
HAL Id: tel-03772522
https://theses.hal.science/tel-03772522

Submitted on 8 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Charge-Transfer Chemical Reactions and Chiral
Discrimination in Electromagnetic Fabry-Pérot Cavities

Lorenzo Mauro

To cite this version:
Lorenzo Mauro. Charge-Transfer Chemical Reactions and Chiral Discrimination in Electromag-
netic Fabry-Pérot Cavities. Physics [physics]. Université de Bordeaux, 2022. English. �NNT :
2022BORD0223�. �tel-03772522�

https://theses.hal.science/tel-03772522
https://hal.archives-ouvertes.fr


THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR

DE L’UNIVERSITÉ DE BORDEAUX

ECOLE DOCTORALE SCIENCES PHYSIQUES ET DE

L’INGÉNIEUR

LASERS, MATIÈRE ET NANOSCIENCES

Par Lorenzo MAURO

Charge-Transfer Chemical Reactions and Chiral Discrimination
in Electromagnetic Fabry-Pérot Cavities

Sous la direction de : Rémi AVRILLER

Soutenue le 12 juillet 2022

Membres du jury :

Dario BASSANI Director of Research ISM-CNRS in Bordeaux Jury President
Cyriaque GENET Director of Research ISIS-CNRS in Strasbourg Referee
Enrico RONCA Permanent Researcher IPCF-CNR in Pisa Referee
Johannes FEIST Professor (R. y C. Fellow) IFIMAC in Madrid Examiner
Neepa Maitra Professor Rutgers University in New York Examiner
Gediminas JONUSAUSKAS Director of Research LOMA-CNRS in Bordeaux Examiner
Rémi AVRILLER Permanent Researcher LOMA-CNRS in Bordeaux Supervisor



Contents

1 Acknowledgments 5

2 Summary 7
2.1 English version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Résumé (french version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Charge-Transfer Chemical Reactions in Fabry-Pérot Cavities 9

3 Introduction 11
3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Coherent Description of Molecules Strongly coupled to Radiation and Weakly coupled
to Vibration 19
4.1 Jaynes-Cummings model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Two-level atom and radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.3 Diagonalization of the Hamiltonian under RWA . . . . . . . . . . . . . . . . . . . . . . 20
4.1.4 Diagonalization of the total Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.5 Strong coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Jaynes-Cummings Model for Several Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Hamiltonian of N two-level atoms coupled to radiation . . . . . . . . . . . . . . . . . . 24
4.2.2 Diagonalization of N=2 two-level atoms under RWA . . . . . . . . . . . . . . . . . . . 24
4.2.3 More than N=2 two-level atoms coupled to radiation . . . . . . . . . . . . . . . . . . . 26

4.3 Holstein-Tavis-Cummings model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Hamiltonian of N “vibrating” molecules coupled to radiation . . . . . . . . . . . . . . . 27
4.3.2 Eigenvalues at order λv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.3 Equilibrium positions and Potential Energy Surfaces . . . . . . . . . . . . . . . . . . . 28
4.3.4 Eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.5 Eigenstates for N→∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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2

Summary

2.1 English version

The first part of the thesis concerns an investigation on the chemical reactivity of molecular populations
confined inside a nanofluidic Fabry-Pérot cavity. Due to strong light-matter interactions developing between
a resonant electromagnetic cavity mode and the electric dipole moment of the confined molecules, a collective
Polariton excitation is formed. The former gets dressed by environmental vibrational and rotational degrees
of freedom of the solvent. We call the resulting Polariton dressed by its cloud of environmental excitation
a “Reacton”, since it further undergoes chemical reactions. We characterize how the Reacton formation
modifies the kinetics of a photoisomerization chemical reaction involving an elementary charge-transfer pro-
cess. We show that the reaction driving force and reorganization energy are both modulated optically by
the reactant concentration, the vacuum Rabi splitting, and the detuning between the Fabry-Pérot cavity
frequency and targeted electronic transition. Finally, by computing the ultrafast picosecond dynamics of the
whole photochemical reaction, we predict that, despite optical cavity losses and solvent-mediated nonradia-
tive relaxation, measurable signatures of the reacton formation can be found in state-of-the-art pump-probe
experiments.

The second part focuses on the chiral discrimination in Fabry-Pérot cavities. A Fabry-Pérot interferometer
filled with chiral molecules has a well defined Differential Circular Transmission (DCT) signal under normal
illumination of circularly polarized light. Based on this figure of merit, we firstly provide analytical and
numerical evidence that traditional Fabry-Pérot interferometers cannot enhance the chiroptical response of
molecules, because the mirrors perfectly convert the circular polarization of light rays. We hence propose
and model an helicity-preserving cavity, with chiral mirrors, satisfying time-reversal symmetry. The empty
cavity, made by the modelled chiral mirrors, generates a spectral helicity-preserving region which is not
available with a traditional interferometer. The region breaks, in a small frequency range, the perfect
internal conversion of polarized light and thus it enables to discriminate the otherwise achiral cavity light
modes. Polaritons which are generated at resonance with the preserving region thus inheritates a partial
chiral character. By subtracting the helicity-preserving cavity contribution to the total DCT, we show that
our proposed setup is up to two orders of magnitude more sensitive with respect to the chiroptical response
of the isolated molecules. We reveal that the registered enhancement is consistent even for an extremely
weak molecular chiroptical responses, and that our setup can enhance the chiral signal of molecules either in
the weak or in the strong coupling (Polaritonic) regime.
Keywords: Optical cavities, light-matter interactions, polaritons, polaritonic chemistry, charge transfer
chemical reactions, polarization, circular dichroism, chirality, chiral sensing.
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2.2. RÉSUMÉ (FRENCH VERSION)

2.2 Résumé (french version)

La première partie de la thèse concerne l’étude de la réactivité chimique d’une population de molécules
confinées à l’intérieur d’une cavité Fabry-Pérot nanofluidique. En raison de l’interaction forte lumière-matière
qui se développe entre un mode résonant de la cavité et le moment dipolaire électrique des molécules confinées,
une excitation collective de type « Polariton » est formée. Nous montrons que le Polariton est habillé par un
nuage d’excitation environnemental dû aux degrés de liberté vibrationnels et rotationnels du solvant. Nous
appelons l’excitation résultante un “Réacton”, car ce dernier est susceptible de réagir chimiquement. Nous
caractérisons la modification de cinétique d’une réaction chimique de type photoisomérisation impliquant un
processus élémentaire de transfert de charge dû à la formation du Reacton. Nous montrons que l’enthalpie de
réaction et l’énergie de réorganisation sont modulées optiquement par la concentration du réactif, le vacuum
Rabi splitting, et l’écart entre la fréquence optique de la cavité Fabry-Pérot et la transition électronique ciblée.
Enfin, nous calculons la dynamique pico-seconde de cette réaction de transfert de charge, et prédisons que,
malgré les pertes de la cavité optique et les pertes non-radiatives dues au solvant, une signature mesurable
par expérience pompe-sonde de la formation du Réacton peut être trouvée.

La deuxième partie est consacrée à l’étude des propriétés optiques de cavités Fabry-Pérot chirales. Un
interféromètre Fabry-Pérot rempli de molécules chirales présente un signal de dichroisme circulaire en trans-
mission (DCT) bien défini sous illumination normale par une lumière polarisée circulairement. Nous car-
actérisons cette figure de mérite théoriquement et fournissons une preuve analytique et numérique que les
interféromètres Fabry-Pérot traditionnels ne peuvent pas améliorer la réponse chiroptique des molécules, du
fait de la conversion de polarisation à chaque réflexion de la lumière sur les miroirs de la cavité. Nous pro-
posons donc de remplacer les miroirs par des métamatériaux diélectriques symétriques par renversement du
temps. Cette cavité génère une fenêtre de fréquences pour laquelle l’hélicité des rayons réfléchis est conservée,
réalisant de fait une discrimination chirale des modes optiques de la cavité. Les Polaritons générés héritent
au voisinage de cette région d’un caractère chiral. Nous montrons que ce dispositif permet de réaliser une
mesure de DCT relative jusqu’à deux ordres de grandeur plus sensible que celle obtenue avec une cavité tra-
ditionnelle, et peut être utilisé comme dispositif innovant et alternatif pour améliorer le sensing de molécules
chirales en cavité.
Mots-clés: Cavités optiques, interactions lumière-matière, polaritons, chimie polaritonique, réactions de
transfert de charge, polarisation, dichroism circulaire, chiralité, sensing.
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3

Introduction

Enzymatic catalysis is one of the most important chemical reactions for living organisms. Enzymes reduce the
activation energy, the energetic barrier, to accelerate the conversion of reactants into products or viceversa
[172, 42], without modifying the nature of the chemical reaction (see Figure 3.1). Many biological reactions
cannot even start without the presence of enzymes. Some fundamental questions can be raised about the
fascinating properties of these proteins. Is there an engineered way to mimic the action of enzymes? Is it
possible to design alternative routes, by analogy to enzymatic catalysis, to speed up or slow down a chemical
reaction without altering the reaction itself?

Figure 3.1: Change of the activation energy due to the action of enzymes.

An emergent and very active scientific field of research called “Polaritonic Chemistry” [39, 48, 72, 116, 46,
69, 133, 71] aims to study, theoretically understand and experimentally verify the modification of chemical
reactions through strong coupling between light and molecules. In this context, the enzymes are in some
sense replaced by a reorganization of energy levels due to the strong light-matter interaction. The result is
the formation of hybrid light-matter states, called Polaritons. They are collective excitations which originate
for the strong interaction of the quantized electromagnetic vacuum field of a cavity with the molecules
interacting with it. What is surprising is that the reaction energy landscape is modified by coupling to
vacuum fluctuations, without the need for an external laser field in order to alter the chemical processes.

Achieving strong coupling has a long history, and early developments are briefly presented below.
The first experimental demonstration of the strong light-matter coupling was reported, in 1975, by V. A.
Yakovlev et al. [174]. They found the so-called Polariton splitting for the resonant surface interactions of
thin metals on dielectrics. In particular, the first experiment revealed surface Polaritons originating from
the lateral confinement of metal-dielectric interfaces.

Other early experiments reached the strong coupling regime with Fabry-Pérot resonators and Rydberg
atoms [65, 88, 132], at low temperature. Serge Haroche and David J. Wineland were awarded the Noble

11



Prize for their experiments in the framework of Cavity Quantum Electrodynamics. The Fabry-Pérot cavity
consists of two plane metallic mirrors, made by silver (Ag), aluminium (Al) or gold (Au) for their high
reflectivity, separated by an intracavity space where the molecules or dielectric layers are inserted. The
length of the intracavity space is adjusted so that the photons, which probe the inserted molecular layer
many times, resonate with the molecular transition. Thus, when the light-matter interaction becomes higher

Figure 3.2: Strong coupling achieved in a Fabry-Pérot cavity between the vacuum field and a molecular
ensemble (on the left-hand side). On the right-hand side typical Polaritonic states resolved in absorption
(A) spectrum, by using an home-made classical transfer matrix method (see Section 13.8), as a function of
energy ~ω.

than dissipative mechanisms (photon leakage or non-resonant decay of molecules), which tend to decrease
the perfect confinement, the strong coupling regime is achieved. The first experiments adopted inorganic
materials. The first pioneering experiment in Fabry-Pérot microcavity with organic molecules was made,
in 1998, by D. G. Lidzey et al. [101]. They measured a Rabi splitting, the light-matter coupling, of
approximately 160 meV, more than 30 times the typical splitting observed for quantum-well microcavities at
room temperature. Indeed, organic molecules have large transition dipole moments that increase naturally
the strength of the coupling. This work was also an experimental demonstration of a theoretical work
by Agranovich et al. [1], and opened future investigations on strong light-matter interactions at room
temperature.
Recent experimental works, at room temperature, have shown on the one hand that liquid Fabry-Pérot
nanocavities have excellent optical qualities to observe strong coupling effects for molecular solutions [6]
and on the other hand that Polaritons can be obtained even for a single molecule placed in a tiny nanogap
(approximately 0.9 nm) by coupling to localized plasmons (see Figure 3.3) [24].

The idea of using the strong coupling regime to change chemical reactions in a reversible manner was
primarily due to Thomas Ebbesen. Over the past decade, Ebbesen and his collaborators have experi-
mentally designed many scenarios in which strong coupling changes different types of chemical reactions
[143, 159, 60, 144, 80, 139, 39, 179, 180, 79, 167, 119, 6]. The research field called “Polaritonic Chem-
istry” was born with those experiments. One of those experiments inspired particularly the first part of this
manuscript [111]. That work [80] consists in a slowing of a photoisomerization (spiropyran-merocyanine) in
a Fabry-Pérot cavity as the system enters strong-coupling conditions (see Figure 3.4). The strong coupling is
achieved at resonance with the electronic transition of merocyanine and Polaritons, the Upper Polariton (at
higher energy) and the Lower Polariton (at lower energy), are spectroscopically resolved. They are clearly
distinguishable in the absorption spectrum as two peaks well separated by a splitting of the order of 700 meV.
An amount of about 80% molecules (merocyanine species) are strongly coupled to fluctuations of vacuum
field of the cavity, and this collective ensemble of molecules alter significantly the chemical reaction. An
important point is precisely that the strong coupling is a collective effect which involves a significant fraction
of molecules but not all the molecules are coupled.
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Figure 3.3: Strong coupling seen in scattering spectra of individual NPoMs. Adapted from [24].

To get more information about the coupled and uncoupled molecules, the authors use a technique called
pump-probe spectroscopy. A pump, an ultrafast laser field (pulses with durations of hundreds of femtosec-

Figure 3.4: Kinetics of the growth of the MC concentration measured for the bare molecules (red) and the
coupled system (green) in the cavity configuration shown above the plot. Adapted from [80].

onds), is used to photoexcite the system with minimal perturbation of it, and a second pulse, the probe,
detect the changes of the system. In cavity-coupled materials, pump-probe experiments measure reflectance,
transmittance or absorbance as a function of the delay time between the pump and the probe. Changes
in these observables can be seen in the transient spectra, which are the difference between the spectra af-
ter and before the pumpe has “gently” perturbed the system. Using this technique, J. A. Hutchison et al.
discovered that the coupled and uncoupled molecules, in a disordered molecular system, contribute to the
transient spectrum. In the strong coupling regime, the transient absorption spectrum is dominated by the
coupled system. Furthermore, by exciting in the ground state to the Lower Polariton absorption band, the
transient spectrum is only slightly modified. The conclusion was that the Upper Polariton relaxes faster to
the Lower Polariton, which is the longest-lived excited state (fractions of picoseconds). In 2015 this fact was
theoretically studied with a “dressing” of vibrational relaxation rates for the onset of the Polariton formation
[19].
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The presented experiment achieved the strong coupling at resonance with the molecular electronic tran-
sition. An alternative approach is to achieve the so-called vibrational strong coupling (VSC). VSC is the
strong interaction between the cavity mode and a vibrational mode of the molecules. The strong interaction
results in the formation of vibropolaritonic states that can be observed via infrared spectroscopy. The first
experimental prediction of VSC was reported in 2014 [69]. Subsequent works have shown that reactivity can
be slow down or catalyzed by VSC [160, 96, 158, 73, 178, 121, 171]. In particular, a recent experiment [121]
emphasizes the important role of symmetry of the coupled vibrational modes to provide an explanation for
the induced chemical modifications.

Experimental results were accompanied by intense and deep theoretical studies. One of the simplest phe-
nomenological theoretical model which describes the Polariton formation due to a collective strong coupling
is the Jaynes-Cummings model [157]. It gives the exact solution of N identical, non-interacting two-level
systems coupled to a single quantized mode of the cavity. The exact solution is given by the Upper and
Lower Polaritons plus N−1 degenerate uncoupled states (see Figure 3.5), in the single photon sector. These
uncoupled states, i.e. states which are not coupled to cavity light mode, were called Dark states. The number
of Dark states increases rapidly in comparison with Polaritons. For this reason, they were also denoted as
exciton bath or reservoir. These degenerate states remain in the middle of the two Polaritons, at the energy
of the bare excited state, but may play a role in energy transfer and dissipative processes. An important
investigation of a disordered system of N atoms described by the Jaynes-Cummings model was done by R.
Houdré et al. [77]. They show that the peak separation of the splitting between the Lower and the Upper
Polariton is independent of an inhomogeneous broadening induced at the level of the excited states. A more
realistic situation of a disordered molecular system. In contrast, the degeneracy of Dark states is lifted with
a resulting creation of mini-band of states. The scenario is valid for a weak disorder, smaller than the Rabi
coupling. An higher disorder would mix the Polaritonic states with the Dark state manifold.

The Jaynes-Cummings model offers a collective description in the so-called homogeneous limit [69]. It is
based on a simple two-level system that cannot describe the vibrational and rotational degrees of freedom of
molecules. Moreover, it gives an homogeneous description because it neglects the local spatial variations that
are also difficult to monitor in experiments, which usually show an average contribution of a macroscopic
ensemble of molecules. In 2015, Javier Galego et al. developed a first-principles model that fully takes

Figure 3.5: Polaritonic splitting (Upper Polariton denoted as |+〉 and Lower Polariton denoted as |−〉) due
to the collective strong Rabi energy (~ΩR). The electronic transition (∆e) is at resonance with the cavity
mode (ωc). In the middle of the Polaritonic splitting there is a manifold of N−1 Dark states (predicted by
the Jaynes-Cummings model [36]). The ground state of the molecular ensemble is denoted as |G, 0〉. The
excitation, the matter part, shared by the N molecules is denoted as |E, 0〉. The ground state with one
photon, the light part, is denoted by |G, 1〉.
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into account both electronic and nuclear degrees of freedom [55]. The Polaritons are described using the
Born-Oppenheimer approximation, which separates the fast electron dynamics and the slow nuclear motion.
In this way, they were able to describe the Polariton dynamics with the corresponding Potential Energy
Surface (PES), when the Rabi splitting is large, a concept widely used in chemistry to investigate chemical
reactions along different reaction coordinates [113]. Eventually, they show an almost complete suppression
of a general kind of photochemical reactions using the previously developed model with PESs [56].

Another generalization of the Jaynes-Cummings model, with the aim of including nuclear degrees of
freedom, has been suggested, in 2016, by Felipe Herrera and Franck C. Spano [70]. The model has been called
Holstein-Tavis-Cummings model (HTC). It describes N identical “vibrating” molecules strongly coupled to a
single cavity mode. The model considers the intramolecular modes of the molecules coupled and uncoupled
to the cavity. Furthermore, it adds the modification of reorganization energy for the electronic transition
from the ground state to the excited one. In case of negligible Rabi coupling (out of the cavity), the proposed
model recovers a standard Holstein model with optical photons [75]. The Holstein-Tavis Cummings model
inspired other theoretical works, in the same year, as a way to better quantify the conformational change of
coupled molecules [176, 173]. Importantly, a recent experiment with rubrene microcavities [155] shows a very
good agreement with the HTC model to describe the optical response and chemical reactivity of Polaritons
in the optical regime.

The work of Herrera and Spano [70], using the so-called HTC model, showed that the resonant collective
strong coupling decouple electronic and nuclear degrees of freedom with a resulting significant modification
of intramolecular electron-transfer (ET) reactions. ET reactions in solution are one of the most common and
fundamental chemical reactions that play a crucial role in various chemical processes [127]. In the simplest
case, an electron of charge −e (e is the elementary charge) is transferred from an anion (A−) to a cation
(C+), following the ET reaction A−+C+ −→ A+C. The theoretical description of ET reactions has a long
history [127], which was fully developed after the works of Marcus and co-workers [107, 109, 145, 108], and
Kestner et al. [89], with later successful applications for biological molecules [76]. At the heart of Marcus
theory is the necessity to take into account explicitly the solvent in the modelling of ET reaction rates.
Out-of-equilibrium fluctuations in the solvent nuclear coordinates are indeed necessary to reach the crossing
point of the reactant (R) and product (P) potential energy surfaces, at which the electron transfer occurs.
Recent theoretical works on ET reactions in confined electromagnetic environment reported a cavity-induced
significant enhancement of the ET reaction rate for a single molecule [141, 106]. Another work included N
channels with an incoherent pumping of photons [170], using a quantum optics Lindblad master equation.

The change of chemical reactions, as the class of ET transfer reactions, in cavity are phenomenologically
described by the presented Jaynes-Cummings and the HTC model. In experiments, the Polariton formation
is usually detected by measuring transmission, reflection or absorption spectra of the coupled molecules.
These spectra can be theoretically computed using a completely classical model. The collective Rabi cou-
pling is replaced by the classical oscillator strength of a linear and dispersive modelling of dielectric media
[181]. The total response of structured systems such as a cavity with a material inside or complex multilayer
systems is obtained with the transfer matrix method (the second part of this manuscript deals with this
technique) [105, 86]. This method is based on classical light propagation through different layers in terms of
length and refractive index (the right-hand side of Figure 3.2 is obtained with the transfer matrix method).
All these phenomenological, quantum and classical approaches only partially describe the ex-
periments. One of the unclear and debated aspects is the interplay between collective and local
effects and their reciprocal interaction in order to generate a strong light-matter coupling.
Moreover, how the energy is transferred between Polaritons, Dark states and other uncoupled states, in a
disordered molecular system, is poorly understood.
A promising trend in Polaritonic Chemistry is the development of semi-ab initio and full ab initio methods.
The semi-ab initio methods treat the material degrees of freedom using quantum chemical methods, but the
cavity field and the light-matter coupling parameters are obtained from experiments [135, 52, 50, 104, 49].
The full ab initio methods, despite the higher computational complexity, would in principle describe the quan-
tum electrodynamical problem without the need for experimental input [146, 147, 134, 67, 66, 164, 135, 74].
Most of the full ab initio methods have been developed over the last few years. One is the so-called quantum
electrodynamical density-functional theory (QEDFT) [136, 147], an extension of density functional theory
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(DFT) [124] to quantum electrodynamics (QED), which describes interacting electrons and photons on an
equal footing. It provides an optimal balance between accuracy and computational efficiency to reproduce the
main polaritonic features for large systems. Unfortunately, it is based on an unknown form of the exchange
correlation functional for the electron-photon interaction. In 2020, QEDFT has been combined with another
method: the quantum electrodynamics coupled cluster theory (QED-CC) [66]. This nonperturbative theory
accurately treats electron correlation in both ground and excited states of molecular systems and it has been
used to reveil, for instance, that the ground-state potential energy surface of pyrrole molecule is modified in
cavity [66]. Eventually, both discussed methods have been compared to investigate cavity-induced effects on
different types of intermolecular interactions suggesting the possibility to modify the ground state properties
of molecular systems [67]. Recently, a novel ab initio method which considers a chain of few dimers in cavity,
without the presence of a solvent, has been developed by Dominik Sidler et al. [148]. They confirm different
collective effects predicted by phenomenological models. The novelty of this ab initio method consists in
adding a small perturbation, an impurity, of the bond length in one of the dimers. Doing this, they demon-
strated that collective coupling can induce strong local modifications of molecular systems in the proximity
of the perturbation. In addition, the simulation contains the first ab initio description of collective dark
states in Polaritonic Chemistry.

Many questions are open at the actual stage of this exciting field of Polaritonic Chemistry. Experiments,
that have been followed by many theoretical investigations [17, 50, 54, 68, 100, 122], and ab initio methods are
struggling to reconcile results on VSC. The mechanisms of VSC and how it influences the chemical reactions
are unknown and under debate. A complete picture of the energetic pathways between Polaritons and Dark
States is missing. Experiments using pump-probe spectroscopy are reaching the ultrastrong coupling regime
(a Rabi splitting of order of 1-1.6 eV, 10-50% of the molecular transition) to have well-separated Polariton
peaks, free of spectral congestion. In this way, Polaritons can be selectively photoexcite by trying to decouple
the different energy pathways [34, 33]. Studies are starting to investigate thermodynamic properties of
the coupled and uncoupled states [138]. The role of the solvent could be important to better understand
dissipative mechanisms and reorganization of nuclear coordinates during charge transfer reactions [111].
Furthermore, technological applications of molecular polaritonic systems could be found in novel photonic
and chemical systems: solar cells, OLEDs, OLET [5], or screen displays.
Experiments and theory have already contributed to a rapid increase in knowledge of phenomena that were
totally unknown ten years ago. Ab initio theory seems a promising direction for future theoretical works,
but a good understanding of the dominant mechanisms could help the development of simple analytical
descriptions for experimental results.

The state of the art of Polaritonic Chemistry shows the multitude of classical and quantum approches
available, and different setups to achieve electronic or vibrational strong coupling in order to modify pho-
tochemical or ET transfer reactions. Our theoretical work focuses on Fabry-Pérot cavities as the platform
for achieving electronic strong coupling in order to study, using an HTC-based model, the modification of
intramolecular charge-transfer reactions (reactions where the charge is only partially transferred during the
chemical process but they are described by the same theoretical framework of ET reactions). In the contents
below, the detailed structure of the work is presented.

3.1 Contents

The first part of this manuscript starts with the description of a simple model, the Jaynes-Cummings model
(see Section 4.1 and Section 4.2). The Hamiltonian of the model is diagonalized analytically under the
Rotating-Wave approximation and it is compared with the full numerical diagonalization. In particular, the
light-matter strong coupling regime, achieved for the confinement in a cavity, is investigated. Eventually, the
Jaynes-Cummings Hamiltonian is extended for N molecules and “weak” vibrational degrees of freedom are
taken into account (see Section 4.3). The extended model is called Holstein-Tavis-Cummings model. From
this generalization, the quadratic Potential Energy Surface is derived analytically, performing an adiabatic
approximation (see Sections 4.3.2 and 4.3.3). A numerical check is added. Furthermore, the Potential Energy
Surfaces for the light-matter states, Polaritonic states, are perturbed by inhomogeneous broadening (Section
4.4).
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The Chapter 5 presents the electron-transfer theory and contains the derivation of the nonadiabatic electron-
transfer rate. The same Chapter also shows a comparison between the classical Marcus rate and the derived
quantum nonadiabatic rate (see Section 5.4).
The tools and theory of Chapter 4 and Chapter 5 enable the construction of the last two important chap-
ters. Chapter 6 unifies the construction of the Potential Energy Surfaces for light-matter states with the
theoretical framework of electron-transfer reactions to investigate an intramolecular charge-transfer reaction
in a nanofluidic Fabry-Pérot cavity (see Section 6.1 and Section 6.2). The new concept of Reacton, as a
collective molecular excitation dressed by interaction with vibrational and solvent modes, is introduced (see
Section 6.1.5). The end of Chapter 6 shows how the Reacton formation influences the intramolecular charge-
transfer reaction in cavity at thermal equilibrium. The last Chapter contains a minimal microscopic model
to induce dissipative mechanisms, radiative and nonradiative, to the Reacton states (see Section 7.1). The
formulation of the rates takes similarities from the previously derived nonadiabatic charge-transfer rates.
Finally, a first-order rate equation, collecting chemical and dissipative rates, is numerically solved to study
the out-of-equilibrium fast time evolution of Reacton (Section 7.2).
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4

Coherent Description of Molecules Strongly coupled to Radiation and

Weakly coupled to Vibration

4.1 Jaynes-Cummings model

The Jaynes-Cummings Model (J-C), first developed in 1963 by Edwin Jaynes and Fred Cummings (also
known as Jaynes-Cummings-Paul Model1), is the most simple theoretical model that describes the interaction
of a two-level atom system with a single mode of the quantized electromagnetic field, in a lossless cavity.
This first section shows the J-C Model with an exact and numerical diagonalization of the corresponding
Hamiltonian.

4.1.1 Two-level atom and radiation

The physics of exact two-level systems constitutes the basis for Quantum Optics (QO) and Cavity Quantum
Electrodynamics (CQED). Such systems are mathematically simple models and they bring out some general
and important physical ideas as the interaction between atom, molecules and the collection of Degrees of
Freedom (DOF) surrounding them. The two-level atom is represented by two states called |g〉 and |e〉, where
g is the ground state and e is the first excited state. These two states are connected by an electric dipole
transition at angular frequency ω0. This system is equivalent to a spin 1/2 evolving in a given space [27],
with a magnetic field oriented along the vertical axis z; accounting for energy difference between the two
states. Indeed the Hamiltonian for this two-level atom is:

Ĥatom =
∆

2
σ̂z, (4.1)

where ~ω0 ≡ ∆ and σ̂z is a Pauli matrix.
The lowering and raising operators σ̂± are defined as:

σ̂± =
1

2
(σ̂x ± iσ̂y) , (4.2)

where σ̂x and σ̂x are two Pauli matrices.
In terms of the ground and the excited states:

σ̂+ = |e〉 〈g| , σ̂− = |g〉 〈e| . (4.3)

In this way it is possible to rewrite the atomic Hamiltonian:

Ĥatom =
∆

2
(|e〉 〈e| − |g〉 〈g|) , (4.4)

where the relation σ̂z = σ̂+σ̂− − σ̂−σ̂+ is used.
The usual Hamiltonian that takes into account electromagnetic radiation in cavity (only one mode) is:

Ĥfield = ~ωcâ†â, (4.5)
1The model was independently created in the same year by Harry Paul [126].
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where it is rescaled the zero-point energy value and ωc is the angular frequency of the cavity. So the bare
Hamiltonian, atom plus the cavity mode without interaction, is:

Ĥ0 = (εg |g〉 〈g|+ εe |e〉 〈e|) + ~ωcâ†â,
(4.6)

where εg ≡ −∆/2, and εe ≡ ∆/2.

4.1.2 Interaction

The two-level atom system interacts with the radiation through a dipole interaction:

Ĥint = ~̂d · ~̂E = ~̂d ·
√

~ωc
2ε0V

· ~εp
(
â+ â†

)
, (4.7)

where
√

~ωc/2ε0V is the amplitude of the quantized electric field, ~εp is the vector polarization and ~̂d is
the dipole operator. The resulting interaction is an approximation called “dipole approximation” where the
spatial change over the atom is discarded and the electron interacts with a constant electric field. The dipole
operator can be written in terms of the lowering and raising operators (see eq. (4.2)) and thanks to the
parity symmetry (x→ −x) of orbital its matrix representation has only off-diagonal contributions. Then

~̂d = ~d (σ̂+ + σ̂−) = ~d (|e〉 〈g|+ |g〉 〈e|) , (4.8)

where d is a real value.
The interacting Hamiltonian becomes:

Ĥint =
~ΩR

2
(|e〉 〈g|+ |g〉 〈e|) ·

(
â+ â†

)
, (4.9)

where ~ΩR = 2 ~̂d ·
√

~ωc/2ε0V · ~εp is the vacuum Rabi coupling.
Finally the Hamiltonian of the J-C model is:

ĤJ−C = (εg |g〉 〈g|+ εe |e〉 〈e|) + ~ωcâ†â+
~ΩR

2
(|e〉 〈g|+ |g〉 〈e|) ·

(
â+ â†

)
.

(4.10)

4.1.3 Diagonalization of the Hamiltonian under RWA

The state space of our total system is composed by the tensor product of the two states of the atom (|g〉,
|e〉) and the state of a single mode of the field |n〉. An exact diagonalization of the Hamiltonian given by the
eq. (4.10) is not easily expressible in terms of standard operators, because the result is an infinite matrix.
The total Hamiltonian can be exactly diagonalized using an approximation, the so-called Rotating-Wave
Approximation (RWA) [63]. Under RWA it is possible to neglect terms that oscillate too fast with respect to
the atomic response. This truncation can be seen by expressing the operators in the “Interaction Picture”:

â(t) = âe−iωct, â†(t) = â†e+iωct

σ̂−(t) = σ̂−e−iω0t, σ̂+(t) = σ̂+e
+iω0t.

(4.11)

Now by substituting these operators into the interacting Hamiltonian (4.9) and working near resonance
ωc−ω0 ≈ 0, terms with 2∆ in the argument of the exponential appear. Neglecting these very fast oscillating
terms, the J-C Hamiltonian becomes:

ĤJ−C,RW = (εg |g〉 〈g|+ εe |e〉 〈e|) + ~ωcâ†â+
~ΩR

2

(
|e〉 〈g| â+ |g〉 〈e| â†

)
.

(4.12)
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This Hamiltonian is exactly solvable. By taking the basis for the first excitation sector (n = 1), that is |g, 1〉
and |e, 0〉, the eigenvalues and the eigenstates of the Hamiltonian under RWA are:

E± =
1

2

(
εg + εe + ~ωc ± ~

√
δ2 + Ω2

R

)
,

Eg = εg,

|+〉 = cos θ |g, 1〉+ sin θ |e, 0〉 ,
|−〉 = − sin θ |g, 1〉+ cos θ |e, 0〉 ,
|G〉 = |g〉 ,

(4.13)

where δ ≡ ωc + εg/~− εe/~ is the detuning, sin θ = 1√
2

√
1− δ/ΩR and cos θ = 1√

2

√
1 + δ/ΩR.

Using this approximation the ground state |G〉 is not affected by the interacting Hamiltonian. Figure 4.1
and Figure 4.2 show how the energy levels E± change by increasing the cavity mode energy ~ωc. Figure
4.1 displays the case of ~ΩR = 0 eV and the detuning δ is 0 for ~ωc = 2 eV. At that value the two energy
levels have a crossing point. The cross disappears for a non-zero value of ~ΩR, as the Figure 4.2 shows. The
interacting Hamiltonian (4.9) does indeed have the effect of splitting the two energy levels.

The two eigenstates |±〉, at resonance (δ = 0) between the cavity mode and the atomic transition, are
hybrid light-matter states since they are combinations of a Fermionic electronic part and a bosonic photonic
part. These states are usually called Polaritons [39]. At strong detuning (δ → ±∞), the Upper and Lower
Polariton coincide back with the states |g, 1〉 and |e, 0〉, respectively.
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Figure 4.1: Energies E+ (blue line), E− (red line) and Eg (green line) as a function of ~ωc. Parameters are as
follows: εg = 0 eV, εe = 2 eV, and ~ΩR = 0 eV.

4.1.4 Diagonalization of the total Hamiltonian

In the previous section the diagonalization of the J-C Hamiltonian is carried out using the Rotating Wave
Approximation. The J-C Hamiltonian can be diagonalized numerically and at the end it is useful to compare
the analytical model (under RWA) with the numerical one. Figure 4.3 and Figure 4.4 show the numerically
and analytically computed energy levels as a function of ~ωc.
The Figure 4.3, for the case ~ΩR = 0.7 eV, shows that there is a very good match between the model

under RWA and the numerical one, near resonance (~ωc ≈ 2.75 eV) and for higher values of ~ωc. The upper
sequence of black dots concerns higher energy levels, in particular they represent the second excitation sector.
If ~ΩR increases and it becomes of the same order of the atomic transition, a deviation between the two
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Figure 4.2: Energies E+ (blue line), E− (red line) and Eg (green line) as a function of ~ωc. Parameters are as
follows: εg = 0 eV, εe = 2 eV, and ~ΩR = 0.7 eV.
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Figure 4.3: Energies E+ (blue line), E− (red line), Eg (green line) for the exact diagonalization (see the
eq. (4.25)) and Enum. for the numerical diagonalization as a function of ~ωc. Parameters are as follows:
εg = 0 eV, εe = 2.75 eV, and ~ΩR = 0.7 eV.
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Figure 4.4: Energies E+ (blue line), E− (red line), Eg (green line) for the exact diagonalization (see the
eq. (4.25)) and Enum. for the numerical diagonalization as a function of ~ωc. Parameters are as follows:
εg = 0 eV, εe = 2.75 eV, and ~ΩR = 1.4 eV.

models start to appear. This behaviour is shown in Figure 4.4. The “discrepancy” between the numerical
computation and the analytical result is due by the strength of ~ΩR that causes a breaking of perturbation
theory.

4.1.5 Strong coupling

The coupling, that in this model is ΩR, could increase by reaching a regime in which the interacting part of
the Hamiltonian enables the onset of Polaritons. This regime is called strong coupling regime. In experiments
the strong coupling regime is achieved when the Rabi coupling is larger than the dissipative mechanism in
cavity. If the Rabi coupling gets of the some order or even higher than the molecular transition, the strong
coupling regime is replaced by the ultrastrong coupling regime [34, 33]. Figure 4.3 shows the strong coupling
regime [80]. The energy of the ground state does not change its value for a “weak-coupling”, but in the
strong coupling regime it does. By comparing Figure 4.3 and Figure 4.4 it is visible a lowering of the ground
state passing from ~ΩR = 0.7 eV to ~ΩR = 1.4 eV. This behaviour can be investigated by performing
a computation at second order of perturbation theory. The result is a “shift” of the ground state. The
computation can be carried out taking the mean value of the J-C Hamiltonian on the ground state. The
correction gives:

〈g, 0| Ĥint |g, 0〉 =
∑
k

〈g, 0| Ĥint |ϕk〉 〈ϕk| Ĥint |g, 0〉
Eg − Ek

=

=
〈g, 0| Ĥint |e, 1〉 〈e, 1| Ĥint |g, 0〉

Eg − Ee,1
=
−~2Ω2

R

4
· 1

(εe − εg + ~ωc)
,

(4.14)

where Ĥint is the Hamiltonian in eq. (4.9), Eg = εg and Ee,1 = εe + ~ωc.
Figure 4.5 shows this correction (yellow line) to the energy value of the ground state. The numerical model
again converges very-well to the correction given by eq. (4.14) near resonance and for higher values of ωc.
However the physical interest and experimental setups focus on the resonance’s “window” (in this case the
resonance is at ~ωc = 2.75 eV). The Hamiltonian ĤJ−C,RW (see the eq. (4.12)) represents the analytical
starting point for the development of the arguments in the next sections. The Hamiltonian does not contain
the counter-rotating and self-dipole terms. These corrections are here neglected because of their relative
small amplitudes. The Appendix A shows the effect of the inclusion of those terms.
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Figure 4.5: Energies Eg (green line), Eg,corr. (see the eq. (4.14)) and Enum. for the numerical diagonalization
as a function of ~ωc. Parameters are as follows: εg = 0 eV, εe = 2.75 eV, and ~ΩR = 1.4 eV.

4.2 Jaynes-Cummings Model for Several Atoms

In this section a generalization of Jaynes-Cummings Model considering 2, 3 . . . N atoms is given.

4.2.1 Hamiltonian of N two-level atoms coupled to radiation

Now N identical (with the same εg and εe) level-atoms are coupled to the same photon mode with frequency
ωc.
The bare Hamiltonian is simply the sum of N atomic terms and the field term:

ĤN, 0 =

N∑
i=1

(εg |gi〉 〈gi|+ εe |ei〉 〈ei|) + ~ωcâ†â, (4.15)

where the subscript i means the i-th atom.
The interacting Hamiltonian is given by

ĤN, int =
~ΩR

2

(
â+ â†

)
·
N∑
i=1

(|ei〉 〈gi|+ |gi〉 〈ei|) . (4.16)

Under Rotating-Wave-Approximation (RWA), in which the counter-rotating terms are neglected because do
not conserve energy at leading order of perturbation theory, the total Hamiltonian is

ĤN atoms =
N∑
i=1

(εg |gi〉 〈gi|+ εe |ei〉 〈ei|) + ~ωcâ†â+
~ΩR

2

N∑
i=1

(
|ei〉 〈gi| â+ |gi〉 〈ei| â†

)
.

(4.17)

4.2.2 Diagonalization of N=2 two-level atoms under RWA

The Hilbert space of the two atoms plus the radiation is generated by the vectors
{|g1g2〉 , |g1e2〉 , |e1g2〉 , |e1e2〉}⊗ |n〉, where |n〉 is the photon state.
An exact diagonalization of the Hamiltonian is possible by working on the resonance (~ωc ≈ εe − εg ≡ ∆ge)
and focusing on the first atom-excitation, namely Ee,1 − Eg = ∆ge. Ee,1 is the energy of the first excitation
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4.2. JAYNES-CUMMINGS MODEL FOR SEVERAL ATOMS

and Eg = 2εg, the energy of the ground state |g1g2〉 ⊗ |0〉 of ĤN atoms (4.17).
By following this argument, the basis related to the subspace of a single-photon excitation is composed by
|g1e2〉 ⊗ |0〉, |e1g2〉 ⊗ |0〉 and |g1g2〉 ⊗ |1〉 (see Figure 4.6). In this basis the eigenvalues and the eigenvectors

Figure 4.6: Energy levels of ĤN, 0 (see the eq. (4.15)) working on the resonance and splitting of these levels
due to the interacting Hamiltonian ĤN, int (see the eq. (4.16)) for N = 2 two-level systems.

of (4.17) are respectively:

E+ = Ee,1 +
~ΩR

2
·
√

2, |+〉 =
|G, 1〉+ |E, 0〉√

2
,

E− = Ee,1 −
~ΩR

2
·
√

2, |−〉 =
− |G, 1〉+ |E, 0〉√

2
,

ED = Ee,1, |D〉 =
|g1e2〉 − |e1g2〉√

2
⊗ |0〉 ,

(4.18)

where |E, 0〉 ≡ (|g1e2〉+ |e1g2〉) /
√

2⊗|0〉 and |G, 1〉 ≡ |g1g2〉⊗|1〉. The states |+〉 and |−〉 are the Polaritonic
states for two atoms (molecules). They are separated by E+ − E− = ~ΩR

√
2.

The state |D〉 is generally called Dark state because it is not coupled to the light mode and the transitions
from the ground state and from the other two states to the Dark state are not allowed. Thus, this state is an
optical inactive state for this “Coherent Description” that does not involve any kind of dissipative mechanism
[71].
In fact, if a classical laser source with a Hamiltonian given by

Ĥlas = ~̂d · ~E cos (ωLt) (4.19)

where ~̂d = ~d
∑2

i=1 (|ei〉 〈gi|+ |gi〉 〈ei|) , ~E is the classical electric field oscillating at the laser frequency ωL,
and ~d is the dipole, is considered the computation of the associated matrix elements gives:

〈G, 0| Ĥlas |−〉 6= 0, 〈G, 0| Ĥlas |+〉 6= 0,

〈D| Ĥlas |−〉 = 0, 〈+| Ĥlas |D〉 = 0,
(4.20)

where |G, 0〉 ≡ |g1g2〉 ⊗ |0〉.
This means that the only allowed transitions are between the ground state |G, 0〉 and the lower Polaritonic

state |−〉 or between |G, 0〉 and the Upper Polaritonic state |+〉.
It is a justification to the fact that Polaritonic states are “bright” states the others are “dark”. Figure 4.7
shows the allowed transitions.
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4.2. JAYNES-CUMMINGS MODEL FOR SEVERAL ATOMS

Figure 4.7: Allowed transitions (in gold) between the Polaritonic states |−〉 , |+〉 and the ground state |G, 0〉.

4.2.3 More than N=2 two-level atoms coupled to radiation

Figure 4.8: Polaritonic states and Dark states for N two-level systems.

Up to now, the Jaynes-Cummings Model for 2 two-level atoms has been described. The generalization
for N atoms [157] can be easily done for what it concerns the “distance” between |+〉 and |−〉 which is
E+ − E− = ~ΩR

√
N .

Another direct prediction is related to the number of the Dark states. There are N−1 degenerate Dark states
if the two-level atoms are N. These Dark states constitute a gap between the Polaritonic states and they are
often referred to as an exciton reservoir or exciton bath [71].
The eigenvalues and the eigenstates for N atoms are:

Eg = Nεg, |G, 0〉 ≡ |g1 · · · gN 〉 ⊗ |0〉 ,

E± = Nεg + ~ωc ±
~ΩR

2
·
√
N, |±〉 =

± |G, 1〉+ |E, 0〉√
2

,

EDp = Nεg + ∆ge, |Dp〉 =

∑p
k=1 |(ek)〉 −

√
p |(ep+1)〉√

p(p+ 1)
⊗ |0〉 with p = 1, . . . N − 1,

(4.21)

where |E, 0〉 ≡∑N
i=1 |(ei)〉 /

√
N ⊗|0〉, |G, 1〉 ≡ |g1 · · · gN 〉⊗|1〉 and ∆ge ≡ εe−εg. The states |(ei)〉 are states

of the form |g1 · · · gi−1(ei)gi+1 · · · gN 〉.
The totally symmetric molecular state |E, 0〉 is obtained as the sum of all states containing N − 1 molecules
in the ground-state and one molecule i in the excited state |(ei)〉 ≡ |g1 · · · gi−1(ei)gi+1 · · · gN 〉. The electronic
excitation in this |E, 0〉 Dicke-state is thus delocalized on the whole molecular ensemble, the former playing
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4.3. HOLSTEIN-TAVIS-CUMMINGS MODEL

the role of a giant collective dipole oscillating in phase with the electromagnetic cavity-mode [36]. The
Polaritons in eq. (4.21) are linear combinations of two states: one involving the manybody electronic
ground-state |G〉 with one photon populating the cavity and the other the collective Dicke-state |E, 0〉 with
the cavity in its quantum mechanical ground-state. Figure 4.8 shows the Polaritonic states and Dark states
for N atoms.

4.3 Holstein-Tavis-Cummings model

The Holstein-Tavis-Cummings Model provides a description of the interaction, in a lossless cavity, between N
two-levels molecules and a single mode of radiation. This model takes into account the Vibrational Degrees of
Freedom (VDOF) of the molecules [70, 176]. After an explanation of the Hamiltonian describing the system
it follows a derivation of the Potential Energy Surface (PES) for the Polaritonic states, their equilibrium
positions and the corresponding eigenstates. In conclusion a numerical diagonalization of the Hamiltonian
is performed.

4.3.1 Hamiltonian of N “vibrating” molecules coupled to radiation

The Hamiltonian that describes the interaction between N two-levels molecules, with their VDOF, and one
mode of the quantized electromagnetic field is

Ĥ Nmol =

N∑
i=1

{[
εg +

1

2
ω2

v

(
Qv,i −Qv,g

)2] |gi〉 〈gi|+ [εe +
1

2
ω2

v

(
Qv,i −Qv,e

)2] |ei〉 〈ei|}+

+ ~ωcâ†â+
~ΩR

2

N∑
i=1

(
|ei〉 〈gi| â+ |gi〉 〈ei| â†

)
,

(4.22)

where εg,e are the electronic energies, ωc is the frequency of the cavity, ωv the vibration frequency of the
molecules (all the molecules have the same vibration frequency), Qv,i are the mass-weighted nuclear co-
ordinates corresponding to the vibration mode of molecule i, Qv,g/e are the displaced nuclear equilibrium
positions for the electronic states, and ΩR is the coupling due to the dipole interaction between the molecule
and radiation in cavity (see Section 4.1.2). The interaction term (in the second line of equation (4.22)) is
written using the RWA (see the Section 4.1.3). The Hamiltonian Ĥ Nmol is also written using the Born-
Oppenheimer approximation where the kinetic energies (the mass of the nuclei is much higher than the
electronic mass) are neglected for the slow nuclei motion (~ωv ≈ 50 meV) in comparison to the fast dynamics
of strongly coupled electrons and cavity mode (∆ge ≡ εe − εg ≈ ~ωc ≈ 2.8 eV).

The new term 1
2

∑
i ω

2
v

(
Qv,i −Qv

)2 (for the electronic states g or e), that appears in eq. (4.22) with
respect to the eq. (4.17), may be seen as the potential energy of the mass-weighted nuclear coordinates.
In particular, the quantity λv ≡ 1

2ω
2
v

(
Qv,e −Qv,g

)2 is usually called reorganization energy because it is the
required energy to restore and reorganize the nuclear coordinates for the shifted equilibrium position Qv,e.

The reorganization energy is a sort of electron-phonon coupling and it is directly related to dimensionless
factors, called Huang-Rhys factors [78]. These factors are defined as gv =

(
Qv,e −Qv,g

)
/2x0v, which are

nothing but the shifts of the modes’ equilibrium positions in units of the zero-point motion x0v =
√

~/2ωv.
Huang-Rhys factors are related to reorganization energies by the relations g2

v = λv/~ωv.

4.3.2 Eigenvalues at order λv

In order to derive analytical expressions for the eigenvalues of Ĥ Nmol, an adiabatic approximation is performed
[111]. The regime of validity of this approximation is for λv < ~ΩR. Thus, the analytical expressions of the
eigenvalues can be found by using perturbation theory [27] at leading order in λv. To perform a perturbative
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4.3. HOLSTEIN-TAVIS-CUMMINGS MODEL

expansion at order λv, it is easier to collect all the λv-terms that appear in Ĥ Nmol. So the Hamiltonian
becomes:

Ĥ Nmol = Ĥ0 + V̂λv =

N∑
i=1

(εg |gi〉 〈gi|+ εe |ei〉 〈ei|) + ~ωcâ†â+
~ΩR

2

N∑
i=1

(
|ei〉 〈gi| â+ |gi〉 〈ei| â†

)
+

+ λv

N∑
i=1

[
Q2

v,i

Q
2
v,e

|gi〉 〈gi|+ (1 +
Q2

v,i

Q
2
v,e

− 2
Qv,i

Qv,e

) |ei〉 〈ei|
]
,

(4.23)

where Qv,g is set to 0 as the reference nuclear equilibrium position and consequently λv ≡ 1
2ω

2
vQ

2
v,e.

Restricting the Hilbert space to the first excitation sector for N molecules, that is {|G, 1〉 , |E, 0〉} (the same
procedure for one atom is reported in Section 4.1.3) where

|G, 1〉 ≡ |g1 · · · gN 〉 ⊗ |1〉 ,

|E, 0〉 ≡ 1√
N

N∑
i=1

|(ei)〉 ⊗ |0〉 with |(ei)〉 ≡ |g1 · · · gi−1(ei)gi+1 · · · gN 〉 ,
(4.24)

the eigenvalues of the Lower and Upper Polariton at leading order in λv are respectively:

E− =Nεg + ~ωc −
~δ
2
− ~Ω̃R

2
+ λv 〈−| V̂λv |−〉 ,

E+ =Nεg + ~ωc −
~δ
2

+
~Ω̃R

2
+ λv 〈+| V̂λv |+〉 ,

(4.25)

with

Ω̃R =
√
δ2 +

(
NΩ2

R

)
, δ ≡ ωc −∆ge/~,

|−〉 =− sin θ |G, 1〉+ cos θ |E, 0〉 ,
|+〉 = + cos θ |G, 1〉+ sin θ |E, 0〉 ,

sin θ =
1√
2

√
1− δ

Ω̃R

, cos θ =
1√
2

√
1 +

δ

Ω̃R

,

(4.26)

where ∆ge ≡ εe − εg.
The evaluation of the matrix elements in eq. (4.25) gives

〈−| V̂λv |−〉 =
N∑
i=1

[
sin2 θ

(
1− 2Qv,i

NQv,e

)
+
Q2

v,i

Q
2
v,e

]

〈+| V̂λv |+〉 =
N∑
i=1

[
cos2 θ

(
1− 2Qv,i

NQv,e

)
+
Q2

v,i

Q
2
v,e

]
.

(4.27)

The final form of E±, by using the expressions of sin θ and cos θ (see eq. (4.26)), is

E± =Nεg + ~ωc −
~δ
2
± ~Ω̃R

2
+ λv

N∑
i=1

[
1

2

(
1± δ

Ω̃R

)
·
(

1− 2

N

Qv,i

Qv,e

)
+
Q2

v,i

Q
2
v,e

]
. (4.28)

4.3.3 Equilibrium positions and Potential Energy Surfaces

The Potential Energy Surface (PES) is essential for a microscopic understanding of molecular transfer phe-
nomena and it is a key quantity to investigate chemical reaction dynamics or nuclear motions. The topology
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of the PES can be explored by calculating the first and second derivatives with respect to the nuclear coor-
dinates Qv,i [113]. Of particular interest are the stationary points on a PES that may correspond to stable
conformations of the molecule. Near these equilibrium positions it is often possible to analyze nuclear mo-
tions in terms of weak normal-mode vibrations.
Solving

∂E±
∂Qv,1

= 0, . . . ,
∂E±
∂Qv,N

= 0, (4.29)

where E± are given by eq. (4.28), the equilibrium positions are:

Qv,± =
Qv,e

2N

(
1∓ δ

Ω̃R

)
, (4.30)

where the ground state equilibrium nuclear configuration Qv,g is set to 0.
These equilibrium positions depends on detuning δ, the collective Rabi frequency Ω̃R, and number of
molecules denoted by N. The shifts in equilibrium positions in eq. (4.30) are the same for each molecule, thus
corresponding to the excitation of a long-range vibrational mode, in which each molecular vibration couples
in phase with the same Polariton. In the large-N limit, the results of the collective decoupling mechanism
between nuclear motion and the Polariton are recovered, as derived in ref. [70], for which the configuration
of the nuclear equilibrium positions gets back to the ground state configuration, that is Qv,± → Qv,g.

Now with the knowledge of the stationary points it follows the calculation of the PES of the system
described by the Hamiltonian (4.23). In particular the adiabatic Born-Oppenheimer PES, in which the
non-adiabatic operators are neglected, is considered [113]. The definition is

E(Qv,i) = E(Qv) +

N∑
i,j=1

1

2
hij(Qv)∆Qv,i∆Qv,j +O(Q3

v,i,j),

(4.31)

where Qv are the equilibrium positions, hij(Qi) = ∂2E(Qv,i)/∂Qv,i∂Qv,j and ∆Qv,i ≡ Qv,i −Qv,i.
Using the eq. (4.28), (4.30) and (4.31) the quadratic Polariton Potential Energy Surfaces (PPESs) of the
described system are [111]:

E±(Qv,i) = ε± +

N∑
i=1

ω2
v

2

(
Qv,i −Qv,±

)2
,

ε± = Nεg + ~ωc −
~
2

(
δ ∓ Ω̃R

)
,

δ = δ − λv

~

(
1− α2

+ + α2
−

N

)
,

Ω̃R = Ω̃R −
λv

~
δ

Ω̃R

(
1− 1

N

)
,

(4.32)

where λv ≡ 1
2ω

2
vQ

2
v,e and α± ≡ 1

2

(
1∓ δ

Ω̃R

)
.

It is interesting to note that the Polariton energy ε± depends on both the molecule-cavity detuning δ and
collective vacuum Rabi frequency Ω̃R. Both quantities are renormalized and become explicitly dependent
on the reorganization energy λv, as well as on the number N of molecules. The PPESs E±(Qv,i) are a direct
physical consequence of the generalized Born-Oppenheimer approximation and perturbation expansion at
the lowest-order of the electron-phonon coupling strength. They interpolate smoothly between the limits
of single-molecule N = 1 and large number of molecules N � 1 inside the cavity (terms of leading order
≈ 1/N).
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4.3.4 Eigenstates

The expression (4.32) is nothing else the sum of two Polaritonic energies plus N independent harmonic
oscillators with the same frequency ωv centered at the positions Qv,±. Then the total eigenstate of the
system is

|±,m1···N 〉 = |±〉
N⊗
i=1

D̂†(Q̄v,±) |mi〉 , (4.33)

where mi are the labels for the vibrational levels (mi ∈ Z+) and D̂†(Q̄v,±) are the displacement operators
defined as D̂(Q̄v,±) ≡ exp[Q̄v,±(â† − â)] [165].

4.3.5 Eigenstates for N→∞
In the limit N→∞ there is an analogy with an infinite number of atoms in a crystal. Bearing in mind this
idea, it comes natural to Fourier transform the PPESs:

E±(Qv,k) = ε± +
1

2
ω2

v

(
Qv,0 −Qv,±

)2
+

′∑
k 6=0

ω2
v

2
Qv,kQ

∗
v,k +O(Q3

v,k), (4.34)

where ε± contain the “Q-independent” terms of eq. (4.32) and
∑′

k 6=0 is the sum over k 6= 0 in the
First Brillouin Zone [27]. The definitions of Fourier transform and Kronecker’s δ are respectively qv,j =

1√
N

∑′

k qv,ke
−ikja and 1

N

∑
j e

i(k+k
′
)ja = δk,−k′ where qv,j ≡ Qv,j − Qv,± and a is the unit distance of the

atomic oscillator chain. Thus, in k-space the total eigenstate is given by the two Polaritonic states times a
displaced harmonic oscillator for k = 0 times all the other independent harmonic oscillators for k 6= 0 [70]:

|±,mk〉 = |±〉k ⊗ D̂†(Qv,±) |mk=0〉 ⊗ |mk 6=0〉 . (4.35)

This total state is in agreement with the eq. (4) of ref. [70] when the detuning δ (see eq. (4.26)) is 0 and
terms of order 1/N are neglected.

4.3.6 Numerical diagonalization of ĤNmol

It is interesting to compare the analytical PPES (see eq. (4.32)) with a numerical diagonalization of Ĥ Nmol

(4.23) [56, 111]. In the moderate to strong coupling regime, ~ωc > ~Ω̃R > λv, there is a very good matching
of the exact numerical curves with the analytical results of eq. (4.32) based on the adiabatic approxima-
tion. Figure 4.9 also shows the PES of the many-body ground state and the Dark states. Their analytical
expressions are [111]:

EDp(Qv,i) = Nεg + ∆ge +
N∑
i=1

ω2
v

2
Q2

v,i,

Eg(Qv,i) = Nεg +

N∑
i=1

ω2
v

2
Q2

v,i,

(4.36)

where p = 1, · · · , N − 1 is an index labelling the Dark state (see eq. (4.21)), ∆ge ≡ εe − εg and Qv,g is
set to 0.
Within RWA, the Dark states do not couple directly to the optical cavity-mode. Their PES is thus indepen-
dent of the collective vacuum Rabi splitting. In the case of finite arbitrary electron-phonon interactions, the
Dark PES can only be computed numerically, similarly to the Holstein polaron problem [75].
Some details about the adiabatic approximation for one molecule are given in Appendix B.
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Figure 4.9: PPESs for the Lower Polariton E− (red, downward pointing triangles), Upper Polariton E+ (blue,
upward pointing triangles), and Dark states ED (solid black circles) computed from numerical diagonalization
of Ĥ Nmol (see eq. (4.23)). The corresponding solid curves are obtained from analytical formulas in eq. (4.32)
and (4.36). Parameters are as follows: N = 50, Qv,i fixed for all i = 1, · · · , N to the same value Qv which
is varied, εg = 0 eV, εe = 2.8 eV, ~ωc = 2.8 eV, ~ωv = 50 meV, ~Ω̃R = 0.7 eV, ~δ = 0 eV, and λv = 0.1 meV.

4.4 Randomness on PPESs

In 1958, Philip Warren Anderson derived a “simple” model for spin diffusion in the impurity bands of crystals
[2]. He showed that at low density no diffusion takes place by introducing randomness, or equivalently
disorder or inhomogeneous broadening, on the energies of spin sites in a lattice. The “no-transport” theorem
(no diffusion) has been shown to be valid when the randomness of the probability distribution of energies,
characterized by a widthW , is weak with respect to the interaction involved in spin transfer between adjacent
sites.

In 1995, the effect of inhomogeneous broadening of the electronic state on vacuum Rabi splitting was
investigated by R. Houdré et al. [77]. The conclusion of the study was that the Rabi splitting is independent
of the nature of the broadening of the electronic state. Recent investigations on strongly coupled molecular
ensembles [14, 22] show that Anderson disorder on Dark states can very efficiently contribute to coherent
energy transport and open new perspectives towards the change and the control of disorder to manipulate
the Polaritons lifetime by changing the environmental fluctuations.

This Section presents the result of the introduction of disorder on the calculated PPESs (see Figure
4.9). In particular the disorder is induced at the level of the numerical diagonalization of the Hamiltonian
given by eq. (4.22). Two types of disorder are studied: i) By generating an “Anderson disorder” for which
each molecular excited-state energy εe is perturbated by a random energy equally distributed in the range
[−W,W ], withW the disorder strength (see Figure 4.10). ii) By generating a disorder at the level of reaction
coordinates, that is an effective “electron-phonon disorder”, in which the excited-state nuclear position Qv,i

of each molecule i = 1, · · · , N are shifted by a random value in the range [−Qv,W , Qv,W ] (see Figure 4.11).
In both cases, adding inhomogeneous disorder induces a lifting of degeneracy of the Dark states, which are
distributed in an enlarged miniband of states, while the Polaritons remain weakly perturbed (if Ω̃R > W ).
This picture is consistent with the results of Houdré et al. [77].
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Figure 4.10: PPESs for the Ground state (green line), Lower Polariton E− (red line), and Upper Polariton
E+ (blue line) computed from numerical diagonalization of Ĥ Nmol (see eq. (4.23)) and analytical formulas in
eq. (4.32) and (4.36). The Dark states ED (black dots) are only computed from numerical diagonalization
of Ĥ Nmol (see eq. (4.23)). Anderson disorder with disorder strength W = 0.05 eV is included. Parameters
are as follows: N = 50, Qv,i fixed for all i = 1, · · · , N to the same value Qv which is varied, εg = 0 eV,
εe = 2.8 eV, ~ωc = 2.8 eV, ~ωv = 50 meV, ~Ω̃R = 0.7 eV, ~δ = 0 eV, and λv = 0.1 meV.
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Figure 4.11: PPESs for the Ground state (green line), Lower Polariton E− (red line), and Upper Polariton
E+ (blue line) computed from numerical diagonalization of Ĥ Nmol (see eq. (4.23)) and analytical formulas in
eq. (4.32) and (4.36). The Dark states ED (black dots) are only computed from numerical diagonalization of
Ĥ Nmol (see eq. (4.23)). Disorder on the nuclei position with disorder strength Qv,W = 0.05x0v is included.
Parameters are as follows: N = 50, Qv,i fixed for all i = 1, · · · , N to the same value Qv which is varied,
εg = 0 eV, εe = 2.8 eV, ~ωc = 2.8 eV, ~ωv = 50 meV, ~Ω̃R = 0.7 eV, ~δ = 0 eV, and λv = 0.1 meV.
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5

Thermal Electron-Transfer Rate

Electron-transfer (ET) reactions are common and important elementary chemical reactions. They have a
fundamental role in enzymatic activity, photosynthesis and electrochemistry [113, 117]. ET reactions involve
spontaneous transfer or redistribution of charges between initial reactants (R) and well-defined products (P),
in a typically polar or weakly polar solution. Generically, these reactions take place at room temperature.

A famous example of self-exchange electron transfer reactions in aqueous solution is given by

Fe+3 + Fe+2 → Fe+2 + Fe+3. (5.1)

The reaction is a simple reaction because the R and the P are identical and no chemical bonds is broken
during the ET process [109]. Chemical reactions are usually described and represented with the corresponding

Figure 5.1: Sketch of self-exchange ET reaction (see eq. (5.1)).

Potential Energy Surface (PES) (see Section 4.3.3). The concept of PES is well adapted to describe the
mechanism of an ET reaction. Figure 5.1 displays, on the right-hand side, the PES of reactants and products
as a function of a nuclear reaction coordinate. The ET transfer process occurs at the crossing point of the
two PESs (indicated with a red star). At that point, energy is conserved and the Franck-Condon principle is
satisfied, i.e., the electronic transition occurs at fixed nuclear reaction coordinates. The charge redistribution
is fast compared to the nuclei movement. The fast process involves the reorganization and rearrangement of
the multi-dimensional configuration of nuclei in the vicinity of R and in the solvent. The dashed and solid
gold line on the left-hand side of Figure 5.1 represent the region, where the ET occurs, and the nearest region
where the time-scale is governed by the solvent, respectively.

The ET reaction can be non-adiabatic or adiabatic. The non-adiabatic ET is represented on the right-
hand side of Figure 5.1. The nonadiabaticity of the process consists in a weak electron exchange perturbation
(coupling) VET between the R and the P states. In contrast, the adiabatic ET is usually described with the
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double-well potential, where metastable initial R and the stable final P are separated by a potential barrier
along the nuclear reaction coordinate. The barrier is overcome by thermal activation or nuclear tunneling.
Another specification of ET is made whether or not the R and the P belong to the same molecule. If the R
and P belong to the same molecule the ET is an intramolecular process, otherwise it is called intermolecular
ET.

An important contribution to the developing of theoretical descriptions of ET reactions was provided by
the extensive studies of Rudolph Arthur Marcus [107, 109, 145, 108]. The Marcus theory is a classical theory
to describe the classical reorganization and fluctuations of solvent nuclear coordinates when the ET occurs.
The reactants are treated as dielectric spheres embedded in a continuos dielectric medium, the solvent. One
of the most important results of Marcus is the famous Marcus rate. The expression of the rate is the following
one:

kET = ke exp (−∆G∗/kBT ) with ∆G∗ =
(
∆G0 + λ

)2
/4λ, (5.2)

where ke a reaction-dependent global rate, T the temperature, kB the Boltzmann constant and ∆G∗ =(
∆G0 + λ

)2
/4λ an effective activation energy depending on the vibrational and solvent reorganization energy

λ = λv + λS and variation of the reaction thermodynamic Gibbs potential ∆G0 (reaction driving strength
or force). The Marcus rate kET has a simple expression with only three “fitting parameters”: the driving

Figure 5.2: PESs of reactants and products with the correlated quantities of the Marcus rate (see eq. (5.2)).

strength ∆G0, the reorganization energy λ and the temperature T (see Figure 5.2). The rate formulation
was experimentally confirmed and the best experimental evidence was provided in 1984 by J. R. Miller, L.
T. Calcaterra and G. L. Closs [115]. Figure 5.3 shows the experimental confirmation of the theoretically
predicted inverted region. The experimental evidence came 25 years after the theoretical prediction. Marcus
defined the rate evaluation as a function of −∆G0 in two regions: the “normal region” and the “inverted
region”. The normal region is the region where the rate increases as the −∆G0 increases untill it becomes
equal to the reorganization energy λ. This region was called normal because it represents an expected trend
of acid- (base-) catalyzed reactions and electrochemical reactions. The second region where the ET rate
decreases for a further increase in −∆G0, called the inverted region, was an unexpected behavior before the
theory was introduced.

Subsequent developments in ET theory have been directed to include quantum effects. In particular, V. G.
Levich and R. R. Dogonadze, in 1966-1972, wrote a reaction rate in terms of the thermally averaged quantum
mechanical transition probability between vibronic levels of the system and they maintained the classical
description of the solvent [99, 37]. Eventually, a generalization of the quantum mechanical description was
made, in 1974-1975, by Nell R. Kestner, Jean Logan and Joshua Jortner [89]. They derived a non-adiabatic
ET rate including quantum fast modes (~ωv > kBT ) for reactants shells (see gold dashed lines in Figure
5.1), called first coordination layers, and low frequency modes for the solvent (see solid gold line in Figure
5.1).
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5.1. NON-ADIABATIC ET RATE

Figure 5.3: Experimental confirmation of the inverted region, in the chemical electron transfer from a biphenyl
group to an acceptor, (solid black dots) and Marcus rate (black line) as a function of the Gibbs pontential
−∆G0 in unit of eV [115].

The rest of the Chapter contains the derivation of the non-adiabatic rate and for the high-temperature
limit the Marcus rate is retrieved. Finally, the two rates are compared.

5.1 Non-adiabatic ET rate

This Section contains all the steps to get the quantum non-adiabatic ET rate at temperature T and for
one vibrational mode ωv. Eventually, the classical Marcus rate is derived in the high-temperature limit.
Afterwards the expression of the ET rate is modified embedding the electron transfer reaction in a solvent
and the final expressions are compared with respect the Marcus’ result. The starting point is an ET reaction
between a reactant (R) and a final product (P). The PES of P is shifted relative to R along the reaction
coordinates. If kBT < ~ωv a quantum description is needed. Furthermore if the electron exchange is a weak
perturbation, a non-adiabatic treatment is necessary. Hence the Fermi’s Golden Rule is the appropriate
framework:

kET =
2π

~
|VET|2

∞∑
n, m̃=0

e−n~ωvβ

Z
|〈n|m̃〉|2δ (∆E + ~ωv(n− m̃)) ,

(5.3)

where VET is the crossing-coupling between the PES of R and P, β ≡ 1/kBT , n is the vibrational index
related to R, m̃ is connected to the displaced P (|m̃〉 = exp[gv(b̂− b̂†)] |m〉), b̂ (b̂†) is a boson operator, gv is
the Huang-Rhys factor (see Section 4.3.1), Z is the partition function, |〈n|m̃〉| is the Franck-Condon factor,
and ∆E is the driving force of the electron transfer reaction (see Figure 5.4).

5.1.1 Step 1: Fourier representation of δ

The first step is to replace δ with its Fourier representation:

δ (∆E + ~ωv(n− m̃)) =
1

2π~

∫
dt e

it
~ [∆E+~ωv(n−m̃)]. (5.4)
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5.1. NON-ADIABATIC ET RATE

Figure 5.4: Non-adiabatic ET reaction (see red arrow) between R and the displaced P. The PESs have their
vibrational levels with “distance” ~ωv (see orange arrow).

Now, the eq. (5.3) is given by

kET =
|VET|2
~2

∞∑
n, m̃=0

∫
dt
e−n~ωvβ

Z
|〈n|m̃〉|2e it~ [∆E+~ωv(n−m̃)]. (5.5)

5.1.2 Step 2: Autocorrelation function of combined displacement operators

This second step starts by considering the following term:

|〈n|m̃〉|2e it~ [∆E+~ωv(n−m̃)].

The exponential can be inserted between 〈n| and |m̃〉 in the following way:

|〈n|m̃〉|2e it~ [∆E+~ωv(n−m̃)] = e
it
~ ∆E 〈n| e iĤvt

~ e
−i ˜̂Hvt

~ |m̃〉 〈m̃|n〉, (5.6)

where Ĥv = ~ωvâ
†â, ˜̂

Hv = D̂(gv)ĤvD̂
†(gv) and D̂†(gv) ≡ exp[gv(b̂− b̂†)].

Afterwards, using the completeness relation
∑

m̃ |m̃〉 〈m̃| = I and subtituting the eq. (5.6) in eq. (5.5) the
result is

kET =
|VET|2
~2

∞∑
n=0

∫
dt
e−n~ωvβ

Z
e
it
~ ∆E 〈n| e iĤvt

~ e
−i ˜̂Hvt

~ |n〉 . (5.7)

Furthermore, the expression 〈n| e iĤvt
~ e

−i ˜̂Hvt
~ |n〉 can be rewritten in terms of the displacement operators D̂(gv)

and D̂†(gv):

〈n| e iĤvt
~ e

−i ˜̂Hvt
~ |n〉 = 〈n| e iĤvt

~ D̂(gv)e
−iĤvt

~ D̂†(gv) |n〉 . (5.8)

By recalling the evolution of an operator in the Heisemberg’s representation, the last expression becomes

〈n| e iĤvt
~ D̂(gv)e

−iĤvt
~ D̂†(gv) |n〉 = 〈n| D̂(t)D̂†(0) |n〉 , (5.9)
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5.1. NON-ADIABATIC ET RATE

where D̂(t) = e
iĤvt
~ D̂(gv)e

−iĤvt
~ and D̂†(0) ≡ D̂†(gv).

The rate kET (see eq. (5.7)) in the terms of the autocorrelation function of combined displacement operators
given by eq. (5.9) reads

kET =
|VET|2
~2

∞∑
n=0

∫
dt
e−n~ωvβ

Z
e
it
~ ∆E 〈n| D̂(t)D̂†(0) |n〉 . (5.10)

5.1.3 Step 3: Calculation of the autocorrelation function

First of all, the operator D̂(t) can be Taylor expanded to get a simpler formula:

D̂(t) = e
iĤvt
~ D̂(gv)e

−iĤvt
~ = e

iĤvt
~ egv(b̂†−b̂)e

−iĤvt
~ = e

iĤvt
~

{ ∞∑
m=0

[gv(b̂† − b̂)]m
m!

}
e
−iĤvt

~ =

=
1

m!
e
iĤvt
~ gv(b̂† − b̂)e−iĤvt

~︸ ︷︷ ︸
m times

= exp

{
gv

[
e
iĤvt
~ (b̂† − b̂)e−iĤvt

~

]}
= exp

{
−gv

[
b̂e−iωvt − b̂†eiωvt

]}
.

(5.11)

If t→ 0, D̂(t)→ D̂(0).
The autocorrelation function by using (5.11) has the form

〈n| D̂(t)D̂†(0) |n〉 = 〈n| exp
{
−gv

[
b̂e−iωvt − b̂†eiωvt

]}
egv(b̂−b̂†) |n〉 (5.12)

To further simplify the autocorrelation function, the Glauber’s Formula (GF) is useful. Its definition is

eA+B = eAeBe−
1
2

[A,B] with [A, [A,B]] = [B, [A,B]] = 0, (5.13)

where A, B are two different operators.
By applying twice GF, the eq. (5.12) gets

〈n| exp
{
−gv

[
b̂e−iωvt − b̂†eiωvt

]}
egv(b̂−b̂†) |n〉

GF
= e

g2v
2 (e−iωvt−eiωvt) 〈n| exp

{
gv

[
b̂(1− e−iωvt)− b̂†(1− eiωvt)

]}
|n〉 GF

=

GF
= e

g2v
2 (e−iωvt−eiωvt−|1−eiωvt|2) 〈n| ezb̂†e−z∗b̂ |n〉 ,

(5.14)

where z ≡ gv(eiωvt − 1).
It remains to calculate

S(z) ≡ 〈n| ezb̂†e−z∗b̂ |n〉 .
It is quite straightforward to calculate the action of the exponential operator on the |n〉 states using a Taylor
expansion.

S(z) = lim
n→∞

n∑
l=0

(−1)l
l!

(l!)2(l − n)!
|z|2l, (5.15)

where it is applied

bl |n〉 =

√
n!

(n− l)! |n− l〉 .

The “new” expression of S(z) given by eq. (5.15) is the limit of special polynomials, Laguerre’s polynomials
Lkn(x):

Lkn(x) =

n∑
m=0

(−1)m
(n+ k)!

(n−m)!(k +m)!m!
xm with x ∈ C, k > −1. (5.16)
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5.1. NON-ADIABATIC ET RATE

In the present case
S(z) = lim

n→∞
L0
n(|z|2). (5.17)

Finally, the autocorrelation function (see eq. (5.12)) becomes

〈n| D̂(t)D̂†(0) |n〉 = e
g2v
2 (e−iωvt−eiωvt−|1−eiωvt|2) lim

n→∞
L0
n(|z|2). (5.18)

5.1.4 Step 4: Final step

It remains to rewrite the rate kET (see eq. (5.10)), using the eq. (5.18), and compute the sum inside:

kET =
|VET|2
~2

(
1− e−~ωvβ

)∫
dte

it
~ ∆EAv(t)

∞∑
n=0

e−n~ωvβL0
n(|z|2), (5.19)

where (
1− e−~ωvβ

)
= 1/Z

and

Av(t) ≡ e
g2v
2 (e−iωvt−eiωvt−|1−eiωvt|2).

The calculation of the sum inside the eq. (5.19) is easy by using

∞∑
n=0

Lkn(x)yn =
e−xy/(1−y)

(1− y)k+1
with |y| < 1. (5.20)

Thus
∞∑
n=0

e−n~ωvβL0
n(|z|2) =

e
−|z|2 e−~ωvβ

1−e−~ωvβ

1− e−~ωvβ
. (5.21)

Then the rate reads

kET =
|VET|2
~2

∫
dte

it
~ ∆EAv(t)e−|z|

2nB , (5.22)

where nB = e−~ωvβ/
(
1− e−~ωvβ

)
= 1/(e~ωvβ − 1) is the Bose-Einstein distribution.

Finally it is possible to simplify Av(t)e−|z|
2nB by doing few multiplications, obtaining

kET =
|VET|2
~2

∫
dte

it
~ ∆Ee−g

2
v(1+2nB) exp

{
g2

v

[
(1 + nB)e−iωvt + nBe

iωvt
]}
. (5.23)

The last thing is to note that

lim
t→0

(
exp

{
g2

v

[
(1 + nB)e−iωvt + nBe

iωvt
]})

= eg
2
v(1+2nB). (5.24)

In this way by defining G(t) ≡ g2
v

[
(1 + nB)e−iωvt + nBe

iωvt
]
, the eq. (5.18) becomes

kET =
|VET|2
~2

∫
dt e

it
~ ∆Ee−G(0)+G(t).

(5.25)

The derived rate kET is consistent with the ref. [89].
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5.2. OTHER WAY FOR THE CLASSICAL RATE

5.1.5 High-temperature limit

The final expression of kET (see eq. (5.25)) is calculated bearing in mind kBT < ~ωv to perform a Quantum
calculation. However, if kBT � ~ωv the famous Marcus rate (see eq. (5.2)) is recovered.
The expression e−g2

v(1+2nB) exp {g2
v

[
(1 + nB)e−iωvt + nBe

iωvt
]
} at high-T is

e−g
2
v(1+2nB) exp

{
g2

v

[
(1 + nB)e−iωvt + nBe

iωvt
]} kBT�~ωv−→

kBT�~ωv−→ e−g
2
v(1+2nB) exp

{
g2

v[(1 + nB)(1− iωvt−
ω2

v

2
t2) + nB(1 + iωvt−

ω2
v

2
t2)]

}
=

= exp

[−it
~
λv

]
· exp

[
−t2λvkBT

~2

]
,

(5.26)

where it is introduced g2
v = λv/(~ωv), λv is the reorganization energy, and 1 + 2nB ≈ 2kBT/~ωv.

By replacing the result in eq. (5.26) inside the rate kET (5.25), the classical Marcus rate k(cl)
ET is

k
(cl)
ET =

2π

~
|VET|2√
4πλvkBT

e−β
(∆E−λv)2

4λv . (5.27)

The expression k(cl)
ET differs with respect to the eq. (5.2) for a minus sign in the exponent. The sign in eq.

(5.2) comes from the thermodynamic convention on ∆G0. This aspect is only a matter of convention for the
initial starting point and it does not affect the result.

5.2 Other way for the Classical Rate

In the limit kBT � ~ων , the description of the vibrational motion is pursued in the framework of classical
physics [113]. The most simple explanation can be done considering a two-level system for R and P given
by the RP Hamiltonian

ĤRP = ER |R〉 〈R|+ EP |P 〉 〈P |+ VRP |R〉 〈P |+ VPR |P 〉 〈R| , (5.28)

and the following PES

ER/P(Q) = E0
R/P(0) +

1

2
ω2

v(Q−QR/P)2, (5.29)

for R and P respectively.
According to the fact that during the ET process at high-T there is no change in the vibrational kinetic
energy, the classical Marcus rate can be written as

k
(cl)
ET =

2π

~
|VRP|2

∫
dQ

e−βER(Q)

Z
δ (ER(Q)− EP(Q)) . (5.30)

One way to carry out this integration is to find the zero of δ, the crossing point between the two PES, and
to use δ(g(x)) = δ(x−x0)

|g′(x0)| . By performing this, the eq. (5.30) reads

k
(cl)
ET =

2π

~
|VRP|2

∫
dQ

e−βER(Q)

Z

δ (Q−Q×)

ω2
v(QR −QP)

, (5.31)

where the crossing point is

Q× =
∆E +

[
ω2

v(Q2
R −Q2

P)
]
/2

ω2
v(QR −QP)

, with ∆E = E0
R(0)− E0

P(0). (5.32)

Now it remains to carry out a Gaussian integration and the result is

k
(cl)
ET =

2π

~
|VRP|2√
4πλvkBT

e−βEa with Ea =
1

2
ω2

v(Q× −QR)2. (5.33)
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The last step concerns the rearrangement of the activation energy Ea for the ET, namely

Ea =
(∆E − λv)2

4λv
with λv =

ω2
v

2
(QP −QR)2 . (5.34)

Thus the rate kET, cl (see eq. (5.33)) becomes exactly the same of eq. (5.27)

k
(cl)
ET =

2π

~
|VRP|2√
4πλvkBT

e−β
(∆E−λv)2

4λv . (5.35)

5.3 Rate in presence of a Solvent

The solvent S is represented by a collection of k harmonic oscillators with modes ωk in addition to the
vibrational mode ωv. Now the corresponding PESs are

ER/P(Q) = E0
R/P(0) +

1

2
ω2

v(Q−QR/P)2 +
1

2

∑
k

ω2
k(Qk −Qk,R/P)2. (5.36)

Adding the solvent, the eq. (5.5) has to be modified to get

kET =
|VET|2
~2

∞∑
n, m̃=0

∫
dt

[
e−n~ωvβ

Z
|〈n|m̃〉|2e it~ [∆E+~ωv(n−m̃)]

∏
k

e−nk~ωkβ

Zk
|〈nk|m̃k〉|2eitωk(nk−m̃k)

]
. (5.37)

This rate can be reduced by following all the steps already introduced in Section 5.1. The final rate is

kET =
|VET|2
~2

∫
dt e

it
~ ∆Efv(t)fS(t), (5.38)

where
fv(t) ≡ e−G(0)+G(t), fS(t) ≡ e

∑
k(−Gk(0)+Gk(t)) (5.39)

with
Gk(t) ≡ g2

k

[
(1 + nB,k)e

−iωkt + nB,ke
iωkt
]
. (5.40)

5.3.1 High-temperature limit

If kBT � ~ωv and kBT � ~ωk the rate in eq. (5.38), by redoing the same Taylor expansion applied to eq.
(5.25), reads

k
(cl)
ET =

2π

~
|VET|2√
4πΛkBT

e−β
(∆E−Λ)2

4Λ , with Λ ≡ λv +
∑
k

~ωkg2
k︸ ︷︷ ︸

λS

. (5.41)

5.3.2 Classical solvent

A classical solvent is characterized by low-frequency modes with respect to the high-frequency vibrational
mode ωv. Thus, it is possible to substitute in eq. (5.38)

fv(t) =

∞∑
n, m̃=0

e−n~ωvβ

Z
|〈n|m̃〉|2e it~ ~ωv(n−m̃) (5.42)

and to apply the high-temperature limit to fS(t) obtaining
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kET =
2π

~
|VET|2√
4πλSkBT

∞∑
n, m̃=0

e−n~ωvβ

Z
|〈n|m̃〉|2e−β

[∆E−λS+~ωv(n−m̃)]2

4λS , (5.43)

where λS ≡
∑

k ~ωkg2
k and the Franck-Condon overlap is

〈m̃|n〉 = e−g
2
v/2

n∑
i=0

m∑
j=0

(−1)i(gv)i+j

i! j!

√
n! m!

(n− i)!(m− j)!δn−i,m−j . (5.44)

The Franck-Condon overlap can also be computed using (see the ref. [90])

〈m̃|n〉 = e−g
2
v/2[sgn(n−m)]m−ngQ−q

√
q!

Q!
LQ−qq (g2), (5.45)

where LQ−qq are Generalized Laguerre’s polynomials.
The form of this rate is one of the several variations of Marcus Rate that was greatly contributed by Nell R.
Kestner, Jean Logan and Joshua Jortner [89].

The rate in eq. (5.43) can also be written as a convolution of two lineshapes [111]:

kET =
2π

~
|VET|2Lv ? Lcl(∆E, λS),

(5.46)

with

Lv(∆E) =
∞∑

n, m̃=0

Fnm̃δ [∆E + ~ωv(m̃− n)] ,

Lcl(∆E, λS) =
1√

4πλSkBT
exp

[
−β (∆E + λS)2

4λS

]
,

(5.47)

where Fnm̃ ≡ e−n~ωvβ

Z |〈n|m̃〉|2, β ≡ 1/kBT and ∆E is sent to −∆E to then vary −∆E as the Figure 5.3 (the
choice of the author does not affect the result).

The formulation of the rate written in terms of the vibrational lineshape and the classical lineshape of
the solvent clarifies the effect of the solvent on the quantum vibrational modes. The solvent broadens the
quantum discrete vibrational lineshapes. The Figure 5.5 is a pictorial representation of the broadening made
by the solvent.

Figure 5.5: Broadening of the vibrational lineshapes Lv by the classical one Lcl.
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5.4 Rates in comparison

This section shows how the derived non-adiabatic rate (see eq. (5.46)) and the Marcus rate (see eq. (5.41)
with ∆E → −∆E) behave varying the driving force −∆E. The following Figures display three different
regimes: kBT = 5 · ~ωv, kBT = ~ωv/5 and kBT ≈ ~ωv. All the rate are normalized in the unit of ke:

ke ≡
2π

~
|VET|2√
4πΛkBT

, with Λ ≡ λv + λS. (5.48)

Figure 5.6 represents the high-temperature limit where the two rates are equal and the maximum is reached
for ∆E = λv +λS. The deviation between the Marcus rate and the other rate is represented in Figure 5.7. In
this case the derived non-adiabatic rate has the maximum for ∆E ≈ λS and it does not reach the maximum
of 1.0 for the separation of fast vibrational modes and slow solvent modes, which modifies the behaviour of
the classical lineshape. Finally, Figure 5.8 shows the intermediate regime kBT ≈ ~ων . In this intermediate
regime, for two comparable λs, a good match is reached and a tiny displacement along the ∆E-axis is visible.

In conclusion the difference between the classical regime and the quantum regime, although a deviation
is visible when ~ωv � kBT , is not substancially remarkable and for some range of parameters the classical
rate k(cl)

ET can be considered a convenient and simple tool to describe the ET reaction in a solvent.
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Figure 5.6: Marcus ET rate k(cl)
ET (light-blue line) and non-adiabatic ET rate kET (see (5.46)) (orange dashed

line) as a function of the driving force −∆E in unit of eV. Parameters are as follows: kBT = 26 meV,
~ωv = 0.52 meV, λv = 40 meV, and λS = 80 meV.
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Figure 5.7: Marcus ET rate k(cl)
ET (light-blue line) and non-adiabatic ET rate kET (see (5.46)) (orange dashed

line) as a function of the driving force −∆E in unit of eV. Parameters are as follows: kBT = 26 meV,
~ωv = 130 meV, λv = 40 meV, and λS = 80 meV.
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Figure 5.8: Marcus ET rate k(cl)
ET (light-blue line) and non-adiabatic ET rate kET (see (5.46)) (orange dashed

line) as a function of the driving force −∆E in unit of eV. Parameters are as follows: kBT = 26 meV,
~ωv = 30 meV, λv = 40 meV, and λS = 80 meV.
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6

Charge-Transfer Reactions in Cavity

Electron-transfer (ET) chemical reactions in solution constitute a paradigmatic class of chemical reactions
[127] (see Chapter 5). In the more general class of charge-transfer (CT) chemical reactions, a modification
of the local-charge density of states occurs between different chemical groups of the reacting molecules,
thus resulting in a partially transferred (shifted) charge δe during the CT process. Such is the case for
intramolecular CT reactions in D − A molecules where an electron donor (D) group is connected to an
electron acceptor (A) group through a molecular bridge (−), thus resulting in the following intramolecular
CT mechanism

D −A −→ D+δe −A−δe . (6.1)

In this Chapter, the chemical reactivity of a solution of molecules inside a Fabry-Pérot nanofluidic cavity is
studied [111]. For this purpose, bi-phenyl molecules have been studied extensively [112, 70], since they have
interesting photochemical properties due to a rotational degree of freedom around a C-C bond connecting
the phenyl groups, as well as a possibility of being functionalized by various chemical groups with electron
donating or accepting character. Other donor-acceptor molecules with an internal high-frequency vibrational
mode are also good candidates for investigating CT reaction rates in solution.

Herein, typical organic molecules with interesting photoactive properties are considered. These molecules
are embedded inside the cavity. Such is the case for the molecule represented in Figure 6.1 (a), and writ-
ten (E)-4-[2-(1-methylpyridin-1-ium-4-yl)vinyl]phenolate; this nomenclature describes the structure of the
molecule in its aromatic form. Figure 6.1 (b) shows a sketch of the PES (solid curves) for such a molecule
described within BOA (see Section 4.3.1) [161], as a function of the reaction coordinate (RC). In this case the
RC corresponds to an intramolecular vibration or a rotation mode of the molecule. The electronic structure
of this molecule is described by an electronic ground state with two relative minima labelled g and g′, and an
electronic excited-state with two minima e and f . Upon photoexcitation from g to e, the molecule can reach
the more stable excited-state f by changing its conformation and undergoing an elementary CT process. For
simplicity, the complex electronic structure of the molecule is approximated by displaced parabolic PES [70],
in the spirit of the parabolic approximation (see Section 4.3.3) in Marcus theory [109] (see dashed curves in
Figure 6.1 (b)). Thus, the system made of N molecules in solution coupled to a single electromagnetic cavity
mode (see Fig.6.1 (a)) is described by the microscopic Hamiltonian Ĥ:

Ĥ = Ĥ0 + V̂CT = ĤCaM + V̂M−Ca + V̂CT , (6.2)

as the sum of the Hamiltonian ĤCaM describing the free electromagnetic cavity mode (Ca) and quadratic
PES of the solvated molecules (M), plus the Hamiltonian V̂M−Ca standing for electromagnetic interactions
between the molecules and the cavity mode. The Hamiltonian describing weak coupling between electronic
excited states e and f of the molecule, at the origin of intramolecular charge transfer is denoted by V̂CT.
The explicit expressions are:
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Figure 6.1: (a) Pictorial representation of molecules of (E)-4-[2-(1-methylpyridin-1-ium-4yl)vinyl]phenolate,
in solution inside a nanofluidic Fabry-Pérot cavity. The nomenclature describes this photoactive molecule in
its aromatic form. λc/2 = πc/nωc is the wavelength of the cavity fundamental electromagnetic mode, with
c the speed of light and n the refractive index of the medium. (b) Sketch of the PES (solid curves) for such
molecules as a function of the RC. Parabolic approximations of the PES are shown as dashed curves. The
electronic ground-state minima g and g′ and excited-state minima e and f for the molecule are presented as
well as their typical energies εg, εg′ , εe and εf in eV. The grey arrow stands for the cavity mode of frequency
ωc that is resonant with the g − e electric dipole transition [111].
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ĤCaM =

N∑
i=1

∑
r=g,g′,e,f

εri |ri〉 〈ri|+ ~ωcâ†â , (6.3)

εri = εr +
ω2

v

2

(
Qv,i −Qv,r

)2
+
∑
k

ω2
k

2

(
QS,ik −QS,rk

)2
,

(6.4)

V̂M−Ca =
~ΩR

2

N∑
i=1

(
|ei〉 〈gi| â+ â† |gi〉 〈ei|

)
, (6.5)

V̂CT =

N∑
i=1

(
Vef |ei〉 〈fi|+ V∗ef |fi〉 〈ei|

)
, (6.6)

where εri is the PES corresponding to |ri〉 the electronic state r = g, g′, e, f belonging to the molecule
number i = 1, · · · , N . The PES in eq. (6.4) is the sum of an electronic part εr (bottom of the dashed
parabola in Figure 6.1 (b)) plus a quadratic dependence along the mass-weighted nuclear coordinate Qv,i

corresponding to the intra-molecular vibration mode of molecule i, plus molecular vibrations QS,ik of the
bath of solvent molecules labelled with a quasicontinuum index k. It is assumed that each molecule has the
same intra-molecular vibration frequency ωv and bath mode frequency ωk along the RC, independent of its
electronic state r (same curvature around each minimum of the bare PES in Figure 6.1 (b)). The quantities
Qv,r and QS,rk are the displaced nuclear equilibrium positions in the electronic state r, associated with the
intramolecular and solvent modes, respectively.

The free electromagnetic mode of the cavity is described in eq. (6.3) by â (â†) the annihilation (creation)
operator of a photon excitation inside the cavity of frequency ωc. The light-matter interaction Hamiltonian in
eq. (6.5) is an electric dipole coupling term, written within rotating-wave approximation (RWA) [28, 36, 157].
It couples the electronic ground state g to the excited state e of each molecule i through the same cavity
mode, with a coupling strength given by half the bare vacuum Rabi frequency ΩR/2. For simplicity, no direct
dipole coupling between the g′ and f states is taken into account, either because the corresponding dipole
matrix elements are weak, or the cavity frequency is detuned from the corresponding electronic transition.

The microscopic model is similar to the model described in Section 4.3.1. Here, the model contains the
solvent modes, additional states and the interaction V̂CT as the main differences. The counter-rotating terms
and self-dipole energy terms are neglected as it explained at the end of Section 4.1.5.

Finally, the matrix element V̂ef in eq. (6.6) is at the origin of the intramolecular CT process between any e
and f state of one molecule. The Hamiltonian V̂CT is supposed to be a weak perturbation to the Hamiltonian
Ĥ0 (see eq. (6.2)) containing the molecular population coupled to the cavity mode, but uncoupled to the
excited states f and g′. This approach holds in the incoherent (nonadiabatic) regime of electron transfer for
which |V̂ef | � kBT .

6.1 PESs and “Reacton” Formation

The Potential Energy Surfaces of the Ground state |G, 0〉, Polaritons and Dark states, by assuming a vanishing
V̂CT, are equal to the PESs in eqs. (4.32) and (4.36) plus the solvent contribution which is equivalent to
adding a sum over the solvent modes ωks for the quadratic (parabolic) approximation and the reorganization
energy λv is sent to λv + λS.
The expressions of the PESs and the corresponding states are reported in the next subsections.

6.1.1 Ground state

The exact many-body ground state |G〉 and PES Eg(Qv,i, QS,ik) are given by
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|G, 0〉 ≡ |g1 · · · gN 〉 ⊗ |0〉 ,

Eg(Qv,i, QS,ik) = Nεg+

N∑
i=1

ω2
v

2
Q2

v,i +

N∑
i=1

∑
k

ω2
k

2
Q2

S,ik,
(6.7)

where the ground state equilibrium nuclear configurations Qv,g and QS,gk are set to 0.

6.1.2 Upper and lower Polaritons

The Polariton Potential Energy Surface (PPES) obtained with an adiabatic approximation at order λ (see
Section 4.3.2) and the corresponding eigenstates are:

|−〉 = − sin θ |G, 1〉+ cos θ |E, 0〉 ,
|+〉 = + cos θ |G, 1〉+ sin θ |E, 0〉 ,

E±(Qv,i, QS,ik) = ε± +
N∑
i=1

ω2
v

2

(
Qv,i −Qv,±

)2
+

N∑
i=1

∑
k

ω2
k

2

(
QS,ik −QS,±k

)2
,

ε± = Nεg + ~ωc −
~
2

(
δ ∓ Ω̃R

)
,

δ = δ − λv,e + λS,e

~

(
1− α2

+ + α2
−

N

)
,

Ω̃R = Ω̃R −
λv,e + λS,e

~
δ

Ω̃R

(
1− 1

N

)
,

(6.8)

where |E, 0〉 is a collective Dicke state defined in Section 4.2.3, sin θ = 1√
2

√
1− δ/Ω̃R, cos θ = 1√

2

√
1 + δ/Ω̃R

(the detuning δ and the collective Rabi frequency Ω̃R are defined in eq. (4.26)), λv,e ≡ 1
2ω

2
vQ

2
v,e (where the

subscript e denotes the electronic state with energy εe) and λS,e ≡
∑

k
1
2ω

2
kQ

2
S,ek. The intramolecular and

solvent modes’ equilibrium positions are defined by

Qv,± =
Qv,e

2N

(
1∓ δ

Ω̃R

)
, QS,±k =

QS,ek

2N

(
1∓ δ

Ω̃R

)
, (6.9)

where the ground state equilibrium nuclear configurations Qv,g and QS,gk are set to 0.
The PPES in eq. (6.8) generalizes previous results of ref. [70, 141, 106] by taking into account on the

same footing the finite number N of molecules, finite molecule-cavity detuning, and dressing of the polariton
by molecular vibrations of the solvent environment.

6.1.3 Dark states

The spectrum of Ĥ0 in the single-photon excitation sector, also contains a manifold of N−1 degenerate
states uncoupled to the cavity mode. The expression of those Dark states |Dp〉 is more complex than the
one of the bright Polaritons [38, 120]. They are obtained in the limit of vanishing electron-phonon coupling
(λv,e = λS,e = 0) (see Section 4.2):
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|Dp〉 =

∑p
k=1 |(ek)〉 −

√
p |(ep+1)〉√

p(p+ 1)
⊗ |0〉 ,

EDp(Qv,i, QS,ik) =Nεg + ∆ge +
N∑
i=1

ω2
v

2
Q2

v,i +
N∑
i=1

∑
k

ω2
k

2
Q2

S,ik,

(6.10)

where p = 1, · · · , N − 1 is an index labelling the Dark state (see eq. (4.21)), ∆ge ≡ εe − εg and the
ground state equilibrium nuclear configurations Qv,g and QS,gk are set to 0.

6.1.4 Uncoupled states f and g′

Finally, there are additional eigenstates of Ĥ0 that do not couple to the optical cavity mode and are thus
“dark”; however, they play an important role regarding the chemical reactivity of the confined molecules.
Such is the case for the excited states |(ri)〉 ≡ |g1 · · · gi−1(ri)gi+1 · · · gN 〉 containing the molecule number i in
the excited electronic state r = f or second ground state r = g′, while the remaining N−1 molecules are in
the ground state g. The corresponding many-body state |(Ri)〉 and the corresponding PES ERi for r = f, g′

are given by

|Ri, 0〉 ≡ |(ri)〉 ⊗ |0〉 ,

ERi(Qv,i, QS,ik) = εR +
ω2

v

2

(
Qv,i −Qv,r

)2
+

N∑
j=1,j 6=i

ω2
v

2
Q2

v,j+

+
∑
k

ω2
k

2

(
QS,ik −QS,rk

)2
+

N∑
j=1,j 6=i

∑
k

ω2
k

2
Q2

S,jk,

(6.11)

where εR ≡ Nεg + ∆gr (r = f, g′) and the ground state equilibrium nuclear configurations Qv,g and
QS,gk are set to 0. The PESs ERi are N-fold degenerate.

6.1.5 The concept of Reacton

The PPES in eq. (6.8) have a simple interpretation. They arise from the collective dipole coupling between
the electronic g and e states of the molecules and a single electromagnetic cavity mode, resulting in the
formation of a Polariton. This Polariton gets further dressed by interactions with a bath of intramolecular
and solvent vibrational modes, thus sharing some similarities with the concept of polaron [75] in solid-state
physics. The dressed Polariton is, however, more complex than a single polaron excitation, since it involves
many different energy scales [80] ranging from molecular vibrational frequencies ~ωv ≈ 10 meV to electronic
transitions and cavity optical frequency ∆ge ≈ ~ωc ≈ 2 eV, as well as to the collective vacuum Rabi frequency
~Ω̃R ≈ 0.7 eV that is intermediate between the vibronic and optical frequency scales. We call this dressed
and collective polariton excitation a Reacton [111], since the formation of this entity modifies significantly
the chemical properties of confined and resonant molecules inside the cavity. The concept of Reacton is a
key concept that generalizes and unifies several previous investigations in the field of polaritonic chemistry
[57, 70, 31], and shares conceptual similarities to the dressed-atom approach in quantum optics [19, 28].
While here the Reacton properties are computed within the range of validity of the BOA [55], in general,
those have to be computed numerically self-consistently [31].

6.2 Charge-Transfer Reaction Rate

In this Section, the modification of chemical reactivity for cavity-confined molecules, induced by the Reacton
formation is investigated. Due to the weak but non-vanishing matrix elements (Vef 6= 0) in the Hamiltonian
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V̂CT (see eq. (6.6)), molecules that are in the excited electronic state e may undergo an intramolecular
CT process towards the other excited electronic state f , assisted by a reorganization of the molecular nuclei
configuration. The theoretical framework for describing the kinetics of such CT chemical reactions in solution
was developed mainly by the works of Marcus and co-workers [107, 109, 145], Kestner et al. [89], Freed and
Jortner [51], and Hopfield [76] (see Chapter 5). Herein, that framework is generalized to the case of PPES
for the chemical reaction written in the Reacton basis (see Section 6.1), rather than in the bare (uncoupled)
molecular basis.

6.2.1 Non-adiabatic CT rate for Polaritons

The non-adiabatic rate for the CT reaction between the vibrational manifold of the PPES (see eq. (6.8))
and the vibrational manifold of uncoupled excited states (see eq. (6.11)) is calculated using the eq. (5.46).
The resulting rates for the transitions ρ ≡ ± → F are [111]:

kCT,Fρ =
N∑
i=1

kCT,Fiρ = αρ
2π

~
|Vef |2Lv,ρF ? Lcl(∆ρF , λ̃S,ρF ), (6.12)

Figure 6.2: PESs involved in the non-adiabatic CT reaction.

with

Lv,ρF (∆ρF ) =

∞∑
n, m̃=0

Fnm̃δ [∆ρF + ~ωv(m̃− n)] ,

Lcl(∆ρF , λ̃S,ρF ) =
1√

4πλ̃S,ρFkBT
exp

[
−β (∆ρF + λ̃S,ρF )2

4λ̃S,ρF

]
,

(6.13)

where a factor 1/N, which comes from the modulo squared of the Dicke states (see eq. (4.21)), is com-
pensated by a factor N for the transition between a Polaritonic state and N uncoupled many-body states,
the coefficients αρ ≡

(
1− ρδ/Ω̃R

)
/2 come from the modulo squared of the projection of Polaritonic states

onto the uncoupled many-body state |Fi, 0〉 (see eq. (6.11)). The driving force ∆ρF ≡ εF − ερ, the solvent
reorganization energy λ̃S,ρF and the factor Fnm̃ are renormalized quantities due to the Reacton formation.
Figure 6.2 shows a pictorial representation of the CT reaction outside and inside the cavity.

The reorganization energy of intramolecular vibrations for the bare transition e→ F (outside the cavity)
is defined as

λv,eF =
ω2

v

2

(
Qv,f −Qv,e

)2
, (6.14)
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where Qv,f and Qv,e are the equilibrium reaction coordinates of the state F and e, respectively. The
reorganization energy of intramolecular vibrations for the “dressed” transition (inside the cavity) is

λ̃v,ρF =
ω2

v

2

(
Qv,f −Qv,ρ

)2
+
N − 1

2
ω2

vQ
2
v,ρ, (6.15)

where the ground state equilibrium nuclear configuration Qv,g is set to 0.
The second term in eq. (6.15) is a result of the N-fold degeneracy of the PESs EFi (see eq. (6.11)). The
solvent reorganization energy λ̃S,ρF is obtained by adding the bath of solvent modes to the eq. (6.15), to get

λ̃S,ρF =
∑
k

ω2
k

2

(
QS,fk −QS,ρk

)2
+
N − 1

2

∑
k

ω2
kQ

2
S,ρk. (6.16)

The factor Fnm̃ (it is defined for the “bare” case in Section 5.3) can be written as

Fnm̃ = e−g
2
v,ρF (1+2nv)

g
2(n+m̃)
v,ρF

n!m̃!
(1 + nv)m̃ nnv , (6.17)

where nv ≡ nB (~ωv) the thermal equilibrium Bose distribution nB (E) =
(
eE/kBT − 1

)−1 for the intramolec-
ular vibrational modes. It involves the Franck-Condon overlap [145] | 〈n|m̃〉 |2 between the reactant in-
tramolecular vibrational state |n〉 and the product intramolecular vibrational state |m̃〉 (see Section 5.1), the
former being displaced by the renormalized Huang-Rhys factors

g2
v,ρF =

(
gv,f − αρ

gv,e

N

)2
+ αρ

g2
v,e

2N

(
1− 1

N

)
, (6.18)

where αρ ≡
(

1− ρδ/Ω̃R

)
/2, g2

v,ρF is directly obtained from the eq. (6.15) using eq. (6.9) and g2
v,ρF =

λ̃v,ρF /~ωv.

6.2.2 Non-adiabatic CT rate for Dark states

The CT rate for the transition between the degenerate N−1 Dark states and the states |Fi, 0〉 can be
obtained, for instance, choosing the Dark state N−1. The resulting rate contains a factor 1/N(N−1) in
the denominator; that factor comes from the modulo squared of the projection of the Dark states onto the
uncoupled many-body state |Fi, 0〉 (see eqs. (6.10) and (6.11)). It follows that this single rate has to be
multiplied by N(N−1) because

kCT,FD =

N∑
i=1

kCT,FDN−1
, (6.19)

and there are N−1 degenerate dark states as “Reactants”. Consequently, the rate kCT,FD is the following:

kCT,FD =
2π

~
|Vef |2Lv,DF ? Lcl(∆ef , λS,f ), (6.20)

with

Lv,DF (∆ef ) =
∞∑

n, m̃=0

Fnm̃δ [∆ef + ~ωv(m̃− n)] ,

Lcl(∆ef , λS,f ) =
1√

4πλS,fkBT
exp

[
−β (∆ef + λS,f )2

4λS,f

]
,

(6.21)

where ∆ef ≡ εf − εe, λS,f ≡
∑

k
1
2ω

2
kQ

2
S,fk, and the factor Fnm̃ is now a function of the bare g2

v,f .
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6.2.3 High-temperature limit

In the limit of “slow” intramolecular vibrational mode ωv < kBT/~, eqs. (6.12) and (6.20) formally recover
the “semiclassical” approximation derived by Marcus [145]. In this limit, the classical CT rate k(cl)

CT is given
by:

k
(cl)
CT,Fρ = αρ

2π

~
|Vef |2Lcl

(
∆ρF , Λ̃ρF

)
, (6.22)

with total reorganization energy Λ̃ρF = λ̃v,ρF + λ̃S,ρF .

6.3 CT Thermal Reaction in Cavity

In this Section, the case of room temperature kBT = 26 meV and a cavity frequency ωc that is resonant (δ =
0) with the molecular transition ∆ge/~ = 2.8 eV/~ is studied (see Figure 6.1 (b)). For a typical Fabry-Pérot
cavity of surface 104 µm2 with distant mirrors of the fundamental optical cavity-mode wavelength λc/2 ≈
πc/ωc ≈ 0.221 µm (for n ≈ 1), and for molecules of electric dipole moment µ ≈ 5 D, the corresponding very
weak bare vacuum Rabi-splitting is ~ΩR ≈ 0.70 µeV. In best cases for which the molecules are in average
packed 25Å away one from each other and equally coupled to the cavity mode, the maximum number of
embedded molecules are supposed to be N ≈ 1011 thus leading to an upper-bound for the collective vacuum
Rabi splitting of about ~Ω̃R = 0.22 eV. Experimental values of ~Ω̃R ≈ 0.11 eV were reported in nanofluidic
Fabry-Pérot cavities [6]. In the following, a bare vacuum Rabi splitting of ~ΩR = 10 meV > λv,e, λS,e is
adopted, that is sufficiently high to ensure the validity of the PPES calculation in Section 4.3.2, and it is
still consistent with the highest single-molecule-cavity couplings (≈ 100 meV) reported in plasmonic cavities
[24]. A population of N = 5000 molecules coherently coupled to the same optical cavity mode is considered,
for which the collective vacuum Rabi splitting ~Ω̃R = 0.7 eV is close to reported experimental values in
optical microcavities [80]. The frequency of intramolecular vibrational modes is chosen to be ~ωv ≈ 50 meV
and solvent ones ~ωk ≈ 0.1 meV. The dressed reorganization energies are fixed to λ̃v,ρF = 80 meV and
λ̃S,ρF = 10 meV leading to a total reorganization energy Λ̃ρF = 90 meV. This chosen value corresponds to
a solvent that is sufficiently apolar [98] not to screen too much electric interactions in solution but is still
sufficiently polar to increase the impact of solvent fluctuations on the kinetics of the CT reaction.

Figure 6.3 shows the evolution of the CT thermal reaction rate (solid yellow circles), defined as

kCT =
∑

ρ=±,D

e−ερ/kBT

Ze
kCT,Fρ, (6.23)

where ερ=± is defined in eq. (6.8) and Ze is the partition function.
The thermal rate kCT is the sum ponderated by Boltzmann weights of the reaction rates kCT,Fρ (see eq.
(6.12)) and the rate kCT,FD (see eq. (6.12)) for ρ = D.
The rate is plotted in units of 2ke/3 with

ke ≡
2π

~
|Vef |2/

√
4πΛ̃−FkBT (Λ̃−F = λ̃v,−F + λ̃S,−F ), (6.24)

as a function of the bare reaction driving force ∆ef ≡ εf − εe, at fixed ~Ω̃R = 0.7 eV. The classical CT
rates k(cl)

CT,Fρ given by eq. (6.22) are also plotted as dashed curves. The contribution of Dark states k(cl)
CT,FD

(in black) dominates over the two polariton satellite peaks of half amplitudes k(cl)
CT,F− (in red) and k(cl)

CT,F+

(in blue). The former are strongly dependent on both the detuning δ and collective vacuum Rabi frequency
Ω̃R. They are given by two Gaussian satellite peaks centered on ∆ef ≈ −Λ̃±F +

(
λv,e + λS,e ± ~Ω̃R

)
/2,

thus approximately equal to ±350 meV away from the main Dark state peak. The standard deviation of

those curves is ≈
√

2Λ̃±FkBT , corresponding to a full width at half maximum (FWHM) of ≈ 161 meV.
It is important to note that the actual CT thermal rate kCT is very well approximated by the classical
contribution of the lower polariton k(cl)

CT,F−. On one side, this is due to the fact that ~Ω̃R � kBT , so that
only the lowest-energy PPES channel is significantly populated at thermal equilibrium and is thus open for
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the ET reaction: The other channels k(cl)
CT,FD and k(cl)

CT,F+ are far away in energy and thus do not contribute
significantly to kCT. On the other side, a priori the fact that the classical approximation in eq. (6.22)
holds is not expected, since for the chosen range of parameters, the intramolecular vibrational modes are
quantum mechanically frozen (kBT < ~ωv). Departures from the Gaussian limit are indeed seen on the
numerical plots, that manifest as the appearance of weak vibrational sidebands and asymmetries in the tails
of the kCT(∆ef ) curve. The former features are partially smeared out by convolution of the intramolecular
lineshape by the solvent lineshape (see Section 5.3.2), thus explaining the unexpected good qualitative match
of the CT rate with the classical limit (see also ref. [145]). For comparison with the cavity-induced rate kCT,
the corresponding CT rate k(0)

CT outside cavity (see Figure 6.2) (computed for ~Ω̃R = 0.0 meV) is shown in
green diamonds.
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Figure 6.3: CT thermal reaction rate inside cavity, kCT (solid yellow circles), as a function of the bare
reaction driving force ∆ef . Classical contributions of the PPES to kCT are shown as dashed curves for
the rates k(cl)

CT,F− (in red), k(cl)
CT,F+ (in blue), and k

(cl)
CT,FD (in black). The thermal rate k(0)

CT and classical

rate k(0,cl)
CT outside the cavity (for ~Ω̃R ≈ 0.0 eV) are shown as green diamonds and dashed-dotted cyan

curve, respectively. Chosen parameters are as follows: N = 5000, kBT = 26 meV, εg = 0 eV, εe = 2.8 eV,
εf = 2.6 eV, ~ωc = 2.8 eV, ~ωv = 50 meV, ~ωk = 0.1 meV, ~Ω̃R = 0.7 eV, ~δ = 0 eV, λ̃v,ρF = 80 meV,
λ̃S,ρF = 10 meV [111].

6.3.1 Tuning the CT reaction

Rate kGG′ kCT,−F kCT,FD kCT,F+

meV 3.7 41.4 42.2 0.001
THz 0.9 10 10.2 0.0003

Table 6.1: Computed and dominant thermal reaction rates. The parameters are those of Figure 6.3, for
∆ef = −0.2 eV [111].

To complete the picture of the reaction kinetics, Figure 6.4 (solid yellow curve) shows the CT thermal
rate kCT inside cavity (with ΩR = 10 meV) and the same rate k(0)

CT outside cavity (for which ΩR = 0.0 meV),
as a function of the number N of molecules coupled to the cavity mode. The parameters are those of Figure
6.3, with the reaction driving force fixed at ∆ef ≈ −0.2 eV. This choice of ∆ef corresponds to the PES
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for the chosen molecule in Figure 6.1 (b). For the case of N = 5000 and ∆ef = −0.2 eV, both Figure
6.3 and Figure 6.4 show that kCT � k

(0)
CT, thus the reaction kinetics gets much slower inside than outside

cavity. Interestingly, in Figure 6.4, the CT rate does not evolves in a monotonous fashion with N . It first
increases with N, reaching a maximum at N ≈ 500 for which kCT > k

(0)
CT and finally slows down to 0 with

kCT � k
(0)
CT at large N. There is thus an optimal value of N (and thus of molecular concentration N/V for

the coupled molecules) for which the effect of vacuum quantum fluctuations of the cavity mode is maximum.
This behavior can be interpreted by the modification of the reaction driving force ∆−F upon increasing the
cVRS frequency Ω̃R ≈ ΩR

√
N , thus resulting in an effective change of CT rate along the Marcus parabola

(see eq. 6.22). The maximum of k(cl)
CT,F− is obtained at the transition point to the inverted Marcus region

(see Figure 5.3), as is shown on Figure 6.4 (dashed red curve). This optimal sensitivity of the CT reaction
rate close to the inverted region of Marcus parabola, is in contrast to ref. [70] that reported a monotonous
increase of the reaction rate with N in the resonant nuclear tunneling regime.
Table 6.1 provides typical values for the cavity-induced CT reaction rates kCT,Fρ associated with the case of
N = 5000 and ∆ef = −0.2 eV. Furthermore, the reaction rate kG′G from the manybody ground-state G to
the other manybody state G′, is estimated using transition-state theory [40, 172, 92, 42]

kG′G = k0e
−∆GTS

kBT , (6.25)

with the energy barrier ∆GTS = εTS − εr (see Figure 6.1 (b)) between the ground state r = g, g′ and the
transition state, and the typical reaction rate k0 ≈ kBT/2π~.

Finally, for completeness, Figure 6.5 shows the evolution of the CT thermal rate kCT inside cavity as
a function of number N of coupled molecules, but for a different value of reaction driving force fixed at
∆ef ≈ −0.4 eV. For the case of N = 5000 and ∆ef = −0.4 eV, the kinetics of the CT reaction is much faster
inside than outside cavity (kCT � k

(0)
CT) in both Figure 6.3 and Figure 6.5. A similar trend as in Figure

6.4 is recovered in Figure 6.5, with a nonmonotonous evolution of the CT rate with N. It is thus interesting
to notice that depending on the range of parameters (reaction driving force, concentration of molecules,
detuning), the reaction kinetics can be either slowed down or accelerated significantly by interaction with
the cavity mode.
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Figure 6.4: Thermal reaction rate kCT (solid yellow curve) and partial classical reaction rate k(cl)
CT,F− (dashed

red curve) as a function of the number of coupled molecules N. The thermal rate out of cavity k(0)
CT is shown

as a solid green circles. Parameters are those of Figure 6.3, except for N, with the reaction driving force
fixed to the value ∆ef = −0.2 eV [111].
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Figure 6.5: Thermal reaction rate kCT (solid yellow curve) and partial classical reaction rate k(cl)
CT,F− (dashed

red curve) as a function of the number of coupled molecules N. The thermal rate out of cavity k(0)
CT is shown

as a solid green circles. Parameters are those of Figure 6.3, except for N, with the reaction driving force
fixed to the value ∆ef = −0.4 eV [111].
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7

Incoherent Description applied to Reacton states

The Fabry-Pérot cavity consists in two mirrors of a given thickness and length. The molecules inside the
cavity interact with the solvent, and external photons can induce relaxation mechanisms to the coherent and
unperturbed assembly. The total system is a finite object which dissipates and exchanges energy internally
via dephasing mechanisms between molecules and solvent modes and externally via interaction with the
photon bath.

In this Chapter, the rates involved in radiative and nonradiative relaxations are calculated and applied to
the Reacton’s formation (see Section 6.1.5). Moreover, the evolution of Reacton states as a function of time
is described by a global first order rate equation. All the CT, radiative and nonradiative rates are included
in the Reacton’s evolution to study the competition between them along the photochemical reaction.

Figure 7.1: Schematics of dissipation and dephasing rates originating from interaction between the Reacton
states and the external environment. Radiative relaxation rates are presented as gold arrows, while non-
radiative relaxation and dephasing rates are both respectively shown with light-blue arrows. The reaction
rates involved in the photochemical reaction are pictured with orange double arrows [111].

7.1 Microscopic model for Dissipation

In this section, a minimal microscopic model of dissipation and dephasing, induced by coupling of the
Reacton states to the external environment is introduced (see Figure 7.1). Two main external environments
are considered: the electromagnetic environment (EM) of the cavity mode, and the solvent vibrational

57



7.1. MICROSCOPIC MODEL FOR DISSIPATION

environment (ph). The total Hamiltonian ĤR−env describing the external bath environments (env) and their
coupling to the Reacton (R) is given by

ĤR−env = ĤEM + Ĥph + V̂Ca−EM + V̂M−ph, (7.1)

with

ĤEM =
∑
q

~ωqâ†qâq,

Ĥph =
N∑
i=1

∑
k

~ωk b̂†ik b̂ik,

V̂Ca−EM = i~
∑
q

(
fqâ
†
qâ− f∗q â†âq

)
,

V̂M−ph =

N∑
i=1

∑
k

(
b̂ik + b̂†ik

)
{λe,ik |ei〉 〈ei|+ λge,ik (|gi〉 〈ei|+ |ei〉 〈gi|)},

(7.2)

where ωq and ωk are the respective frequencies of the electromagnetic and vibrational modes of the baths, a†q
is the creation operator for a photon in the external EM mode with momentum q, b†ik the creation operator for
a vibron in the solvent bath associated to molecule i with quasi-momentum k (see eq. (6.4) for the associated
mass-weighted nuclear coordinates of the solvent modes). The interaction V̂Ca−EM is at the origin of photon
losses out of the cavity1, and V̂M−ph is the general Hamiltonian describing coupling between the solvated
molecules and the vibrational modes of the solvent. The term fq is the probability amplitude for a cavity
photon to tunnel out of the cavity to the EM bath [58, 26]. The electron-phonon interactions, described by
V̂M−ph, couple the quantized phonon displacement operators b̂ik + b̂†ik both to the electronic density of the
excited state e of molecule i with amplitude λe,ik (Holstein-like term [75]) and to the off-diagonal hopping
terms between states e and g with amplitude λge,ik (Su-Schrieffer-Heeger-like terms [153]).

7.1.1 Radiative relaxation

The starting point to calculate all the dissipative rates (radiative and nonradiative) is the Fermi’s Golden
Rule:

Γfi =
2π

~
| 〈f | V̂ |i〉 |2δ(Ef − Ei), (7.3)

where |i〉 and |f〉 are respectively the initial and the final states, and V̂ is the interaction that couples the
states.
The states involved in the dissipative mechanism are the many-body Ground state |G, 0〉, the Lower Polariton
|−〉, the Dark states |Dp〉 (p ∈ [1, N− 1]), and the Upper Polariton |+〉. Their expressions are defined in
eqs. (6.7), (6.8) and (6.10). The interaction which gives rise to the radiative relaxation is the Hamiltonian
V̂Ca−EM given by:

V̂Ca−EM = i~
∑
q

(
fqâ
†
qâ− f∗q â†âq

)
. (7.4)

Thus, the radiative rates for the transitions |−〉 → |G, 0〉, |D〉 → |G, 0〉, |+〉 → |G, 0〉 are:

ΓGρ = ~π
(

1 + ρ
δ

Ω̃R

)∑
q

|fq|2J (em)
q δ(∆Gρ − ~ωq),

ΓGD = 0,

(7.5)

where J (em)
q ≡ 1 + nB,q (nB is the Bose-Einstein distribution) is associated with the emission (em) process

of a photon into the electromagnetic environment that assists the downward transition, ∆Gρ ≡ ερ − Nεg
1The terms at the origin of spontaneous emission are not taken into account in eq. (7.1), since the former occurs on a

nanosecond time scale, while the picosecond relaxation dynamics of the reacton is investigated.
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(ερ=± is defined in eq. (6.8)). The Dark states do not contribute to the radiative relaxation since they are
not coupled to the cavity mode.
By introducing the density of states νEM(ω) ≡∑q δ(ω − ωq), the rates ΓGρ read

ΓGρ = α−ρ

∫
dE κ (E/~) J (em) (E)Lph,Gρ (E −∆Gρ) , (7.6)

where α−ρ ≡
(

1 + ρδ/Ω̃R

)
/2, κ(ω = E/~) ≡ 2π|f(ω)|2νEM(ω) is the energy-dependent radiative dis-

sipation rate of the cavity, given by the product of the matrix-element square |fq|2 evaluated at energy
~ωq ≡ ~ω, and the density of states of the external electromagnetic bath νEM(ω). The decay rate ΓGρ [111]
is written as the convolution between the cavity spectral distribution κ(E/~)J (em) (E) and the generalized
vibrational lineshape Lph,Gρ (E) ≡ Lv,ρF ? Lcl

(
E, λ̃S,ρF

)
by comparison with eq. (6.12).

The eq. (7.6) is a generalization of refs. [19, 129, 110] to the case of the many-body Reacton states. The
radiative rates ΓGρ are calculated using the simplified assumptions:

(i) the energy-dependent vibrational lineshape Lph,Gρ (E) is thinner than the cavity lineshape κ (E/~),
such that ΓGρ ≈ α−ρJ (em) (∆Gρ)κ (∆Gρ);

(ii) the energy dependence of κ(ω) ≈ κ(ωc) ≡ κ can be neglected on the scale of the energy difference ∆Gρ

for the considered radiative transition (Markovian assumption),

such that

ΓGρ ≈ α−ρJ (em) (∆Gρ)κ.

(7.7)

Within assumptions (i) and (ii), the corresponding upward transition rates ΓρG from the ground state G to
the Polariton state ρ = ± is obtained as

ΓρG ≈ α−ρJ (abs) (∆Gρ)κ,

(7.8)

where J (abs) (E) = nB(E) is associated to the absorption (abs) process of a photon of the electromagnetic
environment during the upward transition.

Rate ΓG− ΓG+

meV 28 28
THz 6.8 6.8

Table 7.1: Computed radiative relaxation rates due to cavity losses. Parameters are the same as in Figure
6.3, for ∆ef = −0.2 eV. The cavity quality factor is Q = 50, which corresponds to a bare cavity damping
rate κ ≈ 56 meV [111].

When the cavity mode ~ωc � kBT , at room temperature, it follows that nB (∆Gρ) � 1 and ΓGρ ≈
α−ρκ� ΓρG ≈ 0. By relaxing assumption (ii) keeping assumption i) valid, one recovers the non-Markovian
calculation for the radiative relaxation made in ref. [19], which is postulated to be at the origin of the
observed much shorter lifetime for the UP compared to the LP. In the following, both approximations (i)
and (ii) are assumed, since those are the ones that minimize the knowledge about the microscopic damping
mechanism. Generalization to eq. (7.6) is possible if additional information about the energy-dependence
of both optical cavity and vibrational lineshapes become available from experiments. Table 7.1 shows the
values of typical radiative relaxation rates ΓGρ written in the Reacton basis (downward gold arrows in Figure
7.1), from the knowledge of the bare cavity damping rate κ and optical-cavity quality factor Q(≡ ωc/κ) in
experiments [140, 166, 19, 6].
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7.1.2 Nonradiative relaxation

The nonradiative rates are responsible for the vibrational relaxation in a generic bath and the dephasing
rates are related to transitions between the Upper Polariton, Dark states and Lower Polariton induced by the
same bath. Figure 7.1 represents the allowed transitions for a solvent bath. Here, the bath is a vibrational
solvent bath according to the Hamiltonian Ĥph =

∑N
i=1

∑
k ~ωk b̂

†
ik b̂ik. The interaction that generates these

rates is:

V̂M−ph =
N∑
i=1

∑
k

(
b̂ik + b̂†ik

)
{λe,ik |ei〉 〈ei|+ λge,ik (|gi〉 〈ei|+ |ei〉 〈gi|)}. (7.9)

The following rates are computed as the radiative rates of the previous Section. The expressions of the
nonradiative rates are:

γGρ =
2π

~2

αρ
N

∫
dE

N∑
i=1

|λge,i(ω)|2νv(ω)J (em)(E)Lph,Gρ (E −∆Gρ) ,

γGD =
2π

~2

∫
dE

N∑
i=1

|cipλge,i(ω)|2νv(ω)J (em)(E)Lph,GD (E −∆GD) ,

(7.10)

where αρ ≡
(

1− ρδ/Ω̃R

)
/2, νv(ω) ≡ ∑q δ(ω − ωq), J (em)(E) ≡ 1 + nB, ∆GD ≡ ∆ge (see eq. (6.10)).

The rate γGD is calculated using |Dp〉 =
∑N

i=1 cip |(ei)〉 ⊗ |0〉 with
∑N

i=1 cip = 0 (see eq. (6.10)) as the Dark
states representation. In contrast with the radiative rates, the interaction V̂M−ph opens a relaxation channel
between the Dark-state manifold and the many-body ground state.

The dephasing rates are also obtained from the interaction given by eq. (7.9), but are due to the diagonal
matrix elements λe,ik:

γ−+ =
2π

~2

α+α−
N2

∫
dE

N∑
i=1

|λe,i(ω)|2νv(ω)J (em)(E)Lph,−+ (E −∆−+) ,

γD+ =
2π

~2
α+

(
1− 1

N

)∫
dE

N∑
i=1

|cipλe,i(ω)|2νv(ω)J (em)(E)Lph,D+ (E −∆D+) ,

γ−D =
2π

~2

α−
N

∫
dE

N∑
i=1

|cipλe,i(ω)|2νv(ω)J (em)(E)Lph,−D (E −∆−D) ,

(7.11)

where αρ=± ≡
(

1− ρδ/Ω̃R

)
/2, νv(ω) ≡ ∑q δ(ω − ωq), J (em)(E) ≡ 1 + nB, ∆−+ ≡ ε+ − ε− (see eq.

(6.8)), ∆D+ ≡ ε+ − εD (εD ≡ Nεg + ∆ge) (see eq. (6.10)), and ∆−D ≡ εD − ε−. The N-prefactors in front
of the derived rates come from the definition of the states involved in the transitions (Dicke states contain
1/
√
N that gets 1/N under the application of the modulo squared) and take into consideration the fact that

some transitions go from a many-body states to a single state that require a division over the number of the
involved states, and other transitions go from a single state to many-body states that require a multiplication
for the number of the final states.

The nonradiative rates in eq. (7.10) and the dephasing rates in eq. (7.11) can be simplified assuming
that the diagonal and the off-diagonal matrix elements are independent of the molecular index. This implies
that λge,i(ω)→ λge(ω) and λe,i(ω)→ λe(ω). Furthermore, the assumptions (i) and (ii), of Section 7.1.1, are
again cosidered. It follows that the dominant nonradiative rates given by eq. (7.10) read [111]

γGρ ≈ αργv,

γGD ≈ γv,

(7.12)
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where γv(ω) ≡ 2π|λge(ω)|2νv(ω)/~2 is the vibronic relaxation rate given by the product of the matrix-element
square |λge(ωk)|2 evaluated at energy ~ωk ≡ ~ω.
The same assumptions are applied to the dephasing rates (see eq. (7.11)). Their new expressions are [111]

γ−+ ≈
α+α−
N

J (em) (∆−+) γφ,

γ+− ≈
α+α−
N

J (abs) (∆−+) γφ,

γD+ ≈ α+

(
1− 1

N

)
J (em) (∆D+) γφ,

γ+D ≈
α+

N
J (abs) (∆D+) γφ,

γD− ≈ α−
(

1− 1

N

)
J (abs) (∆−D) γφ,

γ−D ≈
α−
N
J (em) (∆−D) γφ,

(7.13)

where J (abs) (E) = nB(E) and the dephasing rate γφ(ω) ≡ 2π|λe(ω)|2νv(ω)/~2. The bare dephasing rate is
defined as γφ and the dressed rates derived above are called “dephasing” rates. The theoretical approach to
compute the vibrational relaxation rates is consistent

Rate γG′F γG± γGD γD+

meV 6.6 3 6 41.3
THz 1.6 0.7 1.4 10

Table 7.2: Computed and dominant nonradiative relaxation rates due to electron-phonon interactions. The
parameters are those of Fig.6.3, for ∆ef = −0.2 eV. The bare vibronic relaxation rate is γv ≈ 6 meV and
the dephasing rate is chosen to be γφ ≈ 82.7 meV [111].

with refs. [129, 110] which focused on the vibrational strong-coupling regime in microcavities. Table 7.2
provides typical values [140, 166, 19, 6] for the bare vibronic relaxation rate γv, bare vibronic dephasing rate
γφ, as well as for the computed and dominant dressed relaxation rates obtained from eqs. (7.12) and (7.13)
(see blue arrows in Figure 7.1).

7.2 Ultrafast Reaction Kinetics

The evolution of the population of the states in cavity can be estimated using first-order reactions. A first-
order reaction depends on the concentration of only one reactant. As such, a first-order reaction is sometimes
referred to as a unimolecular reaction:

A
k→



k←

B, (7.14)

where A is the reactant and B is the product.
Thus, the rate law for an elementary reaction that is first order with respect to a reactant A is given by:

d [A]

dt
≡ ˙[A] = ±k [A] , (7.15)

where − indicates if A⇀ B, + if A↽ B and k→, k← are the associated reaction rates.
In this section, the (out of equilibrium) occupation probabilities Pi(t) are computed as a function of time

t of the Reacton states i involved in the whole photochemical process. CT chemical reactions (see Section
6.3), radiative relaxation (see Section 7.1.1) and nonradiative relaxation mechanisms (see Section 7.1.2) by
the environment induce incoherent transitions amongst the Reacton states (see arrows in Figure 7.1).
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7.2.1 Rate equation in the Reacton basis

The resulting time-evolution of the populations by a rate equation, written in the Reacton basis [111], is
described by

~̇P (t) =�~P (t),

~P (0) =
1

2
[0, 0, 1, 0, 1, 0]

(7.16)

where ~P (t) = [PG(t), PG′(t), P−(t), PD(t), P+(t), PF (t)] is the vector of populations Pi(t), and � is the rate
matrix with matrix elements �ij corresponding to the total transition rate (including chemical reaction rates,
radiative and non-radiative relaxation rates) from the many-body state j to the many-body state i. The
initial condition ~P (0) corresponds physically to an initial photon that has been absorbed at t = 0− in order
to initiate the photoreaction at t = 0+. For a resonant situation (the detuning δ = 0), this leads to the choice
P−(0) = P+(0) = 1/2. The solution of eq. (7.16) with the associted initial condition is found by computing
numerically ~P (t) = e�t ~P (0).

The vector of populations can be expressed more conveniently as a linear combination of exponentially
damped eigenmodes characterizing the whole photochemical process

~P (t) =~P (st) +
∑
λ6=0

cλ~vλe
λt,

cλ =T ~wλ ~P (0) ≡ wλ,− + wλ,+
2

,

(7.17)

with ~vλ the right eigenvector and T ~wλ the left eigenvector of the � matrix, associated to the real negative
eigenvalue λ. The left and right eigenvectors of � form a biorthogonal basis [16], which allows by projection
to find the unique coefficient cλ in eq. (7.17) as a function of the initial condition. The constant vector
~P (st) ≡ ~v0 in eq. (7.17) is the null right eigenvector (solution of �~P (st) = ~0) providing the stationary
populations of the Reacton states. The expression for ~P (st) and PF (t) are:

~P (st) =
1

kG′G + kGG′
[kGG′ , kG′G, 0, 0, 0, 0] ,

PF (t) =
∑
λ 6=0

wλ,− + wλ,+
2

vλ,F e
λt.

(7.18)

The stationary state in eq. (7.18) corresponds to a chemical equilibrium between the electronic ground state
populations P (st)

G and P (st)
G′ .

7.2.2 Time evolution of the photoreaction

Figure 7.2 shows the time evolution of Pi(t), corresponding to the molecule of Figure 6.1. As shown in
Table 7.1 and 7.2, the dominating relaxation rates are the radiative ones ΓG± (see gold downward arrows
in Figure 7.1) and the dephasing rate γD+ (downward blue arrow in Figure 7.1). We obtain that on time
scales t � 1/ΓG±, 1/γD+, all the populations in the excited states vanish, the stationary regime being a
chemical equilibrium between the states G and G′ in eq. (7.18) (see solid green lines in Figure 7.2). The
population of the Upper Polariton (UP) P+(t) (blue pluses in Figure 7.2) is a monotonically decreasing
function of time, well approximated by a single exponential decay P+(t) ≈ e−Γ+t/2. The UP lifetime
1/Γ+ = 1/ (ΓG+ + γG+ + γD+) results mainly from both optical cavity damping (ΓG+) and fast relaxation
(γD+) towards the Dark-state manifold mediated by the vibrational dephasing mechanism. The Dark states
thus play the role of a sink for the UP (this feature was already noticed in ref. [129]). The population of the
Dark states PD(t) is shown as solid black circles in Figure 7.2. Its time evolution is not monotonous, but
well approximated by PD(t) ≈ γD+

(
e−Γ+t − e−ΓDt

)
/ [2 (ΓD − Γ+)], with the additional Dark-state lifetime
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1/ΓD = 1/ (γGD + kCT,FD). The existence of a maximum of PD(t) results from a competition between the
filling of the dark-state from the UP with a rate Γ+, and its emptying towards the ground state G and excited
state F with rate ΓD. Compared to the UP, the occupation of the Lower Polariton (LP) P−(t) (dashed red
curve in Figure 7.2) is still a monotonically decreasing function of time, but with a slower rate due to the
absence of ultrafast relaxation towards the Dark-state manifold.
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Figure 7.2: Probabilities Pi(t) of occupying the Reacton states i, as a function of time t in units of 1/k0

(defined in eq. (6.25)). The parameters are those of Figure 6.3 for ∆ef = −0.2 eV, and of Tables 6.1-7.2
[111].

Of particular interest for photochemistry is the time evolution of the occupation probability for the
reaction product PF (t) (solid yellow curve in Figure 7.2). Figure 7.3 shows a zoom on PF (t) inside the cavity
(Ω̃R = 0.7 meV for the plain-solid yellow curve) and the same quantity P (0)

F (t) outside cavity (Ω̃R ≈ 0.0 meV
for the dotted thin yellow curve with solid circles). For the range of parameters corresponding to the reaction
driving force ∆ef = −0.2 eV (the case of the molecule in Figure 6.1 and case ∆ef = −0.2 eV in Figure 6.3)
and choice of initial condition, PF (t) ≤ P (0)

F (t) at all times. The cavity-molecule coupling has thus an effect
to slow down the photochemical reaction compared to what is obtained outside cavity. The same curve
is plotted in Figure 7.4, for the different value of ∆ef = −0.4 eV. In contrast to the previous case, one
observes for each times that PF (t) ≥ P (0)

F (t), so that the effect of coupling the reactant to vacuum quantum
fluctuations of the electromagnetic cavity mode is to speed up (and thus to enhance) the formation of the
reaction product significantly, compared to the case outside cavity. The cavity-induced slowing down or
acceleration of the appearance rate for the photoreaction product depends thus crucially on the reaction
driving force ∆ef (and thus the choice of the coupled molecules), which is consistent with the analysis of the
thermal CT rate performed in Sections 6.3 and 6.2.

The main feature observed in both Figure 7.3 and Figure 7.4, is the nonmonotonous dependence of PF (t)
with time t.
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Figure 7.3: Probability PF (t) of occupying the product state F inside cavity (Ω̃R = 0.7 meV) shown as
a solid yellow curve, as a function of time t in units of 1/k0 (defined in eq. (6.25)). The corresponding
occupation probability P

(0)
F (t) outside cavity (Ω̃R ≈ 0.0 meV) is shown as a thin yellow curve with solid

circles. For comparison, the difference of occupations PF (t) − P (0)
F (t) is plotted as a dashed yellow curve.

Parameters are those of Figure 6.3 for ∆ef = −0.2 eV, and of Tables 6.1-7.2 [111].
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Figure 7.4: Same as figure in Figure 7.3, but with a modified reaction driving force ∆ef = −0.4 eV [111].
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7.2. ULTRAFAST REACTION KINETICS

Figure 7.5: Dominant and relevant rates to describe the evolution of PF in picosecond time scale.

Figure 7.5 shows the dominant and the relevant rates to follow the evolution of the state F (see also
Figure 7.3). Initially, PF (0) = 0, since the two polariton states are equally populated (P±(0) = 1/2). At
short times t ≤ 1/ΓG±, 1/γD+, the UP decays toward the Dark-states manifold. When the D states are
significantly filled, the CT chemical reaction gets initiated, mainly by the dominant reaction rate kCT,FD

(see Table 6.1) which is modulated by the strong light-matter coupling inside cavity. This results in a short-
time increase of the F product-state occupancy. The existence of a maximum of PF (t) for t ≈ 1/k0 and a
later decrease of the product-state occupancy is due to the onset of the relaxation back to G′ due to the
nonradiative relaxation rate γG′F (see Table 7.2) and to the cavity-mediated backward reaction rate kCT,−F
(see Table 7.1). At longer time all the states relax on the ground states G and G′.

It is important to note the effect of the losses induced by dissipation and non-radiative relaxation towards
the environment in describing the photoreaction kinetics. The nonmonotonous behavior of PF (t) − P (0)

F (t)
in Figure 7.3 and Figure 7.4 is a signature of the Reacton formation, that should be observable using pump-
probe spectroscopy. Its sign provides the information whether or not the strong coupling of reactants to the
cavity mode enhances or inhibits the formation of the reaction product. There is a large room of possibilities
to engineer and optimize this reaction kinetics by fine-tuning of the system parameters.
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Conclusion

The first part of this manuscript has been devoted to study intramolecular charge-transfer reactions of
solvated molecules confined in a Fabry-Pérot cavity. The modelling of the “vibrating” molecules, strongly
coupled to the cavity mode, has been performed using the generalization of the Jaynes-Cummings model, the
so-called Holstein-Tavis-Cummings model. In the limit of weak vibrational reorganization energies compared
to the collective electron-photon coupling, analytical expressions of the Potential Energy Surfaces have been
calculated. They offer a significant understanding of the collective motion along the equilibrium reaction
coordinates. The strong coupling regime between light, the cavity-photon mode, and matter, the N solvated
molecules, generate the Polaritonic states and N-1 Dark states. Important conditions for the onset of Polari-
tons are the resonance condition between the cavity mode and the bare molecular transition, and an higher
electron-photon coupling compared to the total losses of the cavity.

The Polaritonic Potential Energy Surfaces are not perturbed by the introduction of inhomogeneous
broadening at the level of the molecular excited-energy nor at the level of reaction coordinates. Polaritons
retain their coherence nature in absence of dissipative mechanisms. In contrast, the broadening induces a
lifting of degeneracy of the Dark states which are distributed in a sort of miniband of states.

Polaritons are dressed by both intramolecular and solvent vibrational degrees of freedom. This collective
excitation shared coherently by all the reactant molecules is called Reacton, by analogy with the polaron
excitation in solid-state physics. The dressed Potential Energy Surfaces, due to the Reacton formation, and
the corresponding nuclear equilibrium positions of the vibro-solvent modes have been computed.

Reacton’s formation is responsible for a modification of the chemical reactivity of confined molecules
compared with unconfined ones. In particular, a class of photoactive molecules which undergo intramolecular
charge-transfer chemical reactions have been studied. The theoretical framework to deal with charge transfer
is based on Marcus theory with the famous Marcus rate. It has been shown that the classical Marcus rate is
a convenient and simple tool to describe electron and charge transfer for coupled and uncoupled molecules
in the quantum regime. The rate has been generalized taking into account the Reacton Potential Energy
Surface. The resulting new rate is composed by renormalized quantities for the vibro-solvent and collective
nature of Reacton.
Indeed, the thermal charge transfer reaction in cavity can be tuned (acceleration or slowing down) by
changing the bare vacuum Rabi frequency (the electron-photon coupling), the molecule-cavity detuning,
the concentration of reacting molecules, the driving force of the chemical reaction, and the vibro-solvent
reorganization energies. These results pave the way for new possibilities in molecular engineering, using
strong coupling of the molecules to vacuum quantum fluctuations of the electromagnetic cavity modes.

The Reacton coherent nature is altered by cavity losses and dephasing mechanisms due to the interaction
between molecules and solvent modes. Hence, a minimal microscopic model of dissipation and dephasing
has been adopted. Radiative and nonradiative rates have been written in accordance with the Reacton
Potential Energy Surface as generalized expressions involving the convolution of cavity spectral distributions
and vibrational line shapes. Dissipative rates, that is radiative and nonradiative rates, and chemical rates
are necessary to study the kinetics of the whole photochemical process.
For this purpose, a generalized rate-equation approach expressed in the basis of many-body Reacton states
has been developed, the solution of which provides the ultrafast picosecond dynamics of the photochemical
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reaction. Inside the cavity, either an increase or a decrease of the occupation probability for the product
state compared to outside cavity is predicted, depending on the bare reaction driving force. The time at
which a maximum amount of reaction product is obtained, results from a delicate balance between competing
environment-induced dissipation tending to decrease the net rate of product formation and the enhanced
chemical reactivity due to the formation of the Reacton. The signature of the CT reaction should be visible in
time scales ranging from hundreds of femtoseconds to few picoseconds and in some cases to several hundreds
of picoseconds; these time scales are easily attainable in regular pump-probe experiments.

Several perspectives are assigned to extend the present work. One of them is to investigate how to define
properly a thermodynamical potential describing the Reacton thermodynamic properties inside the nanoflu-
idic cavity. Although pioneer studies [18] investigated the thermodynamics of cavity-confined molecules, a
proper definition and quantitative calculation of the corresponding Reacton chemical potential is still miss-
ing. The former task involves taking into account into the theoretical description the spatial dependence
of the cavity-mode electric field, which is responsible for spatial inhomogeneities [77] in the vacuum Rabi
frequency and detuning experienced by each coupled molecule. Moreover, thermal fluctuations of each molec-
ular dipole with respect to the local electric-field direction induces the necessity to perform an additional
rotational averaging [30], on top of the previous spatial one.

Another interesting direction of research is to investigate the case of an open chemical reactor, namely, a
flow of reactants in solution that enters the optical cavity, undergoes a chemical reaction inside, and finally
leaves the cavity with reaction products being collected outside. In the case of a hydrodynamic Poiseuille
flow [64, 95], there is a characteristic time scale tL ≈ L/4v0, with L being the longitudinal dimension of
the nanofluidic cavity and v0 = 3Dm/2ρm being the maximum velocity at the center of the flow (Dm is the
mass flow, and ρm is the liquid volumic mass). The ratio of tL to the typical time scale of the chemical
reaction tχ ≈ 1/kCT provides an adimensional parameter ξ = kCTL/4v0. While in the present study, the CT
reaction is very fast compared to the flow velocity, thus resulting in ξ � 1, it would be of interest to look for
other kinds of chemical reactions for which ξ ≈ 1. The former case would result in an interesting nonlinear
dependence of the reaction rate on the hydrodynamic flow and reactant concentration.
It is hoped that the first part of the manuscript will stimulate further theoretical and experimental investi-
gations in this direction.
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Introduction

A chiral object such as glucose, a spiral, a hand or another microscopic or macroscopic entity is characterized
by a lack of symmetry. The mirror image of the chiral object, designed as enantiomer, and itself cannot be
directly superimposed (see Figure 9.1). An object which is not chiral is called achiral.

Figure 9.1: Sketch of a chiral and an achiral object.

Chirality, or equivalently handedness, is intrinsically linked to the origin of life and it has a very important
role in molecular, biological and all vital processes. For instance, amino acids, the building blocks of proteins,
are chiral as well as the DNA. Snails have typically helicospiral shells and a preferential direction of shell
coiling is predominant in certain species. Interestingly, repeated modifications of both the soft mollusk body
and the shell coiling, during evolution, could be correlated to generate the final chiral shape [25]. This aspect
shows the importance of the mutual interaction between the shape of the body and the handedness of the
shell in a resulting symmetry-breaking mechanism. The snails are one example of the tendency of nature to
manifest homochirality, a chiral entity which appears only left or right.

The chirality of an object or a chemical compound can be probed by polarized light. Light propagates
everywhere and during its propagation light interacts with the objects it encounters. The interaction between
a light ray and a chiral entity is called chiroptical effect. Experimental works aiming at studying chiroptical
effects date back to early 19th century and during the 20th century intense theoretical research activity was
devoted to find appropriate models for describing and characterizing chiral light-matter interactions. Some
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important steps (at our knowledge) in the history of chiroptical effects are reported in the following lines.
The first discovery of chiroptical effects on macroscopic chiral media, the family of quartz, was attributed
to François Arago. In 1811 he discovered the phenomenon of optical activity in crystals of quartz, where
the quartz rotates the plane of polarization of linearly polarized light that is transmitted through it [3].
Eventually, other experiments of Jean-Baptiste Biot (dating from 1812 to 1838) and Augustin-Jean Fresnel
(in 1822) showed the dependence of optical activity on the thickness of the material [11] and that a ray of
light traveling in a crystal of quartz is resolved into two circularly polarized rays, one with a left handedness
and the other with the opposite handedness [53]. In 1848 Louis Pasteur studied two chiral forms of tartaric
acid crystals and its discovery was confirmed by J.-B. Biot two years later [125]. Most of the experiments of
that period were well annotated and contained in a book by Thomas Martin Lowry [103].

Figure 9.2: Sketch of a ray of light which is resolved into two circularly polarized rays, left-handed (L) and
right-handed (R), inside a chiral medium.

A detailed and particularly clear study of the microscopic origin of chirality, by interaction of molecular
electric and magnetic dipoles induced by classical light, was given by Edward Uhler Condon. In 1937 he
derived the famous Condon constitutive equations, which describe the chirality of a macroscopic, homoge-
neous and isotropic medium in connection with his microscopic model [29]. Other equivalent constitutive
relations for macroscopic chiral media were derived by E. J. Post, in 1962, making an explicit treatment of
general covariance in electromagnetism [131]. The same set of equations was also obtained by Jaggard et
al. [85], in 1978, considering the scattering of electromagnetic waves from a metallic single-turn helices. The
generalized relations for reciprocal bianisotropic media were suggested by B.V. Bokut and F. I. Federov [12].
The chiral constitutive relations were adopted to study the transmission and reflection of light at the interface
of macroscopic chiral and achiral materials [8, 150, 151]. In particular, Dwight L. Jaggard and Xiaoguang
Sun developed a Transfer matrix approach for multi-chiral homogeneous layers and an initial-value approach
suitable for inhomogeneous slabs [86]. This work provided the fundamental building blocks for the chiral
multilayer problem and it brought to light the physical processes involved in the wave interactions with
planar chiral layers.

The phenomenon of optical activity, resulting from the classical interaction of light with chiral molecules,
was difficult to detect due to its inherent weakness (of the relative order of 10−3−10−5). This weak interaction
was a limitation in understanding molecular properties and a barrier to discover interesting aspects of the
chirality itself. Clearly, there was a need to find methods to enhance the chiral asymmetries, and the concept
of enhancement or amplification of light-matter interaction led to usage of the Fabry-Pérot interferometer
[13]. Pioneering theoretical studies of optically active Fabry-Pérot interferometers were carried out by I. J.
Lalov et al. [152, 94], using the Condon constitutive relations. They analyzed the propagation of light into
a chiral layer and the multiple reflection mechanism, inside the layer, to calculate some quantities as the
intensities of the transmitted and reflected beams, or other observables as the differential circular reflection
and the ellipticity of the optical rotation of linearly polarized light. The last two describe the degree of chiral
asymmetries. Sliverman and Badoz showed theoretically that the chiral asymmetries, of a macroscopic chiral
layer, are a consequence of a relative phase difference between the propagating circularly polarized waves
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of opposite handedness, inside the medium. The asymmetries, of the order of the chirality of the medium
(encoded by the so-called Pasteur coefficient), can be enhanced increasing the thickness of the medium for a
given finite incident angle of the incoming light ray.

Figure 9.3: Some ways to try to enhance the Circular Dichroism response.

Today, improving natural chiroptical effects is still a goal of an active branch of research. One direc-
tion is related to the confinement of light at the nanoscale with the generation of localized surface plasmon
resonances. Theory and experiments predict that nanoparticles capped with chiral molecules can have opti-
cally active plasmon resonances due to several modes of mutual interactions between the two partners that
can doubly modify the chiral spectroscopic response [62, 45, 35]. The main chiral response is the Circular
Dichroism (CD), that is the differential absorption of left and right-handed circularly polarized light. The
CD signal is important to understand the conformation of biomolecules and their dynamics [163].
Another direction to increase the chiroptical response is with the fabrication of chiral metamaterial. These
metasurfaces are artificial composite structures engineered to have innovative properties [118]. They are
capable to display higher optical activity than natural materials and some even show a negative refractive
index [32, 93, 123, 177, 23].
In the context of enhancing chiroptical effects, Fabry-Pérot (FP) cavities were recently adopted and en-
gineered to selectively probe chiral matter with chiral light. A common property of a standard, and not
engineered, FP cavity is that each time the circularly polarized light is reflected inside the cavity, the hand-
edness is flipped [7]. Thus the reflections inside the cavity reduce a selective polarization in one handedness
with a resulting small/negligible chiroptical effect in the transmission. Some theoretical investigations show
that modifications at the level of the mirrors of the cavity reduce the destructive internal polarization con-
version and enhance the chiral response in terms of CD [47, 9, 175]. An interesting example of a mirror that
reflects only one handedness of circularly polarized light can be found in nature. In fact, Chrysina Gloriosa,
a jeweled beetle, appears more brilliant under illumination of left-handed circularly polarized light (LHCP)
than the right-handed polarization (RHCP). This means the beetle efficiently reflects LHCP and absorbs
the RHCP [15]. This mechanism is due to the presence of helicoidal layers in its cuticle, making it a natural
spin-preserving mirror.

Many theoretical proposals offered the perspective of a sort of spin-preserving mirror [130, 47, 9] and
some experimental realizations are available right now. A spin-preserving chiral photonic crystal mirror has
recently been designed and fabricated, exhibiting a large chiroptical effect [142]. This thin monolithic mirror
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Figure 9.4: Illustration of the optical response of the experimentally realized spin-preserving chiral photonic
crystal mirror at the designed wavelength of 870 nm. The structure reflects RHCP light while preserving its
handedness. The LHCP is transmitted, and its handedness is reversed. Adapted from [142].

(thickness of 309 nm) outperforms most of the previous experimental devices, in fact, it is capable to reflect
80% of a chosen helicity of light, working at the wavelength of 870 nm, with an extinction ratio above 30:1.
The ability of the mirror to preserve almost one handedness of the polarized light relies on the chiral unit
elements, composed by a tripartite array of perforating holes, which covers the entire surface (see Figure
9.4). Instead, the strong chiroptical effect originates from the bi-modal interference of leaky TE with TM
Bloch modes in the photonic crystal mirror.

A recent theoretical article concerns the proposition of a single-handedness chiral optical cavity (cavity
thickness of 1724 nm), with the usage of the spin-preserving photonic mirror described above [156]. The
authors show that the cavity supports only one mode of a given handedness and the other one is almost
suppressed. Furthermore, adding a chiral emitter between the two mirrors it is predicted to enhance the
spontaneous emission rate of one order of magnitude, at the wavelength of 798.2 nm, in one handedness
respect to the other one. These results suggest a new path towards “chiral vacuum quantum fluctuations”
and “chiral Polaritonic states”.

Schichao Sun et al. explored theoretically the effects of another kind of chiral cavity, composed by two
normal mirrors with Faraday rotators and a sample plate of Mg-porphyrin molecules placed in the middle of
cavity [154] (see Figure 9.5). The application of a static magnetic field breaks time reversal symmetry and
a simultaneous pumping of circularly polarized light rays generate ring current in Mg-porphyrin. It follows
a lift of the excited states degeneracy and the Polaritonic states generated with this mechanism affect the
Circular Dichroism. The authors show that the Polaritonic CD signal is enhanced of one order of magnitude
than in the bare molecular case.

Figure 9.5: Optical chiral cavity created by Faraday rotator and regular mirrors. Two Faraday rotators
(green) are placed on the interior side of the two mirrors (blue). A magnetic field is applied along the
cavity x-axis. The left circularly polarized standing wave (light blue) and right circularly polarized standing
wave (orange) have a phase difference. At the node of the left circularly polarized standing wave, the right
circularly polarized wave dominates. A plate of sample molecules is placed in the plane at the peak of right
circularly polarized standing wave. Adapted from [154].

Another more recent theoretical and experimental article paves the way to investigate chiral modes in the
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context of chiral cavity QED and Polaritonic Chemistry [59]. In this paper a chiral 2D layer of polystyrene
(thickness of 150 nm) is sandwiched between two smooth metallic silver mirrors, forming a chiral FP cavity
(see Figure 9.6). The total structure can be illuminated at oblique incidence, given the fact that the chiral
layer is subjected to torsional stress in solution, and the resulting combination of 2D and 3D chirality (for
the torsional angle) enables a spin-orbit coupling mechanism which preserves one helicity of light in cavity.

Figure 9.6: Breaking of left- vs right-handed polarization in a Fabry-Perot cavity composed of two usual
metallic mirrors but enclosing a 2D chiral medium, here conceptually represented by a 2D spiral. Adapted
from [59].

These studies hint at open questions for future investigations:

• What is the role of the presumed chiral vacuum quantum fluctuations?

• Do chiral Polaritonic states exist as the result of strong chiral light-matter interaction?

• Is it possible to enhance the response of chiral molecules which interact with chiral modes of the
cavity-field?

These questions could lead to new ways of engineering, revealing, discovering chiral optical properties in the
classical and quantum regime. Indeed, a chiral optical cavity constitutes an added value for an efficient and
specific manipulation of chiral entities, highly desired in pharmaceutical industries, chemical applications,
biological purposes and all the fields interested in separating chiral molecules among racemic mixtures.

The challenge to predict the existence of chiral Polaritons and to propose new setups that enhance the
intrinsic chirality of molecules is the objective of our theoretical work in the framework of chiral light-matter
interactions. We study in detail how a standard Fabry-Pérot cavity, probed by circularly polarized light
rays, behaves when a macroscopic concentration of chiral molecules are confined inside. Eventually, we
study another Fabry-Pérot cavity by adopting a novel and original modelling for the mirrors, that now
are chiral. The modelling of the mirrors follows the operational function of the previously described spin-
preserving chiral photonic crystal mirrors (see Figure 9.4). Amazingly, we reveal that the new system is
capable to enhance the chirality of the inserted molecular layer and is the first setup (at our knoweldge) that
clearly show the onset of chiral Polaritons.
The outline of the work is summarized in the following section.

9.1 Contents

The second part of the manuscript contains the macroscopic and the corresponding microscopic model of an
isotropic chiral medium. The model’s description is encoded in the constitutive relations of the Maxwell’s
equations, that is the starting point to understand how plane waves propagate in chiral media (first part of
Chapter 10). By studying the boundary conditions at the interface of two different isotropic chiral media, it
is possible to construct transfer matrices to propagate circularly polarized light through a multilayer system
(second part of Chapter 10, see from Section 10.4). This approach enables the modelling of a Fabry-Pérot
resonator filled with a chiral layer, which represents a macroscopic collection of chiral molecules of the same
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handedness (Chapter 11). The same device is also studied with the inclusion of metallic mirrors and an
associated dispersive model (Chapter 12). A similar dispersive model is adopted for the chiral layer (see
Section 12.2). The dispersive modelling can also be treated analytically to better characterize the chirality
of the system, in a low and strong regime (see from Section 12.3 to the Section 12.7). The final Section of
Chapter 12 describes the implication of Lorentz’s reciprocity on transmission and reflection matrices.
The last part of this manuscript is devoted to model a chiral Fabry-Pérot cavity with spin (helicity)-preserving
mirrors (Chapter 13). The chiral mirrors are modelized using reciprocity and time-reversal symmetry, essen-
tial aid to construct the correct transfer matrix in order to propagate the circularly polarized rays of light
which accumulate particular phases in the multiple reflections. The usage of spin-preserving chiral mirrors
add some effects that are not available for achiral metallic mirrors. In fact, the section 13.2 gradually presents
the influence of the chiral mirrors on cavity-light modes, in the empty cavity. The same is done for the cavity
filled with an isotropic chiral medium to finally reveal the interplay between the chirality of the mirrors and
the chirality of the inserted medium (see from Section 13.5 to the end of the Chapter 13).
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Plane waves in Chiral media

The propagation of light in a lossless homogeneous chiral medium extends the knowledge of the modern
electromagnetism which describes the propagation of light in isotropic achiral media. Moving from achiral
to chiral media, some generalizations are required. In fact, the constitutive relations have to be modified
in order to get the correct optical rotatory response of the medium. The chiral Helmholtz equation, its
eigenvectors and eigenvalues are derived. The connections between the resulting eigenvectors are explicitly
explained. A chiral transfer matrix approach is directly obtained from studying the boundary conditions at
interface of different chiral layers. The approach has the advantage to describe any layered system, chiral
and achiral.

10.1 Chiral constitutive relations

The starting point to deal with classical electrodynamics is to consider the Maxwell’s equations plus the
associated constitutive relations [84]. Together they represent a self consistent set of equations [169]. For a
linear isotropic achiral medium the space-time Maxwell’s equations with electric and magnetic sources are
given by

∇∧ ~E = −∂
~B

∂t
,∇ · ~B = 0,

∇∧ ~H = ~J +
∂ ~D

∂t
,∇ · ~D = ρ.

(10.1)

The associated constitutive relations are

~D = ε ~E with ε = ε0 (1 + χe) ,

~B = µ ~H with µ = µ0 (1 + χm) ,
(10.2)

where ε0 is the vacuum dielectric constant, χe is the dielectric susceptibility, µ0 is the vacuum magnetic
permeability and χm is the magnetic susceptibility.
These relations can also be written with the usage of the macroscopic polarization ~P and magnetization ~M
as it follows

~D = ε0
~E + ~P with ~P = ε0χe ~E,

~B = µ0
~H + ~M with ~M = µ0χm ~H.

(10.3)

A chiral medium is the source of optical activity (rotatory power), i.e., the property of some crystal,
liquids and gases to rotate the plane of polarization of light that is transmitted through it [97]. In 1937, E.
U. Condon proposed a theory of optical activity with the modification of the constitutive relations given by
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10.1. CHIRAL CONSTITUTIVE RELATIONS

eqs. (10.2) and (10.3) [29]. The new relations are

~D = ε ~E − g

c

∂ ~H

∂t
,

~B = µ ~H +
g

c

∂ ~E

∂t
,

(10.4)

where c is the velocity of light in free vacuum space and g is a pseudoscalar (g → −g when ~r → −~r) which
represents a magnetoelectric coupling. In rationalized units g has the dimension of time. The coupling is
a dynamic coupling for the presence of varying coupled fields in a chiral medium. The archetype of chiral
medium is a medium composed by a large number of randomly oriented metallic helices, called Pasteur
medium (see Figure 10.1). The magnetoelectric coupling can be intuitively grasped from the behaviour of a

Figure 10.1: Sketch of a Pasteur Medium.

helix as it is exposed to the electromagnetic field. If an electric field excites the helix, it separates charges,
creating an electric dipole moment ~̂µ. This contributes to the permittivity of the medium, but the shape
of the helix forces the charge to move along a circular route, in addition to the linear path. This electric
current loop gives rise to a magnetic dipole ~̂m, and if all helices of the mixture have the same handedness,
the magnetic polarization is enhanced [102, 85].

The coupling g is a pseudoscalar and it changes the sign under spatial inversion of the coordinate system.
This aspect suggests to redefine g as gp where gp is equal to +g or −g. In particular, the assumption is to
use gp = +g when the wave is left-handed circularly (LHC) polarized with respect to the view of an observer
looking at the oncoming wave; and gp = −g when the wave is right-handed circularly polarized (RHC). Using
the redefinition of g and assuming monochromatic waves with a harmonic time-dependence e−iωt, the chiral
constitutive relations or also called Condon relations (CR) for a Pasteur medium get

~D = ε ~E + i
κp
c
~H,

~B = µ ~H − iκp
c
~E,

(10.5)

where κp ≡ ωgp and it becomes a dimensionless chiral parameter. It satisfies the same property of gp, that is
κp = κ if the wave is LHC and κp = −κ if the wave is RHC. Typical values of κp are between 10−5 − 10−3.
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10.2. DERIVATION OF THE CONDON RELATIONS

10.1.1 Post relations

Another set of constitutive relations has been deduced by E. J. Post, in 1962, making an explicit treatment
of general covariance in electromagnetism [131]. The same set of equations was also obtained by Jaggard et
al. [85], in 1978, considering the scattering of electromagnetic waves from a metallic single-turn helices. The
Post and Jaggard relations are

~D = ε ~E + iξp ~B,

~B = µ
(
~H − iξp ~E

)
,

(10.6)

where ξp is a pseudoscalar and it has the dimension of an admittance (
√

µ
ε ), the inverse of the impedance.

In particular, from the constitutive relation for ~B it follows that ξp = κp/cµ with units [ξp] =
√
µ0ε0/µ. One

more difference between the Post relations and the Condon relations is related to the dielectric constant. In
fact,

εPost = ε
(

1− µ

ε
ξ2
p

)
. (10.7)

Indeed, the Condon and the Post relations are the same at first order in the chiral parameter but they are
different at second order because they originate from distinct microscopic models.
From here to the end of the manuscript, Condon relations are chosen to describe the chirality of the medium.

10.2 Derivation of the Condon relations

10.2.1 Perturbed wave function

The Condon relations are derived by studying the interactions between the electric and magnetic dipoles in
a molecular system induced by a classical electromagnetic field [29, 41].

In developing the radiation theory, the vector field ~A(~r, t) is regarded as constant over the molecular
dimension (dipole approximation). The corresponding Hamiltonian is

Ĥ =
1

2m
‖~p− q ~A‖2 ≈ Ĥ + V̂ =

1

m

(‖~p‖2
2
− q ~A · ~p

)
, (10.8)

where the term proportional to ‖ ~A‖2 is neglected and the vector field ~A is written in Coulomb gauge
(∇ · ~A = 0).
For the discussion of optical activity this approximation is not sufficient and ~A has to be Taylor expanded
around the origin of the coordinate systems fixed in the molecule:

~A(~r, t) ≈ ~A(~0, t) + ~x
∂

∂~x
~A(~r, t)

∣∣
~r=~0

+ higher order terms, (10.9)

By replacing the Taylor expansion of ~A(~r, t) in the right-hand side of eq. (10.8), the perturbation Hamiltonian
V̂ may be written as

V̂ = −q 1

m

[
~A · ~p+

1

2

(
∇∧ ~A

)
· (~r ∧ ~p) + quadrupole moments

]
, (10.10)

where the first term is the electric dipole moment and the second is the magnetic dipole moment. Here
the terms corresponding to the quadrupole moments are neglected. For simplicity of writing the hat on the
operators is omitted.

An unperturbed molecule, in the state a, is represented by the stationary wave function ψa (~r, t) =

φa (~r) e−i
Ea
~ t. In the presence of the electromagnetic field the wave function can be written in the following

form
ψ (~r, t) = ψa (~r, t) +

∑
b

cb(t)ψb (~r, t) , with
∂cb (t)

∂t
= − i

~
〈ψ∗b (~r, t)| V̂ |ψa (~r, t)〉 , (10.11)
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10.2. DERIVATION OF THE CONDON RELATIONS

where the perturbation V̂ is reported in eq. (10.10).
The coefficents cb (t) are found inserting eq. (10.10) in the expression of ∂cb(t)∂t , finding

∂cb (t)

∂t
=

i

2~

[
iΩba 〈b| ~µ |a〉 · ~A0 + 〈b| ~m |a〉 ·

(
∇∧ ~A0

)]
eiΩbat

(
eiωt + e−iωt

)
, (10.12)

where Ωba ≡ (Eb − Ea) /~, 〈b| ~µ |a〉 ≡ 〈φ?b (~r)| q∑j ~rj |φa (~r)〉 and 〈b| ~m |a〉 ≡ 〈φ?b (~r)|∑j
q

2mj
(~rj ∧ ~pj) |φa (~r)〉.

It has been introduced the time dependence of ~A as ~A = (1/2) ~A0 [exp (iεt/~) + exp (−iεt/~)] with ε = ~ω
the energy of the electromagnetic field which is perturbing the molecule.

Integrating with respect to time eq. (10.12), the coefficients get

cb (t) =
1

2~

[
iΩba 〈b| ~µ |a〉 · ~A+ 〈b| ~m |a〉 ·

(
∇∧ ~A

)]
·
[
ei(Ωba+ω)t

Ωba + ω
+
ei(Ωba−ω)t

Ωba − ω

]
, (10.13)

10.2.2 Induced microscopic moments

The electric dipole moment associated with the transition between two states a and b is defined as

~µab = 〈ψ?a (~r, t)| q~r |ψb (~r, t)〉+ 〈ψ?b (~r, t)| q~r |ψa (~r, t)〉 =

= 〈a| q~r |b〉
[
eiΩabt + e−iΩabt

]
= 2 〈a| q~r |b〉 cos (Ωabt) =

= 2Re{〈ψ?a (~r, t)| q~r |ψb (~r, t)〉},
(10.14)

where it has been used the stationary wave function ψa (~r, t) = φa (~r) e−i
Ea
~ t and Ωab ≡ (Ea − Eb) /~.

It follows that an electric dipole moment associated with a given wave function ψ is

~µ = Re{〈ψ? (~r, t)| q~r |ψ (~r, t)〉}. (10.15)

Now let’s consider the dipole moment in presence of an electromagnetic field. The perturbed wave function
is given by eq. (10.11). Thus, combining eq. (10.11) and (10.15), the electric dipole may be written as

~µa = Re{〈a| ~µ |a〉+ 2
∑
b

cb (t) 〈a| ~µ |b〉 e−iΩbat}, (10.16)

where terms of order O(c2) have been neglected. The resulting first term represents the permanent dipole
of the unperturbed molecule; the second one represents the induced dipole moment by the interaction with
the field.

The Condon relations are derived taking the induced electric and magnetic dipole moments:

~µia = 2Re{
∑
b

cb (t) 〈a| ~µ |b〉 e−iΩbat},

~mi
a = 2Re{

∑
b

cb (t) 〈a| ~m |b〉 e−iΩbat}.

(10.17)

The calculation can be performed only for the induced electric dipole ~µia (the superscript imeans induced),
then subtituting 〈a| ~µ |b〉 for 〈a| ~m |b〉 the result for the induced magnetic dipole is obtained.

The first step consists in inserting the relation (10.13) in the expression of the induced electric dipole
moment given by eq. (10.17). It reads

~µia =
1

~
Re{

∑
b

〈a|µi |b〉 〈b|µj |a〉
[

iΩ2
ba

Ω2
ba − ω2

A0,j

(
eiωt + e−iωt

)
− iΩbaω

Ω2
ba − ω2

A0,j

(
eiωt − e−iωt

)]
+

+
∑
b

〈a|µi |b〉 〈b|mj |a〉
[

Ωba

Ω2
ba − ω2

(
∇∧ ~A0

)
j

(
eiωt + e−iωt

)
−

+
ω

Ω2
ba − ω2

(
∇∧ ~A0

)
j

(
eiωt − e−iωt

)]
},

(10.18)
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where the vector arrow on the operators is replaced by the index notation.
The field ~A is related to the other fields ~E and ~H, using ~E = −∂ ~A

∂t and ~H = ∇ ∧ ~A (for a free field in
Coulomb gauge), thereby (10.18) reduces to

~µia =
2

~
Re{

∑
b

〈a|µi |b〉 〈b|µj |a〉
[

iΩ2
ba(

Ω2
ba − ω2

)
ω2

∂E0,j

∂t
+

Ωba

Ω2
ba − ω2

E0,j

]
+

+
∑
b

〈a|µi |b〉 〈b|mj |a〉
[

Ωba

Ω2
ba − ω2

H0,j +
i

Ω2
ba − ω2

∂H0,j

∂t

]
},

(10.19)

with the usage of the following relations

E0,j = − iω
2
A0,j

(
eiωt − e−iωt

)
,

∂E0,j

∂t
=
ω2

2
A0,j

(
eiωt + e−iωt

)
,

H0,j =
1

2

(
∇∧ ~A0

)
j

(
eiωt + e−iωt

)
,

∂H0,j

∂t
=
iω

2

(
∇∧ ~A0

)
j

(
eiωt − e−iωt

)
.

(10.20)

An analogous calculation can be performed for the induced magnetic dipole moment, with the mentioned
substitutions, to get

~mi
a =

2

~
Re{

∑
b

〈a|mi |b〉 〈b|µj |a〉
[

iΩ2
ba(

Ω2
ba − ω2

)
ω2

∂E0,j

∂t
+

Ωba

Ω2
ba − ω2

E0,j

]
+

+
∑
b

〈a|mi |b〉 〈b|mj |a〉
[

Ωba

Ω2
ba − ω2

H0,j +
i

Ω2
ba − ω2

∂H0,j

∂t

]
}.

(10.21)

In order to obtain the constitutive relations, it is necessary to average the vector quantities over all
orientations of the system with respect to the fields, assuming all orientations to be equally probable. The
result of the orientation average is

〈~µia〉 =
2

3~
Re{

∑
b

|〈a| ~µ |b〉|2
[

iΩ2
ba(

Ω2
ba − ω2

)
ω2

∂ ~E0

∂t
+

Ωba

Ω2
ba − ω2

~E0

]
+

+
∑
b

〈a| ~µ |b〉 〈b| ~m |a〉
[

Ωba

Ω2
ba − ω2

~H0 +
i

Ω2
ba − ω2

∂ ~H0

∂t

]
},

〈~mi
a〉 =

2

3~
Re{

∑
b

〈a| ~m |b〉 〈b| ~µ |a〉
[

iΩ2
ba(

Ω2
ba − ω2

)
ω2

∂ ~E0

∂t
+

Ωba

Ω2
ba − ω2

~E0

]
+

+
∑
b

|〈a| ~m |b〉|2
[

Ωba

Ω2
ba − ω2

~H0 +
i

Ω2
ba − ω2

∂ ~H0

∂t

]
},

(10.22)

where the average is calculated as the following one

〈〈a|µi |b〉 〈b|µj |a〉E0,j〉 =
|〈a| ~µ |b〉|2 ~E0

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
cos2 θ sin θ dθ dϕ dψ =

|〈a| ~µ |b〉|2 ~E0

3
. (10.23)

The last step for having the complete expressions for the induced dipoles consists in taking the real part
of the equations above (see eq. (10.22)). Let’s start for the induced electric dipole. The first term is purely
imaginary and its real part is 0. The second is real and it remains as it is. The third and the fourth are
proportional to a product of matrix elements which is in general complex. Thus, for the third it has to be
taken the real part and for the fourth it is sufficient to use the fact that Re(iz) = −Im(z), with z ∈ C.
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Similiar considerations can be applied to the real part of the induced magnetic dipole, but the first term of
the magnetic dipole which can be decomposed in the following form

2

3~
Re{

∑
b

〈a| ~m |b〉 〈b| ~µ |a〉
[

iΩ2
ba(

Ω2
ba − ω2

)
ω2

∂ ~E0

∂t

]
} =

=
2

3~
Re{

∑
b

〈a| ~m |b〉 〈b| ~µ |a〉
[
i

ω2
+

i

Ω2
ba − ω2

]
∂ ~E0

∂t
} =

=
2

3~
Re{

[
i

ω2
〈a| ~m · ~µ |a〉+

∑
b

〈a| ~m |b〉 〈b| ~µ |a〉 i

Ω2
ba − ω2

]
∂ ~E0

∂t
}.

(10.24)

Indeed, the real part of the first term is 0, being purely imaginary, and for the second term follows another
manipulation

Re{i 〈a| ~m |b〉 〈b| ~µ |a〉} = Re{i [〈a| ~µ |b〉 〈b| ~m |a〉]?} = Im{〈a| ~µ |b〉 〈b| ~m |a〉}, (10.25)

where the first equality takes into account the Hermitian character of ~µ and ~m.
Finally, the induced dipoles take the form:

〈~µia〉 = αa ~E
′
+ βa ~H

′ − ga
c

∂ ~H
′

∂t
,

〈~mi
a〉 = χa ~H

′
+ βa ~E

′
+
ga
c

∂ ~E
′

∂t
,

(10.26)

with

αa =
2

3~
∑
b

Ωba

Ω2
ba − ω2

|〈a| ~µ |b〉|2,

χa =
2

3~
∑
b

Ωba

Ω2
ba − ω2

|〈a| ~m |b〉|2,

βa =
2

3~
∑
b

Ωba

Ω2
ba − ω2

Re{〈a| ~µ |b〉 〈b| ~m |a〉},

ga =
2

3~
∑
b

Im{〈a| ~µ |b〉 〈b| ~m |a〉}
Ω2
ba − ω2

.

(10.27)

The fields are written omitting the subscript 0 and adding a superscript, such as ~E′ , to denote the fact that
they are total local fields at the molecule, which may not be the same as the external applied field.

The macroscopic relations are obtained considering a chiral isotropic medium which contains N molecules
per cm3 with an associated probability to be in the state a. Thereby, the macroscopic polarization and
magnetization are

~P = α~E − g

c

∂ ~H

∂t
,

~M = χ ~H +
g

c

∂ ~E

∂t
,

(10.28)

where α =
∑

a paαa, g =
∑

a paga, χ =
∑

a paχa and pa is the probability that the molecule goes to the state
a. The terms proportional to βa have been dropped because their inclusion would have only a second-order
effect on the optical rotatory power ga [29].

These last equations are the same relations given by eq. (10.5) with the usage of eq. (10.3) and the
definitions α ≡ ε0χe and χ ≡ µ0χm.
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10.3 Waves propagation

Let’s retake the Maxwell’s equations (10.1) but in the space-frequency domain, assuming as before a harmonic
time-dependence e−iωt. They read

∇∧ ~E = +iω ~B,∇ · ~B = 0,

∇∧ ~H = ~J − iω ~D,∇ · ~D = ρ.
(10.29)

The governing chiral Helmholtz equation, which describes the wave propagation in a chiral medium, can
be derived combining the Maxwell’s equations (10.29) and the CR (10.5). In the following lines the main
steps of the calculation are reported (using the Condon relations).

10.3.1 Main steps to get the chiral Helmholtz equation

Let’s apply the curl to the Faraday’s law replacing the vector field ~B with ~B = µ ~H − iκpc ~E. The result is

∇∧∇ ∧ ~E = iωµ∇∧ ~H + ω
κp
c
∇∧ ~E. (10.30)

Then ∇∧ ~H is substituted with the Ampère-Maxwell’s law (AM) and ~D with the other constitutive relation
~D = ε ~E + i

κp
c
~H. Thus, eq. (10.30) gets

∇∧∇ ∧ ~E = iωµ ~J + ω2µε~E + iω2µ
κp
c
~H + ω

κp
c
∇∧ ~E. (10.31)

Now it remains to eliminate the field ~H applying the following manipulation,

~H
CR
=

~B

µ
+ i

κp
cµ
~E

AM
=

1

µ

(
∇∧ ~E
iω

)
+ i

κp
cµ
~E. (10.32)

Finally, inserting eq. (10.32) in eq. (10.31) the chiral Helmholtz equation is obtained as it follows

�2
κ
~E = iωµ ~J,

(10.33)

where the chiral differential operator �2
κ is given by

�2
κ{} ≡ ∇ ∧∇ ∧ {} − 2ω

κp
c
∇∧ {} − ω2

(
µε−

κ2
p

c2

)
{}. (10.34)

The Helmholtz equations for the other fields are:

�2
κ
~H = −ωκp

c
~J +∇∧ ~J,

�2
κ
~D = iω

(
µε−

κ2
p

c2

)
~J +

iκp
c
∇∧ ~J,

�2
κ
~B = µ∇∧ ~J.

(10.35)

Equivalently, using the relation ∇ ∧
(
∇∧ ~F

)
= ∇

(
∇ · ~F

)
− ∆~F , where ~F is a generic vector field, the

equation for the field ~D (10.35) becomes

∇
(
∇ · ~D

)
−∆ ~D − 2ω

κp
c
∇∧ ~D − ω2

(
µε−

κ2
p

c2

)
~D = iω

(
µε−

κ2
p

c2

)
~J +

iκp
c
∇∧ ~J. (10.36)
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If there are not sources, namely ~J = 0 and ρ = 0, eq. (10.36) reads

∆ ~D + 2ω
κp
c
∇∧ ~D + ω2

(
µε−

κ2
p

c2

)
~D = 0, (10.37)

where it has been used the solenoidal property of the vector ~D (∇· ~D = 0) in the absence of electric charges.
The chiral Helmholtz equation gets the usual Helmholtz equation for the propagation in a homogeneous

achiral medium when κp → 0.

10.3.2 Wavevectors in a homogeneous chiral medium

Figure 10.2: Propagating fields in a homogeneous chiral medium.

Let’s consider a homogeneous chiral medium with the absence of charges and a plane wave decomposed
in TE (x axis) and TM (y axis) components propagating along the z axis:

~D = ~D0xe
ikzz + ~D0ye

ikzz, (10.38)

where kz = k cos θ (θ is the angle of incident) with k = nωc .
Using the chosen form of plane wave, eq. (10.37) gives two scalar equations

− k2
zD0x − 2iω

κp
c
kzD0y + ω2

(
µε−

κ2
p

c2

)
D0x = 0,

− k2
zD0y + 2iω

κp
c
kzD0x + ω2

(
µε−

κ2
p

c2

)
D0y = 0.

(10.39)

A non-zero solution implies that the determinant of the coefficients of ~D has to be zero. Thus there are four
possible plane waves in a homogeneous chiral medium: two propagating along the z direction and other two
propagating in the opposite direction with the following wave numbers:

|k±|2 =
ω2

c2
(±κp + c

√
µε)2 =

ω2

c2
n2
± with n± = ±κp + c

√
µε.

(10.40)

Two wave numbers k± correspond to two different dimensionless effective refractive indices n±. An interesting
aspect of k± is that the arithmetic mean of these two wave numbers is

k+ + k−
2

= ω
√
µε (10.41)
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and it is not a function of κp, while their geometric mean,

√
k+k− =

ω

c

√
−k2

p + c2µε, (10.42)

is a function of κp but it does not depend on the handedness of light polarization.

10.3.3 Eigenfields in a homogeneous chiral medium

The eigenfields are obtained substituting the wavenumbers k± in eq. (10.39), and it results

~D+R = ~D+e
ik+z, ~D−R = ~D−eik−z with ~D± = D0ê± =

D0√
2

(êx ± iêy) ,
(10.43)

where the subscript R means a right-going wave propagating along the positive z direction.
It is important to notice that the propagating eigenfields are circularly polarized: ~D+R is LHC polarized
(+), and ~D−R is RHC polarized (−) (see Figure 10.2). The left-going eigenfields are obtained subtituting
−k± in eq. (10.39) and changing the sign of κp because z → −z and κp is a pseudoscalar. The left-going
eigenfields get

~D+L = ~D+e
−ik+z, ~D−L = ~D−e−ik−z with ~D± = D0ê± =

D0√
2

(êx ± iêy) ,
(10.44)

where the subscript L means a left-going wave propagating along the negative z direction.
The L propagating fields have the same polarization of the corresponding R fields. In fact, it is experimentally
verified that light propagating in an isotropic chiral medium, once it is reflected, it propagates in the opposite
direction and it arrives at the source with the same initial polarization (without an external magnetic field)
[128, 114].

Let’s restrict the discussion considering only the propagation along the positive z direction. The other
eigenfields can be found using the Maxwell’s equations (10.29) and the constitutive relations (10.5) to get

~B± = ∓in±
c
~E± = µ± ~H±, with µ± = µ± κp

c

√
µ

ε
,

~H± = ∓i
√
ε

µ
~E±,

~D± =
n±
c

√
ε

µ
~E± = ε± ~E±, with ε± = ε± κp

c

√
ε

µ
,

(10.45)

where n± are defined in eq. (10.40).

The general relations between the eigenfields propagating in a chiral medium are given by

~B± =
1

ω
~k± ∧ ~E±,

~H± =
1

ωµ
~k± ∧ ~E± + i

κp
cµ
~E±,

~D± =

(
ε−

κ2
p

c2µ

)
~E± + i

κp
c ωµ

~k± ∧ ~E±.

(10.46)
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10.3.4 Spatial dependence of the propagating eigenfields

The spatial dependence of the eigenfields can be characterized supposing to have a plane wave polarized
along the x-axis, at z = 0, propagating along the axis z. Then this wave can be written using the basis of
circularly polarized states as it follows

~D (0) = D0êx = D0
ê+ + ê−√

2
, with ê± =

1√
2

(êx ± iêy) . (10.47)

At position z the wave can be rewritten as

~D (z) =
D0√

2

(
ê+e

ik+z + ê−eik−z
)

= D0e
ikz

[
êx cos

(
kκpz

n

)
+ êy sin

(
−kκpz

n

)]
, (10.48)

where the right-hand side of the equality is found using (10.40).
The field ~D (0) during the propagation undergoes a rotation in the left-hand direction, when the observer is
looking in front of the propagating wave, by an angle θ = −κpkz/n = −κkz/n (κp = κ for a LHC polarized
wave). Indeed, eq. (10.48) is cast in a more compact and general form:

~D (z) = eikzR (−κkz) ~D (0) ,

(10.49)

where R (θ) = ¯̄It cos (θ)+ ¯̄J sin (θ) = e
¯̄Jθ, with ¯̄It ≡ êxêx+ êy êy and the π/2 rotator dyadic ¯̄J ≡ êz ∧ ¯̄It, is the

rotation dyadic which rotates any two-dimensional vector by the angle θ in left-hand sense for an observer
in front of the propagating wave. Or simply

R (θ) =

(
cos θ sin θ
− sin θ cos θ

)
. (10.50)

The propagating field rotates as an helix around the propagation axis z, in a lossless homogeneous chiral
medium. The chirality parameter κp affects the polarization of the propagating field. The connection between
the angle of rotation and the chiral parameter is given by |κp| = nθ/(kz). The equation (10.49) is also valid
for any polarization of the field ~D (0).
In a lossy and bi-isotropic medium the phase of the propagating electric field is also affected and the field
is attenuated [102]. Thus, in a lossy medium the two eigenfields are attenuated differently in a resulting
modification of the helix.

10.3.5 Riemann-Silberstein vector approach

The wave propagation in a homogeneous chiral medium can be described by using the Riemann-Silberstein
(RS) vector [10, 97], a linear combination of the electric and magnetic field:

~F = ~E ± iη ~H with η =

√
µ

ε
. (10.51)

The RS vector was studied for the first time in 1907 by Silberstein [149] and it made its first appearance
in the lectures on partial differential equations by Bernhard Riemann [168]. The RS vector is complex with
a real part for the electric field and an imaginary part for the magnetic field. The use of such a complex
representation can simplify the derivation of various solutions of Maxwell equations. For instance, taking
the curl of the RS vector it follows

∇∧ ~F± = ±k± ~F± with k± =
ω

c
(±κp + c

√
µε) ,

(10.52)
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where the Maxwell’s equations (10.29), with no sources, and the constitutive relations (10.5) have been used.
This result implies that ~F± are eigenstates of ∇∧ with eigenvalues ±k±, a simple way with respect to the
previous procedure to get eq. (10.40).

Another interesting connection is obtained substituting the eigenfields of eq. (10.45) in eq. (10.51) to get

∇∧
(
~E±
~H±

)
= ±k±

(
~E±
~H±

)
. (10.53)

This last relation shows immediately the connections of the eigenfields with their polarizations.

10.3.6 Convention for circularly polarized light in relation to polarization and the
observer

LHC or RHC

In order to describe the propagation of a circularly polarized light in a chiral medium, or the inverse prop-
agation in the same medium, some conventions have to be established. Let’s focus on a propagating LHC
or RHC polarized wave to recall the relation between its polarization and rotation along the propagation,
and to make the connection with a given observer. The eigenfield in a homogeneous chiral medium has the
generic form

~D± = Re{D0√
2

(êx ± iêy) ei(k±z−ωt)} =
D0√

2
[êx cos(k±z − ωt)∓ êy sin(k±z − ωt)] . (10.54)

The field along the propagation maintain the same amplitude and the vector direction rotates along the
direction of ~k±. During the time evolution (considering a plane z = 0) the sign + is connected to a
counterclockwise rotation, if the observer is facing the source of the propagating field. Accordingly, the sign
- stands for a clockwise rotation. The convention here is to associate a LHC (RHC) polarized wave to the
sign + (-), as in the optics convention. Importantly, this convention holds if the observer continue to stay in
front of the light source also if the wave is reflected and it propagates in the opposite direction [152].

Figure 10.3: Sketch of LHC and RHC polarized waves propagating in a chiral medium.

Polarization of the reflected wave

To study the polarization of the reflected wave, it’s covenient to consider a LHC (RHC) polarized wave
propagating in achiral medium. The light wave encounters another achiral dielectric medium, characterized
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by an higher refractive index, and it is reflected back. The sign of the reflection coefficient determines the
sign of the polarization for the reflected wave. At normal incidence the reflected wave has the form

~D±,r = Re{−rD0√
2

(êx ± iêy) ei(−kz−ωt)} =
rD0√

2
[−êx cos(−kz − ωt)± êy sin(−kz − ωt)] , (10.55)

where r is the reflection coefficient.
The eq. (10.55) is the proof that an oncoming LHC/+ (RHC/-) polarized wave does not change its

polarization upon reflection with respect to the propagating direction of ~k. But an observer which remains
in front of the light source see an opposite rotation of the polarization vectors and a polarization conversion
(see Figure 10.4). If the fields are generated in the opposite direction, what is previously defined left-going
propagation (see Section 10.3.3), the observer has to be put in front of the new source to distinguish the two
polarizations with the same convention. From here to the end of the manuscript, the convention in which
the observer is placed in front of the light source is adopted.

Figure 10.4: Sketch of LHC polarized wave propagating in an achiral medium and the effect of polarization
conversion upon reflection.

10.4 Eigenfields at interface between two chiral media

The reflections and refractions of circularly polarized light, left-handed or right-handed, at interface between
two chiral media generalize the similar familiar phenomenon between two non-chiral media of different
dielectric properties. The idea is to consider two eigenfields, LHC and RHC, which are travelling in a
chiral medium (characterized by κp, ε and µ) and they are refracted and reflected when they reach the
surface of another chiral medium of different chiral and dielectric properties (κ′p, ε′ and µ′). The waves are
travelling at arbitrary angle along the positive direction of the z axis and also along the negative direction
of the z axis. All the incident, refracted and reflected fields are given by:

Incident R ~D±R (~r) = ~D±Rei
~k±·~r,

Incident L ~D′±L (~r) = ~D′±Le
−i~k′±·~r,

Refracted R ~D′±R (~z) = ~D′±Re
i~k′±·~r,

Refracted L ~D±L (~r) = ~D±Le−i
~k±·~r,

Reflected R ~D±L (~r) = ~D±Le−i
~k±·~r,

Reflected L ~D′±L (~r) = ~D′±Le
i~k′±·~r

(10.56)

where R and L denote a right-going and a left-going wave, respectively.
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10.4.1 Kinematic properties

At the interface (at z = 0 for simplicity) between the two chiral media, the spatial variation of all the
eigenfields must be the same, then

Incident R
(
~k± · ~r

) ∣∣
z=0

=
(
−~k± · ~r

) ∣∣
z=0

=
(
~k′± · ~r

) ∣∣
z=0

,

Incident L
(
−~k′± · ~r

) ∣∣
z=0

=
(
~k′± · ~r

) ∣∣
z=0

=
(
−~k± · ~r

) ∣∣
z=0

.
(10.57)

These relations show that the vectors must lie in a plane and they produce the chiro-Snell’s law [86] as it
follows

k+ sin θ+ = k− sin θ− = k′+ sin θ′+ = k′− sin θ′−.
(10.58)

Figure 10.5 shows what is previously described.

Figure 10.5: Sketch of reflections and refractions at interface between two different chiral media.

10.4.2 Dynamic properties

The dynamic properties are contained in the boundary conditions which are derived from the Maxwell’s
equations (10.1). The proper constitutive relations are crucial to derive the fields equations in a given
medium. the Here it is considered the case with the absence of sources and the conditions get

Continuity of normal components of ~D and ~B ~n ·
(
~D − ~D′

)
= 0, ~n ·

(
~B − ~B′

)
= 0,

Continuity of tangential components of ~E and ~H ~n ∧
(
~E − ~E′

)
= 0, ~n ∧

(
~H − ~H ′

)
= 0,

(10.59)

where ~n is the unit vector normal to the interface between two chiral media.
The boundary conditions given by eq. (10.59) constitute the starting point to find relations of the com-
plex amplitudes of a given eigenfield and moreover to find a general description of transfer and reflective
mechanisms between the two chiral media.
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Let’s consider the electric eigenfields ~E± and the relations connecting other eigenfields are given by eq.
(10.46), using Condon relations (10.5). Indeed, the boundary conditions for ~E± are derived from the usage
of eqs. (10.56), (10.58) and eq. (10.59) to obtain

TM for ~E E+R − E−R + E+L − E−L = E′+R − E′−R + E′+L − E′−L,

TM for ~H
1

η
(E+R + E−R + E+L + E−L) =

1

η′
(
E′+R + E′−R + E′+L + E′−L

)
,

TE for ~E E+R cos θ+ + E−R cos θ− − E+L cos θ+ − E−L cos θ− =

= E′+R cos θ′+ + E′−R cos θ′− − E′+L cos θ′+ − E′−L cos θ′−,

TE for ~H
1

η
(E+R cos θ+ − E−R cos θ− − E+L cos θ+ + E−L cos θ−) =

=
1

η′
(
E′+R cos θ′+ − E′−R cos θ′− − E′+L cos θ′+ + E′−L cos θ′−

)
,

(10.60)

where η ≡
√

µ
ε and η′ ≡

√
µ′

ε′ . The equations (10.60) are obtained by imposing the continuity of tangential

components of ~E and ~H. The continuity of normal components of ~D and ~B gives redundant relations.

10.4.3 Transfer matrix

The reported boundary conditions contain all the necessary information to construct a 4× 4 transfer matrix
T . All the coefficients of the matrix are found using the 4 obtained equations (10.60); the steps to get
the coefficients involve calculations to express one unprimed amplitude as a function of other two primed
amplitudes. One choice of the transfer matrix is the following


(
E+R

E−R

)
in(

E+L

E−L

)
out

 = T


(
E′+R
E′−R

)
out(

E′+L
E′−L

)
in

with T =

(
MT MR

MR MT

)
,

(10.61)

where

MT =

 1
4

(
1 + η

η′

)(
1 +

cos θ′+
cos θ+

)
1
4

(
η
η′ − 1

)(
1− cos θ′−

cos θ+

)
1
4

(
η
η′ − 1

)(
1− cos θ′+

cos θ−

)
1
4

(
1 + η

η′

)(
1 +

cos θ′−
cos θ−

)  , (10.62)

and

MR =

 1
4

(
1 + η

η′

)(
1− cos θ′+

cos θ+

)
1
4

(
η
η′ − 1

)(
1 +

cos θ′−
cos θ+

)
1
4

(
η
η′ − 1

)(
1 +

cos θ′+
cos θ−

)
1
4

(
1 + η

η′

)(
1− cos θ′−

cos θ−

)  . (10.63)

The chiral signature is explicit using the chiro-Snell’s law (see eq. (10.58)) to get cos θ′± =

√
1−

(
k±
k′±

)2
sin2 θ±.

10.4.4 Reflection and transmission matrices

The transfer matrix given by eq. (10.61) represents the building block to extract transmission and reflec-
tion matrices. Considering the incident from the left, transmission and reflection can be derived setting(
E′+L, E

′
−L
)
in

= (0, 0). Thus, the transmission and reflection matrices are calculated as it follows(
E+R

E−R

)
in

=MT

(
E′+R
E′−R

)
out

⇐⇒
(
E′+R
E′−R

)
out

=M−1
T

(
E+R

E−R

)
in

, (10.64)

and for the reflection (
E+L

E−L

)
out

=MR

(
E′+R
E′−R

)
out

=MRM−1
T

(
E+R

E−R

)
in

. (10.65)
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Finally the matrices are

(
E′+R
E′−R

)
out

=Tm

(
E+R

E−R

)
in

,with Tm =M−1
T ,(

E+L

E−L

)
out

=Rm

(
E+R

E−R

)
in

,with Rm =MRM−1
T .

(10.66)

10.4.5 Interfaces and homogeneous chiral slabs

The transfer matrix (see eq. (10.61)) contains all the information of transmissions and reflections at the
interface between two chiral media. If a homogeneous slab of finite thickness is located between two interfaces,
light undergoes multiple reflections in this slab before going out. Thus, to take into account the multiple
reflection mechanism is necessary to add a so-called phase matrix:

P =


e−iφ+ 0 0 0

0 e−iφ− 0 0
0 0 eiφ+ 0
0 0 0 eiφ−

 ,with φ± = k±d cos θ±, (10.67)

where k± = ω
c

(
±κp + c

√
µε
)
, and d is the thickness of the homogeneous slab.

Hence, a total transfer matrix can be easily derived if there is one chiral interface, a homogeneous chiral
slab and another chiral interface as it follows

Ttot = T1P12T2, (10.68)

where the subscripts 1 and 2 indicate the first and the second interfaces, respectively.
It is important to note that the choice of matrix construction allows the multiplication of matrices from left
to right, a convention opposite to the usual one of multiplying matrices from right to left. The advantage of
this construction is that matrices multiplication follows the light propagation along the two interfaces and
the slab. A generalization can be done if there are multiple chiral slabs and interfaces by simply multiplying

Figure 10.6: Convention of matrices multiplication that follows the light propagation.

phase and transfer matrices in the correct order.
The total transfer matrix Ttot is not in general symmetric but contains again submatrices that can be

extracted to get reflection and transmission matrices for the incident from the left and from the right.
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11

Chiral Fabry-Pérot Interferometer

A simple Fabry-Pérot interferometer (FPI) can be built by immersing a homogeneous chiral layer in a single
host medium, as the sketch shown in Figure 11.1. The transfer and the phase matrices represent the building
blocks to study how the light is transmitted out of this device.

Figure 11.1: Sketch of a chiral Fabry-Pérot interferometer. Here the chiral medium is embedded in air. LHC
(gold arrow inside the chiral material) and RHC (orange arrow) polarized light propagate inside the chiral
medium, the rays undergo multiple reflections and they are transmitted out of the device.

Let’s start writing the transfer matrix for the achiral-chiral interface, phase matrix of the chiral medium
and the chiral-achiral interface:

T12 =



η̄+1
4

(
1 +

cos θ′+
cos θ

)
η̄−1

4

(
1− cos θ′−

cos θ

)
η̄+1

4

(
1− cos θ′+

cos θ

)
η̄−1

4

(
1 +

cos θ′−
cos θ

)
η̄−1

4

(
1− cos θ′+

cos θ

)
η̄+1

4

(
1 +

cos θ′−
cos θ

)
η̄−1

4

(
1 +

cos θ′+
cos θ

)
η̄+1

4

(
1− cos θ′−

cos θ

)
η̄+1

4

(
1− cos θ′+

cos θ

)
η̄−1

4

(
1 +

cos θ′−
cos θ

)
η̄+1

4

(
1 +

cos θ′+
cos θ

)
η̄−1

4

(
1− cos θ′−

cos θ

)
η̄−1

4

(
1 +

cos θ′+
cos θ

)
η̄+1

4

(
1− cos θ′−

cos θ

)
η̄−1

4

(
1− cos θ′+

cos θ

)
η̄+1

4

(
1 +

cos θ′−
cos θ

)

 , (11.1)

P =


e−iφ+ 0 0 0

0 e−iφ− 0 0
0 0 eiφ+ 0
0 0 0 eiφ−

 , (11.2)
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T21 =



η̄−1+1
4

(
1 + cos θ

cos θ′+

)
η̄−1−1

4

(
1− cos θ

cos θ′+

)
η̄−1+1

4

(
1− cos θ

cos θ′+

)
η̄−1−1

4

(
1 + cos θ

cos θ′+

)
η̄−1−1

4

(
1− cos θ

cos θ′−

)
η̄−1+1

4

(
1 + cos θ

cos θ′−

)
η̄−1−1

4

(
1 + cos θ

cos θ′−

)
η̄−1+1

4

(
1− cos θ

cos θ′−

)
η̄−1+1

4

(
1− cos θ

cos θ′+

)
η̄−1−1

4

(
1 + cos θ

cos θ′+

)
η̄−1+1

4

(
1 + cos θ

cos θ′+

)
η̄−1−1

4

(
1− cos θ

cos θ′+

)
η̄−1−1

4

(
1 + cos θ

cos θ′−

)
η̄−1+1

4

(
1− cos θ

cos θ′−

)
η̄−1−1

4

(
1− cos θ

cos θ′−

)
η̄−1+1

4

(
1 + cos θ

cos θ′−

)

 , (11.3)

with

η̄ ≡ η/η′, cos θ′± =

√
1−

(
k

k′±

)2

sin2 θ or analogously θ′± = arcsin

(
k

k′±
sin θ

)
= arcsin

(
n

n′±
sin θ

)
,

φ± = k′±d cos θ′± =
2πn′

(
1± κ′p

)
λ

d cos θ′± = 2πn′±
d

λ
cos θ′± with k =

2πn

λ
,

(11.4)

where θ is the angle of incidence in the achiral medium and it varies from 0 to π/2.
Defining α ≡ d/λ, the last eqs. (see (11.4)) can be rewritten as

θ′± = arcsin

(
n

n′±
sin θ

)
with n′± = n′

(
1± κ′p

)
,

φ± = 2πn′±α cos θ′±.
(11.5)

The total transfer matrix is calculated multiplying the three matrices following the path of the incoming
light, then:

TFP = T12 P T21 =

( Ml
T,FP Mr

R,FP

Ml
R,FP Mr

T,FP

)
, (11.6)

where the superscripts l, r mean incidence from the left or right, respectively.
To study the transmission from the left it remains to choose the submatrixMl

T,FP and calculate its inverse,
as it is explained in Section 10.4.4.

11.1 Normal incidence

At normal incidence, θ = 0, the transmission matrix for incidence from the left has a particular simple form:

Tm,FP =
(
Ml

T,FP

)−1
=

(
4

eiφ− (η̄−1)(1/η̄−1)+e−iφ+ (η̄+1)(1/η̄+1)
0

0 4
eiφ+ (η̄−1)(1/η̄−1)+e−iφ− (η̄+1)(1/η̄+1)

)
, (11.7)

where φ± =
2πn′(1±κ′p)

λ d and η̄ ≡ η/η′.
The non-vanishing matrix coefficients are the copolarized transmission coefficients t++ (the upper diag-

onal coefficient) and t−− (the lower diagonal coefficient), meaning that at normal incidence the polarization
does not change in transmission. The matrices are written in the circular basis, that is an incoming ray of
light LHC (+) polarized goes into the chiral medium, it propagates and at each internal reflection changes
its polarization (the conversion of polarization in reflection is seen by an observer which is placed in front
of the light source, as it is explained in Section 10.3.6) (the corresponding matrix Rm,FP has non-vanishing
matrix coefficients r−+ and r+−) to be eventually transmitted out with the same initial handedness (+). An
analogous explanation is valid for light RHC polarized (-).

The modulo squared of these coefficients is useful to investigate chiral effects as the Differential Circular
Transmission [97, 152] (DCT) defined by

DCT =
2 (T+ − T−)

T+ + T−
with T+ = |t++|2 + |t+−|2, T− = |t−−|2 + |t−+|2. (11.8)
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This quantity, also called dissymetry factor, basically represents the manifestation of chiral asymmetry
in the transmitted wave. At normal incidence, the transmittances (|t|2) for a transparent chiral layer are

T±,⊥ =
8η̄2

1 + 6η̄2 + η̄4 − (η̄2 − 1)2 cos (φ+ + φ−)
=

=
8η̄2

1 + 6η̄2 + η̄4 − (η̄2 − 1)2 cos (4πn′α)
,

(11.9)

where α ≡ d/λ.
Thus, the transmittances T+,⊥ and T−,⊥ are equal and there is no difference between an incoming ray of light
LHC or RHC polarized. It follows that at normal incidence the dissymetry factor is 0. The transmittances,
as a function of ~ω1, are shown in Figure 11.2 (the range of ~ω is chosen to visualize two periods of the
oscillation). The media are assumed to be non-magnetic, so the ratio between the two impedances becomes

η̄ ≡ η

η′
=

√
µ0µr
ε0εr√
µ0µ′r
ε0ε′r

=
µr
n

n′

µ′r
=
n′

n
if µr = µ′r = 1. (11.10)

Figure 11.2 shows the same behaviour of an a achiral Fabry-Pérot Étalon [94], in which the rays of light
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Figure 11.2: Transmittances T+,⊥ and T−,⊥ at normal incidence from a Fabry-Pérot interferometer, composed
by air-chiral liquid-air, as a function of ~ω. Parameters are as follows: n = 1, n′ = 1.33, κ′p = 10−4,
d = 100 nm.

inside the interferometer can interfere constructively or not. The maxima are obtained (see eq. (11.9)) when

4πn′α = 2mπ ⇐⇒ ~ωm =
m

2n′d
1239.8 with m = 0, 1, 2 . . . , (11.11)

then ~ω0 = 0 eV, ~ω1 ≈ 4.7 eV, ~ω2 ≈ 9.3 eV and so on. The amplitude of the transmittances oscillates
between the approximated minimum value of 0.924 and 1.00.
If the media are linearly birefringent chiral asymmetries should persist [152] with a resulting DCT 6= 0.

1Here the conversion ~ω[eV] = 1239.8/λ[nm] is adopted.
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11.2 Finite angle

11.2.1 Transmittances

At finite angle of incidence the transmission matrix has no vanishing transmission coefficients and the polar-
izations are mixture of both handedness. Light which is propagating into the chiral medium is not normally
oriented and it may be visualized as a propagating helix with components of both handedness. The trans-
mittances T+ and T− at finite angle produce a DCT6= 0, and they differ at the same order of the chiral
quantity κp. Figure 11.3 shows the transmittances at finite angle as a function of ~ω. T+ and T− for a given
angle of incidence oscillate in the same manner of the transmittances at normal incidence. Differences in the
position of maxima and minima are connected to the fact that the incident angle is not 0. This difference
affects the transmission coefficients, which are functions of the incident angle, at the two achiral-chiral and
chiral-achiral interfaces. Moreover a phase is acquired by the light rays which are reflected several times in
the chiral material before going out of the chiral layer. The problem of determining the transmission from
an achiral Fabry-Pérot interferometer is well-known [128] and the final result is the so-called Airy function
given by

τ =
T1 (θ, n, n′)T2 (θ, n, n′)

1 +R1 (θ, n, n′)R2 (θ, n, n′)− 2
√
R1 (θ, n, n′)R2 (θ, n, n′) cosψ

, (11.12)

where {T,R}1,2 = |{t, r}1,2 (θ, n, n′) |2, ψ = 2kd cos θ (k the wave number inside the cavity, d the thickness
of the cavity and θ the incidence angle) and {t, r}1,2 are the transmission coefficients of the first 1 and the
second 2 interface of the Fabry-Pérot interferometer, respectively.
The Airy function τ , defined for κ = 0, reproduces very-well the oscillatory nature of the transmittances
shown in Figure 11.3 (the Airy function is not displayed in Figure 11.3). The transmission and reflection

2 4 6 8 10

h̄ω [eV]

0.92

0.94

0.96

0.98

1.00

T
±

T+

T−

Figure 11.3: Transmittances T+ (light-blue line) and T− (orange dashed line) from a Fabry-Pérot interferom-
eter, composed by air-chiral liquid-air, as a function of ~ω for a given value of θ. Parameters are as follows:
n = 1, n′ = 1.33, κp = 10−4, d = 100 nm and θ = 0.61 rad ≈ 35◦.

coefficients for achiral-chiral and chiral-achiral interfaces [86] in case of positive or negative transmission can
be derived using the matrices Tm and Rm (see eq. 10.66). The expressions, which are the Fresnel equations
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at the interface of chiral media, at first interface are the following:

t±,TM =
2 cos θ

cos θ + η̄ cos θ′±
, t±,TE =

2 cos θ

+η̄ cos θ + cos θ′±
,

r±,TM =
cos θ − η̄ cos θ′±
cos θ + η̄ cos θ′±

, r±,TE =
η̄ cos θ − cos θ′±
η̄ cos θ + cos θ′±

.
(11.13)

where TM means perpendicular polarization and TE means parallel polarization with respect to the plane
of incidence. At second interface the expressions are modified sending θ → θ′±, θ′± → θ, and η̄ → 1/η̄.
Consequently, all these coefficients can be used to define an approximate chiral Airy function τ+ and τ−.
The definitions are

τ± =
T1 (θ, θ±, n, n′)T2 (θ, θ±, n, n′)

1 +R1 (θ, θ±, n, n′)R2 (θ, θ±, n, n′)− 2
√
R1 (θ, θ±, n, n′)R2 (θ, θ±, n, n′) cosψ±

, (11.14)

with

Ti
(
θ, θ±, n, n′

)
=
|ti,±,TM |2 + |ti,±,TE |2

2
,

Ri
(
θ, θ±, n, n′

)
=
|ri,±,TM |2 + |ri,±,TE |2

2
,

(11.15)

where ψ± = 2k±d cos θ′± and i = 1, 2 for the first or the second interface, respectively. The definitions for k±
and cos θ′± are shown in eq. (11.4). The transmittances τ± are an approximation of the light propagation
in a chiral Fabry-Pérot resonator because the transmissions T1, T2 and the reflections R1, R2 are built by
summing the modulo squared of the Fresnel coefficients for polarizations TM and TE. In fact, at finite angle
of incidence the rays are combination of both handedness and they mix TM and TE components. By doing
this, the pictorial idea is to reproduce the propagation of two independent rays: one polarized + and the
other polarized - (see Figure 11.1). The transmittances τ± are represented in Figure 11.4 as a function of
the incident angle θ in the unit of π/2. The result of the matrix multiplication converges well to the result of
the chiral Airy function. The curves, for a given value of λ, show an initial oscillation close to the maximum
transmission of 1, a typical feature of a FPI, and two rapid changes in the neighborhood of the critical angles
called Brewster angles θB1 and θB2 . At the Brewster angle the reflected wave becomes linearly polarized and
for achiral layers it is defined as θB = arctan (n2/n1) where the first medium has a refractive index n1 and
the second n2. In the present discussion θB1 = arctan (n′/n) and θB2 = arctan (n/n′). The corresponding
chiral Brewster angles are the same at the scale of the plot and it is sufficient to plot the achiral ones. The
transmissions go to 0 for θ = π/2 because the e.m wave travels along the interface and it is not transmitted
through the successive medium. The rapid change of the transmission near the Brewster angle is commonly
observed at the interface between two different dielectric media.
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Figure 11.4: Transmittances T± for the numerical approach using the transfer matrices (light-blue line) and
for the analytical one using the chiral Airy function (see eq. (11.14)) (orange dashed line) from a Fabry-Pérot
interferometer, composed by air-chiral liquid-air, as a function of θ in the unit of π/2 for a given value of λ.
Parameters are as follows: n = 1, n′ = 1.33, κp = 10−4, d = 1.5µm, λ = 0.45µm, θB1 ≈ 0.93 [π/2] ≈ 83.7◦

and θB2 ≈ 0.64 [π/2] ≈ 57.6◦.

11.2.2 Differential Circular Transmission

The Differential Circular Transmission, defined in eq. (11.8), evaluates the degree of asymmetry of a given
medium under certain conditions. For instance, at normal incident the DCT is 0, that is the asymmetry is
0 and the isotropic chiral material shows no preferential handedness when the circularly polarized light is
transmitted throught it. A different scenario occurs when the light creates a non-vanishing incident angle.
Figure 11.5 and Figure 11.6 display DCT as a function of ~ω and θ in the unit of π/2, respectively. The
observable DCT is an oscillatory function which changes sign (see Figure 11.5) and it grows in amplitude
with ~ω (as the Figure 11.2, the range of ~ω is chosen to visualize more than one oscillation). The amplitude
has the same scale of the chiral quantity κp, being a chiral effect. Both Figure 11.5 and Figure 11.6 show
a qualitative match of the analytical DCT, 2 (τ+ − τ−) / (τ+ + τ−), computed using eq. (11.14) and the
numerical DCT using the transfer matrix approach as it is reported in eq. (11.6). By analogy with Figure
11.4, Figure 11.6 shows a change in the vicinity of the Brewster angles.
An interesting physical insight comes from Figure 11.7 which represents also ∆T and 〈T 〉 defined as ∆T ≡
T+ − T− and 〈T 〉 ≡ T++T−

2 , where T± are defined in eq. (11.8). The 〈T 〉 is the achiral transmission output
of the interferometer and it reaches its minimum value when the DCT is 0. This aspect may be interpreted
as the relative phase of LHC (+) and RHC (-) polarized waves, for a given ~ω, becomes equal and opposite
producing a 0 DCT and this corresponds to a destructive interference in terms of wave packets.
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Figure 11.5: DCT for the numerical approach using the matrix multiplication (light-blue line) and for the
analytical one using the chiral Airy function (see eq. (11.14)) (orange dashed line) from a Fabry-Pérot
interferometer, composed by air-chiral liquid-air, as a function of α for a given value of θ. Parameters are as
follows: n = 1, n′ = 1.33, κp = 10−4, d = 200 nm and θ = π/3.

Figure 11.6: DCT for the numerical approach using the matrix multiplication (light-blue line) and for
the analytical one using the chiral Airy function (see eq. (11.14)) (orange dashed line) from a Fabry-
Pérot interferometer, composed by air-chiral liquid-air, as a function of θ in the unit of π/2 for different
values of λ. Parameters are as follows: n = 1, n′ = 1.33, κp = 10−4, and d = 1.5µm, λ = 0.45µm,
θB1 ≈ 0.93 [π/2] ≈ 83.7◦, θB2 ≈ 0.64 [π/2] ≈ 57.6◦.
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Figure 11.7: ∆T , 〈T 〉 and DCT from a Fabry-Pérot interferometer, composed by air-chiral liquid-air, as a
function of ~ω for a given value of θ. 〈T 〉 is rescaled as (1− 〈T 〉) · 10−3.0. Parameters are as follows: n = 1,
n′ = 1.33, κp = 10−4, d = 250 nm and θ = π/3.
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12

Chiral Fabry-Pérot interferometer with mirrors

Figure 12.1: Sketch of a chiral Fabry-Pérot interferometer made by two metallic mirrors of length dmirror
and a chiral layer of length L.

In this Chapter, the system under investigation is composed by a thin metallic layer (called mirror) an
isotropic chiral layer, and another thin metallic layer (see Figure 12.1). Before studying the interferometer,
a review on the dispersive properties of dielectrics and metals is presented in the next Section.

12.1 Electromagnetic wave in a dispersive achiral medium

A simple classical description of the pertubation of an oscillating electron, in a dielectric medium, produced
by an electromagnetic wave can be done assuming the following equation of motion [29, 114, 84]

d2~r

dt2
+ γ

d~r

dt
+ ω2

0~r =
q

m
~E with ~E = ~E0e

−iωt, (12.1)

where γ is a damping term connected to irradiation or interaction with the surrounding ions, ω0 is the natural
pulsation of the oscillator, q the charge of the electron, and m its mass.
The solution of the previous equation is

~r(t) =
q ~E0

m
[(
ω2

0 − ω2
)
− iγω

]e−iωt. (12.2)

The macroscopic polarization ~P as a function of ω is directly calculated from the induced electric dipole
~p = q~r (t) to get

~P (ω) = Nq~r (t) =
Nq2

m

e−iωt(
ω2

0 − ω2
)
− iγω

~E0 = ε0Nα1e (ω) ~E

with α1e (ω) =
q2

ε0m

1(
ω2

0 − ω2
)
− iγω ,

(12.3)
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where N is the number of electrons per unit volume, α1e (ω) is the electronic polarizability and it is related
to the electric susceptibility as α1e (ω) ≡ ε0χ1e (ω).

The connection between the dispersive refractive index n (ω) and the polarizability α1e (ω) is obtained
using eq. (10.3) and (12.3) as it follows

ε (ω) ~E = ε0
~E + ε0Nα1e (ω) ~E ⇐⇒ ε (ω)

ε0
= n2 (ω) = 1 +Nα1e (ω) if µr = 1. (12.4)

The last equation on the right hand side implies that

n2 (ω) = 1 +Nα1e (ω) = 1 +
Nq2

ε0m

1(
ω2

0 − ω2
)
− iγω .

(12.5)

Dispersive achiral medium in the visible range

The refractive index given by (12.5) has a more simple relation in the visible range, 2.4 · 1015 rad/s ≤ ω ≤
5 · 1015 rad/s. In fact, the natural atomic pulsation ω0 has a typical scale of 1016rad/s and

(
ω2

0 − ω2
)
� γω.

Then the dispersive refractive index gets

n2
vis (ω) = 1 +

Nq2

ε0m

1

ω2
0 − ω2

. (12.6)

In addition, the correction term is smaller than 1 and eq. (12.6) can be further simplified getting

nvis (ω) =
√

1 +Nα (ω) ∼ 1 +
Nα (ω)

2
= 1 +

Nq2

2ε0m

1

ω2
0 − ω2

= 1 +
Nq2

2ε0mω2
0

1

1− (ω/ω0)2 . (12.7)

Finally, the last approximation consists in expanding 1/
[
1− (ω/ω0)2

]
as 1 + (ω/ω0)2 because (ω/ω0)2 � 1.

Consequently, the dispersive refractive index for an achiral medium in the visible range is given by

nvis (ω) = 1 +
Nq2

2ε0mω2
0

+
Nq2

2ε0m

ω2

ω4
0

. (12.8)

Case of a conductor

In a conductor electrons move freely and they interact with the fixed ions in the material. Then the eq.
(12.5) is still valid for a conductor but sending ω0 → 0. Thus, the dispersive refractive index in a conductor
is given by

n2
co (ω) = 1− Nq2

ε0m

1

ω (ω + iγ)
. (12.9)

The damping term γ can be determined knowing that each electron has an average velocity vd = qEm/τ
for the presence of an electric field, where τ is the average time between two successive collisions of the
electron with the ions. Moreover, the damping makes the equation of motion (12.1) (with ω0 = 0) stationary
(d2~r/dt2 = 0) to find

γ =
1

τ
. (12.10)

Another quantity with an explicit dependence of the average time τ of electron collisions is the conductivity
σ = Nq2τ/m. Using eq. (12.10) and the conductivity σ the refractive index nco can be rewritten as

n2
co (ω) = 1− σ

ε0

1

ω (ωτ + i)
. (12.11)

This formula can be further simplified for cases of low frequency (antenna’s waves) or high frequency
(from visible light to UV light). Let’s consider the case of high frequency and in particular the case of visible
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light.
The wavelength spectrum of visible light has approximately a range of 0.4-0.8µm and the product for the
Ag (NAg ≈ 5.86 · 1028 e/m3) ωτ ≈ 180-90, so ωτ � 1. Applying the approximation ωτ � 1 for the visible
range to eq. (12.11) it follows

n2
co (ω) = 1−

ω2
p

ω2
with ωp =

√
Nq2

ε0m
, (12.12)

where ωp is the well-known plasma pulsation.
The plasma pulsation for Ag is approximately equal to 1.36 · 1016 rad/s and it is larger than the visible
pulsation range of the order 2-6 · 1015 rad/s. The consequence is that in the visible range n2

co < 1 and nco
is purely imaginary. Physically the light wave is absorbed in Ag. For frequencies higher than the plasma
frequency (UV is one case) the metal becomes transparent.

12.2 Electromagnetic wave in a dispersive chiral medium

The inclusion of a damping term in the quantum theory of optical activity was made by Condon [29],
alterating correctly the denominator of eqs. (10.27) by analogy with the classical theory of dispersion (see
Section 12.1). The microscopic polarization and chiral coupling become

αa =
2

3~
∑
b

Ωba

Ω2
ba − ω2 − iΓbaω

|〈a| ~µ |b〉|2,

ga =
2

3~
∑
b

Im{〈a| ~µ |b〉 〈b| ~m |a〉}
Ω2
ba − ω2 − iΓbaω

,

(12.13)

where a represents a given state of the molecule.
The polarization αa can be directly linked to the dimensionless oscillator strength defined by

fba =
2m

3q2~
Ωba|〈a| ~µ |b〉|2 with

∑
b

fba = number of electrons in the molecule, (12.14)

where m is the mass of the electron and q the electric charge. Thus, the microscopic polarization in terms
of the oscillator strength reads

αa =
q2

m

∑
b

fba
Ω2
ba − ω2 − iΓbaω

. (12.15)

This formula provides an interpretation on polarizability of molecules: if a molecule has an intense, low-
frequency transitions in its absorption spectrum, then it is highly polarizable [4].

The macroscopic polarization can be deduced summing over the states a as it follows

α (ω) =
∑
a

paαa (ω) =
Nq2

m

f0(
ω2

0 − ω2
)
− iγω , (12.16)

where pa is the probability of the molecule to be in the state a, N is the number of molecules per unit volume,
and f0 is the dimensionless oscillator strength (0 ≤ f0 ≤ 1). It is assumed that Ωba → ω0 and Γba → γ. In
this way the macroscopic polarizability α is equal to ε0Nα1e (ω), reported in eq. (12.3).

Similar arguments used to get a macroscopic polarization can be applied to find a dispersive macroscopic
chiral coupling κp (ω).
First of all, the term Im{〈a| ~µ |b〉 〈b| ~m |a〉} is known as the rotational strength of a given absorbed line and
it is generically called Rba . It has the following properties

Rba = −Rab,∑
b

Rba = 0, (12.17)
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where the first one follows from the interchange of a and b and the second from the fact that any diagonal
matrix element of a real observable is real and therefore its imaginary part vanishes. The rotatory strength
has been related to another quantity, the anisotropy factor κba for a given line as

Rba = κba|〈a| ~µ |b〉|2 = κba
3q2~fba
2mΩba

, (12.18)

where κba is a pure number, and the second equality comes from the application of eq. (12.14). Some typical
values [29] for κba and Rba on d-sec octyl alcohol in the case of strong absorption bands, for which fba is of
order of unity, (for UV bands lumped at 1700 A) are 10−6 and 10−40, respectively.
Hence, inserting the relation given by eq. (12.18) in the microscopic chiral coupling ga and summing over
the states a with the definition κp (ω) = ωgp (ω), the macroscopic dispersive chiral coupling can be found as

κp (ω) = ω
∑
a

paga = κp,0
Nq2

ε0m

ωf0

ω0

[(
ω2

0 − ω2
)
− iγω

] = κp,0
ω2
p ωf0

ω0

[(
ω2

0 − ω2
)
− iγω

] ,
(12.19)

where κp,0 is a pure number maintaining the pseudoscalar nature, ωp is the plasma pulsation, and it is assumed
that κba → κp,0, Ωba → ω0, Γba → γ. The vacuum dielectric constant ε0 makes κp (ω) dimensionless. The
inclusion of 1/ε0 is consistent to replace the cgs units (adopted by Condon) with rationalized units (mks).

Now all the elements to study a dispersive chiral interferometers are explained. The next section contains
an analytical approach to study the transmission of light rays in a Fabry-Pérot interferometer. This time
the interferometer is dispersive and it is lossy.

12.3 Analytical treatment of a achiral dispersive Fabry-Pérot interferom-
eter

Figure 12.2: Sketch of the accumulation of transmitted amplitudes in a achiral dispersive Fabry-Pérot inter-
ferometer.

The analytical derivation of the dispersive Airy function (the Airy function without dispersion is presented
in Section 11.2) consists in following the path of a given ray of light, whatever polarization is initially chosen,
during its “trip” inside the Fabry-Pérot (FP) interferometer [13, 83].

Let’s call A0 the complex amplitude of the incoming ray, r the reflection coefficient of the mirrors (it is
supposed that they are equal), t′ the transmission coefficient at the interface of the first mirror M1, and t
the transmission coefficient at the interface of the second mirror M2. When the light illuminates M1 it is
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partially transmitted into the dielectric layer, it propagates to reach M2 and it is partially transmitted out
from M2 (see Figure 12.2). Thus, the first complex transmitted amplitude is

A1 = tt′A0e
iφ with φ ≡ kn′(ω)L cos θ′, (12.20)

where k = 2π/λ is the wave number of the ray of light, n′(ω) is the dispersive refractive index of the dielectric
layer, L is the length of the cavity supposing that the mirrors have no thickness, and θ′ is the angle at which
the incoming ray is refracted inside the dispersive dielectric layer.
The phase φ acquired by the light wave, along the propagation inside the dielectric, is a function of ω because
the refractive index is dispersive and is complex because it has a real n′re(ω) and an imaginary part n′im(ω):

n′(ω) = 1 +
Nq2

2ε0m

f0(
ω2

0 − ω2
)
− iγω = 1 +

1

2

ω2
pf0

(
ω2

0 − ω2
)(

ω2
0 − ω2

)2
+ (γω)2

+
i

2

ω2
pf0γω(

ω2
0 − ω2

)2
+ (γω)2

,

with n′re(ω) = 1 +
1

2

ω2
pf0

(
ω2

0 − ω2
)(

ω2
0 − ω2

)2
+ (γω)2

, n′im(ω) =
1

2

ω2
pf0γω(

ω2
0 − ω2

)2
+ (γω)2

,

(12.21)

where N is number of molecules per unit volume, q is the electric charge, ε0 is the vacuum dielectric constant,
m is the mass of the electron, f0 is the dimensionless oscillator strength for a single electronic transition
(0 ≤ f0 ≤ 1), ω0 is the natural atomic pulsation, γ is the damping term connected to irradiation or interaction
with the surrounding ions, and ω2

p ≡ Nq2/ε0m. The refractive index n′ is calculated bearing in mind that
its value is close to 1, so the correction term is smaller than 1 (see eqs. (12.6) and (12.7)).
Hence, it is convenient to express φ as φ = kn′reL cos θ′+i kn′imL cos θ′ ≡ β+i αL/2 where α is the absorption
coefficient [84]. It follows that the first transmitted amplitude out of the cavity can be rewritten as

A1 = tt′A0e
iβ−αL

2 . (12.22)

Coming back to the propagation of the ray of light, when it is travelling towards M2, it happens that
the ray is partially reflected from M2 and it arrives at M1 where it is again partially reflected. Afterwards,
it propagates inside the dielectric medium reaching for the second time M2 where it is transmitted out from
the interferometer. Then, the second transmitted amplitude has the form

A2 = tt′(r′)2A0e
i3β− 3

2
αL, (12.23)

where 2φ is commonly called round-trip phase because light has completed a round-trip through the cavity
[13].
The pth transmitted amplitude is

Ap = tt′(r′)2(p−1)A0e
i(2p−1)β− 2p−1

2
αL. (12.24)

Now to calculate the total transmission, supposing that the cavity is sufficiently extended to send p→∞, it
remains to sum all the complex amplitudes by sending p→∞ to get

At = lim
p→∞

(E1 + E2 + · · ·Ep) =
tt′eiβ−

αL
2

1− (r′)2ei2β−αL
A0 if (r′)2 < 1, (12.25)

where the geometric series has been used.
The corresponding transmitted intensity (transmittance), represented by the dispersive Airy function [181],
is

τ (ω) =

∣∣∣∣AtA0

∣∣∣∣2 =
T 2e−αL

(1−Re−αL)2 + 4Re−αL sin2 β
with β = kn′reL cos θ′,

(12.26)

where T ≡ tt′, R ≡ (r′)2 and the identity cos 2β = 1− 2 sin2 β has been used.
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12.4 Analytical treatment of a chiral dispersive Fabry-Pérot interferom-
eter

A similar analysis to the case of a chiral dielectric layer can be done by replacing the refractive index n′(ω)
by n′±(ω) to get

n′±(ω) = n′(ω)
[
1± κ′p(ω)

]
=
[
n′re ±

(
n′reκ

′
re − n′imκ′im

)]
(ω) + i

[
n′im ±

(
n′reκ

′
im + n′imκ

′
re

)]
(ω) =

= n′±,re(ω) + in′±,im(ω),

with κ′p(ω) = κp,0
ω2
pωf0

ω0

[(
ω2

0 − ω2
)
− iγω

] = κ′re(ω) + iκ′im(ω) =

= κp,0
ω2
pωf0

(
ω2

0 − ω2
)

ω0

[(
ω2

0 − ω2
)2

+ (γω)2
] + iκp,0

ω2
pω

2f0γ

ω0

[(
ω2

0 − ω2
)2

+ (γω)2
] ,

(12.27)

where on the right hand side, of the first equality, the real and the imaginary part of the chiral refractive
indeces have been collected.

Now let’s focus on the construction of the chiral dispersive Airy function for the case of normal incidence.
The incoming ray of light is LHC (+) or RHC (-) polarized, to be also consistent with the formalism of
transfer matrices developed in the previous sections.

Normal incidence

Figure 12.3: Sketch of transmission and reflection of circularly polarized light rays in a chiral dispersive
Fabry-Pérot interferometer.

At normal incidence a ray of LHC or RHC polarized light is transmitted inside the finite chiral layer,
as for the achiral case, and it undergoes the multiple reflection process. The main difference with respect
to the achiral interferometer consists in the explicit change of polarization at each reflection, producing
a consequential accumulation of phases of opposite sign. The visualization of this phenomenon becomes
clear by starting to count all the transmitted complex amplitudes, in the same way of the achiral dispersive
interferometer (see Figure 12.3). The first two transmitted amplitudes are

A1,⊥ = T 2A0e
iφ+/− , A2,⊥ = T 2RA0e

i(2φ+/−+φ−/+), (12.28)

where the sign +/- means an incoming LHC/RHC polarized ray, T and R are respectively the transmittance
and the reflectance of the metallic mirror. In particular, T is teiφM1t′ and R is rM1rM2 = r2

M1 where φM1
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is the phase accumulated along the propagation inside the metallic mirror M1, which is equal to the phase
accumulated inside the metallic mirror M2, being M1 = M2. It follows that the total transmission is given
by

At,⊥ =
T 2eiφ+/−

1−Rei(φ++φ−)
A0 with φ± ≡ β± + i α±L/2. (12.29)

The corresponding transmittances are

τ±,⊥(ω) =
T 4e−α±L

1 +R2e−(α++α−)L − 2Re−
(α++α−)L

2 cos (β+ + β−)
. (12.30)

These transmittances can be furthermore simplified evaluating explicitly α+ + α− and β+ + β− as follows

α+ + α− = 2k
(
n′+,im (ω) + n′−,im (ω)

)
= 4kn′im (ω) = 2α,

β+ + β− = k
(
n′+,re (ω) + n′−,re (ω)

)
L = 2kn′re (ω)L = 2β,

(12.31)

where n′±,{re,im} are defined in eq. (12.27), β and α are the real and the imaginary part of the achiral phase,
respectively. Thus, the chiral transmittances at normal incidence become

τ±,⊥(ω) =
T 4e−α±L

(1−Re−αL)2 + 4Re−αL sin2 β
≡ τ⊥ (ω) e−α±L, (12.32)

where α± = 2kn′±,im (ω) and β = kn′re(ω)L.
For the propagation in a transparent medium α± = α = 0, then τ±,⊥ = τ⊥ and the eq. (11.9) is recovered.

The chiral transmittances in a dispersive medium show that the LHC and RHC polarized waves are transmit-
ted with the associated absorption factor A± ≡ e−α±L, meaning that the LHC polarized wave is attenuated
by α+ and the RHC polarized wave is attenuated by α−. The eq. (12.32) is the chiral version of the
famous Beer-Lambert Law for a homogeneous isotropic chiral medium .

12.5 Transmittance

In this paragraph, the Figures 12.4, 12.5 and the Figures 12.8, 12.9 show the transmittance for two regimes:
a weak coupling regime and a strong coupling regime, respectively. In the weak coupling regime the trans-
mission has only one peak for a chosen cavity mode in the optical range. In this case the peak is at the
same energy of the electronic mode (approximately 2.4 eV) of P3HT, the polymer inside the cavity. The
polymer P3HT is a typical polymer which is inserted in optical cavities to study the property of the system
in the strong coupling regime [33]. When the oscillator strength, defined as (~ωp

√
f0)P3HT , becomes of the

same order or larger than the damping of the polymer γP3HT the previous peak is splitted in two peaks: one
at lower energy, the Lower Polariton, and the other at higher energy, the Upper Polariton [33, 111]. The
splitting takes place at resonance, when the cavity mode frequency is the same as the transition frequency of
the polymer. The onset of Polaritons is well-resolved in Figure 12.10. By increasing the oscillator strength,
directly related to the concentration of the molecules in the polymer, the Polaritonic splitting increases and
it is proportional to (~ωp

√
f0)P3HT /2. The peaks are also well-resolved by varying the parallel component

of the wave vector k‖ (see Figure 12.5 and Figure 12.9). The parallel component k‖ is defined as k‖ = k sin θ.
The range of k‖ (between −4 to 4) is chosen to vary the incident angle θ from −17◦ to 17◦.
In the strong regime, Figure 12.6 and Figure 12.7 display the dispersive refractive index of P3HT and the
dispersive chiral coupling, respectively. The general dispersive expressions for the refractive index and the
chiral coupling are given by

n (ω) =

√
ε∞ +

ω2
pf0(

ω2
0 − ω2

)
− iγω ,

κp (ω) = κp,0
ω2
p ωf0

ω0

[(
ω2

0 − ω2
)
− iγω

] , (12.33)
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where ε∞ is the background dielectric constant, ω2
p ≡ Nq2

ε0m
, f0 is the dimensionless oscillator strength, ω0

is the resonant pulsation, γ is the damping factor, and κp,0 the dimensionless chiral parameter. They are
essentially describing the same dispersive feature of the polymer but at different scales.
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Figure 12.4: Transmittance τ (ω) at normal incidence from a Fabry-Pérot interferometer, composed by air-
P3HT-air, as a function of ~ω in the unit of eV. Parameters are as follows: n = 1, dmirror = 30 nm,
ε∞,Ag = 4.8, ~ωp,Ag = 9.5 eV, ~γAg = 0.17 eV, LP3HT = 100 nm, ε∞,P3HT = 2.89, (~2ω2

pf0)P3HT = 0.01 eV2,
~ω0,P3HT = 2.407 eV, ~γP3HT = 0.28 eV and θ = 0.

Figure 12.5: Transmittance τ (ω) from a Fabry-Pérot interferometer, composed by air-P3HT-air, as a function
of k‖ in the unit of µm−1 and as a function of ~ω in the unit of eV. Parameters are those of Figure 12.4,
except that θ is varied from −17◦ to 17◦.
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Figure 12.6: Real part (light-blue line) and imaginary part (orange line) for the refractive index of P3HT
as a function of ~ω in the unit of eV. Parameters are as follows: ε∞,P3HT = 2.89, (~2ω2

pf0)P3HT = 0.3 eV2,
~ω0,P3HT = 2.407 eV, and ~γP3HT = 0.28 eV.
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Figure 12.7: Real part (light-blue line) and imaginary part (orange line) for the chiral parameter κp, using the
dispersive feature of P3HT, as a function of ~ω in the unit of eV. Parameters are as follows: (~2ω2

pf0)P3HT =
0.3 eV2, ~ω0,P3HT = 2.407 eV, ~γP3HT = 0.28 eV, and κp,0 = 10−3.
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Figure 12.8: Transmittance τ (ω) at normal incidence from a Fabry-Pérot interferometer, composed by air-
P3HT-air, as a function of ~ω in the unit of eV. Parameters are as follows: n = 1, dmirror = 30 nm,
ε∞,Ag = 4.8, ~ωp,Ag = 9.5 eV, ~γAg = 0.17 eV, LP3HT = 100 nm, ε∞,P3HT = 2.89, (~2ω2

pf0)P3HT = 0.3 eV2,
~ω0,P3HT = 2.407 eV, ~γP3HT = 0.28 eV and θ = 0.

Figure 12.9: Transmittance τ (ω) from a Fabry-Pérot interferometer, composed by air-P3HT-air, as a function
of k‖ in the unit of µm−1 and as a function of ~ω in the unit of eV. Parameters are those of Figure 12.8,
except that θ is varied from −17◦ to 17◦.
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Figure 12.10: Transmittance τ (ω) at normal incidence from a Fabry-Pérot interferometer, composed by
air-P3HT-air, as a function of ωp

√
f0 in unit of eV and as a function of ~ω. Parameters are those of Figure

12.8.

12.6 DCT at normal incidence

The DCT is defined as twice the difference between the transmittances τ+,⊥ (ω) and τ−,⊥ (ω) (see eq. (12.32))
divided by their sum, and at normal incidence for this dispersive case is simply

DCT⊥ =
2
(
e−α+L − e−α−L

)
e−α+L + e−α−L

≡ 2 (A+ −A−)

A+ +A−
, (12.34)

where α± = 2kn′±,im (ω) and L is the length of the chiral medium.
If α± = 0 the DCT⊥ becomes 0 as it is shown in Section 11.1. At normal incidence DCT is a function
of the absorption coefficients and of the length of the cavity.
Figure 12.11 shows the DCT at normal incidence for a chiral dispersive Fabry-Pérot interferometer. The
interferometer is composed by two thin Ag mirrors of 30 nm which cover a dispersive chiral layer, made
by P3HT [33], of 100 nm. These kind of chiral polymers are versatile since they allow to tune the optical
response in the visible by functionalising the side chains. The functionalisation can be realised such that
their 3-dimensional arrangement results in intrinsically chiral helices of one handedness that exhibit high
intrinsic chirality (κp ≈ 10−3) [81]. The DCT has a negative peak around 2.4 eV where the cavity light mode
is at resonance with the electronic transition of the chosen chiral P3HT layer. The transfer matrix approach
matches perfectly the analytical formula given by eq. (12.34) (see Figure 12.11). The shape of DCT is
maintained by removing the mirrors as it encoded in eq. (12.34) and shown in Figure 12.12. In contrast to
the DCT signal, the difference in transmission, defined as ∆τ⊥ ≡ τ+,⊥ − τ−,⊥, is affected by the presence of
the mirrors which reduce the signal (being lossy) with respect to bare signal out of cavity (see Figure 12.12).
DCT increases almost linearly by varying the oscillator strength as it is shown in Figure 12.13. This is due
to the dispersive modelling of κp(ω) given by eq. (12.33).
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Figure 12.11: DCT⊥ for the numerical approach using the transfer matrices (light-blue line), DCT⊥ for
the analytical approach (see eq. (12.34)) (orange dashed line), and ∆τ⊥ ≡ τ+,⊥ − τ−,⊥ (green line) (see
(12.32)) from a Fabry-Pérot interferometer, composed by air-chiral P3HT-air, as a function of ~ω in unit
of eV. Parameters are as follows: n = 1, dmirror = 30 nm, ε∞,Ag = 4.8, ~ωp,Ag = 9.5 eV, ~γAg = 0.17 eV,
LP3HT = 100 nm, ε∞,P3HT = 2.89, (~2ω2

pf0)P3HT = 0.3 eV2, ~ω0,P3HT = 2.407 eV, ~γP3HT = 0.28 eV, and
κp = 10−3.
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Figure 12.12: DCT⊥ (light-blue line), DCT⊥,out (without mirrors) (orange dashed line), |∆τ⊥ ≡ τ+,⊥−τ−,⊥|
(green line) (see eq. (12.32)), |∆τ⊥ ≡ τ+,⊥ − τ−,⊥|out (red dashed line) from a Fabry-Pérot interferometer,
composed by air-chiral P3HT-air, as a function of ~ω in unit of eV. Parameters are those of Figure 12.11.
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Figure 12.13: DCT from a Fabry-Pérot interferometer, composed by air-chiral P3HT-air, as a function of
~2ω2

pf0 in the unit of eV2 at resonance. Parameters are those of Figure 12.11.

12.7 DCT at finite angle

Using the transfer matrix approach (see Section 10.4.3), it is possible to discover that the Differential
Circular Transmission has a maximum intensity for a given angle . In particular, for the chiral
P3HT the maximum is around 20◦20◦20◦ as it is shown in Figure 12.14. Figure 12.15 and Figure 12.16 show
clearly that the maximum in intensity is attained at resonance and it covers a region between −30◦ to 30◦,
approximately. The intensity from −30◦ to 30◦ varies slightly. Figure 12.16 shows the DCT for an higher
oscillator strength with respect to Figure 12.15. The increasing of the oscillator strength makes the region
of maximum DCT more sharp and the intensity increases accordingly to Figure 12.13. In contrast to the
case at normal incidence (see Figure 12.12), DCT in cavity and outside cavity have not the same shape for a
given finite angle. This aspect is shown in Figure 12.14. In fact, at finite angle of incidence, the light inside
the cavity no longer has a well-defined handedness (left or right). It is a mixture of two polarizations and
the consequence is that DCT is now a function of the reflections and transmissions of the given system (the
transmittances cannot factorized as in eq. (12.32)).

Figure 12.14: DCT for the numerical approach using the transfer matrices from a Fabry-Pérot interferometer,
composed by air-chiral P3HT-air, as a function of θ in the unit of π/2 at resonance. Parameters are as follows:
n = 1, dmirror = 30 nm, ε∞,Ag = 4.8, ~ωp,Ag = 9.5 eV, ~γAg = 0.17 eV, LP3HT = 100 nm, ε∞,P3HT = 2.89,
(~2ω2

pf0)P3HT = 0.3 eV2, ~ω = ~ω0,P3HT = 2.407 eV, ~γP3HT = 0.28 eV, and κp = 10−3.
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Figure 12.15: DCT for the numerical approach using the transfer matrices from a Fabry-Pérot interferometer,
composed by air-chiral P3HT-air, as a function of θ in the unit of deg and as a function of ~ω in the unit of
eV. Parameters are those of Figure 12.14.

Figure 12.16: DCT for the numerical approach using the transfer matrices from a Fabry-Pérot interferometer,
composed by air-chiral P3HT-air, as a function of θ in the unit of deg and as a function of ~ω in the unit of
eV. Parameters are those of Figure 12.14, except that (~2ω2

pf0)P3HT = 1.0 eV2.
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12.8 Lorentz’s reciprocity applied to Transmission and Reflection

The transmission matrix, at normal incidence, (see eq. (11.7)) for the light propagation in an isotropic chiral
medium has a particular form: two different diagonal elements and 0s for the off-diagonal elements. The 0s
are connected to the fact that an isotropic chiral material does not convert the polarization in transmission.
The two different diagonal terms, t++ and t−−, are the source of the chiral discrimination in an isotropic
Pasteur medium. The form of the transmission matrix for the opposite propagation is the same for this
kind of chiral medium. Thus, exchanging the source with the detector the same signal is recovered for the
reverse light propagation. This section has the aim to find relations which connect the transmission (and
the reflection) for the forward and the backward light propagation through a linear system.

Lorentz’s reciprocity is a fundamental property of microscopic reversibility of field distributions and their
sources [21]. In particular, for a scattering process reciprocity adds some constraints on transmission and
reflection tensors [137, 20]. Let’s start to introduce the Lorentz’s reciprocity theorem.

12.8.1 Lorentz’s reciprocity theorem

The physical situation is to consider a finite volume V1 of sources ρ1 and ~J1. The sources generate the
fields ~E1, ~B1, ~D1, and ~H1 in the presence of a scatterer characterized by the dielectric and magnetic tensors
↔
ε (~r, ω),

↔
µ (~r, ω), respectively. Analogously, the fields can be generated by another different source of finite

volume V2 without considering the presence of the first source. All the fields satisfy the Maxwell’s equations
and by assuming a harmonic time-dependence e−iωt they get

∇∧ ~Ei = +iω ~Bi,∇ · ~Bi = 0,

∇∧ ~Hi = ~Ji − iω ~Di,∇ · ~Di = ρi with i = 1, 2.
(12.35)

The fields generated by the first source can be associated to the fields of the second source making some
manipulations on the Maxwell’s equations to get the following equation(

~H2∇∧ ~E1 − ~E1∇∧ ~H2

)
+
(
~E2∇∧ ~H1 − ~H1∇∧ ~E2

)
= iω

(
~H2
~B1 − ~H1

~B2

)
−

+ iω
(
~E2
~D1 − ~E1

~D2

)
+

+ ~E2
~J1 − ~E1

~J2.

(12.36)

The left-hand side of eq. (12.36) can be rewritten using the vector identity ~F ·
(
∇∧ ~G

)
= ∇ ·

(
~G ∧ ~F

)
+

~G ·
(
∇∧ ~F

)
, where ~F and ~G are two generic vector fields. Using the identity, the result is

∇
(
~E1 ∧ ~H2 − ~E2 ∧ ~H1

)
= iω

(
~H2
~B1 − ~H1

~B2

)
− iω

(
~E2
~D1 − ~E1

~D2

)
+ ~E2

~J1 − ~E1
~J2. (12.37)

On the right-hand side the constitutive relations can be included to simplify the total expression. Here two
cases are considered: a case in which the scatterer is an inhomogeneous, anisotropic and achiral medium
characterized by linear constitutive relations ~D =

↔
ε ~E, ~B =

↔
µ ~H and another case where the medium is

homogeneous, isotropic and chiral described by the Condon relations (see eq. (10.5)).

Case of inhomogeneous, anisotropic and achiral medium

Inserting the constitutive relations Di = εijEj and Bi = µijHj in the right-hand side of eq. (12.37), it
follows that

∇
(
~E1 ∧ ~H2 − ~E2 ∧ ~H1

)
= iω

(
~H2µ21

~B1 − ~H1µ12
~B2

)
− iω

(
~E2ε21

~D1 − ~E1ε12
~D2

)
+ ~E2

~J1 − ~E1
~J2. (12.38)

The first two terms in parenthesis, on the right-hand side, vanish if and only if µ12 = µ21 and ε12 = ε21.
The symmetry of tensors is one of the general class of reciprocal relations studied by L. Onsager [21] which
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can be derived using the principle of microscopic reversibility (without the presence of a static magnetic
field). At microscopic level physics is symmetric interchanging the sources and the generated fields. Thus,
the Lorentz’s reciprocity theorem with sources is given by

∇
(
~E1 ∧ ~H2 − ~E2 ∧ ~H1

)
= ~E2

~J1 − ~E1
~J2. (12.39)

The theorem has its integral form upon integration over all space. Integrating the left-hand side a surface
integral over a sphere with an infinite radius is obtained. This integral vanishes, and this can be shown
replacing the fields in the far-region. The asymptotic expressions of the scattered fields propagating along a
given direction of the wave vector ~k are

~E (kr → +∞) ∼ 2πi γkêk
eikr

r
,

~H (kr → +∞) ∼ 2πi γkĥk
eikr

r
,

(12.40)

where γk =

√
k2 − |~k|2 with |~k| ≤ k for plane waves, êk and ĥk are the transverse Fourier transforms of the

fields projected on a plane at infinity. They are transverse, in fact ~k ∧ êk = ωµ0ĥk. Subtituting these fields
in eq. (12.39) and integrating over all space the theorem gets∫

~J1 · ~E2 dV1 =

∫
~J2 · ~E1 dV2, (12.41)

where it remains only an integral over the volume V1 on the left-hand side, where ~J1 is not 0, and an integral
over the volume V2 on the right-hand side.

The integral form of the Lorentz’s reciprocity theorem is further simplified assuming the sources as dipole
sources, ~Ji(~r) = −iω~piδ(~r − ~ri), to obtain

~p1 · ~E2(~r1) = ~p2 · ~E1(~r2).

(12.42)

The last equation is usually called the customary statement of the reciprocity theorem and it is widely applied
in antenna theory.

Case of homogeneous, isotropic and chiral medium

In a homogeneous, isotropic and chiral medium the constitutive relations are the Condon constitutive rela-
tions: ~D = ε ~E + i

κp
c
~H and ~B = µ ~H − iκpc ~E. Now by inserting these relations in the right-hand side of eq.

(12.37) it results

∇
(
~E1 ∧ ~H2 − ~E2 ∧ ~H1

)
= iω

(
~H2µ ~H1 − i

κp
c
~H2
~E1 − ~H1µ ~H2 + i

κp
c
~H1
~E2

)
− iω

(
~H ↔ ~E, µ→ ε and κp → −κp

)
+

+ ~E2
~J1 − ~E1

~J2,

(12.43)

where in the second parenthesis on the right-hand side the expression is the same as the first one sending
~H ↔ ~E, µ → ε, and κp → −κp. By doing these substitutions the terms without the sources, on the right-
hand side, cancels out and also in this case the eq. (12.39) is retrieved.
In chiral media the dipole approximation is not sufficient (see Section 10.2.1), thus by including the first
order correction of the space variation of the electric field (see eq. (10.9)) the customary statement of the
reciprocity theorem gets

~p1 · ~E2(~r1)− ~m1 · ~B2(~r1) = ~p2 · ~E1(~r2)− ~m2 · ~B1(~r2),

(12.44)
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where the quadrupole terms are neglected and ~m ≡ 1
2

∫ (
~r ∧ ~J

)
dV is the magnetic moment.

The conclusion is that the concept of Lorentz reciprocity is the same for isotropic chiral media as for
isotropic achiral media.

12.8.2 Transmission and reflection under reciprocity

Lorentz’s reciprocity states that an interchange of sources and field distributions does not affect the physical
result (without the presence of a static magnetic field). The theorem can be directly extended to the case of
transmission and reflection tensors in a scattering problem [20]. Let’s consider the application of reciprocity
on transmission and afterwards on reflection tensors.

Reciprocity on transmission tensors

At -∞ a source generates a field ~E±(−∞,~k) which propagates towards a given scatterer, characterized by
linear constitutive relations. A detector captures the scattered field at +∞, ~E±(+∞,~k′). The action of the
scatterer on the field is expressed by a generic transmission tensor which relates the generated field at -∞
to the scattered field at +∞:

~E±(+∞,~k′) =
↔
T→ ~E±(−∞,~k). (12.45)

A similar relation can be found exchanging the source with the detector to find

~E±(−∞,−~k) =
↔
T← ~E±(+∞,−~k′). (12.46)

Under reciprocity the physical result has to remain unchanged, thus

↔
T→ ~E±(−∞,~k) =

↔
T← ~E±(+∞,−~k′). (12.47)

The equality is satisfied if ~k → −~k′ on the left-hand side and this implies that the tensor has to exchange its
indeces or analogously it has to be transposed. Reciprocity constraints the transmission tensors to satisfy

↔
T→=

(↔
T←
)T

.

(12.48)

Figure 12.17: Schematic draw of the application of reciprocity on transmission tensors.

Reciprocity on reflection tensors

The reciprocity argument to deal with reflection tensors follows the same lines of the reasoning discussed for
transmission tensors. The main difference concerns the application of the reciprocity’s theorem only on the
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left of the scatterer for the reflection tensor
↔
R← and only on the right for the reflection tensor

↔
R→. If the

source is on the left of the scatterer the reciprocity theorem gives

↔
R←=

(↔
R←

)T
.

(12.49)

Accordingly, the application of the reciprocity theorem for a source located on the right with respect to the
position of the scatterer produces

↔
R→=

(↔
R→

)T
.

(12.50)

Figure 12.18: Schematic draw of the application of reciprocity on reflection tensors.

Reciprocity and time-reversal symmetry on the scattering matrix

A scattering matrix S connects the amplitudes of the fields approching to the scatterer with the scattered
amplitudes of fields by the same scatterer. Under reciprocity the matrix S has particular properties that can
be revealed knowing the properties of the transmission and reflection matrices. Using the relations given by
eqs. (12.48), (12.49) and eq. (12.50) the reciprocal scattering matrix has the form

S =

( ↔
R←

↔
T←

↔
T→

↔
R→

)
= ST, (12.51)

with
↔
R←=

(
r←++ r←conv
r←conv r←−−

)
,
↔
R→=

(
r→++ r→conv
r→conv r→−−

)
, (12.52)

↔
T←=

(
t++ t1
t2 t−−

)
,
↔
T→=

(
t++ t2
t1 t−−

)
. (12.53)

The scattering matrix S is symmetric under reciprocity and the same symmetry is maintained under time-
reversal in which the fields transform as ~E±(±∞,±{~k,~k′}) → ~E?∓(±∞,∓{~k,~k′}) where t → −t, and the
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complex amplitude is complex conjugated. The relations that are fulfilled by the sattering matrix under
time-reversal symmetry are

S†S = I, SS? = I ⇐⇒ S = ST with |DetS| = 1, (12.54)

where the relation S†S = I is the conservation of the current density and SS? is the consequence of t→ −t
and complex conjugation of the fields. Time-reversal symmetry is broken if there are losses and the scatterer
dissipates energy. Reciprocity, instead of time-reversal, is conserved for processes in which energy is not
conserved.
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13

Chiral Fabry-Pérot with chiral mirrors

Figure 13.1: Sketch of a chiral mirror as the type of ref. [142], and a cavity made by the chiral mirror
and its enantiomer. The mirror almost perfectly reflects RHC (-) (orange arrow) polarized light from one
side and LHC (+) (yellow arrow) from the opposite side (the double arrow means that the ray arrives on
the surface and it is reflected back). It also converts LHC (RHC) polarized light in transmission for the
downward (upward) propagation. The preserving behaviour is confined in a narrow region (red shaded
region) in energy; the same region appears in the enantiomer with a consequential flip of the polarization (in
blue). Out of the preserving region the device works as a standard mirror. The cavity, made by the chiral
mirror and its enantiomer (the right-hand side of the Figure), can internally reflect and discriminate one of
the polarization in the proximity of the helicity-preserving region.

In this Chapter, the objective is to model and simulate the behaviour of a chiral Fabry-Pérot interferometer
made by two chiral helicity-preserving mirrors, illustrated in ref. [142]. The single mirror (see Figure 13.1 on
the left-hand side) is a lossless chiral photonic crystal mirror that reflects, upon normal illumination, RHC
(-) polarized light without reversing its handedness. Moreover, it converts the polarization of the opposite
handedness, LHC polarized light, upon transmission. The mirror acts as an helicity-preserving mirror (and
transmission converter) in a small window in frequency (the experimental realization has the target energy,
where the preservation is maximal, at 1.43 eV, approximately). Out of the “maximal preserving region” it
behaves as a common mirror, that is it reflects the opposite polarization and it transmits without conversion
of polarization.

The chirality of the mirror consists in a specific pattern of the two surfaces, which exhibits opposite
chirality. The structure belongs to the class of 2D chirality [59], and it means that the oncoming circularly
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polarized light is scattered differently if it encounters one side or the opposite side of the mirror. In addition,
the mirror is almost perfectly lossless and it fullfills time-reversal symmetry (see Section 12.8.2). In conjuction
with the 2D chirality, the maximal preservation in reflection (and conversion in transmission) is acquired by
the opposite polarization for the opposite side of the structure.

The construction of the Fabry-Pérot interferometer with this kind of chiral mirror is made by positioning
the single mirror, as the first mirror, and subsequently the associated enantiomer, i.e., the mirror image. In
this way, the cavity perfectly transmits the LHC (RHC) polarized light (see Figure 13.1 on the right-hand
side) at the center of the preserving-helicity energy region, for the downward (upward) light propagation.
The most interesting region is in the close proximity to the helicity-preserving region where the LHC and
RHC polarized light are partially transmitted and partially reflected. The advantage of this new setup is
that it can discriminate and partially reflect, inside the structure, one polarization with respect to the other
one close to the energy of the preserving region. This device has this additional and special property which
is not available for a chiral Fabry-Pérot interferometer made by “normal” Ag mirrors (see Section 12).

The next section contains the modelling of the single mirror and its enantiomer, at the level of the
scattering matrix.

13.1 Modelling of the chiral mirrors

The transmission and reflection properties of a given layer, chiral or achiral, are generically expressed with
the corresponding transmission and reflection matrices, also called Jones matrices [87]. At normal incidence,
an achiral material is represented by Jones matrices for the transmission or reflection with 0s in the off-
diagonal or in the diagonal terms, respectively (see eq. (11.7)). This means that the achiral material does
not covert the polarization in transmission and it does not preserve the same polarization in reflection. A
chiral layer, as the chiral mirror, can have all the transmission and reflection coefficients different from 0. In
the present case, the transmission and the reflection Jones matrices are built by considering only the shaded
region of Fig. 2 of the reference [142]. That shaded region contains the transmissions and reflections of the
preserving part and the background around it (see Figure 13.2). Thus, that small region is sufficient to study
the interesting and unexplored behaviour close to the helicity-preserving region.

13.1.1 Single mirror

The single chiral mirror is modelled by assuming the following transmission and reflection matrices, for the
downward light propagation (see Figure 13.1 on the left) or analogously for the propagation from left to right
by using the convention of Section 12.8:

T→ =

(
t 0
t+− t

)
=

(
|t| · eiφt 0
|t+−| · eiψ |t| · eiφt

)
R← =

(
0 r
r r−−

)
=

(
0 |r| · eiφr

|r| · eiφr |r−−| · eiξ
)
,

(13.1)

where the second equality separates the modulo and the complex phase of the transmission and reflection
coefficients.

A minimal model is used to reproduce the transmissions and reflections shown in Figure 13.2. The
elements t−+ = r++ are chosen to be equal to 0 because their modulo squared is 0, in the ref. [142]. The
diagonal transmission coefficients (the same for the off-diagonal reflection coefficients) are chosen to be equal
as it is the case in achiral layer. These elements reproduce the “normal” operative behaviour of achiral
mirrors. The modulo squared of the element t+− should reproduce a resonant plasmonic mode of the mirror
which tends to 1 at the resonant frequency (the frequency of the maximal conversion in transmission). Thus,
the coupled-mode theory [44, 91, 43, 61] for a single mode, for a time-reversible system, offers the explicit
form of the transmission coefficient:

|t+−| · eiψ =
γpr

i(ω − ωpr) + γpr
with ωpr � γpr, (13.2)
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where γpr is the linewidth of the mode and ωpr is the resonant frequency of the preserving region.
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Figure 13.2: Transmissions and reflections of the chiral mirror of ref. [142] (see Fig. 2). Only the shaded
preserving region is digitalized and shown. Note that the convention of the reference is translated into the
convention adopted here1.

The scattering matrix of the single chiral mirror is obtained by applying the conservation of energy and
the condition of time-reversibility (see eq. (12.54)), being the chiral mirror lossless and invariant under
time-reversal. The resulting scattering matrix is

SCm =

(
R← T←
T→ R→

)
=


0 −|t| · eiψ |t| |t+−| · eiψ

−|t| · eiψ |t+−| 0 |t|
|t| 0 −|t+−| · e−2iψ |t| · e−iψ

|t+−| · eiψ |t| |t| · e−iψ 0

 , (13.3)

with

|t+−|2 + 2|r|2 = 1,

|t+−| = |r−−| =
γpr√

(ω − ωpr)2 + γ2
pr

∈ [0, 1] ,

|t| = |r| =
√

1− |t+−|2
2

=
(ω − ωpr)√

2
[
(ω − ωpr)2 + γ2

pr

] ∈ [0, 1√
2

]
,

(13.4)

where ξ = ψ and the phases φt and φr can be arbitrarily chosen to be 0.
The scattering matrix SCm of the single mirror is symmetric and it is automatically reciprocal, a property

of any linear scatterer (see Section 12.8). The time-reversal symmetry implies strict constraints to all
coefficients of transmission and reflection matrices. In particular, the symmetry reveals the form of the
reflection matrix R→ which is not directly given by Figure 13.2.

1The LHC (RHC) polarized light is associated to the sign − (+), in the ref. [142]. Here the convention is opposite: a LHC
(RHC) polarized light ray is associated to the sign + (−). It follows that the co-polarized transmission and reflection coefficients
change their sign (for instance t++ → t−−, here). The cross-polarized coefficients remain unchanged, because in the ref. the
conversion of polarization is read from right to left. Here the conversion is read from left to right.
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13.1. MODELLING OF THE CHIRAL MIRRORS

Once the Jones matrices for both light propagations (for transmission and reflection) are known, the
corresponding transfer matrix is built with other small manipulations. The construction is analogous to
what is discussed in Sections 10.4.3 and 10.4.4, and extended to the case of the chiral mirror; where the
transmission and reflection for the light propagation from left to the right side of the structure do not
coincide with the transmission and reflection for the opposite light propagation. Therefore, the transfer
matrix of the single chiral mirror has the following form:

TCHP =

(
MT→ MR→

MR← MT←

)
,

(13.5)

with
MT→ = (T→)−1 , MR← = R← (T→)−1

MT← = T← −R← (T→)−1R→, MR→ = − (T→)−1R→.
(13.6)

Figure 13.2 shows the transmittances T± (T+ ≡ |t+−|2 + |t|2 and T− ≡ |t|2) (see their definition in eq. (13.1))
for the light propagation from the left to the right side of the single chiral mirror. The resonant energy of the
preserving region, ~ωpr, is set to 1.6 eV and there the LHC (+) polarized light is fully transmitted and RHC
(-) is fully reflected back (see the left-hand side of Figure 13.1). Going away from the maximal preserving
region the signal saturates to 0.5 eV. This saturation is also visible in Figure 13.2 for the elements which
convert the polarization in reflection and for the elements which preserve the polarization in transmission.
They have asymmetric shapes for the presence of other modes out of the preserving region (see Fig. 2 in
[142]). The saturation is a natural consequence of the application of time-reversal symmetry (see eq. (13.4)
when t+− goes to 0, i.e. out of the preserving region). The transmitted signal of the two polarizations is
reversed by sending the light from the opposite side of the chiral mirror.
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Figure 13.3: Transmittances T± at normal incidence from the single chiral mirror as a function of ~ω in the
unit of eV. Parameters are as follows: ~ωpr = 1.6 eV, ~γpr = 0.02 eV and θ = 0.

13.1.2 Enantiomer of the single mirror

The enantiomer of the chiral mirror is obtained under a π-rotation along one of the polarization axis, x or
y to be in agreement with the choice that z is the light propagation axis. This implies an application of one
of these rotations on the scattering matrix SCm (see eq. (13.3)).
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13.1. MODELLING OF THE CHIRAL MIRRORS

The scattering matrix SCm connects outgoing circularly polarized light rays with the incoming ones as
it follows 

ê+

ê−
ê′+
ê′−


out

= SCm


ê+

ê−
ê′+
ê′−


in

, (13.7)

where ê± ≡ 1√
2

(êx ± iêy) (see also Section 10.3.3) are the unit vectors on the left-hand side of the chiral
mirror and the primed unit vectors are the vectors on the right-hand side of the single chiral mirror.
The unit vectors in the circular basis, ê±, are directly linked to the unit vectors in the linear basis, êx,y,
through a linear transformation:

ê+

ê−
ê′+
ê′−

 = Ux,y→±


êx
êy
ê′x
ê′y

 with Ux,y→± =
1√
2


1 i 0 0
1 −i 0 0
0 0 1 i
0 0 1 −i

 . (13.8)

The π-rotations along the linear polarization axis x and y send êx → êx, êy → −êy and êx → −êx, êy → êy,
respectively. Their application at the matrix level is the following

êx
−êy
ê′x
−ê′y

 = Rx(π)


êx
êy
ê′x
ê′y

with Rx(π) =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,


−êx
êy
−ê′x
ê′y

 = Ry(π)


êx
êy
ê′x
ê′y

with Ry(π) =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 .

(13.9)

Now the matrices Rx(π) and Ry(π) can be adpated for the circular basis using Ux,y→±:

R̄x(π) ≡ Ux,y→±Rx(π)U−1
x,y→± =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



R̄y(π) ≡ Ux,y→±Ry(π)U−1
x,y→± =


0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0

 .

(13.10)

Finally, the enantiomeric scattering matrix of SCm is found by applying the π-rotations in the circular basis.
The form of the matrix is

SECm = R̄x,y(π)SCmR̄
−1
x,y(π) =


|t+−| −|t| · eiψ |t| 0
−|t| · eiψ 0 |t+−| · eiψ |t|
|t| |t+−| · eiψ 0 |t| · e−iψ
0 |t| |t| · e−iψ −|t+−| · e−2iψ

 , (13.11)

where R̄x,y(π) denotes the application of R̄x(π) or R̄y(π).
The matrix SECm is equal to SCm sending + → − , or viceversa, in the elements of Jones matrices.

The enantiomer of the chiral mirror acts in the opposite way regarding the polarizations. Figure 13.4 shows
the transmittances T±, by using the transfer matrix approach already explained in the previous Subsection,
for the light propagation from the left to the right side of the enantiomer. The transmittances are exactly
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13.2. FABRY-PÉROT INTERFEROMETER WITH CHIRAL MIRRORS

reversed with respect to the previous Figure 13.3 of the chiral mirror. If the light is propagating from the
opposite side of the enantiomer the signal is the same as the Figure 13.3 shows.
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Figure 13.4: Transmittances T± at normal incidence from the enantiomer of the chiral mirror as a function
of ~ω in the unit of eV. Parameters are as follows: ~ωpr = 1.6 eV, ~γpr = 0.02 eV and θ = 0.

13.2 Fabry-Pérot interferometer with chiral mirrors

The construction of the Fabry-Pérot interferometer, using the modelled chiral mirrors, is the subject of this
Section. The interferometer contains the preserving region and this region has an effect on the standing light
modes in cavity. The transmittance (+ or −) and the DCT signal can provide enough information to explain
the effect of the preserving region inherited by the chiral mirror and its enantiomer.

13.3 Transmittance

The transmittance T+ as a function of ~ω and d is shown in Figure 13.5. In this Figure the helicity-preserving
region is chosen to be detuned with respect to the energy scale of the Figure (~ωpr = 3.0 eV). Thus, the
“normal” cavity light modes are recovered. In particular, the Figure focuses on two of them. Using eq.
(11.11), the distance where one mode has the maximum transmission can be calculated. For instance, for
d = 200 nm and ~ω = 1.6 eV the m value is approximately 0.5. Then, the next maximum (of the second
mode in Figure 13.5) is located at distance

d =
m+ 1

2~ω
1239.8 ≈ 581 nm. (13.12)

The inclusion and the effect of the preserving region on one of the light modes is shown in Figure 13.6.
The helicity-preserving region acts as a perfect converter in transmission. It fully transmits and converts
LHC polarized light into RHC polarized light through the first chiral mirror and it again fully transmits and
reconverts RHC into LHC polarized light through the chiral enantiomer (see the right-hand side of Figure
13.1).
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13.3. TRANSMITTANCE

Figure 13.5: Transmittance T+ at normal incidence from a Fabry-Pérot interferometer, composed by air-
chiral mirror-air-chiral enantiomer of the mirror-air, as a function of the length d of the internal layer of
air in the unit of nm and as a function of ~ω in the unit of eV. Parameters are as follows: ~ωpr = 3.0 eV,
~γpr = 0.02 eV and θ = 0.

Figure 13.6: Transmittance T+ at normal incidence from a Fabry-Pérot interferometer, composed by air-
chiral mirror-air-chiral enantiomer of the mirror-air, as a function of the length d of the internal layer of
air in the unit of nm and as a function of ~ω in the unit of eV. Parameters are as follows: ~ωpr = 1.5 eV,
~γpr = 0.02 eV and θ = 0.

The consequence of this process is visible in Figure 13.6 as a straight red line, distance independent, of
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13.4. DCT

maximum transmission. The light mode which encounters that region is subjected to a filtering effect, in
such a way the energy is conserved without any presence of losses. This occurs at the center of the lineshape.
The interaction of the cavity mode and the preserving region generates also an asymmetric feature around
the center of maximum transmission. This asymmetric feature is commonly known as a Fano resonance
which appears for the interaction of background radiation and a narrow discrete state (the lineshape of the
preserving region) [44]. The generation of the asymmetry comes from the usage of the coupled-mode theory
to model the response of the chiral mirror and its enantiomer.

13.4 DCT

The Differential Circular Transmission, defined as 2(T+−T−)/(T++T−) takes into account the discrimination
of one of the two polarizations over the transmitted signal. It reaches the maximum value of 2 at the center
of the preserving region where T+ is 1 and T− is 0 (see Figure 13.7). The minimum value of 0 is attained
“away” (fractions of eV in energy) from the helicity-preserving region where there is not any distinction
of the two polarizations. The interesting behaviour is in the close proximity to the preserving region.
There, as it is shown at the beginning of the present Chapter (see the right-hand side of Figure 13.1), an
intermediate behaviour between a normal mirror and a fully transmitting region occurs. The result is a
visible discrimination in Figure 13.7 where DCT tends to be negative, close to the maximal value of 2, and
the opposite polarization (−) of the preserving region (+) is more transmitted out of the interferometer.

Figure 13.7: DCT at normal incidence from a Fabry-Pérot interferometer, composed by air-chiral mirror-
air-chiral enantiomer of the mirror-air, as a function of the length d of the internal layer of air in the unit of
nm and as a function of ~ω in the unit of eV. Parameters are as follows: ~ωpr = 1.5 eV, ~γpr = 0.02 eV and
θ = 0.

This scenario is reversed if the cavity is composed by the chiral enantiomeric mirror-air-chiral mirror (see
Figure 13.8). In this last case the center of preserving region has a DCT value of −2, as maximum, and the
intermediate region reaches a positive discrimination.
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13.4. DCT

Figure 13.8: DCT at normal incidence from a Fabry-Pérot interferometer, composed by air-chiral enantiomer
of the mirror-air-chiral mirror-air, as a function of the length d of the internal layer of air in the unit of nm
and as a function of ~ω in the unit of eV. Parameters are as follows: ~ωpr = 1.5 eV, ~γpr = 0.02 eV and
θ = 0.

An additional qualitative understanding of the DCT signal, of an empty cavity made by chiral mirrors,
can be developed using the same analytical approach of the Section 12.4. The calculation is done with the
presence of the chiral material inside the cavity. The limiting case for the empty cavity can be obtained from
this more general derivation.

13.4.1 Normal incidence with perfect helicity preserving mirrors (analytical approach)

Now let’s suppose that the mirrors have the property to preserve the handedness of the incoming circularly
polarized light at each reflections inside the cavity. Then the analytical calculation is very similar to the case
of the achiral interferometer (see section 12.3) at normal incidence, but the accumulation of phases inside
the cavity has a sign, + for the preserved LHC polarized light and - for the RHC polarized light. Another
difference is that now the mirrors are chiral, so the first mirror is not equal to the second one to obtain the
conservation of the helicity inside the cavity.
By redoing the calculation of section 12.4, and taking into account the difference in the sign of the accumulated
phase, the transmittance of a preserving chiral Fabry-Pérot is

τhp±,⊥ (ω) =
T 2

1,±,hpT
2
2,±,hpe

−α±L(
1−

√
R1,±,hpR2,±,hpe−α±L

)2
+ 4
√
R1,±,hpR2,±,hpe−α±L sin2 β±

, (13.13)

where α± = 2kn′±,im (ω), β± = kn′±,re(ω)L, Ti,±,hp ≡ |ti,±±|2 and Ri,±,hp ≡ |ri,±±|2, with i = 1, 2, are the
transmittances and the reflectances of the first and second helicity preserving mirror, respectively.

Using perfect helicity preserving mirrors, the DCT at normal incidence has not anymore a simple expres-
sion as the formula (12.34). In this case, the DCT obtained by eq. (13.13) gives

DCT hp⊥ = 2
T+e−α+L−T−e−α−L+T+e−2αL

(
R−e−α−L−2

√
R− cos 2β−

)
−T−e−2αL

(
R+e

−α+L−2
√
R+ cos 2β+

)
T+e−α+L+T−e−α−L+T+e−2αL

(
R−e−α−L−2

√
R− cos 2β−

)
+T−e−2αL

(
R+e

−α+L−2
√
R+ cos 2β+

) , (13.14)
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where T± ≡ T 2
1,±,hpT

2
2,±,hp, R± ≡ R1,±,hpR2,±,hp.

It is interesting to note that DCT hp⊥ is not 0 if α± = 0 and it becomes

DCT hp⊥ (α± = 0) = 2
T+ − T− + T+

(
R− − 2

√R− cos 2β−
)
− T−

(
R+ − 2

√R+ cos 2β+

)
T+ + T− + T+

(
R− − 2

√R− cos 2β−
)

+ T−
(
R+ − 2

√R+ cos 2β+

) . (13.15)

The mirrors are chiral, thus they produce asymmetries in transmission without having absorption inside the
chiral layer in contrast to the case with “normal” mirrors.

Figure 13.9 shows the DCT signal of the Fabry-Pérot interferometer with chiral mirrors for d = 200 nm
(the thickness of the internal layer of air). The shape of the DCT is well-reproduced by the eq. (13.15) if T±
are promoted to be the transmittances + and − of the interferometer. The promotion of these quantities
to be transmittances is done to include the missing elements (off-diagonal elements) of the transmission or
reflection matrices of the analytical approach, which takes into account only diagonal elements. In fact, the
Jones matrices of the chiral mirrors have the form of eq. (13.1).
The added value of this qualitative approach is that it offers a way to understand the DCT signal close to
its maximum intensity. The negative discrimination, shown in Figure 13.7 and Figure 13.9, is due to the
increasement of R+ (it is 1 at ~ωpr = 1.5 eV) and to the fact that T− > T+ near the preserving region. The
imbalance between the internal reflectances (in cavity) of the chiral mirrors and the transmittances generate
a total negative discrimination in the DCT signal.

13.4.2 Green function approach

A different approach to study the DCT of the empty cavity is based on the propagation of the Jones matrices
through the overall system. The method of collecting the matrices is similar to the scalar case of Section
12.3, with the difference that now all the elements are matrices and they are multiplied from the right to the
left (opposite convention of the transfer matrix approach described in Section 10.4.5). Here the calculation
to get the matrix for the downward (or from the left to the right-hand side of the interferometer) propagation
is shown.

The first transmitted matrix amplitude through the first chiral mirror (1) and the enantiomer (2) is

A1,→ = T2PT1A0, (13.16)

where P is the matrix for the phase propagation and, for simplicity, the arrow of the propagating wave is
added only on the total amplitude A1,→.
The second amplitude contains the reflection matrices of the internal side of the chiral mirrors:

A2,→ = T2PR1PR2PT1A0. (13.17)

The same calculation can be done for the amplitude Ap,→. The final total amplitude is obtained summing all
the amplitudes and sending p to infinity as it is done for the eq. (12.25). The final result is a transmittance
in a matrix form:

TGF,→ = T2GT1 with G =
1

P−1 − Σ
(13.18)

where G can be seen as the Green function or a free propagator and Σ ≡ R1PR2 the self-energy of a
scattering problem.

The transmittance TGF,→ can be evaluated by using the Jones matrices of the chiral mirrors (see the eqs.
(13.3) and (13.11)) and a phase matrix P , which is a diagonal matrix with elements eiφ where φ ≡ 2πd/λ.
The scalar transmittances T+ and T− are the diagonal elements of the matrix T †GF,→TGF,→ because

T †GF,→TGF,→ =

(
|t++|2 + |t+−|2 t?++t−+ + t?+−t−−
t?−+t++ + t?−−t+− |t−−|2 + |t−+|2

)
. (13.19)
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Thus the DCT, at normal incidence, can be computed as the usual way as the ratio between ∆T and the
average of T . A very simple formula can be obtained at the correspondance of the light mode. The expression
of this formula is

DCT⊥,GF =
16(4− δ4)

32(1 + δ2) + 8δ4 + δ6
with δ ≡ ω − ωpr

γpr
, (13.20)

where the phase of propagation is φ = π/2 (analogously d = λ/4), ωpr is frequency of the preserving
region and γpr its linewidth.

Figure 13.10 shows DCT evaluated along one of the cavity light mode, the case d = λ/4. The associated
m value (see eq. 13.12) is 1/2, which corresponds to a distance of about 207 nm for ~ω = 1.5 eV. Figure
13.5 or Figure 13.7 shows indeed that at the coordinates d ≈ 207 nm and ~ω = 1.5 eV DCT has the
maximum value of 2, the center of the intersection of the light mode and the preserving region. Varying
the energy, d varies accordingly to mantain the trajectory of DCT along the light mode (for ~ω = 1.8 eV
the distance d ≈ 172.2 nm). On the light mode, the numerical approach and the derived formulas show the
same behaviour in the two limiting cases, that is the center of the preserving band and far away from it.
The Green function approach, based on the propagation of the Jones matrices, matches perfectly the DCT
of the transfer matrix approach. All the three approaches show that indeed the shape of DCT along the
light mode is symmetric. The Fano resonances are generated around the center of the intersection of the
two modes, where the background radiation can interact with the less intense part of the preserving region.
Consequently, the Fano resonances do not unsymmetrize the DCT signal at the center of the cavity light
mode, with the presence of the preserving region.
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Figure 13.9: DCT⊥ for the numerical approach using the transfer matrices (light-blue line), DCT⊥ for the
analytical approach (see eq. (13.15)) (orange dashed line) from a Fabry-Pérot interferometer, composed by
air-chiral mirror-air-chiral enantiomer of the mirror-air, as a function of ~ω in the unit of eV. Parameters are
as follows: ~ωpr = 1.5 eV, ~γpr = 0.02 eV, d = 200 nm and θ = 0.
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Figure 13.10: DCT⊥, along the cavity light mode, for the numerical approach using the transfer matrices
(light-blue line), DCT⊥ for the Green function approach (orange dashed line) and DCT⊥ for the analytical
approach (see eq. (13.15)) (red dashed line) from a Fabry-Pérot interferometer, composed by air-chiral
mirror-air-chiral enantiomer of the mirror-air, as a function of ~ω in the unit of eV. Parameters are as
follows: ~ωpr = 1.5 eV, ~γpr = 0.02 eV, d = λ/4 and θ = 0.

The Fabry-Pérot interferometer, with the previous modelized chiral mirrors, is now filled with a chiral
layer, the same chiral layer (or Pasteur medium) described in Chapter 11.
The essence of the next sections is to understand which role plays the optical activity of the material with
the presence of the “intrinsic” chirality injected by the chiral mirrors. Moreover, what is the influence of the
preserving region on the DCT signal of the new entire system and the effect of the “bare” material properties,
such as the refractive index or the oscillator strength, on the light modes are thematics addressed along the
next sections.

13.5 Influence of the bare material on the light modes for a low oscillator
strength

The presence of a medium inside the interferometer, which is not air, has an effect on the cavity light modes.
In particular, here the interest is to monitor the change close to the preserving region in a low coupling
regime, that is when the strength of the material, defined as (~ωp

√
f0)Pasteur, is lower or comparable to the

damping γPasteur (in section 12.5 this distinction is explained).

13.5.1 Transmittance

The transmittance T+, shown in Figure 13.11, contains the information about how the cavity light modes are
alterated by the inclusion of a Pasteur medium. In a low coupling regime, the chirality of the Pasteur medium
is negligible (see eq. (12.19)), for a low value of γ (for ~ωp

√
f0 = ~γ ≈ 0.01 eV the chiral parameter κp ≈

10−6), and the material mantains only its bare properties (n > 1 with a low dispersive part). Thus, the bare
material generates an impedance mismatch across the preserving region which is visible as a misalignement
and a disconnection of the light modes. The Fano resonances become clearly distinguishable as thin lines
which “cut” the helicity-preserving region. By increasing the refractive index of the material, the impedance
mismatch increases and the light modes become more dense. The thin lines of the Fano resonances become
thicker. The effect of the increasing of refractive index is shown in Figure 13.12.
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Figure 13.11: Transmittance T+ at normal incidence from a Fabry-Pérot interferometer, composed by air-
chiral mirror-Pasteur medium-chiral enantiomer of the mirror-air, as a function of the length d of the Pasteur
medium in the unit of nm and as a function of ~ω in the unit of eV. Parameters are as follows: ~ωpr = 1.5 eV,
~γpr = 0.02 eV, ε∞,Pasteur = 2.89, (~ωp

√
f0)Pasteur = ~γPasteur = 0.01 eV, ~ω0,Pasteur = 1.4 eV, κp = 10−3

and θ = 0.

Figure 13.12: Transmittance T+ at normal incidence from a Fabry-Pérot interferometer, composed by air-
chiral mirror-Pasteur medium-chiral enantiomer of the mirror-air, as a function of the length d of the Pasteur
medium in the unit of nm and as a function of ~ω in the unit of eV. Parameters are those of Figure 13.11,
except that ε∞,Pasteur = 4.
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13.5.2 DCT

The DCT of the interferometer, filled with the Pasteur medium, has the same peculiarities of the empty
system (see Section 13.4). The substantial difference is that the negative discrimination (the region in close
proximity to the preserving region) is asymmetric with respect to the preserving region. Figure 13.13 shows
this asymmetric discrimination. Thus, in the low coupling regime the DCT of the full system differs from
the DCT of the empty cavity in these differently unsymmetrized regions. Figure 13.15 shows a case where in
one of the regions close to the maximal DCT signal, the full system has a negative DCT signal higher than
the empty system. The negative peak has, as the upper bound, the value of -1 for the DCT. This value is
exactly half of the maximal DCT signal reached at the center of the preserving region. The upper bound
can be understood using the eq. (13.15). In fact, one of the best scenarios for the maximal negative DCT is
with T+ ≈ 0.3, T− ≈ 0.7, R+ ≈ 0.3, R− ≈ 0.1, cos 2β ≈ 0.2 that produces a DCT → −1.

Figure 13.13: DCT at normal incidence from a Fabry-Pérot interferometer, composed by air-chiral mirror-
Pasteur medium-chiral enantiomer of the mirror-air, as a function of the length d of the Pasteur medium
in the unit of nm and as a function of ~ω in the unit of eV. Parameters are as follows: ~ωpr = 1.5 eV,
~γpr = 0.02 eV, ε∞,Pasteur = 2.89, (~ωpf0)Pasteur = ~γPasteur = 0.01 eV, ~ω0,Pasteur = 1.4 eV, κp = 10−3

and θ = 0.
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Figure 13.14: DCT at normal incidence from a Fabry-Pérot interferometer, composed by air-chiral mirror-
Pasteur medium-chiral enantiomer of the mirror-air, as a function of the length d of the Pasteur medium in
the unit of nm and as a function of ~ω in the unit of eV. Parameters are those of Figure 13.13.
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Figure 13.15: DCT⊥ for the Pasteur medium (without the mirrors) (light-blue line), DCT⊥ for the empty
cavity made by chiral mirrors (orange line) and DCT⊥ for the full system (red dashed line) as a function of
~ω in the unit of eV. Parameters are those of Figure 13.13, except that dPasteur = 175 nm.
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13.6. TRANSITION TO THE STRONG COUPLING REGIME AND DISCRIMINATION OF
POLARITONIC BRANCHES

13.6 Transition to the strong coupling regime and discrimination of Po-
laritonic branches

13.6.1 Transmittance

The transition from the low coupling regime to the strong coupling regime occurs when the oscillator strength
of the material, inside the cavity, is large enough to create a splitting of the light modes. The splitting is
generated at resonance between the cavity mode and material resonance defined as ω0,Pasteur (see Section
12.5). Figure 13.16 shows the case of the strong regime for only one mode, by varying the length of the
material, without the inclusion of the preserving region (the same splitting obtained with “normal” mirrors).
The two Polaritonic branches are clearly visible with the two yellow lines.
The inclusion of the preserving region generates the same asymmetric misalignement of the light modes,
analyzed in Figure 13.11. In particular, this happens when the preserving region crosses the Polaritonic
branches. The Figure 13.17 show the crossing of the preserving region through the lower Polaritonic branch.

Figure 13.16: Transmittance T+ and onset of Polaritons at normal incidence from a Fabry-Pérot interferom-
eter, composed by air-chiral mirror-Pasteur medium-chiral enantiomer of the mirror-air, as a function of the
length d of the Pasteur medium in the unit of nm and as a function of ~ω in the unit of eV. Parameters are
as follows: ~ωpr = 3.0 eV, ~γpr = 0.02 eV, ε∞,Pasteur = 2.89, (~ωp

√
f0)Pasteur = 1.0 eV, ~γPasteur = 0.01 eV,

~ω0,Pasteur = 1.5 eV, κp = 10−3 and θ = 0.

13.6.2 DCT

The DCT signal, in the strong coupling regime, comes from the chirality of the mirrors, which induces a
discrimination similar to the case of the empty cavity, and from the chirality of the Pasteur medium. The
two types of chirality are clearly visible in Figure 13.18, the DCT signal of Figure 13.17. The DCT of the
chiral material, studied in Section 12.6, is confined around its resonance frequency, ω0,Pasteur. It increases
with the oscillator strength and with the thickness. In particular, if the (~ωpf0)Pasteur ≈ 100 ·~γPasteur, the
strong regime, DCT reaches values of the order 103 ·κp. This strong signal modifies the discrimination of the
total DCT (chiral mirrors plus Pasteur medium), close to the resonance of the chiral material. Varying the
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13.6. TRANSITION TO THE STRONG COUPLING REGIME AND DISCRIMINATION OF
POLARITONIC BRANCHES

Figure 13.17: Transmittance T+ at normal incidence from a Fabry-Pérot interferometer, composed by air-
chiral mirror-Pasteur medium-chiral enantiomer of the mirror-air, as a function of the length d of the Pasteur
medium in the unit of nm and as a function of ~ω in the unit of eV. Parameters are those of Figure 13.16,
except that ~ωpr = 1.2 eV.

Figure 13.18: DCT at normal incidence from a Fabry-Pérot interferometer, composed by air-chiral mirror-
Pasteur medium-chiral enantiomer of the mirror-air, as a function of the length d of the Pasteur medium
in the unit of nm and as a function of ~ω in the unit of eV. Parameters are as follows: ~ωpr = 1.2 eV,
~γpr = 0.02 eV, ε∞,Pasteur = 2.89, (~ωp

√
f0)Pasteur = 1.0 eV, ~γPasteur = 0.01 eV, ~ω0,Pasteur = 1.5 eV,

κp = 10−3 and θ = 0.
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13.6. TRANSITION TO THE STRONG COUPLING REGIME AND DISCRIMINATION OF
POLARITONIC BRANCHES

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

h̄ω [eV]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

D
C
T

DCT⊥,Pasteur

DCT⊥,full

DCT hp⊥

Figure 13.19: DCT⊥ for the Pasteur medium (without the mirrors) (light-blue line), DCT⊥ for the full
system (red line) and DCT⊥ for the analytical approach (see eq. (13.14)) (orange dashed line) as a function
of ~ω in the unit of eV. Parameters are those of Figure 13.18, except that dPasteur = 75 nm.

resonance of the material, the chirality of the Pasteur medium continues to modify, locally, the total DCT.
This modification decreases and finally it is suppressed when ω0,Pasteur = ωpr, there the DCT signal is totally
ruled by the preserving region. Figures 13.21, 13.22 and 13.23 show the decreasement of the discrimination
produced by the Pasteur medium on the total DCT signal when ω0,Pasteur → ωpr.

The total DCT of the mirrors and the Pasteur medium is qualitatively described, with a good approx-
imation, by the formula in eq. (13.14). The formula works using the same “dressing” of its particular case
for the empty cavity (see eq. (13.15)), that is the quantities T± are promoted to be transmittances of the
interferometer filled with the Pasteur medium. It describes quite well all the DCT shape but the maxima
reached by the DCT of chiral material. This is mostly due to the fact that the formula is derived for the
case of perfect helicity preservation. Furthermore, for a given polarization the propagating phase inside the
Pasteur medium maintains the same sign. In the present chiral cavity, out and “far away” from the preserving
region the mirrors behave as normal lossless mirrors and they do not preserve the helicity at each internal
reflections.
Sending κp to −κp, the DCT signal reverses its sign only in the region where the chirality is due to the chiral
Pasteur medium. Figure 13.20 shows the result of reversing the sign of κp compared to Figure 13.19.

The DCT signal at ωpr = ω0,Pasteur is “imposed” by the preserving region and the chirality of the material
has no effect on the total signal. Nevertheless, that resonance condition has an interesting effect on the
Polaritonic branches (see Figure 13.24).When the preserving region is at the same frequency of the
material resonance, the Polaritonic branches undergo the discrimination of the chiral mirrors
and they acquire a polarized component along their formation. This means that the inclusion
of the helicity-preserving region makes the Polaritonic branches chiral, in close proximity of
that region . Away from the preserving region, as the previous discussed cases, the discrimination is reduced
until it becomes 0.
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13.6. TRANSITION TO THE STRONG COUPLING REGIME AND DISCRIMINATION OF
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Figure 13.20: DCT⊥ for the Pasteur medium (without the mirrors) (light-blue line), DCT⊥ for the full
system (red line) and DCT⊥ for the analytical approach (see eq. (13.14)) (orange dashed line) as a function
of ~ω in the unit of eV. Parameters are those of Figure 13.19, except that κp = −10−3.
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Figure 13.21: DCT⊥ for the Pasteur medium (without the mirrors) (light-blue line), DCT⊥ for the full
system (red line) and DCT⊥ for the analytical approach (see eq. (13.14)) (orange dashed line) as a function
of ~ω in the unit of eV. Parameters are those of Figure 13.19, except that ~ω0,Pasteur = 1.25 eV.
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13.6. TRANSITION TO THE STRONG COUPLING REGIME AND DISCRIMINATION OF
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Figure 13.22: DCT⊥ for the Pasteur medium (without the mirrors) (light-blue line), DCT⊥ for the full
system (red line) and DCT⊥ for the analytical approach (see eq. (13.14)) (orange dashed line) as a function
of ~ω in the unit of eV. Parameters are those of Figure 13.19, except that ~ω0,Pasteur = 1.2 eV.
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Figure 13.23: DCT⊥ for the Pasteur medium (without the mirrors) (light-blue line), DCT⊥ for the full
system (red line) and DCT⊥ for the analytical approach (see eq. (13.14)) (orange dashed line) as a function
of ~ω in the unit of eV. Parameters are those of Figure 13.19, except that ~ω0,Pasteur = 1.15 eV.
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13.6. TRANSITION TO THE STRONG COUPLING REGIME AND DISCRIMINATION OF
POLARITONIC BRANCHES

Figure 13.24: DCT at normal incidence from a Fabry-Pérot interferometer, composed by air-chiral mirror-
Pasteur medium-chiral enantiomer of the mirror-air, as a function of the oscillator strength of the Pasteur
medium in the unit of eV and as a function of ~ω in the unit of eV. Parameters are as follows: ~ωpr = 1.5 eV,
~γpr = 0.02 eV, ε∞,Pasteur = 2.89, ~γPasteur = 0.01 eV, ~ω0,Pasteur = 1.5 eV, κp = 10−3, dPasteur = 150 nm
and θ = 0.

141



13.7. ENHANCEMENT OF OPTICAL ACTIVITY OF THE PASTEUR MEDIUM BY SPECTRAL
PROXIMITY OF THE HELICITY-PRESERVING REGION

13.7 Enhancement of optical activity of the Pasteur medium by spectral
proximity of the helicity-preserving region

The previous Section shows that DCT is ruled by the preserving region. Its strong signal dominates the
signal of the Pasteur medium. However, there is an observable that can quantify whether and how much
the chirality of chiral mirrors alters the optical activity (chirality) of the Pasteur medium. The observable is
∆DCT , given by

∆DCT ≡ DCT (κp)−DCT (0), (13.21)

where DCT (κp) is the full signal (chiral mirrors plus Pasteur medium) and DCT (0) is the full signal
with κp = 0. ∆DCT does not contain the strong signal of the helicity-preserving region, and it reveals a net
enhancement of the chirality of Pasteur medium (when the ω0,Pasteur → ωpr).
The enhancement of the optical activity of Pasteur medium is observed when a Polaritonic branch “intersects”
the preserving region. In Section 13.6.2, the negative regions of DCT (see Figure 13.18) are the result of the
crossing of a Polaritonic branch with the preserving region. Thus, the enhancement is found by choosing
the length of the Pasteur medium and an oscillator strength to fall in one of those regions where DCT is
negative. It is important to notice that the enhancement can be found in a low coupling regime or in a strong
coupling regime.
Figure 13.25 shows the DCT of the Pasteur medium and ∆DCT for illumination at normal incidence.
Polaritons are generated at ~ω0,Pasteur = 1.4 eV and the Upper branch crosses the preserving region for
an intermediate oscillator strength of approximately (~ωp

√
f0)Pasteur = 0.4 eV. The length is tuned to fall

in the negative DCT region, in accordance with the chosen oscillator strength. This choice of parameters
produces a visible peak (the yellow shaded region) of enhancement in the proximity of the preserving region
(~ω → ~ωpr = 1.5 eV). The peak is about one order of magnitude higher than the DCT signal of the Pasteur
medium. Interestingly, the shape of ∆DCT is well-reproduced by the analytical formula given by eq. (13.14)
(see Figure 13.26).
Figure 13.27 shows another case of enhancement. The parameters are different but the mechanism that
generates the enhancement is the same. It shows that the enhancement can reach two orders of
magnitude higher than the DCT signal of the Pasteur medium, alone. ∆DCT∆DCT∆DCT changes the sign
by reversing the sign of κpκpκp. The change of sign confirms that the chirality of the molecules is
strongly enhanced by the chirality of the mirrors, for a low, intermediate and strong oscillator
strength.
In conclusion, ∆DCT∆DCT∆DCT is the “good” observable to record an appreciable change in optical activity
due to the interaction between the “engineered chirality” of chiral mirrors and natural chirality
of molecules.
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13.7. ENHANCEMENT OF OPTICAL ACTIVITY OF THE PASTEUR MEDIUM BY SPECTRAL
PROXIMITY OF THE HELICITY-PRESERVING REGION

Figure 13.25: DCT⊥ for the Pasteur medium (light-blue line) and ∆DCT⊥ for the full system (red line) as
a function of ~ω in the unit of eV. The yellow shaded region is the enhancement of the optical activity of the
Pasteur medium by proximity of the helicity-preserving region. Parameters are as follows: ~ωpr = 1.5 eV,
~γpr = 0.02 eV, ε∞,Pasteur = 2.89, (~ωp

√
f0)Pasteur = 0.4 eV, ~γPasteur = 0.01 eV, ~ω0,Pasteur = 1.4 eV,

κp = 10−3, dPasteur = 85.6 nm and θ = 0.
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Figure 13.26: DCT⊥ for the Pasteur medium (light-blue line), ∆DCT⊥ for the full system (red line) and
∆DCT⊥ for the analytical approach (see eq. (13.14)) (blue dashed line) as a function of ~ω in the unit of
eV. Parameters are those of Figure 13.25, except that dPasteur = 85.5 nm.
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Figure 13.27: DCT⊥ for the Pasteur medium (light-blue line), ∆DCT⊥ for the full system (red line) and
∆DCT⊥ for the analytical approach (see eq. (13.14)) (blue dashed line) as a function of ~ω in the unit of
eV. Parameters are as follows: ~ωpr = 1.85 eV, ~γpr = 0.02 eV, ε∞,Pasteur = 2.89, (~ωp

√
f0)Pasteur = 1.0 eV,

~γPasteur = 0.01 eV, ~ω0,Pasteur = 1.6 eV, κp = 10−3, dPasteur = 169 nm and θ = 0.
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Figure 13.28: DCT⊥ for the Pasteur medium (light-blue line), ∆DCT⊥ for the full system (red line) and
∆DCT⊥ for the analytical approach (see eq. (13.14)) (blue dashed line) as a function of ~ω in the unit of
eV. Parameters are those of Figure 13.27, except that κp = −10−3.
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13.8. METHODS

13.8 Methods

The Figures (plots) in Chapter 11, 12 and 13 are obtained with a transfer matrix method for achiral and chiral
layers. The code that generates the Figures has been written by the author of the manuscript in Mathematica
[82]. The code has been written by using the references [29, 86, 152] and the dispersive modelling explained
in Section 12.1. The code has been also translated and rewritten in Python [162] at Universidad Autónoma
de Madrid by Jacopo Fregoni and the author of the manuscript, in the theory group led by Johannes Feist.

145



13.8. METHODS

146



14

Conclusion

The second part of the manuscript has as its subject a chiral Fabry-Pérot. Chiral molecules, such as a macro-
scopic ensemble of molecules of the same handedness, are classically described by the Condon constitutive
relations. The resulting molecular isotropic chiral layer (optically active layer), called Pasteur medium, is
first probed by circularly polarized light rays (left- or right-handed). The illumination at normal incidence
does not reveal a discrimination between left or right-handed transmission. The layer (without including
a dispersive modelling) behaves as an achiral layer. The discrimination is quantified with the differential
circular transmission (DCT). DCT is not negligible if the oncoming light rays form a finite angle with the
chiral layer. In this case, it has been shown that DCT oscillates as a function of energy and the oscillations
are the alternation of constructive and destructive interference between the two polarizations.

Eventually, the Pasteur medium is dressed by silver (Ag) mirrors and both the medium and mirrors are
modelled taking into account their dispersive and lossy nature. The new system absorbs part of the polarized
rays and in particular the chiral medium absorbs more of one polarization than the other (it depends if the
Pasteur medium is left or right-handed). In fact, DCT has been shown to be non-zero even at normal
incidence. Importantly, DCT at normal incidence, has been calculated analytically and checked numerically.
The analytical formula comes from the perfect conversion of polarized light rays in cavity. At each internal
reflection the polarization is reversed from right to left (or viceversa) and the final transmitted signal is given
by an achiral factor times the absorption factor for the associate polarization. The transmission and the
related DCT signal generalize the Beer-Lambert Law in case of isotropic chiral media.
The dispersive and lossy modelling allows for the classical strong coupling regime, i.e., when the oscillator
strength is larger than the linewidth of the molecular ensemble and the length of the material is such that
the cavity optical mode is at resonance with the molecular transition. These are the conditions to see the
Polaritonic splitting. Polaritons, using traditional Ag mirrors and chiral molecules, are achiral in terms of
the light part and the associated DCT signal is zero.
Although the chiral layer is probed many times by circularly polarized light, the DCT signal (which is
proportional to the magnitude of chirality of the layer) of the Pasteur medium, by itself, is not enhanced
by confinement in a Fabry-Pérot cavity, made by Ag mirrors. The illumination at finite angle of incidence
produced the same conclusion.

The negligible increase in chirality motivated the investigation of an optically active cavity with chiral
mirrors. The modelling of the chiral mirrors is based on existing chiral photonic mirrors [142]. Those mirrors
are almost lossless and they fullfill time-reversal symmetry. The symmetry constraints the matrix elements
and gives an explanation to the shapes of the simulated transmissions and reflections reported in reference
[142]. To complete the modelling of the mirrors, the classical coupled-mode theory is adopted to describe
the chiral property of mirrors (they “perfectly” reflect one polarization and they convert the opposite one).
Despite only one mode is taken into account, the essential physical mechanism is well reproduced. This
approach extracts the necessary ingredients to successfully model the mirrors.

The empty cavity, made by the modelled chiral mirrors, generates a spectral helicity-preserving region (or
a fully transmitting region for one polarization) which is not available with a traditional interferometer. It
has been shown that region alters the standard achiral light modes. Specifically, when the light mode crosses
the preserving region Fano resonances are visible and an additional discrimination occurs. The latter is

147



due to the breaking of perfect conversion of left-to-right (or right-to-left) polarized light rays in the spectral
proximity of that atypical region. Surprisingly, the associated DCT signal has been recovered with two
different analytical approches (and numerically) to estimate the peaks and deeps as a function of energy.
Similar features have been found by inserting the Pasteur medium between the two mirrors. The main
difference is an impedance mismatch across the preserving region resulting in a misalignement of the light
modes.
A remarkable behaviour has been detected at resonance with the preserving frequency. At strong coupling,
Polaritons are generated in the proximity of the preserving region and they are clearly distinguishable by
calculating DCT. It means that their light part consists of more one polarization than the other, making
them chiral.

The differential circular transmission of the empty cavity is the maximal signal for one polarization, since
the mirrors perfectly transmit and convert the polarization that exits the cavity completely. The cavity DCT
dominates the DCT signal of the Pasteur medium, when the molecular frequency is close to the preserving
frequency. Another observable has been calculated to detect the influence of the engineered chiral mirrors on
the optical activity of the Pasteur medium. The observable is ∆DCT and records a significant increase in
the chirality of molecules by up to two orders of magnitude. The mechanism that generates the enhancement
is the crossing between one Polaritonic branch and the preserving region. The enhancement is revealed if the
length of the Pasteur medium and its oscillator strength are tuned so that the crossing takes place in those
regions where there is a partial breaking of the internal perfect conversion of polarization. There, polarized
light of one handedness probes many times the Pasteur medium of the same handedness resulting in an
increase in the natural chirality of the molecular ensemble.

Recent articles [59, 156, 154] draw perspectives on the existence of chiral Polaritons and their roles in
asymmetric chemistry and new chiral transition pathways. This second part shows for the first time
(to our knowledge) a cavity, whose chiral mirrors are modelled from an existing mirror, which
is able to generate the so-called chiral Polaritons. The chirality of Polaritons is given by the light
part which is polarized by the spectral proximity of the helicity-preserving region. This result clearly opens
doors to investigate quantum mechanically the chiral nature of Polaritons in terms of new energy shifts, more
available transitions and possible induction of chirality.

As the chiral shape of a mollusk body interacts with the handedness of its shell during
evolution, chiral mirrors reshape the chirality of a Pasteur medium during multiple single-
handedness reflections, by increasing it . The enhanced sensitivity to the chirality of the molecules is
at the heart of chiral sensing. The chiral mirrors could be useful to measure the concentration of the chiral
molecules given a mixture of right- and left-handed molecules. The thought experiment is the following:
The mixture characterized by a parameter C ∈ [0, 1], which describes the presence of left (0), right (1) or an
intermediate mixture, is inserted between the two chiral mirrors. The chiral mirrors enhance the signal of
the chirality of molecules and ∆DCT is the good observable to measure. It is obtained by measuring the
signal of the full system and sutracting the signal of the empty cavity. By doing this, the measured ∆DCT
could be used to extract the value C which is an indicator of how many left- or right-handed molecules are
present in the mixture. The mirror increases the signal by an order of magnitude up to two and thus could
considerably facilitate the delicate detection.
The modelled chiral Fabry-Pérot cavity is a valuable system and the newly discovered effects might be
fundamental for future works. It may be a promising system for biological, chemical and pharmaceutical
applications to measure chiral concentration and quantitatively separate enantiomeric forms.
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A

Counter-rotating and self-dipole terms

The simplest minimal coupling scheme in Quantum Electrodynamics, within dipole approximation, provides
for a single molecule (and single electron of mass m) interacting with a cavity mode

Ĥ =
‖~̂p− e ~̂A(~0)‖2

2m
+ V(~x) + ~ωc

(
â†â+

1

2

)
, (A.1)

with ~̂p the electronic linear momentum, ~̂A(~0) = ~ε(E0/ωc)(â+ â†) the vector potential operator (in Coulomb
gauge) evaluated at the molecule position (taken as origin of coordinates) with polarisation ~ε, V(~x) the
electrostatic potential, and a(a†) the annihilation (creation) operator of a cavity-mode photon.

Switching to the dipole representation is equivalent to performing the Göppert-Mayer time-independent
unitary transformation [28] Û = exp

{
−ie/~ ~̂A(~0) · ~x

}
on the Hamiltonian of eq. (A.1). The application of

the unitary transformation gives

˜̂
H =

‖~̂p‖2
2m

+ V(~x) + ~ωc
(
â†â+

1

2

)
− ~̂µ · ~̂E(~0) +

‖~ε · ~̂µ‖2E2
0

~ωc
, (A.2)

with ~̂µ = e~̂x the electric dipole operator of the molecule, and ~̂E(~0) = iE0(â− â†)~ε the electric field operator
evaluated at the molecule position. For a molecule acting as a two-level system with ground and excited
states |g〉 and |e〉 with energies εg, εe respectively, the Hamiltonian of eq. A.2 can be rewritten as

˜̂
H = Ĥm + Ĥc + V̂RWA + V̂nR + V̂SD, (A.3)

Ĥm = εg |g〉 〈g|+ εe |e〉 〈e| , (A.4)

Ĥc = ~ωc
(
â†â+

1

2

)
, (A.5)

V̂RWA =
~ΩR

2

(
|e〉 〈g| â+ |g〉 〈e| â†

)
, (A.6)

V̂nR =
~ΩR

2

(
|e〉 〈g| â† + |g〉 〈e| â

)
, (A.7)

V̂SD =
~Ω2

R

4ωc
, (A.8)

with Ĥm, Ĥc the respective Hamiltonian of the free molecule and cavity-mode. V̂RWA is the light-matter
dipole coupling Hamiltonian written within RWA and involving absorption or emission of a real photon, with
~ΩR = 2E0~µeg ·~ε the vacuum Rabi splitting. The last two terms are V̂nR the contribution of counter-rotating
terms of the dipole interaction involving virtual photon transitions, and V̂SD the static dipole term. The
sum of those two terms δV̂ = V̂nR + V̂SD is treated as a perturbation to the Hamiltonian written in RWA
ĤRWA = Ĥm + Ĥc + V̂RWA.
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The contribution of counter-rotating terms V̂nR to the ground-state Lamb-shift ∆εg, is obtained at
resonance (εe − εg = ~ωc), using second-order perturbation theory

∆εg ≈ −~Ω2
R

8

{
1

2ωc + ΩR√
2

+
1

2ωc − ΩR√
2

}
(A.9)

≈ −~Ω2
R

8ωc
. (A.10)

The corrections due to V̂SD are of the same order. For ~ωc = 2.8 eV and ~ΩR = 0.7 eV, the correction
∆εg ≈ 0.78%~ωc. This small correction justifies the choice to neglect these effects for the analytical derivation
in the first part of the manuscript.
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B

Adiabatic approximation for the analytical PES

This appendix provides some supplementary informations regarding the derivation of the PES for the Lower
Polariton. The starting point is the Holstein-Tavis-Cummings Hamiltonian (see eq. (4.22)), keeping only
one vibrational mode of frequency ωv and the states coupled to the cavity mode:

Ĥ Nmol =
N∑
i=1

{[
εg +

1

2
ω2

v

(
Qv,i −Qv,g

)2] |gi〉 〈gi|+ [εe +
1

2
ω2

v

(
Qv,i −Qv,e

)2] |ei〉 〈ei|}+

+ ~ωcâ†â+
~ΩR

2

N∑
i=1

(
|ei〉 〈gi| â+ |gi〉 〈ei| â†

)
,

(B.1)

Defining the Huang-Rhys factor gv = Qv,e/2x0v (Qv,g = 0) with x0v =
√
~/2ωv, and the dimensionless

displacement of molecule i by qv,i = Qv,i/x0, the eq. (B.1) can be rewritten as

˜̂
H Nmol = Ĥ0 + V̂eph, (B.2)

Ĥ0 =

N∑
i=1

{(
εg +

~ωv

4
q2

v,i

)
|gi〉 〈gi|+

(
εe +

~ωv

4
q2

v,i

)
|ei〉 〈ei|

}
+ (B.3)

+ ~ωcâ†â+
~ΩR

2

N∑
i=1

(
|ei〉 〈gi| â+ |gi〉 〈ei| â†

)
(B.4)

V̂eph =
N∑
i=1

gv~ωv (gv − qv,i) |ei〉 〈ei| , (B.5)

where Ĥ0 is the Hamiltonian in absence of coupling to the vibrational mode (gv = 0) and V̂eph the electron-
phonon interaction. The electron-phonon coupling strength of V̂eph can be measured either by gv or λv =
g2

v~ωv. These two parameters are “small” compared to Ω̃R in the light-matter strong coupling regime of Fig.
4.9 of the manuscript.

In the following, the analysis focuses on the single-molecule strong coupling regime (but the arguments
are similar for N molecules). The Hamiltonian in eq. (B.2) becomes

Ĥ1mol =

(
~ωc + εg + ~ωvq

2
v/4 ~ΩR/2

~ΩR/2 εe + ~ωv (qv − 2gv)2 /4

)
. (B.6)

The diagonalization of Ĥ1mol gives the exact expression for the PES of Lower Polariton:

E− =
1

2

(
εg + εe + ~ωc − ~

√
(δ + gvωv (qv − gv))2 + Ω2

R

)
+

~ωv

4

(
q2

v + 2gv (gv − qv)
)
, (B.7)
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where the detuning is defined as δ ≡ ωc + εg/~− εe/~.
The expansion at second-order in gv � 1 gives:

E−, g2
v

=
1

2

(
εg + εe + ~ωc − ~

√
δ2 + Ω2

R

)
+

~ωv

4

q2
v +

2gv (gv − qv)
(
δ +

√
δ2 + Ω2

R

)
√
δ2 + Ω2

R

− ωvq
2
vg

2
vΩ2

R(
δ2 + Ω2

R

)3/2
 .

(B.8)
Instead, the expansion of the exact PES at first order in λv/~

√
δ2 + Ω2

R � 1 produces

E−, adiab =
1

2

(
εg + εe + ~ωc − ~

√
δ2 + Ω2

R

)
+

~ωv

4

q2
v +

2gv (gv − qv)
(
δ +

√
δ2 + Ω2

R

)
√
δ2 + Ω2

R

 (B.9)

The eq. (B.9) corresponds to the strong-coupling “adiabatic” approximation performed in the first part of the
manuscript (see Section 4.3.2). The expansion in gv (see eq. (B.8)) contains an additional term with respect
to the adiabatic expansion (see eq. (B.9)). This term of order λv/~ΩR can be seen as a renormalization of
the vibrational frequency ωv mediated by electron-phonon coupling. In the regime of weak electron-phonon
coupling adopted in Section 4.3.2

(
λv � ~

√
δ2 + Ω2

R

)
, the eq. (B.8) converges to the result of eq. (B.9).

Although similar, the adiabatic approximation is simpler and allows a tractable extension to the case of N
molecules coupled to the cavity mode.

The corresponding equilibrium positions for the nuclei (minimum of the PPES) within the two approxi-
mations are:

∆Qv,−, adiab = gv

δ +
√
δ2 + Ω2

R√
δ2 + Ω2

R

, (B.10)

∆Qv,−, g2
v

= −gv

(
δ2 + Ω2

R

) (
δ +

√
δ2 + Ω2

R

)
ωvg2

vΩ2
R −

(
δ2 + Ω2

R

)3/2 . (B.11)

Figure B.1 and Figure B.2 show the comparison of these approximate equilibrium positions and PES with
the exact one, as a function of both gv and detuning δ. The “adiabatic” approximation (∆Qv,−, adiab and
E−, adiab) provides a very accurate agreement with the exact result even at finite gv and δ, in the strong
coupling regime, while ∆Qv,−, g2

v
and E−, g2

v
converge to the expected result only at low electron-phonon

coupling, and at resonance.

Figure B.1: (a) Nuclei position ∆Qv,− corresponding to the minimum of the LP PES, varying gv at resonance
(δ = 0), for the exact expression (dashed blue line), the adiabatic expansion (orange line) and the expansion
at order g2

v (green line). The parameters are as follows: εg = 0 eV, εe = 2.8 eV, ~ωc = 2.8 eV, ~ωv = 0.05 eV
and ~ΩR = 0.7 eV. (b) Same plot as a function of detuning δ with gv = 0.5.
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Figure B.2: PPES for the LP (ε−) varying the reaction coordinate (∆Qv), for the exact numerical expression
(dashed blue line), the expansion at order g2

v (orange line) and the adiabatic expansion (red line). The ground
state is shown as a green line. On the left the resonant condition and on the right the PES is out of resonance
with respect to the cavity mode. Except for the resonance condition, εe = ~ωc = 2.8 eV, and the out of
resonance for which εe = 4.8 eV 6= ~ωc = 2.8 eV all the others parameters are the same as Figure B.1.

This analysis justifies the choice of the adiabatic approximation in Section 4.3.2, which is also easily
extended to the case of N molecules, providing the PPES in eq. (4.32).
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C

Achiral mirrors which preserve the handedness

An ideal case is to suppose that the mirrors are not chiral but they can still preserve the polarization inside
the cavity. This means that they fulfill the usual relations at the boundary between different materials, and
at normal incidence the transmittances and the reflectances are simply T1,+,hp = T1,−,hp ≡ T1, T2,+,hp =
T2,−,hp ≡ T2 and R1,±,hp = R2,±,hp ≡ R, respectively. Inserting these simplifications in eq. (13.14), the DCT
gets

DCT ahp⊥ = 2

(
e−α+L − e−α−L

) (
1−R2e−2αL

)
+ 2Re−2αL (cos 2β+ − cos 2β−)

(e−α+L + e−α−L) (1 +R2e−2αL)− 2Re−2αL (cos 2β+ + cos 2β−)
, (C.1)

where the superscript ahp means an achiral mirror (“normal mirror”) with the property to preserve the
handedness of the reflected rays of light in cavity.
Figure C.1 shows the differential circular transmission at normal incidence for an interferometer with “normal”
mirrors and for the same interferometer with achiral mirrors which preserve the handedness. It is assumed
that the interferometer with helicity preserving mirrors has a constant reflectance equals to 0.95. The cavity
with preserving helicity mirrors enhances the DCT of about one order of magnitude, with respect to the
chiral parameter κp = 10−3. The enhancement takes place around 3.7 eV, far away from the resonance of the
material under investigation. This discrepancy between the two DCTs is mainly due to the presence of the
real part of the refractive index in DCT ahp⊥ , term contained in β± = kn′±,re. The real part of the refractive
index, directly connected to the optical rotation, dominates over the absorption coefficients α± producing a
behaviour similar to the real part of κp (see eq. (12.7)) at resonance and an enhanced change of sign around
3.7 eV. Going to higher frequencies similar patterns appear for the periodic nature of the terms cos 2β± in
the numerator and the denominator of eq. (C.1).

Figure C.1: DCT for the analytical formula of the helicity preserving mirror (see eq. (C.1)) (light-blue
line) and for the analytical one (see eq. (12.34)) (orange dashed line) from a Fabry-Pérot interferometer,
composed by air-chiral P3HT-air, as a function of ~ω in unit of eV. Parameters are as follows: n = 1, R = 0.95,
LP3HT = 100 nm, ε∞,P3HT = 2.89, (~2ω2

pf0)P3HT = 0.3 eV2, ~ω0,P3HT = 2.4 eV, ~γP3HT = 0.28 eV, and
κp = 10−3.
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