CC is described by the set {W [r]}r of all such probabilistic process
matrices, for all classical outcomes r;

• Probabilistic QC-QC : the last operation ṼN+1 is replaced by a set of operators

Ṽ
[r]
N+1 :=

∑
kN

Ṽ
→F [r]
N\kN ,kN ⊗ 〈N\kN , kN |

C′N , (3.51)

each associated with the classical outcome r of the circuit. The probabilistic process
matrix describing the specific realisation of such a pQC-QC, corresponding to the
classical outcome r, is given by

W [r] = TrαF |w
[r]
(N ,F )〉〈w

[r]
(N ,F )| with

|w[r]
(N ,F )〉 :=

∑
(k1,...,kN )

|V →k1∅,∅ 〉〉 ∗ |V
→k2
∅,k1 〉〉 ∗ |V

→k3
{k1},k2〉〉 ∗ · · ·

· · ·∗|V →kN{k1,...,kN−2},kN−1
〉〉∗|V →F [r]

{k1,...,kN−1},kN〉〉. (3.52)

The entire pQC-QC is described by the set {W [r]}r of all such probabilistic process
matrices, for all classical outcomes r.
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3.5.2 Discrimination task and advantages

For example, we have identified a discrimination task10 for which the performance of
general causally nonseparable process matrices surpasses the one of QC-QCs which itself
surpasses the QC-CCs. This task is a natural variant of an equivalence determination
task studied in [194], in which two reference boxes implement some black-box unitary
operations U1 and U2 respectively, and a target box Ui is promised to perform, with
probability 1/2, one of these operations. The goal is to determine which operation is
implemented by the target box, with the constraint that each one of the three boxes shall
be used once. In our variant, instead of implementing U1 or U2, the target is promised
to implement two different functions of the reference boxes, i.e. either Ui = f1(U1, U2) or
Ui = f2(U1, U2). For simplicity (as in [194]) we shall consider the case where the boxes
all implement qubit unitaries, with the reference boxes chosen randomly according to the
Haar measure on SU(2). Denoting HAIj and HAOj the input and output spaces of the
reference boxes for j ∈ 1, 2 and the target box for j = 3 ; {W [i]}i = 1, 2 the quantum
instrument at disposal, with W [i] ∈ LAIO1 AIO2 AIO3 , and where i ∈ {1, 2}, the outcome of
the superinstrument, denotes the outcome to our guess of which black box operation is
implemented. The figure of merit is given by the probability of success:

pU1,U2 =
1

2

∑
i=1,2

W [i] ∗ (|U1〉〉 〈〈U1| ⊗ |U2〉〉 〈〈U2| ⊗ |Ui〉〉 〈〈Ui|) (3.53)

The problem consists then in maximizing this probability of success for a given class of
circuit. For each class presented above, this optimisation task is a SDP problem, and can
thus be solved efficiently. Some examples of functions (when averaging numerically over
a large number of Haar random unitaries) for which each class of circuit gives a distinct
probability of success for such task are given in Table 3.1.

f1(U1, U2) f2(U1, U2) QC-FO QC-CC QC-QC IND
U1U2U

†
1 U2U1U

†
2 0.6681 0.6681 0.6854 0.6868

U1U1 U2U2 0.6814 0.6856 0.6926 0.6932
U1U2U1 U1U2U2 0.7070 0.7070 0.7133 0.7138

Table 3.1: Success probabilities for the discrimination task between two functions
f1(U1, U2) and f2(U1, U2) implemented by the target box. QC-FO is the maximum of
the success probabilities for the possible fixed order configurations (i.e., with the target
box before, between or after the reference boxes), QC-CC and QC-QC denote the class
of superinstruments with classical and quantum control of causal order, respectively, and
IND stands for general quantum superinstruments (defined as a set of positive semidefinite
matrices {W [r]}r whose sum W :=

∑
rW

[r] is a valid process matrix.)

3.6 All QC-QCs admit a causal model
The definition of the class of quantum circuits with quantum control of causal order is an
important step in the study of causal indefiniteness, as it allows to identify new causally
nonseparable process matrices - beyond the quantum switch and trivial generalisations -

10Other examples of discrimination tasks are given in ([86, 147]).
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that admit a physical implementation. A key question to tackle is whether some QC-QC
might be able to violate a causal inequality, and thus manifest, in a sense, a stronger form
of incompatibility with definite causal orders than the quantum switch. This would also
be an important breakthrough, as it would give the first example of a physical process able
to generate noncausal correlations. Nevertheless, the answer to this question is negative.
Generalizing the proof for the quantum switch, we have shown the following result:

QC-QCs are causal.

Proposition 13. Quantum circuits with quantum control of order can only generate
causal correlations, and are therefore unable to violate causal inequalities.

By coincidence, another paper independent from our work [86] has also shown that
causal inequalities cannot be violated in some similar circuit-like quantum models [195].

3.7 Take Away and Perpsectives

Take Away

• In a bottom-up approach, we have tackled the question: “What kind of quan-
tum circuits are incompatible with a definite causal order ?”.

• Beyond standard quantum circuits with a fixed causal order (QC-FO, also
known as quantum combs), we introduce the class of quantum circuits with
classical control of causal order (QC-CC) in which the causal order is estab-
lished on the fly, dynamically.

• We have then generalised this class by making the control “quantum”, leading
to define the class of quantum circuits with quantum control of causal order
(QC-QC).

• The class of QC-QCs include circuits incompatible with a definite causal order,
such as the quantum switch, but also new examples of causally nonseparable
process matrices, in which the causal order is both dynamically established
and indefinite.

• I have proposed a new implementation of the quantum switch, based on the
idea that a definite causal order emerges from the position of a cut in a
causal loop. If the position of the cut is indefinite, the causal order is, by
“entanglement”, also indefinite.

• QC-QCs offer new information processing advantages for some discrimination
tasks with respect to quantum circuits with a definite causal order (whether
it is fixed (QC-FO) or not (QC-CC)).

• All causally nonseparable QC-QCs are causal, i.e. they cannot be used to
violate causal inequalities.
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Perspectives

• The question of how quantum supermaps outside the QC-QC class can be
given a physical interpretation is open.

• One could try to generalise the QC-QC, for example by relaxing some validity
constraints on the processes, restricting the set of allowed instruments, and
by only imposing that valid probabilities should be produced.

• Experimental realisations and study of new QC-QCs beyond the quantum
switch, and whether they lead to new advantages for quantum information
tasks should be investigated.
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Chapter 4

Witnessing Causal Nonseparability
with Quantum Inputs

This chapter is taken from and based on our pre-publication [87]. This work has been
one of the central part of my thesis, and I have contributed to all parts of the research
presented in this chapter.

4.1 Analogous Characterisations of Non-Locality and
Non-Causality

The notion of causal nonseparability in the process matrix formalism was introduced in
analogy with entanglement in standard quantum theory. Given such specific non-trivial
theoretical features, the questions of how they can be characterized, experimentally cer-
tified, and which underlying assumptions are necessary to do so, are fundamental issues.

For example, a universal way to characterize causal nonseparability and entanglement
is via the measurement of causally nonseparable and entanglement witnesses, respectively.
These certifications however have an important experimental drawback, as they crucially
require the correct calibration of the devices to be measured. Indeed, from Eq. (2.16)
and Eq. (2.17), to define (and measure) a witness, one needs to perfectly trust that the
experimental devices effectively implement the operations Ma|x and Mb|y. This type of
certification, so-called device-dependent (DD), are in general laborious to implement, as
even small alignment errors, difficult to estimate, can lead to false positives.

However, other types of certification exist, which involve fewer assumptions. In fact,
it is the case for the first certification of entanglement, proposed by Bell. The violation of
a Bell inequality is a theory independent1 result, as it can be inferred at the operational
level by only relying on observable probabilities P (a, b|x, y). Moreover, if one “trusts”
quantum theory, it implies that Alice and Bob share an entangled state. In analogy,
within the process matrix formalism, the violation of a causal inequality allows to certify
in a device-independent way that Alice and Bob have access to a causally nonseparable
process matrix. This type of characterization is particularly powerful, in the sense that
it only requires a minimal set of assumptions on the devices, and do not rely on their
detailed characterization: it is device-independent (DI). For example the violation of Bell

1Unlike causal nonseparability and entanglement, which are theory dependent concepts.
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Figure 4.1: Analogous scenarii for the certification of the entanglement of quantum state
ρAIBI (left) and the causal nonseparability of a process matrix WAB (right).

inequalities certifies entanglement independently of any implementation details, in a way
robust to any experimental imperfection. Alice and Bob’s devices are treated as black
boxes, receiving classical inputs x and y and yielding classical outputs a and b. Thus,
the internal mechanisms of the boxes are completely untrusted: their physics is solely
captured in the generated observable probabilities P (a, b|x, y).

Device independent certifications have then a genuine pragmatical interest in the ex-
perimental detection of entanglement and causal nonseparability. Moreover, they have a
straightforward application in communication protocols and cryptography, in which un-
trusted devices can be interpreted as being prepared by malicious eavesdroppers. In fact,
the terminology was first introduced by Mayers and Yao [196], who paved the way to
device-independent quantum cryptography with imperfect sources. Device-independent
protocols have since then been developed for randomness generation [197, 198], quantum
key distribution [199], estimation of the states of unknown systems via self-testing [200],
certification of multipartite entanglement [201], and distrustful cryptography [202].

Nevertheless, although several experimental device-independent certification of entan-
glement have been reported [74, 203, 204, 205], device-independent implementations are
usually experimentally challenging (especially for protocols involving large multipartite
scenarii), as they generally require high visibilities and high detection efficiencies for ex-
ample. Moreover, there are entangled states that can be certified in a device-dependent
way, but cannot violate Bell inequalities, e.g. (some of) the Werner states [131]. In the
case of causal nonseparability, as explained in Chapter 2, despite that causally nonsepara-
ble process matrices can be characterized with causal witnesses, it remains unclear if any
physically realisable process can violate a causal inequality. Furthermore, causal models
have recently been formulated for a large class of quantum-realisable processes [86, 195].

To find a compromise between device-dependent (“complete trust”) and device-independent
(“complete distrust”) certifications, one can study intermediate approaches, semi-device-
independent certifications. These correspond to a variety of characterisations where only
few specific assumptions are made on the devices: for example, only trusting that the
dimension of the input/output systems is bounded [206], or only trusting the charac-
terisation of some of the devices. In a bipartite scenario, the latter is often coined as
a one-sided device-independent certification of entanglement, also known as quantum
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steering2 [207, 124, 208]. Interestingly, it was shown that all quantum states displaying
steering are entangled states, but the converse is not true, i.e. entanglement is necessary
but not sufficient for steering. Moreover all entangled state violating a Bell inequality, i.e.
generating nonlocal correlations display quantum steering, but some steerable entangled
states admit a local model. Hence, quantum steering is sometimes said to be “a novel
form of nonseparability, intermediate between entanglement and nonlocality” [19].

In fact, beyond the pragmatical interest, the fact that there exist distinct manifesta-
tions of “nonseparability”, and crucially that not all entangled states can manifest “non-
separability” in all these forms (entanglement, steering, nonlocality), might motivate a
phenomenological interpretation of the various characterisations of entanglement. Some
entangled states only display “entanglement”, i.e. can only be characterized in a DD way.
Some can also display “steering”, and thus be characterized in a one-sided-DI way, and
finally some can generate non-local correlations, i.e. display “non-locality” and be char-
acterized, straightforwardly, in a DI way.

This phenomenological distinction needs however to be interpreted with caution, as
different types of resources (states, steering assemblages, boxes) are involved. Hence, as
explained in [209], the fact that some entangled state cannot violate Bell inequalities is
not necessarily surprising: “whether or not a given state can be converted to a nonlocal
box is certainly an interesting question, but it is not a necessary condition for the state
to be deemed nonclassical.” Indeed, the device-independent certification of entanglement,
i.e. a certification by “conversion [of an entangled state] into a process with only classical
inputs and outputs”, does not necessarily imply to “convert the state into a box”, i.e. cer-
tify entanglement via the violation of a Bell inequality. In fact, “as soon as one considers
converting states into other sorts of processes, it becomes possible to certify entangled
states that could not be certified by boxes” [209]. All entangled states can be certified in
a device-independent way, for example by combining self-testing technique with a specific
semi-device-independent certification with quantum inputs, that I will present in the next
section.

As it transpires in the DD and DI cases, there is a clear analogy between the charac-
terisations of quantum nonlocality and indefinite causal orders. Inspired by this parallel,
the analogous of quantum steering for causal nonseparability has been studied, i.e. a
certification in scenarii where some of the devices are trusted and others are not [210].
By abuse of language, these are also called one-sided device-independent (OSDI) scenarii
(even for the multipartite cases) [208]. This characterization of causal nonseparability
will be succinctly introduced in Section 4.8.1.

In analogy with the fact that some entangled state admit a local model, i.e. cannot
generate nonlocal correlations violating a Bell inequality, some causally nonseparable pro-
cess matrices admit a causal model, i.e. cannot generate noncausal correlations violating
a causal inequality. In the case of the characterisation of entanglement, it was nevertheless
shown that all entangled states can generate nonlocal correlations in a specific scenario,
where parties receive inputs in the form of trusted quantum systems (instead of classical

2Remarkably, quantum steering was introduced by Schrödinger in 1935 [58, 59] as an attempt to
formalize the essence of the EPR paradox [73]. The concept was then “rediscovered” and modernized by
Wiseman, Jones and Doherty in 2007 [207].
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ones), but are otherwise untrusted [211]. This so-called Buscemi nonlocality corresponds
to a semi-device-independent certification of entanglement with trusted quantum inputs
(SDIQI). Furthermore, it was also shown that one could construct a measurement-device-
independent entanglement witness for all entangled states in such scenario [212] (Section
4.2). Moreover, in analogy with Bell nonlocality and post-quantum correlations, a post-
quantum generalisation of Buscemi nonlocality was introduced in [213], based on effective
joint operators, called distributed measurements [213, 214] (Section 4.3).

Pursuing the analogy between nonlocality and noncausality, we explored how causal
nonseparability could be characterized in a scenario where untrusted devices receive
trusted quantum inputs (Section 4.4), cf. Table 4.1. Defining a notion of causal (non)separability
for distributed measurements (Section 4.5). We show that certain causally nonseparable
processes which cannot violate any causal inequality, such as the quantum switch [13], can
generate non-causal correlations in our semi-DI with quantum inputs scenario. Moreover,
under a weak additional constraint on the uncharacterised operations, we show that all
bipartite causally nonseparable process matrices can be certified in this way.

Note however that the analogy remains limited. In fact the mathematical translations
of the concepts of entanglement and causal nonseparability, are not equivalent. For exam-
ple, determining whether a quantum state is entangled or not is in general a notoriously
hard problem [215] —which, contrary to the case of causal nonseparability cannot be
solved via SDP. Moreover, while all pure entangled state can violate a Bell inequality, and
only some mixed entangled state admit a local model [131, 19], there are pure process
matrix, such as the quantum switch, which cannot violate a causal inequality. As we
show in [87], while all entangled states can be certified in a SDIQI way, it does not seem
to be the case for all causally nonseparable process matrices. Finally, recall that while
the violation of Bell inequalities has become a successful experimental achievement, the
physicality of the violation of a causal inequality remains unclear (cf. Section 2.6).

To conclude, I would like to point out that beyond their pragmatical and phenomeno-
logical interests, the notions of device-independence and trusts could provide food for
thought on a metaphysical perspective. What does it mean to do physics without trust-
ing your devices ? Replacing the malicious eavesdropper from quantum cryptography
protocols, what if untrusted devices were prepared by evil demons, and are there any
epistemological consequences ? This is a subject that I would like to explore (or at
least to see being explored) in more details. Alexei Grinbaum paved the way to such
metaphysics of black boxes in [216], where he suggests that “device-independent methods
convert the usually implicit trust of the observer into a theoretical problem. By doing so,
they erase one of the main dogmas of quantum theory: that it deals with systems.”

4.2 Semi-device independent certification of entangle-
ment with quantum inputs

Before introducing our semi-device-independent certification of causal nonseparability with
quantum inputs, let us succintly present the work it was inspired by: a Bell scenario with
quantum inputs, a semi-quantum nonlocal game [211, 212].
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DD
{

Entangled states ! Causally nonseparable process matrices
Entanglement witnesses ! Causal witnesses

DI


(Non-)local correlations ! (Non-)causal correlations

Local polytope ! Causal polytope
Bell inequalities ! Causal inequalities

OSDI
{

Quantum steering ! [Bavaresco et al., Quantum 3, 176, 2019 [210] ]

SDIQI


Entangled state ! Causally nonseparable process matrices

admitting a local model admitting a causal model
Buscemi non-locality ! ?

Measurement-device-independent ! ?
entanglement witnesses

Table 4.1: Analogies between non-locality and non-causality in different regimes of certifi-
cation: device-dependent (DD) ; device-independent (DI) ; one-sided device-independent
(OSDI) ; semi-device-independent with quantum inputs (SDIQI). In [87] and this sec-
tion, we address precisely the question marks of this table, i.e. we investigate the causal
analogies of Buscemi non-locality and measurement-device-independent entanglement wit-
nesses.

4.2.1 Bell nonlocality, a brief reminder

Consider the following Bell scenario involving two players, Alice and Bob. Each of them
receives (from some external referee) an input x and y respectively, which can take the bit
values x, y ∈ {0, 1} with equal probabilities. Each yield an output a and b respectively,
with bit values a, b ∈ 0, 1. Alice and Bob thus produce correlations, described by the
conditional probability distribution of the outputs given their inputs, which is generically
denoted by P (a, b|x, y). In a Bell scenario, Alice and Bob are not allowed to communicate
after they receive their inputs. Hence, Alice cannot signal to Bob, and Bob cannot signal
to Alice. This means that on the one hand Alice’s marginal probability distribution
P (a|x, y) =

∑
b P (a, b|x, y) cannot depend on Bob’s input y:

∀x, y, y′, a P (a|x, y) =
∑
b

P (a, b|x, y) =
∑
b

P (a, b|x, y′) = P (a|x) (4.1)

This constraint corresponds to a no-signalling condition from Bob to Alice, that we already
encountered in (2.26), satisfied by correlations compatible with the causal order A ≺ B.
On the other hand, Bob’s marginal probability distribution P (b|x, y) =

∑
a P (a, b|x, y)

cannot depend on Alice’s input y:

∀x, x′, y, b P (b|x, y) =
∑
a

P (a, b|x, y) =
∑
a

P (a, b|x′, y) = P (b|y) (4.2)

a no-signalling condition from Alice to Bob, satisfied by correlations compatible with the
causal order B ≺ A (2.27).

In a Bell-local model, Alice and Bob are also allowed to share a common strategy
beforehand, denoted λ. This variable can be seen as some “past factor” [19]: it has a joint
causal influence on both outcomes, and it fully accounts for the dependence between a
and b, following some probability distribution ρ(λ). If the past factors λ have a classical
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description (e.g. they can be written as a list of bits) and are used locally by Alice and
Bob, then their respective response functions are of the form P (a|x, λ) and P (b|y, λ).
Finally, their joint conditional probability distribution is

P (a, b|x, y) =

∫
dλρ(λ)P (a|x, λ)P (b|y, λ) (4.3)

Eq.(4.3) is the so-called local causality, or “ locality”, condition.

If the correlations yielded by Alice and Bob do not satisfy (4.3), as shown by vio-
lating a bound characterizing this condition - a Bell inequality-, then they are nonlocal.
Some entangled quantum states ρAIBI ∈ HAIBI , for some sets of quantum measurements
{MAI

a|x}a,x and {MBI
b|y }b,y, can generate correlations3

P (a, b|x, y) =
(
MAI

a|x ⊗M
BI
b|y

)
∗ ρAIBI (4.4)

that do not satisfy (4.3), thus certifying the entanglement of ρAIBI in a device-independent
way.

4.2.2 Buscemi nonlocality andMeasurement-DI entanglement wit-
nesses

Despite the fact that some entangled state cannot violate Bell inequalities, it was shown
by Buscemi that all entangled states can generate nonlocal correlations in a scenario
where Alice and Bob receive quantum inputs instead of classical ones. Instead of receiving
classical input bits x and y, Alice and Bob are given some quantum states ρÃx ∈ L(HÃ) and
ρB̃y ∈ L(HB̃) respectively, that can be measured jointly with their shared entangled state
ρAIBI . We shall explicitly write the dependency on the quantum inputs in the correlations
P (a, b|ρÃx , ρB̃y ) obtained according to Eq. (4.4). For some quantum measurements {M ÃAI

a }a
and {M B̃BI

b }b, the parties can thus generate correlations

P (a, b|ρÃx , ρB̃y ) =
(
M ÃAI

a ⊗M B̃BI
b

)
∗
(
ρÃx ⊗ ρB̃y ⊗ ρAIBI

)
(4.5)

In such scenario, Alice and Bob’s operations are still untrusted, as above. However,
we trust that they receive quantum inputs in some given states. Thus, the scenario is not
fully device-independent anymore. It is a semi-device-independent with trusted quantum
inputs or measurement-device-independent scenario.

It can be easily shown that all entangled state ρAIBI violating a Bell inequality for
some POVMs {MAI

a|x}a,x and {MBI
b|y }b,y, i.e. such that the correlations P (a, b|x, y) given

by Eq.(4.4) cannot be written as Eq.(4.3), can also generate nonlocal correlations in a
scenario with quantum inputs. Assume that Alice and Bob performs joint operations
{M ÃAI

a }a and {M B̃BI
b }b such that

M ÃAI
a =

∑
x

|x〉〈x|Ã ⊗MAI
a|x

M B̃BI
b =

∑
y

|y〉〈y|B̃ ⊗MBI
b|y (4.6)

3For convenience, we use the link product introduced in Eq. 2.3. Note that Eq. 4.4 is equivalent to
the “standard” Born rule, up to a transpose.
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Figure 4.2: Semi-device-independent scenario with trusted quantum inputs for the certi-
fication of entanglement.

Moreover assume that they receive orthonormal quantum states ρÃx = |x〉〈x|Ã and ρB̃y =

|y〉〈y|B̃ respectively, such that Eq.(4.5) gives

P (a, b|ρÃx , ρB̃y ) =

(∑
x′,y′

|x′〉〈x′|Ã ⊗MAI
a|x′ ⊗ |y

′〉〈y′|B̃ ⊗MBI
b|y′

)
∗
(
|x〉〈x|Ã ⊗ |y〉〈y|B̃ ⊗ ρAIBI

)
=

(∑
x′,y′

P (a, b|x′, y′) |x′〉〈x′|Ã ⊗ |y′〉〈y′|B̃
)
∗
(
|x〉〈x|Ã ⊗ |y〉〈y|B̃

)
= P (a, b|x, y) (4.7)

where we used the fact that |x′〉 〈x′| ∗ |x〉 〈x| = δx′,x.

The correlations P (a, b|ρÃx , ρB̃y ) are thus straightforwardly nonlocal.

Remarkably, this is also the case for all entangled state, even if they cannot violate Bell
inequalities in the standard scenario with classical inputs. In fact, while the joint opera-
tions (4.6) allow Alice and Bob to discriminate their quantum input states ρÃx = |x〉〈x|Ã

and ρB̃y = |y〉〈y|B̃, leading to the generation of correlations identical to the case where
they receive classical inputs (4.7); a scenario with quantum inputs may not, in general,
let such discrimination occur: Alice and Bob only know which ensembles {ρÃx }x and {ρB̃y }y
quantum inputs are drawn from. As shown in [212], this fundamental difference allows to
construct an explicit witness for all entangled state in a scenario with quantum inputs, a
“measurement-device-independent entanglement witness (MDIEW)” (cf. Appendix B).

Several developments on Buscemi nonlocality and MDIEWs have been made. For
example, it was shown that a universal witness [217] can be found given multiple copies of
the studied state, allowing to certify the entanglement of arbitrary states. With a single
copy, it is nevertheless possible to show that unlike the certification of entanglement in
a device-dependent scenario, which is a hard problem, the certification with quantum
inputs can be cast as a semidefinite programming (SDP) optimization problem [218].
MIDEWs were also used for instance to estimate the amount of entanglement and certify
randomness in a quantum network [214], and various experimental implementations of
MDIEWs have been realized (cf. e.g. [219, 220, 218]).
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4.3 Post-quantum Buscemi nonlocality and D-POVMs
In analogy with Bell nonlocality and the existence of post-quantum correlations, e.g.
correlations able to maximally violate Bell inequalities when yielded by PR boxes, Hoban
and Sainz have introduced a post-quantum generalisation to Buscemi nonlocality [213].
To do so, they identify, as in [214], that the correlations (4.5) can be written as the
application of an effective joint operator on the quantum inputs,

P (a, b|ρÃx , ρB̃y ) = EÃB̃
a,b ∗ (ρÃx ⊗ ρB̃y ) (4.8)

with

EÃB̃
a,b =

(
M ÃAI

a ⊗M B̃BI
b

)
∗ ρAIBI . (4.9)

The set of joint operators {EÃB̃
a,b }a,b constitutes an effective POVM, as each element is

positive semidefinite, and the sum over the distributed outcomes a and b gives the identity
operator. One can thus define the notion of distributed measurement (D-POVM)4:

D-POVM

Definition 14. Given a set of classical outcomes {a, b}, a distributed measurement,
or D-POVM, is a set of operators {EÃB̃

a,b ∈ L(HÃB̃)}a,b such that EÃB̃
a,b ≥ 0 and∑

a,bE
ÃB̃
a,b = 1

ÃB̃.

The set of distributed measurements that result from the set of local operations and
shared randomness, called local D-POVM, is defined as follows:

Definition 15. A D-POVM is local if there exist a separable state σAIBI =
∑

k pkσ
AI
k ⊗

σBIk , with ∀k, pk ≥ 0 and
∑

k pk = 1, and some POVMS {M ÃAI
a }a and {M B̃BI

b }b such
that

EÃB̃
a,b =

(
M ÃAI

a ⊗M B̃BI
b

)
∗ σAIBI =

∑
k

pkE
Ã
a,k ⊗ EB̃

b,k (4.10)

with5 EÃ
a,k = M ÃAI

a ∗ σAIk ≥ 0 and EB̃
b,k = M B̃BI

b ∗ σBIk ≥ 0.

When Alice and Bob share a quantum resource, the generated D-POVM is quantum:

Definition 16. A D-POVM is quantum if it is generated from a quantum state ρAIBI as
in Eq.(4.9), in a Buscemi nonlocality experiment.

In such a framework, Buscemi’s result can be reformulated as follows: for every entan-
gled state ρAIBI there exists measurements {M ÃAI

a }a and {M B̃BI
b }b such that the generated

quantum D-POVM {EÃB̃
a,b }a,b is not local. As pointed out by Hoban and Sainz, a corollary

is that the set of local D-POVMs is strictly contained in the set of quantum D-POVMs
4In [213], distributed measurement are defined in a more general N-partite case. I have decided

to stay in the bipartite scenario for the sake of clarity and simplify notations. The generalisation is
straightforward.

5Note that because the dimension of the Hilbert spaces HAI and HBI are finite but not constrained,
the local measurements {M ÃAI

a }a and {M B̃BI

b }b can be taken to be projective without loss of generality.
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[213]. Moreover, they define the set of nonsingalling D-POVMs, i.e. the most general set
of D-POVMs that do not permit superluminal signalling:

Nonsignalling D-POVM

Definition 17. A D-POVM is a nonsignalling D-POVM if there exist POVMs
{EÃ

a ∈ L(HÃ)}a and {EB̃
b ∈ L(HB̃)}b such that∑

b

EÃB̃
a,b = EÃ

a ⊗ 1
B̃, (4.11)∑

a

EÃB̃
a,b = 1

Ã ⊗ EB̃
b (4.12)

In fact, Eq.(4.11) and Eq.(4.12) can be interpreted as nonsignalling conditions. Eq.(4.11)
is a nonsignalling condition from Bob to Alice, as it implies that Alice’s marginal proba-
bility distribution is independent of Bob’s quantum input, and vice-versa. Eq.(4.11) and
Eq.(4.12) imply the generalisation of (4.1) and (4.2) (respectively) with quantum inputs:

∀ρÃx , ρB̃y , ρB̃y′ , a P (a|ρÃx , ρB̃y ) =
∑
b

P (a, b|ρÃx , ρB̃y ) =
∑
b

P (a, b|ρÃx , ρB̃y′) = P (a|ρÃx ) (4.13)

∀ρB̃y , ρÃx , ρÃx′ , b P (b|ρÃx , ρB̃y ) =
∑
a

P (a, b|ρÃx , ρB̃y ) =
∑
a

P (a, b|ρÃx′ , ρB̃y ) = P (b|ρB̃y ) (4.14)

Remarkably, given a tomographically complete set of quantum inputs, the D-POVM
{EÃB̃

a,b }a,b can be explicitly reconstructed via Eq. (4.8)-(4.9). It can be characterized by
only looking at the generated correlations P (a, b|ρÃx , ρB̃y ).

We will see in the next sections how these nonsignalling conditions can be used to
define a notion of causal nonseparability for D-POVMs.

4.4 Causal scenario with quantum inputs
Using the analogy between non-locality and non-causality described above, we now go
from a Bell scenario with quantum inputs to a causal scenario with quantum inputs.
Alice and Bob are still provided with additional quantum inputs ρÃx and ρB̃y , respectively,
indexed by the labels x and y. Instead of applying POVMs {M ÃAI

a }a and {M B̃BI
b }b, we

consider that Alice and Bob can perform more general quantum operations, the quantum
instruments {M ÃA

a }a and {M B̃B
b }b respectively, i.e. operations with a non-trivial output

space (dAO , dBO 6= 1) in general, satisfying (2.4). Each party outputs the classical results
of their instrument, a and b, respectively. Alice and Bob are assumed to be in closed
laboratories, and can communicate with each other only through a shared resource, a
process matrix WAB (instead of sharing a quantum state ρAIBI ). We shall explicitly
write the dependency on the quantum inputs in the correlations P (a, b|ρÃx , ρB̃y ) obtained
according to Eq. (2.5), which can then be written as
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P (a, b|ρÃx , ρB̃y ) =
(
M ÃA

a ⊗M B̃B
b

)
∗
(
ρÃx ⊗ ρB̃y ⊗WAB

)
= EÃB̃

a,b ∗
(
ρÃx ⊗ ρB̃y

)
= Tr

[(
EÃB̃
a,b

)T(
ρÃx ⊗ ρB̃y

)]
(4.15)

with
EÃB̃
a,b =

(
M ÃA

a ⊗M B̃B
b

)
∗WAB. (4.16)

According to Eq. (4.15), the family EÃB̃ := {EÃB̃
a,b }a,b defines a D-POVM6 [214, 213]

on the quantum inputs, cf. Definition 14.
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Figure 4.3: Semi-device-independent scenario with trusted quantum inputs for the certi-
fication of causal nonseparability.

In this scenario, the quantum inputs ρÃx , ρB̃y and their respective spaces are taken to
be trusted. However, we do not trust the (fixed) instruments {M ÃA

a }a and {M B̃B
b }b,

and make no assumptions about the spaces HAI ,HAO ,HBI and HBO . As in the case
of certifying entanglement with quantum inputs, provided we can use a tomographically
complete set of trusted quantum inputs, the D-POVM elements EÃB̃

a,b can be explicitly
reconstructed via Eq. (4.15).

4.5 Causally separable D-POVMs
The fundamental question we wish to tackle here is: if the process matrixWAB is causally
nonseparable, can one certify its causal nonseparability by just looking at the generated
D-POVM elements EÃB̃

a,b ’s? To address this question, we ask conversely whether assuming
that WAB is causally separable imposes any specific constraints on the EÃB̃

a,b ’s.

Assume that Alice and Bob are given a process compatible with the causal order

6One can show that the validity constraints of the instruments and of WAB imply that {EÃB̃a,b }a,b is a
valid POVM.
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A ≺ B, WAB = WA≺B = WA≺BI ⊗ 1
BO with WA≺BI ≥ 0 and [1−AO]BIW

A≺BI = 0. Then∑
b

EÃB̃
a,b =

∑
b

(M ÃA
a ⊗M B̃B

b ) ∗ (WA≺BI ⊗ 1
BO)

= (M ÃA
a ⊗

∑
b

TrBO M
B̃B
b ) ∗WA≺BI

= (M ÃA
a ⊗ 1

B̃BI ) ∗WA≺BI

= EÃ
a ⊗ 1

B̃ (4.17)

with EÃ
a = M ÃA

a ∗ TrBI W
A≺BI ≥ 0 defining a (single-partite) POVM {EÃ

a }a.
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Figure 4.4: Illustration of Alice’s marginalisation of the D-POVM elements EÃB̃
a,b , resulting

in an effective POVM element EÃ
a and the identity operator on Bob’s auxiliary space HB̃.

Thus, the D-POVM generated from a process matrix compatible with A ≺ B satis-
fies the no-signalling constraint Eq.(4.11). We say that a D-POVM {EÃB̃

a,b }a,b satisfying
Eq.(4.11) (or, using the trace-and-replace notation of Eq. (2.9), [1−B̃]

(∑
bE

ÃB̃
a,b

)
= 0)

for all a is compatible with the order Ã ≺ B̃. We generically denote such a POVM as
{EÃ≺B̃

a,b }a,b.

Similarly, starting with a process matrix WAB = WB≺A = WB≺AI ⊗ 1
AO that is

compatible with the order B ≺ A, we find that the resulting D-POVM otbained from
Eq. (4.16), satisfies Eq. (4.12), i.e., is compatible with the order B̃ ≺ Ã (generically
denoted {EB̃≺Ã

a,b }a,b).

Because the compatibility of process matrices with a well-defined causal structure
imposes constraints on the generated D-POVMs, and in analogy with the definition of
causal (non)separability for process matrices Eq. (2.10), we define a notion of causal
(non)separability for D-POVMs:

93



Causally separable bipartite D-POVM

Definition 18. A bipartite D-POVM EÃB̃ = {EÃB̃
a,b }a,b that can be decomposed

as a convex mixture of D-POVMs compatible with the causal orders Ã ≺ B̃ and
B̃ ≺ Ã, i.e., of the form

EÃB̃ = q EÃ≺B̃ + (1−q) EB̃≺Ã (4.18)

with q ∈ [0, 1] and where the D-POVMs EÃ≺B̃ = {EÃ≺B̃
a,b }a,b and EB̃≺Ã = {EB̃≺Ã

a,b }a,b
satisfy

∑
bE

Ã≺B̃
a,b = EÃ

a ⊗ 1
B̃ for all a and

∑
aE

B̃≺Ã
a,b = 1

Ã ⊗ EB̃
b for all b, for some

local POVMs (EÃ
a )a and (EB̃

b )b— is said to be causally separable. Otherwise, we
say that it is causally nonseparable.

In the (2+F )-partite scenario

No physical interpretation is currently known for any bipartite causally nonseparable pro-
cesses (cf. Section 2.6). A more practically relevant scenario is the one of the quantum
switch, a “(2+F )-partite scenario”, cf. Eq. (2.12), Section 2.5). As a reminder, the only
relevant causal orders in this scenario are A ≺ B ≺ F and B ≺ A ≺ F [16]. Moreover,
generalisations of Eq. (2.5), as well as the definitions of causally separable process matri-
ces (cf. Eq. (2.12)) are straightforward.

In a scenario where Alice, Bob and Fiona are given quantum inputs, Eqs. (4.15)
and (4.16) generalise easily to the (2+F )-partite case, so that one is led to consider the
D-POVM EÃB̃F̃ = {EÃB̃F̃

a,b,f }a,b,f with

EÃB̃F̃
a,b,f =

(
M ÃA

a ⊗M B̃B
b ⊗M F̃F

f

)
∗WABF . (4.19)

Similarly with the bipartite case, if WABF = WA≺B≺F is compatible with the or-
der A ≺ B ≺ F , then the induced D-POVM EÃB̃F̃ is compatible with the causal order
Ã ≺ B̃ ≺ F̃ , and satisfies

∑
f E

ÃB̃F̃
a,b,f = EÃ≺B̃

a,b ⊗ 1
F̃ for all a, b and for some bipartite

D-POVM {EÃ≺B̃
a,b }a,b compatible with Ã ≺ B̃ ; we generically denote such a D-POVM

EÃ≺B̃≺F̃ = {EÃ≺B̃≺F̃
a,b,f }a,b,f (and similarly for the order B̃ ≺ Ã ≺ F̃ ).

We then define:7

7Note that the structure of the space in which the D-POVM EÃB̃F̃ is defined does not reflect the fact
that Fiona’s output Hilbert space is trivial, and therefore does not by itself imply that F̃ is taken to come
last; hence the clarification in Definition 19.
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Figure 4.5: Semi-device-independent scenario with trusted quantum inputs for the cer-
tification of causal nonseparability of a (2+F)-partite process matrix, with no quantum
inputs for Fiona (in general she could also receive one, cf. Definition 19).

Causally separable (2 + F )-partite D-POVM

Definition 19. A (2+F )-partite D-POVM EÃB̃F̃ (where F̃ comes last) that can be
decomposed as a convex mixture of D-POVMs compatible with the causal orders
Ã ≺ B̃ ≺ F̃ and B̃ ≺ Ã ≺ F̃ , i.e., of the form

EÃB̃F̃ = q EÃ≺B̃≺F̃ + (1−q) EB̃≺Ã≺F̃ (4.20)

with q ∈ [0, 1] is said to be causally separable.

One clearly sees from the above observations that a causally separable process matrix
can only generate causally separable D-POVMs. We show in [87] that the converse also
holds: any causally separable D-POVM can be realised by local operations on a causally
separable process matrix.

In a general tripartite scenario

Beyond our work [87] and based on the multipartite causal (non)separability [122], we
can define a tripartite notion of causal (non)separability for D-POVMs.

For example, consider the general tripartite scenario involving Alice, Bob and Charlie,
and consider the non-valid process matrix W(ABC) = W(ABCI) ⊗ 1

CO of Eq.(2.13)-(2.14).
Then one has ∑

c

EÃB̃C̃
a,b,c =

∑
c

(M ÃA
a ⊗M B̃B

b ⊗M C̃C
c ) ∗ (W(ABCI) ⊗ 1

CO)

= (M ÃA
a ⊗M B̃B

b ⊗ TrCO
∑
c

M C̃C
c ) ∗W(ABCI)

= (M ÃA
a ⊗M B̃B

b ⊗ 1
C̃CI ) ∗W(ABCI) = EÃB̃

a,b ⊗ 1
C̃ (4.21)

with EÃB̃
a,b = (M ÃA

a ⊗M B̃B
b ) ∗ TrCI W(ABCI) ≥ 0.
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Moreover, using TrCI W(ABCI) = 1
dBO

TrBOCI W(ABCI) ⊗ 1
BO we also obtain∑

b,c

EÃB̃C̃
a,b,c =

∑
b

EÃB̃
a,b ⊗ 1

C̃ = EÃ
a ⊗ 1

B̃C̃ (4.22)

with EÃ
a = 1

dBO
TrBCI W(ABCI) ∗ M ÃA

a ≥ 0. Eq.(4.21)-(4.22) can be interpreted as
no-signalling conditions [213], meaning respectively that Charlie cannot signal to Bob
nor Alice, and Bob cannot signal to Alice. Note however that because W(ABC) is not
a valid process matrix in general (cf. Eq.(2.13)-(2.14)), {EÃ

a }a (and thus {EÃB̃
a,b }a,b and

{EÃB̃C̃
a,b,c }a,b,c) is not a POVM,

∑
aE

Ã
a 6= 1

Ã in general.

We need to consider the complementary (Ã, C̃, B̃) such that, defining

E
(Ã)
a,b,c := E

(Ã,B̃,C̃)
a,b,c + E

(Ã,C̃,B̃)
a,b,c ,

the set {E(Ã)
a,b,c} is a D-POVM:∑

a,b,c

E
(A)
a,b,c =

∑
a

M ÃA
a ∗ (

1

dBO
TrBCI W

(ABCI) +
1

dCO
TrCBI W

(ACBI))⊗ 1
B̃C̃

=
∑
a

M ÃA
a ∗ (ρAI ⊗ 1

AO)⊗ 1
B̃C̃

= 1
AI ∗ ρAI .1ÃB̃C̃ = 1

ÃB̃C̃ (4.23)

with ρAI such that 1
dBOdCO

TrBCW(A) = 1
dBOdCO

TrBC(W(ABC)+W(ACB)) = ρAI⊗1AO .Thus,

we can extend the notion of causal (non)separability for bipartite D-POVM to a general
tripartite case.

Causally separable tripartite D-POVM

Definition 20. A tripartite D-POVM EÃB̃C̃ that can be decomposed as a convex
mixture of D-POVMs compatible with “A first”, “B first” and “C first”, i.e., of the
form

EÃB̃C̃ = E(Ã) + E(B̃) + E(C̃) (4.24)

is said to be causally separable.
Each D-POVM E(X̃) decomposes as a sum of sets of positive semidefinite matrices
(but whose elements do not sum up to 1

X̃ in general) E(X̃Ỹ Z̃) + E(X̃Z̃Ỹ ). For each
permutation of (Ã, B̃, C̃), the elements E(X̃Ỹ Z̃)

x,y,z and E(X̃)
x,y,z := E

(X̃Ỹ Z̃)
x,y,z + E

(X̃Z̃Ỹ )
x,y,z are

positive semidefinite matrices satisfying∑
x,y,z

E(X̃)
x,y,z = 1

X̃Ỹ Z̃ (4.25)

[1−Ỹ Z̃]

∑
y,z

E(X̃Ỹ Z̃)
x,y,z = 0 (4.26)

[1−Z̃]

∑
z

E(X̃Ỹ Z̃)
x,y,z = 0 (4.27)
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The question of whether any tripartite causally separable D-POVM be obtained from
a tripartite causally separable process matrix is an open problem.

4.6 SDIQI certification of causal nonseparability
If a causally nonseparable process matrix can generate a causally nonseparable D-POVM,
its causal nonseparability can thus be certified without trusting the parties’ instruments
(but only their quantum inputs); i.e., in an SDQI manner. The follow-up question is then:
for which process matrices is this possible?

To tackle this question, we can start by noting that one can verify whether a given
D-POVM is causally nonseparable with a semi-definite program (SDP).

4.6.1 Witnesses of causal nonseparability for D-POVMs

Indeed, in the bipartite scenario (and straightforwardly, in the (2 + F )−scenario), one
can define the closed convex cone of causally separable (non-normalized) D-POVMs as
the Minkowski sum

E sep = E Ã≺B̃ + E B̃≺Ã, (4.28)

of the cones E Ã≺B̃ and E B̃≺Ã of D-POVMs compatible with the orders Ã ≺ B̃ and B̃ ≺ Ã,
resp. The cone E Ã≺B̃ of (nonnormalised) causally ordered D-POVMs EÃ≺B̃ = {EÃ≺B̃

a,b }a,b
with nA and nB possible outputs a and b can be written as

E Ã≺B̃ = PnAnB ∩ LÃ≺B̃, (4.29)

where P generically denotes the cone of positive semidefinite matrices of appropriate
dimensions (taken here to the Cartesian power nAnB) and where LÃ≺B̃ is the linear space

LÃ≺B̃ = {{EÃ≺B̃
a,b }a,b|∀ a,

∑
bE

Ã≺B̃
a,b = EÃ

a ⊗ 1
B̃;
∑

aE
Ã
a ∝ 1

Ã}. (4.30)

The cone of D-POVMs EB̃≺Ã is obtained in a similar, symmetric manner.

In analogy with the causal (non)separability of process matrices, we can show that the
dual cones of causally separable D-POVMs contain the “witness of causal nonseparability”.
These dual cones (which we denote with an asterisk ∗ or with the “orthogonal” symbol ⊥
in the case of linear spaces) are typically obtained by using the following duality relations
that hold for any of the closed convex cones K1,K2:

(K1 +K2)∗ = K∗1 ∩ K∗2, (K1 ∩ K2)∗ = K∗1 +K∗2. (4.31)

Thus, we have

(E sep)∗ = (E Ã≺B̃)∗ ∩ (E B̃≺Ã)∗ (4.32)

In order to characterize (E Ã≺B̃)∗ (and resp. (E B̃≺Ã)∗), we consider the scalar product
inherited from the link product

SÃB̃ ∗ EÃB̃ =
∑
a,b

Tr
[
(SÃB̃a,b )TEÃB̃

a,b

]
(4.33)
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for SÃB̃ = {SÃB̃a,b }a,b and EÃB̃ = {EÃB̃
a,b }a,b, so that the dual of a cone E sep is the cone

(E sep)∗ = {SÃB̃|∀EÃB̃ ∈ E sep,SÃB̃ ∗ EÃB̃ ≥ 0} (4.34)

It is easily verified that PnAnB is self-dual, and that (LÃ≺B̃)∗ = (LÃ≺B̃)⊥ = {(SÃB̃a,b =

SÃ≺B̃a + SÃ≺B̃)a,b|∀ a,TrB̃[SÃ≺B̃a ] = 0; Tr
[
SÃ≺B̃

]
= 0}. We thus obtain

(E Ã≺B̃)∗ = PnAnB + (LÃ≺B̃)⊥,

= {(SÃB̃a,b = SÃ≺B̃PSD;a,b + SÃ≺B̃a + SÃ≺B̃)a,b|∀ a, b, SÃ≺B̃PSD;a,b ≥ 0,TrB̃[SÃ≺B̃a ] = 0,

Tr
[
SÃ≺B̃

]
= 0} (4.35)

and similarly for (E B̃≺Ã)∗.

Any set of operators SÃB̃ = {SÃB̃a,b }a,b in the dual cone E sep acts as a “witness of causal
nonseparability” for D-POVMs, in the sense that by definition all causally separable D-
POVMs satisfy SÃB̃ ∗ EÃB̃ ≥ 0—hence, if one gets a value SÃB̃ ∗ EÃB̃ < 0, this certifies
that the D-POVM is causally nonseparable. Note, furthermore, that since the set of
causally separable D-POVMs is closed and convex, then by the separating hyperplane
theorem [123], for any causally nonseparable D-POVM there exists a witness that certi-
fies it.

Thus, for any causally nonseparable distributed measurement {EÃB̃
a,b }a,b /∈ E sep, there

exists a witness of causal nonseparability {SÃB̃a,b }a,b ∈ (E sep)∗ such that
∑

a,b S
ÃB̃
a,b ∗EÃB̃

a,b < 0.
By using the characterization of (E sep)∗ above, a witness can be found by solving a SDP
program asking how much noise can be added before the distributed measurement be-
comes causally separable. For example, we can consider8 the case of a “white noise”
D-POVM with uniform elements, all equal to 1◦ = 1

nAnB
, with nA and nB the numbers of

different values for a and b. For a given D-POVM {EÃB̃
a,b }a,b, we investigate the causal non-

separability of the non-normalized9 noisy distributed measurement {EÃB̃
a,b (r)}a,b defined

as

EÃB̃
a,b (r) = EÃB̃

a,b + r 1◦. (4.36)

The SDP problem thus consists in minimizing the amount of white noise added to the
distributed measurement such that the noisy distributed measurement becomes causally
separable:

min r
s.t. {Ea,b(r) + r1◦}a,b ∈ E sep, r ≥ 0. (4.37)

The primal problem is intrinsically linked with the dual problem:

min
∑
a,b

Sa,b ∗ Ea,b

s.t. {Sa,b}a,b ∈ (E sep)∗,
∑
a,b

Sa,b ∗ 1◦ ≤ 1, (4.38)

8In [87], we take the more general case of a noise as some random object E◦ taken to be in the interior
of Esep.

9The normalization is irrelevant in order to check whether the D-POVM is in the convex cone Esep.
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The optimal value of noise is related with the witness {SÃB̃a,b }a,b following the duality
theorem (cf., e.g., Theorem 8 in Appendix E of [16]),

r∗ = −
∑
a,b

SÃB̃a,b ∗ EÃB̃
a,b (4.39)

where r∗ can be interpreted as the random robustness, i.e., a quantifier of the robustness of
the distributed measurement {EÃB̃

a,b }a,b with respect to white noise. In particular, r∗ > 0
implies that the distributed measurement is causally nonseparable. The witness of the
causal nonseparability of the obtained distributed measurement is then a semi-device-
independent with trusted quantum inputs (SDIQI) causal witness of WAB. This witness
can be measured in practice. Indeed, given {ρÃx }x and {ρB̃y }y to be tomographically com-
plete sets and writing SÃB̃a,b =

∑
x,y s

(x,y)
a,b ρÃx ⊗ρB̃y , one can thus reconstruct the witness from

the correlations P (a, b|ρÃx , ρB̃y ) and certify the causal nonseparability of EÃB̃ by observing

∑
a,b

SÃB̃a,b ∗ EÃB̃
a,b =

∑
a,b,x,y

s
(x,y)
a,b P (a, b|ρÃx , ρB̃y ) < 0. (4.40)

In order to certify the causal nonseparability of a process matrix in a SDIQI manner,
one thus needs to find some auxiliary systems HÃ,HB̃ and some instruments {M ÃA

a }a and
{M B̃B

b }b such that the D-POVM EÃB̃ induced via Eq. (4.16) is causally nonseparable.

4.6.2 Causally nonseparable D-POVM from noncausal process
matrices

It is fairly easy to see that if WAB can violate a causal inequality, then it can indeed
generate a causally nonseparable D-POVM. Indeed, if WAB generates noncausal corre-
lations P (a, b|x, y) with some instruments MA

|x = {MA
a|x}a and MB

|y = {MB
b|y}b, then one

obtains a causally nonseparable D-POVM by introducing auxiliary spaces HÃ and HB̃

with computational bases {|x〉Ã}x and {|y〉B̃}y, and taking the instruments (similarly to
Eq. (4.6) for Buscemi nonlocality)

M ÃA = {M ÃA
a =

∑
x

|x〉〈x|Ã ⊗MA
a|x}a

M B̃B = {M B̃B
b =

∑
y

|y〉〈y|B̃ ⊗MB
b|y}b (4.41)

With this choice, the induced D-POVM elements, obtained from Eq. (4.16), are

EÃB̃
a,b =

∑
x,y

(|x〉〈x|Ã ⊗MA
a|x ⊗ |y〉〈y|

B̃ ⊗MB
b|y) ∗WAB

=
∑
x,y

P (a, b|x, y) |x〉〈x|Ã ⊗ |y〉〈y|B̃ , (4.42)

so that P (a, b|x, y) = EÃB̃
a,b ∗ (|x〉〈x|Ã ⊗ |y〉〈y|B̃) (similarly to Eq. (4.7) for Buscemi non-

locality). These correlations being noncausal, it implies that the D-POVM {EÃB̃
a,b }a,b is

causally nonseparable.
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Note that this argument also holds for “non-extensibly causal” process matrices, i.e.
processes that admit a causal model, but can still violate a causal inequality by generating
noncausal correlations p(a, b|x, y) when extended with a shared entangled state on auxil-
iary spaces HȦ and HḂ, |φ+〉〈φ+|ȦḂ = 1√

d
|1〉〉〈〈1|ȦḂ, with some instruments {M ȦA

a|x }a and
{M ḂB

b|y }b. By introducing auxiliary spaces HÃ and HB̃ and taking instruments defined as

M ÃȦA
a =

∑
x

|x〉〈x|Ã ⊗M ȦA
a|x

M B̃ḂB
b =

∑
y

|y〉〈y|B̃ ⊗M ḂB
b|y . (4.43)

we can also show, with a similar argument as before, that the D-POVM {EÃB̃
a,b }a,b is

causally nonseparable.

4.6.3 Causally nonseparable D-POVM from a Werner-like pro-
cess matrix

Nevertheless, as mentioned previously, in analogy with some entangled states admitting
a local model, such as the so-called Werner states [131], there exist causally nonseparable
processes that can never generate causal correlations. In the bipartite case, this is the
case for example for a family of processes presented in [126]. Note that these processes
are not unitarily extendible, i.e. they are not purifiable (cf. Section 2.6). Let us present
and analyze them and show how can one find adapted instruments in order to generate a
causally nonseparable D-POVM.

The processes are of the form

WFAB(q, ε) = 1
◦ +

q

12
(1AIZAOZBI1

BO + 1
AIXAOXBI1

BO + 1
AIY AOY BI1

BO)

+
1− q + ε

4
ZAI1

AOXBIZBO (4.44)

with X, Y, Z the Pauli matrices, implicit tensor products between each spaces,

1
◦ = 1

AB/4, q ∈ [0, 1] and |1− q + ε| ≤
√

(1−q)(q+3)
3

so as to ensure that WFAB(q, ε)

is positive semidefinite (as required for a valid process matrix).

It was shown in [126] that WFAB(q, ε) is causally nonseparable for ε > 0, in which case
its random robustness [16, 17] is ε. In the following we will take the values q =

√
3−1 and

ε = 4√
3
− 2, which give the maximal random robustness ε = 4√

3
− 2 ' 0.309, and simply

write WFAB = WFAB(q, ε) for those values. Note a characteristic of such processes is that
ignoring the input space of Bob HBI leads to a fully depolarized process: BIWFAB = 1

◦.

Mixing this process matrix with fully white noise, described by the process matrix 1◦,
we then define

WFAB(r) =
1

1 + r
(WFAB + r 1◦) (4.45)
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for r ≥ 0. The largest value of r such that WFAB(r) is causally nonseparable defines the
random robustness of WFAB [16, 17]: as just recalled, WFAB(r) is thus causally nonsepa-
rable for all r ≤ 4√

3
− 2 ' 0.309.

Let us try to find instruments such that the D-POVM from WFAB is causally non-
separable. First of all, let us note that WFAB is causal, i.e. it cannot generate noncausal
correlations. In fact, one can check that the process W TB

FAB - with (.)TB the partial trans-
pose onHB - is causally separable. Thus it can only produce causal correlations with valid
instruments. Because WFAB and instruments {MA

a }a, {MB
b }b give the same correlations

as W TB
FAB and instruments {MA

a }a, {(MB
b )TB}b - which is also a valid instrument because

the transpose is positive - we can conclude that WFAB is also causal. However this argu-
ment does not imply that WFAB cannot lead to causally nonseparable D-POVMs, since
(M B̃B

b )TB̃ � 0 in general, and is thus not valid in general.

Indeed, because W TB
FAB is causally separable, it can only generate causally separa-

ble D-POVMs. Moreover, because {(M B̃B
b )TB̃B}b is a valid instrument (because the full

transpose is positive), the D-POVM generated by W TB
FAB can be written W TB

FAB ∗ (M ÃA
a ⊗

(M B̃B
b )TB̃B) = EÃ≺B̃

a,b +EB̃≺Ã
a,b , and is thus equal to (EÃB̃

a,b )TB̃ = WFAB ∗ (M ÃA
a ⊗ (M B̃B

b )TB̃).
If (M B̃B

b )TB̃ ≥ 0, then {EÃB̃
a,b } is causally separable. Thus, the D-POVM {EÃB̃

a,b }a,b gener-
ated by WFAB might be causally nonseparable only if at least one element of the pseudo-
instrument {(M B̃B

b )TB̃} is not semidefinite positive (M B̃B
b )TB̃ � 0. Following the positive

partial transpose criterion [221, 222], it follows that the HB and HB̃ spaces shall be en-
tangled for at least one element (M B̃B

b )TB̃ � 0.

From (4.44), we obtain∑
b

EÃB̃
a,b = (1◦ +

1− q + e

4
ZAI1

AOXBIZBO) ∗ (M ÃA
a ⊗

∑
b

M B̃B
b ) (4.46)

with q
12

(1ZZ1+ 1XX1+ 1Y Y 1) ∗
∑

bM
B̃B
b = q

12
(1ZZ + 1XX + 1Y Y ) ∗ 1BI ⊗ 1B̃ = 0,

with implicit spaces and tensor products.

Note that if [1−BI ]

∑
bM

B̃B
b = 0, because (ZAI1

AOXBIZBO ∗ 1BI ) = 0 we obtain∑
b

EÃB̃
a,b = 1

◦ ∗ (M ÃA
a ⊗

∑
b

M B̃B
b ) =

1

2
TrA(M ÃA

a )⊗ 1
B̃ (4.47)

and thus the D-POVM is causally separable, compatible with Ã ≺ B̃.

On the other hand, we have∑
a

EÃB̃
a,b = (1◦ +

q

12
(1ZZ1 + 1XX1 + 1Y Y 1)) ∗ (

∑
a

M ÃA
a ⊗M B̃B

b ) (4.48)

Note that if [1−AO]AI

∑
aM

ÃA
a = 0, we obtain∑

a

EÃB̃
a,b = 1

◦ ∗ (M B̃B
b ⊗

∑
a

M ÃA
a ) =

1

2
TrB(M B̃B

b )⊗ 1
Ã (4.49)
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and thus the D-POVM is causally separable, compatible with B̃ ≺ Ã.

Hence, in order to obtain a causally nonseparable D-POVM, we must thus find instru-
ments such that

∃b s.t. (M B̃B
b )TB̃ � 0, [1−BI ]

∑
b

M B̃B
b 6= 0, [1−AO]AI

∑
a

M ÃA
a 6= 0 (4.50)

We have found several sets of instruments satisfying Eq. (4.50) that lead to a causally
nonseparable D-POVMwhen applied toWFAB. For example, I have found the instruments
(with a 1-qubit input space HÃ for Alice and a 2-qubit input space HB̃ = HB̃I ⊗HB̃O for
Bob)

M ÃA
a = |a〉〈a|AI ⊗ |1〉〉〈〈1|ÃAO ,

M B̃B
0 = ΠB̃IBI

Hardy ⊗ |1〉〉〈〈1|
B̃OBO

M B̃B
1 = (1B̃IBI − ΠB̃IBI

Hardy)⊗ |X〉〉〈〈X|
B̃OBO (4.51)

with ΠHardy = |vHardy〉〈vHardy| the projector associated with the Hardy state |vHardy〉 =
1√
3
(|00〉+|01〉+|10〉), for which the process can generate a causally nonseparable D-POVM

for all r . 0.0125. A stronger example, as it allows to generate a causally nonseparable
D-POVM for all r . 0.113, is

M ÃA
a = |a〉〈a|AI ⊗ |1〉〉〈〈1|ÃAO ,

M B̃B
0 = |ψ〉〈ψ|B̃IBI ⊗ (|0, 0〉〈0, 0|+ |1, 1〉〈1, 1|)B̃OBO ,

M B̃B
1 = 1

B̃IBI ⊗ (|0, 0〉〈0, 0|+ |1, 1〉〈1, 1|)B̃OBO

− |+〉〈+|B̃I ⊗ |−〉〈−|BI ⊗ ZB̃O ⊗ ZBO −M B̃B
0 (4.52)

with |ψ〉 = (|+,+〉+ δ |−, 0〉)/
√

1 + δ2 and δ ' 0.01.

Recall however that WFAB was found in [126] not to be “extensibly causal”: that is,
extended with some entangled state, WFAB allows for some causal inequality violation.
Hence, the approach and instruments of Eq. (4.43) could also be used to generate a
causally nonseparable D-POVM from WFAB. This non-extensible-causality was however
not found to be very robust to noise: such “activation” of noncausality by entanglement
was only found for noise values much smaller than the robustness r ' 0.113 found above,10

so that our approach above to certify the causal nonseparability of WFAB, with our choice
of instruments in Eq. (4.52) (and even in Eq. (4.51)), is much more robust to noise than
via its non-extensible-causality.

Like any bipartite causally nonseparable process, Feix et al.’s process, however, has
no known physical interpretation. It is even more interesting to look at an example that
could have a practical implementation.

10More specifically, [126] considered the noisy “extended” process (1−κ)WFAB⊗ρA
′B′ +κ1ABA

′B′/64,
for some maximally entangled 2-ququart auxiliary state ρA

′B′ , and only found causal inequality violations
with this process matrix for κ . 3.3 × 10−4. From this, one may expect WFAB(r) to also exhibit non-
extensible-causality for r of the order of 10−4 – 10−3 only.
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4.6.4 Causally nonseparable D-POVM from the quantum switch

As explained before, a causally nonseparable process that has received significant interest
is the “quantum switch” [13], as a tripartite process in the “(2+F )-partite scenario” with
a clear physical interpretation.

The quantum switch WQS is known to be causally nonseparable but to only generate
causal correlations [16, 21], even when extended with entanglement. So far, its causal
nonseparability was only certified experimentally in a device-dependent way [151, 157].
Despite being extensibly causal, we find that this important process can be certified in an
SDQI way. Indeed, I have found that for a qubit target system and with qubit auxiliary
systems (quantum inputs) for Alice and Bob, and without any quantum input for Fiona,
the instruments

M ÃA
a = |a〉〈a|AI ⊗ |1〉〉〈〈1|ÃAO ,

M B̃B
b = |b〉〈b|BI ⊗ |1〉〉〈〈1|B̃BO ,

MF
± = |±〉〈±|F , (4.53)

give a causally nonseparable D-POVM. These instruments can be interpreted as Alice
and Bob performing computational basis measurements on the untrusted systems they
receive from the process (in HAI and HBI , resp.) while sending their quantum inputs (in
HÃ and HB̃, resp.) to the process (in HAO and HBO , resp.) via identity channels; Fiona
then measures in the diagonal basis {|±〉 = 1√

2
(|0〉 ± |1〉)}±.

To understand how robust this certification is, we can consider the “noisy” quantum
switch

WQS(r) = 1
1+r

(WQS + r 1ABF/8) (4.54)

parameterised by r ≥ 0.

It is known that WQS(r) is causally nonseparable for r . 1.576 [17]. With the instru-
ments (4.53) it is readily checked thatWQS(r) generates a causally nonseparable D-POVM
for r . 0.367 11. Despite extensive numerical searches, we were unable to find instruments
allowing us to certify the causal nonseparability ofWQS(r) for 0.367 . r . 1.576. It could
be that some better choice of instruments would allow one to partially close this gap12.
Still, we conjecture that for a certain range of values r, WQS(r) is causally nonseparable
but that this cannot be certified in a SDQI manner, i.e. our SDQI approach cannot certify
all causally nonseparable processes, in contrast to the MDI certification of entanglement.

Nevertheless, the fact our approach provides a noise robust SDQI certification of the
quantum switch is of significant relevance, given that it is responsible for most known
applications of causal nonseparability and yet cannot be certified in a fully DI manner.

11This value was initially found via a SDP program using CVX [177], which also gave a witness of
causal nonseparability for the generated D-POVM. In [87], we also construct this witness explicitly and
give an analytical expression.

12We will see in Section 4.8.2 that this gap can be reduced (but not completely closed) by making
additional assumptions on the structure of Alice and Bob’s instruments.
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4.7 Certifying all bipartite causally nonseparable pro-
cess matrices with trusted quantum inputs

Whether there exists a general recipe to obtain a causally nonseparable D-POVM from
any causally nonseparable process matrix - in analogy with the study of entanglement
where one can construct MDI entanglement witnesses (MDIEWs) [211, 212] for all entan-
gled states - remains an open question in the general case presented above. However, if
one is willing to commit to some natural assumptions on the structure of Alice and Bob’s
operations, we can show that the answer is positive for all bipartite causally nonseparable
process matrices.

Let us assume that Alice and Bob’s (trusted) auxiliary Hilbert spaces have a bipartite
tensor product structure of the form HÃ = HÃI ÃO and HB̃ = HB̃I B̃O , and that their
operations are of the form:

M ÃA
a = M ÃIAI

a ⊗M ÃOAO M B̃B
b = M B̃IBI

b ⊗M B̃OBO , (4.55)

with
∑

aM
ÃIAI
a = 1

ÃIAI and TrAO M
ÃOAO = 1

ÃO , and similarly for Bob.

These can be interpreted as follows: Alice performs a joint POVM {M ÃIAI
a }a on the

subsystem of her trusted quantum input living in HÃI and the untrusted system in HAI

she receives from the process matrix ; and she sends the subsystem of her trusted quan-
tum input living in HÃO to the process matrix in the untrusted output space HAO via
a quantum channel (i.e. a CPTP map), and similarly for Bob13. These new constraints
define a “measurement device and channel independent” scenario (with trusted quantum
inputs), in which no assumption is made about the implemented measurements and quan-
tum channels, that can be treated as black boxes, cf. Fig.4.6. The additional constraint
concerns the structure of the instruments alone. It is a natural assumption in a situa-
tion where the quantum input is provided as two physically distinct systems (e.g., in two
separate fibres) and distinct operations can be performed on these inputs.
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Figure 4.6: Additional assumption of the structure of the instruments (here Alice’s).

Similarly with the previous general case, we can ask how assuming a causally separable
13Note that the structure of Eq. (4.55) implies in particular that

TrAO
M ÃA
a =M ÃIAI

a ⊗1ÃO, TrBO
M B̃B
b =M B̃IBI

b ⊗1B̃O (4.56)

for all a, b, with
∑
aM

ÃIAI
a = 1

ÃIAI and
∑
bM

B̃IBI

b = 1
B̃IBI . These constraints, for the particular

values of a, b under consideration, are in fact sufficient to prove our result.
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process matrix WAB impose any specific constraints on the generated D-POVM elements
{EÃB̃

a,b }a,b.

Assuming that Alice and Bob share a process matrix WA≺B = WA≺BI ⊗1BO compat-
ible with the order A ≺ B and using Eq. (4.56), one then has, for any fixed a, b

EÃ≺B̃
a,b = (M ÃA

a ⊗M B̃B
b ) ∗ (WA≺BI ⊗ 1

BO)

= (M ÃA
a ⊗ TrBO M

B̃B
b ) ∗WA≺BI

= (M ÃA
a ⊗M B̃IBI

b ⊗ 1
B̃O) ∗WA≺BI

= EÃ≺B̃I
a,b ⊗ 1

B̃O (4.57)

with EÃ≺B̃I
a,b = (M ÃA

a ⊗M B̃IBI
b ) ∗WA≺BI ≥ 0. Similarly for a process matrix WB≺A =

WB≺AI ⊗ 1
AO compatible with B ≺ A, one gets EB̃≺Ã

a,b = EB̃≺ÃI
a,b ⊗ 1

ÃO with EB̃≺ÃI
a,b =

(M ÃIAI
a ⊗M B̃B

b ) ∗WB≺AI ≥ 0.

Starting with a causally separable process matrixWAB as in Eq. (2.10), one finds that
EÃB̃
a,b necessarily decomposes as

EÃB̃
a,b = q EÃ≺B̃I

a,b ⊗ 1
B̃O + (1−q)EB̃≺ÃI

a,b ⊗ 1
ÃO (4.58)

for some EÃ≺B̃I
a,b , EB̃≺ÃI

a,b ≥ 0. If the D-POVM elements EÃB̃
a,b cannot be decomposed in

such a way, then one can conclude that the process matrix WAB is causally nonseparable.

Remarkably, in analogy with the construction of MDIEWs, one only needs to consider
some fixed outcomes, say a = b = 0, and thus only look at a single D-POVM element
EÃB̃

0,0 to certify the causal nonseparability of WAB in this scenario.

Proposition 21. For any causally nonseparable process WAB /∈ Wsep, one can find
instruments such that the generated distributed measurement element EÃB̃

00 cannot
be decomposed as Eq. (4.58).

Proof. Consider auxiliary quantum input spaces HÃI ,HÃO ,HB̃I and HB̃O that are iso-
morphic to HAI ,HAO ,HBI and HBO , resp., and consider the operations

M ÃA
0 = |Φ+〉〈Φ+|ÃIAI ⊗ |1〉〉〈〈1|ÃOAO ,

M B̃B
0 = |Φ+〉〈Φ+|B̃IBI ⊗ |1〉〉〈〈1|B̃OBO . (4.59)

We find that EÃB̃
0,0 is (up to normalisation) formally the same as the process matrix

WAB under consideration, written in the spaces HÃI ,HÃO ,HB̃I and HB̃O instead of
HAI ,HAO ,HBI and HBO . The process matrix is in a sense “teleported” from the un-
trusted input and output spaces into the trusted spaces of the quantum inputs.
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Consider now that WAB is causally nonseparable, which means that it cannot be
decomposed as Eq. (2.10). Note, further, that a causally nonseparable process matrix can
also not be decomposed as in Eq. (2.10), even if we do not impose Eq. (2.11) a priori.14

Translating this onto EÃB̃
0,0 , this means that EÃB̃

0,0 cannot be written as in Eq. (4.58),
for any EÃ≺B̃I

0,0 , EB̃≺ÃI
0,0 ≥ 0, which proves our claim above.

Thus, any (bipartite) causally nonseparable process matrix can be certified in the sce-
nario with trusted quantum inputs, as long as we trust the fact that the instruments are
of the form considered in Eq. (4.55). This is independently from the measurement devices
used to implement the POVMs {M ÃIAI

a }a and {M B̃IBI
b }b on systems ÃIAI and B̃IBI ,

resp., and independent from the devices that implement the channels from ÃO to AO and
from B̃O to BO—although not fully independently from the instruments {M ÃA

a }a and
{M B̃B

b }b, which are required to satisfy Eq. (4.55). We can thus construct measurement-
device-and-channel-independent (MDCI) causal witnesses for all bipartite causally non-
separable processes.

4.8 One-sided device independent certification of causal
nonseparability with trusted quantum inputs

Surprisingly, Proposition 21 cannot be generalised straightforwardly to a (2+F )−scenario15.

Nonetheless, I have shown that the partial-device-independent certification of causal
nonseparability of [210], in which some parties are trusted and others are not, can be
generalised with our MDCI approach. For example, all causally nonseparable process
matrices whose causal nonseparability can be certified with trusted operations from Alice
and Bob and an untrusted measurement by Fiona—so-called “TTU-noncausal” process
matrices—can also be certified in a MDCI manner for Alice and Bob, and fully DI for
Fiona.

4.8.1 TTU-noncausal process matrices

As defined in Ref. [210], a “TTU-assemblage” is a set of positive semidefinite matrices
{wABf |z }f,z, with each wABf |z ∈ L(HAB), such that the sum over outcome f of these operators
is a valid bipartite process matrix16 WAB,∑

f

wABf |z = WAB ∀ z. (4.60)

Such TTU-assemblage is typically realized by the application of Fiona’s measurement
{MF

f |z}f,z - where z is a classical input and f a classical outcome of Fiona - on a process

14This can be seen by noting that Eq. (2.11) follows from the validity of WAB (which satisfies in
particular [1−AO]BW

AB = 0) and the decomposition of Eq. (2.10): e.g., q
(
[1−AO]BI

WABI
)
⊗ 1

BO =

[1−AO]B

(
qWABI⊗1BO

)
= [1−AO]B [W

AB−(1−q)WBAI⊗1AO ] = [1−AO]BW
AB−(1−q) [1−AO]B

(
WBAI⊗

1
AO
)
= 0, which indeed implies (for q > 0) that [1−AO]BI

WABI = 0.
15This is due to the fact that the decomposition of Eq. (2.12) along with the validity of WABF does

not by itself imply that WA≺B≺F and WB≺A≺F are themselves valid process matrices
16thus, a TTU-process assemblage can be interpreted as a set of probabilistic process matrices [86],

which (for each z) sum up to a deterministic process.
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matrix WABF such that

wABf |z = MF
f |z ∗WABF ∀ f, z. (4.61)

It is said to be “causal” if it can be decomposed as a convex mixture (for some q ∈ [0, 1])

wABf |z = q wA≺Bf |z + (1−q)wB≺Af |z ∀ f, z, (4.62)

in terms of positive semidefinite matrices wA≺Bf |z , wB≺Af |z ≥ 0 satisfying∑
f

wA≺Bf |z = WA≺BI ⊗ 1
BO ∀ z,∑

f

wB≺Af |z = WB≺AI ⊗ 1
AO ∀ z, (4.63)

for some causally ordered (valid) process matrices WA≺BI and WB≺AI .

If no such decomposition exists, then the TTU-assemblage is noncausal. As in the
bipartite case, we note that a noncausal TTU-assemblage can also not be decomposed
as in Eqs. (4.62) and (4.63) above, even if we don’t assume a priori that WA≺BI and
WB≺AI are valid process matrices (as their validity condition would anyway be implied
by Eqs. (4.60)–(4.63), as in Footnote 14).

A process matrix that can generate a noncausal TTU-assemblage in such a way is
said to be “TTU-noncausal” [210]. Note that only causally nonseparable process matrices
can generate noncausal process TTU-assemblages, so that certifying TTU-noncausality
implies a certification of causal nonseparability. Furthermore, note that one can construct
witness-assemblages {Sf |z}f,z of noncausality for TTU-assemblages. These correspond to
a set of matrices {Sf |z}f,z such that

∑
f,z Sf |z ∗ wf |z ≥ 0 for all causal TTU-assemblage.

Because the set of causal TTU-assemblages is closed and convex, then according to the
separating hyperplane theorem, the noncausality of a TTU-assemblage {wf |z}f,z can al-
ways be certified by the existence of a witness-assemblage such that

∑
f,z Sf |z ∗ wf |z < 0,

which can be constructed using a SDP program.

The noisy quantum switch (4.54) is an example of a TTU-noncausal process [210],
whose TTU-noncausality—and hence, whose causal nonseparability—can thus be certified
in this partial-device-independent way for r . 1.319 (or in terms of the noise parameter
used in [210], for η = r

1+r
. 0.5687). We note that for this example Fiona can apply a

single, fixed POVM {MF
f }f , with no classical input z, as the non-causal TTU-assemblage

studied in [210] is induced when Fiona measures her qubit in the diagonal basis {|±〉}

{wABf=± = |±〉〈±|F ∗WQS(r)}f=±. (4.64)

4.8.2 MDCI-MDCI-DI certification of TTU-noncausal process ma-
trices

In a (2 +F )−scenario where Alice and Bob’s instruments are of the form Eq. (4.55) with
fixed outcomes a = b = 0 and Fiona is given a classical input z, the causal separability of
WABF implies that the generated D-POVM elements are

EÃB̃
0,0,f |z = q EÃ≺B̃

0,0,f |z + (1− q)EB̃≺Ã
0,0,f |z ∀ f, z, (4.65)
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∑
f

EÃ≺B̃
0,0,f |z = EÃ≺B̃I

0,0 ⊗ 1
B̃O ∀ z,∑

f

EB̃≺Ã
0,0,f |z = EB̃≺ÃI

0,0 ⊗ 1
ÃO ∀ z, (4.66)

for some EÃ≺B̃
0,0,f |z, E

B̃≺Ã
0,0,f |z, E

Ã≺B̃I
0,0 , EB̃≺ÃI

0,0 ≥ 0.

In such a scenario for TTU-noncausal process matrices, we can show a similar result
to the bipartite case:

Proposition 22. For any TTU-noncausal process matrix WABF , one can find in-
struments such that the induced distributed measurement {EÃB̃

0,0,f |z}0,0,f |z cannot be
decomposed as in Eqs. (4.65)–(4.66).

Proof. Consider, as in the bipartite case, some quantum input spaces HÃI ,HÃO ,HB̃I and
HB̃O that are isomorphic to HAI ,HAO ,HBI and HBO , resp., and the CP maps M ÃA

0 and
M B̃B

0 of Eq. (4.59) for Alice and Bob. The induced D-POVM elements

EÃB̃
0,0,f |z = (M ÃA

0 ⊗M B̃B
0 ⊗MF

f |z) ∗WABF = (M ÃA
0 ⊗M B̃B

0 ) ∗ wABf |z (4.67)

are formally the same, up to a normalisation factor 1
dAI dBI

, as the matrices wABf |z of the
TTU-assemblage generated by the process matrix WABF and Fiona’s POVMs {MF

f |z}f ,
but written in the quantum input spaces. In other words, the TTU-assemblage is tele-
ported from the process matrix spaces HAI ,HAO ,HBI and HBO into the quantum input
spaces HÃI ,HÃO ,HB̃I and HB̃O .

Suppose that the process TTU-assemblage {wABf |z }f,z is noncausal, i.e., cannot be de-
composed as in Eqs. (4.62)–(4.63) for any wA≺Bf |z , wB≺Af |z ,WA≺BI ,WB≺AI ≥ 0. Recalling
from the remark above that such a decomposition remains impossible even if we don’t
require WA≺BI ,WB≺AI ≥ 0 to be valid process matrices a priori, then it implies that the
set of D-POVM elements {EÃB̃

0,0,c|z}c,z can also not be decomposed as in Eqs. (4.65)–(4.66).

Hence, any TTU-noncausal (2+F )-partite process matrix WABF can generate some
subsets of D-POVM elements {EÃB̃

0,0,f |z}f,z that cannot be decomposed17 as in Eqs.(4.65)–
(4.66). Here, we don’t need to trust Fiona’s measurements. However, unlike the TTU
scenario, we don’t need to fully trust Alice and Bob’s operations either. We only trust
that their instruments are of the form of Eq. (4.55), so that this certification of causal
nonseparability is MDCI for Alice and Bob, but fully DI for Fiona (“MDCI-MDCI-DI”).

As explained above, because the noisy quantum switch WQS(r) of Eq. (4.54) is TTU-
noncausal for r . 1.319 [210], it is also MDCI-MDCI-DI-noncausal for the same amount
of noise. This is notably a significant improvement over the noise tolerance obtained above
for SDQI certification (r . 0.367) without the additional MDCI assumption, showing how
robustly the quantum switch can be certified with only rather weak assumptions about

17Note that once again, verifying that such a decomposition is impossible can be done with similar
techniques to the use of “witnesses of causal nonseparability” [16, 17], which can be measured in practice.
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the performed operations. Nonetheless, there remains a gap (for 1.319 . r . 1.576, cf.
Fig. 4.7) where it is still unknown whether the noisy quantum switch can be certified
with trusted quantum inputs18.
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Figure 4.7: Venn diagram illustrating the various certifications of the noisy quantum
switch. The process matrix of the quantum switch WABF

QS belongs to the set of causally
nonseparable processes (blue). When an amount rDD > 1.576 is added to it, it becomes
causally separable (dark pink area), The noise tolerance obtained for the SDIQI certifica-
tion might be smaller: in such scenario, for rSDIQI > 0.367, we have not found instruments
allowing to certify the causal nonseparability of the noisy quantum switch. The gap is
reduced with the additional MDCI assumption, as we have found instruments such that
WQS(r) is TTU-noncausal for rMDCI ≤ 1.319. Nevertheless, a gap remains between the
causally nonseparable noisy quantum switch which can be certified in a device-dependent
manner and with quantum inputs (purple area), i.e. for rMDCI . r . rDD.

18Note that the noisy quantum switch was also shown to be TUU−noncausal in [210], i.e. with trusted
operations for Alice, untrusted operations for Bob and Fiona. With a similar argument, I have shown
that all TUU−noncausal process matrices are also MDCI −DI −DI−noncausal.
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4.9 Take Away and Perspectives

Take Away

• We have made a significant relaxation of assumptions to certify the causal
nonseparability of many processes. Causal nonseparability can be certified
in a scenario with untrusted local operations with trusted quantum inputs, a
semi-device-independent scenario with quantum inputs (SDIQI).

• We have defined the notion of causal (non)separability for (bipartite, (2 +F )-
partite and tripartite) distributed measurements.

• The quantum switch can generate noncausal correlations in a SDIQI scenario.

• The analogy with the certification of entanglement with quantum inputs is
limited. All bipartite causally nonseparable process matrices can be certified
in a measurement-device-and-channel -independent (MDCI) manner.

• All one-sided device independent certifications of causal nonseparability in a
“TTU” scenario can be generalised in a “MDCI-MDCI-DI” scenario.

Perspectives

• The understanding of which causally nonseparable processes can be certified
in a SDIQI way remains an open problem.

• Our result could be generalised for multipartite scenarii. For example, one
could define the notion of causal nonseparability for N−partite distributed
measurements. This way, beyond the study of the quantum switch in a SDIQI
scenario, one could try to verify if other QC-QCs can generate noncausal
correlations with quantum inputs.

• The study of causally nonseparable D-POVMs might be a topic of interest on
its own. In the same spirit, one could try to define causal nonseparability for
other types of objects, and develop a resource theory of causal nonseparability.

• Pursue of the analogy nonlocality/noncausality: Entanglement can be certi-
fied for all entangled states in a device-independent way [223] by combining
measurement-device-independent entanglement witnesses and self-testing, “a
method to infer the underlying physics of a quantum experiment in a black
box scenario” [224], A natural follow-up would then be to investigate if an
analogous combination of our SDIQI certification of causal nonseparability
with self-testing could lead to a device-independent certification of causal
nonseparability for some processes.
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Part II

Quantum Contextuality
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Le réel ne peut s’exprimer que par l’absurde19. Paul Valéry

Quantum Contextuality (in the style of Kandinsky), VQGAN+CLIP.

19Reality can only be expressed through the absurd.
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Chapter 5

Contextualisation

What is a context ? Is it “the situation within which something exists or happens, and
that can help explain it” ? Or “the text or speech that comes immediately before and
after a particular phrase or piece of text and helps to explain its meaning” ? It depends
on the context. My interest for quantum contextuality takes root in a specific context.
During my Master studies, I was led to establish a bibliography review of recent develop-
ment on this feature. I discovered that quantum contextuality does not reduce to Bohr’s
philosophical notion of complementarity [6], nor a vague Copenhagenish adage: “The re-
sult of a quantum measurement depends on the experimental context.” It has a precise
definition and meaning in the field of quantum foundations. My review [36] aimed at
introducing the Kochen-Specker theorem [28] and its recent generalisations to the French
reading community (researchers, students). For instance, it has been used by science
journalists [225, 226]. Since then, more recent reviews have been proposed [82], with one
based on my work [227].

While most of my PhD thesis was dedicated to quantum causality, I have nevertheless
kept feeding my interest for contextuality, as my first main motivation was initially to
study a possible relation between indefinite causal orders and contextuality. Partial results
and ideas on this will be presented in Part III “Time-Travel without Paradoxes”. In this
Part II, I will present some personal studies and reflections carried out during the last
three years with the idea of sharpening my view of contextuality as a fundamental feature
of “quantum weirdness”, and the perspective of establishing a possible link with quantum
causality. I will start by introducing the Kochen-Specker theorem (Chapter 6) and a
personal investigation on its origins. I will then show how the Hardy paradox [92, 101]
can be seen as a canonical example at the crossroads of distinct approaches of contexutality
[42, 40] (Chapter 7). I will also analyze how contextuality emerges from a formulation of
the paradox with post-selection [96], based on [93, 94, 89, 95]. Finally, I will define the
notion of meta-contextuality as the main characteristic of neo-Copenhagen interpretations
of quantum theory, based on my essay “A Gödelian Hunch from Quantum Theory” [100]
(Chapter 8).
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Chapter 6

Infuturabilia: the Kochen-Specker
theorem

The future is inevitable, but it may not occur. Jorge Luis Borges

This introduction is based on the review I realised during my Master studies [36].
However it has been since then processed and extended: in particular, I have speculated that
a connection between Specker’s scholastic motivation, his interest for the Jonah narrative
and the so-called “Jonah paradox” might be established and offer a key in understanding
the origins of the Kochen-Specker theorem [28].

6.1 Introduction
In 1961, Ernst Specker, then professor of mathematics at the ETH Zurich for six years,
took a sabbatical year at Cornell University (Ithaca, New York). During a mathematics
colloquium, he gave a lecture on one of his recently published articles, entitled “Die Logik
nicht gleichzeitig entscheidbarer Aussagen " [228] (translated as “ The logic of proposi-
tions not simultaneously decidable "[229]), that points out, inter alia, that classical logic
does not hold for values associated to non co-mesurable observables. More striking, the
quantum formalism cannot be extended through the introduction of additional variables
in such a way that classical (Boolean) logic holds in the extended domain.

“ Is it possible to extend the description of a quantum mechanical system through
the introduction of supplementary — fictitious — propositions in such a way that in the
extended domain the classical propositional logic holds (whereby, of course, for simul-
taneously decidable proposition negation, conjunction and disjunction must retain their
meaning)? The answer to this question is negative, except in the case of Hilbert spaces of
dimension 1 and 2." [229]

His presentation caught the attention of Simon Kochen, a Canadian mathematician,
and they collaborated for several years on the study of quantum logic and the problem
of hidden variables, both in Ithaca and in Zurich. Their work culminated in an enriched
reformulation of Specker’s result, adapted to quantum formalism, which will be known as
the Kochen-Specker theorem [28].

This theorem can be stated as the following:
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Consider two commuting observables, A and B, associated to Hilbert spaces of any
dimension: [A,B] = 0. Thus, they share a common decomposition basis of projectors
{Πk}k such that

A =
∑
j

ajΠj B =
∑
j

bjΠj (6.1)

The product and the sum of these observables can also be decomposed in the same
basis :

AB =
∑
j

ajbjΠj A+B =
∑
j

(aj + bj)Πj (6.2)

Two fundamental assumptions are made:

• (P) : predetermination (or outcome determinism): the values of an observable are
assumed to be predefined, regardless of its measurement. In other words, even if the
observable is not measured, it has a well-defined value. A value-assignment function
v(∗) can then be defined, such that for each observable, one can associate the value
1 to exactly one of the eigenvectors, and the value 0 with the others. This function
allows to assign a predefined value to any observable

v(A) =
∑
j

ajvA(Πj) (6.3)

such that ∃!k with vA(Πk) = 1, else ∀j 6= k, vA(Πj) = 0.

• (NC) : non-contextuality : the value assignment is assumed to be context indepen-
dent, i.e. in every decomposition, the same eigenvector will therefore be assigned
the same value.

∀k, vA(Πk) = vB(Πk) = v(Πk) (6.4)

As a result, from (6.2):

v(AB) = v(A)v(B) v(A+B) = v(A) + v(B) (6.5)

The Kochen-Specker theorem stipulates that in a Hilbert space of dimension greater
than or equal to 3, the predictions of quantum mechanics are logically incompatible with
these two assumptions. It is logically necessary

• either to give up on predetermination and save non-contextuality, meaning that the
values of an observable are not predefined ;

• either to give up on non-contextuality and save predetermination, meaning that
the value-assignment function is not distributive on both the sum and the prod-
uct, i.e. the assigned value is context-dependent. This position can be labeled as
“contextuality1” ;

• or give up on both.
1The term “contextuality” is often abusively used to refer to the Kochen-Specker theorem rather than

being exclusively associated with the solution “giving up on non-contextuality”.
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Therefore, the common sentence: “In quantum mechanics, the result of a measurement
depends on the experimental context.” finds a mathematical ground here, in the sense
that one cannot in general assign a pre-defined value to an observable independently of
which compatible observable might be measured alongside. On the one hand, the sentence
can be interpreted as meaning that “A measurement does not reveal a pre-existing value of
the measured property. The outcome is “brought into being” by the act of measurement
itself. This way, counterfactual “facts” seems incompatible with quantum mechanics.”
This is generally the operationalist point of view. On the other hand, one can argue that
it means that “A measurement does reveal a pre-existing value of the measured property,
but the value assignment depends on the measurement context.” A position defended by
Bell and Bohmian mechanics.

In fact, the latter takes part in one of the contexts of birth of the theorem. In 1952,
David Bohm [63] brought up to date a hidden variables theory issued thirty-two years ear-
lier by Louis de Broglie, which the French physicist had quickly abandoned because of its
nonlocal character. A decade later, in 1963, John Bell attended a lecture by Joseph Maria
Jauch at CERN [230] on the “proof of impossibility” for the validity of hidden variables
theories demonstrated by John von Neumann in 1932 [60]. Von Neumann’s “proof” seems
to be in obvious contradiction with the existence of the de Broglie-Bohm hidden variable
theory. This is “the problem of hidden variables”. In their discussions, Jauch draws Bell’s
attention on a 1957 theorem by Gleason. Bell will use a corollary of this work in a 1964
paper entitled “On the problem of hidden variables in quantum mechanics”, in which he
derives the same result as Kochen and Specker. Despite the fact that they share the
same title - the 1967 paper by Kochen and Specker is entitled “The Problem of Hidden
Variables in Quantum Mechanics” [28] - their work - communicated by Gleason himself -
was carried out independently from Bell’s. Note that Kochen and Specker also knew that
their theorem could be derived from Gleason’s: “This result first stated in Specker [228],
can be obtained more simply either by a direct topological argument or by applying a
theorem of Gleason [231].”

Moreover, the two papers give opposite conclusions: while Bell argue that the theorem
proves that von Neumann’s result is “foolish” and of “limited relevance” [232], Kochen and
Specker conclude that on the contrary the theorem strengthens it [28]. The same result
therefore seems to be used by its authors to defend a thing and its opposite. A misunder-
standing about the nature of von Neumann’s proof might be the cause of this paradoxical
situation (cf. [232]).

However, unlike Bell, the hidden variables problem was not the primary motivation of
Specker’s seminal 1960 work [228]. In fact, Specker took inspiration in one of his former
teachers’s - Ferdinand Gonseth - philosophy on logics, as well as in an eternal scholastic
debate which he named “Infuturabilia”.
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6.2 Specker’s logical inspiration: “Is logic empirical ?”
In the late 1940s, Ernst Specker, then assistant in mathematics at the ETH Zurich, at-
tended a seminar organized by Ferdinand Gonseth2 - his teacher - and Wolfgang Pauli.
The seminar focused on “the foundations of quantum theory”, and especially on von Neu-
mann’s work. Shortly after, inspired by the heated and passionate debates which occurred
during the seminar, Specker sketched the proof of a theorem that would be published only
ten years later. When he was asked for the reason for postponing publication, he replied
that “some people like to be told to publish.”[233]3

In 1960, Gonseth encouraged him [235] to publish his ideas in a special issue of the
journal Dialectica4 in honor of his seventieth birthday. Specker dedicated the article [228]
to Gonseth in the epigraph and the introduction of the article:

“La logique est d’abord une science naturelle.
F. Gonseth (Logic is in the first place a natural science.)

The motto attached to this work is the subtitle of the chapter La physique de l’objet
quelconque from the book Les mathématiques et la réalité; this physics shows itself to be
essentially a form of classical propositional logic, by which, on the one hand, it obtains a
typical realization, and, on the other hand, it is, in an almost obvious way, deprived of
its claim to absoluteness, with which it is occasionally dressed up. The following remarks
concur to this view and can be understood in this same empirical sense.” [229]

According to Gonseth, “logic should take on the aspect of a natural science of a very
primitive character, which may perhaps be called the ‘physics of any object whatsoever’.”
[236] Logic supposes the existence of objects on which the propositions relate. They are to
the objects of the real world what the mathematical line is to “stretched wire, the top of a
roof, the edge of a drawing rule ...”, i.e. a schematic image, consistent with our experience
of reality and its evolution. From this “open realism” - in the sense that abstract objects
are not identified with the immutable and eternal Ideas of Plato, but are constructed from
real empirical facts - Gonseth draws three empirical laws:

• Every object is or it is not.

• An object cannot be and at the same time not be.

• Every object is identical to itself.
2Ferdinand Gonseth (1890-1975) was a Swiss mathematician and philosopher. He developed with

Gaston Bachelard a “non-Cartesian method” of research that does not impose any principle before knowl-
edge itself. Like science, this method must be open and be able to change its fundamentals according to
experimentation.

3In introduction to this collection of Ernst Specker’s publications, one can find a biography of Specker,
by a “friend” named Jonas Meon, which is nothing but an autobiography written under a pseudonym
[234], Jonas referring to the Biblical prophet, and Meon could be interpreted as “on me” or referred to
the Ancient Greek μή-ὄν, “non-being”.

4Dialectica is a quarterly magazine, mainly devoted to publish works in philosophy of science and
epistemology. It was founded in 1947 by Gaston Bachelard, Paul Bernays and Ferdinand Gonseth.
Between 1942 and 1945, Ernst Specker was a pupil of these last two, and he seemed to have a particular
admiration for them [233].
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He sees in these three laws of the ‘physics of any object whatsoever’ the primitive
forms of the principle of the excluded third, of the principle of non-contradiction, and
of the principle of identity, which are the three pillars of classical logic, introduced by
Aristotle. However Gonseth noticed that these laws seemed to be put to the test by
quantum theory. As commented by Bachelard:

"What strikes me is that the properties of the object whatsoever agree with
the principles of the experiences of locality. Anything that would disturb the
principles of locality -and I believe that these principles of locality are indeed
disturbed in microphysics - should thus lead to a division of logic.” [237]

The idea that logic is an empirical science and should be revised in accordance with
our physical theories will later radiate in the famous debate “Is Logic Empirical ?” op-
posing Hilary Putnam [238] and Michael Dummett [239] (see also [240]). It questions the
status of logic, and more specifically quantum logic. Note that while quantum contextu-
ality and its modern development seems to precisely target the principle of identity (e.g.
Spekkens’s notion of contextuality violates a form of Leibnizian identity of indiscernables
[41, 241, 242]), one might argue that the principle of non-contradiction is threatened by the
Many-Worlds interpretation, while the principle of the excluded third would be violated
by many-valued logics and anti-“substantialism” intepretations (e.g. the Bachelardian in-
terpretation [243]).

In [228] (cf. [229] for an English translation), Specker focuses on the problems arising
from “non-simultaneously decidable propositions”, which can be both found in contingent
statements of classical logic as well as in quantum propositions:

“The difficulties that arise from propositions that are together not decidable emerge
very clearly from propositions about quantum mechanical systems. In accordance to the
there commonly used terminology [i.e., in that field], we would like to call the collection
of such propositions as not-simultaneously decidable [...].”

6.3 Specker’s scholastic inspiration: “Infuturabilia”
“He [Specker] explained to me how the Kochen– Specker theorem (which

he had first published by himself five years before the usually cited joint pa-
per) arose from a theological question. At the time, he really wanted to know
whether God could know what the world would have been like if Hitler were
never born.” C. Fuchs [244]

“The story of how Specker first started down the road which led to this
result is quite wonderful. It shows that even in an era where “shut up and
calculate” is the mantra of many researchers, deep philosophical questions can
still lead to great advances in our understanding of the world. It is a story
that will warm the heart of anyone who believes that physics should be pursued
in a romantic style. [...] [H]e was led to the critical question: could God know
what outcome would have occurred had a different quantum measurement been
done to the one that was actually done, without getting into contradiction ? ”
R. Spekkens [235]
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Aristotle himself had already observed that the stability of the pillars of logic seems
to be severely threatened when statements are made about facts that did not happen yet.

Assume for example that there will be a sea battle tomorrow. If it were true, it was
also true yesterday, and the days, the months, the years before. All past truths being
necessarily true today, we can conclude that the statement “There will be a sea battle
tomorrow" is necessarily true. But what if we had assumed that there will not be a sea
battle tomorrow ? Using the same arguments, we can demonstrate that the previous
statement is necessarily false, which contradicts our first conclusion.

Aristotle’s solution to this contradiction was to introduce the modality of contingency :
statements about the future only become either true or false when they emerge from po-
tential to actual. Whenever a statement is made on the existence of unmeasured properties
or non-actual facts, i.e. whenever there is contingency, counterfactual propositions such
as “If it were that A, then it would be that B.” are used (cf. [245]). Problems such
as “the sea battle tomorrow” are called “future contingents”, and they have been widely
studied over the centuries (see for example [246] for a review). During the Middle Ages,
the problem of future contingents was discussed by the Scholastics, who attempted to con-
ciliate Aristotelian philosophy and biblical theology. For example, in Aquinas’s Summa
Thelogica, one can find an analysis of the following question:

Does God know future contingent things ?

This question was at the heart of Specker’s process (cf. [244], [235]), and was certainly
the prime motivation of his 1960 precursor article, in which he refers to future contingents
as “Infuturabilia”:

“The difficulties that arise from propositions that are together not decidable emerge
very clearly from propositions about quantum mechanical systems. [...] In a certain sense
the scholastic speculations about the “Infuturabilien” also belong here, that is, the question
whether the omniscience of God also extends to events that would have occurred in case
something would have happened that did not happen. (cf. e.g. [3], Vol. 3, p.363.)" [229]

Interestingly, the reference “(cf. e.g. [3], Vol. 3, p.363.)” in [228] leads to an intro-
duction to Jesuit theologian Pedro da Fonseca’s concept of scientia media (in Solana’s
“Historia de la filosofia espanola”), which will be fully developed by his disciple, Luis de
Molina. Scientia Media, also called middle knowledge, is a form of knowledge attributed
to God in order to explain compatibilism, the compability of God’s “foreknowledge”5 , i.e.
knowledge regarding future events, and the “free will” (cf. e.g. [247, 248]) of an agent. It
corresponds to God’s knowledge of counterfactuals. According to Molina, before knowing
the actual ontology of the world, God has knowledge about counterfactual facts. This
way, if God knows what a free agent is about to do, it may nevertheless be in the power
of the agent to do something such that if she were to do it, God would have known some-
thing else. God’s knowledge of counterfactuals preceding His knowledge of actual facts,
there is still room for “free will”, despite His omniscience (ability to know everything).

5Note that “God” is interchangeable with “foreknowledge” here. Beings gifted with foreknowledge
do not necessarily have to be interpreted as divine. The study of the science of God, the question of
the extent of his omniscience might be reduced to - or at least is in some extent analogous with - the
philosophical question of what the scientist can say about Nature.
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Such incompatibility has been illustrated by Specker in his seminal article [228] through
a simple example of non-classical correlations which he emphasized using a parable6 about
a seer who sets an impossible prediction task to his daughter’s suitors. In Appendix C, I
propose to illustrate how the notion of contextuality can be related with Specker’s Infu-
turabilia with a personal narrative inspired by a counterfactual version of the Newcomb
problem [250].

6.4 Contextuality and the Jonah paradox
In the prelude of Specker’s parable, the seer is said to originate from Nineveh. Ernst
Specker was known for his taste for enigma and hidden messages [235]. Thus, this detail
cannot be innocuous. In fact, a famous prophet was charged by God to deliver a message
to the inhabitants of Nineveh: Jonah7. Specker was fascinated by this biblical charac-
ter, to the extent that he wrote an autobiographical article under the pseudonym “Jonas
Meon” (cf. Footnote 3) [233, 234]. Interestingly, it is possible to forge a link between this
interest and “Infuturabilia”.

One may assume that the Specker’s seer might represent Jonah, but it is not the case
[235]. Nevertheless, it is possible that Specker’s passion for Jonah could be intimately
linked with the motivations that led him to his theorem. I believe he could have been
inspired by this biblical narrative in his reflection on “Infuturabilia”8.

The Book of Jonah tells the story of a Hebrew prophet sent by God to prophesy the
destruction of Nineveh to its inhabitants, but tries to escape his divine mission. After
being punished by spending three days and three nights in the belly of a giant fish, Jonah
finally resolves to accomplish his mission. He enters the city of Nineveh, crying “In forty
days Nineveh shall be overthrown.” The Ninevites fast and repent, and God changes his
mind and spares the city. Jonah, angry, explains why he tried to flee in the first place :
he feared that God would show mercy and accept the repentance of the Nineveh.

This narrative can be interpreted as displaying the same difficulties emerging with
“future contingents”. One the one hand, Jonah’s prophecy “In forty days Nineveh shall be
overthrown.” is a divine communication, so it should be necessarily true, and it can be
assigned a definite truth value. On the other hand, this statement involves future events,
and, therefore, it should be contingent. This apparent contradiction raises the scholastic
question of God’s knowledge of counterfactuals and compatibilism : if divine statements
are necessarily true, then Nineveh must be overthrown. However, because the prophecy
deals with future contingents, the Ninevites still have the freedom to repent, and their
action leads to the non-achievement of God’s previous necessary truth. Thus, foreknowl-
edge and free will seem incompatible. The solution offered by the narrative can be seen
as a molinist argument. The truth value of God’s statement can be contextualized: it
is true in the context of the Nineveh non-action (non-repentance) and it is false in the
context of the Nineveh repentance. People and God can both change their minds, and

6This parable has been studied and revisited in the context of modern quantum foundations by Liang,
Spekkens and Wiseman [249].

7Jonas in Latin /Jonah (Yona in Hebrew), Biblically transliterated Yonah.
8Note that the Jonah narrative is not limited to the problem of future contingents. A reflection about

morality and responsability - that I do not use in my analysis - is also at the core of the narrative.
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are therefore each endowed with a form of free will. There is therefore a place for human
free will, compatible with divine foreknowledge.

Accordingly, the Jonah narrative has been read as an inspiring illustration to reflect
on the difficulties emerging with counterfactual futures. For instance, French philosopher
Jean-Pierre Dupuy has given the name of “Jonah” - in reference to the biblical prophet
and to German philosopher Hans Jonas - to paradoxes where a prediction of doom is made
in order to avoid the catastrophe itself [251]. Dupuy highlights the paradoxical nature of
the mission assigned to a prophet of doom: “He must foretell an impending catastrophe
as though it belonged to an ineluctable future, but with the purpose of ensuring that, as
a result of his doing just this, the catastrophe will not occur.” Once again, a solution to
avoid the paradox is to commit to a molinist position: if God had predicted that you will
make a certain choice A, it may nevertheless have been in your power to do something,
such that were you to do it, God would not have predicted this peculiar choice A. In
a sense, God’s omniscience and human free will can co-exist at the condition that the
former is contextualized by the latter.

Finally, let us remark that some might be tempted to take seriously Specker’s theolog-
ical inspiration and the analogies between the extent of God’s omniscience and scientific
knowledge (Footnote 5) and between quantum contextuality and the molinist solution
[252, 253]. I prefer to remain extremely cautious, and avoid jumping to conclusions.
Specker’s romantic process is particularly fascinating and I find the idea that a scholastic
reading of a Biblical narrative might have inspired him to establish one of the most fun-
damental result of quantum theory profoundly thrilling. Analogies, myths and narratives
can be used as a “ medium that combines strangeness and beauty" [254] and are both
powerful sources of inspiration and popularisation. Nevertheless, this is not incompatible
with a careful examination of the scope of the studied field and of the limits of these analo-
gies. The Kochen-Specker theorem and quantum contextuality can be clearly explained
without any reference to God’s knowledge of counterfactuals.
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Chapter 7

Contextuality from the Hardy Paradox

In this chapter, I present an analysis of the contextuality underlying the Hardy paradox
based on topological [42] and hypergraphical approaches [40]. I give an original (unpub-
lished) study inspired by the works of Aharonov, Leifer and Spekkens, showing how con-
textuality is related with a pre-post-selection reformulation of the paradox.

The notoriety of quantum nonlocality and Bell’s theorem [7, 8] contrasts with the
unpopularity of the Kochen-Specker result, totally obscured by the shine of his “little
brother”1. Even today, despite particularly significant conceptual breakthroughs, quan-
tum contextuality remains for the most part (with the exception of quantum foundations
experts) unknown, in the shadow of nonlocality.

David Mermin pointed out that this “comparative obscurity” may derive from the
fact that unlike Bell’s theorem, which has a device-independent formulation, the Kochen-
Specker theorem and its assumptions are anchored in the quantum formalism [61]. The
original proof was also “less transparent”, as it “entails a moderately elaborate exercise in
geometry” [61]. This argument has become obsolete since the 1990s, when new simpler
proofs of the Kochen-Specker theorem (e.g. requiring fewer observables and/or fewer con-
texts than the original proof of Kochen and Specker) have been discovered, notably by
Mermin [61], Peres [30, 31] and Cabello [32]. This search for simplification continued over
the last two decades (cf. [36, 82]). However conceptual progress in the understanding
of contextuality have also been made. For example, several approaches tackle the ques-
tion of how nonlocality is, at the mathematical level, a particular case of contextuality.
These are based on different mathematical tools, such as graphs [39], hypergraphs [40],
and topology [42, 44]. Another important breakthrough is Spekkens’ “universal” notion
of contextuality [41], that generalises the concept on (non)-contextuality to all kind of
experimental procedures (preparation, transformation, measurement).

The Hardy paradox [92, 101], first introduced as a proof of quantum nonlocality with-
1Even if the Bell [255] and Kochen-Specker’s papers [28] are posterior to the 1964 article [7], the fact

remains that the first buds of contextuality were already deeply rooted in people’s minds (von Neumann
[60], Bohr [6], Gleason [231] and the 1960 article by Specker [228]). Note also that Bell’s contextuality
paper [255] should have been published before the nonlocality one. In fact, before showing that hidden
variables theories are necessarily nonlocal, Bell aimed at demonstrating that von Neumann’s impossibiltiy
proof was erroneous. [255] is even cited in [7]. However, because the paper was lost by the editor, it will
end up published two years later [256, 257].
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out inequalities, was also shown to entail a form of contextuality2 [42, 259, 260] (Section
7.1). In this chapter, I present two distinct ways to present this paradox as a proof of
contextuality. The first one is due to Abramsky and Brandenburger’s topological study
of contextuality [42, 43, 45], and highlights how the Hardy paradox can be compared
to so-called “Liar cycles3” (Section 7.2). The second one is an original representation of
the paradox, based the Acin-Fritz-Leverrier-Sainz (AFLS) hypergraphical approach [40]
which clarifies how the Hardy paradox can be interpreted as a logical pre-post-selection
paradox, and illustrates how these paradoxes can be used as proofs of contextuality, as
shown by Leifer and Spekkens [93, 94] (Section 7.3). Finally, in Appendix D, I derive
a new proof of contextuality from the paradox, based on an analogy with the Yu-Oh
inequality [34].

7.1 The Hardy Paradox
In the Hardy paradox scenario [92, 101] two agents, Alice and Bob, share a two-qubit
system in a specific entangled state. Each agent can choose to measure their respective
qubit in a computational {|0〉 , |1〉} or a diagonal basis {|+〉 , |−〉} with |±〉 = 1√

2
(|0〉±|1〉).

The initial entangled state can thus be written in four different bases, each corresponding
to a measurement context. For example, in the computational-computational bases, the
state is: |ψ〉 = 1√

3
(|00〉 + |10〉 + |11〉). Pragmatically, this state can be prepared in a

bipartite Elitzur-Vaidman bomb scenario [261, 101]. Two particles are each sent in a
Mach-Zehnder-interferometer-like circuit, each belonging to Alice and Bob respectively.
Each branch of each interferometer is labeled with a quantum state: if a particle takes
the left branch, it is in state |1〉, if it takes the right branch, it is in state |0〉. The scenario
is such that Alice’s right branch and Bob’s left branch crosses each other. Assume that
the crossing corresponds to a “bomb”, such that the particles can never be observed
in state |01〉 (for example, Alice and Bob could share antiparticles: if they meet each
other, they annihilate each other, cf. Fig. 7.1). Then, the expression of the global state
(before measurements) of the compound system in the distinct bases depends on Alice
and Bob’s choice of measurements, i.e. their choice to put a beam splitter (measuring in
the diagonal basis and actually implementing an interferometer) are not (measuring in
the computational basis) at the end of their circuit (cf Fig. 7.1).

Assuming that a predefined value can be associated to a measured property when a
result can be predicted with certainty, one can infer the four following sentences, each
associated to a measurement context:

(1) • In the diagonal-computational basis, the state before measurements is:

|ψ〉 =

√
2

3
|+0〉+

1√
6
|+1〉 − 1√

6
|−1〉

2In fact, the Hardy paradox can be seen as an example of a recent theorem that shows that any
multiqubit state “that can yield a statistical proof of the Kochen-Specker theorem with a finite set of
unentangled projective measurements can violate a Bell inequality with local projective measurements.”
[258].

3The relation between the Hardy paradox and the Liar paradox will be relevant in Chapter 8.
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Figure 7.1: Example of an experimental set-up for the Hardy paradox. Alice and Bob
share a pair of antiparticles, a positron and an electron respectively. Each particle goes
through a Mach-Zehnder-like experiment. The left path of each interferometer is labeled
|1〉; the right path is labeled |0〉. In order to obtain the initial state |ψ〉 = 1√

3
(|00〉+ |10〉+

|11〉), the right path of Alice’s set-up, denoted |0〉A, crosses with the left path of Bob’s
set-up |1〉B, such that the particles annihilate each other if they are in the global state
|01〉. The state of interest, |ψ〉, is the state of the global system exiting the preparation
quantum box. Alice and Bob can then each choose to measure their respective subsystem
in the the computational basis (no second beam-splitter) or the diagonal basis (add colored
beam-splitter), thus corresponding to four distinct measurement contexts.

Sentence S1 : “If Alice obtains ‘−’, then Bob obtains ‘1’.”

(2) • In the computational-computational basis, the state before measurements is:

|ψ〉 =
1√
3

(|00〉+ |10〉+ |11〉)

Sentence S2 : “If Bob obtains ‘1’, then Alice obtains ‘1’.”

(3) • In the computational-diagonal basis, the state before measurements is:

|ψ〉 =

√
2

3
|1+〉+

1√
6
|0+〉+

1√
6
|0−〉

Sentence S3 : “If Alice obtains ‘1’, then Bob obtains ‘+’.”

(4) • In the diagonal-diagonal basis, the state before measurements is:
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|ψ〉 =
3√
12
|++〉+

1√
12
|+−〉 − 1√

12
|−+〉+

1√
12
|−−〉

Sentence S4 : “Alice and Bob can both obtain ‘−’ with a probability 1/12.”

Assuming locality means that the outcome of a measurement on one qubit does not
depend on the choice of measurement on the other qubit. In other terms, it implies here
that one can build inferences from these different sentences. Note that on a logical level,
this can also be interpreted as a non-contextuality assumption (each sentence being associ-
ated with a measurement context). For instance, from (S1, S2, S3), one can construct the
sentence: “If Alice obtains ‘−’, then Bob obtains ‘+’ ”. However, this sentence is incompat-
ible with S4. Hence, the logical contradiction between the four sentences (S1, S2, S3, S4)
shows that one cannot associate predefined values to quantum observables assuming local-
ity (“quantum nonlocality”), and that one cannot associate predefined values to quantum
observables independently of the measurement context (“quantum contextuality”).

The interplay between contextuality and nonlocality is explicit in this scenario. Indeed,
nonlocality seems to be easily understandable as a form of “remote contextuality”, a special
case of contextuality where the measurement contexts can be locally separated. Note
however that this is a particularity of the Hardy paradox. In fact, the relation between
nonlocality and contextuality is less trivial for other proofs of nonlocality that are not
based on a purely logical argument, like the violation of Bell inequalities [43, 41].

7.2 Logical Contextuality

7.2.1 Topological approach

In a topological approach of contextuality by Abramsky et al. [42, 43, 45] based on sheaf
theory and cohomology, contextuality emerges when “a family of data is locally consistent
but globally inconsistent”. As pointed out by Abramsky [262], “An immediate impression
of how this situation might arise is given by impossible figures such as the Penrose tribar
[263]. If we take each leg of the tribar, and the way each pair of adjacent legs are joined
to each other, this gives a family of locally consistent data, where consistency here refers
to realizability as a solid object in 3-space. However, the figure as a whole is inconsistent
in this sense.” In fact, one can illustrate this definition of contextuality with famous
undecidable figures such as the Penrose tribar, or the Penrose pentagone4 (Fig.7.2). In
this construction, each pair of bars can be isolated and visualized without paradoxes. It
is only when one tries to interpret the figure globally that a visual obstruction emerges.

Topologically, given a setX of variables labeling measurements (e.g. X = {A,A′, B,B′}
in Fig.7.3), one can identify

• a base space of contexts, i.e. a family M = {Ci}i of subsets of X which are
comesurable (in Fig.7.3,M = {{A′, B}, {A,B}, {A,B′}, {A′, B′}});

4Warning: this is a figurative illustration which has a didactic purpose. However, note that a proof
of contextuality, the violation of the KCBS inequality [264], shares a similar structure.
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Figure 7.2: (a) Each corner of an individual bar represents an observable to which one
assign a truth-value. (b) Each observable is compatible with two other ones separately,
and thus two local contexts can be defined per observable. The truth values assigned to
observables in a context are logically consistent. (c) Each corner from {A,B,C,D,E}
is mutually compatible with its two neighbours. However, the global picture of all bars
glued together is an undecidable figure, the Penrose pentagone. One cannot define a
global context in which no truth-value assignment leads to a contradiction.

• a space of data, fibred - with the same fibre O of outcomes - over the space of
contexts ;

• a family of local sections, values assignment to variables in a context, in the fibres.

The set 〈X,M, O〉 defines a measurement scenario. For such a scenario, one can associate
an empirical model, a specific value assignment to the variables given the considered con-
texts. Such a model can be represented in a probability table - listing the probabilities
to assign some values to variables in a context - and a possibility table - each entry with
a positive probability (possible) is assigned the outcome 1, otherwise it is assigned the
outcome 0 (impossible). The latter can then be used to construct a contextuality bundle.

Topological hierarchy of contextuality

Abramsky et al. distinguishes the following hierarchy of contextuality:

• probabilistic contextuality, only manifests itself at the probabilistic level, but
cannot be certified from a possibility table (e.g. the nonlocal correlations of
the CHSH model);

• logical contextuality, for which consistent global sections exist, but there is
a local value assignment that cannot be extended globally (e.g. the Hardy
paradox);

• strong contextuality can be certified when no global section defined on all the
variables can reconcile all the local data (e.g. proofs of the Kochen-Specker
theorem, the PR box model [135] which forms a discrete Möbius strip [262])

Let us make explicit how the Hardy paradox manifests contextuality is this frame-
work. Consider four variables X = {A,A′, B,B′}, corresponding to Alice and Bob mea-
surements, e.g. A corresponds to Alice’s measurement in the computational basis, A′ to
Alice’s measurement in the diagonal basis, and similarly for Bob’s. Four contexts can
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be constructed from them, each associated with a sentence Si: M = {S1, S2, S3, S4}. In
a given context, each variable can be assigned a value in O = {0, 1}. From the four
decomposition of the global state {(1), (2), (3), (4)}, we obtain the possibility table of the
Hardy paradox Tab.7.1.

C\O 00 01 10 11
S1 : A′B 1 1 0 1
S2 : AB 1 0 1 1
S3 : AB′ 1 1 1 0
S4 : A′B′ 1 1 1 1

Table 7.1: Possibility table of the Hardy paradox. An entry 1 (resp. 0) means that the
corresponding outcomes in O can (resp. cannot) be obtained in the associated context
Si.

To make the topological structure explicit, we construct a contextuality bundle Fig.7.3.
Each variable is associated with a vertex of the support, and compatible variables are
linked with each other, each edge corresponding to a specific measurement context/sentence.
A fibre is drawn from each vertex, with the values (0 or 1) that can be assigned to it.
When a joint outcome is possible (entry 1 in the possibility table) the two corresponding
values of adjacent fibres are connected (local section). For example, for the possible result
AB → 00, the point “0” of the fibre from A and the point “0” of the fibre from B are
connected. After transposing the possibility table into the bundle, one can look if any
global assignment are possible, i.e. closed univocal (as a unique value is assigned to each
variable) path traversing all the fibres exactly once. This is the case here, for example
for the assignment: {A → 0, B → 0, A′ → 0, B′ → 0}. Thus the Hardy paradox is not
strongly contextual. However, one can easily check that every path involving the local
section {A′ → 1, B′ → 1} cannot be closed and univocal. Thus the Hardy paradox is
logically contextual.

S2 S1

S3 S4

Figure 7.3: Contextuality Bundle of the Hardy paradox following [42, 43]. In orange and
purple, sections that can lead to a closed univocal path. However, all paths involving the
red edge cannot be closed. Hence, the Hardy paradox entails a logical contextuality.
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Liar cycles in the Hardy paradox

Interestingly, as noticed in [45], there is a direct connection between contextuality
and classical semantic paradoxes called “Liar cycles", defined as sequences of state-
ments of the form : [{S1, S2} true ; ... ; {SN−1, SN} true ; {SN , S1} false] with Si
the ith assertion, and {Si−1, Si} and {Si, Si+1} the two “local" contexts associated
to this assertion. For the Hardy paradox, the following probabilistic (because the
contradiction only occurs with a probability 1/12) Liar cycles can be formulated,
assuming that both Alice and Bob obtained ‘−’ (cf. Fig.7.4):

• (Liar cycle 1 ) either Bob obtains ‘−’ and Alice obtains ‘−’ → Bob obtains
‘1’→ Alice obtains ‘1’→ Bob obtains ‘+’, contradicting the first assignment;

• (Liar cycle 2 ) or Alice obtains ‘−’ and Bob obtains ‘−’ → Alice obtains ‘0’
→ Bob obtains ‘0’ → Alice obtains ‘+’, contradicting the first assignment.

We can both get ‘−’ If I get ‘−’, Alice gets `0’

If I get ‘0’, Bob gets `0’ If I get ‘0’, Alice gets `+’ 

If I get ‘−’, Bob gets `1’

If I get ‘1’, Alice gets `1’ If I get ‘1, Bob gets `+’ 

We can both get ‘−’ 

𝐴′𝐵′ 𝐴′𝐵

𝐴𝐵𝐴𝐵′

𝐴′𝐵′ 𝐴𝐵′

𝐴𝐵𝐴′𝐵

Figure 7.4: Liar cycles 1 (left) and 2 (right) of the Hardy paradox. Each sentence is
associated with the measurement context from which it can be inferred.

Note that Liar cycle 1 corresponds to the logical contradiction between (S1, S2, S3, S4)
presented above. Another incompatible set of four statements can be inferred from the
four quantum propositions of the scenario, corresponding to Liar cycle 2 (cf. Fig. 7.4).

In [40], a Bell scenario is shown to be a specific product of contextuality scenarii in a
hypergraph framework, involving the union of the edges of one-way signalling (i.e. fixed
causal structure) hypergraphs. Let us present this result succinctly. I will then represent
the possibilistic Hardy model and its logical contextuality in this hypergraph approach.

7.2.2 Hypergraph approach

This introduction is based on [40, 265].

A contextuality scenario is defined as a hypergraph H = (V,E) whose vertices v ∈ V
correspond to the events of the scenario, i.e. the possible answers to the questions that
can be asked to the system in a particular experimental setup. Each event represents an
outcome obtained from a chosen operation given some classical input. Every hyperedge
e ∈ E is a collection of events representing all the possible outcomes given a specific
measurement choice. Every measurement set is assumed to be complete, i.e. if the mea-
surement corresponding to the hyperedge e is performed, then exactly one of the outcomes
corresponding to v ∈ e is always obtained. The notion of operational equivalence between
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two outcomes is represented by the appearance of an event in more than one hyperedge.

A probabilistic model p ∈ G(H) (where G(H) denotes the set of probabilistic mod-
els on H) on a contextuality scenario is an assignment of a probability to each event,
p : V → [0, 1]. Because we consider complete measurements, every probabilistic model p
over the contextuality scenario H satisfies the normalisation condition

∑
v∈e p(v) = 1 for

every hyperedge e ∈ E. The hyperedges also define the notion of orthogonal events: v
and w are orthogonal whenever there exists a hyperedge e that contains both. These can
be interpreted as contradictory counterfactual possibilities.

One the one hand, we can define the notion of classical model p ∈ C(H), as an as-
signment of probabilities p : V (H)→ [0, 1] such that p(v) =

∑
λ qλpλ(v), with pλ ∈ G(H)

and qλ ∈ [0, 1] satisfying
∑

λ qλ = 1 and pλ(v) = {0, 1} ∀v, λ. A classical model is a
convex mixture of deterministic models. One the other hand, a quantum model p ∈ Q(H)
is defined as an assignment of probabilities p : V (H) → [0, 1] such that there exists a
Hilbert space H upon which live some positive semidefinite quantum state ρ and positive
semidefinite projection operators Pv associated to every v ∈ V such that 1 = tr(ρ) ,
p(v) = tr(ρPv) ∀v ∈ V (H) ,

∑
v∈e Pv = 1H ∀e ∈ E(H).

Note that here only projective measurements are considered. Furthermore, note also
that in this framework, the Kochen-Specker theorem can be interpreted as showing that
there exist scenarios that admit quantum models but no classical models, i.e. C(H) (
Q(H) for some scenario H. In the case of Bell scenarios, a global measurement can
consistently be expressed as a product of local projectors, one for each party, such that
the projectors for different parties commute and are properly normalised. For instance,
in a bipartite Bell scenario Pab|xy = Pa|xPb|y where [Pa|x, Pb|y] = 0 for all a, b, x, y and∑

a Pa|x =
∑

b Pb|y = 1H.

Bell scenario as a contextuality scenario

The Bell scenario Bn,k,m consists of n parties having access to k local measurements each,
each of which has m possible outcomes. At the single-party level, the outcomes form a
contextuality scenario B1,k,m. Bn,k,m is obtained as the Foulis-Randall product of n B1,k,m

scenarii:
Bn,k,m := B1,k,m ⊗ ...⊗ B1,k,m

For example, for the CHSH scenario, B2,2,2 = B1,2,2 ⊗ B1,2,2, represented in Fig.11.1.
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Foulis-Randall product

The Foulis-Randall product is the scenario HA ⊗HB with

V (HA ⊗HB) = V (HA)× V (HB) and E(HA ⊗HB) = EA→B ∪ EB→A

where

EA→B :=

{⋃
a∈eA

{a} × f(a) : eA ∈ E(HA), f : eA → E(HB)

}

EB→A :=

{⋃
b∈eB

f(b)× {b} : eB ∈ E(HB), f : eB → E(HA)

}

Following [40], EA→B and EB→A corresponds to “signalling hyperedges” from Alice to
Bob and from Bob to Alice respectively, while elements that are common to both sets are
of the form eA × eB and can be interpreted as simultaneous measurements (cf. Fig.7.5):
“Intuitively, an element of EA→B is the following: first, an edge eA ∈ E(HA) representing
a measurement conducted by Alice; second, a function f : eA → E(HB) which determines
the subsequent measurement of Bob as a function of Alice’s outcome. This function f
maps each vertex a ∈ eA to an edge f(a) ∈ E(HB). This defines a joint measurement in
which we think of Alice measuring first and communicating her outcome to Bob, who then
chooses his measurement as a function of Alice’s outcome. This is a feasible way to oper-
ate on the joint system and therefore should be considered as a measurement conductible
on the joint system. Its outcomes are pairs (a, b) with a ∈ eA and b ∈ f(a), so that the
set of all these outcomes is

⋃
a∈eA{a} × f(a). [...] The resulting product contextuality

scenario may be interpreted as describing a temporal succession of operating on HB after
having operated on HA.” [40]

For example, in the CHSH scenario, consider Alice’s edge eAO associated with her mea-
surement x = 0. This edge contains two vertices denoted 0|0 and 1|0, corresponding to
the outcome a = 0 and a = 1 respectively. Consider the function f : eA → E(HB)
such that f(a) = a. This function maps each Alice’s outcome a ∈ eAO into Bob’s
measurement choice, y = f(a), and thus the edges eBy=f(a) . The resulting joint mea-
surement is described by the edge containing the events ab|0y = ab|0a, i.e. the edge
eab|0a = {00|00, 01|00, 10|01, 11|01}. This is a “signalling” hyperedge. It is an element
of EA→B5. It corresponds to a situation in which Alice acts first and Bob’s choice of
operation depends on her outcome. Thus Alice can signal to Bob and, importantly, Bob
cannot signal to Alice.

In fact, it can be shown (cf. [40]) that all the probabilistic models on the Foulis-
Randall product scenario HA ⊗HB are precisely the non-signalling models on the direct
product scenario HA ×HB, with non-signalling model being such that∑

w∈e

p(v, w) =
∑
w∈e′

p(v, w) ∀v ∈ V (HA), e, e′ ∈ E(HB) (7.1)

5Note that in order to obtain the other elements of EA→B , one needs to consider all the edges of Alice
(i.e. also eA1) and all the functions f of the outcomes (for each edge). Even though each eA is of the
form (x, a) as it is labeled by x and contains the outcomes a, the functions f are defined for all x and
thus only depends on a.
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∑
v∈e

p(v, w) =
∑
v∈e′

p(v, w) ∀w ∈ V (HB), e, e′ ∈ E(HA) (7.2)

These are the non-signalling conditions Eq.(2.26) and Eq.(2.27) that defines the no-
tions of causal order A ≺ B and B ≺ A.

As mentioned in [40], this also applies for the case of unidirectional nonsignalling,
i.e. all the probabilistic models compatible with A ≺ B (resp. B ≺ A) and thus sat-
isfy Eq.(7.1) - Eq.(2.26) (resp. Eq.(7.2) - Eq.(2.27)) are the probabilistic models on the
hypergraph with vertices V (HA) × V (HB) and the “signalling” hyperedges EA→B (resp.
EB→A ). This equivalence is particularly interesting as it gives a graphical representa-
tion of our notion of causal order, that could be helpful in the future (cf. Perspectives 7.4).

Let us show the equivalence between a probabilistic distribution satisfying the nonsignalling
condition associated with “A ≺ B” and a probabilistic model on the hypergraph “A→ B”.

Let us first recall the definitions.

We denote A ≺ B the notion of causal order defined as a non-signalling condition from
Bob to Alice, and we denote p(a|x, y) =

∑
b p(a, b|x, y) for all x, y, a. We obtain

p(a|x, y) = p(a|x, y′) = p(a|x) ∀x, y, y′, a (7.3)

The notation A → B refers to the set of signalling hyperedges describing events in
which Alice acts first and Bob’s choice of operation depends on her outcome ; Alice
can signal to Bob, but not vice-versa. For a probabilistic model on this hyperedge, the
normalisation condition gives∑

a

p(a|x, f(a)) =
∑
a,b

p(a, b|x, f(a)) = 1 ∀x, f (7.4)

For simplicity, we consider the CHSH scenario, i.e. we restrict our proof to a bipartite
scenario with binary inputs and outputs. Thus, f(a) = a or f(a) = 1 − a or f(a) is
constant (f(a) = 0 or f(a) = 1).

• A ≺ B implies A→ B

Assuming A ≺ B (Eq.(7.3)), we have∑
a

p(a|x, f(a)) =
∑
a

p(a|x) = 1 ∀x, f (7.5)

i.e. A→ B.

• A→ B implies A ≺ B

From A→ B (Eq.(7.4)),

– for f(a) = 0,

∀x, p(a = 0|x0) + p(a = 1|x0) = 1, (7.6)
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– for f(a) = 1,

∀x, p(a = 0|x1) + p(a = 1|x1) = 1, (7.7)

– for f(a) = a,

∀x, p(a = 0|x0) + p(a = 1|x1) = 1. (7.8)

From Eq.(7.6) and Eq.(7.8), we obtain

∀x, p(a = 1|x0) = p(a = 1|x1) = p(a = 1|x). (7.9)

From Eq.(7.7) and Eq.(7.8), we obtain

∀x, p(a = 0|x0) = p(a = 0|x1) = p(a = 0|x). (7.10)

The same result is obtained if f(a) = 1− a. Hence A ≺ B.

The signalling hyperedges EA→B and EB→A involved in the CHSH scenario are repre-
sented in Fig.7.5. Their Foulis-Randall product, corresponding to the hypergprah repre-
sentation of this scenario, is given in Fig.11.1, These edges are the following:

• For simultaneous measurements, the f are constant, and the joint measurements
(represented by blue hypereges in Fig.7.5) are:

eab|00 = {00|00, 01|00, 10|00, 11|00}
eab|01 = {00|01, 01|01, 10|01, 11|01}
eab|10 = {00|10, 01|10, 10|10, 11|10}
eab|11 = {00|11, 01|11, 10|11, 11|11}

• If A ≺ B, the events are of the form ab|xf(a), Consider the case where f is not a
constant. Thus we have two possibilities (represented by red hypereges in Fig.7.5):
f(a) = a, giving the edges

eab|0a = {00|00, 01|00, 10|01, 11|01}
eab|1a = {00|10, 01|10, 10|11, 11|11}

or f(a) = 1− a, giving the edges

eab|0(1−a) = {00|01, 01|01, 10|00, 11|00}
eab|1(1−a) = {00|11, 01|11, 10|10, 11|10}

• If B ≺ A, then the events are of the form ab|f(b)y. Consider the case where f is
not a constant. the measurements (represented by green hypereges in Fig.7.5) are,
with either f(b) = b or f(b) = 1− b:

eab|b0 = {00|00, 01|10, 10|00, 11|10}
eab|b1 = {00|01, 01|11, 10|01, 11|11}

eab|(1−b)0 = {00|10, 01|00, 10|10, 11|00}
eab|(1−b)1 = {00|11, 01|01, 10|11, 11|01}

On the one hand, one can verify that all classical model on the CHSH scenario are
local: they can be obtained from local boxes i.e. such that the normalisation condi-
tion

∑
v∈e p(v) = 1 is satisfied for every e ∈ E in both HA and HB, hence such that

p(a, b|x, y) = p(a|x)p(b|y). On the other hand, the Bell and PR model, represented in
Table 7.2 and 7.3, do not satisfy this constraint: they are non-local.
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Figure 7.5: Hyperedges of EA→B and EB→A. In blue, hyperedges corresponding to simul-
taneous measurements. In green, Alice’s measurement choice depends on Bob’s outcome.
In red, Bob’s measurement choice depends on Alice’s outcome.

Figure 7.6: Hypergraph of the CHSH scenario as the Foulis-Randall product B1,2,2⊗B1,2,2.
In blue, hyperedges corresponding to simultaneous measurements. In green, Alice’s mea-
surement choice depends on Bob’s outcome. In red, Bob’s measurement choice depends
on Alice’s outcome.

(x,y)\(a,b) 00 01 10 11
00 1/2 0 0 1/2
01 3/8 1/8 1/8 3/8
10 3/8 1/8 1/8 3/8
11 1/8 3/8 3/8 1/8

Table 7.2: Probability table of the Bell model [42]. Each entry corresponds to the prob-
ability p(ab|xy) in a Bell model, i.e. a model which can be realised by Alice and Bob if
they share a maximally entangled state and perform appropriate quantum measurements,
allowing them to violate a (logical) Bell inequality [266, 262].

A representation of the Hardy paradox in a possibility hypergraph

Inspired by the AFLS hypergraphical approach [40] that focuses on probabilistic models,
I propose a hypergraph representation of the logical (and strong) contextuality underlying
the Hardy paradox based on the possibilistic models of [42, 43]6. I will call “possibility

6Note that a graphical analysis of logical contextuality was made in another graphical approach [39].
In [268], it is shown that a model is logically contextual if and only if a graphical invariant- the minimal
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(x,y)\(a,b) 00 01 10 11
00 1/2 0 0 1/2
01 1/2 0 0 1/2
10 1/2 0 0 1/2
11 0 1/2 1/2 0

Table 7.3: Probability table of the PR model [135] corresponds to the probability p(ab|xy)
in a Bell model, i.e. a model in which Alice and Bob are given PR boxes that allow them
to maximally violate the CHSH inequality [267].

hypergraph” H = (V,E) a contextuality scenario associated with a possibility table. Each
vertex v ∈ V corresponds to an entry 1 of the possibility table. They can be interpreted
as “possible events”: the possible yielding of outcomes given a measurement context. This
differs from the original hypergraph approach [40] in which all the events of a scenario are
represented, independently of the considered empirical model. In other words, in [40], the
contextuality hypergraph is model-independent, while here it is built from the possibility
table of a specific empirical model. As a consequence, if an outcome is impossible in the
edge of a (standard) contextuality hypergraph for the considered empirical model, i.e. if
it has an entry 0 in the possibility table of the model, then this outcome will not be rep-
resented in the corresponding edge of the associated possibility hypergraph. In order to
distinguish these two representations, I will denote the possible events referring to Table
7.1 as (ab|Si) (instead of ab|xy in the standard contextuality hypergraph approach [40]).

Similarly with the AFLS framework, we consider the signalling hyperedges EA→B and
EB→A, and distinguish three types of edges, corresponding to:

• simultaneous measurements, or “context measurement” (blue edges), associated with
events of the form ab|Si, in which x and y are constant;

• “A ≺ B measurements” associated with events of the form ab|xf(a) with f(a) that
is not constant (red edges);

• “B ≺ A measurements” associated with events of the form ab|f(b)y with f(b) that
is not constant (green edges).

We consider a deterministic value assignment that associates a value 0 or 1 to each
possible (those with entry 1 in the possibility table) event in the studied model. Asso-
ciating value 1 with a vertex (ab|Si) means that if the measurements of context Si are
performed, the outcomes (a, b) will be obtained with certainty. This corresponds to “col-
oring” the vertex (ab|Si). Uncolored vertices then correspond to possible events that may
have occurred (while those that are not represented are ignored, as they are considered
to be “impossible” in the studied scenario). For example, assigning value 1 to the local
section {A′ → 1, B′ → 1} amounts to coloring the vertex (11|A′B′). In every hyperedge,
exactly one of the outcomes corresponding to v ∈ e is always obtained, and thus shall be
colored. Indeed, when a joint measurement is performed, one and only one event should
occur7. If no coloring is possible following this rule, then the corresponding model is
strongly contextual. If no consistent coloring is possible given the coloring of a specific

independence number- is smaller than the number of contexts.
7...among only events with entry 1 in the possibility table, which justifies why we only represent them.
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vertex, the model is logically contextual.

In the case of the Hardy paradox (Fig. 7.7), from the possibility Table 7.1, coloring
the vertex (11|A′B′)

• (Liar cycle 1 ) either imposes the coloring of (11|A′B), which leads to the coloring of
(11|AB), that itself gives the coloring of (10|AB′), in contradiction with the initial
coloring of (11|A′B′) ;

• (Liar cycle 2 ) or imposes the coloring of (01|AB′), which leads to the coloring of
(00|AB), that itself gives the coloring of (00|A′B), in contradiction with the initial
coloring of (11|A′B′).

This is a graphical representation of the Liar cycles presented above. No global consistent
coloring is possible if (11|A′B′) is colored: the Hardy paradox is logically contextual8.

(11ȁ𝐴′𝐵′)

(00ȁ𝐴𝐵)

(11ȁ𝐴𝐵)
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(10ȁ𝐴𝐵)

(00ȁ𝐴′𝐵′)

(01ȁ𝐴′𝐵′)
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(10ȁ𝐴𝐵)

(00ȁ𝐴′𝐵′)

(01ȁ𝐴′𝐵′)

(10ȁ𝐴𝐵′)

(00ȁ𝐴′𝐵)
(10ȁ𝐴′𝐵′)

Figure 7.7: Possibility hypergraph of the Hardy paradox, with the coloring associated with
the Liar cycles 1 (left) and 2 (right). In blue, the hyperedges corresponding to “context
measurements”. In red, signalling hyperedges e ∈ EA→B corresponding to the case where
causal order A → B and Bob’s measurement choice depends on Alice’s outcome. In
green, signalling hyperedges e ∈ EB→A corresponding to the case where B → A and
Alice’s measurement choice depends on Bob’s outcome. If the vertex (11|A′B′) is colored
and following the rule that one vertex and only one shall be colored in every hyperedge,
then no global consistent coloring is possible.

7.3 A Logical Pre-Post-Selection Paradox
Progress through paradox. Y. Aharonov

In [96], Aharonov et al. give a reformulation of the Hardy paradox [92, 101] as a
pre-post-selection (PPS) paradox. These paradoxes (like the three-box paradox [269, 93],
the quantum Cheshire cat [270], the quantum pigeonhole effect [271] or the mean king’s
problem [272, 273]) emerge from the possibility of selecting both the initial state and the
final state of a experimental procedure, which was developed by Aharanov, Bergmann
and Lebowitz (ABL) in the two-time state formalism [274, 275]. The question of whether
PPS paradoxes and other strange features of the pre-post-selection such as anomalous

8It is not strongly contextual. For example, coloring the vertices
(00|AB), (00|A′B), (00|AB′), (00|A′B′) is not contradictory.
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weak vakues are truly paradoxical and non-classical has been a matter of debate. Re-
markably, Leifer and Spekkens [93, 94] have established a direct link between a specific
set of PPS paradoxes - termed “logical pre-post-selection (LPPS) paradoxes”- and quan-
tum contextuality. Later, Leifer and Pusey have shown that every LPPS paradox is a
proof of Spekkens’s universal contextuality [95]. Finally, Pusey [89] has also shown that
anomalous weak values are themselves proofs of Spekkens contextuality [95, 90]). Thus,
using quantum contextuality as a witness of quantum weirdness, it was possible to estab-
lish that (at least some of) the PPS paradoxes are in fact logically paradoxical. In this
section, I propose a graphical representation of the Hardy paradox as a LPPS paradox,
illustrating the connection between these paradoxes and logical contextuality.

7.3.1 The two-time sate formalism

Let us present succinctly the two-time state formalism (for more details, cf. e.g. [275]).

Assume that Alice prepares at a time t0 a quantum system in the initial state |ψ〉,
corresponding to the “pre-selection”. At an intermediate time t, she performs some pro-
jective measurement9 {Pa}a. Finally, she performs a final measurement at time t1, and
“post-selects” the final state |φ〉. Note that this post-selection can be either experimental,
i.e. the procedure is repeated multiple times and the results are discarded if the final state
is not |φ〉, or fundamental, i.e. Alice has already access to the statistics corresponding to
the PPS at the intermediate times t because of some exotic phenomenon. The probability
to obtain the outcome a, conditioned on the PPS is given by the “ABL rule”:

P (a| |ψ〉 , |φ〉) =
| 〈φ|Pa |ψ〉 |2∑
a′ | 〈φ|Pa′ |ψ〉 |2

(7.11)

7.3.2 Anomalous weak values

Without going into details, one can consider that instead of an intermediate projective
measurement, Alice performs a weak measurement, i.e. a minimally disturbing quantum
measurement that can be realised by coupling a quantum system to a one-dimensional
continuous variable pointer device with momentum p via a von Neumann-type interaction
H = gPa ⊗ p, with Pa the observable to be measured and g the coupling constant, such
that for a duration of interaction t and the initial position uncertainty of the pointer ∆x,
gt << ∆x. This way, a small amount of information is imprinted in the pointer at the
cost of a small disturbance on the system.

In a PPS scenario, with an intermediate weak measurement, the position of the pointer
has shifted by an amount gtw(Pa| |ψ〉 , |φ〉) at the first order in gt, with w(Pa| |ψ〉 , |φ〉)
the “result” of the weak measurement, called the weak value of Pa, such that

w(Pa| |ψ〉 , |φ〉) = Re

(
〈φ|Pa |ψ〉
〈φ|ψ〉

)
(7.12)

Remarkably, a weak value10 can lie outside the eigenvalue range of Pa, and is then
termed anomalous weak value.

9Note that a generalisation in which the intermediate measurement is a POVM exists [276].
10Note that here we only consider the real part of weak values. Nonetheless the Pusey theorem showing
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7.3.3 The three-box paradox

In [94], Leifer and Spekkens show that the mathematical structure of some pre-post-
selection (PPS) paradoxes is sufficient to construct a proof of contextuality. These PPS
are called “logical PPS paradoxes”: they correspond to PPS paradoxes for which all the
PPS probabilities are 0 or 1 and the pre- and post-selected states are non-orthogonal. For
all logical PPS paradoxes, there is an associated proof of contextuality. “The key to the
proof is that measurements that are treated as temporal successors in the PPS paradox
are treated as counterfactual alternatives in the proof of contextuality.” [93] Instead of a
pre-selection (t0), an intermediate measurement (t1) and a post-selection (t2) ; one con-
siders alternative possible measurements at a single time. As an example, it is shown that
a proof of the Kochen-Specker theorem by Clifton [277] can be converted into a canonical
logical PPS paradox named the 3-box paradox [269] and vice-versa.

In the 3-box paradox, the system is prepared (pre-selected) in the qutrit state |ψ〉 =
|0〉+|1〉+|2〉 and post-selected in the state |φ〉 = − |0〉+|1〉+|2〉. At an intermediate time,
one of two possible measurements is performed. The first possibility is M1 = {P1, P

⊥
1 }

with P1 = |1〉 〈1| and P⊥1 = |0〉 〈0|+ |2〉 〈2| which can be decomposed into a sum of projec-
tors onto the vectors |0〉+ |2〉 and |0〉 − |2〉. The other possibility is M2 = {P2, P

⊥
2 } with

P2 = |2〉 〈2| and P⊥2 = |0〉 〈0|+ |1〉 〈1| which can be decomposed into a sum of projectors
onto the vectors |0〉 + |1〉 and |0〉 − |1〉. The paradox emerges from the fact that if one
performs M1 to see whether the system is in state |1〉, one finds that, from the ABL rule,
it is with certainty ; and if one performs M2 to see whether the system is in state |2〉, one
finds that it also is with certainty. Thus the “paradox”.

It can be easily seen that, by considering the PPS and the possible intermediate
projective measurements counterfactually, one obtains Clifton’s proof of contextuality,
represented in Fig.7.8. Moreover, as explained in [89], it can easily be checked that
if the ABL probabilities P (a| |ψ〉 , |φ〉) are 0 or 1 as in a logical PPS paradox, then
the weak value of Pa is equal to the ABL probability associated with Pa [278], i.e.
w(Pa| |ψ〉 , |φ〉) = P (a| |ψ〉 , |φ〉). This implies that there is always a projector with an
anomalous weak value in the weak version of a LPPS paradox. In the considered three-
box paradox, it corresponds to w(P3| |ψ〉 , |φ〉) = −1. This anomalous weak value can
easily be identified from a hypergraphical depiction of the paradox (cf. Fig.7.8): in the
measurement hyperedge containing the contradiction, i.e. in which more than one out-
come is assigned value 1 / more than one vertex is colored, the remaining outcome(s)
are assigned anomalous values such that the sum of assigned value in the measurement
hyperedge is 1. One could thus interpret anomalous weak values as instances of con-
textuality11, “compensating12” the logical contradiction. These LPPS paradoxes are thus
directly connected with quantum contextuality13 in both strong and weak versions.

that anomalous (real) weak values are proof of Spekkens generalized contextuality [95] was extended to
weak values with nonzero imaginary part [90].

11To be rigorous, anomalous weak values are instances of Spekkens contextuality [89]
12Note however that weak values should be interpreted with caution. They should be considered as

“small shifts in the distribution of the pointer position” [89], rather than probabilities.
13One may be tempted to directly infer that LLPS paradoxes are proofs of Kochen-Specker contextu-

ality. However, as explained by Pusey and Leifer in [89], this is not possible, because the intermediate
measurements may eventually disturb the quantum state, and thus change the probability of success
of the post-selection. Nevertheless, they have established a direct link between LPPS paradoxes and
Spekkens’s generalised contextuality which include preparation and POVMs, and allows to study the
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Figure 7.8: Hypergraph of Clifton’s probabilistic proof of the Kochen-Specker theorem.
This depiction does not follow the AFLS hypergraph approach, but is a simple depiction
of the proof. The vertices correspond to the vectors of the projectors involved in the
proof, and the hyperedges correspond to orthogonality relations. The KS coloring rules
imply that two orthogonal vertices cannot both be assigned value 1 (color black), and that
inside a triangle (complete measurement with three outcomes), one and only one vertex
is assigned value 1. One can see that if the vertices |0〉 + |1〉 + |2〉 and − |0〉 + |1〉 + |2〉
are given value 1, then the orthogonal vertices |1〉 and |2〉 are also given value 1, leading
to a logical contradiction. Moreover if we consider weak intermediate measurements, one
can associate the weak value -1 to |3〉, “solving” the logical contradiction.

7.3.4 The LPPS Hardy paradox

As mentioned above, the Hardy paradox was reformulated as a PPS paradox. For ex-
ample, this can be done with the preselection14 |ψ〉 = 1√

3
(|00〉 + |10〉 + |11〉) and the

post-selection |−−〉. At an intermediate time, one of two possible measurements is per-
formed. The first one asks “Is the system in state |00〉 ?”, i.e. M00 = {P00, P

⊥
00} with

P00 = |00〉 〈00| and P⊥00 = |10〉 〈10|+ |11〉 〈11|+ |01〉 〈01| which can be decomposed into a
sum of projectors onto the vectors |10〉 + |11〉 = |1+〉, |10〉 − |11〉 = |1−〉 and |01〉. The
second one asks “Is the system in state |11〉 ?”, i.e. M11 = {P11, P

⊥
11} with P11 = |11〉 〈11|

and P⊥11 = |00〉 〈00| + |10〉 〈10| + |01〉 〈01| which can be decomposed into a sum of pro-
jectors onto the vectors |00〉 + |10〉 = |+0〉, |00〉 − |10〉 = |−0〉 and |01〉. Like in the
three-box paradox, from the ABL rule, one obtains positive answers with certainty for
both measurements. Thus, the PPS paradox.

First, we can note that because the pre- and post- selection states are not orthogonal
〈φ| |ψ〉 6= 0, and because the considered probabilities are 0 or 1, the PPS Hardy paradox
is a logical PPS paradox. Hence, like the three-box paradox and Clifton’s probabilistic
proof of the Kochen-Specker theorem, there exists a proof of contextuality associated with
the LPPS Hardy paradox15.

amount of disturbance of the intermediate measurements.
14In the original paper [96], the preselection was |ψ〉 = 1√

3
(|01〉+ |10〉+ |11〉).

15In [32], Cabello et al. present a similar Hardy-like probabilistic proof of the Kochen-Specker theorem
(with |ψ〉 = 1√

3
(|00〉 − |01〉 − |10〉) and |φ〉 = |++〉). In [279], it is shown that the Clifton-three-box

proof and the “Hardy paradox” (in fact its pre-post-selection version) share a similar “pentagram” logical
structure. However, in my knowledge, neither the relation with Aharonov’s revisited Hardy paradox
with PPS [96] nor the fact that it is a logical PPS paradox using Spekkens and Leifer’s result [93] were
emphasized. Furthermore, a “simple Hardy’s like proof of the quantum contextuality” is given in [280].
This proof is actually a 3-box paradox. The authors also show that the set of projectors used in the proof

138



Similarly with the depiction of the three-box paradox Fig.7.8, we can construct a hy-
pergraph of the LPPS Hardy paradox that does not follow the AFLS approach nor the
possibility hypergraph, but in which each vertex corresponds to a projector (represented
as vectors in the figures) involved in the scenario, and each hyperedge translates their
orthogonality relations (Fig.7.9 (left)). We can distinguish the preselection and postse-
lection hyperedges (in black), and the intermediate measurements

M00 = {|00〉 , |1+〉 , |1−〉 , |01〉}
M11 = {|11〉 , |+0〉 , |−0〉 , |01〉}

as well as the edge
{|00〉 , |01〉 , |10〉 , |11〉}

In Fig.7.9 (left), coloring (i.e. associating value 1 to) the vertices that correspond to
the preselection |ψ〉 and the postselection |−−〉 leads to coloring the projectors onto |00〉
and |11〉. Thus in the LPPS Hardy paradox, if M00 is performed, the answer is always
“|00〉”; if M11 is performed, the answer is always “|11〉”. If the measurements are treated
as “counterfactual alternatives”, we obtain a proof of the Kochen-Specker theorem: a log-
ical contradiction occurs if we ask what event occurs in the computational-computational
basis, because both “|00〉” and “|11〉” would happen with certainty. In the LPPS para-
dox, if the intermediate measurements are weak, this contradiction manifests itself in the
anomalous weak value -1 associated with |10〉.

Note that all the vectors involved in the LPPS Hardy paradox - apart from the pre-
selected state |ψ〉 - are factorisable. This way, one can associate a “quantum event” to
each vertex, i.e. the yielding of outcomes a, b ∈ {0, 1} from Alice and Bob joint quantum
measurements, where A and B correspond to measurements in the computational basis
{|0〉 , |1〉} and A′ and B′ correspond to measurements in the diagonal basis {|+〉 , |−〉}.
For example, the projector onto |1+〉 corresponds to the quantum event (10|AB′).

Interestingly, the two hyperedges representing the intermediate measurements are sig-
nalling hyperedges. On the one hand, M00 can be interpreted as an intermediate mea-
surement in which A ≺ B and Bob’s measurement choice depends on Alice’s outcome
(who performed a measurement A in the computational basis, x = 0), y = a (red edge in
Fig.7.9), i.e. M00 = eab|0a. On the other hand, M11 can be interpreted as an intermediate
measurement in which B ≺ A and Alice’s measurement choice depends on Bob’s outcome
(who performed a measurement B in the computational basis, y = 0), x = 1 − b (green
edge in Fig.7.9), i.e. M11 = eab|(1−b)0. Furthermore, the logical contradiction occurs in a
“context hyperedge”, and correspond to the simultaneous measurement in which both Al-
ice and Bob measure in the computational basis, eab|00. If we consider weak intermediate
measurements M00 and M11, one can compensate the logical contradiction by associating
a weak value to the quantum event (10|AB).

To sum up: given the preselection |ψ〉 and the postselection |−−〉, the two intermedi-
ate questions of the LPPS paradox causally differs from each other.

allows to violate (but not maximally) the a famous contextuality inequality [34]. A variant of the proof
with an extra-projector orthogonal with the pre and post-selected ones is given in [281].
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On the one hand, asking “Is the system in state |00〉?” amounts to Alice asking “Is my
part of the system in state |0〉 or |1〉 ?”, to which she always obtains the answer “|0〉”. She
informs Bob about her outcome. If she obtains |0〉 (resp. |1〉), he performs a measurement
in the computational (resp. diagonal) basis. Thus, he asks “Is my part of the system in
state |0〉 or |1〉 ?”, to which he always obtains the the answer “|0〉”.

On the other hand, asking “Is the system in state |11〉?” amounts to Bob asking “Is
my part of the system in state |0〉 or |1〉 ?”, to which he always obtains the answer “|1〉”.
He informs Alice about his outcome. If he obtains |1〉 (resp. |0〉), she performs a mea-
surement in the computational (resp. diagonal) basis. Thus, she asks “Is my part of the
system in state |0〉 or |1〉 ?”, to which she always obtains the the answer “|1〉”.
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Figure 7.9: (Left) Hypergraph of the proof of the Kochen-Specker theorem associated
with the LPPS Hardy paradox. Black hyperedges correspond to the orthogonal relations
due to the pre- and post-selections. In red, signalling hyperedges e ∈ EA≺B ; in green
signalling hyperedges e ∈ EB≺A ; in blue, context hypereredge. Only the vertices involved
in the LPPS paradox are depicted. Assigning value 1 to a projector is represented by
coloring a vertex in black. The yellow vertex corresponds to the anomalous weak value -1
from the LPPS version. (Right) New hypergraph of the Hardy paradox. All the vertices
involved in the LPPS and the standard Hardy paradoxes are depicted. If the PPS |ψ〉 and
|φ〉 = (11|A′B′) are assigned value 1, the events (11|AB), (00|AB) (as well as (11|A′B)
and (01|AB′)) are assigned value 1, leading to a logical contradiction in the measurement
context {A,B}. If we consider weak intermediate measurements in the LPPS version, one
can associate the anomalous weak value -1 to (10|AB), “solving” the logical contradiction
that emerge from the two incomplete Liar cycles of the standard Hardy paradox.

This analysis offers a new insight on the relation between the anomalous weak value
of the LPPS Hardy paradox and the logical contextuality of the Hardy paradox. Let us
complete the hypergraph of the LPPS Hardy paradox Fig.7.9 (left) with the events of the
Hardy paradox (Fig.7.7) that are not represented. We obtain a new hypergraph16 for the
Hardy paradox (Fig.7.9 (right)) that illustrates how the anomalous weak values of the
LPPS version is related to the two Liar cycles in the standard version.

16Note that this depiction still differs from the more general AFLS representation as the introduction
of the quantum preselection and postselection vertices reduces the study of the contextuality scenario to
quantum models (and thus quantum events). It also differs from the possibility hypergraph of Fig.7.7
as it represents impossible vertices that are not needed to demonstrate the logical contextuality of the
Hardy model but are useful to understand the LPPS version of the paradox.
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In Fig.7.9 (right), given that the system is prepared in the initial state |ψ〉, and post-
selected in the final state |−−〉,

• Assume that Alice and Bob both perform a joint simultaneous measurement in the
diagonal basis and both obtain the state |−〉, i.e. the quantum event (11|A′, B′)
happens with certainty. In the context hyperedge eab|11 (corresponding to S4 =
{A′, B′}, the corresponding vertex is colored.

• If instead of simultaneous measurements in {A′, B′}, Alice would have signalled to
Bob, A ≺ B, and sent him her result, and if Bob had performed a computational
basis, then he would have obtain the state |1〉. In fact, from the red hyperedge
containing (11|A′B′), the events (00|A′B) and (01|A′B) cannot occur (if Alice has
obtained |−〉, she cannot have obtained |+〉). From the preselection state, the
event (10|A′B) cannot occur either. Thus, if the joint simultaneous measurement
{A′, B} would have been performed instead, the quantum event (11|A′B) would have
occurred. In the Liar cycle 1, this would correspond to “Alice obtains ‘−’→ Bob
obtains ‘1’.” The green signalling B ≺ A hyperedge associated with the intermediate
measurement M11 in the PPS version leads to conclude that given that (11|A′B)
would have occurred, if instead of measuring A′ Alice would have measured A, she
would have obtained the state |1〉 and thus the quantum event (11|AB) would have
occurred, i.e. in Liar cycle 1, “Bob obtains ‘1’.” → Alice obtains ‘1’.”

• Similarly, if instead of simultaneous measurements in {A′, B′}, Bob would have
signalled to Alice, B ≺ A, following the same reasoning with the corresponding
signalling hyperedges, one can conclude that the quantum event (01|AB′) - “Bob
obtains ‘−’.” → Alice obtains ‘0’.” would have occurred. And assuming that
the latter would have occurred, and that Alice would have signalled to Bob, then,
following Liar cycle 2, the event (00|AB) - “Alice obtains ‘0’.” → Bob obtains ‘0’.”
- would have occurred. Thus (counterfactually), both events (11|AB) and (00|AB)
are assigned a predefined value 1. Because these events are incompatible with each
other, this is a logical contradiction, and thus a proof of contextuality. Here, instead
of the full Liar cycles 1 and 2, the logical contradiction is derived from a combination
of both, without “closing” them (i.e. without inferring that “Alice obtains ‘1’→ Bob
obtains ‘+’.” in Liar cycle 1 and that “Bob obtains ‘0’→ Alice obtains ‘+’.” in Liar
cycle 2).

• If instead of counterfactual alternatives, one consider temporal successive measure-
ments, one obtains the LPPS version of the paradox. Assume that Alice and Bob
prepare the system in the initial state |ψ〉, post-select the final state |−−〉, and
performs one of the two intermediate weak joint measurements M00 or M11. We
have shown previously that the events (11|AB) and (00|AB) occur with certainty
depending on the causal order in which the Alice and Bob’s intermediate operations
are implemented. This gives a new insight on the emergence of the anomalous weak
value, that comes from the combination of two “opened” Liar cycles, without closing
the arguments, i.e. without counterfactually inferring that “Bob obtains ‘0’→ Alice
obtains ‘+’ ” and “Alice obtains ‘1’ → Bob obtains ‘+’ ”.
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7.4 Take Away and Perpsectives

Take Away

• The Hardy paradox entails a form of logical contextuality that can be depicted
in a contextuality bundle or a (hyper)graph.

• There is a logical pre-post-selection version of the paradox, in which the state
|ψ〉 = 1√

3
(|00〉+ |10〉+ |11〉) is preselected and the state |−−〉 is postselected.

The intermediate questionsM00 =“Is the system in state |00〉 ?” andM11 =“Is
it in state |11〉 ?” are always answered “yes” with certainty. However, using a
hypergraph representation, we have shown that these questions corresponds
to distinct signalling measurements, A ≺ B and B ≺ A respectively. If the
intermediate measurements are weak, an anomalous weak value - which is a
proof of (generalised) contextuality - emerges.

• Three derivations of the logical contradiction underlying the logical contex-
tuality of the Hardy paradox can be identified. Two arguments are based on
Liar cycles, and one is a combination of both. The latter is directly related
with the emergence of the anomalous weak value in the (weak) LPPS version
of the paradox.

Perspectives

• Clarify the apparent relation between (partial) Liar cycles and the emergence
of anomalous weak values (in a LPPS paradox).

• Is the causal distinction between M00 and M11 a mere coincidence attached
with the Hardy scenario, or is there a deeper meaning ?

• The Yu-Oh inequality [34] is a state-independent proof of contextuality based
on a combination of three-box paradoxes. By analogy, I propose to construct
a new proof of the Kochen-Specker theorem by combining Hardy paradoxes
(cf. Appendix D).
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Chapter 8

Meta-Contextuality: a neo-Copenhagen
approach to quantum theory

This chapter is based on my essay “A Gödelian Hunch from Quantum Theory” [100] which
won the third prize in the FQXi 2021 Essay Contest, and on an introductory lecture on
“Anti-realist interpretations of quantum theory” that I gave to undergraduate students in
philosophy.

8.1 Introduction: Is Physics Paradoxical ?
Le silence éternel de ces espaces infinis des espaces de Hilbert m’effraie1.

almost B. Pascal

We have seen how the vague adage “The result of a quantum measurement depends
on the experimental context.”, despite being often associated with “the Copenhagen in-
terpretation”, finds strong mathematical grounds from the Kochen-Specker theorem inde-
pendently of Niels Bohr philosophical concept of complementarity. However, like Bell’s
theorem, this result does not impose any positive inference on the nature of quantum
theory or the world it is supposed to model: it is a no-go theorem, imposing constraints
on the ontology that one may wish to associate with the formalism. Thus, depending on
one’s interpretation of quantum theory, and more specifically on how this interpretation
deals with the concept of measurement, distinct conclusions can be drawn. In Bohmian
mechanics, the theorem implies that hidden variables are contextual [282], embracing the
paradox ontologically. In the many-worlds interpretations, the logical contradiction seems
to be avoided by arguably giving up on the principle of non-contradiction: a measurement
does not yield a single outcome. However some interpretations of quantum theory - the
so-called “anti-realist” interpretations - do not give an explicit ontology of the formalism,
and even seem quite relentless to avoid giving one. I argue that this family of interpre-
tations, all characterized by a fundamental distinction between “observer” and “observed”
objects, most efficiently, i.e. without resorting to additional ontological baggage, draw
the main lesson of the Kochen-Specker theorem, that quantum propositions cannot be
extended in such way to be described by Boolean logic. In fact, mirroring Gonseth and
Specker’s interrogation: “Is logic empirical?”, one of my main obsessions is the question:

1The eternal silence of these infinite spaces Hilbert spaces terrifies me.
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“Is physics paradoxical ? ”

A first way to interpret it is to rephrase it as: “Is the quest for understanding (and
taking control of) Nature absurd ? ”. If we put aside the pragmatical repercussions and
focus on the pursuit of knowledge, I am tempted to answer that “yes, this quest is absurd.”

Physics is arguably about giving the most accurate representation of the world we live
in. It is generally expected to offer us a λόγος, a reasoned and rational speech, about the
world, independently of our story-teller’s point of view. However, the quantum formalism
has remained, for nearly a century, desperately silent. While representations and images
evolve with theories, the advent of quantum physics has profoundly changed the way we
“talk” about the world. Classical language no longer manages to contain concepts that
escape its logic. The expression “wave-particle duality”, still used in most introductory
quantum mechanics courses, has always been obsolete: a quantum particle is neither a
wave nor a particle, and certainly not “both at a time” (it might be in a very special way,
like in Bohmian mechanics). Faced with these two contradictory representations, several
solutions are available to us, “storytellers”: develop a new language adapted to quantum
phenomena, i.e. redraft our logic and/or update our vocabulary based on empirical facts;
invoke exotic ontological representations ; or revise our concept of knowledge and ac-
knowledge our position of “story-tellers”, striving for an epistemological modesty [99].

I do not mean that looking for an ontology is vain nor unfruitful. This would be
presumptuous and stupid, since two of the most important features of quantum theory,
non-locality and contextuality, were discovered following this path. My position is not
pessimistic, nor cynical. I love hearing and telling stories. But physicists should some-
times not forget their position, and avoid being blinded by their romantic Faustian dream.
The world can only be apprehended with images, and these have a limit. Thus, “absurd”
can be understood following Camus’s essay “Le Mythe de Sisyphe”, as being “born of
this confrontation between the human need and the unreasonable silence of the world.”
(L’absurde naît de cette confrontation entre l’appel humain et le silence déraisonnable
du monde.)” “You explain this world to me with a picture. I recognize then that you
have come to poetry: I will never know. (Vous m’expliquez ce monde avec une image. Je
reconnais alors que vous en êtes venus à la poésie: je ne connaîtrai jamais.)”

The silence of the world facing Camus seems to echo the silence of the equations of
quantum mechanics. Whether they are metaphors for educational purposes, or a philo-
sophical interpretation, an image remains an image and while it allows, most of the time,
reality to be told, it does not allow it to be apprehended. The awareness of such a “treach-
ery of images”, recalls the pictorial works of Magritte on the limits of our representations.
Anti-realist interpretations do not offer an ontology about the world, or at least a par-
ticularly scarce one. They do not offer a tale about the world, which is not their direct
subject of interest. Rather they aim at aspiring to understand what is quantum theory.
In the end, is it not what the field of quantum foundations is working towards ?

Some indignant reactions have blamed this paradigm change of being a “betrayal of
the ideal of science” [283] ; that it spells “the end of physics as a science” (as Einstein
might have said to Bohr [284]), reducing it to the cold maxim “Shut up and calculate”. In
fact, Einstein believed that Heisenberg’s approach of only describing observable quantities
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was in fact “absurd”2.

The (neo-)Copenhagen interpretations are thus sometimes perceived as the end of a
form of scientific ideal with romantic overtones, depriving the researcher of the illusion
of being able to extract himself from Nature and aim for a form of transcendent omni-
science; confronting him with his latent Icarus complex that made him believe he could
fly over and out of the world. They would have brought him down to Earth, in a cold
and essentially calculative pragmatism. However, one only has to read the actors of the
(neo-) Copenhagen camp to see that their objective is not simply operational, and that
their philosophy is not without horizon.

In chapter 17 of Physics and Beyond [54], Heisenberg reports a discussion he had
with Bohr and Pauli about positivism. As a reminder, positivists stipulated that only
statements verifiable by direct observation or by logical proof made sense. They refused
any form of metaphysics, and sought to re-establish the bases of philosophy on logic and
science. According to Heisenberg, they would say that “to understand means to be able to
calculate in advance.” Bohr is first of all puzzled that after explaining his interpretation
of quantum theory to the positivists, they were in no way surprised. Indeed, he expected
that the sacrifice of a realistic and objective description of the world would “horrify” any-
one in the first place:

“I tried to explain to these (positivist) philosophers the interpretation of quantum
theory. After my presentation, there were no objections or difficult questions; but I must
admit that this is precisely what shocked me the most. Because if, at first glance, you
are not horrified by quantum theory, you certainly did not understand it. Probably my
presentation was so bad that no one understood what it was about. (p.352) [...] I ob-
viously agree with the requirement that all concepts be defined with extreme precision.
But I cannot accept the interdiction on thinking about general questions, an interdiction
made on the pretext that there are no such precise concepts there; if one complied with
such a interdiction, one would indeed not be able to understand quantum theory. (p.356)”

Thus, Bohr does not deny the existence of a metaphysical reality. He does not deny
all form of objectification either, nor the possibility of being interested in “the major cor-
relations”. Neo-Copenhagen interpretations are not limited to “Shut up and calculate”.
Nevertheless, one cannot speak of these “great correlations” without precautions either.
The investigation of our experience of the world is not free: it is preconditioned by an
epistemic constraint, the cut between the observer and the observed, the story-teller and
story-objects.

There are other ways to interpret our driven question. If “paradox” is to be taken in
its etymological meaning, i.e. παρά-δόξα, “what goes against the common opinion”, then
it can be rephrased as: “Do physical theories go against our common sense ?”. One could
easily argue that physics, and even science in general, is indeed paradoxical in this sense.
Scientific research is driven by such “paradoxes”, puzzling phenomena and observations
that we wish to apprehend. Sometimes, the theories and model building from these re-

2Despite the fact that Einstein himself applied such philosophy when he developed special relativity,
by stipulating that one cannot speak about an absolute time because on cannot measure such absolute
time.
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main profoundly counter-intuitive, going beyond the scope of what can be intuited from
our immediate empirical experience. A physicist is led to “think against their own brain”
[285]. For example, Galileo conceptualized an ideal motion (the inertial motion) far from
our immediate experience in order to understand the motions that we observe in our ev-
eryday life.

This is also the case for quantum theory. But quantum weirdness does not only
go against our common opinion. As shown by Kochen and Specker, it also seems to
go against our own logic. Thus we could also narrow down the meaning of “paradox”
to the logical ones, e.g. self-contradictory statements such as the Liar paradox, and
ask: “Is physics, and even more Nature itself, logically paradoxical ?”. Does the world
really feature intrinsically strange phenomena that cannot be captured with our words,
whether it is a non-local behaviour or parallel worlds ? In [97], Szangolies points out that
“an intriguing connection between fundamental features of quantum mechanics and the
phenomena of self-reference” might be established. He coined the expression “Gödelian
hunch” to describe “the idea that the origin of the peculiarities surrounding quantum
theory lie in phenomena related, or at least similar, to that of incompleteness in formal
systems.” Wheeler might have been one of the first to investigate this idea3:

“Physics is not machinery. Logic is not oil occasionally applied to that
machinery. Instead, everything, physics included, derives from two parents,
and is nothing but cathode-tube image of the interplay between them. One
is the “participant”. The other is the complex of undecidable propositions of
mathematical logic.” [66]

In my essay [100], I argue for such a quantum Gödelian hunch. I defend the idea that
quantum paradoxes are not physical, but emerge from a lack of metaphysical distanc-
ing : on the one hand the Liar-like structure of quantum propositions enlightened by the
Kochen-Specker theorem already invites to give up on considering quantum objects as en-
tities with intrinsic properties independently of the questions asked by a meta-theoretical
object, i.e. an object that is not described by quantum theory but belongs to a higher
order level of abstraction, an “observer”. On the other hand, I propose the notion of
“meta-contextuality” to explain how neo-Copenhagen interpretations avoid the measure-
ment problem [60, 70] and Wigner’s friend-based paradoxes [47, 46] by analyzing them
as logical errors. Meta-contextuality consists in acknowledging the need for an undis-
criminating cut between meta-theoretical and theoretical objects when one uses quantum
theory. Any question that ignores this transcendental distinction looses its operational
significance and becomes physically undecidable. Thus, quantum paradoxes might just
be instances of a fundamental undecidability, contributing to a quantum Gödelian hunch4.

In what follows, I will present the main arguments presented in my essay, answering the
question: What if the paradoxical nature of quantum theory could find its source in some
undecidability analogous to the one emerging from the Liar ? I will first justify the use
of the prefix “meta-” and recontextualize the expression “Gödelian Hunch” by introducing

3A famous anecdote tells that Wheeler was thrown out of Gödel’s office for asking him if there was a
connection between his incompleteness theorem and Heisenberg’s uncertainty principle. [97]

4A very recent result [286] also contributes to the quantum Gödelian hunch. Using a modified proof
of quantum contextuality, the authors proved that the class MIP* of problems that can be decided
by a polynomial-time referee interacting with quantum agents sharing entanglement contains Liar-like
undecidable problems.
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succinctly and without going into details the Liar paradox and the lessons of Gödel’s
theorems, reinterpreting quantum contextuality in the light of this philosophy (Section
8.2). I will give an overview of previous works arguing that the measurement problem is a
self-referential paradox (Section 8.3). I will then analyze the Wigner’s friend paradox and
show how the notion of meta-contextuality solves it (Section 8.4). I will present how it
can also be applied to hybrid paradoxes based on the Wigner’s friend thought experiment
and contextuality scenarii (Section 8.5), in particular the Frauchiger-Renner paradox, a
“Wigner’s Friendification” of the Hardy paradox, that I will analyse and compare with
our previous work on the latter. Finally, I will argue that meta-contextuality is the main
feature common to all “anti-realist” or “neo-Copenhagian” interpretations of quantum
theory (Section 8.6).

8.2 “It’s Meta”: a “Gödelian Hunch” from Contextual-
ity

The prefix “meta-” comes from the Ancient Greek μετα, which can mean “beyond”, “after”
or “with”. Metaphysics is thus the branch of philosophy that studies “what is beyond
physics”5. It deals with what is not said or treated by physics, such as additional ontolo-
gies or the study of knowledge (epistemology). These are part of “meta-sciences” (history,
philosophy, sociology of physics) whose object of study is physics itself. Indeed, a modern
use of the prefix is to design a higher degree of abstraction: a “meta-X” is “an X about X”.
For example metamathematics (mathematical logic) is the mathematical study of mathe-
matics. A meta-theory is a theory about another theory, that deals with its foundations,
methods, forms. A meta-statement a statement about another statement... The idea of
a hierarchy of levels is fundamental in the prefix, and can be extended beyond two levels
of abstraction. A meta-meta-object lives in a level higher than the one of a meta-object
which lives itself in a level higher than the one of an object.

Douglas Hofstadter has participated to the popularisation of the prefix with his
book “Gödel, Escher, Bach” [288]. In the narrative Little Harmonic Labyrinth, the
protagonists, Achilles and the Tortoise, are granted three wishes by a Genie. Their
first wish is to have a hundred wishes, to which the Genie answers that he cannot
grant meta-wishes, i.e. wishes about wishes. In order to “temporary suspend all
type-restrictions on wishes”, the Genie has to contact a meta-Genie, who has to
refer to a meta-meta-Genie... etc. ... who has to refer to “GOD”, who resides at
the “end” of this infinite regression.

I have always been fascinated by this kind of structure, by stories within stories, char-
acters breaking the fifth wall and self-referencing narratives like “If on a winter’s night a
traveler” [289] (Se una notte d’inverno un viaggiatore) by Italo Calvino, which tells the
story of the Reader and his attempt to read the book “If on a winter’s night a traveler”.
“Meta-narratives” provoke a metaphysical vertigo by sending us back to our own condition
of observer, of being rooted in the insides of Nature but trying desperately to watch it
from an hypothetical, transcendental and absurd outside. They convey a form of “absurd”,

5Originally, the word might come from Aristotle’s book “Metaphysics”, entitled this way because it
followed the book “Physics”. Thus “Metaphysics” would be literally what is “after Physics” [287].
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as trying to watch the universe from outside despite being inside, we are ineluctably led
to a self-reference and eventual logical inconsistencies.

In fact, in classical logic, self-referring propositions can lead to pathologies such as the
well-known Liar paradox:

“This sentence is false.”

Because it features self-reference and contradiction, it leads to an over-determination
- if the sentence is true then it is false, if it is false then it is true - i.e. the “Liar” leads
to undecidability, the impossibility to decide whether the sentence is true or false. The
paradox has numerous variations (cf. also Chapter 12), such as the “Strengthened Liar”,
that involves two propositions:

Alice:“ Bob’s sentence is false.” Bob: “Alice’s sentence is true.”

Again, the propositions refer to each other, and are contradictory. For example if Alice’s
sentence is true, then Bob’s sentence is false, thus Alice’s sentence is false. Another ver-
sion is the Liar cycle, presented above (Section 7.2), that underlies contextuality.

Analogies of the Liar have been famously used in the foundations of mathematical
logic, from Russell’s paradox to Gödel’s incompleteness theorem, that stipulates that
“who realizes a proof of the consistency of a well-behaved scientific theory, must be ‘exter-
nal’ with respect to the theory (in the sense that he cannot use only the proof theoretical
tools allowed by the theory)” [48]. A theory sufficient to demonstrate the basic theo-
rems of arithmetic is necessarily incomplete, i.e. there are statements which are neither
demonstrable nor refutable, undecidable statements. Moreover, a theory is consistent
only if there are undecidable statements. Another fundamental result is the Tarski and
Gödel undefinability theorem, showing that “who ‘grasps’ the concept of truth for a well-
behaved theory cannot speak only the language of the theory” [48]. Any description of the
truth of a proposition must be in a richer metalanguage than the language in which the
proposition itself is stated. This hierarchy of languages arises then as a solution of the Liar.

In [97], Szangolies argues that epistemic horizons, which are “limitations on the amount
of information simultaneously available in a consistent way” identified as part of the
information-theoretic axiomatic basis of quantum theory [290], arise due to restrictions
of paradoxical self-reference. Pointing at this “ intriguing connection between fundamen-
tal features of quantum mechanics and the phenomena of self-reference”, he coined the
expression “Gödelian hunch” to “the idea that the origin of the peculiarities surrounding
quantum theory lie in phenomena related, or at least similar, to that of incompleteness
in formal systems.”

Applied to quantum contextuality, this Gödelian hunch manifests itself as follows. The
Kochen-Specker theorem shows that quantum theory is based on intertwined Boolean
algebra that cannot be embedded in a global Boolean algebra. The quantum formalism
cannot be extended in such a way that Boolean logic holds in the extended domain. In
the light of the Gödelian hunch, we can conclude that if meta-theoretical statements, i.e.
the value-function v : |Πk〉 → {0, 1} (or equivalently the sentence Hk) are attached to a
quantum proposition Πk (a quantum state / projector), they cannot be embedded in a
global Boolean proposition in general. If you try to associate a truth value to quantum
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propositions, the meta-propositions will then be infected by the logical structure of the
quantum ones and will then become globally undecidable, potentially leading to logical
contradictory loops analogous to Liar cycles.

8.3 The Measurement Problem as a Self-Referential
Paradox
“[We] are not angels, who view the universe from the outside. Instead, we

and our models, are both part of the universe we are describing. Thus a phys-
ical theory, is self referencing, like in Gödel’s theorem. One might therefore
expect it to be either inconsistent, or incomplete.” S. Hawking [291]

As expressed in the literature, there exist different measurement problems [69, 292,
293].

The one we wish to tackle addresses “the question of what makes a measurement a
measurement. [...] There is nothing in the theory to tell us which device in the laboratory
corresponds to a unitary transformation and which to a projection !” [70]. It is a “What’s
in the box ?” problem. On the one hand, quantum theory is applied to the studied
quantum system. Thus, only the latter lies inside the “quantum box”. On the other hand,
quantum theory is applied to both the studied quantum system and the measurement
device, which in this case is also contained inside the quantum box. The problem arises
from the fact that depending on the frontiers of the quantum box, the measurement pro-
cess is mathematically described in different ways, leading to different final states.

The “What’s in the box ?” measurement problem

This measurement problem can be formalized as follows. Assume that a quantum
system is in the state |ψ〉 = α |0〉+β |1〉 ∈ HS and is measured in the computational
basis {|0〉 , |1〉}. On the one hand, following the projection postulate, the system will
either be projected onto state |0〉 with probability |α|2, or state |1〉 with probability
|β|2 after the measurement. On the other hand, if the “observer” (e.g. the measuring
device) is a physical system, then one could argue that it shall also be described
by quantum theory. One associates a Hilbert space HO to this observing system.
The initial observer state is defined as |M〉, corresponding to “ready to perform
a measurement”. Thus, the initial state of the compound system in HS ⊗ HO is
(α |0〉+β |1〉)⊗|M〉. In this case, the measurement process is described as a quantum
interaction between the system and the device, and thus as a unitary transformation
U , resulting in U [(α |0〉+β |1〉)⊗|M〉]→ α |0〉⊗|M0〉+β |1〉⊗|M1〉. This entangled
state differs from the projected ones when the observer is not described by quantum
theory. Because these two final states are physically distinct, there seems to be
a tension between the postulates of quantum theory that lead to this apparent
contradiction, raising questions such as whether or not one can describe the observer
quantumly, and thus how should a measurement process be described.

In Bohmian mechanics and the Many-Worlds interpretation, the object of quantum
theory is the “wave-function of the universe”. There is no “collapse of the wavefunction”.
Hence, all objects are included inside the quantum box, and the measurement process is
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a unitary evolution6. In objective collapse theories, the measurement is described as a
projection and is considered as a genuine physical process. Thus, all realist “interpreta-
tions” of quantum theory give an ontological (Bohmian mechanics and Many-Worlds) or
nomological (Spontaneous collapse theories) solution to this measurement problem.

On the other hand, the “anti-realist” interpretations arguably “dissolve” the problem,
rather than solving it. In fact, this measurement problem can be metaphysically analyzed
as a “logical error” emerging from a lack of distinction between theoretical and meta-
theoretical objects. Thus, the problem originates from a self-referential pathology, and is
comparable (but not identical) to fundamental results from mathematical logic such as the
Gödel and Tarski theorems. Acknowledging this Gödelian hunch, the problem disappears.

For example, Dalla Chiara investigated the measurement problem of quantum theory
as a “characteristic question of semantical closure7 of a theory” [48], asking “to what ex-
tent can a consistent theory (in this case quantum mechanics) be closed with respect to
the objects and the concepts which are described in its metatheory ?” She compares it
with set theory and its paradoxes. “As it well known, the limitative theorems of logic and
the paradoxes of set theory teach us that there are some definite limits to the semantical
closure of any consistent theory (which satisfies some standard formal requirements). In
particular, such theories can never express and prove all that is expressed and proved
in their metatheories; further , they cannot generally describe (up to certain limitations)
their universe as their own object. From an intuitive point of view one can recall a number
of arguments which justify why a well-behaved scientific theory cannot be logically self-
sufficient. However, we cannot help finding a much more disagreeable situation when a
given physical theory (quantum mechanics), owing to purely logical reasons, turns out to
be subject to some limitations concerning its capacity of describing and expressing certain
specific physical objects and concepts.” [48]

She argues that if the standard axioms of quantum theory are accepted, then the
problem can be derived from two assumptions, which are very similar to those used in set
theory to derive the Russell paradox:

• (a) - Some “strange” objects of the metatheory of the considered theory (set
theory and quantum theory) are also objects of the theory, i.e. belong to its
universe.

• (b) - All axioms of the theory hold in the same way for all objects of the
theory.

From the paradoxes (Russell antinomy and the measurement problem), one concludes
that at least one of this two assumptions shall be rejected. In the case of set theory:

• I) Refusing only (a): the “strange” objects are not objects of the theory (“Zermelo’s
solution”),

6In Bohmian mechanics, a hidden variable contains the information on whether |0〉⊗|M0〉 or |1〉⊗|M1〉
is obtained in the end, while in Many-Worlds, the interaction leads to a branching: each outcome occurs
in a distinct world.

7A theory is “semantically closed” if it contains its own metatheories, and thus does not need to refer
to a higher level of abstraction to define its objects and concepts.
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• II) Refusing only (b): the axioms do not hold, generally, for strange objects, but
only for normal ones (“Von-Neumann-Bernays-Gödel solution”),

• III) Refusing both (a) and (b): limits the universe of objects, and at the same time,
relativizes the axioms to specific classes of objects.

According to Dalla Chiara, in the case of quantum theory, we obtain

• I) Bohr’s solution: “strange objects” such as the measurement device, the observer,
“are essentially only metatheoretical, since they represent classical and not quantum
systems,

• II) Von Neumann’s solution: the “strange object” is a “legitimate object of the
theory”. However, the evolution of the compound system made of the normal and a
strange object, i.e. a quantum system and a measurement device, the measurement
process is not described by the Schrödinger equation. Hence, “if the observer is
an object of the theory then [it] cannot realize the reduction of the wave function.
This is possible only to another [observer], which is ‘external’ with respect to the
universe of the theory.” Thus any observer, as a physical system, can be an object
of the theory. Nevertheless, “any [observer] which realizes the reduction of the wave
function is necessarily only a meta-theoretical object.”,

• III) Solutions that take Von Neumann’s purely logical solution and reformulate it
such that the measurement process is given a physical explanation. Dalla Chiara
refers for example to “quantum macrodynamics, which includes an adequate theory
of the measurements processes and is included in the metatheory of [quantum the-
ory]”. We could imagine that such metatheory could also give a physical criterion
to identify which objects can play the role of the observer.

The Von Neumann’s solution corresponds exactly to our Gödelian Hunch. As Dalla
Chiara pointed out, this solution seems “to be very close to some similar limitative re-
sults that we have accepted in logic such as the Gödel theorem or the Tarski theorem.” [48]

Peres and Zurek also argue that “[quantum theory’s] inability to completely describe
the measurement process appears to be not a flaw of the theory but a logical necessity
which is analogous to Gödel’s undecidability theorem” [50]. According to them, an ideal
theory should fulfil three assumptions, which are nonetheless always incompatible:

• “Determinism”: The outcome of an ideal perfectly controlled experiment
should be predictable. This might not be the case in practice, but the under-
lying reality is assumed to be well-determined: “The system has no choice.”

• “Verifiability”: An experimenter can “freely” choose which experiment she is
going to make. “The observer has a choice.”

• “Universality”: The theory apply to any object. “The observer is also a sys-
tem.”

A solution, they argue is to acknowledge that quantum theory is universal, any ob-
server can be described by quantum theory, “but under the condition that they lose their
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status of observers and have to be observed by something or someone else. [...] Thus
although quantum theory is universal, it is not closed. Anything can be described by
it, but something must remain unanalyzed. [...] Although it can describe anything, a
quantum description cannot include everything.” [50]

Zwick, in a paper entitled “Quantum Measurement and Gödel’s Proof” [51], argues
that the measurement problem might be “an instance of a general limitation of formal
languages”, and is thus comparable with Gödel’s incompleteness theorem. The parallel be-
tween physics and mathematics suggests that “the measurement process is self-referential
as was Gödel’s special formula, and that the measurement may be undecidable within the
dynamics, occurring only at a meta-level of the formalism. [...]” Thus, quantum theory
from outside introduces another level, a meta-level, in which lives the object outside the
description: the observer. The measurement, associated with the projection postulate
and the Born rule, is thus taken as a meta-level statement, while the dynamics following
the Schrödinger’s equation is left “incomplete”.

Breuer proved a theorem showing that, independently of the considered theory, “an
internal observer cannot distinguish all states of a system in which she is contained” [294].
This is due to self-referential issues. Indeed, a measurement on a system in which the
observer is contained yields information about the observer herself: a self-measurement.
This is also defended by Mittelstaedt [52], who argues that universality implies seman-
tical completeness, i.e. the associated language contains both semantic concepts and
expressions referring to its own proposisitions, meta-theoretical concepts, which thus im-
plies self-referentiality. In order to avoid logical paradoxes and be consistent, this self-
measurement has to be constrained. In a later work, entitled “John Von Neumann met
Kurt Gödel: undecidable statements in quantum mechanics.” [49] , Breuer speculates
that an encounter between Gödel and Von Neumann in 1930 might have inspired the
formulation of the quantum measurement problem in 1932 by the latter (which would not
only make him the first advocate of the quantum Gödelian hunch, but also would mean
that the origin of the measurement problem is the Gödelian hunch itself !). “Is Gödel’s
incompleteness theorem related in any way to the quantum measurement problem ? Is
perhaps self-reference at the heart of both?” [49] Thus, self-reference problems might be
the reason why quantum mechanics is not applicable to the observer. In fact, due to self-
referential issues, a theory cannot be universally valid and experimentally fully accessible:
no observer can distinguish all states of the universe, since she is also part of the universe
herself. One can then see the measurement problem as the incompatibility between two
uses of quantum theory, corresponding to two distinct positions of the observer, giving up
either on universality or full measurability (cf. Fig.8.1):
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The two uses of quantum theory

• Quantum theory from inside (also termed “endophysics” by Primas [295]): the
observer cannot be separated from the observed system. The studied object
is a closed system, e.g. the universe, and is observed from inside. It is thus
universal, but full measurability fails: this is the case of the Many-Worlds
interpretation.

• Quantum theory from outside (“exophysics” [295]): the observer is cut from
the observed systems, which are described as open systems. The observed
systems are always (ideally) fully experimentally accessible, but the theory is
not universal, since an object (the observer) is always out of the description.
This is the point of view taken by the “anti-realists”, “(neo-)Copenhagian”,
“operationalists”.
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Figure 8.1: The measurement problem as the incompatibility between two perpsectives. A
qubit |0〉+ |1〉 is prepared inside a quantum box, by sending a photon on a beam splitter.
We denote |0〉 and |1〉 the right and left paths after the beam splitter. The position of
the photon is measured by an observer, Alice, who collects the particle on one of her two
detectors at the end of each path. Two position of the observer can be considered. (Left)
Quantum theory from outside. Alice is “out of the quantum box”, and the measurement
process is described by a projection. (Right) Quantum theory from inside. Alice is “inside
the quantum box”, her interaction with her own quantum box is described “quantumly”,
by the unitary evolution of a higher-order quantum box which contains both Alice and
her quantum box.

Thus, following Dalla Chiara, Peres and Zurek, Breuer concludes that “from an op-
erational point of view, theories [and thus quantum theory] can at most be universally
valid in a relative, observer dependent sense.” [49] A similar distinction will be for-
malised by Baumann and Wolf [296], who identify two inequivalent quantum formalisms
(a “relative-state” one corresponding to quantum theory from inside, and a “standard” one
corresponding to quantum theory from outside).

Finally, Grinbaum established the enlightening concept of loop of existences, which
allows to give a representation for deriving the measurement problem from “a logical
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error”. Representing all the scientific descriptions as a loop, “any particular theoretical
description is achieved by cutting the loop at some point and thus separating the target
object of the theory from the theory’s presuppositions. It is impossible to give a theoretical
description of the loop of existences as a whole. [...] With the position of the cut being
fixed, some elements of the loop will be object of the theory, while other elements will
fall into the domain of meta-theory of this theory. At another loop cut these elements
may exchange roles: those that were explanans become explanandum and those that were
explanandum become explanans. The reason why one cannot get rid of the loop cut and
build a theory of the full loop is that the human venture of knowing needs a basis on
which it can rely; at another time, this basis itself becomes the object of scientific inquiry,
but then a new basis is unavoidably chosen.” [98]

8.4 What is it like to be a Schrödinger cat ?

Wigner’s friend

“Wigner’s friend” is a thought experiment proposed by E. Wigner in 1961 [91], that
originally aimed at showing that quantum measurement requires a conscious ob-
server. The thought experiment is often presented as a variant of Schrödinger’s
cat, where the “cat” is an observer, Wigner’s friend, who performs a measurement
on a qubit living in a Hilbert space HS in her laboratory, while Wigner, another
observer outside her laboratory, can associate a quantum state to the compound
system HS ⊗ HO, where HO is a Hilbert space associated to Wigner’s friend, e.g.
a memory qubit |Mi〉 which can be interpreted as “Wigner’s friend observes a pro-
jection on state |i〉”. The problem arises from the fact that while Wigner’s friend
observes a collapse of the qubit, Wigner describes this process as the interaction
between two quantum systems, i.e. a unitary evolution ending up in an entan-
gled state. However both descriptions should be valid. This can be seen as a
meta-illustration of the measurement problem, which asks: what happens when an
observer observes another observer observing a quantum system ?

Based on the analysis of the measurement problem as a self-referential paradox, I will
rely on the following terminology. The quantum system is an object, since it is described
by quantum theory. Wigner’s friend is an observer, and as a user of quantum theory, is a
meta-theoretical object, in short a meta-object. Wigner is an observer who can perform a
measurement on systems of the form object ⊗meta-object, and is thus a meta-meta-object,
or meta-observer. The problem can be thus reformulated as the fact that an observer and
a meta-observer are led to describe the same event - the observer’s measuring process -
in contradictory ways. I introduce the notion of meta-context as a set of the form {meta-
object,object}. This set is defined by a movable cut between theoretical objects studied
in the language of the theory, and meta-theoretical objects which are out of the range
of the theory. In other words, the meta-context imposes the frontiers of the “quantum
box”, defining what is inside and outside of it. In the Wigner’s friend paradox, two meta-
context are involved: {Wigner’s friend, objects inHS} and {Wigner, objects inHS⊗HO}.

Inspired by previous works [46, 49, 48], I argue that the problem can be understood
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as the incompatibility between (at least8) the three following assumptions:

Assumptions underlying the Wigner’s friend paradox

• Universality (Q): Quantum theory is assumed to be correct and can be applied
to any object whatsoever (but not necessarily all objects).

• Non-Meta-Contextuality (NMC): truth values given by the propositions as-
sociated with an object are independent of the meta-context, i.e. whether
they are given from inside or outside the quantum box. this assumption is
equivalent with Brukner’s “observer-independent facts” [46], and can also be
compared with Cavalcanti’s “Absoluteness of Observed Events” [297].

• Measurement (M): The interaction between a meta-theoretical object and an
object which shall be in principle fully experimentally accessible, i.e. the
measurement process, is described by a projection yielding a single outcome.

The incompatibility can be derived by the following argument. Maintaining (Q) and
(NMC) leads to an absolute form of universality: all objects, everything can be de-
scribed by the theory, irrespective of the meta-context: no cut is needed. But imagine
an infinite chain of observers observing observers observing a quantum system. Then,
meta- ... -meta-observers are invoked, ad infinitum. This is the so-called “Von Neumann
chain”, analogous with “the hierarchy of object theory, meta-theory, meta-metatheory etc.
enforced by problems of self-reference.” [49]. One could argue that the ultimate meta∞-
object is God, or some Laplacian demon9. In [299], Rothstein introduces the idea of
“physical demonology”. The idea is that “if a demon is defined as an hypothetical entity
capable of doing things humans cannot do because of some natural law, then one can
invent a demon capable of deciding a physically undecidable question, and the undecid-
ability is tantamount to outlawing such a demon.” [300] Let us assume that such an
entity exists, and that it is able to perform an ideal measurement on the Universe, i.e. the
latter is fully experimentally accessible. If this is the case, then the demon is necessarily
excluded from the Universe in order to avoid Liar-like inconsistencies, independently of
the considered theory, following Breuer’s theorem [49]. There is a tension between abso-
lute universality (Q,NMC), in which the measuring process might be treated theoretically,
and quantum theory is used from inside, and measurement (M) as a meta-theoretical
process for observer from outside.

Spontaneous collapse theories, which modify Schrödinger’s equation, give up on (Q).
The Many-Worlds interpretation, as being “quantum theory from inside”, give up on (M).
Note that it is not trivial to analyze the Broglie-Bohm solution from this set of assump-
tions. One could argue that it is an extension of quantum theory from inside, and thus
also gives up on (M). In the next section, I will argue that it might also be interpreted as
giving up on (NMC) in a particular way.

8I do not claim that the set is complete. For example, one could add assumptions on the completeness
of the theory, or highlight assumptions of “freedom of choice” or “Single outcome”. However, I argue
that the proposed assumptions are sufficient to analyse the Wigner’s friend problem as a self-referential
paradox.

9Note that this demon was already invoked by Popper [298], to give an argument in favour of “inde-
terminism” and show that no physical system can ever perfectly predict its own behaviour.
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Figure 8.2: Inspired by Grinbaum’s epistemic loops [99], let us represent all theoreti-
cal objects by a loop. Cutting the loop sends objects in the meta-theoretical domain.
(a) Meta-Context {Wigner’s friend, HS}. (b) Meta Context {Wigner, HS ⊗ HO}. (c)
Maintaining (Q) and (MNC) leads to ignoring the relative cuts, i.e. the meta-contexts.
Wigner and Wigner’s friend are put at the same level, and self-referential inconsistencies
may occur.

In the light of analysing the measurement problem as a logical error, I argue that the
most appealing solution is to drop (NMC) and acknowledge the observer for what it is:
a meta-object. This way, the notion of meta-observer becomes obsolete, and the logical
inconsistencies are avoided (cf. Figure 8.2). The universality of the theory is maintained,
but becomes relative. Any object can be cut and become a meta-object. However, once
the cut is fixed, any out-of-meta-context question is undecidable . Every description is
consistent inside and only inside a given meta-context.

This solution is equivalent to the “Von Neumann’s logical solution (II)” presented by
Dalla Chiara [48]. It has the advantage of (dis)solving the paradox without resorting to
the addition of exotic ontologies, nor a nomological modification of the theory. However,
despite being based on a metaphysical analysis, one could argue that this solution, since it
does not give any physical explanation of the measurement process nor explain where to
put the cut, leaves a bitter taste. Indeed, quantum theory does not provide any physical
criterion to identify whether an object is an observer or not. The cut is purely functional,
not ontological: it does not discriminate between microscopic and macroscopic objects,
only what is described by the theory and what is beyond the theory. Thus one cannot
infer from quantum theory alone if the observer is a human being, an artificial intelligence,
a cat or the Universe. “As emphasized by Wheeler, this makes it extraordinarily difficult
to state clearly where “the community of observer-participators” begins and where it ends
[301].” [302]. On a purely logical aspect, quantum theory does not say anything more on
what an observer should be. Should we associate with it the ability to know, to bet or
at least to store information and communicate it ? I will discuss this matter further in
Section 8.6.

To conclude, I argue that the terminology “observer” should be used with caution. It
should only be applied to a meta-object, thus an object outside the theoretical description.
From Wigner’s perspective, his friend is not an observer, even though he can acknowledge
that she is one from her perspective. In the light of this analysis, being Wigner’s friend, or
a Schrödinger cat, is nothing special. The friend inside Wigner’s quantum box will observe
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a definite outcome, despite being entangled with a qubit fromWigner’s perspective. Inside
the box, the cat is dead or alive, despite being entangled with a qubit from the perspective
of Schrödinger.

8.5 Wigner’s Friendifications
Recently, there has been a renewed interest in Wigner’s thought experiment in the field of
quantum foundations. This resurgence is due to the appearance of new hybrid paradoxes
which rely on a “Wigner’s Friendification”10, a transformation of previous quantum “para-
doxes” where one allows meta-objects to be described as objects of the theory, and allows
meta-observers to measure compound systems of the type “object ⊗ meta-object”. Re-
markably all the “Wigner’s friendified” paradoxes so far entail some form of contextuality.
Brukner has proposed a “no-go theorem for observer-independent facts” [46], extended
in [304] , based on the violation of the CHSH inequality that entails probabilistic con-
textuality. Frauchiger and Renner have proposed a meta-version of the Hardy paradox
involving logical contextuality (cf. Sections 7.1 and 7.2) [47]. These have been given ex-
perimental proof-of-principle realisations in [305]. Regarding strong contextuality, several
examples have been formalised. In an appendix of [46], Brukner presents another proof
of his no-go theorem based on the GHZ paradox. Szangolies has proposed a Wigner’s
friendification of the Mermin-Peres proof of the Kochen-Specker theorem, that he named
“the quantum Rashomon effect” [306] in reference to Kurosawa’s film in which the same
event is presented in various, sometimes contradictory, ways from distinct perspectives.
Finally, Vilasini, Nurgalieva and del Rio have introduced a way to generalize Wigner’s
friendification to arbitrary physical theories, and in particular generalized probabilistic
theories [307]. As an example, they have formalised a Wigner’s friendification of the PR
box paradox, which is a canonical example of a scenario characterized by strong contex-
tuality. Their result shows that, similarly with the fact that their exist post-quantum
scenarii like the PR box one that entail a form of contextuality, “multi-agent paradoxes”
are not specific to quantum theory. I fully agree with their hunch (also presented in [308])
that “multi-agent paradoxes are closely linked to the notion of contextuality”.

In fact, a sceptic could argue that there is no fundamental contradiction in the Wigner’s
friend paradox: the final physical states given by both descriptions (Wigner’s and his
friend’s) are not necessarily different. For example, in a hidden variable theory like de-
Broglie-Bohm’s, they are the same. The apparent contradiction would come from the fact
that the standard quantum formalism is ontologically incomplete. Thus, Wigner and his
friend do not seem to necessarily contradict each other. If they use a completed quan-
tum theory, it seems that there respective representations would agree. Nevertheless, it
is possible to obtain a logical contradiction from quantum scenarii involving a form of
contextuality, and thus Liar cycles11, that hidden variables models cannot avoid. One can
in fact update the quantum scenarii at the meta-level, so that the logical contradiction,

10In my knowledge, this terminology was first used by Aaronson in a blog post (“It’s hard to think
when someone Hadamards your brain.” [303]) in order to describe the Frauchiger-Renner paradox with
respect to the Hardy Paradox.

11One could argue that no logical contradiction arises from probabilistic contextuality. However, this
is not the case. Indeed, as expressed in [262] “in [266] it is shown that every Bell inequality (i.e. every
inequality satisfied by the “local polytope”) is equivalent to a logical Bell inequality, based on purely
logical consistency conditions.”
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instead of being counterfactual, would come from the meta-statements of observers and
meta-observers. In [307], it is shown that the replacement of counterfactual measurements
by actual ones can be realized in the most general case (i.e. any physical theories) by an
information-preserving model for physical measurements. Here I will only focus on the
standard quantum way to do so, following the example of the Frauchiger-Renner paradox
[47] that we present in a simplified version below. Hence, one can formalize a multi-level
scenario à la Wigner with a genuine logical contradiction. In the case of hidden variables
theories, the paradox is solved because of the Kochen-Specker theorem: these theories are
contextual and thus, as will we see, a fortiori meta-contextual.

As mentioned above, the main recipe of Wigner’s friendification is to introduce some
“meta-meta-objects” that treat meta-objects, their “friends”, as objects of the theory. A
two-level scenario like the Hardy paradox, which only involves objects and meta-objects,
is upgraded into a three-level scenario: instead of a couple of measurements among four
counterfactual possibilities, four actual measurements are performed. Alice and Bob’s
friend, the meta-objects, measure their qubits, living in Hilbert spaces HSA and HSB

respectively, in the computational {|0〉 , |1〉} basis. Regarding Alice and Bob, the meta-
meta-objects, the former computational basis is transformed into a meta-computational
basis corresponding to an “observer basis”: it corresponds to a meta-observer asking her
friend in which state has the qubit been projected: {|0〉SA ⊗ |0〉FA , |1〉SA ⊗ |1〉FA}, where
the Hilbert spaces HFA and HFB are associated with Alice and Bob’s friends respec-
tively. For example, if Alice’s friend finds her qubit in state |0〉SA , then her associated
quantum proposition will be |0〉FA and Alice will find the global system in the state
|0〉SA ⊗ |0〉FA . The diagonal basis of the standard observation becomes a meta-diagonal
basis corresponding to a “meta-observer basis”, where the meta-observers actually perform
a quantum measurement on the compound system of their respective friend and their ob-
ject, living in a Hilbert space HA and HB, resulting in a quantum proposition associated
to the meta-observer:{|+〉A , |−〉A}, with |±〉A = 1√

2
(|0〉SA ⊗ |0〉FA ± |1〉SA ⊗ |1〉FA).

The Frauchiger-Renner paradox

Applying this Wigner’s Friendification to the four quantum propositions of the Hardy
paradox (cf. Section 7.1), one obtains four new assertions:

(1) • In the metaobserver-observer basis, the state before measurements is:

|ψ〉tot =

√
2

3
|+〉A |0〉SB |0〉FB +

1√
6
|+〉A |1〉SB |1〉FB −

1√
6
|−〉A |1〉SB |1〉FB

Sentence FR1: “If Alice finds the outcome ‘−’, she knows that Bob’s friend obtained
outcome ‘1’.”

(2) • In the observer-observer basis, the state before measurements is:

|ψ〉tot =
1√
3

(
|0〉SA |0〉FA |0〉SB |0〉FB + |1〉SA |1〉FA |0〉SB |0〉FB + |1〉SA |1〉FA |1〉SB |1〉FB

)
Sentence FR2: “If Bob’s friend finds the outcome ‘1’, he knows that Alice’s friend

obtained outcome ‘1’.”
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(3) • In the observer-metaobserver basis, the state before measurements is:

|ψ〉tot =

√
2

3
|1〉SA |1〉FA |+〉B +

1√
6
|0〉SA |0〉FA |+〉B +

1√
6
|0〉SA |0〉FA |−〉B

Sentence FR3: “If Alice’s friend finds the outcome ‘1’, she knows that Bob obtained
outcome ‘+’.”

(4) • In the metaobserver-metaobserver basis, the state before measurements is:

|ψ〉tot =
3√
12
|+〉A |+〉B +

1√
12
|+〉A |−〉B −

1√
12
|−〉A |+〉B +

1√
12
|−〉A |−〉B

Sentence FR4: “Alice and Bob both find the outcome ‘−’ with a probability of 1
12
.”

The four meta-statements (F1,F2,F3,F4) share the same logical structure as (S1,S2,S3,S4).
Like the Hardy paradox (cf. Section 7.2), this set of statements forms a probabilistic Liar
cycle: either Bob obtains ‘−’ and Alice obtains ‘−’ → Bob’s friend obtains “1” → Alice’s
friend obtains “1” → Bob obtains “+”, contradicting the first assignment. And like the
Hardy paradox, another set of meta-statements can be inferred from the quantum propo-
sitions, and forms another Liar cycle: Alice obtains ‘−’ and Bob obtains ‘−’ → Alice’s
friend obtains ‘0’ → Bob’s friend obtains ‘0’ → Alice obtains ‘+’, contradicting the first
assignment.

In [47], the authors analyze this paradox as an incompatibility between three assump-
tions:

• Quantum theory (Q): quantum theory is correct and can be applied to systems
of any complexity,

• Consistency (C): observers and meta-observers claims should be consistent
with each other,

• Single outcome (S): a measurement yields a single outcome.

(Q) is equivalent to (U), and thus is given up by spontaneous collapse theories. (S) is
given up by the Many-Worlds interpretation. (C) has been widely discussed in the litera-
ture (cf. for example [46, 309, 310]). I argue that this assumption contains a redundancy,
and can be reformulated into two assumptions: non-contextuality (NC) and non-meta-
contextuality, which is here formalised as the Wigner’s friend-version of non-contextuality.
Thus, I argue that (NMC) is dropped by both neo-Copenhaguians and Bohmians, but not
for the same reason. The neo-Copenhaguians’s argument is based on the logical analysis
of the Wigner’s friend-like multi-level paradoxes as self-referential antinomies, resulting in
a metaphysical and logical incompleteness. Bohmians12 acknowledge the incompleteness,
but interpret it straightforwardly as ontological. From the Kochen-Specker theorem, they
give up on (NC), and since (NMC) is built on this assumption in a Wigner’s friend-type
scenario, they also give up on (NMC). It would be interesting to compare this proposition

12For a Bohmian take on the Frauchiger-Renner paradox, cf. [311].
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with the fact that the Bohmian mechanics is “more” contextual then what is imposed by
quantum theory13 [282].

Because it has the same logical structure as the Hardy paradox, the Frauchiger-Renner
paradox also entails logical contextuality. Note that it has already been analyzed as ap-
plying classical logic to quantum propositions, which is forbidden by the non-Boolean
structure of quantum theory [46, 309, 310, 307]. Thus the contradiction might occur from
assuming non-contextuality (NC). However, unlike the Hardy paradox, which is counter-
factual, here each meta-statement can be associated to one agent: one for each observer
(FR1 and FR3), and one for each meta-observer (FR2 and FR4). In fact, like in the orig-
inal Wigner’s friend experiment meta-objects (the friends) are described in the language
of the theory, i.e. at the level of objects. As seen previously, this is equivalent to the
(NMC) assumption, which associated with (Q), can lead to self-referential inconsistencies
when statements made in different meta-contexts are compared. Giving up on (NMC),
consistency is restored, but only inside a meta-context among {Alice, Alice’s Friend ⊗
qubit SA } ; {Bob, Bob’s Friend ⊗ qubit SB} ; {Alice’s Friend, qubit SA } ; {Bob’s Friend,
qubit SB } (cf. Fig. 8.3). Under such analysis, the fact that “a self-referential use of the
theory yields contradictory claims” [47] is not especially surprising, if one acknowledges
that quantum theory can only be consistently used in a meta-context, i.e. that the use
of quantum theory is (meta-)contextual .

Figure 8.3: (a) Meta-context: {Alice, Alice’s Friend ⊗ qubit SA}. (b) Meta-context:
{Alice’s Friend, qubit SA}. (c) Meta-context: {Bob, Bob’s Friend ⊗ qubit SB}. (d)
Meta-context: {Bob’s Friend, qubit SB}. (e) Maintaining (Q) and (NMC), i.e. comparing
the results from different meta-contexts, leads to logical inconsistencies.

13In fact, as exposed by Hardy [282], Bohmian mechanics is contextual even for quantum systems of
dimension two, while the Kochen-Specker theorem only applies to quantum systems of dimension equal
or higer than three.
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8.6 The Heirs of Copenhagen
Analyzing the measurement problem and its meta-versions as self-reference and escaping
the logical inconsistency by introducing a cut14 complies with various “neo-Copenhagen”
interpretations of quantum theory. These interpretations, often labelled as “anti-realist” or
“operationalist” are related with anti-realist philosophical school of thought such as prag-
matism, instrumentalism or phenomenology. They are strongly inspired by the Copen-
hagen school of Bohr, Heisenberg, Von Neumann and Pauli. Leifer (in a talk entitled
“What are Copenhaguish interpretations and should they be Perspectival ?”) proposed
four criteria to characterize them:

• Universality : Quantum theory is a physical theory. Any object can be described by
it. There is no intrinsically “classical” nor “quantum” objects.

• Observation: When an observer performs a measurement, it yields an outcome,
a fact (phenomenon) occurs. The observers acknowledge the existence of other
observers. Thus these interpretations cannot be reduced to solipsism. However, a
fact might be observer-dependent.

• Anti-ontology : Quantum states are not ontological. They do not correspond to
some intrinsic property of a quantum system. They are actual state of knowledge/
belief/information belonging to a given observer.

• Completeness : Quantum theory is complete. It does not invoke some “hidden”
ontology.

However these criteria are not exclusive to neo-Copenhagen interpretations (for ex-
ample the Many-Worlds interpretation is also compatible with Completeness). I argue
that the fundamental criterion, specific to these neo-Copenhagen interpretations, is the
Cut, or as formalized above, Meta-Contextuality. Indeed, all neo-Copenhagen interpreta-
tions are perspectival15, i.e. solve the Wigner’s friend paradox and its variations by given
up on non-meta-contextuality / observer-independent facts / absoluteness of observed
events, i.e. with a “shifty split”. All agree on this fundamental distinction between the
meta-theoretical and theoretical object. This metaphysical cut is “functional ” [70], not
ontological. It does not discriminate a macroscopic classical world from a microscopic
quantum one, because every object can be treated by the theory (Q) or not. It does not
rely on a specific physical criterion to distinguish meta-objects from objects. The position
of the cut goes in pair with defining what an “observer” is... and standard quantum theory
does not give any information on what it is.

So what is an observer ? Again, if we should stick to quantum theory, then one
can only say that it is a meta-object, i.e. a higher-order object not described by the
theory. Everett, in his relative-state interpretation, argued that observers are physical
systems with memory, “parts... whose states are in correspondence with past experience
of the observers” [64]. Grinbaum called this “a universal observer hypothesis: any system
with certain information-theoretic properties can serve as quantum mechanical observer,

14Sometimes called the von Neumann or Heisenberg cut (“Schnitt”).
15One might argue that it might not be the case for the old Copenhagen school, for which there might

be an objective, observer independent fact after each measurement. If it is indeed the case, this point of
view would be ruled out by Wigner’s friendified quantum paradoxes.
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independently of its physical constituency, size, presence or absence of conscious awareness
and so forth.” [98] Rovelli [67, 68] argues for such a universally discriminative cut in
his relational quantum mechanics (RQM), “making Copenhagen democratic”, putting all
systems on equal grounds and ascribing them only relative states. However some might
argue that the word “observer” and “measurement” are not adapted to the interaction
between, for example, two electrons. This echoes in Bell’s critic of the Copenhagen
interpretation, in his paper “Against Measurement” [312]:

“It would seem that the theory is exclusively concerned about ’results of
measurement’, and has nothing to say about anything else. What exactly
qualifies some physical systems to play the role of ’measurer’? Was the wave-
function of the world waiting to jump for thousands of millions of years until
a single-celled living creature appeared? Or did it have to wait a little longer,
for some better qualified system . . . with a PhD? [...] The first charge against
’measurement’, in the fundamental axioms of quantum mechanics, is that it
anchors there the shifty split of the world into ’system’ and ’apparatus’. A
second charge is that the word comes loaded with meaning from everyday life,
meaning which is entirely inappropriate in the quantum context. When it is
said that something is ’measured’ it is difficult not to think of the result as
referring to some pre-existing property of the object in question. This is to
disregard Bohr’s insistence that in quantum phenomena the apparatus as well
as the system is essentially involved.”

Recently, Brukner has proposed a no-go theorem showing “that in RQM the physical
description of a system relative to an observer cannot represent knowledge about the
observer in the conventional sense of this term. The problem lies in the ambiguity in the
choice of the basis with respect to which the relative states are to be defined in RQM.” [313]
This preferred basis problem would not arise in other neo-Copenhagen interpretations in
which a quantum state is relative to some measurement contexts [70]. This is made
particularly explicit in the “Context, System, Modality (CSM)”, interpretation, in which
a “modality” - an element of reality - can only be assigned to a “system” with respect
to a “context16”, i.e. to a set {context, system} [314, 315, 316]. QBism [72] also avoids
the preferred basis problem. According to QBists, the “observer” is a Bayesian agent, a
user of the theory who uses it to make bets and update her beliefs. Thus, the state is
relative to the beliefs of this agent. But it would not be the case in RQM, which makes
the cut absolutely democratic. More specifically, Brukner points out that the maximally
entangled state |φ+〉, that can describe “the entangled state between an observer [F ] and
an spin-1/2-particle [S]”, can be written in different bases:

|φ+〉SF =
1√
2

(|0〉S |0〉F + |1〉S |1〉F ) =
1√
2

(|+〉S |+〉F + |−〉S |−〉F ) (8.1)

Thus, what is the state of S relative to F : the one in the computational basis or the
diagonal one ? According to Brukner, this is avoided by most of the neo-Copenhagen in-
terpretations, in which this underdetermination is avoided by the choice of measurement

16The notion of “context” in the CSM interpretation corresponds to the “observer” / her experimental
apparatus, but is stronger than our definition of meta-object. Indeed in CSM, the cut is not only
functional, but also ontological: quantum objects (systems) and classical objects (contexts) are separated
by nature, “based on empirical evidence”. Thus, unlike RQM, some objects (e.g. a photon) cannot be
treated as a “context”.
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made by the observer / agent. However “RQM does not seem to give any prescription on
how to resolve this ambiguity.” I argue nonetheless that this ambiguity can be diffused,
if we acknowledge that in RQM, an “observer” is and only is a meta-object. Thus, we
cannot interpret the Hilbert space F as being associated with an “observer”: as Brukner’s
concludes, “Qubits are not observers.” In other words, the state |φ+〉SF does not describe
an interaction between a system and an observer. It is a state from Wigner’s point of
view, who describes the interaction between two quantum systems, not from his friend.
If F is an actual observer, then she would simply associate a state |ψ〉S to the system she
“measures” or, rather interact with. A terminology more adapted to RQM might be: if
we want to know how a the spin/1/2 of a particle is determined relative to the perspective
of another system F , the correct description is a state |ψ〉S. If we want to know how they
co-determine each other as interacting quantum systems, we describe them with the global
state |φ+〉SF . Hence, Brukner’s no-go theorem do not challenge RQM, but allows to high-
light an important aspect of it17. Finally, Grinbaum [302, 98] has proposed to overcome the
apparent tension between the universal cut of RQM with the more epistemological-based
one of others (neo-)Copenhagen interpretations by giving a definition of an “observer”
in the light of the information-theoretic reformulation of quantum theory: the observer
is “a system identification algorithm” and is “characterized by its Kolmogorov complexity.”

To conclude, meta-contextuality is especially made explicit in Rovelli’s relational in-
terpretation: “As soon as we realize that any physical system can play the role of a
Copenhagen’s ‘observer’, we fall into relational quantum mechanics. Relational quantum
mechanics is Copenhagen quantum mechanics made democratic by bringing all systems
onto the same footing.” [68], as well as in a recent QBist analysis of the Frauchiger-Renner
paradox, which rests on a: “quantum Copernican principle; when two agents take actions
on each other, each agent has a dual role as a physical system for the other agent” [318].
Meta-contextuality resonates with the footsteps of Bohr: “There is no quantum world.
There is only an abstract quantum physical description. It is wrong to think that the task
of physics is to find out how nature is. Physics concerns what we can say about nature.
We depend on our words, our task is to communicate experience and ideas to others.
We are suspended in language ...” [319] ; and Wittgenstein, who wrote in his Tractatus :
“(5.632) The subject does not belong to the world: rather it is a limit of the world.” I am
sympathetic towards phenomenological readings of these neo-Copenhagen interpretations
[320]. Absolute universality has a God-like flavour and leads to paradoxical features that
cannot be said. On the contrary, one can acknowledge the transcendental status of the
meta-theoretical object: a classical (Boolean) description made at the meta-level by the
meta-object is the condition of possibility for the rendering of quantum (non-Boolean)
events.

Quantum theory is then only “a general procedure for anticipating probabilistically
the replies to context-dependent experimental solicitations. [It does] not even offer a hint
in the quest of a faithful representation of some independent reality out there, behind
phenomena.” [320] This non-representational status does not reduce it to solipsism, or

17While I was writing this thesis, Di Biago and Rovelli have finally addressed Brukner’s no-go theorem,
and have answered with a similar argument: “ The quantum state of a composite system relative to an
external system is not an account or record of relative events between the subsystems of the composite
system. It is only a mathematical tool useful for predicting probabilities of events relative to the external
system. Assuming that the quantum state is more than this is the misunderstanding leading to the
apparent contradictions.” [317]
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mutism. After an ἐποχή, a “suspension of one judgement about a presumably external
domain of objects”, i.e. acknowledging that “no symbol of quantum mechanics refers to
objects or denotes predicates of objects”, an ontological reconstruction is possible. This
ontology would not be based on objects, rather it would be “an ontology in which we
are not onlookers of a nature given out there, but rather intimately intermingled with
nature, somewhere in the midst of it [...] This endo-ontology is therefore an ontology of
the participant in Being, rather than an ontology of the observer of beings.” [320]

“Quantum physics does not put all truths on the side of the ‘subjective’,
which would maintain the idea of an inaccessible objectivity. It rather chal-
lenges the very principle of this division and brings the contact between the
observer and the observed in its very definition of ‘reality’.” (quoted [321] in
[320])

In a nutshell, as advocated by Paulette Destouches-Février [322], and later John
Wheeler and Chris Fuchs [66], the logical paradoxical loops raised by the careless in-
terplay of quantum theory and its meta-theory supports a form of participatory realism.

8.7 Take Away and Perpsectives

Take Away

• I argue for a Gödelian hunch from quantum theory, the idea that quantum
paradoxes emerge from a lack of metaphysical distancing, i.e. a lack of dis-
tinction between the level of the studied object (quantum theory), and the
level of the meta-theoretical object (observer).

• Quantum contextuality can be interpreted as the fact that meta-propositions
(truth values) associated to quantum propositions are infected by the logical
structure of the latter. They can then become globally undecidable, and lead
to logical contradictions analogous with the Liar paradox.

• The measurement problem, the Wigner’s friend problem can be analyzed as
logical errors emerging from a lack of distinction between theoretical and
meta-theoretical objects.

• Hybrid paradoxes combining contextuality and Wigner’s friend highlight that
the use of quantum theory is meta-contextual, i.e. it is consistent if and only
if a well-defined distinction is made between objects and meta-objects.

• Metacontextuality is the fundamental criterion underlying neo-Copenhagen
interpretations such as QBism or Relational Quantum Mechanics.
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Perspectives

• (A LPPS Frauchiger-Renner Paradox) It would be interesting to investigate
further the fact that the Hardy and Frauchiger-Renner paradoxes share a
common logical structure. In particular, in the light of our analysis (Sec-
tion 7.3.4) one could for example speculate on a LPPS formulation for the
Frauchiger-Renner paradox, based on the logical argument previously pre-
sented (Fig.7.9). For example, the pre-selection at time t1 would correspond
to the preparation of a Hardy state shared between Alice and Bob’s friends.
At a later time t, Alice and Bob’s friends perform a joint weak measurement
asking either if their qubits is in the state |00〉 or |11〉. At time t2, Alice and
Bob perform a global measurement in the “meta-observer basis”, and the state
|−−〉AB is post-selected (experimentally or fundamentally). This, of course,
would need a proper mathematical formalisation. However, one could expect
that the friends’ intermediate weak measurement would always answer that
the state is in |00〉 with certainty, and that it is in |11〉 with certainty, like
in the Hardy paradox. The apparent logical paradox would then be “solved”
with the anomalous weak value −1 associated with the sate |10〉. In Section
11.2, I propose furthermore to exploit the idea that the occurring of “obtain-
ing |00〉 with certainty” and “obtaining |11〉 with certainty” depends on the
causal order of Alice and Bob’s friends operations. What would happen if
this causal order was controlled by a quantum switch ? or if Alice and Bob’s
friends could both signal to each other via a non-causal process matrix ?
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Part III

“Time-Travel without Paradoxes”
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“Time is a consequence of every attempt to provide a comprehensive description of the
universe from within. Thus, time is not related to the universe itself but to the attempt

to describe it.” A. Kull [323] on Laws of Forms (1969) by Spencer-Brown [324].

To be and not to be (in the style of Magritte), VQGAN+CLIP.
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Chapter 9

Disclaimer and Introduction

This last part aims at giving some reflections on the main motivation of the thesis: to
establish a link between quantum causality and contextuality. It does not rely on any
published nor pre-published work. Rather, it mainly contains work in progress and spec-
ulations on perspectives beyond this PhD thesis, that I wish to explore in the future.

In Chapter 10, I will extend my “Gödelian hunch from quantum theory” (cf. Chapter
8) to a specific notion of time, based on an analysis of the grandfather antinomy1 as a
Liar-like paradox. In Chapter 11, I will speculate on a possible relation between quantum
causality and contextuality and propose some line of thoughts for future investigations.
In Chapter 12, I will present an original causal game that quantifies a Novikov-like con-
sistency principle in terms of a logical inequality in addition to a causal inequality. I will
show that the maximal probability of success with indefinite causal orders lies between
the causal and logical bounds, thus illustrating that noncausality does not imply logical
inconsistency. Finally, I will speculate on the idea that the violation of a logical inequality
might be interpreted as a form of contextuality.

1I will use the terms “antinomy” and “paradox” interchangeably. Etymologically, anti-nomy (from
Ancient Greek ἀντί - νόμος, “against - the law”) can be interpreted as the mutual incompatibility between
two laws or as a paradox that emerges from a logical contradiction, i.e. against the laws of logic.
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Chapter 10

A Gödelian Hunch from Time

The grandfather paradox

In 1949, Gödel discovered solutions of general relativity containing closed time-like
curves (CTCs), which theoretically would allow an observer to travel back in her
own past [2]. However, the existence of such closed causal loops seems to imply the
possibility for a traveller to interact with her own past-self, and for example prevent
her own time-travel. This paradox, known as the grandfather antinomy, appeared
for the first time in the science-fiction novel Le Voyageur imprudent, written by
René Barjavel, which tells the story of a time-traveller who went back into the past
and accidentally killed his ancestor. (cf. introduction of the thesis). Remarkably,
it shares the same logical structure as the Liar paradox (cf. Chapter 8). It can
arguably be interpreted as a (speculative) physical realization of a self-contradiction.

By analogy with the previously introduced scholastic debate on the tension between
God’s knowledge of counterfactuals and “free will” (Section 6.3), the grandfather paradox
can be understood as the tension between events that already happened and the abil-
ity to decide whether these “physically-already-determined" facts can be changed or not.
Here, the role of God or the omniscient demon is played by time itself. One can also
defend a “superdeterminisitic” solution, where the traveler has no free will, or conclude
with Stephen Hawking that time-travel is impossible: in fact, a “chronology protection
conjecture” could prevent the existence of CTCs, in order to “make the universe safe for
historians” [3]. The most popular solution in science-fiction is a “many-worlds-like” one:
there is no contradiction because when the traveler interacts with her past, different con-
sistent worlds are created. David Lewis’ proposal [325] is one of such solution, but is
more subtle. He analyzed the paradox in the light of his modal realism philosophy, where
possible worlds are as real as the actual one. His solution is based on a Leibnizian notion
of “compossible facts”: “What I can do, relative to one set of facts, I cannot do, relative
to another, more inclusive, set.” This preservation of consistency might be interpreted
as a form a “fine-tuning”. In the case of a single world, Igor Novikov has formulated a
similar self-consistency principle that stipulates that “[e]vents on a closed timelike curve
are already guaranteed to be self-consistent” [326]. Thus only events that would not lead
to a grandfather antinomy could be part of a CTC. The traveler would still be free, but
her choices of actions are limited by some “time police / fine-tuning” principle such that
consistency is preserved.

Finally, one could deny time its fundamental aura, and argue instead that it is emer-
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gent. In fact, inside a closed loop, “time” is undefinable, as “time is an order and nothing
else. And all order is a time.”[327] Following the notion of contextuality introduced prece-
dently, when one faces a global inconsistency, one can cut the loop, and recover logical
consistency by introducing “local” contexts of logically consistent and well-defined se-
quences of events cf. Fig. 10.1. These “contexts of ordered events” are locally consistent,
but globally inconsistent. This way, time emerges from cutting self-referential paradoxes.
As Gödel wrote: “Time is the means by which God realized the inconceivable that P and
non-P are both true [...].” [103] The flow of time allows to associate truth values to both
a proposition and its negation. Noticing that this cut might be epistemic, one could fi-
nally speculate that “Time is a consequence of every attempt to provide a comprehensive
description of the universe from within. Thus, time in this sense is not related to the
universe itself but to the attempt to describe it.”[323]

Figure 10.1: (a) Events A and B in a closed loop. The order is undefinable. If the loop
is cut, an order emerges. Depending on the position of the cut, the “context”, either A
precedes B (b), or the opposite (c).

In fact, according to Gödel, the hypothetical existence of CTCs reaffirmed his idea
that time is not an intrinsic and primitive variable of the Universe. Rather, it only exists
in a relative sense: it does not have any objective reality independently of the observer.
In a CTC, observers should have an experience of the flow of time, while there is no flow
of time strictly speaking, as past and future are completely indistinguishable. Hence, “if
the experience of a flow of time can exist without an objective flow of time, there is no
longer any reason to admit an objective flow of time.” ([328] vol.II, p.206)

Regarding the grandfather paradox itself, Gödel wrote:
“This state of affairs seems to imply an absurdity. For it enables one e.g. to travel into
the near past of those places where he has himself lived. There he would encounter a
person which would be himself so and so many years ago. Now he could do something
to this person which he knows by his own memory has not happened to him. This and
similar contradictions, however, presuppose not only the practical feasibility of the trip
into the past (velocities very close to that of light would be necessary for it) but also
certain decision[s] on the part of the traveler; whose possibility one concludes only from
vague conviction of the freedom of the will. Practically the same inconsistencies (again
by neglecting certain “practical” difficulties) can be derived from the assumption of strict
causality and the freedom of the will in the sense just indicated. Hence, as far as the
paradoxical situation under consideration is concerned, an R-world [rotating] is not any
more absurd than any world subject to strict causality.” ([329], p.560-561)
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According to Gödel, the Universe is intrinsically independent from time. However,
it is built on causal relations and a logical notion of causality, that “do not change in
time and do not imply any change.” ([103] p.342) Baptiste Le Bihan’s analysis echoes
this intuition: “the hypothesis of time travel of the temporal teleportation type amounts
precisely to introducing a phase shift between external time and personal time, or to put
it another way, to dissociate personal time and causality on the one hand and external
time on the other hand. [...] Personal time is thus based on the existence of causal
relations, and the hypothesis of the possibility of time travel amounts to postulating that
causal relations can be dissociated from temporal relations.” ([330], p.89-90, personal
translation) I argue that the notions of causality and time involved in this PhD thesis,
i.e. in the process matrix formalism, concur with this view.
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Chapter 11

Relating Quantum Contextuality and
Noncausality ?

There is increasing evidence that contextuality is a central notion that captures precisely
what makes quantum theory fundamentally different from classical physics, and that it is
one of the key resources that enables many quantum advantages for information process-
ing. Along this line, one can explore and clarify some emerging intuitive evidences that
contextuality might also be the key to understanding how quantum causal relations differ
from classical ones, and how some processes can violate causal inequalities and avoid at
the same time pathological causal loops and paradoxes.

A first intuition is that it appears that, in a sheaf-theoretic approach, contextual-
ity arises when there is local consistency and global inconsistency of data [42], while
the process framework is built on a similar idea that one may not obtain a well-defined
global causal structure from local ones [15]. In fact, even though no direct connexion
between contextuality and noncausality was established, a recent extension of the sheaf-
theoretic framework to (in)definite causal order has been proposed, and the “Lugano
process” [24, 22] (cf. Section 2.6) has been analysed in this approach [331].

Another reason that suggests a link between contextuality and the process matrix
framework is that it should be possible to extend the direct analogy between causal in-
equalities and Bell inequalities to contextuality tests, building on the recent result that
a Bell scenario is a specific product of contextuality scenarii, involving the union of the
edges of one-way signalling (i.e. fixed causal structure) hypergraphs [40]. In Section (11.1)
we speculate on a hypergraph representation of a causal scenario and the emergence of
noncausality from a specific contextuality scenario. Moreover a recent work [145] estab-
lishes a striking connection between parity local games, i.e. “a game where the parity
of the parties’s outputs must equal a function of their inputs”, and causal games. In
fact, it was proposed to translate such local games into causal ones by asking each party
separately (instead of both, jointly) to guess the function value of the game. A canon-
ical example with the CHSH game is given. Instead of having to satisfy the relation
a⊕ b = xy for a given binary random variable x and y, and produced outcomes a and b,
the parties are asked to produce outcomes such that a = xy and b = xy. The resulting
causal game is the lazy-guess-your-neighbour input [18], in which Alice and Bob’s task is
to guess each other’s input only when their respective input is 1. This game is known to
have a causal bound of 3/4, which thus coincides with the local bound of the CHSH game.
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Finally, process matrices are known to be equivalent to a particular class of pre- and
post-selected multipartite quantum states [88], while it has been shown [95] that anoma-
lous weak values arising from pre- and post-selection are a proof of a generalised notion
of contextuality from Spekkens [41], that extends the concept to any kind of experimental
procedures (preparations, measurements, transformations).

One the one hand, one could thus speculate that a connection between contextuality
and noncausality might be established in the light of Spekkens contextuality. This was for
example explored by Shrapnel and Costa [332], who have shown, by extending Spekkens
(non)contextuality to instruments and processes, that quantum contextuality cannot be
explained by ontological models with an indefinite causal structure. “[One cannot con-
struct] an ontological model that is both instrument and process non-contextual and also
accords with the predictions of quantum mechanics.” In other words, quantum contex-
tuality is not the apparent signature of a non-contextual model with indefinite causal
relations. Note however that my motivation takes the opposite view to the Shrapnel-
Costa theorem: rather than asking if noncausality can explain contextuality - which was
shown not to be the case - I ask if a form of contextuality could underlie noncausality.

On the other hand, one could also look for such a relation in the multi-time state
framework [276, 88]. Our previous analysis of the Hardy paradox as a LPPS paradox (cf.
Chapter 7) aimed at being a starting point for exploring this line of thought. In Section
(11.2), I speculate that using a meta-version of the paradox, i.e. in a Frauchiger-Renner-
type scenario, an hypothetical connection between noncausal correlations and anomalous
weak values could be investigated.

Finally I would like to mention another potential preliminary line of research, based
on the analogy between Schrödinger’s cat and the quantum switch. In fact, the quantum
switch can be interpreted as a form of causal Schrödinger’s cat: instead of the cat’s state,
the causal order between two local operations is coherently controlled by a qubit. Thus
one could imagine a Wigner’s friendification of the quantum switch in which, inside a
closed laboratory, a party, Fiona, performs a measurement of the quantum control of a
quantum switch - that quantumly controls the order of Alice and Bob’s operations UA
and UB on the target |ψ〉t- in the computational basis, i.e. project the state of the joint
system either on |0〉c⊗UBUA |ψ〉t or |1〉c⊗UAUB |ψ〉t. From her point of view, the causal
order is well-defined: either A ≺ B or B ≺ A: a reduced causally separable process
matrix. However, outside Fiona’s closed laboratory, Ursula describes her measurement
by a unitary evolution. The final state of the joint system from Ursula’s point of view is

1√
2

(
|0〉c ⊗ |0〉f ⊗ UBUA |ψ〉t + |1〉c ⊗ |1〉f ⊗ UAUB |ψ〉t

)
, with |0〉f and |1〉f corresponding

to the quantum description of Fiona’s state. Thus, from the point of view of Ursula, the
causal order is still coherently controlled by quantum states; the process is still causally
nonseparable. This hints at the idea that causal nonseparability, like quantum events,
might be observer-dependent.
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Figure 11.1: Hypergraph of the CHSH scenario as the Foulis-Randall product B1,2,2⊗B1,2,2,
cf. Section 7.2.2. In blue, hyperedges corresponding to simultaneous measurements. In
green, Alice’s measurement choice depends on Bob’s outcome. In red, Bob’s measurement
choice depends on Alice’s outcome.

11.1 A hypergraph representation of noncausality?
In the CHSH scenario depicted in Fig. 11.1, one can easily check that a signalling prob-
abilistic model, for example associated with the strategy {a = xy, b = 0} such that
p(00|00) = p(00|01) = p(00|10) = p(10|11) = 1, is compatible with the signalling hy-
peredges EB→A but is incompatible with the considered contextuality scenario1. The
normalisation condition

∑
v∈e p(v) = 1 cannot be satisfied for every hyperedge e ∈ E of

the hypergraph H. In a sense, one could argue that a signalling probabilistic model might
be thus “contextual” with respect to a non-signalling scenario.

One could thus ask how we could represent causal scenarii in this hypergraph frame-
work (cf. Section 7.2.2). I speculate that one might consider the two signalling hy-
pergraphs associated with the hyperedeges EA→B and EB→A respectively. One would
then need to define a notion of process model, maybe as an assignment of probabilities
p : V (H) → [0, 1] such that there exists Hilbert spaces HAB upon which live some valid
process matrix W and valid local operations Ma|x and Mb|y associated to every vertex
v = (a, b|x, y) ∈ V such that p(v) = tr(WMv) with Mv = Ma|x ⊗Mb|y ∀v ∈ V (H) (this is
of course non-trivial, I am only speculating here).

For example, let us take the example of the GYNI game (a = y, b = x). A two-way
signalling probabilistic model that allows to win the game with certainty is such that
p(00|00) = p(10|01) = p(01|10) = p(11|11) = 1. One can easily check (cf. Fig. 11.2) that
this model is inconsistent with the considered signalling hyperedges. Intuitively, two-way
signalling is incompatible with both one-way signalling from Alice to Bob and one-way
signalling from Bob to Alice respectively. Thus, in a sense, one could argue that such
two-signalling model might be “contextual” with respect to a causal scenario. The same
conclusion might be formulated for process models that allows to violate the GYNI causal
inequality.

1This is trivial. In fact, this signalling probabilistic model is incompatible with signalling from Alice
to Bob, and thus the hyperedges EA→B .
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Figure 11.2: Hypergraph of the GYNI game with a probabilistic model winning the
game with certainty, i.e. all events such that a = y and b = x happens with certainty.
The violation of the GYNI causal inequality seems to imply a “contextual” (paradoxical)
coloring of the two hypergraphs associated respectively with the signalling hyperedges
A ≺ B (right) and B ≺ A (left). Thus a form of contextuality might underly noncausal
correlations.

11.2 A relation between noncausality and anomalous
weak values?

As analysed in Section 7.3.4, the LPPS-Hardy paradox, i.e. the fact that one can “ob-
tain |00〉 with certainty” and also “obtain |11〉 with certainty”, actually depends on the
causal order of Alice and Bob’s operations: the question “is the system in state |00〉 ?” is
answered “yes” with certainty whenever Alice’s intermediate weak measurement precedes
Bob’s ; while the question “is the system in state |11〉 ?” is answered “yes” with certainty
whenever Bob’s intermediate operation precedes Alice’s. As suggested in Section 8.7, one
could try to define a logical-pre-post-selection version of the Frauchiger-Renner paradox,
since it has the same logical structure as the Hardy paradox. In this case, the pre-selection
would consist in preparing a Hardy state, that would be given to Alice and Bob’s friends
who would then apply intermediate weak measurements (in the computational basis) on
it. Later, Alice and Bob would measure the compound system of the Hardy state and
their friends in a meta-diagonal basis, and post-select the state |−〉A |−〉B. Thus, in this
hypothetical 4-partite Frauchiger-Renner-type scenario, one could ask: what would hap-
pen if Alice and Bob’s friends could communicate via a quantum channel ? what if the
causal order between the friends’ intermediate operations was controlled by a quantum
switch ? what if Alice and Bob’s friends could both signal to each other via a non-causal
process matrix ?

This might be an interesting set-up to explore. I speculate that one could expect that
in the case where the friend’s operations are controlled with a quantum switch: if the
control is in state |0〉 then the result of Alice and Bob’s friends joint weak measurement
would always be |00〉, as Alice’s friend could signal to Bob’s. If the control is in state
|1〉 then the result of Alice and Bob’s friends joint weak measurement would always be
|11〉, as Bob’s friend could signal to Alice’s. On the other hand, if Alice and Bob’s friends
share a non-causal process matrix instead, would they then actually obtain weak values
w(00|AB) = w(11|AB) = 1 and w(10|AB) = −1 ?
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Figure 11.3: Hypothetical LPPS version of the Frauchiger-Renner scenario where the
causal order between intermediate weak measurements of Alice and Bob’s friends is given
by a process matrix. The post-selection would correspond to the preparation of a Hardy
state ρÃB̃Hardy sent to Alice and Bob’s friends, on which they would perform a weak mea-
surement. Their closed laboratories would be linked with each other via a process matrix
W . From Alice and Bob’s point of view, their friends’ operations might be described
as unitaries, and they would receive the joint system made of the initial one and their
friends’ memories. They would then post-select the joint states |−〉A |−〉B.
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Chapter 12

Violation of Causal and Logical
Inequalities in a causal game

This chapter is based on a work in progress.

Several “quantum-based” models of CTCs were proposed in the 1990s, to formulate
Novikov’s principle [4] and thus give an operational solution to the grandfather paradox.
On the one hand, David Deutsch proposed a model (Deutsch CTCs, “D-CTCs”) [333]
inspired by the Many-Worlds interpretation [334], that could be interpreted as a Many-
Worlds-like take on Barjavel’s “To be and not to be”: the time-traveller still exists in a
world, while she does not in another one. On the other hand, another model, proposed
by various authors [335, 336, 337], is based on (post-selected) quantum teleportation: as
the time-traveler teleported into the past if and only if it does not lead to a grandfather
paradox. This can be done by preparing a maximally entangled state such that one part
undergoes a joint unitary evolution with a causality respecting system. After the evolu-
tion, the causality violating system is teleported into the past by post-selection, resulting
in the realisation of a post-selection CTC (“P-CTCs”). However, D-CTCs and P-CTCs
are strongly pathological, as they allow post-quantum phenomena such as perfect cloning
or perfect discrimination of non-orthogonal quantum states [24, 25]. Thus one could le-
gitimately wonder whether a quantum-based model of CTC without logical paradox nor
strong pathology exists. This is the case of process matrices. In fact, it was shown that
the set of process matrices is equivalent to a specific (linear) subset of P-CTCs, meaning
that every process matrix can be realized with a P-CTC1 (Fig. 12.1) [24, 25].

Moreover, process matrices, which can be written as maps from a global past and the
parties’ output Hilbert spaces P⊗AO⊗BO to a global future and the parties’ input Hilbert
spaces F ⊗AI⊗BI , are sometimes interpreted as allowing to send information backwards
in time without paradoxes: some can violate causal inequalities, without generating a
grandfather paradox. In fact, the process matrix framework was precisely conceived so
that it only generates valid probabilities and does not lead to any paradox. Thus, non-
causality does not imply logical inconsistency. In what follows, I will illustrate this feature
with an example of a new kind of causal game that, in addition to a causal inequality,
quantifies a consistency principle in terms of a logical inequality. I will show that the max-
imal probability of success with indefinite causal orders lies between the causal and logical

1In a P-CTC, the post-selection introduces a renormalization that depends in general on the input
state of the evolution, thus introducing a non-linearity in the evolution of the causally-violating and
causally-respecting systems. This is not the case for process matrices, which are linear P-CTCs.
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Figure 12.1: Representation of a process matrix as a supermap from P ⊗ AO ⊗ BO to
F ⊗ AI ⊗BI in the form of a P-CTC.

bounds. Finally, I will speculate on the meaning of the violation of a logical inequality,
and how it might be interpreted as a form of contextuality.

12.1 Related Work
The grandfather paradox has already been studied and formulated for classical process
matrices, i.e. process matrices which are diagonal in the computational basis. In the clas-
sical case, the antinomy would arise if the process has no fixed point ; i.e. if there exists a
choice of operations for the parties such that no consistent assignment of values to some
input bits exist. For example, a simple instance of the paradox can be realised with a NOT
gate, trapped inside a trivial classical loop [326]. If, before the NOT gate, the bit takes
value a, then it takes value ¬a after. It is then looped back, meaning that it takes value
¬a before the NOT gate, and thus a = ¬a, a logical contradiction occurs. Nevertheless,
valid classical processes are the ones with exactly one fixed point, and thus always avoid
the logical inconsistency by definition. Moreover, there are examples of classical process
matrices that can generate noncausal correlations and thus violate a causal inequality,
e.g. the Lugano process. Thus “noncausality does not imply logical inconsistency.”

Note that formulating the grandfather paradox in a cyclic quantum causal structure
remains an open question, since the notion of fixed point is not straightforwardly gener-
alisable to the quantum case [326]. In what follows, I will not tackle this issue directly.
Rather, I will try to formulate an instance of the grandfather paradox against which both
classical and quantum processes can be tested.

12.2 From the Grandfather paradox to Liar games.
I propose a theory-independent formulation of the grandfather paradox in terms of a
game, based on the idea that this antinomy shares a similar logical structure with the Liar
paradox. This formulation is inspired by various works in formal logic, in which semantic
paradoxes are reformulated as Boolean equations. In such frameworks, a statement is
represented by a variable in a system of Boolean equations. A paradox is defined as a
statement or a set of statements for which there is no solution [338].
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The Liar paradox

The simplest, canonical example of semantic paradox is “the Liar”: “This sentence
is false.” One can associate the variable a with the statement, that can then be
written by making its self-referential structure more explicit:

a = The sentence a is false.

Finally, the negation relation “is false” is translated into the negation logical operator
“¬”, such that the Boolean equation associated with the Liar is

Liar : a = ¬a

Two instances of “truth” are involved here. On the one hand, “truth” is represented
at the operational level, in the form of logical operators. “= a” corresponds to “The
sentence a is true.”, while “= ¬a” means “The sentence a is false.” On the other
hand, “truth” is also pictured at the interpretational level, in the form of truth
values assigned to the statements/variables, 0 and 1 meaning “false” and “true”
respectively. In the case of the Liar, if “a is true”, a = 1, then, from the equation,
“a is false”, a = ¬a = 0, and vice-versa. Thus the equation has no solution: it is a
paradox.

The Liar paradox has many variations. For example, it can be “strengthened” by
adding a layer, i.e. it can be expressed with two statements rather than one. The
“Strengthened Liar” can be realized with two players, contradicting each other. Alice
declares that “Bob’s sentence is true.” while Bob says that “Alice’s sentence is false.” One
can associate two variables a and b to Alice and Bob statements respectively.

a = The sentence b is true. b = The sentence a is false.

In order to distinguish the “referrer” from the “referred”, the variables are always
written one the left-side of the equations, while the statements they refer to and their
logical relations are on the right-side. For the Strengthened Liar, one thus obtain the
following system of Boolean equations:

Strengthened Liar :
{
a = b
b = ¬a

One can easily check that this system has no solutions.

Finally, the Strengthened Liar paradox can be made contingent, if (at least) one of
the variable refers to an “external” variable, e.g. x, out of the referential loop.

a = The sentence b is true. b = The sentence x is true and the sentence a is false.

This way, a Contingent Strengthened Liar may or may not lead to a paradox, de-
pending on the truth value associated with the external statement. Given the semantic
equations:

Contingent Strengthened Liar :
{
a = b
b = x ∧ ¬a
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If x is “false”, x = 0, then Bob’s sentence is false b = x ∧ ¬a = 0, as well as Alice’s,
a = b = 0. The system has a well defined solution, there is no paradox. However, if x is
“true”, x = 1, then the system is equivalent to a Strengthened Liar paradox.

I propose to interpret the Boolean systems as guessing games. The variables a and
b are interpreted as guesses, classical outcomes produced by Alice an Bob respectively.
In what follows, external variables, e.g. x and y, will be interpreted as classical inputs.
Note moreover that I assume that a party’s statement/guess only refers to statements
associated with the other party. Thus, from b = x ∧ ¬a, Bob has to guess the product of
Alice’s input x and the negation of her outcome ¬a. A guessing game associated with a
paradoxical system of equations will be called a Liar game.

12.3 The Paradoxical Game G
Assume that Alice and Bob are given uniformly distributed classical inputs x and y, ac-
cording to which they chose their operations, and produce some classical outcomes a and
b. The correlation that Alice and Bob establish in such an experiment is described by
the joint conditional probability distribution p(a, b|x, y). Another random bit γ gives the
rules that should be satisfied by the correlations in order to win the game G.

The paradoxical game G

If γ = 0,

G0 :=

{
(α0) : a = ¬(y ∧ b)
(β0) : b = x ∧ a

If γ = 1

G1 :=

{
(α1) : a = ¬((¬y) ∧ (¬b))
(β1) : b = (¬x) ∧ (¬a)

The probability of winning the game G is given by:

pwin(G) =
1

2
(p(G0|γ = 0) + p(G1|γ = 1))

Based on their available shared resources, Alice and Bob can elaborate a strategy, i.e.
a map (x, y)→ (a, b), in order to maximize their probability to win the game. I will start
by presenting the two subgames G0 and G1, from which I will derive causal and logical
inequalities for G, and analyse their violations.

12.4 The Contingent Strengthened Liar subgame G0

G0 :=

{
(α0) : a = ¬(y ∧ b)
(β0) : b = x ∧ a

The probability of winning the subgame G0 is given by:

pwin(G0) =
1

4

∑
a,b,x,y

δα0δβ0p(a, b|x, y)
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where δα0 and δβ0 are Kronecker deltas associated with Alice’s and Bob’s guesses (α0) and
(β0) respectively. The semantic translation of G0 is:

(α0) a = At least one of the statements y and b is false.
(β0) b = Both statements x and a are true.

This game is a Contingent Strengthened Liar game: if (x, y) = (1, 1), the game becomes
a “Strengthened Liar”:

G0|11 :=

{
(α0|11) : a = ¬b
(β0|11) : b = a

If the inputs are (x, y) = (1, 1), a paradox arises due to the self-referential structure
of the game: a is defined according to b and b is defined according to a ; so a and b are
respectively defined according to themselves. The game can only be won “logically” (i.e.
following Boolean logic) with a set of inputs (x, y) 6= (1, 1). Defining a logical bound as
the best Boolean strategy, we obtain the logical inequality :

plogic(G0) ≤ 3

4
(12.1)

This logical inequality is satured for the strategy {a = 1, b = x}.

Let’s now assume that Alice and Bob can communicate with each other in a well-
defined order.

• If A ≺ B, the previous strategy holds, and the game can be won 3 times out of 4
(whenever (x, y) 6= (1, 1), pA≺B(G0) ≤ 3/4 .

• If B ≺ A, the previous strategy does not hold. Even if a = 1 (like in the previous
strategy), Bob only has a probability 1/2 of correctly guessing Alice’s input x, e.g.
b = 0 if y = 1 and b = rand if y = 0. One can verify that pB≺A(G0) ≤ 1/2.

To sum up, the causal bound is equal to the logical bound, but can only be saturated
with a causal order A ≺ B:

pA≺B(G0) = plogic(G0) ≤ 3

4
(12.2)

12.5 The Contingent Strengthened Liar subgame G1

G1 :=

{
(α1) : a = ¬((¬y) ∧ (¬b))
(β1) : b = (¬x) ∧ (¬a)

The probability of winning the game is given by:

pwin(G1) =
1

4

∑
a,b,x,y

δα1δβ1p(a, b|x, y)

where δα1 and δβ1 are Kronecker deltas associated with Alice’s and Bob’s guesses (α1) and
(β1) respectively. Note that G1 structure is similar with G0’s, but refers to the negations
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of the reference statements from G0. Moreover, (α1) can be simplified as a = y ∨ b. The
semantic translation of G1 is then:

(α1) a = At least one of the statements y and b is true.
(β1) b = Both statements x and a are false.

This game is a Contingent Strengthened Liar game: if (x, y) = (0, 0), the game be-
comes a “Strengthened Liar”:

G1|00 :=

{
(α1|00) : a = b
(β1|00) : b = ¬a

If the inputs are (x, y) = (0, 0), a paradox arises due to the self-referential structure
of the game. Similarly with G0, we obtain the logical inequality

plogic(G1) ≤ 3

4
(12.3)

saturated with the strategy {a = y, b = 0}.

Assuming that Alice and Bob share a causal resource, we obtain the inequalities
pA≺B(G1) ≤ 1/2 and pB≺A(G1) ≤ 3/4.

To sum up, the causal bound is equal to the logical bound, but can only be saturated
with a causal order B ≺ A:

pB≺A(G1) = plogic(G1) ≤ 3

4
(12.4)

12.6 Causal inequality and its violation in game G
Remember that the probability of winning G is :

pwin(G) =
1

2
(p(G0|γ = 0) + p(G1|γ = 1))

The possible outcomes of G can be represented in the following table:

(x, y) G0 : (a, b) G1 : (a, b)
(0,0) (1,0) ∅
(0,1) (1,0) (1,0)
(1,0) (1,1) (0,0)
(1,1) ∅ (1,0)

Because a strategy with a well-defined order, e.g. A ≺ B (resp. B ≺ A) wins 3 times
out of 4 for the subgame G0 (resp. G1), but randomly wins for the other subgame G1

(resp. G0), we obtain:

pA≺Bwin (G) =
1

2
[pA≺B(G0|γ = 0) + pA≺B(G1|γ = 1)]

=
1

2
[
3

4
+

1

2
] =

5

8
(12.5)
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and similarly with B ≺ A. Thus, the causal inequality

pcausal(G) ≤ 5

8
= 0, 625 (12.6)

I have found the largest possible violation of the causal inequality by a valid process by
using a see-saw algorithm (cf. Section 2.4.2). Note however that because the optimization
problem is nonconvex, the algorithm is not guaranteed to converge to a global maximum.
From my numerical result, using a semidefinite program, I conjecture that the maximal
violation of my causal inequality achievable with qubits is

pmax,d=2
G =

1

4
(2 +

1√
2

) ≈ 0.6768 > 0.625 =
5

8
(12.7)

Interestingly other processes known to violate other causal inequalities also reach this
bound. This is the case for example for a process known to violate the causal inequality
of the GYNI game (cf. [18]):

WGY NI =
1

4

(
1111 +

ZZZ1 + Z1XX√
2

)
(12.8)

with the instruments

MA
a|x,γ =

γ

2
(x |a〉 〈a|+ (1− x)a1)⊗ 1...

...+ (1− γ)a ((1− x)(|01〉 〈01|+ |10〉 〈10|) + x(|00〉 〈00|+ |11〉 〈11|)) (12.9)

MB
b|y,γ =

γ

2
(1− b) (11 + (−1)yXX) +

1− γ
2

(y(1− b)1 + (1− y) |¬b〉 〈¬b|)⊗ 1 (12.10)

Inter alia, one can note that, if γ = 0, i.e. G0 is played, then Alice always outputs
a = 1, while if G1 is played (γ = 1), then Bob always returns b = 0.

12.7 Logical inequality and its violation in game G
Independently of whether G0 or G1 is played, only 3 out of 4 of the outcomes are “possible”.
The logical inequality associated with game G is thus

plogic(G) ≤ 6

8
=

3

4
(12.11)

Thus, finally

pcausalwin (G) ≈ 0.625 < pprocesswin (G) ≈ 0.6768 < plogicwin (G) = 0.75 < 1 (12.12)

Noncausal processes can violate a causal inequality without violating a logical inequal-
ity, i.e. without logical paradoxes.

Note that two fundamental assumptions were made in the derivation of the causal and
logical inequalities:

183



• No dynamical causal order: γ cannot be used by a previous party P to influence
the causal structure between Alice and Bob’s operations. If it was possible, then
the logical bound would be saturated by valid causal processes of the form

W = γWB≺A
γ=1 + (1− γ)WA≺B

γ=0

where WB≺A
γ=1 and WA≺B

γ=0 are valid causal processes. In other words, the causal
bound would be the same as the logical bound,

pcausal(G) = plogic(G) ≤ 3

4
(12.13)

• Knowing the rules: Alice and Bob have access to γ. If not, the best logical strategy
would be to answer a = (1, 0) if (x, y) 6= (1, 0) and a = b = rand if (x, y) = (1, 0).
Alice and Bob would have to randomly guess the value of γ. One can then verify
that the logical bound would be the same as the causal one,

plogic(G) = pcausal(G) ≤ 5

8
(12.14)

I speculate that the violation of the logical bound in this specific case might also
arise with a logically consistent strategy that features the so-called information or
bootstrap paradox, for which the corresponding semantic system of equations would
have more than one solution.

The logical inequality Eq.(12.11) can be violated by the non-valid classical process

W =
1

4
(1111 + 1ZZ1 + Z11Z + ZZZZ) (12.15)

with the valid classical operations

MA
a|x,γ = a(γ(|01〉 〈01|+ |10〉 〈10|) + (1− γ)(x(|00〉 〈00|+ |11〉 〈11|)...

...+ (1− x)(|01〉 〈01|+ |10〉 〈10|))) (12.16)

MB
b|y,γ = γ(y(1− b)(|01〉 〈01|+ |10〉 〈10|) + (1− y)

1

4
1⊗ 1)...

...+ (1− γ)(y(1− b)(|01〉 〈01|+ |10〉 〈10|)...

...+ (1− y)
1

2
((1− b)(|01〉 〈01|+ |10〉 〈10|)) + b(|00〉 〈00|+ |11〉 〈11|))) (12.17)

that gives a probability of success of 1.

However the violation of a logical inequality can only be realised with non-valid prob-
abilities (negative or non-normalised)2. Such pathology might be interpreted in the fol-
lowing operational way: the correlations p(a, b|x, y) are meaningless. This would be in
line with the QBist take on correlations: “Quantum correlations refers only to [. . . ] the
acquisition of experiences by any single agent. One cannot assign correlations, spooky or
otherwise, to space-like separated events, since they cannot be experienced by any single
agent.” [339]

2Here, the violation involves non-normalised probabilities. In fact, because W is positive semidefinite
and the instruments are valid, the probabilities are always non-negative.
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Moreover, the violation of the logical inequalities involved in G0, G1 and G might be
interpreted as a violation of the Novikov consistency principle, i.e. the emergence of log-
ical inconsistencies similar with the structure of the grandfather and the Liar paradoxes.
In the light of the similarities between Liar-like paradoxes and contextuality (cf. part 2
“Quantum Contextuality” of this thesis), one could speculate that a form contextuality
might emerge from the violation of a logical inequality. In fact, in each subgame Gγ, the
local statements (αγ) and (βγ) are locally consistent, but globally inconsistent. In other
words, the guesses of each player are locally consistent but lead to logical inconsistencies
when embedded in correlations. For example, when (x, y) = (1, 1), the game G0 can
intuitively be won with certainty by realizing a logical paradox in a simple classical closed
causal loop. However, the global inconsistency can be avoided with logically consistent
local “contexts”, by cutting the loop. Remarkably, the position of the cut defines both a
“party of reference” and a causal order (Fig. 12.2).
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Logical inequality and its violation (?)

• Contextuality à la Abramsky: contextuality arises when there locally consistent data that are globally inconsistent. 
Similar logical structure with ``Liar cycles’’.

[S. Abramsky et al., Contextuality, Cohomology and Paradox, DOI: 10.4230/LIPIcs.CSL.2015.211.]

• A form of contextuality emerges from the violation of the logical inequality.

• In each Liar game 𝐺𝛾, the local statements 𝛼𝛾 and 𝛽𝛾 are locally consistent,  but globally inconsistent. 

𝑥 = 1

𝑏 = 𝑎

𝑎 = ¬𝑏

𝑦 = 1

𝛽0

𝑥 = 1

𝑏 = 𝑎

𝑦 = 1

𝑎

𝛼0

𝑥 = 1

𝑎 = ¬𝑏

𝑦 = 1

𝑏

𝐵 ≺ 𝐴𝐴 ≺ 𝐵

!

Figure 12.2: Representation of the emergence of contextuality from the violation of the
game G0 when (x, y) = (1, 1). In a closed causal loop, the paradox is realised, and a
global inconsistency arises. By cutting the loop, one can then focus on the realisation of
only one of the statement, given in a context. Either the statement (β0) can be realised
without contradiction, i.e. Alice outputs the statement a without any reference and sends
it to Bob, who outputs b = a, introducing the causal order A ≺ B ; or the statement
(α0) can be realised without contradiction, i.e. Bob outputs the statement b without any
reference and sends it to Alice, who outputs a = ¬b, introducing the causal order B ≺ A.
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12.8 Take Away and Perspectives

Take Away

• Noncausality does not imply logical inconsistency.

• I have formalized a grandfather-Liar-like paradox in terms of a causal game
with causal and logical inequalities, with the following bounds:

pcausalwin (G) ≈ 0.625 < pprocesswin (G) ≈ 0.6768 < plogicwin (G) = 0.75 < 1

The causal inequality is violated by some process matrices without logical
paradoxes nor strong pathologies, i.e. without violating the logical inequality,
which might be interpreted as an empirical test of classical logic.

Perspectives

• The emergence of logical inconsistencies from the violation of a logical in-
equality might be interpreted as a form of contextuality, the guesses of each
player being locally consistent but leading to inconsistencies when embedded
globally in correlations. This remains to be clarified.

• I could test the performance of other kinds of processes in the game, e.g.
classical process matrices, non-linear P-CTCs, D-CTCs...

• One could try to find other examples of such paradoxical causal games, in
particular a tripartite game in which Lugano-like processes could be tested.
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Conclusion and Perspectives
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Using the grandfather paradox as a source of inspiration, the initial motivation of
this thesis was to improve our understanding of causal nonseparability, noncausality and
quantum paradoxes in order to address the question: “Could the non-fundamental nature
of causality be related to a form of contextuality ?”

I started this exploration by tackling the question “What kind of quantum circuits are
incompatible with a definite causal order ?” (Chapter 3) We have identified a large class of
physically implementable processes, the quantum circuits with quantum control of causal
order (QC-QCs), which includes causally nonseparable processes such as the quantum
switch. I have proposed a new implementation of the quantum switch, based on one of
the motto of this thesis: the idea that a definite causal order emerges from the position
of a cut in a causal loop. If the position of the cut is indefinite, the causal order is, by
“entanglement”, also indefinite. I have studied a new example of causally nonseparable
QC-QC in which the causal order is both dynamically established and indefinite, and I
have identified new information processing advantages offered by the QC-QCs for some
discrimination tasks with respect to quantum circuits with a definite causal order. The
experimental realisations and study of new causally nonseparable QC-QCs, beyond the
quantum switch, and whether they lead to new advantages for quantum information tasks
should be investigated in the future.

QC-QCs cannot be used to violate causal inequalities. The question of whether a
physically implementable process allowing to do so exists or not remains open. This could
be explored by relaxing some validity constraints on the processes, restricting the set of
allowed instruments, and by only imposing that valid probabilities should be produced.

My main contribution in the understanding of noncausality was to make a significant
relaxation of assumptions to certify the causal nonseparability of many processes, showing
that it can done in a semi-device-independent scenario with untrusted local operations
and trusted quantum inputs (Chapter 4). I have shown in particular that the quantum
switch can generate noncausal correlations in this kind of scenario. With additional nat-
ural assumptions on the operations, I have shown that it is also the case of all bipartite
causally nonseparable, as well as all “TTU-noncausal” processes. A deeper understanding
of which causally nonseparable processes can be certified in this way remains an open
problem. Our definition of causal nonseparability for distributed measurements could
be generalised for multipartite scenarii, paving the way to develop a resource theory of
causal nonseparability. One could try to verify if other QC-QCs can generate noncausal
correlations with quantum inputs. Finally we plan to pursue the analogy between non-
locality and noncausality: inspired by [223, 224], we are investigating if an analogous
combination of our semi-device independent certification of causal nonseparability with
self-testing could lead to a device-independent certification of causal nonseparability for
some processes.

In order to refine my understanding of quantum contextuality, I have studied how the
Hardy paradox entails a form of logical contextuality (Chapter 7). The logical contra-
diction manifests itself in the form of two Liar cycles, and a combination of both. The
latter is directly related with the emergence of the anomalous weak value in the weak
logical pre-post-selection version of the paradox. Furthermore, I have shown that the
two possible intermediate measurements involved in this pre-post-selection version differ
causally from each other, one being associated with A ≺ B, while the other corresponds
to B ≺ A. Is this distinction a mere coincidence of the Hardy scenario or is there a deeper
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meaning ? The apparent relation between the combination of the Liar cycles underlying
the paradox and the emergence of anomalous weak values needs further investigation.
This analysis might be useful to the study of the Frauchiger-Renner paradox, which can
be seen as a “Wigner’s friendification” of the Hardy paradox. In particular, one could try
to develop a logical pre-post-selection of it. I propose furthermore to exploit the fact that
the intermediate measurements differs causally from one another. What would happen if
this causal order was indefinite ?

On a more metaphysical aspect, I have argued that physics might not be paradoxical
(Chapter 8). I have defended the idea of a Gödelian hunch from quantum theory, the
idea that quantum paradoxes are not ontological, but emerge from a lack of metaphysical
distancing, i.e. a lack of distinction between the level of the studied object (quantum the-
ory), and the level of the meta-theoretical object (observer). Quantum contextuality can
be interpreted as the fact that meta-propositions (truth values) associated to quantum
propositions are infected by the logical structure of the latter. The measurement problem
can be analyzed as a logical error emerging from a lack of distinction between theoreti-
cal and meta-theoretical objects. I have defined the notion of meta-contextuality as the
fundamental criterion underlying neo-Copenhagen interpretations which allow them to
(dis)solve these paradoxes.

I have suggested some ideas to directly face the question of a possible link between
noncausality and contextuality. In Chapter 11, I have proposed to explore a speculative
hypergraph representation of noncausality in a contextuality scenario. I have also sug-
gested to look into an hypothetical link between noncausality and anomalous weak values.
In Chapter 12, I have proposed an original causal game, which highlights the fact that
noncausality does not imply logical inconsistency. In this game, the grandfather paradox
is formalized in terms of a logical inequality which might be interpreted as an empirical
test of classical logic. I have shown that some process matrices can violate the causal
inequality without violating the logical one. I also plan to test the performance of other
kinds of processes (such as classical process matrices, non-linear P-CTCs and D-CTCs)
in the game. One could try to find other examples of such paradoxical causal games,
in particular a tripartite game in which Lugano-like processes - which I find particularly
interesting - could be tested. Finally, the emergence of logical inconsistencies from the
violation of a logical inequality might be interpreted as a form of contextuality, the guesses
of each player being locally consistent but leading to inconsistencies when embedded glob-
ally in correlations. This logical contradiction would be stronger than the one emerging
from quantum contextuality, which relies on a counterfactual contradiction. This remains
to be clarified, but might be in line with our philosophical motivation (Section 0.2), our
Gödelian hunch from time (Chapter 10) and the motto of this PhD thesis:

“Time is the means by which God realized the inconceivable that P and non-P are
both true.” K. Gödel
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Résumé synthétique

Introduction
Dans son roman “Le Voyageur imprudent ”, René Barjavel raconte l’histoire d’un voyageur
temporel qui tue accidentellement son ancêtre dans le passé. Il s’agit de la première ap-
parition du paradoxe du grand-père, un scénario dans lequel un effet supprime sa propre
cause. Dans un post-scriptum de 1958 intitulé “ Être et ne pas être.” (1958), Barjavel
émet l’hypothèse que seul les physiciens spécialistes de la théorie quantique pourraient
peut-être se faire “une très vague idée” du caractère indéfinissable du voyageur. Utilisons
l’intuition de l’auteur comme fil rouge de cette thèse et demandons-nous : “Comment le
paradoxe du grand-père peut-il être lié à la théorie quantique ?” Cette thèse est divisée
en trois grands axes, explorant chacun une piste de réflexion autour de cette question.

La première piste vise à étudier comment la théorie quantique interroge le caractère
fondamental de la causalité. Celle-ci - qui se définit par l’idée qu’un évènement ne peut
pas être influencé par des évènements futurs - est considérée comme un des concepts
fondamentaux de la physique. Néanmoins, on pourrait envisager d’assouplir l’hypothèse
standard selon laquelle les événements quantiques sont intégrés dans une structure causale
fixée, et ainsi étendre l’indétermination quantique aux relations causales elles-mêmes. Le
formalisme des matrices de processus, un cadre théorique dans lequel l’ordre causal global
n’est pas prédéfini, mais des joueurs (Alice et Bob) peuvent tout de même effectuer des
opérations quantiques locales et arbitraires, au sein de leurs laboratoires respectifs. Ce
formalisme a permis d’identifier une nouveau types d’objets (matrices de processus) aux
ordres causaux indéterminés. Ces objets se sont avérés correspondre à un type spéci-
fique de courbe de temps fermée (CTC), basée sur la post-sélection et la téléportation
quantique, parfois interprétés comme des boucles causales permettant de “renvoyer de
l’information dans le passé sans paradoxe”.

La seconde piste consiste à interpréter le paradoxe du grand-père comme une réali-
sation physique (hypothétique) d’une auto-contradiction, et à mettre en évidence com-
ment la théorie quantique pourrait être caractérisée par une structure logique similaire.
De fait, il se trouve que l’adage “le résultat d’une mesure quantique dépend du con-
texte de la mesure” trouve de solides fondements mathématiques au sein du théorème de
Kochen-Specker, qui montre que la théorie quantique est incompatible avec l’idée que les
observables physiques possèdent des valeurs préexistantes indépendantes du contexte de
mesure. Cette caractéristique appelée contextualité quantique montre que toute tentative
d’étendre la logique quantique de telle sorte que la logique classique soit rétablie dans le
domaine étendu échoue en raison de l’apparition de boucles logiques paradoxales. Ceci
nous amène à nous interroger sur la nature même des “paradoxes” quantiques.
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Enfin, nous pouvons examiner l’interaction entre la causalité quantique et la contextu-
alité. La non-localité de Bell pouvant être considérée comme une sorte de contextualité,
et du fait d’une profonde analogie entre la non-localité et la non-causalité, on pourrait
s’attendre à l’existence d’un lien - encore à explorer - entre les relations causales indéter-
minées et la contextualité en théorie quantique, invoquant la principale problématique de
cette thèse: “Le caractère non fondamental de la causalité pourrait-il être lié à une forme
de contextualité ? ”

Partie I: Causalité Quantique
De nouveaux outils conceptuels furent développés au sein du formalisme des matrices de
processus pour étudier et identifier les ordres causaux indéterminés: la non-séparabilité
causale, qui peut être démontrée de manière “device-dependent” en construisant des té-
moins causaux ; et la non-causalité, une certification “device-independent” basée sur la
violation d’inégalités causales. Celles-ci sont des analogies directes avec l’intrication quan-
tique et la violation des inégalités de Bell.

Le “quantum switch” est un exemple important de ressource quantique causalement
non-séparable. Il peut être vu comme une variante causale du chat de Schrödinger dans
laquelle l’ordre de deux opérations quantiques (plutôt que l’état de “vie ou de mort” d’un
chat) est intriqué avec un système quantique. Malgré sa non-séparabilité causale et le
fait qu’il permette de réaliser de nouvelles tâches en traitement de l’information qui sont
impossibles avec des circuits quantiques standards, ce processus ne peut pas générer de
corrélations non causales qui violeraient une inégalité causale.

Le premier objectif de mon projet de thèse était de contribuer à caractériser les pro-
cessus à ordres causaux indéterminés réalisables expérimentalement, au-delà du quantum
switch, dans le but d’étudier en quoi ces processus diffèrent des processus ayant une
structure causale bien définie et si les corrélations générées pourraient violer des inégal-
ités causales. À partir de ces résultats, l’objectif était alors d’explorer si ces nouvelles
relations causales pouvaient offrir de nouvelles possibilités dans le domaine du traitement
de l’information.

Au-delà du Quantum Switch: Circuits Quantiques avec Contrôle
Quantique d’Ordres Causaux

L’une des principales questions ouvertes dans le domaine de la causalité quantique est
d’identifier quelles matrices de processus causalement non-séparables ont une réalisation
expérimentale, et si certains de ces processus sont capable de violer une inégalité causale.

Nous avons initié cette exploration dans une approche ascendante (“bottom-up”), en
abordant la question “Quels types de circuits quantiques sont incompatible avec un ordre
causal déterminé ?” Nous avons identifié une grande classe de processus physiquement
implémentables, les circuits quantiques avec contrôle quantique d’ordre causaux (QC-
QCs), qui inclut des processus causalement non séparables tels que le “quantum switch”.
J’ai proposé une nouvelle implémentation du quantum switch, basée sur l’idée qu’un ordre
causal défini émerge de la position d’une coupure dans une boucle causale. Si la position

191



de la coupure est indéterminée, l’ordre causal est, par “intrication”, également indéterminé.
J’ai également étudié un nouvel exemple de QC-QC causalement non-séparable au-delà
du quantum switch, dans lequel l’ordre causal est à la fois établi dynamiquement et
indéterminé. Enfin, nous avons identifié de nouveaux avantages offerts par les QC-QCs
pour certaines tâches de traitement informationnel par rapport aux circuits quantiques
avec un ordre causal déterminé. Néanmoins, comme le quantum switch, aucun QC-QC
causalement non-séparable ne peut générer de corrélations non-causales permettant de
violer une inégalité causale.

Certification de la Non-Séparabilité Causale à l’aide d’Entrées
Quantiques

La notion de non-séparabilité causale dans le formalisme matriciel de processus a été in-
troduite par analogie avec l’intrication dans la théorie quantique standard. Compte-tenu
de l’aspect contre-intuitif de ces caractéristiques, la question de savoir comment elles peu-
vent être caractérisées, certifiées expérimentalement et quelles hypothèses sous-jacentes
sont nécessaires pour le faire est fondamentale.

Une première méthode qui permet de détecter la non-séparabilité causale de tout
processus à ordre causaux indéterminés est de mesurer des témoins causaux. Cette certi-
fication présente cependant un inconvénient expérimental important, car elle repose sur le
calibrage parfait des appareils de mesure. Ce type de certification, dit “device-dependent”,
est en général laborieux à mettre en œuvre, car même de petites erreurs d’alignement,
difficiles à estimer, peuvent conduire à des faux positifs. Cependant, d’autres types de cer-
tification existent, impliquant moins d’hypothèses. C’est le cas de la violation d’inégalité
causale, qui permet de caractériser la non-séparabilité causale d’une manière particulière-
ment puissante, dans le sens où elle ne nécessite qu’un ensemble minimal d’hypothèses
sur les dispositifs, et ne repose pas sur leur caractérisation détaillée : il s’agit d’une cer-
tification “device-independent”. Cependant, comme expliqué précédemment, aucun des
processus causalement non-séparables implémentables connus, les QC-QCs, ne peut vio-
ler d’inégalité causale.

En recourant à l’analogie avec l’intrication et la non-localité de Bell, j’ai exploré
une forme de certification de la non-séparabilité causale dans un scénario “semi-device-
independent” dans lequel les joueurs impliqués reçoivent des états quantiques fiables en
entrée, mais pour dont les dispositifs ne sont autrement pas caractérisés. Pour ce faire, j’ai
défini, avec mes coauteurs, la notion de “mesures distribuées causalement non-séparables”.
J’ai montré que certains processus causalement non-séparables qui ne peuvent violer au-
cune inégalité causale, comme le quantum switch, peuvent générer des corrélations non-
causales dans un tel scénario. De plus, en faisant l’hypothèse d’une structure naturelle
sur les dispositifs non fiables, j’ai montré que toutes les matrices de processus bipartites
causalement non-séparables ainsi que tous les processus dits “TTU-non causaux” peuvent
être certifiés avec des entrées quantiques fiables.

Partie II: Contextualité Quantique
Après divers travaux consistant à simplifier la démonstration du théorème de Kochen-
Specker, de plus en plus de preuves ont mis en évidence que la contextualité pourrait
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être une notion centrale qui capture précisément ce qui rend la théorie quantique fon-
damentalement différente de la physique classique ; un témoin de l’étrangeté quantique.
La contextualité quantique a par exemple été identifiée comme un ingrédient important
dans la quête de la recette de l’ordinateur quantique universel. De plus, des résultats
récents suggèrent que la non-localité de Bell peut être considérée, dans un sens spécifique,
comme un cas particulier de contextualité. Des généralisations graphiques du résultat de
Kochen-Specker ont permis d’établir des liens entre les corrélations non locales et con-
textuelles, et d’identifier comment la non-localité peut être exprimée dans un scénario
de contextualité. Une autre approche initiée par Robert Spekkens généralise la notion
de contextualité de mesure du théorème de Kochen-Specker à tout type de procédure
expérimentale (préparations, transformations) d’une manière indépendante de la théorie,
permettant de comparer directement cette contextualité avec l’hypothèse de la causalité
locale de Bell. Enfin, la contextualité et sa relation avec la non-localité ont également
été étudiées dans une approche topologique, dans laquelle elles émergent lorsque des don-
nées sont localement cohérentes, mais globalement incohérentes. La contextualité partage
ainsi une structure logique similaire à celle de célèbres paradoxes sémantiques tels que le
paradoxe du menteur. Ceci nous amène à l’autre question principale motivant cette thèse:
la physique est-elle paradoxale ?

Infuturabilia: le théorème de Kochen-Specker

Dans ce chapitre, je présente le théorème de Kochen-Specker ainsi que l’histoire de ses
origines. L’origine du théorème est en effet double. Un premier contexte est celui du
“problème des variables cachées”. Bell utilisera un corollaire du théorème de Gleason
(1957) dans un article de 1964 intitulé “Sur le problème des variables cachées en mé-
canique quantique ”, dans lequel il démontre le même résultat que Kochen et Specker.
Malgré le fait que leur article partage le même titre - “Le problème des variables cachées
en mécanique quantique” (1967) - leur travail a été réalisé indépendamment de celui de
Bell.

Cependant, contrairement à Bell, le problème des variables cachées n’était pas la
motivation principale des travaux fondateurs de Specker en 1960, dans lequel le théorème
apparait pour la première fois. Specker s’est inspiré de la philosophie de l’un de ses
anciens professeurs - Ferdinand Gonseth - sur la nature empirique de la logique, ainsi que
d’un éternel débat scholastique qu’il a nommé “Infuturabilia” : le problème des futurs
contingents, et plus spécifiquement la question de savoir si l’omniscience divine s’étend
aux énoncés contrefactuels. J’émets l’hypothèse que la passion qu’entretenait Specker
pour le livre biblique de Jonas pourrait être un élément clé dans la compréhension des
origines du théorème.

Contextualité dans le Paradoxe de Hardy

Afin d’affiner ma compréhension de la contextualité quantique, j’ai étudié comment le
paradoxe de Hardy implique une forme de contextualité logique à travers une approche
topologique et une représentation graphique. La contradiction logique se manifeste sous
la forme de deux cycles de Menteur, et également sous la forme d’une combinaison des
deux. Cette dernière preuve est directement liée à l’émergence de la valeur faible anormale
(quantité accessible via des expériences quantiques impliquant des mesures faibles et une
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post-sélection, qui se situe au-delà de la plage de valeurs propres de l’opérateur corre-
spondant) dans la version “pré-post-sélection faible” du paradoxe logique. Par ailleurs,
j’ai montré que les deux mesures intermédiaires possibles impliquées dans cette version
“pré-post-sélection” sont différentes l’une de l’autre, et correspondent à des ordres causaux
différents.

Meta-Contextualité: une approche néo-Copenhaguienne de la théorie
quantique

Dans un essai philosophique, j’ai défendu l’idée d’une intuition gödelienne de la théorie
quantique, inspirée des travaux de Szangolies, Brukner et Grinbaum. D’après cette in-
tuition, les paradoxes quantiques ne seraient pas ontologiques, mais émergeraient d’un
manque de distanciation métaphysique, c’est-à-dire d’un manque de distinction entre le
niveau d’abstraction de l’objet théorique étudié (théorie quantique), et le niveau d’abstraction
de l’objet méta-théorique étudiant (observateur). La contextualité quantique peut ainsi
être interprétée comme le fait que les méta-propositions (valeurs de vérité) associées aux
propositions quantiques sont infectées par la structure logique de ces dernières. Le prob-
lème de la mesure, le problème de l’ami de Wigner ainsi que le paradoxe de Frauchiger-
Renner (un “méta-paradoxe de Hardy”) peuvent être analysés comme une erreur logique
issue d’un manque de distinction entre objets théoriques et méta-théoriques. J’ai défini
la notion de méta-contextualité comme le critère fondamental sous-jacent aux interpréta-
tions néo-Copenhague qui leur permettent de dissoudre ces paradoxes.

Partie III: “Voyages Temporels sans Paradoxes”
Cette dernière partie vise à donner quelques réflexions sur la motivation principale de la
thèse : établir un lien entre causalité quantique et contextualité. Elle ne s’appuie sur
aucun travail publié ou prépublié. Au contraire, elle contient principalement des travaux
en cours et des spéculations sur des perspectives au-delà de cette thèse de doctorat, que
je souhaiterais explorer à l’avenir.

Un lien entre contextualité et noncausalité ?

La contextualité est une notion centrale qui pourrait capturer précisément ce qui rend
la théorie quantique fondamentalement différente de la physique classique. Dans cette
optique, on peut explorer et clarifier certains indices laissant penser que la contextualité
pourrait également être la clé pour comprendre en quoi les relations causales quantiques
diffèrent des relations classiques, et comment certains processus peuvent violer une inégal-
ité causale et éviter en même temps des formes pathologiques et paradoxales de boucles
causales.

Un premier indice est le fait que dans une approche topologique, la contextualité
survient lorsqu’il existe une cohérence locale et une incohérence globale des données, tan-
dis que le formalisme des matrices de processus est construit sur une idée similaire selon
laquelle on peut ne pas obtenir de structure causale globale bien déterminée à partir de
structures causales locales. Une autre exemple d’indice est qu’il devrait être possible
d’étendre l’analogie directe entre les inégalités causales et les inégalités de Bell aux tests
de contextualité, en s’appuyant sur le résultat récent qu’un scénario de Bell est un produit
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spécifique de scénarios de contextualité, impliquant l’union de sommets d’hypergraphes
associés à des structures causales fixes. J’émets l’hypothèse d’une possible représentation
hypergraphique d’un scénario causal et de l’émergence de la non-causalité à partir d’un
scénario de contextualité spécifique.

D’autre part, on pourrait aussi rechercher une telle relation au sein du formalisme
des “états à multi-temps”. Notre analyse précédente du paradoxe de Hardy en tant que
paradoxe logique de pré-post-sélection visait à être un point de départ pour explorer
cette ligne de pensée. J’émets l’hypothèse qu’en utilisant une méta-version du paradoxe,
c’est-à-dire dans un scénario de type Frauchiger-Renner, une connexion possible entre les
corrélations non-causales et les valeurs anormales faibles pourrait être étudiée.

Violation d’inégalités causale et logique dans un jeu causal

Plusieurs modèles “quantiques” de CTC ont été proposés dans les années 1990 afin de
donner une solution opérationnelle au paradoxe du grand-père. David Deutsch a proposé
un modèle (Deutsch CTC, “D-CTC”) inspiré de l’interprétation des mondes multiples,
qui pourrait être vue comme une interprétation à la “mondes multiples” du « Être et ne
pas être » de Barjavel : le voyageur temporel existe toujours dans un monde, alors qu’il
n’existe pas dans un autre. Un autre modèle, proposé par divers auteurs, est basé sur la
téléportation quantique post-sélectionnée (CTC de post-sélection, “ P-CTC”) : le voyageur
temporel est téléporté dans le passé si et seulement si cela ne conduit pas au paradoxe
du grand-père. Cependant, les D-CTCs et les P-CTCs sont fortement pathologiques, car
elles permettent des phénomènes post-quantiques tels que le clonage parfait ou la discrim-
ination parfaite d’états quantiques non orthogonaux. Ainsi, on pourrait légitimement se
demander s’il existe un modèle quantique de CTC sans paradoxe logique ni pathologie
forte. C’est le cas des matrices de processus. En fait, il a été montré que l’ensemble des
matrices de processus est équivalent à un sous-ensemble (linéaire) spécifique de P-CTC,
ce qui signifie que chaque matrice de processus peut être réalisée avec une P-CTC. Le for-
malisme des matrices de processus a été conçu précisément pour qu’il ne génère que des
probabilités valides et ne conduise à aucun paradoxe. Ainsi, la non-causalité n’implique
pas d’incohérence logique.

J’ai illustré cette caractéristique à l’aide d’un exemple d’un nouveau type de jeu causal
qui, en plus d’une inégalité causale, quantifie un principe de cohérence logique en termes
d’inégalité logique. J’ai montré que la probabilité maximale de succès avec des ordres
causaux indéfinis se situe entre la borne causale et la borne logique. Enfin, j’ai émis
l’hypothèse qu’une violation d’inégalité logique pourrait être interprétée comme une forme
de contextualité.

Conclusion et Perspectives
En utilisant le paradoxe du grand-père comme source d’inspiration, la motivation initiale
de cette thèse était d’améliorer notre compréhension de la non-séparabilité causale, de la
non-causalité et des paradoxes quantiques afin de répondre à la question : “La nature non
fondamentale de la causalité pourrait-elle être liée à une forme de contextualité ?” Comme
indiqué ci-dessus, j’ai commencé cette exploration en abordant la question “Quels types de
circuits quantiques sont incompatibles avec un ordre causal défini ?” Nous avons identifié
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une grande classe de processus physiquement implémentables, les circuits quantiques avec
contrôle quantique de l’ordre causal. Les réalisations expérimentales et l’étude de nou-
veaux QC-QCs causalement non-séparables, au-delà du quantum switch, et l’éventualité
de nouveaux avantages en information quantique devraient être explorées à l’avenir. Les
QC-QCs ne peuvent pas être utilisés pour violer les inégalités causales. La question de
savoir s’il existe ou non un processus physiquement implémentable permettant de le faire
reste ouverte. Cela pourrait être exploré en assouplissant certaines contraintes de validité
sur les processus, en restreignant l’ensemble des instruments autorisés et en imposant
uniquement que des probabilités valides soient produites.

J’ai montré que la non-séparabilité causale de nombreux processus peut être certi-
fiée dans un scénario “semi-device-independent” avec des opérations locales non fiables
et des entrées quantiques fiables. Une compréhension plus approfondie des processus
causalement non-séparables qui peuvent être certifiés de cette manière reste à établir.
On pourrait notamment vérifier si des QC-QCs autres que le quantum switch peuvent
générer des corrélations non causales avec des entrées quantiques. Enfin, nous prévoyons
de poursuivre l’analogie entre non-localité et non-causalité, en étudiant si une combinai-
son de notre certification semi-device-independent de la non-séparabilité causale avec un
protocole de “self-testing” pourrait conduire à une certification “device-independent” de
la non-séparabilité causale de certains processus.

Afin d’affiner ma compréhension de la contextualité quantique, j’ai étudié comment le
paradoxe de Hardy implique une forme de contextualité logique. J’ai montré que les deux
mesures intermédiaires possibles impliquées dans une version pré-post-sélection du para-
doxe sont causalement différentes l’une de l’autre. Cette distinction est-elle une simple
coïncidence du scénario de Hardy ou y a-t-il un sens plus profond ? La relation apparente
entre la combinaison des cycles de Menteur sous-jacents dans le paradoxe et l’émergence
de valeurs faibles anormales nécessite également une enquête plus approfondie. Cette
analyse pourrait être utile à l’étude du paradoxe de Frauchiger-Renner, qui peut être
considéré comme un “méta-paradoxe de Hardy”. En particulier, on pourrait essayer d’en
développer une version de type pré-post-sélection. Je propose en outre d’exploiter le fait
que les mesures intermédiaires diffèrent causalement l’une de l’autre. Que se passerait-il
si cet ordre causal était indéfini ?

Sur un aspect plus métaphysique, j’ai soutenu que la physique (quantique) pour-
rait ne pas être paradoxale. J’ai défendu l’idée d’une intuition gödelienne de la théorie
quantique, selon laquelle les paradoxes quantiques émergent d’une erreur logique, d’un
manque de distinction entre objets théoriques et méta-théoriques. J’ai défini la notion
de méta-contextualité comme le critère fondamental sous-jacent aux interprétations néo-
Copenhague qui leur permettent de dissoudre ces paradoxes.

J’ai suggéré quelques idées pour affronter directement la question d’un lien possible
entre non-causalité et contextualité. J’ai notamment proposé un jeu causal original, qui
met en évidence le fait que la non-causalité n’implique pas d’incohérence logique. Dans
ce jeu, le paradoxe du grand-père est formalisé en termes d’inégalité logique qui pour-
rait être interprétée comme un test empirique de la logique classique. J’ai montré que
certaines matrices de processus peuvent violer l’inégalité causale sans violer l’inégalité
logique. Je prévois également de tester les performances d’autres types de processus (tels
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que les matrices de processus classiques, les P-CTCs non-linéaires et les D-CTCs) au sein
du jeu. On pourrait essayer de trouver d’autres exemples de tels jeux causaux paradox-
aux, notamment un jeu tripartite dans lequel des “processus à la Lugano” - que je trouve
particulièrement intéressants - pourraient être testés. Enfin, l’émergence d’incohérences
logiques à partir de la violation d’une inégalité logique pourrait être interprétée comme
une forme de contextualité, les résultats de chaque joueur étant localement cohérents mais
conduisant à des incohérences lorsqu’ils sont intégrés globalement dans des corrélations.
Cette contradiction logique serait plus forte que celle issue de la contextualité quantique,
qui repose sur une contradiction contrefactuelle. Ceci reste à clarifier, mais pourrait être
en accord avec la devise de cette thèse de doctorat :

“Le temps est le moyen par lequel Dieu a réalisé l’inconcevable que P et non−P soient
toutes les deux vraies.” (K. Gödel)
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Appendix A

Graphical Calculus for Open Quantum
Systems

In order to familiarize myself with the process matrix formalism, I used a graphical cal-
culus for open quantum systems [340], which was useful throughout my PhD. Although
I didn’t use it explicitly in the present manuscript, I’d still like to present it here as an
appendix, as it gives very intuitive representations of mathematical tools such as the CJ
isomorphism and the link product.

Following Von Neumann’s “immoral confession” that he did not “believe absolutely
in Hilbert space no more” various attempts have been made to revisit the mathematical
structure of quantum theory. Mathematical tools from computer science have been par-
ticularly useful to do so. As an example, the linear algebra of finite dimensional Hilbert
spaces strongly relates to the pictorial representation of monoidal category theory, which
allows to describe all kinds of processes [115, 116].

This leads to a diagrammatic approach of the quantum formalism, where physical
systems become wires, connecting boxes symbolizing transformations, events, operations.
Writing the equation describing the evolution of a physical system is replaced by a draw-
ing of interconnecting boxes. Such reformulation is to be put in the light of the rise of
quantum information, where quantum theory becomes a theory of quantum circuits, ar-
chitecture of quantum logical gates, boxes processing quantum information.

In this annex, I will present the WBC graphical calculus for open quantum systems
[340] based on tensor networks, that I used throughout my PhD and which revealed itself
to be particularly helpful in my learning and use of the process matrix formalism.

A.1 Quantum Diagrams
This introduction is taken from [340], a graphical calculus for open quantum systems.
Here is a summary of their graphical notations :
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A vector is represented by an arrow, pointing to the right (by convention). Each wire,
i.e. system, is indexed by the Hilbert space it evolves in. A linear operator is a diagram,
which acts on an input system coming from the right, and outputs a system on the left.

Parallel wires and diagrams correspond to a tensor network: the number of wires is
then the order of the tensor. The mathematical rules of tensor network theory assert
that the wires of tensors may be manipulated, with each manipulation corresponding to
a specific transformation.

Thus, the transposition (in the computational basis) of a vector and of a dual vector
is represented by a bending of the wire as follows:

The transpose of a linear operator therefore consists in bending its wires, inverting
the input and output Hilbert spaces, A : HI → HO becomes AT : HO → HI .

The trace of an operator A is depicted by connecting the corresponding left and right
wires of a linear operator:

The identity is represented as a wire:

The unnormalized maximally entangled Bell-state |φ+〉 =
∑d−1

j=0 |j〉 ⊗ |j〉 and its dual
〈φ+| are represented as curves:
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By composing the unnormalized Bell-state and its dual, one can form an identity ele-
ment. This is known as the snake equation or zig-zag equation and is given by:

Anytime one has a curved wire with two bends we can “pull the wire” to straighten it
out into an identity. Anytime we bend a wire, transforming between say a bra and a ket,
we can bend the wire to transform back again.

A.2 Graphical representation of the Choi-Jamiolkowski
isomorphism

The Choi-Jamiolkowski (CJ) isomorphism [117, 118] simply “turns a bra into a ket” [119]
(cf. Section 2.2).

Vectorization of a matrix

Assume that a party A applies an operation UA : AI → AO, i.e. UA ∈ L(AI , AO), to the
state |ψ〉:

Using the wire-bending operation, we obtain :
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Due to the orientation of the wires, this graphical representation of the operator UA
is actually a (dual) vector, the CJ isomorphism consisting in
L(AI , AO)→ AI ⊗ AO : UA 7→ 〈〈U∗A|1

Note that the unnormalized Bell-state |φ+〉 is the vectorized identity operator |1〉〉.

L(AI , AO)→ AI ⊗ AO : 1 7→ 〈〈1| = 〈φ+|

Thus
〈〈U∗A|

AIAO = 〈〈1| (UA ⊗ 1) = 〈φ+| (UA ⊗ 1)

Finally
UA |ψ〉 = 〈〈U∗A|

AIAO (|ψ〉AI ⊗ 1AO)

This type of calculations illustrates the convenience of this graphical calculus.

Choi matrix of a linear map

Recall (Eq.(2.1)) that for a given linear map M : L(HX) → L(HY ), we define its Choi
matrix as

MXY := (IX ⊗M)(|1〉〉〈〈1|X)

=
∑
i,i′

|i〉〈i′|X ⊗M(|i〉〈i′|X) ∈ L(HXY ) (A.1)

where IX is the identity map on L(HX), |1〉〉X :=
∑

i |i〉
X ⊗ |i〉X and {|i〉X}i is a fixed

(so-called “computational”) basis of HX (cf. Section 2.2). Graphically, we obtain

𝑋 𝑋𝑌 𝑌

ℳ

𝑋 𝑋

𝑌 𝑌

ℳ

𝑀

=

Again, the graphical calculus gives an intuitive representation of the CJ isomorphism.

1This version of the CJ isomorphism slightly differs from the one presented before. Here, we rather
“turn a ket into a bra”, and represent the matrix UA as a bipartite effect (instead of a bipartite state), in
order to describe its application on |ψ〉.
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A.3 The Link Product
As explained in Section 2.2, the link product (Eq.(2.3)) is defined as follows. Consider
two composite Hilbert spaces HXY = HX⊗HY and HY Z = HY ⊗HZ that share the same
(possibly trivial) space factor HY (while HX and HZ do not overlap). The link product
of two matrices MXY ∈ L(HXY ) and NY Z ∈ L(HY Z) is then defined as [120, 121, 86].

MXY ∗NY Z := TrY [(MXY ⊗ 1
Z)TY (1X ⊗NY Z)]

= (1XZ⊗〈〈1|Y)(MXY⊗NY Z)(1XZ⊗|1〉〉Y) ∈ L(HXZ) (A.2)

where TY is the partial transpose over HY (defined in the computational basis).

The graphical calculus is particularly useful to apprehend this convenient product. In
fact, the link product can be intuitively interpreted as linking “quantum boxes” (quantum
operations and/or process matrices) with each other by connecting their “wires” labeled
with the same Hilbert space.

𝑀 𝑁
𝑋 𝑋

𝑌 𝑌

𝑌 𝑌

𝑍 𝑍∗ =
𝑀

𝑋 𝑋

𝑌

𝑁

𝑌

𝑍 𝑍
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Appendix B

Construction of MDIEW for all
entangled states

From [212]

First, assume that Alice and Bob share an entangled state ρAIBI . There exists an Her-
mitian operator SAIBI ∈ HAIBI such that Tr

(
(SAIBI )TρAIBI

)
< 0 while for all separable

state σAIBI , Tr
(
(SAIBI )TσAIBI

)
≥ 0, i.e. SAIBI is an entanglement witness. Suppose that

Alice and Bob both have some tomographically complete sets of quantum inputs {ρÃIx }x
and {ρB̃Iy }y. The entanglement witness can then be decomposed as follows:

SAIBI =
∑
x,y

αx,yρ
AI
x ⊗ ρBIy (B.1)

with some real coefficients αx,y. Assume that we consider fixed values a and b, e.g.
a = b = 0, and that these outputs correspond to the case where Alice and Bob per-
form a projection on the maximally entangled states |Φ+〉ÃAI = 1√

dAI

∑dAI
i=1 |i〉

Ã |i〉AI and

|Φ+〉B̃BI = 1√
dBI

∑dBI
i=1 |i〉

B̃ |i〉BI

M ÃAI
0 = |Φ+〉〈Φ+|ÃAI

M B̃BI
0 = |Φ+〉〈Φ+|B̃BI (B.2)

on their shared entangled state ρAIBI and their quantum inputs ρÃx and ρB̃y . Eq.(4.5) thus
gives

P (0, 0|ρÃx , ρB̃y ) =
(
|Φ+〉〈Φ+|ÃAI ⊗ |Φ+〉〈Φ+|B̃BI

)
∗
(
ρÃx ⊗ ρB̃y ⊗ ρAIBI

)
=
(
ρAIx ⊗ ρBIy

)
∗ ρAIBI/(dAIdBI ) (B.3)

Finally,∑
x,y

αx,yP (0, 0|ρÃx , ρB̃y ) =
∑
x,y

αx,y
(
ρAIx ⊗ ρBIy

)
∗ ρAIBI/(dAIdBI )

= Tr

(∑
x,y

αx,y(ρ
AI
x )T ⊗ (ρBIy )TρAIBI

)
/(dAIdBI )

= Tr
(
(SAIBI )TρAIBI

)
/(dAIdBI ) < 0 (B.4)
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Hence, the expression
∑

x,y αx,yP (0, 0|ρÃx , ρB̃y ) takes negative values when Alice and
Bob share the entangled state ρAIBI under consideration. The proof that this constitute a
valid entanglement witness with quantum inputs is not complete yet, as we need to make
sure that this certification cannot lead to false-positive, i.e. we need to make sure that it
cannot detect entanglement from a separable state.

Assume now that Alice and Bob share a separable state σAIBI =
∑

k pkσ
AI
k ⊗σ

BI
k , with

∀k, pk ≥ 0 and
∑

k pk = 1. Eq.(4.5) thus gives

P (0, 0|ρÃx , ρB̃y ) =
(
M ÃAI

0 ⊗M B̃BI
0

)
∗

(
ρÃx ⊗ ρB̃y ⊗

∑
k

pkσ
AI
k ⊗ σ

BI
k

)
=
∑
k

pk

(
EÃ

0,k ⊗ EB̃
0,k

)
∗
(
ρÃx ⊗ ρB̃y

)
(B.5)

with EÃ
0,k = M ÃAI

0 ∗ σAIk ≥ 0 and EB̃
0,k = M B̃BI

0 ∗ σBIk ≥ 0. We obtain

∑
x,y

αx,yP (0, 0|ρÃx , ρB̃y ) =
∑
x,y

αx,y
∑
k

pk

(
EÃ

0,k ⊗ EB̃
0,k

)
∗
(
ρÃx ⊗ ρB̃y

)
=
∑
k

pk Tr

(∑
x,y

αx,y(ρ
Ã
x )T ⊗ (ρB̃y )TEÃ

0,k ⊗ EB̃
0,k

)
=
∑
k

pk Tr
(

(SÃB̃)TEÃ
0,k ⊗ EB̃

0,k

)
(B.6)

Because
∑

k pkE
Ã
0,k ⊗ EB̃

0,k is (proportional to) a separable state, and because SÃB̃

is an entanglement witness, then
∑

x,y αx,yP (0, 0|ρÃx , ρB̃y ) ≥ 0. Thus one can construct
“measurement-device-independent entanglement witnesses (MDIEWs)” for all entangled
state, in a scenario where Alice and Bob’s operations are uncharacterized, but where they
receive trusted quantum inputs.
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Appendix C

A Contextuality Tale

In order to illustrate how the notion of contextuality can be related with Specker’s In-
futurabilia, I propose the following narrative, inspired by a counterfactual version of the
Newcomb problem [250].

You are about to quietly continue your reading, when suddenly a demon appears before
you. Expert in demonology, you recognize it immediately: it is the Laplace’s demon, an
entity whose predictions are known to be always perfectly accurate. This one submits
you to the following game. The demon places three goblets in front of you. The first,
transparent, contains a hundred thousand gold coins. The second, on the other hand,
is completely opaque. The third, also transparent, is empty. Your goal: to discover
the content of the opaque box, and survive. To do this you simply have to open it in
a particular context, i.e. together with one of the two transparent boxes. Once a box
is opened, you can collect its content. The demon then declares that he has previously
determined the content of the mystery box as follows:

• If he has predicted with certainty that you are going to open the opaque box with
the first transparent box (context 1) - the one containing the hundred thousand gold
coins - it will place a bomb inside the mysterious box, which will be triggered at the
opening.

• If he has predicted with certainty that you are going to open the opaque box with
the empty transparent box (context 2), nothing will be placed in the mysterious
box, and will let you go, safe and sound.

Despite the lure of profit, the game is not worth it, and you decide quickly enough
to opt for context 2. To your relief, the demon’s prediction was accurate : the mystery
box is also empty. Your enthusiasm, however, is short-lived, because you notice that a
gleam of mischief shines in the eyes of the evil genie. He approaches you, and whispers
to your ear, "If you had made the other choice, what would have happened ?". Before
disappearing in a cloud of smoke with a sneer.

At first, this question seems absurd to you. As the demon is never wrong in his pre-
dictions, if you had made the other choice, he would have predicted it too. You deduce
that he would have placed a bomb in the opaque box, and that you would not be there
to cogitate. In this scenario, the result, although determined, would depend on the mea-
surement context you choose. We then speak of measurement contextuality. In this case,
the omniscience of the demon cannot extend to counterfactuals, since it would deny that
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his prediction is based on your choice.

But if you thought about it well, the content of the box was already determined before
your choice. So if you had chosen the other context, it would not have changed the content
of the opaque box. You would have gone away alive, and with a hundred thousand gold
coins ! In this interpretation, the measurement would not depend on the context. On the
other hand, the prediction of the demon would have been wrong ! Since its power is no
longer absolute, his very existence could then be contested, so that the result might not
have been pre-established, but would have been determined by your measurement.

These two counterfactual reasoning highlight a contradiction between two fundamental
assumptions: predetermination and measurement non-contextuality.
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Appendix D

A Yu-Oh-like Proof

Kochen and Specker’s first proof [28] of their theorem is a construction of 117 rays ob-
tained by replicating fifteen times the eight rays 1 of the Clifton-three-box proof.

In [34], Yu and Oh construct a state-independent proof of contextuality with 13 rays
in dimension 3, which is based on six three-box paradoxes. This construction differs from
standard proofs because the rays do not form a KS set2. It was shown that regardless of
the dimension of the Hilbert space, there exists no set of rays revealing state-independent
contextuality with less than 13 rays [35]. This implies that the set proposed by Yu and
Oh in dimension 3 is actually the minimal set to prove contextuality in quantum theory.
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− 𝑦3
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Figure D.1: The Yu-Oh set of 13 rays [34], composed with six Clifton-three-box proofs.
The edges link orthogonal rays (vertices) with each other.

The Yu-Oh set is made of three kinds of rays:

• the computational basis rays: z1 = (1, 0, 0) ; z2 = (0, 1, 0) ; z3 = (0, 0, 1) ;
1The arrangement of these rays with each other leads to identification of three of them with the same

vector. Thus the proof contains 117 rays (instead of 15*8=120).
2A KS set is a set of rays which is “KS-uncolorable”, i.e. it is impossible to assign values 1 or 0 to

each ray while respecting that two orthogonal rays cannot both have assigned 1, and 1 must be assigned
to exactly one of d mutually orthogonal rays. The (proven) minimal proof of contextuality based on a
KS set contains 19 rays in dimension 3, and 18 rays in dimension 4. [341]
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• couples of rays {y±i } forming a orthonormal basis (PVM) with a ray zi: y+
1 = (0, 1, 1)

; y−1 = (0, 1,−1); y+
2 = (1, 0, 1) ; y−2 = (1, 0,−1) ; y+

3 = (1, 1, 0) ; y−3 = (1,−1, 0) ;

• pre-post-selection rays: h0 = (1, 1, 1) ; h1 = (−1, 1, 1) ; h2 = (1,−1, 1) ; h3 =
(1, 1,−1)

Note that four complete measurements are involved: {z1, z2, z3};{z1, y
+
1 , y

−
1 }; {z2, y

+
2 , y

−
2 };

{z3, y
+
3 , y

−
3 }. The set is not a KS set because it is KS colorable. For example: v(h0, y

+
1 , y

+
2 , z3) =

(1, 1, 1, 1) is a consistent KS assignment of values. In fact, a contradiction only occurs
when more than one hi is colored. For example: the assignment v(h0, h1) = (1, 1) leads
to v(z2) = 1 and v(z3) = 1 (in other words, coloring the vertices h0 and h1 leads to
coloring z2 and z3), thus leading to a contradiction since only one of the zi can be as-
signed the value 1. This corresponds to a 3-box paradox, i.e. a logical PPS paradox.
The set contains six 3-box paradoxes, corresponding to each couple {hi, hj}. Moreover,
if the measurements are interpreted as weak measurements, then coloring two zi leads to
assigning the anomalous weak value −1 to the remaining one.

The minimal state-independent contextuality set in dimension 4 contains 14 rays, and
can be obtained by extending Yu-Oh’s proof, adding the vector (0, 0, 0, 1) and rewriting
the 13 rays in d=4. However such proof is trivially based on the three-box paradox.
Based on our previous analysis, we propose a contextuality set inspired by the Yu-Oh
construction, but relying on another logical PPS paradox. I propose a new proof that
consists of 17 rays based on four Hardy paradoxes.

Figure D.2: Our set of 17 rays, composed with 4 Hardy paradoxes. It contains four
“computational basis” rays (blue) ; four couples of rays forming a PVM with a two rays
(purple), four pre-selection rays (black), one post-selection ray (red).

Like the Yu-Oh set, this construction is made of three kinds of rays:

• the computational basis rays: b1 = (0, 0, 0, 1) ; b2 = (0, 0, 1, 0) ; b3 = (1, 0, 0, 0) ;
b4 = (0, 1, 0, 0) ;

• couples of rays forming a orthonormal basis (PVM) with two bi: c+
1 = (1, 1, 0, 0)

; c−1 = (1,−1, 0, 0); c+
2 = (0, 1, 0, 1) ; c−2 = (0, 1, 0,−1) ; c+

3 = (0, 0, 1, 1) ; c−3 =
(0, 0, 1,−1) ; c+

4 = (1, 0, 1, 0) ; c−4 = (1, 0,−1, 0) ;

• pre-post-selection rays: a1 = (1, 1, 1, 0) ; a2 = (1, 1, 0, 1) ; a3 = (0, 1, 1, 1) ; a4 =
(1, 0, 1, 1) ; d = (1,−1,−1, 1)
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Note that four measurements are involved: {b1, b2, b3, b4};{b1, c
+
1 , c

−
1 , b2}; {b2, c

+
2 , c

−
2 , b3};

{b3, c
+
3 , c

−
3 , b4}; {b4, c

+
4 , c

−
4 , b1}.

The set is not a KS set because it is KS colorable. For example: v(a1, c
−
1 , c

+
4 , b3) =

(1, 1, 1, 1) is a consistent KS assignment of values. A contradiction occurs when a ai
vertex is colored with the vertex d. Let us assume that v(ai) = v(d) = 1, i.e. that we
color effectively the vertices ai and b ; and consider the measurement {bi, c−i , c+

i , bi+1[4]}.
Because ai is orthogonal to bi and c+

i and d is orthogonal to c−i , we can only color the
vertex bi+1[4], which is thus outcome that is supposed to occur with certainty when this
measurement is performed. However, bi+1[4] is orthogonal to bi, and thus both cannot be
assigned value 1 at the same time ; hence the logical contradiction.
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