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“[Une thése] avance comme un train, tu comprends,
comme un train dans la nuit. [...] Les choses
s’accrochent. .. comme des wagons, ’histoire avance sur
ses rails, le public-voyageur ne quitte pas [la thése], il se
laisse véhiculer du point de départ au terminus et il
traverse des paysages qui sont des émotions.”

Citation adaptée de I'ceuvre de Frangois Truffaut

La nuit américaine (1973)
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Chapitre 1

Introduction

Dans cette these, nous nous intéressons & des problemes de théorie géométrique des
groupes et leur lien avec la géométrie a courbure négative et les systemes dynamiques,
en particulier la dynamique mesurable des groupes. Nous nous intéressons notamment a
des phénomenes de rigidité de structures géométriques associés aux groupes considérés.
Nous étudions plus particulierement le groupe des automorphismes de certains produits
libres de groupes de type fini. Soit n € N* et soit F un groupe cyclique d’ordre 2.
Nous considérons dans ce manuscrit les groupes des automorphismes de F,,, groupe libre
(non abélien si n > 2) de rang n, et de W,,, groupe de Coxeter universel de rang n,
produit libre de n copies de F. Si G est un groupe, nous noterons Aut(G) le groupe des
automorphismes de G et Int(G) le groupe des automorphismes intérieurs de G, sous-
groupe distingué de Aut(G) constitué des conjugaisons globales par des éléments de
G. Soit Out(G) = Aut(G)/Int(G) le groupe des automorphismes extérieurs de G. Les
groupes d’intérét dans ce manuscrit sont les groupes Out(F,,) et Out(W,,).

Dans tout ce travail, nous nous efforcerons de comparer les résultats obtenus avec
ceux déja connus du groupe modulaire Mod(S) = mo(Homeo™ (S)) d'une surface S com-
pacte, connexe, orientable de genre g > 2 (voir par exemple I’étude comparative de
Bestvina [Bes2], Vogtmann [Vog], et une exposition de Paulin [Pau3|). Cette comparai-
son s’avere fructueuse car un certain nombre de résultats sur Out(FF,,) ont été obtenus en
s’inspirant de démonstrations de résultats analogues pour Mod(S). Par ailleurs, si S est
une surface a exactement une composante connexe de bord, le groupe fondamental de S
est isomorphe a un groupe libre non abélien de rang 2g, et le théoreme de Dehn-Nielsen-
Baer (voir par exemple [FarM|, Theorem 8.8]) affirme que le groupe Mod(.S) s’identifie a
un sous-groupe de Out(Fyy).

Nous étudierons plus particulierement dans cette these des résultats de rigidité des
groupes Out(F,,) et Out(W,,). Les résultats de rigidité auxquels nous nous intéressons
peuvent étre classés en deux catégories. La premiere catégorie regroupe des résultats sur
la structure des symétries du groupe : nous parlerons de phénomenes de rigidité lorsque
le groupe ne contient pas d’autres symétries que celles naturelles. Les symétries peuvent
ici prendre la forme des automorphismes du groupe ou des automorphismes entre sous-
groupes d’indice fini du groupe considéré. Cette notion de rigidité est a rapprocher du



théoreme de rigidité de Mostow-Prasad-Margulis [MosIl, Mos2] affirmant qu’un isomor-
phisme entre les groupes fondamentaux de deux variétés riemanniennes hyperboliques
de dimension au moins 3, connexes, de volume fini est induit par une isométrie entre les
variétés riemanniennes (voir la partie pour des développements). Ainsi, la géométrie
d’une telle variété hyperbolique est entierement déterminée par sa topologie. En ce sens,
les résultats de rigidité que nous allons considérer dans cette thése permettent de carac-
tériser les groupes considérés avec peu d’informations, puisqu’il suffira par exemple de
considérer uniquement les symétries du groupe pour le reconstruire.

Ces rigidités de nature algébrique sont a mettre en parallele avec des rigidités de
nature géométrique. En effet, les groupes considérés agissent par isométries sur certains
espaces et cette action induit un isomorphisme entre le groupe considéré et le groupe des
isométries de I'espace. Cette rigidité géométrique se rapproche des résultats de Tits [Tit2]
affirmant que le groupe des automorphismes simpliciaux d’un immeuble sphérique associé
a un groupe algébrique simple, connexe de rang au moins 2 est isomorphe au groupe
algébrique lui-méme (voir également la partie[1.1). Ces résultats de rigidité géométrique
ont, comme nous le verrons dans la suite de cette introduction, de grandes connexions
avec les résultats de rigidité algébrique susmentionnés, puisque nous démontrerons des
résultats de rigidité algébrique en utilisant des résultats de rigidité géométrique.

La deuxieme catégorie de rigidité étudiée concerne ’existence d’éléments génériques,
c’est-a-dire d’éléments qui portent en eux toute I'information en cours d’étude du groupe ;
cette information peut par exemple étre de nature dynamique. La construction d’éléments
génériques dans les cas qui nous intéresseront reposera sur des arguments dynamiques,
avec la construction d’éléments du groupe considéré dont la dynamique est riche. Nous
pouvons rapprocher cette catégorie de rigidité avec des résultats d’alternative de Tits [Tit1]
décrivant les sous-groupes d’un groupe linéaire : tout sous-groupe H non résoluble d’'un
groupe linéaire contient un groupe libre non abélien. En effet, la démonstration de
Tits, sur laquelle nous reviendrons dans la partie [1.3] utilise des arguments dynamiques
similaires a ceux que nous utiliserons pour construire des éléments génériques.

L’étude de ces questions de rigidité repose traditionnellement sur la construction
d’espaces géométriques sur lesquels les groupes considérés admettent de “jolies” actions,
c’est-a-dire propres ou cocompactes (voir la partie pour des développements). L’idée
générale est de construire un dictionnaire entre les propriétés algébriques du groupe et
les propriétés géométriques de ’action, afin que les propriétés algébriques se déduisent
des propriétés géométriques et réciproquement. L’enjeu est alors en grande partie de
construire ’espace géométrique adapté a la question algébrique posée.

1.1 Actions sur des espaces de déformation et premiers résultats
de rigidité

Puisque nous considérons dans cette these des groupes d’automorphismes extérieurs

Out(G) de certains groupes G de type fini, il est naturel de construire des espaces

géométriques sur lesquels agit Out(G) a partir d’espaces géométriques sur lesquels agit
G. Par exemple, si G est de type fini, le groupe G agit naturellement par multiplication
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a gauche sur le graphe de Cayley de G associé a une partie génératrice de G. En
particulier, dans le cas du groupe F,,, si la partie génératrice est une base libre B de
F.,,, alors le graphe de Cayley Ty de F,, associé & 2B est un arbre simplicial et le groupe
F,, agit librement sur Tiy. Plus généralement, d’apres [Serll, Théoreme 4], les groupes
libres ), pour n € N sont les seuls groupes de type fini admettant une action libre sur un
arbre simplicial. Les arbres fournissent ainsi une large collection d’objets géométriques
sur lesquels F,, admet une jolie action. Nous supposerons dans la suite une certaine
familiarité du lecteur ou de la lectrice avec les actions de groupes sur les arbres (voir par
exemple [Serll, [CM]).

Il n’existe cependant pas d’arbre simplicial non trivial canonique sur lequel agisse [F,,
librement et, de ce fait, il n’existe pas d’arbre simplicial non trivial sur lequel F,, agit
et tel que laction de F,, s’étende a Aut(F,) tout entier. Il convient alors de créer un
espace géométrique sur lequel agit Out(F,) et qui contient I'information de toutes les
actions libres de IF,, sur des arbres simpliciaux. Cet espace est I’Outre-espace de Fy,, noté
CV,, introduit par Culler et Vogtmann [CV], qui est défini comme suit. Un point de
CV,, est une classe d’homothétie F,-équivariante d’arbres simpliciaux métriques admet-
tant une action par isométrie de F,, libre et minimale. Ici, une action est minimale s’il
n’existe pas de sous-arbre propre invariant par I'action du groupe. L’ensemble C'V,, est
muni de la topologie de Gromov-Hausdorff équivariante [Paul]. Muni de cette topolo-
gie, 'espace C'V,, peut étre équipé d’une structure de complexe simplicial ayant des faces
manquantes. Le groupe Aut(F,) agit & droite par précomposition de I’action et ’action
de Aut(F,) passe au quotient en une action a droite proprement discontinue de Out(F,,).
L’Outre-espace est un espace de déformation, analogue de I’espace de Teichmiiller d’une
surface hyperbolique compacte, connexe, orientable ou de I'espace symétrique associé
a un groupe de Lie semi-simple (voir par exemple les travaux de Forester [For] et de
Guirardel et Levitt [GuL2]). Le quotient C'V,,/Out(F,,) est alors un espace de modules,
analogue au quotient de I’espace de Teichmiiller par le groupe modulaire de la surface
considérée. L’Outre-espace est un espace contractile comme démontré dans [CV], et
donc T'action de Out(F,,) sur C'V,, permet par exemple de montrer que la dimension
cohomologique virtuelle de Out(FF,,) est finie et égale & 2n — 3. Par ailleurs, 1'espace
C'V,, se rétracte par déformation forte de maniere Out(IF,, )-équivariante sur un complexe
simplicial appelé I’épine de I’Outre-espace de F,,, dont le 1-squelette est noté K (F,). Les
sommets de K (F,) sont les classes d’homéomorphisme F,,-équivariants d’arbres simplici-
aux munis d’une action libre et minimale de F,,, deux sommets X’ et X’ de K(F,,) étant
reliés par une aréte si et seulement s’il existe X € X et X' € X’ tels que X s’écrase sur
X', c’est-a-dire que X’ est obtenu a partir de X en contractant des orbites d’arétes, ou
réciproquement. Le groupe Out(F, ) agit alors sur K(IF,,) par automorphisme de graphes
et Paction de Out(F,,) sur K(IF,,) est cocompacte.

Les espaces de modules d’actions de groupes sur des arbres interviennent par ailleurs
naturellement dans la compactification de certains espaces de représentations, comme
démontré par Morgan et Shalen ([MS2], voir également les travaux de Bestvina [Besl]
et de Paulin [Paul]). En effet, soit I' un groupe de type fini n’ayant pas de sous-
groupes d’indice fini contenant un sous-groupe distingué abélien infini et G un groupe
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algébrique linéaire simple sur R de rang réel 1. Soit Hom ¢4(I", G) 'ensemble des représen-
tations fideles et discretes de I' dans G muni de la topologie compacte-ouverte, et soit
Hom4(I', G)/G Tespace quotient des représentations fideles et discretes de I' dans G
modulo action propre par conjugaison par un élément de G (voir par exemple [Parl]).
Soit SLF(T") ’ensemble des actions de I' sur des arbres (possiblement réels), sans point
fixe global, sans sous-arbre invariant propre, a stabilisateurs d’arc virtuellement nilpo-
tents, modulo isométrie I'-équivariante, muni de la topologie de Gromov-Hausdorff équiv-
ariante et soit PSLF(I") le projectifié de SLF(I'). Comme interprété par Parreau [Parll,
Par2], Morgan et Shalen ont montré que ’on pouvait compactifier I'espace Hom4(I", G)/G
par un fermé de PSLF(I"). De tels résultats ont par exemple permis de comprendre les
représentations du groupe fondamental d’une surface hyperbolique dans le groupe des
isométries du plan hyperbolique réel (voir par exemple [Otal Chapitre 2]).

Les espaces de modules d’actions de groupes sur des arbres s’avérant étre des espaces
géométriques privilégiés dans ’étude d’actions de groupes, la construction d’espaces
d’actions sur des arbres s’est ainsi notamment propagée dans ’étude des produits libres
de groupes de type fini. Soit G un groupe de type fini et soit

G=Gi1*...«Gp*B

une décomposition de G en produits libres de groupes. Notons F = {[Gi],...,[Gk]}
I’ensemble des classes de conjugaison dans G des sous-groupes Gy, ...,Gg. L’ensemble
F forme un systéme de facteurs libres de G, c’est-a-dire qu’il existe un sous-groupe B
de G tel que G = G1 *...x G = B. L’étude de telles décompositions de groupes, et
donc I'étude de groupes relativement a des ensembles de classes de conjugaison de sous-
groupes est a mettre en parallele avec I’étude des groupes kleiniens (c’est-a-dire des sous-
groupes discrets de PSL(2,C)) et de leur action par isométries sur I’espace hyperbolique
réel ]HI%. En effet, les groupes kleiniens sont généralement étudiés relativement a leurs
sous-groupes paraboliques, c’est-a-dire les sous-groupes maximaux du groupe kleinien
considéré fixant exactement un point a l'infini de ]HI%.

Guirardel et Levitt [GuL1] ont construit un analogue de I’Outre-espace de F,, pour
des produits libres de groupes de type fini. L’Outre-espace de G relativement a F, noté
O(G,F), est ensemble des classes d’isométries G-équivariantes d’arbres simpliciaux
métriques munis d’une action minimale par isométrie de G, a stabilisateur d’arétes triv-
iaux et dont les stabilisateurs de sommets sont des conjugués des G; avec i € {1,...,k}.
L’ensemble O(G, F) est muni de la topologie de Gromov-Hausdorff équivariante. Rap-
pelons qu'un groupe G’ est librement indécomposable s’il n’est pas isomorphe a Z et s’il
n’existe pas de sous-groupes non triviaux A’ et B’ de G’ tels que G’ = A’x B’. Lorsque la
décomposition de G relativement a F coincide avec une décomposition de Grushko de G,
c’est-a-dire que, pour tout i € {1,...,k}, le groupe G; est librement indécomposable et
que B est libre, nous parlerons simplement de I’Outre-espace de G et le noterons O(G).
En particulier, dans le cas de W, les stabilisateurs de sommets des arbres considérés
dans O(W,,) sont finis, soit triviaux soit isomorphes & F'. L’espace O(W),,) est contractile
comme démontré dans |[GuLl]. Comme dans le cas de C'V,,, le groupe Aut(WW,,) agit a
droite sur O(W,,) par précomposition de I’action, et cette action passe au quotient en
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une action proprement discontinue de Out(W,,). Par ailleurs, ’espace O(W),) se rétracte
par déformation forte Out(W),,)-équivariante sur un complexe simplicial appelé [’épine de
I’Outre-espace de Wy, dont le 1-squelette est noté K(W,,). Les sommets de K (W,,) sont
les classes d’homéomorphismes W,,-équivariants d’arbres simpliciaux munis d’une action
de W,, minimale, & stabilisateur d’arétes triviaux et a stabilisateurs de sommets finis,
deux sommets X et X’ de K(W,,) étant reliés par une aréte si et seulement s’il existe
X € X et X' € X tel que X s’écrase sur X’ ou réciproquement. Le groupe Out(W,)
agit alors sur K(W,) par automorphisme de graphes et I’action de Out(W,,) sur K (W)
est cocompacte. Nous démontrons le théoréeme suivant.

Théoréme 1.1.1 (Theorem [3.1.1). Soit n = 4. Le morphisme naturel
Out(W,,) — Aut(K(W,))
est un isomorphisme.

Nous obtenons ainsi un résultat de rigidité au sens ou les seules symétries de I’Outre-
espace de W, sont celles naturelles induites par I'action. Le théoreme donne une
classification complete des symétries de I’épine de I’Outre-espace pour tout n. En effet,
pour n = 2, I’épine de I’Outre-espace de W est réduite a un point. Lorsque n = 3,
I’épine de I’Outre-espace de W3 est un arbre trivalent, isomorphe a I’épine de I’Outre-
espace (réduit) de Fh ; de ce fait, son groupe d’automorphismes de graphes est non
dénombrable. Le théoreme [1.1.1] montre que I’épine de I’Outre-espace de W, est un
modéle géométrique rigide pour Out(W,,), c’est-a-dire que 'on peut considérer le groupe
Out(W,,) comme étant exactement le groupe des automorphismes du graphe K(W,).

De tels modeles géométriques rigides ont été démontrés I’étre dans d’autres contextes.
Par exemple, dans le cadre des groupes algébriques, Tits a démontré que, si le rang
de I'immeuble sphérique associé a un groupe algébrique simple connexe est au moins
2, le groupe des automorphismes simpliciaux de I'immeuble est exactement le groupe
algébrique [Tit2]. Un tel résultat de rigidité géométrique est également vrai pour les
immeubles affines de dimension au moins 3. La démonstration repose sur le fait que
I'immeuble & l'infini d’un tel immeuble affine est sphérique de rang au moins 2. De
ce fait, la description du bord & l'infini permet de mieux comprendre les symétries de
I'immeuble lui-méme.

Dans le cas du groupe modulaire d’'une surface compacte, connexe, orientable .S de
genre au moins 3, Royden [Roy|] a démontré que le groupe des isométries de 1'espace de
Teichmiiller (pour la distance de Teichmiiller) est exactement Mod™(S), le groupe mod-
ulaire étendu de la surface. Un autre modele géométrique rigide pour Mod*(S) est le
graphe des courbes. Introduit par Harvey ([Har], voir également [Klal, [MasM]), le graphe
des courbes est le graphe dont les sommets sont les classes d’homotopie de courbes fer-
mées simples et essentielles, deux sommets [c1] et [c2] étant reliés par une aréte s'il
existe ¢] € [c1] et ¢ € [e2] tels que ¢ N ¢y = @. Le groupe Mod(S) agit naturelle-
ment sur le graphe des courbes et Ivanov [[va2] a démontré que le graphe des courbes
d’une surface compacte, connexe, orientable de genre au moins 3 constituait un mod-
ele géométrique rigide pour Modi(S). Enfin, lorsque n > 3, ’épine de I’Outre-espace
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de I, constitue un modele géométrique rigide pour Out(F, ) par des résultats de Brid-
son et Vogtmann [BV2]. Le fait que I’épine de C'V,, constitue un modele géométrique
rigide pour Out(F,) n’implique cependant pas que le graphe K(W,,) soit un modele
géométrique rigide pour Out(W,,), comme nous le verrons dans la partie D’autres
modeles géométriques rigides avaient déja été construits pour Out(W,,). Par exem-
ple l'espace de McCullough-Miller pour W,,, espace homotopiquement équivalent et de
maniere Out(W),,)-équivariante a 1’Outre-espace de W,, [MM], est un modele géométrique
rigide pour Out(W,,) par un résultat de Piggott [Pig]. Néanmoins, il n’existe pas, & notre
connaissance, d’isomorphisme Out(W,,)-équivariant entre le 1-squelette de I'espace de
McCullough-Miller et K (W,,) et, de ce fait, nous ne pouvons pas déduire directement la
rigidité géométrique de K(W,,) a partir de celle de I'espace de McCullough-Miller.

Il s’avere par ailleurs que la démonstration du théoréme [I.1.1] repose sur le fait que
certains sous-graphes de K (W) sont également des modeles géométriques rigides pour
Out(W,,). Un graphe de premiere importance est le graphe des {0}-étoiles et des F'-
étoiles noté L(W,). Une {0}-étoile est une classe d’équivalence X dans K (W,,) dont
un représentant X € X est tel que le quotient W,,\ X soit un graphe de groupes dont le
graphe sous-jacent est un arbre ayant n feuilles et n + 1 sommets. Une F'-étoile est une
classe d’équivalence X' dans K (W,,) dont un représentant X € X est tel que le quotient
Wp\X soit un graphe de groupes dont le graphe sous-jacent est un arbre ayant n — 1
feuilles et n sommets. Les {0}-étoiles et les F-étoiles jouent le role des roses de CV,,
c’est-a-dire des classes d’équivalence de graphes de Cayley pour les parties génératrices
libres de F,. Le graphe L(W,,) est alors le sous-graphe de K(W,,) dont les sommets
sont les {0}-étoiles et les F-étoiles, et ou deux sommets de L(W,,) sont adjacents si, et
seulement si, ils sont adjacents dans K (W,,). Le groupe Out(W),,) agit a droite sur L(W,,)
par précomposition de I'action et nous démontrons le théoreme de rigidité suivant.

Théoréme 1.1.2 (Corollary [3.3.2). Soit n = 5. Le morphisme naturel
Out(W,,) — Aut(L(W,,))
est un isomorphisme.

La démonstration du théoréeme repose sur une étude locale du graphe L(WV,,).
Nous étudions en particulier les cycles dans les boules de rayon 4 de L(W,,). Ceci nous
permet de décrire localement le graphe L(W,,) et cette description locale est suffisante
pour obtenir une description globale des symétries de L(W,,). Ce passage de la rigidité
locale a la rigidité globale est a mettre en parallele avec la démonstration de la rigid-
ité géométrique des immeubles sphériques associés a des groupes algébriques faite par
Tits [Tit2] qui reposait sur I’étude des cycles dans des boules de rayon 2 dans I'immeuble.

L’importance du théoreme provient du fait qu’il permet une traduction d’une
question de rigidité algébrique de Out(W,,) en une question de rigidité géométrique. En
effet, les stabilisateurs dans L(W,,) d'une {0}-étoile et celui d’'une F-étoile adjacente
engendrent Out(W,,). En montrant d’une part que tout automorphisme de Out(W,,)
préserve 'ensemble des stabilisateurs de {0}-étoiles et de F-étoiles, et d’autre part
que tout automorphisme de Out(W,,) préserve ’ensemble des stabilisateurs d’arétes de
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L(W,), nous voyons que tout automorphisme de Out(W,,) induit un automorphisme
du graphe L(W,). En utilisant la rigidité géométrique, nous déduisons le théoreme de
rigidité algébrique suivant.

Théoréme 1.1.3 (Théoreme 2.1.1). (1) Sin =5, alors Out (Out (W,)) = {1}.
(2) Sin =4, alors Out(Out(W,,)) est isomorphe a Z/2Z.

L’automorphisme extérieur nontrivial de Out(W,) donné par le théoreme [L.1.3] (2)
a une interprétation tres simple en terme géométrique puisqu’il permute le stabilisa-
teur d’une {0}-étoile avec celui d'une F-étoile adjacente. Nous obtenons par ailleurs
une description de cet automorphisme sur un systeme de générateurs de Out(W,,). Le
théoreme donne une classification compléte des automorphismes de Out(W,,) pour
n € N*. En effet, le groupe Out(Out(W3)) est isomorphe & un groupe cyclique d’ordre
2 [Thol Lemmas 1.4.2, 1.4.3]. Par ailleurs, le groupe Out(I¥3) est isomorphe & un groupe
projectif linéaire de rang 2 & coefficients dans Z [Guell, Proposition 2.2], donc son groupe
d’automorphismes extérieurs est trivial par un résultat de Hua et Reiner [HR]. Notons
également que, si la démonstration du théoréeme donnée dans [Guel] ne fait pas
directement intervenir le graphe L(W,,), la démonstration montre effectivement que tout
automorphisme de Out(W,,) préserve I'ensemble des stabilisateurs de {0}-étoiles et de
F-étoiles. Le théoreme est inspiré de résultats analogues dans différents contextes.
En effet, Mostow [Mos2] a démontré que le groupe des automorphismes extérieurs de
réseaux irréductibles uniformes de groupes de Lie réels, connexes, semi-simples et non
localement isomorphes a SLa(R) est fini. De méme, Bridson et Vogtmann [BV1] ont dé-
montré que tout automorphisme du groupe des automorphismes extérieurs d’un groupe
libre de rang N (avec N > 3) est une conjugaison. Le résultat de Bridson et Vogt-
mann ne permet cependant pas de déduire le théoreme [1.1.3| comme nous 1’expliquerons
dans la partie Enfin, Ivanov [Iva2] a démontré un résultat similaire dans le cas du
groupe modulaire étendu d’une surface compacte, connexe, orientable de genre g > 2.
La méthode de démonstration évoquée pour le théoreme est d’ailleurs similaire a
la démonstration d’Ivanov. En effet, Ivanov utilise tout d’abord le fait que le graphe des
courbes de la surface est un modele géométrique rigide pour Modi(S ) et donne ensuite
une caractérisation algébrique des stabilisateurs de sommets du graphe des courbes grace
aux twists de Dehn de la surface. Ivanov démontre en fait un résultat sur les isomor-
phismes entre sous-groupes d’indice fini de Mod®(S). Comme nous l'expliquerons dans
la partie suivante, nous pouvons également obtenir un résultat sur les isomorphismes
entre sous-groupes d’indice fini de Out(W,,). Ce résultat repose sur 'action de Out(W,,)
sur certains espaces hyperboliques au sens de Gromov, comme nous ’expliquons aussi
dans le début de la prochaine partie.
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1.2 Action sur des espaces hyperboliques au sens de Gromov et
rigidité du commensurateur abstrait

L’étude de Out(Fy,) et Out(W,,) repose également sur la construction d’espaces hyper-
boliques au sens de Gromov (voir [Grol] pour tout prérequis et également [GdIH]) sur
lesquels Out(F,) et Out(W,,) agissent par isométries. Par exemple, 'utilisation des
espaces hyperboliques pour comprendre certains groupes agissant par isométries sur
ces derniers est un argument central dans la démonstration du théoreme de rigidité de
Mostow en rang 1 [Mosl], avec 1'usage des propriétés de I'espace hyperbolique réel Hf{
ainsi que son bord & 'infini.

Un autre exemple d’espace hyperbolique au sens de Gromov est le suivant. Masur et
Minsky [MasM] ont démontré que le graphe des courbes d’une surface compacte, connexe,
orientable de genre au moins 2, tout en n’étant pas localement fini, est hyperbolique
au sens de Gromov. L’hyperbolicité du graphe des courbes est alors devenu un outil
fondamental dans I’étude de Mod(S). Mentionnons par exemple que Dahmani, Guirardel
et Osin [DGO| ont démontré, en utilisant 'action de Mod(S) sur le graphe des courbes,
que tout sous-groupe H de Mod(S) qui n’est pas virtuellement abélien est SQ universel,
c’est-a-dire que tout groupe dénombrable se plonge dans un quotient de H.

Dans le contexte de F,, et de W,,, la construction d’espaces hyperboliques au sens de
Gromov sur lesquels Out(F,,) et Out(W),,) agissent par isométries repose sur leurs actions
sur des arbres. Soient G un groupe de type fini et F un systéme de facteurs libres de
G. Un scindement de G est une action de G sur un arbre simplicial, cette action étant
supposée minimale et sans point fixe global. Un scindement de G est relatif ¢ F si,
pour tout sous-groupe H de G tel que [H]| € F, le groupe H fixe un sommet de G. Un
scindement libre de G relatif a F est un scindement de G relatif a F a stabilisateurs
d’arétes triviaux. Notons que les arbres considérés dans ’Outre-espace O(G, F) sont
des cas particuliers de scindements libres. Un élément g de G est dit F-périphérique, ou
périphérique s’il n’y a pas d’ambiguité, s’il existe un sous-groupe H de G tel que g € H
et [H] € F. Sinon, g est F-non-périphérique. Si S et S’ sont deux scindements de G
relatifs & F, on dit que S est un raffinement de S’ si S’ est obtenu & partir de S en
écrasant des orbites d’arétes. Deux scindements S et S’ sont compatibles s’ils ont un
raffinement commun.

Le graphe des facteurs libres de G relativement a F, noté FF(G, F), est le graphe
dont les sommets sont les classes d’homéomorphisme G-équivariant de scindements li-
bres de G relatifs a F, deux classes d’équivalence S et S’ étant reliés par une aréte s’il
existe S € S et S’ € & tels que S et S’ sont compatibles ou §’il existe un élément g € G
qui est F-non-périphérique tel que g fixe un sommet dans S et dans S’. L’hyperbolicité
du graphe des facteurs libres avait été démontrée dans le cas ou G = F,, et F = & par
Bestvina et Feighn [BE2] (voir également une démonstration de Kapovich et Rafi [KR])
et dans le cas relatif par Handel et Mosher [HaM3] (toujours pour G = F,,). Guirardel et
Horbez [GuH2| ont démontré que, en dehors de certains systémes de facteurs libres spo-
radiques (voir loc. cit.), le graphe FF(G, F) est hyperbolique au sens de Gromov.

Le groupe Out(G, F) des automorphismes extérieurs de G préservant F agit & droite
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par isométries sur FF(G, F) par précomposition de 'action. Les éléments loxodromiques
de Out(G, F) sont les automorphismes extérieurs complétement irréductibles relative-
ment a F, c’est-a~dire les éléments de Out(G, F) dont aucune puissance non trivial ne
préserve de systemes de facteurs libres propres contenant F.

Nous donnons a présent une autre justification du cadre relatif avec une compara-
ison avec le groupe modulaire d’une surface. En effet, Ivanov [Ival] a démontré une
classification des sous-groupes de Mod(S), ot S est une surface compacte, connexe et
hyperbolique. Cette classification affirme qu’a tout sous-groupe H de Mod(.S) nous pou-
vons associer une décomposition maximale de S en sous-surfaces essentielles invariantes
a isotopie pres par un sous-groupe d’indice fini de H. La démonstration de ce résultat
s’effectue en deux étapes. La premiere étape est de montrer, en utilisant 'action de H
sur le graphe des courbes, que soit H possede un sous-groupe d’indice fini qui fixe la
classe d’isotopie d’'une courbe fermée simple et essentielle, soit H contient un élément
pseudo-Anosov. Si H contient un pseudo-Anosov, alors .S ne contient pas de sous-surface
essentielle propre invariante par un sous-groupe d’indice fini de H. Sinon, quitte a passer
a un sous-groupe d’indice fini, on peut supposer que H fixe la classe d’isotopie [c] d’une
courbe fermée, simple et essentielle c de S. Le groupe H préserve alors la classe d’isotopie
de S — cet le résultat se démontre par récurrence sur la complexité topologique de chaque
composante connexe de S — c.

Dans le cadre de Out(F,), l'introduction du cadre relatif est nécessaire. En effet,
un possible analogue des éléments pseudo-Anosov sont les automorphismes complete-
ment irréductibles mentionnés ci-dessus. L’analogue des sous-surfaces dans le théoreme
d’Ivanov serait alors les facteurs libres de [F,,. La premiere étape de la démonstration est
analogue. En effet, un résultat di & Handel et Mosher [HaMI1] pour les sous-groupes de
type fini puis généralisé par Horbez [Horl] & tous les sous-groupes de Out(F,,) affirme que
tout sous-groupe de Out(F,,) soit contient un automorphisme extérieur complétement ir-
réductible soit contient un sous-groupe d’indice fini qui fixe la classe de conjugaison d’un
facteur libre. La démonstration de Horbez repose sur I’action de Out(Fy,) sur le complexe
des facteurs libres. Cependant, si A est un facteur libre de F,,, il n’existe pas de facteur
libre naturel B de F,, tel que F,, = A = B. De ce fait, un sous-groupe de Out(F,) fixant
la classe de conjugaison de A ne fixe pas nécessairement de facteur libre complémentaire
et un argument de récurrence a la Ivanov ne fonctionne pas.

Ala place, il convient d’utiliser les graphes des facteurs libres relatifs. Fn effet, si H
est un sous-groupe de Out(F,,) qui fixe un systeme de facteurs libres F, alors H agit par
isométries sur FF(F,,, ). L’alternative de Handel et Mosher se généralise alors au cadre
relatif (voir [HaM4] pour le cas ou H est de type fini, et [GuH2| pour le cas général).

Nous mentionnons a présent ’existence d’un autre graphe hyperbolique sur lequel
Out(G, F) agit par isométries. Il s’agit du graphe des scindements libres de G relatifs
a F, noté K(G,F). Le graphe K (G, F) est le graphe dont les sommets sont les classes
d’homéomorphismes G-équivariants de scindements libres de G relativement & F, deux
sommets S et S’ étant reliés par une aréte s’il existe S € S et S’ € §’ tels que S s’écrase
sur S’ ou réciproquement. Le graphe K(G,F) a I'avantage d’avoir des stabilisateurs
beaucoup plus rigides que ceux de FF(G,F). En effet, les stabilisateurs de sommets
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de FF(G, F) sont isomorphes a Out(G,F’), ou F' est un systeme de facteurs libres
non trivial de G contenant proprement JF, alors que les stabilisateurs de sommets de
K(G,F) ont une description précise donnée par Levitt [Lev]. Notons par ailleurs que
K(G, F) peut étre considéré comme une complétion simpliciale de I’Outre-espace de
G relativement & F (rappelons que 1’Outre-espace de G relativement & F possede une
structure de complexe simplicial auquel il manque des faces), d’ou la notation K (G, F).
De ce fait, les questions de rigidité concernant K (G, F) sont plus simples & traiter que les
questions de rigidité concernant FF(G, F) (mentionnons tout de méme que Bestvina et
Bridson ont annoncé avoir démontré que le graphe des facteurs libres de [F,, est un modele
géométrique rigide pour Out(F,)). Handel et Mosher [HaM2] ont démontré que K (F,,)
est hyperbolique, Horbez [Hor2] I’a démontré dans le cas ou G est général. Le groupe
Out(G, F) admet une action naturelle par isométries sur K (G, F) par précomposition
de Paction. Dans le cas de F,,, Aramayona et Souto [AS] ont démontré que le graphe
des scindements libres de F,, est un modele géométrique rigide pour Out(F,). Dans le
cas de W, le graphe K (W,) constitue également un modele géométrique rigide pour
Out(W,).

Théoréme 1.2.1 (Theorem [3.1.2)). Soit n > 4. Le morphisme naturel
Out(W,,) — Aut( K(W,,))

est un isomorphisme.

Les actions de Out(W,,) et Out(F,) sur ces espaces hyperboliques ne sont cependant
pas proprement discontinues. En effet, les stabilisateurs de sommets de K (W,,) sont
en général infinis. Levitt [Levl, Proposition 4.2] en a donné une description compléte.
Les stabilisateurs de sommets contiennent en particulier un sous-groupe distingué appelé
groupe de twists, que nous décrivons maintenant dans le cas d’'un exemple simple. Soient
A et B deux sous-groupes infinis de W,, tels que W,, = A % B et soit S le scindement
libre tel que le graphe sous-jacent a W, \\S contient exactement une aréte et tel que les
stabilisateurs de sommets de S sont exactement les conjugués de A et les conjugués de
B. Soit ¢ € Out(W),,) tel que ¢ préserve la classe d’homéomorphisme W, -équivariant S
de S. Quitte a considérer une puissance de ¢, nous pouvons supposer que ¢ préserve la
classe de conjugaison de A et la classe de conjugaison de B. Soit ® € ¢ tel que ®(A) = A.
L’automorphisme ® induit un automorphisme extérieur [®|4] € Out(A) et cet automor-
phisme extérieur ne dépend pas du choix de ® car A est un sous-groupe malnormal de
F,, : pour tout élément g € F,, — A, nous avons gAg—' n A = {e}. Soit Stab%ut(wn)(S) le
sous-groupe d’indice 2 de StabOut(Wn)(S) qui consiste en les automorphismes extérieurs
fixant les classes de conjugaison de A et de B. Nous avons alors un morphisme

Stabyy(w,) (S) = Out(4) x Out(B).

Le noyau de ce morphisme est le groupe de twists de S. Un twist de S possede alors un
représentant qui préserve A et B et qui agit comme une conjugaison globale sur A (resp.
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B) par un élément de A (resp. B). De ce fait, le groupe de twists de S est isomorphe a
A x B.

Plus généralement, les groupes de twists d’'un scindement libre de W,, sont isomor-
phes & des produits directs de groupes isomorphes a des groupes de Coxeter universels.
Dans I’étude des questions de rigidité, ’existence de tels produits directs revét une im-
portance particuliere puisque ’action par isométrie de produits directs sur un espace
hyperbolique au sens de Gromov est facilement compréhensible et contraint I’existence
de points fixes dans l’espace hyperbolique ou dans son bord (voir par exemple [HW2,
Proposition 4.2]). Par exemple, un groupe isomorphe & Z? agissant par isométries sur
un espace hyperbolique propre devra nécessairement fixer un point dans la compactifi-
cation de I'espace hyperbolique. Ceci implique notamment que le groupes hyperboliques
ne contiennent pas de sous-groupes isomorphes & Z2. De ce fait, I’action de Out(W,,)
sur le graphe des facteurs libres permet de caractériser algébriquement certains groupes
de twists et plus généralement certains stabilisateurs de sommets du graphe des scinde-
ments libres. Cette caractérisation algébrique des stabilisateurs est I’argument central
dans la démonstration du théoreme de rigidité algébrique suivant.

Théoréme 1.2.2 (Theorem 4.8.2)). Soitn > 5 et soit F': Hi — Hy un isomorphisme entre
deuzx sous-groupes d’indice fini de Out(W,,). Alors il existe un unique f € Out(W,,) tel
que F' soit la restriction de la conjugaison globale par f.

Nous montrons en fait la rigidité du commensurateur abstrait de Out(W,). Soit
G un groupe. Le commensurateur abstrait de G est le groupe Comm(G) des classes
d’équivalence d’isomorphismes entre deux sous-groupes d’indice fini de G. Deux iso-
morphismes sont dans la méme classe d’équivalence s’ils sont égaux en restriction a un
sous-groupe d’indice fini commun de leur domaine de définition. Si fi1: G; — Hj et
fo: Go — Hs sont deux isomorphismes entre sous-groupes d’indice fini de G, la loi de
composition de Comm(G) est :

[fi: Gi = Hi]o[fo: G2 = Ha] = [fio fo: f3 '(Ha 0 G1) — f1(G1 0 H)].

Le commensurateur abstrait a été popularisé par Serre dans le cadre de I'étude des
groupes arithmétiques et le probléme de congruences de sous-groupes d’indice fini dans
SL(n,Z). Notons que tout automorphisme de G induit un élément de Comm(G), et donc
Paction G sur lui-méme par conjugaison induit un morphisme

G — Comm(G).

Le commensurateur abstrait est une notion de symétrie du groupe G qui est plus faible
que celle de son groupe d’automorphismes. Par exemple, le commensurateur abstrait
du groupe Z™ est isomorphe a GL(m,Q) alors que son groupe d’automorphismes est
GL(m,Z). De méme, le commensurateur abstrait d'un groupe libre non abélien n’est
pas de type fini [BB]. Le résultat de rigidité suivant, qui est une conséquence du
théoreme montre que, dans le cas de Out(W,,), les deux notions de symétrie que
sont le commensurateur abstrait et le groupe des automorphismes coincident.
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Corollaire 1.2.3 (Theorem [4.8.2)). Soit n > 5. Le morphisme
Out(W,,) — Comm(Out(Wy,))
est un isomorphisme.

Le théoreme et le corollaire [1.2.3] sont inspirés de résultats analogues dans
différents contextes. En effet, le théoreme de Mostow-Prasad-Margulis et le théoreme
d’arithméticité de Margulis (voir par exemple [Zim]) impliquent par exemple que, si T
est un réseau dans un groupe de Lie G simple, connexe, non compact, de centre trivial
et tel que G # PSL(2,R), alors " est d’indice fini dans Comm(T") si, et seulement si,
I’ n’est pas arithmétique ; sinon Comm(T") est dense dans G. De plus, dans les deux
cas, Comm(T") est isomorphe au commensurateur de I' dans G, c’est-a-dire a ’ensemble
des éléments g de G tels que I' n gI'g™! est d’indice fini dans T' et dans gI'g~!. De
méme, Ivanov [Iva2] a démontré que, si S est une surface connexe, compacte, orientable
de genre au moins 3, alors le morphisme naturel Mod®(S) — Comm(Mod™*(S)) est
un isomorphisme. Dans le cas de Out(F,), la rigidité du commensurateur abstrait de
Out(FF,) a été démontrée par Farb et Handel [FarH] pour n > 4, puis a été étendue au
cas n = 3 par Horbez et Wade [HW2] par des méthodes géométriques qui ont inspiré la
démonstration du théoréme[1.2.2]et du corollaire[1.2.3] Enfin, de tels résultats de rigidité
ont été étendus & d’autres groupes, tels les groupes modulaires des corps en anses [Hen]
ou les groupes modulaires de grosses surfaces [BDR].

1.3 Dynamique sur des espaces compacts et croissance dans les
groupes hyperboliques

Comme nous 'avons évoqué, la démonstration du théoreme repose sur 1’étude de
Paction de Out(W,,) sur un espace hyperbolique, le graphe des facteurs libres, et la
recherche de points fixes dans une bordification naturelle. Il convient de souligner de
maniere approfondie (et nous en avons déja apergu deux occurrences dans la partie
I'importance de ’étude de I’action par homéomorphismes d’un groupe d’isométries d’un
espace hyperbolique au sens de Gromov X sur le bord a l'infini d,X de X (voir par
exemple [Groll [(GdIH| BriHae]). Notons par exemple que ’étude des groupes kleiniens
s’appuie principalement sur leur action par isométrie sur I’espace hyperbolique réel H%
de dimension 3 et leur action par homéomorphismes (en fait conformes) sur leur ensemble
limite. Le bord a l’infini de X a une structure riche, et peut étre considéré a la fois de
maniere topologique, dynamique, métrique ou analytique. La classification des isométries
d’un espace hyperbolique au sens de Gromov (voir par exemple [GdIH, Chapitre 8|)
repose essentiellement sur 1’étude de ’action des isométries sur le bord de Gromov et les
points fixes associés. Cette classification illustre par ailleurs la dynamique des isométries
de X sur la bordification X u d,X. Par exemple, si ¢ est une isométrie loxodromique de
X, alors ¢ fixe exactement deux points a;foo, a;"o € 0w X et, pour tout z € X U 0 X —

{aioo}’ la suite (qf)im(fﬁ))meN converge vers CL;TFOO-
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Ce type de dynamique est un exemple de dynamique Nord-Sud. Soit X un espace
topologique compact, métrisable et ¢ un homéomorphisme de X. Alors ¢ agit avec une
dynamique Nord-Sud sur X s’il existe deux compacts disjoints propres A4 (¢) de X in-
variants par ¢ et tels que tout point de X — A (¢) converge vers un point p € A+ (¢)
sous l'itération de ¢*!. De tels compacts A4(¢) sont appelés des compacts attractifs
et répulsifs associés a ¢. Les résultats de dynamique Nord-Sud sont des outils priv-
ilégiés pour obtenir des résultats de classification des groupes considérés. Par exemple,
Tits [Titl] (voir également [dIH1]), en utilisant des arguments de dynamique Nord-Sud
et de tennis de table (voir par exemple [dIH2, BriHae]), a démontré une alternative pour
les groupes linéaires : tout sous-groupe d’un groupe linéaire soit contient un sous-groupe
libre non abélien de rang 2 soit est résoluble.

Ainsi, puisque le graphe des courbes d’une surface S compacte, connexe, orientable
de genre g > 2 est hyperbolique au sens de Gromov, les éléments pseudo-Anosov, qui
sont précisément les éléments loxodromiques du graphe des courbes par des résultats
de Masur et Minsky [MasM], agissent avec une dynamique Nord-Sud sur la réunion du
graphe des courbes et de son bord a l'infini. De méme les automorphismes extérieurs
completement irréductibles d’un produit libre G agissent avec une dynamique Nord-Sud
sur la réunion du graphe des facteurs libres avec son bord a I'infini, et on peut en déduire
une alternative de Tits pour ces groupes [GuH2].

Des résultats de dynamique Nord-Sud existent également dans le cadre d’espaces non
hyperboliques. Par exemple, le résultat de Tits [Titl] suscité utilise de la dynamique
projective et notamment le résultat de dynamique Nord-Sud suivant. Soit ¢ une ma-
trice carrée réelle de rang n > 2 diagonalisable dans R et telle qu’il existe une valeur
propre A > 1 de ¢ telle que, pour toute valeur propre X de ¢ distincte de A, nous
ayons |A| > |N]. Alors la classe projective d’un vecteur propre de ¢ associé & A est un
point attractif dans RP™. De plus, la classe projective du sous-espace vectoriel de R"
engendré par les vecteurs propres de ¢ associés a des valeurs propres distinctes de \ est
le compact répulsif de ¢ dans RP™. Notons que, dans ce cas, A_(¢) n’est pas réduit a
un point si n > 3. Par ailleurs, Thurston [Thu] a démontré que les homéomorphismes
pseudo-Anosov d’une surface connexe, compacte, orientable de genre au moins 2 agissent
avec une dynamique Nord-Sud sur I'espace des feuilletages mesurés projectifs et sur le
compactifié de Thurston de ’espace de Teichmiiller. En utilisant cette dynamique Nord-
Sud, Ivanov [Ival] (voir également les travaux de McCarthy [McC]) a alors démontré que
tout sous-groupe de Mod(.S) contenant un élément pseudo-Anosov est soit virtuellement
cyclique, soit contient un sous-groupe libre non abélien composé uniquement d’éléments
pseudo-Anosov. De méme Levitt et Lustig [LL] ont démontré que les automorphismes
extérieurs completement irréductibles de F,, agissent avec une dynamique Nord-Sud sur
le compactifié de ’Outre-espace de [F,,.

Dans cette these, nous étudions des propriétés dynamiques des éléments de Out(F,,).
Nous construisons un dictionnaire entre 1’action d’un élément ¢ € Out(IF,,) sur un espace
topologique compact approprié X et la croissance de la longueur de classes de conju-
gaisons de Ty, par itération de ¢. 1’étude de la dynamique sur ’espace X repose alors
sur une traduction en une dynamique sur le groupe FF,,, et inversement. Les résultats de
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dynamiques étudiés seront ainsi intrinsequement liés avec la croissance dans les groupes.
Initiée par Svarc, Milnor et Wolf, et particulicrement développée par Guivarc’h, Gromov
et Grigorchuk, les problemes de croissance dans un groupe forment un domaine majeur
en théorie géométrique des groupes (voir par exemple [LS, Manll [Hel]). Ces problemes
de croissance sont reliés aux alternatives sur les sous-groupes que nous évoquions plus
tot. En effet, 'alternative que Tits a démontrée pour les groupes linéaires implique par
un résultat de Milnor et Wolf que, si G est un sous-groupe d’un groupe linéaire, alors le
volume d’une boule dans un graphe de Cayley de G croit de maniere exponentielle ou
polynomiale.

Dans ce manuscrit, nous nous intéressons aux problemes de croissance d’éléments du
groupe sous l'itération d’automorphismes du groupe. Soient G un groupe de type fini,
S une partie génératrice finie de G et d la distance des mots sur G associée a S. Soient
® un automorphisme de G et g € G. La croissance de g sous itération de ® correspond
au comportement asymptotique de la suite

(€5(2™(9))) peny = (A(2™(9), €))men-

De méme, si ¢ est un automorphisme extérieur de G, la croissance de (la classe de
conjugaison de) g sous itération de ¢ correspond au comportement asymptotique de la
suite

(Es(¢m([9])))meN:( min eS(Qm(gl))) N

g'elg],Pe¢p

Nous dirons que g est a croissance polynomiale relativement a ¢ s’il existe un polyndéme
P e Z| X] tel que, pour tout m € N* nous ayons :

ts(¢™([9])) < P(m),

et nous dirons que g est & croissance exponentielle par itération de ¢ s’il existe C, A > 0
tels que, pour tout m € N* nous ayons :

ls(¢™([g])) = C ™.

Pour une large famille de groupes comprenant les groupes libres abéliens et les groupes
hyperboliques sans torsion, un élément du groupe est soit a croissance exponentielle soit
a croissance polynomiale relativement & un automorphisme extérieur (voir par exem-
ple [Coul, Theorem 1.1]). De plus, ce fait ne dépend pas du choix de la partie génératrice
finie du groupe. Notons cependant que cette alternative n’est pas vérifiée pour tous les
groupes et que Coulon [Cou] a construit des groupes ayant des éléments & croissance
intermédiaire sous itération d’automorphismes.

Nous donnons a présent des exemples d’automorphismes d’un groupe libre non abélien
F,, de rang n dont les éléments ont différents types de croissance.

(1) Un exemple d’automorphisme pour lequel tous les éléments sont & croissance poly-
nomiale est le suivant. Soit F3 = {a, b, c) et soit ¢ 'automorphisme fixant a, envoyant b
sur ba et envoyant ¢ sur cb. Alors b est a croissance linéaire relativement & ¢ et ¢ est a
croissance quadratique relativement a ¢.
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(2) Un exemple d’automorphisme pour lequel tous les éléments sont & croissance expo-
nentielle est le suivant. Soit M € GL(3,7Z) une matrice primitive telle qu’il existe une
unique valeur propre A de M, comptée avec multiplicité, telle que |A] > 1 et telle que
pour toute valeur propre p de M distincte de A, nous ayons |u| < 1. Soit ¢y € Out(F3)
tel que l'image de ¢ par le morphisme d’abélianisation ©: Out(F3) — GL(3,7Z) soit
égale & M. Alors un résultat de Gersten et Stallings [GS] implique que tous les éléments
de F,, sont a croissance exponentielle par itération de ¢yy.

(3) Un exemple d’automorphisme possédant des éléments a croissance exponentielle
et des éléments a croissance polynomiale est le suivant. Soit F3 = {a,b,c) et soit ¢
I'automorphisme envoyant a sur b, b sur ab et ¢ sur caba~'b~1. Alors, si g € F3 —
<aba*1b*1,c>, I’élément g est a croissance exponentielle par itération de ¢. L’élément
aba~1b™! est fixé par ¢? et I'élément c est & croissance linéaire par itération de ¢.

Ces questions de croissance ont par ailleurs des conséquences sur la structure al-
gébrique des groupes. En effet, Brinkmann [Bri| (voir également les travaux de Bestvina
et Feighn [BET]) a démontré que si ¢ € Out(F,), alors la suspension F,, x4 Z est un
groupe hyperbolique au sens de Gromov si et seulement si ¢ € Out(F,,) est un élément
atoroidal, c’est-a-dire si tous les éléments de [F,, sont a croissance exponentielle par itéra-
tion de ¢. Notons qu'une conséquence d’un résultat de Levitt [Lev2, Corollary 1.6] est
quun automorphisme ¢ € Out(F,,) est atoroidal si et seulement si pour tout k € N*,
l’automorphisme extérieur ¢* ne fixe pas la classe de conjugaison d’un élément non triv-
ial de [F,,. Ce résultat est a comparer avec un résultat de Thurston affirmant que la
suspension d’une surface compacte, connexe, orientable de genre g > 2 par un élément
pseudo-Anosov est hyperbolique (voir par exemple la démonstration d’Otal [Ota] qui
utilise des actions de groupes sur des arbres).

Dans cette these, nous considérons ces questions de croissance du point de vue des
sous-groupes de Out(Fy,). Si ¢ € Out(F, ), nous noterons Poly(¢) ’ensemble des éléments
de F,, & croissance polynomiale par itération de ¢. Si H est un sous-groupe de Out(F,),
nous noterons Poly(H) = (,cg Poly(¢), c’est-a-dire I'ensemble des éléments de F,, a
croissance polynomiale par itération de chaque élément de H. Nous démontrons le
résultat suivant, qui donne 'existence d’éléments dynamiquement génériques dans les
sous-groupes de Out(IF,,).

Théoréme 1.3.1 (Theorem [7.1.1). Soit n € N* et soit H un sous-groupe de Out(F,). Il
existe ¢ € H tel que Poly(¢) = Poly(H).

Le théoreme montre ainsi que, si H est un sous-groupe de Out(F,), tout élé-
ment de [F,, & croissance exponentielle par itération d’un élément de H est a croissance
exponentielle par itération de tout élément générique de H donné par le théoréme |1.3.1
Un élément générique ainsi construit encode donc toute la croissance exponentielle de
H.

Le théoreme possede un analogue dans le contexte du groupe modulaire d’une
surface S fermée, connexe, orientable, munie d’une structure hyperbolique. En effet,
une conséquence de la classification de Nielsen-Thurston (voir par exemple [FarM, The-
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orem 13.2]) et de I’étude de la croissance d’éléments pseudo-Anosov (voir par exem-
ple [FarM|, Theorem 14.23]) est que la croissance sous les itérés d’un élément de Mod(S)
de la longueur hyperbolique d’un représentant géodésique de la classe d’homotopie d’une
courbe fermée et essentielle est soit exponentielle, soit linéaire. Par ailleurs, la crois-
sance linéaire provient de twists de Dehn tandis que la croissance exponentielle provient
d’éléments pseudo-Anosov de sous-surfaces de S. Comme nous ’avons vu précédemment,
Ivanov [Ival] a démontré que, pour tout sous-groupe H de Mod(S), quitte a passer a
un sous-groupe d’indice fini de H, il existe un nombre fini de classes d’homotopies de
courbes fermées, simples et essentielles deux a deux disjointes C1, ..., ) invariantes
par H et telles que, pour toute composante connexe S’ de S — Ule C;, la restriction
H|s € Mod(S’) soit est triviale, soit contient un pseudo-Anosov. Par ailleurs, il existe
un élément f € H tel que, pour toute composante connexe S’ de S — Ule C; telle que
la restriction H|g € Mod(S’) n’est pas triviale, I’élément f|sr € Mod(S’) est un pseudo-
Anosov. L’élément f peut se construire de la maniere suivante. Pour toute sous-surface
S' de S — Ule C; telle que la restriction H|g € Mod(S’) n’est pas triviale, le groupe
H|gs contient un élément loxodromique du graphe des courbes de S’. Par un résultat de
Clay et Uyanik [CUT, Theorem 5.1], il existe f € H tel que, pour toute sous-surface S’

de S — Ui.“:l C; telle que la restriction H|s € Mod(S’) n’est pas triviale, 'élément f|g
est loxodromique dans le graphe des courbes de S’, donc est un élément pseudo-Anosov
de Mod(S").

Mentionnons que le théoréme a été démontré dans le cas ou Poly(H) = {1} par
Clay et Uyanik [CU2]. En effet, ces derniers démontrent que, dans ce cas, le groupe H
contient un élément atoroidal. Nous généralisons ainsi le théoreme de Clay et Uyanik en
considérant les automorphismes atoroidaux comme étant les automorphismes extérieurs
¢ de Out(FF,) tels que, pour tout élément g de Out(FF,) non trivial, g est a croissance
exponentielle relativement a ¢. Lorsque nous considérons les éléments atoroidaux comme
étant les éléments de Out(IF,,) tels qu’aucune puissance ne fixe de classe de conjugaison
d’éléments non trivial de F,,, nous pouvons nous demander si une autre généralisation du
théoreme de Clay et Uyanik est possible. En effet, nous pouvons nous poser la question
suivante. Soit H un sous-groupe de Out(F,) tel que H fixe virtuellement la classe de
conjugaison d’un sous-groupe A de IF,,. Est-il vrai que soit H fixe virtuellement la classe
de conjugaison d’un élément g de F,, qui n’est contenu dans aucun conjugué de A, soit il
existe ¢ € H tel que les seuls éléments de [F,, dont les classes de conjugaison sont fixées
par ¢ soient contenus dans des conjugués de A ?

Malheureusement, un tel résultat n’est pas valable. En effet, soit F5 = {a,b,c) un
groupe libre non abélien de rang 3. Soit ¢, (resp. ¢p) 'automorphisme de F3 qui fixe
a et b et qui envoie ¢ sur ca (resp. ¢ sur cb). Soit H = {[¢q], [¢s]). Alors H fixe la
classe de conjugaison de tous les éléments de {(a,b). Par ailleurs, pour tout élément
¢ e H, il existe un unique représentant ¥ de ¢ et un élément g, de {a,b) tel que
U ({a,by) = {a,b), ¥lapy = ideapy et ¥(c) = cgy. Ainsi, ¢ fixe la classe de conjugaison
du sous-groupe engendré par g, et cgwc_l. Cependant, pour tout ¢ € H, si ¢ € H est
tel que g4 ne centralise pas gy, alors ¢ ne fixe la classe de conjugaison d’aucun élément

de <g¢, cg¢c_1> autre que les puissances de g, et de cg¢c_1.
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Ainsi, le théoreme de Clay et Uyanik ne se généralise pas a tous les sous-groupes de
IF,, lorsque 'on considere les classes de conjugaison fixées. Néanmoins, dans ’exemple
construit, le rang du sous-groupe de [F,, dont la classe de conjugaison est fixée par H est
égal a 2. Ce rang est en fait minimal comme le montre le résultat suivant, conséquence
du théoreme et du théoreme de Kolchin pour les sous-groupes de Out(F,,) di a
Bestvina, Feighn et Handel [BFH3|, analogue du théoreme de Kolchin pour les sous-
groupes de GL(n,Z) (voir par exemple [Ser2]). Si ¢ € Out(F,), nous notons Fix(¢)
I’ensemble des classes de conjugaison d’éléments de F,, fixées par ¢.

Théoréme 1.3.2 (Corollary[7.5.3). Soitn = 3, soit H un sous-groupe de Out(F,) et soient
gi,--., gk des éléments non triviaur de F,. Supposons que, pour tout i € {1,...,k}, le
groupe H fixe virtuellement la classe de conjugaison de g;. Alors l'une des assertions
suivantes (mutuellement exclusives) est vérifiée.

(1) Il existe un élément non trivial g1 € Fn qui n'est conjugué a aucune puissance
d’un g; pouri € {1,...,k} et dont la classe de conjugaison est virtuellement fizée par H.

(2) Il existe ¢ € H tel que Fix(¢p) = {[{g1)],---, [{gr)]}-

Le résultat suivant montre que la deuxieme alternative du théoreme [1.3.2] intervient
en particulier lorsque le sous-groupe H de Out([F,) considéré est géométrique (au sens
de [HaM4, Theorem J]).

Proposition 1.3.3 (Corollary . Soit n = 3 et soit H un sous-groupe de Out(F,).
Supposons qu’il existe un unique sous-groupe cyclique maximal non trivial {gy de F,, dont
la classe de conjugaison est virtuellement fixée par H. Supposons que g ne soit contenu
dans aucun facteur libre propre de F,,. Alors il existe une surface compacte, connexe S et
une identification de m(S) avec Iy, tel que H soit un sous-groupe de Mod(S) contenant
un élément pseudo-Anosov.

La démonstration du théoreme repose sur des arguments de dynamique Nord-
Sud et de tennis de table comme présentés précédemment. Nous cherchons donc a con-
struire un espace topologique X compact, métrisable sur lequel H agit par homéomor-
phismes et tel qu’il existe un élément ¢ € H tel que ¢ agisse sur X avec une dynamique
Nord-Sud. Un élément ¢ € H sera en fait dynamiquement générique si et seulement si
¢ agit sur X avec une dynamique Nord-Sud. Nous créons ainsi un dictionnaire entre
des propriétés dynamiques de I'action de H sur X (la dynamique Nord-Sud de certains
éléments de H) et la croissance d’éléments de F,, par itérations d’éléments de H.

L’espace X construit sera un espace de courants, espace que nous présentons dans la
prochaine section. Cet espace a l'avantage, comme nous le verrons, qu’il existe une ap-
plication ensembliste © injective et H-équivariante des classes de conjugaison d’éléments
de F,, — Poly(H) vers X, dont I'image est dense. Ceci facilitera la construction du dic-
tionnaire évoqué puisque la dynamique de ’action de H sur X dépendra completement
de I’étude de la dynamique de H sur 'image de ©.
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1.4 Action sur des espaces de courants et construction d’éléments
génériques

Dans la section précédente, nous avons présenté le bord & l'infini d’un espace hyper-
bolique au sens de Gromov d’un point de vue topologique et dynamique. Dans cette sec-
tion, nous adoptons un point de vue analytique dans nos considérations du bord a I'infini.
Nous considérons ainsi des mesures de Radon sur le bord a l'infini de certains groupes
hyperboliques. Ceci est a rapprocher des travaux de Furstenberg [Furll Fur2, Fur3] et
de I'étude d’un groupe I' par l'utilisation des bords de Poisson-Furstenberg, qui sont
des espaces mesurés munis d’une action de I' qui quasi-préserve la mesure. Le bord de
Poisson-Furstenberg intervient notamment dans la considération de problemes de rigidité
proches de ceux du théoreme de superrigidité de Margulis (voir par exemple 1’exposition
de Bader et Furman [BaFur, Theorem 4.8]). Dans le cas ou I' est un groupe hyper-
bolique muni d’une mesure de probabilité u de premier moment fini et tel que le groupe
engendré par le support de p est non élémentaire, le bord de Poisson-Furstenberg est
isomorphe au bord & U'infini du groupe I' par des résultats de Kaimanovich [Kail.

Dans [Pat] [Sul], Patterson et Sullivan ont défini des mesures de Radon quasi invari-
antes ur sur le bord a 'infini d’un espace hyperbolique réel Hy pour n > 2 associés a
des groupes convexes cocompacts I' d’isométries de Hy. La mesure ur ainsi construite a
pour support 'ensemble limite A" de I'. Cette mesure ur permet par exemple d’obtenir
des informations sur les propriétés ergodiques de I’action de I' sur A" ou sur la croissance
des orbites de I' dans Hf. Ces mesures de Radon quasi invariantes ont par la suite été
élargies aux espaces hyperboliques au sens de Gromov par Coornaert [Coor].

Pour obtenir des mesures de Radon invariantes et non plus quasi invariantes, une
méthode générale est de considérer le double bord de ’espace hyperbolique au sens de
Gromov. Soit X un espace hyperbolique au sens de Gromov et soit 0, X le bord a I'infini
de X. Le double bord de X est ’espace topologique quotient

X = (00X X 0o X\A)/ ~,

ou ~ est la relation d’équivalence engendrée par la relation (z,y) ~ (y,x) et A est la
diagonale. Si I' est un sous-groupe discret du groupe des isométries de X agissant de
maniere proprement discontinue et cocompacte sur X, un courant de I' est une mesure de
Radon positive ou nulle I'-invariante sur le double bord de X. L’ensemble des courants
Curr(X,T") est muni de la topologie vague (ou faible-étoile), ol une suite de courants
(fin)nen € (Curr(X,T))N converge vers un courant pu € Curr(X,I') si, et seulement si,
pour tout borélien B de 02X tel que u(6B) = 0, la suite (j,,(B))nen converge vers ju(B).
On définit également ’espace des courants projectifs

PCurr(X,T) = (Curr(X,T') — {0})/ ~,

ot deux courants i, v € Curr(X, I') sont équivalents s’il existe A € R* tel que u = Av. Les
courants ont été introduits par Ruelle et Sullivan [RS] et largement utilisés par Bonahon
([Bonll, Chapitre 4], voir également [Bon3]) dans son étude des surfaces hyperboliques
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compactes, connexes et orientables. En effet, si S est une telle surface, son groupe fonda-
mental agit sur son revétement universel S , identifié par une isométrie 71 (S)-équivariante
avec le plan hyperbolique réel H%&. De ce fait, nous pouvons définir ’espace des courants
de S, noté Curr(S), comme étant I'espace Curr(S) = Curr(H2, 1 (S)). Bonahon [Bon3] a
démontré que cette définition ne dépendait pas du choix de la structure hyperbolique de S
(& unique homéomorphisme équivariant pres). Nous pouvons de méme définir I'espace des
courants projectifs de S comme étant 'espace PCurr(S) = PCurr(HZ, 71(S)). L’espace
Curr(S) est un espace métrisable. De plus, I'espace PCurr(S) est un espace métris-
able compact. L’espace Curr(.S) admet une action naturelle de Mod(S) par homéomor-
phismes puisque tout élément de Mod(S) induit un homéomorphisme de doH%. Ainsi,
si f € Mod(S) et si u € Curr(S), alors, pour tout borélien B de ¢°HZ, on pose

F()(B) = u(f~1(B)).

L’action de Mod(S) sur Curr(.S) passe au quotient en une action de Mod(.S) sur PCurr(.S),
I’espace des courants projectifs de S.

Les classes d’homotopies de courbes fermées essentielles de S définissent naturelle-
ment des courants que nous présentons. Soit [y] une telle classe d’homotopie et v son
représentant géodésique. Soit ¥ une géodésique infinie de S se projetant sur «y. Alors ¥
définit deux points distincts A Iinfini 57%, donc un élément {Y£*} de 925. Le courant
associé a [v], noté n,] est

S I DR M
gem1(S)/C(])
ol 8¢5+ est la mesure de Dirac en g{7=%} et C([y]) le centralisateur de [y] dans 7 (S).

Nous obtenons donc une application de I’ensemble des classes d’homotopie de courbes
fermées essentielles de S dans ’espace des courants projectifs de S, et I'image de cette ap-
plication est dense dans PCurr(S) [Bon3|. L’espace PCurr(S) est donc un espace naturel
d’action de Mod(S) afin de comprendre ’action de Mod(.S) sur les classes d’homotopie de
courbes fermées essentielles. Par ailleurs, les éléments pseudo-Anosov de Mod(S) agis-
sent avec une dynamique Nord-Sud sur PCurr(S) par des résultats de Thurston ([Thul],
voir également les travaux d’Uyanik [Uyal]) et, de ce fait, PCurr(S) est un objet priv-
ilégié d’arguments de tennis de table. Par ailleurs il existe un plongement naturel du
compactifié de Thurston de l'espace de Teichmiiller de S dans PCurr(S) [Bon3|.

La construction d’espaces de courants associés a des actions de groupes fondamentaux
de surfaces par isométries sur le revétement universel fut généralisée par Bonahon [Bon3]
a tous les groupes hyperboliques au sens de Gromov. L’espace des courants d’un groupe
libre non abélien F,,, noté Curr(F,) et son espace projectif associé PCurr(F,) furent
particulierement étudiés ([Marl, [Kap|, [KapL| [CHL, [Uya2]). Soit T le graphe de Cayley
de FF,, associé a une base libre de F,,. L’espace des courants de F,, est

Curr(F,) = Curr(T,F,),

Pespace Curr(F,) ne dépend pas du choix de T & unique homéomorphisme équivariant
pres. L’espace Curr(IF,,) est métrisable et PCurr(F, ) est métrisable et compact. Tout
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comme dans le cas de Mod(S), le groupe Aut(F,) agit sur Curr(F,) et sur PCurr(F,)
par précomposition. Les mesures considérées étant IF,,-invariantes, l'action de Aut(F,)
passe au quotient en une action de Out(F,) par homéomorphismes. Comme dans le cas
des surfaces ol nous pouvons considérer PCurr(,S) comme une complétion “topologique”
des courants associés aux classes d’homotopies de courbes fermées simples et essentielles,
nous pouvons considérer PCurr(F,,) comme une complétion “topologique” des courants
associés aux classes de conjugaison d’éléments non triviaux de IF,,. Soit [¢g] une classe de
conjugaison d’éléments non triviaux de IF,,. Soit Ax(g) I'axe de translation de g dans 7.
Alors Ax(g) définit deux points distincts & Pinfini g=* de doFF,, et un point {g+®} du
double bord de F;,. Alors [g] définit un courant np, par

M= D, Onigteys
heFa]C(g)

ou C(g) est le centralisateur de g. Bonahon [Bon3] (voir aussi [Mar]) démontre que
Pensemble {[141]} ger, (e} est dense dans PCurr(IF,).

L’espace des courants a également un accouplement avec I’Outre-espace de F,. Soit
cvn, I’Outre-espace non projectifié de Fy,, c’est-a-dire ’ensemble des classes d’isométrie [F,-
équivariante d’arbres simpliciaux métriques admettant une action par isométries de F,,
libre et minimale. L’ensemble cv,, est muni de la topologie de Gromov-Hausdorff équiv-
ariante. Soit T € cvy,, soient T un représentant de T et g € F,, un élément non trivial.
On note (T, n[g]) la longueur de translation de g dans T'. Cette longueur de translation
ne dépend ni du choix du représentant de la classe de conjugaison de g ni du choix du
représentant de 7. Un résultat de Kapovich et Lustig ([KapL], voir également [Kap])
implique que la fonction i s’étend contintiment en une fonction Out(IF,,)-équivariante par
rapport a I’action diagonale

i: cvp x Curr(S) - Ry

Cet accouplement a ainsi été une motivation pour obtenir des propriétés dynamiques
de T'action de Out(F,,) sur Curr(F,) similaires a celles de 'action de Out(F,) sur CV,.
Par exemple, les éléments completement irréductibles de Out(IF,,) agissent avec une dy-
namique Nord-Sud sur l’espace des courants projectifs [Mar]. Les éléments atoroidaux
de Out(FF,) agissent également avec une dynamique Nord-Sud sur PCurr(F,) par des
résultats de Lustig et Uyanik [LU2] [Uya2].

Les espaces de courants sont ainsi des espaces privilégiés afin de construire des es-
paces topologiques compacts, métrisables et tels que ’ensemble des courants associés aux
classes de conjugaison des éléments considérés soit dense. Rappelons que, pour un auto-
morphisme extérieur ¢ € Out(IF,,) fixé, nous cherchons a construire un espace topologique
X permettant de traduire les propriétés de croissance exponentielle d’éléments de FF,, par
itération de ¢ en des propriétés dynamiques de ’action de ¢ sur X, et inversement. Pour
cela, nous construisons une notion de courants relativement a Poly(¢). Intuitivement,
les courants seront des mesures de Radon positives ou nulles F,,-invariantes sur le double
bord a l'infini de F,, privé du double bord & 'infini de Poly(¢), donc des mesures de
Radon sur une notion double bord de F,, relativement a Poly(¢). Il convient de ce fait
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de préciser la notion de double bord relatif. Par ailleurs, il est nécessaire de vérifier
que le double bord relatif est un espace topologique “convenable” afin que I’espace des
courants relatifs conserve les propriétés topologiques de compacité et de métrisabilité.
Nous allons en fait introduire la notion de courant de IF,, relativement a des systémes
de sous-groupes malnormauz. La notion de systemes de sous-groupes malnormaux était
déja présente dans les travaux d’Handel et Mosher [HaM4]. Nous introduisons dans cette
these la notion de courants associés a de tels systemes de sous-groupes malnormaux.

Un systéme de sous-groupes de I, est un ensemble fini (éventuellement vide) de
classes de conjugaison de sous-groupes de type fini de F,,. Rappelons qu’un sous-groupe
A de F,, est malnormal si, pour tout élément g € F,, — A, nous avons AngAg~! = {1}. Un
systéme de sous-groupes malnormal est un systeéme de sous-groupes A = {[A1],..., [4,]}
de IF,, tel que, pour tout ¢ € {1,...,r}, le groupe A; est malnormal et, pour tous les sous-
groupes distincts A, B de [, tels que [A],[B] € A, nous avons A n B = {e}.

Par exemple, les systémes de facteurs libres de F,, sont des exemples de systéemes de
sous-groupes malnormaux. Un autre exemple de systemes de sous-groupes malnormaux
est le suivant. Soit 7" un arbre réel muni d’une action minimale de [F,, par isométries et tel
que les stabilisateurs d’arcs soient triviaux. Par les travaux de Gaboriau et Levitt [Gall,
le rang des stabilisateurs de sommets est au plus égal a n et le nombre de classes de
conjugaison de stabilisateurs de sommets est fini. Soit A7r le systéme de sous-groupes de
IF,, consistant en les classes de conjugaison des stabilisateurs de sommets de T'. Alors Ap
est un systeéme de sous-groupes malnormal par un résultat de Handel et Mosher ([HaM4],
Lemma I1.3.1]) et est appelé le systéme de sous-groupes de sommets de T'. Par ailleurs,
tous les systemes de facteurs libres sont des systemes de sous-groupes de sommets d’un
certain arbre T simplicial. Cependant, il existe des systemes de sous-groupes de sommets
qui ne sont pas des systemes de facteurs libres. Par exemple, soit .S une surface compacte,
connexe, orientable, hyperbolique avec exactement une composante connexe de bord, que
I’on suppose totalement géodésique. Alors le groupe fondamental de S est isomorphe a
un groupe libre non abélien F,,. Soit A une lamination géodésique mesurée de S sans
feuille compacte. Soit A la préimage de A dans le revétement universel S de S et soit
T Tarbre dual (voir par exemple [MSI]) de A. Alors une identification de 7(S) avec
F,, induit une action de ), sur T" a stabilisateurs d’arcs triviaux. Par ailleurs, le groupe
fondamental de la composante connexe de S — A contenant la composante de bord est
le stabilisateur d’'un sommet de 7', et ce dernier n’est contenu dans aucun facteur libre
de IF,,.

Un autre exemple de systemes de sous-groupes malnormaux de F,, est le suivant.
Soit ¢ € Out(F,) tel qu'il existe g € F,, a croissance exponentielle par itération de
¢. Un sous-groupe a croissance polynomiale par itération de ¢ est un sous-groupe P
de F,, tel qu'il existe ® € ¢ et k € N* tel que ®*(P) = P et tout élément de P est &
croissance polynomiale par itération de ®*. Un résultat de Levitt [Lev2, Proposition 1.4]
montre qu’il existe un nombre fini [H1], ..., [Hy] de sous-groupes maximaux & croissance
polynomiale par itération de ¢ et que l'ensemble {[Hi],...,[Hg|} est un systeme de
sous-groupes malnormal. De ce fait, puisque Poly(¢) = (J;_; U JeF., gH;g ', il existe
un systeme de sous-groupes malnormal canoniquement associé a Poly(¢), noté A(¢).
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Par exemple, dans I'exemple de la partie nous avons A(¢) = {[F,]}. Dans
lexemple nous avons A(¢) = @. Enfin, dans exemple nous avons A(¢p) =
{[{aba™'b™1, c)]}. Nous ne savons pas si tout systéme de sous-groupes malnormaux A(¢)
pour ¢ € Out(F,,) est un systéme de sous-groupes de sommets. Néanmoins, les travaux
récents de Mutanguha [Mut] laissent & penser que ce n’est pas le cas. Le théoreme m
implique également le fait suivant.

Corollaire 1.4.1 (Corollary [7.5.2). Soit n > 3 et H un sous-groupe de Out(Fy). Si

Poly(H) # {1}, il existe des sous-groupes mazimaux non trivieur Ay, ..., A, de F, tels
que
k
Poly(H) = | J | ] g4ig™’
i=1geFy
et A={[A1],...,[Ar]} est un systéme de sous-groupes malnormal.

L’intérét d’introduire les systemes de sous-groupes malnormaux dans nos considéra-
tions a l'infini provient des faits suivants. D’une part, tout sous-groupe de type fini A
de FF,, est quasi-convexe. De ce fait, si A est non trivial, il existe un unique plongement
topologique A-équivariant 0, A < 0xlFy, et nous identifions dn A avec son image dans
0lF,, et 02A avec son image dans ¢°F,. D’autre part, par la définition des systemes
de sous-groupes malnormaux, pour tout systéme de sous-groupes malnormal A de F,
et pour tous les sous-groupes distincts A, B de F,, tels que [A],[B] € A, nous avons
OwA N 0B = {e} (voir par exemple [HaM4l Fact 1.1.2]). De ce fait, les doubles bords
0%2A et 0°B sont également disjoints.

Soit A = {[A1],...,[Ar]} un systeme de sous-groupes malnormal de F,,. Nous définis-
sons le double bord de A par

’A = LTJ U 0? (gAig_l)

i=1 geFp

et le double bord de F,, relativement a A, par
*(F,, A) = 0°F, — 0*A.

L’ensemble 6%(FF,,, A) est un ouvert de 0°F,,, stable sous I’action de FF,, par translation &
gauche (voir [Gued, Lemma 2.5]). Muni de la topologie induite par celle de ¢0*F,,, il est
de ce fait localement compact et admet une orbite dense sous ’action de F,,.

La construction du double bord de F,, relativement a un systeme de sous-groupes
malnormal est & rapprocher de la notion de bord a 'infini de groupes relativement hyper-
boliques. Soit G un groupe de type fini et soit {[P1],...,[F;]} un ensemble fini de classes
de conjugaison de groupes de type fini non triviaux de G. Le groupe G est hyperbolique
relativement a {[P1],...,[P-]} s'il existe un espace hyperbolique au sens de Gromov X
tel que G agisse de maniére proprement discontinue sur X et tel que les sous-groupes
maximaux fixant exactement un point de 0, X soient précisément les conjugués des P;
avec i € {1,...,r}. La notion d’hyperbolicité relative fut introduite par Gromov [Grol]
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(voir également les travaux de Farb [Far] et Bowditch [Bow]). Par exemple, le groupe
fondamental d’une variété hyperbolique M connexe, de volume fini est hyperbolique rel-
ativement aux classes de conjugaison des sous-groupes paraboliques de 71 (M) associés
aux pointes de M. Par des résultats de Bowditch [Bowl, Theorem 7.12] et Hruska [Hrul,
Theorem 5.1], pour tout systéeme de sous-groupe malnormal A de F,,, le groupe F,, est
hyperbolique relativement & A. L’hyperbolicité relative intervient ainsi naturellement
lorsque ’on considere des problemes de croissance sous itération d’automorphismes. Par
exemple, un cas particulier d’'un théoreme de Dahmani et Krishna [DS] implique que,
pour tout automorphisme extérieur d’ordre infini ¢ € Out(F,) et tout représentant ® de
¢, Pextension F,, x¢ Z est hyperbolique relativement & la suspension de A(¢).

A tout systeme de sous-groupes malnormal A de F,,, nous pouvons ainsi associer
le bord 0n X (A) de 'espace Gromov-hyperbolique X (A) intervenant dans la définition
d’hyperbolicité relative (la classe d’homéomorphisme F,-équivariante de 0, X (A) ne
dépend pas du choix de X (A) par un résultat de Bowditch [Bow, Theorem 9.4]). Nous
pouvons ainsi construire deux bords & I'infini 02X (A) et 0*(F,,, A) naturellement associés
a A. Dans cette these, nous préférons travailler avec 0%(F,,, A(¢)) puisqu’il a 'avantage
d’étre un ouvert de 0°F,, alors qu’il n’existe pas, & notre connaissance, de plongement
topologique naturel de 6?X (A) dans 0*F,.

Soit A un systeme de sous-groupes malnormal de F,,. Nous définissons les courants
de F,, relativement a A comme étant les mesures de Radon positives ou nulles F,,-
invariantes sur le double bord relatif 0(F,,, A). L’ensemble Curr(F,,, A) des courants de
F,, relativement a A est muni de la topologie faible-étoile. C’est un espace métrisable
et 'espace quotient PCurr(F,,.A) des courants projectifs est compact et métrisable.
Soit Out(F,,.A) le sous-groupe de Out(F,) préservant A. Alors Out(F,,.4) agit sur
Curr(F,,.A) et PCurr(F,,.4) par homéomorphismes par précomposition.

Notons que, lorsque A est un systeme de facteurs libres, les courants de IF,, relative-
ment a des systémes de facteurs libres avaient déja été étudiés par Gupta [Gupl], (Gup2]
et par Guirardel et Horbez [GuHI] dans le cadre plus général des produits libres de
groupes de type fini. Mentionnons par ailleurs que Guirardel et Horbez ont démontré
que le résultat d’accouplement décrit précédemment pour Curr(F,) et C'V,, n’est plus
valable si ’on remplace Curr(F,,) par Curr(F,, A) et cv, par O(F,, A) ou A est un
systeme de facteurs libres.

Soit g € F,, un élément A-non-périphérique, c’est-a-dire tel qu’il n’existe pas de sous-
groupe A de [, tel que [A] € A et g € A. Alors le courant 7y, € Curr(F,) induit par
restriction un courant non nul dans Curr(F,, A), que nous notons encore ng- Nous
montrons le résultat suivant.

Théoréme 1.4.2 (Proposition [5.4.1). Soit n > 3 et soit A un systéme de sous-groupes
malnormal de F,,. Soit NP(A) l’ensemble des éléments A-non-périphériques de F,,. Alors
Uensemble {[n[g]}genp(a) est dense dans PCurr(F,, A).

Ainsi, lorsque ¢ € Out(F,,) et A = A(¢), le théoreme implique que I’ensemble
des courants relatifs projectifs associés a des éléments a croissance exponentielle par
itération de ¢ est dense dans PCurr(F,,, A(¢)). Cette propriété facilite la compréhension

35



des propriétés dynamiques de l'action de ¢ sur PCurr(F,, A(¢)). En effet, la densité de
I'ensemble {[n5]}genp(4) dans PCurr(F,, A) est un argument important dans la démon-
stration du théoréme suivant.

Théoréme 1.4.3 (Theorem [6.5.1). Soit n = 3 et soit ¢ € Out(F,,) un élement tel que
Poly(¢) # F,,. Alors ¢ agit avec une dynamique Nord-Sud sur PCurr(F,, A(¢)).

La démonstration du théoreme [1.4.3| repose également sur 1'utilisation de représen-
tants topologiques adaptés des éléments de Out(F,,) appelés réseaux ferroviaires com-
plétement scindés. Ces réseaux ferroviaires ont été introduits par Feighn et Handel [FH],
généralisant des réseaux ferroviaires introduits par Bestvina et Handel [BH] (voir égale-
ment [BFHI]). Ils permettent de controler efficacement les problemes de croissance
lorsque ’on itere un automorphisme extérieur et sont, de ce fait, bien adaptés aux ques-
tions étudiées.

Nous pouvons maintenant esquisser la démonstration du théoreme Soit H un
sous-groupe de Out(F,). Un argument de récurrence montre que, pour tout facteur
libre propre (possiblement trivial) maximal A de FF,, dont la classe de conjugaison est
H-invariante, on peut trouver un élément ¢4 € H tel que Poly(¢4) n A = Poly(H) n
A. Soit H|s l'image de H dans Out(A) et soit 4 € ¢4 tel que P4(A) = A. Le
théoreme montre alors que I'élément [®4]|4] € Out(A) agit avec une dynamique
Nord-Sud sur PCurr(A, A([®ala])). Par hypothese de récurrence, le groupe H|4 agit
également par homéomorphismes sur PCurr(A, A([®4]4])) et sur PCurr(F,,, A([Pala])).
Un argument de tennis de table faisant intervenir les espaces PCurr(A, A([®4]4])) et
PCurr(F,,, A([®.4|4])) permet alors de construire un automorphisme extérieur ¢ € H tel
que Poly(1)) = Poly(H).

Nous résumons le lien entre ’existence d’éléments génériques et ’action sur un espace
de courants relatifs dans le théoréme suivant. Si H est un sous-groupe de Out(F,) et X
un sous-ensemble de Curr(F,,, A(H)), nous noterons Vect(X) 'espace vectoriel engendré
par X. Nous noterons également

p: Curr(F,, A(H)) — {0} - PCurr(F,, A(H))
la projection canonique.

Théoréme 1.4.4. Soit n > 2, soit H un sous-groupe de Out(IF,,) et soit ¢ € H. L’élément
¢ est dynamiquement générique si, et seulement si, ¢ agit avec une dynamique Nord-Sud
sur PCurr(F,,, A(H)), tel que Vect(p 1 (A, (¢)) up (A _(9))) soit de dimension finie et
tel que Uaction de ¢ sur Vect(p™H(A4(¢)) up~H(A_(¢))) soit diagonalisable sans valeur
propre €gale a 1.

Démonstration. Si ¢ € H est un élément dynamiquement générique, alors il agit avec
une dynamique Nord-Sud sur PCurr(F,, A(H)) = PCurr(F,, A(¢)) par le théoréme[L.4.3|
Par le lemme I'espace vectoriel Vect(p™1 (A4 (¢)) up~ (A _(¢))) est de dimension

finie. De plus, par la proposition|6.4.12] I’action de ¢ sur Vect(p (A, (¢))up 1 (A_(9)))
est diagonalisable sans valeur propre égale a 1.
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Réciproquement, supposons que ¢ € H ne soit pas dynamiquement générique et qu’il
agisse avec une dynamique Nord-Sud sur PCurr(F,, A(H)), tel que l'espace vectoriel
Vect(p _1(A+(¢)) U p~H(A_(¢))) soit de dimension finie et tel que l'action de ¢ sur
Vect(p~H (A (4)) u p~H(A_(¢))) soit diagonalisable. Montrons que I'une des valeurs
propres de I'action de ¢ sur Vect(p ' (AL(¢)) up H(A_(4))) est égale a 1. Pour cela,
nous allons tout d’abord montrer que A (¢) U A_(¢) contient I’ensemble des courants
associés aux éléments g € Poly(¢) — Poly(H). Soit g € Poly(¢) — Poly(H) tel que

g € As(9) A _($). Soit f: G — G un réseau ferroviaire completement scindé de ¢
(voir Proposition et soit ||| : Curr(F,, A(H)) — R la fonction longueur simpliciale
associée & G (voir Section [6.2.4). Si w € F,, alors

Hn[w] || = E(’Yw)7

ot {(7y) est la longueur dans G du cycle v, de G associé a la classe de conjugaison de
w. Soit N tel que le chemin réduit [ (v,,)] associé & f¥(7,,) soit complétement scindé
et tel que, pour toute unité de scindement o de G, nous ayons £([f¥(0)]) = o. Ainsi,
pour tout n = N, nous avons

LN ()]) = ™ () D-

De ce fait, quitte & remplacer 7, par [fY (v,)] et ¢ par ¢, nous pouvons supposer que,
pour tout n € N, nous avons

[ngn+r(ggnll = lmgnan -

Puisque ¢ agit avec une dynamique Nord-Sud sur PCurr(F,, A(H)), en utilisant par
exemple [Kapl Lemma 3.5] il existe [p+] € A4 (o) tel que

)
1= |[1gn (g1

La classe d’homothétie de i étant invariante par ¢, il existe A > 0 tel que ¢(p4) = Ay
Soit B un borélien de 0*(F,,, A(H)) tel que py (6B) = 0 et o (B) > 0. Nous avons donc

Mo (9)]
lim ——*—(B) = u4+(B
=00 |[ngn(| ]>H( )=l
et
i Q0@ oy e — \is(B).
S YN n=0 [[11gn ()|

Ainsi, nous avons
i Ton([g (B)
im ——=—

=\
=D Nt (g D(B)

Comme . Nign+1
lim O () = i Ol () (),
=0 ||1gn([g])l =0 [[9gn+1 (g |
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nous avons :
i ereraall _
=0 ||7gn (g

La suite {|[1gn([g))|l }nen étant croissante, nous avons A > 1. Puisque g € Poly(¢), la suite
{IIngn (g I}nen croit au plus a vitesse polynomiale. De ce fait, nous avons A = 1.

De méme, soit [p—| € A_(¢) un courant projectif limite de {[¢™"(|ng]) }nen. Alors
est également fixé par ¢ et donc, pour tout ¢ € [0, 1], le courant projectif [tp4 + (1 —#)u—]
est fixé par ¢. Puisque ¢ agit avec une dynamique Nord-Sud, pour tout ¢ € [0, 1], nous
avons [t + (1 —t)u_] € Ai(¢) u A_(¢). Or, nous avons pi € A () et p_ € A_(¢).
Ceci contredit le fait que A4 (¢) et A_(¢) soient deux compacts disjoints.

Ainsi, espace vectoriel de dimension finie Vect(A(¢) U A_(¢)) contient 'ensemble
X des courants associés aux éléments g € Poly(¢) — Poly(H). Puisque X est invariant
par ¢ et que I'action de ¢ sur Vect(p~ (A, (¢)) U p~ (A _(4))) est diagonalisable, il
existe g € Poly(¢) — Poly(H) et A > 0 tel que ¢(nyg) = Ns(q) = Mg- Puisque g est
a croissance polynomiale sous itération de ¢, nous avons nécessairement A = 1, ce qui
conclut. O

1.5 Comparaison entre Out(F,) et Out(WV,,)

Nous terminons cette introduction par une section comparative (qui n’est pas reprise
dans les chapitres 2 a 7) entre les deux groupes d’intérét de cette these que sont Out(F,,)
et Out(W,,). Il existe tout d’abord un morphisme canonique de Aut(W,,) vers Aut(F,_1).
Soit x1,...,x, une partie génératrice standard de W, et soit ®: W,, — Z/27Z le mor-
phisme qui, pour tout ¢ € {1,...,k}, envoie z; sur I’élément non trivial de Z/2Z. Par des
résultats de Miithlherr [Miih], le noyau B,, = ker(®) de ce morphisme est un sous-groupe
caractéristique de W,, isomorphe a un groupe libre non abélien de rang n — 1, engendré
par xirg,Toxs,...,Tn_1Ty. Par ailleurs, le morphisme induit Aut(W,) — Aut(F, 1)
est injectif et c¢’est un isomorphisme lorsque n = 3. Le groupe Inn(W,,) est envoyé sur
un sous-groupe de Inn(FF,,_1) x {r) ou r est 'automorphisme de F,,_; qui, pour une base
fixée ey,...,e,—1 de F,_; associe, pour tout i € {1,...,n — 1}, 'élément e; a 1’élément

e; 1 (voir par exemple [Hea, Lemma 2.6]). Le groupe Out(W,,) s’injecte alors dans le

(2
groupe Out(F,,_1)/{{r)) ([Hea, Lemma 2.7]).

Ces relations algébriques entre Out(W,,) et Out(F,_1) ont également une traduction
en termes géométriques sur leurs OQutre-espaces associés. Il existe en effet un plongement
Out(By,)-équivariant K(W,,) — K(F,_1) que nous décrivons maintenant. Soit X un
sommet de K(W),) et soit X un représentant de X'. Puisque les stabilisateurs de X pour
I’action de W, sont finis, le groupe B,, agit librement sur X. La restriction de ’action
sur X & B, reste minimale et définit alors un morphisme Out(B,,)-équivariant K (W,,) —
K(F,_1). Ce morphisme est injectif puisque B,, est un sous-groupe d’indice fini de W,
donc détermine entierement ’action de W,, sur un arbre X. Nous pouvons ainsi voir
K(W,) comme un sous-graphe de K(F,_1). Le plongement K(W,) < K(F,_1) n’est
en général pas surjectif, excepté dans le cas ou n = 3 ([Gue2, Proposition 2.6]).
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Ces relations algébriques et géométriques entre les groupes Out(W,,) et Out(F,—_1)
justifient l'intuition que les groupes Out(W,,) et Out(F,,_1) partagent de nombreuses
propriétés de rigidité algébrique et géométrique, comme nous ’avons évoqué dans les
premieres sections de cette introduction. Les résultats de rigidité de Out(W,,) ne se
déduisent cependant pas de celles de Out(F,,_1). Par exemple, il n’existe pas de maniére
naturelle d’associer & un automorphisme de Out(W,,) un automorphisme de Out(F,,). De
ce fait le théoreme ne se déduit pas du résultat similaire pour Out(F,,). De méme,
les techniques utilisées pour démontrer des résultats de rigidité pour Out(F,,) reposent en
général sur l'existence d’extensions HNN, c’est-a-dire de morphismes surjectif F,, — Z,
alors qu’il n’en existe pas pour le groupe W,.

Par ailleurs, certaines des propriétés de rigidité de Out(FF,,) ne sont pas connues
pour Out(W,,). Par exemple, Out(F,,) vérifie une propriété de rigidité pour [’équivalence
mesurée. Deux groupes dénombrables I'y et I'g sont mesurablement équivalents s’il existe
un espace mesuré standard (X, x) muni d’une action de I'y x I'y par automorphismes
boréliens préservant la mesure et tel que, pour tout i € {1, 2}, le groupe I'; agit librement
sur X et il existe un borélien B; de mesure finie tel que I'union des translatés de B; par
I'; recouvrent ¥ et tel que 'intersection de deux translatés distincts de B; par I'; soit de
mesure nulle. La notion d’équivalence mesurée a été introduite par Gromov [Gro2] et
est un équivalent mesurable a la notion de quasi-isométries entre groupes de type fini.
Guirardel et Horbez [GuH3]| ont démontré que, pour n > 3, tout groupe G mesurablement
équivalent & Out([F,) est virtuellement isomorphe a Out(F,,) : il existe des sous-groupes
d’indice fini G; de G et Gy de Out(IF,,) et des sous-groupes distingués finis N7 de G
et Ny de Gy tels que les groupes G1/Nj et Go/Na soient isomorphes. De tels résultats
de rigidité étaient déja connus dans le cas de réseaux dans des groupes de Lie simples
de rang supérieur par Furman [Furml| et dans le cas du groupe modulaire d’une surface
fermée, connexe, orientable de genre au moins 2 par Kida [Kid].

Question. Le groupe Out(W,,) vérifie-t-il une propriété de rigidité pour l’équivalence
mesurée pour n = 4 ?

Les groupes Out(F,) et Out(W,,) different cependant significativement sur certaines
propriétés. Par exemple, Varghese [Var] a démontré que le groupe Out(W,,) n’a pas
la propriété (T') de Kazhdan pour n > 2, alors que Kaluba, Kielak et Nowak [KaKN]
ont montré que le groupe Out(F,) a la propriété (T') pour n > 5 (voir également les
travaux de Kaluba, Nowak et Ozawa [KNO] pour le cas n = 5) et étendu a n = 4 par
Nitsche [Nit].

Nous terminons cette introduction par une analyse, dans le cas de Out(W,,), des
questions de croissance dans le groupe comme étudiées dans les sections et de
cette introduction pour Out(F,). Tout comme dans le cas de Out(IF,), la croissance
d’éléments de W, sous itération d’éléments de Out(W,,) est toujours soit exponentielle
soit polynomiale. Un exemple d’automorphisme ¢ € Out(W,,) tel que Poly(¢) = W), est
le suivant (nous remercions Nicholas Touikan pour I’avoir porté a notre connaissance).
Soit Wy = {a,b, ¢, d), soit ® "automorphisme envoyant a sur a, b sur aba, c sur beb et d
sur cde et soit ¢ la classe d’automorphismes extérieurs de ®. Alors ac est & croissance
linéaire sous itération de ¢ et ad est a croissance quadratique sous itération de ¢.
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Notons qu’il existe un ordre partiel des systemes de facteurs libres d’un groupe G,
ou F; < JFy si pour tout sous-groupe A de G tel que [A] € Fi, il existe un sous-
groupe B de G contenant A tel que [B] € F2. De tels suites de systemes de facteurs
libres sont particulierement adaptées a I’étude des sous-groupes H € Out(F,) tels que
Poly(¢) = F,. En effet, soit H un tel sous-groupe, que 1'on suppose de type fini. En
utilisant le théoreme de Kolchin pour Out(F,,) [BEH3], on montre qu’il existe un graphe
G’, de groupe fondamental isomorphe a F,,, contenant exactement k arétes ey, ..., ey tel
que, pour tout ¢ € H, il existe une équivalence d’homotopie f: G’ — G’ représentant
¢ telle que, pour tout ¢ € {1,...,k}, lapplication f préserve le sous-graphe H; de G’
constitué des arétes ey, ..., e;. Les sous-graphes H; induisent alors une suite

Fi <. . < Fr ={[F.]}

de systemes de facteurs libres de F,, invariante par H. Les décompositions en systemes
de facteurs libres sont également particulierement adaptées a I’étude des sous-groupes
H de Out(W,,) tels que Poly(¢) = W,,, comme le montre le résultat suivant. Rappelons
qu’'une suite F; < Fo de systemes de facteurs libres de W, est sporadique s’il existe deux
sous-groupes A, B de W, tels que [A],[B] € F1 et Fo = (F1 — {[A],[B]}) v {|A = B]}.

Proposition 1.5.1. Soit n > 1 et soit H < Out(W,,) un sous-groupe de type fini tel
que Poly(H) = W,,. Il existe un sous-groupe d’indice fini H' de H ainsi qu’une suite
Fi < ... < Fi = {[Wh]} de systémes de facteurs libres de W,, H'-invariante tels que,
pour tout i € {1,...,k}, Uextension F; < F;11 soit sporadique.

Démonstration. Nous démontrons le résultat par récurrence sur n. Lorsque n = 1, le
résultat est immédiat car Out(Wp) = {1}. Soit n > 2 et soit F un systeme de facteurs
libres de W, propre, H-périodique et maximal. Quitte & passer a un sous-groupe d’indice
fini de H, nous pouvons supposer que F est H-invariant. Supposons par I’absurde que
F ne soit pas sporadique. Alors, par [GuH2, Theorem 7.1], le sous-groupe H contient un
élément ¢ € H complétement irréductible relativement & F. Par [GuH2, Theorem 4.1],
Pélément ¢ est un élément loxodromique du graphe (hyperbolique au sens de Gromov par
un résultat de Guirardel et Horbez [GuH2, Proposition 2.11] car F n’est pas sporadique)
FF(W,, F) des facteurs libres de W, relativement & F. Donc ¢ fixe un point au bord
a 'infini de FF(W,,, F). Par [GuH2, Theorem 3.4], ¢ fixe la classe d’homothétie W,,-
équivariante d’'un arbre réel T non trivial muni d’une action minimale de W, dans le bord
de I’Outre-espace O(W,,, F) de W, relativement & F. De ce fait, il existe une homothétie
I: T — T telle que pour tous les x € T et g € F,,, nous ayons I(gx) = ®(g)I(x). Par
ailleurs, puisque ¢ est completement irréductible, le coefficient de dilatation A de I est
différent de 1 ([GuH2, Corollary 6.7]). Pour tout g € W, soit ¢r(g) = inf,er d(z, gx).
Cette borne inférieure est atteinte pour un certain x4 € T'. Alors, pour tout k¥ € N*, nous
avons \lr(g) = £7(®*(g)) et ce dernier terme est borné par un polynoéme en la variable k
puisque Poly(¢) = W), par des résultats de Culler et Morgan [CM| Propositions 1.5,1.8].
Donc pour tout g € Wy, nous avons ¢7(g) = 0 et g fixe un point de 7. Puisque W, est
de type fini, il fixe un point de T' (voir par exemple [CM| Section 3]). Ceci contredit la
non trivialité de ’action.
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Donc il existe k € N*, des sous-groupes A et B de W, tel que F = {[Wg], [Wn—k]}
avec A isomorphe a Wy et B isomorphe & W, _;. Nous avons ainsi deux morphismes
H — Out(A) et H — Out(B) et 'hypothese de récurrence appliquée aux images de ces
morphismes permet de conclure. O

La proposition indique que les techniques d’étude de la croissance polynomiale
de Out(WW,,) peuvent se rapprocher de celles utilisées pour étudier la croissance polyno-
miale de Out(F,). Nous pouvons par ailleurs imaginer que ces questions de croissance
alent un impact sur le calcul de la fonction de Dehn de Out(WW,,). En effet, Bridson et
Vogtmann [BV3] ont démontré que la fonction de Dehn du groupe Out(F,,) était équiva-
lente a une fonction exponentielle. La démonstration exploite I’existence de sous-groupes
H de Out(F,,) qui sont des sous-groupes de Kolchin, c’est-a-dire tels que Poly(H) = F,,.
La question naturelle & se poser est alors la suivante.

Question. La fonction de Dehn de Out(W,,) est-elle exponentielle ?

Nous présentons a présent la structure du manuscrit. Les chapitres 2, 3 et 4 concer-
nent les résultats de rigidité dans Out(W,,). Nous présentons dans le deuxieéme chapitre
la démonstration du théoreme concernant les automorphismes de Out(W,,). Il cor-
respond a Particle [Guel]. Le troisieme chapitre est consacré a la rigidité géométrique de
Out(W,,) et la construction de différents modeles géométriques rigides pour Out(W,,),
il correspond & l'article [Gue2]. Enfin dans le quatriéme chapitre, nous démontrons
le théoreme et le corollaire sur la rigidité du commensurateur abstrait de
Out(W,,). 1l correspond a larticle [Gue3].

Nous consacrons les trois derniers chapitres aux résultats sur la croissance dans
Out(F,,) et les courants relatifs. Le chapitre 5 est dédié & la construction des courants
relatifs & un systéme de sous-groupes malnormal et la démonstration du théoréme
I1 correspond a l'article |[Gued]. Dans le chapitre 6, nous démontrons les résultats de
dynamique Nord-Sud sur les courants relatifs et le théoreme [1.4.3] Il correspond a
larticle [Gueb]. Enfin, dans le dernier chapitre, correspondant a article [Gue6], nous
terminons par la démonstration du théoréme [I.3.1] et nous en donnons quelques appli-
cations.
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Chapitre 2

Automorphismes du groupe des
automorphismes d’un groupe de
Coxeter universel

2.1 Introduction

Soit n un entier plus grand que 2. On note F' = Z/27 le groupe cyclique d’ordre 2 et
W, = %, F le groupe de Coxeter universel de rang n, produit libre de n copies de F'.
Si G est un groupe, on note Out(G) = Aut(G)/Int(G) son groupe d’automorphismes
extérieurs. Nous démontrons dans cet article les résultats suivants.

Théoréme 2.1.1. Sin = 5, alors Out (Out (W,,)) = {1}. Sin =4, alors Out(Out(W,,))
est isomorphe a Z/27.

Théoréme 2.1.2. Sin = 4, alors Out(Aut(W,,)) = {1}.

De tels résultats sont déja connus dans le cas on n = 2 (cf. [Thol Lemma 1.4.2,
Lemma 1.4.3]) ott tous les automorphismes de Out(I¥3) sont intérieurs et o1 Out(Aut(12))
est un groupe cyclique d’ordre 2. Dans le cas ou n = 3, les groupes Aut(W3) et Out(Ws)
sont isomorphes a Aut(FFs) et PGL(2,Z) respectivement, avec FFy un groupe libre de
rang 2 (cf. [Var, Lemma 2.3]). Nous obtenons donc une description de Out(Out(W,,))
pour tout entier n plus grand que 2.

De telles questions de rigidité algébrique ont déja été résolues dans des cas similaires.
En effet, Mostow [Mos2] a démontré que le groupe des automorphismes extérieurs de
réseaux irréductibles uniformes de groupes de Lie réels, connexes, semi-simples et non
localement isomorphes a SLa(RR) est fini. De méme, Ivanov [Iva2, Theorem 2] a démontré
un résultat similaire dans le cas du groupe modulaire d’une surface compacte, connexe,
orientable de genre g > 2. Enfin, Bridson et Vogtmann [BVI] ont démontré que tout
automorphisme du groupe des automorphismes extérieurs d’un groupe libre de rang N
(avec N = 3) est une conjugaison. Ce dernier cas a motivé I’étude de la rigidité algébrique



de Out(W,,) d’une part a cause de la propriété d’universalité pour les groupes engendrés
par des éléments d’ordre 2 de W,,, d’autre part car, si n > 3, le groupe Aut(W,,) s’injecte
dans Aut(F,,—1) (cf. [Miihl, Theorem A]).

Pour démontrer les théorémes et nous étudions l’action de W, sur un
complexe simplicial de drapeaux introduit par Guirardel et Levitt. Plus précisément,
nous cherchons a comprendre les stabilisateurs de certains sommets de ce complexe. En
effet, les stabilisateurs de ces sommets formant une partie génératrice de Aut(W,,) et
Out(W,,), comprendre 'image de ces stabilisateurs par des automorphismes de Aut(W,,)
et Out(W,,) nous permettra de faciliter ’étude de ces derniers. L’étude de I’action de
W, sur un complexe simplicial se justifie également par la démonstration des théoréemes
similaires dans les cas des réseaux des groupes de Lie semi-simples, du groupe modulaire
d’une surface de type fini et du groupe des automorphismes d’un groupe libre qui passait
également par 1’étude de I'action du groupe étudié sur un espace géométrique adapté.
En particulier, dans le cas du groupe des automorphismes extérieurs d’un groupe libre
de rang N, cet objet géométrique était 'outre-espace de Culler-Vogtmann CV p, qui fut
introduit par Culler et Vogtmann dans [CV].

Dans le cas de W,,, Guirardel et Levitt [GuL1] ont introduit un espace topologique
analogue a l'outre-espace de Culler et Vogtmann, appelé ['outre-espace d’un produit li-
bre. Dans le cas d’un produit libre de copies de F, cet espace sera noté PO(W,,). Ce
dernier est défini comme un ensemble de classes d’homothétie de graphes de groupes
métriques marqués de groupe fondamental isomorphe a W,. Muni de la topologie dite
faible, Vespace PO(W,,) se rétracte par déformation forte sur un complexe simplicial
de drapeaux, appelé [’épine de PO(W,). Le groupe Out(WW,,) agit naturellement sur
PO(W,,) et sur son épine par précomposition du marquage. Le groupe Aut(W,,) agit
quant & lui sur lautre espace de Wy, noté PA(W,,). Nous renvoyons a la partie 2 pour
des précisions.

La démonstration du théoréme [2.1.1] est inspirée de celle de Bridson et Vogtmann
dans le cas d’un groupe libre [BVI], mais des complications structurelles apparaissent.
Nous présentons la démonstration dans le cas de Out(W,,), le cas de Aut(W,,) étant
similaire. Son plan, trés simplifié, est le suivant. L’épine de l'outre-espace PO(W,,)
contient, & la différence de celle de 'outre-espace de Culler-Vogtmann qui n’en contient
qu'un, deux types de sommets distingués, a savoir les {0}-étoiles et les F'-étoiles, voir la
partie 2 et la figure

Nous étudions tout d’abord les stabilisateurs des {0}-étoiles et des F-étoiles sous
Paction de Out(W,,). Nous montrons dans la partie 3 que les sous-groupes de Out(W,,)
isomorphes a &,, sont les stabilisateurs de {0}-étoiles et les sous-groupes de Out(W,,)
isomorphes au produit semi-direct F"~2 x &,, 1 sont les stabilisateurs de F-étoiles. Ces
derniers représentent un cas nouveau en comparaison de la preuve de [BV1] dans le cas
d’un groupe libre. De ce fait, tout automorphisme o de Out(W,,) préserve I’ensemble
des stabilisateurs de {0}-étoiles et I’ensemble des stabilisateurs de F-étoiles. Fixons
a € Aut(Out(W,)). Le groupe Out(W,,) agissant transitivement sur I’ensemble des {0}-
étoiles, nous pouvons supposer que « induit un automorphisme du stabilisateur d’une
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(1)

(xa) (z6)

{0}

(z3) (xs)

(za) (z3)

Figure 2.1: Exemples de graphes de groupes dont les classes d’équivalence sont
respectivement une {0}-étoile et une F-étoile (cas n = 6). Les arétes ont des groupes
associés triviaux. L’ensemble {z1,...,x¢} est une partie génératrice standard de Wjs.

{0}-étoile X. Les stabilisateurs de {0}-étoiles étant isomorphes a &,,, si n =5 et n # 6,
nous pouvons supposer que la restriction de v au stabilisateur de X" est égale a I’identité.
Nous montrons alors qu’un tel a préserve le stabilisateur d’une F-étoile ) adjacente a X,
et que la restriction de « au stabilisateur de ) est en fait I'identité. Le groupe Out(W,,)
étant engendré par 1'union des stabilisateurs d’une {0}-étoile et d'une F-étoile adjacente,
ceci conclut la démonstration si n > 5. Le cas n = 4, qui présente un automorphisme
extérieur exceptionnel, est traité dans la partie 4.

Remerciements. Je remercie chaleureusement mes directeurs de these, Camille Horbez et
Frédéric Paulin, pour leurs précieux conseils et pour leur lecture attentive des différentes versions
du présent article.

2.2 Préliminaires

Nous rappelons tout d’abord la définition de 'outre-espace PO (W),,) introduit par Guirar-
del et Levitt dans [GuL1]. Un point de PO(W,,) est une classe d’homothétie de graphes
de groupes métriques X de groupe fondamental W,, munis d’un isomorphisme de groupes
appelé marquage p: W, — m1(X) (pour un choix indifférent de point base) vérifiant :

1) le graphe sous-jacent a X est un arbre fini ;

2

tous les groupes d’arétes sont triviaux ;
4) tous les autres sommets ont un groupe associé trivial ;
5

toute feuille de ’arbre sous-jacent a un groupe associé non trivial ;

(1)
(2)
(3) il y a exactement n sommets de groupes associés isomorphes & F' ;
(4)
()
(6)

si v est un sommet de groupe associé trivial, alors deg(v) > 3.

Deux graphes métriques marqués (X, p) et (X', p’) sont dans la méme classe d’homothétie
8l existe une homothétie f: X — X’ (i.e. un homéomorphisme multipliant toutes les

44



longueurs des arétes par un méme scalaire strictement positif) telle que f, o p = p’. On
note [X, p] la classe d’homothétie d'un tel graphe de groupes métrique marqué (X, p). Si
le marquage est sous-entendu, on notera X’ la classe d’homothétie. Le groupe Aut(W,,)
agit par précomposition du marquage. Etant donné que pour tout a € Inn(W,,), et pour
tout X € PO(W,,), nous avons a(X) = X, Paction de Aut(WW,,) sur PO(W,,) induit une
action de Out(W,,) sur PO(W,,).

La définition de l’autre espace de W,,, noté PA(W,,), est identique & celle de PO(W,,)
a ceci pres que chaque graphe de groupes métrique considéré est muni d’un point base v.
Le marquage est alors un isomorphisme de groupes p: W,, — m1(X, v). Les homothéties
considérées préservent les points bases. Le groupe Aut(W,,) agit par précomposition du
marquage.

L’ensemble PO(W,,) (resp. PA(W,,)) est muni d’une topologie. Pour tout élément
[X, p] € PO(W,,), soit (X, p) un représentant de cette classe d’équivalence tel que la
somme des longueurs des arétes du graphe sous-jacent soit égale a 1. Le graphe de
groupes (X, p) définit alors un simplexe ouvert obtenu en faisant varier les longueurs des
arétes du graphe sous-jacent a (X, p), de maniére a ce que la somme des longueurs des
arétes soit toujours égale a 1. Une classe d’équivalence [X', p'] € PO(W,,) définit une
face de codimension 1 du simplexe associé & (X, p) si on peut obtenir (X', p’) & partir de
(X, p) en écrasant une aréte du graphe sous-jacent a X. La topologie faible sur PO(W,,)
est alors définie de la maniere suivante : un ensemble est ouvert si, et seulement si, son
intersection avec chaque simplexe ouvert est ouverte.

Nous rappelons a présent la définition d’un rétract par déformation forte Out(W),)-
équivariant de PO(W,,), appelé [’épine de l'outre-espace. L’épine de PO(W,,) est le
complexe simplicial de drapeaux dont les sommets sont les simplexes ouverts associés
a chaque classe d’équivalence [X, p], et ou deux sommets correspondant a des classes
d’équivalence de graphes de groupes marqués [X, p] et [X’, p'] sont reliés par une aréte
si [X, p] définit une face du simplexe associé a [X', p'] ou réciproquement. L’épine de
PA(W,,) est définie de maniere similaire. Il existe un plongement de I’épine de PO(W,,)
dans PO(W,,) ayant pour image ’épine barycentrique de PO(W,,). Par la suite, nous
identifierons I’épine de PO(W),,) avec son image par ce plongement. De méme, il existe un
plongement de ’épine de PA(W,,) dans PA(W,,) ayant pour image 1’épine barycentrique
de PA(W,,).

Si X est un graphe de groupes, on note Autg,(X) le groupe des automorphismes du
graphe sous-jacent & X. Si X est un graphe de groupes pointé, la notation Autg,(X)
désigne le groupe des automorphismes du graphe pointé sous-jacent a X. Nous ap-
pellerons {0}-étoile la classe d’équivalence dans PO(W,,) d’un graphe de groupes marqué
dont le graphe sous-jacent est un arbre ayant n feuilles et n + 1 sommets et de longueur
d’arétes constante. Nous appellerons F'-étoile la classe d’équivalence dans PO(W,,) d’'un
graphe de groupes marqué dont le graphe sous-jacent est un arbre ayant n — 1 feuilles et
n sommets et de longueur d’arétes constante. Les sommets correspondants dans 1’épine
de PO(W,,) sont encore appelés {0}-étoiles et F-étoiles. Dans le cas de PA(W,,), les
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définitions des {0}-étoiles et des F'-étoiles sont identiques a ceci pres que l'on suppose
également que le point base est le centre (I'unique sommet qui n’est pas une feuille) du
graphe.

On fixe désormais une partie génératrice standard {z1,...,x,} de W,.

Le groupe Aut(W,) (et donc Out (W,)) est de type fini. Nous décrivons main-
tenant une partie génératrice finie. Pour tout i € {1,...,n — 1}, on note 7,: W,, - W,
I’automorphisme envoyant x; sur x;, 1, ;41 sur x; et qui fixe tous les autres générateurs.
Pour tous les i,j € {1,...,n} tels que i # j, on note o; ;: W,, —» W, 'automorphisme
qui envoie x; sur z;z;x; et qui fixe tous les autres générateurs. La proposition suivante
est due a Miihlherr.

Proposition 2.2.1. [Mik, Theorem B] Le groupe Aut(W,)) est engendré par Ti,...,Tp—1
et par o1 2.

Si a est un élément de Aut(WV,,), sa classe d’automorphismes extérieurs sera notée [a].
Soit p: Aut(W,,) — Out(W,,) la projection canonique. On note A, = (T, Th—1y €t
A, = p(ﬁn) Les groupes A, et A, sont isomorphes au groupe symétrique S,,. On note
U, = (Tl s Tn=2,01n) et Uy = p((}n) On voit que U, est isomorphe au produit semi-
direct F"~1 x &,,_1, alors que U, est isomorphe au produit semi-direct F"~2 x &,,_1,
ol &,_1 agit dans les deux cas par permutation des facteurs, en considérant F™2
comme le quotient de F™~! par le sous-groupe F diagonal. Soient En ={Tl,...,Th—2)
et B, = p(f?n) Les groupes B, et B, sont isomorphes & &,,_.

Nous traitons & présent le cas o n = 3. Soit €: W3 — Z /27 le morphisme envoyant,
pour tout i € {1,2,3}, élément z; sur 1. Miihlherr ([Mih, Theorem A]) a montré
que ker(e) est un sous-groupe caractéristique de Ws3. De plus, ker(e) est un groupe
libre a 2 générateurs, librement engendré par xiz9 et xoxs. Ceci induit un morphisme
p: Aut(Ws3) — Aut(FF3), qui est en fait un isomorphisme (c.f. [Varl, Lemma 2.3]).

Proposition 2.2.2. Le morphisme p: Aut(W3) — Aut(FFs) induit un isomorphisme entre
Out(W3) et PGL(2,Z).

Démonstration. Soient a et b les générateurs de FFs. On remarque tout d’abord que
Int(FF2) € p(Int(WW3)). Donc le noyau du morphisme surjectif Aut(Ws) — Out(FFsq) est
inclus dans Int(W3). Pour tout i € {1,2, 3}, soit ady, € Aut(WW3) la conjugaison globale
par z;. Un calcul immédiat montre que, pour tout i € {1, 2,3}, p(ady,) est dans la classe
d’automorphisme extérieur du morphisme ¢: FFy — FFy envoyant a sur a~' et b sur
b~L. De ce fait, puisque le sous-groupe {[¢]) est distingué dans Out(FF3), le morphisme
p induit un isomorphisme entre Out(W3) et Out(FF2)/{[¢]). Comme ¢ est envoyé par
le morphisme d’abélianisation sur —Id € GL(2,Z), on voit que Out(¥3) est isomorphe a
PGL(2,Z). 0

Nous allons démontrer les théorémes 2.1.1] et 2.1.2] en étudiant les stabilisateurs des
{0}-étoiles et des F-étoiles sous l'action de Out(W,,) et Aut(W,,). Pour cela, nous utilis-
erons les résultats suivants, dus respectivement a Hensel et Kielak et a Guirardel et
Levitt, qui donnent des informations sur les points fixes de sous-groupes de Out(W,,).
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Proposition 2.2.3. [HK|, Corollary 6.1.] Soient n = 1 un entier et H un sous-groupe fini
de Out(W,,). Alors H fize un point de PO(W,,).

Corollaire 2.2.4. Soient n = 1 un entier et H un sous-groupe fini de Aut(W,,). Alors H
fize un point de PA(W,,).

Démonstration. Soit p: Aut(WW,,) — Out(WW,,) la projection canonique. Alors p(H) est
un sous-groupe fini de Out(W,,), donc par la proposition p(H) fixe un point X de
I'outre-espace. Soient X un représentant de X et X son graphe sous-jacent. Comme tout
automorphisme intérieur agit sur X, et que p(H) agit également sur X, on en déduit
que H agit sur X. Etant donné que H est fini et que X est un arbre, on voit que H fixe
un point v de X. Donc la classe d’homothétie du graphe de groupes métrique marqué
pointé (X, v) est fixée par H. O

Proposition 2.2.5. [GuL2, Theorem 8.3.] Soit n = 2 un entier. Si H est un sous-groupe
de type fini de Out(W,,) (resp. Aut(W,,)) fizant un point de PO(W,,) (resp. PA(W,)),
alors l’ensemble des points fizes de H est contractile pour la topologie faible. O

On note Fixpogw,)(G) 'ensemble des points fixes d'un sous-groupe G de Out(Wp,)
dans PO(W,,) (ou Fix(G) s’il n’y a pas d’ambiguité). On note de plus Fixg, (G)
Pensemble des points fixes de G contenus dans 1’épine de PO(W,,). Puisque ’épine
de PO(W,,) est un rétract par déformation forte Out(W,,)-équivariant de PO(W,,), nous
déduisons de la proposition le résultat suivant.

Corollaire 2.2.6. Soit n > 2 un entier. Si H est un sous-groupe de type fini de Out(W,,)
fixant un point de U’épine de PO(W,,), alors l’ensemble Fix(H) des points fives de H
dans 'épine de PO(W,,) est conneze pour la topologie faible.

Soit X un point de I’épine de PO(W,,). On note X un représentant de X’ et T I’arbre
de Bass-Serre associé a X. Nous définissons a présent un morphisme de groupes

d: StabOut(Wn)(X) — Autgr(X).

Soient [a] € Stabouyw,)(X), et a € Aut(W,) un représentant de [a]. Il existe un

automorphisme ﬁ[a € Aut(T) tel que pour tout z € T, et pour tout g € W, on ait
a(g)Hq(x) = Hy(gx). L’automorphisme H, induit un automorphisme H, € Autg,(X),
et application o — H, passe au quotient pour donner un morphisme

D StabOut(Wn)(X) — Autgr(X).

Nous pouvons a présent démontrer un résultat identique au corollaire dans le
cas de PA(W,,).

Corollaire 2.2.7. Soitn > 2 un entier. Si H est un sous-groupe fini de Aut(W,,) fizant un
point de l’épine de PA(W,,), alors 'ensemble Fix(H) des points fizes de H dans l’épine
de PA(W,,) est connexe pour la topologie faible.
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Démonstration. Soient X' et )} deux points de I’épine de PA(W,,) fixés par H. Soit
p1: PA(W, ) —» PO(W,,) le morphisme canonique d’oubli du point base. On rappelle que
p: Aut(W,,) — Out(W,,) est la projection canonique. Alors p(H) fixe p1(X) et pi1(Y),
donc par le corollaire [2.2.6]il existe dans Fix,, (p(H)) un chemin continu P de p; (X') vers
p1(Y). Soient Xy, ..., X, les sommets de K,, consécutifs dans P (on suppose p1(X) = X}
et X, = p1())) tels que, pour tout i € {1,...,n — 1}, X; et X;;1 sont reliés par une
aréte dans K,. Soit X; un représentant de X; et pour tout i € {2,...,n}, soit X; un
représentant de X; obtenu en écrasant ou en éclatant une forét de X; 1. Pour tout
i€ {1,...,n}, comme tout automorphisme intérieur agit trivialement sur X;, et puisque
p(H) agit également sur X;, on en déduit que H agit sur X;. De plus, étant donné que
H est fini et que le graphe sous-jacent X; de X; est un arbre, on voit que H fixe un
point v; de X;. Pour tout i, soit /'E la classe d’équivalence du graphe métrique marqué
pointé (X;, v;) (on suppose que X; = X et X, = V). Alors X; est fixé par H.

Nous construisons a présent pour tout ¢ € {1,...,n — 1}, un chemin continu inclus
dans I’ensemble des points fixes de H dans ’épine de PA(WV,,) entre Q?z et QEH, ce qui
conclura. La construction étant symétrique, nous pouvons supposer, quitte a changer
les représentants X; et X;,1, que X;;1 est obtenu a partir de X; en écrasant une forét
F. Soient A le simplexe ouvert dans PA(W,,) associé a (X;,v;) et e l'aréte de I’épine
barycentrique de PA(W,,) reliant X, et /'E-H. Pour toute aréte f de F, soit £; la longueur
de f. Pour tout ¢ € [0,1], soient X! le graphe de groupes métrique obtenu & partir de
X; en donnant & toute aréte f € F la longueur (1 — t)¢s, et pry: X; — X! la projection
canonique. On observe que XiO = X, et que Xil = X;11.

Puisque H stabilise X; et X;y1, on voit que H stabilise la forét F. Donc, pour
tout ¢ € [0,1], le groupe H stabilise X!. Puisque H fixe le sommet v; de X, il fixe
également, pour tout ¢ € [0, 1], le sommet pri(x;). Ceci induit un chemin continu de X,
vers la classe d’équivalence dans K, de (X;1,pr1(v;)). Si pri(v;) # vit1, alors, puisque
le graphe sous-jacent a X; 1 est un arbre, H fixe 'unique arc dans YHl reliant pry(v;)
et v;4+1. Ceci induit alors un chemin continu contenu dans I’ensemble des points fixes de
H dans ’épine de PA(W,,) entre la classe d’équivalence dans K, de (X;,1,pri(v;)) et
)?Z-H, ce qui conclut. ]

Soient X un point de I’épine de PO(W,,) et X un représentant de X. On note
®: Staboyy(w,)(X) — Autg,(X) le morphisme naturel. Nous donnons maintenant une
description de ker(®). Soit [X, p] un point de ’épine de PO(W,,). On note (X, p) un
représentant de [X, p] et X le graphe sous-jacent & X. Soit e une aréte de X reliant le
sommet v = o(e) au sommet w = t(e). Soit z € G, un élément du groupe associé au
sommet v, et Z son antécédent par p. Nous définissons a présent le twist par z autour
de e. Soit GG, le groupe associé a un sommet u. Le twist par z autour de e, noté D,,
est 'automorphisme de W,,, bien défini modulo conjugaison, qui est égal a l'identité sur
p YHG,) si u est dans la méme composante connexe de X privé de I'intérieur de e que
v, et qui & z € p~1(G,) associe Zrz~! si u n’est pas dans la méme composante connexe
que v. Nous avons le résultat suivant, di a Levitt.

Proposition 2.2.8. [Levl, Proposition 2.2 and 3.1] Soit n = 2 un entier. Soient X un
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point de ’épine de l'outre-espace PO(W,,) et X un représentant de X. Soient vy, ..., v,
les sommets du graphe sous-jacent de X de groupe associé isomorphe a F' et soit n; le
degré de v; pour i =1,...,n. Le noyau du morphisme ®: Stabgyyw,)(X) — Autg,(X)

n

(noté Outo(W,,) dans [Levd)]) est isomorphe a [] F™ 1, et il est engendré par les twists
i=1

autour des arétes dont l’origine appartient a {vi,...,v,} et n'est pas une feuille.

Remarque 2.2.9. Dans le cas ou X € PA(W,,), le noyau est engendré par les twists autour

des arétes e dont 'origine o(e) appartient & {vy,...,v,} et n’est pas une feuille, et telles

que, si o(e) est distinct du point base v, ces arétes ne soient pas contenues dans I'unique

chemin reliant o(e) a v,. En particulier, si le groupe associé a v, est trivial et si n; est
n

le degré de v; pour i = 1,...,n, alors le noyau est isomorphe & || F™~1. Si le groupe
i=1

associé a v, est non trivial, et si on suppose v, = vy, alors le noyau est isomorphe a

n—1
(1_[ Fm—l) x Fhn

i=1

2.3 Stabilisateurs des {0}-étoiles et des F'-étoiles

Nous étudions tout d’abord les stabilisateurs des {0}-étoiles.

Lemme 2.3.1. Soit n > 4 un entier. Soient G un sous-groupe fini de Out(W,,) isomorphe
a Sy, et X un point de l’épine de PO(W,,) fixé par G. On note X un représentant de
X et X le graphe sous-jacent a X. Si le nombre de feuilles de X est n, alors X est une
{0}-étoile.

Démonstration. Soit v un sommet de X qui n’est pas une feuille et qui soit & distance
maximale du centrdd de X.

Affirmation. Si m = deg(v), alors v est adjacent & au moins m — 1 feuilles de X.

Démonstration. L’hypothese de maximalité sur v implique qu’il y a au plus un sommet
adjacent a v qui n’est pas une feuille, car sinon nous pourrions trouver un sommet w
adjacent & v qui ne serait pas une feuille et qui serait & distance strictement plus grande
du centre que v. O

Maintenant, le groupe associé & v est trivial car X possede exactement n sommets
de groupes associés non triviaux, et ces sommets sont tous des feuilles car X possede n
feuilles. De ce fait, deg(v) = 3 et v est adjacent & au moins deux feuilles, notées vy et
V.

Soient L I’ensemble des feuilles de X, et w une feuille de X distincte de v; et ws.
Puisque les seuls sommets de X dont les groupes associés sont non triviaux sont des
feuilles, la proposition montre que le morphisme naturel G — Autg, (X) est injec-
tif. Ainsi, étant donné que le groupe G est isomorphe & &,,, et que X possede n feuilles,

'Rappelons que le centre d’un arbre métrique compact non vide est I'unique milieu d’un segment de
longueur maximale.
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le morphisme naturel Autg, (X) < Bij(L) est un isomorphisme. Donc il existe un auto-
morphisme de X envoyant v; sur w et fixant vo. De ce fait, w est adjacent & v. Ainsi,
v est adjacent & toutes les feuilles de X. Puisque le groupe Autg,(X) est isomorphe a
Bij(L), toutes les arétes de X ont méme longueur. De ce fait, X est une {0}-étoile. [

Remarque 2.3.2. Le résultat est identique dans le cas de PA(W,,). En effet, soit G un
sous-groupe fini de Aut(W,,) isomorphe a &,,, et X un point de ’épine de PA(W,,) fixé
par G. On note X un représentant de X et X le graphe sous-jacent & X. Supposons
que X possede n feuilles. Alors la remarque donne que le noyau du morphisme
G — Autgy(X) est un sous-groupe distingué de G d’ordre au plus 2. Comme G est
isomorphe a &, et que n = 4, le morphisme est injectif. La méme démonstration que le
lemme [2.3.1) montre alors que X possede n feuilles et n + 1 sommets. Il reste a montrer
que le point base est le centre de X. Mais ceci provient du fait que le groupe G est
isomorphe a Autg,(X) qui lui-méme est isomorphe & Bij(L). Ainsi, nécessairement, le
point base est le centre de X. Donc X est une {0}-étoile.

Proposition 2.3.3. Soient n > 5 un entier et G un sous-groupe de Out(W,,) isomorphe a
S,. Alors G est le stabilisateur dans 'épine de PO(W,,) d’une unique {0}-étoile.

Démonstration. Puisque G est fini, d’apres la proposition il existe un point X
de I’épine de l'outre-espace qui est fixé par G. Soit X un représentant de X. D’apres
la proposition [2.2.8] il existe un entier k£ tel que le noyau de l'application naturelle
G — Autg,(X) soit isomorphe & F* n G.

Or F* A G est un 2-sous-groupe distingué de G ~ &,,. Donc, comme n > 5, un tel
sous-groupe est trivial. De ce fait, G s’injecte dans Aut,,(X). Or tout automorphisme
d’un arbre est entierement déterminé par la permutation qu’il induit sur I’ensemble des

feuilles. Ainsi, si X est le graphe sous-jacent & X et si L est I’ensemble des feuilles de

X,

G — Auty,(X) — Bij(L).

Or les représentants des éléments de PO(W,,) possedent au plus n sommets de groupes
non triviaux et toutes les feuilles possedent des groupes associés non triviaux. Donc
|L| < n. Donc, comme G s’injecte dans Bij(L) et que G est isomorphe & &,,, on voit
que G est isomorphe & Auty,(X) et que Auty,(X) est isomorphe & Bij(L). De ce fait, X
possede n feuilles. Par le lemme X est une {0}-étoile.

Montrons maintenant 'unicité. Puisque l’ensemble des {0}-étoiles est discret dans
I’épine de PO(W,,), par le corollaire on conclut que G fixe une unique {0}-étoile
dans ’épine de PO(W,,). O

Remarque 2.3.4. Dans le cas de PA(W,,), le résultat de la proposition est vral pour
n = 4. En effet, dans le cas ou n > 5, la démonstration est identique a celle de la
proposition [2.3.3| en utilisant cette fois la remarque [2.3.2

Dans le cas ou n = 4, soit X € PA(W,) un point fixé par un sous-groupe G de
Aut(W,,) isomorphe & &,,. On note X un représentant de X', X le graphe sous-jacent a
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X et vy le point base de X. Soit H le noyau du morphisme G — Autg,(X). Supposons
par ’absurde que H ne soit pas trivial. Alors, par la remarque le groupe H est
un 2-groupe. Comme le seul 2-sous-groupe distingué de &4 est le groupe de Klein, le
groupe H est isomorphe & F2. Nous distinguons différents cas, selon le fait que le groupe
associé a v, soit trivial ou non et selon le nombre de sommets qui ne sont pas des feuilles
et qui ont un groupe associé non trivial. On remarque immédiatement que, puisque tout
arbre possede au moins 2 feuilles, le nombre de sommets qui ne sont pas des feuilles et
de groupes associés non triviaux est au plus 2.

Supposons que X contienne deux sommets qui ne soient pas des feuilles et dont les
groupes associés sont isomorphes a F' et que le groupe associé a v, soit trivial.

Soient wy et wy ces deux sommets. Alors deg(v,) = 3. Comme chaque composante
connexe de X — {v,} contient au moins une feuille, X contiendrait 5 sommets de groupes
associés non triviaux. Ceci contredit le fait qu’il y a exactement 4 sommets dans le
graphe de groupes associés non triviaux.

Supposons que X contienne deux sommets qui ne sont pas des feuilles et dont les
groupes associés sont isomorphes a F' et que le groupe associé a v, ne soit pas trivial.

Alors la description du noyau du morphisme G' — Autg,(X) donné dans la remar-
que donne que le cardinal du noyau est au moins 8, ce qui contredit le fait que H
est de cardinal 4.

Supposons que X contienne un seul sommet, noté w, de groupe associé non trivial
et qui ne soit pas une feuille et que le groupe associé & v, soit trivial. Alors deg(vy) > 3.
Comme chaque composante connexe de X — {v,} contient au moins une feuille, et qu’il
existe un sommet de groupe associé non trivial et qui ne soit pas une feuille, deg(v,) = 3.
De plus, puisqu’il y a exactement 4 sommets dans le graphe de groupes associés non
triviaux, chaque composante connexe de X — {v,} contient exactement une feuille. Donc
vy est relié & exactement 2 feuilles et w est relié & une seule feuille et & vy. Or le
cardinal du groupe des automorphismes d’un tel graphe est égal a 2. Comme le noyau
du morphisme G — Autg, (X) est de cardinal 4, ceci contredit le fait que G est isomorphe
a 6y.

Supposons que X contienne un seul sommet, noté w, de groupe associé non trivial
et qui ne soit pas une feuille. Si v, est une feuille, alors le graphe possede exactement
3 feuilles, dont I'une est le point base. De ce fait, comme tout automorphisme de X
est induit par son action sur les feuilles, le groupe des automorphismes d’un tel graphe
pointé est de cardinal 2. Comme le noyau du morphisme G — Autg,(X) est de cardinal
4, ceci contredit le fait que G est isomorphe a &4.

Supposons alors que le point base v, ne soit pas une feuille. Par les cas précédents,
vy = w. Comme le nombre de sommets de groupes non trivial est exactement 4, et que
tout sommet de groupe associé trivial est de degré au moins 3, le graphe X contient
au plus un sommet de groupe associé trivial. Le cas ou le nombre de sommets de
groupe associé trivial est égal a 1 n’est pas possible car alors le cardinal du groupe
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des automorphismes d’un tel graphe est égal a 2, contredisant le fait que le noyau du
morphisme G' — Autg,(X) est de cardinal 4 et que G est isomorphe a &y.

Dans le cas ol le nombre de sommets de groupe associé trivial est nul, on voit que
X est une F-étoile. Or, par la remarque le cardinal du noyau du morphisme
G — Auty, (X) est égal a 8, d’olt une contradiction.

En conclusion, le morphisme G — Autg,(X) est également injectif dans le cas ot X
appartient & PA(W,) et n = 4. La suite de la démonstration est alors identique & la
proposition O

Nous démontrons a présent un résultat similaire pour les F-étoiles. Pour cela, nous
avons besoin du lemme suivant.

Lemme 2.3.5. Soient n > 4 un entier et X un point de ’épine de PO(W,,). On note X
un représentant de X et X le graphe sous-jacent a X. Soit k Uentier tel que le noyau du
morphisme naturel Staboyyw,)(X) — Autg,(X) soit isomorphe a Fk. Alors k <n — 2.
Par ailleurs, k = n — 2 si, et seulement si, l'ensemble VX des sommets de X est de
cardinal n.

Démonstration. Supposons que |V X| > n. Soient v un sommet de groupe associé trivial
et e une aréte de X reliant v a un sommet w. Une telle aréte existe car X est connexe
et le nombre de sommets de X de groupe non trivial est égal a n.

Affirmation. Soient Y le graphe de groupes marqué obtenu a partir de X en contrac-
tant l'aréte e et ) sa classe d’équivalence dans 1’épine de PO(W,,). Alors le noyau du
morphisme naturel Staboyw,)(Y) — Autg(Y) est isomorphe a Fl avec | = k si le
groupe associé a w est trivial, et [ = k + 1 sinon.

Démonstration. Si le groupe associé a w est trivial, alors contracter ’aréte e ne modifie
pas le degré des sommets dont le groupe associé est non trivial. Donc, dans ce cas,
k = l. Supposons maintenant que le groupe associé a w ne soit pas trivial. Notons vw le
sommet obtenu en contractant e. Le groupe associé a vw est non trivial. Alors, puisque,
par hypothese, deg(v) > 3, nous avons :

deg(vw) = deg(v) + deg(w) — 2 = deg(w) + 1.
Ainsi, dans ce cas, | > k + 1. O

De ce fait, si [VX| > n, il existe une aréte reliant un sommet de groupe associé
trivial et un sommet de groupe associé non trivial. Par affirmation précédente, ’entier
k associé au morphisme Stabg(w,)(X) — Autg,(X) n’est pas maximal.

Ainsi, pour calculer la borne maximale de k, nous pouvons supposer que X possede
n sommets, tous de groupe associé non trivial. Donc,

Z deg(v) =2|EX|=2n -2,
veVX
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la, derniere égalité provenant du fait que X soit un arbre. Ainsi,

k= Z(deg Zdeg —n=2n—-2-n=n-—2.
veVX veVX

Donc, k <n —2, et si |[VX|=n, alors k =n — 2.

Supposons maintenant que k = n — 2. Par affirmation précédente, la procédure de
contraction présentée fait croitre strictement k lorsque ’on contracte une aréte reliant
un sommet de groupe associé trivial et un sommet de groupe associé non trivial. Donc
X ne peut pas contenir de sommets ayant un groupe associé trivial. Donc le cardinal de
VX est égal & n. O

Remarque 2.3.6. Dans le cas de PA(W,,), soit X un point de I’épine de PA(W,,). On
note X un représentant de X et X le graphe sous-jacent & X. Soit k lentier tel que le
noyau du morphisme naturel Staby ¢, )(X) — Auty,(X) soit isomorphe a F k. Alors
une démonstration identique au lemme [2.3.5| montre que k < n — 1 avec égalité si, et
seulement si, |VX| = n.

Nous pouvons maintenant montrer le résultat suivant concernant les stabilisateurs

de F-étoiles dans Out(WW,,).

Proposition 2.3.7. (1) Soit n = 4 un entier. Le cardinal mazimal d’un sous-groupe fini
de Out(W,,) est 2" 2(n — 1)!.

(2) Supposons n = 5. Soient G un sous-groupe de Out(W,,), et X un point de l’épine
de PO(W,,) fizé par G. On note X un représentant de X et X le graphe sous-jacent
a X. Si X posséde n feuilles, alors |G| < 2" 2(n —1)!.

(3) Supposonsn = 4. Soient G un sous-groupe de Out(W,,) isomorphe ¢ F" 2x&,,_1,
et X un point de ’épine de PO(W,,) fixé par G. On note X un représentant de X
et X le graphe sous-jacent a X. Si le nombre de feuilles de X estn — 1, alors X
est une F'-étoile.

(4) Supposons n = 5. Soit G un sous-groupe de Out(W,,) isomorphe @ F" 2 x &, 1.
Alors G est le stabilisateur d’une unique F-étoile.

Démonstration. Si X est un élément de I’épine de PO(W,,), nous noterons X un représen-
tant de X. Nous noterons également X le graphe sous-jacent & X et L ’ensemble des
feuilles de X. Puisque X est un arbre, tout automorphisme de X est entierement déter-
miné par son action sur les feuilles. Donc le morphisme de restriction de Autg,(X) dans
Bij(L) est injectif.

Montrons assertion (1). Puisque tout sous-groupe fini de Out(W,,) fixe un point de
I’épine de PO(W),,) par la proposition il suffit de montrer que, pour A un point de
I’épine de I’outre-espace, |Stabout(wn)(X)| < 2" 2(n—1)!. Dapres la prop081t10n
il existe un entier k tel que le noyau du morphisme naturel Stabg g, )(X) — Autg,(X)
soit isomorphe & F*. De ce fait, |Stabouew,) (X)] < 2k | Aut,, (X)].

Nous distinguons deux cas, selon le cardinal de L.
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e Supposons que |L| < n— 1. Alors Aut,,(X), qui s’injecte dans Bij(L), s’injecte
dans &,,_1. Ainsi,

|Stabouew, ) (X)] < 2k|Auth(X)| <2 -1 < 2" 2 (n - 1)1,
ou la derniere inégalité découle du lemme [2.3.5

e Supposons que |L| = n. Alors tous les sommets ayant des groupes associés non
triviaux sont des feuilles. Ainsi, k¥ = 0 par la proposition Puisque Bij(L) est
isomorphe a &, nous avons

[Stabouew,) (X)] < [Autg (X)| < n!.
Or puisque n > 4, nous avons n < 2"~ 2 donc n! < 2"~2(n — 1)!, ce qui conclut.

Donc, pour tout sous-groupe fini G de Out(W,,), 'ordre de G est au plus 2" ~2(n—1)! .
Cette borne est atteinte par le groupe U, = {[71],...,[mn=2], [01,n]). qui est isomorphe
au produit semi-direct F"™2 x &,,_;.

Soient n>=5et G, X et X comme dans I’énoncé de 1’assertion (2). Par la proposi-
tion il existe un entier k£ tel que le noyau du morphisme naturel G — Autg, (X)
soit 1somorphe A F¥ A G. Puisque X possede n feuilles, par la proposition u I’entier
k est nul. De ce fait, le groupe G s’injecte dans Autg,.(X), qui s’injecte dans Bij(L).
Donc |G| < n!. Or 2 2(n — 1)! < n! implique que n < 4. D’ott |G| < 2" 2(n —1)!.

Soient n = 4 et G, X et X comme dans ’énoncé de (3). Comme G est de cardinal
maximal parmi les sous- groupes finis de Out(W,,), nous avons G' = Stabguw,)(X).
Donc, par la proposition il existe un entier k tel que le noyau du morphisme
naturel G — Autg,(X) smt 1som0rphe a Fk. Ainsi, puisque Aut,, (X) s’injecte dans
Bij(L) et que ce dernier est isomorphe &4 &,_1, on voit que |G| < 2¥(n — 1)! . Comme
k <n—2parle lemme et puisque |G| = 2"2(n—1)!, on a nécessairement k = n—2.
Le lemme - donne alors que X possede exactement n sommets. De ce fait, X possede
n — 1 feuilles et n sommets. Par ailleurs, on voit également que Aut,,(X) est isomorphe
a Bij(L). De ce fait, toutes les arétes de X ont la méme longueur. Donc X est une
F-étoile.

Supposons enfin que n > 5 et que G soit un sous-groupe de Out(W,,) isomorphe &
F"2%@,,_;. Parla proposition le groupe G fixe un point X de ’épine de 'outre-
espace. Comme G est de cardinal maximal parmi les sous-groupes finis de Out(W,,),
nous avons G = Stabgw,)(X). Donc, par la proposition il existe un entier k tel

que le noyau du morphisme naturel G — Autg,(X) soit isomorphe & F*.
Affirmation. L’arbre X possede exactement n — 1 feuilles.
Démonstration. L’assertion (2) dit que X posseéde au plus n — 1 feuilles. Nous avons

1G] = 2"2(n — 1)! < 2%|Aut, (X)] < 22| Auty, (X)) ;

54



ou la derniere égalité provient du lemme [2.3.5, Donc [Auty, (X)| = (n — 1)! . Ainsi,
puisque X possede au plus n—1 feuilles, le groupe Bij(L), dans lequel s'injecte Auty, (X),
est isomorphe & G,_;. Donc le cardinal de L est n — 1. ]

De ce fait, X posseéde n — 1 feuilles. Par I’assertion (3), X est une F-étoile dans
I’épine de PO(W,,). Par le corollaire I’ensemble des points fixes de G est connexe.
Puisque 'ensemble des F-étoiles est discret dans 1’épine de PO(W,,), on conclut que G
fixe une unique F-étoile dans I’épine de PO(W,,). O

Remarque 2.3.8. Dans le cas de Aut(W,,), soient G un sous groupe fini de Aut(W,,) et
X un point de 1'épine de PA(W,,) fixé par G. On note X un représentant de X et X le
graphe pointé sous-jacent a X.

(1) Sin >4, le cardinal de G est plus petit que 2"~ *(n — 1)!.

La démonstration pour le cas ot le nombre de feuilles de X est plus petit que n—1 est
identique & celle de la proposition m (1) en utilisant cette fois la remarque|2.3.6, Dans
le cas ol le nombre de feuilles est égal & n, le noyau du morphisme naturel G — Autg, (X)
est de cardinal plus petit que 2 par la remarque donc |G| < 2n! < 2" Y (n—1)! car
n = 4.

(2) Sin =5 et si X posséde n feuilles, alors |G| < 2" 1 (n —1)!.

En effet, par la remarque le cardinal du noyau du morphisme G — Autg, (X)
est plus petit que 2, donc |G| < 2n! < 2" 1(n —1)! car n > 5.

(3) Sin=4, si G est isomorphe & F" ' x &, et si X posséde au plus n — 1 feuilles,
alors X est une F'-étoile.

En effet, une démonstration identique & celle de la proposition m (3) montre que
X possede n — 1 feuilles et n sommets. Montrons alors que le point base est le centre de
X. Ceci découle du fait que le groupe des automorphismes de X est isomorphe a &,,_;
car le noyau du morphisme G' — Autg, (X) est isomorphe a F' "=l et que G est isomorphe
AF" 1l x6,_.

(4) Sin >4 et si G est isomorphe a F* ' x &,,_1, tout point de I'épine de PA(W,,)
fixé par G est une F-étoile.

En effet, I'existence d’une F-étoile fixée par G lorsque n = 5 se déduit des faits
précédents.

Dans le cas ou n = 4, soit X un point de I’épine de I'outre-espace fixé par G. Soient
X un représentant de X et X le graphe sous-jacent & X. On note L l’ensemble des
feuilles de X. Si X possede au plus n — 1 feuilles, alors, par le fait précédent, X est
une F-étoile. Supposons que X possede exactement n feuilles. Alors la remarque
montre que le noyau du morphisme naturel G — Autg,(X) est de cardinal au plus 2. I
ne peut pas étre injectif car le cardinal de G est égal a 48 alors que le groupe Autg, (X)
s’injecte dans Bij(L) de cardinal égal a 24. Donc le noyau du morphisme G — Autg, (X)
est de cardinal égal & 2. Ainsi, le point base de X est une feuille. Or, puisque Autg, (X)
s’injecte dans Bij(L) et que I'image du morphisme G — Autg,(X) est de cardinal égal
a 24, on voit que Autg,(X) est isomorphe & Bij(L). Ceci contredit le fait que le point
base de X est une feuille. En conclusion, X possede au plus n — 1 feuilles. Donc X est

95



une F-étoile. La démonstration de 'unicité de la F-étoile fixée par G est alors identique
a celle de la démonstration de la proposition [2.3.7] (4).

Lemme 2.3.9. Soit n un entier.

(1) Supposons que n = 5. Soit G un sous-groupe de S,, isomorphe a S,,_1. Il existe
un automorphisme de &,, envoyant G sur {f € Bij({1,...,n}) : f(n) =n}.

(2) Sin=4etn#6 et siG est un sous-groupe de Bij({1,...,n}) isomorphe a &,,_1,
alors il existe un entier i€ {1,...,n} tel que G = {f € Bij({1,...,n}) : f(i) = i}.

Démonstration. (1) L’action de &,, sur &,,/G par multiplication a gauche est un mor-
phisme de groupes ¢: &,, — Bij(S,,/G). Le noyau de ce morphisme est un sous-groupe
distingué de &,, inclus dans G. Or, G est d’indice n. Donc, étant donné que n > 5,
le noyau de ce morphisme est trivial. Donc, puisque les groupes &,, et Bij(S,,/G) ont
méme cardinal fini, le morphisme ¢ est un isomorphisme. Soit ¥ S,/G — {1,...,n}
une bijection envoyant {G} sur n, et ¢: Bij(6,/G) — &, lisomorphisme induit par ).
Alors 1 o ¢ est un automorphisme de &,, envoyant G sur le sous-groupe de &,, fixant n.

(2) Nous commencons par traiter le cas ou n = 4. Il découle d’une inspection des sous-
groupes de Gy isomorphes a G3. En effet, &4 possede exactement 4 sous-groupes iso-
morphes a &3. Dong, il existe un entier i € {1, 2, 3,4} tel que G = {f € Bij({1,...,n}) :
£00) = i),

Supposons maintenant que n = 5 et que n # 6. Par le premier point du lemme, il
existe un automorphisme ¢ de &,, envoyant G sur {f € Bij({1,...,n}) : f(n) =n}. Or,
sin # 6, tout automorphisme de &,, est intérieur. Comme les automorphismes intérieurs
préservent le fait d’étre le stabilisateur d’un entier, il existe un entier i € {1,...,n} tel

que G = {f e Bij({1,...,n}) : f(i) =1}. O
Etudions les points fixes du groupe B,, dans I’épine de I'outre-espace de W,.
Proposition 2.3.10. Soient n >4 et By, = {[11],..., [Tn—2])-

(1) Les seuls sommets fizés par B,, dans ’épine de l'outre-espace de Wy, sont des {0}-
¢toiles et des F'-étoiles.

(2) Le groupe By, fize une unique F'-étoile et une unique {0}-étoile.

Remarque. La proposition [2.3.10| differe des propositions et car elle porte
uniquement sur un sous-groupe particulier de Out(W,,). Nous ne savons pas si le résultat

reste vrai pour un sous-groupe de Out(W),,) isomorphe & &,,_1 quelconque.

Démonstration. (1) Soient X un sommet de ’épine de PO(W),,) fixé par B,, et X un
représentant de X'. Soient X le graphe sous-jacent & X, L I’ensemble des feuilles de X et
V1,...,U, les sommets de X dont les groupes associés sont non triviaux. Par la proposi-
tion il existe un entier k tel que le noyau du morphisme naturel B, — Autg,(X)
soit isomorphe & F* ~n B,. Or, ce noyau est un sous-groupe de F¥ et ce dernier est
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engendré par des twists. Pour tout i € {1,...,n}, soit y; 'antécédent par le marquage
de X du générateur du groupe associé a v;. Pour tout ¢ € {1,...,n}, les compositions
de twists contenues dans F* n B, préservent la classe de conjugaison dans W, de y;
alors que les permutations du groupe engendré par {[71],...,[T,—2]} ne préservent pas
ces dernieres. De ce fait, nous avons F* n B,, = {1}.

Le groupe Autg, (X) s’injecte dans Bij(L). Par ailleurs, étant donné que le morphisme
¢: By, — Autg,(X) est injectif, et que B), est isomorphe & &,,_1, nous avons |L| > n—1.
De plus, chaque feuille ayant un groupe associé non trivial, nous avons |L| < n. Donc
L e {n —1,n}. Examinons les deux cas possibles.

Si |[L| = n — 1, alors Autg,(X) est isomorphe & Bij(L). Montrons que X est une
F-étoile. Soit v un sommet qui n’est pas une feuille a distance maximale du centre de
X. L’hypothese de maximalité sur v implique qu’il y a au plus un sommet adjacent &
v qui n’est pas une feuille, car sinon nous pourrions trouver un sommet w adjacent a v
qui ne serait pas une feuille et qui serait a distance strictement plus grande du centre
que v. De ce fait, v est adjacent a au moins deg(v) — 1 feuilles.

Si le groupe associé & v est non trivial, alors v est fixé par B, car c’est le seul sommet
de X qui soit de groupe associé non trivial et qui ne soit pas une feuille. Donc puisque
B, est isomorphe a Autg,(X), le sommet v est fixé par Autg,(X). Enfin, puisque tout
élément de Bij(L) est induit par un élément de Autgy, (X), le sommet v est adjacent a
toutes les feuilles et X’ est une F-étoile.

Si v est un sommet de groupe trivial, alors, par hypothese, deg(v) > 3. De ce fait, v
est adjacent & au moins deux feuilles, notées vy et vo. Soit w une feuille de X distincte
de v1 et vy. Puisqu’il existe un automorphisme de X envoyant vy sur w et fixant vo,
alors, nécessairement, w est adjacent a v. Donc v est adjacent a toutes les feuilles. Ceci
n’est pas possible car alors X contiendrait uniquement n — 1 sommets de groupe associé
non trivial. Donc v est nécessairement un sommet de groupe associé non trivial et X est
une F-étoile.

Supposons que |L| = n. Montrons alors que X" est une {0}-étoile. Le groupe Autg,(X)
s’injecte dans Bij(L) qui est isomorphe & &,,. Par ailleurs, puisque B,, s’injecte dans
Autg, (X), I'image de Autg, (X) dans Bij(L) contient un sous-groupe de Bij(L) isomorphe
a6,_1.

Soit H l'image de B,, dans Autg(X). Par le lemme (2), si n # 6, il existe
une feuille v; de X telle que I'image de H dans Bij(L) soit égale a Stabpijz)(v1). Soit
v le sommet adjacent & v1. Puisque v n’est pas une feuille, deg(v) = 3. Ou bien v est
adjacent a une autre feuille distincte de v1, ou bien v est adjacent a une unique feuille.

Si v est adjacent & une unique feuille, il existe dans X des feuilles de L — {v1} &
distance au moins 4. Soient w; et wo deux telles feuilles distinctes de vy, telles que wy
soit a distance maximale du centre et que ws soit une feuille distincte de v1 a distance
maximale de w;. Puisque la valence de tout sommet de groupe associé trivial est au
moins 3, il existe une feuille w3 & distance 2 de we. Or l'image de H dans Bij(L) est
égale a Stabp;jz)(v1). Donc il existe un automorphisme de X fixant w3 et envoyant ws
sur wi, ce qui n’est pas possible par hypothese sur wy et wo.
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Donc v est adjacent a une feuille distincte de v, que ’on note vo. Soit w une feuille
de X distincte de v1 et vo. Etant donne qu'il existe un automorphisme de X envoyant
vg sur w et fixant vy, le sommet w est & distance 2 de vy. En particulier, X est une
{0}-étoile.

Traitons maintenant le cas ou n = 6. On numérote de 1 a 6 les feuilles. Une con-
struction explicite d’un représentant de I'unique automorphisme extérieur non trivial de
Se (cf. [Mil]) donne que I'unique (a conjugaison pres) sous-groupe de Bij(L) isomorphe
a G5 et qui ne soit pas un stabilisateur de feuille est le groupe

H ={(12)(34)(56),(16)(24)(35),(14)(23)(56),(16)(25)(34)).

Supposons alors que H soit inclus dans 'image de Autg, (X) dans Bij(L). Le groupe H
agit transitivement sur les feuilles de X. De ce fait, tous les sommets reliés & des feuilles
sont adjacents a un méme nombre k de feuilles. Les seules valeurs possibles pour k sont
ke {1,2,3,6}. Le cas ou k = 1 n’est pas possible car tout sommet qui n’est pas une feuille
est de degré au moins 3 (tous les sommets dont les groupes associés sont non triviaux sont
des feuilles). De plus, k # 3 car le groupe des automorphismes d’un tel graphe ne pourrait
contenir simultanément les permutations (12)(34)(56), (16)(24)(35) et (14)(23)(56).
Enfin, k& # 2 car alors X posséderait 3 sommets adjacents a 2 feuilles. Cependant
le groupe des automorphismes d’un tel graphe ne pourrait contenir simultanément les
permutations (12)(34)(56), (16)(24)(35) et (16)(25)(34). Donc k = 6 et X est une
{0}-étoile.
Ainsi, By, fixe uniquement des {0}-étoiles et des F-étoiles.

(2) Montrons maintenant que B, fixe une unique F-étoile. Soit X le graphe de groupes
marqué dont le graphe sous-jacent possede n sommets, notés vy, . . ., v,, tel que les feuilles
du graphe sous-jacent soient vi,...,v,_1, et tel que pour tout i € {1,...,n}, 'image
réciproque par le marquage du générateur du groupe associé a v; soit x;. Soit X la classe
d’équivalence de X. Alors X est une F-étoile et le stabilisateur de X est U,,. Puisque
B,, € U,, ceci montre l'existence.

Montrons maintenant 'unicité. Soit ) une autre F-étoile fixée par B,. On note
Y un représentant de ). Par le corollaire [2.2.6] il existe dans Fixg, (By) un chemin
continu de X vers ). Puisque deux F-étoiles distinctes ne sont pas reliées par une aréte
dans 'épine de PO(W,,), et puisque tout sommet de Fixg, (B;,) est une {0}-étoile ou une
F-étoile, ce chemin passe par une {0}-étoile adjacente a X.

Affirmation. Soient Z une {0}-étoile adjacente & X et Z un représentant de Z. On
note Z le graphe sous-jacent & Z et v1, ..., v, les sommets de Z dont les groupes associés
sont non triviaux. Alors I'image réciproque par le marquage de Z des générateurs des
groupes associés aux sommets vy, ..., v, est, a conjugaison pres :

aq a1 Qp—1 Qp—1
{xptzixnt, o xn T eyt ),

avec o € {0, 1} pour tout ¢ € {1,...,n —1}.
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Démonstration. Pour tout ¢ € {1,...,n}, soit y; le générateur du groupe associé a v;.
Puisque Z est adjacente & X, il existe une aréte e de Z telle que le graphe de groupes
marqué Z' dont le graphe sous-jacent est obtenu & partir de Z en contractant e soit
dans la classe X. Quitte a renuméroter, on peut supposer que I'un des sommets de
e est v,. Soient Tx et Ty les arbres de Bass-Serre associés & X et Z'. Les graphes
de groupes X et Z' étant équivalents, il existe un homéomorphisme W, -équivariant
f:Tx — Tz Soit v le sommet de Tx de stabilisateur {(x,). Alors f(v) a pour stabilisa-
teur (x,,). Par ailleurs, étant donné que les sommets adjacents & v ont pour stabilisateurs
(x1y, .o {En_1),{TnT1Tn), ..., {TnTn_1%n), les sommets adjacents & f(v) ont pour sta-
bilisateurs (x1),...,{Tp_1),{Tnx1Zpn),...,{TpTp_12Zyn). Donc, tout sous-graphe fini et
connexe de T ayant n sommets et n — 1 feuilles et de centre f(v) est tel que les stabil-
isateurs des feuilles sont

Ceptaiagt) . ey ey,

avec a; € {0, 1} pour tout i € {1,...,n—1}. Ainsi, 'image réciproque par le marquage de
Z des générateurs des groupes associés aux sommets vy, ..., v, est, a conjugaison pres :

oy, . (aon e, x|
avec a; € {0, 1} pour tout i € {1,...,n —1}. O

Ainsi, au vu de la description des {0}-étoiles adjacentes a X, le groupe B, fixe
une unique {0}-étoile adjacente a X : la {0}-étoile Z telle que les antécédents par le
marquage des générateurs des groupes de sommets non triviaux soient, a conjugaison
pres, o1,...,T,. On note Z la classe d’équivalence de Z et Z le graphe sous-jacent a Z.

Soit )’ une F-étoile adjacente & Z. Notons Y’ un représentant de )’ et Y~ le graphe
sous-jacent & Y. Il existe une aréte e de Z telle que le graphe de groupes Z’ obtenu en
contractant e soit dans ). Les antécédents par le marquage de Y’ des générateurs des
groupes de sommets sont donc, a conjugaison pres, x1, ..., Z,.

Ainsi, puisque B,, permute les sommets de tout point de 1’épine de PO(W,,) dont
I'image réciproque par le marquage des groupes associés sont (1) ,...,{x,_1), on voit
que 'unique F-étoile adjacente a Z fixée par B, est X. Donc, B,, fixe une unique F-étoile
dans I’épine de PO(W,,).

Montrons enfin que B, fixe une unique {0}-étoile. Soit Z le graphe de groupes marqué
dont le graphe sous-jacent possede n+1 sommets, n feuilles, notées wi, ..., wy, et tel que
pour tout ¢ € {1,...,n}, I'image réciproque par le marquage du générateur du groupe
associé & w; soit x;. Soit Z la classe d’équivalence de Z. Alors Z est une {0}-étoile et le
stabilisateur de Z est A,. Puisque B,, € A,, ceci montre I’existence.

Montrons I'unicité. Soit Y une autre {0}-étoile fixée par B,,. Par le corollaire m
il existe un chemin continu dans Fixg, (B,) de Z vers ). Au vu de I'assertion (1) de
la proposition, ce chemin passe uniquement par des {0}-étoiles et des F-étoiles. Or, B,
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fixe une unique F-étoile X', et par la derniere affirmation, I'unique {0}-étoile adjacente
a X et fixée par By, est Z. Donc B,, fixe une unique {0}-étoile dans 1’épine de PO(W,,).
O

Remarque 2.3.11. Soit n > 4. Dans le cas de Aut(W,,), soit B, = (11, ..., Tp_2), qui est
encore isomorphe & &,,_1. Soit X un point de ’épine de PA(W,,) fixé par B,,. On note
X un représentant de X et X le graphe sous-jacent a X.

(1) Soit X est une F-étoile, soit X posséde n feuilles et n 4+ 1 sommets.

En effet, une démonstration identique a celle de la proposition (1) montre que
le morphisme B, — Autg, (X) est injectif, et que le nombre de feuilles de X est soit
égal a n — 1, soit égal a n. S’il est égal & n — 1, une démonstration identique a celle de
la proposition (1) montre que X posséde n sommets et n — 1 feuilles. Comme
le groupe Autg,(X) contient un sous-groupe isomorphe a &,,_; et que X possede n — 1
feuilles, on voit que, nécessairement, le point base de X est son centre. Donc X’ est une
F-étoile. Si le nombre de feuilles de X est égal & n, une démonstration identique & celle
de la proposition (1) montre que X possede n + 1 sommets et n feuilles.

(2) Le groupe B, fize une unique F-étoile.

En effet, il fixe une F-étoile car B,, est un sous-groupe de U, = (Tl s Tn—2,01n)
et ce dernier est isomorphe & F"~! x &,,_;1. De ce fait, la remarque (4) permet de
conclure. Nous appellerons X 'unique F-étoile fixée par Up.

Pour 'unicité, soit ) une autre F-étoile fixée par én Puisque I’ensemble des F-
étoiles dans I’épine de PA(W),) n’est pas connexe, tout chemin continu entre X’ et ) et
contenu dans ’ensemble des points fixes de En pour l'action de Aut(W,,) sur ’épine de
PA(W,,) passe par un point Z ayant un représentant Z de graphe sous-jacent possédant
n feuilles et n 4 1 sommets. Soit Z le graphe sous-jacent & Z, et v1,...,v, les feuilles de
Z. Une démonstration identique & celle de la premiere affirmation de la démonstration
de la proposition (2) montre que I'image réciproque par le marquage de Z des
générateurs des groupes associés aux sommets vi,...,v, est respectivement ou bien
Ti1,...,Tp_1,Ty OUbIEN TpT1Typ, ..., LTy 1Tn, Ty. De plus, la description de En montre
que le point base de Z est contenu dans I’aréte reliant le centre de Z et v,,.

Soit maintenant Z’ un sommet de ’épine de PA(W,,) fixé par §n, adjacent a Z et
qui n’est pas une F-étoile. Puisque Z’ posseéde n feuilles et n + 1 sommets par le premier
point de la remarque, un représentant Z’ de Z’ est obtenu & partir de Z en déplacant le
point base dans I’aréte reliant le centre de Z et v,. De ce fait, I'image réciproque par
le marquage des générateurs des groupes associés aux feuilles de 7' sont les mémes que
pour Z.

Donc, pour conclure sur I'unicité de la F-étoile fixée par En, il suffit d’étudier les
F-étoiles fixées par B, est adjacente & Z. Soit )’ une F-étoile adjacente & Z. Notons
Y’ un représentant de )’ et Y le graphe sous-jacent & Y. Il existe une aréte e de Z
telle que le graphe de groupes Z’ obtenu en contractant e soit dans ). Les antécédents
par le marquage de Y’ des générateurs des groupes de sommets sont donc, & conjugaison
pres, xi,...,Ty. Ainsi, puisque B, permute transitivement les sommets de tout point
de ’épine de PA(W,,) dont I'image réciproque par le marquage des groupes associés sont
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{(x1),...,{xp_1), on voit que I'unique F-étoile adjacente & Z fixée par B, est X. Donc,
B, fixe une unique F-étoile dans I’épine de PA(W,,).

2.4 Rigidité des automorphismes extérieurs d’un groupe de Cox-
eter universel

Le but de cette partie est de démontrer le théoreme Nous distinguons différents
cas, selon la valeur de n. Soit a € Aut(Out(WW,,)).

2.4.1 Démonstration dans lecasn>5et n #6

Soit A la {0}-étoile fixée par le sous-groupe fini A, de Out(W,) (l'unicité provient
de la proposition . Alors, d’apres la proposition a(A;) est le stabilisateur
d’une unique {0}-étoile Xy. Or Out(W,) agit transitivement sur ’ensemble des {0}-
étoiles, donc il existe 1 € Out(W,,) tel que ¥(X;) = Xs. Posons o = ad(v)) o a, alors
ap(Ay) = ad(v) o a(Ay) = Ay,

Puisque a4, est un automorphisme de A,,, que 4, est isomorphe & &,, et que, pour
n # 6, le groupe Out(S,,) est trivial, quitte a changer o dans sa classe d’automorphisme
extérieur, on peut supposer que g4, = ida,.

Maintenant, étant donné que B,, € U,, nous avons «y(By,) = B,, € ayg(Uy,). Or par
la proposition (2), By, fixe une unique F-étoile. Par ailleurs, le stabilisateur de
cette F-étoile est U,. Donc, puisque ag(U,) est également le stabilisateur d’une unique
F-étoile par la proposition [2.3.7] (4), on obtient que ag(Uy,) = U,.

Or U, est isomorphe au produit semi-direct F"~2 x B,,, et B,, agit sur F"~?2 (vu
comme le quotient de F™ ! par son sous-groupe diagonal F) par permutation des fac-
teurs. Soit o € B,. On note fix(c) l'ensemble des points fixes de o agissant par con-
jugaison dans F™ 2. Puisque, pour tout o € B,, ag(c) = o, on voit que, pour tout
o € {0} x B, et pour tout g € F" 2 x {1}, ag(cgo ') = cap(g)o ! ; en particulier, si
g € fix(0), alors ay(g) € fix(o).

Soit maintenant o = (2...n — 1) € B,. Alors fix(c) = {0, [01,,]}. Donc, puisque
ao(lo1,n]) € fix(o), on a ag([o1,n]) = [01,n]. De méme, pour tout i € {1,...,n — 1},
ao([oin]) = [0in]- Alnsi, ag|pn-2 = idpn-2. Puisque, par ailleurs, ap est I'identité sur
B, on voit que |y, = idy,. De ce fait, étant donné que agls, = ida, et que A, et
U,, engendrent Out(W,,) par la proposition , on voit que g = id et le résultat s’en
déduit.

2.4.2 Démonstration dans le cas n = 6

Dans le cas ou n = 6, la proposition s’appliquant encore, soit g un représentant
de la classe d’automorphismes extérieurs de a tel que ap(A,) = A,. Supposons que
la classe d’automorphisme extérieur de ap|a, soit non triviale. Alors une description
explicite d’'un automorphisme engendrant 1'unique classe d’automorphismes extérieurs
de &g (cf. [Mil]) donne, en identifiant A, et &g par 'unique isomorphisme envoyant 7;
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sur la permutation (i ¢ + 1) pour 1 < i < 5, que

ap(Bn) = ([(12)(34)(56)],[(16)(24)(35)], [(14)(23)(56)], [(16)(25)(34)])-

Ainsi, ap(By,) agit transitivement sur les classes de conjugaison de {x1,...,x,}. Alors,
puisque ag(By) € ag(Uy,), par le quatrieme point de la proposition ap(By) fixe
une F-étoile X. Soit X un représentant de X. Par la proposition [2:2.8] le noyau du
morphisme naturel ag(B;,) — Aut,,(X) est isomorphe & F""2 A ag(By,).

Or F"2 n ap(B,) est un 2-sous-groupe distingué de ag(B,). Comme ag(B,,) est
isomorphe & &, 1 et que n = 6, nous avons F" 2 n ag(B,) = {1}. Donc ag(B,)
est isomorphe & Aut,, (X) car Auty(X) est isomorphe & &,,_1. Soient maintenant X
le graphe sous-jacent & X, vi,...,v,_1 les feuilles de X, et v, le centre de X. Pour
je{l,...,n}, soit (y;) I'image réciproque par le marquage du groupe associé a v;. Le
groupe Autg,(X), et donc ag(B,), s’identifie a 'ensemble des bijections de {v1,...,v,}
fixant v,,. Or, par la proposition il existe 7w € Bij({z1,...,x,}) telle que pour tout
i€ {l,...,n}, il existe z; € W,, vérifiant :

_ -1
Yi = ZiTr(i)%; -

Ceci contredit le fait que ap(B,,) s’identifie & ’ensemble des bijections de {vi,...,v,}
fixant v, car le groupe ag(B,,) agit transitivement sur I’ensemble des classes de conju-
gaison de {z1,...,x,}. Donc la classe d’automorphisme extérieur de ag|a, est triviale
et on conclut comme dans 2.4.1]

2.4.3 Démonstration dans le cas n = 4

Dans le cas oll n = 4, la proposition et le quatrieme point de la proposition [2.3.7 ne
sont plus valables car alors tout sous-groupe de Out(W,,) isomorphe & S, est isomorphe
au produit semi-direct V' x &3, ot V est le groupe de Klein. Nous avons cependant la
proposition suivante.

Proposition 2.4.1. Soient n = 4 et G un sous-groupe de Out(W,,) isomorphe au produit
semi-direct F"2 x &,,_1. Alors G est soit le stabilisateur d’une unique F-étoile, soit le
stabilisateur d’une unique {0}-étoile. Les deuz cas sont mutuellement exclusifs.

Démonstration. Soient X un point de I’épine de PO(W,,) fixé par G (qui existe par la
proposition , et X un représentant de X. Soient X le graphe sous-jacent & X et
L ’ensemble des feuilles de X. La proposition se démontre de maniere identique
a la proposition m (3), & ceci pres que I'on ne peut pas exclure le cas ott X possede
n feuilles. 1l faut alors distinguer le cas ou |L| = n — 1 et |[L| = n. Si X possede n
feuilles, le lemme donne que X est une {0}-étoile. Si X possede n — 1 feuilles, alors
la proposition (3) donne que X est une F-étoile.

Montrons maintenant que G ne peut fixer a la fois une {0}-étoile et une F-étoile. Par
la proposition m (1), G est le stabilisateur de tout point fixé par G.
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Supposons que G soit le stabilisateur d'une {0}-étoile X'. Soient X un représentant

de X, et X le graphe sous-jacent & X. Soient vi,...,v, les sommets de X dont les
groupes associés sont non triviaux et, pour tout i € {1,...,n}, soit y; 'image réciproque
par le marquage du générateur du groupe associé a v;. Alors le groupe G est le groupe
engendré par les permutations de {y1,...,Yyn}.

Soit Y une F-étoile dans ’épine de PO(W,,) fixée par G. Par le corollaire [2.2.6
Fixg, (G) est connexe. Il existe donc un chemin continu dans Fixg, (G) de X vers ).
Les sommets par lesquels passe ce chemin sont uniquement des {0}-étoiles et des F-
étoiles au vu des points stabilisés par GG. Or le groupe engendré par les permutations de
{y1,...,yn} ne fixe aucune F-étoile adjacente & X. En effet, le groupe G contiendrait
un élément permutant le centre de la F-étoile avec une feuille, ce qui n’est pas possible.
Donc G ne fixe aucune F-étoile.

Enfin, 'unicité du point fixe provient du fait que I’ensemble des {0}-étoiles et I’ensem-
ble des F-étoiles sont discrets dans 1’épine de PO(W),,) alors que I’ensemble des points
fixes de G est connexe par le corollaire [2.2.6 O

Nous pouvons maintenant montrer le théoreme dans le cas n = 4.

Soit a € Aut(Out(W,,)). Soit & la {0}-étoile fixée par le sous-groupe fini A, ~ &4
de Out(W,,). Par la proposition a(A,,) fixe soit une {0}-étoile, soit une F-étoile.

Si a(Ay,) fixe une {0}-étoile, alors la méme démonstration que pour le cas o n # 6
dans la partie montre que quitte a changer o dans sa classe d’automorphisme
extérieurs, nous avons a4, = ida,. Par la proposition le groupe U,, ~ F? x G3
fixe soit une {0}-étoile, soit une F-étoile. Etant donné que B, < U, fixe une unique
{0}-étoile p et une unique F-étoile p’ et que «|p, = idp,, on voit que a(U,) est soit le
stabilisateur de p, soit le stabilisateur de p’. Cependant, puisque le stabilisateur de p est
A, et que ala, = idy,, on voit que a(Uy,) est le stabilisateur de p’. Donc a(Uy,) = Uy,. Le
reste de la démonstration est alors identique & celle du cas ot n # 6 dans la partie[2.4.1

Supposons que «(A,) fixe une unique F-étoile. Construisons & présent un représen-
tant de la classe d’automorphismes extérieurs de a. Puisque Out(W),,) agit transitivement
sur les F-étoiles, quitte a changer o dans sa classe d’automorphismes extérieurs, on peut
supposer que «(Ay) = U,. Soit V' le groupe de Klein contenu dans A,. Alors a(V) est
I'unique 2-sous-groupe distingué non trivial de U,. Donc

(V) ={[o14],[024]; [034]) -

Ainsi, puisque B, "V = {id}, on voit que a(B,) na(V) = {id}. Par ailleurs, 4,, = B,V
donc U, = a(B,)a(V). De ce fait, a(B,) est un sous-groupe de U, d’ordre 6. Or,
il existe une unique classe de conjugaison de sous-groupes d’ordre 6 dans U,. Donc,
quitte a changer a dans sa classe d’automorphismes extérieurs, on peut supposer que
a(Bp) = B,. De méme, puisque B,, est isomorphe a &3, quitte & changer o dans sa
classe d’automorphisme extérieur, on peut supposer que «|p, = idp,.

Déterminons & présent l'image de [73] et [03.4] par a. Puisque [71][73] € V, on voit
que a([m1][m3]) € {[o14], [02,4], [034]}. Or, [11] commute avec [r1][r3], donc a([][73])
doit également commuter avec [11]. De ce fait, a([11][73]) = [03.4] et a([73]) = [71][o3,4]-
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Déterminons l'image de [o34] par a. Puisque a(B;) = By, le groupe a(Uy,) est le
stabilisateur d’un point fixe de B,,. Par la proposition B,, fixe uniquement deux
sommets de 1'épine de PO(W),,) : la {0}-étoile stabilisée par A, et la F-étoile stabilisée
par U,. Comme «(A,) = Uy, on a nécessairement a(U,) = A,. Donc o([o34]) € V.
Puisque [o3 4] commute avec [(], on obtient que o([o34]) = [71][73].

Donc « se restreint en l'identité sur B,,, envoie [13] sur [71][o34] et o3 4] sur [71][73].
Comme B, [13] et [03 4] engendrent Out(Wy), ceci montre qu'un tel automorphisme «,
g’il existe, est unique modulo automorphisme intérieur.

Réciproquement, montrons que 'application o de By, u {[73], [03,4]} dans Out(Wy)
définie par a|p, = idp,, a([m]) = [11][lo3,4] et a(|o34]) = [1][73] s’étend de maniere
unique en un morphisme de groupes de Out(Wy). Comme [71] commute avec [73] et
[03.4], ceci montre que « est involutif, donc un automorphisme de Out(Wy). Sa classe
dans Out(Out(W,)) est non triviale (car son action sur ’épine de PO(Wy) est non
triviale), ce qui montre le théoréeme lorsque n = 4.

Pour simplifier les notations, nous notons [7 j] la classe d’automorphismes extérieurs
de la transposition permutant x; et z;. Notons

S={lijlI1<ij<4}ufloi]|1<i#j<4},

qui est une partie génératrice de Out(Wy) par la proposition Un petit calcul
élémentaire montre que, si ¢ = 1,2, alors

[i 4] = [ 3][3 4][7 3], [0,4] = [ 3][3,4][7 3],

a([i 3D)a([3 4Dal[i 3)) = [j Kloia] et a([i 3Da(os.aa(i 3]) = [j ki 4],

ou {j,k} = {1,2,3} — {¢}. Considérons l'application a de S dans Out(Ws) étendant
asur S n (B, v {[34],[034]}) et telle que, sii=1,2,

a([i 4]) = [j klloial et a[oia]) = [ K[ 4],

ou {j,k} = {1,2,3} — {i}. Des calculs élémentaires pour lesquels nous renvoyons a
I’appendice montrent que cette application préserve, quand n = 4, la présentation
de Out(W,,) donnée par [Gil, Theorem 2.20], ce qui conclut.

2.4.4 Démonstration de la rigidité de Aut(1,)

Nous démontrons & présent le théoreme Soient n = 4 et a € Aut(Aut(W,,)). Soient
Ay ={T1,... 1), By ={71,...,Th—2) et Uy, = (71,...,Th—2,01,). En utilisant les

remarques (4) et |2.3.11] (2), et en effectuant une démonstration identique a
celle du théoreme dans les cas ou n = 5, on voit que, quitte a changer a dans sa

classe d’automorphismes extérieurs, «| 5 =id; et que a(Uy) = U,.
n n

Or U, est isomorphe & F"~! x B,,. Soit o € B,,. On note fix(c') Pensemble des points
fixes de o agissant par conjugaison dans F 1. On voit que pour tout o € {0} x B, et
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1

pour tout g € F" 1 x {1}, a(cgo™!) = oca(g)o™! ; en particulier, si g € fix(c), alors

a(g) € fix(o).

n—1
Soit maintenant o = (2...n — 1) € By. Alors fix(o) = {0,015, [] oin, [ gin}-
i#=1ln =1
n—1 n—1
Donc a(o1,) € {o1n, || Gin, ] 0in}. Comme || 0, est 'unique élément non trivial
i#1,n i=1 i=1
~ n—1
dans le centre de Uy, on voit que a(o1,) # || din.
i—1
Supposons par I’absurde que a(o1,,) = [[ 0in. Pourje {1,...,n—1}, notons (1 j)
i#=1n
la transposition de én permutant xq et 2;. Alors, on voit que, pour tout j € {1,...,n—1},
a(ojn) = a((1j)orn(lj) = ] oin.

i#Ej,m
Un calcul immédiat montre alors que, pour tout j # k,n, et k < n,

aong) = a((j W)ora(in) = [ ois.

i,k

Or 012034 = 034012, alors que

a(or2)a(oza)(z1) = || oig || 0ia(x1) = zozszexiz22a2 €6 qUE
i#12 | i#34

a(oza)afor2)(z1) = [] oia [] oi2(21) = vamr24.
i£34  i£l2

Donc a(o12)a(os4) # a(oz4)a(or2). Ceci contredit le fait que a est un morphisme

de groupes. Ainsi, a(o1,,) = o01,,. Par la proposition nous avons « = id. Ceci
conclut la démonstration du théoreme 2.1.2

2.5 Présentation du groupe Out(Wy)

Soit n = 4. Pour simplifier les notations, nous notons [i j| la classe d’automorphismes
extérieurs de la transposition permutant x; et x;. Nous rappelons que I'application
ensembliste a: By, U {[13], [03.4]} — Out(W,,) est définie par :

a|B = idBn ;
a([3 4]) = [1 2][o3,4] ;
of[osa]) = [1 2][3 4].

Nous montrons dans cette appendice que 'application a s’étend de maniere unique
en un morphisme de groupes de Out(W,) dans lui-méme. Nous montrons pour cela
qu’il préserve I’ensemble des relations d’une présentation de Out(Wy). La présentation
suivante est due a Gilbert.
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Proposition 2.5.1. [Gil, Theorem 2.20] Soit n un entier plus grand que 2. Une présen-
tation de Out(W,,) est donnée par :

(1) la partie génératrice S constituée de [’ensemble des permutations [i j| pour les
entiers distincts i,j € {1,...,n} ainsi que l’ensemble des éléments [o; ;] pour les
entiers distincts 1,5 € {1,...,n} ;

(2) les relations suivantes :

(a) pour tout i€ {1,...,n}, [[; . =[oji]l =1;

(b) pour tous les i,j,k,L € {1,...,n} aveci # j et k # {, si on pose T = (i j),
alors [i j][k €] = [r(k) 7(O)][i j] ;

(¢) pourtoutj e {1,...,n}, pourtouslesi ke {1,...,n}={j} distincts, [0; ;][ok ;] =
[ok,1lois] 5

(d) pour tous les i,j € {1,...,n} distincts, 05 ]|[0i;] =1 ;

(e) pourtouslesi,j, k,l e {l,...,n} deux a deux distincts, |0; j||ok ] = ok ellois] ;

(f) pour tous les i,j,k, 0 € {1,...,n}, tels que k # £, si 7 = (i j), [i jlloke] =
[0 (k) r(0)]12 ] 5

(g9) pour tous les i,j,k € {1,...,n} deux a deuzx distincts, [0;;][oik][ojk] =

lojklloikllol-

Nous remarquons que, dans le cas oit n = 4, la relation (g) se déduit des relations

(@), (d) et (e).

Proposition 2.5.2. L’application o se prolonge de maniére unique en un morphisme de
groupes de Out(Wy) dans lui-méme.

Démonstration. Nous définissons tout d’abord une application prolongeant « sur la
partie génératrice S de Out(W,) définie dans la proposition Un petit calcul
élémentaire montre que, si ¢ = 1,2, [i 4] = [i 3][3 4][¢ 3], [i4] = [i 3][o34][ 3],
a([i 3))a([3 4])ed[z 3]) = [J kllosal, alli 3De[osa])a([i 3]) = [j k][i 4], ou {j,k} =
{1,2,3} — {i}.

Nous considérons & présent ’application & de S dans Out(W}) étendant o sur S n
(Bru{[34],]03.4]}) et telle que, sii = 1,2, &([i 4]) = [j k]loial, a([oi4]) = [ k][ 4], ot
{j,k} = {1,2,3}—{i} et, sii et j sont distincts et si j # 4, a([0;]) = [0;4][¢ j1[k €][04],
ou {k, 0} ={1,2,3,4} — {4, j}.

Vérifions maintenant que & préserve la présentation de Aut(W,,). Ceci montrera que
& se prolonge en un morphisme de groupes de Out(W,) dans lui-méme. De plus, étant
donné que B U {[3 4], [03 4]} est une partie génératrice de Out(Wy) (cf. [Miih, Theorem
B]), au vu de la définition de &, ceci conclura la démonstration de la proposition. Nous
écrivons pour chaque cas la relation vérifiée en préalable a la démonstration.

(1) Pour tout i, pour tous les j, k,¢ € {1,2,3,4}—{i} deuz a deuz distincts, [0} ][0k q][o0i] =
1.
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a([ora])a([oz,4])a([os4]) = [2 3][1 4][1 3][2 4][1 2][3 4] = 1.
Sij#4,etsiik,le{l,2,3,4} —{j} sont deux a deux distincts,

a([oi D a([ow1)a([oe 1) [0.4][ 51 [k O)oj.alloja]ld K]li €lojallosalli i k]loj.a]
lojalli g11K €115 kIl 415 Eli B]lojal = [ojalloja] = 1.

(2) Pour tous les i, j, k, L vérifiant i # j et k # £, si on pose o = (i j), alors [i j]|[k (] =
[o(k) o (O)][i 1.

Puisque & est l'identité sur B, cette relation est vérifiée si i, 7, k, £ € {1,2,3}. Véri-
fions les autres cas. Soient ¢, j € {1, 2,3} distincts et k € {1,2,3} — {7, j}.

a([e4l)a([ 4]) =[5 Klloialli Kl[oja] =[5 4[5 Kl[ow.alloa]
= [jdll7 klloial = a([5 iD)a([i 4]).

Maintenant, si i, j, k € {1,2, 3} sont deux a deux distincts,

a(lé jDa(k 4]) = [i jlli jllowa] = [owa] = a([k 4])a([i j]).
(3) Pour tout j, pour tous les i,k € {1,2,3,4} — {j} distincts, nous avons |o; ;|[ok ;] =
[ok31[o4.4]-

On note ¢ I’élément distinct de 4, j et k.
Supposons que j # 4. Alors

A[oiallon;]) = [osalls il[k Q5 K][i £][o,4]
= [oj4lld Ali klloja] = a([oe;])
= A([oxs])a([oi,])-

Dans le cas ol j = 4,

a([oial)a([onal) = [k A A][i ATk 4] = [i [k 4[€ K][i 4] = a([ox aDa([oi4])-

(4) Pour tout i # j, nous avons [o; ;][oi ;] = 1.

On note £ et k les deux éléments distincts de i et j.
Supposons que j # 4. Alors

a([oiDa(loig]) = lojalli dlk Al7 d[k Aloja] = 1.

Si j =4, alors

a([oial)a([oial) = [k A 4][k i 4] = 1.
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(5) Sii,j,k,l sont deux & deux distincts, alors [0 j||ok ] = [ok.el|0ij]-

Nous traitons tout d’abord le cas ou j = 4 ou £ = 4. Par symétrie, nous pouvons
supposer que j = 4.

a([oia])a([ok.e])

[k A1[i 4][ocal[k €1[i 4][oea]
[k Lol [k £1[i 4][oe][3 4]
[ok,i] [k €1[i ][0k ][k €][i 4]
[oallowilloeallk €[i 4[ocallowd[oeallk £][i 4]
[o0allk Ulovilloralloeilloralli 4l[ocal[k €][i 4]
[o0a][k £1[i Al[oe ][k [0 4] = a([ok,e])a([o4,4])-

Nous effectuons maintenant le cas ou ¢ = 4 ou k = 4. Par symétrie, nous pouvons

supposer ¢ = 4.

a([oa])a([ok,e])

A([og,e])a([o4,5])

(054107 41k €[ojal[oeal[k €[5 4][oe.4]
(054115 41[k €[ 4]l £][ 4][oea]
[oj4]o¢][o¢4] 5

= [ovalli 41k Olorallojallk 1[5 4][0j4]
= [ovalli 4l[k [ok.allk €[5 4][0ja]

= [ovalloe,][oj4]

= [094][044][014][ illoeallojalloeal
= |ojalloralloe;llo 4][04,4]

= [oj4lloe;lloea] = a[oa])a([ok.e])-

(6) Pour tous les i, j, k, £ tels que k # £, si T = (i j), alors [i jlloke] = [074)+0)][i J]-

On note a et b les éléments vérifiant {a, b} = {1,2,3,4} — {k, ¢}.
Nous supposons tout d’abord que 7, j € {1,2,3}. Supposons également que ¢ # 4. Si
{i,j} n{k, 0} = @, alors {a,b} = {i,j} et 7(k) = k et 7(£) = £. Donc

a([i jha(low.e)

Si{i,j} n{k, ¢} =

a([i jha(leoie)

Si {i,j}  {k 0} =

7(¢) = j. Donc

a([z jha(low.ql)

i

i jlloi.allk ill5 bl[oia] =

iloeallk i llocal = [oeallk Ali Glloealli 51 = a((or.))a([i 71)-
{k} = {3}, alors {a,b} = {j,4} et 7(k) = j et 7(¢) = £. Donc
[i Allocalli 1[5 4lloeal =

{¢} = {i}, alors {a,b} = {j,b} avec b ¢ {i,k} et 7(k) = k et

[o0all5 A1 4llovalli 51 = a(loj)a((i 51)-
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Si{i, 5} n{k, £} = {i,j}, alors {i,j} n {a,b} = @. De plus, puisque ¢ et j jouent un
role symétrique, nous pouvons supposer que 7(k) = j et 7(¢) =i. Donc

a([i jha(lois) = [ jllojalli jlla bllojal = [oialli 7lla blloialli j] = a([oz)a((i j1)-

Supposons maintenant que ¢ = 4.
Si {i,j} n {k, ¢} = @, alors {a,b} = {i,j} et 7(k) = k et 7(£) = £. Donc

a([i jha[ok.a])

= [0 711 511k 4] = [i J1[k 41[i 5] = a([ox.al)a([i 71)-

Si{i,5} n{k, £} = {k} = {i}, alors {a,b} = {j,b}, avec b # i et b # 4 et 7(k) = j et

7(¢) = £. Donc
a([i ja([oial)

= [i j][5 b][i 4] = [@ b][5 4][7 5] = &([oj.a])([i 5])-

Supposons maintenant que j = 4. Supposons également que ¢ # 4. Puisque j = 4,
le cas ou £ = 4 est symétrique au cas ou k = 4.
Si {i,4} n {k, ¢} = @, alors {a,b} = {i,4} et 7(k) = k et 7(£) = ¢. Donc

a([i 4))a([ox.e])

= [k [oiallocallk €][i 4][oea]

= [oiallowal[k O[k £[i 4][oe.4]

= [ovallk Oi 4][oral[k €]

= [ovallk i 4[oiallokalloial[k €] =

= [ovallk O]i 4][oralloial[k €] = a([ok)A([i 4]).

Si {i,4} n {k, £} = {k} = {i}, alors {a,b} = {a,4}, aveca #iet a # ( et T(k) =4 et

7(¢) = ¢. Donc

a([i 4)a(loiel)

Si {i,4}  {k. 0} = {k} =

7(¢) = £. Donc

a([i 4])a([oae)

Si {i,4} n {k, ¢} = {£} = {i}, alors {a,

7(¢) = 4. Donc

la l[osallocalli £]la 4][o¢.4]

[0ia]loa.a][a A][i f][a 4][or4]

localla €]]i €][a 4][or4]

[o04][i a][¢ 4][oa.4][a £]

localli alll 4][oia]loaa][oia]la £]

[oca]li alll 4][oealloia]la £] = ([oa)a([i 4])-

{4}, alors {a,b} = {a,i}, avec a #4d et a # (et T(k) =i et

= la f)[oialloeall4 {]a i][or.4]
= [oi4][oa]la ][4 (][a i][or4]
= |ova]la €[4 {][a i][og.4]
= [ova4][4 a][¢ i][oa,4][a €]
= |ova][4 a][li][oia][oa4]loia]]a {]
= [ov4][4 allld][ovalloialla €] = a([o.c])a([i 4]).
b} ={a,4}, aveca # ket a # i et 7(k) =k et
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a([i 4))a(lon]) = [a klloialloiallk il[a 4][0i.4]
= lak][ki]la4][oid]
= [ad][k 4][a k]loia] = a([ora])a([i 4]).

Si{i,4} n {k, £} = {i,4}, alors k = 4 et {a,b} N {i,4} = D et 7(k) = i et 7(¢) = 4.
Donc

a([i 4])a([oaql)

[a b][oial[o4.4][4 il[a b][oi.4]
[a b][4 i][a b][ 4]
= [44]lab][a b]loi 4] = a([oial)a([i 4]).

Donc & préserve toutes les relations données dans la proposition 2.5.1} De ce fait,

& se prolonge en un morphisme de groupes de Out(Wy) dans lui-méme. Ceci conclut la
démonstration. O
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Chapitre 3

The symmetries of the Outer space of
a universal Coxeter group

3.1 Introduction

Let n be an integer greater than 1. Let F' = 7Z/27 be a cyclic group of order 2 and
W, = %, F be a universal Coxeter group, which is a free product of n copies of F.
The geometric study of automorphisms groups of free products is currently in strong
expansion, see for instance [MM| [GuLll [Pig, HaM3l, (Gup2, [GuH2, [DL]. This paper
proves a major geometric rigidity result of the outer automorphism group Out(W,,) of
Wh.

The study of Out(W,,) benefits from analogies with algebraic groups, with Out(Fy),
the outer automorphism group of a free group of rank N, and with the mapping class
group of a connected compact surface. As usual in geometric group theory, the under-
standing of the group Out(W,,) is related to the construction of geometric spaces on
which it acts nicely (properly or cocompactly). Such constructions appear in the study
of Out(Fy ), which involves the study of its action on the spine of the Outer space intro-
duced by Culler and Vogtmann in [CV]. Similarly, the study of the mapping class group
of a connected compact surface involves the study of its action on the Teichmiiller space
and on the curve graph of the surface, while the study of algebraic groups implies the
study of their actions on buildings.

The spaces introduced in these cases are rigid geometric models in the following sense:
the symmetries of these spaces are induced by elements of the group itself. Indeed,
for algebraic groups, Tits showed that, if the rank of a spherical building associated
with a simple connected algebraic group is at least 2, then the full group of simplicial
automorphisms of the building is isomorphic to the algebraic group itself ([Tit2]). In the
context of a connected orientable compact surface of genus at least 3, Royden proved that
the group of isometries of the Teichmiiller space with respect to the Teichmiiller metric
coincides with the extended mapping class group of the surface (J[Roy]). Moreover, Ivanov
([Iva2, Theorem 1]) showed that the group of simplicial automorphisms of the graph of
curves is isomorphic to the extended mapping class group. In the context of Out(Fy),



Bridson and Vogtmann proved that, if N > 3, the group of simplicial automorphisms of
the spine of Outer space is isomorphic to Out(Fy) ([BV2]).

In the case of Out(W,,), spaces on which Out(W,,) acts properly or cocompactly in-
clude the McCullough-Miller space [MM] or PO(W,,), the outer space of W, introduced
by Guirardel and Levitt in [GuL1]. These two spaces are Out(W),,)-equivariantly homo-
topy equivalent (see [MM, Theorem 8.5.]). Moreover, it was proved by Piggott ([Pig]
Theorem 1.1]) that, for n > 4, the McCullough-Miller space is a rigid geometric model
for Out(W,,): the group of simplicial automorphisms of the McMullough-Miller space is
isomorphic to Out(W,,).

In this article, we study the action of Out(W,,) on a simplicial flag complex on which
PO(W,,) retracts Out(W,)-equivariantly, called the spine of PO(W,,) and denoted by
K,,. Vertices of K,, are homothety classes of marked graphs of groups whose fundamental
group is isomorphic to W,,. Two homothety classes X and Y of marked graphs of groups
are adjacent in K, if they have representatives X and Y such that one can obtain Y
from X by collapsing a forest in the underlying graph of X, or conversely. The group
Out(W,,) naturally acts on K, by precomposing the marking. The aim of this article is
to prove that K, is a rigid geometric model for Out(W,,) in the following sense. Here
we denote by Aut(K,) the group of simplicial automorphisms of K.

Theorem 3.1.1. Let n = 4. The natural homomorphism
Out(W,,) — Aut(K,)
18 an isomorphism.

Theorem [3.1.1] gives a complete classification of the simplicial automorphisms of
K,, for every n. Indeed, the graph Ky is reduced to a point and K3 is a tree (in
fact isomorphic to the spine of the Outer space of a nonabelian free group of rank
2, see Proposition . The question of the study of simplicial automorphisms of
K, is first motivated by the aforementioned examples, but also by algebraic results on
Out(W,,). Indeed, for instance in the case of the mapping class group of a connected
orientable compact surface of genus at least 3, the fact that the curve complex is a rigid
geometric model for the extended mapping class group is used by Ivanov in order to prove
that any automorphism of the extended mapping class group is in fact a conjugation
(see [Iva2, Theorem 2]). Similarly, the fact that the spine of Outer space is a rigid
geometric model for Out(Fy) with N > 3 is related to the fact that any automorphism
of Out(Fy) is a conjugation ([BVI]). As, for n > 4, any automorphism of Out(W,,)
is a conjugation (see [Guell Théoreme 1.1]) and as the proof relies on the study of the
action of Out(W,,) on K,, it was natural to expect that K, is a rigid geometric model
for Out(W,,). Even though the McCullough-Miller space and PO(W,,) are Out(W,)-
equivariantly homotopy equivalent, the author does not know how to deduce the rigidity
of K, out of the rigidity of the McCullough-Muller space. Indeed, there is no canonical
graph isomorphism between K,, and the McCullough-Miller space, and corresponding
vertices in the McCullough-Miller space and in K, do not share the same properties of
minimality. For instance the negative link of a {0}-star (see Sections and for
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precise definitions) is nontrivial in K,, whereas it is trivial in the McCullough-Miller
space.

The proof of Theorem [3.1.1]relies on the study of the action of Out(W,,) on a subgraph
of K,, called the graph of {0}-stars and F-stars and denoted by L,. Vertices of L,, are
{0}-stars and F-stars (see Section and Figure . Two vertices of L,, are adjacent
if and only if they are adjacent in K,,. We first prove that L, is a rigid geometric model
for W,, (see Theorem . This relies on studying systoles of L,, that is, embedded
cycles of minimal length. For this, we introduce (see Section a new complexity
associated with an edge of L,, and a relative complexity associated with pairs of {0}-
stars. For n = 3, the same study is not possible as the {0}-stars are no longer the vertices
with minimal degree in L,,. We do not know whether Theorem holds for n = 3.

The rest of the proof consists in showing that there exists a homomorphism from
Aut(K,) to Aut(L,) defined by restriction which turns out to be injective. We note
that the characterization of the vertices of L, in K, is only based on the study of
the possible decompositions of the link of the vertices of K,. This differs from the
proof of the similar result by Bridson and Vogtmann in the case of Out(F,) since they
used homological arguments in order to characterize some vertices of the spine of Outer
space. Another major difference is that the strictly local rigidity properties of L,, are
much weaker than the ones of the spine of Outer space, and we need to explore the
combinatorial balls of radius 4 in L,, in order to acquire a sufficient rigidity. Note that
in the case of algebraic groups, Tits only needed to explore the combinatorial balls of
radius 2.

In Section we study the simplicial completion of K,, denoted by K,. The
simplicial complex K, is also known as the free splitting complex of W, (see [AS, HaM?2]
and Section . This complex has an analogue in the case of a free group of rank N,
called the free splitting complex of Fiy. It was proved by Aramayona and Souto that the
free splitting complex of Fly is also a rigid geometric model for Out(Fy) when N > 3
(see JAS| Theorem 1]). In Section we prove the following theorem:

Theorem 3.1.2. Let n = 4. The natural homomorphism
Out(W,,) — Aut(K,,)
s an isomorphism.

Theorem can be deduced from Theorem as follows. The spine K, has a
natural embedding into K,. We first show that any automorphism of K, preserves the
image of K,. This gives a homomorphism Aut(K,) — Aut(K,) and the main point,
using techniques of Scott-Swarup and Horbez-Wade, is to prove its injectivity. We then
conclude using Theorem (3.1.1
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3.2 Preliminaries

3.2.1 Background on the outer space of W,

Let n be an integer greater than 1. Let F' = 7Z/27 be a cyclic group of order 2 and
W, = %, F be the universal Coxeter group of order n. We recall the definition of the
outer space PO(W,,) introduced by Guirardel and Levitt in [GuLI]. A point in PO(W,,)
is a homothety class of metric graph of groups X whose fundamental group is W,
equipped with a group isomorphism p: W,, — m1(X) called a marking, which satisfies :

1) the underlying graph of X is a finite tree ;

2) every edge group is trivial ;

there are exactly n vertices whose associated group is isomorphic to F' ;

4) all the other vertices have trivial associated group ;

(

(2)
(3)
(4)
(5) if v is a vertex whose associated group is trivial, then deg(v) > 3.

Two metric graphs of groups (X, p) and (X', p') are in the same homothety class
if there exists a homothety f: X — X’ (meaning an application multiplying all edge
lengths by the same scalar) and such that f.op = p’. We denote by [X, p] the homothety
class of such a metric graph of groups (X, p). If the marking is implicit, we denote by
X the homothety class. The group Aut(W),,) acts by precomposing the marking. As, for
any « € Inn(W,,), and for any X € PO(W,,), we have a(X) = X, the action of Aut(W,,)
induces an action of Out(W,,).

The set PO(W),,) is equipped with a topology which we recall now. Suppose that
[X, p] e PO(W,,) and let (X, p) be the representative of [X, p] such that the sum of the
edge lengths is equal to 1. To (X, p) we associate a simplex by varying the lengths of
the edges, so that the sum of the edge lengths is still equal to 1. A homothety class
[X', p'] € PO(W),,) defines a codimension 1 face of the simplex associated with (X, p) if
we can obtain (X', p’) from (X, p) by contracting an edge of the underlying graph of X.
The weak topology is then defined in the following way: a set is open if and only if its
intersection with every open simplex is open.

We now recall the definition of a deformation retract of PO(W,,) known as the spine
of PO(W,,) and denoted by K,. It is a flag complex whose vertices are the open simplices
associated with each homothety class [X, p] € PO(W,,). Two vertices corresponding to
two homothety classes [ X, p] and [ X, p’] are adjacent if [ X, p] defines a face of the sim-
plex associated with [X’, p'] and conversely. There is an embedding F': K, — PO(W,,)
whose image is the barycentric spine of PO(W,,). We will from then on identify K,, with

We now give a description of the stabilizer of a point in K, due to Levitt. If X € VK,
we denote by Stab(X’) the stabilizer of X under the action of Out(W,). Let X be
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a representative of X. We denote by Stab®(X) the subgroup of Stab(X) made of all
elements F' € Out(W,,) such that the automorphism induced by F' on X is the identity.
We write the next proposition in a more general context where the nontrivial vertex
groups are not necessarily isomorphic to F' (see Section .

Proposition 3.2.1. [Levil, Proposition 4.2] Let n > 4 and X € VK,,. Let X be a repre-
sentative of X and let vi,...,v be the vertices of X with nontrivial associated groups.
Forie{l,...,k}, let G; be the group associated with v;. Then Stab’(X) is isomorphic
to

[ 1680w Aut(Gy) |

where Aut(G;) acts on Gleelvi)—1 diagonally.

i

k
1

Remark 3.2.2. More generally, Proposition remains true for everyn = 3 and every
free splitting of W, (see the definitions at the beginning of Section [3.5).

3.2.2 The symmetries of K3

In this section, we describe the spine of PO(W,,) when n = 3. Let {z1,...,2z,} be a
standard generating set of W,,. Let ©: W,, — Z/27 be the homomorphism which sends,
for every i € {1,...,n}, the element z; to the nontrivial element of Z/27Z. By a result
of Miihlherr [Miih, Theorem A], the group B,, = ker(f) is a nonabelian free group of
rank n — 1 and, when n = 3, the group Bs is generated by a = z122 and b = x2x3. Let
¢ € Out(Bs3) be the outer class of the automorphism which sends a to a=* and b to b=,
Then ¢ belongs to the center of Out(B3) and has order 2. Let G = B3 x4 Z/27Z.

Lemma 3.2.3. The group G is isomorphic to Ws.

Proof. The group G is generated by (a, ¢), (1, ¢) and (b, ¢), and all these elements have
order 2. Hence there exists a surjective homomorphism ¥: W3 — G which sends z; to
(a,9), 2 to (1,¢) and x3 to (b,¢). We claim that ¥ is an isomorphism. Since Bs has
index 2 in W3 and since every nontrivial normal subgroup of Wj is infinite, it suffices
to show that ker(¥) n By = {1}. Note that z1z2 is sent by ¥ to (a,1) and z3zy is
sent by ¥ to (b,1). Hence the homomorphism V¥ restricts to a surjective homomorphism
U|p,: B3 — Bs. Since Bs is a nonabelian free group of rank 2, it is Hopfian. Hence
VU|p, is an isomorphism. This concludes the proof. O

Let C'V; be the Outer space of a nonabelian free group F5 of rank 2, that is the space
whose elements are the Fs-equivariant isometry classes of metric trees equipped with a
minimal, free action of Fs, where C'V5 is equipped with the weak topology as defined in
the case of PO(W,,). For a graph G, an edge e of G is separating if the graph G —e
has two connected components. The space C'Va Out(F»)-equivariantly retracts onto the
reduced Quter space CVy , where a point X in C'Vy is such that, for every representative
X of X, the quotient F»\X does not have a separating edge. As in the case of PO(W,,),
the space CVy Out(Fy)-equivariantly retracts onto the spine of the reduced outer space,
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denoted by KJ. It is the graph whose vertices are the Fy-equivariant homeomorphism
classes of simplicial trees X equipped with a minimal, free action of Fy such that F»\X
does not have a separating edge and there exists an edge between two equivalence classes
X and X’ if there exists X € X and X’ € X’ such that X collapses onto X’ or conversely.
The graph K} is isomorphic to a trivalent tree (see [CV), Section 1.4]). The group Out(F»)
acts on K by precomposition of the action. The element ¢ € Out(Bs) ~ Out(F») is in
the center of Out(Bs). Hence ¢ acts as the identity on K and, if X is a representative of
a vertex X of K}, the action of Bs on X extends to an action of G on X. By Lemmal[3.2.3]
the group G is isomorphic to Wj.

Lemma 3.2.4. Let X be a vertex of K} and let X be a representative of X. Then ¢ fizes
a unique vertexr in X.

Proof. Note that B3\X is either a rose or a theta graph. Let 7" be a maximal tree in
Bs3\X. Let ¢,d € B3 be such that the two edges in B3\ X are labeled by ¢ and d. Then
{c,d} is a free basis of Bs. Let ® be a representative of ¢ such that ®(c) = ¢! and
®(d) = d='. Then ® preserves the axes Ax(c) and Ax(d) of ¢ and d. Moreover, ® has
a unique fixed point z. in Ax(c) and a unique fixed point z4 in Ax(d). We claim that
z. = x4. Indeed, otherwise ® would fix pointwise the unique geodesic path 7 between
z. and 4. Note that the elements ¢ and d are chosen so that Ax(c) n Ax(d) # @. Thus
the path 7 is contained in Ax(c) u Ax(d). Since x. is the unique element in Ax(c) fixed
by ® and since x4 is the unique element in Ax(d) fixed by ®, we have z. = z4. Let y
be a point in X fixed by ®. We claim that y = x.. Indeed, as above, the element ®
fixes pointwise the geodesic path between z. and y. This path must contain an edge in
Ax(c) u Ax(d) since Ax(c) u Ax(d) covers a fundamental domain of X for the action of
Bs. Since z. is the unique point in Ax(c) u Ax(d) fixed by ®, we have x. = y. This
concludes the proof. O

Remark 3.2.5. Let X be an equivalence class of metric trees in CVo and let X be a
representative of X. Suppose that B3\X contains a separating edge. Then ¢ fizes an
edge in X, which corresponds to a lift of the separating edge of Bs\X .

Let X be a vertex of K and let X be a representative of X. By Lemma the
edge stabilizers of X for the action of G are trivial. Moreover, the vertex stabilizers are
either trivial or isomorphic to F'. Hence we have a natural simplicial map

0" Kj - Kj
which is Out(G)-equivariant.
Proposition 3.2.6. The natural application

0" K - Kj.

is an isomorphism.
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Proof. It suffices to construct an inverse for ©’. Let X be a vertex in K3 and let X
be a representative of X. The action of W3 on X restricts to an action of Bs on X.
Since the vertex stabilizers of X are trivial or isomorphic to F', the action of Bs on X
is free. Since Bj has index 2 in W3, the action of B3 on X is minimal. Moreover, by
Remark since X does not have an edge with nontrivial stabilizer for the action of
G, the quotient B3\X does not have a separating edge. Hence it induces a simplicial
map K3 — K which is the inverse of ©'. O

In particular, since the simplicial automorphism group of a trivalent tree is uncount-
able, the group Aut(K3) is not isomorphic to Out(W3).

3.2.3 The graph of {0}-stars and F'-stars.

In order to prove Theorem [3.1.1] we introduce a graph included in the spine K, called
the graph of {0}-stars and F-stars.

Definition 3.2.7. (1) A {0}-star is the equivalence class in K, of a metric graph of groups
whose underlying graph has n + 1 vertices and n leaves.

(2) A F-star is the equivalence class in K, of a metric graph of groups whose underlying
graph has n vertices and n — 1 leaves.

(3) The graph of {0}-stars and F-stars, denoted by L, is the full subgraph of K,, whose
vertices are exactly the {0}-stars and the F-stars. There is an edge between two vertices
of L, if and only if there is an edge between the corresponding vertices in K.

As Aut(W,,) acts on K, by precomposition of the action, the graph L,, is invariant
by Out(W5,).

(x1)
(x2) {we) (w1) (ws5)

{0} &

(x3) (x5) (x2) {4y
(z4) (x3)

Figure 3.1: A {0}-star (left) and an F-star (right).

Since any two {0}-stars are at distance at least 2 in K, the neighbors of a {0}-star
in L, are F'-stars. Conversely, since any two F'-stars are at distance at least 2 in K,,, the
neighbors of an F-star in L,, are {0}-stars. The number of neighbors in L, of a {0}-star is
equal to n. They correspond to collapsing exactly one edge of the underlying graph. The
number of neighbors in L,, of an F-star is equal to 2"~2. They correspond to blowing-up
the central vertex of the underlying graph while applying a partial conjugation by the
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generator of the preimage by the marking of the group associated with the center. As
Aut(W,,) acts transitively on the set of free bases of W,,, we see that Aut(W,,) acts
transitively on the set of {0}-stars. Thus, as partial conjugations and permutations
generate Aut(W,,) by [Mih, Theorem B], it follows that the graph L,, is connected.

(x1) (T6T176)

(z2) (x6) (1) (x5) (x2) (z6)
{0} I (xzg) — ——— {0}

(x3) (x5 (2) (x4) (x3) (x5)
(x4) (x3) (T6T476)

Figure 3.2: Examples of two neighbours of an F-star in Lg.

3.3 Rigidity of the graph of {0}-stars and F-stars

In this section, we prove the following theorem.

Theorem 3.3.1. Let n > 4. Let f be an automorphism of L, preserving O, and F.
Then f is induced by the action of a unique element vy of Out(W,,).

For n > 5, any F-star has 2"~2 neighbours in L,, and any {0}-star has n neighbours in
L,. As 22 > n precisely when n > 5, we see that every automorphism of L,, preserves
the set of {0}-stars and the set of F-stars. We thus have the following corollary.

Corollary 3.3.2. Let n = 5. The natural homomorphism
Out(W,,) — Aut(Ly,)
s an tsomorphism. O

Before proving Theorem [3.3.1] we first prove a lemma which characterises the number
of paths in a ball of radius 4 centered at a {0}-star.

Let X be a {0}-star, and (X, p) a representative of X. Let v1,...,v, be the n leaves
of the underlying graph of X. For i € {1,...,n}, let z; be the preimage by p of the
generator of the group associated with v;, and let ); be the F-star adjacent to X such
that a representative of ); is obtained from X by contracting the edge adjacent to v;.
For distinct 4,5 € {1,...,n}, let 0;;: W;, — W,, be the automorphism sending z; to
x;xjx; and, for k # j, fixing x. In this context we will call x; the twistor of o;;. For
distinct ¢,7 € {1,...,n}, let (i j) be the automorphism of W,, switching z; and z; and,
for k # i,7, fixing xx. A theorem of Miihlherr (c.f. [Miih, Theorem B]) implies that
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(x3z123) (xs5) (1) {w3r573)
{0} {0}

(z37273) (z4) (z2) (r3143)
(x3) (x3)

Figure 3.3: Two representatives of the same homothety class X’ realizing kx ;(X’).

{oijli # j}u{(ij)|i # j} is a generating set of Aut(W,,). Note that, for every integers
i,j, k, £, there exist p, ¢ such that (i j)og (i j) = opq.

We now fix i € {1,...,n}. Let X’ be a {0}-star adjacent to }; and distinct from X.
Let (X', p') be a representative of X’. Let wy,...,w, be the leaves of the underlying
graph of X', and, for j € {1,...,n}, let y; be the preimage by p’ of the generator of the
group associated with w;. Up to composition by an inner automorphism and reordering,
either y; = x; or y; = wz;y;x; (see Figure with ¢ = n = 6). Thus, there exist
ke{l,...,n—1} and 4y,...,i% € {1,...72,...,71} pairwise distinct such that, for all
jef{l,...,n},

k
(H %z’) () = y;.
=1
Let Inn™(W,,) = {Inn(W,,), {0 | i # j}). We define the first term complexity of X' by
i1, ... ix € {1,...,4,...,n}, I € Inn¥(W,) such that

Vie{l,...,n}, ITo (l {]_[ k}Uz‘l,i)(l‘j) =Yj
efl,...,

kxi(X') =min< k

This definition does not depend on the choice of a representative of X’. Note that the
sequence i1, ..., realizing the minimum is not necessarily unique (see Figure with
n =5 and i = 3). However, if ky ;(X’) # n — kx ;(X’) — 1, such a sequence is unique.

We now define a notion of relative complexity in Oy, the set of {0}-stars in L,,. Let Z
be a {0}-star in L,, distinct from X and let (Z, ) be a representative of Z. Let wy, ..., wy
be the leaves of the underlying graph of Z, and, for j € {1,...,n}, let z; be the preimage
by 1 of the generator of the group associated with w;. As {o;;|i # j} v {(¢ j)|i # j}
is a generating set of Aut(W,,) (c.f. [Miih, Theorem B]), we see that, up to composition
by an inner automorphism and reordering,

W N, At o)s s (o) € (1ol = () [we {1l
vie{l,...,n}, (mll Fivin ) () = 21

We now define the second term complezity of Z by
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Jai,...,ap € {1,...,n} pairwise distinct,
3I € Inn* (W,,) such that, 3k e N

ly(Z) =min< | (i1, 751),---, Ok, Jk) € {1,...,n} x {a1,...,a¢} — {(z,2) |z € {a1,...,ar}},

k
vje{lnh To ( I1 G ) (@) = 2
m=1

The intuition behind the second term complexity is the following. We want to count
the minimal number N of elements of {z1,...,x,} such that, for all j € {1,...,n}, the
generator z; can be obtained from z; using partial conjugations by at most N twistors.

k
Note that, in the definition of £x(Z), if ( I Uim,jm)(ij) = zj,and if mi,mo € {1,...,k}
m=1

are distinct, we do not require that jn,,, # jm,, so that the same twistor can appear in
distinct partial conjugations. Note also that £y (Z) does not depend on the choice of a
representative of Z.

Lemma 3.3.3. Let X, (X, p), vi,...,vn and (Vi)i=1,..n be as above.
(1) Fizie{l,...,n} and let X' be a {0}-star adjacent to YV; and distinct from X. Then
lx(X') =1 and a set {a1,...,as} realizing the minimum defining Lx(X') is {i}.

(2) Let B(X,r) be the closed ball in Ly, of radius r centered at X. Let Z € B(X,4)nO,.
Then Lx(Z) < 2. Moreover, the set realizing the minimum defining Lx(Z) is unique.

Proof. Let (X', p’) be a representative of X’. Let y1,...,y, be the preimage by p’ of
the generators of the nontrivial vertex groups of X’. Then, up to composing by an inner
automorphism and reordering, for all j € {1,...,n}, either y; = z; or y; = x;z;x;. Thus,
for all j € {1,...,n}, the only twistor that we need in order to obtain y; from z; using
partial conjugations is z;. Since X’ # X, it follows that fx(X’) = 1 and that a set
realizing the minimum defining it is {7}.

For the second assertion, let Z be a representative of Z, and let z1,..., 2, be the
preimage by the marking of the generators of the vertex groups. Then, there exist
J,k € {l,...,n} such that, for all m € {1,...,n}, one of the following holds:

(1) zm = xm,

(2) zm = zjTma;,

(3) zm = TpTmTk,

(4) 2m = TRTjTRTMTRT; T,
(5) 2m = THT; T T Ty

Thus, for all m € {1,...,n}, as we only need x; and xj, as twistors to obtain z,, from
T, We see that (x(Z) < 2.

Moreover, the twistors x; and xj, are the unique elements of {z1,...,xy,} such that,
for all i € {1,...,n}, the generator z; is obtained from x; by partial conjugations using
xj and x, as twistors. Thus, for all Z € B(X,4) n Oy, the set {ai,...,a;} realizing the
minimum defining £y (Z) is unique. O
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We isolate here a technical argument that will appear frequently in the proof of
Lemma [3.3.59)

Lemma 3.3.4. Let X, (X, p), vi,...,vn and (Vi)i=1,..n be as above.
Fizie {1,...,n} and let X' be a {0}-star adjacent to YV; and distinct from X. Let

k,le{l,...,n} —{i} be distinct. Let X,E,Q) be a {0}-star such that:
o d(Xx, Xy =2,
o lx(X; x )) = 2 and a set realizing the minimum defining it is {i, k}.
Let Xés) be a {0}-star at distance 2 of Xéz) and such that any set realizing EX(X,gg))
contains ¢. Then EX(XS)) > 3.

Proof. Let (X', p') be a representative of X”. Let wy, ..., w, be the leaves of the underly-
ing graph of X', and, for m € {1,...,n}, let y,, be the preimage by p’ of the generator of

the group associated with w,,. For j € {2, 3}, let (X,gj), Y)Y be a representative of Xéj),
let w( ') o ,ng) be the n leaves of the underlying graph of X,gj) and, for me {1,...,n},
let y(J ) be the preimage by ) of the generator of the group associated with wgn). Note
that, up to composition by an inner automorphism and reordering, for all m € {1,...,n},

yﬁn) =z T T A ™, Qs BmsYm € {0,1}.

Note also that v, = 1 precisely when y; = x;xpx; and B, = 1. Thus, for all

m € {1,...,n}, the element yg) is obtained from x,, using partial conjugations with
twistors x; and xy. Moreover, as k # i, and as X’ # X, there exists ny € {1,...,n} such

that ap, # 0 or ~,, # 0. Since X,g2) # X', there exists ng such that 3,, # 0.

As / is contained in any set realizing the minimum defining EX(X,S})), there exists
p € Nand m; € {1,...,n} such that

P
( H O-im,jm)(xml - ygr:%z?
m=1
and there exists m such that j,, = £.

Claim. The elements z; and z; are twistors of any set realizing the minimum defining
3

(),

Proof. As /is contained in any set realizing ¢ X(X,E?’)), a representative of X,gg) is obtained

)

from X ,9) by contracting the edge adjacent to wé2 and then blowing-up an edge at the

(2)

central vertex. We then distinguish different cases according to the value of y,
If yf) = xy, then for all m € {1,...,n},

3 m m m m 6
y3) = a:e z] xf T T a:’g " xy™, o, By Yms Om € {0, 1}

Since ny and ng are such that ay,, # 0 or v, # 0, and B,, # 0, the claim follows.
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If yéQ) = x;x¢x;, then for all m e {1,...,n}, we have

yﬁg’) = xfmx‘gmxz +om xf " Ty a:’g z] + a:‘g a:f; Qs By Yy Om € {0, 1}.
Since ng is such that g,, # 0 and n; is such that v,, + d,, # 0, or a,, # 0 or §,, # 0,
the claim follows.

If yf) = xxeTk, then for all me {1,...,n}, we have

3 Om .0m . Ym . Bm .am Bm  Ym .0m .0m .0m
()—xk a2y ™ 0oy By Yms Om € {0, 1},

Since ny and ngy are such that ay,, # 0 or v,, # 0, and S, # 0, the result follows.
Finally, if yf) = TRTiTpT;T}, or if yéQ) = T;TRTpTRT;, Or if yéZ) = T;TRTiTpT;TLT5,
then y,,, is obtained from z,,, using z;, x} and z, as twistors. This concludes the proof

of the claim. O

Thus, i, k and ¢ are contained in any set realizing the minimum defining ¢ X(XS)),

and this implies that EX(XIE?’)) > 3. O
We are now ready to prove a lemma concerning the number of embedded paths in
B(X,4).

Lemma 3.3.5. Let X, (X, p), vi,...,vn and (Vi)i=1,..n be as above.
Fizie {1,...,n} and let X' be a {0}-star adjacent to YV; and distinct from X. Let
(X', p') be a representative of X' and let X' be the underlying graph of X'. Let

{il,... 7ikX,i(X,)} - {1,... ,i,...,n}
be a set realizing the minimum defining kx ;(X"), and j € {1, ... Jiy...,n}. Let .2l
be the preimages by p' of the generators of the nontrivial vertex groups. Up to reordering,
suppose that, for all k€ {1,...,n}, a} is obtained from xj by a conjugation.

(1) If 2 = x;, the number of distinct injective edge paths in B(X,4) —{X} of length
at most 5 between X' and Y; is equal to on—kxi(X)=2 _ 1

(2) If o, = wjwjxi, the number of distinct injective edge paths in B(X,4) — {X} of
length at most 5 between X' and Y; 1s equal to ok i(X)—1 _ 1.

(3) Let Z be a {0}-star distinct from X and adjacent to Y and such that kx ;(Z) = 1.
Let {t} be a set realizing the minimum defining kx j(Z). Suppose that x’; = x;.

Ift € {ir, ... igy xny}s then there is no path between X' and Z of length at most
4in B(X,4)—{X}. Ift ¢ {iy,... 7ikX,i(X,)}’ then there is at least one path between
X" and Z of length at most 4 in B(X,4) — {X}.

Proof. We prove the case x; = xj. The proof of the case xé = x;x;x; is similar. The
proof consists in showing that the possible arcs P are as represented in Figure
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(x3)

(wam122) {zam1T2)

(x2) (z6) (x2) (wam122) (x2) ey
{0} - & _— {0}
(x3) (z5) (x3) (x5) (zex376) (x5)
<;;/> <;)L’)4é> <l§6’(42:36>
(1)
{2y (1) (w2) (we) (wow326) (1)
{0}
(o) (we3w6) (ws) (wgrame) (we)
% <Xé3>> e

Figure 3.4: Example of a path in Lemma between X’ (adjacent to ); with i = 2)
and ); with j = 6.

Let P be an arc (that is, an injective edge path), in B(X,4) — {X'} between X’ and
Y; of length at most 5. Let wq,...,w, be the leaves of Y/, and, for k € {1,...,n}, let yx
be the preimage by p’ of the generator of the group associated with wy. Note that, up
to reordering and composing by an inner automorphism, if k ¢ {i1,...,ix, 1)}, then
Yk = Tk, and, if k € {iq,. .. >ikx,i(X’)}7 then yj, = z;xpx;. For k # i, let V) be the F-star
such that a representative of ). is obtained from X’ by contracting the edge adjacent
to wg.

Claim. If k ¢ {i,j}, the path P cannot contain ).

Proof. Suppose towards a contradiction that ) € P, with k& ¢ {i,j}. Since P is
an arc, there exists in P a {0}-star X}gz) adjacent to )} and distinct from AX’. By
Lemma @ (2), we see that ZX(X,g2)) < 2. We claim that ZX(XISQ)) = 2. Indeed, let

(Xl?), 1) be a representative of Xf), let w§2), ... ,wg) be the n leaves of the underlying
graph of XISQ) and, for m e {1,...,n}, let yg) be the preimage by 1 of the generator of

the group associated with wg). Note that, up to composition by an inner automorphism

and reordering, for all m e {1,...,n},

2) _ ,Ym 5771 Qm, Qm, Bm TYm
y7(n)—xi " ey " )™,y By Ym € {0, 1.

83



Note also that 7, = 1 precisely when yi = x;xpx; and B, = 1. Thus, for all
m € {1,...,n}, the element yfg) is obtained from x,, using partial conjugations with
twistors x; and x. Moreover, as k # 7, and as X’ # X, there exists ny such that either
ap, #0or v, #0. As XIEQ) # X', there exists ny such that £,, # 0. It implies that
(X7 = 2.

Therefore, by Lemma m (1), the {0}-star X,gQ) is not adjacent to Y; since any
{0}-star Z adjacent to ); is such that [x(Z) = 1.

So P contains an F-star y,f) adjacent to XISQ) and distinct from y,; (see Figure

with k£ = 6). We claim that a representative of yf) is obtained from X 22) by contracting
(2)

the edge adjacent to w;™. Indeed, if it is not the case, one of the following two possibilities

holds.

(i) A representative of y,ff’) is obtained from X 15,2) by contracting the edge adjacent to

w,(f). But then we go back to )}, which contradicts the fact that P is an arc.

(1) A representative of y,§2) is obtained from X 22) by contracting the edge adjacent to
wf), with ¢ # i,k. Let X,£3) be the {0}-star in P adjacent to y,?) and distinct from
X,gZ), and let X,Sg) be a representative of X,gg). Then, there exist pe N, my € {1,...,n}
and i1,...,4p,j1,...,Jp € {1,...,n} such that, if y,,, is the preimage by the marking of
(3)

a nontrivial vertex group of X kg

( ﬁ O-im:jM)(:Eml) = Yma,

m=1

, we have

and there exists m such that j,,, = £. Therefore, by Lemma we see that £y (X, ,SS)) =

3. But, by Lemma@ (2), we have X,ES) ¢ B(X,4) and this contradicts the fact that
P c B(X,4).

)

Therefore a representative of y,f) is obtained from X 122 by contracting the edge

adjacent to wZ@) (see Figure .

But then, for every {0}-star Z adjacent to y,§2>, the set realizing ¢y (Z) must contain
k. Indeed, let Z be a representative of Z and let zq,...,z, be the preimages by the
marking of the generators of the nontrivial vertex groups. Up to composition by an

&
that z, # yﬁﬁf). Thus, if yi(2) is obtained from z; using partial conjugations such that
one of the twistors is xy, then a set realizing the minimum defining ¢y (Z) contains k.
Moreover, if yZ@) = z;, then, since ng is such that §,, # 0, we see that z,, is obtained
from x,, using partial conjugations such that one of the twistors is x;. In any case,
the set realizing (x(Z) must contain k. On the other hand, by Lemma [3.3.3] (1), if Z’
is a {0}-star adjacent to );, then the set realizing £x(Z’) only contains j. Since a set

realizing the second term complexity is unique by Lemma m (2), we see that Z and

inner automorphism and reordering, z; = y,~’ and there exists m € {1,...,n} such
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Y; are not adjacent in L,,. This leads to a contradiction since we suppose that the length
of P is at most 5. O

So the above claim implies that the path P either contains ); or yj’. (note that
YV, = yg ). The case Y; € P cannot occur by the following claim.

Claim. There does not exist a {0}-star adjacent to ); and distinct from X" at distance
3 from Y; in B(X,4) — {X}.

Proof. Let Xi(z) be a {0}-star adjacent to }; and distinct from X and A”. Let Xi@) be

a representative of Xi@). Let v§2), . ,v,(?) be the leaves of the underlying graph of Xz-(Q)

and, for m € {1,...,n}, let ag) be the preimage by the marking of the generator of the

groups associated with v,(fb). Up to reordering and composing by an inner automorphism,
we can suppose that, for all m € {1,...,n}, either a,(fb) = x,, O a,(g) = x;Tme; (this is
possible by Lemma (1)). Let Xi(g) be a {0}-star distinct from X and at distance
2 of Xi(z), let XZ-(?’) be a representative of Xi(z)’) and let ag:)’), e ,ag’) be the preimages by
the marking of the generators of the nontrivial vertex groups. Then one of the following
holds:

(a) The {0}-star Xi(‘g) is adjacent to );. By Lemma m (1), a set realizing EX(X,L@)
is equal to {i}. On the other hand, the set realizing the minimum defining the second
term complexity of every {0}-star adjacent to ); contains j. As i # j, we see that X ()
cannot be adjacent to ;.

(b) There exist p € N, k € {1,...,n} — {i}, L,41,...,0p,J1,...,Jp€{1,...,n} and

s€ {1,...,p} such that
s 3)
( I Uimvjm)(w) = ay
m=1
3)

and j, = k. Thus k is contained in any set realizing the minimum defining Zx (X;").

Moreover, we claim that 7 is contained in any set realizing the minimum defining £ (Xi(g)).
Indeed, as k is contained in a set realizing the minimum defining ¢ X(Xi(?’)), a represen-
tative of XZ@ is obtained from Xi(Q) as follows. We first contract the edge adjacent to

the vertex v,(f). This gives an F-star denoted by Y;(g). Then, a representative of Xi(g)

( (2) @ i adjacent to

is obtained from Y 3 by blowing-up an edge. If a;” = xi, then, as &;
Vi, a set realizing the minimum defining EX(XZ-(Q)) is equal to {i} by Lemma (1).

7

As a,(f) = x1, we see that either aS{) = ag) or aﬁi) = :L‘ka%)xk. Thus, as ¢ # k, we see
that 4 is contained in a set realizing the minimum defining EX(Xi(S)). If a,(f) = X;TpT;,
then a,(f) = a,(f) = x;xpx; and any set realizing the minimum defining EX(XZ-(E’)) must

contain i. Therefore, in any case, we have that {i, k} is contained in any set realizing the
minimum defining ¢ X(Xi(?’)). This shows that ¢ X(Xi(g)) > 2. However, since the {0}-stars
adjacent to Y; have second term complexity equal to 1 by Lemma m (1), we see that
Xi@) cannot be such that dB(XA),{X}(Xi(Q),yj) = 3. O
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Thus, P contains y;. As any two distinct F-stars are at distance at least 2 in L,,, the

path P contains a {0}-star Xj@) adjacent to )} and distinct from &” (see Figure. Let

(X](-Z), 1) be a representative of Xj(2), let w?), . ,wg)
graph of XJ(-Q) and, for m € {1,...,n}, let yg)
(2)

the group associated with wy,”. Note that, up to composition by an inner automorphism
and reordering, for all me {1,...,n},

be the n leaves of the underlying

be the preimage by 1 of the generator of

Ym 5 Ly xqumfﬁm QB € {07 1}'

7 7

As XJ@) # X' there exist k,l € {1,...,n} such that o # 0 and 3 # 0. Thus,

KX(X]-@)) = 2 and a set realizing the minimum defining EX(X7.(2)) is {i,7}. This also

implies that the {0}-star Xj(z) is not adjacent to ); by Lemma |3.3.3 (1). So P contains
an F'-star y]@ adjacent to Xj@) and distinct from ), and yjf. (see Figure . We claim
)

that a representative of y]@) is obtained from X J(-2

(

)

by contracting the edge that contains
2, Indeed, if it is not the case, then one of the following holds.
)

w

(7) A representative of y](?) is obtained from X j(-Q by contracting the edge that contains

w'?. Then yf) =

; ' and this contradicts the fact that P is an arc.

7
(73) A representative of yf) is obtained from X J(z)
wf), with £ # 4, 5. Let Xe(‘g) be a {0}-star adjacent to y]@ and distinct from X]@, and

by contracting the edge that contains

let X ég) be a representative of Xg(g). As XK(B) # Xj(z) any set realizing the minimum

defining /¢ X(Xg@)) must contain £. Accordingly, since £ # i, j we see by Lemma that
EX(XK(B)) > 3. This contradicts the fact that P < B(X,4) — {X'} by Lemma (2).

Therefore, a representative of y]@) is obtained from X by contracting the edge

J
(

adjacent to wz?). We now distinguish two cases, according to the value of j;.

Claim. (1) If 8; = 0, then, for all m € {1,...,%,...,n}, we have (m, Bm) # (1,1).

(2) If B; = 1, then, for all m € {1,...,%,...,n} such that a,, = 1, the pair (aum, Bm)
equals (1,1).

Proof. Let Z be a {0}-star adjacent to yj(?), let Z be a representative of Z, and let
z1,...,2n be the preimages by the marking of the generators of the nontrivial vertex
groups of Z.

(1) Suppose that §; = 0 and that there exists m € {1, ... e n} such that (am, Bm) =

(1,1). Then any set realizing the minimum defining ¢y (Z) must contain i because,

2 2 . .
as yﬁn) = ZjTiTmx;xj, and as yz-( ) — x;, we see that, up to composing by an inner
automorphism and reordering, we have that z; = x; and either 2, = z;r;rpz;7; or

Zm = LiXjLiXmLiLjLg.
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(2) Suppose now that §; = 1 and that there exists m € {1,...,%, ...,n} such that
apy = 1 and such that the pair (ay,, 5n) equals (1,0). Then any set realizing the
minimum defining £ (Z) must contain ¢ because, as me = I;T,T;, and as yZ@) = T;T;T;,
we see that, up to composing by an inner automorphism and reordering, we have that

z; = wjwiwj and either z, = T;TpT; OF 2y = TjXXjX;TmTiTT;T ;.

So, in both cases, for every {0}-star Z adjacent to y]@, the set realizing the minimum
defining /x(Z) must contain 3.

Let Z be the {0}-star in P adjacent to Y(? and distinct from X, Then the set
realizing the minimum defining ¢x(Z) must contain ¢ by the above. Since the length of
P is at most 5, the {0}-star Z is adjacent to Y;. But then, by Lemma [3.3.3) (1), the
set realizing the minimum defining ¢y (Z) is equal to j. Since a set realizing the second
term complexity is unique by Lemma m (2), we see that Z and ); cannot be adjacent
and this leads to a contradiction. O

So if B; = 0, then, for all m € {1,...,?,...,11}, the pair (o, Bm) # (1,1) and if
Bi =1, forallme {1,... .. .,n} such that a,,, = 1, the pair (a;,, Bmn) equals (1,1).

We now claim that there are exactly on—kx(X)-2_1 possible values for the sequence
By Bis-e s Bjseevy Bn).

First, if 8; = 1, then by the above claim, for all m € {1,...,2,...,n} such that
am = 1, we have 3, = 1. Using a global conjugation by x;, it then follows that every
marked graph of groups whose associated sequence (31, ..., 3,) satisfies the above claim
and is such that §; = 1 is equivalent to a marked graph of groups whose associated
sequence (f1,...,[3),) satisfies the above claim and is such that 5, = 0. Thus we can
suppose that, for such a sequence (81, ..., [S,), we have 5; = 0.

Moreover, by the above claim, all the pairs (m,, B;,) such that «,, = 1 have the
same value for (3,,. Thus the sequence (f, ... ,BZ-, e ,Bj, ..., Bpn) is determined by the
pairs (Qy, Bm) such that a,, = 0 and the choice of 5,,. By hypothesis, there are exactly
kxi(X') values of m € {1,... Ji,...,n} such that oy, = 1 since a,, = 1 if and only if
xh, = xxmx;. It then suffices to choose whether 3,, = 0 or 3,, = 1. Furthermore,
let (B1,...,8,) and (5,...,3)) be two distinct sequences satisfying the above claim
and such that 8; = 8 = 0. Then there exists m € {1,... ,2, ...,n} such that 5, =1
and (], = 0. Thus, since 5; = . = 0, the associated marked graph of groups are
not equivalent and the two sequences give rise to two distinct equivalence classes of
marked graph of groups. Finally, since X(?) # X’  there exists k € {1,... j’ .o,n}
such that By = 1. Hence there are on—kx i (X)-2 _ possible values for the sequence
(Bry--s By Bjy o3 Bn)-

Let Z be a {0}-star adjacent to yj@) and distinct from X j(Q) and let Z be a represen-
tative of Z. Let z1,...,2, be the preimage by the marking of the nontrivial associated
groups. Then, for every sequence (f1,...,0i,..., 08}, ..., n) satisfying the above claim,
there exists exactly one such Z such that, up to composing by an inner automorphism
and reordering, for all £ € {1,...,n}, we have either 2z, = z;xsx; or zp = x4. Such a

{0}-star is adjacent to both yf) and Y;. We call this {0}-star Xj(?’).
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Thus, there exists a unique {0}-star Xj(g) adjacent to both yj@ and ); . Since

P is an arc of length at most 5, it must contain Xj(?’). Thus an arc in B(X,4) —
{X} with length at most 5 between X’ and ); is completely determined by a se-
quence (S, ... ,Bi, e ,Bj, ..., Bp) satisfying the above claim. This concludes the proof
of Lemma [3.3.5] (1).

In order to prove the third assertion of the lemma, let P be an arc between X’ and
Z of length at most 4. Then there exists an arc P’ between X’ and Y} of length at
most 5 which contains P. Thus, P is contained in one of the paths constructed in the
proof of the first assertion of the lemma. Therefore, using the notations of the proof of

Lemma [3.3.5( (1), we see that Z = Xj(g). Let XJ(.3) be a representative of Xj(3) and let

ygg), e ,y,(lg) be the preimages by the marking of the generators of the nontrivial vertex

groups. Then for all m € {1,...,n}, if a;,;, = 0, then yg)

(3) (3)

then either y,,i’j = T OF Ym’ = T;Tmxj. Moreover, by construction, we know that there
exists m such that a,, = 0 and 3, # 0. As kx ;(Z) =1, and as oy = 0 if and only if
t ¢ {i1, ... iry,(X')}, we see that there is an arc between X’ and Z of length at most 4
if and only if ¢ ¢ {i1,...,ix, ,(X")}. This concludes the proof. O

= xfmmmxfm, and if oy, = 1,

Proposition 3.3.6. Let n > 4. Let X € O,,. Let f € Aut(L,) be such that f restricted to
the star of X is the identity. Then f =1idy,, .

Proof. In order to prove Proposition we prove that f fixes the star of all {0}-stars
at distance 2 from X. This concludes by propagation since L,, is connected.

First, we prove that f fixes B(X,2) n O, — {X}. Let X1,X2 € B(X,2) n O, be
distinct {O}-stars. If there exist distinct 4,7 € {1,...,n} such that X; is adjacent to )
and X, is adjacent to ), then f(X)) # Ay because f(V;) = Vi, f(V;) = Y; and there is
no {0}-star adjacent to both Y; and )Y; apart from X

Suppose that there exists i such that ); is adjacent to both X} and Xs. For av € {1, 2},
let X, be a representative of X, and let y{',...,y5 be the preimages by the marking
of the generators of the nontrivial vertex groups of X,. Since X} # X, we see that,
up to reordering and composing by an inner automorphism, there exist j, k € {1,...,n}
such that yz1 = y? = x;, such that yjl = z; and yj2 = x;xjr; and such that y,i = y,% By
Lemma [3.3.5] (1), if kx ;(X1) # kxi(X2), then the number of arcs of length at most 5 in
B(X,4) — {X} between X; and Yy is distinct from the number of arcs of length at most
5in B(X,4) — {X} between Xy and Y. Suppose that ky;(X1) + kx i(X2) #n —1. In
particular, we have that n — kx ;(X1) — 2 # kx ;(X2) — 1. Therefore, by Lemma [3.3.5 (1)
and (2), the number of arcs of length at most 5 in B(X,4) — {X'} between X} and ) is
distinct from the number of arcs of length at most 5 in B(X,4) — {X'} between X5 and
Yj. Thus f(X)) # X, since f restricted to the star of X is the identity. In particular,
since n > 4, if X' € B(X,2)—{X'} is such that &” is adjacent to }; and that kx ;(X”) = 1,
then f(X') = X'.

It remains the case where ky,;(X1) = ky(X2) = 5. Let X* be the {0}-star

2
adjacent to YV such that kxy;(X*) = 1 and such that the set realizing kx ;(X*) is {j}.
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As kxi(X*) = 1, we have that f(X*) = X*. Moreover, as yjl = z; and as yj2 = T2,
Lemma (3) implies that there is no path of length at most 4 between Xy and X*
in B(X,4) — {X} while there is one such path between A; and X*. Thus f(X;) = A;.
Hence f fixes B(X,2) n O, — {X}.

Now let X' € B(X,2) n O, — {X} and let Y be the F-star adjacent to both X and
X" (the uniqueness of this F-star follows from the uniqueness of the set realizing the
minimum defining £y, see Lemma [3.3.3] (2)). Let X’ be a representative of X’ and let
vl,...,v), be the leaves of the underlying graph of X’ and, for i € {1,...,n}, let z} be
the preimage by the marking of X’ of the generators of the group associated with .
Then, up to reordering, we can suppose that a representative of ) is obtained from X’
by contracting the edge adjacent to v/,. Let Y! and Y2 be two distinct F-stars adjacent
to X' and distinct from ). We prove that f()') # V2. Up to reordering, we can suppose
that, for « € {1,2}, a representative of }* is obtained from X’ by contracting the edge
adjacent to v),. Let Z be a {0}-star adjacent to ) such that :

(1) karn(Z2) =1;
(2) a set realizing the minimum defining k- ,,(Z) is {1}.

Then Lemma [3.3.5 (1) and (2) tells us that the number of paths of length at most 5
in B(X',4)—{X'} between Z and Y! is equal to 2°¥'#(2)=1 _1 while the number of paths
of length at most 5 in B(X’,4) — {X'} between Z and Y? is equal to 2" Fxn(£)=2 _ 1
Since kyr (Z) = 1, since n > 4 and since f restricted to the star of ) is the identity, we
see that f(J1) # V? and the proposition follows. O

Proof of Theorem [3.3.1, The uniqueness of v is immediate since no automorphism of
W, fixes the conjugacy class of each element appearing in every free generating set of
W,,. It thus suffices to prove that every automorphism preserving O,, and F,, is induced
by an element of Out(W,,). Let f be an automorphism of L, preserving O, and F,.
Since Out(W,,) acts transitively on O,,, we can suppose, up to composing by an element
of Out(W,), that f fixes a {O}-star X. Now Stabgyw,)(X) is isomorphic to &, and
every element of Stabg,(w,)(X) acts on the underlying graph of a representative X of
X by permuting the leaves. As a representative of any F-star adjacent to X is obtained
from X by contracting the edge adjacent to a leaf, we see that Stabgyuw;,)(X) acts
transitively on the link of X. Thus, we can suppose, up to composing by an element of
Out(W,), that f fixes the star of X'. Proposition [3.3.6/then implies that f is the identity.
This concludes the proof of Theorem O

3.4 Rigidity of the outer space of IV,

The aim of this section is to prove Theorem by constructing an injective homo-
morphism Aut(K,) — Aut(L,). We first give a characterization of the {0}-stars and
the F-stars which is preserved under automorphisms of K,,. This characterization relies
on a study of the link of the vertices of K,. We begin with some definitions.
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Definition 3.4.1. Let X be a graph. A join of X is a decomposition of X into two
nontrivial subgraphs A and B such that VAN VB = @ and, forallae VA and be VB,
the vertices a and b are adjacent in X. We then write X = A« B.

The fact of being decomposed as a join is preserved under automorphisms of graphs.
In the case of a vertex z € VK, there is a natural decomposition of the link lk(z) of x
in K,,.

Definition 3.4.2. Let x = X € VK,,. Let X be a representative of X.

(1) The positive link of z, denoted by 1k (), is the maximal subgraph of 1k(x) whose set
of vertices consists in the homothety classes which have a representative that collapses
onto X.

(2) The negative link of x, denoted by lk_(x), is the maximal subgraph of lk(x) whose
set of vertices consists of homothety classes which have a representative Y such that X
collapses onto Y.

For all vertices x of K, by definition of the adjacency in K,,, we have
Ik(z) = lki(x) * k_(z).

It is in fact, as we will prove in Proposition below, the only decomposition of 1k(x)
as a join.

Lemma 3.4.3. Let n > 4. Let x = X € VK, be such that 1k, (z) # &. Let X be a
representative of X and let X be its underlying graph.

(1) Iflky(x) is nontrivial and has no edge, then 2 < [k (z)| < 3. Moreover, |lky(x)| = 3
if and only if the underlying graph of any representative of x has n leaves.

(2) Let IkL () be the set of vertices of K, such that any element of Ik (x) has a repre-
sentative that can be obtained from X by blowing-up exactly one edge. Then |1k}r ()] = 2.

Proof. Suppose that 1k, (z) is nontrivial and has no edge. Then the graph X has at
least n — 1 leaves. Otherwise, one can blow-up two distinct edges at two distinct vertices
of X with nontrival vertex groups which are not leaves. This gives rise to two vertices in
the positive link of x that are linked by an edge. This contradicts the fact that lk(x)
has no edge.

Moreover, if X has exactly n — 1 leaves, then all vertices of X with trivial associated
groups have valence 3 since otherwise one can blow-up an edge at a non-leaf vertex of X
with nontrivial vertex group and another edge at a valence-four vertex of X with trivial
vertex group. This gives rise to two vertices in the positive link of x that are linked by
an edge. Moreover, the only non-leaf vertex with nontrivial associated group has valence
equal to 2 since otherwise one can blow-up two edges at this vertex, giving rise to two
vertices in the positive link of = that are linked by an edge.

If X has n leaves, then at most one vertex of X has degree at least 4 since otherwise
one can blow-up two edges at two distinct vertices of X. This gives rise to two vertices
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in the positive link of = that are linked by an edge. Thus X has at most one vertex v
with degree at least 4. The degree of v is in fact equal to 4 since otherwise one can blow
up a two-edge graph at v, which gives rise to two vertices in the positive link of x that
are linked by an edge.

Thus, there are two possibilities for X.

(i) The graph X has n leaves. Moreover, there are exactly one vertex v of valence 4
and |[VX| — (n + 1) vertices of valence 3. In this case, the number of possible vertices
in lk, (x) corresponds to partitioning the set of edges adjacent to v into two subsets of
order 2. This shows that |lky (z)| = 3.

(ii) The graph X has n — 1 leaves. Moreover, there are exactly one vertex v of valence 2
and |V X| —n vertices of valence 3. In this case, the group associated with v is nontrivial
and it is the only vertex of X that has nontrivial associated group and is not a leaf. In
that case, the number of possible vertices in 1k (z) corresponds to blowing-up an edge
e at v so that one of the endpoint of e is a leaf. Since v has valence 2, Proposition [3.2.1
implies that Stab®(zx) is isomorphic to F. Thus, there are two possibilities for blowing-
up the edge e (either blowing it up while applying the nontrivial element of Stab’(x) or
blowing it up such that the preimages by the marking of the generators of the nontrivial
vertex groups of the new graph of groups are the same as the preimages by the marking
of X of the generators of the nontrivial vertex groups). This shows that |k (z)| = 2.

We now prove the second part of the lemma. Suppose that 1k, (z) is nontrivial (it
might have edges). Suppose first that X has at most n — 2 leaves. Let v; and vg be two
vertices of X with nontrivial associated groups that are not leaves. Then one can find
two elements of Ik! (z) by blowing up an edge at either v; or va. Thus, [Ik} (v)] = 2.

Finally, if X has at least n — 1 leaves, then the constructions of distinct elements of
lkfr (x) are similar to the case where lk(x) is nontrivial and has no edge. O

Lemma 3.4.4. Let n > 4. Suppose that © = X € VK, is such that 1k_(x) is nontrivial
and has no edge. Let X be a representative of X and X be its underlying graph.

(1) There exists a unique vertex in X with trivial associated group.

(2) The negative link satisfies 3 < |lk_(x)| < n. Moreover, [Ik_(z)| = n if and only if x
is a {0}-star.

Proof. (1) The graph X contains at least one vertex with trivial associated group since
otherwise there would not exist an element ) € V K, such that a representative of ) is
obtained from X by collapsing a forest. This would contradict the fact that 1k_(z) is
nontrivial. Thus X contains at least one vertex with trivial associated group.

Suppose towards a contradiction that X contains two vertices with trivial associated
groups. Then, since the degree of any vertex of X with trivial associated group is at least
3, there exists two distinct edges e; and e in X that can be simultaneously collapsed to
get a new element in V K,,. Moreover, if i € {1,2}, and if ); is the homothety classes of
the marked graph of groups obtained from X by collapsing e;, then Vi, Vs € lIk_(z) and
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V1 and ), are adjacent in lk_(x) and distinct. This contradicts the fact that lk_(x) has
no edge. Thus, there exists a unique vertex in X with trivial associated group.

(2) Let v be the unique vertex in X with trivial associated group guaranteed by the
first assertion. It follows that deg(v) = 3. Thus |lk_(x)] = 3. Since X contains exactly
n vertices with nontrivial associated group, deg(v) < n. Thus |lk_(z)| < n.

Now, if [Ik_(z)| = n, then deg(v) = n. Thus X contains exactly n leaves and n + 1
vertices and X is a {0}-star. Conversely, if X’ is a {0}-star, then there exists exactly
one vertex in X with trivial associated group. Moreover, its degree is equal to n. Thus
lk_(z)| = n. O

Lemma 3.4.5. Letn > 4. Let x = X € VK, be such that Ik_(x) is nontrivial. Let X be a
representative of X and let X be its underlying graph. Let vy, ..., v, be the vertices of X
with nontrivial associated group. Let e € EX and let {v;,, ..., vy} U{v;,...,vj} be the
partition of {vi,...,v,} obtained by considering the vertices contained in each connected
component of X — é.

(1) Let Fy € X be a forest (that may be empty) such that the homothety class of the
marked graph of groups Y obtained from X by collapsing Fy is a vertex of K,,. Let
p: X =Y be the canonical projection.

Then, if p(e) is not a vertex, it is the unique edge f of Y such that the partition
of {p(v1),...,p(vn)} induced by Y — f is {p(vi,),...,p(vi)} O {p(vj,),-..,p(vs)}

(2) Let y,z € lk_(x) be distinct vertices. Let' Y and Z be representatives of y and
z respectively, and let Y and Z be their underlying graphs. Let p,: X — Y and
p,: X — Z be the natural projections.

If one can obtain Z from'Y by collapsing a forest of Y, and if p.(e) is not a point,
there exists a unique edge p,(e) € EY such that the partition of {py(v1),...,py(va)}

—~——

induced by p,(e) is
{py(vir), -, py(vi )} I {py (vj,), - py(v5)}-

Remark 3.4.6. Let X, Y and Z be as in the above statement. Let G be the forest of Y
such that Z is obtained from Y by collapsing G.

(1) The statements of the lemmas can be reinterpreted in terms of decompositions in
free factors of W,. Indeed, a partition of the vertices with nontrivial associated groups
{v1,...,v,} = A1l B induced by an edge of X gives rise to a decomposition of W,, as
W, = W,f #* Wf_k well-defined up to global conjugation. In this case, W,f is generated
by the groups associated with the vertices in A, and Wffk is generated by the groups
associated with the vertices in B. In particular, Lemma (1) can be stated as follows.

If X is a graph of groups whose fundamental group is Wy, and if e and f are distinct
edges of the underlying graph of X, then e and f induce distinct free factor decomposi-
tions.
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Moreover, if Y is a graph of groups obtained from X by collapsing a forest, and if g is
an edge of the underlying graph of Y, then there exists a unique edge § in the underlying
graph of X which induces the same free factor decomposition as g.

(2) Let H be a forest in Z. The second statement of the lemma gives a unique minimal
forest H in Y that lifts H. Indeed, if h € EH, let h be the unique edge of Y given by
Lemma [3.4.5 (2). Then {h}nep is a lift of H. This lift has the property that H NnGis
contained in the leaves of G and that every vertex of His adjacent to an edge in H. We
call it the canonical lift of H.

Proof. For the first statement, we only need to prove the uniqueness result. Let f be an
edge of Y distinct from p(e). Let A11145 be the partition of {p(v1),...,p(v,)} induced by
p(e), and let Bj 11 By be the partition of {p(v1),...,p(v,)} induced by f. We prove that
there exist two vertices v and w of Y with nontrivial associated groups such that v and w
are in the same connected component of Y — f while they are not in the same connected
component of Y — p(e), or conversely. This will imply that there exists a € {1,2} such
that B, n A1 # @ and that B, n As # @, or conversely. This will conlcude the proof.
There are two cases to distinguish, according to the endpoints of p(e).

If both of the endpoints of p(e) have nontrivial associated groups, then, since Y is
a tree, p(e) is necessarily the unique edge of Y such that the endpoints of p(e) are in
distinct connected components of Y — p(oe).

Suppose that one of the endpoints of p(e), denoted by vy, has trivial associated group.
Then there exists an arc P between two distinct leaves of Y, say p(v;) and p(v;), such
that p(e) and f are (up to replacing them by their opposite edges) contained in this
path and in this order. Since vy has trivial associated group, deg(vg) = 3. Thus, up
to exchanging the roles of p(v;) and p(v;), there exists a path P’ between p(v;) and a
leaf of Y, say p(vy), distinct from both p(v;) and p(v;), such that P’ contains vy (see
Figure .

So if P’ contains p(e) (see Figure 3.5 Case 1), then p(v;) and p(vy) are not contained
in the same connected component of X - p( ) while they are contained in the same
connected component of X — f If P does not contain p(e), then there are two cases to
distinguish.

Let v; be the other endpoint of p(e). If there exists £ € {1,...,n} such that we
have v; = p(vg) (see Figure 3.5 Case 2), then p(v;) and p(vg) are contained in the same
connected component of X — p( ) while they are not contained in the same connected
component of X — f

If v has trivial associated group (see Figure Case 3), then deg(vi) = 3. So there
exists £ € {1,...,n} such that v; is contained in the arc P() between p(v;) and p(v,) and
such that p(e) is not contained in P(?). Thus p(v;) and p(v,) are contained in the same
connected component of X — p( ) while they are not contained in the same connected
component of X — f In any case, p(e) and f do not generate the same partition of

{p(vl)a te ap(vn)}'

Let Y and Z be as in the second statement of the lemma. By the first state-
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p(vi)

p(vj) ¥ p(e) p( z)
Case 1
p(ve)
p(vi) p(vi)
p(v;) p(v;) e
Case 2 p(vg) Case 3 p(vk)

Figure 3.5: The arcs constructed in Lemma

—~—

ment of the lemma, there exists a unique edge p,(e) € EY such that the partition

—

of {py(v1),...,py(vn)} induced by pz(e) is {py(vi,), ..., py(vi )} T{py(vj,), ... py(v;)}
(namely it is py(e)), and we take this edge to be our lift. O

Proposition 3.4.7. Letn > 4, andx = X € VK,,. Suppose that bothlk_(x) andlk, (z) are
nontrivial. The only nontrivial decomposition of 1k(x) as a join is lk(x) = ki (z)*lk_(z).

Proof. Let X be a representative of X and let X be its underlying graph. Let lk(z) =
A= B be a nontrivial decomposition as a join of Ik(x) such that A # 1k (x),lk_(x). Then
there exist x1,x9 € lk4 () or z1,x2 € lk_(z) such that 1 € A and z9 € B. For i € {1, 2},
let X; be the homothety class corresponding to x; and let X; be a representative. Let X
be the underlying graph of X;. Since x1 and x9 are joined by an edge, up to renumbering
and changing the representatives, there exists a forest Fyy in X1 such that X, is obtained
from X by collapsing Fy. We now investigate both cases.

Suppose first that x1, 22 € Iki(x). We are going to construct two other vertices z;
and zy such that z; € A, 25 € B and z; and z3 are not linked by an edge, which will lead
to a contradiction (see Figure [3.6).

Since 9 € Ik (x), up to changing the representative X of X', there exists a forest G
in X, such that X is obtained from X by collapsing G. Let G be the canonical lift of
G in yl.

Let f € EFy. Let Zy be the homothety class of the marked graph of groups Zj
obtained from X; by collapsing f and let zg be the corresponding vertex in K,,. Since a
representative of Z is obtained from X; by collapsing an edge, we see that z1 € lk, (z0).
Moreover, since f € EFy, we see that zp € ki (z2) and 29 € lky(x). Lemma (2)
applied to zp then implies that there exists z; = 21 € lk; (2) distinct from 1 such that
the underlying graph of any representative of z; has the same number of edges as X;.
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g Z
Zs 0
Xo
G
X

Figure 3.6: The adjacency of the homothety classes constructed in the first case of

Lemma @

Since z; € k4 (20) and zp € lky(x), we have z; € Ik, (z). As 2z has a representative that
has the same number of edges as X7, and as x1 # 21, we see that 21 ¢ lk(x1). Therefore
we have z1 € A.

In order to construct zs, let g be an edge in G. Let Z, be the homothety class of the
marked graph of group Z5 obtained from X by collapsing §. Let 25 be the corresponding
vertex in K,,. Then, since § € G, we see that 2 € lky (). As § € EG, and as two distinct
edges induce distinct free factor decompositions by Remark (1), there exists an edge
g € EX5 (namely the edge whose lift in X is §) such that the free factor decomposition
induced by g is distinct from the free factor decomposition induced by any edge of the
underlying graph of Zs. Thus we see that xo and zo cannot be adjacent. Indeed, if
it was the case, then as Zs is obtained from X; by collapsing exactly one edge, either
|EXs| = |EZs| or there would exist a representative Z} of Z5 such that X is obtained
from Z} by collapsing a forest. Both cases would contradict Remark (1) because
the edge g of X5 induces a free factor decomposition that is not induced by any edge of
the underlying graph of Zj. This implies that z5 ¢ lk(x2) and that 29 € B.

Claim. The vertices z; and zy are not adjacent in 1k(v).

Proof. Suppose towards a contradiction that z; and zo are adjacent. Let Z; be a
representative of the homothety class corresponding to 21, and, for i € {1,2}, let Z; be
the underlying graph of Z;. As |EZ,| = |EZ3| + 1, up to changing the representatives
Z1 and Zo, we can suppose that Zs is obtained from Z; by collapsing an edge e € EZ,.
Let h be the edge in Z; such that the marked graph of groups obtained from Z; by
collapsing h is in zg. As 2 is distinct from A}, the edge h is such that the free factor
decomposition of W,, induced by h is distinct from the one induced by any edge of X;.
Thus, by Lemma m (2), the free factor decomposition of W, induced by h is distinct
from the one induced by any edge of Z3. Therefore, by Remark (1), the marked
graph of groups Zs is obtained from Z; by collapsing h. This implies that zo = 2y by
the choice of h. However, G n Fy does not contain any edge by the properties of the
canonical lift of G (see Remark (2)). Thus there exists an edge in Zy which induces
the same free factor decomposition of W,, as §. As Z5 is obtained from X; by collapsing
g, Lemma m (1) implies that there is no edge in Zo that induces the same free factor
decomposition as §. Thus zy # 29, and this leads to a contradiction. ]
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Figure 3.7: The adjacency of the homothety classes constructed in the second case of

Lemma m

Therefore z; and 2o are not adjacent in lk(x). However, z; € A and 22 € B. This
contradicts the fact that lk(z) = A = B is a join decomposition.

Now suppose that 21,22 € Ik_(x). We use the same strategy as when x1, x9 € lk ()
(see Figure [3.7).

Since x1 € lk_(x), up to changing the representative X of X, there exists a forest G in
X such that X is obtained from X by collapsing G. Let g € EG. Let F} be the canonical
lift of Fy in X. Remark that ﬁ’o NG does not contain any edge. Let Z; be the homothety
class of the marked graph of groups Z; obtained from X by collapsing Fy U (G — {g})
and let z; be the corresponding vertex. Let py,: X — X, and Dz X — Z; be the
natural projections. We claim that x; and z; are not adjacent. Indeed, suppose that z;
and z1 are adjacent. As z1 and z; are distinct, we see that |EX | # |EZ;|. Therefore,
as |E(Fy u (G —{g}))| = |EG|, we see that |[EX | > |EZ1|, and a representative of Z; is
obtained from a representative of X} by collapsing a forest. Let X| be a representative of
X obtained from Z; by blowing-up a forest. As p.,(g) is an edge in 71, Remark (1)
implies that there exists a unique edge § in X1 such that § induces the same free factor
decomposition as p.,(g) and g. But since ps, (g) is a point, Remark (1) implies
that there is no edge in Yll which induces the same free factor decomposition as g. So
x1 and z; are not adjacent and z; € A.

In order to construct z9, let f € EFy. Let Y be the marked graph of groups obtained
from X by collapsing Fy — {f}. Let pp: X1 — Y be the natural projection. Let a; and
az be the endpoints of po(f). Let X;i/Fy be the marked graph of groups obtained from
X1 by collapsing Fy. Since the homothety class of X;/Fy is an element of K,, (namely
it is X3), one of the endpoints of po(f) has trivial associated group. Suppose without
loss of generality that a; has trivial associated group. In particular, deg(a;) > 3. Let
a3z and a4 be two distinct vertices adjacent to a; other than as and let e be the edge
between a1 and a3. Finally let Z5 be the homothety class of the marked graph of groups
Zy obtained from Y by collapsing {e}. Let zo be the corresponding vertex in K,,. Then,
since |EX3| = |EZ;| and since Xy and Z3 are obtained from X by collapsing two distinct
forests, we see that z9 and x9 are not adjacent in K,,. So 29 € B.

Let us prove that z; and z5 are not adjacent in lk(z). Suppose towards a contradiction
that z; and 29 are adjacent. As G contains at least one edge, we have that Z; is
obtained from X by collapsing |Fy| + |G| — 1 edges. Moreover, Zs is obtained from X
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by collapsing |Fp| + |G| edges. This implies that the number of edges of a representative
of z1 is greater than the number of edges of a representative of zo. Thus, there exists a
representative of z; that collapses onto a representative of zo. Let p,,: X — Z5 be the
natural projection. Let f € FO be the canonical lift of f in X. Since p., (f) is an edge
in Zy, Remark [3.4.6} - ) implies that there exists an edge in Z9 which induces the same
free free factor decomposition as f But, as p,, ( f) is a point in Z;, Remark [3
shows that there is no edge in Z, that induces the same free factor decomp081t10n as f
Thus, z; and 29 are not adjacent.

This contradicts the fact that lk(z) = A % B is a join decomposition. This concludes
the proof of the proposition. O

Corollary 3.4.8. Let n > 4 and f € Aut(K,,). Then f preserves the set of {0}-stars and
the set of F-stars.

Proof. Let p be a {0}-star. Since lk_(p) has no edge and is of cardinal equal to n,
Proposition tells us that either 1k, (f(p)) has no edge and its cardinal is equal to
n, or lk_(f(p)) has no edge and its cardinal is equal to n. Since n > 4, Lemma (1)
tells us that the first case is not possible. So lk_(f(p)) has no edge and its cardinal is
equal to n. Then Lemma (2) shows that f(p) is a {0}-star.

Let p’ be an F-star. Then there exists a {0}-star p such that p’ € Ik_(p). Therefore,
f(p) € Ik_(f(p)). As f(p) is a {0}-star and since the negative link of a {0}-star is
composed of F-stars, we see that f(p') is an F-star. O

Thus, there exists a homomorphism Aut(K,) — Aut(L,) defined by restriction. We
now prove that this homomorphism is in fact injective.

Lemma 3.4.9. Let n > 4. Let f € Aut(K,) be such that f|O =ido, and f|r, =idp,.
Lety =Y e VK, be such that 1k_(v) is trivial. Then f(y) =

Proof. In order to prove Lemma [3.4.9] we prove the following claim.

Claim. Let 0 < £k € n—3. Let X and Y be vertices of K,,. Let X and Y be
representatives of X and ). We write X and Y for their underlying graphs. Suppose
that X has a nontrivial negative link with no edge and that ) has a trivial negative link.
If X has k vertices with nontrivial associated group that are not leaves, and if Y has
k + 1 vertices with nontrivial associated group that are not leaves, then f(X) = X and

fQ) =Y.

Lemma then follows from the claim because for every vertex y € VK, with
trivial negative link, there exists k£ € {0,...,n — 3} such that y has a representative Y
whose underlying graph has exactly k + 1 vertices with nontrivial associated group that
are not leaves.

We prove the claim by induction on k. When & = 0, X has n leaves, so by
Lemma [3.4.4] (2), we have that |lk_(v)| = n. Thus, by Lemma [3.4.4] (2), we see that X is
a {0}-star. Moreover, Y has n — 1 leaves and n vertices, so ) is an F-star. Thus, when
k = 0, the claim is a restatement of the fact that f fixes the {0}-stars and the F-stars.
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Now suppose that the claim is true for some 0 < k < n —4. Let X and Y be such
that X has a nontrivial negative link with no edge and that ) has a trivial negative link.
Let X and Y be representatives of X and )V, and let X and Y their underlying graphs.
Suppose that X has k + 1 vertices with nontrivial associated group that are not leaves,
and that Y has k + 2 vertices with nontrivial associated group that are not leaves.

We start by showing that f(X) = X. First, by Proposition the homothety
class f(X') has either a nontrivial negative link with no edge or a nontrivial positive link
with no edge.

Claim. The homothety class X cannot be sent by f to a homothety class z = Z such
that 1k (z) has no edge.

Proof. Suppose towards a contradiction that it is the case. By Lemma[3.4.4] [lk_(X)| >
3, while by Lemma [3.4.3] (1), [lk4(2)| < 3. Thus, [lk_(X)| = [lky(2)| = 3. But then,
Lemma (1) implies that the underlying graph of any representative of Z has n
leaves. However, such a vertex z is adjacent to n F-stars whereas X is adjacent to at
most one F-star. Indeed if k + 1 = 1, the homothety class X is adjacent to exactly one
F-star obtained from X by collapsing the unique edge between the vertex with trivial
associated group (the uniqueness of this vertex follows from Lemma (1)) and the
non-leaf vertex with nontrivial associated group. If K+ 1 > 2, then X is not adjacent
to an F-star because X has at least two vertices with nontrivial associated group that
are not leaves, whereas any F-star has exactly one such vertex. As the set of F-stars is
fixed by f, we get a contradiction. O

_ So f(&) has a nontrivial negative link with no edge. Let v be the unique vertex of
X with trivial associated group given by Lemma m (1).

Claim. The underlying graph of any representative of f(X') has exactly n—k—1 leaves.

Proof. By the induction hypothesis, the automorphism f fixes all vertices of K,, whose
negative link is nontrivial and has no edges and such that the underlying graph of any
representative has at least n—k leaves. Thus, the underlying graph of any representative
of f(X) has at most n — k — 1 leaves.

Now, suppose that Z is the homothety class of a marked graph of groups Z whose
underlying graph has at most n —k — 2 leaves and such that lk_(Z) is nontrivial and has
no edge. Then lk_(Z) does not contain any homothety class of marked graphs of groups
whose underlying graph has n — k — 1 leaves. But lk_(X’) contains one such homothety
class, namely the homothety class of a marked graph of groups obtained from X by
collapsing an edge between v and a vertex that is not a leaf. As f fixes all vertices of
K, with trivial negative link and such that the underlying graph of any representative
has at least n — k — 1 leaves and as f(lk_ (X)) = lk_(f(X)), it follows that f(X) # Z.
Thus, the underlying graph of any representative of f(X') has at least n — k — 1 leaves.
Therefore the underlying graph of any representative of f(X') has exactly n—k—1 leaves.
O
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To prove that, in fact, f(X) = X, we distinguish between two cases, according to
the vertices adjacent to v. Note that, as X is connected, the vertex v is adjacent to at
least one vertex that is not a leaf.

Case 1. Suppose that v is adjacent to at least two vertices w; and wsy that are not
leaves.

For i € {1,2}, let ¢; be the edge between v and w;, and let ); be the homothety class
of the marked graph of groups Y; obtained from X by collapsing e;. Then ); and )» are
homothety classes of marked graphs of groups with trivial negative link and such that the
underlying graphs of Y7 and Y, have k 4 1 vertices with nontrivial associated group that
are not leaves. By induction hypothesis, f(J1) = V1 and f(Qh) = Va. Let p1: X - V)
and po: X — Y5 be the natural projections. In Case 1, the fact that f(X) = X is a
consequence of the following claim.

Claim. The homothety class X is the only vertex in k() n1k()%) whose negative link
is nontrivial and has no edge.

Proof. Let Z € 1k()1) n 1k()s) be such that 1k_(Z) is nontrivial and has no edge.
Assume towards a contradiction that Z # X. As ); has trivial negative link, for all
Z' € VK, such that Z’ € 1k()1), we have in fact 2’ € Ik ()). Thus, there exists a
representative Z of Z such that Z is obtained from Y; by blowing-up a forest Fy. Let Z
be the underlying graph of Z, and let plz : Z — Y1 be the natural projection.

We claim that there exists a unique edge in Fy. Indeed, otherwise there would exist
two vertices in Z with trivial associated groups. As lk_(Z) has no edge, this would
contradict Lemma (1). Thus, there exists a unique edge f € E'Fy.

Since Z € 1k()%) and since lk_(Z) is nontrivial and has no edge, Lemma [3.4.4] (1)
implies that there exists an edge g such that the homothety class of the marked graph of
groups Z/{g} obtained from Z by collapsing g is )». Let p5 : Z — Z/{g} be the natural
projection. By Remark (1), there exists a unique edge h € EZ such that pZ (h)
induces the same free factor decomposition of W,, as pa(e1). But since Z is a blow-up
of Y7 by an edge, and since Y7 is obtained from X by collapsing e, Lemma (2)
implies that pZ(h) is reduced to a point. Therefore f = h and Z is obtained from Y;
by blowing-up the edge e;. It follows that the graph Z is isomorphic to the graph X.
Thus, we can suppose that X = Z. We can also suppose, by Lemma m (2), that
g = ea. As v has trivial associated group, deg(v) > 3. If X # Z, since both X and Z
are obtained from Y; by blowing-up the edge e, there exist an integer ¢ € {0,1} and a
vertex ws € VX distinct from w; and wy and adjacent to v such that:

(1) For i € {1,2,3}, the preimage by the marking of X of the generator of the group
associated with w; is x; ;

(2) The preimage by the marking of Z of the generator of the group associated with
wy is x{@x{ and the preimage by the marking of Z of the generator of the group

associated with ws is xf“x;z,x{“.
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As pa(wy) and po(ws) are in the same connected component of pa(X) — {p2(w1)},
it follows that p(e1) and pa(eq) induces distinct free factor decompositions of W,,. This
contradicts the fact that Z/{e1} € J» by Remark (1). The claim follows. O

Case 2. Suppose that v is adjacent to only one vertex w that is not a leaf.

Let e be the edge between v and w and let )’ be the homothety class of the marked
graph of groups Y’ obtained from X by collapsing e. Let Y be the underlying graph of
Y. Let px: X — Y be the natural projection. Then, as lk_()) is trivial and as )’ has
a representative whose underlying graph has n — k — 1 leaves, by induction hypothesis,
we see that f()') = )'. So f(X) € 1k()’). Thus a representative Z of f(X) is obtained
from Y’ by blowing-up a forest Fy € EZ. As lk_(f(X)) has no edge, the forest Fy
contains a unique edge ¢/. Let Z be the underlying graph of Z, and pz: Z — Y be the
canonical projection.

Suppose towards a contradiction that f(X) # X. By the claim above Case 1, the
underlying graph of any representative of f(X’) has exactly n — k — 1 leaves. Therefore
none of the two endpoints of ¢’ is a leaf. Thus, as one of the endpoints of €’ has trivial
associated group, there exists a vertex a € VY’ such that deg(a) = 3 and such that ¢
collapses onto a. As )’ has trivial negative link, we see that the group associated with a
is nontrivial. Let y; be the preimage by the marking of Y’ of the generator of the group
associated with a. Let @ be the lift of @ in Z such that @ has nontrivial associated group.
Then y; is the preimage by the marking of Z of the generator of the group associated
with @. Let b be the endpoint of ¢’ distinct from & (see Figure . As Z/{e'} € V', the
vertex b has trivial associated group and deg(z) > 3. Moreover, by the previous case,
the vertex b cannot be adjacent to two vertices that are not leaves.

Suppose first that Z is not a blow-up of Y’ at px(e). This implies that p)_(l (a) is a
vertex.

As b is not adjacent to two vertices that are not leaves, there exist two distinct
leaves wi and wg of Y’ adjacent to a such that w; and wy have lifts @; and @y in Z with
nontrivial associated group that are adjacent to b. Let y; and y; be the preimages by the
marking of Y’ of the groups associated with w; and wy. Then there exist o, ay, € {0,1}
such that yza J yjy?j and y;*yry;"* are the preimages by the marking of Z of the groups
associated with wy and ws.

Let Z{ be the homothety class of the marked graph of groups Z] defined as follows
(see Figure [3.8)):

e The underlying graph of Z] is obtained from Y by pulling-up an edge h at a so
that one of the two endpoints of h is a leaf. Let p’: 7’1 — Y be the projection. Let x be
a vertex of the underlying graph of Z]. Remark that, as ws is a leaf, p'~!(wy) is a leaf.

o If z is distinct from p'~!(wq) and is such that p/(z) # a, then the group associated
with z in Z] is the same one as the group associated with p’(x).

o If p/(x) = a and if x is a leaf, then the group associated with z is the same one as
the group associated with a.

o If p(x) = a and if = is not a leaf, then x has trivial associated group.
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Figure 3.8: The construction of Z{ in Lemma when px(e) # a.

e Finally, the preimage by the marking of Z] of the generator of the group associated
with p'~!(ws) is yfkﬂykyf’“ﬂ.
By the induction hypothesis, Z] is fixed by f. What is more, dlk(y/)(é\,’ , Z1) = 2. Indeed,
a common refinement of X and Z] is obtained from X by pulling-up the edge h at p}l (a)

(this is possible since px(e) # a).
Claim. In k()"), we have djy) (2, 21) > 2.

Proof. Since both Z and Z| have nontrivial negative link with no edge, we see by
Lemma (1) that [VZ| = |[VZ)|. As both Z and Z are trees, we have |EZ| = |EZ)|.
Thus, as Z # 27, we have dy (2, 2]) > 1. As )’ has trivial negative link, the only way
dik(yy(Z2, 21) = 2 is that Z and Z] have a common refinement. Let z be the leaf of Z
such that p’(z) = a. Then p’~!(w;) and p'~!(ws) are in the same connected component

of 7’1 —{z}. Let Z{Q) be a refinement of Z7, and let yEQ), .. ,yT(f) be the preimages by the

marking of ZEQ) of the generators of the nontrivial vertex groups of Z£2). Suppose that,

for all m € {1,...,n}, there exists a,, € {0, 1} such that yg) =y ymy; ™ and that there
exist mg and m; such that a,,, = 0 and a,,, = 1. Since the preimage by the marking
of the generator of the group associated with z is v;, we see that Z§2) is obtained from
Z1 by blowing-up a forest and applying a twist at an edge whose terminal point is z.
As a consequence, since p'~!(w;) and p'~!(ws) are in the same connected component
of 7; — {2z}, there does not exist a refinement of Z] such that the preimages by the
marking of the generator of the group associated with lifts of p’ ! (w1) and p'~!(ws) are
respectively yfé I yjy?j and y; *yry;*. Thus, Z and Z] do not have any common refinement

and dlk(y’) (Z, Z{) > 2. O

Since di( ¢y (f(X), f(2])) = diyry (X, Z1) = 2, the last claim implies that f(X) =
X when px(e) # a.

Suppose now that px(e) = a. Then, as [Ik_(X)| = |lk_(f(X))], and as X and Z
both have a unique vertex with trivial associated group by Lemma (1) (namely v
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Figure 3.9: The construction of Z) in Lemma in Case (7).

and b), we see that deg(v) = deg(b) = m. Moreover, both v and b are adjacent to a
unique vertex that is not a leaf (namely w and @). Thus, both v and b are adjacent to
exactly m — 1 leaves. Note that, as v and b have trivial associated group, m —1 = 2.
Let vi,...,Um_ -1 be the leaves of X adjacent to v, and let bl, .. bm 1 be the leaves of
A adjacent to b. For jef{l,. — 1}, let yj be the preimage by the marking of the
generator of the group associated with v; and let y] be the preimage by the marking
of the generator of the group associated with gj. As we suppose that X # Z, up to
reordering and composing by an inner automorphism, one of the following holds.

(i) There exist j,k € {1,...,m — 1} distinct such that y]X = yiyjzyi and y;¥ = yZ (see
Figure [3.9).

(1) There exist j,k € {1,...,m — 1} distinct and a leaf G adjacent to @ such that
y]X = ylyJZ y; and such that the preimage by the marking of the generator of the group
associated with ay, is yg{ . Moreover, there exists a leaf wg in X adjacent to w such that
the preimage by the marking of the generator of the group associated with wy is y,f (see
Figure [3.10)).

(i13) There exist j,¢ € {1,...,m — 1} distinct and a leaf @; adjacent to @ such that
yg( = WZ and such that the preimage by the marking of the generator of the group
associated with @; is yJX (see Figure .

(iv) Forall j € {1,...,m—1}, there exists a leaf @; adjacent to @ such that the preimage
by the marking of the generator of the group associated with a; is yJX .

We then distinguish two cases, according to whether yJX = yzy]Z ; or not.

Suppose first that yJ = yly] y; (Cases (i) and (ii)). Let ZJ be the homothety class
of the marked graph of groups Z!, defined as follows (see Figures m 3.9/ and [3.10 -

e The underlying graph 7. o of Z} is obtained from Y by blowing-up an edge h at a
so that one of the two endpoints of h is a leaf. Let p': 7’2 — Y be the projection. Let x
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Figure 3.10: The construction of Z} in Lemma in Case (i7).

be a vertex of the underlying graph of Zj. Let y be the preimage by the marking of the
generator of the group associated with p’(x).

o If p/(z) # a orif p’(x) = a and x is a leaf, then the preimage by the marking of ZJ
of the generator of the group associated with x is y.

e If p'(x) = a and x is not a leaf, then x has trivial associated group.
By the induction hypothesis, as 712 has k vertices with nontrivial associated vertex groups
that are not leaves, the homothety class ZJ is fixed by f. What is more, dlk(y’)(X ,2h) =
2. Indeed, a common refinement of Z and ZJ is obtained from X by blowing-up the edge
h at the vertex w of p}l(a) with nontrivial associated group.

Claim. In 1k()'), we have dy (2, 25) > 2.

Proof. Since both Z and Z) have nontrivial negative link with no edge, we see by
Lemma (1) that |[VZ| = |VZ/2|. As both Z and 712 are trees, we have |EZ| = |E712|
Thus, as Z # Z5, we have diy)(2,23) > 1. As )’ has trivial negative link, the only
way di(y (2, 25) = 2 is that Z and Z3 have a common refinement. Let 2 be the leaf of
7’2 such that p'(z) = a. Then the preimage by the marking of the group associated with
z is {yi).

(2 / —(2) 1 . . (2) (2)

Let Z5” be a refinement of 73, let Z5 "’ be its underlying graph and let ;. ..., yn

be the preimages by the marking of Zéz) of the generators of the nontrivial vertex groups

of Z§2). Since both Z and Z/ are obtained from Y’ by blowing-up an edge at a while
applying a twist around an edge adjacent to a, a potential common refinement of Z and
Z} is obtained from Y’ by blowing-up a forest while applying a twist around an edge
adjacent to a. Thus, we may assume that, for all m € {1,...,n}, there exists a,, € {0, 1}

Qm Qam

such that yg) =Y " YmY;
Suppose first that y;X = yZ (Case (i)). Let ¥; and ¥, be the lifts in 7%2) of respectively

' Hpx(v;)) and p' "1 (px(vr)) with nontrivial associated group. Since p'~!(px(v;)) and
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P~ Hpx(vi)) are contained in the same connected component of 7’2 — {z}, there exists

a € {0, 1} such that the preimages by the marking of Zéz) of the generators of the groups
associated with 7; and v}, are respectively yf‘y]X yi and yf‘y,f y*. As a consequence,
there does not exist a refinement of Z} such that the preimages by the marking of the
generators of the groups associated with the lifts of p'~!(px(v;)) and p'~!(px (vg)) with
nontrivial associated groups are respectively yly]X y; and y,f Thus, Z and Z} do not
have any common refinement and dyyn)(Z, Z25) > 2.

Suppose now that there exists a leaf wg in X adjacent to w such that the preimage by

the marking of the generator of the group associated with wy is yZ (Case (ii)). Let ¥}, U
and Wy be the lifts in 7&2) of respectively p'~1(px (v;)), P~H{px(vk)) and p'~(px(wo))
with nontrivial associated group. Since p' ! (px(v;)), P ' (px (vk)) and p'~!(px (wp)) are
contained in the same connected component of Z, — {z}, there exists o € {0, 1} such that

the preimages by the marking of ZéQ) of the generators of the groups associated with
¥; and 7, are respectively yf‘yJX TR yf‘y,‘f yi* and yf‘ykZ y. As a consequence, there does
not exist a refinement of Z) such that the preimages by the marking of the generators
of the groups associated with the lifts of p'~}(px(v;)), P (px (vk)) and p'~1(px(wo))
with nontrivial associated groups are respectively yiyJX Yi, y,i( and y,f . Thus, Z and Z}

do not have any common refinement and dj(y)(Z, Z3) > 2. O

Suppose now that ij # yiijyi (Cases (4i7) and (iv)). Then there exists a leaf @;
adjacent to @ such that the preimage by the marking of the generator of the group
associated with a; is y]X. Let aj = p(a;). Moreover, as Z # X, either there exists
(e {1,...,m — 1} such that either y7 = y;y;y; (Case (ii)) or y7 = y;* (Case (iii)) or
there exist £ € {1,...,m—1}—{j} and a leaf &, of Z adjacent to & such that the preimage
by the marking of the generator of the group associated with @, is yg( (Case (iv)). By
the claim above (see Case (ii)), we can suppose that yZ # y;y; y;.

Let Z4 be the homothety class of the marked graph of groups Z4 defined as follows
(see Figure with y* = y7):

e The underlying graph 7;, of Z4 is obtained from Y by blowing-up an edge h at a
so that one of the two endpoints of h is a leaf. Let p': 7& — Y be the projection. Let x
be a vertex of the underlying graph of Z5. Let y be the preimage by the marking of the
generator of the group associated with p’(x).

o If p(x) # a,a; or if p/(x) = a and z is a leaf, then the preimage by the marking of
Z!% of the generator of the group associated with z is y.

e If p'(x) = a and x is not a leaf, then x has trivial associated group.

o If p’(z) = aj, then z is a leaf. Moreover, the preimage by the marking of Zj of the
generator of the group associated with z is yZyJX Ui

Since Z4 has one less vertex with nontrivial associated group which is not a leaf, by the
induction hypothesis, Z3 is fixed by f. What is more, dyy(Z,23) = 2. Indeed, a
common refinement of Z and Zj is obtained from Z by blowing-up the edge h at the
vertex of p~!(a) with nontrivial associated group.

Claim. In 1k()"), we have dy (X, Z5) > 2.
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Figure 3.11: The construction of Z4 in Lemma in the case yz?( = yZZ .

Proof. The proof is identical for Cases (ii¢) and (iv). Since both X’ and Z4} have nontrivial
negative link with no edge we see by Lemma (1) that |[VX]| = |V7;)|. As both X
and Zy are trees, we have |[EX| = |EZs|. Thus, as X # Z4, we have di(yny (X, Z3) > 1.
As )’ has trivial negative link, the only way that dyy» (X, 23) = 2 is that X and Z3
have a common refinement. Let z be the leaf of 73 such that p'(z) = a. Then the
preimage by the marking of the group associated with z is {(y;).

Let Z:SQ) be a refinement of Zj, let 7%2) be its underlying graph and let y§2)’ ey yg)

be the preimages by the marking of Z§2) of the generators of the nontrivial vertex groups

of Z?EQ). Since both Z and Z§ are obtained from Y’ by blowing-up an edge at a while
applying a twist around an edge adjacent to a, a potential common refinement of Z and
Z! is obtained from Y’ by blowing-up a forest while applying a twist around an edge
adjacent to a. Thus, we may assume that, for all m € {1,...,n}, there exists a,, € {0,1}
such that y,(g) =y ymy; ™. Let ¥; and Uy be the lifts in 7&2) of respectively p'~1 (px (v;))
and p'~!(px(v¢)) with nontrivial associated group. Since p'~(px(v;)) and p'~(px (ve))
are contained in the same connected component of Z4 — {2}, there exists a € {0, 1} such

that the preimages by the marking of Z:gz) of the generators of the groups associated
with ¥ and ¥y are respectively yf‘HyJX yf‘“ and yiayg( y. As a consequence, there does
not exist a refinement Zy of Z4 such that the preimages by the marking of the generators
of the groups associated with the lifts of p'~*(px (v;)) and p'~!(px (v¢)) with nontrivial
associated groups are respectively y]X and yf . Thus, X and Z4 do not have any common

refinement and dyyn (X, 23) > 2. O

Since di( ) (f(X), f(23)) = diy (X, 23) = 2, the two claims imply that f(X) =
X.

We now prove that f())) = ). Let v; be a vertex of Y that is adjacent to at least
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Figure 3.12: The constructions of Y/ and Z’ in Lemma

one leaf. Let vg,..., vy be the leaves adjacent to v; and, for ¢ € {1,...,¢}, let y; be the
preimage by the marking of the generator of the group associated with v;. Let )’ be the
equivalence class of the marked graph of groups Y’ defined as follows (see Figure :

e The underlying graph Y’ of Y’ is obtained from Y by blowing-up an edge e; at vy
such that one of the endpoint of e is a leaf. Let p: Y/ — Y be the natural projection.
Let x be a vertex of ?’, and let y be the preimage by the marking of the generator of
the group associated with p(z).

o If p(x) # vy or if p(z) = v; and x is a leaf, then the preimage by the marking of
Y’ of the generator of the group associated with z is y.

o If p(z) = v; and x is not a leaf, then vy has trivial associated group.

By the previous step, as Y’ has k vertices with nontrivial associated groups that are not
leaves, and as lk_()) is nontrivial and has no edge, we see that f()’) = )'. By the
second claim in the proof of Lemma the negative link of f()') is nontrivial and
has no edge. Therefore, f preserves the negative link of )’ and f(Y) € lk_()’). Let w
be the endpoint of e; with trivial associated group. For i € {1,...,¢}, let ¥; be the leaf
of Y’ which lifts v;. Let €, ...,¢ep be the edges of Y such that for all i € {2,...,¢}, the
endpoints of e; are vU; and w.

We claim that there exists a unique 7 € {1,..., ¢} such that a representative of f())
is obtained from Y’ by contracting e;. Indeed, as lk_()”') is nontrivial and has no edge,
Lemma (1) implies that Y has exactly one vertex with trivial associated group,
namely w. Therefore, a representative of f())) is obtained from Y’ by contracting a
unique edge adjacent to w.

Suppose towards a contradiction that there exists an edge e in Y' between w and a
vertex w’ with nontrivial associated group that is not a leaf and such that a representative
of f(Y) is obtained from Y’ by collapsing ep. Let y; be the preimage by the marking of
Y’ of the generator of the group associated with w’. Let Zj be the homothety class of the
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marked graph of groups obtained from Y’ by contracting eg. By induction hypothesis,
f(20) = Zo. Thus f(Y) # Zo.

Thus, there exists a unique ¢ € {1,. .., ¢} such that a representative of f()) is obtained
from Y’ by contracting e;. We claim that 7 = 1. Indeed, for i # 1, let Z be the equivalence
class of the marked graph of groups Z obtained from Y’ by collapsing e;. Let Z’ be the
equivalence class of the marked graph of groups Z’' whose underlying graph is Y and
such that the preimage by the markings of the generators of the groups associated with
V1y.vyVp ATE Y1y -y Yio1, Y1YiY1, Yit1,s - - - » Yo Then Z' € 1k (Y) because Z' is obtained
from Y first by precomposing the marking of Y by the automorphism which sends y; to
y1y;y1 and fixes all the other y; and then blowing-up an edge at v; such that one of the
endpoints of this edge is a leaf and then. However, Z’ ¢ Ik(Z) because the vertex of Z
whose preimage by the marking of the associated group is {y;) is a leaf. Therefore there
is no refinement of Z such that there exist two vertex groups of the refinement such
that the preimage by the marking of the generators of the vertex groups are respectively
y1yiy1 and yi. As f(Z') = Z’ by the previous step, we have f()) € 1k(Z’). Therefore,
f) # Z and () = V. 0

We can now show the injectivity of the homomorphism Aut(k,) — Aut(L,).

Proposition 3.4.10. Let n > 4. Let f € Aut(K,,) such that f|o, =ido, and f|r, = idp,.
Then f =idg, .

Proof. Let k € N and let X € VK, be such that the underlying graph X of a representa-
tive X of X has exactly k vertices with trivial associated group. We prove by induction
on k that f(X) = X. If k =0, then X has trivial negative link. Thus, by Lemma
we have f(X) = X.

Suppose now that £ > 1. Then, as any representative of an element of lk_(&X') is
obtained from X by collapsing at least an edge, by the induction hypothesis, we have
fhi_xy = idfi_(x) and k_(f(X)) = Ik_(X).

Suppose towards a contradiction that f(X) # X. Let Y be a representative of f(X),
and let Y be the underlying graph of Y. By the induction hypothesis, Y has at least k
vertices with trivial associated group. Since X # f(X), there exists an edge e € EY such
that the free factor decomposition of W, induced by e is distinct from the free factor
decomposition induced by any edge of X. Let Z € Ik_(X). Let Z be a representative
of Z obtained from X by collapsing a forest, and let Z be the underlying graph of Z.
By Remark (1), for any edge f € EZ, there exists an edge fe EX such that the
free factor decomposition induced by f is the same one as the free factor decomposition
induced by f Thus, there does not exist any edge of Z which induces, up to global
conjugation, the same free factor decomposition of W,, as e. But, for any edge f of Y,
there exists Z’' € 1k_()), a representative Z’' of Z’ with underlying graph 7' and an
edge g of 7' such that the free factor decomposition induced by e is the same as the
one induced by ¢ (Z is obtained from Y by contracting an edge distinct from f). This
contradicts the fact that Ik_(f(X)) = lk_(&). Thus f(X) = & and f =idk,,. O
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Proof of Theorem Let n > 4. The injectivity is immediate since the homomor-
phism Out(W,,) — Aut(L,) is injective by Theorem and since L, is a subgraph
of K,. We now prove surjectivity. Let f € Aut(K,). By Proposition the auto-
morphism f induces an automorphism f € Aut(L,,). By Theorem f is induced by
an element v € Out(W,,). Since the homomorphism Aut(K,) — Aut(L,) is injective by
Proposition f is induced by ~. This concludes the proof. O

3.5 Rigidity of the simplicial completion of K,

Let n > 4. A splitting of W, is a minimal, simplicial W,,-action on a simplicial tree S
and such that:

(1) The finite graph W,\S is not empty and not reduced to a point.
(2) Vertices of S with trivial stabilizer have degree at least 3.

Here minimal means that W,, does not preserve any proper subtree of S. A splitting
S of W, is free if all edge stabilizers are trivial. A splitting S’ is a blow-up, or equivalently
a refinement, of a splitting S if S is obtained from S’ by collapsing some edge orbits
in §’. Two splittings are compatible if they have a common refinement. If & > 1 is
an integer, a free splitting S is a k-edge free splitting if W,\S has exactly k edges. An
F-one-edge free splitting is a one-edge free splitting S such that one of the vertex groups
of W,\S is isomorphic to W, while the other vertex group is isomorphic to F'.

The simplicial completion of K,,, denoted by K, is the flag complex such that:

e The vertices of K, are the equivalence classes of free splittings of W,,, where two
free splittings S and S’ are equivalent if there exists a W,,-equivariant homeomorphism
between them.

e Two equivalence classes of free splittings S and S’ are adjacent in K, if there exist
S e S and S’ € 8 such that S refines S’ or conversely.

In the literature, this complex is also called the free splitting complexr. The free
splitting complex appears as well in the study of the outer automorphism group of
a free group of finite rank and more generally in the study of the outer automorphism
group of a free product of groups (see [AS| [HaM3| [HaM?2]). In particular, Handel-Mosher
([HaM3l, [HaM2]) in the case of Out(Fy) and Handel-Mosher and Horbez ([HaM3| [Hor2])
in the case of the outer automorphism group of a free product of groups proved that this
complex is Gromov hyperbolic.

We have a canonical injective homomorphism K, < K, defined as follows. Let
X € VK, be the equivalence class of a marked graph of groups, and let X be a represen-
tative of X'. Let S be a Bass-Serre tree corresponding to X, and let S be the equivalence
class of S. Then the map
o : K, K,
X S

—
—
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is a well-defined injective homomorphism. From now on, we identify K, with its image
in K,,.

The group Aut(W,,) acts on K, by precomposition of the action. For any a € Inn(W,,)
and for any S € K, we have a(S) = S. Therefore the action of Aut(W,,) induces an
action of Out(W),,).

In this section, we prove Theorem In order to do so, we first show that
any automorphism of K, preserves K,. Thus, we have a restriction homomorphism
Aut(K,) — Aut(K,) which, as we will see, turns out to be injective. Theorem
then follows from Theorem B.1.1]

We first characterise the vertices of K,, in K.

Proposition 3.5.1. Let n > 4. Let S € VK,. IfSc¢ VE,, then S has finite valence in
K, IfSeVK, —VK,, then S has infinite valence in K,,.

Proof. Suppose that S € VK, and let &’ € Ik(S). Let S and S’ be representatives of S
and §'. If S refines S’, then W,,\\S’ is obtained from W;,,\\S by collapsing a forest. Since
W,\S is a finite tree, there are only finitely many possibilities for W,,\S’, hence finitely
many possibilities for S’. If S’ refines S, then, since S € K,,, the equivalence class S’
also belongs to K. Thus, we have &' € kX" (S) where kX" (S) is the positive link of S
in K. Since lkf" (S) is finite, there are only finitely many possibilities for S’. Hence
1k(S) is finite.

Now suppose that S € VK, — VK,. Let S be a representative of S. Since we have
S € VK, — VK,, there exists a vertex of S whose stabilizer contains a subgroup G
of W,, isomorphic to Ws. Since Aut(Ws) is isomorphic to W (see e.g. [Tho, Lemma
1.4.2]), we see that Stab(S) is infinite by Proposition Moreover, we claim that
there exists 8’ € 1k(S) "V K,,. Indeed, let v be a vertex of W,\S whose associated group
is isomorphic to W; with ¢ > 2. then one can construct an element T € K; and then
blow-up T" at v. The equivalence class of the result is an element in 1k(S). Applying the

process to every vertex of W, \S with infinite associated vertex group gives an element
S € 1k(8) nVK,. As Stab(S) acts on 1k(S), the orbit of &’ under the action of Stab(S)
is infinite (recall that Stab(S’) is finite by Proposition |3.2.1). Thus 1k(S) is infinite. O

Thus, Proposition tells us that any automorphism of K, preserves K,. This
gives a restriction homomorphism

Aut(K,) — Aut(K,).

In the rest of the section, we prove that this homomorphism is injective. In order to
show this, we first prove that any automorphism of K, which fixes K,, pointwise also
fixes the set of one-edge free splittings pointwise. We will then conclude by the following
proposition, due to Scott and Swarup.

Theorem 3.5.2. [SS, Theorem 2.5] Let n = 4. Any set {Si,...,Si} of pairwise distinct,
pairwise compatible, one-edge free splittings of W, has a unique refinement S such that
Wo\S has exactly k edges. If S is a free splitting such that W,\S has exactly k edges,
then S refines exactly k distinct one-edge free splittings.
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The next lemma is inspired by [HW1, Lemma 2.3] due to Horbez and Wade.
Lemma 3.5.3. Let n > 4. For all S € VK, the following assertions are equivalent.
(1) There exists S € S such that S is an F-one-edge free splitting.
(2) The equivalence class S satisfies the following properties.

(a) The link of S is infinite.
(b) There exists a {0}-star X such that X € 1k(S).

(¢) There exist S1,Ss € 1k(S) such that d (S1,82) = 2 and such that $; —S —S»
is the unique path of length 2 joining &1 and So.

Proof. We first prove that (1) implies (2). Let S € S be an F-one-edge free split-
ting. Then S ¢ VK,, and Proposition implies that 1k(S) is infinite, which proves
Property (a).

In order to prove Property (b), let

Wy ={x1, ... Xp_1) = {Tp)

be the free factor decomposition of W, induced by S. Let X be the {0}-star such that,
if wy,...,w, are the leaves of X, and if i € {1,...,n}, then the stabilizer of w; is {(z;).
Let X be the equivalence class of X. Then X € 1k(S).
In order to prove Property (c), let S; be the 2-edge free splitting induced by the
decomposition
Wy ={x1,m0) % {x3, ..., 0pn_1) *{Tp),

where the preimage by the marking of the group associated with the central vertex of
Wp\S1is{z3...,2n—1). Let Sy be the 2-edge free splitting induced by the decomposition

Wn = <$17x3> * <.’I,'2,§'§, coe 7$n—1> * <xn>7

where the preimage by the marking of the group associated with the central vertex of
Wip\S2 is (@2, T3,...,xy_1). Forie {1,2}, let S; be the equivalence class of S;. Then
851,82 € 1k(S). Moreover, the equivalence classes S; and Sy are not adjacent in K,
since both S; and S are 2-edge free splittings, thus, there does not exist i € {1,2},
Jj € {1,2} — {i} such that S; collapses onto S;. So di (S1,82) = 2.

Claim. Let 7 € VK, be such that S; — T — Sy is a path of length 2 joining S; and Ss.
Then S = 7.

Proof. Suppose towards a contradiction that there exists a representative T of T such
that T is a common refinement of S and Sa. For i € {1,...,n}, let v; be the only vertex
of T fixed by x;. Note that, for ¢ # j, the vertices v; and v; may not be distinct. Since
T refines S1, for every edge e € E'T, one of the following holds:

e the vertices v1, vy and vz belong to the same connected component of T' — {é},

¢ the vertices v; and va belong to a connected component of 7' — {é} distinct from the
one that contains vs,
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e there exist i € {1,2} and j € {1,2} — {i} such that v; is in a connected component of
T — {é} distinct from the one containing v;, vz and v,.

But if T refines Ss, there exists e € ET such that v; and vs belong to a connected
component of 7' — {é} distinct from the one that contains ve and wv,. This leads to a
contradiction.

Thus, there exists a representative T of T such that both S; and Sy collapse to T
As S is the only such one-edge free splitting, the claim follows. O

We now prove that (2) implies (1). Suppose that S satisfies the properties of Asser-
tion (2) of the lemma.

Claim. Property (c¢) implies that S has a representative S that is either a one-edge free
splitting or is such that there is no free splitting of W,, that properly refines S.

Proof. Let S; and Sz be as in Property (c), and, for i € {1,2}, let S; be a representative
of ;. Let S be a representative of S. There are three cases to distinguish.

o If S refines Sy and if Sy refines S, then Sy refines S, so that dg (81,82) < 1. This
leads to a contradiction.

e If S refines both S; and Sy, then there does not exist any proper refinement of S
as this would contradict the uniqueness of the path of length 2 between S; and So.

e If S is refined by both S; and Sy, then S is a one-edge free splitting as otherwise
there would exist a splitting S’ that is properly refined by S. This would contradict
the uniqueness of the path.

The claim follows. O

Since a free splitting which has no proper refinement is in K,, the above claim,
Property (a) and Proposition imply that S is a one-edge free splitting. Property (b)
implies in fact that .S is an F-one-edge free splitting as the F-one-edge-free splittings are
the only one-edge free splittings that are adjacent to a {0}-star. The lemma follows. [J

Lemma 3.5.4. Let n > 4. Let f € Aut(K,) be such that f|p, = idy,. Let S be the
equivalence class of an F-one-edge free splitting S. Then f(S) =S.

Proof. As f € Aut(K,), Corollary and Lemmas [3.5.1 and |3.5.3| imply that f(S) is

the equivalence class of an F-one-edge free splitting S’. Let
Wy, ={x1, ..., &n_1) x{Tp)

be the free factor decomposition of W,, induced by S. Let X be the equivalence class of
the F-star X represented in Figure [3.13] on the left.

Since f(X) = X, the free splitting S’ is an F-one-edge free splitting obtained from
X by collapsing n — 1 edges. But if T is an F-one-edge free splitting obtained from
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Figure 3.13: The F-stars X and X’ of the proof of Lemma m

X by collapsing n — 1 edges, then there exists i € {1,...,n} such that the free factor
decomposition of W, induced by T is

Wn:<x1,...,:?i,...,:z:n>*<xi>.

For i € {1,...,n}, we will denote by T; the F-one-edge free splitting with associated
free factor decomposition {(x1,...,Z;, ..., 2 *{(z;), and by T; its equivalence class. For
1 # n, the free splitting T; is a collapse of the F-star X’ depicted in Figure on the
right, whereas S is not a collapse of X'.

Let X’ be the equivalence class of X’. Since f(X’) = X', we have that f(S) is not
adjacent to X’. But, for all i # n, the equivalence class 7; is adjacent to X’. Thus, for
all ¢ # n, we have f(S) # 7;. Therefore, as S = T,,, we conclude that f(S) =S. O

Proof of Theorem [3.1.2l. By Proposition there exists a homomorphism
Aut(K,) — Aut(K,)

induced by the restriction to K,. In order to prove Theorem [3.1.2] it suffices to prove
that this homomorphism is injective. Let f € Aut(K,) be such that f|g, = idg,. Let
us prove that f = id. By Theorem [3.5.2] it suffices to prove that, for any equivalence
class S of a one-edge free splitting S, we have f(S) = S. Indeed, let S be the equivalence
class of a free splitting. Then, by Theorem there exist k one-edge free splittings
S1,...,Sk such that S is the unique vertex of K,, such that, for all i € {1,...,k}, S is
adjacent to S;. Thus, if, for any equivalence class S of a one-edge free splitting S, we
have f(S) = S, then f = id.

Suppose that S is the equivalence class of a one-edge free splitting S. The case where
S is an F-one-edge free splitting was proved in Lemma If S is not an F-one-edge
free splitting, let W,, = (x1,...,xk) * {Tg41,...,Tny be the free factor decomposition of
W, induced by S, with 2 < k < n — 2. Let X be the free splitting of W,, depicted in
Figure [3.14] and let & be its equivalence class.

Then X € VK,, so f(X) = X. As S € lk(X), we also have that f(S) € 1k(X).
Moreover, f(S) ¢ V K,, by Proposition m Thus, a representative of f(S) is obtained
from X by collapsing a forest F.

Claim. Any splitting S’ distinct from S and obtained from X by collapsing a forest is
either an F-one-edge free splitting or is adjacent to an F-one-edge free splitting.
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Figure 3.14: The free splitting X of the proof of Theorem

Proof. If S” # S is obtained from X by collapsing a forest, and if S’ is not an F-one-edge
free splitting, there exists an edge e € V(W,\S’) such that e is adjacent to a leaf. This
edge determines an F-one-edge free splitting adjacent to S’. O

Thus, by Lemma any equivalence class S8’ € lk_(X) is determined by the
equivalence classes of F-one edge free splittings that are adjacent to S’. Therefore we
have f(S) = S and the equivalence class of any one-edge free splitting is fixed by f.
Theorem then implies that f = id. This concludes the proof of Theorem O
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Chapitre 4

Commensurations of the outer
automorphism group of a universal
Coxeter group

4.1 Introduction

Given a group G, the abstract commensurator of G, denoted by Comm(G), is the group
of equivalence classes of isomorphisms between finite index subgroups of G. Two such
isomorphisms are equivalent if they agree on some common finite index subgroup of
their domain. Note that every automorphism of G induces an element of Comm(G),
and in particular the action of G on itself by global conjugation gives a homomorphism
G — Comm(G).

The abstract commensurator of G captures a notion of symmetry for the group that
is weaker than its group of automorphisms. For instance, the abstract commensurator
of Z™ is isomorphic to GL(m, Q) while the abstract commensurator of a nonabelian free
group is not finitely generated (see [BB]). However, some groups satisfy strong rigidity
properties and the group Comm(G) is then not much larger than Aut(G) or G itself.
For instance, the Mostow-Prasad-Margulis rigidity theorem and Margulis arithmeticity
theorem (see for instance [Zim|) imply that if I" is a lattice in a connected noncompact
simple Lie group G with trivial center, and if G # PSL(2,R), then T is a finite index
subgroup of Comm(T") if and only if T is not arithmetic, otherwise Comm(T") is dense in G.
In the case of the extended mapping class group of a connected orientable closed surface
Sy of genus g at least 3, we have an even stronger result due to Ivanov [Iva2] since the
natural homomorphism Mod*(S,) — Comm(Mod* (S,)) is an isomorphism. This result
also extends to the case of the mapping class group of a connected orientable surface with
genus equal to 2 and with at least two boundary components. In the context of the outer
automorphism group of a free group Fy of rank N, Farb and Handel ([FarH]) proved
that, for N > 4, the natural map from Out(Fy) to Comm(Out(Fy)) is an isomorphism
and that every isomorphism between two finite index subgroups of Out(Fy) extends



to an inner automorphism of Out(Fy). This result was later extended by Horbez and
Wade ([HW2]) to the case N = 3 using a more geometric approach. Their techniques also
enabled them to compute the abstract commensurator of many interesting subgroups of
Out(Fy), like its Torelli subgroup. These rigidity results have been extended to other
groups, such as handlebody groups ([Hen]) and big mapping class groups ([BDRI).

In this article, we are interested in the outer automorphism group of a universal
Coxeter group. Let n be an integer greater than 1. Let F' = Z/2Z be a cyclic group of
order 2 and W,, = %, F' be a universal Coxeter group of rank n, that is a free product
of n copies of F. We prove the following theorem.

Theorem 4.1.1. Let n = 5. The natural homomorphism
Out(W,,) —» Comm(Out(W,))
s an isomorphism.

The group Out(Ws) is finite and the group Out(W3) is isomorphic to PGL(2,Z).
This gives an almost complete classification except for n = 4, where our proof for n = 5
cannot be immediately adapted to this case as Out(WW4) does not contain any direct
product of two nonabelian free groups. Hence the case n = 4 remains open. One
step towards the understanding of Out(Wy) is given in [Guel], where we proved that
Out(WWy) has a nontrivial outer automorphism. The conclusion of Theorem will
therefore not be true if one can prove that this outer automorphism remains not trivial
for every finite index subgroup of Out(W,,). Theorem is a major improvement of
[Guell, Théoreme 1.1] which states that, for n > 5, the only automorphisms of Out(W,,)
are the global conjugations. In turn, Theorem implies that every isomorphism
between two finite index subgroups of Out(W,,) is given by a conjugation by an element
of Out(W,,). The proof of the present Theorem significantly differs from the one
of [Guell, Théoreme 1.1] since the proof of [Guell, Théoreme 1.1] is based on the study
of torsion subgroups of Out(W),,), whereas Out(W,,) is virtually torsion free (see [GuLll
Corollary 5.5]).

Our proof of Theorem [4.1.1]is inspired by the proof of the similar result in the context
of Out(Fy) given by Horbez and Wade ([HW2]). However, new ideas are required in
this situation. Indeed, to our knowledge, there is no way to compute the abstract
commensurator of Out(W,,) by identifying it with a subgroup of Out(Fy). Moreover,
the study of the restriction of automorphisms of W,, to some finite index nonabelian free
subgroup of W, is not sufficient to understand the abstract commensurator of Out(1¥,,),
as it does not give informations about finite index subgroups of Out(W,,). Finally, the
proof of Horbez and Wade relies extensively on the possibility of writing a free group
as an HNN extension, which is not possible in a universal Coxeter group. Instead, we
use the fact that W, can be written as a free product W,, = A * B, where B is a finite
abelian subgroup of W,,.

We now sketch our proof of Theorem [4.1.1] Following a strategy that dates back
to Ivanov’s work ([Iva2]), we study the action of Out(W,,) on various graphs which are
rigid, that is, every graph automorphism is induced by an element of Out(W,,). These
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graphs include the spine K, of the Outer space of W,, as defined by Guirardel and Levitt
in [Gul.l], generalizing Culler and Vogtmann’s Outer space of a free group ([CV]), or
the free splitting graph K, of W,, (see [Gue2, Theorem 1.1 and 1.2] and Sectionfor
definitions). The proof of Theorem relies on the action of Out(W),,) on a subset of
the vertices of K, called the set of Wy-stars. Let k€ {0,...,n — 1}. A Wy-star is a free
splitting S of W), such that the underlying graph of the induced graph of groups W,\S
is a tree with n — k edges, such that the degree of one of the vertices, called the center, is
equal to n — k, and such that the group associated with the center is isomorphic to Wy
and the groups associated with the leaves are all isomorphic to F'. The Wy-stars are the
analogue for W, of the roses in the Outer space of a free group. They play a significant
role in the proof of other rigidity results for Out(W,,) (see [Guell, [Gue2]).

This allows us to introduce a graph called the graph of one-edge compatible Wy, _o-
stars, and denoted by X,. It is defined as follows: vertices are W,,-equivariant homeo-
morphism classes of W,,_o-stars, where two vertices S and S’ are adjacent if there exist
S € S and S € & such that S and S’ have both a common refinement and a common
collapse. We prove the following result.

Theorem 4.1.2. Let n = 5. The natural homomorphism
Out(W,,) — Aut(X,)
s an isomorphism.

Our proof of Theorem requires the rigidity of another graph, called the graph
of We-stars, and denoted by X,. It is the graph whose vertices are the W,,-equivariant
homeomorphism classes of Wy-stars with k varying in {0,...,n — 2}, where two vertices
S and 8’ are adjacent if there exist S € S and S’ € 8’ such that S refines S’ or conversely.
We first show that every graph automorphism of X,, induces a graph automorphism of
X, and that the induced map Aut(X,) — Aut(X]) is injective. Using the rigidity of
X, (see Theorem , we show that any graph automorphism of X, is induced by an
element of Out(WV,,).

We then show that every commensuration f of Out(W,,) induces a graph automor-
phism of X,,. Once we have that result, a general argument (see Proposition gives
the isomorphism between Out(W,,) and Comm(Out(W,,)). In order to construct such
a homomorphism Comm(Out(W,,)) — Aut(X,,), we first give an algebraic characterisa-
tion of the stabilizers of equivalence classes of W,,_s-stars. The characterization relies
on the examination of maximal abelian subgroups of Out(W,,) and of direct products of
nonabelian free groups in Out(W,,). In particular, we prove (see Theorem , using
the action of Out(W,,) on a simplicial complex called the free factor complex of W, the
following result.

Theorem 4.1.3. Let n = 4. The mazimal number of factors in a direct product of non-
abelian free groups contained in Out(W,,) is equal to n — 3.

One example of such a maximal direct product of nonabelian free subgroups of
Out(W,,) is the following one. Let W, = {(x1,...,z,) be a standard generating set
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for W,, and let W = (x1, 2, x3). For every i > 4 and every w € W, let F;,, be the au-
tomorphism which fixes x; for every j # ¢ and which sends z; to wr;w L. Let [Fiw] be
the outer automorphism class of F; ,, and let H; = ([Fjw]wew). Then the group (H;);-,
is a subgroup of Out(W,,) isomorphic to a direct product of n — 3 groups isomorphic to
Ws.

The complete characterisation of stabilizers of equivalence classes of W,,_s-stars be-
ing quite technical, we do not give the complete statement in the introduction (see
Propositions |4.6.10] and 4.7.9). However, we remark that this characterisation relies on
the following key points: the fact that stabilizers of equivalence classes of W,,_o-stars
contain a maximal free abelian subgroup and the fact that it contains a direct prod-
uct of n — 3 nonabelian free groups. The characterisation also features a study of the
group of twists of a W,,_o-star, which is a direct product of two virtually nonabelian free
groups by a result of Levitt ([Levl]) and such that each of which has finite index in the
centralizer in Out(W,,) of the other.

This characterisation being preserved by commensurations of Out(W,,), it induces
a homomorphism from Comm(Out(W,)) to the group Bij(V X,) of bijections of the
set of vertices of X,,. In order to show that this map extends to the edge set of X,
we also present an algebraic characterisation of compatibility of W,,_o-stars, which is
essentially based on the fact that if the intersection of stabilizers of equivalence classes
of W;,_1-stars contains a maximal abelian subgroup of Out(W,,), then the W,,_;-stars
are pairwise compatible (see Propositions |4.6.12f and 4.8.1). We deduce that the map
Comm(Out(W,,)) — Bij(VX,,) extends to a map Comm(Out(W,,)) — Aut(X,), which
completes our proof.

Finally, we prove in the appendix the rigidity of another natural graph endowed with
an Out(WW,)-action, called the graph of W, _1-stars. 1t is the graph whose vertices are
W-equivariant homeomorphism classes of W,, _1-stars, where two vertices S and S’ are
adjacent if there exist S € S and S’ € 8’ such that S and S’ have a common refinement.
This graph arises naturally in the study of Out(W/,,) and its action on the free splitting
graph K, as it is isomorphic to the full subgraph of K, whose vertices are the equivalence
classes of Wy-stars, with k varying in {0,...,n — 1}. This gives another geometric rigid
model for Out(W,,) (see Theorem |4.9.1)).

Acknowledgments. I warmly thank my advisors, Camille Horbez and Frédéric Paulin, for
their precious advices and for carefully reading the different versions of this article. I would also
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4.2 Preliminaries

4.2.1 Commensurations

Let G be a group. The abstract commensurator of G, denoted by Comm(G), is the
group whose elements are the equivalence classes of isomorphisms between finite index
subgroups of G for the following equivalence relation. Two isomorphisms between finite
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index subgroups f: Hy — Hy and f': H{ — H), are equivalent if they agree on some
common finite index subgroup H of their domains. If f is an isomorphism between finite
index subgroups, we denote by [f] the equivalence class of f. The identity of Comm(G)
is the equivalence class of the identity map on G. Let [f],[f'] € Comm(G), and let
f: Hy — Hy and f': H{ — H} be representatives. The composition law [f]-[f] is given
by [f]-[f1 =[f o f'ly=1(t)~m; |- Note that if H is a finite index subgroup of G, then
the natural map Comm(G) — Comm(H ) obtained by restriction is an isomorphism.

Two subgroups G; and G2 in G are commensurable if G; n G5 has finite index in
both G; and G3. Being commensurable is an equivalence relation. If H is a subgroup
of G, we will denote by [H] its commensurability class in G. The group Comm(G) acts
on the set of all commensurability classes as follows. Let [H] be the commensurability
class of a subgroup H. Let [f] € Comm(G) and let f: H; — Hs be a representative of
[f]. Then we define [f] - [H] by setting [f] - [H] = [f(H n H})].

The next result, due to Horbez and Wade, gives a sufficient condition for Comm(G)
to be rigid. It comes from ideas due to Ivanov when studying mapping class groups (see
[Iva2]). It requires the existence of a graph on which G acts by graph automorphisms.

Proposition 4.2.1. [HW2, Proposition 1.1] Let G be a group. Let X be simplicial graph
such that G acts on X by graph automorphisms. Let Aut(X) be the group of graph
automorphisms of X. Assume that:

(1) the natural homomorphism G — Aut(X) is an isomorphism,

(2) given two distinct vertices v and w of X, the groups Stabg(v) and Stabg(w) are
not commensurable in G,

(3) the sets T = {[Stabg(v)] | ve VX} and J = {([Stabg(v)], [Stabg(w)]) | vw € EX}
are Comm(G)-invariant (in the latter case with respect to the diagonal action).

Then any isomorphism f: Hy — Hs between finite index subgroups of G is given
by the conjugation by an element of G and the natural map G — Comm(G) is an
isomorphism. O

4.2.2 Free splittings and free factor systems of 1/,

Let n be an integer greater than 1. Let F' = 7Z/2Z be a cyclic group of order 2 and
W, = %, I be a universal Coxeter group of rank n. A splitting of W,, is a minimal,
simplicial Wj,-action on a simplicial tree S such that:

(1) The finite graph W,\S is not empty and not reduced to a point.
(2) Vertices of S with trivial stabilizer have degree at least 3.

Here minimal means that W,, does not preserve any proper subtree of S. A splitting
S of W, is free if all edge stabilizers are trivial. A splitting S’ is a blow-up, or equivalently
a refinement, of a splitting S if S is obtained from S’ by collapsing some edge orbits
in S’. Two splittings are compatible if they have a common refinement. We define an
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equivalence class in the set of free splittings, where two splittings S and S’ are equivalent
if there exists a W,-equivariant homeomorphism between them.

A free factor system of W, is a set F of conjugacy classes of subgroups of W,
which arises as the set of all conjugacy classes of nontrivial point stabilizers in some
(nontrivial) free splitting of W,,. Equivalently, there exist k € N—{0, 1} and [A1], ..., [A%]
conjugacy classes of nontrivial, proper subgroups of W,, such that W,, = A; = ... x A
and F = {[A1],...,[Ak]}. The free factor system is sporadic if k = 2, and nonsporadic
otherwise. The set of all free factor systems of W, has a natural partial order, where
F < F'if every factor of F is conjugate into one of the factors of F/. Remark that if
{x1,...,2,} is a standard generating set of W,,, then for every free factor system F of
W, and every i € {1,...,n}, there exists [A] € F such that z; is conjugate into A. In
other words, the free factor system {[z1],...,[%»]} is a minimum for the partial order
on the set of free factor systems of W,.

Let F be a free factor system of W,. We denote by Out(W,,, F) the subgroup of
Out(W,,) consisting of all outer automorphisms that preserve all the conjugacy classes
of subgroups in F. If F = {[A1],...,[Ax]}, we denote by Out(W,,, F®) the subgroup
of Out(W,,, F) consisting of all outer automorphisms which have a representative whose
restriction to each A; with i € {1,...,k} is a global conjugation by some g; € W,,.

A (W, F)-tree is an R-tree equipped with a W,-action by isometries and such that
every subgroup of W,, whose conjugacy class belongs to F is elliptic. A free splitting of
W, relative to F is a free splitting of W,, such that every free factor in F is elliptic. A
free factor of (W,,F) is a subgroup of W,, which arises as a point stabilizer in a free
splitting of W,, relative to F. A free factor of (W, F) is proper if it is nontrivial, not
equal to W,, and not conjugate to an element of F. An element g € W, is F-peripheral
(or simply peripheral if there is no ambiguity) if it is conjugate into one of the subgroups
of F, and F-nonperipheral otherwise. In particular, for every free factor system F of
Wy, and every element x € W, appearing in a standard generating set of W,,, we see
that = is F-peripheral.

4.2.3 The Outer space of (W, F)

We recall the definition of the wunprojectivised Outer space of (Wy,F), denoted by
O(W,,, F) and introduced by Guirardel and Levitt in [GuL1]. It is the set of all (W,,, F)-
equivariant isometry classes S of metric simplicial trees with a nontrivial action of W,
with trivial arc stabilizers and such that a subgroup is elliptic if and only if it is periph-
eral. The set O(W,,, F) is equipped with the Gromov-Hausdorff equivariant topology
introduced in [Paul]. The projectivised Outer space of (W,,, F), denoted by PO(W,,, F),
is defined as the space of homothety classes of trees in O(W,,, F). The spaces O(W,,, F)
and PO(W,,, F) come equipped with a right action of Out(W,,, F) given by precomposi-
tion of the actions.

The space PO(W,,, F) has a natural structure of a simplicial complex with missing
faces. Indeed, every element S € PO(W,,, ) defines an open simplex as follows. Let S
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be a representative of S such that the sum of the edge lengths of W,\S is equal to 1.
We associate an open simplex by varying the lengths of the edges, so that the sum of
the edge lengths is still equal to 1. A homothety class S’ € PO(W,,, F) of a splitting S’
defines a codimension 1 face of the simplex associated with S if we can obtain S’ from
some representative S of S by contracting one orbit of edges in S.

The closure O(W,,, F) of Outer space in the space of all isometry classes of mini-
mal nontrivial W,,-actions on R-trees, equipped with the Gromov-Hausdorff equivariant
topology, was identified in [Hor3] with the space of all very small (W, F)-trees, which
are the (W, F)-trees whose arc stabilizers are either trivial, or cyclic, root-closed and
nonperipheral, and whose tripod stabilizers are trivial. The space PO(W,,, F) equipped
with the quotient topology is compact (see [Hor3, Theorem 1]).

We recall the definition of a simplicial complex on which the space PO(W,,, F) re-
tracts Out(W,,, F)-equivariantly, called the spine of Outer space of (W,,, F) and denoted
by K(W,,F). It is the flag complex whose vertices are the W,-equivariant homeomor-
phism classes S of free splittings relative to F with the property that, if S € S, then all
elliptic subgroups in S are peripheral. Two vertices S and 8’ in K(W,,, F) are linked
by an edge if there exist S € S and S’ € 8’ such that S refines S’ or conversely. There
is an embedding F': K(W,,F) — PO(W,,F) whose image is the barycentric spine of
PO(W,,F). We will from now on identify K(W,,F) with F(K(W,,F)). If F consists
of exactly n copies of F', we simply write K, for K(W,,, F). In this case the dimension of
the simplicial complex K, is n — 2. Indeed, if S is an equivalence class of a free splitting
S in K, such that the number of edges of W,,\\S is minimal, then, the number of edges
in W,\S is equal to n — 1. If S is an equivalence class of a free splitting S in K, such
that the number of edges of W,,\S is maximal, then W,,\S has n leaves and every vertex
of W,\S that is not a leaf has degree equal to 3. As S is a tree, this shows that the
number of edges in W,,\S is equal to 2n — 3. Since, every splitting S of K, collapes onto
a splitting S” such that W,,\S” has n — 1 edges, we see that the dimension of K, is equal
to2n—3—(n—1)=n—2.

The free splitting graph of W, denoted by K,, is the following graph. The vertices
of K, are the W,,-equivariant homeomorphism classes of free splittings. Two distinct
equivalence classes S and S’ are joined by an edge in K, if there exist S € S and S’ € S’
such that S refines S’ or conversely. The free splitting graph of W, is the 1-skeleton
of the closure of K, in the space of free splittings of W,,. The group Aut(W,,) acts on
K, on the right by precomposition of the action. As Inn(W,,) acts trivially on K, the
action of Aut(W,,) induces an action of Out(W,,) on K,,.

4.2.4 The free factor graph of (W, F)

Let F be a free factor system of W,. We now define a Gromov hyperbolic graph on
which Out(W,,, F) acts by isometries. The free factor graph relative to F, denoted by
FF(W,,, F), is the following graph. Its vertices are the W,,-equivariant homeomorphism
classes of free splittings of W), relative to F. Two equivalence classes S and S’ are joined
by an edge if there exist S € S and S’ € &’ such that S and S’ are compatible or share a
common nonperipheral elliptic element. The free factor graph is always hyperbolic (see

120



[BF2, HaM3l, [GuH2]). The next proposition is due to Guirardel and Horbez. Here, if
H is a subgroup of Out(W,,) and if F is a free factor system of W,,, we say that F is
H -periodic if there exists a finite index subgroup H' of H such that H'(F) = F.

Proposition 4.2.2. [GuH2, Theorem 5.1] Let n = 3 and let F be a nonsporadic free
factor system of W,,. Let H be a subgroup of Out(W,,, F) which acts on FF(W,,, F) with
bounded orbits. Then there exists an H-periodic free factor system F' such that F < F'
and F # F'. O

The Gromov boundary of FF(W,,, F) has been described in terms of relatively ara-
tional trees (see the work of Reynolds [Rey| for the definition of an arational tree in the
context of a free group, the work of Bestvina-Reynolds and Hamenstédt ([BR), [Ham] for
the description of the boundary in the case of a free group, and the work of Guirardel-
Horbez [GuH2]| in the case of a free product). A (W,,, F)-tree T is arational if no proper
(W, F)-free factor acts elliptically on T" and, for every proper (W, F)-free factor A,
the A-minimal invariant subtree of 7' (that is the union of the axes of the loxodromic
elements of A for the action of W;, on T, see [CM, Proposition 3.1]) is a simplicial A-tree
in which every nontrivial point stabilizer can be conjugated into one of the subgroups
of 7. We equip each arational (W, F)-tree with the observers’ topology: this is the
topology on a tree T such that a basis of open sets is given by the connected compo-
nents of the complements of points in 7. We equip the set of arational (W,,, F)-trees
with an equivalence relation, where two arational (W, F)-trees are equivalent if they
are Wy-equivariantly homeomorphic with the observers’ topology.

Theorem 4.2.3. [Gull2, Theorem 3.}] Let n > 3. Let F be a nonsporadic free factor
system of W,,. The Gromov boundary of FF(W,,, F) is Out(W,,, F)-equivariantly home-
omorphic to the space of all equivalence classes of arational (W, F)-trees. L]

Lemma 4.2.4. [GuHI, Proposition 153.5] Let n = 3. Let F be a nonsporadic free fac-
tor system of Wy, and let H be a subgroup of Out(W,,F). If H fizes a point in
0 FE(W,,, F), then H has a finite-index subgroup that fizes the homothety class of an
arational (W, F)-tree.

O

4.2.5 Groups of twists

Let S be a splitting of W,,, let v € V.S, let e be an edge with origin v, and let z be an
element of the centralizer Cg,(Ge) of G, in G.. We define the twist by z around e to
be the automorphism D, . of W,, defined as follows (see [Levl]). Let S be the splitting
obtained from S by collapsing all the edges of S outside of the orbit of e. Then S is a
tree. Let € be the image of e in S and let T be the image of v in S. Let @ be the endpoint
of e distinct from v. The automorphism D, . is defined to be the unique automorphism
that acts as the identity on Gz and as conjugation by z on Gz. The element z is called
the twistor of D, .. It is well-defined up to composing on the right by an element of
Cw, (Gw) n Cq,(Ge). The group of twists of S is the subgroup of Out(W),,) generated
by all twists around oriented edges of S.
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We now give a description of the stabilizer of a point in K,, due to Levitt. If S € VK,
we denote by Stab(S) the stabilizer of S under the action of Out(W,,). Let S be a
representative of S. We denote by Stab®(S) the subgroup of Stab(S) consisting of all
elements F' € Out(W,,) such that the graph automorphism induced by F' on W,\S is the
identity.

Proposition 4.2.5. [Levil, Propositions 2.2, 3.1 and 4.2] Let n = 4 and S € VK. Let
S be a representative of S and let vi,..., v be the vertices of Wp\S with nontrivial
associated groups. For i€ {1,...,k}, let G; be the group associated with v;.

(1) The group Stab’(S) fits in an exact sequence

k
1 — T — Stab’(S) — HOut(GZ-) -1,
i=1

where T is the group of twists of S.
(2) The group Stab®(S) is isomorphic to

k
GIEITL 4 Aut(Gy),
=1

where Aut(G;) acts on G?eg(w)_l diagonally.

(3) The group of twists T of S is isomorphic to
T~ @G 2(Cy),

where the center Z(G;) of G; is embbeded diagonally in G?eg(vi). O

Remark 4.2.6. In [Levl, Proposition 2.2/, Levitt shows that the kernel of the natural
homomorphism Stab®(S) — ]_[le Out(G;) given by the action on the vertex groups is
generated by bitwists. Since edge stabilizers are trivial, the group of bitwists is equal to the
group of twists. More generally (see [Levll, Proposition 2.3]), if the outer automorphism
group of every edge stabilizer is finite (in particular, if edge stabilizers are isomorphic to
Z or to F) then the group of twists is a finite index subgroup of the group of bitwists.

Finally, if the centralizer in Wy, of an edge stabilizer is trivial, then the group of
bitwists about this edge is trivial. Therefore, if the edge stabilizer is not cyclic, then the
group of bitwists about this edge is trivial. In all cases, we see that, for every equivalence
class S of a splitting S of Wy, the group of twists of S is a finite index subgroup of the
group of bitwists of W,,.

We establish one last fact about twists about edges whose centralizer is cyclic (see [CL2,
Lemma 5.3] for a similar statement in the context of the outer automorphism group of
a nonabelian free group).
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Lemma 4.2.7. Letn = 3 and let S be the equivalence class of a splitting S. Suppose that
there exists an edge e of S with cyclic stabilizer and let D be the outer automorphism
class of a twist about e. Let Hg be the subgroup of Stab®(S) which induces the identity
on the edge stabilizer G, of e. Then D 1is central in Hg

In particular, Stab®(S) has a finite index subgroup Hs such that D is central in Hs.

Proof. Let U be a splitting onto which S collapses (or S itself if S does not have
a nontrivial collapse), and let U be its equivalence class. Then Stab®(S) < Stab’(W).
Thus, we may suppose, up to collapsing all orbits of edges of S except the one containing
e, that S has exactly one orbit of edges. Let v and w be the two endpoints of e and let G,
and G, be their edge stabilizers. Let f € Hg and let F' be a representative of f such that
F(Gy) = Gy, F(Gy) = Gy and F|g, = idg, (this representative exists since f € Hg).
Let z € Cg,(Ge) be such that D, , is a representative of D. Then, since F(z) = z, for
every x € Wy, we have D, o F o D_1(z) = F(z). Hence f and D commutes and D is
central in Hg. Since the outer automorphism group of a cyclic group is finite, we see
that Hyg is a finite index subgroup of Stab’(S). This concludes the proof. O

4.3 Geometric rigidity in the graph of W/;-stars

We start by defining W, -stars, which are the main splittings of interest in this article.

Definition 4.3.1. Let n > 3, and let £ > 1 be an integer.
(1) A free splitting S is a k-edge free splitting if W,,\\S has exactly k edges.
(2) Suppose that 0 < k <n—2. A Wi-star is an (n — k)-edge free splitting such that:

e the underlying graph of W;,\S has n — k + 1 vertices and one of them, called the
center of W,\S, has degree exactly n — k,

e the group associated with the center of W,\S is isomorphic to W) (we use the
convention that Wy = {1} and that W; = F),

e the group associated with any leaf of W,\S is isomorphic to F'.

(3) A W,_q-star is a one-edge free splitting S such that one of the vertex groups of
W, \S is isomorphic to W, while the other vertex group is isomorphic to F'.

Note that, in [Gue2|, a W,,_;-star is called an F'-one-edge free splitting. Using Propo-
sition (2), we see that, if kK € {0,...,n — 2}, and if S is the equivalence class of a
Wi-star, then the group Stab’(S) is isomorphic to W,?ik*l X Aut(Wy).

Note that, if S is a Wy-star with k € {0,...,n — 2} and S’ is a splitting on which S
collapses, then there exists £ € {k,...,n— 1} such that S’ is a Wy-star. In particular, for
every k € {0,...,n — 2}, if S is a Wp-star, then every one-edge free splitting on which
S collapses is a W,,_q-star. A similar statement is also true for refinements of Wj-stars

(see Lemma [4.3.8)).
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4.3.1 Rigidity of the graph of WW,-stars

We introduce in this section a graph, the graph of one-edge compatible W, _s-stars,
on which Out(W),,) acts by simplicial automorphisms. We prove that this graph is a
rigid geometric model for Out(W,,). The proof relies on the study of the rigidity of
an additional graph on which Out(W,,) acts, the graph of W-stars, to be defined after
Theorem [4.3.3

Definition 4.3.2. (1) The graph of W,,_a-stars, denoted by )N(n, is the graph whose vertices
are the Wj,-equivariant homeomorphism classes of W, _o-stars, where two equivalence
classes S and S’ are joined by an edge if there exist S € S and S’ € 8’ such that S and
S’ are compatible.

(2) The graph of one-edge compatible W,,_o-stars, denoted by X,,, is the graph whose
vertices are the Wj,-equivariant homeomorphism classes of W), _o-stars where two equiv-
alence classes S and S’ are joined by an edge if there exist S € S and S’ € S’ such that
S and S’ have a common refinement which is a W,,_s-star.

Note that the adjacency in the graph X, is equivalent to having both a common
collapse (which is a W,,_;-star) and a common refinement. The graph X, is a subgraph
of X,,. The group Aut(W,,) acts on X,, and X, by precomposition of the action. As
Inn(W,,) acts trivially on X,,, the action of Aut(W),,) induces an action of Out(W,,). We
denote by Aut(X,,) the group of graph automorphisms of X,,. In Section we prove
the following theorem.

Theorem 4.3.3. Let n = 5. The natural homomorphism
Out(W,,) — Aut(X,)
s an isomorphism.

In order to prove this theorem, we take advantage of the action of Out(W,,) on another
graph, namely the graph of W-stars, denoted by X/ . The vertices of this graph are the
W-equivariant homeomorphism classes of Wy-stars, with k£ varying in {0,...,n — 2}.
Two equivalence classes S and S8’ are joined by an edge if there exist S € S and S’ € &’
such that S refines S’ or conversely. Note that we have a natural embedding X/, — K.
We identify from now on X/, with its image in K. In this section, we prove the following
theorem.

Theorem 4.3.4. Let n = 5. The natural homomorphism
Out(W,,) — Aut(X))
18 an isomorphism.

Theorem relies on the fact that X, contains a rigid subgraph, namely the graph
of {0}-stars and F-stars, and denoted by L,. The vertices of this graph are the W,-
equivariant homeomorphism classes of {0}-stars and F-stars. Two equivalence classes S

124



and S’ are joined by an edge if there exist S € S and S’ € &’ such that S refines S’ or
conversely.
We recall the following theorem.

Theorem 4.3.5. [Gue2, Theorem 3.1, Corollary 3.2] Letn = 4. Let f be an automorphism
of Ly, preserving the set of {0}-stars and the set of F-stars. Then f is induced by the
action of a unique element v of Out(W,,)). In particular, for every n > 5, the natural
homomorphism

Out(W,,) — Aut(L,,)

1 an tsomorphism. O

The strategy in order to prove Theorem [£.3.4]is to show that every automorphism of
X, preserves L, and that the natural map Aut(X]) — Aut(L,) is injective.

Remark 4.3.6. Using the same techniques, we may prove that the graph of W, _i-stars
is rigid. This is done in the appendiz (see Theorem .

First we recall a theorem due to Scott and Swarup.

Theorem 4.3.7. [SS, Theorem 2.5] Let n = 4. Any set {S1,..., Sk} of pairwise nonequiv-
alent, pairwise compatible, one-edge free splittings of W, has a unique refinement S such
that W,\S has ezactly k edges. Moreover, the equivalence class of S only depends on the
equivalence classes of Si,...,Sk. If S is a free splitting such that W,\S has ezxactly k
edges, then S refines exactly k pairwise nonequivalent one-edge free splittings. 0

We also need the following lemma concerning refinements of Wj-stars.

Lemma 4.3.8. Let k, £ € {0,...,n— 1} and let S and S’ be respectively a Wy-star and a
Wy-star. If S and S’ have a common refinement, then there exists j € {0,...,n—2} and
a Wj-star S” which refines both S and S’. Moreover, S” can be chosen such that S” is
a refinement of S and S’ with the minimal number of orbits of edges.

Proof. Let S1,...,S,—i be n—k W, _;-stars onto which S collapses and let S7,...,S] _,
be n — ¢ W;,_1-stars onto which S’ collapses. Then the set {S1,...,Spn—k,S7,..., 5, ,}
is a set of pairwise compatible W,,_;-stars. For every s € {1,...,n — k} and every
te{l,...,n—}, let Ss be the equivalence class of Sy and S/ be the equivalence class of \S;.
Letn—j = [{S1,..., Sk, S1,--.,S,,_s}|. By Theoremm there exists a free splitting
S” with n—j edges which refines every W,,_;-star of the set {S1,...,S—k, S7,..., 5, ,}.
But, as F' is freely indecomposable, a common refinement of two W,,_i-stars U and U’ is
obtained from U by blowing-up an edge at the vertex of W,\U whose associated group
is isomorphic to W,,_1. Since U’ is also a W,,_i-star, this common refinement has two
orbits of edges and the two corresponding leaves have a stabilizer isomorphic to F', hence
it is a W,,_o-star. The same argument shows that, if Uy is a W,,_q-star and if U is a
Wi-star with k € {1,...,n — 1} compatible with Uy, then a common refinement of Uy
and U; with a minimal number of orbits of edges is either a Wi-star (if the equivalence
classes of Uy and U; are adjacent in Fn) or a Wy_q-star. Therefore, by induction on
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ie{l,...,n—{}, we see that a common refinement of {S1,...,S,_,S57,...,5),_,} with
the minimal number of orbits of edges is a Wj-star. This shows that S” is a Wj-star.
This concludes the proof. ]

Lemma implies that the set of Wj-stars with k varying in {0, ...,n — 1} is closed
under taking collapse and taking refinement with a minimal number of orbits of edges.

Lemma 4.3.9. Let n > 5. For every f € Aut(Xy,), we have f(Ln) = Ly. Moreover, if
f|L'n = idLn; th@n f = ldX'iz

Proof. Let f € Aut(X]). The fact that f(L,) = L, follows from the fact that vertices
of K,, n X in X, are characterized by the fact that they are the vertices with finite
valence. The proof is identical to the proof of [Gue2, Proposition 5.1].

Now suppose that f|r, = idr, and let S be the equivalence class of a W, _o-star S.
Let us prove that f(S) = S. Let {x1,...,z,} be a standard generating set of W,, such
that the free factor decomposition of W), induced by S is

Wy ={x1)y* (T, ..., Tp_1)%{Tp).

Let X be the equivalence class of the F-star X depicted in Figure 4.1

(x1) (x1)
(x3) o
(a2) ey (ary

Figure 4.1: The F-stars X (on the left) and X’ (on the right) of the proof of Lemmam

We see that S and X' are adjacent in X . Therefore, as f(X) = X, we see that f(S)
and X are adjacent in X7 .

Let &’ be the equivalence class of a W,,_s-star adjacent to X and distinct from S.
Then, as X and S’ are adjacent, there exist distinct 4,7 € {1,...,n} with i,j # 2 and a
representative S’ of &’ such that the free factor decomposition of W,, induced by S’ is

Wy =iy« {x1, ..., Tiy...,Tj,...,Tp)*{Tj).

Since S # S', we may suppose that i ¢ {1,n}. But then S is adjacent to the equivalence
class X’ of the F-star X’ depicted in Figure whereas S’ is not adjacent to X”. Since
f(X") = X', this shows that f(S) # S’

Finally, let k € {2,...,n — 3} and let S@ be the equivalence class of a Wj-star S
which is adjacent to X. We prove that f(S) # 8@, Since k < n — 3, the underlying
graph of Wn\S(2) has at least 3 edges. Therefore, there exists ¢ ¢ {1,n} and a leaf v of
the underlying graph of W,,\S (2) such that the preimage by the marking of Wy\S 2 of
the generator of the group associated with v is x;. But then the equivalence class S
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is not adjacent to the equivalence class X’ of the F-star X’ depicted in Figure As
S is adjacent to X' and as f(X’) = X/, we see that f(S) # S®3). Therefore, f(S) = S.
The above paragraphs show that f fixes pointwise the set of equivalence classes of
W, —o-stars. Let k € {2,...,n—3} and let T be the equivalence class of a Wy-star T'. By
Theorem the equivalence class T is uniquely determined by the set of W, _1-stars
on which T collapses. Since two distinct equivalence classes of W), _o-stars are adjacent
in K,, to distinct pairs of equivalence classes of W,,_i-stars, the equivalence class T
is uniquely determined by the set of W, _s-stars on which it collapses. Since f fixes
pointwise the set of equivalence classes of W,,_s-stars, we see that f(7) = 7. Hence
J =1idx . This concludes the proof. O

Proof of Theorem Let n = 5. We first prove the injectivity. The homomorphism
Out(W,,) — Aut(L,) is injective by Theorem Moreover, the homomorphism
Out(W,,) — Aut(L,) factors through Out(W,) — Aut(X}) — Aut(L,). We therefore
deduce the injectivity of Out(W,) — Aut(X]). We now prove the surjectivity. Let
f € Aut(X]). By Lemma we have a homomorphism ®: Aut(X)) — Aut(L,)
defined by restriction. By Theorem the automorphism ®(f) is induced by an
element v € Out(W,,). Since the homomorphism Aut(X}) — Aut(L,) is injective by
Lemma f is induced by ~. This concludes the proof. O

4.3.2 Rigidity of the graph of one-edge compatible W, _o-stars

In this section, we prove Theorem In order to do so, we construct an injective
homomorphism Aut(X,) — Aut(X]). First, we need to show some technical results
concerning the graph X,,. Indeed, let A be a triangle (that is, a cycle of length 3) in
X, and let 81, So and Sz be the vertices of this triangle. By Theorem for every
i € {1,2,3}, there exists S; € S; such that S;, S2 and S5 have a common refinement
S, and we suppose that S has the minimal number of orbits of edges among the com-
mon refinements of S7, So and S3. Since S7, So and S3 are W, _o-stars, there exists
k€ {0,...,n — 3} such that S is a Wy-star. By definition of the adjacency in X,,, the
splitting S is either a W, _s-star or a W,,_s-star (see Figure [£.2). Our first result shows
that we can distinguish these two types of triangles.

Lemma 4.3.10. Let n > 5. Let 81,82 and S3 be three equivalence classes of W, _o-stars
which are pairwise adjacent in X,. Let S1, So and S3 be representatives of S1, So and
S3 which have a common refinement S. Suppose that S is the refinement of S1, Sy and
Ss which has the minimal number of orbit of edges. Then S is a Wy,_4-star if and only if
there exists an equivalence class Sy of a Wy, _o-star Sy distinct from S1, So and S3 such
that, for every i € {1,2,3}, the equivalence classes S; and Sy are adjacent in X,,.

Proof. Suppose first that S is a W, _4-star. Let {z1,...,x,} be a standard generating
set of W, such that the free factor decomposition of W,, induced by S is

Wy, = {x1)y = (xo)y # {a3) * {wgy * {T5,...,Tpn).
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(2,3, T4) (w2, 23, T4)

<x5>/\-<x1> <x5>-/\<xl>

/N /N

(ws5) (x2) (w1) (x2) (x5) (x2) (x5) (x3)

Figure 4.2: Two triangles in X,,, one corresponding to a W,,_s-star (on the left) and one
corresponding to a W,,_4-star (on the right).

Since being adjacent in X, is equivalent to having a common refinement which is a
W,,_s-star and having a common collapse which is a W,,_i-star, the W,,_o-stars S7 and
S5 share a common collapse S’ which is a W,,_q-star. Let S’ be the equivalence class
of §'. We claim that there exists an orbit of edges E in S3 such that the splitting
obtained from S3 by collapsing every orbit of edges of S3 except F is in &’. Indeed,
suppose towards a contradiction that this is not the case. Then, as for every i € {1,2},
the equivalence classes S; and S are adjacent in X,,, we see that, for every i € {1, 2},
the splittings .S; and S3 share a common collapse onto a W;,_;-star S,. Recall that we
supposed that there does not exist an orbit of edges E in Ss such that the splitting
obtained from S5 by collapsing every orbit of edges of S3 except F is in &’. This implies
that for every i € {1,2}, the equivalence class S/ of S/ is distinct from &’. Since S;
and Sy are W, _o-stars, they collapse onto exactly 2 distinct W, _i-stars. Therefore,
for every i € {1,2}, the equivalence classes &’ and S are the two equivalence classes of
W, —1-stars onto which S; collapses. It follows that a common refinement of 57, S5 and
S’ is also a common refinement of S1, So and S3. But a common refinement of S7, S}
and S% is a W,,_s-star. This contradicts the fact that S has the minimal number of edges
among common refinements of S7, Sy and S3. Thus S3 collapses onto a W, _j-star in
the equivalence class S'. Let j € {1,...,4} be such that the free factor decomposition of
W, induced by S’ is:
Wy =&y« {x1,...,Tj,...,Tn).

Let 84 be the equivalence class of the W, _o-star S4 whose induced free factor decompo-
sition is:

Wn = <$j>*<$17...,@,...,@,...,xn>*<$5>.
Then, for every i € {1,2,3}, the equivalence classes Sy and S; are adjacent in X,.

Conversely, suppose that S is a W,,_s-star. Let {x1,...,z,} be a standard generating
set of W), such that the free factor decomposition of W,, induced by S is

Wn = <331> * <J,‘2> ES <333> * <:L‘4, e ,SL‘n> .

Then, up to reordering, we may suppose that, for every i € {1,2,3} the free factor
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decomposition of W, induced by 5; is:
WTL = <x7,> * <‘T7;+1> * <£L’1, s 7£i7a:/i-:17 s 7«77n>7

where, for i = 3, the index ¢ + 1 is taken modulo 3. Let &’ be the equivalence class of a
W, _o-star S’ adjacent to S; in X,, and distinct from Sy and S3. Then, up to changing
the representative S’ there exists j € {1,2} such that S’ collapses onto the W, _;-star
whose associated free factor decomposition is:

Wy =&y #{x1,...,Tj, ..., Tn).

If j =1, then, as &' is distinct from S; and Ss3, we see that S’ is not adjacent to So in
X,. If j = 2, then, as &’ is distinct from &; and Sy, we see that S’ is not adjacent to Sz
in X,,. In both cases, we see that there exists i € {2,3} such that &’ is not adjacent to

S;. This concludes the proof. O
Corollary 4.3.11. Letn = 5. Let k = 4 and let Sy,...,S; be k equivalences classes of
W, —o-stars which are pairwise adjacent in X,,. For i € {1,...,k}, let S; be a repre-
sentative of S;. Let S be a refinement of S1,...,Sk whose number of orbits of edges is

minimal. Then S is a Wy,_j_1-star.

Proof. For every distinct 4,j € {1,...,k}, the equivalence classes S; and S; are adjacent
in X,,. Hence, for every distinct ¢,j € {1,...,k}, there exists a common refinement of S;
and S; which is a W,,_s-star. This implies that, for every p € {1,...,k} and for every
i1,...,0p € {1,...,k}, a common refinement of S;,,...,S;, is obtained from a common
refinement of S;,, ..., S;,_, whose number of orbits of edges is minimal by adding at most
one orbit of edges. We claim that a common refinement of S;,,...,S;, whose number
of orbits of edges is minimal has exactly p + 1 orbits of edges. Indeed, otherwise there
would exist 4,7, ¢ € {1,..., k} pairwise distinct such that a W,,_s-star which refines both
S; and S also refines Sy. This is not possible by Lemma [4.3.10|since k& > 4. This proves
the claim. Taking p = k concludes the proof of the lemma. O

Proposition 4.3.12. Let n > 5. There exists a Out(W,,)-equivariant injective homomor-
phism ®: Aut(X,,) — Aut(X)).

(Tpt1) (Tryi)

< > (L1, Tno1) <l‘1,...,l‘k,...,
L1y, Tk ma~--7xnfl>
(xn) S (Tn) Sy (xn) S;

Figure 4.3: The construction of the map Aut(X,) — Aut(X)).

Proof. We first exhibit a map ®: Aut(X,) — Bij(VX]). Let f € Aut(X,). Let
k e {0,...,n — 2} and let S be the equivalence class of a Wj-star S. If k = n — 2,

129



then we set ®(f)(S) = f(S). If £ < n —3, let Sy be a W,,_;-star refined by S. Let
Si,...,Sp—kg—1 be the W,,_o-stars such that, for every i € {1,...,n — k — 1}, S refines
S; and S; refines Sy (see Figure . For every i € {1,...,n — k — 1}, let S; be the
equivalence class of S;, and let T; be a representative of f(S;). By Corollary if
n—k—12>4, the W,_o-stars T},...,T,,_j_1 are refined by a Wp-star T". This Wj-star
is unique up to Wy-equivariant homeomorphism by Theorem In the case where
k =n—3, we have n —k — 1 = 2 and, since f(S1) and f(S2) are adjacent in X,,, the
splittings T} and Ty are refined by a W, _s-star 7" and it is unique up to W-equivariant
homeomorphism by Theorem [4.3.7] Finally, when £ = n —4, Lemma implies that
a common refinement of 77, T» and 73 with the minimal number of orbits of edges is a
Wy _4-star T", and it is unique up to W,-equivariant homeomorphism by Theorem m
In all cases, let 77 be the equivalence class of T". We set ®(f)(S) = T".

We now prove that ® is well-defined. Let k& € {0,...,n — 2} and let S be the
equivalence class of a Wy-star S. Let Sy and S, be two distinct W;,_;-stars onto which
S collapses and let Sp and S| be their equivalence classes. Let Si,...,S,_t_1 be the
W, —o-stars such that, for every i € {1,...,n —k — 1}, S refines S; and S; refines Sy and
let S1,...,S) ., be the W, _o-stars such that, for every i € {1,...,n—k—1}, S refines
S! and S! refines S{. For i € {1,...,n — k — 1}, let S; be the equivalence class of S;
and let S/ be the equivalence class of S.. For every i € {1,...,n —k — 1}, let T; be a
representative of f(S;) and let T} be a representative of f(S!). Let T' be a Wy-star which
refines T, ..., T,—,—1 and let T be a Wj-star which refines T7,..., T} , ;. Finally, let
T be the equivalence class of T' and let 7’ be the equivalence class of T'. We claim
that 7 = 7'. Indeed, we first remark that there exist 4,5 € {1,...,n — k — 1} such that
S; = Sj'& it is the equivalence class of the W), _o-star which refines both Sy and Sj,. Up to
reordering, we may suppose that i = j = 1, that S; = 57 and that T; = T}. Therefore,
both T and T” collapse onto T;.

Let Us, ..., U, k1 be the W,,_s-stars such that, for every j € {2,...,n—k — 1}, the
W, —3-star Uj refines S; and Uj is refined by S. For every j € {2,...,n — k — 1} there
exist £,¢' € {2,...,n — k — 1} such that Sy and S}, are refined by U;. Therefore, the
map g: {2,...,n—k—1} > {2,...,n — k — 1} sending ¢ to ¢ is a bijection. Thus, we
may suppose that ¢ is the identity, that is, we may suppose that j = ¢ = ¢'. It follows
that for every j € {2,...,n—k — 1}, the equivalence class of the W,,_3-star which refines
S1 and S; is the same one as the equivalence class of the W, _3-star which refines S;
and S;. Therefore, for every i € {2,...,n — k — 1}, the set {S1,S;,S]} defines a triangle
in X,, which corresponds to the equivalence class of a W,,_s-star. By Lemma
for every i € {2,...,n — k — 1}, the set {f(S1), f(S:), f(S])} defines a triangle in X,
which corresponds to the equivalence class of a W, _g-star. Thus, up to changing the
representative 17, for every i € {1,...,n—k—1}, the W, _s-star which refines 71 and 7; is
the same one as the W;,_g-star which refines 77 and 7. As 7 and 7' are characterized
by the set of equivalence classes of W,,_s-stars which collapses onto 77 and on which
T and T" collapse, we see that T = T’. Therefore, the map ®(f): VX, — VX is
well-defined. As ®(f) o ®(f 1) = ®(fo f 1) =id, we see that ®(f) is a bijection.

We now prove that the map ®: Aut(X,) — Bij(VX]) induces a monomorphism
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&: Aut(X,) — Aut(X!). Let f € Aut(X,) and let us prove that ®(f) preserves EX'.
Let 8,8" be adjacent vertices in X/. Up to exchanging the roles of S and &', we
may suppose that there exist S € S and S’ € & such that S’ collapses onto S. Let
k.l e {1,...,n—2} be such that S is a Wj-star and S’ is a Wj_s-star. Let Sy be a W,,_1-
star such that S refines Sy. Let Sy,...,S,_r_1 be the W,,_s-stars such that, for every i €
{1,...,n—k—1}, S refines S; and S; refines Sy. As S’ refines S, there exist £ W,,_o-stars
Sn—ky -+ Sn_kae_1 such that the W, _o-stars Sy,...,S, pi¢1 arethen—k+£—1 W, _o-
stars which collapse onto Sy and which are refined by S’. Foreveryi € {1,...,n—k+{—1},
let S; be the equivalence class of S;. By definition of ®(f), there exist a representative
T of ®(f)(S) and representatives T1,...,T,—x—1 of f(S1),..., f(Sp—k—1) such that T'
is a common refinement of T1,...,T,_r_1. Moreover, there exist a representative 1"
of ®(f)(S’) and representatives Ty, _k, ..., Tn_kre—1 of f(Sn—k)s---, f(Sn—gte—1) such
that 7" is a common refinement of f(S1),..., f(Sp—k+e—1). As {f(S1),.- -, [(Sn—k—-1)}
is a subset of {f(S1),..., f(Sn—k+e—1)}, we see that f(S) and f(S’) are adjacent. This
shows that the application ®(f): VX,, —» V X/ induces a homomorphism $: Aut(X,) —
Aut(X). Finally, the facts that ® is injective and is Out(W,,)-equivariant follow from
the fact that, for every equivalence class S of W,,_s-stars, we have f(S) = ®(f)(S). This
concludes the proof. O

Proof of Theorem Let n = 5. We first prove the injectivity. The homomorphism
Out(W,,) — Aut(X]) is injective by Theorem Moreover, the homomorphism
Out(W,,) — Aut(X]) factors through Out(W,,) — Aut(X,) — Aut(X]). We therefore
deduce the injectivity of Out(W,,) — Aut(X,). We now prove the surjectivity. Let
f € Aut(X,,). By Proposition|4.3.12, we have a homomorphism ®: Aut(X,,) — Aut(X?).
By Theorem the automorphism i)( f) is induced by an element v € Out(W,,). Since
the homomorphism Aut(X,,) — Aut(X],) is injective by Proposition f is induced
by ~. This concludes the proof. O

4.4 The group of twists of a V,,_;-star

In this section, we study the centralizers in Out(W,,) of twists about a W,,_1-star. We
first show that to a free factor of W, isomorphic to W,,_1, one can associate a canonical
equivalence class of W,,_1-star (see Lemma . We then show that, for an outer
automorphism f in the stabilizer of the equivalence class S of a W, _1-star, there exists
a canonical representative F' of f such that f commutes with a twist T" of the & if and
only if F fixes the twistor of T' (see Lemma[4.4.11]) We first need some preliminary results
about stabilizers of free factors of W,, isomorphic to W,,_1.

Let {x1,...,z,} be a standard generating set of W,,. For distinct ¢,5 € {1,...,n},
let 0;,;: W, — W,, be the automorphism sending x; to x;x;x; and, for k£ # j, fixing x.
For distinct 4,5 € {1,...,n}, let (i j) be the automorphism of W,, switching x; and z;
and, for k # ¢, j, fixing x. The following theorem is due to Miihlherr.

Theorem 4.4.1. [Mih, Theorem B] Let n > 2. The set {o;j|i # j} v {(i j)|i # j} is a
generating set of Aut(W,,).
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We now introduce a finite index subgroup of Out(W,,) which will be used throughout
the remainder of this paper. For every 4,5 € {1,...,n} distinct, both ¢;; and (i j)
preserve the set of conjugacy classes {|x1],...,[zn]}. Since {o;;|i # j} v {(i j)|i # j}
generates Aut(W,,) by Theorem [4.4.1] we see that we have a well-defined homomorphism
Out(W,,) — Bij({[z1],...,[za]}). Let Out®(WW,) be the kernel of this homomorphism.
The group Out®(W,,) has finite index in Out(W,,). We will mostly work in Out®(W,,)
from now on because of the following lemma.

Lemma 4.4.2. Letn > 3 and let f € Out®(W,,). Suppose that f fives the equivalence class
S of a free splitting S. Then the graph automorphism of the underlying graph of Wy\S
induced by [ is the identity. Therefore we have Stabg oy, ) (S) = Staboouto(wn)(S).

Proof. The underlying graph W,\S of W,\S is a tree. Moreover, since S is a free
splitting, if L is the set of leaves of W, \S, then the set {[Gy]}ver is a free factor system
of W,. Note that, as {[z1],...,[zn]} is a free factor system of W, which is minimal
for inclusion, for every i € {1,...,n}, there exists one v € VS such that x; € G,.
Since S is a free splitting, for every ¢ € {1,...,n}, the element z; is contained in a
unique vertex group. Moreover, for every v € L, there exist k € {0,...,n — 1} and
{i1,...,ix} < {1,...,n} such that G, is isomorphic to Wy, and {[z;, | "G, ..., [z ] "Gy}
is a free factor system of G,. As f € Out’(W,,), and as f fixes S, it follows that, for every
v € L, we have f([G,]) = [Gy]. Hence the graph automorphism f of W,\S induced by
[ acts as the identity on L. As any graph automorphism of a finite tree is determined
by its action on the set of leaves, it follows that f = id. This concludes the proof. O

Remark 4.4.3. The subgroup Out’(W,,) of Out(W,,) is our (weak) analogue of the sub-
group 1AN(Z/3Z) of Out(Fy), which is defined as the kernel of the natural homomor-
phism Out(Fn) — GL(N,Z/3Z). Indeed, the group IAN(Z/37Z) satisfies a statement
similar to Lemma but it has the additional property that if ¢ € IAN(Z/3Z) has a
periodic orbit in the free splitting graph of Fy, then the cardinality of this orbit is equal
to 1. In the context of Out®(W,,), we do not know if Out®(W,,) contains a torsion free
finite index subgroup which satisfies this property.

The next lemma relates the stabilizer of a free factor of W,, isomorphic to W,,_; and
the stabilizer of a W,,_-star.

Lemma 4.4.4. Let n = 3. Let A be a free factor of W, isomorphic to Wy,_1. Then,
up to Wy, -equivariant homeomorphism, there exists a unique free splitting S in which A
is elliptic. In particular, if f € Out(W,,) is such that f([A]) = [A], then f fizes the
equivalence class of S.

Proof. By definition of a free factor, there exists a free splitting S of W,, such that A
is elliptic in S. This proves the existence. We now prove the uniqueness statement. We
may assume that {z1,...,z,_1} is a standard generating set of A and x,, € W,, is such
that

Wy =Ax{xy).
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Then, the free factor system F = {|A], [(zn)]} is a sporadic free factor system which
contains [A]. Let F’ be a free factor system of W, which contains [A]. Since the free
factor system {[{x1)], ..., [{xn)]} is the minimal element of the set of free factor systems
of W,,, we see that there exists [B] € F' such that x,, € B. As F' contains [A] and as
Wy, = A = {xy,), it follows that W,, = A x B and that B € (z,,). Therefore [B] = [{z,)]
and F' = {[4],[{zn)]}. We deduce that F is the unique nontrivial free factor system
which contains [A]. But the spine K (W), F) of the Outer space relative to F is reduced
to a point, i.e. it is reduced to a unique equivalence class of free splittings. This proves
the uniqueness statement. ]

Remark 4.4.5. In the context of Out(Fy ), the analogue of the splitting given by Lemmam
is the following one. Let [A] be the conjugacy class of a free factor of Fn isomorphic
to Fn_1. Then the canonical splitting associated with A is the splitting corresponding
to the HNN extension Fy = Ax over the trivial group. However, there does not exist

a natural choice (up to conjugacy) of an element g € Fy such that {[A],[g]} is a free
factor system of F.

Let S be a splitting with exactly one orbit of edges, whose stabilizer is root-closed
and isomorphic to Z. Then the group of twists of S is isomorphic to Z by a result of
Levitt (see [Levl, Proposition 3.1]). The next proposition is similar to a result in the
case of the outer automorphism group of a free group (see [CL1] and [HW2, Lemma 2.7]).
Recall that an element w € W, is root-closed if there does not exist wg € W,, and an
integer n > 2 such that w = wy.

Lemma 4.4.6. Let n = 3. Let A be a free factor of Wy, isomorphic to Wy,_1 and let w e A
be a root-closed element of infinite order. Let v € W, be such that W,, = A« {x). Let S
be the equivalence class of a splitting S whose associated amalgamated decomposition of
W, is the following:

Wi = Ay (w) = {2)) -

Let D be a nontrivial twist about S. Let R be the equivalence class of a free splitting R
of Wy, such that D(R) = R. Let R' and S’ be metric representatives of R and S, let R
and 8’ be their Wy, -equivariant isometry classes and let [R'] and [S'] be their homothety
classes.

(1) InPO(W,), there exists an increasing function 1¥: N — N such that

lim DY ([R]) = [S].

n—aeo

(2) The splittings S and R are compatible.

Proof. We prove the first part. As PO(W),,) is compact, up to passing to a subsequence,
there exists a sequence (An)neny € (R*)Y and a W,-equivariant isometry class 7 of an
R-tree T such that

lim \,D"(R) =T.

n—0o0
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Since translation length functions are continuous for the Gromov-Hausdorff topology
(see [Paull), for every g € W,,, we have:

Tim A [lgll pnrry = llgll 7+

where ||g||; is the translation length of g in 7. Hence, for every g € W, the limit
limp—c0 An [|9]| pr(yy is finite. But as D has infinite order, we have limy o A = 0. As
there exists a representative ¢ € Aut(W,,) of D such that ¢4 = id4, for every g € A, we
have:

Jim Ap (|9l pngrry = 1im An [lgllrs = 0.

Hence every element of A fixes a point in T'. As A is finitely generated, this implies that
A fixes a point in T (see for instance [CM| Section 3|). Similarly, we see that (w) = (x)
fixes a point in T'. As W,, = Ax{x), we see that A and {w)*{z) cannot fix the same point
in T. Let U be the free splitting of W,, associated with the free factor decomposition
W, = A= {x). Let vy be the vertex of U fixed by A, let v; be the vertex fixed by =
and let vo be the vertex fixed by wrw™l. Let e; be the edge between vy and v; and eg
be the edge between vy and vy. The arguments above show that we have a canonical
Wp,-equivariant morphism from U to T. This morphism is obtained by a fold of the
edges e; and ey of U and this fold is extended W,-equivariantly. Since w is root-closed,
there is no other edge of U that can be folded as otherwise the stabilizer of an edge of T'
would not be cyclic. Therefore the R-tree T is simplicial and the decomposition of W,
associated with W,\T is

Wi = Ay ((w) = (x)) -

Hence 7 = &’ and the first statement follows.

Let us prove the second statement. For every n € N, the equivalence classes A\,, D" (R)
and R have compatible representatives. But as lim, .o A, D™"(R) = S, it follows from
[GuL5l, Corollary A.12] that, in the limit, the splittings S and R are compatible. O

Lemma 4.4.7. Let n = 3 and let S be the equivalence class of a Wy_1-star S. Let T
be the group of twists of S and let f € T be an element of infinite order. Let R be the
equivalence class of a Wy,_1-star R such that f(R) = R. Then S and R are compatible.

Proof. Let
Wy = As{xy)

be a free factor decomposition of W,, associated with S and let zy € A be the twistor of
f. Let z be a root-closed element of A such that there exists m > 1 with 2™ = zy. Let
h € T be the twist about 2. We see that h"™ = f. Let S’ be the splitting associated with
the following amalgamated decomposition of W,,:

Wi = A xiy ((an) % (2)) -

Let &’ be the equivalence class of S’. Let T” be the group of twists of §’. Since A is
isomorphic to W,,_1 and since z is root-closed, we see that C4(z) = (z). Therefore T’
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is isomorphic to Z and a generator of 7" is h. As f(R) = R, Lemma implies that
S" and R are compatible. Let U be a common refinement of S’ and R whose number of
orbits of edges is minimal. Since both S’ and R are one-edge splittings and are different,
the splitting U has 2 orbits of edges. It follows that W,\U is obtained from W,\S’
by blowing-up an edge at one of the two vertices of W,,\S’. Let ¥ be the vertex of S’
whose stabilizer is A and let v be its image in W,\S’. Let @ be the vertex of S’ fixed
by {x,) = (z) and let w be its image in W,\S".

Claim. Either S = R or the splitting W,,\U is obtained from W,,\S” by blowing-up an
edge at v.

Proof. Suppose that W,,\U is obtained from W,\S” by blowing-up an edge at w. Then,
since the group G, associated with w is {x,) * (z) and since z must fix an edge of U,
we see that a free splitting of G, such that z fixes a vertex is a (Guw, {(z),(zn)})-free
splitting. But (G, {{z),{x,)}) has exactly one such equivalence class of one-edge free
splitting: the one with vertex stabilizers conjugated with (z) and {z,). This implies
that R = S. The claim follows. O

Suppose that R # S. The claim implies that the amalgamated decomposition of W,
associated with U is
Wyn=BxC *(2) (<Z> * <l’n>) ’

where B and C are free factors of W,, such that A = B+ C and 2z € C. Let U’ be a
refinement of U whose associated amalgamated decomposition of W), is:

Wi = B+ C x5 {(2) % {Tn),

that is, z and x,, fix distinct points in U’. Then, since A = B * C, the splitting U’ is a
refinement of S. This concludes the proof. O

Proposition 4.4.8. Let n > 3. Let S be a Wy_i-star and let f € Out(W,,) be a twist
about the unique edge of W,\S. Let g € Out®(W,,) be such that g € Cout(w,)(f). Then
9(8) = S.

Proof. Let
Wy ={x1,...,&p_1) x{Tp)

be the free factor decomposition associated with S and let S be the equivalence class of
S. By Lemma in order to prove that ¢g(S) = S, it suffices to show that g preserves
the conjugacy class of A = {x1,...,2p-1). Let .]? be a representative of f such that
f |4 =ida. Let § be a representative of g. Suppose towards a contradiction that § does
not preserve the conjugacy class of A. By hypothesis, there exists I € Inn(W,,) such that
foﬁ: Io?]of. Thus,

~ ~

Foi(A) = Togo F(A) = I o§(A).

Therefore, f preserves the conjugacy class of g(A). By Lemma f fixes the unique
equivalence class R of the W,,_;-star R associated with g(A4). By Lemma the

135



splittings S and R are compatible. Since we suppose that §(A) ¢ [A], there exists a
common refinement S’ of S and R which is a W,,_o-star. Thus, there exists vy, € W,
such that the free factor decomposition associated with S’ is

Wy, = <xn> * B <yn>a

where B is such that A = B * (y,) and B * {(z,) is a conjugate of g(A). Up to
changing the representative §(A), we may suppose that g(A) = B = {(x,). This im-
plies that =, € §(A), that is §~(z,) € A. But, since A = (z1,...,2,_1), we see that
[ (x,)] € {[z1],...,[zn_1]}. This contradicts the fact that g € Out®(W,,). O

Combining Lemma and Proposition we have the following corollary.

Corollary 4.4.9. Letn = 3. Let S and R be two distinct W, -equivariant homeomorphism
classes of two Wy_1-stars S and R. Let f and g be twists about respectively S and R
such that f and g commute. Then S and R are compatible.

Proof. Let k > 1 be such that ¢* € Out’(W,,). By Proposition since ¢g* and f
commute, we have ¢¥(S) = S. Since ¢g* is a twist about R, by Lemma we have
that S and R are compatible. O

Let S be the equivalence class of a W,, _{-star S and let

Wy, ={x1, ..., Xp_1) = {Tp)

be the free factor decomposition of W,, associated with S. Let A = {x1,...,x,_1). Let
[ € Staboyyw,)(S). Then any representative of f sends A to a conjugate of itself. Let

f' be a representative of f such that ]?I(A) = A. Since the vertices in S fixed by A and
z,, are adjacent, and since the stabilizer of every vertex in S adjacent to the vertex fixed
by A is a conjugate of {x;,) by an element of A, we see that f’(mn) = TTpT ! with z € A.
Therefore, there exists a representative f of f such that f ( )=Aand f (azn) = x,. The
automorphism f is the unique representative of f such that f(4) = 4 and f(2,) = 2.

We have a similar result for W,,_o-stars. Indeed, let S’ be the equivalence class of a
W,,_o-star S’ and let

Wy ={x1)y«{x2,...,Tp_1)*{Tp)
be the free factor decomposition of W, associated with S’ and let B = (xg, ...,z 1).
Let f € Stabouto(wn)(S’). A similar argument as in the case of a W,,_;-star shows that
there exists a representative f~0f f such that f(B) = B and f(xn) = Zp.

Lemma 4.4.10. Let n > 4. Let § be the Wy-equivariant homeomorphism class of a
Wy_1-star S. Let T be the group of twists of S. Let S’ be the W,,-equivariant homeo-
morphism class of a Wy,_o-star S" which refines S. Let e be the edge of Wp\S" such that
a representative of S is obtained from W,\S’ by collapsing the edge distinct from e. Let
T’ be the group of twists of S’ about the edge e. Then T N Stabouto(wn)(S') cT.

136



Proof. Let
Wy ={x1)y«{x,...,Tp_1)*{Tpn)

be the free factor decomposition of W,, induced by S’ and let A = (x9,...,z_1). Let
Wyn =B= <yn>

be the free factor decomposition associated with .S. Up to changing the representative .S,
we may suppose that B = {x1,...,2,—1) and that y, = z,. Let f € TmStabOuto(Wn)(S').

Let f be the representative of f such that f(B) = B and f(z,) = 2, which exists since
[ € Stabouyw,)(S). Since f € T, there exists g € B such that f|B is the global

conjugation by g. Let f' be a representative of f such that f'(4) = A and f'(z,) = 2,
which exists since f € Stabgo(y,,)(S’). Since the centralizer in W), of zy, is {zy) and

since A is malnormal in W, we see that f = f. Hence f(A) = A, and, since A is
malnormal, we see that g € A. Therefore, f € T', which concludes the proof. O

Lemma 4.4.11. Let n > 3. Let S be the equivalence class of a Wy,_1-star S and let

Wy, ={x1, ..., Xp_1) = {Tp)

be the free factor decomposition associated with S. Let A = {x1,...,xp_1). Let T be the
group of twist of S. For f e T, let zy € A be the twistor of f. Let g € Stab(S) and let §
be a representative of g such that g(A) = A and §(w,) = zn. Then g € Couyw,)((f)) if
and only if §(zr) = 2.

Proof. By Proposition [£.2.5] (2), the group Stab(S) is isomorphic to Aut(A). The
isomorphism Stab(S) — Aut(A) is defined by sending f € Stab(S) to its representative
such that f(A) = A and f(z,) = z,. In particular, for every hy, hy € Out(W,,) nStab(S),
we see that h1 and he commute if and only if there exist representatives %1 and %2 of
hy and hs respectively such that hi(A) = A, ho(A) = A, hi(zn) = ho(zn) = 2, and
hl ) h2 = h2 ) hl Moreover, Proposition (2) identifies the group of twists 7" with
the group Inn(A). For a € A, let ad, be the inner autmorphism of A induced by a.
Since, for every h € Aut(A) and every a € A, we have had, h™! = adp(q), We see that
h commutes with ad, if and only if h(a) = a. Hence g € Couyw,,)((f)) if and only if

g(zf) = zf. [

4.5 Direct products of nonabelian free groups in Out(W,,)

Following [HW2, Section 6], we define the product rank of a group H, denoted by
tkprod (H), to be the maximal integer k such that a direct product of k& nonabelian free
groups embeds in H. Note that, if H' is a finite index subgroup of H, then rkyoq(H') =
tkprod (H ). Moreover, if ¢: H — 7Z is a homomorphism, then rkpoq(ker(¢)) = rkproa(H).

The aim of this section is to prove the following theorem.
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Theorem 4.5.1. (1) For every n > 3, we have rkpyoq(Aut(Wy,)) =n —2.
(2) For every n = 4, we have rkpoq(Out(W,)) = n — 3.

(3) Suppose that n = 5. If H is a subgroup of Out(W,,) isomorphic to a direct prod-
uct of n — 3 nonabelian free groups, then H has a subgroup H' isomorphic to a direct
product of n — 3 nonabelian free groups which virtually fizes the Wy, -equivariant homeo-
morphism class of a Wy,_1-star. In addition, H does not virtually fix the Wy, -equivariant
homeomorphism class of any one-edge free splitting that is not a W, _1-star.

We first recall an estimate regarding product ranks and group extensions due to
Horbez and Wade.

Lemma 4.5.2. [HW2, Lemma 6.3/ Let 1 > N — G — Q — 1 be a short exact sequence
of groups. Then 1kprod(G) < 1kprod(N) + 1kprod(Q)- d

In order to compute the product rank of Out(W,,), we take advantage of its action
on the Gromov hyperbolic free factor complex. We recall a general result concerning
actions of direct products on a hyperbolic space.

Lemma 4.5.3. [HW2, Proposition 4.2, Lemma 4.4] Let X be a Gromov hyperbolic space,
and let H be a group acting by isometries on X. Assume that H contains a normal
subgroup K isomorphic to a direct product K = ]_[le K;.

If there exists j € {1,...,k} such that K; contains a lozodromic element, then
H#j K; has a finite orbit in 0 X .

If there exist two distinct i,j € {1,...,k} such that both K; and K; contain a loxo-
dromic element, then H has a finite orbit in 0w X .

If, for every j € {1,...,k}, the group K; does not contain a loxodromic element, then
either K has a finite orbit in 0xX or H has bounded orbits in X. O

Let F be a free factor system of W,. Recall that O(W,,, F) is the outer space of
W, relative to F. Given T € O(W,,F), let [T] be the homothety class of T". The
homothetic stabilizer Stab(|T']) is the stabilizer of [T'| for the action of Out(W,,F)

on PO(W,,F). Equivalently, ® € Out(W,,F) lies in Stab([T]) if there exists a lift
® € Aut(Wy, F) of ® and a homothety Iz: T — T such that, for all g€ W), and v € T,

~

we have I3(gx) = ®(g)I;(x). The scaling factor of Iz does not depend on the choice of
a representative of ®, and we denote it by Ap(®). This gives a homomorphism

Stab([T]) — R%
o - Ap(P).

The kernel of this morphism is called the isometric stabilizer of T' and is denoted by
Stab®(T'). It is the stabilizer of T" for the action of Out(W,, F) on O(W,, F).

Lemma 4.5.4. [GuH2, Lemma 6.1] Let n > 3. Let F be a nonsporadic free factor system

of Wy. For every T € O(W,,F), the image of the morphism Ar is a cyclic (maybe
trivial) subgroup of R . O
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We will also use a theorem due to Guirardel and Horbez which assigns to every
nonempty collection of free splittings whose elementwise stabilizer is infinite a canonical
(not necessarily free) splitting.

Theorem 4.5.5. [GuHS3, Theorem 6.12] Let n = 3. There exists an Out(W),,)-equivariant
map which assigns to every nonempty collection C of free splittings of Wy, whose elemen-
twise Out(W,,)-stabilizer is infinite, a nontrivial splitting Ue of Wy, whose set of vertices
VUe has a Wy-invariant partition VUg = Vi U Vo with the following properties:

(1) For every vertex v € V1, the following holds:

(a) either some edge incident on v has trivial stabilizer, or the set of stabilizers
of edges incident on v induces a nontrivial free factor system of the vertex
stabilizer G,

(b) there exists a finite index subgroup Hy of the elementwise stabilizer of the
collection C such that every outer automorphism in Hy has a representative
in Aut(W,,) which restricts to the identity on G,.

(2) The collection of all conjugacy classes of stabilizers of vertices in Vs is a free factor
system of W, O

Finally, we state a proposition due to Guirardel and Horbez concerning the isometric
stabilizer of an arational tree.

Proposition 4.5.6. [GuIl2, Proposition 6.5] Let n = 3. Let F be a nonsporadic free factor
system of Wy, and let T be an arational (W, F)-tree. Let H be a subgroup of Out(W,,, F)
which is virtually contained in Stab®®(T). Then H has a finite index subgroup H' which
fizes infinitely many (W, F)-free splittings, and in particular H fizes the conjugacy class
of a proper (W, F)-free factor. O

Note that the statement of Proposition in [GuH2] only mentions that H' fixes
one (W, F)-free splitting, but the proof uses an arbitrary free splitting of W,,, so that
one can construct infinitely many pairwise distinct free splittings fixed by H' by varying
the chosen free splitting of W,.

Proof of Theorem [4.5.1 The proof is inspired by [HW2, Theorem 6.1] due to Horbez
and Wade and [HHW) Theorem 4.3] due to Hensel, Horbez and Wade.

We first prove that if n > 4, then rkyroq(Out(Wy,)) = n — 3 and that, if n > 3, then
tkprod (Aut(W,)) = n — 2. Pick a standard generating set {x1,...,z,} of W,. Then the
group H generated by {z;x9,x2x3} is a nonabelian free group (see [Miih, Theorem Al).

Suppose first that n > 4. For i € {4,...,n} and h € H, let F;j, be the automorphism
sending x; to ha;h~! and, for j # i, fixing z;. Then, for every distinct 4,5 € {4,...,n}
and for every g, h € H, the automorphisms F; ; and F} ;, commute, giving a direct product
of n — 3 nonabelian free groups in Out(W,,). Moreover, for every g,h € H, and every
i € {4,...,n}, the inner automorphism ad, commutes with F;j, which yields a direct
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product of n — 2 nonabelian free groups in Aut(W,,). In the case where n = 3, the group
Aut(W3) contains the subgroup {adp )¢z, which is a nonabelian free group.

We now prove that, if n > 3, then rkpoq(Aut(Wy,)) < n —2, if n = 3, then
tKproa (Out(Wy,)) = 1 and if n > 4, then rkyroq(Out(Wy,)) < n — 3. The proof is by
induction on n. The base case where n = 3 follows from the fact that the group Aut(W3)
is isomorphic to Aut(F3) (see [Var, Lemma 2.3]) and the fact that the group Aut(F)
does not contain a direct product of two nonabelian free groups (see [HW2), Lemma 6.2]).
Moreover, by [Guell, Proposition 2.2], the group Out(W3) is isomorphic to PGL(2,Z)
which is virtually free.

Let k > max{n — 3,2} and let H = Hy x Hy x ... x Hy be a subgroup of Out(W,,)
isomorphic to a direct product of k£ nonabelian free groups. Note that &k = n — 3 if
n =5and k = 2 if n = 4. We prove that there exists a subgroup K of H isomorphic
to a direct product of k£ nonabelian free groups which virtually fixes a one-edge free
splitting of W,,. Let F be a maximal H-periodic free factor system. If F is sporadic,
then H virtually fixes a one-edge free splitting, so we are done. Therefore, we may
suppose that F is nonsporadic. As F is supposed to be maximal, by Proposition [4.2.2
the group H acts on FF(W,,, F) with unbounded orbits. Lemma implies that, after
possibly reordering the factors, the group H' = Hy x Hs x ... x Hy_1 has a finite orbit
in 0, FF(W,,, F). By Lemma the group H’ virtually fixes the homothety class [T]
of an arational (W,,, F)-tree T'.

Let Hy be a normal subgroup of finite index in H’ that is contained in Stab([T7]).

Claim. The group H contains a subgroup isomorphic to a direct product of k nonabelian
free groups, which fixes the equivalence class of a one-edge free splitting.

Proof. By Lemma the homomorphism Ar|g, from Hy to R% given by the scaling
factor has cyclic image. As Hy contains a direct product of k — 1 nonabelian free groups,
so does P = ker(Ar|p,) (see the beginning of Section [4.5). In particular, the intersection
of P with every direct factor H; of H' is a nonabelian free group. As P is contained
in the isometric stabilizer of T', Proposition [£.5.6] implies that P contains a finite index
subgroup Py which fixes infinitely many (W,,, F)-free splittings.

Let C be the (nonempty) collection of all (W,,, F)-free splittings fixed by the infinite
group Py, let Ue be the splitting provided by Theorem [£.5.5] and let U¢ be its equivalence
class. Since Py commutes with Hy, the equivalence class Ue is (Py x Hj)-invariant.

Suppose first that the splitting Ug contains an edge e € EUg with trivial stabilizer.
Let U’ be the splitting obtained from Ug by collapsing every edge of Ue that is not
contained in the orbit of e, and let U’ be its equivalence class. Then U’ is the equivalence
class of a one-edge free splitting virtually fixed by Py x Hy. Since Py contains a direct
product of k£ — 1 nonabelian free groups, the claim follows.

Thus, we can suppose that all edge stabilizers of Uz are nontrivial. We show that
this leads to a contradiction. Let VUg = Vi I Vo be the partition of VU; given by
Theorem Let P’ be a finite index subgroup of Py which acts trivially on the
quotient W,\Uc. We claim that the intersection of P’ with the group of twists of Ug
is trivial. Indeed, let e be an oriented edge of Us. As every subgroup of W,, with
nontrivial centralizer is cyclic, if the edge stabilizer G, of e is not cyclic, the group of
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twists around this edge is trivial. Thus, oriented edges with nontrivial group of twists
have cyclic stabilizers. But twists about edges with cyclic stabilizers are central in a
finite index subgroup of Stab®(U¢) by Lemma Let P” is a finite index subgroup
of P’. Then the intersection of P” with every direct factor H; of H' is a nonabelian free
group. Therefore every element of P” is contained in a nonabelian free subgroup of P”.
In particular, the center of every finite index subgroup of P’ is trivial. Thus we see that
the intersection of P’ with the group of twists is trivial. By Remark up to passing
to a further finite index subgroup of P’, we may suppose that the intersection of P’ with
the group of bitwists is trivial.

By Proposition [£.2.5] (1) and Remark the fact that the intersection of P’ with
the group of bitwists is trivial implies that we have an injective homomorphism

P'— [] Out(Gy).
veEW,\VUc

By Theorem [4.5.5] (1)(b), for every vertex v € Vj, the homomorphism P’ — Out(G,)
has finite image. Therefore, up to passing to a finite index subgroup of P’, we have an
injective map
P> ] Out(G,).
veWn\Va

By Theorem [.5.5 (2), for every v € V5, the vertex stabilizer G, is an element of a free
factor system of W,,. Therefore, there exists k such that G, is isomorphic to W;. By
Lemma [4.5.2 we have:

n—4<k—1=rkpoa(P) < Y| rhproa(Out(Gy)).
UEWn\VQ

By induction, we see that, if |IW,\Va| = 2, then

D7 tkproa(Out(Gy)) < n — 6,
'UeWn\VQ

which leads to a contradiction. Thus |W,\Va2| = 1. Let v € W,\Va. Then there exists
¢e{l,...,n— 1} such that G, is isomorphic to Wy. If £ < n — 2, then

rkprod (Out(Gy)) < n — 5,

which leads to a contradiction. If £ = n— 1, then the free factor system F contains a free
factor isomorphic to W, _; and is therefore a sporadic free factor system, which leads to
a contradiction. ]

Therefore, we see that there exists a subgroup K of H isomorphic to a direct product
of k nonabelian free groups such that K fixes the Wy,-equivariant homeomorphism class
of a one-edge-free splitting S. We now prove that S is the equivalence class of a W,,_1-
star. Let S be a representative of S, let v1 and vy be the vertices of the underlying graph
of W,\S and, for i € {1,2}, let k; be such that W}, is isomorphic to G,,. Let Ky be the
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finite index subgroup of K which acts as the identity on W, \S. Then Ky € Stab’(S).
By Proposition (2), the group Stab’(S) is isomorphic to Aut(Wg,) x Aut(Wy,).
Suppose towards a contradiction that, for every i € {1, 2}, we have that k; # 1. Suppose
first that, for every i € {1,2}, we have k; > 3. Then, by Lemma we see that:

k= I'kprod([(O) < I'kprod(Aut(vvlﬂ)) + 1"kprod(‘Aut(VVk:z)) Ski—2+k—2=n-4,

where the second inequality comes from the induction hypothesis. If there exists i € {1, 2}
such that k; = 2, then, as Aut(WW2) is virtually cyclic (it is isomorphic to Wa by [Tho,
Lemma 1.4.2]), we see that:

k= I'kprod(l:(O) < rkprod(AUt(Wk1)) + I'kprod(Aut(vvkz)) Ski—2<n-4

In both cases, we have a contradiction as k = n — 3 when k = 5 and k = n — 2 when

n = 4. Thus, there exists ¢ € {1,2} such that k; = 1. This shows that S is a W,,_;-star.

In particular, when k = n — 3, that is, when n > 5, this proves Theorem (3).
Since Ko € Stab’(S), Proposition m (2) implies that

k = rkproa (Ko) < tkproa(Aut(Wy—1)) =n—1-2=mn—3.

When n = 4, then kK = 2 = n — 2. Therefore, we have a contradiction in this case. This
shows that, for all n > 4, the product rank of Out(W,,) is equal to n — 3. This concludes

the proof of Theorem [4.5.1] (2).
It remains to prove that, if n > 4, we have rkyroq(Aut(W,)) < n —2. We have the
following short exact sequence

1 - W, - Aut(W,,) - Out(W,) — 1.
By Lemma as W, is virtually free, we see that
tkprod (Aut(W,)) < rkprod (Wn) + tkproa (Out(Wy)) =1+n -3 =n—2.
This concludes the proof of Theorem (1). O

4.6 Subgroups of stabilizers of IV,,_;-stars

In the next two sections, we prove an algebraic characterisation of stabilizers of equiva-
lence classes of W, _o-stars. In this section, we take advantage of properties satisfied by
stabilizers of equivalence classes of W,,_s-stars which are sufficiently rigid to show that a
subgroup H of Out(W,,) which satisfies these properties virtually fixes a W,,_-star. In
the next section, we will take advantage of the fact that stabilizers of equivalence classes
of compatible W, o-stars have large intersections to give a characterisation of stabilizers
of equivalence classes of W,,_o-stars.

Let T be a finite index subgroup of the group Out®(W,,) (defined after Theorem [4.4.1)).
We introduce the following algebraic property for a subgroup H € I'.

(Pw,_,) The group H satisfies the following three properties:
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(1) The group H contains a normal subgroup isomorphic to a direct product K; x Ky of
two normal subgroups such that each one contains a nonabelian finitely generated
normal free subgroup of finite index and such that for every i € {1,2}, for every
nontrivial normal subgroup P of a finite index subgroup K/ of K;, and for every
finite index subgroup P’ of P, the group COutO(Wn)(P/ ) contains K;11 as a finite
index subgroup (where indices are taken modulo 2).

(2) The group H contains a direct product of n — 3 nonabelian free groups.

(3) The group H contains a subgroup isomorphic to Z"~2.

Remark 4.6.1. (1) Notice that property 1s closed under taking finite index sub-
groups.

(2) Hypothesis (1) implies that, if for every i € {1,2}, the group P; is a finite
index subgroup of a nontrivial normal subgroup of a finite index subgroup of K;, the
centralizer in Out®(W,,) of P1 x Py is finite.

We first prove that the stabilizer in I' of the equivalence class of a W,,_o-star satisfies
W, )l We then show that a group satisfying (P, ,) virtually fixes the equivalence
class of a W, _q-star.

4.6.1 Properties of Zp -factors

In order to prove that the stabilizer in I' of the equivalence class of a W, _o-star satisfies
we first need some background concerning Zro-splittings. Let G be a finitely
generated group. A Zro-splitting of G is a splitting of G such that every edge stabilizer
is either trivial or isomorphic to Z and root-closed. A Zgrc-factor of G is a subgroup
of G which arises as a vertex stabilizer of a Zrc-splitting of G. Note that since edge
stabilizers are root-closed, so are the vertex stabilizers.

We now describe a finite index subgroup of W, that we will use in the proof of
Proposition [£.6.3] Let F be the kernel of the homomorphism W,, — F which sends every
generator of a standard generating set of W, to the nontrivial element of F. Remark
that F does not depend on the choice of the basis. Indeed, if {x1,...,z,} is a standard
generating set of W), and if x is an element of W,, of order 2, there exists i € {1,...,n}
and g € W, such that x = gz;g~'. We have the following result due to Miihlherr.

Lemma 4.6.2. [Mil, Theorem A] The group F is a nonabelian free group of rank n — 1
which is a characteristic subgroup of W,,. Moreover, the natural restriction homomor-
phism

Aut(W,,) — Aut(F)

18 1njective.

We now outline here some properties of Zrc-factors (see e.g. [HW2, Proposition 7.3]).
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Proposition 4.6.3. Let n = 3. The Zrc-factors of W, satisfy the following properties.

(1) Let H be a finitely generated subgroup of Wy, which is not virtually cyclic. There
exists g € H which is not contained in any proper Zro-factor of H.

(2) There exists C' € N* such that, for every strictly ascending chain G1 S ... S Gy of
Zro-factors of Wy, one has k < C.

(3) If a subgroup K of Wy, is not contained in any proper Zrc-factor of W, and if P
1s either a finite index subgroup of K or a montrivial normal subgroup of K, then P is
not contained in any proper Zrc-factor of W,.

(4) A subgroup K of Wy, is contained in a proper Zrc-factor of Wy, if and only if every
element of K is contained in a proper Zrc-factor of W.

Proof. The first assertion is a consequence of [GeH, Lemma 4.3] due to Genevois and
Horbez.

For the second assertion, let G1 < ... & G} be a sequence of strictly ascending Zrc-
factors. Then, since Zgro-factors are root-closed, for every ¢ > 3 the group G; is not
cyclic. Thus, as we want an upper bound on the number of subgroups of such a sequence,
we may suppose that for every i € {1,...,n}, the group G; is not cyclic. We claim that,
for every i € {1,...,k}, there exists ¢; € Aut(W,,) such that Fix(¢;) = G;. Indeed, let
S; be a Zpo-splitting of W, such that there exists v € V.S; whose stabilizer is equal
to G;. Up to collapsing edges, we may suppose that every vertex of S; has nontrivial
stabilizer. Let ey, ..., ey be the edges with origin v which are in pairwise distinct orbits.
Let Fy < {e1,...,es} be the subset made of all edges with nontrivial stabilizer. By
the definition of a Zgrc-splitting, for every es € Fp, the group Ge, is cyclic. For every
es € Fp, let zg be a generator of Ge,. For every ey € {e1,...,es} — Fp, let zg € G; be
such that, if wy is the endpoint of ey distinct from v, we have zy¢Gy, zs_,l # Gy, . Let
¢i = D¢y 2y ©...0 D, , be a multitwist about every edge with origin v. Then, as the
centralizer of an infinite cyclic subgroup of W, is infinite cyclic, we have Fix(¢;) = G;.
Therefore, in order to prove the second assertion, it suffices to prove that there exists
C € N* such that for every strictly ascending chain Fix(¢1) & ... & Fix(¢y) of fixed
points sets of automorphisms of W,,, one has k < C.

Let I be the characteristic subgroup of W,, given by Lemma [4.6.2] and let

& Aut(W,,) — Aut(F)
be the natural injective homomorphism given by restriction. Then
Fix(®(¢1)) € ... € Fix(®(dr))

is an ascending chain of fixed points sets.

Claim. For every i € {2,...,k — 1}, the set {Fix(®(¢i—1)), Fix(®(¢;)), Fix(P(di+1))}
contains at least 2 elements.

Proof. Suppose towards a contradiction that

{Fix(®(¢i-1)), Fix(®(¢:)), Fix(®(¢i+1))}] = 1.
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As Fix(¢;—1) < Fix(¢;) and Fix(®(¢;—1)) = Fix(®(¢;)), there exists a € W,, —F such that
¢i(a) = a and ¢; 1(a) # a. Since the index of F is equal to 2, we see that ¢; 1(a?) = a?.
Therefore, ¢;_1(a)?> = a® and ¢;_1(a) is a square root of a®. If a? has infinite order,
its only square root is a. This implies that ¢;_1(a) = a, a contradiction. Thus we can
assume that a has order 2 and, up to changing the basis {z1,...,x,}, we may suppose
that ¢ = x1.

As the index of T is equal to 2, we have W,, = F1ix,F. Let 2 € Fix(¢;+1) — F. Then
there exists y € F such that = z1y. As x1 € Fix(¢;) and Fix(¢;) € Fix(¢;+1), we have
that ¢;+1(z1) = z1. Hence ¢;+1(y) = y. As y € F and Fix(®(¢;)) = Fix(P(dit1)), we
see that ¢;(y) = y and ¢;(z) = ¢;(x1y) = 21y = x. Therefore we have that Fix(¢;) =
Fix(¢;+1), which is a contradiction. The claim follows. O

The claim implies that the length of the strictly ascending chain associated with
Fix(®(¢1)) € ... € Fix(®(¢y)) is at least equal to £. But any strictly ascending chain of
fixed subgroups in a free group on n — 1 generators has length at most 2(n—1) (see [MV],
Theorem 4.1]). Therefore, there exists C' which depends only on n such that k£ < C.
The second assertion of Proposition follows.

We now prove the third assertion. Let P and K be as in Proposition [4.6.3] (3). If
K is a virtually infinite cyclic group, then K is either isomorphic to Z or to Wa. Let a
be a generator of the subgroup of K isomorphic to Z and root-closed in K. Since {(a) is
a finite index subgroup of K and since K is not contained in any proper Zprc-factor of
Wy, then neither is a. Remark that any nontrivial normal subgroup of K intersects the
subgroup {a) non trivially. Therefore, if P is contained in a proper Zrc-factor of W,
then a is elliptic in a Zgc-splitting. This contradicts the fact that a is not contained in
any proper Zrc-factor of W,,.

So we can assume that K is not virtually cyclic. As every finite index subgroup
contains a nontrivial normal subgroup of K, we may assume that P is a nontrivial
normal subgroup of K. Notice that P is necessarily noncyclic. Suppose towards a
contradiction that P is contained in a Zgrco-factor. Then there exists a Zrc-splitting .S
of W, such that P is elliptic in S. Since edge stabilizers are cyclic, the group P fixes a
unique vertex x of S. But, as P is normal in K, for every k € K, we have that kx is
also fixed by P, hence we have kx = x. Therefore, x is fixed by K, which contradicts
the fact that K is not contained in any proper Zgrc-factor.

We finally prove Proposition (4). Suppose that K is contained in a proper Zgc-
factor. Then it is clear that every element of K is contained in a proper Zgc-factor.

Conversely, assume that K is not contained in any proper Zgrc-factor of W,,. Let
us prove that there exists g € K such that g is not contained in any proper Zgrc-factor.
By Proposition m (2), there exists a bound on the length of an increasing chain of
Zro-factors of W,,. Therefore, the group K contains a finitely generated subgroup K’
which is not contained in any proper Zgc-factor. By Proposition m (1), there exists
g € K' such that g is not contained in a proper Zgc-factor of K'. Let S be a Zgc-
splitting of W,,. As K’ is not contained in any proper Zgc-factor of W, the group K’
has a well-defined, nontrivial minimal subtree S/ with respect to the action of K’ on
S. As S is a Zpc-splitting of W,,, the splitting Sk is a Zrc-splitting of K’. Since g is
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not contained in any proper Zgc-factor of K, it follows that g is a hyperbolic isometry
of Sk and is not elliptic in S. As S is arbitrary, it follows that g is not contained in any
Zrco-factor of W,. O

Proper Zgrco-factors appear naturally when studying stabilizers of conjugacy classes of
elements as shown by the following theorem. Recall that, if H = {H;, ..., Hy} is a finite
family of finitely generated subgorups of W,,, the group Out(W,,, H(t)) is the subgroup
of Out(W,,) consisting of all outer automorphisms ¢ € Out(W,,) such that, for every
i€ {1,...,k}, there exists a representative qzz € Aut(W,,) of ¢ such that %(HZ) = H; and
¢iln, = idpy,.

Theorem 4.6.4. |GuLj, Theorem 7.14] Let n = 3 and let g € W,,. Then the subgroup
Out(W,,,{g)) of outer automorphisms which preserve {gy up to conjugacy is infinite if
and only if g is contained in a proper Zrc-factor of W,.

More generally, Let G be a finitely generated Gromov hyperbolic group. If H is a
finite family of finitely generated subgroups of G, then the group Out(G, H(t)) 1s infinite
if and only if there exists a nontrivial Zro-splitting S of G such that every subgroup of
H fizes a vertex of S. O

4.6.2 Stabilizers of IV, o-stars satisfy (Py,_,)

Lemma 4.6.5. Let n =5 and let T’ be a finite index subgroup of Out’(W,,). Let S be the
equivalence class of a Wy_o-star S. Let e; and ey be the two edges of W,\S and, for
i€ {1,2}, let T! be the group of twists about e; in Stabr(S). Let i € {1,2}, let T; be a
finite index subgroup of T} and let P' be a finite index subgroup of a nontrivial normal
subgroup of T;. Then for every finite index subgroup Py of P’, the group Py fixes exactly
one equivalence class of Wy,_a-stars.

Proof. Let

Wy = {x1)y x{x3,...,xn) * {x2)
be a free factor decomposition associated with W;,\S and A = {(x3,...,z,). Up to ex-
changing the roles of e; and ey, we may suppose that P’ is contained in the group of twists

of the equivalence class of the W,,_1-star S; whose associated free factor decomposition
of W, is, up to global conjugation:

Wy, =<{x1)y «{x2,23,...,Tpn).

Let B ={x9,x3,...,x,) and let S; be the equivalence class of S1. Finally, let Sy be the
equivalence class of the W,,_i-star So whose associated free factor decomposition of W,,
is, up to global conjugation:

Wy, =<{xo)y % {x1,23,...,Tpn).

Let C' = {z1,23,...,2n) = Ax{(x1).
We claim that the only equivalence classes of W,,_i-stars fixed by any finite index
subgroup of P' are 8; and 8. Indeed, fix i € {1,2}. The group T; is isomorphic to a

146



finite index subgroup N of W, _. By Proposition m (3) applied with K = W,,_9 and
P = N, asn =5, the group N is not contained in any proper Zrc-free factor of W, _o.
By Proposition m (4), there exists g € N such that W,,_5 is freely indecomposable
relative to g. Hence there exists g € A such that A is freely indecomposable relative to
g and P’ contains the twist about e; whose twistor is g. Note that this twist can be
seen as a twist about the W,,_q-star Si. Let S| be the equivalence class of the one-edge
cyclic splitting S7 whose associated amalgamated decomposition of W, is, up to global
conjugation:

Wi = ((z1) *{g)) *(g B-

Let &3 be the equivalence class of a W, _1-star S3 fixed by some finite index subgroup
of P' and distinct from S;. Let
Wy = <y> * D

be the free factor decomposition associated with S3. We claim that S3 = Sy. As P’
contains the twist about g, by Lemma the splitting S3 is compatible with S. Let
U be a two-edge refinement of S| and Ss3. Then U is obtained from S3 by blowing-
up an edge at vertices whose stabilizers are conjugate to D. Moreover, U is obtained
from S| by blowing-up an edge at vertices whose stabilizers are conjugate to B or by
blowing-up an edge at the vertices whose stabilizers are conjugate to (x1)*{g). But, the
second case can only occur when S3 = S; (see the claim in the proof of Lemma .
Therefore, we may suppose that U is obtained from S{ by blowing up an edge at vertices
whose stabilizers are conjugate to B. Thus, up to applying a global conjugation, we may
assume that {(z1) *{g) € D. But, as g is not contained in any proper Zrc-factor of A
and as A n D is a free factor of A, we see that An D = A. Hence A*{(x1) € D, and, as
Ax{x1) is isomorphic to W,,_1, we have in fact A*{x1) = D. It follows that C' = D and,
by Lemma we see that So = S3. Thus the only equivalence classes of W,,_1-stars
fixed by finite index subgroups of P’ are S; and Ss.

Therefore the only equivalence classes of W,,_s-stars fixed by finite index subgroups
of P’ are the equivalence classes of the W, o-stars which refine S; and Ss. As S
and Sy are refined by a unique (up to Wj-equivariant homeomorphism) W,,_s-star by
Theorem [4.3.7, we conclude that S is the only equivalence class of W, _o-star fixed by
finite index subgroups of P’. This completes the proof. O

Proposition 4.6.6. Let n =5 and let T' be a finite index subgroup of Out®(W,,). Let S be
the equivalence class of a Wy,_o-star S. Then Stabp(S) satisfies m Moreover, we
can choose for the subgroup Ky x Ky of Property ((Pw, _,)| (1) the direct product of the
groups of twists of S about the two edges of S.

Proof. The fact that Stabp(S) satisfies (2) follows from the fact that Stabp(S)
contains the stabilizer in I" of the equivalence class of a Wj-star obtained from S by
blowing-up n —5 edges at the center of W,,\S. Indeed, Proposition (3) ensures that
the group of twists of a Wjs-star is isomorphic to a direct product of n — 3 copies of Wj.

The fact that Stabp(S) satisfies (3) follows from the fact that Stabp(S)
contains the stabilizer in I" of the equivalence class of a Wa-star obtained from S by
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blowing-up n — 4 edges at the center of W,,\S. Indeed the group of twists of a Wy-star
is isomorphic to a direct product of n — 2 copies of W5 by Proposition (3).

Let us now prove that Stabr(S) satisfies (P, _,)| (1). Let 7" be the group of twists
of S and let T = T’ nT. The group T is normal in Stabr(S) since I' € Out’(W,,). By
Proposition m (3), the group 7" is isomorphic to 7] x T4, where, for i € {1,2}, T/ is
the group of twists in Out(W,,) about one edge of W,\S. For i € {1,2}, let T; =T/ nT.
For every i € {1,2}, the group 7; is a normal subgroup of Stabr(S) and the group 71 x T

)

is a normal subgroup of Stabp(S). Let T1(2 be a finite index subgroup of 77 and let P’

be a finite index subgroup of a nontrivial normal subgroup of TI(Q). We prove that the
centralizer of P’ in I" contains T as a finite index subgroup. This will conclude the proof
of the proposition by symmetry of 77 and T5. By Lemma the equivalence class
S is the only equivalence class of W,,_s-star fixed by every finite index subgroup of P’.
Hence Cp(P’) fixes S.

Let H be a finite index subgroup of Cp(P’) which fixes S. Let

Wy, ={x1)y = {(x3,..., 25 *{x2)

be a free factor decomposition associated with W,\S and A = {x3,...,z,). By Propo-
sition (1), the kernel of the natural homomorphism H — Out(A) is isomorphic
to H n'T. We claim that the image of H in Out(A) is finite. Indeed, as P’ is a finite
index subgroup of a nontrivial normal subgroup of a finite index subgroup of 77 and as
T} is isomorphic to a finite index subgroup of W,, o, we see that P’ is isomorphic to a
finite index subgroup N of a nontrivial normal subgroup of a finite index subgroup of
Wi,—2. By Proposition [4.6.3] (3), N is not contained in any proper Zpc-factor of W, _».
By Proposition (4), there exists g € N such that g is not contained in any proper
Zpco-factor of W, 5. Thus, there exists g € A such that g is not contained in any proper
Zro-factor of A and the twist about ¢ is contained in P’. As H commutes with the
twist about g, Lemma implies that H preserves the conjugacy class of g. Hence,
by Theorem the image of H in Out(A) is finite.

Thus, H T has finite index in H and in Cp(P’). But, as H commutes with P’ € T},
and as 77 is virtually a nonabelian free group, the intersection H n T5 has finite index
in H n T, hence has finite index in Cp(P’). This completes the proof. O

4.6.3 Groups satisfying (P, ,) and stabilizers of 1,,_;-stars

We prove in this section that if H is a subgroup of Out(W,,) which satisfies
then H virtually fixes the equivalence class of a W,,_j-star. We first recall a general
lemma.

Lemma 4.6.7. Let G be a group and let N be a finitely generated normal subgroup of G.
Let n € N*.

(1) There exist only finitely many subgroups of N of index equal to n.

(2) For every finite index subgroup N' of N there exists a finite index subgroup G' of G
such that N' is a normal subgroup of G'.
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Proof. Assertion (1) is well known, we only prove assertion (2). Let N’ be a subgroup
of N of index n and let ¢ € G. As N is a normal subgroup of G, the automorphism
adg: G — G induces an automorphism ady|ny: N — N by restriction. Therefore, ad,
permutes the subgroups of index n in V. Since there exists a finite number of subgroups
of index n in N by the first assertion, we see that there exists a finite index subgroup
G’ of G such that, for every g € G', we have ady(N') = N’. Therefore N’ is a normal
subgroup of G’. This concludes the proof. O

Lemma 4.6.8. Let n > 5. Let H be a subgroup of Out®(W,,) satisfying [(Pw, )l Let

Ky x Ko be a normal subgroup of H given by (1). Then one of the following
holds.

(1) For every i € {1,2}, the group K; does not virtually fix the equivalence class of a
free splitting.

(2) The group H virtually fizes the equivalence class of a one-edge free splitting.

Proof. Suppose that there exists i € {1,2} such that K; virtually fixes the equivalence
class of a free splitting. Up to reordering, we may assume that ¢ = 1. Let K] be a finite
index subgroup of K which fixes the equivalence class of a free splitting, and let C be the
set of all equivalence classes of free splittings fixed by K. Since K is a finitely generated
normal subgroup of H, by Lemma (2), there exists a finite index subgroup Hy of
H such that K] is a normal subgroup of Hy. In particular, the set C is preserved by H.

Suppose first that the set C is finite. Then the set C is virtually fixed pointwise by
Hy. Hence the group H virtually fixes the equivalence class of a free splitting.

So we may assume that the set C is infinite. Let Uz be the splitting provided by
Theorem and let Uy be its equivalence class. By the equivariance property in
Theorem the equivalence class U is Hp-invariant. Suppose first that the splitting
Uc contains an edge e € EUe with trivial stabilizer. Let U’ be the splitting obtained
from Ue by collapsing every edge of Ug that are not contained in the orbit of e, and let
U’ be its equivalence class. Then U’ is the equivalence class of a one-edge free splitting
virtually fixed by H.

Thus, we may assume that all edge stabilizers of Ue are nontrivial. We show that this
leads to a contradiction. Let H' be the subgroup of finite index in Hy which acts trivially
on W,\Uc. We claim that the intersection of H’ with the group of twists of Ue is finite.
Indeed, let e be an oreiented edge of Ue. As W, is virtually free, if the edge stabilizer
G, of e is not cyclic, the group of twists about this edge is trivial. Thus, as we suppose
that all edge stabilizers are nontrivial, oriented edges with nontrivial group of twists
have cyclic stabilizers. But by Lemma twists about edges with cyclic stabilizers
are central in a finite index subgroup of Stab®(U¢). Note that Remark (2) implies
that the center of every finite index subgroup of H' is finite. Therefore the intersection
of H' with the group of twists is finite. By Remark the intersection of H’ with
the group of bitwists is finite. Thus, up to passing to a finite index subgroup, we may
suppose that the map

H - ] Out(Gy)
vV (Wn\Ue)
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given by the action on the vertex groups is injective.

Let VUz = V4 U V3 be the partition of VU; given by Theorem and, for ev-
ery i € {1,2}, let H; be the subgroup of H' made of all automorphisms whose image
in [ emw,\v; Out(Gy) is trivial. Then Hy and Hj centralize each other and, by Theo-
rem [4.5.5](1)(b), the group Hy n K7 is a finite index subgroup of K. Thus H, centralizes
a finite index subgroup of K. We prove that rkpoq(H2) > 2, which will contradict the
fact that the centralizer of every finite index subgroup of K7 is virtually free.

By Theorem m (2), the set of all conjugacy classes of groups G, with v € V5 is a
free factor system of W,,. In particular, for every v € Vo, there exists k, € {0,...,n — 1}
such that G, is isomorphic to Wy, . Suppose first that |W,\Va| > 3. In this case, by
Theorem [£.5.1] (2) and since rkproa(Out(W3)) = 1 and rkproq(Out(Ws)) = 0, for all
v € Vo, we have rkpoq(Out(Wy,)) < ky, — 2. Hence

Kprod H Out(G,) | < n —6.
’UEWn\VQ

Since rkppod(H') = n — 3, using Lemma we see that rkppoq(H2) = 3. This leads
to a contradiction. Suppose now that |W,\Va| = 2 and let vi,ve € W, \Va be distinct.
Then for every i € {1,2} there exists k; € {1,...,n — 1} such that G,, is isomorphic to
Wy, If Wy, = Wy, % Wy, then the group H’ virtually fixes the equivalence class of the
one-edge free splitting determined by this free factor decomposition of W,,. So we may
assume that W,, # Wy, = Wy,. This implies that ki + k2 <n — 1. Hence

rKprod H Out(Gy) | £n —5.
veWn\Vg

Since rkproa(H') = n — 3, using Lemma we see that rkproq(Hz2) = 2. This leads to
a contradiction. Suppose now that |[W,\Vz| = 1, and let v € W,,\Va. Then there exists
k e {1,...,n — 1} such that G, is isomorphic to Wj. Suppose first that £ < n — 2.
Then by Theorem (2), and since rkproq(Out(W3)) = 1, rkproqa(Out(Wy)) = 0 and
tKprod (Out(Wa)) = 0, if n # 5, we have

tkprod (Out(Wy)) < n —5.

Thus, by Lemma we see that rkproq(H2) = 2. When n = 5, the case where k = 3
and rkppoq (Out(Wy)) = 1 = n — 4 can occur. But by Property (3), the group
H' contains a subgroup isomorphic to Z3. Since Out(W3) is virtually free, the group Hy
contains a subgroup isomorphic to Z2. This contradicts the fact that the centralizer of
every finite index subgroup of K7 is virtually nonabelian free. Hence we have k = n — 1.
But then, by Lemma the group H' (and hence the group H) virtually fixes the
equivalence class of a W, _j-star. This concludes the proof. O
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Lemma 4.6.9. Letn = 5. Let F be a nonsporadic free factor system. Let H be a subgroup
of Out®(W,,) n Out(W,,, F) containing a direct product of n — 3 nonabelian free groups.
Then H cannot contain a finite index subgroup which fixes the homothety class of a
(W, F)-arational tree.

Proof. Suppose towards a contradiction that H has a finite index subgroup which fixes
the equivalence class of a (W, F)-arational tree. Up to passing to a finite index sub-
group, we may suppose that H itself fixes the homothety class of a (W, F)-arational
tree. By Lemma there exists a homomorphism from H to Z whose kernel K’ is
exactly the isometric stabilizer of a (W, F)-arational tree. Note that K’ contains a
direct product of n — 3 nonabelian free groups as it is the kernel of a homomorphism
from H to Z. By Proposition there exists a finite index subgroup K of K’ such
that K fixes infinitely many equivalence classes of free splittings. Let C be the collection
of all equivalence classes of free splittings fixed by K.

We claim that C is in fact finite, which will lead to a contradiction. Since K <
Out’(W,,), Lemma implies that if S is the equivalence class of a free splitting S
fixed by K, then the group K fixes the equivalence class of every one-edge free splitting
onto which S collapses. By Theorem [.3.7] if S is the equivalence class of a free splitting
S, then S is determined by the finite set of equivalence classes of one-edge free splittings
onto which S collapses. Therefore, it suffices to show that K can only fix finitely many
equivalence classes of one-edge free splittings. Let S be the equivalence class of a one-
edge free splitting fixed by K. Since K contains a direct product of n — 3 nonabelian
free groups, Theorem [4.5.1] (3) implies that S is a W,,_1-star. Let

Wy ={x1, ..., Xp_1) x{Tp)

be a free factor decomposition associated with S and let A = {z1,...,z,_1). By Propo-
sition (1), the kernel of the natural homomorphism K — Out(A) is the intersection
of K with the group of twists T" of S. By Theorem (2), the product rank of Out(A)
is equal to n — 4. Since K contains a direct product of n — 3 nonabelian free groups,
we see that K n T is infinite. Therefore, for every equivalence class S of a W, _1-star S
fixed by K, the group K contains an infinite twist about S.

Let S and S’ be two distinct equivalence classes of W, _1-stars fixed by K. Let S
be a representative of S and let S’ be a representative of &’. We claim that S and
S’ are compatible. Indeed, by the above, there exists f € K of infinite order such
that f is a twist about S. Since f fixes &', Lemma implies that S and S’ are
compatible. Therefore, for every distinct equivalence classes S and 8’ of one-edge free
splittings fixed by K, there exist S € S and S’ € &’ such that S and S’ are compatible.
By Theorem this is only possible when C is finite. This leads to a contradiction
since K must fix infinitely many equivalence classes of free splittings. This concludes
the proof. O

Proposition 4.6.10. Let n > 5. Let H be a subgroup of Out®(W,,) satisfying [(Pyw, )\
Then H virtually fizes the equivalence class of a W, _1-star.
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Proof. The proof is inspired by [HW2, Proposition 8.2] and [HHW| Proposition 6.5].
We prove that H virtually fixes the equivalence class of a one-edge free splitting. Since
H contains a direct product of n — 3 nonabelian free groups, we will then conclude by
Theorem [4.5.1] (3). Suppose towards a contradiction that H does not virtually fix the
equivalence class of a one-edge free splitting. Let F be a maximal H-periodic free factor
system. We can assume that F is nonsporadic otherwise H virtually fixes the equivalence
class of a one-edge free splitting and we are done. As F is maximal, by Proposition [4.2.2
the group H acts with unbounded orbits on FF(W,,, F).

Let K; x K2 be a normal subgroup of H given by (1). Suppose first that nei-
ther K nor Ks contains a loxodromic element on FF(W,,, F). As H has unbounded or-
bits on FF(W,,, F), Lemmaimplies that K7 x K3 has a finite orbit in 0, FF(W,,, F).

By Lemma there exists a finite index subgroup Ki x K} of K; x K3 such that
K| x K} fixes the homothety class of an arational (W, F)-tree T. Since K; x Ky does
not contain a loxodromic element, K| x K} fixes T' up to isometry, not just homothety
(see e.g. [GuH2, Proposition 6.2]). By Proposition the group K| x K virtually
fixes infinitely many equivalence classes of (W,,, F)-free splittings. By Lemma the
group H virtually fixes the equivalence class of a one-edge free splitting of W,.

So we may suppose that there exists a loxodromic element ® € K7 x Ko. First suppose
that there exists a unique 7 € {1, 2} such that the group K; contains a loxodromic element
®;. We may assume, up to reordering, that only K> contains a loxodromic element .
Therefore by Lemma the group K virtually fixes a point in 0 FF(W,,, F). By
Lemma the group K7 virtually fixes the homothety class an arational (W), F)-tree
T. Let K| be a normal subgroup of K of finite index that is contained in Stab([T1]).
As K7 does not contain any loxodromic element, as in the above step, K fixes T up
to isometry. By Proposition the group K fixes the equivalence class of a free
splitting relative to F. By Lemma the group H virtually fixes the equivalence
class of a one-edge free splitting of W,.

Now suppose that for every i € {1,2}, the group K; contains a loxodromic ele-
ment. By Lemma the whole group H virtually fixes a point in 0 FF(W,,, F). By
Lemma [4:2.4] the group H virtually fixes the homothety class of an arational tree. This
contradicts Lemma [4.6.9

Therefore, in all cases, the group H virtually fixes the equivalence class S of a one-
edge free splitting S. By Theorem (3), since H contains a direct product of n — 3
nonabelian free groups, the group H virtually fixes the equivalence class of a W,,_;-star.

O

We now prove a proposition which gives a sufficient condition for equivalence classes
of W,,_1-stars provided by Proposition to be compatible. We first need the fol-
lowing result due to Krsti¢ and Vogtmann.

Proposition 4.6.11. [KV], Corollary 10.2] Let n = 3. The virtual cohomological dimension
of Out(W,,) is equal to n — 2. In particular, the mazimal rank of a free abelian subgroup
of Out(W,,) is equal to n — 2.
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Proposition 4.6.12. Let n > 5 and let T be a subgroup of Out®(W,,) of finite index. Let
k € N* and let Hy,...,Hy be subgroups of I' which satisfy and such that the
intersection ﬁle H; contains a subgroup H isomorphic to Z" 2. For i€ {1,...,k}, let
S; be the equivalence class of a Wy,_1-star S; which is virtually fixed by H;. Then, for
every i,j € {1,...,k}, the Wy,_1-stars S; and S; are compatible.

Proof. Let i,j € {1,...,k} be distinct integers. Let H' be a finite index subgroup of
H contained in Stabr(S;) n Stabr(S;). Let A; and A; be the vertex groups isomor-
phic to W,_1 of respectively W,,\S; and W,\S; (well defined up to conjugation). By
Proposition the rank of a maximal abelian subgroup of Out(W,,_1) is equal to
n — 3. Therefore, the kernel of the homomorphisms H' — Out(A4;) and H — Out(A4,)
given by the action on the vertex group contains an element of infinite order. Let
fi € ker (H' — Out(4;)) and f; € ker (H' — Out(A4;)) be infinite order elements. By
Proposition m (1), fi; and f; are twists about respectively S; and S;. As f; and f;
commute, by Corollary [£.4.9] S; and S; are compatible. This concludes the proof. [

4.7 Algebraic characterization of stabilizers of 1V,,_,-stars

In this section, we give an algebraic characterization of stabilizers of W,,_s-stars. By the
previous section, we know that groups which satisfy virtually stabilize equiva-
lence classes of W, _1-stars, and we have given an algebraic criterion to show that these
W, —1-stars are compatible. In order to prove that a group H which satisfies
virtually stabilizes the equivalence class of a W,, s-star, we study the intersection of a
normal subgroup Ki x Ko of H given by (1) with the group of twists of the
equivalence class of a W, _i-star virtually fixed by H.

4.7.1 Groups of twists in groups satisfying (P, ,)

We start this section with a lemma which gives a sufficient condition for a group H
satisfying to be the stabilizer of a W,, _o-star.

Lemma 4.7.1. Let n > 5 and let T’ be a subgroup of finite index of Out®(W,,). Let H be a
subgroup of I' which satisﬁes and let K1 x Ko be a normal subgroup of H given

by (1). Let 81 be the equivalence class of a Wy_1-star S1 virtually fixed by H
and let T1 be the group of twists of S1.

Suppose that Ty n K1 is infinite and that there exists an equivalence class S of a
Wi—_1-star So such that the intersection of Ko with the group of twists Ts of Sa is infinite.
Then S1 and Sy are compatible and H virtually fizes the equivalence class S of the Wi, _o-
star which refines S1 and Sa. Moreover, S is the unique equivalence class of a W, _o-star
virtually fized by H. Finally, the groups Th n Stabp(S) and K (resp. Ts n Stabp(S)
and K3) are commensurable.

Proof. For i € {1,2}, let f; € T; n K; be of infinite order. First remark that, as f; and
fo generate a free abelian group of order 2, we have T # T5 because the group of twists
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of a W, _1-star is virtually a nonabelian free group. Hence we have 1 # Ss. As Kj
commutes with fo, Proposition shows that K7 fixes So. As K7 contains a twist of
S1, Lemma [4.4.7 shows that S7 and S5 are compatible.

Let S be a W,,_o-star which refines S7 and So, let S be its equivalence class and let
T be the group of twists of S in I'. Then T contains a finite index normal subgroup
isomorphic to K S1 Kf 2 where K 1‘5 b and Kés 2 are virtually nonabelian free groups. By
Proposition , we can choose K f I x K§92 such that K f bx Kf 2 is a group satisfying
Property |(Pw,_,)| (1). Moreover, up to reordering, Kfl C Ty and KQ‘S > C Ty. Since
K fixes both S and Sy, we see that K; fixes S. Therefore, by Proposition m (1),
we have a homomorphism ®: K; — Out(W,,_2) whose kernel is exactly K; nT. By
Lemma we see that T} nStabp(S) mel is a finite index subgroup of T nStabp(S).
As Ky n T} is infinite, so is K1 N Kfl. Let P = ker(®) n Kfl =K n Kfl. Then, since
K, c OutO(Wn), the group K‘lsl n K7 is a normal subgroup of K;. Therefore P is a
nontrivial normal subgroup of K7. By Property (1), we see that K5 is a finite
index subgroup of Cr(P). But P is centralized by K52 since P € K fl. Hence Kf 2N Ky
is a finite index subgroup of KQS 2. As K f ! is a finite index subgroup of the centralizer
of Kf > by Property |(Pw,_,)| (1), and as K is a finite index subgroup of the centralizer
of Ko, we see that K7' n K has finite index in K7 and therefore P has finite index in
Kl. Let

Wy, ={x1)y % (x3,...,2n) % {x2)

be the free factor decomposition of W,, induced by S and let A = {z3,...,z,). Then,
up to reordering, for every f € P, there exists zy € A and a representative F' of f such
that F' sends z7 to zfxlzjil, and, for every ¢ # 1, fixes x;.

Claim. The only equivalence classes of W,,_i-stars which are virtually fixed by K7 are
81 and 82.

Proof. Let S3 be the equivalence class of a W, _1-star S3 virtually fixed by K7. Suppose
towards a contradiction that Ss is distinct from both &; and Sy. Let K| = K1nStabr(Ss)
and P’ = P n Stabp(S3). Then, as P is an infinite subgroup of the group of twists of
81, and as P’ is a finite index subgroup of P, we see that P’ is an infinite subgroup of
the group of twists of S;. By Lemma [£.4.7] we see that S; and S3 are compatible. Let
S’ be a W,,_o-star that refines S; and S3 and let S’ be its equivalence class. Let

Wi = Y1) # Y3y Yn) * {y2)

be the free factor decomposition of W,, induced by S’ and let B = (ys, ..., y,). Since S is
a refinement of S1, we may suppose that B *{ys) = Ax{x9) and that y; is a conjugate of
x1 by an element of B = {(y3). Up to applying a global conjugation, we may also suppose
that y; = z1 and that B = (y2) = A * (x2).

Let T” be the group of twists of S’. Then T contains a finite index normal subgroup
isomorphic to Pj x Py, where both P| and P} are virtually nonabelian free subgroups
of T' which correspond to the groups of twists about the two edges of W,,\S’. Then, as
P’ is a group of twists of Sy, and as P’ fixes §’, by Lemma up to reordering, the
group P’ is contained in P;.
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Let f' € Py, let F' be the representative of f’ which acts as the identity on B * (y2)
and let zp € B be the twistor of F'. Then F’ acts as the identity on A x (x3) and
F'(zy) = zf/xlz;,l. Recall that for every ¢ € P’, there exists a unique z; € A and a

unique representative ¥ of 1 such that ¥ sends x1 to z¢xlz;1, and, for every i # 1, fixes
x;. Thus, a necessary condition for f’ to be in P’ is that zy € A n B.

But as A and B are free factors of W,,, the group A n B is a free factor of B. To see
this, let U be a free splitting of W), such that A is a vertex stabilizer of U and let Up
be the minimal subtree of B in U. Then, as U is a free splitting of W,,, we see that Up
is a free splitting of B. But then, as A is a vertex stabilizer in U, we see that A n B
is a vertex stabilizer in Ug. Therefore, A n B is a free factor of B. Thus one can find
a Wy,_s-star S which refines S’ and such that, for every f' € P, the twistor zp fixes
a vertex of S&). Indeed, one can equivariantly blow-up an edge e at the vertex of S’
whose stabilizer is B such that the stabilizer of one of the endpoints of e is a subgroup
C isomorphic to W,,_5 with A n B € C. Therefore we may also assume that S is
a W,_g-star. Let S@ be the equivalence class of S(). By Proposition m (3), the
group of twists of S is isomorphic to a direct product W§_3 of three infinite groups,
where each factor is a group of twists about an edge of W,,\S (2). This implies that P’
is contained in exactly one of the three factors isomorphic to W, _3. It follows that the
centralizer of P’ contains two elements which generates a free abelian group of order 2.
This contradicts the fact that the centralizer of P’ is virtually a nonabelian free group

by (1). The claim follows. O

The claim above then implies, as K7 is a normal subgroup of H, that H virtually
fixes Ss. As H virtually fixes Sy, we see that H virtually fixes the equivalence class S.
Moreover, the above claim shows that S is the unique equivalence class of a W), _o-star
virtually fixed by K7, and hence virtually fixed by H.

We finally prove that K; and 77 n Stabr(S) (resp. K> and T> n Stabp(S)) are
commensurable. By Lemma for every i € {1,2} we see that K' nT; n Stabp(S) is
a finite index subgroup of T; nStabr(S). Moreover, for every i € {1,2} and every f € K f ‘
the twist f of S is also a twist of S;. Hence we have K ZS " € T; n Stabp(S). Therefore, for
every i € {1,2}, the groups KZS “ and T; n Stabr(S) are commensurable. Hence it suffices
to show that, for every i € {1,2}, the groups K; and KZS ¢ are commensurable.

Recall that K52 n K> is a finite index subgroup of K35? and that K°' n K has finite
index in K. Since H virtually fixes S, and since KQS 2 is a normal subgroup of Stabr(S),
we see that Kf 2 n K> is a normal subgroup of a finite index subgroup of K5. We know
that K§2 N K9 commutes with Kfl because Kfl and K§2 commute with each other.
Thus, by Property |( Py, _,)| (1) applied to K x Ky, the centralizer of K52 n K contains
K, as a finite index subgroup. This shows that K; n Kf ! is a finite index subgroup
of Kfl. Hence K; and Kfl are commensurable. By Property |(Pw, )| (1) applied to
Kf b x Kg 2 the centralizer of a finite index subgroup of Kf ! contains K;S 2 as a finite
index subgroup. Moreover, the centralizer of a finite index subgroup of K; contains Ks
as a finite index subgroup. Hence the centralizer of K1 n K f ! contains both Ky and K. f 2
as finite index subgroups. Thus Ks and Kf 2 are commensurable. This completes the
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proof of Lemma [£.7.1] O

Lemma suggests that in order to show that a group H which satisfies
is in fact virtually the stabilizer of the equivalence class of a W,,_s-star, it suffices to

study the intersection of H with groups of twists. A first step towards such a result is
the following lemma.

Lemma 4.7.2. Let n > 5 and let T be a subgroup of Out®(W,,) of finite index. Let H be

a subgroup of T’ satz’sfying and let K1 x Ko be a normal subgroup of H given by
(1). Let S be the equivalence class of a Wy_i-star S virtually fized by H and
let T be the group of twists of S contained in T'.

There exists a unique i € {1,2} such that K; n'T is infinite. Moreover, H nT n K;
has finite index in H n'T.

Proof. Up to passing to a finite index subgroup of H, we may suppose that H fixes
S. The uniqueness assertion follows from the fact that 7T is virtually a nonabelian free
group and that K7 x Ky is a direct product. Therefore, up to reordering, we may suppose
that K1 n T is finite. Since Out(W),,) is virtually torsion free by |[GuLll Corollary 5.3,
there exists a finite index subgroup K| of K such that K| nT is trivial. Since K is a
finitely generated normal subgroup of H, Lemma implies that there exists a finite
index subgroup H' of H such that K| is a normal subgroup of H'. Therefore, we may
suppose that K1 n T is trivial. By Proposition (1), the natural homomorphism
K1 — Out(W),,_1) given by the action on the vertex groups is injective.

We claim that H n T is infinite. Indeed, consider the natural homomorphism
®: H - Out(W,_1). By Proposition the rank of a maximal free abelian sub-
group of Out(W,, 1) is equal to n — 3. As H contains a subgroup isomorphic to Z"~2
by (3), the kernel of H — Out(W,, 1) is infinite. But, by Proposition [4.2.5[ (1),
this is precisely H nT'. Therefore, H n T is infinite.

We now prove that H n T n K5 has finite index in H nT. This will conclude the
proof as H n T is infinite. Let K = ®~!1(®(K3)). Note that H n T € K. Then, as K>
is normal in H, we see that K is a normal subgroup of H which contains H n T and
K5. We claim that K n K7 is finite. Indeed, suppose towards a contradiction that there
exists f € K n K7 of infinite order. Then, as the homomorphism

(I)|K1 . K1 — Out(anl)

is injective, the element ®(f) has infinite order. By definition of K, we see that
O(f) e (K1) n ®(K3). But, as the homomorphism ®|g, : K1 — Out(W,,_1) is injec-
tive, and as K is virtually a nonabelian free group, there exists g € K1 of infinite order
such that ®(g) does not commute with ®(f). Since ®(f) € ®(K2) this contradicts the
fact that Ky and K9 commute with each other. Hence K n K is finite.

The groups K and K; are two normal subgroups of H with finite intersection. Let
K£2) be a finite index normal subgroup of K such that K n KP = {1}. Since K is
finitely generated, by Lemma (2), there exists a finite index subgroup H?) of H

such that KEQ) is a normal subgroup of H®. Hence K%Q) and K n H® are normal
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subgroups of H® with trivial intersection. Therefore, K n H?) < CF(KF)). But,
Property (1) implies that K and K are commensurable. Since K contains
H T, we see that Ko nT" and H n'T" are commensurable. This concludes the proof. [J

4.7.2 Groups satisfying (Py,_,) and stabilizers of 1V, _,-stars

In this section we prove that a subgroup of Out®(W,,) which satisfies [( Py, _,)| virtually
fixes the equivalence class of a W, o-star. We first prove a series of properties for
elements of Out(WV,,).

Lemma 4.7.3. Let n = 3. Let w € W, be a root-closed element of infinite order. Let S
be the equivalence class of a splitting S whose associated amalgamated decomposition of
W, is:

Wy = A sy B,

where A and B are subgroups of W, containing w. Let D be a montrivial twist about
S. Let h € W,. Then D preserves the conjugacy class of h if and only if there exists
h' € W, such that ' € [h] and h' € AU B.

Proof. It is clear that D preserves the conjugacy classes of elements in A and B. Con-
versely, let h € W), be such that D([h]) = [h]. Let R be a Grushko splitting of W,,. Let
R’ and S’ be metric representatives of R and S, let R’ and S’ be their W,,-equivariant
isometry classes and let [R’] and [S’] be their homothety classes. As PO(W,,) is com-
pact, up to passing to a subsequence, there exists a sequence (An)neny € (R%)N and a
W,-equivariant isometry class T of an R-tree T such that

lim A,D"(R') =T.
n—aoo

Since translation length functions are continuous for the Gromov-Hausdorff topology
(see [Paul]), for every g € W,,, we have:

nlingAn HgHD"(R’) = llgll7

where ||g||; is the translation length of g in 7. Hence, for every g € W, the limit
limp—0 An [|9]| pn(ry is finite. But as there exists g" € Wy, such that [|g'|| pn(ry tends to
infinity as n goes to infinity, we have lim,, ,, A, = 0. As there exists a representative
¢ € Aut(W,,) of D such that ¢4 = id4, for every g € A, we have:

Jim Ap (|9l pngrry = 1im An [lgllrs = 0.

Hence every element of A fixes a point in T'. As A is finitely generated, this implies
that A fixes a point in T (see for instance |[CM| Section 3]). Similarly, we see that the
groups B and (h) fix points in T. As W,, = (A, B), we see that A and B cannot fix the
same point in 7. Thus, there exists a natural W,-equivariant application ¥: S — T.
Let us prove that ¥ is an isometry. It suffices to prove that ¥ is a local isometry, that
is, it suffices to prove that the application ¥ does not fold edges. By W,-equivariance
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and symmetry, it suffices to prove that, If e and €’ are two distinct edges of S’ whose
origin is the vertex fixed by A, then ¥(e) # ¥(e'). Suppose towards a contradiction that
U(e) = ¥(e). Then (G, Ge) fixes U(e). Note that Ge and G are isomorphic to Z.
Moreover, since w is root-closed, we neither have G, € G nor G S G.. Since G, is
a malnormal subgroup of W, and since GG is a nontrivial conjugate of G., we see that
Ge n G¢ = {1}. Hence (G, G ) is a nonabelian free group which fixes an arc in 7.
But arc stabilizers in 7" are cyclic, a contradiction. Hence ¥ is an isometric embedding
and, by minimality of T', the application ¥ is a Wj,-equivariant isometry. Therefore, as
h fixes a point in T, it also fixes a point in S’. Therefore, h is contained in a conjugate
of A or B. O

For the next proposition, recall the definition of the subgroup F of W,, from Lemma|4.6.2

Proposition 4.7.4. Let n > 3. Let (Hy)nen* be an increasing sequence of subgroups of
F. There exists an integer ng such that for every N = ng, we have

Out(W,, HY) = Out(W,, HY).

Proof. We show that the result is a consequence of a similar result in the context
of the automorphism group of a nonabelian free group due to Martino and Ventura
(JMV] Corollary 4.2]). Since F is a nonabelian free group, we may suppose that, for
every N € N* the group Hy is a nonabelian free group. Hence for every N € N*
we have Cy, (Hy) = {1}. Therefore, for every N € N* and every ¢ € Out(Wn,H](\?)),
there exists a unique representative ® € Aut(W,,) of ¢ such that ®(Hy) = Hy and
®| g, =idp, . This implies that, for every N € N*, we have an injective homomorphism
Out(Wn,H](\?) — Aut(W,, Hy), where Aut(W,, Hy) is the group of automorphisms
of W, which fix every element of Hy. Therefore, it suffices to prove the result for
Aut(W,,, Hy). Since there exists an injective homomorphism Aut(W,,) — Aut(F) and
since, for every N € N* we have Hy € I, it suffices to prove that there exists ng € N*
such that, for every N = ng, we have Aut(F, Hy) = Aut(F, H,,). We then conclude
using [MV], Corollary 4.2]. O

We now recall a theorem due to Guirardel and Levitt which provides a canonical
splitting for a relative one-ended hyperbolic group (recall that a group G is one-ended
relative to a family of subgroups H if G does not have a one-edge splitting with finite
edge stabilizers such that every subgroup of H fixes a point).

Theorem 4.7.5. [GuL?5, Theorem 9.14] Let G be a hyperbolic group and let H be a family
of subgroups such that G is one-ended relative to H. There exists a splitting S of G such
that:

(1) Every edge stabilizer is virtually infinite cyclic.
(2) For every H € H, the group H is elliptic in S.

(3) The tree S is invariant under all automorphisms of G preserving H. Moreover, S
is compatible with every splitting S" with virtually cyclic edge stabilizers and such that
for every H € H, the group H is elliptic in S’.
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(4) Let H € H be such that H is virtually a (possibly not finitely generated) nonabelian
free group, and let v be the vertex of S fized by H. Let Inc, be the finite set of represen-
tatives of all conjugacy classes of groups associated with edges in S which are incident
to v. Then the group Out(G,, {H,Inc,}®) is finite.

Assertion (4) is a bit stronger than what is stated in [GuLb], hence we add some
explanations.

Proof of Assertion (4) of Theorem[{.7.5 Let S, H and v be as in Assertion (4). By
for instance [Pau2l, Proposition 2.5|, the set Inc, is finite. Note that every group in
Inc, is virtually cyclic by Assertion (1). Thus, the set Inc, is a finite set of finitely
generated groups. Up to taking finite index subgroups, we may suppose that H € F
and that for every subgroup H’ in Inc,, the group H’ is contained in F. Suppose
towards a contradiction that Out(G,, {H,Inc,}®)) is infinite. Suppose first, following
the terminology of [GuL5|, that the vertex v is rigid. By Proposition there exists
a finitely generated subgroup K of H such that Out(W,, H®) = Out(W,, K®). By
[GuL4, Theorem 7.14], there exists a one-edge splitting U of G, whose edge stabilizer is
isomorphic to Z such that K and every group in Inc, are elliptic in U. Since v is a rigid
vertex, there exists h € H such that h acts loxodromically on U. Since every group in
Inc, fixes a point in U, one can blow up the splitting U at the vertex v of S. This gives
a refinement S’ of S. Let D’ be a nontrivial infinite twist of U. Then D’ induces a twist
D of S'. By Lemma[4.7.3] the element D fixes the conjugacy class of K but does not fix
the conjugacy class of h. This contradicts Out(W,,, H®) = Out(W,,, K®).

So we may suppose, following the terminology of [GuL5], that the vertex v is flezible.
By [GuL5l Theorem 9.14 (2)], as H is virtually a nonabelian free group, the vertex v is
a QH vertex (see |GuLb, Definition 5.13]). But the definition of a QH vertex implies,
as H is contained in #H, that the group H must be virtually contained in a boundary
subgroup of the fundamental group of the orbifold associated with G,. Thus the group
H must be virtually cyclic, a contradiction. O

We also need some results about splittings over virtually cyclic groups, whose gen-
eralization to virtually free groups is due to Cashen.

Theorem 4.7.6. [Cas, Theorem 1.2] Let G1 and G2 be finitely generated virtually non-
abelian free groups, and let C' be a virtually cyclic group which is a proper subgroup of
both G1 and Go. Then G1 x¢c G is virtually a nonabelian free group if and only if there
exists i € {1,2} such that G; has a splitting with finite edge stabilizers such that C' is a
vertex stabilizer.

Corollary 4.7.7. Let n = 3 and let G1, Gy be subgroups of Wy, such that W, = G1 *¢c G2
is a nontrivial amalgamated product of W, where C' is isomorphic to Wo and G1 and
G are not virtually cyclic.

(1) There existsi € {1,2} such that C is a free factor of G;. Moreover, if j € {1,2} —{i},
then Gj is a free factor of W,.
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(2) There exist 3 < ki,ka < n —1 such that k1 + ko = n+ 2 and, for every i€ {1,2},
the group G; is isomorphic to Wy,. In particular, n = 4.

Proof. (1) By Lemma the subgroup F of W), is a nonabelian free group of finite
index. Since both G7 and G5 are not virtually cyclic, the intersections G1 NF and Go nFF
are finite index subgroups of G; and Go which are nonabelian free groups. Hence Gy
and Gy are virtually nonabelian free groups. Moreover, since W,, and C are finitely
generated, so are G; and G2. By Theorem up to exchanging the roles of G and
G2, we may suppose that (G1 has a splitting .S such that every edge stabilizer is finite and
C is the stabilizer of a vertex v € V'S. Note that, since the finite subgroups of W,, are
all isomorphic to F, every edge stabilizer of S is either trivial or isomorphic to F'. Since
every element of W,, of order 2 is a conjugate of an element in a standard generating set
of W,, every nontrivial edge stabilizer is a free factor of both of its endpoint stabilizers.
Let V1 be the set of vertices of S distinct from v and fixed by a subgroup of C' isomorphic
to F. Therefore, for every w € Vi, there exists a subgroup A, of G, and an element
xy € C of order 2 such that Gy, = Ay, = {xy). Let Sy be a splitting of W,, obtained from
S by blowing-up, at every vertex w € Vi, the free splitting A,, * (x,,) and by attaching
the edge fixed by z,, to its corresponding fixed point. Let S’ be the splitting of W,
obtained from Sy by collapsing every edge with nontrivial stabilizer. Then the stabilizer
in G of every edge of S’ adjacent to the vertex fixed by C has trivial stabilizer. Thus,
C' is a free factor of (G1 and there exists H; < (7 such that G; = Hy = C'. This proves
the first assertion of (1). The second assertion of (1) follows from the fact that

Wn:Gl*Cng(Hl*C’)*CngHl*GQ.

Hence H; and G4 are free factors of W,,.

(2) Therefore, there exist hy,k2 € {1,...,n — 2} with hy + k3 = n such that H; is
isomorphic to Wj, and G is isomorphic to Wy,. Thus G is isomorphic to Wy, 2. Set
k1 = h1 + 2. Since the amalgamated product is nontrivial and since G; and G5 are not
virtually cyclic, we have 3 < ki, ko < n — 1. This proves (2). O

Lemma 4.7.8. Let n = 4 and let S be a splitting of W,,. Let S be its equivalence class.
Let v1 and ve be adjacent vertices of S and let e be the edge between v1 and va. Suppose
that G is isomorphic to Wa. Let f € Staboyiw,)(S) be such that:

(1) the graph automorphism of W,\S induced by f is trivial;

(2) the natural homomorphisms {f) — Out(G,,,Ge) and {(f) — Out(G,,,Ge) are
trivial.

Then f has a representative which acts as the identity on (G, , Gy, ).

Proof. By (2), the outer automorphism f has two representatives F; and F» such that
for every i € {1,2}, we have F;(Gy,) = Gy, and Fig, = idg,,. Note that G,y NGy, = Ge.
Hence F} and F, acts as the identity on G.. Therefore, F; and Fy differ by an inner
automorphism ad, with z € Cy, (G.). However, since G, is isomorphic to Wa, we have
Cw, (Ge) = {e}. Hence Fy = Fy. This concludes the proof. O
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Proposition 4.7.9. Let n > 5 and let T' be a finite index subgroup of Out®(W,,). Let H
be a subgroup of I' which satisfies . Then H wvirtually stabilizes the equivalence
class of a Wy,_o-star. Moreover, this equivalence class is unique.

Proof. By Proposition [£.6.10} the group H virtually fixes the equivalence class S of a
W,,—1-star S. Let
Wy = A (xp)

be the free factor decomposition of W,, induced by S. Up to passing to a finite index
subgroup, we may suppose that H fixes S. Let T be the group of twists of S contained
in I'. By Proposition[4.2.5(2), the group Stab(S) is isomorphic to Aut(A4) and the group
of twists of S is identified with the inner automorphism group of A.

Let K7 x Ko be a normal subgroup of H given by Property
Lemma [4.7.2] up to exchanging the roles of K7 and Ko, we may assume that K1 n T is
infinite, that H n T n K is a finite index subgroup of H nT" and that K9 n T is finite.
Up to passing to a finite index subgroup of H, we may assume that Ko n T = {1}. In
particular, the natural homomorphism ¢: Ky — Out(A) is injective. Let K € A be the
group of twistors associated with twists contained in K. Note that to every splitting Sy
of A such that K fixes a unique vertex of Sp, one can deduce a splitting Sj, of W,, such
that K fixes a point of Sj,. Indeed, by blowing-up the splitting Sp at the vertex v of S
whose associated group is A, and by attaching the edges of S adjacent to v to the vertex
fixed by K, we obtain a splitting S{ of W,, such that K fixes a point of Sj. Let S be
the equivalence class of S|. We claim that the group K7 n T fixes S)). Indeed, let ey be
the edge of S|, adjacent to the vertex vy fixed by K and the vertex fixed by {x,). Since
the stabilizer of eqg is trivial, Proposition [4.2.5| implies that the group of twists about eg
at the vertex vy contains all the twists whose twistor is an element of K. Hence K1 n'T
fixes 8.

We now construct a one-edge free splitting Sy of A such that K fixes a vertex of Sp.
By the above discussion, this will give a two-edge free splitting of W,, such that K fixes a
vertex of this splitting which is not a leaf and whose equivalence class is fixed by K1 nT.
We distinguish between three cases, according to whether A is one-ended relative to K
and according to the edge stabilizers of a splitting of A relative to K.

Case 1. There exists a free splitting Sy of A such that K fixes a vertex of Sj.

In particular, the corresponding splitting S{, of W,, constructed above is a free split-
ting of W,,. We claim that the splitting S{, has two orbits of edges. Indeed, suppose that
S; has k orbits of edges, with k > 3. Then, S is obtained from S by blowing-up at least
two orbits of edges at v. Therefore, the group of twistors K is contained in a free factor
B of W,, isomorphic to W,,_3. Let B’ be a free factor of W,, isomorphic to W5 such that

W, ={xn)*B=* B

and let R be the free splitting associated with this decomposition. Then the equivalence
class R of R is a free splitting of W, fixed by K1 n T. But by Proposition m (3),
the group of twists of R is isomorphic to B x B x W5. Moreover, the group K1 nT is
contained in one of the factors of B x B x W5 isomorphic to B. Therefore, the centralizer
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of K1 nT contains a free abelian group of rank 2. Since K nT is a normal subgroup of
K, this contradicts the fact that the centralizer of K1 n'T is virtually a nonabelian free
group by Property |(Pw,_, )| (1). Therefore, the splitting S is a two-edge free splitting.

Case 2 There exists a splitting Sy of A such that K fixes a vertex of Sy and such that
one of the edge stabilizers of Sy is finite.

Let Sj be the corresponding splitting of W), constructed in the above discussion. If
Sp has an edge e’ with trivial stabilizer, then by collapsing every orbit of edges of S
except the one containing e, we obtain a splitting S; of A such that K fixes a vertex of
K. Then the corresponding splitting S of W, is a free splitting. Thus, we can apply
Case 1.

Therefore, we may assume that every edge stabilizer of Sy is infinite or a nontrivial
finite subgroup of W,,. By collapsing every edge of Sy with infinite stabilizer and by
collapsing all but one orbit of edges with finite edge stabilizer, we may suppose that Sy
is a one-edge splitting such that every edge stabilizer of Sy is a nontrivial finite subgroup
of W,. Every finite subgroup of W, is isomorphic to F' and is in fact a free factor of
W,,. We claim that we can construct a splitting Xy of A which contains an edge with
trivial stabilizer and such that K fixes a vertex of Xj. Indeed, let g be the vertex of Sy
fixed by K, let fo be an edge adjacent to x¢ and let x1 be the vertex of fy distinct from
vg. Let Gy, be the stabilizer of zg, let G5, be the stabilizer of x1 and let Gy, be the
stabilizer of fy. Note that, since there does not exist HNN extensions in W,,, the groups
Gy, and G, are not conjugate in W,,. The group Gy, is a free factor of both G, and
Gz,. Thus there exists a free factor A’ of G, such that G,, = Gy, * A’. Let U be the
splitting of A such that the underlying tree of W,\U is the same one as the underlying
tree of W,,\Sp, such that the stabilizer of every vertex which is not in the orbit of z; is
the same one as the stabilizer of the corresponding vertex in Sy and the stabilizer of x;
is A’. Then the edge fo has trivial stabilizer in U and K fixes a vertex of U. This proves
the claim. Therefore Case 2 is a consequence of Case 1.

Case 3 The group A is one-ended relative to K.

We prove that this assumption leads to a contradiction. By Theorem there
exists a canonical splitting Sy of A whose edge stabilizers are virtually infinite cyclic,
such that K fixes a point of Sy and such that every automorphism of A preserving K
fixes the equivalence class of Sy. Let S| be the corresponding splitting of W,,, and let
S|, be its equivalence class. Recall that the group K; n T is a normal subgroup of H
contained in Inn(A). Let k € K and let f € H. Let F be a representative of F' which
fixes x, and which preserves A. As Ki n T is a normal subgroup of H, there exists
k' € K such that

Foadgo F1= adF(k) = ady.

Since the center of A is trivial, we have F(k) = k. Hence the group H viewed as a
subset of Aut(A) preserves K. Thus H preserves ).

Let vg be the vertex of S}, fixed by K and let ey be the edge of S, between vy and
the point fixed by (x,). By construction, the stabilizer of every edge of S, which is not
in the orbit of ey is virtually cyclic, that is it is isomorphic either to Z or to W5. By
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Lemma [£:2.7] a twist about an edge whose stabilizer is isomorphic to Z is central in a
finite index subgroup of Stabgyg(w,)(Sp)- Since any finite index subgroup of H has finite
center by Remark (2), we see that the stabilizer of every edge of S{, which is not in
the orbit of eg is isomorphic to Ws. Therefore, Remark implies that the group of
bitwists about every edge of S{, which is not in the orbit of eq is trivial. Thus, the group
of bitwists T of S is reduced to the group of twists about eg.

Let W, \\S{, be the graph associated with W;\S{. For every vertex v € V(W,\S}), let
Inc, be the set containing the conjugacy class of the edge group of every edge adjacent
to v (seen as a subgroup of Gy). Let Ty be the image of vy in W,\S{, and let €y be the
image of eg in W;,\S|. By Proposition and Remark up to taking a finite
index subgroup of H, we have a natural homomorphism

U: H — Out(Gy,, { K, Incg, }) x H Out(Gy, Inc,),
veV (Wn\S}),v#70

whose kernel is Ty n H. Note that every edge stabilizer is isomorphic to W, hence the
outer automorphism group of every edge stabilizer is finite. Thus, up to taking a finite
index subgroup of H, we may suppose that the image of ¥ is contained in

Out(Gy,, { K, Incgo)}) X H Out(G,, Inc).
veV (Wn\S}),v#To

Recall that Ko n Ty = {1}, hence V|, is injective. Moreover, as Ko commutes with K1,
the group K3 is contained in Out(W,;,, K®). Recall that Theorem m (4) implies that
the group Out(Gy,, {K,Incy, }®) is finite. Since ¥|, is injective, this implies that

H Out(G,, IncM)
veV (Wn\S}),v#vo

is infinite. Since the graph W,\Sj is finite, there exists v € V(W,\S() such that v # v
and Out(G,, Incg,t)) is infinite.

Suppose first that there exist two distinct vertices v and w of Wp\S{ such that
v,w # Uy and both Out(GU,Incg}t)) and Out(Gw,Incq(,t)) are infinite. Since G, and Gy,
are subgroups of W,, whose outer automorphism groups are infinite, they are virtu-
ally nonabelian free groups. Thus we can apply Theorem to both (G, Inc,) and
(Gw,Incy,) to show that there exist a Zgrc-splitting U, of G, and U, of G, such that
every group in Inc, fixes a point in U, and every group in Inc,, fixes a point in U,,. One
can then blow-up the splittings U, and U,, at the vertices v and w of W\ S|, and attach
the edges adjacent to v and w in W,\S{, to the points fixed by their corresponding edge
groups in U, and U,,. This gives a refinement S; of S. Let S; be the equivalence class
of S1. Note that, since the group of twists about the edge ey of Sj is contained in the
group of twists of S1, the group K1 nT fixes S1. Note that the stabilizer of an edge in U,
or U, is either finite or isomorphic to Z. If there exists an edge in U, or U,, with a finite
edge stabilizer, as v and w come from vertices in Sy, we can apply Case 2 to conclude.

163



Suppose that every edge stabilizer of U, and U, is isomorphic to Z. By Lemma [£.2.7] a
twist about an edge whose stabilizer is isomorphic to Z is central in a finite index sub-
group of Stabgy(w,)(S1). Hence K1 nT has a finite index subgroup which is centralized

by a free abelian group of rank 2. This contradicts Property (1).
Suppose now that there exists a unique vertex v € V(W,\S() such that v # Ty and

Out(Gy, Incg)) is infinite. Recall that the image of the homomorphism V|, is contained
in
Out(Gy,, {K, Incy, } M) x 11 Out(Gy, Inc?)).
weV (Wn\S{),w#vo

In particular, as Out(Gy,, {K, Incg, }(?)) is finite, up to taking a finite index subgroup of

K, we may suppose that the image of V|, is contained in Out(Gy, Incgt)).

Claim. Let f € K, and let X be a connected subgraph of W,\S; such that every
vertex of X is distinct from v and such that the group associated with every edge of X is
isomorphic to W. Then f has a representative which acts as the identity on (G ) ey x-

Proof. We prove the result by induction on the number m of edges of X. If X is reduced
to a vertex, then the conclusion is immediate. Suppose that |[EX| = m > 1. Let w;
and wo by two adjacent vertices in VX such that w; is a leaf of X. Let ¢’ be the edge
in X between w; and ws. Let X’ be the graph obtained from X be removing w; and
¢/. The graph X’ is a connected subgraph of W,\S{, which satisfies the hypothesis of
the lemma and such that |[EX'| = m — 1. By the induction hypothesis, the element
f has a representative which acts as the identity on (Gy) ey x/- Let Wp\S5 be the
graph of groups obtained from W,\S{ by collapsing X’ and let p: W,,\S{j — W,\S}
be the natural projection. Since f has a representative which acts as the identity on
(Gu)yey x> the element f fixes the equivalence class of W,\S5. Note that the group
associated with p(ws) is (Guw),ey x and that the group associated with p(w;) is Gy, .
Moreover, the group associated with p(e’) is G/, in particular, it is isomorphic to Wa.
Thus for every i € {1,2}, the outer automorphism f has a representative F; such that
Fi(Gpwy)) = Gp(w,) and Fi|Gp(wi) = idg,,,,- Thus, by Lemma applied to W,\S%,
the outer automorphism f has a representative which acts as the identity on

(Gopwr)s Gpuws)) = {Guw)yevx -
The claim follows. O

Let € be the edge adjacent to v in W,\S{ which is contained in the path between v
and T and let & be a lift of ¢’ in Sj). Note that v is contained in the same connected
component of Wy\S{, — €0 as Tg. Thus the edges ¢ and ey are not in the same orbit.
Moreover the stabilizer of €’ is isomorphic to Wa. Let S} be the splitting of W), obtained
from S}, by collapsing every edge of S{, which is not in the orbit of & and ep. Let S be
the equivalence class of S]. Then S] has two orbits of edges. Let vy be the vertex of S}
fixed by K and let v; be the vertex of S| adjacent to vy which is fixed by a conjugate
of G,. Let e be the edge adjacent to v; and vy. Note that, up to taking a finite index
subgroup of Kj, the group Kj fixes S;. Thus, by Proposition and Remark
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we have a natural homormorphism ®: Ky — Out(G,,, Ge) x Out(G,,, Ge) whose kernel
is contained in Ko n Ty = {1}. Moreover, the claim applied to the connected component
of Wy\S) —éu €o containing Ty shows that every element f € K, has a representative
which acts as the identity on G,,. Hence ®(K>) is isomorphic to K5 and is contained in
Out(Gy,, Ge). We also see that, as K is virtually a nonabelian free group, its centralizer
in W, is trivial. Hence every element f € K> has a unique representative which acts as
the identity on K. Let f € K. Recall that W,, = A = {(x,,). Then the representative of
f which preserves A and fixes x,, must fix K by Lemma (since f € Ko centralizes
K1). As f has a representative which acts as the identity on G,, and as K € G,,, we
see that f has a representative which acts as the identity on Gy, * (zp).

Note that the group Gy, *q, G, is a splitting of A such that G is isomorphic to Wa.
Moreover, as K fixes vg, the group G,, is not virtually cyclic. Since the group Out(G,)
is infinite, the group G, is not virtually cyclic. Hence the group G, is not virtually
cyclic. Therefore we may apply Corollary to Gy, *qg, Gy,: there exist ki, ko > 3
such that for every i € {1,2}, the group G,, is isomorphic to Wj,. Moreover, there exist
i€{1,2} and j € {1, 2} — {i} such that Wy, is a free factor of Wy, and G. is a free factor
of Wk]. .

Suppose first that Wy, is a free factor of A and that G, is a free factor of Wy,. Let
H be such that Wy, = G, H. Then H is a free factor of A since

A =Gy, #q, Gy, = Gy, *G, (Ge* H) = Gy, * H.

Since ko = 3, the group H is not trivial. Let z be an infinite order element of G.. Let
Fy be the automorphism of W,, which acts as a global conjugation by z on H and which
fixes z,, and G, (recall that as W,, = H = G, * {(z,,), the automorphism Fj is uniquely
determined). Let F5 be the automorphism of W,, which acts as a global conjugation by
z on A and which fixes x,,. Then {[F1], [Fz]) is a subgroup of Out(W),,) isomorphic to
a free abelian group of rank 2. Recall that every element of K has a representative
which acts as the identity on G, * (x,). Since [F1]| and [F3] have representatives whose
support is contained in G, * (), the group {[F1], [F2]) is contained in Coy e, )(K2).
This contradicts Property (1) which says that the centralizer of Ky is virtually
a nonabelian free group.

Suppose now that Wy, is a free factor of A and that G. is a free factor of Wy, . Let H
be such that Wy, = G+ H. As before the group H is a free factor of A and A = H «G,,.
But K is contained in G,,. This contradicts the fact that A is ond-ended relative to K.
The conclusion in Case 3 follows.

Therefore, we have constructed a free splitting S, of W,, which is a two-edge free
splitting fixed by K1 nT". Moreover, the construction of the splitting is such that the
vertex of the underlying graph of W,\\S{, whose associated group contains K is not a leaf.
We now prove that Sj, is a W, _s-star. Let C' be the vertex stabilizer of S}, containing K,
and let C’ be a vertex stabilizer of S{, which is not a conjugate of C' nor {(z,,). Then C’
is the vertex group of a leaf of the underlying graph of W,\\S;. By Proposition m (3),
the group of twists of & is isomorphic to C' x C' x C'/Z(C"). Since the centralizer of
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K n T3 is virtually a nonabelian free group by Property (1), we conclude that
C'/Z(C") is finite. Hence C’ is isomorphic to F' and S|, is a W,,_o-star.

We now prove that H virtually fixes S). By Proposition m (3), the group of twists
of &) is isomorphic to W,_2 x W;,_2. By Lemma the group K1 n T is contained
in one of the factors isomorphic to W,,_y of the group of twists of ). Therefore, K1 nT
is centralized by the other factor of the group of twists of S). Since the centralizer of
K1 nT contains K> as a finite index subgroup, the group K» contains a twist f of infinite
order about the edge e of S, which does not collapse onto S. This twist is a twist about
a W,_1-star obtained from S{ by collapsing the orbit of edges which does not contain
e. By Lemma the group H virtually fixes Sj. Moreover, K; is commensurable
with T n Stab(S)), that is K is commensurable with the group of twists about one edge
of S). Lemma then implies that K, virtually fixes a unique equivalence class of
W,,_o-stars. Therefore, since K; is a normal subgroup of H, we see that H virtually
fixes a unique equivalence class of W,,_s-stars. This concludes the proof. O

Proposition 4.7.10. Let n > 5 and let T be a finite index subgroup of Out®(W,,). Let
U € Comm(T"). Then for every equivalence class S of W,,_o-stars, there exists a unique
equivalence class S’ of Wy,_a-stars such that ¥([Stabr(S)]) = [Stabp(S’)].

Proof. The uniqueness statement follows from Lemma [4.6.5 which shows that the stabi-
lizer in finite index subgroups of Out(W),,) of two distinct equivalence classes of W,,_o-
stars are not commensurable.

We now prove the existence statement. Let f: I'y — I'y be an isomorphism between
finite index subgroups of I" that represents ¥. By Proposition the group Stabr, (S)
satisfies [(Py,_,)l As f is an isomorphism, we deduce that f(Stabr,(S)) also satisfies
(Pw,,_,)} Proposition 4.7.9implies that there exists a unique equivalence class of W;,_s-
stars 8" such that f(Stabr, (S)) € Stabr,(S’), where the inclusion holds up to a finite
index subgroup. Applying the same argument with f~!, we see that there exists an
equivalence class 8" of a W,,_o-star such that

Stabr, (S) € f~!(Stabr,(S’)) € Stabr, (S"),

where the inclusion holds up to a finite index subgroup. Lemma then implies that
S is the unique equivalence class of W,,_o-stars virtually fixed by Stabr, (S). Therefore,
we see that S = §” and we have equality everywhere. This completes the proof. O

4.8 Algebraic characterization of compatibility of 11/, s-stars and
conclusion

4.8.1 Algebraic characterization of compatibility of WW,,_,-stars

In this section, we give an algebraic characterization of the fact that two equivalence
classes of W,,_s-stars have both a common collapse and a common refinement. This will
imply that Comm(Out(W¥,,)) preserves the set of pairs of commensurability classes of
stabilizers of adjacent pairs in the graph X,, introduced in Definition m (2).
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Let n > 5 and let T' be a finite index subgroup of Out’(W,). We consider the
following properties of a pair (Hy, Ha) of subgroups of T

Peomp) The pair (Hy, Ho) satisfies the followmg properties.

1) For every i € {1, 2}, the group H; satisfies

For every normal subgroups K(l) X K(l) of Hy and K(Z) X K(Q) of Hy given by
)| (1), there exist 7, 5 € {1,2} such that K-(l) K( ) is infinite.

"U

(
(
(2
(Pw,
(3) The group H; n Hy contains a subgroup isomorphic to Z"~2.

Proposition 4.8.1. Let n > 5 and let T' be a finite index subgroup of Out’(W,,). Let
S1 and Sy be two distinct equivalence classes of W, _o-stars S1 and Sy and, for every
i € {1,2}, let H; = Stabp(S;). Then S1 and S have a refinement S which is a Wy,_3-star

if and only if (Hy, H2) satisfies Property .

Proof. We first assume that S; and S5 have a common refinement .S which is a W,,_3-
star. Let & be the equivalence class of S. Let us prove that (Hy, Hg) satisfies

By Proposition for every i € {1,2}, the group H; satisfies This proves
that the pair (Hl, Hg) satisfies (1).
Let us check Property ( Peomp)| (2). For every i € {1,2}, let Tl(l) X TQ(Z) be the group of

twists of S; and let K y) = Tli AT and K = TQ@ N I'. By Proposition for every
i € {1,2}, the group KEZ) X Kg) satisfies (1) and Lemma|4.7.1|implies that every
normal subgroup of H; given by (1) is commensurable with K fz) X Kéz). Thus

it suffices to check |( Peomp )| (2) for Kll X Kél) and Kfz) X K§2). The group of twists of S
is isomorphic to a direct product A; x Ay x Ag of three copies of W,,_3. Since n > 5, we
have n — 3 = 2 and W,,_3 is infinite. Since S is a common refinement of S; and Sy and
since S has 3 orbits of edges there exists a W,,_1-star Sy which is a common collapse of
S1 and S2. Moreover, there exists k € {1,2, 3} such that Ay is contained in the group of
twists of Sp. Therefore, for every i € {1,2}, there exists j € {1,2} such that the group
Ay is contained in Tj(z). Thus, there exist 4,5 € {1,2} such that Ay nT" < KZ-(I) N KJ(.Q).

In particular, K(l) N K(Q) is infinite. This shows |(Peomp )| (2)-

Finally, since n > 5 the W,,_s-stars S; and S have a common refinement which is
a Wa-star (take any Ws-star which refines S). Since the group of twists of a Ws-star
contains a subgroup isomorphic to Z"~2 by Propositionm (3), this shows (Pcom) (3).

Conversely, suppose that (Hj, H2) satlsﬁes For i € {1,2}, let K X K Y be
the direct product of the groups of twists in ' about the two edges of S;. Then for ever
i € {1,2}, the group (H; N K%Z)) x (H; n Kél)) satisfies m (1) by Proposition
Hence Property (2) implies that there exists 4, j € {1,2} such that

(1 0 KDY o (H2 0 K
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is infinite. For i € {1,2}, let ng‘) and S’g) be the two distinct W,,_1-stars on which .S; col-
lapses. By Proposition since Hq n H> fixes pointwise the set {Sg), 851), SP, Séz)},
and since H; n Hy contains a subgroup isomorphic to Z" 2 by (3), the W, _1-
stars SF), Sél), 59 and 552) are pairwise compatible. Hence S7 and SS9 have a common
refinement S which is either a W,,_s-star or a W,,_4-star. Since the groups of twists
of §1 and Sy have infinite intersection, the refinement S cannot be a W,,_4-star since
otherwise the W,,_q-stars Sf), Sél), 5’%2) and 552) would be pairwise nonequivalent and
hence their groups of twists would have trivial intersection. Thus S is a W,,_s-star. This
concludes the proof. O

4.8.2 Conclusion

In this last section, we complete the proof of our main theorem.

Theorem 4.8.2. Let n > 5 and let T be a finite index subgroup of Out®(W,,). Then any
isomorphism f: Hi — Hoy between two finite index subgroups of I is given by conjugation
by an element of Out(W,,) and the natural map:

Out(W,,) — Comm(Out(W,,))
s an tsomorphism.

Proof. Suppose that S and S’ are two distinct equivalence classes of W,,_o-stars. Then
Stabp(S) and Stabp(S’) are not commensurable by Lemma Proposition
shows that the collection Z of all commensurability classes of I'-stabilizers of equiv-
alence classes of W), _g-stars is Comm(I')-invariant. Proposition shows that the
collection J of all pairs ([Stabp(S)], [Stabr(S’)]) is also Comm(T')-invariant. Since the
natural homomorphism Out(W,,) — Aut(X,,) is an isomorphism by Theorem the
conclusion follows from Proposition and the fact that Comm(T") is isomorphic to
Comm(Out(W,,)) since I' has finite index in Out(W5,). O

4.9 Rigidity of the graph of W, _;-stars

The graph of W,_1-stars, denoted by Y,, is the graph whose vertices are the W,-
equivariant homeomorphism classes of W), 1-stars, where two equivalence classes S and
S’ are joined by an edge if there exist S € S and S’ € 8’ such that S and S’ are compat-
ible. This graph arises naturally in the study of Out(W,,) as it is isomorphic to the full
subgraph of the free splitting graph K, of W,, whose vertices are equivalence classes of
Wy-stars, with k varying in {0,...,n — 1}. As Aut(W,,) acts on K, by precomposition
of the marking, we have an induced action of Aut(W,,) on Y,,. As Inn(W,,) acts trivially
on Y, the action of Aut(W,) induces an action of Out(W,,). We denote by Aut(Y;,) the
group of graph automorphisms of Y;,. In this section we prove the following theorem.

Theorem 4.9.1. Let n = 4. The natural homomorphism

Out(W,,) — Aut(Y,)
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18 an isomorphism.

In order to prove this theorem, we take advantage of the action of Out(W,,) on the
graph of {0}-stars and F-stars L,. The strategy in order to prove Theorem is to
construct an injective homomorphism ®: Aut(Y,) — Aut(L,) such that every automor-
phism in the image preserves the set of {0}-stars and the set of F-stars.

The homomorphism ®: Aut(Y,,) — Aut(L,) is defined as follows. Let f € Aut(Y,).
Let S be the equivalence class of a {0}-star and let S be a representative of S. By
Theorem there exist exactly n W,_q-stars Si,...,5, refined by S. Moreover,
these W,,_1-stars are pairwise compatible. For ¢ € {1,...,n}, let S; be the equivalence
class of S;. Since f is an automorphism of Y,,, f(S1),..., f(S,) are pairwise adjacent in
Y,. Let Si,...,S] be representatives of respectively f(S1),..., f(Sy) that are pairwise
compatible. Then Theorem implies that there exists a unique common refinement
S" of S1,...,5], with exactly n edges. Since, for every ¢ € {1,...,n}, the splitting S; is
a W,,_1-star, the splitting S’ is necessarily a {0}-star. Let S’ be the equivalence class of
S’. We then define ®(f)(S) =S'. If T is an F-star, we define ®(f)(7) similarly.

Lemma 4.9.2. Let n > 4. Let f € Aut(Y,,). Let ®(f) be as above.
(1) The map ®(f): VL, — VL, induces a graph automorphism ®(f): L, — L.
(2) If®(f) =idy,, then f = idy, .

Proof. We prove the first statement. As ®(f) o ®(f ') = ®(fo f!) = id, we see
that ®(f) is a bijection. Let S be the equivalence class of a {0}-star and let 7 be the
equivalence class of an F-star. Suppose that S and T are adjacent in L,. We prove that
®(f)(S) and ®(f)(T) are adjacent in L,. Applying the same result to f~!, this will
prove that S and T are adjacent in L, if and only if ®(f)(S) and ®(f)(7T) are adjacent
in Ly, and this will conclude the proof. Let S and T be representatives of respectively
S and 7. Let Sq,...,S, be the n W,,_1-stars refined by S, and let T1,...,T,_1 be the
n — 1 W, _1-stars refined by T. As S refines T, and as S refines exactly n W,,_;-stars
by Theorem up to reordering, we can suppose that, for every i € {1,...,n — 1},
we have S; = T;. For i € {1,...,n}, let S; be the equivalence class of S;, and let S;
be a representative of ®(f)(S;) such that for distinct 4,5 € {1,...,n}, S; and S; are
compatible. Then, by Theorem [4.3.7] a representative T’ of ®(f)(7) is the unique (up
to Wy-equivariant homomophism) F-star such that, for every j € {1,...,n — 1}, T’ is
compatible with Si. Moreover, a representative S’ of ®(f)(S) is the unique {0}-star
such that, for every i € {1,...,n}, S’ is compatible with S]. For ¢ € {1,...,n}, let z;
be the preimage by the marking of W;,\\S! (well defined up to global conjugation) of the
generator of the vertex group isomorphic to F' (which exists since S; is a W,,_;-star).
Then the preimages by the marking of W,\T" of the generators of the groups associated
with the n—1 leaves of the underlying graph of W,\T" are x1, ..., z,—1 and the preimage
by the marking of W,,\T" of the generator of the group associated with the center of the
underlying graph of W,,\T" is x,. Moreover, the preimages by the marking of W,\S’
of the generators of the groups associated with the n leaves of the underlying graph of
W, \S" are x1,...,z,. Let v, be the leaf of the underlying graph of W,\S’ such that the
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preimage by the marking of W;,\S” of the generator of the group associated with v, is
Zn. Then T is obtained from S’ by contracting the edge adjacent to v,. Thus ®(f)(S)
and ®(f)(T) are adjacent in L.

The proof of the second statement is identical to the proof of [Gue2, Lemma 5.4].
We add the proof for completeness as the statement of [Gue2, Lemma 5.4] is about
automorphisms of K,. Let S € VY,, and let S be a representative of S. We prove that
f(S)=S8. Let

Wy =<{x1,...,&n_1) *{xp)

be the free factor decomposition of ,, induced by S. Let S’ be a representative of f(S).
Let X' be the equivalence class of the F-star X represented in Figure [3.13] on the left.

(x2) (1)
<I1> <xn>

<l‘n> <zn71>

Figure 4.4: The F-stars X and X’ of the proof of Lemma

Since ®(f)(X) = X, the free splitting S’ is a W), _1-star obtained from X by collapsing
n — 1 edges. But if T is a W,,_1-star obtained from X by collapsing n — 1 edges, then

there exists ¢ € {1,...,n} such that the free factor decomposition of W,, induced by 7" is
Wi = (21, By oy % i)

Forie {1,...,n}, we will denote by T; the W,,_;-star with associated free factor decom-

position {x1,...,Z4,...,xn) * {x;), and by T; its equivalence class. For i # n, the free

splitting T; is a collapse of the F-star X’ depicted in Figure on the right, whereas S
is not a collapse of X".

Let X’ be the equivalence class of X’. Since ®(f)(X’) = X', there does not exist
a representative of f(S) that is obtained from a representative of X’ by collapsing a
forest. Thus, for all i # n, we have f(S) # 7;. Therefore, as S = 7,,, we conclude that
f(8)=S8. O

Proof of Theorem Let n > 4. We first prove injectivity. The homomorphism
Out(W,) — Aut(L,) is injective by Theorem Moreover, the homomorphism
Out(W,,) — Aut(L,) factors through Out(W,) — Aut(Y,,) — Aut(L,). Therefore
we deduce the injectivity of Out(W,,) — Aut(Y,,). We now prove surjectivity. Let
f € Aut(Y;). By Lemma [4.9.2] (1), we have a homomorphism ®: Aut(Y;) — Aut(Ly,)
whose image consists in automorphisms preserving the set of {0}-stars and the set of F-
stars. By Theorem[4.3.5] the automorphism ®(f) is induced by an element v € Out(W,,).
Since the homomorphism Aut(Y,) — Aut(L,) is injective by Lemma [£1.9.2] (2), f is
induced by 7. This concludes the proof. O
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Chapitre 5

Currents relative to a malnormal
subgroup system

5.1 Introduction

Let n > 2. This paper is the first of a sequence of papers where we study the exponential
growth of elements of Out(F),), the outer automorphism group of a nonabelian free
group F,, of rank n. Let [g] be the conjugacy class of a nontrivial element g of F,,
let ¢ € Out(F,) and let ® € Aut(F,) be a representative of ¢. We say that [g] has
exponential growth under iterates of ¢ if there exists a basis B of F}, such that the length
of [®"(g)] with respect to the word metric relative to B grows exponentially fast with
n. It is known, using for instance the technology of relative train tracks (see [BH|) that,
otherwise, [g] has polynomial growth under iterates of ¢. Let Poly(¢) be the set of
conjugacy classes of elements of F;, whose growth under iteration of ¢ is polynomial.
For a subgroup H of F,,, let Poly(H) = () SeH Poly(¢). The aim of these three papers is
to prove the following result:

Theorem 5.1.1 ([Gue6]). Let n = 3 and let H be a subgroup of Out(F,). There exists
¢ € H such that Poly(¢) = Poly(H).

Theorem is proved using dynamical methods developed mainly in [Gued]. In
the present article, we introduce the topological space associated with the dynamics. In-
formally, Theorem shows that the exponential growth of a subgroup H of Out(F;,)
is encaptured by the exponential growth of a single element of H. In this paper, we
construct a space which is well-adapted for our considerations, the space of currents rel-
ative to a malnormal subgroup system. These relative currents are positive F,-invariant
Radon measures on an appropriate subspace of the double boundary at infinity of Fj,.
Let ¢ € Out(F,,). When the malnormal subgroup system is appropriately chosen, this
space has the property that its points corresponding to conjugacy classes of elements in
F,, — Poly(¢) are dense in it (see Theorem [5.1.2)).

The space of currents that we construct in this paper builds on objects introduced
for similar purposes. For instance, the study of the mapping class group Mod(S) of a



connected, compact, oriented surface S has benefited from the study of the action of
Mod(S) on the space of geodesic currents Curr(S), introduced by Ruelle and Sullivan
in [RS] (see also the work of Bonahon [Bonl]). It is defined as the space of 7 (S)-invariant
and flip invariant nonnegative Radon measures on the double boundary 025 of a universal
cover S of S , equipped with the weak-star topology. Considering the space of projective
geodesic currents PCurr(S), one can show that PCurr(S) can be viewed as a completion
of the currents associated with weighted nontrivial homotopy classes of closed curves on
S. The space PCurr(S) is well-adapted to the study of Mod(S). For instance, it can be
used for counting closed geodesics whose length is bounded by a given constant when
the surface S is equipped with a hyperbolic metric (see [EU] for a survey). Concerning
dynamical properties, a result of Thurston ([Thu], see also [Uyal]) implies that pseudo-
Anosov diffeomorphisms act with North-South dynamics on the space PCurr(S): every
pseudo-Anosov element f € Mod(S) has exactly two fixed points in PCurr(S) and any
other nonfixed point in PCurr(S) converges to one of the fixed points under positive or
negative iterates of f. Moreover, this convergence can be made uniform on compact
subsets of PCurr(S) which do not contain the fixed points.

In the specific context of free groups, building on [Bon3] for general hyperbolic groups,
the space of currents Curr(F),,) was first studied by Martin [Mar]. It is defined as the
space of Fy-invariant, flip invariant nonnegative Radon measure on the double bound-
ary 0%F, of F, equipped with the weak-star topology. Martin showed that the set of
currents associated with conjugacy classes of nontrivial elements of F;, is dense in the
space PCurr(F},) of projective currents. Currents for free groups have also been studied
in [Kap, KapL| [CHL]. Similarly to pseudo-Anosov elements of Mod(S) on PCurr(S5),
fully irreducible automorphisms of F;, and atoroidal automorphisms of F;, act with North-
South type dynamics on PCurr(F;,) (see [Uyal], [Uya2]).

Currents on free groups have also been studied in a relative context, more precisely,
in the context of free factor systems. A free factor system JF is a finite set of conjugacy
classes F = {[A1],...,[Ax]} of nontrivial subgroups A, ..., A; of F, such that there
exists a subgroup B of F,, with F,, = Aj ... A = B. Gupta |Gupl] (see also Guirardel-
Horbez [GuHI]) introduced the space Curr(F;,, F) of currents relative to the free factor
system F. Relative currents are then Fj-invariant, flip invariant nonnegative Radon
measures on a subspace of the double boundary of F}, which does not intersect the double
boundary of any conjugate of A;, equipped with the weak-star topology. Gupta [Gupl]
then showed that the set of currents associated with conjugacy classes of nonperipheral
elements of F,, that is, elements of F), that do not belong to any conjugate of some A4;,
is dense in PCurr(F;,, F). She then showed that fully irreducible outer automorphisms
relative to F act with a North-South type dynamics on PCurr(F,, F).

In order to study the purely exponential growth part of an outer automorphism of F,,
we need to consider currents relative to a class of subgroup systems which is larger than
the class of free factor systems. Indeed, if ¢ € Out(F},), the set of all maximal conjugacy
classes of subgroups of F;, consisting of elements with polynomial growth under iterates
of ¢ is not necessarily a free factor system. However, Levitt [Lev2, Proposition 1.4]
proved that this set is a malnormal subgroup system. A malnormal subgroup system A
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is a finite set of conjugacy classes A = {|A1],...,[Ak]} of nontrivial subgroups of F,
such that, for every i € {1,...,k}, the group A; is malnormal and, for every subgroups
By, By of F), such that [Bi],[B2] € A, if the intersection By n By is nontrivial, then
By = Bjy. A free factor system is, in particular, a malnormal subgroup system but the
converse does not hold (see Section .

Let A = {[A1],...,[Ak]} be a malnormal subgroup system. We define the space
Curr(F,, A) of currents relative to A as the space of F,-invariant, flip invariant nonneg-
ative Radon measures on a natural space 0%(F},,.A), the double boundary of F,, relative
to A equipped with the weak-star topology. The space 0%(F},,.A) is a subspace of 6°F},
which does not intersect the double boundary of any conjugate of A; (see Section m
for precise definitions). In this article, we prove the following result. An element of Fj,
is non-A-peripheral if it is not contained in any conjugate of any A; with i € {1,...,k}.

Theorem 5.1.2. Let n > 3 and let A be a malnormal subgroup system. The set of currents
associated with conjugacy classes of non-A-peripheral elements of F,, is dense in the space
PCurr(F,, A) of projective currents relative to A.

Let ¢ € Out(F,). If A is the set of conjugacy classes of maximal polynomial sub-
groups of ¢, then Theorem shows that the set of projective currents associated
with exponentially growing elements of F,, under iterates of ¢ is dense in PCurr(F,, A).
Therefore, the space PCurr(F,, . A) is a natural topological space for the study of the
action of ¢ on elements of F,, with exponential growth under iterates of ¢. A sub-
sequent paper |[Gue5| will then show that ¢ acts with North-South type dynamics on
PCurr(F,,.A). This North-South dynamics will be a central argument in the proof of
Theorem [5.1.1]

We now give an outline of the proof of Theorem [5.1.2] The proof follows the one
of a similar result in the context of currents relative to free factor systems due to
Gupta |Gupl]. However, in the case of free factor systems, the proof relies on the
existence of an adapted free basis of F), associated with the free factor system, which
does not necessarily exist in the case of malnormal subgroup systems. Our new argument
in order to overcome this difficulty is the description of a finite set of elements of F},
associated with a malnormal subgroup system and a free basis of F,, which completely
determines whether an element of F), is contained in a conjugate of a subgroup of the
malnormal subgroup system or not (see Lemma .

Let A be a malnormal subgroup system and let p € PCurr(F,, A). We first show
that p can be extended into a signed measured current [t on F,, that is an F,-invariant
and flip invariant Radon measure on ¢%F,. Even though fi might have negative values,
we show that [i can be chosen so that [ gives positive value to sufficiently many Borel
subsets of ¢%2F,. One can then use the density of currents associated with conjugacy
classes of nontrivial elements of F}, in the space Curr(F},) in order to conclude the proof.

To our knowledge, the objects we construct in this paper have not been studied or
constructed for larger classes of groups, such as relatively hyperbolic groups and quasi-
convex almost malnormal subgroups of hyperbolic groups. Nevertheless, the extension
of our definitions to this context seems natural since a result of Bowditch [Bowl, Theo-
rem 7.11] shows that the group F, is always hyperbolic relative to a malnormal subgroup
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system .A. But as we explained in Remark the natural double boundary associated
with a relative hyperbolic group will have less information than the boundary 02(F,, A).
Therefore, it would require new techniques to develop the notion of currents for relative
hyperbolic groups or quasi-convex almost malnormal subgroups of hyperbolic groups.

Acknowledgments. I warmly thank my advisors, Camille Horbez and Frédéric Paulin, for
their precious advices and for carefully reading the different versions of this article.

5.2 Malnormal subgroup systems

5.2.1 Malnormal subgroup systems

Let n be an integer greater than 1 and let F}, be a free group of rank n. In this section,
we define, following Handel and Mosher [HaM4l Section I.1.1.2], malnormal subgroups
systems and study some of their properties.

A subgroup system of F,, is a finite (possibly empty) set A whose elements are con-
jugacy classes of nontrivial (that is distinct from {1} and F,,) finite rank subgroups of
F,,. Note that a subgroup system A is completely determined by the set of subgroups
A of F), such that [A] € A. There exists a preorder on the set of subgroup systems of
F,, where A; < Aj if for every subgroup A; of F,, such that [A;] € Ay, there exists
a subgroup Ay of F), such that [As] € Az and A; is a subgroup of As. The stabilizer
in Out(Fy,) of a subgroup system A, denoted by Out(F,, A), is the set of all elements
¢ € Out(F,) such that ¢(A) = A.

Recall that a subgroup A of F,, is malnormal if for every element z € F,, — A,
we have zAx 1 n A = {e}. A subgroup system A is said to be malnormal if every
subgroup A of F), such that [A] € A is malnormal and, for any subgroups A;, Ay of F,
such that [A;], [A2] € A, if A; n Ag is nontrivial then A; = Ay. There are equivalent
formulations of malnormality which we present now (see [HaM4l, Section 1.1.1.2]). Let
T be the Cayley graph of F, with respect to some given free basis of F),. For every
subgroup A of F,, let T4 be the minimal A-invariant subtree of T. Then a subgroup
system A made of conjugacy classes of malnormal subgroups is malnormal if and only
if there exists a finite constant L > 0 such that for any distinct subgroups A1, Az of F,
such that [A1],[Az2] € A, the diameter of the intersection T4, N T4, is at most equal
to L. Malnormality of a subgroup system A made of conjugacy classes of malnormal
subgroups is also equivalent to the fact that, for any distinct subgroups A; and Ay of
F,, such that [A1],[A2] € A, we have 0xT4; N 05T 4, = 2.

5.2.2 Properness at infinity

Let 0 F,, be the Gromov boundary of F,. Let B be a free basis of F,, and let T be
the Cayley graph of F,, with respect to B. For convenience, we suppose that B~! = B.
The boundary of T is naturally homeomorphic to 0 F},. For an element w € F,,, we
denote by -, the path in T starting from e corresponding to the word w. We denote by
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wt® the element in 0y F), corresponding to the quasi-geodesic starting at e obtained by
concatenating paths in 7" labeled by w.

Let A be a subgroup of Fj, of finite rank. The inclusion A € F,, induces an A-
equivariant inclusion 0wA < 0 F,,. Note that the F,-orbit of the image of this map
only depends on the conjugacy class of A in F,.

Let A be a subgroup system of F,. The subgroup system A is said to be proper at
infinity if, for every element g of F),, the following assertions are equivalent:

e there exists a subgroup A of F,, such that [A] € A and g7® € 0y A;

e there exists a subgroup A of F), such that [A] € A and g € A.

For the proof of Lemmabelow, we need the following result (see for instance [HalM4],
Fact 1.2]). This is a particular case of the same result valid for all quasi-convex subgroups
A1, As of any word hyperbolic group, see [Swe], that has been for instance generalized
in [Tra, Theorem 1.4].

Lemma 5.2.1. For every finitely generated subgroups Ay and Ao of F,, we have

A subgroup A of F), is root-closed if for every g € F}, and every k € N* such that
g* € A, we have g € A.

Lemma 5.2.2. Let A be a subgroup system. The following are equivalent:
(1) the subgroup system A is proper at infinity;
(2) every subgroup A of F,, such that |A] € A is root-closed.

In particular, a malnormal subgroup system is proper at infinity.

Proof. Suppose that A is proper at infinity and let A be a subgroup of F,, such that
[A] € A. Let g € F,, and k € N* be such that g¥ € A. Let us prove that g € A. Since
g* € A, we see that g7® € 0, A. Since A is proper at infinity, we have g € A. Hence A is
root-closed. Suppose now that every subgroup A of F), such that [A] € A is root-closed.
Let g € F,, and let A be a subgroup of F,, such that [A] € A and g*® € 0,A. By
Lemma applied to {(g) and A, there exists k € N* such that ¢* € A. Since A is
root-closed, we see that g € A. Hence A is proper at infinity. This shows the equivalence.

Let A be a malnormal subgroup system and let A be a subgroup of F, such that
[A] € A. We prove that A is root-closed. Let g € F,, and let k& € N* be such that
g* € A. We claim that g € A. Indeed, suppose towards a contradiction that g ¢ A. Then
g* = gg*g7! belongs to A n gAg~! which is equal to {e}, a contradiction. O

Let A be a malnormal subgroup system. An element g € F,, is A-peripheral (or
simply peripheral if there is no ambiguity) if it is trivial or conjugate into one of the
subgroups of A, and non-A-peripheral otherwise. Note that, since A # {[F,]}, there
always exists a non-A-peripheral element. Since A is proper at infinity by Lemma [5.2.2]
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we see that an element g of F, is A-peripheral if and only if there exists a subgroup A
of F, such that [A] € A and g1 € d,A.

Let A= {[A1],...,[Ar]} be a malnormal subgroup system of F,,. For every element
i€ {l,...,r}, let T4, be the minimal A;-invariant subtree of 7. Suppose that for every
i€ {l,...,r}, the representative A; of [A;] is chosen so that the tree T4, contains the
base point e of T.

By malnormality of A, there exists L € N* such that for any distinct subgroups A, B
of F,, such that [A],[B] € A, the diameter of the intersection T4 N Tz is at most L. Let
i€ {l,...,r}. Let I'; be the set of subgroups B of F,, such that there exists gp € F),
such that B = gBAiggl and the tree Tz contains the base point e of 7. Note that,
by malnormality of A, for every i € {1,...,r}, the set I'; is finite. Let C; be the set of
elements w of F;, such that the length of ~,, is equal to L + 2 and, for every B € I';,
the path 7, is not contained in Ts. Let € = ();_; C;. Since we are looking at geodesic
paths of length equal to L + 2, the set % is finite. If v is a path in T, the element of Fj,
corresponding to «y is the element h € F,, such that the path v is labeled by h.

Lemma 5.2.3. Let B, T, A = {[Ai1],...,[Ar]}, Le N* I'1,...,T';, € be as above. The
finite set € = € (A1, ..., A.) is nonempty. Moreover, it satisfies the following:

(1) every element g € F, such that the length of v, is at least equal to L + 2 and such
that 74 is not contained in a tree Tp with B € | J;_; I'; contains an element of € as a
subword. In particular, every non-A-peripheral cyclically reduced element g € F,, has a
power which contains an element of € as a subword;

(2) for every non-A-peripheral cyclically reduced element g € F,, if ¢q is the geodesic
ray in T starting from e obtained by concatenating edge paths labeled by g, there exists
an edge path in cq labeled by a word in € at distance at most L+2 from | J;_, UBeFi Tp;

(3) if an element w € F,, contains an element of € as a subword, then for every
i€ {l,...,r}, the element w is not contained in A;.

Proof. We first prove that (1) and (2) hold and that € is nonempty. Let g be as in the
first claim of Assertion (1). First note that, by the choice of L, for every i,j € {1,...,r}
and every distinct A € I'; and B € I';, the intersection 74 N T'g is contained in the closed
ball of radius L centered at e. We consider the geodesic path ¢,: [0,1] — T such that
c(0) = e and such that c4(1) is the terminal endpoint of 7,. Let i € {1,...,r} and let

to = max{te [0, 1] |Cg(t) € O U TA} .

=1 AGFi

The point ¢4(to) is a vertex and is distinct from ¢4(1) by assumption. We denote by c4
the geodesic segment ¢y N (J;_; Uaer, Ta-

Suppose first that the length of ¢4 is at most equal to L + 1. Let ¢y be the geodesic
segment contained in ¢, which originates at c4(tp) and such that the length of c4cp is
equal to L + 2. Such a path c4cq exists since the length of v, is at least equal to L + 2.
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Then the element h of F,, corresponding to c4cq is in ¥ and is a subword of g. This
concludes the proof in this case.

Suppose now that the length of ¢4 is greater than L + 1. Let c4(to — L — 1) be the
vertex in c4 at distance L +1 from ¢,(to), and let go be the corresponding element of F,.
Let sg be the geodesic path between c4(to — L — 1) and ¢4(g). Since the geodesic path
so has length equal to L + 1, there exists a unique ¢ € {1,...,r} and a unique A € T;
such that s¢ is contained in T4. Let ey be the edge in ¢, which originates at cq4(tp). Let
h € F, be the element corresponding to the edge path s; between c4(tg — L — 1) and
the terminal point of ¢g. We claim that h € ¥. Indeed, suppose towards a contradiction
that h ¢ €. Then there exists j € {1,...,7} and B € I'; such that the edge path =, is
contained in T’g. Since 7, has length equal to L + 2, the integer j and the subgroup B
are unique. Remark that g, ! sends the geodesic path sq to the initial segment of length
L +1 of ~y,. Since gy Lo has length equal to L + 1, the subgroup B is the unique element
of Uzzl I'; such that the tree T'g contains g, Lsp. But sg is contained in T4 and the tree
T4 is sent by 90_1 to the tree Tgo—lAgO. Therefore, we see that B = go_lAgo. But go_1
induces an isometry between T4 and Tg(?l Ago” Therefore, since s7 is not contained in Ty,

we see that v, = gy s, is not contained in Tg—l Ago” This leads to a contradiction. Hence
0

h € € and h is a subword of g. This proves the first claim of Assertion (1). We now
prove the second claim of Assertion (1). Let g be a non-A-peripheral cyclically reduced
element of F),. Let ch: R, — T be the geodesic ray in T starting from e obtained by
concatenating edge paths labeled by g. Recall that, for every i € {1,...,r}, the set
I'; is finite. Therefore, since ¢ is nonperipheral and since A is proper at infinity by
Lemma the intersection of c'g with | J;_, U Aer; Ta is compact. Hence there exists
a power of g which satisfies the first claim of Assertion (1). This proves (1). Moreover,
the terminal endpoint of the path in ¢, labeled by h which we have constructed is either
at distance L + 2 from e or is at distance at most 1 from | Ji_; Ber, s This proves
(2). This also proves that € is nonempty as there exists a non-A-peripheral element.
We now prove (3). Suppose towards a contradiction that there exist i € {1,...,7} and
a € A; such that a contains a word of % as a subword. Thus there exist z € €, b,c € F},
such that a = bzc and the word bzc is reduced. Then since e is contained in T'y,, the
path 7, is contained in T4,. But the element b~! sends the tree T4, to the tree Tj— Ab
Moreover, since T4, contains the vertex labeled by b, the tree Tj,-1 4., contains the base
point e of T'. But then Tj-14,, contains the geodesic segment 7,. This contradicts the
fact that x € € < C;. This concludes the proof. O

5.2.3 Examples of malnormal subgroup systems

Let n be an integer greater than 1 and let F}, be a free group of rank n. In this section,
we give some examples of malnormal subgroup systems. The first one that we describe,
following Handel and Mosher [HaM4], is an R-vertex group system. Let T be an R-tree
equipped with a minimal, isometric action of F}, for which no point or end of T is fixed
by the whole group and with trivial arc stabilizers. A proper, nontrivial subgroup A of
F, is an R-vertex group of T if there exists a point z € T such that A = Stab(x). Note
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that every free factor of F, is an R-vertex group of some simplicial tree. Every R-vertex
group has rank at most equal to n (see [Gall).

The R-vertex group system of T, denoted by Ar, is the set consisting of all conjugacy
classes of nontrivial point stabilizers in T. The set Ap is finite and its cardinality is
bounded from above by a finite constant depending only on n (see [Gal]). Therefore the
set A is a subgroup system. Note that every free factor system of Fj, is an R-vertex
group system of some simplicial tree. However, there exist R-vertex group systems
which are not free factor systems. For example, let S be a compact connected oriented
hyperbolic surface with one totally geodesic boundary component such that m(S) is
isomorphic to F),. Let T be the R-tree dual to the lift A to Hy of a measured geodesic
lamination A without compact leaves on S. An identification of 71(S) with F,, induces
an action of F;, on T which has trivial arc stabilizers. Moreover, the fundamental group
of the connected component containing the boundary curve of S is the stabilizer of a
point in 7. Since the fundamental group of this connected component is not a free factor
of F),, this shows that Ag is not a free factor system. More generally, Handel and Mosher
[HaM4, Proposition 3.3] give general constructions of R-vertex group systems which are
not free factor systems.

Lemma 5.2.4. [HaMJ, Lemma 3.1] The subgroup system Ar is a malnormal subgroup
system.

Another example of malnormal subgroup systems is the following. An outer auto-
morphism ¢ € Out(F),) is exponentially growing if there exists g € F,, such that the
length of the conjugacy class [g] of ¢ in F, with respect to some basis of F,, grows
exponentially fast under iteration of ¢. If ¢ € Out(F,) is not exponentially growing,
then the length of the conjugacy class of every element of F), is polynomially growing
under iteration of ¢ and ¢ is said to be polynomially growing. One similarly says that
an automorphism « € Aut(F,) is exponentially growing or polynomially growing. Let
¢ € Out(F),) be exponentially growing. A subgroup P of F,, is a polynomial subgroup of
¢ if there exist k € N* and a representative a of ¢* such that a(P) = P and a|p is poly-
nomially growing. By [Lev2, Proposition 1.4], there exist finitely many conjugacy classes
[H1],...,[Hx] of maximal polynomial subgroups of ¢ and the set H = {[H1],...,[Hx]}
is a malnormal subgroup system.

5.2.4 Double boundary of F), relative to a malnormal subgroup system

In this section, we construct a boundary of F;, relative to a malnormal subgroup system.
We follow a similar construction made by Gupta in [Gupl], Section 3.1] in the case of
the boundary relative to a free factor system.

The double boundary of F,, is the quotient topological space

?F, = (00 F, X 00 F\A) [/ ~,

where ~ is the equivalence relation generated by the flip relation (x,y) ~ (y,x) and
A is the diagonal, endowed with the diagonal action of F,,. We denote by {x,y} the
equivalence class of (z,y).
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Let A = {[|A1],...,[Ar]} be a malnormal subgroup system of F,,. Let B, T', L € N*,
I'y,..., I, € be as above Lemma The boundary of T' is naturally homeomorphic
to 0 F), and the set 02 F), is then identified with the set of unoriented bi-infinite geodesics
in T. Let v be a finite geodesic path in 7. The path 7 determines a subset in 02F),
called the cylinder set of v, denoted by C(v), which consists in all unoriented bi-infinite
geodesics in T that contain v. Such cylinder sets form a basis for a topology on 0%F,,
and in this topology, the cylinder sets are both open and compact, hence closed since
0%F,, is Hausdorff. The action of F,, on 0°F,, has a dense orbit.

Let A be a nontrivial subgroup of F, of finite rank. The induced A-equivariant
inclusion 0 A <> 0 F), induces an inclusion 624 — 0°F,,. Let

A = U | 2*g4ig7".

i=1geF,

Let 0?(F,, A) = 0*F, — 0*>A be the double boundary of F, relative to A. This subset
is invariant under the action of Fj, on 0°F}, and inherits the subspace topology of 0*F},,
denoted by 7.

Lemma 5.2.5. Let Cyl(€) be the set of cylinder sets of the form C(v), where the element
of F,, determined by the geodesic edge path ~y contains an element of € as a subword.
We have
PEAH= | oo
C(7)eCyl(?)

In particular, the space 0*(F,, A) is an open subset of 0>F},.

Proof. Let y € 0?(F,, A). Let c be an oriented geodesic line ¢ in 7' which belongs to the
equivalence class y. Let v be a vertex of T' contained in ¢ and let gg be the corresponding
element of Fj,.

Suppose first that the intersection ¢ gg (U::1 U BeT; TB) is either compact or a half-
line. In particular, the intersection ¢ N g (U;Zl UBer, TB) has a terminal point v’. Let
x be the vertex in ¢ at distance L + 2 from v'. Let g € F}, be the element corresponding
to the geodesic edge path between v and x. Note that the edge path 7, is not contained
inJ;_, U per, 1B since, for every nontrivial subgroup A of F}, of finite rank, the element
go sends T4 to Tgo Aggt- By Lemma (2), the word g contains a word of € as a
subword. Then y € goC(vy), and goC(74) € Cyl(%).

Suppose now that the intersection ¢ m gg (U:Zl Usger, T B) is not compact. Since
y € 0*(F,,A), the path ¢ cannot be contained in a single tree goTp with B € | JI_, I';.
By the definition of L, there exist exactly two subgroups A,B € [J;_; I'; such that
¢ is contained in goT4 U goTp. By the definition of the constant L, the intersection
goT'a N goTp has diameter at most equal to L. Let ¢y be the subpath of ¢ of length
2L + 2 whose middle point is v and whose starting point is in go7T'4 and let g be the
element of F), corresponding to ¢y. Let v’ be the initial vertex of ¢y and let ¢’ be the
element of F), associated with v'. Note that the intersection of ¢y with goT4 and goTs
has length at least equal to L + 1. Up to considering a larger path cg, we may suppose
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that ¢ is cyclically reduced. We claim that g contains an element of ¥ as a subword.
Indeed, suppose towards a contradiction that g does not contain an element of € as a
subword. By Lemma [5.2.3] (1), there exist i € {1,...,7} and H € I'; such that v, < T.
But then g7y = ¢o and is contained in ¢’Ty. Thus the diameter of the intersection
¢'Ty with goTs and goTg is at least equal to L + 1. By definition of L, this means
that ¢'Ty = goTa = goTp. This means that A = B, a contradiction. Hence g contains
an element of 4 as a subword. Thus we have y € goC(v,), with goC(v,) € Cyl(%).
Therefore, we see that
AF, A ) o).
C(7)eCyl(¥)

Conversely, let v be a geodesic path in T such that C(v) € Cyl(%). Suppose towards
a contradiction that there exists y € 024 such that y € C(v). Thus, there exist elements
i€{l,....r}, g€ F, and a € gA;g ! such that {a*® a ®} € C(y). Therefore, we see
that v is a subpath of T, 4,,~1. Decompose v as v = 71672 where ¢ is labeled by a word
w in €. Let v be the origin of § and let h be the element of F}, corresponding to v. Then
h_ngAig—l = Th-194,9-11 € I'i and contains ,, with w € €, a contradiction. O

Note that Lemma implies that we can define a topology on 0%(F,, A), denoted
by 7/, where cylinder sets in Cyl(%) generate the topology. Lemma also implies
that the two topologies 7 and 7" are equal.

Since 0?F), is locally compact and since 0%(F},,.A) is an open subset of 0°F, by
Lemma [5.2.5] we have the following result.

Lemma 5.2.6. The space 0*(Fy,, A) is locally compact. O
Lemma 5.2.7. The action of F,, on 0*(F,, A) has a dense orbit.

Proof. Recall that there exists g € F}, such that the action of g on 0°F), has a dense
orbit. Since 0%(F},, A) is an open subset of 02F},, the element g also acts on 0%(F,,.A)
with a dense orbit. O

Remark 5.2.8. We now compare our definition with other natural constructions of double
boundaries. The first one is to see the double boundary of F), relative to a malnormal
subgroup system as the double boundary of a Gromov hyperbolic space. Indeed, if A =
{[A1], ..., [Ar]} is a malnormal subgroup system, by a result of Bowditch (see [Boul,
Theorem 7.11]), the group F,, is hyperbolic relative to A. In particular, there is a natural
(that is well-defined up to quasi-isometry) proper geodesic Gromov hyperbolic space X on
which F,, acts by isometries and such that the subgroups of F,, whose conjugacy classes
are in A are precisely the mazimal parabolic subgroups of the action of F,, on the Gromov-
boundary of X (see [Boul for a precise description of X ). Thus a natural construction
for another type of double boundary of F, relative to A is to define it as the double
boundary of X. This definition seems to extend to the more general case of relatively
hyperbolic groups. However, the relative double boundary 0*(F,, A) has the advantage of
being an open subset of 0%F,,, so that one can use the cylinder sets of 0°F, as a basis
for the topology of 0*(F,, A). Moreover, the natural application from 0F, to 0X sends
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the boundary of a parabolic subgroup to a point. Therefore, the relative double boundary
0%(F,, A) seems to contain more information about the geodesic lines whose endpoints
are in the Gromov boundary of distinct parabolic subgroups.

Another candidate for the double boundary of the pair (F,,A) is the following. Let
T be the graph obtained from T by adding one vertex v(gA) for every coset gA with A a
subgroup of F,, such that [A] € A and by adding an edge from v(gA) to every vertex of T
labeled by an element in gA. The graph T is Gromov hyperbolic (see for instance [KR),
Proposition 2.6] or [Boul]) and the Gromov boundary off’ is homeomorphic to the space
Ooo ' —Ui—1 Uger, O0gAi (see for instance [AM, Theorem 1.6] or [DT],[Boulf). However,

the double boundary 0T does not contain any geodesic line whose endpoints are in
distinct parabolic subgroups, which makes it a proper subspace of 0*(F,, A) which does
not seem to be a union of cylinder sets.

5.3 Currents relative to a malnormal subgroup system

In this section, we define currents of Fj, relative to a malnormal subgroup system. We
follow the construction of Gupta [Gupl], Section 3.2] of currents relative to a free factor
system.

Let A = {[A1],...,[Ar]} be a malnormal subgroup system of F,,. Let B, T', L € N*,
I'y,...,T;, € be as above Lemma [5.2.3]

A relative current on (F,, A) is an F,-invariant nonnegative Radon measure p on
the locally compact space (by Lemma 0%(F,, A) (that is pu gives finite measure
to compact subsets of 0%(F),, A), is inner and outer regular). The set Curr(F),, A) of
all relative currents on 0?(F),, A) is equipped with the weak-star topology: a sequence
(ftn)nen in Curr(F,, A)N converges to a current p € Curr(F},, .A) if and only if for every
disjoint clopen subsets S, 5" < 0%(F,, A), the sequence (1, (S x S'))nen converges to
w(S x S"). The space Curr(F,, A) is naturally identified with the space of non-negative,
Fy,-invariant, continuous linear functionals on the space C.(0%(F,,.A)) (equipped with
the uniform norm) of continuous compactly supported functions of 9%(F},, A) (see [Cohl,
Theorem 7.5.5]). Therefore, the space Curr(F,,.A) is homeomorphic to a subspace
of C.(0*(F,, A))* equipped with the weak-star topology. Equipped with the uniform
structure induced by the weak-star topology on C.(0%(F,,.A))*, we see that the space
Curr(F;,, A) is metrisable and complete (see [Bou, Chap. 3, Section 1, Proposition 14]).

The group Out(F,,, A) acts on Curr(F,,.A) as follows. Let ¢ € Out(F,,.A), let ® be a
representative of ¢, let u € Curr(F,,.A) and let C be a Borel subset of 0?(F,,.A). Then,
since ¢ preserves A, we see that ® (C) is a Borel subset of 6?(F},, A). Then we set

¢(1)(C) = p(@~H(C)),

which is independent of the choice of the representative ® since p is Fj-invariant and
the extension to the boundary of the action by conjugation and by left translation of F},
on itself coincide.

We now describe some coordinates for Curr(F,,, A). Recall that Cyl(%) is the set of
cylinder sets of the form C(v), where the element of F;, determined by the geodesic path
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~ contains an element of € as a subword. Recall that

2= | .
C(7)eCyl(¥)

Let n € Curr(F,, A). Let w € F,, be such that C(v,) € Cyl(¥¢) and let w = wy ... wy be
the reduced word associated with w written in the basis B. Then C(vy) = [ [ C(Vwb),
where the union is taken over all elements b of B = B~! except b = wk_l. The o-additivity
of a relative current n implies that:

N(Cw) = Do 1(C(yup))-

b#wlzl

Finally, we note that, for every element w € F,, such that C(v,) € Cyl(¥¢), we have
N(C(Yw)) = n(C(Yy-1))- Indeed, this follows from the fact that C(~,) = wC(~,,-1) and
from the F)-invariance of 7.

Lemma 5.3.1. Let n > 3 and let C be a compact open subset of 0*(F,, A). There erist
finite geodesic edge paths 1, ...,V such that:

(1) For everyie {1,...,k}, we have C(~;) € Cyl(¥);
(2) for every distinct i,j € {1,...,k} we have C(v;) n C(v;) = ;
(3) we have C = Ule C(7vi)-

Proof. Since C is a compact open subset of §?F},, using the topology 7/, the set C' can
be written as a union of cylinder sets C'(y1), ..., C(7y¢), where, for every i € {1,...,¢}, we
have C(v;) € Cyl(¢). We may suppose that for every distinct i,j € {1,...,¢}, we have
C(vi) € C(vj). In particular, there does not exist ¢, j € {1,...,¢} such that v; S 7;. Let
m be the number of pairs of distinct elements 4, j € {1,..., ¢} such that C(y;) n C(v;) #
@. We prove Lemma by induction on m. If for every distinct i, € {1,...,¢},
we have C(vy;) n C(vj) = @, then the set {vy1,...,7/} satisfies the conclusion of the
lemma. Suppose that there exists m pairs of distinct elements i, j € {1,..., ¢} such that

C(vi) nC(vj) # @, withm > 1

Claim. Let 7, j be as above. There exists finite geodesic paths fy( 9. ,’y,gl), 75 ), . ,’y,(j)

in T" which satisfy the following:

()

(a) for every se {1,...,k;} and every t € {1,...,k;}, we have 7; € 7s (j);

and v; € v,
b) for every p € {i,j}, for every distinct s, € {1,...,kp}, we have C(y§p))m0(7§p)) = J;

)

(b)
(c) for every s € {1,...,k;} and every t € {1,...,k;}, either C(Vgi)) = C(fyt(j)) or
CO) eGP = 2

(d) for every p € {i,j}, we have

kp
= Joaw).
s=1
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Proof. See Figure @ to follow the construction. Notice that we either have v; nvy; = &
or v; N y; # . In both cases, we construct a path 7 and vertices Ui,vg,vj,v;. that we
will use in the rest of the proof. First suppose that v; ny; = @. Let 7 be the unoriented
geodesic path in 7" which realizes the distance between ~; and ;. Since, by assumption,
C(vi) nC(v;) # @, the endpoints of 7 are endpoints of 7; and ;. For every p € {i, j}, let
vp be the common endpoint of 7, and 7 and let U;) be the other endpoint of 7,. Suppose
now that v; nvy; # @. Then, since C(v;) N C(v;) # @ there exist three paths 7, a; and a;
such that, up to changing the orientation of ; and v;, we have: v; = a;7 and v; = 7a;.
For every p € {i, j}, let v, be the common endpoint of a, and 7 and let 111'3 be the other
endpoint of a,.

. v
v Vi v; Uj 7 J
! ! T ! /
€ Vi v e
’ ) ! '
v; Vi v v Yj
* ——o & @& —— 0 —©
! ! . !
€; Vi T Vo€

Figure 5.1: The paths constructed in the proof of Lemma

For every p € {i, j}, let e, be the edge of ~, adjacent to v}, which exists since -, is
not reduced to a vertex. For every p € {i,j}, let 'y;) be the edge path such that either

Yp = Vp€p OF Vp = €7, For every p € {i,j} and £ € {i, j} — {p}, let %p)’ . ,7,8;) be the

edge paths of T which start at v;,, which properly contain 7, and such that for every

s e {l,...,ky}, the endpoint of 'ygp ) distinct from vy, is at distance exactly 1 from the

minimal edge path of 7' which contains 7 and 7,. Note that for every p € {i,j} and

¢ e {i,j} — {p}, there exists a unique s, € {1,...,kp} such that yéﬁ) contains e,. Note

that for every p € {i, j}, the integer s, is the unique integer s € {1, ..., k,} such that 'ygp)

contains both 7; and 7;. Note also that 'yg) = (’yg))*l.

We claim that the paths ’y%i), e ,'y,ﬁ?, ’y%j ), . ,’yg ) satisfy the conclusion of the claim.
Indeed, (a) is satisfied by construction. We prove (b). Let p € {i,j}. Let s,t € {1,...,kp}

be distinct. Then yép ) and ’ylfp ) share the path 7, as an initial segment. But, by con-

struction of the paths mgp ) and yf” ), the endpoints of ygp ) and fygp ) distinct from v; are at

distance exactly 1 from the minimal edge path of 7" which contains 7 and ;. Therefore,

(

the endpoint of s ) distinct from vy, is not contained in %gp ). Hence the subtree of T
generated by ’ygp ) and %(p Jisa tripod. This shows that C (79’ )) nC (’yt(p )) = @ and this
proves (b).

We now prove (c). Let s e {1,...,k;} and let t € {1,...,k;}. Suppose that we have
C (’ygl)) nC (%EZ)) # @. Then there exists a path 7/ of T such that ' contains both 'ygl) and

’yt(j ). Thus 7' contains both ~; and ;. This implies that m@ = ’yﬁ? = (yﬁj))—l = (’yt(j ))_1
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and that C (vgi)) =C (%(j )). This proves (c¢). Finally, the fact that (d) holds follows from
the fact that C(v) = Upe pr by C(70). This proves the claim. O
For every p € {i, j}, replace v, by the paths qép), .. ,’yg

{7 --+>7,} such that, by the point (d) of the claim, C' = UL, C(7)). Recall that for
every p € {1, j}, we have C'(v,) € Cyl(%¢). By the point (a) of the claim, for every p € {i, j}

). Then we obtain a new set

and every s € {1,...,k;}, we have v, < ’ygp). Therefore, we see that for every p € {i, j}
and every s € {1,...,k;}, we have C(ygp)) € Cyl(%). Hence the set {7],...,7,,} satisfies
(1). Point (a) of the claim also implies that, for every m’ € {1,..., ¢}, and every p € {i, j},
if C(vm) N C(vp) = @ then for every s € {1,...,k,}, we have C(y,) N C’(’ygp)) = g.
Combined with points (b) and (¢) of the claim, we see that the number of distinct
elements myi, mo € {1,...,41} such that C(vm,) N C(Ym,) # @ is strictly less than m.
An inductive argument then concludes the proof. O

We denote by F,, — A the subset of Fj, consisting in every element w € F,, such that
C(yw) € Cyl(€¢). Note that F,, — A is closed under inversion since % is closed under
inversion by Lemma [5.2.3] The next lemma gives a criterion to extend some functions
defined on F,, — A to a relative current in Curr(F,, A) (see [Gupl, Lemma 3.9] for the
free factor system case). First we need some definitions.

Let w € F,,, and let k € N*. A length k extension of w is a word w' = wxy...x}
where for every i € {1,...,k— 1}, we have z; # x;rll and z is not the inverse of the last
letter of w. An extension of w is a word w’ such that there exists k € N* such that w’
is a length k£ extension of w.

Lemma 5.3.2. Let n: F, — A — Ry be a function invariant under inversion and which
satisfies, for every w € F,, — A:

n(w) = > 1(v). (5.1)

v s a length one extension of w

There exists a unique element 1] € Curr(F,, A) such that for every element w € F,, — A,
we have

n(w) = 7j(C ().

Proof. Since 0?(F},, A) is totally disconnected and locally compact by Lemma 5.2.6, and
since a relative current is a Radon measure, a relative current is uniquely determined
by its values on compact open subsets of 0%(F},,.A). Let C be a compact open subset of
0%(F,, A). By Lemma the subset C'is a disjoint union of cylinders of finitely many
geodesic edge paths 71, ..., v such that for every i € {1,..., k}, we have C(~;) € Cyl(%).
For every i € {1,...,k}, let g; be the element of F,, which is the label of ;. For every
i € {1,...,r}, since g; contains an element of & as a subword, we have g; € F,, — A.
Hence we can set 7j(C) = Zf;l n(g;). We claim that the value 7/(C') does not depend on
the choice of the paths ;. Indeed, let «aq,...,a; be another set of geodesic edge paths
given by Lemma [5.3.1]and let hq, ..., hy be the corresponding elements in F),. Note that
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for every i € {1,...,k} and every j € {1,...,¢} such that C(v;) n C(a;) # &, we have
C(vi) n C(a;) = C(Bi;), where f5; ; is a minimal edge path in 7" that contains both ~;
and «;.

We claim that for every i € {1,...,k}, there do not exist distinct ji,j2 € {1,...,¢}
and paths a; and ag such that §; j, = a17; and 3; j, = v;a2. Indeed, otherwise the path
aiy;az is a finite path that contains both «;, and «j,. Hence C(ay,) n C(ey,) # @, a
contradiction. The claim follows.

For every i € {1,...,k} and every j € {1,..., ¢} such that C(y;) n C(e;) # &, let g; ;
be an element in F), corresponding to f; ;. By the above claim, for every i € {1,...,k},
one of the following holds:

(a) for every je {1,...,¢} such that C(y;) nC(a;) # &, the element g; ; is an extension
of g;;
(b) forevery j e {1,...,¢} such that C(vy;) nC(c;) # @, the element g;jI is an extension
of g[l.
Since 7 is invariant under inversion, we may suppose that for every i € {1,...,k}, and
for every j € {1,...,¢} such that C(y;) nC(a;) # @, the element g; ; is an extension of g;.
Thus for every j € {1,...,¢}, and for every i € {1,...,k} such that C(y;) n C(o;) # @,
the element g, jl is an extension of hj_l.
Note that, since C = Uk ,C(v;) = ugle(aj), for every i € {1,...,k}, the sub-
set C(v;) is covered by a disjoint union of finitely many C(c;). Hence, for every
i€{1,...,k}, Equation implies that:

n(g:) = > n(g:.5)-

71 C(i)nCla;)#2

Similarly, for every j € {1,...,¢}, we have:

n(h;') = > (g;})-

1| C(vi)nClay)#2

Thus, since n is invariant under inversion, we have:

J4 14 4
n(hy) =Y n(h; ") =] > n(g; ) =Y. > n(gi5) = Y 1(9:)-
- j=1 j=1

J=1 i| C(1)nClay)#2 i=1j | C(v;)nC(a;)#2 i=1

Hence the value of 7j(C') does not depend on the choice of the paths ~;.

Therefore 7j is an additive, Fj,-invariant and nonnegative function on the set of com-
pact open subsets of 0%(F,, A). We claim that 7 is in fact o-additive. Indeed, by [Cohl,
Proposition 1.2.6], it suffices to prove that for every decreasing sequence (C,)nen of
compact open subsets of 0?(F),, A) such that [,y Cn = @, we have lim, o 77(Cy,) = 0.
But since a decreasing sequence of nonempty compact subsets is a nonempty compact
subset, there exists n € N such that C,, = @. This proves the claim. By Carathéodory
extension theorem (see |[Cohl Proposition 1.2.6, Theorem 1.3.6]), the function 7 has a
unique extension as a Radon measure on the o-algebra of Borel sets of 02(F},, A). O
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Let
PCurr(F,, A) = (Curr(F,, A) — {0}) /R%

be the set of projectivized relative currents (where R* acts on Curr(F,, A) by homo-
thety), equipped with the quotient topology which is metrizable. The next result is a
generalization of [Gupl, Lemma 3.11].

Lemma 5.3.3. The metrisable space PCurr(F,, A) is compact.

Proof. Let ([n,])nen be a sequence of projective currents relative to A. We prove that
it has a convergent subsequence. Let %€ be the finite set given by Lemma For
every n € N, let n, be a representative of [n,] such that, for every w € €, we have
N(C(yw)) < 1, with equality for some w € %, independent of n up to extraction. The
set ¢ being finite, there exists a subsequence (ny)ren such that for every u € ¢, the
sequence (M, (C(u)))ken converges. Moreover, there exists ug € ¢ such that the limit
limy o0 (M, (C(Yuo)) ) ken is not equal to zero. Let w € F;, be such that C'(yy,) € Cyl(¥).
There exists u,, € € such that u,, is a subword of w. Therefore, for every k € N, we have

N (C (V) < 1 (C(Yary)) < 1

Therefore, for every element w € F;, — A, the sequence (1, C((7w)))ken has a convergent
subsequence. By a diagonal argument, up to extraction, for every C(vy,) € Cyl(%¢), the
sequence (1, (C(Yw)))ken converges. Moreover, there exists C(7,) € Cyl(%) such that
(7, (C'(Yw)) ) ken converges to a nonzero element.

Let n: F, — A — R4 be the function defined by, for every w € F,, — A:

n(w) = lm 9, (C(yw))-

Since for every k € N, the function 7, is a relative current, the function 7 satisfies the
assumptions of Lemma Therefore, by Lemma, there exists a unique relative
current 7) € Curr(F},, A) such that for every element w € F,, — A, we have

n(w) = 7j(C ().

Hence ([7n, ])ken converges to [7]. O

5.4 Density of rational currents

In this section, let n > 3. Let r € N and let A = {[41],...,[Ar]} be a malnormal
subgroup system of F,,. Let B, T', L € N* T'y,...,I';, € be as above Lemma [5.2.3] Let
¢: F,, = N be the length function corresponding to B5.

Every conjugacy class of nonperipheral element g € F,, determines a relative current
1y as follows. Suppose first that g is root-free, that is, g is not a proper power of
any element in F,,. Let + be a finite geodesic path in the Cayley graph T such that
C(v) € Cyl(¢). Then n4(C(v)) is the number of unoriented translation axes in 7" of
conjugates of g that contain the path +. If g = h* with & > 2 and h root-free, we set
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1g = k np. Such currents are called rational currents. Note that for every nonperipheral
element g € F),, the current 1, only depends on the conjugacy class of g. Therefore, we
can talk about rational currents induced by conjugacy classes of nonperipheral elements
of Fy, and write 7y for the rational current associated with the conjugacy class of a
nonperipheral element g € F,,. We prove the following proposition.

Proposition 5.4.1. Let n > 3 and let A be a malnormal subgroup system of F,. The set
of projectivized rational currents induced by conjugacy classes of nonperipheral elements
of F,, is dense in PCurr(F,, A).

We follow Gupta’s proof (|[Gupl], Proposition 3.12]) in the special case of free factor
systems. The proof consists in approximating currents in PCurr(F,,.A) with signed
measured currents on 0°F),, which are F,-invariant and o-additive real-valued functions
on the set of Borel subsets of 0?F,,. We will then conclude using the following lemma,
due to Martin (see also [Gupl| Lemma 3.15]).

Lemma 5.4.2. [Mar, Lemma 15] Let n > 3. Suppose that A = &. Let k' > 1, let k > 2
with k' < k and let n be a signed measured current such that, for every w € F, with
K < f(w) < k, we have n(C(yw)) = 0. Let P = 2n(2n — 1)2"@n=D""2 " It there eists
wo € Fy, such that l(wo) = k and n(C(yw,)) = P, then there exists o € F,, — {e} such
that, for every w € F,, with k' < l(w) < k, we have n(C(yw)) = M1 (C(1w))-

Remark 5.4.3. (1) The hypotheses in [Mar, Lemma 15] requires that k' = 1. However,
the proof of Martin works by studying words of length exactly k and then extend the result
to words of length at most k by additivity of the measures. Thus the proof with k' > 1 is
identical.

(2) For the rational current np,) constructed in Lemma there exists w € F,, with
k' < (w) < k such that 1) (C(vw)) > 0.

Recall that Cyl(%) is the set of cylinder sets of the form C(7,,), where w is a word of
F,, containing a word of € as a subword. Let g € Curr(F),, A) and let £ > L + 2. Let n
be a signed measured current such that, for every element w € F;, with C(v,) € Cyl(%),
we have 7(C(7vy)) = 10(C(yw)) and for every element w € F), of length between L + 2
and k, we have n(C(vy)) = 0. Then 7 is called a k-extension of ng. The key lemma in
order to prove Proposition is the following result (see |[Gupll Lemma 3.15] for the
same statement in the particular case free factor systems):

Lemma 5.4.4. Let ny be a relative current and let k = L + 2. There exists a signed
measured current n: 0°F, — R which is a k-extension of 1.

Let ng be a relative current. In order to prove Lemma(5.4.4] we need some preliminary
results. We follow [Gupl, Section 8.1]. For k € N*, let S be the set of elements of F,
of length k& which do not contain an element of 4 as a subword. Note that, since ¥
is closed under inversion by Lemma we see that, for every k € N*, the set Sy is
closed under inversion. For k = 0, we set Sy = {e}. Note also that, if k¥ < L + 2, then
Sy contains all words of length & since every element of € has length equal to L + 2.
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Lemma 5.4.5. (1) If A # @, for every k € N*, the set Sy is not empty.

(2) For every k = L + 2 and every w € Sk, there exist w' € Sky1, 1€ {1,...,r}, g€ F,
and a € gA;g— " such that w' is a length 1 extension of w and a is an extension of w'.

Proof. (1) Since the group A; is infinite, the corresponding minimal subtree T4, is
infinite. Recall that the tree T4, is supposed to contain the origin e of T'. Let v be a
geodesic path contained in T4, , starting from e and of length equal to k, and let h € F,
be the corresponding element of F,. Then there exists a € Ay such that a is an extension
of h. We have h € Sj;, as otherwise a would contradict Lemma [5.2.3] (3). This proves (1).

(2) Let k> L+ 2 and let w € S. By Lemma [5.2.3] (1), there exist i € {1,...,r} and
g € Iy, such that 7, is contained in Tyg,4—1. As Ty, 41 does not contain any univalent
vertex, there exists a geodesic ray ¢ in T 4,,-1 starting from e which contains the path
Yw- Let 7' be the geodesic path in ¢ of length k + 1 containing ~,,, and let w’ be the
corresponding element in F,,. Then w’ € Sy, and w’ is a length 1 extension of w. This
proves (2) and this concludes the proof. O

Let k > L+2. Let S,g be a subset of S (chosen once and for all) such that for every
w € S, exactly one of w or w™! appears in S,g. In what follows, we adopt the convention
that whenever an extension of a word w by a letter b € B is written as wb (resp. bw), we
assume that b is not the inverse of the last letter (resp. first letter) of the word w.

In order to construct the signed measured current which satisfies the conclusion of
Lemma we will define a signed measured current on cylinders of words in Si_1
and use those values together with the additivity laws in order to define 1 on cylinders
of words of length k. First we set n(C(v;)) = 1 for every letter b of B not contained in
¢ . By induction, assume that for every element v € Si_1, the value n(C(y,)) is defined.
By additivity of a signed measured current, for every v € ngl, we want to have:

nCw) = > nClhw)+ 2 1(Cw))

beBLobES), beBLubE S},
nChn-1)) = 2 nClhy-w)+ X m(Cln-1))
beB,u—1beSy beB,u—Lb¢Sy

Since 7 is invariant under taking inverses, the equation obtained by using forward
extensions of v—! is the same one as the equation obtained by using backward extensions
of v. After rearranging the equations in order to have the unknown terms on the left
hand side, we obtain:

2 nChm)) = 2 m(Clyw)) —n(Clw) = e

beB,vbeSy, beB,vbg Sy, (52)
> nCr-) = X m0(C(v-15)) = n(C(yy-1)) = 1.
beB,v—1beS), beB,v—1b¢ S

Since 7 is invariant under taking inverse, this shows that there are |Si_1| equations
in |Sk|/2 = |SP| variables.
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Denote the system of equations by E,%_l. These are equations obtained from
length 1 extensions of words in Sk_;. Similarly, for every i € {1,...,k — 1}, we define
E,i_i as the system of equations obtained from length i extensions of words in Sj_;.

Let [M]|c] be the augmented matrix for the system of equations E} ; with rows
labeled by words in S;_1, columns by words in S,g and such that for every w € 52 and
every v € Sp_1, we have M, ,, = 1 if there exists b € B such that w = vb or w™t = vb;
and M, = 0 otherwise. Let c¢ be the column vector indexed by words in Sj_; such
that for every v € Si_1, the coordinate of ¢ at v is equal to ¢,. If v € Sip_1, we will
denote by 7, the corresponding row vector of M. Observe that each column has exactly
two entries which are equal to 1. Indeed, M, ,, is equal to 1 exactly when w or wlis a
length 1 extension of v. Observe also that any two distinct row vectors r,, and r,, can
have at most one common coordinate which is equal to 1. Indeed, let w € S,g be such
that My, w = My, = 1. Then there exist by, by € B such that w = v1b; or w = bl_lvl_l
and w = vaby or w = by 11)5 L Therefore, the word v; starts with by L and vy starts with
bl_l. This shows that w is uniquely determined.

The next lemma is the same one as [Gupl, Lemma 8.2] in the special case of free

factor systems.
Lemma 5.4.6. (1) For everyi > 1, an equation in the system E;itli,l is a linear combi-
nation of equations in the system E;_,. Thus it is sufficient to look at the system E,i_l

in order to obtain every constraint satisfied by n(C(vyw)) for every w € SY.
(2) Let u€e Sy _o. Then the following two linear combinations of rows of M are equal:

Z Thy = Z Thu—1- (5.3)

beB,bueSy_1 beB,bu—1eS;,_1

(3) Ewvery relation among the rows of M is a linear combination of relations in the set
of relations (5.3)) where u varies in Sk_s.

(4) We have
Z Cpy — Z Cpy—1,

beB,bueSy_1 b€B,bu7165k71
where for every v € Sp_1, ¢, is given by Equation (5.2)).

(5) The system of equations E,i_l 1s consistent and hence has a solution. Thus we can
define n on words of length k.

Proof. (1) Let i > 1 and u € Sy_;_1. Then by the system E| , ,

N(C() = Y 1(C(vwp))-

beB

By the equations in E,i_i, we have, for every b € B:

NCHw) = D 1(C(uy))-

yeEFy 7K(y):i
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Adding all these equations over b € B, we have:

U(C(’Yu)) = Z U(C(Vuby)) = Z U(C(%z))‘

byeFy, L(b)=1,0(y)=1i 2€F L(z)=1i+1

Thus we have recovered an equation in E,’j_%_l as a linear combination of equations in

E; .. This proves (1).

(2) Let u € Sy o and let w € S,g. For every b € B such that bu € Sy,_1, we have My, ,, # 0
exactly when there exists y € B such that w = buy™ or w = yu~'b~! (recall that the
basis B is supposed to be symmetric). Therefore, if My, ,, # 0, there exists a unique
y € B such that M,,-1,, # 0. This proves (2).

(3) Let R be a relation given by Zvesk_l dyry = 0, where d, € R. Suppose that the
number of terms in the sum associated with R is minimal. Such an assumption is possible
as every relation is a linear combination of relations whose number of terms is minimal.
We can rescale the equation so that there exist b € B and u € S,_9 such that dp, = 1.
For every y € B such that buy™! € S?, we have

My puy—1 = Myy=1 puy-1 = 1.

This implies, as explained above the lemma, that the rows ry, and ry,-1 share exactly
one common nonzero coordinate, which is buy~!. Moreover, the rows 7, and Tyy~1 are
the only rows which have a nonzero coordinate in buy!. This shows that dy,—1 = —1.

Let y € B be such that yu~! € S,_;. For every z € B such that yu~'z € S, we have
Myy—1 yu-1, = My-1y -1, = 1. Thus we have d,-1,, = 1. Therefore we see that

Z dpuThu — Z dyu*”dyu*1 = Z Tbu — Z Tyy—1 = 0.

beB,bueS)_1 yeByu—1€S),_1 beB,bueSy 1 yeByu—1eSy_1

Hence the minimal relation R is just

Z Thy — Z Tyy—1 = 0.

bGB,bUESk,1 yeB,yu—leSk_l

(4) Let u € Sk_o. We have, by the definition of ¢,:

- 2 G = 2 (C(vu)) = D) 1(C (Vuy))

beB,buESk,1 bEB,buESk,1 b,yeB,bueSk,l,buy¢Sk
= n(Clw)— 2 n(Cww)) — > 1(C (Vouy))
beB,bug Sy _1 b,yeB,bueSy, _1,buyé¢Sy,
= nChw)— 2 2(Clwuw) — 2 n(C (Youy))-
b,yeB,bu¢Sk_1 b,yeB,bueSy_1,buy¢Sk

Note that we have:
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DT n(Clbuy)) = > 1(C (Youy)) + > 1(C (Youy))

b,yeB,bug¢ Sk 1 b,yeB,bu¢ Sk 1,uyeSk_1 b,yeB,bu¢ Sk 1,uy¢ Sk 1
(5.4)
Similarly, we have:
- D e =n(Clw)- > (C(Vu-14))— > 1(C (Vpu-14))-
beB,bu—1eS;_ b,yeB,bu—1¢S,_1 b,yeB,bu—1eSy_1,bu—1y¢Sy
The right hand side is also equal to:
77(0(%)) - Z n(C(Pnylubfl)) - 2 n(C(’yyflubfl))'
b,yeB,ub—1¢S,_, byeBub—teS,_1,y lub—1¢Sy
Observe that the sum > n(C(vy-14p-1)) equals:
b,yeB,ub—1¢S;_
Z n(C(’nylubflw + Z n(C(fnylubfl))' (5.5)
byeBub= ¢Sy 1,y tueSk_1 byeB,ub=1¢Sk_1,y  tugSk_1

Suppose first that £ < L + 2. Then Si_; contains all words of length £ — 1. Hence
we have

— Z Cpy = T](C("}/u)) - Z n(C(’Vbuy))

beB,bueSy_1 b,yeB,buy¢ Sk
and
- Z Cpy—1 = 77(0(%)) - Z n(c(ryy—lub—l))v
beB,bu—1leS;_; byeB,y~lub—1¢S)

so that Assertion (4) holds in this case with y = b1

Suppose now that £k > L 4+ 2. Then since every element of € has length equal to
L + 2, an element of ¥ contained in a word = of length k is properly contained in .
Hence if b,y € B are such that bu € Si_1 and buy ¢ Sg, then uy ¢ Si_1. Thus, we see
that:

(C(Vouy)) = 2 n(C(Vouy))- (5.6)
b,yeB,bue Sy _1,buy¢Sy b,yeB,bueSy _1 uy¢Sk_1
Similarly, we have:
Z n(C(I.nylulfl)) = Z n(C(Fyyflubfl))'
b,yeB,ub*leSk,l,y*lub*1¢Sk b,yeB,ub*lesk,l,y*1u¢Sk,1
(5.7)

Using Equations (5.4), (5.5), (5.6) and (5.7) with y = b~!, we see that
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{C (Vouy)) + )y n(C (Vouy))
b,yeB,bu¢Sk_1 b,yeB,bueSy_1,buy¢Sk

= Z U(C(Vyflulfl)) + Z n(c(’nylubfl))'
byeB,ub—1¢S,_ byeBub—1teS,_1,y~lub—1¢S

IR

beB,bueSy_1 beB,bu—1eS;,_1

This shows that

and this proves (4).

(5) By Assertions (3) and (4), if R is a linear combination of relations among the rows
of M equal to zero, then the corresponding linear combination among coordinates of the
vector c¢ is also equal to zero. Therefore, the system [M |c] has a solution. O

Proof of Lemmal[5.4.4] Let ny be a relative current. By Lemmal[5.4.6] there exists a signed
measured current 7 such that, for every element w of F,, which satisfies C(~,,) € Cyl(%),
we have 19(C'(yw)) = n(C(7w)). This extension is not necessarily nonnegative on every
element of length between L + 2 and k. Let

—M = . o |
WEFy, errlgif(w)gk n(C(yw))

Let S be a finite set of elements of | J;_; A; such that for every element w € S, there
exists g, € S such that g, is an extension of w. The set exists by Lemma [5.4.5] (2). Let

na= g

ges

By Lemma (3), for every w € F,, such that C(v,,) € Cyl(%€), we have n4(C(7w)) = 0.
Moreover for every w € Uf: 42 Si, Lemma (2) implies that there exists w’ € Sk

such that w’ is an extension of w. In particular, for every w € Uf: L+2Si, we have
N4(C(yw)) > 0. By finiteness of U5=L+2 Si, there exists a constant R > 0 such that for
every element w in Uf:LJrQ S;, we have Rn(C(yw)) = M.

Then n + Rn4 is nonnegative on words of length between L + 2 and k and coincides
with 7 on elements w € F;, such that C(v,) € Cyl(¢’). This concludes the proof. O

Proof of Proposition The proof follows [Gupll Lemma 3.15] (see also [Mar]). Let
% be the set defined above Lemma [5.2.3] Let 1o be a relative current and let k > L + 2.
Note that every word in % has length at most equal to k. Let P be the constant given by
Lemma Note that there exists an element w’ in € such that 79(C(v,)) > 0. By
additivity of 7, there exists an element wg € F,, with ¢(wp) = k and C(vu,) € Cyl(%¢) and
such that 79(C'(yw,)) > 0. Let R > 0 be such that Rno(C(y,)) > P. By Lemma[5.4.4
there exists a signed measured current 1 which is a k-extension of 9. By Lemma
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applied to Rn and k' = L+ 2, there exists a; € F,, —{e} such that for every w € F,, — {e}
of length between L + 2 and k, we have

Rn(C(vw)) = a1 (C(yw))-

Suppose first that for every w € F}, of length between L + 2 and k, we have

Rn(C(vw)) < May](Clyw)) + P.

Then we stop the process and choose aq. Otherwise, we apply Lemma, to Rn—1[a,]
and k' = L+2. This shows that there exists ay € F),—{e} such that for every w € F,,—{e}
of length between L + 2 and k, we have

Rn(C(vw)) = Mar) (C(rw)) Z Man) (C(w))-

Applying these arguments iteratively (the process stops by Remark (2)), we see
that there exist o, ..., oy € Fy, — {e} such that for every element w € F), — {e} of length
between L + 2 and k, we have:

p

D Mg (C(w)) < Bn(C () < D) e (Cw)) + P.
=1

i=1

We claim that there exists ¢ € {1,...,p} such that «; is nonperipheral. Indeed,
suppose towards a contradiction that for every i € {1, ..., p}, the element «; is peripheral.
By Lemma [5.2.3] (3), we have

p

> 0 (C(rg)) = 0.

i=1

This implies that Rn(C(vw,)) < P. This contradicts the construction of 7. There-
fore there exists i € {1,...,p} such that a; is nonperipheral. Let S be the subset of

{ai1,...,ap} containing every nonperipheral element. Then, for every element w € F, of
length k such that C(v,) € Cyl(€’) we have:

ZaeS Na] (C(wa)) ‘ <
R TR

‘mcm)) -

For a € S, let 7, be the restriction of 7y, to the Borel subsets of *(F,, A). By
construction of ), for every element w € F), of length at most &k such that C'(v,,) € Cyl(%),

we have:
E C Jw
UO(C('Vw)) a€eS U[QR;( ( ))‘ < R.

Since R can be chosen arbitrarily large, we can approximate relative currents by sum
of rational relative currents. For m € N*, let f =[] .ga™ (for any total order on ).
Then there exists m € N* such that ;¢ n[,] can be approximated by %n[ﬁm]. This
concludes the proof.
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Chapitre 6

North-South type dynamics of
relative atoroidal automorphisms of
free groups on a relative space of
currents

6.1 Introduction

Let n = 2. This paper is the second of a sequence of three papers where we study
the growth of the conjugacy classes of elements of F,, under iterations of elements of
Out(Fy), the outer automorphism group of a nonabelian free group of rank n. An outer
automorphism ¢ € Out(F}) is exponentially growing if there exist g € Iy, a representative
® of ¢, a free basis B of F, and a constant K > 0 such that, for every m € N*, we have

(s (2™(g)) = "™,

where £y (P™(g)) denotes the length of ®™(g) in the basis B. Such an element g is said
to be exponentially growing under iteration of ¢ and the set of elements of Fy which
have exponential growth under iteration of ¢ is the pure exponential part of ¢. It is
known, using for instance the train track technology of Bestvina and Handel (see [BH]),
that every element g of Fy which is not exponentially growing under iteration of ¢ is
polynomially growing under iteration of ¢, that is, there exist ® € ¢ and an integer K € N
such that, for every m € N*, we have ¢ (®™(g)) < (m + 1)X.

Initiated by Svarc, Milnor and Wolf, and particularly developped by Guivarc’h, Gro-
mov and Grigorchuk, growth problems in groups is a major field of study in geometric
and dynamical group theory, see for instance [LS, Manll, Hel]. Many works study the
subfield of the element growths under iteration of group automorphisms (see for in-
stance [BFHI Lev2l [CU2)), for instance in the context of hyperbolic groups. See in par-
ticular [Coul for examples of intermediate growth rates. As another example, Dahmani
and Krishna [DS] found a sufficient condition for the suspension of an automorphism



of a hyperbolic group to be relatively hyperbolic, and this condition is linked with the
structure of the set of all elements of the hyperbolic group which have polynomial growth
under iterations of the considered automorphism. Such exponentially growing outer au-
tomorphisms of F, were already studied in distinct contexts. For instance, Bestvina,
Feighn and Handel [BEHI] used them to prove the Tits alternative for Out(Fy).

If ¢ € Out(Fy), we denote by Poly(¢p) the set of elements g of F, such that g is
polynomially growing under iteration of ¢. Let Poly(H) = [),cg Poly(¢). The aim of
this series of papers is to prove the following theorem.

Theorem 6.1.1. Letn > 3 and let H be a subgroup of Out(Fy). There exists ¢ € H such
that Poly(¢) = Poly(H).

Informally, Theorem shows that the exponential growth of a subgroup H of
Out(Fy) is encaptured by the exponential growth of a single element of H. Indeed, if
g € Iy, has exponential growth for some element 1 € H, then g has exponential growth
for an element ¢ € H given by Theorem The proof relies on dynamical properties
of the action of outer automorphisms on some preferred topological space. In this article,
we study the dynamical properties of the elements of the subgroup H of F; that will be
used in [Gue6] in order to construct an element ¢ € H given by Theorem

Let ¢ € Out(F,) be an exponentially growing outer automorphism. In this article,
we construct natural (compact, metrizable) topological spaces X on which a subgroup of
Out(Fy) containing ¢ acts by homeomorphisms with the additional property that ¢ acts
with North-South dynamics: there exist two proper disjoint closed subsets of X such
that every point of X which is not contained in these subsets converges to one of the two
subsets under positive or negative iteration of ¢. North-South dynamics are preferred
tools to apply ping-pong arguments similar to the ones of Tits [Titl] and are used to
obtain structural properties of some groups.

The topological space X that we use in the proof of Theorem [6.1.1]is constructed in
such a way that it allows us to create a dictionnary between dynamical properties of the
action of ¢ on X and growth properties of elements of Fy under iterations of ¢. In order
to construct X, we first need to detect all the elements g of F, such that the length of
[g] with respect to any basis of F;, grows at most polynomially fast fast under iteration
of ¢. Levitt [Lev2] proved that there exist finitely many finitely generated subgroups
Hy, ..., Hy of Fy such that the conjugacy class of an element g of F; is not exponentially
growing under iteration of ¢ if and only if g is contained in a conjugate of some H; for i €
{1,...,k}. Moreover, the set A(¢p) = {[H1],...,[Hk]} is a malnormal subgroup system:

for every i € {1,...,k}, the group H; is a malnormal subgroup of F;, and for every distinct
subgroups A and B such that [A],[B] € A(¢), we have A n B = {e}. Every element
of Fy, which is contained in a conjugate of some H; with i € {1,...,k} has polynomial

growth under iteration of ¢. Moreover, we have Poly(¢) = ;1 Uer, gHig .

In [Gued], we construct a compact, metrizable space, called the space of projectivised
currents relative to A(¢), denoted by PCurr(Fy, A(¢)), which is the space of projectivised
Radon measures on the double boundary of Fj, relative to A(¢), equipped with the
weak-star topology (see Section for precise definitions). In [Gued], we proved that
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the set of currents associated with A(¢)-nonperipheral conjugacy classes of elements
of g of Fy, that is, such that g is not contained in the conjugacy class of some H;
with ¢ € {1,...,k}, is dense in PCurr(F}, A(¢)). Thus, the set of conjugacy classes of
elements of Fy whose length grows exponentially fast under iteration of ¢ is dense in
PCurr(Fy, A(¢)). If we denote by Out(Fyp, A(¢)) the subgroup of Out(Fy) consisting in
every element 1) € Out(Fy) such that ¢(A(¢)) = A(¢), the group Out(Fy, A(¢)) acts by
homeomorphisms on PCurr(Fy, . A(¢)) by pushing forward the measures. In this article,
we prove the following theorem.

Theorem 6.1.2 (see Theorem [6.5.1). Let n > 3 and let ¢ be an exponentially growing
outer automorphism. The outer automorphism ¢ acts with North-South dynamics on
the space PCurr(Fy, A(¢)).

In fact, we prove a slightly stronger result since we prove a uniform North-South
dynamics result, that is, the convergence in the North-South dynamics statement can be
made uniform on compact subsets of PCurr(Fy, A(¢)). As explained above, North-South
dynamics results given by Theorem|[6.1.2] will be a key point in the proof of Theorem [6.1.1]

Such dynamical results already appear in similar contexts. For instance, Tits proved
in [Tit1] its alternative for linear groups using North-South dynamics and ping-pong
arguments. In the context of the mapping class group Mod(S) of a compact connected
orientable surface S of genus at least 2, pseudo-Anosov elements acts with North-South
dynamics on the space of projectivised measured foliations ([Thu], see also the work
of Ivanov [Ival]) or the curve complex [MasM]|. Using this North-South dynamics,
Ivanov [Ival] (see also the work of McCarthy [McC]) later proved a Tits alternative
for subgroups of Mod(S). Similarly, North-South dynamics results were obtained for
certain classes of outer automorphisms of Fy. For instance, fully irreducible outer au-
tomorphisms act on the compactified Outer space [LL] or the space of projectivised
currents ([Mar], see also the work of Uyanik [Uyal]) with a North-South dynamics and
atoroidal outer automorphisms act on the space of projectivsed currents with a North-
South dynamics [LU2| [Uya2]. Clay and Uyanik [CU2] applied this result in the proof
of the fact that, for every subgroup H of Out(Fy), either H contains an atoroidal outer
automorphism or there exists a nontrivial element g of F, such that, for every element
¢ € H, there exists k € N* such that we have ¢*([g]) = [¢]. Such dynamical results were
later extended to relative contexts by Gupta [Gupl], [Gup2].

In order to prove Theorem [6.1.1] we will need a slightly stronger result than The-
orem Indeed, let ¢ € Out(Fy) and let A(¢p) = {[H1],...,[Hk]}. Suppose that ¢
preserves the conjugacy class of a corank one free factor A of F,,. Let A(¢) A A be the
malnormal subgroup system consisting in the conjugacy classes of the intersection of the
conjugates of the subgroups H; with i € {1,...,k} with A. Note that, by Theorem
there exist closed disjoint subsets A4 (4|4) such that the outer automorphism ¢|4 €
Out(A, A(¢) A A) acts with North-South dynamics on PCurr(A4, A(¢) A A) with respect
to A1 (¢|a). There is a canonical embedding PCurr(A, A(¢) AA) — PCurr(Fp, A(¢)AA),
and we denote by A4 (¢) the image of Ay (¢|4) in PCurr(Fyp, A(¢) A A). We will need to
understand the dynamics of ¢ on the space PCurr(Fy, A(¢) A A). As there might exist
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elements in Fy which have polynomial growth under iterations of ¢ and which are not
contained in a conjugate of A, one cannot apply Theorem to obtain a North-South
dynamics result. However, we obtain the following result.

Theorem 6.1.3 (see Theorem . Let n > 3 and let ¢ € Out(Fy) be an exponentially
growing outer automorphism which preserves a corank one free factor A. There exist two
convex compact subsets A+ (¢) of PCurr(Fy, A(¢) A A) such that the following holds. Let
Uy be open neighborhoods of A1 () in PCurr(Fy, A(¢)AA) and ﬁi be open neighborhoods
of Ay (¢) in PCurr(Fy, A(¢) A A). There exists M € N* such that for every n > M, we
have

T (PCurr(Fy, A(¢) A A) — V=) € U

In [CU2, Theorem 4.15], Clay and Uyanik proved an analogue of Theorem in
the context of atoroidal outer automorphisms of Fy,. In Theorem 6.1.3] the two convex
subsets A4 (¢) have nonempty intersection, so that Theorem @ is not a North-South
dynamics result as defined above. However, Theorem [6.1.3] gives a sufficiently precise
description of the dynamics of ¢ for our considerations. The intersection Ay (¢) N A_(¢p)
corresponds informally to the polynomial growth part of ¢. This intersection, denoted by
Kpg in the rest of the article, is the closure in PCurr(Fy, A(¢) A A) of the (A(¢) A A)-
nonperipheral elements of F,, which have polynomial growth under iteration of ¢. In
Section we give a complete study of the subspace Kpg in a more general context.

In fact, Section [6.3]is devoted to the study of the polynomial growth of an exponen-
tially growing outer automorphism. Following the works of Bestvina, Feighn and Handel
IBFHI, BEH2], of Feighn and Handel [FH] and of Handel and Mosher [HaM4], we use
appropriate relative train track representatives of a power of an exponentially growing
outer automorphism ¢ in order to describe A(¢) geometrically. It gives rise to a (not
necessarily connected) topological graph G* such that the fundamental group of every
connected component G of G* injects into Fy and such that the set {[71(G2)]}grery(c#)
where 71(G?) is viewed as a subgroup of F; is equal to A(¢) (see Proposition [6.3.13).
We then use this characterization of A(¢) in Section in order to describe the subset
Kpq.

We now sketch a proof of Theorem [6.1.2] The proofs of Theorem [6.1.2] and The-
orem [6.1.3| given in this paper are long and quite technical, this is why we postpone
the proof of Theorem in [Gue6]. Let ¢ € Out(F,) be exponentially growing.
The first step is to construct the closed subsets A (¢) associated with ¢ as defined
in Therorem [6.1.2] This is done in Section [6.4} In order to construct them, we use as in-
spiration the construction given by Lustig and Uyanik in [LU2] (see also [Uya2] [(Gupl]).
We choose an appropriate relative train track representative f: G — G of a power of ¢,
where G is a graph whose fundamental group is isomorphic to Fy,. A current of A, (¢)
is then constructed by considering occurrences of paths in lim,, o f™(e), where e is
an edge in G whose length grows exponentially fast under iteration of f (see Proposi-
tion. Currents of A_(¢) are then defined similarly using a representative of a power
of ¢~1. We then prove Theorem in Section Let [pt] € PCurr(Fy, A(¢)) — A+(9)

be the current associated with a A(¢)-nonperipheral conjugacy class [w] € F,. Then
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[w] is represented by a circuit 7, in the graph G. In order to show that we have
limy, o0 @™ ([1]) € A4 (@), we prove that the proportion of the path f™(v,) which grows
exponentially fast under iteration of f tends to 1 as m goes to infinity. This fact is
sufficient to prove that

lim @™ ([u]) € Ay ()

m—Q0

(see Lemma [6.5.20]). We then conclude the proof using the density of currents associated
with nonperipheral elements in F;, proved in [Gued|. Theorem is then proved in
Section using a combination of Theorem and the description of the space Kpg.

Acknowledgments. I warmly thank my advisors, Camille Horbez and Frédéric Paulin, for
their precious advices and for carefully reading the different versions of this article.

6.2 Preliminaries

6.2.1 Malnormal subgroup systems of F}

Let n be an integer greater than 1 and let F, be a free group of rank n. A subgroup
system of F, is a finite (possibly empty) set A whose elements are conjugacy classes of
nontrivial (that is distinct from {1}) finite rank subgroups of F;. There exists a partial
order on the set of subgroup systems of Fy,, where A; < As if for every subgroup A;
of Fy such that [A;] € Aj, there exists a subgroup As of Fy such that [As] € Ay and
Aj is a subgroup of As. The stabilizer in Out(Fy) of a subgroup system A, denoted by
Out(Fy, A), is the set of all elements ¢ € Out(Fy) such that ¢(A) = A.

Recall that a subgroup A of Fy is malnormal if for every element x € F, — A, we
have xAz~! n A = {e}. A subgroup system A is said to be malnormal if every subgroup
A of F, such that [A] € A is malnormal and, for all subgroups Ay, Ay of F; such that
[A1],[Az2] € A, if A1 n Ay is nontrivial then A; = Ay. An element g € Fy, is A-peripheral
(or simply peripheral if there is no ambiguity) if it is trivial or conjugate into one of the
subgroups of A, and A-nonperipheral otherwise.

An important class of examples of malnormal subgroup systems is given by the free
factor systems. A free factor system of Fy is a (possibly empty) set F of conjugacy
classes {[A1],...,[Ar]} of nontrivial subgroups Ay,..., A, of F, such that there exists
an integer k € N with Fy, = Ay = ... % A, = F. The free factor system F is sporadic if
(k+ 7 k) < (2,1) for the lexicographic order, and is nonsporadic otherwise. Therefore,
the sporadic free factor systems are those of the form {[C]} where C has rank at least
equal to n — 1 and those of the form {[A], [B]} with F, = A% B. An ascending sequence
of free factor systems F1 < ... < F; = {[Fy]} of Fy is called a filtration of F,.

Given a free factor system F of Fy, a free factor of (Fy,F) is a subgroup A of F,
such that there exists a free factor system F’ of F, with [A] € 7' and F < F'. When
F = @, we say that A is a free factor of F,. A free factor of (Fy, F) is proper if it is
nontrivial, not equal to F; and if its conjugacy class does not belong to F.

Another class of examples of malnormal subgroup systems is the following one. An
outer automorphism ¢ € Out(Fy) is exponentially growing if there exists g € Fy such that
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the length of the conjugacy class [g] of g in F, with respect to some basis of F;, grows
exponentially fast under iteration of ¢. If ¢ € Out(Fy) is not exponentially growing,
then ¢ is polynomially growing. For an automorphism « € Aut(Fy), we say that « is
exponentially growing if there exists g € F}, such that the length of g grows exponentially
fast under iteration of ¢. Otherwise, « is polynomially growing. Let ¢ € Out(Fy) be
exponentially growing. A subgroup P of F} is a polynomial subgroup of ¢ if there exist
k € N* and a representative o of ¢* such that a(P) = P and a/|p is polynomially growing.
By [Lev2l Proposition 1.4], there exist finitely many conjugacy classes [H1],...,[Hy| of
maximal polynomial subgroups of ¢. Moreover, the proof of [Lev2, Proposition 1.4]
implies that the set H = {[Hi],...,[H|} is a malnormal subgroup system. Indeed,
Levitt shows that there exists a nontrivial R-tree 7" in the boundary of Culler and
Vogtmann Outer space [CV] on which F, acts with trivial arc stabilizers, such that ¢
preserves the homothety class of T and such that the groups Hj ..., Hy are elliptic in 7.
If two distinct subgroups A, B of F;, such that [A], [B] € H fix distinct points in 7', then
their intersection is trivial. If A and B fix the same point x in 7', then (up to taking a
power of ¢) ¢ preserves [Stab(z)] and an inductive argument on the rank using ¢[g¢an(q)
(the rank of Stab(x) is less than n by a result of Gaboriau-Levitt [Gall]) shows that the
intersection of A and B is trivial. We denote this malnormal subgroup system by A(¢).
Note that, if H is a subgroup of F, such that [H] € A(¢), there exists ®~! € ¢~! such
that ® '(H) = H and ® !| is polynomially growing. Hence we have A(¢) < A(¢1).
By symmetry, we have

A(9) = A(e™h). (6.1)

Let A be a malnormal subgroup system and let ¢ € Out(Fy,.A) be a relative outer
automorphism. We say that ¢ is atoroidal relative to A if, for every k € N* the element
®* does not preserve the conjugacy class of any .A-nonperipheral element. We say that
¢ is expanding relative to A if A(¢) < A. Note that an expanding outer automorphism
relative to A is in particular atoroidal relative to A. When A = @, then the outer
automorphism ¢ is expanding relative to A if and only if for every nontrivial element
g € Fy, the length of the conjugacy class [g] of ¢ in F, with respect to some basis of
F, grows exponentially fast under iteration of ¢. Therefore, by a result of Levitt [Lev2,
Corollary 1.6], the outer automorphism ¢ is expanding relative to A = & if and only if
¢ is atoroidal relative to A = @.

Let A = {[A1],...,[A4;]} be a malnormal subgroup system and let F be a free factor
system. Let ¢ € {1,...,r}. By [SW] Theorem 3.14] for the action of A; on one of its

Cayley graphs, there exist finitely many subgroups Agl), e ,Agki) of A; such that:

(1) for every j € {1,...,k;}, there exists a subgroup B of F} such that [B] € F and
AY = B~ A

(2) for every subgroup B of F, such that [B] € F and B n A; # {e}, there exists
je{l,..., k;} such that AZ(J) =BnA;

(3) the subgroup Al(.l) £k Agki) is a free factor of A;.
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Thus, one can define a new subgroup system as

FaA=| AV, .. (4%,

r
i=1

Since A is malnormal, and since, for every i € {1,...,r}, the group AZ(.l) ¥k Agki) is
a free factor of A;, it follows that the subgroup system F A A is a malnormal subgroup
system of Fy,. We call it the meet of F and A.

6.2.2 Graphs, markings and filtrations

Let n > 2. A marked graph is a pointed (at a vertex ), connected, finite graph G (in the
sense of [Serl]) whose fundamental group is isomorphic to F;, which is equipped with a
marking, that is an isomorphism p: F, — 71(G, *).

We denote by VG (resp. EG) the set of vertices (resp. edges) of G. Given an edge
e of G, we denote by o(e) the origin of e, by t(e) the terminal point of e and by e™! the
edge of G such that o(e ') = t(e) and t(e ') = o(e). An edge path v of length m is a

concatenation of m edges v = ejey. .. e, such that for every i € {1,...,m — 1}, we have
t(e;) = o(e;+1). The length of v is denoted by ¢(). The edge path 7 is reduced if for
every i € {1,...,m — 1}, we have ¢; # e;rll. A reduced edge path is cyclically reduced if

t(em) = o(er) and e, # e7'. A cyclically reduced edge path is also called a circuit. For
any edge path v, there exists a unique reduced edge path homotopic to ~ relatively to
endpoints, we denote it by [v].

Let G and G’ be two marked graphs. A graph map is a pointed homotopy equivalence
f: G — G’ such that f(VG) € VG’ and such that the restriction of f to the interior
of an edge is an immersion. Thus, for every edge e € EG, the image f(e) determines a
reduced edge path [f(e)]. Given ¢ € Out(Fy) and (G, p) a marked graph, a topological
representative of ¢ is a graph map f: G — G such that the outer automorphism class
of p™lo frope Aut(F,) is ¢.

Let f: G — G be a topological representative. Let w € F;,. We denote by -, the
unique circuit in G which represents the conjugacy class of w.

Let f: G — G be a topological representative. A filtration for G is an increasing

sequence of f-invariant (not necessarily connected) subgraphs @ = Gp € G1 & ... &
Gr = G. Let r € {1,...,k}. The r-th stratum in this filtration, denoted by H, is the
(not necessarily connected) closure of G, — G,_1. For every r € {1,...,k}, there exists

a square matrix M, associated with the stratum H, called the transition matriz of H,.
The rows and columns of M, are indexed by the nonoriented edges in H, and the entry
associated with the pair of nonoriented edges defined by (e, €') € (EH,)? is the number
of occurrences of ¢/ and €/~1 in [f(e)].

Recall that a nonnegative square matrix M = (M, ;); ; is irreducible if for every (i, j),
there exists p = p(i, j) such that Mf?j > 0 and that M is primitive if there exists p € N*
such that every entry of MP is positive. For r € {1,...,k}, we say that the stratum H,
is irreducible if its associated matrix is irreducible and we say that H, is primitive if its
associated matrix is primitive. Let r € {1,...,k} and suppose that M, is irreducible.
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Then it has a unique real eigenvalue A, = 1 called the Perron-Frobenius eigenvalue. Let
H, be an irreducible stratum. Then H, is exponentially growing (EG) if A, > 1 and is
nonexponentially growing (NEG) otherwise. Finally, if the matrix associated with the
stratum H, is the zero matrix, then H, is called a zero stratum.

Let G be a marked graph of F,, and let K be a (possibly disconnected) subgraph of G.
The subgraph K determines a free factor system F(K) of F}, as follows. Let C1,...,Cg
be the noncontractible connected components of K. Then, for every i € {1,...,k}, the
connected component C; determines the conjugacy class [A;] of a subgroup 4; of 71 (G).
Then the set {[A1],...,[Ax]} is a free factor system F(K) of F.

Let 71 < ... < F; = {[Fn]} be a filtration of F,. A geometric realization of the
filtration is a marked graph G equipped with an increasing sequence

@zGogGlg...ngzG

of subgraphs of G such that for every k € {1,...,7} there exists £ € {1,...,j} such that
Fi. = F(Gy).

6.2.3 Train tracks and CTs

In this section we introduce the technology of train tracks. Train tracks are a type of
graph maps introduced by Bestvina and Handel ([BH]). Even though there exist outer
automorphisms of Fy which do not have a topological representative which is a train
track, every outer automorphism has a power which has a topological representative
called a completely split train track map (CT). CT maps were introduced by Feighn and
Handel (J[FH]). The definition of a CT map being quite technical, we will only state the
relevant properties needed for the rest of the article. First we need some preliminary
definitions.

Let G be a marked graph of F; and let f: G — G be a graph map. The map f
induces a derivative map Df: EG — EG on the set of edges as follows. For every
e € EG, the map Df(e) is equal to the first edge of the edge path f(e). A turn in G is
an unordered pair {e1, es} of edges in G with o(e1) = o(ez2). A turn {ey, ea} is degenerate
if e; = e9, and is nondegenerate otherwise. A turn {ej, ea} is illegal if there exists k € N*
such that {(Df)*(e1),(Df)*(e2)} is degenerate, and is legal otherwise. An edge path

v =eres...e;is legal if for every j € {1,...,i}, the turn {ej*l,ejH} is legal.
In order to deal with relative outer automorphisms, we also need a notion of relative
legal paths. Let @ = Go € G1 & ... & G; = G be the geometric realization of some

filtration of F, which is f-invariant and let r € {1,...,j}. We say that a turn {e1, es}
is contained in the stratum H, if {ej,ea} S EH,. An edge path v of G is r-legal if
every turn in v that is contained in H, is legal. A connecting path for H, is a nontrivial
reduced path v in G,_; whose endpoints are in G,_1 n H,. A path ~ in G is r-taken (or
taken if ~y is r-taken for some r) if it is contained in the reduced image of an iterate of an
edge e € EHT, where H, is an irreducible stratum. The height of a path v is the maximal
r such that + contains an edge of H,. We can now define the notion of a relative train
track map due to Bestvina and Handel ([BH]).
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Definition 6.2.1. Let n > 3. Let GG be a marked graph and let f: G — G be a graph
map equipped with a f-invariant filtration @ = Go & G1 & ... & G; = G. The map f
is a relative train track map if, for each exponentially growing stratum H.,., the following
holds:

(1) for every edge e € EH, and every k € N*, we have (Df)*(e) € EH,;

(2) for every connecting path v for H,, the reduced path [f(7)] is also a connecting
path for H,;

(3) if 7y is a height r reduced edge path which is r-legal, then so is [f(7)].

In order to explain the properties of CT maps that we will use in this paper, we will
need some further definitions regarding edge paths in a graph.

Definition 6.2.2. Let n > 3 and let G be a marked graph of F, equipped with an f-
invariant filtration @ = Go & G1 & ... & Gj = G. Let v be an edge path of G.

(1) The path « is a periodic Nielsen path if there exists k € N* such that [f*(v)] = 7.
The minimal such k is the period, and if k = 1, then v is a Nielsen path.

(2) A (periodic) indivisible Nielsen path ((p)INP) is a (periodic) Nielsen path that
cannot be written as a nontrivial concatenation of (periodic) Nielsen paths.

(3) The path ~ is an exceptional path if there exist a cyclically reduced Nielsen path
w, edges e, ey € EG and integers di,da,p € Z* such that for every i € {1,2}, we have
fle;) = e;w® and vy = elwpegl. The value |p| is called the width of ~.

Definition 6.2.3. Let n > 3, let G be a marked graph of Fy and let f: G — G be a
relative train track map equipped with a filtration @ = Go £ G1 & ... & G; = G. Let
~ be a reduced edge path or a circuit of G.

(1) A splitting of ~y is a decomposition of 7 into edge subpaths v = 4172 ...7; such that
for every k € N*, we have

[FE0] = [ )] LGl

that is one can tighten the image of f*(v) by tightening the image of every f*(v;) (where
o(7) is the base point in the case where ~ is a circuit).

(2) Let v be a circuit. A circuital splitting is a splitting v = =1 ...; of v such that
for every k € N*, the concatenation [f*(y1)]...[f*(7i)] defines a path whose initial and
terminal directions are distinct.

(3) Let v = 7172...7 be a splitting of v. The splitting is complete if for every
je{l,...,i}, the subpath ~; is one of the following:

e an edge in an irreducible stratum,;
e an INP;
e an exceptional path;

e a connecting path in a zero stratum that is both maximal (for the inclusion in 7) and
taken.
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Let n > 2, let G be a marked graph of Fy, and let f: G — G be a relative train track
map with respect to a filtration @ = Go & G1 & ... & Gj = G. Let 7y be an edge path
of G. Such paths in the above list are called splitting units. When ~ has a complete
splitting, we say that ~ is completely split.

Definition 6.2.4. [HaM4| Fact 2.16] Let p € {0,...,j}. Let v = y172...7; be a splitting
of 7. This splitting is complete relatively to G, or relatively complete if there is no
ambiguity, if for every j € {1,...,4}, the subpath ~; is one of the following:

e a splitting unit of height at least equal to p + 1;
e a subpath in G,

We now describe some properties of CT maps whose complete definition can be found
in [F'H, Definition 4.7].

Proposition 6.2.5. Let n > 3 and let G be a marked graph of F,. Let f: G — G be a
completely split train track (CT) map. Then f satisfies the following properties.

(1) The map f is a relative train track map and every stratum in G is either irreducible
or a zero stratum ([FH, Definition 4.7]).

(2) If H, is an NEG stratum, then H, consists of a single edge e.. Moreover, either e,
is fized by f or f(e;) = e u, where u, is a nontrivial completely split circuit in G,_1.
The terminal endpoint of each NEG stratum is fized ([FH, Lemma 4.21]).

(3) For every filtration element G, the stratum H, is a zero stratum if and only if H,
is a contractible component of G, ([FH, Lemma 4.15]).

(4) For every zero stratum H,, there ezists a unique ¢ > r such that Hy is an EG
stratum and, for every vertex v € VH,, we have v € VH, n VHy and the link of v is
contained in VH, o VH, ([EH, Definition 4.7]).

(5) Ewvery periodic Nielsen path has period one ([FH, Lemma 4.13]).

(6) For every edge e in an irreducible stratum, the reduced path f(e) is completely split.
For every taken connecting path ~ in a zero stratum, [f(~y)] is completely split.

(7) Every completely split path or circuit has a unique complete splitting.

(8) If v is an edge path, there exists kg € N* such that for every k = ko, the reduced
path [f¥()] is completely split ([FH, Lemma 4.25]).

(9) If H, is an EG stratum, there is at most one INP p, of height r. The initial edges
of pr and p; ! are distinct oriented edges in H, ([FH, Corollary 4.19]).

(10) If Hy is a zero stratum, no Nielsen path intersects H, in at least one edge ([HaMJ,
Fact 1.1.43]).

(11) Let H, be an NEG stratum such that H, = {e;}, such that f(e;) = eyu, and
such that w, is not trivial. There exists an INP o which intersects H, nontrivially if

and only if u, is a Nielsen path and there exvists s € Z such that o = e,ule;* ([FH,
Definition 4.7]).

203



Definition 6.2.6. Let n > 2 and let G be a marked graph of F;. Let f: G — G be a
completely split train track (CT) map. Let H, be an NEG stratum and let e, be the
edge of H,. Let u, be such that f(e,) = e;u,. The edge e, is called a fized edge if u, is
trivial, a linear edge if u, is a Nielsen path and a superlinear edge otherwise.

Lemma 6.2.7. [HaMJ, Fact 1.39] Let n = 2 and let G be a marked graph of F,. Let
f:G — G be a CT map. Let v be a Nielsen path. Then v is completely split, and all
terms in the complete splitting of v are fixed edges and INPs.

Lemma 6.2.8. [HalM/, Fact 1.41] Let n > 2 and let G be a marked graph of F,. Let
f:G— G bea CT map.

(1) Let H, be a zero stratum and let H; be the EG stratum given by Proposition[6.2.5 (4).
There does not exist an INP of height £.

(2) Let H, be an EG stratum and let p, be an INP of height r. Then p, has a de-
composition p, = agbiay ...bgay where, for every i € {0,...,k}, the subpath a; is a
nontrivial path contained in H, and for every i € {1,...,k}, the subpath b; is a Nielsen
path contained in Gr_1.

An INP is an EG INP if the maximal stratum it intersects is an EG stratum and is
an NEG INP otherwise. Note that, by Proposition (9), there exists only finitely
many EG INPs.

Lemma 6.2.9. Letn > 2. Let ¢ € Out(Fy). Suppose that there exists a CT map f: G > G
representing a power of ¢. Let 7' be a nontrivial path in a zero stratum. There does not
exist a reduced edge path v = ay' where « is either an INP or a fized edge.

Proof. Suppose towards a contradiction that such a path v = o’ exists. Let H, be the
zero stratum containing ’. Note that, by Proposition (10), the path a does not
contain edges in H,. By Proposition (4), there exists ¢ > r such that Hy is an EG
stratum and such that any edge adjacent to a vertex in H, and not contained in H, is in
H,. Hence a has height at least ¢. Since Hy is an EG stratum, the path « is not a fixed
edge. Hence « is an INP. By Lemma (1), the height of « is not equal to ¢. Let
j > £ be the height of a. We distinguish between three cases according to the nature of
the stratum H;. By Proposition (10), the stratum Hj is not a zero stratum. Hence,
by Proposition (1), the stratum H; is irreducible. By Proposition (11), if H;

is an NEG stratum, then « is of the form o = ejwkejfl, where e; € Hj, k is an integer

and w is a closed Nielsen path in Gj_;. But then ej_l is adjacent to a vertex in H,.
This contradicts Proposition (4) since j > £. If H; is an EG stratum, then by
Lemma (2), the path « is the concatenation of subpaths in H; and Nielsen paths
of height at most j — 1, and « ends with an edge in H;. By Proposition (4), we see
that j = ¢. This contradicts Lemma (1). O

The next theorem due to Feighn and Handel is the main existence theorem of the
CT maps.
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Theorem 6.2.10. [FH, Theorem 4.28, Lemma 4.42] Let n > 3. There exists a uniform
constant M = M(n) = 1 such that for every ¢ € Out(F,) and every ¢™ -invariant
filtration C of Fy, there exists a CT map f: G — G that represents M and realizes C.

6.2.4 Relative currents

In this section, we define the notion of currents of Fy relative to a malnormal subgroup
system. The section follows [Gued] (see the work of Gupta [Gup]] for the particular case
of free factor systems and Guirardel and Horbez [GuHI] in the context of free products
of groups). It is closely related to the notion of conjugacy classes of A-nonperipheral
elements of Fy.

Let 0y Fn be the Gromov boundary of Fy. The double boundary of Fy is the quotient
topological space

?Fy = (0 Fy X 0 F\A) / ~,

where ~ is the equivalence relation generated by the flip relation (x,y) ~ (y,x) and
A is the diagonal, endowed with the diagonal action of F,. We denote by {z,y} the
equivalence class of (z,y).

Let T be the Cayley graph of F; with respect to a free basis 6. The boundary of T'
is naturally homeomorphic to 0, F, and the set §?F, is then identified with the set of
unoriented bi-infinite geodesics in T'. Let + be a finite geodesic path in T. The path
determines a subset in 02F; called the cylinder set of v, denoted by C(v), which consists
in all unoriented bi-infinite geodesics in T" that contain . Such cylinder sets form a basis
for a topology on ¢2F,, and in this topology, the cylinder sets are both open and closed,
hence compact. The action of F, on ¢*F, has a dense orbit.

For every nontrivial subgroup A of Fy, let T')4 be the minimal A-invariant subtree of 7.
Let A = {[A1],...,]Ar]} be a malnormal subgroup system of F;,. By malnormality of A,
there exists L € N* such that for all distinct subgroups A, B of Fy, such that [A],[B] €
A, the diameter of the intersection T4 n Tp is at most L (see for instance [HaM4,
Section 1.1.1.2]). Let i € {1,...,r}. Let I'; be the set of subgroups B of F, such that
there exists gp € Fy such that B = gBAiggl and the tree Ts contains the base point e of
T. Note that, by malnormality of A, for every i € {1,...,r}, the set I'; is finite. For an
element w € Fy, let 74, be the geodesic path in T starting at e and labeled by w. Let C;
be the set of elements w of F, such that the length of 7, is equal to L + 2 and, for every
B €T, the path 7, is not contained in Tg. Let ¥ = ();,_, C;. Since we are looking at
geodesic paths of length equal to L + 2, the set € is finite. Moreover, it only depends
on the choice of A, B and L.

Lemma 6.2.11. [Gue4, Lemma 2.53] Let B, T, A = {[A1],...,[A4:]}, Le N*, I'1,..., T,
€ be as above. The finite set € = €(Ax, ..., Ax) is nonempty. Moreover, it satisfies the
following properties:

(1) every A-nonperipheral cyclically reduced element g € Fy, has a power which contains
an element of € as a subword;
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(2) for every A-nonperipheral cyclically reduced element g € Fy, if ¢4 is the geodesic ray
in T starting from e obtained by concatenating infinitely many edge paths labeled by g,
there exists an edge path in cq labeled by a word in € at distance at most L + 2 from

U;=1 UBeFl- Tp;

(3) if v is a path in T which contains a subpath labeled by an element of €, then for
every i € {1,...,7} and every g € Iy, the path v is not contained in Tyy, 4.

Let A be a nontrivial subgroup of F, of finite rank. The induced A-equivariant
inclusion 0w A <> 0o F, induces an inclusion 0?A «— 0%F),. Let

O?A = U lJ &* (g4ig ).

i=1geF,

Let 0%(F,, A) = 0°F, — 0> A be the double boundary of F, relative to A. This subset is
invariant under the action of F, on ¢°F}, and inherits the subspace topology of ¢2Fj.

Lemma 6.2.12. [Gueq, Lemma 2.5] Let Cyl(¥€) be the set of cylinder sets of the form
C(7), where the element of Fy determined by the geodesic edge path v contains an element
of € as a subword. We have

PhA= | oo,
C(7)eCyl(¥)

In particular, the space 0*(Fy, A) is an open subset of 0*F.

Lemma 6.2.13. [Guej, Lemma 2.6, Lemma 2.7] Let n > 3 and let A be a malnormal
subgroup system of F,. The space 0*(Fy, A) is locally compact and the action of F, on
0%(Fy, A) has a dense orbit.

We can now define a relative current. Let n > 3 and let A be a malnormal subgroup
system of Fy. A relative current on (Fp, A) is a (possibly zero) Fy-invariant Radon mea-
sure p on 0%(Fy, A). The set Curr(Fj,,.A) of all relative currents on (Fy,.A) is equipped
with the weak-# topology: a sequence (fin)nen in Curr(Fy,, A)N converges to a current
p € Curr(F,, A) if and only if for all disjoint clopen subsets S, S’ € 0%(Fj,,.A), the se-
quence (un (S x S"))nen converges to u(S x S”).

The group Out(Fy, A) acts on Curr(Fy, A) as follows. Let ¢ € Out(Fy, A), let @ be a
representative of ¢, let u € Curr(Fy,, . A) and let C be a Borel subset of 0?(F}, A). Then,
since ¢ preserves A, we see that ®~1(C) € 0%(F,,.A). Then we set

which is well-defined since p is Fy-invariant.

Every conjugacy class of nonperipheral element g € F;, determines a relative current
npg) as follows. Suppose first that g is root-free, that is g is not a proper power of any
element in Fy,. Let v be a finite geodesic path in the Cayley graph T'. Then 7, (C(7))
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is the number of axes in T of conjugates of ¢ that contain the path v. If ¢ = h* with
k = 2 and h root-free, we set nyg) = k n). Such currents are called rational currents.

Let G be a pointed connected graph whose fundamental group is isomorphic to
F,. Let G be the universal cover of G. There exists a (nonunique, but fixed) Fy-
equivariant quasi-isometry m: G — T which extends uniquely to a homeomorphism
m: 0nG — O Fy. Therefore, if 7 is a reduced edge path in C:’, we can define the cylinder
set in 0?F}, defined by 7 as

Can(¥) = C([mA)))-
Let v be a reduced edge path in G and let ¥ be a lift of v in G. Let p € Curr(Fy, A).
We define the number of occurrences of v in u as

Yy m = M(Cir())- (6.2)

For every such graph G, we fix once and for all the quasi-isometry m: GoT. Therefore,
when the graph G is fixed, we will generally omit the mention of m. We also define the

simplicial length of n as:
lull = 5 Cesy

eeEG
For any given reduced edge path ~, the functions (v,.) and |.|| are continuous, linear
functions of Curr(Fy, A).
Let p € Curr(Fy, A). The support of n, denoted by Supp(u), is the support of the
Borel measure p on 02(Fy, A). We recall that Supp (i) is a closed subset of 0(Fy, A).
In the rest of the article, rather than considering the space of relative currents itself,
we will consider the set of projectivized relative currents, denoted by

PCurr(Fy, A) = (Curr(Fy, A) — {0})/ ~,

where 1 ~ v if there exists A € R such that 1 = Av. The projective class of a current
w € Curr(Fy, A) will be denoted by [u]. We have the following properties.

Lemma 6.2.14. [Guef, Lemma 3.3] Let n = 3 and let A be a malnormal subgroup system
of Fy. The space PCurr(Fy, A) is compact.

Proposition 6.2.15. [Guej, Theorem 1.1] Let n > 3 and let A be a malnormal subgroup
system of Fy. The set of projectivised rational currents about nonperipheral elements of
F, is dense in PCurr(Fyp, A).

6.3 The polynomially growing subgraph of a CT map
In this section, let n > 3 and let F be a free factor system of Fy,. Let ¢ € Out(Fy, F).

Let f: G — G be a CT map with filtration @ = Gy € G1 < ... & G = G representing
a power of ¢ and such that there exists p € {1,...,k — 1} such that F(G,) = F.
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We construct a subgraph of GG, called the polynomially growing subgraph of G and
denoted by G pg, which encaptures the information regarding polynomial growth in the
graph G. We then define a notion of length relative to G pg, called the exponential length,
which measures the time spent by an edge path outside of Gpg. Finally, we construct a
subspace of PCurr(Fy, F) which consists in the currents whose support maps to Gpg.

6.3.1 Definitions and first properties

We define in this section the polynomially growing subgraph Gpg of G and proves some
of its properties.

Definition 6.3.1. (1) Let Gpg be the (not necessarily connected) subgraph of G whose
edges are the edges e of G in an NEG stratum such that for every k € N*  the path
[£*(e)] does not contain a splitting unit which is an edge in an EG stratum.

(2) Let Npg be the set of all Nielsen paths in G.

(3) Let Npg be the subset of Np consisting in all Nielsen paths which are either EG
INPs or concatenations of (at least 2) nonclosed EG INPs.

(4) Let Z be the subgraph of G whose edges are the edges contained in a zero stratum.

Note that, by Lemma every path in Np (and hence every path in Npg) has
a complete splitting consisting in fixed edges and INPs. Since a complete splitting is
unique by Proposition (7), if v is a reduced path in Npg, then the splitting of ~
given in Definition m (3) is the complete splitting of . Moreover, «y is either an EG
INP or the complete splitting of v has at least two splitting units and all of them are
nonclosed EG INPs. In particular, the set Npg does not contain Nielsen paths such that
one of their splitting units is either a fixed edge or an NEG INP. Moreover, a Nielsen
path which is a concatenation of at least 2 splitting units and such that one of them is
a closed EG INP is not in Npg. Excluding such paths from Npg ensures a finiteness
result for Npg (see Lemma m (1)). Informally, paths in Npg play the role of low-
dynamics bridges between connected components of Gpg (see Figure . We will see
in Proposition that a cycle in G has polynomial growth under iteration of f if and
only if is a concatenation of paths in Gpg and paths in Npg.

GPG GPG

Figure 6.1: A path v in Npg between two connected components of G pg.

Note that, with p defined at the beginning of Section one can similarly define
the polynomially growing subgraph of G,, denoted by Gpg,F, which is the subgraph
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Gpa N Gp. We can also define similarly N, ]’DG, 7, Npg,r and Zr by considering the paths
of N, Np and Z contained in G,
We now recall a lemma due to Bestvina and Handel regarding r-legal paths.

Lemma 6.3.2. [BH, Lemma 5.8] Let f: G — G be a relative train track map. Let H, be
an EG stratum. Suppose that o = aibias .. .apby is the decomposition of an r-legal path
into subpaths aj < H, and b; € Gr—1 (where a1 and by might be trivial). Then for every
i€ {l,...,L}, the path f(ay) is a reduced edge path and

[f(o)] = fla)[f(b)]f (az) - .. fae)[f(be)]-

Note that, if H, is an EG stratum and if ¢ = a1b1as ... agby is an r-legal path as in
Lemma then for every i € {1,...,/¢}, as a; € H,, the path a; grows exponentially
fast under iteration of f. Hence, by Lemma the path o grows exponentially fast
under iteration of f. We now prove some results regarding paths in Npg.

Lemma 6.3.3. Let o be an EG INP.
(1) There do not exist nontrivial subpaths c,d of o such that o = cdc.

(2) Let vy € {o*'}. There do not exist paths v1,7v2,73 such that vo is nontrivial, y1 or
3 is nontrivial and o = y17y2 and ¥ = Y273.

Proof. (1) Let r be the height of 0. Suppose towards a contradiction that such a
decomposition o = cdc exists. By [BH, Lemma 5.11], there exist two distinct r-legal
paths o and § such that 0 = af and such that the turn {Df(a1), Df(3)} is the
only height r illegal turn. Moreover, there exists a path 7 such that [f(«)] = a7 and
[£(B3)] = 77'B. Hence c is contained in o and in 3 and is 7-legal. Thus, there exist two
paths di and ds such that o = c¢d; and 8 = dsc.

First we claim that for every k € N*, there exists a path 74 such that [f*(a)] = a7
and [f*(B8)] = 7 13. The proof is by induction on k. The base case follows from the
existence of 7. Suppose now that 7,1 exists. We have:

(@] = [f(ame—1)] = [F(@)I[f (7h-1)] = a7[f(71-1)] = a7,

where the second equality comes from the fact that « is r-legal, that o ends with an
edge in H, and from Lemma Similarly, we have [f*(3)] = T 1 3. This proves the
claim.

We now claim that, up to taking a power of f, there exists a cycle e such that
[f(c)] = aeB. Indeed, by Proposition (9), the path o starts and ends with an edge
in H,.. Hence the path ¢ starts and ends with an edge in H,. Since c is r-legal, we see
that the length of [f*(c)] goes to infinity as k goes to infinity by Lemma m But,
for every k € N*, there exists a path 75 such that [f*(a)] = a7y and [f*(8)] = 7, '8.
By Lemma [6.3.2] since c is the initial segment of « and since « is r-legal, there is no
identification between [f(c)] and [f(d1)]. Thus, there exists k; € N* such that [f*1(c)]
starts with . Similarly, there exists ko € N* such that [f*2(c)] ends with 8. Thus, up
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to taking a power of f, and since the paths o and 3 are r-legal, we may suppose that
there exists a (reduced) cycle e such that [f(c)] = aep.

Finally, we claim that the cycle e is trivial. Indeed, since the paths « and 3 are
r-legal, and since c starts and ends with an edge in H,., we see that

[f(@)] = [F()][f(d1)] = aeB[f(d1)]

and
LF(B)] = [f(d2)][f (c)] = [f{d2)]aep.

Recall that there exists k € N* such that [f(a)] = arg and [f(3)] = 7, ' 8. This implies
that 7, = ef[f(d1)] and that Tgl = [f(d2)]ae, that is 7, = e"ta~![f(d2)]~!. This shows
that e = e !, that is, e is trivial. This proves the claim.

Therefore, we see that [f(c)] = a8 = o. But o contains a height r illegal turn,
whereas c is an r-legal path. This contradicts Proposition[6.2.5|(1) and Definition[6.2.1](3).
This concludes the proof of (1).

(2) Let 0,7 be as in the assertion of the lemma. Suppose towards a contradiction
that there exist three paths 1, 72,7v3 such that o is nontrivial and ¢ = y17v2 and v =
~Y2¥3. Suppose first that v = . Then either a nontrivial initial segment of 7o is its
terminal segment or there exists a path 4 such that ¢ = y274y2. The first case is not
possible as otherwise o would contain two illegal turns. This contradicts the fact that o
contains a unique illegal turn (see [BHL Lemma 5.11]). The second case is not possible
by Lemma (1). Suppose now that v = o~ 1. But 0! = 45 !9}, Therefore we see
that vy L' — ~,, that is, 9 is trivial. This leads to a contradiction. This concludes the
proof. O

Lemma 6.3.4. (1) There are only finitely many paths in Npg.

(2) Let v,7 be paths in Npg. Suppose that v has a decomposition v = y1v2 such that
Yo is an initial segment of v'. Then v1,7v2 € Npg and v1v' € Npg.

(3) Let v,y be paths in Npg. Suppose that ' < . Then one of the following holds:
(a) there exist (possibly trivial) paths 1,72 € Npg such that v = y17've;
(b) there exists an INP o in the complete splitting of v such that v & o and +' is
not an initial or a terminal segment of o.

(4) Let v,~" be two paths in Npg. Suppose that there exist three paths v1, vo and 73
such that v = y172, 7 = fyglfyg and the path 173 is reduced. Then o € Npg and
1173 € Npa.

Proof. (1) First note that, since there are only finitely many EG strata in G, there
are only finitely many EG INPs by Proposition (9). Let v be a path in Npg
which is a concatenation of at least 2 nonclosed EG INPs. Let v = o;...0; be the
complete splitting of v given by Lemma As « is a concatenation of nonclosed EG
INPs, every splitting unit of v is a nonclosed EG INP. By Proposition (9), an INP
contained in the complete splitting of ~ is entirely determined by the highest stratum
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H, such that = contains an edge of H,. For every i € {1,...,k}, let r; be the height
of ;. Let i € {2,...,k}. Since o; is not closed, by [HaM4, Fact 1.42(1)(a)], one of the
endpoints of o; is not contained in G,,_;. Since there exists a unique INP of height r; by
Proposition (9), either r;_1 < 7; or r; < r;—1. We treat the case r1 < rg, the case
ro < ri being similar. We claim that, for every i € {1,...,k—1}, we have r;+; > r;. The
proof is by induction on i. The base case is true by hypothesis. Let i € {2,...,k — 1}.
Since 7;_1 < r;, the origin of o; is contained in G,,_; and the terminal point of o; is not
contained in G,,_1. Thus, the first edge of 041 is contained in G — G, ;. Since there
exists a unique INP of height r; we necessarily have r; < r;y1. Thus, the sequence of
maximal heights of INPs in + is (strictly) monotonic. Since there are only finitely many
EG strata, there are only finitely many paths in Npg. This concludes the proof of (1).

(2) Let v € Npg and let v = y172 be as in the assertion of the lemma. We claim that
~v2 € Npg and that the splitting units of ~o are splitting units of both v and +/. This
will conclude the proof of Assertion (2) because v; will be a concatenation of splitting
units of ~y, that is, it will be either an EG INP or a concatenation of nonclosed EG INPs
(cf Definition m (3)). Hence we will have v; € Npg and 117" € Npg. We show that
v is a concatenation of INPs which are splitting units of 7/. A similar proof will show
that the splitting units of o will also be splitting units of 7. Indeed, the path 7/ has
a splitting v' = o0} ... 0} which consists in EG INPs. Let r’ be the height of o{. By
Proposition (9), there exists a unique unoriented INP of height ' and this INP
starts and ends with an edge in H,». Let o be the INP of v which has a decomposition
o = 0109, where o9 is a nontrivial initial segment of 7/. As every splitting unit of v is
an EG INP, so is 0. Let r be the height of o. Since the first edge of o7} is of height 7/, we
cannot have 7’ > r. If r = 7/, then by the uniqueness statement in Proposition 9),
we have o € {0, o 1}. Note that, if oy is nontrivial, there exist reduced paths 71, 72 such
that ¢ = o171 and o] = 772. This contradicts Lemma m (2) applied to o and of.
Thus, we see that o = of and o} € v,. If ¥/ < r, then by Lemma (2), the path o

has a decomposition o = a1b; ...bg_1a; such that, for every i € {1,...,k}, the path a;
is a path in H, and for every i € {1,...,k — 1}, the path b; is a Nielsen path in G,_;.
Hence there exists i € {1,...,k — 1} such that o} is contained in b;. Therefore, we see

that of € 0 € 7. As o] €/, we see that o} € v N~ = 2. If 75 = o}, then we are
done. Otherwise, the path v contains an edge of 0. As o) is an EG INP, the same
argument as for o} shows that o, € 79, and an inductive argument shows that -, is a
concatenation of INPs in the splitting of 4'. Hence 75 is a Nielsen path. Therefore, we
see that vo € Npg and that 75 is composed of splitting units of 4'. Similarly, we see that
2 is composed of splitting units which are splitting units of both v and /. Hence ~; is
composed of splitting units of 4. This concludes the proof of (2).

(3) Let 7, 7/ be as in the assertion of the lemma. Let v = o1...0; be the complete
splitting of « and let v/ = o} ...0], be the complete splitting of 4/, which exist by
Lemma Recall that every splitting unit of both v and +' is an EG INP. There
exists ¢ € {1,...,k} such that o; contains an initial segment of o}. We claim that o} is
either equal to o; or 7/ is strictly contained in o;. Indeed, let r be the height of o; and
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let 77 be the height of ). Since the first edge of o} is of height ’, we cannot have ' > r.

Suppose first that ' < r. By Lemma (2), the path o; has a decomposition
o; = aiby ...by_1ay such that, for every i € {1,...,p}, the path a; is a path in H, and
for every j € {1,...,p — 1}, the path b; is a Nielsen path in G,_;. Hence there exists
je{l,...,p—1} such that o} is contained in b;. We claim that, for every ¢ € {1,...,m},
the splitting unit o} is contained in b;. The proof is by induction on ¢. For the base case,
we already know that o] < b;. Suppose that for some £ € {2,...,m}, the path oj_, is
contained in b;. By Proposition (9), the path o; ends with an edge in H,. Hence the
path a, is nontrivial. Since oy_, is contained in b;, the path o} intersects o; nontrivially.
Let ry be the height of o). Recall that o} is an EG INP. By Proposition (9), the
path o) starts with an edge in H,,. Hence r, < r. Suppose towards a contradiction
that ro = r. Then, by the uniqueness statement of Proposition (9), we see that
oy € {o7'}. As o; contains an initial segment of o/, there exist three paths 71, 72 and
73 of G such that v, is nontrivial and o; = y1792 and o) = y273. Since oj_; is contained
in 0y, the path ~; is nontrivial. This contradicts Lemma m (2). Therefore we have
r¢ < r. But then o}, cannot intersect a;4;. This implies that o} is contained in b;. This
proves the claim and the fact that v/ € o; and 4/ is not an initial or a terminal segment
of ;.

Suppose now that » = 7’. By the uniqueness statement of Proposition (9), we
see that o] € {JZ-;H}. As o; contains an initial segment of o/, there exist three paths v1, ¥2
and 3 of G such that o is nontrivial and o; = 172 and o} = y273. By Lemma (2),
we necessarily have that v; and 73 are trivial. Thus, we see that o; = o]. Therefore,
+' is an initial segment of o;...0, and is a Nielsen path. By [FH, Corollary 4.12], for
every j € {1,...,m}, we have 0,41 = 0j. Thus, there exist (possibly trivial) paths
1,72 € Npg such that v = y19v2. This concludes the proof of (3).

(4) Let v, v', 71, 72 and 73 be as in the assertion of the lemma. Let v = oy ...y and
y' = B1... B¢ be the complete splittings of v and 7' given by Lemma[6.2.7} By definition
of Npg, every splitting unit of v and ' is an EG INP. Let i € {1,...,k} be such that
«; contains the first edge of 2. Let j € {1,...,¢} be such that 8; contains the last edge
of 7, '. We claim that a; € 72 and that 8; € 4, '. By [FH, Corollary 4.12] applied
to vy Land 47!, there exists a path d; contained in a; such that the decomposition
Yo = 81 - .. g is a splitting of 5. Similarly, there exists a path 55» in 3; such that
Yot = Bi. .. Bj-10; is a splitting of 75 '. By Proposition @ (9), an EG INP starts
with an edge of highest height and an EG INP is entirely determined by its height.
Hence oy = ﬁfl. Note that the paths d;a;.01... 051 and By ... Bj,ﬂs} satisfy the same
hypotheses as §;a; 41 ... and 51 ... ﬁj_léé-. Applying the same arguments, we see that
i = j and for every s € {1,...,7 — 1}, we have f3, zalzl

" 441 Hence we see that §; = oL
Let 7 be the height of «; and let r’ be the height of 5;. Note that by Proposition (9)
applied to «; and 3;, the path ¢; ends with an edge in H, and 5;_1 ends with an edge
in H,.. Therefore, we see that » = r/. By uniqueness of EG INPs of height r; given by
Proposition (9), and since 13 is reduced, we see that a; = Bj_l, that a; € 2 and
that 5; € v, ~. This shows that 72 is a path in Npg. By Assertion (2) applied to v and
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72, the path v; is contained in Npg. Similarly, we see that the path 73 is contained in
Npg. Since the path 173 is reduced, we see that v1v3 € Npg. This concludes the proof.
O

Lemma 6.3.5. Let v and v be two reduced edge paths in G which are concatenations of
paths in Gpg and Npg. Suppose that there exist three paths v1, V2 and 3 such that
v =772, = 72_173 and vy17y3 s reduced. Then ~vo and Y173 are concatenations of paths
in Gpg and Npg.

Proof. Let v = bpa1b; ...arbr be the decomposition of the path v such that for every
i € {0,...,k}, the path b; is in Gpg and for every i € {1,...,k}, the path a; is a
maximal subpath of v contained in Npg. The existence of the paths a; follows from
Lemma [6.3.4] (2). Let 7/ = docidy ... cody be the similar decomposition of 7'. Let e be
the initial edge of 7.

Claim. There exists i € {0,...,k} such that b; contains e if and only if there exists
j €{0,...,¢} such that the edge e~! is contained in d;.

Proof. The proof of the two directions being similar, we only prove one direction.
Suppose that there exists i € {0,...,k} such that b; contains e. Suppose towards a
contradiction that there exists j € {1,...,¢} such that e~! is contained in ¢;. It follows
that there exists an EG INP o of ¢; such that e~! is contained in . Let r be the height
of 0. Let 6! be the subpath of ¢ contained in 72_1. Note that, as 72_1 is an initial
segment of 4/, the path §~! is an initial segment of o. By Proposition (9), the
path ! starts with an edge in H,. As ¢ is contained in v, the terminal edge of § is
an edge in an EG stratum. Since every edge in Gpg is contained in an NEG stratum,
there exists s € {1,...,k} such that as contains a terminal segment of §. Since the
initial edge e of 75 is not contained in as; by hypothesis, the path § contains the initial
segment & of a,. Hence the terminal segment §'~! of a;! is the initial segment '~ of
o. By Lemma (2) applied to a;! and o and [FH, Corollary 4.12], the path §'~*
is contained in Npg and is a concatenation of splitting units of o. As o contains a
unique splitting unit, this implies that ¢ = 0. As 6’ € 6! € o, we see that 6 = o.
Note that the edge 6! ends with e~!. But o ends with an edge in an EG stratum by
Proposition (9), that is, e ! is an edge in an EG stratum. But every edge in b;
is contained in an NEG stratum by definition of Gpg. This contradicts the fact that
e € b;. This concludes the proof of the claim. O

Suppose first that there exists i € {1,...,k}, such that e is contained in b;. By
the above claim, there exists j € {0,...,¢} such that e 1 is contained in dj. Let T
and 7/ be such that v = bpaib; ...a;7y2 and ¥ = 4, '7'cj.1...dy. Note that 7 S b,
and 7' € d;. Then we have vy = bpaib ...a;7 and 3 = 7'cj11...dy. Since the path
~v173 is reduced, so is 77'. Moreover the reduced edge path 77’ is contained in Gpg
and v1y3 = boaiby ...a;77'cji1...dp is a concatenation of paths in Gpg and in Npg.
Moreover, let 6” be the maximal subpath of b; contained in v9. Then o = §”a;41 ... by
is a concatenation of paths in Gpg and in Npg.
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Suppose now that there exists i € {1,...,k} such that the initial edge e of v is
contained in a;. By the above claim, there exists j € {1,..., ¢} such that e 1 is contained
in ¢;. Let ¢’ be the terminal segment of a; contained in . By Proposition (9), the
terminal edge €’ of ¢’ is an edge in an EG stratum. Since G'pg does not contain any edge
in an EG stratum, there exists s < j such that ¢, contains ¢~'. We claim that s = j.
Indeed, suppose towards a contradiction that s < j. Let 6! be the terminal segment
of ¢, whose first edge is ¢/~!. Then § is a terminal segment of a; and ¢ is an initial
segment of c;!. By Lemmam (2) applied to a; and c;!, the path § is a concatenation
of splitting units of a; and ¢, 1. If § is properly contained in ¢, there exists an EG INP
o which is a splitting unit of a; and such that the last edge of o is the last edge of ¢’
not contained in §. But, by Proposition (9), the terminal edge e, of o is in an EG
stratum. However, the first edge of ds (which is the edge e !) is in Gpg. This leads to
a contradiction. Hence 6 = ¢’. But ¢ intersects ¢; nontrivially. Hence we have s = j.

Therefore, §'~! is contained in c;. We claim that §'~! is an initial segment of c;.
Indeed, otherwise let € be the initial segment of ¢; whose endpoint is the origin of ¢’ -1
By Proposition (9), the first edge of € is an edge in an EG stratum. Hence there
exists p > i such that a, contains the terminal edge of ¢~1. Let e~! be the subpath of
¢! contained in a,. Then e ! is an initial segment of a, and € is an initial segment of
¢j. By Lemma (2) applied to a, L and ¢j, the path € is a concatenation of splitting
units of a, L and ¢;. But since € is properly contained in ¢; as it does not intersect §’ -
the path € is adjacent to a splitting unit of ¢;. Since an EG INP starts with an edge
in an EG stratum by Proposition (9), the path b, 1 ends with an edge in an EG
stratum. This contradicts the fact that b,_1 is contained in G pq.

Hence ¢'~! is an initial segment of ¢j and ¢’ is a terminal segment of a;. Let 7 and
7/ be two paths such that a; = 70’ and ¢; = §~!7/. By Lemma (4) applied to a;
and ¢;, the path ¢’ is in Npg and the path 77’ is in Npg. Hence 2 = Tbjait1 ... b and
Y17v3 = boaiby . .. CLZ‘TTIC]‘_H ...dy are concatenations of paths in Gpg and in Npg. This
concludes the proof. O

Lemma 6.3.6. Let v be a closed Nielsen path of G. Then vy is a concatenation of paths
in Gpg and in Npg.

Proof. Let v be a closed Nielsen path of G. We prove the result by induction on the
height 7 of 4. If 7 = 0, there is nothing to prove. Assume that r > 1. By Lemma [6.2.7]
the path « is completely split, and every splitting unit in its complete splitting is either
an INP or a fixed edge. Let v = o071 ...0% be the complete splitting of 7. For every
i€ {l,...,k}, let r; be the height of o;. We prove that for every i € {1,...,k}, the path
o; is a concatenation of paths in Gpg and in Npg. Let i € {1,...,k}. If o; is a fixed
edge, it is contained in Gpg. Suppose that ¢; is an NEG INP. By Proposition (11),
there exists an edge e,, € EH,,, a Nielsen path w in G,,_; and an integer s € Z* such
that o; = emwse;il. Moreover, we have f(e,,) = e,,w. Hence for every j € N*, we have
[f7(er,)] = erw’. Since w is a Nielsen path, by Lemma the path w is completely
split and its complete splitting is made of fixed edges and INPs. Thus, for every j € N*,
the complete splitting of [f7(e,,)] does not contain splitting units which are edges in
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EG strata. By definition of Gpg, we have e, € EG pa. Moreover, by the induction
hypothesis, the path w® is a concatenation of paths in Gpg and in Npg. Hence o; is
a concatenation of paths in Gpg and in Npg. Finally, if 0; is an EG INP, then it is
contained in Npg. Hence v is a concatenation of paths in Gpg and in Npg. O

Lemma 6.3.7. Let v be either an NEG INP or an exceptional path. Then v is a concate-
nation of paths in Gpg and in Npg.

Proof. We claim that there exist edges eq,e2 and a closed Nielsen path w such that
v = eqwe, ' and, for every i € {1,2}, we have f(e;) = e;w? for some d; € Z*. If v
is an exceptional path, it follows from the definition. If v is an NEG INP, let r be
the height of v. Then H, is an NEG stratum. As « is a Nielsen path, we can apply
Proposition (11) to conclude the proof of the claim. Since e; and e are linear
edges, for every k € N*, the paths [f*(e1)] and [f*(e1)] do not contain splitting units
which are edges in EG strata. Thus e; and eg are contained in Gpg. By Lemma [6.3.6]
the path w is a concatenation of paths in G pg and in Npg. Hence v is a concatenation
of paths in Gpg and in Npg. This concludes the proof. ]

Lemma 6.3.8. Let v be a Nielsen path in G. Then 7y is a concatenation of paths in Gpg
and in Npg.

Proof. By Lemma [6.2.7] the path v is completely split, and every splitting unit in its
complete splitting is either an INP or a fixed edge. Let v = o1 ...0% be the complete
splitting of . Let i € {1,...,k}. If 0; is a fixed edge, then o; is contained in Gpg. If o;
is an NEG INP then, by Lemma the path o; is a concatenation of paths in Gpg
and in Npg. If 0; is an EG INP then, by definition, we have o; € Npg. Hence v is a
concatenation of paths in Gpg and in Npg. O

Lemma 6.3.9. (1) Let vy be an edge in Gpg (resp. an edge in Gpg,r). The path [f(7)] is
a concatenation of paths in Gpg and in Npg (resp. a concatenation of paths in Gpa r
and in Npg r).

(2) Let ~ be an edge path contained in Gpg (resp. an edge path in Gpg ). The path
[f(7)] is a concatenation of paths in Gpg and in Npg (resp. a concatenation of paths
in Gpg.r and in Npa.r).

(3) Let v be an edge path which is a concatenation of paths in Gpg and in Npg (resp.
a concatenation of paths in Gpg,.r and in Npq r). The path [f(7)] is a concatenation
of paths in Gpg and in Npg (resp. a concatenation of paths in Gpgr and in Npg r).

Proof. We prove Assertions (1), (2), (3) for paths in Gpg and in Npg, the proofs for
paths in Gpg, r and Npg r being similar, using the fact that f(G,) = Gp.

(1) Let v be an edge of Gpg. By definition of Gpg, the edge v is an edge in an NEG

stratum. By Proposition (6), the path [f(v)] is completely split. Let [f(y)] =
Y1 -..7vm be the complete splitting of [f(7y)]. Since 7 is an edge in an NEG stratum,

by Proposition (2), we have v = . Suppose towards a contradiction that [f(7)]
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is not a concatenation of paths in Gpg and in Npg. It follows that there exists i €
{1,...,m} and an edge e of v; which is not contained in G pg and is not contained in a
subpath of [f()] contained in Npg. Hence 7; is not an EG INP nor a fixed edge. By
Lemma, the path 7; cannot be an NEG INP or an exceptional path. Hence ~; is
either an edge in an irreducible stratum or a maximal taken connecting path in a zero
stratum. Suppose first that v; is a maximal taken connecting path in a zero stratum.
By Proposition (4), the path 7; cannot be adjacent to an edge in an NEG stratum
nor an edge in a zero stratum. As ;3 = -y, we see that ¢ = 3 and that ;1 ends with an
edge in an EG stratum. By Lemma (applied to v = 7;-17;), the path ~;_1 is not
an EG INP. Therefore we see that v; 1 is an edge in an EG stratum. This contradicts
the definition of the edges in Gpg. Hence we are reduced to the case where ~; is an
edge in an irreducible stratum. Therefore, we have v; = e. By definition of Gpg and
as e ¢ EGpg, there exists k € N* such that [£*(7:)] contains a splitting unit which is
an edge in an EG stratum. This contradicts the fact that - is contained in Gpg. This
concludes the proof of (1).

(2) Let 7 be a path in Gpg. We prove by induction on the length of v that [f(v)] is a
concatenation of paths in Gpg and in Npg. The case where v is an edge follows from
(1). Suppose now that the length of 7 is at least equal to 2. Let e be the last edge of v
and let 7/ be an edge path such that v = 7’e. Hence 7/ and e are paths in Gpg. By the
induction hypothesis, the paths [f(7')] and [f(e)] are concatenations of paths in Gpg
and in Npg. It remains to show that identifications between [f(7/)] and [f(e)] do not
create paths which are not concatenations of paths in Gpg and in Npg. Let o, 8 and
o be paths such that [f(7')] = ao, [f(¢')] = 018 and af is reduced. By Lemmam
applied to [f(7')] and [f(€')], the path [f(7)] is a concatenation of paths in Gpg and in
Npg. This concludes the proof of (2).

(3) Let v be a concatenation of paths in Gpg and in Npg. Let v = 4y - Y7k
be a decomposition of v such that for every i € {1,...,k}, the path 7; is a maximal
subpath of v in Npg and for every i € {0,...,k}, the path +/ is a path in Gpg. Such
a decomposition is possible by Lemma m (2). We prove the result by induction on
k. If k = 0, the proof follows from Assertion (2). Suppose that the result is true for
k' < k. Then the paths v = 717} ... —17_; and 7" = 7}, satisfy the induction
hypothesis. Hence the paths [f(7/)] and [f(7")] are concatenations of paths in Gpgc and
in Npg. Let a, B and o be three paths such that [f(v')] = af, [f(v")] = 8~ !0 and af
is reduced. By Lemma the path [f(v)] = ao is a concatenation of paths in Gpg
and in Npg. This concludes the proof. O

For the next lemma, we recall a definition due to Bestvina, Feighn and Handel
([BEHI, Section 6], see also [HaM4, Definition II1.1.2]). Let H,, be the EG stratum of
G of maximal height r,. By Proposition (9), there exists at most one unoriented
INP p,, of height ry (we suppose that p,, is a point if such a nontrivial INP does not
exist). Following [HaM4l, Definition III.1.2], let Z,, be the subgraph of G consisting in
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all edges €’ such that for every m € N* and every splitting unit o of [f™(e’)], the path
o is not an edge in H, . Let <ZT+,pr+> be the set consisting in the following paths:

(¢) pathsin Z,,;

(#7) paths in {pr+,pr_+1};

(i) concatenations of paths in Z,_ and in {p,,,p, '}.

Note that <Zr+,pr+> contains every path in G, _1.

Lemma 6.3.10. The set <Zr+,pr+> contains every path which is a concatenation of paths
in Gpg and in Npg.

Proof. It suffices to prove that <Zr + Pr +> contains every edge of Gpg and every EG
INP. Let e be an edge in Gpg. By definition of Gpg, for every k € N*, the complete
splitting of [f*(e)] does not contain a splitting unit which is an edge in an EG stratum.
In particular, for every k € N*, the complete splitting of [f¥(e)] does not contain a
splitting unit which is an edge in H,,. Hence e € Z,, and Gpg is a subgraph of Z,, .
Let p be an EG INP and let r be the height of p. By definition of r, we have r < r,. If
r = ry, by Proposition (9), we have p € {phr,p;f}, hence we have p € (Z,,, pr, ).
If » < ry, then p is contained in G, _1. Hence p is contained in <ZT+ , pr+> by the above
remark. O

We now define a graph which will be used in the proof of Lemma Let G* be
the finite, not necessarily connected, graph defined as follows:
(a) vertices of G* are the vertices in Gpg and the endpoints of EG INPs in G which
are not in Gpg;
(b) we add one edge between two vertices corresponding to vertices in Gpg if there
exists an edge in Gpg between the corresponding vertices of Gpg;
(c) we add one edge between two vertices corresponding to the endpoints of an EG INP.
Note that we have a natural continuous application pg+: G* — G which sends an
edge as defined in (b) to the corresponding edge in Gpg and which sends an edge as
defined in (c¢) to the corresponding EG INP in G. Let z € VG*.

Lemma 6.3.11. (1) If v is a nontrivial reduced path in G*, so is pg=(7).
(2) The homomorphism

p,G* : 7T1(G*,£C) - Trl(vaG* (27))
induced by pax 1S injective.

Proof. (1) Let v be a reduced path in G*. Suppose towards a contradiction that pgs(~y)
is not a reduced path in G. Thus, there exist an edge e € EG and two paths a and b
such that pg=(y) = aee™'b. Let e* be an arc in «y such that pg«(e*) = ee~!. Note that,
by definition of pg+, the application pg+ sends edges of G* to reduced edge paths in G.
In particular, the path e* is not contained in a single edge of G*. As the image of an
edge in G* by pg= is either an edge in G or an edge path, we see that the path e* is
contained in at most two edges of G*. Let e1,es € G* be such that e* € ejes. Suppose
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first that pg«(e1) and pg«(e2) are edges in Gpg. Then pgx(e1) = e and pgx(e2) = e~ L.

But, as v is reduced, we have e; # 62_1. Thus we have pg=(e1) # pg*(e2)!. Suppose
now that pg«(e1) is an edge in Gpg and pg«(e2) is an EG INP. By Proposition [6.2.5] (9),
the first edge of pg=(e2) is an edge in an EG stratum. By definition, every edge in Gpg
is an edge in an NEG stratum. Hence the turn {pg=(e1) !, pg=(e2)} is nondegenerate.
Therefore, we see that pgs(e*) # ee™!. Finally, suppose that pgs(e1) and pg=(es) are
EG INPs. for every i € {1,2}, let r; be the height of pgx(e;). By Proposition 9),
the last edge of pg#(e1) is in H,, whereas the first edge of pg«(e2) is in H,,. Hence
if 11 # ry, there is no identification between pg=(e1) and pg=(e2). Hence pgx(e*) #
ee”!. If r{ = 75, then by the uniqueness statement in Proposition (9), we have
pax(e2) € {pa=(e1), pg=(e1) '}. Hence es € {e1, 61_1}. As v is a reduced path, we see that
e2 = e1. Hence e is a loop and pg=(e1) is a closed EG INP. By Proposition (9),
the initial and terminal edges of pg«(e1) are distinct unoriented edges. Hence the path
pax (e1)pax (e2) is a reduced path and pg=(e*) # ee™!. As we have ruled out every case,
we see that such a path e* does not exist. This concludes the proof of Assertion (1).

(2) Let v be a nontrivial reduced closed path in G* based at x. By Assertion (1), the
path pgs(7) is a nontrivial reduced closed path in G. Hence the kernel of pi,, is trivial.
O

Lemma 6.3.12. The application [f] which sends a circuit a in G to [f(«)] preserves the
set of circuits which are concatenations of paths in Gpg and in Npg. Moreover, [f]
restricts to a bijection on the set of circuits which are concatenations of paths in Gpg
and in Npg.

Proof. The first part follows from Lemma (3). By [HaM4, Lemma III.1.6 (2), (5)],
the application [ f] preserves (Z,, , pr +> and restricts to a bijection on the set of circuits of
<ZT o Pr +>. By Lemma concatenations of paths in G pg and in Npg are contained
in <ZT s Pr +>. By Lemma the application [f] preserves concatenations of paths in
Gpg and in Npg. In particular, this shows that [f] is injective when restricted to the
set of paths which are concatenations of paths in Gpg and in Npg.

For surjectivity, let a be a circuit in G which is a concatenation of paths in Gpg
and in Npg and let x be a vertex in « which is either an endpoint of an edge in G pg
or an endpoint of an EG INP contained in «. Note that by Proposition (2), the
endpoint of every edge in Gpg is fixed by f. Moreover, the endpoint of every EG INP
is fixed by f. Therefore, f fixes x. The circuit o naturally corresponds to a circuit o
in G*. Let 2’ be the vertex of o’ corresponding to  (which exists by the choices made
on z). Since [f] preserves concatenations of paths in Gpg and in Npg by Lemma m
the application [f] induces an application

[f]G* : 7T1(G*,£L',) —> Fl(G*,xl).

Note that, by Lemma|6.3.11} the group 71 (G*, 2') is naturally identified with a subgroup
of m(G,z). By [BFHI, Lemma 6.0.6], the application [f]g* is a bijection. Hence
there exists a closed path 3 in G* such that [f]g=([8']) = . Let B be the circuit
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corresponding to 8’ in G. Then f3 is a concatenation of paths in Gpg and in Npg and
[f(8)] = . This concludes the proof. O

Proposition 6.3.13. Let n > 3. Let ¢ € Out(Fy,, F) be an exponentially growing outer
automorphism, let f: G — G be a C'T map representing a power of ¢. Let w € Fy,. There
exists a subgroup A of Fy such that [A] € A(¢) and w € A if and only if the circuit
of G associated with w is a concatenation of paths in Gpg and in Npg.

Proof. Suppose first that 7, is a concatenation of paths in G pg and in Npg. We claim
that 7, has polynomial growth under iteration of f. By Proposition (8), there
exists m € N* such that [f™ ()] is completely split. By Lemma [6.3.9 (3), the path
[/™(yw)] is a concatenation of paths in Gpg and in Npg. Hence every splitting unit of
[f™(vw)] is either an edge of Gpg or an INP. Let [f™ (V)] = 71 ...k be the complete
splitting of [f™ (v )]. For every i = m, we have

e

Lf ()] 2 (LF ()]

Therefore, it suffices to prove that, for every j € {1,...,k}, there exists a polynomial
Pj € Z| X] such that for every i € N*, we have

UL (D) = O(P(0)).

Claim. There exists a polynomial P € Z[X] such that for every edge e € EGp¢ and
every i € N* we have
(L' (e)]) = O(P(2).
Proof. Since there are finitely many edges in Gpg, it suffices to prove the claim for
a single edge e € EGpg. Let e € EGpg. By Proposition (2), there exists a
cyclically reduced, completely split circuit w of height less than the one of e and such
that f(e) = ew. By Lemma[6.3.9 (1), the path w is a concatenation of paths in Gpg
and in Npg. We prove the claim by induction on the height of e. Suppose first that e
has minimal height in Gpg. By minimality of e, the path w does not contain a splitting
unit which is an edge in Gpg. Hence w is either trivial or a path in Npg, that it, a
closed Nielsen path. If w is trivial then e is a fixed edge and P = 1 satisfies the claim.
Suppose that w is a closed Nielsen path. For every i € N*, we have [f(e)] = ew’. Hence
¢([fi(e)]) < if(w)+1. Then the polynomial P(i) = i/(w)+ 1 satisfies the assertion of the
claim. This proves the base case. Suppose now that e has height r. Let w = wy ... wy
be the complete splitting of w. Recall that, for every reduced path x in G, we have
[£([f(x)])] = [f%(z)]. Thus, for every i € N*. we have

[Fi(e)] = ewr ...wp[f(w)] ... [f(wp)] ... [f 7 (wn)] - [ (wp)]-

Hence, for every ¢ € N*, we have



Hence it suffices, for every £ € {1,...,k}, to find a polynomial Py € Z| X]| such that, for
every i € N*, we have

ULf (we)]) = O(Pu(3)).

Let £€ {1,...,k}. As w is a concatenation of paths in Gpg and in Npg, every splitting
unit of w is either an edge in G pg or an INP. If wy is an edge in G pg, the polynomial P,
exists using the induction hypothesis. If wy is an INP, then the polynomial Pp(i) = ¢(wy)
satisfies the conclusion of the claim. This proves the existence of the polynomial P. [

Let j € {1,...,k}. If 4 is an edge in G pi which is a splitting unit of [ f"(7y.)], by the
above claim, the polynomial P; exists. If ; is an INP, then the polynomial P(x) = £(v;)
satisfies the conclusion. Thus, the path =,, has polynomial growth under iteration of [ f].
Therefore, [w] has polynomial growth under iterates of ¢. By the definition of A(¢),
there exists a subgroup A of Fy, such that [A] € A(¢) and w € A.

Conversely, suppose that there exists a subgroup A of F, such that [A] € A(¢)
and w € A. Let m € N* be such that [f™ ()] is completely split, which exists by
Proposition (7). Since [w] has polynomial growth under iteration of ¢, there does
not exist a splitting unit of [ ™ (+,,)] which is an edge in an EG stratum or a superlinear
edge with exponential growth. Suppose towards a contradiction that a splitting unit o
of [f™(7w)] is contained in a zero stratum. By Proposition [6.2.5] (3), every zero stratum
of G is contractible. As [f™(vy)] is a cycle, it is not contained in a zero stratum. By
Proposition (4), every edge adjacent to o and not contained in the same stratum
as o is in an EG stratum. Hence there exists a splitting unit o’ of [f™ ()] such that
oo’ € [f™(yw)] and o' the first edge of o is in an EG stratum. Hence o’ is either an
edge in an EG stratum or an INP. But, by Lemma the path ¢’ is not an INP.
Hence ¢’ is an edge in an EG stratum. This contradicts the fact that [w] has polynomial
growth under iteration of ¢. Hence every splitting unit of [f™(7y,)] is either an INP,
an exceptional path or an edge in an NEG stratum whose iterates by f do not contain
splitting units which are edges in EG strata. Edges in the last category are precisely
the edges in Gpg. By Lemma [6.3.7 and Lemma [6.3.8] every INP and every exceptional
path is a concatenation of paths in Gpg and in Npg. Thus, the path [f(v,)] is a
concatenation of paths in Gpg and in Npg. By Lemma the circuit 7, is a
concatenation of paths in Gpg and in Npg. O

Let F be a nonsporadic free factor system of F, and let ¢ € Out(Fy, F). We say
that ¢ is fully irreducible relative to F if no power of ¢ preserves a proper free factor
system F’ of F, such that F < F'. The following corollary will be used in [Gue@]. It is
a well-known result but we did not find a precise statement in the literature.

Corollary 6.3.14. Let n > 3 and let F be a nonsporadic free factor system of F,. Let
¢ € Out(Fy, F) be a fully irreducible outer automorphism relative to F. There exists at
most one (up to taking inverse) conjugacy class [g] of root-free F-nonperipheral element
of Fn which has polynomial growth under iteration of ¢. Moreover, the conjugacy class
[g] is ¢-periodic.

220



Proof. Let f: G — G be a CT map representing a power of ¢ and let G’ be a subgraph of
G such that F(G') = F. Since ¢ is irreducible relative to F and since F is nonsporadic,
we see that G — G’ is an EG stratum H,. Let [g] be the conjugacy class of a root-free
F-nonperipheral element g of Fy,. Then ~, has height 7. Suppose that [¢g] has polynomial
growth with respect to ¢. By Proposition the circuit v, is a concatenation of
paths in Gpg and in Npg. Since 74 has height 7 and since H, is an EG stratum, every
subpath « of v, contained in H, is contained in a concatenation of INPs of height r. By
Proposition (9), there exists at most one INP o of height r. Moreover, one of its
endpoints is not contained in G’ = G,_; (see [HaM4, I.Fact 1.42]). Hence o is necessarily
a closed EG INP. Since the endpoint of o is not in G,_; and since v, is a concatenation
of paths in Gpg and Npg, we see that v, is an iteration of the closed path o. Since g
is root-free, we have v, = o*!. This concludes the proof. ]

6.3.2 The exponential length of a CT map

In this section, we define the exponential length function lc.p, and its relative version {r,
of paths in CT maps. We compute its value for some paths in G. Let G, = Gpg LU Z
(see Definition and let G'PG’]_- =Gparv Zr.

Let v be a reduced edge path in G. By Lemma[6.3.4] (2), every path of Npe which is
contained in v is contained in a unique maximal subpath of v contained in Npg. Thus,
the path 7 has a unique decomposition into edge paths v = o771 - . . Y%7, Where:

(1) for every i€ {0,...,k}, the path 7; is a maximal path in Npg contained in v (where
7o and 7}, might be trivial);

(2) for every 7' € Npg contained in v, there exists i € {1,...,k} such that ' < ;.

Such a decomposition of v is called the exponential decomposition of v. Note that the
exponential decomposition of + is not necessarily a splitting of 7. We denote by Np&*(7)
the set consisting in all paths ~;, with ¢ € {0,...,k}. Similarly, v has a decomposition
v = qajag ... apal,, where for every i € {0,...,m}, the path «; is a maximal path in
Npg r and for every 7/ € Npg 7 contained in =, there exists ¢ € {1,...,k} such that
v € ;. Such a decomposition is called the F-exponential decomposition of v. We

max

denote by Np&x(v) the set consisting in all paths a;, with i € {0,...,m}.

Definition 6.3.15. (1) Let v be a reduced edge path in G. The exponential length of -,
denoted by lezp(7y) is:

lap() =L (10 G =Chg) = Y L(anCG=Ghy).

aeNFE*(7)
(2) Let v be a reduced edge path in G. The F-exponential length of v, denoted by ££(~)

N () =t(1nG=GCror) = Y (anG=Ghgy).

QN BE (%)
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(3) Let 7 be a reduced edge path in G' and let v = v9y{71...7,7 be the exponential
decomposition of v. A PG-relative complete splitting of the path v is a splitting v =
01 ...6m, such that for every i € {1,...,m}, the path ¢; is one of the following paths:

e asplitting unit of positive exponential length not contained in some ; for i € {0, ..., k};
e a maximal taken connecting path in a zero stratum;

e a subpath of v which is a concatenation of subpaths contained in Gpg and Nielsen
paths in Npg.

We call the above paths PG-relative splitting units. If + is a circuit, a PG-relative
circuital complete splitting of «y is a circuital splitting of v which is a PG-relative complete
splitting of ~.

(4) A factor of a PG-relative completely split edge path v is a concatenation of PG-
relative splitting units of some given PG-relative complete splitting of ~.

Note that if  is an edge path of G, then £¢p(y) = 0. Indeed, two paths v; and 7
contained in NJE*(~) are either equal or disjoint. Let v = v9y{71 - .. 7,7 be the expo-
nential decomposition of v. For every i € {1,...,k}, we have Lezp(7;) = U(v; N G — G'p(;)

and
k

gea:p(’)/) = 2 gexp(’yzl')'

i=1
We prove the existence of PG-relative complete splittings in Lemma Note that
a PG-relative complete splitting of a reduced edge path = is not necessarily unique.
Indeed, it might be possible that one can split a PG-relative splitting unit of v which is
a concatenation of paths in G pg and in Npg into two PG-relative splitting units which
are concatenations of paths in Gpg and in Npg.
In the rest of the section, we describe some properties of the exponential length.

Lemma 6.3.16. Let v be a reduced edge path in G and let v = ~1y2 be a decomposition
of v into two edge paths. We have:

eexp(/}/) < eexp(’)/l) + Eexp(72)-
Proof. It is immediate that
Uy NG —Ghg) =l nG—=Glhg) + 20 G —Ghyp).

Let i € {1,2}. Let v' € Np&*(7;). Then there exists 7" € N5&*(vy) such that v/ < +”. In
particular, we have

DI U NG =GChg)= D> U NG =Ghg)+ D). LY G = Ghg).

V' ENPE (V) VENBE (1) VENBE (72)

By definition of the exponential length, this concludes the proof. ]
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Note that we do not necessarily have equality in Lemma [6.3.16] Indeed, let v = 172
be as in Lemma [6.3.16, Suppose that the endpoint of ~; is contained in a path +' of
max max max

BEX(). Then ~ is not necessarily a concatenation of paths in Np&*(v1) and Np&*(y2).
Therefore, we might have:

D U nG=Ghp)> D U nG=Grg)+ D U NG =GChg),

VENPE () VeENPE () VENPE (12)

and a strict inequality in Lemma In particular, a proper subpath of + might
have greater exponential length than - itself. For instance, if v is a reduced path in G
such that czp(7y) = 0, it is possible that there exists a proper subpath + of v such that
Lezp(y') > 0. However, there exists a bound, depending only on G, on the difference of the
exponential length of a subpath of v and the exponential length of v (see Lemma.

If v is a path in G such that £¢;,(7) = 0, we do not necessarily have £eqp ([ f(7)]) = 0.
Indeed, if v is an edge in a zero stratum such that [f(7)] contains a splitting unit which
is an edge in an EG stratum, we have lc,, ([ f(7)]) > 0. However, the following lemma
describes an important situation where the map f preserves the property of having zero
exponential length.

Lemma 6.3.17. Let v be a reduced edge path which is a concatenation of paths in Gpg
and in Npg. For every n € N, we have leyy([f"(7)]) = 0.

Proof. Since the [f]-image of a concatenation of paths in G pg and in Npg is a concate-

nation of paths in Gpg and in Npg by Lemma [6.3.9] it suffices to prove the result for

n = 0. Let v be a concatenation of paths in Gpg and in Npg. Let v = v%v{71 - - V6V

be the exponential decomposition of v: for every i € {1, ..., k}, the path v; is a maximal

subpath of v in Npg and for every i € {0,...,k}, the path +/ is a path in Gpg. Note
max

that for every i € {1,...,k}, we have v; € Np&*(7). By definition of the exponential
length, we have legp(7) = Zf:o legp(7)) = 0. O

Corollary 6.3.18. Let v be a path of Npg. Then Legy(7y) = 0. In particular, if v is either
a closed Nielsen path, an NEG INP or an exceptional path, we have legp(y) = 0.

Proof. By Lemma([6.3.8] the path v is a concatenation of paths in Gpg and in Npg. By
Lemma [6.3.17, we have fczp(y) = 0. The second assertion follows from Lemmas
and [6.3.7] 0

Lemma 6.3.19. Let v be a completely split edge path and let v = 1 ...y be its complete
splitting. Let o € NBE¥(7y). Then either v is a concatenation of splitting units of v or
there exists i € {1,...,m} such that v & ~;. Moreover, the complete splitting of 7 is a
PG-relative complete splitting of .

Proof. Let e be the first edge of 4" and let ¢ € {1,...,m} be such that e is contained in
7vi- Let o be the splitting unit of 4’ containing e. By Proposition (9), the edge e is
in an EG stratum. Hence ~; is either an edge in an EG stratum, an exceptional path or
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an INP. Since 4/ is a Nielsen path, and since ~; is a splitting unit of v, we see that ~; is
not an edge in an EG stratum. If v; is either an NEG INP or an exceptional path, then
Proposition (11) implies that ; starts and ends with edges in NEG strata whose
height are strictly higher than the one of e. Since the height of e is equal to the height
of o, we see that ~; contains o. An inductive argument shows that 4’ is contained in ~;.

Suppose now that ~; is an EG INP. By Lemma[6.3.4] (2) applied to ~; and +, either +/
is contained in ~y; or ; is the initial segment of 7. If 4/ is contained in +;, by maximality
of 7/, we see that 4’ = 7;. Suppose that 4/ is the initial segment of the completely split
edge path 7;...7%. Then [FH, Corollary 4.12] implies that 4/ is a factor of ~.

The last assertion of the lemma follows from the following observations. Every split-
ting unit of v which is either an INP or an exceptional path is a concatenation of paths
in Gpe and in Npg by Lemma [6.3.7, Moreover, by the first assertion of the lemma,
every splitting unit of 4 which is an edge in an irreducible stratum not contained in Gpg
does not intersect a path in N5&*(7). Hence the complete splitting of v is a PG-relative
complete splitting. O

PG-relative completely split edge paths are well-adapted to the computation of the
exponential length as explained by the following lemma.

Lemma 6.3.20. Let v be a PG-relative completely split edge path and let v = aq ...y be
a PG-relative complete splitting.

(1) For every path ~' € NB&X(v), there exists a minimal concatenation of PG-relative

splitting units 6 of v such that ' < §; every PG-relative splitting unit of § is a con-
catenation of paths in G pg and in Npg; for every PG-relative splitting unit &' of 8, the

intersection 0’ N+ is an element of NPE*(d").

(2) We have Legp(v) = St Leap(ai) and €r(7) = 3, £r(as).

Proof. (1) Let v = Y771 --- 7% be the exponential decomposition of v where, for
every i € {0,...,k}, we have v; e Np&*(v). Let i € {0,...,k}. Let j € {1,...,£} be such
that o contains an initial segment of ;. By Proposition (10), the splitting unit «;
is not contained in a zero stratum. Moreover, by definition of the PG-relative splitting
units, if o; is an edge in an irreducible stratum of positive exponential length, it is not
contained in 7;. Hence, by the description of PG-relative splitting units, the path o;
is a concatenation of paths in Gpg and in Npg. By Proposition (9), the path ~;
starts with an edge in an EG stratum. Hence there exists a path ; in Ng&*(c;) which
contains an initial segment of ;. By maximality of «;, we see that 8;  ~;. Suppose first
that 8; = ;. Then setting 6 = o; proves the first assertion. Suppose now that 3; & ;.
By Lemma (2) applied to v = fy;l and v = B;l, the path [ﬁ;lfyi] is a path in
Npg. Therefore, by Proposition (9), the path [ﬁj_l'yi] starts with an edge in an
EG stratum. Note that, as «; is a concatenation of paths in Gpg and in Npg, if «;
contains the first edge e of [ﬁj_l%], then e would be contained in an EG INP contained

in ;. Since §; is a maximal subpath of «; in Npg, we see that [ﬁ;lfyi] is contained
in v’ = aj41...0 and is in NF&*(7"). We can thus apply the same arguments to the
paths [Bj_l'y,-] and ~v”. This concludes the proof of (1).
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The proof of (2) follows as the exponential length and the F-length are computed by
removing paths in Gpg and in Npg. As all subpaths in G pg are contained in a splitting
unit of v and as subpaths in Npg are obtained by concatenating paths in I_Ifz1 P (),

we see that Legp(7) = S| Leap(ai) and £x(v) = S_, €r (). O

The following property of the exponential length allows us to pass, if needed, to a
further iterate of the CT map f.

Lemma 6.3.21. For every edge e of G — G'5, we have
T Legy ([ (€)]) = 00 and lim (#([f"(e)]) = co.

Moreover, the sequences (Lezp([f"(€)]))nen and ((x([f"(€)]))nen grows exponentially fast.

Proof. We prove the result concerning /.,,, the proof of the result concerning ¢ follows
from the fact that for every reduced edge path v in G, we have lcz,(7) < €r (7). Let e be
an edge of G — G'p;. Since every iterate of e is completely split by Proposition (6)
and since there exists an iterate of e which contains a splitting unit which is an edge in
an EG stratum, we may suppose that e is an edge in an EG stratum H,. Since H, is an
EG stratum, the number of edges in [f™(e)] n H, grows exponentially fast as n goes to
infinity. Therefore the number of splitting units of [f"(e)] which are edges of H, grows
exponentially fast and limg, e Leap([f"(€)]) = o0. O

Lemma 6.3.22. Let v be a PG-relative completely split edge path. There exists ng € N*
such that for every k = ng, we have Legp([fX(7)]) = leap(y)-

Proof. Let v = 71 ... be a PG-relative complete splitting of v. By Lemma it
suffices to prove the assertion for every subpath ~;, with i € {1,...,k}. Let i € {1,...,k}.
If 7; is a concatenation of paths in Gpg and in Npg, then Legp([f(7i)]) = Leap(vi) =0
by Lemma If 4; is a maximal taken connecting path in a zero stratum, we
have Legp(vi) = 0. Hence Legp([f(Vi)]) = Lewp(vi). In the other cases, 7; is an edge
in an irreducible stratum which is not contained in Gpg. By Lemma we have
limy, o0 Leap([f™(7i)]) = o0. Hence there exists ng € N* such that, for every k > nyg,
we have Lezp([f5(7i)]) = feap(i), and ng may be chosen to be independent of 7; with
ie{l,..., k}. O

The last lemma in this section shows that the exponential length of a PG-relative
completely split edge path encaptures the splitting units which are edges with exponential
growth under iterates of f.

Lemma 6.3.23. Let v be a PG-relative completely split edge path, let v = vy1...7 be a
PG-relative complete splitting and let i € {1,...,k}. Then leyp(vi) > 0 if and only if
~v; i an edge in an irreducible stratum not contained in Gpg. In particular, the value
Ceap(7y) is the number of splitting units which are edges in G — G'p.
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Proof. Suppose first that 7; is either a concatenation of paths in Gpg and in Npg
or a maximal taken connecting path in a zero stratum. By Lemma we have
Legp(vi) = 0. Suppose that 7; is an edge in an irreducible stratum which is not contained
in Gpg. Since there does not exist an EG INP of length 1, by definition of the exponential
length, we have £¢;p(v;) = 1 > 0. This concludes the proof of the first part of the lemma.
The computation of £¢yp(y) follows from Lemma (2). O

6.3.3 The space of polynomially growing currents

In this section, let F be a free factor system and let ¢ € Out(Fy, F) be an exponen-
tially growing outer automorphism. Recall the definition of A(¢) and F A A(¢) from
Section We define a subspace of PCurr(Fy, F A A(¢)), called the space of polyno-
mially growing currents. It consists in the currents whose support is contained in 62.4(¢)
(see Lemma . In order to define it, we first need to show that the exponential
length extends to a continuous function ¥: PCurr(Fy, F A A(¢)) — R. The space of
polynomially growing currents will then be defined as a level set of W.

We first need some preliminary results concerning paths in Npg. For a path v € Npg,
let N5 () be the subset of Npg which consists in all paths 7' € Np¢ such that v &+
and 7/ is minimal for this property. Let v/ € N34 (7). By Lemma m (3), either v is
properly contained in an INP o of the complete splitting of 4/, or there exist (possibly
trivial) paths 1,72 € Npg such that v = v1972. By minimality, either v1 or 7» is trivial.
Moreover, a result of Feighn and Handel ([FH], Corollary 4.12]) shows that, in this case,
splitting units of the complete splittings of 71, 72 and ~ are splitting units of 7. Thus
the set N (7) can be partitioned into three disjoint subsets:

pe () =Npa inp(N) UNBG 1 () BNBE ign: (V)

where N3Z ;v p(7) is the set of paths in N7 (v) such that one of their splitting units

properly contains 7, Nggleﬁ(’y) is the set of paths v/ € N5 (7) such that v/ = vy

and N;g,rz‘ght(’y) is the set of paths 7/ € NjZ(v) such that 4/ = 72. One can also
define similarly the three sets Npd jnp (V) Npgep7(7) and Npg o, #(7) as the
restriction to the paths in Npd np(7); Npd o, (7) and Npg .o (7) contained in Gy,
We emphasize on the fact that a path in N, ;55 ;v p(Y) might contain several occurrences
of the path v. However, a path in N;aleft(’y) or in ;gm.ght(v) contains a unique
occurrence of . Indeed, let 7' € ;(J;r,left('Y) (the proof for ;G*’”.ght('y) being similar).
Then v/ = v1v2 with 41 € Npg and 72 = v. Let 43 be an occurrence of v which contains
an edge of 1. By Lemma m (2), the path 3 cannot intersect -, nontrivially. Hence
v3 € 7. Hence 71 € Npg and 7, contains an occurrence of v. This contradicts the
minimality of /.

Lemma 6.3.24. Let v be a path in Npg. Let y1,72 be two distinct paths in NE& (7).
Suppose that there exist three paths p1, pa, ps such that v1 = pipe, y2 = paps and v s
contained in ps. Then v € N;&’,leﬁ(v), Yo € ./\/';g’mght(”y) and pg = 7.
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Proof. By Lemma m (2), the path ps belongs to Npg and contains 7. Since v; and
~2 are minimal paths of N'pg for the property of properly containing 7, we have ugy = .
Therefore, we see that v; = pu1y and 9 = yus. This shows that v € Nggleﬁ(’y) and

that 72 € Npd ion (7)- O

Lemma|[6.3.24] implies that an occurrence of ~ in the intersection of paths in N7Z (v)

is well-controlled. Following Lemma 6.3.24# we then define ;5,lr(7) to be the set of

paths of the form 1772, where v1y € /\/';(’;’Jeft(v) and vy € N;C?Mght(’y). We define

similarly the set N3, =(7) to be the set of all paths in N3Z, (v) contained in Gp. As

for ;&r’leﬂ (7) and Ngg,right(w’ a path in ;&ilr (7) contains a unique occurrence of +.

Given two paths v and +' of G let N(+',~) be the number of occurrences of v and
y~!in /. Using the finiteness of Npe (see Lemma [6.3.4] (1)), we denote by

U Curr(Fy, F A A(¢)) —> R

the continuous function

Uo(v) = ), (<%V>— >, wNE+ D] <7’,V>)€(70G—G’pg),

1€NpG YeNEE () VENEE ()
and by Ug: Curr(F,, F A A(¢)) — R the continuous linear function

Yo(v) = LeeB(G=ang) & V) — q’é(”))

ZeeE(G—G'PG) (e, v) =

S (Gn- T @aNer S Gn)NG)).

VENPG Sy YENEE () VENEE ()

NI N

Definition 6.3.25. The space of polynomially growing currents, denoted by Kpg(f), is
the compact subset of PCurr(Fy, F A A(¢)) consisting in all projective classes of currents
[v] € PCurr(Fy, F A A(¢)) such that:

‘Ifo(V) = 0.

Finally, we define the F-simplicial length function ||.|z: Curr(Fy, F A A(¢)) — R as

_ 1
e = 3(Yeeramamp(er -
Y (Gw- % @wNea+ N @w)(vnG=Ghg) ).
veNpG,F VENEE #(7) VENEE 1,7 ()

Lemma 6.3.26. Let w € F, be a nonperipheral element with conjugacy class [w], associ-
ated rational current np,) and associated reduced edge path v, in G. Then

\110(77[10]) = Eemp(’}/wﬁ
Il 7 = L7 (V)
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Therefore ny,, € Kpa(f) if and only if

gexp(’)/w) =0.

In particular, there exist a basis B of Fy and a constant C' > 0 such that, for every
F n A(¢)-nonperipheral element g € Fy, we have ||ng || € N* and

ls([g]) = C Il

Proof. We prove the result for ¥, the proof for ||n,)||7 being similar. First note that

2 <67 77[w]> = 26(’7’111 NG — GlPG);
€ E(G—G'p;)

where the factor 2 follows from the fact that the sum on the left hand side is over oriented
edges. Therefore, it remains to prove that

Vo) = 3y (10 G =Ghg). (6.3)

YENEZ ()

Let v € Npg. Then the value

Gy = Y, Y me) NN+ D G g
YENEE () VENEE ()
measures the number of occurrences of v or v~! in 7, which are not induced by an
occurrence of a path 7/ € Npg containing properly v or 7! and contained in 7.
Indeed, an occurrence of v in a path 7' € Npg containing properly ~v will be counted
in Zw,e NEE () <'y' ,n[w]>N (+',7v). Moreover, if an occurrence of v is contained in two

distinct paths y1,72 € NAZ (v), Lemma [6.3.24] ensures that this occurrence is contained

max

in a path v3 € Ng§&%, (7). Therefore, the value

o 2 <’Y/’ 77[w]> N(’y/’ 7) + Z <’7,’ 77[w]>

YENFE () YENEE ()

measures an occurrence of v or 4! in a larger path, and each such occurrence will

be counted exactly once. Therefore, the equation below Equation (6.3) measures the
number of occurrences of v and 47! in P& (Yw). Thus, the equality (6.3) holds. The
last assertions of Lemma [6.3.26| then follows by definition of Kpg(f) and of £x. O

Note that in the proof of Lemma|6.3.26] we show that, for every edge e € E(G - Gbe)
and every nonperipheral element w € Fy, the value:

<ea77[w]>_ Z (<'7777[w]>_ Z <’71a77[w]>N(7/77)+ Z </7,777[w]>)N(/776)

vENPG .Sy YENZEE (1) VENFEE 1 ()
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measures the number of occurrences of e in =, which are not contained in a path of
P& (yw)- Thus, for every nonperipheral element and every edge e € E(G — G'p(;), we

have:

<ea77[w]>_ Z <<'7777[w]>_ Z <71a77[w]>N(7/77)+ 2 <’7’,7][w]>)N(’7,€) = 0.

VENPG ey YENFE(y) VENFEE 1 ()

The density of rational currents given by Proposition [6.2.15[ and the continuity of {.,.)
then shows that for every current v € Curr(Fy, F AA(¢)) and every edge e € E(G — G'p(),
we have :

ew- % (Gw- Y GwNEN+ Y G))NGe 20

YeNpG,eSy YENEE () YVENEE 1.(7)

Lemma 6.3.27. Let n > 3 and let F be a free factor system. Let ¢ € Out(Fy,, F) be an
exponentially growing outer automorphism. Let f: G — G be a CT map representing a

power of ¢.

(1) If [v] € Kpg(f), then Supp(v) € 0*(Fu, F A A(¢)) N 02 A(¢p). In particular, if ¢ is
expanding relative to F, then Kpg(f) = @.

(2) Conversely, if v € Curr(Fn, F A A(¢)) is such that the support Supp(v) of v is
contained in 0*(Fy, F A A(¢)) n 02 A(¢), then [v] € Kpa(f). Thus we have

Kpa(f) = {[u] € PCurr(F,, F A A) | Supp(p) € 0*(Fy, F A A(p)) n 0% A(¢)}.

(3) Ifve Curr(Fp, F A A(9)), we have ||v||x = 0 if and only if v = 0.

Proof. The proof of (3) being identical to the proof of (1) and (2) replacing G and
Npg by Gpg 5 and Npg 7, we only prove (1) and (2). For the proof of both (1) and
(2), let B be a free basis of Fy, and let T be the Cayley graph of F, associated with B.
Let € (A(¢)) be the set of elements of F, associated with A(¢) given by Lemma
Recall that Cyl(%'(A(¢))) is the set of cylinder subsets of the form C(y), where v is
a geodesic edge path in T starting at the base point whose associated element w € Fy
contains a word of € (A(¢)) as a subword.

(1) Let v € Curr(Fp, F A A(¢)) nonzero be such that Supp(v) is not contained in
?(Fy, F A A(¢)) n 02A(¢). Then Supp(v) n 0%(Fy,, A(¢)) # @. Hence the restriction
of v to 0%(F,, A(¢)) induces a nonzero current v’ € Curr(Fy, A(¢)). By Lemma
applied to A = A(¢) and v/, there exists C () € €(A(¢)) such that v(C(vy)) > 0. Let w
be the element of Fy associated with v, and let 4/, be the reduced circuit in G associated
with the conjugacy class of w. Up to taking a larger geodesic edge path 4" 2 « in T such
that v(C(v")) > 0 (which exists by additivity of v/), we may suppose that w is cyclically
reduced. By Lemma (3), the path v is not contained in any tree T4 such that
[A] € A(¢). As w is cyclically reduced, the translation axis in 7" of w contains . Hence
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{wr® w=>°} ¢ 0%2A(¢) and w is not contained in any subgroup A such that [A4] € A(¢).
By Proposition |6.3.13] the circuit 7/, is not a concatenation of paths in G pg and in Npg.
Therefore, there exists an edge e of G such that

ew- % (Gw- Y GwNEN+ Y G))NGe >0

YeNPG.eSY YENEE () VENPE (1)

Thus, we see that Uo(r) > 0 and that [v] ¢ Kpg(f). The second part of (1) follows
from the fact that, if ¢ is expanding relative to F, then 02A(¢) < 0°F. This proves (1).

(2) Let v € Curr(Fy, F A A(¢)) be such that Supp(v) S 0*(Fn, F A A(@)) n02A(¢). Let
e be an edge such that {e,r) > 0. By Lemma [6.3.4] (1), there exists a constant C; > 0
such that, for every path ' € Npg, we have £(7') < C;. Recall the definition of the
graph G* and the application pgx: G* — G. from Lemma[6.3.11] Let Cy be the length
of a maximal path in a maximal forest of pgs(G*). Let C = max{2C}, Ca}.

Claim. Let v, 6; and d2 be reduced paths such that v = d1edq, £(d1),£(d2) > 2C and
(y,v) > 0. Let v = vv{71 ... be the exponential decomposition of v (where, for
every i € {0,...,k}, the path 7; is contained in Npg). Either e € EG'PG or e is contained
in an EG stratum and there exists ¢ € {0, ..., k} such that e € ;.

Proof. Since Supp(v) € 0?(F,, F A A(¢)) n 0*A(¢), there exists a subgroup A of F,
such that [A] € A(¢), and two elements a and b of A such that the geodesic path in G
representing {at® b7} € 02A contains a lift of 4. If b = a~!, then 7 is contained in
an iterate of a and, by Proposition ~ is contained in a concatenation of paths in
Gpg and Npg. The claim follows in this case. So we may assume that b # a~!. Suppose
first that the axes Ax(a) and Ax(b) of a and b are disjoint. Then + is contained in the
axis of a~'b. Thus, by Proposition ~ is contained in a concatenation of paths in
Gpa and Npg and the claim follows in this case.

Suppose now that Ax(a) n Ax(b) # @&. Let ) and ~; be the reduced circuit in G
associated with a and b. Then + is contained in the union of v, U ;. Recall that, by
Proposition the paths 7/, and 7; are concatenation of paths in Gpg and Npg.
Hence there exist reduced circuits @ and 8 in G* and reduced arcs 7,7, in G* such that
pax (o) = 7, and p*(B) = ~, and such that pg«(7) = v and pgx(7.) = e. By the choice
of C, and as ¢(01),4(d2) = 2C, one can remove an initial and a terminal segment of 7
so that the resulting path 7’ is nontrivial, is contained in a subgraph of G* with no leaf
and is such that ¢(pg#(7')) = 2C' + 1. Thus, there exist subpaths 71, 7/, 75, 7 of 7 and
a reduced circuit § of G* such that:

(i) Upgx(11)), U(pax(13)) = C,
(it) T =71{T{eTyTy,
(itg) 7T = T{ers S 6.

By Lemma (1), the path pg=(d) is a reduced ciruit which contains e. Since
Upax (1)), Upe=(15)) = C = 2C, if v € NEE¥(pe=(0)) is such that e < ', then
v € 7{ets. Hence it suffices to prove the claim for v = pg#(d). As ¢ is a concatenation
of paths in Gpg and in Npg, the claim follows. O
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Suppose towards a contradiction that there exists an edge e € G — G'p; such that:

evy— ] (<% - Y. YwNF+ D] <7CV>)N(%6) > 0.
vENPG.eSy VeENEE () VENEE (1)

(6.4)

By additivity of v, there exists a reduced path « of length 4C + 1 such that the path

~ has a decomposition v = vje7ys, where for every ¢ € {1,2}, the path 7; has length
equal to 2C" and we have v(C(v)) > 0. By Equation we can choose 7 such that if
v € Np&*(7), then 4/ does not contain e. Hence e ¢ G'p; and e is not contained in a
subpath of Np&*(). This contradicts the above claim and this concludes the proof. [J

Let F be a free factor system and let ¢ € Out(Fy,, F) be an exponentially growing
outer automorphism. Note that, by Lemma [6.3.27] and since for every k € N*, we have
A(¢) = A(¢F), the space Kpg(f) does not depend on the CT map f and does not
depend on the chosen power of ¢. Therefore, we will simply write Kpg(¢) instead.
Moreover, since A(¢) = A(¢~1), we see that Kpg(d) = Kpa(p™t).

For the next proposition, let C; > 0 be a constant such that for every path v € Npg,
we have ((y) < Cy. It exists since Npg is finite by Lemma [6.3.4] (1). Let L be the
malnormality constant associated with A(¢) as defined above Lemma and let
Co = max{C1, L}. Let € be the set of elements of Fy, associated with F A A(¢) given
above Lemma Let P(F A A(¢)) be the set of reduced paths v in G such that
C(v) € Cyl(€), £(y) > Cpy and ~ is not contained in a concatenation of paths in Gpg 7
and N PG,F-

Lemma 6.3.28. Let n > 3, let F be a free factor system of Fy and let ¢ € Out(Fy, F) be
an exponentially growing outer automorphism. We have

P FAAQ) = | o
YEP(F ~A(4))

Proof. Let Aj,..., A, be subgroups of F, such that F A A(¢) = {[41],...,[Ar]} and
¢ =%(A1,...,A;). By Lemma[6.2.12] we have

P FAA@) = | cm.
C(7)eCyl(%)

Note that, for every path v € G, we have

cn= U cke

e€EG, £(ve)>L(y)

Hence we have
O*(Fo, F A A()) = g C ().
C(meCyI(¥), £(v)>Co
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So it suffices to prove that we can restrict our considerations to paths v which are not
contained in a concatenation of paths in Gpg r and Npg r. Let v be a path such that
C(vy) € Cyl(¥) and ¢(vy) > Cy. By Lemma (3), the path v is not contained in
any tree Tg4,4-1 with g € Fy, and ¢ € {1,...,r}. Moreover, it is not contained in any
path of Npg since £(v) > C;. Suppose that 7 is contained in a concatenation of paths
in Gpg r and Npg r. Suppose first that there does not exist a circuit which contains
v and which is a concatenation of paths in Gpg r and Npg 7. Recall the definition of
G* and pg= from Lemma and let G = péi(Gp). By assumption, either there
does not exist an immersed path (not necessarily an edge path) v* in G% such that
pax(7*) = v or there exists an immersed path v* in G% such that pg«(7*) = v and * is
not contained in a circuit of G (recall that G* might contain univalent vertices). In the
first case, we have £x(y) > 0. In the second case, since G* is finite, by Lemma
up to considering ¥~ !, there exists d € N* such that for every path of 4/ such that v+ is
a reduced path in G and ¢(v9') = £() + d, the path v’ is not the image by pg* of an
immersed path in G%. Thus we have {x(yy’) > 0. Using the fact that

cm= U oo

e EG,0(ve)>L(y)

we can replace v by paths 4" such that v € +” and 4" is not contained in a concatenation
of paths in Gpg, r and Npg r. This concludes the proof. O

Let v be a nonzero current in Curr(Fy,, F A A(¢)). By Lemma |6.3.27| (3), we have
|lv||z # 0. The following result characterizes limits in PCurr(Fy,, F A A(¢)). The result
is due to Kapovich [Kap, Lemma 3.5] for a nonrelative context.

Lemma 6.3.29. Let n > 3 and let F be a free factor system of Fy. Let ¢ € Out(Fy, F) be
an exponentially growing outer automorphism. Let ([un])nen be a sequence in PCurr(Fy, F A
A(¢)) and let [p] € PCurr(Fy, F A A(p)). Let G be a graph whose fundamental group is
isomorphic to Fy and such that there exists a subgraph G, of G such that F(G)p) = F.
Then Aﬂo[un] = [p] if and only if, for every reduced edge path v € P(F A A(p)), we

have

n=0 |lpnllz llellz
Proof. Suppose first that lirrgo [tn] = [©]. Thus there exists a sequence (Ap)pen*
n—
of positive real numbers such that lim A,u, = p. By continuity of |||z, we have
n—0o0
lim [ Appin||7 = ||pell7. By linearity of ||.|z and {.,.) in the second variable, for every
n—0o0
reduced edge path v € P(F A A(¢)), we have
A
iy pAnpn) o ke )
n=0 | Appinll7 - oo flpnllz o lellF

Suppose now that for every reduced edge path v € P(F A A(¢)), Equation (6.5 holds.
By Lemma [6.3.28, for every Borel subset B of 0%(Fy, F A A(¢)) such that u(éB) = 0,
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we have B B
m(B) _ wB)
=0 lpnllz o ez
Hence we have lim [u,] = [¢]- O
n—0o0

6.4 Stable and unstable currents for relative atoroidal outer au-
tomorphisms

Let n > 3 and let F be a free factor system of Fy,. Let ¢ € Out(Fy, F) be an atoroidal
outer automorphism relative to F. In this section, under additional hypotheses on ¢,
we construct two ¢-invariant convex subsets of PCurr(Fy, F). We will then show in the
following section that, with respect to these convex subsets, the outer automorphism ¢
acts with generalized north-south dynamics.

In order to define the extremal points of these simplices, we need some results re-
garding substitution dynamics.

6.4.1 Substitution dynamics

Let A be a finite set with cardinality at least equal to 2. Let  be a substitution on A,
that is, a map from A to the set of nonempty finite words on A. The substitution (
induces a map on the set of all finite words on A by concatenation, which we still denote
by (. We can therefore iterate the substitution {. For a word w on A, we will denote by
|w| the length of w on the alphabet A.

To the substitution ¢ one can associate its transition matriz M, which is a square
matrix whose rows and columns are indexed by letters in A and, for all a,b € A, M(a,b)
is the number of occurrences of a in ((b). Likewise, for n > 1, the matrix M™ is the
transition matrix for (™. We say that a substitution ( is irreducible if its transition
matrix is irreducible, and that the substitution is primitive if its transition matrix is.

Let ¢ € N* and let A; be the set of words on A of length ¢. As defined in [Quel
Section 5.4.1], the substitution ¢ induces a substitution {; on A, as follows. Let w =
w1...20 € Ag. Then ((w) = wiws ... w)¢(s,), where, for every i € {1,...,[((x1)]}, the
word w; is the subword of ¢(w) of length ¢ starting at the i** position of ¢(z). Therefore,
¢ is the concatenation of the |((x1)]| first subwords of ((w) of length ¢. Note that the
number of i € {1,...,|{(x1)|} such that w; that is not contained in ((z;) is bounded
by ¢ — 1. Let |- |; be the length of words on Ay. Then |(y(w)]; = |((x1)]. Denote by
My the transition matrix of (;. Note that, for every n,¢ > 1, we have (("), = (()" as
applications on the set of words on Ay and thus (M™), = (M,)™.

Consider now a partition of the alphabet A = Hf:o B;. Suppose that the transition
matrix associated with the substitution ( is lower block triangular with respect to this
partition. Therefore, for every i € {0,...,k}, for every x € B; and for every j < i,
the word ((x) does not contain letters in B;. In the remainder of the article, for every
1 €{0,...,k} the diagonal block in M corresponding to the block B; will be denoted by
Mp,.

K3
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The partition of A induces a partition of Ay as follows. For every i € {0,...,k}, let
B; c Ay be the set of all words on A of length ¢ which start with a letter in B; and
which, for every j < i do not contain a letter in B;. Let B; be the set of all words w on
A of length ¢ which start with a letter in B; and such that there exists j < ¢ such that w
contains a letter in B; (note that By is empty). Then EZ U B; is the set of all words on A
of length £ which starts with a letter in B;. The hypothesis on the substitution ¢ implies
that the transition matrix M, is lower block triangular with respect to the partition

§0H§1H§1H...H§kﬂék

of Ay. As before, for every i € {0,...,k}, we will denote by M, 5, the diagonal block in
M, corresponding to B; and by M 0B the diagonal block in M, corresponding to Ez

Lemma 6.4.1. [Gupl, Lemma 8.8] Let A be a finite alphabet equipped with a partition
A= HfZOBi. Let ¢ be a substitution and let M be its transition matrix. Let £ € N*.

(1) The eigenvalues of M, iz are those of Mp, with possibly additional eigenvalues of
absolute value at most equal to 1.

2) The eigenvalues of M,+ have absolute value at most equal to 1.
0,B;

Fix an integer p € {0,...,k}. For every i > p, let El(»p) be the subset of B; consisting

in all words w of length £ which start with a letter in B; and such that there exists j < p
such that w contains a letter in B;. Then, for every i = p, the block M, 5 decomposes

into a lower triangular block matrix where the columns and rows corresponding to E(.” )

are on the top left. Let M B® be the corresponding block matrix. By Lemma |6.4.1{(2),

the eigenvalues of M (B have absolute value at most 1. Moreover, for every i,j = p,

)

for every word w contained in Bj v Bj — Bg-p , the word (y(w) considered as a word on

Ay does not contain any word of Bﬁp ), Let My(p) be the matrix obtained from M, by
deleting, for every i = p, every row and column corresponding to elements in B;, and

)

every row and columns corresponding to elements of B; which do not belong to Eﬁp .
Note that, by Lemma (1), the eigenvalues of My(p) are those of every block Mp;
with j < p with possibly additional eigenvalues of absolute value at most 1.

We can now prove a result concerning the number of occurrences of words in iterates
of a letter. For words w,v on A, we denote by (w,v) the number of occurrences of w in
v, so that M = ((a,((b))apea. For a word w on A, we denote by ||w||(,) the number of
letters in w which are contained in some B; for j < p.

Proposition 6.4.2. Let A be an alphabet equipped with a partition A = HfzoBi. Let ¢ be a
substitution on A and let M be its transition matriz. Suppose that M is lower triangular
by block with respect to the partition of A. Let p € N*. Let a € Uj<p Bj be such that
((a) starts with a. Suppose that there exists j < p such that M B; s a primitive block
whose Perron-Frobenius eigenvalue is greater than 1 and such that there exists nj > 1
such that (" (a) contains a letter of B;. Let w be a word such that w contains a letter
in B;. Then
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b (@, @)
2% (1@l

exists and is finite. Furthermore there exists a word w containing a letter in some B;
with 7 < p such that this limit is positive.

Proof. The proof follows [Gupl, Lemma 8.9] (see also [LUI] for similar statements).
First, up to replacing A by the smallest (-invariant subalphabet of A containing a (which
still satisfies the hypotheses of Proposition , we may suppose that, for every letter
x € A, there exists n, > 1 such that ("#(a) contains the letter z. Let o be a word on A
with length ¢ > 1 that starts with a. Note that, since a € U, B;, the word o defines
a column and a row in M,(p). Recall that for every n the number of occurrences of a
word w in ("(a) differs from the number of occurrences of the letter w € Ay in (}'(«) by
at most £ — 1. Moreover, we have (w, (}'(a)) = M} (p)(w, a).

Let S be the set of all s < p such that Mp, is a primitive block with associated
Perron-Frobenius eigenvalue greater than 1. By assumption, the set S is a nonempty
finite set. Let S’ be the subset of S consisting in all such By such that the associated
Perron-Frobenius eigenvalue is maximal. Call this eigenvalue A. By Lemma the
eigenvalue A is also the maximal eigenvalue of the matrix M;(p). Let d) be the size of
the maximal Jordan block of M (p) associated with A. Then the growth under iterates

of the maximal Jordan block of M‘T(m is polynomial of degree dy. Therefore, we have
- (w,¢Ma) L (w,Ga)) o M (p)(w, o)
S Xind e Xind b deph O

where dy,  is a real number. Moreover, the limit does not depend on the choice of «
since, for any n, and for any two columns of M}'(p) corresponding to words starting with
the same letter, the sum of the values of each column differ by at most £ —1 (see [Gupl]
Lemma 8.6]). Moreover, there exists a word w such that the limit is positive since we
quotiented by the growth of the iterates of the Jordan block with maximal eigenvalue.

Let || - || be the Li-norm on R4, By [LUI, Remark 4.1], since lim,, o Mg (p)w,e)

Annda
exists, so does
MTL
lim 4 ELp) (wa O[) ’
n—a || M (p)(a)]

where || M (p)(a)]|| is the norm of the column of M (p) corresponding to a.

Claim. Suppose that there exists C' = 1 such that for every n € N, we have

¢ (@)l py < (1M (P) (@) < ClIC™ (@)l py-

Fhen (,¢"(@)
. w, (" (a
now (|7 (a)][ )

exists for all words w on A and is positive for some word w.
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Proof. Recall that two sequences (up)nen and (v, )neny with values in R are equivalent
if there exists a sequence (€,)nen tending to zero such that w, = (1 + €,)v,. Re-
call that there exists C' > 0 such that the sequence (||M;(p)(a)|)nen is equivalent
to (C'A\"n%),en. Recall also that for every n, the value of 1¢"(a)ll(p) is the norm of
M"™(p)(va), where v, is the vector whose coordinates is 1 on the coordinate associated
with a and 0 otherwise. Hence, since the matrix M"(p) is nonnegative and not the zero
matrix, there exist Cy, Ay € R} and d, € N such that the sequence ([[¢"(a)l|(p))nen is
equivalent to (CyA'n%),en. Thus, by the assumption of the claim, since the limit

L M) (w,a)
w5 7 ) )]

exists, and is not equal to zero for some w, the same is true for

L (0.6(@)
e [ (a) gy

This proves the claim. O

Therefore, in order to conclude the proof of the proposition, it remains to prove that
the hypothesis of the claim is true in our context. Let ("(a) = x1...T|¢n(q) and let

¢ (@) = wi... wien(qy-

Let X"(a) be the list z1,...,%¢n(q) and let X2, (a) be the sublist of X" (a) consisting
in all letters in uf;llB,-. Let X" (a) be the list wy, ... , Wi¢n(q)) and let X(f[’,n)(a) be
the sublist of X (“™(a) which consists in all elements of X (™ (a) that do not belong to
x = = ¢

ViepBiBi—B.”. Note that [ X7 (a)| = A7 (p)(0)| and that | X2, (a)] = [|"(@)]|)
The fact that [[¢"(a)||) < |[M7'(p)()]| follows from the fact that we have an injection
from X2, (a) to X(fz’,n)(a) by sending the letter z; € X2 (a) to w; € Xfl’,n)(a). Since
every word of length ¢ contained in X(f}’,n) (@) contains a letter in X2, (a), we have an
application from ngg,n)(a) to XZ,(a) defined as follows. Let w € X(f;,n)(a) and let
Jw € {1,...,|¢"(a)|} be the minimal integer such that z;, € X2, (a) and ;, is a letter in
w. Then the application sends w to x;,. By construction, the cardinal of the preimage
of any = € X% (a) is at most equal to £. Therefore, we have

<™ (@)l py < [[M () (@) < LI (@)l p)-

This concludes the proof. O

6.4.2 Construction of the attractive and repulsive currents for relative almost
atoroidal automorphisms

Let n > 3 and let F = {[A1],...,[Ax]} be a free factor system of F,. We first define
a class of outer automorphisms of F; which we will study in the rest of the article. If
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¢ € Out(Fy, F) and ¢ preserves the conjugacy class of every A; with i € {1,...,k}, we
denote by ¢|r the element ([¢1]a,],.-.,[¢r]a,]), where, for every i € {1,...,k}, the
element ¢; is a representative of ¢ such that ¢;(A4;) = A; and [¢i]4,] is an element of
Out(A;). Note that the outer class of ¢;|4, in Out(A;) does not depend on the choice of

i

Definition 6.4.3. Let n > 3 and let F = {[A1],...,[Ak]} be a free factor system of Fj.
Let ¢ € Out(F,, F) be exponentially growing. The outer automorphism ¢ is almost
atoroidal relative to F if ¢ preserves the conjugacy class of every A; with i € {1,...,k}
and ¢ is one of the following:

(1) an atoroidal outer automorphism relative to F.

(2) an outer automorphism which preserves a sequence of free factor systems F < Fj <
{F,} with F1 = {[Bi1], ..., [B¢]} and such that:

(a) F1 < {F,} is sporadic,

(b) ¢ preserves the conjugacy class of every B; with i € {1,..., ¢}, the element ¢|r, is an
expanding atoroidal outer automorphism relative to F and ¢ is not expanding relative
to F (F might be equal to Fi).

The main example of an almost atoroidal automorphism is the following. Suppose
that 71 = [A] and let ¢ € Out(Fy, F) be such that ¢([A]) = [A]. Then ¢ is almost
atoroidal if q§|[ 4] is expanding relative to F. Indeed, either ¢ is expanding relative to F
and in this case ¢ satisfies (1) or ¢ is not expanding relative to F and ¢ satisfies (2).
Almost atoroidality allows us to deal with sporadic extensions.

Let ¢ € Out(Fy, F) be an almost atoroidal outer automorphism relative to F. In
this section, we construct a nontrivial convex compact subset in PCurr(Fy, F A A(¢))
associated with ¢. We follow the construction of [Uya2] in the context of atoroidal
automorphisms. By Theorem there exists M > 1 such that ¢ is represented
by a CT map f: G — G with filtration @ = Go € G1 S ... & G = G and such that
there exists p € {1,...,k} such that F(G)) = F. For a splitting unit ¢ in G, we say
that o is expanding if limy, o0 Leap([f™(0)]) = +00. Note that, by Lemmal[6.3.23] this is
equivalent to saying that there exists N € N* such that [f" ()] contains a splitting unit
which is an edge in an EG stratum. Moreover, a splitting unit ¢ which is an expanding
splitting unit is either an edge in G — G’p(; or a maximal taken connecting path in zero
stratum such that a reduced iterate of o contains an edge in G — G’p; as a splitting unit.
In particular, there are finitely many expanding splitting units by Proposition (3).

Let v and 4 be two finite reduced subpaths of G. We denote by #(~,~") the number
of occurrences of v in 4" and by {v,~’) the sum

n'y = #0) + #07HY). (6.6)

The next proposition shows the existence of relative currents associated with relative
atoroidal outer automorphisms. Once we have constructed these currents for relative
atoroidal outer automorphisms, we will also be able to construct attractive and repulsive
simplices for every almost atoroidal outer automorphisms relative to F. The proposition
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and its proof are inspired by the same result in the absolute context due to Uyanik ([Uya2,
Proposition 3.3]) and by the proof due to Gupta in the relative fully irreducible context
(IGupl}, Proposition 8.13]). Recall the definition of P(F A A(¢)) before Lemma
and % before Lemma [6.2.11]

Proposition 6.4.4. Let n > 3 and let F be a free factor system of Fy. Let ¢ € Out(Fy, F)
be an atoroidal outer automorphism relative to F. Let f: G — G be a CT map that
represents a power of ¢ with filtration @ = Gy € G1 S ... & G = G and such that
there exists p € {1,...,k} such that F(Gp) = F. Let v € P(F A A(¢)) and let o be an

expanding splitting unit with fized initial direction.

(1) The limit
e
"= ([ fr(o)])

exists and is finite.

(2) There ezists a unique current n, € Curr(Fy, F A A(¢)) such that, for every finite
reduced edge path v € P(F A A(¢)), we have:

N:(C (7)) = oy

Proof. (1) We may suppose that v occurs in a reduced iterate of o as otherwise o, = 0.
We first treat the case where o is an expanding splitting unit which is an edge in an
irreducible stratum. Let r be the height of o. In order to prove the proposition in this
case, we want to apply Proposition to the CT map f seen as a substitution on the
set of splitting units contained in iterates of 0. However, the set of splitting units might
be infinite since exceptional paths may have arbitrarily large widths and INPs arbitrarily
large lengths. Instead, we construct a finite alphabet A, depending on 7. The alphabet
is constructed as follows by associating a letter to every splitting unit occurring in a
reduced iterate of 0. However some letters will correspond to infinitely many splitting
units.

(a) We add one letter for each of the finitely many edges in irreducible strata that are
contained in a reduced iterate of o.

(b) We add one letter for each reduced maximal taken connecting path in a zero stratum
contained in a reduced iterate of o.

(¢c) We add one letter for each INP contained in a reduced iterate of o and such that
the stratum of maximal height it intersects is an EG stratum.

(d) Let 0 be an INP such that the stratum of maximal height it intersects is an NEG
stratum and such that it appears in a reduced iterate of o. By Proposition (11),
there exist an edge e, an integer s € Z and a closed Nielsen path w such that 6 = ew®e™!.
Note that v is not contained in w® since v € P(F A A(¢)) and w?® is a concatenation of
paths in Gpg 7 and N, pa,F by Lemma and the fact that ¢ is atoroidal relative to
F. Hence if v is contained in 9, it is either an initial or a terminal segment of §. Let

M be the maximal integer |d| such that v contains an INP of the form ew?e~!. Let
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Ms be the minimal integer |d| such that v n (ew?e™!) is either an initial or a terminal

segment of ew?e~!. Let Mz be the maximal integer |d| such that ew?e~! is contained
in [f(¢’)] with ¢’ a splitting unit which is either an edge in an irreducible stratum or a
maximal taken connecting path in a zero stratum. Let M = max{Mj, M, M3}. We add
one letter for each ew?e™! with |d| < M + 1. We add exactly one letter representing
every ew?e™! with |d| > M + 1.

(e) Let § be an exceptional path appearing in a reduced iterate of o. There exist
edges e, ez, a nonzero integer s and a closed Nielsen path w such that § = ejw®es L
Note that v is not contained in w?® since v € P(F A A(¢)) and w® is a concatenation
of paths in Gpg r and Npg r by Lemma and the fact that ¢ is atoroidal relative
to F. Let My be the maximal integer |d| such that v contains an exceptional path of
the form ejw?e;!. Let Mj be the minimal integer |d| such that v N ejw@ey ! is either
a proper initial or terminal segment of ejw?e;'. Let Mg be the maximal integer |d|
such that ejwe, ! is contained in [f(o”)] with o’ a splitting unit which is either an edge
in an irreducible stratum or a maximal taken connecting path in a zero stratum. Let
M' = max{My, M5, Mg}. We add one letter for each ejw?e,! with |d| < M’ + 1. We

add one letter representing every ejw?ey’ with |d| > M’ 4 1.

We claim that the alphabet A, is finite. Indeed, since the graph G is finite, so is
the number of letters in the first category. By Proposition (3), the zero strata
of G,_1 are exactly the contractible components of GG,_1. Hence the number of letters
in the second category is finite. The number of letters in the third category is finite
by Proposition (9). The remaining letters of A, are finite by definition. Let ¢
be the following substitution on A,. If a € A, represents a unique path in G, we set
((a) = [f(a)]. If a € Ay represents several paths in G, we set ((a) = a. We claim that
is a well-defined substitution. Indeed, by Proposition[6.2.5](6), if a is a letter in A, which
represents a unique path in G, then [f(a)] is completely split and every splitting unit in
[f(a)] is represented by a unique letter by the construction of letters in the fourth and
fifth category. Moreover, if a € A, represents several paths, then the definition of ¢ does
not depend on the choice of a representative of a. Hence ( is a well-defined substitution.

We claim that if a € A, represents several paths in G, then, for every representative
a of a, the path [f(«)] is represented by a. Indeed, the claim is immediate when a
represents several INPs, so we focus on the case where a represents several exceptional
paths. Let e, e be edges in G, let w be a closed Nielsen path in G and let d € Z be such
that elwdeQ_ ! is represented by the letter a. There exist a splitting unit ¢’ of a reduced
iterate of o by [f], an integer N € N* and an integer d; € Z such that elwdlegl is a
subpath of [fV(¢")]. Thus, using the constants given in (e), we have |d1| < Mg < M.
By the construction of the alphabet A,, there exists a letter ¢’ in A, corresponding to
the path e;w® ey L and o' represents a unique path. For every n € N, let d,, € Z be such
that [f"(eqw®ey')] = eqwe,!. Then the sequence (d,)nexy is monotonic. Let mg be
the minimal integer such that the path ejw®mo ey !is represented by a. Note that mg > 1
as a' represents a unique path. By monotonicity, dp,, # di. Thus, if d,,, > di, then for
every m = myg, we have d,, > dy,, and if d,,,, < di, then for every m > mg, we have
dpy < dp,. Hence for every m > mg, the path elwdm“eQ_ Lig represented by a. This
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shows that if & € a then [f(a)] € a. This concludes the proof of the claim. Hence ¢ only
depends on the function [f(.)].

By reordering columns and rows, we may suppose that, if M is the matrix associated
with ¢, then columns and rows of M with index greater than p are precisely the letters in
A, representing splitting units which are concatenations of paths in Gpg r and Npg, r.
By Lemma m iterates by ( of letters of A, representing concatenations of paths in
Gpa,F and Npg,F are words on A, whose letters represent concatenations of paths in
Gpec,r and Npg r. Thus, the matrix M is a lower block triangular matrix, where every
block of index at most p corresponds to either edges in a common stratum, or the 0
matrix when the associated letter is a maximal taken connecting path in a zero stratum.

Since o is expanding, it has a reduced iterate which contains splitting units which
are edges in EG strata. Hence if a, is the letter in A, corresponding to o, the iterates
("(as) contain letters of A, in a Perron-Frobenius block with eigenvalue greater than
1. Since the initial direction of o is fixed by Proposition for every word w in the

alphabet A, the limit
L [C(0))

m—o0 |[[(™()|](p)

exists and is finite. Hence the limit

i @ (€0
m=w |[(™(a)]|(p)

exists and is finite.

Claim. There exists a matrix M’ obtained from M by multiplying rows and columns by
positive scalars and such that, for every m € N*, we have £x([f™(0)]) = [M""(0)||(5)-

1 1

Proof. Remark that if ejw®e,; = is an exceptional path, and if elwdeg is an exceptional
path with distinct width, then their F-lengths are equal and at most equal to 2. Indeed,
since ¢ is an atoroidal outer automorphism relative to JF, every closed Nielsen path of
G is contained in (). Since w is a closed Nielsen path, we see that w is a concatenation
of paths in Gpg, 7 and Npg r by Lemma Hence we have

Ur(erw’ey’) = Lr(er) + €r(e) < 2.

Similarly, if ew®e~! and ew®e™! are INP intersecting the same maximal NEG stratum,

then their F-length are equal and at most equal to 2. Let M’ be the matrix obtained from
M by multiplying every row correponding to either an exceptional path not contained in
Gy, an INP not contained in Gy, a collection of exceptional paths not contained in G, a
collection of INPs not contained in G, or a maximal taken connecting path not contained
in G), by the corresponding F-length. Note that, by the above remarks, this does not
depend on the choice of a representative when the letter corresponds to a collection of
paths. Then for every m € N*, the value |[M""(0)||(,) corresponds to the sum of the
F-length of every splitting unit in [f™(o)] not contained in G,. By Lemma [6.3.19]
complete splittings are PG-relative complete splittings. By Lemma [6.3.20] (2), we have
(r([f™(o)]) = [[M"™(0)||(p)- This proves the claim. O
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By the claim, we see that for every m € N*, there exists a constant K such that we
have

I @)y < U@ < KNI,

Using the claim in the proof of Proposition [6.4.2] (replacing || M (p)(c)|| by £x([f"(o)])
which is possible since £x([f™(0)]) is the norm of a matrix by the claim), the limit

IRECATIC))
i Cr([f(0)])

exists and is finite. We now construct a finite set of words W (y) in the alphabet A, such
that for every m € N*, there exists a bijection between occurrences of « in [ (c)] and
occurrences of a word w € W(y) in [("(c)]. This will conclude the proof of Case 2. Let
W (7) be the set of words in A, consisting in every path contained in a reduced iterate of
o which contains -y, which is completely split and which is minimal for these properties.
By construction, every occurrence of v in a reduced iterate of ¢ is contained in a word in
W (v). We claim that the set W () is finite. Indeed, let w be a word in W (). Then w
corresponds to a path in a reduced iterate of o which is a concatenation of splitting units
w = 01 ...0k. By minimality of w, if w’ € W (v) is distinct from w’, then the number of
splitting units in w’ is at most equal to k and w’ might differ from w by changing o1 and
or. Thus, W(vy) is finite. For every w e W (vy), let m,, be the number of occurrences of
v in w. Since 7 is not contained in Gy, the value m,, does not depend on the choice of
a representative of w if w represents a collection of paths. Therefore, for every m € N*|
we have
o) = S, (0.

weW ()

This shows that the limit
(v, f™M(0))

7 e (@)
exists and is finite. This proves Assertion (1) of the proposition when o is an edge in an
irreducible stratum.

Suppose now that o is a maximal taken connecting path in a zero stratum. We prove
the proposition by induction on the height r of the splitting unit o. Suppose first that
o is an expanding splitting unit which is a maximal taken connecting path in a zero
stratum of minimal height r. Then [f(o)] has height r — 1, hence it does not contain
splitting units which are maximal taken connecting path in zero strata. In this case, the
proof follows from the above case. Suppose now that ¢ is a maximal taken connecting
path in a zero stratum. Then its reduced image is completely split and has height at
most 7 — 1. In this case the claim follows by induction applied to [f(c)]. This concludes
the proof of Assertion (1).

(2) Let us prove that for every element v € P(F A A(¢)), we have:
(i) 0< o0y < o0;

(i) oy = 0413
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(i7%) 0y = e Ove, Where E is the subset of EG consisting in all edges that are incident
to the endpoints of v and distinct from the inverse of the last edge of ~.

The point (i) follows from Assertion (1). The second point follows from the def-
inition of (v, f™(o)). In order to prove the third point, remark that (v, f"*(c)) and
> er{ve, (o)) differ only when [f™(c)] ends with v or v~ 1. Therefore the difference
between (v, f™(0)) and > .. {ve, f™(c)) is at most 2. This implies that

<,Yf o) 2@6 — 0 as n — o0.

m
f]_— f U eeE ‘7:

This proves the third point. By [Gued, Lemma 3.2], since the map v — o satisfies the
conditions (i) — (i7), it determines a projective relative current n, € PCurr(Fy, F). This
current is unique since a relative current is entirely determined by its set of values on
cylinders of finite paths v € P(F A A(¢)) by Lemma This concludes the proof.
O

Definition 6.4.5. Let n > 3 and let F be a free factor system of Fy. Let ¢ € Out(Fy, F)
be an almost atoroidal outer automorphism relative to F and let F; be a free factor
system such that F < F; and such that the extension F; < {Fp} is sporadic and such
that ¢|r is atoroidal relative to F. In the case that ¢ is atoroidal relative to F, we
assume that F; = {[F,]}. Let f: G — G be a CT map representing a power of ¢ with
filtration

=Gy G <...2 G, =G,

such that there exists i € {1,...,k — 1} with F(G;) = Fi. We define the simplex of
attraction of ¢, denoted by Ay (¢), as the set of projective classes of nonnegative linear
combinations of currents u, obtained from Proposition applied to ¢|r, and f and
which correspond to splitting units ¢ whose exponential length grows exponentially fast
under iteration of f. The simplex of repulsion of ¢, denoted by A _(¢), is Ay (¢~ 1).

Remark 6.4.6. The definitions of attractive and repulsive currents given in Definition[6.4.5]
rely on the choice of CT maps representing powers of the almost atoroidal outer auto-

morphisms ¢ and ¢~'. However, it will be a consequence of Proposition and

Proposition that the attractive and repulsive currents depend only on ¢.

We now prove properties of the subsets A4 (¢). As explained above Proposition
there are only finiely many expanding splitting units. Hence the subsets AL(¢) are
closed. Since PCurr(Fy, F A A(¢)) is a Hausdorff, compact space by Lemma and
since A1 (¢) are closed subsets, we have the following.

Lemma 6.4.7. Let n > 3 and let F be a free factor system of Fy. Let ¢ € Out(Fy, F)
be an atoroidal outer automorphism relative to F. The subsets Ay (¢) are compact and
contain finitely many extremal points. O
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Note that one compute ||;(0)|| » by counting the number of occurrences of every PG-
relative splitting unit of positive F-length in a reduced iterate of ¢ and taking the limit.
This is precisely the limit of the F-length of reduced iterates of ¢ by Lemma [6.3.20
Hence we have the following result.

Lemma 6.4.8. Let n > 3 and let F be a free factor system of Fy. Let ¢ € Out(Fy, F) be
an atoroidal outer automorphism relative to F. We have ||u(o)|| = 1. O

We now prove that the subsets A4 (¢) are ¢-invariant. We first recall some lemmas.

Lemma 6.4.9. [Coop, Bounded Cancellation] Let n > 2 and let G be a marked graph of
F,. Let f: G — G be a graph map. There exists a constant Cy such that for any reduced
path p = p1p2 in G we have

UL )] = 6L ()] + (1S (p2)]) = 2C-

Lemma 6.4.10. [LUZ, Lemma 5.7] For any graph G without valence 1 wvertices there
exists a constant K = 0 such that for any finite reduced edge path v in G there exists an
edge path ' of length at most K such that the concatenation vv' exists and is a reduced
circust.

Lemma 6.4.11. Let f: G — G be as in Proposition [6.4.4. Let K1 > 0 be any constant,
let o be an expanding splitting unit and let n, be the current associated with o given by
Propositionm (2). Let m € N and let ~), be a reduced edge path of length at most K; .
Let v = [f™(0)]*),, where [f™(0)]* is obtained from [f™(o)] by erasing an initial
and a terminal subpath of length Ky. For every element v € P(F A A(¢)), we have

Y m)
lim ={Y, Ny ) -
) (Vi)

Proof. The proof follows [LU2, Lemma 5.8]. Since ¢(~),) < K7, we have
Cr(Lf™(0)]%) 2 Lr([f™(0)]) — 2K

Since o is expanding, we have lim,, .o ££([f™(0)]) = +o0. Hence we have

S o))

and
li E]—'('Ym)

im —————
m—w Lx([f™(0)])
Hence the result follows from Proposition (1). O

Proposition 6.4.12. Letn > 3 and let F be a free factor system of Fy. Let ¢ € Out(Fy, F)
be an almost atoroidal outer automorphism relative to F. Let f: G — G be as in
Proposition[6.4.4. Let o be an expanding splitting unit and let 1, be the current associated
with o given by Proposition [6.4.4 (2). There exists Ao > 1 such that

¢(770) = >\0770-

=1.
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Proof. The proof follows [LU2|, Proposition 5.9]. Let K > 0 be the constant associated
with G given by Lemma Let m € N, and let 4/, be the path of length at
most K given by Lemma such that v, = [f™(0)],, is a reduced circuit. Since
lim¢ o0 Lezp([f(0)]) = 400, for large values of m, we have lezp(7m) > 0. Let wy, be an
element of F;, whose conjugacy class is represented by ~,,. Note that, by Lemma [6.3.26)
we have £x(Vm) = ||Nw,, || 7. By Proposition since Legp(ym) > 0, we see that wy,
is 7 A A(¢)-nonperipheral, hence wy, defines a current ny,, ) € Curr(Fy, F A A(¢)).

Let o, = [f™TH(0)][f(7.,)]. Note that since £(v.,) < K, the value £([f(7/,)]) is
bounded by a constant Ky which only depends on K. Let C' be the constant given by
Lemma and let K1 = max{Ky,C'}. Then, with the notations of Lemma
the reduced circuit v)), = [ay,] can be written as a product v}, = [f™(0)]* B where
U(Bm) < Ky and Le([f™(0)]*) = ([ f™(0)]) —2K1. Applying Lemma twice, we
see that, for every element v € P(F A A(¢)), we have

{9
lim = (Y, No
A ) QR
and Aty
. Y5 Ym
1 = .
ml—r>noo 6.7:(’77/7/1) </77 n0'>
By Lemma [6.3.29] we have
lim _Mwm] - _ 7

m=o (|1, |7
From the continuity of the Out(Fy)-action on PCurr(Fy, F A A(¢)) and from ¢(ny,, ) =
Ne([wm])> We see that
lim Né([wm]) = ¢(n,).
m—a0 ”77[wm] H]:
Since the reduced circuit 7/, represents the conjugacy class ¢([wy,]), the second of the
above equalities implies that

77(25( [wm])

lim ———"=— =1n,.
=D (] 7

. L (Ym . Lx(vm _ _
Recall that lim,, e % = 1, that lim,, e % = 1, that £r(ym) =
7w, ll7 and that £z(vy,) = [|0g(fw,.]) |7+ Recall from the claim in the proof of Propo-
sition that ££([f(o)]) is the norm of a matrix. By [LUIL Remark 3.3], there exists

Ao = 1 such that

m+1
i UOD
m—o Lr([f™(0)])
Since o is expanding, we have in fact A\, > 1 and this concludes the proof. O

We now prove a lemma which will be used in [Gue6].
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Lemma 6.4.13. Let n > 3 and let F be a free factor system of Fy. Let ¢ € Out(Fy, F)
be an expanding outer automorphism relative to F. Let f: G — G be as in Proposi-
tion[6.4.4 Let o be an expanding splitting unit and let n, be the current associated with

o given by Propositionm (2).

(1) There exists a projective current [n] € PCurr(Fn, F A A(¢)) whose support is con-
tained in the support of n, and such that Supp(n) is uniquely ergodic. In particular, the
support of every extremal current of Ay (¢) contains a closed subset which is uniquely
ergodic.

(2) There exists only finitely many projective currents [n] € PCurr(Fy, F A A(¢)) whose
support is contained in the support of n, and such that Supp(n) is uniquely ergodic.

Proof. (1) Note that, since ¢ is expanding relative to F, we have F A A(¢) = A(¢).
Let r € N be the minimal integer such that H, is an EG stratum and a reduced iterate
of ¢ contains an edge of H,. Such a stratum H, exists since o is expanding. Let e be
an edge of H, with fixed initial direction and let 7. be the current in PCurr(Fy, . A(¢))
associated with e given by Proposition [6.4.4] (2).

Claim. The support of 7. is uniquely ergodic.

Proof. By minimality of r, every edge contained in a reduced iterate of e is either in H,
or in G’pi;. Let G’ be the minimal subgraph of G' which contains every reduced iterate
of e and let A be a subgroup of Fy such that m1(G’) is a conjugate of A when 71 (G) is
identified with F,. Then G’ is f-invariant and hence [A] is ¢-invariant. Let G7,..., G},
be the connected component of G’ — H, and let F' be the free factor system of Fy
determined by G7,...,G}. Let ® € ¢ be such that ®(A) = A. Note that [®|4] € Out(A)
is fully irreducible relative to F'. For every i € {1,...,k}, we have G} € G’,. By
Proposition (3), for every i € {1,...,k}, either G} is contractible or G} < Gpg.
By Proposition for every subgroup H of F, such that [H] € F’, there exists a
subgroup H' of F, such that [H'] € A(¢) and H < H’. Hence we have F/' < A(¢).
Moreover by Proposition and Proposition (9), if v is a cyclically reduced
circuit of G’ of height » whose growth under iteration of f is polynomial, then + contains
(up to taking inverse) the only height » EG INP o,. As one of the endpoints of o, is not
contained in G,_; by [HaM4l, Fact 1.1.42], we see that either o, is not closed and v does
not exist or o, is closed and v is an iterate of o, or o 1 Let b € F, be the (possibly
trivial) element associated with o,. Then, we have

0?A 1 & (Fo, A(9)) = 3*(A, F' o {[B]}).

Let PCurr(Supp(ne)) be the set of projective currents in PCurr(Fy, F A A(¢)) whose
support is contained in Supp(7.). We now construct an injective application

©: PCurr(Supp(ne)) — PCurr(4, F')
such that for every projective current y € PCurr(Supp(n.)) we have

Supp(©([x])) = Supp([u]) N 9*A.
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Let P(F’) be the set of paths in a Cayley tree of F, defined above Lemma
(replacing F A A(¢) by F'). Let Ps(F') be the set of paths in P(F’) contained in
G'. By Lemma the set consisting in elements C(v) with v € P(F’) covers
0%(A, F'). Thus, by [Gued, Lemma 3.2], it suffices to prove that for every projective
current 1 € PCurr(Supp(n.)), we can associate a function 7j: P4(F’') — R such that for
every v € P4(F’), we have

(1) 0<7(y) <o
(”) 77(7) = 0q—1;

(i13) 7(7) = Deep Ove, Where E is the subset of EG' consisting in all edges that are
incident to the endpoints of v and distinct from the inverse of the last edge of ~.

Let n € PCurr(Supp(ne)). If v € P4(F’) is not contained in the axis of a conjugate of
b, we may set 7(v) = n(C(y)). Since o, is r-legal, a reduced iterate of o, cannot contain
the only height » EG INP. Thus, we may set, for every path v € P4(F’) contained in
the axis of a conjugate of b: 7(y) = 0. The function 7] satisfies conditions (i) — (iii) as
7 is a relative currents, hence it defines a unique current in PCurr(A, ), which we still
denote by 7j. Note that for every element v € P4(F’), we have

T(C(y) 0 82A 0 3 (Fa, A(9))) = 1(C(7) 0 P A n 0 (Fy, A(9))),

so that the application PCurr(Supp(7.)) — PCurr(A, F') is injective. Moreover, we have
Supp(7}) = Supp(n)) N *A.

Hence 7. defines a current 7, € PCurr(A, F'). This current coincides with the at-
tractive projective current associated with [®|4] defined by Gupta in [Gupl, Proposi-
tion 8.12]. By [Gup2, Lemma 4.17], the support of 7. is uniquely ergodic. Thus the
support of 7, is uniquely ergodic. O

By the claim, it remains to prove that Supp(n.) € Supp(n,). But an element 7 €
0%(F,, A(¢)) is contained in the support of 7, if for every element v € P(F A A(¢)) such
that 8 € C(v), we have 1,(C(v)) > 0. Thus, the support of 7, contains all the cylinder
sets of the form C(y) where v € P(F A A(¢)) and ~ is contained in a reduced iterate of o.
In particular, since e is contained in a reduced iterate of o, we have Supp(n.) S Supp(7s).
This proves Assertion (1).

(2) Suppose towards a contradiction that there exist infinitely many pairwise distinct
projective currents ([9m,])men € PCurr(Fy, F A A(¢)) whose support is contained in
the support of 7, and such that for every m € N, the support Supp(7,,) is uniquely
ergodic. By compactness of PCurr(Fy, F A A(¢)) (see Lemma up to passing to
a subsequence, there exists a projective current [n] € PCurr(Fy, F A A(¢)) such that
limy,—o0[m] = [1]- Let K € N* be such that P(F A A(¢)) contains reduced edge paths
of length equal to K. By additivity of 7, there exists 7, ...,y € P(F A A(¢)) of length
equal to K such that the support Supp(n) is contained in U;=1 C(v;) and for every
je{l,...,m}, we have n(C(v;)) > 0. Then, there exists N € N* such that, for every
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m > N and every j € {1,...,t}, we have 7,,(C(v;)) > 0. Hence for every m > N, we
have

t
Supp(n) € | J C(vj) € Supp(in)-
1

j=
By unique ergodicity, for every m = N, we have [n] = [nm], a contradiction. O

6.5 North-South dynamics for almost atoroidal outer automor-
phisms

Let X be a compact metric space and let G be a group acting on X by homeomorphisms.
We say that an element g € G acts on X with generalized north-south dynamics if the
action of g on X has two invariant disjoint closed subsets A_ and A, such that, for
every open neighborhood U of A} and every compact set K+ € X — Az, there exists
M > 0 such that, for every n = M, we have

ginKi - Ui-

In this section we prove the following theorem. Recall that a relative expanding outer
automorphism is relative atoroidal, hence relative almost atoroidal.

Theorem 6.5.1. Let n > 3 and let F be a free factor system of Fy. Let ¢ € Out(Fy, F)
be a relative expanding outer automorphism. Let Ay (@) and A_(¢p) be the simplexes of
attraction and repulsion of ¢. Then ¢ acts on PCurr(Fy, F) with generalized north-south
dynamics with respect to A (¢) and A_(¢).

Theorem in the introduction follows from Theorem [6.5.1] since every exponen-
tially growing element of Out(Fy) is expanding relative to its polynomial part.

6.5.1 Relative exponential length and goodness

Let n > 3 and let F be a free factor system of F,. Let ¢ € Out(Fy, F) be an almost
atoroidal outer automorphism relative to F. In this section we define and prove the
properties of the objects needed in order to prove Theorem Let f: G —> G be
a CT map representing a power of ¢ with filtration @ = Go ¢ G1 &€ ... € G = G
and let p € {1,...,k} be such that F(G,) = F. The proof of Theorem relies on
the study of PG-relative completely split edge paths. More precisely, given a reduced
circuit v of GG, we study the proportion of subpaths of v which have PG-relative complete
splittings. This proportion will be measured using the exponential length. However, the
lack of equality in Lemma [6.3.16] shows that the exponential length is not well-adapted
to study the exponential length of a path by comparing it with the exponential length
of its subpaths. Instead, we define a notion of exponential length of a subpath relative to
~v. We first need some preliminary results regarding splittings of edge paths.
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Definition 6.5.2. Let v be a reduced edge path in G and let v = y97]71 ... 7}, be the
exponential decomposition of 7 (see the beginning of Section [6.3.2) “ Let « be a subpath
of 7. The exzponential length of o relative to v, denoted by £lgp() is:

exp a M 'Vk

IIMw

exp

We define the F-length of o relative to v similarly replacing £, by 7 and the expo-
nential decomposition by the F-exponential decomposition.

Note that, for every reduced edge path v of G, we have ¢0p(7) = legp(y). The
exponential length relative to a path v is well-adapted to compute the exponential length
of v using its subpaths, as shown by the following lemma.

Lemma 6.5.3. Let v be a reduced edge path and let v/ = a8 € v be a subpath of . Then

(V) = Capla) + €, (B)-

In particular, when v = v, we have

Eexp( ) - Eexp( ) + ezmp(ﬂ)

The same statement is true replacing {lzp by é}.

Proof. The proof is similar for both ¢Z;, and [}, so we only do the proof for £2,,. Let
Y = Y0Y11 - - - YKV be the exponential decomposition of 4. Then, for every i € {1,...,k},
the paths anv} and 5"~} do not contain a subpath of a path in N3&*(y). In particular,
for every i € {1,...,k}, one computes Legp(a m 7)) and Legp(B M 7)) by removing edges
from G’p;. Since £lyp(7') is computed by removing edges in G'p; from every ~/ with

i€ {l,...,k}, the proof follows. O

In Lemma [6.5.6] we will show that if 7 is a reduced edge path in G and that « is a
subpath of 7, then £ep(a) and £2zp(a) differ by a uniform additive constant. This will
allow us to compute directly fegp(a) rather than £, (a).

Let v be a reduced edge path in G and let v = 1 ...7, be a splitting of +. Let
Jes.pa S {71, - - -, ¥m} be the subset consisting in all subpaths which have a PG-relative
complete splitting. If £egp(y) > 0, let

Z'YiEJCS,PG Ceap(i)
Lezp ()

gCT,PG(IYa RITEEE 77771) =

The goodness of 7, denoted by g(v), is the least upperbound of gor pg(y) over all
splittings of 7 if fegp(y) > 0, and is equal to 0 otherwise. When + is a circuit, the value
gor,pc(7) is defined using only circuital splittings.

Since there are only finitely many decompositions of a finite edge path into subpaths,
the value g(v) is realized for some splitting of 7. A splitting for which g(7) is realized is
called an optimal splitting of v, and an optimal circuital splitting when ~y is a circuit.
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A subpath of v which is the concatenation of consecutive splitting units of an optimal
splitting of v is called a factor of v. When £cz,(7y) = 0, we use the convention that the
only factor of v is  itself. The factors of v that admit a PG-relative complete split-
ting are called complete factors. The factors in an optimal splitting which do not admit
PG-relative complete splittings are said to be incomplete. Remark that, by Proposi-
tion (6), (8) and by Lemma the [ f]-image of a PG-relative complete path is
PG-relative complete, and the reduced iterates of an incomplete factor are eventually
PG-relative complete.

Using Lemma [6.5.3] we have the following result.

Lemma 6.5.4. Let v be a reduced edge path and let v = Y)y17Y] - - - Ym"i, be an optimal
splitting of ~y, where, for every i € {0,...,m}, the path v, is an incomplete factor of
and, for every i€ {1,...,m}, the path ~y; is complete. Then

221 gzacp(%‘)
9(7) = xm : m : O
et Clap(vi) + 2j=0 éz:vp(%{)

Definition 6.5.5. Let n, F, ¢, f, p be as in the beginning of Section Let K = 1. The
CT map f is 3K -expanding if for every edge e of G — G'p(;, we have

leap([f(e)]) = 3K.

Note that, by Lemma for every K > 1, the CT map f has a power which is
3K-expanding. Note that, since ¢ is exponentially growing, we have G # G5, so that
the definition of 3K-expanding is not empty.

In the rest of the section, let K = 1 be a constant such that, for every reduced edge
path o which is either in Npg or a path in a zero stratum, we have £(o) < % Such a K
exists since Npg is finite by Lemmam (1) and since every zero stratum is contractible

by Proposition (3). We fix a constant Cy given by Lemma Let
C = max{K, Cy}. (6.7)

Recall that, if o is a PG-relative splitting unit, o is either an edge in an irreducible
stratum, a path in a zero stratum or a path in Npg. Thus, the choice of K implies that
for every PG-relative splitting unit o, we have £,,(0) < 5.

Lemma 6.5.6. Let v be a reduced edge path in G and let v' be a subpath of v. Let v =
YoYi V1 - - - VKV e the exponential decomposition of . There exist three (possibly empty)
subpaths 01, d2 and T of v such that for every i € {1,2}, the path 0; is a proper subpath
of a splitting unit of some vj, we have Legy(T) = Llap(T) = llap(y’) and ' = 61702. In
particular, we have

Epr(VI) < gezp(')’l) < pr(’r') +20 < gewp(’Y) +2C.

The same statement is true replacing Leqp by Lr and €z by (1.
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Proof. The proof is similar for both f.;, and £z, so we only do the proof for £.;,. Since
7' is a subpath of ~, there exist three (possibly trivial) paths 67, 7/ and d} such that:
(a) for every i€ {1,2}, there exists k; € {0, ..., k} such that the path J] is a subpath of
some Y, ;

(b) for every j € {0,...,k}, either ~; is contained in 7’ or 7; does not contain edges of
7'

(¢) we have o' = 8]7'8}.

The path §] has a decomposition §] = 01 f1, where fi is a (possibly trivial) factor
of v, and 0; is properly contained in a splitting unit of ~y, for some fixed choice of
optimal splitting of 7y, . Similarly, the path ¢} has a decomposition 0, = fad2, where fo
is a (possibly trivial) factor of vk, and d3 is properly contained in a splitting unit of g,
for some fixed choice of optimal splitting of ~x,. Let 7 = fi7'fo. Then o = 01702. It
remains to show that lesp(7) = llep(T) = dzp(v'). Since for every i € {1,2}, the path f;
is a path in Npg, we have legp(7) = Legp(7'). By (b), one obtains fegp(7') by deleting

edges in G'p; and every path of N3&*(y) contained in 7. Hence we have

k k
e’eya:p(’rl) = 2 Leap(T' N ) = 2 Ceap(T O ) = szp(7)~

=1 i=1

Since 81 and & are contained in paths of NE&*(7), we have £2,,(y') = €up(7), that is,
the second equality holds.

We now prove the final inequalities in the lemma. The first inequality follows from
the fact that every path in NEE*(7) is a subpath of some ~; for i € {0,...,k}. Thus, we

have £2:p(7") € lexp(7'). By Lemma we have
leap(Y') < Leap(01) + Leap(T) + Leap(92) < L2 (Y') + £(01) + £(2).
By definition of the constant K and the fact that K < C, we have:
Cap () + £(01) + £(d2) < Lp(7") +2C < Leap(y) +2C,
where the last inequality follows from Lemma [6.5.3 O

Lemma 6.5.7. Let f: G — G be a 3K-expanding CT map. Let v be a PG-relative
completely split edge path of positive exponential length. Then

Leap([F(M]) = 3 Leap(7)-

Proof. Consider a PG-relative complete splitting v = (717} - - - Ym7jn of 7, where, for
every i € {0,...,m}, the path 7/ is either a (possibly trivial) concatenation of paths in
Gpg and in Npg or a (possibly trivial) reduced maximal taken connecting path in a zero
stratum and, for every i € {1,...,m}, the path 7; is an edge in an irreducible stratum
of positive exponential length. By Lemma [6.3.23] we have

eeacp(’)/) = 2 E(’V’L)
=1
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72

Figure 6.2: Illustration of Lemma If a complete factor of y; contained in [v] is
not contained in 75 , then it is a complete factor of [7].
Since f is 3K-expanding, for every i € {1,...,m}, we have

Ceap([f (Vi)]) 2 3K Leap(i)-

Since the reduced image of a PG-relative complete splitting is a PG-relative complete

splitting by Lemma by Lemma [6.3.20] (2), we see that

Lean([FOD 2 Y Leap([FOD 2 D 3K beay() = 3ean(7).
i=1 i=1
This concludes the proof. O

Lemma 6.5.8. Let f: G — G be a 3K-expanding CT map. Let v = 172 be a (not
necessarily reduced) edge path of positive exponential length, where v1 and o are reduced
edge paths. Let v1 = aiby...apby be an optimal splitting of ~v1 where for every i €
{1,...,k}, the path a; is an incomplete factor and for every i € {1,...,k} the path b; is
complete. For every i€ {1,2}, let~! be the subpath of v; contained in [Y]. Let vy = vy v
be a decomposition of v} into two subpaths where ] is the mazimal terminal segment of
vy such that Zle lewp(7{ N b;) = 2C. Then every PG-relative complete factor b’ of 1
contained in y; (for the given optimal splitting) is also a PG-relative complete factor of

[7]-

Remark 6.5.9. (1) We emphasize that, in the statement of Lemma if the path vy is
PG-relative completely split, the path | is not necessarily PG-relative completely split.
Indeed, there might be some identification with the path o that might create incomplete
factors in .

(2) Lemmal6.5.8 also implies that if v1 is PG-relative completely split, the intersection of
an incomplete factor of [y] with ~] is contained in a terminal segment of v| of exponential
length at most equal to 2C' (see Figure . Indeed, the claim in the proof of Lemma
shows that the path vy is a complete factor of v1, hence a complete factor of [v] by
Lemma . Moreover, we have k = 1, ay is trivial and Legp(V]) = Leap(v] 0 b1).

Proof. Let ¢t € {1,...,k} be the minimal integer such that 77 is contained in ¢’ =
aiby...aby. Let by = 01...04 be a PG-relative complete splitting of b;. Let s €
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{1,..., s’} be the minimal integer such that v; is contained in 6 = a1by ...a:d; ...ds. The
integer s exists since, by maximality of v;", for every i € {1,...,k}, either v{ na; = a;
or ’yf Na; =OJ.

Claim. We have § = v, .

Proof. By minimality of ¢t and s, the path ;" contains an edge of ;. We claim that
Js is contained in ~j. Indeed, it is clear if d5 is an edge. Suppose towards a contra-
diction that 0 is not contained in 74j. Then the concatenation point of v{ and 74 is
contained in dés;. If §5 is a maximal taken connecting path in a zero stratum, then,
by the choice of K, we have £(ds) < % < % Since £(v;) = 2C, the path d5 N v}
would be contained in ;" contradicting the fact that v; contains the first edge of
ds. Suppose that d4 is a concatenation of paths in Gpg and Npg. Then ¢ has a de-
composition &5 = ﬁgs)ags)ﬁgs) .. a](js)il ,(Cj)a,(;), where for every i € {1,...,ks}, the path
(s)

BZ(S) is contained in Gpg, for every i € {1,...,ks — 1}, the path «;’ is contained in

P& (o) and 042;? is a subpath of a path in Np&*(ds). By the choice of K, we have
legp(0s) < Uoy,) < % < % Since £ep(v7) = 20, the path d5 N +4 would be contained
in 7;", contradicting the fact that v, contains the first edge of d;. Hence, in every case,
the path d5 is contained in +{. Note that, since 7;" is the maximal subpath of +{ for
the property that Zle leap(y{ N b)) = 20, the PG-relative splitting unit J is not a
concatenation of paths in Gpg and in Npg or a maximal taken connecting path in a
zero stratum. Indeed, otherwise it is properly contained in 'yfr , contradicting the fact

that 7, intersects 6. Hence d, is an edge and 6 = 7 . O

By the claim, we see that v, = a1by...a;01 ..., is an optimal splitting of v; . Let
r € {1,...,k} be the minimal integer such that | is contained in a1b; ...a,b,. The last
edge of 7] is either contained in a, or in b,. In the first case, for every i € {1,...,k},

either b; is contained in 4] or b; N ~{ is at most a point. In the second case, it is possible
that b, n 7} # b, and that b, n 7] contains an edge. Let o/ be the (possibly trivial)
terminal segment of ;" which is properly contained in a splitting unit o of b,. If o
is a maximal taken connecting path in a zero stratum, then, by the choice of K, we
have lezp(a’) < () < l(o) < % < % Suppose that o is a concatenation of paths in
Gpg and Npg. Then o has a decomposition o = B1a18 ... ap_18ec, where for every
i€ {l,...,¢}, the path §; is contained in Gpg, for every i € {1,...,¢ — 1}, the path «;
is contained in Np&*(o) and ay is a subpath of a path in Nj5&*(c). By the choice of
K, we have legp(a’) < l(ar) < & < §. Since Legp(vi) = 20, there exists a PG-relative
complete factor ag of b, such that v;" = ds41 ... dgarr1bi41 - .. arpd = aa’ and

k

Z Lezp (anb;) =C.
i=1

We now prove that every PG-relative complete factor of v; contained in vy, is a PG-
relative complete factor of . Note that the decomposition 7, « is a splitting. Thus, it
suffices to prove that, for every k € N*, the path [f*(v; )] is contained in [f*(7)] as any
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identification in order to obtain [f¥(7)] which involves a path in f*(;") will be induced
by an identification in order to obtain [f*(vy;)] from f*(v;). By Lemma applied
t0 ds41,. .., 0y, to the paths b; with i € {1,..., k} such that b; € « and to ag, we have

zh%ﬁmmwmp>Eg%&mmff@ﬁmww%ﬁmm

; i=t+1
> 3 i leap (b)) = 3C,

where the first inequality follows from the fact that the decomposition
o = 5s+1 PN 5S/at+1bt+1 ... QrQ

is an optimal splitting of . Note that, since the decomposition v; « is a splitting, for
every k € N*, the path [f¥(«)] is contained in [f*(v; @)]. Remark that Lemma im-
plies that the segment of [ f(y; «)] which is C' away from the concatenation point between
[f(7 @)] and [ f(&/~5)] remains in [ f([y])]. In particular, the edges of [ f(y; «)] which are
cancelled with edges of [f(a/})] are contained in [f(«)]. Recall that Zle Leap([f ()] N
[f(b;)]) = 3C and that the subpath of [f(«)] which is contained in [f([7])] is obtained
by the concatenation of at most C' edges of [f(a)]. Thus, we see that the sum over
i of the exponential length of the subpaths of [f(a)] n [f(b;)] which are contained in
[f([7])] is at least equal to 2C. Hence the path [f(vy; )] is a subpath of [f([7y])] and
Zle Leap([FOD] A [ ()] 0 [f([7])]) = 2C. Thus, we can apply the same arguments
to show that for every k > 1, the path [f*(v;)] is contained in [f*([7])] and the expo-
nential length of the subpath of [f*(a)] contained in [f*([])] is at least equal to 2C.
Hence every PG-relative complete factor of the path 7 contained in 7; is a complete
factor of an optimal splitting of [7]. O

Lemma 6.5.10. (1) Let v = of3 be a reduced path. Let N € N* be such that [V ()] has
a PG-relative complete splitting and that [fN(B)] is a concatenation of paths in Gpg
and in Npg. For every m = N, let auy, Bm and o, be paths such that [f™(a)] =
amom and [f™(B)] = 0,}Bm. For every m = N, we have Legp(om) < C, Legp(am) =
Leap([f™(@)]) = C and Legp(Bm) < C.

(2) Letvy = BYaBP be a reduced path. Let N € N* be such that [fV(a)] has a PG-
relative complete splitting and, for every i € {1,2}, the path [f™ (89)] is a concatenation
of paths in Gpg and in Npg. For every m = N, let aun,, ,6’%), 59, and aﬁnl), 07(3)
be paths such that [f™ ()] = Uy(é)ama,(,%), [f™(BM)] = ﬂ%)aﬁ)_l and [f(BN)] =

aﬁﬁ)’lﬁm, For everym = N, either legp(a,) < 2C or we have Eexp(ag)),ﬂemp(ag)) <C,

Cerp(m) = Leap([f™(@)]) = 2C and Legp(B)), Leap(B5) < C.

Proof. The proof of Assertion (2) follows from Assertion (1) by applying Assertion (1)
twice: one with v = a8® and one with v = o1 (1. If for some m € N*, legp(m) = 20,
there is no identification between [ ()] and [f™(3(?)], so Assertion (2) follows from
Assertion (1). Therefore, we focus on the proof of Assertion (1). Let m = N. When o, is

reduced to a point, we have Legp () = Legp([f™()]) and Legp(Bm) = Leap([[™(B)]) =0
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by Lemma [6.3.17] This concludes the proof in this case. So we may suppose that o,
is nontrivial. Let [f™(a)] = a1...ar be a PG-relative complete splitting of [f™(a)].
Suppose that, for every ¢ € {1,...,k} such that a; is a concatenation of paths in Gpg
and Npg, the path a; is a maximal subpath of [ f(«)] for the property of being a factor
which is a concatenation of paths in Gpg and Npg. For every j € {1,...,k}, let r;
be the height of a;. Let i € {1,...,k} be such that a; contains the first edge of oy,.
Let o' € Np@&(om). Note that there exists o” € NPEX([f™(a)]) such that o' < o”.
By Lemma [6.3.20] (1) applied to o” and [f™(c)], the path o” is contained in a factor
which is a concatenation of paths in Gpg and Npg. By the maximality assumption,

there exists j € {1,...,k} such that ¢’ € ¢” < a;. Hence we can compute lezp(op,) by
removing, for every j € {1,...,k}, paths in the mtersectlon om N a;. Thus, we have,
exp Um Z gexp CL] exp(ai N Um)-
i>i

Note that, by Lemma m the path [f™(B)] = 0,,' Bm is a concatenation of paths
in Gpg and in Npg. Let j e {i,... k}.

Claim. If j > i, then either a; is not an edge in an EG stratum and Zezp(a; N o) = 0,
or legp((ai...aj) nom) <C. If j =14, then legy(a; nopy) < C.

Proof. We distinguish several cases, according to the nature of a;.

(i) Suppose that a; is maximal taken connecting path in a zero stratum. By definition
we have lezp(a; nopm) = 0.

(it) Suppose that a; is a concatenation of paths in Gpg and in Npg. If j > 4, we have
aj N om = aj. By Lemma applied to a;, we have leyp(a; N op,) = 0. Suppose that
i = j. Suppose that the first edge of o,, is not contained in a path in Ng&*(a;). Then
a; has a decomposition a; = a?aZ aZ where a1 is a path contained in Gpg such that the
first edge of o, is contained in a} and such that, for every path § € Np&*(a;), either
§ € a? or 6 € a?. Note that a terminal segment of a; whose first edge is contained in
a; is a concatenation of paths in Gpg and in Npg. In particular, the path a; n oy, is
a concatenation of paths in Gpg and in Npg. By Lemma [6.3.17] applied to a; n oy,
we have legp(a; N 0y) = 0. Suppose now that the first edge of o, is contained in a
path 6 € Np&*(a;). Then a; has a decomposition azléa?, where the first edge of o, is
contained in §. Note that a? is a concatenation of paths in Gpg and in Npg which is

contained in ¢,,. By Lemma [6.3.16 applied to a; N oy, = (8 N 0 )a?, by Lemma [6.3.17]
applied to a? and by definition of the constant K, we have

—

Ceap(Om O @) < logp(Tm O 6) + Leap(a?) = Leap(6 N o) <L) < K < C.

(i1) Suppose that a; is an edge in an irreducible stratum with positive exponential
length. Since [f™(8)] is a concatenation of paths in Gpg and in Npg, there exists a
path 7' € Np&*([f™(8)]) such that a; is contained in 4'. By Lemma (1), every
path in Np&*([f™(a)]) is contained in a minimal factor of [f™(«)| consisting in PG-
relative splitting units which are concatenation of paths in Gpg and Npg. Since a; is a
PG-relative splitting unit of [f"(«)] which is not a concatenation of paths in Gpg and
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in Npg, the path a; is not contained in a path of NBE*([f™(«)]). Hence the path ~/
is not contained in o, as otherwise it would be contained in a path of Np&*([f™(c)]).
Therefore, we see that (a;...a;) n o, S 4. Hence, by the choice of K, we have

leap((@i-..aj) o) < L(a;...a;) noy) <L) <C.
This proves the claim as we considered all possible PG-relative splitting units. O

Let m € N*. By the claim, either leyp((a;...a;) N o) < C or, for every j > i, we
have legp(aj M o) = 0. In the second case, we have

Ee:r:p(o'm) = Z gexp(aj) + eezp(ai M O-m) = gexp(ai M Um) < C,

7>t

where the las inequality follows from the case j = i of the claim. Hence, for every m € N*,
we have lezp(0y,) < C. Note that, by Lemma [6.3.16| applied to [f™ ()] = oo, we
have

Leap(am) Z Leap([f"(@)]) = Leap(om) = Leap([f"()]) — C.

It remains to prove that lez,(8m) < C. But By, can be written as 3, = 6102 where
Jdo is a concatenation of paths in Gpg and in Npg and ¢ is a (possibly trivial) path
contained in a path of NFE*([f™(8)]). By Lemma [6.3.17applied to d and by the choice
of K (since 47 is a subpath of a path in Npg), we have

fexp(ﬁm) < Eexp(51) + gezp(52) = Eexp((;l) < 6(51) < C.
This concludes the proof. O

Lemma 6.5.11. Let L > 1. There exists ng = no(L) € N* which satisfies the following
properties. Let v be a reduced edge path of G such that leyp(y) < L. For every n = ng
and every optimal splitting of [ f™ ()], either [f"(7)] is a concatenation of paths in Gpg
and in Npg or the following two assertions hold:

(a) the path [f™(v)] contains a complete factor of exponential length at least equal to
10C;

(b) the exponential length of an incomplete factor of [f™ ()] is at most equal to 8C'.

Proof. By Lemma|6.3.21], there exists an integer m’ € N* depending only on f such that
for every edge e of G — G'p; and every n = m/, we have legp[f"(e)] = 16C + 1. Let
Y ="0Yi71 - - - Yey, be the exponential decomposition of . Let

v = Boarfr ... B

be a nontrivial decomposition of v such that, for every i € {0,...,k}, the path j; is a
concatenation of paths in Gpg and in Npg and for every i € {1,...,k}, the path «; is a
concatenation of edges in irreducible strata not contained in some ~; with j € {0,..., ¢}

and paths in zero strata. The main point of the proof is to show that, up to applying
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an iterate of [f], there is no cancellation between the subpaths «;. By definition of the
exponential length, for every i € {1,...,k}, we have lezp(7y) = Zf;l legp(cvi). Therefore,
since lezp(y) < L, for every i € {1,...,k}, we have leyp(;) < L. Note that, for every
i e {1,...,k}, we have lezp(a;) = (o) — l(ay N Z) where Z is the subgraph of G
consisting in all zero strata. By the choice of C the length of every path contained in a
zero stratum is at most equal to C. Hence for every i € {1,...,k}, we have ¢(c;) < CL.
By Proposition (8) there exists m” € N* depending only on L such that, for all
i€ {l,...,k} and m = m”, the path [f™(q;)] is completely split. Let m = m/ + m”.
By Lemma (2), for every n = m and every i € {1,...,k}, since [f* " ()] is
completely split, one compute its exponential length by adding the exponential length
of all its splitting units. Thus, if [f" ™ (a;)] contains a splitting unit which is an edge
e in G — G, we have

Leap([f"(@)]) = Leap([f™ (€)]) = 16C + 1. (6.8)

Let C,, be a bounded cancellation constant for f™ given by Lemma Note
that, if there exists i € {1,...,k — 1} such that ¢(8;) < C,,, then there might exist some
identifications between [f™(a;—1)] and [f™(c;)] when reducing the paths in order to
obtain [f™(v)]. This is why we replace the decomposition v = Spa1 51 . .. axfk of v by
a new one. This new decompostion is defined as follows. Since every lift of f to the
universal cover of G is a quasi-isometry, there exists M,, > 0 depending only on m such
that, for every reduced edge path of length ¢(8) > M,,, we have ¢([f™(B)]) = 2C,, + 1.
Let Ty, = {8 | £(B:) < Mp}. Note that [I',| < k + 1. Note that, by Lemma [6.2.9)
and Proposition (4) and Lemma for every i € {1,...,k}, if 5;_1 or (; is not
trivial, then ¢; is not contained in a zero stratum. In particuliar, we may suppose that,
for every i € {1,...,k}, we have legp(cy) > 0. Thus, since legp(7y) = Zle legp(a;) < L,
and, for every i € {1,...,k}, we have leyp(;) > 0, we see that £ < L. Hence we have
T <k+1<L+1.

Claim. There exist m; = m depending only on |I',| (and hence on L) and a decompo-
sition v = 5[()1)ag1)ﬁ§1) . a,(:l)ﬂlg) such that:

(a') for every i€ {1,...,k1}, the path [fml(al(-l))] is completely split;

(b') for every i € {0,...,k1}, the path ﬁi(l) is a concatenation of paths in Gpg and in
Npg;

(¢') for every i € {0,...,k1}, the subpath of [fml(ﬁi(l))] contained in [f™ ()] is not
reduced to a point;

(d') for every i € {1,...,k1}, for every n > m/, if [f”_m/(agl))] contains a splitting unit
which is an edge in G — G'p; then €ezp([f"(al(-1))]) > 16C + 1.

Proof. The proof is by induction on |I';,|. Suppose first that I',, = @. By the defi-
nition of |I'y,| and M,,, for every i € {0,...,k}, the path [f™(5;)] has length at least
equal to 2C,, + 1. By Lemma for every i € {0,...,k}, the subpath of [f"(5;)]

contained in |[f" ()] is not reduced to a point. So the integer m; = m and the decom-
position v = By 5y ... axfy satisfy the assertions of the claim (Assertion (d') follows

from Equation )
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Suppose now that I';,, # &. Then

k
D)+ D UBi) S kCL + MyL < CL? + My, L.
i=1 Bi€lm

Let m) > m be such that for every path 3 of length at most equal to CL? + M,,L
and every n = m}, the path [f™(53)] is completely split. Then + has a decomposition

v = 682 2)ﬁ(2)... (Q)Bl(é) such that, for every i € {1,.. k‘z} the path [fm2( ))]
is completely split and for every i € {0,...,k2}, the path Bi is a concatenation of
paths in Gpg and in Npg of length greater than M,,. Let mg = m, + m'. Then
for every i € {1,..., ka}, the paths [me(al(-Q))] and [fmrm,(al(?))] are completely split.
Moreover, if [fmrm,(ozl(?))] contains a splitting unit which is an edge in m, then
éexp([fm(a?))]) > 16C + 1 as in Equation (6.8). Let Cy,, be a bounded cancellation
constant associated with f™2 and let M,,, = M,, be such that, for every reduced edge

path of length £(8) > M, we have £([f™ (8)]) = 2Cpm, + 1. Let T, = {82 | £(8:) <
M,,,}. Note that |I'y,,| < |I')y|. Hence we can apply the induction hypothesis to the
(2) (2 5 (2) 5(2)

oy By g By,

decomposition v = f; to obtain the desired decomposition of ~.
This concludes the proof of the claim. O

Let m; and v = ﬁél)agl)ﬁ( (I)B be as in the assertion of the claim. By
Assertion (¢’) of the claim, for every i € {1 ,k1}, there is no identification between
edges of [f™ (agl))], [fm™ (O‘z@ﬂ] and [f™(« Z+)1)] when reducing in order to obtain
Lr™ (]

For every i € {1,...,k1}, since [fml(agl))] is PG-relative completely split, we can
distinguish three possible cases for [ fml(agl))]:

(i) the path [ fml( (1) )] contains a PG-relative splitting unit which is an edge in
G — G5 (by Lemma [6.3.23| this case happens exactly when £eq,([f™ (« 1))]) > 0);

(14) Eexp([fml(ai )]) = 0 and the path [fml(ocz(- ))] is a concatenation of paths in Gpg
and in Npg;

(133) Leap([f™ (agl))]) =0 and [f™ (agl))] contains a maximal taken connecting path

in a zero stratum.

We claim that if there exists i € {1,...,k1} such that [f™ (agl))] satisfies (i7), then
[f™(v)] is contained in a zero stratum. Indeed, suppose that [f" (agl))] satisfies (ii7).
By Lemma applied to the PG-relative completely split edge path [ fml(al(-l))],
since Eexp([fml(al(-l))]) = 0 the path [f™ (ozgl))] does not contain an edge in G — Glp..
Therefore, the path [f™! (agl))] is a concatenation of paths in G5 and in Npg. By
Proposition (4) and Lemma there is no path in a zero stratum which is

adjacent to a concatenation of paths in Gpg and in Npg. Hence [f™ (agl))] = o, where
o is a maximal taken connecting path in a zero stratum not contained in Gpg. But the
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endpoints of o are the endpoints of [ f™ (Bz(i)l)] and [f™ (51.(1))], which are concatenation
of paths in Gpg and in Npg. As above, this implies that [f™!(y)] = o. Since zero strata
are contractible, there exists mg € N* such that [ f™3(~)] is PG-relative completely split.
Hence Assertion (b) of Lemma follows. Applying a further power of [f] (which
can be chosen uniformly as there are finitely many reduced edge paths contained in a
zero stratum), there exists my € N* such that [f"4(v)] is a concatenation of paths in
Gpc and in Npg or it satisfies Assertion (a) of Lemma This concludes the proof

of Lemma [6.5.11|in case (7).

Hence we may suppose that for every i € {1,...,k1}, the path [fml(az(.l))] satisfies
either (i) or (7). Note that, if ¢ € {1,...,k1} is such that the path [fml(agl))] satisfies
(), then [f™ (agl))] also satisfies the hypothesis of Assertion (d’) of the claim. Thus

Coap([F™ 4™ (i) = 16C + 1.

Let m} = m; +m’ and let n’ > m]. Let Aezp = {a | fezp([f”,( ) )]) 16C + 1}. For
every j € {l,...,k1} and every n € N*, let a( ") be the subpath of [f”( ))] contained
in [f"(y)]. For every j € {0,...,k1} and every n € N*  let Bj be the subpath of
[f”(ﬁj(-l))] contained in [f"(y)]. Suppose first that Ay is not empty and let agl) €
Acap- By Lemma (2) applied to AN = [/ (8], @ = [f”(a{")] and 5@ =
[f”'(/Bi(l))], we have Eexp(ozg )) > 14C' + 1. By Remark @I (2) applied twice (once with
o= [ ()] and 7z = [£7 (8 ...l 8], and once with 41 = [ (af)] " and
vo = [f™ (ﬁél) e agi)l l-(i)l)]_l), the path az(-"l) contains a complete factor of [f™ ()] of
exponential length at least equal to 14C'+1—4C = 10C +1. This proves Assertion (a) of
Lemma 1l Moreover, Remark (2) implies that the intersection of an incomplete

factor of | f” (7)] with agn ) is contained in the union of an initial and a terminal segment

of a( ") of exponential lengths at most 2C'. For every i € {1,..., k;1} such that agl) € Aeap,
let 7' be the maximal initial segment of a( )
72 be the maximal terminal segment of ag ") of exponential length equal to 2C.

We now prove Assertion (b) of Lemma Suppose that there exists i € {1,...,k1}
such that agl) ¢ Acgp, so that in particular [f™ (az(-l))] does not satisfy (7). Then
[fml(ozz(-l))] satisfies (i7) and is a concatenation of paths in Gpg and in Npg. By
Lemma [6.3.9| (3), the path [f”l(az(l))] is a concatenation of paths in Gpg and in Npg.
By Lemma|6.3.5, the path [[f”'(ﬁi(i)l)][f",(al(-l))][f”/(ﬁi(l))]] is a concatenation of paths

in Gpg and in Npg. Thus, the path Bi(f,l) agnl) BZ-(",) is a subpath of a concatenation of

of exponential length equal to 2C' and let

paths in Gpg and in Npg. Hence [f (v)] has a decomposition
7 ()] = aai™ Ves...all e,

where for every j € {1,..., ko}, the path ag.n *) is in Aczp and for every j € {0,..., ka},
the path ¢; is contained in a path ¢; which is a concatenation of paths in Gpg and in
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Npg. Hence, for every j € {0,...,ka}, we have leyp(1;) = 0 by Lemma and, by
Lemma [6.5.6] we have legp(€;) < 2C.

If 4/ is an incomplete factor of [ f™ (v)], as explained above, there exists i € {1, ..., ko}
such that 4/ is contained in 72 ;¢;_17;}. By Lemma we have

lexp(') < Eexp(Tz‘Q—leiflTil) +2C.
By Lemma [6.3.16, the exponential length of 4 is at most equal to
eezp(ﬂ'zfl) + leap(€i-1) + gemp(ﬂ‘l) +2C < 6C + Legp(ei—1) < 8C.

This proves (b).

Finally, suppose that Ay, is empty. For every j € {1,...,k;}, the path [f™ (agl))]
is a concatenation of paths in Gpg and in Npg. By Lemma the path [f™1(v)] is
a concatenation of paths in Gpg and in Npg. By Lemma for every n’ = mq, the

path [f™ (v)] is a concatenation of paths in Gpg and in Npg. This concludes the proof.
[

Lemma 6.5.12. Let f: G — G be a 3K -expanding C'T map. There exists N € N* such that
for every reduced edge path v and every m = N, the total exponential length of incomplete
factors in any optimal splitting of [f™ ()] is uniformly bounded by 8Clegyp(7y).

Proof. By Proposition (8), there exists N € N* such that, for every reduced edge
path o of length at most equal to C' + 1, the path [V (a)] is completely split. Suppose
first that fezp(y) = 0. Then, by definition of the exponential length, the path ~ is a
concatenation of paths in G5 and in Npg. By Proposition (4), every edge in
a zero stratum is adjacent to either an edge in a zero stratum or an edge in an EG
stratum. Moreover, by Lemma there does not exist a subpath of v contained in
a zero stratum which is adjacent to a Nielsen path. Hence v is either a concatenation
of paths in Gpg and in Npg or a path in a zero stratum. In the first case, the path
~ is PG-relative completely split. In the second case, by the definition of the constant
K and Equation (6.7)), we have {(y) < K < C. By the choice of N, for every m > N,
the path [f™ ()] is completely split. By Lemma @ for every m > N, the path
[f™()] is PG-relative completely split. By Lemma @ for every m = N, we have
Lenp([Fm()]) = 0.

So we may suppose that lezp(y) > 0. Let v = 4oy{71 ..., be the exponential
decomposition of v (see the beginning of Section . By Lemma there does not
exist a subpath of v contained in a zero stratum which is adjacent to a Nielsen path.
Therefore, the path v has a decomposition agf1av . .. Sray where, for every i € {0, ..., k},
the path «; is a (possibly trivial) concatenation of paths in Gpg and in Npg and, for
every i€ {1,...,k}, the path f3; is a concatenation of a (possibly trivial) maximal reduced
path in a zero stratum and an edge in an irreducible stratum not contained in Gpg or
in some ;. By construction of K, for every i € {1,...,k}, we have ¢(5;) < C + 1. By
the choice of N, for every m > N, the path [f™(5;)] is completely split. Note that, for
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every i € {1,...,k}, we have l¢cyp(3;) = 1 and that

k
Eexp(’)/) = Z gezp(ﬁi) =k
i=1

By Lemma for every i € {0,...,k} and every m > M, the path [f™(a;)] is a
concatenation of paths in Gpg and in Npg. By Lemma for every m > M, we
have lezp([f™(i)]) = 0. By Lemma the exponential length of the subpath of
[f™(c;)] contained in [f™(7)] is at most equal to 2C. For every i € {0,...,k} (resp.
ie{l,...,k}) and every m = N, let o, (resp. Bim) be the subpath of [f™(«;)] (resp.
[f™(B;)]) contained in [f™(7)]. By Remark (2), for every i € {1,...,k} and every
m > N, the exponential length of any incomplete factor in f3; ,,, is at most equal to 4C.
By Lemmal6.3.16] for every m > N, the sum of the exponential lengths of the incomplete
factors in [f™()] is at most equal to

k
Z cap(Qim) +4Ck < 20(k + 1) + 4kC < 4Ck + 4Ck = 8Ck = 8C/leyy(7).

The conclusion of the lemma follows. O

Lemma 6.5.13. Let f: G — G be a 3K -expanding CT map. Let v be a reduced edge path
in G. Suppose that v has a splitting v = byaby where, for every i € {1,2}, the path b; is
a possibly trivial PG-relative completely split. If llap(a) = 0 then legp(a) = 0.

Proof. Let v = y07{71 - .- 77} be the exponential decomposition of 7. By Lemma
there exist three (possibly trivial) paths d1, d2 and 7 such that for every i € {1,2}, the
path ¢; is a proper initial or terminal subpath of a splitting unit of some ~;, we have
leap(T) = lap(T) = llap(a) and a = §1702. Since Llgp(a) = 0, we have Legp(T) = 0.
Hence 7 is a concatenation of paths in G’p; and in Npg. By Proposition (4), every
edge in a zero stratum is adjacent to either an edge in a zero stratum or an edge in an
EG stratum. Moreover, by Lemma there does not exist a subpath of v contained
in a zero stratum which is adjacent to a Nielsen path. Hence 7 is either a concatenation
of paths in Gpg and in Npg or a path in a zero stratum. If 7 is contained in a zero
stratum, by Lemma [6.2.9] we see that §; and d2 are trivial, that is, a = 7. Thus, we
have legp(a) = Legp(T) = 0.

So we may suppose that 7 is a concatenation of paths in Gpg and in Npg. Suppose
towards a contradiction that there exists i € {1,2} such that J; is not trivial. For every
i € {1, 2} such that ¢; # @, let o; be the splitting unit of some ~y; containing ¢; and let
r; be the height of ¢;. By [BH| Lemma 5.11], for every ¢ € {1,2} such that J; is not
trivial, there exist two distinct r;-legal paths «; and §; such that o; = a;5; and such that

the turn {Df(a; '), Df(B;)} is the only height r; illegal turn. Moreover, there exists a

path 7/ such that [f(a;)] = a;7/ and [f(8;)] = 7] '8i. Let egl),e:(?) be two paths such

that o1 = egl)egQ) the path 6(1) is contained in b; and the path 6%2) is contained in a.
(1) M _(2)

Similarly, let €57, € ( ) be two paths such that o2 = €5 "€y, the path 6%2) is contained in

by and the path eg ) is contained in a.
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Claim. (1) For every path b € Np&*(b1) (resp. b € Np&*(b2)), the path b does not
) 2

contain edges of €; ’ (resp. €5).

(2) The path egl) is r1-legal and the path eg) is ro-legal.
Proof. We prove the claim for by, the proof for by being similar.

(1) Let b € Np&*(b1). There exists ¢ € Npa*(y) such that b < c. Moreover, by
Lemma m (3) applied to v = b and v = ¢, either b is a concatenation of splitting
units of ¢, or b is properly contained in a splitting unit of ¢ and is not an initial or a
terminal segment of ¢. Since b; is an initial segment of -y, the second case cannot occur.
Hence b is a concatenation of splitting units of ¢. Since o7 is not contained in by, the

(1)

path b cannot contain edges of o1. Since € ° S o1, the path b cannot contain edges of
(1)

€1

(1)

(2) Suppose towards a contradiction that €; * is not ri-legal. Then it contains the illegal
turn {Df(a7'), Df(B2)}. Recall that the path by is PG-relative completely split. By
the description of PG-relative splitting units, the illegal turn must be contained in a
PG-relative splitting unit of b; which is a concatenation of paths in Gpg and in Npg.
Since the last edge of 7 is an edge in an EG stratum, the last edge of a; must be
contained in a path contained in Npg. Hence €; intersects a path in NgZ*(b1). This
contradicts Assertion (1). O

By Assertion (2) of the claim, for every i € {1,2} such that o; is not trivial, the path
e is ri-legal. Moreover, by Assertion (1) of the claim an INP contained in b; cannot

' (i)

%

. Since the paths b; and by are PG-relative completely split, the

paths by and bo split respectively at the origin of egl) and at the end of eg). So we may
suppose that b; = egl) and by = 622). Therefore, there exists a (possibly trivial) path 7

such that, up to taking a power of f so that the length of [f(b1)] is greater than «;, we
have [f(b1)] = a1 and [f(e?))] = 7, 'f1. Similarly, there exists a path 7 such that

[F(§)] = aam and [f(b2)] = 757" Ba.

Since « splits at the concatenation points of b1, a and by, the paths 7, Uand 7
contained in [f(egz))][f(T)][f(egl))] must be identified when passing to [ f(a)]. Suppose
first that [f(7)] is a point. Then since the EG INPs ¢; and o are uniquely determined
by their initial and terminal edges by Proposition (9), we see that o1 = oy ! But
then there are some identifications between by and bo, which contradicts the fact that
biraby is a splitting.

Thus, we may suppose that [f(7)] is nontrivial. By Lemma [6.3.9] since 7 is a con-
catenation of paths in Gpg and in Npg so is [f(7)]. Note that, since an EG INP is
completely determined by its initial and terminal edges by Proposition (9), if [f(7)]
contains the initial or the terminal edge of an EG INP o, then o is contained in [f(7)].

intersect the path €

Note that there are identifications between edges of | f (652))] and [f(7)] or between edges

of [£(7)] and [£(es")]. Therefore, [f(r)] starts with o7 ' or [£(7)] ends with oy *. Thus,
one of the following holds:
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(a) [f(7)] = oy 7' with 7/ a (possibly trivial) path which is a concatenation of paths in
Gp¢c and in Npg which does not end by o 1,

(b) [f(r)] = 7’0oy ! with 7’ a (possibly trivial) path which is a concatenation of paths in
Gpc and in Npg which does not start by oy ;

(¢) [f(T)] = o7 oyt with 7/ a (possibly trivial) path.

Note that o' 7'o5 ! is reduced, so that there is no identification between aj ' and 7/

and between 7’ and (5 L Let es, be the terminal edge of o1 and let e,, be the initial
edge of g2. By Proposition (9), both e,, and e,, are edges in EG strata. Since
f is 3K-expanding, for every i € {1,2}, the path [f(es,)] has length at least equal to
3K. Recall that, for every ¢ € {1,2}, by definition of K, we have ¢(0;) < K, so that
U), 6(B;) < K. Since [£(&?)] = ayr and [f(e”)] = agro, the path [f(es, )] contains
a nondegenerate terminal segment of 7, and the path [f(e,,)] contains a nondegenerate
initial segment of length 2K of 7. As e,, is r1-legal and as f is a relative train track by
Proposition (1), we see that the last edge of 7 ! is not the last edge of a1. Similarly,
the first edge of 7 is not the first edge of B3. Therefore, we have [Tflﬁlafl] = Tflafl
and [o5 ' agTy] = By 'mo. Thus we have

LHEDONFEN] = [ry ' Broy 7oy anma] = [y '8, M 7a),

and there is no identification between 7, L and afl, afl and 7/, 7" and 5y L and By !
and 7p. Therefore, if 7/ is not trivial, then we have a contradiction as 7, Land 7 are
not identified in [f(a)]. Suppose that 7' is trivial. Then the paths 7, ' and 75 are
identified in [f(a)] only if a terminal segment of a; ! is identified with an initial segment
of By ! Since EG INP are uniquely determined by their initial and terminal edges by
Proposition (9), we see that o1 = 0, *. Hence a; ' = 32 and either 7, ! is an initial
segment of 7, ~ or 7 is an initial segment of 7. Up to changing the orientation of v, we
may suppose that Tfl is an initial segment of T{l. If Tfl = T{l, then [f(a)] is a vertex.
Moreover, as 01 = 0, ! the segment b, = egl) is equal to by L Therefore, a terminal
segment of by is identified with an initial segment of by, a contradiction. If 7, lis a
proper initial segment of 7, ! then 7 is identified with edges in b1, a contradiction. As

we have considered every case, we see that d; and d are trivial and legzp(a) = Legp(T) = 0.
O

Lemma 6.5.14. Let f: G — G be a 3K-expanding CT map. There exists ng € N* such
that for every n = ng, and every closed reduced edge path v of G, we have the following
relation between the goodness of vy and the one of [f™(7)]:

g([f"(N]) = a(7)-

Proof. By Lemmal6.3.22] there exists Ny € N* such that, for every n > Ny and every PG-
relative splitting unit o, the exponential length of the path [ f" ()] is at least equal to the
one of 0. By Lemma [6.5.12] there exists N; such that for every n > N; and every closed
reduced edge path v of G, the total exponential length of incomplete segments in any
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optimal splitting of [f™(7)] is bounded by 8C¥ezp(7y). Let Ny = [logs(10C +16C?)] € N*
be such that for every z,y > 0 such that (x,y) # (0,0), we have
(3N2 —20)x .z
(3N2 —20)x +8C(1+2C)y ~ z+y
Let ng = max{Ny, N1, Na}.

Let v be a closed reduced edge path in GG. All splittings of « are circuital splittings
in what follows. Let v = agpf1a1 ... Bray be an optimal splitting of ~y, where for every
i € {0,...,k}, the path «; is an incomplete factor of v and for every i € {1,...,k}, the
path 3; is a PG-relative complete factor of 7. First note that, for every i € {1,...,k}, and
for every n > 1, the path [f™(5;)] is PG-relative completely split by Proposition|[6.2.5] (6)
and Lemma [6.3.9] Therefore, if n = ng > Ny, the total exponential length of such PG-
relative complete segments is nondecreasing under [f"]. We now distinguish two cases,
according to the growth of the paths g;.

Suppose first that for every i € {1,...,k}, the exponential length of g; relative to 7
is equal to zero. Since the splitting v = agpfia1 ... Brax is optimal and since for every
i€ {l,...,k}, we have £2,,(53;) = 0, we have g(y) = 0. Therefore, for every n € N*, we
have g([f"(1)]) > 9(7)-

Suppose now that there exists ¢ € {1,...,k} such that the exponential length of
B; relative to «y is positive. By Lemma the sequence (Ceap([f™(5i)]))nen+ grows
exponentially with n. We can now modify the splitting of v into the following splitting:
v = aybiad ... Bhal, where:

(a) for every j € {0,...,m}, the path o} is a concatenation of incomplete factors and
complete factors of zero exponential length relative to v of the previous splitting;

(b) for every j € {1,...,m}, the path f] is a complete factor of positive exponential
length relative to v of the previous splitting.

Note that, by definition of the exponential length relative to «, for every i € {1,...,m}
and every path 7' € Np&*(v), the path 3! is not contained in ~’. Therefore, if there
exists j € {0,...,m} and 7' € NPE*(7) such that «; intersects 7' nontrivially, then ~/ is
contained in 3} ;3}. In particular, Lemma [6.5.13|applies and for every j € {0, ..., m},
if L2zp(y) = 0, then Eemp( ) = 0. Let A be the subset of {0, ...,m} such that for every
j € A, we have Eexp( 0> 0

By Lemma and Lemma [6.5.7) for every j € {1,...,m} and every M € N*, we
have

A OB = Leap([F7(BD]) =20 = 3V beay(B) = 20" > (3™ —20)1,,,(8))-
By Lemma u for every j € {0,... ,m}, we have £lyp(a}) < Legp(af). Note that, for
every i € {1,...,m}, and every n € N* the path [f"(8])] is PG- relatlve completely
split. In particular, for every n € N*, any incomplete factor of [f™ ()] is contained in a
reduced iterate of some a;. Thus, by Lemma for every n = ng = Ni, the total
exponential length of incomplete segments in [ f™ ()] is bounded by 8C' Z?Zl Lezp(al}) =
8C Y jen Leap(a). Note that the function

x
s
T+ 8C X jep Leap(at))

263



is nondecreasing. Recall that, for every n € N* the goodness function is a supremum
over splittings of [f"(v)]. Thus, by Lemma for every n = ng, we have:

(3" = 2C) 3%, teap(B)

g([f"(v)D = (3" —20) Y31 | Lup(B]) +8C Y ep Leap(ad)”

By Lemma we have

8C Y leap(aj) <8C D (£2,,(af) +2C) < 8C(1+2C) . £1,,(cy),
JEA JEA JEA

where the last inequality follows from the fact that, for every j € A, we have szp(a;) > 1.
Therefore, since ng = Na, for every n = ng, we have:

(3" = 2C) X7% Lap(B5) - 2je1 Leap(B))
(3" —2C) 7L Lap(B)) + 8C (L +2C) 3 jep llap(ef) — 2071 Lap(B)) + Xjen Leap(c))
By Lemma we have

gezp(’y) = Z EZacp(Bé) + 2 [eyzp(a;’) = Z [ey;rp(ﬁg) + 2 pr(az»).
Jj=1 7=0 j=1

JEA
Thus, we see that
Sy Cepl(B)) o
2 Qmp(ﬁ}) + 2jen Ezmp(a;‘) ’
which gives the result. O

Remark 6.5.15. In the next lemmas, we will adopt the following conventions.
Let ¢ € Out(Fy, F) be an almost atoroidal outer automorphism relative to F. Let
f: G —> G be a CT map representing a power of ¢ with filtration

=Gy <...2 G, =G.

Letpe {1,...,k —1} be such that F(G,) = F. By Lemma|6.5.21, up to taking a power
of f, we may suppose that f is 3K-expanding. By Lemma up to passing to a
power of f, we may suppose that for every closed reduced edge path v of G, we have

g([f (D) = 8()-
Lemma 6.5.16. Let f: G — G be as in Remark[0.5.15]

(1) For every d > 0, there exists m € N* such that for every reduced edge path ~ such that
9(7) = § and every n = m, the total exponential length relative to [f™(y)] of complete
factors in [f"(7y)] denoted by TEL(n,~) is at least

TEL(n,7v) = 9(7)leap(7) (3" — 2C).
(2) For every § > 0 and every € > 0, there exists m € N* such that for every cyclically
reduced circuit vy such that leyy(y) > 0, g(y) = and every n = m, we have g([f"(v)]) =
1—e
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Proof. Let v = apfia1 ... a0 be an optimal splitting, where for every i € {0,...,k},
the path «; is an incomplete factor of v and for every i € {1,...,k}, the path §; is a
PG-relative complete factor of v. We may assume that £e.p(y) > 0, otherwise g(v) = 0
and the result is immediate. Note that, since g(y) = 0 > 0, there exists i € {1,...,k}
such that €Z;,(8;) > 0. Let A, be the set consisting in all complete factors §; of v whose
exponential length relative to 7 is positive. Let £/p(A,) be the sum of the exponential
lengths relative to «y of all factors that belongs to A,. Note that

emp 2 gexp /BZ - )€$P( )

Bi€Ay

Note that, for every n € N* the value TEL(n, ) is a supremum over all splittings
of [f™(v)]. Thus, by Lemma and Lemma for every n € N*, we have:

TEL(n,y) = Y 0N (8)]) = (3" = 20000, (M) = (3" = 2C)g(7)Leap(7)-
BieA~

This proves (1). We now prove (2). By Lemma there exists ng € N* such
that for every n > ny, the total exponential length of incomplete segments in [ ()] is
bounded by 8C/c.p(y). By Lemma the total exponential length relative to v of
incomplete segments in [f"(y)] is hence bounded by 10C?c.p(y). Note that, for every
n € N*  the value g([f"(7)]) is a supremum over all splittings of [f™(v)]. Thus, by
Lemma, for every n = ng, we have:

n 9(7 ey ( )(3n - 20)
81”00 2 Tz, 0) + 80 lan )= 20
_s)B—20) 83" —20)
10C + g(7)(3" —2C) 7 10C + 6(3" — 20)°

)

The last term is independent of v and converges to 1 as n goes to infinity. Therefore the
conclusion of Lemma [6.5.16] holds for some n large enough which does not depend on ~.
This proves (2) and this concludes the proof. O

6.5.2 North-South dynamics for a relative atoroidal outer automorphisms

Let n > 3 and let F be a free factor system of F,. Let ¢ € Out(Fy, F) be an almost
atoroidal automorphism relative to F. In this subsection we prove Theorem The
proof of Theorem is inspired by the proof of the same result due to Uyanik ([Uya2])
in the context of an atoroidal outer automorphism for Out(Fy), that is, in the special
case when F = @. The proof relies on the study of splittings of reduced edge paths in the
graph associated with a CT map representing a power of ¢. Indeed, we show that, when
a cyclically reduced edge path representing w € F; has a splitting which is close to a
complete splitting, then some iterate of ¢ sends [w] into an open neighborhood of A (¢)
(see Definition [6.4.5]), and this iterate can be chosen uniformly (see Lemma [6.5.20)).
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Let ¢ € Out(Fy,, F) be an almost atoroidal outer automorphism which satisfies Def-
inition [6.4.3] (2). Let F < Fi < F, = {[Fn]} be a sequence of free factor system given
in this definition. Let f: G — G be a CT map representing a power of ¢ with filtration
=Gy < G ... < Gr = G and such that there exist p and i in {1,...,k} such
that F(Gp) = F and F(G;) = Fi. We denote by Curr(Fy, Fi A A(¢)) the set of cur-
rents of Curr(Fy, F1 A A(¢)) whose support is contained in 02F;. Note that, since the
extension F; < {[Fyn]} is sporadic, either Fy = {[H1],[H2]} or F1 = {[H]} for some sub-
groups Hi, Hy of Fy,. Up to assuming that Hs is the trivial group, we may assume that
F1 = {[H1],[H2]}. Moreover, we have F1 AA(¢p) = {[A1],...,[As], [Bi],-- ., [Bt]} where,
for every j € {1,..., s}, the group A; is contained in H; and for every j € {1,...,t}, the
group Bj is contained in Hs. Since Fi A A(¢) is a malnormal subgroup system, the set
{[A1],...,[As]} is a malnormal subgroup system of H; and the set {[B1],...,[B:]} is a
malnormal subgroup system of Hs.

Let

X(F1) = Curr(Hy, {[A1], ..., [As]}) x Curr(Ha, {[B1], ..., [Bt})-

Let p € Curr(Fi, Fi A A(p)). We set 1(n) = (itlo2pys ttlozm,) € X (F1). Since p is Fy-
invariant, ¢ (u) does not depend on the choice of the representatives of the conjugacy
classes of H; and Ha. Let (p1,p2) € X(F1). Since the subgroup system F; A A(¢) is
malnormal, for every j € {1,2}, the current p; can be extended in a canonical way to a
current p € Curr(Fy, F1 A A(¢)). The current pf is such that, for every Borel subset
B of 0*(Fy, F1 A A(9)), we have

15 (B) = j (B n 0°Hj) = pj(B n 0*Hy).

We set 12((p1, p2)) = pi + p3. By the property of uj described above, we see that
Pa((p1, p2)) € Curr(Fi, F1 A A(¢)). The maps 11 and 12 are clearly continuous.

Lemma 6.5.17. The space Curr(Fi, F1 A A(¢)) is homeomorphic to X (Fy).

Proof. We prove that )1 and v are inverse from each other. Let u € Curr(Fy,, F1 AA(9)).
Then g 0 Py (1n) = (1|2, )* + (1t|21,)*- Note that p and 1o 0 11 (1) coincide on Borel
subsets contained in @?F). Since both have supports contained in §?F, they are equal.
Conversely, let (u1, u2) € X(F1). Then

P10 a((p1s p2)) = (U1 + p3)lozm, (BT + 13) 102, )-
But p3|s2p, = 0 and pf|s2p, = 0. Hence we have
(W3 + w3)lozm, > (07 + p3)le2m,) = (W3 102, s 5162 m,) = (B, p2)-
This concludes the proof. O

For every ¢ € Out(Fy, F), we refer to the definition of P(F A A(¢)) given above
Lemma [6.3.28]
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Lemma 6.5.18. Let n = 3 and let F be a free factor system of Fy. Let ¢ € Out(Fy, F)
be an almost atoroidal outer automorphism which satisfies Definition m (2). Let
F < F1 < Fa = {Fy} be a sequence of free factor systems given in this definition. Let
f: G — G be a CT map representing a power of ¢ with filtration @ = Go S G1 S ... <
Gi = G and such that there exist p and i in {0,...,k — 1} such that F(Gp) = F and
F(G;) = Fi.

(1) The graph G — G; either is a topological arc whose endpoints are in G; or it retracts
onto a circuit C' and there exists exactly one topological arc that connects C' and G;.

(2) There do not exist an EG stratum or a zero stratum of height greater than i. If
G — G is a topological arc, every edge in G — G; is contained in Gpg. Otherwise every
edge of the circuit C' in G — G; is contained in Gpg.

(3) Let~y be a path of G; which is not contained in a concatenation of paths of Gpg,r,
and ./\/'pG,]:l. Then v is not contained in a concatenation of paths in Gpg and in Npg.
(4) We have
PP, FrAle)= ) cm.
YEP(F1AA(¢))

In particular, we have

PCurr(Fy, F A A(¢)) = PCurr(Fp, F1 A A(9)).

(5) For every edge path v in G, the value {x, () — Leap(y) is the number of edges of
G — G; contained in 7. In particular, for every path v contained in G;, we have

Cr () = Leap(V)

and for every current p € Curr(Fy, F A A(¢)) whose support is contained in 0>Fy, we
have

Wo(p) = [l 7, -

(6) Let v be a circuit in G. For every m € N*, we have
Cr (LD = Leap(LF™(N]) = €r (7) = Leap(7)-

(7) Suppose that F n A(¢) = {[A1],...,[A:]}. One of the following holds.
o There exist distinct i,5 € {1,...,1} such that

A(9) = (F ~ A(9)) —{[Ai], [4;1}) © {[Ai = A1}
e There existsi € {1,...,7} and an element g € Fy, such that

A(@) = (F A A(9) = {[Ail}) v {[Ai = <]}
In that case, there exists a subgroup A of Fy such that F = {[A]} and F, = A{g).
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e There exists g € Fy such that A(¢) = F ~ A(@) u {[{g)]}. In that case, there exists
a subgroup A of Fy such that F = {[A]} and F, = A = (g).

Proof. (1) It is a consequence of [HaM4, Lemma II1.2.5]. Note that, in the terminology
of [HaM4l, Lemma 2.2.5], the first case is called a one-edge extension and the second case
is called a lollipop extension.

(2) By Proposition [6.2.5](4), it suffices to show that there does not exist an EG stratum
of height greater than 7. This follows from [BFHI| Corollary 3.2.2] (where the stratum
described in it is the whole graph G — G;) We now prove the second part of Assertion (2).
Let w be an element of Fy represented by «v. Then there exists a subgroup A of Fy such
that [A] € A(¢) and w € A. Since ¢|r, is expanding relative to F but ¢ is not expanding
relative to F by Definition (2), there exists a reduced circuit v in G which is not
contained in GG; which has polynomial growth under iterates of f. By Proposition
the circuit v is a concatenation of paths in Gpg and in Npg. By the first part of
Assertion (2), the intersection v n G — G; does not contain EG INPs, hence consists in
edges in Gpg. Hence if G — G; is a lollipop, then the circuit C' in G — G; is contained
in 7, hence is contained in Gpg. If G — G; is a topological arc, the graph G — G; is
contained in ~y, hence consists in edges in G pg. This proves (2).

(3) Let v be as in Assertion (3). By Assertion (2), every edge of G — G; is contained in
an NEG stratum. In particular, there does not exist an EG INP of height greater than
i. Hence Npg = Npg, F,. Since 7 is contained in G; and since Gpg N G; = Gpg r,, the
path ~y is not contained in a concatenation of paths in G pg and Npg.

(4) Since ¢|z, is expanding relative to F, we see that F; A A(p) = F A A(¢p). Thus, we
have 02(Fy, FAA(¢)) = 0%(Fy, F1 AA(9)). Assertion (4) then follows from Lemma,
applied to Fi A A(o).

(5) By Assertion (2), there does not exist an EG INP of height at least ¢ + 1. Hence
Cr,(v) differs from lcqp,(7y) by the number of edges in Gpg of height at least i + 1. Since
every edge in G — G is in G pg by Assertion (2), the conclusion of the first claim of Asser-
tion (5) follows. The claim about paths contained in Gj is then a direct consequence. Let
p be a current in Curr(Fi, Fi A A(¢)). By Lemmal6.5.17] there exists (u1, p2) € X (F1)
such that p = pf + p3. Since rational currents are dense in Curr(Hy, {[A1],...,[As]})
and Curr(Hy, {[B1], ..., [B:]}) by Proposition [6.2.15] linear combination of rational cur-
rents are dense in Curr(Fi, Fi A A(¢)). The last claim of Assertion (5) then follows from
the linearity and continuity of ¥y and ||| 7.

(6) Let m € N*. By Assertion (5), it suffices to prove that the number of edges in
G — G; contained in [f™ ()] is equal to the number of edges in G — G; contained in 7.
In the case that G — G; is a lollipop extension and that ~ is the circuit C' in G — G},
then ~ is fixed by f by [HaM4, Definition 1.1.29 (3)] (that is the filtration associated
with f is reduced). Hence [f™(y)] = 7 and the claim follows. Otherwise, if G — G;
is either a one-edge extension or a lollipop extension, the circuit v is not contained in
G — G;. Moreover, if v or [f™()] contains an edge in G — G;, then it contains G — G;.
Hence it suffices to count the number of occurrences of G — G; in v and [f™(~)]. Since
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f preserves G;, the result follows from Assertion (1) and [BFHI, Corollary 3.2.2] (where
the stratum in it is the graph G — G;).

(7) Note that since ¢| 7, is expanding relative to F, we have 1 A A(¢) = F AA(¢). Recall
the definition of the graph G* and the map pg+: G* — G from above Lemma
By Proposition and Lemma (2), the malnormal subgroup system A(¢) is
precisely the subgroup system associated with the fundamental groups of the connected
components of G*. Moreover, the malnormal subgroup system associated with Fi A
A(p) = F A A(¢) is the subgroup system associated with the connected components of
pa,lk (G;). By Assertion (1), the graph G — Gj is either a topological arc or a lollipop.
Suppose first that G — G; is a topological arc. By Assertion (2), the graph G — G;
consists in edges in Gpg. Thus, the graph G* is obtained from pai(Gl) by adding
a topological arc 7. If the endpoints of 7 are in two distinct connected components
of G*, then the first case of Assertion (7) occurs and otherwise the second case of
Assertion (7) occurs. Moreover, if the second case occurs, the extension F < {[Fn]}
is an HNN extension. Thus there exists a subgroup A of F, such that F = {[A]}.
By [BFHI), Corollary 3.2.2], one can obtain an element g of F, such that F, = A xg
by taking a circuit in the image of pg+ which contains G — G; exactly once. Suppose
now that G — G; is a lollipop extension. By Assertion (2), the circuit C' in G — G;
consists in edges in Gpg. Thus, either G* is obtained from pai (G;) by adding a lollipop
extension, or G* is obtained from péi (G;) by adding a connected component which is
homotopy equivalent to a circle. If G* is obtained from p&,lk(Gz) by adding a lollipop
extension, the second case of Assertion (7) occurs. If G* is obtained from pai (Gi) by
adding a connected component which is homotopy equivalent to a circle, the third case
of Assertion (7) occurs. The proof of the fact about HNN extension is similar to the
proof for the one-edge extension case. This concludes the proof. O

Remark 6.5.19. By Lemma 6‘.5.1@ (1), G — G, is either a topological arc or it retracts
onto a circuit C' and there exists exactly one topological arc that connects C and G;. In
the second case, we will adopt the convention that G — G; = C, so that, by Lemma (2),
in both cases of Lemma (1), every edge in G — G is in Gpg.

Lemma 6.5.20. Let ¢ € Out(Fy, F) and let f: G — G be as in Remark[6.5.15,

(1) Let U be an open neighborhood of Ay(¢), let V be a neighborhood of Kpg(p)
(see Definition . There exist N € N* and § € (0, 1) such that for every m > 1 and
every w € Fy with g(yw) > 6 and np,) ¢ V, we have

(™)™ (1) € U-

(2) Suppose that ¢ is an almost atoroidal outer automorphism relative to F as in Defi-
m’tz’onm (2). Let F < F1 < Fa be an associated sequence of free factor systems.

For every e > 0 and L > 0, there exists 6 € (0,1) and M > 0 such that, for
every n = M, for every nonperipheral element w € Fy with g(vy,) > 0, there exists
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[pw] € Ay (@) such that for every reduced edge path v € P(F A A(P)) of length at most
L contained in G;:
L)l s ]

leap([f"(v)]) M1l 72

Proof. The proof is similar to the one of [LU2, Lemma 6.1]. By Lemma and
Lemma [6.5.16| (1), up to passing to a power of f, we may assume that for every w € Fy
such that g(7,) = 1, and every n € N*, we have g([f"(w)]) = 9(7w) and

Ceap([f" (w)]) = TEL(n,7) = (3" = 2C)a(Yw)leap(u)- (6.9)

Let N e N* be such that 3V > 2C. Let A > 0 be such that, for every edge e € EG
and every n € N*, we have

< €.

([ (e)]) <A™ (6.10)

By Lemma a sequence ([Vm])men of projective relative currents tends to a
projective current [v] € PCurr(Fy, F A A(¢)) if for every e > 0 and R > 0 there exists
M € N* such that, for every m > M and every reduced edge path v € P(F A A(¢)) with
¢(v) < R, we have

vy e

Wl Tl =

(6.11)

For every F-expanding splitting unit o, we denote by p(c) the corresponding current

given by Proposition By Lemma we have ||u(o)||r = 1. Since A (¢) is
compact by Lemma[6.4.7] there exist €, R > 0 such that for every m > M, if there exists

v € A, (¢) such that v, v, R, e satisfy Equation , then v, € U. Since there are
only finitely many expanding splitting units of positive exponential length and finitely
many edge paths v € P(F A A(¢)) such that /() < R, there exists My € N* such that
for every m = My, for every expanding splitting unit o and for every reduced edge path
v € P(F A A(¢)) with £(y) < R, we have:

O ™D
Cr([fm(@)])

Recall that (v, u(o)) is equal to u(o)(C(v)) by definition of the number of occurrences
of v in p(o). Let 4" be a reduced edge path in G. By Lemma for every reduced

edge path o of G contained in v/, we have {x(o) > [_;_:(O') > lr(o) — 2C. Hence there
exists M; € N* such that for every m = M, for every expanding splitting unit o, for

every edge path 7/ containing o as a splitting unit and for every reduced edge path
v € P(F A A(¢)) with £(y) < R, we have:

(s [0
AN o))

—(ruleP)| < ¢

~Grulo))] < & (6.12)
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Recall the definition of the continuous function ¥g: Curr(Fy, F A A(¢)) — R given

above Definition [6.3.25] Recall that, by Lemma [6.3.27| (3), for every current u €
Curr(Fy, F A A(¢)), we have ||u]|7 > 0. Let

U: Cwrr(Fy, F AA(9)) — R
v

[v] = Tl

Since W is continuous and since PCurr(Fy, F A A(¢p)) — V is compact, there exists s > 0
such that for every v € PCurr(Fy, F A A(¢)) — V, we have:

Y([]) > s.

In particular, by Lemma [6.3.26] for every nonperipheral element w € F, such that
Nw] € V, we have

Eexp(’}/w) . \IJO(U[w]) _ )
(r(vw)  InpullF = U([npu]) = 5. (6.13)

Now let w € F, be a nonperipheral element such that g(y,) = % and np,) ¢ V.
Let vy = apfrai ... agfr be an optimal splitting of 7,,, where for every i € {0,...,k},
the path «; is an incomplete factor of ~,, and for every i € {1,...,k}, the path j; is a
complete factor of v. Using this optimal splitting, we construct another decomposition
of 7, (which is not necessarily a splitting of 7,,). Since concatenations of paths in Gpg
and in Npg have zero exponential length by Lemmal6.3.18], we change the decomposition
in such a way that every subpath of +,, which is a concatenation of paths in Gpg and
in Npg is in some «; for i € {1,...,k}. In particular, for every i € {1,...,k}, the
exponential lengths of 8; and «a; are equal to their exponential lengths relative to v,,.

OO al(ki)az(ki)

Let i € {0,...,k}. The path o; has a decomposition a; = o; '« where,

for every j € {1,...,k;}, the path al(-j) is a concatenation of paths in Gpg and Npg

and, for every j € {1,...,k;}, the path 041(-],) is a path in G — Gpg such that every edge
of ozg]/) either has positive exponential length relative to ~, or is in a zero stratum.
Note that, by Proposition (4), for every j € {1,...,k;} and every maximal subpath
ZQI) contained in some zero stratum, the path 7 is adjacent to a path in 7, of
positive exponential length. Suppose that 7 is nontrivial. Since no zero path is adjacent
to a path which is a concatenation of paths in Gpg and Npg by Lemma [6.2.9] and

Proposition (4), either a; = 7 or Eemp(agjl)) > (. In the first case, we have ¢(1) < C
by definition of C. Thus, there exists n € N* such that [ f™(7)] is completely split. Thus,
if the first case occurs, we may suppose, up to taking a power of f, that «; is a completely
split and is a splitting unit of some ;. Let ¢ € {1,...,k}. Since f; does not contain
splitting units which are concatenation of paths in Gpg and Npg, every splitting unit

of 3; is an edge in G — G'p; or a maximal taken connecting path in a zero stratum. By
Lemma [6.3.21} every splitting unit of 3; which is an edge in G — G, is expanding. Let
o’ be a splitting unit of 3; which is a maximal taken connecting path in a zero stratum
and which is not expanding. Let n € N* be such that [f"(0’)] is completely split. By

7 of «
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Lemma [6.3.21] and Lemma [6.3.20] the path [f"(c’)] does not contain splitting units
which are edges in G — Gpg. If [f™(0”)] contains a splitting unit which is contained in a
zero stratum, then an inductive argument shows that, up to taking a larger n, the path
[f™(c")] is a concatenation of paths in Gpg and Npg. Thus, the F-length of o’ grows
at most polynomially fast under iterates of f. Thus, we see that -,, has a decomposition

(1) (1) (1) ® (1) (®)

Yw = aoboaic; 'cy . SO agby .. .aici’cy’ . -, atr1bep1ae49,

where:

(a) for every i€ {0,...,t+ 2}, the path a; is either possibly trivial, a concatenation of
paths in Gpg and in Npg or a maximal taken connecting path whose F-length grows
at most polynomially fast;

(b) for every i € {0,...,t + 1}, the path b; is a subpath of positive exponential length
relative to v, of an incomplete path of v,, such that every edge of b; either has positive
exponential length relative to =, or is in a zero stratum;

(¢) for every i € {1,...,t} and every j € {1,...,k;}, the path o

S is a (possibly trivial)
expanding splitting unit of a complete factor of ,,.

Recall that the length of every path in a zero stratum is bounded by C. Thus, for
every i € {0,...,t + 1}, we have

0(b;) < Clegp(bi).

We claim that the exponential length relative to v, of one of the edges at the concate-

nation point of two consecutive nontrivial paths of the form a;b;, b;a;41, aicgn, ng‘) 521
(4)

or ¢, a;41 is positive. Indeed, for every i € {1,...,t}(resp. i € {0,...,t + 1}) and every

je{l,...,k;}, the path ng) (resp. b;) either has positive exponential length relative to
Y OT is contained in a zero stratum. Note that by hypothesis, for every i € {0,...,t+1},
the path b; is not contained in a zero stratum. Moreover, if b; is adjacent to a path a;,
then the first edge of b; is not in a zero stratum by Proposition (4), Lemma and
the fact that the paths in zero strata that we consider in our subdivision are maximal.
Hence one of the edges at the concatenation point of every path of the form a;b;, b;a; 1
has positive exponential length relative to v,,. By maximality of the splitting units con-
tained in zero strata, one of the splitting unit in a path cg-l)cﬁl is an edge in G — G'p(;s
hence has positive exponential length relative to ~,. Since paths in zero strata and
concatenations of paths in Gpg and Npg cannot be adjacent by Proposition (4)
() (4)
“

and ¢, ”a;+1 have positive exponential length

and Lemma [6.2.9] paths of the form a;
since in this case ng') or c,(fi) is an edge in G — G'p(;. This proves the claim.

Remark that, by construction and the definition of goodness of a reduced path, we
have

ki

leap(E) = Leap(r)8(70)-
i=1j=1
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Note that the length of reduced iterates of edges in Gpg grows at most polynomially
fast, hence the F-length of reduced iterates of edges in G pg grows at most polynomially
fast. Let ¢ > 0 and k € N* be such that, for every splitting unit ¢’ which is either
an edge in Gpg or a maximal taken connecting path in a zero stratum whose F-length
grows at most polynomially fast, and every m € N*, we have:

Lr(Lf™(@")]) < C'mPex(o").

The constants C’ and k exist by the claim in Proposition Let i € {0,...,t + 2}
and let a; = ap...ay, be a decomposition of a; such that, for every j € {0,...,4}, ay,
is either an edge in Gpg, a path in Np&*(a;) or a maximal taken connecting path in a
zero stratum whose F-length grows at most polynomially fast. By Lemma [6.3.16] for

every m € N* we have
l;
F([f"(ai)] 2 ([f™ ()] 2 (7 (ag) = C'm* (7 (ay),

where the last equality follows from the fact that a path in Npg is contained in some
subpath «; by hypothesis. In particular,

t+2 t+2
2 LF(@)]) < C'mP ) p(as) < C'lp(y)n®, (6.14)

where the last inequality follows from the fact that, by hypothesis, every path in Np&*()
is contained in some a;. Thus, if g(v,) = %, there exists C” > 0 such that, for every

n = N, by Equations , (6.14) and (6.13]), we have:

Sito br(L/™(a)l) _ C'lr(Yu)n® _ C" Sleap(yuw)n < n
Leap([f™(w)]) (3" = 2C)9(Yw) Leap(Tw) — (3" = 2C)g(Vw) Leap(Vw) (3" = 2C) g(Vuw
Recall that, for every reduced edge path v of G, we have
Leap(y) < LF (7).
Up to taking a larger N € N*, we may suppose that, for every n = N, we have
k
c" n ‘ (6.15)

< :
(3" =2C)g(yw) ~ 48g(Yw)R

For every n > N and every nonperipheral element w € Fy, such that g(vyy,) > %, by
Equation ., we have

2R Legp(Vw) - 2R Leyp(Vw) B 2R
Cr([f(yw)]) h (3" = 2C)g(w)leap(Yuw) B (3" = 2C)g(w)

Up to taking a larger N, we may assume that for every n > N and every w € Fy,
such that g(v,) = %, we have:

273



2R Legp(Vw) - 2R - €
([ (w)]) — B =20)8(vw) — 128(7w)

(6.16)

Let
5 1 1 1
= max -
2RCeAN
1+5 1+ (3N 206 2

Thus, in order to prove the first assertion of Lemma [6.5.20} it suffices to show that for
every m = N and every w € F; such that g(~,) > d and Nw] € V, the projective current

[Vm] = ¢™(|nw]) is close to an element [v] in AL(¢) in the sense of Equation (6.11)).
Since the goodness function is monotone by Remark [6.5.15] it suffices to prove it for

m=N. Let we Fy, such that g(vw) > ¢ and 1) ¢ V
By Equation (|6 and the fact that g(v.) > 0 = 5, we have

S (N @) _ XS e N (@)
GUNODD T e[ (0w)])

<" n* <" n* < €
T BN —20)g(vw) T (BN —2C)5 T 24R’

(6.17)

Moreover, by Equation (6.16]) and the fact that g(y,) = > %, we have

2R ‘gexp (Vw) E
O] S 6 (6:18)

Note that, for every w € Fy such that g(v,) > ¢ and n,) ¢ V, we have:

2RCAY (1 — g(w))eap(yw) _ AN L
(3% = 200907 ey (1) ‘QRCSN—w( () 1)

AN 1 €
<2RO-—-" (- —1) <3, 1
RCSN—QC (5 ) 6 (6.19)

where the last inequality follows from the definition of 9.
Let v € P(F A A(¢)) be of length at most R. By the triangle inequality, we have

274



(LN ()] <%Z§=1Z? AN (e j>)>
TG e T )

[N (e
g]—' > ZZ 12] 1<€f fNVw))>‘

<v ) S LY EN])
+ Zz IZ] T ex(If w)]) o Zf:1251:1 [fN(Vw)]([fN( (_i))])

S Gy (S S T )
SO S O N () SO S N O e () '

<

~

(6.20)
Note that an occurrence of v or y~! in [f™(9,)] might happen either in some

[fN( )] or in some [f"(a;)] or in some [fV(b;)] or it might cross over the concate-
natlon points. Recall that one of the edges at the concatenation point of paths of the
form a;b;, bja;i1, a,cg), cg )C§21 or CEC)G,Z‘+1 has positive exponential length relative to
~Yw. Recall also that the length of v is at most equal to R. Thus the number of such

crossings is at most 2RVezp (). Thus:

C

<’Y7 ! <"/7 ;Z) > 2Rl eqp (Vo) tr2 <7, s <'y, >
([~ ZZ D | S GO D 2 T Z r)])’

Since 7 is not contained in a concatenation of paths in Gpg r and Npg r, if v
is contained in [f™V(a;)] for i € {1,...,¢ + 1}, then 7 contains an edge of [fV(a;)] of
positive F-length relative to [f"(a;)]. Hence we have {v,[f"(a;)]) < ¢x([f"(a;)]). By
Equations and with n = N, we have

2Rl eqp (Vo) sy <’Y fN > Ceap(Tw) Zfil E}'([fN(ai)]) €
Cx([ pr’Yw Z [ " . S1

s (LN (r)]) ﬁf([fN(’yw)]) Cr([fN(w)]) 4

Moreover, since for every i € {0,...,¢ + 1}, we have £(b;) < Cleyp(b;) and by Equa-

tions , (6.13)) and (6.19), we see that:

T Greny A fN( 8 o,
2 TG ;0 2 TT2000) e )

o1 gm»e ()
S Grantny S

[N 2
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For the third term of Inequality (6.20]), note that, since v € P(F A A(¢)), it is not
contained in a concatenation of paths in Gpg r and in Npg 7. Hence an occurrence of
v always appear with an edge e of ¢ such that ¢%(e) = 1. Since /() < R, such an edge
e can be crossed by at most R occurrences of v in ¢. Thus, for every reduced edge path
¢ in G, we have (v, ¢y < 2R{x(c). Hence we have

X3 1<% ICRIN
21‘:1 2]‘:1 F ([f(cgl))

\

Since

t+1 N
TN END + ST AN N (agbiai)]),

1=0

||MF

t
fN’Yw Z

using Lemma and Lemma for the last inequality we have:

Sy G ED) S S (N E)
=1 2 OO T g s Ao )

(S S G @) (S O aibiainD)
S S D ) (S 2 N O D O (Y aitias)) )

| Eagin ) (Zzb ™ (faibiaiinD)
T (E g e e ) (s s e[fN”w”qu(c(“)D)
(S S () (S = @D +2 £ U (@)
< _
(Zio e, e <”>]>) (Zio e, “w>]<[fN<c§”>]>)
on SN D2 S (N @)
SN efN(W ([fN(Cf))])
Recall that we have
t ki '
33 e () = leap() 8 ()
i—1j=1
and, for every i € {1,...,t} and every j € {1,...,k;}, we have either fexp(cgi)) =1 or

Legp( gz)) = 0. Hence, we have:

St S (RN (ED]) —20) = X 3k (3N —20)
(3N - 2C)g(fyw)£emp('7w)v

where the first inequality follows from Lemma and the second inequality follows
from the fact that f is 3K-expanding and K > 1. Thus, we have

HIND W SR (VA (R0 )

=
>
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Zt+1£;([fN( )])+2t_§(2)zf([fN(ai)])
S a0 )

< 2R |SL LU G2 S (1 (00))

Zz 12 i K[f (’Yw)]]([fN( ())])

S (Y D) 25048 (Y (a))
< 2R gt et +2R‘ 500y (ra) |

By Equation (6.10), we have

t+1 t+1 t+1 t+1
2 Y 00D < AL G <X T 0 < OO T lea(5) < CAY g (1) 1500
i=0 i=0

Hence we have:

S (Y (0)]) SR 1 ([N (a0)])
2R‘<3N 2000 ey ) ”R‘ 320y (o)

AN (1—g(yw)) leap (Yw) 2074 F (yw)n*
2R (3N 20)9(’711))ZPT§('Y1U) +2R (3N_2C)5eﬂmp(7w)

ONY (1 g(3e)) g (er) 2"
2R |G 2c>g<ww>eez§ ()| 20| BV 2095

<
< % by Equation (6.17)) and (| -

Finally, using Equation (6.12) and the fact that for every i € {1,...,t} and every

je{l,...,ki}, the splitting unit cg-i)

by Equation (6.14])

is expanding, we have:
t k; N/ (D) i LN (vl p e ©) ()
Sl S (N EDT) 7Tk Tyt £ (LN (D)
Sty S NG ey SR RISTINT TR

N, (3)
¢ ook N (o)l g e () (o™ o) _ ")
ic1 2 lF ([f ¥ (c; )])(Z[fN(’Yw)]([fN(c(i))]) <%H(ci )>
F J

i S, Ol

SN R (TG N

Sy sk AT Oy 6

Combining all inequalities, we have
DIIC DI P
()

n AN ) <%2§‘12§11W )]([ e <Crii e
(LY ()]) Sy 3k AT N ) 406066

This concludes the proof of Assertion (1) of Lemma since for every i € {1,...,t}
and every j € {1,...,k;}, we have u(cg.z)) e AL(o).

The proof of Assertion (2) is the same one as the proof of Assertion (1), replacing
(r and (% by Legp and €Ly, adding the following arguments. Let v and w € F;, be as in

\
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Assertion (2). Then + is not contained in a contenation of paths in Gpg and in Npg by

Lemma (3). If
(m (1) (1) (t) () (t)

Yw = aoboaic; ¢y’ .. - Chy agby .. .aicy’cy’ .. ., a¢r1bep10449,

is the same decomposition of v,, as in the proof of Assertion (1), then for every m € N
and every i € {1,...,t + 2}, the path 7 is not contained in [f™(a;)] by Lemma
Similarly, for every m € N* and every i € {1,...,t 4+ 2}, we have leyp([f™(ai)]) = 0.

Hence we do not need Equation (6.17). By Lemma [6.5.18| (5), we have
leap(7) = L7 (7)-

Moreover, by Lemma [6.5.18| (5), for every current [u] € A4 (¢), we have Wo(u) = ||ull 7 -
Replacing {7 and {} by ley, and £z, in the equations in the proof of Assertion (1)
concludes the proof. O

For the next lemma, we need to compute the exponential length of incomplete seg-
ments in a circuit v in G. Let £¢gp(Inc(7y)) be the sum of the exponential lengths of the
incomplete segments of an optimal splitting of . Let ¢2zp(Inc(y)) be the sum of the
exponential lengths relative to v of the incomplete segments of an optimal splitting of ~.
Note that £2gp(Inc(v)) do not depend on the choice of an optimal splitting. Note that

Cp(Ine(v)) = (1 = g(M)leap(7) < Leap(7)-

Lemma 6.5.21. Let ¢ € Out(Fy, F) and let f: G — G be as in Remark [6.5.15. Let
0 € (0,1), and let R > 1. There exists ny € N* such that for every n = ng and every
nonperipheral element w € Fy such that np,) ¢ Kpa(o), we either have

g([f"(v)]) = 0

or

10C 10C

0N Ine([f" (r)])) < g lemp(Inciw)) and Leap(Lf" (v)]) < mﬁm(%).

Proof. Let w € Fy, be a nonperipheral element such that 7, ¢ K pc(¢). Suppose that
n € N* is such that g([f"(yw)]) < d. Assuming for now that We have proved that

10C

0 e ([ (3)])) < g tap(Inc(yw)),

we deduce that Lepp([f™(Yw)]) < %&m(%})- Indeed, we have

A ([ (]) = (1= s([F DI eap([S" DD = (1 = ) leap([f" ().

Thus we have

Ceap([f" (7)])

L Ine([ £ (u)]) < 2552, (ne())

BC ().

NN
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Therefore, it suffices to prove that there exists ng € N* such that for every n = ny,
if g([f" (7u)]) < 6, then

AL Ine([ (1)) < o 32 (Inc().

R
Consider an optimal splitting v, = of1¢] ...}, 0,,, where for every ¢ € {0,...,m},
the path o} is an incomplete factor of v,, and for every i € {0,...,m}, the path 3! is a
PG-relative complete factor of 7,,. We can modify the splitting of v,, in a new splitting

Yo = qoPra ... Brax where:

(1) for every i € {0,...,k}, the path «; is a concatenation of incomplete factors and
complete factors of zero exponential length relative to -, of the old splitting;

(1) for every i € {1,...,k}, the path §; is a complete factor of positive exponential
length relative to -, of the old splitting.

In the remainder of the proof, we still refer to the paths «; as incomplete factors. By
the last claim of Remark [6.5.15] we may suppose that g(v,) < 4, that is:

k
1 (Inc(7u)) Z > (1 = 6)leap(Yuw)- (6.21)
Claim. For every i€ {0,...,k} and every m € N*| we have

2 0w (Ine([£™(04)])) < 24C2 €12, (0v).

erp erp

Similarly, for every m € N*, we have

0 N Ine([ (v)])) < 24C° Leap(ya)-

Proof. Since a reduced iterate of a complete factor is complete, every incomplete factor
of [f™(yw)] is contained in a reduced iterate of some «;. Thus, we have

k
0 0N e ([ (v)])) < Y ey ) (e ([ (0)])).
1=0

Hence it suffices to prove the result for the paths «; with i € {0, ..., k}. By Property (i7)
for every i € {1,...,k}, the path f3; has positive exponential length relative to 7w
Therefore, if there exists 7' € Np&*(7w) such that a; intersects 4/ nontrivially, then +/ is
contained in B;a;B;+1. In particular, Lemma applies and for every i € {0, ..., k},
if 0255 (cii) = 0, then legp(i) = 0.

Let i € {0,...,k}. Suppose first that £2s,(a;) = 0. By the above, we have £z, (;) =
0. By Lemmam 6.5.12] there exists N € N* such that for every m > N, such that the total
exponential length of incomplete factors in any optimal splitting of [f™(a;)] is equal to
0. Hence for every m > N, the path [f"(«;)] is PG-relative completely split. Up to
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taking a power of f, we may assume that N = 1. So this concludes the proof of the
claim in the case when £, (c;) = 0.

So we may assume that £2%,(c;) > 0. By Lemma for every m € N*, the total
exponential length of incomplete factors in [f™(a;)] is at most equal to 8Cleyp (). By
Lemma , for every i € {1,...,k}, we have

legp(aq) < L5, (ci) +2C < 3CLL ().

erp

Hence again by Lemma [6.5.6, we have

0N (ne([f™(@)])) < Leap(Ine([f™ (ci)])) < 2407235, ().

This proves the claim. O

Let A, be the set consisting in all incomplete factors «; of v, whose exponential
length relative to 7, is at least equal to (3.108) R6C12 + 1. Let Awa be the set consisting
in all incomplete factors a; of 7, which are not in A,,,. Let £2i,(A,,,) (resp. £ip(AL,))
be the sum of the exponential lengths relative to ,, of all incomplete factors of + that
belongs to A, (resp. Al ). We distinguish between two cases, according to the pro-
portion of £2%,(A,,) in the exponential length relative to 7, of incomplete factors in
Yw-

Case 1 Suppose that
(ep(Ay,) 1
T (ne(y,)) ~ RICTR?

This implies that
Cp(AL ) - (24C°R)* -1

(ep(Inc(yw)) ~—  (24C2R)?

Note that, by Lemma every path in A has exponential length at most equal
to (3. 108)012]:56 +1+2C. By Lemma [6.5.11] m there exists ng € N* such that, for every
edge path 3 of exponential length at most equal to (3.10%)R6C'? + 1 + 2C and every
n = ng either [f™(B)] is a concatenation of paths in Gpg and in Npg or [f(53)]
contains a complete factor of exponential length at least equal to 10C. By Lemma
in the second case, the path [f" (/)] has a complete factor of positive exponential length
relative to [f"(53)]. Let I',, be the set consisting in all incomplete paths o of ~,, such
that a; € AL, and [f"°(«;)] is a concatenation of paths in Gpg and in Npg. Let I, be
the set consisting in all incomplete paths «; of v, such that a; € A, and [f™(a;)] has
at least one complete factor of positive exponential length relative to [f"(«;)]. Note
that A’ =T, 0T’ . Let £5p(T,,) (resp. £eip(TY, ) be the sum of the exponential
lengths relative to y, of paths in T\, (vesp. T7, ).

(6.22)

Subcase 1 Suppose that

02Ty 24C%R
= .
Cip(AL,) ~ 24C2R +1
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Then
24C2R 24C2%R — 1

T (T ) > Yo (AN Y > 2 e (] w))-
gemp( ’Yw) 2402R+1£exp( 'yw) 2402R gexp( HC("}/ ))

Note that, for every n > ng and every path «; € I'y,, we have ley,([f™(i)]) = 0 by
Lemma [6.3.17, By the claim, for every path «; such that «o; € Ai{w and o; ¢ 'y, , and
for every n € N*, the total exponential length of incomplete factors in [f™(«;)] relative
to [f™(ay)] is at most equal to 24C?¢2%,(a;). Thus, for every n > ng, we have:

A N e[ (1)) < > A e[ (a0)]))
€My, VAL
< > 240200, (cv;)
€Ay, V(AL —Tyy)
< 240200 (Inc(y,)) — 24C?HUEZ=L 1 (Inc(v,))
< £l (Inc(ya)).

This concludes the proof of Lemma when Subcase 1 occurs.
Subcase 2 Suppose that

Eexp(l_‘fyw) < 2402R
leap(AL,) ~ 24C°R+ 1

Note that the assumption of Subcase 2 and Equation (6.22]) imply that

e Y s L e (g

(24C%R)% -1 1 -
erp\" Y/ = 24C2R+1 erp 14

%}) - (24CQR)2 2C2R + 1 ea:p(InC(’Yw))-

Since every path in nyw has exponential length at most equal to (3.10%) RSC12 41420,
by Lemma up to taking a larger no, for every path a; € T, such that fezp(i) > 0
and every n > ng, the exponential length of a complete factor in [ f"(«;)] is at least equal
to 3" leyp(v;). Moreover, for every path o; € F’% such that lcz,(0y) = 0 and every
n = ny, the exponential length of a complete factor in [ f™(«;)] is at least equal to 3™ 0.
By Lemma for every n = ng and every path «a; € Ffm such that leyp(cy) > 0, the
exponential length relative to [f™(c;)] of a complete factor in [f™(«;)] is at least equal
to

3" egp (i) —2C = (3" — 2C ) legp ().

Thus, for every n = ng and every path «a; € nyw, the exponential length relative to
[f"(cy)] of a complete factor in [f™(cy;)] is at least equal to

(37770 — 20)ugp ().

Therefore, for every n = ng, the sum of the exponential lengths of complete factors in
[/™(7w)] is at least equal to

UICTRP —1 1 o o)), (6.23)

n—ng __ Yw (TV > (3n—no _
(3 2000, (15,) = (3 20 AR R AR 1

erp
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By the claim, for every n € N*, we have 4{;(%” (Inc([f™(1w)])) < 240202, (Inc(vy))-
Recall that the goodness function is a supremum over splittings of the considered path.
Thus, by Equation for every n = ng, since the maps t — Hia are nonincreasing
for every a > 0, we have

—— (24C2R)%2 -1 1 Yw
g([/"(w)]) = ¢ 20 220) Giczm?_ziotm teerncw))
— n
(3770 —20) EeTT siatr (p () ey (Ine( [ ()

_ 2402 R)2 -1
- (3n nO_QC) ( (2402;)2 24021R+1 ZZ;UP (Inc(“/u,))

_ 24C2R)2—1 w w
(3n=m0—20) ¢ T CQ%Q sico e (Ine(1w)) +24C% €18, (Inc(vw)
n—ng_ (24C2%R)%2 1 1
> 3 0-20) (24C2R)%2  24C2R+1

—ng_ (24C2R)2—1 1 2
(3nmo—20) (24C2R)? 24C2R+1+24C

which goes to 1 as n goes to infinity. Hence there exists ny € N which is independent of ~,,,
such that, for every path 7, as in Subcase 2 and every n > ny, we have: g([f"(yw)]|) = 0.
This concludes the proof of Lemma [6.5.21] when Case 1 occurs.

Case 2 Suppose that, contrarily to Case 1, we have

ap(Ay,) 1
02, (Inc(yw)) = (24C2R)?°

Let oo € Ay, and consider the decomposition of the reduced path o into maximal
subsegments a® . alke) of exponential length relative to 7, equal to 2000R3CY, except
possibly the last one of exponential length relative to 7, less than or equal to 2000R3C®.
Let

AL = {Oé(j) |ae Ay, je{l. . ka}, (V) = 20003306},

» Yexp

A = {a(j) lae Ay g€ {1, kal, (20 (a) < 2000R3CG}.
Note that, since for every a € A, , we have €23, () = (3.10%) R6C'? + 1, we see that
IAD] > 120000R*CCIAD)]. (6.24)
Note that every element in A%J) v Agi) has exponential length at most equal to

2000R3C® + 1 + 2C by Lemma m By Lemma [6.5.11} there exists M € N* depending
only on f such that for every n = M and every reduced edge path « of exponential

length at most equal to (3.108)RC'2 + 1 + 2C, either [f"(a)] is a concatenation of
paths in Gpg and in Npg or the following holds:

(a) there exists a complete factor of [f™(a)] whose exponential length is at least equal
to 10C;

(b) the exponential length of an incomplete factor of | f"(a)] is at most equal to 8C.
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This applies in particular to every element a € A%) V) A%) and to every element
ae A, . For every o) e A( )
subpath of [f™(a!9))] contained in [f™()]. Let Ag,i? be the subset of A%) consisting in
all ) € ALY such that £,qp(a)) < 80C2, and let ALY = A — ALY
Suppose first that

and every n > M, let al%™ be the (possibly degenerate)

w

3
AY] > mm&. (6.25)

Therefore, as |A%,)| = |A§f}| + |Agi)|, by Equation (6.24]), we have

30001 R3C®

@) =
|\120()00R306|A = K|A ql

where K is a constant depending only on C' and R. Note that A, = A(Wi) U A( ) A(4)
g

and for every j € {2,3,4}, every path in Ajj has exponential length at most equal to

2000R3C®. Thus, we see that
02, (Ay,) < 2000R3CO(IAQ)| + [AD)] + ASY]) < KIASY)]

for some constant K, depending only on C' and R.

Recall that if ol9) € Agi), then £e.p(alM)) > 80C2. Suppose towards a contradic-
tion that [fM(a(?)] is a concatenation of paths in Gpg and in Npg. Since aUM) is

a subpath of [f™(a!?))], we have E([ax (a(]))]( (G:M)) = 0. By Lemma [6.5.6, we sce that

j,M @) (M : e
lexp(aUM))y < 08, (o9M)y 4 2C' = 2C, which leads to a contradiction. Hence
[FM(al))] satisfies (a) and (b). Note that aUM) is a subpath of [fM(a())]. Since
Cezp(alM)) > 80C?2, since every incomplete factor of [fM (a(?))] has exponential length
at most equal to 8C by (b) and since an incomplete factor of [ (a{?)] is followed by
a complete factor of [fM(a(?)], we see that o) contains a subpath of a complete
factor of [fM(a())]. Since fezp(aliM) > 80C? and since every incomplete subpath
of [fM(al9)] has exponential length at most equal to 8C, the path aUM) must con-
tain a subpath @M such that the total exponential length of complete factors of

aBM) g at least equal to 10C. Let agj’M) be the minimal concatenation of split-
tings of a fixed optimal splittings of [f™(a())] which contains al-M Y. Let 79 and

TZ(j’M) be paths such that [fM(oz(j))] fj’M)agj’M)Tg(j’M)~ By Lemma applied

twice (once with v = a(()]’M) (3, M) [fM( (G+1) ._al(fk%))] and vy = a8j7M)

1= [fM(oagl a1 (‘7 M)oc(()’ ) and = a((f )), we see that aUM) contains
a complete factor of [fM(’yw)] of exponential length at least equal to 10C — 4C = 6C.
By Lemma the path o?M) contains a complete factor of [ fM (7w)] of exponential
length relative to [f™(7,,)] at least equal to C. By Lemma (with v a complete
factor contained in al9M )) for every n = M and every o) € A , the path o™ con-
tains a complete subpath of [f™(7w)]| of exponential length at least equal to 3"~MC.
By Lemma for every n = M and every ol?) e A(yi), the path o(%™ contains a
complete subpath of [f"(v,)] of exponential length relative to [f™(7.)] at least equal

and once with
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to 3"~M(C — 2C. Hence for every n > M, the sum of the exponential length relatlve to

[/™(7w)] of complete factors contained in [f™(7,,)] is at least equal to (3" =M C'—2C) |A7w |
By the claim, for every n = M, we have

00 e[ ()]) < 24C2 5, ) < AC? L0, (e ),

where the last inequality holds by Equation (6.21]). Using the above equations and the
assumptions of Case 2, we see that

(M I/ (w)])) - < 2402 (L 2 (Inc ()
24C?% 5 I 5 (24C?R)*(%,(A,,)

24021i—5(2402R)2K0|A§‘f3| = KA,

ININ N

where K is a constant depending only on C, R and §. Thus, since the goodness function
is a supremum over all splittings of the considered path, for every n = M, we have:

n (3"~M C—20)|AL)|
g([f (PY’LU)]) = (377‘_1»40720)‘/\(;3|+‘€£J:;(A/w)](IHC([fn(a)]))

(3 Mo—20) A
(3n=Mc—20) AWM |+ K, |ADY)
3n— ]\/IC 20
3n-MC_20+K;’

which converges to 1 as n goes to infinity. Hence there exists M’ € N* depending only
on f such that for every n > M, we have g([f™(7w)]) = . This proves Lemma|6.5.21|in
this case.

Suppose now that contrarily to Equation (6.25), we have

1
AD < AP 6.26
A5, 30000R3CG| ol (6:26)
Then )
A = AP+ A < (14— ) [AY).
Claim 2 Let n > M, let o) € A%) v A(ﬁ?. The total exponential length of incomplete
factors of [ f™(7,)] contained in a¥™ is at most equal to 12C ez, (al9)).

Proof. Let ¢ be an incomplete factor of [f"(v,)] which is contained in o/%). Then one
of the following holds:

(i) the path ¢ is an incomplete factor of [f™(al))];
(i4) the path o contains a subpath which is complete in [f™(a))].

Note that the total exponential length of incomplete factors of [ f"(7,,)] which satisfy
(1) is bounded by the total exponential length of incomplete factors of [f™(a())]. Thus,
by Lemma the total exponential length of incomplete factors of [f™(7y)] which
satisfy (i) is bounded by 8Cfe.,(al)). Suppose that o satisfies (ii). Let aU™ = ajcaq
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be a decomposition of al?™) where for every i € {1,2}, the total exponential length
of complete factors of [f"(a¥))] contained in a; is equal to 2C. By Lemma m
applied to 5 = [/"(a@)][f*(@U*D . o™ )] and 7 = [f"(a)] and to 7' =
[f”(agl) AT (@9)] and 47t = [f(l)], the path o is contained in either
ay or ag. For every t € {1,2}, let a; = bgt)bgt), e bgt)bg?, be a decomposition of a; where,
for every i € {1,..., s}, the path bl(-t) is an incomplete factor of [f™(a(?))] and for every
i€{l,..., s}, the path bgt)l is a complete factor of [f"(a¥))] contained in ay.

Suppose that there exists i € {1,...,s1} such that bgl)l is a complete factor of

[f"(yw)]- We claim that for every j > i + 1, the path bgl)’ is a complete factor of
[/™(Yw)]- Indeed, let n’ = n and let j = i+ 1. Then there is no identification between an

initial segment of | f”'(bl(.l)/)] and an initial segment of [ f"(7,,)] not intersecting aU") as
otherwise there would exist identifications with [f" (bgl),)], contradicting the fact that
bgl), is complete. Similarly, there is no identification between a terminal segment of
[ f”'(bl(-l)/)] and a terminal segment O,f [/ (7w)] not intersecting o) as otherwise there
would exist identifications with [f™ (¢)]. The claim follows. Similarly, if there exists
i€ {l,...,s2} such that b§2)/ is a complete factor of [f™(7y)], then for every j < i, the
path bg.g), is a complete factor of [f"(,)]. Hence we may assume that for every t € {1, 2}
and every s € {1,..., s}, the path bgt), is incomplete in [f™(7yy)]. Therefore, for every

t € {1,2}, the whole path a; is incomplete in [f™(7yy)]. Therefore, in order to prove
the claim, it suffices to bound the exponential lengths of a; and ay. Let ¢ € {1,2}. By

Lemma [6.3.16] we have
S ) (ty
Ceap(ar) ) Leap(by”) + Leap(by”).
i=1

For every i € {1...,s;}, the path bl(-t) satisfies (1) and we already have a bound on the

total exponential length of such paths. Moreover, since the total exponential length of
complete factors of ") contained in a; is at most equal to 2C, we have

St
S 0 < 2.
=1

Thus, the total exponential length of incomplete factors of [f"(7.,)] contained in al-*)

is at most equal to

2 st , ) '
8Cleap(@) + 30 S leap () < 8Cleap(a) +4C < 120Cep(aD),
t=11:=1

where the last inequality follows from the fact that every element of A%) v A%) has
positive exponential length. O
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By Claim 2 and Lemma 6l for every n = M and every ol?) € A( )y A%), the total
exponential length relative to [ f" (7w)] of incomplete factors in the subpath of [f™(w)]
contained in [f™(a()] is at most equal to 12C¢2%,(a!9)) + 2C < 14002, (o). Hence

<2>UA<>

Yw )

by definition, for every n = M and every path o9 € A we have

AL O (e[ (3)]) A @9) < 14C L (al)).

exp

We claim that, for every n > M, every element in Afsn(,,) is contained in an iterate
of an element in A, . Indeed, note that, by the choice of M (in the above application
of Lemma , for every element « € A;w, the exponential length of an incomplete
factor in [f™(a)] is at most equal to 8C. Hence an incomplete factor of [f"(a)| whose
exponential length is at least equal to (3.10%) RSC'? 4-1 cannot be contained in an iterate
of an element of A, . The claim follows. Therefore, using Equation for the third
inequality, the value of Eemp(A[ fM(W)]) is at most equal to

Y Leap(@0M) 13 AL O Ine ([ (,)]) A aUD)
aen?) aenl?)
M .
0 T e[ (3)]) A alD)
a@eAl)
<80C2AY | +14C Y lep(B) +14C S Legpla)
6eA({2 aeA(Q)
< 80C2|AY)| + 14C(2000R3CE) A | + 14C 37 lugp(e)
aGA()
<80C2AY |+ CIAY| +14C S legpla)
aeA(Q)

<BIC2AD| 4140 Y logy(ar).

aeAgmz

Since by Equation (6.24])

1
14— VA®| > AW > 12 306IA(2)
(1+ sooamrcs ) 1A 2 21 > 2on00R' ),

we have |A | 6OOOOR3CG|A%)|. Hence we have

M
fgpp (’yw)](A[fM(,yw)]) < 8102|A(3)| + 1402 A(2) Beﬂ?p( )
< 8102A9)| + (140)(2000R3CG)|AW|
< 81C2AY| + 20| = 8302|AY)).

Let n = M. Suppose first that

" (Yw
N (Ao y) o1

AL ([ fr(y,)]))  (ACPR)Y
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Then we can apply Case 1 to conclude the proof of Lemma [6.5.21] Otherwise, we have
(24C*R)* AL (A p) = C0 N (Ine([£™(7a)])).-

By Lemma [6.5.12] and Lemma [6.5.6] we have

AN e[ (1)]) € LeapMe([f™ (o)) < 8CLeap(Ine([F (72)])

<
M

< 100, (e ([ £ (,))).-

Hence we have

R (T e))) (2402 Rl 0 (Ine([£7 ()])) ey ) (Inc([F (3a)]))

<

Yw ~ M Yw

2% (Inc(yw)) ng;p (’Yw)](lnrf([fM(Ww)])) 0%, (Inc(yw ))
< 10C(24C R)2tely "N (A )

)
o 10C(24C2 R)2(83C2|AS))
= 2000R3C6| ALY |
< loC
~ R .
This concludes the proof of Lemma [6.5.21] O

In the next proposition, we need to work with CT maps that represent both an almost
atoroidal outer automorphism and its inverse. We therefore introduce the following
conventions:

Let f': G' — G' be a CT map representing ¢—M , which exists by Theorem . We
denote by K’ the constant similar to the constant K given above Lemma and by C'y
the bounded cancellation constant given by Lemma . We set C' = max{K',Cy} as
in Equation . We denote by Gy the invariant subgraph of G' such that F(Gy) = F,
by Lx: the corresponding F-length and by leqy the corresponding exponential length. Let
g’ be the corresponding goodness function. If w € Fy, we denote by 7., the corresponding
circuit in G'.

We also need a result which shows that the exponential length is invariant by Fj-
equivariant quasi-isometry. In order to prove this, we need some additional definitions.
Let G be a connected (pointed) graph whose fundamental group is isomorphic to Fy, and
let G be the universal cover of G. Let ¢ € Out(Fy) be an exponentially growing outer
automorphism. Let G be the graph obtained from G as follows. We add one vertex VgA
for every left class gA, with g € F, and A is a subgroup of Fj such that [A] € A(¢)
and we add one edge between vy4 and a vertex v of G if and only if the vertex v is
contained in the tree T, 4,-1. The graph G is known as the electrification of G (see for

instance [Bow]). For a path v in G, we denote by 7 a lift of 7 in G. Let ~ be the path
in G constructed as follows. Let ¥ = a1by ... aibg be the decomposition of ¥ such that,
for every i € {1,...,k}, the path b; is contained in some tree TgiAigi—l with g; € Fy, A;
a subgroup of Fy such that [4;] € A(¢) and b; is maximal for the property of being
contained in such a tree TgiAigi—l. Then % is a path 4 = ajc; ... agcy where, for every
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ie{l,...,k}, the path ¢; is the two-edge path whose endpoints are the endpoints of b;
and the middle vertex of ¢; is vg,4,. Note that the path 7 is not uniquely determined.
Indeed, it is possible that there exists ¢ € {1,...,k} such that b; is contained in two
distinct trees T4 and Tp with [A],[B] € A(¢). However, if 4 and 4’ are two such paths
associated with 7, then £(3) = £(7).

Proposition 6.5.22. Let n > 3, let ¢ € Out(Fy) and let f: G — G be a CT map repre-
senting a power of ¢.
(1) There exists a constant By = 1 such that, for every element w € Fy with £egp(Yw) > 0,

we have:
1

Fgexp(Vw) < E(%) < By gexp(%u)-
0

(2) Let f': G' — G’ be a CT map representing a power of 1. There exists a constant
B > 0 such that, for every element w € Fy, we have:

1
Eeexp’(%u) < Eerp(%v) < Bgexp’ ('quu)

Proof. (1) Recall the definition of the graph G* from just above Lemma We can
turn the graph G* into a metric graph by assigning, to every edge e € EG*, the length
equal to the length of the path pg«(e) in G. Since the graph G* is finite, there exists a
constant B’ such that the diameter of every maximal subtree of G* is at most B’. Let
By =2B"+2.

Let w € Fy. Let v, = a1b;...apby be the decomposition of -, with a; and bg
possibly empty such that, for every i € {1,..., k}, the path b; is a maximal concatenation
of paths in G’p; and in Npg and, for every i € {1,...,k} and every edge e of a;, we have

02%,(e) = 1. Note that by the definition of the exponential length we have

k
Ceap(w) = Z £(a;).

i=1
Let A be a subgroup of Fy such that [A] € A(¢). Let i € {1,...,k} and let o be a
subpath of a; whose lift is contained in T4. By Proposition [6.3.13] the subpath « is
contained in a concatenation of paths in Gpg and in Npg. Since a; does not contain
any concatenation of paths in Gpg and Npg, the path « is a proper subpath of an EG
INP. By the definition of C' (see Equation (6.7))), we see that ¢(«) < C. Thus, we have:
l(a;) < Cl(a;) and

k
gezp('}’w) < c Z g(az)

i=1

Claim. Let A be a subgroup of Fy, such that [A] € A(¢). Let 5 be a subpath of v, such
that a lift of 5 is contained in T4. There does not exist i € {1,...,k} such that both
B nb; and B n b1 are not reduced to a point.

Proof. Suppose towards a contradiction that such an element i € {1, ..., k} exists. Then
a;+1 is contained in 5. By the above, the path a;11 is contained in an EG INP o. Since
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both b; and b;41 are concatenations of paths in G’PG and Npg, the path a;. 1 must
contain the initial or the terminal segment of o. Since 3 is contained in a concatenation
of paths in Gpg and in Npg by Proposition the EG INP o must be contained in
B and 8 ma;11 € o. This contradicts the maximality of the paths b; and b;. 1. O

Hence f is either contained in b;a;11 or in a;41b;41. Let i € {1,...,k} and let 5 be
a maximal subpath of v, containing edges of a; and such that a lift of 8 is contained
in some T4 with A a subgroup of F; such that [A] € A(¢). By the claim, the path a;
has a decomposition a; = cfdici_ such that cj and c¢; are possibly trivial, lifts of cf
and c; are contained in trees T4, and T4_ with A, and A_ subgroups of F; such that
[A+],[A-] € A(¢) and one of the following holds:
(a) Bcd;
(b) Bra;#Band Bna e{c,c}

(2
~

Note that for every i € {1,...,k}, we have ¢(a;) < ¢(d;) + 4. Then

k k k
(Fw) =2 D, 0d) 2 Y (@) —4) = D @) — 4k.
i=1 i=1 i=1
Moreover, if § is a path which satisfies the hypothesis of the claim, then there exists at
most one i € {1,...,k} such that 8 nb; is not reduced to a point. Therefore, we see that
0(7) = k. Thus, we have

k

leap(Yw) < C Y 0(@;) < C(U(Aw) + 4k) < 5CL(Aw).
i=1

This proves the first inequality of Assertion (1). We now prove the second inequality.
For every i € {1,...,k}, there exists a unique edge path b} < G* such that p*(b}) = b;.
Let i € {1,...,k}. Since G* is a finite graph, there exist (possibly trivial) reduced paths

0 and 5;"/ such that:
(i) the path B is a circuit;
(#7) the paths 0 and 6} are contained in maximal trees of G*;
(i77) we have b = 63 [*6¥ .
(BF) and p*(6*') are reduced edge paths

By Lemma [6.3.11] (1), the paths p*(d}), p*(5;

of G. By definition of B’, we have £(6%),£(5}') < B'. Since p*(8}) is a circuit which

is a concatenation of paths in Gpg and in Npg, by Proposition [6.3.13] there exists a

subgroup H; of F, such that [H;| € A(¢) and the conjugacy classes of elements of Fy
represented by p*(5) are contained in [H;]. Hence the length of p*(5¥) is bounded

(2 (3

by 2. Hence the length of the path 61 is bounded by 2 + 2B’ = By. Therefore, since
Legp(Yw) > 0, we have

k K k
(Aw) = D Uas) +£(bi) < Y. (0a;) + Bo) < (Bo+1) D €(as) = (Bo + 1)leap(uw)-

=1 =1 =1

This proves Assertion (1).
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(2) Let f’ be as in Assertion (2) and let w € F,. Suppose first that Eexp(fyw) = 0.
Then 7, is a concatenation of paths in G5 and in Npg. By Proposition (4)
and Lemma [6.2.9] there does not exist an edge in a zero stratum which is adjacent to
a concatenation of paths in Gpg and in Npg. Since zero strata are contractible by
Proposition (3), it follows that ~,, is a concatenation of paths in G pg and in Npg.
By Proposition there exists a subgroup A of Fy such that [A] € A(¢) and w € A.
Since A(¢) = A(¢ ') by Equation (6.1]), by Proposition we have eqp (v,,) = 0.
So we may suppose that lezp(yw) > 0 and that fegy (%;) > 0. By Assertion (1), in

order to prove Assertion (2), it suffices to prove that G and G' are FL-equivariantly
quasi-isometric. Since A(¢) is a malnormal subgroup system, this follows from [Bow,
Theorem 7.11] and [Hru, proof of Theorem 5.1]. O

Proposition 6.5.23. Let ¢ € Out(Fy,, F) and let f: G — G be as in Remark . Let
' G — G’ be as in the above convention. Let 6 € (0,1) and let W be a neighborhood of
Kpg(¢) in PCurr(Fpn, F A A(¢)). There exists ng € N* such that for every n = ng and
every nonperipheral element w € Fy, such that np,,; ¢ W, one of the following holds:

a([f"(w)]) =6
g ([f" (v)]) = 0.

Proof. Let w € F, be a nonperipheral element such that np,,) ¢ W. Let R = (1950)2 8C'B2.
We use the alternative given by Lemma [6 with the constants § and R. If the first
alternative of Lemma occurs, then we are done. Suppose that g([f™(yw)]) < 9.
There exists ng € N* depending only on f such that for every n = ng, we have

10

0 (e[ ()])) < e 2 (nc(a)

By Lemma [6.5.14] since g([f"(yw)]) < 8, we have g(v,) < d. Thus, we see that
Cip(Inc(yw)) = (1= 0)leap(uw)-

Let 4" be the reduced circuit in G such that [f™0(v")] = 7. Since g(vw) < ¢ and

[7w]] ¢ Kpc(#), by Lemma we see that
10C

(2, (Ine()) <~y (Inc(y").
We have
Ceap ([T (V)]) = %fexpw)>§fz§ép<1nc<vf>gm
> %%gz%ancm)) > L0 DRy ()
= BL 10(/2 Eewp’(’}’;u)zgclﬁéewp’(%u)-

But by Lemma we have:
(U Ine( £70(+,)) < Legy (Ine(£70(4},)) < 8C Ceayy (1),)-
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Therefore, we see that

g[f’"/o('%u)] (Inc([f (v/)])
11 £mo () exp w
g ([f" ()] =1— >1-(1-0)=6>0.
o) e PO
By Lemma [6.5.16] we see that there exists ny > ng depending only on f’ such that
for every n = nq,

g ([f" (m)]) = 0.
This concludes the proof. O

Proposition 6.5.24. Let ¢ € Out(Fy,,F) and let f: G — G be as in Remark .
Let Uy be a neighborhood of AL (), let U- be a neighborhood of A_(¢), let V be a
neighborhood of Kpg(¢p). There exists N € N* such that for every n = 1 and every
F A~ A(¢p)-nonperipheral w € Fy such that Mw] €V, one of the following holds

N ) €U or ¢V (npuy) €U

Proof. Let § € (0,1) and let w € F}, be a nonperipheral element with 7, ¢ V. By Propo-
sition there exists ng € N* such that for every n = ng, we have g([f"(vw)]) = 0
or g'([f™(+),)]) = 6. By Lemma (1), there exists n; = ng such that for every
n = nq, we have

M) €Uy or ¢V () € U-.

This concludes the proof. ]

The above proposition gives a result of North-South dynamics outside of a neighbor-
hood of Kpg(¢). As Kpg(¢) is empty for a relative expanding outer automorphism by

Lemma [6.3.27] (1), we can now prove Theorem [6.5.1]

Proof of Theorem . Let ¢ € Out(F,, F) be an expanding outer automorphism
relative to F. By Lemma we have Kpg(¢) = &. Let Uy be a neighborhood
of A(¢) and let U_ be a neighborhood of A_(¢). By Proposition there exists
N € N* such that for every n > 1 and every nonperipheral element w € Fy, we have

N (py) €U- or ¢ N () € U—.

Recall that, by Proposition[6.2.15] the rational currents are dense in PCurr(F,, F A A(¢)).
Hence we can apply [LU2, Proposition 3.3] to see that ¢?" has generalized North-South
dynamics. Then, using [LU2], Proposition 3.4], we conclude that ¢ has generalized North-
South dynamics. O
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6.6 North-South dynamics for almost atoroidal relative outer au-
tomorphism

Let n > 3 and let F be a free factor system of F,. Let ¢ € Out(Fy, F) be an almost
atoroidal outer automorphism which satisfies Definition [6.4.3] (2). Let F < Fy < F =
{[Fn]} be a sequence of free factor system given in this definition. We use the convention
of Remark We will show a result of North-South type dynamics for ¢ (see Theo-
rem[7.2.7)). Note that, if A(¢) # {[F,]} the simplices A1 (¢) are still defined. Note that,

by Lemma [6.3.27| (3) and Lemma [6.5.18 (4), for every current p € Curr(Fy, F A A(¢)),
we have ||u||7 > 0. Let Kpa(¢) be the set of polynomially growing currents of ¢. Note

that, combining Lemma and Lemma [6.5.18| (5), we have Kpg(¢p) n AL(¢p) = @.
Let

As(@) = {[tn+ (1 = t)] | t € [0,1], [u] € As(0), [V] € Kpa(e), |ull7 = vz =1}

be the convexes of attraction and repulsion of ¢.

In order to promote a global North-South type dynamics, we need to construct
contracting neighborhoods of AL (¢). To this end, following [CU2], we introduce a
notion of goodness for currents of PCurr(Fy, F A A(P)).

Let f: G — G be as in Remark By Lemma let N € N* be such that,
for every edge e of G — Glpq, we have Legp([fV(e)]) = 4C + 1. Let Cy = Cin be a
constant associated with fV given by Lemma Let L > 0 be such that for every
path v of G of length at least L, we have £([f"V(v)]) = Cy + 1. The constant L exists
since £V lifts to a quasi-isometry on the universal cover of G. Let P, be the finite set of
paths of the form v = ~jev92, where, for every i € {1,2}, the path =; has length equal to
L, the path e is an edge in G — G'p; and 7yiev2 is a splitting of 4. In Lemma (2),
we prove in particular that P.s is not empty. We will denote by 7 the edge e.

Let [p] € PCurr(Fpn, F A A(¢)). Recall the definition of ¥y just above Defini-
tion By Lemma (1), (2), we have ¢(Kpa(¢)) = Kpa(¢). Hence, for
every current [u] ¢ Kpg(¢), we have Wo(¢p(p)) > 0. Thus, for every current [u] €
PCurr(Fy, F A A(9)) — Kpa(), we can define the completely split goodness g(u) of u by

_ 1
g(p) = W V;CS vy 1) -

Observe that the function g is continuous and that it defines a well-defined continuous
function PCurr(Fy, F A A(¢)) — Kpa(¢) — R.

Lemma 6.6.1. Let f: G — G be as in Remark[0.5.15]
(1) Let w € Fy be such that Legp(yw) > 0. We have g([fN (w)]) = (M) -

(2) For every [u] € Ay(¢), we have g([u]) > 0

Proof. (1) The proof of this assertion is similar to the one of [CU2, Lemma 4.9 (2)]. Let
v € Pes be such that <'y, n[w]> > 0. Then v € 7,. For every occurrence of v in 7, by
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the choice of L, Cy and by Lemma the path [fV(v,)] contains [fV(7)], which
has exponential length at least equal to 4Cy + 1. Therefore, Lemma implies that
the path [V (v,)] contains a subpath of [fV ()] of exponential length at least 1 which
is a complete factor of [fV ()] relative to G'pg. Hence we have:

Eea:p([fN('Yw)])g([fN(’Yw)]) = 2 <7’ 77[w]> :

YEPes

By Lemma we have
o™ (M) = Leap([F™ (Vo)D) = Lo (sn (uy) = Leap(Von ([uw)))-

Therefore, we have

a([F™ (vw)]) = 8(npuy)-

(2) Let [u] € Ai(¢). Since [p] is a convex combination of extremal points of Ay (¢)
and since for every element v € P, the application (v, .) is linear, it suffices to prove
the result for every extremal point of A (¢$). So we may suppose that [p] is an extremal
point of A4 (¢). Let G; be the minimal subgraph of G such that F(G;) = Fi. Since [u]
is extremal and since ¢|r, is expanding relative to F, by Proposition there exists
an expanding splitting unit ¢ in G; whose initial direction is fixed by f and such that,
for every path v e P(Fi A A(¢)), we have

< M)
= =1 .
By Lemma (5), since the path [f™(o)] is contained in G; and, for every path
v € P(F A A(¢)), the above limit is finite, we have
R PGl VA O P ) )

lim ————55 =

w U ([F7(@)]) ~ e L ([F7(0)])

Hence it suffices to prove that there exists v € P, such that

RRCATIGN
% L[ (@)

Let e be an edge of G — G'5;. Note that, since o is a splitting unit, for every m e N*,
the path [f™(o)] is completely split. Hence an occurrence of e in lim,,,o[f™(0)] is
contained in a splitting unit of lim,, e[ f™(0)] which is either an INP or is equal to e.
By Lemma if an INP 4/ contains e, there exists 7, € Npg such that e € 7 € 7.
For every m € N* we denote by N(m,e) the number of occurrences of e or e~! in
[f™(0)] which are splitting units of [f™(o)] and by EGIN P(e) the set of all EG INPs

containing e. Note that, since the set Npg is finite by Lemma [6.3.4] so is the limit

> 0.

iy @lreb

n—o0

YeEGINP(e) gemp([f"(o')])
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Since for every m € N*, we have

e.[f™(@)])=Nme)+ > (LI,

YEEGIN P(e)

we see that the limit
) N(m,e)
lim

m—=% Legp([f7(0)])
exists. We claim that there exists an edge e of G — G5, such that
N
lim —(Wfﬂie)
m—% Legp([f7(0)])

Indeed, note that, by Lemma |6.3.23| since [f™(0)] is PG-relative completely split, we
have

> 0.

leap([F" (@)= >, N(mse).

e€E(G—Glog;)

Hence

2 lim M:L

gy LI

which implies the claim. Let eg be an edge of G — G’ which satisfies the claim. Since,
for every m € N*, the path [f™(o)] is completely split, if an occurrence of eg or e; Lin
[f™(o)] is a splitting unit and if v is a path in [f™(0)] of the form vy = yiegy2 or v =
Teg L1~y, then such a decomposition of « is a splitting of 7. Thus, if £(71) = (y2) = L,
then the path v is in P and it contains the occurrence of eg. Hence since p = u(o), we

have N )
m,e
lim ————+— = {1y > 0.
m—ap0 gexp([fm (U)]) WEPCSZ,EOEW
Therefore, there exists vy € P, such that {y,uy > 0 and g([u]) > 0. O

Lemma 6.6.2. Let f: G — G be as in Remark|6.5.15. Let Uy be open neighborhoods of
A1 (¢). There exist open neighborhoods U}, < Uy of Ay(¢) such that ¢TH(UL) € UY.

Proof. The proof is similar to the one of [CU2, Lemma 4.13]. We prove the result for
A (¢), the proof for A_(¢) being symmetric. By Lemma [6.6.1] (2), for every [u] €
AL (¢), we have g([u]) > 0. By compactness of AL (¢) and continuity of g, there exists
dp > 0 such that, for every u € A.(¢), we have g(p) = d9. Let 6 € (0,00). Let Uy
be a neighborhood of A,(¢). Since the function § is continuous, there exists an open
neighborhood U9 € U, of Ay(¢) such that, for every [u] € U?, we have g([u]) > §. Up
to taking a smaller U, we may suppose that Kpg(¢) n U = @ (this is possible since

Kpg(¢) is compact and Ay (¢) n Kpa(¢) = @). In particular, by Lemma [6.3.26] for
every nonperipheral element w € Fy, such that np,) € Ui, we have Legp (1) > 0.
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Let w € Fy be a nonperipheral element such that np,; € Uy. By Lemma (1),
we have

a1 (1)) = 8lngu) > 6.

By Lemma [6.5.20] (1), there exists M > N such that, for every w € F, such that
Niw] € U9, we have ng([n[w]]) e UY. Let

M-1 '
Ul =[] D)
i=0

Since (A1 (¢)) = Ay(¢) by Proposition [6.4.12] the set U’ is an open neighborhood of
A (¢) which is stable by ¢ by density of rational currents (see Proposition [6.2.15) and
continuity of ¢. This concludes the proof. O

Lemma 6.6.3. Let f: G — G be as in Remark [6.5.15. Suppose that the outer auto-
morphism ¢ is of type (2) in Definition[6.4.5, Let F < Fi < Fa = {Fn} be as in the
beginning of Section . Letie{1,...,k—1} be such that F(G;) = Fy. Let Vi be open
neighborhoods of Ai(@. There exist open neighborhoods YA/J_'F of Ai(@ contained in Vi
such that qﬁi(ffi) c "/\1

Proof. The proof follows [CU2, Lemma 4.14]. We prove the result for AJF((;S), the proof
for A_(¢) being symmetric. Given [1] € PCurr(Fy, F A A(9)) — Kpa(¢), a finite set of
reduced edge paths P in G and some € > 0 determine an open neighborhood N (|u], P, €)
of [p] in PCurr(Fn, F A A(¢)) — Kpc(¢) as follows:

N[, Pre) = {[u] € PCurt(Fp, F A A(6)) — Kpa(0) \ e,

v, vy W
Uo(r)  Toln) “}'

Since Kpg(¢) is compact, if € is small enough, this defines an open neighborhood of
[¢] in PCurr(Fn, F A A(¢)). For a subset X € PCurr(Fy, F A A(¢)) — Kpa(o), let

N(X,P,e) = (] N([ul,P,e).

[nlex

For L > 0, let P4 (L) be the set of reduced edge paths in G; of length at most equal
to L which are not contained in any concatenation of paths in Gpg r, and Npg, r,. By
Lemma (3), the set P, (L) is also the set of reduced edge paths in G; of length
at most equal to L which are not contained in any concatenation of paths in Gpg and
Npg. Let [p] € AL(¢) and let ¢ € [0,1]. Let

Kpa([p],t) = {[(1 =)y +tp] | [v] € Kpa(9), Wllm =[xz =1}

Remark that

A.(¢) = U Kpa([p], ).

[M]€A+ (¢)7 te [071]
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Let € > 0. Let Vpoy(€) = [y ((—¢,€))]. It is clear, by the continuity of ¥y and the
definition [6.3.25| of K pc (), that ().~ Vpory(€) = Kpa(¢). Let t € (0,1] and [p] € Ay ()

and let p be such that ||u||7 = 1. By Lemmal6.5.18| (5), we have Wo(u) = 1. Let

Vulliot.0) = { D € PCure(F 7 A | 7 MRS b

Note that, since Wo(p) = 1, we have [v] € Vi, ([1], t, €) if for [v] such that ||v|| 7 =1,
we have
to(p)(1 + €) > Yo(v) > tWo(u)(1 — ).

Let
VOO([,“]?t) = ﬂ N(KPG([#]vt)7P+(L)7€) N V]?Oly([u]atve)'

L—00,e—0
Claim 1. For every [u] € A4 (¢) and every t € (0, 1], we have Voo ([1], t) = Kpa([p], ).

Proof. The inclusion Kpg([p],t) S Vo([p],t]) being immediate since Wy is linear and
vanishes on Kpg(¢), we prove the converse inclusion. Let v € Vio([u],t). By defini-
tion of A, (¢), for every [p'] € A;(¢) and for every reduced edge path v not
contained in G;, we have (v, 'y = 0. Hence, by Lemma (4), the current [u] is
entirely determined by the cylinder sets determined by reduced edge paths contained
in G; which are not contained in concatenation of paths in Gpg 7 and Npg r,. By
Lemma (3), the current [u] is entirely determined by the cylinder sets determined
by reduced edge paths contained in G; which are not contained in concatenation of paths
in Gpg and Npg. Let v be a reduced edge path which is contained in G; and which is
not contained in a concatenation of paths in G pg and Npg. By Lemma for every
projective current ['] € Kpg(¢), the support of v/ is contained in 0%2A(¢). By Proposi-
tion if g € F,, is such that there exists a subgroup A of F} such that [A] € A(¢)
and g € A, then v, is a concatenation of paths in Gpg and Npg. In particular, if 4/ is a
path of G such that {g™®, g=*} € C'(v/), then +' is contained in a concatenation of paths
in Gpg and in Npg. In particular, since 7 is not contained in a concatenation of paths
in Gpg and in Npg, for every projective current [v'] € Kpg(¢), we have (y,v") = 0.

Suppose that ||v||7 = |ulz = 1. By Lemma [6.5.18] (5), we also have Wq(p) = 1.
There exists A > 0 such that for every path v which is contained in G; and which is
not contained in a concatenation of paths in Gpg and Npg, we have (y,v) = (v, A\tu).
We claim that v — Atp € Curr(Fy, F A A(¢p)) and that [v — Atu] € Kpa(¢). Indeed,
for the first part, it suffices to show that for every path v € P(F; A A(¢)), we have
(v — Mu)(C(vy)) = 0. This follows from the fact that, for every path v € P(F; A A(¢))
such that v € Gj, the path v is not contained in a concatenation of paths in Gpg and
in Npg. Hence we have (v, v) = (v, \tu). Moreover, if v € P(F1 A A(¢)), then we have
1(C(7v)) = 0. This shows that v — Atu € Curr(Fn, F A A(9)).

We now prove that [v — Atu] € Kpg(¢). Otherwise, by Lemma [6.3.27] the support of
v — At is not contained in 6?4(¢). By Proposition there exists a path v which
is not contained in a concatenation of paths in Gpg and in Npg such that

(v, v — Atpy > 0.
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Consider a decomposition of v = a1b; ...agby where, for every j € {1,...,k}, the path
a; is contained in G — G; and, for every j € {1,...,k}, the path b; is contained in G;
with a; and by possibly empty. By Lemma (1), (2) and Remark up to
taking a larger path +, we may suppose that b; is nontrivial. By Lemma (2) and
Remark for every j € {1,...,k}, the path a; is contained in Gpg. Since 7 is
not contained in a concatenation of paths in Gpg and Npg, there exists j € {1,...,k}
such that b; is not contained in a concatenation of paths in Gpe and Npg. But then
(bj, vy = {bj, A\tpy, that is (bj, v — Aty = 0. By additivity of v — Aty, we have

vV — Aty < <bj71/ — Atpy = 0.

This contradicts the choice of . Hence [v — Atu] € Kpg(¢). Therefore, we have
Uo(v — Atp) = 0. Since [v] € Vo([p], t) and since ||v||7 = ||u]|7 = 1, we see that

Wo(v) = t¥o(p).
By linearity of Wy and the fact that Uo(u) = 1, we have
t =1Wo(p) = Wo(v) = AtWo(u) = At.

Since t > 0 and Wo(u) = 1, we have A = 1. Suppose first that ¢ # 1. Let v/ = £ (v—tp),
so that [V'] € Kpg(¢) and ||V'||z = 1. Then [v] = [(1 — t)v/ + tu] € Kpc([p],t). Thus,
we have Vo ([1],t) = Kpa([p],t).

Suppose now that t = 1. Then Wy(v) = 1 = |[v||F. We claim that if v € P(F; A A(9))
is such that v(C(y)) > 0, then v € G;. Indeed, otherwise there would exist an edge
e contained in G — G; such that v(C(e)) > 0. By the description of G — G; given in
Lemma (1), (2) and additivity of the current v, we can choose the edge e € G — G;
in such a way that e € Gpg. This would imply that ||v|z > ¥o(v), a contradiction.
The claim follows. But, since for every path v € P(F1 A A(¢)) such that v S G;, we
have v(C(7)) = p(C(7)), we see that v = p and that v € Kpg([p],1). This concludes
the proof of the claim. O

Since AJF(QZ)) is compact, there exist L > 0 and € > 0 such that, for every [u] € A (¢)
and every t € (0,1], we have

V[l t, L,€) = N(Kpa([p],£), P+ (L), €) 0 Voo (£ €) S V5.,

When t = 0, there exists € > 0 such that Ve, (€) S V. Let s ¢ (0,1), and let V be an
open neighborhood of Kpg(¢) such that, for every [v] € V with ||v||z = 1, we have:

Uy(v) < s. (6.27)

For every [u] € (N(A4(6),P+(L),€) = V) 0 A.(9), there exist [mmy] € Kpa(®),
[texp] € At () and ¢ € (0,1] such that

(1] = [tpeap + (1 = t)ﬂpoly]-
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By Lemma [6.6.1] (2), for every [u] € Ay (), we have §([p]) > 0. By compactness
of A (¢) and continuity of g, there exists d; > 0 such that, for every p € A, (¢),
we have g(u) > 01. Since N(A+(¢),73+(L), e)—Vn £+(¢) is compact, and since the
function g is continuous, there exists d) > 0 such that the set U = g *((), +o0)) is

an open neighborhood of (N(A,(¢), P4+ (L), e) — V) n A, (¢) intersecting V. Note that
Un Kpg(p) =2. We set

Vi = U VIt L) O Veay(e) | n (U V).
[U]EA+(¢)7 tE(O,].]

Let 8o and My be the constants given by Lemma[6.5.20] (2) for the above choice of € > 0
and L > 0. By replacing §p with a smaller constant and My with a larger one, we may
suppose that dp and My also satisfy the conclusion of Lemma (1) for U as well
(where the open neighborhood W of Kpg(¢) needed in Lemma (1) is such that
WcVv-U).

Claim 2 There exists N € N* such that qZ)N(IA/fr) c ‘A/fr

Proof. Let w € Fy, be a nonperipheral element such that n, € YA/J’F Suppose first that

Nw) € U N \Afi Since ] ¢ Kpc(¢), by Lemma [6.3.26f we have lezp(yw) > 0. By
Lemma [6.6.1] (1), we have:

o([FY (v)]) = 8npu) > .
By Lemma [6.5.20] (1), there exists M > My + N such that, for every w € Fy such
that np,) € U n V! and every n > 1, we have ¢M"*([ny,]) e U n V] = V.

Suppose now that np,,; € V n 171 By Lemma [6.3.27] (3) and Lemma |6.5.18| (4) for
every projective current [u] € PCurr(Fy, F A A(¢)), we have ||u|| 7 > 0. For a projective
current [u] € PCurr(Fy, F A A(9)), let

_ Yo(p)
[l 7,

Then, by definition of V' and by Lemma [6.3.26] we have

Uz (1)

€e$ ’Yw
Ualimal) = (20 <
If [nw]] € Kpa(), then since ¢(Kpa(¢)) = Kpc(¢), we are done. Therefore, we

may suppose that [n,)] ¢ Kpc(¢) and, by Lemma |6.3.26, for every n € N*, we have
Leap([f"(7w)]) = 1. Let R > 1 be such that % < e. By Lemma [6.5.21} one

R(1-6
+ (1000) (1—s)

of the following assertion holds:

M) (M () > o,
@) Leon (1L ()]) < G g lespl(u)-
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First assume that Assertion (1) holds. Let [ppga (171l € A+(¢) be the projective
current associated with [¢™ ([w])] given by Lemma [6.5.20] (2). Let

t=Yr ([memqup))-
We claim that [npgm gyl € V([gem (qupyl £ Ly €). Indeed, we clearly have
[0 )] € Voory (g up]- - ©)-
By Lemma (2), for every reduced edge path v € Py (L), we have

<% MM ([ >_ <%M[¢>M<[w]>]>

Yo (Mg ([ ])]) Wo(pppn ([u))))

< €.

Therefore we have [ngm )1l € N(Kpc([pgr((uw)l t): P+(L), €). The claim follows by

Equation ([6.27)). By definition of Vfr, we see that ¢M (w1 = [pem (] € V
Suppose now that Assertion (2) holds. We claim tha (76 ([ ])]] e Vpoly( €). By

Lemma [6.5.18] (1),(2) and Remark [6.5.19, the graph G — G; consists in edges in Gpg-.
By Lemma [6.5.18| (6), we have

CR (LM (o)D) = Leap([FM (r)]) = L7 () — Ceap(o)-

Hence we have

_ Leap(LM ()] _ Loap(LFM (’Yw)]))

Y ([nggm ) = o [T (v)) eezquM(ww)]()[w(([J;]N)fww)] Ceap ([P (7))
_ Lezp 8

Leap([fM (iYw)])+KF1 (vw) —Leap(Yw)

Z]—‘l (Ww)*eczpﬁ’w) <
Zezp([fjw ('Yw)])

R(l s0) £ry (rw)—Leap(Yw)
0C

1+ [e‘Lp('Y'w)

N

<
R(l 50)f}'1(7w) Lexp(yw) 1+R(110*C§0)(175)

1+ Cr (rw)

Note that w}ll((O, €)) S Vpoiy(€). Thus, we have &M ([n,,)]) = [nrz\/ziiw])]] € Violy(€) <

174 Therefore, by density of the rational currents (see Proposition|6.2.15) and continuity

of ¢, we have gZ)M(‘Z'r) - XA/J'F This proves Claim 2. O
Let
~ Mil . ~
)
i=0
Since ¢(AL(4)) = AL (), the set IAfﬂ is an open neighborhood of A, (¢) which is stable
by ¢ by construction. This concludes the proof. O
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Theorem 6.6.4. Let n = 3 and let F be a free factor system of F,. Let F < F; <
Fo be a sequence of free factor systems such that the extension Fi < Fao is sporadic.
Let ¢ € Out(Fy, F) be such that ¢ preserves F < Fi1 < F2 and @|F, is an ezpanding
automorphism relative to F. Let Ay (¢) be the convexes of attraction and repulsion
of ¢ and AL(¢) be the simplices of attraction and repulsion of ¢. Let Ux be open
neighborhoods of Ay (¢) in PCurr(Fy, F A A()) and 174_r be open neighborhoods of AJ_F(@)
in PCurr(Fy, F A A(¢)). There exists M € N* such that for every n = M, we have

P (PCurr(F,, F A A(¢)) — V) € Uy

Proof. The proof is similar to [CU2, Theorem 4.15]. We replace ¢ by a power so that ¢
satisfies Remark By Lemmas and we may suppose that ¢(U,) € U,
and that ()Zs(‘/}_i,_) c V.. Let M be the exponent given by Propositionby using Uy =
U, and U_ =V = V_. For every current [u] € PCurr(Fy, F A A(¢)) — (;SM(‘/};), we have
oM ([u]) € Uy since oM ([u]) ¢ V_. Therefore, for every [u] € PCurr(Fy, F A A(¢))—V_,
we have ¢*M ([u]) € U, and for every n > M, we have ¢*"([u]) € U, since ¢(U,) S U,.
Therefore for every n = M, we see that

¢*"(PCurr(Fy, F A A(9)) — V_) € Uy

A symmetric argument for ¢! shows that ¢? acts with generalized North-South dy-
namics. By [LU2, Proposition 3.4], we see that ¢ acts with generalized North-South
dynamics. This concludes the proof. O

Corollary 6.6.5. For every open neighborhood V. c PCurr(Fy, F A A(9)) of 3_, there
exist M € N* and a constant Lo such that, for every current [u] € PCurr(Fy, F A A(¢)) —
V_, and every m = M, we have

le™ (1)l = 3™ M Lo || 7.

Proof. Let f: G — G be as in Remark [6.5.15] By Lemma [6.6.1] (2), there exist a
constant § > 0 and an open neighborhood U of A, (¢) such that, for every projec-
tive current [u] € U, we have g([u]) = §. We first prove Corollary for currents
[] € U. By Proposition it suffices to prove the result for rational currents. By
Lemma (1), since U n Kpg(¢) = 9, for every element w € Fy such that [n,] € U,
we have g([f™ (w)]) = . By Lemma (1) and Lemma there exists a constant
K > 0 depending on ¢ such that for every m = N and for every element w € F}, such that
[1w] € U, we have Ceap([f™(vw)]) = TEL(m — N, [fN (y0)]) = 3™ N EKileap([fN ().
Since PCurr(Fy, F A A(¢)) — V_ is compact and since Kpg(¢) = V_, by Lemma
and Lemma (3), there exists a constant Ko > 0 such that such that for every

Ceap (LS (yw)])
m 2 N and for every element w € F, such that [n,)] € U, we have ffp([fN(vw)]) > K.

Thus, we have

Cr(LF™ (o)D) 2 Leap(LF™ (r)]) 2 3™ Kt leap(LFY ()]) 2 3" M K1 Ko lr (LY ().
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We set K3 = K1K3. By compactness of PCurr(Fy,, F A A(¢)) and Lemma [6.3.27 (3),
there exists L > 0 such that for every current [p] € PCurr(Fp, F A A(¢)), we have

H(b” (rr)Hf > L. Hence for every m > N and for every element w € F, such that [np,] € U,

we have
CF(LF™ (yw)]) 2 3™ N K3 LEr ().

Hence the proof follows when [u] € U.

By Theorem [6.6.4] there exists M € N* such that, for every m > M; and every
[1] € PCurr(F,, F A A(¢)) — V_, we have ¢™([p]) € U. Let M = M, +N By the above,
Lemma the density of ratlonal currents (see Proposition and continuity

of ¢, for every current [u] ¢ V for every n = M, we have

le" ()| 7 = 8" K3 Ll o™ (1) .

By compactness of PCurr(Fy, F A A(¢)) and Lemma (3), there exists L' > 0 such

that for every current [u] € PCurr(Fn, F A A(¢)), we have 16" Gllr > 17 Hence for

el =
every n = M, we have
l¢™ ()|l 7 = 3" M KaLL'||u]| 7.

This concludes the proof. ]
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Chapitre 7

Polynomial growth and subgroups of
Out(Fp)

7.1 Introduction

Let n = 3. This paper, which is the last of a series of three papers, studies the exponential
growth of elements in Out(Fy,). An outer automorphism ¢ € Out(Fy) is exponentially
growing if there exist g € Fy, a representative ® of ¢, a free basis B of F;, and a constant
K > 0 such that, for every m € N*, we have

(s (®™(g)) = "™, (7.1)

where £ (®"(g)) denotes the length of ®™(g) in the basis B. If g € F, satisfies Equa-
tion for every representative ® of ¢, then g is said to be exponentially growing under
iteration of ¢. Otherwise, one can show, using for instance the technology of relative
train tracks introduced by Bestvina and Handel [BH]|, that g has polynomial growth un-
der iteration of ¢, replacing > eX™ by < (m + 1)¥ in Equation (7.1)) (see also [Lev2] for
a complete description of all growth types that can occur under iteration of an outer au-
tomorphism ¢). We denote by Poly(¢) the set of elements of F;, which have polynomial
growth under iteration of ¢. If H is a subgroup of Fy, we set Poly(H) =) sl Poly(¢).
In this article, we prove the following theorem.

Theorem 7.1.1. Letn > 3 and let H be a subgroup of Out(Fy). There exists ¢ € H such
that Poly(¢) = Poly(H).

In other words, there exists an element of H which encaptures all the exponential
growth of H: there exists ¢ € H such that if ¢ € F, has exponential growth for some
element of H, then g has exponential growth for ¢. Theorem has analogues in
other contexts. For instance, one has a similar result in the context of the mapping class
group of a closed, connected, orientable surface S equipped with a hyperbolic structure.
Indeed, a consequence of the Nielsen-Thurston classification (see for instance [FarM|
Theorem 13.2]) and the work of Thurston [FLP, Proposition 9.21] is that the growth



of the length of the geodesic representative of a homotopy class of an essential closed
curve under iteration of an element of Mod(S) is either exponential or linear. Moreover,
linear growth comes from twists about essential curves while exponential growth comes
from pseudo-Anosov homeomorphisms of subsurfaces of S. In [Ival] (see also the work
of McCarthy [McC]), Ivanov proved that, for every subgroup H of Mod(S), up to taking
a finite index subgroup of H, there exists finitely many homotopy classes of pairwise
disjoint essential closed curves C1,...,Ck elementwise fixed by H and such that, for
every connected component S’ of S —Ule C;, the restriction H|gr € Mod(S’) is either the
trivial group or contains a pseudo-Anosov element. One can then construct an element
f € H such that, for every connected component S — Ule C; such that the restriction
H|sr € Mod(S’) contains a pseudo-Anosov element, the element f|ss € Mod(S’) is a
pseudo-Anosov.

In the context of Out(Fy), Clay and Uyanik [CU2] proved Theorem when H is
a subgroup of Out(F}) such that Poly(H) = {1}. Indeed, by a result of Levitt [Lev2,
Proposition 1.4, Lemma 1.5], if ¢ € Out(F},) and if Poly(¢) # {1}, then there exists a
nontrivial element g € F, and k € N* such that ¢*([g]) = [¢]. In this context, Clay and
Uyanik proved that, if H does not virtually preserve the conjugacy class of a nontrivial
element of Fy, there exists an element ¢ € H which is atoroidal: no power of ¢ fixes
the conjugacy class of a nontrivial element of Fy,. From Clay and Uyanik’s theorem,
one can then ask the following question. If H is a subgroup of Out(Fy) such that H
virtually fixes the conjugacy class of a nontrivial subgroup A of Fy, is it true that either
H virtually fixes the conjugacy class of a nontrivial element g € F; such that ¢ is not
contained in a conjugate of A, or there exists ¢ € H such that the only conjugacy classes
of elements of Fy virtually fixed by ¢ are contained in a conjugate of A?

Unfortunately, such a result is not true. Indeed, let F3 = {a,b,c) be a nonabelian
free group of rank 3. Let ¢, (resp. ¢p) be the automorphism of F3 which fixes a and b
and which sends ¢ to ca (resp. ¢ to ¢b), and let H = {[¢q], [¢p]> S Out(F3). Then every
element ¢ € H has a representative which fixes (a,b) and sends c to cgy with g4 € {a,b).
Thus, ¢ fixes the conjugacy class of g¢cg¢c*1. However, there always exist ¢/ € H,
such that ¢’ does not preserve the conjugacy class of g¢cg¢c_1. This example illustrates
the main difficulty which appears when generalizing Clay and Uyanik’s theorem: the
fact that Poly(H) # {1} implies that every element of H has periodic conjugacy classes
which might not be fixed by the whole group. However, for the above example, we have
Poly(H) = F3 and every element of H satisfies Theorem|[6.1.2] Therefore, Theorem[6.1.2]
is, from this viewpoint, the right generalization of Clay and Uyanik’s theorem.

We now sketch the proof of Theorem It is inspired by the proof of [CU2,
Theorem A]. However, technical difficulties emerge due to the presence of elements of
F, with polynomial growth under iteration of elements of the considered subgroup of
Out(Fy). The main difficulties are dealt with in the second article of the series [Gueb].
Let H be a subgroup of Out(Fy,). We first consider H-invariant free factor systems F
of Fy, that is, F = {[A1],...,[Ax]}, where, for every i € {1...,k}, [A;] is the conjugacy
class of a subgroup A; of F, and there exists a subgroup B of Fy such that F, =
Ay = ... x A %+ B. There exists a partial order on the set of free factor systems of Iy,
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where F; < Fy if for every subgroup A; of F, such that [A;] € Fi, there exists a
subgroup Ay of Fy such that [As] € F2 and A; is a subgroup of As. Hence we may
consider a maximal H-invariant sequence of free factor systems

@=Fo<F1<...<Fp = {|F]}-

The proof is now by induction on i € {1,...,k}: for every i € {0..., k}, we construct an
element ¢; € H such that Poly(¢;|r,) = Poly(H|z,) (we define the sense of the restric-
tions in Section . Let i € {1,...,k} and suppose that we have constructed ¢;_1.
There are two cases to consider. If the extension F; 1 < F; is nonsporadic (see the def-
inition in Section then the construction of ¢; from ¢;_1 follows from the works of
Handel-Mosher [HaM4], Guirardel-Horbez [GuH2] and Clay-Uyanik [CUTI]. If the exten-
sion F;_1 < F; is sporadic, the construction of ¢; relies on the action of H on some natural
(compact, metrizable) space that we introduced in [Gued]. This space is called the space
of currents relative to Poly (H|r,_, ), denoted by PCurr(Fy, Poly(H|z,_,)). It is defined as
a subspace of the space of Radon measures on a natural space 0%(Fy, Poly(H|z,_,)), the
double boundary of F, relative to Poly(H|x,_,) (see Section for precise definitions).
In [Gueb], we proved that the element ¢; 1 that we have constructed acts with a North-
South dynamics on PCurr(Fy, Poly(H|x,_,)): there exist two proper disjoint closed sub-
sets of PCurr(Fy, Poly(H|z, ,)) such that every point of PCurr(Fy, Poly(H |z, ,)) which
is not contained in these subsets converges to one of the two subsets under positive or
negative iteration of ¢;—1. This North-South dynamics result allows us, applying clas-
sical ping-pong arguments similar to the one of Tits [Titl], to construct the element
¢; € H such that Poly(¢;|r,) = Poly(H|z,), which concludes the proof.

The element constructed in Theorem [6.1.2]is in general not unique. Indeed, when the
subgroup H of Out(F,) is such that Poly(H) = {1}, Clay and Uyanik [CU2, Theorem B|
give necessary and sufficient conditions for H to contain a nonabelian free subgroup
consisting in atoroidal elements.

We now outline some consequences of Theorem The first one is a result con-
cerning the periodic subset of a subgroup of Out(Fy). Let H be a subgroup of Out(Fy).
We denote by Per(H) the set of conjugacy classes of Fy, fixed by a power of every element
of H. In the above example, we constructed a subgroup H of Out(Fy) such that Per(H)
contains the conjugacy class of a nonabelian subgroup of rank 2. This is in fact the
lowest possible rank where a generalization of the theorem of Clay and Uyanik using
Per(H) instead of Poly(H) cannot work, as shown by the following result.

Theorem 7.1.2 (Corollary . Let n = 3 and let g1,...,g: be nontrivial root-free
elements of F. Let H be subgroup of Out(Fy) such that, for every i€ {1,...,k}, every
element of H has a power which fizes the conjugacy class of g;. Then one of the following
(mutually exclusive) statements holds.

(1) There exists gi4+1 € Fn such that [gr+1] & {[91],-- -, [9k]} and whose conjugacy class
is fized by a power of every element of H.

(2) There exists ¢ € H such that Per(¢) = {[{g1)],-- -, [{9r)]}
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As we show with Corollary[7.5.4] Case (2) of Theorem [7.1.2naturally occurs when we
are working with a subgroup of a mapping class group of a compact, connected surface
S whose fundamental group is identified with Fy. Finally, we give in Proposition [7.5.6
a method, using JSJ decompositions of F}, allowing to compute Poly(H) for subgroups
H of Out(Fy) which act by global conjugations on some subgroups of Fy,.

Acknowledgments. I warmly thank my advisors, Camille Horbez and Frédéric Paulin, for
their precious advices and for carefully reading the different versions of this article.

7.2 Preliminaries

7.2.1 Malnormal subgroup systems of F}

Let n be an integer greater than 1 and let F, be a free group of rank n. A subgroup
system of F, is a finite (possibly empty) set A whose elements are conjugacy classes of
nontrivial (that is distinct from {1}) finite rank subgroups of Fy,. Note that a subgroup
system A is completely determined by the set of subgroups A of Fy such that [A] € A.
There exists a partial order on the set of subgroup systems of Fy, where A; < As if for
every subgroup A; of Fy such that [A1] € A;, there exists a subgroup As of Fy such that
[A2] € A2 and A; is a subgroup of Ay. In this case we say that Ay is an extension of A;.
The stabilizer in Out(Fy) of a subgroup system A, denoted by Out(Fy, A), is the set of
all elements ¢ € Out(Fy,) such that ¢(A) = A. If A; and Ay are two subgroup systems,
we set Out(Fy, Ay, A2) = Out(Fy, A1) n Out(Fy, As).

Recall that a subgroup A of Fy is malnormal if for every element x € F, — A, we
have zAz~' n A = {e}. A subgroup system A is said to be malnormal if every subgroup
A of F, such that [A] € A is malnormal and, for all subgroups Aj, Ay of Fy such that
[A1],[A2] € A, if A; N Ay is nontrivial then A; = As. An element g € Fy, is A-peripheral
(or simply peripheral if there is no ambiguity) if it is trivial or conjugate into one of the
subgroups of A, and A-nonperipheral otherwise.

An important class of examples of malnormal subgroup systems is given by the free
factor systems. A free factor system of I, is a (possibly empty) set F of conjugacy
classes {[A1],...,[Ar]} of nontrivial subgroups Ay, ..., A, of I, such that there exists a
subgroup B of F',, with F, = Ay *...x A, B. An extension 1 < F2 = {[A1],..., [Ak]}
of free factor systems is sporadic if there exists ¢ € {1,...,k} such that, for every j €
{1,...,k} — {¢}, we have [A;] € F; and if one of the following holds:

(a) there exist subgroups Bj, Bs of F such that [By],[B2] € F1 and Ay = B; * Ba;

(b) there exists a subgroup B of F, such that [B] € F; and Ay is an HNN extension of
B over the trivial group;

(c) there exists g € F, such that Fo = F1 v {[g]} and A, = (g).

Otherwise, the extension F; < Fy is nonsporadic. A free factor system F of Fy is
sporadic (resp. nonsporadic) if the extension F < {|Fy]} is sporadic (resp. nonsporadic).
An ascending sequence of free factor systems F; < ... < F; = {[F4]} of Fy is called a
filtration of Fy.
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Given a free factor system F of Fy, a free factor of (Fy,F) is a subgroup A of F},
such that there exists a free factor system F' of F, with [A] € 7/ and F < F'. When
F = @, we say that A is a free factor of F,. A free factor of (Fy, F) is proper if it is
nontrivial, not equal to Fy and if its conjugacy class does not belong to F.

In general, we will work in a finite index subgroup of Out(F}) defined as follows. Let

1AL (Z/3Z) = ker(Out(Fy) — Aut(H,(Fy,Z/37)).

For every ¢ € 1A, (Z/37), we have the following properties:

(1) any ¢-periodic conjugacy class of free factor of F; is fixed by ¢ [HaM4, Theo-
rem I1.3.1];

(2) any ¢-periodic conjugacy class of elements of F}, is fixed by ¢ [HaM4, Theorem I1.4.1].

Another class of examples of malnormal subgroup systems is the following one. Let
g € F, and let B be a free basis of Fy,. The length of the conjugacy class of g with
respect to B is

ls([g]) = /Iislfﬁ l(h),

where lg(h) is the word length of A with respect to the basis 8. An outer automorphism
¢ € Out(Fy) is exponentially growing if there exists g € Fy such that the length of the
conjugacy class [g] of g in F,, with respect to some basis of F;, grows exponentially fast
under positive iteration of ¢. One can show that if g is exponentially growing with
respect to some free basis of Fy, then it is exponentially growing for every free basis of
F,. If ¢ € Out(F,) is not exponentially growing, one can show, using for instance the
technology of train tracks due to Bestvina and Handel [BH], that for every g € Fy, the
element g has polynomial growth under positive iteration of ¢. In this case, we say that
¢ is polynomially growing. A result of Levitt [Lev2, Proposition 1.4 (1)] shows that this
definition is equivalent to the definition given in the introduction. For an automorphism
a € Aut(Fy,), we say that « is exponentially growing if there exists g € F, such that
the word length of g grows exponentially fast under iteration of ¢. Otherwise, « is
polynomially growing. Let ¢ € Out(F},) be exponentially growing. A subgroup P of Fy
is a polynomial subgroup of ¢ if there exist k € N* and a representative a of ¢* such
that a(P) = P and «a|p is polynomially growing. By [Lev2, Proposition 1.4}, there exist
finitely many conjugacy classes [Hi], ..., [H] of maximal polynomial subgroups of ¢.
Moreover, the proof of [Lev2, Proposition 1.4] implies that the set H = {[H1], ..., [Hk]}
is a malnormal subgroup system (see [Gued, Section 2.1]). We denote this malnormal
subgroup system by A(¢). Note that, if H is a subgroup of Fy such that [H]| € A(¢),
there exists ® ! € ¢! such that ® 1(H) = H and ® !y is polynomially growing.
Hence we have A(¢) < A(¢~!). By symmetry, we have

A(d) = Al ™). (7.2)

Moreover, for every element ¢ € Out(Fy), we have
Apdp™) = ¥(A(9)).
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In order to distinguish between the set of elements of F which have polynomial growth
under positive iteration of ¢ and the associated malnormal subgroup system, we will
denote by Poly(¢) the former. We have Poly(¢) = Poly(¢~!) by Equation (7.2)). If H is
a subgroup of Out(Fy), we set Poly(H) = (), Poly(¢).

Let A be a malnormal subgroup system and let ¢ € Out(Fy,.A) be a relative outer
automorphism. We say that ¢ is atoroidal relative to A if, for every k € N* the element
¢* does not preserve the conjugacy class of any A-nonperipheral element. We say that
¢ is expanding relative to A if A(¢) < A. Note that an expanding outer automorphism
relative to A is in particular atoroidal relative to A. When A = &, then the outer
automorphism ¢ is expanding relative to A if and only if for every nontrivial element
g € Fy, the length of the conjugacy class [g] of ¢ in F, with respect to some basis of
F, grows exponentially fast under iteration of ¢. Therefore, by a result of Levitt [Lev2,
Corollary 1.6], the outer automorphism ¢ is expanding relative to A4 = & if and only if
¢ is atoroidal relative to A = @.

Let A = {[A1],...,[A;]} be a malnormal subgroup system and let F be a free factor
system. Let i € {1,...,r}. By [SW] Theorem 3.14] for the action of A; on one of its

Cayley graphs, there exist finitely many subgroups Agl), e ,Agk’) of A; such that:

(1) for every j € {1,...,k;}, there exists a subgroup B of F} such that [B] € F and
A9 = B A 4;

(2) for every subgroup B of Fj such that [B] € F and B n A; # {e}, there exists
je{l,...,ki} such that Al(j) =B n Aj;

(3) the subgroup Agl) Bk Agki) is a free factor of A;.

Thus, one can define a new subgroup system as

Fad=JAD, . pat.

1=

Since A is malnormal, and since, for every i € {1,...,r}, the group Agl)*. ) .*Agki) is a free

factor of A;, it follows that the subgroup system F A A is a malnormal subgroup system
of F,. We call it the meet of F and A. If ¢ € Out(Fyp, F, A) then ¢ € Out(Fy, F A A).

7.2.2 Relative currents

In this section, we define the notion of currents of Fy relative to a malnormal subgroup
system A. The section follows [Guedl [Gued] (see the work of Gupta [Gupl] for the
particular case of free factor systems and Guirardel and Horbez [GuHI] in the context
of free products of groups). It can be thought of as a functional space in which densely
live the A-nonperipheral elements of Fy,.

Let 0w Fy be the Gromov boundary of Fy,. The double boundary of Fy is the Hausdorff
locally compact, totally disconnected quotient topological space

aan = (aoan X a@Fn\A)/ ~,
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where ~ is the equivalence relation generated by the flip relation (x,y) ~ (y,x) and
A is the diagonal, endowed with the diagonal action of F,. We denote by {z,y} the
equivalence class of (z,y).

Let T be the Cayley graph of F;, with respect to a free basis 6. The boundary of T'
is naturally homeomorphic to 0, F, and the set §?F, is then identified with the set of
unoriented bi-infinite geodesics in T'. Let + be a finite geodesic path in T. The path
determines a subset in 02F, called the cylinder set of v, denoted by C(v), which consists
in all unoriented bi-infinite geodesics in 1" that contains . Such cylinder sets form a
basis for a topology on ¢2Fj, and in this topology, the cylinder sets are both open and
closed, hence compact. The action of F, on ¢%F, has a dense orbit.

Let A be a nontrivial subgroup of Fy of finite rank. The induced A-equivariant
inclusion 0y A <> 0o F, induces an inclusion 024 — 0?F,. Let A = {[A4],...,[A+]} be
a malnormal subgroup system. Let

0?A = U lJ &* (g4ig ).

i=1geFy

Let 0%(F,, A) = 0°F, — 0°A be the double boundary of F, relative to A. This subset is
invariant under the action of F, on ¢*F, and inherits the subspace topology of ¢%Fj.

Lemma 7.2.1. |Gue4, Lemmas 2.5, 2.6, 2.7] Letn > 3 and let A be a malnormal subgroup
system of F,. The space 0*(F,,.A) is an open subspace of 02F,, hence is locally compact,
and the action of Fy on 0*(Fy, A) has a dense orbit.

We can now define a relative current. Let n > 3 and let A be a malnormal subgroup
system of Fy. A relative current on (Fy, A) is a (possibly zero) Fp-invariant nonnegative
Radon measure y on 02(Fy, A). The set Curr(Fy, A) of all relative currents on (Fy,.A)
is equipped with the weak-# topology: a sequence (i, )nen in Curr(Fy,, A)N converges to
a current p € Curr(Fy, A) if and only if for any pair of disjoint clopen subsets S, S’ <
0%(F,, A), the sequence (i1, (S x S"))nen converges to u(S x S').

The group Out(Fy,.A) acts on Curr(Fy, A) as follows. Let ¢ € Out(Fy, A) and let
® be a representative of ¢. The automorphism ® acts diagonally by homeomorphisms
on 0°F,. If & € ¢, then the action of ® on 9%F, differs from the action of ® by a
translation by an element of F,. Let p € Curr(Fy, A) and let C' be a Borel subset of
0%(F,, A). Then, since ¢ preserves A, we see that ®~(C) € 0%(F,, A). Then we set

which is well-defined since p is Fy-invariant.

Every conjugacy class of nonperipheral element g € F,, determines a relative current
npg) as follows. Suppose first that g is root-free, that is g is not a proper power of any
element in Fy,. Let v be a finite geodesic path in the Cayley graph T. Then 71, (C(v))
is the number of axes in T of conjugates of g that contain the path v. By [Gued
Lemma 3.2], nyg) extends uniquely to a current in Curr(Fy,.A) which we still denote by
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Ng- g = h* with k > 2 and h root-free, we set Mgl = k Mpn)- Such currents are called
rational currents.

Let u € Curr(Fy, A). The support of u, denoted by Supp(u), is the support of the
Borel measure p on 62(Fy, A). We recall that Supp(u) is a lamination of 0%(Fy,, A), that
is, a closed F,-invariant subset of 62(Fy, A).

In the rest of the article, rather than considering the space of relative currents itself,
we will consider the set of projectivized relative currents, denoted by

PCurr(fy, A) = (Curr(Fy, A) —{0})/ ~,

where p ~ v if there exists A € R% such that u = Av. The projective class of a
current p € Curr(Fy, A) will be denoted by [u]. For every ¢ € Out(Fy,.A), the action
¢: p— @(u) is positively linear. Therefore, the action of Out(Fy,.A) on Curr(Fy,.A)
induces an action on PCurr(Fy,.A). We have the following properties.

Lemma 7.2.2. [Gue4, Lemma 3.3] Let n > 3 and let A be a malnormal subgroup system
of Fy. The space PCurr(Fy, A) is compact.

Proposition 7.2.3. [Guej, Theorem 1.2] Let n = 3 and let A be a malnormal subgroup
system of Fy. The set of projectivised rational currents about nonperipheral elements of
F, is dense in PCurr(fy, A).

7.2.3 Currents associated with an almost atoroidal outer automorphism of F;

Let n > 3 and let F = {[A1],...,[Ak]} be a free factor system of F,. If ¢ € IAL(Z/37Z)
preserves F, we denote by

k
¢|J—' = ([CI)1|A1]7 s [(I)k|Ak]) € H OUt(Ai)
=1

where, for every i € {1,..., k}, the element ®; is a representative of ¢ such that ®;(4;) =
A;. Note that the outer class of ®;|4, in Out(A4;) does not depend on the choice of ®;
since A; is a malnormal subgroup of F;,. Note that, for every i € {1,...,k}, the element
[®i]4,] is expanding relative to F A {[4;]} = {[Ai]}. Hence we will say that ¢|r is
expanding relative to F. Let

k
Poly(¢|7) = | | gPoly([®ila,])g~" € Fa.
i=1geFy

If H is a subgroup of IA,(Z/3Z) which preserves F, we set Poly(H|r) = [, Poly(¢|5)-
We now define a class of outer automorphisms of Fy which we will study in the rest
of the article.
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Definition 7.2.4. Let n > 3 and let F be a free factor system of F;,. Let ¢ € IAL(Z/3Z).
The outer automorphism ¢ is almost atoroidal relative to F if Poly(¢) # {[Fu]} and if
one of the following holds:

(1) ¢ is an atoroidal outer automorphism relative to F;

(2) the extension F < {[Fy,|} is sporadic.

Let ¢ € TAL(Z/3Z) be an almost atoroidal outer automorphism relative to F. In
this section, we recall from [Gueb] the definition and some properties of some subsets
of PCurr(Fy,, F A A(¢)) associated with ¢. Let Kpg(¢) be the subspace of all currents
in PCurr(F,, F A A(¢)) whose support is contained in 62A(¢) N 0?(Fn, F A A(¢)). The
subspace Kpg(¢) is called the space of polynomially growing currents associated with ¢.

Proposition 7.2.5. [Guedl, Proposition 4.4, Proposition 4.12, Proposition 5.23] Letn > 3
and let F be a free factor system of Fn. Let ¢ € IAL(Z/37Z) be an almost atoroidal
outer automorphism relative to F. There exist two unique proper compact ¢-invariant
subsets Ay (¢) of PCurr(Fy, FAA(P)) such that the following holds. For every [u] €
AL (9) U A_(¢), the support of u is contained in 0*F. Let Uy be a neighborhood of
AL (@), let U- be a neighborhood of A_(¢), let V be a neighborhood of Kpg($). There
exists N € N* such that for every n = 1 and every (F ~ A(¢))-nonperipheral w € F,
such that np,) ¢ V, one of the following holds

¢Nn(77[w]) €Uy or ¢7Nn(77[w]) eU_.

The subsets Ay (¢) and A_(¢) are called the simplices of attraction and repulsion of
¢. Let F < Fi = {[A1],...,[Ak]} be two free factor systems of Fy,. Let ¢ € IAL(Z/3Z) N
Out(F,, F,F1). We say that ¢|r, is almost atoroidal relative to F if, for every i €
{1,...,k}, the outer automorphism [®;|4,] is almost atoroidal relative to F A {[4;]}.
Let i € {1,...,k}. If ¢|£, is almost atoroidal relative to F, we denote by Ay ([4;], ¢) <
PCurr(A;, F A {[Ai]} A A([®i|a,])) the convexes of attraction and repulsion of [®;]4,].
If ¢ € TAL(Z/3Z) preserves the conjugacy class of A; and F A {[A;]} A A([Pi]4,]), then
Ay ([Ad], o) = v(AL([A], ).

We will also need the following result which gives the existence and properties of an
approximation of the length function of the conjugacy class of an element if Fy in the
context of the space of currents.

Proposition 7.2.6. [Gued, Lemma 3.26, Lemma 3.27 (3)] Let n = 3 and let F be a
free factor system of F,. Let ¢ € Out(Fy, F) be an almost atoroidal outer automor-

phism relative to F of type (2). There exists a continuous, positively linear function
Il 7: Curr(F,, F A A(¢)) — Ry such that the following holds.

(1) There exist a basis B of Fy and a constant C > 1 such that, for every F n A(¢)-
nonperipheral element g € Fy, we have ||ng || € N* and

tx([g]) = C [Inggll7-
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(2) For every n € Curr(Fyn, F A A(9)), if ||n]|7 = 0, then n = 0.
Let

As(@) ={ltp+ (A =t)v] [t€[0,1],[n] € As(9), [v] € Kpa(9), [ullr = [lvllF =1}
be the convexes of attraction and repulsion of ¢. We have the following result.

Theorem 7.2.7. [Gued, Theorem 6.4] Let n = 3 and let F be a free factor system of F.
Let ¢ € IAL(Z/3Z) n Out(Fy, F) be an almost atoroidal outer automorphism relative to
F of type (2). Let ﬁi(@ be the convexes of attraction and repulsion of ¢ and Ay (¢p) be
the simplices of attraction and repulsion of ¢. Let Uy be open neighborhoods of A1 () in
PCurr(F,, F A A(¢)) and Vi be open neighborhoods of Ay (¢) in PCurr(Fy, F A A()).
There exists M € N* such that for every n = M, we have

T (PCurr(Fy, F A A(¢)) — Vi) € Us.

Proposition 7.2.8. [Gued, Corollary 6.5] Letn > 3 and let F be a free factor system of F.
Let ¢ € Out(Fy, F) be an almost atoroidal outer automorphism relative to F of type (2).
There exists a continuous, positively linear function |.||z: Curr(F,,F A A(¢)) — R
such that the following holds.

For every open neighborhood V_ € PCurr(Fy, F A A(9)) of A_(¢), there exists M €
N* and a constant Ly > 0 such that, for every current [11] € PCurr(Fy, F A A(¢)) — V_,
and every m = M, we have

™ (1)l 7 = 3™~ Lo || 7.

7.3 Nonsporadic extensions and fully irreducible outer automor-
phisms

Let n > 3 and let F and F; = {[Ai1],...,[Ax]} be two free factor systems of Fy with
F < JF7 such that the extension F < 7 is nonsporadic. Let H be a subgroup of
IA,(Z/37) which preserves F and F;. We suppose that H is irreducible with respect
to F < JFi, that is, there does not exist a proper, nontrivial free factor system F’
of F, preserved by H with F < F' < Fi. Suppose that there exists ¢ € H such
that Poly(¢|r) = Poly(H|r). In this section, we show that there exists ¢ € H such
that Poly(¢|z) = Poly(H|x ). The key point is to construct fully irreducible outer
automorphisms relative to F in H in the following sense. Let ¢ € Out(Fy, F). We say
that ¢ is fully irreducible relative to F if no power of ¢ preserves a proper free factor
system F' of Fy such that F < F'. If ¢ € Out(Fy,, F,F1), we say that ¢|z is fully
irreducible relative to F (resp. atoroidal relative to F) if, for every i € {1,...,k}, the
outer automorphism |[®;]4,] is fully irreducible relative to F A {[A4;]} (resp. atoroidal
relative to F A {[4;]}). If H is a subgroup of Out(F,,F,Fi), we say that H|r, is
atoroidal relative to F if there does not exist a conjugacy class of F, which is H-invariant,
F-nonperiperal and Fi-peripheral. First, we recall some properties of fully irreducible
outer automorphisms.
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Proposition 7.3.1. Let n = 3 and let F be a nonsporadic free factor system of Fy. Let
H be a subgroup of 1An(Z/37) which preserves F and such that H is irreducible with
respect to the extension F < {[Fn]}. Let ¢ € H be a fully irreducible outer automorphism
relative to F.

(1) [Gued, Corollary 3.14] There exists at most one (up to taking inverse) conjugacy
class |g| of root-free F-nonperipheral element of Fy which has polynomial growth under
iteration of ¢. Moreover, the conjugacy class [g] is fized by ¢.

(2) [GuHZ, Theorem 7.4] One of the following holds:

(a) there exists v € H such that ¢ is a fully irreducible, atoroidal outer automorphism
relative to F;

(b) if ¢ fixes the conjugacy class of a root-free F-nonperipheral element g of Fy, then
lg] is fixed by H.

Hence Proposition suggests that, if H is a subgroup of F, which satisfies the
hypotheses in Proposition [7.3.1], one step in order to prove Theorem [6.1.2]is to construct
relative fully irreducible (atoroidal) outer automorphisms in H. This is contained in the
following theorem.

Theorem 7.3.2. Let n > 3 and let H be a subgroup of 1A, (Z/3Z). Let
o =Fy < F1 <...<fk={[Fn]}

be a mazimal H-invariant sequence of free factor systems. There exists ¢ € H such that
for every i € {1,...,k} such that the extension F;_1 < F; is nonsporadic, the element
o|x, is fully irreducible relative to F;_1. Moreover, if H|r, is atoroidal relative to F;_1,
one can choose ¢ so that ¢|r, is atoroidal relative to Fi_i.

Proof. The proof follows [CUIl, Theorem 6.6] (see also [CU2, Corollary 3.4]). Let
S = {j | the extension F;_; < F; is nonsporadic}

and let j € S.

Claim. There exists a unique conjugacy class [B;] of a subgroup Bj; in Fy such that
[B]] € .7:]' and [Bj] ¢ .7:3‘,1.

Proof. There exists at least one such conjugacy class since ;1 < Fj;. Suppose towards
a contradiction that there exist two distinct subgroups By and B_ of F; such that
[By] # [B_], [B+],[B-] € Fj and [B4],[B_] ¢ Fj—1. Then

F(B-]) = (F = {[B+1}) v (Fj—1 A {[B+]})

is H-invariant and F;_; < F'([B-]) < Fj, which contradicts the maximality hypothesis
of the sequence of free factor systems. The claim follows. O

Let B; be a subgroup of F; given by the claim. Let A;1,..., A; s be the subgroups of
B; with pairwise disjoint conjugacy classes such that A;_1 = {[4;1],...,[4js]} S Fj—1
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and s is maximal for this property. By [HaM4, Theorem D], for every j € S, there
exists ¢ € H such that [®;]4,] € Out(B;, A; 1) is fully irreducible relative to A; 1. By
Proposition (2), for every j € S such that H|z, is atoroidal relative to F;_1, there
exists ¢ € H such that [®;]4,] € Out(Bj, A; 1) is fully irreducible and atoroidal relative
to Aj;_1. Note that, for every j € S, the free factor system A;_; is a nonsporadic free
factor system of B; by the claim and since the extension F; 1 < Fj is nonsporadic. Let
S1 be the subset of S consisting in every j € S such that H|, is atoroidal relative to F;_1,
and let So = S —S51. By [GuH2, Theorem 4.1,4.2] (see also [Man2, Man3l, [Hor2, |Gup2)),
for every j € Sy (resp. j € Sa) there exists a Gromov-hyperbolic space X; (the Z-
factor complex of B; relative to Aj_1 when j € S; and the free factor complex of B;
relative to Aj_1 otherwise) on which Out(Bj, Aj_1) acts by isometries and such that
¢o € Out(B;, Aj_1) is a loxodromic element if and only if ¢g is fully irreducible atoroidal
relative to A;_q (resp. fully irreducible relative to A;j_1). The conclusion then follows
from |CUIl, Theorem 5.1]. O

7.4 Sporadic extensions and polynomial growth

Let n > 3 and let F and F; = {[A1],...,[Ax]} be two free factor systems of Fy with
F < JFi. Suppose that the extension F < Fj is sporadic. Let H be a subgroup of
1AL (Z/3Z) A Owt(Fy, F, Fy).

In order to prove Theorem we need to show that if Poly(¢|r) = Poly(H|r),
there exists ¢ € H such that Poly(¢|r,) = Poly(H|r ). Let ¢ € H be such that
Poly(¢|r) = Poly(H|r). Note that, for every element g of Poly(¢|r), there exists a
subgroup A of F;, such that [A] € F A A(¢) and g € A. Conversely, for every subgroup A
of F,, such that [A] € F AA(¢) and every element g € A, we have g € Poly(¢|r). Thus F A
A(¢) is the natural malnormal subgroup system associated with Poly(¢|r) = Poly(H|r).
Thus, we see that H preserves F A A(¢) and hence H acts by homeomorphisms on

PCurr(F,, F A A(9)).

Lemma 7.4.1. Let n = 3, let F be a sporadic free factor system of F, and let H be
a subgroup of IAL(Z/3Z) n Out(Fy, F) which is irreducible with respect to F < {|Fn]}.
Suppose that there ezists ¢ € H such that Poly(¢|r) = Poly(H|x). If Poly(¢) # Poly(H),
there exists an infinite subset X S H such that for all distinct 1,1 € X, we have

Y1(Kpa(9)) Nn2(Kpa(¢)) = 9.

Proof. Let F A A(¢) = {[A1],...,[Ar]}. Suppose towards a contradiction that A(¢) =
F A A(¢). Then

Poly(¢) = Poly(¢|r) = Poly(H|r) = Poly(H).

This contradicts the fact that Poly(¢) # Poly(H). Thus, we have A(¢) # F A A(¢).
By [Guebl Lemma 5.18 (7)], one of the following holds.

(1) There exist distinct 4, j € {1,...,r} such that, up to replacing A; by a conjugate, we
have A(¢) = (F A A() — {[A:], [4;]}) v {[Ai = A;]}
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(i7) There exists ¢ € {1,...,r} and an element g € F, such that A(¢) = (F A A(¢) —
{[Ai]}) v {[4i = (]}

(i7i) There exists g € Fy such that A(¢) = F A A(¢) u {[{¢)]}.

Case 1 Suppose that there exist distinct 4,5 € {1,...,r} such that

A(@) = (F A Ald) — {[Ail, [451}) v {4 = A1}

Since Poly(¢|r) = Poly(H|r) and Poly(¢) # Poly(H), there exists ¢ € H such that,
for every n € N*, the element 1" does not preserve [A; * A;] while preserving [A;] and
[A;]. Hence there exist a representative W of ¢ such that, for every n € N*, there exists
gn € F, — A;  Aj such that U"(A4;) = A; and U"(4;) = gnAjggl.

Claim 1. For every n € N* every g € F,, and every h € F),, if
he (gU™(A; = A)g™h) n (4 x Aj),

then h is either contained in a conjugate of A; or a conjugate of A;.

Proof. Let n € N* and let h € (gU"(A; * Aj)g~ 1) n (4; = A;). Suppose towards a
contradiction that h is not contained in a conjugate of A; or a conjugate of A;. By [Lev2,
Lemma 1.2], there exists a nontrivial R-tree T equipped with a minimal, isometric action
of F, with trivial edge stabilizers and such that every polynomial subgroup of ¢ fixes a
point in T'.

The groups A; = Aj, ggnA; * Ajg, g™ and gA; * Ajg~! fix points in 7. Note that,
if we have gg,, € A; * Aj, then, since g, ¢ A; * A;, we have g ¢ A; * A;. By malnormality
of A; = Aj, we have (A4; * A;) n (gA; = Ajg~') = {1}. Thus, for every g € F, one of the
following holds: (A;*A;) A (gAi* Ajg™1) = {1} or (4 A;) N (99ndi* Ajgrtg™) = {1}
If A; = Aj, gAi = Agg~ ! and ggn(A; = A;)g, 19! fix the same point z, then, by induction
on the rank of Stab(x) (which is less than n by [Gall]), one can construct a nontrivial
R-tree T" equipped with a minimal, isometric action of a subgroup B’ of F}, containing
Aix Aj, gAi = Ajg~! and ggnA; x Ajg g™t with trivial arc stabilizers, such that A; x A;
fixes a point x1, gA; * A;jg~! fixes a point x2, ggnA; * Ajg, g~ fixes a point x3 and one
of the following holds: x1 # x5 or x1 # x3.

Suppose first that x9 = x3. Then x; # x3. Since gU"(A; * Aj)g*1 = gA; *
(9nAjgt)g™t, h fixes both 1 and z9. This contradicts the fact that 7" has trivial
arc stabilizers.

Suppose now that xa # x3. Since gU™(A;* A;)g~ 1 = gA;*(gnA;g, )g !, and since h
is not contained in a conjugate of A; or a conjugate of A;, the element h can be written
as a product of elements a1b; ...agbr where, for every i € {1,...,k}, a; fixes x9 and b;
fixes x3.

We claim that h is loxodromic in 7. Let G = {(Stab(zs),Stab(z3)). The minimal
tree T¢, in T' of G is simplicial with trivial edge stabilizers and the quotient T(,/G has
exactly one edge. Hence if ¢’ € G stabilizes a point in 7" it is either contained in a
conjugate of Stab(xy) or a conjugate of Stab(zz). We may suppose that A is a cyclically
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reduced element when written in the generating set {Stab(z2), Stab(zs)}. In particular,
h either fixes x9 or x3. Since h is not contained in a conjugate of A; or a conjugate of A;,
we have k > 2. Hence h cannot fix x9 or x3 and h is a loxodromic element. Therefore h
does not fix 1 and h ¢ A; * A;, a contradiction. O

Claim 1 implies that, for every distinct m,n € N* and every = € F;,, the intersection
U (A; x Aj) N (zU™(A; = Aj)x~1) is either contained in a conjugate of A; or a conjugate
of A;. By for instance [HaM4, Fact 1.1.2], for every distinct m,n € N* and every x € Fy,
we have

0* (WA + Aj)) 0 & (a0 (A« Aj)at) 0% (U™(A; = Aj) n 2 U™(A; « Aj)at)
Uyer, (0% (yAiy=) v 02 (yAjy71) ).

By definition of Kpg(¢), we have [u] € Kpa(¢) if and only if

N

Supp(p) € *A(9) N 0*(Fa, F A A(9)) = 0*{[Ai * Aj]} 0 0% (F, F A A(9)).
Moreover, if n € N* and if [1] € ¥" (K pg(¢)), then
Supp(u) € 0*Y"(A(9)) M & (Fa, F A A(9)) = O*{[Ai * gndjg, 1} 0 P (Fa, F A A(9)).
Let n,m € N* be distinct. Suppose towards a contradiction that
V" (Kpa(9)) nv™(Kpa(9)) # @

and let [u] € Y"(Kpa(p)) n " (Kpa(¢p)). By Fy-invariance of p, there exists z € Fy
such that u gives positive measure to

O%(Ai » gnAjgnt) 0 0% (z(A; = gmAjgr )a™t) m X (Fa, F A A(9))
c (U @Ay oAy ) 0 (F F A A©)

yeF,

and the last intersection is empty by the definition of the relative boundary, a contra-
diction.

Case 2 Suppose that either there exists ¢ € {1,...,r} and an element g € Fy, such that
A(p) = (F A A(¢) — {[4i]}) v {{Ai = {g)]} or there exists g € F, such that A(¢) =
F A A9) v {lipl}

In order to treat both cases simultaneously, in the case that there exists g € Fy
such that A(¢) = F A A(¢) u {[{9)]}, we fix A; = {e}. Case (2) only occurs when the
extension F < {[Fyn]} is an HNN extension over the trivial group. In particular, we
have F = {[A]} for some subgroup A of F, and, up to changing the representative of
[A], we have F, = A = {(g) and A; € A. In particular, since H preserves the extension
F < A{[Fan]}, for every ¢ € H, there exist a unique representative ¥q of ¢ and gy, € A such
that Ug(A) = A and ¥o(g) = ggy. Since H is irreducible with respect to F < {[F4]},
the subgroup H does not preserve the free factor system F U {[g]}. Thus, there exists
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¢’ € H such that g, # 1. We claim that there exist ¢» € H with g, ¢ A;, a representative
U of ¢ and h; € A such that U(4;) = A; and (g) = higgyhy'. Indeed, if gy ¢ A;, we
are done. Otherwise, since Poly(¢|r) = Poly(H|z) and Poly(¢) # Poly(H), there exist
Y€ H and h € A — A; such that either g, ¢ A;, or ¥o(A) = A and ¥o(4;) = hA;h™L
In the first case we are done. Otherwise, we have ¥ o U (g) = ggwhgq/,/h*l. Since A;
is malnormal, we have hg¢h_1 ¢ A; and g¢hg¢h_1 ¢ A;. The claim follows. Thus, for
every n € N* and 1 € H as in the claim, we have gy» ¢ A; and there exists h,, € A such
that U"(A;) = A; and U"(g) = hyggynhy, .

Claim 2. For every n € N* and every a, h € Iy, if

he (aV"(4; = {g)a ') n (A (9)),
then h is contained in a conjugate of A;.

Proof. Let n € N* let a € F, and let h € (aU™(A; * (g))a™!) n (A; * {g)). Suppose
towards a contradiction that h is not contained in a conjugate of A;. First note that
ahnggynhyta™t ¢ aA; x(gya~!. Indeed, since F,, = A=(g), the elements h,ggynh; ! can
be written uniquely as a reduced product of elements in A and elements in {g). Since
P, gyn € A, if we have ahnggwnh;la_l € ad; x{gda~", then h, € A; and gwnh;l € A;.
Therefore, gy» € A;, a contradiction. Thus, we have ah,ggynh,, la~t ¢ ad; «{g)a L.

We claim that there exist a subgroup B’ of F, containing A; * (g), aA; * {gha~!
and ahy,ggynh, l¢~! and an R-tree T" equipped with a minimal, isometric action of B’
with trivial arc stabilizers and such that A; * (g) fixes a point z} in T", aA; * {g)a™*
fixes a point 24 in 7" and ah,ggynh, 'a™' either fixes a point in 7" distinct from z
or x4 or is loxodromic. Indeed, by [Lev2, Lemma 1.2], there exists a nontrivial R-tree
T equipped with a minimal, isometric action of F;, with trivial arc stabilizers and such
that every polynomial subgroup of ¢ fixes a point in 7. In particular, A; x (g) fixes a
point 21 in T and aA; = {g)a™! fixes a point 2o in T. If ahnggwnhgla_l either fixes
a point in T distinct from x1 or xs or is loxodromic, we may take T' = T". Otherwise
T1 = X2, ahpggynhy,'a™! € Stab(z1) and an induction on the rank of Stab(z1) (which
is less than n by [Gall] and invariant by a power of ¢) allows us to conclude since
ahnggynhyta™t ¢ aAi = (gya .

Suppose first that ah,ggynhy,'a™! fixes o, Then | # z4. Since a¥™(A; x (g))a™"
fixes ah, h fixes both 2} and 2. This contradicts the fact that 7" has trivial arc stabi-
lizers.

Suppose now that ah,ggynh,, La=! does not fix z5,. We claim that h is loxodromic
in 7’. Indeed, note that, since h € a¥™(A; = (g))a™!, h can be written as a product
of elements of a4;a~! and powers of ahy,ggynh, a"'. Since h is not contained in a
conjugate of A;, we may suppose that:

(i) the word h contains at least one occurence of a nontrivial element in aA4;a~! and
one occurrence of a nontrivial power of ah,ggynh,, L=t
(73) the word h is cyclically reduced when written in the generating set

{aA;a™", ahnggynhyta™ ).
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Suppose first that ah,ggynhy, a™" fixes a point #’ in 7" (which is distinct from %).
Then the minimal tree Tj) in 7" of the subgroup B of Fy, generated by Stab(z') and
Stab(x4) is simplicial and its vertex stabilizers are conjugates of Stab(z') and Stab(z}).
We conclude as in the proof of Claim 1 that h is loxodromic. Suppose now that
ahnggynhy,ta™t is loxodromic and that its axis does not contain . Assertion |(i7)
implies that, if h is not loxodromic, then it fixes z,. Then a ping pong argument shows,
since h satisfies Assertion that h is loxodromic. Finally, suppose that ahy,ggynh,, L1
is loxodromic and that its axis contains zf,. Assertion implies that, if h is not lox-
odromic, then it fixes zf,. Then the minimal tree T} in 7" of the subgroup B of F,
generated by Stab(z}) and ah,ggynh,'a™' is simplicial and its vertex stabilizers are
conjugate of Stab(z4) (it is an HNN extension). In particular, h is loxodromic as it sat-
isfies Assertion Thus h is loxodromic in 7”. Hence h cannot fix 2} and h ¢ A; = (g),
a contradiction. O

Claim 2 implies that, for every distinct n, m € N* and every x € Fy, we have
T (A +{g)) N x U™ (A;  (g))a™t € U yAiy~?
yeFy

and by [HaM4l Fact 1.1.2], we have

U (A;x () 0 O (2™ (A () ) < ] @ (A
yEFn

The rest of the proof is then similar to the one of Case 1. O

Lemma 7.4.2. Let n > 3, let F and F1 = {[A1],...,[|Ak]} be two free factor systems
of Fn with F < Fi such that the extension F < Fi is sporadic. Let H be a sub-
group of Out(Fy, F, F1) n1An(Z/3Z) such that H is irreducible with respect to F < Fi.
Suppose that there exists ¢ € H such that Poly(¢|r) = Poly(H|r). Suppose that
Poly(¢|7,) # Poly(H|x,). There exists ¢ € H such that for every i € {1,...,k}, we
have Y(Kpa([Pila;])) 0 Kpa([Pila,]) = @ and

A([Aid 0) n (A ([Aid, 9)) = A-([4i], @) N P(AL([Ai], @) = &.

Proof. The proof follows [CU2, Lemma 5.1]. Recall that, since the extension F < F
is sporadic, there exists ¢ € {1,...,k} such that, for every j € {1,...,k} — {¢}, we have
[4;] € F. By Lemma applied to the image of H in Out(Ay) (which is contained
in TA(Ay,Z/37)), there exists an infinite subset X < H such that, for any distinct
hi,hs € X, we have

hi(Kpa([®ela,])) 0 ha(Kpa([Pela,])) = .

We now prove that there exist hi,hg € X such that hy Iy satisfies the assertion of
Lemma Note that, for any distinct hy, hy € X, we have hy 'hi (Kpa([®e|a,])) N
Kpa([®¢]a,]) = @. Hence it suffices to find two distinct Ay, hy such that ¢ = hy'hy sat-
isfies the second assertion of Lemma[7.4.2] Let j € {1,...,k} and let [1] be an extremal
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point of A4 ([4;], ) or A_([A;], ¢). By [Gued, Lemma 4.13], the support Supp(x) con-
tains the support of finitely many projective currents [u1],...,[us] € PCurr(F,, F A
A(¢)) such that, for every ¢t € {1,...,s}, the support of p; is uniquely ergodic. Let
E, = {[p],...,[us]}. Let Ey = |J E,, where the union is taken over all j € {1,...,k}
and extremal points of A, (Aj,¢) and A_(A;,¢). The set Ey is finite by [Guebl
Lemma 4.7].

Since the set Fy is finite, up to taking an infinite subset of X, we may suppose that,
for every s € Ey, either h1s = hgs for every hy, hy € X or for every distinct hy, hy € X,
we have h1s # has. Let By € Ey4 be the subset for which the first alternative occurs and
let By = Ey— .

Let h1 € X and, for every s € Ey, let

Xs ={h€e X |his=hs for some s’ € Ey}.

Note that X, is a finite set. Let ho € X — UseEw X,. For every s,s' € E, we have
his # hos'. If there exists s’ € E; such that his = hos’, then s = hfthS’ = g,
contradicting the fact that s € Ey. Thus, for every s € Ey, we have hy Yhis ¢ E4 and
for every s € Fq, we have h;lhls =s. Let ¢ = h;lhl. Then, for every s € Ey, either
W(s) = s or B(s) ¢ By

Let j € {1,...,k}, let [u] € A_([A4;],¢) and suppose for a contradiction that we
have ¥([1]) € Ay ([A;],¢). There exist extremal measures py, ..., i, of A_([4;], )
and i, ..., Ay, € Ry such that g = >", Ay, . Similarly, there exist extremal measures
wlsoooomh of Ar([As],¢) and aq, ..., o € Ry such that ¢(u) = Y0 | aip

Thus, we have

DNit(py) = v(p) = > o
i=1 i=1
In particular, we have

m n

U supp(@(x;)) = | Supp(s).

i=1 i=1
Let A < Supp(p; ) be the uniquely ergodic support of a current in Ey. Let ¥ be a
representative of 1) and let ¥ be the homeomorphism of §?F, induced by ¥. Since
uniquely ergodic laminations are minimal, there exists i € {1,...,n} such that we have
0?W(A) < Supp(p; ). Thus, we have ¢([u7 [a]) = [1; |a]- This contradicts the fact that
[147 |a] and [p;|a] are distinct elements of Ey since A, ([4;],¢) n A_([4],¢) = 2. O

Proposition 7.4.3. Letn > 3, let F and F1 = {[A1],...,[Ak]} be two free factor systems
of Fy, with F < Fy such that the extension F < JFi is sporadic. Let H be a subgroup of
T1AL(Z/3Z) n Out(Fy, F, F1) such that H is irreducible with respect to F < Fi. Suppose
that there exists ¢ € H such that Poly(¢|r) = Poly(H|x). Suppose that Poly(¢|r,) #
Poly(H|x,). There exist 1p € H and a constant M > 0 such that, for all m,n > M, if
0 = b1, we have Poly(0™¢"| 5, ) = Poly(H|x,).

Proof. The proof follows [CU2, Proposition 5.2]. Let ) € H be an element given by
Lemma and let 6 = ¢¢p 1. For every i € {1,...,k}, let ©; be a representative of
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0 such that ©;(A;) = A; and ®; be a representative of ¢ such that ®;(A4;) = A;. Note
that, since for every i € {1,...,k}, [®;]4,] is almost atoroidal relative to F, so is [©;]4,].
Moreover, for every i € {1,...,k}, we have Kpg([©i|a,]) = [Vila,|(Kpc([Pil4,])). Let
i€ {l,...,k}. Let A; A F be the free factor system of A; induced by F: it is the free
factor system of A; consisting in the intersection of A; with every subgroup A of Fy such
that [A] € F. It is well-defined by for instance [SW), Theorem 3.14].

Claim. We have A, ([4i], ) n(A_([Ai], ) = @ and A_([A], ¢) n (AL ([A], 9)) =
.

Proof. We prove the first equality, the other one being similar. By Lemma [7.4.2] we

have A ([Adl, ) 0 9(A_([A], 6) = @ and (K pa([i]a,]) 0 Kpa([®i]4,]) = . Let
1] € AL([Ai], &) N Y(A_([Ai], ¢)). By definition, there exist [u1] € Ay ([A4:], @), [v1] €

Kpa([®ila]), t € [0,1], and [po] € ¥(A_([A], ¢), [v2] € ¥(Kpa([®ila,])), s € [0,1]
such that

(1] = [ty + (1= t)n] = [sp2 + (1 — s)re].
Note that
O(F A [A}) N P2 A(9) n % (Ai, F A {[A} A Al9)) = @.
Moreover, since Poly(¢|r) = Poly(H|r), we have Poly(f|r) = Poly(H|r). Therefore,
we see that F A A(¢) = F A ¢Y(A(¢)). Thus, we have
P*(F A[A]}) 0 (2 A(9)) m 02 (Ai, F A {[A]} A Al9)) = @.
Recall that, by Proposition the supports of the currents in

A ([Ai], 0) v P(A([Ad], 9))

are contained in 0%(F A {[A4;]}). Moreover, by definition, the supports of currents in
Kpg([®i]4,]) are contained in 02A(4) n 82(A;, F A {[A:]} A A(¢)) and the supports of
currents in Y(Kpg([®i|4,])) are contained in ¥(02A(4)) N 0%(A;, F A {[Ai]} A A(9)).

Thus, we have
1 (2A(P) 0 02 (Ay, F A {[A]} A A(9)) = p2(02A(9) 0 02 (Ai, F A {[A]} A A(9))) = 0.

Hence the support of v is contained in the support of 5. By definition of ¢ (K pg([®i]4,])),
this implies that

v1 € Kpa([®ila]) 0 (Kpa([@]4]) = 2.

Thus, we necessarily have ¢ = 1. Similarly, we have s = 1. This implies that [p1] = [p2]
and that Ay ([4;],¢) n Y(A_([Ai], $)) # &, a contradiction. O

By the claim, there exist subsets U, V, U, V of PCurr(4;, (4; A F) A A(¢)) such that:

(1) Av([Ail,¢) SU, A([Ail.d) ST, A_([Ai], ) SV, A_([A],¢) € V;
(2) UcU,VeV; R R
B) Uny(V)=2and Vny{U) =o.
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Let % and C' > 0 be respectively the basis of F}, and the constant given by Propo-
sition [7.2.6| (1). Let My(¢) (resp. My(f~')) be the constant associated with ¢, U and
1% (resp 0 Lo (V) and ¥(U)) given by Theorem |7 Let Mi(¢) and L1(e), (resp.
M;i(0) and Li1(f)) be the constants associated Wlth [<I> |a,] and V (resp [©i]4,] and
(V) given by Proposition Similarly, let M7(¢ ') and Li(¢ 1), (resp My(6 1)
and L1(6~1)) be the constants associated with [<I>Z|211] and U (resp. [©; |A ] and ¥(U))
given by Proposition Let

M = max{My(¢), Mo(6~"), My(¢), M1(0), My (¢~ "), My (0~ 1)}

and let
L = min{L;(¢), L1(0), L1 (¢~ ), L1 (67 1)} > 0.

Let M’ be such that 3M'L2 > 1. Let m,n = M + M’Aand let p € Curr(A;, 4; A
F A A(¢)) be a nonzero current. Suppose first that [u] ¢ V. Then by Theorem @
we have ¢"(u) € U. By Proposition [7.2.8 we have [|¢"(u)|7 = 3" ML||ul|7. Since
Uny(V) =g, by Proposition we have

176" ()l = 3" MLll¢" (W)l 7 = 3™ MLl 7.

Note that, since Vi r/J(U) = @, we have 0™¢" (1) ¢ V. Therefore, we can apply the
same arguments replacing p by 0™¢" () and an inductive argument shows that, for
every n’ € N*, we have

|’(0m¢n)n’ (M)H]__ > 3n'(m+n—2M—M')(3M’L2)n’ HNH]__

Therefore, if p is the current associated with a nonperipheral element g € A; with [u] ¢ \7,
for every n’ > 1, by Proposition (1) we have

E%((em(ﬁn)n’([g])) > 3n’(m+n—2M—M’) (3M’L2)n/CHMH}— > 3n'(m+n—2M—M')C'

Hence we have g ¢ Poly(|O"®"|4,]). Suppose now that [u]| € V. Therefore, we have

(1] ¢ ¢(A) By Theorem we have 7™ ([u]) € (V). By Proposmon we have
10 ™(w)||F = 3™ MLH/LH]: Moreover since (V) n U = @, we have 6~ m([,u]) ¢ U and

o0 ()7 = 3" MLI6 ™ ()| 7 = 3" MM BMLE) ]| 5.

Note that, since VA w(ﬁ) = &, we have ¢ "0 " (u) ¢ 7,/1([7) Therefore, we can apply
the same arguments replacing p by ¢~"07™(u) and an inductive argument shows that,
for every n' € N*, we have

(@707 () |7 = B (e n 2= (BMOL2) 20 ] e

Therefore, if p is the current associated with a nonperipheral element g € A; with [u] € ‘A/,
for every n’ > 1, we have

(670 ) ([g]) > 37 MO EM 2O > 20
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Hence we have g ¢ Poly([®, "0, ™|4,]) = Poly(|©]"®}|4,]). Therefore, §™¢"|F, is
expanding relative to F A A(¢). Hence if g € Poly(6"¢"|£,), there exists a subgroup A
of F}, such that g € A and [A] € F A A(¢). Note that, if g € F;, is such that there exists a
subgroup A of F, such that g € A and [A] € F A A(¢), then g € Poly(¢|r) = Poly(H| ).
Thus, we have Poly(0™¢"|x,) = Poly(H |z, ). This concludes the proof. O

Proposition 7.4.4. Let n > 3 and let H be a subgroup of 1A,(Z/37). Let
g =Fy<F <---<]:k:{[Fn]}

be a maximal H-invariant sequence of free factor systems. Let 2 < i < k. Suppose that
Fi_1 < F; is sporadic. Suppose that there exists ¢ € H such that
(a) POIY(H|}—¢71) = POIY(¢|}—¢71);
(b) for everyje {1,... k}, if the extension F; 1 < Fj is nonsporadic, then ¢|z; is fully
irreducible relative to Fj_1 and if H|]:j is atoroidal relative to F;_1, so is <;S|;j.

Then there exists ¢ € H such that:
(2) for everyj e {l,...,k}, if the extension F; 1 < Fj is nonsporadic, then ¢|z; is fully

irreducible relative to Fj 1 and if H|z; is atoroidal relative to F; 1, so is ¢|;.

Proof. The proof follows [CU2, Proposition 5.3]. If Poly(H|z,) = Poly(¢|z,), we may
take <:5 = ¢. Otherwise, by Proposition there exists ¢ € H and a constant M > 0
such that, for every m,n > M, if 6 = ¢p~!, we have Poly(6™¢"|z,) = Poly(H|z,).
Therefore, for every m,n > M, the element gg = 0™ ¢" satisfies (1). It remains to show
that there exist m,n > M such that ™ ¢" satisfies (2). Let

S = {j | the extension F;_; < F; is nonsporadic}

and let j € S.

Let B; be a subgroup of F; given by the claim in the proof of Theorem Let
Aj1,..., A be the subgroups of B; with pairwise disjoint conjugacy classes such that
A1 ={[451],...,[4;s]} S Fj—1 and s is maximal for this property. By Hypothesis (b),
the outer automorphism [®;|p;] € Out(B;, A; 1) is fully irreducible relative to A; 1.
Note that A;_; is a nonsporadic free factor system of B; by the claim and since the
extension F; 1 < Fj is nonsporadic. Let S; be the subset of S consisting in every
j € S such that H|]:j is atoroidal relative to F;_i, and let So = S — S;. By [GuH2,
Theorem 4.1,4.2] (see also [Man2, [Man3| Hor2l (Gup2)), for every j € Si (resp. j € S2)
there exists a Gromov-hyperbolic space X; (the Z-factor complex of Bj relative to Aj_1
when j € S; and the free factor complex of B; relative to Aj_1 otherwise) on which
Out(Bj, Aj_1) acts by isometries and such that ¢y € Out(Bj, Aj_1) is a loxodromic
element if and only if ¢ is fully irreducible atoroidal relative to A;_; (resp. fully
irreducible relative to A;_1). In particular, since H preserves F;_; < F;, and hence 1
preserves [B;], the elements [®;]p,] and [0;],] are loxodromic elements of Xj;.

Recall that two loxodromic isometries of a Gromov-hyperbolic space X are indepen-
dent if their fixed point sets in 0, X are disjoint and are dependent otherwise. Let I € S
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be the subset of indices where for every j € I, the elements [®,]p;] and [©}|p,] are inde-
pendent and let D = S — I. By standard ping pong arguments (see for instance [CUI]
Proposition 4.2, Theorem 3.1]), there exist constants m,ng = M such that for every
n = ng, the element [O7'®%|p,] acts loxodromically on X;. By [CUILl Proposition 3.4],
there exists n > ng such that, for every j € D, the element [0} ®7|p;] acts loxodromi-
cally on Xj;. Hence for every j € 51, the element 6™¢"|#; is fully irreducible atoroidal
relative to F;_1 and for every j € Sa, the element 0™ ¢"| £, is fully irreducible relative to
Fj—1. This concludes the proof. O

7.5 Proof of the main result and applications

We are now ready to complete the proof of our main theorem.

Theorem 7.5.1. Letn > 3 and let H be a subgroup of Out(Fy,). There exists ¢ € H such
that Poly(¢) = Poly(H).

Proof. Since IA,(Z/37Z) is a finite index subgroup of Out(F,) and since for every ¢ € H
and every n € N*, we have Poly(y*) = Poly(¢), we see that Poly(H) = Poly(H n
1A, (Z/3Z)). Hence we may suppose that H is a subgroup of IA,(Z/37Z). Let

@=Fy<FiL<..<F=A{Fl}

be a maximal H-invariant sequence of free factor systems. By Theorem there
exists ¢ € H such that for every j € {1,...,k} such that the extension F;_; < Fj is
nonsporadic, the element ¢| 7; is fully irreducible relative to F;_1 and if H | F; 1s atoroidal
relative to F; 1, 50 is ¢|F;_,.

We now prove by induction on i € {0, ..., k} that for every i € {0, ..., k}, there exists
¢; € H such that

(a) POIY(¢7L|-7'-1') = POIY(HLE');

(b) for every j € {1,...,k} such that the extension F;_; < F; is nonsporadic, the
element ¢;|7, is fully irreducible relative to F; 1 and if H|z, is atoroidal relative to
Fj-1, 8018 ¢i|7;_,-

For the base case i = 0, we set ¢g = ¢. Let i € {1,...,k} and suppose that ¢;_1 € H
has been constructed. We distinguish between two cases, according to the nature of the
extension F; 1 < F;. Suppose first that the extension F; 1 < F; is nonsporadic. We
set ¢; = ¢;—1. We claim that ¢; satisfies the hypotheses. Indeed, it clearly satisfies
(b). For (a), since Poly(¢i—1|r, ,) = Poly(H|r, ,), it suffices to show that for every
element g € F, which is F;-peripheral but F;_j-nonperipheral, if g € Poly(¢;|r,), then
g € Poly(H|r,). Note that, if ¢;| 7, is atoroidal relative to F;_1, by Proposition [7.3.1] (1),
we have Poly(¢;|r,) = Poly(¢i|r,_,). Hence we have Poly(H|z,) = Poly(¢i|7). So we
may suppose that ¢;|r, is not atoroidal relative to F;_;.

Let g € Poly(¢i|7,) be an element which is F;-peripheral but F;_j-nonperipheral. By
Proposition [7.3.1] (1), there exists at most one (up to taking inverse) h € F, such that
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g € (hy and [h] is fixed by ¢;. By Proposition (2)(b), the conjugacy class of [h] is
fixed by H. Hence the conjugacy class of [g] is fixed by H and g € Poly(H|x,).
Suppose now that the extension F;_; < F; is sporadic. If Poly(¢i—1|7,) = Poly(H|z,),
we set ¢; = ¢;_1. Then ¢; satisfies (a) and (b). Suppose that Poly(¢;_1|7,) # Poly(H|£,).
By Proposition there exists ¢; 1 € H such that ¢;_; satisfies (a) and (b). Then
we set ¢; = ggi_l. This completes the induction argument. In particular, we have
Poly(¢.,) = Poly(H). This concludes the proof. O

We now give some applications of Theorem The first one is a straightforward
consequence using the fact that for every ¢ € Out(Fy), there exists a natural malnormal
subgroup system associated with Poly(¢).

Corollary 7.5.2. Letn > 3 and let H be a subgroup of Out(F,,) such that Poly(H) # {1}.
There exist nontrivial maximal subgroups A1, ..., A of Fy such that

k
Poly(H) = | J [ 941~

i=1gekFy
and A = {[A1],...,[Ak]} is a malnormal subgroup system. O

If H is a subgroup of Out(Fy) is such that Poly(H) # {1}, we denote by A(H)
the malnormal subgroup system given by Corollary If Poly(H) = {1}, we set
A(H) = @.

The following result is a generalization of [CU2, Theorem A] regarding fixed conju-
gacy classes. If ¢ € T1A,(Z/3Z), we denote by Fix(¢) the set of conjugacy classes of Fy
fixed by ¢. Note that, if g € F, is such that [g] € Fix(¢), then g € Poly(¢). Moreover,
by [Lev2, Lemma 1.5], if Poly(¢) # {1}, the set Fix(¢) is nonempty. If P is a subgroup
of F,, we denote by Out(F,, P(Y)) the subgroup of Out(F,) consisting in every element
¢ € Out(F}) such that there exists ¢ € ¢ such that ®(P) = P and ®|p = idp.

Corollary 7.5.3. Let n > 3 and let g1, ..., gr be nontrivial root-free elements of Fy. Let
H be a subgroup of 1A,(Z/37Z) such that, for every i € {1,...,k}, every element of H
fizes the conjugacy class of g;. Then one of the following (mutually exclusive) statements
holds.

(1) There exists gi41 € Fn such that [gr+1] & {[91],- -, [g9k]} and whose conjugacy class
is fized by every element of H.

(2) There exists ¢ € H such that Fix(¢) = {[{g1)],-- -, [{gx)]}-
Moreover, if (1) holds, either there exist £ > k + 1 and gg+1,---,ge € Fy such that

Fix(H) = A(H) = {[(0)], -, [{g0)]}

or H wvirtually fizes the conjugacy class of a nonabelian free subgroup of Fy of rank 2.
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Proof. First assume that H is finitely generated. Suppose that (2) does not hold. In
particular, by Theorem we see that A(H) # {[{91)],---,[{9x)]}. Let A(H) =
{lP1],--.,|P]}, where for every i € {1,...,¢}, P; is a malnormal subgroup of F;,. Note
that, for every i € {1,...,¢}, since P; is malnormal, we have a natural homomorphism
H — Out(P;) whose image, denoted by H|p,, is contained in the set of polynomially
growing outer automorphisms of P;. Since H is finitely generated, up to taking a fi-
nite index subgroup of H, we can apply the Kolchin theorem for Out(Fy) (see [BEH3,
Theorem 1.1]): there exists a H|p,-invariant sequence of free factor systems of P;

o=F"<F)<...<F)={P]}

such that, for every j € {1,...,k;}, the extension ]:j(i)l < ]_-](i) is sporadic.
Note that, since A(H) # {[{g1)],---,[{gr)]}, either £ > k or there exists i € {1,..., ¢}
such that the rank of P, is at least equal to 2. Suppose that £ > k. Leti € {1,...,¢}. Since

for every j € {1,...,k;}, the extension .7-']@1 < f;i) is sporadic, for every i € {1,...,¢},

the free factor system .7-"1(1) contains a unique element and the rank of the associated
subgroup is 1. Thus, the group H fixes at least ¢ distinct conjugacy classes of elements
of F, and (1) holds.

Otherwise, let i € {1,...,¢} be such that the rank of P; is at least equal to 2. Since,

for every j € {1,...,k;}, the extension F ]@1 < ]-'J@ is sporadic we have k; > 2. Moreover,

there exists jo € {1,...,k;} and a subgroup Uj, of P; such that [Uj,] € .7-"3%) and one of
the following holds:

(a) there exist two subgroups B; and By of P; such that rank(B;) = rank(Bs) = 1,
[Bl], [BQ] S JT‘.]'O,1 and Ujo = Bl * BQ;

(b) there exists a subgroup B of P; such that rank(B) = 1, [B] € Fj,—1 and Uj, is an
HNN extension of B over the trivial group.

If Case (a) occurs, then H acts as the identity on Uj, since rank(Uj;,) = 2 and
since every element of H fixes elementwise a set of conjugacy classes of generators of
Uj, (recall that the abelianization homomorphism Fy — 7?2 induces an isomorphism
Out(Fy) ~ GL(2,Z)). Hence Assertion (1) holds.

If Case (b) occurs, let b be a generator of B and let t € Uj, be such that Uj, = (b)=(t).
Then, since H € IA,(Z/37Z), for every element 1) of H, there exist ¥ € ¢ and k € Z such
that ¢(b) = b and ¥ (t) = tb*. In particular, for every ¢ € H, the automorphism ¥ fixes
the group generated by b and tbt ! and (1) holds.

The moreover part follows since either for every i € {1,...,¢}, the group P; has rank
1 or there exists ¢ € {1,..., k} such that the rank of P; is at least equal to 2. In the first
case, since H € 1A,(Z/3Z), for every i € ‘{1,...,¢}, the conjugacy class [F;] is fixed by
H. In the later case, the subgroup H fixes the conjugacy class of a nonabelian subgroup
of rank 2 as explained above. This concludes the proof when H is finitely generated.

Suppose now that H is not finitely generated and let (H,,)men be an increasing
sequence of finitely generated subgroups of H such that H = |, .y Hm. For every
m € N, we have H,, € Out(Fy, Fix(Hm)(t)) and for every mq, ms € N such that m; < mao,
we have Fix(H,,,) € Fix(H,, ). By [GuL3, Theorem 1.5], there exists N € N such that,
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for every m > N, we have Out(F,, Fix(H,,)®) = Out(F,, Fix(Hy)®). In particular, we
have Fix(Hy) = Fix(H). The result now follows from the finitely generated case. O

The following result might be folklore, but we did not find a precise statement in
the literature. If S is a compact, connected surface, we denote by Mod(S) the group of
homotopy classes of homeomorphisms that preserve the boundary of S.

Corollary 7.5.4. Let n > 3 and let H be a subgroup of IAL(Z/3Z). The following asser-
tions are equivalent:

(1) A(H) = {[{9)]}, where g is an element of F, not contained in a proper free factor
of Fu;

(2) there exists a connected, compact surface S with exactly one boundary component and
an identification of w1(S) with F, such that H is identified with a subgroup of Mod(S)
and H contains a pseudo-Anosov element.

Proof. Suppose that (2) holds. Let ¢ € H be identified with a pseudo-Anosov element
of S. In particular, ¢ is a fully irreducible element of Out(F}). By Proposition (1)
with F = &, the element ¢ fixes exactly one (up to taking inverse) conjugacy class [g]
of a root-free element g of Fy. Since ¢ fixes the conjugacy class of the element of Fy
identified with the boundary component of S, the conjugacy class [g¢] is identified with
the conjugacy class in 71(S) of the element associated with the homotopy class of the
boundary component of S. Hence g is not contained in any proper free factor of Fy.
Moreover, since H is identified with a subgroup of Mod(.S), every element of H fixes [g].
Hence we have A(H) = {[{g)]}.

Suppose now that (1) holds. Let ¢ € H be an element given by Theorem Then
A(¢) = A(H) = {[{9)]}. In particular, since H € IA,(Z/3Z), the conjugacy class of g
is fixed by every element of H. Let f: G — G be a CT map representing a power of ¢
(see the definition in [FH| Definition 4.7]).

Claim. The graph G consists in a single stratum and this stratum is an EG stratum.

Proof. Let H, be the highest stratum in G. We first prove that H, is an EG stratum.
Indeed, H, is either a zero stratum, an EG stratum or a NEG stratum. The stratum
H, cannot be a zero stratum by [FH| Definition 4.7 (6)]. Moreover, H, cannot be a
NEG stratum as otherwise by [CU2, Proposition 4.1], the element g would be a basis
element of F},, contradicting the fact that g is not contained in any proper free factor of
F,. Hence H, is an EG stratum. Since g is not contained in any proper free factor of
F,, the reduced circuit 74 in G representing the conjugacy class of g has height r and is
fixed by f. By [HaM4, Fact 1.2.3], the stratum H, is a geometric stratum. By [HaM4|
Proposition 1.2.18], the element ¢ fixes elementwise a finite set C = {[g], [c1],-- -, [ck]}
of conjugacy classes of elements of Fy,. Moreover, by [HaM4, Proposition 1.2.18 (5)], by
the definition of a geometric stratum in [HaM4] and the fact that G is connected, we
have C = {|g¢]} if and only if G,_; is reduced to a point, that is, if and only if G consists
in the single stratum H,. O
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By the claim and [HaM4, Fact 1.2.3], the outer automorphism ¢ is geometric: there
exist a connected, compact surface S with exactly one boundary component and an
identification of 71 (S) with F; such that ¢ is identified with a pseudo-Anosov element
of Mod(S). Moreover, the conjugacy class [g] is identified with the conjugacy class in
m1(S) of the element associated with the homotopy class of the boundary component
of S. Since [g] is fixed by every element of H, by the Dehn-Nielsen-Baer theorem (see
for instance [FarM, Theorem 8.8] for the orientable case and [Fuj, Section 3] for the
nonorientable case), the group H is identified with a subgroup of Mod(S). O

We now give a method to compute A(H) for some subgroups H of Out(Fy). Let P
be a subgroup of F,. Let F' be the minimal free factor of F,, which contains P. Then F
is one-ended relative to P. Let T be the JSJ tree of F' relative to P over cyclic subgroups
given by [GuL5, Theorem 9.14]. Let v be a vertex of T. Let G, be the stabilizer of v
in F. Let Inc, be the finite set of all conjugacy classes of groups associated with edges
in 7" which are incident to v. Following the terminology of [GuL5|, either v is a rigid
vertex or v is flexiblee. When G, is cyclic, we use the convention that v is rigid. If v
is flexible, by [GuL5L Theorem 9.14 (2)], there exists a compact connected hyperbolic
surface S, such that 71(S,) is isomorphic to G, and, for every subgroup G, of F' such
that [G.] € Inc,, the group G, is conjugate to a subgroup of m1(S,) associated with a
boundary connected component of .S,,. Since the JSJ tree constructed by Guirardel and
Levitt is a tree of cylinders, if v is a flexible vertex of T', the fundamental group of every
boundary component ¢ of S, fixes at most one edge e, adjacent to v and the stabilizer
of the endpoint of e, distinct from v is cyclic and included in the group generated by
the homotopy class of ¢. For every flexible vertex v of T, let BC, be the finite set of
conjugacy classes of subgroups of Fy generated by the homotopy classes of the boundary
components of S, which do not fix an edge in T'. Let V; be the set of flexible vertices
of T. Let T’ be the tree obtained from T by collapsing every edge of T" which is not
adjacent to a flexible vertex. For every vertex C of F'\(T"—V}), let G¢ be the associated
vertex stabilizer. Let

Ap = {[GC]}CGV(F\(T’—Vf)) U U (Inc, U BCy),
UEVf

which is a finite set of conjugacy classes of finitely generated subgroups of F,. Note
that, by [Lev2, Proposition 2.1], if v € VT and ¢ € Out(G), then ¢ extends to an outer
automorphism ¢ of Out(Fy) which preserves T' and T".

Lemma 7.5.5. Let v € Vy and let ¢/ be the outer automorphism class of Out(G,) as-
sociated with a pseudo-Anosov element of S,. Let T, be the tree obtained from T by
collapsing every edge of T' which is not contained in the orbit of an edge adjacent to v.
Then ¢' preserves T,. Moreover, if g € F is lozodromic in T), then g has exponential
growth under iteration of ¢'.

Proof. The fact that $’ preserves T follows from the fact that gg’ preserves T and the
fact that ¢’ acts as the identity on the graph associated with Fy\T'. In order to prove
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the second part of Lemma we first construct an R-tree T, with an equivariant
map T, — T). Let Ty be the dilating arational G,-tree associated with ¢’ and let
A > 1 be the stretching factor of ¢’. There exists a homothety Hy: Ty — Ty whose
stretching factor is equal to A and such that, for every h € G, and every z € Ty, we
have Hy(hz) = ¢'(h)Ho(x). The arational tree Ty is such that every arc stabilizer is
trivial and the only point stabilizers are cyclic and conjugate to the groups generated
by the homotopy classes of boundary components of S,. Since the edge stabilizers of T},
are precisely groups which are conjugates of groups generated by the homotopy classes
of boundary components of S,, one can replace the vertex v in T by the tree Ty and
attach the edges to their corresponding point stabilizers. Extending this construction
equivariantly, we obtain a tree T, with an equivariant map 7, — T, ». Moreover, since
¢’ preserves T, the map Hj extends to an equivariant map H': T,, — T, such that,
for all z,y € T,, we have d(H'(x), H'(y)) < Ad(x,y). We now follow the construction
given by Gaboriau, Jaeger, Levitt and Lustig in [GJLL]. For every k € N*, let dj be the
pseudo-distance in T, given by, for all x,y € T,:

1k T 1k
oty = TG

and let dy be the limit of these pseudo-distances. Then dy induces a distance on the
set
T, =T,/ ~,

where ~ is the equivalence relation generated by =z ~ y if and only if do(z,y) = 0.
Moreover, the metric space T,;° is a nontrivial R-tree equipped with a minimal, non-
trivial action of Fy by isometries. Finally, H' induces a homothety H: T.° — T.° with
stretching factor equal to A and such that, for every h € F;, and every z € T,,°, we have
H(hz) = cg’(h)H(:z) Note that, for every g € F, and every n € N*  the translation
length of ¢'"(g) in T,° is equal to A™ times the translation length of g in 7.,°. Therefore,
if g has polynomial growth under iteration of ¢’, then g must fix a point in 7,°.

Let g € F be loxodromic in T). By equivariance of the map T, — T}, the element
g is loxodromic in T),. By the construction of T, the axis of g in T, contains a vertex
in the orbit of v. Since the group generated by the homotopy class of every boundary
component of S, fixes at most one edge in T}, if the axis of ¢ in 7|, contains a vertex in
the orbit of v, then the axis of g in T, contains a nondegenerate arc [z,y] in a copy of
Ty in T),. Since Hy is a homothety of Ty of stretching factor equal to A, the homothety
H restricts to a homothety of stretching factor A in the copy of Ty in T;,. Thus we have
doo(z,y) = d(x,y) > 0. Hence the characteristic set of g in T,,°, which is the projection
of the characteristic set of g in T}, contains a nondegenerate arc, that is, g is loxodromic
in T°. Hence g has exponential growth under iteration of ¢'. O

Proposition 7.5.6. Let n = 3 and let P be a finitely generated subgroup of Fp. Sup-
pose that Out(Fy,, PY) is infinite. Then either A(Out(F,, PM)) = {[F.]} or we have
A(Out(F,, PM)) = Ap. Moreover, in the second case, there exists ¢ € Out(F,, P®)
such that A(p) = Ap.

327



Proof. The moreover part follows from the first part of Proposition using The-
orem so we focus on the first part. Let H = Out(F,, P®)) A IAL(Z/3Z). Then
Poly(H) = Poly(Out(F,, P1)).

Note that H preserves the conjugacy class of F' and we have an induced homo-
morphism A: H — Out(F, P®"). By [GuL5, Theorem 9.14], the group A(H) fixes the
F-equivariant homeomorphism class T of the above JSJ tree T'. Moreover, up to taking
a finite index subgroup of H, we may suppose that the group H fixes the conjugacy class
of every vertex group of T and that A(H) acts as the identity on the graph associated
with F\T. Since edge stabilizers of T" are cyclic, H fixes the conjugacy class of the
generator of every edge group. In particular, we have Uvevf Inc, < A(H). Moreover,
up to taking a finite index subgroup of H, for every flexible vertex v of T', the group H
fixes the conjugacy classes of subgroups of F}, generated by the homotopy classes of the
boundary components of S,. Thus, we have

|J e, v BC, < A(H). (7.3)
UEVf

Claim 1. Let C’ be a connected component of F\(T' — V) and let C be a connected
subgraph of C’” which contains at least one vertex of the graph associated with F\T. Let
F\(T¢ — V}) be the graph of groups obtained from F'\(T'— V}) by collapsing the edges
of F\T contained in C to a vertex ¢ and let G, be the corresponding vertex group. We
have G. < Poly(H).

Proof. An interior edge of C is an edge of the graph associated with F'\(T'— V) entirely
contained in C'. We remark that the statement of the claim is made in such a way that
we are able to apply an induction argument on the number m of interior edges of C.
If C' does not contain an interior edge, then C' contains at most one vertex v of F\T'
(recall that C' is connected). Moreover, v is a rigid vertex. Since v is rigid, by [GuL4,
Theorem 3.9], the group H has trivial image in Out(G,). Hence the statement is true
when C' has no interior edge. Suppose that the number of interior edges m of C is
at least equal to 1. Let e be an interior edge of C'. Suppose first that C' — e has two
connected components A; and Ag, where the closure is taken in C. For every i € {1, 2},
let G, be the subgroup of F}, corresponding to A; as in the statement of the claim. By
induction, for every i € {1,2}, we have G,, < Poly(H). Since F' is one-ended relative
to P, edge stabilizers are nontrivial. Thus, we have G,, N Gq, # {1}. Since A(H) is
a malnormal subgroup system, there exists a subgroup B of F, such that [B] € A(H)
and G. = (G4y, G4,y € B. Suppose now that C' — e has one connected component A.
Let G, be the subgroup of F;, corresponding to A as in the statement of the claim. By
induction, we have G, € Poly(H). Moreover, there exists t € F' such that G. = (G, t).
Note that H preserves the conjugacy classes of G, and G, as every element of A(H)
acts as the identity on the graph associated with F\T'. Thus, every element ¢ of H has
a representative ¥ such that ¥(G,) = G, every element of G, has polynomial growth
under iteration of ¥ and ¥ sends t to tay with ag € G,. Since ay has polynomial growth
under iteration of W, there exist s > 0, n € N and a free basis B of F; such that, for
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every k € N, we have
(s (V¥ (aw)) < s(k +1)".

Hence, for every k € N, we have

k—1
b (TF(1) <1+ ) ls(Ti(aw)) < 1+ s(k + )" (7.4)
i=0

Therefore, t has polynomial growth under iteration of ¥ and every element of G, =
(G,,ty has polynomial growth under iteration of W. Thus, for every ¢) € H, we have
G. € Poly(¢) and G. < Poly(H). This proves the claim. O

By Claim 1 and Equation (7.3), we have Ap < A(H). We now prove that either
A(H) = {[F4]} or Ap = A(H). Let K be a subgroup of F, such that F, = F = K.
Suppose first that the rank of K is at most equal to 1 and that the set of vertices V; is
empty. Let k be a (possibly trivial) generator of K. Recall the definition of T" above
Lemma [7.5.50 Then F\T” is reduced to a vertex v. Therefore, we have Ap = {[F]}.
Moreover, since H preserves the sporadic free factor system {[F|}, every element of H
has a representative which sends F' to F' and k to kg with g € F'. In particular, as in

Equation (7.4]), we have k € Poly(H), F'« K < Poly(H) and A(H) = {[Fn]}.

Claim 2. If either the rank of K is at least equal to 2 or V} is nonempty, then
A(H) < {[F]}.

Proof. We distinguish between two cases, according to the rank of K. When the rank
of K is equal to 0, the proof is trivial.

Case 1. Suppose that the rank of K is equal to 1 and that V} is not empty.

Let k be a generator of K. Let v € Vy, let ¢ be a pseudo-Anosov element of
the surface S, associated with m1(Gy). As explained above Lemma the outer
automorphism ¢’ induces an outer automorphism ¢’ of F. Let ¢’ € G, be such that ¢ is
not contained in the conjugacy class of the group generated by the homotopy class of any
boundary component of S,,. Let @' be a representative of ¢'. Let ® be an automorphism
of F, which acts as @ on F and sends k to kg', and let ¢ be the outer automorphism
class of . Suppose that A(¢ ) £ {[F]}. By [Gueb, Lemma 5.18 (7)] applied to F = {[F]}
with the element ¢/ € Out(Fy, F) (recall that F is a sporadic free factor of Iy), there
exists g € Iy, such that Iy, = F + (g) and either A(¢) = A(¢') U {[{g)]} or there exists
a subgroup A of F' such that [A] € A(¢') and A(¢) = (A(¢') — {[A]}) v {[4 = (9]}
In the first case, let h € F' be nontrivial. Let ¥ be the automorphism of F; such that
U(F)=F, ¥Y|p = ®’ and VU sends g to gh with h € F nontrivial and let ¥ be the outer
automorphism class of W. Note that 1) € Out(F,, P®). Then 1 does not preserve the
conjugacy class of g. Thus, we have A(H) < A(¢) < {[F]}.

Suppose that there exists a subgroup A of I such that [A] € A(¢) and A(gb)
(A (gi)’) —{[A]}) v {[A = {(g)]}. Note that ¢ has a representative g such that dy(F) =
F, ®y(A) = A and @0(A % (g)) = A= {g). Then, up to composing ®, by an inner
automorphism ad,, with ap € A, we may suppose that CTDO sends ¢g to ga with a € A.
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Moreover, since we have Poly (H) < Poly(¢), if b’ € F, is an {[F]}-nonperipheral element
such that h' € Poly(H), then A’ is contained in a conjugate of A +{g). Let h € F' be an
A(¢)-nonperipheral element and let 1) € Out(Fy, P®) be such that there exists ¥ € v
with U(F) = F, ¥|p = &o|r and ¥ sends g to gh. The element h exists since ¢’ is a
pseudo-Anosov of S, in particular, ¢’ is an exponentially growing outer automorphism
of F. By Claim 2 in the proof of Lemma for every a’ € Iy, the intersection
(a'U(A * (g))a’ 1) n (A % {g)) is contained in conjugates of A. Note that W(A * (g))
is the only (up to conjugacy) polynomial subgroup of ¢y ~! which contains {[F]}-
nonperipheral element. Thus, every element of A = {(g) which is not contained in a
conjugate of A has exponential growth under iteration of ¢ ~1. In particular, we have

A(H) < {[F]}-
Case 2. Suppose that the rank of K is at least equal to 2.

Note that we have Out(F,, F()) € Out(F,, P)) and that F is a nonsporadic free
factor of F,. By [GuHZ, Theorem 7.4], since Out(F,, F*)) does not preserve the con-
jugacy class of any {[F]}-peripheral element of Fj,, the group Out(F,, F) contains a
fully irreducible atoroidal element ¢" of Fy relative to {[F]}. By Proposition (1),
there does not exist an {[F'|}-nonperipheral element of F;, which has polynomial growth
under iteration of ¢”. Thus we have A(¢") < {[F]}. Thus, we have A(H) < {[F]}. This
proves Claim 2. ]

By Claim 2 and the paragraph above Claim 2, either A(H) = {[Fyn]} or A(H) <
{[F]}. We are thus left with the case A(H) < {[F]}. In this case, we prove that
Ap = A(H). Since Ap < A(H), it remains to prove that every Ap-nonperipheral
element of F' is A(H)-nonperipheral. Let g € F be Ap-nonperipheral. Recall that
T’ is the tree obtained from T by collapsing every edge of T which is not adjacent to
a flexible vertex. Note that, if a vertex v of T" is not the image of a flexible vertex
of T, then its stabilizer is a conjugate of some G. with C' a connected component of
F\(T' — V}). In particular, we have [G.] € Ap. Suppose first that g fixes a point in
T’. Since g is Ap-nonperipheral, the element ¢ fixes a flexible vertex v of F, and is not
conjugate to an element of Fy contained in the group generated by the homotopy class of
a boundary component of S,. Let ¢’ € Out(G,) be the outer automorphism associated
with a pseudo-Anosov element of S,. Then g has exponential growth under iteration
of ¢' € Out(F,, P®). Thus, we have g ¢ Poly(H). Suppose now that g is loxodromic
in 7. Then its axis contains the image of a flexible vertex v € Vy. By Lemma [7.5.5
g has exponential growth under iteration of gg' € Out(F,, PM). Therefore, every Ap-
nonperipheral element of F' is A(H )-nonperipheral. Thus, we have A(H) = Ap. O
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