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Algorithmes d’optimisation pour le problème d’approximation des
décompositions en rang tensoriel: application au clustering en

apprentissage automatique

Résumé

Les tenseurs sont une généralisation d’ordre supérieur des matrices. Ils apparaissent dans une
myriade d’applications. La décomposition de rang de tenseur décompose le tenseur en une
somme minimale de tenseurs simples de rang 1. En pratique, la présence de bruit dans les
entrées du tenseur fait que le calcul d’une décomposition de petit rang approchée est plus per-
tinente que de son calcul exact. Ce problème est connu comme le problème d’approximation
des décompositions en rang tensoriel. Dans cette thèse, nous étudions ce problème pour les
tenseurs symétriques, c.à.d pour les tenseurs avec des entrées invariantes par les permutations
d’indices. Nous considérons des tenseurs symétriques avec des valeurs complexes. Parsuite
en utilisant le lien entre les tenseurs et les polynômes homogènes, ainsi que des techniques
d’optimisation complexe, nous proposons une approche d’optimisation riemannienne et nous
développons un algorithme de Newton riemannien et un algorithme de Gauss–Newton rie-
mannien pour résoudre ce problème. Nous abordons également le problème de diagonalisation
simultanée de matrices, qui est étroitement lié au problème de décomposition tensorielle. Nous
considérons ce problème sous deux angles : la certification et l’approximation. Pour la première
partie, nous développons une suite de type Newton à convergence quadratique locale, et nous
proposons un teste de certification. Pour la deuxième partie, nous développons un algorithme
de gradient conjugué riemannien qui calcule localement un faisceau de matrices simultanément
diagonalisables approché. En combinant cet algorithme avec un problème linéaire de moindres
carrés, nous introduisons un algorithme d’optimisation alterné qui calcule une approximation
de la décomposition pour les tenseurs tridimensionnels, quand le rang d’approximation est su-
périeur à la dimension de deux premiers modes. Enfin, en se basant sur les deux approches :
tenseurs symétriques et diagonalisation simultanée de matrices, nous abordons le problème
de clustering en apprentissage automatique pour les modèles de mélanges de Gaussiènne sphé-
riques. Nous utilisons ces méthodes pour implémenter la méthode des moments, afin de fournir
un bon point initial pour l’algorithme de maximisation de vraissemblance.

Mots-clés : Tenseurs, algorithmes d’optimisation, apprentissage automatique, clustering, optimi-
sation riemannienne, diagonalisation simultanée de matrices, mélanges Gaussiènnes, optimisation
complex, variétés différentielles.
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Optimization algorithms for the tensor rank approximation problem:
application to clustering in machine learning

Abstract

Tensors are higher order generalization of matrices. They appear in a myriad of applications.
The tensor rank decomposition is to write the tensor as a minimal sum of simple rank-1 tensors.
In practice, the presence of noise in the tensor’s inputs means that computing an approximated
low rank decomposition is more relevant than computing the exact tensor rank decomposi-
tion. This problem is known as the low rank tensor approximation problem. In this thesis,
we study the low rank tensor approximation problem for symmetric tensors i.e. tensors with
unchanged entries under any permutation of their indices. We consider symmetric tensors
with complex values, and using the basic link between tensors and homogeneous polynomials,
and techniques from complex optimization, we develop a Riemannian optimization approach
proposing Riemannian Newton and Gauss–Newton algorithms to solve this problem. We also
address the simultaneous matrix diagonalization problem, which is closely related to the tensor
decomposition problem. Indeed, we consider this problem from two points of view: certifi-
cation and approximation. For the first point, we develop a Newton-type sequence with local
quadratic convergence, and we exhibit a certification test. For the second point, we develop a
Riemannian conjugate gradient algorithm which approximates locally a pencil of matrices by a
pencil of simultaneously diagonalizable matrices. Moreover, by combining this algorithm with
a linear least-squares problem, we introduce an alternate optimization algorithm that approx-
imates the decomposition of three-dimensional tensors with approximation rank larger than
the first two mode dimensions. Finally, based on both approaches symmetric tensors and si-
multaneous diagonalization, we address the machine learning clustering problem for spherical
Gaussian mixture models, where we use our developed methods to implement the method of
moments, which provides an initial point for the expectation maximization algorithm.

Keywords: Tensors, optimization algorithms, machine learning, clustering, Riemannian optimiza-
tion, simultaneous matrix diagonalization, Gaussian-mixtures, complex optimization, manifolds.
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CHAPTER 1
Introduction

Tensors are multidimensional arrays. They constitute a powerful tool from multilinear algebra
and have a central role in many important applications. The roots of tensor computation can be tra-
ced back to the end of the nineteenth century in differential calculus [58, 174]. Then they became
essential in many fields of applications in conjunction with the widespread use of big datasets,
where they showed high capability in extracting hidden structures in the data, outperforming in
this regard matrix-based methods. Mathematically speaking, tensors are more than simply a data
structure. Indeed, if f is a linear map on a K-vector space V onto another K-vector space V ′,
i.e. f(α1x1 + α2x2) = α1f(x1) + α2f(x2), ∀x1, x2 ∈ V, ∀α1, α2 ∈ K, where the two vector
spaces are of the same dimension then this map can be represented by a matrix of coordinates
with respect to fixed basis on respectively V and V ′. Similarly, f is said to be multilinear map
from V1 × . . . × Vd onto K, where V1, . . . , Vd are K-vector spaces, if f is linear with respect to
every variable xk in Vk, ∀k ∈ {1, . . . , d}, and thus as in the linear case the multilinear map f is
represented by an array of coordinates, once the basis of Vk for k ∈ {1, . . . , d} have been fixed,
such that the entries of this array depend on d indices. The tensor product of V1, . . . , Vd denoted
by V1⊗ . . .⊗Vd is defined by universal property such that any multilinear map f on V1× . . .×Vd
lift to a linear map on V1 ⊗ . . . ⊗ Vd. For simplicity, we will look at tensors as multidimensional
arrays of data. The Canonical Polyadic Decomposition (CPD) of tensors is at the core of many ap-
plications such that Signal Processing and Machine Learning [51], [189], Sensor array processing
[195], Chemometrics [34], Principal components analysis [114], and recently in Deep Learning
[160, 88, 16]. It consists of expressing a given tensor as a sum of rank-1 indecomposables ten-
sors. The tensor rank is by definition the smallest number of rank-1 tensors needed in the CPD
to generate the tensor. The CPD is also known as the rank decomposition when the number of
rank-1 components is equal to the rank of the tensor. In particular, symmetric tensors i.e. higher
order generalization of symmetric matrices, can be decomposed as a linear combination of simple
symmetric tensors of symmetric rank one. To illustrate the interest of tensor rank decomposition,
let us present briefly two applications as motivational examples :

Example 1.0.1 – (Blind Source Identification). Blind source identification consists of recovering
source signals from observed signals without knowing the recording environment. For instance, let
us consider this problem for a sensor array consisting of n > 2 displaced but otherwise identical
subarrays of l sensors i.e. ln := I sensors in total. The array output can be described by the
following model

X = ASt + E,

where A ∈ CI×r is the global array response, S ∈ Cm×r contains m snapshots of r sources,
and E is an additive noise. Let Jk ∈ Cl×I be a row-selection matrix such that JkX ∈ Cl×m
is the k-th subarray for k ∈ {1, . . . , n}. Let X ∈ Cl×m×n be the tensor of frontal slices (see
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2 CHAPITRE 1 — Introduction

Section 2.1) equal to the matrices JkX . This tensor has a unique rank-r decomposition (except of
the elementary indeterminacies of scaling and permutation)

X '
r∑
i=1

a1
i ⊗ a2

i ⊗ a3
i ,

with the factor matrices L = [a1
i ]1≤i≤r ∈ Cl×r, M = [a2

i ]1≤i≤r ∈ Cm×r, N = [a3
i ]1≤i≤r ∈

Cn×r. The generic uniqueness of rank-r decomposition of X stays valid even when the system
is underdetermined i.e. the number of sources exceeds the number of sensors. Using the rank
decomposition of X , JkA and the sources S can be identified as follows [187, 51]

JkA = Ldiag(a3
k,1, . . . , a

3
k,r), S = M.

Example 1.0.2 – (Gaussian mixtures). Suppose that we have a mixture of r Gaussian distributions
with r spherical covariance matrices (i.e. each covariance matrix is equal to the identity matrix
multiplied by a scalar) such that we aim to estimate the proportion wi, the mean µi ∈ Rn and the
covariance matrix Σi = σ2

i In of each Gaussian distribution within the mixture, for i ∈ {1, . . . , r}.
Assume that we have enough number of samplesN that allows us computing significant statistics.
The following theorem of Hsu-Kakade [107] can be used to implement an algorithm to find these
latent variables.

Theorem 1.0.1. Assume r ≤ n. Let
— σ̃2 be the smallest eigenvalue of E[(x − E[x]) ⊗ (x − E[x])] and v a corresponding unit

eigenvector,
— M1 = E[(vt(x− E[x]))2x],
— M2 = E[x⊗ x]− σ̃2In,
— M3 = E[x⊗ x⊗ x]−

∑n
i=1 (M1 ⊗ ei ⊗ ei + ei ⊗M1 ⊗ ei + ei ⊗ ei ⊗M1),

where (ei)1≤i≤n denotes the canonical basis of Rn, and E is the expectation (can also called the
mean). Then σ̃2 =

∑r
i=1 ωi σ

2
i and

M1 =
r∑
i=1

ωi σ
2
i µi, M2 =

r∑
i=1

ωi µi ⊗ µi, M3 =
r∑
i=1

ωi µi ⊗ µi ⊗ µi.

This theorem tells us that the symmetric rank decomposition of the symmetric tensor M3
contains information on the parameters wi and µi that we want to find.
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Figure 1.1 – Illustration of a Gaussian mixture in the plane with 2 clusters. The first cluster has
mean µ1 = (−5.0,−3.0)t, variance σ2

1 = 0.4 and proportion w1 = 0.3. The second cluster has
µ2 = (−5.0, 4.0)t, σ2

2 = 0.3 and w2 = 0.7. Number of samples N = 1000. The yellow circles
represent the means of the clusters and the red squares are the estimated means by the method of
moments that we will detail in Chapter 6.

We can notice in the first example the presence of noise in the model of the sensor array
processing, and in the second example the symmetric tensor is built from empirical moments.
In fact, this is often the case for many tensor decomposition applications, where the data from
which the tensor is constructed is rarely free of noise. For this reason, the problem to solve in
practice is to approximate the tensor by a tensor of low rank, rather than computing the exact rank
decomposition. This consists of formulating the approximation problem as a cost function that
measures the distance (in general by using the Frobenius norm) between the tensor to approximate
and a tensor in the set of tensors with a bounded number of terms in their rank decompositions.
In this thesis we first consider the low rank tensor approximation problem for symmetric tensors
with complex coefficients, where we investigate the geometric structure of the constraint set and
show how it is possible, when combining this with efficient computation tools, to develop concrete
efficient approximation algorithms.

We then move to the simultaneous matrix diagonalization problem which is closely related
to tensors. In fact, suppose that we have a pencil of matrices, a tensor of order three can be built
by stacking the matrices of the pencil one after the other along the third dimension. Conversely,
unfolding a three dimensional tensor along the third dimension yields a pencil of matrices (this
can also generalized for higher order tensors). The rank decomposition of the tensor corresponds
to a simultaneous diagonalization of the matrices in the pencil. The relation between these two
representations is heavily exploited in the literature. We address the simultaneous matrix diagona-
lization problem as a certification and approximation problem and briefly address its connection
to tensor rank approximation problem. Finally, we highlight the importance and the applicability
of the proposed approaches throughout an interesting application in recovering hidden structure in
spherical Gaussian mixtures.
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In this thesis we use techniques from numerical optimization, tensor analysis, linear algebra,
and differential geometry. Concretely, we utilize tools such as Riemannian optimization, mani-
folds, matrix decomposition, complex optimization, and several others.

We start with two new algorithms for the low rank tensor approximation problem for sym-
metric tensors with complex coefficients. The first algorithm is a Riemannian Newton algorithm
with quadratic local convergence. The second algorithm is a Riemannian Gauss-Newton algorithm
over Veronese manifolds. The local convergence of the aforementioned algorithm is not affected
by large scale differences between rank-one components. The two algorithms show their com-
petitiveness in comparison with other state-of-the-art methods in terms of accuracy and running
time.

We then move to the simultaneous matrix diagonalization problem closely related to tensors,
and discussing in this context the certification and the approximation problems. Indeed, for a pencil
of simultaneously diagonalizable matrices, we introduce a Newton-type sequence that converges
quadratically towards the solution when starting from an initial point verifying a sufficient condi-
tion. Moreover, we introduce a Riemannian conjugate gradient algorithm for the approximate
simultaneous diagonalization of matrices problem, and use this algorithm to develop an algorithm
for the low rank tensor approximation problem for three-dimensional tensors when the approxi-
mation rank is higher than the dimension of the two first modes.

Finally, we show how the studied approaches can be used in machine learning applications for
instance in clustering problems. Mainly, when the dataset that we aim to cluster is obeying spheri-
cal Gaussian mixture distribution, we propose to apply the Expectation Maximization algorithm,
with an initial point given by the method of moments and show the impact of this choice especially
in term of accuracy in comparison with other state-of-the-art methods.

1.1 Context and literature review

In the sequel we state the main research axis that we will consider in this thesis equipped with
an overview of some important related works.

Low rank symmetric tensor approximation problem A symmetric tensor T of order d and
dimension n in T d(Cn) = Cn ⊗ · · · ⊗ Cn is a special case of tensors, where its entries do not
change under any permutation of its d indices. We denote their set by Sd(Cn). The symmetric
tensor decomposition problem consists of decomposing a symmetric tensor T ∈ Sd(Cn) into a
linear combination of symmetric tensors of rank one i.e.

T =
r∑
i=1

wi vi ⊗ ...⊗ vi︸ ︷︷ ︸
d times

, wi ∈ C, vi ∈ Cn (1.1)

For a multilinear tensor, its decomposition as a minimal sum of tensor products of vectors is
called the Canonical Polyadic Decomposition [101]. We have a correspondence between Sd(Cn)
and the set of homogeneous polynomials of degree d in n variables denoted C[x1, . . . , xn]d =:
C[x]d. Using this correspondence, (1.1) is equivalent to express the homogeneous polynomial p
associated to T as a sum of powers of linear forms, which is by definition the classical Waring
decomposition i.e.

p =
r∑
i=1

wi(vi,1x1 + · · ·+ vi,nxn)d, wi ∈ C, vi ∈ Cn (1.2)
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The smallest r such that this decomposition exists is by definition the symmetric rank of p deno-
ted by ranks(p). Let d ≥ 3. The generic symmetric rank denoted by rg, is given by Alexander–
Hirschowitz theorem [10] as follows : rg =

⌈ 1
n

(n+d−1
d

)⌉
for all n, d ∈ N, except for the following

cases : (d, n) ∈ {(3, 5), (4, 3), (4, 4), (4, 5)}, where it should be increased by 1. We say that T
is of subgeneric rank, if its rank ranks(T ) = r in (1.2) is strictly lower than rg. In this case, a
strong property of uniqueness of the Waring decomposition holds [47], and the symmetric tensor
T is called identifiable, unless in three exceptions which are cited in [47, Theorem 1.1], where
there are exactly two Waring decompositions. This identifiability property forms an important
key strength of Waring decomposition. It can explain why this decomposition problem appears
in many applications for instance in the areas of mobile communications, in blind identification
of under-determined mixtures, machine learning, factor analysis of k-way arrays, statistics, bio-
medical engineering, psychometrics, and chemometrics. See e.g. [52, 56, 63, 190] and references
therein. The decomposition of the tensor is often used to recover structural information in the
application problem.

The Symmetric Tensor Approximation problem (STA) consists of finding the closest symme-
tric tensor to a given symmetric tensor T ∈ Sd(Cn), of low symmetric rank. Equivalently, for a
given r ∈ N∗, it consists of approximating a homogeneous polynomial p associated to a symmetric
tensor T by an element in Σr, where Σr = {q ∈ C[x]d | ranks(q) ≤ r}, i.e.

(STA) min
q∈Σr

1
2 ||p− q||2d.

Since in many problems, the input tensors are often computed from measurements or statistics,
they are known with some errors on their coefficients and computing an approximate decomposi-
tion of low rank often gives better structural information than the exact or accurate decomposition
of the approximate tensor [11, 13, 86].

For matrices, the best low rank approximation can be computed via Singular Value Decom-
position (SVD). Higher Order Singular Value Decomposition (HOSVD) has been investigated to
compute a multilinear rank approximation of a tensor [63, 64, 215], this, in contrast to the ma-
trix case, does not give the best multilinear rank approximation (see for instance inequality (5) in
[122]).

A classical approach for computing an approximate tensor decomposition of low rank is the so-
called Alternating Least Squares (ALS) method. It consists of minimizing the distance between
a given tensor and a low rank tensor by alternately updating the different factors of the tensor
decomposition, solving a quadratic minimization problem at each step. See e.g. [42, 44, 93, 118].
This approach is well-suited for tensor represented in T d(Cn) but it looses the symmetry property
in the internal steps of the algorithm. The space in which the linear operations are performed is of
large dimension nd compared to the dimension

(n+d−1
d

)
of Sd(Cn) when n and d grow. Moreover

the convergence is slow [78, 208].
Other iterative methods such as quasi-Newton methods have been considered for low rank

tensor approximation problems to improve the convergence speed. See for instance [97, 162, 169,
183, 192, 206]. A Riemannian Gauss–Newton algorithm with trust region scheme was presented
in [33], to approximate a given real multilinear tensor by one of low rank. The Riemannian opti-
mization set is a Cartesian product of Segre manifolds (i.e. manifolds of real multilinear tensors of
rank one). The retraction on the Segre manifold, called ST-HOSVD, is based on sequentially trun-
cated HOSVD [122, 91, 215]. Moreover, an algorithm, called hot restarts, was introduced in [33]
to avoid ill-conditioned decompositions. Closely related to these iterative methods, the condition
number of join decompositions such as tensor decompositions is studied in [32].
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Optimization techniques based on quasi-Newton iterations for block term decompositions of
multilinear tensors over the complex numbers have also been presented in [191, 192]. In [183]
quasi-Newton and limited memory quasi-Newton methods for distance optimization on products
of Grassmannian manifolds are designed to deal with the Tucker decomposition of a tensor and
applied for a low multilinear rank tensor approximation. In all these approaches, an approximation
of the Hessian is used to compute the descent direction, and the local quadratic convergence cannot
be guaranteed.

Specific investigations have been developed, in the case of best rank-1 approximation. The
problem is equivalent to the optimization of a polynomial on the product of unitary spheres (see
e.g. [64, 227]). Global polynomial optimization methods can be employed over the real or complex
numbers, using for instance convex relaxations and semidefinite programming [155]. However, the
approach is facing scalability issues in practice for large size tensors.

In relation with polynomial representation and multivariate Hankel matrix properties, another
least square optimization problem is presented in [154], for low rank symmetric tensor approxima-
tion. Good approximations of the low rank approximation are obtained for small enough pertur-
bations of low rank tensors. More recently, a method for decomposing real even-order symmetric
tensors, called Subspace Power Method (SPM), has been proposed in [116]. It is based on a power
method associated to the projection on subspaces of eigenvectors of the Hankel operators and has
a linear convergence.

Simultaneous diagonalization of matrices Let us consider s diagonalizable matrices
M1, · · · ,Ms in Cn×n which pairwise commute. A classical result states that these matrices
are simultaneously diagonalizable, i.e., there exists an invertible matrix E and diagonal matrices
Σi, 1 6 i 6 s, such that EMiE

−1 = Σi, 1 6 i 6 s, see e.g. [105]. Our objective is to compute
numerically a solution (E,F,Σ) of the system of equations

f(E,F,Σ) :=
(

FE − In
FME − Σ

)
= 0 (1.3)

where Σ = (Σ1, . . . ,Σs) and EMF − Σ := (EM1F − Σ1, . . . , EMsF − Σs). Notice that this
system is multi-linear in the unknowns E,F,Σ. We verify that when s = 1 and M1 is a generic
matrix, this system has a solution set of dimension 2n2−n2− (n2−n) = n. However, for s > 1
and generic matrices Mi, there is no solution. To have a solution, the pencil M must be on the
manifold of s-tuples of simultaneously diagonalizable matrices.

The system (1.3) can be generalized to the following system :

f ′(E,F,Σ′) :=
(
FM0E − Σ0
FME − Σ

)
= 0 (1.4)

where Σ′ = (Σ0,Σ1, . . . ,Σs), M0 ∈ Cn×n is replacing In and Σ0 is a diagonal matrix replacing
In in the first equation of (1.3). When the pencil M ′ = (M0,M1, . . . ,Ms) contains an inver-
tible matrix, the solutions of the two systems are closely related. If M0 is invertible, a solution
(E,F,Σ′) of (1.4) for M ′ = (M0,M1, . . . ,Ms) gives the solution (FM0, EΣ−1

0 ,ΣΣ−1
0 ) of (1.3)

for M = (M−1
0 M1, . . . ,M

−1
0 Ms). A similar correspondence between the solution sets can be

obtained if a linear combination M ′0 =
∑s
i=1 λiMi is invertible.

As (1.4) can be seen as an homogeneization of (1.3) and appears in several contexts and appli-
cations, we will also study Newton-type methods for this homogenized system.
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To solve the system of equations (1.3), we propose to apply a Newton-like method and to
analyze the Newton map associated to an iteration. These ideas have also been developed in the
literature, for instance, in a technical report for the fast computation of the singular value decom-
position [103], in [143] where a Newton method is used for the symmetric eigenvalue problem.

We say that we have a quadratic sequence associated to a system of equations if the sequence
converges quadratically towards a solution.

The classical Newton map defines (E + X,F + Y,Σ + S) from (E,F,Σ) in order to cancel
the linear part in the Taylor expansion of f(E + X,F + Y,Σ + S). An easy computation shows
that the perturbations X , Y and S are solutions of such a Sylvester-type linear system(

FE − In + FX + Y E
FME − Σ− S +XMF + EMY

)
= 0. (1.5)

The technical background to solve this linear system is the Kronecker product, see [104]. In this
way, the size of the linear system that one needs to invert is n2.

The construction of the methods studied here is based on perturbations of such type (E(In +
X), (In + Y )F,Σ + S) rather than (E +X,F + Y,Σ + S). More precisely the perturbations X ,
Y and S that we consider are perturbations which cancel the linear part of the Taylor expansion
of f(E(In +X), (In + Y )F,Σ +S). In this case, we can produce explicit solutions for the linear
system in X , Y and S given by :(

Z +X + Y
∆− S + ΣX + Y Σ

)
= 0. (1.6)

where Z = FE − In and ∆ = FME − Σ. We will see that the linear system (1.6) admits an
explicit solution (X,Y, S) with respect to Z and ∆ for s = 1, 2 in (1.3). This is because Σ is
a diagonal matrix. From these considerations, we define and analyze a sequence that converges
quadratically towards a solution of the system (1.3) without inverting a linear system at each step
of this Newton-like method.

Simultaneous matrix diagonalization is required by many algorithms as it was pointed out in
[36]. There is quite a body of literature on exactly or approximately commuting matrices and exact
or approximate joint diaonalization, see for instance [121, 211]. A numerical analysis for two nor-
mal commuting matrices is proposed in [37] using Jacobi-like methods. Their method adjusts the
classical Jacobi method in successively solving n(n−1)

2 two-real-variables optimization problems
at each sweep of the algorithm. Their main result states a local quadratic convergence and can be
summarized in the following way. Let off2(A,B)2 =

∑
i 6=j |Ai,j |2 + |Bi,j |2. Let {α1, . . . , αn}

(resp. {β1, . . . , βn}) be the set of the eigenvalues of A (resp. B). Let Ak and Bk the matrices
obtained at the step k of the Jacobi-like method and ρk = off2(Ak, Bk). If

ρ0 <
1
2δ := 1

4 min
i 6=j

(|αi − αj |, |βi − βj |),

then

ρk+1 < 2n(9n− 13) ρ
2
k

δ
.

We will see in Theorems 5.1.5 and 5.1.8 that the local conditions of the quadratic conver-
gence do not depend on n. Many other papers studied the so-called Jacobi-like methods (see e.g.
[139], [146] and references therein).
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In [102] a sequence with proof of its convergence towards a numerical solution of the sys-
tem (1.3) when s = 1 i.e. for M1, with the assumption of M1 being a diagonalizable matrix, is
presented. It requires matrix inversion. Furthermore, under some extra assumptions, its quadratic
convergence is established.

Simultaneous matrix diagonalization appears in many applications. For instance, in the solu-
tion of multivariate polynomial equations by algebraic methods, the isolated roots of the system
are obtained from the computation of common eigenvectors of commuting operators of multipli-
cation in the quotient ring and from their eigenvalues [57], [77]. In the case of simple roots, this
reduces to simultaneous diagonalization of a pencil of matrices. Further, simultaneous matrix dia-
gonalization is used for blind source separation, direction of arrival estimation, multi-dimensional
harmonic retrieval, Canonical Polyadic Decomposition (CPD), econometric (see e.g. [27], [212],
[89], [65], [24] and references therein).

The approximate simultaneous diagonalization problem aims to approximate locally a pencil
of matrices to a pencil of simultaneously diagonalizable matrices. This problem is widely studied
in the literature for a pencil of real symmetric matrices C = (C1, . . . , Cs), in particular several
algorithms based on Riemannian optimization methods (see [2]) have been developed in order to
find an approximate joint diagonalizer for the pencil C (see e.g. [25, 1, 171, 113]). The idea is to
find a local minimizer B ∈ Rn×n of an objective function f which measures the degree of non-
diagonality of the pencil (BC1B

T , . . . , BCsB
T ) over a Riemannian manifold (see [219, 25, 7]

for some examples of objective functions). This Riemannian manifold is defined according to the
geometric constraints considered onB. For instance, the diagonalizer is supposed to be orthogonal
in some of these algorithms after a pre-whitening step (see e.g. [40, 41, 80, 171, 74, 113, 156,
157]). Due to inaccuracies in the computation of the diagonalizer with orthogonality constraints
(see. [224]), oblique constraints, i.e. all the rows of the diagonalizer have unit Euclidean norm,
have also been considered instead of the former constraints in more recent works (see e.g. [1, 25]).

The approach of approximate joint diagonalizer for a pencil of real symmetric matrices is used
to solve Blind Source Separation (BSS) problem, with potential applications in wide domains of
engineering (see e.g. [55]).
In more general context, when the matrices of the pencilM to approximate are general square ma-
trices, there exists algorithms to find an invertible matrix E such that (EM1E

−1, . . . , EMsE
−1)

is the most diagonal. The majority of these algorithms is based on Jacobi-like method (see e.g.
[141, 85, 110]). Nevertheless, some other approaches have been addressed this problem. In [218]
the authors split the optimization problem into a sequence of simpler second order subproblems,
and present an algorithm that works with no restriction on the transformation matrix E. More
recently, the authors in [9] present an algorithm based on two main steps. The first step approxi-
mates the pencil to nearly simultaneously diagonalizable pencil of matrices and this by solving a
structured low-rank approximation problem. The second step computes a transformation matrix
that diagonalizes exactly the pencil of simultaneously diagonalizable matrices obtained from the
first step. One advantage for this approach over the other optimization methods regarding this pro-
blem, is that it has a guaranty to find an exact common diagonalizer if the pencil to approximate
is already simultaneously diagonalizable.

Simultaneous matrix diagonalization of pencils of matrices appears in the Canonical Polyadic
Decomposition (CPD) of tensors [60]. Under certain conditions the rank decomposition (i.e. the
CP decomposition with number of rank-1 simple tensors equal to the rank of the tensor), is unique
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[188]. In this case simultaneous matrix diagonalization allows to compute the rank decomposition.
Direct methods based on simultaneous diagonalisation of matrices built from slices of tensors have
been investigated for 3rd order multilinear tensors, e.g. in [93, 179, 134, 73, 59] or for multilinear
tensors of rank smaller than the lowest dimension in [60, 139, 65]. For the low rank tensor ap-
proximation problem (i.e. approximation of the tensor to CP decomposition of lower rank) via
simultaneous matrix diagonalization see for instance [65, 176]. In his proof on lower bounds of
tensor ranks, Strassen showed in [203, Theorem 4.1] that a 3rd order multilinear tensor is of rank
r if it can be embedded into a tensor with slices of rank r matrices, which are simultaneously
diagonalizable. The CPD of tensors plays a crucial role in numerous applications such that Psy-
chometric [43], signal processing and machine learning [51], [189], sensor array processing [195],
arithmetic complexity [38], wireless communications [197], multidimensional harmonic retrieval
[193], [194], Chemometrics [34], and Principal components analysis [114].

Tensor decomposition for learning Gaussian mixtures from moments With the relatively
recent evolutions of information systems over the last decades, many observations, measurements,
data are nowadays available on a variety of subjects. However, too much information can kill the
information and one of the main challenges remains to analyse and to model these data, in order
to recover and exploit hidden structures.

To tackle this challenge, popular Machine Learning technologies have been developed and
used successfully in several application domains (e.g. in image recognition [99]). These techniques
can be grouped in two main classes : Supervised machine learning techniques are approximating a
model by optimising the parameters of an enough general model (e.g. a Convolution Neural Net-
work) from training data. Unsupervised machine learning techniques are deducing the parameters
characterising a model directly from the given data, using an apriori knowledge on the model. The
supervised approach requires annotated data, with a training step that can introduce some bias in
the learned model. The unsupervised approach can be applied directly on a given data set avoiding
the costly step of annotating data, but the quality of the output strongly depends on the type of
models to be recovered.

We consider the latter approach and show how methods from effective algebraic geometry
help finding hidden structure in data that can be modelled by mixtures of Gaussian distributions.
The algebraic-geometric tool that we consider is tensor decomposition. It consists in decomposing
a tensor into a minimal sum of rank-1 tensors. This decomposition generalises the rank decompo-
sition of a matrix, with specific and interesting features. Contrarily to matrix rank decomposition,
the decomposition of a tensor is usually unique (up to permutations and scaling) when the rank
of the tensor, that is the minimal number of rank-1 terms in a decomposition, is small compared
to the dimension of the space(s) associated to the tensor (see for instance [46, 48, 47]). Such a
tensor is called identifiable. This property is of particular importance when the decomposition is
used to recover the parameters of a model. It guaranties the validity of the recovering process and
its convergence when the number of data increases.

In [107], symmetric tensor decompositions for moment tensors are studied for spherical Gaus-
sian mixtures. Moment methods have been further investigated for Latent Dirichlet Allocation
models, topic or multiview models in [13, 111]. In [178], a tensor decomposition technique based
on Alternate Least Squares (ALS) is used to initialise the Expectation Maximisation (EM) algo-
rithm [96, 151, 222], for a mixture of discrete distributions (which are not Gaussian distributions).
An overview of tensor decomposition methods in Machine Learning can be found in [170].
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1.2 Contributions

In this section we summarize our main contributions in this thesis.

Low rank symmetric tensor approximation problem In Chapter 4, we present two Rieman-
nian Newton-type algorithms for the low rank tensor approximation problem (STA) for symmetric
tensors with complex coefficients.

• The first algorithm is a Riemannian Newton algorithm (Section 4.2). We use the parame-
trization of the set of tensors of rank at most r by weights and vectors on the unit sphere.
Exploiting the properties of the apolar product on homogeneous polynomials combined
with efficient tools from complex optimization, we provide an explicit and tractable for-
mulation of the Riemannian gradient and Hessian, leading to Newton iterations with local
quadratic convergence. We prove that under some regularity conditions on non-defective
tensors in the neighborhood of the initial point, the iteration (completed with a trust-region
scheme) is converging to a local minimum (Proposition 4.2.13).

• The second algorithm is a Riemannian Gauss–Newton method on the Cartesian product of
the manifolds of symmetric rank-1 tensors called Veronese manifolds (Section 4.2.2). We
describe an explicit orthonormal basis of the tangent space of this Riemannian manifold.
We use this basis to obtain the Riemannian gradient and the Gauss–Newton approximation
of the Riemannian Hessian. We present an approximation method for a given homoge-
neous polynomial in C[x]d into linear form to the dth power, based on the rank-1 trunca-
tion of the SVD of Hankel matrix associated to the homogeneous polynomial. From this
approximation method, we propose a new retraction operator on the Veronese manifold.
The design of the algorithm depends on the geometry of the Veronese manifold and its
tangent space. In this context, the Riemannian Gauss–Newton iteration that we describe
is adapted to the symmetric setting by considering the reduced vector space C[x]d and by
exploiting the apolar identities. In our approach we consider symmetric tensors with com-
plex coefficients. The constraint set is parameterized via the complex Veronese manifolds,
which leads us to a complex optimization problem with geometric constraints, and this, to
the best of our knowledge, has not been addressed previously in tensor approximation.

• We analyze the numerical behavior of these methods, choosing for the initial point the ap-
proximate decomposition provided by the Simultaneous Matrix Diagonalisation (SMD) of
a pencil of Hankel matrices [92, 150] (Section 4.3.1). Numerical experiments (Section 4.3)
show the good numerical behavior of the new methods for the best rank-1 approximation
of real-valued symmetric tensors, for low rank approximation of sparse symmetric tensors,
and against perturbations of symmetric tensors of low rank. Comparisons with existing
state-of-the-art methods corroborate this analysis.

Simultaneous diagonalization of matrices In Chapter 5, we investigate the simultaneous dia-
gonalization of matrices from three points of view : Certification, approximation, and relation with
tensor rank decomposition.

• In Section 5.1, our contributions are a new iteration for the simultaneous diagonalization
of matrices, with a local quadratic convergence and its analysis. The iteration is different
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from a Newton iteration. It does not require to invert a large linear system, but performs
simple matrix operations. We analyse the numerical behavior of the method and provide a
certification test for the convergence. Sections 5.1.2, 5.1.3, 5.1.4, and 5.1.5 are devoted to
respectively constructing a sequence to solve numerically :
— FE − In = 0,
— the system (1.3) when s = 1,
— the system (1.4) when s = 1,
— the system (1.3) for any s.
Moreover, we provide for these cases, a certification that the sequence converges to a
nearby solution, and a test to detect when this convergence is quadratic from an initial
point. More precisely, in Section 5.1.3 we show that a triplet (E0, F0,Σ0) must satisfy a
property depending on the quantity ε0 := max(κ2

0K
2
0‖Z0‖, κ2

0K0‖∆0‖) to get a quadratic
convergence where
1– Z0 = E0F0 − In,
2– ∆0 = E0MF0 − Σ0,

3– κ0 = max
(

1, max
16j<k6n

1
|σ0,k − σ0,j |

)
,

4– K0 = maxk
(
1, |σ0,k|

)
,

such that σ0,1, . . . , σ0,n denote the diagonal entries of Σ0. The quantity κ is the condi-
tion number of the studied methods. Based on the same methodology of Section 5.1.3,
in Sections 5.1.4 and 5.1.5 we exhibit a certification of the convergence of the sequence
constructed to the studied case towards the solution with a sufficient condition on the initial
point. In Section 5.1.6 we perform numerical experimentation to corroborate the theoreti-
cal analysis.

• In Section 5.2, we address the problem of approximate simultaneous diagonalization of
matrices. We consider a pencil of square matrices M = [M1, . . . ,Ms] without imposing
any restrictions on the matrices to be diagonalized approximately, regarding their symme-
try or definiteness. Unlike the common familiar case where one transformation or diagona-
lizer E is considered, we look in more general context, for two transformation matrices E
and F that diagonalize approximately the pencil M in such a way that FMkE

t is the most
diagonal for k ∈ {1, . . . , s}. This structure allows for an implementation of an algorithm
for the tensor rank approximation problem of three-dimensional tensors with approxima-
tion rank higher than the first two dimensional sizes (Section 5.3). The approximation
problem is formulated as a minimization problem of a cost function that measures the
norm of the off-diagonal terms of the pencil’s matrices. Moreover, restrictions on E and
F are imposed to be in the oblique manifold in order to avoid undesirable singular points.
Hence, the problem is formulated as a non-linear least squares problem over the Cartesian
product of two oblique manifolds. We develop a Riemannian conjugate gradient algorithm
to solve this problem. To develop our algorithm, we essentially use the framework presen-
ted recently in [25] regarding the Riemannian gradient-based optimization methods over
the oblique manifold.

• In Section 5.3, we present a new algorithm for the low rank tensor approximation problem
of trilinear tensors of size (n1, n2, n3) with approximation rank r ≥ max(n1, n2). We
consider the pencil of matrices associated to the tensor to be approximated that contains
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the slices of this tensor obtained by the flattening according to the third mode. Then we
extend the matrices of this pencil of size n1 × n2 to matrices of size r × r. The algo-
rithm then works on the pencil of the extended matrices. At each iteration, the algorithm
alternates between two steps. The first step finds E and F that diagonalize approxima-
tely the extended pencil, and this by using the Riemannian conjugate gradient algorithm
for approximate simultaneous diagonalization of matrices (Section 5.2). The second step
updates the entries of the extdended part in each matrix of the pencil by solving a linear
least-squares problem. At the end an approximated rank-r decomposition is obtained for
an extended tensor of size (r, r, n3), from which we extract an approximated rank-r de-
composition for the original tensor of size (n1, n2, n3).

Tensor decomposition for learning Gaussian mixtures from moments Chapter 6 is the chap-
ter where we show one application of symmetric tensors in machine learning, by addressing the
clustering problem of a dataset following a spherical Multivariate Gaussian Mixture (MGM) dis-
tribution. Indeed, this done by using the method of moments.

It has been shown in [47] that for symmetric tensors, if the rank of the tensor is strictly less
than the rank rg of a generic tensor of the same size, then the tensor is generically identifiable,
except in three cases. We show in Section 6.2.5 a more specific result : for a symmetric tensor T
having a decomposition with r points, if the Hankel matrix associated to T in a degree strictly big-
ger than the degree of interpolation of the r points is of rank r, then the tensor is identifiable. We
show in Section 6.2.3, that under some assumption on the spherical Gaussian mixtures, a tensor of
moments of order 3 of the distribution is identifiable and its decomposition allows to recover the
parameters of the Gaussian mixture.
For symmetric tensor decomposition, a method based on flat extension of Hankel matrices or com-
mutation of multiplication operators has been proposed in [30] and extended to multi-symmetric
tensors in [18]. This approach is closely related to the simultaneous diagonalisation of tensor
slices, but follows a more algebraic perspective. Eigenvectors of symmetric tensors have been
used to compute their decompositions in [158]. In [92], Singular Value Decomposition and eigen-
vector computation are used to decompose a symmetric tensor, when its rank is smaller than the
smallest size of its Hankel matrix in degree less than half the order of the tensor. In Section 6.2,
we describe a new algorithm, involving Singular Value Decomposition and simultaneous diago-
nalisation, to compute the decomposition of an identifiable tensor, which interpolation degree is
smaller that half the order of the tensor. In Section 6.3, we apply the method of moments [107]
for recovering Gaussian mixtures and show, throughout examples on synthetic and real datasets,
its impact on providing good initialisation point in the Expectation Maximization algorithm, in
comparison with other state-of-the-art approaches.

1.3 Main notation

In this section we introduce some of the notation we use throughout the thesis. The super-
scripts .t, .∗ and .−1 are used respectively for the transpose, Hermitian conjugate, and the in-
verse matrix. Let M ∈ Cm×n, we denote by ‖A‖ the Frobenius norm of A given by ‖M‖ :=√∑n

i=1
∑n
j=1 |mi,j |2. Let A ∈ Cn×n, We denote by

√
A a matrix B ∈ Cn×n such that A = B2.

The complex conjugate is denoted by an overbar, e.g., w̄. We use parentheses to denote vectors
e.g. W = (wi)1≤i≤r, and the square brackets to denote matrices e.g. V = [vi]1≤i≤r where vi
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are column vectors. The concatenation of vectors v1, v2, . . . is denoted (v1; v2; . . .). The trace of a
matrix A is denoted by tr(A). For a matrix M ∈ Cn×n, let ddiag(M) be the diagonal matrix with
the same diagonal as M and let off(M) be the matrix where the diagonal term of M are replaced
by 0. We have M = ddiag(M) + off(M).We say that M is an off-matrix if M = off(M). In ad-
dition, diag(M) returns a vector containing the diagonal entries of M , and for (λ1, . . . , λn) ∈ Cn,
diag(λ1, . . . , λn) is the diagonal matrix in Cn×n of diagonal entries λ1, . . . , λn, and for a family
of matrices (Ai)1≤i≤n, diag(Ai)1≤i≤n is the matrix with diagonal blocks Ai.

1.4 Organization of the thesis

The thesis is divided in three parts : Preliminaries, Contributions, and Conclusions and Pers-
pectives.
Preliminaries

This part contains the background needed in the contributions part, with no original contribu-
tions.

• Chapter 2 : We introduce a review on tensors given the main notion and information in
this regard.

• Chapter 3 : We introduce the necessary concepts of Riemannian optimization.

Contributions
This part contains our contributions in this thesis.

• Chapter 4 : This chapter contains our contributions to low rank symmetric tensor approxi-
mation problem.
— Section 4.1 : We describe the set of non-defective rank-r symmetric tensors.
— Section 4.2 : This section contains the Riemannian Newton algorithm and the Rieman-

nian Gauss–Newton algorithm for the STA problem
— Section 4.3 : This section carries out numerical experiments.
— Section 4.3 : This section contains our conclusions in this chapter.
• Chapter 5 : This chapter contains our contributions to simultaneous matrix diagonaliza-

tion problem.
— Section 5.1 : This section contains the Newton-type methods for simultaneous matrix

diagonalization problem.
— Section 5.2 : This section contains the Riemannian conjugate gradient algorithm for

the approximate simultaneous diagonalization of matrices problem.
— Section 5.3 : This section contains the algorithm for the low rank tensor approximation

problem for real three-dimensional tensors with approximation rank larger than the size
of the first two modes.

— Section 5.4 : This section contains our conclusions in this chapter.
• Chapter 6 : This chapter contains our contributions to tensor decomposition for learning

Gaussian mixtures from moments.
— Section 6.1 : In this section we review Gaussian mixtures and moments methods.
— Section 6.2 : This section contains an algebraic symmetric tensor decomposition me-

thod for identifiable tensors.
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— Section 6.3 : This section contains numerical examples for simulations on synthetic
and real datasets.

Conclusions and Perspectives
This part contains the chapter of our conclusions and perspectives.

• Chapter 7 : We summary the main results of the thesis and give some perspectives and
open questions.

1.5 Publications

• The contributions of Chapter 4 were a joint work with Bernard Mourrain and Houssam
Khalil appeared as a journal paper in : Rima Khouja, Houssam Khalil, Bernard Mour-
rain. Riemannian Newton optimization methods for the symmetric tensor approximation
problem. Linear Algebra and its Applications. Volume 637, 2022, pages 175-211, ISSN
0024-3795, https://doi.org/10.1016/j.laa.2021.12.008.

• The contributions of Section 5.1 were a joint work with Jean-Claude Yakoubsohn and Ber-
nard Mourrain, the content is in the paper : Rima Khouja, Bernard Mourrain, Jean-Claude
Yakoubsohn. Newton-type methods for simultaneous matrix diagonalization. In prepa-
ration, 2022, submitted to Calcolo journal, and it is under revision. https://hal.archives-
ouvertes.fr/hal-03390265.

• The contributions of Chapter 6 were a joint work with Pierre-Alexandre Mattei and Ber-
nard Mourrain, the content is in the paper : Rima Khouja, Pierre-Alexandre Mattei, Bernard
Mourrain. Tensor decomposition for learning Gaussian mixtures from moments. Accepted
for publication in the special issue on Algebraic Geometry and Machine Learning of jour-
nal of Symbolic Computation. https://hal.archives-ouvertes.fr/hal-03244448.

https://doi.org/10.1016/j.laa.2021.12.008
https://hal.archives-ouvertes.fr/hal-03390265
https://hal.archives-ouvertes.fr/hal-03390265
https://hal.archives-ouvertes.fr/hal-03244448
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CHAPTER 2
Tensors

Tensors can be seen as a generalization of matrices to multiple dimensions. Formally, a tensor
of order d is an element of the tensor product of d vector spaces. It can be represented by a
multidimensional array of numerical values from a field like R or C with respect to fixed basis on
the vector spaces. Indeed, a scalar is a tensor of order zero, a vector is a tensor of order one and a
matrix is a tensor of order two.

Figure 2.1 – Illustration of tensors of order 1, 2, 3, 4 and 5.

Researchers pay high attention to tensors due to their applications in wide fields such as signal
processing, numerical linear algebra, computer vision, numerical analysis, neuroscience, chemo-
metrics, linguistics and more. In particular, the popularity of data science and machine learning
has grown considerably during the last decade, and tensors have expanded to these domains to
provide the required high computing capacities. For instance, tensors appear in the name of the
popular Google’s machine learning package "Tensorflow", since they are counted from the main
tools used in this package, where they provide a convenient data format that allows applying very
efficient operations in order to extract important information within the dataset and also to build
strong predictive models. There is a number of comprehensive and important reviews concerning
tensors and their applications. We mention for instance : Kolda et al. [118], Bro [34], Sidiropoulos
et al. [189], Cichoki et al. [51], and Rabanser et al. [170].

2.1 Introduction to tensors

Unless otherwise stated, in this chapter tensors are assumed real valued.
Let Rn1 ⊗ . . . ⊗ Rnd denotes the vector space of the tensor product of Rn1 , . . . ,Rnd . The vector
space Rn1 ⊗ . . . ⊗ Rnd is defined by the universal property [28] such that any multilinear map f
on Rn1 × . . .× Rnd lift to a linear map on Rn1 ⊗ . . .⊗ Rnd .
An element A in the vector space of d-way arrays denoted by Rn1×...×nd can be written in the

17
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form of an array A = [ai1,...,id ]1≤i1≤n1,...,1≤id≤nd , such that ai1,...,id ∈ R is the (i1, . . . , id)-entry
of the array.
Let u, v be two vectors in respectively Rn1 and Rn2 . Their outer product is defined by :

u⊗ v = [ui1ui2 ]1≤i1≤n1,1≤i2≤n2 .

This produces a matrix i.e. a 2-way array, thus the extension of this notion to the outer product
of d vectors yields a d-way array, and more generally the outer product of a d-way array with a
k-way array produces a d+ k-way array. The so-called Segre map given by

ϕ : Rn1 × . . .× Rnd → Rn1×...×nd (2.1)

(a1, . . . , ad) 7→ a1 ⊗ . . .⊗ ad := [a1
i1 . . . a

d
id

]1≤i1≤n1,...,1≤id≤nd ,

is a multilinear map, thus by the universal property of the tensor product [28] there exists a unique
linear map θ such that the following diagram commutes :

Rn1 ⊗ . . .⊗ Rnd

Rn1 × . . .× Rnd Rn1×...×nd .

θ

ϕ

Since dim(Rn1×...×nd) = dim(Rn1 ⊗ . . . ⊗ Rnd), θ is an isomorphism. Consider the canonical
basis of Rn1 ⊗ . . .⊗ Rnd :{

e(1)
i1
⊗ · · · ⊗ e(d)

id
| 1 ≤ i1 ≤ n1, . . . , 1 ≤ id ≤ nd

}
,

where
{

e(`)
1 , . . . , e(`)

n`

}
denotes the canonical basis in Cn` , ` = 1, . . . , d. Then θ may be described

by

θ

 n1,...,nd∑
i1,...,id=1

ai1,...,ide
(1)
i1
⊗ · · · ⊗ e(d)

id

 = Jai1···idK
n1,...,nd
i1,...,id=1 ∈ Cn1×...×nd .

Hence, a multilinear tensor of order or mode d and size (n1, . . . , nd) in Rn1 ⊗ . . . ⊗ Rnd can be
represented by a d-way array in Rn1×...×nd up to a choice of basis on Rn1 , . . . ,Rnd .

Thus, without loss of generality, we refer hereafter to a tensor in Rn1⊗. . .⊗Rnd by an element
A = [ai1,...,id ]1≤i1≤n1,...,1≤id≤nd in Rn1×...×nd , and we note that all the notion that we will work
on in this chapter and throughout this thesis are independent from the choice of basis of the vector
spaces.

We also mention that we can associate to a tensor A a multilinear polynomial of total degree
d in the variables x1 = (x1

1, . . . , x
n1
1 ), . . . , xd = (x1

d, . . . , x
nd
d ) of the form

∑
ai1,...,idx

i1
1 . . . x

id
d ,

1 ≤ i1 ≤ n1, . . . , 1 ≤ id ≤ nd. This bijection between the set of tensors and the set of multilinear
polynomials is important since it allows to study tensors from an algebraic geometric point of view
(see for instance [128]).

Some basics. We can create sub-dimensional sections of a tensor by fixing some of the tensor’s
indices. Fibers are the higher-order generalization of matrix rows and columns. They are obtained
by fixing all the indices of the tensor but one. Slices of a tensor are obtained by fixing all the
indices of the tensor except of two. In particular, ifA is a three-dimensional tensor, then the fibers
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A[:, j, k], A[i, :, k] and A[i, j, :] are called respectively column, row and tube fibers. Further, the
slices A[i, :, :], A[:, j, :] and A[:, :, k] are called respectively horizontal, lateral and frontal slices.
The inner product of A = [ai1,...,id ]1≤i1≤n1,...,1≤id≤nd and B = [bi1,...,id ]1≤i1≤n1,...,1≤id≤nd such
that A and B are in Rn1×...×nd is given by :

〈A,B〉 =
n1∑
i1=1

. . .
nd∑
id=1

ai1,...,idbi1,...,id .

The Frobenius norm of A is as follows :

‖A‖ =
√
〈A,A〉 =

√√√√ n1∑
i1=1

. . .
nd∑
id=1
|ai1,...,id |2.

It is analogous to the Frobenius matrix norm.
A tensor A ∈ Rn1×...×nd is called of rank one if it can be written as the outer product of d

vectors as follows :
A = a1 ⊗ . . .⊗ ad,

where ak ∈ Rnk , ∀1 ≤ k ≤ d. We can notice that the set of rank-one tensors (also called simple
tensors) is given by the image of the Segre map

ϕ : Rn1 × . . .× Rnd → Rn1×...×nd

(a1, . . . , ad) 7→ a1 ⊗ . . .⊗ ad = [a1
i1 . . . a

d
id

]1≤i1≤n1,...,1≤id≤nd .

Some types of tensors. A tensorA ∈ Rn1×...nd is diagonal if ai1,...,id 6= 0 only if i1 = . . . = id.
A tensor is called cubical if each mode is of the same size i.e. n1 = . . . = nd = n. We denote by
T dn (R) = Rn ⊗ · · · ⊗ Rn the outer product d times of Rn. A cubical tensor A in T dn (R) is said to
be symmetric if each entries remains unchanged under any permutation of its d indices i.e.

ai1...id = aiσ(1)...iσ(d) ,∀σ ∈ Sd,

where Sd denotes the symmetric group of permutations on {1, . . . , d}.
In particular, a tensor can be partially symmetric and it is called multi-symmetric. For example, a
tensor A ∈ Rn×n×s is symmetric in modes one and two if

ai1i2i3 = ai2i1i3 ,∀ 1 ≤ i1, i2 ≤ n, ∀ 1 ≤ i3 ≤ s,

in other words, all the frontal slices are symmetric matrices.
Since low rank symmetric tensor approximations constitutes a relevant part of our contribu-

tions in this thesis (Chapter 4), the next section is devoted to mention notation and definitions
related to symmetric tensors, that will be used later in the contributions part.

2.2 Symmetric tensors

In this section, tensors are considered with complex coefficients.
The set of complex valued symmetric tensors in T dn (C) is denoted Sdn(C). We have a correspon-
dence between Sdn(C) and the set of the homogeneous polynomials of degree d in n variables
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C[x1, . . . , xn]d := C[x]d. This allows to reduce the dimension of the ambient space from nd (di-
mension of T dn (C)) to sn,d :=

(n+d−1
d

)
(dimension of Sdn(C) ∼ C[x]d). Bold letters such as p, q

denote homogeneous polynomials in C[x]d or equivalently elements in Sdn(C). A homogeneous
polynomial p in C[x]d can be written as : p =

∑
|α|=d

(d
α

)
pαxα, where x := (x1, . . . , xn) is

the vector of the variables x1, . . . , xn, α = (α1, . . . , αn) is a vector of the multi-indices in Nn,
|α| = α1 + · · ·+ αn, pα ∈ C, xα := xα1

1 . . . xαnn and
(d
α

)
:= d!

α1!...αn! .
A symmetric tensor A in Sdn(C) is of symmetric rank one if it can be written as the outer

product d times of the same vector a in Cn i.e.

A = a⊗ ...⊗ a︸ ︷︷ ︸
d times

.

Let p be the associate homogeneous polynomial to A in C[x]d. This means that p can be written
as the linear form given by the vector a to the dth power i.e.

p = (atx)d.

Definition 2.2.1. For p =
∑
|α|=d

(d
α

)
pαxα and q =

∑
|α|=d

(d
α

)
qαxα in C[x]d, their apolar pro-

duct is

〈p, q〉d :=
∑
|α|=d

(
d

α

)
p̄αqα.

Obviously, the apolar product for real symmetric tensors p and q in R[x]d is given by 〈p, q〉d =∑
|α|=d

(d
α

)
pαqα.

The apolar norm of p is ||p||d =
√
〈p,p〉d =

√∑
|α|=d

(d
α

)
p̄αpα.

The apolar product is invariant by a linear change of variables of the unitary group Un : ∀u ∈
Un, 〈p(ux), q(ux)〉d = 〈p(x), q(x)〉d.
The following properties of the apolar product can be verified by direct calculus :

Lemma 2.2.1. Let l = (v1x1 + · · ·+ vnxn)d := (vtx)d ∈ C[x]d where v = (vi)1≤i≤n is a vector
in Cn, q ∈ C[x](d−1), we have the following two properties :

1. 〈l,p〉d = p(v̄), 〈p, l〉d = p̄(v),

2. 〈p, xiq〉d = 1
d〈∂xip, q〉d−1, 〈xiq,p〉d = 1

d〈q, ∂xip〉d−1, ∀1 ≤ i ≤ n.

These properties are called the apolar identities.

2.3 Tensor reorderings : vectorization and matricization

Let A = [ai1,...,id ]1≤i1≤n1,...,1≤id≤nd ∈ Rn1×...×nd .
• The vectorization of A is to stacking vertically all the entries of A in one vector.

vec(A) = [a1,...,1 a2,1,...,1 . . . an1,...,nd−1,nd−1 an1,...,nd ]
t.
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• Let k ∈ {1, . . . , d}. The kth mode of matricization or flattening of A is a rearrangement of
the entries of A into a matrix A(k) such that the kth mode becomes the row index and all
the other (d − 1) modes become column indices, i.e. A(k) has nk rows and

∏
1≤j 6=k≤d nj

columns. More precisely, the matricization of mode k maps an element of the tensor A of
index (i1, . . . , id) into an element of the matrix A(k) of index (ik, j) such that

j = 1 +
d∑
l=1
l 6=k

(il − 1)Il with Il =
l−1∏
m=1
m 6=k

nm.

Example 2.3.1 – Let A be a tensor in R3×2×4 such that its frontal slices are as follows :

A1 =

1 4
2 5
3 6

, A2 =

7 10
8 11
9 12

, A3 =

13 16
14 17
15 18

, A4 =

19 22
20 23
21 24

.

We have :
vec(A) = [1 2 3 4 5 6 7 8 9 . . . 22 23 24]t,

A(1) =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

 ,
A(2) =

[
1 2 3 7 8 9 . . . 19 20 21
4 5 6 10 11 12 . . . 22 23 24

]
,

A(3) =


1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24

 .

2.4 Important matrix and tensor products

• The k-mode (matrix) product of a tensor A ∈ Rn1×...×nd with a matrix U ∈ RI×nk is a
tensor of order d and size (n1, . . . , nk−1, I, nk+1, . . . , nd) denoted by A×k U such that

(A×k U)i1,...,ik−1,i,ik+1,...,id =
nk∑
ik=1

ai1,...,ik−1,ik,ik+1,...,idui,ik .

This is nothing else but the multiplication of each mode-k fiber with the matrix U . Alter-
natively, the k-mode product can be expressed in terms of matricized tensors as follows :

Y = A×k U ⇔ Y(k) = UA(k).

There is no matter concerning the order of multiplication i.e.

A×k U ×l V = A×l V ×k U (k 6= l),
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and when k = l, we have :

A×k U ×k V = A×k (V U).

The k-mode product also exists for tensors with vectors. Let v ∈ Rnk , the k-
mode product of A with v denoted by A ×k v is a tensor of order d − 1 and size
(n1, . . . , nk−1, nk+1, . . . , nd). Element-wise, this can be expressed as follows :

(A×k v)i1,...,ik−1,ik+1,...,id =
nk∑
ik=1

ai1,...,ik−1,ik,ik+1,...,idvik .

• The Kronecker product ofA ∈ Rn1×n2 withB ∈ Rm1×m2 is denoted byA⊗B and yields
a matrix in Rn1m1×n2m2 such that :

A⊗B =


a1,1B a1,2B . . . a1,n2B
a2,1B a2,2B . . . a2,n2B

...
...

. . .
...

an1,1B an1,2B . . . an1,n2B


=
[
a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 . . . an2 ⊗ bm2−1 an2 ⊗ bm2

]
,

where a1, . . . , an2 (resp. b1, . . . , bm2) denote the columns of the matrix A (resp. B).
More precisely (A⊗B)(i1−1)m1+j1,(i2−1)m2+j2 = ai1,i2bj1,j2 .

We have the following property [117] which relates the Kronecker product of matrices to
the k-mode product of tensors as follows : Let Ak ∈ RIk×nk ,

Y = A×1A1 . . .×dAd ⇔ Y(k) = AkA(k)(Ad⊗. . .Ak−1⊗Ak+1⊗. . .⊗Ad)t, ∀ 1 ≤ k ≤ d.
(2.2)

• The Khatri-Rao product is the column-wise Kronecker product. For two matrices of the
same number of columns A ∈ Rn1×m and B ∈ Rn2×m, their Khatri-Rao product denoted
by A�B is a matrix of size n1n2 ×m defined as follows :

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 . . . am ⊗ bm

]
.

In particular, the Kronecker product of two vectors is identical to their Khatri-Rao product.
• The Hadamard product is the element-wise matrix product. For two matrices A and B of

the same size n1 × n2, the Hadamard product is denoted by A ∗B, and it is given by :

A ∗B =


a1,1b1,1 a1,2b1,2 . . . a1,n2b1,n2

a2,1b2,1 a2,2b2,2 . . . a2,n2b2,n2
...

...
. . .

...
an1,1bn1,1 an1,2bn1,2 . . . an1,n2bn1,n2

 .

2.5 Canonical Polyadic Decomposition

The Canonical Polyadic Decomposition (CPD) proposed by Hitchcock [101], express the
tensor as a sum of rank-one simple tensors in the form

A =
r∑
i=1

a1
i ⊗ . . .⊗ adi , (2.3)
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where r is a positive integer and aki ∈ Rnk , ∀ 1 ≤ i ≤ r, ∀ 1 ≤ k ≤ d.
The factor matrices are given by :

Ak = [ak1 . . . akr ] ∈ Rnk×r, ∀1 ≤ k ≤ d.

Thus, using the factor matrices the CPD decomposition can be expressed as follows

A = JA1, . . . , AdK =
r∑
i=1

a1
i ⊗ . . .⊗ adi .

In particular, if A is a three-dimensional tensor, the frontal slices of A can be expressed in
terms of factor matrices denoted by A, B and C as follows

Ak = A diag(C[k, :])Bt, ∀ 1 ≤ k ≤ n3.

This expression does not easily extend to tensors of order higher than three.

Figure 2.2 – CPD of a three-dimensional tensor.

In general, it is recommended from computation perspectives to normalize the columns of
the factor matrices, by using a weight vector λ = (λi)1≤i≤r ∈ Rr so that

A = Jλ,A1, . . . , AdK =
r∑
i=1

λia
1
i ⊗ . . .⊗ adi .

Equivalently, A can be expressed as a multilinear product with a diagonal tensor

A = D ×1 A1 . . .×d Ad,

where D is a diagonal tensor in T dr with Di,...,i = λi, ∀ 1 ≤ i ≤ r.
It follows from (2.2) that the kth mode of matricization of A is given by

A(k) = AkΛ(Ad � . . . Ak−1 �Ak+1 � . . .�A1)t,

where Λ = diag(λ). The Kronecker product in (2.2) is replaced here by the Hadamard
product since all the factor matrices Ak have the same number of columns equal to r.

Similarly, symmetric tensors can be expressed as a sum of symmetric rank-one tensors i.e.
for A ∈ Sdn

A =
r∑
i=1

wi ai ⊗ ...⊗ ai︸ ︷︷ ︸
d times

, wi ∈ R, ai ∈ Rn. (2.4)
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Equivalently, the homogeneous polynomial p associated toA is written as a sum of powers
of linear forms i.e.

p =
r∑
i=1

wi(ai,1x1 + · · ·+ ai,nxn)d, wi ∈ R, ai ∈ Rn. (2.5)

2.5.1 Tensor rank

The rank of a tensor A denoted by rank(A) is the minimal number of rank-one tensors
needed in the CPD decomposition in (2.3) to generate the tensor A. The CPD decompo-
sition with r equal to the rank of the tensor is called the rank decomposition. The tensor
rank is not affected by mode permutation.
Similarly, the symmetric tensor rank of a symmetric tensor A denoted by ranks(A) is
the minimal number of symmetric rank-one tensors in a decomposition of the form (2.5).
The decomposition (2.5) is called Waring decomposition when r is equal to the symme-
tric rank of the symmetric tensor. As a direct property, we have ranks(A) ≥ rank(A),
since the constraint on the rank-one tensors to be symmetric may increase the rank. Never-
theless, Comon et al. show in [54] that equality holds when ranks(A) = 1, 2, and holds
generically when ranks(A) ≤ n and when d is sufficiently large with respect to n. More
recently, Shitov shows a counterexample in [186] for a symmetric tensor in S3

800(C), that
has rank strictly less than its symmetric rank.
The rank may depend on the field, where it may be different over R and C. This idea is
demonstrated throughout two examples : The first (can be found in [118]) for a tensor
A ∈ R2×2×2 and the second for a symmetric tensor A ∈ S3

2 (R) (from [54]).

Example 2.5.1 – Let A ∈ R2×2×2 such that the frontal slices are given by :

A1 =
[
1 0
0 1

]
,A2 =

[
0 1
−1 0

]
.

This tensor is of rank 3 over R and rank 2 over C.
The factor matrices for the rank decomposition over R are as follows :

A =
[
1 0 1
0 1 −1

]
, B =

[
1 0 1
0 1 1

]
, C =

[
1 1 0
−1 1 1

]
,

and over C are as follows :

A = 1√
2

[
1 1
−i i

]
, B = 1√

2

[
1 1
i −i

]
, C =

[
1 1
i −i

]
.

Example 2.5.2 – Let A ∈ S3
2 (R) such that the frontal slices are given by :

A1 =
[
−1 0
0 1

]
,A2 =

[
0 1
1 0

]
.

This tensor is of symmetric rank 3 over R :

A = 1
2

(
1
1

)⊗3

+ 1
2

(
1
−1

)⊗3

− 2
(

1
0

)⊗3

,



2.5 – Canonical Polyadic Decomposition 25

and symmetric rank 2 over C :

A = i
2

(
−i
1

)⊗3

− i
2

(
i
1

)⊗3

.

The maximum rank is the largest attainable rank. For instance, a week upper bound on
the maximum rank that can be reached by a three-dimensional tensor in Rn1×n2×n3 is
established in [125]

rank(A) ≤ min{n1n2, n1n3, n2n3}.

For example, it has been shown in the same reference [125] that the maximum rank for
3× 3× 3 tensors over R is equal to 5.

Two other important notions in term of tensor rank is the typical rank and the generic rank.
The typical rank is any rank that occurs with probability greater than zero, whereas the
generic rank is the rank which is true almost everywhere (i.e. with probability one), when
their entries are chosen independently according to a continuous probability distribution.
For tensors over R there may be more than one typical rank, for example 2× 2× 2 tensors
over R have two typical rank 2 and 3 [125]. However, the smallest typical rank over R is
the generic rank over C [23], and thus the generic rank of C2×2×2 is 2. When there is only
one typical rank, then it may be called the generic rank. There is always a single typical
rank over C, and is thus generic.
The expected generic rank for real or complex tensors of size (n1, . . . , nd) [23] is given by

rg =
⌈

n1n2 . . . nd
n1 + n2 + . . .+ nd − d+ 1

⌉
. (2.6)

The generic symmetric rank for real or complex symmetric tensors of order d and dimen-
sion n is given by Alexander–Hirschowitz theorem [10] as follows

rg =
⌈

1
n

(
n+ d− 1

d

)⌉
, (2.7)

except for when (d, n) ∈ {(3, 5), (4, 3), (4, 4), (4, 5)}, where it should be increased by 1.
For further discussion concerning typical and generic rank see for instance [23, 54, 46, 48].

The last type of tensor rank that we aim to present in this section is the border rank. A
tensor A is of border rank r if it is the limit of tensors of rank r but not the limit of tensors
of rank smaller than r. Rank and border rank of a tensor may actually be different, let us
take the following example from [53] to illustrate this idea :

Example 2.5.3 – Let ε > 0 and u, v be two no-collinear vectors such that

Aε = 1
ε

[
(u+ εv)⊗3 − u⊗3

]
= A+O(ε),

where
A = u⊗ u⊗ v + u⊗ v ⊗ u+ v ⊗ u⊗ u.

The tensor A is of rank 3 whereas its border rank is equal 2, since A is the limit of rank-2
tensors (Aε)ε>0.
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Remark 2.5.1 – Unlike the matrix case, there is no straightforward algorithm to compute
the rank of a given tensor as the problem is NP hard [109].

2.5.2 Uniqueness

Let A ∈ Rn1×...×nd of rank r with rank decomposition given by

A = JA1, . . . , AdK =
r∑
i=1

a1
i ⊗ . . .⊗ adi . (2.8)

Uniqueness means that the rank decomposition (2.8) is unique up to the elementary inde-
terminacies of scaling and permutation. In this case, the tensor A is called r-identifiable.
The scaling undeterminacy is due to the fact that we can scale vectors such that

A =
r∑
i=1

(λi,1a1
i )⊗ . . .⊗ (λi,dadi ),

with λi,1 . . . λi,d = 1, ∀1 ≤ i ≤ r. The permutation undeterminacy is due to the fact that
rank-1 component tensors can be ordered arbitrarily such that

A = JA1, . . . , AdK = JA1P, . . . , AdP K, for any r × r permutation matrix P.

One can notice that rank decomposition for matrices is not unique. Indeed, letA ∈ Rn1×n2

be of rank r with rank decomposition

A =
r∑
i=1

ai ⊗ bi = ABt.

Let UΣV t be the SVD decomposition of A. We can take A = UΣ and B = V , thus
equivalently for some r × r orthogonal matrix W , it is possible to obtain a completely
different rank-1 matrices (i.e. the rank-1 components in the rank decomposition of the ma-
trix A) by taking A = UΣW , B = VW . We remark that the SVD decomposition of a
matrix is unique (for instance assuming that all the singular values are distinct) but this is
only because of the strong condition on the matrices U and V (orthogonal matrices) with
the diagonal matrix Σ of ordered singular values in the middle. Nevertheless, the unique-
ness in the case of higher order tensors can be obtained with much weaker conditions. For
instance, a classical sufficient condition for uniqueness for third order tensors is due to
Kruskal [127]

kA + kB + kC ≥ 2r + 2,
where kM of a matrixM denotes its k-rank given by the maximum value k such that any k
columns from M are linearly independent. This condition is extended to the general case
of order-d tensors in [188] as follows

d∑
i=1

kAi ≥ 2r + (d− 1).

More generally, Liu and Sidiropoulos showed in [137] the following necessary conditions
for uniqueness

min
k=1,...,d

rank(A1 � . . .�Ak−1 �Ak+1 � . . .�Ad) = r,
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and

min
k=1,...,d

( d∏
i=1
i 6=k

rank(Ai)
)
≥ r.

On the other hand some conditions for generic uniqueness are established. For instance,
Delathauwer has proved in [60] that the rank decomposition in (2.8) for third respecti-
vely fourth order tensors is generically (i.e. with probability one) unique if for third order
tensors

r ≤ n3 and r(r − 1) ≤ 1
2n1(n1 − 1)n2(n2 − 1),

respectively for fourth order tensors

r ≤ n4 and r(r− 1) ≤ 1
4n1n2n3(3n1n2n3 − n1n2 − n1n3 − n2n3 − n1 − n2 − n3 + 3).

Further, Chiantini et al. investigate in [46, 48] the generic uniqueness or generic iden-
tifiability of tensors in Cn1×...×nd , where they show that, for instance, a generic tensor
A ∈ Cn1×...×nd of subgeneric rank (i.e. of rank strictly lower than the expected gene-
ric rank in (2.6)) is r-identifiable if

∏d
k=1 nk ≤ 15000 unless some exceptions (see [46,

Theorem 1]). They also studied this problem for symmetric tensors where they proved that
the Waring decomposition of a generic symmetric tensor in Sdn(C) of subgeneric rank (i.e.
of rank strictly lower than the generic rank in (2.7)) is unique unless in three exceptions
[47, Theorem 1.1]. For a thorough study of uniqueness and generic uniqueness see the
aforementioned references in this section as well the references therein.

2.5.3 Exact computation

There exists in the literature various algorithms for exact computation of the rank de-
composition. The approaches used to develop these algorithms are essentially based
on linear algebra by solving sets of linear equations and computing generalized ei-
genvalue decomposition. We provide for instance some pointers among many others
e.g. [180, 73, 204, 168], and for the Waring decomposition of symmetric tensors e.g.
[19, 30, 158, 92]. For further algorithms for the rank decomposition based on simulta-
neous or joint diagonalization of matrices see e.g. [60, 59, 196, 140, 72].

2.5.4 Low rank tensor approximation problem

In practice measurements are rarely free of noise, consequently the rank decomposition
of the tensor built from these measurements is rarely exact. For this reason, one often
prefers to approximate the given tensor by a low rank tensor decomposition. This is the
so-called low rank tensor approximation problem. It aims to best approximate a given
tensor A ∈ Rn1×...×nd by a rank decomposition with number of components equal to
the approximation rank r. More concretely, this can be done by minimizing the Frobenius
norm between the given tensor A and the decomposition of rank r

min
Â
‖A − Â‖, with Â =

r∑
i=1

a1
i ⊗ . . .⊗ adi = JA1, . . . , AdK. (2.9)
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2.5.4.1 Existence and degeneracies

Before taking a look at popular approaches to solve the low rank tensor approximation
problem, let us recall briefly some facts about this optimization problem. Unfortunately,
this approximation problem is not always well-posed [67, 100]. In fact, De Silva and Lim
show in [67] that the set of input tensors that fail to have a solution i.e. a best low rank
approximation has a positive Lebesgue measure, meaning that this case is not rare. Ill-
posedness comes from the fact that the set of tensors of rank bounded by r is not closed.
As shown in Example 2.5.3, we have a sequence of tensors (Aε)ε>0 of rank at most 2
which converges towards a tensor of rank 3 and not 2, thus the set of tensors of rank at
most 2 is not closed. Equivalently, this means also that the tensor A of rank 3 does not
have a best rank-2 approximation, and that the low rank approximation problem of the
tensor A by a tensor of rank bounded by 2 has only an infimum. It follows that if a tensor
A of rank strictly higher than r does not have a best rank-r approximation and we attempt
to minimize

‖A − λ1a
1
1 ⊗ . . .⊗ ad1 − · · · − λra1

r ⊗ . . .⊗ adr‖,

such that the vectors aji for 1 ≤ i ≤ r, and 1 ≤ j ≤ d are normalized or uniformly
bounded, then at least some of the coefficients λi become unbounded, i.e. the magnitude
of some terms in the decomposition go to infinity. This phenomenon is referred to as dege-
neracy. More precisely, when there are k diverging terms such that their sum is bounded
is called k-factor degeneracies [124, 126, 163, 198, 199], this phenomenon also exists
for symmetric tensors [54]. Any algorithm that minimizes the cost function in (2.9) will
yield a degeneracy if this problem does not have an optimal solution (i.e. its infimum is
not reached). Nevertheless, there exists in the literature a family of approaches to avoid
degeneracies by imposing constraints in the CPD, like for instance imposing orthogonality
between columns of factor matrices [55], bounding the coefficients λi [163, 135], impo-
sing a minimal angle between columns of factor matrices [136], imposing, when the tensor
has positive entries, the non negativity on the components of the CP decomposition (i.e.
that is impose on the entries of the rank-1 tensors to be positive) [135] (for more references
in this regard see [53] and references therein). However, in practice this problem remains
open since there is no fully satisfactory solution.

2.5.4.2 Algorithms

We come now to methods for solving the low rank approximation problem. Several algo-
rithms were proposed for this purpose in the literature. One of the common approaches is
to parameterize the set of tensors of rank bounded by r using factor matrices and then to
formulate the low rank approximation problem as an unconstrained optimization problem
as follows

min
(A1,...,Ad)∈D

1
2‖JA1, . . . , AdK−A‖2, (2.10)

with D := Rn1×r × . . . × Rnd×r, and JA1, . . . , AdK =
∑r
i=1 a

1
i ⊗ . . .⊗ adi . General op-

timization methods such as, for instance, alternate least squares [42, 94, 44], conjugate
gradient [162] and quasi-Newton methods [5, 200, 98, 161, 169, 192, 206] are widely used
in the literature to solve this problem. Alternate least squares (ALS) methods solve se-
quentially simple linear subproblems, where at each step the cost function is optimized for
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one of the factor matrices while the other factor matrices are considered fixed, which leads
to solve overdetermined sets of linear equations. Despite its simplicity, the method has
some drawbacks. For instance, it has a slow convergence especially in the presence of ill-
conditioned cases [148, 172]. It has been shown that numerical optimization methods like
conjugate gradient methods and quasi-Newton methods outperform the ALS-like strategies
in this case [162, 5], though this comes at a higher computational cost per iteration. The
aforementioned methods differ from each other for instance in terms of performance, com-
putation complexity, and in how they address the ill-conditioning problem which appears
in the iterative algorithms as the degeneracy phenomenon that we described previously
and yields numerical difficulties. Let us mention one complication in the Gauss–Newton
method which is a quasi-Newton method used in this context in many efficient algorithms
e.g. [5, 98, 161, 169, 192, 206]. An essential step in this method is to solve at each ite-
ration the normal equation of the form J tJx = −J tr such that r is the residual vector
i.e. r = vec(JA1, . . . , AdK − A) and J is the Jacobian matrix of the objective function in
(2.10). The matrix J tJ , called the Gauss–Newton approximation of the Hessian, is never
of full rank [214] and thus methods that use this approach apply strategies such that for
example the use of a regularization term or the Moore–Penrose pseudoinverse. We mention
that there exists efficient implementation in term of complexity and storage to compute the
terms J tr [166, 215] and J tJ [161, 169, 192]. Recently, the structure of rank-1 compo-
nents in the CP decomposition was exploited in [33], where the low rank approximation
problem is formulated as a Riemannian optimization problem over the Cartesian product
of rank-1 manifolds (namely Segre manifolds), and a Riemannian Gauss–Newton iteration
is developed to solve the problem. One advantage in this approach, is that the local conver-
gence of the Gauss–Newton method is not affected by large difference scaling between the
rank-1 components.
There exists also methods in the literature for the low rank symmetric tensor approximation
problem, which aims to best approximates a given symmetric tensor to a Waring decompo-
sition of low symmetric rank. We mention some of them. The algorithm CCPD-NLS from
Tensorlab [217] employs a Gauss–Newton iteration to solve, for a given A ∈ Sdn(R), the
non-linear least squares optimization problem

min
A∈Rn×r

1
2‖A −

r∑
i=1

a⊗di ‖
2,

where ai are the columns of A. In [154] a method is developed for this purpose by expres-
sing the linear relations among the entries of low rank symmetric tensors as polynomials
called generating polynomials, and using approximate common zeros of these polyno-
mials. Recently, Kileel and Pereira introduced the Subspace Power Method (SPM) [116]
to solve this approximation problem for real symmetric tensors of even orders, mainly the
method uses the tensor power method called SS-HOPM [119] on a modified tensor built
from the flattening of the original tensor to a square matrix, and then applies deflation
steps.

2.5.5 Applications of CPD

The CP decomposition is interesting in applications thank to its uniqueness property, which
occurs for all higher order tensors. Because of this property, it is heavily used to recover
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hidden structures in several applications including blind source separation, dimensionality
reduction, pattern and image recognition, machine learning, data mining, data analysis,
signal processing, biomedical engineering, chemometrics, and multidimensional harmonic
retrieval ; we mention for instance [35, 49, 50, 182, 190, 13, 6, 149, 118, 193, 194].

2.6 Tucker decomposition

In this thesis we are interested in particular in the rank decomposition. Nevertheless, in
this section we present briefly another important type of tensor decomposition called the
Tucker decomposition [207].
• The Tucker decomposition can be viewed as a higher order Principal Component Ana-

lysis (PCA). It consists in decomposing the tensor into a so-called core tensor multi-
plied by a matrix along each mode : for A ∈ Rn1×...×nd we have

A = S ×1 A1 ×2 . . .×d Ad =
r1∑
i1=1

. . .
rd∑
id=1

si1...ida
1
i1 ⊗ . . .⊗ a

d
id

:= JS;A1, . . . , AdK,

where Ai = [ai1, . . . , airi ] ∈ Rni×ri , ∀ 1 ≤ i ≤ d, and S ∈ Rr1×...×rd is the core ten-
sor. Tucker decomposition appears in many applications such as classification, feature
extraction, and subspace-based harmonic retrieval [138, 216, 90, 167]. Unlike the rank
decomposition, the Tucker decomposition is generically not unique.

Figure 2.3 – Tucker decomposition of a three-dimensional tensor.

• The multilinear rank of a tensor A ∈ Rn1×...×nd is the tuple (r1, . . . , rd) such that ri
is the column rank of the mode-i matricization of A, i.e. ri = rank(A(i)). Any tensor
of multilinear rank (r1, . . . , rd) has an orthogonal Tucker decomposition such that the
core tensor S ∈ Rr1×...×rd and the factor matrices are orthonormal i.e. AtiAi = Iri .
• The Higher Order Singular Value Decomposition (HOSVD) [63, 215] is a multilinear

singular value decomposition described by the successive application of the SVD to
each mode of matricization of A ∈ Rn1×...×nd of multilinear rank (r1, . . . , rd). Let
Ui ∈ Rni×ri denotes the matrix of the left singular vectors from the SVD decomposi-
tion of A(i), we have by orthonormality

A = JS;U1, . . . , UdK,
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such that
S = A×1 U

t
1 ×2 . . .×d U td.

• Truncated Higher Order Singular Value Decomposition (THOSVD) [63, 215] allows
to approximate a tensorA of multilinear rank (r1, . . . , rd) by a tensor Â of multilinear
rank (s1, . . . , sd) such that si ≤ ri, ∀ 1 ≤ i ≤ d, by applying successive truncated
rank-si SVD to each mode-i flattening A(i). It is well-known that truncated SVD for
matrices yields best low rank matrix approximation, but it is not the case for truncated
HOSVD where in general it does not yield best multilinear rank (s1, . . . , sd) approxi-
mation. Nevertheless, we have the following quasi best approximation property [63]

‖A − Â‖ ≤
√
d‖A −At‖,

where At denotes the best multilinear rank (s1, . . . , sd) approximation.
• The Tucker decomposition has a link with the tensor rank decomposition. Indeed, let
A ∈ Rn1×...×nd be a tensor of rank r with an orthogonal Tucker decomposition

A = JS;U1, . . . , UdK =
r1∑
i1=1

. . .
rd∑
id=1

si1...idu
1
i1 ⊗ . . .⊗ u

d
id
,

then one rank decomposition ofA can be written asA =
∑r
i=1 (U1s

1
i )⊗ . . .⊗ (Udsdi ),

where S =
∑r
i=1 s

1
i ⊗ . . .⊗ sdi is a rank decomposition of the core tensor S. This

means once an orthogonal Tucker decomposition is computed to the tensor A it is
sufficient to compute a rank decomposition of the core tensor S instead of the tensor
A itself. In this regards, Tucker compression techniques are useful to reduce the com-
putational complexity, especially when ri are significantly smaller than ni, there exists
efficient algorithms for Tucker compression, for instance [39, 75, 159].





CHAPTER 3
Riemannian

Optimization
In this chapter we review Riemannian optimization techniques. Note that we address this to-

pic in a concise way where we incorporate the essential information and notions to our purpose.
Nevertheless, for a detailed, precised and pedagogic presentation of the notions introduced in this
chapter, it is recommended to consult references like [2, 132, 87]. In Section 3.1, we define Rie-
mannian manifolds, then in Section 3.2 we describe the concept of Riemannian optimization on
Riemannian manifolds. Next, Section 3.3 is devoted to present the main Riemannian optimiza-
tion tools : the Riemannian gradient and Hessian, vector transport, and retraction operator, also
we introduce these notions for Riemannian submanifolds in Section 3.3.5. First and second order
Riemannian optimization algorithms that we will use are presented in Section 3.4 : Riemannian
conjugate gradient algorithm, Riemannian Newton algorithm, Riemannian Gauss-Newton algo-
rithm, and Riemannian trust-region scheme (with dogleg steps). Finally, in Section 3.5 we present
the Riemannian manifolds that interest us in this thesis : Sphere, Segre and Veronese manifolds,
the general linear group and the oblique manifold.

3.1 Riemannian manifold

A smooth manifold M is a set which is locally in diffeomorphism with a vector space, and
which admits a globally defined differential structure. In other words, for each point x inM the
tangent space TxM contains the tangent vectors on M at x which generalize the notion of a
directional derivative. Let γ : R→M be a smooth curve onM that passes through the point x at
0 i.e. γ(0) = x, the derivative of γ at 0 is given by the classical formula :

γ̇(0) := lim
t→0

γ(t)− γ(0)
t

.

The tangent space onM at x is {ξx := γ̇(0) : γ is a smooth curve onM such that γ(0) = x}. It
can be seen as a linear approximation of the manifoldM in the neighborhood of x.
A Riemannian manifold is a couple (M, g) such thatM is a smooth manifold and g is a smoothly
varying inner product onM called a Riemannian metric onM. More precisely, at each point x
the tangent space TxM is endowed with an inner product gx := 〈., .〉x (i.e. a bilinear, symmetric
positive-definite form). This induces the following norm on TxM

‖ξx‖x :=
√
〈ξx, ξx〉.

33
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Figure 3.1 – Illustration of a tangent vector γ̇(0) ofM at x.

3.2 Riemannian optimization

A Riemannian optimization problem consists in minimizing a smooth function f : M → R
on the domainM which is a Riemannian manifold i.e.

min f(x) s.t. x ∈M.

Riemannian optimization methods aim to generate, starting from an initial guess x0 ∈ M, a
sequence x1, x2, . . . that remains inM and that converges to a local minimum of f constrained to
M.

In a common basic form, Riemannian optimization methods are following the process given
by :

xi+1 = Rxi(tξi).

• The tangent vector ξi ∈ TxiM is the search direction i.e. the direction according to which
f will decrease locally, that is the directional derivative of f at xi according to the search
direction also called descent direction ξi denoted by Df(xi)[ξi] is strictly negative. It can
be obtained using the first-order (gradient) or second-order (Hessian) information.
• The scalar t > 0 is called the step size which is used to guarantee a sufficient decrease of
f in xi+1 according to the descent direction ξi. Two typical strategies to choose t are the
line-search methods like Armijo backtracking, and trust region methods.
• As we can see tξi is in TxiM. To define the new point on the Riemannian manifoldM we

use a smooth operatorRx : TxM→M called retraction which replaces the straight ray in
TxiM with a curve that locally lies onM such that moving along this curve is considered
as moving in the direction of ξi.

An advantage of Riemannian optimization is that there exists, in the general case, proofs of conver-
gence of the Riemannian optimization algorithms. These proofs are closely related to the results
from Euclidean unconstrained optimization (see [2]).
In our current context, we consider in particular the case where the real valued function f takes
the form :

f :M→ R, x 7→ 1
2‖F (x)‖2, with F :M→ E , x 7→ F (x), (3.1)

where E is a Euclidean space. Thus minimizing this f is a Riemannian least-squares minimization
problem.
We review in Section 3.3 in more details the ingredients of Riemannian optimization methods
(gradient, Hessian, retraction, . . . ). Then in Section 3.4 we recall the Riemannian optimization
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algorithms which we will use in this thesis. In Section 3.5 we review the Riemannian manifolds
involved in the Riemannian least-squares problems which we will consider in this thesis.

Figure 3.2 – Illustration of one step of a typical Riemannian optimization method. On the right at
x a descent direction ξ which leads to a decrease in f (i.e. Df(x)[ξ] < 0). On the left, the new
point is defined on the manifoldM by using a retraction operator.

3.3 Riemannian optimization tools

Hereafter in this section we present the main tools for Riemannian optimization methods.

3.3.1 Riemannian gradient

Let f be a smooth real valued function on a Riemannian manifoldM the gradient of f at x
denoted by grad f(x) is defined as the unique element of TxM such that :

〈grad f(x), ξ〉x = Df(x)[ξ], ∀ξ ∈ TxM.

An interesting property of grad f(x) is that its direction is the steepest-ascent direction of f
at x. A tangent vector ξ in TxM is called a descent direction if 〈grad f(x), ξ〉x < 0.
If we assume f is as in (3.1) then for all ξ ∈ TxM we have :

〈grad f(x), ξ〉x = Df(x)[ξ] = 〈DF (x)[ξ], F (x)〉 = 〈ξ, (DF (x))∗[F (x)]〉,

where 〈., .〉 denotes the inner product on E , and (DF (x))∗ denotes the adjoint of the operator
DF (x) : TxM→ E . Thus we have :

grad f(x) = (DF (x))∗[F (x)]. (3.2)

3.3.2 Riemannian Hessian

To define the Riemannian Hessian operator, we need first to introduce some important notions.
A vector field ξ is a function such that for each x ∈ M it associates a tangent vector ξx ∈ TxM.
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An affine connection on a smooth manifold is also an important geometric object in differential
geometry. It permits to connect nearby tangent spaces and generalizes directional derivatives of
vector fields. Coming back to our Riemannian manifolds context, letM be a Riemannian manifold
with metric 〈., .〉, the connection of Levi-Civita denoted by ∇ is the unique affine connection that
verifies Koszul formula

2 〈∇ξxηx, νx〉x = D 〈ηx, νx〉x [ξx] + D 〈ξx, νx〉x [ηx]−D 〈ξx, ηx〉x [νx] + 〈νx, [ξx, ηx]〉x
+ 〈ηx, [νx, ξx]〉x − 〈ξx, [ηx, νx]〉x ,

where ξx, ηx and νx are the vector fields ξ, η and ν evaluated at x and [., .] is the Lie bracket ∗.
The connection of Levi-Civita is very important on a Riemannian manifoldM with a metric 〈., .〉,
it permits for instance to define the Hessian operator, geodesics and distance onM.
Note that the gradient operator of f is a vector field, since for each x ∈M, grad f(x) is a tangent
vector in TxM. Thus the Hessian operator is by definition the linear mapping from TxM to itself
such that :

Hess f(x)[ξx] = ∇ξx grad f(x). (3.3)

If we assume that f is as in (3.1) then for all ξ, η in TxM we have :

〈Hess f(x)[η], ξ〉x = 〈DF (x)[ξ], DF (x)[η]〉+ 〈F (x),∇2F (x)[ξ, η]〉, (3.4)

where 〈., .〉 denotes the inner product on E and∇2F denotes the second covariant derivative of F
(see [2, Chapter 8 and Section 5.6] for the proof).

3.3.3 Retraction

The geodesics on a Riemannian manifoldMwith metric 〈., .〉 generalize the notion of straight
lines. They are given by curves γ : I ⊂ R→M onM with zero acceleration. In our context, this
means by using the connection of Levi-Civita :

∇γ̇(t)γ̇(t) = 0.

Further, they are characterised by the initial choice of the initial point γ(0) = x ∈ M and the
initial direction γ̇(0) = ξ ∈ TxM. Geodesics allow to define distance onM with the metric 〈., .〉.
Indeed, for x, y ∈ M and γ a geodesic on M such that γ(0) = x and γ(1) = y, the distance
d(x, y) between x and y is defined by :

d2(x, y) =
∫ 1

0
〈γ̇(t), γ̇(t)〉γ(t)dt.

For every ξ ∈ TxM there exits an interval I = [0, 1] and a unique geodesic γ(t;x, ξ) : I → M
such that γ(0) = x, γ̇(0) = ξ. The mapping

Expx : TxM→M, ξ 7→ γ(1;x, ξ),

is called the exponential map at x. It maps along geodesics in direction of the tangent vector.
Intuitively, exponential map is a natural way from a differential geometry point of view used in
Riemannian optimization methods, to turn an increment x + ξ in TxM into a new point on the

∗. For two matrices A, B in Rn×n the Lie bracket is given by [A, B] = AB −BA.
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Riemannian manifoldM. Nevertheless, the exponential map may be very complicated or very ex-
pensive to compute. Herein, a retraction mapRwhich corresponds to the first order approximation
of the exponential map i.e.

Rx(ξ) = x+ ξ + o(‖ξ‖),

is an adequate alternative choice. Formally, the definition of a retraction map is given by the
following :

Figure 3.3 – Retraction.

Definition 3.3.1 (Retraction). [2, Chapter 4] LetM be a manifold and x ∈ M. A retraction Rx
is a map TxM→M, which satisfies the following properties :

1. Rx(0x) = x ;

2. there exists an open neighborhood Ux ⊂ TxM of 0x such that the restriction on Ux is
well-defined and smooth ;

3. Rx satisfies the local rigidity condition

DRx(0x) = idTxM,

where idTxM denotes the identity map on TxM.

The rigidity condition insures that for every tangent vector ξ ∈ TxM, moving along the curve
γξ : t 7→ Rx(tξ) is moving in the direction of ξ, since γ̇ξ(0) = d

dtRx(tξ) |t=0= DRx(0x)[ξ] =
idTxM[ξ] = ξ. It is an important property for Riemannian optimization purposes.

Finally, we recall the following easy-to-proof property of retraction on a Cartesian product of
Riemannian manifolds :

Lemma 3.3.1. LetM1, . . . ,Mr be manifolds, xi ∈ Mi andM = M1 × · · · ×Mr and x =
(x1, . . . , xr) ∈ M. Let Ri : TxiMi → Mi be retractions. Then Rx : TxM → M defined as
follows : Rx(ξ1, . . . , ξr) = (Rx1(ξ1), . . . , Rxr(ξr)) for ξi ∈ TxiMi, 1 ≤ i ≤ r, is a retraction on
M.
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3.3.4 Vector transport

Another important notion in Riemannian optimization, is the vector transport [2, Section 8.1],
which is used to transport a tangent vector ξ in TxM to a tangent vector in TRx(η)M (see Fi-
gure 3.5). Similarly to the retraction which approximates the exponential mapping to the first-
order, vector transport is the first-order approximation of parallel translation along geodesics, and
it is used rather than the parallel translation for the same reason which the retraction is used ra-
ther than the exponential map i.e. to reduce the computational cost while keeping the convergence
properties of the algorithm. Concerning parallel transport, briefly, it corresponds to transport a
tangent vector ν(0) in Tγ(0)M along the curve γ(t) in such a way ν(t) in Tγ(t)M corresponds to
the tangent vector ν(0) in Tγ(0)M (see Figure 3.4) in the sense that the transport along the curve
γ is parallel according to the metric 〈., .〉 onM. In other words, using the Levi-Civita connection,
the parallel transport ν along the curve γ is given by the solution of :

∇γ̇(t)ν(t) = 0.

Figure 3.4 – Parallel transport ν onM along the curve γ.

Coming back to vector transport, its definition uses the so-called Whitney sum given by :

TM⊕ TM =
⋃
x∈M
{x} × TxM× TxM = {(x, ξ, η), x ∈M, ξ ∈ TxM, η ∈ TxM}.

Definition 3.3.2 (Vector transport). A vector transport on the manifoldM is a smooth mapping :
TM⊕ TM→ TM, (x, η, ξ) 7→ Tη(ξ) satisfying the following properties for all x ∈M.

1. There exists a retraction R such that, for all (x, η, ξ) ∈ TM⊕ TM, it holds that Tη(ξ) ∈
TRx(η)M.

2. T0(ξ) = ξ for all ξ ∈ TxM.

3. For all (x, η) ∈ TM, the mapping Tη : TxM→ TRx(η)M, ξ 7→ Tη(ξ) is linear.
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Figure 3.5 – Vector transport onM.

3.3.5 Riemannian optimization tools for Riemannian submanifolds

Let M be an embedded submanifold of a Riemannian manifold M endowed with a metric
〈., .〉. For each x ∈ M, the tangent space TxM is a subspace of TxM. Hence, M turns into a
Riemannian manifold, called a Riemannian submanifold ofM, by simply inheritingM the metric
〈., .〉 fromM.
Any element ξ ∈ TxM can be uniquely decomposed as follows :

ξ = Px(ξ) + P⊥x (ξ),

where Px denotes the orthogonal projection onto TxM and P⊥x denotes the orthogonal projection
onto the orthogonal complement of TxM called the normal space toM at x and given by

(TxM)⊥ := {η ∈ TxM : 〈η, ξ〉x = 0, ∀ξ ∈ TxM}.

It follows that the connection of Levi-Civita onM denoted by∇ can be deduced from the connec-
tion of Levi-Civita onM denoted by∇ :

∇ξxηx = Px(∇ξxηx), (3.5)

where x ∈M, and ξx, ηx are vector fields evaluated at x.
Moreover, if f is a smooth real valued function on M and f is the restriction of f on M then
∀x ∈M we have :

grad f(x) = Px(grad f(x)). (3.6)

Further, the Hessian of f at x is obtained by substituting (3.5) and (3.6) in (3.3).
In particular ifM is an embedded submanifold of a Euclidean space E , then (3.5) reads :

∇ξxηx = Px(Dηx[ξx]),

with Dηx[ξx] is the classical directional derivative of η at x in the direction of ξx. Also, in this
case (3.6) reads :

grad f(x) = Px(∂xf(x)),

where ∂xf(x) is the classical Euclidean gradient of f at x. Finally, if x, y ∈ M such that y =
Rx(η) where η ∈ TxM, given a tangent vector ξ ∈ TxM, we have ξ ∈ TxM ⊂ TxE ' E , thus
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ξ can be transported to TyM by simply use the orthogonal projector from E onto TyM (see [2,
Section 8.1.3]) i.e.

Tη(ξ) := PRx(η)(ξ).

We note that in our context we will, in most cases, deal with the aforementioned type of Rieman-
nian manifold i.e. embedded Riemannian submanifold in a Euclidean space.

3.4 Riemannian optimization algorithms

In this section we review some of the existing Riemannian optimization algorithms in the
literature, which we will use in this thesis in the contributions part.
Let f : M → R be a smooth real valued function defined on a Riemannian manifold M with
a Riemannian metric 〈., .〉. We recall from Section 3.2 that a Riemannian optimization algorithm
aims to solve locally the minimization problem :

min f(x) s.t. x ∈M. (3.7)

We note that our review does not include an analysis for the convergence of these algorithms. For
this purpose as well as for more details concerning these algorithms see for instance [2].

3.4.1 Riemannian conjugate gradient method

The Riemannian conjugate gradient method generalizes the typical conjugate gradient method
on Euclidean space. The search direction at step i in a classical conjugate gradient method is
computed by combining the steepest descent direction i.e. ξi := − grad f(xi) with the search
direction in the previous step ηi−1 so that the new search direction is given by :

ηi = ξi + βiηi−1,

and then
xi+1 = xi + αiηi,

where αi is the step-size that determines how far xi should moves along the direction ηi.
To generalize the method to Riemannian manifolds, we have to take into account the following
points :

— The search direction step involves the sum of an element ηi−1 lies in Txi−1M with ξi ∈
TxiM, thus ηi−1 should be transported to TxiM by using vector transport Txi−1→xi .

— We can choose one of the two following popular choice to compute βi :

βi =
〈
grad f (xi) , grad f (xi)− Txi−1→xi (grad f (xi−1))

〉
〈grad f (xi−1) , grad f (xi−1)〉 (Polak-Ribière), (3.8)

βi = 〈grad f (xi) , grad f (xi)〉
〈grad f (xi−1) , grad f (xi−1)〉 (Fletcher-Reeves). (3.9)

— We need to use a retraction operator Rxi : TxiM→M to map the tangent vectors to the
manifold.
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— Perform a line-search with the conjugate direction ηi along the curve t 7→ Rxi(tηi). A
standard Armijo backtracking step size can be used to choose t :
Let α > 0, β, σ ∈ (0, 1), find the smallest nonnegative integer m such that :

f(xi)− f(Rxi(βmαηi)) ≥ −σ〈grad f(xi), βmαηi〉,

take t = βmα.
We give the skeleton of the Riemannian conjugate gradient algorithm with Armijo backtracking
line search step in Algorithm 3.1.

Require: Riemannian manifoldM ; vector transport T onM with associated retraction R ; cost
function f onM ; initial iterate x1 ∈M, tangent vector η0 = 0.

1: for i = 1, 2, . . . do
2: Compute the gradient ξi := grad f(xi) ;
3: Compute a conjugate direction ηi := −ξi + βiTxi−1→xi(ηi−1) ;
4: Perform Armijo backtracking to find the smallest integer m ≥ 0 such that for given α >

0, β, σ ∈ (0, 1)
f(xi)− f(Rxi(βmαηi)) ≥ −σ〈ξi, βmαηi〉;

5: Compute the next new point xi+1 := Rxi(βmαηi) ;
6: end for

Algorithm 3.1 – Riemannian conjugate gradient method with Armijo line-search.

Figure 3.6 – Visualization of one iteration of Algorithm 3.1.

3.4.2 Riemannian Newton and Riemannian Gauss–Newton methods

A Riemannian Newton method is a geometric generalization of the classical Newton method.
Recall that if F is a smooth function from R to R such that F (x∗) = 0, then Newton’s method
consists of starting with an initial guess x0 ∈ R and generating a sequence x1, x2, . . . in R, such
that :

xk+1 = xk −
F (xk)
F ′(xk)

,

where F ′ is the derivative of F . By rewritten this expression as

F (xk) + F ′(xk)(xk+1 − xk) = 0,
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this means graphically that xk+1 is the intersection of the tangent to the graph of F at x with the
horizontal axis. This can be generalize to a function F : Rn → Rn by taking :

F (xk) +DF (xk)[xk+1 − xk] = 0, (3.10)

where DF (xk)[z] denotes the directional derivative of F at x along z. Now, if we consider the
minimization problem in (3.7) but with constrained set equal to Rn, since the aim is to find a local
minimum of f , this means that we seek a critical point i.e. grad f(x∗) = 0, thus by replacing F
by grad f , the Newton equation (3.10) reads :

grad f(xk) +D(grad f)(xk)[xk+1 − xk] = 0.

Finally, to generalize this approach to Riemannian manifolds, xk+1 − xk is replaced by a tangent
vector ηk ∈ TxkM, grad f(xk) is the Riemannian gradient of f at xk and D(grad f)(xk) is
replaced by the Riemannian Hessian Hess f(xk). Using a retraction operator R on M, the new
point xk+1 is obtained from ηk by xk+1 = Rxk(ηk).

Formally, a Riemannian Newton method for solving (3.7) [2, Chapter 6] consists of starting
with an initial guess x0 ∈ M and generating a sequence x1, x2, . . . in M, with respect to the
following process :

xk+1 ← Rxk(ηk) with Hess f(xk)[ηk] = − grad f(xk); (3.11)

where grad f(xk) and Hess f(xk) are respectively the Riemannian gradient and Hessian of f at
xk onM, and Rxk : TxkM→M is a retraction operator from the tangent space TxkM toM.

Riemannian Gauss–Newton method is a quasi–Newton method i.e. an approximation of the
Riemannian Newton method for the case where f = 1

2‖F‖
2 as in (3.1). Recall from (3.4), that

with this f , we have :

〈Hess f(x)[η], ξ〉x = 〈DF (x)[ξ], DF (x)[η]〉+ 〈F (x),∇2F (x)[ξ, η]〉, ∀ξ, η ∈ TxM.

The Riemannian Gauss–Newton method consists in approximating 〈Hess f(x)[η], ξ〉x by the first
term 〈DF (x)[ξ], DF (x)[η]〉. By injecting this in the Riemannian Newton equation in (3.11), we
obtain the so-called Riemannian Gauss–Newton equation

((DF (xk))∗ ◦DF (xk))[ηk] = −(DF (xk))∗[F (xk)],

since in this case grad f(xk) = (DF (xk))∗[F (xk)] (see (3.2)). The operator (DF (xk))∗ ◦
DF (xk) is called the Riemannian Gauss–Newton approximation of the Riemannian Hessian
Hess f(xk). Thus, technically, the Riemannian Gauss–Newton method differs from the Rieman-
nian Newton method by solving the Gauss–Newton equation instead of the exact Newton equation.
Obviously, the Riemannian Gauss–Newton method is of lower computational complexity than the
Riemannian Newton method. On the other hand, Riemannian Gauss–Newton method is in general
not superlinearly convergent, in contrast with the Riemannian Newton method which has a local
superlinear rate of convergence (see [2, Theorem 6.3.2]). Nevertheless, in practice, Riemannian
Newton and Gauss–Newton methods are combined with a line-search step or with a trust-region
scheme in order to ensure a sufficient decrease in the cost function f at each iteration. The next
section is devoted to describe the Riemannian trust-region scheme with a dogleg step.
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3.4.3 Riemannian trust region scheme with dogleg steps

The Riemannian Newton (resp. Gauss–Newton) method is looking for a critical point of a
real-valued function f , without distinguishing between local minimizer, saddle point and local
maximizer. Furthermore, the convergence of this algorithm may not occur from the beginning.
For these reasons, a trust region scheme is usually added to such algorithm in order to enhance
the algorithm, with the desirable properties of convergence to a local minimum, with a local su-
perlinear rate of convergence. In fact, trust region method ensures that f decreases at each ite-
ration, which reinforces, when convergence occurs, the possibility of finding a local minimizer.
Nevertheless, a global convergence to a local minimizer from any initial points is not guaranteed
even after adding the trust region scheme (see [2, Subsection 7.4.1] for the global convergence
of Riemannian trust-region methods). The idea is to approximate the objective function f by its
second order Taylor series expansion in a ball of center 0xk ∈ TxkM and radius ∆k denoted by
B∆k

:= {η ∈ TxkM | ||η|| ≤ ∆k}, and to solve the so-called trust-region subproblem

min
η∈B∆k

mxk(η), (3.12)

where mxk(η) := f(xk) + 〈grad f(xk), η〉xk + 1
2〈Hk[η], η〉xk , Hk is some symmetric operator

on TxkM (in the case of Riemannian Newton method Hk is the Hessian operator of f at xk and
it is the Riemannian Gauss–Newton approximation (DF (xk))∗ ◦ DF (xk) for the Riemannian
Gauss–Newton method).

By solving (3.12), we obtain a solution ηk ∈ TxkM. Accepting or rejecting the candidate new
point xk+1 = Rxk(ηk), as well as updating the trust region ∆k is based on the quotient

ρk = f(xk)− f(xk+1)
mxk(0)−mxk(ηk)

.

One approach to solve the trust-region subproblem (3.12) is the so-called dogleg method :
Let ηN be the Newton direction given by Hk[ηN ] = − grad f(xk), let ηc denote the Cauchy
point given by ηc = − 〈grad f(xk),grad f(xk)〉xk

〈Hk[grad f(xk)],grad f(xk)〉xk
grad f(xk), and let ηI be the intersection of the

boundary of the sphere B∆ and the vector pointing from ηc to ηN . Then the optimal solution η∗

of (3.12) by the dogleg method is given as follows :

η∗ =


ηN if ||ηN || ≤ ∆,
− ∆
|| grad f(xk)|| grad f(xk) if ||ηN || > ∆ and ||ηc|| ≥ ∆,

ηI otherwise.

3.5 Riemannian manifolds of interest

In this section we present five manifolds that we use thereafter in this thesis : the sphere, Segre
and Veronese manifolds, the general linear group and the oblique manifold.

3.5.1 The unit sphere

The unit sphere in Rn
Sn−1 := {x ∈ Rn | xTx = 1};
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is one of the simplest Riemannian manifolds. The inner product is inherited from the standard
inner product on Rn i.e.

〈ξ, η〉x := ξT η.

Its tangent space at x ∈ Sn−1 is given by

TxSn−1 = {z ∈ Rn | xT z = 0}.

The normal space is
(TxSn−1)⊥ = {xα | α ∈ R}.

The projection on TxSn−1 respectively on (TxSn−1)⊥ are given by

Px(ξ) = (In − xxT )ξ, P⊥x (ξ) = xxT ξ.

The map Rx : TxSn−1 → Sn−1, ξ 7→ x+ξ
‖x+ξ‖ is a retraction operator on Sn−1.

All the aforementioned information with their proofs can be found in [2].

3.5.2 Segre manifold

The Segre manifold in Rn1×...nd consists of all tensors of rank 1 :

Sn1,...,nd := {a1 ⊗ . . .⊗ ad | ak ∈ Rnk} − {0}.

It is an embedded submanifold in Rn1×...×nd , thus Sn1,...,nd is a Riemannian submanifold by ta-
cking the metric induced by this ambient Euclidean space. The Segre manifold can be parameteri-
zed using the following local diffeomorphism :

Φ : R∗+ × Sn1−1 × . . .× Snd−1 → Sn1,...,nd

(α, a1, . . . , ad) 7→ αa1 ⊗ . . .⊗ ad.

Let x = (α, a1, . . . , ad). This allows to identify the tangent space of S := Sn1,...,nd at x as
follows :

Tx(R∗+ × Sn1−1 × . . .× Snd−1) ∼= R× Ta1Sn1−1 × . . .× TadS
nd−1,

with

DxΦ : R× Ta1Sn1−1 × . . .× TadS
nd−1 → Tαa1⊗...⊗adS

(α̇, ẏ1, . . . , ẏd) 7→ α̇a1 ⊗ . . .⊗ ad + α(ẏ1 ⊗ a2 ⊗ . . .⊗ ad + . . .

+ a1 ⊗ . . .⊗ ad−1 ⊗ ẏd).

There exists a retraction operator on S called T-HOSVD retraction [122]. It is defined as the
rank-(1, . . . , 1) T-HOSVD approximation of A+ p, such that A ∈ S , p ∈ TAS, as follows :

RA(p) = (q1q
T
1 , . . . , qdq

T
d ).(A+ p),

where qk is the first left singular vector from the SVD decomposition of the matrix (A+ p)(k) i.e.
the kth mode of flattening of A+ p.
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3.5.3 Veronese manifold

Similarly to the Segre manifold, the Veronese manifold in T d(Rn), i.e. the space of real sym-
metric tensors of dimension n and order d, contains all rank-1 symmetric tensors in T d(Rn). By
considering the correspondence between T d(Rn) and R[x]d, the Veronese manifold is given by
the set of linear forms to the dth power :

Vdn(R) := {(vtx)d | v ∈ Rn} − {0}.

Let p = (vtx)d ∈ Vdn(R), the tangent space TpVdn(R) is given by :

TpVdn(R) = {(utx)(vtx)d−1 | u ∈ Rn}.

Similarly to the Segre manifold, the Veronese manifold is an embedded submanifold in R[x]d.
Herein, endowed with the metric inherited from R[x]d (for instance the apolar product defined on
R[x]d × R[x]d in Definition 2.2.1 which is an inner product on R[x]d) Vdn(R) is a Riemannian
submanifold.
We will investigate this Riemannian manifold in Chapter 4 in more details especially in the com-
plex field, in order to developp Riemannian based optimization algorithms for the symmetric low
rank approximation problem for symmetric tensors with complex coefficients.

3.5.4 The general linear group

The information presented in this section can be found in [14, 133, 147, 213, 225, 25]. The
set of invertible matrices of size n × n denoted by GLn is open in Rn×n, thus it is a manifold.
In addition, it is a group under matrix multiplication. Consequently, GLn is by definition a Lie
matrix group, called the general linear group. Since it is open in Rn×n, its tangent space TBGLn
at any point B ∈ GLn can be identified with Rn×n. Since GLn is a Lie matrix group, thus an
element ξB ∈ TBGLn can be written as ξB = BX or ξB = XB such that X is in the Lie algebra
which is by definition TInGLn ' Rn×n, herein ξB = BX or ξB = XB with X ∈ Rn×n. We will
use the aforementioned information in Section 5.1 to apply perturbations on elements of GLn. In
Section 5.1, GLn(C) is viewed as a complex Lie matrix group. However, the same information
remains applicable in this case.
The manifold GLn is equipped with either the left-invariant metric or the right-invariant which are
for all B ∈ GLn, ξB, ηB ∈ TBGLn given by :

〈ξB, ηB〉`B = tr(B−1ξB(B−1ηB)t), 〈ξB, ηB〉rB = tr(ξBB−1(ηBB−1)t)

Let γ` : R→ GLn, γr : R→ GLn be the geodesics of GLn with respect to respectively the left-
and right-invariant metrics, for all B ∈ GLn, ξB ∈ TBGLn they are given by :

γ`(t) = B exp(t(B−1ξB)T ) exp(t(B−1ξB − (B−1ξB)T )) (3.13)

γr(t) = exp(t(ξBB−1 − (ξBB−1)T )) exp(t(ξBB−1)T )B (3.14)

where exp(.) denote the matrix exponential. We denote the exponential map resulting from (3.13)
and (3.13) by exp`B : TBGLn → GLn, exprB : TBGLn → GLn. Naturally, these exponential
maps are retractions on GLn.
The vector transports on GLn according to the left- and right-invariant metrics are given by :

T`(B, ξB, ηB) = exp`B(ξB)B−1ηB and Tr(B, ξB, ηB) = ηBB−1 exprB(ξB).
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Finally, the Riemannian gradients of a cost function f : GLn → R at E ∈ GLn equipped with the
left or right-invariant metric are given by :

grad` f(B) = BBt gradEuc f(B), gradr f(B) = gradEuc f(B)BtB,

where gradEuc f(B) is the classical Euclidean gradient of f at B ∈ GLn.

3.5.5 Oblique manifold

The results that we are going to present in this section come from [25, 1].
Let

Mo
n := {B ∈ GLn : ddiag(BBt) = In}

denote the set of all invertible matrices in GLn with normalized rows. The setMo
n is a submanifold

of GLn. For B ∈Mo
n, its tangent space TBMo

n is as follows :

TBMo
n = {ξ ∈ Rn×n | ddiag(ξBt) = 0}.

The manifoldMo
n is a Riemannian manifold inheriting the left or right-invariant metric of GLn.

We summarize in Table 3.1, the necessary tools according to the left- or right-invariant metric,
that we need for a Riemannian gradient based method (we refer the reader to [25] for the proofs
of the formulas stated in the table).

metric 〈., .〉`
B 〈., .〉r

B

projection map
onto TBMo

n

P ob,`B (Y ) = Y −BBt∆B,
∆ is a diagonal matrix with diag(∆) = (BBt ∗BBt)−1 diag(Y Bt)

P ob,rB (Y ) = Y −∆BBtB,

∆ = ddiag(Y Bt) ddiag((BBt)2)−1

gradient grad`ob f(B) = P ob,`B (grad` f(B)) gradrob f(B) = P ob,rB (gradr f(B))

retraction Rob,`B (ξB) = ∆(exp`B(ξB)) exp`B(ξB) Rob,rB (ξB) = ∆(exprB(ξB)) exprB(ξB)
with ∆(Y ) = ddiag(Y Y t)−

1
2

vector
transport T ob,`

B→Rob,`B (ξB)
(ηB) = P ob,`

Rob,`B (ξB)
(Rob,`B (ξB)B−1ηB) T ob,r

B→Rob,rB (ξB)
(ηB) = P ob,r

Rob,rB (ξB)
(ηBB−1Rob,rB (ξB))

Table 3.1 – Main tools for Riemannian optimization on the oblique manifoldMo
n.
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CHAPTER 4
Riemannian Newton

optimization algorithms
for the symmetric tensor
approximation problem

The Symmetric Tensor Approximation problem (STA) consists of approximating a sym-
metric tensor or a homogeneous polynomial by a linear combination of symmetric rank-1
tensors or powers of linear forms of low symmetric rank. In this chapter, we present two
Riemannian Newton-type algorithms for low rank approximation of symmetric tensor
with complex coefficients.
The first algorithm uses the parametrization of the set of tensors of rank at most r by
weights and unit vectors. Exploiting the properties of the apolar product on homoge-
neous polynomials combined with efficient tools from complex optimization, we provide
an explicit and tractable formulation of the Riemannian gradient and Hessian, leading
to Newton iterations with local quadratic convergence. We prove that under some regu-
larity conditions on non-defective tensors in the neighborhood of the initial point, the
Newton iteration (completed with a trust-region scheme) is converging to a local mini-
mum.
The second algorithm is a Riemannian Gauss–Newton method on the Cartesian pro-
duct of Veronese manifolds. An explicit orthonormal basis of the tangent space of this
Riemannian manifold is described. We deduce the Riemannian gradient and the Gauss–
Newton approximation of the Riemannian Hessian. We present a new retraction operator
on the Veronese manifold.
We analyze the numerical behavior of these methods, with an initial point provided by
Simultaneous Matrix Diagonalisation (SMD). Numerical experiments show the good nu-
merical behavior of the two methods in different cases and in comparison with existing
state-of-the-art methods.
Keywords : symmetric tensor decomposition, homogeneous polynomials, Riemannian
optimization, Newton method, retraction, complex optimization, trust region method, Ve-
ronese manifold.
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In this chapter, we describe in section 4.1 the set of non-defective rank-r symmetric tensors.
In subsection 4.2.1, we formulate the STA problem as a Riemannian least square optimization
problem using the parametrization by weights and unit vectors. We compute explicitly the Rie-
mannian gradient vector and the Hessian matrix in subsection 4.2.1.1 and describe the retraction
in subsection 4.2.1.2. In subsection 4.2.2, we describe the Riemannian Gauss–Newton method on
the product of Veronese manifolds. We present in subsection 4.2.2.1 a new retraction operator on
the Veronese manifold with its analysis. In subsection 4.2.3, we recall the trust-region extension
scheme, and prove under some regularity assumptions the convergence of the exact Riemannian
Newton method with trust region steps to a local minimum of the distance function. Numerical
experiments are featured in section 4.3. The final section 4.5 is for our conclusions.

4.1 The set of non-defective rank-r symmetric tensors

Let Σr ⊂ Sdn be the set of symmetric tensors of symmetric rank at most r. A symmetric tensor
t ∈ Σr is the sum of dth powers

t =
r∑
i=1

(vtix)d, for vi ∈ Cn. (4.1)

It is a point in the image of the following map :

ψr : Cn×r := Cn × · · · × Cn −→ C[x]d

[vi]1≤i≤r 7−→ ψr((vi)1≤i≤r) =
r∑
i=1

(vtix)d.

The dth power (vtix)d with vi 6= 0 are symmetric tensors of rank-1, which are on the so-called
Veronese manifold.

Definition 4.1.1. Let ψ : Cn → C[x]d, v 7→ (vtx)d =
∑
|α|=d

(d
α

)
vαxα. The Veronese manifold

in C[x]d denoted by Vn,d is the set of linear forms in C[x]1−{0} to the dth power. It is the image
of Cn − {0} by ψ.

The Veronese variety studied in algebraic geometry is the algebraic variety of the projective
space Psn,d−1 associated to Vn,d, where sn,d = dim C[x]d [112, 226, 129]. The tangent space of
Vn,d at a point p = (vtx)d is the vector space spanned by 〈x1(vtx)d−1, . . ., xn(vtx)d−1〉, that is
the linear space Tp(Vn,d) = {(utx)(vtx)d−1 | u ∈ Cn}.

The Zariski closure Σr of Σr is called the (r − 1)th-secant variety of the Veronese va-
riety. For r > 1, the algebraic variety Σr is not smooth and contrarily to the case of matrices,
singular points of Σr can have a rank > r, as shown in the following example. For d > 2,
p = (vt0x)(vt1x)d−1 ∈ C[x]d with v0 6= v1 ∈ Cn is in the (Zariski) closure of Σ2 since
(vt0x)(vt1x)d−1 = limδ→0

1
d δ (((v1 + δv0)tx)d − (vt1x)d) but its symmetric rank is d > 2 [54,

Proposition 5.6].
To avoid these singularities, we will restrict our theoretical analysis to points of Σr where the

map ψr is a local embedding, since in the vicinity of singularities, the best low rank approximation
problem is ill-posed (as shown by the previous example). The map ψr is a local embedding at
y = [vi]1≤i≤r ∈ Cn×r iff

Jψr(y) = d [x1(vt1x)d−1, . . . , xn(vt1x)d−1, . . . , x1(vtrx)d−1, . . . , xn(vtrx)d−1]
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is of rank n r. The tensors ψr(y) with y ∈ Cn×r such that rank Jψr(y) = n r are called non-
defective. The set of non-defective tensors of rank r, locally embedded in C[x]d, is the image by
a local diffeomorphism of a Riemannian manifold and it is denoted Σreg

r . The map ψr is a local
diffeomorphism between an open subset of Cn×r and Σreg

r ⊂ Σr.
Hereafter, we consider the cases where d > 2 and the rank r is strictly subgeneric,

i.e. r < rg =
⌈ 1
n

(n+d−1
d

)⌉
, where rg is the generic symmetric rank (except for (d, n) ∈

{(3, 5), (4, 3), (4, 4), (4, 5)} or d = 2) by Alexander–Hirschowitz theorem [10]. Using “Terra-
cini’s lemma” (see e.g. [129, Lemma 5.3.1.1]), we have that Σreg

r is a dense open subset of Σr iff
the dimension of Σr is the expected dimension n r. In this case, Σr is also said to be non-defective.
Alexander and Hirschowitz [10] proved that Σr is non-defective when r < rg (the exceptional de-
fective cases for d > 2 being (d, n, r) ∈ {(3, 5, 7), (4, 3, 5), (4, 4, 9), (4, 5, 14)}).

It is also known that for r < rg, generic tensors of ψr have a unique decom-
position, i.e. a unique inverse image by ψr up to permutations, except for (d, n, r) ∈
{(6, 2, 9), (4, 3, 8), (3, 5, 9)}, see [47, Theorem 1.1].

4.2 Riemannian optimization for the STA problem

In this section, we use the framework of Riemannian optimization [2] to solve the STA pro-
blem. See also [33, 91, 123] for real multilinear tensors. We develop a Riemannian Newton algo-
rithm and a Riemannian Gauss–Newton algorithm exploiting the properties of symmetric tensors
to obtain explicit and simplified formulation. We consider distance minimization problems for
symmetric tensors with complex decompositions for both algorithms.
Given p ∈ Sdn ∼ C[x]d, we consider hereafter the following least square minimization problem

min
y∈M

f(y) (4.2)

where f : M → R is half the square distance function to p i.e. f(y) = 1
2‖F (y)‖2d with F (y) =

Φr(y)−p, such that Φr : M→ C[x]d is a parametrization map of Σr the set of symmetric tensors
of symmetric rank bounded by r, andM is a Riemannian manifold. A Riemannian optimization
method for solving (4.2) requires a Riemannian metric. Since we will assume thatM is embedded
in some space RM , we will take the metric induced by the Euclidean space RM .

We propose to parametrize Σr, first via weights and unit vectors. We describe an exact Rie-
mannian Newton method for this formulation in subsection 4.2.1. Secondly, we parametrize Σr via
sums of the dth power of linear forms that is as sums of tensors in Vn,d. We develop a Riemannian
Gauss–Newton method for this formulation in subsection 4.2.2. A dogleg trust-region scheme in
subsection 4.2.3 is added to the two algorithms.

4.2.1 Riemannian Newton method for STA

We normalize the decomposition (4.1) by choosing unit vectors for vi and positive weights.
Namely, we decompose a symmetric tensor p ∈ Σr as p =

∑r
i=1wi (vtix)d with wi ∈ R∗+ and

||vi|| = 1, for 1 ≤ i ≤ r ; by normalizing vi and multiplying by wi := ||vi||d if vi is not a unit
vector. The vector (wi)1≤i≤r in this decomposition is called “the weight vector", and is denoted
by W . Let V = [vi]1≤i≤r ∈ Cn×r be the matrix of the normalized vectors.

The objective function expressed in terms of these weights and unit vectors is given by
f(W,V ) = 1

2 ||F (W,V )||2d,with F (W,V ) =
∑r
i=1wi (vtix)d − p.
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The function f is a real valued function of complex variables ; such function is non-analytic,
because it cannot satisfy the Cauchy–Riemann conditions [175]. To apply the Riemannian New-
ton method, we need the second order differentials of f . As discussed in [191], we overcome the
non-analytic problem by converting the optimization problem to the real domain, regarding f as a
function of the real and imaginary parts of its complex variables.

Let Nr = {(W,<(V ),=(V )) |W ∈ R∗+r, V ∈ Cn×r, (<(vi),=(vi)) ∈ S2n−1, ∀ 1 ≤ i ≤ r},
where S2n−1 is the unit sphere in R2n. Let ϕr : (w, v1, . . . , vr, v

′
1, . . . , v

′
r) ∈ Nr 7→

∑r
i=1wi((vi+

i v′i)tx)d. Hereafter in this subsection, we use the following formulation to compute the different
ingredients of a Riemannian Newton method :

(STA)Nr min
y∈Nr

f(y),

where f(y) = 1
2 ||F (y)||2d,with F (y) = ϕr(y)− p.

4.2.1.1 Computation of the gradient vector and the Hessian matrix

In this section, we present the explicit expressions of the Riemannian gradient and Hessian on
Nr. We first describe an orthonormal basis of TyNr for y ∈ Nr. Then we detail the computation
of the gradient and Hessian in this basis, via the differentials of maps in complex and conjugate
variables.

Lemma 4.2.1. Let y = (w, v1, . . . , vr, v
′
1, . . . , v

′
r) ∈ Nr. For all i = 1, . . . , r let v̌i = (vi; v′i) ∈

S2n−1 and let
(I2n − v̌iv̌ti) = QiRiPi

be a rank-revealing QR-decomposition of the projector on v̌⊥i in R2n, where QiQti = I2n, Ri is
upper triangular, and Pi is a permutation matrix.

Let Qi,re (resp. Qi,im) be the matrix given by the first n rows (resp. the last n rows) and the

first 2n− 1 columns of Qi. Let Q̃ =
[
Qre
Qim

]
∈ R2nr×(2n−1)r, where Qre = diag(Qi,re)1≤i≤r and

Qim = diag(Qi,im)1≤i≤r. Then the columns of Q = diag(Ir, Q̃) form an orthonormal basis of
TyNr.

Proof. We have TyNr ' Tw(R∗+)r × TZSr, where Sr = {(<(V ),=(V )) | V ∈ Cn×r,
||vi||2 = 1, ∀1 ≤ i ≤ r} and Z = (<(V ),=(V )) = (v1, . . . , vr, v

′
1, . . . , v

′
r) ∈ Rn×2r.

As Tw(R∗+)r = Rr, Ir represents an orthonormal basis of Tw(R∗+)r.
We verify now that Q̃ is an orthonormal basis of TZSr. For i = 1, . . . , r, v̌i ∈ S2n−1 ⊂ R2n

and the first (2n−1) columns of the factorQi of a rank-revealing QR-decomposition of I2n− v̌iv̌ti
give an orthonormal basis of the image v̌⊥i of (I2n − v̌iv̌ti), that is Tv̌iS2n−1.

The vector space TZSr, of dimension r(2n−1), is the Cartesian product of the tangent spaces
Tv̌iS2n−1. Therefore, by construction, the columns of Q̃ form an orthonormal basis of TZSr.

We deduce that Q = diag(Ir, Q̃) represents an orthonormal basis of TyNr in the canonical
basis of R2nr. �

LetRr = {(W,<(V ),=(V )) ∈ Rr × Rn×r × Rn×r |W ∈ Rr, V ∈ Cn×r} and let fR be the
function f seen as a function on Rr. The gradient and the Hessian of fR at a point pR ∈ Rr
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are called the real gradient and the real Hessian. We denote them by GR and HR. We will des-
cribe their computation, after the next proposition, relating them to the Riemannian gradient and
Hessian.

Proposition 4.2.2. Let p = (w, v1, . . . , vr, v
′
1, . . . , v

′
r) ∈ Nr,Q ∈ R(r+2nr)×(r+(2n−1)r) such that

its columns form an orthonormal basis of TyNr. Let GR = (g0, g1, . . . , gr, g
′
1,. . . , g

′
r) ∈ Rr+2nr

(resp. HR ∈ R(r+2nr)×(r+2nr)) be the gradient vector (resp. the Hessian matrix) of fR at pR in
the canonical basis. The Riemannian gradient vector (resp. Hessian matrix) of f at p with respect
to the basis Q is given by :

G = QtGR, H = Qt(HR + S)Q,

where S = diag(0r×r, S̃, S̃), with S̃ = diag(s1In, . . . , srIn), si = 〈vi, gi〉+ 〈v′i, g′i〉.

Proof. Let y = (w, v1, . . . , vr, v
′
1, . . . , v

′
r) ∈ Nr. Let Py be the orthogonal projector on TyNr.

Let Q ∈ R(r+2nr)×(r+(2n−1)r) such that its columns form an orthonormal basis of the image of
Py or equivalently of TyNr. As the Riemannian gradient of f is the projection of DfR, the first
order differentials of fR, on the tangent space TyNr [2, Chapter 5], we have G = QtGR, where
GR is the vector which represents the classical first order partial derivatives of fR at yR in the
canonical basis.
Let η ∈ TyNr, z ∈ TyN⊥r . We have from [3] that the Riemannian Hessian matrix of f at y is
given by the formula : Hη = PyHRη + Uy(η,P⊥y GR), where HR is the matrix of the second
order derivatives of fR at yR in the canonical basis, Uy is the Weingarten map on Nr at y given
by Uy(η, z) = PyDηPz, where P is a matrix valued function on Nr determined as follows :
P : y ∈ Nr 7→ Py, and DηPz represent the time derivative of y 7→ Pyz in terms of the time
derivative of y i.e. ẏ ∈ TyNr applied at ẏ = η, and P⊥y = I − Py is the orthogonal projector on
TyN⊥r .
As y ∈ Nr we have w ∈ R∗+r, and v̌i := (vi, v′i) ∈ S2n−1, ∀1 ≤ i ≤ r. Let u = (u0, u1, . . .
, ur, u

′
1, . . . , u

′
r) ∈ Rr+2nr, such that ǔi = (ui, u′i), ∀1 ≤ i ≤ r. Let Pw (resp. Pv̌i) denote

the orthogonal projector on Tw(R∗+)r = Rr (resp. Tv̌iS2n−1), we have that : Pw(u0) = u0,
Pv̌i ǔi = (I2n − v̌iv̌ti)ǔi, ∀1 ≤ i ≤ r, thus :

Pyu =



u0
((I2n − v̌1v̌

t
1)ǔ1)[1 : n]
...

((I2n − v̌rv̌tr)ǔr)[1 : n]
((I2n − v̌1v̌

t
1)ǔ1)[n+ 1 : 2n]

...
((I2n − v̌rv̌tr)ǔr)[n+ 1 : 2n]


=



u0
u1 − v1v̌

t
1ǔ1

...
ur − vrv̌trǔr
u′1 − v′1v̌t1ǔ1

...
u′r − v′rv̌trǔr


,P⊥y u =



0r
v1v̌

t
1ǔ1
...

vrv̌
t
rǔr

v′1v̌
t
1ǔ1
...

v′rv̌
t
rǔr


.

Let Uv̌i be the Weingarten map on S2n−1 at v̌i. For η = (η0, η1, . . . , ηr, η
′
1, . . . , η

′
r) ∈ TyNr, and

z = (z0, z1, . . . , zr, z
′
1, . . . , z

′
r) ∈ TyN⊥r with η̌i = (ηi, η′i) ∈ Tv̌iS2n−1 and ži = (zi, z′i) ∈

Tv̌iS2n−1⊥, ∀1 ≤ i ≤ r, we have from [3] : Uv̌i(η̌i, ži) = −η̌iv̌ti ži. Thus, with respect to the
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parameterization that we consider we find that :

Uy(η, z) = −



0r
η1v̌

t
1ž1
...

ηrv̌
t
ržr

η′1v̌
t
1ž1
...

η′rv̌
t
ržr


.

Let GR = (g0; g1; . . . ; gr; g′1; . . . ; g′r) ∈ Rr+2nr and ǧi = (gi, g′i), li = v̌iv̌
t
i ǧi for i = 1, . . . , r.

We obtain Uy(η,P⊥y GR) by substituting ži by li in Uy(η, z). Since v̌ti v̌i = ||v̌i||2 = 1, we find that

Uy(η,P⊥y GR) =



0r
η1v̌

t
1ǧ1
...

ηrv̌
t
rǧr

η′1v̌
t
1ǧ1
...

η′rv̌
t
rǧr


= Sη, where S = diag(0r×r, S̃, S̃), with S̃ = diag(s1In, . . . , srIn),

si = v̌ti ǧi = 〈vi, gi〉 + 〈v′i, g′i〉. Since, Uy(η, z) = PyDηPz, and Py ◦ Py = Py, we can write
Uy(η, z) = PyUy(η, z). Hence, Uy(η,P⊥y GR) = PySη = PySPyη, sincePyη = η for η ∈ TyNr.
Thus we have : Hη = Py(HR+S)Pyη, and then H = Py(HR+S)Py. Herein, H can be written
with respect to the basis Q as follows : H = Qt(HR + S)Q, which ends the proof. �

We describe now the real gradient and Hessian, by using complex variables and their conjugates.
Recall from Brandwood [31] that transforming the pair (<(z),=(z)) of real and imaginary parts
of a given complex variable z into the pair (z, z) is a simple linear transformation, which allows
us to achieve explicit and simple computation of the gradient and Hessian of f .
Let Cr =

{
(W,V, V ) ∈ Rr × Cn×r × Cn×r |W ∈ Rr, V ∈ Cn×r} and

K =
[

Ir 0r×2nr
02nr×r J

]
(4.3)

where J =
[
Inr iInr
Inr −iInr

]
. The linear map K is an isomorphism between the R-vector spacesRr

and Cr. Its inverse is given by K−1 =
[

Ir 0r×2nr
02nr×r

1
2J
∗

]
.

Let fC be the function f seen as a function on Cr. Considering fC for the computation of the
gradient and the Hessian yields more elegant expressions than considering fR. For this reason, we
compute first the gradient and the Hessian of fC , and then we use the isomorphism K in (4.3) to
get the real gradient and the Hessian of fR.

Lemma 4.2.3. The complex gradientGC can be transformed into the real gradientGR as follows :

GR = KtGC . (4.4)
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Similarly HR and HC are related by the following formula :

HR = KtHCK. (4.5)

Proof. See [191] and the references therein. �

Let us describe now explicitly the real gradient GR :

Proposition 4.2.4. The gradient GR of fR onRr is the vector

GR =

 G1
<(G2)
−=(G2)

 ∈ Rr+2nr,

where
— G1 = (

∑r
i=1wi<((v∗j vi)d)−<(p̄(vj)))1≤j≤r ∈ Rr,

— G2 = (d
∑r
i=1wiwj(v∗i vj)(d−1)v̄i − wj∇xp̄(vj))1≤j≤r ∈ Cnr.

Proof. We can write fC as fC = 1
2(f1 − f2 − f3 + f4), where

f1 =
∣∣∣∣∣∣ r∑
i=1

wi(vtix)d
∣∣∣∣∣∣2
d

=
∑
|α|=d

(
d

α

)( r∑
i=1

wiv̄
α
i

)( r∑
i=1

wiv
α
i

)
(by definition 2.2.1),

f2 =
〈 r∑
i=1

wi(vtix)d,p
〉
d

=
r∑
i=1

wip(v̄i) (by 1. in lemma 2.2.1),

f3 = f̄2 =
r∑
i=1

wip̄(vi), and f4 = ||p||2d.

Let us decompose GC as GC =

G1
G̃2
G̃3

, with G1 = (∂fC∂wj
)1≤j≤r, G̃2 = (∂fC∂vj )1≤j≤r and G̃3 =

(∂fC∂vj )1≤j≤r. As fC is a real valued function, we have that ∂fC∂v̄j = ∂fC
∂vj

[152, 175], thus G̃3 = G̃2.
Let us start by the computation of G1 :

∂f1
∂wj

= ∂

∂wj

( ∑
|α|=d

(
d

α

)( r∑
i=1

wiv̄
α
i

)( r∑
i=1

wiv
α
i

))

=
∑
|α|=d

(
d

α

)(
v̄αj

( r∑
i=1

wiv
α
i

)
+ vαj

( r∑
i=1

wiv̄
α
i

))

=
r∑
i=1

wi(v∗j vi)d +
r∑
i=1

wi(v∗i vj)d = 2
r∑
i=1

wi<((v∗j vi)d);

the third equality is deduced by using definition 2.2.1 and 1. of lemma 2.2.1. In addition,
we have ∂f2

∂wj
= ∂

∂wj
(
∑r
i=1wip(v̄i)) = p(v̄j), ∂f3

∂wj
= p̄(vj), and ∂f4

∂wj
= 0. Thus, ∂fC

∂wj
=∑r

i=1wi<((v∗j vi)d)−<(p̄(vj)).
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Now, for the computation of G̃2, let p =
∑
|α|=d

(d
α

)
v̌αxα, and 1 ≤ k ≤ n,

∂f1
∂vj,k

=
∑
|α|=d

(
d

α

)( r∑
i=1

wiv̄
α
i

)
(wjαkvα−ekj ) = wj

r∑
i=1

wi〈∂xk(vtix)d, (vtjx)d−1〉d−1

= dwj

r∑
i=1

wi〈(vtix)d, xk(vtjx)d−1〉d = dwj

r∑
i=1

wiv̄i,k(v∗i vj)d−1,

the second (resp. third and fourth) equality are deduced by using lemma 2.2.1. Moreover, we
have ∂f2

∂vj,k
= 0, ∂f3

∂vj,k
= wj

∑
|α|=d

(d
α

)¯̌vααkvα−ekj = wj∂xk p̄(vj), and ∂f4
∂vj,k

= 0. Thus, ∂fC∂vj =
1
2

(
dwj

∑r
i=1wi(v∗i vj)(d−1)v̄i − wj∇xp̄(vj)

)
.

We have GR = KtGC from (4.4). By multiplication of these two matrices, we obtain : GR = G1

G̃2 + G̃2

i(G̃2 − G̃2)

 =

 G1
2<(G̃2)
−2=(G̃2)

. Finally dividing by 2, we get GR =

 G1
<(G2)
−=(G2)

, where G2 =

2G̃2, which ends the proof. �

The matrix of the real Hessian can be computed as follows :

Proposition 4.2.5. The real Hessian matrix HR is the following block matrix :

HR =

 A <(B)t −=(B)t
<(B) <(C +D) −=(C +D)
−=(B) =(D − C) <(D − C)

 ∈ R(r+2nr)×(r+2nr),

with
— A = <([(v∗i vj)d]1≤i,j≤r) ∈ Rr×r,
— B = [dwi(v∗j vi)d−1v̄j + δi,j(d

∑r
l=1wl(v∗l vi)d−1v̄l −∇xp̄(vj))]1≤i,j≤r ∈ Cnr×r, where

δi,j is the Kronecker delta,
— C = diag[d(d− 1)[

∑r
i=1wiwjvi,kvi,l(v∗i vj)d−2]1≤k,l≤n − wj∆xp̄(vj)]1≤j≤r ∈ Cnr×nr,

where ∆xp̄(vj) := [∂xk∂xl p̄(vj)]1≤k,l≤n,
— D = [dwiwj(v∗i vj)d−2((v∗i vj)In + (d− 1)vjv∗i )]1≤i,j≤r ∈ Cnr×nr.

Proof. HC is given by the following block matrix :

HC =



[
∂2fC
∂wi∂wj

]
1≤i,j≤r

[
∂2fC
∂wi∂vtj

]
1≤i,j≤r

[
∂2fC
∂wi∂v̄tj

]
1≤i,j≤r[

∂2fC
∂vi∂wj

]
1≤i,j≤r

[
∂2fC
∂vi∂vtj

]
1≤i,j≤r

[
∂2fC
∂vi∂v̄tj

]
1≤i,j≤r[

∂2fC
∂v̄i∂wj

]
1≤i,j≤r

[
∂2fC
∂v̄i∂vtj

]
1≤i,j≤r

[
∂2fC
∂v̄i∂v̄tj

]
1≤i,j≤r


.

We have that ∂2f
∂z̄∂z̄t = ∂2f

∂z∂zt , and ∂2f
∂z∂z̄t = ∂2f

∂z̄∂zt , for a complex variable z and a real valued

function with complex variables f . Using these two relations, we find that
[
∂2fC
∂wi∂wj

]
1≤i,j≤r

,
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[
∂2fC
∂vi∂wj

]
1≤i,j≤r

,
[
∂2fC
∂vi∂vtj

]
1≤i,j≤r

, and
[

∂fC
∂v̄i∂vtj

]
1≤i,j≤r

determine HC . We denote them respec-

tively by A, B̃, C̃, and D̃. Herein, we can decompose HC as :

HC =

A B̃t B̃∗

B̃ C̃ D̃t

B̃ D̃ C̃

 .
The computation of these four matrices can be done by taking the formula of ∂fC∂wj

and ∂fC
∂vj

obtained
in the proof of proposition 4.2.4, and using the apolar identities in lemma 2.2.1. Using (4.5) we

obtain : HR =

 A 2<(B̃)t −2=(B̃)t

2<(B̃) 2<(C̃ + D̃) −2=(C̃ + D̃)
−2=(B̃) 2=(D̃ − C̃) 2<(D̃ − C̃)

. Finally, for the simplification by 2, as

in the previous proof, we redefine the formula of HR as it is given in proposition 4.2.5, where B,
C, and D are respectively equal to two times B̃,C̃, and D̃. �

4.2.1.2 Retraction on Nr

To complete this Riemannian Newton method, we need to define a retraction operator on Nr.
Let us assume that the Riemannian Newton equation is solved at a point y = (w, v1, . . . , vr, v

′
1, . . .

v′r) ∈ Nr, in local coordinates with respect to the basis Q as in lemma 4.2.1. It yields a solution
vector η̂ ∈ Rr+r(2n−1). The tangent vector η ∈ TyNr of size r + 2nr is given by η = Q η̂ =
(ν, η1, . . . , ηr, η

′
1, . . . , η

′
r). The new point Ry(η) = (w̃, ṽ1, . . . , ṽr, ṽ

′
1, . . . , ṽ

′
r) ∈ Nr is defined

using the product of the retractions on each component, that is the identity map on Rr and the
projection map on the sphere S2n−1 [4] as follows :

— w̃ = Rw(ν) = w + ν ;

— (ṽj , ṽ′j) = R(vj ;v′j)(ηj , η
′
j) = (vj+ηj ;v′j+η

′
j)

||(vj+ηj ;v′j+η
′
j)||

.
By lemma 3.3.1, this defines a retraction from TyNr toNr since Rw (resp. R(vj ;v′j)) is a retraction
on Rr (resp. S2n−1).

4.2.2 Riemannian Gauss–Newton for STA

In this subsection, we consider the STA problem over the product of r Veronese manifolds
Vn,d. By separating the real and imaginary parts of the coefficients of a polynomial, the non-zero
points (vtx)d with v ∈ Cn \ {0} form a smooth Riemannian variety in C[x]d. We equip the
R-vector space C[x]d ∼ R2sn,d with the real inner product :

∀p, q ∈ C[x]d, 〈p, q〉Rd = <(〈p, q〉d).

Let Vr := Vn,d× · · ·×Vn,d. The map σr : y = (y1, . . . , yr) ∈ Vr 7→ y1 + · · ·+ yr ∈ C[x]d is
a parameterization of the set Σr of symmetric tensors of symmetric rank at most r. We formulate
the STA problem as a Riemannian least square problem over Vr as follows :

(STA)Vr min
y∈Vr

f(y),

where f(y) = 1
2 ||F (y)||2d,with F (y) = σr(y)− p for y ∈ Vr.
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The differential map DF = Dσr at y = (y1, . . . , yr) ∈ Vr with yi = (vtix)d, vi ∈ Cn is

Dσr(y) : Ty1Vn,d × · · · × TyrVn,d → Tσr(y)C[x]d = C[x]d
(η1, . . . , ηr) 7→ η1 + · · ·+ ηr,

where TyiVn,d =
{

(utx)(vtix)d−1| u ∈ Cn
}

is of dimension 2n over R.
The Gauss–Newton equation is given by :

(DF (y))∗ ◦ (DF (y))[η] = −(DF (y))∗[F (y)], (4.6)

where DF (y) : TyVr → C[x]d is the differential map of F at y, and (DF (y))∗ ◦ (DF (y)) :
TyVr → TyVr is the Gauss–Newton approximation of the Hessian of f at y.

We are going to describe explicitly the matrix of this map in a convenient basis of TyVr. For a
non-zero complex vector v ∈ Cn, we define the inner product : ∀u, u′ ∈ Cn,

〈u, u′〉v = <
(
u∗u′ + (d− 1)(u∗v)(v∗u′)‖v‖−2)

It is a positive definite inner product on Cn ∼ R2n since 〈u, u〉v = ‖u‖2+(d−1)|(v∗u)|2‖v‖−2 ≥
0 and it vanishes iff u = 0. Notice that 〈v, v〉v = d‖v‖2. The symmetric matrix associated to this
inner product in the canonical basis of R2n is

Mv := I2n + (d− 1)‖v‖−2(vRvtR + vIv
t
I)

where vR = (<(v);=(v)), vI = (−=(v);<(v)) are the vectors of R2n obtained by concatenating
the real and imaginary part (resp. opposite imaginary and real part) of v ∈ Cn.
Let u1 = vR

‖v‖ and u2 = vI
‖v‖ . We notice that u1 and u2 can be completed to an orthonormal basis

of R2n. Let U denotes the matrix of this basis i.e. U = [u1, . . . , u2n]. Then UU t = I2n, so that an
eigenvalue decomposition of the symmetric matrix Mv of 〈·, ·〉v in the canonical basis of R2n can
be written as follows :

Mv = Udiag(1 + (d− 1), 1 + (d− 1), 1, . . . , 1)U t = Udiag(d, d, 1, . . . , 1)U t. (4.7)

For shortness, we denote the strictly positive diagonal matrix diag(d, d, 1, . . . , 1) by S.

Lemma 4.2.6. Let v 6= 0 ∈ Cn ∼ R2n and p = (vtx)d ∈ C[x]d. Let u1, . . . , u2n ∈ Cn be an
orthonormal R-basis for the inner product 〈·, ·〉v with u1 = v√

d‖v‖ . Then

qi =
√
d‖v‖−d+1(utix)(vtx)d−1, i = 1, . . . , 2n

is an orthonormal basis of TpVn,d for the inner product 〈·, ·〉Rd .

Proof. Using the apolar identities in lemma 2.2.1, we have

〈qi, qj〉Rd =
√
d‖v‖−d+1<

(
〈(utix)(vtx)d−1, qj〉d

)
=
√
d−1‖v‖−d+1<

(
(u∗i∇xqj)(v)

)
= ‖v‖−2d+2<

(
(u∗iuj)(v∗v)d−1 + (d− 1)(u∗i v)(v∗uj)(v∗v)d−2)

= <
(
(u∗iuj) + (d− 1)(u∗i v)(v∗uj)‖v‖−2) = 〈ui, uj〉v.

We deduce that 〈qi, qj〉Rd = δi,j and (qi)i=1,...,2n is an orthonormal basis of T(vtx)dVn,d for the
inner product 〈·, ·〉Rd . �

We describe now how to compute an orthonormal basis for 〈·, ·〉v.
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Lemma 4.2.7. Let Mv = USU t be the eigenvalue decomposition of Mv as in (4.7). Let
û1 =

√
S−1U t vR√

d‖v‖ and let Q ∈ R2n×2n be the orthogonal factor of a rank-revealing QR-

decomposition of I2n− û1û
t
1 = QRP where R is upper triangular and P is a permutation matrix.

Let
uR,1 = vR√

d‖v‖
, uR,i = U

√
S−1Q[:,i−1] i = 2, . . . , 2n.

Then the orthonormal R-basis u1, . . . , u2n ∈ Cn for 〈·, ·〉v is such that ui = (uR,i)[1:n]+
i (uR,i)[n+1:2n] ∈ Cn for i = 1, . . . , 2n.

Proof. As Mv = USU t with UU t = I2n and S ∈ R2n×2n a strictly positive diagonal matrix,
we have

√
S−1U tMvU

√
S−1 = I2n. Thus the column vectors of U

√
S−1 form an orthonormal

basis of R2n for 〈·, ·〉v.
The vector û1 =

√
S−1U t vR√

d‖v‖ is representing the vector vR√
d‖v‖ in this orthonormal basis.

The first 2n−1 columns of the factorQ in a rank-revealing QR-decomposition of I2n−û1û
t
1 =

QRP are orthonormal vectors û2, . . . , û2n for 〈·, ·〉v, expressed in the basis U
√
S−1. An ortho-

normal basis uR,1, uR,2, . . . , uR,2n ∈ R2n for 〈·, ·〉v is thus given by uR,1 = vR√
d‖v‖ , uR,i =

U
√
S−1Q[:,i−1], i = 2, . . . , 2n. The corresponding vectors ∈ Cn are ui = (uR,i)[1:n]+

i (uR,i)[n+1:2n] ∈ Cn for i = 1, . . . , 2n. �

Notice that when v is real and u, u′ are real such that 〈v, u〉 = 〈v, u′〉 = 0, 〈u, u′〉v = 〈u, u′〉
is the standard inner product of u, u′. Consequently in the real case, an orthonormal basis
(ui)i=1,...,n ⊂ Rn can be obtained directly from u1 = v

‖v‖ and a rank-revealing QR-decomposition
of In − u1u

t
1.

For y = (y1, . . . , yr) ∈ Vr with yi = (vtix)d ∈ Vn,d, ∀1 ≤ i ≤ r, let (qi,j)j=1,...,2n be
the orthonormal basis associated to vi defined in lemma 4.2.6 and let Qi = [qi,1, . . . , qi,2n] ∈
R2sn,d×2n be the coefficient matrix of the polynomials (qi,j)j=1,...,2n in the canonical R-basis of
C[x]d. The columns of the matrix

Q = diag(Qi)1≤i≤r,

represent an orthonormal basis of TyVr for the inner product induced by 〈·, ·〉Rd on each component.
Therefore, the Jacobian matrix J of σr at y, which is the matrix associated to Dσr(y) =

DF (y), with respect to the orthonormal basis Q on TyVr and the standard real basis on C[x]d is
given by :

J = [Q1, . . . , Qr] ∈ R2sn,d×2nr.

Proposition 4.2.8. The Gauss–Newton equation (4.6) in the orthonormal basis Q of TyVr is of
the form

H η̃ = −G,
where η̃t = (η̃t1, . . . , η̃tr) ∈ R2nr is the unknown coordinate vector of an element of the tangent
space TyVr in the basis Q and

— G = [Gk]k=1,...,2nr with for 1 ≤ i ≤ r, 1 ≤ j ≤ 2n,

G2n(i−1)+j =
√
d−1‖vi‖−d+1

(
d
∑r
k=1<

(
(u∗i,jvk)(v∗i vk)d−1)−<

(
u∗i,j∇xp(vi)

))
,

— H = [Hk,k′ ]1≤k,k′≤2nr with for 1 ≤ i, i′ ≤ r, 1 ≤ j, j′ ≤ 2n,

H2n(i−1)+j,2n(i′−1)+j′ = ‖vi‖−d+1‖vi′‖−d+1
(
<
(
(u∗i,jui′,j′)(v∗i vi′)d−1) + (d −

1)<
((
u∗i,jvi′)(v∗i ui′,j′)(v∗i vi′)d−2)).
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Proof. As the matrix of Dσr(y) = DF (y) in the orthonormal basis Q on TyVr and the standard
real basis on C[x]d is J , we have that the Gauss–Newton equation (4.6) is Hη̃ = −G with

— G = J tvec(σr(y)− p) = (〈qi,j , σr(y)− p〉Rd ),
— H = J tJ = [Q1, . . . , Qr]t[Q1, . . . , Qr] = (〈qi,j , qi′,j′〉Rd ).

By the apolar identities in lemma 2.2.1, we have

〈qi,j , σr(y)− p〉Rd =
√
d−1‖vi‖−d+1

( r∑
k=1
<(u∗i,j∇x(vtkx)d(vi)− u∗i,j∇xp(vi))

)
=
√
d−1‖vi‖−d+1

( r∑
k=1
<
(
d(u∗i,jvk)(v∗i vk)d−1 − u∗i,j∇xp(vi)

))
.

Similarly,

〈qi,j , qi′,j′〉Rd
= ‖vi‖−d+1‖vi′‖−d+1<

(
u∗i,j∇x((uti′,j′x)(vti′x)d−1)(vi)

)
= ‖vi‖−d+1‖vi′‖−d+1<

(
(u∗i,jui′,j′)(v∗i vi′)d−1 + (d− 1)(u∗i,jvi′)(v∗i ui′,j′)(v∗i vi′)d−2),

which ends the proof of the proposition. �

The Gauss–Newton equation
H η̃ = −G,

solved in local coordinate with respect to the basis Q, yields a vector η̃ = (η̃1; . . . ; η̃r) ∈ R2nr.
The components of the tangent vector η = (η1, . . . , ηr) ∈ TyVr ∈ C[x]d are then

ηi =
√
d||vi||−d+1(vtix)d−1

2n∑
k=1

η̃i,k(uti,kx), i = 1, . . . , r.

4.2.2.1 Retraction on the Veronese manifold

We define the retraction of a tangent vector η ∈ TyVr to a new point ỹ on the manifold Vr as
follows :

ỹ = (ỹ1, . . . , ỹr) = (Ry1(η1), . . . , Ryr(ηr)),

where Ryi : TyiVn,d → Vn,d is a retraction operator on the Veronese manifold for i ∈ {1, . . . , r}
that we describe hereafter (see lemma 3.3.1).

We will use the following matrix construction to define the retraction on Vn,d.

Definition 4.2.1. The Hankel matrix of degree (k, d− k) associated to a polynomial p in C[x]d is
given by :

Hk,d−k
p = (〈p,xα+β〉d)|α|=k,|β|=d−k.

This matrix is also known as the Catalecticant matrix of the symmetric tensor p in degree
(k, d − k) or the flattening of p in degree (k, d − k). In this definition, we implicitly assume that
we have chosen a monomial ordering (for instance the lexicographic ordering on the monomials
indexing the rows and columns of Hk,d−k

p ) to build the Hankel matrix. The properties of Hankel
matrices that we will use are independent of this ordering. Such a matrix is called a Hankel matrix
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since, as in the classical case, the entries of the matrix depend on the sum of the exponents of the
monomials indexing the corresponding rows and columns.

When k = 1, using the apolar relations 〈p, xixβ〉d = 1
d〈∂xip,x

β〉d−1, we see that H1,d−1
p

is nothing else than the transposed of the coefficient matrix of the gradient 1
d∇xp in the basis(

xβ
(d−1
β

)−1)
|β|=d−1

. When p = (vtx)d ∈ Vn,d, H1,d−1
p can thus be written as the rank-1 matrix

v ⊗ (vtx)d−1.
Our construction of a retraction on Vn,d is described in the following definition.

Definition 4.2.2. For v ∈ Cn \ {0}, let πv : C[x]d → Vn,d be the map such that ∀q ∈ C[x]d,

πv(q) = 〈ψ(v), q〉d
‖ψ(v)‖2d

ψ(v), (4.8)

where ψ : v ∈ Cn 7→ (vtx)d ∈ Vn,d is the parametrization of the Veronese variety. For p ∈ C[x]d,
let θ(p) ∈ Cn be the first left singular vector of H1,d−1

p . For p ∈ Vn,d, let

Rp : TpVn,d → Vn,d

q 7→ πθ(p+q)(p + q).

The retraction that we are going to describe on the Veronese manifold is closely related to the
one on the Segre manifold used in [33]. In fact, since the Segre manifold coincides with the mani-
fold of tensors of multilinear rank (1, . . . , 1), the retraction in [33] is deduced from the truncated
multilinear rank (1, . . . , 1) HOSVD of a real multilinear tensor, i.e. from the truncated rank one
SVD of the matricization in the different modes [122]. For a symmetric tensor, the matricization
with respect to any mode gives the same Catalecticant matrix in degree (1, d-1). Hereafter, we
show, by different techniques, that a single truncated SVD of the Catalecticant matrix in degree
(1, d− 1) gives a retraction on the Veronese manifold.

By the apolar identities, we check that Rp(q) = (p(ū) + q(ū)) (utx)d where u = θ(p + q).
We also verify that πλu = πu for any λ ∈ C \ {0} and any u ∈ Cn \ {0}.

By the relation (4.8), for any v ∈ Cn \ {0}, πv(q) is the vector on the line spanned by ψ(v),
which is the closest to q for the apolar norm. In particular, we have πv(ψ(v)) = ψ(v).

We verify now that Rp is a retraction on Vn,d.

Lemma 4.2.9. Let p ∈ Vn,d. Then, p is a fixed point by πu where u is the first left singular vector
of H1,d−1

p .

Proof. If p = (vtx)d = ψ(v) ∈ Vn,d with v ∈ Cn \ {0}, then the first left singular vector u of
H1,d−1

p is up to a scalar equal to v. Thus we have πu(p) = πv(ψ(v)) = ψ(v) = p. �

Proposition 4.2.10. Let p ∈ Vn,d. There exists a neighborhood Up ⊂ C[x]d of p such that the
map ρ : q ∈ Up 7→ πθ(q)(q) is well-defined and C∞ smooth.

Proof. Let p ∈ Vn,d and θ : q ∈ C[x]d → q ∈ Cn where q is the first left singular vector of the
SVD decomposition of H1,d−1

q . Let γ : C[x]d → Vn,d = ψ ◦ θ be the composition map by the
parametrization map ψ of Vn,d.

By construction, we have ρ : q 7→ 〈q, γ(q)〉d γ(q). Let O denotes the open set of homoge-
neous polynomials q ∈ C[x]d such that the Hankel matrix H1,d−1

q has a nonzero gap between the
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first and the second singular values. It follows from [45] that the map θ is well-defined and smooth
on O. As p is in Vn,d and H1,d−1

p is of rank 1, p ∈ O. Let Up be a neighborhood of p in C[x]d
such that ψ|Up

is well-defined and smooth. As the apolar product 〈·, ·〉d and the multiplication are
well-defined and smooth on C[x]d × C[x]d, ρ is well-defined and smooth on Up, which ends the
proof. �

As ψ : v ∈ Cn 7→ (vtx)d ∈ Vn,d is a parametrization of the Veronese variety Vn,d, the tangent
space of Vn,d at a point ψ(v) is spanned by the first order vectorsDψ(v) q of the Taylor expansion
of ψ(v + t q) = ψ(v) + tDψ(v) q + O(t2) for q ∈ Cn. We are going to use this observation to
prove the rigidity property of Rp.

Proposition 4.2.11. For p ∈ Vn,d, q ∈ Tp(Vn,d),

p + t q −Rp(t q) = O(t2).

Proof. As p ∈ Vn,d, q ∈ TpVn,d, there exist v, q ∈ Cn such that p = ψ(v), q = Dψ(v) q. In
particular, we have p + t q−ψ(v+ t q) = O(t2). This implies that H1,d−1

p+t q −H
1,d−1
ψ(v+t q) = O(t2).

By differentiability of simple non-zero singular values and their singular vectors [202], we have
ut − vt = O(t2) where ut = θ(p + t q) and vt = θ(ψ(v + t q)) are respectively the first left
singular vectors of H1,d−1

p+t q and H1,d−1
ψ(v+t q).

SinceH1,d−1
ψ(v+t q) is a matrix of rank 1 and its image is spanned by v+ t q, vt is a non-zero scalar

multiple of v + t q and we have πvt = πv+t q. By continuity of the projection on a line, we have

πut(p + t q) = πvt(p + t q) +O(t2) = πv+t q(p + t q) +O(t2).

Since ψ(v + t q) = ψ(v) + tDψ(v)q +O(t2) = p + t q +O(t2), we have

πv+t q(p + t q) = πv+t q(ψ(v + t q)) +O(t2) = ψ(v + t q) +O(t2).

We deduce that

p + t q −Rp(t q) = p + t q − πut(p + t q)
= p + t q − ψ(v + t q) + (ψ(v + t q)− πvt(p + t q))

+ (πvt(p + t q)− πut(p + t q))
= ψ(v) + tDψ(v)q − ψ(v + t q) +O(t2) = O(t2),

which proves the proposition. �

Proposition 4.2.12. Let p ∈ Vn,d. The map Rp : TpVn,d → Vn,d, q 7→ Rp(q) = πθ(p+q)(p + q)
is a retraction operator on the Veronese manifold Vn,d.

Proof. We have to prove that Rp verifies the three properties in definition 3.3.1.

1. Rp(0p) = πθ(p)(p + 0p) = πθ(p)(p) = p, by using lemma 4.2.9.

2. Let Sp : TpVn,d → C[x]d, q 7→ p+q. The map Sp is well-defined and smooth on TpVn,d.
By proposition 4.2.10, π is well-defined and smooth in a neighborhood Up of p ∈ Vn,d.
Thus Rp = ρ ◦ Sp is well-defined and smooth in a neighborhood U ′p ⊂ TVn,d of 0p.
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3. By proposition 4.2.11,
(p + tq)−Rp(t q) = O(t2),

which implies that d
dtRp(t q) |t=0= q, or equivalentlyDRp(0p)q = q. Therefore we have

DRp(0p) = idTpVn,d .

�

4.2.3 Adding a trust-region scheme

As discussed in 3.4.3, Riemannian Newton-type algorithm is usually combined with Rieman-
nian trust region method to ensure a sufficient decrease in the cost function, and to enhance the
algorithm, with the desirable properties of convergence to a local minimum, with a local superli-
near rate of convergence. In this section, we add a Riemannian trust region scheme to the Newton
(resp. Gauss–Newton) method described respectively in 4.2.1 and 4.2.2. Moreover, We prove in
proposition 4.2.13 that under regularity assumptions, a local convergence for the Riemannian–
Newton algorithm with trust region scheme can be obtained.

LetM denote the Riemannian manifold Nr in subsection 4.2.1 (resp. Vr in subsection 4.2.2),
and let yk ∈M. The subproblem to solve is

min
η∈B∆k

myk(η), (4.9)

where myk(η) := f(yk) + Gtkη + 1
2η

tHkη, Gk is the gradient of f at yk and Hk is respectively
the Hessian of f at yk for the Riemannian Newton method and the Gauss–Newton approximation
of f at yk for the Riemannian Gauss–Newton method, and B∆k

:= {η ∈ TykM | ||η|| ≤ ∆k}.
By solving (4.9) using the dogleg method (3.4.3), we obtain a solution ηk ∈ TykM. Ac-

cepting or rejecting the candidate new point yk+1 = Ryk(ηk) is based on the quotient ρk =
f(yk)−f(yk+1)
myk (0)−myk (ηk) .
If ρk exceeds 0.2 then the current point yk is updated, otherwise the current point yk remains un-
changed.
The radius of the trust region ∆k is also updated based on ρk. We choose to update the trust region
as in [33] with a few changes.

Let ∆y0 := 10−1
√

d
r

∑r
i=1 ||w0

i ||2 in the Riemannian Newton iteration (resp. ∆y0 := 10−1√
d
r

∑r
i=1 ||v0

i ||2d in the Riemannian Gauss–Newton iteration), ∆max := 1
2 ||p||d. We take the

initial radius as ∆0 = min{∆y0 ,∆max}, if ρk > 0.6 then the trust region is enlarged as follows :
∆k+1 = min{2||ηk||,∆max}. Otherwise the trust region is shrinked by taking ∆k+1 = min{(1

3 +
2
3(1 + e−14(ρk− 1

3 ))−1)∆k,∆max}.
The algorithm of the Riemannian Newton (resp. Gauss–Newton) method with trust region

scheme for the STA problem is denoted by RNE-N-TR (resp. RGN-V-TR) and is given in pseudo-
code by Algorithm 4.1.

The Algorithm 4.1 is stopped when ∆k ≤ ∆min (by default ∆min = 10−3), or when the
maximum number of iterations exceeds Nmax.

Remark 4.2.1 – In order to handle ill-conditioned Hessian (resp. Gauss–Newton Hessian approxi-
mation) matrices in Algorithm 4.1, we use the Moore-Penrose pseudoinverse [22, 120, 201]. This
can appear in cases where some vectors vi of the rank-r approximation span close lines, which
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Input : The homogeneous polynomial p ∈ C[x]d associated to the symmetric tensor to ap-
proximate, r < rg.
Choose initial point y0 ∈ Nr (resp. y0 ∈ Vr).
while the method has not converged do

1. Compute the gradient vector and the Hessian matrix (resp. Gauss–Newton Hessian ap-
proximation) ;

2. Solve the subproblem (4.9) for the search direction ηk ∈ B∆k
by using the dogleg method ;

3. Compute the candidate next new point yk+1 = Ryk(ηk) ;
4. Compute the quotient ρk ;
5. Accept or reject yk+1 based on the quotient ρk ;
6. Update the trust region radius ∆k.

Output : y∗ ∈ Nr (resp. y∗ ∈ Vr).

Algorithm 4.1 – Riemannian Newton (resp. Gauss–Newton) algorithm with trust region sheme for
the STA problem “RNE-N-TR”(resp. “RGN-V-TR”)

yields a singularity problem in the iteration. In particular, this is the case when the symmetric
border rank of the symmetric tensor is not equal to its symmetric rank [33, 54], [129, section 2.4].
For example, the tensor p = (vt0x)(vt1x)d−1 + ε T , with v0, v1 ∈ Rn, T ∈ R[x]d and ε very small,
is close to the tensor (vt0x)(vt1x)d−1 = limδ→0

1
d δ (((v1 + δv0)tx)d − (vt1x)d) of border rank 2

and symmetric rank d. It can be very well approximated by a tensor of rank 2, with two vectors of
almost the same direction.

Under some regularity assumption, it is possible to guarantee that RNE-N-TR algorithm
converges to a local minimum of the distance function f .

Proposition 4.2.13. Let p ∈ C[x]d, let p0 ∈ Σr be the initial point of RNE-N-TR and let B0 =
B(p, ||p− p0||d) be the ball of center p and radius ||p− p0||d in C[x]d. Assume that B0 ∩Σr ⊂
Σreg
r (i.e. all points of Σr in B0 are non-defective), then RNE-N-TR converges to a local minimum

y ∈ Nr of the distance function f to Σr.

Proof. Let Σ0
r := B0 ∩ Σr = B0 ∩ Σreg

r be the set of non-defective tensors of rank r in B0.
As ϕr : (W,VR, VI) ∈ Nr 7→

∑r
i=1wi((vR,i + i vI,i)tx)d ⊂ Σr ⊂ C[x]d is locally injective

at a non-defective tensor, it defines a local diffeomorphism between Nr,0 = ϕ−1
r (Σ0

r) and Σ0
r .

As B0 is compact, Nr,0 = ϕ−1
r (Σ0

r) is a compact Riemannian manifold. By construction, the
distance between p and the iterates pi is decreasing in RNE-N-TR, so that their decomposition is
inNr,0 = ϕ−1

r (Σreg
r ∩B0). AsNr,0 is a compact Riemannian manifold and f is smooth onNr,0 (as

a polynomial function), [2, Corollary 7.4.6] implies that the iterates of RNE-N-TR of Riemannian
Newton method with a trust region sheme on Nr,0 converge to a local minimum of the distance
function f . �

The regularity assumption B0 ∩ Σr ⊂ Σreg
r implies that the ball centered at p and containing the

initial point of the iteration does not contain a defective tensor. In this case, the iterates, which
distance to p decreases, remain in the ball and the limit decomposition is a non-defective low rank
tensor. This assumption, satisfied when p is far enough from the singular locus of Σr, is a sufficient
condition to ensure the regularity of the iteration points and their limit.
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4.3 Numerical experiments

In this section, we present four numerical experiments using the RNE-N-TR and RGN-V-TR
algorithms. These algorithms are implemented in the package TensorDec.jl ∗. We use a Julia
implementation for the method SPM tested in subsection 4.3.4. The solvers from Tensorlab v3
[217] are run in MATLAB 7.10. The experimentation was done on a Dell Windows desktop with
8 GB memory and Intel Core i5-5300U, 2.3 GHz CPU.

4.3.1 Choice of the initial point

The choice of the initial point is a crucial step in iterative methods. We use the direct algo-
rithm of [92], based on the computation of generalized eigenvectors and generalized eigenvalues
of pencils of Hankel matrices (see also [150]), to compute an initial rank-r approximation. This
algorithm, denoted SMD, works only with r < rg such that ι ≤ bd−1

2 c where ι denotes the in-
terpolation degree of the points in the rank-r decomposition [76, Chapter 4]. This implies that
r <

(n+d′−1
d′

)
where d′ = bd−1

2 c. It first computes a SVD decomposition of the Hankel matrix of
the tensor t in degree

(
bd−1

2 c, d− b
d−1

2 c
)
, extracts the first r singular vectors, computes a simul-

taneous diagonalisation of the matrices of multiplication by the variables xi by taking a random
combination of them, computing its eigenvectors and deducing the points and weights in the ap-
proximate decomposition of t. The rationale behind choosing the initial point with this method is
when the symmetric tensor is already of symmetric rank r with r < rg and ι ≤ bd−1

2 c, then this
computation gives a good numerical approximation of the exact decomposition, so that the Rie-
mannian Newton (resp. Gauss–Newton) algorithm needs few iterations to converge numerically.
We will see in the following numerical experiments that this initial point is an efficient choice to
get a good low rank approximation of a symmetric tensor.

4.3.2 Best rank-1 approximation and spectral norm

Let p ∈ Sdn(R), a best real rank-1 approximation of p is a minimizer of the optimization
problem

dist1(p) := min
t∈Sdn(R),ranks(t)=1

||p− t||2d = min
(w,v)∈R×Sn−1

||p− w(vtx)d||d, (4.10)

where Sn−1 = {v ∈ Rn | ||v|| = 1} is the unit sphere. This problem is equivalent to
mint∈T d(Rn),rank(t)=1 ||p − t||2F since at least one global minimizer is a symmetric rank-1 ten-
sor [227].

The real spectral norm of p ∈ Sdn(R), denoted by ||p||σ,R is by definition :

||p||2σ,R := max
v∈Sn−1

|p(v)|. (4.11)

The two problems (4.10) and (4.11) are related by the following equality :

dist1(p)2 = ||p||2d − ||p||2σ,R,

∗. It can be obtained from https://gitlab.inria.fr/AlgebraicGeometricModeling/
TensorDec.jl and run in Julia version 1.1.1. See functions rne_n_tr and rgn_v_tr.

https://gitlab.inria.fr/AlgebraicGeometricModeling/TensorDec.jl
https://gitlab.inria.fr/AlgebraicGeometricModeling/TensorDec.jl
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which we deduce by simple calculus and properties of the apolar norm (see also [64, 227]) :

dist1(p)2 = min
(w,v)∈R×Sn−1

||p− w(vtx)d||2d

= min
(w,v)∈R×Sn−1

||p||2d − 2〈p, w(vtx)d〉d + ||w(vtx)d||2d

= min
(w,v)∈R×Sn−1

||p||2d − 2w p(v) + w2

= min
v∈Sn−1

||p||2d − |p(v)|2 = ||p||2d − max
v∈Sn−1

|p(v)|2 = ||p||2d − ||p||2σ,R.

Therefore, if v is a global maximizer of (4.11) such that w = p(v), then w v⊗d is a best rank-1
approximation of p. Herein, a rank-1 approximation w v⊗d, such that w = p(v) and ||v|| = 1,
is better when |w| is higher. Therefore, in the following experimentation, we report the weight w
obtained by the different methods.

In [155] the authors present an algorithm called “SDP" based on semidefinite relaxations to
find a best real rank-1 approximation of a real symmetric tensor by finding a global optimum of
p on Sn−1. We choose two examples from [155], on which we apply the RNE-N-TR with initial
point chosen according to the SMD algorithm adapted for 1×1 matrices. The reason behind using
RNE-N-TR instead of RGN-V-TR is to take advantage of the local quadratic rate of convergence
that distinguishes the exact Riemannian Newton iteration in RNE-N-TR [2, Theorem 6.3.2]. We
compare these methods with the method CCPD-NLS which is a non-linear least-square solver
for the symmetric decomposition from Tensorlab v3 [217] in MATLAB 7.10. For CCPD-NLS
we use two initialization strategies, in the first one we run 50 instances (i.e. 50 random initial
points obeying Gaussian distributions), and we take the absolute value of the weight in average
for this method. In the second one we use the same initialization as RNE-N-TR i.e. CCPD-NLS
is initialized by SMD. We also compare with the algorithm CPD from Tensorlab v3 [217] for
multilinear tensors initialized by the determinist method from Tensolab called GEVD.

We denote respectively by |wsdp|, |wrne|, |wccpd_smd|, and |wcpd_gevd| the weight in absolute
value given respectively by SDP, RNE-N-TR, CCPD-NLS initialized by SMD, and CPD initialized
by GEVD, and |wccpd| denotes the absolute value of the weight in average given by CCPD-NLS.
Note that |wsdp| is the spectral norm of p, since SDP gives a best rank-1 approximation. We report
the time spent by SDP from [155] (resp. RNE-N-TR including the computation time of the initial
point) in seconds (s) and we denote it by tsdp (resp. trne). We denote by Nrne the number of
iterations in RNE-N-TR. We denote by d0 the norm between p and the initial point of RNE-N-TR,
and by d∗ the norm between p and the solution obtained by RNE-N-TR. We denote by tccpd_smd
and Nccpd_smd the consumed time and number of iterations of CCPD-NLS initialized by SMD.
We denote by tcpd_gevd the time spent by CPD initialized by GEVD. We denote by tccpd (resp.
Nccpd) the time in seconds (s) (resp. number of iterations) in average for CCPD-NLS.

Example 4.3.1 – [155, Example 3.5]. Consider the tensor p ∈ S3
n(R) with entries :

(p)i1,i2,i3 = (−1)i1
i1

+ (−1)i2
i2

+ (−1)i3
i3

,

corresponding to the polynomial p =
∑
|α|=3(

∑n
i=1 αi

(−1)i
i )

(3
α

)
xα.
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Example 4.3.2 – [155, Example 3.7]. Consider the tensor p ∈ S5
n(R) given as :

(p)i1,...,i5 = (−1)i1 log(i1) + · · ·+ (−1)i5 log(i5),

corresponding to the polynomial p =
∑
|α|=5(

∑n
i=1 αi(−1)i log(i))

(5
α

)
xα.

Example 4.3.1 Example 4.3.2
n 10 20 30 40 50 5 10 15 20 25

|wrne| 17.8 34.2 50.1 65.9 81.6 1.100e+2 8.833e+2 2.697e+3 6.237e+3 11.504e+3
d0 32.4 28.4 44 64.6 78.3 526.1 6.559e+3 26.318e+3 64.268e+3 132.213e+3
d∗ 13.2 28.3 43.8 59.5 75.3 477.5 6.096e+3 24.643e+3 60.435e+3 121.892e+3
trne 0.038 0.304 1.5 3.3 12.1 0.058 0.282 3.8 18.3 34.8
Nrne 5 4 4 4 6 5 4 6 6 6
|wccpd| 14.0 29.3 43.3 60.0 75.6 78.9 8.68e+2 2.354e+3 6.148e+3 10.587e+3
tccpd 0.173 0.109 0.105 0.122 0.143 0.093 0.187 1.2 5.5 16.7
Nccpd 27 25 22 23 22 19 29 16 23 17

|wccpd_smd| 17.8 34.2 50.1 65.9 81.6 1.100e+2 8.833e+2 2.697e+3 6.237e+3 11.504e+3
tccpd_smd 0.194 0.158 0.118 0.123 0.192 0.228 0.261 1.2 4.8 14.1
Nccpd_smd 33 32 24 23 27 40 31 19 13 21
|wcpd_gevd| 17.8 34.2 50.1 65.9 81.6 1.100e+2 8.833e+2 2.697e+3 6.237e+3 11.504e+3
tcpd_gevd 0.148 0.152 0.207 0.289 0.177 0.521 0.361 0.947 3.4 9.7
|wsdp| 17.8 34.2 50.1 65.9 81.6 1.100e+2 8.833e+2 2.697e+3 6.237e+3
tsdp 2.0 6.0 30.0 245.0 1965.0 1.0 22.0 78.0 1350.0

Table 4.1 – Symmetric rank-1 approximation for Example 4.3.1 and Example 4.3.2 : RNE-N-TR (rne),
CCPD-NLS (ccpd_smd) initialized by SMD (Section 4.3.1), CCPD-NLS (ccpd) initialized by 50 random
initial points obeying Gaussian distributions and the reported results for this method are in average, CPD
(cpd_gevd) is initialized by default by the Tensorlab method called GEVD. The method RNE-N-TR stops
when the maximum number of iterations is reached (by default 500) or when the radius of the trust region
∆k is less than ∆min (by default 10−3). Tensorlab’s methods stop when the stop criteria given by Display =
10 are verified. The method SDP (sdp) is a global optimization to which we compare the aforementioned
local optimization methods if they can find best symmetric rank-1 approximation.

The results in Table 4.1 show that the RNE-N-TR finds a global minimizer, starting from the
initial point given by the SMD algorithm. The RNE-N-TR algorithm converges to this point in few
iterations, and with very reduced time compared to the SDP algorithm especially when n grows,
where the SDP method works in a greedy manner. On the other hand, |wccpd| is smaller than |wsdp|,
implying that CCPD computes, in several cases, a local minimum, which is not a global minimum
i.e. a best rank-1 approximation. In comparison for these cases, RGN-V-TR took more iterations
(∼20) than RNE-N-TR and consequently more time, while reaching the same optimimum.

The fact that RNE-N-TR finds the best rank-1 approximation in these examples comes from the
good initial point provided by SMD algorithm. However, we have no guarantee that RNE-N-TR
with this initial point will always converge to a best rank-1 approximation. This experimentation
shows that RNE-N-TR combined with SMD algorithm for the initial point is an efficient method
to get a good real rank-1 approximation of a real symmetric tensor.

4.3.3 Symmetric rank-r approximation

We consider two examples of a real and a complex valued sparse symmetric tensors, in order
to compare the performance of RNE-N-TR and RGN-V-TR with state-of-the-art non-linear least-
square solvers CCPD-NLS and SDF-NLS for symmetric decomposition from Tensolab v3 with
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random initial point following a standard normal distribution. We note that ccpd_smd means that
CCPD-NLS is initialized by SMD as for the Riemannian Newton and Riemannian Gauss–Newton
algorithms. These solvers employ factor matrices as parameterization and use a Gauss–Newton
method with dogleg trust region steps called “NLS-GNDL”. We also compare with the algorithm
CPD from Tensorlab v3 [217] for multilinear tensors initialized by the determinist method from
Tensolab called GEVD, we mention that this algorithm does not impose symmetry. We fix 200 ite-
rations as maximal number of iterations, and we run 50 instances for these methods and we report
the minimal, median and maximal residual error denoted ‘err’, such that, err := ||p−p∗||d, where
p is the symmetric tensor to approximate and p∗ is the approximate symmetric tensor of rank-r.
In the computation of the initial point by SMD algorithm in RNE-N-TR and RGN-V-TR, we com-
pute eigenvectors of a random linear combination of multiplication operators. This computation
is sensitive to the choice of the linear combination, when the operators are not commuting, which
explains why we report also the minimal, median and maximal err for these two methods. The
average of time t is in seconds, and the average number of iterations N is rounded to the closest
integer.

Example 4.3.3 – Let p ∈ S3
10(R) such that :

(p)i1,i2,i3 =


i21 + 1 if i1 = i2 = i3,

1 if [i1, i2, i3] ≡ [i, i, j] with i 6= j,

0 otherwise.

([i1, i2, i3] ≡ [j1, j2, j3] iff there exists a permutation σ ∈ S3 such that [iσ(1), iσ(2), iσ(3)]
= [j1, j2, j3]). This sparse symmetric tensor corresponds to the polynomial p =

∑10
i=1 i

2x3
i +

(
∑10
i=1 x

2
i )× (

∑10
i=1 xi).

Example 4.3.4 – Let p ∈ S3
10(C) such that :

(p)i1,i2,i3 =


e
√
i1+i21

√
−1 + i1

10
√
−1 if i1 = i2 = i3,

i
10
√
−1 if [i1, i2, i3] ≡ [i, i, j] with i 6= j,

0 otherwise.

This sparse symmetric tensor corresponds to the polynomial p =
∑10
i=1 e

√
i+i2
√
−1 x3

i +√
−1(

∑10
i=1

i
10x

2
i )× (

∑10
i=1 xi).

The numerical results in Table 4.2 show that the number of iterations of RNE-N-TR and RGN-
V-TR method is low compared to the other methods that impose symmetry in this test i.e. CCPD-
NLS initialized by SMD, CCPD-NLS and SDF-NLS with random initialization. The iterations in
RNE-N-TR and RGN-V-TR are more expensive. The numerical quality of approximation is better
for RNE-N-TR and RGN-V-TR than the other methods that impose symmetry. It is of the same
order as the other methods for r = 3, 5 but much better for r = 10. On the other hand, we notice
that the approximation obtained by CPD algorithm look better than the ones obtained by RNE-N-
TR and RGN-V-TR, even though we checked that the decompositions obtained by CPD are not
symmetric.



70
CHAPITRE 4 — Riemannian Newton optimization algorithms for the symmetric tensor

approximation problem

Example 4.3.3

r errrne trne Nrne
min med max avg avg

3 70.6 96 134.3 0.03 2
5 33.3 54.2 91.8 0.08 3

10 0.884 0.884 94.1 0.465 6

r errrgn trgn Nrgn
min med max avg avg

3 70.6 96 136.8 0.064 3
5 33.3 48.8 105.3 0.149 4

10 0.886 0.886 10.1 0.836 7

r errccpd tccpd Nccpd
min med max avg avg

3 71 102 137.1 0.067 14
5 34.2 54.7 121 0.116 26

10 7.8 7.8 9.7 0.5 90

r errccpd_smd tccpd_smd Nccpd_smd
min med max avg avg

3 71 96.3 142.5 0.044 5
5 34.2 47.4 105.7 0.06 8

10 7.8 7.8 47.1 0.726 44

r errcpd_gevd tcpd_gevd Ncpd_gevd
min med max avg avg

3 70.9 70.9 70.9 0.069 1
5 33.8 33.8 33.8 0.071 1

10 2.3e-14 2.3e-14 2.3e-14 0.049 1

r errsdf tsdf Nsdf
min med max avg avg

3 71 96.3 136 0.155 14
5 34.2 49.4 105.3 0.212 16

10 7.8 8.2 38.3 2.3 158

Example 4.3.4

r errrne trne Nrne
min med max avg avg

3 22.4 28.8 30.9 0.04 2
5 14.1 17.4 24.6 0.07 3
10 0.164 0.168 0.369 0.113 2

r errrgn trgn Nrgn
min med max avg avg

3 22.4 27.6 36.1 0.065 3
5 14.1 17.1 24.6 0.101 3
10 0.162 0.164 0.169 0.219 2

r errccpd tccpd Nccpd
min med max avg avg

3 22.9 26.8 35.2 0.084 14
5 14.9 17 26.6 0.104 18
10 4.8 4.8 11.2 0.506 60

r errccpd_smd tccpd_smd Nccpd_smd
min med max avg avg

3 22.9 27 30.1 0.068 10
5 14.9 17.1 24.6 0.084 11
10 4.8 4.8 4.8 0.09 12

r errcpd_gevd tcpd_gevd Ncpd_gevd
min med max avg avg

3 22.6 22.6 22.6 0.065 1
5 14.2 14.2 14.2 0.071 1
10 5.3e-15 5.3e-15 5.3e-15 0.049 1

r errsdf tsdf Nsdf
min med max avg avg

3 22.9 27.4 35.2 0.254 15
5 14.9 17.8 26.5 0.35 19
10 4.8 6.2 12.6 2.5 144

Table 4.2 – Computational results for Examples 4.3.3 and 4.3.4 : RNE-N-TR (rne), RGN-V-TR (rgn),
and CCPD-NLS (ccpd_smd) initialized by 50 points given by SMD, CPD (cpd_gevd) does not impose
symmetry (i.e. the three factor matrices obtained by this method are not the same) and it is initialized
by default by the Tensorlab’s method GEVD, CCPD-NLS (ccpd) and SDF-NLS (sdf) initialized by 50
random initial points obeying Gaussian distributions. The methods RNE-N-TR and RGN-V-TR stop when
the maximum number of iterations is reached (fixed to 200) or when the radius of the trust region ∆k is less
than ∆min (by default 10−3). Tensorlab’s methods stop when the stop criteria given by Display = 10 are
verified.

4.3.4 Approximation of perturbations of low rank symmetric tensors

In this section, we consider perturbations of random low rank tensors. For a given rank r, we
choose r random vectors vi of size n, obeying Gaussian distributions and compute the symmetric
tensor t =

∑r
i=1(vtix)d of order d. We choose a random symmetric tensor terr of order d, with

coefficients also obeying Gaussian distributions, normalize it so that its apolar norm is ε and add
it to t : t̃ = t + ε terr

‖terr‖d . We apply the different approximation algorithms to t̃ and compute

the relative error factor ref := ‖t∗−t‖d
ε between the approximation t∗ of rank r computed by the

algorithm and the rank-r tensor t. We run this computation for 100 random instances and report
the geometric average of the relative error. The average number of iterations N is rounded to the
closest integer, and the average time t is in seconds.

As the initial tensor t̃ is in a ball of radius ε centered at the tensor t of rank r, we expect t∗ to
be at distance to t smaller than ε and the relative error factor to be less than 1.
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We compare the RNE-N-TR and RGN-V-TR methods with the initial point computed by SMD
algorithm, with the recent Subspace Power Method (SPM) of [116] and the state-of-the-art imple-
mentation CPD-NLS of the package Tensorlab v3. Note that CPD-NLS is designed for the cano-
nical polyadic decomposition [101]. Nevertheless, in practice it is often observed that applying a
general tensor rank approximation method (like CPD-NLS) from a symmetric starting point will
usually result in a symmetric approximation. Since CPD-NLS is an efficient tensor decomposition
routine of Tensorlab v3, we choose to compare our methods with this algorithm in this numerical
experiment, using symmetric initial points and verifying that the obtained tensor approximations
are symmetric. As SPM works for even order tensors with real coefficients, the comparison in
Table 4.3 is run for tensors in S4

10(R). In Table 4.4, we compare CPD-NLS, RNE-N-TR, and
RGN-V-TR for tensors in Sd10(C) of order d = 4 and with complex coefficients. These tables also
provide a numerical comparison with the low rank approximation methods tested in Example 5.4
of [154], since the setting is the same. We also run this tensor perturbation test on some com-
plex examples in which the approximation rank is higher than the mode size of the tensor (see
Table 4.5). We test this with the three methods RNE-N-TR, RGN-V-TR, and CPD-NLS. We run
20 instances, for each example of tensor and ε.

The computational time for the methods RNE-N-TR and RGN-V-TR includes the computation
of the initial point by the SMD algorithm. We fix 200 iterations as maximal number of iterations
for RNE-N-TR, RGN-V-TR and CPD-NLS. For SPM, the iterations are stopped when the distance
between two consecutive iterates is less than 10−10 or when the maximal number of iterations
(N = 400 in this experimentation) is reached.

In Tables 4.3, 4.4, the number of iterations of the RNE-N-TR and RGN-V-TR methods is
significantly smaller than the number of iterations of the other methods. In SPM, the number
of iterations to get an approximation of a single rank-1 term of the approximation is about 30,
indicating a practical linear convergence as predicted by the theory [116, Theorem 5.10]. As the
method CPD-NLS is based on a quasi-Newton iteration, its local convergence is sub-quadratic,
which also explains the relatively high number of iterations. The low number of iterations in RNE-
N-TR and RGN-V-TR can be explained by the choice of the initial point by SMD algorithm. This
provides a good initialization such that a solution by RNE-N-TR and RGN-V-TR can be obtained
in a few number of iterations.

The cost of an iteration appears to be higher in RNE-N-TR and RGN-V-TR than in the other
methods. Nevertheless, the total time is of the same order. Note that the cost of an iteration seems
higher in RGN-V-TR than RNE-N-TR. Despite the fact that the first algorithm computes the
Gauss–Newton approximation of the Hessian matrix, whereas the second algorithm computes the
exact Hessian matrix. This can be explained by the use of a parametrization in the first algorithm
(i.e. the Cartesian product of Veronese manifolds), which involves a more expensive retraction
using SVD decomposition on larger matrices.

These experimentation also show a good numerical behavior for the Riemannian methods.
In particular, the numerical quality of the low rank approximation is good for RNE-N-TR and
RGN-V-TR, in comparison with SPM and CPD-NLS. The average of the relative error factor in
RNE-N-TR and RGN-V-TR is less than 1. The numerical results in [154, Example 5.4] for GP
method and small perturbations (ε ∈ {10−2, 10−4, 10−6}), shows that the numerical quality in
GP-OPT method is worse than with these methods.

We also compare CPD-NLS, RNE-N-TR and RGN-V-TR for perturbation of random tensors
of rank r > n and report the minimal and maximal relative error with the average number of
iterations N (rounded to the closest integer) and the average time t (in seconds) in Table 4.5. The
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r ε refspm tspm Nspm refrne trne Nrne refrgn trgn Nrgn

1

1 0.103 0.04 28 0.105 0.07 2 0.11 0.083 3
10−1 0.103 0.039 28 0.104 0.04 2 0.11 0.069 3
10−2 0.1 0.04 28 0.1 0.04 2 0.103 0.058 2
10−4 0.101 0.041 29 0.101 0.041 2 0.166 0.044 2
10−6 0.104 0.041 30 0.104 0.041 2 0.17 0.045 2

2

1 0.15 0.1 69 0.175 0.137 3 0.159 0.16 3
10−1 0.15 0.091 65 0.153 0.076 2 0.159 0.13 3
10−2 0.144 0.086 66 0.149 0.072 2 0.15 0.111 2
10−4 0.148 0.089 66 0.157 0.076 2 0.199 0.076 2
10−6 0.146 0.087 67 0.151 0.073 2 0.195 0.073 2

3

1 0.185 0.126 109 0.194 0.172 3 0.194 0.208 3
10−1 0.185 0.135 111 0.195 0.128 2 0.195 0.198 3
10−2 0.187 0.119 113 0.208 0.099 2 0.195 0.175 2
10−4 0.182 0.102 106 0.197 0.092 2 0.217 0.095 2
10−6 0.183 0.101 105 0.196 0.094 2 0.206 0.097 2

4

1 0.217 0.159 168 0.25 0.546 8 0.225 0.278 3
10−1 0.218 0.161 168 0.245 0.319 4 0.228 0.241 3
10−2 0.211 0.163 162 0.241 0.134 2 0.219 0.239 3
10−4 0.216 0.167 169 0.26 0.128 2 0.261 0.136 2
10−6 0.227 0.167 168 0.259 0.126 2 0.259 0.133 2

5

1 0.244 0.207 217 0.339 1.199 13 0.252 0.594 5
10−1 0.244 0.221 220 0.255 0.252 2 0.252 0.317 3
10−2 0.247 0.223 218 0.292 0.175 2 0.254 0.321 3
10−4 0.246 0.215 213 0.304 0.16 2 0.304 0.165 2
10−6 0.249 0.231 226 0.307 0.158 2 0.311 0.165 2

Table 4.3 – Computational results of SPM (spm) (initialized by a random vector of size n = 10 obeying
normal distribution for each tensor instance) RNE-N-TR (rne), and RGN-V-TR (rgn) (initialized by the
method SMD for each tensor instance) for rank-r approximations in S4

10(R). The method SPM stops when
the distance between two consecutive iterates is less than 10−10 or when the maximal number of iterations
(fixed to 400) is reached. The methods RNE-N-TR and RGN-V-TR stop when the maximum number of
iterations is reached (fixed to 200) or when the radius of the trust region ∆k is less than ∆min (by default
10−3).

considered cases in Table 4.5 are for the degree d, the number of variables n and the rank r such
that (d, n, r) is respectively (5,4,10), (5,15,20), (6,5,12), and (7,8,15). We see that the maximal
relative error factor ref reached by RNE-N-TR and RGN-V-TR with initial point by SMD is less
than 1. There is an exception in the first case when ε = 1, where a large number of iterations is
needed for RNE-N-TR and RGN-V-TR. On the other hand, the minimal relative error of CPD-
NLS is less than 1 in almost all Table 4.5, whereas its maximal relative error is higher than 1 in all
Table 4.5.

This numerical experiment indicates that for these examples of random low rank tensors with
random noise, SMD provides a good initial point, close enough to a good solution, so that RNE-
N-TR and RGN-V-TR need a few number of iterations. In this context, the combination of an
adaptive choice of initial point and a Newton-type method is successful.

4.3.5 Symmetric tensor with large differences in the scale of the weight vector

Consider the case of a real symmetric tensor t =
∑r
i=1wi(vtix)d, ‖vi‖ = 1, wi > 0, with

large differences in the scale of the weights wi i.e. maxiwi
miniwi is large. More precisely, there are large

differences in the norms of the rank-1 symmetric tensors wi(vtix)d. We randomly sample real
symmetric tensors of order d = 3 and dimension n = 7 with r ∈ {5, 10, 15, 20}, according to the
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r ε refcpd tcpd Ncpd refrne trne Nrne refrgn trgn Nrgn

1

1 0.117 0.05 10 0.11 0.06 2 0.115 0.069 3
10−1 0.118 0.046 10 0.108 0.054 2 0.112 0.084 3
10−2 0.116 0.043 10 0.107 0.044 2 0.11 0.06 2
10−4 0.114 0.042 10 0.107 0.037 2 0.227 0.038 2
10−6 0.113 0.037 11 0.112 0.036 2 0.237 0.037 2

2

1 0.167 0.072 14 0.162 0.078 2 0.166 0.118 3
10−1 0.169 0.077 14 0.164 0.063 2 0.167 0.111 3
10−2 0.162 0.071 14 0.163 0.061 2 0.163 0.09 2
10−4 0.171 0.071 14 0.163 0.062 2 0.204 0.063 2
10−6 0.175 0.069 13 0.162 0.062 2 0.23 0.064 2

3

1 0.201 0.115 16 0.204 0.135 2 0.204 0.163 3
10−1 0.223 0.109 17 0.206 0.091 2 0.203 0.157 3
10−2 0.228 0.117 17 0.209 0.086 2 0.203 0.152 2
10−4 0.202 0.103 15 0.205 0.091 2 0.243 0.093 2
10−6 0.284 0.124 19 0.211 0.088 2 0.234 0.091 2

4

1 0.235 0.149 18 0.234 0.192 3 0.234 0.23 3
10−1 0.232 0.165 19 0.244 0.132 2 0.238 0.215 3
10−2 0.237 0.142 17 0.25 0.113 2 0.232 0.219 3
10−4 0.238 0.158 19 0.25 0.112 2 0.255 0.117 2
10−6 0.232 0.161 19 0.254 0.111 2 0.274 0.116 2

5

1 0.275 0.21 22 0.261 0.269 3 0.261 0.345 3
10−1 0.264 0.186 19 0.269 0.211 2 0.261 0.288 3
10−2 0.266 0.211 22 0.305 0.148 2 0.264 0.292 3
10−4 0.265 0.169 18 0.293 0.158 2 0.299 0.163 2
10−6 0.266 0.206 21 0.298 0.158 2 0.301 0.161 2

Table 4.4 – Computational results of CPD-NLS (initialized by a random symmetric initial point obeying
normal distribution for each tensor instance), RNE-N-TR, and RGN-V-TR (initialized by the method SMD
for each tensor instance) for rank-r approximations in S4

10(C). The method CPD-NLS stops when the stop
criteria given by Display = 10 in Tensorlab are verified. The methods RNE-N-TR and RGN-V-TR stop
when the maximum number of iterations is reached (fixed to 200) or when the radius of the trust region ∆k

is less than ∆min (by default 10−3).

following model :

t =
r∑
i=1

10
is
r (vtix)d, ‖vi‖ = 1.

The components of the weight vector increase exponentially from 10
s
r to 10s.

We aim to compare the performance of RNE-N-TR and RGN-V-TR methods (hereafter called
respectively RNE and RGN for shortness) in this configuration. We run the following test :

— Take t as above, and create a perturbated tensor tp = t
‖t‖ +10−5 terr

‖terr‖ , where terr ∈ R[x]d
is a random symmetric tensor with coefficients obeying Gaussian distributions ;

— run 20 random initial points obeying Gaussian distributions ;
— run RNE and RGN with a maximum of iterations Nmax = 500, and report in average

respectively : the relative error (in geometric average) errrel :=
∥∥ t
‖t‖ − t∗

∥∥
d
, where t∗ is

a rank-r symmetric decomposition obtained by these methods ; the number of iterations
Niter ; and the computation time t in seconds (s). We also report the number Nopt of ins-
tances where errrel ≤ 1.1.10−5.
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d
n
r

ε
refcpd tcpd Ncpd refrne trne Nrne refrgn trgn Nrgn

min max avg avg min max avg avg min max avg avg

5
4
10

1 0.803 7.8 2.1 162 0.834 25.7 3.4 273 0.815 1.1 1.2 49
10−2 0.849 881.2 2.3 172 0.718 0.933 0.197 16 0.718 0.933 0.078 4
10−4 1.5 9.8e+4 2 157 0.711 0.933 0.0379 3 0.711 0.933 0.0535 3
10−6 776.4 1.9e+7 2 184 0.789 0.912 0.042 3 0.789 0.912 0.071 4

5
15
20

1 0.15 1.9e+3 9.8 45 0.153 0.172 22.6 3 0.153 0.172 27.1 3
10−2 0.149 1.2e+5 12.7 62 0.151 0.183 13.6 2 0.148 0.169 26.9 3
10−4 0.152 9.2e+6 13.8 67 0.152 0.181 13.6 2 0.152 0.181 14.7 2
10−6 0.155 1.4e+9 11.9 59 0.156 0.173 13.8 2 0.156 0.174 14.8 2

6
5
12

1 0.515 109.7 1.4 61 0.467 0.706 0.342 4 0.467 0.622 0.353 4
10−2 0.519 2.4e+4 3.8 143 0.472 0.62 0.155 3 0.472 0.62 0.205 3
10−4 0.518 9.6e+5 2.9 137 0.493 0.622 0.222 4 0.493 0.622 0.35 5
10−6 1.1 9.7e+7 2.3 112 0.647 0.6 0.098 2 0.492 0.591 0.211 3

7
8
15

1 0.183 2.1e+3 54.9 46 0.171 0.21 8.3 3 0.171 0.21 8.5 3
10−2 0.174 5.3e+4 52.3 47 0.137 0.171 4.7 2 0.169 0.201 8.1 3
10−4 0.168 3.5e+6 63.1 54 0.138 0.169 4.5 2 0.138 0.169 4.7 2
10−6 0.179 1.1e+9 75.6 65 0.142 0.177 4.4 2 0.142 0.177 4.6 2

Table 4.5 – Computational results of CPD-NLS (initialized by a random symmetric initial point obeying
normal distribution for each tensor instance), RNE-N-TR, and RGN-V-TR (initialized by the method SMD
for each tensor instance). The method CPD-NLS stops when the stop criteria given by Display = 10
in Tensorlab are verified. The methods RNE-N-TR and RGN-V-TR stop when the maximum number of
iterations is reached (fixed to 200) or when the radius of the trust region ∆k is less than ∆min (by default
10−3).

r = 5
s 1 2 3

Alg RNE RGN RNE RGN RNE RGN
errrel 0.456 5.8e-6 0.411 5.5e-6 0.246 1.4e-5
Niter 120 39 165 61 175 77
t 2.0 1.1 2.4 1.4 2.5 1.8

Nopt 0 20 0 20 0 17

r = 10
s 1 2 3

Alg RNE RGN RNE RGN RNE RGN
errrel 0.372 9.4e-6 0.195 1.6e-6 0.224 6.8e-5
Niter 423 87 270 186 392 206
t 16.9 6.3 10.8 13.7 15.5 15.0

Nopt 0 18 0 20 0 9
r = 15

s 1 2 3
Alg RNE RGN RNE RGN RNE RGN

errrel 0.198 9.9e-6 0.242 9.9e-6 0.184 1.1e-5
Niter 500 17 476 21 426 25
t 37.3 2.1 34.6 2.6 30.9 3.2

Nopt 0 20 0 20 0 20

r = 20
s 1 2 3

Alg RNE RGN RNE RGN RNE RGN
errrel 0.098 9.9e-6 0.165 1.0e-5 0.221 9.9e-6
Niter 500 12 469 12 483 12
t 54.4 2.4 59.3 2.9 59.1 2.6

Nopt 0 20 0 20 0 20

Table 4.6 – Computational results of RNE-N-TR and RGN-V-TR for scaled weights. The two methods are
initialized for each s by the same 20 random initial points obeying Gaussian distributions. They stop when
the maximum number of iterations is reached (fixed to 500) or when the radius of the trust region ∆k is less
than ∆min (by default 10−3).

The results in Table 4.6 show that RGN outperforms RNE. In fact, the average of the relative
error in RGN is better, up to five order of magnitude, than in RNE. Moreover, starting from the
same 20 random initial points in the two methods ; RGN succeeded to reach an optimum, at least
in 9 instances with the different order of scale s, while RNE could not find any optimum. Notice
that, as we mentionned before, the cost of one iteration in RGN is higher than in RNE. The good
performance of RGN compared to RNE in this test was expected, since the orthonormal basis of
the tangent space computed in RGN method is independent of the weight factor. This behavior was
also observed in [33, Subsection 3.4] for real multilinear tensors, parametrized by Segre manifolds.
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4.4 Practical session

We present two simple examples to show the implementation of the methods described in this
chapter, available in the Julia package TensorDec.jl †.

[2]: using TensorDec
using DynamicPolynomials
using MomentTools
using CSDP, JuMP
# The function "Optimizer" is a global optimization solver based on positive␣

↪→semi-definite programming
optimizer = CSDP.Optimizer
using LinearAlgebra

Example 1:

[3]: # Define the parameters
X = @polyvar x1 x2 x3

[3]: (x1, x2, x3)

[4]: # P is a homogeneous polynomial of degree 4 in 3 variables
P = (x1+x2+0.75*x3)^4+1.5*(x1-x2)^4-2*(x1-x3)^4;

The graph of P in polar coordinates on the sphere looks like this:

Let us use the function “optimizer” to minimize and maximize P on the unit sphere. The maxi-
mum evaluation of P in absolute value on the unit sphere (and that is why we have to use both
maximize and minimize functions) gives the spectral norm of P and equivalently a best rank-1
approximation of the symmetric tensor associated to P.

[5]: v1, M1 = minimize(P, [x1^2+x2^2+x3^2-1], [], X, 8, optimizer);
v2, M2 = maximize(P, [x1^2+x2^2+x3^2-1], [], X, 8, optimizer);

†. https://gitlab.inria.fr/AlgebraicGeometricModeling/TensorDec.jl

https://gitlab.inria.fr/AlgebraicGeometricModeling/TensorDec.jl
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CSDP 6.2.0
Iter: 0 Ap: 0.00e+000 Pobj: 0.0000000e+000 Ad: 0.00e+000 Dobj: 0.0000000e+000
Iter: 1 Ap: 6.21e-001 Pobj: -4.7686654e+001 Ad: 3.23e-001 Dobj: 7.7359277e+000
Iter: 2 Ap: 1.00e+000 Pobj: -6.7310911e+002 Ad: 3.23e-001 Dobj: 9.7555745e+000
Iter: 3 Ap: 1.00e+000 Pobj: -6.2816076e+002 Ad: 8.92e-001 Dobj: 1.2402191e+000
...
Iter: 20 Ap: 9.60e-001 Pobj: -7.7015795e+000 Ad: 9.55e-001 Dobj: -7.7015795e+000
Success: SDP solved
Primal objective value: -7.7015795e+000
Dual objective value: -7.7015795e+000
Relative primal infeasibility: 1.69e-014
Relative dual infeasibility: 1.46e-010
Real Relative Gap: -2.15e-011
XZ Relative Gap: 9.09e-010
DIMACS error measures: 3.03e-014 0.00e+000 4.40e-009 0.00e+000 -2.15e-011
9.09e-010
CSDP 6.2.0
Iter: 0 Ap: 0.00e+000 Pobj: 0.0000000e+000 Ad: 0.00e+000 Dobj: 0.0000000e+000
Iter: 1 Ap: 6.19e-001 Pobj: -4.7582096e+001 Ad: 3.23e-001 Dobj: -8.7051506e+000
Iter: 2 Ap: 1.00e+000 Pobj: -6.7805576e+002 Ad: 3.21e-001 Dobj: -1.1060713e+001
Iter: 3 Ap: 1.00e+000 Pobj: -6.3256373e+002 Ad: 8.92e-001 Dobj: -1.4167349e+000
...
Iter: 21 Ap: 9.60e-001 Pobj: -6.5652500e+000 Ad: 9.53e-001 Dobj: -6.5652500e+000
Success: SDP solved
Primal objective value: -6.5652500e+000
Dual objective value: -6.5652500e+000
Relative primal infeasibility: 2.80e-015
Relative dual infeasibility: 4.47e-010
Real Relative Gap: -7.76e-011
XZ Relative Gap: 2.82e-009
DIMACS error measures: 5.01e-015 0.00e+000 1.35e-008 0.00e+000 -7.76e-011
2.82e-009

The minimum evaluation of P on the unit sphere is: -7.701579459519532.

The maximum evaluation of P on the unit sphere is: 6.565249952183416.

Thus, the maximum weight in absolute value which is the spectral norm of P is:
7.701579459519532.

The unit vectors that give this value are: [0.6805571886747267, 0.048429787707634814, -
0.7310926539221407] and [-0.6805571886747267, -0.048429787707634814, 0.7310926539221407].

Let us compute a rank-1 approximation of P. We will compute an initial point by the method
SMD, the Julia function that corresponds to this method in the package TensorDec is called “de-
compose”, then we will use the Riemannian Newton algorithm with trust region scheme for the
real case, the corresponding Julia function in the package TensorDec is called “rne_n_tr_r”.
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[16]: # Compute an initial point
w1, V1 = decompose(P,1)

[16]: ([-7.089690728998527], [0.6841218273996007; 0.04220544010380849;
-0.7281456077606144], Dict{String,Any}("diagonalization" =>
Dict{String,Any}("case" => "1x1")))

We can notice that the weight given by decompose is close to the one given by Optimizer. Let us
refine this point by using a few number of iterations of rne_n_tr_r, for example 5 iterations.

[26]: w_end, V_end = rne_n_tr_r(P, w1, V1, Dict{String,Any}("maxIter" => 5,"epsIter"␣
↪→=> 1.e-3))

[26]: ([-7.701576525649196], [0.68061769889553; 0.04831896554028091;
-0.7310436550024019], Dict{String,Any}("d*" => 8.819736152809341,"d0" =>
8.841950556430849,"nIter" => 5,"epsIter" => 0.001,"maxIter" => 5))

The weight in absolute value given by rne_n_tr_r initialized by decompose for rank-1 symmetric
tensor approximation is: 7.701576525649196.

The unit vector given by rne_n_tr_r initialized by decompose for rank-1 symmetric tensor approx-
imation is: [0.68061769889553; 0.04831896554028091; -0.7310436550024019].

Verifying with the global optimization method “optimizer” from the package CSDP, the symmet-
ric rank-1 approximation wend(vt

endX)4 of P given by “rne_n_tr_r” initialized by “decompose” is a
best rank-1 approximation.

Example 2:

Let us take a random symmetric tensor normally distributed with complex coefficients of order 4
and dimension 3 (the generic symmetric rank is 5), and let us compute by the Riemannian Newton
algorithm “rne_n_tr” and the Riemannian Gauss–Newton algorithm “rgn_v_tr” initialized by a
random initial point obeying normal distribution an approximated rank-3 symmetric tensor.

[38]: # Take a random symmetric tensor
using Tensors
n = 3; d = 4; r = 3
T = randn(SymmetricTensor{d, n})+randn(SymmetricTensor{d, n})*im
T = convert(Array,T)
# show the first 3 arrays of T
T[:,:,:,1]

[38]: 3×3×3 Array{Complex{Float64},3}:
[:, :, 1] =

0.304489-2.14852im -0.00230603+2.81im -0.621412-0.185586im
-0.00230603+2.81im 1.26159-0.687682im 0.677236-0.314596im

-0.621412-0.185586im 0.677236-0.314596im 0.652919-1.50752im
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[:, :, 2] =
0.114497+0.472617im -0.454587+2.23814im -0.215587-1.08674im

-0.454587+2.23814im 0.765382+0.970151im 2.2932-1.98527im
-0.215587-1.08674im 2.2932-1.98527im -0.0570214+0.405164im

[:, :, 3] =
-1.38547-0.945676im 0.319933+0.53044im 0.554848+1.60772im
0.319933+0.53044im -0.323876+0.698715im -1.67809-2.0286im
0.554848+1.60772im -1.67809-2.0286im -1.38897+0.225804im

[39]: # Take the associate homogeneous polynomial P to T by applying the function ahp␣
↪→(for associate homogeneous polynomial)

X = (@polyvar x[1:n])[1]
P = ahp(T, X);

[58]: # Take an initial point
w = ones(r) + fill(0.0+0.0im,r);
V = randn(ComplexF64,n,r);

# Apply rne_n_tr
w_end, V_end, Info = rne_n_tr(P, w, V, Dict{String,Any}("maxIter" => 500,␣

↪→"epsIter" => 1.e-3))

[58]: ([3.3533378582723405, 1.7528646663899954, 5.021876225230323],
Complex{Float64}[-0.610048013088563 + 0.2278059897255048im 0.7944923164400758 +
0.034592585203756895im -0.04277847243642945 - 0.4515491977610789im;
0.5078071901018043 + 0.4498236972987523im 0.3999428679776847 +
0.36458354731448234im 0.4336335307863758 - 0.3802580876158061im;
-0.3373082465526216 + 0.044266224244519994im -0.26111415928223225 +
0.08080375839222821im 0.6788726483700402 - 0.027766875461433867im],
Dict{String,Any}("d*" => 7.856359646235264,"d0" => 31.118041861573218,"nIter" =>
10,"epsIter" => 0.001,"maxIter" => 500))

[59]: # Adjust the initial point to use with rgn_v_tr since this function takes only␣
↪→the matrix V as parameter without the weight vector

for i in 1:r
V[:,i]=(w[i])^(1/d)*V[:,i]

end

# Apply rgn_v_tr
V_end, Info = rgn_v_tr(P, V, Dict{String,Any}("maxIter" => 500,"epsIter" => 1.

↪→e-3))

[59]: (Complex{Float64}[-1.197237252086016 + 0.4498363042506125im 0.6784383624116359 +
0.5660791048163021im -0.7849864638452732 - 0.01483593513452497im;
0.3788396401411271 + 0.2511463936422992im -0.974262084689121 -
0.2574674292040156im -0.6433234546249749 - 0.670531077035846im;
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-0.5027488452521038 + 0.616685953317809im 0.9073543082281365 +
0.35258183865185777im -0.0088033550999379 - 0.9139555194450166im],
Dict{String,Any}("d*" => 2.8904022783502117,"d0" => 31.118041861573218,"nIter"
=> 27,"epsIter" => 0.001,"maxIter" => 500))

The reported error is the apolar norm between P and the approximated polynomial.

The initial error “d0” is ~ 31.11.

The algorithm rne_n_tr takes 10 iterations and decreases to the final error d* ~ 7.85, while the
algorithm rgn_v_tr decreases to the final error ~ 2.89, after 27 iterations.

4.5 Conclusion

We presented two Riemannian Newton optimization methods for approximating a given
complex-valued symmetric tensor by a low rank symmetric tensor. We used in subsection 4.2.1 the
weighted normalized factor matrices parametrization for the constraint set. We developed an exact
Riemannian Newton iteration with exact computation of the Hessian matrix (RNE-N-TR). We ex-
ploited in subsection 4.2.1.1 the properties of the apolar product and of partial complex derivatives,
to deduce a simplified and explicit computation of the gradient and Hessian of the square distance
function in terms of the points, weights of the decomposition and the tensor to approximate. We
proved that under some regularity conditions on non-defective tensors in the neighborhood of the
initial point, the iteration is converging to a local minimum. In subsection 4.2.2, we parametrized
the constraint set via Cartesian product of Veronese manifolds. Taking into account the geometry
of the Veronese manifold, we constructed a suitable basis for its tangent space at a given point
on this manifold. Using this basis, we developed a Gauss–Newton iteration (RGN-V-TR). In sub-
section 4.2.2.1, we presented a retraction operator on the Veronese manifold. We showed that,
combined with SMD method for choosing the initial point, the two methods have a good practical
behavior in several experiments : in subsection 4.3.2 to compute a best real rank-1 approximation
of a real symmetric tensor, in subsection 4.3.3 to compute a low rank approximation of sparse
symmetric tensors, and in subsection 4.3.4 to compute low rank approximations of random pertur-
bations of low rank symmetric tensors. In subsection 4.3.5, we showed that the numerical behavior
of RNE-N-TR is affected by large differences in the scaling of the rank-1 symmetric tensor, where
RGN-V-TR outperformed this algorithm in this case.

It was clear throughout the numerical experiments in this chapter, the good impact of the initial
point chosen by SMD algorithm, which is based on simultaneous diagonalization of a pencil of
matrices built from the symmetric tensor to approximate, on the numerical performance of the
Riemannian Newton and the Riemannian Gauss–Newton algorithms presented in this chapter.
Herein, in the next chapter, we will focus on the simultaneous diagonalization problem of a pencil
of matrices, and its connection to the tensor rank approximation problem.





CHAPTER 5
On the simultaneous

matrix diagonalization
problem

In this chapter we study the simultaneous matrix diagonalization problem. Mainly, a
pencil of matrices M = [M1, . . . ,Ms] is called in this chapter simultaneously diago-
nalizable, if there exists two invertible matrices E and F such that Σi := FMkE is a
diagonal matrix, for k ∈ {1, . . . , s}. Our results are presented in three sections. In the
first section, we assume that the pencil of matrices is simultaneously diagonalizable, and
we construct a Newton-type sequence that converges quadratically towards the solution
(E,F, (Σi)1≤i≤s). Moreover, we exhibit a certification test that the sequence converges
towards the solution. In the second section, the considered pencil of matrices is not si-
multaneously diagonalizable, and thus the objective is to find two matrices E and F that
diagonalize approximately the pencil, i.e. to approximate the pencil to a pencil of si-
multaneously diagonalizable matrices. To solve this problem, we present a Riemannian
conjugate gradient algorithm. As an application of the aforementioned algorithm, the
third section shows that it can be used to compute an approximated rank-r decomposi-
tion for a three dimensional tensor with r higher than the two first dimensional sizes. To
this end in the third section, we connect tensor decomposition and simultaneous diago-
nalization of matrices. We develop an algorithm based on alternate optimization method
that combines two steps. The first step uses the Riemannian conjugate gradient algo-
rithm from the second section and the second step solves a linear least-squares problem.
Keywords : Simultaneous diagonalization, Newton-type method, eigenproblem, eigen-
values, high precision computation, approximate simultaneous matrix diagonalization,
Riemannian conjugate gradient algorithm, alternate optimization algorithm.
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In this chapter, we present in Section 5.1 a Newton-type approach for the simultaneous matrix
diagonalization problem. In Section 5.2, we present a Riemannian conjugate gradient algorithm
for the approximate simultaneous matrix diagonalization problem. Finally, we introduce in Section
5.3, an algorithm based on simultaneous diagonalization of matrices for the low rank approxima-
tion problem for three dimensional real tensors with approximation rank higher than the first two
mode dimensions.

5.1 Newton-type methods for simultaneous matrix diagonalization

In this Section we introduce a Newton-type method for the simultaneous matrix diagonali-
zation problem. Sections 5.1.2, 5.1.3, 5.1.4, and 5.1.5 are respectively devoted to constructing a
sequence that converges quadratically towards the numerical solution and to provide a certification
test for its quadratic convergence for respectively the following systems :

— FE − In = 0,
— the system of one diagonalizable matrix,
— the system of two simultaneously diagonalizable matrices,
— the system of a pencil of simultaneously diagonalizable matrices.

We perform numerical experimentation in Section 5.1.6.

5.1.1 Notation and preliminaries

Throughout this section, we will use the infinity vector norm and the corresponding matrix
norm. For a given vector v ∈ Cn and matrix M ∈ Cn×n, they are respectively given by :

‖v‖max = max{|v1|, . . . , |vn|}
‖M‖max = sup

‖v‖max=1
‖Mv‖max.

Explicitly, ‖M‖max = max{|mi,1|+ . . .+ |mi,n| : 1 ≤ i ≤ n}.
For a second matrix N ∈ Cn×n,we have

‖M +N‖max 6 ‖M‖+ ‖N‖max (sub-additivity)

‖MN‖max 6 ‖M‖max‖N‖max (sub-multiplicativity).

Moreover, for a given matrix M ∈ Cn×n, we denote by ‖M‖L the following :

‖M‖L,Tri := max
1≤i≤n

1≤j≤i−1

|mi,j |,

i.e the max matrix norm of the lower triangular part of M,

Furthermore, we consider in this section the regular case of diagonalizable matrices, that is,
the matrices are diagonalizable with simple eigenvalues. Thus we will use the following notation

Wn := {M ∈ Cn×n |Mwith pairwise distinct eigenvalues}.

It is well-known thatWn is dense in Cn×n.
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We denote byDn ⊂ Cn×n, the vector space of diagonal matrices of size n andD′n denotes the
subset of Dn in which the diagonal matrices are of n distinct diagonal entries. Let E,F ∈ GLn
and Σ ∈ D′n. The perturbation of respectively E, F and Σ that we consider in this section are of
the following form : E + Ė, F + Ḟ and Σ + Σ̇, where Ė and Ḟ are respectively in TEGLn and
TFGLn and Σ̇ is in TΣD′n.
As GLn is a Lie group, Ė and Ḟ can be written as EX and Y F such that X,Y are in Cn×n (see
Section 3.5.4).
As D′n is open in Dn then TΣD′n = Dn, herein Σ̇ = S ∈ Dn.

Finally, the perturbations of E, F and Σ that we consider are as follows :
E+EX , F +Y F and Σ+S, such thatX and Y are in Cn×n and S is a diagonal matrix in Cn×n.

We state the following lemma which will be used in some of the proofs in this section.

Lemma 5.1.1. Let ϕ(ε, u) =
∏
j>0(1+uε2j )−1

εu . Given ε 6 1
2 , u 6 1, and i > 0, we have∏

j>0
(1 + uε2j+i) 6 1 + 2uε2i (5.1)

Proof. Modulo taking ε2i instead of ε, it suffices to consider the case when i = 0. Now ϕ(ε, u) is
an increasing function in ε and u, since its power series expansion in ε and u admits only positive
coefficients. Consequently, ϕ(ε, u) 6 ϕ(1

2 , 1) = 2. �

5.1.2 Newton-type method for the system FE − In = 0.

Let f : GLn ×GLn → Cn×n, (E,F ) 7→ FE − In. We consider the following perturbations
E + EX , F + Y F of respectively E and F where X, Y ∈ Cn×n.
To define the Newton sequence we have to solve the linear system obtained by canceling the linear
part in the Taylor expansion of f(E + EX,F + Y F ). The same methodology will be adopted
in the next sections for the other considered systems. Hereafter, we detail the computation of the
Newton sequence associated to the system FE − In = 0. Moreover, a sufficient condition on the
initial point for the quadratic convergence of this Newton sequence will be established.
Let Z = FE − In. We observe that

f(E + EX,F + Y F ) = (F + Y F )(E + EX)− In (5.2)

= Z + (Z + In)X + Y (Z + In) + Y (Z + In)X. (5.3)

We assume here that Z is of small norm i.e. we start from an initial point (E0, F0) close from the
solution of the system FE − In = 0.
Consequently, the linear system of first order terms to solve is

Z +X + Y = 0. (5.4)

Hence X = Y = −Z
2 is a solution of Constraint (5.4). Moreover we get, by substituting in

Equation (5.3) X and Y by −Z
2 ,

(F + Y F )(E + EX)− In = Z2
(
−3

4In + Z

4

)
. (5.5)
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Proposition 5.1.2. LetZ0 = F0E0−In. DefineX0 = −Z0
2 ,E1 = E0(In+X0),F1 = (In+X0)F0

and Z1 = F1E1 − In. Assume that ‖Z0‖max 6 1. Then

‖Z1‖max 6 ‖Z0‖2max (5.6)

Proof. It follows easily from (5.5). �

Theorem 5.1.3. Let E0 and F0 two complex square matrices of size n. Let Z0 = F0E0 − In and
assume that ε = ‖Z0‖max <

1
2 . The sequences defined for i > 0

Zi = FiEi − In

Xi = −Zi2
Ei+1 = Ei(In +Xi)
Fi+1 = (In +Xi)Fi

converge quadratically towards the solution of FE − In = 0. Each Ei, respectively Fi are inver-
tible and, if E∞ and F∞ are respectively the limits of sequences (Ei)i>0 and (Fi)i>0 we have for
i > 0,

‖Ei − E∞‖max 6 (1 + 2ε)2−2i+1+1ε‖E0‖max,

‖Fi − F∞‖max 6 (1 + 2ε)2−2i+1+1ε‖F0‖max.

Proof. Let us prove by induction that ‖Zk‖max 6 2−2k+1ε. Since ε < 1
2 , we have

‖Zk+1‖max 6 ‖Zk‖2max from (5.6)
6 ε2−2k+1+2ε

6 2−2k+1+1ε.

Consequently Z∞ = 0. Since Xk = −Zk
2 we deduce

‖Xk‖max 6 2−2kε.

It follows X∞ = 0. We have

Ek = Ek−1(In +Xk−1)
= E0(In +X0) · · · (In +Xk−1).

Denoting Wi =
∏

06k6i(In +Xk), W∞ =
∏
k>0(In +Xk) we compute

‖W∞ − In‖max 6
∏
k>0

(1 + 2−2kε)− 1

6 2ε by using Lemma 5.1.1.

Then W∞ is invertible and ‖W−1
∞ ‖max 6

1
1− 2ε . Let E∞ = E0W∞. Hence E0 = E∞W

−1
∞ . In

the same way F0 = W−1
∞ F∞. Finally, the identity F∞E∞ − In = 0 permits to conclude that E0
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and F0 are invertible. In the same way we prove easily that ‖Wi − In‖max 6 2ε. It follows that
Wi is invertible. Since Ei = E0Wi we deduce that Ei is invertible. Moreover

‖Wi −W∞‖max 6 ‖Wi‖max

∥∥∥∥∥∥1−
∏

k>i+1
(1 + ‖Xk‖max)

∥∥∥∥∥∥
max

6 (1 + ‖Wi − In‖max)

∥∥∥∥∥∥
∏
k>0

(1 + 2−2k+i+1
ε)− 1

∥∥∥∥∥∥
max

6 (1 + 2ε)2−2i+1+1ε by using Lemma 5.1.1.

We deduce that

‖Ei − E∞‖max 6 (1 + 2ε)2−2i+1+1ε‖E0‖max.

These properties also hold for the Fi’s. The theorem is proved. �

5.1.3 Newton-like method for diagonalizable matrices.

Let M ∈ Wn, Σ ∈ D′n, E, F ∈ GLn. We aim to construct Newton sequences which
converge towards the numerical solution of f(E,F,Σ) = 0 where f : GLn × GLn × D′n →
Cn×n × Cn×n, (E,F,Σ) 7→ (FE − In, FME − Σ). We consider in the same way as before
the perturbations E +EX and F + Y F of respectively E and F and in addition the perturbation
Σ + S of Σ such that S ∈ Dn. We get with Z = FE − In and ∆ = FME − Σ :

(F + Y F )(E + EX)− In
= Z + (Z + In)X + Y (Z + In) + Y (Z + In)X (5.7)

(F + Y F )M(E + EX)− Σ− S
= FME − Σ− S + FMEX + Y FME + Y FMEX

= ∆− S + ΣX + Y Σ + ∆X + Y∆ + Y (∆ + Σ)X (5.8)

As in the previous subsection we assume that (E,F,Σ) is sufficiently close to the solution of
f(E,F,Σ) = 0, thus the linear system that we obtain from (5.7) and (5.8) is{

Z +X + Y = 0
∆− S + ΣX + Y Σ = 0

The following lemma gives a solution of this linear system.

Lemma 5.1.4. Let Σ = diag(σ1, · · · , σn), Z = (zi,j)1≤i,j≤n and ∆ = (δi,j)1≤i,j≤n be given
matrices in Cn×n. Assume that σi 6= σj for i 6= j. Let S, X and Y be matrices defined by

S = ddiag(∆− ZΣ) (5.9)

xi,i = 0 (5.10)

xi,j = −δi,j + zi,jσj
σi − σj

, i 6= j (5.11)

yi,i = −zi,i (5.12)

yi,j = δi,j − zi,jσi
σi − σj

, i 6= j. (5.13)
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Then we have

Z +X + Y = 0 (5.14)

∆− S + ΣX + Y Σ = 0. (5.15)

Proof. It easy to verify that X + Y + Z = 0. In this way the equation (5.15) is equivalent to

∆− S − ZΣ + ΣX −XΣ = 0.

Since ddiag(∆−S −ZΣ) = ddiag(ΣX −XΣ) = 0 the formulas which define X follow easily.
�

In the next theorem we introduce the Newton sequences associated to the system f(E,F,Σ) = 0
with a sufficient condition on the initial point for its quadratic convergence.

Theorem 5.1.5. Let E0, F0 ∈ GLn and Σ0 ∈ D′n be given such that they define the sequences for
i > 0,

Zi = FiEi − In
∆i = FiMEi − Σi

Si = diag(∆i − ZiΣi)
Ei+1 = Ei(In +Xi)
Fi+1 = (In + Yi)Fi
Σi+1 = Σi + Si,

where Si, Xi and Yi are defined by the formulas (5.9–5.13). Let us define κ0 =

max
(

1,maxi 6=j
1

|σ0,i − σ0,j |

)
, K0 = max(1,maxi|σ0,i|) and ε0 = max(κ2

0K
2
0‖Z0‖max,

κ2
0K0‖∆0‖max). Assume that

ε0 6 0.033. (5.16)

Then the sequences (Σi,Ei, Fi)i>0 converge quadratically to the solution of (FE −
In, FME − Σ) = 0. More precisely E0 and F0 are invertible and

‖Ei − E∞‖max 6 8.1× 21−2i+1‖E0‖max
ε0
κK

‖Fi − F∞‖max 6 8.1× 21−2i+1‖F0‖max
ε0
κK

.

‖Σi − Σ∞‖max 6 1.85× 21−2i ε0
κ2K

.

Proof. Let us denote for each i > 0,

ε = ε0 εi = max(κ2
iK

2
i ‖Zi‖max, κ

2
iKi‖∆i‖max)

κ = κ0 κi = max
(

1, max16j<k6n
1

|σ
i,k
−σi,j |

)
K = K0 Ki = max1≤k≤n

(
1, |σi,k|

)
,
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where σi,1, . . . , σi,n denote the diagonal entries of Σi. Let us show by induction on i that

εi 6 21−2iε (5.17)

‖Σi − Σ0‖max 6 (2− 22−2i)2a
κ
ε (5.18)

with a = 1
1− 8ε . These inequalities clearly hold for i = 0. Assuming that the induction hypo-

thesis holds for a given i and let us prove it for i + 1. We first prove that ‖Σi+1 − Σ0‖max 6

(2− 22−2i+1)2a
κ
ε under the assumption ‖Σi − Σ0‖max 6 (2− 22−2i)2a

κ
ε. To do this, at the first

step we show that this implies K − 4a
κ
ε 6 Ki ≤ K + 4a

κ
ε and

1
1 + 8aεκ 6 κi ≤

κ

1− 8aε . Let

us prove K − 4a
κ
ε 6 Ki 6 K + 4a

κ
ε. We have

Ki := ‖Σi‖max ≤ ‖Σ0‖max + ‖Σi − Σ0‖max

6 K + (2− 22−2i)2a
κ
ε

6 K + 4a
κ
ε 6 K(1 + 4aε).

This implies simultaneously Ki > K − |K − Ki| > K − 4a
κ
ε and Ki > K(1 − 4aε). Let us

show that κi ≤
κ

1− 8aε . In fact, if the σi,j’s are the diagonal values of Σi, the Weyl’s bound [220]

implies that

|σi,j − σ0,j | 6 ‖Σi − Σ0‖max 6
4a
κ
ε for 1 6 j 6 n.

So that for 1 6 j < k 6 n, we obtain using 1− 8aε > 0 :

|σi,k − σi,j | > |σ0,k − σ0,j | − |σi,k − σ0,k| − |σi,j − σ0,j |
> |σ0,k − σ0,j |(1− κ|σi,k − σ0,k| − κ|σi,j − σ0,j |)
> |σ0,j − σ0,k|(1− 8aε) > 0.

Finally, we get :

κi 6
κ

1− 8aε.

On the other hand the inequality

|σi,k − σi,j | 6 |σ0,k − σ0,j |+ |σi,k − σ0,k|+ |σi,j − σ0,j |

implies in the same way that above

κi >
1

1 + 8aεκ.

Next we prove (5.18) for i + 1. We know Si = diag(∆i − ZiΣi). Since εi =

max(κ2
iK

2
i ‖Zi‖max, κ

2
iKi‖∆i‖max) and κi,Ki > 1 then ‖Si‖max ≤

2
κi
εi 6

2(1 + 8aε)
κ

21−2iε.



5.1 – Newton-type methods for simultaneous matrix diagonalization 89

It follows :

‖Σi+1 − Σ0‖max 6 ‖Si‖max + ‖Σi − Σ0‖max

6
2(1 + 8aε)

κ
21−2iε+ (2− 22−2i)2a

κ
ε

6
(
2− 21−2i (2− 1)

) 2a
κ
ε since 1 + 8aε = a

6
(
2− 21−2i

) 2a
κ
ε

But it is eay to see that 21−2i > 22−2i+1
. Finally we get

‖Σi+1 − Σ0‖max 6
(
2− 22−2i+1) 2a

κ
ε.

Hence we can also write

Ki −
2a
κi
ε 6 ‖Σi‖max − ‖Σi+1 − Σi‖max 6 Ki+1 6 ‖Σi‖max + ‖Σi+1 − Σi‖max 6 Ki + 2a

κi
ε

Using more the Weyl’s bound we can easily get that

κi
1 + 4aε 6 κi+1 6

κi
1− 4aε.

Now we bound κ2
i+1K

2
i+1‖Zi+1‖max. We have

Zi+1 = ZiXi + YiZi + Yi(Zi + In)Xi.

Since ‖Xi‖max, ‖Yi‖max ≤ κi(‖∆i‖max +Ki‖Zi‖max) 6 2
κiKi

εi, we can write

κ2
i+1K

2
i+1‖Zi+1‖max 6

κ2
i+1K

2
i+1

κ3
iK

3
i

4ε2
i +

κ2
i+1K

2
i+1

κ4
iK

4
i

4ε3
i +

κ2
i+1K

2
i+1

κ2
iK

2
i

4ε2
i

6 4 (2 + εi)
(
κi+1Ki+1
κiKi

)2
ε2
i

6 4 (2 + εi)
(1 + 2aε

1− 4aε

)2
ε2
i

On the other hand

∆i+1 = ∆iXi + Yi∆i + Yi(∆i + Σi)Xi.

Hence

κ2
i+1Ki+1‖∆i+1‖max 6

κ2
i+1Ki+1

κ3
iK

2
i

4ε2
i +

κ2
i+1Ki+1

κ4
iK

3
i

4ε3
i +

κ2
i+1Ki+1

κ2
iKi

4ε2
i

6 4 (2 + εi)
κ2
i+1Ki+1

κ2
iKi

ε2
i

6 4 (2 + εi)
1 + 2aε

(1− 4aε)2 ε
2
i
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It follows

εi+1 6 4 (2 + ε)
(1 + 2aε

1− 4aε

)2
ε2
i

6 8 (2 + ε)
( 1− 6ε

1− 12ε

)2
ε 21−2i+1

ε

6 21−2i+1
ε since 8 (2 + ε)

( 1− 6ε
1− 12ε

)2
ε 6 1 for ε 6 0.033.

This completes the proof of the two induction hypothesis (5.17–5.18) at order i + 1. Let Wi =∏i
k=0(In +Xk). Since

‖Xk‖max 6
2

κkKk
εk

6
2(1 + 8aε)
κK(1− 4aε)ε21−2k

6
2

κK(1− 12ε)ε21−2k

Consequently,

‖W∞ − In‖max 6
∏
i>0

(1 + 2
κK(1− 12ε)ε2

1−2i)− 1

6
4

κK(1− 12ε)ε from Lemma 5.1.1

6
0.22
κK

since ε 6 0.033..

Hence W∞ is invertible and E0 = E∞W
−1
∞ . This implies that E0 is invertible. Moreover,

‖Wi −W∞‖max 6 ‖Wi‖max

∥∥∥∥∥∥1−
∏

k>i+1
(1 + ‖Xk‖max)

∥∥∥∥∥∥
max

6 (1 + ‖Wi − In‖max)

∥∥∥∥∥∥
∏
k>0

(1 + 2
κK(1− 12ε)ε× 21−2k+i+1)− 1

∥∥∥∥∥∥
max

6 (1 + 0.22)× 4
κK(1− 12ε) × 21−2i+1

ε from Lemma 5.1.1

6
8.1
κK
× 21−2i+1

ε.

We deduce that

‖Ei − E∞‖max 6
8.1
κK
× 21−2i+1‖E0‖maxε.

In the same way we show that F0 is invertible and

‖Fi − F∞‖max 6
8.1
κK
× 21−2i+1‖F0‖maxε.
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Finally

‖Σi − Σ∞‖max 6
∑
k>i

‖Σk+1 − Σk‖max

6
∑
k>i

2
κ2
kKk

εk

6

∑
k>0

2−2k
 21−2i 2

κ2K(1− 12ε)(1− 8ε)ε

6 0.82× 2.25× 21−2i ε

κK
since

∑
k>0

2−2k 6 0.82 and ε 6 0.033.

6 1.85× 21−2iε0.

The theorem is proved. �

Proposition 5.1.6. The complexity of one Newton iteration in Theorem 5.1.5 is in O(n3).

Proof. The computation of all the entries xi,j , yi,j of Xi and Yi by the formulas (5.9–5.13) re-
quires in total O(n2) arithmetic operations. The computation of Zi,∆i, Si, Ei+1, Fi+1, which re-
quires 6 backward stable matrix multiplications and diagonal matrix operations, has a complexity
in O(n3). Consequently, the complexity of each iteration is in O(n3). �

Remark 5.1.1 – It is possible to generalize this approach to the case where the diagonal matrices
are replaced by Jordan matrices.

5.1.4 Newton-like method for two simultaneously diagonalizable matrices.

Let M1,M2 be two commuting matrices in Wn, thus M1 and M2 are simultaneously dia-
gonalizable. We aim to find E,F ∈ GLn which diagonalize simultaneously M1,M2 so that :
FMkE = Σk | k ∈ {1, 2}, and Σ1,Σ2 ∈ D′n. This equivalent to find the numerical solution of
f(E,F,Σ1,Σ2) = 0 such that f : (E,F,Σ1,Σ2) 7→ (FM1E − Σ1, FM1E − Σ1)

We consider as before the perturbations E +EX , F + Y F and Σk + Sk of respectively E, F
and Σk for k∈ {1, 2} . Letting Zk = FMk E − Σk for k = 1, 2, we have :

(F + YF)Mk(E + EX)− (Σk + Sk)
= Zk − Sk + ΣkX + Y Σk + ZkX + YZk +Y (Zk + Σk)X (5.19)

By assuming Z1, Z2 are of small norm, the linear system to solve from Equation (5.19) is the
following

Zk − Sk + ΣkX + Y Σk = 0, k = 1, 2 (5.20)

A solution of (5.20) is given by the following lemma.
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Lemma 5.1.7. Let Σk = diag(σk1 , · · · , σkn), Zk = (zki,j)1≤i,j≤n be given matrices in Cn×n for

k ∈ {1, 2}. Assume that

∣∣∣∣∣σ1
j σ2

j

σ1
i σ2

i

∣∣∣∣∣ 6= 0 for i 6= j. Let X , Y , and Sk be the matrices defined by

xi,i = 0 (5.21)

xi,j =

∣∣∣∣∣σ1
j z1

i,j

σ2
j z2

i,j

∣∣∣∣∣∣∣∣∣∣σ1
i σ1

j

σ2
i σ2

j

∣∣∣∣∣
, i 6= j (5.22)

yi,i = 0 (5.23)

yi,j = −

∣∣∣∣∣σ1
i z1

i,j

σ2
i z2

i,j

∣∣∣∣∣∣∣∣∣∣σ1
i σ1

j

σ2
i σ2

j

∣∣∣∣∣
, i 6= j (5.24)

Sk = ddiag(Zk), k = 1, 2. (5.25)

Then we have

Zk − Sk + ΣkX + Y Σk = 0, k = 1, 2 (5.26)

Moreover

‖X‖max, ‖Y ‖max 6 2κεK (5.27)

where ε = max(‖Z1‖max, ‖Z2‖max), κ = max

1,maxi 6=j
1∣∣∣∣∣σ1

i σ1
j

σ2
i σ2

j

∣∣∣∣∣

, K =

max(1,maxi,k|σki |).

Proof. It is easy to verify that the equation (5.26) implies that for i 6= j,

σki xi,j + σkj yi,j + zki,j = 0

and that the solution of these equations is given by the formula (5.22), (5.24). Choosing xi,i =
yi,i=0, we take Sk = ddiag(Zk +ΣkX+Y Σk) = ddiag(Zk) since ΣkX+Y Σk is an off-matrix,
to satisfy the equation (5.26). The bounds (5.27) follows easily from (5.22), (5.24). �

Theorem 5.1.8. Let E0, F0 ∈ GLn and Σ0,k = diag(σk0,1, . . . , σk0,n) ∈ D′n, k = 1, 2, be given
and let define the sequences for i > 0 and k = 1, 2 by :

Zi,k = FiMkEi − Σi,k

Si,k = diag(Zi,k)
Ei+1 = Ei(In +Xi)
Fi+1 = (In + Yi)Fi

Σi+1,k = Σi,k + Si,k,
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where Xi, Yi are defined by the formulas (5.21–5.24). Let ε0 = max(‖Z0,1‖max, ‖Z0,2‖max),

κ0 = max

1,maxi 6=j
1∣∣∣∣∣σ1

0,i σ1
0,j

σ2
0,i σ2

0,j

∣∣∣∣∣

 and K0 = max(1,maxj,k|σk0,j |). Assume that

u := 4ε0κ
2
0K

3
0 6 0.094. (5.28)

Then the sequences (Σi,k,Ei, Fi)i>0converge quadratically to the solution of FMkE − Σk for
k = 1, 2. More precisely E0 and F0 are invertible and

‖Ei − E∞‖max 6 1.46× 21−2i+1‖E0‖maxu

‖Fi − F∞‖max 6 1.46× 21−2i+1‖F0‖maxu.

Proof. Let us denote for each i > 0,

ε = ε0 εi = max(‖Zi,1‖max, ‖Zi,2‖max)

κ = κ0 κi = max

1, max16j<k6n
1∣∣∣∣∣σ1

i,j σ1
i,k

σ2
i,j σ2

i,k

∣∣∣∣∣


K = K0 Ki = max(1,maxj,k(|σki,j |)),

where σki,1, . . . , σ
k
i,n are the diagonal entries of Σi,k. Let us show by induction on i that

εi 6 21−2iε (5.29)

‖Σi,k − Σ0,k‖max 6 (2− 22−2i)ε (5.30)

These inequalities clearly hold for i = 0. Assuming that the induction hypothesis holds for a
given i and let us prove it for i + 1. We can notice that εi ≤ 1. In fact by induction hypothesis,
we have εi ≤ 21−2iε0 and from (5.28) ε0 = u

4κ2
0K

3
0
≤ 1, since u ≤ 1 and κ0,K0 ≥ 1. As

21−2i ≤ 1, ∀i ≥ 0, we have εi ≤ 1. We first prove that ‖Σi+1,k − Σ0,k‖max 6 (2 − 22−2i+1)ε
under the assumption ‖Σi,k − Σ0,k‖max 6 (2− 22−2i)ε. To do this, at the first step we show that
this implies Ki ≤ K + 2ε and κi ≤

κ

1− 8κε(K + ε) . Let us prove Ki 6 K + 2ε. We have

Ki := ‖Σi‖max ≤ ‖Σ0‖max + ‖Σi − Σ0‖max

6 K + (2− 22−2i)ε
6 K + 2ε.

Let us show that κi ≤
κ

1− 8κε(K + ε) . In fact, if the σi,jk ’s are the diagonal values of Σk
i , we

have |σki,j − σk0,j | 6 ‖Σi,k − Σ0,k‖max 6 2ε for 1 6 j 6 n and k = 1, 2. It follows :

|σ1
i,jσ

2
i,k − σ1

0,jσ
2
0,k | = |σ1

i,jσ
2
i,k − σ1

0,jσ
2
i,k + σ1

0,jσ
2
i,k − σ1

0,jσ
2
0,k|

= |σ2
i,k(σ1

i,j − σ1
0,j) + σ1

0,j (σ2
i,k − σ2

0,k)|
6 2ε|σ2

i,k|+ 2ε|σ1
0,j |

6 2ε(K + 2ε) + 2εK = 4ε(K + ε).
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Now,

|σ1
i,jσ

2
i,k − σ1

i,kσ
2
i+1,j | >

|σ1
0,jσ

2
0,k − σ1

0,kσ
2
0,j | − |σ1

0,jσ
2
0,k − σ1

i+1,jσ
2
i,k| − |σ1

i,kσ
2
i,j − σ1

0,kσ
2
0,j | >

|σ1
0,jσ

2
0,k − σ1

0,kσ
2
0,j |(1− 8kε(K + ε)).

Finally, we get :

κi 6
κ

1− 8κε(K + ε) .

To prove (5.30) it is sufficient to write

‖Σi+1,k − Σ0,k‖max 6 ‖Si,k‖max + ‖Σi+1,k − Σ0,k‖max

6 εi + (2− 22−2i)ε

6 (21−2i + 2− 22−2i)ε 6 (2− 22−2i+1)ε.

Let us prove (5.29). Since we have

Zi+1,k = Zi,kXi + YiZi,k + Yi(Zi,k + Σi,k)Xi.

we deduce

‖Zi+1,k‖max 6 2ε2
iκiKi + 2ε2

iκiKi + 4ε2
iκ

2
iK

2
i (εi +Ki)

6 4ε2
iκ

2
iKi + 4ε2

iκ
2
iK

2
i (1 +Ki) since εi 6 1and κi > 1

6 3× 4ε2
iκ

2
iK

3
i = 12ε2

iκ
2
iK

3
i since Ki > 1.

It follows

εi+1 6
12κ2(K + 2ε)3

(1− 8κε(K + ε))2 ε
2
i 6

12εκ2(K + 2ε)3

(1− 8κε(K + ε))2 22−2i+1
ε

6 3
(
1 + u

2
)3(

1− 2u
(
1 + u

4
))2u22−2i+1

ε since ε

K
6
u

4 , κε 6
u

4

6 21−2i+1
ε since 3

(
1 + u

2
)3(

1− 2u
(
1 + u

4
))2 6 2−1 foru 6 0.094.

Let Wi =
∏i
k=0(In +Xk). Since

‖Xl‖max 6 2κlKlεl

6 2 κ

1− 8κε(K + ε)(K + 2ε)ε21−2l

6

(
1 + u

2
)
u

2
(
1− 2u

(
1 + u

4
))21−2l

6 0.65× 21−2lu sinceu 6 0.094.
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Consequently,

‖W∞ − In‖max 6
∏
i>0

(1 + 0.65× 21−2iu)− 1

6 1.3u from Lemma 5.1.1

6 1.3× 0.094 = 0.1222

Hence W∞ is invertible and E0 = E∞W
−1
∞ . This implies that E0 is invertible. Moreover,

‖Wi −W∞‖max 6 ‖Wi‖max

∥∥∥∥∥∥1−
∏

k>i+1
(1 + ‖Xk‖max)

∥∥∥∥∥∥
max

6 (1 + ‖Wi − In‖max)

∥∥∥∥∥∥
∏
k>0

(1 + 0.059× 21−2k+i+1)− 1

∥∥∥∥∥∥
max

6 (1 + 0.1222)× 1.3× 21−2i+1
u

6 1.46× 21−2i+1
u.

We deduce that

‖Ei − E∞‖max 6 1.46× 21−2i+1‖E0‖maxu.

In the same way we show that F0 is invertible and

‖Fi − F∞‖max 6 1.46× 21−2i+1‖F0‖maxu.

The theorem is proved. �

5.1.5 Convergence of a pencil of simultaneously diagonalizable matrices.

In this subsection we present two strategies to solve the system (4.3) of a pencil of commuting
matrices (Mi)1≤i≤s inWn. The first strategy is trivial and consists of finding the common diagona-
lizersE and F of the pencil by numerically solving one of the systems (FE−In, FM1E−Σ1) =
0 or (FM1E − Σ1, FM2E − Σ1) = 0 using Theorem 5.1.5 or Theorem 5.1.8. Next we deduce
the remaining diagonal matrices Σi using the formulas

Σi,k = E(:, k)∗MiE(:, k)
E(:, k)∗E(:, k) 1 6 k 6 n, 2 or 3 6 i 6 s,

where E(:, k) is the k-th column in E.
In this strategy we use that a diagonalizer of one or two matrices of the pencil can diagonalize
the other matrices of the pencil. We note that, in general, we don’t have this property for simul-
taneously diagonalizable matrices, where, for instance, it is posssible to find a diagonalizer of
M1 which is not a common diagonalizer for the other matrices of the pencil. Nevertheless, this
property holds here since we suppose that the matrices Mi have simple eigenvalues.

Another strategy is to find a “good” linear combination of the Mi’s. This is based on
Lemma 5.1.9 and Theorem 5.1.10.
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Lemma 5.1.9. Let us suppose that the Mi commute pairwise and they are linearly independent
i.e.

∑s
i=1 aiMi = 0⇒ ai = 0, i = 1 : s. Let E ∈ GLn and Σi ∈ D′n be such that

E−1MiE − Σi = 0, i = 1 : s.

Let S ∈ Cn×s and the column i of S is the diagonal of Σi. Let σ = (σ1, . . . , σn) and Σ = diag(σ).
Then the matrix S has a full rank and α = (S∗S)−1S∗σ satisfies

s∑
i=1

αiE
−1MiE − Σ = 0.

Proof. Since the matrices Mi are simultaneously diagonalizable there exists E be such that
E−1MiE − Σi = 0. The condition

s∑
i=1

αiΣi − Σ = 0

is written as Sα = σ where S ∈ Cn×s. The assumption
∑s
i=1 aiMi = 0 ⇒ ai = 0, i = 1 : s

implies that the matrix has a full rank. Consequently,

α = (S∗S)−1S∗σ.

The lemma follows. �

Theorem 5.1.10. Let M1, . . . ,Mp ∈ Cn×n be p simultaneously diagonalizable matrices and
verify the assumption of linearly independent. Let us consider matrices E0, F0 and Σ0,i =
diag(F0ME0), i = 1 : p. Let us define the matrix S ∈ Cn×p in which the column i is the

diagonal of Σ0,i. Let σ =
(

1, e
2iπ
n , . . . , e

2i(n−1)π
n

)
, Σ = diag(σ) and α = (S∗S)−1S∗σ. We

consider the system (
EF − In
FME − Σ

)
= 0 (5.31)

where M =
∑p
i=1 αiMi. If

n2max(‖Z0‖max, ‖∆0‖max) 6 16× 0.033

then (F0, E0,Σ) satisfies the condition (5.16) of Theorem 5.1.5.

Proof. In this case the quantity κ defined in the Theorem 5.1.5 is equal to

κ = 1
2 |sin

(
π
n

)
|

6
n

4 since |sin
(
π

n

)
| > 2

n
for n > 2.

Since K0 = 1 we get

ε0 = max(κ2
0K

2
0‖Z0‖max, κ

2
0K0‖∆0‖max) ≤ n2

16 max(‖Z0‖max, ‖∆0‖max).

The condition
max(‖Z0‖max, ‖∆0‖max) ≤ 0.033 16

n2 ,

gives the result. �
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5.1.6 Numerical illustration

We use a JULIA implementation of the Newton sequences in the numerical experiments. The
experimentation has been done on a Dell Windows desktop with 8 GB memory and Intel 2.3 GHz
CPU. We use the Julia package ArbNumerics for the computation in high precision.

5.1.7 Simulation

In this section we apply the Newton iterations presented in Theorem 5.1.5 (resp. Theo-
rem 5.1.8) on examples of diagonalizable matrices (resp. of two simultaneously diagonalizable
matrices). We validate experimentally the sufficiency of the condition established in Theorem 5.1.5
(resp. Theorem 5.1.8) to have a quadratic sequence (Tables 5.1, 5.2, 5.6, and 5.7). On the other
hand, as this condition is sufficient but not necessary, we show through some other examples how
this Newton sequence starting from an initial point which is not verifying this condition could
converge quadratically (Tables 5.3, 5.4, 5.8, and 5.9). We note that the the computation in the
aforementioned tables is done in high precision. Nevertheless, we test also the two Newton-type
sequences using machine precision (Tables 5.5 and 5.10) and this to show that these sequences
have the same numerical behavior of a classical Newton method, i.e., if the solution is in the
neighborhood of the initial point the Newton-type iterations will converge towards this solution
with a few number of iterations and the residual error obtained at the end is in double precision.

This allows us to have an heuristic estimation on the numerical dependency of the Newton
sequences from this condition to converge. Furthermore, these examples reveal the possibility
of achieving computation in such problem with high precision. For example, in the case of a
diagonalizable matrix of simple eigenvalues, we can compute its eigenvalues using one of the
solvers which works with a double precision. Then we take this point as an initial point for the
Newton sequence of Theorem 5.1.5 in order to increase the precision. Hereafter, we give some
details about the tests : Test-1 for Theorem 5.1.5 and Test-2 for Theorem 5.1.8, considered in this
section.

Test-1. Let K = R or C, M = EΣE−1 + 10−eA, where e ∈ {3, 6}. The matrices E, Σ, and
A ∈ Kn×n are chosen randomly following standard normal distributions such that E is invertible,
Σ is diagonal with n different diagonal entries and A is a random square matrix obeying normal
distribution of size n and Frobenius norm equal to 1. Since M is a small perturbation of EΣE−1,
more precisely ‖M − EΣE−1‖ = 10−e, M is a diagonalizable matrix of simple eigenvalues.
Herein, we apply the Newton iteration of Theorem 5.1.5 on M with initial point E0 = E, F0 =
E−1 and Σ0 = Σ. The residual error reported in this test at iteration k is given by :

errres = max(‖FkEk − In‖max, ‖FkMEk − Σk‖max).

Test-2. Let K = R or C, M1 = F−1Σ1E
−1, M2 = F−1Σ2E

−1, where E, F , Σ1 and
Σ2 ∈ Kn×n are randomly sampled according to standard normal distributions, such that E and
F are invertible, Σ1 and Σ2 are diagonal with n different diagonal entries. The Newton iteration
in Theorem 5.1.8 is applied on M1 and M2 with initial point E0, F0, Σ0,1 and Σ0,2, such that
these matrices are obtained by applying a small perturbation on respectively E, F , Σ1 and Σ2 as
follows :
E0 = E + 10−eA, F0 = F + 10−eB, Σ0,1 = Σ1 + 10−eC, Σ0,2 = Σ2 + 10−eD, where
e ∈ {3, 6}, A and B (resp. C and D) are random square matrices (resp. random diagonal matrices
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with different diagonal entries) of size n and Frobenius norm equal to 1, with entries in K following
standard normal distributions. The residual error reported in this test at iteration k is given by :

errres = max(‖FkM1Ek − Σk,1‖max, ‖FkM2Ek − Σk,2‖max).

We notice that the condition established in Theorem 5.1.5 (resp. Theorem 5.1.8) is reached in
Test-1 (resp. Test-2) for matrices of size 10 with order of perturbation equal to 10−6, and we can
see in Tables 5.1, 5.2, 5.6, and 5.7 that the Newton sequences with initial point verifying the condi-
tion in the associated theorem converge quadratically. We can notice also that by increasing the
perturbation up to 10−3 (the initial point does not verify the condition in the associated theorem),
the Newton sequences converge quadratically for different sizes of matrices n = 10, 50, 100 (see
Tables 5.3, 5.4, 5.8, and 5.9). Moreover, we can notice in Table 5.5 the Newton-type iteration of
Theorem 5.1.5 applied in double precision converges with a few number of iterations ∼ 5 and
the final residual error measured with the Frobenius norm is of order machine precision ∼ 10−14

and it is of the same order obtained by the standard Julia method eigen to compute the eigen
decomposition. The same remarks are valid for Table 5.10 where the Newton-type sequence of
Theorem 5.1.8 needs, in double precision, a few iterations to converges towards the solution given
by using the Frobenius norm a residual error of order machine precision.

Table 5.1 – The computational results throughout 7 iterations of an example of implementation of
Test-1 with K = R, n = 10 and e = 6 in precision 1024.

Iteration ε := max(κ2
0K

2
0‖Z0‖max, κ

2
0K0‖∆0‖max) ≤ 0.033 errres

1 0.00131 9.33e− 6
2 2.39e− 8 1.06e− 10
3 1.68e− 18 7.49e− 21
4 2.93e− 38 1.31e− 40
5 4.21e− 78 1.87e− 80
6 1.17e− 157 5.24e− 160
7 4.16e− 288 6.20e− 293

Table 5.2 – The computational results throughout 7 iterations of an example of implementation of
Test-1 with K = C, n = 10 and e = 6 in precision 1024.

Iteration ε := max(κ2
0K

2
0‖Z0‖max, κ

2
0K0‖∆0‖max) ≤ 0.033 errres

1 0.02581 2.76e− 4
2 3.49e− 6 2.33e− 8
3 9.51e− 14 6.34e− 16
4 5.31e− 29 3.54e− 31
5 1.96e− 59 1.31e− 61
6 3.02e− 120 2.01e− 122
7 4.58e− 242 3.05e− 244
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Table 5.3 – The residual error throughout 7 iterations given by the implementation of Test-1 with
K = R, e = 3 and n = 10, 50, 100 in precision 1024.

Iteration n = 10 n = 50 n = 100
1 8.57e− 3 7.93e− 2 3.22e− 2
2 1.91e− 4 5.76e− 2 1.38e− 2
3 1.58e− 8 6.19e− 3 6.12e− 4
4 4.79e− 16 8.74e− 5 5.42e− 7
5 3.56e− 31 1.31e− 8 3.83e− 13
6 1.39e− 61 2.39e− 16 1.80e− 25
7 1.91e− 122 7.03e− 32 3.81e− 50

Table 5.4 – The residual error throughout 7 iterations given by the implementation of Test-1 with
K = C, e = 3 and n = 10, 50, 100 in precision 1024.

Iteration n = 10 n = 50 n = 100
1 8.84e− 3 9.75e− 2 1.61e− 2
2 8.59e− 6 6.39e− 5 1.03e− 4
3 3.91e− 11 3.99e− 9 4.68e− 9
4 9.87e− 22 1.87e− 17 3.13e− 17
5 7.60e− 43 4.42e− 34 8.84e− 34
6 5.14e− 85 2.50e− 67 9.45e− 67
7 2.64e− 169 8.28e− 134 1.05e− 132

Table 5.5 – The residual error throughout 5 iterations given by the implementation of Test-1 with
K = R, e = 3 and n = 10, 20, 30, in double precision.

Iteration n = 10 n = 20 n = 30
1 4.78e− 3 1.01e− 2 1.01e− 2
2 4.71e− 3 2.55e− 3 1.14e− 3
3 2.29e− 5 1.97e− 5 4.08e− 7
4 1.43e− 9 2.36e− 10 2.26e− 13
5 4.06e− 15 1.23e− 14 5.04e− 14

‖M − EeigenΣeigenE
−1
eigen‖ 9.49e− 15 2.83e− 14 7.45e− 14

‖M − EnewtonΣnewtonE
−1
newton‖ 2.96e− 15 1.01e− 14 3.42e− 14

5.1.8 Cauchy matrix

In this section we present an example for a Cauchy matrix of size n = 13 of entries
ai,j = 1

i+j , ∀1 ≤ i, j ≤ 13, that illustrates how the Newton-type iteration can be used to in-
crease the accuracy of the eigenvalues. We take the eigen decomposition given by the standard
JULIA method eigen from the package LinearAlgebra as an initial point of Newton se-
quences in Theorem 5.1.5 with 5 iterations. The computation is done with the precision 1024 using
ArbNumerics package. The initial point given by eigen is in double precision. It is converted
to the precision 1024 using ArbNumerics package, in order to apply Newtons iterations with
this precision of 1024 bits. In Table 5.11 we report the eigenvalues given by eigen (σeigen)
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Table 5.6 – The computational results throughout 7 iterations of an example of implementation of
Test-2 with K = R, n = 10 and e = 6 in precision 1024.

Iteration 4κ2K3ε ≤ 0.094 errres
1 7.65e− 2 6.72e− 6
2 1.73e− 7 1.52e− 11
3 5.58e− 18 4.90e− 22
4 5.49e− 39 4.82e− 43
5 3.10e− 81 2.73e− 85
6 2.28e− 165 2.01e− 169
7 2.20e− 279 1.94e− 283

Table 5.7 – The computational results throughout 7 iterations of an example of implementation of
Test-2 with K = C, n = 10 and e = 6 in precision 1024.

Iteration 4κ2K3ε ≤ 0.094 errres
1 6.86e− 3 9.16e− 6
2 7.14e− 9 9.53e− 12
3 9.51e− 21 1.26e− 23
4 6.69e− 44 8.92e− 47
5 3.77e− 90 5.04e− 93
6 2.59e− 182 3.45e− 185
7 1.65e− 281 2.20e− 284

and the eigenvalues rounded to the double precision given by Newton-type sequence (σnewton)
initialized with eigen. We also report the relative error |σnewton−σeigen|σnewton

in order to show the re-
finement amount realized by the Newton method. As we can see the matrix of this example is
ill-conditioned (Cauchy matrices are in general ill-conditioned). There is a cluster of eigenva-
lues nearby zero. The accuracy enhancement obtained by applying Newton-type iterations can be
clearly seen in Table 5.11, in particular for the first four smallest eigenvalues. For instance, the
smallest eigenvalue returned by eigen is of order 10−17 close to the second smallest eigenvalues
of order 10−16. Newton-type method shows that the smallest eigenvalue of the order 10−19 yields
a large relative error ∼ 39.33. This also shows that all the eigenvalues are well-separated.

5.1.9 Sub-matrix iterations

It is possible to adapt the proposed method, taking into account the condition of the eigenvalue
σi given by the quantity

κ(σi) = max
i 6=j

(
1, 1
|σi − σj |

)
Theoretical results imply that the computation of clusters of eigenvalues is ill-conditioned. Howe-
ver, one can apply Theorem 3 on sub-matrices to improve the well-conditioned eigenvalues. We
denote

δ =

√
K‖∆0‖max

0.033
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Table 5.8 – The residual error throughout 7 iterations given by the implementation of Test-2 with
K = R, e = 3 and n = 10, 50, 100 in precision 1024.

Iteration n = 10 n = 50 n = 100
1 2.91e− 2 4.57e− 3 1.01e− 2
2 7.97e− 5 1.03e− 6 1.31e− 6
3 4.21e− 9 1.69e− 11 3.71e− 11
4 1.07e− 16 2.42e− 23 1.23e− 22
5 3.92e− 33 1.18e− 44 1.46e− 43
6 2.63e− 64 1.02e− 89 1.67e− 86
7 1.71e− 128 3.20e− 177 9.01e− 172

Table 5.9 – The residual error throughout 7 iterations given by the implementation of Test-2 with
K = C, e = 3 and n = 10, 50, 100 in precision 1024.

Iteration n = 10 n = 50 n = 100
1 7.33e− 3 3.14e− 3 5.52e− 3
2 3.49e− 6 7.48e− 7 1.35e− 6
3 2.91e− 12 1.11e− 13 1.19e− 13
4 2.04e− 24 2.54e− 27 1.68e− 27
5 8.23e− 49 3.04e− 54 2.19e− 54
6 1.88e− 97 3.41e− 108 1.50e− 108
7 1.31e− 194 1.91e− 215 4.53e− 216

Table 5.10 – The residual error throughout 5 iterations given by the implementation of Test-2 with
K = R, e = 3 and n = 10, 20, 30, in double precision.

Iteration n = 10 n = 20 n = 30
1 2.71e− 3 1.21e− 2 4.64e− 3
2 1.36e− 6 4.91e− 6 2.24e− 6
3 1.39e− 12 2.57e− 11 4.74e− 11
4 6.16e− 15 8.97e− 14 1.55e− 13
5 7.04e− 15 8.09e− 14 1.53e− 13

max(‖M1 − EΣ1E
−1‖, ‖M2 − EΣ2E

−1‖) 3.74e− 15 4.13e− 14 8.21e− 14

and p the index such that Σ =
(

Σp

Σn−p

)
, Σp = diag(σ1, . . . , σp), Σn−p =

diag(σp+1, . . . , σn) and |σi − σj | > δ for all 1 6 i ≤ p and i < j 6 n. We adapt Newton
iteration to the block associated with the well-conditioned eigenvalues by defining the matrices
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Table 5.11 – The relative error between σeigen from the method eigen and σnewton from the
Newton-type method for the Cauchy matrix

( 1
i+j
)
1≤i,j≤13.

Eigenvalue σeigen σnewton
|σnewton−σeigen|

σnewton

1 2.4030587641505818e-17 5.958203769841865e-19 39.33
2 1.8824087522342697e-16 1.7156976132548192e-16 0.09716
3 2.3152722725223998e-14 2.3178576801522747e-14 0.00111
4 1.9513972147589434e-12 1.951356013568409e-12 2.11e− 5
5 1.1466969172503778e-10 1.1466967568738049e-10 1.39e− 7
6 4.991788233415145e-9 4.991788235245136e-9 3.66e− 10
7 1.6668681228080362e-7 1.666868122813953e-7 3.54e− 12
8 4.360227301207107e-6 4.360227301206033e-6 2.46e− 13
9 9.040674871074817e-5 9.040674871075823e-5 1.11e− 13
10 0.0014925044272821445 0.0014925044272821172 1.83e− 14
11 0.01955788569925287 0.01955788569925287 4.81e− 17
12 0.19958813407010345 0.19958813407010337 4.64e− 16
13 1.3693334145989837 1.3693334145989824 9.98e− 16

X , Y and S as follows :

xi,i = 0

xi,j =


−δi,j + zi,jσj
σi − σj

if |σi − σj | > δ

0 otherwise
Y = −Z −X
S = diag(−∆ + ZΣ).

Table 5.12 (resp. Table 5.13) shows the residual error errres as in Test-1 for the Cauchy matrix of
size 200 (resp. the Rosser matrix of size 256 [177]) by applying the aforementioned sequences,
the initial point is given by the Julia method eigen. The computation is done in precision 1024.

Table 5.12 – The residual error throughout 6 iterations with the Cauchy matrix of size 200.

Iteration p = 12, δ = 4.51e− 7 p = 5, δ = 4.51e− 7
1 2.45e− 15 2.35e− 15
2 9.63e− 26 3.75e− 29
3 1.56e− 36 1.21e− 53
4 1.54e− 45 1.81e− 83
5 1.15e− 54 3.49e− 110
6 5.08e− 64 8.67e− 137



5.2 – Riemannian conjugate gradient algorithm for approximate simultaneous diagonalization of
matrices 103

Table 5.13 – The residual error throughout 6 iterations with the Rosser matrix of size 256.

Iteration p = 11, δ = 1.11e− 3 p = 5, δ = 1.11e− 3
1 7.15e− 12 1.65e− 12
2 7.18e− 20 7.18e− 20
3 1.42e− 40 1.81e− 41
4 1.73e− 53 1.56e− 85
5 7.17e− 66 1.75e− 119
6 8.79e− 79 8.11e− 153

Summary of this section. Taking a Newton approach towards systems of equations describing
the simultaneous diagonalization problem of diagonalizable matrices, leads us to new algorith-
mic insights. We exhibit a Newton-type method without solving a linear system at each step as
is the case of a classical Newton method. The numerical experiments corroborate the quadratic
convergence predicted by the theoretical analysis.

5.2 Riemannian conjugate gradient algorithm for approximate si-
multaneous diagonalization of matrices

In the previous section, we studied the certification problem for the convergence of a pen-
cil of simultaneously diagonalizable matrices. In this section, we consider the second part of
the simultaneous matrix diagonalization problem, where the pencil of matrices is not necessa-
rily simultaneously diagonalizable. Thus we aim to approximate it locally by a pencil of ma-
trices which is simultaneously diagonalizable. We study this problem from an optimization point
of view by taking into account the geometric constraints of the optimization problem and we
present a Riemannian conjugate gradient algorithm. We consider the approximation problem over
the real field R. Given a general pencil M = [M1, . . . ,Ms] of real square matrices, such that
Mk ∈ Rn×n,∀k ∈ {1, . . . , s}, we aim to compute a simultaneously diagonalizable pencil that ap-
proximates M i.e. to find two invertible matrices E and F such that FMkE

t is the most diagonal,
∀k ∈ {1, . . . , s}.
For shortness we refer to the Approximate Simultaneous Diagonalization of matrices problem as
ASD problem.

Notation. In this section we consider the real field. We denote by D∗n the group of n × n non-
singular diagonal matrices, and by Pn the group of n× n permutation matrices.

5.2.1 Cost function

The first cost function that comes in mind is the one which minimizes the Frobenius norm of
the off-diagonal entries of each matrix in the pencil M :

f̃(E,F ) = 1
2

s∑
k=1
‖FMkE

t − ddiag(FMkE
t)‖2 = 1

2

s∑
k=1
‖ off(FMkE

t)‖2, (E,F ) ∈ GLn×GLn.

However, as discussed in [25], this function is not invariant by diagonal scaling i.e.
f̃(Σ1E,Σ2F ) 6= f̃(E,F ) with Σ1,Σ2 ∈ D∗n, which might produce in practice undesirable
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degenerate solutions, since ASD is an optimization problem on GLn. For this reason, we choose
to conduct the optimization method using the following cost function

f(E,F ) = 1
2

s∑
k=1
‖Mk − F−1 ddiag(FMkE

t)E−t‖2, (E,F ) ∈ GLn ×GLn, (5.32)

which generalizes the one proposed in [7] for a pencil of symmetric matrices, and it is invariant to
the diagonal scaling.
Herein, approximate simultaneous diagonalization of matrices problem (ASD) consists of mini-
mizing the cost function (5.32) :

min
(E,F )∈GLn×GLn

f(E,F ) = min
(E,F )∈GLn×GLn

1
2

s∑
k=1
‖Mk − F−1 ddiag(FMkE

t)E−t‖2. (5.33)

5.2.2 Oblique geometric constraints

It is easy to notice that if (E,F ) ∈ GLn×GLn is a solution of (5.33), then (EΣ1P1, P2Σ2F ),
∀P1, P2 ∈ Pn, ∀(Σ1,Σ2) ∈ D∗n × D∗n is also a solution. In practice, the permutation has no
impact on the solution process. Contrarily, the diagonal scaling can conduct to degenerate solutions
(we can construct sequences of non-singular diagonal matrices which converge towards singular
matrices). Hence, to avoid degenerate solutions, some additional constraints must be added to the
constraint set. In this regard, there exists in the literature, various approaches (see. [1, 25, 26, 205,
12]). From the existing possibilities, we choose to fix the norm of the rows of E and F with the
oblique constraint i.e. the rows of E and F are of unit Frobenius norm [1, 25]. This means that we
seek E and F in the oblique manifoldMo

n previously defined in Section 3.5.5.
Finally, we formulate the ASD problem as a Riemannian least-squares problem onMo

n ×Mo
n as

follows :

min
(E,F )∈Mo

n×Mo
n

f(E,F ) = min
(E,F )∈Mo

n×Mo
n

1
2

s∑
k=1
‖Mk − F−1 ddiag(FMkE

t)E−t‖2. (ASD)

We choose to equip the oblique manifoldMo
n with the right-invariant metric inherited from GLn

(see Sections 3.5.4 and 3.5.5). In Definition 5.2.1 we define the metric that we equip with the
Cartesian product of oblique manifoldsMo

n ×Mo
n.

Definition 5.2.1. For (E,F ) ∈ Mo
n ×Mo

n, ξ = (ξE , ξF ), η = (ηE , ηF ) ∈ TEMo
n × TFMo

n '
T(E,F )Mo

n ×Mo
n, then

〈ξ, η〉r(E,F ) = 〈(ξE , ξF ), (ηE , ηF )〉r(E,F ) = 〈ξE , ηE〉rE + 〈ξF , ηF 〉rF ,

where 〈., .〉rE (resp. 〈., .〉rF ) is as in Section 3.5.4.

5.2.3 The proposed Riemannian conjugate gradient method

We introduce a Riemannian conjugate gradient method with Armijo backtracking line-search
step (RCG) (Section 3.4.1) to solve the (ASD). The algorithm (RCG) for ASD problem in pseudo-
code is given as follows :
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Require: initial iterate X1 := (E1, F1) ∈Mo
n ×Mo

n, tangent vector η0 := (ηE0 , ηF0) = (0, 0).
1: for i = 1, 2, . . . do
2: Compute the gradient ξi := gradob f(Xi) ;
3: Compute a conjugate direction ηi := −ξi + βiTXi−1→Xi(ηi−1) ;
4: Perform Armijo backtracking to find the smallest integer m ≥ 0 such that

f(Xi)− f(RXi(0.5
m
ηi)) ≥ −0.1× 0.5m〈ξi, ηi〉rXi

;

5: Compute the next new point Xi+1 := RXi(0.5
m
ηi) ;

6: end for

Algorithm 5.1 – Geometric conjugate gradient for ASD.

Hereafter, the different steps of the algorithm will be explained in more details.
In step 2 of Algorithm 5.1, the computation of the Riemannian gradient gradob f(X) of f at
X := (E,F ) ∈ Mo

n ×Mo
n with respect to the right-invariant metric relies on some matrix trace

properties that we recall in the following lemma ∗ :

Lemma 5.2.1. Let A, B, C ∈ Rn×n, then :

tr(ABC) = tr(BCA) = tr(CAB) (invariant by cyclic permutation)

tr(At) = tr(A)
tr(aA) = a tr(A), a ∈ R

tr(A ddiag(B)) = tr(ddiag(A)B) = tr(ddiag(A) ddiag(B))
〈., .〉is the canonical inner product in Rn×n(i.e.〈A,B〉 = tr(AtB)).

To compute this gradient, we first write f as a trace function by using Lemma 5.2.1 :

f(E,F ) =
s∑

k=1
fk(E,F )

such that,

fk(E,F ) = 1
2‖Mk − F−1 ddiag(FMkE

t)E−t‖2

= 1
2 tr((Mk − F−1 ddiag(FMkE

t)E−t)t(Mk − F−1 ddiag(FMkE
t)E−t))

= 1
2 tr(MkM

t
k − 2E−1 ddiag(FMkE

t)F−tF−1 ddiag(FMkE
t)E−t).

Let fF := f(., F ) :Mo
n → R, E 7→ f(E,F ); fE := f(E, .) :Mo

n → R, F 7→ f(E,F ).

We have,

gradobf(E,F ) = (gradobfF (E), gradobfE(F )) =
( s∑
k=1

gradobfFk (E),
s∑

k=1
gradobfEk (F )

)
,

where gradob fFk (E) and gradob fEk (F ) denote respectively the Riemannian gradient of fFk =
fk(., F ) : Mo

n → R, E 7→ fk(E,F ) at E ∈ Mo
n and of fEk = fk(E, .) : Mo

n → R, F 7→

∗. The computation of the gradient is derived by a technical analog of the gradient when the matrices are considered
symmetric, see for instance [8, 1, 25].
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fk(E,F ) at F ∈Mo
n, equipped with the right-invariant metric.

We show how to compute gradob fFk (E) then the same procedure can be applied to compute
gradob fEk (F ).
To compute the Riemannian gradient of fFk at E inMo

n endowed with the right-invariant metric,
we recall from Table 3.1 that :

gradob fFk (E) = PEob,r(grad fFk (E)),

where PEob,r is the orthogonal projection map into TEMo
n according to the right-invariant metric

already been given in the same table 3.1, and grad fFk (E) is the Riemannian gradient of fFk at
E ∈ GLn equipped with the right-invariant metric given by (see Section 3.5.4 ) :

grad fFk (E) = gradEuc f
F
k (E)EtE,

such that gradEuc f
F
k (E) is the Euclidean gradient of fFk at E ∈ GLn.

Next, to compute gradEuc f
F
k (E) we compute the time derivative of fFk (ḟFk ) in terms of the time

derivative of E (Ė ∈ TEGLn) by using the trace identities in Lemma 5.2.1 in order to obtain

ḟFk (E) = tr(XĖ),

on the other hand we have that ḟFk (E) = tr((gradEuc f
F
k (E))tĖ), herein we deduce

gradEuc f
F
k (E) = Xt.

Finally, the formulas of gradEuc f
F
k (E) and gradEuc f

E
k (F ) are given by :

gradEuc f
F
k (E) = [Qk(E,F ) ddiag(FMk E

t)− ddiag(Qk(E,F )) FMk E
t]E−t,

gradEuc f
E
k (F ) = [Qk(E,F )t ddiag(FMk E

t)− ddiag(Qk(E,F )) EMt
k F

t]F−t,

with Qk(E,F ) = (EEt)−1(EMt
k F

t − ddiag(FMk E
t))(FF t)−1.

For shortness, ξEi (resp. ξFi) denotes hereafter gradobfFi(Ei) (resp. gradobfEi(Fi)).
In step 3, ηi := (ηEi , ηFi) ∈ TEiMo

n × TFiMo
n such that :

ηi := −ξi + βiTXi−1→Xi(ηi−1) = −(ξEi , ξFi) + βi(T ob,rEi−1→Ei(η
Ei−1), T ob,rFi−1→Fi(η

Fi−1)),

where T ob,rEi−1→Ei (resp. T ob,rFi−1→Fi) is the vector transport onMo
n equipped with the right-invariant

metric from Table 3.1. We use the Polak-Ribière formula in (3.8) for βi :

βi =
〈
ξi, ξi − TXi−1→Xi (ξi−1)

〉r
Xi

〈ξi, ξi〉rXi

In step 5, we define the new point Xi+1 := (Ei+1, Fi+1) ∈Mo
n ×Mo

n such that :

Xi+1 := RXi(0.5
m
ηi) = R(Ei,Fi)(0.5

mηEi , 0.5mηFi) = (Rob,rEi
(0.5mηEi), Rob,rFi

(0.5mηFi)),

where Rob,rEi
(resp. Rob,rFi

) is the retraction onMo
n for Ei ∈Mo

n (resp. for Fi ∈Mo
n) according to

the right-invariant metric from Table 3.1.

The algorithm stops when ‖ gradob f(Xi)‖ ≤ tolerence.
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5.3 Simultaneous matrix diagonalization and tensor decomposition

In this section, we show the connection between simultaneous matrix diagonalization and
tensor decomposition. For real tensor rank approximation of real multilinear tensors of dimension
3 and size (n1, n2, n3) with approximation rank r ≥ max(n1, n2), we develop an alternate
optimization algorithm, based on approximate simultaneous diagonalization of matrices.

We denote by T(n1, n2, n3) the set of real multilinear tensors of dimension 3 and size
(n1, n2, n3) i.e. T(n1, n2, n3) := Rn1 ⊗ Rn2 ⊗ Rn3 .
A pencil M = [M1, . . . ,Ms] of matrices Mi ∈ Rn×n can be seen as a tensor M ∈ T(n, n, s)
where the slice M[:,:,i] is the matrix Mi.
Let M = [M1, . . . ,Ms] be a pencil of simultaneously diagonalizable matrices Mi ∈ Rn×n, i.e.
there exists matrices E,F ∈ GLn with

Mk = F diag(Σ[:,k])Et = FΣ[k]E
t (5.34)

where Σ = [σi,j ] ∈ Rn×s and Σ[:,k] is the kth column of Σ and Σ[k] = diag(Σ[:,k]).

Proposition 5.3.1. A pencil of simultaneously diagonalizable matrices M = [M1, . . . ,Ms] such
that Mi ∈ Rn×n, ∀1 ≤ i ≤ s, is in correspondence with a tensor M ∈ T(n, n, s) of rank 6 n.

Proof. To a familyM = [M1, . . . ,Ms] of n×nmatrices, corresponds the tensor M ∈ T(n, n, s)
such that M[:,:,i] = Mi. IfM is simultaneously diagonalizable as in (5.34), then the corresponding
tensor M can be written as

M =
n∑
k=1

Fk ⊗ Ek ⊗ Σ[k,:] (5.35)

where Fk (resp. Ek) is the kth column of F , (resp. E) and Σ[k,:] = [σk,1, . . . , σk,s] is the kth

row of Σ. Conversely, if a tensor M can be written as (5.35), then the pencil M = [M[:,:,i]] is
simultaneously diagonalizable with Mk = FΣ[k]E

t where E = [E1, . . . , En], F = [F1, . . . , Fn]
and Σ[k] = diag(Σ1,k, . . . ,Σn,k). �

The matrices E,F,Σ involved in (5.34) (resp. (5.35)) are called the decomposition factors of
M (resp. M).
Now, suppose that we have a tensor M ∈ T(n1, n2, n3) that we aim to approximate to a tensor of
rank r ≥ max(n1, n2), i.e. find three factor matrices A, B, C respectively in Rn1×r, Rn2×r and
Rn3×r, that minimize the following non-linear least-squares function :

f(A,B,C) = 1
2
∥∥M− r∑

i=1
A[:, i]⊗B[:, i]⊗ C[:, i]

∥∥2
.

Our approach, based on alternate optimization method, to find such factor matrices A, B and C
can be summarized as follows :

1. Let M be the pencil of n3 matrices of size n1 × n2 associated to M.
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2. Extend the pencil M to a pencil M̃ = [M̃1, . . . , M̃n3 ] with M̃i of size r × r such that the
block of the first n1 rows with n2 columns in M̃i is equal to Mi in M , and the remain
entries of M̃i are sampled randomly, for instance, according to a Gaussian distribution.

3. Approximate the pencil M̃ locally by a pencil of simultaneously diagonalizable matrices
M̃ ′ by using Algorithm 5.1 in Section 5.2, i.e. find (E,F ) ∈Mo

r×Mo
r that solves locally :

min
(E,F )∈Mo

r×Mo
r

f1(E,F ) = min
(E,F )∈Mo

r×Mo
r

1
2

n3∑
k=1
‖M̃k − F−1 ddiag(FM̃kE

t)E−t‖2.

4. Recall from (5.35) that the tensor associated to the pencil of simultaneously diagonalizable
matrices M̃ ′ can be written as a tensor rank-r decomposition with the factors E, F and Σ.
This means, that the tensor associated to M̃ is approximated locally by the tensor rank-r
decomposition given by M̃ ′.

5. Since our goal is to find a rank-r approximation of the tensor M, such that its slices
M[:, :, k] are fixed blocks in the matrices M̃k of the pencil M̃ , the distance function
1
2
∑n3
k=1 ‖M̃k − F−1 ddiag(FM̃kE

t)E−t‖2 can be reduced, by fixing the obtained ma-
trices E, F and optimizing all the entries of the matrices M̃k except of those in the fixed
blocks. This leads us to the following linear least-squares problem :

min
M̃

f2(M̃) = min
M̃

1
2

n3∑
k=1
‖M̃k − F−1 ddiag(FM̃kE

t)E−t‖2,

s.t. M̃k[1 : n1, 1 : n2] = Mk, for k ∈ {1, . . . , n3}.
(5.36)

In summary, we minimize the function

f(E,F,M̃) = 1
2

n3∑
k=1
‖M̃k − F−1 ddiag(FM̃kE

t)E−t‖2

s.t. (E,F ) ∈Mo
r ×Mo

r,

M̃k[1 : n1, 1 : n2] = Mk, for k ∈ {1, . . . , n3},

(5.37)

by alternating between two optimization minimization problems. The first updates E and
F by minimizing f1 in step 3 using the Riemannian conjugate gradient iteration from
Section 5.2, and the second updates the entries which don’t belong to the fixed blocks in
M̃k of the pencil M̃ by solving the linear least-squares problem with f2 in step 5.

6. Hence, we present an iterative algorithm such that at each iteration the alternate optimiza-
tion method from step 5 is applied. This is an alternate optimization algorithm (AO). The
algorithm stops when f(E,F, M̃) ≤ tolerance, or when the number of iterations reaches
a maximum number Nmax.

7. At the end, when the algorithm stops, an approximated rank-r decomposition is obtained
for the tensor associated to a pencil M̃ , from which we can extract an approximated rank-r
decomposition for the targeted tensor M.

The Alternate Optimization algorithm (AO) is given in pseudo-code in Algorithm 5.2.
We detail the linear least-squares problem in (5.36) and step 6 of Algorithm 5.2. It can be solved
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as follows :
For each k in {1, . . . , n3}, we consider the linear least-squares problem

min
M̃k∈Rr×r

1
2‖M̃k − F−1 ddiag(FM̃kE

t)E−t‖2, s.t. M̃k[1 : n1, 1 : n2] = Mk.

Let H := M̃k − F−1 ddiag(FM̃kE
t)E−t ∈ Rr×r, let hi,j be the entry of H in the i-th row and

the j-th column. We have hi,j = 〈ei,j , H〉, where (ei,j)1≤i,j≤r is the canonical basis of Rr×r. By
developing the calculus using the trace properties in Lemma 5.2.1 in order to isolate our targeted
variable M̃k, we find :

hi,j = 〈ei,j − F t ddiag(E−1[j, :]⊗ F−1[i, :])E, M̃k〉.

Hence, minimizing the Frobenius norm of hi,j is equivalent to minimizing the Frobenius norm of
(vec(ei,j − F t ddiag(E−1[j, :]⊗ F−1[i, :])E))t vec(M̃k). This leads us to the following system :

GX = 0,

where G = [(vec(ei,j − F t ddiag(E−1[j, :]⊗ F−1[i, :])E))t] ∈ Rr2×r2
, X = vec(M̃k) ∈ Rr2

.
Recall that we have n1n2 fixed entries in M̃k equal to the n1n2 entries of Mk, thus we write the
system GX = 0 as G = [G1, G2], X = [X1, X2], such that X2 ∈ Rn1n2 represents the fixed
known entries in M̃k and G2 ∈ Rr2×n1n2 contains the corresponding columns to X2 in G. Simi-
larly,X1 ∈ Rr2−n1n2 represents the vector of the unknown entries of M̃k andG1 ∈ Rr2×(r2−n1n2)

contains the corresponding columns to X2 in G. Hence, the system to solve becomes :

G1X1 = Y, (5.38)

where Y := −G2X2. Consequently, we can write

X1 = G†1X2,

where G†1 denotes the pseudo-inverse of G1. Note that if G1 is of full column rank then X1 is the
least-squares solution of the overdetermined system (5.38) with G†1 = (Gt1G1)−1Gt1.

For step 8 in Algorithm 5.2 the three factors A, B and C are computed by simply taking the
block

(M̃k − F−1
end ddiag(FendM̃kE

t
end)E−tend)[1 : n1, 1 : n2]

=Mk − (F−1
end ddiag(FendM̃kE

t
end)E−tend)[1 : n1, 1 : n2], since M̃k[1 : n1, 1 : n2] = Mk,

where

(F−1
end ddiag(FendM̃kE

t
end)E−tend)[1 : n1, 1 : n2]

=F−1
end[1 : n1, 1 : r] ddiag(FendM̃kE

t
end)E−tend[1 : r, 1 : n2].

Thus the pencil M is approximated by the pencil of simultaneously diagonalizable matrices
[F−1

end[1 : n1, 1 : r] ddiag(FendM̃kE
t
end)E−tend[1 : r, 1 : n2]]1≤k≤n3 which correspond to a rank-r

decomposition with A, B and C given by (see Proposition 5.3.1) :

A = F−1
end[1 : n1, 1 : r];

B = E−tend[1 : n2, 1 : r];
C = Σt, where Σ is of size r × n3, such that Σ[:, k] = diag(FendM̃end,kE

t
end).
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Herein, the tensor associated to the pencil M is approximated by the rank-r decompostion
given by the three factor matrices A, B and C.

Remark 5.3.1 – If the tensor to approximate is of size (n, n, s) and the approximation rank r is
equal to n, there is no need to have the extension step in the Algorithm 5.2, and the algorithm is
reduced simply to Algorithm 5.1 for approximate simultaneous diagonalization of matrices.

Require: M ∈ T(n1, n2, n3), approximation rank r ≥ max(n1, n2).
1: Compute M the pencil associated to M ;
2: Extend M to the pencil M̃ of n3 matrices, such that M̃k[1 : n1, 1 : n2] = Mk for k ∈
{1, . . . , n3} ;

3: Set initial iterate (E0, F0, M̃0 := M̃), with (E0, F0) ∈Mo
r ×Mo

r.
4: for i = 1, 2, . . . do
5: Obtain (Ei, Fi) by applying Algorithm 5.1 initialized by (Ei−1, Fi−1) to solve :

min
(E,F )∈Mo

r×Mo
r

f1(E,F ) = min
(E,F )∈Mo

r×Mo
r

1
2

n3∑
k=1
‖M̃i−1,k − F−1 ddiag(FM̃i−1,kE

t)E−t‖2.

6: Fix (Ei, Fi) and update M̃i−1 to M̃i by solving :

min
M̃

f2(M̃) = min
M̃

1
2

n3∑
k=1
‖M̃k − F−1

i ddiag(FiM̃kE
t
i )E−ti ‖

2,

s.t. M̃k[1 : n1, 1 : n2] = Mk, for k ∈ {1, . . . , n3}.
(5.39)

7: end for
8: Extract factor matrices A ∈ Rn1×r, B ∈ Rn2×r, C ∈ Rn3×r, such that :

A = F−1
end[1 : n1, 1 : r];

B = E−tend[1 : n2, 1 : r];
C = Σt, where Σ is of size r × n3, such that Σ[:, k] = diag(FendM̃end,kE

t
end).

Algorithm 5.2 – Alternate optimization algorithm (AO) for tensor rank approximation of tensors
in T(n1, n2, n3) with r ≥ max(n1, n2).

Example 5.3.1 – The operator of matrix multiplication of square matrices of size 2 × 2
can be represented by the homogeneous polynomial T (x, y, z) = x1y1z1 + x1y3z3 +
x2y1z2 + x2y3z4 + x3y2z1 + x3y4z3 + x4y2z2 + x4y4z4 of degree 3 in three variables
x = (x1, ..., x4), y = (y1, ..., y4) and z = (z1, ..., z4). Let T ∈ T(4, 4, 4) be the associated
tensor to the aforementioned polynomial. By taking all the monomials of degree three that we can
construct with xi, yj and zk, for i, j, k ∈ {1, . . . , 4} and considering the lexicographic ordering
on the monomials indexing the rows, columns and slices of T , the tensor T is as follows :
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T [1, :, :] =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0



T [2, :, :] =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0



T [3, :, :] =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



T [4, :, :] =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


The tensor T is of rank 7 (see. [221]), whereas the generic rank is 6. Since its rank is higher than the
generic rank, the tensor T has many rank-7 decompositions. We apply the alternate optimization
algorithm (Algorithm 5.2) to find a rank-7 decomposition of T . Starting with an initial point that
gives an initial error

err0 := 1
2
∥∥T − 7∑

i=1
A0[:, i]⊗B0[:, i]⊗ C0[:, i]

∥∥2 = 412.63,

we found a rank decomposition after running the algorithm for 800 iterations that took around 90
seconds. The error at the final iteration is

errend := 1
2
∥∥T − 7∑

i=1
Aend[:, i]⊗Bend[:, i]⊗ Cend[:, i]

∥∥2 = 3.19e− 12.

The three factor matrices A, B, C ∈ R4×7 given by the algorithm are as follows :

A =


−3.29804 −4.1045 3.19274 −0.867293 0.22113 0.0994379 −1.09832
−2.23989 −1.90246 0.718265 −0.195113 −0.408636 −0.183755 −0.745938
0.364624 1.03971 −0.352981 1.5467 −0.394356 0.112363 −1.24109
0.247625 −0.872426 −0.0794047 0.347959 0.728746 −0.207641 −0.842896

 ,

B =


−0.0807727 −1.12551 1.16343 0.0966848 −0.774754 −0.846987 0.00372952

2.56926 −0.723095 −1.77348 −0.147383 −0.808044 −0.883381 −0.118618
0.0715004 −0.74756 0.65238 0.874531 0.685632 −0.474938 0.0337356
−2.27374 3.29779 −0.994464 −1.3331 0.715093 −0.495345 −1.07291

 ,

C =


−0.0537698 0.0635183 0.174347 0.737993 −0.237901 −1.15977 0.800897

0.239012 0.270613 −0.256709 0.39936 1.05748 1.70766 0.4334
0.0515551 0.118177 −0.167164 0.0232047 −0.00748016 −0.760829 0.5254
−0.229165 −0.162557 0.246134 0.012557 0.0332504 1.12025 0.284317

 .
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We note that Algorithm 5.2 can give other rank-7 approximations depending on the initial point,
as it is a local optimization method. Nevertheless, we choose to present in this example the case
where the initial point conduct to an exact rank-7 decomposition (by exact we mean the errend
is very reduced, for instance, errend ≤ 1.1e−10), since we knows already that this tensor has an
exact rank-7 decomposition and thus it is more interesting to find an exact rank-7 decomposition
than an approximated rank-7 decomposition.

5.4 Practical session

We present a simple example of a random rank-6 three-dimensional tensor of size (3, 3, 5)
normally distributed in order to show the implementation of the method described in Section 5.3,
available in the Julia package TensorDec.jl †.

[55]: # Run the file that contains the functions.
include("least_square.jl")

[55]: example (generic function with 1 method)

[54]: # Tensor of order three of size (n1, n2, n3), the approximation rank is r.
n1=3; n2=3; n3=5; r=6;

[30]: # Generate a random tensor of size (n1, n2, n3) and rank r, the entries are␣
↪→normally-distributed random numbers of type Float64.

T1, A1, B1, C1 = tensor_rank_r(n1,n2,n3,r);
# A1, B1, C1 are the three factor matrices used to build the tensor T1.

[31]: # The tensor T1:
T1

[31]: 3×3×5 Array{Float64,3}:
[:, :, 1] =
-2.83325 -0.10325 1.11907
1.23147 1.13445 -0.00525748

-2.72041 -1.31434 -0.0792543

[:, :, 2] =
-1.13283 -0.712515 3.64971
1.88834 1.23159 -1.5367
5.25158 -2.28315 -3.16988

[:, :, 3] =
-4.95478 0.949384 5.70849
4.04154 1.47325 -1.57491

-0.00942829 0.767305 -1.02144

[:, :, 4] =
8.64859 0.876996 -6.18629

-3.16332 0.0220391 2.21234
-1.15905 -1.66203 2.09874

[:, :, 5] =
-8.08281 -2.0019 5.06823
3.40111 0.955546 -2.83084

-0.751114 -1.57149 -0.639213

[32]: # Apply a perturbation of order 1.e-3.
T_perturb = randn(n1,n2,n3)
T = T1 + 1.e-3*(T_perturb/norm(T_perturb));

†. https://gitlab.inria.fr/AlgebraicGeometricModeling/TensorDec.jl

https://gitlab.inria.fr/AlgebraicGeometricModeling/TensorDec.jl
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[33]: # Take the pencil of the frontal slices of T:
pencil=[T[:,:,i] for i in 1:5];

[34]: # Take the matrix that contains the extension sizes
SIZE=[6 6 6 6 6 ; 6 6 6 6 6];

# Extend the pencil 'pencil' of 5 matrices of size (3, 3) to a pencil␣
↪→'pencil_ext' of 5 matrices of size (6, 6).

pencil_ext = extend(pencil,SIZE);

# Show the first matrix in pencil:
pencil[1]

[34]: 3×3 Array{Float64,2}:
-2.83342 -0.103067 1.11897
1.23152 1.13458 -0.00520429

-2.72041 -1.31432 -0.0791214

[35]: # Show the first matrix in pencil_ext:
pencil_ext[1]

[35]: 6×6 Array{Float64,2}:
-2.83342 -0.103067 1.11897 0.901066 0.0743145 0.980506
1.23152 1.13458 -0.00520429 0.232798 0.484185 0.900788

-2.72041 -1.31432 -0.0791214 0.184807 0.423952 0.266923
0.159625 0.779979 0.0873955 0.409319 0.88752 0.356534
0.754062 0.414404 0.516783 0.175066 0.327537 0.316228
0.327431 0.00241824 0.0210144 0.534145 0.428405 0.592499

[47]: # Take initial two matrices E and F:
E = randn(6,6); F=randn(6,6);

# The approximated decompostion of rank 6 given by pencil_ext, E and F is
A0, B0, C0, T0=factors(pencil_ext, E, F,n1,n2,n3,r);

# Error between tensor to approximate T and T0 the tensor of rank 6 with factor␣
↪→matrices A0, B0 and C0:

print("Initial error: ", round(0.5*norm(T-T0)^2,digits=2))

Initial error: 10510.02

The error that we show for the algorithm alternate is:

1
2

n3

∑
k=1
‖pencil_ext[k]− F−1ddiag(Fpencil_ext[k]Et)E−t‖2.

The Julia function that computes this error is obj.
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[75]: # The initial error of the algorithm alternate:
print("Initial error of the function alternate:",␣

↪→round(obj(pencil_ext,E,inv(E),F,inv(F)), digits = 2))

Initial error of the function alternate:55879.53

[65]: # Apply 20 iterations of the alternate algorithm and show the first three and␣
↪→the last three error given by respectively the

# approximate simultaneous step 'err_simdiag_i' and the linear least-squares␣
↪→step 'err_least_i'.

pencil_ext_end, E_end, F_end = alternate(pencil_ext,pencil,E,F,20, 1.e-2);

err_simdiag_1:6.675755
err_least_1:0.819885
err_simdiag_2:0.536113
err_least_2:0.419789
err_simdiag_3:0.356233
err_least_3:0.314931
...
err_simdiag_18:0.057583
err_least_18:0.055109
err_simdiag_19:0.05278
err_least_19:0.050682
err_simdiag_20:0.04864
err_least_20:0.04679

[66]: # Take the three factor matrices given by pencil_end, E_end, F_end for rank 6␣
↪→approximation of the tensor T:

A_end, B_end, C_end, T_end = factors(pencil_ext_end, E_end, F_end,n1,n2,n3,r);

[73]: # Error between tensor to approximate T and T0 the tensor of rank 6 with factor␣
↪→matrices A0, B0 and C0:

print("Initial error between T and T0: ", round(0.
↪→5*norm(T-T0)^2,digits=2),"\n","\n")

# Error between tensor to approximate T and T_end the tensor of rank 6 with␣
↪→factor matrices A_end, B_end and C_end:

print("Final error between T and T_end: ", round(0.5*norm(T-T_end)^2,digits=4))

Initial error between T and T0: 10510.02
Final error between T and T_end: 0.0461

5.5 Conclusion

In this chapter, we studied the simultaneous diagonalization of matrices problem. The consi-
dered matrices were general square matrices. A pencil of matrices M = [M1, . . . ,Ms] is simulta-
neously diagonalizable if there exists two matricesE and F such that FMkE is a diagonal matrix,
for k ∈ {1, . . . , s}. In this regards, we addressed three topics. The first (Section 5.1) was about the
certification problem of a pencil of simultaneously diagonalizable matrices, where we presented a
Newton-type method associated to this problem and we proved, under a sufficient condition on the
initial point, a certification of the convergence of the sequence quadratically towards the solution.
In the second part (Section 5.2), we tackled the problem of approximate simultaneous diagonali-
zation of matrices (ASD) and we developed a Riemannian conjugate gradient algorithm to locally
approximate a pencil of matrices to a pencil of simultaneously diagonalizable matrices. In the last
part (Section 5.3), we showed how to use this approach in tensor rank approximation problem,
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where there exists a link between simultaneous diagonalization of matrices and CP decomposition
of tensors. We used approximate simultaneous diagonalization, more precisely the Riemannian
conjugate gradient algorithm 5.1, to implement an algorithm (Algorithm 5.2) that computes an
approximated rank-r decomposition for three-dimensional tensors when r is higher than the size
of each of the first two dimensions. We note that the results of Section 5.2 and Section 5.3 consti-
tute raw results which we aimed to integrate into this manuscript. Indeed, the investigations are
still pursued in this direction, and we are driving more numerical experiments to have a better
understanding of the numerical behavior of the two algorithms (5.1 and 5.2), which can help us,
for instance, in the analysis of their convergence.





CHAPTER 6
Tensor decomposition
for learning Gaussian

mixtures from moments
In data processing and machine learning, an important challenge is to recover and
exploit models that can represent accurately the data. We consider the problem of re-
covering Gaussian mixture models from datasets. We investigate symmetric tensor de-
composition methods for tackling this problem, where the tensor is built from empirical
moments of the data distribution. We consider identifiable tensors, which have a unique
decomposition, showing that moment tensors built from spherical Gaussian mixtures
have this property. We prove that symmetric tensors with interpolation degree strictly
less than half their order are identifiable and we present an algorithm, based on simple
linear algebra operations, to compute their decomposition. Illustrative experimentations
show the impact of the tensor decomposition method for recovering Gaussian mixtures,
in comparison with other state-of-the-art approaches.
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In this chapter we address the method of moments for recovering Gaussian mixtures. Af-
ter reviewing Gaussian mixtures and moment methods in Section 6.1, we present in Section 6.2
an algebraic symmetric tensor decomposition method for identifiable tensors. In Section 6.3, we
implement the method of moments to provide an initial point for the Expectation Maximization
algorithm for recovering spherical Gaussian mixtures with some examples of synthetic and real
datasets, in comparison with other state-of-the-art approaches.

6.1 Gaussian mixtures and high order moments

In this section, we review Gaussian mixture models and their applications to clustering.

6.1.1 Gaussian mixtures

Suppose that we wish to deal with some Euclidean data x ∈ Rm, coming from a population
composed of r homogeneous sub-populations (often called clusters). A reasonable assumption
is then that each sub-population can be modelled using a simple probability distribution (e.g.
Gaussian). This idea is at the heart of the notion of mixture distribution. The prime example of
mixture is the Gaussian mixture, whose probability density over Rm is defined as

pθ(x) =
r∑
j=1

ωjN (x|µj ,Σj), (6.1)

where N (·|µ,Σ) denotes the Gaussian density with mean µ ∈ Rm and definite positive co-
variance matrices Σ ∈ S++

m . The mixture is parametrized by a typically unknown θ =
(ω1, ..., ωr, µ1, ..., µr,Σ1, ...,Σr), composed of

— ω = (ω1, ..., ωr), that belong to the r-simplex and correspond to the cluster proportions,
— µj and Σj , that correspond respectively to the mean and covariance of each cluster j ∈
{1, ..., r}.

Gaussian mixtures are ubiquitous objects in statistics and machine learning, and own their popu-
larity to many reasons. Let us briefly mention a few of these.

Density estimation If r is allowed to be sufficiently large, it is possible to approximate any
probability density using a Gaussian mixture (see e.g. [153]). This motivates the use of Gaussian
mixtures as powerful density estimators that can be subsequently used for downstream tasks such
as missing data imputation [71], supervised classification [95], or image classification [181] and
denoising [106].

Clustering Perhaps the most common use of Gaussian mixtures is clustering, also called unsu-
pervised classification. The task of clustering consists in uncovering homogeneous groups among
the data at hand. Within the context of Gaussian mixtures, each group generally corresponds to a
single Gaussian distribution, as in Equation (6.1). If the parameters of a mixture are known, then
each point may be clustered using the posterior probabilities obtained via Bayes’s rule :

∀x ∈ Rm, k ∈ {1, ..., r}, Pr(x belongs to cluster j) = ωjN (x|µj ,Σj)
pθ(x) . (6.2)

Detailed reviews on mixture models and their applications, notably to clustering, can be found
in [83, 29, 144].
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6.1.2 Learning mixture models

The main statistical question pertaining mixture models is to estimate the parameters θ =
(ω1, ..., ωr, µ1, ..., µr,Σ1, ...,Σr) based on a data set x1, ..., xn. Typically, X1, ..., Xn are assu-
med to be independent and identically distributed random variables with common density pdata.
The problem of statistical estimation is then to find some θ such that pθ ≈ pdata. There are many
approaches to this question, the most famous one being the maximum likelihood method. Maxi-
mum likelihood is based on the idea that maximising the log-likelihood function

`(θ) =
n∑
i=1

log pθ(xi), (6.3)

will lead to appropriate values of θ. One heuristic reason of the good behaviour of maximum li-
kelihood is that `(θ) can be seen as a measure of how likely the observed data is, according to
the mixture model pθ. This means that the maximum likelihood estimate will be the value of θ
that renders the observed data the likeliest. Another interesting interpretation of maximum like-
lihood in information-theoretic : when n −→ ∞, maximising the log-likelihood is equivalent to
minimising the Kullback-Leibler divergence (an information-theoretic measure of distance bet-
ween probability distributions) between pθ and pdata, thus giving a precise sense to the statement
pθ ≈ pdata (see e.g. [21, Section 1.6.1]). For more details on the properties of maximum likelihood,
see e.g. [210, Section 5.5].

In the specific case of a mixture model, performing maximum-likelihood is however complex
for several reasons. Firstly, as shown for instance by [130], finding a global maximum is actually
often ill-posed in the sense that some problematic values of θ will lead to `(θ) = ∞ while being
very poor models of the data. While focusing on local rather global maxima will fix this first issue
in a sense, iterative optimization algorithms are likely to pursue these unfortunate global maxima.
Because of the peculiarities of mixture likelihoods, the most popular algorithm for maximising
`(θ) is the expectation maximization (EM, [68]) algorithm, an iterative algorithm specialized for
dealing with log-likelihoods of latent variable models. The EM algorithm is usually preferred to
more generic gradient-based optimization algorithms [223]. In a nutshell, at each iteration, the
EM algorithm clusters the data using Equation (6.2), and then computes the mean and covariance
of each cluster. This iterative scheme is related to another popular clustering algorithm known as
k-means (the close relationship between the two algorithms is detailed in [21, Section 9]). A key
issue when using the EM algorithm for a Gaussian mixture is the choice of initialization. Indeed,
a poor choice may lead to degenerate solutions, extremely slow convergence, or poor local optima
(see [17] and references therein). We will see in this paper that good initial points can be obtained
by using another estimation method called the method of moments (as was previously noted by
[178] in a context of mixtures of multivariate Bernoulli distributions).

The method of moments is a general alternative to maximum likelihood. The idea is to choose
several functions g1 : Rm −→ Rq1 , ..., gd : Rm −→ Rqd called moments, and to find θ by
attempting to solve the system of equations

Ex∼pdata [g1(x)] = Ex∼pθ [g1(x)]
...

Ex∼pdata [gd(x)] = Ex∼pθ [gd(x)].
(6.4)
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Of course, since pdata is unknown, solving (6.4) is not feasible. However, one may replace the
expected moments by empirical versions, and solve instead

1
n

∑n
i=1 g1(xi) = Ex∼pθ [g1(x)]

...
1
n

∑n
i=1 gd(xi) = Ex∼pθ [gd(x)].

(6.5)

A very simple example of this, in the univariate m = 1 case, when g1(x) = x, and g2(x) = x2.
Then, solving (6.4) will ensure that the distributions of the model pθ and the data pdata have the
same mean and variance. However, many very different distributions have identical mean and
variance ! A natural refinement of the previous idea is to consider also higher-order moments
g3(x) = x3, g4(x) = x4, .... This will considerably improve the estimates found using the method
of moments. This approach was pioneered by [164] for learning univariate Gaussian mixtures. In
the more general multivariate case m > 1, following [107], the moments chosen can be tensor
products, as we detail in the next section in case of a Gaussian mixture with spherical covariances.

6.2 Learning structure from tensor decomposition

In this section, we describe the moment tensors revealing the structure of spherical Gaussian
mixtures and how it can be decomposed using standard linear algebra operations. We note that
tensor methods have been introduced for GMM before, see for instance [189].

Let X = (X1, . . . , Xm) be a set of variables. The ring of polynomials in X with coefficients
in C is denoted C[X]. The space of homogeneous polynomials of degree d ∈ N is denoted C[X]d.
We recall that a symmetric tensor T of order d (with real coefficients) can be represented by an
homogeneous polynomial of degree d in the variables X of the form

T (X) =
∑
|α|=d

Tα

(
d

α

)
Xα

where α = (α1, . . . , αn) ∈ Nm, |α| = α1 + · · · + αm = d, Tα ∈ R,
(d
α

)
= d!

α1!···αm! , Xα =
Xα1

1 · · ·Xαm
m .

A decomposition of T as a sum of dth power of linear forms is of the form

T (X) =
r∑
i=1

ωi(ξi ·X)d (6.6)

where ξi = (ξi,1, . . . , ξi,m) ∈ Cm and (ξi · X) =
∑m
j=1 ξi,jXj . When r is the minimal number

of terms in such a decomposition, it is called the rank of T and the decomposition is called a rank
decomposition (or a Waring decomposition) of T (X).

We say that the decomposition is unique if the lines spanned by ξ1, . . . , ξr form a unique set
of lines with no repetition. In this case, the decomposition of T is unique after normalization of
the vectors ξi up to permutation (and sign change when d is even). A tensor T with a unique
decomposition is called an identifiable tensor. Then the Waring decompositions of T are of the
form T (X) =

∑r
i=1 ωiλ

−d
i (λi ξi ·X)d for λi 6= 0, i ∈ {1, . . . , r}.

Given a random variable x ∈ Rm, its moments are Tα = E[xα1
1 · · ·xαmm ] for α =

(α1, . . . , αm) ∈ Nm. The symmetric tensor of all moments of order d of x is

E[(x ·X)d] =
∑
|α|=d

E[xα1
1 · · ·x

αm
m ]

(
d

α

)
Xα.
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6.2.1 The structure of the moment tensor

We aim at recovering the hidden structure a random variable, from the decomposition of its
dth order moment tensor. This is possible in some circumstances, that we detail hereafter.

Assumption 6.2.1. The random variable x ∈ Rm is a mixture of spherical Gaussians of probabi-
lity density (6.1) with parameters θ = (ω1, ..., ωr, µ1, ..., µr, σ

2
1Im, , ..., σ

2
rIm) such that r ≤ m.

Theorem 6.2.2 ([107]). Under the previous assumption, let
— σ̃2 be the smallest eigenvalue of E[(x − E[x]) ⊗ (x − E[x])] and v a corresponding unit

eigenvector,
— M1(X) = E[(x ·X)(v · (x− E[x]))2],
— M2(X) = E[(x ·X)2]− σ̃2‖X‖2,
— M3(X) = E[(x ·X)3]− 3 ‖X‖2M1(X).

Then σ̃2 =
∑r
i=1 ωi σ

2
i and

M1(X) =
r∑
i=1

ωi σ
2
i (µi ·X), M2(X) =

r∑
i=1

ωi (µi ·X)2, M3(X) =
r∑
i=1

ωi (µi ·X)3. (6.7)

To analyse the properties of the decomposition (6.7), we use the apolar product on symmetric
tensors from Definition 2.2.1.

For an homogeneous polynomial T of degree d ∈ N (or equivalently a symmetric tensor of
order d), we define the Hankel operator of T in degree k ≤ d as the map

Hk,d−k
T : p ∈ C[X]d−k 7→ [〈T,Xα p〉d]|α|=k ∈ Csk

where sk =
(m+k−1

k

)
= dimC[X]k is the number of monomials of degree k in X. The matrix of

Hk,d−k
T in the basis (Xβ)|β|=d−k is

Hk,d−k
T = (〈T,Xα+β〉d)|α|=k,|β|=d−k.

From the properties of the apolar product, we see that H1,d−1
T : p 7→ 1

d [〈∂XiT, p〉d−1]1≤i≤m. For
ξ ∈ Cm and k ∈ N, let ξ(k) = (ξα)|α|=k. We also check that if T = (ξ ·X)d with ξ ∈ Cm, then
Hk,d−k

(ξ·X)d = ξ̄ (k) ⊗ ξ̄ (d−k) is of rank 1 and its image is spanned by the vector ξ̄ (k).

Proposition 6.2.3. Assume that r ≤ m, wi > 0 for i ∈ {1, . . . , r} and µ1, . . . , µr ∈ Rm are
linearly independent. The symmetric tensor M3(X) is identifiable, of rank r and has a unique
Waring decomposition satisfying (6.7).

Proof. Assume that M3(X) has a decomposition of the form (6.7). Since the vector µ1, . . . , µr
are linearly independent, by a linear change of coordinates in Glm, we can further assume that
µ1 = e1, . . . , µr = er are the first r vectors of the canonical basis of Rm. In this coordinate
system, M3(X) =

∑r
i=1X

3
i and the matrix H1,2

M3
in a convenient basis has a r × r identity block

and zero elsewhere. Thus H1,2
M3

is of rank r. Its kernel of dimension 1
2 m (m + 1) − r is spanned

by the polynomials XiXj with (i, j) 6= (k, k) for k ∈ {1, . . . , r}. The kernel of H1,2
M3

is thus the
space of homogeneous polynomials of degree 2, vanishing at e1, . . . , er ∈ Rn.

If M3(X) can be decomposed as M3(X) =
∑r′
i=1 ω

′
i (µ′i · X)3 with ω′i ∈ C, µ′i ∈ Cm and

r′ < r, then H1,2
M3

, as a sum of r′ < r matrices ω′iH
1,2
(µ′i·X)3 of rank 1, would be of rank smaller
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than r′ < r, which is a contradiction. Thus a minimal decomposition of M3(X) is of length r and
r is the rank of M3(X).

Let us show that the decomposition (6.7) of M3(X) is unique up to a scaling of the vec-
tor µi, i.e. that M3(X) is identifiable. For any Waring decomposition M3(X) =

∑r
i=1 ω

′
i (µ′i ·

X)3, the vectors µ′1, . . . , µ
′
r are linear independant, since µ′i spans imH1,2

(µ′i·X)3 and H1,2
M3

=∑r
i=1 ω

′
iH

1,2
(µ′i·X)3 is of rank r. As µ′1, . . . , µ

′
r can be transformed into e1, . . . , er by a linear change

of variables, kerH1,2
M3

is also the vector space of homogeneous polynomials of degree 2, vanishing
at µ′1, . . . , µ

′
r ∈ Cm. Therefore, the set of {µ′1, . . . , µ′r} coincides, up to a scaling, with the set

of points {µ1, . . . , µr} of another Waring decomposition of M3(X) =
∑r
i=1 ωi (µi · X)3. This

shows that M3(X) is identifiable.
Therefore, a Waring decomposition ofM3(X) is of the formM3(X) =

∑r
i=1 ω̃i (µ̃i ·X)3 with

ω̃i = λ−3ωi, µ̃i = λiµi and λi 6= 0 for i ∈ {1, . . . , r}. As µ̃1, . . . , µ̃r are linearly independent, the
homogeneous polynomials (µ̃1 ·X)2, . . . , (µ̃r ·X)2 are also linearly independant in C[X]2 (by a
linear change of variables, they are equivalent to X2

1 , . . . , X
2
r ). Consequently, the relation

M2(X) =
r∑
i=1

ωi(µi ·X)2 =
r∑
i=1

λiω̃i(µ̃i ·X)2

defines uniquely λ1, . . . , λr, and M3(X) has a unique Waring decomposition, which satisfies the
relations (6.7). �

Under Assumption 6.2.1, the hidden structure of the random variable x can thus be recovered
using Algorithm 6.1.

Input : The moment tensors M1(X),M2(X),M3(X).
— Compute a Waring decomposition of M3(X) to get ω̃i ∈ R, µ̃i ∈ Rm, i ∈ {1, . . . , r} such

that M3(X) =
∑r
i=1 ω̃i (µ̃i ·X)3.

— Solve the system
∑r
i=1 ω̃i (µ̃i · X)2λi = M2(X) to get λi ∈ R and ωi = λ3

i ω̃i ∈ R+,
µi = λ−1

i µ̃i ∈ Rm such thatM3(X) =
∑r
i=1 ωi (µi·X)3 andM2(X) =

∑r
i=1 ωi (µi·X)2.

— Solve the system
∑r
i=1 ωi(µi ·X)σ2

i = M1(X) to get σ2
i ∈ R+.

Output : ωi ∈ R+, µi ∈ Rn, σ2
i ∈ R+ for i ∈ {1, . . . , r}.

Algorithm 6.1 – Recovering the hidden structure of a Gaussian mixture

This yields the parameters ωi ∈ R+, µi ∈ Rm, σi ∈ R+ for i ∈ {1, . . . , r} of the Gaussian
mixture x.

In the experimentation, the moments involved in the tensors Mi will be approximated by em-
pirical moments and we will compute an approximate decomposition of the empirical moment
tensor M̂3(X).

6.2.2 Decomposition of identifiable tensors

We describe now an important step of the approach, which is computing a Waring decompo-
sition of a tensor. In this section, we consider a tensor T ∈ C[X]d of order d ∈ N with a Waring
decomposition of the form T =

∑r
i=1 ωi (ξi ·X)d with ωi ∈ C, ξi ∈ Cm, that we recover by linear

algebra techniques, under some hypotheses.
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Definition 6.2.1. The interpolation degree ι(Ξ) of Ξ = {ξ1, . . . , ξr} ⊂ Cm is the smallest de-
gree k of a family of homogenous interpolation polynomials u1, . . . , ur ∈ C[X]k at the points Ξ
(ui(ξj) = δi,j for i, j ∈ {1, . . . , r}).

For any d ≥ ι(Ξ), there exists a family (ũi)i∈{1,...,r} of interpolation polynomials of degree

d, obtained from an interpolation family (ui)i∈{1,...,r} in degree ι(Ξ) as ũi = (λ·X)d−ι(Ξ)

(λ·ξi)d−ι(Ξ) ui for a
generic λ ∈ Cm such that λ · ξi 6= 0 for i ∈ {1, . . . , r}.

Notice that if the points Ξ = {ξ1, . . . , ξr} are linearly independent (and therefore r ≤ m),
then ι(Ξ) = 1 since a family of linear forms interpolating Ξ can be constructed.

If k ≥ ι(Ξ), then the evaluation map e(k)
Ξ : p ∈ C[X]k 7→ (p(ξ1), . . . , p(ξr)) ∈ Cr is

surjective. Its kernel is the space of homogeneous polynomials of degree k vanishing at Ξ. Any
supplementary space admits a basis u1, . . . , ur, which is an interpolating family for Ξ in degree k.
A property of the interpolation degree is the following :

Lemma 6.2.4. For k > ι(Ξ), the common roots of ker e(k)
Ξ is the union ∪ri=1C ξi of lines spanned

by ξ1, . . . , ξr ∈ Cm.

Proof. As ι(Ξ) + 1 is the Castelnuovo-Mumford regularity of the vanishing ideal I(Ξ) = {p ∈
C[X] | p homogeneous, p(ξ) = 0 for ξ ∈ Ξ} [76][Ch.4], it is generated in degree k > ι(Ξ) and
the common roots of ker e(k)

Ξ = I(Ξ)k is ∪ri=1C ξi. �

Hereafter, we show that tensors T such that rankHk,d−k
T = r for k > ι(Ξ) + 1 are identifiable

and we describe a numerically robust algorithm to compute their Waring decomposition.
Let U = (Uα,j)|α|=k,j∈{1,...,r} ∈ Csk×r be such that imU = imHk,d−k

T and Ui =
(Uei+α,j)|α|=k−1,j∈{1,...,r} be the submatrices of U with the rows indexed by the monomials divi-
sible by Xi for i ∈ {1, . . . ,m}.

Theorem 6.2.5. Let T ∈ C[X]d with a decomposition T =
∑r
i=1 ωi (ξi ·X)d with ωi ∈ C and

ξi = (ξi,1, . . . , ξi,n) ∈ Cm such that rankHk,d−k
T = r for some k ∈ [ι(ξ1, . . . , ξr) + 1, d]. Then T

is identifiable of rank r and there exist invertible matrices E ∈ Csk×sk , F ∈ Cr×r such that

Et Ui F =
[

∆i

0

]
(6.8)

with ∆i = diag(ξ̄1,i, . . . , ξ̄r,i) for i ∈ {1, . . . ,m}. For any pair (E,F ), which diagona-
lizes simultaneously [U1, . . . , Um] as in (6.8), there exist unique ω′1, . . . , ω

′
r ∈ C such that

T =
∑r
i=1 ω

′
i (ξ′i ·X)d with ξ̄′i = ((∆1)i,i, . . . , (∆m)i,i).

Proof. From the decomposition of T , we have for k ≤ d that

Hk,d−k
T =

r∑
i=1

ωi ξ̄
(k)
i ⊗ ξ̄ (d−k)

i

is a linear combination of r Hankel matrices ξ̄ (k)
i ⊗ ξ̄ (d−k)

i of rank 1. If T is of rank r′ < r, then
using its decomposition of rank r′, Hk,d−k

T would be of rank ≤ r′ < r, which is a contradiction.
This shows that T is of rank r.
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As rankHk,d−k
T = r, we deduce that the image of Hk,d−k

T is spanned by ξ̄ (k)
1 , . . . , ξ̄

(k)
r and

there exists an invertible matrix F ∈ Cr×r such that

U F = [ξ̄ (k)
1 , . . . , ξ̄(k)

r ]

For any polynomial p ∈ C[X]k, which coefficient vector in the monomial basis (Xα)|α|=k is de-
noted [p], we have [p]tUF = [p(ξ̄1), . . . , p(ξ̄r)]t. This shows that U⊥ = {p ∈ C[X] | [p]tU = 0}
is ker e(k)

Ξ̄ . By Lemma 6.2.4 since k ≥ ι(Ξ̄), the common roots of the homogeneous polynomials

in ker e(k)
Ξ̄ are the scalar multiples of Ξ̄. Consequently, the set of lines spanned by the vectors

Ξ of a Waring decomposition of T is uniquely determined as the conjugate of the zero locus of
U⊥ ⊂ C[X]k and T is identifiable.

For any p ∈ C[X]k−1 represented by its coefficient vector [p] in the monomial basis
(Xα)|α|=k−1, we have

[p]tUiF = [xip]tUF = [ξ̄1,i p(ξ̄1), . . . , ξ̄r,i p(ξ̄r)]t. (6.9)

Let E be the coefficient matrix of a basis u1, . . . , ur, vr+1, . . . , vsk−1 of C[X]k−1, such that
u1, . . . , ur is an interpolating family for Ξ̄ = {ξ̄1, . . . , ξ̄r} and vr+1, . . . , vsk−1 is a basis of

ker e(k−1)
Ξ̄ . The matrix E is invertible by construction, and we deduce from (6.9) that

EtUiF =
[

diag(ξ̄1,i, . . . , ξ̄r,i)
0

]
.

Let us show conversely that for any pair of matrices (E′, F ′), which diagonalizes simulta-
neously [U1, . . . , Um] as in (6.8) with ∆i = diag(ξ̄′1,i, . . . , ξ̄′r,i), there exist unique ω′1, . . . , ω

′
r ∈ C

such that T =
∑r
i=1 ω

′
i (ξ′i ·X)d.

Let u′1, . . . , u
′
r, v
′
r+1, . . . , v

′
sk−1 ∈ C[X] be the polynomials corresponding to the columns of

E′. Then for a generic λ = (λ1, . . . , λr) ∈ Cm, we have

diag((λ · ξ̄′1), . . . , (λ · ξ̄′r)) =
m∑
i=1

λi[u′1, . . . , u′r]tUiF ′ =
m∑
i=1

λi[u′1, . . . , u′r]tUiF (F−1F ′)

= [(λ · ξ̄j)u′i(ξ̄j)]i,j∈{1,...,r}F−1F ′

= diag((λ · ξ̄1), . . . , (λ · ξ̄r)) [u′i(ξ̄j)]i,j∈{1,...,r}F−1F ′.

As λ ∈ Cm is generic and λ · ξ̄i 6= 0 for i ∈ {1, . . . , r}, we deduce that ∆ =
[u′i(ξ̄j)]i,j∈{1,...,r}F−1F ′ is a diagonal and invertible matrix and that ξ′i = ∆̄i,iξi with ∆i,i 6= 0.

Then we have (ξ′i ·X)d = ∆̄d
i,i (ξi ·X)d and T =

∑r
i=1 ω

′
i (ξ′i ·X)d with ω′i = ∆̄−di,i ωi, which

concludes the proof of the theorem. �

This leads to Algorithm 6.2 to compute a Waring decomposition of an identifiable tensor T .

6.3 Numerical experimentations

The model used in this section is the Gaussian Mixture Model (GMM) with differing spherical
covariance matrices. Recall that if x = (x1, . . . , xn) is a sample of n independent observations
from r multivariate Gaussian mixture with differing spherical covariance matrices of dimension
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Input : T ∈ C[X]d, which admits a decomposition with r points Ξ = {ξ1, . . . , ξr} and k > ι(Ξ).
— Compute the Singular Value Decomposition of Hk,d−k

T = U S V t ;
— Deduce the rank r of Hk,d−k

T , take the first r columns of U and build the submatrices Ui
with rows indexed by the monomials (XiXα)|α|=k−1 for i ∈ {1, . . . , n} ;

— Compute a simultaneous diagonalization of the pencil [U1 . . . , Um] as EtUiF =[
diag(ξ̄1,i, . . . , ξ̄r,i)

0

]
and deduce the points ξi = (ξi,1, . . . , ξi,m) ∈ Cm for i ∈

{1, . . . , r} ;
— Compute the weights ω1, . . . , ωr by solving the linear system T =

∑r
i=1 ωi (ξi ·X)d ;

Output : ωi ∈ C, ξi ∈ Cm s.t. T =
∑r
i=1 ωi (ξi ·X)d.

Algorithm 6.2 – Decomposition of an identifiable tensor

m, and h = (h1, h2, . . . , hn) is the latent variable that determine the component from which the
observation originates, then :

xi | (hi = k) ∼ Nm(µk, σ2
kIm) where,

Pr(hi = k) = ωk, for k ∈ {1, . . . , r}, such that
r∑

k=1
ωk = 1.

The aim of statistical inference is to find the unknown parametrs µk, σ2
k andwk, for k ∈ {1, . . . , r}

from the data x. This can be done by finding the maximum likelihood estimation (MLE) i.e.
finding the optimal maximum of the likelihood function associated to this model. The expectation
maximization algorithm (EM) [68], usually used for finding MLEs, is an iterative algorithm in
which the initialization i.e. the initial estimation of the latent parameters is crucial, since various
initializations can lead to different local maxima of the likelihood function, consequently, yielding
different clustering partition. Thus, in this section we compare the clustering results obtained by
different initialization of the EM algorithm against the initialization by the method of moments
through examples of simulated (subsection 6.3.1) and real (subsection 6.3.2) datasets. We fix a
maximum of 100 iterations of the EM algorithm. The different initialization considered in this
section are the following :

— The k-means method [142] according to the following strategy :
The best partition obtained out of 50 runs of the k-means algorithm.

— The method of moments, where Algorithm 6.1 is applied to build the moments and Al-
gorithm 6.2 is applied to the empirical moment tensor corresponding to M3(vX) (see
Algorithm 6.2.2), with less than 5 Riemannian Newton iterations (Chapter 4) to reduce the
distance between the empirical moment tensor and its decomposition.

— The Model-based hierarchical agglomerative clustering algorithm (MBHC) [209, 82].
— The emEM strategy [20] as in [131] which makes 5 iterations for each of 50 short runs

of EM, and follows the one which maximizes the log-likelihood function by a long run of
EM.

The k-means, MBHC and emEM are common strategies for initialising the EM algorithm for
GMMs. The comparison among the different EM initialization strategies is based on three mea-
sures : The Bayesian Information Criterion (BIC) [184, 81], the Adjusted Rand Index (ARI) [108],
and the error rate (errorRate). The BIC is a penalized-likelihood criterion given by the following
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formula
BIC = −2`(θ̂) + log(n)ν,

where ` is the log-likelihood function , θ̂ is the MLE which maximizes the log-likelihood function
and ν is the number of the estimated parameters. This criterion measures the quality of the model
such that for comparing models the one with the largest BIC value among the other models is the
most fitted to the studied dataset. The ARI criterion measures the similarity between the estimated
clustering obtained by the applied model and the exact true clustering. Its value is bounded bet-
ween 0 and 1. The more this measure is close to 1 the more the estimated clustering is accurate.
The error rate measure can be viewed as an alternative of the ARI. In fact this criterion measures
the minimum error between the predicted clustering and the true clustering, and thus low error rate
means high agreement between the estimated and the true clustering. The former criteria as well
as the EM algorithm are used from the tools of the package mclust [185] in R programming
language.

6.3.1 Simulation

We performed 100 simulations from each of the two models described in examples 6.3.1 and
6.3.2. We counted the instances where each of the considered initialising strategies for the EM
could find throughout the 100 simulated data and among the other initialization methods the largest
BIC, the highest ARI, ARI≥ 0.99 (as in this case the clustering obtained is the most accurate) and
the lowest errorRate. The values of the BIC, ARI, errorRate and consumed time of the different
considered initialization strategies for one dataset sampled according to the model of Example
6.3.1 (resp. 6.3.2) are presented in Table 6.1 (resp. 6.3), and Figure 6.1 (resp. 6.2) shows a two-
dimensional visualization of the observations according to the first four features, the observations
in the upper panels are labeled according to the actual clustering, while they are labeled in the
lower panels according to the clustering obtained by the EM algorithm initialized by the method
of moments. In order to have an estimation about the numerical stability of the obtained results,
we repeat the same numerical experiment for each example 20 times and we compute the means
(Table 6.2, 6.4) and the variances (values in parentheses in Table 6.2, 6.4) of the 20 percentages
obtained of each of the BIC, ARI, ARI≥ 0.99 and errorRate values for the different initialising
strategies.
As we mentioned before the initialization strategies considered in this comparison against the me-
thod of moments are common and have, in general, good numerical behavior. Nevertheless, we
cannot expect all the initialization strategies that exist for the EM algorithm to work well in all the
cases [20, 145]. Hereafter, two examples are chosen in such a way to present some cases where
the common initialization strategies k-means, MBHC and emEM have some difficulties to pro-
vide a good initialization to the EM algorithm for the GMMs with differing spherical covariance
matrices, or in other words where the initialization by the method of moments outperforms the
other considered initializations. For instance, we put in each of these two examples one cluster
of small size (the blue cluster in Figure 6.1, the red cluster in Figure 6.2), we want to make the
clusters overlap, since these initialization strategies could misscluster the dataset if the clusters are
intersecting. We notice that this choice of the mean vectors and the different variances in each of
the two examples yields a dataset with the expected clustering characteristic.

Example 6.3.1 – In the first simulation example, a multivariate dataset (m=6) of n=1000 observa-
tions generated with r=4 clusters according to the following parameters :
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— The probability vector : ω = (0.2782, 0.0139, 0.3324, 0.3756)t.
— The mean vectors : µ1 = (−5.0,−9.0, 8.0, 8.0, 2.0, 5.0)t, µ2 = (−7.0, 6.0,−1.0, 6.0,−8.0,−10.0)t,

µ3 = (−4.0,−10.0,−5.0, 1.0, 5.0, 4.0)t, µ4 = (−6.0, 6.0, 5.0, 4.0,−1.0,−1.0)t.
— The variances : σ2

1 = 1.5, σ2
2 = 2.5, σ2

3 = 5.0, σ2
4 = 15.0.

Table 6.1 – Numerical results of one data set of Example 6.3.1

Method BIC ARI errorRate time(s)
em_km -29590.48 0.8281 0.168 0.045

em_mom -29492.11 1.0 0.0 0.547
em_mbhc -29594.97 0.8574 0.099 0.287
em_emEM -29593.18 0.8366 0.132 0.171
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Figure 6.1 – Scatterplot matrix for the sampled dataset of Example 6.3.1 projected onto the first
four variables (features) : upper panels show scatterplots for pairs of variables in the original
clustering ; lower panels show the clustering obtained by applying the EM algorithm initialized by
the method of moments.
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Table 6.2 – Estimation of the stability of Example 6.3.1 results

Method BIC ARI ARI ≥ 0.99 errorRate
em_km 38.35% (37.82) 47.6% (21.41) 48.85% (21.61) 47.6% (21.2)

em_mom 74.8% (41.01) 88.75% (15.36) 83.4% (18.36) 88.60% (14.46)
em_mbhc 10.75% (12.41) 15.9% (17.57) 15.55% (22.99) 15.9% (19.46)
em_emEM 7.3% (8.43) 14.5% (8.05) 12.6% (17.83) 14.95% (7.52)

Example 6.3.2 – In the second simulation example, a multivariate dataset (m=5) of n=1000 obser-
vations generated with r=3 clusters according to the following parameters :

— The probability vector : ω = (0.0930, 0.2151, 0.6918)t.
— The mean vectors : µ1 = (7.0,−4.0,−4.0,−6.0,−4.0)t, µ2 = (2.0,−4.0,−6.0,−10.0,−3.0)t,

µ3 = (4.0,−4.0,−5.0, 6.0, 1.0)t.
— The variances : σ2

1 = 5.0, σ2
2 = 10.0, σ2

3 = 15.0.

Table 6.3 – Numerical results of one data set of Example 6.3.2

Method BIC ARI errorRate time(s)
em_km -28360.30 0.4352 0.309 0.051

em_mom -28246.02 0.9498 0.03 0.504
em_mbhc -28358.67 0.3197 0.384 0.292
em_emEM -28360.42 0.4408 0.296 0.141

Table 6.4 – Estimation of the stability of Example 6.3.2 results

Method BIC ARI ARI ≥ 0.99 errorRate
em_km 0.45% (0.576) 0.05% (0.05) 0.0% (0.0) 0.1%(0.095)

em_mom 50.0% (18.63) 92.35% (9.82) 0.0% (0.0) 92.1% (7.46)
em_mbhc 49.35% (19.82) 2.45% (3.63) 0.0% (0.0) 2.45% (2.58)
em_emEM 0.3% (0.326) 5.2% (4.48) 0.0% (0.0) 5.9% (5.36)

The Table 6.2, 6.4 show that in Example 6.3.1, 6.3.2 the best results among the considered
initialising strategies are for the method of moments. In fact, in the former two tables we see that
the method of moments found throughout the 100 simulated datasets, in average (by runing the
numerical experiment 20 times), the largest BIC, highest ARI, ARI≥ 0.99 and lowest errorRate
among the other initialization strategies in more instances than all the other considered initiali-
zation method, implying in this context marked outperformance for the moments initialization
method. Note that the consumed time (see. Table 6.1, 6.3) tends to be higher in the method of
moments than in the other initialization strategies. This is expected since stochastic approaches (to
which the methods k-means, MBHC and emEM belong) outperform the deterministic approaches
(as the method of moments) in this term.



6.3 – Numerical experimentations 131

Figure 6.2 – Scatterplot matrix for the sampled dataset of Example 6.3.2 projected onto the first
four variables (features) : upper panels show scatterplots for pairs of variables in the original
clustering ; lower panels show the clustering obtained by applying the EM algorithm initialized by
the method of moments.



132 CHAPITRE 6 — Tensor decomposition for learning Gaussian mixtures from moments

6.3.2 Real data

In this subsection we present four examples of real datasets, for which we know already their
number of clusters, and we report the different BIC, ARI and errorRate values as well as the
consumed time attained by the EM algorithm initialized by the different considered initialization
strategies and used with the GMM of different spherical covariance matrices. The explored real
data are : The famous iris data [79, 70] widely used as an example of clustering to test the algo-
rithms, Diabetes [173], olive oil [15], and MNIST [69].

Example 6.3.3 – The iris dataset contains four physical measurements (length and width of sepals
and petals) for 50 samples of three species of iris (setosa, virginica and versicolor). The number
of features is m = 4 and the number of clusters is r = 3.
The four initialization strategies yield the same BIC value. The ARI and the errorRate values are

Table 6.5 – Numerical results of Example 6.3.3

Method BIC ARI errorRate time(s)
em_km -1227.6656 0.6199 0.167 0.007

em_mom -1227.6676 0.6410 0.153 0.203
em_mbhc -1227.6696 0.6199 0.167 0.007
em_emEM -1227.6495 0.6302 0.160 0.045

slightly better with the moment initialization among the other considered initialization strategies.
On the other hand, the consumed time is clear higher in the moment method initialization.

Example 6.3.4 – The Diabete dataset [173] contains three measurements : glucose, insulin and
sspg ; made on 145 non-obese adult patients classified into three types of diabetes : Normal, Overt,
and Chemical. Herein, in this example m = r = 3. We apply the different initialization strategies
for the EM algorithm, the Table 6.6 shows the results.

Table 6.6 – Numerical results of Example 6.3.4

Method BIC ARI errorRate time(s)
em_km -5363.06 0.3371 0.289 0.007

em_mom -5222.11 0.6355 0.144 0.380
em_mbhc -5221.32 0.6355 0.144 0.008
em_emEM -5221.33 0.6207 0.151 0.049

Despite the fact that k-means method is the fastest method in this example, the ARI and the
BIC are noticeably lower than in the other methods. Concerning the method of moments, it suc-
ceeds to have quite similar scores to the other methods in this example, but with a bigger compu-
tation time.

Example 6.3.5 – The olive oil data set contains the chemical composition (8 chemical properties)
of 572 olive oils. They are derived from three different macro-areas in Italy (South, Sardinia and
Centre North). The dataset contains nine regions from which the olive oils were taken in Italy.
Thus we can cluster this dataset according to the macro-areas (r = 3) or the region (r = 9). As
the number of features in this dataset is m = 8, we choose r = 3, so that the condition r ≤ m for
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the method of moment is verified.
The results show that the MBHC initialization strategy yields the largest BIC, the highest ARI and

Table 6.7 – Numerical results of Example 6.3.5

Method BIC ARI errorRate time(s)
em_km -10948.64 0.4018 0.262 0.021

em_mom -10946.46 0.4532 0.210 0.508
em_mbhc -10625.59 0.5003 0.185 0.080

em_emEM -10948.72 0.4040 0.260 0.087

the lowest errorRate values among the other initialization strategies. Nevertheless, the initialization
by the moment method comes in second position after the MBHC strategy in terms of the BIC,
ARI and errorRate values, while the K-means and the emEM initialization strategies attain almost
the same values of the previously mentionned criteria.

This shows that for these datasets which are not well fitted by the mixture of spherical Gaus-
sians, the moment method can still give good initializations for the EM algorithm, in comparision
with the common initialization strategies.

Example 6.3.6 – The MNIST digit image database [69] is a large database that contains images
of 28 × 28 pixels for handwritten digits (0 to 9). Each pixel contains an integer between 0 and
255 that represents the grayscale levels. The number of features is 28 × 28 = 784. We choose
the MNIST digit image dataset which contains 60000 images. We take a subset of this dataset that
contains the images of label 0 or 1. The size of the subset is 12665 images. Since the number of
features is quite large (784), and we aim to test a spherical Gaussian mixture model, a good prac-
tice in this case is to apply one of the dimensionality reduction strategies. Roughly speaking, the
dimensionality reduction strategies aim to reduce the number of features such that a high percen-
tage of the information within the dataset is conserved. In other words, the performance in term
of accuracy of the clustering methods will not be noticeably affected by this reduction, and on the
other hand this will reduce considerably the time of computation. For this purpose, we choose to
apply the Principal Component Analysis transformation (PCA) [84, 115]. We conserve the first
five variables given by this transformation (see Figure 6.3). The dataset that we consider in this
example contains 12665 observations, the number of clusters is r = 2, and the number of features
is m = 5. We apply the different initialization strategies and we report the results in Table 6.8.
As we can see, the results given by the method of moments in Table 6.8 are very satisfactory in

Table 6.8 – Numerical results of Example 6.3.6

Method BIC ARI errorRate time(s)
em_km -384977.3 0.9304 0.017 0.537

em_mom -384978.2 0.9308 0.017 1.87
em_mbhc -382746.2 0.2445 0.252 543.4
em_emEM -384977.6 0.9301 0.0177655 1.80

comparison with the other initialization strategies with ARI= 0.9308. In particular, the method
of moments clearly outperforms MBHC method in this regard, in term of accuracy and the time
of computation. In fact, the MBHC takes 543.4 seconds without reaching a good ARI score. This
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Figure 6.3 – Scatterplot for pairs of variables : upper panels show the first five features obtained
by applying the PCA transformation on the dataset of Example 6.3.6. The graphs points marked
according to the true two classes 0 and 1.

example sheds some light on the performance of the method of moments. The large number of
samples (in this example equal to 12665) does not have a high impact on the computation time,
which is not the case, for the MBHC method, where this factor increases significantly its compu-
tation time. Moreover, it is true that a large number of features could have a negative impact on
the computation time of the method of moments, but it is not a sever limitation since as we saw
in this example, this can be efficiently remedied by applying one of the dimensionality reduction
techniques. In this regard, some recent work [165] studies how the computation complexity of the
moment method can be reduced while conserving its desirable high accuracy property. Conducting
more research in this direction, we believe that the method of moments will have more sophistica-
ted and competitive (in term of computation time) developments in the future.
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6.4 Conclusion

We present an algorithm that use our low rank symmetric tensor approximation algorithms (4)
to implement the method of moments. We propose to use this method to initialize the EM algo-
rithm, and we show concretely throughout synthetic and real datasets examples the good impact
of this choice in comparison with other state-of-the-art approaches. We prove that symmetric ten-
sors with interpolation degree strictly less than half their order are identifiable, and we present an
algorithm, based on simple linear algebra operations, to compute their decomposition.
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CHAPTER 7
Conclusions and

Perspectives
We summarize the result obtained in this thesis, and we describe some research perspectives.

Low rank symmetric tensor approximation problem We addressed the low rank tensor ap-
proximation problem for symmetric tensors with complex coefficients. Using the basic link bet-
ween symmetric tensors and homogeneous polynomials we described two Riemannian Newton
type optimization algorithms with trust region steps, which are Riemannian Newton algorithm
and Riemannian Gauss–Newton algorithm. In the first algorithm, we used the parametrization of
the constraint set (the set of symmetric tensors of symmetric rank bounded by the approxima-
tion rank r strictly less than the generic rank) by using the standard weighted normalized factor
matrices parameterization. We computed explicitly the Hessian matrix by exploiting the apolar
identities and partial complex derivatives tools. We proved that under some regularity conditions
on non-defective tensors in the neighborhood of the initial point, the iteration completed with a
trust region scheme is converging to a local minimum. In the second algorithm, we used for the
first time the Veronese manifold to parameterize the constraint set. We presented a suitable basis
for the tangent space of Veronese manifold which allowed us computing the different ingredients
of a Riemannian Gauss-Newton iteration. We proposed to choose the initial point for strictly sub-
generic ranks approximation with interpolation degree less than d−1

2 , with d is the order of the
symmetric tensor, by the method that we called the SMD based on the computation of generali-
zed eigenvectors and generalized eigenvalues of pencils of Hankel matrices, and we showed the
good impact of this choice on the numerical performance of the algorithms. A series of numerical
experiments were presented, through which we tested our algorithms versus other state-of-the-art
algorithms. The algorithms that we presented are particularly well suited for the symmetric case.
For instance, the Gauss-Newton algorithm is strictly connected with the geometry of varieties of
rank-r symmetric tensors. Indeed, we showed throughout this work how taking into account the
geometric structure of the constraint set where the target approximation lives can be relevant and
can conduct to concrete efficient approximation algorithms. In this direction, we believe that a
natural extension of this work, is to investigate new optimization algorithms for the low rank ten-
sor approximation problem for other types of tensors by adopting the same methodology of this
work, i.e. by interacting with the geometry of the problem while dealing with this approximation
problem as a numerical optimization problem. For instance, for multisymmetric tensors this will
lead to investigate the so-called Segre-Veronese manifold and to exploit the corresponding with
multi-homogeneous polynomials. Also practical interesting questions interrogate the possibility
of the use of some tensor’s compression techniques such as the symmetric Tucker decomposition
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[61, 62, 66]

T = JS;A, . . . , AK =
l∑

i1=1
. . .

l∑
id=1

si1...idai1 ⊗ . . .⊗ aid ,

for T is a symmetric tensor in Sd(Rn), S is a symmetric tensor in Sd(Rl) and A ∈ Rn×l is an
orthogonal matrix. For symmetric rank-r approximation, we can try to compute this symmetric
Tucker decomposition for l bounded by r and then to apply our symmetric rank-r approximation
algorithms on the core tensor in such a way that if

S ≈
r∑
i=1

si ⊗ . . .⊗ si;

we can take T ≈
∑r
i=1 (Asi)⊗ . . .⊗ (Asi), as a low rank approximation for T . This approach

could be interesting especially to reduce the computation complexity. This also allows us to com-
bine the two formats of the approximation problem which are tensors and polynomials, where
the symmetric tensor T is used to compute a Tucker decomposition and the homogeneous poly-
nomial associated to the core tensor is used to compute a low rank approximation, and thus to
take advantage from the reduction of the computation cost than can be realized using each of the
two formats. Another interesting question is to construct a method based on simple linear alge-
bra operations that can provide a good initialization for our algorithms for all strictly subgeneric
symmetric rank without the limitation regarding the bound on the interpolation degree on which
depends the method SMD that we use.

Simultaneous matrix diagonalization We addressed the simultaneous matrix diagonalization
problem. We presented a Newton-type sequence that converges quadratically towards the solution
of the system of equations associated to a pencil of simultaneously diagonalizable matrices. We
considered the case of one diagonalizable matrix and two simultaneously diagonalizable matrices,
then based on the resolution of the two aforementioned cases we concluded on the case of a fa-
mily of simultaneously diagonalizable matrices. Moreover, we gave a certification on the quadratic
convergence towards the solution when the initial point verify a sufficient condition that we esta-
blished. This approach allows the computation in high precision, where this type of computation
could be important in certain circumstances. Also, it is an iterative method that allows to obtain
the numerical solution of a system of equations with the desirable property of local quadratic
convergence without depending on computing the inverse of matrices such in a classical Newton
iteration. We focused on the regular case. Some improvements and extensions can be considered,
such as the treatment of clusters of eigenvalues.
Further, we described a Riemannian conjugate gradient algorithm that approximates a pencil of
matrices no necessarily simultaneously diagonalizable by a pencil of simultaneously diagonali-
zable matrices based on solving a Riemannian optimization problem over the Cartesian product
of two oblique manifolds. This approach can be considered as a generalization of the recent work
in [25] where the matrices of the pencil are considered symmetric and the problem depends on
one diagonalizer matrix E with its inverse. We employed this algorithm to construct an alternate
optimization algorithm which for a tridimensinal tensor of size (n1, n2, n3) and approximation
rank r such that r ≥ max(n1, n2) takes the pencil of matrices that correspond to the frontal slices
of the tensor, then extends the pencil of n1 × n2 matrices to r × r matrices. The algorithm then
works on the extended pencil and alternate between two steps. The first step uses the conjugate
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gradient algorithm to approximate the extended pencil by a pencil of simultaneously diagonali-
zable matrices, where this allows to compute a rank-r approximation for the tensor associated to
the extended pencil. The second step solves a linear least-squares problem to update the entries
that does not belong to the fixed blocks matrices that correspond to the matrices of the original
pencil. Finally, the algorithm extract a rank-r approximation for the original tensor. This is a recent
approach, that we continue to investigate and more analysis are needed to have a better understan-
ding of the numerical performance. Indeed, the convergence of the method is not yet understood.
Moreover, we observed that the method becomes slow for ill-conditioned cases. This point can
be enhanced by developing a strategy to avoid ill-conditioned points, for instance by adding a re-
gularization term to the ill-conditioned matrices. We note that because of this extension step, the
applicability of the method could be limited to approximation ranks which exceed moderately the
dimension of the two first modes. Finally, after dealing with these questions, it will be interesting
to apply this algorithm to applications in data science for instance in image processing.

Tensor decomposition for learning Gaussian mixtures from moments In the context of un-
supervised machine learning, the type of models to be recovered plays an important role. For
Gaussian mixture models, where iterative methods such as Expectation Maximization algorithms
are applied, the choice of the initialization is also crucial to recover an accurate model of a given
dataset. We considered the method of moments to recover Gaussian mixtures, in particular sphe-
rical Gaussian mixtures, in order to achieve clustering tasks. We computed the first, second and
third order moments in terms of the means and the covariances of the clusters and the vector of the
cluster proportions. We used the estimation given by the method of moments as an initial point to
the EM algorithm. We demonstrated in the experimentations that tensor decomposition techniques
can provide a good initial point for the EM algorithm, and that the moment tensor method outper-
forms the other state-of-the-art initialization strategies in term of accuracy, when datasets are well
represented by spherical Gaussian mixture models. For that purpose, we presented a new tensor
decomposition algorithm adapted to the decomposition of identifiable tensors with low interpo-
lation degree, which applies to a 3rd order moment tensors associated to the data distribution as
we have shown. One inconvenient side for the method of moments in comparison with the other
approaches is that in general it consumes more computation time. This is not a limitation, since in
general a successful method is the method that can make a trade-off between accuracy and com-
plexity. Hence, since the method of moments works well in term of accuracy, a straightforward
question is to try to reduce its complexity. For instance, we have seen that large number of features
affects negatively the computation time of the method where we proposed to refine this using one
of the dimensionality reduction strategies, in this regard, further approaches can be investigated.
Another direction that can be explored, is the construction of moments method for non-spherical
Gaussian mixtures. Finally, in term of tensor applications, we notice that low rank tensor approxi-
mation problems are recently widely explored for deep learning applications thus future works can
be oriented in this direction.
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Algorithmes d’optimisation pour le problème
d’approximation des décompositions en rang tensoriel:
application au clustering en apprentissage automatique

Rima KHOUJA

Résumé

Les tenseurs sont une généralisation d’ordre supérieur des matrices. Ils apparaissent dans une
myriade d’applications. La décomposition de rang de tenseur décompose le tenseur en une
somme minimale de tenseurs simples de rang 1. En pratique, la présence de bruit dans les
entrées du tenseur fait que le calcul d’une décomposition de petit rang approchée est plus per-
tinente que de son calcul exact. Ce problème est connu comme le problème d’approximation
des décompositions en rang tensoriel. Dans cette thèse, nous étudions ce problème pour les
tenseurs symétriques, c.à.d pour les tenseurs avec des entrées invariantes par les permutations
d’indices. Nous considérons des tenseurs symétriques avec des valeurs complexes. Parsuite
en utilisant le lien entre les tenseurs et les polynômes homogènes, ainsi que des techniques
d’optimisation complexe, nous proposons une approche d’optimisation riemannienne et nous
développons un algorithme de Newton riemannien et un algorithme de Gauss–Newton rie-
mannien pour résoudre ce problème. Nous abordons également le problème de diagonalisation
simultanée de matrices, qui est étroitement lié au problème de décomposition tensorielle. Nous
considérons ce problème sous deux angles : la certification et l’approximation. Pour la première
partie, nous développons une suite de type Newton à convergence quadratique locale, et nous
proposons un teste de certification. Pour la deuxième partie, nous développons un algorithme
de gradient conjugué riemannien qui calcule localement un faisceau de matrices simultanément
diagonalisables approché. En combinant cet algorithme avec un problème linéaire de moindres
carrés, nous introduisons un algorithme d’optimisation alterné qui calcule une approximation
de la décomposition pour les tenseurs tridimensionnels, quand le rang d’approximation est su-
périeur à la dimension de deux premiers modes. Enfin, en se basant sur les deux approches :
tenseurs symétriques et diagonalisation simultanée de matrices, nous abordons le problème
de clustering en apprentissage automatique pour les modèles de mélanges de Gaussiènne sphé-
riques. Nous utilisons ces méthodes pour implémenter la méthode des moments, afin de fournir
un bon point initial pour l’algorithme de maximisation de vraissemblance.

Mots-clés : Tenseurs, algorithmes d’optimisation, apprentissage automatique, clustering, optimisation
riemannienne, diagonalisation simultanée de matrices, mélanges Gaussiènnes, optimisation complex,
variétés différentielles.

Abstract

Tensors are higher order generalization of matrices. They appear in a myriad of applications.
The tensor rank decomposition is to write the tensor as a minimal sum of simple rank-1 tensors.
In practice, the presence of noise in the tensor’s inputs means that computing an approximated
low rank decomposition is more relevant than computing the exact tensor rank decomposi-
tion. This problem is known as the low rank tensor approximation problem. In this thesis,
we study the low rank tensor approximation problem for symmetric tensors i.e. tensors with
unchanged entries under any permutation of their indices. We consider symmetric tensors
with complex values, and using the basic link between tensors and homogeneous polynomials,
and techniques from complex optimization, we develop a Riemannian optimization approach
proposing Riemannian Newton and Gauss–Newton algorithms to solve this problem. We also
address the simultaneous matrix diagonalization problem, which is closely related to the tensor
decomposition problem. Indeed, we consider this problem from two points of view: certifi-
cation and approximation. For the first point, we develop a Newton-type sequence with local
quadratic convergence, and we exhibit a certification test. For the second point, we develop a
Riemannian conjugate gradient algorithm which approximates locally a pencil of matrices by a
pencil of simultaneously diagonalizable matrices. Moreover, by combining this algorithm with
a linear least-squares problem, we introduce an alternate optimization algorithm that approx-
imates the decomposition of three-dimensional tensors with approximation rank larger than
the first two mode dimensions. Finally, based on both approaches symmetric tensors and si-
multaneous diagonalization, we address the machine learning clustering problem for spherical
Gaussian mixture models, where we use our developed methods to implement the method of
moments, which provides an initial point for the expectation maximization algorithm.

Keywords: Tensors, optimization algorithms, machine learning, clustering, Riemannian optimization,
simultaneous matrix diagonalization, Gaussian-mixtures, complex optimization, manifolds.
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