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Résumé

Dans un marché biparti, deux types d’agents ont des préférences sur les agents du côté opposé. Parmi
les exemples classiques on retrouve l’affectation d’étudiants dans des universités, de docteurs dans
des hôpitaux, de travailleurs à des offres d’emploi et, dans l’analogie historique des mariages stables,
l’appariement d’hommes et de femmes. Dans un article fondateur, Gale et Shapley introduisent la
procédure d’acceptation différée, dans laquelle un côté propose et l’autre côté dispose, permettant
de calculer un matching stable.

Les matchings stables constituent un sujet de recherche important en informatique et en économie.
Des résultats issus de littérature informatique décrivent la structure de treillis complet de l’ensemble
des matchings stables, ainsi que les algorithmes permettant de le calculer. Dans la littérature
économique ont été étudiées les questions de manipulabilité par les agents participant à un marché
biparti, à la fois du point de vue théorique et empirique.

Une série récente de travaux étudie les propriétés des matchings stables, en utilisant des modèles
stochastiques dans lesquels les préférences des agents sont générées aléatoirement. Cette thèse
poursuit cette approche et considère les questions : “qui peut manipuler ?” et “qui obtient quoi ?”.

La première partie, abordant la question “qui peut manipuler”, contient trois résultats différents.
Dans un premier résultat (Chapter 4), nous montrons que lorsque les agents d’un des côtés du marché
ont des préférences très corrélées, les opportunités de manipulabilité sont réduites. Dans un second
résultat (Chapter 5), nous montrons que des préférences décorrélées constituent un pire cas. Les
preuves de ces deux résultats sont basées sur une analyse probabiliste de l’algorithme calculant
les opportunités de manipulabilité. Dans un troisième résultat (Chapter 6), nous étudions le jeu
à information incomplète où des étudiants peuvent postuler à un nombre limité d’écoles et, par
conséquent, choisissent leur liste de préférence de manière stratégique. Nous prouvons l’existence
d’un équilibre symétrique et proposons des algorithmes permettant de le calculer dans plusieurs cas
particuliers.

La seconde partie, abordant la question “qui obtient quoi ?”, contient également trois résultats.
Dans un premier résultat (Chapter 7), nous montrons que sous certaines conditions sur la distribu-
tion d’entrée sur les préférences, les deux variantes de l’algorithme d’acceptation différée produisent
exactement la même distribution de sortie sur les matchings. Les preuves utilisent la structure de
treillis de l’ensemble des matchings stables, montrent qu’un matching fixé a la même probabilité
d’être la borne inférieure ou supérieure, et donnent une formule pour la probabilité que deux agents
soient appariés. Dans un second résultat (Chapter 8), nous considérons un modèle dans lequel
la probabilité que deux agents s’apprécient est quantifiée par une matrice de “popularités”, et nous
expliquons que les probabilités d’appariement sont asymptotiquement données par la matrice renor-
malisée dont les lignes/colonnes ont une somme égale à 1. Dans un troisième résultat (Chapter 9),
nous étudions la complexité de l’algorithme d’acceptation différée, qui se rapporte à l’étude du rang
que chaque agent donne à son partenaire. Les preuves sont basées sur une réduction au problème
de collection de coupons.

Mot-clés : Matchings stables, modèles aléatoires, manipulabilité.

v





Summary

In a two sided matching market, two types of agents have preferences over one another. Examples
include college admissions (students and colleges), residency programs (doctors and hospitals), job
markets (workers and jobs) and, in the classical analogy, stable marriages (men and women). In
a founding paper, Gale and Shapley introduced the deferred acceptance procedure, where one side
proposes and the other disposes, which computes a stable matching.

Stable matchings have been an extensive research topic in computer science and economics.
Results in the computer science literature include the lattice structure of the set of stable matchings,
and algorithms to compute it. In the economics literature, researcher have studied the incentives
of agents taking part in two-sided matching markets, both from the theoretical and empirical point
of views.

A recent line of works study the properties of stable matchings, using stochastic models of two-
sided matching markets where the preferences of agents are drawn at random. This thesis follows
this direction of inquiry, and considers two main questions: “who can manipulate?” and “who gets
what?”.

The first part, addressing the question “who can manipulate?”, contains three different results.
In a first result (Chapter 4), we show that when one side of the market has strongly correlated
preferences, incentives to manipulate are reduced. In a second result (Chapter 5), we show that
uncorrelated preferences is a worst case situation when compared to correlated preferences. Proofs
of both results are based on a randomized analysis of the algorithm which computes the incentives
agents have to manipulate. In a third result (Chapter 6), we study the incomplete information
game where students must apply to a limited number of schools, and thus report their preferences
strategically. We prove the existence of symmetric equilibria and design algorithms to compute
equilibria in various special cases.

The second part, addressing the question “who gets what?”, also contains three different results.
In a first result (Chapter 7), we show that under a certain input distribution of preferences, the two
variants of deferred acceptance produce the same output distribution on matchings. Proofs use the
lattice structure of stable matchings, show that a fixed matching has the same probability of being
the top or bottom element, and give a closed formula for the probability of two agents being matched.
In a second result (Chapter 8), we consider a model where the probabilities that agents like each
are quantified by a “popularity” matrix, and we give evidences that the probabilities that deferred
acceptance matches agents is asymptotically given by the scaled matrix where lines/columns sum
up to 1. In a third result (Chapter 9), we study the time complexity of deferred acceptance, which
relates to the rank people from the proposing side give to their partner. Proofs are based on a
reduction to the coupon collector’s problem.

Keywords: Stable matchings, Random models, Incentive compatibility.
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Résumé long

Organisation d’un Tournois de Tennis

Imaginez que vous organisez un tournois de tennis en double mixte : M hommes et W femmes
se sont inscris, et vont bientôt donner leur préférences quant à la personne avec qui ils souhaitent
jouer1. Vous êtes en charge de former les paires : chaque équipe doit être composée d’un homme et
d’une femme, qui acceptent tous les deux de jouer ensemble. D’expérience, vous savez que lorsque
les participants vérifient la composition des équipes, un homme et une femme porteront réclamation
s’ils ne sont pas appariés et qu’ils se préfèrent mutuellement à leurs partenaires respectifs (un tel
appariement serait instable).

Amenities Of The Tennis Lawn, George du Maurier, 1883

Par chance, vous êtes un organisateur aguerri de tournois, et êtes bien familiarisé à la théorie
des matchings stables. Encore mieux, ayant déjà organisé des tournois similaires par le passé, vous
avez des connaissances préalables (statistiques) sur les préférences de chaque joueur ! De manière
informelle, les préférences des participants sont corrélées : les bons joueurs sont très populaires
(corrélations unilatérales), et des joueurs ayant des styles de jeu proche jouent bien ensemble (cor-
rélations croisées).

Les portes du stade s’ouvrent, et chaque participant arrive avec de nombreuses question : “Faut-
il que je donne mes vraies préférences ?”, “Avec qui ai-je le plus de chance d’être apparié ?”. Dans
cette thèse, nous tentons d’apporter une réponse à ces questions.

1Dans l’analogie classique, chaque personne classe les individus du sexe en fonction de ses préférences pour un
partenaire de mariage. Cette reformulation “sportive” du modèle classique est dûe à Ágnes Cseh et Jannik Peters.
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Marché de matching biparti aléatoire

Les marché de matching biparti permettent de décrire des scénarios dans lesquels deux types d’agents
ont des préférences ordonnées sur les agents du type opposé. Parmi les exemples classiques on
retrouve l’affectation d’étudiants dans des universités, de docteurs dans des hôpitaux, de travailleurs
à des offres d’emploi et, bien évidemment, l’appariement d’hommes et de femmes. Dans chaque
scénario, une plateforme centralisée calcule un matching, en appariant des agents de côtés opposés.
Une instabilité a lieu lorsque deux agents qui ne sont pas appariés se préfèrent mutuellement à leurs
partenaires attribués par la plateforme. Ces paires bloquantes être la cause d’une défaillance du
marché [Rot08], où les agents quittent la plateforme pour arranger des paires en dehors du système.
Dans un article fondateur, Gale et Shapley [GS62] ont proposé l’algorithme d’acceptation différée,
dans lequel un côté propose tandis que l’autre côté dispose, et ont prouvé que cette procédure
produisait toujours un matching stable. Depuis, de nombreux marché ont adopté avec succès des
procédures basées sur l’algorithme d’acceptation différée [RP99; APR05; Abd+05; Cor+19].

Les matchings stables ont été un important surjet de recherche en informatique et en économie.
Les résultats de la littérature informatique incluent la structure de treillis complet de l’ensemble
des matchings stable, ainsi que les algorithmes pour le calculer. Dans la littérature économique, ont
été étudiées les questions de manipulabilité, à la fois d’un point de vue théorique et empirique. La
littérature sur les marchés bipartis aléatoire a émergé ddu besoin de modéliser des situations réelles,
et de données des preuves théoriques à des phénomènes observés empiriquement.

Contributions de cette thèse

Dans la partie préliminaire de cette thèse, le chapitre 2 rappelle les résultats classique sur les
matchings stables, et le chapitre 3 discute différents modèles stochastiques pour les préférences des
agents. Chacun des chapitres suivants correspond à une question de recherche. Dès que possible,
les chapitres contiennent : une introduction avec les principaux résultats, une revue de la littérature
et un point à retenir ; une section présentant des résultats de simulations numériques illustrant les
principaux théorèmes ; et une conclusion contenant des questions ouvertes et directions de recherche
future.

La plupart des article de la littérature sur les marchés bipartis étudie la manipulabilité par
les agents, ou les propriétés des affectations stables obtenues. Les parties II et III de cette thèse
abordent respectivement les questions “qui peut manipuler ?” et “qui obtient quoi ?”.

Qui peut manipuler ?

Les résultats classiques quant à la manipulabilité des procédures calculant un matching stable sont
résumés dans la section 2.7. En particulier, si un agent ment sur sa liste de préférence, cela engendre
différents matchings stables, dans lesquels il ne sera jamais apparié à un meilleur partenaire que dans
le meilleur des matchings stables de l’instance originale. Par conséquent, un agent peut seulement
améliorer son affectation de la différence entre son pire et son meilleur partenaire stable, et un agent
qui a un unique partenaire stable n’a aucun intérêt à mentir quant à sa liste de préférence.

Convergence du cœur. Dans un article influent, Roth et Peranson [RP99] rapportent que dans
5 ans de données issues du programme nord-américain de résidence (qui affecte environ 20000
docteurs à des hôpitaux chaque année), exactement 4 docteurs avaient plusieurs affectations stables,
et auraient pu modifier leur liste de préférence pour obtenir un meilleur hôpital. Ce phénomène est
souvent appelé “convergence du cœur”, en référence au cœur d’un jeu coopératif, qui ici correspond
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à l’ensemble des matchings stables. Des explications théoriques de ce phénomène on été données par
Immorlica et Mahdian[IM15], et Ashlagi, Kanoria et Leshno [AKL17], en utilisant l’observation que
les agents fournissent habituellement des listes de préférence de taille constante, et que les marchés
sont typiquement légèrement déséquilibrés. Dans le chapitre 4, nous explorons une explication
alternative, basée sur le fait que les agents ont des préférences corrélées.

Faible convergence du cœur. À titre de comparaison, Knuth, Motwani et Pittel [KMP90; Pit92]
étudient un modèle de marché équilibré dans lequel les agents ont des préférences aléatoires complète,
échantillonnées de manière uniforme et indépendante. Ils montrent qu’un agent a en moyenne∼ lnN
partenaires stables. Ce résultat n’implique pas la non-manipulabilité de la procédure (lorsqu’un
agent a 1 partenaire stable), mais est bien inférieure au pire cas dans lequel chaque agent a N
partenaires stables. Par conséquent, nous ferons référence à la propriété d’avoir peu de partenaires
stables par “faible convergence du cœur”. Le chapitre 5 considère des marchés aléatoires avec des
distributions non-uniforme, et montre de les corrélations entre les préférences des agents améliore
la faible convergence du cœur.

Choix et contraintes. De retour sur le programme nord-américain de résidence, Echenique,
Gonzalez, Wilson et Yariv [Ech+20] font une observation déroutante, en rapportant que la ma-
jorité des docteurs sont affectés dans leur hôpital préféré, alors que des sondages montrent que les
préférences des différents docteurs sont très similaires. Ils expliquent cette observation par le fait
que les docteurs et hôpitaux interagissent avant de donner leurs préférences à la plateforme, au cours
d’un processus d’interviews décentralisé. Comme le nombre d’interviews est limité, ils expliquent
que les préférences fournies à la plateforme ne doivent pas être prises pour argent comptant. Dans
le chapitre 6, nous étudions un jeu à information incomplète dans lequel les postulants doivent se
comporter de manière stratégique lorsqu’ils établissent leur liste de préférence, à cause d’une borne
supérieure sur le nombre de vœux qu’ils peuvent effectuer.

Qui obtient quoi ?

Dans un marché biparti, plusieurs matchings stables peuvent exister. La procédure d’acceptation
différée produit le meilleur matching stable pour le côté qui propose, et le pire matching stable pour le
côté qui dispose. De plus, la procédure d’acceptation différée n’est pas Pareto efficace, car les agents
du côté qui proposent peuvent tous faiblement préférer un autre matching (instable). Cela motive
l’utilisation de mécanismes plus efficaces quoique potentiellement instables (tel que top-trading-
cycle et serial-dictatorship), par exemple lors de l’affectations d’étudiants dans des écoles publiques
[Abd+20]. Dans un article fondateur pour la littérature autour de l’affectation d’étudiants dans des
écoles, Abdulkadiroglu et Sönmez [AS03] discutent les compromis entre la qualité de l’affectation
obtenue et d’autres propriétés désirables.

Résultats ex-post. Lorsque l’on considère un modèle aléatoire de marché biparti, le rang ou
l’utilité que chaque personne attribue à son partenaire correspond au résultat ex-post, c’est à dire
après avoir échantillonné les préférences de tous les agents. Wilson, Knuth et Pittel [Wil72; Knu76;
Pit89] montrent que dans un marché équilibré avec des préférences aléatoires uniformes, la procédure
d’acceptation différée affecte les agents du côté qui propose à l’un de leur premiers ∼ lnN choix, et
les agents du côté qui dispose à l’un de leur premiers ∼ N/ lnN choix, en moyenne. Il est intéressant
de remarquer que Knuth [Knu96] montre que la valeur de ∼ lnN correspond au rang moyen obtenu
par agents dans les procédures Pareto efficace mentionnées ci-dessus.
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Inversement, lorsque les agents de chaque côté ont des préférences identiques, le résultat est
ordonné, dans le sens ou chaque personne est appariée avec un partenaire de même rang. Lee [Lee16]
discute un modèle où les agents ont des préférences cardinales sont générées à partie d’utilités
“verticales”. Dans le chapitre 4 nous explorons la situation ou les agents ont des préférences ordinales
fortement corrélées (mais non identiques).

Résultats ex-ante. Lorsque les agents ont des préférences hétérogènes, il est possible d’emprunter
une approche différente, et de calculer la probabilité que deux agents soient appariés. Cela corre-
spond au résultat ex-ante, c’est à dire du point de vue d’un observateur qui a seulement des infor-
mations statistiques (par exemple à partir de données historiques) sur les préférences des agents.
Les chapitres 7 et 8 donnent des formules exactes et asymptotiques pour la probabilité que deux
personnes soient appariés, ce sous certaines hypothèse sur la distribution des préférences.

Vitesse de convergence. Enfin, il est important de remarquer que la complexité en temps de
la procédure d’affectation différée est égale à la somme des rangs des partenaires obtenus par les
agents du côté qui propose. Il s’agit de la motivation originale de Wilson et Knuth [Wil72; Knu76],
dont le résultat (mentionné ci-dessus) impliquent que la complexité en moyenne de l’algorithme
d’acceptation différée est ∼ N lnN . Cependant, une telle notion de complexité “séquentielle”
n’est pas adaptée pour les implémentations récentes de l’algorithme. Dans la nouvelle procédure
d’affectation des lycéens en France, les étudiants interagissent avec avec la plateforme, et choisissent
l’offre qu’ils souhaitent conserver lorsqu’ils reçoivent de propositions de plusieurs universités. Dans
une description alternative de l’algorithme d’acceptation différée, chaque agent du côté qui propose
peut envoyer une offre par jour. Le chapitre 9 étudie le nombre moyen de jours nécessaires pour
que la procédure converge, lorsque les agents ont des préférences uniformes.

Techniques de preuve.

En couplant les modèles aléatoires avec des résultats structurels et algorithmiques sur l’ensemble
des matchings stables, il est possible de développer des techniques de preuve intéressantes. Les
contributions techniques de cette thèse ont été séparés en chapitres en tenant compte des notions
suivantes.

Stabilité. La définition de stabilité (voir section 2.1) fourni déjà des idées intéressantes. Knuth,
Pittel et leurs co-auteurs [Knu76; Pit89; Pit92; PSV07; LP09; Pit18] écrivent la probabilité de
stabilité d’un matching à l’aide d’une formule intégrale, et l’utilise pour calculer plusieurs quantités
d’intérêt (nombre de matchings stables, nombre et rang des partenaires stables). Les formules
intégrales sont utilisées dans [LY14] pour mesurer l’efficacité des matchings stables. Les preuves
du chapitre 7 utilisent les formules intégrales pour calculer la distribution de sortie de l’algorithme
d’acceptation différée.

Acceptation différée. La procédure d’acceptation différée (voir section 2.2) peut être analysée
comme un processus stochastique où les agents échantillonnent leurs préférences en ligne. Wilson
et Knuth [Wil72; Knu76] calculent la complexité moyenne de l’algorithme d’acceptation différée
à l’aide d’une réduction au problème de collection de coupons. Cette technique est utilisée dans
[KMQ21; Ash+21] pour calculer le rang moyen du partenaire d’un agent, comme une fonction des
paramètres du modèle. Les chapitres 8 et 9 sont basés sur de telles techniques.
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Partenaires stables. Énumérer les partenaires stables (voir section 2.3) peut être fait à l’aide
d’une extension de l’algorithme d’acceptation différée. Knuth, Motwani et Pittel [KMP90] donnent
une analyse stochastique de cet algorithme, depuis étendue dans [IM15; AKL17] pour montrer que
chaque agent a un unique partenaire stable, dans des marchés aléatoires où certains agents restent
non-appariés. Les preuves des chapitres 4 et 5 sont basés sur de telles techniques.

Structure de treillis complet. Enfin, l’ensemble des matchings stables a une structure de treillis
complet (voir section 2.4), qui peut être utilisée pour obtenir des propriétés supplémentaires. Les
formules intégrales de Pittel [Pit92] donnent des valeurs asymptotiques pour le nombre et la taille des
rotations (différence symétrique de deux matchings stables consécutifs). Un article récent [NNV21]
établi une connection entre les statistiques de fonctions aléatoires et les rotations exposées par un
matching stable. Les preuves du chapitre 7 reposent partiellement sur la structure de treillis de
l’ensemble des matchings stables.
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1 | Introduction

1.1 The tale of a tennis tournament

Imagine that you are organizing a mixed double tennis tournament: M men and W women have
registered, and will soon report preferences over partners with whom they want to play1. You are
in charge of forming pairs: each team must be comprised of one man and one woman, who both
agree to play with each other. From experience, you know that when checking the composition of
teams, a man and a woman will complain if they are not matched together and prefer each other
to their respective partners (such matching would be unstable).

Amenities Of The Tennis Lawn, George du Maurier, 1883

Fortunately, being a seasoned tournament organizer, you are well accustomed to the theory of
stable matchings. Even better, having already organized similar tournaments in the past, you have
some prior (distributional) knowledge on the preferences of every player! Informally speaking, the
preferences of contestants are correlated: good players are very popular (one-sided correlations),
and players with similar styles perform well together (cross-sided correlations).

The doors of the tennis stadium are now opening, and every contestant arrives with multiple
petty questions: “Should I report my preferences truthfully?”, “With whom am I most likely to be
matched?”. In this thesis, we try to answer those questions.

1In the original analogy, each person ranks those of the opposite sex in accordance with their preferences for a
marriage partner. This “sportive” rephrasing of the classical model is due to Ágnes Cseh and Jannik Peters.
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1.2 Random two-sided matching markets

Two-sided matching markets describe matching scenarios between to types of agents, where agents
from both sides of the market have ordered preferences over the opposite side. Examples include
college admissions (students and colleges), residency programs (doctors and hospitals), job markets
(workers and jobs), and of course, mixed double tennis tournaments (men and women). In each
setting, a centralized clearinghouse computes an allocation, pairing agents from opposite sides of
the market. Instability occurs when two agents who are not matched together prefer each other
to the partners they have been paired with by the clearinghouse. Such instability might be a
cause of market failure [Rot08], where agents leave the market to arrange better matches. In a
founding paper, Gale and Shapley [GS62] designed the deferred acceptance mechanism, where one
side propose while the other dispose, which they prove always outputs a stable matching. Since then,
many matching markets have successfully implemented mechanisms based on a deferred acceptance
procedure [RP99; APR05; Abd+05; Cor+19].

Stable matchings have been an extensive research topic in computer science and economics.
Results in the computer science literature include the lattice structure of the set of stable matchings,
and algorithms to compute it. In the economics literature, researcher have studied the incentives
of agents taking part in two-sided matching markets, both from the theoretical and empirical point
of views. The literature of matching under random preferences came from the need to model real
matching markets, and give formal proofs of properties observed empirically.

1.3 Contributions of this thesis

In the preliminary part of this thesis, Chapter 2 surveys classical results about stable matchings,
and Chapter 3 discuss random models of preferences. Each subsequent chapter corresponds to a
research question. Whenever possible, chapters contains an introduction with the main results,
related works and one takeaway observation; a section with computer simulations illustrating the
main theorems; and a conclusion with open questions and future directions.

Most papers from the literature of matching under random preferences study either the incentive
compatibility or the outcomes of matching procedures. Parts II and III of this thesis consider the
questions “who can manipulate?” and “who gets what?”.

1.3.1 Who can manipulate?

We survey incentive compatibility results of stable matching procedures in Section 2.7. In particular,
if an agent lies about their preference list, this gives rise to new stable matchings, where they will
be no better off than they would be in one of the original stable matching. Thus, a person can
only gain from strategic manipulation up to the maximum difference between their best and worst
partners in stable matchings, and an agent who has a unique stable partner does not have incentives
to misreport their true preference list.

Core-convergence. In a renowned paper, Roth and Peranson [RP99] report that in 5 years
of data from the US National Resident Matching Program (which matches approximately 20000
doctors to hospitals each year), exactly 4 doctors had multiple stable partners, and thus could have
benefited from misreporting their preferences. This phenomenon is often called core-convergence, in
reference to the core of a cooperative game, which here corresponds to the set of stable matchings.
Theoretical explanations for core-convergence have been given by Immorlica and Mahdian [IM15],
and Ashlagi, Kanoria and Leshno [AKL17], based on the fact that agents report constant size
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preference lists, and that markets are typically slightly unbalanced. In Chapter 4, we explore an
alternative explanation, based on the fact that agents have correlated preferences.

Weak core-convergence. As a point of comparison, Knuth, Motwani and Pittel [KMP90; Pit92]
study balanced markets where agents have complete preferences drawn uniformly at random, and
show that an agent has ∼ lnN stable partners. This result does not imply strategy-proofness
(achieved with 1 stable partner), but is much smaller than the worst case situation where agents
have N stable partners. Thus, we will refer to having few stable partners as weak core-convergence.
Chapter 5 considers matching markets with non-uniform distributions, and shows that positive
correlations between the preferences of agents helps weak core-convergence.

Choice with constraints. Back to the US National Resident Matching Program, Echenique,
Gonzalez, Wilson and Yariv [Ech+20] make the puzzling observation that a large majority of doctors
are matched with one of their top (reported) choices, whereas surveys indicate that they have
similar preferences over hospitals. They explain this observation by the fact that before reporting
their preferences, doctors and hospitals interact in a decentralized interview process. Because the
number of interview is limited, they argue that reported preferences should not be taken at face
value. In Chapter 6, we study an incomplete information game where applicants must behave
strategically because of an upper quota on the number of applications they can submit.

1.3.2 Who gets what?

In a two-sided matching market, multiple stable matchings can exist. The deferred acceptance
produces a matching which is optimal for the proposing side, and pessimal for the receiving side.
More importantly, the deferred acceptance mechanism is not Pareto efficient, in the sense that agents
from the proposing side might all weakly prefer another (unstable) matching. This motivates the
use of more efficient yet possibly unstable mechanisms (top-trading cycles or serial dictatorship),
for example when allocating students to public schools [Abd+20]. In a founding paper of the
school choice literature, Abdulkadiroglu and Sönmez [AS03] discuss mechanism design as a trade-
off between the quality of outcomes and other desirable properties.

Ex-post outcomes. When considering random models of two-sided matching markets, the rank
or utility each person gives to their partner corresponds to ex-post outcomes, that is after having
drawn each person’s preferences. Wilson, Knuth and Pittel [Wil72; Knu76; Pit89] show that in
balanced markets with uniformly random preferences, the deferred acceptance procedure match
proposing agents to one of their top ∼ lnN choice, and receiving agents to one of their ∼ N/ lnN
choices, in expectation. Interestingly, Knuth [Knu96] shows that ∼ lnN is also equivalent to the
expected rank obtained by the Pareto efficient procedures discussed above.

Conversely, when agents from each side have identical preferences, the outcome is assortative,
in the sense that each person is matched with someone of corresponding rank. Lee [Lee16] discusses
a model where preferences are induced by vertical cardinal utilities, and Chapter 4 explores the
situation where agents have strongly correlated (yet non-identical) ordinal preferences.

Ex-ante outcomes. When agents have heterogeneous random preferences, one can take a dif-
ferent approach and look at the probability that two agents will be matched. This corresponds
to ex-ante outcomes, that is from the point of view of a mechanism designer who only has prior
knowledge (for example from historical data) on the preferences of agents. Chapters 7 and 8 give
exact and asymptotic formula for the match probabilities under certain preference distributions.
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Speed of deferred acceptance. Finally, it is important to observe that the time complexity of
the deferred acceptance procedure is equal to the sum of ranks agents from the proposing side give
to their eventual partners. This was in fact the original motivation of Wilson and Knuth [Wil72;
Knu76], whose result (discussed above) imply that the average complexity of deferred acceptance is
∼ N lnN . However, such notion of “sequential” complexity is not adapted to recent implementations
of the deferred acceptance mechanism. In the new college admission system in France, students
interact with the platform, choosing which offer they want to keep when receiving proposals from
multiple schools. In an alternative description of the deferred acceptance algorithm, each agent
from the proposing side can send of offer per day. Chapter 9 looks at the expected number of days
required by the procedure when agents have uniform preferences.

1.4 Proof techniques.

Stochastic models provide interesting proof techniques when coupled with structural and algorithmic
results on the set of stable matchings. Technical contributions of this thesis have been split in
chapters based on the following notions.

Stability. The definition of stability itself (see Section 2.1) already provides interesting insights.
Knuth, Pittel and co-authors [Knu76; Pit89; Pit92; PSV07; LP09; Pit18] write the probability of
stability of a matching as an integral formula, and use it to compute various quantities of interest
(number of stable matchings, number and rank of stable partners). Integral formulae are used in
[LY14] to measure the efficiency of stable matchings. Proofs in Chapter 7 use integral formulae to
compute the output distribution of deferred acceptance.

Deferred acceptance. The deferred acceptance procedure (see Section 2.2) can be analyzed as
a stochastic process where agents draw their preferences online. Wilson and Knuth [Wil72; Knu76]
compute the average complexity of deferred acceptance via a reduction to the coupon collector’s
problem. It is used in [KMQ21; Ash+21] to compute the average rank of each person’s partner as
a function of the parameters of the model. Chapters 8 and 9 are based on such techniques.

Stable partners. Enumerating stable partners (see Section 2.3) can be done via an extension of
the deferred acceptance mechanism. Knuth, Motwani and Pittel [KMP90] gave a stochastic analysis
of this algorithm, which was later extended in [IM15; AKL17] to show that almost everyone has a
unique stable partner, in random markets where some agents remain single. Proofs in Chapters 4
and 5 are based on such techniques.

Lattice structure. Finally, the set of stable matchings has a lattice structure (see Section 2.4),
that can be used to derive additional properties. Pittel’s integral formulae [Pit92] give asymptotic
value for the number and size of rotations (symmetric difference of two consecutive stable match-
ings). A recent work [NNV21] makes a connection between the statistics of random mappings and
of rotations that are exposed in a matching. Proofs from Chapter 7 partially rely on the lattice
structure of stable matchings.
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The stable matching problem was first defined by Gale and Shapley [GS62] and later extended to
allow sets of agents of different sizes [MW70] and incomplete preferences [GI89]. Results presented
in this chapter can be found in the books of Knuth [Knu76; Knu97], Gusfield and Irving [GI89],
Roth and Sotomayor [RS92], Manlove [Dav13], and Echenique, Immorlica and Vazirani [EIV22].
One novelty in this chapter is the presentation stable matchings as a sub-lattice of the lattice of
stable permutations (which have been defined for the more general stable roommates problem).

2.1 Formal definitions

Let us start with formal definitions and classical notations. LetM = {m1, . . . ,mM} be a set of M
men, W = {w1, . . . , wW } be a set of W women, and N = min(M,W ). Each person declares which
members of the opposite sex they find acceptable, then gives a strictly ordered preference list of
those members. Preference lists are complete when no one is declared unacceptable.

Definition 2.1 (Preference profile). Formally, we represent the preference list of a man m as
a total order �m overW∪{m}, where w �m m means that man m finds woman w acceptable,
and w �m w′ means that man m prefers woman w to woman w′. Similarly we define the
preference list �w of woman w. A preference profile is a tuple containing the preference list of
each person.

Our goal is to match men and women, in such a way that no man-woman pair prefer each other
to their respective partners, which would create instability.

Definition 2.2 (Stable matching). Formally, a matching is a function µ :M∪W →M∪W,
which is self-inverse (µ2 = Id), where each man m is paired either with a woman or himself
(µ(m) ∈ W ∪{m}), and symmetrically, each woman w is paired with a man or herself (µ(w) ∈
M∪ {w}).

A man-woman pair (m,w) is blocking matching µ if m �w µ(w) and w �m µ(m). Abusing
notations, observe that µ matches a person p with an unacceptable partner when p would
prefer to remain single, that is when the pair (p, p) is blocking. A matching with no blocking
pair is stable.

We will use the terms of stable pair for a pair which belongs to at least one stable matching.
Correspondingly, we call stable partner (resp. stable wife, stable husband, ...) any partner (resp.
partner, wife, husband, ...) with whom someone is matched in a stable matching.

7



8 CHAPTER 2. STABLE MATCHINGS

2.2 Deferred acceptance algorithm

In their founding paper, Gale and Shapley [GS62] introduce the men-proposing deferred acceptance
mechanism, which they show computes a men-optimal stable matching. In subsequent works,
McVitie and Wilson [MW70], and Gusfield and Irving [GI89] extends those results to unbalanced
markets with incomplete preferences.

Algorithm 2.1 Men Proposing Deferred Acceptance.
Input: Preferences of men (�m)m∈M and of women (�w)w∈W .
Initialization : Start with an empty matching µ.
While a man m is single and has not proposed to every woman he finds acceptable, do

m proposes to his favorite woman w he has not proposed to yet.
If m is w’s favorite acceptable man among all proposals she received, then

w accepts m’s proposal, and rejects her previous husband if she was married.
Output: Resulting matching.

Theorem 2.3 (Adapted from [GS62]). Algorithm 2.1 outputs a stable matching µM indepen-
dently of the order in which men are chosen to propose. In the matching µM, every man (resp.
woman) has his best (resp. her worst) stable partner. Symmetrically, there exists a stable
matching µW in which every woman (resp. man) has her best (resp. his worst) stable partner.

∀µ stable matching, ∀m ∈M, µM(m) �m µ(m) �m µW(m)

∀w ∈ W, µW(w) �w µ(w) �w µM(w)

Proof. First, we show that the output µM of Algorithm 2.1 is stable. Men never propose to women
they find unacceptable, and women never accept proposals from men they find unacceptable, thus
each person is either single or matched with an acceptable partner. For every pair (m,w), man m
proposed to every women he prefers to µM(m), and woman w prefer µM(w) to every other proposal
she received, thus (m,w) cannot be a blocking pair.

Second, we show that every man receives his favourite stable partner. Let µ be a stable matching.
If for some man m we have µ(m) �m µM(m), then µ(m) 6= m. For the sake of contradiction, let
m be the first man (such that µ(m) 6= m) who is rejected by w = µ(m) during the execution of
Algorithm 2.1, and let m′ be the best proposer to w at that time. By construction, m′ has not yet
been rejected by µ(m′), thus he prefers w to µ′(m). Because m′ �w µ(w) and w �m′ µ(m′), the
pair (m′, w) blocks matching µ, which is a contradiction.

Third, we show that every woman receives her least favourite stable partner. Let µ be a stable
matching. For the sake of contradiction, assume that µM(w) �w µ(w) for some woman w. Then
µM(w) 6= w, and we define m = µM(w). By optimality of µM, man m prefers w to µ(m). Thus,
the pair (m,w) blocks matching µ, which is a contradiction.

Fourth, because Algorithm 2.1 always outputs a matching where each man receives his favourite
stable partners, then the output is independent of the order in which men are chosen to propose.

Theorem 2.4 (Adapted from [MW70]). Each person is either matched in all stable matchings,
or single in all stable matchings. In particular, a woman is matched in all stable matchings if
and only if she received at least one acceptable proposal during Algorithm 2.1.

Proof. Denote µ(M) ∩ W (resp. µ(W) ∩M) the set of women (resp. men) who are matched in
a matching µ, and observe that |µ(M) ∩ W| = |µ(W) ∩M| by a pigeonhole principle. For every
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stable matching µ, Theorem 2.3 shows that

µM(W) ∩M ⊇ µ(W) ∩M ⊇ µW(W) ∩M (2.1)
µW(M) ∩W ⊇ µ(M) ∩W ⊇ µM(M) ∩W (2.2)

Equation (2.1) shows that µM matches at least as many persons as µW , and conversely Equa-
tion (2.2) shows that µW matches at least as many persons as µM. By a cardinality argument,
every inclusion is an equality, which concludes the proof.

2.3 Algorithm for enumerating stable partners

In subsequent works, McVitie [MW71] and Gusfield [Gus87] extended the deferred acceptance pro-
cedure to enumerate stable matchings and stable partners: by breaking existing marriages and
waiting for the algorithm to converge, one can reach every stable matching. We present here a
simplified version, similar to the one of Knuth, Motwanni and Pittel [KMP90].

Starting from the men-optimal stable matching (Algorithm 2.1), Algorithm 2.2 continues the
execution of the deferred acceptance procedure, in which w rejects every proposal she receives.
Stable husbands of w are “best so far” proposals, that is men who proposed to w and were preferred
to all men who proposed before them. The proof relies on Lemma 2.6 below.

Algorithm 2.2 Extended Men Proposing Deferred Acceptance.
Input: Preferences of men (�m)m∈M and of women (�w)w∈W . Fixed woman w∗ ∈ W.
Initialization: Start by executing Algorithm 2.1, if w∗ is unmatched then stop.
Phase 1: sequence of proposals
Let m← µM(w∗) be the proposer, let S ← [µM(w∗)] be the sequence of proposals to w∗.
While the proposer m has not proposed to every woman he finds acceptable, do

m proposes to his favorite woman w he has not proposed to yet.
If w = w∗, then

append m to the sequence S
else if w has never been matched then

break the while loop,
else if m is w’s favorite acceptable man among all proposals she received then

w rejects her previous husband m′, accepts m, the proposer becomes m′

Phase 2: stable husbands
For each proposal m ∈ S made to w∗, in order of reception, do

If m is the best proposition w received so far, then
m is a stable husband of w∗.

Output: Set of stable husbands of w∗.

Theorem 2.5 (Adapted from [KMP90]). Algorithm 2.2 outputs w∗’s set of stable husbands.

Proof. First, we show that every man m returned by Algorithm 2.2 is a stable partner of woman w∗.
Let µm be the matching when w∗ received the proposal from m during the execution of Algo-
rithm 2.2, in particular µm(w∗) = m. Then, µm is exactly the matching returned by Algorithm 2.1
if w∗ truncates her preference list and declares unacceptable every man to whom she prefers m,
which proves that µm is stable under the truncated preferences of w∗. Lemma 2.6 proves that µm
is stable.

Second, we show that every stable partner of w∗ has been found by Algorithm 2.2. Let µ be
a stable matching, and let m = µ(w∗). Let µm be the matching returned by Algorithm 2.1 if w∗
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truncates her preference list and declares unacceptable men to whom she prefers m. Lemma 2.6
proves that µ is stable when w∗ truncates her preferences. Because µm is women-pessimal, we have
m = µ(w∗) � µm(m) � m, and thus µm(w∗) = m. We now run Algorithm 2.1 with truncated
preferences, but we delay µM(w∗) proposing to w∗ as much as possible: the first part (before
µM(w∗) proposes to w∗) exactly corresponds to Algorithm 2.1 with original preferences; and the
second part (after µM(w∗) proposed to w∗) exactly corresponds to Algorithm 2.2 with original
preferences, up to the point when m proposes to w∗ (who accepts). Thus, m will propose to w∗

in Algorithm 2.2 with original preferences, at which point it is the best proposition received, which
concludes the proof.

Lemma 2.6. Let w∗ be a fixed women and let m∗ be a fixed man. Let µ be a matching such that
µ(w∗) �w∗ m∗. Then µ is stable if and only if it is stable when w∗ truncates her preferences
and declares unacceptable men to whom she prefers m∗.

Proof. For every m, observe that m �w∗ µ(w∗) is independent from whether or not preferences are
truncated after m∗, thus a pair is blocking with the truncated preferences if and only if it is blocking
with the original preferences.

2.4 Lattice of stable matchings

The set of stable matchings can be partially ordered using the preferences of agents:

∀µ1, µ2 stable matchings, µ1 �M µ2 ⇔ ∀m ∈M, µ1(m) �m µ2(m)

µ1 �W µ2 ⇔ ∀w ∈ W, µ1(w) �w µ2(w)

We write µ1 �W µ2 when µ1 �W µ2 and µ1 6= µ2, that is when all women weakly prefer µ1 to µ2 and
some women strictly prefer µ1 to µ2. Symmetrically, we write µ2 �M µ1. An important property
of stable matchings is that given two stable matchings µ1 and µ2, if µ1 �M µ2 then µ2 �W µ1,
which proves that both �M and �W define the same ordering (but reversed). The structure of the
set of stable matchings was studied by Knuth and Conway [Knu76; Knu97]: with the partial order
�W , the set stable matching is a distributive lattice.

Definition 2.7. For each person p, we define minp(a1, a2) and maxp(a1, a2).

min
p

(a1, a2) =

{
a2 if a1 �p a2

a1 otherwise. max
p

(a1, a2) =

{
a1 if a1 �p a2

a2 otherwise.

Given µ1 and µ2, we define the “join” µ1 ∨ µ2 and the “meet” µ1 ∧ µ2.

(µ1 ∨ µ2)(p) =

{
minp(µ1(p), µ2(p)) if p ∈M
maxp(µ1(p), µ2(p)) if p ∈ W

(µ1 ∧ µ2)(p) =

{
maxp(µ1(p), µ2(p)) if p ∈M
minp(µ1(p), µ2(p)) if p ∈ W

Observe that operations ∨ and ∧ distribute over one another.

Definition 2.7 only uses the fact that µ1 and µ2 are functions fromM∪W to itself. An important
property is that when µ1 and µ2 are stable matchings, then both the meet and join are matchings,
and those matchings are stable.
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Theorem 2.8. The set of stable matching with the ordering �W is a distributive lattice. More
precisely, if µ1 and µ2 are stable matchings, then both µ1∨µ2 and µ1∧µ2 are stable matchings.

Proof. We show that µ = µ1 ∨ µ2 is a stable matching. The same proof swapping the roles of men
and women proves that µ1 ∧ µ2 is a stable matching.

For the sake of contradiction, assume that there are two women w1, w2 and a man m such that
µ1(w1) = µ(w1) = m = µ(w2) = µ2(w2). If w1 �m w2 then (m,w1) blocks µ2, and otherwise
(m,w2) blocks µ1. Thus, µ is a matching.

Still for the sake of contradiction, assume that there is a pair (m,w) blocking µ. Then we have
w �m minm(µ1(m), µ2(m)) and m �w maxw(µ1(w), µ2(w)). If µ1(m) �m µ2(m) the pair (m,w)
blocks µ2, and if µ2(m) �m µ1(m) the pair (m,w) blocks µ1. Thus µ is stable.

µW

µM

µ1 ∨ µ2

µ1 ∧ µ2

µ1
µ2

O
rd
er
�
M

O
rder�

W

Figure 2.1. Hasse diagram of the lattice of stable matchings

Lemma 2.9. Given two stable matchings µ1 and µ2 such that µ1 �W µ2, if there is a stable
matching such that µ1(w) �w µ(w) �w µ2(w) for some woman w, then there is an intermediate
stable matching µ′ such that µ′(w) = µ(w) and µ1 �W µ′ �W µ2.

Proof. Define µ′ = (µ∧µ1)∨µ2. Because ∧ distributes over ∨, we have µ′ = (µ∨µ2)∧ (µ1 ∨µ2) =
(µ ∨ µ2) ∧ µ1, thus µ1 �W µ′ �W µ2. By construction µ′(w) = µ(w), thus µ1 6= µ′ 6= µ2.

Definition 2.10. Consider a finite distributive lattice (L,�).

• We say that an element x covers an element y and write x ·� y, if x � y and there is no
z such that x � z � y.

• An element x is join-irreducible if it is not the join of a set of other elements (the bottom
element being the join of zero elements). An element x is join-irreducible if and only if
it covers a unique element y (x is ∨-irreducible ⇔ ∃!y, x ·� y).

• An element x is meet-irreducible if it is not the meet of a set of other elements (the top
element being the meet of zero elements). An element x is meet-irreducible it is covered
by a unique element y (x is ∧-irreducible ⇔ ∃!y, y ·� x).
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2.4.1 Stable permutations

In this subsection, we will deviate from the classical presentation of the lattice of stable matchings,
and define stable permutations (also called stable partitions [Tan91] or half-matchings [BCF08]),
that have been introduced for the more general problem of stable roommates and generalize stable
matchings. The structure of the lattice of stable matchings will be a corollary of Theorems 2.14,
2.15 and 2.16. This alternative definition has the advantage of keeping the symmetry between men
and women, which is not the case using the classical definition of exposed rotation (see [GI89] for
a nice survey).

Definition 2.11 (Stable permutation). A permutation is a bijection σ : M∪W →M∪W,
where the image of each man m is a woman or himself (σ(m) ∈ W ∪ {m}), and where the
image of each woman w is a man or herself (σ(w) ∈M∪ {w}). For each person p, we use the
term successor for the image σ(p) and the term predecessor for the preimage σ−1(p).

A man-woman pair (m,w) is blocking permutation σ if m prefers w to his predecessor
σ−1(m) and w prefers m to her predecessor σ−1(w). Abusing notations, a person x is matched
with an unacceptable partner if the pair (x, x) is blocking. A permutation σ is stable if it has
no blocking pair and each person prefer their successor to their predecessor.

Lemma 2.12. A matching µ is stable if and only if it is stable as a permutation.

Proof. When a permutation is a matching, Definition 2.11 coincides with Definition 2.20.

Decomposition in cycles Every a permutation σ can be decomposed into a collection of disjoint
cycles. A 1-cycle corresponds to a single person (p such that σ(p) = p), and a 2-cycle corresponds
to a couple (m and w such that σ(m) = w and σ(w) = m).

Definition 2.13. We denote C(σ) the number of cycles of length > 2 in a permutation σ.

Theorem 2.14. We say that σ′ is a sub-permutation of σ if for each person p we have:(
σ′(p)
σ′−1(p)

)
∈
{(

σ(p)
σ(p)

)
,
(

σ(p)
σ−1(p)

)
,
(
σ−1(p)
σ−1(p)

)}
Every permutation σ has exactly 3C(σ) sub-permutations, and 2C(σ) of them are matchings.
Moreover, if permutation σ is stable then all its sub-permutations are also stable.

Proof. For each cycle with a support S ⊆ M ∪ W of size > 2, either σ′|S = σ|S , or σ′|S is one
of the two matchings induced by σ|S . Figure 2.3 illustrates the 9 sub-permutations (4 of them
being matchings) of a permutation with 2 cycles of length 4. If a pair (m,w) blocks one of the
sub-permutation σ′, it also blocks σ.

In particular, given a permutation σ, the restrictions σ|M and σ|W define two matchings µ1

and µ2. Conversely, given two matching µ1 and µ2, one can define a permutation σ, such that
σ|M = µ1|M and σ|W = µ2|W . In such situations, we will write σ = µ1|Mtµ2|W , and Theorem 2.14
to show that if σ is stable then both µ1 and µ2 are stable matchings.

Lattice of stable permutations. Lemma 2.12 and Theorem 2.14 show that each stable permu-
tation σ induces 2C(σ) stable matchings. We will show that stable permutations form a lattice, for
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m1

m2

m3

m4

m5

m6

w1

w2

w3

w4

w5

w2 � w1 � . . .

w2 � w3 � . . .

w3 � w2 � . . .

w4 � w5 � . . .

w5 � w4 � . . .

. . .

m1

m2

m3

m4

m5

m6

w1

w2

w3

w4

w5

m1

m2

m3

m4

m5

m6

w1

w2

w3

w4

w5

m2 � m1 � . . .

m3 � m2 � . . .

m2 � m3 � . . .

m5 � m4 � . . .

m4 � m5 � . . .

Figure 2.2. Example of stable permutation σ, between two stable matchings.

which the set of stable matchings is a sub-lattice. We start by defining a partial order over stable
permutations, which is compatible with the partial order over stable matchings.

σ1 �M σ2 ⇔ ∀m ∈M, σ1(m) �m σ2(m) and σ−1
1 (m) �m σ−1

2 (m)

σ1 �W σ2 ⇔ ∀w ∈ W, σ1(w) �w σ2(w) and σ−1
1 (w) �w σ−1

2 (w)

Once again, we can show that given two stable permutations σ1 and σ2, we have σ1 �M σ2 if and
only if σ2 �W σ1, which proves that �M and �W induce the same ordering (but reversed). Notice
that Definition 2.7 can be used to compute the meet and join of two permutations.

Theorem 2.15. The set of stable permutations with the ordering �W is a distributive lattice.
More precisely, if σ1 and σ2 are stable permutations, then both σ1 ∨ σ2 and σ1 ∧ σ2 are stable
permutations.

Proof. The proof is identical to the one of Theorem 2.8

Relations between permutations and matchings. So far, we gave several results to manip-
ulate and combine stable permutations, but we did not prove the existence of stable permutations
that are not matchings. Theorem 2.16 show that stable permutations with one cycle of length > 2
exactly corresponds to the edges of the Hasse diagram of the lattice of stable matchings (covering
relation µ1 ·�M µ2).

Theorem 2.16. Let µ1 and µ2 be matchings that induce a permutation σ = µ1|M t µ2|W .
Then, the following two conditions are equivalent:

• Both µ1 and µ2 are stable, and µ1 ·�M µ2.

• Permutation σ is stable, and C(σ) = 1.

The proof of Theorem 2.16 is technical, and relies on Lemmas 2.17 and 2.18.

Lemma 2.17. Let µ1 and µ2 be two stable matchings such that permutation σ = µ1|M tµ2|W
is not stable. Then one of the following three properties hold:

(1) One person p prefers their predecessor to their successor, that is σ−1(p) �p σ(p).
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µ1 ∨ µ2

µ1 ∨ σ µ2 ∨ σ

µ1 σ µ2

µ1 ∧ σ µ2 ∧ σ

µ1 ∧ µ2

O
rd
er
�
M

O
rder�

W

Figure 2.3. Lattice structure of stable permutations. The central permutation σ has 2 cycles
of length 4, and induces 3C(σ) = 9 sub-permutations, with 2C(σ) = 4 of them being matchings
(in gray).
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(2) There is a stable matching µ such that σ(p) �p µ(p) �p σ−1(p) for some p.

(3) There are two matchings µ and µ′, where µ is stable and µ′ is not, and such that
{µ(p), µ′(p)} = {µ1(p), µ2(p)} for all p.

Proof. If (1) holds the proof is finished. Thus we assume that each person p prefer their successor
to their predecessor, that is σ(p) �p σ−1(p). Consider that each person p truncates their preference
list and declare unacceptable persons to whom they prefer σ−1(p). Repeatedly using Lemma 2.6,
we show that each hypothesis/conclusion holds if and only if it holds under the original preferences.
For the rest of the proof we work with truncated preferences.

Consider the extremal stable matchings µM and µW . We have µM(m) = σ(m) = µ1(m) for
each man m, and µW(w) = σ(w) = µ2(w) for each woman w. Because σ is not stable, there is
a pair (m,w) such that m �w σ−1(w) and w �m σ−1(m). By stability of µM and µW , we have
µM(m) �m w �m µW(m) and µW(w) �w w �w µM(w). We use Algorithm 2.2 to enumerate stable
partners of w. Consider the matching µ obtained at the end of Algorithm 2.2 (when w accepts the
last proposal, from µW(w)). Using Theorem 2.5, matching µ is stable.

• If there is a person p such that σ(p) �p µ(p) �p σ−1(p), then (2) holds.

• If µ(m) = µW(m), then m proposed to w during the execution of Algorithm 2.2. Thus w
accepted at least one proposal before the last proposal from µW(w), which proves that w has
an intermediate stable partner, which proves (2).

• Otherwise, µ(m) = µM(m) and µ(p) ∈ {µM(p), µW(p)} for each person p. We consider the
matching µ′, such that µ′(p) ∈ {µM(p), µW(p)}\{µ(p)} for each person p. Then (m,w) blocks
µ′, which proves that (3) holds.

Lemma 2.18. A permutation σ is stable if and only if the following conditions hold:

• Every person p prefers their successor to their predecessor, that is σ(p) �p σ−1(p)

• If µ is a matching such that σ(p) �p µ(p) �p σ−1(p) for some p, then µ is not stable.

• If µ is a matching such that µ(p) ∈ {σ(p), σ−1(p)} for all p, then µ is stable.

Proof. Assuming that all three conditions hold, the contrapositive of Lemma 2.17 proves that σ
is stable. Conversely, assuming that σ is a stable permutation, then the first condition holds by
definition and the second holds because no pair can block µ without blocking σ. For the sake of
contradiction, assume that there is a stable matching µ such that σ(p) �p µ(p) �p σ−1(p) for some
person p. We are going to show that the pair (p, p′) with p′ = µ(p) blocks permutation σ. We
already know that p′ �p σ−1(p), and we are going to show that p �p′ σ−1(p′). Define a sequence
of persons (pk)k≥0 with p0 = p and pk+1 = µ(σ(pk)) for all k ≥ 0. By induction on k ≥ 0 we show
that

∀k ≥ 0, pk+1 �σ(pk) pk (because µ is stable and σ(pk) �pk µ(pk))

σ(pk+1) �pk+1
σ(pk) (because σ is stable and pk+1 �σ(pk) pk)

Because both σ and µ are permutations, the sequence is periodic and p = pk+1 for some k ≥ 0. For
such k, we have p′ = σ(pk) and p �p′ σ−1(p′), which contradicts the fact that σ is stable, which
proves that the third condition holds.
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Proof of Theorem 2.16. First, we assume that σ is stable and that C(σ) = 1. Lemma 2.18 shows
that µ1 and µ2 are stable, and that µ1 �M µ2. For the sake of contradiction, assume that there is
a stable matching µ such that µ1 �M µ �M µ2. Using Lemma 2.18, µ matches each person p with
µ1(p) or µ2(p). Because there is exactly C(σ) = 1 cycle, µ must be either equal to µ1 or µ2, which
is a contradiction.

We now assume that µ1 and µ2 are stable, and that µ1 ·�M µ2. For the sake of contradiction,
assume that σ is not stable and use Lemma 2.17. If (1) holds, we have a contradiction with
µ1 �M µ2. If (3) holds there is an intermediate matching µ1 �M µ �M µ2. If (2) holds, we use
Lemma 2.9 and show that there is also an intermediate matching. Finally, if C(σ) > 1, one can
build a matching µ distinct from µ1 and µ2, such that µ(p) ∈ {σ(p), σ−1(p)} for each person p.
Lemma 2.18 proves that µ is stable, and it is intermediate by construction. Having an intermediate
matching contradicts µ1 ·�M µ2, which concludes the proof.

2.4.2 Algorithm to compute stable permutations

Equipped with our understanding of the relation between stable matchings and stable permutations,
we can now design an algorithm to compute stable permutations.

Algorithm 2.3 Computing a stable permutation.
Input: Preferences of men (�m)m∈M and of women (�w)w∈W . Matching µ.
Initialize the function τ ← µ.
For each man m, do

If there is a woman w such that µ(m) �m w and m �w µ(w), then
Let w be m’s favourite partner among such women, and set τ(m)← w.

For each person p who does not belong to a cycle of τ , do
Set τ(p)← µ(p).

Output: Permutation σ = τ−1.

Theorem 2.19. Given a stable matching µ, Algorithm 2.3 outputs a stable permutation σ =∧{σ′ stable permutation such that σ′|M = µ|M}.

Proof. By construction, Algorithm 2.3 outputs a permutation σ such that σ|M = µ|M. For the
sake of contradiction, assume that σ is not stable: there is a blocking pair (m,w), where m �w
σ−1(w) = τ(w) = µ(w) and w �m σ−1(m) = τ(m). By stability of µ, we have µ(m) �m w. This
contradicts the fact that τ(m) is m’s favourite partner among such women. Thus σ is stable.

Let σ′ be a stable permutation such that σ′|M = µ|M. For each man m such that σ′−1(m) 6=
µ(m), we must have τ(m) = σ′−1(m). Because m belongs to a cycle of length > 2, he belongs to a
cycle in τ , and thus σ−1(m) = σ′−1(m).

2.4.3 Rotations

Stable permutations are closely related to the (more classical) concept of rotation, that was intro-
duced by Irving, Leather and Gusfield [IL86; GI89]. We view a rotation as a simple directed cycle
r in the complete bipartite graph overM∪W. When a person x ∈ M∪W belongs to the cycle,
we write x ∈ r, denote r(x) a successor and r−1(x) a predecessor. In a stable matching µ1, rotation
r is exposed and women-improving if for all man m, r(m) = µ1(m) and r−1(m) is m’s favourite
woman among women w to whom he prefers his wife (µ1(m) �m w), and who prefer m to their
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husband (m �w µ1(w)). Eliminating rotation r in matching µ1 creates a new stable matching µ2;
we have µ2 �W µ1.

∀m ∈M, µ2(m) =

{
r−1(m) if m ∈ r
µ1(m) if m /∈ r ∀w ∈ W, µ2(w) =

{
r(w) if w ∈ r
µ1(w) if w /∈ r

Symmetrically, rotation r is exposed and men-improving in stable matching µ2. Eliminating r in
µ2 creates stable matching µ1; we have µ1 �M µ2.

Given a matching µ and a set of disjoint rotations R, one can build the associated permutation
σR. If C(σ) is the number of cycles of length > 2 in σ, we have C(σR) = |R|. A corollary of
Theorem 2.19 is that σR is stable if and only if µ is stable and every rotation from R is exposed
and women-improving.

σR :


m 7→ µ(m) if m ∈M
w 7→ µ(w) if w ∈ W and w /∈ r for all r ∈ R
w 7→ r(w) if w ∈ W and w ∈ r for some r ∈ R

2.5 Birkhoff’s Representation Theorem

Birkhoff’s Representation Theorem [Bir37] states that any finite distributive lattice is isomorphic
to the lattice of lower sets of the partial order of its join-irreducible elements. Irving, Leather and
Gusfield [IL86; Gus87] proved that rotations are isomorphic to the join-irreducible stable matchings,
and gave efficient algorithms to compute the partially ordered set of rotations. For the statements
and proofs of those results, we refer the reader to the excellent book of Gusfield and Irving [GI89],
even though we believe that the proof of most of these results could be derived from Theorems 2.14,
2.15 and 2.16.

Because a theorem is best understood with a nice illustration, we implemented (in C++) the
algorithms of Irving, Leather and Gusfield, and generated several animations (in HTML, SVG and
Javascript) to visualize the correspondence between stable matchings and closed sets of rotations.
Figure 2.4 is a screenshot of one of those animations. Implementations are available at the following
address:

https://github.com/simon-mauras/stable-matchings/tree/master/Lattice

2.6 Many-to-one matching markets

The original motivation of Gale and Shapley [GS62] when introducing stable marriages was the
college admissions matching markets. Let S = {s1 . . . sS} be a set of S students, and let C =
{c1, . . . , cC} be a set of C colleges. Each agent has a capacity defined by b : S ∪ C → N, where
b(s) = 1 for each student s. Similarly to the one-to-one case, each agent gives a strict ordering on
itself and the members of the opposite side.

Definition 2.20 (Stable b-matching). Formally, a bipartite b-matching is a function ν : S ×
C → N, where each student s is paired with at most one college (

∑
c ν(s, c) ≤ 1), and where

each college c is matched with at most b(c) students (
∑

s ν(s, c) ≤ b(c)). For convenience, we
denote ν(a) the multi-set of agents with whom a is matched, possibly including multiple copies
of a itself in order to reach the capacity |ν(a)| = b(a).

A student-college pair (s, c) is blocking if s �c minc ν(c) and c �s mins ν(s), where mina
denotes the worst partner of a within a set. Abusing notations, observe that ν matches a agent

https://github.com/simon-mauras/stable-matchings/tree/master/Lattice
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1 2 3 4 5 6 7 8
A B C D E F G H
B A D C F E H G
C D A B G H E F
D C B A H G F E
E F G H A B C D
F E H G B A D C
G H E F C D A B
H G F E D C B A

A B C D E F G H
8 7 6 5 4 3 2 1
7 8 5 6 3 4 1 2
6 5 8 7 2 1 4 3
5 6 7 8 1 2 3 4
4 3 2 1 8 7 6 5
3 4 1 2 7 8 5 6
2 1 4 3 6 5 8 7
1 2 3 4 5 6 7 8

(1,B)(2,A) (4,C)(3,D) (6,E)(5,F) (7,H)(8,G)

(1,C)(4,B) (2,D)(3,A) (7,E)(6,H) (8,F)(5,G)

(1,D)(2,C) (3,B)(4,A)

(1,E)(8,D) (2,F)(7,C) (3,G)(6,B) (4,H)(5,A)

(1,F)(2,E) (8,C)(7,D)

(8,E)(7,F) (6,G)(5,H)

(1,G)(4,F) (2,H)(3,E) (5,C)(8,B) (6,D)(7,A)

(1,H)(2,G) (3,F)(4,E)

(4,G)(3,H) (5,B)(6,A)

(5,D)(6,C) (7,B)(8,A)

Preference lists Closed sets of rotations Lattice of stable matchings

Figure 2.4. Birkhoff’s Theorem states that the set of stable matchings is in correspondence
with upward closed sets of rotations (if one rotation belong to the set, all its ancestors also
do). The animation (with clickable matchings/rotations) is available at the following address:
https://www.irif.fr/~mauras/stablematchings/7/

a with an unacceptable partner when a would prefer to remain single, that is when the pair
(a, a) is blocking. A b-matching with no blocking pair is stable.

Observe that the definitions generalize the one-to-one setting (and would also work in a many-
to-many setting). A simple reduction allows us to transpose all the results from the one-to-one
setting.

Theorem 2.21. Define the sets M = {mi | i ∈ [S]} and W = {wkj | j ∈ [C], k ∈ [b(cj)]},
where colleges are duplicated to account for capacities. We build the preference list of each
man/women using the corresponding preferences of students/colleges, replacing si by mi and
replacing cj by w1

j � · · · � w
b(cj)
j .

• Given a matching µ :M∪W →M∪W, we build a b-matching ν.

ν :

{ S × C → N
(si, cj) 7→

∑
k 1[µ(mi) = wkj ]

• Given a b-matching ν, we build a matching µ :M∪W →M∪W such that µ(mi) = wkj
if ν(si, cj) = 1 and si is the k-th choice of cj in ν(cj); and mi otherwise.

Then a matching µ is stable if and only if the corresponding b-matching ν is stable.

https://www.irif.fr/~mauras/stablematchings/7/
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Proof. By construction, a person is matched with a non-acceptable partner in µ if and only if the
corresponding agent is matched with an acceptable partner in ν. If a pair (mi, w

k
j ) blocks µ, then

the pair (si, cj) will block ν. If a pair (si, cj) blocks ν, then the pair (mi, w
b(cj)
j ) will block µ.

2.7 Incentive compatibility

A procedure is Dominant Strategy Incentive Compatible (DSIC, also called strategy-proof or truth-
ful) if truth-telling is a (weakly) dominant strategy; that is if for every agent, reporting one’s true
preference list is weakly better than lying, whichever the other agents’ preferences are. When
misreporting their preferences, we will assume that agents are allowed to declare some partners
unacceptable, and we refer the reader to [TST01] for the case where agents are only allowed to
reorder their acceptable partners.

Dubins and Freedman [DF81] showed that the men-proposing deferred acceptance algorithm
is strategy-proof against coalitions of men, and symmetrically that the women-proposing deferred
acceptance algorithm is strategy-proof against coalitions of women. Interestingly, Roth [Rot82]
showed that even though deferred acceptance is truthful for the proposing side, no procedure which
selects a stable matching can be simultaneously truthful for men and women (see Figure 2.5 for a
counter example).

Gale and Sotomayor [GS85a] studied the extent to which women can manipulate in the men-
proposing deferred acceptance procedure, and showed that each woman can ensure that she is
matched with her best stable partner. Demange, Gale and Sotomayor [DGS87] investigated the
strategy-proofness of stable matching procedures against general coalitions containing men and
women, and proved Theorem 2.22 which generalizes the results from [DF81] and [GS85a]. The
proof if based on Lemma 2.23, credited to J.S. Hwang in a paper of Gale and Sotomayor [GS85b].
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m1 � m3 � m2
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Figure 2.5. No procedure which selects a stable matching can be simultaneously truthful
for men and women. The instance with original preferences has exactly two stable matchings,
µM and µW , that we represent using the corresponding stable permutation. If the procedure
selects µW , then m1 can misreport his preference to make sure that the only stable matching
is µM; whereas if the procedure selects µM, then w1 can misreport her preferences to make
sure that the only stable matching is µW .
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Theorem 2.22 (Adapted from [DGS87]). Given an instance of stable matching, let C ⊆
M∪W be a coalition of men and women who misreport their preferences. For every matching
µ stable under the misreported preferences, there is a matching µ′ stable under the original
preferences, such that µ′(p) � µ(p) for some p ∈ C.

Proof. For the sake of contradiction, assume that there is a matching µ stable under misreported
preferences of a coalition C, such that every person p ∈ C prefer µ to any matching µ′ stable under
the original preferences. Then we have:

∀m ∈ C ∩M, µ(m) �m µM(m) and ∀w ∈ C ∩W, µ(w) �w µW(w)

In particular, agents in the coalition strictly improved their outcome and thus are matched with
acceptable partners. Agents not in the coalition reported their true preferences and thus are matched
with acceptable partners. Without loss of generality, we assume that C∩M 6= ∅ (otherwise, swap the
roles of men and women). Using Lemma 2.23, there is a manm ∈M\C and a woman w ∈ µ(M∩C)
such that (m,w) blocks µ under the original preferences. Considering m′ = µ(w) ∈ C, we have
w = µ(m′) �m′ µM(m′), and thus µM(w) �w µ(w) = m′ by stability of µM, which proves that
w ∈ W \ C. Because neither m nor w belong to the coalition, they also block µ under misreported
preferences, which is a contradiction.

Lemma 2.23 (Adapted from [GS85b]). Let µ be a matching where each person is matched
with an acceptable partner, and let S = {m ∈ M | µ(m) �m µM(m)} be the set of men who
prefer µ to µM. If S is non-empty, then there is a man m ∈M\S and a woman in µ(S) such
that (m,w) blocks µ.

Proof. This is a corollary of the proof of Theorem 2.3, when we show that µM matches every man to
his favourite stable partner. A case by case analysis shows that the pair (m,w) blocking µ satisfies
m ∈M \ S and w ∈ µ(S).

Corollary 2.24 (Adapted from [DF81]). The men (resp. women) proposing deferred accep-
tance procedure is strategy-proof against coalitions of men (resp. women).

Proof. Assume that a coalition of men C misreport their preferences, such that the men optimal
stable matching becomes. Using Theorem 2.22, at least one of them prefers µM to µ′M, and thus
has no (strong) incentive to participate in the coalition.

Corollary 2.25 (Adapted from [GS85a]). Each person’s incentives to manipulate are bounded
by the difference between their worst and best stable partner. In particular, if there is a unique
stable matching, then any procedure which selects a stable matching is strategy-proof against
general coalitions.

Proof. Theorem 2.22 shows that a strategic agent p who misreport their preferences cannot get a
better outcome than their best stable partner p′. Conversely, a strategic agent p can truncate their
preference list after their best stable partner p′, which leads to a preference profile for which every
stable matching matches p and p′.

A natural question to ask is whether Corollary 2.24 extends to the many-to-one setting where
each college corresponds to a coalition. In particular, one might wonder if the college-proposing
deferred acceptance procedure is strategy-proof for colleges. The answer has been given by [Rot85],
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who built an instance (see Figure 2.6) where a college can misreport its preference list to get a strictly
better outcome than in the college optimal stable matching. The intuition is that Corollary 2.24
does not preclude the existence of a coalition of men where each man is weakly better and some men
are strictly better than in the men-optimal stable matching. The robustness of this phenomenon
was later explored by Huang [Hua06].
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s3

s4

c1

c2

c3

c3 � c1 � c2

c2 � c1 � c3

c1 � c3 � c2

c1 � c2 � c3

s1 � s2 � s3 � s4

s1 � s2 � s3 � s4

s3 � s1 � s2 � s4

capacity b(c1) = 2

capacity b(c2) = 1

capacity b(c3) = 1

Matchings:

µ

µ′

Figure 2.6. The college-proposing deferred acceptance procedure is not strategy-proof for
colleges. Observe that all colleges strictly prefer matching µ′ to matching µ. Under the
original preferences, µ is the unique stable matching. If college c1 reports the preference list
s2 � s4 � s1 � s3, then µ′ becomes the college optimal stable matching.
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We consider models where each person’s set of acceptable partners is deterministic, and orderings
of acceptable partners are drawn independently from a distribution. We say that preferences are
complete when every partner is acceptable. When unspecified, someone’s acceptable partners and/or
their ordering is adversarial, chosen by an adversary who knows the input model but does not know
the outcome of the random coin flips.

Critchlow, Fligner and Verducci [CFV91] wrote a nice survey on the different random models
on ranking that have been proposed in the statistical and psychological literature. They partition
existing model in four categories: (1) order statistics models, (2) ranking models induced by pairwise
comparisons, (3) ranking models based on distance between permutations and (4) multistage ranking
models. We will mainly focus on the class (1), which corresponds to cardinal preferences, and that
we will call utility preferences. In the matching literature, ordinal preferences have been modeled
by popularity preferences [IM15; KP09; Ash+21], which belong to both classes (1) and (4). Models
discussed in this thesis are summarized in Figure 3.1.

Popularity
(Definition 3.2)

Uniform
(Definition 3.1)

Anti-popularity
(Definition 3.3)

Conditionally-monotone (Definition 3.8)
Utility (Definition 3.5)

Additive Utility (Definition 3.6)

Figure 3.1. Classes of random preferences

3.1 Popularity-based preferences

The first and probably the most studied model of random preferences is the uniform distribution.

Definition 3.1 (Uniform preferences). We say that someone has uniform preferences if they
order uniformly at random the agents they declare acceptable.

The Choice Axiom is a property introduced by Luce [Luc59; Luc77], which is reminiscent of
the irrelevance of independent alternatives in voting theory. It states that when selecting the best
agent from a set, the probability to pick one agent over another is independent from the set of
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agents. This leads to a definition of distribution, where agents are picked from best to worst with
probability proportional to a positive value we call popularity.

Definition 3.2 (Popularity preferences). Someone has popularity preferences induced by P :
A→ R+ if they give popularity P (a) to each agent a ∈ A, where P (a) = 0 means that a is not
acceptable. They first build a “popularity” distribution over acceptable partners, where a has
probability P (a), scaled such that probabilities sum up to 1. Then they build a preference list
by sampling without replacement from this “popularity” distribution: they draws first their
favourite partner, then their second favourite, and so on until their least favourite partner.

As stated in [CFV91], popularity preferences are not reversible, in the sense that the mirror
ordering of popularity preferences are not popularity preferences, but is a class of distributions we
will call anti-popularity preferences.

Definition 3.3 (Anti-popularity preferences). Someone has anti-popularity preferences in-
duced by P : A→ R+ if they give popularity P (a) to each agent a ∈ A, where P (a) = 0 means
that a is not acceptable. They first build an “anti-popularity” distribution over acceptable
partners, where a has probability 1/P (a), scaled such that probabilities sum up to 1. Then
they build a preference list from the end, by sampling without replacement from this “anti-
popularity” distribution: they draw first their least favourite partner, then their second least,
and so on until their favourite partner.

Consider the following popularities

P (a1) = 8, P (a2) = 1, P (a3) = 4.

Then a2 � a1 � a3 with probability
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Figure 3.2. Popularity preference distribution

Consider the following popularities

P (a1) = 8, P (a2) = 1, P (a3) = 4.

Then a2 � a1 � a3 with probability

1/4
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Figure 3.3. Anti-popularity preference distribution

Given a popularity function P : A → R+, both the popularity and anti-popularity preferences
induce the same probabilities for pairwise comparisons, namely P[a1 � a2] = P (a1)/(P (a1)+P (a2)).
Thus, by linearity of expectation, the expected rank of each agent is the same under popularity and
anti-popularity preferences.

The difference between the two distributions comes from rare events. As an example, consider
the following situation: n agents a1, . . . an have popularity n, one agent b has popularity

√
n, and
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n agents c1, . . . , cn have popularity 1. In both settings, the expected rank of agent b is 1 + n:

E[rank of b] = 1 +
n∑
i=1

P[ai � b]︸ ︷︷ ︸
n

n+
√
n

+
n∑
i=1

P[ci � b]︸ ︷︷ ︸
1

1+
√
n

= 1 + n

Agents a1, . . . , an are popular, and can be ranked unusually low by anti-popularity preferences, thus
agent b will likely precede one of them. Agents c1, . . . , cn are unpopular, and can be ranked unusually
high by popularity preferences, thus one of them will likely precede agent b. More precisely, we have:

P[b � c1, . . . , cn] =

√
n√

n+ n · 1 ∼
1√
n

(Definition 3.2)

P[a1, . . . , an � b] =

1√
n

1√
n

+ n · 1
n

∼ 1√
n

(Definition 3.3)

Conversely, agents a1, . . . , an are likely to precede b in the popularity setting, and b is likely to
precede c1, . . . , cn in the anti-popularity setting.

P[a1 . . . , an � b] =

n∏
i=1

i · n
i · n+

√
n

= 1− ln(n)√
n
−O( 1√

n
) (Definition 3.2)

P[b � c1, . . . , cn] =

n∏
i=1

i · 1
1

i · 1
1 + 1√

n

= 1− ln(n)√
n
−O( 1√

n
) (Definition 3.3)
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Figure 3.4. Comparing the popularity and anti-popularity distributions: n agents a1, . . . , an
in black have popularity n, one agent b in red has popularity

√
n, and n agents in white have

popularity 1. Each panel plots 100 draws, agents are ordered from left to right.

Lemma 3.4. Consider a preference distribution � over at least 3 acceptable agents. Then
� is the uniform distribution if and only if it belongs to both the classes of popularity and
anti-popularity distributions.

Proof. Choosing P : a 7→ 1[a is acceptable] yields an incomplete uniform distribution, in both the
popularity and anti-popularity settings. Conversely, let a, b and c be three acceptable agents. Both
with popularity and anti-popularity preferences, we use pairwise comparisons to compute ratios of
popularities:

P[a � b]
P[b � a]

=
P (a)

P (b)

P[a � c]
P[c � a]

=
P (a)

P (c)

P[b � c]
P[c � b] =

P (b)

P (c)
.
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Thus, we can assume that popularity and anti-popularity preferences are induced by the same
popularity function P .

P (a)

P (a) + P (b) + P (c)
· P (b)

P (b) + P (c)
= P[a � b � c] =

1
P (c)

1
P (a) + 1

P (b) + 1
P (c)

·
1

P (b)

1
P (a) + 1

P (b)

(3.1)

P (c)

P (a) + P (b) + P (c)
· P (b)

P (b) + P (a)
= P[c � b � a] =

1
P (a)

1
P (a) + 1

P (b) + 1
P (c)

·
1

P (b)

1
P (c) + 1

P (b)

(3.2)

Computing the ratio between Equations (3.1) and (3.2), we obtain:

P (a)

P (c)
· P (a) + P (b)

P (c) + P (b)
=

P[a � b � c]
P[c � b � a]

=
P (a)2

P (c)2
· P (c) + P (b)

P (a) + P (b)
(3.3)

Defining f : x 7→ (1+x)2

x , Equation (3.3) can be rewritten into f(P (a)
P (b) ) = f(P (c)

P (b)). Assuming without
loss of generality that P (b) ≤ P (a), P (c), and because f is increasing on [1,+∞), we deduce that
P (a) = P (c). Symmetrically, one can show that that f( P (b)

P (a)) = f(P (c)
P (a)), and thus P (a) = P (b),

which proves that � is uniform.

3.2 Utility preferences

A more general class of random preferences are order statistics models. This class has been first
considered by Thurstone [Thu27] and later studied by Daniels [Dan50]. The main postulate is
that the person establishing a ranking observes a stimuli Xi for each option i, and sorts them by
increasing order of Xi. If we allow arbitrary dependencies between Xi any distribution over rankings
can be obtained, thus the assumption is made that Xi’s are independent. We will call those models
utility preferences, as they are well suited to model cardinal utilities, first considered by Pareto
[Par19].

Definition 3.5 (Utility preferences). Someone has utility preferences if they draw indepen-
dently a (continuous) random utility Ua for each agent a ∈ A they find acceptable, then sort
acceptable partners by decreasing utility.

Definition 3.6 (Additive utility preferences). Utility preferences are additive if utilities are
equal to constants plus identical shocks, that is if all Ua − E[Ua] are identically distributed.

Interestingly, we now show that popularity and anti-popularity preferences are additive utility
preferences. This property is discussed in [Luc77], and will be useful to us to give a general definition
of aligned and symmetric preferences.

Lemma 3.7. Popularity and anti-popularity preferences are additive utility preferences.

Proof. Popularity preferences are also known as Luce model [Luc59; Luc77]. Given a popularity
function P : A → R+, we define an exponential random variable Xa ∼ Exp(P (a)) for each agent
a ∈ A with positive popularity. We will show that sorting agents by increasing Xa yields the same
distribution as popularity preferences.

• We define X = mina∈AXa and Y = arg mina∈AXa. Classical results on exponential random
variable show that X and Y are independent, that X ∼ Exp(

∑
a∈A P (a)), and that P[Y =

y] = P (y)/
∑

a∈A P (a) for all y ∈ A.
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• Moreover, the memory-less property of exponential variables says that Xa has the same dis-
tribution as (Xa − x) when conditioning on the fact that Xa > x with x ∈ R+.

• We first draw (X,Y ), let the best agent be Y , and condition on the fact that Xa > X for
every other a 6= Y . We proceed by induction, and show that we obtain exactly the same
distribution as popularity preferences.

To obtain additive utility preferences, we set Ua = − ln(Xa), and we have

∀t ∈ R, P[Ua ≤ t] = P[Xa ≥ e−t] = e−P (a)e−t = F (t− ln(P (a))).

where F : x 7→ e−e
−x is the cumulative distribution function of a Gumbel distribution (also known

as double-exponential distribution), whose probability density function is f : x 7→ e−(x+e−x), and
whose expected value is the Euler-Mascheroni constant γ ≈ 0.5772. Thus Ua− ln(P (a)) are Gumbel
random variables, and Ua − E[Ua] are identically distributed.

Symmetrically, anti-popularity preferences can be obtained by sorting agents by decreasing
Xa ∼ Exp(1/P (a)). To obtain additive utility preferences we set Ua = ln(Xa), and we have

∀t ∈ R, P[Ua ≤ t] = P[Xa ≥ et] = e−e
t/P (a) = F (ln(P (a))− t).

Thus ln(P (a))− Ua are Gumbel random variables, and Ua − E[Ua] are identically distributed.

ln(2)

Ua2

Ua1

Ua3

ln(2)

Ua2

Ua1

Ua3

Popularity preferences Anti-popularity preferences

Figure 3.5. Popularity and anti-popularity preferences are additive utility preferences. Each
panel plots the probability density functions of Ua1 , Ua2 and Ua3 , when three agents {a1, a2, a3}
have respectively popularity P (a1) = 4, P (a2) = 1 and P (a3) = 8.

We now define the conditional-monotonicity, which is a rather natural regularity condition: if
we know that a2 is ranked first among a2, . . . , ak, then it is less likely that a person a1 will be ranked
before a2. This property will be used in Chapter 4.

Definition 3.8 (Conditionally-monotone distribution). A distribution of preferences lists is
conditionally-monotone when for every sequence of acceptable partners a1, . . . , ak we have
P[a1 � a2 | a2 � · · · � ak] ≤ P[a1 � a2].

Lemma 3.9. Utility preferences are conditionally-monotone

Proof. Given a random utility U and two real constants x ≥ y, we have

P[x > U > y] = P[x > U ] + P[U > y]− 1 ≤ P[x > U ] · P[U > y].
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Observe that the inequality also holds if x < y. For each i, let us denote Ui the utility given to
agent ai and let xi be a constant. The equation above can be rewritten to

P[x1 > U2 > x3 > · · · > xk] ≤ P[x1 > U2] · P[U2 > x3 > · · · > xk].

We conclude the proof, integrating over x1, x3, . . . , xk using the law of total probability, and applying
Fubini’s Theorem to the right-hand-side of the inequality

P[U1 > U2 > U3 > · · · > Uk] ≤ P[U1 > U2] · P[U2 > U3 > · · · > Uk].

3.3 Correlated preferences

To model “one sided” correlations, we define aligned preferences. As an example, consider the
market of PhDs and post-doc positions. All the PhDs might prefer university X to university Y,
and all the universities might prefer Alice to Bob.

Definition 3.10 (Aligned preferences). A set of agents have aligned utility preferences if the
utilities they give to the same acceptable partner are identically distributed.

In order to model “cross sided” correlations, we introduce symmetric preferences. Imagine that
Alice has a very good thesis in Computer Science, because of her skills she will most likely apply
for a post-doc in a very good computer science department; symmetrically this university will most
likely rank Alice first.

Definition 3.11 (Symmetric preferences). Agents have symmetric utility preferences if for
every pair of agents from opposite sides who find each other acceptable, the utilities they give
to each other are identically distributed.

In Lemma 3.12, we show that when all agents have additive utility preferences, such that id-
iosyncratic shocks are identically distributed, then symmetric preferences are strictly more general
than aligned preferences.

Lemma 3.12. Assume that agents have additive utility preferences with identical shocks. If
both sides have aligned preferences, then they have symmetric preferences.

Proof. Assume that U − E[U ] has distribution ν ∈ ∆(R) for each utility U . Using the fact that
preferences are aligned, define ua the expected utility given to agent a. We set the utility an agent
a will give to an acceptable partner b to Ua,b = ua + ub + Xa,b with Xa,b ∼ ν. Two agents from
opposite side will give each other identically distributed utilities, and the resulting preferences are
identical to the original aligned preferences.



Part II

Who can manipulate?
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4 | Strongly Correlated Preferences

This chapter is based on the following paper:

[GMM21b] Hugo Gimbert, Claire Mathieu, and Simon Mauras. “Two-Sided Matching Markets with
Strongly Correlated Preferences”. In: Fundamentals of Computation Theory. Springer.
2021, pp. 3–17

4.1 Introduction

As discussed in Chapter 2 there exists instances of the stable matching problem where the men-
optimal and women-optimal stable matchings are different. This raises the question of which match-
ing to choose [Gus87; GI89] and of possible strategic behavior [DF81; Rot82; DGS87]. More pre-
cisely, we showed in Section 2.7 that if a woman lies about her preference list, this gives rise to
new stable matchings, where she will be no better off than she would be in the true women-optimal
matching. Thus, a woman can only gain from strategic manipulation up to the maximum difference
between her best and worst partners in stable matchings.

Fortunately, there is empirical evidence that in many instances, in practice the stable match-
ing is essentially unique (a phenomenon often referred to as “core-convergence”); see for example
[RP99; PS08; HHA10; Ban+13]. One of the empirical explanations for core-convergence given by
Roth and Peranson in [RP99] is that the preference lists are correlated: “One factor that strongly
influences the size of the set of stable matchings is the correlation of preferences among programs
and among applicants. When preferences are highly correlated (i.e., when similar programs tend
to agree which are the most desirable applicants, and applicants tend to agree which are the most
desirable programs), the set of stable matchings is small.”

Following that direction of enquiry, we study the core-convergence phenomenon, in a model
where preferences are stochastic. When preferences of women are strongly correlated (vertical),
Theorem 4.1 shows that the expected difference of rank between each woman’s worst and best
stable partner is a constant, hence the incentives to manipulate are limited. If additionally the
preferences of men are uncorrelated (horizontal), Theorem 4.15 shows that most women have a
unique stable partner, and therefore have no incentives to manipulate. To complete the scenery,
Theorem 4.19 shows that when both sides have strongly correlated preferences (vertical), stable
matchings are assortative.

Related work. In a closely related paper, Holzman and Samet [HS14] look at a deterministic
setting. Reindexing a summation, they show that if each man m is given almost the same rank by
all women (rank difference ≤ δ), then women give in average almost the same ranks to their worst
and best stable partners (average rank difference ≤ δ). This result is closely related to Theorem 4.1,
where we bound individually the difference of rank of each woman’s worst and best stable partners.
Additionally, if each person (men and women) is given almost the same rank by others (rank
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difference ≤ δ), then two persons paired in a stable matching give each other similar ranks (rank
difference ≤ 2δ). This is closely related to Theorem 4.19, where we bound the difference of index
|i − j| between a man mi and a woman wj matched in a stable matching. Using such techniques
in a stochastic setting would give high probability bounds which depends on the number of agents.
Instead, we are able to give constant upper bounds on expected values.

Analyzing instances that are less far-fetched than in the worst case is the motivation underlying
the model of stochastically generated preference lists. A series of papers [Pit89; KMP90; Pit92;
PSV07; LP09] study the model where N men and N women have complete uniformly random
preferences. Asymptotically, and in expectation, a fixed woman w gives rank ∼ lnN to her best
stable husband, and rank ∼ N/ lnN to her worst stable husband. More recent papers have studied
the robustness of those results to variations around the uniform model. Ashlagi, Kanoria and
Leshno [AKL17], Kanoria, Min and Qian [KMQ21], and Ashlagi, Braverman, Saberi, Thomas and
Zhao [Ash+21] study the rank of each person’s partner, under the men and women optimal stable
matchings, as a function of the market imbalance [AKL17], the size of preference lists [KMQ21], or
as a function of each person’s (bounded) popularity [Ash+21]. Even if the techniques involved are
quite different, such results can be compared to Theorem 4.1, which bounds the difference of rank
between a woman’s worst and best stable partner.

The first theoretical explanations of the “core-convergence” phenomenon where given in [IM15]
and [AKL17]. Immorlica and Mahdian [IM15] consider the case where men have constant size
random preferences (truncated popularity preferences). Ashlagi, Kanoria and Leshno [AKL17],
consider slightly unbalanced matching markets (M < W ). Both articles prove that the fraction of
persons with several stable partners tends to 0 as the market grows large. Theorem 4.15 and its
proof incorporate ideas from those two papers.

Beyond strong “core-convergence”, where most agents have a unique stable partner, one can try
to compute what each person gets. Lee [Lee16] considers a model with random cardinal utilities:
when an agent is matched with a partner, its utility is a function of the partner intrinsic value
(which induce vertical preferences) and of a private idiosyncratic value (which induces horizontal
preferences). Lee shows that stable matching are assortative and match agents having similar public
values, which effectively bounds the difference in utility between each person worst and best stable
partner. Such results can be compared with Theorem 4.19, and serve as a transition to the second
part of this thesis which is dedicated to the question “who gets what?”.

Beyond one-to-one matchings, school choice is an example of many-to-one markets. Kojima and
Pathak [KP09] generalize results from [IM15] and prove that most schools have no incentives to ma-
nipulate. Azevedo and Leshno [AL16] show that large markets converge to a unique stable matching
in a model with a continuum of students. To counter balance those findings, Biró, Hassidim, Romm
and Shorer [Bir+20], and Rheingans-Yoo [RS20] argue that socioeconomic status and geographic
preferences might undermine core-convergence, thus some incentives remain in such markets.

Takeaway message. It is well established that incentives of agents are related to how “balanced”
the market is. When the market is unbalanced, some agents from the large side will be single,
and agents from the small side will never be matched to agents to whom they prefer someone
single. Therefore, only stable matchings which are nearly optimal for the small side will remain.
Ashlagi, Kanoria and Leshno [AKL17] showed that removing one man is enough for the set of stable
matching to collapse. Immorlica and Mahdian [IM15] observed this phenomenon when agents have
small preference lists. Conversely, Biró, Hassidim, Romm and Shorer [Bir+20], and Rheingans-Yoo
[RS20] show that “locally balanced” structures create an opportunity for multiple stable matchings.
We argue that this fact gives an intuitive interpretation of our results. When one side of the
market has vertical (strongly correlated) preferences and the other side has horizontal (uniform)
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preferences, the market is highly unbalanced, which explains the strong conclusion of Theorem 4.15.
When both sides have vertical preferences we observe locally balanced groups, which explain the
relatively weaker conclusion of Theorem 4.19.

4.2 Vertical - Arbitrary preferences

When women have strongly correlated preferences, it induces a canonical ordering of men. Infor-
mally speaking, we will refer to this situation as “vertical preferences”. The following theorem shows
that every woman gives approximately the same rank to all of her stable partners.

Theorem 4.1. Assume that each woman independently draws her preference list from a conditionally-
monotone distribution. The men’s preference lists are arbitrary. Let uk be an upper bound on
the odds that man mi+k is ranked before man mi:

∀k ≥ 1, uk = max
w,i

{
P[mi+k �w mi]

P[mi �w mi+k]

∣∣∣∣ w finds both mi and mi+k acceptable
}

Then for each woman with at least one stable partner, in expectation all of her stable partners
are ranked within (1 + 2 exp(

∑
k≥1 kuk))

∑
k≥1 k

2uk of one another in her preference list.

Theorem 4.1 is most relevant when the women’s preference lists are strongly correlated, that
is, when every woman’s preference list is “close” to a single ranking m1 � m2 � . . . � mM . This
closeness is measured by the odds that in some ranking, some man is ranked ahead of a man who,
in the ranking m1 � m2 � . . . � mM , would be k slots ahead of him.

We detail below three examples of applications, where the expected difference of ranks between
each woman’s best and worst partners is O(1), and thus her incentives to misreport her preferences
are limited.

• Identical preferences. If all women rank their acceptable partners using a master list m1 �
m2 � · · · � mM , then all uk’s are equal to 0. Then Theorem 4.1 states that each woman has
a unique stable husband, a well-known result for this type of instances.

• Preferences from identical popularities. Assume that women have popularity preferences (Def-
inition 3.2) and that each woman gives man mi popularity 2−i. Then uk = 2−k and the
expected rank difference is at most O(1).

• Preferences from correlated utilities. Assume that women have additive utility preferences
(Definition 3.6), where each woman w gives man mi a score that is the sum of a common
value i and an idiosyncratic value ηwi which is normally distributed with mean 0 and variance
σ2; she then sorts men by increasing scores. Then we have the upper-bound uk ≤ maxw,i {2 ·
P[ηwi − ηwi+k > k]} ≤ 2e−(k/2σ)2 and the expected rank difference, by a short calculation, is at
most 4

√
πσ3(1 + 2e4σ2

) = O(1).

In Section 4.2.1, we define a partition of stable matching instances into tiers. For strongly
correlated instances, tiers provide the structural insight to start the analysis: in Lemma 4.6, we use
them to upper-bound the difference of ranks between a woman’s worst and best stable partners by
the sum of (1) the number x of men coming from other tiers and who are placed between stable
husbands in the woman’s preference list, and (2) the tier size.

The analysis requires a delicate handling of conditional probabilities. In Section 4.2.2, we explain
how to condition on the men-optimal stable matching, when preferences are random.
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Section 4.2.3 analyzes (1). The men involved are out of place compared to their position in the
ranking m1 � . . . � mM , and the odds of such events can be bounded, thanks to the assumption
that distributions of preferences are conditionally-monotone. Our main technical lemma there is
Lemma 4.8.

Section 4.2.4 analyzes (2), the tier size by first giving a simple greedy algorithm (Algorithm 4.1)
to compute a tier. Each of the two limits of a tier is computed by a sequence of “jumps", so the
total distance traveled is a sum of jumps which, thanks to Lemma 4.8 again, can be stochastically
dominated by a sum X of independent random variables (see Lemma 4.12); thus it all reduces to
analyzing X, a simple mathematical exercise (Lemma 4.13).

Finally, Section 4.2.5 combines the Lemmas previously established to prove Theorem 4.1. Our
analysis builds on Theorems 2.3 and 2.4, two fundamental and well-known results.

4.2.1 Separators and tiers

In this subsection, we define the tier structure underlying our analysis.

Definition 4.2 (separator). A separator is a set S ⊆M of men such that in the men-optimal
stable matching µM, each woman married to a man in S prefers him to all men outside S :

∀w ∈ µM(S) ∩W, ∀m ∈M \ S, µM(w) �w m

Lemma 4.3. Given a separator S ⊆ M, every stable matching matches S to the same set of
women.

Proof. Let w ∈ µM(S) and let m be the partner of w in some stable matching. Since µM is
the woman-pessimal stable matching by Theorem 2.3, w prefers m to µM(w). By definition of
separators, that implies that m ∈ S. Hence, in every stable matching µ, women of µM(S) are
matched to men in S. By a cardinality argument, men of S are matched by µ to µM(S).

Definition 4.4 (prefix separator, tier). A prefix separator is a separator S such that S =
{m1,m2, . . . ,mt} for some 0 ≤ t ≤ N . Given a collection of b + 1 prefix separators Si =
{m1, . . . ,mti} with 0 = t0 < t1 < · · · < tb = N , the i-th tier is the set Bi = Sti \ Sti−1 with
1 ≤ i ≤ b. Abusing notations, we will denote S as the prefix separator t and B as the tier
(ti−1, ti]. See Figure 4.1 for an illustration.

Lemma 4.5. Given a tier B ⊆M, every stable matching matches B to the same set of women.

Proof. B equals Sti \ Sti−1 for some i. We apply Lemma 4.3 to Sti and to Sti−1 .

Lemma 4.6. Consider a woman w who is matched with man mn by µM and let B = (l, r]
denote her tier. Let x denote the number of men from a better tier that are ranked by w between
a man of B and mn:

x = |{i ≤ l | ∃j > l, mj �w mi �w mn}|.
Then in w’s preference list, the difference of ranks between w’s worst and best stable partners
is at most x+ r − l − 1.

Proof. Since µM is woman-pessimal by Theorem 2.3, mn is the last stable husband in w’s preference
list. Let mj denote her best stable husband.
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µM(m1)

m1

µM(m2)

m2

µM(m3)

m3

µM(m4)

m4

µM(m5)

m5

µM(m6)

m6

µM(m7)

m7

µM(m8)

m8

µM(m9)

m9

µM(m10)

m10

m10 ≺µM(m8) m8

m10 �µM(m9) m9

Figure 4.1. Graphical representation of prefix separators. Black cells corresponds to the men
optimal stable matching µM. Each gray cell corresponds to “half of a blocking pair”, where a
woman prefer a man to her husband in µM. Prefix separators define 3 tiers: (0, 2], (2, 8] and
(8, 10]

.

In w’s preference list, the interval from mj to mn contains men from her own tier, plus possibly
some additional men. Such a man mi comes from outside her tier (l, r] and she prefers him to mn:
since r is a prefix separator, we must have i ≤ l. Thus x counts the number of men who do not
belong to her tier but who in her preference list are ranked between mj and mn.

On the other hand, the number of men who belong to her tier and who in her preference list are
ranked between mj and mn (inclusive) is at most r − l.

Together, the difference of ranks between w’s worst and best stable partners is at most x+ (r−
l)− 1. See Figure 4.2 for an illustration.

m1 m3 m7 m2 m8 m6 m9 m5 m10 w6 m4� � � � � � � � � �

µW(w) µM(w) unacceptable

≤ x+ r − l − 1

l = 2, r = 8 and x = 1

mi with i ≤ l
mi with l < i ≤ r
mi with r < i

x = |{ | ∃ , � � }|

Figure 4.2. Preference list of w = µM(mn) with n = 6. The tier of w is defined by a left
separator at l = 2 and a right separator at r = 8. Colors white, gray and black corresponds
to tiers, and are defined in the legend. All stable partners of w must be gray. Men in black
are all ranked after mn = µM(w). The difference in rank between w’s worst and best partner
is at most the number of gray men (here r − l = 6), minus 1, plus the number of white men
ranked after a gray man and before mn (here x = 1).
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4.2.2 Conditioning when preferences are random

We study the case where each person draws her preference list from an arbitrary distribution.
The preference lists are random variables, that are independent but not necessarily identically
distributed.

Intuitively, we use the principle of deferred decision and construct preference lists in an online
manner. By Theorem 2.3 the man-optimal stable matching µM is computed by Algorithm 2.1, and
the remaining randomness can be used for a stochastic analysis of each person’s stable partners.
To be more formal, we define a random variable H, and inspection of Algorithm 2.1 shows that H
contains enough information on each person’s preferences to run Algorithm 2.1 deterministically.

Definition 4.7. Let H = (µM, (σm)m∈M, (πw)w∈W) denote the random variable consisting of
(1) the man-optimal stable matching µM, (2) each man’s ranking of the women he prefers to
his partner in µM, and (3) each woman’s ranking of the men who prefer her to their partner
in µM.

4.2.3 Analyzing the number x of men from other tiers

Lemma 4.8. Recall the sequence (uk)k≥1 defined in the statement of Theorem 4.1:

∀k ≥ 1, uk = max
w,i

{
P[mi+k �w mi]

P[mi �w mi+k]

∣∣∣∣ w finds both mi and mi+k acceptable
}

Let w be a woman. Given a subset of her acceptable men and a ranking of that subset a1 �w
· · · �w ap, we condition on the event that in w’s preference list, a1 �w · · · �w ap holds. Let
mi = a1 be w’s favorite man in that subset. Let Ji be a random variable, equal to the highest
j ≥ i such that woman w prefers mj to mi. Formally, Ji = max{j ≥ i | mj �w mi}. Then,
for all k ≥ 1, we have

P[Ji < i+ k | Ji < i+ k + 1] ≥ exp(−uk), and P[Ji < i+ k] ≥ exp(−∑`≥k u`).

Proof. Ji is determined by w’s preference list. We construct w’s preference list using the following
algorithm: initially we know her ranking σA of the subset A = {a1, a2, . . . , ap} of acceptable men,
and mi = a1 is her favorite among those. For each j from N to i in decreasing order, we insert mj

into the ranking according to the distribution of w’s preference list, stopping as soon as some mj

is ranked before mi (or when j = i is that does not happen). Then the step j ≥ i at which this
algorithm stops equals Ji.

To analyze the algorithm, observe that at each step j = N,N − 1, . . ., we already know w’s
ranking of the subset S = {mj+1, . . . ,mN} ∪ {a1, . . . , ap} ∪ {men who are not acceptable to w}. If
mj is already in S, w prefers mi to mj , thus the algorithm continues and Ji < j. Otherwise the
algorithm insertsmj into the existing ranking: by definition of conditionally-monotone distributions
(Definition 3.8), the probability that mj beats mi given the ranking constructed so far is at most
the unconditional probability P[mj �w mi].

P[Ji < j | w’s partial ranking at step j] ≥ 1− P[mj �w mi].

By definition of uj−i, we have 1−P[mj �w mi] =
(

1 +
P[mj�wmi]
P[mi�wmj ]

)−1
≥ (1+uj−i)

−1 ≥ exp(−uj−i).
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Summing over all rankings σS of S that are compatible with σA and with Ji ≤ j,

P[Ji < j | Ji ≤ j] =
∑

σS compatible with
Ji≤j and with σA

P[σS | σA] · P[Ji < j | σS ]

≥
∑
σS

P[σS | σA] · exp(−uj−i) = exp(−uj−i).

Finally, P[Ji < j] =
∏N
`=j P[Ji < ` | Ji ≤ `] ≥

∏
k≥j−i exp(−uk).

Recall from Lemma 4.6 that r− l− 1 + x is an upper bound on the difference of rank of woman
w’s worst and best stable husbands. We first bound the expected value of the random variable x
defined in Lemma 4.6.

Lemma 4.9. Given a woman w = µM(mn), define the random variable x as in Lemma 4.6:
conditioning on H, x = |{i ≤ l | ∃j > l, mj �w mi �w mn}| is the number of men in a better
tier, who can be ranked between w’s worst and best stable husbands. Then E[x] ≤∑k≥1 kuk.

Proof. Start by conditioning on H, and let mn = a1 �w a2 �w · · · �w ap be w’s ranking of men
who prefer her to their partner in µM. We draw the preference lists of each woman wi with i < n,
and use Algorithm 4.1 to compute the value of l.

For each i ≤ l, we proceed as follows. If mn �w mi, then mi cannot be ranked between w’s
worst and best stable partners. Otherwise, we are in a situation where mi �w a1 � w · · · �w ap.
Using notations from Lemma 4.8, w prefers mi to all mj with j > l if and only if Ji < l + 1. By
Lemma 4.8 this occurs with probability at least exp(−∑k≥l+1−i uk). Thus

P[∃j > l, mj �w mi �w mn | H, l] ≤ 1− exp(−∑k≥l+1−i uk) ≤
∑

k≥l+1−i uk.

Summing this probability for all i ≤ l, we obtain E[x | H, l] ≤∑i≤l
∑

k≥l+1−i uk ≤
∑

k≥1 kuk.

4.2.4 Analyzing the tier size

Lemma 4.10. Given n such that man mn is matched in in µM, Algorithm 4.1 outputs the
tier (l, r] containing n.

Algorithm 4.1 Computing a tier
Initialization:
Compute the man optimal stable matching µM.
Relabel women so that wi denotes the wife of mi in µM
Let n be such that man wn = µM(mn).
Left prefix separator: initialize l← n− 1
While there exists i ≤ l and j > l such that mj �wi mi, do

l← min{i ≤ l | ∃j > l, mj �wi mi} − 1.
Right prefix separator: initialize r ← n.
While there exists j > r and i ≤ r such that mj �wi mi, do

r ← max{j > r | ∃i ≤ r, mj �wi mi}.
Output: (l, r].
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Proof. Algorithm 4.1 is understood most easily by following its execution on Figure 4.3. Algo-
rithm 4.1 applies a right-to-left greedy method to find the largest prefix separator l which is ≤ n−1.
By definition of prefix separators, a witness that some t is not a prefix separator is a pair (mj , wi)
where j > t ≥ i and woman wi prefers man mj to her partner: mj >wi mi. Then the same pair also
certifies that no t′ = t, t− 1, t− 2, . . . , i can be a prefix separator either, so the algorithm jumps to
i − 1 and looks for a witness again. When there is no witness, a prefix separator has been found,
thus l is the largest prefix separator ≤ n− 1. Similarly, Algorithm 4.1 computes the smallest prefix
separator r which is ≥ n. Thus, by definition of tiers, (l, r] is the tier containing wn.

Women
µM

Men
m1 ml+1 mn mr mN

w1 wl+1 wn wr wN

Nrnl0

Figure 4.3. Computing the tier containing n. The vertical black edges correspond to the
men-optimal stable matching µM. There is a light gray arc (mj , wi) if j > i and woman wi
prefers man mj to her partner: mj �wi mi. The prefix separators correspond to the solid red
vertical lines which do not intersect any gray arc. Algorithm 4.1 applies a right-to-left greedy
method to find the largest prefix separator l which is ≤ n − 1, jumping from dashed red line
to dashed red line, and a similar left-to-right greedy method again to find the smallest prefix
separator r which is ≥ n. This determines the tier (l, r] containing n.

Definition 4.11. Let X be the random variable defined as follows. Let (∆t)t≥0 denote a
sequence of i.i.d.r.v.’s taking non-negative integer values with the following distribution:

∀δ > 0, P[∆t < δ] = exp
(
−∑k≥δ kuk

)
Then X = ∆0 + ∆1 + · · ·+ ∆T−1, where T is the first t ≥ 0 such that ∆t = 0.

Lemma 4.12. Given a woman w = µM(mn), let (l, r] denote the tier containing n. Condi-
tioning on H, l and r are integer random variable, such that r−n and n−1−l are stochastically
dominated by X.

Proof. Conditioning on H, we know the men-optimal stable matching µM, and each woman’s rank-
ing of the men who prefer her to their partner in µM. We relabel women so that wi denotes the
wife of mi in µM. Using notations from Lemma 4.8, let Ji = max{j ≥ i | mj �wi mi}, for all
1 ≤ i ≤M .

We start with a stochastic domination of r − n. From Lemma 4.10, the right separator r is
computed with a while loop. Let r0 = n be the initial value of r. To decide whether r0 is a
separator, we look at wn’s preference list. Let r1 = Jn be the maximum j ≥ n such that wn
prefer mj to mn. If r1 = r0, wn prefers mn to all men mj with j > n, and r0 is a prefix separator.
Otherwise, no prefix separator can exist between r0 and r1. Using Lemma 4.8, r1−r0 is stochastically
dominated by ∆0.

∀δ > 0, P[r1 − r0 < δ | H] = P[Jn < n+ δ | H] ≥ exp(−∑k≥δ uk) ≥ P[∆0 < δ]
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For all t > 0, we proceed by induction. To decide whether rt is a separator, we look at the
preference lists of w1+rt−1 , . . . , wrt . Let rt+1 = max{J1+rt−1 , . . . , Jrt} be the maximum j ≥ rt such
that a woman wi prefer mj to mi, with rt−1 < i ≤ rt. If rt+1 = rt, then rt is a prefix separator.
Otherwise, no prefix separator can exist between rt and rt+1. We show that ∆t stochastically
dominates rt+1 − rt.

∀δ > 0,P[rt+1 − rt < δ | H, Jn, . . . , Jrt−1 ]

=

rt∏
i=1+rt−1

P[Ji < rt + δ | H, Jn, . . . , Jrt−1 ]

≥
rt∏

i=1+rt−1

exp(−∑k≥rt+δ−i uk) (Lemma 4.8)

≥ exp(−∑k≥δ kuk) = P[∆t < δ]

Summing up to t such that rt+1 = rt proves that X stochastically dominates r − n.
We now prove that X stochastically dominates n− 1− l. From Lemma 4.10, the left separator

l is computed with a while loop, and let l0 = n − 1 be its initial value. To decide whether l0 is
a prefix separator, we need to know if a woman wi prefers a man mj to her husband mi, with
i ≤ l0 < j. More formally, l0 is a prefix separator if and only if Ji ≤ l0 for all i ≤ l0. Defining
l1 = min{i ≤ lt + 1 | Ji > lt} − 1, l1 = l0 if and only if l0 is a separator. Using Lemma 4.8, l1 − l0
is stochastically dominated by ∆0.

∀δ > 0, P[l0 − l1 < δ | H] = P[J1, . . . , Jl0−δ+1l0 | H]

≥ exp(−∑k≥δ uk)

≥ P[∆0 < δ]

For all t > 0, we proceed by induction and let lt+1 = min{i ≤ lt + 1 | Ji > lt} − 1. More precisely,
lt+1 + 1 is the minimum i ≤ lt + 1 such that wi prefer a man mj to her husband mi with j > lt. If
lt+1 = lt, then lt is a prefix separator, and the process stop here. Otherwise, no prefix separator can
exist between lt+1 and lt. A crucial property is that for all i ≤ lt+1, the best man in wi’s partial
list is still mi, hence Lemma 4.8 will still be applicable the next step.

∀δ > 0, P

[
lt − lt+1 < δ

∣∣∣∣ J1, . . . , Jlt ≤ lt−1

H, l0, . . . , lt

]
=

lt−δ+1∏
i=1

P [Ji ≤ lt | Ji ≤ lt−1,H]

≥
lt−δ+1∏
i=1

exp(−∑k≥lt+1−i uk) (Lemma 4.8)

≥ exp(−∑k≥δ kuk) = P[∆t < δ]

Summing up to t such that lt+1 = lt proves that X stochastically dominates n− 1− l.

Lemma 4.13. We have E[X] ≤ exp(
∑

k≥1 kuk)
∑

k≥1 k
2uk.

Proof. From Wald’s equation, E[X] = E[T ] · E[∆0]. The random variable T is geometrically dis-
tributed, with a success parameter P[∆0 = 0], hence E[T ] = 1/P[∆0 = 0]. Because ∆0 only takes
non-negative integer values, we can compute its expectation with a sum.

E[∆0] =
∑
δ≥0

P[∆0 > δ] =
∑
δ≥0

1− exp
(
−∑k>δ kuk

)
≤
∑
δ≥0

∑
k>δ

kuk =
∑
k≥1

k2uk
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Lemma 4.14. Assuming that uk = exp(−Ω(k)), we have P[X ≥ k] = exp(−Ω(k)).

Proof. Let GX(z) = E[zX ] be the probability generating function of X, which is defined at least
for all real z such that |z| < 1. In addition if GX(1 + ε) is finite for some ε > 0, then Markov’s
inequality gives

∀k ≥ 0, P[X ≥ k] = P[(1 + ε)X ≥ (1 + ε)k] ≤ GX(1 + ε) exp(−k ln(1 + ε)) = exp(−Ω(k)).

Computing GX using Definition 4.11, and conditioning on the value of T .

GX(z) = E[zX ] =

+∞∑
t=0

P[T = t] · E
[
z
∑t−1
i=0 ∆i

∣∣∣ ∀i ∈ [0, t− 1], ∆i > 0
]

Using the fact that all ∆i’s are i.i.d. we can simplify the expectation of the product.

GX(z) = ·
+∞∑
t=0

P[T = t] · E
[
z∆0

∣∣ ∆0 > 0
]t

= GT
(
E
[
z∆0

∣∣ ∆0 > 0
])

The conditional expectation can be expressed as follows.

G∆0(z) = E
[
z∆0
]

= P[∆0 > 0] · E
[
z∆0

∣∣ ∆0 > 0
]

+ P[∆0 = 0]

E
[
z∆0

∣∣ ∆0 > 0
]

=
G∆0(z)− P[∆0 = 0]

P[∆0 > 0]

Now let us compute the generating function of T .

GT (z) = E[zT ] =
+∞∑
t=0

zt · P[T = t] =
+∞∑
k=0

zt · P[∆0 > 0]t · P[∆0 = 0] =
P[∆0 = 0]

1− z · P[∆0 > 0]

Combining the three previous equations we obtain

GX(z) =
P[∆0 = 0]

1 + P[∆0 = 0]−G∆0(z)

Because of the assumption on women’s preference distributions, we have uk = exp(−Ω(k)). Hence,

∀δ ≥ 1, P[∆0 = δ] = P[∆0 < δ+1]−P[∆0 < δ] = exp(−∑k>δ kuk)(1−exp(−δuδ)) ≤ δuδ = exp(−Ω(δ))

Thus, the convergence radius of G∆0 is strictly greater than 1. Because G∆0 is a probability
generating function, it is continuous, strictly increasing, and G∆0(1) = 1. Therefore, there exists
ε > 0 such that G∆0(1 + ε) < 1 + P[∆0 = 0], which concludes the proof.

4.2.5 Putting everything together

Proof of Theorem 4.1. Without loss of generality, we may assume that N = M ≤W and that each
man is matched in the man-optimal stable matching µM: to see that, for each man m we add
a “virtual” woman w as his least favorite acceptable partner, such that m is the only acceptable
partner of w. A man is single in the original instance if and only if he is matched to a “virtual”
woman in the new instance.

We start our analysis by conditioning on the random variable H (see Definition 4.7). Algo-
rithm 2.1 then computes µM, which matches each woman to her worst stable partner. Up to
relabeling the women, we may also assume that for all i ≤ N we have wi = µM(mi).

Let wn be a woman who is married in µM. From there, we use Lemma 4.6 to bound the difference
of rank between her worst and best stable partner by x+ r− l− 1 = x+ (r− n) + (n− l− 1). We
bound the expected value of x using Lemma 4.9, and the expected values of both r−n and n− l−1
using Lemmas 4.12 and 4.13.
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4.3 Vertical - Horizontal preferences

A stronger notion of approximate incentive compatibility is near-uniqueness of a stable matching,
meaning that most persons have either no or one unique stable partner, and thus have no incentive
to misreport their preferences. When does that hold? One answer is given by Theorem 4.15.

Theorem 4.15. Assume that each woman independently draws her preference list from a
conditionally-monotone distribution. Let uk be an upper bound on the odds that man mi+k

is ranked before man mi:

∀k ≥ 1, uk = max
w,i

{
P[mi+k �w mi]

P[mi �w mi+k]

∣∣∣∣ w finds both mi and mi+k acceptable
}

Further assume that all preferences are complete, that uk = exp(−Ω(k)), and that men have
popularity preferences where each woman’s popularity is between 1 and a constant P . Then, in
expectation the fraction of persons who have multiple stable partners is O(P ln2N/N).

Notice that in the three examples of Theorem 4.1, the sequence (uk)k≥1 is exponentially decreas-
ing. The assumptions of Theorem 4.15 are minimal in the sense that removing one would bring us
back to a case where a constant fraction of woman have multiple stable partners.

• Preference lists of women. If we remove the assumption that uk is exponentially decreasing,
the conclusion no longer holds: consider a balanced market balanced (M = W ) in which both
men and women have complete uniformly random preferences; then most women have ∼ lnN
stable husbands [KMP90; Pit92]

• Preference lists of men. Assume that men have random preference built as follows: starting
from the ordering w1, w2, . . . , wM , each pair (w2i−1, w2i) is swapped with probability 1/2, for
all i. A symmetric definition for women’s preferences satisfy the hypothesis of Theorem 4.15,
with u1 = 1 and uk = 0 for all k ≥ 2. Then there is a 1/8 probability that men m2i−1 and
m2i are both stable partners of women w2i−1 and w2i, for all i, hence a constant expected
fraction of persons with multiple stable partners.

• Incomplete preferences. Consider a market divided into groups of size 4 of the form {m2i−1,m2i, w2i−1, w2i},
where a man and a woman are mutually acceptable if they belong to the same group. Once
again, with constant probability, m2i−1 and m2i are both stable partners of women w2i−1 and
w2i.

The proof first continues the analysis of tiers started in Section 4.2.4. When uk = exp(−Ω(k)),
it can be tightened with a mathematical analysis to prove (Lemma 4.17) that with high probability,
no tier size exceeds O(log n), and that in addition, in her preference list no woman switches the
relative ordering of two men mi and mi+Ω(logn). The rest of the proof assumes that those properties
hold. The only remaining source of randomness comes from the preference lists of men.

The intuition is that it is hard for man mi to have another stable partner from his tier. Because
we assume that mi has popularity preferences with bounded popularities, his list is likely to have
some woman wj with j � i between wi and the next person from his tier. Woman wj likes mi

better than her own partner, because of the no-switching property, and mi likes her better than his
putative second stable partner, so they form a blocking pair preventing mi’s second stable partner.
Transforming that intuition into a proof requires care because of the need to condition on several
events.
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4.3.1 Typical instances

Definition 4.16. Let C = O(1) be a constant to be defined later. Let K denote the event that
every tier has size at most C lnN , and every woman prefers man mi to man mi+k for every i,
whenever k ≥ C lnN .

Lemma 4.17. One can choose C = O(1) such that the probability of event K is ≥ 1− 1/N2.

Proof. For the first case of failure, recall from Lemma 4.14 that the size of a tier has an exponential
tail. Thus we can choose C such that the probability of a given tier has a size greater than C logN
is at most 1/(2N3). There are at most N tiers, using the union bound the probability that at least
one has a size exceeding C logN is at most 1/(2N2).

For the second case of failure, notice that the probability for a woman to prefer a man mj to a
another man mi with j > i+C lnN ≤ j is at most uj−i = e−Ω(j−i) = N−CΩ(1). Thus we can choose
C such that the probability of this happening is smaller than 1/(2N5). Using the union bound over
all triples of woman/mi/mj , the probability of a failure is at most 1/(2N2).

Choosing C maximal between the two values, and using the union bound over the two possible
cases of failure, the probability that K does not holds is at most 1/N2.

4.3.2 Blocking pairs

Lemma 4.18. Fix i ∈ [1, N ]. Conditioning on H and on K, the probability that woman
w = µM(mi) has more than one stable husband is at most 3PC lnN/(N + C lnN − i).

Women

Men
mi

wi w∗

. . .

C lnN C lnN C lnN

Figure 4.4. Proof of Lemma 4.18: the probability that wi has several stable husbands is
smaller than the ratio |Y |/(|Y |+ |G|)

Proof. Once again, relabel women so that wi denotes the wife of mi in µM. Say that a woman
wk with k 6= i and to whom mi prefers wi is “red” if k ≤ i − C lnN , “yellow” if i − C lnN < k ≤
i + 2C lnN , and “green” if i + 2C lnN < k. Let R, Y and G be the sets of red, yellow and green
women. Women who are not colored are ranked by mi better than wi, his best stable partner, so
they cannot be stable partners of mi.

If woman wi has another stable partner besides mi, then man mi also has at least one other
stable partner. Because of K, every red woman wk prefers mk to mi. Since mk is her worst stable
partner, there is no stable marriage in which mi is paired with wk. Thus all stable partners of mi

must be among Y ∪G.
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Let w∗ be mi’s favorite woman among Y ∪ G. We will argue that if w∗ ∈ G then wi is mi’s
unique stable partner. Assume, for a contradiction, that mi has another stable partner w besides
wi, and consider that stable matching µ. By Lemma 4.3, w must belong to i’s tier. By K and since
w∗ ∈ G, w∗ is in a different tier, so w 6= w∗. Consider the pair (mi, w

∗). By definition of w∗, man
mi prefers w∗ to w. By K and definition of G, w∗ prefers mi to the man of her tier to whom she is
married in µ. So (mi, w

∗) is a blocking pair, contradicting stability of µ. This proves

P[wi has more than 1 stable partner] ≤ P[w∗ ∈ Y ].

Recall that mi has popularity preferences. Once we condition on H, the preferences of mi are
still popularity preferences over all the women to whom mi prefers wi. Event K only depends on
the women’s preference lists, so conditioning on K does not change that. Because popularities are
bounded between 1 and P ≥ 1, women in Y are at most P times more popular that women in G,
and we have

P[w∗ ∈ Y ] ≤ |Y | · P
|Y | · P + |G| ≤

3PC lnN

3PC lnN + |G|
where the second inequality comes from the fact that |Y | ≤ 3C lnN . Finally, we argue that
all women wj with j > i + 2C lnN are in G. Consider a woman wj with j > i + 2C lnN .
Conditioning on K, wj prefers mi to her partner wj in µM, so by stability of µM, man mi prefers
wi to wj , so wj ∈ G. Hence, conditioning on H and K, we have |G| = N − i − 2C lnN , and thus
3PC lnN + |G| ≥ N + C lnN − i.

4.3.3 Putting everything together

Proof of Theorem 4.15. As in the previous proof, in our analysis we condition on event H (see
Definition 4.7), i.e. on (1) the man-optimal stable matching µM, (2) each man’s ranking of the
women he prefers to his partner in µM, and (3) each woman’s ranking of the men who prefer her
to their partner in µM. As before, a person who is not matched in µM remains single in all stable
matchings, hence, without loss of generality, we assume that M = W = N , and that wi = µM(mi)
for all 1 ≤ i ≤ N .

Let Z denote the number of women with several stable partners. We show that in expectation
Z = O(ln2N), hence the fraction of persons with multiple stable partners converges to 0. We
separate the analysis of Z according to whether event K holds. When K does not hold, we bound
that number by N , so by Lemma 4.17: E[Z] ≤ (1/N2)×N + (1− 1/N2)× E(Z|K).
Conditioning on H and switching summations, we write:

E(Z|K) =
∑
H P[H] · E(Z|K,H) =

∑
i

∑
H P[H] · P[wi has several stable husbands | K,H]

By Lemma 4.18, we can write:

P[wi has several stable husbands | K,H] ≤ 3PC lnN

N + C lnN − i .

Hence the expected number of women who have several stable partners is at most 1/N plus
N∑
i=1

3PC lnN

N + C lnN − i =

N−1∑
i=0

3PC lnN

i+ C lnN

≤ 3PC lnN

∫ C logN−1+N

C logN−1

dt

t

= 3PC lnN ln

(
C logN − 1 +N

C logN − 1

)
When N is large enough, we can simplify this bound to 3PC ln2N .
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4.4 Vertical - Vertical preferences

To complete the scenery, we study the case where both sides have strongly correlated preferences.
This section serves as a transition towards the second part of this thesis: Who gets what?

We assume that men have aligned (Definition 3.10) popularity preferences (Definition 3.2), such
that woman wi has popularity P (wi) = λi with 0 < λ < 1 and 1 ≤ i ≤ W . Notice that it is a
special case of conditionally monotone distribution, where the odds of woman wi+k being ranked
before woman wi is equal to λk.

Theorem 4.19. Assume that each woman independently draws her preference list from a
conditionally-monotone distribution. Let uk be an upper bound on the odds that man mi+k

is ranked before man mi:

∀k ≥ 1, uk = max
w,i

{
P[mi+k �w mi]

P[mi �w mi+k]

∣∣∣∣ w finds both mi and mi+k acceptable
}

Further assume that all preferences are complete, and that men have aligned popularity pref-
erences where woman wi has popularity P (wi) = λi with 0 < λ < 1. Then for each man mi,
all of his stable partners are woman wj where |i − j| ≤ δ, such that in expectation we have
E[δ] ≤ 2λ/(1− λ)3 + 2 exp(

∑
k≥1 kuk)

∑
k≥1 k

2uk.

The proof adapts the analysis from Section 4.2, and build tiers at the same time as the men-
optimal stable matching µM. In Section 4.4.1, we run Algorithm 2.1 and decide to always pick
the first single man in the order m1, . . . ,mM to propose. Each time a woman receives her first
proposal we check if all women who received offers prefer their current partners to men who have
not proposed yet. If the answer is yes, we just found a prefix separator, and we can safely forget
about men who already proposed and women who already received a proposal.

In Section 4.4.2 we use the fact that men have aligned popularity preferences: a crucial observa-
tion is that the order in which women receive their first proposal follows the popularity preferences
distribution. Finally, we prove Theorem 4.19 in Section 4.4.3

4.4.1 Stochastic domination

Algorithm 4.2 Compute the interval of women with whom man mn can be matched.
Initialize the set of super separators S ← {0}.
For i from 1 to M , do

Set the proposer to be m← mi

While the proposer is has not proposed to every woman, do
m draws the next woman wj in his preference list.
If woman wj is single, then

Set σ(i)← j, tentatively match m with wj , and draw the preference list of wj .
If all women wσ(1), . . . wσ(i) prefer their current partner to mi+1, . . . ,mM , then

Add i to the set of super separators S ← S ∪ {i}.
Break out of the while loop.

else if wj prefer m to her current partner m′ then
Tentatively match wj with m, and set the proposer to m← m′.

Let l and r be two consecutive super separators such that n ∈ (l, r].
Output the interval [a, b], where a← min([1,W ] \ σ([1, l])) and b← max(σ([1, r])).
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Lemma 4.20. Given n, Algorithm 4.2 computes an interval [a, b] such that all the stable wifes
of man mn belong to the set {wa, wa+1, . . . , wb}.

Proof. We show that super-separators (in Algorithm 4.2) are separators (see Definition 4.4): if at
some iteration 1 ≤ i ≤M all women prefer their current partner tomi+1, . . . ,mM , then their current
partner is the one from µM. Remark that not all separators are super-separators. Two consecutive
super-separators l and r such that n ∈ (l, r] define a super-tier, which is the union of (possibly)
several consecutive tiers. Thus, all stable partners of man mn belong to the set {wσ(l+1), . . . , wσ(r)}.
Let a be minimal such that woman wa does not belong to {wσ(1), . . . , wσ(l)}, and let b be maximal
such that wb belongs to {wσ(1), . . . , wσ(r)}. By construction, all the stable wifes of man mn belong
to the set {wa, . . . , wb}.

Lemma 4.21. Given n, the super-separators l and r defined by Algorithm 4.2 are such that
r − n and n− 1− l are both stochastically dominated by X from Definition 4.11.

Proof. To prove that X dominates r−n, we adapt the proof of Lemma 4.12. The way we compute
the super-separator r is nearly identical to the left-to-right greedy method from Algorithm 4.1.
Starting from r0 = n, we let r1 be the maximum i for which a woman w ∈ {wσ(1), . . . , wσ(n)}
prefer mi to her current partner. The jump r1 − r0 is dominated by the random variable ∆0 from
Definition 4.11. We define the sequence (rt)t≥1 by induction, and bound each jump rt+1− rt by ∆t.
This concludes the proof that X dominates r − n.

To prove that X dominates n − 1 − l, we make the following observation: if n − 1 − l > δ for
some constant δ, then r ≥ n − δ − 1 > l and n′ = n − δ − 1 belongs to the same super-tier as n.
In particular we have r − n′ > δ, which happens with probability smaller that P[X > δ] using the
stochastic domination of r − n′ by X.

4.4.2 Sequence of proposals

Recall that we assume that men have identical popularity preferences over women, such that woman
wi has popularity P (wi) = λi with 0 < λ < 1 and 1 ≤ i ≤ W . When running Algorithm 4.2, we
sample preferences of men online, and record each time a proposal is made to a woman for the first
time. Lemma 4.22 shows that the random ordering induced by first proposals has exactly the same
distribution as the popularity preferences induced by P . Lemma 4.23 gives an upper bound on the
probability of rare events.

Lemma 4.22. Assuming that all men have aligned (Definition 3.10) complete popularity pref-
erences (Definition 3.2) induced by P : W → R∗+. The ordering wσ(1) � · · · � wσ(M) defined
in Algorithm 4.2 has the same distribution as the popularity preferences.

Proof. The ordering σ is defined by the order in which women receive their first proposal. In
particular, if we condition on the beginning σ(1), . . . , σ(k) of the ordering, then σ(k + 1) is drawn
at random from [1,W ] \ σ([1, k]), and is equal to j with probability proportional to P (wj). This
stochastic process is identical to the one used to build popularity preferences.

Lemma 4.23. Consider complete popularity preferences, such that each woman wi has popu-
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larity P (wi) = λi with 0 < λ < 1 and 1 ≤ i ≤W . For every 1 ≤ k ≤W and δ > 1,

P[∃i ≤ k − δ, woman wi is not ranked in the top k] ≤ λδ+1

(1− λ)2
= exp(−Ω(δ))

P[∃i > k + δ, woman wi is ranked in the top k] ≤ λδ+1

(1− λ)2
= exp(−Ω(δ))

Proof. Let i ≤ k − δ. If wi is not ranked in the top k, it means that at least one woman among
wk+1, . . . , wW is ranked in the top k, and thus that wi is not ranked before all of them.

P[wi is not ranked in the top k] ≤ 1− P[wi � wk+1, . . . , wW ]

= 1− λi

λi +
∑W

j=k+1 λ
j

≤
∑W

j=k+1 λ
j

λi
≤ λk+1−i

1− λ

Using the union-bound, we sum the upper bound for every i ≤ k − δ. We obtain

P[∃i ≤ k − δ, woman wi is not ranked in the top k] ≤
k−δ∑
i=1

λk+1−i

1− λ ≤
λδ+1

(1− λ)2

Let i > k + δ. If wi is ranked in the top k, it means that at least one woman among w1, . . . , wk is
not ranked in the top k, and thus that wi is ranked before one of w1, . . . , wk.

P[wi is ranked in the top k] ≤ P[wi is ranked before one of w1, . . . , wk]

≤
k∑
j=1

P[wi � wj ] =
k∑
j=1

λi

λi + λj
≤ λi−k

1− λ

Using the union-bound, we sum the upper bound for every i > k + δ. We obtain

P[∃i > k + δ, woman wi is ranked in the top k] ≤
W∑

i=k+δ+1

λi−k

1− λ ≤
λδ+1

(1− λ)2

4.4.3 Putting everything together

Proof of Theorem 4.19. Given n, we use Algorithm 4.2 to compute the interval [a, b] in which all
stable partners of mn belong.

First, we use Lemma 4.21 to show that both r−n and n−1−l are stochastically dominated byX.
Hence, in Algorithm 4.2 we can replace the definition of r and l by r′ = n− x1 and l′ = n− 1− x2

where x1 and x2 are drawn from the same distribution as X. The modified algorithm gives an
interval [a′, b′] which stochastically dominates the original interval (that is, a dominates a′, and b′

dominates b).
Second, we change the order in which Algorithm 4.2 computes σ, l′ and r′. Because the random

variables l′ and r′ are independent from σ, they can be computed at the beginning. Conditioning
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on the values of l′ and r′, we use Lemmas 4.22 and 4.23 to bound a′ and b′.

E[b′ − r′] =
∑
δ≥0

P [b′ − r′ > δ] ≤
∑
δ≥0

λδ+1

(1− λ)2
≤ λ

(1− λ)3

E[l′ − a′ + 1] =
∑
δ≥0

P [l′ − a′ ≥ δ] ≤
∑
δ≥0

λδ+1

(1− λ)2
≤ λ

(1− λ)3

Finally, we write b′ − n = (b′ − r′) + x1 and n− a′ = (l′ − a′ + 1) + x2.

4.5 Simulations

Implementations of two-sided matching markets with popularity preferences are shared between
Chapters 4, 8 and 5, and are available at the following address:

https://github.com/simon-mauras/stable-matchings/tree/master/Popularity

For simulation purposes, consider that women have aligned popularity preferences induced by
P : mi 7→ 2−i. The odds of man mi+k being ranked before man mi is exactly equal to uk = 2−k. In
Figures 4.5, 4.6 and 4.7, men have random preferences ranging from horizontal to vertical. Figure 4.5
plots the match probabilities, Figure 4.6 plots the expected ranks of each person’s worst and best
stable partner, and Figure 4.7 plots the number of stable partners of each person.

Using Theorem 4.1, the expected rank difference between a woman’s worst and best stable
partner is at most (1 + 2 exp(

∑
k≥1 k · uk)

∑
k≥1 k

2 · uk, which is equal to (1 + 2e2) · 6 ≈ 95 when
uk = 2−k. Figures 4.6 and 4.7 confirms this result, and even shows that our upper-bound can
be improved when preferences of men are not adversarial. Using Theorem 4.15, the fraction of
women who have multiple stable partners tends towards 0 when men have uniform preferences. In
Figure 4.7, panel (c) confirms this result, and panel (a) shows that the hypothesis on the preferences
of men is necessary. Using Theorem 4.19, stable matchings are assortative when men and women
have vertical preferences. More precisely, we can bound the difference of index |i − j| between a
man mi and a woman wj who are matched in a stable matching. Figure 4.6 confirms this result,
and show that our upper-bound can be improved.

Finally, simulations illustrate the intuitive explanation of our results in terms of imbalance that
we sketched in the introduction. When the preferences of agents from one side of the market are
strongly correlated, it creates small “tiers” of agents on the opposite side. When the correlations
between preferences of women are stronger than correlation between preferences of men, tiers of men
are smaller than tiers of women, which creates an imbalance. Any imbalance is favorable for the
agents in the small side of the market, who have a larger set of choices for partners. This explains
why men give smaller rank to their stable partners in Figure 4.6.

4.6 Conclusion and open questions

In this chapter, we explore the effect of correlated preferences on the core-convergence phenomenon.
We show that the effect is strongest in the vertical-horizontal case, that is when correlations induce
an imbalance in the market. The following questions are left open for future work:

• Deterministic core-convergence. As discussed in the introduction, Holzman and Samet
[HS14] give deterministic analogues of Theorems 4.1 and 4.19. Finding sufficient conditions
for a deterministic version of Theorem 4.15 would be an interesting result.

https://github.com/simon-mauras/stable-matchings/tree/master/Popularity


48 CHAPTER 4. STRONGLY CORRELATED PREFERENCES

• Rank correlation coefficients. In statistics, correlations between rankings are usually
measured by distances such as Kendall’s τ and Spearman’s ρ coefficients. In Mallow’s model,
rankings are drawn with probability exponentially decreasing in Kendall’s τ distance with a
base ranking. Unfortunately, such distributions are not conditionally-monotone and thus our
proof techniques do not apply. However, it would be interesting to understand the relation
between the value of a correlation coefficient and the core-convergence phenomenon. Computer
simulations from Celik and Knoblauch [CK07] make a first step in this direction.
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(a) Men have “vertical” preferences: popularity distribution with P : wi 7→ 0.5i.
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(b) Men have “vertical” preferences: popularity distribution with P : wi 7→ 0.9i.
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(c) Men have “horizontal” preferences: uniform distribution.
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Figure 4.5. Probability of a man and a woman being matched, under the men-optimal-stable-
matching (MOSM) and the women-optimal-stable-matching (WOSM). Women have “vertical”
preferences, built using the popularities distribution P : mi 7→ 0.5i. Plots contain the average
values over 106 runs, with 100 men and 100 women.
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(a) Men have “vertical” preferences: aligned popularity P : wi 7→ 0.5i distribution.
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(b) Men have “vertical” preferences: aligned popularity P : wi 7→ 0.9i distribution.
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(c) Men have “horizontal” preferences: uniform distribution.
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Figure 4.6. Expected rank of each person’s partner, under the men-optimal-stable-matching
(MOSM) and the women-optimal-stable-matching (WOSM). Women have “vertical” prefer-
ences, built using the popularities distribution P : mi 7→ 0.5i. Plots contain the average values
over 106 runs, with 100 men and 100 women.
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(a) Men have “vertical” preferences: popularity distribution with P : wi 7→ 0.5i.

0 10 20 30 40 50 60 70 80 90 100
man's id

0

1

2

3

4

5

outcomes for men

1 + log(nbWomen)
1 + delta rank worst/best partner
number of stable partners

0 10 20 30 40 50 60 70 80 90 100
woman's id

0

1

2

3

4

5

outcomes for women

1 + log(nbMen)
1 + delta rank worst/best partner
number of stable partners

(b) Men have “vertical” preferences: popularity distribution with P : wi 7→ 0.9i.
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(c) Men have “horizontal” preferences: uniform distribution.
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Figure 4.7. Number of stable partners of each person. Women have “vertical” preferences,
built using the popularities distribution P : mi 7→ 0.5i. Plots contain the average values over
106 runs, with 100 men and 100 women.





5 | Counting Stable Pairs

This chapter is based on the following paper:

[GMM19] Hugo Gimbert, Claire Mathieu, and Simon Mauras. “Two-Sided Matching Markets
with Correlated Random Preferences Have Few Stable Pairs”. In: arXiv preprint
arXiv:1904.03890 (2019)

5.1 Introduction

As discussed in Chapter 2, matching markets with a unique stable matching are incentive compat-
ible, in the sense it is a dominant strategy for every agent to be truthful. Empirically, researchers
have observed that in practice, there is often a nearly unique stable matching. This is the core-
convergence phenomenon, which gives weaker notions of strategy-proofness where the incentives of
agents to manipulate are limited. In Chapter 4, we bound the fraction of agents who have multiple
stable partners and the difference in rank/utility between someone’s worst and best stable partner.

As an attempt to model real matching markets, a series of papers [Pit89; KMP90; Pit92; PSV07;
LP09] study the setting where N men and N women have complete random uniform preferences over
one another: the expected rank of each person’s best and worst partners are respectively ∼ lnN and
∼ N/ lnN . In such situations, measuring the number of agents with multiple stable partners and
the rank difference between those partners is insufficient, and it is interesting to look at alternative
measures: the expected number of stable matchings is ∼ e−1N lnN , and the expected total number
of stable pairs is ∼ N lnN .

In order to quantify “weak core-convergence”, we argue that counting the total number of stable
pairs is a good measure, whereas counting the number of stable matchings is not. Figure 5.1 gives
three instances of stable matchings with N men and N women. We observe that the number
of stable matchings can be arbitrarily large, because of multiple independent sub-markets having
multiple stable matchings. Conversely, the total number of stable pairs has the nice property of
measuring how different stable matchings are. This motivates our decision to study the number of
stable pairs, even though this measure is not directly related to incentive compatibility.

Theorem 5.1. Assume that either (1) or (2) holds:

(1) Women have aligned popularity preferences,

(2) Men and women have symmetric popularity preferences.

Then expected number of stable pairs is at most N(1 + lnN).

In this chapter, we give upper bounds on the total number of stable pairs when preference are
drawn from popularity distributions (see Definition 3.2). In particular, when agents have aligned
(see Definition 3.10) or symmetric (see Definition 3.11) popularity preferences, Theorem 5.1 shows
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(a) The preferences of agents are almost
aligned, with several local swaps. Each
person has 2 stable partners, and the mar-
ket can be decomposed into N/2 indepen-
dent sub-markets, each having 2 stable
matchings.

Nb. stable pairs = 2N

Nb. stable matchings = 2N/2

1 2 3 4 5 6 7 8 9 10
A B A A A A A A A A
B A B B B B B B B B
C C C D C C C C C C
D D D C D D D D D D
E E E E E F E E E E
F F F F F E F F F F
G G G G G G G H G G
H H H H H H H G H H
I I I I I I I I I J
J J J J J J J J J I

A B C D E F G H I J
2 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2
3 3 4 3 3 3 3 3 3 3
4 4 3 4 4 4 4 4 4 4
5 5 5 5 6 5 5 5 5 5
6 6 6 6 5 6 6 6 6 6
7 7 7 7 7 7 8 7 7 7
8 8 8 8 8 8 7 8 8 8
9 9 9 9 9 9 9 9 10 9
10 10 10 10 10 10 10 10 9 10

Preference lists Lattice of stable matchings

(b) The preferences of agents have been
drawn uniformly at random.

E[Nb. stable pairs] ∼ N lnN

E[Nb. stable matchings] ∼ e−1N lnN

1 2 3 4 5 6 7 8 9 10
D H A C H F C E F I
G G E G F D G B J J
J C I A J J B J G F
H I G E G H J G C B
B E H H C B D A B D
F A B F I E A C E A
C F D B B G I I D H
E D C I A C E H A C
I B F J D I F D H G
A J J D E A H F I E

A B C D E F G H I J
3 4 3 2 9 8 6 8 9 3
4 8 10 4 3 4 8 1 1 9
5 5 1 9 1 9 9 2 4 1
2 7 4 10 10 10 7 3 7 10
7 10 7 1 5 6 3 10 2 8
1 2 8 3 8 2 5 4 6 4
8 9 6 7 7 7 10 9 8 7
6 1 9 5 2 3 2 6 5 5
9 3 2 6 4 1 4 5 3 2
10 6 5 8 6 5 1 7 10 6

Preference lists Lattice of stable matchings

(c) The preferences of agents are cyclic,
such that for each man m and woman w
the sum of the ranks of m in w’s list and
w in m’s list is equal to N + 1.

Nb. stable pairs = N2

Nb. stable matchings = N

1 2 3 4 5 6 7 8 9 10
A B C D E F G H I J
B C D E F G H I J A
C D E F G H I J A B
D E F G H I J A B C
E F G H I J A B C D
F G H I J A B C D E
G H I J A B C D E F
H I J A B C D E F G
I J A B C D E F G H
J A B C D E F G H I

A B C D E F G H I J
2 3 4 5 6 7 8 9 10 1
3 4 5 6 7 8 9 10 1 2
4 5 6 7 8 9 10 1 2 3
5 6 7 8 9 10 1 2 3 4
6 7 8 9 10 1 2 3 4 5
7 8 9 10 1 2 3 4 5 6
8 9 10 1 2 3 4 5 6 7
9 10 1 2 3 4 5 6 7 8
10 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10

Preference lists Lattice of stable matchings

Figure 5.1. Three instances with N = 10 men and N = 10 women having complete prefer-
ences. From top to bottom, the number of stable matchings (on the right) is decreasing and the
number of stable pairs (in blue, on the left) is increasing. We argue that weak core-convergence
is best captured by a small number of stable pairs.
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that the expected total number of stable pairs is at most N(1+lnN), which matches the asymptotic
value when agents have uniform preferences. Our main technical result is Theorem 5.4, which bound
the expected number of stable husbands of a woman having popularity preferences, via a stochastic
analysis of Algorithm 2.2, which generalize the upper bound from [KMP90]. We prove Theorem 5.1
in Section 5.5 and we give high probability bounds in Section 5.6. To illustrate our results, we
provide a tight example in Section 5.4 and we present experimental results in Section 5.7.

Related works. Wilson [Wil72] and Knuth [Knu76] show that when men have uniform prefer-
ences, the average complexity of the men proposing deferred acceptance procedure is ∼ N logN ,
which implies that the expected rank of each person’s best stable partner is ∼ lnN . Pittel [Pit89]
show that when both men and women have uniform preferences, the expected rank of each person’s
worst stable partner is N/ lnN , and that the expected number of stable matchings is ∼ e−1N lnN .
Knuth, Motwanni and Pittel [KMP90; Pit92] show that the expected number of stable husbands
of each woman is ∼ lnN , where the upper bound holds when women have uniform preferences and
the lower bound holds when both men and women have uniform preferences.

Takeaway message. We argue that counting stable pairs quantifies “weak core-convergence”
when most agents do not have a unique stable partner but the situation is still far from being worst
case. To give an intuitive interpretation of our results, one can examine Figure 5.1: in panel (a),
preferences of agents are positively correlated (almost aligned), and the number of stable pairs is
low; in panel (b), preferences are uncorrelated (uniformly distributed), and the number of stable
pairs is intermediate; in panel (c), preferences are negatively correlated (cyclic and reversed), and
the number of stable pairs is high. We model positive correlations using symmetric or aligned
popularity preferences. Theorem 5.1 show that the uniform case is a worst case situation when
compared to the positively correlated case. In a related paper, Boudreau and Knoblauch [BK10]
discuss positive and negative “intercorrelations” of preferences and their effect on the overall welfare.

5.2 Popularity preferences

Recall that in our model for probability preferences, the set of acceptable partners is determinis-
tic. To build her preference list, w samples without replacement from her set of acceptable men,
first drawing her favourite partner, then her second favourite, and so on until her least favourite
acceptable partner.

Lemma 5.2. Assume that a woman w has popularity preferences defined by Pw. Conditioning
on a partial ranking of acceptable men a1 �w · · · �w ap, the probability that w rank m before
a1 is exactly

P[m �w a1 | a1 �w · · · �w ap] =
Pw(m)

Pw(m) +
∑p

i=1 Pw(ai)

Proof. One nice feature of popularity preferences is that to compute the probability that a1 �w
· · · �w ap, one can ignore each time a man not in {a1, . . . , ap} is drawn. We obtain

P[a1 �w · · · �w ap] =

p∏
i=1

Pw(ai)∑p
j=i Pw(aj)

.

and similarly for the probability that m �w a1 �w · · · �w ap. Thus,

P[m �w a1 | a1 �w · · · �w ap �w w] =
P[m �w a1 �w · · · �w ap �w w]

P[a1 �w · · · �w ap �w w]
=

Pw(m)

Pw(m) +
∑p

i=1 Pw(ai)
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As in Chapter 4, we will use the principle of deferred decision and construct preference lists in an
online manner. By Theorem 2.3 the man-optimal stable matching µM is computed by Algorithm 2.1,
and the remaining randomness can be used for a stochastic analysis of each person’s stable partners.
To be more formal, we define a random variable H, and inspection of Algorithm 2.1 shows that H
contains enough information on each person’s preferences to run Algorithm 2.1 deterministically.

Definition 5.3. Let H = (µM, (σm)m∈M, (πw)w∈W) denote the random variable consisting of
(1) the man-optimal stable matching µM, (2) each man’s ranking of the women he prefers to
his partner in µM, and (3) each woman’s ranking of the men who prefer her to their partner
in µM.

5.3 One person has popularity preferences

Theorem 5.4. Let w be a woman. Assume that w has popularity preferences defined by Pw
and that she has at least one stable partner. The preference lists of the men and of the women
other than w are arbitrary. Then

E[Number of stable husbands of w] ≤ 1 + ln dw + E

[
ln
Pw(µW(w))

Pw(µM(w))

]
,

where dw denotes the number of acceptable husbands of w, µM(w) is her worst stable partner
and µW(w) is her best stable partner.

Proof. First, observe that w is matched if and only if she receives a proposal in Algorithm 2.1,
which is independent from her ordering of acceptable men. By Theorem 2.5, Algorithm 2.2 outputs
the stable husbands of w, so we analyze that algorithm, which starts by a call to Algorithm 2.1,
which by Theorem 2.3 yields matching µM.

We know the preferences of everyone except w. We start the analysis by conditioning on the ran-
dom variableH, i.e. on woman w’s ranking of the men who prefer her tomM(w) (see Definition 5.3).
From here, observe that the execution of Algorithm 2.1, and of the first phase of Algorithm 2.2 are
deterministic. Let x0 = µM(w) be w’s worst stable husband, K denote the number of proposals
received by w in Phase 1, and let x1, x2, . . . , xK denote the sequence of proposals received by w
during the first phase of Algorithm 2.2.

Let p denote the sum of popularities of proposals received by w during the initial call to Algo-
rithm 2.1, including µM(w), and let pi = Pw(xi) for all 0 ≤ i ≤ K. By linearity of expectations,
and then using Lemma 5.2,

E[Nb of stable husbands of w |H] = 1 +
∑K

i=1 P[proposal xi is accepted by w | H] (5.1)

= 1 +
∑K

i=1 pi/(p+ p1 + · · ·+ pi). (5.2)

We simplify the right-hand side with a sum-integral comparison:

K∑
i=1

pi
p+ p1 + · · ·+ pi

≤
K∑
i=1

∫ p+p1+···+pi

p+p1+···+pi−1

dt

t
= ln(p+ p1 + · · ·+ pK)− ln p. (5.3)

We use the convexity of t 7→ t ln t and Jensen’s inequality:

ln(p+ p1 + · · ·+ pK) ≤ ln(K + 1) +
p ln p+ p1 ln p1 + · · ·+ pK ln pK

p+ p1 + · · ·+ pK
. (5.4)
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We now focus on the right-hand side of the equation in Lemma 5.2. By definition of µW , man
µW(w) is the overall best proposition received by w. It is x0 with probability proportional to p and
it is xi (1 ≤ i ≤ K) with probability proportional to pi, thus

E [ln(Pw(µW(w))) |H] =
p ln p0 + p1 ln p1 + · · ·+ pK ln pK

p+ p1 + · · ·+ pK
. (5.5)

Combining Equations (5.2), (5.3), (5.4) and (5.5), we obtain

E[Nb of stable husbands of w] ≤ 1 + ln(K + 1) + E[ln(P (µW(w∗)))]− p ln p0 − p ln p

p+ p1 + · · ·+ pK
− ln p,

where all expectations are conditioned on H. Since p ≥ p0, we can write

p ln p0 − p ln p

p+ p1 + · · ·+ pK
+ ln p =

p ln p0 + (p1 + . . .+ pK) ln p

p+ p1 + · · ·+ pK
≥ ln p0 = lnPw(µM(w)).

To conclude the proof, observe that K + 1 ≤ dw and take expectations over H.

5.4 Tight example for the number of stable partners

Knuth, Motwanni and Pittel [KMP90; Pit92] proved that when all persons have complete uniform
preference lists each person has asymptotically lnN stable partner, and thus the upper-bound of
Theorem 5.4 is tight. Here, we give another example showing that the upper bound from Theo-
rem 5.4 is also tight when w has complete popularity preferences Pw : mi 7→ λi with parameter
λ = 0.99.

In the upper bound from Theorem 5.4, the ratio of popularity is at most λ1−M , hence its
logarithm is at most (1 − M) lnλ. When λ = 0.99, we get (1 − M) lnλ ≈ (1 − λ) · M , hence
Theorem 5.4 states that at most ≈ 1% of the men are stable husbands of w. Lemma 5.5 proves
that there exists an instance such that this 1% upper bound is asymptotically tight.

Lemma 5.5. Let w a woman having complete popularity preferences Pw : mi 7→ λi with
0 < λ < 1. One can choose the preference lists of the other persons such that:

E[Number of stable husbands of w] > (1− λ) ·M

Proof. Take a community with N men and N women. We adapt a folklore instance where each
man-woman pair is stable (see Figure 5.2). We replace the preference list of woman w1 by a complete
popularity preference list defined by Pw : mi 7→ λi with 0 < λ < 1, which tends to be to similar
with the original preference list m1 � m2 � · · · � mN .

During the execution of Algorithm 2.1, each man proposes to his favorite woman, and each
woman receives exactly one proposition. Thus in the man-optimal stable matching, we have
µM(w1) = mN , µM(w2) = m1, . . . , µM(wN ) = mN−1.

Then, during the execution of Algorithm 2.2, woman w∗ = w1 will receive propositions from
mN−1, . . . , m2, m1, exactly in that order. The proposal from man mi will be the “best so far” with
probability λi/

∑N
j=i λ

j . Hence, w∗’s expected number of stable husbands is exactly

E[Number of stable husbands of w] =

N∑
i=1

λi∑N
j=i λ

j
=

N∑
i=1

1− λ
1− λN−i+1

> (1− λ) ·N
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m1 w2 � w3 � . . . � wN−1 � wN � w1

m2 w3 � . . . � wN−1 � wN � w1 � w2
...

...
...

mN−1 wN � w1 � w2 � w3 � . . . � wN−1

mN w1 � w2 � w3 � . . . � wN−1 � wN

w1 complete popularity preferences Pw : mi 7→ λi, for some 0 < λ < 1.
w2 m2 � . . . � mN−2 � mN−1 � mN � m1
...

...
...

wN−1 mN−1 � mN � m1 � m2 � . . . � mN−2

wN mN � m1 � m2 � . . . � mN−2 � mN−1

Figure 5.2. Instance where woman w1 has around (1− λ) ·M stable partners.

5.5 Correlated preferences

Intrinsic popularities model “one-sided” correlations, for example when all women agree that some
men are more popular. Symmetric popularities model “cross-sided” correlations, for example when
men and women prefer partners with whom they share some centers of interest. Both intrinsic
popularities and symmetric popularities generalizes the uniform case. The upper bound from The-
orem 5.1 matches the bound from [Pit92], implying that uncorrelated preferences are a worst case
situation up to lower order terms: correlations reduce the number of stable pairs.

5.5.1 Aligned preferences

In this subsection, all women have popularity preferences. We say that men have intrinsic popu-
larities when all women agree on the popularity of each man they find acceptable. To measure the
extent to which women agree on the popularity of men, we introduce a parameter rm ≥ 1 which is
the ratio between the highest and the lowest popularity given to man m by some woman who finds
him acceptable. Lower values of rm’s mean more correlations between the preferences of women.
When rm = 1, all women agree on the intrinsic popularity of man m.

Theorem 5.6. Assume that each woman w has popularity preferences defined by Pw over a
set of dw ≥ 1 acceptable men. For each man m, we define the ratio rm between the highest and
the lowest popularity given to m by some woman who finds him acceptable. Then:

E[Number of stable pairs] ≤ N +
∑
w∈W

ln dw +
∑
m∈M

ln rm

When all women agree on the popularity of men, the number of stable pairs is at most N +
N lnN .

Proof. Theorem 5.4 is valid for each woman w ∈ W. Indeed, the case where all the other women
have popularity preferences is actually a linear combination of cases where those women have de-
terministic preferences. However, one needs to deal with the assumption that w receives at least
one acceptable proposal during Algorithm 2.1.
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Each person is either matched in all stable matchings or single in all stable matchings. For each
person p, define Xp the event where p is matched. For every woman w, event Xw is true if and only
if w is receives at least one acceptable proposal during Algorithm 2.1, which does not depend on
the preference list of w. If we write Yw the number of stable husbands of w, we have:

∀w ∈ W, E[Yw | Xw] ≤ 1 + ln dw + E

[
ln
Pw(µW(w))

Pw(µM(w))
| Xw

]
We write Y =

∑
w∈W Yw the total number of stable pairs. Using linearity of expectation we obtain:

E[Y ] =
∑
w∈W

E[Yw | Xw] · P[Xw] ≤
∑
w∈W

(1 + ln dw) · P[Xw]

+
∑
w∈W

E[ln(Pw(µW(w))) | Xw] · P[Xw] (5.6)

−
∑
w∈W

E[ln(Pw(µM(w))) | Xw] · P[Xw] (5.7)

The two sums in Equations (5.6) and (5.7) can be rewritten as sums over men: for every stable
matching µ we have∑

w∈W
E[ln(Pw(µ(w))) | Xw] · P[Xw] =

∑
m∈M

E[ln(Pµ(m)(m)) | Xm] · P[Xm]

Using once again linearity of expectation:

E[Y ] ≤
∑
w∈W

(1 + ln dw) · P[Xw] +
∑
m∈M

E

[
ln
PµW (m)(m)

PµM(m)(m)
| Xm

]
· P[Xm]

To conclude the proof, observe that the sum
∑

w P[Xw] is at most N = min(M,W ), and that the
ratio PµW (m)(m)/PµM(m)(m) is at most rm.

As long as the ratios rm are polynomial in N , the expected number of stable pairs is O(N lnN).

5.5.2 Symmetric preferences

In this subsection, both men and women have popularity preferences. We say that popularities are
symmetric when for every acceptable pair (m,w) we have Pw(m) = Pm(w). To measure the extent
to which popularities are symmetric, we introduce a parameter r ≥ 1, such that for each acceptable
pair (m,w) the values of Pw(m) and Pm(w) are within a factor r of each other.

Theorem 5.7. Let r ≥ 1 be a parameter. Assume that each person p has popularity preferences
defined by Pp over a set of dp ≥ 1 acceptable partners, such that if man m and woman w are
mutually acceptable then the values of Pw(m) and Pm(w) are within a factor r of each other.
Then:

E[Number of stable pairs] ≤ N(1 + ln r) +
∑
w∈W

ln dw
2

+
∑
m∈M

ln dm
2

When r = 1, popularities are symmetric and E[Number of stable pairs] ≤ N +N lnN .

Proof. For each person p, define Xp the event where p is matched. We write Y the total number of
stable pairs. Using the fact that women have popularity preferences, we start with the same proof
as Theorem 5.6.

E[Y ] ≤
∑
w∈W

(1 + ln dw) · P[Xw] +
∑
m∈M

E

[
ln
PµW (m)(m)

PµM(m)(m)
| Xm

]
· P[Xm] (5.8)
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Symmetrically, we can use the fact that men have popularity preferences, and use a symmetric
version of Theorem 5.4 to bound the expected number of stable wife of each man.

E[Y ] ≤
∑
m∈M

(
1 + ln dm + E

[
ln
Pm(µM(m))

Pm(µW(m))
| Xm

])
· P[Xm] (5.9)

Summing Equations (5.8) and (5.9) yields

2E[Y ] ≤
∑
w∈W

(1 + ln dw) · P[Xw] +
∑
m∈W

(1 + ln dm) · P[Xm]

+
∑
m∈M

E

[
ln

PµW (m)(m)

Pm(µW(m))
+ ln

Pm(µM(m))

PµM(m)(m)
| Xm

]
· P[Xm]

To conclude the proof, observe that the sums
∑

w P[Xw] and
∑

m P[Xm] are at mostN = min(M,W ),
and that all ratios Pw(m)/Pm(w) and Pm(w)/Pw(m) can be bounded by r.

5.6 High probability bounds

Recall that Theorem 5.4 gives an upper-bound on the expected number of stable partners of some-
one who has popularity preferences. The original upper-bound from Knuth, Motwanni and Pit-
tel [KMP90] states that a person with uniform preferences has at most (1 + ε) lnN stable partner,
with probability → 1 for every ε > 0 when N → +∞.

In Section 5.6.1 we give a high-probability bound on the number of stable partner of a woman
having popularity preferences, when men who propose to her have bounded popularity, which holds
in particular if she has bounded popularity preferences. In Section 5.6.2 we show that this last
bound also applies when men have bounded popularity preferences and women have almost aligned
popularity preferences.

5.6.1 Bounding the number of stable partners

The following theorem is a high probability analogue of Theorem 5.4.

Theorem 5.8. Let w be a woman, we condition on H and we define the set of proposers as
men who propose to her in Algorithm 2.2. Assume that w has popularity preferences defined
by Pw over dw acceptable partners, such that proposers are at most C ≥ 1 times more popular
than her partner µM(w).

∀ε > 0, P[Nb of stable husbands of w ≥ (1 + ε) · (1 + ln dw + lnC)] ≤ e− ε2

2+ε
(1+lnC+ln dw)

Proof. The proof continues the analysis started in Theorem 5.4. Conditioning on H and the pref-
erence of everyone except w, we know the sequence x1, . . . , xK of men who propose to w in Algo-
rithm 2.2. Let Y = 1 +

∑K
i=1Xi be the random variable equal to the number of stable partners of

w, where each Xi is a Bernoulli random variable equal to 1 if man xi is best so far. In the proof of
Theorem 5.4, we used linearity of expectation to bound E[Y ]. Using Lemma 5.2, it turns out that
Xi’s are independent when w has popularity preferences, which is a useful property when using tail
inequalities. Using Theorem 5.4, the expected value of Y is at most 1 + ln dw + lnC. Lemma 5.9
concludes the proof.
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Lemma 5.9 (Chernoff bound). Let S =
∑k

i=1Xi be the sum of k independent Bernoulli

random variables, such that E[S] ≤ µ. Then, for all ε > 0 we have P[S ≥ (1 + ε) · µ] ≤ e−
ε2µ
1+ε .

Proof. The classical multiplicative Chernoff bound states that the Lemma holds if µ = E[S]. We
artificially expend the sequence X1, . . . , Xk into a sequence X1, . . . , X

′
k with k′ ≥ k, such that the

expected value of S′ =
∑k′

i=1Xi is equal to E[S′] = µ. Then we use the classical multiplicative
Chernoff bound on S′, and we use the fact that it stochastically dominates S.

5.6.2 Bounding the popularity of proposers

When everyone has popularity preferences, the following theorem provides an upper bound on the
popularity ratio between the stable husbands of a woman. The bound depends on how uniform
the preferences of men are (parameter RM, the maximal ratio between the popularities of two
distinct women for a given man) and how similar the preferences of women are (parameter QW , the
maximal ratio between the popularities of two distinct men for two distinct women). The parameter
RM is small when the preferences of every man among women are close to be uniform; they are
actually uniform when RM = 1. The parameter QW is close to 1 when women tend to agree on the
relative popularities of men. In case women have aligned popularity preferences, like in setting (1)
of Theorem 5.1, then QW = 1.

Theorem 5.10. Assume that men and women have popularity preferences. Denote

RM = max
m∈M

w0,w1∈W

Pm(w0)

Pm(w1)
QW = max

w0,w1∈W
m0,m1∈M

Pw0(m0)

Pw0(m1)
· Pw1(m1)

Pw1(m0)
.

Let w be a woman, we draw H and compute the maximum popularity w gives to each man who
propose to her in Algorithm 2.2. With probability ≥ (1− 2

N2 ), the ratio between this maximum
popularity and the popularity of µM(w) is no more than

(
N5 ·QW

)1+
4 ln(N)(1+log2(N))

ln(1+1/RM) .

Proof of Theorem 5.10. Fix a woman w, and set

T = |N |5.

We define the notion of standard preferences for women 6= w. Let m,m′ be two men and w′ a
woman such that m′ is T times more popular than m but, still, w′ prefers m to m′. We say that
the preferences of women 6= w are standard if no such tuple m,m′, w′ exists. Given m,m′, there is
probability 1

1+T that w′ prefers m to m′, thus there is probability ≤ 1
N2 that preferences of women

are not standard. In the rest of the proof we draw the preferences of all women except w assume
that those preferences of are standard.

We now draw H and denote µM be the man-optimal stable matching. In the sequel, we reference
as "w-popularities" the popularities from the point of view of w given by Pw. The proof relies on
the computation of the set of stable husbands of w by Algorithm 2.2. The algorithm is presented
as running deterministically, with all preferences of men and women given as input, chosen ex-
ante before the algorithm starts; however in the case of popularity preferences (Definition 3.2) this
algorithm can also be seen as a stochastic process.

In phase 1 of Algorithm 2.2, instead of computing the lists of men ex-ante, we might instead
disclose them progressively along the execution of the algorithm. When a man is about to propose,
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he randomly picks a woman among those to whom he has not proposed yet, following a lottery
whose probabilities are proportional to the popularities of the remaining women. When a woman
6= w receives a proposal, her answer is deterministic, consistent with her preferences fixed ex-ante.
When w receives a proposal, she refuses it.

In this stochastic process, we focus on the sequence (xt)t≥0 of men that are enumerated by
Algorithm 2.2, after the initial computation of the man-proposing stable matching µM. The se-
quence includes all men doing a proposal, including proposals to w but also to other women. A
man appears in the list as many times as he makes a proposal. The set of stable husbands of w will
be exactly the set of men from whom w accepts such a proposal.

Without loss of generality, we assume that men m1,m2, . . . ,mM are indexed by increasing
w-popularity, and let i be the index of the husband of w in the man-proposing stable matching
µM(w) = mi.

Pw(m1) ≤ Pw(m2) ≤ . . . ≤ Pw(mN ).

We partition the set of men in sets of exponentially increasing sizes, starting with all men less
or equally popular than m. Let F0 = [1, i], F1 = (i, 2i], F2 = (2i, 4i], ..., Fj = (2j · i,N ], where
2j · i < N ≤ 2j+1 · i. Note that j ≤ ln2 (N) . Set

L =
4 ln(N)

ln
(

1 + 1
RM

) K = (T ·QW)L.

For every set F` with 1 ≤ ` ≤ j, we say that there is a huge popularity gap in F` if the popularity
ratio for w in this interval is ≥ K, i.e. if KPw(m2`·i) ≤ Pw(mmin(N,2`+1·i)).

The case where there is no huge popularity gap in any of the F` with 1 ≤ ` ≤ j is an easy one:
then the most w-popular man mN has w-popularity at most Kj+1Pw(mi) hence the conclusion of
the theorem since j ≤ ln2 (N).

Otherwise we select the smallest ` for which there is huge popularity gap in F`. Denote E0 =
F0 ∪ F1 ∪ . . . F`−1 and E1 = F`. Define to popularity thresholds pinf = Pw(m2`·i) · (T · QW) and
psup = Pw(m2`+1·i)/(T ·QW), and decompose E1 = Ebot1 ∪ Etop1 ∪ Etop1 such that

Ebot1 = {m ∈ E1 | Pw(m) < pinf}
Emid1 = {m ∈ E1 | pinf ≤ Pw(m) < psup}
Etop1 = {m ∈ E1 | psup ≤ Pw(m)}

Observe that the sequence (xt)t≥0 satisfies the following conditions:

i) The w-popularities of two consecutive men in the sequence (xt)t≥0 may increase by a multi-
plicative factor of at most T ·QW .

ii) If xt ∈ E0, then xt+1 ∈ E0 ∪ Ebot1 . If xt ∈ Ebot1 , then xt+1 ∈ E0 ∪ Ebot1 ∪ Emid1 .

iii) Assume that in the current execution of the algorithm, the proposing man is xt ∈ Emid1 .
Then xt+1 ∈ E0 ∪E1, and the probability that xt+1 belongs to E0 conditioned on the current
execution is ≥ 1

RM+1 .

iv) Assume that xt ∈ Etop1 for the first time. Then the sequence stayed in Emid1 the last L
consecutive steps. The probability of this happening at any time t ≤ N2 is at most 1

N2 .

Properties i) - iii) follow from the hypothesis that women 6= w have standard preferences: for a
woman w′ 6= w married to xt+1 to accept a proposal from xt it is necessary (but not sufficient in
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general) that Pw′ (xt+1)
Pw′ (xt)

< T . In which case Pw(xt+1)
Pw(xt)

< T ·QW . And if w′ = w then w will anyway
refuse the proposal from xt thus xt+1 = xt. Hence i) and ii). To prove iii), remark that whenever
some man xt from Emid1 proposes to the wife of a man m, the wife will refuse (resp. accept) for
sure if m is outside E0 ∪ E1 (resp. is in E0), because in that case m is at least T ·QW times more
w-popular (resp. less w-popular) than xt. Since E0 contains at least half of the men in E0 ∪ E1

and since women married to men in E0 are at most RM times less popular for xt than women
married to men in E1, we get iii). To prove iv), observe men in Etop1 are at least (QW · T )L times
more popular than men in Ebot1 , hence the sequence must stay in Emid1 at least L − 1 consecutive
steps before reaching Etop1 . Applying iii) repeatedly shows that for every t the stochastic process
xt, xt+1, . . . reaches E

top
1 with probability at most(

1− 1
RM+1

)L
= exp

(
− ln

(
1 + 1

RM

)
· L
)

= 1
|N |4 .

Since the length of the sequence (xt)t≥0 is bounded by N2, we get iv) by union bound. Thus, the
probability that a proposer is K times more popular than mi is smaller than 1/N2. Combining this
with the probability that preferences of women are standard concludes the proof.

5.7 Simulations

Implementations of two-sided matching markets with popularity preferences are shared between
Chapters 4, 8 and 5, and are available at the following address:

https://github.com/simon-mauras/stable-matchings/tree/master/Popularity

Recall that Figure 5.1 illustrates the effect of correlations on the number of stable pairs: panel
(a) has positively correlated preferences and few stable pairs, panel (b) has uncorrelated preferences
and some stable pairs, and panel (c) has negatively correlated preferences and many stable pairs.
In Figures 5.3, 5.4 and 5.5, we go smoothly from the instance from panel (b) to the instance from
panel (c), replacing uniform preferences by cyclic preferences. We show that the number of stable
pairs increases when introducing negative correlations.

Notice that in the simulations of Chapter 4, we go smoothly from the instance from panel (a)
to the instance from panel (b), assuming that women have popularity preferences P : mi 7→ λiM
with λM = 0.5, and that men have popularity preferences P : wi 7→ λiW with λW ∈ {0.5, 0.9, 1}.
Interestingly, we show that the number of agents with multiple stable partners is minimal when
λW = 1, which might seems counter intuitive given our claim that “positive correlations decrease
the number of stable pairs”. This can be explained by the fact that having λW = 1 unbalances the
market and creates a nearly unique stable matching. This shows that looking at correlations is not
the end of the story!

5.8 Conclusion and open questions

In this chapter, we discuss “weak core-convergence”, in terms of number of stable pairs. We show that
uniformly random preferences is a worst case when compared to positively correlated preferences.
The following questions are left open for future work:

• Number of stable partners. In Theorem 5.1, we bound the total number of stable pairs,
but not individual numbers of stable partners. When both sides have aligned popularity
preferences, we conjecture that each person has at most 1 + lnN stable partners in average.
Notice that this is true when one side has uniform preferences, because of the additional
symmetry.

https://github.com/simon-mauras/stable-matchings/tree/master/Popularity
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• Removing cross-sided correlations. In the introduction, we argue that negative corre-
lation can increase the number of stable pairs. In particular, we believe that if the market
has no negative cross-sided correlations (people like people who do not like them in return),
then the total number of stable pairs is at most the one from the uncorrelated case. Formally
speaking, we can remove cross-sided correlations from an adversarial instance by shuffling the
preference list of agents on each side of the market. We conjecture that for any instance, the
expected total number of stable pairs after shuffling is at most N(1 + lnN). In particular,
the conjecture appears to be true on the instance from Figures 5.2 and 5.5. The conjecture is
false if we only shuffle preferences lists of agents from one side.
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Figure 5.3. Matching market with N = 100 men and N = 100 women having uncorrelated
preferences. From [Pit89; KMP90; Pit92], in expectation each person has ∼ lnN stable
partners, ranked between ∼ lnN for the best and ∼ N/ lnN for the worst.
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Figure 5.4. Matching market with N = 100 men and N = 100 women, where women have
uncorrelated preferences and men have negatively correlated preferences. Both the number of
stable partners and the rank difference between the worst and best partners are bigger than
in Figure 5.3.
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Figure 5.5. Matching market with N = 100 men and N = 100 women, where men and have
negatively correlated preferences, both within a side (preferences are cyclic) and across sides
(preferences are reversed). Both the number of stable partners and the rank difference between
the worst and best partners are bigger than in Figure 5.4.





6 | Constrained School Choice
with Incomplete Information

This chapter is based on the following paper:

[GMM21a] Hugo Gimbert, Claire Mathieu, and Simon Mauras. “Constrained School Choice with
Incomplete Information”. In: arXiv preprint arXiv:2109.09089 (2021)

6.1 Introduction

School choice is referred in the literature as the two-sided matching market where students (on one
side) are to be matched with schools (on the other side) based on their mutual preferences. As
discussed in previous chapters, a classical solution concept is the celebrated deferred acceptance
procedure, proposed by Gale and Shapley [GS62], and since implemented by many clearinghouse
[AS03; APR05; Cor+19]. Most often in practice, the clearinghouse sets an upper quota on the
number of applications each student can submit. This requires a strategic behaviour from students
who should find a balance between applications to top-tier schools and applications to less attractive
but also less selective lower-tier schools.

The existence and computability of Nash equilibria is a desirable property for two reasons. First,
Nash equilibria are among the possible long-term outcomes of the market, possibly emerging after a
series of best-response dynamics or evolutional selection of strategies. Second, and most importantly,
being able to compute a Nash equilibrium provides a solid basis to develop a recommendation system
in order to help the students to select the schools they want to apply to.

In case complete information about the preferences of the students and schools is available, im-
plementing a Nash equilibrium is rather easy. The strategic behaviour of students limited to a fixed
number of options was studied by Romero-Medina [Rom98], and later investigated by Calsamiglia,
Haeringer and Klijn [HK09; CHK10]. After a pre-computation of the student-optimal stable match-
ing µS , a simple recommendation can be made to every student matched in µS : they only need to
apply to a single school, their match in µS . As a direct corollary of [DF81; Rot82], this leads to
a Nash equilibrium. Remark that student unmatched in µS wont be matched in this equilibrium,
whatever strategy they choose.

In practice, assuming that the student-optimal stable matching is computable ex-ante is rather
unrealistic. For example, in the French college admission system “Parcoursup", there are more than
900000 students signed up. Applicants should report a shortlist of 20 wishes before a fixed deadline.
Based on statistics of previous years, one might evaluate how the grades of a particular student
compare to others and evaluate the percentage of students that will be ranked higher in a particular
school. But acquiring before the deadline the information needed for an exact computation of the
student-optimal matching is unfeasible.

69
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In this chapter, we propose a formal model for the constrained school choice with incomplete
information, and study the existence and computability of Nash equilibria in the associated incom-
plete information game. In our model, each student draws a type from a publicly known distribution
µ (see Section 6.2). In Section 6.3, we detail interesting examples that can be used to state recom-
mendations for students, schools and decision makers. In Section 6.4, we give the proof of existence
of a symmetric Bayes-Nash equilibrium (Theorem 6.4). In Section 6.5 we give efficient algorithms
to compute equilibria when the number of types is finite and additional hypotheses are made, in-
cluding the case where schools have identical preferences over students (Theorems 6.6, 6.9 and 6.8).
In Section 6.6 we prove a convergence theorem, showing that one can compute an equilibrium for a
game with a continuous type distribution µ, using a (weakly) converging sequence of distributions
(µk)k≥1 having finite supports (Theorem 6.12).

Related work. This chapter is closely related to the literature of matching under random prefer-
ences. Pittel [Pit92] study balanced matching markets with uniformly random preferences. Rephras-
ing his results in our setting, the student-proposing deferred acceptance procedure matches with
high probability every student to one of her top log2 n choices, which proves that an upper quota of
log2 n applications per student does not deteriorate the outcome. Immorlica and Mahdian [IM15],
and Kojima and Pathak [KP09] study matching markets where one side of the market has random
preference lists of constant size, and show that such markets have a (nearly) unique stable matching.
When quotas are constant and preferences are uniform, this implies that games based on student
or school proposing deferred acceptance are (almost) the same.

More recent papers discuss the effect of an upper quota on the number of applications. Beyhaghi,
Saban and Tardos [BST17] study the efficiency of equilibria in a model where each side is divided
into two uniform tiers, and each student chooses her number of applications to top-tier schools.
Beyhaghi and Tardos [BT21] study the social welfare (size of the matching) as a function of the
number of applications, in a model where preferences of agents are drawn uniformly at random.
Echenique, Gonzalez, Wilson and Yariv [Ech+20] examine the National Resident Matching Program
and argue that doctors are strategic when reporting their preferences.

The best response of a student to the strategies of others is related to the simultaneous search
literature. Chade and Smith [CS06] discuss the problem where one student must choose a portfolio
of schools in which she applies: each application has a cost, a probability of success and a cardinal
utility when successful. Ali and Shorrer [AS21] generalize their model to allow correlations between
admission decisions.

Takeaway message. In general, the deferred acceptance mechanism is known to be strategy-
proof for the proposing side [DF81], but no mechanism is truthful for both sides of the market
[Rot82]. However, empirical results show that the stable matching is often unique [RP99], in
which case stable matching procedures are truthful for all agents, even when they have incomplete
information [EM07]. Thus, having a unique stable matching is a desirable property, and we argue
that this fact carries over to the case where students have restricted preferences. First, in terms
of number of equilibria, examples (see Section 6.3) illustrate that the fewer stable matchings there
are, the fewer equilibria the game has. Second, in terms of outcome, multiple stable matchings can
induce outcomes which are unstable (see Section 6.3.1) or sub-optimal (see Section 6.3.2). And
finally, in terms of computability of an equilibrium, Section 6.5 give two algorithms to compute
equilibria in time quasi-linear w.r.t. the number of types, under the extra assumption that markets
induced by the game have unique stable matchings.



6.2. THE MODEL 71

6.2 The model

We consider a game where players are students who do not know the exact preferences of other
students. For the sake of modeling, each student has a type T = [0, 1]d with d ≥ 1, which can
be thought as a feature vector representing both her preferences and characteristics. Types are
drawn without replacement1 from the set of types, using a probability distribution µ ∈ ∆(T ).
Each student i knows her own type ti ∈ T (private information) and the distribution µ (common
information). Each school j has a capacity cj , a bounded measurable value function vj : T → R+

and a measurable scoring function sj : T → [0, 1].
The set of actions A is the set of preference lists containing at most ` schools2. Each student i

reports a preference list ai ∈ A. Schools sort students by decreasing score, breaking ties uniformly at
random. Then, we compute a matching using the student proposing deferred acceptance algorithm.
Each student i receives a utility vj(ti) if she is assigned to school j, and a utility of 0 is she stays
unmatched.

Algorithm 6.1 Description of the matching game
Game parameters: n, m, A, T , (vj)j∈[m], (cj)j∈[m] and (sj)j∈[m].
Function Utility((ti, ai)i∈[n] ∈ (T ×A)n)

Student i has type ti, reports the preference list ai, and her score at school j is sj(ti).
School j has capacity cj , sorts students by decreasing scores,

breaking ties uniformly at random.
Students are assigned to schools using the student proposing deferred acceptance algorithm.
Each student i receives utility ui = vj(ti) if she assigned to school j,

and ui = 0 if she is unassigned.
Return the vector of utilities (ui)i∈[n], averaged over all possible tie-breaking choices.

Students choose their actions strategically: the set of (behavioral) strategies S is the set of
measurable function p : T → ∆(A). A strategy profile is a vector of strategies (pi)i∈[n] ∈ Sn, where
pi is the strategy of student i and p−i denotes the vector of strategies of all students except i.
Under this strategy profile, the expected payoff of student i is denoted Uµ(pi, p−i), this is the i-th
component of the vector Et,a[Utility((ti, ai)i∈[n])], where the expectation is taken over the random
draws of t and a: ti’s are drawn without replacement from µ and each ai is drawn from pi(ti).
Notice that this definition already incorporates the symmetry of the game: if the strategies in p−i
are permuted, the payoff of player i does not change, and if we swap two players, their payoffs are
swapped accordingly. In other words, the payoff of a player only depends on his own strategy and
the multiset of strategies played by the other players, independently of each player’s identity.

A strategy profile is a Bayes-Nash equilibrium if each student cannot improve her utility by
deviating from the strategy profile. More precisely, (pi)i∈[n] ∈ Sn is an equilibrium if Uµ(p∗, p−i) ≤
Uµ(pi, p−i) for every i ∈ [n] and p∗ ∈ S.

Our first theorem states that the strategic part of the game for a student is to choose her
(unordered) set of applications. More precisely, once she decided which schools she will apply to,
it is optimal for her to sort schools by decreasing value. As a Corollary, when ` = m, the set of
actions A is unconstrained and contains all the permutations over schools, thus sorting schools by
decreasing score is a dominant strategy.

1Types are drawn without replacement in order to have a well defined game when the distribution µ is discrete.
This does not mean students cannot have the same preferences over schools, as one can duplicate types by increasing
the dimension d of the type space. When the distribution is non-atomic, it is equivalent with having types drawn
independently.

2More generally, results of this paper hold if A is an arbitrary subset of preference lists over schools.



72 CHAPTER 6. CONSTRAINED SCHOOL CHOICE

Theorem 6.1. Let t ∈ T be a type and a ∈ A be an action, and define a∗ the preference list
where schools from a are sorted by non-increasing order of value vj(t). If a∗ is a valid action,
then for a student of type t reporting a∗ dominates reporting a.

Proof. Student proposing deferred acceptance is truthful for students (see Corollary 2.24).

6.3 Motivating examples

6.3.1 Complete information

Recall that types of students are drawn without replacement from µ. Thus, if µ is a discrete
distribution with a finite support of size n, then students exactly know the types of other students,
which proves that complete information is a special case of our model.

Haeringer and Klijn [HK09] study an equivalent complete information game: n students and
m schools have ordinal preferences over one another, and each student must report preference lists
of length at most ` to the clearinghouse. When ` = 1, they show that each stable matching
can be implemented at equilibrium (Proposition 6.1), and the outcome of every equilibrium is a
stable matching (Proposition 6.3). Additionally3, they give examples to show that when ` > 1, the
outcome of some equilibrium can be unstable (Examples 6.6, 8.3, 8.4 and 8.5). In Figure 6.1, we
reproduce Example 8.3 from [HK09].
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Figure 6.1. The true preferences of students are displayed on the left: there is a unique stable
matching where students a, b and c get their 2nd choices. When students are restricted to apply
to at most two schools, truncating each student preference list yields an equilibrium: students
a, b and c get their 1st choice, whereas d will stay unmatched no matter what she reports. The
outcome is not stable as student d and school 3 prefer each other to their respective partners.
Observe that if d applies to school 3 then students a, b and c will get their 2nd choices, which
is a different equilibrium where the outcome is stable.

In general, because every stable matching can be implemented by an equilibrium, a necessary
condition for the outcome to be unique is to have a unique stable matching. This condition however
is not sufficient, as Figure 6.1 illustrates with an example having a unique stable matching but
several possible outcomes when ` = 2. In Theorem 6.3, we show that α-reducibility is a sufficient
condition for having a unique outcome. The notion of α-reducibility was introduced by Alcade
[Alc94] in the context of stable roommates, then investigated by Clark [Cla06] who showed it is
equivalent to having a unique stable matching in every sub-market (Theorems 4 and 5).

3When ` ≥ 1, Haeringer and Klijn [HK09] also give (Theorem 6.6) a necessary and sufficient condition on the
preferences of schools such that the outcome is stable for every preferences of students and for every equilibrium.
This result is in general incomparable with our Theorem 6.3
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Definition 6.2 (α-reducibility). We say that a two-sided matching market is α-reducible if
for every subset of students A ⊆ [n] and subset of schools B ⊆ [m], there exist a fixed pair
(i, j) ∈ A×B such that i and j strictly prefer each other to everyone else in A and B.

Theorem 6.3. If the two-sided matching market is α-reducible, then for every ` ≥ 1 the
outcome of every Nash equilibrium is the unique stable matching.

Proof. For every Nash equilibrium, start the analysis by setting A = [n] and B = [m]. From α-
reducibility we know that there is a fixed pair (i, j) ∈ A×B. Student i can ensure she is matched
with her first choice j, thus this must be her outcome by definition of a Nash equilibrium. We
remove i from A, decrease the capacity of j and remove it from B if it reached 0. We continue with
the same reasoning by induction.

6.3.2 Reversed preferences

Consider a simple example with n = 2 students and m = 2 schools of capacity c1 = c2 = 1. The set
of types T = [0, 1]2 is two-dimensional. A student of type (x, y) gives the value v1(x, y) = r + x to
school 1, and the value v2(x, y) = r+ y to school 2, where r is a positive constant representing how
risk-averse the students are. The preferences of schools are reversed, in the sense that a student of
type (x, y) has a score of s1(x, y) = y at school 1 and a score of s2(x, y) = x at school 2. Figure 6.2
illustrates a situation with two stable matchings. This occurs with probability 1/2 when µ is
uniform over the diagonal {(x, y) ∈ T |x+ y = 1}, and with probability 1/6 when the distribution
µ is uniform over T .

a

b

school1

1

school 2

2
x

y

xa xb

ya

yb

Figure 6.2. An example with two stable matchings: student a prefers school 2 (upper
triangle xa < ya), student b prefers school 1 (lower triangle yb < xb), school 1 prefers student a
(horizontal lines yb < ya), and school 2 prefers student b (vertical lines xa < xb).

Risk aversion. In Figure 6.2, if students were allowed to apply to both schools, the student
proposing deferred acceptance procedure would always choose the student optimal stable matching.
However, for some reason, the clearinghouse only allows students to apply to one school. In order
to maximize their expected utilities, students can either prioritize the value they give to schools, or
the likelihood of being accepted. Figure 6.3 illustrates two families of Bayes-Nash equilibria, as a
function of r: the more risk averse students are, the less likely is the student optimal matching to
be chosen.
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1
r

x

r < 1

1

x

r = 1

1

r

x

1 < r

school 1
mixed
school 2

(a) Family of equilibria when the distribution µ is uniform over the diagonal {(x, y) ∈ T |x+ y = 1}.
The strategy of a student having type (x, 1− x) is represented by the color of the point on the x-axis.
The different plots corresponds to the expected utility from each action, for a student of type (x, 1−x),
when the other students play the equilibrium strategy.

r ≤ 1/2

2− 1/r

1/2 ≤ r ≤ 1 r = 1

1/r

1 ≤ r
school 1
mixed
school 2

(b) Family of equilibria when the distribution µ is uniform over T . The strategy of a student having
type (x, y) is represented by the color of the point at those coordinates.

Figure 6.3. Family of symmetric Bayes-Nash equilibria when ` = 1 in the game described
in Figure 6.2. When students are not risk averse (r < 1), they tend to apply according to
their preferences. When students are risk averse (r > 1), they tend to apply according to their
chance of being accepted.

1 1 1 1 1

(a) Five different equilibria when the distribution µ is uniform over the diagonal {(x, y) ∈ T |x+y = 1}.
Students’ utility induce a total ordering over the family of equilibria, where the leftmost equilibrium
is student optimal and the rightmost equilibrium is student pessimal.

(b) Eight different equilibria when the distribution µ is uniform over T . Notice that for every fixed
x (or y), the fractions of types applying to schools 1 and 2 is the same. Thus, in each equilibrium, a
student of type (x, y) is accepted to school 1 (resp. 2) with probability (1 + y)/2 (resp. (1 + x)/2) and
her expected utility is (1 + x)(1 + y)/2 for both schools.

Figure 6.4. Multiple Bayes-Nash equilibria when ` = 1 and r = 1 in the game described in
Figure 6.2. Such phenomenon can be explained by the multiplicity of stable matchings (see
panel a), or by a “purification theorem” type of argument (see panel b).
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s(x, y) =
√
x2 + y2

a

b

c

1

math

math affinity

b � c � a
v1(x, y) = r + x
c1 = 1

2
art

art
affi

nity b � c � a
v2(x, y) = r + y
c2 = 2

a

b
c

x

y

r = 0 r = 1 r = 2 r = 5

Equilibrium:
school 1
school 2

Figure 6.5. Example where preferences of schools are aligned (scoring functions are equal
to s). The two dimensions of a student’s type can be thought as her affinity with maths and
with art. Schools sort student by decreasing order of euclidean norm. School 1 is a math
school, and is preferred by students with a good affinity with math. School 2 is an art school,
and is preferred by students with a good affinity with art. Risk aversion is modeled with the
parameter r ≥ 0. Each student can apply to ` = 1 school, and the strategy of a student having
type (x, y) is represented by the color of the point at those coordinates.
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s1(t) = z1 · t
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1
math

b � c � a
v1(x, y) = r + 1
c1 = 1

s
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b � a � c
v2(x, y) = r
c2 = 2
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b

c

x

y

r = 1/10 r = 1 r = 10 r = 100

Equilibrium:
school 1
school 2

Figure 6.6. Example where preferences of students are aligned (value functions are constant).
The two dimensions of a student’s type can be thought as her grades in maths and in art.
School 1 has one seat and gives more importance to the math grade. School 2 has two seats
and gives more importance to the art grade. Risk aversion is modeled with the parameter
r ≥ 0. Each student can apply to ` = 1 school, and the strategy of a student having type (x, y)
is represented by the color of the point at those coordinates.
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a b c
0 1

n = 3 students, µ is uniform over T = [0, 1] m = 3 identical schools:

- capacities c1 = c2 = c3 = 1
- values v1 = v2 = v3 = 1
- scores s1(t) = s2(t) = s3(t) = t

Denote qi,j(t) the probability that a student of type t will be rejected from schools i and j,
because the other two students have types > t and have already been assigned to those two
seats. Denote u(t) the expected utility of a student of type t at equilibrium.

2
3

q1,2(t) = q1,3(t) = q2,3(t) = (1−t)2
3

u(t) = 1− (1−t)2
3

Equilibrium #1: every student draws a list
uniformly at random, among the 6 possible
lists of length 2.

3
4

q1,3(t) = q2,3(t) = (1−t)2
4

q1,2(t) = (1−t)2
2

u(t) = 1− (1−t)2
4

Equilibrium #2: every student chooses
uniformly at random between the lists
(1, 3) and (2, 3).

Figure 6.7. Example with n = 3 students, m = 3 identical schools, and ` = 2 applications
per student. If students had perfect information or where allowed to apply to all 3 schools,
they will all be assigned and will always receive a payoff of 1. When students have imperfect
information and can only apply to 2 schools, every symmetric equilibrium will leave a student
unassigned with positive probability. The intuition behind the improved payoff in equilibrium
#2 is that students privately agree that school 3 is a “safety choice”.

n = 50 students, µ is uniform over T = [0, 1]
m = 5 schools, with identical preferences s(t) = t

1

2

3

4

5

value v1 = 5, capacity c1 = 5.

value v2 = 4, capacity c2 = 10.

value v3 = 3, capacity c3 = 5.

value v4 = 2, capacity c4 = 10.

value v5 = 1, capacity c5 = 10.

→ students of rank 1 to 5

→ students of rank 6 to 15

→ students of rank 16 to 20

→ students of rank 21 to 30

→ students of rank 30 to 40 0 0.6 1

1

12345∅

r
=

4
0

r
=

3
0

r
=

2
0

r
=

1
5

r
=

5

It(n− r, r)

t

Rt = rank of a type t student
E[Rt] = 1 + (n− 1)(1− t)
P[Rt ≤ r] = It(n− r, r)

Figure 6.8. Example where preferences of schools and students are aligned. If students are
allowed to apply to all the schools, their outcome is determined by their rank. Let Rt be
the rank of a student of type t. Then Rt − 1 follows a binomial distribution of parameter
(n − 1, 1 − t), whose cumulative function can be expressed using the regularized incomplete
beta function I. In particular, a student of type t = 0.6 will be assigned to school 3 with
probability I0.6(30, 20)− I0.6(35, 15) ≈ 43%. For every t, one could observe that the combined
probability of the 2 least likely outcomes never exceeds 2%. Hence when students are restricted
to 3 applications, each student can, at least 98% of the time, ensure the same outcome as the
one when everyone has 5 applications.
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Multiple equilibria. In the complete information case, every stable matching induces an equilib-
rium. In the incomplete information case, having multiple stable matchings can induce an infinite
number of equilibria. Figure 6.4(a) gives an example with a continuum of equilibria, such that the
expected payoff of each student type is non-increasing (from left to right). When multiple stable
matchings exist, the left-most equilibrium always implement the student optimal stable matching,
and the right-most equilibrium always implement the school optimal stable matching. Conversely,
Figure 6.4(b) gives an example with an infinite number of equilibria where each student type receives
exactly the same expected utility from every equilibrium.

6.3.3 Aligned preferences

Computing an equilibrium by induction. When preferences of schools are identical (scoring
functions are equal), the best student can ensure she will be matched with her favorite school. When
preferences of students are identical (value functions are constant), the student ranked first by the
best school can ensure she will be matched with her favorite school. An equilibrium for such games
can be computed by eliminating dominant strategies: when each type’s payoff does not depend
on the strategies of types having lower scores, we can proceed by induction. Figures 6.5 and 6.6
give two examples of such games, and illustrate the type of recommendation one could provide to
students using this approach.

Identical schools should merge their selection process. Theorem 6.3 shows that if the
matching market is α-reducible and students have perfect information, then every equilibrium yields
the same outcome. This is true in particular when all schools have identical preferences, indepen-
dently of the preferences reported by students. It is a natural question to ask if the same hold
with incomplete information. Figure 6.7 provides a counter-example with three students and three
identical schools. If students can only apply to two schools, one student will stay unassigned with
positive probability. One way for the students to reduce this probability is to privately agree that
one of the school is a “safety choice” which is always ranked last. Even if schools were a priori
identical, such strategies impact the quality of students selected in the safety school, which may
cause a differentiation between the schools from one year to the next. Such an example could be
interpreted as a recommendation for identical schools to merge their selection process.

Number of applications. Figure 6.8 gives an example where both the preferences of students
and schools are aligned. In such case there is a unique stable matching where the outcome of a
student is determined by her rank: the best students are matched to the best school, the next
students are matched to the second school, and so on. A student who has incomplete information
and only knows her expected rank can try to apply to all the school in a “window” around her
expected outcome. Using Hoeffding’s inequality, the real rank of a student is at most x

√
n away

from her expected rank, with probability at least 1−2e−2x2 . If schools have capacity c, then an upper
quota of O(

√
n/c) applications is already large enough for students to ensure they get the same

outcome they would obtain when applying to all the schools, with good probability. Such reasoning
could be helpful to decision makers when setting an upper quota on the number of applications.
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6.4 Existence of a Bayes-Nash equilibrium

6.4.1 Induced normal form

Following Milgrom andWeber [MW85], we define distributional strategies as the set S̃µ of probability
distributions p̃ ∈ ∆(T × A) such that the marginal distribution on T is the distribution µ. In our
setting, behavioral and distributional strategies are equivalent as there is a many-to-one mapping
from a behavioral strategy p to the corresponding distributional strategy p̃.

• Given µ ∈ ∆(T ) and p ∈ S, we define the distribution p̃ such that p̃(B×{a}) =
∫
B p(t, a)dµ(t)

for every Borel subset B ⊆ T and for every action a ∈ A.

• Conversely, given p̃ ∈ ∆(T × A), first define the marginal distribution µ such that µ(B) =
p̃(B × A) for every Borel subset B ⊆ T . Then, for every action a ∈ A the measure B 7→
p̃(B × {a}) is absolutely continuous with respect to µ, hence Radon-Nikodym theorem gives
the existence of a measurable function t 7→ p(t, a) such that p̃(B × {a}) =

∫
B p(t, a)dµ(t) for

every B ⊆ T .

We now define the payoff function Ũ for distributional strategies. For every (p̃i)i∈[n] ∈ ∆(T × A)n

we set

(Ũ(p̃i, p̃−i))i∈[n] =

∑
a∈An

∫
t∈Tn Utility((ti, ai)i∈[n]) · 1[all ti’s are distinct] ·∏i∈[n] dp̃i(ti, ai)∑

a∈An
∫
t∈Tn 1[all ti’s are distinct] ·∏i∈[n] dp̃i(ti, ai)

(6.1)
Notice that the transformation from behavioral to distributional strategies is payoff-preserving, that
is

∀(pi)i∈[n] ∈ Sn, (Uµ(pi, p−i))i∈[n] = (Ũ(p̃i, p̃−i))i∈[n]. (6.2)

The induced normal form of the Bayesian game is the surrogate symmetric n players game Gµ =
〈n, S̃µ, Ũ〉, where the set of actions is the set of distributional strategies S̃µ. Thus, a behavioral
strategy profile (pi)i∈[n] is a mixed Bayes-Nash equilibrium in the original Bayesian game if and
only if the corresponding distributional strategy profile (p̃i)i∈[n] is a pure Nash equilibrium in Gµ.

The notion of ε-equilibrium in the induced normal form game Gµ exactly corresponds to ex-ante
ε-equilibrium in the Bayesian game, that is a strategy profile where no student can deviate and win
more than ε, in average before drawing her type.

6.4.2 Existence theorem

We are now ready to prove the existence of an equilibrium for the game Gµ, and thus for the Bayesian
game.

Theorem 6.4. The game Gµ has a symmetric equilibrium.

Proof. We apply Proposition 1, Proposition 3, and Theorem 1 from [MW85]. Because the set of
actions A is finite, the game has equicontinuous payoffs (R1). Types of students are drawn without
replacement from µ, which is equivalent with sampling types independently and condition on the
fact that types are distinct. Thus the distribution over Tn (types drawn without replacement)
is absolutely continuous with respect to the product distribution (types drawn independently),
which proves that the game has absolutely continuous information (R2). Milgrom and Weber use
Glicksberg’s Theorem to prove that the best response correspondence has a fixpoint, which gives
the existence of a Nash equilibrium. Proving the existence of a symmetric equilibrium only requires
a small modification of the best response correspondence, see for example [Che+04].
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6.5 Computing equilibria with finitely many types

In this section we provide algorithms to compute an equilibrium when µ has a finite support.

6.5.1 Symmetric agent form

When the distribution µ is discrete and has a finite support {t1, . . . , tk} of size k ≥ n, we define
the symmetric agent-form game G′µ = 〈k,A, V 〉, where each player corresponds to a type, and the
payoff function V : Ak → Rk+ is a vector-valued function, such that the i-th coordinate of V (a) is
equal to the expected payoff of a student of type ti in the Bayesian game (the expectation is taken
over the types of the n − 1 other students) when a player of type tj plays aj . By construction,
p ∈ S is a symmetric equilibrium of the Bayesian game if and only if (p(ti))i∈[k] ∈ ∆(A)k is a mixed
equilibrium of the agent-form game.

The notion of ε-equilibrium in the symmetric agent-form game G′µ exactly corresponds to interim
ε-equilibrium in the Bayesian game, where no student can deviate and win more that ε after
drawing her type (but before drawing the types of other players). Because an interim approximate
equilibrium is also an ex-ante approximate equilibrium, any ε-equilibrium of the game G′µ induces
an ε-equilibrium of the game Gµ.

Theorem 6.5. For the game G′µ, computing an exact equilibrium is in the class FIXP, and
computing an approximate ε-equilibrium with ε > 0 is in the class PPAD.

Proof. The game G′µ is a k-players game in normal form, where the payoff function V is given by
a matrix of size k · |A|k. As such, the problems of computing exact and approximate equilibria are
respectively in the classes FIXP and PPAD, see for example [Yan09].

6.5.2 One application per student and strong α-reducibility

The student-proposing deferred acceptance procedure being quite complex, we will make some
assumption on the preferences of schools and students in order to simplify the matching procedure.
More precisely, Algorithm 6.2 simplifies the function Utility when the matching market induced
by (ti, ai) ∈ (T ×A)n is α-reducible.

Algorithm 6.2 Simplified procedure when the matching market is α-reducible.
Game parameters: n, m, A, T = [0, 1]d, (sj)j∈[m], (vj)j∈[m] and (cj)j∈[m].
Initialization:

Add a “sentinel” school 0 with capacity c0 = n and value v0 = 0, ranked last in every list.
Function Utility((ti, ai)i∈[n] ∈ (T ×A)n)

Each school j sorts its applicants (i ∈ [n] such that j ∈ ai) by decreasing score (sj(ti)).
Initialize r ← (cj)0≤j≤m the vector of remaining capacities.
While some students are unassigned, do

For each school j with a positive capacity (rj > 0) and some unassigned applicant, do
Let i be the top unassigned applicant at school j.
If school j is student i’s first choice among schools with a positive capacity, then

Assign student i to school j, set ui ← vj(ti) and rj ← rj − 1.
Return the vector of utilities (ui)i∈[n].
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Theorem 6.6. If the matching market induced by (ti, ai)i∈[n] ∈ (T × A)n is α-reducible and
schools give distinct scores to student, then Algorithm 6.2 is equivalent with Algorithm 6.1.

Proof. Assuming that schools give distinct scores to students, the algorithm is able to sort appli-
cants by decreasing scores. Assuming that the matching market is α-reducible, at least one student
will be assigned at each iteration of the while loop and the algorithm will terminate. To show the
equivalence with Algorithm 6.1, consider the first pair (i, j) assigned by Algorithm 6.2. By con-
struction, i and j prefer each other to everyone else, thus must be matched in every stable matching,
and in particular the one computed by the student proposing deferred acceptance algorithm. We
continue with the same reasoning by induction.

In the complete information setting, and when the matching market is α-reducible, Theorem 6.3
shows that every equilibrium implements the unique stable matching, and that one can build simple
equilibrium by induction: there exist a fixed student-school pair (i, j) who prefer each other to
everyone else, thus reporting j is a dominant strategy for player i, who can be removed from the
market (together with her seat), and so on. In the incomplete information case, we build on this
intuition, replacing a student-school pair by a type-school pair (t, j) ∈ T × [m].

Definition 6.7 (strong α-reducibility). We say that the matching game is strongly α-reducible,
where for every S ⊆ T and q ∈ [0, 1]m, there must be at least one pair (t, j) ∈ S × [m] such
that sj(t′) ≤ sj(t) for every t′ ∈ S and qj′ · vj′(t) ≤ qj · vj(t) for every j′ ∈ [m].

As a special case, notice that if schools have identical preferences (all functions sj are equal),
or if students have identical preferences (all functions vj are constant), or if preferences of students
and schools are symmetric (sj = vj for all j), then the game is strongly α-reducible.

Observe that strong α-reducibility does not ask for strict reducibility, because that would make
the definition too restrictive. In a strongly α-reducible game, given each players’ type and action,
the resulting market is α-reducible if and only if each school give distinct scores to students.

In Algorithm 6.3, we compute an equilibrium of the symmetric agent-form game G′µ. The
algorithm can be implemented to run in time O(m · k · ln k), which corresponds to the time needed
for each school to sort types by decreasing score, and is much more efficient than a generic algorithm
for the symmetric agent-form game with m actions and k players.

Algorithm 6.3 Compute an equilibrium with ` = 1 and strong α-reducibility.
Game parameters: k, n, m, A = [m], T = [0, 1]d, (sj)j∈[m], (vj)j∈[m] and (cj)j∈[m].
Function Proba(x, c)

Return
∑c−1

i=0

(
x
i

)(
k−1−x
n−1−i

)
/
(
k−1
n−1

)
, that is, the probability that at most c− 1

of the other n− 1 students will draw one of the x types that
have (already) been assigned to this school of capacity c.

Function Equilibrium(collection of types (ti)i∈[k] ∈ T k)
Initialize x← (0)j∈[m] the number of types applying to each school.
While some types are unassigned, do

For each school j ∈ [m], do
Let i be an unassigned type which maximizes sj(ti).
If vj′(ti) · Proba(xj′ , cj′) ≤ vj(ti) · Proba(xj , cj) for every other j′ ∈ [m], then

Assign type i to school j, set ai ← j and xj ← xj + 1.
Return the distributional strategy Uniform{(ti, ai)}i∈[k].
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Theorem 6.8. Let µk be the uniform distribution over (ti)i∈[k]. If each student is allowed ` = 1
application, if every school gives distinct scores to types, and if the game is strongly α-reducible,
then Algorithm 6.3 returns a symmetric equilibrium of the game Gµk in time O(mk ln k).

Proof. First, we show that if the game is strongly α-reducible then Algorithm 6.3 terminates: at
each iteration of the while loop there is at least one fixed pair with q = (Proba(xj , cj))j∈[m]. Then
we compute a symmetric equilibrium via the elimination of dominant strategies.

At each iteration, we define qj = Proba(xj , cj). Consider type-school pairs (t, j) where school j
ranks t first among types that have not been assigned yet (there are no ties by assumption). Then,
a student of type t will be accepted to school j with probability = qj (because she is ranked first in
school j), and will be accepted to another school j′ with probability ≤ qj′ (because she might not
be ranked first at school j′). If (t, j) is a fixed pair, then qj′ · vj′ ≤ qj · vj for every j′, and it is a
dominant strategy for a student of type t to apply to school j.

A crucial detail is that student’s types are drawn without replacement. This removes any
feedback the strategy of a type may have on itself because of multiple students having the same
type. This also explains why Proba uses an hypergeometric distribution rather than a simpler
binomial distribution.

6.5.3 Schools have identical preferences

Gusflied and Irving [GI89] observed that the matching is unique when all schools have identical
preferences. In such a case, the matching procedure of Algorithm 6.2 further simplifies into the
serial dictatorship mechanism: the best student chooses her favorite school, then the second best
student chooses among remaining schools, and so on.

Algorithm 6.4 Computing an equilibrium when schools have identical preferences sj = s.
Game parameters: n, m, A, T = [0, 1]d, s, (cj)j∈[m] and (vj)j∈[m].
Initialization:

Add a “sentinel” school 0 with capacity c0 = n and value v0 = 0, ranked last in every list.
Define the set of “remaining capacity” vectors R =

∏
0≤j≤m{0, 1, . . . , cj}.

Function School(preference list a ∈ A, remaining capacities r ∈ R)
Return the first school j in the preference list a whose remaining capacity is rj > 0.

Function Equilibrium(collection of types (ti)i∈[k] ∈ T k)
Sort types (ti)i∈[k] by non-increasing order of score s(ti).
Initialize the distribution q ∈ ∆(R) such that q((cj)0≤j≤m) = 1.
For i from 1 to k, do

Let ai = arg maxa∈A
∑

r∈R q(r) · vschool(a,r)(ti).
For each “remaining capacity” vector r ∈ R in lexicographical order, do

Let p← (n− 1−∑0≤j≤m(cj − rj))/(n− i+ 1) be the probability
that a student has type ti.

Let r′ ← r − δj be the capacity vector once a student
is assigned to school j = School(ai, r).

Set q(r)← (1− p) · q(r) and q(r′)← q(r′) + p · q(r).
Return the distributional strategy Uniform{(ti, ai)}i∈[k].

In Algorithm 6.4, we compute an equilibrium of the symmetric agent-form game G′µ. The
algorithm can be implemented to run in time O(k · n ·∏j∈[m](1 + cj)}), which is linear in k, and
thus much more efficient than a generic algorithm for the symmetric agent-form game with

(
m
`

)
action for each of the k players.
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Theorem 6.9. Let µk be the uniform distribution over (ti)i∈[k]. If all school have the same
scoring function s, and if all s(ti)’s are distincts, then Algorithm 6.4 returns a symmetric
equilibrium of the game Gµk .

Proof. We compute a symmetric equilibrium by eliminating dominant strategies. After sorting
types by decreasing scores, notice that the expected payoff of a student having type ti does not
depend on the strategy of students having types ti+1, . . . , tk.

At each iteration i, q corresponds to the distribution over remaining seats when the serial
dictatorship mechanism consider a type ti student (and assigns her to the first available school
in her preference list). Notice that because we allow students to apply to more than 1 school,
correlations may exist between the number of remaining seats in different schools, which is the
reason why we store the whole distribution and not only its marginals. Then, we compute the
expected payoff of each action, chose the best one, and update distribution q accordingly.

As in Theorem 6.8, types of students are drawn without replacement. This is exactly the
distribution we consider when updating q: conditioning on the fact that remaining seats are given
by r, exactly x =

∑
0≤j≤m(cj − rj) students have drawn types in {t1, . . . , ti−1}, hence n − 1 − x

other students have types in {ti, . . . , tn}, and one of them will draw type ti with probability (n −
1− x)/(n− i+ 1).

6.6 Computing equilibria with an atomless type distribution

This section is a toolbox to prove that an algorithm approximates a Bayes Nash equilibrium. In Fig-
ures 6.9 and 6.10, we illustrate how one can combine algorithms from Section 6.5 with a convergence
theorem to compute equilibria of games with a continuous distribution over types.

Weak convergence of type distribution. Computing an equilibrium is more tractable when
the set of strategies has finite dimension. For that matter, when µ is continuous, we will discretize
the set of types. Denote ∆d(T ) ⊆ ∆(T ) the set of discrete distributions having a finite support.
Theorem 6.10 states that ∆d(T ) is dense in ∆(T ) for the weak convergence of measures. More
precisely, one can approximate a distribution by drawing a finite number of independent samples
from it.

Theorem 6.10. Let µ ∈ ∆(T ) be a distribution and let (ti)i≥1 be a sequence of independent
random variables with distribution µ. For all k ≥ 1, define the (random) distribution µk such
that µk(B) = |{ti}i∈[k]∩B|/k for all Borel set B ⊆ T . Then almost surely (over the randomness
of the ti’s), the sequence (µk)k≥1 weakly converges towards µ.

Proof. See [Var58].

Weak convergence of distributional strategies. Let us explain why the formalism of distri-
butional strategies is required. For approximation purposes, we are interested in the case where each
µk is discrete and has finite support, converging weakly towards a continuous distribution µ. For
any behavioral strategy p ∈ S, one could set each pk to be equal to p almost everywhere (outside of
the support of µk), while ensuring that each pk is a symmetric Nash equilibrium under µk. Hence,
assuming the weak convergence of behavioral strategies is not enough to prove that the limit is a
Nash equilibrium.
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Continuity of the payoff function. Unfortunately, assuming the weak convergence of a se-
quence of equilibria in distributional strategies, is still not enough to show that the limit is an
equilibrium. In particular, we cannot directly apply Theorem 2 from Milgrom and Weber [MW85],
because the payoff function Utility : (T ×A)n → Rn+ might be discontinuous in the players types.
However, we will be able to show the weaker property that Ũ : ∆(T × A)n → R+ is (sequentially)
continuous at the limit (when distributional strategies are endowed with the topology of the weak
convergence of measures). This requires additional continuity assumptions on µ, sj ’s and vj ’s.

Theorem 6.11. If the following conditions hold, then the utility function Ũ is weakly contin-
uous at every strategy profile in (S̃µ)n.

• the distribution µ is atomless (that is, µ({t}) = 0 for every t ∈ T ),

• value and scoring functions are continuous µ-almost everywhere (that is, µ(D) = 0 where
D is the set of discontinuities of a scoring function sj or of a value function vj),

• level sets of scoring functions are µ-negligible (that is, µ(s−1
j ({y})) = 0 for every j ∈ [m]

and y ∈ [0, 1]).

Proof. Let (p̃i)i∈[n] ∈ (S̃µ)n be a strategy profile. In Equation (6.1) which defines Ũ , we are going to
show that integrands are continuous almost everywhere with respect to (p̃i)i∈[n]. Then, we conclude
the proof using the Portmanteau Theorem (see for example Theorem 3.10.1 from [Dur19]), showing
that Ũ is sequentially4 continuous in (p̃i)i∈[n].

First, assuming that µ is atomless is sufficient to prove that 1[all ti’s are distinct] is continuous
almost everywhere. Moreover, if Utility is not continuous in (ti, ai)i∈[n], then it is because a
value function or a scoring function is discontinuous in some ti, or because a school gives the same
score to two types. Each condition occurs with probability 0, thus Utility is continuous almost
everywhere.

Putting everything together. To approximate a Nash equilibrium of the game Gµ, first use
Theorem 6.11 to show that Ũ is weakly continuous at every strategy profile in (S̃µ)n. Then use
Theorem 6.10 to build a discrete approximation µk of the type distribution µ. Then, compute a sym-
metric Nash equilibrium p̃k of the game Gµk . Using Prokhorov’s theorem, the set of distributional
strategies ∆(T × A) is metrizable and (sequentially) compact, hence one can build a converging
subsequence of distributional strategies, whose limit will be a symmetric Nash equilibrium of Gµ.

Theorem 6.12. Consider a sequence of measures µk≥n ∈ ∆(T ) and a sequence of behavioral
strategies pk≥n ∈ S, if

• for all k ≥ n, the distributional strategy p̃k ∈ S̃µk is a symmetric equilibrium of Gµk ,

• the sequence of distributional strategies weakly converges towards a strategy p̃ ∈ S̃µ with
a marginal type distribution µ ∈ ∆(T ),

• the payoff function Ũ is weakly continuous at every strategy profile in (S̃µ)n,

then p̃ is a symmetric equilibrium for the game Gµ = 〈n, S̃µ, Ũ〉. Alternatively, if p̃k’s are
ε-equilibria with ε > 0 (ex-ante approximate equilibria of the Bayesian games), then p̃ is an
ε-equilibrium of the game Gµ.
4Using Prokhorov’s theorem, the space of probability measures ∆(T × A) endowed with its weak topology is

metrizable, thus the notions of sequential continuity and continuity are equivalent.
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Proof. For the sake of contradiction, assume that p̃ is not a symmetric Nash equilibrium of Gµ.
Then there exists a best response p̃∗ ∈ S̃µ such that playing p̃∗ raises the payoff of the player
by a positive constant ε > 0, that is Ũ(p̃∗, (p̃)i∈[n−1]) − Ũ(p̃, (p̃)i∈[n−1]) = ε > 0. The sequence
of measures (µk)k≥0 weakly converges towards µ, hence there exists a sequence of distributional
strategies p̃∗k ∈ S̃µk weakly converging towards p̃∗. Using the continuity hypothesis on Ũ , we show
that Ũ(p̃∗k, (p̃k)i∈[n−1])− Ũ(p̃k, (p̃k)i∈[n−1]) converges towards ε, and thus is positive for some k ≥ n.
Therefore, it contradicts the fact that each p̃k is an equilibrium of Gµk . The proof with approximate
equilibria is identical, if we set ε in the proof to be equal to ε from the statement of the theorem.

6.7 Simulations

For this chapter, implementations are available at the following address:

https://github.com/simon-mauras/stable-matchings/tree/master/Equilibrium

Convergence theorem with mixed equilibrium. Both Algorithms 6.3 and 6.4 compute a
pure equilibrium p̃k of the game Gµk , in the sense that the behavioral strategy pk is pure. Using
Theorem 6.12 we show that p̃k weakly converge towards an equilibrium p̃ of Gµ. When p is a pure
strategy, we can easily approximate p by the strategy pk with a large k (see Figure 6.9). However,
if p is a mixed strategy, we need an extra step to compute the limit: for every t ∈ T we consider
the
√
k types from the support of µk that are closest to t, and let pk(t) be the average strategy over

those points (see Figure 6.10).

Strongly α-reducible preferences. When the game is strongly α-reducible, we can compute
equilibrium with ` = 1 application per student. Special cases include when students have identical
preferences (Figure 6.6) and when schools have identical preferences (Figure 6.7). In each case
we implement Algorithm 6.3 in Python (see identical-students.py and identical-schools.py
respectively), to generate Figure 6.9.

Schools have identical preferences. When schools have identical preferences, we can compute
equilibrium for any ` ≥ 1. For simplicity our implementation also assumes that students have
identical preferences. Because the complexity of Algorithm 6.4 is exponential in the number of
students and the number of schools, an efficient implementation is preferable, which is the reason why
we chose to have a Python script (identical-all.py) interacting with a C++ solver (exact.cpp).

The expensive part of Algorithm 6.4 is to evaluate the payoff of each action. To speed-up the
computation, an improved solver (approximate.cpp) outputs an approximate equilibrium of Gµk ,
which will converge towards an approximate equilibrium of Gµ. The main idea is to replace the
dynamic programming approach (where we compute q) by Monte Carlo simulations. We randomly
partition {t1, . . . , tk} into r = k/(n − 1) sets of n − 1 types, each corresponding to a “run”. When
considering the type ti with 1 ≤ i ≤ k, we approximate q by the empirical distribution of remaining
capacities over the r runs. Figure 6.10 was obtained by setting r = 2 000 000 and n = 50, which
runs in roughly 1 minute.

6.8 Conclusion and open questions

In this chapter, we generalized the game defined by Haeringer and Klijn [HK09], in a setting
where students have incomplete information. We discussed the existence and the computability of
equilibria in several setting. The following questions are left open for future work:

https://github.com/simon-mauras/stable-matchings/tree/master/Equilibrium
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• Equilibria with 1 application per student. In the complete information case, Haeringer
and Klijn show that equilibria with 1 application per student correspond to stable matchings.
As illustrated in Figure 6.4, the incomplete information game can have an infinite number of
equilibrium. But does the set of equilibria has a lattice structure?

• Unique equilibrium. In Section 6.5, we compute equilibria with a finite number of types by
eliminating dominant strategies. If each eliminated strategy strictly dominates other strate-
gies, the equilibrium is unique. Using a convergence theorem, does uniqueness extends to the
case where types are continuous?

• Differential equations. When combined with the convergence theorem, algorithms from
Section 6.5 can be seen as first order Euler methods, which eventually solve differential equa-
tions. Such equations might lead to more efficient algorithms, and a to a proof that the
equilibrium is unique.

• Complexity. In Section 6.5.1, we argue that a behavioral equilibrium with k types cor-
responds to an equilibrium in a k player game in normal form, and thus the problem of
computing an exact/approximate equilibrium belong to the classes FIXP/PPAD. Are those
results tight, in the sense of FIXP/PPAD-hardness?
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(a) Pure equilibria for random discretizations of the game from Figure 6.5.
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(b) Pure equilibria for random discretizations of the game from Figure 6.6.

Figure 6.9. Equilibria with ` = 1 for Gµk = 〈n, S̃µk , Ũ〉 computed using Algorithm 6.3,
where µk is a distribution with a finite support of size k approximating µ. When k → +∞,
the distributional strategies weakly converge towards the equilibria of Gµ given in Figures 6.5
and 6.6.
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(a) Equilibrium with ` = 1. (b) Equilibrium with ` = 2.
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(c) Equilibrium with ` = 3. (d) Equilibrium with ` = 4.
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(e) Equilibrium with ` = 5.

Figure 6.10. Equilibria of the game defined in Figure 6.8, computed using Algorithm 6.4.
The top panel of each sub-figure plots the probability of each outcome, conditioned on the type
of the student. In a mixed strategy, every action gives the same payoff. The bottom panel of
each sub-figure decompose this payoff into the different strategy from the mixed equilibrium,
conditioned on the type of the student. Exactly as we argued in Figure 6.8, the equilibrium
with 3 applications per student yields almost the same outcome (in terms of expected payoff)
as the one with 5 applications per student.





Part III

Who gets what?
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7 | Output Distribution of
Deferred Acceptance

This chapter is based on the following paper:

[Mau20] Simon Mauras. “Two-Sided Random Matching Markets: Ex-Ante Equivalence of the
Deferred Acceptance Procedures”. In: Proceedings of the 21st ACM Conference on
Economics and Computation. 2020, pp. 585–597

7.1 Introduction

Gale and Shapley’s deferred acceptance procedure comes with two variants: the men-proposing-
deferred-acceptance (abbr. MPDA, see Algorithm 2.1), and the women-proposing-deferred-acceptance
(abbr. WPDA). Consider a random two-sided matching market, where a (given) procedure com-
putes a stable matching. Every agent of the market is interested by the distribution of outcomes.
But computing which outcome an agent can expect is a difficult question, that has only been an-
swered in special cases (for example, see Theorem 4.19 in Chapter 4 when both sides of the market
have vertical preferences). Trying to answer the question “who gets what?”, we discovered numer-
ically an intriguing mathematical property which holds in the vanilla model where agents have
incomplete uniform preferences: procedures MPDA and WPDA are ex-ante equivalent, in the sense
that they induce the exact same distribution over matchings (see Section 7.2 and Theorem 7.2).

We prove this property using the lattice structure of stable matchings: an application of the
inclusion-exclusion principle gives the probability that a matching is men/women-optimal (see Sec-
tion 7.3 and Lemma 7.3). First, we show that the ex-ante equivalence property remains valid in
the larger class of symmetric anti-popularity preference distributions (see Section 7.4 and Theo-
rem 7.5). Then, we study the robustness of our result under other input distributions: symmetric
popularity preferences (see Section 7.5); general utility preferences (see Section 7.7); and general
anti-popularity preferences (see Section 7.8). In the latter case, Theorem 7.11 gives a closed formula
for the probability of two person being matched, in balanced markets where agents have complete
anti-popularity preferences, answering our initial question.

Related works. Although in the setting of one-sided matching markets, papers have shown the
equivalence of random mechanisms under deterministic inputs, which can be interpreted as the
equivalence of deterministic mechanisms under random inputs. Both Knuth [Knu96], and Ab-
dulkadiroglu and Sönmez [AS98] show that in housing markets, computing the core allocation with
random endowments is equivalent to the random serial dictatorship mechanism.

In two-sided matching markets, the ex-ante equivalence property can be compared to the stronger
ex-post equivalence, where both MPDA and WPDA output the same stable matching. Most of the
literature focus on asymptotic ex-post equivalence, under a large market assumption. In particular,

91
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Immorlica and Mahdian [IM15], and Ashlagi, Kanoria and Leshno [AKL17] show that the fractions
of agents who do not receive the same allocation from MPDA and WPDA vanishes with a large
number of agents.

Other articles from the literature of matching under random preferences have studied who gets
what. Lee [Lee16] considers a model where agents have random vertical utility preferences, and
shows that in every stable matching, agents asymptotically receive utilities equal to their public
values. More recently, Ashlagi, Braverman, Saberi, Thomas and Zhao [Ash+21] show that the
output distribution of deferred acceptance is asymptotically uniform when agent have aligned pop-
ularity preferences, with bounded popularities.

Takeaway message. Recall that MPDA outputs the men-optimal-stable-matching, and that
WPDA outputs the women-optimal-stable-matching. Hence, the two procedures output the same
matching when men and women like the same things, or more precisely when people like persons
who like them in return. The same remark with random preferences give an intuitive explanation of
our result: if men and women like the same things in average (symmetric preferences), then MPDA
and WPDA will output the same matchings in average (ex-ante equivalence).

7.2 Motivating special case

The starting point of this work was to understand the output distributions of MPDA and WPDA,
in a very simple matching market with M men and W women having heterogeneous preferences
(agents have idiosyncratic preferences).

Definition 7.1 (Incomplete uniform preferences). Consider any fixed bipartite graph G =
(M∪W, E) withM = {m1, . . . ,mM} the set of men, W = {w1, . . . , wW } the set of women,
and E ⊆ M×W the set of edges. Agents have uniform preferences (see Definition 3.1) and
rank their neighbours (non-edges are not acceptable) uniformly and independently at random.

Figure 7.1 illustrates Definition 7.1, on a bipartite graph with 5 men and 4 women. The output
distributions of procedures MPDA and WPDA can be computed with a computer, and they happen
to be identical. They are given in Figure 7.2.

For every bipartite graph with M,W ≤ 4, we used computer simulations to compute the output
distribution of MPDA and WPDA. Surprisingly the two output distributions were always identical,
which led us to conjecture Theorem 7.2.

Theorem 7.2. In a random matching market where the preference profile is drawn from an
incomplete uniform preference distribution, the output distributions of MPDA and WPDA are
identical.

Proof sketch. In Section 7.4 we prove Theorem 7.5, which generalizes Theorem 7.2. Nonetheless,
let us give the ideas of the proof on the example of Figures 7.1 and 7.2.

To compute the probability that WPDA outputs µ1, we first compute the probability that µ1 is
stable. Then we subtract the probability that µ1 is stable but not women-optimal, because another
matching is stable and improves the outcome of women.

Each person is either matched in all stable matchings, or single in all stable matchings [MW70];
hence when µ1 is stable, the only other matchings which can be stable are µ2, µ3, µ4 and µ5. Using
the fact that stable matchings have a lattice structure [Knu76; Knu97], one can prove that when µ1

is stable, the set of matchings that are stable and preferred to µ1 by all women is either ∅, {µ2},
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m2 � m3 � m4

m4 � m3 � m5

µ1 µ2 µ3 µ4 µ5

Figure 7.1. Example of incomplete uniform preference distribution. The probability of
sampling this particular preference profile is 1/(2!4 · 3!4 · 4!) = 1/497664. There are five stable
matchings µ1, µ2, µ3, µ4 and µ5. MPDA outputs µ5 and WPDA outputs µ3.
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Figure 7.2. Output distribution, common to the procedures MPDA and WPDA, using the
input model of Figure 7.1. The support of the distribution is the set of all maximal matchings.
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{µ3}, {µ4}, {µ2, µ5}, {µ3, µ5}, {µ4, µ5} or {µ2, µ4, µ5}. WPDA outputs µ1 in the first case, which
occurs with a probability that can be computed with an inclusion-exclusion principle.

P[WPDA outputs µ1] = P[µ1 stable]− P[µ1 and µ2 stable, women prefer µ2]

− P[µ1 and µ3 stable, women prefer µ3]

− P[µ1 and µ4 stable, women prefer µ4]

+ P[µ1, µ2 and µ4 stable, women prefer µ2 and µ4]

It turns out that each probability on the right-hand side of the equality is equal to its counterpart
where we swap the roles of men and women. This can be shown using integral formulae defined by
Pittel [Pit92].

P[µ1 and µ2 stable, women prefer µ2] =

∫ 1

0
· · ·
∫ 1

0
dx1 · dx2 · dx3 · dx4 · dy1 · dy2 · dy3 · dy4

· (1− x2y3) · (1− x3y2) · (1− x3y4) · (1− x4y3)

· (1− y2) · (1− y4) · x1 · x2 · y1 · y2

= P[µ1 and µ2 stable, men prefer µ2]

Swapping the role of men and women in the left-hand side of the equality, gives the probability
that MPDA outputs µ1, hence MPDA and WPDA are equally likely to output µ1. As a sanity
check, we can compute the output probability of µ1, and check that this theoretical value matches
the experimental one from Figure 7.2.

P[WPDA outputs µ1] =
2795

41472
− 437

124416
− 7

2592
− 19

5184
+

5

31104
=

299

5184

For every fixed matching, the same type of arguments apply, which concludes the proof.

7.3 Main Lemma: Inclusion-exclusion principle

In this section, we compute the probability that a matching µ is the men/women-optimal stable
matching. To do so, we use an inclusion-exclusion principle on the set of rotations which could be
exposed and women/men-improving in µ.

Lemma 7.3. Consider a matching market with random preferences. The probability that a
matching µ :M∪W →M∪W is stable and men/women-optimal is

P[µ is stable and women-optimal] =
∑

σ permutation
σ|M=µ|M

(−1)C(σ) · P[σ is stable]

P[µ is stable and men-optimal] =
∑

σ permutation
σ|W=µ|W

(−1)C(σ) · P[σ is stable]

where C(σ) is the number of cycle of length > 2 in σ.

Proof. The men and women cases being symmetric, we prove the formula giving the probability that
a matching is stable and women-optimal. Let R be the set of rotations r such that r(m) = µ(m)
for all man m ∈ r. Matching µ is outputted by WPDA when it is stable and women-optimal: no
rotation r ∈ R is exposed and women-improving in µ.

P[µ is stable and women-optimal] = P[µ is stable]− P[µ is stable and some r ∈ R is exposed]
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Using an inclusion-exclusion principle to compute the probability of a disjunction, we obtain:

P[µ is stable and women-optimal] =
∑
R⊆R

(−1)|R| · P[µ is stable and every r ∈ R is exposed]

Recall that two different rotations can be exposed at the same time only if they are disjoint. Thus,
we can consider only sets R ⊆ R of disjoint rotations. Moreover, µ is stable and every rotation
from R is exposed if an only if the associated permutation σR is stable.

σR :


m 7→ µ(m) if m ∈M
w 7→ µ(w) if w ∈ W and w /∈ r for all r ∈ R
w 7→ r(w) if w ∈ W and w ∈ r for some r ∈ R

If C(σ) is the number of cycles of length > 2 in σ, we have C(σR) = |R|, concluding the proof.

7.4 Input model: Symmetric anti-popularity preferences

After observing that the output distributions of MPDA andWPDA are identical when the preference
profile is generated from a bipartite graph (see Section 7.1), we used computer simulations on more
general classes of input distributions. We observed that MPDA and WPDA are ex-ante equivalent
with the input model illustrated in Figure 7.3 and defined in Definition 7.4.

P =

w1 w2 w3

m1 2 4 0
m2 8 1 4

The preference list of m2 is
w2 � w1 � w3 with probability:

1/4

1/1 + 1/4 + 1/8
· 1/8

1/1 + 1/8
· 1/1

1/1
≈ 0.02

w1 is 3rd

w2 is 3rd

w3 is 3rd

w1 is 2nd

w2 is 2nd

w2 is 1st

1/8
1/1+1/4+1/8

1/1
1/1+1/4+1/8

1/4
1/1+1/4+1/8

1/8
1/1+1/8

1/1
1/1+1/8

1/1
1/1

Figure 7.3. Symmetric anti-popularity preference distribution

Definition 7.4 (Symmetric anti-popularity preferences). When men and women have sym-
metric (Definition 3.11) antipopularity (see Definition 3.3) preferences, popularities are given
by a function P : M×W → R+, where P (m,w) is the “popularity” that m and w attribute
to each other, and where pairs with popularity 0 are not acceptable.

We say that this preference distribution is symmetric because the “popularity” that m gives to
w is the same as the “popularity” that w gives to m. The “popularity” parameter P (m,w) relates to
how likely are m and w to like each other. In particular, a man m will prefer woman w1 to woman
w2 with probability P (m,w1)/(P (m,w1) + P (m,w2)).

Theorem 7.5. In a random matching market where the preference profile is drawn from a sym-
metric anti-popularity preference distribution, the output distributions of MPDA and WPDA
are identical.

Proof. A fixed matching µ is outputted by WPDA (resp. MPDA) if and only if it is stable and
women-optimal (resp. men-optimal). In Lemma 7.3, we give a formula for the probability that µ is
stable and men/women-optimal. Moreover, for every permutation σ we have:
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• σ and σ−1 are equally likely to be stable (proved in the upcoming Lemma 7.6).

• σ and σ−1 have the same number of cycles of length > 2 (that is C(σ) = C(σ−1)).

• σ|M = µ|M if and only if σ−1
|W = µ|W

The two sums from Lemma 7.3 are equal by re-indexing, thus P[µ is stable and women-optimal] =
P[µ is stable and men-optimal]. The matching µ has the same probability of being the output of
MPDA and WPDA, which concludes the proof.

Lemma 7.6. When men and women have symmetric anti-popularity preferences, a permuta-
tion σ :M∪W →M∪W and its inverse σ−1 are equally likely to be stable.

Proof. If some person does not find acceptable their successor or their predecessor, then neither σ
nor σ−1 can be stable, thus both probabilities are equal to 0. In the following, we assume that all
matches induced by σ and σ−1 are acceptable. To compute the probability that a permutation σ is
stable, we analyze the following randomized algorithm:

1. For each person x, we (partially) draw their preference list using anti-popularities, starting
from the least favorite partner, and stopping as soon as we see either σ(x) or σ−1(x).

2. If for some acceptable man-woman pair (m,w), we have not seen m when drawing w’s pref-
erences, nor have we seen w when drawing m’s preferences, then σ is not stable.

3. If for some person x such that σ(x) 6= σ−1(x), we stopped after drawing σ(x), then x prefers
their predecessor σ−1(x) to their successor σ(x), and the permutation σ is not stable.

Recall that a pair (m,w) is blocking the permutation σ if both m and w prefer each other to their
predecessors. If the procedure described above does not fail in steps (2) or (3), then σ is stable.

Analyzing this procedure requires careful handling of conditional probabilities. For each person
x, we condition on the identity and ordering of partners to whom x prefers both σ(x) and σ−1(x),
but we do not condition on whether x prefers σ(x) to σ−1(x). Using this conditioning, steps (1)
and (2) are deterministic, and their outcome are identical when checking the stability of σ and σ−1.
Then, using the definition of anti-popularity preferences, one can compute the probability that each
person prefers their successor to their predecessor. Let us start using the example from Figure 2.2.
In permutation σ, each person of the cycle m2 7→ w2 7→ m3 7→ w3 7→ m2 prefer their successor to
their predecessor with probability

P (m2, w2)

P (m2, w3) + P (m2, w2)︸ ︷︷ ︸
P[σ(m2)�m2σ

−1(m2)]

· P (m3, w3)

P (m3, w2) + P (m3, w3)︸ ︷︷ ︸
P[σ(m3)�m3σ

−1(m3)]

· P (m3, w2)

P (m2, w2) + P (m3, w2)︸ ︷︷ ︸
P[σ(w2)�w2σ

−1(w2)]

· P (m2, w3)

P (m3, w3) + P (m2, w3)︸ ︷︷ ︸
P[σ(w3)�w3σ

−1(w3)]

.

However, in the inverse permutation σ−1 we reverse every edge of the cycle. Observe that the
probability that each person prefer their successor to their predecessor remains the same.

P (m2, w3)

P (m2, w3) + P (m2, w2)︸ ︷︷ ︸
P[σ−1(m2)�m2σ(m2)]

· P (m3, w2)

P (m3, w2) + P (m3, w3)︸ ︷︷ ︸
P[σ−1(m3)�m3σ(m3)]

· P (m2, w2)

P (m2, w2) + P (m3, w2)︸ ︷︷ ︸
P[σ−1(w2)�w2σ(w2)]

· P (m3, w3)

P (m3, w3) + P (m2, w3)︸ ︷︷ ︸
P[σ−1(w3)�w3σ(w3)]

This holds for every cycle in every permutation. Thus, our procedure has the same probability of
failure when checking the stability of σ and σ−1, which concludes the proof.
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7.5 Counter example: Symmetric popularity preferences

The input model described in the previous section is very similar (but not equivalent) to the model
studied in [IM15; KP09]: agents build their preference lists by sampling without replacement from a
distribution (in [IM15; KP09] agents first draw their favorite partner, in the previous section agents
first draw their least preferred partner). A natural question is whether the ex-ante equivalence
property holds with the more classical symmetric popularity distributions, illustrated in Figure 7.4.
In Figure 7.5, we show that the answer to this question is no.

P =

w1 w2 w3

m1 2 4 0
m2 8 1 4

The preference list of m2 is
w2 � w1 � w3 with probability:

1

1 + 4 + 8
· 8

4 + 8
· 4

4
≈ 0.05

w1 is 1st

w2 is 1st

w3 is 1st

w1 is 2nd

w3 is 2nd

w3 is 3rd

8
1+4+8

1
1+4+8

4
1+4+8

8
4+8

4
4+8

4
4

Figure 7.4. Symmetric popularity preference distribution

Definition 7.7 (Symmetric popularity preferences). When men and women have symmetric
(Definition 3.11) popularity (see Definition 3.2) preferences, popularities are given by a function
P :M×W → R+, where P (m,w) is the “popularity” that m and w attribute to each other,
and where pairs with popularity 0 are not acceptable.

The formal definition of a symmetric popularity preference distribution is nearly identical to
Definition 7.4, but preference lists are built from the start, drawing partners without replacement
with probability proportional to their popularity. Both in the anti-popularity model (see Figure 7.3)
and in the popularity model (see Figure 7.4), a man m will prefer woman w1 to woman w2 with
probability P (m,w1)/(P (m,w1) + P (m,w2)). The difference between the two distributions comes
from rare events: in the anti-popularity setting a very popular person will sometimes be ranked
unusually low, whereas in the popularity setting a very unpopular person will sometimes be ranked
unusually high.

Popularity matrix Pω, with ω > 1.

Pω =

w1 w2 w3

m1 ω ω2 0

m2 ω3 1 ω2

Input model when ω = 2:

• Anti-popularity → Figure 7.3

• Popularity → Figure 7.4

Anti-popularity Popularity
MPDA & WPDA MPDA WPDA

∼ 1/ω5 ∼ 1/ω4 ∼ 3/ω5

∼ 1/ω2 ∼ 1/ω2 ∼ 1/ω2

∼ 1/ω ∼ 1/ω ∼ 1/ω

∼ 1 ∼ 1 ∼ 1

Figure 7.5. Comparing the output distributions of MPDA and WPDA.
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Figure 7.5 compares the output distributions of MPDA and WPDA, in both the popularity and
anti-popularity setting, where popularities are parameterized by an arbitrary large constant ω > 1.
From Theorem 7.5, we know that the ex-ante equivalence property holds in the anti-popularity
setting, that is the output of MPDA and WPDA are identical. In the popularity setting, we show
that some matching can be arbitrarily more likely to be chosen by one of the two deferred-acceptance
procedures. However, such matching is unlikely to be chosen by either procedures.

More precisely, in the popularity setting of Figure 7.5, MPDA matches m2 and w2 with prob-
ability ∼ 1/ω4, whereas WPDA matches m2 and w2 with probability ∼ 3/ω5. This is in part due
to the fact that if w2 �m2 w1 �m2 w3 (which occurs with probability ∼ 1/ω3), MPDA matches m2

and w2 with probability ∼ 1/ω, whereas WPDA matches m2 and w2 with probability ∼ 1/ω2.

7.6 Previous results: probability of stability

Random matching markets with N men and N women having complete uniformly random prefer-
ence lists were studied in [Knu76; Knu97; Pit89; Pit92]. Knuth gave an integral formula for the
probability pN that a fixed matching is stable; with the objective of computing the asymptotic av-
erage number of stable matchings (in the uniform case, all N ! matchings have the same probability
of being stable). In 1989, Pittel gave an alternate proof of this integral formula, and showed that
N ! · pN ∼ e−1N lnN .

Let us retranscribe Pittel’s proof of the integral formula. Let µ be any matching. Let X and
Y be two random matrices, uniformly drawn from [0, 1]M×W . Man m prefers woman w1 to woman
w2 if Xm,w1 < Xm,w2 . Correspondingly, woman w prefers man m1 to man m2 if Ym1,w < Ym2,w.

Thus, a pair (m,w) is blocking matching µ if and only if Xm,w < Xm,µ(m) and Ym,w < Yµ(w),m.
We condition on the values of x = [Xm,µ(m)]m∈M and y = [Yµ(w),w]w∈W , and write the probability
that a pair blocks µ:

∀(m,w) such that µ(m) 6= w and µ(w) 6= w, P[(m,w) blocks µ |x,y] = xm · yw

Still conditioning on x and y, blocking events are independent, hence the formula:

P[µ is stable] =

∫
· · ·
∫

︸ ︷︷ ︸
2N

dx · dy ·
∏
m,w

µ(m)6=w
µ(w)6=m

(1− xmyw)

In subsequent works [PI94; Pit19], Pittel extended the above formula to compute the probability
that a fixed permutation is stable. We recall that a permutation σ is stable if the following is true:

• Every person x prefers their successor to their predecessors (σ(x) �x σ−1(x))

• For each pair (m,w) ∈M×W, we have (σ−1(m) �m w) or (σ−1(w) �w m)

We condition on the values of x = [Xm,σ−1(m)]m∈M and y = [Yσ−1(w),w]w∈W .

• Each man m such that σ(m) 6= σ−1(m) prefers σ(m) to σ−1(m) with probability xm.

• Each woman w such that σ(w) 6= σ−1(w) prefers σ(w) to σ−1(w) with probability yw.

• Each pair (m,w) such that σ(m) 6= w and σ(w) 6= m is blocking with probability xmyw.
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Hence the formula:

P[σ is stable] =

∫
· · ·
∫

︸ ︷︷ ︸
2N

dx · dy ·
∏
m,w

σ(m)=w
σ(w)6=m

xm ·
∏
m,w

σ(m)6=w
σ(w)=m

yw ·
∏
m,w

σ(m)6=w
σ(w)6=m

(1− xmyw)

For the more general problem of stable roommates, Mertens [Mer15] combined this formula with
an inclusion-exclusion principle to compute the probability that a random instance has a solution.

7.7 Complete utility preferences

In this section, we define utility preference distributions, and generalize Pittel’s integral formula to
this setting. In Theorem 7.9, we derive a new integral formula for the probability that a matching
is stable and men/women optimal. For simplicity, in this section we consider balanced matching
markets with complete preferences.

Definition 7.8 (Complete utility preferences). When men and women have complete (all pairs
are acceptable) utility (Definition 3.5) preferences, we define Um,w the utility that man m gets
if he is matched with w, and Vm,w the utility that woman w gets if she is matched with m,
such that Um,w and Vm,w are independent continuous random variables on R+, with survival
functions Sm,w : u 7→ P[Um,w > u] and Tm,w : v 7→ P[Vm,w > v].

Theorem 7.9. Consider a balanced matching market with complete utility preferences, defined
by the survival functions (Sm,w) and (Tm,w). Then, for every matching µ, we havea

P[µ is stable] =

∫
RM+

∫
RW+

du · dv · Φµ(u,v)

P[µ is stable and men-optimal] =

∫
RM+

∫
RW+

du · dv · Φµ(u,v) · T µ(u,v)

P[µ is stable and women-optimal] =

∫
RM+

∫
RW+

du · dv · Φµ(u,v) · Sµ(u,v)

where Φµ(u,v) =
∏
m,w Φµ

m,w(u,v), where

Φµ
m,w(u,v) =

{
S′m,w(um) · T ′m,w(vw) if µ matches m and w

1− Sm,w(um) · Tm,w(vw) otherwise.

Sµ(u,v) =
∏
m,w

m=µ(w)

Sm,w(um)

S′m,w(um)
· det

[
S′m,w(um)

Sm,w(um)

(
1− 1[m 6= µ(w)]

1− Sm,w(um)Tm,w(vw)

)]
m,w

T µ(u,v) =
∏
m,w

w=µ(m)

Tm,w(vw)

T ′m,w(vw)
· det

[
T ′m,w(vw)

Tm,w(vw)

(
1− 1[w 6= µ(m)]

1− Sm,w(um)Tm,w(vw)

)]
m,w

aBy construction, each integral is properly defined, as ratios in S and T will cancel out into polynomial
functions. However, we will only be using Theorem 7.9 when S and T are defined almost everywhere. A
sufficient condition is to ask functions Tm,w and Sm,w to be strictly decreasing on R+, for all m,w.
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From Theorem 7.9, one can see that a sufficient condition for MPDA and WPDA to output the same
distribution is to have S′m,w(u)/Sm,w(u) = T ′m,w(v)/Tm,w(v), for every m,w, u, v. Such condition is
satisfied when both Um,w and Vm,w are exponentially distributed with mean P (m,w), for all m,w.
Intuitively, this corresponds to the case where Um,w and Vm,w are Poisson clocks: preference lists are
built from the end using the anti-popularity distribution induced by P (see Definition 7.4). Hence,
in balanced matching markets with complete preferences, Theorem 7.5 is a corollary of Theorem 7.9.

Lemma 7.10. Consider a balanced matching market with complete utility preferences, defined
by the survival functions (Sm,w) and (Tm,w). Then, for every permutation σ,

P[σ is stable] =

∫
RM+

∫
RW+

du · dv · Φσ(u,v)

where Φσ(u,v) =
∏
m,w Φσ

m,w(u,v) and

Φσ
m,w(u,v) =


1− Sm,w(um) · Tm,w(vw) if σ(m) 6= w and σ(w) 6= m
−S′m,w(um) · Tm,w(vw) if σ(m) 6= w and σ(w) = m

−Sm,w(um) · T ′m,w(vw) if σ(m) = w and σ(w) 6= m

S′m,w(um) · T ′m,w(vw) if σ(m) = w and σ(w) = m

Proof. We proceed as in Section 7.6. Let us define u = [Um,σ−1(m)]m∈M and v = [Vσ−1(w),w]w∈W ,
the utility each person receives when matched with their predecessor in permutation σ. Conditioning
on the values of u and v, we have the following.

• Each man m such that σ(m) 6= σ−1(m) prefers σ(m) to σ−1(m) w.p. Sm,σ(m)(um).

• Each woman w such that σ(w) 6= σ−1(w) prefers σ(w) to σ−1(w) w.p. Tσ(w),w(vw).

• Each pair (m,w) such that σ(m) 6= w and σ(w) 6= m is blocking w.p. Sm,w(um) · Tm,w(vw).

From Definition 7.8, the probability density functions of um and vw are respectively −S′m,σ−1(m)

and −T ′σ−1(w),w, for all m ∈M and w ∈ W. Integrating over u and v concludes the proof.

Proof of Theorem 7.9. The first formula, which gives the probability that matching µ is stable, is
a corollary of Lemma 7.10. From the second formula, one can deduce the third by symmetry,
swapping the roles of men and women. Thus, we now prove the second formula. Combining
Lemmas 7.3 and 7.10, we have

P[µ is stable and men-optimal] =

∫
RM+

∫
RW+

du · dv ·
∑

σ permutation
σ|W=µ|W

(−1)C(σ) · Φσ(u,v)

=

∫
RM+

∫
RW+

du · dv · Φµ(u,v) ·
∑

σ permutation
σ|W=µ|W

(−1)C(σ) · Φσ(u,v)

Φµ(u,v)
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Most terms in each product Φσ are identical to terms in Φµ.

Φσ(u,v)

Φµ(u,v)
=

∏
m,w

σ(m)6=w
µ(m)=w

Φσ
m,w(u,v)

Φµ
m,w(u,v)

·
∏
m,w

σ(m)=w
µ(m)6=w

Φσ
m,w(u,v)

Φµ
m,w(u,v)

=
∏
m,w

σ(m)6=w
µ(m)=w

S′m,w(um) · Tm,w(vw)

S′m,w(um) · T ′m,w(vw)
·
∏
m,w

σ(m)=w
µ(m)6=w

Sm,w(um) · T ′m,w(vw)

1− Sm,w(um) · Tm,w(vw)

=
∏
m,w

σ(m)6=w
µ(m)=w

Tm,w(vw)

T ′m,w(vw)

∏
m,w

σ(m)=w
µ(m)6=w

T ′m,w(vw)

Tm,w(vw)
·
(

1

1− Sm,w(um)Tm,w(vw)
− 1

)
︸ ︷︷ ︸

−Bm,w(u,v)

Let us define a matrix B(u,v), with a diagonal induced by µ.

∀m,w, Bm,w(u,v) =
T ′m,w(vw)

Tm,w(vw)

(
1− 1[w 6= µ(m)]

1− Sm,w(um)Tm,w(vw)

)
Conveniently, we can rewrite products such that terms with w = µ(m) = σ(m) cancel out.

Φσ(u,v)

Φµ(u,v)
= (−1)|{m |σ(m)6=µ(m)}|

∏
m,w

µ(m)=w

Tm,w(vw)

T ′m,w(vw)

∏
m,w

σ(m)=w

Bm,w(u,v)

Let D(σ) = |{m |σ(m) 6= µ(m)}| − C(σ) be the discriminant of permutation σ, also defined as N
minus the number of cycles in σ. We recognize Leibniz’ determinant formula.∑

σ permutation
σ|W=µ|W

(−1)C(σ) · Φσ(u,v)

Φµ(u,v)
=

∏
m,w

µ(m)=w

Tm,w(vw)

T ′m,w(vw)
·

∑
σ permutation
σ|W=µ|W

(−1)D(σ)
∏
m,w

σ(m)=w

Bm,w(u,v)

︸ ︷︷ ︸
det(B(u,v))

Finally, notice that the right hand side of our last equation is exactly equal to T µ(u,v).

7.8 Complete anti-popularity preferences

In this section we assume that men and women have complete anti-popularity preferences, and we
integrate the formula from the previous section to obtain a matrix which gives the probability that
two agents will be matched by the deferred acceptance procedure. Notice that because preferences
are not symmetric, MPDA and WPDA do not have the same output distribution.

Theorem 7.11. Assume that men and women have complete anti-popularity preferences, such
that man m gives popularity Pm,w to woman w, and woman w gives popularity Qm,w to man
m. Let pm,w (resp. qm,w) the probability that man m and woman w are matched under MPDA
(resp. WPDA). Considering P , Q, p and q as N ×N matrices, we have

p =
∑
X∈M

λX · (X/P ) ◦ (X/P )−T and q =
∑
X∈M

λX · (X/Q) ◦ (X/Q)−T

where M is the set of 0-1 matrices containing at least one perfect matching, where ◦ and /
denote element-wise operations, where A−T denote the inverse transpose of A, and where λX
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are computed as follow:

∀X ∈M, λX = (−1)||X||1+N · det(X/P )∏
m

∑
w(X/P )m,w

· det(X/Q)∏
w

∑
m(X/Q)m,w

First, observe that for any matrix A, the lines/columns of A ◦ A−T sum up to 1. Indeed, one can
write A−T = com(A)/ det(A) using the comatrix of A, and Laplace expansion formula shows that
det(A) =

∑
iAi,j · com(A)i,j for all j.

In the proof, we build λX in such a way that
∑

X λX =
∑

µ P[µ is stable and men-optimal],
which proves that coefficients sum up to 1. A direct proof of this fact is surprisingly hard to obtain,
and was shown by Ilya Bogdanov and Fedor Petrov on MathOverflow (https://mathoverflow.
net/questions/360651/sum-over-0-1-matrices).

Proof. We start by writing the survival functions of utilities corresponding to the anti-popularity
preferences. We have:

∀t ∈ R+, Sm,w(t) = e−tPm,w and Tm,w(t) = e−tQm,w

Let Mσ be the set of 0-1 matrices such that coefficients (m,σ(m)) and (σ(w), w) are 1’s.

P[σ is stable] = (−1)D(σ)+C(σ)
∑
X∈Mσ

(−1)||X||1+N ·
∏
w 1/Pσ(w),w∏

m

∑
w(X/P )m,w

·
∏
m 1/Qm,σ(m)∏

w

∑
m(X/Q)m,w

Where N +D(σ) + C(σ) = |{(m,w) | σ(m) = w or σ(w) = m}|.

P[µ is stable and men-optimal] =
∑

σ permutation
σ|W=µ|W

(−1)C(σ) · P[σ is stable] (7.1)

=
∑
X∈Mµ

(−1)||X||1+N
∑

σ permutation
σ|W=µ|W

(−1)D(σ) ·
∏
w 1/Pµ(w),w∏

m

∑
w(X/P )m,w

·
∏
m(X/Q)m,σ(m)∏
w

∑
m(X/Q)m,w

(7.2)

=
∑
X∈Mµ

(−1)||X||1+N

∏
w 1/Pµ(w),w∏

m

∑
w(X/P )m,w

· ε(µ) · det(X/Q)∏
w

∑
m(X/Q)m,w

(7.3)

Let M be the set of 0-1 matrices containing at least one perfect matching.

P[MPDA matches m and w] =
∑

µ matching
µ(w)=m

P[µ is stable and men-optimal] (7.4)

=
∑
X∈M

(−1)||X||1+N
∑

µ matching
µ(w)=m

∏
w(X/P )µ(w),w∏
m

∑
w(X/P )m,w

· ε(µ) · det(X/Q)∏
w

∑
m(X/Q)m,w

(7.5)

=
∑
X∈M

(−1)||X||1+N · det(X/P )∏
m

∑
w(X/P )m,w

· det(X/Q)∏
w

∑
m(X/Q)m,w

· (X/P )m,w · (X/P )−1
w,m (7.6)

7.9 Simulations

For this chapter, implementations are available at the following address:

https://github.com/simon-mauras/stable-matchings/tree/master/Probability

https://mathoverflow.net/questions/360651/sum-over-0-1-matrices
https://mathoverflow.net/questions/360651/sum-over-0-1-matrices
https://github.com/simon-mauras/stable-matchings/tree/master/Probability
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Anti-popularity preferences Popularity preferences
MPDA & WPDA MPDA WPDA

71
2475 68

495

544
2475304

495

43
975 44

325

128
585352

585

41
1125 44

325

128
5858912

14625

Figure 7.6. Experimental comparison of the output distribution of MPDA and WPDA, under
the input distribution described in Figures 7.3, 7.4 and 7.5 with ω = 2.

Output distribution with anti-popularity preferences The output distribution is computed
by a C++ program (main.cpp), which reads popularities (integers) on the standard input, runs
MPDA (class DeferredAcceptance), and writes the resulting distribution on the standard output.
Preferences of men and women are drawn online: conditioning on each person’s preference (variables
stateM and stateW), the program branches each time a man proposes to his next favourite woman
(man.cpp), and each time a woman answers a proposal (woman.cpp). A python script (run.py)
interacts with the solver and plots the resulting distribution.

Output distribution with popularity preferences When agents have popularity preferences,
the conditioning when drawing preferences online is much simpler: a man m will propose to w
with probability P (m,w)/

∑
w′ P (m,w′) where the sum is taken over women to whom he has not

proposed yet, and woman w will accept with probability P (m,w)/
∑

m′ P (m′, w) where the sum is
taken over men who already proposed to w. The output distributions of MPDA and WPDA are
computed by a Python program (popularity.py)

Match probability with complete popularity preferences In Section 7.8 we assume that
agents have complete anti-popularity preferences, and give a formula to compute the probability
that a man and a woman will be matched under MPDA or WPDA. Experimentally, a Python
program (matrix.py) draw random popularity matrices and compare the probability matrix of
Theorem 7.11 with the one obtained when running our C++ solver.

7.10 Conclusion and open questions

In this chapter, we study the output distributions of deferred acceptance when agents have anti-
popularity preferences: we show that MPDA and WPDA are ex-ante equivalent when preferences
are symmetric, and give a close formula for the probabilities of agents being matched. The following
questions are left open for future work:

• Economic interpretation. The “ex-ante equivalence” property is a mathematical curiosity,
which does not imply anything on the strategy-proofness of the deferred acceptance algo-
rithms. However, one economic interpretation is the following. A decision maker who has
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prior knowledge on the input distribution of preferences (e.g. from historical data) might try
to favor some outcomes (independently of agents’ preferences). We proved that under certain
input distributions, a decision maker who has to chose between the MPDA and WPDA pro-
cedures cannot manipulate (before seeing agents’ preferences). An other potential economic
interpretation is that choosing between the two variants of the deferred acceptance does not
discriminate towards any community of the market. We leave such an economic study as a
very compelling future work.

• Approximate ex-ante equivalence. Using a continuity argument, nearly-symmetric anti-
popularity preferences should result in approximate ex-ante equivalence. In Section 7.5 we
discuss limits for our results, using the more classical model of popularity preferences, and
give an example where one matching is arbitrarily more likely to be chosen by one of the two
deferred acceptance procedures. Notice this example does not rule out approximate ex-ante
equivalence, as the probability for this matching to be chosen by each mechanism is vanishingly
small. Simulations from Chapter 8 suggest that approximate ex-ante equivalence should hold
when popularities are bounded.

• Equivalent mechanisms. Characterizing which other algorithm have the same output dis-
tribution as MPDA and WPDA would be an interesting result. Some candidate mechanisms
are studied in [KK06]. In particular, numerical simulations suggest it could be the case of
the mechanism of Employment by Lotto [ACL99] and of Roth and Vande Vate’s incremental
procedure [RV90; Ma96; BCF08].

• Simplified formula. In Theorem 7.9, and despite their apparent complexity, formulae for
the probability that a matching is stable and men/women optimal should be more tractable
than the original probability of stability, in particular because the sum over all matchings
should be equal to 1. In a private communication, Joseph Oesterlé and Martin Devaud were
able to rewrite the probability as the integral of a differential form, justifying the presence of
a determinant as the Jacobian of a differentiable function.



8 | Computing Match Probabilities
via Matrix Scaling

This chapter is based on a work in progress, and might lead to a collaboration with authors of [Ash+21].

8.1 Conjecture

In our journey towards answering the question “who gets what?”, we derived in Chapter 7 a closed
formula to compute the probability that two persons are matched by the deferred acceptance pro-
cedure, when agents have complete anti-popularity preferences (Definition 3.3). Unfortunately, our
formula (see Theorem 7.11) is not practical from a computational point of view, because of the large
number of terms involved in the sum. In this chapter, we attempt to circumvent this computability
issue, allowing ourselves to approximate the match probabilities: we will consider matching markets
with a large number of agents, and we are interested in the asymptotic match probabilities.

Consider a balanced matching market where agents have complete popularity preferences (see
Definition 3.2), where man m gives popularity Pm,w to woman w, and woman w gives popularity
Qm,w to man m. Denote p ∈ RM×W+ (resp. q) the matrix containing the match probabilities in
the men-optimal (resp. women-optimal) stable matching. In such markets, stable matchings are
perfect, in the sense that everyone is matched, and thus both p and q are doubly stochastic (each
line/column sum up to one).

Before stating our conjecture, we examine the men-proposing deferred acceptance procedure as a
stochastic process, where men and women draw their preferences online. Each time a man propose,
he draws at random his next favorite stable partner; and each time a woman receives a proposal, she
tosses a (biased) coin to decide if she accepts it. Observe that man m will propose next to woman
w with probability proportional to Pm,w, and that w will accept with probability (approximately)
proportional to Qm,w. Thus m and w will be tentatively matched with probability (approximately)
proportional to Zm,w = Pm,w · Qm,w. If the same property holds when the algorithm terminates,
then pm,w would be (approximately) proportional to Zm,w. Because p is a doubly stochastic matrix,
this property is reminiscent of Sinkhorn’s Theorem [Sin64] which states that every positive square
matrix Z is proportional to a unique doubly stochastic matrix X. Our conjecture states that p is
approximately equal to X.

Conjecture 8.1. Let C ≥ 1 be a fixed constant. Assume that N men and N women have
popularity preferences induced respectively by P,Q ∈ [1, C]M×W . Define the element-wise
product Z = P ◦Q, and X doubly stochastic using Theorem 8.2.

Then for every (m,w) ∈ M×W, the men-proposing deferred acceptance procedure match
m and w with probability pm,w = Xm,w + o(1/N).
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Theorem 8.2 (From [Sin64]). Given Z ∈ RN×N+∗ , there is a unique X ∈ RN×N+∗ such that:

•
∑

j Xi,j = 1 for each row i; and
∑

iXi,k = 1 for each column j;

• there exist S ∈ RN+ and T ∈ RN+ such that Xi,j = Si · Tj · Zi,j for all (i, j).

Moreover, the sequence of matrices computed by Algorithm 8.1 converges towards X.

For more details on matrix scaling, see the nice survey by Idel [Ide16].

Algorithm 8.1 RAS method
Input: Matrix Z ∈ RN×N+∗ with positive coefficients.
While Z is far from being doubly stochastic, do

Divide each row i by
∑

m Zi,j
Divide each column j by

∑
w Zi,j

Output: matrix Z.

Getting a formal proof of Conjecture 8.1 is challenging for several reasons. We hinted that
deferred acceptance match m and w with probability approximately proportional to Zm,w = Pm,w ·
Qm,w, to a coefficient Sm which only depends on m, and to a coefficient Tw which only depends on
w. First, formally analyzing deferred acceptance as a stochastic process requires us to condition on
random draws made so far, on which the values of Sm and Tm will depend. We conjecture that Sm
and Tw are approximately independent, which would allow us to write E[Xm] ≈ Zm,w ·E[Sm] ·E[Tw],
but this statement requires a formal proof. Second, trying to formalize approximate proportionality,
one could write pm,w = Sm · Tw · Zm,w · (1 + εm,w), for some εm,w. Thankfully, the function which
maps Z to X is continuous, and the decomposition of Z will be close to the decomposition of
Z ◦ (1 + ε). Classical analyses of deferred acceptance with random preferences could allow us to
show that |εm,w| = O(1/ lnN), but continuity results from the matrix scaling literature requires
|εm,w| = O(1/N). Thus, a formal proof would require to close the gap, or to use additional properties
such as the approximate independence of εm,w’s.

Related works. In a recent work, Ashlagi, Braverman, Saberi, Thomas and Zhao [Ash+21]
consider large balanced markets where agents have complete aligned popularity preferences, such
that each popularity is bounded between 1 and a constant C. Rephrasing their results, they show
that every fixed man-woman pair is chosen by the deferred acceptance procedure with probability
∼ 1/N . The proof follow from a rather technical analysis of deferred acceptance as a stochastic
process, similar to the one we sketched above: to compute with whom man m is matched, run
deferred acceptance such that m proposes last; if we pause the execution when a proposal from m
is accepted for the first time by a woman w, then m and w are likely to stay matched until the end
of the algorithm.

Observe that this result is a special case of Conjecture 8.1: assuming agents have aligned
preferences, each man m has a popularity Pm, and each woman w has a popularity Qw; then
Sm = 1/(Pm

√
N) and Tw = 1/(Qw

√
N) yields a valid doubly stochastic decomposition with

Xm,w = 1/N . Both in [Ash+21] and in Conjecture 8.1, the assumption that popularities are
bounded between 1 and C is crucial. Indeed, assuming that both man mi and woman wi have
popularity 2−i, then Theorem 4.19 shows that stable matchings are assortative: a man mi and a
woman wi such that |i− j| � 1 will not be matched, with high probability.
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Takeaway message. Compared to Theorem 7.11, Conjecture 8.1 gives a computationally effi-
cient but approximate formula for the probability of two persons being matched by the deferred
acceptance procedure. Observe that the formula in Conjecture 8.1 is symmetric in P and Q. By
swapping matrices P and Q, one effectively computes the match probabilities under the women-
proposing deferred acceptance procedure. Comparing this observation to the results of Chapter 7,
our conjecture states that the men and women deferred acceptance procedure are asymptotically
ex-ante equivalent when men and women have popularity preferences (which are not necessarily
symmetric).

8.2 Simulations

Implementations of two-sided matching markets with popularity preferences are shared between
Chapters 4, 8 and 5, and are available at the following address:

https://github.com/simon-mauras/stable-matchings/tree/master/Popularity

Figure 8.1 illustrates Conjecture 8.1, showing that the scaled products of popularities approxi-
mate the match probabilities in the men and women optimal stable matchings. One can observe that
with only 100 men and 100 women, the distributions induced by the men-proposing and women-
proposing deferred acceptance procedures are different: the men-optimal stable matching gives more
importance to the popularities men give to women, and the women-optimal stable matching give
more importance to the popularities women give to men.

Figure 8.2 illustrates the sensitivity of Conjecture 8.1 to the imbalance of the market. Ashlagi,
Kanoria and Leshno [AKL17] show that in matching markets with uniform preferences, adding one
woman collapses the different stable matchings into a nearly unique matching, which is close to the
original men-optimal one. It is easy to show that the same property holds if agents have bounded
popularity preferences. In Figure 8.2, we add one woman from panel (a) to panel (b), and the match
probabilities under the women-optimal stable matching become identical to the men-optimal ones.
In panel (c), we observe that when adding multiple women, the popularities women give to men
play a less and less significant role.

To illustrate the sensitivity of Conjecture 8.1 to the max to min ratio of popularities, we can look
at simulations from Chapters 4 and 5. In Figure 4.5, preferences of men and women are aligned,
thus the doubly stochastic decomposition yield a matrix X uniformly equal to 1/N . Theorem 4.19
shows that vertical preferences induce assortative matchings where each agent is matched with
someone roughly in front of them. In Figure 5.5, preferences of agents are reversed, in such a way
that Zm,w = 2N−1 for every m and w, which also yield a uniform doubly stochastic matrix X. We
observe that the match probabilities in the men-optimal stable matching are (roughly) proportional
to the popularities men give to women. Conversely, the match probabilities in the women-optimal
stable matching are (roughly) proportional to the popularities women give to men.

https://github.com/simon-mauras/stable-matchings/tree/master/Popularity
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(a) Popularity men give to women and women give to men.
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(b) Probability of being matched, in the men and women optimal stable matchings.
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(c) Approximating the match probabilities with Conjecture 8.1.
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Figure 8.1. Illustrating Conjecture 8.1. The popularity man mi gives to woman wj is
equal to Pmi,wj = 2 + cos( (i+j)π

25 ), and the popularity woman wj gives to man mi is equal
to Qmi,wj = 2 + cos( (i−j)π

25 ). Panel (b) contain match probabilities observed over 106 runs,
and are approximately equal to the doubly stochastic matrix of panel (c), although the men
optimal stable matching is closer to the preferences of men (diagonals i + j = Cte) and the
women optimal stable matching is closer to preferences of women (diagonals i− j = Cte).
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(a) M = 100 men and W = 100 women.
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(b) M = 100 men and W = 101 women.
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(c) M = 100 men and W = 110 women.
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Figure 8.2. Sensitivity of Conjecture 8.1 to the imbalance of the market.





9 | Average Complexity of
Daily Deferred Acceptance

9.1 Introduction

In the coupon collector’s problem, there are N coupons, and the goal is to compute the expected
number of draws required to collect all of them. When k coupons remain, the probability to draw a
new one is k/N , and the mean number of draws before a success is N/k. Summing for k from 1 to N
gives an expected number of draws of NHN , where HN ∼ lnN denotes the harmonic series. Wilson
and Knuth [Wil72; Knu76; Knu97] observed that the answer of the coupon collector’s problem is
an upper bound for the average complexity of deferred acceptance.

The complexity of the men proposing deferred acceptance mechanism is equal to the number of
proposals sent by men, which in turn is equal to the sum of rank each man gives to his partner (the
size of his preference list if he ends up single). To compute the average complexity, assume that
M = W and that men draw their preferences uniformly at random. For the sake of analysis, we
assume that men draw their preferences during the execution of the algorithm: this is the principle
of deferred decisions. In order to compute an upper bound, we allow men to propose multiple time
to the same woman: such proposals will be rejected, and it only increases the total number of
proposal. The resulting process is the coupon collector’s problem: the sequence of proposals ends
when every woman has been drawn at least once.

However, such notion of complexity is not well suited for recent implementations of deferred
acceptance. Each year in France, around 800 000 high-school students apply to the centralized
college admission procedure. In 2018, the new platform, called Parcoursup, was launched. The
main novelty of the procedure is that students do not have to order their applications. Instead, the
platform run the school proposing deferred acceptance mechanism, where students answer queries
online and have a few days to chose which application they keep each time they receive multiple
offers. This mechanism comes with several pros and cons. On the positive side, seats vacated by
students leaving the market can be filled quickly by the online procedure; and the fact that students
do not have to order applications can decrease self-censorship. On the negative side, the speed of
convergence of the procedure becomes of paramount importance, and can be the cause of strategic
and non-truthful behaviors from colleges and students.

In this chapter, we analyze the convergence speed of such online mechanisms. Algorithm 9.1
gives an alternative description of the men-proposing deferred acceptance algorithm, where each man
can send one offer per day. We looks at the expected number of days required by this procedure,
assuming that agents have uniform preferences and that the market is not too imbalanced. We
argue that it is crucial that the small side of the market propose: Theorem 9.4 shows that the
procedure terminates in a linear number of day when M ≤ W , and Theorem 9.10 shows that the
procedure ends in ∼W 2/ lnW days if M = W + 1.
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number of men M

asymptotic
complexity

o(W ) ... W − o(W ) W W + o(W ) ... ω(W )

M W lnW W lnW W 2/ lnW WM︸ ︷︷ ︸
W ln

W

W −M

︸ ︷︷ ︸
W 2

ln M
M−W

Figure 9.1. Asymptotic sequential complexity of the men-proposing deferred acceptance
procedure, when men and women draw their preferences uniformly at random. The formula
for M > W differs from [Pit18] by W (M −W ), which corresponds to the proposals sent by
men who end up single.

Related works. A series of works consider balanced matching markets where men have uniformly
random preferences and women have arbitrary preferences. Wilson [Wil72] shows that the coupon
collector’s problem stochastically dominates the complexity of deferred acceptance, which gives an
upper bound of NHN on the expected complexity. Knuth [Knu76; Knu97] gives an improved upper-
bound of (N − 1)HN + 1, and conjectures a that the minimum average complexity is reached when
women have identical preferences which would give a lower bound of (N + 1)HN −N . Knoblauch
[Kno07] shows that the lower bound implied by Knuth’s conjecture is asymptotically tight, that is
the expected complexity is ∼ N lnN .

Recent papers study the expected rank each person give to their partner, in variations around the
classical balanced uniform model. As discussed in Chapter 4, when the market is unbalanced (even
slightly), Ashlagi Kanoria and Leshno [AKL17] show that the set of stable matchings collapses: in
every stable matching, agents from the small side are matched with partners of rank ∼ lnN , and
agents from the large side are matched with partners of rank ∼ N/ lnN . Subsequent papers from
Pittel [Pit18], and Cai and Thomas [CT19] give improved bounds and simplified analyses. As a
corollary of their results, the average complexity of the sequential deferred acceptance procedure is
a function of the imbalance of the market (see Figure 9.1).

In a college admission setting, each student typically applies to a small number of colleges, and
thus each college ranks a small number of students. Kanoria, Min and Qian study the robustness of
the results surveyed in Figure 9.1 as a function of the length d of preference lists. They prove the
existence of two regimes: if d = ω(ln2N) then agents from the small (resp. large) side are matched
with partners of rank ∼ lnN (resp. ∼ d/ lnN); and if d = o(ln2N) then all agents are matched
with partners of rank ∼

√
d. In particular, this shows that results from this chapter should hold as

long as preference lists have size ω(ln2N).

Takeaway message. In balanced matching markets with uniform preferences, it is easy to see
that the duration of the daily deferred acceptance mechanism is at least linear. When all women
except one have received offers, then there is exactly one new proposal sent each day. Because the
probability that this proposal goes to the last woman is 1/N , it takes N days in average. But we
can go further: in the coupon collector’s analysis, when exactly k women did not receive any offers
yet, it takes N/k proposals before a successful one, and a pigeonhole principle shows that k new
proposals are sent each day, which gives ≈ N/k2 days in average. Summing over k gives the series
of inverse of squares, which converges towards π2/6, and the procedure terminates in ∼ N · π2/6
days. We show in Section 9.3 that this intuition is tight.
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9.2 Daily Deferred Acceptance

In this section, we give a formal description of the Daily Deferred Acceptance mechanism. Each
day, men propose to their favorite woman who has not yet rejected them. In particular, a man will
keep proposing to the same woman while he is not rejected. Each day, women look at the list of
men who proposed to them, and will reject everyone except the best of them. The algorithm stops
when each man either reached the end of his list, or is the only person to propose to a woman. For
convenience, we will refer to repeated proposals as re-proposals, and new proposals as proposals.

Algorithm 9.1 Daily Men Proposing Deferred Acceptance
Input: Preferences of men (�m)m∈M and of women (�w)w∈W .
Initialization : Start with an empty matching µ.
For day = 1, 2, . . . , do

Every man (re-)proposes to his favorite woman who has not rejected him yet.
If every woman received at most one offer that day, then break the for loop,
else, women who received multiple offers reject all but the one they prefer.

Output: Resulting matching.

Lemma 9.1. Algorithm 9.1 outputs the same matching as Algorithm 2.1.

Proof. Instead of having parallel proposals, we can look at Algorithm 9.1 in such a way that men
propose one at a time, skipping over proposals that are identical to ones of previous days. This
alternative description is identical to Algorithm 2.1.

Definition 9.2. In Algorithm 9.1, let Xd be the number of women who have not received any
offer the first d days. For all k ≥ 0, define Tk = min{d | Xd ≤ k}.

Lemma 9.3. Assume that agents have complete preferences.

• If M ≤ W , then Algorithm 9.1 stops when M women received at least one offer, which
corresponds to day TW−M .

• IfM > W , we split the execution of Algorithm 9.1 in two phases: before day T0 (included)
and after day T0 (excluded). No men reach the end of their list in phase one. The
execution stops when exactly W −M men have reached the end of their list.

Proof. If agents have complete preferences, then a man will never reach the end of his preference
list while some woman is still single. If M ≤ W and every woman received at most one offer on
some day d, then a pigeonhole principle show that exactly W −M women have not received any
proposal so far, and thus d = TW−M . If M > W , no man can reach the end of his list in phase
one because some women are still single. The algorithm stops on a day when each woman receive
exactly one offer, which occurs when W −M men have reached the end of their list.

9.3 More Coupons than Collectors

In this section, we discuss the case where there are at most as many men as there are women. Our
analysis is based on the fact that Algorithm 9.1 will spend most of its time matching the last k
men, which will take approximately

∑k
i=1

W
i·(W−M+i) days.
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Theorem 9.4. Assume that M men and W women have complete uniform preferences, such
that W − o(lnW ) ≤ M ≤ W . In average, the daily deferred acceptance procedure takes
∼ γW−M ·W days to terminate, where

∀k ≥ 0, γk =
+∞∑
i=1

1

i(i+ k)
=

{
π2/6 if k = 0

1
k

∑k
i=1

1
i if k > 0

Proof. We show the upper-bound in Lemma 9.6, and the lower-bound in Lemma 9.9.

9.3.1 Upper bound

In this section, we show the upper-bound of Theorem 9.4. It holds in a more general case: women
can have arbitrary preferences, and M can be much smaller that W .

Lemma 9.5. Assume that M ≤W and that men draw their preferences uniformly at random.
Then, for all W −M ≤ a ≤ b ≤W , we have

E[Ta − Tb] ≤ 1 +
(Hb −Ha) ·W
a+ 1 +M −W

where Hk =
∑k

i=1 1/i denotes the harmonic series, and H0 = 0 by convention.

Proof. In Algorithm 9.1, we look at the sequential sequence of new proposals made by men, tem-
porarily forgetting about days, and we unfold the classical coupon collector’s analysis.

Assuming that i women have not yet received any proposal, the probability that a new proposal
is made to one of those women is at least i/W (it is in fact a bit more because the man proposing
might already have proposed to some of the other W − i women). Hence, the number of proposal is
stochastically dominated by a geometric random variable with a success probability of i/W , whose
expected value is W/i. Thus, the expected total number of new proposals made between day Tb
and day Ta − 2 (we exclude day Ta − 1, when the last proposal is made) is ≤∑b

i=a+1
W
i .

Moreover, on each day up until Ta− 1, at least a+ 1 women have not yet received any proposal,
and thus at least a+ 1 +M −W men send a new proposal because they were rejected the previous
day. Adding one to account for the last day, we obtain

E[Ta − Tb] ≤ 1 +

∑b
i=a+1

W
i

a+ 1 +M −W = 1 +
(Hb −Ha) ·W
a+ 1 +M −W

Lemma 9.6. Assume that M ≤W and that men draw their preferences uniformly at random.
Then E[TW−M ] ≤ γW−M ·W +O(

√
W lnW ).

Proof. For convenience, we write δ = W −M . Using Lemma 9.3, we know that Algorithm 9.1 stops
at day Tδ, and that TW = 0. We are going to bound E[Tδ−Tδ+k] and E[Tδ+k−TW ] for some k ≥ 1.

E[Tδ − Tδ+k] =
k∑
i=1

E[Tδ+i−1 − Tδ+i] ≤ k +
k∑
i=1

W

i · (δ + i)
≤ k + γδ ·W

E[Tδ+k − TW ] ≤ 1 +
(HW −Hδ+k) ·W

δ + k + 1
≤ 1 +

W lnW

δ + k + 1

We take k = b
√
W c, which gives E[Tδ] = E[Tδ −Tδ+k] + E[Tδ+k−TW ] ≤ γδ ·W +O(

√
W lnW ).
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9.3.2 Lower bound

In the coupon collector’s analysis of the sequential complexity, men are amnesiac and are allowed
to make redundant proposals, which gives an upper bound on the real number of proposals. To
obtain a lower bound, Knuth [Knu76; Knu97] shows that each man makes at most O(lnM)4/M
redundant proposals with high probability. We are going to take a similar approach, using a result
due to Pittel [Pit89], generalized to unbalanced markets by Ashlagi, Kanoria and Leshno [AKL17].

Lemma 9.7 (Lemma B.4 in [AKL17]). Assume that M ≤W , and than men and women draw
their preferences uniformly at random. Then, in matching µM, every man is matched with one
of his top 3 ln2M choices, with probability at least 1− 1/M0.2.

Lemma 9.8. Assume that W − o(lnW ) ≤ M ≤ W , and than men and women draw their
preferences uniformly at random. Then for all W −M < k < o(lnW ), we have

E[Tk−1 − Tk] ≥
(

1− O(1)

W 0.1

)
W

k · (M −W + k)

Proof. If at any point during Algorithm 9.1 a man makes more than 3 ln2M different proposals, we
stop our analysis and use the bound Tk−1− Tk ≥ 0. Using Lemma 9.7, this occurs with probability
at most 1/M0.2. Thus, in the rest of the proof, the probability that a man proposes to a fixed single
woman is comprised between 1/W and 1/(W − 3 ln2M).

In Algorithm 9.1, it might be the case that Tk = Tk−1, because the number of single women
jumps from a number Xd > k to a number Xd+1 < k in one day. Fortunately, this occurs with low
probability. Let d ≥ 0, and condition on the fact that Xd = K > k (exactly K women have not yet
received proposals at the end of day d) and that Xd+1 < Xd (at least one new woman will receive
a proposal at day d+ 1). Observe that if Xd+1 < k, then at least K − k other women will receive a
new proposal from one of the remaining M −W +K − 1 men. Hence

P[Xd+1 < k | Xd+1 < Xd = K] ≤ (K − 1)!/(k − 1)!

(W − 3 ln2M)K−k

(
M −W +K − 1

K − k

)
≤ (K − 1)!/(k − 1)!

(W − 3 ln2M)K−k

(
e
M −W +K − 1

M −W + k − 1

)M−W+k−1

≤
(

K/e

W − 3 ln2M

)K−k (K
k

)k (
e
M −W +K − 1

M −W + k − 1

)M−W+k−1

= KO(k) exp(−Ω(K))

We use the union bound and sum for K from k + 1 to W . If k = o(lnW ), then the sum is
asymptotically dominated by the term K = k + 1, which gives an upper bound of

P[Tk = Tk−1] ≤ exp(O(k))

W − 3 ln2M
≤ O(1)

W 0.9

Assuming that Tk−1 6= Tk, each day between Tk (included) and day Tk−1 (excluded), exactly k
women have not yet received any proposal, and exactly M − W + k men send new proposals
because they where rejected the previous day. The probability that some of those men propose to
a single woman is

≤ 1−
(

1− k

W − 3 ln2M

)M−W+k

≤ k · (M −W + k)

W − 3 ln2M
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Thus, we compare Tk−1 − Tk with a geometric random variable, and obtain

E[Tk−1 − Tk |Tk−1 6= Tk] ≥
W − 3 ln2M

k · (M −W + k)
=

W

k · (M −W + k)

(
1− 3 ln2M

W

)
.

We conclude the proof, combining all sources of error:(
1− 3 ln2M

W

)(
1− O(1)

W 0.9

)(
1− 1

M0.2

)
≥
(

1− O(1)

W 0.1

)

Lemma 9.9. Assume that W − o(lnW ) ≤ M ≤ W and that men and women draw their
preferences uniformly at random. Then in expectation Algorithm 9.1 finishes after day W ·
(γW−M −O(1/t)), where t =

√
(W −M + 1) lnW .

Proof. For convenience, we write δ = W −M = o(lnW ) and t = b
√

(1 + δ) lnW c = o(lnW ). We
apply Lemma 9.8 for all δ < k < δ + t, thus

E[TW−M ] ≥
(

1− O(1)

W 0.1

) δ+t∑
k=δ+1

W

k · (k − δ)

Re-indexing the sum between 1 and t, we obtain
t∑

k=1

W

k · (k + δ)
=

t∑
k=1

W

δ

(
1

k
− 1

k + δ

)
=
W

δ
(Ht −Ht+δ +Hδ) ≥W · (γδ − 1/t)

To conclude the proof, we hide the error term O(1)/W 0.1 inside O(1/t).

9.4 More Collectors than Coupons

In this section, we discuss the case where there is more men than women. Our analysis is based on
the fact that Algorithm 9.1 will spend most of its time in second phase.

Theorem 9.10. Assume that M = N + 1 men and W = N women have complete uniform
preferences. The daily deferred acceptance procedure takes ∼ N2/ lnN days to terminate, in
average.

Proof. Recall that we split the execution of Algorithm 9.1 in two phases: before and after day T0

(first day when every women received at least one proposal). Recall also that each woman who
receives multiple proposals keeps exactly one of them. Thus, a pigeonhole principle shows that for
each day of the second phase, exactly one woman receive two proposals (including one which is
new), and she rejects one of them. Therefore, in phase two, the number of days is exactly equal to
the number of new proposals sent.

In a breakthrough paper, Ashlagi, Kanoria and Leshno [AKL17] show that when N+1 men and
N women have uniform preferences, the expected number of new proposals is ∼ N2/ lnN , both in
the sequential Algorithm 2.1 and in the daily Algorithm 9.1. We recall this result in Theorem 9.12,
using a tighter bound due to Pittel [Pit18].

In Lemma 9.11, we show that the number of new proposals in the first phase is ∼ N lnN . Thus,
by linearity of expectation, the number of new proposals in the second phase is ∼ N2/ lnN . Because
phase two has the same number of days and new proposals, it takes ∼ N2/ lnN days. To conclude
the proof, we need to add the number of days of phase one, which is ∼ N using Lemma 9.11.
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9.4.1 The first phase is short

In this section, we show that the first phase of Algorithm 9.1 is short, in the sense that both the
number of new proposals and the number of days are (quasi-)linear. The analysis is identical to the
one of Section 9.3.1

Lemma 9.11. Assume thatM > W and that men draw their preferences uniformly at random.
Recall that the first phase of Algorithm 9.1 ends at day T0. Then,

• the expected number of new proposals sent in the first phase is at most M +W lnW ,

• we have E[T0] ≤ γM−W ·W +O(
√
W lnW ), where γk = 1

k

∑k
i=1

1
i .

Proof. It is relatively easy to bound the total number of new proposals sent. We apply the classical
coupon collector’s analysis. If k women have not received any proposals yet, the probability that a
proposal goes to one of them is at least k/W (it is in fact bigger because the proposer might already
have proposed to some women), and by comparison with a geometric variable the expected number
of proposals required is at most W/k. Summing for k from 1 to W gives an expected upper bound
of W lnW , to which we need to add M to account for the remaining proposals of day T0.

To compute an upper bound on E[T0], we use the exact same analysis as the one of Lemmas 9.5
and 9.6. Between day Tk (included) and day Tk−1 (excluded), exactly k women have not yet received
offers, and exactly M −W + k men send a proposal, thus E[Tk−1−Tk] ≤ 1 +W/(k · (x+M −W )).
We conclude the proof by computing an upper bound on Tb√W c and summing E[Tk−1 − Tk] for k
from 1 to b

√
W c, .

9.4.2 Existing results on the sequential complexity

In a breakthrough paper, Ashlagi, Kanoria and Leshno [AKL17] compute the expected rank each
person gives to their partner, in unbalanced markets with uniform preferences. Their results can
be stated in terms of number of proposals sent in the sequential Algorithm 2.1 and in the daily
Algorithm 9.1. We give an asymptotic value in Theorem 9.12, using a tighter bound due to Pit-
tel [Pit18].

Theorem 9.12 (from [Pit18]). Assume that M = N + 1 men and W = N women have
complete uniform preferences. The total number of proposals sent by men in Algorithm 2.1 is
∼ N2/ lnN , in expectation.

Proof. If we denote P the number of proposals, Pittel shows that for all 0 < a < 1/2, we have

P

[∣∣∣∣ P

N2/ lnN
− 1

∣∣∣∣ > 1.01

Na

]
≤ exp(−θ(N1−2a))

Taking a = 0.4 shows that E[P ] = N2

lnN · (1 +O(N−0.4)).

9.5 Simulations

For this chapter, implementations are available at the following address:

https://github.com/simon-mauras/stable-matchings/tree/master/DailyGS

In our simulations, a Python script (run.py) calls Algorithm 9.1 (main.cpp) for different values of
M and W . Figure 9.2 plots results for W = 1000, averaged over 104 realizations.

https://github.com/simon-mauras/stable-matchings/tree/master/DailyGS
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Figure 9.2. Number of days spent by Algorithm 9.1 withW = 1000 women. For each number
of men M , we plot the number of men rejected each day, averaged over 104 realizations. The
algorithm stops when exactly 0 men are rejected, because each man either reached the end of
his list or was the only one to propose to a woman. The average stopping day is represented by
a dot on the plot. Theoretical values from Theorems 9.4 and 9.10 are represented by vertical
lines.

More Coupons than Collectors. Section 9.3 discusses the case where M ≤ W . Theorem 9.4
shows that the expected number of days is asymptotically equal to γW−M ·W , whenW−M is small.
Figure 9.2 confirms that our analysis is correct when W −M ∈ {0, 1, 2, 3}, and shows that only the
upper-bound holds when W −M ∈ {W/10,W/2}. In the extreme case where M = o(

√
W ), every

man proposes to a different women and Algorithm 9.1 terminates in one day. When M = o(W ),
we have γW−M ·W ∼ lnW , which shows that our upper-bound is only lnW away from the correct
answer.

More Collectors than Coupons. Section 9.4 discusses the case whereM > W . More precisely,
whenM = W+1, Theorem 9.10 shows that the number of days is asymptotically equal toW 2/ lnW ,
which is confirmed by Figure 9.2. When M = W + k, we will now argue than the number of day
must be asymptotically bigger that W 2/(k lnW ). At the end of the first phase, exactly k men are
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left single. In the second phase, there are k parallel rejection chains, which induce ∼W 2/ lnW new
proposals in total. Figure 9.2 illustrates this fact with a plateau where k men are rejected each day.
If all k chains were to stop exactly at the same time, the second phase would lastW 2/(k lnW ) days.
However, chains stop when a man reaches the end of his list, and this might happen earlier/later
for some chains.

9.6 Conclusion and open questions

In this chapter, we studied the variant of deferred acceptance where each man can send one proposal
per day, and measure the speed in terms of number of days before reaching the men-optimal stable
matching. We assumed that men and women have uniformly random preferences, and we adapted
the classical coupon collector’s analysis. The following questions are left open for future work:

• Deferred Acceptance with Thresholds. In the French college admission system, recall
that schools send proposals online, and that students who receive multiple offers must report
which one they want to keep. One detail on which we did not emphasize is that students can
inform the platform when they are not interested by a school, because they already received
a better offer. This allows the mechanism to skip proposals, which speeds up the mechanism.

This situation is equivalent to a version of deferred acceptance with thresholds, where each
man knows his rank in the preference list of women, and where women reveal the rank of
their best proposal and the end of each day. This way, each man can propose to his favourite
woman who would not have rejected him the previous day, skipping over proposals that are
doomed to be rejected.

We leave the analysis of the daily deferred acceptance mechanism with thresholds as a very
interesting open question. Notice that in a sequential deferred acceptance mechanism with
thresholds, the number of proposals is exactly equal to the number of partner changes by
women in Algorithm 2.1. Knuth conjectures that this number should be around N ln lnN , in
expectation (see Problem 1 in [Knu76; Knu97]).

• Non-uniform preferences. Extending the results of this chapter when men and women
have aligned popularity preferences is an interesting direction. Unfortunately, some technical
details complicates the coupon collector’s analysis.

It is always possible to have an upper bound, assuming that men are amnesiac and make
redundant proposals, but this upper bound will not be tight if the popularities of coupons
are far from being uniform. When popularities have a “tier structure”, Ashlagi, Braverman,
Saberi, Thomas and Zhao [Ash+21] show that the number of proposals scales with the ratio
of the average popularity divided by the minimum popularity.

As for a lower bound, the most tractable case is when women have identical preferences. If men
propose in the corresponding order in Algorithm 2.1, then each man will be matched to the
first single woman to whom he proposes, and there is a closed formula for the expected total
number of proposals. When men have uniform preferences, Knuth conjectures that women
having identical preferences is the best scenario (see Problem 2 in [Knu76; Knu97]) and give
an exact formula for the expected number of proposals. We believe that the same conjecture
holds when men have popularity preferences.
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