
HAL Id: tel-03772696
https://theses.hal.science/tel-03772696

Submitted on 8 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local distributed lifelong learning system architecture
applied to smart buildings

Angan Mitra

To cite this version:
Angan Mitra. Local distributed lifelong learning system architecture applied to smart buildings. Arti-
ficial Intelligence [cs.AI]. Université Grenoble Alpes [2020-..], 2022. English. �NNT : 2022GRALM010�.
�tel-03772696�

https://theses.hal.science/tel-03772696
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Angan MITRA

Thèse dirigée par Denis TRYSTRAM,Professeur

préparée au sein du Laboratoire d'Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Architecture de système de formation continue
distribuée locale appliquée aux bâtiments
intelligents

Local distributed lifelong learning system
architecture applied to smart buildings

Thèse soutenue publiquement le 10 mars 2022,
devant le jury composé de :

Monsieur FREDERIC DESPREZ
Directeur de recherche, INRIA CENTRE GRENOBLE-RHONE-ALPES,
Président
Monsieur PHILIPPE LALANDA
Professeur des Universités , UNIVERSITE GRENOBLE ALPES,
Examinateur
Monsieur THANG KIM NGUYEN
Maître de conférences HDR, UNIVERSITE EVRY VAL D'ESSONNE,
Examinateur
Monsieur ALEXANDRE VAN KEMPEN
Ingénieur docteur, QARNOT COMPUTING, Examinateur
Monsieur CHRISTOPHE CERIN
Professeur des Universités, UNIVERSITE SORBONNE PARIS NORD,
Rapporteur
Madame NATHALIE HERNANDEZ
Professeur des Universités, UNIVERSITE TOULOUSE 2 - JEAN
JAURES, Rapporteure

Local distributed lifelong learning system
architecture applied to smart buildings

Thesis report submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

by

Angan Mitra

Under the supervision of

Denis Trystram, Yanik Ngoko

Acknowledgments

I express my deepest gratitude towards my guardian angel Professor Denis Trystram for

the constant help and encouragement from the starting of the thesis work. I am fortunate to

have worked under the supervision of Yanik Ngoko who has been phenomenal in striking

the right balance between guidance and freedom to explore on my own. Inputs from Qarnot

Computing has been fundamental in setting the road-map relevant for industrial usage. I have

been fortunate to have my supervisors who never failed to provide me with timely reviews and

suggestions wherever required. Thank you for having faith in me.

Probably it will be unfair if I undermine the immense love and support from my parents and

friends, especially when the world witnessed the first and hopefully the last pandemic of this

century. Notably, I am grateful to Swarnali Roy, a doctoral student of marketing at University

of Grenoble Alpes for making me aware on the physiological aspect of technology acceptance,

a key ingredient for framing this thesis work. Last but not the least, thank you Louis Closson for

proof reading the manuscript and pointing out the grammatical errors to improve the readability

of the document.

Table des matières

Acknowledgments i

List of Tables vi

List of Figures viii

Abstract xii

Abstract (French) xiii

1 Introduction 1

1.1 Evolution of Edge Computing . 1

1.2 Smartness for Buildings . 3

1.3 Key Contributions . 5

1.3.1 Document Structure . 6

2 Related Works 8

2.1 Building Management Systems . 8

2.1.1 Spatial Representation . 10

2.1.2 Predicate Logic Frameworks . 12

ii

2.1.3 Sensing and Control . 14

2.1.4 Review of Technology Acceptance . 15

2.2 Edge Intelligence . 17

2.2.1 Federated Learning . 20

2.2.2 Projection-free Optimization . 21

2.2.3 Decentralized Learning . 23

2.2.4 Lifelong Learning . 24

3 Non Intrusive Sensing 27

3.1 Building Parser . 27

3.1.1 Geometric Abstractions . 27

3.1.2 Parsing Operators . 29

3.2 Spatial Graph . 31

3.2.1 Structural Path . 32

3.2.2 BIM Parsing . 33

3.2.3 One Shot Enrichment . 35

3.3 Non Intrusive Sensing . 37

3.3.1 Tag-less Sensing . 40

3.3.2 Connected Space Model . 41

3.3.3 Occupancy Prediction . 42

3.3.4 Spatial Spectral Analysis . 45

3.4 Chapter Summary . 46

iii

4 Minimal Sensing Solution 47

4.1 Virtual Sensor Field . 48

4.1.1 Sensor Grouping . 48

4.1.2 Minimal Support Group . 49

4.1.3 Lifelong Policy Optimiser . 50

4.2 Virtualization Validation . 53

4.2.1 Policy Evidence . 56

4.2.2 Policy Discovery . 60

4.2.3 Policy Optimiser . 61

4.3 Chapter Summary . 67

5 Co-Learning at Edge 68

5.1 Energy - Ambience at Edge . 69

5.1.1 Predictive Interaction Model . 69

5.1.2 Performance Evaluation . 72

5.2 Offline Federated Personalization . 76

5.2.1 Scheduled Shared Storage Learning 77

5.2.2 Performance of Federated Forecasting 78

5.2.3 Impact of Federation Affinity . 82

5.3 Projection Free Online Decentralized Learning 83

5.3.1 Prediction Performance . 90

5.3.2 Effect of Network Topology on Learning 94

5.3.3 Effect of Decentralization . 94

iv

5.4 Software Implementation . 96

5.4.1 Architecture . 96

5.4.2 Run-times . 101

5.5 Chapter Summary . 101

6 Conclusion 103

6.1 Take-away Highlights . 103

6.1.1 Sensor Less Intelligence . 103

6.1.2 Virtual Sensor Field . 104

6.1.3 Energy Ambience Dynamics . 104

6.1.4 Co-operative Edge Intelligence . 105

6.2 Future Work . 106

6.3 Work Dissemination . 107

Bibliography 109

Liste des tableaux

2.1 Activity List . 16

3.1 Region of Interest Profiling . 37

3.2 Possibility of sensor distribution variation due to spatial and usage constraints . 38

3.3 Experimentally determined sensor weights used for activity discovery. 43

4.1 Virtual Sensor Field Accuracy (Ls) with Spatial Grouping or predicting a cell

using columns from the same row. 54

4.2 Virtual Sensor Field Accuracy (Ld) with Domain Wise Grouping or predicting

a cell using rows from the same column. 55

4.3 Best configuration of the Virtual Sensor Field with least forward error for the

building studied. 66

5.1 Hyperparameters summary for the grid of experiments 72

5.2 Effect of Hyper-parameters Measured by RMSE and Standard Deviation 74

5.3 Generalization error of LSTM and GRU models executing in a kitchen and

open office area. 80

5.4 Performance comparison between 4 network configurations 92

5.5 Impact of Networking on 7 learners configuration. 94

5.6 Impact of Topology on Temperature Forecasting Performance with 13 learners. 94

vi

5.7 REST API list . 99

5.8 Average API runtimes . 100

Table des figures

1.1 Distinction between role of Cloud and Edge computing to process sensor streams

and drive actuators. Reference :www.lannerusa.com 2

2.1 Using metadata [1] to run smart building applications. 9

2.2 Hierarchical arrangement of definitions in a IFC framework. Reference https:

//technical.buildingsmart.org/standards/ifc/ 10

2.3 Example of a Constructive Solid Geometry Model used for describing [2] phy-

sical objects to be stored in IFC . 11

2.4 Abstract Syntax Tree for a Space-time Query 13

2.5 Information concepts in Brick and their relationship to a data point. [1] 14

2.6 Classical approach to machine learning . 17

2.7 Learning continually through interaction and feedback 18

2.8 Architecture of federated learning set up [3] 20

2.9 Projection Free Linear optimization by Frank Wolfe 22

2.10 Learning from heterogeneous data distributed over devices 23

2.11 Components in Lifelong Learning Schematic 24

2.12 A 6 level pyramid to gauge edge intelligence [4] 25

3.1 Building Box illustration, edges of box highlighted in blue 28

viii

www.lannerusa.com
https://technical.buildingsmart.org/standards/ifc/
https://technical.buildingsmart.org/standards/ifc/

3.2 Illustration of an interval tree, intervals denoted by S1,S2&S3 29

3.3 Hull Generation of a door from multiple contour points (in red) by Delaunay

Triangles (in blue) . 31

3.4 Class Diagram of IFC Parser . 34

3.5 Superimposing partial slicing places to render a floor-plan. 35

3.6 Top view of an office space with 5 groups in table (purple) and overhead lights

(green) . 36

3.7 Extraction of Illumination Coverage and Furniture Placement from a room. . . 36

3.8 Effect of spatial and temporal effects on sensor signals. 39

3.9 Spatial Path Graph (GP) of spaces in the floor-plan. The points in blue are

spaces where sensors are placed and access to the floor-plan is highlighted in

green. 41

3.10 Comparison between losses of oracle and trained models. 43

3.11 Sensor values and detected occupancy on a 0-1 scale normalized view. 44

3.12 Energy Score Distribution of spaces assuming fully occupancy 45

3.13 Lunch time office occupancy scenario with dynamic edge weights 45

4.1 Error Matrix for 2 zones . 53

4.2 Virtualization prediction on processing similar ambience channels as one group 57

4.3 Error Matrix for 2 zones . 58

4.4 Dual Objective Optimization . 59

4.5 Trade off between Forward O1 versus Backward O2 Translation 61

4.6 Characteristics of the Policy Space . 62

ix

4.7 Policy Effect on two Correlated Channels : temperature and air-conditioning

power. 63

4.8 Average Reconstruction Loss per floor for 3 ambient sensors (temperature,

humidity, luminosity), and 3 power consumption channels (AC, Application,

Lights) . 65

5.1 Edge Computing Infrastructure . 68

5.2 Sliding window procedure for forecasting short-term air temperatures. 71

5.3 Hyper-parameters Performance Evaluation with Mean RMSE and Standard

Deviation . 73

5.4 Comparison of temperature forecasts for the two models. The first and second

facets represent the power and heat-sink inputs to the forecasting models. The

results of such models are illustrated in the third facet in addition to the original

air temperature data. 75

5.5 Histogram distribution (log scale on y axis) of the absolute difference between

the original temperature data and the temperature forecasts performed by model

2. Samples at the left of the vertical dotted line account for 93.53% of the total

number of samples (forecasts), and the samples at the right of the same line

account for the remaining 6.47%. 75

5.6 Chronologically executed steps for synchronous federated personalization. . . 77

5.7 Framework Components running on the Qarnot Infrastructure 78

5.8 Mean Average Error of 6 auto-updating models distributed over 3 spaces with

2 models per room over 8 months. 79

5.9 Performance gain due to federation . 80

5.10 Federated model performance against isolated baseline model. 81

x

5.11 Pairwise Federated Loss curves of unit layered LSTM models placed at 3

rooms. 82

5.12 Loss values of different network size on complete topology. (Plot on log-scale) 93

5.13 Gap values of different network size on complete topology. (Plot on log-scale) . 93

5.14 Loss values of decentralized and centralized Meta Frank-Wolfe (Plot on log-

scale). We use data from 13 zones connected over a complete topology on

decentralized setting (red curve) to compare with its centralized counterpart

(black curve) . 95

5.15 Loss ratio of decentralized and centralized Meta Frank-Wolfe on different net-

work size. 95

5.16 Lifelong learning Architecture . 96

5.17 Example of YAML configuration file to deploy the 4 containers underlying the

Building Management Software. 97

5.18 Example of YAML configuration to specify the sensors configuration 97

5.19 Example of YAML configuration to specify the sensors configuration 98

Abstract

Buildings both residential and commercial together consume close to half of the world’s

total energy produced and is growing at a non decreasing pace. So efficient resource utilization

forms the primary motivation behind integrating smartness into a brick and mortar structure.

Although active from early 2000’s, literature survey reveals that there are significant business

gaps that bottlenecks smart building development. Data privacy, high capital investments

and obscure monetary benefits are the major factors that impede the motivation to integrate

smartness in a building.

This work introduces the idea of a zero sensor intelligence by embedding human-space

interaction models on a graph based abstraction of a building. Spectral decomposition of the

semantically enriched connected graph helps in ranking multiple spaces with regard to temporal

importance or likely energy dissipation. Next, we extend the problem of optimal sensor place-

ment to finding the minimal sensing group that can robustly approximate missing sensors to

provide complete spatial coverage. Lifelong learning mechanism is used to identify robust sen-

sor placement configurations and continually learn a metric of hardness to approximate. This

culminates in a novel pre-integration platform to bring clarity on at-least how many sensors

are to be installed and where. Once sensors are installed, the platform enforces data privacy

by design, being inspired from the philosophy of edge computing to process data as close as

possible to the generation site. In a nutshell, the work lays the blueprint of a generic smart buil-

ding solution with lesser sensors, lower carbon footprint and auto-updating models with strictly

localised raw data at edge.

Abstract

Les bâtiments résidentiels et commerciaux consomment ensemble près de la moitié de

l’énergie totale produite dans le monde et croissent à un rythme non décroissant. L’utilisa-

tion efficace des ressources constitue donc la principale motivation derrière l’intégration de

l’intelligence dans une structure de brique et de mortier. Bien qu’elle soit active depuis le dé-

but des années 2000, une étude de la littérature révèle qu’il existe des lacunes commerciales

importantes qui entravent le développement de bâtiments intelligents. Confidentialité des don-

nées, investissements en capital élevés et bénéfices monétaires obscurs sont les principaux

facteurs qui entravent la motivation à intégrer l’intelligence dans un bâtiment.

Ce travail introduit l’idée d’une intelligence sans capteur en intégrant des modèles d’in-

teraction homme-espace sur une abstraction basée sur un graphe d’un bâtiment. La décompo-

sition spectrale du graphe connecté enrichi sémantiquement aide à classer plusieurs espaces

en fonction de l’importance temporelle ou de la dissipation d’énergie probable. Ensuite, nous

étendons le problème du placement optimal des capteurs à la recherche du groupe de détection

minimal qui peut approximer de manière robuste les capteurs manquants pour fournir une cou-

verture spatiale complète. Le mécanisme d’apprentissage tout au long de la vie est utilisé pour

identifier des configurations de placement de capteurs robustes et apprendre en permanence une

métrique de dureté à approximer. Cela aboutit à une nouvelle plate-forme de pré-intégration

pour clarifier au moins combien de capteurs doivent être installés et où. Une fois les capteurs

installés, la plateforme applique la confidentialité des données dès sa conception, s’inspirant

de la philosophie du edge computing ou traite les données au plus près du site de génération.

En bref, le travail pose le modèle d’une solution générique de bâtiment intelligent avec moins

de capteurs, une empreinte carbone plus faible et des modèles de mise à jour automatique avec

des données brutes strictement localisées à la périphérie.

Chapitre 1

Introduction

1990 marked the year when Tim Berners-Lee established World Wide Web and 15 years

later, the internet started offering online services instead of following the classical install and

run the program locally method. This paradigm shift has been made possible largely due to

hardware improvement achieving high frequency processors, faster I/O busses, and definitely

technological leaps to increase the network speed.

1.1 Evolution of Edge Computing

As of 2021, Cloud computing is still the major service provider of utility computing where

end users are charged in pay-as-you-go manner for executing software in a remote data cen-

ter. Such cloud services are typically offered in three flavours : Software-as-a-Service (SaaS),

Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). IaaS provides organizations

with completely cloud-hosted servers and an associated operating system (OS) which gives

the developers the ability to organize their workloads, data distribution and even place specific

hardware request to the provider. The gain in using IaaS for institutions comes from avoiding

the time, energy and cost due to in-premises server stacks. PaaS gives organizations a fully

featured platform in which they can develop, test, and deploy their applications from the cloud

without bothering about the underlying hardware or networking, and security (and potential in-

frastructure failures). SaaS only deals software deployment while server management and data

1

retention responsibilities are delegated to the data center. Typically data centers are made up

of multiple servers hosting/running internet services and consume close to 5% of the world’s

total energy produced in the scale of Mega-Watts (MW). The classical design of cloud services

possess a major bottleneck in terms of response latency, energy footprint and cooling cost.

Now let’s track the evolution of low powered computing for the last 30 years by observing

the market segment that are primary users of cloud services. To give an example of a perspective

scale, the best computers in 1960 had maximum 20 kB of hard disk space, while some of

today’s best phone capacity is beyond 1 TB (1073741824 Kb). Notably in 1999, the term

"Internet of Things" was first introduced in reference to automated supply-chain management.

The concept of enabling a computer to sense information without human intervention was then

applied to other fields such as healthcare, home technology, environmental engineering, and

transportation. Success in sensing technology led to embedded cameras and sensors that act as

data sources for running a plethora of applications like object detection, photo editing, indoor

localization and much more. While mobile phones, tablets, laptops and desktops grew to cater

to personal or office needs, the manufacturing industry too leveraged the power of computing

and connectivity.

FIGURE 1.1 – Distinction between role of Cloud and Edge computing to process sensor streams
and drive actuators. Reference :www.lannerusa.com

2

www.lannerusa.com

So far, the de-facto modus operandi for embedded applications is to upload observed data

and trigger the processing in servers by calling API end points hosted in cloud. This approach

comes with an alarming repercussion in terms of scalability on the context of an explosive

growth and purchase of embedded systems. A ground report by CISCO [5] anticipates more

than 850 ZB of data generation worldwide through IoT devices by 2022 which raises signifi-

cant operating concern for cloud volumes. Around 2015, edge computing [6] was born out of

the philosophy to process data as close to the generation site as possible as shown in Figure

1.1. IBM claims that the proximity to data at its source can deliver strong business benefits,

including faster insights, improved response times and better bandwidth availability. In 2010,

a French startup named Qarnot Computing came up with the idea of world’s first computing

heater that has evolved as a data center at edge. The encapsulation of computing units as a

heating element further saves the explicit cost of cooling, since the thermal energy is dissipa-

ted for warming up spaces in buildings and naturally promotes a promising circular economy.

Typically a smart heater is equipped with ambient sensors primarily to sense the environment

and control internal parameters for a dynamic control. For instance, a heater without an indoor

temperature sensor will fail to understand if it has overheated or under-heated its surroundings

during operation. Popularity of sensor enabled embedded systems has spurred the growth of

IoT and provides the support to develop useful data-driven applications.

1.2 Smartness for Buildings

Cheap availability of ambient sensors, smart lighting and energy meters has facilitated in

an adhoc incorporation of IoT products in buildings to generate intelligence. Often the opti-

mal solution is found by learning a data driven representation to solve business problems like

occupancy detection, security alerting, predictive control of thermal units, forecasting sensor

values, etc. Although integrating smartness is becoming a hot topic for reducing carbon foot-

print at a city scale, historically the majority of buildings were not designed to cater to ambient

intelligence. Advances in Internet of Things (IoT) have led to buildings as an ensemble of inter-

connected systems of sensing and control. The big motivation for adding a layer of smartness is

to solve the problems of energy inefficiency, maintenance cost, space utilization and resource

3

management in a building. Typically a building architecture constitutes of semantically parti-

tioned space with walls embedding doors, stairs, elevators and ventilation through windows.

The design and description of a building are usually saved in an ISO file format which is essen-

tially an incremental and recursive technique to generate and store 3D co-ordinates. However,

it can not be assumed that all architects will design an identical building in the exact same

way, which can lead to ambiguity in parsing. It is non trivial to guess the connections from a

building file for which computer aided parsing techniques are used to generate structured meta

data. One can demarcate sensors distributed over spaces on the metadata for ease of querying

like "Which rooms have CO2 sensors?"

The notion of smartness can be perceived through solutions of a spatio-temporal query

space surrounding a building. The three key components of the Query space are spatial aware-

ness, temporal observations and inference extraction. A query is spatial in nature if the resolu-

tion process only relies on geometric information about building elements like door, window,

wall, stair, room, corridor, spaces, ceiling, floor, elevator etc. Spatial queries can be used to

solve dynamic path formulation and maximal packing problems such as

— What is the average carpet area per floor?

— What is the pathway to navigate to a space or exit a floor?

— How well is a space ventilated without using external ambient controllers ?

— What part of the building is most likely to illuminated at day?

A building is constantly interacting with environmental variables like sunlight, humidity,

quality of air etc. Equipping zones with sensors help to record or stream temporal data for

answering Spatio Temporal queries such as :

— What is the average power consumption during working hours in a building?

— How does the average CO2 level vary between weekdays and weekends?

— What is the average temperature difference between exterior and indoor environments

when the Air Conditioning unit is on?

Although the two query types that have been introduced so far mostly retrieve domain

knowledge and perform data comparison or value aggregation to generate the answer, they

often lack predictive capability. Instead machine learnt techniques embed algorithms to regress

future predictions or classify into discreet classes to solve for non trivial answers to questions

4

like

— Is there a way to detect unnecessary sensors and lower the footprint of the smart building

solution itself ?

— What are the best spots in a building to place sensors, and what type they should be?

— Is the building auto aware of the capital and operating cost to predict the break even

point for implementing smartness?

— Can there be a system design that can be data safe and process data on the fly?

1.3 Key Contributions

Unfortunately the acceptance traction of smart building technology is facing serious bot-

tlenecks due to installation costs, obscure returns leading to a distant break-even point and

data privacy concerns. The work addresses three major pain points pertaining to smart building

technology acceptance by end-users in an era of Internet of Things. Firstly we propose a no

sensor or solely spatial intelligent framework that is built on top of a graph based abstraction

for a building’s architecture. One shot semantic meta data enrichment along with human-space

interaction models are developed for a spectral analysis of indoor dynamics. This gives the

holistic picture of a building and has the potential to model conditional interaction scenarios

to understand spatio-temporal energy dissipation. Next, we investigate if lack of spatiotem-

poral awareness can lead to excessive sensors or non-optimal distribution in a building. The

motivation here is to lower capital and operating cost as well as energy footprint of the smart

building solution itself. The work introduces a pre-integration framework to measure the ease

of approximating a sensor stream through auto-creation of relevant machine learning models.

Evolutionary computing is used to solve a multi-objective optimization to come up with a mi-

nimalist sensing solution known as the Virtual Sensing Field. Experiments are carried on buil-

dings from France and Thailand that are situated in cold and warm climatic zones respectively.

The results show at-least a 60 % sensor reduction with the Virtual Sensor Field able to run oc-

cupancy detection in an unsupervised setting. Thirdly, we focus on executing computations as

close as possible to the data generation site also known as the edge layer. This leads to in-house

data retention and system maintained knowledge sharing policies between spaces. By design,

5

we prohibit raw data sharing amongst spaces, thereby removing the classical obscurity on data

privacy concerns for a building management system. In this regard, we introduce a mechanism

for federated personalization with no active mediators and a lightweight algorithm to support

peer to peer online learning. In a nutshell, the work exploits the concept of "less is more" to

plan methodically, bring down the initial investment and recurring expense for a smart building

solution. The resulting system blueprint is spatially aware, temporally observant, reactive by

nature and data safe by design.

1.3.1 Document Structure

The remaining of the work is arranged as follows :

— Chapter 2 establishes the context of the work within the recent developments on buil-

ding management system and artificial intelligence. The work additionally reviews the

acceptance of technology

— Chapter 3 abstracts the complexity in building information modelling into a graph-based

representation. The work introduces the concept of zero-sensor intelligence by propo-

sing graph-based human-space interaction models. Spectral decomposition of such en-

riched metadata is found useful to detect dynamic places of interest in real time. The

experiments are carried out on the data from the office of Qarnot Computing, Paris.

— Next Chapter 4 investigates about a layer of cost and energy cutting to optimally dis-

tribute sensors over spaces. Artificially intelligent substitutes for a fraction of actual

sensors for 100 % data coverage. Distributed learning with localised in house data is

performed for experiments from a seven storey building data in Thailand. The work

investigates effects over 25 zones with 3 ambient sensors (humidity, temperature, lumi-

nosity) and 3 energy channels (illumination, appliance, air-conditioning).

— Chapter 5 imposes stricter data privacy rules with no raw data transmission from site

and explores algorithms to predict the indoor thermal profile of a building. This is of

particular interest to Qarnot Computing, that offers edge computing through smart hea-

ters that can be installed on any building with an internet and power supply. This forms

the context to explore federated and decentralized learning techniques to incrementally

have better in-situ models.

6

— Chapter 6 summarises the key components of a generic smart building management

systems with a special focus on data privacy, non-intrusiveness, and utilization of edge

computing. One will also find the scope of future work to further modify the system on

counts of accuracy, decentralization and energy footprint.

7

Chapitre 2

Related Works

In this chapter we provide background knowledge to the reader to understand the formu-

lation developed in Chapters 3 - 5. This chapter contains an overview of building abstraction

formats, utility of management systems as well as a brief introduction to machine learning, with

emphasis on training and inference on edge. Furthermore, to increase the presentation flow and

quality of this chapter, many recent and related works are also presented in a intertwined man-

ner along the text of this chapter.

2.1 Building Management Systems

Smart applications [7] for buildings has been developed mainly for monitoring, analysis,

and control of Heating Ventilation Air Conditioning (HVAC) units, illumination channels, ap-

pliance power etc. Enriched Building metadata [8] has been used to derive causal relations

amongst spaces [9] and detect signature activities like finding faulty Air Handling Units [10]

found in HVAC systems. Building Management System (BMS) [11] is a set of computer-

controlled processes that monitor and act on building health and security. The initial interest

for developing BMS was automated control with lower energy foot-printing. The authors [12]

give a proof of concept on energy savings through automatic exchange of building geometry

for building design processes. Building metadata is utilised to serve a variety of smart building

applications with heterogeneous sensors as per Figure 2.1.

8

FIGURE 2.1 – Using metadata [1] to run smart building applications.

9

FIGURE 2.2 – Hierarchical arrangement of definitions in a IFC framework. Reference https:
//technical.buildingsmart.org/standards/ifc/

2.1.1 Spatial Representation

A building is a closed context of space time where one can observe repetitive patterns

or occurrences of activities. The semantic state of a space evolves as cause-effect interaction

between building elements, environment and people or human controlled/operated technology.

Different configurations of the floor can influence the nature or place of activity. For instance,

to have an offline meeting, a room needs have ample ambient light and thermal comfort. So

we start by covering how the knowledge of a building is digitally stored and abstracted for

designing a building management system.

A life cycle of a building comprises of independent stakeholders like architects, contrac-

tors, plumbers, electricians, material suppliers, etc. These people take part in either the design,

construction or maintenance phase of the building life cycle. Post design phase, the primary

work is in constructing the architecture physically to exist in the world. So there is a need for

an agreeable format for holding the digital information, with the least amount of ambiguity. Al-

though the know-how of buildings is as primitive as humanity it, it is only in 2013 that the first

ISO format was conceived and named as Industry Foundation Classes (IFC) and is now man-

datory for European construction projects. IFC is a standardized, digital description of the built

asset industry to save information related to Building Information Modeling (BIM). BIM [13]

is the process of designing geometric orientations and specifying functional semantics between

entities. There are around 4000+ entities defined in IFC and arranged as an entity-relationship

model following inheritance based hierarchy as shown in Fig. 2.2. The entry point to an IFC

10

https://technical.buildingsmart.org/standards/ifc/
https://technical.buildingsmart.org/standards/ifc/

FIGURE 2.3 – Example of a Constructive Solid Geometry Model used for describing [2] phy-
sical objects to be stored in IFC

file is the entity named IfcProject which describes a collection of building sites. Each IFC-Site

entity references to one or more building objects named IfcBuilding. IfcSite is spatially contai-

ned in IfcProject and inherits the map transform and World Coordinate System from IfcProject.

It is possible to customize the default transformation map between IFC defined and actual phy-

sical coordinates of a building. The building is usually organized into storeys, each containing

a subset of IfcObjects such as doors, walls, windows, elevators, roofs, ceilings, stairs, spaces,

etc.

Each IfcObject is associated with a set of properties (IfcObjectProperty) that describe the

physical shape and may optionally include material type. The location of a IfcObject is given

by I f cOb jectPlacement. Following the inheritance structure, a child object is placed inside

its parent object. The geometry of the child is defined in its Local Coordinate System (LCS)

with the origin defined in I f cOb jectPlacement. It contains the mapping between the origin

placement of child with regard to parent. Being defined in such a recursive manner, the starting

point leads all the the way up to I f cSite. I f cOb ject can be geometrically defined through

Implicit Geometry, which is a geometric representation, driven by attributes or constraints

on surfaces. Bounding-Box is the minimalist representation possible for a IFC object where

a box is a 3D octahedral defined by the element’s length attribute along X, Y & Z Axes in

its local coordinate system. Boundary representation is a collection of connected surfaces

11

and boundaries between solid and non-solid. For example, a cube can be represented by a set

of surfaces and a connectivity graph between the surfaces. Alternately, the same cube can be

defined using constraints applied to the length, width, or height attributes through Parametric

geometry that reduces complex geometry to simple or complex functional constraints between

surfaces/ edges/ vertices. The IFC model also proposes a notation system which supports use

of these primitives in extrusion, revolution and composition. Constructive Solid Geometry

(CSG) is a technique used in solid modeling to create a visually complex surface or object by

using Boolean operators to combine simpler objects called primitives as shown in Fig 2.3. In

case implicit geometry is not adequate for shape representation, a explicit shape definition is

also defined. It captures the semantic representation of a void by storing the physical parts in

terms of points, curves, surfaces and solid primitives. IFC representation is extremely useful

to build, visualize, exchange/port the building elements during it’s construction phase. It is a

complex task to look at an ".ifc" file and answer spatial queries like "Is the bathroom beside the

kitchen?", "What is the path to go from point A to B?" or "Is the kitchen beside the stair ?" etc.

It is due to the fact all the elements needed to answer the fact can be defined with regard to non-

identical parents. Hence one has to compute the boundary of each object, transform to World

Coordinates and then decide if the kitchen is beside the stair. Here in lies the motivation for

spatial abstraction with a single coordinate system to support efficient computation of spatial

queries.

2.1.2 Predicate Logic Frameworks

Next comes the step of integrating sensors to record or stream measurable variables related

to a building. The generated data makes it possible for temporal queries where operators are

used to retrieve data from a set of spaces or devices.

The sensor values are usually stored at a database or retrieved on device from the installa-

tion site. So we need to have a metadata to understand which places are generating what kind

of values. BRICK [1] is state of art building metadata scheme that captures the logical rela-

tionship amongst sensors distributed across building entities. A predicate relationship A op B

is established between two entities A and B, related through the "op" clause. The rudimentary

12

FIGURE 2.4 – Abstract Syntax Tree for a Space-time Query

operators shown in Figure 2.5, are highlighted in Italics as follows :

1. A contains B defines the spatial encapsulation of B by A or inversely B is isLocatedIn

A. (Location, sensor) and (Location, Equipment) are the compatible entities.

2. A controls B carries the meaning that A determines or affects the internal state of B

or inversely B isControlledBy A. Generally such relationships are developed between a

functional/actuating block and an equipment.

3. To imply the notion of A has some component B, we utilize hasPart or its inverse

isPartOf for the tuples of (Location, location), (Equipment, Sensors), and (Equipment,

Equipment).

4. Measurements are relative in nature for which we need to define A hasPoint B between

(A,B) from (Equipment, Sensors) or (Location, Sensors). The inverse relation given by

B isPointOf A, describe that B can be referenced by A.

5. The notion of flow or connectivity between entities A, B is given by feeds or inver-

sely isFedBy. Typically such relationships are observed between functional blocks and

equipment or between multiple equipments.

6. hasInput and its inverse isInputOf models the fact that A serves as an input for/to B.

Corollary operators for output are hasOutput/isOutputOf and both types relate between

a functional block and a sensor.

13

FIGURE 2.5 – Information concepts in Brick and their relationship to a data point. [1]

Such kind of frameworks represents a functional viewpoint of the building abstracting the re-

lationship between space and sensors by a set of Boolean predicates. One can now implicitly

define spatio-temporal semantics through presence of electrical appliances or non-electrical uti-

lities like wash basin, bath-tub, toilet seats etc. Often, this layer is utilized without incorporating

the spatial orientation due to high complexity in parsing the latter.

2.1.3 Sensing and Control

Sensing technology is the basis of perception for a system in order to be aware of the

surroundings. Typically at deployment, sensors are coupled with a micro controller/processor

to sample sensor values and store or stream data points. The first set of works in early 2000

reveals that one can extract meaningful patterns hidden/evident from sensor-generated time-

series data-sets. From discreet timestamped data, the notion of semantics play the pivotal role

to form Events for example, taking a shower for an hour implies bathroom usage which is

otherwise idle. Role of occupancy detection on energy consumption is evident from the novel

work [14]. In light of this, a considerable amount of effort has been put [15], [16], [17]

using semi-supervised, unsupervised learning methods. The work [18] enhances place-specific

activity recognition in a closed world setting by analyzing data at different resolutions and

compress into low resolution meta-data for spatio temporal querying. The challenges regarding

14

design of sensor networks [19] stem from velocity and volume of throughput data, resulting in

bandwidth issues, loss-less compression techniques, data/signal correlation with neighbouring

sensors.

The quantitative definition [20] of categorizing smartness is given by the metric Building

Intelligence Quotient(BIQ) [21], equals to the ratio between number of decisive/predictable

controls to observable parameters like ambient conditions, power consumption, etc. Intuitively

it means that a building without sensors being able to control appliances or indoor comfort is

at the highest band of intelligence. The minimum BIQ of 0 corresponds to a passive building

management system where no action is taken based on recorded sensor stream. Let us present

an example to compute the IQ of a building management system that controls a HVAC unit. If

control outputs are fan speed and outgoing air temperature while the data inputs are the CO2

levels and temperatures of indoor air and exterior environment, then the BIQ = 2
3 . Optimal

sensor placements and design decisions has the potential to improve a Building IQ. For a smart

building, ideally the BMS integration shall render the BIQ to be greater than 1. Although only

a few papers quantify building smartness, this piece of information is fundamental to our study

in order to reduce the numnber of installed sensors and derive a high BIQ.

2.1.4 Review of Technology Acceptance

Year 1990 marked the birth of world wide web and within 30 years, computing clouds or

data centers has already become an integral part of internet services. Diminishing prices of

sensing hardware led to a wide spread and often ad-hoc incorporation [15] of sensors on edge

for monitoring, analysis [21] and control. A 2019 review [22] of the smart building industry

highlights the major bottlenecks towards technological adaption. High installation costs, obs-

curity on data storage policies, and privacy concerns impede the acceptance [23] of Internet of

Things (IoT) in buildings. We briefly describe two major problems stemming from the point of

user adoption of a BMS solution.

Financing The cost of constructing [24] a smart building is usually 1.2-1.8 times a non-smart

counterpart. This initial capital poses the second barrier for a stake holder [25] to overcome

15

Semantic Space Label Possible Activities

Entrance Entering, Leaving ;

Kitchen Preparing, Cooking, Washing the dishes ;

Living Room Eating, Watching TV, Computing ;

Conference Room Meeting, Teleconference

Toilet Using the toilet

Staircase Going up, Going down ;

Walkway Walking, Transfer

Bathroom Using the sink, Using the toilet, Showering ;

Office Computing, Watching TV;

Bedroom Dressing, Reading, Napping ;

Common to all places Cleaning.

TABLE 2.1 – Activity List

before system installation. Average cost is around [10−20]$ for ambient sensors like humidity,

temperature while smart meters can be expensive around [50− 100]$. We observe that the

industrial or Do-It-Yourself (DIY) embedded sensor hardware are typically between [10−25]

Watts. Assuming 365 days a year, even a 20W sensor will consume close to 20× 24× 365 =

175.2 kilo Watt-hours annually. Industrial grade quality of smart sensor or power consumption

meters can be more energy efficient but expensive than assembled Do-It-Yourself counterparts.

Hence rather than ad-hocly placing sensors, a smart building solution needs to go through a pre-

evaluation stage before finalizing the bill of materials. Such a tool is missing from the literature

which can bring down the cost through a composite solution built from DIY components and

industrial grade sensors.

Data Privacy Typically a smart building application thrives on real time sensor data for mo-

nitoring or actuation. The operational data accumulated throughout the life span of a building

may contain sensitive patterns especially related to occupancy [14]. MavHome [9] attempts

to model a home as a rational agent that perceives the environment through sensors and user

interactions. Occupancy patterns can have spatial semantics attached to it. For instance in an

office space, gathering of people at cafeteria around noon time is likely to be for lunch whereas

16

in a conference room, a group of people is most likely to have a meeting. Often the smart home

inhabitant prediction problem utilizes the empirical frequency and temporal order of activities

to partition an action sequence into high level tasks. Table 2.1 depicts the possible types of

indoor activities [26] that can be discovered through machine learnt techniques. Although it

is not unrealistic to be aware of an activity in advance from calendar events and room reserva-

tion agenda, research shows that the notion of privacy and hacking can play an adverse impact

on non adoption of technology. The existing BMS solutions either barely shed light on data

practises or send sensitive data to the cloud by default.

2.2 Edge Intelligence

FIGURE 2.6 – Classical approach to machine learning

The motivation behind the advent of artificial intelligence was to mimic some of the data

processing capabilities of our ever-fascinating human brain. Rosenblatt in 1958 proposed the

Perceptron model [27] as a computational graph with auto updating edge weights. This was the

first instance where a machine was munching data and approximating mathematical functions

in order to mimic the neural capability of a human brain. Over the last 60 years, machine

intelligence have been customized for a plethora of fields, each domain developing its signature

such as computer vision and natural language processing. Four distinct elements can be roughly

observed in every machine learning setup : data, domain knowledge, application model and the

deployed environment. An application model leverages domain knowledge to train on the data

17

to affect its environment. Figure 2.6 shows the classical set up of machine learning where one

or multiple domain knowledge is embedded into the model. Typically the learning mechanism

for such architectures decrease the empirical loss on the train data set.

FIGURE 2.7 – Learning continually through interaction and feedback

Now once a model is trained, it can be used to answer a different problem just like the

way humans cross think on several topics to come to a solution or refine the answer with

time. This forms the basis for investigation in the multi domain setting, where a machine is

trained on a non-identical source domain to acquire characteristics of the target domain. For

example, a computer vision model that is trained to differentiate between cats and dogs can

be extended to identify between tigers and lions ! The main implicit assumption behind this

knowledge transfer is a high level of feature similarity between the domains, like all the four

animals above have 4 legs and 2 eyes ! Often such techniques fails to address the challenges of

a dynamic environment or especially when the characteristics of the testing sample is dissimilar

from train. To efficiently solve issues related to a reactive environment, researchers proposed

reinforcement learning where the application model continually learns from its environment.

The classical setup requires offline availability of data while online techniques can process data

on the fly. Figure 2.7 shows the schematic view of transfer and reinforcement learning. Now let

us see how such techniques are relevant for smart building applications that generate or stream

sensor data.

Classically, the sensor data is sent to a non-localized storage resource like structured or un-

18

structured databases or simple storage buckets hosted in a server or provisioned through cloud

services. One of the ways to decrease volume of data flow between embedded hardware and

the cloud is constraining data retention at site or transmitting useful knowledge representations

instead of raw data. The spatio temporal data is usually of interest for taking decisions based

on observing trends, forecasting patterns and detecting anomalies over time and space. Evolu-

tion of Artificial Intelligence over the span of 70 years has made it possible to learn compact

computational models for solving such aforementioned tasks in a data-driven fashion. A cen-

tralized way of learning is to gather all the data at one central repository/machine and execute

algorithms to automatically discover the representations needed for detection or classification

or prediction. Such an implementation lacks the benefit of parallel computation, possesses a

single point of failure and suffers from the high risk of entire data leak solely from one site.

In contrary, one can distribute the learning process over a set of computing nodes and leve-

rage intra-node connectivity to collectively solve one or more tasks. Each machine has access

to data for a different task and needs to learn a predictor, and nodes continually leverage the

connectivity to optimize the relationship between tasks. While learning a task over multiple

computing nodes [28], usually intermediate results are shared or aggregated by a central me-

diator to compute the final result. For Multi Task Learning (MTL), it is assumed all the tasks

are related to a global hidden/latent space[29] which is continually optimized. Learning tasks

jointly can lead to various improvements in performance when compared to solo training in

capturing relationships amongst non-IID and unbalanced data [30]. For example, MTL NET

[31] builds up a universal neural network, such that a hidden layer is shared between all the

tasks and customisation for each task occurs through a fully connected last layer. Now if the

tasks are running on embedded hardware instead on cloud, that implies computing constraint at

edge with low quantity and high quality data transmission coupled with low power requirement.

Edge Intelligence (EI) is defined as a confluence [32] between edge computing and Artificial

Intelligence, born out of the philosophy to process sensor data in-situ. A recent area of interest

in EI [33] [34] has been in porting deep learning modules to edge [35], specifically to reduce

computation and transmission of millions of training parameters over heterogeneous networks.

19

2.2.1 Federated Learning

Federated learning was introduced in 2016 by McMahan et al [36] for solving a learning

task with the help of voluntarily participating devices (also referred to as clients) and a central

server coordination. The aim in federated learning is to fit a model to data, {X1, ...,Xm}, ge-

nerated by m distributed nodes. Each node, t ∈ [m], collects data in a non-IID manner across

the network, with data on each node being generated by a distinct distribution Xt ∼ Pt [37]

[38] [30]. The number of data points on each node nt may vary significantly and there can be

potentially a large number of nodes m in the network. Storage, computational and communica-

tion capacities of each node may differ due to variability in hardware, network connection and

power. Conceived first in 2016, over the span of the last 5 years, two distinctive approaches are

found in literature of federated learning. While Federated Stochastic Gradient Descent (Fed-

SGD) [39] transmits gradients to a central server, Federated Averaging (FedAvg) [40] uploads

the local model. In both forms of federation, the key motivation is to obtain a high quality

centralized model that can be trained through distributed site-localized data.

FIGURE 2.8 – Architecture of federated learning set up [3]

As per Fig 2.8, a synchronized federated learning round is described below where η ,n,K,nk

denote the learning rate, total number of data samples, total clients and data sample from an

individual client respectively.

20

1. The central server selects a subset of existing clients, each of which downloads the

current global model (wG
t) at time t.

2. Each client k performs gradient descent based on the local data and transmits either

the entire or a subset of gradients gk = ∇Fk(wt) in the case of FedSGD. The alternate

approach is to update the local model through wk
t+1← wk

t −ηgk and send wk
t+1.

3. In FedSGD, the server aggregates the gradients (typically by a weighted averaging) to

construct an improved global model by setting wG
t+1←wG

t −η∇ f (wt)=wG
t −ηΣK

k=1
nk
n gk.

In contrast for FedAvg, the client models are averaged to yield wG
t ← ΣK

k=1
nk
n wk

t+1.

4. A learning round is completed when every local model is updated by incorporating the

new global version by iterating over local epoch.

However due to data diversity [41], the learnt global model may not be the best local model pos-

sible per site. This leads the pathway for federated personalization where a local model incor-

porates the global knowledge for additional customization. However, one particular constraint

of local computations that one needs to pay attention is the computing capacity/resource at the

local level. Thus, one of the main challenges in federated learning setting is to design optimi-

zation algorithms that are light-weight and robust under uncertainty. Another drawback of this

mechanism is reliance on a global mediator who has the holistic view of the problem; which

also means corrupting the global can lead to adversarial attacks or performance losses.

2.2.2 Projection-free Optimization

In many online learning problems the computational bottleneck for gradient-based methods

is the projection operation. For example in Figure 2.9a, one wants to minimize f (x) given by

the blue function subject to a plane (coloured red). Instead of solving by the classical Lagran-

gian through gradient descent, one can alternately investigate the projection area. Frank Wolfe

algorithm was proposed in 1956 as an iterative first order approximation algorithm for convex

constrained optimization that solely operates on the constrained linear space.

While gradient descent for constrained optimization requires a projection step back to the

feasible set in each iteration, the Frank–Wolfe algorithm only needs the solution of a linear

problem over the same set in each iteration, and automatically stays in the feasible set. The

21

convergence of the Frank–Wolfe algorithm is sub-linear in general : the error in the objec-

tive function to the optimum is O(1
k) after k iterations, so long as the gradient is Lipschitz

continuous with respect to some norm. The same convergence rate can also be shown if the

sub-problems are only solved approximately [42].

(a) Geometric Interpreta-
tion [43] (b) Illustration of the Projection Operator [44]

FIGURE 2.9 – Projection Free Linear optimization by Frank Wolfe

Typically the online updating element in a projection free setting are linear optimization

oracles. Algorithm [45] is the online version of Frank Wolfe with an implicit centralized system.

Algorithm 1 Online Frank Wolfe Algorithm [45]
Input : A convex set K , a time horizon T , a parameter L, online linear optimization oracles
Oi,1, . . . ,Oi,L for each player 1≤ i≤ n, step sizes η` ∈ (0,1) for all 1≤ `≤ L

1: Initialize Oi,` for all 1≤ `≤ L
2: for t = 1 to T do
3: for every agent 1≤ i≤ n do
4: Initialize arbitrarily xxxt

i,1 ∈K
5: for 1≤ `≤ L do
6: Let vvvt

i,` be the output of oracle Oi,` at time step t.
7: Play xxxt

i,` and expect yt
i,`← argmina∈K < a,∇Ft(xxxt

i,`)>

8: Compute xxxt
i,`+1← (1−η`)yyyt

i,`+η`vvvt
i,`.

9: end for
10: end for
11: end for

22

2.2.3 Decentralized Learning

FIGURE 2.10 – Learning from heterogeneous data distributed over devices

One way to conceptualize collective learning is through a peer to peer exchange protocol,

where only partial information is revealed to each participant. This paves the path for decen-

tralized algorithms that can communicate with peers and process data in an online manner.

Typically, these algorithms operate on gradient exchanges which require projecting interme-

diate solutions onto the feasible set. In the paradigm of edge computing, where low power and

simpler hardware are deployed, the projection step is likely to be a computational bottleneck.

Yan et al. [46] introduced distributed online projected subgradient descent and showed vani-

shing regret for convex and strongly convex functions. In contrast, Hosseini et al. [47] extended

distributed dual averaging technique to online setting using a general regularized projection for

both unconstrained and constrained optimization. A distributed variant of online conditional

gradient [48] was designed and analyzed in [49] that requires linear minimizers and uses exact

gradients. However, computing exact gradients may be prohibitively expensive for moderately

sized data and intractable when a closed form does not exist. In this work, we go a step ahead in

designing a distributed algorithm that uses stochastic gradient estimates and provides a better

regret bound than in [49]. In a nutshell, we aim to design an online projection free algorithm

that is suited for edge computing and applied to prediction problems.

23

FIGURE 2.11 – Components in Lifelong Learning Schematic

2.2.4 Lifelong Learning

So far, we have seen algorithmic developments and localized data handling techniques to

fine tune models where the system is focused on solving a single task perfectly on deployment.

This is in stark contrast to how humans multitask, an observation rightfully discovered by Thrun

and Mitchell in 1995 [50]. The authors introduce a novel system-oriented approach towards

machine learning where one focuses on knowledge representation and inferring meaningful

information to solve an incoming new task. The survey paper [51] defines Lifelong Learning

(LL) as a continual learning process where at any point of time, the system has performed N

tasks and when faced with the (N+1)th task, it uses knowledge gained from N tasks to solve

the upcoming task. Let the previously learnt tasks (T1,T2, . . .TN) with corresponding data-

sets D1,D2, . . .DN be stored in a Knowledge Base (KB). After learning TN+1 using a priori

knowledge, the knowledge base is updated with insights (intermediate, final results) gained

from learning the new task. Ideally a life long system should be able to maintain a knowledge

base over time by reusing previous learning to apply to a new task.

The four key components of a lifelong system are :

— Knowledge Base (KB) stores the information resulted from the past learning, including

24

the resulting models, patterns, or other forms of outcome. Additionally it may also store

a meta data pertaining to (1) the original data used in each previous task, (2) interme-

diate results from each previous task, and (3) the final model or patterns learned from

each previous task.

— Knowledge Based Learner (KBL) uses prior knowledge directly or mines features to

learn a task. However, guard needs to be taken to prevent irrelevant knowledge or bad

data from corrupting the performance of a LL system.

— Task Manager receives and manages the tasks that arrive in the system, and handles the

task shift and presents the new learning task to the KBL to start the LML process.

— Finally for a smart application, the most suitable model is chosen to solve the problem.

FIGURE 2.12 – A 6 level pyramid to gauge edge intelligence [4]

Let’s look at the example of forecasting power usage in smart buildings as an example of

how lifelong learning can be applied to a smart building problem. If data is available on a room

by room, or building by building basis, we could frame prediction per room or building as a

multi-task learning problem. As many rooms are likely to be in use at similar times for similar

purposes, there is likely to be relationships between tasks that can be exploited by multi-task

learning. If each node contains an edge computing device, this can then be seen as a distri-

buted multi-task learning problem. Owing to non-identical usage patterns in spaces/rooms for

25

example, such per zone data could be described as non-IID with data from each space genera-

ted by a distinct distribution. Life long learning is yet to be applied to smart building solution

but the systems approach makes it a suitable candidate to propose an auto-updating system on

the edge. In case of a building, not only we need customized zonal models but also a conti-

nual update of the holistic knowledge acquired over time. Therefore we can see how basing a

smart building learning system on these principles can be relevant. This inspires us to design a

Building Management System to operate on a fixed data buffer, compress data on the fly, and

leverage group or peer to peer exchanges to improve the quality of machine learning solutions.

Our system design additionally takes into consideration the 6 level pyramid [4] shown in Fig.

2.12 to measure edge intelligence based on execution of training and inference in cloud, edge or

in-situ on device. The pyramid base (Level 1) is least edge intelligent due to training and infe-

rence on-cloud while the top most layer (Level 6) corresponds to highest edge intelligence with

complete execution on device. We extend the existing research in smart buildings by focusing

on in-situ algorithm designs rather than a centralized on-cloud management system. The follo-

wing work is organized to abstract spatial knowledge of a building (Chapter 3), optimize sensor

placements in the pre-integration phase, save up on the capital and energy footprint through a

Virtual sensor field with low-powered edge learning in Chapters 4 and 5 respectively.

26

Chapitre 3

Non Intrusive Sensing

Spatial orientation of elements within a building are utilised to generate a low complexity

yet relevant meta data from an architectural file. The goal is to develop a generic building

management application with a special focus on non-intrusive sensing.

3.1 Building Parser

The complexity of an IFC file grows with increasing number of building elements like

spaces, doors, windows, stairs, roofs, stories etc. For querying relationships amongst building

elements, IFC proposed a Resource Description Framework to represent building in Ontology

Web Language, namely IFC OWL. The referential coordinates of a building product are kept

unchanged in such a translation and this complicates geometrical reasoning about adjacent or

overlapping building elements. Also from the software perspective, there is lack of an open

source parser, that can directly generate floor-plan metadata from an IFC file.

3.1.1 Geometric Abstractions

We introduce two geometric objects : a bounding box and a 3D plane that operates on

referential geometry of an IFC object and output coordinates of building elements from a single-

27

FIGURE 3.1 – Building Box illustration, edges of box highlighted in blue

origin reference frame defined on IFC-Site.

Building Box B is a rectangular parallelepiped enclosing a building element and repre-

sented by a pair of coordinates per axis. Each axis pair contains the maximum and minimum

coordinates enclosing the box along that axis. Formally we will represent the Building Box

Representation of a building element E as

BX(E) = {XMin(E),XMax(E)}

BY (E) = {Y Min(E),Y Max(E)}

BZ(E) = {ZMin(E),ZMax(E)}

(3.1)

Cutting Plane Ξ is an imaginary plane that passes through a building and is defined by

Equation 3.2 where n̂ and ~P0 represents the normal vector and a fixed point on the plane. ~P0 =

(0,0,z),~n = (0,0,1) denotes the family of horizontal planes placed at height z from the ground

plane.

Ξ(~P0, n̂)≡ n̂(~p− ~P0) = 0 (3.2)

28

FIGURE 3.2 – Illustration of an interval tree, intervals denoted by S1,S2&S3

3.1.2 Parsing Operators

We demonstrate an algorithm that gives a controllable process to generate a floor-plan from

one or more cutting planes and infer a connectivity graph amongst building elements. In the

process, we develop useful operators to algebraically formulate building aware intelligence

use-cases like neighbourhood, path and ventilation graph.

Selection

The system generates the 3D view of all IFC Products with defined shapes and stores the

Bounding Box representation in 3 interval trees, one for each axis. Each node contains the

minimum and maximum points along one of the axes. p building elements or intervals can be

arranged in an interval tree [52] as shown in Fig. 3.2. Such trees have an initial creation time

of O(p log p) and output sensitive query time of O(log p+m) depending on number of matches

m. The memory consumption is limited to O(p). σ : {Building Element } ×Query Point→{

Building Element} returns the set of building elements B whose bounding box encloses the

point from all 3 axes.

σ(B,(p,q,r)) = {E |E ∈ B, p ∈Bz(E),q ∈Bz(E),r ∈Bz(E)} (3.3)

29

Contour

Element Contour C : {Building Element } × Plane → { 2D Points} returns a set of

intersection points that are generated by the impression of a building element on a cutting plane.

The smallest convex set of points that contains the element is the contour or hull of impression.

We define Element Contour of a building element E as an ordered set of intersecting points

given by Equation 3.4. For a building object located above or below a plane C (E ,Ξ) = φ since

there are no intersecting points.

C (E ,Ξ) = {(ui,ui+1)}|∀i ∈ [1,2, . . . , p],up+1 = u0 (3.4)

Hull

The next task is generating a singular impression of a building object from multiple element

contours. We recall the well studied concept Delaunay Triangulation (DT) of a set of triangles

constructed from a set(P) of planar points such that no point in P is inside the circumcircle

of any triangle in DT. The nominal work [53] of sweep line algorithm computes Delaunay

triangulation in O(n logn) expected time with O(n) storage for a polygon of n points. H :

{Element Contours } → { Element Contour} (Equation 3.5) outputs a mapping for every

input data point such that the corresponding coefficient (βi = 1) if the point lies on the Delaunay

hull or 0 otherwise. A sample of Delaunay triangulation for a door is shown in Fig. 3.3.

H ({C }) = {βi× pi|βi ∈ {0,1}∀i ∈ {C}} (3.5)

Overlap

Ω : {C1,C2} → { 0,1} takes two polygons as inputs and if they intersect or overlap the ex-

pression evaluates to True or 1. This operator is useful in inferring spatial connectivity between

adjacent building elements. One can tweak the connectivity by inflating a hull to make sure the

desirable overlap is reached.

30

FIGURE 3.3 – Hull Generation of a door from multiple contour points (in red) by Delaunay
Triangles (in blue)

For floor-plan generation of a storey, the system generates slicing planes at every ∆h = 0.5

meter and processes multiple contours for every building element to output a convex hull.

Multiple hulls on a 2D plane yields a floor-plan. The parsing is controlled by specifying the

starting and ending height for cutting plane and fine tune the multiple contour process by tuning

the vertical resolution. The parser is written in pure python, supports IFC 2x3, and 4.1 formats

and is made publicly available in Docker hub under the image name "angmit/ifcparser :v2.0".

3.2 Spatial Graph

We construct a spatial graph (GS) to capture the connection between building elements such

as spaces, doors, windows, stairs, elevators, storeys and roof. Nodes (V) of the spatial graph

represent elements of interest and a edge between two elements are drawn in case of spatial

overlap or intersection. Formally, Equation 3.6 expresses the connectivity graph amongst a set

of building elements B through a set of cutting planes Ξ. Graph data is stored in a XML format

which supports queries to answer the spatial intelligence use-cases demonstrated below Each

node additionally stores the corresponding IFC identifier and type of element.

GS(V,E) = {(u,v)|∀u,v ∈V,Ω(H (C(u,Ξ)),H (C(v,Ξ)) = 1} (3.6)

31

Neighbourhood

Neighbour discovery is now made possible through geometric reasoning. Queries like "Are

there stairs beside the kitchen?" computationally retrieves the list of neighbouring elements for

the query building element kitchen. We extend the notion of adjacency to d hops by exploring

nodes in a depth first traversal up-till d links from the query node. This is often useful for

estimating 1-hop connections between two spaces who share a common door or window. If

N0(u,w) represents a adjacent neighbour (w) of an element (u), then one hop neighbour graph

is given by Equation 3.7.

G1(V,E) = {(u,v)|∃w,N0(u,w),N0(w,v)} (3.7)

3.2.1 Structural Path

A path in a building is defined in terms of an ordered set of building elements that can be

physically visited while going from space A to B. Logically this means, the path can not pass

through a wall or a window or a roof. Equation 3.8 defines a path graph (GP) of space-space

linkages that is constructed by discarding all edges from (G1∪GS) whose source or destination

is not a space.

GP = {(u,v)|(u,v) ∈ GS∪G1,u.type&v.type = space} (3.8)

A space link is represented by the centroid of a building element (~Ei) and a displacement vector

(~dsi) connecting the next traversed element. A path (P) starting from building element Ep and

ending at Eq is an ordered sequence of L space links as per Equation 3.9 . Imposing constraints

on linkages can yield a variety of paths. For example, the shortest path with net minimum dis-

placement is specified as argmin~ds Σi∈P |~dsi|. A path can also be derived by minimizing number

of building elements traversed from by imposing the constraint argminP∈P |P(Ep,Eq)|.

.P(Ep,Eq) = {(Ei,~δ si)|~Ei+1 = ~Et +~δ si,&E0 = ~Ep,EL = ~Eq} (3.9)

32

3.2.2 BIM Parsing

The IFC file used for input to the Building Information Modelling parser comes from an of-

fice building in Paris and consists nearly 120,000 IFC entries. There are 139 walls, 122 spaces,

89 doors, and 5 windows covering a net area of 3100 m2.

The IFC parser defines 2 principal classes (QPRODUCT and Q3DPARSER) to absorb the

information defined in a building modelling file. QPRODUCT has a attribute named globalID

to store the BIM identifier, along with type of Product. An instance of the 3D parsing class

stores multiple cross-sections of a building element on horizontal and vertical planes. Class

functions returnHullPolygon and getBoundingBox return a list of 3D coordinates at a height

denoting a convex hull or the bounding box of the building element. Doors, spaces, storeys, win-

dows, walls and stairs are encapsulated as derived classes of QPRODUCT and Q3DPARSER.

Finally all building elements are referenced through a class called QBUILDING which stores

the topological connectivity graph and building metadata referenced by the global identifier.

Figure 3.4 is a schematic UML diagram of the classes. The software is made available and

can be pulled from Docker hub by imagename : angmit/ifcparser :v2.0. The parser allows to

specify an input IFC file, store the computed results, specify hull formation or graph generation

and reload an intermediate output.

Entire building is parsed by setting the direction of cutting plane along Z axis (0,0,1) and

the slicing happens at every ∆h = 0.5 meter on interval Ih = [−10,10] resulting in a maximum

of Ih
∆h = 40 images per element. The IFC storeys arranged from bottom to top are underground

parking slot, basement, office floor and first floor. The spatial connectivity graph GS of the

building, made of 340 nodes and 1159 links is derived by superimposing images of multiple

elements per storey and inferring storey links. The partial graph GS formed by a single slicing

plane Ξ = (0,0,2.5) as shown in Figure 3.5a corresponds to an office floor-plan. The effect of

combining multiple images yields a well connected graph of 16 spaces as shown in Figure 3.5b.

The space-space linkage (GP) is made up of 16 nodes and 24 edges as shown in Figure 3.9.

33

FIGURE 3.4 – Class Diagram of IFC Parser

34

(a) Partial Graph formed by a slicing plane
(b) Connectivity Graph obtained from Super-
imposing images

FIGURE 3.5 – Superimposing partial slicing places to render a floor-plan.

3.2.3 One Shot Enrichment

We enrich the building information representation by incorporating static objects that go-

vern the semantic usage of a space. For example, presence of a coffee machine attracts people

to brew a cup of coffee with an energy dissipation proportionate to the run-time of the device.

Privacy concerns restrict all places to be put under video-surveillance. So to enrich a space, we

create a virtual view derived from multiple images. The work aims at embedding a layer of awa-

reness stemming from augmented reality to enhance the semantics of a space with the spatial

distribution of tables, chairs, overhead tube-lights, bulbs and other electrical appliances. The in-

tuition behind such an approach is that human activities are concentrated in regions where there

are objects of interest and most likely to form the zones of energy dissipation footprints. We

want to approximate the semantic utility of space from electrical appliances, lights, furniture

arrangements.

Placement of furniture on a floor corresponds to a natural spatial segmentation in a space

like Figure 3.7a. Counting furniture and seating capacity is useful in having some basic idea

about utility of a space. Detecting the sources of illumination like over head tube-lights, desktop

bulbs etc give us the illumination profile of a space as in Figure 3.7b. For the image classifica-

tion task, first we perform image augmentation using the python library Albumentation [54] by

altering the rotation, scale, hue and saturation. Next the system utilizes the state of the art deep

35

FIGURE 3.6 – Top view of an office space with 5 groups in table (purple) and overhead lights
(green)

(a) Furniture Placement (b) Illumination Coverage

FIGURE 3.7 – Extraction of Illumination Coverage and Furniture Placement from a room.

36

Space Name Seating Capacity Overhead Lights
Sanitary 1 2
Bathroom 1 2
Electricity Room 0 1
Meeting Room 4 1
Unused Room 0 1
Hardware Zone 4 3
Elevator 4 1
Private Office 4 1
Working Zone 4 2
Entrance 1 1
Kitchen 12 9
Reception 2 2
Passage 0 2
Environment 0 0
Marketing 10 6
Developers 16 8

TABLE 3.1 – Region of Interest Profiling

learning models like YOu-Look-Once (YOLO V5) to detect Objects of Interest. Each object

is a contained within a semantically segmented image mask, usually a rectangular bounding

box represented by two diagonally opposite vertices. We add the seating capacity and indoor

lighting requirement for every space in Table 3.1 thereby enriching the structural metadata for

a minimal sensing intelligence.

3.3 Non Intrusive Sensing

Heterogeneous non-sensory data sources like communication channels, calendars etc. can

provide a semantic tag or answer the question "What kind of activity was going in a space?"

For an office setting, it can be to check the availability of meeting rooms or find out where are

the most probably empty spaces during different hours of a day. Sometimes the agenda is so

implicit in space-time that it does not need mention. For example, at lunch time, kitchen gets

utilised by default and hardly any one registers a events for it, unless it is special. Also having

a semantic label may not always mean the truth like, if someone forgets to cancel an agenda

for a meeting that did not take place, it will generate a false positive. This observation adds to

37

Sensors Observations Reason
Light Bias Placed in a space with window

and there is ample sunlight.
Light Activity signal Placed in a space without window

and is switched on during an activity.
Temperature Bias Sensor placed close to probable heated

surfaces or has strong incident light.
Sound Activity Signal Placed in a room where human

activity generates sound.
Sound Bias Placed in a noisy environment.
Motion Bias Placed incorrectly so that it

gets unwanted signals.
Motion Activity Signal Placed in a space to detect

if the space has human intervention.

TABLE 3.2 – Possibility of sensor distribution variation due to spatial and usage constraints

the motivation for tag-less learning, where the privacy advantage is the non-incorporation of

sensitive data by design. We augment the spatial knowledge abstracted from a floor-plan with

interaction models to derive a layer of non-intrusive sensing.

Building data has varying spatio-temporal patterns, for example in a room with window

there is a gradual increase in luminosity values from dawn till mid day before starting to

decrease from the evening, although in a window-less room we see a sharp rise and fall in

sensor values when lights are on and off respectively as shown in Figure 3.8b. Additionally,

pre-pandemic and post pandemic data collection periods from an office building show distinct

temporal changes. Table 3.2 enlists some reasons to justify disparate sensor patterns arising due

to spatial difference. Figure 3.8a show the sound distributions of February and March plotted

against day of month on X axis in blue and red respectively. Notice that the red line falls around

week starting from 14th March, which coincides with lock-down issued in France for the first

time. The distinct pattern of 5 broad and 2 small spikes corresponding to 5 working days and 2

days of a week-end in an office. We now proceed towards a system that non intrusively detects

occupancy intervals without any supervision.

38

(a) Variation of sound intensity from an identical room in successive months.

(b) Variation of luminosity level in rooms with and without windows in red and
blue respectively.

FIGURE 3.8 – Effect of spatial and temporal effects on sensor signals.

39

3.3.1 Tag-less Sensing

In order to automate the labelling process, the system predicts the occupancy status from

non-intrusive ambient sensor values distributed across spaces. Let the data coming from ith

sensor be represented as Di and total data be D = ∪Di ∀i. For non intrusive detection, the

occupancy label Ot
i is absent and thus certain heuristics are applied to approximate the same.

The task is split into guessing and exploitation stages as follows :

— Discovery Stage : We observe that a human activity signature is captured between time

dilated maxima and minima points in a sensor stream. For every sensor channel we

extract two local τ dilated optimal sets per channel, the local maxima stream X i
max =

{xt |xt > xt−τ ∧ xt > xt+τ∀xt ∈ Di} and the local minima stream X i
min = {xt |xt < xt−τ ∧

xt < xt+τ∀xt ∈Di}. The percentile score of a local optimum (xt) from sensor i is given as

fraction of points lower than the current point as per Equation 3.10. For I multi-modal

information sources, we extend the scoring as a weighted percentile, where wi is the

weight for ith signal such that Σi∈Iwi = 1 as per Equation 3.11.

η
i(xt ,X = Xmin +Xmax) =

|{x|x < xt ,∀x ∈ X}|
|X |

(3.10)

ρ({xi
t},∀i ∈ I) =

1
|I|

Σi∈Iη
iwi (3.11)

— Learning Stage The system selects the top and bottom m frequency counts of ρ({xi
t},∀i∈

I) and it labels the corresponding time-slices as yt
i =Ot

i = 1 as "occupied" or yt
i =Ot

i = 0

"idle" otherwise. The tagged data is over-sampled and is given as input data D≡ {X ,y}

to statistical machine learning algorithms, where y is the occupancy. The confidence fac-

tor per class is the average disturbance level of yk T (yk) = ρ̄({xi
t |LABEL(xi

t) = yk},∀i∈

I) where hk is the learnt hypothesis for class k. The Empirical loss L(D,h) evaluated

by a hypothesis or machine learnt model (h) against a data D is given as L(D,h) =

Σ(x,y)∈DL(h(x),y) where x,y are the input feature vector and target respectively. The

optimal local model for the ith client at time t is given as ht
i = argminh∈H Lt(Dt

i,h).

To evaluate the accuracy, the recorded spatio-temporal events in the office calendar are

40

FIGURE 3.9 – Spatial Path Graph (GP) of spaces in the floor-plan. The points in blue are spaces
where sensors are placed and access to the floor-plan is highlighted in green.

considered as the ground truth.

3.3.2 Connected Space Model

In an office setting, paths that lead towards entering or exiting the building are most likely to

be utilized during office beginning or ending hours respectively. Similarly at lunch, employees

gather at the kitchen/cafeteria and are usually expected to desert their working spaces. We

observe that after an activity at space S0 comes to an end, people disperse from that location

to traverse/occupy adjacent spaces. Here the motivation is to understand the importance of

adjacent neighbours of a space with through a dynamic model of connected spaces, computed

as follows :

1. We construct an adjacency matrix I t where edge weights between a space and its 1 hop

neighbour is modelled as the dispersion capacity of humans occupying corresponding

spaces. Optimistic mixing is estimated as the maximum count of crowd amongst two

spaces while the pessimistic approach is having the minimum of crowd. If ci,Ot
i are

41

the seating capacity and Boolean occupancy status of space i at time interval t, then

Equations 3.12, 3.13 give the edge weights for optimistic and pessimistic dispersion

respectively.

2. The largest eigenvalue (λmax) of the adjacency matrix (A) is computed as AXm = λmaxXm

[55] and intuitively relates to stretching A in the direction of maximum activity in-

fluence by a force vector Xm. The score of a space i is equal to the ith entry of Xm. We

note that the special case of no people inside the office corresponds to all edge weights

equal to 0 and A reduces to a zero-determinant matrix probably indicating all unneces-

sary electrical appliances should be shut off.

I t(Vi,Vj) = max(ci×Ot
i,c j×Ot

j)︸ ︷︷ ︸
Optimistic Estimate

(3.12)

I t(Vi,Vj) = min(ci×Ot
i,c j×Ot

j)︸ ︷︷ ︸
Pessimistic Estimate

(3.13)

3.3.3 Occupancy Prediction

We demonstrate the utility of tag-less sensing on a data set consisting of 2.1 Million Sensor

readings, sampled from 3 rooms : a kitchen, private space and a meeting room. The sensor

channels are luminous intensity(lux), sound (decibel), temperature (celcuis), relative humidity,

motion, energy meter (milliWattHour). The first step towards activity detection is automated

data labelling, which is done by varying the time dilation parameter τ between 1 to 5, represen-

ting a resolution of 5 to 30 minutes. We observe the most optimal detection with τ = 2 or a 10

minutes comparison window. The experimentally determined best weight table for the sensors

are shown in Table 3.3. The labelled data is up-sampled to reduce class imbalance via Synthe-

tic Minority Oversampling Technique [56]. Next comes training supervised learning models

namely XgBoost, Support Vector Machine and Decision Trees on the auto-labelled data via a

k-fold cross validation (k=5).

We compare the models via the performance metric of F-1 Score which is the harmonic

mean of precision and recall. The supervised learners have a mean F1 score of 0.81-0.85 with

42

FIGURE 3.10 – Comparison between losses of oracle and trained models.

Sensor Weight
CO2 0.1
Light 0.2
Humidity 0.1
Temperature 0.1
Sound 0.3
Motion 0.2

TABLE 3.3 – Experimentally determined sensor weights used for activity discovery.

43

FIGURE 3.11 – Sensor values and detected occupancy on a 0-1 scale normalized view.

a variance of 0.01- 0.06. The baseline comparison in our setting are unsupervised models. For

each class we averaged the input feature set into a single dimension vector to initialize the

seed for K-Means and Gaussian Mixture Model (GMM). GMM performed slightly better than

K-Means although the averaged F1 score varied between 0.65-0.75 with a variance of 0.07-

0.1. Mean F-1 score is shown in Fig 3.10 and refers to the monthly model performance with

retraining on previous month’s data. We observe that efficiency of SVM and Random Forest is

higher than the oracle by 9 to 16 % while unsupervised models fail to capture intuitive heuristics

embedded in the oracles. We cross validate our observations by taking the cosine distance

between cluster-centers, a averaged input data vector per class predicted by each classifier. The

cosine distance between cluster-centers of supervised and unsupervised model groups is 0.19

while intra-group difference between K-Means and GMM is 0.27. The maximum distance of

cluster-centers between SVM, XGboost and Random Forest came out as 0.07. Additionally, we

cross check by filtering through sanity checks of no occupancy on weekends, holidays and at

night.

44

FIGURE 3.12 – Energy Score Distribution of spaces assuming fully occupancy

FIGURE 3.13 – Lunch time office occupancy scenario with dynamic edge weights

3.3.4 Spatial Spectral Analysis

The system leverages the semantic information about a space to generate energy insights.

For example, in the case of full occupancy Ot = [1]1×I represented by a vector of all ones,

eigenvalues gives an intuition about spatial distribution of electrical power. Figure 3.12 shows

the belief distribution against pessimistic and optimistic dispersion along edges of the fully

occupied floor-plan as denoted by Equation 3.12. The 3 highest score sums correspond to the

Developer’s Zone (1.25), Marketing Zone (1.11) and Reception (0.4). While first 2 spaces can

be explained in term’s of seating capacity, the importance of reception reflects the likelihood of

space-usage for entering or exiting the floor-plan. The passage has a score of 0 under minimal

mixing strategy, indicating if adjacent activities are concentrated in their respective zones, then

the passage is least likely to be used. But it becomes the fourth most important space (0.36)

when occupants are shuffling spaces and is explainable by high degree centrality. The edge

weight formulation helps to answer questions like "If there are no people at the developer’s

floor, hardware zone and office what are the most likely occupied places?". Figure 3.13 helps

to answer the question by showing the top 3 spaces as the reception (1.05), marketing zone

(0.97) and kitchen (0.96). This scenario corresponds to the spatial distribution of people during

45

lunch time and the output is affirmed by the regular ground truth.

3.4 Chapter Summary

Industry Foundation Classes is a set of ISO standards to describe a building with high com-

plexity but poor readability, although is now a mandate for European constructions. The goal

is to generate a low complexity abstraction by parsing ISO formatted Building Information

Modelling files. Typically recursive and referential geometry is used to describe spatial orien-

tation of all building elements like doors, windows, walls, roof, stairs, storeys etc. In contrast,

the developed geometric approach acts on an unique reference frame that helps to check if two

elements share physical boundaries. Consequently, a non-zero overlap indicates connectivity

between structural elements which is the key to represent building as an ensemble of nodes and

edges. Furthermore the meta-data is enriched without sensors but pictures of spaces instead

to estimate the seating capacity and count energy dissipation sources. The chapter introduces

the concept of zero-sensor intelligence by embedding human-space interaction models on a

graph-based spatial abstraction of a building, such as Qarnot’s office. Spectral decomposition

of the semantically enriched connected graph helps to rank multiple spaces regarding tempo-

ral importance or likely energy dissipation. A commonly occurring machine learning problem

of smart buildings namely occupancy detection is studied under the constraint of zero explicit

labels. Auto-learning at the sensor level helps to map the signature of human activities to the

feature space through an explainable knowledge discovery step. Thus the work establishes an

investigative report to exploit building intelligence in a zero sensor setting.

46

Chapitre 4

Minimal Sensing Solution

Sensors act as perception devices for machine executed intelligence. Let us look at the

process of equipping a multi storeyed building with sensors that answers the following set of

questions at least :

— Where to install what type of sensors?

— How many sensors are needed in total ?

— What will approximately be the one-time cost ?

— How will equipping sensors help to save power consumption, whereas it itself needs

power to run?

— How will be the sensor-generated data utilised to generate intelligence?

— Is the data localised within the building?

This motivates us to add a layer of cost and energy savings through removing or powering

off sensors from a completely equipped setting. The sensor reading is instead given by a Virtual

Sensor Field which is a mix of physical and machine learnt value approximations of missing

sensors. The design is inspired from the concept of a virtual machine where a parent operating

system (OS) hosts sub environments each mimicking an OS. The design increases privacy levels

and decreases data footprint generated at edge since sensors are missing ! The key element in

designing a distributed Virtual Sensor Field is to find the optimal group of sensors that can

approximate the missing ones through data driven machine learning. The system evaluates the

error generated by the approximation on multiple operational objectives to yield a minimalist

47

set of possible solutions. Each solution is then interpreted as a set of locations to place sensors

along with their types.

4.1 Virtual Sensor Field

Virtual Sensor Field is defined as a mixed basket of physical and computable sensors that

creates a virtual avatar over a set of sensors distributed over multiple spaces. The system seeks

to place the minimal number of real sensors that can serve as input to machine learnt approxi-

mating functions to reliably cover up for hidden/missing sensors. The system continually eva-

luates the penalty of approximation on multiple operational objectives to yield a set of possible

solutions. Each solution is then interpreted as a set of locations to place sensors along with their

types.

4.1.1 Sensor Grouping

Typically, sensors in a smart building measure ambient properties like temperature, humi-

dity, CO2 etc. and energy consumption from sources like illumination, heating, appliances etc.

Let us assume that G disjoint logical groupings can be made from at-max S types of sensors

which fill up a set of Z zones in a building. Each group g ∈ G is further bi-parted into two sub

groups namely the support (Xg) and approximated (Yg) sets. The link between {Xg,Yg} is given

by a hypothesis space H g defined by Equation 4.1 to support a bidirectional mapping between

the two subgroups.

H g =

H g
f : Xg→ Yg

H g
b : Yg→ Xg

 (4.1)

The quality of H g is evaluated through a cost function L executed over all possible pair-

wise interaction pairs (u,v) ∀(u,v) ∈ {Xg +Yg}2,u 6= v. The error in predicting channel v ∈ Yg

using a predictor u ∈ Xg is recorded at the [u,v]th cell of an error matrix ME
g as per Equation

4.2.

ME
g [u,v] = L(v,H g[u,v]︸ ︷︷ ︸

ML model

(u)) (4.2)

48

Note that ME
g [u,v] 6= ME

g [v,u] implies that the two losses generated by swapping the dependent

and independent variable may not be equal. To estimate the value yv of a channel v that lies

in group Yg, we first select the optimal channel (u∗) to predict by using the [u∗,v]th entry of

hypothesis library H g
f as per Equation 4.3.

u∗← argming∈G ME
g [u,v]

yv = H g
f [u
∗,v](u∗)

(4.3)

This technique bounds the maximum observable error since it is possible that another opti-

mal mapping H ∗ can exist using more than one feature for prediction.

L(Yg,H
∗(Xg))≤ max

u∈Xg,v∈Yg
L(v,H g[u,v](u)) (4.4)

4.1.2 Minimal Support Group

Let S represent a set of nS sensors that are distributed over nZ spaces or building zones.

We store the combined information of two 1D vectors of length ns namely virtual (MV) and

affinity (MA) masks. At position i, if a sensor has to be powered on physically, the virtual mask

encoding is mV
i = 1 and 0 if the digital twin suffices. The role of the affinity mask MA is to

hold the information on the logical grouping behind the sensors, so for nK types of sensors, the

tag elements will belong from mA
i ∈ {1,2 . . .nK}, while encoding elements to group by spaces

is restricted to mA
i ∈ {1,2 . . .nZ}. For a given group g ∈ MA, the sub-sequence consisting of

{0,1} ∈ MV is interpreted as {Xg,Yg} denoting the real and hidden sensor respectively. The

simple transformation function MS = 2MA+MV gives the final encoding MS at any position in

a string of nS numbers.

The individual task for every group g is to learn the best mapping H ∗ from Xg
H ∗
−−→

Yg,MV = Xg +Yg with a bi-objective optimization. The solution to such kind of problems is

typically a set of ’non-dominated’ solutions where any Oi can not be improved without increa-

sing the others O j, j 6= i. We define first two objectives to measure the prediction error due to

49

forward H g
f and backward H g

b hypothesis spaces by Equations 4.5 and 4.6 respectively.

O1(MV |MA) = Σg∈MAΣv∈XgΣu∈Yg

{ME
g [u,v]
|XgYg|

}
(4.5)

O2(MV |MA) = Σg∈MAΣv∈XgΣu∈Yg

{ME
g [v,u]
|XgYg|

}
(4.6)

Algorithm 2 Minimal Support Group Solver
Input : Initial chromosome pool of size nC {Pi

t }∀i ∈ [1,nC], N objective functions
{Oi}∀i ∈ [1,N], Iteration Limit Tmax

1: Initialize t← 0, Qt=0 = φ

2: while t ≤ Tmax do
3: Rt ← Pt ∪Qt
4: F = NON-DOMINATED-SORTING(Rt)
5: while |Pt+1|< M do
6: crowding-distance-assessment(Fi)
7: Pt+1 = Pt ∪Fi
8: Sort(Pt+1,≤M)
9: Pt+1 = Pt+1[0 : M] {. Select top M members every time from a population}

10: Qt+1 = make-new-pop(Pt+1)
11: end while
12: t← t +1
13: end while

4.1.3 Lifelong Policy Optimiser

For a given grouping affinity mask MA, Algorithm 2 generates a set of nC Pareto optimal

solutions or minimal groups. The system experimentally investigates the quality of these groups

that can optimally power up the virtual sensor field. Over time, predictions at such blind spots

may deviate in time or installing sensors can become a necessity for optimal configurations.

Thus the affinity grouping MA have the possibility to be re-calibrated with the availability of

additional data, but such a process must take into account the historic performance. For any

t ∈ T , reconstruction loss is the absolute difference between the actual (yv) and predicted value

50

Algorithm 3 Solver Routines
1: procedure CROWDING-DISTANCE-ASSESSMENT(Rt ,O)
2: for every objective j ∈ 1 to N do
3: Generate Fitness-Vector j = {O j(Pi)}∀i ∈ [1,M].
4: Sort(Fitness-Vector j)
5: Fitness-Vector j[0] = Fitness-Vector j[-1] = ∞

6: for i = 2 to M−1 do
7: Fitness-Vector j[i] += (Fitness-Vector j[i-1] - Fitness-Vector j[i+1])
8: end for
9: end for

10: end procedure
11: procedure NON-DOMINATED SORTING(Rt)
12: for every chromosome p ∈ Rt do
13: for every chromosome q ∈ Rt do
14: if p� q then
15: Sp← Sp∪{q} { . Support set of a dominating chromosome p. }
16: else if q� p then
17: np = np +1 { . Count how many solutions are superior in Rt to q. }
18: end if
19: end for
20: if np=0 then
21: F1 = F1∪{p} { . Select only non-dominating solutions as the first front. }
22: end if
23: end for
24: i= 1
25: while Fi 6= 0 do
26: C = φ { . For every front, incrementally add sensors starting from zero.}
27: for each p ∈Fi do
28: for each q in Sp do
29: nq = nq−1
30: if nq = 0 then
31: C = C∪{q} { . Add non-dominant sensors to a placement configuration}
32: end if
33: i = i+1;Fi = C
34: end for
35: end for
36: end while
37: end procedure

51

ŷv of a sensor for a virtual mask is given as per Equation 4.7.

O3(MS,T) =
Σt∈T Σi∈S

|T |nS |yi(t)− ŷi(t)|

ŷi(t) ∈

H t
f (Xg) i f mV

i = 0

H t
b

(
H t

f (Xg)
)

i f mV
i = 1

(4.7)

The policy maker additionally models the network topology of sensors in an effort to mini-

mise the number of data sharing links. We define a mapping between a graph topology and MS

using the following rule : For a group g, the sub-set of nodes in Xg and Yg form two bipartite

sets where a connection between (u,v) exists if sensor channel u is the optimal choice to pre-

dict v as per Equation 4.3. Let every node i has eI
i number of incoming edges and eO

i outgoing

connections. Equation 4.8 gives O4 defined as the ratio between the number of edges in MS to

total edges in a complete graph.

O4(MS) =
1

ns(ns−1)
Σg∈GΣi∈MV

g
(eI

i + eO
i) (4.8)

In this context, lifelong learning is used to minimize the size of future uncertainty and iden-

tify a stable sensor field configuration with a minimal data sharing policy. In the re-calibration

step, Algorithm 2 is re-used where objectives are represented by a [4× 1] matrix given by

Equation 4.5 - 4.8.

52

4.2 Virtualization Validation

(a) Mz where z = Floor 7 Zone 5 (b) Mz where z = Floor 4 Zone 1

FIGURE 4.1 – Error Matrix for 2 zones

To guess a sensor v ∈ Ac(g), the system learns a set of supervised machine learnt predictors

with a single channel data input u ∈ Ac(g),u 6= v. For every group, O(|Ac(g)|2) learners are

trained to capture the intra group sensor dynamics. For a prediction task, a learner picks the

least erred model from a set of classical algorithms : linear regression, lasso net, random forest,

and XGBoost. Let for a group g the approximated (Ag) and ground truth be represented by

vectors ŷz
s and yz

s for sensor s at location z respectively. The mean squared error is given as :

LMSE =
1

KZ ∑
k∈K

∑
z∈Z

(ŷz
s− yz

s)
2

We consider the data-set from [57] for the experiments. It comes from a 7 storey building

in Thailand including 24 smart zones with 1.5 years of data collected at 1 minute resolution.

The analysis highlights 3 key decomposition steps to build up a Virtual Sensor Field a) policy

evidence : error matrices (MV ,ME
g |∀g ∈ G) to judge the quality of virtualization accuracy b)

policy : Sensor mask (MV |MA) which is given by the encoding of sensors to generate virtual

sensor field according to a specific data policy c) and life-long quality checker that optimises

data sharing policy (MA) with more data.

First we check the effect of spatial grouping on the virtual sensor field accuracy. Variations

in Figure 4.1 are explained by the fact that zone 5 is from top Floor 7 and experiences a harsher

environment like direct sun light, higher temperature/humidity fluctuations than zone 1 of Floor

53

Zone Power Ambience
AC Light App Temp RH Lux

Floor2Z1 0.15 0.14 0.13 0.18 0.53 0.15
Floor2Z2 0.08 0.07 0.15 0.11 0.36 0.06
Floor2Z4 0.33 0.31 0.73 0.33 0.66 0.31
Floor3Z1 0.32 0.23 0.38 0.24 0.45 0.26
Floor3Z2 0.35 0.25 0.27 0.29 0.4 0.27
Floor3Z4 0.34 0.23 0.25 0.22 0.61 0.22
Floor3Z5 0.42 0.25 0.27 0.28 0.63 0.24
Floor4Z1 0.28 0.24 0.19 0.2 0.53 0.26
Floor4Z2 0.34 0.27 0.48 0.25 0.59 0.25
Floor4Z4 0.28 0.25 0.29 0.24 0.53 0.24
Floor4Z5 0.36 0.18 0.35 0.23 0.46 0.17
Floor5Z1 0.23 0.2 0.19 0.15 0.45 0.22
Floor5Z2 0.29 0.19 0.28 0.19 0.35 0.19
Floor5Z4 0.33 0.36 0.31 0.3 0.58 0.3
Floor5Z5 0.43 0.26 0.29 0.31 0.64 0.26
Floor6Z1 0.26 0.23 0.25 0.29 0.37 0.22
Floor6Z2 0.36 0.28 0.22 0.28 0.38 0.3
Floor6Z4 0.26 0.17 0.27 0.22 0.41 0.21
Floor6Z5 0.47 0.22 0.26 0.23 0.58 0.23
Floor7Z1 0.34 0.28 0.43 0.31 0.65 0.48
Floor7Z2 0.31 0.3 0.59 0.33 0.61 0.23
Floor7Z4 0.28 0.21 0.28 0.23 0.41 0.2
Floor7Z5 0.44 0.38 0.71 0.34 0.61 0.36

TABLE 4.1 – Virtual Sensor Field Accuracy (Ls) with Spatial Grouping or predicting a cell
using columns from the same row.

4. Figure 4.2 shows the virtualization error for domain wise grouping as a heat-map covering

all zones. We observe that AC Power bears a negative correlation with temperature and humi-

dity when AC is turned on primarily for cooling. Light Power is positively related to indoor

luminosity levels by observing at night the lights are off and during day, the lights are turned on

for acceptable visibility levels. Power consumed due to appliances is observed to inversely vary

with indoor temperature and humidity, which likely indicate working conditions in a controlled

thermal environment. Temperature and humidity also has a negative correlation with AC and

appliance power intuitively meaning appliances are running more when ambience is controlled

due to occupancy. We see that appliance power (MSE ≈ 0.9) is the worst approximation on

Floor 4 Zone 1 (F4 Z1), while it is humidity (MSE ≈ 0.8) for Floor 7 (F7 Z5).

54

Zone Power Ambience
AC Light App Temp RH Lux

Floor2Z1 0.08 0.07 0.11 0.25 0.14 0.05
Floor2Z2 0.09 0.06 0.13 0.24 0.25 0.09
Floor2Z4 0.09 0.06 0.12 0.26 0.66 0.06
Floor3Z1 0.11 0.03 0.08 0.04 0.26 0.03
Floor3Z2 0.07 0.04 0.09 0.05 0.17 0.03
Floor3Z4 0.09 0.03 0.11 0.06 0.23 0.03
Floor3Z5 0.08 0.03 0.1 0.07 0.18 0.05
Floor4Z1 0.08 0.03 0.08 0.06 0.16 0.05
Floor4Z2 0.06 0.02 0.11 0.05 0.44 0.04
Floor4Z4 0.07 0.02 0.08 0.05 0.22 0.05
Floor4Z5 0.14 0.03 0.08 0.07 0.36 0.06
Floor5Z1 0.15 0.03 0.13 0.06 0.2 0.08
Floor5Z2 0.08 0.03 0.09 0.07 0.29 0.04
Floor5Z4 0.17 0.03 0.09 0.06 0.17 0.04
Floor5Z5 0.07 0.05 0.12 0.05 0.13 0.04
Floor6Z1 0.12 0.04 0.08 0.04 0.25 0.13
Floor6Z2 0.27 0.03 0.08 0.06 0.19 0.32
Floor6Z4 0.14 0.04 0.1 0.06 0.26 0.09
Floor6Z5 0.1 0.04 0.09 0.12 0.3 0.09
Floor7Z1 0.64 0.05 0.12 0.08 0.36 0.08
Floor7Z2 0.08 0.05 0.08 0.09 0.5 0.14
Floor7Z4 0.07 0.03 0.09 0.08 0.35 0.03
Floor7Z5 0.08 0.03 0.08 0.09 0.63 0.05

TABLE 4.2 – Virtual Sensor Field Accuracy (Ld) with Domain Wise Grouping or predicting a
cell using rows from the same column.

55

Ls[z,d] = Σv∈Ac(g=z)
Mz[v,d]
|Ac(g=z)|

Ld[z,d] = Σv∈Ac(g=d)
Md [v,z]
|Ac(g=d)|

(4.9)

Due to lack of space, it is impossible to show all Mg tables, instead we report the spatial (Ls) and

domain (Ld) wise loss to fill up Table 4.1 and 4.2 respectively. Amongst all the sensors, relative

humidity is the most difficult to approximate, Ls (min=0.37, max=0.66) and Ld = (min=0.14,

max=0.63) across all zones.

4.2.1 Policy Evidence

The first type of task is to train predictive algorithms patterns between any two sensor chan-

nels (u,v) for a group g ∈MA. Disjoint grouping helps in computing the hypothesis space H g

and the error matrix table over nG computing nodes in parallel. Thus nG logical groupings are

computed with a time complexity of O(nGW 2) where W = maxg∈MA |ng| and space complexity

per node is O(W). For every pair of sensor channels in a group, the compute center trains a

set of classical non-deep algorithms and generates an error matrix for each of linear regression,

random forest, and XGBoost. We study the accuracy of recorded loss {ME
g }|g ∈ MA under 2

meaningful grouping schemes constructed to give the identical group numbers to sensors be-

longing to same domain type or for same zone placement. For spatial grouping (case 1) nG = nZ

and the ith place encoding is given by MA
i ∈ {1, . . . ,nz}∀i ∈ S while for domain wise grouping

(case 2) nG = nK,MA
i ∈ {1, . . . ,nK}. We analyse the error matrices ME

g to answer, "What is the

trade off in terms of accuracy between keeping a sensor powered on and alternately switched

off ? The initial policy will be based on evidence till t0 = 104 time-steps and the empirical error

per type of sensor in a spatial (Ls|g ∈ Z) encoding and sensor domain wise grouping (Ld|g ∈K)

is described at time t by Lt
x(u) =


max∀v∈g ME

g [u,v]︸ ︷︷ ︸
Forward Translation

min∀v∈g ME
g [v,u]︸ ︷︷ ︸

Backward Translation


We compare our approach with a similar type of problem that eliminates non redundant ones

56

(a) Temperature (b) Luminosity levels

(c) Humidity (d) AC Power

(e) Light Power (f) Appliance Power Consumption

FIGURE 4.2 – Virtualization prediction on processing similar ambience channels as one group

57

(a) Mz where z = Floor 7 Zone 5 (b) Mz where z = Floor 4 Zone 1

FIGURE 4.3 – Error Matrix for 2 zones

from a sensor set. For a fair comparison, we evaluate the value of the objective set O = [O1,O2]

at every solution point. The baseline algorithm starts with a signal decomposition step where

instantaneous phase estimates (IP), instantaneous frequency estimates (IF), and instantaneous

amplitude estimates (IA) are extracted per sensor. Unsupervised learning is applied to the In-

trinsic Mode Function space spanned by (IP,IF,IA) to generate clusters. The parameter space

for K-Means [58] is varied between k ∈ [30,90] and for DBSCAN [59] the range for mini-

mum clubbing distance "eps" ∈ [0.01,0.04] and minimum number of samples ∈ [6,23]. For

every cluster, we take q candidate points and encode them as {0,1} and compute the average

objective value {O1,O2} per cluster. Figure 4.5 shows the scatter plot between forward and

backward translation errors for the baseline algorithms and our approach. The dual objective

values from K-Means and DBSCAN converge to an error region of (O1,O2 ∈ [0.3−0.5]) while

the best solution yielded by evolutionary computing has (O1,O2 ∈ [0.20−0.25]).

58

FIGURE 4.4 – Dual Objective Optimization

In contrast to unsupervised learning, our algorithm generates a Pareto front as per Figure

Fig 4.5 where no objective can decrease without increasing another. From Figure 4.4, we ob-

serve that using [60,85] sensors, the forward translation MSE ∈ [0.05,0.1] with a backward

margin between [0.2,0.25] . Out of 138 sensors, the system achieves a fair trade-off between

forward and backward translation MSE [0.16, 0.19] with approximately 45−50% less sensors.

Increasing number of observable sensors, decreases O1 to MSE [0.05] using 80-85 sensors

while the backward error O2 increases to 0.48 since greater difficult sensor patterns have to be

approximated now.

Energy Consumption Power utilization patterns are usually continuous but "non-differentiable"

in nature arising due to sharp peaks and crests for fast response times. The ability to learn the

patterns from inter zonal power consumption Ld = (min= 0.03, max=0.27) is more effective

rather using intra-zonal data sources Ls = (min= 0.2, max=0.71) for predicting light, AC, and

appliance channels.

59

Ambient sensing Luminosity (lux) levels has the best Ld approximation (min=0.03, max=0.14)

although for Floor 2 Zone 2, we observe spatial grouping better for Ls = 0.06 > Ld = 0.09. For,

indoor temperature prediction Ld (min=0.04, max=0.14) is lower than Ls (min=0.19, max=0.71)

for all floors except in floor 2 with zone 1 Ls = 0.18,Ld = 0.25 and zone 2 Ls = 0.11,Ld =

0.24. Relative humidity is most difficult to approximate, Ls (min=0.37, max=0.66) and Ld =

(min=0.14, max=0.63) across all zones. Majorly, we see that domain wise grouping performs

better on average which affirms the intuitiveness of being guessed easily by similar peers. The

error matrix as a heat-map for 6 types of sensors is shown in Figure 4.2.

4.2.2 Policy Discovery

In our data setting, a policy is given by 1D vector MS made up of nS = 138 integers, where

MV = mod(MS,2) encodes which subset of real sensors can be switched off. Based on policy

evidence, the first element to optimize is selection of {Xg,Yg} under the constraint of fixed

group affinity (MA). A pool of 50 candidate policies are randomly generated as input to Algo-

rithm 2 that optimises MV |MA with respect to objectives [OB,OF]. The execution is distributed

over nG computing nodes, one for each group (g) with a data affinity defined as per mask

MA
g . The system converges to a Pareto front as per Figure 4.5 where we observe that using

[60,85] sensors, the forward translation error O1 ∈ [0.05,0.1] with a backward margin between

O2 ∈ [0.2,0.25]. Increasing number of observable sensors, decreases O1 to MSE [0.05] using

80-85 sensors while the backward error O2 increases to 0.48 since more number of difficult sen-

sor patterns have to be approximated now. Figure 4.5 shows the scatter plot between forward

and backward translation errors from our approach versus an unsupervised setting. The dual ob-

jective values from K-Means and DBSCAN converge to an error region of (O1,O2 ∈ [0.3,0.5])

while the best solution yielded by evolutionary computing has (O1,O2 ∈ [0.20,0.25]). The pa-

rameter space for K-Means [58] is varied between k ∈ [30,90] and for DBSCAN [59] the range

for minimum clubbing distance "eps" ∈ [0.01,0.04] and minimum number of samples ∈ [6,23].

This results presented in this section are studied with respect to grouping sensors by spatial dis-

tribution and sensor type only.

60

FIGURE 4.5 – Trade off between Forward O1 versus Backward O2 Translation

4.2.3 Policy Optimiser

Once a set of Pareto Optimal Sensor configurations are generated using the data till t1 <<

Tmax, the system tracks their performance over time assuming such a set of solutions are de-

ployed. Offline data availability from t1 → T of real sensor values make it possible to perio-

dically retrain the Virtual Sensor Field and continually optimize towards better configurations.

The data set per sensor be split into B batches, where a batch i for a sensor k placed at zone

z is denoted by Di
k,z ≡ [Tmax

B : Tmax
B +B]. On receiving Di

k,z at ith time-step, the learning system

evaluates 4 objectives denoted by Equations 4.5 - 4.8 to generate better learning topologies.

Figure 4.7 shows the effect of lifelong learning on temperature and power consumption

channels. Ambient sensing is more prone react to unpredictable environmental changes in

contrast to controlled power usage. The temperature at the top most floor of the building is

susceptible to the maximum environmental fluctuations, which is expressed by the diverging

nature of LRC > 10% in Figure 4.7a and is least likely to benefit from additional data. In contrast

as per Figure 4.7b, 75 days or 2.5 months of data collection suffices to keep the approximation

61

Number of Sensors

R
ec

on
st

ru
ct

io
n

Lo
ss

(O
3)

0.2

0.4

0.6

0.8
1

2

60 70 80 90 100

O1,O2 O1,O2,O4

Effect of objectives on Topology Discovery

(a) Discovering Policy Space

Reconstruction Loss (O3)

M
ea

su
re

m
en

t S
ca

le

0.05

0.1

0.5

1

1 2 3 4

Forward Translation (O1) Backward Translation (O2) Fraction of sensors
Sparseness (O4)

(b) Evaluating Objectives

FIGURE 4.6 – Characteristics of the Policy Space

62

(a) Ambience Sensing

(b) Predicting Power

FIGURE 4.7 – Policy Effect on two Correlated Channels : temperature and air-conditioning
power.

error below 10% for all the 6 floors ; the probable reason being controlled power consumption

by an AC. Next, the approximation ability of light power and lux is close to 98 % accurate for

Floor 2 in comparison 90% correct for the top two floors (6,7). Regarding O4, from Figure 4.7b,

we see that it suffices for a network topology with 5-10 % of total possible connections. In a

63

continual setting, the system updates the hypothesis space and auto re-calibrates to stabler sen-

sor placement configurations with availability of more data. Table 4.3 gives the optimal sensor

placement distribution that uses 45 sensors instead of 138, bringing in a 67 % sensor reduction.

64

(a) AC Power (b) Temperature

(c) Light Power (d) Luminosity

(e) Appliance Power (f) Humidity

FIGURE 4.8 – Average Reconstruction Loss per floor for 3 ambient sensors (temperature, hu-
midity, luminosity), and 3 power consumption channels (AC, Application, Lights)

65

Type # Save Installation Sites Approximated Locations

Temperature 9 0.61
’Floor4Z4’, ’Floor2Z2’, ’Floor4Z2’,
’Floor3Z1’, ’Floor7Z5’, ’Floor3Z2’,
’Floor5Z1’, ’Floor7Z1’, ’Floor3Z5’

Floor4Z5’, ’Floor6Z4’, ’Floor6Z5’,
’Floor2Z1’, ’Floor6Z1’, ’Floor2Z4’,
’Floor6Z2’, ’Floor4Z1’, ’Floor7Z4’,
’Floor5Z5’, ’Floor5Z4’, ’Floor7Z2’,
’Floor3Z4’, ’Floor5Z2’

Humidity 6 0.74
’Floor4Z4’, ’Floor3Z1’, ’Floor7Z2’,
’Floor7Z1’, ’Floor3Z5’, ’Floor5Z2’

Floor4Z5’, ’Floor2Z2’, ’Floor6Z4’,
’Floor6Z5’, ’Floor2Z1’, ’Floor6Z1’,
’Floor4Z2’, ’Floor2Z4’, ’Floor6Z2’,
’Floor4Z1’, ’Floor7Z4’, ’Floor7Z5’,
’Floor5Z5’, ’Floor3Z2’, ’Floor5Z4’,
’Floor5Z1’, ’Floor3Z4’

Luminosity 8 0.65
’Floor2Z2’, ’Floor2Z1’, ’Floor6Z1’,
’Floor4Z2’, ’Floor3Z1’, ’Floor7Z5’,
’Floor3Z2’, ’Floor7Z2’

’Floor4Z5’, ’Floor4Z4’, ’Floor6Z4’,
’Floor6Z5’, ’Floor2Z4’, ’Floor6Z2’,
’Floor4Z1’, ’Floor7Z4’, ’Floor5Z5’,
’Floor5Z4’, ’Floor5Z1’, ’Floor7Z1’,
’Floor3Z5’, ’Floor3Z4’, ’Floor5Z2’

lightPower 7 0.7
’Floor2Z2’, ’Floor6Z5’, ’Floor4Z1’,
’Floor3Z1’, ’Floor7Z5’, ’Floor7Z2’,
’Floor3Z4’

’Floor4Z5’, ’Floor4Z4’, ’Floor6Z4’,
’Floor2Z1’, ’Floor6Z1’, ’Floor4Z2’,
’Floor2Z4’, ’Floor6Z2’, ’Floor7Z4’,
’Floor5Z5’, ’Floor3Z2’, ’Floor5Z4’,
’Floor5Z1’, ’Floor7Z1’, ’Floor3Z5’,
’Floor5Z2’

ACPower 10 0.57

’Floor2Z1’, ’Floor6Z1’, ’Floor7Z4’,
’Floor3Z1’, ’Floor7Z5’, ’Floor3Z2’,
’Floor5Z4’, ’Floor7Z2’, ’Floor5Z1’,
’Floor5Z2’

’Floor4Z5’, ’Floor4Z4’, ’Floor2Z2’,
’Floor6Z4’, ’Floor6Z5’, ’Floor4Z2’,
’Floor2Z4’, ’Floor6Z2’, ’Floor4Z1’,
’Floor5Z5’, ’Floor7Z1’, ’Floor3Z5’,
’Floor3Z4’

appPower 5 0.78
Floor4Z4’, ’Floor2Z4’, ’Floor4Z1’,
’Floor5Z4’, ’Floor5Z1’

’Floor4Z5’, ’Floor2Z2’, ’Floor6Z4’,
’Floor6Z5’, ’Floor2Z1’, ’Floor6Z1’,
’Floor4Z2’, ’Floor6Z2’, ’Floor7Z4’,
’Floor3Z1’, ’Floor7Z5’, ’Floor5Z5’,
’Floor3Z2’, ’Floor7Z2’, ’Floor7Z1’,
’Floor3Z5’, ’Floor3Z4’, ’Floor5Z2’

TABLE 4.3 – Best configuration of the Virtual Sensor Field with least forward error for the
building studied.

66

4.3 Chapter Summary

The aim of the study is to limit the deployment of intrusive connected objects by integra-

ting virtual sensors on a multi storey building. This is achieved by computing which physical

sensors can be replaced by virtual sensors by exploiting physical data and learned data. By

comparing virtual organizations to existing deployment, the system evaluates the error genera-

ted by approximating the operational goals and provides a minimalist set of possible solutions.

Experiments are carried out using data from a building in Thailand where each one of 23 wor-

king zones is equipped with 6 different types of sensors. The analysis is carried out following

a relevant approach consisting in defining a baseline for the comparison, by modeling the ope-

rational objectives (number of sensors deployed, hardware cost and energy consumption). The

generated configurations are re-calibrated based on data available over the considered time in-

terval, thereby presenting an offline pre-planning tool for optimal sensor monitoring.

67

Chapitre 5

Co-Learning at Edge

FIGURE 5.1 – Edge Computing Infrastructure

Qarnot is a computing service providing company that ecologically uses heat produced du-

ring computation to provide indoor thermal comfort or hot water facility. The company provides

on-demand availability of edge resources via digital heaters (QRads) placed inside a building.

Multiple smart heaters (Qrads) are logically connected to a IoT controller (Qbox) within a buil-

ding or locality. The thermal profiles of such smart heaters are of particular interest since one

can not run a High Performance Compute job when the indoor temperature is high for example.

We model each heater act as an autonomous learner which is responsible for training and dra-

wing regression or inference based on sensor data generated at site in real time. Each device

68

is equipped with 5 ambient sensors, and uploads luminosity, humidity, temperature, sound and

co2 sensors readings to a local bucket.

5.1 Energy - Ambience at Edge

The need for automatically maintaining comfort set-points of indoor temperature leads to

energy demand for Heating, Ventilation and Air Conditioning (HVAC) systems in order to

resist the thermal stress and provide ambient comfort [60]. Such systems rely on estimates of

room temperature which is prone to activity related fluctuations. Although estimating ambient

temperature with phone sensors has been tried [61], the results show high correlation with the

phone internal thermal state rather than the environment. Instead, building characteristics such

as spatial-orientation, wall-thermal conductivity, specific heat capacity show better predictive

capabilities [62]. When thermal characteristics of the building are not available, one can rely on

the intrinsic properties of the heating systems, such as the heater’s power consumption and heat-

sink temperature. We hypothesize that ambient temperature is an interaction between the smart

heater’s electrical power consumption and the thermal radiation of its heat-sink. The motivation

behind this use-case stems from predicting the air temperature of environments from a smart

heater’s operational data-points. We follow a sliding window protocol length of 24 hours to

predict the next hour and hence generate a forecast for the desired time-interval and takes the

dual input of power consumption and heat-sink temperature.

5.1.1 Predictive Interaction Model

To form an explainable model, we restrict our knowledge base to sine and cosine com-

ponents and optimize short term deployment temperature prediction using Prophet [63] by

Facebook. Equation 5.1 decomposes a time series into non-periodic changes (trend), season

recurrences (seasonality) and effect of holidays

y(t) = g(t)+ s(t)+h(t)+ εt (5.1)

69

where the observed signal y(t) follows the additive property in combining g(t), s(t), h(t)

representing the trend, seasonality, holiday behaviour respectively, and εt represents a Gaus-

sian white noise with 0 mean. We observe that heating does not keep on increasing ambient

temperature, rather a heated space starts cooling when it is not supplied with thermal energy.

The set of points where the trend function has local minima or maxima or is discontinuous,

are denoted as change-points (S = {s1,s2 . . .sn}) and each change-point si comes with a rate of

adjustment (di). We define a binary vector a(t) = {a1(t),a2(t), . . .an(t)} with ai(t) = 1 if t ≥ si

or 0 otherwise. The vector δ = {d1,d2, . . .dn} is the collection of adjustment rates or equiva-

lently δ ∈ RS. (k+a(t)>δ)t represents the total growth starting from t = 0 to t where k is the

initial growth rate. We want g(t) to be continuous and hence the correction factor is given by

(m+ a(t)>γ) where γ = {γ1,γ2 . . .γn}, γ j = −s jδ j and m is a real-numbered offset. Equation

5.2 shows the linear growth trend used for our methodology.

g(t) = (k+a(t)>δ)t +(m+a(t)>γ) (5.2)

Seasonal components s(t) like weekly or yearly repetitive patterns are modelled with Fou-

rier series given by Equation 5.3 where the argument of nth cosine and sinusoidal functions

are given by fn× t where fn =
2πn

P , P = 365.25 for yearly and 7 for weekly occurrences. The

variables an and bn reflect the magnitude of the nth harmonic and N represents the degree of

approximation.

s(t) =
N

∑
n=1

(
an cos

(
2πnt

P

)
+bn sin

(
2πnt

P

))
(5.3)

Weekends or holidays are special days where one can expect either a low or high de-

gree of activity depending on an office space having no employees on a Sunday or employees

staying back at home respectively. An indicator function is used to label time t as 1 if t falls

on a holiday i or 0 otherwise. Let Di represent the day of the years corresponding to a ho-

liday i. For example Christmas happens on 25th December every year, thus yielding D =

{. . . ,25/12/2019,25/12/2020,25/12/2021, . . .}. At time t, for L holidays, we construct a

binary matrix Z(t) = [1(t ∈ D1), . . . ,1(t ∈ DL)]. The effect of holidays are assumed inde-

70

FIGURE 5.2 – Sliding window procedure for forecasting short-term air temperatures.

pendent while modeling temperature on such days and magnitude of change κi is drawn from

κ ∼ Normal(0,υ2). Formally the effect of the holidays is given by Equation 5.4.

h(t) = Z(t)κ (5.4)

The forecasting model is trained using Stan’s implementation of the Limited-Memory Broyden-

Fletcher-Goldfarb-Shanno Algorithm (L-BFGS)[64] to find a maximum a posteriori estimate

of ambient temperature. The model accuracy is evaluated by calculating the RMSE (Root

Mean Square Error) =
√

1
n ∑

n
i=1(Yi− Ŷi)2 and MAPE (Mean Absolute Percentage Error) =

1
n ∑

n
i=1

∣∣∣Yi−Ŷi
Yi

∣∣∣ considering n predictions where Yi is the vector of observed values of the variable

being predicted, and Ŷi being the predicted values. The RMSE metric is useful in highligh-

ting major deviations from the true sensor value and a low RMSE score ensures less signal to

noise ratio for temperature prediction, while MAPE provides intuitive performance measure by

averaging the absolute deviation over the set of data points.

71

TABLE 5.1 – Hyperparameters summary for the grid of experiments

Parameter Set of Values
Changepoint Prior Scale {0.01, 0.1, 1}
Seasonality Prior Scale {0.01, 0.1, 1, 10}

Fourier Order {1, 3, 5, 10}
Mode {’additive’, ’multiplicative’}

Size of the data 2 days

Figure 5.2 illustrates an example of the step-wise temperature forecasting with an one hour

sliding window protocol. The first forecast, at step 1, takes the historical data of 24 hours from

23rd November 09 :00 am to 24th November 09 :00 am as input to predict the values for the 25th

hour. For the next steps, we shift the window of the training data by one hour. The combined

forecast of these 4 steps is shown at the bottom facet of Figure 5.2 at steps combination.

To achieve a model with the least generalization error, we investigate the following hyperpa-

rameters from the Prophet model : a) Changepoint prior scale that controls the trend functions

modeling the non-periodic changes in the data, i.e g(t) in Equation 5.2 ; b) Seasonality prior

scale which models the periodic changes in the data, i.e s(t) in Equation 5.3 ; c) Fourier order

that indicates resolution of frequency decomposition and works in tandem with the seasonality

prior scale ; d) Mode which indicates the effect of the regressors in the model.

5.1.2 Performance Evaluation

The Qarnot heater logs with 510567 samples, comprising of time-stamp, ambient air tem-

perature, heat-sink temperature and power consumed are analyzed. Data pre-processing step

involves rejection of data points with abnormal values of temperature and power. Based on

product data-sheet defined operating intervals of [0, 85]◦C and [0, 1000] Watts 11 % of data is

omitted. Check for continuity resulted in two largest continuous periods found contain 90721

and 253320 samples, representing about 18% and 50% of the data respectively.

Figure 5.3 summarizes the hyperparameters performance on forecasting with a variation of

the changepoint prior scale from the set {0.01, 0.1, 1} in the x axis, with each subplot represen-

ting the results of the seasonality prior scale from the set {0.01, 0.1, 1, 10}. The geometrical

elements (dots, triangles, squares, and crosses) represent the mean RMSE of a certain Fourier

72

FIGURE 5.3 – Hyper-parameters Performance Evaluation with Mean RMSE and Standard De-
viation

order from the set {1, 3, 5, 10}, and the vertical lines represent confidence intervals as standard

deviation of RMSE values on the y axis. 2×3×4×4= 96 configurations as shown in Table 5.1

are evaluated with a cross validated model. For every training task a forecast model needs to be

trained on sequential partitions of data, labeled as train and test. We select the model with the

least generalization error on the cross-validation test, according to the RMSE and MAPE me-

trics. The effect of altering mode from {’additive’, ’multiplicative’} showed no effect on both

RMSE mean or standard deviation. Hence, we only discuss the results for the additive mode

hereafter, using 96
2 = 48 hyperparameter combinations.

Let the configuration triplet be ordered as change-point, seasonality and Fourier order. Some

good performing configurations found are (1, 0.01, 3) with RMSE of 0.98°C±1.05°C, or (0.1,

0.01, 3) with a RMSE margin of 1.00°C±1.04°C. The utility of the cross validation is evident

by observing bad configurations such as (1, 10, 1) with RMSE of 2.05°C± 3.47°C, 45 %

performing less than the best found configuration or (1, 1, 1) with error of 2.06°C±3.57°C, a

1 % increase in standard deviation error compared to the former.

In order to analyze the effect of each hyper-parameter, the results presented in Figure 5.3

73

Changepoint Values Mean RMSE Standard Deviation
0.01 1.33 2.02
0.10 1.49 2.25
1.00 1.54 2.30

Seasonality Values Mean RMSE Standard Deviation
0.01 1.22 1.65
0.10 1.47 2.19
1.00 1.56 2.43

10.00 1.57 2.41
Fourier Order Mean RMSE Standard Deviation

1 1.91 3.16
3 1.27 1.76
5 1.20 1.56

10 1.43 1.86

TABLE 5.2 – Effect of Hyper-parameters Measured by RMSE and Standard Deviation

are re-grouped in Table 5.2. The change-point prior scale variation captures the non-periodic

abrupt changes in the time series. The longer the interval of consideration, more likely are the

chances of abnormal patterns. Thus, we lower the scope of error by considering only a day

ahead of training while forecasting for the next day. From historical data, we observe that the

major of pre-seen ambient temperature pattern stays in an interval larger than two days and

hence our methodology is reactive towards capturing a new pattern and adjusting the forecast

accordingly. Nevertheless, it is possible to see that as far as we increase the value of this hyper-

parameter the errors increase as well, such as from 1.33°C±2.02°C to 1.54°C±2.30°C. Low

values of seasonality prior scale exhibit lesser generalization error. Higher values reflect greater

temperature fluctuations thereby increasing the error margin, such as from 1.22°C±1.65°C to

1.57°C± 2.41°C. Notably as per our approach, alternate day training-forecasting reduces the

possibility to register a high number of periodic changes within a span of 48 hours.

The Fourier order value of 1 resulted in average RMSE of 1.91°C± 3.16°C where as set-

ting the value to 3 leads to 1.27°C± 1.76°C. The values of 5 and 10 yields mean RMSE of

1.20°C±1.56°C and 1.43°C±1.86°C respectively. The optimal value of 3 has been stated by

the authors of Prophet [63] to capture weekly periodic changes and matches the expectation

of our office space setting, where one can expect repetition of similar activities every 7 days.

Finally, comparing the results of the groups of Table 5.2, we can see that the Fourier order is the

hyperparameter which affects more the models RMSE accuracy varying from the worst to the

74

FIGURE 5.4 – Comparison of temperature forecasts for the two models. The first and second
facets represent the power and heat-sink inputs to the forecasting models. The results of such
models are illustrated in the third facet in addition to the original air temperature data.

FIGURE 5.5 – Histogram distribution (log scale on y axis) of the absolute difference between
the original temperature data and the temperature forecasts performed by model 2. Samples at
the left of the vertical dotted line account for 93.53% of the total number of samples (forecasts),
and the samples at the right of the same line account for the remaining 6.47%.

75

best results in 0.71°C, followed by the seasonality prior scale with 0.35°C and the changepoint

prior scale with 0.21°C. The third facet of Figure 5.4 shows the comparative forecast of two

models : power versus power and heat-sink combination in forecasting ambient air temperature

for 4 months (x axis) and the pre-processed device-intrinsic values of power (Watts), heat-sink

(°C) and ambient air temperature (°C) on the y axis. For both, power and heat-sink, there is

only the original values and no forecasts. The optimal uni-channel model 1 recorded a MAPE

of 2.66%±2.52% and RMSE of 0.92°C±1.00°C versus model 2’s MAPE of 2.75%±2.55%

and RMSE of 0.92°C± 1.03°C. In addition, we analyse the distribution of the absolute error

|Yt − Ŷt | between the forecast Ŷt and the original value Yt as shown in Figure 5.5 for model 2.

We see that 93.53% of the net predictions are lower or equal to 0.5°C with maximum error

difference at 3.64°C. This is most likely attributed to unpredictable environmental usages like

opening of a door or window.

5.2 Offline Federated Personalization

Let us suppose there are k rooms monitored by sensors where the system collaboratively

trains localized deep learning models at edge. A typical assumption is that the participants are

honest whereas the server is honest-but-curious, therefore no leakage of information from any

participants to the server is allowed. The investigation is to reveal if a local model has incentives

to take part in a federated round of learning with a group of identical peers.

Split learning was first introduced by Guptar and Raskar [65]. As described in [66], in

the simplest of configurations, each client trains a partial deep network up to a specific layer

known as the cut layer. The outputs at the cut layer are sent to another client which completes

the rest of the training. Once passed through the chain, at the completion of the round the

gradients at the cut layer are sent back to a central server which completes another round of

back propagation. This forms the base for Federated Personalization [67] where a deep learning

network is divided into two logical parts namely for federated training and non-shared personal

customization. Typically a federated setting involves a server who listens and co-ordinates the

upload and download of model information with clients at edge. For the initial round, the global

node creates the initial weights for learning, pushes the weights to the clients, and as the rounds

76

progress, it receives, aggregates and stores the updated parameters.

5.2.1 Scheduled Shared Storage Learning

FIGURE 5.6 – Chronologically executed steps for synchronous federated personalization.

The dependency of an external mediator is relaxed through a synchronized learning proto-

col. The role of the coordinator is masked through a trigger function that operates on an edge

hosted storage bucket from Qarnot. Alternately one use any S3 storage provisioned by all major

cloud players like Amazon Web Services, Google Cloud, Azure etc.

We give autonomy to a microprocessor at edge to either take part or ignore a federation

round by accepting or rejecting a learning agreement. For a federated learning scheme, the

computational complexity is represented by (E,R) where E denotes local epochs or the fre-

quency of data point utilization during a training update and y indicates the total rounds of

77

FIGURE 5.7 – Framework Components running on the Qarnot Infrastructure

communication. For example, a model restricted to train in isolation for 20 epochs is given by

(20E, 0R). To initiate a learning round, at-least one learner amongst a set of K clients publishes

a federation contract. Our synchronized federated contract comes with two time intervals :

1. Interested learners announce their willingness to federate by uploading the transferable

layer during the Knowledge Deposition phase.

2. Knowledge Compression Interval is the time when a server-less computing task per-

forms FedAvg [40] to compress multiple transfer layers into a single entity, to be down-

loaded by clients post timeout.

5.2.2 Performance of Federated Forecasting

The data generating sources (Qrad) as shown in Fig. 5.7 is equipped to measure temperature

(in Celcius), relative humidity, noise levels (in decibels), power (in Watts), luminous intensity

(in lux) and indoor air quality (in ppm). The ambient sensor data-set consists of 1.4 Million

Qrad sensor data readings, sampled at every 5 minutes leading to 288 samples a day, totalling

78

FIGURE 5.8 – Mean Average Error of 6 auto-updating models distributed over 3 spaces with 2
models per room over 8 months.

to 208 k samples in 8 months spread across 3 rooms namely kitchen, meeting room and open

office.

Firstly, we observe the impact of training on sequence to sequence forecast of sensor values.

For the forecasting task, we implement a deep learning model that has a look back of 36 times-

tamps or 3 hours, feature size of 6, 1 hidden layer, with a fully connected last layer of 12×6 =

72 outputs or 1 hour prediction. One variant of the model has 50 Long Short Term Memory

(LSTM) units with 11200 hyper-parameters (40-45 kB). The other variant has 32 Gated Recti-

fied Units (GRU) with 4000 hyper-parameters (<10 kB). Adam optimizer and mean absolute

loss functions are used to train and evaluate both of the deep-learning models. Table 5.3 illus-

trate the generalization loss for a federation policy of fortnightly knowledge exchange. In Fig.

5.8 we observe loss peaks at March-April which coincides with the distinct spatio-temporal

pattern shift of reduced office activity during the lockdown in France. We split 8 months of

data to perform a 4 fold cross-validation, with average residual error between 7-12 % higher

than retrained forecasting models.

We validate the impact of the federation by comparing against a setting without knowledge

transfer. Hence the baseline model follows zero round (0R) strategy and is illustrated with 2 fe-

deration configurations out of infinite combinations of (x epochs, y rounds). In Fig. 5.9 we plot

79

Update
Date

LSTM @
Office

GRU @
Office

LSTM @
Kitchen

GRU @
Kitchen

2020-03-08 0.093 0.050 0.080 0.026
2020-03-29 0.016 0.008 0.227 0.025
2020-04-19 0.359 0.292 0.035 0.019
2020-05-10 0.024 0.019 0.018 0.009
2020-05-31 0.008 0.005 0.027 0.010
2020-06-21 0.008 0.005 0.009 0.007
2020-07-12 0.007 0.006 0.014 0.014
2020-08-02 0.012 0.005 0.069 0.043

TABLE 5.3 – Generalization error of LSTM and GRU models executing in a kitchen and open
office area.

FIGURE 5.9 – Performance gain due to federation

80

FIGURE 5.10 – Federated model performance against isolated baseline model.

the average generalization error of three collaborating learners after every bimonthly update

across 8 months. We observe a (5E,2R) federation configuration experiences lower generaliza-

tion loss over a non federated (5E,0R) and less federated (5E,1R) solution. It is evident there is

no one fit for all but certain combinations can lead to an under-fit model (5E,1R) performing

worse than a non-federated local learning strategy (5E,0R) as shown in Fig. 5.10.

81

5.2.3 Impact of Federation Affinity

FIGURE 5.11 – Pairwise Federated Loss curves of unit layered LSTM models placed at 3 rooms.

Now we illustrate the impact of selective or pairwise federation on loss values of indivi-

dual forecasting models placed at an open office, a meeting room and a kitchen as shown in

Fig. 5.11. We observe that the meeting room model records 7.6 % lower generalization error

post federating with a kitchen (in yellow) than a distant open office (in red). Compared to a

non-federated version, the federated open office model learns better from the kitchen (12 %

improvement) rather than the meeting room (2.5 % improvement). The intuitive validation lies

in people gathering naturally at both the areas during breaks or an informal meeting.

The in-house data sharing policy is encoded through a federation configuration which is

simply the number of communication (comm) rounds, number of epochs per comm round. The

small-scale experiments validate that for a smart building, an in-situ model may have an incen-

tive to share their knowledge representation and benefit from a global feedback to improve on a

local task. On a storage constraint hardware, such an implementation will still require historical

data pile up to train the model over time. As the number of sensors increase, the scalability of a

synchronous system becomes questionable. Compounding to distributed behaviour is the role

82

of pair-wise affinity which forms the basis to investigate in direct peer to peer exchanges for

optimizing deep neural network models in-situ.

5.3 Projection Free Online Decentralized Learning

When to train and when to apply the learning forms a major part in the design decision

of any deploy-able machine learning solution. Offline setting typically means that the learning

procedure distinguishes between at-least a training and testing data partition. Such a setting is

really useful when more-or-less the patterns are similar across the two partitions, but it prohibits

a model to pick up features (if useful) while testing. We highlight the key bottlenecks of offline

training for a loosely coupled distributed system :

— Increasing number of devices exacerbates the problem of scalability when dealing with

sharing virtualized memory spaces hosted on either the edge or the cloud.

— Time based triggering of a trusted function is susceptible to uncertainties of networking

specially while uploading and downloading models. In short, the notion of centrality for

a loosely coupled system bottlenecks robustness.

— Averaging model weights to customize a local model suffers from the uncertainty due to

lack of theoretical guarantee for understanding the performance behaviour of learners.

Online learning enables a model to learn constantly upon arrival of new data samples ;

thereby relaxing the demarcation between train and test data. We want to design a learning

policy for a group of online learners each having its own local data. The design choice of zero

trusted mediators follows the idea of decentralization and promotes peer to peer exchanges. Let

n denote the number of agents (vertices) organized in a graph G = (V,E) such that n = |V | and

number of direct one to one connections is |E|. Each agent optimizes and shares a structurally

identical deep learning network. At time t, a batch of data is revealed exclusively to agent i and

a non-convex function f t
i : K → R is learnt locally. Each agent i ∈ V updates its own local

neural network which yields a prediction xxxt
i ∈K where the convex set K ⊆ Rd . Although

each agent i observes only function f t
i , the collective learning performance per agent i is F t(xxxt

i)

where F t(·) := 1
n ∑

n
j=1 f t

j(·). Intuitively one can understand F t as the loss accumulated over all

predictive models, somewhat analogical to a global model loss in case of Federated Learning.

83

The objective is to minimize the overall loss via local communication with adjacent agents in

G. When the loss/cost functions are convex, a typical measure is the regret notion. An online

algorithm is R(T)-regret if for every agent 1≤ i≤ n, Equation 5.5 holds true.

1
T

(T

∑
t=1

F t(xxxt
i)− min

ooo∈K

T

∑
t=1

F t(ooo)
)
≤ R(T) (5.5)

Now we describe informally the main ideas of the decentralized algorithm. In the algo-

rithm, at every time t, each agent i executes L steps of the Frank-Wolfe algorithm where every

update vector (for iterations 1 ≤ ` ≤ L) is constructed by combining the outputs of linear op-

timization oracles O j,` and the current vectors of its neighbors j ∈ N(i). The solution xxxt
i for

each agent/node 1≤ i≤ n is chosen uniformly random among {xxxt
i,` : 1≤ `≤ L}. Subsequently,

after aggregating the information related to functions f t
j for j ∈N(i), the algorithm subtly com-

putes a vector dddt
i,` and feedbacks 〈dddt

i,`, ·〉 as the reward function at time t to the oracle Oi,` for

1≤ `≤ L. The formal description is given in Algorithm 4.

Analysis. In the analysis, denote xxxt
` := 1

n ∑
n
j=1 xxxt

j,`, we make use of the following lemma.

Lemma 1 ([68], Lemmas 1 and 2). Assume that functions f t
j’s are β -smooth, G-Lipschitz that

is, ‖∇ f t
j‖ ≤G for every 1≤ t ≤ T and every 1≤ j≤ n and the diameter of K is D. Then, there

exists a constant `0 such that for every 1≤ `≤ L+1,

∆p` :=
T

max
t=1

n
max
i=1
‖yyyt

i,`− xxxt
`‖ ≤

Cp

`

∆d` :=
T

max
t=1

n
max
i=1
‖dddt

i,`−
1
n

n

∑
j=1

∇ f t
j(yyy

t
j,`)‖ ≤

Cd

`

where Cp = `0
√

nD and Cd =
√

n ·max
{

2
(
`0
√

nD
` +D

)
β ; |λ2(W)|`0

(
βD

1−|λ2(W)| +G
)}

where

λ2(W) is the second largest eigenvalue of W.

The Frank-Wolfe gap In order to bound the Frank-Wolfe gap for each individual node, we

consider the average Frank-Wolfe gap, which is defined at every time 1≤ t ≤ T and for every

84

Algorithm 4 Decentralized online algorithm
Input : A convex set K , a time horizon T , a parameter L, online linear optimization oracles
Oi,1, . . . ,Oi,L for each player 1≤ i≤ n, step sizes η` ∈ (0,1) for all 1≤ `≤ L

1: Initialize linear optimizing oracle Oi,` for all 1≤ `≤ L
2: for t = 1 to T do
3: for every agent 1≤ i≤ n do
4: Initialize arbitrarily xxxt

i,1 ∈K
5: for 1≤ `≤ L do
6: Let vvvt

i,` be the output of oracle Oi,` at time step t.
7: Send xxxt

i,` to all neighbours N(i)
8: Once receiving xxxt

j,` from all neighbours j ∈ N(i), set yyyt
i,`← ∑ j Wi jxxxt

j,`.
9: Compute xxxt

i,`+1← (1−η`)yyyt
i,`+η`vvvt

i,`.
10: end for
11: Choose xxxt

i← xxxt
i,` for 1≤ `≤ L with probability 1

L and play xxxt
i

12: Receive function f t
i

13: Set gggt
i,1← ∇ f t

i (xxx
t
i,1)

14: for 1≤ `≤ L do
15: Send gggt

i,` to all neighbours N(i).
16: After receiving gggt

j,` from all neighbours j ∈ N(i), compute dddt
i,` ← ∑ j∈N(i)Wi jgggt

j,`
and gggt

i,`+1←
(
∇ f t

i (xxx
t
i,`+1)−∇ f t

i (xxx
t
i,`)
)
+dddt

i,`.
17: Feedback function 〈dddt

i,`, ·〉 to oracles Oi,`. (The cost of the oracle Oi,` at time t is
〈dddt

i,`,vvv
t
i,`〉.)

18: end for
19: end for
20: end for

iteration 1≤ `≤ L as

G t
` := max

ooo∈K
〈∇F(xxxt

`),xxx
t
`−ooo〉= 〈∇F(xxxt

`),xxx
t
`−ooot

`〉 (5.6)

where ooot
` = argminooo∈K 〈∇F(xxxt

`),ooo〉.

Lemma 2. For all 1≤ i≤ n, for every iteration 1≤ `≤ L, it holds that

max
ooo∈K
〈∇Ft(xxxt

i,`),xxx
t
i,`−ooo〉

≤ max
ooo∈K
〈∇Ft(xxxt

`),xxx
t
`−ooo〉+(βD+G)Cp

logL
L

.

85

Lemma 3. For every 1≤ t ≤ T and 1≤ `≤ L, it holds that

xxxt
`+1− xxxt

` = η`

(
1
n

n

∑
i=1

vvvt
i,`− xxxt

`

)
(5.7)

Theorem 1. Let K be a convex set with diameter D. Assume that functions F t (possibly non

convex) are β -smooth and G-Lipschitz for every t. With the choice of step size η` = min
(
1, A

`α

)
where A≥ 0 and α ∈ (0,1). Then, Algorithm 1 guarantees that for all 1≤ i≤ n :

max
ooo∈K

1
T

T

∑
t=1

Exxxt
i

[
〈∇F t(xxxt

i),xxx
t
i−ooo〉

]
≤ GDA−1

L1−α
+

AD2β/2
Lα(1−α)

+O
(
RT)

+((βCp +Cd)D+(βD+G)Cp)
logL

L

where RT is the regret of online linear minimization oracles. Choosing L = T , α = 1/2 and

oracles as gradient descent or follow-the-perturbed-leader with regret RT = O
(
T−1/2), we

obtain the gap convergence rate of O
(
T−1/2).

Démonstration. By β -smoothness, ∀` ∈ {1, · · · ,L} :

F t (xxxt
`+1
)
−F t (xxxt

`

)
≤ 〈∇F t (xxxt

`

)
,xxxt

`+1− xxxt
`〉+

β

2

∥∥xxxt
`+1− xxxt

`

∥∥2 (5.8)

Using Lemma 3, the inner product in (5.8) can be re-written as :

〈
∇F t (xxxt

`

)
,xxxt

`+1− xxxt
`

〉
= η`

〈
∇F t (xxxt

`

)
,
1
n

n

∑
i=1

vvvt
i,`− xxxt

`

〉

= η`

〈
∇F t (xxxt

`

)
,
1
n

(n

∑
i=1

vvvt
i,`−n · xxxt

`

)〉

=
η`

n

n

∑
i=1

〈
∇F t (xxxt

`

)
,vvvt

i,`− xxxt
`

〉
(5.9)

86

Let ooot
` be such that ooot

` ∈ argminooo∈K 〈∇F(xxxt
`),ooo〉. Hence,

G t
` = max

ooo∈K
〈∇F(xxxt

`),xxx
t
`−ooo〉= 〈∇F(xxxt

`),xxx
t
`−ooot

`〉

We have :

〈
∇F t (xxxt

`

)
,vvvt

i,`− xxxt
`

〉
= 〈∇F t (xxxt

`

)
−dddt

i,`,vvv
t
i,`−ooot

`〉

+ 〈dddt
i,`,vvv

t
i,`−ooot

`〉

+ 〈∇F t (xxxt
`

)
,ooot

`− xxxt
`〉

≤ ‖∇F t (xxxt
`

)
−dddt

i,`‖‖vvvt
i,`−ooot

`‖

+ 〈dddt
i,`,vvv

t
i,`−ooot

`〉

+ 〈∇F t (xxxt
`

)
,ooot

`− xxxt
`〉

≤ ‖∇F t (xxxt
`

)
−dddt

i,`‖D+ 〈dddt
i,`,vvv

t
i,`−ooot

`〉

+ 〈∇F t (xxxt
`

)
,ooot

`− xxxt
`〉.

where we use Cauchy-Schwarz in the first inequality.

87

Using Lemma 1 and β -smoothness of F t ,

∥∥∇F t (xxxt
`

)
−dddt

i,`
∥∥

≤ ‖∇F t (xxxt
`

)
− 1

n

n

∑
i=1

∇ f t
i (yyy

t
i,`)‖

+‖1
n

n

∑
i=1

∇ f t
i (yyy

t
i,`)−dddt

i,`‖

≤ ‖1
n

n

∑
i=1

∇ f t
i
(
xxxt
`

)
− 1

n

n

∑
i=1

∇ f t
i (yyy

t
i,`)‖

+‖1
n

n

∑
i=1

∇ f t
i (yyy

t
i,`)−dddt

i,`‖

≤ 1
n

n

∑
i=1
‖∇ f t

i
(
xxxt
`

)
−∇ f t

i (yyy
t
i,`)‖

+‖1
n

n

∑
i=1

∇ f t
i (yyy

t
i,`)−dddt

i,`‖

≤ β

n

n

∑
i=1
‖xxxt

`− yyyt
i,`‖ (by β smoothness)

+‖1
n

n

∑
i=1

∇ f t
i (yyy

t
i,`)−dddt

i,`‖

≤
βCp +Cd

`
(by Lemma 1)

Thus,

〈
∇F t (xxxt

`

)
,vvvt

i,`− xxxt
`

〉
≤
(

βCp +Cd

`

)
D+ 〈dddt

i,`,vvv
t
i,`−ooot

`〉−G t
`

Upper bound the right hand side of (5.9) by the above inequality, we have :

〈
∇F t (xxxt

`

)
,xxxt

`+1− xxxt
`

〉
≤ η`

(βCp +Cd)D
`

+
η`

n

n

∑
i=1
〈dddt

i,`,vvv
t
i,`−ooot

`〉−η`G
t
` (5.10)

88

Combining (5.8) with (5.10) and re-arrange the terms, as η` =
A
`α , we have :

η`G
t
` ≤ F t (xxxt

`

)
−F t (xxxt

`+1
)
+η`

(βCp +Cd)D
`

+
η`

n

n

∑
i=1
〈dddt

i,`,vvv
t
i,`−aaat

`〉+η
2
` D2 β

2
(5.11)

Dividing by η` yields :

G t
` ≤

Lα

A

(
F t (xxxt

`

)
−F t (xxxt

`+1
))

+
(βCp +Cd)D

`

+
1
n

n

∑
i=1
〈dddt

i,`,vvv
t
i,`−ooot

`〉+η`D2 β

2
(5.12)

Let G t be a random variable such that G t = G t
` with probability 1

L . We are now bounding

Exxxt [G t]. By Inequality (5.12), using the definition of η` =
A
`α , G-Lipschitz property of F , we

have (detail shown in [69])

Exxxt
[
G t]≤ GDA−1

L1−α
+(βCp +Cd)D

logL
L

+
1

nL

L

∑
`=1

n

∑
i=1
〈dddt

i,`,vvv
t
i,`−ooot

`〉

+
AD2β/2

Lα(1−α)
(5.13)

Summing the above inequality for 1≤ t ≤ T and note that 1
T ∑

T
t=1〈ddd

t
i,`,vvv

t
i,`−ooot

`〉 is the regret of

the oracle Oi, we get

1
T

T

∑
t=1

Exxxt
[
G t]≤ GDA−1

L1−α
+O

(
RT)

+(βCp +Cd)D
logL

L

+
AD2β/2

Lα(1−α)
(5.14)

By uniformly random choice of xxxt
i (over all xxxt

i,` for 1≤ `≤ L) in the algorithm, we have (detail

89

shown in [69])

1
T

T

∑
t=1

Exxxt
i

[
max
ooo∈K
〈∇F t(xxxt

i),xxx
t
i−ooo〉

]
≤ 1

T

T

∑
t=1

Exxxt
[
G t]+(βD+G)Cp

logL
L

(5.15)

where we have used Lemma 2 and the fact that

Exxxt
[
G t]= Exxxt

[
max
ooo∈K
〈∇Ft(xxxt

`),xxx
t
`−ooo〉

]

By Jensen’s inequality, we have :

max
ooo∈K

1
T

T

∑
t=1

Exxxt
i

[
〈∇F t(xxxt

i),xxx
t
i−ooo〉

]
≤ 1

T

T

∑
t=1

Exxxt
i

[
max
ooo∈K
〈∇F t(xxxt

i),xxx
t
i−ooo〉

]
(5.16)

The theorem follows (5.16), (5.15) and (5.14) and setting L = T , gives a O(
√

T) regret.

5.3.1 Prediction Performance

We demonstrate the utility of our algorithm on an online temperature prediction problem in

a building. The data were taken from a building dataset contains ambient time-series captured

on seven floors ; each floor has four sensor-equipped zones. We set a zone-wise knowledge

exchange via an undirected graph of n nodes/zones participating in the learning process. For

every round t, each node i receives a batch Bt
i of 32 time-series sequences corresponding to a

look-back period 13 timestep to predict the temperature of the next timestep. At a resolution of

5 minutes, this corresponds to using 1 hour past data to predict the next 5 minutes. We extract

the data from March 7th to April 20th for training, making the total iteration number equal

to 360. We set L equal to the iteration number, α = 0.95 and A = 1, a smaller value of L is

possible to reduce the training time. A min-max scaler is used to normalize the data and we

apply a rolling window with stride 1 on the original time series.

90

We embed each node with a model built from a two-layers long-short-time-memory (LSTM)

network followed by a fully connected layer. Denote the output of the model i for a data se-

quence b at time t by ŷt
i,b and its ground truth by yt

i,b. Consider the `1 loss as the objective

function :

L (ŷt
i,b,y

t
i,b) =



(ŷt
i,b− yt

i,b)
2

2
if |ŷt

i,b− yt
i,b|

≤ 1

|ŷt
i,b− yt

i,b|−
1
2 otherwise

Consider the constraint set K = {xxx ∈ Rd,‖xxx‖1 ≤ r}, where xxx is the model’s weight, d its

dimension and r = 1. The (normalized) loss incurred by the data of agent i is :

1
|Bt

i |
∑

b∈Bt
i

L (ŷt
i,b,y

t
i,b).

The global loss function incurred by the overall data is

F t(xxx) =
1

|∪n
i=1 Bt

i |
∑

b∈∪n
i=1B

t
i

L (ŷt
i,b,y

t
i,b),

that can be written as F t(xxx) = 1
n ∑

n
i=1 f t

i (xxx) where

f t
i (xxx) =

1
|Bt

i |
∑

b∈Bt
i

L (ŷt
i,b,y

t
i,b).

Note that the non-convexity here is due to the non-convexity of ŷt
i,b as a function of xxxt

i.

In the following section, if not specify otherwise, we call loss the temporal average of the

global loss function F t defined as 1
T ∑

T
t=1 F t .

Figures 5.12 and 5.13 shows the loss and gap values for different network size. We make

a selection of zones and floors to include in our network. We select zone 1, zone 2, zone 4,

and 5 from the sixth floor for a 4 zone configuration. The 7 zone configuration combines zonal

data on the sixth and seventh floor, where we drop zone 1 from the seventh floor. In the 10

zone configuration, we combine the data from the fourth, fifth, and sixth floor where we drop

91

Nodes Floors MSE MAE
13 4567 0.85 1.26
10 456 0.71 1.01
7 67 0.65 0.78
4 6 1.5 0.99

TABLE 5.4 – Performance comparison between 4 network configurations

zone 1 and 4 from the fifth floor. Finally, the 13 zone configuration combines all four floors

with the same zonal selection. The implementation justifies our theoretical results about the

convergence of the gap. Besides, we also observe the convergence of loss value, an expected

implication of the gap convergence.

Moreover, by the analysis below, we also justify the particular thermal variation of the top

floor compared to other ones. Table 5.4 reports the mean absolute error (MAE) and mean square

error (MSE) between the prediction and the ground truth of the 4 presented configurations for

three days. We set M the number of prediction points between the 21st and 24th of April and

n the number of zones within one configuration. We call ŷi,m and yi,m, the predicted and the

ground truth of model i for point m. The two metrics are computed as follows :

Mean absolute error :
1

nM

n

∑
i=1

M

∑
m=1
|ŷi,m− yi,m|

Mean squared error :
1

nM

n

∑
i=1

M

∑
m=1

(ŷi,m− yi,m)
2

We observe that increasing nodes in a network does not always lead to better online perfor-

mance. In-fact, a 7 node configuration achieves the lowest MSE (0.65) and MAE (0.78) for

floors 6 and 7. We see a 40 % drop in MSE and 20 % reduction in MAE for Floor 6 zonal

models when 3 extra peers from floor 7 joined the group. We observe 19 % and 25 % increase

in MSE and MAE values by adding zonal nodes from floor 7 to a 10 node group. This can be

best argued by the fact that the top floor of a building has a non identical thermal variation with

the rest of the storeys. A supporting observation is the zones of the top 2 floors of the building

collectively generalize the best compared to any other configuration.

92

FIGURE 5.12 – Loss values of different network size on complete topology. (Plot on log-scale)

FIGURE 5.13 – Gap values of different network size on complete topology. (Plot on log-scale)

93

Topology Metric Mean Variance Max Min
cycle MAE 1.099 0.485 1.808 0.56
cycle MSE 0.788 0.21 1.094 0.529
complete MAE 0.778 0.381 1.478 0.27
complete MSE 0.646 0.202 1.047 0.39
line MAE 0.813 0.532 1.953 0.243
line MSE 0.667 0.288 1.266 0.344

TABLE 5.5 – Impact of Networking on 7 learners configuration.

5.3.2 Effect of Network Topology on Learning

We study the effect of topology in learning by increasing networks in terms of links or

nodes. We study a 7 node configuration with a complete, cycle and line graph containing 28, 7

and 6 edges respectively and with 13 nodes having 78,13 and 12 edges respectively. For both 7

(Table 5.5) and 13 (Table 5.6) node configurations, we observe that the complete graph yields

the least amount of prediction error, mean absolute error ∈ [0.66,1.3]°C. However we note the

peculiarity that the line graph can perform better than a cycle graph and has roughly a 10 %

error margin compared to the complete configuration.

Topology Metric Mean Variance Max Min
cycle MAE 1.511 1.456 6.159 0.361
cycle MSE 0.938 0.384 1.897 0.483
complete MAE 1.257 0.82 3.64 0.32
complete MSE 0.852 0.272 1.505 0.417
line MAE 1.385 0.915 3.169 0.5
line MSE 0.905 0.352 1.664 0.492

TABLE 5.6 – Impact of Topology on Temperature Forecasting Performance with 13 learners.

5.3.3 Effect of Decentralization

We are interested to understand the role of decentralization in terms of accuracy of zonal

learners. Let LMFW (t) be the loss from Meta Frank Wolfe (MFW) at time t. The approximation

ratio

A(t) =
LDMFW (t)
LMFW (t)

94

FIGURE 5.14 – Loss values of decentralized and centralized Meta Frank-Wolfe (Plot on log-
scale). We use data from 13 zones connected over a complete topology on decentralized setting
(red curve) to compare with its centralized counterpart (black curve)

FIGURE 5.15 – Loss ratio of decentralized and centralized Meta Frank-Wolfe on different net-
work size.

at time t is a heuristic to define how worse is our decentralized version compared to a centralized

optimization. A(t) ≤ Bmax will mean our algorithm performs no worse than Bmax times of the

MFW. Figure 5.14 shows that our algorithm performs slightly worse than MFW. On figure 5.15,

we plot the ratio A(t) for a 13 node network and show that A(t) ≤ 1.4. The 7 node network

has the closest approximation bounded by 1.35 which can be explained by earlier insights on

performance accuracy. We notice that the 10 node network performs worse till t = 200, after

which from t ≥ 250 or 21 hours, the approximation ratio becomes close to centralised version

with less than 20 % error.

95

5.4 Software Implementation

To ensure software code portability, an open-source application packager named Docker is

used. This helps in abstracting heterogeneity in hardware through virtual containers that can

run on Linux supported embedded hardware or classically execution in a public/private cloud/

data centers.

5.4.1 Architecture

FIGURE 5.16 – Lifelong learning Architecture

A Qbox comes with a processor and persistent memory to host a time series like InfluxDB

or S3 buckets while QRads offer an in-memory computation with no persistent data storage.

Sensor-equipped space configurations are specified in a YAML format. The config file specifies

an object where multiple spaces can be enlisted by their name inside each space, devices are

registered with their type and access identifier. The ambient information comprises of humidity,

temperature, sound, light, and carbon dioxide (CO2) coming from sensors distributed across

rooms. Below is a sample of a meeting room, with a Qrad and private office having a Netatmo

sensor recording the above-mentioned channels to the Qinflux-db at a resolution of 5 minutes.

Electrical power is measured across a supply line catering to multiple sockets or appliances

or illumination needs. An energy-meter (Schneider eco-compteur) records the power consump-

tion required for the cuisine, heating services, sockets and lightnings. The minimum and maxi-

96

(a) YAML specification (part 1) (b) YAML specification (part 2)

FIGURE 5.17 – Example of YAML configuration file to deploy the 4 containers underlying the
Building Management Software.

(a) Placing ambient sensors in room (part 1) (b) Ambient Sensor Data specification (part 2)

FIGURE 5.18 – Example of YAML configuration to specify the sensors configuration

97

(a) Space and electrical channel integration
(part 1)

(b) Electrical power processing specification
(part 2)

FIGURE 5.19 – Example of YAML configuration to specify the sensors configuration

mum power cap reading is from 0.001 to 150 Kilo-watt.

The Building Management Software is implemented via 4 dockers containers providing the

following services :

— Qfrontend is pythonic frontend built using Streamlit Framework and made available

under the Docker-image name "angmit/oasisfrontend :v2.2". The front-end sends http

requests to a back-end server known as the Qapi-service.

— Qapi-service is a REST server whose API (Application Programming Interface) routes

are enlisted in Table 5.7. The flask application listens on port 5001 which is mapped to

http port 80 for replying to incoming web-requests.

— Qlearning-service is invoked periodically and executes a set of routines that analyze

incoming data, predict semantic activities, save the insights on to a database for the

building.

— Qinfluxdb is a time-series database which stores ambient sensor measurements, electri-

cal power readings and derived insights. The machine learning models are stored on S3

bucket in the Qarnot Compute platform.

The following code-snippet is a yaml file specifying the services and can be run by executing

the command "docker-compose up". The REST-api and learning-services of the docker appli-

cation is executed on Qrads. The computed results are sent back to QBox and is pushed either

98

Route Argument

/v1/get-raw-data config-file, start-time, end-time

/v1/get-oracle-detection config-file, start-time, end-time

/v1/guess-appliances config-file, start-time, end-time

/v1/running-appliances config-file, start-time, end-time

/v1/train-forecast-channel config-file, start-time, end-time, modelSavePath, column, sensor

/v1/predict-forecast-channel modelSavePath, start-time, lookAheadIntervals

/v1/get-room-status config-file, start-time, end-time

/v1/get-air-quality config-file, start-time, end-time

/v1/get-energy-metadata config-file, start-time, end-time

/v1/fetch-calendar-events config-file, start-time, end-time

/v1/get-waste-energy config-file, start-time, end-time

/v1/spatial-navigation sourceID, targetID

/v1/get-storeys

/v1/building-metadata

/v1/show-floorplan storeyID

/v1/get-live-weather

/v1/get-daily-weatherdata day

/v1/predict-learner start-time, end-time, model-name, config-file, outputPath

/v1/train-multi-column-forecast config-file, scalerSavePath, modelSavePath, trainOutputPath

/v1/predict-multi-column-forecast config-file, scalerSavePath, modelSavePath, testOutputPath

/v1/train-learner config-file, scalerSavePath, modelSavePath, trainOutputPath, inferencePath

/v1/federated-learning config-file, scalerSavePath, modelSavePath, trainOutputPath, inferencePath

/v1/ventilation-suggestions config-file, start-time, end-time

TABLE 5.7 – REST API list

to the bucket or database. This ensures in-house privacy by design, since neither data nor com-

putation leaves the premises as shown in Figure 5.1. The backend image is available from the

Docker hub under angmit/oasisbackend :v2.3 where the code is organised into 7 pythonic class

modules. The API list given by Table 5.7 is responsible for storing the building data, utilising

spatial orientation for navigation, ventilation, fetching sensor plus weather data, aggregating

calendar events, generate automatic insights about room occupancy, illumination status, CO2

dissipation suggestions and energy savings.

99

Route Task Caller Average Run-time (seconds)
/v1/get-raw-data Qlearning-service, Qapi-service 87 ± 23
/v1/get-oracle-detection Qlearning-service 10 ± 6
/v1/guess-appliances Qlearning-service 360 ± 10
/v1/running-appliances Qlearning-service 500 ± 49
/v1/train-forecast-channel Qlearning-service 400 ± 34
/v1/predict-forecast-channel Qapi-service 9 ± 2
/v1/get-room-status Qapi-service <1 second
/v1/get-air-quality Qapi-service <1 second
/v1/get-energy-metadata Qapi-service <1 second
/v1/fetch-calendar-events Qlearning-service 1-2 seconds
/v1/get-waste-energy Qapi-service <1 second
/v1/spatial-navigation Qapi-service <1 second
/v1/get-storeys Qapi-service <1 second
/v1/building-metadata Qapi-service <1 second
/v1/show-floorplan Qapi-service <1 second
/v1/get-live-weather Qapi-service <2 seconds
/v1/get-daily-weatherdata Qlearning-service 7 ± 3
/v1/predict-learner Qapi-service <10 seconds
/v1/train-multi-column-forecast Qapi-service 600-800 seconds
/v1/predict-multi-column-forecast Qapi-service <10 seconds
/v1/train-learner Qlearning-service 670 ± 8
/v1/federated-learning Qapi-service 550 ± 34
/v1/ventilation-suggestions Qlearning-service 130 ± 3

TABLE 5.8 – Average API runtimes

100

5.4.2 Run-times

We observe a range of run-times from a few seconds to upto 15 minutes for tasks catering to

data fetching, inference generation and learning. In Table 5.8, we present the average execution

time taken by API routines over 10 random runs and also highlight the calling function (Task

Caller). The volume of sensor data fetched can range from 5 minutes to 7 days and is proportio-

nal to the look-back interval. The maximum run time reported is for 24×7×288 = 48384 data

samples, with each data sample having at most 5 features for ambience plus 4 for energy rea-

ding. We observe that the inference tasks generally take less than 10 seconds while the training

tasks can last from 7-15 minutes. During an inference task, the software downloads the latest

version of a machine-learnt model from Qarnot’s S3 bucket, readies the input data, returns the

inference and deletes the model from local memory.

5.5 Chapter Summary

This chapter aims at collaboratively forecasting the indoor thermal profile of a building

following a strict on site data retention policy. Indoor air temperature is susceptible to ran-

dom fluctuations in environments like opening of a door or window and hence the work in-

vestigates for a possible mapping between intrinsic properties of a smart heater (Qarnot) and

spatially ambient air temperature. Utilising heater’s power and heat-sink temperature allows

predictive modelling between energy footprint and ambient comfort. Since the model was only

trained from logs of Qarnot computing heaters, one may question "What if there are hetero-

geneous hardware from multiple vendors?". One way to resolve this bottleneck, is to embrace

a learning technique that prohibits raw-data transmission between multiple agents but rather

compressed knowledge representation. Applying federated orchestration, we saw a deep neural

network model can benefit from sharing knowledge and locally customize a prediction task.

Experiments from Qarnot data set confirm the intuition that a space tends to collaborate better

with a similar usage peer rather than one with a different pattern. This naturally leads to the

context : "Is it possible that devices at edge can communicate freely with peers and learn better

with time?" Decentralization is often a key design component in robust learning architectures

101

and has a close alignment with edge paradigm. Keeping in mind that eventually such deploy-

ments will be on low powered devices, the work addresses two key bottlenecks : piling up of

time-series data and intense computing requirements. Correspondingly the proposed algorithm

optimises the knowledge representation is an online manner with a low compute projection-free

nature. Experiments on data from a 7 storey high-rise in Thailand show the effect of network

topology on distributed learning while providing less than 20 % error in compared to a centra-

lised version. In a nutshell, the chapter addresses how sensor equipped computing units at edge

can form a distributed learning system for smart buildings. Higher levels of data privacy can be

ensured with a no raw data sharing policy with representation learning to update knowledge

collaboratively.

102

Chapitre 6

Conclusion

The highlights of the work related to smart building are extracted along with the direction

and motivation for future work.

6.1 Take-away Highlights

The work gives the blueprint of a generic building management system with a novel mini-

malist sensing solution for non-intrusive spatio-temporal coverage. The system incrementally

investigates ambience intelligence by detecting good sites to place sensors and re-calibrate pla-

cement configurations over time. Furthermore, by design raw data is localized at the generation

site, thus enabling federated and peer to peer learning algorithms to run at edge.

6.1.1 Sensor Less Intelligence

Firstly, a full stack smart building solution will need to incorporate structural knowledge

and spatial orientation about the building. Open sourcing the geometric parser fills in the gap

of a tool that robustly parses IFC 2x3,4 file format to abstract the high level complexity of

spatial connectivity. The IFC parsing technique has been pivotal in conceptualising buildings

as a dynamic graph structure. The layer of sensor-less intelligence uses spectral decomposition

103

of the enriched spatial graph to derive occupancy insights. Human-space interaction models are

used additionally to highlight the instantaneous temporal importance over a group of spaces.

6.1.2 Virtual Sensor Field

We broaden the scope of the Optimal Sensor Location Problem to find the minimal support

sensors that can predict the redundant sensor values. The aim here is to generate a virtual sensor

field for a building that is spatially optimised to have the least generalization error in predic-

tion. Generating a distributed virtual field contributes to the solution of monitoring spaces non

intrusively. The virtual sensor field can be utilized to approximate the original data in case of

sensor fault or turn off unnecessary permissible sensors. We observe that the missing sensor

approximation can be kept competitively accurate with bidirectional power-ambience conver-

ters with explainable insights. For example, the behaviour of a group of temperature sensors

situated across multiple zones probably can be learnt by an optimal fraction of embedded de-

vices. Noticeably, the energy footprint in powering up all sensors is higher than a fraction of

the same. In a non-intrusive setting, the semantic label for an activity is unknown for a real de-

ployment. Furthermore, data heterogeneity is evident when it comes to deploying non-identical

sensors across spaces. We investigate the impact of activities on ambient sensing channels and

find that selecting temporally optimal values can serve as an auto labelling heuristic. Training

low-complexity classical machine learning models with cross validation shows incremental

improvement in occupancy detection over time.

6.1.3 Energy Ambience Dynamics

Next, the interaction between ambience and energy through a bi-directional mapping bet-

ween two semantic features sets is investigated by studying real life logs from an edge conglo-

meration of smart computing heaters. We developed an ambient temperature forecasting me-

thod based on short-term time series prediction, which considers the historical data of the am-

bient temperature and the smart heater’s properties, notably its power consumption and heat-

sink temperature. Our experimental results show that a relatively simple trained time-series pre-

104

diction model is capable of accurately predicting the ambient temperature of an environment

heated by a smart heater. Our simplest evaluated model – which uses the ambient temperature

and the heater’s power consumption historical data – performed ambient temperature predic-

tions with a Mean Absolute Percentage Error of 2.66%±2.52% and Root Mean Squared Error

0.92°C±1.00°C, when compared with the real temperature data.

6.1.4 Co-operative Edge Intelligence

By design, the proposed smart building solution retains data at site which helps in auto-

updating deep learning models. According to the literature, to use a technique such as federated

averaging one has to rely on an external mediator, typically another server connected to clients.

We add to the security by replacing the mediator with a cloud storage and automated trigger

functions. The simple shared storage learning algorithm allows to experiment controllable fe-

derated techniques to learn from connected objects at edge without a mediator. The framework

is used for deep federated personalization at edge to better generalize forecasting models and

understand the preferential relationships.

Lastly, an edge friendly online algorithm is developed to minimize non-convex loss func-

tions aggregated from local data distributed over a network. We show the convergence of the

Frank-Wolfe gap, a standard stationary measure related to non-convex functions, in both exact

and stochastic gradient settings. Besides, we utilize our algorithm to train a sequence to se-

quence deep learning model to forecast indoor temperature per zone. Experimental results from

a real-life smart building data-set make our contribution suitable for a distributed setting.

Lastly, we summarise the working of the developed lifelong learning system with the four

components as follows :

1. Data driven models are learnt primarily for two kinds of task : short term forecasting,

and imputation of missing sensor values.

2. Upon generation of new data, the task manager updates the stored machine learning

models without leaking data from site, either through isolated learning, federated per-

sonalization or decentralised peer to peer exchange to be discussed in details in Chapter

105

5.

3. Knowledge Base for a building composes of spatial property graphs and sensor me-

tadata to capture the spatio-temporal semantics and be aware of specific locations res-

pectively. For powering up the Virtual Sensor Field, if Z,M,N be the number of zones,

maximum available and missing sensors per zone then the system creates O(ZMN) mo-

dels. The predictive field is powered by O(ZM) models in the federated setting and

additionally O(ZM) oracles for a projection free setting.

4. Knowledge Base Learner is responsible in tracking the performance of Pareto Optimal

configurations and discover robust configurations. It utilises the previously learnt know-

ledge to auto-analyse on the test period through the metric LRC. Additionally for each

configuration, the system takes into account the approximation hardness during learning

and presumably post deployment phase to generate robuster configurations when more

data is available.

In a nutshell, the work contributes towards a generic smart building management system

which showcases the possibility of business intelligence with an ad-hoc non intrusive IoT inte-

gration to lower the capital cost and energy footprint.

6.2 Future Work

There is ample scope of investigation in the trade-off between exploration and exploita-

tion of the configuration and the hypothesis space. The approximate value of a hidden sensor

channel is computed using the best single domain to domain mapping possible. Herein lies

the possibility of further improvement using multiple features to predict a missing value. It

can be interesting to compare the Lifelong learning setting against a reinforcement strategy to

incrementally re-configure the virtual sensing field.

So far the work relies on a top down approach in which sensors are removed from a com-

plete information set. The drawback to such an approach is the availability of complete data

and also the cost of procuring all types of sensors for all the zones at-least for data collection.

The alternate way of solving the same can be a bottom up approach, where a system can reach

106

desired configurations by incremental learning starting from a sensor.

One of the most promising directions to investigate is the design of safe networks at edge

that can react to adversarial changes. The assumption for collective learning in this work only

takes co-operative learners into consideration. There needs to be real-time strategies to dyna-

mically re-organize the federation network for minimizing the spread of corrupt bad data. Fur-

thermore, the algorithm for decentralized learning does not take into account realistic network

delays and possible drop outs which is a likely edge behaviour.

Another possible update for the Virtual Sensing Field can be to integrate control inputs

for devices like HVAC, illumination, appliances etc in a controlled environment. Adapting to

renewable energy sources plays an important role in lowering down the carbon footprint. There

needs to be a data driven optimization to determine when to shift between conventional grid and

greener energy. With a non-constant/ variable energy tariff, the importance of a smart building

management system is felt more to schedule consumption patterns.

The work carried out only answers to questions after a building has been made and not

during the construction phase of the same, which leaves a scope for further investigation. It can

be beneficial to incorporate sensors during build time to obtain the complete picture of a digital

twin that can not only to save time, but also provide use-cases on safety of on-site workers.

6.3 Work Dissemination

The following set of work have been peer reviewed and accepted in conferences, they are

directly related to the contributions presented in this thesis :

— Angan Mitra, Yanik Ngoko, Denis Trystram Smart Oracle Based Building Management

System, 7th IEEE International Conference on Smart Computing (SMARTCOMP), 61-

68, 2021

— Angan Mitra, Yanik Ngoko, Denis Trystram, Impact of Federated Learning On Smart

Buildings, IEEE International Conference on Artificial Intelligence and Smart Systems,

2021

107

— Angan Mitra, Y Ngoko, D Carastan-Santos, AA Da Silva, D Trystram, A Goldman

Short-Term Ambient Temperature Forecasting for Smart Heaters, 26th IEEE Sympo-

sium on Computers and Communications, 2021

The following set of work are under review :

— Angan Mitra, Denis Trystram Next Generation Intelligent Spapces, IEEE Pervasive

Computing (Percom), 2022.

— Angan Mitra, Yanik Ngoko, Denis Trystram, Decentralized Meta Frank Wolfe for online

neural network optimization, Journal on Parallel and Distributed Computing, 2022.

108

Bibliographie

[1] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Johansen, J. Koh,

J. Ploennigs, Y. Agarwal, et al., “Brick : Metadata schema for portable smart building

applications,” Applied energy, vol. 226, pp. 1273–1292, 2018.

[2] Wikipedia, “Constructive solid geometry,” 2004. [Online ; accessed 22-July-2013].

[3] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning : Concept and appli-

cations,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10, no. 2,

pp. 1–19, 2019.

[4] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence : Paving

the last mile of artificial intelligence with edge computing,” Proceedings of the IEEE,

vol. 107, no. 8, pp. 1738–1762, 2019.

[5] G. M. D. T. Forecast, “Cisco visual networking index : global mobile data traffic forecast

update, 2017–2022,” Update, vol. 2017, p. 2022, 2019.

[6] W. Shi and S. Dustdar, “The promise of edge computing,” Computer, vol. 49, no. 5,

pp. 78–81, 2016.

[7] J. K. Wong, H. Li, and S. Wang, “Intelligent building research : a review,” Automation in

construction, vol. 14, no. 1, pp. 143–159, 2005.

[8] S. Roth, “Open green building xml schema : A building information modeling solution

for our green world,” URL http ://gbxml. org/–Überprüfungsdatum, pp. 08–25, 2014.

[9] D. J. Cook, M. Youngblood, E. O. Heierman, K. Gopalratnam, S. Rao, A. Litvin, and

F. Khawaja, “Mavhome : An agent-based smart home,” in Proceedings of the First IEEE

International Conference on Pervasive Computing and Communications, 2003.(PerCom

2003)., pp. 521–524, IEEE, 2003.

109

[10] T. G. Stavropoulos, D. Vrakas, D. Vlachava, and N. Bassiliades, “Bonsai : a smart building

ontology for ambient intelligence,” in Proceedings of the 2nd international conference on

web intelligence, mining and semantics, pp. 1–12, 2012.

[11] L. Liu, B. Li, S. Zlatanova, and P. van Oosterom, “Indoor navigation supported by

the industry foundation classes (ifc) : A survey,” Automation in Construction, vol. 121,

p. 103436, 2021.

[12] V. Bazjanac and D. B. Crawley, “Industry foundation classes and interoperable commer-

cial software in support of design of energy-efficient buildings,” in Proceedings of Buil-

ding Simulation’99, vol. 2, pp. 661–667, 1999.

[13] G. Iulian and S. A. Oae, “Evolution of smart buildings,” in Proceedings of the 2013 Inter-

national Conference on Environment, Energy, Ecosystems and Development, 2013.

[14] V. Garg and N. K. Bansal, “Smart occupancy sensors to reduce energy consumption,”

Energy and Buildings, vol. 32, no. 1, pp. 81–87, 2000.

[15] B. Dong and B. Andrews, “Sensor-based occupancy behavioral pattern recognition for

energy and comfort management in intelligent buildings,” in Proceedings of building si-

mulation, pp. 1444–1451, 2009.

[16] B. Ai, Z. Fan, and R. X. Gao, “Occupancy estimation for smart buildings by an auto-

regressive hidden markov model,” in 2014 American Control Conference, pp. 2234–2239,

IEEE, 2014.

[17] L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of an office room from

light, temperature, humidity and co2 measurements using statistical learning models,”

Energy and Buildings, vol. 112, pp. 28–39, 2016.

[18] J. Cumin, G. Lefebvre, F. Ramparany, and J. L. Crowley, “Human activity recognition

using place-based decision fusion in smart homes,” in International and Interdisciplinary

Conference on Modeling and Using Context, pp. 137–150, Springer, 2017.

[19] D. Ganesan, D. Estrin, and J. Heidemann, “Dimensions : Why do we need a new data

handling architecture for sensor networks?,” ACM SIGCOMM Computer Communication

Review, vol. 33, no. 1, pp. 143–148, 2003.

[20] A. A. Volkov and E. I. Batov, “Simulation of building operations for calculating building

intelligence quotient,” Procedia Engineering, vol. 111, pp. 845–848, 2015.

110

[21] E. I. Batov, “The distinctive features of “smart” buildings,” Procedia Engineering,

vol. 111, pp. 103–107, 2015.

[22] M. Jia, A. Komeily, Y. Wang, and R. S. Srinivasan, “Adopting internet of things for the

development of smart buildings : A review of enabling technologies and applications,”

Automation in Construction, vol. 101, pp. 111–126, 2019.

[23] S. N. Hojjati and M. Khodakarami, “Evaluation of factors affecting the adoption of smart

buildings using the technology acceptance model,” International Journal of Advanced

Networking and Applications, vol. 7, no. 6, p. 2936, 2016.

[24] Z. Ma, J. D. Billanes, and B. N. Jørgensen, “A business ecosystem driven market analysis :

The bright green building market potential,” in 2017 IEEE Technology & Engineering

Management Conference (TEMSCON), pp. 79–85, IEEE, 2017.

[25] Y. Xu, P. Ahokangas, M. Turunen, M. Mäntymäki, and J. Heikkilä, “Platform-based busi-

ness models : Insights from an emerging ai-enabled smart building ecosystem,” Electro-

nics, vol. 8, no. 10, p. 1150, 2019.

[26] J. Cumin, G. Lefebvre, F. Ramparany, and J. L. Crowley, “A dataset of routine daily ac-

tivities in an instrumented home,” in International Conference on Ubiquitous Computing

and Ambient Intelligence, pp. 413–425, Springer, 2017.

[27] F. Rosenblatt, “The perceptron : a probabilistic model for information storage and orga-

nization in the brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.

[28] J. Wang, M. Kolar, and N. Srebro, “Distributed multi-task learning,” in Proceedings of

the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016,

pp. 751–760, PMLR, oct 2016.

[29] Y. Zhang and Q. Yang, “A Survey on Multi-Task Learning,” tech. rep.

[30] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated Multi-Task Learning,”

may 2017.

[31] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–75, 1997.

[32] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge intelligence :

the confluence of edge computing and artificial intelligence,” IEEE Internet of Things

Journal, 2020.

111

[33] H. Peng, J. Wu, S. Chen, and J. Huang, “Collaborative channel pruning for deep net-

works,” in International Conference on Machine Learning, pp. 5113–5122, 2019.

[34] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and J. Zhu,

“Discrimination-aware channel pruning for deep neural networks,” in Advances in Neural

Information Processing Systems, pp. 875–886, 2018.

[35] X. Qi and C. Liu, “Enabling deep learning on iot edge : Approaches and evaluation,” in

2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 367–372, IEEE, 2018.

[36] H. Brendan McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y Arcas,

“Communication-efficient learning of deep networks from decentralized data,” Procee-

dings of the 20th International Conference on Artificial Intelligence and Statistics, AI-

STATS 2017, vol. 54, 2017.

[37] J. Konečný, B. McMahan, and D. Ramage, “Federated Optimization :Distributed Optimi-

zation Beyond the Datacenter,” nov 2015.

[38] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, “Fede-

rated Learning : Strategies for Improving Communication Efficiency,” 2016.

[39] Z. Li, V. Sharma, and S. P. Mohanty, “Preserving data privacy via federated learning :

Challenges and solutions,” IEEE Consumer Electronics Magazine, vol. 9, no. 3, pp. 8–16,

2020.

[40] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-

efficient learning of deep networks from decentralized data,” in Artificial Intelligence and

Statistics, pp. 1273–1282, PMLR, 2017.

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[42] J. C. Dunn and S. Harshbarger, “Conditional gradient algorithms with open loop step size

rules,” Journal of Mathematical Analysis and Applications, vol. 62, no. 2, pp. 432–444,

1978.

[43] M. Jaggi, “Revisiting frank-wolfe : Projection-free sparse convex optimization,” in Inter-

national Conference on Machine Learning, pp. 427–435, PMLR, 2013.

[44] N. Hovakimyan, “Robust adaptive control course notes,” University of Illinois at Urbana

Champaign (UIUC), 2009.

112

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[45] J. Lafond, H.-T. Wai, and E. Moulines, “On the online frank-wolfe algorithms for convex

and non-convex optimizations,” arXiv preprint arXiv :1510.01171, 2015.

[46] F. Yan, S. Sundaram, S. V. N. Vishwanathan, and Y. Qi, “Distributed autonomous on-

line learning : Regrets and intrinsic privacy-preserving properties,” IEEE Transactions on

Knowledge and Data Engineering, vol. 25, no. 11, pp. 2483–2493, 2013.

[47] S. Hosseini, A. Chapman, and M. Mesbahi, “Online distributed optimization via dual

averaging,” in 52nd IEEE Conference on Decision and Control, pp. 1484–1489, 2013.

[48] E. Hazan, “Introduction to online convex optimization,” Foundations and Trends® in Op-

timization, vol. 2, no. 3-4, pp. 157–325, 2016.

[49] W. Zhang, P. Zhao, W. Zhu, S. Hoi, and T. Zhang, “Projection-free distributed online

learning in networks,” in Proceedings of the 34th International Conference on Machine

Learning, pp. 4054–4062, 2017.

[50] S. Thrun, “Lifelong learning : A case study.,” tech. rep., Carnegie-Mellon Univ Pittsburgh

pa Dept of Computer Science, 1995.

[51] Z. Chen and B. Liu, “Lifelong machine learning,” Synthesis Lectures on Artificial Intelli-

gence and Machine Learning, vol. 10, no. 3, pp. 1–145, 2016.

[52] M. De Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf, “Computational geo-

metry,” in Computational geometry, pp. 1–17, Springer, 1997.

[53] M. I. Shamos and D. Hoey, “Geometric intersection problems,” in 17th Annual Sympo-

sium on Foundations of Computer Science (sfcs 1976), pp. 208–215, IEEE, 1976.

[54] Buslaev, “Albumentations : fast and flexible image augmentations,” ArXiv e-prints, 2018.

[55] D. Cvetković and P. Rowlinson, “The largest eigenvalue of a graph : A survey,” Linear

and multilinear algebra, vol. 28, no. 1-2, pp. 3–33, 1990.

[56] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote : synthetic mino-

rity over-sampling technique,” Journal of artificial intelligence research, vol. 16, pp. 321–

357, 2002.

[57] M. Pipattanasomporn, G. Chitalia, J. Songsiri, C. Aswakul, W. Pora, S. Suwanka-

win, K. Audomvongseree, and N. Hoonchareon, “Cu-bems, smart building electricity

consumption and indoor environmental sensor datasets,” Scientific Data, vol. 7, no. 1,

pp. 1–14, 2020.

113

[58] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,” Pattern

recognition, vol. 36, no. 2, pp. 451–461, 2003.

[59] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan revisited, revisited :

why and how you should (still) use dbscan,” ACM Transactions on Database Systems

(TODS), vol. 42, no. 3, pp. 1–21, 2017.

[60] L. Klein, J.-y. Kwak, G. Kavulya, F. Jazizadeh, B. Becerik-Gerber, P. Varakantham, and

M. Tambe, “Coordinating occupant behavior for building energy and comfort manage-

ment using multi-agent systems,” Automation in construction, vol. 22, pp. 525–536, 2012.

[61] P. Wijukkana, A. Julsereewong, and T. Thepmanee, “Temperature variation modeling for

improving building hvac control using built-in temperature sensors in smartphones,” in

2017 14th International Conference on Electrical Engineering/Electronics, Computer, Te-

lecommunications and Information Technology (ECTI-CON), pp. 790–793, IEEE, 2017.

[62] T. Oreszczyn, S. H. Hong, I. Ridley, P. Wilkinson, W. F. S. Group, et al., “Determinants of

winter indoor temperatures in low income households in england,” Energy and Buildings,

vol. 38, no. 3, pp. 245–252, 2006.

[63] S. Taylor and B. Letham, “Forecasting at scale,” The American Statistician, vol. 72, 09

2017.

[64] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale optimiza-

tion,” 1989.

[65] O. Gupta and R. Raskar, “Distributed learning of deep neural network over multiple

agents,” Journal of Network and Computer Applications, vol. 116, pp. 1–8, aug 2018.

[66] M. G.Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta, and R. Raskar,

“Split Learning : Distributed and collaborative learning.” https://www.media.

mit.edu/projects/distributed-learning-and-collaborative-learning-1/

overview/.

[67] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary, “Federated learning

with personalization layers,” arXiv preprint arXiv :1912.00818, 2019.

[68] H. Wai, J. Lafond, A. Scaglione, and E. Moulines, “Decentralized frank–wolfe algorithm

for convex and nonconvex problems,” IEEE Transactions on Automatic Control, vol. 62,

no. 11, pp. 5522–5537, 2017.

114

https://www.media.mit.edu/projects/distributed-learning-and-collaborative-learning-1/overview/
https://www.media.mit.edu/projects/distributed-learning-and-collaborative-learning-1/overview/
https://www.media.mit.edu/projects/distributed-learning-and-collaborative-learning-1/overview/

[69] Decentralized Meta Frank Wolfe for Online Neural Network Optimization, Zenodo, 2021.

115

	Acknowledgments
	List of Tables
	List of Figures
	Abstract
	Abstract (French)
	 Introduction
	Evolution of Edge Computing
	Smartness for Buildings
	Key Contributions
	Document Structure

	Related Works
	Building Management Systems
	Spatial Representation
	Predicate Logic Frameworks
	Sensing and Control
	Review of Technology Acceptance

	Edge Intelligence
	Federated Learning
	Projection-free Optimization
	Decentralized Learning
	Lifelong Learning

	Non Intrusive Sensing
	Building Parser
	Geometric Abstractions
	Parsing Operators

	Spatial Graph
	Structural Path
	BIM Parsing
	One Shot Enrichment

	Non Intrusive Sensing
	Tag-less Sensing
	Connected Space Model
	Occupancy Prediction
	Spatial Spectral Analysis

	Chapter Summary

	Minimal Sensing Solution
	Virtual Sensor Field
	Sensor Grouping
	Minimal Support Group
	Lifelong Policy Optimiser

	Virtualization Validation
	Policy Evidence
	 Policy Discovery
	Policy Optimiser

	Chapter Summary

	Co-Learning at Edge
	Energy - Ambience at Edge
	Predictive Interaction Model
	Performance Evaluation

	Offline Federated Personalization
	Scheduled Shared Storage Learning
	Performance of Federated Forecasting
	Impact of Federation Affinity

	Projection Free Online Decentralized Learning
	Prediction Performance
	Effect of Network Topology on Learning
	Effect of Decentralization

	Software Implementation
	Architecture
	Run-times

	Chapter Summary

	Conclusion
	Take-away Highlights
	Sensor Less Intelligence
	Virtual Sensor Field
	Energy Ambience Dynamics
	Co-operative Edge Intelligence

	Future Work
	Work Dissemination

	Bibliography

