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Á toi Papa, Bouchäıb, premier docteur Guerch.
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“[Une thèse] avance comme un train, tu comprends,
comme un train dans la nuit. [. . . ] Les choses
s’accrochent. . . comme des wagons, l’histoire avance sur
ses rails, le public-voyageur ne quitte pas [la thèse], il se
laisse véhiculer du point de départ au terminus et il
traverse des paysages qui sont des émotions.”

Citation adaptée de l’œuvre de François Truffaut
La nuit américaine (1973)
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Chapitre 1

Introduction

Dans cette thèse, nous nous intéressons à des problèmes de théorie géométrique des
groupes et leur lien avec la géométrie à courbure négative et les systèmes dynamiques,
en particulier la dynamique mesurable des groupes. Nous nous intéressons notamment à
des phénomènes de rigidité de structures géométriques associés aux groupes considérés.
Nous étudions plus particulièrement le groupe des automorphismes de certains produits
libres de groupes de type fini. Soit n P N� et soit F un groupe cyclique d’ordre 2.
Nous considérons dans ce manuscrit les groupes des automorphismes de Fn, groupe libre
(non abélien si n ¥ 2) de rang n, et de Wn, groupe de Coxeter universel de rang n,
produit libre de n copies de F . Si G est un groupe, nous noterons AutpGq le groupe des
automorphismes de G et IntpGq le groupe des automorphismes intérieurs de G, sous-
groupe distingué de AutpGq constitué des conjugaisons globales par des éléments de
G. Soit OutpGq � AutpGq{IntpGq le groupe des automorphismes extérieurs de G. Les
groupes d’intérêt dans ce manuscrit sont les groupes OutpFnq et OutpWnq.

Dans tout ce travail, nous nous efforcerons de comparer les résultats obtenus avec
ceux déjà connus du groupe modulaire ModpSq � π0pHomeo�pSqq d’une surface S com-
pacte, connexe, orientable de genre g ¥ 2 (voir par exemple l’étude comparative de
Bestvina [Bes2], Vogtmann [Vog], et une exposition de Paulin [Pau3]). Cette comparai-
son s’avère fructueuse car un certain nombre de résultats sur OutpFnq ont été obtenus en
s’inspirant de démonstrations de résultats analogues pour ModpSq. Par ailleurs, si S est
une surface à exactement une composante connexe de bord, le groupe fondamental de S
est isomorphe à un groupe libre non abélien de rang 2g, et le théorème de Dehn-Nielsen-
Baer (voir par exemple [FarM, Theorem 8.8]) affirme que le groupe ModpSq s’identifie à
un sous-groupe de OutpF2gq.

Nous étudierons plus particulièrement dans cette thèse des résultats de rigidité des
groupes OutpFnq et OutpWnq. Les résultats de rigidité auxquels nous nous intéressons
peuvent être classés en deux catégories. La première catégorie regroupe des résultats sur
la structure des symétries du groupe : nous parlerons de phénomènes de rigidité lorsque
le groupe ne contient pas d’autres symétries que celles naturelles. Les symétries peuvent
ici prendre la forme des automorphismes du groupe ou des automorphismes entre sous-
groupes d’indice fini du groupe considéré. Cette notion de rigidité est à rapprocher du



théorème de rigidité de Mostow-Prasad-Margulis [Mos1, Mos2] affirmant qu’un isomor-
phisme entre les groupes fondamentaux de deux variétés riemanniennes hyperboliques
de dimension au moins 3, connexes, de volume fini est induit par une isométrie entre les
variétés riemanniennes (voir la partie 1.1 pour des développements). Ainsi, la géométrie
d’une telle variété hyperbolique est entièrement déterminée par sa topologie. En ce sens,
les résultats de rigidité que nous allons considérer dans cette thèse permettent de carac-
tériser les groupes considérés avec peu d’informations, puisqu’il suffira par exemple de
considérer uniquement les symétries du groupe pour le reconstruire.

Ces rigidités de nature algébrique sont à mettre en parallèle avec des rigidités de
nature géométrique. En effet, les groupes considérés agissent par isométries sur certains
espaces et cette action induit un isomorphisme entre le groupe considéré et le groupe des
isométries de l’espace. Cette rigidité géométrique se rapproche des résultats de Tits [Tit2]
affirmant que le groupe des automorphismes simpliciaux d’un immeuble sphérique associé
à un groupe algébrique simple, connexe de rang au moins 2 est isomorphe au groupe
algébrique lui-même (voir également la partie 1.1). Ces résultats de rigidité géométrique
ont, comme nous le verrons dans la suite de cette introduction, de grandes connexions
avec les résultats de rigidité algébrique susmentionnés, puisque nous démontrerons des
résultats de rigidité algébrique en utilisant des résultats de rigidité géométrique.

La deuxième catégorie de rigidité étudiée concerne l’existence d’éléments génériques,
c’est-à-dire d’éléments qui portent en eux toute l’information en cours d’étude du groupe ;
cette information peut par exemple être de nature dynamique. La construction d’éléments
génériques dans les cas qui nous intéresseront reposera sur des arguments dynamiques,
avec la construction d’éléments du groupe considéré dont la dynamique est riche. Nous
pouvons rapprocher cette catégorie de rigidité avec des résultats d’alternative de Tits [Tit1]
décrivant les sous-groupes d’un groupe linéaire : tout sous-groupe H non résoluble d’un
groupe linéaire contient un groupe libre non abélien. En effet, la démonstration de
Tits, sur laquelle nous reviendrons dans la partie 1.3, utilise des arguments dynamiques
similaires à ceux que nous utiliserons pour construire des éléments génériques.

L’étude de ces questions de rigidité repose traditionnellement sur la construction
d’espaces géométriques sur lesquels les groupes considérés admettent de “jolies” actions,
c’est-à-dire propres ou cocompactes (voir la partie 1.2 pour des développements). L’idée
générale est de construire un dictionnaire entre les propriétés algébriques du groupe et
les propriétés géométriques de l’action, afin que les propriétés algébriques se déduisent
des propriétés géométriques et réciproquement. L’enjeu est alors en grande partie de
construire l’espace géométrique adapté à la question algébrique posée.

1.1 Actions sur des espaces de déformation et premiers résultats
de rigidité

Puisque nous considérons dans cette thèse des groupes d’automorphismes extérieurs
OutpGq de certains groupes G de type fini, il est naturel de construire des espaces
géométriques sur lesquels agit OutpGq à partir d’espaces géométriques sur lesquels agit
G. Par exemple, si G est de type fini, le groupe G agit naturellement par multiplication
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à gauche sur le graphe de Cayley de G associé à une partie génératrice de G. En
particulier, dans le cas du groupe Fn, si la partie génératrice est une base libre B de
Fn, alors le graphe de Cayley TB de Fn associé à B est un arbre simplicial et le groupe
Fn agit librement sur TB. Plus généralement, d’après [Ser1, Théorème 4], les groupes
libres Fn pour n P N sont les seuls groupes de type fini admettant une action libre sur un
arbre simplicial. Les arbres fournissent ainsi une large collection d’objets géométriques
sur lesquels Fn admet une jolie action. Nous supposerons dans la suite une certaine
familiarité du lecteur ou de la lectrice avec les actions de groupes sur les arbres (voir par
exemple [Ser1, CM]).

Il n’existe cependant pas d’arbre simplicial non trivial canonique sur lequel agisse Fn
librement et, de ce fait, il n’existe pas d’arbre simplicial non trivial sur lequel Fn agit
et tel que l’action de Fn s’étende à AutpFnq tout entier. Il convient alors de créer un
espace géométrique sur lequel agit OutpFnq et qui contient l’information de toutes les
actions libres de Fn sur des arbres simpliciaux. Cet espace est l’Outre-espace de Fn, noté
CVn, introduit par Culler et Vogtmann [CV], qui est défini comme suit. Un point de
CVn est une classe d’homothétie Fn-équivariante d’arbres simpliciaux métriques admet-
tant une action par isométrie de Fn libre et minimale. Ici, une action est minimale s’il
n’existe pas de sous-arbre propre invariant par l’action du groupe. L’ensemble CVn est
muni de la topologie de Gromov-Hausdorff équivariante [Pau1]. Muni de cette topolo-
gie, l’espace CVn peut être équipé d’une structure de complexe simplicial ayant des faces
manquantes. Le groupe AutpFnq agit à droite par précomposition de l’action et l’action
de AutpFnq passe au quotient en une action à droite proprement discontinue de OutpFnq.
L’Outre-espace est un espace de déformation, analogue de l’espace de Teichmüller d’une
surface hyperbolique compacte, connexe, orientable ou de l’espace symétrique associé
à un groupe de Lie semi-simple (voir par exemple les travaux de Forester [For] et de
Guirardel et Levitt [GuL2]). Le quotient CVn{OutpFnq est alors un espace de modules,
analogue au quotient de l’espace de Teichmüller par le groupe modulaire de la surface
considérée. L’Outre-espace est un espace contractile comme démontré dans [CV], et
donc l’action de OutpFnq sur CVn permet par exemple de montrer que la dimension
cohomologique virtuelle de OutpFnq est finie et égale à 2n � 3. Par ailleurs, l’espace
CVn se rétracte par déformation forte de manière OutpFnq-équivariante sur un complexe
simplicial appelé l’épine de l’Outre-espace de Fn, dont le 1-squelette est noté KpFnq. Les
sommets de KpFnq sont les classes d’homéomorphisme Fn-équivariants d’arbres simplici-
aux munis d’une action libre et minimale de Fn, deux sommets X et X 1 de KpFnq étant
reliés par une arête si et seulement s’il existe X P X et X 1 P X 1 tels que X s’écrase sur
X 1, c’est-à-dire que X 1 est obtenu à partir de X en contractant des orbites d’arêtes, ou
réciproquement. Le groupe OutpFnq agit alors sur KpFnq par automorphisme de graphes
et l’action de OutpFnq sur KpFnq est cocompacte.

Les espaces de modules d’actions de groupes sur des arbres interviennent par ailleurs
naturellement dans la compactification de certains espaces de représentations, comme
démontré par Morgan et Shalen ([MS2], voir également les travaux de Bestvina [Bes1]
et de Paulin [Pau1]). En effet, soit Γ un groupe de type fini n’ayant pas de sous-
groupes d’indice fini contenant un sous-groupe distingué abélien infini et G un groupe
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algébrique linéaire simple sur R de rang réel 1. Soit HomfdpΓ, Gq l’ensemble des représen-
tations fidèles et discrètes de Γ dans G muni de la topologie compacte-ouverte, et soit
HomfdpΓ, Gq{G l’espace quotient des représentations fidèles et discrètes de Γ dans G
modulo l’action propre par conjugaison par un élément de G (voir par exemple [Par1]).
Soit SLFpΓq l’ensemble des actions de Γ sur des arbres (possiblement réels), sans point
fixe global, sans sous-arbre invariant propre, à stabilisateurs d’arc virtuellement nilpo-
tents, modulo isométrie Γ-équivariante, muni de la topologie de Gromov-Hausdorff équiv-
ariante et soit PSLFpΓq le projectifié de SLFpΓq. Comme interprété par Parreau [Par1,
Par2], Morgan et Shalen ont montré que l’on pouvait compactifier l’espace HomfdpΓ, Gq{G
par un fermé de PSLFpΓq. De tels résultats ont par exemple permis de comprendre les
représentations du groupe fondamental d’une surface hyperbolique dans le groupe des
isométries du plan hyperbolique réel (voir par exemple [Ota, Chapitre 2]).

Les espaces de modules d’actions de groupes sur des arbres s’avérant être des espaces
géométriques privilégiés dans l’étude d’actions de groupes, la construction d’espaces
d’actions sur des arbres s’est ainsi notamment propagée dans l’étude des produits libres
de groupes de type fini. Soit G un groupe de type fini et soit

G � G1 � . . . �Gk �B

une décomposition de G en produits libres de groupes. Notons F � trG1s, . . . , rGksu
l’ensemble des classes de conjugaison dans G des sous-groupes G1, . . . , Gk. L’ensemble
F forme un système de facteurs libres de G, c’est-à-dire qu’il existe un sous-groupe B
de G tel que G � G1 � . . . � Gk � B. L’étude de telles décompositions de groupes, et
donc l’étude de groupes relativement à des ensembles de classes de conjugaison de sous-
groupes est à mettre en parallèle avec l’étude des groupes kleiniens (c’est-à-dire des sous-
groupes discrets de PSLp2,Cq) et de leur action par isométries sur l’espace hyperbolique
réel H3

R. En effet, les groupes kleiniens sont généralement étudiés relativement à leurs
sous-groupes paraboliques, c’est-à-dire les sous-groupes maximaux du groupe kleinien
considéré fixant exactement un point à l’infini de H3

R.
Guirardel et Levitt [GuL1] ont construit un analogue de l’Outre-espace de Fn pour

des produits libres de groupes de type fini. L’Outre-espace de G relativement à F , noté
OpG,Fq, est l’ensemble des classes d’isométries G-équivariantes d’arbres simpliciaux
métriques munis d’une action minimale par isométrie de G, à stabilisateur d’arêtes triv-
iaux et dont les stabilisateurs de sommets sont des conjugués des Gi avec i P t1, . . . , ku.
L’ensemble OpG,Fq est muni de la topologie de Gromov-Hausdorff équivariante. Rap-
pelons qu’un groupe G1 est librement indécomposable s’il n’est pas isomorphe à Z et s’il
n’existe pas de sous-groupes non triviaux A1 et B1 de G1 tels que G1 � A1�B1. Lorsque la
décomposition de G relativement à F cöıncide avec une décomposition de Grushko de G,
c’est-à-dire que, pour tout i P t1, . . . , ku, le groupe Gi est librement indécomposable et
que B est libre, nous parlerons simplement de l’Outre-espace de G et le noterons OpGq.
En particulier, dans le cas de Wn, les stabilisateurs de sommets des arbres considérés
dans OpWnq sont finis, soit triviaux soit isomorphes à F . L’espace OpWnq est contractile
comme démontré dans [GuL1]. Comme dans le cas de CVn, le groupe AutpWnq agit à
droite sur OpWnq par précomposition de l’action, et cette action passe au quotient en
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une action proprement discontinue de OutpWnq. Par ailleurs, l’espace OpWnq se rétracte
par déformation forte OutpWnq-équivariante sur un complexe simplicial appelé l’épine de
l’Outre-espace de Wn dont le 1-squelette est noté KpWnq. Les sommets de KpWnq sont
les classes d’homéomorphismes Wn-équivariants d’arbres simpliciaux munis d’une action
de Wn minimale, à stabilisateur d’arêtes triviaux et à stabilisateurs de sommets finis,
deux sommets X et X 1 de KpWnq étant reliés par une arête si et seulement s’il existe
X P X et X 1 P X 1 tel que X s’écrase sur X 1 ou réciproquement. Le groupe OutpWnq
agit alors sur KpWnq par automorphisme de graphes et l’action de OutpWnq sur KpWnq
est cocompacte. Nous démontrons le théorème suivant.

Théorème 1.1.1 (Theorem 3.1.1). Soit n ¥ 4. Le morphisme naturel

OutpWnq Ñ AutpKpWnqq

est un isomorphisme.

Nous obtenons ainsi un résultat de rigidité au sens où les seules symétries de l’Outre-
espace de Wn sont celles naturelles induites par l’action. Le théorème 1.1.1 donne une
classification complète des symétries de l’épine de l’Outre-espace pour tout n. En effet,
pour n � 2, l’épine de l’Outre-espace de W2 est réduite à un point. Lorsque n � 3,
l’épine de l’Outre-espace de W3 est un arbre trivalent, isomorphe à l’épine de l’Outre-
espace (réduit) de F2 ; de ce fait, son groupe d’automorphismes de graphes est non
dénombrable. Le théorème 1.1.1 montre que l’épine de l’Outre-espace de Wn est un
modèle géométrique rigide pour OutpWnq, c’est-à-dire que l’on peut considérer le groupe
OutpWnq comme étant exactement le groupe des automorphismes du graphe KpWnq.

De tels modèles géométriques rigides ont été démontrés l’être dans d’autres contextes.
Par exemple, dans le cadre des groupes algébriques, Tits a démontré que, si le rang
de l’immeuble sphérique associé à un groupe algébrique simple connexe est au moins
2, le groupe des automorphismes simpliciaux de l’immeuble est exactement le groupe
algébrique [Tit2]. Un tel résultat de rigidité géométrique est également vrai pour les
immeubles affines de dimension au moins 3. La démonstration repose sur le fait que
l’immeuble à l’infini d’un tel immeuble affine est sphérique de rang au moins 2. De
ce fait, la description du bord à l’infini permet de mieux comprendre les symétries de
l’immeuble lui-même.

Dans le cas du groupe modulaire d’une surface compacte, connexe, orientable S de
genre au moins 3, Royden [Roy] a démontré que le groupe des isométries de l’espace de
Teichmüller (pour la distance de Teichmüller) est exactement Mod�pSq, le groupe mod-
ulaire étendu de la surface. Un autre modèle géométrique rigide pour Mod�pSq est le
graphe des courbes. Introduit par Harvey ([Har], voir également [Kla, MasM]), le graphe
des courbes est le graphe dont les sommets sont les classes d’homotopie de courbes fer-
mées simples et essentielles, deux sommets rc1s et rc2s étant reliés par une arête s’il
existe c11 P rc1s et c12 P rc2s tels que c11 X c12 � ∅. Le groupe ModpSq agit naturelle-
ment sur le graphe des courbes et Ivanov [Iva2] a démontré que le graphe des courbes
d’une surface compacte, connexe, orientable de genre au moins 3 constituait un mod-
èle géométrique rigide pour Mod�pSq. Enfin, lorsque n ¥ 3, l’épine de l’Outre-espace
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de Fn constitue un modèle géométrique rigide pour OutpFnq par des résultats de Brid-
son et Vogtmann [BV2]. Le fait que l’épine de CVn constitue un modèle géométrique
rigide pour OutpFnq n’implique cependant pas que le graphe KpWnq soit un modèle
géométrique rigide pour OutpWnq, comme nous le verrons dans la partie 1.5. D’autres
modèles géométriques rigides avaient déjà été construits pour OutpWnq. Par exem-
ple l’espace de McCullough-Miller pour Wn, espace homotopiquement équivalent et de
manière OutpWnq-équivariante à l’Outre-espace de Wn [MM], est un modèle géométrique
rigide pour OutpWnq par un résultat de Piggott [Pig]. Néanmoins, il n’existe pas, à notre
connaissance, d’isomorphisme OutpWnq-équivariant entre le 1-squelette de l’espace de
McCullough-Miller et KpWnq et, de ce fait, nous ne pouvons pas déduire directement la
rigidité géométrique de KpWnq à partir de celle de l’espace de McCullough-Miller.

Il s’avère par ailleurs que la démonstration du théorème 1.1.1 repose sur le fait que
certains sous-graphes de KpWnq sont également des modèles géométriques rigides pour
OutpWnq. Un graphe de première importance est le graphe des t0u-étoiles et des F -
étoiles noté LpWnq. Une t0u-étoile est une classe d’équivalence X dans KpWnq dont
un représentant X P X est tel que le quotient WnzX soit un graphe de groupes dont le
graphe sous-jacent est un arbre ayant n feuilles et n� 1 sommets. Une F -étoile est une
classe d’équivalence X dans KpWnq dont un représentant X P X est tel que le quotient
WnzX soit un graphe de groupes dont le graphe sous-jacent est un arbre ayant n � 1
feuilles et n sommets. Les t0u-étoiles et les F -étoiles jouent le rôle des roses de CVn,
c’est-à-dire des classes d’équivalence de graphes de Cayley pour les parties génératrices
libres de Fn. Le graphe LpWnq est alors le sous-graphe de KpWnq dont les sommets
sont les t0u-étoiles et les F -étoiles, et où deux sommets de LpWnq sont adjacents si, et
seulement si, ils sont adjacents dans KpWnq. Le groupe OutpWnq agit à droite sur LpWnq
par précomposition de l’action et nous démontrons le théorème de rigidité suivant.

Théorème 1.1.2 (Corollary 3.3.2). Soit n ¥ 5. Le morphisme naturel

OutpWnq Ñ AutpLpWnqq

est un isomorphisme.

La démonstration du théorème 1.1.2 repose sur une étude locale du graphe LpWnq.
Nous étudions en particulier les cycles dans les boules de rayon 4 de LpWnq. Ceci nous
permet de décrire localement le graphe LpWnq et cette description locale est suffisante
pour obtenir une description globale des symétries de LpWnq. Ce passage de la rigidité
locale à la rigidité globale est à mettre en parallèle avec la démonstration de la rigid-
ité géométrique des immeubles sphériques associés à des groupes algébriques faite par
Tits [Tit2] qui reposait sur l’étude des cycles dans des boules de rayon 2 dans l’immeuble.

L’importance du théorème 1.1.2 provient du fait qu’il permet une traduction d’une
question de rigidité algébrique de OutpWnq en une question de rigidité géométrique. En
effet, les stabilisateurs dans LpWnq d’une t0u-étoile et celui d’une F -étoile adjacente
engendrent OutpWnq. En montrant d’une part que tout automorphisme de OutpWnq
préserve l’ensemble des stabilisateurs de t0u-étoiles et de F -étoiles, et d’autre part
que tout automorphisme de OutpWnq préserve l’ensemble des stabilisateurs d’arêtes de
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LpWnq, nous voyons que tout automorphisme de OutpWnq induit un automorphisme
du graphe LpWnq. En utilisant la rigidité géométrique, nous déduisons le théorème de
rigidité algébrique suivant.

Théorème 1.1.3 (Théorème 2.1.1). p1q Si n ¥ 5, alors Out pOut pWnqq � t1u.

p2q Si n � 4, alors OutpOutpWnqq est isomorphe à Z{2Z.

L’automorphisme extérieur nontrivial de OutpW4q donné par le théorème 1.1.3 p2q
a une interprétation très simple en terme géométrique puisqu’il permute le stabilisa-
teur d’une t0u-étoile avec celui d’une F -étoile adjacente. Nous obtenons par ailleurs
une description de cet automorphisme sur un système de générateurs de OutpWnq. Le
théorème 1.1.3 donne une classification complète des automorphismes de OutpWnq pour
n P N�. En effet, le groupe OutpOutpW2qq est isomorphe à un groupe cyclique d’ordre
2 [Tho, Lemmas 1.4.2, 1.4.3]. Par ailleurs, le groupe OutpW3q est isomorphe à un groupe
projectif linéaire de rang 2 à coefficients dans Z [Gue1, Proposition 2.2], donc son groupe
d’automorphismes extérieurs est trivial par un résultat de Hua et Reiner [HR]. Notons
également que, si la démonstration du théorème 1.1.3 donnée dans [Gue1] ne fait pas
directement intervenir le graphe LpWnq, la démonstration montre effectivement que tout
automorphisme de OutpWnq préserve l’ensemble des stabilisateurs de t0u-étoiles et de
F -étoiles. Le théorème 1.1.3 est inspiré de résultats analogues dans différents contextes.
En effet, Mostow [Mos2] a démontré que le groupe des automorphismes extérieurs de
réseaux irréductibles uniformes de groupes de Lie réels, connexes, semi-simples et non
localement isomorphes à SL2pRq est fini. De même, Bridson et Vogtmann [BV1] ont dé-
montré que tout automorphisme du groupe des automorphismes extérieurs d’un groupe
libre de rang N (avec N ¥ 3) est une conjugaison. Le résultat de Bridson et Vogt-
mann ne permet cependant pas de déduire le théorème 1.1.3 comme nous l’expliquerons
dans la partie 1.5. Enfin, Ivanov [Iva2] a démontré un résultat similaire dans le cas du
groupe modulaire étendu d’une surface compacte, connexe, orientable de genre g ¥ 2.
La méthode de démonstration évoquée pour le théorème 1.1.3 est d’ailleurs similaire à
la démonstration d’Ivanov. En effet, Ivanov utilise tout d’abord le fait que le graphe des
courbes de la surface est un modèle géométrique rigide pour Mod�pSq et donne ensuite
une caractérisation algébrique des stabilisateurs de sommets du graphe des courbes grâce
aux twists de Dehn de la surface. Ivanov démontre en fait un résultat sur les isomor-
phismes entre sous-groupes d’indice fini de Mod�pSq. Comme nous l’expliquerons dans
la partie suivante, nous pouvons également obtenir un résultat sur les isomorphismes
entre sous-groupes d’indice fini de OutpWnq. Ce résultat repose sur l’action de OutpWnq
sur certains espaces hyperboliques au sens de Gromov, comme nous l’expliquons aussi
dans le début de la prochaine partie.
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1.2 Action sur des espaces hyperboliques au sens de Gromov et
rigidité du commensurateur abstrait

L’étude de OutpFnq et OutpWnq repose également sur la construction d’espaces hyper-
boliques au sens de Gromov (voir [Gro1] pour tout prérequis et également [GdlH]) sur
lesquels OutpFnq et OutpWnq agissent par isométries. Par exemple, l’utilisation des
espaces hyperboliques pour comprendre certains groupes agissant par isométries sur
ces derniers est un argument central dans la démonstration du théorème de rigidité de
Mostow en rang 1 [Mos1], avec l’usage des propriétés de l’espace hyperbolique réel H3

R
ainsi que son bord à l’infini.

Un autre exemple d’espace hyperbolique au sens de Gromov est le suivant. Masur et
Minsky [MasM] ont démontré que le graphe des courbes d’une surface compacte, connexe,
orientable de genre au moins 2, tout en n’étant pas localement fini, est hyperbolique
au sens de Gromov. L’hyperbolicité du graphe des courbes est alors devenu un outil
fondamental dans l’étude de ModpSq. Mentionnons par exemple que Dahmani, Guirardel
et Osin [DGO] ont démontré, en utilisant l’action de ModpSq sur le graphe des courbes,
que tout sous-groupe H de ModpSq qui n’est pas virtuellement abélien est SQ universel,
c’est-à-dire que tout groupe dénombrable se plonge dans un quotient de H.

Dans le contexte de Fn et de Wn, la construction d’espaces hyperboliques au sens de
Gromov sur lesquels OutpFnq et OutpWnq agissent par isométries repose sur leurs actions
sur des arbres. Soient G un groupe de type fini et F un système de facteurs libres de
G. Un scindement de G est une action de G sur un arbre simplicial, cette action étant
supposée minimale et sans point fixe global. Un scindement de G est relatif à F si,
pour tout sous-groupe H de G tel que rHs P F , le groupe H fixe un sommet de G. Un
scindement libre de G relatif à F est un scindement de G relatif à F à stabilisateurs
d’arêtes triviaux. Notons que les arbres considérés dans l’Outre-espace OpG,Fq sont
des cas particuliers de scindements libres. Un élément g de G est dit F-périphérique, ou
périphérique s’il n’y a pas d’ambigüıté, s’il existe un sous-groupe H de G tel que g P H
et rHs P F . Sinon, g est F-non-périphérique. Si S et S1 sont deux scindements de G
relatifs à F , on dit que S est un raffinement de S1 si S1 est obtenu à partir de S en
écrasant des orbites d’arêtes. Deux scindements S et S1 sont compatibles s’ils ont un
raffinement commun.

Le graphe des facteurs libres de G relativement à F , noté FFpG,Fq, est le graphe
dont les sommets sont les classes d’homéomorphisme G-équivariant de scindements li-
bres de G relatifs à F , deux classes d’équivalence S et S 1 étant reliés par une arête s’il
existe S P S et S1 P S 1 tels que S et S1 sont compatibles ou s’il existe un élément g P G
qui est F-non-périphérique tel que g fixe un sommet dans S et dans S1. L’hyperbolicité
du graphe des facteurs libres avait été démontrée dans le cas où G � Fn et F � ∅ par
Bestvina et Feighn [BF2] (voir également une démonstration de Kapovich et Rafi [KR])
et dans le cas relatif par Handel et Mosher [HaM3] (toujours pour G � Fn). Guirardel et
Horbez [GuH2] ont démontré que, en dehors de certains systèmes de facteurs libres spo-
radiques (voir loc. cit.), le graphe FFpG,Fq est hyperbolique au sens de Gromov.

Le groupe OutpG,Fq des automorphismes extérieurs de G préservant F agit à droite
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par isométries sur FFpG,Fq par précomposition de l’action. Les éléments loxodromiques
de OutpG,Fq sont les automorphismes extérieurs complètement irréductibles relative-
ment à F , c’est-à-dire les éléments de OutpG,Fq dont aucune puissance non trivial ne
préserve de systèmes de facteurs libres propres contenant F .

Nous donnons à présent une autre justification du cadre relatif avec une compara-
ison avec le groupe modulaire d’une surface. En effet, Ivanov [Iva1] a démontré une
classification des sous-groupes de ModpSq, où S est une surface compacte, connexe et
hyperbolique. Cette classification affirme qu’à tout sous-groupe H de ModpSq nous pou-
vons associer une décomposition maximale de S en sous-surfaces essentielles invariantes
à isotopie près par un sous-groupe d’indice fini de H. La démonstration de ce résultat
s’effectue en deux étapes. La première étape est de montrer, en utilisant l’action de H
sur le graphe des courbes, que soit H possède un sous-groupe d’indice fini qui fixe la
classe d’isotopie d’une courbe fermée simple et essentielle, soit H contient un élément
pseudo-Anosov. Si H contient un pseudo-Anosov, alors S ne contient pas de sous-surface
essentielle propre invariante par un sous-groupe d’indice fini de H. Sinon, quitte à passer
à un sous-groupe d’indice fini, on peut supposer que H fixe la classe d’isotopie rcs d’une
courbe fermée, simple et essentielle c de S. Le groupe H préserve alors la classe d’isotopie
de S � c et le résultat se démontre par récurrence sur la complexité topologique de chaque
composante connexe de S � c.

Dans le cadre de OutpFnq, l’introduction du cadre relatif est nécessaire. En effet,
un possible analogue des éléments pseudo-Anosov sont les automorphismes complète-
ment irréductibles mentionnés ci-dessus. L’analogue des sous-surfaces dans le théorème
d’Ivanov serait alors les facteurs libres de Fn. La première étape de la démonstration est
analogue. En effet, un résultat dû à Handel et Mosher [HaM1] pour les sous-groupes de
type fini puis généralisé par Horbez [Hor1] à tous les sous-groupes de OutpFnq affirme que
tout sous-groupe de OutpFnq soit contient un automorphisme extérieur complètement ir-
réductible soit contient un sous-groupe d’indice fini qui fixe la classe de conjugaison d’un
facteur libre. La démonstration de Horbez repose sur l’action de OutpFnq sur le complexe
des facteurs libres. Cependant, si A est un facteur libre de Fn, il n’existe pas de facteur
libre naturel B de Fn tel que Fn � A �B. De ce fait, un sous-groupe de OutpFnq fixant
la classe de conjugaison de A ne fixe pas nécessairement de facteur libre complémentaire
et un argument de récurrence à la Ivanov ne fonctionne pas.

À la place, il convient d’utiliser les graphes des facteurs libres relatifs. En effet, si H
est un sous-groupe de OutpFnq qui fixe un système de facteurs libres F , alors H agit par
isométries sur FFpFn,Fq. L’alternative de Handel et Mosher se généralise alors au cadre
relatif (voir [HaM4] pour le cas où H est de type fini, et [GuH2] pour le cas général).

Nous mentionnons à présent l’existence d’un autre graphe hyperbolique sur lequel
OutpG,Fq agit par isométries. Il s’agit du graphe des scindements libres de G relatifs
à F , noté KpG,Fq. Le graphe KpG,Fq est le graphe dont les sommets sont les classes
d’homéomorphismes G-équivariants de scindements libres de G relativement à F , deux
sommets S et S 1 étant reliés par une arête s’il existe S P S et S1 P S 1 tels que S s’écrase
sur S1 ou réciproquement. Le graphe KpG,Fq a l’avantage d’avoir des stabilisateurs
beaucoup plus rigides que ceux de FFpG,Fq. En effet, les stabilisateurs de sommets
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de FFpG,Fq sont isomorphes à OutpG,F 1q, où F 1 est un système de facteurs libres
non trivial de G contenant proprement F , alors que les stabilisateurs de sommets de
KpG,Fq ont une description précise donnée par Levitt [Lev1]. Notons par ailleurs que
KpG,Fq peut être considéré comme une complétion simpliciale de l’Outre-espace de
G relativement à F (rappelons que l’Outre-espace de G relativement à F possède une
structure de complexe simplicial auquel il manque des faces), d’où la notation KpG,Fq.
De ce fait, les questions de rigidité concernant KpG,Fq sont plus simples à traiter que les
questions de rigidité concernant FFpG,Fq (mentionnons tout de même que Bestvina et
Bridson ont annoncé avoir démontré que le graphe des facteurs libres de Fn est un modèle
géométrique rigide pour OutpFnq). Handel et Mosher [HaM2] ont démontré que KpFnq
est hyperbolique, Horbez [Hor2] l’a démontré dans le cas où G est général. Le groupe
OutpG,Fq admet une action naturelle par isométries sur KpG,Fq par précomposition
de l’action. Dans le cas de Fn, Aramayona et Souto [AS] ont démontré que le graphe
des scindements libres de Fn est un modèle géométrique rigide pour OutpFnq. Dans le
cas de Wn, le graphe KpWnq constitue également un modèle géométrique rigide pour
OutpWnq.

Théorème 1.2.1 (Theorem 3.1.2). Soit n ¥ 4. Le morphisme naturel

OutpWnq Ñ Autp KpWnqq

est un isomorphisme.

Les actions de OutpWnq et OutpFnq sur ces espaces hyperboliques ne sont cependant
pas proprement discontinues. En effet, les stabilisateurs de sommets de KpWnq sont
en général infinis. Levitt [Lev1, Proposition 4.2] en a donné une description complète.
Les stabilisateurs de sommets contiennent en particulier un sous-groupe distingué appelé
groupe de twists, que nous décrivons maintenant dans le cas d’un exemple simple. Soient
A et B deux sous-groupes infinis de Wn tels que Wn � A � B et soit S le scindement
libre tel que le graphe sous-jacent à WnzS contient exactement une arête et tel que les
stabilisateurs de sommets de S sont exactement les conjugués de A et les conjugués de
B. Soit φ P OutpWnq tel que φ préserve la classe d’homéomorphisme Wn-équivariant S
de S. Quitte à considérer une puissance de φ, nous pouvons supposer que φ préserve la
classe de conjugaison de A et la classe de conjugaison de B. Soit Φ P φ tel que ΦpAq � A.
L’automorphisme Φ induit un automorphisme extérieur rΦ|As P OutpAq et cet automor-
phisme extérieur ne dépend pas du choix de Φ car A est un sous-groupe malnormal de
Fn : pour tout élément g P Fn�A, nous avons gAg�1XA � teu. Soit Stab0

OutpWnq
pSq le

sous-groupe d’indice 2 de StabOutpWnqpSq qui consiste en les automorphismes extérieurs
fixant les classes de conjugaison de A et de B. Nous avons alors un morphisme

Stab0
OutpWnq

pSq Ñ OutpAq �OutpBq.

Le noyau de ce morphisme est le groupe de twists de S. Un twist de S possède alors un
représentant qui préserve A et B et qui agit comme une conjugaison globale sur A (resp.
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B) par un élément de A (resp. B). De ce fait, le groupe de twists de S est isomorphe à
A�B.

Plus généralement, les groupes de twists d’un scindement libre de Wn sont isomor-
phes à des produits directs de groupes isomorphes à des groupes de Coxeter universels.
Dans l’étude des questions de rigidité, l’existence de tels produits directs revêt une im-
portance particulière puisque l’action par isométrie de produits directs sur un espace
hyperbolique au sens de Gromov est facilement compréhensible et contraint l’existence
de points fixes dans l’espace hyperbolique ou dans son bord (voir par exemple [HW2,
Proposition 4.2]). Par exemple, un groupe isomorphe à Z2 agissant par isométries sur
un espace hyperbolique propre devra nécessairement fixer un point dans la compactifi-
cation de l’espace hyperbolique. Ceci implique notamment que le groupes hyperboliques
ne contiennent pas de sous-groupes isomorphes à Z2. De ce fait, l’action de OutpWnq
sur le graphe des facteurs libres permet de caractériser algébriquement certains groupes
de twists et plus généralement certains stabilisateurs de sommets du graphe des scinde-
ments libres. Cette caractérisation algébrique des stabilisateurs est l’argument central
dans la démonstration du théorème de rigidité algébrique suivant.

Théorème 1.2.2 (Theorem 4.8.2). Soit n ¥ 5 et soit F : H1 Ñ H2 un isomorphisme entre
deux sous-groupes d’indice fini de OutpWnq. Alors il existe un unique f P OutpWnq tel
que F soit la restriction de la conjugaison globale par f .

Nous montrons en fait la rigidité du commensurateur abstrait de OutpWnq. Soit
G un groupe. Le commensurateur abstrait de G est le groupe CommpGq des classes
d’équivalence d’isomorphismes entre deux sous-groupes d’indice fini de G. Deux iso-
morphismes sont dans la même classe d’équivalence s’ils sont égaux en restriction à un
sous-groupe d’indice fini commun de leur domaine de définition. Si f1 : G1 Ñ H1 et
f2 : G2 Ñ H2 sont deux isomorphismes entre sous-groupes d’indice fini de G, la loi de
composition de CommpGq est :

rf1 : G1 Ñ H1s � rf2 : G2 Ñ H2s � rf1 � f2 : f�1
2 pH2 XG1q Ñ f1pG1 XH2qs.

Le commensurateur abstrait a été popularisé par Serre dans le cadre de l’étude des
groupes arithmétiques et le problème de congruences de sous-groupes d’indice fini dans
SLpn,Zq. Notons que tout automorphisme de G induit un élément de CommpGq, et donc
l’action G sur lui-même par conjugaison induit un morphisme

GÑ CommpGq.

Le commensurateur abstrait est une notion de symétrie du groupe G qui est plus faible
que celle de son groupe d’automorphismes. Par exemple, le commensurateur abstrait
du groupe Zm est isomorphe à GLpm,Qq alors que son groupe d’automorphismes est
GLpm,Zq. De même, le commensurateur abstrait d’un groupe libre non abélien n’est
pas de type fini [BB]. Le résultat de rigidité suivant, qui est une conséquence du
théorème 1.2.2, montre que, dans le cas de OutpWnq, les deux notions de symétrie que
sont le commensurateur abstrait et le groupe des automorphismes cöıncident.
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Corollaire 1.2.3 (Theorem 4.8.2). Soit n ¥ 5. Le morphisme

OutpWnq Ñ CommpOutpWnqq

est un isomorphisme.

Le théorème 1.2.2 et le corollaire 1.2.3 sont inspirés de résultats analogues dans
différents contextes. En effet, le théorème de Mostow-Prasad-Margulis et le théorème
d’arithméticité de Margulis (voir par exemple [Zim]) impliquent par exemple que, si Γ
est un réseau dans un groupe de Lie G simple, connexe, non compact, de centre trivial
et tel que G � PSLp2,Rq, alors Γ est d’indice fini dans CommpΓq si, et seulement si,
Γ n’est pas arithmétique ; sinon CommpΓq est dense dans G. De plus, dans les deux
cas, CommpΓq est isomorphe au commensurateur de Γ dans G, c’est-à-dire à l’ensemble
des éléments g de G tels que Γ X gΓg�1 est d’indice fini dans Γ et dans gΓg�1. De
même, Ivanov [Iva2] a démontré que, si S est une surface connexe, compacte, orientable
de genre au moins 3, alors le morphisme naturel Mod�pSq Ñ CommpMod�pSqq est
un isomorphisme. Dans le cas de OutpFnq, la rigidité du commensurateur abstrait de
OutpFnq a été démontrée par Farb et Handel [FarH] pour n ¥ 4, puis a été étendue au
cas n � 3 par Horbez et Wade [HW2] par des méthodes géométriques qui ont inspiré la
démonstration du théorème 1.2.2 et du corollaire 1.2.3. Enfin, de tels résultats de rigidité
ont été étendus à d’autres groupes, tels les groupes modulaires des corps en anses [Hen]
ou les groupes modulaires de grosses surfaces [BDR].

1.3 Dynamique sur des espaces compacts et croissance dans les

groupes hyperboliques

Comme nous l’avons évoqué, la démonstration du théorème 1.2.2 repose sur l’étude de
l’action de OutpWnq sur un espace hyperbolique, le graphe des facteurs libres, et la
recherche de points fixes dans une bordification naturelle. Il convient de souligner de
manière approfondie (et nous en avons déjà aperçu deux occurrences dans la partie 1.2)
l’importance de l’étude de l’action par homéomorphismes d’un groupe d’isométries d’un
espace hyperbolique au sens de Gromov X sur le bord à l’infini B8X de X (voir par
exemple [Gro1, GdlH, BriHae]). Notons par exemple que l’étude des groupes kleiniens
s’appuie principalement sur leur action par isométrie sur l’espace hyperbolique réel H3

R
de dimension 3 et leur action par homéomorphismes (en fait conformes) sur leur ensemble
limite. Le bord à l’infini de X a une structure riche, et peut être considéré à la fois de
manière topologique, dynamique, métrique ou analytique. La classification des isométries
d’un espace hyperbolique au sens de Gromov (voir par exemple [GdlH, Chapitre 8])
repose essentiellement sur l’étude de l’action des isométries sur le bord de Gromov et les
points fixes associés. Cette classification illustre par ailleurs la dynamique des isométries
de X sur la bordification XYB8X. Par exemple, si φ est une isométrie loxodromique de
X, alors φ fixe exactement deux points a�8φ , a�8φ P B8X et, pour tout x P X Y B8X �

ta�8φ u, la suite pφ�mpxqqmPN converge vers a�8φ .
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Ce type de dynamique est un exemple de dynamique Nord-Sud. Soit X un espace
topologique compact, métrisable et φ un homéomorphisme de X. Alors φ agit avec une
dynamique Nord-Sud sur X s’il existe deux compacts disjoints propres ∆�pφq de X in-
variants par φ et tels que tout point de X � ∆�pφq converge vers un point p P ∆	pφq
sous l’itération de φ	1. De tels compacts ∆�pφq sont appelés des compacts attractifs
et répulsifs associés à φ. Les résultats de dynamique Nord-Sud sont des outils priv-
ilégiés pour obtenir des résultats de classification des groupes considérés. Par exemple,
Tits [Tit1] (voir également [dlH1]), en utilisant des arguments de dynamique Nord-Sud
et de tennis de table (voir par exemple [dlH2, BriHae]), a démontré une alternative pour
les groupes linéaires : tout sous-groupe d’un groupe linéaire soit contient un sous-groupe
libre non abélien de rang 2 soit est résoluble.

Ainsi, puisque le graphe des courbes d’une surface S compacte, connexe, orientable
de genre g ¥ 2 est hyperbolique au sens de Gromov, les éléments pseudo-Anosov, qui
sont précisément les éléments loxodromiques du graphe des courbes par des résultats
de Masur et Minsky [MasM], agissent avec une dynamique Nord-Sud sur la réunion du
graphe des courbes et de son bord à l’infini. De même les automorphismes extérieurs
complètement irréductibles d’un produit libre G agissent avec une dynamique Nord-Sud
sur la réunion du graphe des facteurs libres avec son bord à l’infini, et on peut en déduire
une alternative de Tits pour ces groupes [GuH2].

Des résultats de dynamique Nord-Sud existent également dans le cadre d’espaces non
hyperboliques. Par exemple, le résultat de Tits [Tit1] suscité utilise de la dynamique
projective et notamment le résultat de dynamique Nord-Sud suivant. Soit φ une ma-
trice carrée réelle de rang n ¥ 2 diagonalisable dans R et telle qu’il existe une valeur
propre λ ¡ 1 de φ telle que, pour toute valeur propre λ1 de φ distincte de λ, nous
ayons |λ| ¡ |λ1|. Alors la classe projective d’un vecteur propre de φ associé à λ est un
point attractif dans RPn. De plus, la classe projective du sous-espace vectoriel de Rn
engendré par les vecteurs propres de φ associés à des valeurs propres distinctes de λ est
le compact répulsif de φ dans RPn. Notons que, dans ce cas, ∆�pφq n’est pas réduit à
un point si n ¥ 3. Par ailleurs, Thurston [Thu] a démontré que les homéomorphismes
pseudo-Anosov d’une surface connexe, compacte, orientable de genre au moins 2 agissent
avec une dynamique Nord-Sud sur l’espace des feuilletages mesurés projectifs et sur le
compactifié de Thurston de l’espace de Teichmüller. En utilisant cette dynamique Nord-
Sud, Ivanov [Iva1] (voir également les travaux de McCarthy [McC]) a alors démontré que
tout sous-groupe de ModpSq contenant un élément pseudo-Anosov est soit virtuellement
cyclique, soit contient un sous-groupe libre non abélien composé uniquement d’éléments
pseudo-Anosov. De même Levitt et Lustig [LL] ont démontré que les automorphismes
extérieurs complètement irréductibles de Fn agissent avec une dynamique Nord-Sud sur
le compactifié de l’Outre-espace de Fn.

Dans cette thèse, nous étudions des propriétés dynamiques des éléments de OutpFnq.
Nous construisons un dictionnaire entre l’action d’un élément φ P OutpFnq sur un espace
topologique compact approprié X et la croissance de la longueur de classes de conju-
gaisons de Fn par itération de φ. L’étude de la dynamique sur l’espace X repose alors
sur une traduction en une dynamique sur le groupe Fn, et inversement. Les résultats de
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dynamiques étudiés seront ainsi intrinsèquement liés avec la croissance dans les groupes.
Initiée par Švarc, Milnor et Wolf, et particulièrement développée par Guivarc’h, Gromov
et Grigorchuk, les problèmes de croissance dans un groupe forment un domaine majeur
en théorie géométrique des groupes (voir par exemple [LS, Man1, Hel]). Ces problèmes
de croissance sont reliés aux alternatives sur les sous-groupes que nous évoquions plus
tôt. En effet, l’alternative que Tits a démontrée pour les groupes linéaires implique par
un résultat de Milnor et Wolf que, si G est un sous-groupe d’un groupe linéaire, alors le
volume d’une boule dans un graphe de Cayley de G crôıt de manière exponentielle ou
polynomiale.

Dans ce manuscrit, nous nous intéressons aux problèmes de croissance d’éléments du
groupe sous l’itération d’automorphismes du groupe. Soient G un groupe de type fini,
S une partie génératrice finie de G et d la distance des mots sur G associée à S. Soient
Φ un automorphisme de G et g P G. La croissance de g sous itération de Φ correspond
au comportement asymptotique de la suite�

`SpΦ
mpgqq

�
mPN � pdpΦmpgq, eqqmPN.

De même, si φ est un automorphisme extérieur de G, la croissance de (la classe de
conjugaison de) g sous itération de φ correspond au comportement asymptotique de la
suite �

`Spφ
mprgsqq

�
mPN �

�
min

g1Prgs,ΦPφ
`SpΦ

mpg1qq



mPN

.

Nous dirons que g est à croissance polynomiale relativement à φ s’il existe un polynôme
P P ZrXs tel que, pour tout m P N�, nous ayons :

`Spφ
mprgsqq ¤ P pmq,

et nous dirons que g est à croissance exponentielle par itération de φ s’il existe C, λ ¡ 0
tels que, pour tout m P N�, nous ayons :

`Spφ
mprgsqq ¥ C eλm.

Pour une large famille de groupes comprenant les groupes libres abéliens et les groupes
hyperboliques sans torsion, un élément du groupe est soit à croissance exponentielle soit
à croissance polynomiale relativement à un automorphisme extérieur (voir par exem-
ple [Cou, Theorem 1.1]). De plus, ce fait ne dépend pas du choix de la partie génératrice
finie du groupe. Notons cependant que cette alternative n’est pas vérifiée pour tous les
groupes et que Coulon [Cou] a construit des groupes ayant des éléments à croissance
intermédiaire sous itération d’automorphismes.

Nous donnons à présent des exemples d’automorphismes d’un groupe libre non abélien
Fn de rang n dont les éléments ont différents types de croissance.

p1q Un exemple d’automorphisme pour lequel tous les éléments sont à croissance poly-
nomiale est le suivant. Soit F3 � xa, b, cy et soit φ l’automorphisme fixant a, envoyant b
sur ba et envoyant c sur cb. Alors b est à croissance linéaire relativement à φ et c est à
croissance quadratique relativement à φ.
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p2q Un exemple d’automorphisme pour lequel tous les éléments sont à croissance expo-
nentielle est le suivant. Soit M P GLp3,Zq une matrice primitive telle qu’il existe une
unique valeur propre λ de M , comptée avec multiplicité, telle que |λ| ¡ 1 et telle que
pour toute valeur propre µ de M distincte de λ, nous ayons |µ|   1. Soit φM P OutpF3q
tel que l’image de φM par le morphisme d’abélianisation Θ: OutpF3q Ñ GLp3,Zq soit
égale à M . Alors un résultat de Gersten et Stallings [GS] implique que tous les éléments
de Fn sont à croissance exponentielle par itération de φM .

p3q Un exemple d’automorphisme possédant des éléments à croissance exponentielle
et des éléments à croissance polynomiale est le suivant. Soit F3 � xa, b, cy et soit φ
l’automorphisme envoyant a sur b, b sur ab et c sur caba�1b�1. Alors, si g P F3 �@
aba�1b�1, c

D
, l’élément g est à croissance exponentielle par itération de φ. L’élément

aba�1b�1 est fixé par φ2 et l’élément c est à croissance linéaire par itération de φ.

Ces questions de croissance ont par ailleurs des conséquences sur la structure al-
gébrique des groupes. En effet, Brinkmann [Bri] (voir également les travaux de Bestvina
et Feighn [BF1]) a démontré que si φ P OutpFnq, alors la suspension Fn �φ Z est un
groupe hyperbolique au sens de Gromov si et seulement si φ P OutpFnq est un élément
atoröıdal, c’est-à-dire si tous les éléments de Fn sont à croissance exponentielle par itéra-
tion de φ. Notons qu’une conséquence d’un résultat de Levitt [Lev2, Corollary 1.6] est
qu’un automorphisme φ P OutpFnq est atoröıdal si et seulement si pour tout k P N�,
l’automorphisme extérieur φk ne fixe pas la classe de conjugaison d’un élément non triv-
ial de Fn. Ce résultat est à comparer avec un résultat de Thurston affirmant que la
suspension d’une surface compacte, connexe, orientable de genre g ¥ 2 par un élément
pseudo-Anosov est hyperbolique (voir par exemple la démonstration d’Otal [Ota] qui
utilise des actions de groupes sur des arbres).

Dans cette thèse, nous considérons ces questions de croissance du point de vue des
sous-groupes de OutpFnq. Si φ P OutpFnq, nous noterons Polypφq l’ensemble des éléments
de Fn à croissance polynomiale par itération de φ. Si H est un sous-groupe de OutpFnq,
nous noterons PolypHq �

�
φPH Polypφq, c’est-à-dire l’ensemble des éléments de Fn à

croissance polynomiale par itération de chaque élément de H. Nous démontrons le
résultat suivant, qui donne l’existence d’éléments dynamiquement génériques dans les
sous-groupes de OutpFnq.

Théorème 1.3.1 (Theorem 7.1.1). Soit n P N� et soit H un sous-groupe de OutpFnq. Il
existe φ P H tel que Polypφq � PolypHq.

Le théorème 1.3.1 montre ainsi que, si H est un sous-groupe de OutpFnq, tout élé-
ment de Fn à croissance exponentielle par itération d’un élément de H est à croissance
exponentielle par itération de tout élément générique de H donné par le théorème 1.3.1.
Un élément générique ainsi construit encode donc toute la croissance exponentielle de
H.

Le théorème 1.3.1 possède un analogue dans le contexte du groupe modulaire d’une
surface S fermée, connexe, orientable, munie d’une structure hyperbolique. En effet,
une conséquence de la classification de Nielsen-Thurston (voir par exemple [FarM, The-
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orem 13.2]) et de l’étude de la croissance d’éléments pseudo-Anosov (voir par exem-
ple [FarM, Theorem 14.23]) est que la croissance sous les itérés d’un élément de ModpSq
de la longueur hyperbolique d’un représentant géodésique de la classe d’homotopie d’une
courbe fermée et essentielle est soit exponentielle, soit linéaire. Par ailleurs, la crois-
sance linéaire provient de twists de Dehn tandis que la croissance exponentielle provient
d’éléments pseudo-Anosov de sous-surfaces de S. Comme nous l’avons vu précédemment,
Ivanov [Iva1] a démontré que, pour tout sous-groupe H de ModpSq, quitte à passer à
un sous-groupe d’indice fini de H, il existe un nombre fini de classes d’homotopies de
courbes fermées, simples et essentielles deux à deux disjointes C1, . . . , Ck invariantes
par H et telles que, pour toute composante connexe S1 de S �

�k
i�1Ci, la restriction

H|S1 � ModpS1q soit est triviale, soit contient un pseudo-Anosov. Par ailleurs, il existe
un élément f P H tel que, pour toute composante connexe S1 de S �

�k
i�1Ci telle que

la restriction H|S1 � ModpS1q n’est pas triviale, l’élément f |S1 P ModpS1q est un pseudo-
Anosov. L’élément f peut se construire de la manière suivante. Pour toute sous-surface
S1 de S �

�k
i�1Ci telle que la restriction H|S1 � ModpS1q n’est pas triviale, le groupe

H|S1 contient un élément loxodromique du graphe des courbes de S1. Par un résultat de
Clay et Uyanik [CU1, Theorem 5.1], il existe f P H tel que, pour toute sous-surface S1

de S �
�k
i�1Ci telle que la restriction H|S1 � ModpS1q n’est pas triviale, l’élément f |S1

est loxodromique dans le graphe des courbes de S1, donc est un élément pseudo-Anosov
de ModpS1q.

Mentionnons que le théorème 1.3.1 a été démontré dans le cas où PolypHq � t1u par
Clay et Uyanik [CU2]. En effet, ces derniers démontrent que, dans ce cas, le groupe H
contient un élément atoröıdal. Nous généralisons ainsi le théorème de Clay et Uyanik en
considérant les automorphismes atoröıdaux comme étant les automorphismes extérieurs
φ de OutpFnq tels que, pour tout élément g de OutpFnq non trivial, g est à croissance
exponentielle relativement à φ. Lorsque nous considérons les éléments atoröıdaux comme
étant les éléments de OutpFnq tels qu’aucune puissance ne fixe de classe de conjugaison
d’éléments non trivial de Fn, nous pouvons nous demander si une autre généralisation du
théorème de Clay et Uyanik est possible. En effet, nous pouvons nous poser la question
suivante. Soit H un sous-groupe de OutpFnq tel que H fixe virtuellement la classe de
conjugaison d’un sous-groupe A de Fn. Est-il vrai que soit H fixe virtuellement la classe
de conjugaison d’un élément g de Fn qui n’est contenu dans aucun conjugué de A, soit il
existe φ P H tel que les seuls éléments de Fn dont les classes de conjugaison sont fixées
par φ soient contenus dans des conjugués de A ?

Malheureusement, un tel résultat n’est pas valable. En effet, soit F3 � xa, b, cy un
groupe libre non abélien de rang 3. Soit φa (resp. φb) l’automorphisme de F3 qui fixe
a et b et qui envoie c sur ca (resp. c sur cb). Soit H � xrφas, rφbsy. Alors H fixe la
classe de conjugaison de tous les éléments de xa, by. Par ailleurs, pour tout élément
ψ P H, il existe un unique représentant Ψ de ψ et un élément gψ de xa, by tel que
Ψpxa, byq � xa, by, Ψ|xa,by � idxa,by et Ψpcq � cgψ. Ainsi, ψ fixe la classe de conjugaison
du sous-groupe engendré par gψ et cgψc

�1. Cependant, pour tout ψ P H, si φ P H est
tel que gφ ne centralise pas gψ, alors φ ne fixe la classe de conjugaison d’aucun élément
de
@
gψ, cgψc

�1
D

autre que les puissances de gψ et de cgψc
�1.
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Ainsi, le théorème de Clay et Uyanik ne se généralise pas à tous les sous-groupes de
Fn lorsque l’on considère les classes de conjugaison fixées. Néanmoins, dans l’exemple
construit, le rang du sous-groupe de Fn dont la classe de conjugaison est fixée par H est
égal à 2. Ce rang est en fait minimal comme le montre le résultat suivant, conséquence
du théorème 1.3.1 et du théorème de Kolchin pour les sous-groupes de OutpFnq dû à
Bestvina, Feighn et Handel [BFH3], analogue du théorème de Kolchin pour les sous-
groupes de GLpn,Zq (voir par exemple [Ser2]). Si φ P OutpFnq, nous notons Fixpφq
l’ensemble des classes de conjugaison d’éléments de Fn fixées par φ.

Théorème 1.3.2 (Corollary 7.5.3). Soit n ¥ 3, soit H un sous-groupe de OutpFnq et soient
g1, . . . , gk des éléments non triviaux de Fn. Supposons que, pour tout i P t1, . . . , ku, le
groupe H fixe virtuellement la classe de conjugaison de gi. Alors l’une des assertions
suivantes (mutuellement exclusives) est vérifiée.

p1q Il existe un élément non trivial gk�1 P Fn qui n’est conjugué à aucune puissance
d’un gi pour i P t1, . . . , ku et dont la classe de conjugaison est virtuellement fixée par H.

p2q Il existe φ P H tel que Fixpφq � trxg1ys, . . . , rxgkysu.

Le résultat suivant montre que la deuxième alternative du théorème 1.3.2 intervient
en particulier lorsque le sous-groupe H de OutpFnq considéré est géométrique (au sens
de [HaM4, Theorem J]).

Proposition 1.3.3 (Corollary 7.5.4). Soit n ¥ 3 et soit H un sous-groupe de OutpFnq.
Supposons qu’il existe un unique sous-groupe cyclique maximal non trivial xgy de Fn dont
la classe de conjugaison est virtuellement fixée par H. Supposons que g ne soit contenu
dans aucun facteur libre propre de Fn. Alors il existe une surface compacte, connexe S et
une identification de π1pSq avec Fn tel que H soit un sous-groupe de ModpSq contenant
un élément pseudo-Anosov.

La démonstration du théorème 1.3.1 repose sur des arguments de dynamique Nord-
Sud et de tennis de table comme présentés précédemment. Nous cherchons donc à con-
struire un espace topologique X compact, métrisable sur lequel H agit par homéomor-
phismes et tel qu’il existe un élément φ P H tel que φ agisse sur X avec une dynamique
Nord-Sud. Un élément φ P H sera en fait dynamiquement générique si et seulement si
φ agit sur X avec une dynamique Nord-Sud. Nous créons ainsi un dictionnaire entre
des propriétés dynamiques de l’action de H sur X (la dynamique Nord-Sud de certains
éléments de H) et la croissance d’éléments de Fn par itérations d’éléments de H.

L’espace X construit sera un espace de courants, espace que nous présentons dans la
prochaine section. Cet espace a l’avantage, comme nous le verrons, qu’il existe une ap-
plication ensembliste Θ injective et H-équivariante des classes de conjugaison d’éléments
de Fn � PolypHq vers X, dont l’image est dense. Ceci facilitera la construction du dic-
tionnaire évoqué puisque la dynamique de l’action de H sur X dépendra complètement
de l’étude de la dynamique de H sur l’image de Θ.
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1.4 Action sur des espaces de courants et construction d’éléments
génériques

Dans la section précédente, nous avons présenté le bord à l’infini d’un espace hyper-
bolique au sens de Gromov d’un point de vue topologique et dynamique. Dans cette sec-
tion, nous adoptons un point de vue analytique dans nos considérations du bord à l’infini.
Nous considérons ainsi des mesures de Radon sur le bord à l’infini de certains groupes
hyperboliques. Ceci est à rapprocher des travaux de Furstenberg [Fur1, Fur2, Fur3] et
de l’étude d’un groupe Γ par l’utilisation des bords de Poisson-Furstenberg, qui sont
des espaces mesurés munis d’une action de Γ qui quasi-préserve la mesure. Le bord de
Poisson-Furstenberg intervient notamment dans la considération de problèmes de rigidité
proches de ceux du théorème de superrigidité de Margulis (voir par exemple l’exposition
de Bader et Furman [BaFur, Theorem 4.8]). Dans le cas où Γ est un groupe hyper-
bolique muni d’une mesure de probabilité µ de premier moment fini et tel que le groupe
engendré par le support de µ est non élémentaire, le bord de Poisson-Furstenberg est
isomorphe au bord à l’infini du groupe Γ par des résultats de Kaimanovich [Kai].

Dans [Pat, Sul], Patterson et Sullivan ont défini des mesures de Radon quasi invari-
antes µΓ sur le bord à l’infini d’un espace hyperbolique réel Hn

R pour n ¥ 2 associés à
des groupes convexes cocompacts Γ d’isométries de Hn

R. La mesure µΓ ainsi construite a
pour support l’ensemble limite ΛΓ de Γ. Cette mesure µΓ permet par exemple d’obtenir
des informations sur les propriétés ergodiques de l’action de Γ sur ΛΓ ou sur la croissance
des orbites de Γ dans Hn

R. Ces mesures de Radon quasi invariantes ont par la suite été
élargies aux espaces hyperboliques au sens de Gromov par Coornaert [Coor].

Pour obtenir des mesures de Radon invariantes et non plus quasi invariantes, une
méthode générale est de considérer le double bord de l’espace hyperbolique au sens de
Gromov. Soit X un espace hyperbolique au sens de Gromov et soit B8X le bord à l’infini
de X. Le double bord de X est l’espace topologique quotient

B2X � pB8X � B8Xz∆q { �,

où � est la relation d’équivalence engendrée par la relation px, yq � py, xq et ∆ est la
diagonale. Si Γ est un sous-groupe discret du groupe des isométries de X agissant de
manière proprement discontinue et cocompacte sur X, un courant de Γ est une mesure de
Radon positive ou nulle Γ-invariante sur le double bord de X. L’ensemble des courants
CurrpX,Γq est muni de la topologie vague (ou faible-étoile), où une suite de courants
pµnqnPN P pCurrpX,ΓqqN converge vers un courant µ P CurrpX,Γq si, et seulement si,
pour tout borélien B de B2X tel que µpBBq � 0, la suite pµnpBqqnPN converge vers µpBq.
On définit également l’espace des courants projectifs

PCurrpX,Γq � pCurrpX,Γq � t0uq{ �,

où deux courants µ, ν P CurrpX,Γq sont équivalents s’il existe λ P R�
� tel que µ � λν. Les

courants ont été introduits par Ruelle et Sullivan [RS] et largement utilisés par Bonahon
([Bon1, Chapitre 4], voir également [Bon3]) dans son étude des surfaces hyperboliques
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compactes, connexes et orientables. En effet, si S est une telle surface, son groupe fonda-
mental agit sur son revêtement universel rS, identifié par une isométrie π1pSq-équivariante
avec le plan hyperbolique réel H2

R. De ce fait, nous pouvons définir l’espace des courants
de S, noté CurrpSq, comme étant l’espace CurrpSq � CurrpH2

R, π1pSqq. Bonahon [Bon3] a
démontré que cette définition ne dépendait pas du choix de la structure hyperbolique de S
(à unique homéomorphisme équivariant près). Nous pouvons de même définir l’espace des
courants projectifs de S comme étant l’espace PCurrpSq � PCurrpH2

R, π1pSqq. L’espace
CurrpSq est un espace métrisable. De plus, l’espace PCurrpSq est un espace métris-
able compact. L’espace CurrpSq admet une action naturelle de ModpSq par homéomor-
phismes puisque tout élément de ModpSq induit un homéomorphisme de B8H2

R. Ainsi,
si f P ModpSq et si µ P CurrpSq, alors, pour tout borélien B de B2H2

R on pose

fpµqpBq � µpf�1pBqq.

L’action de ModpSq sur CurrpSq passe au quotient en une action de ModpSq sur PCurrpSq,
l’espace des courants projectifs de S.

Les classes d’homotopies de courbes fermées essentielles de S définissent naturelle-
ment des courants que nous présentons. Soit rγs une telle classe d’homotopie et γ son
représentant géodésique. Soit rγ une géodésique infinie de rS se projetant sur γ. Alors rγ
définit deux points distincts à l’infini rγ�8, donc un élément trγ�8u de B2 rS. Le courant
associé à rγs, noté ηrγs est

ηrγs �
¸

gPπ1pSq{Cprγsq

δgtrγ�8u,

où δgtrγ�8u est la mesure de Dirac en gtrγ�8u et Cprγsq le centralisateur de rγs dans π1pSq.
Nous obtenons donc une application de l’ensemble des classes d’homotopie de courbes
fermées essentielles de S dans l’espace des courants projectifs de S, et l’image de cette ap-
plication est dense dans PCurrpSq [Bon3]. L’espace PCurrpSq est donc un espace naturel
d’action de ModpSq afin de comprendre l’action de ModpSq sur les classes d’homotopie de
courbes fermées essentielles. Par ailleurs, les éléments pseudo-Anosov de ModpSq agis-
sent avec une dynamique Nord-Sud sur PCurrpSq par des résultats de Thurston ([Thu],
voir également les travaux d’Uyanik [Uya1]) et, de ce fait, PCurrpSq est un objet priv-
ilégié d’arguments de tennis de table. Par ailleurs il existe un plongement naturel du
compactifié de Thurston de l’espace de Teichmüller de S dans PCurrpSq [Bon3].

La construction d’espaces de courants associés à des actions de groupes fondamentaux
de surfaces par isométries sur le revêtement universel fut généralisée par Bonahon [Bon3]
à tous les groupes hyperboliques au sens de Gromov. L’espace des courants d’un groupe
libre non abélien Fn, noté CurrpFnq et son espace projectif associé PCurrpFnq furent
particulièrement étudiés ([Mar, Kap, KapL, CHL, Uya2]). Soit T le graphe de Cayley
de Fn associé à une base libre de Fn. L’espace des courants de Fn est

CurrpFnq � CurrpT,Fnq,

l’espace CurrpFnq ne dépend pas du choix de T à unique homéomorphisme équivariant
près. L’espace CurrpFnq est métrisable et PCurrpFnq est métrisable et compact. Tout
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comme dans le cas de ModpSq, le groupe AutpFnq agit sur CurrpFnq et sur PCurrpFnq
par précomposition. Les mesures considérées étant Fn-invariantes, l’action de AutpFnq
passe au quotient en une action de OutpFnq par homéomorphismes. Comme dans le cas
des surfaces où nous pouvons considérer PCurrpSq comme une complétion “topologique”
des courants associés aux classes d’homotopies de courbes fermées simples et essentielles,
nous pouvons considérer PCurrpFnq comme une complétion “topologique” des courants
associés aux classes de conjugaison d’éléments non triviaux de Fn. Soit rgs une classe de
conjugaison d’éléments non triviaux de Fn. Soit Axpgq l’axe de translation de g dans T .
Alors Axpgq définit deux points distincts à l’infini g�8 de B8Fn et un point tg�8u du
double bord de Fn. Alors rgs définit un courant ηrgs par

ηrgs �
¸

hPFn{Cpgq
δhtg�8u,

où Cpgq est le centralisateur de g. Bonahon [Bon3] (voir aussi [Mar]) démontre que
l’ensemble trηrgssugPFn�teu est dense dans PCurrpFnq.

L’espace des courants a également un accouplement avec l’Outre-espace de Fn. Soit
cvn l’Outre-espace non projectifié de Fn, c’est-à-dire l’ensemble des classes d’isométrie Fn-
équivariante d’arbres simpliciaux métriques admettant une action par isométries de Fn
libre et minimale. L’ensemble cvn est muni de la topologie de Gromov-Hausdorff équiv-
ariante. Soit T P cvn, soient T un représentant de T et g P Fn un élément non trivial.
On note ipT , ηrgsq la longueur de translation de g dans T . Cette longueur de translation
ne dépend ni du choix du représentant de la classe de conjugaison de g ni du choix du
représentant de T . Un résultat de Kapovich et Lustig ([KapL], voir également [Kap])
implique que la fonction i s’étend continûment en une fonction OutpFnq-équivariante par
rapport à l’action diagonale

i : cvn � CurrpSq Ñ R�.

Cet accouplement a ainsi été une motivation pour obtenir des propriétés dynamiques
de l’action de OutpFnq sur CurrpFnq similaires à celles de l’action de OutpFnq sur CVn.
Par exemple, les éléments complètement irréductibles de OutpFnq agissent avec une dy-
namique Nord-Sud sur l’espace des courants projectifs [Mar]. Les éléments atoröıdaux
de OutpFnq agissent également avec une dynamique Nord-Sud sur PCurrpFnq par des
résultats de Lustig et Uyanik [LU2, Uya2].

Les espaces de courants sont ainsi des espaces privilégiés afin de construire des es-
paces topologiques compacts, métrisables et tels que l’ensemble des courants associés aux
classes de conjugaison des éléments considérés soit dense. Rappelons que, pour un auto-
morphisme extérieur φ P OutpFnq fixé, nous cherchons à construire un espace topologique
X permettant de traduire les propriétés de croissance exponentielle d’éléments de Fn par
itération de φ en des propriétés dynamiques de l’action de φ sur X, et inversement. Pour
cela, nous construisons une notion de courants relativement à Polypφq. Intuitivement,
les courants seront des mesures de Radon positives ou nulles Fn-invariantes sur le double
bord à l’infini de Fn privé du double bord à l’infini de Polypφq, donc des mesures de
Radon sur une notion double bord de Fn relativement à Polypφq. Il convient de ce fait
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de préciser la notion de double bord relatif. Par ailleurs, il est nécessaire de vérifier
que le double bord relatif est un espace topologique “convenable” afin que l’espace des
courants relatifs conserve les propriétés topologiques de compacité et de métrisabilité.
Nous allons en fait introduire la notion de courant de Fn relativement à des systèmes
de sous-groupes malnormaux. La notion de systèmes de sous-groupes malnormaux était
déjà présente dans les travaux d’Handel et Mosher [HaM4]. Nous introduisons dans cette
thèse la notion de courants associés à de tels systèmes de sous-groupes malnormaux.

Un système de sous-groupes de Fn est un ensemble fini (éventuellement vide) de
classes de conjugaison de sous-groupes de type fini de Fn. Rappelons qu’un sous-groupe
A de Fn est malnormal si, pour tout élément g P Fn�A, nous avons AXgAg�1 � t1u. Un
système de sous-groupes malnormal est un système de sous-groupes A � trA1s, . . . , rArsu
de Fn tel que, pour tout i P t1, . . . , ru, le groupe Ai est malnormal et, pour tous les sous-
groupes distincts A,B de Fn tels que rAs, rBs P A, nous avons AXB � teu.

Par exemple, les systèmes de facteurs libres de Fn sont des exemples de systèmes de
sous-groupes malnormaux. Un autre exemple de systèmes de sous-groupes malnormaux
est le suivant. Soit T un arbre réel muni d’une action minimale de Fn par isométries et tel
que les stabilisateurs d’arcs soient triviaux. Par les travaux de Gaboriau et Levitt [GaL],
le rang des stabilisateurs de sommets est au plus égal à n et le nombre de classes de
conjugaison de stabilisateurs de sommets est fini. Soit AT le système de sous-groupes de
Fn consistant en les classes de conjugaison des stabilisateurs de sommets de T . Alors AT

est un système de sous-groupes malnormal par un résultat de Handel et Mosher ([HaM4,
Lemma II.3.1]) et est appelé le système de sous-groupes de sommets de T . Par ailleurs,
tous les systèmes de facteurs libres sont des systèmes de sous-groupes de sommets d’un
certain arbre T simplicial. Cependant, il existe des systèmes de sous-groupes de sommets
qui ne sont pas des systèmes de facteurs libres. Par exemple, soit S une surface compacte,
connexe, orientable, hyperbolique avec exactement une composante connexe de bord, que
l’on suppose totalement géodésique. Alors le groupe fondamental de S est isomorphe à
un groupe libre non abélien Fn. Soit Λ une lamination géodésique mesurée de S sans
feuille compacte. Soit rΛ la préimage de Λ dans le revêtement universel rS de S et soit
T l’arbre dual (voir par exemple [MS1]) de rΛ. Alors une identification de π1pSq avec
Fn induit une action de Fn sur T à stabilisateurs d’arcs triviaux. Par ailleurs, le groupe
fondamental de la composante connexe de S � Λ contenant la composante de bord est
le stabilisateur d’un sommet de T , et ce dernier n’est contenu dans aucun facteur libre
de Fn.

Un autre exemple de systèmes de sous-groupes malnormaux de Fn est le suivant.
Soit φ P OutpFnq tel qu’il existe g P Fn à croissance exponentielle par itération de
φ. Un sous-groupe à croissance polynomiale par itération de φ est un sous-groupe P
de Fn tel qu’il existe Φ P φ et k P N� tel que ΦkpP q � P et tout élément de P est à
croissance polynomiale par itération de Φk. Un résultat de Levitt [Lev2, Proposition 1.4]
montre qu’il existe un nombre fini rH1s, . . . , rHks de sous-groupes maximaux à croissance
polynomiale par itération de φ et que l’ensemble trH1s, . . . , rHksu est un système de
sous-groupes malnormal. De ce fait, puisque Polypφq �

�r
i�1

�
gPFn gHig

�1, il existe
un système de sous-groupes malnormal canoniquement associé à Polypφq, noté Apφq.
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Par exemple, dans l’exemple p1q de la partie 1.3, nous avons Apφq � trFnsu. Dans
l’exemple p2q, nous avons Apφq � ∅. Enfin, dans l’exemple p3q, nous avons Apφq �
tr
@
aba�1b�1, c

D
su. Nous ne savons pas si tout système de sous-groupes malnormaux Apφq

pour φ P OutpFnq est un système de sous-groupes de sommets. Néanmoins, les travaux
récents de Mutanguha [Mut] laissent à penser que ce n’est pas le cas. Le théorème 1.3.1
implique également le fait suivant.

Corollaire 1.4.1 (Corollary 7.5.2). Soit n ¥ 3 et H un sous-groupe de OutpFnq. Si
PolypHq � t1u, il existe des sous-groupes maximaux non triviaux A1, . . . , Ar de Fn tels
que

PolypHq �
k¤
i�1

¤
gPFn

gAig
�1

et A � trA1s, . . . , rArsu est un système de sous-groupes malnormal.

L’intérêt d’introduire les systèmes de sous-groupes malnormaux dans nos considéra-
tions à l’infini provient des faits suivants. D’une part, tout sous-groupe de type fini A
de Fn est quasi-convexe. De ce fait, si A est non trivial, il existe un unique plongement
topologique A-équivariant B8A ãÑ B8Fn, et nous identifions B8A avec son image dans
B8Fn et B2A avec son image dans B2Fn. D’autre part, par la définition des systèmes
de sous-groupes malnormaux, pour tout système de sous-groupes malnormal A de Fn
et pour tous les sous-groupes distincts A,B de Fn tels que rAs, rBs P A, nous avons
B8A X B8B � teu (voir par exemple [HaM4, Fact I.1.2]). De ce fait, les doubles bords
B2A et B2B sont également disjoints.

Soit A � trA1s, . . . , rArsu un système de sous-groupes malnormal de Fn. Nous définis-
sons le double bord de A par

B2A �
r¤
i�1

¤
gPFn

B2
�
gAig

�1
�

et le double bord de Fn relativement à A, par

B2pFn,Aq � B2Fn � B2A.

L’ensemble B2pFn,Aq est un ouvert de B2Fn, stable sous l’action de Fn par translation à
gauche (voir [Gue4, Lemma 2.5]). Muni de la topologie induite par celle de B2Fn, il est
de ce fait localement compact et admet une orbite dense sous l’action de Fn.

La construction du double bord de Fn relativement à un système de sous-groupes
malnormal est à rapprocher de la notion de bord à l’infini de groupes relativement hyper-
boliques. Soit G un groupe de type fini et soit trP1s, . . . , rPrsu un ensemble fini de classes
de conjugaison de groupes de type fini non triviaux de G. Le groupe G est hyperbolique
relativement à trP1s, . . . , rPrsu s’il existe un espace hyperbolique au sens de Gromov X
tel que G agisse de manière proprement discontinue sur X et tel que les sous-groupes
maximaux fixant exactement un point de B8X soient précisément les conjugués des Pi
avec i P t1, . . . , ru. La notion d’hyperbolicité relative fut introduite par Gromov [Gro1]
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(voir également les travaux de Farb [Far] et Bowditch [Bow]). Par exemple, le groupe
fondamental d’une variété hyperbolique M connexe, de volume fini est hyperbolique rel-
ativement aux classes de conjugaison des sous-groupes paraboliques de π1pMq associés
aux pointes de M . Par des résultats de Bowditch [Bow, Theorem 7.12] et Hruska [Hru,
Theorem 5.1], pour tout système de sous-groupe malnormal A de Fn, le groupe Fn est
hyperbolique relativement à A. L’hyperbolicité relative intervient ainsi naturellement
lorsque l’on considère des problèmes de croissance sous itération d’automorphismes. Par
exemple, un cas particulier d’un théorème de Dahmani et Krishna [DS] implique que,
pour tout automorphisme extérieur d’ordre infini φ P OutpFnq et tout représentant Φ de
φ, l’extension Fn �Φ Z est hyperbolique relativement à la suspension de Apφq.

À tout système de sous-groupes malnormal A de Fn, nous pouvons ainsi associer
le bord B8XpAq de l’espace Gromov-hyperbolique XpAq intervenant dans la définition
d’hyperbolicité relative (la classe d’homéomorphisme Fn-équivariante de B8XpAq ne
dépend pas du choix de XpAq par un résultat de Bowditch [Bow, Theorem 9.4]). Nous
pouvons ainsi construire deux bords à l’infini B2XpAq et B2pFn,Aq naturellement associés
à A. Dans cette thèse, nous préférons travailler avec B2pFn,Apφqq puisqu’il a l’avantage
d’être un ouvert de B2Fn alors qu’il n’existe pas, à notre connaissance, de plongement
topologique naturel de B2XpAq dans B2Fn.

Soit A un système de sous-groupes malnormal de Fn. Nous définissons les courants
de Fn relativement à A comme étant les mesures de Radon positives ou nulles Fn-
invariantes sur le double bord relatif B2pFn,Aq. L’ensemble CurrpFn,Aq des courants de
Fn relativement à A est muni de la topologie faible-étoile. C’est un espace métrisable
et l’espace quotient PCurrpFn,Aq des courants projectifs est compact et métrisable.
Soit OutpFn,Aq le sous-groupe de OutpFnq préservant A. Alors OutpFn,Aq agit sur
CurrpFn,Aq et PCurrpFn,Aq par homéomorphismes par précomposition.

Notons que, lorsque A est un système de facteurs libres, les courants de Fn relative-
ment à des systèmes de facteurs libres avaient déjà été étudiés par Gupta [Gup1, Gup2]
et par Guirardel et Horbez [GuH1] dans le cadre plus général des produits libres de
groupes de type fini. Mentionnons par ailleurs que Guirardel et Horbez ont démontré
que le résultat d’accouplement décrit précédemment pour CurrpFnq et CVn n’est plus
valable si l’on remplace CurrpFnq par CurrpFn,Aq et cvn par OpFn,Aq où A est un
système de facteurs libres.

Soit g P Fn un élément A-non-périphérique, c’est-à-dire tel qu’il n’existe pas de sous-
groupe A de Fn tel que rAs P A et g P A. Alors le courant ηrgs P CurrpFnq induit par
restriction un courant non nul dans CurrpFn,Aq, que nous notons encore ηrgs. Nous
montrons le résultat suivant.

Théorème 1.4.2 (Proposition 5.4.1). Soit n ¥ 3 et soit A un système de sous-groupes
malnormal de Fn. Soit NPpAq l’ensemble des éléments A-non-périphériques de Fn. Alors
l’ensemble trηrgssugPNPpAq est dense dans PCurrpFn,Aq.

Ainsi, lorsque φ P OutpFnq et A � Apφq, le théorème 1.4.2 implique que l’ensemble
des courants relatifs projectifs associés à des éléments à croissance exponentielle par
itération de φ est dense dans PCurrpFn,Apφqq. Cette propriété facilite la compréhension
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des propriétés dynamiques de l’action de φ sur PCurrpFn,Apφqq. En effet, la densité de
l’ensemble trηrgssugPNPpAq dans PCurrpFn,Aq est un argument important dans la démon-
stration du théorème suivant.

Théorème 1.4.3 (Theorem 6.5.1). Soit n ¥ 3 et soit φ P OutpFnq un élement tel que
Polypφq � Fn. Alors φ agit avec une dynamique Nord-Sud sur PCurrpFn,Apφqq.

La démonstration du théorème 1.4.3 repose également sur l’utilisation de représen-
tants topologiques adaptés des éléments de OutpFnq appelés réseaux ferroviaires com-
plètement scindés. Ces réseaux ferroviaires ont été introduits par Feighn et Handel [FH],
généralisant des réseaux ferroviaires introduits par Bestvina et Handel [BH] (voir égale-
ment [BFH1]). Ils permettent de contrôler efficacement les problèmes de croissance
lorsque l’on itère un automorphisme extérieur et sont, de ce fait, bien adaptés aux ques-
tions étudiées.

Nous pouvons maintenant esquisser la démonstration du théorème 1.3.1. Soit H un
sous-groupe de OutpFnq. Un argument de récurrence montre que, pour tout facteur
libre propre (possiblement trivial) maximal A de Fn dont la classe de conjugaison est
H-invariante, on peut trouver un élément φA P H tel que PolypφAq X A � PolypHq X
A. Soit H|A l’image de H dans OutpAq et soit ΦA P φA tel que ΦApAq � A. Le
théorème 1.4.3 montre alors que l’élément rΦA|As P OutpAq agit avec une dynamique
Nord-Sud sur PCurrpA,AprΦA|Asqq. Par hypothèse de récurrence, le groupe H|A agit
également par homéomorphismes sur PCurrpA,AprΦA|Asqq et sur PCurrpFn,AprΦA|Asqq.
Un argument de tennis de table faisant intervenir les espaces PCurrpA,AprΦA|Asqq et
PCurrpFn,AprΦA|Asqq permet alors de construire un automorphisme extérieur ψ P H tel
que Polypψq � PolypHq.

Nous résumons le lien entre l’existence d’éléments génériques et l’action sur un espace
de courants relatifs dans le théorème suivant. Si H est un sous-groupe de OutpFnq et X
un sous-ensemble de CurrpFn,ApHqq, nous noterons VectpXq l’espace vectoriel engendré
par X. Nous noterons également

p : CurrpFn,ApHqq � t0u Ñ PCurrpFn,ApHqq

la projection canonique.

Théorème 1.4.4. Soit n ¥ 2, soit H un sous-groupe de OutpFnq et soit φ P H. L’élément
φ est dynamiquement générique si, et seulement si, φ agit avec une dynamique Nord-Sud
sur PCurrpFn,ApHqq, tel que Vectpp�1p∆�pφqqYp

�1p∆�pφqqq soit de dimension finie et
tel que l’action de φ sur Vectpp�1p∆�pφqqY p

�1p∆�pφqqq soit diagonalisable sans valeur
propre égale à 1.

Démonstration. Si φ P H est un élément dynamiquement générique, alors il agit avec
une dynamique Nord-Sud sur PCurrpFn,ApHqq � PCurrpFn,Apφqq par le théorème 1.4.3.
Par le lemme 6.4.7, l’espace vectoriel Vectpp�1p∆�pφqq Y p�1p∆�pφqqq est de dimension
finie. De plus, par la proposition 6.4.12, l’action de φ sur Vectpp�1p∆�pφqqYp

�1p∆�pφqqq
est diagonalisable sans valeur propre égale à 1.
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Réciproquement, supposons que φ P H ne soit pas dynamiquement générique et qu’il
agisse avec une dynamique Nord-Sud sur PCurrpFn,ApHqq, tel que l’espace vectoriel
Vectpp�1p∆�pφqq Y p�1p∆�pφqqq soit de dimension finie et tel que l’action de φ sur
Vectpp�1p∆�pφqq Y p�1p∆�pφqqq soit diagonalisable. Montrons que l’une des valeurs
propres de l’action de φ sur Vectpp�1p∆�pφqq Y p�1p∆�pφqqq est égale à 1. Pour cela,
nous allons tout d’abord montrer que ∆�pφq Y ∆�pφq contient l’ensemble des courants
associés aux éléments g P Polypφq � PolypHq. Soit g P Polypφq � PolypHq tel que
ηrgs R ∆�pφq Y ∆�pφq. Soit f : G Ñ G un réseau ferroviaire complètement scindé de φ
(voir Proposition 6.2.5) et soit ‖.‖ : CurrpFn,ApHqq Ñ R la fonction longueur simpliciale
associée à G (voir Section 6.2.4). Si w P Fn, alors

‖ηrws‖ � `pγwq,

où `pγwq est la longueur dans G du cycle γw de G associé à la classe de conjugaison de
w. Soit N tel que le chemin réduit rfN pγwqs associé à fN pγwq soit complètement scindé
et tel que, pour toute unité de scindement σ de G, nous ayons `prfN pσqsq ¥ σ. Ainsi,
pour tout n ¥ N , nous avons

`prfNpn�1qpγwqsq ¥ `prfnN pγwqsq.

De ce fait, quitte à remplacer γw par rfN pγwqs et φ par φN , nous pouvons supposer que,
pour tout n P N, nous avons

‖ηφn�1prgsq‖ ¥ ‖ηφnprgsq‖.

Puisque φ agit avec une dynamique Nord-Sud sur PCurrpFn,ApHqq, en utilisant par
exemple [Kap, Lemma 3.5] il existe rµ�s P ∆�pφq tel que

lim
nÑ8

ηrφnpgqs

‖ηφnprgsq‖
� µ�.

La classe d’homothétie de µ� étant invariante par φ, il existe λ ¡ 0 tel que φpµ�q � λµ�.
Soit B un borélien de B2pFn,ApHqq tel que µ�pBBq � 0 et µ�pBq ¡ 0. Nous avons donc

lim
nÑ8

ηrφnpgqs

‖ηφnprgsq‖
pBq � µ�pBq

et

lim
nÑ8

φpηrφnpgqsq

‖ηφnprgsq‖
pBq � lim

nÑ8

ηrφn�1pgqs

‖ηφnprgsq‖
pBq � λµ�pBq.

Ainsi, nous avons

lim
nÑ8

ηφnprgsqpBq

ηφn�1prgsqpBq
� λ.

Comme
lim
nÑ8

ηrφnpgqs

‖ηφnprgsq‖
pBq � lim

nÑ8

ηrφn�1pgqs

‖ηφn�1prgsq‖
pBq � µ�pBq,
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nous avons :

lim
nÑ8

‖ηφn�1prgsq‖
‖ηφnprgsq‖

� λ.

La suite t‖ηφnprgsq‖unPN étant croissante, nous avons λ ¥ 1. Puisque g P Polypφq, la suite
t‖ηφnprgsq‖unPN crôıt au plus à vitesse polynomiale. De ce fait, nous avons λ � 1.

De même, soit rµ�s P ∆�pφq un courant projectif limite de trφ�nprηgsqunPN. Alors µ�
est également fixé par φ et donc, pour tout t P r0, 1s, le courant projectif rtµ��p1�tqµ�s
est fixé par φ. Puisque φ agit avec une dynamique Nord-Sud, pour tout t P r0, 1s, nous
avons rtµ� � p1� tqµ�s P ∆�pφq Y∆�pφq. Or, nous avons µ� P ∆�pφq et µ� P ∆�pφq.
Ceci contredit le fait que ∆�pφq et ∆�pφq soient deux compacts disjoints.

Ainsi, l’espace vectoriel de dimension finie Vectp∆�pφqY∆�pφqq contient l’ensemble
X des courants associés aux éléments g P Polypφq � PolypHq. Puisque X est invariant
par φ et que l’action de φ sur Vectpp�1p∆�pφqq Y p�1p∆�pφqqq est diagonalisable, il
existe g P Polypφq � PolypHq et λ ¡ 0 tel que φpηrgsq � ηφprgsq � ληrgs. Puisque g est
à croissance polynomiale sous itération de φ, nous avons nécessairement λ � 1, ce qui
conclut.

1.5 Comparaison entre OutpFnq et OutpWnq

Nous terminons cette introduction par une section comparative (qui n’est pas reprise
dans les chapitres 2 à 7) entre les deux groupes d’intérêt de cette thèse que sont OutpFnq
et OutpWnq. Il existe tout d’abord un morphisme canonique de AutpWnq vers AutpFn�1q.
Soit x1, . . . , xn une partie génératrice standard de Wn et soit Φ: Wn Ñ Z{2Z le mor-
phisme qui, pour tout i P t1, . . . , ku, envoie xi sur l’élément non trivial de Z{2Z. Par des
résultats de Mühlherr [Müh], le noyau Bn � kerpΦq de ce morphisme est un sous-groupe
caractéristique de Wn isomorphe à un groupe libre non abélien de rang n� 1, engendré
par x1x2, x2x3, . . . , xn�1xn. Par ailleurs, le morphisme induit AutpWnq Ñ AutpFn�1q
est injectif et c’est un isomorphisme lorsque n � 3. Le groupe InnpWnq est envoyé sur
un sous-groupe de InnpFn�1q� xry où r est l’automorphisme de Fn�1 qui, pour une base
fixée e1, . . . , en�1 de Fn�1 associe, pour tout i P t1, . . . , n � 1u, l’élément ei à l’élément
e�1
i (voir par exemple [Hea, Lemma 2.6]). Le groupe OutpWnq s’injecte alors dans le

groupe OutpFn�1q{ xxryy ([Hea, Lemma 2.7]).
Ces relations algébriques entre OutpWnq et OutpFn�1q ont également une traduction

en termes géométriques sur leurs Outre-espaces associés. Il existe en effet un plongement
OutpBnq-équivariant KpWnq ãÑ KpFn�1q que nous décrivons maintenant. Soit X un
sommet de KpWnq et soit X un représentant de X . Puisque les stabilisateurs de X pour
l’action de Wn sont finis, le groupe Bn agit librement sur X. La restriction de l’action
sur X à Bn reste minimale et définit alors un morphisme OutpBnq-équivariant KpWnq Ñ
KpFn�1q. Ce morphisme est injectif puisque Bn est un sous-groupe d’indice fini de Wn,
donc détermine entièrement l’action de Wn sur un arbre X. Nous pouvons ainsi voir
KpWnq comme un sous-graphe de KpFn�1q. Le plongement KpWnq ãÑ KpFn�1q n’est
en général pas surjectif, excepté dans le cas où n � 3 ([Gue2, Proposition 2.6]).
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Ces relations algébriques et géométriques entre les groupes OutpWnq et OutpFn�1q
justifient l’intuition que les groupes OutpWnq et OutpFn�1q partagent de nombreuses
propriétés de rigidité algébrique et géométrique, comme nous l’avons évoqué dans les
premières sections de cette introduction. Les résultats de rigidité de OutpWnq ne se
déduisent cependant pas de celles de OutpFn�1q. Par exemple, il n’existe pas de manière
naturelle d’associer à un automorphisme de OutpWnq un automorphisme de OutpFnq. De
ce fait le théorème 1.1.3 ne se déduit pas du résultat similaire pour OutpFnq. De même,
les techniques utilisées pour démontrer des résultats de rigidité pour OutpFnq reposent en
général sur l’existence d’extensions HNN, c’est-à-dire de morphismes surjectif Fn Ñ Z,
alors qu’il n’en existe pas pour le groupe Wn.

Par ailleurs, certaines des propriétés de rigidité de OutpFnq ne sont pas connues
pour OutpWnq. Par exemple, OutpFnq vérifie une propriété de rigidité pour l’équivalence
mesurée. Deux groupes dénombrables Γ1 et Γ2 sont mesurablement équivalents s’il existe
un espace mesuré standard pΣ, µq muni d’une action de Γ1 � Γ2 par automorphismes
boréliens préservant la mesure et tel que, pour tout i P t1, 2u, le groupe Γi agit librement
sur Σ et il existe un borélien Bi de mesure finie tel que l’union des translatés de Bi par
Γi recouvrent Σ et tel que l’intersection de deux translatés distincts de Bi par Γi soit de
mesure nulle. La notion d’équivalence mesurée a été introduite par Gromov [Gro2] et
est un équivalent mesurable à la notion de quasi-isométries entre groupes de type fini.
Guirardel et Horbez [GuH3] ont démontré que, pour n ¥ 3, tout groupeGmesurablement
équivalent à OutpFnq est virtuellement isomorphe à OutpFnq : il existe des sous-groupes
d’indice fini G1 de G et G2 de OutpFnq et des sous-groupes distingués finis N1 de G1

et N2 de G2 tels que les groupes G1{N1 et G2{N2 soient isomorphes. De tels résultats
de rigidité étaient déjà connus dans le cas de réseaux dans des groupes de Lie simples
de rang supérieur par Furman [Furm] et dans le cas du groupe modulaire d’une surface
fermée, connexe, orientable de genre au moins 2 par Kida [Kid].

Question. Le groupe OutpWnq vérifie-t-il une propriété de rigidité pour l’équivalence
mesurée pour n ¥ 4 ?

Les groupes OutpFnq et OutpWnq diffèrent cependant significativement sur certaines
propriétés. Par exemple, Varghese [Var] a démontré que le groupe OutpWnq n’a pas
la propriété pT q de Kazhdan pour n ¥ 2, alors que Kaluba, Kielak et Nowak [KaKN]
ont montré que le groupe OutpFnq a la propriété pT q pour n ¥ 5 (voir également les
travaux de Kaluba, Nowak et Ozawa [KNO] pour le cas n � 5) et étendu à n � 4 par
Nitsche [Nit].

Nous terminons cette introduction par une analyse, dans le cas de OutpWnq, des
questions de croissance dans le groupe comme étudiées dans les sections 1.3 et 1.4 de
cette introduction pour OutpFnq. Tout comme dans le cas de OutpFnq, la croissance
d’éléments de Wn sous itération d’éléments de OutpWnq est toujours soit exponentielle
soit polynomiale. Un exemple d’automorphisme φ P OutpWnq tel que Polypφq �Wn est
le suivant (nous remercions Nicholas Touikan pour l’avoir porté à notre connaissance).
Soit W4 � xa, b, c, dy, soit Φ l’automorphisme envoyant a sur a, b sur aba, c sur bcb et d
sur cdc et soit φ la classe d’automorphismes extérieurs de Φ. Alors ac est à croissance
linéaire sous itération de φ et ad est à croissance quadratique sous itération de φ.
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Notons qu’il existe un ordre partiel des systèmes de facteurs libres d’un groupe G,
où F1 ¤ F2 si pour tout sous-groupe A de G tel que rAs P F1, il existe un sous-
groupe B de G contenant A tel que rBs P F2. De tels suites de systèmes de facteurs
libres sont particulièrement adaptées à l’étude des sous-groupes H P OutpFnq tels que
Polypφq � Fn. En effet, soit H un tel sous-groupe, que l’on suppose de type fini. En
utilisant le théorème de Kolchin pour OutpFnq [BFH3], on montre qu’il existe un graphe
G1, de groupe fondamental isomorphe à Fn, contenant exactement k arêtes e1, . . . , ek tel
que, pour tout φ P H, il existe une équivalence d’homotopie f : G1 Ñ G1 représentant
φ telle que, pour tout i P t1, . . . , ku, l’application f préserve le sous-graphe Hi de G1

constitué des arêtes e1, . . . , ei. Les sous-graphes Hi induisent alors une suite

F1 ¤ . . . ¤ Fk � trFnsu

de systèmes de facteurs libres de Fn invariante par H. Les décompositions en systèmes
de facteurs libres sont également particulièrement adaptées à l’étude des sous-groupes
H de OutpWnq tels que Polypφq �Wn, comme le montre le résultat suivant. Rappelons
qu’une suite F1 ¤ F2 de systèmes de facteurs libres de Wn est sporadique s’il existe deux
sous-groupes A,B de Wn tels que rAs, rBs P F1 et F2 � pF1 � trAs, rBsuq Y trA �Bsu.

Proposition 1.5.1. Soit n ¥ 1 et soit H � OutpWnq un sous-groupe de type fini tel
que PolypHq � Wn. Il existe un sous-groupe d’indice fini H 1 de H ainsi qu’une suite
F1 ¤ . . . ¤ Fk � trWnsu de systèmes de facteurs libres de Wn H

1-invariante tels que,
pour tout i P t1, . . . , ku, l’extension Fi ¤ Fi�1 soit sporadique.

Démonstration. Nous démontrons le résultat par récurrence sur n. Lorsque n � 1, le
résultat est immédiat car OutpW1q � t1u. Soit n ¥ 2 et soit F un système de facteurs
libres de Wn propre, H-périodique et maximal. Quitte à passer à un sous-groupe d’indice
fini de H, nous pouvons supposer que F est H-invariant. Supposons par l’absurde que
F ne soit pas sporadique. Alors, par [GuH2, Theorem 7.1], le sous-groupe H contient un
élément φ P H complètement irréductible relativement à F . Par [GuH2, Theorem 4.1],
l’élément φ est un élément loxodromique du graphe (hyperbolique au sens de Gromov par
un résultat de Guirardel et Horbez [GuH2, Proposition 2.11] car F n’est pas sporadique)
FFpWn,Fq des facteurs libres de Wn relativement à F . Donc φ fixe un point au bord
à l’infini de FFpWn,Fq. Par [GuH2, Theorem 3.4], φ fixe la classe d’homothétie Wn-
équivariante d’un arbre réel T non trivial muni d’une action minimale de Wn dans le bord
de l’Outre-espace OpWn,Fq de Wn relativement à F . De ce fait, il existe une homothétie
I : T Ñ T telle que pour tous les x P T et g P Fn, nous ayons Ipgxq � ΦpgqIpxq. Par
ailleurs, puisque φ est complètement irréductible, le coefficient de dilatation λ de I est
différent de 1 ([GuH2, Corollary 6.7]). Pour tout g P Wn, soit `T pgq � infxPT dpx, gxq.
Cette borne inférieure est atteinte pour un certain xg P T . Alors, pour tout k P N�, nous
avons λk`T pgq � `T pΦ

kpgqq et ce dernier terme est borné par un polynôme en la variable k
puisque Polypφq �Wn par des résultats de Culler et Morgan [CM, Propositions 1.5,1.8].
Donc pour tout g P Wn, nous avons `T pgq � 0 et g fixe un point de T . Puisque Wn est
de type fini, il fixe un point de T (voir par exemple [CM, Section 3]). Ceci contredit la
non trivialité de l’action.
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Donc il existe k P N�, des sous-groupes A et B de Wn tel que F � trWks, rWn�ksu
avec A isomorphe à Wk et B isomorphe à Wn�k. Nous avons ainsi deux morphismes
H Ñ OutpAq et H Ñ OutpBq et l’hypothèse de récurrence appliquée aux images de ces
morphismes permet de conclure.

La proposition 1.5.1 indique que les techniques d’étude de la croissance polynomiale
de OutpWnq peuvent se rapprocher de celles utilisées pour étudier la croissance polyno-
miale de OutpFnq. Nous pouvons par ailleurs imaginer que ces questions de croissance
aient un impact sur le calcul de la fonction de Dehn de OutpWnq. En effet, Bridson et
Vogtmann [BV3] ont démontré que la fonction de Dehn du groupe OutpFnq était équiva-
lente à une fonction exponentielle. La démonstration exploite l’existence de sous-groupes
H de OutpFnq qui sont des sous-groupes de Kolchin, c’est-à-dire tels que PolypHq � Fn.
La question naturelle à se poser est alors la suivante.

Question. La fonction de Dehn de OutpWnq est-elle exponentielle ?

Nous présentons à présent la structure du manuscrit. Les chapitres 2, 3 et 4 concer-
nent les résultats de rigidité dans OutpWnq. Nous présentons dans le deuxième chapitre
la démonstration du théorème 1.1.3 concernant les automorphismes de OutpWnq. Il cor-
respond à l’article [Gue1]. Le troisième chapitre est consacré à la rigidité géométrique de
OutpWnq et la construction de différents modèles géométriques rigides pour OutpWnq,
il correspond à l’article [Gue2]. Enfin dans le quatrième chapitre, nous démontrons
le théorème 1.2.2 et le corollaire 1.2.3 sur la rigidité du commensurateur abstrait de
OutpWnq. Il correspond à l’article [Gue3].

Nous consacrons les trois derniers chapitres aux résultats sur la croissance dans
OutpFnq et les courants relatifs. Le chapitre 5 est dédié à la construction des courants
relatifs à un système de sous-groupes malnormal et la démonstration du théorème 1.4.2.
Il correspond à l’article [Gue4]. Dans le chapitre 6, nous démontrons les résultats de
dynamique Nord-Sud sur les courants relatifs et le théorème 1.4.3. Il correspond à
l’article [Gue5]. Enfin, dans le dernier chapitre, correspondant à l’article [Gue6], nous
terminons par la démonstration du théorème 1.3.1, et nous en donnons quelques appli-
cations.
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Chapitre 2

Automorphismes du groupe des
automorphismes d’un groupe de
Coxeter universel

2.1 Introduction

Soit n un entier plus grand que 2. On note F � Z{2Z le groupe cyclique d’ordre 2 et
Wn � �n F le groupe de Coxeter universel de rang n, produit libre de n copies de F .
Si G est un groupe, on note OutpGq � AutpGq{IntpGq son groupe d’automorphismes
extérieurs. Nous démontrons dans cet article les résultats suivants.

Théorème 2.1.1. Si n ¥ 5, alors Out pOut pWnqq � t1u. Si n � 4, alors OutpOutpWnqq
est isomorphe à Z{2Z.

Théorème 2.1.2. Si n ¥ 4, alors OutpAutpWnqq � t1u.

De tels résultats sont déjà connus dans le cas où n � 2 (cf. [Tho, Lemma 1.4.2,
Lemma 1.4.3]) où tous les automorphismes de OutpW2q sont intérieurs et où OutpAutpW2qq
est un groupe cyclique d’ordre 2. Dans le cas où n � 3, les groupes AutpW3q et OutpW3q
sont isomorphes à AutpFF2q et PGLp2,Zq respectivement, avec FF2 un groupe libre de
rang 2 (cf. [Var, Lemma 2.3]). Nous obtenons donc une description de OutpOutpWnqq
pour tout entier n plus grand que 2.

De telles questions de rigidité algébrique ont déjà été résolues dans des cas similaires.
En effet, Mostow [Mos2] a démontré que le groupe des automorphismes extérieurs de
réseaux irréductibles uniformes de groupes de Lie réels, connexes, semi-simples et non
localement isomorphes à SL2pRq est fini. De même, Ivanov [Iva2, Theorem 2] a démontré
un résultat similaire dans le cas du groupe modulaire d’une surface compacte, connexe,
orientable de genre g ¥ 2. Enfin, Bridson et Vogtmann [BV1] ont démontré que tout
automorphisme du groupe des automorphismes extérieurs d’un groupe libre de rang N
(avecN ¥ 3) est une conjugaison. Ce dernier cas a motivé l’étude de la rigidité algébrique



de OutpWnq d’une part à cause de la propriété d’universalité pour les groupes engendrés
par des éléments d’ordre 2 de Wn, d’autre part car, si n ¥ 3, le groupe AutpWnq s’injecte
dans AutpFn�1q (cf. [Müh, Theorem A]).

Pour démontrer les théorèmes 2.1.1 et 2.1.2, nous étudions l’action de Wn sur un
complexe simplicial de drapeaux introduit par Guirardel et Levitt. Plus précisément,
nous cherchons à comprendre les stabilisateurs de certains sommets de ce complexe. En
effet, les stabilisateurs de ces sommets formant une partie génératrice de AutpWnq et
OutpWnq, comprendre l’image de ces stabilisateurs par des automorphismes de AutpWnq
et OutpWnq nous permettra de faciliter l’étude de ces derniers. L’étude de l’action de
Wn sur un complexe simplicial se justifie également par la démonstration des théorèmes
similaires dans les cas des réseaux des groupes de Lie semi-simples, du groupe modulaire
d’une surface de type fini et du groupe des automorphismes d’un groupe libre qui passait
également par l’étude de l’action du groupe étudié sur un espace géométrique adapté.
En particulier, dans le cas du groupe des automorphismes extérieurs d’un groupe libre
de rang N , cet objet géométrique était l’outre-espace de Culler-Vogtmann CVN , qui fut
introduit par Culler et Vogtmann dans [CV].

Dans le cas de Wn, Guirardel et Levitt [GuL1] ont introduit un espace topologique
analogue à l’outre-espace de Culler et Vogtmann, appelé l’outre-espace d’un produit li-
bre. Dans le cas d’un produit libre de copies de F , cet espace sera noté POpWnq. Ce
dernier est défini comme un ensemble de classes d’homothétie de graphes de groupes
métriques marqués de groupe fondamental isomorphe à Wn. Muni de la topologie dite
faible, l’espace POpWnq se rétracte par déformation forte sur un complexe simplicial
de drapeaux, appelé l’épine de POpWnq. Le groupe OutpWnq agit naturellement sur
POpWnq et sur son épine par précomposition du marquage. Le groupe AutpWnq agit
quant à lui sur l’autre espace de Wn, noté PApWnq. Nous renvoyons à la partie 2 pour
des précisions.

La démonstration du théorème 2.1.1 est inspirée de celle de Bridson et Vogtmann
dans le cas d’un groupe libre [BV1], mais des complications structurelles apparaissent.
Nous présentons la démonstration dans le cas de OutpWnq, le cas de AutpWnq étant
similaire. Son plan, très simplifié, est le suivant. L’épine de l’outre-espace POpWnq
contient, à la différence de celle de l’outre-espace de Culler-Vogtmann qui n’en contient
qu’un, deux types de sommets distingués, à savoir les t0u-étoiles et les F -étoiles, voir la
partie 2 et la figure 2.1.

Nous étudions tout d’abord les stabilisateurs des t0u-étoiles et des F -étoiles sous
l’action de OutpWnq. Nous montrons dans la partie 3 que les sous-groupes de OutpWnq
isomorphes à Sn sont les stabilisateurs de t0u-étoiles et les sous-groupes de OutpWnq
isomorphes au produit semi-direct Fn�2 �Sn�1 sont les stabilisateurs de F -étoiles. Ces
derniers représentent un cas nouveau en comparaison de la preuve de [BV1] dans le cas
d’un groupe libre. De ce fait, tout automorphisme α de OutpWnq préserve l’ensemble
des stabilisateurs de t0u-étoiles et l’ensemble des stabilisateurs de F -étoiles. Fixons
α P AutpOutpWnqq. Le groupe OutpWnq agissant transitivement sur l’ensemble des t0u-
étoiles, nous pouvons supposer que α induit un automorphisme du stabilisateur d’une
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Figure 2.1: Exemples de graphes de groupes dont les classes d’équivalence sont
respectivement une t0u-étoile et une F -étoile (cas n � 6). Les arêtes ont des groupes
associés triviaux. L’ensemble tx1, . . . , x6u est une partie génératrice standard de W6.

t0u-étoile X . Les stabilisateurs de t0u-étoiles étant isomorphes à Sn, si n ¥ 5 et n � 6,
nous pouvons supposer que la restriction de α au stabilisateur de X est égale à l’identité.
Nous montrons alors qu’un tel α préserve le stabilisateur d’une F -étoile Y adjacente à X ,
et que la restriction de α au stabilisateur de Y est en fait l’identité. Le groupe OutpWnq
étant engendré par l’union des stabilisateurs d’une t0u-étoile et d’une F -étoile adjacente,
ceci conclut la démonstration si n ¥ 5. Le cas n � 4, qui présente un automorphisme
extérieur exceptionnel, est traité dans la partie 4.

Remerciements. Je remercie chaleureusement mes directeurs de thèse, Camille Horbez et

Frédéric Paulin, pour leurs précieux conseils et pour leur lecture attentive des différentes versions

du présent article.

2.2 Préliminaires

Nous rappelons tout d’abord la définition de l’outre-espace PO pWnq introduit par Guirar-
del et Levitt dans [GuL1]. Un point de POpWnq est une classe d’homothétie de graphes
de groupes métriques X de groupe fondamental Wn munis d’un isomorphisme de groupes
appelé marquage ρ : Wn Ñ π1pXq (pour un choix indifférent de point base) vérifiant :

(1) le graphe sous-jacent à X est un arbre fini ;

(2) tous les groupes d’arêtes sont triviaux ;

(3) il y a exactement n sommets de groupes associés isomorphes à F ;

(4) tous les autres sommets ont un groupe associé trivial ;

(5) toute feuille de l’arbre sous-jacent a un groupe associé non trivial ;

(6) si v est un sommet de groupe associé trivial, alors degpvq ¥ 3.

Deux graphes métriques marqués pX, ρq et pX 1, ρ1q sont dans la même classe d’homothétie
s’il existe une homothétie f : X Ñ X 1 (i.e. un homéomorphisme multipliant toutes les
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longueurs des arêtes par un même scalaire strictement positif) telle que f� � ρ � ρ1. On
note rX, ρs la classe d’homothétie d’un tel graphe de groupes métrique marqué pX, ρq. Si
le marquage est sous-entendu, on notera X la classe d’homothétie. Le groupe AutpWnq
agit par précomposition du marquage. Étant donné que pour tout α P InnpWnq, et pour
tout X P POpWnq, nous avons αpX q � X , l’action de AutpWnq sur POpWnq induit une
action de OutpWnq sur POpWnq.

La définition de l’autre espace de Wn, noté PApWnq, est identique à celle de POpWnq
à ceci près que chaque graphe de groupes métrique considéré est muni d’un point base v.
Le marquage est alors un isomorphisme de groupes ρ : Wn Ñ π1pX, vq. Les homothéties
considérées préservent les points bases. Le groupe AutpWnq agit par précomposition du
marquage.

L’ensemble POpWnq (resp. PApWnq) est muni d’une topologie. Pour tout élément
rX, ρs P POpWnq, soit pX, ρq un représentant de cette classe d’équivalence tel que la
somme des longueurs des arêtes du graphe sous-jacent soit égale à 1. Le graphe de
groupes pX, ρq définit alors un simplexe ouvert obtenu en faisant varier les longueurs des
arêtes du graphe sous-jacent à pX, ρq, de manière à ce que la somme des longueurs des
arêtes soit toujours égale à 1. Une classe d’équivalence rX 1, ρ1s P POpWnq définit une
face de codimension 1 du simplexe associé à pX, ρq si l’on peut obtenir pX 1, ρ1q à partir de
pX, ρq en écrasant une arête du graphe sous-jacent à X. La topologie faible sur POpWnq
est alors définie de la manière suivante : un ensemble est ouvert si, et seulement si, son
intersection avec chaque simplexe ouvert est ouverte.

Nous rappelons à présent la définition d’un rétract par déformation forte OutpWnq-
équivariant de POpWnq, appelé l’épine de l’outre-espace. L’épine de POpWnq est le
complexe simplicial de drapeaux dont les sommets sont les simplexes ouverts associés
à chaque classe d’équivalence rX, ρs, et où deux sommets correspondant à des classes
d’équivalence de graphes de groupes marqués rX, ρs et rX 1, ρ1s sont reliés par une arête
si rX, ρs définit une face du simplexe associé à rX 1, ρ1s ou réciproquement. L’épine de
PApWnq est définie de manière similaire. Il existe un plongement de l’épine de POpWnq
dans POpWnq ayant pour image l’épine barycentrique de POpWnq. Par la suite, nous
identifierons l’épine de POpWnq avec son image par ce plongement. De même, il existe un
plongement de l’épine de PApWnq dans PApWnq ayant pour image l’épine barycentrique
de PApWnq.

Si X est un graphe de groupes, on note AutgrpXq le groupe des automorphismes du
graphe sous-jacent à X. Si X est un graphe de groupes pointé, la notation AutgrpXq
désigne le groupe des automorphismes du graphe pointé sous-jacent à X. Nous ap-
pellerons t0u-étoile la classe d’équivalence dans POpWnq d’un graphe de groupes marqué
dont le graphe sous-jacent est un arbre ayant n feuilles et n� 1 sommets et de longueur
d’arêtes constante. Nous appellerons F -étoile la classe d’équivalence dans POpWnq d’un
graphe de groupes marqué dont le graphe sous-jacent est un arbre ayant n� 1 feuilles et
n sommets et de longueur d’arêtes constante. Les sommets correspondants dans l’épine
de POpWnq sont encore appelés t0u-étoiles et F -étoiles. Dans le cas de PApWnq, les
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définitions des t0u-étoiles et des F -étoiles sont identiques à ceci près que l’on suppose
également que le point base est le centre (l’unique sommet qui n’est pas une feuille) du
graphe.

On fixe désormais une partie génératrice standard tx1, . . . , xnu de Wn.
Le groupe Aut pWnq (et donc Out pWnq) est de type fini. Nous décrivons main-

tenant une partie génératrice finie. Pour tout i P t1, . . . , n � 1u, on note τi : Wn Ñ Wn

l’automorphisme envoyant xi sur xi�1, xi�1 sur xi et qui fixe tous les autres générateurs.
Pour tous les i, j P t1, . . . , nu tels que i � j, on note σi,j : Wn Ñ Wn l’automorphisme
qui envoie xi sur xjxixj et qui fixe tous les autres générateurs. La proposition suivante
est due à Mühlherr.

Proposition 2.2.1. [Müh, Theorem B] Le groupe AutpWnq est engendré par τ1, . . . , τn�1

et par σ1,2.

Si α est un élément de AutpWnq, sa classe d’automorphismes extérieurs sera notée rαs.
Soit p : AutpWnq Ñ OutpWnq la projection canonique. On note rAn � xτ1, . . . , τn�1y et
An � pp rAnq. Les groupes rAn et An sont isomorphes au groupe symétrique Sn. On noterUn � xτ1, . . . , τn�2, σ1,ny et Un � pprUnq. On voit que rUn est isomorphe au produit semi-
direct Fn�1 � Sn�1, alors que Un est isomorphe au produit semi-direct Fn�2 � Sn�1,
où Sn�1 agit dans les deux cas par permutation des facteurs, en considérant Fn�2

comme le quotient de Fn�1 par le sous-groupe F diagonal. Soient rBn � xτ1, . . . , τn�2y
et Bn � pp rBnq. Les groupes rBn et Bn sont isomorphes à Sn�1.

Nous traitons à présent le cas où n � 3. Soit ε : W3 Ñ Z{2Z le morphisme envoyant,
pour tout i P t1, 2, 3u, l’élément xi sur 1. Mühlherr ([Müh, Theorem A]) a montré
que kerpεq est un sous-groupe caractéristique de W3. De plus, kerpεq est un groupe
libre à 2 générateurs, librement engendré par x1x2 et x2x3. Ceci induit un morphisme
ρ : AutpW3q Ñ AutpFF2q, qui est en fait un isomorphisme (c.f. [Var, Lemma 2.3]).

Proposition 2.2.2. Le morphisme ρ : AutpW3q Ñ AutpFF2q induit un isomorphisme entre
OutpW3q et PGLp2,Zq.

Démonstration. Soient a et b les générateurs de FF2. On remarque tout d’abord que
IntpFF2q � ρpIntpW3qq. Donc le noyau du morphisme surjectif AutpW3q Ñ OutpFF2q est
inclus dans IntpW3q. Pour tout i P t1, 2, 3u, soit adxi P AutpW3q la conjugaison globale
par xi. Un calcul immédiat montre que, pour tout i P t1, 2, 3u, ρpadxiq est dans la classe
d’automorphisme extérieur du morphisme ι : FF2 Ñ FF2 envoyant a sur a�1 et b sur
b�1. De ce fait, puisque le sous-groupe xrιsy est distingué dans OutpFF2q, le morphisme
ρ induit un isomorphisme entre OutpW3q et OutpFF2q{ xrιsy. Comme ι est envoyé par
le morphisme d’abélianisation sur �Id P GLp2,Zq, on voit que OutpW3q est isomorphe à
PGLp2,Zq.

Nous allons démontrer les théorèmes 2.1.1 et 2.1.2 en étudiant les stabilisateurs des
t0u-étoiles et des F -étoiles sous l’action de OutpWnq et AutpWnq. Pour cela, nous utilis-
erons les résultats suivants, dus respectivement à Hensel et Kielak et à Guirardel et
Levitt, qui donnent des informations sur les points fixes de sous-groupes de OutpWnq.
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Proposition 2.2.3. [HK, Corollary 6.1.] Soient n ¥ 1 un entier et H un sous-groupe fini
de OutpWnq. Alors H fixe un point de POpWnq.

Corollaire 2.2.4. Soient n ¥ 1 un entier et H un sous-groupe fini de AutpWnq. Alors H
fixe un point de PApWnq.

Démonstration. Soit p : AutpWnq Ñ OutpWnq la projection canonique. Alors ppHq est
un sous-groupe fini de OutpWnq, donc par la proposition 2.2.3, ppHq fixe un point X de
l’outre-espace. Soient X un représentant de X et X son graphe sous-jacent. Comme tout
automorphisme intérieur agit sur X, et que ppHq agit également sur X, on en déduit
que H agit sur X. Étant donné que H est fini et que X est un arbre, on voit que H fixe
un point v de X. Donc la classe d’homothétie du graphe de groupes métrique marqué
pointé pX, vq est fixée par H.

Proposition 2.2.5. [GuL2, Theorem 8.3.] Soit n ¥ 2 un entier. Si H est un sous-groupe
de type fini de OutpWnq (resp. AutpWnq) fixant un point de POpWnq (resp. PApWnq),
alors l’ensemble des points fixes de H est contractile pour la topologie faible.

On note FixPOpWnqpGq l’ensemble des points fixes d’un sous-groupe G de OutpWnq
dans POpWnq (ou FixpGq s’il n’y a pas d’ambigüıté). On note de plus FixKnpGq
l’ensemble des points fixes de G contenus dans l’épine de POpWnq. Puisque l’épine
de POpWnq est un rétract par déformation forte OutpWnq-équivariant de POpWnq, nous
déduisons de la proposition 2.2.5 le résultat suivant.

Corollaire 2.2.6. Soit n ¥ 2 un entier. Si H est un sous-groupe de type fini de OutpWnq
fixant un point de l’épine de POpWnq, alors l’ensemble FixpHq des points fixes de H
dans l’épine de POpWnq est connexe pour la topologie faible.

Soit X un point de l’épine de POpWnq. On note X un représentant de X et T l’arbre
de Bass-Serre associé à X. Nous définissons à présent un morphisme de groupes

Φ: StabOutpWnqpX q Ñ AutgrpXq.

Soient rαs P StabOutpWnqpX q, et α P AutpWnq un représentant de rαs. Il existe un

automorphisme rHα P AutpT q tel que pour tout x P T , et pour tout g P Wn on ait
αpgq rHαpxq � rHαpgxq. L’automorphisme rHα induit un automorphisme Hα P AutgrpXq,
et l’application α ÞÑ Hα passe au quotient pour donner un morphisme

Φ: StabOutpWnqpX q Ñ AutgrpXq.

Nous pouvons à présent démontrer un résultat identique au corollaire 2.2.6 dans le
cas de PApWnq.

Corollaire 2.2.7. Soit n ¥ 2 un entier. Si H est un sous-groupe fini de AutpWnq fixant un
point de l’épine de PApWnq, alors l’ensemble FixpHq des points fixes de H dans l’épine
de PApWnq est connexe pour la topologie faible.
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Démonstration. Soient X et Y deux points de l’épine de PApWnq fixés par H. Soit
p1 : PApWnq Ñ POpWnq le morphisme canonique d’oubli du point base. On rappelle que
p : AutpWnq Ñ OutpWnq est la projection canonique. Alors ppHq fixe p1pX q et p1pYq,
donc par le corollaire 2.2.6 il existe dans FixKnpppHqq un chemin continu P de p1pX q vers
p1pYq. Soient X1, . . . ,Xn les sommets de Kn consécutifs dans P (on suppose p1pX q � X1

et Xn � p1pYq) tels que, pour tout i P t1, . . . , n � 1u, Xi et Xi�1 sont reliés par une
arête dans Kn. Soit X1 un représentant de X1 et pour tout i P t2, . . . , nu, soit Xi un
représentant de Xi obtenu en écrasant ou en éclatant une forêt de Xi�1. Pour tout
i P t1, . . . , nu, comme tout automorphisme intérieur agit trivialement sur Xi, et puisque
ppHq agit également sur Xi, on en déduit que H agit sur Xi. De plus, étant donné que
H est fini et que le graphe sous-jacent Xi de Xi est un arbre, on voit que H fixe un
point vi de Xi. Pour tout i, soit rXi la classe d’équivalence du graphe métrique marqué
pointé pXi, viq (on suppose que rX1 � X et rXn � Y). Alors rXi est fixé par H.

Nous construisons à présent pour tout i P t1, . . . , n � 1u, un chemin continu inclus
dans l’ensemble des points fixes de H dans l’épine de PApWnq entre rXi et rXi�1, ce qui
conclura. La construction étant symétrique, nous pouvons supposer, quitte à changer
les représentants Xi et Xi�1, que Xi�1 est obtenu à partir de Xi en écrasant une forêt
F . Soient ∆ le simplexe ouvert dans PApWnq associé à pXi, viq et e l’arête de l’épine
barycentrique de PApWnq reliant rXi et rXi�1. Pour toute arête f de F , soit `f la longueur
de f . Pour tout t P r0, 1s, soient Xt

i le graphe de groupes métrique obtenu à partir de
Xi en donnant à toute arête f P F la longueur p1 � tq`f , et prt : Xi Ñ Xt

i la projection
canonique. On observe que X0

i � Xi et que X1
i � Xi�1.

Puisque H stabilise Xi et Xi�1, on voit que H stabilise la forêt F . Donc, pour
tout t P r0, 1s, le groupe H stabilise Xt

i . Puisque H fixe le sommet vi de Xi, il fixe

également, pour tout t P r0, 1s, le sommet prtpxiq. Ceci induit un chemin continu de rXi
vers la classe d’équivalence dans Kn de pXi�1, pr1pviqq. Si pr1pviq � vi�1, alors, puisque
le graphe sous-jacent à Xi�1 est un arbre, H fixe l’unique arc dans Xi�1 reliant pr1pviq
et vi�1. Ceci induit alors un chemin continu contenu dans l’ensemble des points fixes de
H dans l’épine de PApWnq entre la classe d’équivalence dans Kn de pXi�1, pr1pviqq etrXi�1, ce qui conclut.

Soient X un point de l’épine de POpWnq et X un représentant de X . On note
Φ: StabOutpWnqpX q Ñ AutgrpXq le morphisme naturel. Nous donnons maintenant une
description de kerpΦq. Soit rX, ρs un point de l’épine de POpWnq. On note pX, ρq un
représentant de rX, ρs et X le graphe sous-jacent à X. Soit e une arête de X reliant le
sommet v � opeq au sommet w � tpeq. Soit z P Gv un élément du groupe associé au
sommet v, et z son antécédent par ρ. Nous définissons à présent le twist par z autour
de e. Soit Gu le groupe associé à un sommet u. Le twist par z autour de e, noté Dz,
est l’automorphisme de Wn, bien défini modulo conjugaison, qui est égal à l’identité sur
ρ�1pGuq si u est dans la même composante connexe de X privé de l’intérieur de e que
v, et qui à x P ρ�1pGuq associe zxz�1 si u n’est pas dans la même composante connexe
que v. Nous avons le résultat suivant, dû à Levitt.

Proposition 2.2.8. [Lev1, Proposition 2.2 and 3.1] Soit n ¥ 2 un entier. Soient X un
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point de l’épine de l’outre-espace POpWnq et X un représentant de X . Soient v1, . . . , vn
les sommets du graphe sous-jacent de X de groupe associé isomorphe à F et soit ni le
degré de vi pour i � 1, . . . , n. Le noyau du morphisme Φ: StabOutpWnqpX q Ñ AutgrpXq

(noté Out0pWnq dans [Lev1]) est isomorphe à
n±
i�1

Fni�1, et il est engendré par les twists

autour des arêtes dont l’origine appartient à tv1, . . . , vnu et n’est pas une feuille.

Remarque 2.2.9. Dans le cas où X P PApWnq, le noyau est engendré par les twists autour
des arêtes e dont l’origine opeq appartient à tv1, . . . , vnu et n’est pas une feuille, et telles
que, si opeq est distinct du point base v�, ces arêtes ne soient pas contenues dans l’unique
chemin reliant opeq à v�. En particulier, si le groupe associé à v� est trivial et si ni est

le degré de vi pour i � 1, . . . , n, alors le noyau est isomorphe à
n±
i�1

Fni�1. Si le groupe

associé à v� est non trivial, et si on suppose v� � vn, alors le noyau est isomorphe à�
n�1±
i�1

Fni�1



� Fnn .

2.3 Stabilisateurs des t0u-étoiles et des F -étoiles

Nous étudions tout d’abord les stabilisateurs des t0u-étoiles.

Lemme 2.3.1. Soit n ¥ 4 un entier. Soient G un sous-groupe fini de OutpWnq isomorphe
à Sn, et X un point de l’épine de POpWnq fixé par G. On note X un représentant de
X et X le graphe sous-jacent à X. Si le nombre de feuilles de X est n, alors X est une
t0u-étoile.

Démonstration. Soit v un sommet de X qui n’est pas une feuille et qui soit à distance
maximale du centre1 de X.

Affirmation. Si m � degpvq, alors v est adjacent à au moins m� 1 feuilles de X.

Démonstration. L’hypothèse de maximalité sur v implique qu’il y a au plus un sommet
adjacent à v qui n’est pas une feuille, car sinon nous pourrions trouver un sommet w
adjacent à v qui ne serait pas une feuille et qui serait à distance strictement plus grande
du centre que v.

Maintenant, le groupe associé à v est trivial car X possède exactement n sommets
de groupes associés non triviaux, et ces sommets sont tous des feuilles car X possède n
feuilles. De ce fait, degpvq ¥ 3 et v est adjacent à au moins deux feuilles, notées v1 et
v2.

Soient L l’ensemble des feuilles de X, et w une feuille de X distincte de v1 et v2.
Puisque les seuls sommets de X dont les groupes associés sont non triviaux sont des
feuilles, la proposition 2.2.8 montre que le morphisme naturel G Ñ AutgrpXq est injec-
tif. Ainsi, étant donné que le groupe G est isomorphe à Sn, et que X possède n feuilles,

1Rappelons que le centre d’un arbre métrique compact non vide est l’unique milieu d’un segment de
longueur maximale.
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le morphisme naturel AutgrpXq ãÑ BijpLq est un isomorphisme. Donc il existe un auto-
morphisme de X envoyant v1 sur w et fixant v2. De ce fait, w est adjacent à v. Ainsi,
v est adjacent à toutes les feuilles de X. Puisque le groupe AutgrpXq est isomorphe à
BijpLq, toutes les arêtes de X ont même longueur. De ce fait, X est une t0u-étoile.

Remarque 2.3.2. Le résultat est identique dans le cas de PApWnq. En effet, soit G un
sous-groupe fini de AutpWnq isomorphe à Sn, et X un point de l’épine de PApWnq fixé
par G. On note X un représentant de X et X le graphe sous-jacent à X. Supposons
que X possède n feuilles. Alors la remarque 2.2.9 donne que le noyau du morphisme
G Ñ AutgrpXq est un sous-groupe distingué de G d’ordre au plus 2. Comme G est
isomorphe à Sn, et que n ¥ 4, le morphisme est injectif. La même démonstration que le
lemme 2.3.1 montre alors que X possède n feuilles et n� 1 sommets. Il reste à montrer
que le point base est le centre de X. Mais ceci provient du fait que le groupe G est
isomorphe à AutgrpXq qui lui-même est isomorphe à BijpLq. Ainsi, nécessairement, le
point base est le centre de X. Donc X est une t0u-étoile.

Proposition 2.3.3. Soient n ¥ 5 un entier et G un sous-groupe de OutpWnq isomorphe à
Sn. Alors G est le stabilisateur dans l’épine de POpWnq d’une unique t0u-étoile.

Démonstration. Puisque G est fini, d’après la proposition 2.2.3, il existe un point X
de l’épine de l’outre-espace qui est fixé par G. Soit X un représentant de X . D’après
la proposition 2.2.8, il existe un entier k tel que le noyau de l’application naturelle
GÑ AutgrpXq soit isomorphe à F k XG.

Or F k X G est un 2-sous-groupe distingué de G � Sn. Donc, comme n ¥ 5, un tel
sous-groupe est trivial. De ce fait, G s’injecte dans AutgrpXq. Or tout automorphisme
d’un arbre est entièrement déterminé par la permutation qu’il induit sur l’ensemble des
feuilles. Ainsi, si X est le graphe sous-jacent à X et si L est l’ensemble des feuilles de
X,

G ãÑ AutgrpXq ãÑ BijpLq.

Or les représentants des éléments de POpWnq possèdent au plus n sommets de groupes
non triviaux et toutes les feuilles possèdent des groupes associés non triviaux. Donc
|L| ¤ n. Donc, comme G s’injecte dans BijpLq et que G est isomorphe à Sn, on voit
que G est isomorphe à AutgrpXq et que AutgrpXq est isomorphe à BijpLq. De ce fait, X
possède n feuilles. Par le lemme 2.3.1, X est une t0u-étoile.

Montrons maintenant l’unicité. Puisque l’ensemble des t0u-étoiles est discret dans
l’épine de POpWnq, par le corollaire 2.2.6, on conclut que G fixe une unique t0u-étoile
dans l’épine de POpWnq.

Remarque 2.3.4. Dans le cas de PApWnq, le résultat de la proposition 2.3.3 est vrai pour
n ¥ 4. En effet, dans le cas où n ¥ 5, la démonstration est identique à celle de la
proposition 2.3.3 en utilisant cette fois la remarque 2.3.2.

Dans le cas où n � 4, soit X P PApW4q un point fixé par un sous-groupe G de
AutpWnq isomorphe à Sn. On note X un représentant de X , X le graphe sous-jacent à
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X et v� le point base de X. Soit H le noyau du morphisme GÑ AutgrpXq. Supposons
par l’absurde que H ne soit pas trivial. Alors, par la remarque 2.2.9, le groupe H est
un 2-groupe. Comme le seul 2-sous-groupe distingué de S4 est le groupe de Klein, le
groupe H est isomorphe à F 2. Nous distinguons différents cas, selon le fait que le groupe
associé à v� soit trivial ou non et selon le nombre de sommets qui ne sont pas des feuilles
et qui ont un groupe associé non trivial. On remarque immédiatement que, puisque tout
arbre possède au moins 2 feuilles, le nombre de sommets qui ne sont pas des feuilles et
de groupes associés non triviaux est au plus 2.

Supposons que X contienne deux sommets qui ne soient pas des feuilles et dont les
groupes associés sont isomorphes à F et que le groupe associé à v� soit trivial.

Soient w1 et w2 ces deux sommets. Alors degpv�q ¥ 3. Comme chaque composante
connexe de X�tv�u contient au moins une feuille, X contiendrait 5 sommets de groupes
associés non triviaux. Ceci contredit le fait qu’il y a exactement 4 sommets dans le
graphe de groupes associés non triviaux.

Supposons que X contienne deux sommets qui ne sont pas des feuilles et dont les
groupes associés sont isomorphes à F et que le groupe associé à v� ne soit pas trivial.

Alors la description du noyau du morphisme G Ñ AutgrpXq donné dans la remar-
que 2.2.9 donne que le cardinal du noyau est au moins 8, ce qui contredit le fait que H
est de cardinal 4.

Supposons que X contienne un seul sommet, noté w, de groupe associé non trivial
et qui ne soit pas une feuille et que le groupe associé à v� soit trivial. Alors degpv�q ¥ 3.
Comme chaque composante connexe de X � tv�u contient au moins une feuille, et qu’il
existe un sommet de groupe associé non trivial et qui ne soit pas une feuille, degpv�q � 3.
De plus, puisqu’il y a exactement 4 sommets dans le graphe de groupes associés non
triviaux, chaque composante connexe de X�tv�u contient exactement une feuille. Donc
v� est relié à exactement 2 feuilles et w est relié à une seule feuille et à v�. Or le
cardinal du groupe des automorphismes d’un tel graphe est égal à 2. Comme le noyau
du morphisme GÑ AutgrpXq est de cardinal 4, ceci contredit le fait que G est isomorphe
à S4.

Supposons que X contienne un seul sommet, noté w, de groupe associé non trivial
et qui ne soit pas une feuille. Si v� est une feuille, alors le graphe possède exactement
3 feuilles, dont l’une est le point base. De ce fait, comme tout automorphisme de X
est induit par son action sur les feuilles, le groupe des automorphismes d’un tel graphe
pointé est de cardinal 2. Comme le noyau du morphisme GÑ AutgrpXq est de cardinal
4, ceci contredit le fait que G est isomorphe à S4.

Supposons alors que le point base v� ne soit pas une feuille. Par les cas précédents,
v� � w. Comme le nombre de sommets de groupes non trivial est exactement 4, et que
tout sommet de groupe associé trivial est de degré au moins 3, le graphe X contient
au plus un sommet de groupe associé trivial. Le cas où le nombre de sommets de
groupe associé trivial est égal à 1 n’est pas possible car alors le cardinal du groupe
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des automorphismes d’un tel graphe est égal à 2, contredisant le fait que le noyau du
morphisme GÑ AutgrpXq est de cardinal 4 et que G est isomorphe à S4.

Dans le cas où le nombre de sommets de groupe associé trivial est nul, on voit que
X est une F -étoile. Or, par la remarque 2.2.9, le cardinal du noyau du morphisme
GÑ AutgrpXq est égal à 8, d’où une contradiction.

En conclusion, le morphisme GÑ AutgrpXq est également injectif dans le cas où X
appartient à PApW4q et n � 4. La suite de la démonstration est alors identique à la
proposition 2.3.3.

Nous démontrons à présent un résultat similaire pour les F -étoiles. Pour cela, nous
avons besoin du lemme suivant.

Lemme 2.3.5. Soient n ¥ 4 un entier et X un point de l’épine de POpWnq. On note X
un représentant de X et X le graphe sous-jacent à X. Soit k l’entier tel que le noyau du
morphisme naturel StabOutpWnqpX q Ñ AutgrpXq soit isomorphe à F k. Alors k ¤ n� 2.

Par ailleurs, k � n � 2 si, et seulement si, l’ensemble V X des sommets de X est de
cardinal n.

Démonstration. Supposons que |V X| ¡ n. Soient v un sommet de groupe associé trivial
et e une arête de X reliant v à un sommet w. Une telle arête existe car X est connexe
et le nombre de sommets de X de groupe non trivial est égal à n.

Affirmation. Soient Y le graphe de groupes marqué obtenu à partir de X en contrac-
tant l’arête e et Y sa classe d’équivalence dans l’épine de POpWnq. Alors le noyau du
morphisme naturel StabOutpWnqpYq Ñ AutgrpY q est isomorphe à F l, avec l � k si le
groupe associé à w est trivial, et l ¥ k � 1 sinon.

Démonstration. Si le groupe associé à w est trivial, alors contracter l’arête e ne modifie
pas le degré des sommets dont le groupe associé est non trivial. Donc, dans ce cas,
k � l. Supposons maintenant que le groupe associé à w ne soit pas trivial. Notons �vw le
sommet obtenu en contractant e. Le groupe associé à �vw est non trivial. Alors, puisque,
par hypothèse, degpvq ¥ 3, nous avons :

degp�vwq � degpvq � degpwq � 2 ¥ degpwq � 1.

Ainsi, dans ce cas, l ¥ k � 1.

De ce fait, si |V X| ¡ n, il existe une arête reliant un sommet de groupe associé
trivial et un sommet de groupe associé non trivial. Par l’affirmation précédente, l’entier
k associé au morphisme StabOutpWnqpX q Ñ AutgrpXq n’est pas maximal.

Ainsi, pour calculer la borne maximale de k, nous pouvons supposer que X possède
n sommets, tous de groupe associé non trivial. Donc,¸

vPV X

degpvq � 2|EX| � 2n� 2 ,
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la dernière égalité provenant du fait que X soit un arbre. Ainsi,

k �
¸

vPV X

pdegpvq � 1q �
¸

vPV X

degpvq � n � 2n� 2� n � n� 2.

Donc, k ¤ n� 2, et si |V X| � n, alors k � n� 2.

Supposons maintenant que k � n� 2. Par l’affirmation précédente, la procédure de
contraction présentée fait crôıtre strictement k lorsque l’on contracte une arête reliant
un sommet de groupe associé trivial et un sommet de groupe associé non trivial. Donc
X ne peut pas contenir de sommets ayant un groupe associé trivial. Donc le cardinal de
V X est égal à n.

Remarque 2.3.6. Dans le cas de PApWnq, soit X un point de l’épine de PApWnq. On
note X un représentant de X et X le graphe sous-jacent à X. Soit k l’entier tel que le
noyau du morphisme naturel StabAutpWnqpX q Ñ AutgrpXq soit isomorphe à F k. Alors
une démonstration identique au lemme 2.3.5 montre que k ¤ n � 1 avec égalité si, et
seulement si, |V X| � n.

Nous pouvons maintenant montrer le résultat suivant concernant les stabilisateurs
de F -étoiles dans OutpWnq.

Proposition 2.3.7. (1) Soit n ¥ 4 un entier. Le cardinal maximal d’un sous-groupe fini
de OutpWnq est 2n�2pn� 1q! .

(2) Supposons n ¥ 5. Soient G un sous-groupe de OutpWnq, et X un point de l’épine
de POpWnq fixé par G. On note X un représentant de X et X le graphe sous-jacent
à X. Si X possède n feuilles, alors |G|   2n�2pn� 1q! .

(3) Supposons n ¥ 4. Soient G un sous-groupe de OutpWnq isomorphe à Fn�2�Sn�1,
et X un point de l’épine de POpWnq fixé par G. On note X un représentant de X
et X le graphe sous-jacent à X. Si le nombre de feuilles de X est n � 1, alors X
est une F -étoile.

(4) Supposons n ¥ 5. Soit G un sous-groupe de OutpWnq isomorphe à Fn�2 �Sn�1.
Alors G est le stabilisateur d’une unique F -étoile.

Démonstration. Si X est un élément de l’épine de POpWnq, nous noterons X un représen-
tant de X . Nous noterons également X le graphe sous-jacent à X et L l’ensemble des
feuilles de X. Puisque X est un arbre, tout automorphisme de X est entièrement déter-
miné par son action sur les feuilles. Donc le morphisme de restriction de AutgrpXq dans
BijpLq est injectif.

Montrons l’assertion p1q. Puisque tout sous-groupe fini de OutpWnq fixe un point de
l’épine de POpWnq par la proposition 2.2.3, il suffit de montrer que, pour X un point de
l’épine de l’outre-espace, |StabOutpWnqpX q| ¤ 2n�2pn� 1q! . D’après la proposition 2.2.8,
il existe un entier k tel que le noyau du morphisme naturel StabOutpWnqpX q Ñ AutgrpXq

soit isomorphe à F k. De ce fait, |StabOutpWnqpX q| ¤ 2k|AutgrpXq|.
Nous distinguons deux cas, selon le cardinal de L.
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� Supposons que |L| ¤ n � 1. Alors AutgrpXq, qui s’injecte dans BijpLq, s’injecte
dans Sn�1. Ainsi,

|StabOutpWnqpX q| ¤ 2k|AutgrpXq| ¤ 2kpn� 1q! ¤ 2n�2pn� 1q! ,

où la dernière inégalité découle du lemme 2.3.5.

� Supposons que |L| � n. Alors tous les sommets ayant des groupes associés non
triviaux sont des feuilles. Ainsi, k � 0 par la proposition 2.2.8. Puisque BijpLq est
isomorphe à Sn, nous avons

|StabOutpWnqpX q| ¤ |AutgrpXq| ¤ n! .

Or puisque n ¥ 4, nous avons n ¤ 2n�2, donc n! ¤ 2n�2pn� 1q!, ce qui conclut.

Donc, pour tout sous-groupe fini G de OutpWnq, l’ordre de G est au plus 2n�2pn�1q! .
Cette borne est atteinte par le groupe Un � xrτ1s, . . . , rτn�2s, rσ1,nsy. qui est isomorphe
au produit semi-direct Fn�2 �Sn�1.

Soient n ¥ 5 et G, X et X comme dans l’énoncé de l’assertion p2q. Par la proposi-
tion 2.2.8, il existe un entier k tel que le noyau du morphisme naturel G Ñ AutgrpXq
soit isomorphe à F k XG. Puisque X possède n feuilles, par la proposition 2.2.8, l’entier
k est nul. De ce fait, le groupe G s’injecte dans AutgrpXq, qui s’injecte dans BijpLq.
Donc |G| ¤ n! . Or 2n�2pn� 1q! ¤ n! implique que n ¤ 4. D’où |G|   2n�2pn� 1q! .

Soient n ¥ 4 et G, X et X comme dans l’énoncé de p3q. Comme G est de cardinal
maximal parmi les sous-groupes finis de OutpWnq, nous avons G � StabOutpWnqpX q.
Donc, par la proposition 2.2.8, il existe un entier k tel que le noyau du morphisme
naturel G Ñ AutgrpXq soit isomorphe à F k. Ainsi, puisque AutgrpXq s’injecte dans
BijpLq et que ce dernier est isomorphe à Sn�1, on voit que |G| ¤ 2kpn � 1q! . Comme
k ¤ n�2 par le lemme 2.3.5, et puisque |G| � 2n�2pn�1q!, on a nécessairement k � n�2.
Le lemme 2.3.5 donne alors que X possède exactement n sommets. De ce fait, X possède
n� 1 feuilles et n sommets. Par ailleurs, on voit également que AutgrpXq est isomorphe
à BijpLq. De ce fait, toutes les arêtes de X ont la même longueur. Donc X est une
F -étoile.

Supposons enfin que n ¥ 5 et que G soit un sous-groupe de OutpWnq isomorphe à
Fn�2�Sn�1. Par la proposition 2.2.3, le groupe G fixe un point X de l’épine de l’outre-
espace. Comme G est de cardinal maximal parmi les sous-groupes finis de OutpWnq,
nous avons G � StabOutpWnqpX q. Donc, par la proposition 2.2.8, il existe un entier k tel

que le noyau du morphisme naturel GÑ AutgrpXq soit isomorphe à F k.

Affirmation. L’arbre X possède exactement n� 1 feuilles.

Démonstration. L’assertion p2q dit que X possède au plus n� 1 feuilles. Nous avons

|G| � 2n�2pn� 1q! ¤ 2k|AutgrpXq| ¤ 2n�2|AutgrpXq| ;
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où la dernière égalité provient du lemme 2.3.5. Donc |AutgrpXq| ¥ pn � 1q! . Ainsi,
puisque X possède au plus n�1 feuilles, le groupe BijpLq, dans lequel s’injecte AutgrpXq,
est isomorphe à Sn�1. Donc le cardinal de L est n� 1.

De ce fait, X possède n � 1 feuilles. Par l’assertion p3q, X est une F -étoile dans
l’épine de POpWnq. Par le corollaire 2.2.6, l’ensemble des points fixes de G est connexe.
Puisque l’ensemble des F -étoiles est discret dans l’épine de POpWnq, on conclut que G
fixe une unique F -étoile dans l’épine de POpWnq.

Remarque 2.3.8. Dans le cas de AutpWnq, soient G un sous groupe fini de AutpWnq et
X un point de l’épine de PApWnq fixé par G. On note X un représentant de X et X le
graphe pointé sous-jacent à X.

p1q Si n ¥ 4, le cardinal de G est plus petit que 2n�1pn� 1q! .
La démonstration pour le cas où le nombre de feuilles de X est plus petit que n�1 est

identique à celle de la proposition 2.3.7 p1q en utilisant cette fois la remarque 2.3.6. Dans
le cas où le nombre de feuilles est égal à n, le noyau du morphisme naturel GÑ AutgrpXq
est de cardinal plus petit que 2 par la remarque 2.2.9, donc |G| ¤ 2n! ¤ 2n�1pn� 1q! car
n ¥ 4.

p2q Si n ¥ 5 et si X possède n feuilles, alors |G|   2n�1pn� 1q! .
En effet, par la remarque 2.2.9, le cardinal du noyau du morphisme G Ñ AutgrpXq

est plus petit que 2, donc |G| ¤ 2n!   2n�1pn� 1q! car n ¥ 5.

p3q Si n ¥ 4, si G est isomorphe à Fn�1 �Sn�1 et si X possède au plus n� 1 feuilles,
alors X est une F -étoile.

En effet, une démonstration identique à celle de la proposition 2.3.7 p3q montre que
X possède n� 1 feuilles et n sommets. Montrons alors que le point base est le centre de
X. Ceci découle du fait que le groupe des automorphismes de X est isomorphe à Sn�1

car le noyau du morphisme GÑ AutgrpXq est isomorphe à Fn�1 et que G est isomorphe
à Fn�1 �Sn�1.

p4q Si n ¥ 4 et si G est isomorphe à Fn�1 � Sn�1, tout point de l’épine de PApWnq
fixé par G est une F -étoile.

En effet, l’existence d’une F -étoile fixée par G lorsque n ¥ 5 se déduit des faits
précédents.

Dans le cas où n � 4, soit X un point de l’épine de l’outre-espace fixé par G. Soient
X un représentant de X et X le graphe sous-jacent à X. On note L l’ensemble des
feuilles de X. Si X possède au plus n � 1 feuilles, alors, par le fait précédent, X est
une F -étoile. Supposons que X possède exactement n feuilles. Alors la remarque 2.2.9
montre que le noyau du morphisme naturel GÑ AutgrpXq est de cardinal au plus 2. Il
ne peut pas être injectif car le cardinal de G est égal à 48 alors que le groupe AutgrpXq
s’injecte dans BijpLq de cardinal égal à 24. Donc le noyau du morphisme GÑ AutgrpXq
est de cardinal égal à 2. Ainsi, le point base de X est une feuille. Or, puisque AutgrpXq
s’injecte dans BijpLq et que l’image du morphisme G Ñ AutgrpXq est de cardinal égal
à 24, on voit que AutgrpXq est isomorphe à BijpLq. Ceci contredit le fait que le point
base de X est une feuille. En conclusion, X possède au plus n� 1 feuilles. Donc X est
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une F -étoile. La démonstration de l’unicité de la F -étoile fixée par G est alors identique
à celle de la démonstration de la proposition 2.3.7 p4q.

Lemme 2.3.9. Soit n un entier.

(1) Supposons que n ¥ 5. Soit G un sous-groupe de Sn isomorphe à Sn�1. Il existe
un automorphisme de Sn envoyant G sur tf P Bijpt1, . . . , nuq : fpnq � nu.

(2) Si n ¥ 4 et n � 6 et si G est un sous-groupe de Bijpt1, . . . , nuq isomorphe à Sn�1,
alors il existe un entier i P t1, . . . , nu tel que G � tf P Bijpt1, . . . , nuq : fpiq � iu.

Démonstration. (1) L’action de Sn sur Sn{G par multiplication à gauche est un mor-
phisme de groupes φ : Sn Ñ BijpSn{Gq. Le noyau de ce morphisme est un sous-groupe
distingué de Sn inclus dans G. Or, G est d’indice n. Donc, étant donné que n ¥ 5,
le noyau de ce morphisme est trivial. Donc, puisque les groupes Sn et BijpSn{Gq ont
même cardinal fini, le morphisme φ est un isomorphisme. Soit rψ : Sn{G Ñ t1, . . . , nu
une bijection envoyant tGu sur n, et ψ : BijpSn{Gq Ñ Sn l’isomorphisme induit par rψ.
Alors ψ � φ est un automorphisme de Sn envoyant G sur le sous-groupe de Sn fixant n.

(2) Nous commençons par traiter le cas où n � 4. Il découle d’une inspection des sous-
groupes de S4 isomorphes à S3. En effet, S4 possède exactement 4 sous-groupes iso-
morphes à S3. Donc, il existe un entier i P t1, 2, 3, 4u tel que G � tf P Bijpt1, . . . , nuq :
fpiq � iu.

Supposons maintenant que n ¥ 5 et que n � 6. Par le premier point du lemme, il
existe un automorphisme φ de Sn envoyant G sur tf P Bijpt1, . . . , nuq : fpnq � nu. Or,
si n � 6, tout automorphisme de Sn est intérieur. Comme les automorphismes intérieurs
préservent le fait d’être le stabilisateur d’un entier, il existe un entier i P t1, . . . , nu tel
que G � tf P Bijpt1, . . . , nuq : fpiq � iu.

Étudions les points fixes du groupe Bn dans l’épine de l’outre-espace de Wn.

Proposition 2.3.10. Soient n ¥ 4 et Bn � xrτ1s, . . . , rτn�2sy.

(1) Les seuls sommets fixés par Bn dans l’épine de l’outre-espace de Wn sont des t0u-
étoiles et des F -étoiles.

(2) Le groupe Bn fixe une unique F -étoile et une unique t0u-étoile.

Remarque. La proposition 2.3.10 diffère des propositions 2.3.3 et 2.3.7 car elle porte
uniquement sur un sous-groupe particulier de OutpWnq. Nous ne savons pas si le résultat
reste vrai pour un sous-groupe de OutpWnq isomorphe à Sn�1 quelconque.

Démonstration. (1) Soient X un sommet de l’épine de POpWnq fixé par Bn et X un
représentant de X . Soient X le graphe sous-jacent à X, L l’ensemble des feuilles de X et
v1, . . . , vn les sommets de X dont les groupes associés sont non triviaux. Par la proposi-
tion 2.2.8, il existe un entier k tel que le noyau du morphisme naturel Bn Ñ AutgrpXq
soit isomorphe à F k X Bn. Or, ce noyau est un sous-groupe de F k, et ce dernier est
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engendré par des twists. Pour tout i P t1, . . . , nu, soit yi l’antécédent par le marquage
de X du générateur du groupe associé à vi. Pour tout i P t1, . . . , nu, les compositions
de twists contenues dans F k X Bn préservent la classe de conjugaison dans Wn de yi
alors que les permutations du groupe engendré par trτ1s, . . . , rτn�2su ne préservent pas
ces dernières. De ce fait, nous avons F k XBn � t1u.

Le groupe AutgrpXq s’injecte dans BijpLq. Par ailleurs, étant donné que le morphisme
φ : Bn Ñ AutgrpXq est injectif, et que Bn est isomorphe à Sn�1, nous avons |L| ¥ n�1.
De plus, chaque feuille ayant un groupe associé non trivial, nous avons |L| ¤ n. Donc
L P tn� 1, nu. Examinons les deux cas possibles.

Si |L| � n � 1, alors AutgrpXq est isomorphe à BijpLq. Montrons que X est une
F -étoile. Soit v un sommet qui n’est pas une feuille à distance maximale du centre de
X. L’hypothèse de maximalité sur v implique qu’il y a au plus un sommet adjacent à
v qui n’est pas une feuille, car sinon nous pourrions trouver un sommet w adjacent à v
qui ne serait pas une feuille et qui serait à distance strictement plus grande du centre
que v. De ce fait, v est adjacent à au moins degpvq � 1 feuilles.

Si le groupe associé à v est non trivial, alors v est fixé par Bn car c’est le seul sommet
de X qui soit de groupe associé non trivial et qui ne soit pas une feuille. Donc puisque
Bn est isomorphe à AutgrpXq, le sommet v est fixé par AutgrpXq. Enfin, puisque tout
élément de BijpLq est induit par un élément de AutgrpXq, le sommet v est adjacent à
toutes les feuilles et X est une F -étoile.

Si v est un sommet de groupe trivial, alors, par hypothèse, degpvq ¥ 3. De ce fait, v
est adjacent à au moins deux feuilles, notées v1 et v2. Soit w une feuille de X distincte
de v1 et v2. Puisqu’il existe un automorphisme de X envoyant v1 sur w et fixant v2,
alors, nécessairement, w est adjacent à v. Donc v est adjacent à toutes les feuilles. Ceci
n’est pas possible car alors X contiendrait uniquement n� 1 sommets de groupe associé
non trivial. Donc v est nécessairement un sommet de groupe associé non trivial et X est
une F -étoile.

Supposons que |L| � n. Montrons alors que X est une t0u-étoile. Le groupe AutgrpXq
s’injecte dans BijpLq qui est isomorphe à Sn. Par ailleurs, puisque Bn s’injecte dans
AutgrpXq, l’image de AutgrpXq dans BijpLq contient un sous-groupe de BijpLq isomorphe
à Sn�1.

Soit H l’image de Bn dans AutgrpXq. Par le lemme 2.3.9 p2q, si n � 6, il existe
une feuille v1 de X telle que l’image de H dans BijpLq soit égale à StabBijpLqpv1q. Soit
v le sommet adjacent à v1. Puisque v n’est pas une feuille, degpvq ¥ 3. Ou bien v est
adjacent à une autre feuille distincte de v1, ou bien v est adjacent à une unique feuille.

Si v est adjacent à une unique feuille, il existe dans X des feuilles de L � tv1u à
distance au moins 4. Soient w1 et w2 deux telles feuilles distinctes de v1, telles que w1

soit à distance maximale du centre et que w2 soit une feuille distincte de v1 à distance
maximale de w1. Puisque la valence de tout sommet de groupe associé trivial est au
moins 3, il existe une feuille w3 à distance 2 de w2. Or l’image de H dans BijpLq est
égale à StabBijpLqpv1q. Donc il existe un automorphisme de X fixant w3 et envoyant w2

sur w1, ce qui n’est pas possible par hypothèse sur w1 et w2.
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Donc v est adjacent à une feuille distincte de v1, que l’on note v2. Soit w une feuille
de X distincte de v1 et v2. Étant donne qu’il existe un automorphisme de X envoyant
v2 sur w et fixant v1, le sommet w est à distance 2 de v2. En particulier, X est une
t0u-étoile.

Traitons maintenant le cas où n � 6. On numérote de 1 à 6 les feuilles. Une con-
struction explicite d’un représentant de l’unique automorphisme extérieur non trivial de
S6 (cf. [Mil]) donne que l’unique (à conjugaison près) sous-groupe de BijpLq isomorphe
à S5 et qui ne soit pas un stabilisateur de feuille est le groupe

H � xp1 2qp3 4qp5 6q, p1 6qp2 4qp3 5q, p1 4qp2 3qp5 6q, p1 6qp2 5qp3 4qy .

Supposons alors que H soit inclus dans l’image de AutgrpXq dans BijpLq. Le groupe H
agit transitivement sur les feuilles de X. De ce fait, tous les sommets reliés à des feuilles
sont adjacents à un même nombre k de feuilles. Les seules valeurs possibles pour k sont
k P t1, 2, 3, 6u. Le cas où k � 1 n’est pas possible car tout sommet qui n’est pas une feuille
est de degré au moins 3 (tous les sommets dont les groupes associés sont non triviaux sont
des feuilles). De plus, k � 3 car le groupe des automorphismes d’un tel graphe ne pourrait
contenir simultanément les permutations p1 2qp3 4qp5 6q, p1 6qp2 4qp3 5q et p1 4qp2 3qp5 6q.
Enfin, k � 2 car alors X posséderait 3 sommets adjacents à 2 feuilles. Cependant
le groupe des automorphismes d’un tel graphe ne pourrait contenir simultanément les
permutations p1 2qp3 4qp5 6q, p1 6qp2 4qp3 5q et p1 6qp2 5qp3 4q. Donc k � 6 et X est une
t0u-étoile.

Ainsi, Bn fixe uniquement des t0u-étoiles et des F -étoiles.

(2) Montrons maintenant que Bn fixe une unique F -étoile. Soit X le graphe de groupes
marqué dont le graphe sous-jacent possède n sommets, notés v1, . . . , vn, tel que les feuilles
du graphe sous-jacent soient v1, . . . , vn�1, et tel que pour tout i P t1, . . . , nu, l’image
réciproque par le marquage du générateur du groupe associé à vi soit xi. Soit X la classe
d’équivalence de X. Alors X est une F -étoile et le stabilisateur de X est Un. Puisque
Bn � Un, ceci montre l’existence.

Montrons maintenant l’unicité. Soit Y une autre F -étoile fixée par Bn. On note
Y un représentant de Y. Par le corollaire 2.2.6, il existe dans FixKnpBnq un chemin
continu de X vers Y. Puisque deux F -étoiles distinctes ne sont pas reliées par une arête
dans l’épine de POpWnq, et puisque tout sommet de FixKnpBnq est une t0u-étoile ou une
F -étoile, ce chemin passe par une t0u-étoile adjacente à X .

Affirmation. Soient Z une t0u-étoile adjacente à X et Z un représentant de Z. On
note Z le graphe sous-jacent à Z et v1, . . . , vn les sommets de Z dont les groupes associés
sont non triviaux. Alors l’image réciproque par le marquage de Z des générateurs des
groupes associés aux sommets v1, . . . , vn est, à conjugaison près :

txα1
n x1x

α1
n , . . . , x

αn�1
n xn�1x

αn�1
n , xnu ,

avec αi P t0, 1u pour tout i P t1, . . . , n� 1u.
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Démonstration. Pour tout i P t1, . . . , nu, soit yi le générateur du groupe associé à vi.
Puisque Z est adjacente à X , il existe une arête e de Z telle que le graphe de groupes
marqué Z 1 dont le graphe sous-jacent est obtenu à partir de Z en contractant e soit
dans la classe X . Quitte à renuméroter, on peut supposer que l’un des sommets de
e est vn. Soient TX et TZ1 les arbres de Bass-Serre associés à X et Z 1. Les graphes
de groupes X et Z 1 étant équivalents, il existe un homéomorphisme Wn-équivariant
f : TX Ñ TZ1 . Soit v le sommet de TX de stabilisateur xxny. Alors fpvq a pour stabilisa-
teur xxny. Par ailleurs, étant donné que les sommets adjacents à v ont pour stabilisateurs
xx1y , . . . , xxn�1y , xxnx1xny , . . . , xxnxn�1xny, les sommets adjacents à fpvq ont pour sta-
bilisateurs xx1y , . . . , xxn�1y , xxnx1xny , . . . , xxnxn�1xny. Donc, tout sous-graphe fini et
connexe de TZ1 ayant n sommets et n� 1 feuilles et de centre fpvq est tel que les stabil-
isateurs des feuilles sont

xxα1
n x1x

α1
n y , . . . , xxαn�1

n xn�1x
αn�1
n y ,

avec αi P t0, 1u pour tout i P t1, . . . , n�1u. Ainsi, l’image réciproque par le marquage de
Z des générateurs des groupes associés aux sommets v1, . . . , vn est, à conjugaison près :

xxα1
n x1x

α1
n y , . . . , xxαn�1

n xn�1x
αn�1
n y ,

avec αi P t0, 1u pour tout i P t1, . . . , n� 1u.

Ainsi, au vu de la description des t0u-étoiles adjacentes à X , le groupe Bn fixe
une unique t0u-étoile adjacente à X : la t0u-étoile Z telle que les antécédents par le
marquage des générateurs des groupes de sommets non triviaux soient, à conjugaison
près, x1, . . . , xn. On note Z la classe d’équivalence de Z et Z le graphe sous-jacent à Z.

Soit Y 1 une F -étoile adjacente à Z. Notons Y 1 un représentant de Y 1 et Y
1

le graphe
sous-jacent à Y . Il existe une arête e de Z telle que le graphe de groupes Z 1 obtenu en
contractant e soit dans Y 1. Les antécédents par le marquage de Y 1 des générateurs des
groupes de sommets sont donc, à conjugaison près, x1, . . . , xn.

Ainsi, puisque Bn permute les sommets de tout point de l’épine de POpWnq dont
l’image réciproque par le marquage des groupes associés sont xx1y , . . . , xxn�1y, on voit
que l’unique F -étoile adjacente à Z fixée par Bn est X . Donc, Bn fixe une unique F -étoile
dans l’épine de POpWnq.

Montrons enfin que Bn fixe une unique t0u-étoile. Soit Z le graphe de groupes marqué
dont le graphe sous-jacent possède n�1 sommets, n feuilles, notées w1, . . . , wn, et tel que
pour tout i P t1, . . . , nu, l’image réciproque par le marquage du générateur du groupe
associé à wi soit xi. Soit Z la classe d’équivalence de Z. Alors Z est une t0u-étoile et le
stabilisateur de Z est An. Puisque Bn � An, ceci montre l’existence.

Montrons l’unicité. Soit Y une autre t0u-étoile fixée par Bn. Par le corollaire 2.2.6,
il existe un chemin continu dans FixKnpBnq de Z vers Y. Au vu de l’assertion p1q de
la proposition, ce chemin passe uniquement par des t0u-étoiles et des F -étoiles. Or, Bn
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fixe une unique F -étoile X , et par la dernière affirmation, l’unique t0u-étoile adjacente
à X et fixée par Bn est Z. Donc Bn fixe une unique t0u-étoile dans l’épine de POpWnq.

Remarque 2.3.11. Soit n ¥ 4. Dans le cas de AutpWnq, soit rBn � xτ1, . . . , τn�2y, qui est
encore isomorphe à Sn�1. Soit X un point de l’épine de PApWnq fixé par rBn. On note
X un représentant de X et X le graphe sous-jacent à X.

p1q Soit X est une F -étoile, soit X possède n feuilles et n� 1 sommets.
En effet, une démonstration identique à celle de la proposition 2.3.10 p1q montre que

le morphisme rBn Ñ AutgrpXq est injectif, et que le nombre de feuilles de X est soit
égal à n� 1, soit égal à n. S’il est égal à n� 1, une démonstration identique à celle de
la proposition 2.3.10 p1q montre que X possède n sommets et n � 1 feuilles. Comme
le groupe AutgrpXq contient un sous-groupe isomorphe à Sn�1 et que X possède n� 1
feuilles, on voit que, nécessairement, le point base de X est son centre. Donc X est une
F -étoile. Si le nombre de feuilles de X est égal à n, une démonstration identique à celle
de la proposition 2.3.10 p1q montre que X possède n� 1 sommets et n feuilles.

p2q Le groupe rBn fixe une unique F -étoile.
En effet, il fixe une F -étoile car rBn est un sous-groupe de rUn � xτ1, . . . , τn�2, σ1,ny

et ce dernier est isomorphe à Fn�1 �Sn�1. De ce fait, la remarque 2.3.8 p4q permet de
conclure. Nous appellerons X l’unique F -étoile fixée par rUn.

Pour l’unicité, soit Y une autre F -étoile fixée par rBn. Puisque l’ensemble des F -
étoiles dans l’épine de PApWnq n’est pas connexe, tout chemin continu entre X et Y et
contenu dans l’ensemble des points fixes de rBn pour l’action de AutpWnq sur l’épine de
PApWnq passe par un point Z ayant un représentant Z de graphe sous-jacent possédant
n feuilles et n� 1 sommets. Soit Z le graphe sous-jacent à Z, et v1, . . . , vn les feuilles de
Z. Une démonstration identique à celle de la première affirmation de la démonstration
de la proposition 2.3.10 p2q montre que l’image réciproque par le marquage de Z des
générateurs des groupes associés aux sommets v1, . . . , vn est respectivement ou bien
x1, . . . , xn�1, xn ou bien xnx1xn, . . . , xnxn�1xn, xn. De plus, la description de rBn montre
que le point base de Z est contenu dans l’arête reliant le centre de Z et vn.

Soit maintenant Z 1 un sommet de l’épine de PApWnq fixé par rBn, adjacent à Z et
qui n’est pas une F -étoile. Puisque Z 1 possède n feuilles et n�1 sommets par le premier
point de la remarque, un représentant Z 1 de Z 1 est obtenu à partir de Z en déplaçant le
point base dans l’arête reliant le centre de Z et vn. De ce fait, l’image réciproque par
le marquage des générateurs des groupes associés aux feuilles de Z

1
sont les mêmes que

pour Z.
Donc, pour conclure sur l’unicité de la F -étoile fixée par rBn, il suffit d’étudier les

F -étoiles fixées par rBn est adjacente à Z. Soit Y 1 une F -étoile adjacente à Z. Notons
Y 1 un représentant de Y 1 et Y

1
le graphe sous-jacent à Y . Il existe une arête e de Z

telle que le graphe de groupes Z 1 obtenu en contractant e soit dans Y 1. Les antécédents
par le marquage de Y 1 des générateurs des groupes de sommets sont donc, à conjugaison
près, x1, . . . , xn. Ainsi, puisque rBn permute transitivement les sommets de tout point
de l’épine de PApWnq dont l’image réciproque par le marquage des groupes associés sont
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xx1y , . . . , xxn�1y, on voit que l’unique F -étoile adjacente à Z fixée par rBn est X . Donc,rBn fixe une unique F -étoile dans l’épine de PApWnq.

2.4 Rigidité des automorphismes extérieurs d’un groupe de Cox-
eter universel

Le but de cette partie est de démontrer le théorème 2.1.1. Nous distinguons différents
cas, selon la valeur de n. Soit α P AutpOutpWnqq.

2.4.1 Démonstration dans le cas n ¥ 5 et n � 6

Soit X1 la t0u-étoile fixée par le sous-groupe fini An de OutpWnq (l’unicité provient
de la proposition 2.3.3). Alors, d’après la proposition 2.3.3, αpAnq est le stabilisateur
d’une unique t0u-étoile X2. Or OutpWnq agit transitivement sur l’ensemble des t0u-
étoiles, donc il existe ψ P OutpWnq tel que ψpX1q � X2. Posons α0 � adpψq � α, alors
α0pAnq � adpψq � αpAnq � An.

Puisque α0|An est un automorphisme de An, que An est isomorphe à Sn et que, pour
n � 6, le groupe OutpSnq est trivial, quitte à changer α0 dans sa classe d’automorphisme
extérieur, on peut supposer que α0|An � idAn .

Maintenant, étant donné que Bn � Un, nous avons α0pBnq � Bn � α0pUnq. Or par
la proposition 2.3.10 p2q, Bn fixe une unique F -étoile. Par ailleurs, le stabilisateur de
cette F -étoile est Un. Donc, puisque α0pUnq est également le stabilisateur d’une unique
F -étoile par la proposition 2.3.7 p4q, on obtient que α0pUnq � Un.

Or Un est isomorphe au produit semi-direct Fn�2 � Bn, et Bn agit sur Fn�2 (vu
comme le quotient de Fn�1 par son sous-groupe diagonal F ) par permutation des fac-
teurs. Soit σ P Bn. On note fixpσq l’ensemble des points fixes de σ agissant par con-
jugaison dans Fn�2. Puisque, pour tout σ P Bn, α0pσq � σ, on voit que, pour tout
σ P t0u � Bn et pour tout g P Fn�2 � t1u, α0pσgσ

�1q � σα0pgqσ
�1 ; en particulier, si

g P fixpσq, alors α0pgq P fixpσq.
Soit maintenant σ � p2 . . . n � 1q P Bn. Alors fixpσq � t0, rσ1,nsu. Donc, puisque

α0prσ1,nsq P fixpσq, on a α0prσ1,nsq � rσ1,ns. De même, pour tout i P t1, . . . , n � 1u,
α0prσi,nsq � rσi,ns. Ainsi, α0|Fn�2 � idFn�2 . Puisque, par ailleurs, α0 est l’identité sur
Bn, on voit que α0|Un � idUn . De ce fait, étant donné que α0|An � idAn et que An et
Un engendrent OutpWnq par la proposition 2.2.1, on voit que α0 � id et le résultat s’en
déduit.

2.4.2 Démonstration dans le cas n � 6

Dans le cas où n � 6, la proposition 2.3.3 s’appliquant encore, soit α0 un représentant
de la classe d’automorphismes extérieurs de α tel que α0pAnq � An. Supposons que
la classe d’automorphisme extérieur de α0|An soit non triviale. Alors une description
explicite d’un automorphisme engendrant l’unique classe d’automorphismes extérieurs
de S6 (cf. [Mil]) donne, en identifiant An et S6 par l’unique isomorphisme envoyant τi
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sur la permutation pi i� 1q pour 1 ¤ i ¤ 5, que

α0pBnq � xrp1 2qp3 4qp5 6qs, rp1 6qp2 4qp3 5qs, rp1 4qp2 3qp5 6qs, rp1 6qp2 5qp3 4qsy .

Ainsi, α0pBnq agit transitivement sur les classes de conjugaison de tx1, . . . , xnu. Alors,
puisque α0pBnq � α0pUnq, par le quatrième point de la proposition 2.3.7, α0pBnq fixe
une F -étoile X . Soit X un représentant de X . Par la proposition 2.2.8, le noyau du
morphisme naturel α0pBnq Ñ AutgrpXq est isomorphe à Fn�2 X α0pBnq.

Or Fn�2 X α0pBnq est un 2-sous-groupe distingué de α0pBnq. Comme α0pBnq est
isomorphe à Sn�1 et que n � 6, nous avons Fn�2 X α0pBnq � t1u. Donc α0pBnq
est isomorphe à AutgrpXq car AutgrpXq est isomorphe à Sn�1. Soient maintenant X
le graphe sous-jacent à X, v1, . . . , vn�1 les feuilles de X, et vn le centre de X. Pour
j P t1, . . . , nu, soit xyjy l’image réciproque par le marquage du groupe associé à vj . Le
groupe AutgrpXq, et donc α0pBnq, s’identifie à l’ensemble des bijections de tv1, . . . , vnu
fixant vn. Or, par la proposition 2.2.1, il existe π P Bijptx1, . . . , xnuq telle que pour tout
i P t1, . . . , nu, il existe zi PWn vérifiant :

yi � zixπpiqz
�1
i .

Ceci contredit le fait que α0pBnq s’identifie à l’ensemble des bijections de tv1, . . . , vnu
fixant vn car le groupe α0pBnq agit transitivement sur l’ensemble des classes de conju-
gaison de tx1, . . . , xnu. Donc la classe d’automorphisme extérieur de α0|An est triviale
et on conclut comme dans 2.4.1.

2.4.3 Démonstration dans le cas n � 4

Dans le cas où n � 4, la proposition 2.3.3 et le quatrième point de la proposition 2.3.7 ne
sont plus valables car alors tout sous-groupe de OutpWnq isomorphe à S4 est isomorphe
au produit semi-direct V �S3, où V est le groupe de Klein. Nous avons cependant la
proposition suivante.

Proposition 2.4.1. Soient n � 4 et G un sous-groupe de OutpWnq isomorphe au produit
semi-direct Fn�2 �Sn�1. Alors G est soit le stabilisateur d’une unique F -étoile, soit le
stabilisateur d’une unique t0u-étoile. Les deux cas sont mutuellement exclusifs.

Démonstration. Soient X un point de l’épine de POpWnq fixé par G (qui existe par la
proposition 2.2.3), et X un représentant de X . Soient X le graphe sous-jacent à X et
L l’ensemble des feuilles de X. La proposition 2.4.1 se démontre de manière identique
à la proposition 2.3.7 p3q, à ceci près que l’on ne peut pas exclure le cas où X possède
n feuilles. Il faut alors distinguer le cas où |L| � n � 1 et |L| � n. Si X possède n
feuilles, le lemme 2.3.1 donne que X est une t0u-étoile. Si X possède n� 1 feuilles, alors
la proposition 2.3.7 p3q donne que X est une F -étoile.

Montrons maintenant que G ne peut fixer à la fois une t0u-étoile et une F -étoile. Par
la proposition 2.3.7 p1q, G est le stabilisateur de tout point fixé par G.
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Supposons que G soit le stabilisateur d’une t0u-étoile X . Soient X un représentant
de X , et X le graphe sous-jacent à X. Soient v1, . . . , vn les sommets de X dont les
groupes associés sont non triviaux et, pour tout i P t1, . . . , nu, soit yi l’image réciproque
par le marquage du générateur du groupe associé à vi. Alors le groupe G est le groupe
engendré par les permutations de ty1, . . . , ynu.

Soit Y une F -étoile dans l’épine de POpWnq fixée par G. Par le corollaire 2.2.6,
FixKnpGq est connexe. Il existe donc un chemin continu dans FixKnpGq de X vers Y.
Les sommets par lesquels passe ce chemin sont uniquement des t0u-étoiles et des F -
étoiles au vu des points stabilisés par G. Or le groupe engendré par les permutations de
ty1, . . . , ynu ne fixe aucune F -étoile adjacente à X. En effet, le groupe G contiendrait
un élément permutant le centre de la F -étoile avec une feuille, ce qui n’est pas possible.
Donc G ne fixe aucune F -étoile.

Enfin, l’unicité du point fixe provient du fait que l’ensemble des t0u-étoiles et l’ensem-
ble des F -étoiles sont discrets dans l’épine de POpWnq alors que l’ensemble des points
fixes de G est connexe par le corollaire 2.2.6.

Nous pouvons maintenant montrer le théorème 2.1.1 dans le cas n � 4.
Soit α P AutpOutpWnqq. Soit X1 la t0u-étoile fixée par le sous-groupe fini An � S4

de OutpWnq. Par la proposition 2.4.1, αpAnq fixe soit une t0u-étoile, soit une F -étoile.
Si αpAnq fixe une t0u-étoile, alors la même démonstration que pour le cas où n � 6

dans la partie 2.4.1 montre que quitte à changer α dans sa classe d’automorphisme
extérieurs, nous avons α|An � idAn . Par la proposition 2.4.1, le groupe Un � F 2 �S3

fixe soit une t0u-étoile, soit une F -étoile. Étant donné que Bn � Un fixe une unique
t0u-étoile ρ et une unique F -étoile ρ1 et que α|Bn � idBn , on voit que αpUnq est soit le
stabilisateur de ρ, soit le stabilisateur de ρ1. Cependant, puisque le stabilisateur de ρ est
An et que α|An � idAn , on voit que αpUnq est le stabilisateur de ρ1. Donc αpUnq � Un. Le
reste de la démonstration est alors identique à celle du cas où n � 6 dans la partie 2.4.1.

Supposons que αpAnq fixe une unique F -étoile. Construisons à présent un représen-
tant de la classe d’automorphismes extérieurs de α. Puisque OutpWnq agit transitivement
sur les F -étoiles, quitte à changer α dans sa classe d’automorphismes extérieurs, on peut
supposer que αpAnq � Un. Soit V le groupe de Klein contenu dans An. Alors αpV q est
l’unique 2-sous-groupe distingué non trivial de Un. Donc

αpV q � xrσ1,4s, rσ2,4s, rσ3,4sy .

Ainsi, puisque BnXV � tidu, on voit que αpBnqXαpV q � tidu. Par ailleurs, An � BnV ,
donc Un � αpBnqαpV q. De ce fait, αpBnq est un sous-groupe de Un d’ordre 6. Or,
il existe une unique classe de conjugaison de sous-groupes d’ordre 6 dans Un. Donc,
quitte à changer α dans sa classe d’automorphismes extérieurs, on peut supposer que
αpBnq � Bn. De même, puisque Bn est isomorphe à S3, quitte à changer α dans sa
classe d’automorphisme extérieur, on peut supposer que α|Bn � idBn .

Déterminons à présent l’image de rτ3s et rσ3,4s par α. Puisque rτ1srτ3s P V , on voit
que αprτ1srτ3sq P trσ1,4s, rσ2,4s, rσ3,4su. Or, rτ1s commute avec rτ1srτ3s, donc αprτ1srτ3sq
doit également commuter avec rτ1s. De ce fait, αprτ1srτ3sq � rσ3,4s et αprτ3sq � rτ1srσ3,4s.

63



Déterminons l’image de rσ3,4s par α. Puisque αpBnq � Bn, le groupe αpUnq est le
stabilisateur d’un point fixe de Bn. Par la proposition 2.3.10, Bn fixe uniquement deux
sommets de l’épine de POpWnq : la t0u-étoile stabilisée par An et la F -étoile stabilisée
par Un. Comme αpAnq � Un, on a nécessairement αpUnq � An. Donc αprσ3,4sq P V .
Puisque rσ3,4s commute avec rτ1s, on obtient que αprσ3,4sq � rτ1srτ3s.

Donc α se restreint en l’identité sur Bn, envoie rτ3s sur rτ1srσ3,4s et rσ3,4s sur rτ1srτ3s.
Comme Bn, rτ3s et rσ3,4s engendrent OutpW4q, ceci montre qu’un tel automorphisme α,
s’il existe, est unique modulo automorphisme intérieur.

Réciproquement, montrons que l’application α de Bn Y trτ3s, rσ3,4su dans OutpW4q
définie par α|Bn � idBn , αprτ3sq � rτ1srσ3,4s et αprσ3,4sq � rτ1srτ3s s’étend de manière
unique en un morphisme de groupes de OutpW4q. Comme rτ1s commute avec rτ3s et
rσ3,4s, ceci montre que α est involutif, donc un automorphisme de OutpW4q. Sa classe
dans OutpOutpW4qq est non triviale (car son action sur l’épine de POpW4q est non
triviale), ce qui montre le théorème 2.1.1 lorsque n � 4.

Pour simplifier les notations, nous notons ri js la classe d’automorphismes extérieurs
de la transposition permutant xi et xj . Notons

S � tri js | 1 ¤ i, j ¤ 4u Y trσi,js | 1 ¤ i � j ¤ 4u,

qui est une partie génératrice de OutpW4q par la proposition 2.2.1. Un petit calcul
élémentaire montre que, si i � 1, 2, alors

ri 4s � ri 3sr3 4sri 3s, rσi,4s � ri 3srσ3,4sri 3s,

αpri 3sqαpr3 4sqαpri 3sq � rj ksrσi,4s et αpri 3sqαprσ3,4sqαpri 3sq � rj ksri 4s,

où tj, ku � t1, 2, 3u � tiu. Considérons l’application rα de S dans OutpW4q étendant
α sur S X pBn Y tr3 4s, rσ3,4suq et telle que, si i � 1, 2,

rαpri 4sq � rj ksrσi,4s et rαprσi,4sq � rj ksri 4s,

où tj, ku � t1, 2, 3u � tiu. Des calculs élémentaires pour lesquels nous renvoyons à
l’appendice 2.5 montrent que cette application préserve, quand n � 4, la présentation
de OutpWnq donnée par [Gil, Theorem 2.20], ce qui conclut.

2.4.4 Démonstration de la rigidité de AutpWnq

Nous démontrons à présent le théorème 2.1.2. Soient n ¥ 4 et α P AutpAutpWnqq. SoientrAn � xτ1, . . . , τn�1y, rBn � xτ1, . . . , τn�2y et rUn � xτ1, . . . , τn�2, σ1,ny. En utilisant les
remarques 2.3.4, 2.3.8 p4q et 2.3.11 p2q, et en effectuant une démonstration identique à
celle du théorème 2.1.1 dans les cas où n ¥ 5, on voit que, quitte à changer α dans sa
classe d’automorphismes extérieurs, α| rAn � id rAn et que αprUnq � rUn.

Or rUn est isomorphe à Fn�1� rBn. Soit σ P rBn. On note fixpσq l’ensemble des points
fixes de σ agissant par conjugaison dans Fn�1. On voit que pour tout σ P t0u � rBn et

64



pour tout g P Fn�1 � t1u, αpσgσ�1q � σαpgqσ�1 ; en particulier, si g P fixpσq, alors
αpgq P fixpσq.

Soit maintenant σ � p2 . . . n � 1q P Bn. Alors fixpσq � t0, σ1,n,
±
i�1,n

σi,n,
n�1±
i�1

σi,nu.

Donc αpσ1,nq P tσ1,n,
±
i�1,n

σi,n,
n�1±
i�1

σi,nu. Comme
n�1±
i�1

σi,n est l’unique élément non trivial

dans le centre de rUn, on voit que αpσ1,nq �
n�1±
i�1

σi,n.

Supposons par l’absurde que αpσ1,nq �
±
i�1,n

σi,n. Pour j P t1, . . . , n�1u, notons p1 jq

la transposition de rBn permutant x1 et xj . Alors, on voit que, pour tout j P t1, . . . , n�1u,
αpσj,nq � αpp1 jqσ1,np1 jqq �

±
i�j,n

σi,n.

Un calcul immédiat montre alors que, pour tout j � k, n, et k   n,

αpσk,jq � αppj nqσk,npj nqq �
¹
i�j,k

σi,j .

Or σ1,2σ3,4 � σ3,4σ1,2, alors que

αpσ1,2qαpσ3,4qpx1q �
±
i�1,2

σi,2
±
i�3,4

σi,4px1q � x2x4x2x1x2x4x2 et que

αpσ3,4qαpσ1,2qpx1q �
±
i�3,4

σi,4
±
i�1,2

σi,2px1q � x4x1x4.

Donc αpσ1,2qαpσ3,4q � αpσ3,4qαpσ1,2q. Ceci contredit le fait que α est un morphisme
de groupes. Ainsi, αpσ1,nq � σ1,n. Par la proposition 2.2.1, nous avons α � id. Ceci
conclut la démonstration du théorème 2.1.2.

2.5 Présentation du groupe OutpW4q

Soit n � 4. Pour simplifier les notations, nous notons ri js la classe d’automorphismes
extérieurs de la transposition permutant xi et xj . Nous rappelons que l’application
ensembliste α : Bn Y trτ3s, rσ3,4su Ñ OutpWnq est définie par :

α|B � idBn ;
αpr3 4sq � r1 2srσ3,4s ;
αprσ3,4sq � r1 2sr3 4s.

Nous montrons dans cette appendice que l’application α s’étend de manière unique
en un morphisme de groupes de OutpW4q dans lui-même. Nous montrons pour cela
qu’il préserve l’ensemble des relations d’une présentation de OutpW4q. La présentation
suivante est due à Gilbert.
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Proposition 2.5.1. [Gil, Theorem 2.20] Soit n un entier plus grand que 2. Une présen-
tation de OutpWnq est donnée par :

(1) la partie génératrice S constituée de l’ensemble des permutations ri js pour les
entiers distincts i, j P t1, . . . , nu ainsi que l’ensemble des éléments rσi,js pour les
entiers distincts i, j P t1, . . . , nu ;

(2) les relations suivantes :

(a) pour tout i P t1, . . . , nu,
±
j�i � rσj,is � 1 ;

(b) pour tous les i, j, k, ` P t1, . . . , nu avec i � j et k � `, si on pose τ � pi jq,
alors ri jsrk `s � rτpkq τp`qsri js ;

(c) pour tout j P t1, . . . , nu, pour tous les i, k P t1, . . . , nu�tju distincts, rσi,jsrσk,js �
rσk,jsrσi,js ;

(d) pour tous les i, j P t1, . . . , nu distincts, rσi,jsrσi,js � 1 ;

(e) pour tous les i, j, k, ` P t1, . . . , nu deux à deux distincts, rσi,jsrσk,`s � rσk,`srσi,js ;

(f) pour tous les i, j, k, ` P t1, . . . , nu, tels que k � `, si τ � pi jq, ri jsrσk,`s �
rστpkq,τp`qsri js ;

(g) pour tous les i, j, k P t1, . . . , nu deux à deux distincts, rσj,isrσi,ksrσj,ks �
rσj,ksrσi,ksrσj,is.

Nous remarquons que, dans le cas où n � 4, la relation pgq se déduit des relations
paq, pdq et peq.

Proposition 2.5.2. L’application α se prolonge de manière unique en un morphisme de
groupes de OutpW4q dans lui-même.

Démonstration. Nous définissons tout d’abord une application prolongeant α sur la
partie génératrice S de OutpW4q définie dans la proposition 2.5.1. Un petit calcul
élémentaire montre que, si i � 1, 2, ri 4s � ri 3sr3 4sri 3s, rσi,4s � ri 3srσ3,4sri 3s,
αpri 3sqαpr3 4sqαpri 3sq � rj ksrσi,4s, αpri 3sqαprσ3,4sqαpri 3sq � rj ksri 4s, où tj, ku �
t1, 2, 3u � tiu.

Nous considérons à présent l’application rα de S dans OutpW4q étendant α sur S X
pBnYtr3 4s, rσ3,4suq et telle que, si i � 1, 2, rαpri 4sq � rj ksrσi,4s, rαprσi,4sq � rj ksri 4s, où
tj, ku � t1, 2, 3u�tiu et, si i et j sont distincts et si j � 4, rαprσi,jsq � rσj,4sri jsrk `srσj,4s,
où tk, `u � t1, 2, 3, 4u � ti, ju.

Vérifions maintenant que rα préserve la présentation de AutpWnq. Ceci montrera querα se prolonge en un morphisme de groupes de OutpW4q dans lui-même. De plus, étant
donné que B Y tr3 4s, rσ3,4su est une partie génératrice de OutpW4q (cf. [Müh, Theorem
B]), au vu de la définition de rα, ceci conclura la démonstration de la proposition. Nous
écrivons pour chaque cas la relation vérifiée en préalable à la démonstration.

p1q Pour tout i, pour tous les j, k, ` P t1, 2, 3, 4u�tiu deux à deux distincts, rσj,isrσk,isrσ`,is �
1.
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rαprσ1,4sqrαprσ2,4sqrαprσ3,4sq � r2 3sr1 4sr1 3sr2 4sr1 2sr3 4s � 1.

Si j � 4, et si i, k, ` P t1, 2, 3, 4u � tju sont deux à deux distincts,

rαprσi,jsqrαprσk,jsqrαprσ`,jsq � rσj,4sri jsrk `srσj,4srσj,4srj ksri `srσj,4srσj,4srj `sri ksrσj,4s
� rσj,4sri jsrk `srj ksri `srj `sri ksrσj,4s � rσj,4srσj,4s � 1.

p2q Pour tous les i, j, k, ` vérifiant i � j et k � `, si on pose σ � pi jq, alors ri jsrk `s �
rσpkq σp`qsri js.

Puisque rα est l’identité sur Bn, cette relation est vérifiée si i, j, k, ` P t1, 2, 3u. Véri-
fions les autres cas. Soient i, j P t1, 2, 3u distincts et k P t1, 2, 3u � ti, ju.

rαpri 4sqrαprj 4sq � rj ksrσi,4sri ksrσj,4s � rj isrj ksrσk,4srσj,4s
� rj isrj ksrσi,4s � rαprj isqrαpri 4sq.

Maintenant, si i, j, k P t1, 2, 3u sont deux à deux distincts,

rαpri jsqrαprk 4sq � ri jsri jsrσk,4s � rσk,4s � rαprk 4sqrαpri jsq.
p3q Pour tout j, pour tous les i, k P t1, 2, 3, 4u � tju distincts, nous avons rσi,jsrσk,js �
rσk,jsrσi,js.

On note ` l’élément distinct de i, j et k.
Supposons que j � 4. Alors

rαprσi,jsqrαprσk,jsq � rσj,4srj isrk `srj ksri `srσj,4s
� rσj,4srj `sri ksrσj,4s � rαprσ`,jsq
� rαprσk,jsqrαprσi,jsq.

Dans le cas où j � 4,

rαprσi,4sqrαprσk,4sq � rk `sri 4sri `srk 4s � ri `srk 4sr` ksri 4s � rαprσk,4sqrαprσi,4sq.
p4q Pour tout i � j, nous avons rσi,jsrσi,js � 1.

On note ` et k les deux éléments distincts de i et j.
Supposons que j � 4. Alors

rαprσi,jsqrαprσi,jsq � rσj,4srj isrk `srj isrk `srσj,4s � 1.

Si j � 4, alors

rαprσi,4sqrαprσi,4sq � rk `sri 4srk `sri 4s � 1.
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p5q Si i, j, k, ` sont deux à deux distincts, alors rσi,jsrσk,`s � rσk,`srσi,js.

Nous traitons tout d’abord le cas où j � 4 ou ` � 4. Par symétrie, nous pouvons
supposer que j � 4.

rαprσi,4sqrαprσk,`sq � rk `sri 4srσ`,4srk `sri 4srσ`,4s
� rk `srσ`,isrk `sri 4srσ`,isri 4s
� rσk,isrk `sri 4srσk,isrk `sri 4s
� rσ`,4srσk,isrσ`,4srk `sri 4srσ`,4srσk,isrσ`,4srk `sri 4s
� rσ`,4srk `srσ`,isrσk,4srσ`,isrσk,4sri 4srσ`,4srk `sri 4s
� rσ`,4srk `sri 4srσ`,4srk `sri 4s � rαprσk,`sqrαprσi,4sq.

Nous effectuons maintenant le cas où i � 4 ou k � 4. Par symétrie, nous pouvons
supposer i � 4.

rαprσ4,jsqrαprσk,`sq � rσj,4srj 4srk `srσj,4srσ`,4srk `srj 4srσ`,4s
� rσj,4srj 4srk `srσk,4srk `srj 4srσ`,4s
� rσj,4srσ`,jsrσ`,4s ;

rαprσk,`sqrαprσ4,jsq � rσ`,4srj 4srk `srσ`,4srσj,4srk `srj 4srσj,4s
� rσ`,4srj 4srk `srσk,4srk `srj 4srσj,4s
� rσ`,4srσ`,jsrσj,4s
� rσj,4srσ`,4srσj,4srσ`,jsrσ`,4srσj,4srσ`,4s
� rσj,4srσk,4srσ`,jsrσk,4srσ`,4s
� rσj,4srσ`,jsrσ`,4s � rαprσ4,jsqrαprσk,`sq.

p6q Pour tous les i, j, k, ` tels que k � `, si τ � pi jq, alors ri jsrσk,`s � rστpkq,τp`qsri js.

On note a et b les éléments vérifiant ta, bu � t1, 2, 3, 4u � tk, `u.
Nous supposons tout d’abord que i, j P t1, 2, 3u. Supposons également que ` � 4. Si

ti, ju X tk, `u � ∅, alors ta, bu � ti, ju et τpkq � k et τp`q � `. Donc

rαpri jsqrαprσk,`sq � ri jsrσ`,4srk `sri jsrσ`,4s � rσ`,4srk `sri jsrσ`,4sri js � rαprσk,`sqrαpri jsq.
Si ti, ju X tk, `u � tku � tiu, alors ta, bu � tj, 4u et τpkq � j et τp`q � `. Donc

rαpri jsqrαprσi,`sq � ri jsrσ`,4sri `srj 4srσ`,4s � rσ`,4srj `sri 4srσ`,4sri js � rαprσj,`sqrαpri jsq.
Si ti, ju X tk, `u � t`u � tiu, alors ta, bu � tj, bu avec b R ti, ku et τpkq � k et

τp`q � j. Donc

rαpri jsqrαprσk,isq � ri jsrσi,4srk isrj bsrσi,4s � rσj,4srk jsri bsrσj,4sri js � rαprσk,jsqrαpri jsq.
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Si ti, ju X tk, `u � ti, ju, alors ti, ju X ta, bu � ∅. De plus, puisque i et j jouent un
rôle symétrique, nous pouvons supposer que τpkq � j et τp`q � i. Donc

rαpri jsqrαprσi,jsq � ri jsrσj,4sri jsra bsrσj,4s � rσi,4sri jsra bsrσi,4sri js � rαprσj,isqrαpri jsq.
Supposons maintenant que ` � 4.
Si ti, ju X tk, `u � ∅, alors ta, bu � ti, ju et τpkq � k et τp`q � `. Donc

rαpri jsqrαprσk,4sq � ri jsri jsrk 4s � ri jsrk 4sri js � rαprσk,4sqrαpri jsq.
Si ti, ju X tk, `u � tku � tiu, alors ta, bu � tj, bu, avec b � i et b � 4 et τpkq � j et

τp`q � `. Donc

rαpri jsqrαprσi,4sq � ri jsrj bsri 4s � ri bsrj 4sri js � rαprσj,4sqrαpri jsq.
Supposons maintenant que j � 4. Supposons également que ` � 4. Puisque j � 4,

le cas où ` � 4 est symétrique au cas où k � 4.
Si ti, 4u X tk, `u � ∅, alors ta, bu � ti, 4u et τpkq � k et τp`q � `. Donc

rαpri 4sqrαprσk,`sq � rk `srσi,4srσ`,4srk `sri 4srσ`,4s
� rσi,4srσk,4srk `srk `sri 4srσ`,4s
� rσ`,4srk `sri 4srσk,4srk `s
� rσ`,4srk `sri 4srσi,4srσk,4srσi,4srk `s �
� rσ`,4srk `sri 4srσ`,4srσi,4srk `s � rαprσk,`sqrαpri 4sq.

Si ti, 4u X tk, `u � tku � tiu, alors ta, bu � ta, 4u, avec a � i et a � ` et τpkq � 4 et
τp`q � `. Donc

rαpri 4sqrαprσi,`sq � ra `srσi,4srσ`,4sri `sra 4srσ`,4s
� rσi,4srσa,4sra `sri `sra 4srσ`,4s
� rσ`,4sra `sri `sra 4srσ`,4s
� rσ`,4sri asr` 4srσa,4sra `s
� rσ`,4sri asr` 4srσi,4srσa,4srσi,4sra `s
� rσ`,4sri asr` 4srσ`,4srσi,4sra `s � rαprσ4,`sqrαpri 4sq.

Si ti, 4u X tk, `u � tku � t4u, alors ta, bu � ta, iu, avec a � 4 et a � ` et τpkq � i et
τp`q � `. Donc

rαpri 4sqrαprσ4,`sq � ra `srσi,4srσ`,4sr4 `sra isrσ`,4s
� rσi,4srσa,4sra `sr4 `sra isrσ`,4s
� rσ`,4sra `sr4 `sra isrσ`,4s
� rσ`,4sr4 asr` isrσa,4sra `s
� rσ`,4sr4 asr` isrσi,4srσa,4srσi,4sra `s
� rσ`,4sr4 asr` isrσ`,4srσi,4sra `s � rαprσi,`sqrαpri 4sq.

Si ti, 4u X tk, `u � t`u � tiu, alors ta, bu � ta, 4u, avec a � k et a � i et τpkq � k et
τp`q � 4. Donc
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rαpri 4sqrαprσk,isq � ra ksrσi,4srσi,4srk isra 4srσi,4s
� ra ksrk isra 4srσi,4s
� ra isrk 4sra ksrσi,4s � rαprσk,4sqrαpri 4sq.

Si ti, 4u X tk, `u � ti, 4u, alors k � 4 et ta, bu X ti, 4u � ∅ et τpkq � i et τp`q � 4.
Donc

rαpri 4sqrαprσ4,isq � ra bsrσi,4srσi,4sr4 isra bsrσi,4s
� ra bsr4 isra bsrσi,4s
� r4 isra bsra bsrσi,4s � rαprσi,4sqrαpri 4sq.

Donc rα préserve toutes les relations données dans la proposition 2.5.1. De ce fait,rα se prolonge en un morphisme de groupes de OutpW4q dans lui-même. Ceci conclut la
démonstration.
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Chapitre 3

The symmetries of the Outer space of
a universal Coxeter group

3.1 Introduction

Let n be an integer greater than 1. Let F � Z{2Z be a cyclic group of order 2 and
Wn � �n F be a universal Coxeter group, which is a free product of n copies of F .
The geometric study of automorphisms groups of free products is currently in strong
expansion, see for instance [MM, GuL1, Pig, HaM3, Gup2, GuH2, DL]. This paper
proves a major geometric rigidity result of the outer automorphism group OutpWnq of
Wn.

The study of OutpWnq benefits from analogies with algebraic groups, with OutpFN q,
the outer automorphism group of a free group of rank N , and with the mapping class
group of a connected compact surface. As usual in geometric group theory, the under-
standing of the group OutpWnq is related to the construction of geometric spaces on
which it acts nicely (properly or cocompactly). Such constructions appear in the study
of OutpFN q, which involves the study of its action on the spine of the Outer space intro-
duced by Culler and Vogtmann in [CV]. Similarly, the study of the mapping class group
of a connected compact surface involves the study of its action on the Teichmüller space
and on the curve graph of the surface, while the study of algebraic groups implies the
study of their actions on buildings.

The spaces introduced in these cases are rigid geometric models in the following sense:
the symmetries of these spaces are induced by elements of the group itself. Indeed,
for algebraic groups, Tits showed that, if the rank of a spherical building associated
with a simple connected algebraic group is at least 2, then the full group of simplicial
automorphisms of the building is isomorphic to the algebraic group itself ([Tit2]). In the
context of a connected orientable compact surface of genus at least 3, Royden proved that
the group of isometries of the Teichmüller space with respect to the Teichmüller metric
coincides with the extended mapping class group of the surface ([Roy]). Moreover, Ivanov
([Iva2, Theorem 1]) showed that the group of simplicial automorphisms of the graph of
curves is isomorphic to the extended mapping class group. In the context of OutpFN q,



Bridson and Vogtmann proved that, if N ¥ 3, the group of simplicial automorphisms of
the spine of Outer space is isomorphic to OutpFN q ([BV2]).

In the case of OutpWnq, spaces on which OutpWnq acts properly or cocompactly in-
clude the McCullough-Miller space [MM] or POpWnq, the outer space of Wn introduced
by Guirardel and Levitt in [GuL1]. These two spaces are OutpWnq-equivariantly homo-
topy equivalent (see [MM, Theorem 8.5.]). Moreover, it was proved by Piggott ([Pig,
Theorem 1.1]) that, for n ¥ 4, the McCullough-Miller space is a rigid geometric model
for OutpWnq: the group of simplicial automorphisms of the McMullough-Miller space is
isomorphic to OutpWnq.

In this article, we study the action of OutpWnq on a simplicial flag complex on which
POpWnq retracts OutpWnq-equivariantly, called the spine of POpWnq and denoted by
Kn. Vertices of Kn are homothety classes of marked graphs of groups whose fundamental
group is isomorphic to Wn. Two homothety classes X and Y of marked graphs of groups
are adjacent in Kn if they have representatives X and Y such that one can obtain Y
from X by collapsing a forest in the underlying graph of X, or conversely. The group
OutpWnq naturally acts on Kn by precomposing the marking. The aim of this article is
to prove that Kn is a rigid geometric model for OutpWnq in the following sense. Here
we denote by AutpKnq the group of simplicial automorphisms of Kn.

Theorem 3.1.1. Let n ¥ 4. The natural homomorphism

OutpWnq Ñ AutpKnq

is an isomorphism.

Theorem 3.1.1 gives a complete classification of the simplicial automorphisms of
Kn for every n. Indeed, the graph K2 is reduced to a point and K3 is a tree (in
fact isomorphic to the spine of the Outer space of a nonabelian free group of rank
2, see Proposition 3.2.6). The question of the study of simplicial automorphisms of
Kn is first motivated by the aforementioned examples, but also by algebraic results on
OutpWnq. Indeed, for instance in the case of the mapping class group of a connected
orientable compact surface of genus at least 3, the fact that the curve complex is a rigid
geometric model for the extended mapping class group is used by Ivanov in order to prove
that any automorphism of the extended mapping class group is in fact a conjugation
(see [Iva2, Theorem 2]). Similarly, the fact that the spine of Outer space is a rigid
geometric model for OutpFN q with N ¥ 3 is related to the fact that any automorphism
of OutpFN q is a conjugation ([BV1]). As, for n ¥ 4, any automorphism of OutpWnq
is a conjugation (see [Gue1, Théorème 1.1]) and as the proof relies on the study of the
action of OutpWnq on Kn, it was natural to expect that Kn is a rigid geometric model
for OutpWnq. Even though the McCullough-Miller space and POpWnq are OutpWnq-
equivariantly homotopy equivalent, the author does not know how to deduce the rigidity
of Kn out of the rigidity of the McCullough-Muller space. Indeed, there is no canonical
graph isomorphism between Kn and the McCullough-Miller space, and corresponding
vertices in the McCullough-Miller space and in Kn do not share the same properties of
minimality. For instance the negative link of a t0u-star (see Sections 3.2.3 and 3.4 for
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precise definitions) is nontrivial in Kn, whereas it is trivial in the McCullough-Miller
space.

The proof of Theorem 3.1.1 relies on the study of the action of OutpWnq on a subgraph
of Kn called the graph of t0u-stars and F -stars and denoted by Ln. Vertices of Ln are
t0u-stars and F -stars (see Section 3.2.3 and Figure 3.1). Two vertices of Ln are adjacent
if and only if they are adjacent in Kn. We first prove that Ln is a rigid geometric model
for Wn (see Theorem 3.3.1). This relies on studying systoles of Ln, that is, embedded
cycles of minimal length. For this, we introduce (see Section 3.3) a new complexity
associated with an edge of Ln, and a relative complexity associated with pairs of t0u-
stars. For n � 3, the same study is not possible as the t0u-stars are no longer the vertices
with minimal degree in Ln. We do not know whether Theorem 3.3.1 holds for n � 3.

The rest of the proof consists in showing that there exists a homomorphism from
AutpKnq to AutpLnq defined by restriction which turns out to be injective. We note
that the characterization of the vertices of Ln in Kn is only based on the study of
the possible decompositions of the link of the vertices of Kn. This differs from the
proof of the similar result by Bridson and Vogtmann in the case of OutpFnq since they
used homological arguments in order to characterize some vertices of the spine of Outer
space. Another major difference is that the strictly local rigidity properties of Ln are
much weaker than the ones of the spine of Outer space, and we need to explore the
combinatorial balls of radius 4 in Ln in order to acquire a sufficient rigidity. Note that
in the case of algebraic groups, Tits only needed to explore the combinatorial balls of
radius 2.

In Section 3.5, we study the simplicial completion of Kn, denoted by Kn. The
simplicial complex Kn is also known as the free splitting complex of Wn (see [AS, HaM2]
and Section 3.5). This complex has an analogue in the case of a free group of rank N ,
called the free splitting complex of FN . It was proved by Aramayona and Souto that the
free splitting complex of FN is also a rigid geometric model for OutpFN q when N ¥ 3
(see [AS, Theorem 1]). In Section 3.5, we prove the following theorem:

Theorem 3.1.2. Let n ¥ 4. The natural homomorphism

OutpWnq Ñ AutpKnq

is an isomorphism.

Theorem 3.1.2 can be deduced from Theorem 3.1.1 as follows. The spine Kn has a
natural embedding into Kn. We first show that any automorphism of Kn preserves the
image of Kn. This gives a homomorphism AutpKnq Ñ AutpKnq and the main point,
using techniques of Scott-Swarup and Horbez-Wade, is to prove its injectivity. We then
conclude using Theorem 3.1.1.
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3.2 Preliminaries

3.2.1 Background on the outer space of Wn

Let n be an integer greater than 1. Let F � Z{2Z be a cyclic group of order 2 and
Wn � �n F be the universal Coxeter group of order n. We recall the definition of the
outer space POpWnq introduced by Guirardel and Levitt in [GuL1]. A point in POpWnq
is a homothety class of metric graph of groups X whose fundamental group is Wn,
equipped with a group isomorphism ρ : Wn Ñ π1pXq called a marking, which satisfies :

(1) the underlying graph of X is a finite tree ;

(2) every edge group is trivial ;

(3) there are exactly n vertices whose associated group is isomorphic to F ;

(4) all the other vertices have trivial associated group ;

(5) if v is a vertex whose associated group is trivial, then degpvq ¥ 3.

Two metric graphs of groups pX, ρq and pX 1, ρ1q are in the same homothety class
if there exists a homothety f : X Ñ X 1 (meaning an application multiplying all edge
lengths by the same scalar) and such that f��ρ � ρ1. We denote by rX, ρs the homothety
class of such a metric graph of groups pX, ρq. If the marking is implicit, we denote by
X the homothety class. The group AutpWnq acts by precomposing the marking. As, for
any α P InnpWnq, and for any X P POpWnq, we have αpX q � X , the action of AutpWnq
induces an action of OutpWnq.

The set POpWnq is equipped with a topology which we recall now. Suppose that
rX, ρs P POpWnq and let pX, ρq be the representative of rX, ρs such that the sum of the
edge lengths is equal to 1. To pX, ρq we associate a simplex by varying the lengths of
the edges, so that the sum of the edge lengths is still equal to 1. A homothety class
rX 1, ρ1s P POpWnq defines a codimension 1 face of the simplex associated with pX, ρq if
we can obtain pX 1, ρ1q from pX, ρq by contracting an edge of the underlying graph of X.
The weak topology is then defined in the following way: a set is open if and only if its
intersection with every open simplex is open.

We now recall the definition of a deformation retract of POpWnq known as the spine
of POpWnq and denoted by Kn. It is a flag complex whose vertices are the open simplices
associated with each homothety class rX, ρs P POpWnq. Two vertices corresponding to
two homothety classes rX, ρs and rX 1, ρ1s are adjacent if rX, ρs defines a face of the sim-
plex associated with rX 1, ρ1s and conversely. There is an embedding F : Kn ãÑ POpWnq
whose image is the barycentric spine of POpWnq. We will from then on identify Kn with
F pKnq.

We now give a description of the stabilizer of a point in Kn due to Levitt. If X P V Kn,
we denote by StabpX q the stabilizer of X under the action of OutpWnq. Let X be

74



a representative of X . We denote by Stab0pX q the subgroup of StabpX q made of all
elements F P OutpWnq such that the automorphism induced by F on X is the identity.
We write the next proposition in a more general context where the nontrivial vertex
groups are not necessarily isomorphic to F (see Section 3.5).

Proposition 3.2.1. [Lev1, Proposition 4.2] Let n ¥ 4 and X P V Kn. Let X be a repre-
sentative of X and let v1, . . . , vk be the vertices of X with nontrivial associated groups.
For i P t1, . . . , ku, let Gi be the group associated with vi. Then Stab0pX q is isomorphic
to

k¹
i�1

G
degpviq�1
i �AutpGiq ,

where AutpGiq acts on G
degpviq�1
i diagonally.

Remark 3.2.2. More generally, Proposition 3.2.1 remains true for every n ¥ 3 and every
free splitting of Wn (see the definitions at the beginning of Section 3.5).

3.2.2 The symmetries of K3

In this section, we describe the spine of POpWnq when n � 3. Let tx1, . . . , xnu be a
standard generating set of Wn. Let Θ: Wn Ñ Z{2Z be the homomorphism which sends,
for every i P t1, . . . , nu, the element xi to the nontrivial element of Z{2Z. By a result
of Mühlherr [Müh, Theorem A], the group Bn � kerpθq is a nonabelian free group of
rank n� 1 and, when n � 3, the group B3 is generated by a � x1x2 and b � x2x3. Let
φ P OutpB3q be the outer class of the automorphism which sends a to a�1 and b to b�1.
Then φ belongs to the center of OutpB3q and has order 2. Let G � B3 �φ Z{2Z.

Lemma 3.2.3. The group G is isomorphic to W3.

Proof. The group G is generated by pa, φq, p1, φq and pb, φq, and all these elements have
order 2. Hence there exists a surjective homomorphism Ψ: W3 Ñ G which sends x1 to
pa, φq, x2 to p1, φq and x3 to pb, φq. We claim that Ψ is an isomorphism. Since B3 has
index 2 in W3 and since every nontrivial normal subgroup of W3 is infinite, it suffices
to show that kerpΨq X B3 � t1u. Note that x1x2 is sent by Ψ to pa, 1q and x3x2 is
sent by Ψ to pb, 1q. Hence the homomorphism Ψ restricts to a surjective homomorphism
Ψ|B3 : B3 Ñ B3. Since B3 is a nonabelian free group of rank 2, it is Hopfian. Hence
Ψ|B3 is an isomorphism. This concludes the proof.

Let CV2 be the Outer space of a nonabelian free group F2 of rank 2, that is the space
whose elements are the F2-equivariant isometry classes of metric trees equipped with a
minimal, free action of F2, where CV2 is equipped with the weak topology as defined in
the case of POpWnq. For a graph G, an edge e of G is separating if the graph G� e
has two connected components. The space CV2 OutpF2q-equivariantly retracts onto the
reduced Outer space CV r

2 , where a point X in CV r
2 is such that, for every representative

X of X , the quotient F2zX does not have a separating edge. As in the case of POpWnq,
the space CV r

2 OutpF2q-equivariantly retracts onto the spine of the reduced outer space,
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denoted by K 1
2. It is the graph whose vertices are the F2-equivariant homeomorphism

classes of simplicial trees X equipped with a minimal, free action of F2 such that F2zX
does not have a separating edge and there exists an edge between two equivalence classes
X and X 1 if there exists X P X and X 1 P X 1 such that X collapses onto X 1 or conversely.
The graph K 1

2 is isomorphic to a trivalent tree (see [CV, Section 1.4]). The group OutpF2q
acts on K 1

2 by precomposition of the action. The element φ P OutpB3q � OutpF2q is in
the center of OutpB3q. Hence φ acts as the identity on K 1

2 and, if X is a representative of
a vertex X of K 1

2, the action of B3 on X extends to an action of G on X. By Lemma 3.2.3,
the group G is isomorphic to W3.

Lemma 3.2.4. Let X be a vertex of K 1
2 and let X be a representative of X . Then φ fixes

a unique vertex in X.

Proof. Note that B3zX is either a rose or a theta graph. Let T be a maximal tree in
B3zX. Let c, d P B3 be such that the two edges in B3zX are labeled by c and d. Then
tc, du is a free basis of B3. Let Φ be a representative of φ such that Φpcq � c�1 and
Φpdq � d�1. Then Φ preserves the axes Axpcq and Axpdq of c and d. Moreover, Φ has
a unique fixed point xc in Axpcq and a unique fixed point xd in Axpdq. We claim that
xc � xd. Indeed, otherwise Φ would fix pointwise the unique geodesic path τ between
xc and xd. Note that the elements c and d are chosen so that Axpcq XAxpdq � ∅. Thus
the path τ is contained in Axpcq YAxpdq. Since xc is the unique element in Axpcq fixed
by Φ and since xd is the unique element in Axpdq fixed by Φ, we have xc � xd. Let y
be a point in X fixed by Φ. We claim that y � xc. Indeed, as above, the element Φ
fixes pointwise the geodesic path between xc and y. This path must contain an edge in
Axpcq YAxpdq since Axpcq YAxpdq covers a fundamental domain of X for the action of
B3. Since xc is the unique point in Axpcq Y Axpdq fixed by Φ, we have xc � y. This
concludes the proof.

Remark 3.2.5. Let X be an equivalence class of metric trees in CV2 and let X be a
representative of X . Suppose that B3zX contains a separating edge. Then φ fixes an
edge in X, which corresponds to a lift of the separating edge of B3zX.

Let X be a vertex of K 1
2 and let X be a representative of X . By Lemma 3.2.4, the

edge stabilizers of X for the action of G are trivial. Moreover, the vertex stabilizers are
either trivial or isomorphic to F . Hence we have a natural simplicial map

Θ1 : K 1
2 Ñ K3

which is OutpGq-equivariant.

Proposition 3.2.6. The natural application

Θ1 : K 1
2 Ñ K3.

is an isomorphism.
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Proof. It suffices to construct an inverse for Θ1. Let X be a vertex in K3 and let X
be a representative of X . The action of W3 on X restricts to an action of B3 on X.
Since the vertex stabilizers of X are trivial or isomorphic to F , the action of B3 on X
is free. Since B3 has index 2 in W3, the action of B3 on X is minimal. Moreover, by
Remark 3.2.5, since X does not have an edge with nontrivial stabilizer for the action of
G, the quotient B3zX does not have a separating edge. Hence it induces a simplicial
map K3 Ñ K 1

2 which is the inverse of Θ1.

In particular, since the simplicial automorphism group of a trivalent tree is uncount-
able, the group AutpK3q is not isomorphic to OutpW3q.

3.2.3 The graph of t0u-stars and F -stars.

In order to prove Theorem 3.1.1, we introduce a graph included in the spine Kn called
the graph of t0u-stars and F -stars.

Definition 3.2.7. p1q A t0u-star is the equivalence class in Kn of a metric graph of groups
whose underlying graph has n� 1 vertices and n leaves.

p2q A F -star is the equivalence class in Kn of a metric graph of groups whose underlying
graph has n vertices and n� 1 leaves.

p3q The graph of t0u-stars and F -stars, denoted by Ln, is the full subgraph of Kn whose
vertices are exactly the t0u-stars and the F -stars. There is an edge between two vertices
of Ln if and only if there is an edge between the corresponding vertices in Kn.

As AutpWnq acts on Kn by precomposition of the action, the graph Ln is invariant
by OutpWnq.















t0u

xx1y

xx2y

xx3y

xx4y

xx5y

xx6y













xx6y

xx3y

xx1y

xx2y xx4y

xx5y

Figure 3.1: A t0u-star (left) and an F -star (right).

Since any two t0u-stars are at distance at least 2 in Kn, the neighbors of a t0u-star
in Ln are F -stars. Conversely, since any two F -stars are at distance at least 2 in Kn, the
neighbors of an F -star in Ln are t0u-stars. The number of neighbors in Ln of a t0u-star is
equal to n. They correspond to collapsing exactly one edge of the underlying graph. The
number of neighbors in Ln of an F -star is equal to 2n�2. They correspond to blowing-up
the central vertex of the underlying graph while applying a partial conjugation by the
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generator of the preimage by the marking of the group associated with the center. As
AutpWnq acts transitively on the set of free bases of Wn, we see that AutpWnq acts
transitively on the set of t0u-stars. Thus, as partial conjugations and permutations
generate AutpWnq by [Müh, Theorem B], it follows that the graph Ln is connected.
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Figure 3.2: Examples of two neighbours of an F -star in L6.

3.3 Rigidity of the graph of t0u-stars and F -stars

In this section, we prove the following theorem.

Theorem 3.3.1. Let n ¥ 4. Let f be an automorphism of Ln preserving On and Fn.
Then f is induced by the action of a unique element γ of OutpWnq.

For n ¥ 5, any F -star has 2n�2 neighbours in Ln and any t0u-star has n neighbours in
Ln. As 2n�2 ¡ n precisely when n ¥ 5, we see that every automorphism of Ln preserves
the set of t0u-stars and the set of F -stars. We thus have the following corollary.

Corollary 3.3.2. Let n ¥ 5. The natural homomorphism

OutpWnq Ñ AutpLnq

is an isomorphism.

Before proving Theorem 3.3.1, we first prove a lemma which characterises the number
of paths in a ball of radius 4 centered at a t0u-star.

Let X be a t0u-star, and pX, ρq a representative of X . Let v1, . . . , vn be the n leaves
of the underlying graph of X. For i P t1, . . . , nu, let xi be the preimage by ρ of the
generator of the group associated with vi, and let Yi be the F -star adjacent to X such
that a representative of Yi is obtained from X by contracting the edge adjacent to vi.
For distinct i, j P t1, . . . , nu, let σj,i : Wn Ñ Wn be the automorphism sending xj to
xixjxi and, for k � j, fixing xk. In this context we will call xi the twistor of σj,i. For
distinct i, j P t1, . . . , nu, let pi jq be the automorphism of Wn switching xi and xj and,
for k � i, j, fixing xk. A theorem of Mühlherr (c.f. [Müh, Theorem B]) implies that
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Figure 3.3: Two representatives of the same homothety class X 1 realizing kX ,ipX 1q.

tσi,j |i � ju Y tpi jq |i � ju is a generating set of AutpWnq. Note that, for every integers
i, j, k, `, there exist p, q such that pi jqσk,`pi jq � σp,q.

We now fix i P t1, . . . , nu. Let X 1 be a t0u-star adjacent to Yi and distinct from X .
Let pX 1, ρ1q be a representative of X 1. Let w1, . . . , wn be the leaves of the underlying
graph of X 1, and, for j P t1, . . . , nu, let yj be the preimage by ρ1 of the generator of the
group associated with wj . Up to composition by an inner automorphism and reordering,
either yj � xj or yj � xiyjxi (see Figure 3.2 with i � n � 6). Thus, there exist

k P t1, . . . , n � 1u and i1, . . . , ik P t1, . . . ,pi, . . . , nu pairwise distinct such that, for all
j P t1, . . . , nu,

� k¹
l�1

σil,i

	
pxjq � yj .

Let Inn#pWnq � xInnpWnq, tσi,j | i � juy. We define the first term complexity of X 1 by

kX ,ipX 1q � min

$&%k
����� Di1, . . . , ik P t1, . . . , î, . . . , nu, I P Inn#pWnq such that

@j P t1, . . . , nu, I �
� ±
lPt1,...,ku

σil,i

	
pxjq � yj

,.- .

This definition does not depend on the choice of a representative of X 1. Note that the
sequence i1, . . . , ik realizing the minimum is not necessarily unique (see Figure 3.3 with
n � 5 and i � 3). However, if kX ,ipX 1q � n� kX ,ipX 1q � 1, such a sequence is unique.

We now define a notion of relative complexity in On, the set of t0u-stars in Ln. Let Z
be a t0u-star in Ln distinct from X and let pZ,ψq be a representative of Z. Let w1, . . . , wn
be the leaves of the underlying graph of Z, and, for j P t1, . . . , nu, let zj be the preimage
by ψ of the generator of the group associated with wj . As tσi,j |i � ju Y tpi jq |i � ju
is a generating set of AutpWnq (c.f. [Müh, Theorem B]), we see that, up to composition
by an inner automorphism and reordering,

Dk P N, Dpi1, j1q, . . . , pik, jkq P t1, . . . , nu2 � tpx, xq | x P t1, . . . , nuu,

@j P t1, . . . , nu,
� k±
m�1

σim,jm

	
pxjq � zj .

We now define the second term complexity of Z by
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`X pZq � min

$''''&''''%`
�����

Da1, . . . , a` P t1, . . . , nu pairwise distinct,

DI P Inn#pWnq such that, Dk P N
Dpi1, j1q, . . . , pik, jkq P t1, . . . , nu � ta1, . . . , a`u � tpx, xq | x P ta1, . . . , a`uu,

@j P t1, . . . , nu, I �
� k±
m�1

σim,jm

	
pxjq � zj

,////.////- .

The intuition behind the second term complexity is the following. We want to count
the minimal number N of elements of tx1, . . . , xnu such that, for all j P t1, . . . , nu, the
generator zj can be obtained from xj using partial conjugations by at most N twistors.

Note that, in the definition of `X pZq, if
� k±
m�1

σim,jm

	
pxjq � zj , and if m1,m2 P t1, . . . , ku

are distinct, we do not require that jm1 � jm2 , so that the same twistor can appear in
distinct partial conjugations. Note also that `X pZq does not depend on the choice of a
representative of Z.

Lemma 3.3.3. Let X , pX, ρq, v1, . . . , vn and pYiqi�1,...,n be as above.
p1q Fix i P t1, . . . , nu and let X 1 be a t0u-star adjacent to Yi and distinct from X . Then
`X pX 1q � 1 and a set ta1, . . . , a`u realizing the minimum defining `X pX 1q is tiu.

p2q Let BpX , rq be the closed ball in Ln of radius r centered at X . Let Z P BpX , 4qXOn.
Then `X pZq ¤ 2. Moreover, the set realizing the minimum defining `X pZq is unique.

Proof. Let pX 1, ρ1q be a representative of X 1. Let y1, . . . , yn be the preimage by ρ1 of
the generators of the nontrivial vertex groups of X 1. Then, up to composing by an inner
automorphism and reordering, for all j P t1, . . . , nu, either yj � xj or yj � xixjxi. Thus,
for all j P t1, . . . , nu, the only twistor that we need in order to obtain yj from xj using
partial conjugations is xi. Since X 1 � X , it follows that `X pX 1q � 1 and that a set
realizing the minimum defining it is tiu.

For the second assertion, let Z be a representative of Z, and let z1, . . . , zn be the
preimage by the marking of the generators of the vertex groups. Then, there exist
j, k P t1, . . . , nu such that, for all m P t1, . . . , nu, one of the following holds:
p1q zm � xm,

p2q zm � xjxmxj ,

p3q zm � xkxmxk,

p4q zm � xkxjxkxmxkxjxk,

p5q zm � xkxjxmxjxk.

Thus, for all m P t1, . . . , nu, as we only need xj and xk as twistors to obtain zm from
xm, we see that `X pZq ¤ 2.

Moreover, the twistors xj and xk are the unique elements of tx1, . . . , xnu such that,
for all i P t1, . . . , nu, the generator zi is obtained from xi by partial conjugations using
xj and xk as twistors. Thus, for all Z P BpX , 4q XOn, the set ta1, . . . , alu realizing the
minimum defining `X pZq is unique.
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We isolate here a technical argument that will appear frequently in the proof of
Lemma 3.3.5.

Lemma 3.3.4. Let X , pX, ρq, v1, . . . , vn and pYiqi�1,...,n be as above.
Fix i P t1, . . . , nu and let X 1 be a t0u-star adjacent to Yi and distinct from X . Let

k, ` P t1, . . . , nu � tiu be distinct. Let X p2q
k be a t0u-star such that:

 dpX 1,X p2q
k q � 2,

 `X pX p2q
k q � 2 and a set realizing the minimum defining it is ti, ku.

Let X p3q
k be a t0u-star at distance 2 of X p2q

k and such that any set realizing `X pX p3q
k q

contains `. Then `X pX p3q
k q ¥ 3.

Proof. Let pX 1, ρ1q be a representative of X 1. Let w1, . . . , wn be the leaves of the underly-
ing graph of X 1, and, for m P t1, . . . , nu, let ym be the preimage by ρ1 of the generator of

the group associated with wm. For j P t2, 3u, let pX
pjq
k , ψpjqq be a representative of X pjq

k ,

let w
pjq
1 , . . . , w

pjq
n be the n leaves of the underlying graph of X

pjq
k and, for m P t1, . . . , nu,

let y
pjq
m be the preimage by ψpjq of the generator of the group associated with w

pjq
m . Note

that, up to composition by an inner automorphism and reordering, for all m P t1, . . . , nu,

yp2qm � xγmi xβmk xαmi xmx
αm
i xβmk xγmi , αm, βm, γm P t0, 1u.

Note also that γm � 1 precisely when yk � xixkxi and βm � 1. Thus, for all

m P t1, . . . , nu, the element y
p2q
m is obtained from xm using partial conjugations with

twistors xi and xk. Moreover, as k � i, and as X 1 � X , there exists n1 P t1, . . . , nu such

that αn1 � 0 or γn1 � 0. Since X p2q
k � X 1, there exists n2 such that βn2 � 0.

As ` is contained in any set realizing the minimum defining `X pX p3q
k q, there exists

p P N and m1 P t1, . . . , nu such that

� p¹
m�1

σim,jm

	
pxm1q � yp3qm1

,

and there exists m such that jm � `.

Claim. The elements xk and xi are twistors of any set realizing the minimum defining

`X pX p3q
k q.

Proof. As ` is contained in any set realizing `X pX p3q
k q, a representative of X p3q

k is obtained

from X
p2q
k by contracting the edge adjacent to w

p2q
` and then blowing-up an edge at the

central vertex. We then distinguish different cases according to the value of y
p2q
` .

If y
p2q
` � x`, then for all m P t1, . . . , nu,

yp3qm � xδm` xγmi xβmk xαmi xmx
αm
i xβmk xγmi xδm` , αm, βm, γm, δm P t0, 1u.

Since n1 and n2 are such that αn1 � 0 or γn1 � 0, and βn2 � 0, the claim follows.
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If y
p2q
` � xix`xi, then for all m P t1, . . . , nu, we have

yp3qm � xδmi xδm` xγm�δmi xβmk xαmi xmx
αm
i xβmk xγm�δmi xδm` xδmi , αm, βm, γm, δm P t0, 1u.

Since n2 is such that βn2 � 0 and n1 is such that γn1 � δn1 � 0, or αn1 � 0 or δn1 � 0,
the claim follows.

If y
p2q
` � xkx`xk, then for all m P t1, . . . , nu, we have

yp3qm � xδmk xδm` xδmk xγmi xβmk xαmi xmx
αm
i xβmk xγmi xδmk xδm` xδmk , αm, βm, γm, δm P t0, 1u.

Since n1 and n2 are such that αn1 � 0 or γn1 � 0, and βn2 � 0, the result follows.

Finally, if y
p2q
` � xkxix`xixk, or if y

p2q
` � xixkx`xkxi, or if y

p2q
` � xixkxix`xixkxi,

then ym1 is obtained from xm1 using xi, xk and x` as twistors. This concludes the proof
of the claim.

Thus, i, k and ` are contained in any set realizing the minimum defining `X pX p3q
k q,

and this implies that `X pX p3q
k q ¥ 3.

We are now ready to prove a lemma concerning the number of embedded paths in
BpX , 4q.

Lemma 3.3.5. Let X , pX, ρq, v1, . . . , vn and pYiqi�1,...,n be as above.
Fix i P t1, . . . , nu and let X 1 be a t0u-star adjacent to Yi and distinct from X . Let

pX 1, ρ1q be a representative of X 1 and let X
1

be the underlying graph of X 1. Let

ti1, . . . , ikX ,ipX 1qu � t1, . . . , î, . . . , nu

be a set realizing the minimum defining kX ,ipX 1q, and j P t1, . . . , î, . . . , nu. Let x11, . . . , x
1
n

be the preimages by ρ1 of the generators of the nontrivial vertex groups. Up to reordering,
suppose that, for all k P t1, . . . , nu, x1k is obtained from xk by a conjugation.

(1) If x1j � xj, the number of distinct injective edge paths in BpX , 4q � tX u of length

at most 5 between X 1 and Yj is equal to 2n�kX ,ipX
1q�2 � 1.

(2) If x1j � xixjxi, the number of distinct injective edge paths in BpX , 4q � tX u of

length at most 5 between X 1 and Yj is equal to 2kX ,ipX
1q�1 � 1.

(3) Let Z be a t0u-star distinct from X and adjacent to Yj and such that kX ,jpZq � 1.
Let ttu be a set realizing the minimum defining kX ,jpZq. Suppose that x1j � xj.

If t P ti1, . . . , ikX ,ipX 1qu, then there is no path between X 1 and Z of length at most
4 in BpX , 4q�tX u. If t R ti1, . . . , ikX ,ipX 1qu, then there is at least one path between
X 1 and Z of length at most 4 in BpX , 4q � tX u.

Proof. We prove the case x1j � xj . The proof of the case x1j � xixjxi is similar. The
proof consists in showing that the possible arcs P are as represented in Figure 3.4.
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Figure 3.4: Example of a path in Lemma 3.3.5 between X 1 (adjacent to Yi with i � 2)
and Yj with j � 6.

Let P be an arc (that is, an injective edge path), in BpX , 4q � tX u between X 1 and

Yj of length at most 5. Let w1, . . . , wn be the leaves of X
1
, and, for k P t1, . . . , nu, let yk

be the preimage by ρ1 of the generator of the group associated with wk. Note that, up
to reordering and composing by an inner automorphism, if k R ti1, . . . , ikX ,ipX 1qu, then
yk � xk, and, if k P ti1, . . . , ikX ,ipX 1qu, then yk � xixkxi. For k � i, let Y 1

k be the F -star
such that a representative of Y 1

k is obtained from X 1 by contracting the edge adjacent
to wk.

Claim. If k R ti, ju, the path P cannot contain Y 1
k.

Proof. Suppose towards a contradiction that Y 1
k P P , with k R ti, ju. Since P is

an arc, there exists in P a t0u-star X p2q
k adjacent to Y 1

k and distinct from X 1. By

Lemma 3.3.3 p2q, we see that lX pX p2q
k q ¤ 2. We claim that lX pX p2q

k q � 2. Indeed, let

pX
p2q
k , ψq be a representative of X p2q

k , let w
p2q
1 , . . . , w

p2q
n be the n leaves of the underlying

graph of X
p2q
k and, for m P t1, . . . , nu, let y

p2q
m be the preimage by ψ of the generator of

the group associated with w
p2q
m . Note that, up to composition by an inner automorphism

and reordering, for all m P t1, . . . , nu,

yp2qm � xγmi xβmk xαmi xmx
αm
i xβmk xγmi , αm, βm, γm P t0, 1u.
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Note also that γm � 1 precisely when yk � xixkxi and βm � 1. Thus, for all

m P t1, . . . , nu, the element y
p2q
m is obtained from xm using partial conjugations with

twistors xi and xk. Moreover, as k � i, and as X 1 � X , there exists n1 such that either

αn1 � 0 or γn1 � 0. As X p2q
k � X 1, there exists n2 such that βn2 � 0. It implies that

lX pX p2q
k q � 2.

Therefore, by Lemma 3.3.3 p1q, the t0u-star X p2q
k is not adjacent to Yj since any

t0u-star Z adjacent to Yj is such that lX pZq � 1.

So P contains an F -star Yp2q
k adjacent to X p2q

k and distinct from Y 1
k (see Figure 3.4

with k � 6). We claim that a representative of Yp2q
k is obtained from X

p2q
k by contracting

the edge adjacent to w
p2q
i . Indeed, if it is not the case, one of the following two possibilities

holds.

piq A representative of Yp2q
k is obtained from X

p2q
k by contracting the edge adjacent to

w
p2q
k . But then we go back to Y 1

k, which contradicts the fact that P is an arc.

piiq A representative of Yp2q
k is obtained from X

p2q
k by contracting the edge adjacent to

w
p2q
` , with ` � i, k. Let X p3q

k be the t0u-star in P adjacent to Yp2q
k and distinct from

X p2q
k , and let X

p3q
k be a representative of X p3q

k . Then, there exist p P N, m1 P t1, . . . , nu
and i1, . . . , ip, j1, . . . , jp P t1, . . . , nu such that, if ym1 is the preimage by the marking of

a nontrivial vertex group of X
p3q
k , we have

� p¹
m�1

σim,jm

	
pxm1q � ym1 ,

and there exists m such that jm � `. Therefore, by Lemma 3.3.4, we see that `X pX p3q
k q ¥

3. But, by Lemma 3.3.3 p2q, we have X p3q
k R BpX , 4q and this contradicts the fact that

P � BpX , 4q.

Therefore a representative of Yp2q
k is obtained from X

p2q
k by contracting the edge

adjacent to w
p2q
i (see Figure 3.4).

But then, for every t0u-star Z adjacent to Yp2q
k , the set realizing `X pZq must contain

k. Indeed, let Z be a representative of Z and let z1, . . . , zn be the preimages by the
marking of the generators of the nontrivial vertex groups. Up to composition by an

inner automorphism and reordering, zi � y
p2q
i and there exists m P t1, . . . , nu such

that zm � y
p2q
m . Thus, if y

p2q
i is obtained from xi using partial conjugations such that

one of the twistors is xk, then a set realizing the minimum defining `X pZq contains k.

Moreover, if y
p2q
i � xi, then, since n2 is such that βn2 � 0, we see that zn2 is obtained

from xn2 using partial conjugations such that one of the twistors is xk. In any case,
the set realizing `X pZq must contain k. On the other hand, by Lemma 3.3.3 p1q, if Z 1

is a t0u-star adjacent to Yj , then the set realizing `X pZ 1q only contains j. Since a set
realizing the second term complexity is unique by Lemma 3.3.3 p2q, we see that Z and
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Yj are not adjacent in Ln. This leads to a contradiction since we suppose that the length
of P is at most 5.

So the above claim implies that the path P either contains Yi or Y 1
j (note that

Yi � Y 1
i). The case Yi P P cannot occur by the following claim.

Claim. There does not exist a t0u-star adjacent to Yi and distinct from X at distance
3 from Yj in BpX , 4q � tX u.

Proof. Let X p2q
i be a t0u-star adjacent to Yi and distinct from X and X 1. Let X

p2q
i be

a representative of X p2q
i . Let v

p2q
1 , . . . , v

p2q
n be the leaves of the underlying graph of X

p2q
i

and, for m P t1, . . . , nu, let a
p2q
m be the preimage by the marking of the generator of the

groups associated with v
p2q
m . Up to reordering and composing by an inner automorphism,

we can suppose that, for all m P t1, . . . , nu, either a
p2q
m � xm or a

p2q
m � xixmxi (this is

possible by Lemma 3.3.3 p1q). Let X p3q
i be a t0u-star distinct from X and at distance

2 of X p2q
i , let X

p3q
i be a representative of X p3q

i and let a
p3q
1 , . . . , a

p3q
n be the preimages by

the marking of the generators of the nontrivial vertex groups. Then one of the following
holds:

paq The t0u-star X p3q
i is adjacent to Yi. By Lemma 3.3.3 p1q, a set realizing `X pX p3q

i q
is equal to tiu. On the other hand, the set realizing the minimum defining the second
term complexity of every t0u-star adjacent to Yj contains j. As i � j, we see that X p3q

cannot be adjacent to Yj .
pbq There exist p P N, k P t1, . . . , nu � tiu, `, i1, . . . , ip, j1, . . . , jp P t1, . . . , nu and
s P t1, . . . , pu such that � p¹

m�1

σim,jm

	
px`q � a

p3q
`

and js � k. Thus k is contained in any set realizing the minimum defining `X pX p3q
i q.

Moreover, we claim that i is contained in any set realizing the minimum defining `X pX p3q
i q.

Indeed, as k is contained in a set realizing the minimum defining `X pX p3q
i q, a represen-

tative of X p3q
i is obtained from X

p2q
i as follows. We first contract the edge adjacent to

the vertex v
p2q
k . This gives an F -star denoted by Y

p3q
i . Then, a representative of X p3q

i

is obtained from Y
p3q
i by blowing-up an edge. If a

p2q
k � xk, then, as X p2q

i is adjacent to

Yi, a set realizing the minimum defining `X pX p2q
i q is equal to tiu by Lemma 3.3.3 p1q.

As a
p2q
k � xk, we see that either a

p3q
m � a

p2q
m or a

p3q
m � xka

p2q
m xk. Thus, as i � k, we see

that i is contained in a set realizing the minimum defining `X pX p3q
i q. If a

p2q
k � xixkxi,

then a
p3q
k � a

p2q
k � xixkxi and any set realizing the minimum defining `X pX p3q

i q must
contain i. Therefore, in any case, we have that ti, ku is contained in any set realizing the

minimum defining `X pX p3q
i q. This shows that `X pX p3q

i q ¥ 2. However, since the t0u-stars
adjacent to Yj have second term complexity equal to 1 by Lemma 3.3.3 p1q, we see that

X p2q
i cannot be such that dBpX ,4q�tX upX

p2q
i ,Yjq � 3.

85



Thus, P contains Y 1
j . As any two distinct F -stars are at distance at least 2 in Ln, the

path P contains a t0u-star X p2q
j adjacent to Y 1

j and distinct from X 1 (see Figure 3.4). Let

pX
p2q
j , ψq be a representative of X p2q

j , let w
p2q
1 , . . . , w

p2q
n be the n leaves of the underlying

graph of X
p2q
j and, for m P t1, . . . , nu, let y

p2q
m be the preimage by ψ of the generator of

the group associated with w
p2q
m . Note that, up to composition by an inner automorphism

and reordering, for all m P t1, . . . , nu,

yp2qm � xβmj xαmi xmx
αm
i xβmj , αm, βm P t0, 1u.

As X p2q
j � X 1, there exist k, l P t1, . . . , nu such that αk � 0 and βl � 0. Thus,

`X pX p2q
j q � 2 and a set realizing the minimum defining `X pX p2q

j q is ti, ju. This also

implies that the t0u-star X p2q
j is not adjacent to Yj by Lemma 3.3.3 p1q. So P contains

an F -star Yp2q
j adjacent to X p2q

j and distinct from Yj and Y 1
j (see Figure 3.4). We claim

that a representative of Yp2q
j is obtained from X

p2q
j by contracting the edge that contains

w
p2q
i . Indeed, if it is not the case, then one of the following holds.

piq A representative of Yp2q
j is obtained from X

p2q
j by contracting the edge that contains

w
p2q
j . Then Yp2q

j � Y 1
j , and this contradicts the fact that P is an arc.

piiq A representative of Yp2q
j is obtained from X

p2q
j by contracting the edge that contains

w
p2q
` , with ` � i, j. Let X p3q

` be a t0u-star adjacent to Yp2q
j and distinct from X p2q

j , and

let X
p3q
` be a representative of X p3q

` . As X p3q
` � X p2q

j any set realizing the minimum

defining `X pX p3q
` q must contain `. Accordingly, since ` � i, j we see by Lemma 3.3.4 that

`X pX p3q
` q ¥ 3. This contradicts the fact that P � BpX , 4q � tX u by Lemma 3.3.3 p2q.

Therefore, a representative of Yp2q
j is obtained from X

p2q
j by contracting the edge

adjacent to w
p2q
i . We now distinguish two cases, according to the value of βi.

Claim. p1q If βi � 0, then, for all m P t1, . . . , î, . . . , nu, we have pαm, βmq � p1, 1q.

p2q If βi � 1, then, for all m P t1, . . . , î, . . . , nu such that αm � 1, the pair pαm, βmq
equals p1, 1q.

Proof. Let Z be a t0u-star adjacent to Yp2q
j , let Z be a representative of Z, and let

z1, . . . , zn be the preimages by the marking of the generators of the nontrivial vertex
groups of Z.

p1q Suppose that βi � 0 and that there exists m P t1, . . . , î, . . . , nu such that pαm, βmq �
p1, 1q. Then any set realizing the minimum defining `X pZq must contain i because,

as y
p2q
m � xjxixmxixj , and as y

p2q
i � xi, we see that, up to composing by an inner

automorphism and reordering, we have that zi � xi and either zm � xjxixmxixj or
zm � xixjxixmxixjxi.
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p2q Suppose now that βi � 1 and that there exists m P t1, . . . , î, . . . , nu such that
αm � 1 and such that the pair pαm, βmq equals p1, 0q. Then any set realizing the

minimum defining `X pZq must contain i because, as y
p2q
m � xixmxi, and as y

p2q
i � xjxixj ,

we see that, up to composing by an inner automorphism and reordering, we have that
zi � xjxixj and either zm � xixmxi or zm � xjxixjxixmxixjxixj .

So, in both cases, for every t0u-star Z adjacent to Yp2q
j , the set realizing the minimum

defining `X pZq must contain i.
Let Z be the t0u-star in P adjacent to Yp2q and distinct from X p2q. Then the set

realizing the minimum defining `X pZq must contain i by the above. Since the length of
P is at most 5, the t0u-star Z is adjacent to Yj . But then, by Lemma 3.3.3 p1q, the
set realizing the minimum defining `X pZq is equal to j. Since a set realizing the second
term complexity is unique by Lemma 3.3.3 p2q, we see that Z and Yj cannot be adjacent
and this leads to a contradiction.

So if βi � 0, then, for all m P t1, . . . ,pi, . . . , nu, the pair pαm, βmq � p1, 1q and if
βi � 1, for all m P t1, . . . , î, . . . , nu such that αm � 1, the pair pαm, βmq equals p1, 1q.

We now claim that there are exactly 2n�kX ,ipX
1q�2�1 possible values for the sequence

pβ1, . . . , pβi, . . . , pβj , . . . , βnq.
First, if βi � 1, then by the above claim, for all m P t1, . . . ,pi, . . . , nu such that

αm � 1, we have βm � 1. Using a global conjugation by xj , it then follows that every
marked graph of groups whose associated sequence pβ1, . . . , βnq satisfies the above claim
and is such that βi � 1 is equivalent to a marked graph of groups whose associated
sequence pβ11, . . . , β

1
nq satisfies the above claim and is such that β1i � 0. Thus we can

suppose that, for such a sequence pβ1, . . . , βnq, we have βi � 0.
Moreover, by the above claim, all the pairs pαm, βmq such that αm � 1 have the

same value for βm. Thus the sequence pβ1, . . . , β̂i, . . . , β̂j , . . . , βnq is determined by the
pairs pαm, βmq such that αm � 0 and the choice of βm. By hypothesis, there are exactly
kX ,ipX 1q values of m P t1, . . . ,pi, . . . , nu such that αm � 1 since αm � 1 if and only if
x1m � xixmxi. It then suffices to choose whether βm � 0 or βm � 1. Furthermore,
let pβ1, . . . , βnq and pβ11, . . . , β

1
nq be two distinct sequences satisfying the above claim

and such that βi � β1i � 0. Then there exists m P t1, . . . ,pi, . . . , nu such that βm � 1
and β1m � 0. Thus, since βi � β1i � 0, the associated marked graph of groups are
not equivalent and the two sequences give rise to two distinct equivalence classes of
marked graph of groups. Finally, since X p2q � X 1, there exists k P t1, . . . ,pi, . . . , nu
such that βk � 1. Hence there are 2n�kX ,ipX

1q�2 � 1 possible values for the sequence
pβ1, . . . , pβi, . . . , pβj , . . . , βnq.

Let Z be a t0u-star adjacent to Yp2q
j and distinct from X p2q

j and let Z be a represen-
tative of Z. Let z1, . . . , zn be the preimage by the marking of the nontrivial associated
groups. Then, for every sequence pβ1, . . . , pβi, . . . , pβj , . . . , βnq satisfying the above claim,
there exists exactly one such Z such that, up to composing by an inner automorphism
and reordering, for all ` P t1, . . . , nu, we have either z` � xjx`xj or z` � x`. Such a

t0u-star is adjacent to both Yp2q
j and Yj . We call this t0u-star X p3q

j .
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Thus, there exists a unique t0u-star X p3q
j adjacent to both Yp2q

j and Yj . Since

P is an arc of length at most 5, it must contain X p3q
j . Thus an arc in BpX , 4q �

tX u with length at most 5 between X 1 and Yj is completely determined by a se-

quence pβ1, . . . , β̂i, . . . , β̂j , . . . , βnq satisfying the above claim. This concludes the proof
of Lemma 3.3.5 p1q.

In order to prove the third assertion of the lemma, let P be an arc between X 1 and
Z of length at most 4. Then there exists an arc P 1 between X 1 and Yj of length at
most 5 which contains P . Thus, P is contained in one of the paths constructed in the
proof of the first assertion of the lemma. Therefore, using the notations of the proof of

Lemma 3.3.5 p1q, we see that Z � X p3q
j . Let X

p3q
j be a representative of X p3q

j and let

y
p3q
1 , . . . , y

p3q
n be the preimages by the marking of the generators of the nontrivial vertex

groups. Then for all m P t1, . . . , nu, if αm � 0, then y
p3q
m � xβmj xmx

βm
j , and if αm � 1,

then either y
p3q
m � xm or y

p3q
m � xjxmxj . Moreover, by construction, we know that there

exists m such that αm � 0 and βm � 0. As kX ,jpZq � 1, and as αt � 0 if and only if
t R ti1, . . . , ikX ,ipX 1qu, we see that there is an arc between X 1 and Z of length at most 4
if and only if t R ti1, . . . , ikX ,ipX 1qu. This concludes the proof.

Proposition 3.3.6. Let n ¥ 4. Let X P On. Let f P AutpLnq be such that f restricted to
the star of X is the identity. Then f � idLn.

Proof. In order to prove Proposition 3.3.6, we prove that f fixes the star of all t0u-stars
at distance 2 from X . This concludes by propagation since Ln is connected.

First, we prove that f fixes BpX , 2q X On � tX u. Let X1,X2 P BpX , 2q X On be
distinct t0u-stars. If there exist distinct i, j P t1, . . . , nu such that X1 is adjacent to Yi
and X2 is adjacent to Yj , then fpX1q � X2 because fpYiq � Yi, fpYjq � Yj and there is
no t0u-star adjacent to both Yi and Yj apart from X .

Suppose that there exists i such that Yi is adjacent to both X1 and X2. For α P t1, 2u,
let Xα be a representative of Xα and let yα1 , . . . , y

α
n be the preimages by the marking

of the generators of the nontrivial vertex groups of Xα. Since X1 � X2, we see that,
up to reordering and composing by an inner automorphism, there exist j, k P t1, . . . , nu
such that y1

i � y2
i � xi, such that y1

j � xj and y2
j � xixjxi and such that y1

k � y2
k. By

Lemma 3.3.5 p1q, if kX ,ipX1q � kX ,ipX2q, then the number of arcs of length at most 5 in
BpX , 4q � tX u between X1 and Yk is distinct from the number of arcs of length at most
5 in BpX , 4q � tX u between X2 and Yk. Suppose that kX ,ipX1q � kX ,ipX2q � n � 1. In
particular, we have that n� kX ,ipX1q� 2 � kX ,ipX2q� 1. Therefore, by Lemma 3.3.5 p1q
and p2q, the number of arcs of length at most 5 in BpX , 4q � tX u between X1 and Yj is
distinct from the number of arcs of length at most 5 in BpX , 4q � tX u between X2 and
Yj . Thus fpX1q � X2 since f restricted to the star of X is the identity. In particular,
since n ¥ 4, if X 1 P BpX , 2q�tX u is such that X 1 is adjacent to Yi and that kX ,ipX 1q � 1,
then fpX 1q � X 1.

It remains the case where kX ,ipX1q � kX ,ipX2q �
n�1

2 . Let X k be the t0u-star
adjacent to Yk such that kX ,ipX kq � 1 and such that the set realizing kX ,ipX kq is tju.
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As kX ,ipX kq � 1, we have that fpX kq � X k. Moreover, as y1
j � xj and as y2

j � xixjxi,

Lemma 3.3.5 p3q implies that there is no path of length at most 4 between X2 and X k

in BpX , 4q � tX u while there is one such path between X1 and X k. Thus fpX1q � X1.
Hence f fixes BpX , 2q XOn � tX u.

Now let X 1 P BpX , 2q X On � tX u and let Y be the F -star adjacent to both X and
X 1 (the uniqueness of this F -star follows from the uniqueness of the set realizing the
minimum defining `X , see Lemma 3.3.3 p2q). Let X 1 be a representative of X 1 and let
v11, . . . , v

1
n be the leaves of the underlying graph of X 1 and, for i P t1, . . . , nu, let x1i be

the preimage by the marking of X 1 of the generators of the group associated with v1i.
Then, up to reordering, we can suppose that a representative of Y is obtained from X 1

by contracting the edge adjacent to v1n. Let Y1 and Y2 be two distinct F -stars adjacent
to X 1 and distinct from Y. We prove that fpY1q � Y2. Up to reordering, we can suppose
that, for α P t1, 2u, a representative of Yα is obtained from X 1 by contracting the edge
adjacent to v1α. Let Z be a t0u-star adjacent to Y such that :

p1q kX 1,npZq � 1 ;

p2q a set realizing the minimum defining kX 1,npZq is t1u.

Then Lemma 3.3.5 p1q and p2q tells us that the number of paths of length at most 5
in BpX 1, 4q�tX 1u between Z and Y1 is equal to 2kX 1,npZq�1�1 while the number of paths
of length at most 5 in BpX 1, 4q � tX 1u between Z and Y2 is equal to 2n�kX 1,npZq�2 � 1.
Since kX 1,npZq � 1, since n ¥ 4 and since f restricted to the star of Y is the identity, we
see that fpY1q � Y2 and the proposition follows.

Proof of Theorem 3.3.1. The uniqueness of γ is immediate since no automorphism of
Wn fixes the conjugacy class of each element appearing in every free generating set of
Wn. It thus suffices to prove that every automorphism preserving On and Fn is induced
by an element of OutpWnq. Let f be an automorphism of Ln preserving On and Fn.
Since OutpWnq acts transitively on On, we can suppose, up to composing by an element
of OutpWnq, that f fixes a t0u-star X . Now StabOutpWnqpX q is isomorphic to Sn and
every element of StabOutpWnqpX q acts on the underlying graph of a representative X of
X by permuting the leaves. As a representative of any F -star adjacent to X is obtained
from X by contracting the edge adjacent to a leaf, we see that StabOutpWnqpX q acts
transitively on the link of X . Thus, we can suppose, up to composing by an element of
OutpWnq, that f fixes the star of X . Proposition 3.3.6 then implies that f is the identity.
This concludes the proof of Theorem 3.3.1.

3.4 Rigidity of the outer space of Wn

The aim of this section is to prove Theorem 3.1.1, by constructing an injective homo-
morphism AutpKnq ãÑ AutpLnq. We first give a characterization of the t0u-stars and
the F -stars which is preserved under automorphisms of Kn. This characterization relies
on a study of the link of the vertices of Kn. We begin with some definitions.
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Definition 3.4.1. Let X be a graph. A join of X is a decomposition of X into two
nontrivial subgraphs A and B such that V AXV B � ∅ and, for all a P V A and b P V B,
the vertices a and b are adjacent in X. We then write X � A �B.

The fact of being decomposed as a join is preserved under automorphisms of graphs.
In the case of a vertex x P V Kn, there is a natural decomposition of the link lkpxq of x
in Kn.

Definition 3.4.2. Let x � X P V Kn. Let X be a representative of X .

(1) The positive link of x, denoted by lk�pxq, is the maximal subgraph of lkpxq whose set
of vertices consists in the homothety classes which have a representative that collapses
onto X.

(2) The negative link of x, denoted by lk�pxq, is the maximal subgraph of lkpxq whose
set of vertices consists of homothety classes which have a representative Y such that X
collapses onto Y .

For all vertices x of Kn, by definition of the adjacency in Kn, we have

lkpxq � lk�pxq � lk�pxq.

It is in fact, as we will prove in Proposition 3.4.7 below, the only decomposition of lkpxq
as a join.

Lemma 3.4.3. Let n ¥ 4. Let x � X P V Kn be such that lk�pxq � ∅. Let X be a
representative of X and let X be its underlying graph.

p1q If lk�pxq is nontrivial and has no edge, then 2 ¤ |lk�pxq| ¤ 3. Moreover, |lk�pxq| � 3
if and only if the underlying graph of any representative of x has n leaves.

p2q Let lk1
�pxq be the set of vertices of Kn such that any element of lk1

�pxq has a repre-
sentative that can be obtained from X by blowing-up exactly one edge. Then |lk1

�pxq| ¥ 2.

Proof. Suppose that lk�pxq is nontrivial and has no edge. Then the graph X has at
least n�1 leaves. Otherwise, one can blow-up two distinct edges at two distinct vertices
of X with nontrival vertex groups which are not leaves. This gives rise to two vertices in
the positive link of x that are linked by an edge. This contradicts the fact that lk�pxq
has no edge.

Moreover, if X has exactly n� 1 leaves, then all vertices of X with trivial associated
groups have valence 3 since otherwise one can blow-up an edge at a non-leaf vertex of X
with nontrivial vertex group and another edge at a valence-four vertex of X with trivial
vertex group. This gives rise to two vertices in the positive link of x that are linked by
an edge. Moreover, the only non-leaf vertex with nontrivial associated group has valence
equal to 2 since otherwise one can blow-up two edges at this vertex, giving rise to two
vertices in the positive link of x that are linked by an edge.

If X has n leaves, then at most one vertex of X has degree at least 4 since otherwise
one can blow-up two edges at two distinct vertices of X. This gives rise to two vertices
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in the positive link of x that are linked by an edge. Thus X has at most one vertex v
with degree at least 4. The degree of v is in fact equal to 4 since otherwise one can blow
up a two-edge graph at v, which gives rise to two vertices in the positive link of x that
are linked by an edge.

Thus, there are two possibilities for X.

piq The graph X has n leaves. Moreover, there are exactly one vertex v of valence 4
and |V X| � pn � 1q vertices of valence 3. In this case, the number of possible vertices
in lk�pxq corresponds to partitioning the set of edges adjacent to v into two subsets of
order 2. This shows that |lk�pxq| � 3.

piiq The graph X has n�1 leaves. Moreover, there are exactly one vertex v of valence 2
and |V X|�n vertices of valence 3. In this case, the group associated with v is nontrivial
and it is the only vertex of X that has nontrivial associated group and is not a leaf. In
that case, the number of possible vertices in lk�pxq corresponds to blowing-up an edge
e at v so that one of the endpoint of e is a leaf. Since v has valence 2, Proposition 3.2.1
implies that Stab0pxq is isomorphic to F . Thus, there are two possibilities for blowing-
up the edge e (either blowing it up while applying the nontrivial element of Stab0pxq or
blowing it up such that the preimages by the marking of the generators of the nontrivial
vertex groups of the new graph of groups are the same as the preimages by the marking
of X of the generators of the nontrivial vertex groups). This shows that |lk�pxq| � 2.

We now prove the second part of the lemma. Suppose that lk�pxq is nontrivial (it
might have edges). Suppose first that X has at most n� 2 leaves. Let v1 and v2 be two
vertices of X with nontrivial associated groups that are not leaves. Then one can find
two elements of lk1

�pxq by blowing up an edge at either v1 or v2. Thus, |lk1
�pvq| ¥ 2.

Finally, if X has at least n� 1 leaves, then the constructions of distinct elements of
lk1
�pxq are similar to the case where lk�pxq is nontrivial and has no edge.

Lemma 3.4.4. Let n ¥ 4. Suppose that x � X P V Kn is such that lk�pxq is nontrivial
and has no edge. Let X be a representative of X and X be its underlying graph.

p1q There exists a unique vertex in X with trivial associated group.

p2q The negative link satisfies 3 ¤ |lk�pxq| ¤ n. Moreover, |lk�pxq| � n if and only if x
is a t0u-star.

Proof. p1q The graph X contains at least one vertex with trivial associated group since
otherwise there would not exist an element Y P V Kn such that a representative of Y is
obtained from X by collapsing a forest. This would contradict the fact that lk�pxq is
nontrivial. Thus X contains at least one vertex with trivial associated group.

Suppose towards a contradiction that X contains two vertices with trivial associated
groups. Then, since the degree of any vertex of X with trivial associated group is at least
3, there exists two distinct edges e1 and e2 in X that can be simultaneously collapsed to
get a new element in V Kn. Moreover, if i P t1, 2u, and if Yi is the homothety classes of
the marked graph of groups obtained from X by collapsing ei, then Y1,Y2 P lk�pxq and
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Y1 and Y2 are adjacent in lk�pxq and distinct. This contradicts the fact that lk�pxq has
no edge. Thus, there exists a unique vertex in X with trivial associated group.

p2q Let v be the unique vertex in X with trivial associated group guaranteed by the
first assertion. It follows that degpvq ¥ 3. Thus |lk�pxq| ¥ 3. Since X contains exactly
n vertices with nontrivial associated group, degpvq ¤ n. Thus |lk�pxq| ¤ n.

Now, if |lk�pxq| � n, then degpvq � n. Thus X contains exactly n leaves and n� 1
vertices and X is a t0u-star. Conversely, if X is a t0u-star, then there exists exactly
one vertex in X with trivial associated group. Moreover, its degree is equal to n. Thus
|lk�pxq| � n.

Lemma 3.4.5. Let n ¥ 4. Let x � X P V Kn be such that lk�pxq is nontrivial. Let X be a
representative of X and let X be its underlying graph. Let v1, . . . , vn be the vertices of X
with nontrivial associated group. Let e P EX and let tvi1 , . . . , viku > tvj1 , . . . , vjlu be the
partition of tv1, . . . , vnu obtained by considering the vertices contained in each connected
component of X � e̊.

(1) Let F0 � X be a forest (that may be empty) such that the homothety class of the
marked graph of groups Y obtained from X by collapsing F0 is a vertex of Kn. Let
p : X Ñ Y be the canonical projection.

Then, if ppeq is not a vertex, it is the unique edge f of Y such that the partition
of tppv1q, . . . , ppvnqu induced by Y � f̊ is tppvi1q, . . . , ppvikqu > tppvj1q, . . . , ppvjlqu.

(2) Let y, z P lk�pxq be distinct vertices. Let Y and Z be representatives of y and
z respectively, and let Y and Z be their underlying graphs. Let py : X Ñ Y and
pz : X Ñ Z be the natural projections.

If one can obtain Z from Y by collapsing a forest of Y , and if pzpeq is not a point,

there exists a unique edge �pzpeq P EY such that the partition of tpypv1q, . . . , pypvnqu

induced by �pzpeq is

tpypvi1q, . . . , pypvikqu > tpypvj1q, . . . , pypvjlqu.

Remark 3.4.6. Let X, Y and Z be as in the above statement. Let G be the forest of Y
such that Z is obtained from Y by collapsing G.

(1) The statements of the lemmas can be reinterpreted in terms of decompositions in
free factors of Wn. Indeed, a partition of the vertices with nontrivial associated groups
tv1, . . . , vnu � A > B induced by an edge of X gives rise to a decomposition of Wn as
Wn � WA

k �WB
n�k well-defined up to global conjugation. In this case, WA

k is generated
by the groups associated with the vertices in A, and WB

n�k is generated by the groups
associated with the vertices in B. In particular, Lemma 3.4.5 p1q can be stated as follows.

If X is a graph of groups whose fundamental group is Wn, and if e and f are distinct
edges of the underlying graph of X, then e and f induce distinct free factor decomposi-
tions.
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Moreover, if Y is a graph of groups obtained from X by collapsing a forest, and if g is
an edge of the underlying graph of Y , then there exists a unique edge rg in the underlying
graph of X which induces the same free factor decomposition as g.

(2) Let H be a forest in Z. The second statement of the lemma gives a unique minimal
forest rH in Y that lifts H. Indeed, if h P EH, let rh be the unique edge of Y given by
Lemma 3.4.5 p2q. Then trhuhPH is a lift of H. This lift has the property that rH X G is
contained in the leaves of G and that every vertex of rH is adjacent to an edge in rH. We
call it the canonical lift of H.

Proof. For the first statement, we only need to prove the uniqueness result. Let f be an
edge of Y distinct from ppeq. Let A1>A2 be the partition of tppv1q, . . . , ppvnqu induced by
ppeq, and let B1 >B2 be the partition of tppv1q, . . . , ppvnqu induced by f . We prove that
there exist two vertices v and w of Y with nontrivial associated groups such that v and w
are in the same connected component of Y � f̊ while they are not in the same connected
component of Y � ˚ppeq, or conversely. This will imply that there exists α P t1, 2u such
that Bα X A1 � ∅ and that Bα X A2 � ∅, or conversely. This will conlcude the proof.
There are two cases to distinguish, according to the endpoints of ppeq.

If both of the endpoints of ppeq have nontrivial associated groups, then, since Y is
a tree, ppeq is necessarily the unique edge of Y such that the endpoints of ppeq are in

distinct connected components of Y � ˚ppeq.
Suppose that one of the endpoints of ppeq, denoted by v0, has trivial associated group.

Then there exists an arc P between two distinct leaves of Y , say ppviq and ppvjq, such
that ppeq and f are (up to replacing them by their opposite edges) contained in this
path and in this order. Since v0 has trivial associated group, degpv0q ¥ 3. Thus, up
to exchanging the roles of ppviq and ppvjq, there exists a path P 1 between ppviq and a
leaf of Y , say ppvkq, distinct from both ppviq and ppvjq, such that P 1 contains v0 (see
Figure 3.5).

So if P 1 contains ppeq (see Figure 3.5, Case 1), then ppviq and ppvkq are not contained

in the same connected component of X � ˚ppeq while they are contained in the same
connected component of X � f̊ . If P 1 does not contain ppeq, then there are two cases to
distinguish.

Let v1 be the other endpoint of ppeq. If there exists ` P t1, . . . , nu such that we
have v1 � ppv`q (see Figure 3.5, Case 2), then ppvjq and ppv`q are contained in the same

connected component of X � ˚ppeq while they are not contained in the same connected
component of X � f̊ .

If v1 has trivial associated group (see Figure 3.5, Case 3), then degpv1q ¥ 3. So there
exists ` P t1, . . . , nu such that v1 is contained in the arc P p2q between ppvjq and ppv`q and
such that ppeq is not contained in P p2q. Thus ppvjq and ppv`q are contained in the same

connected component of X � ˚ppeq while they are not contained in the same connected
component of X � f̊ . In any case, ppeq and f do not generate the same partition of
tppv1q, . . . , ppvnqu.

Let Y and Z be as in the second statement of the lemma. By the first state-
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Figure 3.5: The arcs constructed in Lemma 3.4.5.

ment of the lemma, there exists a unique edge �pzpeq P EY such that the partition

of tpypv1q, . . . , pypvnqu induced by �pzpeq is tpypvi1q, . . . , pypvikqu > tpypvj1q, . . . , pypvjlqu
(namely it is pypeq), and we take this edge to be our lift.

Proposition 3.4.7. Let n ¥ 4, and x � X P V Kn. Suppose that both lk�pxq and lk�pxq are
nontrivial. The only nontrivial decomposition of lkpxq as a join is lkpxq � lk�pxq�lk�pxq.

Proof. Let X be a representative of X and let X be its underlying graph. Let lkpxq �
A�B be a nontrivial decomposition as a join of lkpxq such that A � lk�pxq, lk�pxq. Then
there exist x1, x2 P lk�pxq or x1, x2 P lk�pxq such that x1 P A and x2 P B. For i P t1, 2u,
let Xi be the homothety class corresponding to xi and let Xi be a representative. Let Xi

be the underlying graph of Xi. Since x1 and x2 are joined by an edge, up to renumbering
and changing the representatives, there exists a forest F0 in X1 such that X2 is obtained
from X1 by collapsing F0. We now investigate both cases.

Suppose first that x1, x2 P lk�pxq. We are going to construct two other vertices z1

and z2 such that z1 P A, z2 P B and z1 and z2 are not linked by an edge, which will lead
to a contradiction (see Figure 3.6).

Since x2 P lk�pxq, up to changing the representative X of X , there exists a forest G
in X2 such that X is obtained from X2 by collapsing G. Let rG be the canonical lift of
G in X1.

Let f P EF0. Let Z0 be the homothety class of the marked graph of groups Z0

obtained from X1 by collapsing f and let z0 be the corresponding vertex in Kn. Since a
representative of Z0 is obtained from X1 by collapsing an edge, we see that x1 P lk�pz0q.
Moreover, since f P EF0, we see that z0 P lk�px2q and z0 P lk�pxq. Lemma 3.4.3 p2q
applied to z0 then implies that there exists z1 � Z1 P lk�pz0q distinct from x1 such that
the underlying graph of any representative of z1 has the same number of edges as X1.
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Figure 3.6: The adjacency of the homothety classes constructed in the first case of
Lemma 3.4.7.

Since z1 P lk�pz0q and z0 P lk�pxq, we have z1 P lk�pxq. As z1 has a representative that
has the same number of edges as X1, and as x1 � z1, we see that z1 R lkpx1q. Therefore
we have z1 P A.

In order to construct z2, let rg be an edge in rG. Let Z2 be the homothety class of the
marked graph of group Z2 obtained from X1 by collapsing rg. Let z2 be the corresponding
vertex in Kn. Then, since rg P rG, we see that z2 P lk�pxq. As rg P E rG, and as two distinct
edges induce distinct free factor decompositions by Remark 3.4.6 p1q, there exists an edge
g P EX2 (namely the edge whose lift in X1 is rgq such that the free factor decomposition
induced by g is distinct from the free factor decomposition induced by any edge of the
underlying graph of Z2. Thus we see that x2 and z2 cannot be adjacent. Indeed, if
it was the case, then as Z2 is obtained from X1 by collapsing exactly one edge, either
|EX2| � |EZ2| or there would exist a representative Z 1

2 of Z2 such that X2 is obtained
from Z 1

2 by collapsing a forest. Both cases would contradict Remark 3.4.6 p1q because
the edge g of X2 induces a free factor decomposition that is not induced by any edge of
the underlying graph of Z 1

2. This implies that z2 R lkpx2q and that z2 P B.

Claim. The vertices z1 and z2 are not adjacent in lkpvq.

Proof. Suppose towards a contradiction that z1 and z2 are adjacent. Let Z1 be a
representative of the homothety class corresponding to z1, and, for i P t1, 2u, let Zi be
the underlying graph of Zi. As |EZ1| � |EZ2| � 1, up to changing the representatives
Z1 and Z2, we can suppose that Z2 is obtained from Z1 by collapsing an edge e P EZ1.
Let h be the edge in Z1 such that the marked graph of groups obtained from Z1 by
collapsing h is in z0. As Z1 is distinct from X1, the edge h is such that the free factor
decomposition of Wn induced by h is distinct from the one induced by any edge of X1.
Thus, by Lemma 3.4.5 p2q, the free factor decomposition of Wn induced by h is distinct
from the one induced by any edge of Z2. Therefore, by Remark 3.4.6 p1q, the marked
graph of groups Z2 is obtained from Z1 by collapsing h. This implies that z2 � z0 by
the choice of h. However, rG X F0 does not contain any edge by the properties of the
canonical lift of G (see Remark 3.4.6 p2q). Thus there exists an edge in Z0 which induces
the same free factor decomposition of Wn as rg. As Z2 is obtained from X1 by collapsingrg, Lemma 3.4.5 p1q implies that there is no edge in Z2 that induces the same free factor
decomposition as rg. Thus z0 � z2, and this leads to a contradiction.
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Figure 3.7: The adjacency of the homothety classes constructed in the second case of
Lemma 3.4.7.

Therefore z1 and z2 are not adjacent in lkpxq. However, z1 P A and z2 P B. This
contradicts the fact that lkpxq � A �B is a join decomposition.

Now suppose that x1, x2 P lk�pxq. We use the same strategy as when x1, x2 P lk�pxq
(see Figure 3.7).

Since x1 P lk�pxq, up to changing the representative X of X , there exists a forest G in
X such that X1 is obtained from X by collapsing G. Let g P EG. Let rF0 be the canonical
lift of F0 in X. Remark that rF0XG does not contain any edge. Let Z1 be the homothety
class of the marked graph of groups Z1 obtained from X by collapsing rF0 Y pG � tguq
and let z1 be the corresponding vertex. Let px1 : X Ñ X1 and pz1 : X Ñ Z1 be the
natural projections. We claim that x1 and z1 are not adjacent. Indeed, suppose that x1

and z1 are adjacent. As x1 and z1 are distinct, we see that |EX1| � |EZ1|. Therefore,
as |Ep rF0YpG�tguqq| ¥ |EG|, we see that |EX1| ¡ |EZ1|, and a representative of Z1 is
obtained from a representative of X1 by collapsing a forest. Let X 1

1 be a representative of
X1 obtained from Z1 by blowing-up a forest. As pz1pgq is an edge in Z1, Remark 3.4.6 p1q
implies that there exists a unique edge rg in X1 such that rg induces the same free factor
decomposition as pz1pgq and g. But since px1pgq is a point, Remark 3.4.6 p1q implies

that there is no edge in X
1
1 which induces the same free factor decomposition as g. So

x1 and z1 are not adjacent and z1 P A.
In order to construct z2, let f P EF0. Let Y be the marked graph of groups obtained

from X1 by collapsing F0 � tfu. Let p0 : X1 Ñ Y be the natural projection. Let a1 and
a2 be the endpoints of p0pfq. Let X1{F0 be the marked graph of groups obtained from
X1 by collapsing F0. Since the homothety class of X1{F0 is an element of Kn (namely
it is X2), one of the endpoints of p0pfq has trivial associated group. Suppose without
loss of generality that a1 has trivial associated group. In particular, degpa1q ¥ 3. Let
a3 and a4 be two distinct vertices adjacent to a1 other than a2 and let e be the edge
between a1 and a3. Finally let Z2 be the homothety class of the marked graph of groups
Z2 obtained from Y by collapsing teu. Let z2 be the corresponding vertex in Kn. Then,
since |EX2| � |EZ2| and since X2 and Z2 are obtained from X by collapsing two distinct
forests, we see that z2 and x2 are not adjacent in Kn. So z2 P B.

Let us prove that z1 and z2 are not adjacent in lkpxq. Suppose towards a contradiction
that z1 and z2 are adjacent. As G contains at least one edge, we have that Z1 is
obtained from X by collapsing |F0| � |G| � 1 edges. Moreover, Z2 is obtained from X
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by collapsing |F0| � |G| edges. This implies that the number of edges of a representative
of z1 is greater than the number of edges of a representative of z2. Thus, there exists a
representative of z1 that collapses onto a representative of z2. Let pz2 : X Ñ Z2 be the
natural projection. Let rf P rF0 be the canonical lift of f in X. Since pz2p

rfq is an edge
in Z2, Remark 3.4.6 p1q implies that there exists an edge in Z2 which induces the same
free free factor decomposition as rf . But, as pz1p

rfq is a point in Z1, Remark 3.4.6 p1q
shows that there is no edge in Z2 that induces the same free factor decomposition as rf .
Thus, z1 and z2 are not adjacent.

This contradicts the fact that lkpxq � A �B is a join decomposition. This concludes
the proof of the proposition.

Corollary 3.4.8. Let n ¥ 4 and f P AutpKnq. Then f preserves the set of t0u-stars and
the set of F -stars.

Proof. Let ρ be a t0u-star. Since lk�pρq has no edge and is of cardinal equal to n,
Proposition 3.4.7 tells us that either lk�pfpρqq has no edge and its cardinal is equal to
n, or lk�pfpρqq has no edge and its cardinal is equal to n. Since n ¥ 4, Lemma 3.4.3 p1q
tells us that the first case is not possible. So lk�pfpρqq has no edge and its cardinal is
equal to n. Then Lemma 3.4.4 p2q shows that fpρq is a t0u-star.

Let ρ1 be an F -star. Then there exists a t0u-star ρ such that ρ1 P lk�pρq. Therefore,
fpρ1q P lk�pfpρqq. As fpρq is a t0u-star and since the negative link of a t0u-star is
composed of F -stars, we see that fpρ1q is an F -star.

Thus, there exists a homomorphism AutpKnq Ñ AutpLnq defined by restriction. We
now prove that this homomorphism is in fact injective.

Lemma 3.4.9. Let n ¥ 4. Let f P AutpKnq be such that f |On � idOn and f |Fn � idFn.
Let y � Y P V Kn be such that lk�pvq is trivial. Then fpyq � y.

Proof. In order to prove Lemma 3.4.9, we prove the following claim.

Claim. Let 0 ¤ k ¤ n � 3. Let X and Y be vertices of Kn. Let X and Y be
representatives of X and Y. We write X and Y for their underlying graphs. Suppose
that X has a nontrivial negative link with no edge and that Y has a trivial negative link.
If X has k vertices with nontrivial associated group that are not leaves, and if Y has
k � 1 vertices with nontrivial associated group that are not leaves, then fpX q � X and
fpYq � Y.

Lemma 3.4.9 then follows from the claim because for every vertex y P V Kn with
trivial negative link, there exists k P t0, . . . , n � 3u such that y has a representative Y
whose underlying graph has exactly k� 1 vertices with nontrivial associated group that
are not leaves.

We prove the claim by induction on k. When k � 0, X has n leaves, so by
Lemma 3.4.4 p2q, we have that |lk�pvq| � n. Thus, by Lemma 3.4.4 p2q, we see that X is
a t0u-star. Moreover, Y has n� 1 leaves and n vertices, so Y is an F -star. Thus, when
k � 0, the claim is a restatement of the fact that f fixes the t0u-stars and the F -stars.
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Now suppose that the claim is true for some 0 ¤ k ¤ n � 4. Let X and Y be such
that X has a nontrivial negative link with no edge and that Y has a trivial negative link.
Let X and Y be representatives of X and Y, and let X and Y their underlying graphs.
Suppose that X has k � 1 vertices with nontrivial associated group that are not leaves,
and that Y has k � 2 vertices with nontrivial associated group that are not leaves.

We start by showing that fpX q � X . First, by Proposition 3.4.7, the homothety
class fpX q has either a nontrivial negative link with no edge or a nontrivial positive link
with no edge.

Claim. The homothety class X cannot be sent by f to a homothety class z � Z such
that lk�pzq has no edge.

Proof. Suppose towards a contradiction that it is the case. By Lemma 3.4.4, |lk�pX q| ¥
3, while by Lemma 3.4.3 p1q, |lk�pzq| ¤ 3. Thus, |lk�pX q| � |lk�pzq| � 3. But then,
Lemma 3.4.3 p1q implies that the underlying graph of any representative of Z has n
leaves. However, such a vertex z is adjacent to n F -stars whereas X is adjacent to at
most one F -star. Indeed if k � 1 � 1, the homothety class X is adjacent to exactly one
F -star obtained from X by collapsing the unique edge between the vertex with trivial
associated group (the uniqueness of this vertex follows from Lemma 3.4.4 p1q) and the
non-leaf vertex with nontrivial associated group. If k � 1 ¥ 2, then X is not adjacent
to an F -star because X has at least two vertices with nontrivial associated group that
are not leaves, whereas any F -star has exactly one such vertex. As the set of F -stars is
fixed by f , we get a contradiction.

So fpX q has a nontrivial negative link with no edge. Let v be the unique vertex of
X with trivial associated group given by Lemma 3.4.4 p1q.

Claim. The underlying graph of any representative of fpX q has exactly n�k�1 leaves.

Proof. By the induction hypothesis, the automorphism f fixes all vertices of Kn whose
negative link is nontrivial and has no edges and such that the underlying graph of any
representative has at least n�k leaves. Thus, the underlying graph of any representative
of fpX q has at most n� k � 1 leaves.

Now, suppose that Z is the homothety class of a marked graph of groups Z whose
underlying graph has at most n�k�2 leaves and such that lk�pZq is nontrivial and has
no edge. Then lk�pZq does not contain any homothety class of marked graphs of groups
whose underlying graph has n� k � 1 leaves. But lk�pX q contains one such homothety
class, namely the homothety class of a marked graph of groups obtained from X by
collapsing an edge between v and a vertex that is not a leaf. As f fixes all vertices of
Kn with trivial negative link and such that the underlying graph of any representative
has at least n � k � 1 leaves and as fplk�pX qq � lk�pfpX qq, it follows that fpX q � Z.
Thus, the underlying graph of any representative of fpX q has at least n� k � 1 leaves.
Therefore the underlying graph of any representative of fpX q has exactly n�k�1 leaves.
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To prove that, in fact, fpX q � X , we distinguish between two cases, according to
the vertices adjacent to v. Note that, as X is connected, the vertex v is adjacent to at
least one vertex that is not a leaf.

Case 1. Suppose that v is adjacent to at least two vertices w1 and w2 that are not
leaves.

For i P t1, 2u, let ei be the edge between v and wi, and let Yi be the homothety class
of the marked graph of groups Yi obtained from X by collapsing ei. Then Y1 and Y2 are
homothety classes of marked graphs of groups with trivial negative link and such that the
underlying graphs of Y1 and Y2 have k� 1 vertices with nontrivial associated group that
are not leaves. By induction hypothesis, fpY1q � Y1 and fpY2q � Y2. Let p1 : X Ñ Y1

and p2 : X Ñ Y2 be the natural projections. In Case 1, the fact that fpX q � X is a
consequence of the following claim.

Claim. The homothety class X is the only vertex in lkpY1qX lkpY2q whose negative link
is nontrivial and has no edge.

Proof. Let Z P lkpY1q X lkpY2q be such that lk�pZq is nontrivial and has no edge.
Assume towards a contradiction that Z � X . As Y1 has trivial negative link, for all
Z 1 P V Kn such that Z 1 P lkpY1q, we have in fact Z 1 P lk�pY1q. Thus, there exists a
representative Z of Z such that Z is obtained from Y1 by blowing-up a forest F0. Let Z
be the underlying graph of Z, and let pZ1 : Z Ñ Y 1 be the natural projection.

We claim that there exists a unique edge in F0. Indeed, otherwise there would exist
two vertices in Z with trivial associated groups. As lk�pZq has no edge, this would
contradict Lemma 3.4.4 p1q. Thus, there exists a unique edge f P EF0.

Since Z P lkpY2q and since lk�pZq is nontrivial and has no edge, Lemma 3.4.4 p1q
implies that there exists an edge g such that the homothety class of the marked graph of
groups Z{tgu obtained from Z by collapsing g is Y2. Let pZ2 : Z Ñ Z{tgu be the natural
projection. By Remark 3.4.6 p1q, there exists a unique edge h P EZ such that pZ2 phq
induces the same free factor decomposition of Wn as p2pe1q. But since Z is a blow-up
of Y1 by an edge, and since Y1 is obtained from X by collapsing e1, Lemma 3.4.5 p2q
implies that pZ1 phq is reduced to a point. Therefore f � h and Z is obtained from Y1

by blowing-up the edge e1. It follows that the graph Z is isomorphic to the graph X.
Thus, we can suppose that X � Z. We can also suppose, by Lemma 3.4.5 p2q, that
g � e2. As v has trivial associated group, degpvq ¥ 3. If X � Z, since both X and Z
are obtained from Y1 by blowing-up the edge e1, there exist an integer ` P t0, 1u and a
vertex w3 P V X distinct from w1 and w2 and adjacent to v such that:

(1) For i P t1, 2, 3u, the preimage by the marking of X of the generator of the group
associated with wi is xi ;

(2) The preimage by the marking of Z of the generator of the group associated with
w2 is x`1x2x

`
1 and the preimage by the marking of Z of the generator of the group

associated with w3 is x`�1
1 x3x

`�1
1 .
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As p2pw2q and p2pw3q are in the same connected component of p2pXq � tp2pw1qu,
it follows that ppe1q and p2pe1q induces distinct free factor decompositions of Wn. This
contradicts the fact that Z{te1u P Y2 by Remark 3.4.6 p1q. The claim follows.

Case 2. Suppose that v is adjacent to only one vertex w that is not a leaf.

Let e be the edge between v and w and let Y 1 be the homothety class of the marked
graph of groups Y 1 obtained from X by collapsing e. Let Y

1
be the underlying graph of

Y 1. Let pX : X Ñ Y
1
be the natural projection. Then, as lk�pY 1q is trivial and as Y 1 has

a representative whose underlying graph has n� k � 1 leaves, by induction hypothesis,
we see that fpY 1q � Y 1. So fpX q P lkpY 1q. Thus a representative Z of fpX q is obtained
from Y 1 by blowing-up a forest F0 � EZ. As lk�pfpX qq has no edge, the forest F0

contains a unique edge e1. Let Z be the underlying graph of Z, and pZ : Z Ñ Y
1

be the
canonical projection.

Suppose towards a contradiction that fpX q � X . By the claim above Case 1, the
underlying graph of any representative of fpX q has exactly n� k � 1 leaves. Therefore
none of the two endpoints of e1 is a leaf. Thus, as one of the endpoints of e1 has trivial
associated group, there exists a vertex a P V Y

1
such that degpaq ¥ 3 and such that e1

collapses onto a. As Y 1 has trivial negative link, we see that the group associated with a
is nontrivial. Let yi be the preimage by the marking of Y 1 of the generator of the group
associated with a. Let ra be the lift of a in Z such that ra has nontrivial associated group.
Then yi is the preimage by the marking of Z of the generator of the group associated
with ra. Let rb be the endpoint of e1 distinct from ra (see Figure 3.8). As Z{te1u P Y 1, the
vertex rb has trivial associated group and degprbq ¥ 3. Moreover, by the previous case,
the vertex rb cannot be adjacent to two vertices that are not leaves.

Suppose first that Z is not a blow-up of Y 1 at pXpeq. This implies that p�1
X paq is a

vertex.

As rb is not adjacent to two vertices that are not leaves, there exist two distinct
leaves w1 and w2 of Y

1
adjacent to a such that w1 and w2 have lifts rw1 and rw2 in Z with

nontrivial associated group that are adjacent to rb. Let yj and yk be the preimages by the
marking of Y 1 of the groups associated with w1 and w2. Then there exist αj , αk P t0, 1u
such that y

αj
i yjy

αj
i and yαki yky

αk
i are the preimages by the marking of Z of the groups

associated with rw1 and rw2.
Let Z 1

1 be the homothety class of the marked graph of groups Z 1
1 defined as follows

(see Figure 3.8):

 The underlying graph of Z 1
1 is obtained from Y

1
by pulling-up an edge h at a so

that one of the two endpoints of h is a leaf. Let p1 : Z
1
1 Ñ Y

1
be the projection. Let x be

a vertex of the underlying graph of Z 1
1. Remark that, as w2 is a leaf, p1�1pw2q is a leaf.

 If x is distinct from p1�1pw2q and is such that p1pxq � a, then the group associated
with x in Z 1

1 is the same one as the group associated with p1pxq.
 If p1pxq � a and if x is a leaf, then the group associated with x is the same one as

the group associated with a.
 If p1pxq � a and if x is not a leaf, then x has trivial associated group.
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Figure 3.8: The construction of Z 1
1 in Lemma 3.4.9 when pXpeq � a.

 Finally, the preimage by the marking of Z 1
1 of the generator of the group associated

with p1�1pw2q is yαk�1
i yky

αk�1
i .

By the induction hypothesis, Z 1
1 is fixed by f . What is more, dlkpY 1qpX ,Z 1

1q � 2. Indeed,

a common refinement of X and Z 1
1 is obtained from X by pulling-up the edge h at p�1

X paq
(this is possible since pXpeq � a).

Claim. In lkpY 1q, we have dlkpY 1qpZ,Z 1
1q ¡ 2.

Proof. Since both Z and Z 1
1 have nontrivial negative link with no edge, we see by

Lemma 3.4.4 p1q that |V Z| � |V Z
1
1|. As both Z and Z

1
1 are trees, we have |EZ| � |EZ

1
1|.

Thus, as Z � Z 1
1, we have dlkpY 1qpZ,Z 1

1q ¡ 1. As Y 1 has trivial negative link, the only way

dlkpY 1qpZ,Z 1
1q � 2 is that Z and Z 1

1 have a common refinement. Let z be the leaf of Z
1
1

such that p1pzq � a. Then p1�1pw1q and p1�1pw2q are in the same connected component

of Z
1
1�tzu. Let Z

p2q
1 be a refinement of Z1, and let y

p2q
1 , . . . , y

p2q
n be the preimages by the

marking of Z
p2q
1 of the generators of the nontrivial vertex groups of Z

p2q
1 . Suppose that,

for all m P t1, . . . , nu, there exists αm P t0, 1u such that y
p2q
m � yαmi ymy

αm
i and that there

exist m0 and m1 such that αm0 � 0 and αm1 � 1. Since the preimage by the marking

of the generator of the group associated with z is yi, we see that Z
p2q
1 is obtained from

Z 1
1 by blowing-up a forest and applying a twist at an edge whose terminal point is z.

As a consequence, since p1�1pw1q and p1�1pw2q are in the same connected component

of Z
1
1 � tzu, there does not exist a refinement of Z 1

1 such that the preimages by the
marking of the generator of the group associated with lifts of p1�1pw1q and p1�1pw2q are
respectively y

αj
i yjy

αj
i and yαki yky

αk
i . Thus, Z and Z 1

1 do not have any common refinement
and dlkpY 1qpZ,Z 1

1q ¡ 2.

Since dlkpfpY 1qqpfpX q, fpZ 1
1qq � dlkpY 1qpX ,Z 1

1q � 2, the last claim implies that fpX q �
X when pXpeq � a.

Suppose now that pXpeq � a. Then, as |lk�pX q| � |lk�pfpX qq|, and as X and Z
both have a unique vertex with trivial associated group by Lemma 3.4.4 p1q (namely v
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Figure 3.9: The construction of Z 1
2 in Lemma 3.4.9 in Case piq.

and rb), we see that degpvq � degprbq � m. Moreover, both v and rb are adjacent to a
unique vertex that is not a leaf (namely w and ra). Thus, both v and rb are adjacent to
exactly m � 1 leaves. Note that, as v and rb have trivial associated group, m � 1 ¥ 2.
Let v1, . . . , vm�1 be the leaves of X adjacent to v, and let rb1, . . . ,rbm�1 be the leaves of
Z adjacent to rb. For j P t1, . . . ,m � 1u, let yXj be the preimage by the marking of the

generator of the group associated with vj and let yZj be the preimage by the marking

of the generator of the group associated with rbj . As we suppose that X � Z, up to
reordering and composing by an inner automorphism, one of the following holds.

piq There exist j, k P t1, . . . ,m � 1u distinct such that yXj � yiy
Z
j yi and yXk � yZk (see

Figure 3.9).
piiq There exist j, k P t1, . . . ,m � 1u distinct and a leaf rak adjacent to ra such that
yXj � yiy

Z
j yi and such that the preimage by the marking of the generator of the group

associated with rak is yXk . Moreover, there exists a leaf w0 in X adjacent to w such that
the preimage by the marking of the generator of the group associated with w0 is yZk (see
Figure 3.10).
piiiq There exist j, ` P t1, . . . ,m � 1u distinct and a leaf raj adjacent to ra such that
yX` � yZ` and such that the preimage by the marking of the generator of the group
associated with raj is yXj (see Figure 3.11).
pivq For all j P t1, . . . ,m�1u, there exists a leaf raj adjacent to ra such that the preimage
by the marking of the generator of the group associated with raj is yXj .

We then distinguish two cases, according to whether yXj � yiy
Z
j yi or not.

Suppose first that yZj � yiy
X
j yi (Cases piq and piiq). Let Z 1

2 be the homothety class
of the marked graph of groups Z 1

2 defined as follows (see Figures 3.9 and 3.10):

 The underlying graph Z
1
2 of Z 1

2 is obtained from Y
1

by blowing-up an edge h at a

so that one of the two endpoints of h is a leaf. Let p1 : Z
1
2 Ñ Y

1
be the projection. Let x
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Figure 3.10: The construction of Z 1
2 in Lemma 3.4.9 in Case piiq.

be a vertex of the underlying graph of Z 1
2. Let y be the preimage by the marking of the

generator of the group associated with p1pxq.
 If p1pxq � a or if p1pxq � a and x is a leaf, then the preimage by the marking of Z 1

2

of the generator of the group associated with x is y.
 If p1pxq � a and x is not a leaf, then x has trivial associated group.

By the induction hypothesis, as Z
1
2 has k vertices with nontrivial associated vertex groups

that are not leaves, the homothety class Z 1
2 is fixed by f . What is more, dlkpY 1qpX ,Z 1

2q �
2. Indeed, a common refinement of Z and Z 1

2 is obtained from X by blowing-up the edge
h at the vertex w of p�1

X paq with nontrivial associated group.

Claim. In lkpY 1q, we have dlkpY 1qpZ,Z 1
2q ¡ 2.

Proof. Since both Z and Z 1
2 have nontrivial negative link with no edge, we see by

Lemma 3.4.4 p1q that |V Z| � |V Z
1
2|. As both Z and Z

1
2 are trees, we have |EZ| � |EZ

1
2|.

Thus, as Z � Z 1
2, we have dlkpY 1qpZ,Z 1

2q ¡ 1. As Y 1 has trivial negative link, the only
way dlkpY 1qpZ,Z 1

2q � 2 is that Z and Z 1
2 have a common refinement. Let z be the leaf of

Z
1
2 such that p1pzq � a. Then the preimage by the marking of the group associated with

z is xyiy.

Let Z
p2q
2 be a refinement of Z 1

2, let Z
p2q
2 be its underlying graph and let y

p2q
1 , . . . , y

p2q
n

be the preimages by the marking of Z
p2q
2 of the generators of the nontrivial vertex groups

of Z
p2q
2 . Since both Z and Z 1

2 are obtained from Y 1 by blowing-up an edge at a while
applying a twist around an edge adjacent to a, a potential common refinement of Z and
Z 1

2 is obtained from Y 1 by blowing-up a forest while applying a twist around an edge
adjacent to a. Thus, we may assume that, for all m P t1, . . . , nu, there exists αm P t0, 1u

such that y
p2q
m � yαmi ymy

αm
i .

Suppose first that yXk � yZk (Case piq). Let rvj and rvk be the lifts in Z
p2q
2 of respectively

p1�1ppXpvjqq and p1�1ppXpvkqq with nontrivial associated group. Since p1�1ppXpvjqq and
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p1�1ppXpvkqq are contained in the same connected component of Z
1
2 � tzu, there exists

α P t0, 1u such that the preimages by the marking of Z
p2q
2 of the generators of the groups

associated with rvj and rvk are respectively yαi y
X
j y

α
i and yαi y

X
k y

α
i . As a consequence,

there does not exist a refinement of Z 1
2 such that the preimages by the marking of the

generators of the groups associated with the lifts of p1�1ppXpvjqq and p1�1ppXpvkqq with
nontrivial associated groups are respectively yiy

X
j yi and yXk . Thus, Z and Z 1

2 do not
have any common refinement and dlkpY 1qpZ,Z 1

2q ¡ 2.

Suppose now that there exists a leaf w0 in X adjacent to w such that the preimage by
the marking of the generator of the group associated with w0 is yZk (Case piiq). Let rvj , rvk
and rw0 be the lifts in Z

p2q
2 of respectively p1�1ppXpvjqq, p

1�1ppXpvkqq and p1�1ppXpw0qq
with nontrivial associated group. Since p1�1ppXpvjqq, p

1�1ppXpvkqq and p1�1ppXpw0qq are

contained in the same connected component of Z
1
2�tzu, there exists α P t0, 1u such that

the preimages by the marking of Z
p2q
2 of the generators of the groups associated withrvj and rvk are respectively yαi y

X
j y

α
i , yαi y

X
k y

α
i and yαi y

Z
k y

α
i . As a consequence, there does

not exist a refinement of Z 1
2 such that the preimages by the marking of the generators

of the groups associated with the lifts of p1�1ppXpvjqq, p
1�1ppXpvkqq and p1�1ppXpw0qq

with nontrivial associated groups are respectively yiy
X
j yi, y

X
k and yZk . Thus, Z and Z 1

2

do not have any common refinement and dlkpY 1qpZ,Z 1
2q ¡ 2.

Suppose now that yZj � yiy
X
j yi (Cases piiiq and pivq). Then there exists a leaf raj

adjacent to ra such that the preimage by the marking of the generator of the group
associated with raj is yXj . Let aj � pprajq. Moreover, as Z � X , either there exists

` P t1, . . . ,m � 1u such that either yZ` � yiy
X
` yi (Case piiq) or yZ` � yX` (Case piiiqq or

there exist ` P t1, . . . ,m�1u�tju and a leaf ra` of Z adjacent to ra such that the preimage
by the marking of the generator of the group associated with ra` is yX` (Case pivq). By
the claim above (see Case piiq), we can suppose that yZ` � yiy

X
` yi.

Let Z 1
3 be the homothety class of the marked graph of groups Z 1

3 defined as follows
(see Figure 3.11 with yX` � yZ` ):

 The underlying graph Z
1
3 of Z 1

3 is obtained from Y
1

by blowing-up an edge h at a

so that one of the two endpoints of h is a leaf. Let p1 : Z
1
3 Ñ Y

1
be the projection. Let x

be a vertex of the underlying graph of Z 1
3. Let y be the preimage by the marking of the

generator of the group associated with p1pxq.
 If p1pxq � a, aj or if p1pxq � a and x is a leaf, then the preimage by the marking of

Z 1
3 of the generator of the group associated with x is y.
 If p1pxq � a and x is not a leaf, then x has trivial associated group.
 If p1pxq � aj , then x is a leaf. Moreover, the preimage by the marking of Z 1

3 of the
generator of the group associated with x is yiy

X
j yi.

Since Z 1
3 has one less vertex with nontrivial associated group which is not a leaf, by the

induction hypothesis, Z 1
3 is fixed by f . What is more, dlkpY 1qpZ,Z 1

3q � 2. Indeed, a
common refinement of Z and Z 1

3 is obtained from Z by blowing-up the edge h at the
vertex of p�1paq with nontrivial associated group.

Claim. In lkpY 1q, we have dlkpY 1qpX ,Z 1
3q ¡ 2.
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Figure 3.11: The construction of Z 1
3 in Lemma 3.4.9 in the case yX` � yZ` .

Proof. The proof is identical for Cases piiiq and pivq. Since both X and Z 1
3 have nontrivial

negative link with no edge we see by Lemma 3.4.4 p1q that |V X| � |V Z
1
3|. As both X

and Z
1
3 are trees, we have |EX| � |EZ

1
3|. Thus, as X � Z 1

3, we have dlkpY 1qpX ,Z 1
3q ¡ 1.

As Y 1 has trivial negative link, the only way that dlkpY 1qpX ,Z 1
3q � 2 is that X and Z 1

3

have a common refinement. Let z be the leaf of Z
1
3 such that p1pzq � a. Then the

preimage by the marking of the group associated with z is xyiy.

Let Z
p2q
3 be a refinement of Z 1

3, let Z
p2q
3 be its underlying graph and let y

p2q
1 , . . . , y

p2q
n

be the preimages by the marking of Z
p2q
3 of the generators of the nontrivial vertex groups

of Z
p2q
3 . Since both Z and Z 1

3 are obtained from Y 1 by blowing-up an edge at a while
applying a twist around an edge adjacent to a, a potential common refinement of Z and
Z 1

3 is obtained from Y 1 by blowing-up a forest while applying a twist around an edge
adjacent to a. Thus, we may assume that, for all m P t1, . . . , nu, there exists αm P t0, 1u

such that y
p2q
m � yαmi ymy

αm
i . Let rvj and rv` be the lifts in Z

p2q
3 of respectively p1�1ppXpvjqq

and p1�1ppXpv`qq with nontrivial associated group. Since p1�1ppXpvjqq and p1�1ppXpv`qq

are contained in the same connected component of Z
1
3 �tzu, there exists α P t0, 1u such

that the preimages by the marking of Z
p2q
3 of the generators of the groups associated

with rvj and rv` are respectively yα�1
i yXj y

α�1
i and yαi y

X
` y

α
i . As a consequence, there does

not exist a refinement Z0 of Z 1
3 such that the preimages by the marking of the generators

of the groups associated with the lifts of p1�1ppXpvjqq and p1�1ppXpv`qq with nontrivial
associated groups are respectively yXj and yX` . Thus, X and Z 1

3 do not have any common
refinement and dlkpY 1qpX ,Z 1

3q ¡ 2.

Since dlkpfpY 1qqpfpX q, fpZ 1
3qq � dlkpY 1qpX ,Z 1

3q � 2, the two claims imply that fpX q �
X .

We now prove that fpYq � Y. Let v1 be a vertex of Y that is adjacent to at least
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Figure 3.12: The constructions of Y 1 and Z 1 in Lemma 3.4.9.

one leaf. Let v2, . . . , v` be the leaves adjacent to v1 and, for i P t1, . . . , `u, let yi be the
preimage by the marking of the generator of the group associated with vi. Let Y 1 be the
equivalence class of the marked graph of groups Y 1 defined as follows (see Figure 3.12):

 The underlying graph Y
1

of Y 1 is obtained from Y by blowing-up an edge e1 at v1

such that one of the endpoint of e1 is a leaf. Let p : Y 1 Ñ Y be the natural projection.
Let x be a vertex of Y

1
, and let y be the preimage by the marking of the generator of

the group associated with ppxq.
 If ppxq � v1 or if ppxq � v1 and x is a leaf, then the preimage by the marking of

Y 1 of the generator of the group associated with x is y.
 If ppxq � v1 and x is not a leaf, then v1 has trivial associated group.

By the previous step, as Y 1 has k vertices with nontrivial associated groups that are not
leaves, and as lk�pY 1q is nontrivial and has no edge, we see that fpY 1q � Y 1. By the
second claim in the proof of Lemma 3.4.9, the negative link of fpY 1q is nontrivial and
has no edge. Therefore, f preserves the negative link of Y 1 and fpYq P lk�pY 1q. Let w
be the endpoint of e1 with trivial associated group. For i P t1, . . . , `u, let rvi be the leaf

of Y
1

which lifts vi. Let e2, . . . , e` be the edges of Y
1

such that for all i P t2, . . . , `u, the
endpoints of ei are rvi and w.

We claim that there exists a unique i P t1, . . . , `u such that a representative of fpYq
is obtained from Y 1 by contracting ei. Indeed, as lk�pY 1q is nontrivial and has no edge,

Lemma 3.4.4 p1q implies that Y
1

has exactly one vertex with trivial associated group,
namely w. Therefore, a representative of fpYq is obtained from Y 1 by contracting a
unique edge adjacent to w.

Suppose towards a contradiction that there exists an edge e0 in Y
1

between w and a
vertex w1 with nontrivial associated group that is not a leaf and such that a representative
of fpYq is obtained from Y 1 by collapsing e0. Let yj be the preimage by the marking of
Y 1 of the generator of the group associated with w1. Let Z0 be the homothety class of the
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marked graph of groups obtained from Y 1 by contracting e0. By induction hypothesis,
fpZ0q � Z0. Thus fpYq � Z0.

Thus, there exists a unique i P t1, . . . , `u such that a representative of fpYq is obtained
from Y 1 by contracting ei. We claim that i � 1. Indeed, for i � 1, let Z be the equivalence
class of the marked graph of groups Z obtained from Y 1 by collapsing ei. Let Z 1 be the
equivalence class of the marked graph of groups Z 1 whose underlying graph is Y

1
and

such that the preimage by the markings of the generators of the groups associated withrv1, . . . , rv` are y1, . . . , yi�1, y1yiy1, yi�1, . . . , y`. Then Z 1 P lk�pYq because Z 1 is obtained
from Y first by precomposing the marking of Y by the automorphism which sends yi to
y1yiy1 and fixes all the other yi and then blowing-up an edge at v1 such that one of the
endpoints of this edge is a leaf and then. However, Z 1 R lkpZq because the vertex of Z
whose preimage by the marking of the associated group is xyiy is a leaf. Therefore there
is no refinement of Z such that there exist two vertex groups of the refinement such
that the preimage by the marking of the generators of the vertex groups are respectively
y1yiy1 and yk. As fpZ 1q � Z 1 by the previous step, we have fpYq P lkpZ 1q. Therefore,
fpYq � Z and fpYq � Y.

We can now show the injectivity of the homomorphism AutpKnq Ñ AutpLnq.

Proposition 3.4.10. Let n ¥ 4. Let f P AutpKnq such that f |On � idOn and f |Fn � idFn.
Then f � idKn.

Proof. Let k P N and let X P V Kn be such that the underlying graph X of a representa-
tive X of X has exactly k vertices with trivial associated group. We prove by induction
on k that fpX q � X . If k � 0, then X has trivial negative link. Thus, by Lemma 3.4.9,
we have fpX q � X .

Suppose now that k ¥ 1. Then, as any representative of an element of lk�pX q is
obtained from X by collapsing at least an edge, by the induction hypothesis, we have
f |lk�pX q � id|lk�pX q and lk�pfpX qq � lk�pX q.

Suppose towards a contradiction that fpX q � X . Let Y be a representative of fpX q,
and let Y be the underlying graph of Y . By the induction hypothesis, Y has at least k
vertices with trivial associated group. Since X � fpX q, there exists an edge e P EY such
that the free factor decomposition of Wn induced by e is distinct from the free factor
decomposition induced by any edge of X. Let Z P lk�pX q. Let Z be a representative
of Z obtained from X by collapsing a forest, and let Z be the underlying graph of Z.
By Remark 3.4.6 p1q, for any edge f P EZ, there exists an edge rf P EX such that the
free factor decomposition induced by f is the same one as the free factor decomposition
induced by rf . Thus, there does not exist any edge of Z which induces, up to global
conjugation, the same free factor decomposition of Wn as e. But, for any edge f of Y ,
there exists Z 1 P lk�pYq, a representative Z 1 of Z 1 with underlying graph Z

1
and an

edge g of Z
1

such that the free factor decomposition induced by e is the same as the
one induced by g (Z is obtained from Y by contracting an edge distinct from f). This
contradicts the fact that lk�pfpX qq � lk�pX q. Thus fpX q � X and f � idKn .

107



Proof of Theorem 3.1.1. Let n ¥ 4. The injectivity is immediate since the homomor-
phism OutpWnq Ñ AutpLnq is injective by Theorem 3.3.1 and since Ln is a subgraph
of Kn. We now prove surjectivity. Let f P AutpKnq. By Proposition 3.4.8, the auto-
morphism f induces an automorphism rf P AutpLnq. By Theorem 3.3.1, rf is induced by
an element γ P OutpWnq. Since the homomorphism AutpKnq Ñ AutpLnq is injective by
Proposition 3.4.10, f is induced by γ. This concludes the proof.

3.5 Rigidity of the simplicial completion of Kn

Let n ¥ 4. A splitting of Wn is a minimal, simplicial Wn-action on a simplicial tree S
and such that:

p1q The finite graph WnzS is not empty and not reduced to a point.

p2q Vertices of S with trivial stabilizer have degree at least 3.

Here minimal means that Wn does not preserve any proper subtree of S. A splitting
S of Wn is free if all edge stabilizers are trivial. A splitting S1 is a blow-up, or equivalently
a refinement, of a splitting S if S is obtained from S1 by collapsing some edge orbits
in S1. Two splittings are compatible if they have a common refinement. If k ¥ 1 is
an integer, a free splitting S is a k-edge free splitting if WnzS has exactly k edges. An
F -one-edge free splitting is a one-edge free splitting S such that one of the vertex groups
of WnzS is isomorphic to Wn�1 while the other vertex group is isomorphic to F .

The simplicial completion of Kn, denoted by Kn, is the flag complex such that:
 The vertices of Kn are the equivalence classes of free splittings of Wn, where two

free splittings S and S1 are equivalent if there exists a Wn-equivariant homeomorphism
between them.

 Two equivalence classes of free splittings S and S 1 are adjacent in Kn if there exist
S P S and S1 P S 1 such that S refines S1 or conversely.

In the literature, this complex is also called the free splitting complex. The free
splitting complex appears as well in the study of the outer automorphism group of
a free group of finite rank and more generally in the study of the outer automorphism
group of a free product of groups (see [AS, HaM3, HaM2]). In particular, Handel-Mosher
([HaM3, HaM2]) in the case of OutpFN q and Handel-Mosher and Horbez ([HaM3, Hor2])
in the case of the outer automorphism group of a free product of groups proved that this
complex is Gromov hyperbolic.

We have a canonical injective homomorphism Kn ãÑ Kn defined as follows. Let
X P V Kn be the equivalence class of a marked graph of groups, and let X be a represen-
tative of X . Let S be a Bass-Serre tree corresponding to X, and let S be the equivalence
class of S. Then the map

Φ : Kn Ñ Kn

X ÞÑ S
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is a well-defined injective homomorphism. From now on, we identify Kn with its image
in Kn.

The group AutpWnq acts onKn by precomposition of the action. For any α P InnpWnq
and for any S P Kn, we have αpSq � S. Therefore the action of AutpWnq induces an
action of OutpWnq.

In this section, we prove Theorem 3.1.2. In order to do so, we first show that
any automorphism of Kn preserves Kn. Thus, we have a restriction homomorphism
AutpKnq Ñ AutpKnq which, as we will see, turns out to be injective. Theorem 3.1.2
then follows from Theorem 3.1.1.

We first characterise the vertices of Kn in Kn.

Proposition 3.5.1. Let n ¥ 4. Let S P V Kn. If S P V Kn, then S has finite valence in
Kn. If S P V Kn � V Kn, then S has infinite valence in Kn.

Proof. Suppose that S P V Kn, and let S 1 P lkpSq. Let S and S1 be representatives of S
and S 1. If S refines S1, then WnzS

1 is obtained from WnzS by collapsing a forest. Since
WnzS is a finite tree, there are only finitely many possibilities for WnzS

1, hence finitely
many possibilities for S1. If S1 refines S, then, since S P Kn, the equivalence class S 1
also belongs to Kn. Thus, we have S 1 P lkKn� pSq where lkKn� pSq is the positive link of S
in Kn. Since lkKn� pSq is finite, there are only finitely many possibilities for S 1. Hence
lkpSq is finite.

Now suppose that S P V Kn � V Kn. Let S be a representative of S. Since we have
S P V Kn � V Kn, there exists a vertex of S whose stabilizer contains a subgroup G
of Wn isomorphic to W2. Since AutpW2q is isomorphic to W2 (see e.g. [Tho, Lemma
1.4.2]), we see that StabpSq is infinite by Proposition 3.2.1. Moreover, we claim that
there exists S 1 P lkpSqXV Kn. Indeed, let v be a vertex of WnzS whose associated group
is isomorphic to Wi with i ¥ 2. then one can construct an element T P Ki and then
blow-up T at v. The equivalence class of the result is an element in lkpSq. Applying the
process to every vertex of WnzS with infinite associated vertex group gives an element
S 1 P lkpSqXV Kn. As StabpSq acts on lkpSq, the orbit of S 1 under the action of StabpSq
is infinite (recall that StabpS 1q is finite by Proposition 3.2.1). Thus lkpSq is infinite.

Thus, Proposition 3.5.1 tells us that any automorphism of Kn preserves Kn. This
gives a restriction homomorphism

AutpKnq Ñ AutpKnq.

In the rest of the section, we prove that this homomorphism is injective. In order to
show this, we first prove that any automorphism of Kn which fixes Kn pointwise also
fixes the set of one-edge free splittings pointwise. We will then conclude by the following
proposition, due to Scott and Swarup.

Theorem 3.5.2. [SS, Theorem 2.5] Let n ¥ 4. Any set tS1, . . . , Sku of pairwise distinct,
pairwise compatible, one-edge free splittings of Wn has a unique refinement S such that
WnzS has exactly k edges. If S is a free splitting such that WnzS has exactly k edges,
then S refines exactly k distinct one-edge free splittings.
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The next lemma is inspired by [HW1, Lemma 2.3] due to Horbez and Wade.

Lemma 3.5.3. Let n ¥ 4. For all S P V Kn, the following assertions are equivalent.

(1) There exists S P S such that S is an F -one-edge free splitting.

(2) The equivalence class S satisfies the following properties.

(a) The link of S is infinite.

(b) There exists a t0u-star X such that X P lkpSq.
(c) There exist S1,S2 P lkpSq such that dKn

pS1,S2q � 2 and such that S1�S�S2

is the unique path of length 2 joining S1 and S2.

Proof. We first prove that p1q implies p2q. Let S P S be an F -one-edge free split-
ting. Then S R V Kn and Proposition 3.5.1 implies that lkpSq is infinite, which proves
Property paq.

In order to prove Property pbq, let

Wn � xx1, . . . , xn�1y � xxny

be the free factor decomposition of Wn induced by S. Let X be the t0u-star such that,
if w1, . . . , wn are the leaves of X, and if i P t1, . . . , nu, then the stabilizer of wi is xxiy.
Let X be the equivalence class of X. Then X P lkpSq.

In order to prove Property pcq, let S1 be the 2-edge free splitting induced by the
decomposition

Wn � xx1, x2y � xx3, . . . , xn�1y � xxny ,

where the preimage by the marking of the group associated with the central vertex of
WnzS1 is xx3 . . . , xn�1y. Let S2 be the 2-edge free splitting induced by the decomposition

Wn � xx1, x3y � xx2,xx3, . . . , xn�1y � xxny ,

where the preimage by the marking of the group associated with the central vertex of
WnzS2 is xx2,xx3, . . . , xn�1y. For i P t1, 2u, let Si be the equivalence class of Si. Then
S1,S2 P lkpSq. Moreover, the equivalence classes S1 and S2 are not adjacent in Kn

since both S1 and S2 are 2-edge free splittings, thus, there does not exist i P t1, 2u,
j P t1, 2u � tiu such that Si collapses onto Sj . So dKn

pS1,S2q � 2.

Claim. Let T P V Kn be such that S1 � T � S2 is a path of length 2 joining S1 and S2.
Then S � T .

Proof. Suppose towards a contradiction that there exists a representative T of T such
that T is a common refinement of S1 and S2. For i P t1, . . . , nu, let vi be the only vertex
of T fixed by xi. Note that, for i � j, the vertices vi and vj may not be distinct. Since
T refines S1, for every edge e P ET , one of the following holds:
 the vertices v1, v2 and v3 belong to the same connected component of T � t̊eu,
 the vertices v1 and v2 belong to a connected component of T � t̊eu distinct from the
one that contains v3,
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 there exist i P t1, 2u and j P t1, 2u � tiu such that vi is in a connected component of
T � t̊eu distinct from the one containing vj , v3 and vn.

But if T refines S2, there exists e P ET such that v1 and v3 belong to a connected
component of T � t̊eu distinct from the one that contains v2 and vn. This leads to a
contradiction.

Thus, there exists a representative T of T such that both S1 and S2 collapse to T .
As S is the only such one-edge free splitting, the claim follows.

We now prove that p2q implies p1q. Suppose that S satisfies the properties of Asser-
tion p2q of the lemma.

Claim. Property pcq implies that S has a representative S that is either a one-edge free
splitting or is such that there is no free splitting of Wn that properly refines S.

Proof. Let S1 and S2 be as in Property pcq, and, for i P t1, 2u, let Si be a representative
of Si. Let S be a representative of S. There are three cases to distinguish.

� If S refines S1 and if S2 refines S, then S2 refines S1, so that dKn
pS1,S2q ¤ 1. This

leads to a contradiction.

� If S refines both S1 and S2, then there does not exist any proper refinement of S
as this would contradict the uniqueness of the path of length 2 between S1 and S2.

� If S is refined by both S1 and S2, then S is a one-edge free splitting as otherwise
there would exist a splitting S1 that is properly refined by S. This would contradict
the uniqueness of the path.

The claim follows.

Since a free splitting which has no proper refinement is in Kn, the above claim,
Property paq and Proposition 3.5.1 imply that S is a one-edge free splitting. Property pbq
implies in fact that S is an F -one-edge free splitting as the F -one-edge-free splittings are
the only one-edge free splittings that are adjacent to a t0u-star. The lemma follows.

Lemma 3.5.4. Let n ¥ 4. Let f P AutpKnq be such that f |Ln � idLn. Let S be the
equivalence class of an F -one-edge free splitting S. Then fpSq � S.

Proof. As f P AutpKnq, Corollary 3.4.8 and Lemmas 3.5.1 and 3.5.3 imply that fpSq is
the equivalence class of an F -one-edge free splitting S1. Let

Wn � xx1, . . . , xn�1y � xxny

be the free factor decomposition of Wn induced by S. Let X be the equivalence class of
the F -star X represented in Figure 3.13 on the left.

Since fpX q � X , the free splitting S1 is an F -one-edge free splitting obtained from
X by collapsing n � 1 edges. But if T is an F -one-edge free splitting obtained from
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Figure 3.13: The F -stars X and X 1 of the proof of Lemma 3.5.4.

X by collapsing n � 1 edges, then there exists i P t1, . . . , nu such that the free factor
decomposition of Wn induced by T is

Wn � xx1, . . . , pxi, . . . , xny � xxiy .
For i P t1, . . . , nu, we will denote by Ti the F -one-edge free splitting with associated
free factor decomposition xx1, . . . , pxi, . . . , xny � xxiy, and by Ti its equivalence class. For
i � n, the free splitting Ti is a collapse of the F -star X 1 depicted in Figure 3.13 on the
right, whereas S is not a collapse of X 1.

Let X 1 be the equivalence class of X 1. Since fpX 1q � X 1, we have that fpSq is not
adjacent to X 1. But, for all i � n, the equivalence class Ti is adjacent to X 1. Thus, for
all i � n, we have fpSq � Ti. Therefore, as S � Tn, we conclude that fpSq � S.

Proof of Theorem 3.1.2. By Proposition 3.5.1, there exists a homomorphism

AutpKnq Ñ AutpKnq

induced by the restriction to Kn. In order to prove Theorem 3.1.2, it suffices to prove
that this homomorphism is injective. Let f P AutpKnq be such that f |Kn � idKn . Let
us prove that f � id. By Theorem 3.5.2, it suffices to prove that, for any equivalence
class S of a one-edge free splitting S, we have fpSq � S. Indeed, let S be the equivalence
class of a free splitting. Then, by Theorem 3.5.2, there exist k one-edge free splittings
S1, . . . ,Sk such that S is the unique vertex of Kn such that, for all i P t1, . . . , ku, S is
adjacent to Si. Thus, if, for any equivalence class S of a one-edge free splitting S, we
have fpSq � S, then f � id.

Suppose that S is the equivalence class of a one-edge free splitting S. The case where
S is an F -one-edge free splitting was proved in Lemma 3.5.4. If S is not an F -one-edge
free splitting, let Wn � xx1, . . . , xky � xxk�1, . . . , xny be the free factor decomposition of
Wn induced by S, with 2 ¤ k ¤ n � 2. Let X be the free splitting of Wn depicted in
Figure 3.14, and let X be its equivalence class.

Then X P V Kn, so fpX q � X . As S P lkpX q, we also have that fpSq P lkpX q.
Moreover, fpSq R V Kn by Proposition 3.5.1. Thus, a representative of fpSq is obtained
from X by collapsing a forest F .

Claim. Any splitting S1 distinct from S and obtained from X by collapsing a forest is
either an F -one-edge free splitting or is adjacent to an F -one-edge free splitting.
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Figure 3.14: The free splitting X of the proof of Theorem 3.1.2.

Proof. If S1 � S is obtained from X by collapsing a forest, and if S1 is not an F -one-edge
free splitting, there exists an edge e P V pWnzS

1q such that e is adjacent to a leaf. This
edge determines an F -one-edge free splitting adjacent to S1.

Thus, by Lemma 3.5.4, any equivalence class S 1 P lk�pX q is determined by the
equivalence classes of F -one edge free splittings that are adjacent to S 1. Therefore we
have fpSq � S and the equivalence class of any one-edge free splitting is fixed by f .
Theorem 3.5.2 then implies that f � id. This concludes the proof of Theorem 3.1.2.
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Chapitre 4

Commensurations of the outer
automorphism group of a universal
Coxeter group

4.1 Introduction

Given a group G, the abstract commensurator of G, denoted by CommpGq, is the group
of equivalence classes of isomorphisms between finite index subgroups of G. Two such
isomorphisms are equivalent if they agree on some common finite index subgroup of
their domain. Note that every automorphism of G induces an element of CommpGq,
and in particular the action of G on itself by global conjugation gives a homomorphism
GÑ CommpGq.

The abstract commensurator of G captures a notion of symmetry for the group that
is weaker than its group of automorphisms. For instance, the abstract commensurator
of Zm is isomorphic to GLpm,Qq while the abstract commensurator of a nonabelian free
group is not finitely generated (see [BB]). However, some groups satisfy strong rigidity
properties and the group CommpGq is then not much larger than AutpGq or G itself.
For instance, the Mostow-Prasad-Margulis rigidity theorem and Margulis arithmeticity
theorem (see for instance [Zim]) imply that if Γ is a lattice in a connected noncompact
simple Lie group G with trivial center, and if G � PSLp2,Rq, then Γ is a finite index
subgroup of CommpΓq if and only if Γ is not arithmetic, otherwise CommpΓq is dense inG.
In the case of the extended mapping class group of a connected orientable closed surface
Sg of genus g at least 3, we have an even stronger result due to Ivanov [Iva2] since the
natural homomorphism Mod�pSgq Ñ CommpMod�pSgqq is an isomorphism. This result
also extends to the case of the mapping class group of a connected orientable surface with
genus equal to 2 and with at least two boundary components. In the context of the outer
automorphism group of a free group FN of rank N , Farb and Handel ([FarH]) proved
that, for N ¥ 4, the natural map from OutpFN q to CommpOutpFN qq is an isomorphism
and that every isomorphism between two finite index subgroups of OutpFN q extends



to an inner automorphism of OutpFN q. This result was later extended by Horbez and
Wade ([HW2]) to the case N � 3 using a more geometric approach. Their techniques also
enabled them to compute the abstract commensurator of many interesting subgroups of
OutpFN q, like its Torelli subgroup. These rigidity results have been extended to other
groups, such as handlebody groups ([Hen]) and big mapping class groups ([BDR]).

In this article, we are interested in the outer automorphism group of a universal
Coxeter group. Let n be an integer greater than 1. Let F � Z{2Z be a cyclic group of
order 2 and Wn � �n F be a universal Coxeter group of rank n, that is a free product
of n copies of F . We prove the following theorem.

Theorem 4.1.1. Let n ¥ 5. The natural homomorphism

OutpWnq Ñ CommpOutpWnqq

is an isomorphism.

The group OutpW2q is finite and the group OutpW3q is isomorphic to PGLp2,Zq.
This gives an almost complete classification except for n � 4, where our proof for n ¥ 5
cannot be immediately adapted to this case as OutpW4q does not contain any direct
product of two nonabelian free groups. Hence the case n � 4 remains open. One
step towards the understanding of OutpW4q is given in [Gue1], where we proved that
OutpW4q has a nontrivial outer automorphism. The conclusion of Theorem 4.1.1 will
therefore not be true if one can prove that this outer automorphism remains not trivial
for every finite index subgroup of OutpWnq. Theorem 4.1.1 is a major improvement of
[Gue1, Théorème 1.1] which states that, for n ¥ 5, the only automorphisms of OutpWnq
are the global conjugations. In turn, Theorem 4.1.1 implies that every isomorphism
between two finite index subgroups of OutpWnq is given by a conjugation by an element
of OutpWnq. The proof of the present Theorem 4.1.1 significantly differs from the one
of [Gue1, Théorème 1.1] since the proof of [Gue1, Théorème 1.1] is based on the study
of torsion subgroups of OutpWnq, whereas OutpWnq is virtually torsion free (see [GuL1,
Corollary 5.5]).

Our proof of Theorem 4.1.1 is inspired by the proof of the similar result in the context
of OutpFN q given by Horbez and Wade ([HW2]). However, new ideas are required in
this situation. Indeed, to our knowledge, there is no way to compute the abstract
commensurator of OutpWnq by identifying it with a subgroup of OutpFN q. Moreover,
the study of the restriction of automorphisms of Wn to some finite index nonabelian free
subgroup of Wn is not sufficient to understand the abstract commensurator of OutpWnq,
as it does not give informations about finite index subgroups of OutpWnq. Finally, the
proof of Horbez and Wade relies extensively on the possibility of writing a free group
as an HNN extension, which is not possible in a universal Coxeter group. Instead, we
use the fact that Wn can be written as a free product Wn � A � B, where B is a finite
abelian subgroup of Wn.

We now sketch our proof of Theorem 4.1.1. Following a strategy that dates back
to Ivanov’s work ([Iva2]), we study the action of OutpWnq on various graphs which are
rigid, that is, every graph automorphism is induced by an element of OutpWnq. These
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graphs include the spine Kn of the Outer space of Wn as defined by Guirardel and Levitt
in [GuL1], generalizing Culler and Vogtmann’s Outer space of a free group ([CV]), or
the free splitting graph Kn of Wn (see [Gue2, Theorem 1.1 and 1.2] and Section 4.2.2 for
definitions). The proof of Theorem 4.1.1 relies on the action of OutpWnq on a subset of
the vertices of Kn, called the set of Wk-stars. Let k P t0, . . . , n� 1u. A Wk-star is a free
splitting S of Wn such that the underlying graph of the induced graph of groups WnzS
is a tree with n�k edges, such that the degree of one of the vertices, called the center, is
equal to n� k, and such that the group associated with the center is isomorphic to Wk

and the groups associated with the leaves are all isomorphic to F . The Wk-stars are the
analogue for Wn of the roses in the Outer space of a free group. They play a significant
role in the proof of other rigidity results for OutpWnq (see [Gue1, Gue2]).

This allows us to introduce a graph called the graph of one-edge compatible Wn�2-
stars, and denoted by Xn. It is defined as follows: vertices are Wn-equivariant homeo-
morphism classes of Wn�2-stars, where two vertices S and S 1 are adjacent if there exist
S P S and S1 P S 1 such that S and S1 have both a common refinement and a common
collapse. We prove the following result.

Theorem 4.1.2. Let n ¥ 5. The natural homomorphism

OutpWnq Ñ AutpXnq

is an isomorphism.

Our proof of Theorem 4.1.2 requires the rigidity of another graph, called the graph
of W�-stars, and denoted by X 1

n. It is the graph whose vertices are the Wn-equivariant
homeomorphism classes of Wk-stars with k varying in t0, . . . , n� 2u, where two vertices
S and S 1 are adjacent if there exist S P S and S1 P S 1 such that S refines S1 or conversely.
We first show that every graph automorphism of Xn induces a graph automorphism of
X 1
n and that the induced map AutpXnq Ñ AutpX 1

nq is injective. Using the rigidity of
X 1
n (see Theorem 4.3.4), we show that any graph automorphism of Xn is induced by an

element of OutpWnq.
We then show that every commensuration f of OutpWnq induces a graph automor-

phism of Xn. Once we have that result, a general argument (see Proposition 4.2.1) gives
the isomorphism between OutpWnq and CommpOutpWnqq. In order to construct such
a homomorphism CommpOutpWnqq Ñ AutpXnq, we first give an algebraic characterisa-
tion of the stabilizers of equivalence classes of Wn�2-stars. The characterization relies
on the examination of maximal abelian subgroups of OutpWnq and of direct products of
nonabelian free groups in OutpWnq. In particular, we prove (see Theorem 4.5.1), using
the action of OutpWnq on a simplicial complex called the free factor complex of Wn, the
following result.

Theorem 4.1.3. Let n ¥ 4. The maximal number of factors in a direct product of non-
abelian free groups contained in OutpWnq is equal to n� 3.

One example of such a maximal direct product of nonabelian free subgroups of
OutpWnq is the following one. Let Wn � xx1, . . . , xny be a standard generating set
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for Wn and let W � xx1, x2, x3y. For every i ¥ 4 and every w P W , let Fi,w be the au-
tomorphism which fixes xj for every j � i and which sends xi to wxiw

�1. Let rFi,ws be
the outer automorphism class of Fi,w and let Hi � xrFi,wswPW y. Then the group xHiyi¥4

is a subgroup of OutpWnq isomorphic to a direct product of n� 3 groups isomorphic to
W3.

The complete characterisation of stabilizers of equivalence classes of Wn�2-stars be-
ing quite technical, we do not give the complete statement in the introduction (see
Propositions 4.6.10 and 4.7.9). However, we remark that this characterisation relies on
the following key points: the fact that stabilizers of equivalence classes of Wn�2-stars
contain a maximal free abelian subgroup and the fact that it contains a direct prod-
uct of n � 3 nonabelian free groups. The characterisation also features a study of the
group of twists of a Wn�2-star, which is a direct product of two virtually nonabelian free
groups by a result of Levitt ([Lev1]) and such that each of which has finite index in the
centralizer in OutpWnq of the other.

This characterisation being preserved by commensurations of OutpWnq, it induces
a homomorphism from CommpOutpWnqq to the group BijpV Xnq of bijections of the
set of vertices of Xn. In order to show that this map extends to the edge set of Xn,
we also present an algebraic characterisation of compatibility of Wn�2-stars, which is
essentially based on the fact that if the intersection of stabilizers of equivalence classes
of Wn�1-stars contains a maximal abelian subgroup of OutpWnq, then the Wn�1-stars
are pairwise compatible (see Propositions 4.6.12 and 4.8.1). We deduce that the map
CommpOutpWnqq Ñ BijpV Xnq extends to a map CommpOutpWnqq Ñ AutpXnq, which
completes our proof.

Finally, we prove in the appendix the rigidity of another natural graph endowed with
an OutpWnq-action, called the graph of Wn�1-stars. It is the graph whose vertices are
Wn-equivariant homeomorphism classes of Wn�1-stars, where two vertices S and S 1 are
adjacent if there exist S P S and S1 P S 1 such that S and S1 have a common refinement.
This graph arises naturally in the study of OutpWnq and its action on the free splitting
graph Kn as it is isomorphic to the full subgraph of Kn whose vertices are the equivalence
classes of Wk-stars, with k varying in t0, . . . , n� 1u. This gives another geometric rigid
model for OutpWnq (see Theorem 4.9.1).
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4.2 Preliminaries

4.2.1 Commensurations

Let G be a group. The abstract commensurator of G, denoted by CommpGq, is the
group whose elements are the equivalence classes of isomorphisms between finite index
subgroups of G for the following equivalence relation. Two isomorphisms between finite
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index subgroups f : H1 Ñ H2 and f 1 : H 1
1 Ñ H 1

2 are equivalent if they agree on some
common finite index subgroup H of their domains. If f is an isomorphism between finite
index subgroups, we denote by rf s the equivalence class of f . The identity of CommpGq
is the equivalence class of the identity map on G. Let rf s, rf 1s P CommpGq, and let
f : H1 Ñ H2 and f 1 : H 1

1 Ñ H 1
2 be representatives. The composition law rf s � rf 1s is given

by rf s � rf 1s � rf � f 1|f 1�1pH1qXH 1
1
s. Note that if H is a finite index subgroup of G, then

the natural map CommpGq Ñ CommpHq obtained by restriction is an isomorphism.
Two subgroups G1 and G2 in G are commensurable if G1 X G2 has finite index in

both G1 and G2. Being commensurable is an equivalence relation. If H is a subgroup
of G, we will denote by rHs its commensurability class in G. The group CommpGq acts
on the set of all commensurability classes as follows. Let rHs be the commensurability
class of a subgroup H. Let rf s P CommpGq and let f : H1 Ñ H2 be a representative of
rf s. Then we define rf s � rHs by setting rf s � rHs � rfpH XH1qs.

The next result, due to Horbez and Wade, gives a sufficient condition for CommpGq
to be rigid. It comes from ideas due to Ivanov when studying mapping class groups (see
[Iva2]). It requires the existence of a graph on which G acts by graph automorphisms.

Proposition 4.2.1. [HW2, Proposition 1.1] Let G be a group. Let X be simplicial graph
such that G acts on X by graph automorphisms. Let AutpXq be the group of graph
automorphisms of X. Assume that:

p1q the natural homomorphism GÑ AutpXq is an isomorphism,

p2q given two distinct vertices v and w of X, the groups StabGpvq and StabGpwq are
not commensurable in G,

p3q the sets I � trStabGpvqs | v P V Xu and J � tprStabGpvqs, rStabGpwqsq | vw P EXu
are CommpGq-invariant (in the latter case with respect to the diagonal action).

Then any isomorphism f : H1 Ñ H2 between finite index subgroups of G is given
by the conjugation by an element of G and the natural map G Ñ CommpGq is an
isomorphism.

4.2.2 Free splittings and free factor systems of Wn

Let n be an integer greater than 1. Let F � Z{2Z be a cyclic group of order 2 and
Wn � �n F be a universal Coxeter group of rank n. A splitting of Wn is a minimal,
simplicial Wn-action on a simplicial tree S such that:

p1q The finite graph WnzS is not empty and not reduced to a point.

p2q Vertices of S with trivial stabilizer have degree at least 3.

Here minimal means that Wn does not preserve any proper subtree of S. A splitting
S of Wn is free if all edge stabilizers are trivial. A splitting S1 is a blow-up, or equivalently
a refinement, of a splitting S if S is obtained from S1 by collapsing some edge orbits
in S1. Two splittings are compatible if they have a common refinement. We define an
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equivalence class in the set of free splittings, where two splittings S and S1 are equivalent
if there exists a Wn-equivariant homeomorphism between them.

A free factor system of Wn is a set F of conjugacy classes of subgroups of Wn

which arises as the set of all conjugacy classes of nontrivial point stabilizers in some
(nontrivial) free splitting ofWn. Equivalently, there exist k P N�t0, 1u and rA1s, . . . , rAks
conjugacy classes of nontrivial, proper subgroups of Wn such that Wn � A1 � . . . � Ak
and F � trA1s, . . . , rAksu. The free factor system is sporadic if k � 2, and nonsporadic
otherwise. The set of all free factor systems of Wn has a natural partial order, where
F ¤ F 1 if every factor of F is conjugate into one of the factors of F 1. Remark that if
tx1, . . . , xnu is a standard generating set of Wn, then for every free factor system F of
Wn and every i P t1, . . . , nu, there exists rAs P F such that xi is conjugate into A. In
other words, the free factor system trx1s, . . . , rxnsu is a minimum for the partial order
on the set of free factor systems of Wn.

Let F be a free factor system of Wn. We denote by OutpWn,Fq the subgroup of
OutpWnq consisting of all outer automorphisms that preserve all the conjugacy classes
of subgroups in F . If F � trA1s, . . . , rAksu, we denote by OutpWn,F ptqq the subgroup
of OutpWn,Fq consisting of all outer automorphisms which have a representative whose
restriction to each Ai with i P t1, . . . , ku is a global conjugation by some gi PWn.

A pWn,Fq-tree is an R-tree equipped with a Wn-action by isometries and such that
every subgroup of Wn whose conjugacy class belongs to F is elliptic. A free splitting of
Wn relative to F is a free splitting of Wn such that every free factor in F is elliptic. A
free factor of pWn,Fq is a subgroup of Wn which arises as a point stabilizer in a free
splitting of Wn relative to F . A free factor of pWn,Fq is proper if it is nontrivial, not
equal to Wn and not conjugate to an element of F . An element g P Wn is F-peripheral
(or simply peripheral if there is no ambiguity) if it is conjugate into one of the subgroups
of F , and F-nonperipheral otherwise. In particular, for every free factor system F of
Wn, and every element x P Wn appearing in a standard generating set of Wn, we see
that x is F-peripheral.

4.2.3 The Outer space of pWn,Fq

We recall the definition of the unprojectivised Outer space of pWn,Fq, denoted by
OpWn,Fq and introduced by Guirardel and Levitt in [GuL1]. It is the set of all pWn,Fq-
equivariant isometry classes S of metric simplicial trees with a nontrivial action of Wn,
with trivial arc stabilizers and such that a subgroup is elliptic if and only if it is periph-
eral. The set OpWn,Fq is equipped with the Gromov-Hausdorff equivariant topology
introduced in [Pau1]. The projectivised Outer space of pWn,Fq, denoted by POpWn,Fq,
is defined as the space of homothety classes of trees in OpWn,Fq. The spaces OpWn,Fq
and POpWn,Fq come equipped with a right action of OutpWn,Fq given by precomposi-
tion of the actions.

The space POpWn,Fq has a natural structure of a simplicial complex with missing
faces. Indeed, every element S P POpWn,Fq defines an open simplex as follows. Let S
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be a representative of S such that the sum of the edge lengths of WnzS is equal to 1.
We associate an open simplex by varying the lengths of the edges, so that the sum of
the edge lengths is still equal to 1. A homothety class S 1 P POpWn,Fq of a splitting S1

defines a codimension 1 face of the simplex associated with S if we can obtain S1 from
some representative S of S by contracting one orbit of edges in S.

The closure OpWn,Fq of Outer space in the space of all isometry classes of mini-
mal nontrivial Wn-actions on R-trees, equipped with the Gromov-Hausdorff equivariant
topology, was identified in [Hor3] with the space of all very small pWn,Fq-trees, which
are the pWn,Fq-trees whose arc stabilizers are either trivial, or cyclic, root-closed and
nonperipheral, and whose tripod stabilizers are trivial. The space POpWn,Fq equipped
with the quotient topology is compact (see [Hor3, Theorem 1]).

We recall the definition of a simplicial complex on which the space POpWn,Fq re-
tracts OutpWn,Fq-equivariantly, called the spine of Outer space of pWn,Fq and denoted
by KpWn,Fq. It is the flag complex whose vertices are the Wn-equivariant homeomor-
phism classes S of free splittings relative to F with the property that, if S P S, then all
elliptic subgroups in S are peripheral. Two vertices S and S 1 in KpWn,Fq are linked
by an edge if there exist S P S and S1 P S 1 such that S refines S1 or conversely. There
is an embedding F : KpWn,Fq ãÑ POpWn,Fq whose image is the barycentric spine of
POpWn,Fq. We will from now on identify KpWn,Fq with F pKpWn,Fqq. If F consists
of exactly n copies of F , we simply write Kn for KpWn,Fq. In this case the dimension of
the simplicial complex Kn is n� 2. Indeed, if S is an equivalence class of a free splitting
S in Kn such that the number of edges of WnzS is minimal, then, the number of edges
in WnzS is equal to n � 1. If S is an equivalence class of a free splitting S in Kn such
that the number of edges of WnzS is maximal, then WnzS has n leaves and every vertex
of WnzS that is not a leaf has degree equal to 3. As S is a tree, this shows that the
number of edges in WnzS is equal to 2n� 3. Since, every splitting S of Kn collapes onto
a splitting S1 such that WnzS

1 has n� 1 edges, we see that the dimension of Kn is equal
to 2n� 3� pn� 1q � n� 2.

The free splitting graph of Wn, denoted by Kn, is the following graph. The vertices
of Kn are the Wn-equivariant homeomorphism classes of free splittings. Two distinct
equivalence classes S and S 1 are joined by an edge in Kn if there exist S P S and S1 P S 1
such that S refines S1 or conversely. The free splitting graph of Wn is the 1-skeleton
of the closure of Kn in the space of free splittings of Wn. The group AutpWnq acts on
Kn on the right by precomposition of the action. As InnpWnq acts trivially on Kn, the
action of AutpWnq induces an action of OutpWnq on Kn.

4.2.4 The free factor graph of pWn,Fq

Let F be a free factor system of Wn. We now define a Gromov hyperbolic graph on
which OutpWn,Fq acts by isometries. The free factor graph relative to F , denoted by
FFpWn,Fq, is the following graph. Its vertices are the Wn-equivariant homeomorphism
classes of free splittings of Wn relative to F . Two equivalence classes S and S 1 are joined
by an edge if there exist S P S and S1 P S 1 such that S and S1 are compatible or share a
common nonperipheral elliptic element. The free factor graph is always hyperbolic (see
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[BF2, HaM3, GuH2]). The next proposition is due to Guirardel and Horbez. Here, if
H is a subgroup of OutpWnq and if F is a free factor system of Wn, we say that F is
H-periodic if there exists a finite index subgroup H 1 of H such that H 1pFq � F .

Proposition 4.2.2. [GuH2, Theorem 5.1] Let n ¥ 3 and let F be a nonsporadic free
factor system of Wn. Let H be a subgroup of OutpWn,Fq which acts on FFpWn,Fq with
bounded orbits. Then there exists an H-periodic free factor system F 1 such that F ¤ F 1

and F � F 1.

The Gromov boundary of FFpWn,Fq has been described in terms of relatively ara-
tional trees (see the work of Reynolds [Rey] for the definition of an arational tree in the
context of a free group, the work of Bestvina-Reynolds and Hamenstädt ([BR, Ham] for
the description of the boundary in the case of a free group, and the work of Guirardel-
Horbez [GuH2] in the case of a free product). A pWn,Fq-tree T is arational if no proper
pWn,Fq-free factor acts elliptically on T and, for every proper pWn,Fq-free factor A,
the A-minimal invariant subtree of T (that is the union of the axes of the loxodromic
elements of A for the action of Wn on T , see [CM, Proposition 3.1]) is a simplicial A-tree
in which every nontrivial point stabilizer can be conjugated into one of the subgroups
of F . We equip each arational pWn,Fq-tree with the observers’ topology : this is the
topology on a tree T such that a basis of open sets is given by the connected compo-
nents of the complements of points in T . We equip the set of arational pWn,Fq-trees
with an equivalence relation, where two arational pWn,Fq-trees are equivalent if they
are Wn-equivariantly homeomorphic with the observers’ topology.

Theorem 4.2.3. [GuH2, Theorem 3.4] Let n ¥ 3. Let F be a nonsporadic free factor
system of Wn. The Gromov boundary of FFpWn,Fq is OutpWn,Fq-equivariantly home-
omorphic to the space of all equivalence classes of arational pWn,Fq-trees.

Lemma 4.2.4. [GuH1, Proposition 13.5] Let n ¥ 3. Let F be a nonsporadic free fac-
tor system of Wn, and let H be a subgroup of OutpWn,Fq. If H fixes a point in
B8FFpWn,Fq, then H has a finite-index subgroup that fixes the homothety class of an
arational pWn,Fq-tree.

4.2.5 Groups of twists

Let S be a splitting of Wn, let v P V S, let e be an edge with origin v, and let z be an
element of the centralizer CGvpGeq of Gv in Ge. We define the twist by z around e to
be the automorphism De,z of Wn defined as follows (see [Lev1]). Let S be the splitting
obtained from S by collapsing all the edges of S outside of the orbit of e. Then S is a
tree. Let e be the image of e in S and let v be the image of v in S. Let w be the endpoint
of e distinct from v. The automorphism De,z is defined to be the unique automorphism
that acts as the identity on Gv and as conjugation by z on Gw. The element z is called
the twistor of De,z. It is well-defined up to composing on the right by an element of
CWnpGwq X CGvpGeq. The group of twists of S is the subgroup of OutpWnq generated
by all twists around oriented edges of S.
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We now give a description of the stabilizer of a point in Kn due to Levitt. If S P V Kn,
we denote by StabpSq the stabilizer of S under the action of OutpWnq. Let S be a
representative of S. We denote by Stab0pSq the subgroup of StabpSq consisting of all
elements F P OutpWnq such that the graph automorphism induced by F on WnzS is the
identity.

Proposition 4.2.5. [Lev1, Propositions 2.2, 3.1 and 4.2] Let n ¥ 4 and S P V Kn. Let
S be a representative of S and let v1, . . . , vk be the vertices of WnzS with nontrivial
associated groups. For i P t1, . . . , ku, let Gi be the group associated with vi.
p1q The group Stab0pSq fits in an exact sequence

1 Ñ T Ñ Stab0pSq Ñ
k¹
i�1

OutpGiq Ñ 1,

where T is the group of twists of S.

p2q The group Stab0pSq is isomorphic to

k¹
i�1

G
degpviq�1
i �AutpGiq,

where AutpGiq acts on G
degpviq�1
i diagonally.

p3q The group of twists T of S is isomorphic to

T � `ki�1G
degpviq
i {ZpGiq,

where the center ZpGiq of Gi is embbeded diagonally in G
degpviq
i .

Remark 4.2.6. In [Lev1, Proposition 2.2], Levitt shows that the kernel of the natural
homomorphism Stab0pSq Ñ

±k
i�1 OutpGiq given by the action on the vertex groups is

generated by bitwists. Since edge stabilizers are trivial, the group of bitwists is equal to the
group of twists. More generally (see [Lev1, Proposition 2.3]), if the outer automorphism
group of every edge stabilizer is finite (in particular, if edge stabilizers are isomorphic to
Z or to F ) then the group of twists is a finite index subgroup of the group of bitwists.

Finally, if the centralizer in Wn of an edge stabilizer is trivial, then the group of
bitwists about this edge is trivial. Therefore, if the edge stabilizer is not cyclic, then the
group of bitwists about this edge is trivial. In all cases, we see that, for every equivalence
class S of a splitting S of Wn, the group of twists of S is a finite index subgroup of the
group of bitwists of Wn.

We establish one last fact about twists about edges whose centralizer is cyclic (see [CL2,
Lemma 5.3] for a similar statement in the context of the outer automorphism group of
a nonabelian free group).
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Lemma 4.2.7. Let n ¥ 3 and let S be the equivalence class of a splitting S. Suppose that
there exists an edge e of S with cyclic stabilizer and let D be the outer automorphism
class of a twist about e. Let HS be the subgroup of Stab0pSq which induces the identity
on the edge stabilizer Ge of e. Then D is central in HS

In particular, Stab0pSq has a finite index subgroup HS such that D is central in HS .

Proof. Let U be a splitting onto which S collapses (or S itself if S does not have
a nontrivial collapse), and let U be its equivalence class. Then Stab0pSq � Stab0pUq.
Thus, we may suppose, up to collapsing all orbits of edges of S except the one containing
e, that S has exactly one orbit of edges. Let v and w be the two endpoints of e and let Gv
and Gw be their edge stabilizers. Let f P HS and let F be a representative of f such that
F pGvq � Gv, F pGwq � Gw and F |Ge � idGe (this representative exists since f P HS).
Let z P CGvpGeq be such that De,z is a representative of D. Then, since F pzq � z, for
every x P Wn, we have De,z � F �D�1

e,z pxq � F pxq. Hence f and D commutes and D is
central in HS . Since the outer automorphism group of a cyclic group is finite, we see
that HS is a finite index subgroup of Stab0pSq. This concludes the proof.

4.3 Geometric rigidity in the graph of Wk-stars

We start by defining Wk-stars, which are the main splittings of interest in this article.

Definition 4.3.1. Let n ¥ 3, and let k ¥ 1 be an integer.

p1q A free splitting S is a k-edge free splitting if WnzS has exactly k edges.

p2q Suppose that 0 ¤ k ¤ n� 2. A Wk-star is an pn� kq-edge free splitting such that:

� the underlying graph of WnzS has n � k � 1 vertices and one of them, called the
center of WnzS, has degree exactly n� k,

� the group associated with the center of WnzS is isomorphic to Wk (we use the
convention that W0 � t1u and that W1 � F ),

� the group associated with any leaf of WnzS is isomorphic to F .

p3q A Wn�1-star is a one-edge free splitting S such that one of the vertex groups of
WnzS is isomorphic to Wn�1 while the other vertex group is isomorphic to F .

Note that, in [Gue2], a Wn�1-star is called an F -one-edge free splitting. Using Propo-
sition 4.2.5 p2q, we see that, if k P t0, . . . , n � 2u, and if S is the equivalence class of a
Wk-star, then the group Stab0pSq is isomorphic to Wn�k�1

k �AutpWkq.
Note that, if S is a Wk-star with k P t0, . . . , n� 2u and S1 is a splitting on which S

collapses, then there exists ` P tk, . . . , n� 1u such that S1 is a W`-star. In particular, for
every k P t0, . . . , n � 2u, if S is a Wk-star, then every one-edge free splitting on which
S collapses is a Wn�1-star. A similar statement is also true for refinements of Wk-stars
(see Lemma 4.3.8).
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4.3.1 Rigidity of the graph of W�-stars

We introduce in this section a graph, the graph of one-edge compatible Wn�2-stars,
on which OutpWnq acts by simplicial automorphisms. We prove that this graph is a
rigid geometric model for OutpWnq. The proof relies on the study of the rigidity of
an additional graph on which OutpWnq acts, the graph of W�-stars, to be defined after
Theorem 4.3.3.

Definition 4.3.2. p1q The graph of Wn�2-stars, denoted by rXn, is the graph whose vertices
are the Wn-equivariant homeomorphism classes of Wn�2-stars, where two equivalence
classes S and S 1 are joined by an edge if there exist S P S and S1 P S 1 such that S and
S1 are compatible.

p2q The graph of one-edge compatible Wn�2-stars, denoted by Xn, is the graph whose
vertices are the Wn-equivariant homeomorphism classes of Wn�2-stars where two equiv-
alence classes S and S 1 are joined by an edge if there exist S P S and S1 P S 1 such that
S and S1 have a common refinement which is a Wn�3-star.

Note that the adjacency in the graph Xn is equivalent to having both a common
collapse (which is a Wn�1-star) and a common refinement. The graph Xn is a subgraph
of rXn. The group AutpWnq acts on rXn and Xn by precomposition of the action. As
InnpWnq acts trivially on Xn, the action of AutpWnq induces an action of OutpWnq. We
denote by AutpXnq the group of graph automorphisms of Xn. In Section 4.3.2, we prove
the following theorem.

Theorem 4.3.3. Let n ¥ 5. The natural homomorphism

OutpWnq Ñ AutpXnq

is an isomorphism.

In order to prove this theorem, we take advantage of the action of OutpWnq on another
graph, namely the graph of W�-stars, denoted by X 1

n. The vertices of this graph are the
Wn-equivariant homeomorphism classes of Wk-stars, with k varying in t0, . . . , n � 2u.
Two equivalence classes S and S 1 are joined by an edge if there exist S P S and S1 P S 1
such that S refines S1 or conversely. Note that we have a natural embedding X 1

n ãÑ Kn.
We identify from now on X 1

n with its image in Kn. In this section, we prove the following
theorem.

Theorem 4.3.4. Let n ¥ 5. The natural homomorphism

OutpWnq Ñ AutpX 1
nq

is an isomorphism.

Theorem 4.3.4 relies on the fact that X 1
n contains a rigid subgraph, namely the graph

of t0u-stars and F -stars, and denoted by Ln. The vertices of this graph are the Wn-
equivariant homeomorphism classes of t0u-stars and F -stars. Two equivalence classes S
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and S 1 are joined by an edge if there exist S P S and S1 P S 1 such that S refines S1 or
conversely.

We recall the following theorem.

Theorem 4.3.5. [Gue2, Theorem 3.1, Corollary 3.2] Let n ¥ 4. Let f be an automorphism
of Ln preserving the set of t0u-stars and the set of F -stars. Then f is induced by the
action of a unique element γ of OutpWnq. In particular, for every n ¥ 5, the natural
homomorphism

OutpWnq Ñ AutpLnq

is an isomorphism.

The strategy in order to prove Theorem 4.3.4 is to show that every automorphism of
X 1
n preserves Ln and that the natural map AutpX 1

nq Ñ AutpLnq is injective.

Remark 4.3.6. Using the same techniques, we may prove that the graph of Wn�1-stars
is rigid. This is done in the appendix (see Theorem 4.9.1).

First we recall a theorem due to Scott and Swarup.

Theorem 4.3.7. [SS, Theorem 2.5] Let n ¥ 4. Any set tS1, . . . , Sku of pairwise nonequiv-
alent, pairwise compatible, one-edge free splittings of Wn has a unique refinement S such
that WnzS has exactly k edges. Moreover, the equivalence class of S only depends on the
equivalence classes of S1, . . . , Sk. If S is a free splitting such that WnzS has exactly k
edges, then S refines exactly k pairwise nonequivalent one-edge free splittings.

We also need the following lemma concerning refinements of Wk-stars.

Lemma 4.3.8. Let k, ` P t0, . . . , n� 1u and let S and S1 be respectively a Wk-star and a
W`-star. If S and S1 have a common refinement, then there exists j P t0, . . . , n� 2u and
a Wj-star S2 which refines both S and S1. Moreover, S2 can be chosen such that S2 is
a refinement of S and S1 with the minimal number of orbits of edges.

Proof. Let S1, . . . , Sn�k be n�k Wn�1-stars onto which S collapses and let S11, . . . , S
1
n�`

be n � ` Wn�1-stars onto which S1 collapses. Then the set tS1, . . . , Sn�k, S
1
1, . . . , S

1
n�`u

is a set of pairwise compatible Wn�1-stars. For every s P t1, . . . , n � ku and every
t P t1, . . . , n�`u, let Ss be the equivalence class of Ss and S 1t be the equivalence class of S1t.
Let n�j � |tS1, . . . ,Sn�k,S 11, . . . ,S 1n�`u|. By Theorem 4.3.7, there exists a free splitting
S2 with n�j edges which refines every Wn�1-star of the set tS1, . . . , Sn�k, S

1
1, . . . , S

1
n�`u.

But, as F is freely indecomposable, a common refinement of two Wn�1-stars U and U 1 is
obtained from U by blowing-up an edge at the vertex of WnzU whose associated group
is isomorphic to Wn�1. Since U 1 is also a Wn�1-star, this common refinement has two
orbits of edges and the two corresponding leaves have a stabilizer isomorphic to F , hence
it is a Wn�2-star. The same argument shows that, if U0 is a Wn�1-star and if U1 is a
Wk-star with k P t1, . . . , n � 1u compatible with U0, then a common refinement of U0

and U1 with a minimal number of orbits of edges is either a Wk-star (if the equivalence
classes of U0 and U1 are adjacent in Kn) or a Wk�1-star. Therefore, by induction on
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i P t1, . . . , n� `u, we see that a common refinement of tS1, . . . , Sn�k, S
1
1, . . . , S

1
n�`u with

the minimal number of orbits of edges is a Wj-star. This shows that S2 is a Wj-star.
This concludes the proof.

Lemma 4.3.8 implies that the set of Wk-stars with k varying in t0, . . . , n� 1u is closed
under taking collapse and taking refinement with a minimal number of orbits of edges.

Lemma 4.3.9. Let n ¥ 5. For every f P AutpX 1
nq, we have fpLnq � Ln. Moreover, if

f |Ln � idLn, then f � idX 1
n

.

Proof. Let f P AutpX 1
nq. The fact that fpLnq � Ln follows from the fact that vertices

of Kn X X 1
n in X 1

n are characterized by the fact that they are the vertices with finite
valence. The proof is identical to the proof of [Gue2, Proposition 5.1].

Now suppose that f |Ln � idLn and let S be the equivalence class of a Wn�2-star S.
Let us prove that fpSq � S. Let tx1, . . . , xnu be a standard generating set of Wn such
that the free factor decomposition of Wn induced by S is

Wn � xx1y � xx2, . . . , xn�1y � xxny .

Let X be the equivalence class of the F -star X depicted in Figure 4.1.








xx2y

xx3y

xx1y

xxny









xxiy

xx1y

xxi�1y
xxi�1y

xxny

Figure 4.1: The F -stars X (on the left) and X 1 (on the right) of the proof of Lemma 4.3.9.

We see that S and X are adjacent in X 1
n. Therefore, as fpX q � X , we see that fpSq

and X are adjacent in X 1
n.

Let S 1 be the equivalence class of a Wn�2-star adjacent to X and distinct from S.
Then, as X and S 1 are adjacent, there exist distinct i, j P t1, . . . , nu with i, j � 2 and a
representative S1 of S 1 such that the free factor decomposition of Wn induced by S1 is

Wn � xxiy � xx1, . . . , pxi, . . . , pxj , . . . , xny � xxjy .
Since S � S 1, we may suppose that i R t1, nu. But then S is adjacent to the equivalence
class X 1 of the F -star X 1 depicted in Figure 4.1 whereas S 1 is not adjacent to X 1. Since
fpX 1q � X 1, this shows that fpSq � S 1.

Finally, let k P t2, . . . , n� 3u and let Sp2q be the equivalence class of a Wk-star Sp2q

which is adjacent to X . We prove that fpSq � Sp2q. Since k ¤ n � 3, the underlying
graph of WnzS

p2q has at least 3 edges. Therefore, there exists i R t1, nu and a leaf v of
the underlying graph of WnzS

p2q such that the preimage by the marking of WnzS
p2q of

the generator of the group associated with v is xi. But then the equivalence class Sp2q
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is not adjacent to the equivalence class X 1 of the F -star X 1 depicted in Figure 4.1. As
S is adjacent to X 1 and as fpX 1q � X 1, we see that fpSq � Sp2q. Therefore, fpSq � S.

The above paragraphs show that f fixes pointwise the set of equivalence classes of
Wn�2-stars. Let k P t2, . . . , n�3u and let T be the equivalence class of a Wk-star T . By
Theorem 4.3.7, the equivalence class T is uniquely determined by the set of Wn�1-stars
on which T collapses. Since two distinct equivalence classes of Wn�2-stars are adjacent
in Kn to distinct pairs of equivalence classes of Wn�1-stars, the equivalence class T
is uniquely determined by the set of Wn�2-stars on which it collapses. Since f fixes
pointwise the set of equivalence classes of Wn�2-stars, we see that fpT q � T . Hence
f � idX 1

n
. This concludes the proof.

Proof of Theorem 4.3.4. Let n ¥ 5. We first prove the injectivity. The homomorphism
OutpWnq Ñ AutpLnq is injective by Theorem 4.3.5. Moreover, the homomorphism
OutpWnq Ñ AutpLnq factors through OutpWnq Ñ AutpX 1

nq Ñ AutpLnq. We therefore
deduce the injectivity of OutpWnq Ñ AutpX 1

nq. We now prove the surjectivity. Let
f P AutpX 1

nq. By Lemma 4.3.9, we have a homomorphism Φ: AutpX 1
nq Ñ AutpLnq

defined by restriction. By Theorem 4.3.5, the automorphism Φpfq is induced by an
element γ P OutpWnq. Since the homomorphism AutpX 1

nq Ñ AutpLnq is injective by
Lemma 4.3.9, f is induced by γ. This concludes the proof.

4.3.2 Rigidity of the graph of one-edge compatible Wn�2-stars

In this section, we prove Theorem 4.3.3. In order to do so, we construct an injective
homomorphism AutpXnq Ñ AutpX 1

nq. First, we need to show some technical results
concerning the graph Xn. Indeed, let ∆ be a triangle (that is, a cycle of length 3) in
Xn, and let S1, S2 and S3 be the vertices of this triangle. By Theorem 4.3.7, for every
i P t1, 2, 3u, there exists Si P Si such that S1, S2 and S3 have a common refinement
S, and we suppose that S has the minimal number of orbits of edges among the com-
mon refinements of S1, S2 and S3. Since S1, S2 and S3 are Wn�2-stars, there exists
k P t0, . . . , n� 3u such that S is a Wk-star. By definition of the adjacency in Xn, the
splitting S is either a Wn�3-star or a Wn�4-star (see Figure 4.2). Our first result shows
that we can distinguish these two types of triangles.

Lemma 4.3.10. Let n ¥ 5. Let S1,S2 and S3 be three equivalence classes of Wn�2-stars
which are pairwise adjacent in Xn. Let S1, S2 and S3 be representatives of S1, S2 and
S3 which have a common refinement S. Suppose that S is the refinement of S1, S2 and
S3 which has the minimal number of orbit of edges. Then S is a Wn�4-star if and only if
there exists an equivalence class S4 of a Wn�2-star S4 distinct from S1, S2 and S3 such
that, for every i P t1, 2, 3u, the equivalence classes Si and S4 are adjacent in Xn.

Proof. Suppose first that S is a Wn�4-star. Let tx1, . . . , xnu be a standard generating
set of Wn such that the free factor decomposition of Wn induced by S is

Wn � xx1y � xx2y � xx3y � xx4y � xx5, . . . , xny .
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xx2, x3, x4y

xx1yxx5y



 

xx1, x3, x4y

xx2yxx5y



 

xx3, x4, x5y

xx2yxx1y



 

xx2, x3, x4y

xx1yxx5y



 

xx1, x3, x4y

xx2yxx5y



 

xx1, x2, x4y

xx3yxx5y

Figure 4.2: Two triangles in Xn, one corresponding to a Wn�3-star (on the left) and one
corresponding to a Wn�4-star (on the right).

Since being adjacent in Xn is equivalent to having a common refinement which is a
Wn�3-star and having a common collapse which is a Wn�1-star, the Wn�2-stars S1 and
S2 share a common collapse S1 which is a Wn�1-star. Let S 1 be the equivalence class
of S1. We claim that there exists an orbit of edges E in S3 such that the splitting
obtained from S3 by collapsing every orbit of edges of S3 except E is in S 1. Indeed,
suppose towards a contradiction that this is not the case. Then, as for every i P t1, 2u,
the equivalence classes Si and S3 are adjacent in Xn, we see that, for every i P t1, 2u,
the splittings Si and S3 share a common collapse onto a Wn�1-star S1i. Recall that we
supposed that there does not exist an orbit of edges E in S3 such that the splitting
obtained from S3 by collapsing every orbit of edges of S3 except E is in S 1. This implies
that for every i P t1, 2u, the equivalence class S 1i of S1i is distinct from S 1. Since S1

and S2 are Wn�2-stars, they collapse onto exactly 2 distinct Wn�1-stars. Therefore,
for every i P t1, 2u, the equivalence classes S 1 and S 1i are the two equivalence classes of
Wn�1-stars onto which Si collapses. It follows that a common refinement of S11, S12 and
S1 is also a common refinement of S1, S2 and S3. But a common refinement of S11, S12
and S13 is a Wn�3-star. This contradicts the fact that S has the minimal number of edges
among common refinements of S1, S2 and S3. Thus S3 collapses onto a Wn�1-star in
the equivalence class S 1. Let j P t1, . . . , 4u be such that the free factor decomposition of
Wn induced by S1 is:

Wn � xxjy � xx1, . . . , pxj , . . . , xny .
Let S4 be the equivalence class of the Wn�2-star S4 whose induced free factor decompo-
sition is:

Wn � xxjy � xx1, . . . ,xx5, . . . , pxj , . . . , xny � xx5y .

Then, for every i P t1, 2, 3u, the equivalence classes S4 and Si are adjacent in Xn.

Conversely, suppose that S is a Wn�3-star. Let tx1, . . . , xnu be a standard generating
set of Wn such that the free factor decomposition of Wn induced by S is

Wn � xx1y � xx2y � xx3y � xx4, . . . , xny .

Then, up to reordering, we may suppose that, for every i P t1, 2, 3u the free factor
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decomposition of Wn induced by Si is:

Wn � xxiy � xxi�1y � xx1, . . . , pxi,yxi�1, . . . , xny ,

where, for i � 3, the index i� 1 is taken modulo 3. Let S 1 be the equivalence class of a
Wn�2-star S1 adjacent to S1 in Xn and distinct from S2 and S3. Then, up to changing
the representative S1, there exists j P t1, 2u such that S1 collapses onto the Wn�1-star
whose associated free factor decomposition is:

Wn � xxjy � xx1, . . . , pxj , . . . , xny .
If j � 1, then, as S 1 is distinct from S1 and S3, we see that S 1 is not adjacent to S2 in
Xn. If j � 2, then, as S 1 is distinct from S1 and S2, we see that S 1 is not adjacent to S3

in Xn. In both cases, we see that there exists i P t2, 3u such that S 1 is not adjacent to
Si. This concludes the proof.

Corollary 4.3.11. Let n ¥ 5. Let k ¥ 4 and let S1, . . . ,Sk be k equivalences classes of
Wn�2-stars which are pairwise adjacent in Xn. For i P t1, . . . , ku, let Si be a repre-
sentative of Si. Let S be a refinement of S1, . . . , Sk whose number of orbits of edges is
minimal. Then S is a Wn�k�1-star.

Proof. For every distinct i, j P t1, . . . , ku, the equivalence classes Si and Sj are adjacent
in Xn. Hence, for every distinct i, j P t1, . . . , ku, there exists a common refinement of Si
and Sj which is a Wn�3-star. This implies that, for every p P t1, . . . , ku and for every
i1, . . . , ip P t1, . . . , ku, a common refinement of Si1 , . . . , Sip is obtained from a common
refinement of Si1 , . . . , Sip�1 whose number of orbits of edges is minimal by adding at most
one orbit of edges. We claim that a common refinement of Si1 , . . . , Sip whose number
of orbits of edges is minimal has exactly p � 1 orbits of edges. Indeed, otherwise there
would exist i, j, ` P t1, . . . , ku pairwise distinct such that a Wn�3-star which refines both
Si and Sj also refines S`. This is not possible by Lemma 4.3.10 since k ¥ 4. This proves
the claim. Taking p � k concludes the proof of the lemma.

Proposition 4.3.12. Let n ¥ 5. There exists a OutpWnq-equivariant injective homomor-
phism rΦ: AutpXnq Ñ AutpX 1

nq.







xx1, . . . , xky

xxk�1y

xxny S





xx1, . . . , xn�1y

xxny S0







xx1, . . . , xk, . . . ,zxk�i, . . . , xn�1y

xxk�iy

xxny Si

Figure 4.3: The construction of the map AutpXnq Ñ AutpX 1
nq.

Proof. We first exhibit a map Φ: AutpXnq Ñ BijpV X 1
nq. Let f P AutpXnq. Let

k P t0, . . . , n � 2u and let S be the equivalence class of a Wk-star S. If k � n � 2,
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then we set ΦpfqpSq � fpSq. If k ¤ n � 3, let S0 be a Wn�1-star refined by S. Let
S1, . . . , Sn�k�1 be the Wn�2-stars such that, for every i P t1, . . . , n � k � 1u, S refines
Si and Si refines S0 (see Figure 4.3). For every i P t1, . . . , n � k � 1u, let Si be the
equivalence class of Si, and let Ti be a representative of fpSiq. By Corollary 4.3.11, if
n� k� 1 ¥ 4, the Wn�2-stars T1, . . . , Tn�k�1 are refined by a Wk-star T 1. This Wk-star
is unique up to Wn-equivariant homeomorphism by Theorem 4.3.7. In the case where
k � n � 3, we have n � k � 1 � 2 and, since fpS1q and fpS2q are adjacent in Xn, the
splittings T1 and T2 are refined by a Wn�3-star T 1 and it is unique up to Wn-equivariant
homeomorphism by Theorem 4.3.7. Finally, when k � n� 4, Lemma 4.3.10 implies that
a common refinement of T1, T2 and T3 with the minimal number of orbits of edges is a
Wn�4-star T 1, and it is unique up to Wn-equivariant homeomorphism by Theorem 4.3.7.
In all cases, let T 1 be the equivalence class of T 1. We set ΦpfqpSq � T 1.

We now prove that Φ is well-defined. Let k P t0, . . . , n � 2u and let S be the
equivalence class of a Wk-star S. Let S0 and S10 be two distinct Wn�1-stars onto which
S collapses and let S0 and S 10 be their equivalence classes. Let S1, . . . , Sn�k�1 be the
Wn�2-stars such that, for every i P t1, . . . , n� k� 1u, S refines Si and Si refines S0 and
let S11, . . . , S

1
n�k�1 be the Wn�2-stars such that, for every i P t1, . . . , n�k� 1u, S refines

S1i and S1i refines S10. For i P t1, . . . , n � k � 1u, let Si be the equivalence class of Si
and let S 1i be the equivalence class of S1i. For every i P t1, . . . , n � k � 1u, let Ti be a
representative of fpSiq and let T 1i be a representative of fpS 1iq. Let T be a Wk-star which
refines T1, . . . , Tn�k�1 and let T 1 be a Wk-star which refines T 11, . . . , T

1
n�k�1. Finally, let

T be the equivalence class of T and let T 1 be the equivalence class of T 1. We claim
that T � T 1. Indeed, we first remark that there exist i, j P t1, . . . , n� k � 1u such that
Si � S 1j : it is the equivalence class of the Wn�2-star which refines both S0 and S10. Up to
reordering, we may suppose that i � j � 1, that S1 � S11 and that T1 � T 11. Therefore,
both T and T 1 collapse onto T1.

Let U2, . . . , Un�k�1 be the Wn�3-stars such that, for every j P t2, . . . , n� k� 1u, the
Wn�3-star Uj refines S1 and Uj is refined by S. For every j P t2, . . . , n � k � 1u there
exist `, `1 P t2, . . . , n � k � 1u such that S` and S1`1 are refined by Uj . Therefore, the
map g : t2, . . . , n � k � 1u Ñ t2, . . . , n � k � 1u sending ` to `1 is a bijection. Thus, we
may suppose that g is the identity, that is, we may suppose that j � ` � `1. It follows
that for every j P t2, . . . , n�k� 1u, the equivalence class of the Wn�3-star which refines
S1 and Sj is the same one as the equivalence class of the Wn�3-star which refines S1

and S1j . Therefore, for every i P t2, . . . , n� k � 1u, the set tS1,Si,S 1iu defines a triangle
in Xn which corresponds to the equivalence class of a Wn�3-star. By Lemma 4.3.10,
for every i P t2, . . . , n � k � 1u, the set tfpS1q, fpSiq, fpS 1iqu defines a triangle in Xn

which corresponds to the equivalence class of a Wn�3-star. Thus, up to changing the
representative T 1i , for every i P t1, . . . , n�k�1u, the Wn�3-star which refines T1 and Ti is
the same one as the Wn�3-star which refines T1 and T 1i . As T and T 1 are characterized
by the set of equivalence classes of Wn�3-stars which collapses onto T1 and on which
T and T 1 collapse, we see that T � T 1. Therefore, the map Φpfq : V X 1

n Ñ V X 1
n is

well-defined. As Φpfq � Φpf�1q � Φpf � f�1q � id, we see that Φpfq is a bijection.
We now prove that the map Φ: AutpXnq Ñ BijpV X 1

nq induces a monomorphism
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rΦ: AutpXnq Ñ AutpX 1
nq. Let f P AutpXnq and let us prove that Φpfq preserves EX 1

n.
Let S,S 1 be adjacent vertices in X 1

n. Up to exchanging the roles of S and S 1, we
may suppose that there exist S P S and S1 P S 1 such that S1 collapses onto S. Let
k, ` P t1, . . . , n�2u be such that S is a Wk-star and S1 is a Wk�`-star. Let S0 be a Wn�1-
star such that S refines S0. Let S1, . . . , Sn�k�1 be the Wn�2-stars such that, for every i P
t1, . . . , n�k�1u, S refines Si and Si refines S0. As S1 refines S, there exist ` Wn�2-stars
Sn�k, . . . , Sn�k�`�1 such that the Wn�2-stars S1, . . . , Sn�k�`�1 are the n�k�`�1 Wn�2-
stars which collapse onto S0 and which are refined by S1. For every i P t1, . . . , n�k�`�1u,
let Si be the equivalence class of Si. By definition of Φpfq, there exist a representative
T of ΦpfqpSq and representatives T1, . . . , Tn�k�1 of fpS1q, . . . , fpSn�k�1q such that T
is a common refinement of T1, . . . , Tn�k�1. Moreover, there exist a representative T 1

of ΦpfqpS 1q and representatives Tn�k, . . . , Tn�k�`�1 of fpSn�kq, . . . , fpSn�k�`�1q such
that T 1 is a common refinement of fpS1q, . . . , fpSn�k�`�1q. As tfpS1q, . . . , fpSn�k�1qu
is a subset of tfpS1q, . . . , fpSn�k�`�1qu, we see that fpSq and fpS 1q are adjacent. This
shows that the application Φpfq : V Xn Ñ V X 1

n induces a homomorphism rΦ: AutpXnq Ñ
AutpX 1

nq. Finally, the facts that rΦ is injective and is OutpWnq-equivariant follow from
the fact that, for every equivalence class S of Wn�2-stars, we have fpSq � ΦpfqpSq. This
concludes the proof.

Proof of Theorem 4.3.3. Let n ¥ 5. We first prove the injectivity. The homomorphism
OutpWnq Ñ AutpX 1

nq is injective by Theorem 4.3.4. Moreover, the homomorphism
OutpWnq Ñ AutpX 1

nq factors through OutpWnq Ñ AutpXnq Ñ AutpX 1
nq. We therefore

deduce the injectivity of OutpWnq Ñ AutpXnq. We now prove the surjectivity. Let
f P AutpXnq. By Proposition 4.3.12, we have a homomorphism rΦ: AutpXnq Ñ AutpX 1

nq.
By Theorem 4.3.4, the automorphism rΦpfq is induced by an element γ P OutpWnq. Since
the homomorphism AutpXnq Ñ AutpX 1

nq is injective by Proposition 4.3.12, f is induced
by γ. This concludes the proof.

4.4 The group of twists of a Wn�1-star

In this section, we study the centralizers in OutpWnq of twists about a Wn�1-star. We
first show that to a free factor of Wn isomorphic to Wn�1, one can associate a canonical
equivalence class of Wn�1-star (see Lemma 4.4.4). We then show that, for an outer
automorphism f in the stabilizer of the equivalence class S of a Wn�1-star, there exists
a canonical representative F of f such that f commutes with a twist T of the S if and
only if F fixes the twistor of T (see Lemma 4.4.11) We first need some preliminary results
about stabilizers of free factors of Wn isomorphic to Wn�1.

Let tx1, . . . , xnu be a standard generating set of Wn. For distinct i, j P t1, . . . , nu,
let σj,i : Wn Ñ Wn be the automorphism sending xj to xixjxi and, for k � j, fixing xk.
For distinct i, j P t1, . . . , nu, let pi jq be the automorphism of Wn switching xi and xj
and, for k � i, j, fixing xk. The following theorem is due to Mühlherr.

Theorem 4.4.1. [Müh, Theorem B] Let n ¥ 2. The set tσi,j |i � ju Y tpi jq |i � ju is a
generating set of AutpWnq.
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We now introduce a finite index subgroup of OutpWnq which will be used throughout
the remainder of this paper. For every i, j P t1, . . . , nu distinct, both σi,j and pi jq
preserve the set of conjugacy classes trx1s, . . . , rxnsu. Since tσi,j |i � ju Y tpi jq |i � ju
generates AutpWnq by Theorem 4.4.1, we see that we have a well-defined homomorphism
OutpWnq Ñ Bijptrx1s, . . . , rxnsuq. Let Out0pWnq be the kernel of this homomorphism.
The group Out0pWnq has finite index in OutpWnq. We will mostly work in Out0pWnq
from now on because of the following lemma.

Lemma 4.4.2. Let n ¥ 3 and let f P Out0pWnq. Suppose that f fixes the equivalence class
S of a free splitting S. Then the graph automorphism of the underlying graph of WnzS
induced by f is the identity. Therefore we have StabOut0pWnq

pSq � Stab0
Out0pWnq

pSq.

Proof. The underlying graph WnzS of WnzS is a tree. Moreover, since S is a free
splitting, if L is the set of leaves of WnzS, then the set trGvsuvPL is a free factor system
of Wn. Note that, as trx1s, . . . , rxnsu is a free factor system of Wn which is minimal
for inclusion, for every i P t1, . . . , nu, there exists one v P V S such that xi P Gv.
Since S is a free splitting, for every i P t1, . . . , nu, the element xi is contained in a
unique vertex group. Moreover, for every v P L, there exist k P t0, . . . , n � 1u and
ti1, . . . , iku � t1, . . . , nu such that Gv is isomorphic to Wk and trxi1sXGv, . . . , rxiksXGvu
is a free factor system of Gv. As f P Out0pWnq, and as f fixes S, it follows that, for every
v P L, we have fprGvsq � rGvs. Hence the graph automorphism pf of WnzS induced by
f acts as the identity on L. As any graph automorphism of a finite tree is determined
by its action on the set of leaves, it follows that pf � id. This concludes the proof.

Remark 4.4.3. The subgroup Out0pWnq of OutpWnq is our (weak) analogue of the sub-
group IAN pZ{3Zq of OutpFN q, which is defined as the kernel of the natural homomor-
phism OutpFN q Ñ GLpN,Z{3Zq. Indeed, the group IAN pZ{3Zq satisfies a statement
similar to Lemma 4.4.2, but it has the additional property that if φ P IAN pZ{3Zq has a
periodic orbit in the free splitting graph of FN , then the cardinality of this orbit is equal
to 1. In the context of Out0pWnq, we do not know if Out0pWnq contains a torsion free
finite index subgroup which satisfies this property.

The next lemma relates the stabilizer of a free factor of Wn isomorphic to Wn�1 and
the stabilizer of a Wn�1-star.

Lemma 4.4.4. Let n ¥ 3. Let A be a free factor of Wn isomorphic to Wn�1. Then,
up to Wn-equivariant homeomorphism, there exists a unique free splitting S in which A
is elliptic. In particular, if f P OutpWnq is such that fprAsq � rAs, then f fixes the
equivalence class of S.

Proof. By definition of a free factor, there exists a free splitting S of Wn such that A
is elliptic in S. This proves the existence. We now prove the uniqueness statement. We
may assume that tx1, . . . , xn�1u is a standard generating set of A and xn P Wn is such
that

Wn � A � xxny .
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Then, the free factor system F � trAs, rxxnysu is a sporadic free factor system which
contains rAs. Let F 1 be a free factor system of Wn which contains rAs. Since the free
factor system trxx1ys, . . . , rxxnysu is the minimal element of the set of free factor systems
of Wn, we see that there exists rBs P F 1 such that xn P B. As F 1 contains rAs and as
Wn � A � xxny, it follows that Wn � A � B and that B � xxny. Therefore rBs � rxxnys
and F 1 � trAs, rxxnysu. We deduce that F is the unique nontrivial free factor system
which contains rAs. But the spine KpWn,Fq of the Outer space relative to F is reduced
to a point, i.e. it is reduced to a unique equivalence class of free splittings. This proves
the uniqueness statement.

Remark 4.4.5. In the context of OutpFN q, the analogue of the splitting given by Lemma 4.4.4
is the following one. Let rAs be the conjugacy class of a free factor of FN isomorphic
to FN�1. Then the canonical splitting associated with A is the splitting corresponding
to the HNN extension FN � A� over the trivial group. However, there does not exist
a natural choice (up to conjugacy) of an element g P FN such that trAs, rgsu is a free
factor system of FN .

Let S be a splitting with exactly one orbit of edges, whose stabilizer is root-closed
and isomorphic to Z. Then the group of twists of S is isomorphic to Z by a result of
Levitt (see [Lev1, Proposition 3.1]). The next proposition is similar to a result in the
case of the outer automorphism group of a free group (see [CL1] and [HW2, Lemma 2.7]).
Recall that an element w P Wn is root-closed if there does not exist w0 P Wn and an
integer n ¥ 2 such that w � wn0 .

Lemma 4.4.6. Let n ¥ 3. Let A be a free factor of Wn isomorphic to Wn�1 and let w P A
be a root-closed element of infinite order. Let x PWn be such that Wn � A � xxy. Let S
be the equivalence class of a splitting S whose associated amalgamated decomposition of
Wn is the following:

Wn � A �xwy pxwy � xxyq .

Let D be a nontrivial twist about S. Let R be the equivalence class of a free splitting R
of Wn such that DpRq � R. Let R1 and S1 be metric representatives of R and S, let R1

and S 1 be their Wn-equivariant isometry classes and let rR1s and rS 1s be their homothety
classes.

p1q In POpWnq, there exists an increasing function ψ : NÑ N such that

lim
nÑ8

DψpnqprR1sq � rS 1s.

p2q The splittings S and R are compatible.

Proof. We prove the first part. As POpWnq is compact, up to passing to a subsequence,
there exists a sequence pλnqnPN P pR�

�q
N and a Wn-equivariant isometry class T of an

R-tree T such that
lim
nÑ8

λnD
npR1q � T .
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Since translation length functions are continuous for the Gromov-Hausdorff topology
(see [Pau1]), for every g PWn, we have:

lim
nÑ8

λn ‖g‖DnpR1q � ‖g‖T ,

where ‖g‖T is the translation length of g in T . Hence, for every g P Wn, the limit
limnÑ8 λn ‖g‖DnpR1q is finite. But as D has infinite order, we have limnÑ8 λn � 0. As
there exists a representative φ P AutpWnq of D such that φA � idA, for every g P A, we
have:

lim
nÑ8

λn ‖g‖DnpR1q � lim
nÑ8

λn ‖g‖R1 � 0.

Hence every element of A fixes a point in T . As A is finitely generated, this implies that
A fixes a point in T (see for instance [CM, Section 3]). Similarly, we see that xwy � xxy
fixes a point in T . As Wn � A�xxy, we see that A and xwy�xxy cannot fix the same point
in T . Let U be the free splitting of Wn associated with the free factor decomposition
Wn � A � xxy. Let v0 be the vertex of U fixed by A, let v1 be the vertex fixed by x
and let v2 be the vertex fixed by wxw�1. Let e1 be the edge between v0 and v1 and e2

be the edge between v0 and v2. The arguments above show that we have a canonical
Wn-equivariant morphism from U to T . This morphism is obtained by a fold of the
edges e1 and e2 of U and this fold is extended Wn-equivariantly. Since w is root-closed,
there is no other edge of U that can be folded as otherwise the stabilizer of an edge of T
would not be cyclic. Therefore the R-tree T is simplicial and the decomposition of Wn

associated with WnzT is
Wn � A �xwy pxwy � xxyq .

Hence T � S 1 and the first statement follows.
Let us prove the second statement. For every n P N, the equivalence classes λnD

npRq
and R have compatible representatives. But as limnÑ8 λnD

npRq � S, it follows from
[GuL5, Corollary A.12] that, in the limit, the splittings S and R are compatible.

Lemma 4.4.7. Let n ¥ 3 and let S be the equivalence class of a Wn�1-star S. Let T
be the group of twists of S and let f P T be an element of infinite order. Let R be the
equivalence class of a Wn�1-star R such that fpRq � R. Then S and R are compatible.

Proof. Let
Wn � A � xxny

be a free factor decomposition of Wn associated with S and let zf P A be the twistor of
f . Let z be a root-closed element of A such that there exists m ¥ 1 with zm � zf . Let
h P T be the twist about z. We see that hm � f . Let S1 be the splitting associated with
the following amalgamated decomposition of Wn:

Wn � A �xzy pxxny � xzyq .

Let S 1 be the equivalence class of S1. Let T 1 be the group of twists of S 1. Since A is
isomorphic to Wn�1 and since z is root-closed, we see that CApzq � xzy. Therefore T 1
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is isomorphic to Z and a generator of T 1 is h. As fpRq � R, Lemma 4.4.6 implies that
S1 and R are compatible. Let U be a common refinement of S1 and R whose number of
orbits of edges is minimal. Since both S1 and R are one-edge splittings and are different,
the splitting U has 2 orbits of edges. It follows that WnzU is obtained from WnzS

1

by blowing-up an edge at one of the two vertices of WnzS
1. Let rv be the vertex of S1

whose stabilizer is A and let v be its image in WnzS
1. Let rw be the vertex of S1 fixed

by xxny � xzy and let w be its image in WnzS
1.

Claim. Either S � R or the splitting WnzU is obtained from WnzS
1 by blowing-up an

edge at v.

Proof. Suppose that WnzU is obtained from WnzS
1 by blowing-up an edge at w. Then,

since the group Gw associated with w is xxny � xzy and since z must fix an edge of U ,
we see that a free splitting of Gw such that z fixes a vertex is a pGw, txzy , xxnyuq-free
splitting. But pGw, txzy , xxnyuq has exactly one such equivalence class of one-edge free
splitting: the one with vertex stabilizers conjugated with xzy and xxny. This implies
that R � S. The claim follows.

Suppose that R � S. The claim implies that the amalgamated decomposition of Wn

associated with U is
Wn � B � C �xzy pxzy � xxnyq ,

where B and C are free factors of Wn such that A � B � C and z P C. Let U 1 be a
refinement of U whose associated amalgamated decomposition of Wn is:

Wn � B � C �xzy xzy � xxny ,

that is, z and xn fix distinct points in U 1. Then, since A � B � C, the splitting U 1 is a
refinement of S. This concludes the proof.

Proposition 4.4.8. Let n ¥ 3. Let S be a Wn�1-star and let f P OutpWnq be a twist
about the unique edge of WnzS. Let g P Out0pWnq be such that g P COutpWnqpfq. Then
gpSq � S.

Proof. Let
Wn � xx1, . . . , xn�1y � xxny

be the free factor decomposition associated with S and let S be the equivalence class of
S. By Lemma 4.4.4, in order to prove that gpSq � S, it suffices to show that g preserves
the conjugacy class of A � xx1, . . . , xn�1y. Let rf be a representative of f such thatrf |A � idA. Let rg be a representative of g. Suppose towards a contradiction that rg does
not preserve the conjugacy class of A. By hypothesis, there exists I P InnpWnq such thatrf � rg � I � rg � rf . Thus,

rf � rgpAq � I � rg � rfpAq � I � rgpAq.
Therefore, f preserves the conjugacy class of rgpAq. By Lemma 4.4.4, f fixes the unique
equivalence class R of the Wn�1-star R associated with rgpAq. By Lemma 4.4.7, the
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splittings S and R are compatible. Since we suppose that rgpAq R rAs, there exists a
common refinement S1 of S and R which is a Wn�2-star. Thus, there exists yn P Wn

such that the free factor decomposition associated with S1 is

Wn � xxny �B � xyny ,

where B is such that A � B � xyny and B � xxny is a conjugate of rgpAq. Up to
changing the representative rgpAq, we may suppose that rgpAq � B � xxny. This im-
plies that xn P rgpAq, that is rg�1pxnq P A. But, since A � xx1, . . . , xn�1y, we see that
rrg�1pxnqs P trx1s, . . . , rxn�1su. This contradicts the fact that g P Out0pWnq.

Combining Lemma 4.4.7 and Proposition 4.4.8, we have the following corollary.

Corollary 4.4.9. Let n ¥ 3. Let S and R be two distinct Wn-equivariant homeomorphism
classes of two Wn�1-stars S and R. Let f and g be twists about respectively S and R
such that f and g commute. Then S and R are compatible.

Proof. Let k ¥ 1 be such that gk P Out0pWnq. By Proposition 4.4.8, since gk and f
commute, we have gkpSq � S. Since gk is a twist about R, by Lemma 4.4.7, we have
that S and R are compatible.

Let S be the equivalence class of a Wn�1-star S and let

Wn � xx1, . . . , xn�1y � xxny

be the free factor decomposition of Wn associated with S. Let A � xx1, . . . , xn�1y. Let
f P StabOutpWnqpSq. Then any representative of f sends A to a conjugate of itself. Letrf 1 be a representative of f such that rf 1pAq � A. Since the vertices in S fixed by A and
xn are adjacent, and since the stabilizer of every vertex in S adjacent to the vertex fixed
by A is a conjugate of xxny by an element of A, we see that rf 1pxnq � xxnx

�1 with x P A.
Therefore, there exists a representative rf of f such that rfpAq � A and rfpxnq � xn. The
automorphism rf is the unique representative of f such that rfpAq � A and rfpxnq � xn.

We have a similar result for Wn�2-stars. Indeed, let S 1 be the equivalence class of a
Wn�2-star S1 and let

Wn � xx1y � xx2, . . . , xn�1y � xxny

be the free factor decomposition of Wn associated with S1 and let B � xx2, . . . , xn�1y.
Let f P StabOut0pWnq

pS 1q. A similar argument as in the case of a Wn�1-star shows that

there exists a representative rf of f such that rfpBq � B and rfpxnq � xn.

Lemma 4.4.10. Let n ¥ 4. Let S be the Wn-equivariant homeomorphism class of a
Wn�1-star S. Let T be the group of twists of S. Let S 1 be the Wn-equivariant homeo-
morphism class of a Wn�2-star S1 which refines S. Let e be the edge of WnzS

1 such that
a representative of S is obtained from WnzS

1 by collapsing the edge distinct from e. Let
T 1 be the group of twists of S1 about the edge e. Then T X StabOut0pWnq

pS 1q � T 1.
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Proof. Let
Wn � xx1y � xx2, . . . , xn�1y � xxny

be the free factor decomposition of Wn induced by S1 and let A � xx2, . . . , xn�1y. Let

Wn � B � xyny

be the free factor decomposition associated with S. Up to changing the representative S,
we may suppose that B � xx1, . . . , xn�1y and that yn � xn. Let f P TXStabOut0pWnq

pS 1q.
Let rf be the representative of f such that rfpBq � B and rfpxnq � xn which exists since
f P StabOutpWnqpSq. Since f P T , there exists g P B such that rf |B is the global

conjugation by g. Let rf 1 be a representative of f such that rf 1pAq � A and rf 1pxnq � xn,
which exists since f P StabOut0pWnq

pS 1q. Since the centralizer in Wn of xn is xxny and

since A is malnormal in Wn, we see that rf � rf 1. Hence rfpAq � A, and, since A is
malnormal, we see that g P A. Therefore, f P T 1, which concludes the proof.

Lemma 4.4.11. Let n ¥ 3. Let S be the equivalence class of a Wn�1-star S and let

Wn � xx1, . . . , xn�1y � xxny

be the free factor decomposition associated with S. Let A � xx1, . . . , xn�1y. Let T be the
group of twist of S. For f P T , let zf P A be the twistor of f . Let g P StabpSq and let rg
be a representative of g such that rgpAq � A and rgpxnq � xn. Then g P COutpWnqpxfyq if
and only if rgpzf q � zf .

Proof. By Proposition 4.2.5 p2q, the group StabpSq is isomorphic to AutpAq. The
isomorphism StabpSq Ñ AutpAq is defined by sending f P StabpSq to its representative rf
such that rfpAq � A and rfpxnq � xn. In particular, for every h1, h2 P OutpWnqXStabpSq,
we see that h1 and h2 commute if and only if there exist representatives rh1 and rh2 of
h1 and h2 respectively such that rh1pAq � A, rh2pAq � A, rh1pxnq � rh2pxnq � xn andrh1 � rh2 � rh2 � rh1. Moreover, Proposition 4.2.5 p2q identifies the group of twists T with
the group InnpAq. For a P A, let ada be the inner autmorphism of A induced by a.
Since, for every h P AutpAq and every a P A, we have h ada h

�1 � adhpaq, we see that
h commutes with ada if and only if hpaq � a. Hence g P COutpWnqpxfyq if and only ifrgpzf q � zf .

4.5 Direct products of nonabelian free groups in OutpWnq

Following [HW2, Section 6], we define the product rank of a group H, denoted by
rkprodpHq, to be the maximal integer k such that a direct product of k nonabelian free
groups embeds in H. Note that, if H 1 is a finite index subgroup of H, then rkprodpH

1q �
rkprodpHq. Moreover, if φ : H Ñ Z is a homomorphism, then rkprodpkerpφqq � rkprodpHq.
The aim of this section is to prove the following theorem.
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Theorem 4.5.1. p1q For every n ¥ 3, we have rkprodpAutpWnqq � n� 2.

p2q For every n ¥ 4, we have rkprodpOutpWnqq � n� 3.

p3q Suppose that n ¥ 5. If H is a subgroup of OutpWnq isomorphic to a direct prod-
uct of n � 3 nonabelian free groups, then H has a subgroup H 1 isomorphic to a direct
product of n� 3 nonabelian free groups which virtually fixes the Wn-equivariant homeo-
morphism class of a Wn�1-star. In addition, H does not virtually fix the Wn-equivariant
homeomorphism class of any one-edge free splitting that is not a Wn�1-star.

We first recall an estimate regarding product ranks and group extensions due to
Horbez and Wade.

Lemma 4.5.2. [HW2, Lemma 6.3] Let 1 Ñ N Ñ G Ñ Q Ñ 1 be a short exact sequence
of groups. Then rkprodpGq ¤ rkprodpNq � rkprodpQq.

In order to compute the product rank of OutpWnq, we take advantage of its action
on the Gromov hyperbolic free factor complex. We recall a general result concerning
actions of direct products on a hyperbolic space.

Lemma 4.5.3. [HW2, Proposition 4.2, Lemma 4.4] Let X be a Gromov hyperbolic space,
and let H be a group acting by isometries on X. Assume that H contains a normal
subgroup K isomorphic to a direct product K �

±k
i�1Ki.

If there exists j P t1, . . . , ku such that Kj contains a loxodromic element, then±
i�jKi has a finite orbit in B8X.

If there exist two distinct i, j P t1, . . . , ku such that both Ki and Kj contain a loxo-
dromic element, then H has a finite orbit in B8X.

If, for every j P t1, . . . , ku, the group Kj does not contain a loxodromic element, then
either K has a finite orbit in B8X or H has bounded orbits in X.

Let F be a free factor system of Wn. Recall that OpWn,Fq is the outer space of
Wn relative to F . Given T P OpWn,Fq, let rT s be the homothety class of T . The
homothetic stabilizer StabprT sq is the stabilizer of rT s for the action of OutpWn,Fq
on POpWn,Fq. Equivalently, Φ P OutpWn,Fq lies in StabprT sq if there exists a liftrΦ P AutpWn,Fq of Φ and a homothety IrΦ : T Ñ T such that, for all g P Wn and x P T ,

we have IrΦpgxq � rΦpgqIrΦpxq. The scaling factor of IrΦ does not depend on the choice of
a representative of Φ, and we denote it by λT pΦq. This gives a homomorphism

StabprT sq Ñ R�
�

Φ ÞÑ λT pΦq.

The kernel of this morphism is called the isometric stabilizer of T and is denoted by
StabispT q. It is the stabilizer of T for the action of OutpWn,Fq on OpWn,Fq.

Lemma 4.5.4. [GuH2, Lemma 6.1] Let n ¥ 3. Let F be a nonsporadic free factor system
of Wn. For every T P OpWn,Fq, the image of the morphism λT is a cyclic (maybe
trivial) subgroup of R�

�.
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We will also use a theorem due to Guirardel and Horbez which assigns to every
nonempty collection of free splittings whose elementwise stabilizer is infinite a canonical
(not necessarily free) splitting.

Theorem 4.5.5. [GuH3, Theorem 6.12] Let n ¥ 3. There exists an OutpWnq-equivariant
map which assigns to every nonempty collection C of free splittings of Wn whose elemen-
twise OutpWnq-stabilizer is infinite, a nontrivial splitting UC of Wn whose set of vertices
V UC has a Wn-invariant partition V UC � V1 > V2 with the following properties:

(1) For every vertex v P V1, the following holds:

(a) either some edge incident on v has trivial stabilizer, or the set of stabilizers
of edges incident on v induces a nontrivial free factor system of the vertex
stabilizer Gv,

(b) there exists a finite index subgroup H0 of the elementwise stabilizer of the
collection C such that every outer automorphism in H0 has a representative
in AutpWnq which restricts to the identity on Gv.

(2) The collection of all conjugacy classes of stabilizers of vertices in V2 is a free factor
system of Wn.

Finally, we state a proposition due to Guirardel and Horbez concerning the isometric
stabilizer of an arational tree.

Proposition 4.5.6. [GuH2, Proposition 6.5] Let n ¥ 3. Let F be a nonsporadic free factor
system of Wn, and let T be an arational pWn,Fq-tree. Let H be a subgroup of OutpWn,Fq
which is virtually contained in StabispT q. Then H has a finite index subgroup H 1 which
fixes infinitely many pWn,Fq-free splittings, and in particular H fixes the conjugacy class
of a proper pWn,Fq-free factor.

Note that the statement of Proposition 4.5.6 in [GuH2] only mentions that H 1 fixes
one pWn,Fq-free splitting, but the proof uses an arbitrary free splitting of Wn, so that
one can construct infinitely many pairwise distinct free splittings fixed by H 1 by varying
the chosen free splitting of Wn.

Proof of Theorem 4.5.1. The proof is inspired by [HW2, Theorem 6.1] due to Horbez
and Wade and [HHW, Theorem 4.3] due to Hensel, Horbez and Wade.

We first prove that if n ¥ 4, then rkprodpOutpWnqq ¥ n� 3 and that, if n ¥ 3, then
rkprodpAutpWnqq ¥ n� 2. Pick a standard generating set tx1, . . . , xnu of Wn. Then the
group H generated by tx1x2, x2x3u is a nonabelian free group (see [Müh, Theorem A]).

Suppose first that n ¥ 4. For i P t4, . . . , nu and h P H, let Fi,h be the automorphism
sending xi to hxih

�1 and, for j � i, fixing xj . Then, for every distinct i, j P t4, . . . , nu
and for every g, h P H, the automorphisms Fi,g and Fj,h commute, giving a direct product
of n � 3 nonabelian free groups in OutpWnq. Moreover, for every g, h P H, and every
i P t4, . . . , nu, the inner automorphism adg commutes with Fi,h, which yields a direct
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product of n�2 nonabelian free groups in AutpWnq. In the case where n � 3, the group
AutpW3q contains the subgroup xadhyhPH , which is a nonabelian free group.

We now prove that, if n ¥ 3, then rkprodpAutpWnqq ¤ n � 2, if n � 3, then
rkprodpOutpWnqq � 1 and if n ¥ 4, then rkprodpOutpWnqq ¤ n � 3. The proof is by
induction on n. The base case where n � 3 follows from the fact that the group AutpW3q
is isomorphic to AutpF2q (see [Var, Lemma 2.3]) and the fact that the group AutpF2q
does not contain a direct product of two nonabelian free groups (see [HW2, Lemma 6.2]).
Moreover, by [Gue1, Proposition 2.2], the group OutpW3q is isomorphic to PGLp2,Zq
which is virtually free.

Let k ¥ maxtn � 3, 2u and let H � H1 �H1 � . . . �Hk be a subgroup of OutpWnq
isomorphic to a direct product of k nonabelian free groups. Note that k � n � 3 if
n ¥ 5 and k � 2 if n � 4. We prove that there exists a subgroup K of H isomorphic
to a direct product of k nonabelian free groups which virtually fixes a one-edge free
splitting of Wn. Let F be a maximal H-periodic free factor system. If F is sporadic,
then H virtually fixes a one-edge free splitting, so we are done. Therefore, we may
suppose that F is nonsporadic. As F is supposed to be maximal, by Proposition 4.2.2,
the group H acts on FFpWn,Fq with unbounded orbits. Lemma 4.5.3 implies that, after
possibly reordering the factors, the group H 1 � H1 �H2 � . . .�Hk�1 has a finite orbit
in B8FFpWn,Fq. By Lemma 4.2.4, the group H 1 virtually fixes the homothety class rT s
of an arational pWn,Fq-tree T .

Let H0 be a normal subgroup of finite index in H 1 that is contained in StabprT sq.

Claim. The group H contains a subgroup isomorphic to a direct product of k nonabelian
free groups, which fixes the equivalence class of a one-edge free splitting.

Proof. By Lemma 4.5.4, the homomorphism λT |H0 from H0 to R�
� given by the scaling

factor has cyclic image. As H0 contains a direct product of k�1 nonabelian free groups,
so does P � kerpλT |H0q (see the beginning of Section 4.5). In particular, the intersection
of P with every direct factor Hi of H 1 is a nonabelian free group. As P is contained
in the isometric stabilizer of T , Proposition 4.5.6 implies that P contains a finite index
subgroup P0 which fixes infinitely many pWn,Fq-free splittings.

Let C be the (nonempty) collection of all pWn,Fq-free splittings fixed by the infinite
group P0, let UC be the splitting provided by Theorem 4.5.5, and let UC be its equivalence
class. Since P0 commutes with Hk, the equivalence class UC is pP0 �Hkq-invariant.

Suppose first that the splitting UC contains an edge e P EUC with trivial stabilizer.
Let U 1 be the splitting obtained from UC by collapsing every edge of UC that is not
contained in the orbit of e, and let U 1 be its equivalence class. Then U 1 is the equivalence
class of a one-edge free splitting virtually fixed by P0 �Hk. Since P0 contains a direct
product of k � 1 nonabelian free groups, the claim follows.

Thus, we can suppose that all edge stabilizers of UC are nontrivial. We show that
this leads to a contradiction. Let V UC � V1 > V2 be the partition of V UC given by
Theorem 4.5.5. Let P 1 be a finite index subgroup of P0 which acts trivially on the
quotient WnzUC . We claim that the intersection of P 1 with the group of twists of UC
is trivial. Indeed, let e be an oriented edge of UC . As every subgroup of Wn with
nontrivial centralizer is cyclic, if the edge stabilizer Ge of e is not cyclic, the group of

140



twists around this edge is trivial. Thus, oriented edges with nontrivial group of twists
have cyclic stabilizers. But twists about edges with cyclic stabilizers are central in a
finite index subgroup of Stab0pUCq by Lemma 4.2.7. Let P 2 is a finite index subgroup
of P 1. Then the intersection of P 2 with every direct factor Hi of H 1 is a nonabelian free
group. Therefore every element of P 2 is contained in a nonabelian free subgroup of P 2.
In particular, the center of every finite index subgroup of P 1 is trivial. Thus we see that
the intersection of P 1 with the group of twists is trivial. By Remark 4.2.6, up to passing
to a further finite index subgroup of P 1, we may suppose that the intersection of P 1 with
the group of bitwists is trivial.

By Proposition 4.2.5 p1q and Remark 4.2.6, the fact that the intersection of P 1 with
the group of bitwists is trivial implies that we have an injective homomorphism

P 1 Ñ
¹

vPWnzV UC

OutpGvq.

By Theorem 4.5.5 p1qpbq, for every vertex v P V1, the homomorphism P 1 Ñ OutpGvq
has finite image. Therefore, up to passing to a finite index subgroup of P 1, we have an
injective map

P 1 Ñ
¹

vPWnzV2

OutpGvq.

By Theorem 4.5.5 p2q, for every v P V2, the vertex stabilizer Gv is an element of a free
factor system of Wn. Therefore, there exists k such that Gv is isomorphic to Wk. By
Lemma 4.5.2, we have:

n� 4 ¤ k � 1 � rkprodpP
1q ¤

¸
vPWnzV2

rkprodpOutpGvqq.

By induction, we see that, if |WnzV2| ¥ 2, then¸
vPWnzV2

rkprodpOutpGvqq ¤ n� 6,

which leads to a contradiction. Thus |WnzV2| � 1. Let v P WnzV2. Then there exists
` P t1, . . . , n� 1u such that Gv is isomorphic to W`. If ` ¤ n� 2, then

rkprodpOutpGvqq ¤ n� 5,

which leads to a contradiction. If ` � n�1, then the free factor system F contains a free
factor isomorphic to Wn�1 and is therefore a sporadic free factor system, which leads to
a contradiction.

Therefore, we see that there exists a subgroup K of H isomorphic to a direct product
of k nonabelian free groups such that K fixes the Wn-equivariant homeomorphism class
of a one-edge-free splitting S. We now prove that S is the equivalence class of a Wn�1-
star. Let S be a representative of S, let v1 and v2 be the vertices of the underlying graph
of WnzS and, for i P t1, 2u, let ki be such that Wki is isomorphic to Gvi . Let K0 be the
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finite index subgroup of K which acts as the identity on WnzS. Then K0 � Stab0pSq.
By Proposition 4.2.5 p2q, the group Stab0pSq is isomorphic to AutpWk1q � AutpWk2q.
Suppose towards a contradiction that, for every i P t1, 2u, we have that ki � 1. Suppose
first that, for every i P t1, 2u, we have ki ¥ 3. Then, by Lemma 4.5.2, we see that:

k � rkprodpK0q ¤ rkprodpAutpWk1qq � rkprodpAutpWk2qq ¤ k1 � 2� k2 � 2 � n� 4,

where the second inequality comes from the induction hypothesis. If there exists i P t1, 2u
such that ki � 2, then, as AutpW2q is virtually cyclic (it is isomorphic to W2 by [Tho,
Lemma 1.4.2]), we see that:

k � rkprodpK0q ¤ rkprodpAutpWk1qq � rkprodpAutpWk2qq ¤ k1 � 2 ¤ n� 4.

In both cases, we have a contradiction as k ¥ n � 3 when k ¥ 5 and k � n � 2 when
n � 4. Thus, there exists i P t1, 2u such that ki � 1. This shows that S is a Wn�1-star.
In particular, when k � n� 3, that is, when n ¥ 5, this proves Theorem 4.5.1 p3q.

Since K0 � Stab0pSq, Proposition 4.2.5 p2q implies that

k � rkprodpK0q ¤ rkprodpAutpWn�1qq � n� 1� 2 � n� 3.

When n � 4, then k � 2 � n� 2. Therefore, we have a contradiction in this case. This
shows that, for all n ¥ 4, the product rank of OutpWnq is equal to n� 3. This concludes
the proof of Theorem 4.5.1 p2q.

It remains to prove that, if n ¥ 4, we have rkprodpAutpWnqq ¤ n � 2. We have the
following short exact sequence

1 ÑWn Ñ AutpWnq Ñ OutpWnq Ñ 1.

By Lemma 4.5.2, as Wn is virtually free, we see that

rkprodpAutpWnqq ¤ rkprodpWnq � rkprodpOutpWnqq � 1� n� 3 � n� 2.

This concludes the proof of Theorem 4.5.1 p1q.

4.6 Subgroups of stabilizers of Wn�1-stars

In the next two sections, we prove an algebraic characterisation of stabilizers of equiva-
lence classes of Wn�2-stars. In this section, we take advantage of properties satisfied by
stabilizers of equivalence classes of Wn�2-stars which are sufficiently rigid to show that a
subgroup H of OutpWnq which satisfies these properties virtually fixes a Wn�1-star. In
the next section, we will take advantage of the fact that stabilizers of equivalence classes
of compatible Wn�2-stars have large intersections to give a characterisation of stabilizers
of equivalence classes of Wn�2-stars.

Let Γ be a finite index subgroup of the group Out0pWnq (defined after Theorem 4.4.1).
We introduce the following algebraic property for a subgroup H � Γ.

pPWn�2q The group H satisfies the following three properties:
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(1) The group H contains a normal subgroup isomorphic to a direct product K1�K2 of
two normal subgroups such that each one contains a nonabelian finitely generated
normal free subgroup of finite index and such that for every i P t1, 2u, for every
nontrivial normal subgroup P of a finite index subgroup K 1

i of Ki, and for every
finite index subgroup P 1 of P , the group COut0pWnq

pP 1q contains Ki�1 as a finite
index subgroup (where indices are taken modulo 2).

(2) The group H contains a direct product of n� 3 nonabelian free groups.

(3) The group H contains a subgroup isomorphic to Zn�2.

Remark 4.6.1. p1q Notice that property pPWn�2q is closed under taking finite index sub-
groups.
p2q Hypothesis pPWn�2q p1q implies that, if for every i P t1, 2u, the group Pi is a finite
index subgroup of a nontrivial normal subgroup of a finite index subgroup of Ki, the
centralizer in Out0pWnq of P1 � P2 is finite.

We first prove that the stabilizer in Γ of the equivalence class of a Wn�2-star satisfies
pPWn�2q. We then show that a group satisfying pPWn�2q virtually fixes the equivalence
class of a Wn�1-star.

4.6.1 Properties of ZRC-factors

In order to prove that the stabilizer in Γ of the equivalence class of a Wn�2-star satisfies
pPWn�2q, we first need some background concerning ZRC-splittings. Let G be a finitely
generated group. A ZRC-splitting of G is a splitting of G such that every edge stabilizer
is either trivial or isomorphic to Z and root-closed. A ZRC-factor of G is a subgroup
of G which arises as a vertex stabilizer of a ZRC-splitting of G. Note that since edge
stabilizers are root-closed, so are the vertex stabilizers.

We now describe a finite index subgroup of Wn that we will use in the proof of
Proposition 4.6.3. Let F be the kernel of the homomorphism Wn Ñ F which sends every
generator of a standard generating set of Wn to the nontrivial element of F . Remark
that F does not depend on the choice of the basis. Indeed, if tx1, . . . , xnu is a standard
generating set of Wn, and if x is an element of Wn of order 2, there exists i P t1, . . . , nu
and g PWn such that x � gxig

�1. We have the following result due to Mühlherr.

Lemma 4.6.2. [Müh, Theorem A] The group F is a nonabelian free group of rank n � 1
which is a characteristic subgroup of Wn. Moreover, the natural restriction homomor-
phism

AutpWnq Ñ AutpFq

is injective.

We now outline here some properties of ZRC-factors (see e.g. [HW2, Proposition 7.3]).
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Proposition 4.6.3. Let n ¥ 3. The ZRC-factors of Wn satisfy the following properties.

p1q Let H be a finitely generated subgroup of Wn which is not virtually cyclic. There
exists g P H which is not contained in any proper ZRC-factor of H.

p2q There exists C P N� such that, for every strictly ascending chain G1 � . . . � Gk of
ZRC-factors of Wn, one has k ¤ C.

p3q If a subgroup K of Wn is not contained in any proper ZRC-factor of Wn and if P
is either a finite index subgroup of K or a nontrivial normal subgroup of K, then P is
not contained in any proper ZRC-factor of Wn.

p4q A subgroup K of Wn is contained in a proper ZRC-factor of Wn if and only if every
element of K is contained in a proper ZRC-factor of Wn.

Proof. The first assertion is a consequence of [GeH, Lemma 4.3] due to Genevois and
Horbez.

For the second assertion, let G1 � . . . � Gk be a sequence of strictly ascending ZRC-
factors. Then, since ZRC-factors are root-closed, for every i ¥ 3 the group Gi is not
cyclic. Thus, as we want an upper bound on the number of subgroups of such a sequence,
we may suppose that for every i P t1, . . . , nu, the group Gi is not cyclic. We claim that,
for every i P t1, . . . , ku, there exists φi P AutpWnq such that Fixpφiq � Gi. Indeed, let
Si be a ZRC-splitting of Wn such that there exists v P V Si whose stabilizer is equal
to Gi. Up to collapsing edges, we may suppose that every vertex of Si has nontrivial
stabilizer. Let e1, . . . , e` be the edges with origin v which are in pairwise distinct orbits.
Let F0 � te1, . . . , e`u be the subset made of all edges with nontrivial stabilizer. By
the definition of a ZRC-splitting, for every es P F0, the group Ges is cyclic. For every
es P F0, let zs be a generator of Ges . For every es1 P te1, . . . , e`u � F0, let zs1 P Gi be
such that, if ws1 is the endpoint of es1 distinct from v, we have zs1Gws1z

�1
s1 � Gws1 . Let

φi � De1,z1 � . . . � De`,z` be a multitwist about every edge with origin v. Then, as the
centralizer of an infinite cyclic subgroup of Wn is infinite cyclic, we have Fixpφiq � Gi.
Therefore, in order to prove the second assertion, it suffices to prove that there exists
C P N� such that for every strictly ascending chain Fixpφ1q � . . . � Fixpφkq of fixed
points sets of automorphisms of Wn, one has k ¤ C.

Let F be the characteristic subgroup of Wn given by Lemma 4.6.2 and let

Φ: AutpWnq Ñ AutpFq

be the natural injective homomorphism given by restriction. Then

FixpΦpφ1qq � . . . � FixpΦpφkqq

is an ascending chain of fixed points sets.

Claim. For every i P t2, . . . , k � 1u, the set tFixpΦpφi�1qq,FixpΦpφiqq,FixpΦpφi�1qqu
contains at least 2 elements.

Proof. Suppose towards a contradiction that

|tFixpΦpφi�1qq,FixpΦpφiqq,FixpΦpφi�1qqu| � 1.
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As Fixpφi�1q � Fixpφiq and FixpΦpφi�1qq � FixpΦpφiqq, there exists a PWn�F such that
φipaq � a and φi�1paq � a. Since the index of F is equal to 2, we see that φi�1pa

2q � a2.
Therefore, φi�1paq

2 � a2 and φi�1paq is a square root of a2. If a2 has infinite order,
its only square root is a. This implies that φi�1paq � a, a contradiction. Thus we can
assume that a has order 2 and, up to changing the basis tx1, . . . , xnu, we may suppose
that a � x1.

As the index of F is equal to 2, we have Wn � F > x1F. Let x P Fixpφi�1q � F. Then
there exists y P F such that x � x1y. As x1 P Fixpφiq and Fixpφiq � Fixpφi�1q, we have
that φi�1px1q � x1. Hence φi�1pyq � y. As y P F and FixpΦpφiqq � FixpΦpφi�1qq, we
see that φipyq � y and φipxq � φipx1yq � x1y � x. Therefore we have that Fixpφiq �
Fixpφi�1q, which is a contradiction. The claim follows.

The claim implies that the length of the strictly ascending chain associated with
FixpΦpφ1qq � . . . � FixpΦpφkqq is at least equal to k

2 . But any strictly ascending chain of
fixed subgroups in a free group on n�1 generators has length at most 2pn�1q (see [MV,
Theorem 4.1]). Therefore, there exists C which depends only on n such that k ¤ C.
The second assertion of Proposition 4.6.3 follows.

We now prove the third assertion. Let P and K be as in Proposition 4.6.3 p3q. If
K is a virtually infinite cyclic group, then K is either isomorphic to Z or to W2. Let a
be a generator of the subgroup of K isomorphic to Z and root-closed in K. Since xay is
a finite index subgroup of K and since K is not contained in any proper ZRC-factor of
Wn, then neither is a. Remark that any nontrivial normal subgroup of K intersects the
subgroup xay non trivially. Therefore, if P is contained in a proper ZRC-factor of Wn,
then a is elliptic in a ZRC-splitting. This contradicts the fact that a is not contained in
any proper ZRC-factor of Wn.

So we can assume that K is not virtually cyclic. As every finite index subgroup
contains a nontrivial normal subgroup of K, we may assume that P is a nontrivial
normal subgroup of K. Notice that P is necessarily noncyclic. Suppose towards a
contradiction that P is contained in a ZRC-factor. Then there exists a ZRC-splitting S
of Wn such that P is elliptic in S. Since edge stabilizers are cyclic, the group P fixes a
unique vertex x of S. But, as P is normal in K, for every k P K, we have that kx is
also fixed by P , hence we have kx � x. Therefore, x is fixed by K, which contradicts
the fact that K is not contained in any proper ZRC-factor.

We finally prove Proposition 4.6.3 p4q. Suppose that K is contained in a proper ZRC-
factor. Then it is clear that every element of K is contained in a proper ZRC-factor.

Conversely, assume that K is not contained in any proper ZRC-factor of Wn. Let
us prove that there exists g P K such that g is not contained in any proper ZRC-factor.
By Proposition 4.6.3 p2q, there exists a bound on the length of an increasing chain of
ZRC-factors of Wn. Therefore, the group K contains a finitely generated subgroup K 1

which is not contained in any proper ZRC-factor. By Proposition 4.6.3 p1q, there exists
g P K 1 such that g is not contained in a proper ZRC-factor of K 1. Let S be a ZRC-
splitting of Wn. As K 1 is not contained in any proper ZRC-factor of Wn, the group K 1

has a well-defined, nontrivial minimal subtree SK1 with respect to the action of K 1 on
S. As S is a ZRC-splitting of Wn, the splitting SK1 is a ZRC-splitting of K 1. Since g is
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not contained in any proper ZRC-factor of K 1, it follows that g is a hyperbolic isometry
of SK1 and is not elliptic in S. As S is arbitrary, it follows that g is not contained in any
ZRC-factor of Wn.

Proper ZRC-factors appear naturally when studying stabilizers of conjugacy classes of
elements as shown by the following theorem. Recall that, if H � tH1, . . . ,Hku is a finite
family of finitely generated subgorups of Wn, the group OutpWn,Hptqq is the subgroup
of OutpWnq consisting of all outer automorphisms φ P OutpWnq such that, for every
i P t1, . . . , ku, there exists a representative rφi P AutpWnq of φ such that rφipHiq � Hi andrφi|Hi � idHi .

Theorem 4.6.4. [GuL4, Theorem 7.14] Let n ¥ 3 and let g P Wn. Then the subgroup
OutpWn, xgyq of outer automorphisms which preserve xgy up to conjugacy is infinite if
and only if g is contained in a proper ZRC-factor of Wn.

More generally, Let G be a finitely generated Gromov hyperbolic group. If H is a
finite family of finitely generated subgroups of G, then the group OutpG,Hptqq is infinite
if and only if there exists a nontrivial ZRC-splitting S of G such that every subgroup of
H fixes a vertex of S.

4.6.2 Stabilizers of Wn�2-stars satisfy pPWn�2q

Lemma 4.6.5. Let n ¥ 5 and let Γ be a finite index subgroup of Out0pWnq. Let S be the
equivalence class of a Wn�2-star S. Let e1 and e2 be the two edges of WnzS and, for
i P t1, 2u, let T 1i be the group of twists about ei in StabΓpSq. Let i P t1, 2u, let Ti be a
finite index subgroup of T 1i and let P 1 be a finite index subgroup of a nontrivial normal
subgroup of Ti. Then for every finite index subgroup P0 of P 1, the group P0 fixes exactly
one equivalence class of Wn�2-stars.

Proof. Let
Wn � xx1y � xx3, . . . , xny � xx2y

be a free factor decomposition associated with WnzS and A � xx3, . . . , xny. Up to ex-
changing the roles of e1 and e2, we may suppose that P 1 is contained in the group of twists
of the equivalence class of the Wn�1-star S1 whose associated free factor decomposition
of Wn is, up to global conjugation:

Wn � xx1y � xx2, x3, . . . , xny .

Let B � xx2, x3, . . . , xny and let S1 be the equivalence class of S1. Finally, let S2 be the
equivalence class of the Wn�1-star S2 whose associated free factor decomposition of Wn

is, up to global conjugation:

Wn � xx2y � xx1, x3, . . . , xny .

Let C � xx1, x3, . . . , xny � A � xx1y.
We claim that the only equivalence classes of Wn�1-stars fixed by any finite index

subgroup of P 1 are S1 and S2. Indeed, fix i P t1, 2u. The group Ti is isomorphic to a
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finite index subgroup N of Wn�2. By Proposition 4.6.3 p3q applied with K �Wn�2 and
P � N , as n ¥ 5, the group N is not contained in any proper ZRC-free factor of Wn�2.
By Proposition 4.6.3 p4q, there exists g P N such that Wn�2 is freely indecomposable
relative to g. Hence there exists g P A such that A is freely indecomposable relative to
g and P 1 contains the twist about e1 whose twistor is g. Note that this twist can be
seen as a twist about the Wn�1-star S1. Let S 11 be the equivalence class of the one-edge
cyclic splitting S11 whose associated amalgamated decomposition of Wn is, up to global
conjugation:

Wn � pxx1y � xgyq �xgy B.

Let S3 be the equivalence class of a Wn�1-star S3 fixed by some finite index subgroup
of P 1 and distinct from S1. Let

Wn � xyy �D

be the free factor decomposition associated with S3. We claim that S3 � S2. As P 1

contains the twist about g, by Lemma 4.4.7, the splitting S3 is compatible with S11. Let
U be a two-edge refinement of S11 and S3. Then U is obtained from S3 by blowing-
up an edge at vertices whose stabilizers are conjugate to D. Moreover, U is obtained
from S11 by blowing-up an edge at vertices whose stabilizers are conjugate to B or by
blowing-up an edge at the vertices whose stabilizers are conjugate to xx1y� xgy. But, the
second case can only occur when S3 � S1 (see the claim in the proof of Lemma 4.4.7).
Therefore, we may suppose that U is obtained from S11 by blowing up an edge at vertices
whose stabilizers are conjugate to B. Thus, up to applying a global conjugation, we may
assume that xx1y � xgy � D. But, as g is not contained in any proper ZRC-factor of A
and as AXD is a free factor of A, we see that AXD � A. Hence A � xx1y � D, and, as
A�xx1y is isomorphic to Wn�1, we have in fact A�xx1y � D. It follows that C � D and,
by Lemma 4.4.4, we see that S2 � S3. Thus the only equivalence classes of Wn�1-stars
fixed by finite index subgroups of P 1 are S1 and S2.

Therefore the only equivalence classes of Wn�2-stars fixed by finite index subgroups
of P 1 are the equivalence classes of the Wn�2-stars which refine S1 and S2. As S1

and S2 are refined by a unique (up to Wn-equivariant homeomorphism) Wn�2-star by
Theorem 4.3.7, we conclude that S is the only equivalence class of Wn�2-star fixed by
finite index subgroups of P 1. This completes the proof.

Proposition 4.6.6. Let n ¥ 5 and let Γ be a finite index subgroup of Out0pWnq. Let S be
the equivalence class of a Wn�2-star S. Then StabΓpSq satisfies pPWn�2q. Moreover, we
can choose for the subgroup K1 �K2 of Property pPWn�2q p1q the direct product of the
groups of twists of S about the two edges of S.

Proof. The fact that StabΓpSq satisfies pPWn�2q p2q follows from the fact that StabΓpSq
contains the stabilizer in Γ of the equivalence class of a W3-star obtained from S by
blowing-up n�5 edges at the center of WnzS. Indeed, Proposition 4.2.5 p3q ensures that
the group of twists of a W3-star is isomorphic to a direct product of n� 3 copies of W3.

The fact that StabΓpSq satisfies pPWn�2q p3q follows from the fact that StabΓpSq
contains the stabilizer in Γ of the equivalence class of a W2-star obtained from S by
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blowing-up n� 4 edges at the center of WnzS. Indeed the group of twists of a W2-star
is isomorphic to a direct product of n� 2 copies of W2 by Proposition 4.2.5 p3q.

Let us now prove that StabΓpSq satisfies pPWn�2q p1q. Let T 1 be the group of twists
of S and let T � T 1 X Γ. The group T is normal in StabΓpSq since Γ � Out0pWnq. By
Proposition 4.2.5 p3q, the group T 1 is isomorphic to T 11 � T 12, where, for i P t1, 2u, T 1i is
the group of twists in OutpWnq about one edge of WnzS. For i P t1, 2u, let Ti � T 1i X Γ.
For every i P t1, 2u, the group Ti is a normal subgroup of StabΓpSq and the group T1�T2

is a normal subgroup of StabΓpSq. Let T
p2q
1 be a finite index subgroup of T1 and let P 1

be a finite index subgroup of a nontrivial normal subgroup of T
p2q
1 . We prove that the

centralizer of P 1 in Γ contains T2 as a finite index subgroup. This will conclude the proof
of the proposition by symmetry of T1 and T2. By Lemma 4.6.5, the equivalence class
S is the only equivalence class of Wn�2-star fixed by every finite index subgroup of P 1.
Hence CΓpP

1q fixes S.
Let H be a finite index subgroup of CΓpP

1q which fixes S. Let

Wn � xx1y � xx3, . . . , xny � xx2y

be a free factor decomposition associated with WnzS and A � xx3, . . . , xny. By Propo-
sition 4.2.5 p1q, the kernel of the natural homomorphism H Ñ OutpAq is isomorphic
to H X T . We claim that the image of H in OutpAq is finite. Indeed, as P 1 is a finite
index subgroup of a nontrivial normal subgroup of a finite index subgroup of T1 and as
T1 is isomorphic to a finite index subgroup of Wn�2, we see that P 1 is isomorphic to a
finite index subgroup N of a nontrivial normal subgroup of a finite index subgroup of
Wn�2. By Proposition 4.6.3 p3q, N is not contained in any proper ZRC-factor of Wn�2.
By Proposition 4.6.3 p4q, there exists g P N such that g is not contained in any proper
ZRC-factor of Wn�2. Thus, there exists g P A such that g is not contained in any proper
ZRC-factor of A and the twist about g is contained in P 1. As H commutes with the
twist about g, Lemma 4.4.11 implies that H preserves the conjugacy class of g. Hence,
by Theorem 4.6.4, the image of H in OutpAq is finite.

Thus, HXT has finite index in H and in CΓpP
1q. But, as H commutes with P 1 � T1,

and as T1 is virtually a nonabelian free group, the intersection H X T2 has finite index
in H X T , hence has finite index in CΓpP

1q. This completes the proof.

4.6.3 Groups satisfying pPWn�2q and stabilizers of Wn�1-stars

We prove in this section that if H is a subgroup of OutpWnq which satisfies pPWn�2q,
then H virtually fixes the equivalence class of a Wn�1-star. We first recall a general
lemma.

Lemma 4.6.7. Let G be a group and let N be a finitely generated normal subgroup of G.
Let n P N�.

p1q There exist only finitely many subgroups of N of index equal to n.

p2q For every finite index subgroup N 1 of N there exists a finite index subgroup G1 of G
such that N 1 is a normal subgroup of G1.
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Proof. Assertion p1q is well known, we only prove assertion p2q. Let N 1 be a subgroup
of N of index n and let g P G. As N is a normal subgroup of G, the automorphism
adg : G Ñ G induces an automorphism adg|N : N Ñ N by restriction. Therefore, adg
permutes the subgroups of index n in N . Since there exists a finite number of subgroups
of index n in N by the first assertion, we see that there exists a finite index subgroup
G1 of G such that, for every g P G1, we have adgpN

1q � N 1. Therefore N 1 is a normal
subgroup of G1. This concludes the proof.

Lemma 4.6.8. Let n ¥ 5. Let H be a subgroup of Out0pWnq satisfying pPWn�2q. Let
K1 � K2 be a normal subgroup of H given by pPWn�2q p1q. Then one of the following
holds.

p1q For every i P t1, 2u, the group Ki does not virtually fix the equivalence class of a
free splitting.

p2q The group H virtually fixes the equivalence class of a one-edge free splitting.

Proof. Suppose that there exists i P t1, 2u such that Ki virtually fixes the equivalence
class of a free splitting. Up to reordering, we may assume that i � 1. Let K 1

1 be a finite
index subgroup of K1 which fixes the equivalence class of a free splitting, and let C be the
set of all equivalence classes of free splittings fixed by K 1

1. Since K1 is a finitely generated
normal subgroup of H, by Lemma 4.6.7 p2q, there exists a finite index subgroup H0 of
H such that K 1

1 is a normal subgroup of H0. In particular, the set C is preserved by H0.
Suppose first that the set C is finite. Then the set C is virtually fixed pointwise by

H0. Hence the group H virtually fixes the equivalence class of a free splitting.
So we may assume that the set C is infinite. Let UC be the splitting provided by

Theorem 4.5.5, and let UC be its equivalence class. By the equivariance property in
Theorem 4.5.5 the equivalence class UC is H0-invariant. Suppose first that the splitting
UC contains an edge e P EUC with trivial stabilizer. Let U 1 be the splitting obtained
from UC by collapsing every edge of UC that are not contained in the orbit of e, and let
U 1 be its equivalence class. Then U 1 is the equivalence class of a one-edge free splitting
virtually fixed by H.

Thus, we may assume that all edge stabilizers of UC are nontrivial. We show that this
leads to a contradiction. Let H 1 be the subgroup of finite index in H0 which acts trivially
on WnzUC . We claim that the intersection of H 1 with the group of twists of UC is finite.
Indeed, let e be an oreiented edge of UC . As Wn is virtually free, if the edge stabilizer
Ge of e is not cyclic, the group of twists about this edge is trivial. Thus, as we suppose
that all edge stabilizers are nontrivial, oriented edges with nontrivial group of twists
have cyclic stabilizers. But by Lemma 4.2.7 twists about edges with cyclic stabilizers
are central in a finite index subgroup of Stab0pUCq. Note that Remark 4.6.1 p2q implies
that the center of every finite index subgroup of H 1 is finite. Therefore the intersection
of H 1 with the group of twists is finite. By Remark 4.2.6, the intersection of H 1 with
the group of bitwists is finite. Thus, up to passing to a finite index subgroup, we may
suppose that the map

H 1 Ñ
¹

vPV pWnzUCq

OutpGvq
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given by the action on the vertex groups is injective.
Let V UC � V1 > V2 be the partition of V UC given by Theorem 4.5.5 and, for ev-

ery i P t1, 2u, let Hi be the subgroup of H 1 made of all automorphisms whose image
in
±
vPWnzVi

OutpGvq is trivial. Then H1 and H2 centralize each other and, by Theo-

rem 4.5.5 p1qpbq, the group H1XK
1
1 is a finite index subgroup of K 1

1. Thus H2 centralizes
a finite index subgroup of K 1

1. We prove that rkprodpH2q ¥ 2, which will contradict the
fact that the centralizer of every finite index subgroup of K 1

1 is virtually free.
By Theorem 4.5.5 p2q, the set of all conjugacy classes of groups Gv with v P V2 is a

free factor system of Wn. In particular, for every v P V2, there exists kv P t0, . . . , n� 1u
such that Gv is isomorphic to Wkv . Suppose first that |WnzV2| ¥ 3. In this case, by
Theorem 4.5.1 p2q and since rkprodpOutpW3qq � 1 and rkprodpOutpW2qq � 0, for all
v P V2, we have rkprodpOutpWkvqq ¤ kv � 2. Hence

rkprod

�� ¹
vPWnzV2

OutpGvq

�¤ n� 6.

Since rkprodpH
1q � n � 3, using Lemma 4.5.2, we see that rkprodpH2q ¥ 3. This leads

to a contradiction. Suppose now that |WnzV2| � 2 and let v1, v2 P WnzV2 be distinct.
Then for every i P t1, 2u there exists ki P t1, . . . , n � 1u such that Gvi is isomorphic to
Wki . If Wn � Wk1 �Wk2 , then the group H 1 virtually fixes the equivalence class of the
one-edge free splitting determined by this free factor decomposition of Wn. So we may
assume that Wn �Wk1 �Wk2 . This implies that k1 � k2 ¤ n� 1. Hence

rkprod

�� ¹
vPWnzV2

OutpGvq

�¤ n� 5.

Since rkprodpH
1q � n� 3, using Lemma 4.5.2, we see that rkprodpH2q ¥ 2. This leads to

a contradiction. Suppose now that |WnzV2| � 1, and let v P WnzV2. Then there exists
k P t1, . . . , n � 1u such that Gv is isomorphic to Wk. Suppose first that k ¤ n � 2.
Then by Theorem 4.5.1 p2q, and since rkprodpOutpW3qq � 1, rkprodpOutpW1qq � 0 and
rkprodpOutpW2qq � 0, if n � 5, we have

rkprod pOutpWkqq ¤ n� 5.

Thus, by Lemma 4.5.2, we see that rkprodpH2q ¥ 2. When n � 5, the case where k � 3
and rkprod pOutpWkqq � 1 � n � 4 can occur. But by Property pPWn�2q p3q, the group
H 1 contains a subgroup isomorphic to Z3. Since OutpW3q is virtually free, the group H2

contains a subgroup isomorphic to Z2. This contradicts the fact that the centralizer of
every finite index subgroup of K 1

1 is virtually nonabelian free. Hence we have k � n� 1.
But then, by Lemma 4.4.4, the group H 1 (and hence the group H) virtually fixes the
equivalence class of a Wn�1-star. This concludes the proof.
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Lemma 4.6.9. Let n ¥ 5. Let F be a nonsporadic free factor system. Let H be a subgroup
of Out0pWnq XOutpWn,Fq containing a direct product of n� 3 nonabelian free groups.
Then H cannot contain a finite index subgroup which fixes the homothety class of a
pWn,Fq-arational tree.

Proof. Suppose towards a contradiction that H has a finite index subgroup which fixes
the equivalence class of a pWn,Fq-arational tree. Up to passing to a finite index sub-
group, we may suppose that H itself fixes the homothety class of a pWn,Fq-arational
tree. By Lemma 4.5.4, there exists a homomorphism from H to Z whose kernel K 1 is
exactly the isometric stabilizer of a pWn,Fq-arational tree. Note that K 1 contains a
direct product of n � 3 nonabelian free groups as it is the kernel of a homomorphism
from H to Z. By Proposition 4.5.6, there exists a finite index subgroup K of K 1 such
that K fixes infinitely many equivalence classes of free splittings. Let C be the collection
of all equivalence classes of free splittings fixed by K.

We claim that C is in fact finite, which will lead to a contradiction. Since K �
Out0pWnq, Lemma 4.4.2 implies that if S is the equivalence class of a free splitting S
fixed by K, then the group K fixes the equivalence class of every one-edge free splitting
onto which S collapses. By Theorem 4.3.7, if S is the equivalence class of a free splitting
S, then S is determined by the finite set of equivalence classes of one-edge free splittings
onto which S collapses. Therefore, it suffices to show that K can only fix finitely many
equivalence classes of one-edge free splittings. Let S be the equivalence class of a one-
edge free splitting fixed by K. Since K contains a direct product of n � 3 nonabelian
free groups, Theorem 4.5.1 p3q implies that S is a Wn�1-star. Let

Wn � xx1, . . . , xn�1y � xxny

be a free factor decomposition associated with S and let A � xx1, . . . , xn�1y. By Propo-
sition 4.2.5 p1q, the kernel of the natural homomorphism K Ñ OutpAq is the intersection
of K with the group of twists T of S. By Theorem 4.5.1 p2q, the product rank of OutpAq
is equal to n � 4. Since K contains a direct product of n � 3 nonabelian free groups,
we see that K X T is infinite. Therefore, for every equivalence class S of a Wn�1-star S
fixed by K, the group K contains an infinite twist about S.

Let S and S 1 be two distinct equivalence classes of Wn�1-stars fixed by K. Let S
be a representative of S and let S1 be a representative of S 1. We claim that S and
S1 are compatible. Indeed, by the above, there exists f P K of infinite order such
that f is a twist about S. Since f fixes S 1, Lemma 4.4.7 implies that S and S1 are
compatible. Therefore, for every distinct equivalence classes S and S 1 of one-edge free
splittings fixed by K, there exist S P S and S1 P S 1 such that S and S1 are compatible.
By Theorem 4.3.7, this is only possible when C is finite. This leads to a contradiction
since K must fix infinitely many equivalence classes of free splittings. This concludes
the proof.

Proposition 4.6.10. Let n ¥ 5. Let H be a subgroup of Out0pWnq satisfying pPWn�2q.
Then H virtually fixes the equivalence class of a Wn�1-star.
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Proof. The proof is inspired by [HW2, Proposition 8.2] and [HHW, Proposition 6.5].
We prove that H virtually fixes the equivalence class of a one-edge free splitting. Since
H contains a direct product of n � 3 nonabelian free groups, we will then conclude by
Theorem 4.5.1 p3q. Suppose towards a contradiction that H does not virtually fix the
equivalence class of a one-edge free splitting. Let F be a maximal H-periodic free factor
system. We can assume that F is nonsporadic otherwise H virtually fixes the equivalence
class of a one-edge free splitting and we are done. As F is maximal, by Proposition 4.2.2,
the group H acts with unbounded orbits on FFpWn,Fq.

Let K1�K2 be a normal subgroup of H given by pPWn�2q p1q. Suppose first that nei-
ther K1 nor K2 contains a loxodromic element on FFpWn,Fq. As H has unbounded or-
bits on FFpWn,Fq, Lemma 4.5.3 implies that K1�K2 has a finite orbit in B8FFpWn,Fq.

By Lemma 4.2.4, there exists a finite index subgroup K 1
1 �K

1
2 of K1 �K2 such that

K 1
1 �K 1

2 fixes the homothety class of an arational pWn,Fq-tree T . Since K1 �K2 does
not contain a loxodromic element, K 1

1 �K 1
2 fixes T up to isometry, not just homothety

(see e.g. [GuH2, Proposition 6.2]). By Proposition 4.5.6, the group K 1
1 �K 1

2 virtually
fixes infinitely many equivalence classes of pWn,Fq-free splittings. By Lemma 4.6.8, the
group H virtually fixes the equivalence class of a one-edge free splitting of Wn.

So we may suppose that there exists a loxodromic element Φ P K1�K2. First suppose
that there exists a unique i P t1, 2u such that the group Ki contains a loxodromic element
Φi. We may assume, up to reordering, that only K2 contains a loxodromic element Φ.
Therefore by Lemma 4.5.3, the group K1 virtually fixes a point in B8FFpWn,Fq. By
Lemma 4.2.4, the group K1 virtually fixes the homothety class an arational pWn,Fq-tree
T . Let K 1

1 be a normal subgroup of K1 of finite index that is contained in StabprT sq.
As K 1

1 does not contain any loxodromic element, as in the above step, K 1
1 fixes T up

to isometry. By Proposition 4.5.6, the group K 1
1 fixes the equivalence class of a free

splitting relative to F . By Lemma 4.6.8, the group H virtually fixes the equivalence
class of a one-edge free splitting of Wn.

Now suppose that for every i P t1, 2u, the group Ki contains a loxodromic ele-
ment. By Lemma 4.5.3, the whole group H virtually fixes a point in B8FFpWn,Fq. By
Lemma 4.2.4, the group H virtually fixes the homothety class of an arational tree. This
contradicts Lemma 4.6.9.

Therefore, in all cases, the group H virtually fixes the equivalence class S of a one-
edge free splitting S. By Theorem 4.5.1 p3q, since H contains a direct product of n� 3
nonabelian free groups, the group H virtually fixes the equivalence class of a Wn�1-star.

We now prove a proposition which gives a sufficient condition for equivalence classes
of Wn�1-stars provided by Proposition 4.6.10 to be compatible. We first need the fol-
lowing result due to Krstić and Vogtmann.

Proposition 4.6.11. [KV, Corollary 10.2] Let n ¥ 3. The virtual cohomological dimension
of OutpWnq is equal to n� 2. In particular, the maximal rank of a free abelian subgroup
of OutpWnq is equal to n� 2.
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Proposition 4.6.12. Let n ¥ 5 and let Γ be a subgroup of Out0pWnq of finite index. Let
k P N� and let H1, . . . ,Hk be subgroups of Γ which satisfy pPWn�2q and such that the

intersection
�k
i�1Hi contains a subgroup H isomorphic to Zn�2. For i P t1, . . . , ku, let

Si be the equivalence class of a Wn�1-star Si which is virtually fixed by Hi. Then, for
every i, j P t1, . . . , ku, the Wn�1-stars Si and Sj are compatible.

Proof. Let i, j P t1, . . . , ku be distinct integers. Let H 1 be a finite index subgroup of
H contained in StabΓpSiq X StabΓpSjq. Let Ai and Aj be the vertex groups isomor-
phic to Wn�1 of respectively WnzSi and WnzSj (well defined up to conjugation). By
Proposition 4.6.11, the rank of a maximal abelian subgroup of OutpWn�1q is equal to
n � 3. Therefore, the kernel of the homomorphisms H 1 Ñ OutpAiq and H 1 Ñ OutpAjq
given by the action on the vertex group contains an element of infinite order. Let
fi P ker pH 1 Ñ OutpAiqq and fj P ker pH 1 Ñ OutpAiqq be infinite order elements. By
Proposition 4.2.5 p1q, fi and fj are twists about respectively Si and Sj . As fi and fj
commute, by Corollary 4.4.9, Si and Sj are compatible. This concludes the proof.

4.7 Algebraic characterization of stabilizers of Wn�2-stars

In this section, we give an algebraic characterization of stabilizers of Wn�2-stars. By the
previous section, we know that groups which satisfy pPWn�2q virtually stabilize equiva-
lence classes of Wn�1-stars, and we have given an algebraic criterion to show that these
Wn�1-stars are compatible. In order to prove that a group H which satisfies pPWn�2q
virtually stabilizes the equivalence class of a Wn�2-star, we study the intersection of a
normal subgroup K1 � K2 of H given by pPWn�2q p1q with the group of twists of the
equivalence class of a Wn�1-star virtually fixed by H.

4.7.1 Groups of twists in groups satisfying pPWn�2q

We start this section with a lemma which gives a sufficient condition for a group H
satisfying pPWn�2q to be the stabilizer of a Wn�2-star.

Lemma 4.7.1. Let n ¥ 5 and let Γ be a subgroup of finite index of Out0pWnq. Let H be a
subgroup of Γ which satisfies pPWn�2q and let K1 �K2 be a normal subgroup of H given
by pPWn�2q p1q. Let S1 be the equivalence class of a Wn�1-star S1 virtually fixed by H
and let T1 be the group of twists of S1.

Suppose that T1 X K1 is infinite and that there exists an equivalence class S2 of a
Wn�1-star S2 such that the intersection of K2 with the group of twists T2 of S2 is infinite.
Then S1 and S2 are compatible and H virtually fixes the equivalence class S of the Wn�2-
star which refines S1 and S2. Moreover, S is the unique equivalence class of a Wn�2-star
virtually fixed by H. Finally, the groups T1 X StabΓpSq and K1 (resp. T2 X StabΓpSq
and K2) are commensurable.

Proof. For i P t1, 2u, let fi P Ti XKi be of infinite order. First remark that, as f1 and
f2 generate a free abelian group of order 2, we have T1 � T2 because the group of twists
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of a Wn�1-star is virtually a nonabelian free group. Hence we have S1 � S2. As K1

commutes with f2, Proposition 4.4.8 shows that K1 fixes S2. As K1 contains a twist of
S1, Lemma 4.4.7 shows that S1 and S2 are compatible.

Let S be a Wn�2-star which refines S1 and S2, let S be its equivalence class and let
T be the group of twists of S in Γ. Then T contains a finite index normal subgroup
isomorphic to KS1

1 �KS2
2 , where KS1

1 and KS2
2 are virtually nonabelian free groups. By

Proposition 4.6.6, we can choose KS1
1 �KS2

2 such that KS1
1 �KS2

2 is a group satisfying
Property pPWn�2q p1q. Moreover, up to reordering, KS1

1 � T1 and KS2
2 � T2. Since

K1 fixes both S1 and S2, we see that K1 fixes S. Therefore, by Proposition 4.2.5 p1q,
we have a homomorphism Φ: K1 Ñ OutpWn�2q whose kernel is exactly K1 X T . By
Lemma 4.4.10, we see that T1XStabΓpSqXKS1

1 is a finite index subgroup of T1XStabΓpSq.
As K1 X T1 is infinite, so is K1 XKS1

1 . Let P � kerpΦq XKS1
1 � K1 XKS1

1 . Then, since
K1 � Out0pWnq, the group KS1

1 X K1 is a normal subgroup of K1. Therefore P is a
nontrivial normal subgroup of K1. By Property pPWn�2q p1q, we see that K2 is a finite

index subgroup of CΓpP q. But P is centralized by KS2
2 since P � KS1

1 . Hence KS2
2 XK2

is a finite index subgroup of KS2
2 . As KS1

1 is a finite index subgroup of the centralizer
of KS2

2 by Property pPWn�2q p1q, and as K1 is a finite index subgroup of the centralizer

of K2, we see that KS1
1 XK1 has finite index in K1 and therefore P has finite index in

K1. Let
Wn � xx1y � xx3, . . . , xny � xx2y

be the free factor decomposition of Wn induced by S and let A � xx3, . . . , xny. Then,
up to reordering, for every f P P , there exists zf P A and a representative F of f such
that F sends x1 to zfx1z

�1
f , and, for every i � 1, fixes xi.

Claim. The only equivalence classes of Wn�1-stars which are virtually fixed by K1 are
S1 and S2.

Proof. Let S3 be the equivalence class of a Wn�1-star S3 virtually fixed by K1. Suppose
towards a contradiction that S3 is distinct from both S1 and S2. LetK 1

1 � K1XStabΓpS3q
and P 1 � P X StabΓpS3q. Then, as P is an infinite subgroup of the group of twists of
S1, and as P 1 is a finite index subgroup of P , we see that P 1 is an infinite subgroup of
the group of twists of S1. By Lemma 4.4.7, we see that S1 and S3 are compatible. Let
S1 be a Wn�2-star that refines S1 and S3 and let S 1 be its equivalence class. Let

Wn � xy1y � xy3, . . . , yny � xy2y

be the free factor decomposition of Wn induced by S1 and let B � xy3, . . . , yny. Since S is
a refinement of S1, we may suppose that B �xy2y � A�xx2y and that y1 is a conjugate of
x1 by an element of B � xy2y. Up to applying a global conjugation, we may also suppose
that y1 � x1 and that B � xy2y � A � xx2y.

Let T 1 be the group of twists of S 1. Then T 1 contains a finite index normal subgroup
isomorphic to P 1

1 � P 1
2, where both P 1

1 and P 1
2 are virtually nonabelian free subgroups

of T 1 which correspond to the groups of twists about the two edges of WnzS
1. Then, as

P 1 is a group of twists of S1, and as P 1 fixes S 1, by Lemma 4.4.10, up to reordering, the
group P 1 is contained in P 1

1.
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Let f 1 P P 1
1, let F 1 be the representative of f 1 which acts as the identity on B � xy2y

and let zf 1 P B be the twistor of F 1. Then F 1 acts as the identity on A � xx2y and
F 1px1q � zf 1x1z

�1
f 1 . Recall that for every ψ P P 1, there exists a unique zψ P A and a

unique representative Ψ of ψ such that Ψ sends x1 to zψx1z
�1
ψ , and, for every i � 1, fixes

xi. Thus, a necessary condition for f 1 to be in P 1 is that zf 1 P AXB.
But as A and B are free factors of Wn, the group AXB is a free factor of B. To see

this, let U be a free splitting of Wn such that A is a vertex stabilizer of U and let UB
be the minimal subtree of B in U . Then, as U is a free splitting of Wn, we see that UB
is a free splitting of B. But then, as A is a vertex stabilizer in U , we see that A X B
is a vertex stabilizer in UB. Therefore, A X B is a free factor of B. Thus one can find
a Wn�3-star Sp2q which refines S1 and such that, for every f 1 P P 1, the twistor zf 1 fixes
a vertex of Sp2q. Indeed, one can equivariantly blow-up an edge e at the vertex of S1

whose stabilizer is B such that the stabilizer of one of the endpoints of e is a subgroup
C isomorphic to Wn�3 with A X B � C. Therefore we may also assume that Sp2q is
a Wn�3-star. Let Sp2q be the equivalence class of Sp2q. By Proposition 4.2.5 p3q, the
group of twists of Sp2q is isomorphic to a direct product W 3

n�3 of three infinite groups,

where each factor is a group of twists about an edge of WnzS
p2q. This implies that P 1

is contained in exactly one of the three factors isomorphic to Wn�3. It follows that the
centralizer of P 1 contains two elements which generates a free abelian group of order 2.
This contradicts the fact that the centralizer of P 1 is virtually a nonabelian free group
by pPWn�2q p1q. The claim follows.

The claim above then implies, as K1 is a normal subgroup of H, that H virtually
fixes S2. As H virtually fixes S1, we see that H virtually fixes the equivalence class S.
Moreover, the above claim shows that S is the unique equivalence class of a Wn�2-star
virtually fixed by K1, and hence virtually fixed by H.

We finally prove that K1 and T1 X StabΓpSq (resp. K2 and T2 X StabΓpSq) are
commensurable. By Lemma 4.4.10, for every i P t1, 2u we see that KSi

i XTiXStabΓpSq is

a finite index subgroup of TiXStabΓpSq. Moreover, for every i P t1, 2u and every f P KSi
i ,

the twist f of S is also a twist of Si. Hence we have KSi
i � TiXStabΓpSq. Therefore, for

every i P t1, 2u, the groups KSi
i and TiX StabΓpSq are commensurable. Hence it suffices

to show that, for every i P t1, 2u, the groups Ki and KSi
i are commensurable.

Recall that KS2
2 XK2 is a finite index subgroup of KS2

2 and that KS1
1 XK1 has finite

index in K1. Since H virtually fixes S, and since KS2
2 is a normal subgroup of StabΓpSq,

we see that KS2
2 XK2 is a normal subgroup of a finite index subgroup of K2. We know

that KS2
2 X K2 commutes with KS1

1 because KS1
1 and KS2

2 commute with each other.
Thus, by Property pPWn�2q p1q applied to K1�K2, the centralizer of KS2

2 XK2 contains

K1 as a finite index subgroup. This shows that K1 X KS1
1 is a finite index subgroup

of KS1
1 . Hence K1 and KS1

1 are commensurable. By Property pPWn�2q p1q applied to

KS1
1 � KS2

2 , the centralizer of a finite index subgroup of KS1
1 contains KS2

2 as a finite
index subgroup. Moreover, the centralizer of a finite index subgroup of K1 contains K2

as a finite index subgroup. Hence the centralizer of K1XK
S1
1 contains both K2 and KS2

2

as finite index subgroups. Thus K2 and KS2
2 are commensurable. This completes the
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proof of Lemma 4.7.1.

Lemma 4.7.1 suggests that in order to show that a group H which satisfies pPWn�2q
is in fact virtually the stabilizer of the equivalence class of a Wn�2-star, it suffices to
study the intersection of H with groups of twists. A first step towards such a result is
the following lemma.

Lemma 4.7.2. Let n ¥ 5 and let Γ be a subgroup of Out0pWnq of finite index. Let H be
a subgroup of Γ satisfying pPWn�2q and let K1 �K2 be a normal subgroup of H given by
pPWn�2q p1q. Let S be the equivalence class of a Wn�1-star S virtually fixed by H and
let T be the group of twists of S contained in Γ.

There exists a unique i P t1, 2u such that Ki X T is infinite. Moreover, H X T XKi

has finite index in H X T .

Proof. Up to passing to a finite index subgroup of H, we may suppose that H fixes
S. The uniqueness assertion follows from the fact that T is virtually a nonabelian free
group and that K1�K2 is a direct product. Therefore, up to reordering, we may suppose
that K1 X T is finite. Since OutpWnq is virtually torsion free by [GuL1, Corollary 5.3],
there exists a finite index subgroup K 1

1 of K1 such that K 1
1 X T is trivial. Since K1 is a

finitely generated normal subgroup of H, Lemma 4.6.7 implies that there exists a finite
index subgroup H 1 of H such that K 1

1 is a normal subgroup of H 1. Therefore, we may
suppose that K1 X T is trivial. By Proposition 4.2.5 p1q, the natural homomorphism
K1 Ñ OutpWn�1q given by the action on the vertex groups is injective.

We claim that H X T is infinite. Indeed, consider the natural homomorphism
Φ: H Ñ OutpWn�1q. By Proposition 4.6.11, the rank of a maximal free abelian sub-
group of OutpWn�1q is equal to n � 3. As H contains a subgroup isomorphic to Zn�2

by pPWn�2q p3q, the kernel of H Ñ OutpWn�1q is infinite. But, by Proposition 4.2.5 p1q,
this is precisely H X T . Therefore, H X T is infinite.

We now prove that H X T XK2 has finite index in H X T . This will conclude the
proof as H X T is infinite. Let K � Φ�1pΦpK2qq. Note that H X T � K. Then, as K2

is normal in H, we see that K is a normal subgroup of H which contains H X T and
K2. We claim that K XK1 is finite. Indeed, suppose towards a contradiction that there
exists f P K XK1 of infinite order. Then, as the homomorphism

Φ|K1 : K1 Ñ OutpWn�1q

is injective, the element Φpfq has infinite order. By definition of K, we see that
Φpfq P ΦpK1q X ΦpK2q. But, as the homomorphism Φ|K1 : K1 Ñ OutpWn�1q is injec-
tive, and as K1 is virtually a nonabelian free group, there exists g P K1 of infinite order
such that Φpgq does not commute with Φpfq. Since Φpfq P ΦpK2q this contradicts the
fact that K1 and K2 commute with each other. Hence K XK1 is finite.

The groups K and K1 are two normal subgroups of H with finite intersection. Let

K
p2q
1 be a finite index normal subgroup of K1 such that K X K

p2q
1 � t1u. Since K1 is

finitely generated, by Lemma 4.6.7 p2q, there exists a finite index subgroup Hp2q of H

such that K
p2q
1 is a normal subgroup of Hp2q. Hence K

p2q
1 and K X Hp2q are normal
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subgroups of Hp2q with trivial intersection. Therefore, K X Hp2q � CΓpK
p2q
1 q. But,

Property pPWn�2q p1q implies that K and K2 are commensurable. Since K contains
H XT , we see that K2 XT and H XT are commensurable. This concludes the proof.

4.7.2 Groups satisfying pPWn�2q and stabilizers of Wn�2-stars

In this section we prove that a subgroup of Out0pWnq which satisfies pPWn�2q virtually
fixes the equivalence class of a Wn�2-star. We first prove a series of properties for
elements of OutpWnq.

Lemma 4.7.3. Let n ¥ 3. Let w P Wn be a root-closed element of infinite order. Let S
be the equivalence class of a splitting S whose associated amalgamated decomposition of
Wn is:

Wn � A �xwy B,

where A and B are subgroups of Wn containing w. Let D be a nontrivial twist about
S. Let h P Wn. Then D preserves the conjugacy class of h if and only if there exists
h1 PWn such that h1 P rhs and h1 P AYB.

Proof. It is clear that D preserves the conjugacy classes of elements in A and B. Con-
versely, let h PWn be such that Dprhsq � rhs. Let R be a Grushko splitting of Wn. Let
R1 and S1 be metric representatives of R and S, let R1 and S 1 be their Wn-equivariant
isometry classes and let rR1s and rS 1s be their homothety classes. As POpWnq is com-
pact, up to passing to a subsequence, there exists a sequence pλnqnPN P pR�

�q
N and a

Wn-equivariant isometry class T of an R-tree T such that

lim
nÑ8

λnD
npR1q � T .

Since translation length functions are continuous for the Gromov-Hausdorff topology
(see [Pau1]), for every g PWn, we have:

lim
nÑ8

λn ‖g‖DnpR1q � ‖g‖T ,

where ‖g‖T is the translation length of g in T . Hence, for every g P Wn, the limit
limnÑ8 λn ‖g‖DnpR1q is finite. But as there exists g1 P Wn such that ‖g1‖DnpR1q tends to
infinity as n goes to infinity, we have limnÑ8 λn � 0. As there exists a representative
φ P AutpWnq of D such that φA � idA, for every g P A, we have:

lim
nÑ8

λn ‖g‖DnpR1q � lim
nÑ8

λn ‖g‖R1 � 0.

Hence every element of A fixes a point in T . As A is finitely generated, this implies
that A fixes a point in T (see for instance [CM, Section 3]). Similarly, we see that the
groups B and xhy fix points in T . As Wn � xA,By, we see that A and B cannot fix the
same point in T . Thus, there exists a natural Wn-equivariant application Ψ: S1 Ñ T .
Let us prove that Ψ is an isometry. It suffices to prove that Ψ is a local isometry, that
is, it suffices to prove that the application Ψ does not fold edges. By Wn-equivariance
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and symmetry, it suffices to prove that, If e and e1 are two distinct edges of S1 whose
origin is the vertex fixed by A, then Ψpeq � Ψpe1q. Suppose towards a contradiction that
Ψpeq � Ψpe1q. Then xGe, Ge1y fixes Ψpeq. Note that Ge and Ge1 are isomorphic to Z.
Moreover, since w is root-closed, we neither have Ge � Ge1 nor Ge1 � Ge. Since Ge is
a malnormal subgroup of Wn and since Ge1 is a nontrivial conjugate of Ge, we see that
Ge X Ge1 � t1u. Hence xGe, Ge1y is a nonabelian free group which fixes an arc in T .
But arc stabilizers in T are cyclic, a contradiction. Hence Ψ is an isometric embedding
and, by minimality of T , the application Ψ is a Wn-equivariant isometry. Therefore, as
h fixes a point in T , it also fixes a point in S1. Therefore, h is contained in a conjugate
of A or B.

For the next proposition, recall the definition of the subgroup F ofWn from Lemma 4.6.2.

Proposition 4.7.4. Let n ¥ 3. Let pHN qNPN� be an increasing sequence of subgroups of
F. There exists an integer n0 such that for every N ¥ n0, we have

OutpWn, H
ptq
N q � OutpWn, H

ptq
n0
q.

Proof. We show that the result is a consequence of a similar result in the context
of the automorphism group of a nonabelian free group due to Martino and Ventura
([MV, Corollary 4.2]). Since F is a nonabelian free group, we may suppose that, for
every N P N�, the group HN is a nonabelian free group. Hence for every N P N�,

we have CWnpHN q � t1u. Therefore, for every N P N� and every φ P OutpWn, H
ptq
N q,

there exists a unique representative Φ P AutpWnq of φ such that ΦpHN q � HN and
Φ|HN � idHN . This implies that, for every N P N�, we have an injective homomorphism

OutpWn, H
ptq
N q ãÑ AutpWn, HN q, where AutpWn, HN q is the group of automorphisms

of Wn which fix every element of HN . Therefore, it suffices to prove the result for
AutpWn, HN q. Since there exists an injective homomorphism AutpWnq Ñ AutpFq and
since, for every N P N�, we have HN � F, it suffices to prove that there exists n0 P N�

such that, for every N ¥ n0, we have AutpF, HN q � AutpF, Hn0q. We then conclude
using [MV, Corollary 4.2].

We now recall a theorem due to Guirardel and Levitt which provides a canonical
splitting for a relative one-ended hyperbolic group (recall that a group G is one-ended
relative to a family of subgroups H if G does not have a one-edge splitting with finite
edge stabilizers such that every subgroup of H fixes a point).

Theorem 4.7.5. [GuL5, Theorem 9.14] Let G be a hyperbolic group and let H be a family
of subgroups such that G is one-ended relative to H. There exists a splitting S of G such
that:

p1q Every edge stabilizer is virtually infinite cyclic.

p2q For every H P H, the group H is elliptic in S.

p3q The tree S is invariant under all automorphisms of G preserving H. Moreover, S
is compatible with every splitting S1 with virtually cyclic edge stabilizers and such that
for every H P H, the group H is elliptic in S1.
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p4q Let H P H be such that H is virtually a (possibly not finitely generated) nonabelian
free group, and let v be the vertex of S fixed by H. Let Incv be the finite set of represen-
tatives of all conjugacy classes of groups associated with edges in S which are incident
to v. Then the group OutpGv, tH, Incvu

ptqq is finite.

Assertion p4q is a bit stronger than what is stated in [GuL5], hence we add some
explanations.

Proof of Assertion p4q of Theorem 4.7.5. Let S, H and v be as in Assertion p4q. By
for instance [Pau2, Proposition 2.5], the set Incv is finite. Note that every group in
Incv is virtually cyclic by Assertion p1q. Thus, the set Incv is a finite set of finitely
generated groups. Up to taking finite index subgroups, we may suppose that H � F
and that for every subgroup H 1 in Incv, the group H 1 is contained in F. Suppose
towards a contradiction that OutpGv, tH, Incvu

ptqq is infinite. Suppose first, following
the terminology of [GuL5], that the vertex v is rigid. By Proposition 4.7.4, there exists
a finitely generated subgroup K of H such that OutpWn, H

ptqq � OutpWn,K
ptqq. By

[GuL4, Theorem 7.14], there exists a one-edge splitting U of Gv whose edge stabilizer is
isomorphic to Z such that K and every group in Incv are elliptic in U . Since v is a rigid
vertex, there exists h P H such that h acts loxodromically on U . Since every group in
Incv fixes a point in U , one can blow up the splitting U at the vertex v of S. This gives
a refinement S1 of S. Let D1 be a nontrivial infinite twist of U . Then D1 induces a twist
D of S1. By Lemma 4.7.3, the element D fixes the conjugacy class of K but does not fix
the conjugacy class of h. This contradicts OutpWn, H

ptqq � OutpWn,K
ptqq.

So we may suppose, following the terminology of [GuL5], that the vertex v is flexible.
By [GuL5, Theorem 9.14 p2q], as H is virtually a nonabelian free group, the vertex v is
a QH vertex (see [GuL5, Definition 5.13]). But the definition of a QH vertex implies,
as H is contained in H, that the group H must be virtually contained in a boundary
subgroup of the fundamental group of the orbifold associated with Gv. Thus the group
H must be virtually cyclic, a contradiction.

We also need some results about splittings over virtually cyclic groups, whose gen-
eralization to virtually free groups is due to Cashen.

Theorem 4.7.6. [Cas, Theorem 1.2] Let G1 and G2 be finitely generated virtually non-
abelian free groups, and let C be a virtually cyclic group which is a proper subgroup of
both G1 and G2. Then G1 �C G2 is virtually a nonabelian free group if and only if there
exists i P t1, 2u such that Gi has a splitting with finite edge stabilizers such that C is a
vertex stabilizer.

Corollary 4.7.7. Let n ¥ 3 and let G1, G2 be subgroups of Wn such that Wn � G1 �C G2

is a nontrivial amalgamated product of Wn, where C is isomorphic to W2 and G1 and
G2 are not virtually cyclic.

p1q There exists i P t1, 2u such that C is a free factor of Gi. Moreover, if j P t1, 2u�tiu,
then Gj is a free factor of Wn.
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p2q There exist 3 ¤ k1, k2 ¤ n � 1 such that k1 � k2 � n � 2 and, for every i P t1, 2u,
the group Gi is isomorphic to Wki. In particular, n ¥ 4.

Proof. p1q By Lemma 4.6.2, the subgroup F of Wn is a nonabelian free group of finite
index. Since both G1 and G2 are not virtually cyclic, the intersections G1XF and G2XF
are finite index subgroups of G1 and G2 which are nonabelian free groups. Hence G1

and G2 are virtually nonabelian free groups. Moreover, since Wn and C are finitely
generated, so are G1 and G2. By Theorem 4.7.6, up to exchanging the roles of G1 and
G2, we may suppose that G1 has a splitting S such that every edge stabilizer is finite and
C is the stabilizer of a vertex v P V S. Note that, since the finite subgroups of Wn are
all isomorphic to F , every edge stabilizer of S is either trivial or isomorphic to F . Since
every element of Wn of order 2 is a conjugate of an element in a standard generating set
of Wn, every nontrivial edge stabilizer is a free factor of both of its endpoint stabilizers.
Let V1 be the set of vertices of S distinct from v and fixed by a subgroup of C isomorphic
to F . Therefore, for every w P V1, there exists a subgroup Aw of Gw and an element
xw P C of order 2 such that Gw � Aw � xxwy. Let S0 be a splitting of Wn obtained from
S by blowing-up, at every vertex w P V1, the free splitting Aw � xxwy and by attaching
the edge fixed by xw to its corresponding fixed point. Let S1 be the splitting of Wn

obtained from S0 by collapsing every edge with nontrivial stabilizer. Then the stabilizer
in G1 of every edge of S1 adjacent to the vertex fixed by C has trivial stabilizer. Thus,
C is a free factor of G1 and there exists H1 � G1 such that G1 � H1 � C. This proves
the first assertion of p1q. The second assertion of p1q follows from the fact that

Wn � G1 �C G2 � pH1 � Cq �C G2 � H1 �G2.

Hence H1 and G2 are free factors of Wn.

p2q Therefore, there exist h1, k2 P t1, . . . , n � 2u with h1 � k2 � n such that H1 is
isomorphic to Wh1 and G2 is isomorphic to Wk2 . Thus G1 is isomorphic to Wh1�2. Set
k1 � h1 � 2. Since the amalgamated product is nontrivial and since G1 and G2 are not
virtually cyclic, we have 3 ¤ k1, k2 ¤ n� 1. This proves p2q.

Lemma 4.7.8. Let n ¥ 4 and let S be a splitting of Wn. Let S be its equivalence class.
Let v1 and v2 be adjacent vertices of S and let e be the edge between v1 and v2. Suppose
that Ge is isomorphic to W2. Let f P StabOutpWnqpSq be such that:

p1q the graph automorphism of WnzS induced by f is trivial;

p2q the natural homomorphisms xfy Ñ OutpGv1 , Geq and xfy Ñ OutpGv1 , Geq are
trivial.

Then f has a representative which acts as the identity on xGv1 , Gv2y.

Proof. By p2q, the outer automorphism f has two representatives F1 and F2 such that
for every i P t1, 2u, we have FipGviq � Gvi and Fi|Gvi � idGvi . Note that Gv1XGv2 � Ge.
Hence F1 and F2 acts as the identity on Ge. Therefore, F1 and F2 differ by an inner
automorphism adz with z P CWnpGeq. However, since Ge is isomorphic to W2, we have
CWnpGeq � teu. Hence F1 � F2. This concludes the proof.
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Proposition 4.7.9. Let n ¥ 5 and let Γ be a finite index subgroup of Out0pWnq. Let H
be a subgroup of Γ which satisfies pPWn�2q. Then H virtually stabilizes the equivalence
class of a Wn�2-star. Moreover, this equivalence class is unique.

Proof. By Proposition 4.6.10, the group H virtually fixes the equivalence class S of a
Wn�1-star S. Let

Wn � A � xxny

be the free factor decomposition of Wn induced by S. Up to passing to a finite index
subgroup, we may suppose that H fixes S. Let T be the group of twists of S contained
in Γ. By Proposition 4.2.5 p2q, the group StabpSq is isomorphic to AutpAq and the group
of twists of S is identified with the inner automorphism group of A.

Let K1 � K2 be a normal subgroup of H given by Property pPWn�2q p1q. By
Lemma 4.7.2, up to exchanging the roles of K1 and K2, we may assume that K1 X T is
infinite, that H X T XK1 is a finite index subgroup of H X T and that K2 X T is finite.
Up to passing to a finite index subgroup of H, we may assume that K2 X T � t1u. In
particular, the natural homomorphism φ : K2 Ñ OutpAq is injective. Let K � A be the
group of twistors associated with twists contained in K1. Note that to every splitting S0

of A such that K fixes a unique vertex of S0, one can deduce a splitting S10 of Wn such
that K fixes a point of S10. Indeed, by blowing-up the splitting S0 at the vertex v of S
whose associated group is A, and by attaching the edges of S adjacent to v to the vertex
fixed by K, we obtain a splitting S10 of Wn such that K fixes a point of S10. Let S 10 be
the equivalence class of S10. We claim that the group K1 X T fixes S 10. Indeed, let e0 be
the edge of S10 adjacent to the vertex v0 fixed by K and the vertex fixed by xxny. Since
the stabilizer of e0 is trivial, Proposition 4.2.5 implies that the group of twists about e0

at the vertex v0 contains all the twists whose twistor is an element of K. Hence K1 X T
fixes S 10.

We now construct a one-edge free splitting S0 of A such that K fixes a vertex of S0.
By the above discussion, this will give a two-edge free splitting of Wn such that K fixes a
vertex of this splitting which is not a leaf and whose equivalence class is fixed by K1XT .
We distinguish between three cases, according to whether A is one-ended relative to K
and according to the edge stabilizers of a splitting of A relative to K.

Case 1. There exists a free splitting S0 of A such that K fixes a vertex of S0.
In particular, the corresponding splitting S10 of Wn constructed above is a free split-

ting of Wn. We claim that the splitting S10 has two orbits of edges. Indeed, suppose that
S10 has k orbits of edges, with k ¥ 3. Then, S10 is obtained from S by blowing-up at least
two orbits of edges at v. Therefore, the group of twistors K is contained in a free factor
B of Wn isomorphic to Wn�3. Let B1 be a free factor of Wn isomorphic to W2 such that

Wn � xxny �B �B1

and let R be the free splitting associated with this decomposition. Then the equivalence
class R of R is a free splitting of Wn fixed by K1 X T . But by Proposition 4.2.5 p3q,
the group of twists of R is isomorphic to B � B �W2. Moreover, the group K1 X T is
contained in one of the factors of B�B�W2 isomorphic to B. Therefore, the centralizer
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of K1XT contains a free abelian group of rank 2. Since K1XT is a normal subgroup of
K1, this contradicts the fact that the centralizer of K1 XT is virtually a nonabelian free
group by Property pPWn�2q p1q. Therefore, the splitting S10 is a two-edge free splitting.

Case 2 There exists a splitting S0 of A such that K fixes a vertex of S0 and such that
one of the edge stabilizers of S0 is finite.

Let S10 be the corresponding splitting of Wn constructed in the above discussion. If
S0 has an edge e1 with trivial stabilizer, then by collapsing every orbit of edges of S0

except the one containing e1, we obtain a splitting S1 of A such that K fixes a vertex of
K. Then the corresponding splitting S11 of Wn is a free splitting. Thus, we can apply
Case 1.

Therefore, we may assume that every edge stabilizer of S0 is infinite or a nontrivial
finite subgroup of Wn. By collapsing every edge of S0 with infinite stabilizer and by
collapsing all but one orbit of edges with finite edge stabilizer, we may suppose that S0

is a one-edge splitting such that every edge stabilizer of S0 is a nontrivial finite subgroup
of Wn. Every finite subgroup of Wn is isomorphic to F and is in fact a free factor of
Wn. We claim that we can construct a splitting X0 of A which contains an edge with
trivial stabilizer and such that K fixes a vertex of X0. Indeed, let x0 be the vertex of S0

fixed by K, let f0 be an edge adjacent to x0 and let x1 be the vertex of f0 distinct from
v0. Let Gx0 be the stabilizer of x0, let Gx1 be the stabilizer of x1 and let Gf0 be the
stabilizer of f0. Note that, since there does not exist HNN extensions in Wn, the groups
Gx0 and Gx1 are not conjugate in Wn. The group Gf0 is a free factor of both Gx0 and
Gx1 . Thus there exists a free factor A1 of Gx1 such that Gx1 � Gf0 � A

1. Let U be the
splitting of A such that the underlying tree of WnzU is the same one as the underlying
tree of WnzS0, such that the stabilizer of every vertex which is not in the orbit of x1 is
the same one as the stabilizer of the corresponding vertex in S0 and the stabilizer of x1

is A1. Then the edge f0 has trivial stabilizer in U and K fixes a vertex of U . This proves
the claim. Therefore Case 2 is a consequence of Case 1.

Case 3 The group A is one-ended relative to K.
We prove that this assumption leads to a contradiction. By Theorem 4.7.5, there

exists a canonical splitting S0 of A whose edge stabilizers are virtually infinite cyclic,
such that K fixes a point of S0 and such that every automorphism of A preserving K
fixes the equivalence class of S0. Let S10 be the corresponding splitting of Wn, and let
S 10 be its equivalence class. Recall that the group K1 X T is a normal subgroup of H
contained in InnpAq. Let k P K and let f P H. Let F be a representative of F which
fixes xn and which preserves A. As K1 X T is a normal subgroup of H, there exists
k1 P K such that

F � adk � F
�1 � adF pkq � adk1 .

Since the center of A is trivial, we have F pkq � k1. Hence the group H viewed as a
subset of AutpAq preserves K. Thus H preserves S 10.

Let v0 be the vertex of S10 fixed by K and let e0 be the edge of S10 between v0 and
the point fixed by xxny. By construction, the stabilizer of every edge of S10 which is not
in the orbit of e0 is virtually cyclic, that is it is isomorphic either to Z or to W2. By
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Lemma 4.2.7, a twist about an edge whose stabilizer is isomorphic to Z is central in a
finite index subgroup of StabOutpWnqpS 10q. Since any finite index subgroup of H has finite
center by Remark 4.6.1 p2q, we see that the stabilizer of every edge of S10 which is not in
the orbit of e0 is isomorphic to W2. Therefore, Remark 4.2.6 implies that the group of
bitwists about every edge of S10 which is not in the orbit of e0 is trivial. Thus, the group
of bitwists T0 of S 10 is reduced to the group of twists about e0.

Let WnzS10 be the graph associated with WnzS
1
0. For every vertex v P V pWnzS10q, let

Incv be the set containing the conjugacy class of the edge group of every edge adjacent
to v (seen as a subgroup of Gv). Let v0 be the image of v0 in WnzS10 and let e0 be the
image of e0 in WnzS10. By Proposition 4.2.5 and Remark 4.2.6, up to taking a finite
index subgroup of H, we have a natural homomorphism

Ψ: H Ñ OutpGv0 , tK, Incv0uq �
¹

vPV pWnzS10q,v�v0

OutpGv, Incvq,

whose kernel is T0 XH. Note that every edge stabilizer is isomorphic to W2, hence the
outer automorphism group of every edge stabilizer is finite. Thus, up to taking a finite
index subgroup of H, we may suppose that the image of Ψ is contained in

OutpGv0 , tK, Inc
ptq
v0
uq �

¹
vPV pWnzS10q,v�v0

OutpGv, Incptqv q.

Recall that K2XT0 � t1u, hence Ψ|K2 is injective. Moreover, as K2 commutes with K1,
the group K2 is contained in OutpWn,K

ptqq. Recall that Theorem 4.7.5 p4q implies that
the group OutpGv0 , tK, Incv0u

ptqq is finite. Since Ψ|K2 is injective, this implies that¹
vPV pWnzS10q,v�v0

OutpGv, Incptqv q

is infinite. Since the graph WnzS10 is finite, there exists v P V pWnzS10q such that v � v0

and OutpGv, Inc
ptq
v q is infinite.

Suppose first that there exist two distinct vertices v and w of WnzS10 such that

v, w � v0 and both OutpGv, Inc
ptq
v q and OutpGw, Inc

ptq
v q are infinite. Since Gv and Gw

are subgroups of Wn whose outer automorphism groups are infinite, they are virtu-
ally nonabelian free groups. Thus we can apply Theorem 4.6.4 to both pGv, Incvq and
pGw, Incwq to show that there exist a ZRC-splitting Uv of Gv and Uw of Gw such that
every group in Incv fixes a point in Uv and every group in Incw fixes a point in Uw. One
can then blow-up the splittings Uv and Uw at the vertices v and w of WnzS10 and attach
the edges adjacent to v and w in WnzS10 to the points fixed by their corresponding edge
groups in Uv and Uw. This gives a refinement S1 of S10. Let S1 be the equivalence class
of S1. Note that, since the group of twists about the edge e0 of S10 is contained in the
group of twists of S1, the group K1XT fixes S1. Note that the stabilizer of an edge in Uv
or Uw is either finite or isomorphic to Z. If there exists an edge in Uv or Uw with a finite
edge stabilizer, as v and w come from vertices in S0, we can apply Case 2 to conclude.
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Suppose that every edge stabilizer of Uv and Uw is isomorphic to Z. By Lemma 4.2.7, a
twist about an edge whose stabilizer is isomorphic to Z is central in a finite index sub-
group of StabOutpWnqpS1q. Hence K1XT has a finite index subgroup which is centralized
by a free abelian group of rank 2. This contradicts Property pPWn�2q p1q.

Suppose now that there exists a unique vertex v P V pWnzS10q such that v � v0 and

OutpGv, Inc
ptq
v q is infinite. Recall that the image of the homomorphism Ψ|K2 is contained

in
OutpGv0 , tK, Incv0u

ptqq �
¹

wPV pWnzS10q,w�v0

OutpGw, Incptqw q.

In particular, as OutpGv0 , tK, Incv0u
ptqq is finite, up to taking a finite index subgroup of

K2, we may suppose that the image of Ψ|K2 is contained in OutpGv, Inc
ptq
v q.

Claim. Let f P K2 and let X be a connected subgraph of WnzS10 such that every
vertex of X is distinct from v and such that the group associated with every edge of X is
isomorphic to W2. Then f has a representative which acts as the identity on xGwywPV X .

Proof. We prove the result by induction on the number m of edges of X. If X is reduced
to a vertex, then the conclusion is immediate. Suppose that |EX| � m ¥ 1. Let w1

and w2 by two adjacent vertices in V X such that w1 is a leaf of X. Let e1 be the edge
in X between w1 and w2. Let X 1 be the graph obtained from X be removing w1 and
e1. The graph X 1 is a connected subgraph of WnzS10 which satisfies the hypothesis of
the lemma and such that |EX 1| � m � 1. By the induction hypothesis, the element
f has a representative which acts as the identity on xGwywPV X 1 . Let WnzS

1
2 be the

graph of groups obtained from WnzS
1
0 by collapsing X 1 and let p : WnzS

1
0 Ñ WnzS

1
2

be the natural projection. Since f has a representative which acts as the identity on
xGwywPV X 1 , the element f fixes the equivalence class of WnzS

1
2. Note that the group

associated with ppw2q is xGwywPV X 1 and that the group associated with ppw1q is Gw1 .
Moreover, the group associated with ppe1q is Ge1 , in particular, it is isomorphic to W2.
Thus for every i P t1, 2u, the outer automorphism f has a representative Fi such that
FipGppwiqq � Gppwiq and Fi|Gppwiq � idGppwiq . Thus, by Lemma 4.7.8 applied to WnzS

1
2,

the outer automorphism f has a representative which acts as the identity on@
Gppw1q, Gppw2q

D
� xGwywPV X .

The claim follows.

Let e1 be the edge adjacent to v in WnzS10 which is contained in the path between v
and v0 and let re1 be a lift of e1 in S10. Note that v is contained in the same connected
component of WnzS10 � e̊0 as v0. Thus the edges e1 and e0 are not in the same orbit.
Moreover the stabilizer of e1 is isomorphic to W2. Let S11 be the splitting of Wn obtained
from S10 by collapsing every edge of S10 which is not in the orbit of re1 and e0. Let S 11 be
the equivalence class of S11. Then S11 has two orbits of edges. Let v2 be the vertex of S11
fixed by K and let v1 be the vertex of S11 adjacent to v2 which is fixed by a conjugate
of Gv. Let e be the edge adjacent to v1 and v2. Note that, up to taking a finite index
subgroup of K2, the group K2 fixes S 11. Thus, by Proposition 4.2.5 and Remark 4.2.6,
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we have a natural homormorphism Φ: K2 Ñ OutpGv1 , Geq �OutpGv2 , Geq whose kernel
is contained in K2 XT0 � t1u. Moreover, the claim applied to the connected component
of WnzS10 � e̊ Y e̊0 containing v0 shows that every element f P K2 has a representative
which acts as the identity on Gv2 . Hence ΦpK2q is isomorphic to K2 and is contained in
OutpGv1 , Geq. We also see that, as K is virtually a nonabelian free group, its centralizer
in Wn is trivial. Hence every element f P K2 has a unique representative which acts as
the identity on K. Let f P K2. Recall that Wn � A � xxny. Then the representative of
f which preserves A and fixes xn must fix K by Lemma 4.4.11 (since f P K2 centralizes
K1). As f has a representative which acts as the identity on Gv2 and as K � Gv2 , we
see that f has a representative which acts as the identity on Gv2 � xxny.

Note that the group Gv1 �GeGv2 is a splitting of A such that Ge is isomorphic to W2.
Moreover, as K fixes v2, the group Gv2 is not virtually cyclic. Since the group OutpGvq
is infinite, the group Gv is not virtually cyclic. Hence the group Gv1 is not virtually
cyclic. Therefore we may apply Corollary 4.7.7 to Gv1 �Ge Gv2 : there exist k1, k2 ¥ 3
such that for every i P t1, 2u, the group Gvi is isomorphic to Wki . Moreover, there exist
i P t1, 2u and j P t1, 2u� tiu such that Wki is a free factor of Wki and Ge is a free factor
of Wkj .

Suppose first that Wk1 is a free factor of A and that Ge is a free factor of Wk2 . Let
H be such that Wk2 � Ge �H. Then H is a free factor of A since

A � Gv1 �Ge Gv2 � Gv1 �Ge pGe �Hq � Gv1 �H.

Since k2 ¥ 3, the group H is not trivial. Let z be an infinite order element of Ge. Let
F1 be the automorphism of Wn which acts as a global conjugation by z on H and which
fixes xn and Gv1 (recall that as Wn � H �Gv1 � xxny, the automorphism F1 is uniquely
determined). Let F2 be the automorphism of Wn which acts as a global conjugation by
z on A and which fixes xn. Then xrF1s, rF2sy is a subgroup of OutpWnq isomorphic to
a free abelian group of rank 2. Recall that every element of K2 has a representative
which acts as the identity on Gv2 � xxny. Since rF1s and rF2s have representatives whose
support is contained in Gv2 � xxny, the group xrF1s, rF2sy is contained in COutpWnqpK2q.
This contradicts Property pPWn�2q p1q which says that the centralizer of K2 is virtually
a nonabelian free group.

Suppose now that Wk2 is a free factor of A and that Ge is a free factor of Wk1 . Let H
be such that Wk1 � Ge �H. As before the group H is a free factor of A and A � H �Gv2 .
But K is contained in Gv2 . This contradicts the fact that A is ond-ended relative to K.
The conclusion in Case 3 follows.

Therefore, we have constructed a free splitting S10 of Wn which is a two-edge free
splitting fixed by K1 X T . Moreover, the construction of the splitting is such that the
vertex of the underlying graph of WnzS

1
0 whose associated group contains K is not a leaf.

We now prove that S10 is a Wn�2-star. Let C be the vertex stabilizer of S10 containing K,
and let C 1 be a vertex stabilizer of S10 which is not a conjugate of C nor xxny. Then C 1

is the vertex group of a leaf of the underlying graph of WnzS
1
0. By Proposition 4.2.5 p3q,

the group of twists of S 10 is isomorphic to C � C � C 1{ZpC 1q. Since the centralizer of
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K X T1 is virtually a nonabelian free group by Property pPWn�2q p1q, we conclude that
C 1{ZpC 1q is finite. Hence C 1 is isomorphic to F and S10 is a Wn�2-star.

We now prove that H virtually fixes S 10. By Proposition 4.2.5 p3q, the group of twists
of S 10 is isomorphic to Wn�2 �Wn�2. By Lemma 4.4.10, the group K1 X T is contained
in one of the factors isomorphic to Wn�2 of the group of twists of S 10. Therefore, K1XT
is centralized by the other factor of the group of twists of S 10. Since the centralizer of
K1XT contains K2 as a finite index subgroup, the group K2 contains a twist f of infinite
order about the edge e of S10 which does not collapse onto S. This twist is a twist about
a Wn�1-star obtained from S10 by collapsing the orbit of edges which does not contain
e. By Lemma 4.7.1, the group H virtually fixes S 10. Moreover, K1 is commensurable
with T XStabpS 10q, that is K1 is commensurable with the group of twists about one edge
of S10. Lemma 4.6.5 then implies that K1 virtually fixes a unique equivalence class of
Wn�2-stars. Therefore, since K1 is a normal subgroup of H, we see that H virtually
fixes a unique equivalence class of Wn�2-stars. This concludes the proof.

Proposition 4.7.10. Let n ¥ 5 and let Γ be a finite index subgroup of Out0pWnq. Let
Ψ P CommpΓq. Then for every equivalence class S of Wn�2-stars, there exists a unique
equivalence class S 1 of Wn�2-stars such that ΨprStabΓpSqsq � rStabΓpS 1qs.

Proof. The uniqueness statement follows from Lemma 4.6.5 which shows that the stabi-
lizer in finite index subgroups of OutpWnq of two distinct equivalence classes of Wn�2-
stars are not commensurable.

We now prove the existence statement. Let f : Γ1 Ñ Γ2 be an isomorphism between
finite index subgroups of Γ that represents Ψ. By Proposition 4.6.6, the group StabΓ1pSq
satisfies pPWn�2q. As f is an isomorphism, we deduce that fpStabΓ1pSqq also satisfies
pPWn�2q. Proposition 4.7.9 implies that there exists a unique equivalence class of Wn�2-
stars S 1 such that fpStabΓ1pSqq � StabΓ2pS 1q, where the inclusion holds up to a finite
index subgroup. Applying the same argument with f�1, we see that there exists an
equivalence class S2 of a Wn�2-star such that

StabΓ1pSq � f�1pStabΓ2pS 1qq � StabΓ1pS2q,

where the inclusion holds up to a finite index subgroup. Lemma 4.6.5 then implies that
S is the unique equivalence class of Wn�2-stars virtually fixed by StabΓ1pSq. Therefore,
we see that S � S2 and we have equality everywhere. This completes the proof.

4.8 Algebraic characterization of compatibility of Wn�2-stars and
conclusion

4.8.1 Algebraic characterization of compatibility of Wn�2-stars

In this section, we give an algebraic characterization of the fact that two equivalence
classes of Wn�2-stars have both a common collapse and a common refinement. This will
imply that CommpOutpWnqq preserves the set of pairs of commensurability classes of
stabilizers of adjacent pairs in the graph Xn introduced in Definition 4.3.2 p2q.
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Let n ¥ 5 and let Γ be a finite index subgroup of Out0pWnq. We consider the
following properties of a pair pH1, H2q of subgroups of Γ.

pPcompq The pair pH1, H2q satisfies the following properties.

p1q For every i P t1, 2u, the group Hi satisfies pPWn�2q.

p2q For every normal subgroups K
p1q
1 � K

p1q
2 of H1 and K

p2q
1 � K

p2q
2 of H2 given by

pPWn�2q p1q, there exist i, j P t1, 2u such that K
p1q
i XK

p2q
j is infinite.

p3q The group H1 XH2 contains a subgroup isomorphic to Zn�2.

Proposition 4.8.1. Let n ¥ 5 and let Γ be a finite index subgroup of Out0pWnq. Let
S1 and S2 be two distinct equivalence classes of Wn�2-stars S1 and S2 and, for every
i P t1, 2u, let Hi � StabΓpSiq. Then S1 and S2 have a refinement S which is a Wn�3-star
if and only if pH1, H2q satisfies Property pPcompq.

Proof. We first assume that S1 and S2 have a common refinement S which is a Wn�3-
star. Let S be the equivalence class of S. Let us prove that pH1, H2q satisfies pPcompq.
By Proposition 4.6.6, for every i P t1, 2u, the group Hi satisfies pPWn�2q. This proves
that the pair pH1, H2q satisfies pPcompq p1q.

Let us check Property pPcompq p2q. For every i P t1, 2u, let T
piq
1 �T

piq
2 be the group of

twists of Si and let K
piq
1 � T

piq
1 X Γ and K

piq
2 � T

piq
2 X Γ. By Proposition 4.6.6, for every

i P t1, 2u, the group K
piq
1 �K

piq
2 satisfies pPWn�2q p1q and Lemma 4.7.1 implies that every

normal subgroup of Hi given by pPWn�2q p1q is commensurable with K
piq
1 �K

piq
2 . Thus

it suffices to check pPcompq p2q for K
p1q
1 �K

p1q
2 and K

p2q
1 �K

p2q
2 . The group of twists of S

is isomorphic to a direct product A1 �A2 �A3 of three copies of Wn�3. Since n ¥ 5, we
have n� 3 ¥ 2 and Wn�3 is infinite. Since S is a common refinement of S1 and S2 and
since S has 3 orbits of edges there exists a Wn�1-star S0 which is a common collapse of
S1 and S2. Moreover, there exists k P t1, 2, 3u such that Ak is contained in the group of
twists of S0. Therefore, for every i P t1, 2u, there exists j P t1, 2u such that the group

Ak is contained in T
piq
j . Thus, there exist i, j P t1, 2u such that Ak X Γ � K

p1q
i XK

p2q
j .

In particular, K
p1q
i XK

p2q
j is infinite. This shows pPcompq p2q.

Finally, since n ¥ 5, the Wn�2-stars S1 and S2 have a common refinement which is
a W2-star (take any W2-star which refines S). Since the group of twists of a W2-star
contains a subgroup isomorphic to Zn�2 by Proposition 4.2.5 p3q, this shows pPcompq p3q.

Conversely, suppose that pH1, H2q satisfies pPcompq. For i P t1, 2u, let K
piq
1 �K

piq
2 be

the direct product of the groups of twists in Γ about the two edges of Si. Then for every

i P t1, 2u, the group
�
HiXK

piq
1

�
�
�
HiXK

piq
2

�
satisfies pPWn�2q p1q by Proposition 4.6.6.

Hence Property pPcompq p2q implies that there exists i, j P t1, 2u such that�
H1 XK

p1q
i

	
X
�
H2 XK

p2q
j
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is infinite. For i P t1, 2u, let S
piq
1 and S

piq
2 be the two distinct Wn�1-stars on which Si col-

lapses. By Proposition 4.6.12, since H1XH2 fixes pointwise the set tSp1q1 ,Sp1q2 ,Sp2q1 ,Sp2q2 u,
and since H1 XH2 contains a subgroup isomorphic to Zn�2 by pPcompq p3q, the Wn�1-

stars S
p1q
1 , S

p1q
2 , S

p2q
1 and S

p2q
2 are pairwise compatible. Hence S1 and S2 have a common

refinement S which is either a Wn�3-star or a Wn�4-star. Since the groups of twists
of S1 and S2 have infinite intersection, the refinement S cannot be a Wn�4-star since

otherwise the Wn�1-stars S
p1q
1 , S

p1q
2 , S

p2q
1 and S

p2q
2 would be pairwise nonequivalent and

hence their groups of twists would have trivial intersection. Thus S is a Wn�3-star. This
concludes the proof.

4.8.2 Conclusion

In this last section, we complete the proof of our main theorem.

Theorem 4.8.2. Let n ¥ 5 and let Γ be a finite index subgroup of Out0pWnq. Then any
isomorphism f : H1 Ñ H2 between two finite index subgroups of Γ is given by conjugation
by an element of OutpWnq and the natural map:

OutpWnq Ñ CommpOutpWnqq

is an isomorphism.

Proof. Suppose that S and S 1 are two distinct equivalence classes of Wn�2-stars. Then
StabΓpSq and StabΓpS 1q are not commensurable by Lemma 4.6.5. Proposition 4.7.10
shows that the collection I of all commensurability classes of Γ-stabilizers of equiv-
alence classes of Wn�2-stars is CommpΓq-invariant. Proposition 4.8.1 shows that the
collection J of all pairs prStabΓpSqs, rStabΓpS 1qsq is also CommpΓq-invariant. Since the
natural homomorphism OutpWnq Ñ AutpXnq is an isomorphism by Theorem 4.3.3, the
conclusion follows from Proposition 4.2.1 and the fact that CommpΓq is isomorphic to
CommpOutpWnqq since Γ has finite index in OutpWnq.

4.9 Rigidity of the graph of Wn�1-stars

The graph of Wn�1-stars, denoted by Yn, is the graph whose vertices are the Wn-
equivariant homeomorphism classes of Wn�1-stars, where two equivalence classes S and
S 1 are joined by an edge if there exist S P S and S1 P S 1 such that S and S1 are compat-
ible. This graph arises naturally in the study of OutpWnq as it is isomorphic to the full
subgraph of the free splitting graph Kn of Wn whose vertices are equivalence classes of
Wk-stars, with k varying in t0, . . . , n� 1u. As AutpWnq acts on Kn by precomposition
of the marking, we have an induced action of AutpWnq on Yn. As InnpWnq acts trivially
on Yn, the action of AutpWnq induces an action of OutpWnq. We denote by AutpYnq the
group of graph automorphisms of Yn. In this section we prove the following theorem.

Theorem 4.9.1. Let n ¥ 4. The natural homomorphism

OutpWnq Ñ AutpYnq
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is an isomorphism.

In order to prove this theorem, we take advantage of the action of OutpWnq on the
graph of t0u-stars and F -stars Ln. The strategy in order to prove Theorem 4.9.1 is to
construct an injective homomorphism Φ: AutpYnq Ñ AutpLnq such that every automor-
phism in the image preserves the set of t0u-stars and the set of F -stars.

The homomorphism Φ: AutpYnq Ñ AutpLnq is defined as follows. Let f P AutpYnq.
Let S be the equivalence class of a t0u-star and let S be a representative of S. By
Theorem 4.3.7, there exist exactly n Wn�1-stars S1, . . . , Sn refined by S. Moreover,
these Wn�1-stars are pairwise compatible. For i P t1, . . . , nu, let Si be the equivalence
class of Si. Since f is an automorphism of Yn, fpS1q, . . . , fpSnq are pairwise adjacent in
Yn. Let S11, . . . , S

1
n be representatives of respectively fpS1q, . . . , fpSnq that are pairwise

compatible. Then Theorem 4.3.7 implies that there exists a unique common refinement
S1 of S11, . . . , S

1
n with exactly n edges. Since, for every i P t1, . . . , nu, the splitting S1i is

a Wn�1-star, the splitting S1 is necessarily a t0u-star. Let S 1 be the equivalence class of
S1. We then define ΦpfqpSq � S 1. If T is an F -star, we define ΦpfqpT q similarly.

Lemma 4.9.2. Let n ¥ 4. Let f P AutpYnq. Let Φpfq be as above.

p1q The map Φpfq : V Ln Ñ V Ln induces a graph automorphism rΦpfq : Ln Ñ Ln.

p2q If rΦpfq � idLn, then f � idYn.

Proof. We prove the first statement. As Φpfq � Φpf�1q � Φpf � f�1q � id, we see
that Φpfq is a bijection. Let S be the equivalence class of a t0u-star and let T be the
equivalence class of an F -star. Suppose that S and T are adjacent in Ln. We prove that
ΦpfqpSq and ΦpfqpT q are adjacent in Ln. Applying the same result to f�1, this will
prove that S and T are adjacent in Ln if and only if ΦpfqpSq and ΦpfqpT q are adjacent
in Ln, and this will conclude the proof. Let S and T be representatives of respectively
S and T . Let S1, . . . , Sn be the n Wn�1-stars refined by S, and let T1, . . . , Tn�1 be the
n � 1 Wn�1-stars refined by T . As S refines T , and as S refines exactly n Wn�1-stars
by Theorem 4.3.7, up to reordering, we can suppose that, for every i P t1, . . . , n � 1u,
we have Si � Ti. For i P t1, . . . , nu, let Si be the equivalence class of Si, and let S1i
be a representative of ΦpfqpSiq such that for distinct i, j P t1, . . . , nu, Si and Sj are
compatible. Then, by Theorem 4.3.7, a representative T 1 of ΦpfqpT q is the unique (up
to Wn-equivariant homomophism) F -star such that, for every j P t1, . . . , n � 1u, T 1 is
compatible with S1j . Moreover, a representative S1 of ΦpfqpSq is the unique t0u-star
such that, for every i P t1, . . . , nu, S1 is compatible with S1i. For i P t1, . . . , nu, let xi
be the preimage by the marking of WnzS

1
i (well defined up to global conjugation) of the

generator of the vertex group isomorphic to F (which exists since S1i is a Wn�1-star).
Then the preimages by the marking of WnzT

1 of the generators of the groups associated
with the n�1 leaves of the underlying graph of WnzT

1 are x1, . . . , xn�1 and the preimage
by the marking of WnzT

1 of the generator of the group associated with the center of the
underlying graph of WnzT

1 is xn. Moreover, the preimages by the marking of WnzS
1

of the generators of the groups associated with the n leaves of the underlying graph of
WnzS

1 are x1, . . . , xn. Let vn be the leaf of the underlying graph of WnzS
1 such that the
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preimage by the marking of WnzS
1 of the generator of the group associated with vn is

xn. Then T 1 is obtained from S1 by contracting the edge adjacent to vn. Thus ΦpfqpSq
and ΦpfqpT q are adjacent in Ln.

The proof of the second statement is identical to the proof of [Gue2, Lemma 5.4].
We add the proof for completeness as the statement of [Gue2, Lemma 5.4] is about
automorphisms of Kn. Let S P V Yn and let S be a representative of S. We prove that
fpSq � S. Let

Wn � xx1, . . . , xn�1y � xxny

be the free factor decomposition of Wn induced by S. Let S1 be a representative of fpSq.
Let X be the equivalence class of the F -star X represented in Figure 3.13 on the left.







xx1y

xx2y

xxny







xxny

xx1y

xxn�1y

Figure 4.4: The F -stars X and X 1 of the proof of Lemma 4.9.2.

Since ΦpfqpX q � X , the free splitting S1 is aWn�1-star obtained fromX by collapsing
n � 1 edges. But if T is a Wn�1-star obtained from X by collapsing n � 1 edges, then
there exists i P t1, . . . , nu such that the free factor decomposition of Wn induced by T is

Wn � xx1, . . . , pxi, . . . , xny � xxiy .
For i P t1, . . . , nu, we will denote by Ti the Wn�1-star with associated free factor decom-
position xx1, . . . , pxi, . . . , xny � xxiy, and by Ti its equivalence class. For i � n, the free
splitting Ti is a collapse of the F -star X 1 depicted in Figure 4.4 on the right, whereas S
is not a collapse of X 1.

Let X 1 be the equivalence class of X 1. Since ΦpfqpX 1q � X 1, there does not exist
a representative of fpSq that is obtained from a representative of X 1 by collapsing a
forest. Thus, for all i � n, we have fpSq � Ti. Therefore, as S � Tn, we conclude that
fpSq � S.

Proof of Theorem 4.9.1. Let n ¥ 4. We first prove injectivity. The homomorphism
OutpWnq Ñ AutpLnq is injective by Theorem 4.3.5. Moreover, the homomorphism
OutpWnq Ñ AutpLnq factors through OutpWnq Ñ AutpYnq Ñ AutpLnq. Therefore
we deduce the injectivity of OutpWnq Ñ AutpYnq. We now prove surjectivity. Let
f P AutpYnq. By Lemma 4.9.2 p1q, we have a homomorphism Φ: AutpYnq Ñ AutpLnq
whose image consists in automorphisms preserving the set of t0u-stars and the set of F -
stars. By Theorem 4.3.5, the automorphism Φpfq is induced by an element γ P OutpWnq.
Since the homomorphism AutpYnq Ñ AutpLnq is injective by Lemma 4.9.2 p2q, f is
induced by γ. This concludes the proof.
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Chapitre 5

Currents relative to a malnormal
subgroup system

5.1 Introduction

Let n ¥ 2. This paper is the first of a sequence of papers where we study the exponential
growth of elements of OutpFnq, the outer automorphism group of a nonabelian free
group Fn of rank n. Let rgs be the conjugacy class of a nontrivial element g of Fn,
let φ P OutpFnq and let Φ P AutpFnq be a representative of φ. We say that rgs has
exponential growth under iterates of φ if there exists a basis B of Fn such that the length
of rΦnpgqs with respect to the word metric relative to B grows exponentially fast with
n. It is known, using for instance the technology of relative train tracks (see [BH]) that,
otherwise, rgs has polynomial growth under iterates of φ. Let Polypφq be the set of
conjugacy classes of elements of Fn whose growth under iteration of φ is polynomial.
For a subgroup H of Fn, let PolypHq �

�
φPH Polypφq. The aim of these three papers is

to prove the following result:

Theorem 5.1.1 ([Gue6]). Let n ¥ 3 and let H be a subgroup of OutpFnq. There exists
φ P H such that Polypφq � PolypHq.

Theorem 5.1.1 is proved using dynamical methods developed mainly in [Gue5]. In
the present article, we introduce the topological space associated with the dynamics. In-
formally, Theorem 5.1.1 shows that the exponential growth of a subgroup H of OutpFnq
is encaptured by the exponential growth of a single element of H. In this paper, we
construct a space which is well-adapted for our considerations, the space of currents rel-
ative to a malnormal subgroup system. These relative currents are positive Fn-invariant
Radon measures on an appropriate subspace of the double boundary at infinity of Fn.
Let φ P OutpFnq. When the malnormal subgroup system is appropriately chosen, this
space has the property that its points corresponding to conjugacy classes of elements in
Fn � Polypφq are dense in it (see Theorem 5.1.2).

The space of currents that we construct in this paper builds on objects introduced
for similar purposes. For instance, the study of the mapping class group ModpSq of a



connected, compact, oriented surface S has benefited from the study of the action of
ModpSq on the space of geodesic currents CurrpSq, introduced by Ruelle and Sullivan
in [RS] (see also the work of Bonahon [Bon1]). It is defined as the space of π1pSq-invariant
and flip invariant nonnegative Radon measures on the double boundary B2 rS of a universal
cover rS of S, equipped with the weak-star topology. Considering the space of projective
geodesic currents PCurrpSq, one can show that PCurrpSq can be viewed as a completion
of the currents associated with weighted nontrivial homotopy classes of closed curves on
S. The space PCurrpSq is well-adapted to the study of ModpSq. For instance, it can be
used for counting closed geodesics whose length is bounded by a given constant when
the surface S is equipped with a hyperbolic metric (see [EU] for a survey). Concerning
dynamical properties, a result of Thurston ([Thu], see also [Uya1]) implies that pseudo-
Anosov diffeomorphisms act with North-South dynamics on the space PCurrpSq: every
pseudo-Anosov element f P ModpSq has exactly two fixed points in PCurrpSq and any
other nonfixed point in PCurrpSq converges to one of the fixed points under positive or
negative iterates of f . Moreover, this convergence can be made uniform on compact
subsets of PCurrpSq which do not contain the fixed points.

In the specific context of free groups, building on [Bon3] for general hyperbolic groups,
the space of currents CurrpFnq was first studied by Martin [Mar]. It is defined as the
space of Fn-invariant, flip invariant nonnegative Radon measure on the double bound-
ary B2Fn of Fn equipped with the weak-star topology. Martin showed that the set of
currents associated with conjugacy classes of nontrivial elements of Fn is dense in the
space PCurrpFnq of projective currents. Currents for free groups have also been studied
in [Kap, KapL, CHL]. Similarly to pseudo-Anosov elements of ModpSq on PCurrpSq,
fully irreducible automorphisms of Fn and atoroidal automorphisms of Fn act with North-
South type dynamics on PCurrpFnq (see [Uya1, Uya2]).

Currents on free groups have also been studied in a relative context, more precisely,
in the context of free factor systems. A free factor system F is a finite set of conjugacy
classes F � trA1s, . . . , rAksu of nontrivial subgroups A1, . . . , Ak of Fn such that there
exists a subgroup B of Fn with Fn � A1 � . . . Ak �B. Gupta [Gup1] (see also Guirardel-
Horbez [GuH1]) introduced the space CurrpFn,Fq of currents relative to the free factor
system F . Relative currents are then Fn-invariant, flip invariant nonnegative Radon
measures on a subspace of the double boundary of Fn which does not intersect the double
boundary of any conjugate of Ai, equipped with the weak-star topology. Gupta [Gup1]
then showed that the set of currents associated with conjugacy classes of nonperipheral
elements of Fn, that is, elements of Fn that do not belong to any conjugate of some Ai,
is dense in PCurrpFn,Fq. She then showed that fully irreducible outer automorphisms
relative to F act with a North-South type dynamics on PCurrpFn,Fq.

In order to study the purely exponential growth part of an outer automorphism of Fn,
we need to consider currents relative to a class of subgroup systems which is larger than
the class of free factor systems. Indeed, if φ P OutpFnq, the set of all maximal conjugacy
classes of subgroups of Fn consisting of elements with polynomial growth under iterates
of φ is not necessarily a free factor system. However, Levitt [Lev2, Proposition 1.4]
proved that this set is a malnormal subgroup system. A malnormal subgroup system A
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is a finite set of conjugacy classes A � trA1s, . . . , rAksu of nontrivial subgroups of Fn
such that, for every i P t1, . . . , ku, the group Ai is malnormal and, for every subgroups
B1, B2 of Fn such that rB1s, rB2s P A, if the intersection B1 X B2 is nontrivial, then
B1 � B2. A free factor system is, in particular, a malnormal subgroup system but the
converse does not hold (see Section 5.2).

Let A � trA1s, . . . , rAksu be a malnormal subgroup system. We define the space
CurrpFn,Aq of currents relative to A as the space of Fn-invariant, flip invariant nonneg-
ative Radon measures on a natural space B2pFn,Aq, the double boundary of Fn relative
to A equipped with the weak-star topology. The space B2pFn,Aq is a subspace of B2Fn
which does not intersect the double boundary of any conjugate of Ai (see Section 5.2.4
for precise definitions). In this article, we prove the following result. An element of Fn
is non-A-peripheral if it is not contained in any conjugate of any Ai with i P t1, . . . , ku.

Theorem 5.1.2. Let n ¥ 3 and let A be a malnormal subgroup system. The set of currents
associated with conjugacy classes of non-A-peripheral elements of Fn is dense in the space
PCurrpFn,Aq of projective currents relative to A.

Let φ P OutpFnq. If A is the set of conjugacy classes of maximal polynomial sub-
groups of φ, then Theorem 5.1.2 shows that the set of projective currents associated
with exponentially growing elements of Fn under iterates of φ is dense in PCurrpFn,Aq.
Therefore, the space PCurrpFn,Aq is a natural topological space for the study of the
action of φ on elements of Fn with exponential growth under iterates of φ. A sub-
sequent paper [Gue5] will then show that φ acts with North-South type dynamics on
PCurrpFn,Aq. This North-South dynamics will be a central argument in the proof of
Theorem 5.1.1.

We now give an outline of the proof of Theorem 5.1.2. The proof follows the one
of a similar result in the context of currents relative to free factor systems due to
Gupta [Gup1]. However, in the case of free factor systems, the proof relies on the
existence of an adapted free basis of Fn associated with the free factor system, which
does not necessarily exist in the case of malnormal subgroup systems. Our new argument
in order to overcome this difficulty is the description of a finite set of elements of Fn
associated with a malnormal subgroup system and a free basis of Fn which completely
determines whether an element of Fn is contained in a conjugate of a subgroup of the
malnormal subgroup system or not (see Lemma 5.2.3).

Let A be a malnormal subgroup system and let µ P PCurrpFn,Aq. We first show
that µ can be extended into a signed measured current rµ on Fn, that is an Fn-invariant
and flip invariant Radon measure on B2Fn. Even though rµ might have negative values,
we show that rµ can be chosen so that rµ gives positive value to sufficiently many Borel
subsets of B2Fn. One can then use the density of currents associated with conjugacy
classes of nontrivial elements of Fn in the space CurrpFnq in order to conclude the proof.

To our knowledge, the objects we construct in this paper have not been studied or
constructed for larger classes of groups, such as relatively hyperbolic groups and quasi-
convex almost malnormal subgroups of hyperbolic groups. Nevertheless, the extension
of our definitions to this context seems natural since a result of Bowditch [Bow, Theo-
rem 7.11] shows that the group Fn is always hyperbolic relative to a malnormal subgroup
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system A. But as we explained in Remark 5.2.8, the natural double boundary associated
with a relative hyperbolic group will have less information than the boundary B2pFn,Aq.
Therefore, it would require new techniques to develop the notion of currents for relative
hyperbolic groups or quasi-convex almost malnormal subgroups of hyperbolic groups.

Acknowledgments. I warmly thank my advisors, Camille Horbez and Frédéric Paulin, for

their precious advices and for carefully reading the different versions of this article.

5.2 Malnormal subgroup systems

5.2.1 Malnormal subgroup systems

Let n be an integer greater than 1 and let Fn be a free group of rank n. In this section,
we define, following Handel and Mosher [HaM4, Section I.1.1.2], malnormal subgroups
systems and study some of their properties.

A subgroup system of Fn is a finite (possibly empty) set A whose elements are con-
jugacy classes of nontrivial (that is distinct from t1u and Fn) finite rank subgroups of
Fn. Note that a subgroup system A is completely determined by the set of subgroups
A of Fn such that rAs P A. There exists a preorder on the set of subgroup systems of
Fn, where A1 ¤ A2 if for every subgroup A1 of Fn such that rA1s P A1, there exists
a subgroup A2 of Fn such that rA2s P A2 and A1 is a subgroup of A2. The stabilizer
in OutpFnq of a subgroup system A, denoted by OutpFn,Aq, is the set of all elements
φ P OutpFnq such that φpAq � A.

Recall that a subgroup A of Fn is malnormal if for every element x P Fn � A,
we have xAx�1 X A � teu. A subgroup system A is said to be malnormal if every
subgroup A of Fn such that rAs P A is malnormal and, for any subgroups A1, A2 of Fn
such that rA1s, rA2s P A, if A1 X A2 is nontrivial then A1 � A2. There are equivalent
formulations of malnormality which we present now (see [HaM4, Section I.1.1.2]). Let
T be the Cayley graph of Fn with respect to some given free basis of Fn. For every
subgroup A of Fn, let TA be the minimal A-invariant subtree of T . Then a subgroup
system A made of conjugacy classes of malnormal subgroups is malnormal if and only
if there exists a finite constant L ¡ 0 such that for any distinct subgroups A1, A2 of Fn
such that rA1s, rA2s P A, the diameter of the intersection TA1 X TA2 is at most equal
to L. Malnormality of a subgroup system A made of conjugacy classes of malnormal
subgroups is also equivalent to the fact that, for any distinct subgroups A1 and A2 of
Fn such that rA1s, rA2s P A, we have B8TA1 X B8TA2 � ∅.

5.2.2 Properness at infinity

Let B8Fn be the Gromov boundary of Fn. Let B be a free basis of Fn and let T be
the Cayley graph of Fn with respect to B. For convenience, we suppose that B�1 � B.
The boundary of T is naturally homeomorphic to B8Fn. For an element w P Fn, we
denote by γw the path in T starting from e corresponding to the word w. We denote by
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w�8 the element in B8Fn corresponding to the quasi-geodesic starting at e obtained by
concatenating paths in T labeled by w.

Let A be a subgroup of Fn of finite rank. The inclusion A � Fn induces an A-
equivariant inclusion B8A ãÑ B8Fn. Note that the Fn-orbit of the image of this map
only depends on the conjugacy class of A in Fn.

Let A be a subgroup system of Fn. The subgroup system A is said to be proper at
infinity if, for every element g of Fn, the following assertions are equivalent:

� there exists a subgroup A of Fn such that rAs P A and g�8 P B8A;

� there exists a subgroup A of Fn such that rAs P A and g P A.

For the proof of Lemma 5.2.2 below, we need the following result (see for instance [HaM4,
Fact 1.2]). This is a particular case of the same result valid for all quasi-convex subgroups
A1, A2 of any word hyperbolic group, see [Swe], that has been for instance generalized
in [Tra, Theorem 1.4].

Lemma 5.2.1. For every finitely generated subgroups A1 and A2 of Fn, we have

B8pA1 XA2q � B8A1 X B8A2.

A subgroup A of Fn is root-closed if for every g P Fn and every k P N� such that
gk P A, we have g P A.

Lemma 5.2.2. Let A be a subgroup system. The following are equivalent:

p1q the subgroup system A is proper at infinity;

p2q every subgroup A of Fn such that rAs P A is root-closed.

In particular, a malnormal subgroup system is proper at infinity.

Proof. Suppose that A is proper at infinity and let A be a subgroup of Fn such that
rAs P A. Let g P Fn and k P N� be such that gk P A. Let us prove that g P A. Since
gk P A, we see that g�8 P B8A. Since A is proper at infinity, we have g P A. Hence A is
root-closed. Suppose now that every subgroup A of Fn such that rAs P A is root-closed.
Let g P Fn and let A be a subgroup of Fn such that rAs P A and g�8 P B8A. By
Lemma 5.2.1 applied to xgy and A, there exists k P N� such that gk P A. Since A is
root-closed, we see that g P A. Hence A is proper at infinity. This shows the equivalence.

Let A be a malnormal subgroup system and let A be a subgroup of Fn such that
rAs P A. We prove that A is root-closed. Let g P Fn and let k P N� be such that
gk P A. We claim that g P A. Indeed, suppose towards a contradiction that g R A. Then
gk � ggkg�1 belongs to AX gAg�1 which is equal to teu, a contradiction.

Let A be a malnormal subgroup system. An element g P Fn is A-peripheral (or
simply peripheral if there is no ambiguity) if it is trivial or conjugate into one of the
subgroups of A, and non-A-peripheral otherwise. Note that, since A � trFnsu, there
always exists a non-A-peripheral element. Since A is proper at infinity by Lemma 5.2.2,
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we see that an element g of Fn is A-peripheral if and only if there exists a subgroup A
of Fn such that rAs P A and g�8 P B8A.

Let A � trA1s, . . . , rArsu be a malnormal subgroup system of Fn. For every element
i P t1, . . . , ru, let TAi be the minimal Ai-invariant subtree of T . Suppose that for every
i P t1, . . . , ru, the representative Ai of rAis is chosen so that the tree TAi contains the
base point e of T .

By malnormality of A, there exists L P N� such that for any distinct subgroups A,B
of Fn such that rAs, rBs P A, the diameter of the intersection TAX TB is at most L. Let
i P t1, . . . , ru. Let Γi be the set of subgroups B of Fn such that there exists gB P Fn
such that B � gBAig

�1
B and the tree TB contains the base point e of T . Note that,

by malnormality of A, for every i P t1, . . . , ru, the set Γi is finite. Let Ci be the set of
elements w of Fn such that the length of γw is equal to L � 2 and, for every B P Γi,
the path γw is not contained in TB. Let C �

�r
i�1Ci. Since we are looking at geodesic

paths of length equal to L� 2, the set C is finite. If γ is a path in T , the element of Fn
corresponding to γ is the element h P Fn such that the path γ is labeled by h.

Lemma 5.2.3. Let B, T , A � trA1s, . . . , rArsu, L P N�, Γ1, . . . ,Γr, C be as above. The
finite set C � C pA1, . . . , Arq is nonempty. Moreover, it satisfies the following:

p1q every element g P Fn such that the length of γg is at least equal to L � 2 and such
that γg is not contained in a tree TB with B P

�r
i�1 Γi contains an element of C as a

subword. In particular, every non-A-peripheral cyclically reduced element g P Fn has a
power which contains an element of C as a subword;

p2q for every non-A-peripheral cyclically reduced element g P Fn, if cg is the geodesic
ray in T starting from e obtained by concatenating edge paths labeled by g, there exists
an edge path in cg labeled by a word in C at distance at most L�2 from

�r
i�1

�
BPΓi

TB;

p3q if an element w P Fn contains an element of C as a subword, then for every
i P t1, . . . , ru, the element w is not contained in Ai.

Proof. We first prove that p1q and p2q hold and that C is nonempty. Let g be as in the
first claim of Assertion p1q. First note that, by the choice of L, for every i, j P t1, . . . , ru
and every distinct A P Γi and B P Γj , the intersection TAXTB is contained in the closed
ball of radius L centered at e. We consider the geodesic path cg : r0, 1s Ñ T such that
cp0q � e and such that cgp1q is the terminal endpoint of γg. Let i P t1, . . . , ru and let

t0 � max

#
t P r0, 1s | cgptq P

r¤
i�1

¤
APΓi

TA

+
.

The point cgpt0q is a vertex and is distinct from cgp1q by assumption. We denote by cA
the geodesic segment cg X

�r
i�1

�
APΓi

TA.
Suppose first that the length of cA is at most equal to L� 1. Let c0 be the geodesic

segment contained in cg which originates at cgpt0q and such that the length of cAc0 is
equal to L� 2. Such a path cAc0 exists since the length of γg is at least equal to L� 2.
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Then the element h of Fn corresponding to cAc0 is in C and is a subword of g. This
concludes the proof in this case.

Suppose now that the length of cA is greater than L� 1. Let cApt0 � L� 1q be the
vertex in cA at distance L�1 from cgpt0q, and let g0 be the corresponding element of Fn.
Let s0 be the geodesic path between cApt0 � L� 1q and cgpt0q. Since the geodesic path
s0 has length equal to L � 1, there exists a unique i P t1, . . . , ru and a unique A P Γi
such that s0 is contained in TA. Let e0 be the edge in cg which originates at cgpt0q. Let
h P Fn be the element corresponding to the edge path s1 between cgpt0 � L � 1q and
the terminal point of e0. We claim that h P C . Indeed, suppose towards a contradiction
that h R C . Then there exists j P t1, . . . , ru and B P Γj such that the edge path γh is
contained in TB. Since γh has length equal to L� 2, the integer j and the subgroup B
are unique. Remark that g�1

0 sends the geodesic path s0 to the initial segment of length
L�1 of γh. Since g�1

0 s0 has length equal to L�1, the subgroup B is the unique element
of
�r
`�1 Γ` such that the tree TB contains g�1

0 s0. But s0 is contained in TA and the tree
TA is sent by g�1

0 to the tree Tg�1
0 Ag0

. Therefore, we see that B � g�1
0 Ag0. But g�1

0

induces an isometry between TA and Tg�1
0 Ag0

. Therefore, since s1 is not contained in TA,

we see that γh � g�1
0 s1 is not contained in Tg�1

0 Ag0
. This leads to a contradiction. Hence

h P C and h is a subword of g. This proves the first claim of Assertion p1q. We now
prove the second claim of Assertion p1q. Let g be a non-A-peripheral cyclically reduced
element of Fn. Let c1g : R� Ñ T be the geodesic ray in T starting from e obtained by
concatenating edge paths labeled by g. Recall that, for every i P t1, . . . , ru, the set
Γi is finite. Therefore, since g is nonperipheral and since A is proper at infinity by
Lemma 5.2.2, the intersection of c1g with

�r
i�1

�
APΓi

TA is compact. Hence there exists
a power of g which satisfies the first claim of Assertion p1q. This proves p1q. Moreover,
the terminal endpoint of the path in cg labeled by h which we have constructed is either
at distance L � 2 from e or is at distance at most 1 from

�r
i�1

�
BPΓi

TB. This proves
p2q. This also proves that C is nonempty as there exists a non-A-peripheral element.

We now prove p3q. Suppose towards a contradiction that there exist i P t1, . . . , ru and
a P Ai such that a contains a word of C as a subword. Thus there exist x P C , b, c P Fn
such that a � bxc and the word bxc is reduced. Then since e is contained in TAi , the
path γa is contained in TAi . But the element b�1 sends the tree TAi to the tree Tb�1Aib.
Moreover, since TAi contains the vertex labeled by b, the tree Tb�1Aib contains the base
point e of T . But then Tb�1Aib contains the geodesic segment γx. This contradicts the
fact that x P C � Ci. This concludes the proof.

5.2.3 Examples of malnormal subgroup systems

Let n be an integer greater than 1 and let Fn be a free group of rank n. In this section,
we give some examples of malnormal subgroup systems. The first one that we describe,
following Handel and Mosher [HaM4], is an R-vertex group system. Let T be an R-tree
equipped with a minimal, isometric action of Fn for which no point or end of T is fixed
by the whole group and with trivial arc stabilizers. A proper, nontrivial subgroup A of
Fn is an R-vertex group of T if there exists a point x P T such that A � Stabpxq. Note
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that every free factor of Fn is an R-vertex group of some simplicial tree. Every R-vertex
group has rank at most equal to n (see [GaL]).

The R-vertex group system of T , denoted by AT , is the set consisting of all conjugacy
classes of nontrivial point stabilizers in T . The set AT is finite and its cardinality is
bounded from above by a finite constant depending only on n (see [GaL]). Therefore the
set AT is a subgroup system. Note that every free factor system of Fn is an R-vertex
group system of some simplicial tree. However, there exist R-vertex group systems
which are not free factor systems. For example, let S be a compact connected oriented
hyperbolic surface with one totally geodesic boundary component such that π1pSq is
isomorphic to Fn. Let T be the R-tree dual to the lift rΛ to H2 of a measured geodesic
lamination Λ without compact leaves on S. An identification of π1pSq with Fn induces
an action of Fn on T which has trivial arc stabilizers. Moreover, the fundamental group
of the connected component containing the boundary curve of S is the stabilizer of a
point in T . Since the fundamental group of this connected component is not a free factor
of Fn, this shows that AT is not a free factor system. More generally, Handel and Mosher
[HaM4, Proposition 3.3] give general constructions of R-vertex group systems which are
not free factor systems.

Lemma 5.2.4. [HaM4, Lemma 3.1] The subgroup system AT is a malnormal subgroup
system.

Another example of malnormal subgroup systems is the following. An outer auto-
morphism φ P OutpFnq is exponentially growing if there exists g P Fn such that the
length of the conjugacy class rgs of g in Fn with respect to some basis of Fn grows
exponentially fast under iteration of φ. If φ P OutpFnq is not exponentially growing,
then the length of the conjugacy class of every element of Fn is polynomially growing
under iteration of φ and φ is said to be polynomially growing. One similarly says that
an automorphism α P AutpFnq is exponentially growing or polynomially growing. Let
φ P OutpFnq be exponentially growing. A subgroup P of Fn is a polynomial subgroup of
φ if there exist k P N� and a representative α of φk such that αpP q � P and α|P is poly-
nomially growing. By [Lev2, Proposition 1.4], there exist finitely many conjugacy classes
rH1s, . . . , rHks of maximal polynomial subgroups of φ and the set H � trH1s, . . . , rHksu
is a malnormal subgroup system.

5.2.4 Double boundary of Fn relative to a malnormal subgroup system

In this section, we construct a boundary of Fn relative to a malnormal subgroup system.
We follow a similar construction made by Gupta in [Gup1, Section 3.1] in the case of
the boundary relative to a free factor system.

The double boundary of Fn is the quotient topological space

B2Fn � pB8Fn � B8Fnz∆q { �,

where � is the equivalence relation generated by the flip relation px, yq � py, xq and
∆ is the diagonal, endowed with the diagonal action of Fn. We denote by tx, yu the
equivalence class of px, yq.
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Let A � trA1s, . . . , rArsu be a malnormal subgroup system of Fn. Let B, T , L P N�,
Γ1, . . . ,Γr, C be as above Lemma 5.2.3. The boundary of T is naturally homeomorphic
to B8Fn and the set B2Fn is then identified with the set of unoriented bi-infinite geodesics
in T . Let γ be a finite geodesic path in T . The path γ determines a subset in B2Fn
called the cylinder set of γ, denoted by Cpγq, which consists in all unoriented bi-infinite
geodesics in T that contain γ. Such cylinder sets form a basis for a topology on B2Fn,
and in this topology, the cylinder sets are both open and compact, hence closed since
B2Fn is Hausdorff. The action of Fn on B2Fn has a dense orbit.

Let A be a nontrivial subgroup of Fn of finite rank. The induced A-equivariant
inclusion B8A ãÑ B8Fn induces an inclusion B2A ãÑ B2Fn. Let

B2A �
r¤
i�1

¤
gPFn

B2gAig
�1.

Let B2pFn,Aq � B2Fn � B2A be the double boundary of Fn relative to A. This subset
is invariant under the action of Fn on B2Fn and inherits the subspace topology of B2Fn,
denoted by τ .

Lemma 5.2.5. Let CylpC q be the set of cylinder sets of the form Cpγq, where the element
of Fn determined by the geodesic edge path γ contains an element of C as a subword.
We have

B2pFn,Aq �
¤

CpγqPCylpC q

Cpγq.

In particular, the space B2pFn,Aq is an open subset of B2Fn.

Proof. Let y P B2pFn,Aq. Let c be an oriented geodesic line c in T which belongs to the
equivalence class y. Let v be a vertex of T contained in c and let g0 be the corresponding
element of Fn.

Suppose first that the intersection cXg0

��r
i�1

�
BPΓi

TB
�

is either compact or a half-

line. In particular, the intersection cX g0

��r
i�1

�
BPΓi

TB
�

has a terminal point v1. Let
x be the vertex in c at distance L� 2 from v1. Let g P Fn be the element corresponding
to the geodesic edge path between v and x. Note that the edge path γg is not contained
in
�r
i�1

�
BPΓi

TB since, for every nontrivial subgroup A of Fn of finite rank, the element
g0 sends TA to Tg0Ag�1

0
. By Lemma 5.2.3 p2q, the word g contains a word of C as a

subword. Then y P g0Cpγgq, and g0Cpγgq P CylpC q.
Suppose now that the intersection c X g0

��r
i�1

�
BPΓi

TB
�

is not compact. Since
y P B2pFn,Aq, the path c cannot be contained in a single tree g0TB with B P

�r
i�1 Γi.

By the definition of L, there exist exactly two subgroups A,B P
�r
i�1 Γi such that

c is contained in g0TA Y g0TB. By the definition of the constant L, the intersection
g0TA X g0TB has diameter at most equal to L. Let c0 be the subpath of c of length
2L � 2 whose middle point is v and whose starting point is in g0TA and let g be the
element of Fn corresponding to c0. Let v1 be the initial vertex of c0 and let g1 be the
element of Fn associated with v1. Note that the intersection of c0 with g0TA and g0TB
has length at least equal to L� 1. Up to considering a larger path c0, we may suppose
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that g is cyclically reduced. We claim that g contains an element of C as a subword.
Indeed, suppose towards a contradiction that g does not contain an element of C as a
subword. By Lemma 5.2.3 p1q, there exist i P t1, . . . , ru and H P Γi such that γg � TH .
But then g1γg � c0 and is contained in g1TH . Thus the diameter of the intersection
g1TH with g0TA and g0TB is at least equal to L � 1. By definition of L, this means
that g1TH � g0TA � g0TB. This means that A � B, a contradiction. Hence g contains
an element of C as a subword. Thus we have y P g0Cpγgq, with g0Cpγgq P CylpC q.
Therefore, we see that

B2pFn,Aq �
¤

CpγqPCylpC q

Cpγq.

Conversely, let γ be a geodesic path in T such that Cpγq P CylpC q. Suppose towards
a contradiction that there exists y P B2A such that y P Cpγq. Thus, there exist elements
i P t1, . . . , ru, g P Fn and a P gAig

�1 such that ta�8, a�8u P Cpγq. Therefore, we see
that γ is a subpath of TgAig�1 . Decompose γ as γ � τ1δτ2 where δ is labeled by a word
w in C . Let v be the origin of δ and let h be the element of Fn corresponding to v. Then
h�1TgAig�1 � Th�1gAig�1h P Γi and contains γw with w P C , a contradiction.

Note that Lemma 5.2.5 implies that we can define a topology on B2pFn,Aq, denoted
by τ 1, where cylinder sets in CylpC q generate the topology. Lemma 5.2.5 also implies
that the two topologies τ and τ 1 are equal.

Since B2Fn is locally compact and since B2pFn,Aq is an open subset of B2Fn by
Lemma 5.2.5, we have the following result.

Lemma 5.2.6. The space B2pFn,Aq is locally compact.

Lemma 5.2.7. The action of Fn on B2pFn,Aq has a dense orbit.

Proof. Recall that there exists g P Fn such that the action of g on B2Fn has a dense
orbit. Since B2pFn,Aq is an open subset of B2Fn, the element g also acts on B2pFn,Aq
with a dense orbit.

Remark 5.2.8. We now compare our definition with other natural constructions of double
boundaries. The first one is to see the double boundary of Fn relative to a malnormal
subgroup system as the double boundary of a Gromov hyperbolic space. Indeed, if A �
trA1s, . . . , rArsu is a malnormal subgroup system, by a result of Bowditch (see [Bow,
Theorem 7.11]), the group Fn is hyperbolic relative to A. In particular, there is a natural
(that is well-defined up to quasi-isometry) proper geodesic Gromov hyperbolic space X on
which Fn acts by isometries and such that the subgroups of Fn whose conjugacy classes
are in A are precisely the maximal parabolic subgroups of the action of Fn on the Gromov-
boundary of X (see [Bow] for a precise description of X). Thus a natural construction
for another type of double boundary of Fn relative to A is to define it as the double
boundary of X. This definition seems to extend to the more general case of relatively
hyperbolic groups. However, the relative double boundary B2pFn,Aq has the advantage of
being an open subset of B2Fn, so that one can use the cylinder sets of B2Fn as a basis
for the topology of B2pFn,Aq. Moreover, the natural application from BFn to BX sends
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the boundary of a parabolic subgroup to a point. Therefore, the relative double boundary
B2pFn,Aq seems to contain more information about the geodesic lines whose endpoints
are in the Gromov boundary of distinct parabolic subgroups.

Another candidate for the double boundary of the pair pFn,Aq is the following. LetpT be the graph obtained from T by adding one vertex vpgAq for every coset gA with A a
subgroup of Fn such that rAs P A and by adding an edge from vpgAq to every vertex of T
labeled by an element in gA. The graph pT is Gromov hyperbolic (see for instance [KR,
Proposition 2.6] or [Bow]) and the Gromov boundary of pT is homeomorphic to the space
B8Fn�

�r
i�1

�
gPFn

B8gAi (see for instance [AM, Theorem 1.6] or [DT, Bow]). However,

the double boundary B2 pT does not contain any geodesic line whose endpoints are in
distinct parabolic subgroups, which makes it a proper subspace of B2pFn,Aq which does
not seem to be a union of cylinder sets.

5.3 Currents relative to a malnormal subgroup system

In this section, we define currents of Fn relative to a malnormal subgroup system. We
follow the construction of Gupta [Gup1, Section 3.2] of currents relative to a free factor
system.

Let A � trA1s, . . . , rArsu be a malnormal subgroup system of Fn. Let B, T , L P N�,
Γ1, . . . ,Γr, C be as above Lemma 5.2.3.

A relative current on pFn,Aq is an Fn-invariant nonnegative Radon measure µ on
the locally compact space (by Lemma 5.2.6) B2pFn,Aq (that is µ gives finite measure
to compact subsets of B2pFn,Aq, is inner and outer regular). The set CurrpFn,Aq of
all relative currents on B2pFn,Aq is equipped with the weak-star topology: a sequence
pµnqnPN in CurrpFn,AqN converges to a current µ P CurrpFn,Aq if and only if for every
disjoint clopen subsets S, S1 � B2pFn,Aq, the sequence pµnpS � S1qqnPN converges to
µpS �S1q. The space CurrpFn,Aq is naturally identified with the space of non-negative,
Fn-invariant, continuous linear functionals on the space CcpB

2pFn,Aqq (equipped with
the uniform norm) of continuous compactly supported functions of B2pFn,Aq (see [Coh,
Theorem 7.5.5]). Therefore, the space CurrpFn,Aq is homeomorphic to a subspace
of CcpB

2pFn,Aqq� equipped with the weak-star topology. Equipped with the uniform
structure induced by the weak-star topology on CcpB

2pFn,Aqq�, we see that the space
CurrpFn,Aq is metrisable and complete (see [Bou, Chap. 3, Section 1, Proposition 14]).

The group OutpFn,Aq acts on CurrpFn,Aq as follows. Let φ P OutpFn,Aq, let Φ be a
representative of φ, let µ P CurrpFn,Aq and let C be a Borel subset of B2pFn,Aq. Then,
since φ preserves A, we see that Φ�1pCq is a Borel subset of B2pFn,Aq. Then we set

φpµqpCq � µpΦ�1pCqq,

which is independent of the choice of the representative Φ since µ is Fn-invariant and
the extension to the boundary of the action by conjugation and by left translation of Fn
on itself coincide.

We now describe some coordinates for CurrpFn,Aq. Recall that CylpC q is the set of
cylinder sets of the form Cpγq, where the element of Fn determined by the geodesic path
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γ contains an element of C as a subword. Recall that

B2pFn,Aq �
¤

CpγqPCylpC q

Cpγq.

Let η P CurrpFn,Aq. Let w P Fn be such that Cpγwq P CylpC q and let w � w1 . . . wk be
the reduced word associated with w written in the basis B. Then Cpγwq �

²
Cpγwbq,

where the union is taken over all elements b of B � B�1 except b � w�1
k . The σ-additivity

of a relative current η implies that:

ηpCpγwqq �
¸

b�w�1
k

ηpCpγwbqq.

Finally, we note that, for every element w P Fn such that Cpγwq P CylpC q, we have
ηpCpγwqq � ηpCpγw�1qq. Indeed, this follows from the fact that Cpγwq � wCpγw�1q and
from the Fn-invariance of η.

Lemma 5.3.1. Let n ¥ 3 and let C be a compact open subset of B2pFn,Aq. There exist
finite geodesic edge paths γ1, . . . , γk such that:

p1q For every i P t1, . . . , ku, we have Cpγiq P CylpC q;

p2q for every distinct i, j P t1, . . . , ku we have Cpγiq X Cpγjq � ∅;

p3q we have C �
�k
i�1Cpγiq.

Proof. Since C is a compact open subset of B2Fn, using the topology τ 1, the set C can
be written as a union of cylinder sets Cpγ1q, . . . , Cpγ`q, where, for every i P t1, . . . , `u, we
have Cpγiq P CylpC q. We may suppose that for every distinct i, j P t1, . . . , `u, we have
Cpγiq � Cpγjq. In particular, there does not exist i, j P t1, . . . , `u such that γi � γj . Let
m be the number of pairs of distinct elements i, j P t1, . . . , `u such that CpγiqXCpγjq �
∅. We prove Lemma 5.3.1 by induction on m. If for every distinct i, j P t1, . . . , `u,
we have Cpγiq X Cpγjq � ∅, then the set tγ1, . . . , γ`u satisfies the conclusion of the
lemma. Suppose that there exists m pairs of distinct elements i, j P t1, . . . , `u such that
Cpγiq X Cpγjq � ∅, with m ¥ 1.

Claim. Let i, j be as above. There exists finite geodesic paths γ
piq
1 , . . . , γ

piq
ki
, γ

pjq
1 , . . . , γ

pjq
kj

in T which satisfy the following:

paq for every s P t1, . . . , kiu and every t P t1, . . . , kju, we have γi � γ
piq
s and γj � γ

pjq
t ;

pbq for every p P ti, ju, for every distinct s, t P t1, . . . , kpu, we have Cpγ
ppq
s qXCpγ

ppq
t q � ∅;

pcq for every s P t1, . . . , kiu and every t P t1, . . . , kju, either Cpγ
piq
s q � Cpγ

pjq
t q or

Cpγ
piq
s q X Cpγ

pjq
t q � ∅;

pdq for every p P ti, ju, we have

Cpγpq �

kp¤
s�1

Cpγppqs q.
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Proof. See Figure 5.1 to follow the construction. Notice that we either have γiX γj � ∅
or γi X γj � ∅. In both cases, we construct a path τ and vertices vi, v

1
i, vj , v

1
j that we

will use in the rest of the proof. First suppose that γiXγj � ∅. Let τ be the unoriented
geodesic path in T which realizes the distance between γi and γj . Since, by assumption,
CpγiqXCpγjq � ∅, the endpoints of τ are endpoints of γi and γj . For every p P ti, ju, let
vp be the common endpoint of γp and τ and let v1p be the other endpoint of γp. Suppose
now that γiXγj � ∅. Then, since CpγiqXCpγjq � ∅ there exist three paths τ , ai and aj
such that, up to changing the orientation of γi and γj , we have: γi � aiτ and γj � τaj .
For every p P ti, ju, let vp be the common endpoint of ap and τ and let v1p be the other
endpoint of ap.

   
v1i v1jvi vj

e1i e1jγ1i γ1j
τ

γi γj

   
v1i v1jvi vj

e1i e1jγ1i

γ1j

τ

γi

γj

Figure 5.1: The paths constructed in the proof of Lemma 5.3.1.

For every p P ti, ju, let e1p be the edge of γp adjacent to v1p, which exists since γp is
not reduced to a vertex. For every p P ti, ju, let γ1p be the edge path such that either

γp � γ1pe
1
p or γp � e1pγ

1
p. For every p P ti, ju and ` P ti, ju � tpu, let γ

ppq
1 , . . . , γ

ppq
kp

be the

edge paths of T which start at v1p, which properly contain γp and such that for every

s P t1, . . . , kpu, the endpoint of γ
ppq
s distinct from v1p is at distance exactly 1 from the

minimal edge path of T which contains τ and γ1`. Note that for every p P ti, ju and

` P ti, ju � tpu, there exists a unique sp P t1, . . . , kpu such that γ
ppq
sp contains e1`. Note

that for every p P ti, ju, the integer sp is the unique integer s P t1, . . . , kpu such that γ
ppq
s

contains both γi and γj . Note also that γ
piq
si � pγ

pjq
sj q

�1.

We claim that the paths γ
piq
1 , . . . , γ

piq
ki
, γ

pjq
1 , . . . , γ

pjq
kj

satisfy the conclusion of the claim.

Indeed, paq is satisfied by construction. We prove pbq. Let p P ti, ju. Let s, t P t1, . . . , kpu

be distinct. Then γ
ppq
s and γ

ppq
t share the path γp as an initial segment. But, by con-

struction of the paths γ
ppq
s and γ

ppq
t , the endpoints of γ

ppq
s and γ

ppq
t distinct from v1p are at

distance exactly 1 from the minimal edge path of T which contains τ and γ1`. Therefore,

the endpoint of γ
ppq
s distinct from v1p is not contained in γ

ppq
t . Hence the subtree of T

generated by γ
ppq
s and γ

ppq
t is a tripod. This shows that Cpγ

ppq
s q X Cpγ

ppq
t q � ∅ and this

proves pbq.
We now prove pcq. Let s P t1, . . . , kiu and let t P t1, . . . , kju. Suppose that we have

Cpγ
piq
s qXCpγ

piq
t q � ∅. Then there exists a path γ1 of T such that γ1 contains both γ

piq
s and

γ
pjq
t . Thus γ1 contains both γi and γj . This implies that γ

piq
s � γ

piq
si � pγ

pjq
sj q

�1 � pγ
pjq
t q�1
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and that Cpγ
piq
s q � Cpγ

pjq
t q. This proves pcq. Finally, the fact that pdq holds follows from

the fact that Cpγq �
�
bPET,γb�γ Cpγbq. This proves the claim.

For every p P ti, ju, replace γp by the paths γ
ppq
1 , . . . , γ

ppq
ki

. Then we obtain a new set

tγ11, . . . , γ
1
`1
u such that, by the point pdq of the claim, C � Y`1i�1Cpγ

1
iq. Recall that for

every p P ti, ju, we have Cpγpq P CylpC q. By the point paq of the claim, for every p P ti, ju

and every s P t1, . . . , kiu, we have γp � γ
ppq
s . Therefore, we see that for every p P ti, ju

and every s P t1, . . . , kiu, we have Cpγ
ppq
s q P CylpC q. Hence the set tγ11, . . . , γ

1
`1
u satisfies

p1q. Point paq of the claim also implies that, for every m1 P t1, . . . , `u, and every p P ti, ju,

if Cpγm1q X Cpγpq � ∅ then for every s P t1, . . . , kpu, we have Cpγm1q X Cpγ
ppq
s q � ∅.

Combined with points pbq and pcq of the claim, we see that the number of distinct
elements m1,m2 P t1, . . . , `1u such that Cpγm1q X Cpγm2q � ∅ is strictly less than m.
An inductive argument then concludes the proof.

We denote by Fn �A the subset of Fn consisting in every element w P Fn such that
Cpγwq P CylpC q. Note that Fn � A is closed under inversion since C is closed under
inversion by Lemma 5.2.3. The next lemma gives a criterion to extend some functions
defined on Fn �A to a relative current in CurrpFn,Aq (see [Gup1, Lemma 3.9] for the
free factor system case). First we need some definitions.

Let w P Fn, and let k P N�. A length k extension of w is a word w1 � wx1 . . . xk
where for every i P t1, . . . , k� 1u, we have xi � x�1

i�1 and x1 is not the inverse of the last
letter of w. An extension of w is a word w1 such that there exists k P N� such that w1

is a length k extension of w.

Lemma 5.3.2. Let η : Fn � A Ñ R� be a function invariant under inversion and which
satisfies, for every w P Fn �A:

ηpwq �
¸

v is a length one extension of w

ηpvq. (5.1)

There exists a unique element rη P CurrpFn,Aq such that for every element w P Fn �A,
we have

ηpwq � rηpCpγwqq.
Proof. Since B2pFn,Aq is totally disconnected and locally compact by Lemma 5.2.6, and
since a relative current is a Radon measure, a relative current is uniquely determined
by its values on compact open subsets of B2pFn,Aq. Let C be a compact open subset of
B2pFn,Aq. By Lemma 5.3.1, the subset C is a disjoint union of cylinders of finitely many
geodesic edge paths γ1, . . . , γk such that for every i P t1, . . . , ku, we have Cpγiq P CylpC q.
For every i P t1, . . . , ku, let gi be the element of Fn which is the label of γi. For every
i P t1, . . . , ru, since gi contains an element of C as a subword, we have gi P Fn � A.
Hence we can set rηpCq � °k

i�1 ηpgiq. We claim that the value rηpCq does not depend on
the choice of the paths γi. Indeed, let α1, . . . , α` be another set of geodesic edge paths
given by Lemma 5.3.1 and let h1, . . . , h` be the corresponding elements in Fn. Note that
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for every i P t1, . . . , ku and every j P t1, . . . , `u such that Cpγiq X Cpαjq � ∅, we have
Cpγiq X Cpαjq � Cpβi,jq, where βi,j is a minimal edge path in T that contains both γi
and αj .

We claim that for every i P t1, . . . , ku, there do not exist distinct j1, j2 P t1, . . . , `u
and paths a1 and a2 such that βi,j1 � a1γi and βi,j2 � γia2. Indeed, otherwise the path
a1γia2 is a finite path that contains both αj1 and αj2 . Hence Cpαj1q X Cpαj2q � ∅, a
contradiction. The claim follows.

For every i P t1, . . . , ku and every j P t1, . . . , `u such that CpγiqXCpαjq � ∅, let gi,j
be an element in Fn corresponding to βi,j . By the above claim, for every i P t1, . . . , ku,
one of the following holds:

paq for every j P t1, . . . , `u such that CpγiqXCpαjq � ∅, the element gi,j is an extension
of gi;

pbq for every j P t1, . . . , `u such that CpγiqXCpαjq � ∅, the element g�1
i,j is an extension

of g�1
i .
Since η is invariant under inversion, we may suppose that for every i P t1, . . . , ku, and

for every j P t1, . . . , `u such that CpγiqXCpαjq � ∅, the element gi,j is an extension of gi.
Thus for every j P t1, . . . , `u, and for every i P t1, . . . , ku such that Cpγiq X Cpαjq � ∅,
the element g�1

i,j is an extension of h�1
j .

Note that, since C � Yki�1Cpγiq � Y`j�1Cpαjq, for every i P t1, . . . , ku, the sub-
set Cpγiq is covered by a disjoint union of finitely many Cpαjq. Hence, for every
i P t1, . . . , ku, Equation (5.1) implies that:

ηpgiq �
¸

j | CpγiqXCpαjq�∅
ηpgi,jq.

Similarly, for every j P t1, . . . , `u, we have:

ηph�1
j q �

¸
i | CpγiqXCpαjq�∅

ηpg�1
i,j q.

Thus, since η is invariant under inversion, we have:

`̧

j�1

ηphjq �
`̧

j�1

ηph�1
j q �

`̧

j�1

¸
i | CpγiqXCpαjq�∅

ηpg�1
i,j q �

ķ

i�1

¸
j | CpγiqXCpαjq�∅

ηpgi,jq �
ķ

i�1

ηpgiq.

Hence the value of rηpCq does not depend on the choice of the paths γi.
Therefore rη is an additive, Fn-invariant and nonnegative function on the set of com-

pact open subsets of B2pFn,Aq. We claim that rη is in fact σ-additive. Indeed, by [Coh,
Proposition 1.2.6], it suffices to prove that for every decreasing sequence pCnqnPN of
compact open subsets of B2pFn,Aq such that

�
nPNCn � ∅, we have limnÑ8 rηpCnq � 0.

But since a decreasing sequence of nonempty compact subsets is a nonempty compact
subset, there exists n P N such that Cn � ∅. This proves the claim. By Carathéodory
extension theorem (see [Coh, Proposition 1.2.6, Theorem 1.3.6]), the function rη has a
unique extension as a Radon measure on the σ-algebra of Borel sets of B2pFn,Aq.
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Let
PCurrpFn,Aq � pCurrpFn,Aq � t0uq {R�

�

be the set of projectivized relative currents (where R�
� acts on CurrpFn,Aq by homo-

thety), equipped with the quotient topology which is metrizable. The next result is a
generalization of [Gup1, Lemma 3.11].

Lemma 5.3.3. The metrisable space PCurrpFn,Aq is compact.

Proof. Let prηnsqnPN be a sequence of projective currents relative to A. We prove that
it has a convergent subsequence. Let C be the finite set given by Lemma 5.2.3. For
every n P N, let ηn be a representative of rηns such that, for every w P C , we have
ηpCpγwqq ¤ 1, with equality for some w P C , independent of n up to extraction. The
set C being finite, there exists a subsequence pnkqkPN such that for every u P C , the
sequence pηnkpCpγuqqqkPN converges. Moreover, there exists u0 P C such that the limit
limkÑ8pηnkpCpγu0qqqkPN is not equal to zero. Let w P Fn be such that Cpγwq P CylpC q.
There exists uw P C such that uw is a subword of w. Therefore, for every k P N, we have

ηnkpCpγwqq ¤ ηnkpCpγuwqq ¤ 1.

Therefore, for every element w P Fn�A, the sequence pηnkCppγwqqqkPN has a convergent
subsequence. By a diagonal argument, up to extraction, for every Cpγwq P CylpC q, the
sequence pηnkpCpγwqqqkPN converges. Moreover, there exists Cpγwq P CylpC q such that
pηnkpCpγwqqqkPN converges to a nonzero element.

Let η : Fn �AÑ R� be the function defined by, for every w P Fn �A:

ηpwq � lim
kÑ8

ηnkpCpγwqq.

Since for every k P N, the function ηnk is a relative current, the function η satisfies the
assumptions of Lemma 5.3.2. Therefore, by Lemma 5.3.2, there exists a unique relative
current rη P CurrpFn,Aq such that for every element w P Fn �A, we have

ηpwq � rηpCpγwqq.
Hence prηnksqkPN converges to rrηs.
5.4 Density of rational currents

In this section, let n ¥ 3. Let r P N and let A � trA1s, . . . , rArsu be a malnormal
subgroup system of Fn. Let B, T , L P N�, Γ1, . . . ,Γr, C be as above Lemma 5.2.3. Let
` : Fn Ñ N be the length function corresponding to B.

Every conjugacy class of nonperipheral element g P Fn determines a relative current
ηg as follows. Suppose first that g is root-free, that is, g is not a proper power of
any element in Fn. Let γ be a finite geodesic path in the Cayley graph T such that
Cpγq P CylpC q. Then ηgpCpγqq is the number of unoriented translation axes in T of
conjugates of g that contain the path γ. If g � hk with k ¥ 2 and h root-free, we set

186



ηg � k ηh. Such currents are called rational currents. Note that for every nonperipheral
element g P Fn, the current ηg only depends on the conjugacy class of g. Therefore, we
can talk about rational currents induced by conjugacy classes of nonperipheral elements
of Fn and write ηrgs for the rational current associated with the conjugacy class of a
nonperipheral element g P Fn. We prove the following proposition.

Proposition 5.4.1. Let n ¥ 3 and let A be a malnormal subgroup system of Fn. The set
of projectivized rational currents induced by conjugacy classes of nonperipheral elements
of Fn is dense in PCurrpFn,Aq.

We follow Gupta’s proof ([Gup1, Proposition 3.12]) in the special case of free factor
systems. The proof consists in approximating currents in PCurrpFn,Aq with signed
measured currents on B2Fn, which are Fn-invariant and σ-additive real-valued functions
on the set of Borel subsets of B2Fn. We will then conclude using the following lemma,
due to Martin (see also [Gup1, Lemma 3.15]).

Lemma 5.4.2. [Mar, Lemma 15] Let n ¥ 3. Suppose that A � ∅. Let k1 ¥ 1, let k ¥ 2
with k1 ¤ k and let η be a signed measured current such that, for every w P Fn with
k1 ¤ `pwq ¤ k, we have ηpCpγwqq ¥ 0. Let P � 2np2n � 1q2np2n�1qk�2

. If there exists
w0 P Fn such that `pw0q � k and ηpCpγw0qq ¥ P , then there exists α P Fn � teu such
that, for every w P Fn with k1 ¤ `pwq ¤ k, we have ηpCpγwqq ¥ ηrαspCpγwqq.

Remark 5.4.3. p1q The hypotheses in [Mar, Lemma 15] requires that k1 � 1. However,
the proof of Martin works by studying words of length exactly k and then extend the result
to words of length at most k by additivity of the measures. Thus the proof with k1 ¡ 1 is
identical.

p2q For the rational current ηrαs constructed in Lemma 5.4.2, there exists w P Fn with
k1 ¤ `pwq ¤ k such that ηrαspCpγwqq ¡ 0.

Recall that CylpC q is the set of cylinder sets of the form Cpγwq, where w is a word of
Fn containing a word of C as a subword. Let η0 P CurrpFn,Aq and let k ¥ L� 2. Let η
be a signed measured current such that, for every element w P Fn with Cpγwq P CylpC q,
we have ηpCpγwqq � η0pCpγwqq and for every element w P Fn of length between L � 2
and k, we have ηpCpγwqq ¥ 0. Then η is called a k-extension of η0. The key lemma in
order to prove Proposition 5.4.1 is the following result (see [Gup1, Lemma 3.15] for the
same statement in the particular case free factor systems):

Lemma 5.4.4. Let η0 be a relative current and let k ¥ L � 2. There exists a signed
measured current η : B2Fn Ñ R which is a k-extension of η0.

Let η0 be a relative current. In order to prove Lemma 5.4.4, we need some preliminary
results. We follow [Gup1, Section 8.1]. For k P N�, let Sk be the set of elements of Fn
of length k which do not contain an element of C as a subword. Note that, since C
is closed under inversion by Lemma 5.2.3, we see that, for every k P N�, the set Sk is
closed under inversion. For k � 0, we set S0 � teu. Note also that, if k   L � 2, then
Sk contains all words of length k since every element of C has length equal to L� 2.
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Lemma 5.4.5. p1q If A � ∅, for every k P N�, the set Sk is not empty.

p2q For every k ¥ L� 2 and every w P Sk, there exist w1 P Sk�1, i P t1, . . . , ru, g P Fn
and a P gAig

�1 such that w1 is a length 1 extension of w and a is an extension of w1.

Proof. p1q Since the group A1 is infinite, the corresponding minimal subtree TA1 is
infinite. Recall that the tree TA1 is supposed to contain the origin e of T . Let γ be a
geodesic path contained in TA1 , starting from e and of length equal to k, and let h P Fn
be the corresponding element of Fn. Then there exists a P A1 such that a is an extension
of h. We have h P Sk as otherwise a would contradict Lemma 5.2.3 p3q. This proves p1q.

p2q Let k ¥ L � 2 and let w P Sk. By Lemma 5.2.3 p1q, there exist i P t1, . . . , ru and
g P Fn such that γw is contained in TgAig�1 . As TgAig�1 does not contain any univalent
vertex, there exists a geodesic ray c in TgAig�1 starting from e which contains the path
γw. Let γ1 be the geodesic path in c of length k � 1 containing γw, and let w1 be the
corresponding element in Fn. Then w1 P Sk�1 and w1 is a length 1 extension of w. This
proves p2q and this concludes the proof.

Let k ¥ L� 2. Let S0
k be a subset of Sk (chosen once and for all) such that for every

w P Sk exactly one of w or w�1 appears in S0
k . In what follows, we adopt the convention

that whenever an extension of a word w by a letter b P B is written as wb (resp. bw), we
assume that b is not the inverse of the last letter (resp. first letter) of the word w.

In order to construct the signed measured current which satisfies the conclusion of
Lemma 5.4.4, we will define a signed measured current on cylinders of words in Sk�1

and use those values together with the additivity laws in order to define η on cylinders
of words of length k. First we set ηpCpγbqq � 1 for every letter b of B not contained in
C . By induction, assume that for every element v P Sk�1, the value ηpCpγvqq is defined.
By additivity of a signed measured current, for every v P S0

k�1, we want to have:

ηpCpγvqq �
°

bPB,vbPSk
ηpCpγvbqq �

°
bPB,vbRSk

η0pCpγvbqq

ηpCpγv�1qq �
°

bPB,v�1bPSk

ηpCpγv�1bqq �
°

bPB,v�1bRSk

η0pCpγv�1bqq

Since η is invariant under taking inverses, the equation obtained by using forward
extensions of v�1 is the same one as the equation obtained by using backward extensions
of v. After rearranging the equations in order to have the unknown terms on the left
hand side, we obtain:

°
bPB,vbPSk

ηpCpγvbqq �
°

bPB,vbRSk
η0pCpγvbqq � ηpCpγvqq � cv°

bPB,v�1bPSk

ηpCpγv�1bqq �
°

bPB,v�1bRSk

η0pCpγv�1bqq � ηpCpγv�1qq � cv�1 .
(5.2)

Since η is invariant under taking inverse, this shows that there are |Sk�1| equations
in |Sk|{2 � |S0

k | variables.
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Denote the system of equations (5.2) by E1
k�1. These are equations obtained from

length 1 extensions of words in Sk�1. Similarly, for every i P t1, . . . , k � 1u, we define
Eik�i as the system of equations obtained from length i extensions of words in Sk�i.

Let rM |cs be the augmented matrix for the system of equations E1
k�1 with rows

labeled by words in Sk�1, columns by words in S0
k and such that for every w P S0

k and
every v P Sk�1, we have Mv,w � 1 if there exists b P B such that w � vb or w�1 � vb;
and Mv,w � 0 otherwise. Let c be the column vector indexed by words in Sk�1 such
that for every v P Sk�1, the coordinate of c at v is equal to cv. If v P Sk�1, we will
denote by rv the corresponding row vector of M . Observe that each column has exactly
two entries which are equal to 1. Indeed, Mv,w is equal to 1 exactly when w or w�1 is a
length 1 extension of v. Observe also that any two distinct row vectors rv1 and rv2 can
have at most one common coordinate which is equal to 1. Indeed, let w P S0

k be such
that Mv1,w � Mv2,w � 1. Then there exist b1, b2 P B such that w � v1b1 or w � b�1

1 v�1
1

and w � v2b2 or w � b�1
2 v�1

2 . Therefore, the word v1 starts with b�1
2 and v2 starts with

b�1
1 . This shows that w is uniquely determined.

The next lemma is the same one as [Gup1, Lemma 8.2] in the special case of free
factor systems.

Lemma 5.4.6. p1q For every i ¥ 1, an equation in the system Ei�1
k�i�1 is a linear combi-

nation of equations in the system Eik�i. Thus it is sufficient to look at the system E1
k�1

in order to obtain every constraint satisfied by ηpCpγwqq for every w P S0
k.

p2q Let u P Sk�2. Then the following two linear combinations of rows of M are equal:¸
bPB,buPSk�1

rbu �
¸

bPB,bu�1PSk�1

rbu�1 . (5.3)

p3q Every relation among the rows of M is a linear combination of relations in the set
of relations (5.3) where u varies in Sk�2.

p4q We have ¸
bPB,buPSk�1

cbu �
¸

bPB,bu�1PSk�1

cbu�1 ,

where for every v P Sk�1, cv is given by Equation (5.2).

p5q The system of equations E1
k�1 is consistent and hence has a solution. Thus we can

define η on words of length k.

Proof. p1q Let i ¥ 1 and u P Sk�i�1. Then by the system E1
k�i�1

ηpCpγuqq �
¸
bPB

ηpCpγubqq.

By the equations in Eik�i, we have, for every b P B:

ηpCpγubqq �
¸

yPFn,`pyq�i

ηpCpγubyqq.
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Adding all these equations over b P B, we have:

ηpCpγuqq �
¸

b,yPFn,`pbq�1,`pyq�i

ηpCpγubyqq �
¸

zPFn,`pzq�i�1

ηpCpγuzqq.

Thus we have recovered an equation in Ei�1
k�i�1 as a linear combination of equations in

Eik�i. This proves p1q.

p2q Let u P Sk�2 and let w P S0
k . For every b P B such that bu P Sk�1, we have Mbu,w � 0

exactly when there exists y P B such that w � buy�1 or w � yu�1b�1 (recall that the
basis B is supposed to be symmetric). Therefore, if Mbu,w � 0, there exists a unique
y P B such that Myu�1,w � 0. This proves p2q.

p3q Let R be a relation given by
°
vPSk�1

dvrv � 0, where dv P R. Suppose that the
number of terms in the sum associated with R is minimal. Such an assumption is possible
as every relation is a linear combination of relations whose number of terms is minimal.
We can rescale the equation so that there exist b P B and u P Sk�2 such that dbu � 1.
For every y P B such that buy�1 P S0

k , we have

Mbu,buy�1 �Myu�1,buy�1 � 1.

This implies, as explained above the lemma, that the rows rbu and ryu�1 share exactly
one common nonzero coordinate, which is buy�1. Moreover, the rows rbu and ryu�1 are
the only rows which have a nonzero coordinate in buy�1. This shows that dyu�1 � �1.

Let y P B be such that yu�1 P Sk�1. For every z P B such that yu�1z P S0
k , we have

Myu�1,yu�1z �Mz�1u,yu�1z � 1. Thus we have dz�1u � 1. Therefore we see that¸
bPB,buPSk�1

dburbu �
¸

yPB,yu�1PSk�1

dyu�1ryu�1 �
¸

bPB,buPSk�1

rbu �
¸

yPB,yu�1PSk�1

ryu�1 � 0.

Hence the minimal relation R is just¸
bPB,buPSk�1

rbu �
¸

yPB,yu�1PSk�1

ryu�1 � 0.

p4q Let u P Sk�2. We have, by the definition of cv:

�
°

bPB,buPSk�1

cbu �
°

bPB,buPSk�1

ηpCpγbuqq �
°

b,yPB,buPSk�1,buyRSk

ηpCpγbuyqq

� ηpCpγuqq �
°

bPB,buRSk�1

ηpCpγbuqq �
°

b,yPB,buPSk�1,buyRSk

ηpCpγbuyqq

� ηpCpγuqq �
°

b,yPB,buRSk�1

ηpCpγbuyqq �
°

b,yPB,buPSk�1,buyRSk

ηpCpγbuyqq.

Note that we have:
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¸
b,yPB,buRSk�1

ηpCpγbuyqq �
¸

b,yPB,buRSk�1,uyPSk�1

ηpCpγbuyqq�
¸

b,yPB,buRSk�1,uyRSk�1

ηpCpγbuyqq

(5.4)
Similarly, we have:

�
¸

bPB,bu�1PSk�1

cbu�1 � ηpCpγuqq�
¸

b,yPB,bu�1RSk�1

ηpCpγbu�1yqq�
¸

b,yPB,bu�1PSk�1,bu�1yRSk

ηpCpγbu�1yqq.

The right hand side is also equal to:

ηpCpγuqq �
¸

b,yPB,ub�1RSk�1

ηpCpγy�1ub�1qq �
¸

b,yPB,ub�1PSk�1,y�1ub�1RSk

ηpCpγy�1ub�1qq.

Observe that the sum
°

b,yPB,ub�1RSk�1

ηpCpγy�1ub�1qq equals:

¸
b,yPB,ub�1RSk�1,y�1uPSk�1

ηpCpγy�1ub�1qq �
¸

b,yPB,ub�1RSk�1,y�1uRSk�1

ηpCpγy�1ub�1qq. (5.5)

Suppose first that k ¤ L � 2. Then Sk�1 contains all words of length k � 1. Hence
we have

�
¸

bPB,buPSk�1

cbu � ηpCpγuqq �
¸

b,yPB,buyRSk

ηpCpγbuyqq

and
�

¸
bPB,bu�1PSk�1

cbu�1 � ηpCpγuqq �
¸

b,yPB,y�1ub�1RSk

ηpCpγy�1ub�1qq,

so that Assertion p4q holds in this case with y � b�1.
Suppose now that k ¡ L � 2. Then since every element of C has length equal to

L � 2, an element of C contained in a word x of length k is properly contained in x.
Hence if b, y P B are such that bu P Sk�1 and buy R Sk, then uy R Sk�1. Thus, we see
that: ¸

b,yPB,buPSk�1,buyRSk

ηpCpγbuyqq �
¸

b,yPB,buPSk�1,uyRSk�1

ηpCpγbuyqq. (5.6)

Similarly, we have:

¸
b,yPB,ub�1PSk�1,y�1ub�1RSk

ηpCpγy�1ub�1qq �
¸

b,yPB,ub�1PSk�1,y�1uRSk�1

ηpCpγy�1ub�1qq.

(5.7)
Using Equations (5.4), (5.5), (5.6) and (5.7) with y � b�1, we see that
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°
b,yPB,buRSk�1

ηpCpγbuyqq �
°

b,yPB,buPSk�1,buyRSk

ηpCpγbuyqq

�
°

b,yPB,ub�1RSk�1

ηpCpγy�1ub�1qq �
°

b,yPB,ub�1PSk�1,y�1ub�1RSk

ηpCpγy�1ub�1qq.

This shows that ¸
bPB,buPSk�1

cbu �
¸

bPB,bu�1PSk�1

cbu�1 ,

and this proves p4q.

p5q By Assertions p3q and p4q, if R is a linear combination of relations among the rows
of M equal to zero, then the corresponding linear combination among coordinates of the
vector c is also equal to zero. Therefore, the system rM |cs has a solution.

Proof of Lemma 5.4.4 Let η0 be a relative current. By Lemma 5.4.6, there exists a signed
measured current η such that, for every element w of Fn which satisfies Cpγwq P CylpC q,
we have η0pCpγwqq � ηpCpγwqq. This extension is not necessarily nonnegative on every
element of length between L� 2 and k. Let

�M � min
wPFn, L�2¤`pwq¤k

ηpCpγwqq.

Let S be a finite set of elements of
�r
i�1Ai such that for every element w P Sk, there

exists gw P S such that gw is an extension of w. The set exists by Lemma 5.4.5 p2q. Let

ηA �
¸
gPS

ηrgs.

By Lemma 5.2.3 p3q, for every w P Fn such that Cpγwq P CylpC q, we have ηApCpγwqq � 0.
Moreover for every w P

�k
i�L�2 Si, Lemma 5.4.5 p2q implies that there exists w1 P Sk

such that w1 is an extension of w. In particular, for every w P
�k
i�L�2 Si, we have

ηApCpγwqq ¡ 0. By finiteness of
�k
i�L�2 Si, there exists a constant R ¡ 0 such that for

every element w in
�k
i�L�2 Si, we have RηApCpγwqq ¥M .

Then η�RηA is nonnegative on words of length between L� 2 and k and coincides
with η0 on elements w P Fn such that Cpγwq P CylpC q. This concludes the proof.

Proof of Proposition 5.4.1 The proof follows [Gup1, Lemma 3.15] (see also [Mar]). Let
C be the set defined above Lemma 5.2.3. Let η0 be a relative current and let k ¥ L� 2.
Note that every word in C has length at most equal to k. Let P be the constant given by
Lemma 5.4.2. Note that there exists an element w1 in C such that η0pCpγw1qq ¡ 0. By
additivity of η0, there exists an element w0 P Fn with `pw0q � k and Cpγw0q P CylpC q and
such that η0pCpγw0qq ¡ 0. Let R ¡ 0 be such that Rη0pCpγw0qq ¡ P . By Lemma 5.4.4,
there exists a signed measured current η which is a k-extension of η0. By Lemma 5.4.2
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applied to Rη and k1 � L�2, there exists α1 P Fn�teu such that for every w P Fn�teu
of length between L� 2 and k, we have

RηpCpγwqq ¥ ηrα1spCpγwqq.

Suppose first that for every w P Fn of length between L� 2 and k, we have

RηpCpγwqq ¤ ηrα1spCpγwqq � P.

Then we stop the process and choose α1. Otherwise, we apply Lemma 5.4.2 to Rη�ηrα1s

and k1 � L�2. This shows that there exists α2 P Fn�teu such that for every w P Fn�teu
of length between L� 2 and k, we have

RηpCpγwqq � ηrα1spCpγwqq ¥ ηrα2spCpγwqq.

Applying these arguments iteratively (the process stops by Remark 5.4.3 p2q), we see
that there exist α1, . . . , αp P Fn�teu such that for every element w P Fn�teu of length
between L� 2 and k, we have:

p̧

i�1

ηrαispCpγwqq ¤ RηpCpγwqq ¤

p̧

i�1

ηrαispCpγwqq � P.

We claim that there exists i P t1, . . . , pu such that αi is nonperipheral. Indeed,
suppose towards a contradiction that for every i P t1, . . . , pu, the element αi is peripheral.
By Lemma 5.2.3 p3q, we have

p̧

i�1

ηrαispCpγw0qq � 0.

This implies that RηpCpγw0qq ¤ P . This contradicts the construction of η. There-
fore there exists i P t1, . . . , pu such that αi is nonperipheral. Let S be the subset of
tα1, . . . , αpu containing every nonperipheral element. Then, for every element w P Fn of
length k such that Cpγwq P CylpC q we have:����ηpCpγwqq �

°
αPS ηrαspCpγwqq

R

���� ¤ P

R
.

For α P S, let ηrαs be the restriction of ηrαs to the Borel subsets of B2pFn,Aq. By
construction of η, for every element w P Fn of length at most k such that Cpγwq P CylpC q,
we have: ����η0pCpγwqq �

°
αPS ηrαspCpγwqq

R

���� ¤ P

R
.

Since R can be chosen arbitrarily large, we can approximate relative currents by sum
of rational relative currents. For m P N�, let βm �

±
αPS α

m (for any total order on S).
Then there exists m P N� such that

°
αPS ηrαis can be approximated by 1

mηrβms. This
concludes the proof.
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Chapitre 6

North-South type dynamics of
relative atoroidal automorphisms of
free groups on a relative space of
currents

6.1 Introduction

Let n ¥ 2. This paper is the second of a sequence of three papers where we study
the growth of the conjugacy classes of elements of Fn under iterations of elements of
OutpFnq, the outer automorphism group of a nonabelian free group of rank n. An outer
automorphism φ P OutpFnq is exponentially growing if there exist g P Fn, a representative
Φ of φ, a free basis B of Fn and a constant K ¡ 0 such that, for every m P N�, we have

`BpΦ
mpgqq ¥ eKm,

where `BpΦ
mpgqq denotes the length of Φmpgq in the basis B. Such an element g is said

to be exponentially growing under iteration of φ and the set of elements of Fn which
have exponential growth under iteration of φ is the pure exponential part of φ. It is
known, using for instance the train track technology of Bestvina and Handel (see [BH]),
that every element g of Fn which is not exponentially growing under iteration of φ is
polynomially growing under iteration of φ, that is, there exist Φ P φ and an integer K P N
such that, for every m P N�, we have `BpΦ

mpgqq ¤ pm� 1qK .
Initiated by Švarc, Milnor and Wolf, and particularly developped by Guivarc’h, Gro-

mov and Grigorchuk, growth problems in groups is a major field of study in geometric
and dynamical group theory, see for instance [LS, Man1, Hel]. Many works study the
subfield of the element growths under iteration of group automorphisms (see for in-
stance [BFH1, Lev2, CU2]), for instance in the context of hyperbolic groups. See in par-
ticular [Cou] for examples of intermediate growth rates. As another example, Dahmani
and Krishna [DS] found a sufficient condition for the suspension of an automorphism



of a hyperbolic group to be relatively hyperbolic, and this condition is linked with the
structure of the set of all elements of the hyperbolic group which have polynomial growth
under iterations of the considered automorphism. Such exponentially growing outer au-
tomorphisms of Fn were already studied in distinct contexts. For instance, Bestvina,
Feighn and Handel [BFH1] used them to prove the Tits alternative for OutpFnq.

If φ P OutpFnq, we denote by Polypφq the set of elements g of Fn such that g is
polynomially growing under iteration of φ. Let PolypHq �

�
φPH Polypφq. The aim of

this series of papers is to prove the following theorem.

Theorem 6.1.1. Let n ¥ 3 and let H be a subgroup of OutpFnq. There exists φ P H such
that Polypφq � PolypHq.

Informally, Theorem 6.1.1 shows that the exponential growth of a subgroup H of
OutpFnq is encaptured by the exponential growth of a single element of H. Indeed, if
g P Fn has exponential growth for some element ψ P H, then g has exponential growth
for an element φ P H given by Theorem 6.1.1. The proof relies on dynamical properties
of the action of outer automorphisms on some preferred topological space. In this article,
we study the dynamical properties of the elements of the subgroup H of Fn that will be
used in [Gue6] in order to construct an element φ P H given by Theorem 6.1.1.

Let φ P OutpFnq be an exponentially growing outer automorphism. In this article,
we construct natural (compact, metrizable) topological spaces X on which a subgroup of
OutpFnq containing φ acts by homeomorphisms with the additional property that φ acts
with North-South dynamics: there exist two proper disjoint closed subsets of X such
that every point of X which is not contained in these subsets converges to one of the two
subsets under positive or negative iteration of φ. North-South dynamics are preferred
tools to apply ping-pong arguments similar to the ones of Tits [Tit1] and are used to
obtain structural properties of some groups.

The topological space X that we use in the proof of Theorem 6.1.1 is constructed in
such a way that it allows us to create a dictionnary between dynamical properties of the
action of φ on X and growth properties of elements of Fn under iterations of φ. In order
to construct X, we first need to detect all the elements g of Fn such that the length of
rgs with respect to any basis of Fn grows at most polynomially fast fast under iteration
of φ. Levitt [Lev2] proved that there exist finitely many finitely generated subgroups
H1, . . . ,Hk of Fn such that the conjugacy class of an element g of Fn is not exponentially
growing under iteration of φ if and only if g is contained in a conjugate of some Hi for i P
t1, . . . , ku. Moreover, the set Apφq � trH1s, . . . , rHksu is a malnormal subgroup system:
for every i P t1, . . . , ku, the group Hi is a malnormal subgroup of Fn and for every distinct
subgroups A and B such that rAs, rBs P Apφq, we have A X B � teu. Every element
of Fn which is contained in a conjugate of some Hi with i P t1, . . . , ku has polynomial
growth under iteration of φ. Moreover, we have Polypφq �

�r
i�1

�
gPFn

gHig
�1.

In [Gue4], we construct a compact, metrizable space, called the space of projectivised
currents relative to Apφq, denoted by PCurrpFn,Apφqq, which is the space of projectivised
Radon measures on the double boundary of Fn relative to Apφq, equipped with the
weak-star topology (see Section 6.2.4 for precise definitions). In [Gue4], we proved that
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the set of currents associated with Apφq-nonperipheral conjugacy classes of elements
of g of Fn, that is, such that g is not contained in the conjugacy class of some Hi

with i P t1, . . . , ku, is dense in PCurrpFn,Apφqq. Thus, the set of conjugacy classes of
elements of Fn whose length grows exponentially fast under iteration of φ is dense in
PCurrpFn,Apφqq. If we denote by OutpFn,Apφqq the subgroup of OutpFnq consisting in
every element ψ P OutpFnq such that ψpApφqq � Apφq, the group OutpFn,Apφqq acts by
homeomorphisms on PCurrpFn,Apφqq by pushing forward the measures. In this article,
we prove the following theorem.

Theorem 6.1.2 (see Theorem 6.5.1). Let n ¥ 3 and let φ be an exponentially growing
outer automorphism. The outer automorphism φ acts with North-South dynamics on
the space PCurrpFn,Apφqq.

In fact, we prove a slightly stronger result since we prove a uniform North-South
dynamics result, that is, the convergence in the North-South dynamics statement can be
made uniform on compact subsets of PCurrpFn,Apφqq. As explained above, North-South
dynamics results given by Theorem 6.1.2 will be a key point in the proof of Theorem 6.1.1.

Such dynamical results already appear in similar contexts. For instance, Tits proved
in [Tit1] its alternative for linear groups using North-South dynamics and ping-pong
arguments. In the context of the mapping class group ModpSq of a compact connected
orientable surface S of genus at least 2, pseudo-Anosov elements acts with North-South
dynamics on the space of projectivised measured foliations ([Thu], see also the work
of Ivanov [Iva1]) or the curve complex [MasM]. Using this North-South dynamics,
Ivanov [Iva1] (see also the work of McCarthy [McC]) later proved a Tits alternative
for subgroups of ModpSq. Similarly, North-South dynamics results were obtained for
certain classes of outer automorphisms of Fn. For instance, fully irreducible outer au-
tomorphisms act on the compactified Outer space [LL] or the space of projectivised
currents ([Mar], see also the work of Uyanik [Uya1]) with a North-South dynamics and
atoroidal outer automorphisms act on the space of projectivsed currents with a North-
South dynamics [LU2, Uya2]. Clay and Uyanik [CU2] applied this result in the proof
of the fact that, for every subgroup H of OutpFnq, either H contains an atoroidal outer
automorphism or there exists a nontrivial element g of Fn such that, for every element
φ P H, there exists k P N� such that we have φkprgsq � rgs. Such dynamical results were
later extended to relative contexts by Gupta [Gup1, Gup2].

In order to prove Theorem 6.1.1, we will need a slightly stronger result than The-
orem 6.1.2. Indeed, let φ P OutpFnq and let Apφq � trH1s, . . . , rHksu. Suppose that φ
preserves the conjugacy class of a corank one free factor A of Fn. Let Apφq ^ A be the
malnormal subgroup system consisting in the conjugacy classes of the intersection of the
conjugates of the subgroups Hi with i P t1, . . . , ku with A. Note that, by Theorem 6.1.2,
there exist closed disjoint subsets ∆�pφ|Aq such that the outer automorphism φ|A P
OutpA,Apφq^Aq acts with North-South dynamics on PCurrpA,Apφq^Aq with respect
to ∆�pφ|Aq. There is a canonical embedding PCurrpA,Apφq^Aq ãÑ PCurrpFn,Apφq^Aq,
and we denote by ∆�pφq the image of ∆�pφ|Aq in PCurrpFn,Apφq^Aq. We will need to
understand the dynamics of φ on the space PCurrpFn,Apφq ^ Aq. As there might exist
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elements in Fn which have polynomial growth under iterations of φ and which are not
contained in a conjugate of A, one cannot apply Theorem 6.1.2 to obtain a North-South
dynamics result. However, we obtain the following result.

Theorem 6.1.3 (see Theorem 7.2.7). Let n ¥ 3 and let φ P OutpFnq be an exponentially
growing outer automorphism which preserves a corank one free factor A. There exist two
convex compact subsets p∆�pφq of PCurrpFn,Apφq^Aq such that the following holds. Let
U� be open neighborhoods of ∆�pφq in PCurrpFn,Apφq^Aq and pV� be open neighborhoods
of p∆�pφq in PCurrpFn,Apφq ^Aq. There exists M P N� such that for every n ¥M , we
have

φ�npPCurrpFn,Apφq ^Aq � pV	q � U�.

In [CU2, Theorem 4.15], Clay and Uyanik proved an analogue of Theorem 6.1.3 in
the context of atoroidal outer automorphisms of Fn. In Theorem 6.1.3, the two convex
subsets p∆�pφq have nonempty intersection, so that Theorem 6.1.3 is not a North-South
dynamics result as defined above. However, Theorem 6.1.3 gives a sufficiently precise
description of the dynamics of φ for our considerations. The intersection p∆�pφqX p∆�pφq
corresponds informally to the polynomial growth part of φ. This intersection, denoted by
KPG in the rest of the article, is the closure in PCurrpFn,Apφq ^Aq of the pApφq ^Aq-
nonperipheral elements of Fn which have polynomial growth under iteration of φ. In
Section 6.3.3, we give a complete study of the subspace KPG in a more general context.

In fact, Section 6.3 is devoted to the study of the polynomial growth of an exponen-
tially growing outer automorphism. Following the works of Bestvina, Feighn and Handel
[BFH1, BFH2], of Feighn and Handel [FH] and of Handel and Mosher [HaM4], we use
appropriate relative train track representatives of a power of an exponentially growing
outer automorphism φ in order to describe Apφq geometrically. It gives rise to a (not
necessarily connected) topological graph G� such that the fundamental group of every
connected component G�

c of G� injects into Fn and such that the set trπ1pG
�
c qsuG�c Pπ0pG�q

where π1pG
�
c q is viewed as a subgroup of Fn is equal to Apφq (see Proposition 6.3.13).

We then use this characterization of Apφq in Section 6.3.3 in order to describe the subset
KPG.

We now sketch a proof of Theorem 6.1.2. The proofs of Theorem 6.1.2 and The-
orem 6.1.3 given in this paper are long and quite technical, this is why we postpone
the proof of Theorem 6.1.1 in [Gue6]. Let φ P OutpFnq be exponentially growing.
The first step is to construct the closed subsets ∆�pφq associated with φ as defined
in Therorem 6.1.2. This is done in Section 6.4. In order to construct them, we use as in-
spiration the construction given by Lustig and Uyanik in [LU2] (see also [Uya2, Gup1]).
We choose an appropriate relative train track representative f : GÑ G of a power of φ,
where G is a graph whose fundamental group is isomorphic to Fn. A current of ∆�pφq
is then constructed by considering occurrences of paths in limmÑ8 f

mpeq, where e is
an edge in G whose length grows exponentially fast under iteration of f (see Proposi-
tion 6.4.4). Currents of ∆�pφq are then defined similarly using a representative of a power
of φ�1. We then prove Theorem 6.1.2 in Section 6.5. Let rµs P PCurrpFn,Apφqq�∆�pφq
be the current associated with a Apφq-nonperipheral conjugacy class rws P Fn. Then
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rws is represented by a circuit γw in the graph G. In order to show that we have
limmÑ8 φ

mprµsq P ∆�pφq, we prove that the proportion of the path fmpγgq which grows
exponentially fast under iteration of f tends to 1 as m goes to infinity. This fact is
sufficient to prove that

lim
mÑ8

φmprµsq P ∆�pφq

(see Lemma 6.5.20). We then conclude the proof using the density of currents associated
with nonperipheral elements in Fn proved in [Gue4]. Theorem 6.1.3 is then proved in
Section 6.6 using a combination of Theorem 6.1.2 and the description of the space KPG.

Acknowledgments. I warmly thank my advisors, Camille Horbez and Frédéric Paulin, for

their precious advices and for carefully reading the different versions of this article.

6.2 Preliminaries

6.2.1 Malnormal subgroup systems of Fn

Let n be an integer greater than 1 and let Fn be a free group of rank n. A subgroup
system of Fn is a finite (possibly empty) set A whose elements are conjugacy classes of
nontrivial (that is distinct from t1u) finite rank subgroups of Fn. There exists a partial
order on the set of subgroup systems of Fn, where A1 ¤ A2 if for every subgroup A1

of Fn such that rA1s P A1, there exists a subgroup A2 of Fn such that rA2s P A2 and
A1 is a subgroup of A2. The stabilizer in OutpFnq of a subgroup system A, denoted by
OutpFn,Aq, is the set of all elements φ P OutpFnq such that φpAq � A.

Recall that a subgroup A of Fn is malnormal if for every element x P Fn � A, we
have xAx�1XA � teu. A subgroup system A is said to be malnormal if every subgroup
A of Fn such that rAs P A is malnormal and, for all subgroups A1, A2 of Fn such that
rA1s, rA2s P A, if A1 XA2 is nontrivial then A1 � A2. An element g P Fn is A-peripheral
(or simply peripheral if there is no ambiguity) if it is trivial or conjugate into one of the
subgroups of A, and A-nonperipheral otherwise.

An important class of examples of malnormal subgroup systems is given by the free
factor systems. A free factor system of Fn is a (possibly empty) set F of conjugacy
classes trA1s, . . . , rArsu of nontrivial subgroups A1, . . . , Ar of Fn such that there exists
an integer k P N with Fn � A1 � . . . � Ar � Fk. The free factor system F is sporadic if
pk � r, kq ¤ p2, 1q for the lexicographic order, and is nonsporadic otherwise. Therefore,
the sporadic free factor systems are those of the form trCsu where C has rank at least
equal to n� 1 and those of the form trAs, rBsu with Fn � A �B. An ascending sequence
of free factor systems F1 ¤ . . . ¤ Fi � trFnsu of Fn is called a filtration of Fn.

Given a free factor system F of Fn, a free factor of pFn,Fq is a subgroup A of Fn
such that there exists a free factor system F 1 of Fn with rAs P F 1 and F ¤ F 1. When
F � ∅, we say that A is a free factor of Fn. A free factor of pFn,Fq is proper if it is
nontrivial, not equal to Fn and if its conjugacy class does not belong to F .

Another class of examples of malnormal subgroup systems is the following one. An
outer automorphism φ P OutpFnq is exponentially growing if there exists g P Fn such that
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the length of the conjugacy class rgs of g in Fn with respect to some basis of Fn grows
exponentially fast under iteration of φ. If φ P OutpFnq is not exponentially growing,
then φ is polynomially growing. For an automorphism α P AutpFnq, we say that α is
exponentially growing if there exists g P Fn such that the length of g grows exponentially
fast under iteration of φ. Otherwise, α is polynomially growing. Let φ P OutpFnq be
exponentially growing. A subgroup P of Fn is a polynomial subgroup of φ if there exist
k P N� and a representative α of φk such that αpP q � P and α|P is polynomially growing.
By [Lev2, Proposition 1.4], there exist finitely many conjugacy classes rH1s, . . . , rHks of
maximal polynomial subgroups of φ. Moreover, the proof of [Lev2, Proposition 1.4]
implies that the set H � trH1s, . . . , rHksu is a malnormal subgroup system. Indeed,
Levitt shows that there exists a nontrivial R-tree T in the boundary of Culler and
Vogtmann Outer space [CV] on which Fn acts with trivial arc stabilizers, such that φ
preserves the homothety class of T and such that the groups H1 . . . , Hk are elliptic in T .
If two distinct subgroups A,B of Fn such that rAs, rBs P H fix distinct points in T , then
their intersection is trivial. If A and B fix the same point x in T , then (up to taking a
power of φ) φ preserves rStabpxqs and an inductive argument on the rank using φ|Stabpxq

(the rank of Stabpxq is less than n by a result of Gaboriau-Levitt [GaL]) shows that the
intersection of A and B is trivial. We denote this malnormal subgroup system by Apφq.
Note that, if H is a subgroup of Fn such that rHs P Apφq, there exists Φ�1 P φ�1 such
that Φ�1pHq � H and Φ�1|H is polynomially growing. Hence we have Apφq ¤ Apφ�1q.
By symmetry, we have

Apφq � Apφ�1q. (6.1)

Let A be a malnormal subgroup system and let φ P OutpFn,Aq be a relative outer
automorphism. We say that φ is atoroidal relative to A if, for every k P N�, the element
φk does not preserve the conjugacy class of any A-nonperipheral element. We say that
φ is expanding relative to A if Apφq ¤ A. Note that an expanding outer automorphism
relative to A is in particular atoroidal relative to A. When A � ∅, then the outer
automorphism φ is expanding relative to A if and only if for every nontrivial element
g P Fn, the length of the conjugacy class rgs of g in Fn with respect to some basis of
Fn grows exponentially fast under iteration of φ. Therefore, by a result of Levitt [Lev2,
Corollary 1.6], the outer automorphism φ is expanding relative to A � ∅ if and only if
φ is atoroidal relative to A � ∅.

Let A � trA1s, . . . , rArsu be a malnormal subgroup system and let F be a free factor
system. Let i P t1, . . . , ru. By [SW, Theorem 3.14] for the action of Ai on one of its

Cayley graphs, there exist finitely many subgroups A
p1q
i , . . . , A

pkiq
i of Ai such that:

p1q for every j P t1, . . . , kiu, there exists a subgroup B of Fn such that rBs P F and

A
pjq
i � B XAi;

p2q for every subgroup B of Fn such that rBs P F and B X Ai � teu, there exists

j P t1, . . . , kiu such that A
pjq
i � B XAi;

p3q the subgroup A
p1q
i � . . . �A

pkiq
i is a free factor of Ai.
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Thus, one can define a new subgroup system as

F ^A �
r¤
i�1

trA
p1q
i s, . . . , rA

pkiq
i su.

Since A is malnormal, and since, for every i P t1, . . . , ru, the group A
p1q
i � . . . � A

pkiq
i is

a free factor of Ai, it follows that the subgroup system F ^A is a malnormal subgroup
system of Fn. We call it the meet of F and A.

6.2.2 Graphs, markings and filtrations

Let n ¥ 2. A marked graph is a pointed (at a vertex �), connected, finite graph G (in the
sense of [Ser1]) whose fundamental group is isomorphic to Fn which is equipped with a
marking, that is an isomorphism ρ : Fn Ñ π1pG, �q.

We denote by V G (resp. ~EG) the set of vertices (resp. edges) of G. Given an edge
e of G, we denote by opeq the origin of e, by tpeq the terminal point of e and by e�1 the
edge of G such that ope�1q � tpeq and tpe�1q � opeq. An edge path γ of length m is a
concatenation of m edges γ � e1e2 . . . em such that for every i P t1, . . . ,m� 1u, we have
tpeiq � opei�1q. The length of γ is denoted by `pγq. The edge path γ is reduced if for
every i P t1, . . . ,m� 1u, we have ei � e�1

i�1. A reduced edge path is cyclically reduced if

tpemq � ope1q and em � e�1
1 . A cyclically reduced edge path is also called a circuit. For

any edge path γ, there exists a unique reduced edge path homotopic to γ relatively to
endpoints, we denote it by rγs.

Let G and G1 be two marked graphs. A graph map is a pointed homotopy equivalence
f : G Ñ G1 such that fpV Gq � V G1 and such that the restriction of f to the interior
of an edge is an immersion. Thus, for every edge e P ~EG, the image fpeq determines a
reduced edge path rfpeqs. Given φ P OutpFnq and pG, ρq a marked graph, a topological
representative of φ is a graph map f : G Ñ G such that the outer automorphism class
of ρ�1 � f� � ρ P AutpFnq is φ.

Let f : G Ñ G be a topological representative. Let w P Fn. We denote by γw the
unique circuit in G which represents the conjugacy class of w.

Let f : G Ñ G be a topological representative. A filtration for G is an increasing
sequence of f -invariant (not necessarily connected) subgraphs ∅ � G0 � G1 � . . . �
Gk � G. Let r P t1, . . . , ku. The r-th stratum in this filtration, denoted by Hr is the
(not necessarily connected) closure of Gr � Gr�1. For every r P t1, . . . , ku, there exists
a square matrix Mr associated with the stratum Hr called the transition matrix of Hr.
The rows and columns of Mr are indexed by the nonoriented edges in Hr and the entry
associated with the pair of nonoriented edges defined by pe, e1q P pEHrq

2 is the number
of occurrences of e1 and e1�1 in rfpeqs.

Recall that a nonnegative square matrix M � pMi,jqi,j is irreducible if for every pi, jq,
there exists p � ppi, jq such that Mp

i,j ¡ 0 and that M is primitive if there exists p P N�

such that every entry of Mp is positive. For r P t1, . . . , ku, we say that the stratum Hr

is irreducible if its associated matrix is irreducible and we say that Hr is primitive if its
associated matrix is primitive. Let r P t1, . . . , ku and suppose that Mr is irreducible.
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Then it has a unique real eigenvalue λr ¥ 1 called the Perron-Frobenius eigenvalue. Let
Hr be an irreducible stratum. Then Hr is exponentially growing (EG) if λr ¡ 1 and is
nonexponentially growing (NEG) otherwise. Finally, if the matrix associated with the
stratum Hr is the zero matrix, then Hr is called a zero stratum.

Let G be a marked graph of Fn and let K be a (possibly disconnected) subgraph of G.
The subgraph K determines a free factor system FpKq of Fn as follows. Let C1, . . . , Ck
be the noncontractible connected components of K. Then, for every i P t1, . . . , ku, the
connected component Ci determines the conjugacy class rAis of a subgroup Ai of π1pGq.
Then the set trA1s, . . . , rAksu is a free factor system FpKq of Fn.

Let F1 ¤ . . . ¤ Fi � trFnsu be a filtration of Fn. A geometric realization of the
filtration is a marked graph G equipped with an increasing sequence

∅ � G0 � G1 � . . . � Gj � G

of subgraphs of G such that for every k P t1, . . . , iu there exists ` P t1, . . . , ju such that
Fk � FpG`q.

6.2.3 Train tracks and CTs

In this section we introduce the technology of train tracks. Train tracks are a type of
graph maps introduced by Bestvina and Handel ([BH]). Even though there exist outer
automorphisms of Fn which do not have a topological representative which is a train
track, every outer automorphism has a power which has a topological representative
called a completely split train track map (CT). CT maps were introduced by Feighn and
Handel ([FH]). The definition of a CT map being quite technical, we will only state the
relevant properties needed for the rest of the article. First we need some preliminary
definitions.

Let G be a marked graph of Fn and let f : G Ñ G be a graph map. The map f
induces a derivative map Df : ~EG Ñ ~EG on the set of edges as follows. For every
e P ~EG, the map Dfpeq is equal to the first edge of the edge path fpeq. A turn in G is
an unordered pair te1, e2u of edges in G with ope1q � ope2q. A turn te1, e2u is degenerate
if e1 � e2, and is nondegenerate otherwise. A turn te1, e2u is illegal if there exists k P N�

such that tpDfqkpe1q, pDfq
kpe2qu is degenerate, and is legal otherwise. An edge path

γ � e1e2 . . . ei is legal if for every j P t1, . . . , iu, the turn te�1
j , ej�1u is legal.

In order to deal with relative outer automorphisms, we also need a notion of relative
legal paths. Let ∅ � G0 � G1 � . . . � Gj � G be the geometric realization of some
filtration of Fn which is f -invariant and let r P t1, . . . , ju. We say that a turn te1, e2u
is contained in the stratum Hr if te1, e2u � ~EHr. An edge path γ of G is r-legal if
every turn in γ that is contained in Hr is legal. A connecting path for Hr is a nontrivial
reduced path γ in Gr�1 whose endpoints are in Gr�1XHr. A path γ in G is r-taken (or
taken if γ is r-taken for some r) if it is contained in the reduced image of an iterate of an
edge e P ~EHr, where Hr is an irreducible stratum. The height of a path γ is the maximal
r such that γ contains an edge of Hr. We can now define the notion of a relative train
track map due to Bestvina and Handel ([BH]).
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Definition 6.2.1. Let n ¥ 3. Let G be a marked graph and let f : G Ñ G be a graph
map equipped with a f -invariant filtration ∅ � G0 � G1 � . . . � Gj � G. The map f
is a relative train track map if, for each exponentially growing stratum Hr, the following
holds:

p1q for every edge e P ~EHr and every k P N�, we have pDfqkpeq P ~EHr;

p2q for every connecting path γ for Hr, the reduced path rfpγqs is also a connecting
path for Hr;

p3q if γ is a height r reduced edge path which is r-legal, then so is rfpγqs.

In order to explain the properties of CT maps that we will use in this paper, we will
need some further definitions regarding edge paths in a graph.

Definition 6.2.2. Let n ¥ 3 and let G be a marked graph of Fn equipped with an f -
invariant filtration ∅ � G0 � G1 � . . . � Gj � G. Let γ be an edge path of G.

p1q The path γ is a periodic Nielsen path if there exists k P N� such that rfkpγqs � γ.
The minimal such k is the period, and if k � 1, then γ is a Nielsen path.

p2q A (periodic) indivisible Nielsen path ((p)INP) is a (periodic) Nielsen path that
cannot be written as a nontrivial concatenation of (periodic) Nielsen paths.

p3q The path γ is an exceptional path if there exist a cyclically reduced Nielsen path
w, edges e1, e2 P ~EG and integers d1, d2, p P Z� such that for every i P t1, 2u, we have
fpeiq � eiw

di and γ � e1w
pe�1

2 . The value |p| is called the width of γ.

Definition 6.2.3. Let n ¥ 3, let G be a marked graph of Fn and let f : G Ñ G be a
relative train track map equipped with a filtration ∅ � G0 � G1 � . . . � Gj � G. Let
γ be a reduced edge path or a circuit of G.

p1q A splitting of γ is a decomposition of γ into edge subpaths γ � γ1γ2 . . . γi such that
for every k P N�, we have

rfkpγqs � rfkpγ1qs . . . rf
kpγiqs,

that is one can tighten the image of fkpγq by tightening the image of every fkpγjq (where
opγq is the base point in the case where γ is a circuit).

p2q Let γ be a circuit. A circuital splitting is a splitting γ � γ1 . . . γi of γ such that
for every k P N�, the concatenation rfkpγ1qs . . . rf

kpγiqs defines a path whose initial and
terminal directions are distinct.

p3q Let γ � γ1γ2 . . . γi be a splitting of γ. The splitting is complete if for every
j P t1, . . . , iu, the subpath γj is one of the following:

 an edge in an irreducible stratum;

 an INP;

 an exceptional path;

 a connecting path in a zero stratum that is both maximal (for the inclusion in γ) and
taken.
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Let n ¥ 2, let G be a marked graph of Fn and let f : GÑ G be a relative train track
map with respect to a filtration ∅ � G0 � G1 � . . . � Gj � G. Let γ be an edge path
of G. Such paths in the above list are called splitting units. When γ has a complete
splitting, we say that γ is completely split.

Definition 6.2.4. [HaM4, Fact 2.16] Let p P t0, . . . , ju. Let γ � γ1γ2 . . . γi be a splitting
of γ. This splitting is complete relatively to Gp, or relatively complete if there is no
ambiguity, if for every j P t1, . . . , iu, the subpath γj is one of the following:

 a splitting unit of height at least equal to p� 1;

 a subpath in Gp.

We now describe some properties of CT maps whose complete definition can be found
in [FH, Definition 4.7].

Proposition 6.2.5. Let n ¥ 3 and let G be a marked graph of Fn. Let f : G Ñ G be a
completely split train track (CT) map. Then f satisfies the following properties.

p1q The map f is a relative train track map and every stratum in G is either irreducible
or a zero stratum ([FH, Definition 4.7]).

p2q If Hr is an NEG stratum, then Hr consists of a single edge er. Moreover, either er
is fixed by f or fperq � erur where ur is a nontrivial completely split circuit in Gr�1.
The terminal endpoint of each NEG stratum is fixed ([FH, Lemma 4.21]).

p3q For every filtration element Gr, the stratum Hr is a zero stratum if and only if Hr

is a contractible component of Gr ([FH, Lemma 4.15]).

p4q For every zero stratum Hr, there exists a unique ` ¡ r such that H` is an EG
stratum and, for every vertex v P V Hr, we have v P V Hr X V H` and the link of v is
contained in V Hr Y V H` ([FH, Definition 4.7]).

p5q Every periodic Nielsen path has period one ([FH, Lemma 4.13]).

p6q For every edge e in an irreducible stratum, the reduced path fpeq is completely split.
For every taken connecting path γ in a zero stratum, rfpγqs is completely split.

p7q Every completely split path or circuit has a unique complete splitting.

p8q If γ is an edge path, there exists k0 P N� such that for every k ¥ k0, the reduced
path rfkpγqs is completely split ([FH, Lemma 4.25]).

p9q If Hr is an EG stratum, there is at most one INP ρr of height r. The initial edges
of ρr and ρ�1

r are distinct oriented edges in Hr ([FH, Corollary 4.19]).

p10q If Hr is a zero stratum, no Nielsen path intersects Hr in at least one edge ([HaM4,
Fact I.1.43]).

p11q Let Hr be an NEG stratum such that Hr � teru, such that fperq � erur and
such that ur is not trivial. There exists an INP σ which intersects Hr nontrivially if
and only if ur is a Nielsen path and there exists s P Z such that σ � eru

s
re
�1
r ([FH,

Definition 4.7]).
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Definition 6.2.6. Let n ¥ 2 and let G be a marked graph of Fn. Let f : G Ñ G be a
completely split train track (CT) map. Let Hr be an NEG stratum and let er be the
edge of Hr. Let ur be such that fperq � erur. The edge er is called a fixed edge if ur is
trivial, a linear edge if ur is a Nielsen path and a superlinear edge otherwise.

Lemma 6.2.7. [HaM4, Fact 1.39] Let n ¥ 2 and let G be a marked graph of Fn. Let
f : G Ñ G be a CT map. Let γ be a Nielsen path. Then γ is completely split, and all
terms in the complete splitting of γ are fixed edges and INPs.

Lemma 6.2.8. [HaM4, Fact 1.41] Let n ¥ 2 and let G be a marked graph of Fn. Let
f : GÑ G be a CT map.

p1q Let Hr be a zero stratum and let H` be the EG stratum given by Proposition 6.2.5 p4q.
There does not exist an INP of height `.

p2q Let Hr be an EG stratum and let ρr be an INP of height r. Then ρr has a de-
composition ρr � a0b1a1 . . . bkak where, for every i P t0, . . . , ku, the subpath ai is a
nontrivial path contained in Hr and for every i P t1, . . . , ku, the subpath bi is a Nielsen
path contained in Gr�1.

An INP is an EG INP if the maximal stratum it intersects is an EG stratum and is
an NEG INP otherwise. Note that, by Proposition 6.2.5 p9q, there exists only finitely
many EG INPs.

Lemma 6.2.9. Let n ¥ 2. Let φ P OutpFnq. Suppose that there exists a CT map f : GÑ G
representing a power of φ. Let γ1 be a nontrivial path in a zero stratum. There does not
exist a reduced edge path γ � αγ1 where α is either an INP or a fixed edge.

Proof. Suppose towards a contradiction that such a path γ � αγ1 exists. Let Hr be the
zero stratum containing γ1. Note that, by Proposition 6.2.5 p10q, the path α does not
contain edges in Hr. By Proposition 6.2.5 p4q, there exists ` ¡ r such that H` is an EG
stratum and such that any edge adjacent to a vertex in Hr and not contained in Hr is in
H`. Hence α has height at least `. Since H` is an EG stratum, the path α is not a fixed
edge. Hence α is an INP. By Lemma 6.2.8 p1q, the height of α is not equal to `. Let
j ¡ ` be the height of α. We distinguish between three cases according to the nature of
the stratum Hj . By Proposition 6.2.5 p10q, the stratum Hj is not a zero stratum. Hence,
by Proposition 6.2.5 p1q, the stratum Hj is irreducible. By Proposition 6.2.5 p11q, if Hj

is an NEG stratum, then α is of the form α � ejw
ke�1
j , where ej P Hj , k is an integer

and w is a closed Nielsen path in Gj�1. But then e�1
j is adjacent to a vertex in Hr.

This contradicts Proposition 6.2.5 p4q since j ¡ `. If Hj is an EG stratum, then by
Lemma 6.2.8 p2q, the path α is the concatenation of subpaths in Hj and Nielsen paths
of height at most j� 1, and α ends with an edge in Hj . By Proposition 6.2.5 p4q, we see
that j � `. This contradicts Lemma 6.2.8 p1q.

The next theorem due to Feighn and Handel is the main existence theorem of the
CT maps.
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Theorem 6.2.10. [FH, Theorem 4.28, Lemma 4.42] Let n ¥ 3. There exists a uniform
constant M � Mpnq ¥ 1 such that for every φ P OutpFnq and every φM -invariant
filtration C of Fn, there exists a CT map f : GÑ G that represents φM and realizes C.

6.2.4 Relative currents

In this section, we define the notion of currents of Fn relative to a malnormal subgroup
system. The section follows [Gue4] (see the work of Gupta [Gup1] for the particular case
of free factor systems and Guirardel and Horbez [GuH1] in the context of free products
of groups). It is closely related to the notion of conjugacy classes of A-nonperipheral
elements of Fn.

Let B8Fn be the Gromov boundary of Fn. The double boundary of Fn is the quotient
topological space

B2Fn � pB8Fn � B8Fnz∆q { �,

where � is the equivalence relation generated by the flip relation px, yq � py, xq and
∆ is the diagonal, endowed with the diagonal action of Fn. We denote by tx, yu the
equivalence class of px, yq.

Let T be the Cayley graph of Fn with respect to a free basis B. The boundary of T
is naturally homeomorphic to B8Fn and the set B2Fn is then identified with the set of
unoriented bi-infinite geodesics in T . Let γ be a finite geodesic path in T . The path γ
determines a subset in B2Fn called the cylinder set of γ, denoted by Cpγq, which consists
in all unoriented bi-infinite geodesics in T that contain γ. Such cylinder sets form a basis
for a topology on B2Fn, and in this topology, the cylinder sets are both open and closed,
hence compact. The action of Fn on B2Fn has a dense orbit.

For every nontrivial subgroup A of Fn, let TA be the minimal A-invariant subtree of T .
Let A � trA1s, . . . , rArsu be a malnormal subgroup system of Fn. By malnormality of A,
there exists L P N� such that for all distinct subgroups A,B of Fn such that rAs, rBs P
A, the diameter of the intersection TA X TB is at most L (see for instance [HaM4,
Section I.1.1.2]). Let i P t1, . . . , ru. Let Γi be the set of subgroups B of Fn such that
there exists gB P Fn such that B � gBAig

�1
B and the tree TB contains the base point e of

T . Note that, by malnormality of A, for every i P t1, . . . , ru, the set Γi is finite. For an
element w P Fn, let xγw be the geodesic path in T starting at e and labeled by w. Let Ci
be the set of elements w of Fn such that the length of xγw is equal to L� 2 and, for every
B P Γi, the path xγw is not contained in TB. Let C �

�r
i�1Ci. Since we are looking at

geodesic paths of length equal to L � 2, the set C is finite. Moreover, it only depends
on the choice of A, B and L.

Lemma 6.2.11. [Gue4, Lemma 2.3] Let B, T , A � trA1s, . . . , rArsu, L P N�, Γ1, . . . ,Γr,
C be as above. The finite set C � C pA1, . . . , Akq is nonempty. Moreover, it satisfies the
following properties:

p1q every A-nonperipheral cyclically reduced element g P Fn has a power which contains
an element of C as a subword;
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p2q for every A-nonperipheral cyclically reduced element g P Fn, if cg is the geodesic ray
in T starting from e obtained by concatenating infinitely many edge paths labeled by g,
there exists an edge path in cg labeled by a word in C at distance at most L � 2 from�r
i�1

�
BPΓi

TB;

p3q if γ is a path in T which contains a subpath labeled by an element of C , then for
every i P t1, . . . , ru and every g P Fn, the path γ is not contained in TgAig�1.

Let A be a nontrivial subgroup of Fn of finite rank. The induced A-equivariant
inclusion B8A ãÑ B8Fn induces an inclusion B2A ãÑ B2Fn. Let

B2A �
r¤
i�1

¤
gPFn

B2
�
gAig

�1
�
.

Let B2pFn,Aq � B2Fn � B2A be the double boundary of Fn relative to A. This subset is
invariant under the action of Fn on B2Fn and inherits the subspace topology of B2Fn.

Lemma 6.2.12. [Gue4, Lemma 2.5] Let CylpC q be the set of cylinder sets of the form
Cpγq, where the element of Fn determined by the geodesic edge path γ contains an element
of C as a subword. We have

B2pFn,Aq �
¤

CpγqPCylpC q

Cpγq.

In particular, the space B2pFn,Aq is an open subset of B2Fn.

Lemma 6.2.13. [Gue4, Lemma 2.6, Lemma 2.7] Let n ¥ 3 and let A be a malnormal
subgroup system of Fn. The space B2pFn,Aq is locally compact and the action of Fn on
B2pFn,Aq has a dense orbit.

We can now define a relative current. Let n ¥ 3 and let A be a malnormal subgroup
system of Fn. A relative current on pFn,Aq is a (possibly zero) Fn-invariant Radon mea-
sure µ on B2pFn,Aq. The set CurrpFn,Aq of all relative currents on pFn,Aq is equipped
with the weak-� topology: a sequence pµnqnPN in CurrpFn,AqN converges to a current
µ P CurrpFn,Aq if and only if for all disjoint clopen subsets S, S1 � B2pFn,Aq, the se-
quence pµnpS � S1qqnPN converges to µpS � S1q.

The group OutpFn,Aq acts on CurrpFn,Aq as follows. Let φ P OutpFn,Aq, let Φ be a
representative of φ, let µ P CurrpFn,Aq and let C be a Borel subset of B2pFn,Aq. Then,
since φ preserves A, we see that Φ�1pCq P B2pFn,Aq. Then we set

φpµqpCq � µpΦ�1pCqq,

which is well-defined since µ is Fn-invariant.

Every conjugacy class of nonperipheral element g P Fn determines a relative current
ηrgs as follows. Suppose first that g is root-free, that is g is not a proper power of any
element in Fn. Let γ be a finite geodesic path in the Cayley graph T . Then ηrgspCpγqq
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is the number of axes in T of conjugates of g that contain the path γ. If g � hk with
k ¥ 2 and h root-free, we set ηrgs � k ηrhs. Such currents are called rational currents.

Let G be a pointed connected graph whose fundamental group is isomorphic to
Fn. Let rG be the universal cover of G. There exists a (nonunique, but fixed) Fn-
equivariant quasi-isometry rm : rG Ñ T which extends uniquely to a homeomorphismpm : B8GÑ B8Fn. Therefore, if rγ is a reduced edge path in rG, we can define the cylinder
set in B2Fn defined by rγ as

C rmprγq � Cprrmprγqsq.
Let γ be a reduced edge path in G and let rγ be a lift of γ in rG. Let µ P CurrpFn,Aq.

We define the number of occurrences of γ in µ as

xγ, µy rm � µpC rmprγqq. (6.2)

For every such graph G, we fix once and for all the quasi-isometry rm : rGÑ T . Therefore,
when the graph G is fixed, we will generally omit the mention of rm. We also define the
simplicial length of µ as:

‖µ‖ �
¸
eP ~EG

xe, µy .

For any given reduced edge path γ, the functions xγ, .y and ‖.‖ are continuous, linear
functions of CurrpFn,Aq.

Let µ P CurrpFn,Aq. The support of µ, denoted by Supppµq, is the support of the
Borel measure µ on B2pFn,Aq. We recall that Supppµq is a closed subset of B2pFn,Aq.

In the rest of the article, rather than considering the space of relative currents itself,
we will consider the set of projectivized relative currents, denoted by

PCurrpFn,Aq � pCurrpFn,Aq � t0uq{ �,

where µ � ν if there exists λ P R�
� such that µ � λν. The projective class of a current

µ P CurrpFn,Aq will be denoted by rµs. We have the following properties.

Lemma 6.2.14. [Gue4, Lemma 3.3] Let n ¥ 3 and let A be a malnormal subgroup system
of Fn. The space PCurrpFn,Aq is compact.

Proposition 6.2.15. [Gue4, Theorem 1.1] Let n ¥ 3 and let A be a malnormal subgroup
system of Fn. The set of projectivised rational currents about nonperipheral elements of
Fn is dense in PCurrpFn,Aq.

6.3 The polynomially growing subgraph of a CT map

In this section, let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq.
Let f : GÑ G be a CT map with filtration ∅ � G0 � G1 � . . . � Gk � G representing
a power of φ and such that there exists p P t1, . . . , k � 1u such that FpGpq � F .
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We construct a subgraph of G, called the polynomially growing subgraph of G and
denoted by GPG, which encaptures the information regarding polynomial growth in the
graph G. We then define a notion of length relative to GPG, called the exponential length,
which measures the time spent by an edge path outside of GPG. Finally, we construct a
subspace of PCurrpFn,Fq which consists in the currents whose support maps to GPG.

6.3.1 Definitions and first properties

We define in this section the polynomially growing subgraph GPG of G and proves some
of its properties.

Definition 6.3.1. p1q Let GPG be the (not necessarily connected) subgraph of G whose
edges are the edges e of G in an NEG stratum such that for every k P N�, the path
rfkpeqs does not contain a splitting unit which is an edge in an EG stratum.

p2q Let N 1
PG be the set of all Nielsen paths in G.

p3q Let NPG be the subset of N 1
PG consisting in all Nielsen paths which are either EG

INPs or concatenations of (at least 2) nonclosed EG INPs.

p4q Let Z be the subgraph of G whose edges are the edges contained in a zero stratum.

Note that, by Lemma 6.2.7, every path in N 1
PG (and hence every path in NPG) has

a complete splitting consisting in fixed edges and INPs. Since a complete splitting is
unique by Proposition 6.2.5 p7q, if γ is a reduced path in NPG, then the splitting of γ
given in Definition 6.3.1 p3q is the complete splitting of γ. Moreover, γ is either an EG
INP or the complete splitting of γ has at least two splitting units and all of them are
nonclosed EG INPs. In particular, the set NPG does not contain Nielsen paths such that
one of their splitting units is either a fixed edge or an NEG INP. Moreover, a Nielsen
path which is a concatenation of at least 2 splitting units and such that one of them is
a closed EG INP is not in NPG. Excluding such paths from NPG ensures a finiteness
result for NPG (see Lemma 6.3.4 p1q). Informally, paths in NPG play the role of low-
dynamics bridges between connected components of GPG (see Figure 6.1). We will see
in Proposition 6.3.13 that a cycle in G has polynomial growth under iteration of f if and
only if is a concatenation of paths in GPG and paths in NPG.

 

GPG GPG

γ

Figure 6.1: A path γ in NPG between two connected components of GPG.

Note that, with p defined at the beginning of Section 6.3, one can similarly define
the polynomially growing subgraph of Gp, denoted by GPG,F , which is the subgraph
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GPGXGp. We can also define similarly N 1
PG,F , NPG,F and ZF by considering the paths

of N 1
PG, NPG and Z contained in Gp.

We now recall a lemma due to Bestvina and Handel regarding r-legal paths.

Lemma 6.3.2. [BH, Lemma 5.8] Let f : GÑ G be a relative train track map. Let Hr be
an EG stratum. Suppose that σ � a1b1a2 . . . a`b` is the decomposition of an r-legal path
into subpaths aj � Hr and bj � Gr�1 (where a1 and b` might be trivial). Then for every
i P t1, . . . , `u, the path fpa`q is a reduced edge path and

rfpσqs � fpa1qrfpb1qsfpa2q . . . fpa`qrfpb`qs.

Note that, if Hr is an EG stratum and if σ � a1b1a2 . . . a`b` is an r-legal path as in
Lemma 6.3.2, then for every i P t1, . . . , `u, as ai � Hr, the path ai grows exponentially
fast under iteration of f . Hence, by Lemma 6.3.2 the path σ grows exponentially fast
under iteration of f . We now prove some results regarding paths in NPG.

Lemma 6.3.3. Let σ be an EG INP.

p1q There do not exist nontrivial subpaths c, d of σ such that σ � cdc.

p2q Let γ P tσ�1u. There do not exist paths γ1, γ2, γ3 such that γ2 is nontrivial, γ1 or
γ3 is nontrivial and σ � γ1γ2 and γ � γ2γ3.

Proof. p1q Let r be the height of σ. Suppose towards a contradiction that such a
decomposition σ � cdc exists. By [BH, Lemma 5.11], there exist two distinct r-legal
paths α and β such that σ � αβ and such that the turn tDfpα�1q, Dfpβqu is the
only height r illegal turn. Moreover, there exists a path τ such that rfpαqs � ατ and
rfpβqs � τ�1β. Hence c is contained in α and in β and is r-legal. Thus, there exist two
paths d1 and d2 such that α � cd1 and β � d2c.

First we claim that for every k P N�, there exists a path τk such that rfkpαqs � ατk
and rfkpβqs � τ�1

k β. The proof is by induction on k. The base case follows from the
existence of τ . Suppose now that τk�1 exists. We have:

rfkpαqs � rfpατk�1qs � rfpαqsrfpτk�1qs � ατ rfpτk�1qs � ατk,

where the second equality comes from the fact that α is r-legal, that α ends with an
edge in Hr and from Lemma 6.3.2. Similarly, we have rfkpβqs � τ�1

k β. This proves the
claim.

We now claim that, up to taking a power of f , there exists a cycle e such that
rfpcqs � αeβ. Indeed, by Proposition 6.2.5 p9q, the path σ starts and ends with an edge
in Hr. Hence the path c starts and ends with an edge in Hr. Since c is r-legal, we see
that the length of rfkpcqs goes to infinity as k goes to infinity by Lemma 6.3.2. But,
for every k P N�, there exists a path τk such that rfkpαqs � ατk and rfkpβqs � τ�1

k β.
By Lemma 6.3.2, since c is the initial segment of α and since α is r-legal, there is no
identification between rfpcqs and rfpd1qs. Thus, there exists k1 P N� such that rfk1pcqs
starts with α. Similarly, there exists k2 P N� such that rfk2pcqs ends with β. Thus, up
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to taking a power of f , and since the paths α and β are r-legal, we may suppose that
there exists a (reduced) cycle e such that rfpcqs � αeβ.

Finally, we claim that the cycle e is trivial. Indeed, since the paths α and β are
r-legal, and since c starts and ends with an edge in Hr, we see that

rfpαqs � rfpcqsrfpd1qs � αeβrfpd1qs

and
rfpβqs � rfpd2qsrfpcqs � rfpd2qsαeβ.

Recall that there exists k P N� such that rfpαqs � ατk and rfpβqs � τ�1
k β. This implies

that τk � eβrfpd1qs and that τ�1
k � rfpd2qsαe, that is τk � e�1α�1rfpd2qs

�1. This shows
that e � e�1, that is, e is trivial. This proves the claim.

Therefore, we see that rfpcqs � αβ � σ. But σ contains a height r illegal turn,
whereas c is an r-legal path. This contradicts Proposition 6.2.5 p1q and Definition 6.2.1 p3q.
This concludes the proof of p1q.

p2q Let σ, γ be as in the assertion of the lemma. Suppose towards a contradiction
that there exist three paths γ1, γ2, γ3 such that γ2 is nontrivial and σ � γ1γ2 and γ �
γ2γ3. Suppose first that γ � σ. Then either a nontrivial initial segment of γ2 is its
terminal segment or there exists a path γ4 such that σ � γ2γ4γ2. The first case is not
possible as otherwise σ would contain two illegal turns. This contradicts the fact that σ
contains a unique illegal turn (see [BH, Lemma 5.11]). The second case is not possible
by Lemma 6.3.3 p1q. Suppose now that γ � σ�1. But σ�1 � γ�1

2 γ�1
1 . Therefore we see

that γ�1
2 � γ2, that is, γ2 is trivial. This leads to a contradiction. This concludes the

proof.

Lemma 6.3.4. p1q There are only finitely many paths in NPG.

p2q Let γ, γ1 be paths in NPG. Suppose that γ has a decomposition γ � γ1γ2 such that
γ2 is an initial segment of γ1. Then γ1, γ2 P NPG and γ1γ

1 P NPG.

p3q Let γ, γ1 be paths in NPG. Suppose that γ1 � γ. Then one of the following holds:
paq there exist (possibly trivial) paths γ1, γ2 P NPG such that γ � γ1γ

1γ2;
pbq there exists an INP σ in the complete splitting of γ such that γ1 � σ and γ1 is

not an initial or a terminal segment of σ.

p4q Let γ, γ1 be two paths in NPG. Suppose that there exist three paths γ1, γ2 and γ3

such that γ � γ1γ2, γ1 � γ�1
2 γ3 and the path γ1γ3 is reduced. Then γ2 P NPG and

γ1γ3 P NPG.

Proof. p1q First note that, since there are only finitely many EG strata in G, there
are only finitely many EG INPs by Proposition 6.2.5 p9q. Let γ be a path in NPG

which is a concatenation of at least 2 nonclosed EG INPs. Let γ � σ1 . . . σk be the
complete splitting of γ given by Lemma 6.2.7. As γ is a concatenation of nonclosed EG
INPs, every splitting unit of γ is a nonclosed EG INP. By Proposition 6.2.5 p9q, an INP
contained in the complete splitting of γ is entirely determined by the highest stratum
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Hr such that γ contains an edge of Hr. For every i P t1, . . . , ku, let ri be the height
of σi. Let i P t2, . . . , ku. Since σi is not closed, by [HaM4, Fact 1.42(1)(a)], one of the
endpoints of σi is not contained in Gri�1. Since there exists a unique INP of height ri by
Proposition 6.2.5 p9q, either ri�1   ri or ri   ri�1. We treat the case r1   r2, the case
r2   r1 being similar. We claim that, for every i P t1, . . . , k�1u, we have ri�1 ¡ ri. The
proof is by induction on i. The base case is true by hypothesis. Let i P t2, . . . , k � 1u.
Since ri�1   ri, the origin of σi is contained in Gri�1 and the terminal point of σi is not
contained in Gri�1. Thus, the first edge of σi�1 is contained in G�Gri�1. Since there
exists a unique INP of height ri we necessarily have ri   ri�1. Thus, the sequence of
maximal heights of INPs in γ is (strictly) monotonic. Since there are only finitely many
EG strata, there are only finitely many paths in NPG. This concludes the proof of p1q.

p2q Let γ1 P NPG and let γ � γ1γ2 be as in the assertion of the lemma. We claim that
γ2 P NPG and that the splitting units of γ2 are splitting units of both γ and γ1. This
will conclude the proof of Assertion p2q because γ1 will be a concatenation of splitting
units of γ, that is, it will be either an EG INP or a concatenation of nonclosed EG INPs
(cf Definition 6.3.1 p3q). Hence we will have γ1 P NPG and γ1γ

1 P NPG. We show that
γ2 is a concatenation of INPs which are splitting units of γ1. A similar proof will show
that the splitting units of γ2 will also be splitting units of γ. Indeed, the path γ1 has
a splitting γ1 � σ11σ

1
2 . . . σ

1
k which consists in EG INPs. Let r1 be the height of σ11. By

Proposition 6.2.5 p9q, there exists a unique unoriented INP of height r1 and this INP
starts and ends with an edge in Hr1 . Let σ be the INP of γ which has a decomposition
σ � σ1σ2, where σ2 is a nontrivial initial segment of γ1. As every splitting unit of γ is
an EG INP, so is σ. Let r be the height of σ. Since the first edge of σ11 is of height r1, we
cannot have r1 ¡ r. If r � r1, then by the uniqueness statement in Proposition 6.2.5 p9q,
we have σ11 P tσ, σ

�1u. Note that, if σ1 is nontrivial, there exist reduced paths τ1, τ2 such
that σ � σ1τ1 and σ11 � τ1τ2. This contradicts Lemma 6.3.3 p2q applied to σ and σ11.
Thus, we see that σ � σ11 and σ11 � γ2. If r1   r, then by Lemma 6.2.8 p2q, the path σ
has a decomposition σ � a1b1 . . . bk�1ak such that, for every i P t1, . . . , ku, the path ai
is a path in Hr and for every i P t1, . . . , k � 1u, the path bi is a Nielsen path in Gr�1.
Hence there exists i P t1, . . . , k � 1u such that σ11 is contained in bi. Therefore, we see
that σ11 � σ � γ. As σ11 � γ1, we see that σ11 � γ X γ1 � γ2. If γ2 � σ11, then we are
done. Otherwise, the path γ2 contains an edge of σ12. As σ12 is an EG INP, the same
argument as for σ11 shows that σ12 � γ2, and an inductive argument shows that γ2 is a
concatenation of INPs in the splitting of γ1. Hence γ2 is a Nielsen path. Therefore, we
see that γ2 P NPG and that γ2 is composed of splitting units of γ1. Similarly, we see that
γ2 is composed of splitting units which are splitting units of both γ and γ1. Hence γ1 is
composed of splitting units of γ. This concludes the proof of p2q.

p3q Let γ, γ1 be as in the assertion of the lemma. Let γ � σ1 . . . σk be the complete
splitting of γ and let γ1 � σ11 . . . σ

1
m be the complete splitting of γ1, which exist by

Lemma 6.2.7. Recall that every splitting unit of both γ and γ1 is an EG INP. There
exists i P t1, . . . , ku such that σi contains an initial segment of σ11. We claim that σ11 is
either equal to σi or γ1 is strictly contained in σi. Indeed, let r be the height of σi and
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let r1 be the height of σ11. Since the first edge of σ11 is of height r1, we cannot have r1 ¡ r.
Suppose first that r1   r. By Lemma 6.2.8 p2q, the path σi has a decomposition

σi � a1b1 . . . bp�1ap such that, for every i P t1, . . . , pu, the path ai is a path in Hr and
for every j P t1, . . . , p � 1u, the path bj is a Nielsen path in Gr�1. Hence there exists
j P t1, . . . , p�1u such that σ11 is contained in bj . We claim that, for every ` P t1, . . . ,mu,
the splitting unit σ1` is contained in bj . The proof is by induction on `. For the base case,
we already know that σ11 � bj . Suppose that for some ` P t2, . . . ,mu, the path σ1`�1 is
contained in bj . By Proposition 6.2.5 p9q, the path σi ends with an edge in Hr. Hence the
path ap is nontrivial. Since σ1`�1 is contained in bj , the path σ1` intersects σi nontrivially.
Let r` be the height of σ1`. Recall that σ1` is an EG INP. By Proposition 6.2.5 p9q, the
path σ1` starts with an edge in Hr` . Hence r` ¤ r. Suppose towards a contradiction
that r` � r. Then, by the uniqueness statement of Proposition 6.2.5 p9q, we see that
σ1` P tσ

�1
i u. As σi contains an initial segment of σ1`, there exist three paths γ1, γ2 and

γ3 of G such that γ2 is nontrivial and σi � γ1γ2 and σ1` � γ2γ3. Since σ1`�1 is contained
in σi, the path γ1 is nontrivial. This contradicts Lemma 6.3.3 p2q. Therefore we have
r`   r. But then σ1` cannot intersect aj�1. This implies that σ1` is contained in bj . This
proves the claim and the fact that γ1 � σi and γ1 is not an initial or a terminal segment
of σi.

Suppose now that r � r1. By the uniqueness statement of Proposition 6.2.5 p9q, we
see that σ11 P tσ

�1
i u. As σi contains an initial segment of σ11, there exist three paths γ1, γ2

and γ3 of G such that γ2 is nontrivial and σi � γ1γ2 and σ11 � γ2γ3. By Lemma 6.3.3 p2q,
we necessarily have that γ1 and γ3 are trivial. Thus, we see that σi � σ11. Therefore,
γ1 is an initial segment of σi . . . σk and is a Nielsen path. By [FH, Corollary 4.12], for
every j P t1, . . . ,mu, we have σi�j�1 � σ1j . Thus, there exist (possibly trivial) paths
γ1, γ2 P NPG such that γ � γ1γ

1γ2. This concludes the proof of p3q.

p4q Let γ, γ1, γ1, γ2 and γ3 be as in the assertion of the lemma. Let γ � α1 . . . αk and
γ1 � β1 . . . β` be the complete splittings of γ and γ1 given by Lemma 6.2.7. By definition
of NPG, every splitting unit of γ and γ1 is an EG INP. Let i P t1, . . . , ku be such that
αi contains the first edge of γ2. Let j P t1, . . . , `u be such that βj contains the last edge
of γ�1

2 . We claim that αi � γ2 and that βj � γ�1
2 . By [FH, Corollary 4.12] applied

to γ�1
2 and γ�1, there exists a path δi contained in αi such that the decomposition

γ2 � δiαi�1 . . . αk is a splitting of γ2. Similarly, there exists a path δ1j in βj such that

γ�1
2 � β1 . . . βj�1δ

1
j is a splitting of γ�1

2 . By Proposition 6.2.5 p9q, an EG INP starts
with an edge of highest height and an EG INP is entirely determined by its height.
Hence αk � β�1

1 . Note that the paths δiαi�1 . . . αk�1 and β2 . . . βj�1δ
1
j satisfy the same

hypotheses as δiαi�1 . . . αk and β1 . . . βj�1δ
1
j . Applying the same arguments, we see that

i � j and for every s P t1, . . . , j� 1u, we have βs � α�1
k�s�1. Hence we see that δi � δ1�1

j .
Let r be the height of αi and let r1 be the height of βj . Note that by Proposition 6.2.5 p9q
applied to αi and βj , the path δi ends with an edge in Hr and δ1�1

j ends with an edge
in Hr1 . Therefore, we see that r � r1. By uniqueness of EG INPs of height ri given by
Proposition 6.2.5 p9q, and since γ1γ3 is reduced, we see that αi � β�1

j , that αi � γ2 and

that βj � γ�1
2 . This shows that γ2 is a path in NPG. By Assertion p2q applied to γ and
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γ2, the path γ1 is contained in NPG. Similarly, we see that the path γ3 is contained in
NPG. Since the path γ1γ3 is reduced, we see that γ1γ3 P NPG. This concludes the proof.

Lemma 6.3.5. Let γ and γ1 be two reduced edge paths in G which are concatenations of
paths in GPG and NPG. Suppose that there exist three paths γ1, γ2 and γ3 such that
γ � γ1γ2, γ1 � γ�1

2 γ3 and γ1γ3 is reduced. Then γ2 and γ1γ3 are concatenations of paths
in GPG and NPG.

Proof. Let γ � b0a1b1 . . . akbk be the decomposition of the path γ such that for every
i P t0, . . . , ku, the path bi is in GPG and for every i P t1, . . . , ku, the path ai is a
maximal subpath of γ contained in NPG. The existence of the paths ai follows from
Lemma 6.3.4 p2q. Let γ1 � d0c1d1 . . . c`d` be the similar decomposition of γ1. Let e be
the initial edge of γ2.

Claim. There exists i P t0, . . . , ku such that bi contains e if and only if there exists
j P t0, . . . , `u such that the edge e�1 is contained in dj .

Proof. The proof of the two directions being similar, we only prove one direction.
Suppose that there exists i P t0, . . . , ku such that bi contains e. Suppose towards a
contradiction that there exists j P t1, . . . , `u such that e�1 is contained in cj . It follows
that there exists an EG INP σ of cj such that e�1 is contained in σ. Let r be the height
of σ. Let δ�1 be the subpath of σ contained in γ�1

2 . Note that, as γ�1
2 is an initial

segment of γ1, the path δ�1 is an initial segment of σ. By Proposition 6.2.5 p9q, the
path δ�1 starts with an edge in Hr. As δ is contained in γ, the terminal edge of δ is
an edge in an EG stratum. Since every edge in GPG is contained in an NEG stratum,
there exists s P t1, . . . , ku such that as contains a terminal segment of δ. Since the
initial edge e of γ2 is not contained in as by hypothesis, the path δ contains the initial
segment δ1 of as. Hence the terminal segment δ1�1 of a�1

s is the initial segment δ1�1 of
σ. By Lemma 6.3.4 p2q applied to a�1

s and σ and [FH, Corollary 4.12], the path δ1�1

is contained in NPG and is a concatenation of splitting units of σ. As σ contains a
unique splitting unit, this implies that δ1 � σ. As δ1 � δ�1 � σ, we see that δ�1 � σ.
Note that the edge δ�1 ends with e�1. But σ ends with an edge in an EG stratum by
Proposition 6.2.5 p9q, that is, e�1 is an edge in an EG stratum. But every edge in bi
is contained in an NEG stratum by definition of GPG. This contradicts the fact that
e � bi. This concludes the proof of the claim.

Suppose first that there exists i P t1, . . . , ku, such that e is contained in bi. By
the above claim, there exists j P t0, . . . , `u such that e�1 is contained in dj . Let τ
and τ 1 be such that γ � b0a1b1 . . . aiτγ2 and γ1 � γ�1

2 τ 1cj�1 . . . d`. Note that τ � bi
and τ 1 � dj . Then we have γ1 � b0a1b1 . . . aiτ and γ3 � τ 1cj�1 . . . d`. Since the path
γ1γ3 is reduced, so is ττ 1. Moreover the reduced edge path ττ 1 is contained in GPG
and γ1γ3 � b0a1b1 . . . aiττ

1cj�1 . . . d` is a concatenation of paths in GPG and in NPG.
Moreover, let δ2 be the maximal subpath of bi contained in γ2. Then γ2 � δ2ai�1 . . . bk
is a concatenation of paths in GPG and in NPG.
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Suppose now that there exists i P t1, . . . , ku such that the initial edge e of γ2 is
contained in ai. By the above claim, there exists j P t1, . . . , `u such that e�1 is contained
in cj . Let δ1 be the terminal segment of ai contained in γ2. By Proposition 6.2.5 p9q, the
terminal edge e1 of δ1 is an edge in an EG stratum. Since GPG does not contain any edge
in an EG stratum, there exists s ¤ j such that cs contains e1�1. We claim that s � j.
Indeed, suppose towards a contradiction that s   j. Let δ�1 be the terminal segment
of cs whose first edge is e1�1. Then δ is a terminal segment of ai and δ is an initial
segment of c�1

s . By Lemma 6.3.4 p2q applied to ai and c�1
s , the path δ is a concatenation

of splitting units of ai and c�1
s . If δ is properly contained in δ1, there exists an EG INP

σ which is a splitting unit of ai and such that the last edge of σ is the last edge of δ1

not contained in δ. But, by Proposition 6.2.5 p9q, the terminal edge eσ of σ is in an EG
stratum. However, the first edge of ds (which is the edge e�1

σ ) is in GPG. This leads to
a contradiction. Hence δ � δ1. But δ intersects cj nontrivially. Hence we have s � j.

Therefore, δ1�1 is contained in cj . We claim that δ1�1 is an initial segment of cj .
Indeed, otherwise let ε1 be the initial segment of cj whose endpoint is the origin of δ1�1.
By Proposition 6.2.5 p9q, the first edge of ε1 is an edge in an EG stratum. Hence there
exists p ¡ i such that ap contains the terminal edge of ε1�1. Let ε�1 be the subpath of
ε1�1 contained in ap. Then ε�1 is an initial segment of ap and ε is an initial segment of
cj . By Lemma 6.3.4 p2q applied to a�1

p and cj , the path ε is a concatenation of splitting
units of a�1

p and cj . But since ε is properly contained in cj as it does not intersect δ1�1,
the path ε is adjacent to a splitting unit of cj . Since an EG INP starts with an edge
in an EG stratum by Proposition 6.2.5 p9q, the path bp�1 ends with an edge in an EG
stratum. This contradicts the fact that bp�1 is contained in GPG.

Hence δ1�1 is an initial segment of cj and δ1 is a terminal segment of ai. Let τ and
τ 1 be two paths such that ai � τδ1 and cj � δ1�1τ 1. By Lemma 6.3.4 p4q applied to ai
and cj , the path δ1 is in NPG and the path ττ 1 is in NPG. Hence γ2 � τbiai�1 . . . bk and
γ1γ3 � b0a1b1 . . . aiττ

1cj�1 . . . d` are concatenations of paths in GPG and in NPG. This
concludes the proof.

Lemma 6.3.6. Let γ be a closed Nielsen path of G. Then γ is a concatenation of paths
in GPG and in NPG.

Proof. Let γ be a closed Nielsen path of G. We prove the result by induction on the
height r of γ. If r � 0, there is nothing to prove. Assume that r ¥ 1. By Lemma 6.2.7,
the path γ is completely split, and every splitting unit in its complete splitting is either
an INP or a fixed edge. Let γ � σ1 . . . σk be the complete splitting of γ. For every
i P t1, . . . , ku, let ri be the height of σi. We prove that for every i P t1, . . . , ku, the path
σi is a concatenation of paths in GPG and in NPG. Let i P t1, . . . , ku. If σi is a fixed
edge, it is contained in GPG. Suppose that σi is an NEG INP. By Proposition 6.2.5 p11q,
there exists an edge eri P EHri , a Nielsen path w in Gri�1 and an integer s P Z� such
that σi � eriw

se�1
ri . Moreover, we have fperiq � eriw. Hence for every j P N�, we have

rf jperiqs � eriw
j . Since w is a Nielsen path, by Lemma 6.2.7, the path w is completely

split and its complete splitting is made of fixed edges and INPs. Thus, for every j P N�,
the complete splitting of rf jperiqs does not contain splitting units which are edges in
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EG strata. By definition of GPG, we have eri P
~EGPG. Moreover, by the induction

hypothesis, the path ws is a concatenation of paths in GPG and in NPG. Hence σi is
a concatenation of paths in GPG and in NPG. Finally, if σi is an EG INP, then it is
contained in NPG. Hence γ is a concatenation of paths in GPG and in NPG.

Lemma 6.3.7. Let γ be either an NEG INP or an exceptional path. Then γ is a concate-
nation of paths in GPG and in NPG.

Proof. We claim that there exist edges e1, e2 and a closed Nielsen path w such that
γ � e1we

�1
2 and, for every i P t1, 2u, we have fpeiq � eiw

di for some di P Z�. If γ
is an exceptional path, it follows from the definition. If γ is an NEG INP, let r be
the height of γ. Then Hr is an NEG stratum. As γ is a Nielsen path, we can apply
Proposition 6.2.5 p11q to conclude the proof of the claim. Since e1 and e2 are linear
edges, for every k P N�, the paths rfkpe1qs and rfkpe1qs do not contain splitting units
which are edges in EG strata. Thus e1 and e2 are contained in GPG. By Lemma 6.3.6,
the path w is a concatenation of paths in GPG and in NPG. Hence γ is a concatenation
of paths in GPG and in NPG. This concludes the proof.

Lemma 6.3.8. Let γ be a Nielsen path in G. Then γ is a concatenation of paths in GPG
and in NPG.

Proof. By Lemma 6.2.7, the path γ is completely split, and every splitting unit in its
complete splitting is either an INP or a fixed edge. Let γ � σ1 . . . σk be the complete
splitting of γ. Let i P t1, . . . , ku. If σi is a fixed edge, then σi is contained in GPG. If σi
is an NEG INP then, by Lemma 6.3.7, the path σi is a concatenation of paths in GPG
and in NPG. If σi is an EG INP then, by definition, we have σi P NPG. Hence γ is a
concatenation of paths in GPG and in NPG.

Lemma 6.3.9. p1q Let γ be an edge in GPG (resp. an edge in GPG,F). The path rfpγqs is
a concatenation of paths in GPG and in NPG (resp. a concatenation of paths in GPG,F
and in NPG,F).

p2q Let γ be an edge path contained in GPG (resp. an edge path in GPG,F). The path
rfpγqs is a concatenation of paths in GPG and in NPG (resp. a concatenation of paths
in GPG,F and in NPG,F).

p3q Let γ be an edge path which is a concatenation of paths in GPG and in NPG (resp.
a concatenation of paths in GPG,F and in NPG,F). The path rfpγqs is a concatenation
of paths in GPG and in NPG (resp. a concatenation of paths in GPG,F and in NPG,F).

Proof. We prove Assertions p1q, p2q, p3q for paths in GPG and in NPG, the proofs for
paths in GPG,F and NPG,F being similar, using the fact that fpGpq � Gp.

p1q Let γ be an edge of GPG. By definition of GPG, the edge γ is an edge in an NEG
stratum. By Proposition 6.2.5 p6q, the path rfpγqs is completely split. Let rfpγqs �
γ1 . . . γm be the complete splitting of rfpγqs. Since γ is an edge in an NEG stratum,
by Proposition 6.2.5 p2q, we have γ1 � γ. Suppose towards a contradiction that rfpγqs
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is not a concatenation of paths in GPG and in NPG. It follows that there exists i P
t1, . . . ,mu and an edge e of γi which is not contained in GPG and is not contained in a
subpath of rfpγqs contained in NPG. Hence γi is not an EG INP nor a fixed edge. By
Lemma 6.3.7, the path γi cannot be an NEG INP or an exceptional path. Hence γi is
either an edge in an irreducible stratum or a maximal taken connecting path in a zero
stratum. Suppose first that γi is a maximal taken connecting path in a zero stratum.
By Proposition 6.2.5 p4q, the path γi cannot be adjacent to an edge in an NEG stratum
nor an edge in a zero stratum. As γ1 � γ, we see that i ¥ 3 and that γi�1 ends with an
edge in an EG stratum. By Lemma 6.2.9 (applied to γ � γi�1γi), the path γi�1 is not
an EG INP. Therefore we see that γi�1 is an edge in an EG stratum. This contradicts
the definition of the edges in GPG. Hence we are reduced to the case where γi is an
edge in an irreducible stratum. Therefore, we have γi � e. By definition of GPG and
as e R ~EGPG, there exists k P N� such that rfkpγiqs contains a splitting unit which is
an edge in an EG stratum. This contradicts the fact that γ is contained in GPG. This
concludes the proof of p1q.

p2q Let γ be a path in GPG. We prove by induction on the length of γ that rfpγqs is a
concatenation of paths in GPG and in NPG. The case where γ is an edge follows from
p1q. Suppose now that the length of γ is at least equal to 2. Let e be the last edge of γ
and let γ1 be an edge path such that γ � γ1e. Hence γ1 and e are paths in GPG. By the
induction hypothesis, the paths rfpγ1qs and rfpeqs are concatenations of paths in GPG
and in NPG. It remains to show that identifications between rfpγ1qs and rfpeqs do not
create paths which are not concatenations of paths in GPG and in NPG. Let α, β and
σ be paths such that rfpγ1qs � ασ, rfpe1qs � σ�1β and αβ is reduced. By Lemma 6.3.5
applied to rfpγ1qs and rfpe1qs, the path rfpγqs is a concatenation of paths in GPG and in
NPG. This concludes the proof of p2q.

p3q Let γ be a concatenation of paths in GPG and in NPG. Let γ � γ10γ1γ
1
1 . . . γkγ

1
k

be a decomposition of γ such that for every i P t1, . . . , ku, the path γi is a maximal
subpath of γ in NPG and for every i P t0, . . . , ku, the path γ1i is a path in GPG. Such
a decomposition is possible by Lemma 6.3.4 p2q. We prove the result by induction on
k. If k � 0, the proof follows from Assertion p2q. Suppose that the result is true for
k1   k. Then the paths γ1 � γ10γ1γ

1
1 . . . γk�1γ

1
k�1 and γ2 � γkγ

1
k satisfy the induction

hypothesis. Hence the paths rfpγ1qs and rfpγ2qs are concatenations of paths in GPG and
in NPG. Let α, β and σ be three paths such that rfpγ1qs � αβ, rfpγ2qs � β�1σ and αβ
is reduced. By Lemma 6.3.5, the path rfpγqs � ασ is a concatenation of paths in GPG
and in NPG. This concludes the proof.

For the next lemma, we recall a definition due to Bestvina, Feighn and Handel
([BFH1, Section 6], see also [HaM4, Definition III.1.2]). Let Hr� be the EG stratum of
G of maximal height r�. By Proposition 6.2.5 p9q, there exists at most one unoriented
INP ρr� of height r� (we suppose that ρr� is a point if such a nontrivial INP does not
exist). Following [HaM4, Definition III.1.2], let Zr� be the subgraph of G consisting in
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all edges e1 such that for every m P N� and every splitting unit σ of rfmpe1qs, the path
σ is not an edge in Hr� . Let

@
Zr� , ρr�

D
be the set consisting in the following paths:

piq paths in Zr� ;
piiq paths in tρr� , ρ

�1
r� u;

piiiq concatenations of paths in Zr� and in tρr� , ρ
�1
r� u.

Note that
@
Zr� , ρr�

D
contains every path in Gr��1.

Lemma 6.3.10. The set
@
Zr� , ρr�

D
contains every path which is a concatenation of paths

in GPG and in NPG.

Proof. It suffices to prove that
@
Zr� , ρr�

D
contains every edge of GPG and every EG

INP. Let e be an edge in GPG. By definition of GPG, for every k P N�, the complete
splitting of rfkpeqs does not contain a splitting unit which is an edge in an EG stratum.
In particular, for every k P N�, the complete splitting of rfkpeqs does not contain a
splitting unit which is an edge in Hr� . Hence e � Zr� and GPG is a subgraph of Zr� .
Let ρ be an EG INP and let r be the height of ρ. By definition of r�, we have r ¤ r�. If
r � r�, by Proposition 6.2.5 p9q, we have ρ P tρr� , ρ

�1
r� u, hence we have ρ P

@
Zr� , ρr�

D
.

If r   r�, then ρ is contained in Gr��1. Hence ρ is contained in
@
Zr� , ρr�

D
by the above

remark.

We now define a graph which will be used in the proof of Lemma 6.3.12. Let G� be
the finite, not necessarily connected, graph defined as follows:
paq vertices of G� are the vertices in GPG and the endpoints of EG INPs in G which
are not in GPG;
pbq we add one edge between two vertices corresponding to vertices in GPG if there
exists an edge in GPG between the corresponding vertices of GPG;
pcq we add one edge between two vertices corresponding to the endpoints of an EG INP.

Note that we have a natural continuous application pG� : G� Ñ G which sends an
edge as defined in pbq to the corresponding edge in GPG and which sends an edge as
defined in pcq to the corresponding EG INP in G. Let x P V G�.

Lemma 6.3.11. p1q If γ is a nontrivial reduced path in G�, so is pG�pγq.

p2q The homomorphism

p1G� : π1pG
�, xq Ñ π1pG, pG�pxqq

induced by pG� is injective.

Proof. p1q Let γ be a reduced path in G�. Suppose towards a contradiction that pG�pγq
is not a reduced path in G. Thus, there exist an edge e P ~EG and two paths a and b
such that pG�pγq � aee�1b. Let e� be an arc in γ such that pG�pe

�q � ee�1. Note that,
by definition of pG� , the application pG� sends edges of G� to reduced edge paths in G.
In particular, the path e� is not contained in a single edge of G�. As the image of an
edge in G� by pG� is either an edge in G or an edge path, we see that the path e� is
contained in at most two edges of G�. Let e1, e2 P G

� be such that e� � e1e2. Suppose
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first that pG�pe1q and pG�pe2q are edges in GPG. Then pG�pe1q � e and pG�pe2q � e�1.
But, as γ is reduced, we have e1 � e�1

2 . Thus we have pG�pe1q � pG�pe2q
�1. Suppose

now that pG�pe1q is an edge in GPG and pG�pe2q is an EG INP. By Proposition 6.2.5 p9q,
the first edge of pG�pe2q is an edge in an EG stratum. By definition, every edge in GPG
is an edge in an NEG stratum. Hence the turn tpG�pe1q

�1, pG�pe2qu is nondegenerate.
Therefore, we see that pG�pe

�q � ee�1. Finally, suppose that pG�pe1q and pG�pe2q are
EG INPs. for every i P t1, 2u, let ri be the height of pG�peiq. By Proposition 6.2.5 p9q,
the last edge of pG�pe1q is in Hr1 whereas the first edge of pG�pe2q is in Hr2 . Hence
if r1 � r2, there is no identification between pG�pe1q and pG�pe2q. Hence pG�pe

�q �
ee�1. If r1 � r2, then by the uniqueness statement in Proposition 6.2.5 p9q, we have
pG�pe2q P tpG�pe1q, pG�pe1q

�1u. Hence e2 P te1, e
�1
1 u. As γ is a reduced path, we see that

e2 � e1. Hence e1 is a loop and pG�pe1q is a closed EG INP. By Proposition 6.2.5 p9q,
the initial and terminal edges of pG�pe1q are distinct unoriented edges. Hence the path
pG�pe1qpG�pe2q is a reduced path and pG�pe

�q � ee�1. As we have ruled out every case,
we see that such a path e� does not exist. This concludes the proof of Assertion p1q.

p2q Let γ be a nontrivial reduced closed path in G� based at x. By Assertion p1q, the
path pG�pγq is a nontrivial reduced closed path in G. Hence the kernel of p1G� is trivial.

Lemma 6.3.12. The application rf s which sends a circuit α in G to rfpαqs preserves the
set of circuits which are concatenations of paths in GPG and in NPG. Moreover, rf s
restricts to a bijection on the set of circuits which are concatenations of paths in GPG
and in NPG.

Proof. The first part follows from Lemma 6.3.9 p3q. By [HaM4, Lemma III.1.6 p2q, p5q],
the application rf s preserves

@
Zr� , ρr�

D
and restricts to a bijection on the set of circuits of@

Zr� , ρr�
D
. By Lemma 6.3.10 concatenations of paths in GPG and in NPG are contained

in
@
Zr� , ρr�

D
. By Lemma 6.3.9, the application rf s preserves concatenations of paths in

GPG and in NPG. In particular, this shows that rf s is injective when restricted to the
set of paths which are concatenations of paths in GPG and in NPG.

For surjectivity, let α be a circuit in G which is a concatenation of paths in GPG
and in NPG and let x be a vertex in α which is either an endpoint of an edge in GPG
or an endpoint of an EG INP contained in α. Note that by Proposition 6.2.5 p2q, the
endpoint of every edge in GPG is fixed by f . Moreover, the endpoint of every EG INP
is fixed by f . Therefore, f fixes x. The circuit α naturally corresponds to a circuit α1

in G�. Let x1 be the vertex of α1 corresponding to x (which exists by the choices made
on x). Since rf s preserves concatenations of paths in GPG and in NPG by Lemma 6.3.9,
the application rf s induces an application

rf sG� : π1pG
�, x1q Ñ π1pG

�, x1q.

Note that, by Lemma 6.3.11, the group π1pG
�, x1q is naturally identified with a subgroup

of π1pG, xq. By [BFH1, Lemma 6.0.6], the application rf sG� is a bijection. Hence
there exists a closed path β1 in G� such that rf sG�prβ

1sq � α1. Let β be the circuit
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corresponding to β1 in G. Then β is a concatenation of paths in GPG and in NPG and
rfpβqs � α. This concludes the proof.

Proposition 6.3.13. Let n ¥ 3. Let φ P OutpFn,Fq be an exponentially growing outer
automorphism, let f : GÑ G be a CT map representing a power of φ. Let w P Fn. There
exists a subgroup A of Fn such that rAs P Apφq and w P A if and only if the circuit γw
of G associated with w is a concatenation of paths in GPG and in NPG.

Proof. Suppose first that γw is a concatenation of paths in GPG and in NPG. We claim
that γw has polynomial growth under iteration of f . By Proposition 6.2.5 p8q, there
exists m P N� such that rfmpγwqs is completely split. By Lemma 6.3.9 p3q, the path
rfmpγwqs is a concatenation of paths in GPG and in NPG. Hence every splitting unit of
rfmpγwqs is either an edge of GPG or an INP. Let rfmpγwqs � γ1 . . . γk be the complete
splitting of rfmpγwqs. For every i ¥ m, we have

`rf ipγwqsq �
ķ

j�1

`prf ipγjqsq.

Therefore, it suffices to prove that, for every j P t1, . . . , ku, there exists a polynomial
Pj P ZrXs such that for every i P N�, we have

`prf ipγjqsq � OpP piqq.

Claim. There exists a polynomial P P ZrXs such that for every edge e P ~EGPG and
every i P N�, we have

`prf ipeqsq � OpP piqq.

Proof. Since there are finitely many edges in GPG, it suffices to prove the claim for
a single edge e P ~EGPG. Let e P ~EGPG. By Proposition 6.2.5 p2q, there exists a
cyclically reduced, completely split circuit w of height less than the one of e and such
that fpeq � ew. By Lemma 6.3.9 p1q, the path w is a concatenation of paths in GPG
and in NPG. We prove the claim by induction on the height of e. Suppose first that e
has minimal height in GPG. By minimality of e, the path w does not contain a splitting
unit which is an edge in GPG. Hence w is either trivial or a path in NPG, that it, a
closed Nielsen path. If w is trivial then e is a fixed edge and P � 1 satisfies the claim.
Suppose that w is a closed Nielsen path. For every i P N�, we have rf ipeqs � ewi. Hence
`prf ipeqsq ¤ i`pwq�1. Then the polynomial P piq � i`pwq�1 satisfies the assertion of the
claim. This proves the base case. Suppose now that e has height r. Let w � w1 . . . wk
be the complete splitting of w. Recall that, for every reduced path x in G, we have
rfprfpxqsqs � rf2pxqs. Thus, for every i P N�. we have

rf ipeqs � ew1 . . . wkrfpw1qs . . . rfpwkqs . . . rf
i�1pw1qs . . . rf

i�1pwkqs.

Hence, for every i P N�, we have

`prf ipeqsq � 1�
ķ

`�1

i�1̧

j�0

`prf jpw`qsq.
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Hence it suffices, for every ` P t1, . . . , ku, to find a polynomial P` P ZrXs such that, for
every i P N�, we have

`prf ipw`qsq � OpP`piqq.

Let ` P t1, . . . , ku. As w is a concatenation of paths in GPG and in NPG, every splitting
unit of w is either an edge in GPG or an INP. If w` is an edge in GPG, the polynomial P`
exists using the induction hypothesis. If w` is an INP, then the polynomial P`piq � `pw`q
satisfies the conclusion of the claim. This proves the existence of the polynomial P .

Let j P t1, . . . , ku. If γk is an edge in GPG which is a splitting unit of rfmpγwqs, by the
above claim, the polynomial Pj exists. If γj is an INP, then the polynomial P`pxq � `pγjq
satisfies the conclusion. Thus, the path γw has polynomial growth under iteration of rf s.
Therefore, rws has polynomial growth under iterates of φ. By the definition of Apφq,
there exists a subgroup A of Fn such that rAs P Apφq and w P A.

Conversely, suppose that there exists a subgroup A of Fn such that rAs P Apφq
and w P A. Let m P N� be such that rfmpγwqs is completely split, which exists by
Proposition 6.2.5 p7q. Since rws has polynomial growth under iteration of φ, there does
not exist a splitting unit of rfmpγwqs which is an edge in an EG stratum or a superlinear
edge with exponential growth. Suppose towards a contradiction that a splitting unit σ
of rfmpγwqs is contained in a zero stratum. By Proposition 6.2.5 p3q, every zero stratum
of G is contractible. As rfmpγwqs is a cycle, it is not contained in a zero stratum. By
Proposition 6.2.5 p4q, every edge adjacent to σ and not contained in the same stratum
as σ is in an EG stratum. Hence there exists a splitting unit σ1 of rfmpγwqs such that
σσ1 � rfmpγwqs and σ1 the first edge of σ is in an EG stratum. Hence σ1 is either an
edge in an EG stratum or an INP. But, by Lemma 6.2.9, the path σ1 is not an INP.
Hence σ1 is an edge in an EG stratum. This contradicts the fact that rws has polynomial
growth under iteration of φ. Hence every splitting unit of rfmpγwqs is either an INP,
an exceptional path or an edge in an NEG stratum whose iterates by f do not contain
splitting units which are edges in EG strata. Edges in the last category are precisely
the edges in GPG. By Lemma 6.3.7 and Lemma 6.3.8 every INP and every exceptional
path is a concatenation of paths in GPG and in NPG. Thus, the path rfmpγwqs is a
concatenation of paths in GPG and in NPG. By Lemma 6.3.12, the circuit γw is a
concatenation of paths in GPG and in NPG.

Let F be a nonsporadic free factor system of Fn and let φ P OutpFn,Fq. We say
that φ is fully irreducible relative to F if no power of φ preserves a proper free factor
system F 1 of Fn such that F   F 1. The following corollary will be used in [Gue6]. It is
a well-known result but we did not find a precise statement in the literature.

Corollary 6.3.14. Let n ¥ 3 and let F be a nonsporadic free factor system of Fn. Let
φ P OutpFn,Fq be a fully irreducible outer automorphism relative to F . There exists at
most one (up to taking inverse) conjugacy class rgs of root-free F-nonperipheral element
of Fn which has polynomial growth under iteration of φ. Moreover, the conjugacy class
rgs is φ-periodic.
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Proof. Let f : GÑ G be a CT map representing a power of φ and let G1 be a subgraph of
G such that FpG1q � F . Since φ is irreducible relative to F and since F is nonsporadic,
we see that G�G1 is an EG stratum Hr. Let rgs be the conjugacy class of a root-free
F-nonperipheral element g of Fn. Then γg has height r. Suppose that rgs has polynomial
growth with respect to φ. By Proposition 6.3.13, the circuit γg is a concatenation of
paths in GPG and in NPG. Since γg has height r and since Hr is an EG stratum, every
subpath α of γg contained in Hr is contained in a concatenation of INPs of height r. By
Proposition 6.2.5 p9q, there exists at most one INP σ of height r. Moreover, one of its
endpoints is not contained in G1 � Gr�1 (see [HaM4, I.Fact 1.42]). Hence σ is necessarily
a closed EG INP. Since the endpoint of σ is not in Gr�1 and since γg is a concatenation
of paths in GPG and NPG, we see that γg is an iteration of the closed path σ. Since g
is root-free, we have γg � σ�1. This concludes the proof.

6.3.2 The exponential length of a CT map

In this section, we define the exponential length function `exp, and its relative version `F ,
of paths in CT maps. We compute its value for some paths in G. Let G1

PG � GPG Y Z
(see Definition 6.3.1) and let G1

PG,F � GPG,F Y ZF .
Let γ be a reduced edge path in G. By Lemma 6.3.4 p2q, every path of NPG which is

contained in γ is contained in a unique maximal subpath of γ contained in NPG. Thus,
the path γ has a unique decomposition into edge paths γ � γ0γ

1
1γ1 . . . γkγ

1
k where:

p1q for every i P t0, . . . , ku, the path γi is a maximal path in NPG contained in γ (where
γ0 and γ1k might be trivial);

p2q for every γ1 P NPG contained in γ, there exists i P t1, . . . , ku such that γ1 � γi.

Such a decomposition of γ is called the exponential decomposition of γ. Note that the
exponential decomposition of γ is not necessarily a splitting of γ. We denote by Nmax

PG pγq
the set consisting in all paths γi, with i P t0, . . . , ku. Similarly, γ has a decomposition
γ � α0α

1
1α1 . . . αmα

1
m, where for every i P t0, . . . ,mu, the path αi is a maximal path in

NPG,F and for every γ1 P NPG,F contained in γ, there exists i P t1, . . . , ku such that
γ1 � αi. Such a decomposition is called the F-exponential decomposition of γ. We
denote by Nmax

PG,F pγq the set consisting in all paths αi, with i P t0, . . . ,mu.

Definition 6.3.15. p1q Let γ be a reduced edge path in G. The exponential length of γ,
denoted by `exppγq is:

`exppγq � `
�
γ XG�G1

PG

	
�

¸
αPNmax

PG pγq

`
�
αXG�G1

PG

	
.

p2q Let γ be a reduced edge path in G. The F-exponential length of γ, denoted by `F pγq
is:

`F pγq � `
�
γ XG�G1

PG,F

	
�

¸
αPNmax

PG,F pγq

`
�
αXG�G1

PG,F

	
.
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p3q Let γ be a reduced edge path in G and let γ � γ0γ
1
1γ1 . . . γ

1
kγk be the exponential

decomposition of γ. A PG-relative complete splitting of the path γ is a splitting γ �
δ1 . . . δm such that for every i P t1, . . . ,mu, the path δi is one of the following paths:

 a splitting unit of positive exponential length not contained in some γi for i P t0, . . . , ku;

 a maximal taken connecting path in a zero stratum;

 a subpath of γ which is a concatenation of subpaths contained in GPG and Nielsen
paths in NPG.

We call the above paths PG-relative splitting units. If γ is a circuit, a PG-relative
circuital complete splitting of γ is a circuital splitting of γ which is a PG-relative complete
splitting of γ.

p4q A factor of a PG-relative completely split edge path γ is a concatenation of PG-
relative splitting units of some given PG-relative complete splitting of γ.

Note that if γ is an edge path of G, then `exppγq ¥ 0. Indeed, two paths γ1 and γ2

contained in Nmax
PG pγq are either equal or disjoint. Let γ � γ0γ

1
1γ1 . . . γ

1
kγk be the expo-

nential decomposition of γ. For every i P t1, . . . , ku, we have `exppγ
1
iq � `pγ1i XG�G1

PGq
and

`exppγq �
ķ

i�1

`exppγ
1
iq.

We prove the existence of PG-relative complete splittings in Lemma 6.3.19. Note that
a PG-relative complete splitting of a reduced edge path γ is not necessarily unique.
Indeed, it might be possible that one can split a PG-relative splitting unit of γ which is
a concatenation of paths in GPG and in NPG into two PG-relative splitting units which
are concatenations of paths in GPG and in NPG.

In the rest of the section, we describe some properties of the exponential length.

Lemma 6.3.16. Let γ be a reduced edge path in G and let γ � γ1γ2 be a decomposition
of γ into two edge paths. We have:

`exppγq ¤ `exppγ1q � `exppγ2q.

Proof. It is immediate that

`pγ XG�G1
PGq � `pγ1 XG�G1

PGq � `pγ2 XG�G1
PGq.

Let i P t1, 2u. Let γ1 P Nmax
PG pγiq. Then there exists γ2 P Nmax

PG pγq such that γ1 � γ2. In
particular, we have¸
γ2PNmax

PG pγq

`pγ2XG�G1
PGq ¥

¸
γ1PNmax

PG pγ1q

`pγ1XG�G1
PGq�

¸
γ1PNmax

PG pγ2q

`pγ1XG�G1
PGq.

By definition of the exponential length, this concludes the proof.
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Note that we do not necessarily have equality in Lemma 6.3.16. Indeed, let γ � γ1γ2

be as in Lemma 6.3.16. Suppose that the endpoint of γ1 is contained in a path γ1 of
Nmax
PG pγq. Then γ1 is not necessarily a concatenation of paths in Nmax

PG pγ1q and Nmax
PG pγ2q.

Therefore, we might have:¸
γ1PNmax

PG pγq

`pγ1 XG�G1
PGq ¡

¸
γ1PNmax

PG pγ1q

`pγ1 XG�G1
PGq �

¸
γ1PNmax

PG pγ2q

`pγ1 XG�G1
PGq,

and a strict inequality in Lemma 6.3.16. In particular, a proper subpath of γ might
have greater exponential length than γ itself. For instance, if γ is a reduced path in G
such that `exppγq � 0, it is possible that there exists a proper subpath γ1 of γ such that
`exppγ

1q ¡ 0. However, there exists a bound, depending only onG, on the difference of the
exponential length of a subpath of γ and the exponential length of γ (see Lemma 6.5.6).

If γ is a path in G such that `exppγq � 0, we do not necessarily have `expprfpγqsq � 0.
Indeed, if γ is an edge in a zero stratum such that rfpγqs contains a splitting unit which
is an edge in an EG stratum, we have `expprfpγqsq ¡ 0. However, the following lemma
describes an important situation where the map f preserves the property of having zero
exponential length.

Lemma 6.3.17. Let γ be a reduced edge path which is a concatenation of paths in GPG
and in NPG. For every n P N, we have `expprf

npγqsq � 0.

Proof. Since the rf s-image of a concatenation of paths in GPG and in NPG is a concate-
nation of paths in GPG and in NPG by Lemma 6.3.9, it suffices to prove the result for
n � 0. Let γ be a concatenation of paths in GPG and in NPG. Let γ � γ0γ

1
1γ1 . . . γkγ

1
k

be the exponential decomposition of γ: for every i P t1, . . . , ku, the path γi is a maximal
subpath of γ in NPG and for every i P t0, . . . , ku, the path γ1i is a path in GPG. Note
that for every i P t1, . . . , ku, we have γi P Nmax

PG pγq. By definition of the exponential

length, we have `exppγq �
°k
i�0 `exppγ

1
iq � 0.

Corollary 6.3.18. Let γ be a path of N 1
PG. Then `exppγq � 0. In particular, if γ is either

a closed Nielsen path, an NEG INP or an exceptional path, we have `exppγq � 0.

Proof. By Lemma 6.3.8, the path γ is a concatenation of paths in GPG and in NPG. By
Lemma 6.3.17, we have `exppγq � 0. The second assertion follows from Lemmas 6.3.6
and 6.3.7.

Lemma 6.3.19. Let γ be a completely split edge path and let γ � γ1 . . . γm be its complete
splitting. Let γ1 P Nmax

PG pγq. Then either γ1 is a concatenation of splitting units of γ or
there exists i P t1, . . . ,mu such that γ1 � γi. Moreover, the complete splitting of γ is a
PG-relative complete splitting of γ.

Proof. Let e be the first edge of γ1 and let i P t1, . . . ,mu be such that e is contained in
γi. Let σ be the splitting unit of γ1 containing e. By Proposition 6.2.5 p9q, the edge e is
in an EG stratum. Hence γi is either an edge in an EG stratum, an exceptional path or
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an INP. Since γ1 is a Nielsen path, and since γi is a splitting unit of γ, we see that γi is
not an edge in an EG stratum. If γi is either an NEG INP or an exceptional path, then
Proposition 6.2.5 p11q implies that γi starts and ends with edges in NEG strata whose
height are strictly higher than the one of e. Since the height of e is equal to the height
of σ, we see that γi contains σ. An inductive argument shows that γ1 is contained in γi.

Suppose now that γi is an EG INP. By Lemma 6.3.4 p2q applied to γi and γ1, either γ1

is contained in γi or γi is the initial segment of γ1. If γ1 is contained in γi, by maximality
of γ1, we see that γ1 � γi. Suppose that γ1 is the initial segment of the completely split
edge path γi . . . γk. Then [FH, Corollary 4.12] implies that γ1 is a factor of γ.

The last assertion of the lemma follows from the following observations. Every split-
ting unit of γ which is either an INP or an exceptional path is a concatenation of paths
in GPG and in NPG by Lemma 6.3.7. Moreover, by the first assertion of the lemma,
every splitting unit of γ which is an edge in an irreducible stratum not contained in GPG
does not intersect a path in Nmax

PG pγq. Hence the complete splitting of γ is a PG-relative
complete splitting.

PG-relative completely split edge paths are well-adapted to the computation of the
exponential length as explained by the following lemma.

Lemma 6.3.20. Let γ be a PG-relative completely split edge path and let γ � α1 . . . α` be
a PG-relative complete splitting.

p1q For every path γ1 P Nmax
PG pγq, there exists a minimal concatenation of PG-relative

splitting units δ of γ such that γ1 � δ; every PG-relative splitting unit of δ is a con-
catenation of paths in GPG and in NPG; for every PG-relative splitting unit δ1 of δ, the
intersection δ1 X γ1 is an element of Nmax

PG pδ1q.

p2q We have `exppγq �
°`
i�1 `exppαiq and `F pγq �

°`
i�1 `F pαiq.

Proof. p1q Let γ � γ0γ
1
1γ1 . . . γ

1
kγk be the exponential decomposition of γ where, for

every i P t0, . . . , ku, we have γi P Nmax
PG pγq. Let i P t0, . . . , ku. Let j P t1, . . . , `u be such

that αj contains an initial segment of γi. By Proposition 6.2.5 p10q, the splitting unit αj
is not contained in a zero stratum. Moreover, by definition of the PG-relative splitting
units, if αj is an edge in an irreducible stratum of positive exponential length, it is not
contained in γi. Hence, by the description of PG-relative splitting units, the path αj
is a concatenation of paths in GPG and in NPG. By Proposition 6.2.5 p9q, the path γi
starts with an edge in an EG stratum. Hence there exists a path βj in Nmax

PG pαjq which
contains an initial segment of γi. By maximality of γi, we see that βj � γi. Suppose first
that βj � γi. Then setting δ � αj proves the first assertion. Suppose now that βj � γi.
By Lemma 6.3.4 p2q applied to γ � γ�1

i and γ1 � β�1
j , the path rβ�1

j γis is a path in

NPG. Therefore, by Proposition 6.2.5 p9q, the path rβ�1
j γis starts with an edge in an

EG stratum. Note that, as αj is a concatenation of paths in GPG and in NPG, if αj
contains the first edge e of rβ�1

j γis, then e would be contained in an EG INP contained

in αj . Since βj is a maximal subpath of αj in NPG, we see that rβ�1
j γis is contained

in γ2 � αj�1 . . . α` and is in Nmax
PG pγ2q. We can thus apply the same arguments to the

paths rβ�1
j γis and γ2. This concludes the proof of p1q.
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The proof of p2q follows as the exponential length and the F-length are computed by
removing paths in GPG and in NPG. As all subpaths in GPG are contained in a splitting
unit of γ and as subpaths in NPG are obtained by concatenating paths in >`j�1Nmax

PG pαjq,

we see that `exppγq �
°`
i�1 `exppαiq and `F pγq �

°`
i�1 `F pαiq.

The following property of the exponential length allows us to pass, if needed, to a
further iterate of the CT map f .

Lemma 6.3.21. For every edge e of G�G1
PG, we have

lim
nÑ8

`expprf
npeqsq � 8 and lim

nÑ8
`F prf

npeqsq � 8.

Moreover, the sequences p`expprf
npeqsqqnPN and p`F prf

npeqsqqnPN grows exponentially fast.

Proof. We prove the result concerning `exp, the proof of the result concerning `F follows
from the fact that for every reduced edge path γ in G, we have `exppγq ¤ `F pγq. Let e be

an edge of G�G1
PG. Since every iterate of e is completely split by Proposition 6.2.5 p6q

and since there exists an iterate of e which contains a splitting unit which is an edge in
an EG stratum, we may suppose that e is an edge in an EG stratum Hr. Since Hr is an
EG stratum, the number of edges in rfnpeqs XHr grows exponentially fast as n goes to
infinity. Therefore the number of splitting units of rfnpeqs which are edges of Hr grows
exponentially fast and limnÑ8 `expprf

npeqsq � 8.

Lemma 6.3.22. Let γ be a PG-relative completely split edge path. There exists n0 P N�

such that for every k ¥ n0, we have `expprf
kpγqsq ¥ `exppγq.

Proof. Let γ � γ1 . . . γk be a PG-relative complete splitting of γ. By Lemma 6.3.20, it
suffices to prove the assertion for every subpath γi, with i P t1, . . . , ku. Let i P t1, . . . , ku.
If γi is a concatenation of paths in GPG and in NPG, then `expprfpγiqsq � `exppγiq � 0
by Lemma 6.3.17. If γi is a maximal taken connecting path in a zero stratum, we
have `exppγiq � 0. Hence `expprfpγiqsq ¥ `exppγiq. In the other cases, γi is an edge
in an irreducible stratum which is not contained in GPG. By Lemma 6.3.21, we have
limnÑ8 `expprf

npγiqsq � 8. Hence there exists n0 P N� such that, for every k ¥ n0,
we have `expprf

kpγiqsq ¥ `exppγiq, and n0 may be chosen to be independent of γi with
i P t1, . . . , ku.

The last lemma in this section shows that the exponential length of a PG-relative
completely split edge path encaptures the splitting units which are edges with exponential
growth under iterates of f .

Lemma 6.3.23. Let γ be a PG-relative completely split edge path, let γ � γ1 . . . γk be a
PG-relative complete splitting and let i P t1, . . . , ku. Then `exppγiq ¡ 0 if and only if
γi is an edge in an irreducible stratum not contained in GPG. In particular, the value
`exppγq is the number of splitting units which are edges in G�G1

PG.
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Proof. Suppose first that γi is either a concatenation of paths in GPG and in NPG

or a maximal taken connecting path in a zero stratum. By Lemma 6.3.17, we have
`exppγiq � 0. Suppose that γi is an edge in an irreducible stratum which is not contained
in GPG. Since there does not exist an EG INP of length 1, by definition of the exponential
length, we have `exppγiq � 1 ¡ 0. This concludes the proof of the first part of the lemma.
The computation of `exppγq follows from Lemma 6.3.20 p2q.

6.3.3 The space of polynomially growing currents

In this section, let F be a free factor system and let φ P OutpFn,Fq be an exponen-
tially growing outer automorphism. Recall the definition of Apφq and F ^ Apφq from
Section 6.2.1. We define a subspace of PCurrpFn,F ^Apφqq, called the space of polyno-
mially growing currents. It consists in the currents whose support is contained in B2Apφq
(see Lemma 6.3.27). In order to define it, we first need to show that the exponential
length extends to a continuous function Ψ: PCurrpFn,F ^ Apφqq Ñ R. The space of
polynomially growing currents will then be defined as a level set of Ψ.

We first need some preliminary results concerning paths in NPG. For a path γ P NPG,
let N��

PG pγq be the subset of NPG which consists in all paths γ1 P NPG such that γ � γ1

and γ1 is minimal for this property. Let γ1 P N��
PG pγq. By Lemma 6.3.4 p3q, either γ is

properly contained in an INP σ of the complete splitting of γ1, or there exist (possibly
trivial) paths γ1, γ2 P NPG such that γ1 � γ1γγ2. By minimality, either γ1 or γ2 is trivial.
Moreover, a result of Feighn and Handel ([FH, Corollary 4.12]) shows that, in this case,
splitting units of the complete splittings of γ1, γ2 and γ are splitting units of γ1. Thus
the set N��

PG pγq can be partitioned into three disjoint subsets:

N��
PG pγq � N��

PG,INP pγq >N
��
PG,leftpγq >N

��
PG,rightpγq,

where N��
PG,INP pγq is the set of paths in N��

PG pγq such that one of their splitting units

properly contains γ, N��
PG,leftpγq is the set of paths γ1 P N��

PG pγq such that γ1 � γ1γ

and N��
PG,rightpγq is the set of paths γ1 P N��

PG pγq such that γ1 � γγ2. One can also

define similarly the three sets N��
PG,INP,F pγq, N��

PG,left,F pγq and N��
PG,right,F pγq as the

restriction to the paths in N��
PG,INP pγq, N

��
PG,leftpγq and N��

PG,rightpγq contained in Gp.

We emphasize on the fact that a path in N��
PG,INP pγq might contain several occurrences

of the path γ. However, a path in N��
PG,leftpγq or in N��

PG,rightpγq contains a unique

occurrence of γ. Indeed, let γ1 P N��
PG,leftpγq (the proof for N��

PG,rightpγq being similar).
Then γ1 � γ1γ2 with γ1 P NPG and γ2 � γ. Let γ3 be an occurrence of γ which contains
an edge of γ1. By Lemma 6.3.3 p2q, the path γ3 cannot intersect γ2 nontrivially. Hence
γ3 � γ1. Hence γ1 P NPG and γ1 contains an occurrence of γ. This contradicts the
minimality of γ1.

Lemma 6.3.24. Let γ be a path in NPG. Let γ1, γ2 be two distinct paths in N��
PG pγq.

Suppose that there exist three paths µ1, µ2, µ3 such that γ1 � µ1µ2, γ2 � µ2µ3 and γ is
contained in µ2. Then γ1 P N��

PG,leftpγq, γ2 P N��
PG,rightpγq and µ2 � γ.
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Proof. By Lemma 6.3.4 p2q, the path µ2 belongs to NPG and contains γ. Since γ1 and
γ2 are minimal paths of NPG for the property of properly containing γ, we have µ2 � γ.
Therefore, we see that γ1 � µ1γ and γ2 � γµ3. This shows that γ1 P N��

PG,leftpγq and

that γ2 P N��
PG,rightpγq.

Lemma 6.3.24 implies that an occurrence of γ in the intersection of paths in N��
PG pγq

is well-controlled. Following Lemma 6.3.24, we then define N��
PG,lrpγq to be the set of

paths of the form γ1γγ2, where γ1γ P N��
PG,leftpγq and γγ2 P N��

PG,rightpγq. We define

similarly the set N��
PG,lr,F pγq to be the set of all paths in N��

PG,lrpγq contained in Gp. As

for N��
PG,leftpγq and N��

PG,rightpγq, a path in N��
PG,lrpγq contains a unique occurrence of γ.

Given two paths γ and γ1 of G let Npγ1, γq be the number of occurrences of γ and
γ�1 in γ1. Using the finiteness of NPG (see Lemma 6.3.4 p1q), we denote by

Ψ1
0 : CurrpFn,F ^Apφqq Ñ R

the continuous function

Ψ1
0pνq �

¸
γPNPG

�
xγ, νy�

¸
γ1PN��

PG pγq

@
γ1, ν

D
Npγ1, γq�

¸
γ1PN��

PG,lrpγq

@
γ1, ν

D	
`
�
γ XG�G1

PG

	
,

and by Ψ0 : CurrpFn,F ^Apφqq Ñ R the continuous linear function

Ψ0pνq � 1
2

�°
eP ~EpG�G1PGq

xe, νy �Ψ1
0pνq
	

� 1
2

�°
eP ~EpG�G1PGq

�
xe, νy�°

γPNPG,e�γ

�
xγ, νy �

°
γ1PN��

PG pγq

xγ1, νyNpγ1, γq �
°

γ1PN��
PG,lrpγq

xγ1, νy
	
Npγ, eq

		
.

.

Definition 6.3.25. The space of polynomially growing currents, denoted by KPGpfq, is
the compact subset of PCurrpFn,F^Apφqq consisting in all projective classes of currents
rνs P PCurrpFn,F ^Apφqq such that:

Ψ0pνq � 0.

Finally, we define the F-simplicial length function ‖.‖F : CurrpFn,F ^Apφqq Ñ R as

‖ν‖F � 1
2

�°
eP ~EpG�G1PG,F q

xe, νy�°
γPNPG,F

�
xγ, νy �

°
γ1PN��

PG,F pγq

xγ1, νyNpγ1, γq �
°

γ1PN��
PG,lr,F pγq

xγ1, νy
	
`
�
γ XG�G1

PG

		
.

Lemma 6.3.26. Let w P Fn be a nonperipheral element with conjugacy class rws, associ-
ated rational current ηrws and associated reduced edge path γw in G. Then

Ψ0pηrwsq � `exppγwq;

‖ηrws‖F � `F pγwq.
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Therefore ηrws P KPGpfq if and only if

`exppγwq � 0.

In particular, there exist a basis B of Fn and a constant C ¡ 0 such that, for every
F ^Apφq-nonperipheral element g P Fn, we have ‖ηrgs‖F P N� and

`Bprgsq ¥ C ‖ηrgs‖F .

Proof. We prove the result for Ψ0, the proof for ‖ηrws‖F being similar. First note that¸
eP ~EpG�G1PGq

@
e, ηrws

D
� 2`pγw XG�G1

PGq,

where the factor 2 follows from the fact that the sum on the left hand side is over oriented
edges. Therefore, it remains to prove that

Ψ1
0pηrwsq �

¸
γPNmax

PG pγwq

`
�
γ XG�G1

PG

	
. (6.3)

Let γ P NPG. Then the value@
γ, ηrws

D
�

¸
γ1PN��

PG pγq

@
γ1, ηrws

D
Npγ1, γq �

¸
γ1PN��

PG,lrpγq

@
γ1, ηrws

D
measures the number of occurrences of γ or γ�1 in γw which are not induced by an
occurrence of a path γ1 P NPG containing properly γ or γ�1 and contained in γw.
Indeed, an occurrence of γ in a path γ1 P NPG containing properly γ will be counted
in
°
γ1PN��

PG pγq

@
γ1, ηrws

D
Npγ1, γq. Moreover, if an occurrence of γ is contained in two

distinct paths γ1, γ2 P N��
PG pγq, Lemma 6.3.24 ensures that this occurrence is contained

in a path γ3 P Nmax
PG,lrpγq. Therefore, the value

�
¸

γ1PN��
PG pγq

@
γ1, ηrws

D
Npγ1, γq �

¸
γ1PN��

PG,lrpγq

@
γ1, ηrws

D
measures an occurrence of γ or γ�1 in a larger path, and each such occurrence will
be counted exactly once. Therefore, the equation below Equation (6.3) measures the
number of occurrences of γ and γ�1 in Nmax

PG pγwq. Thus, the equality (6.3) holds. The
last assertions of Lemma 6.3.26 then follows by definition of KPGpfq and of `F .

Note that in the proof of Lemma 6.3.26, we show that, for every edge e P ~EpG�G1
PGq

and every nonperipheral element w P Fn, the value:@
e, ηrws

D
�

¸
γPNPG,e�γ

�@
γ, ηrws

D
�

¸
γ1PN��

PG pγq

@
γ1, ηrws

D
Npγ1, γq�

¸
γ1PN��

PG,lrpγq

@
γ1, ηrws

D	
Npγ, eq
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measures the number of occurrences of e in γw which are not contained in a path of
Nmax
PG pγwq. Thus, for every nonperipheral element and every edge e P ~EpG�G1

PGq, we
have:

@
e, ηrws

D
�

¸
γPNPG,e�γ

�@
γ, ηrws

D
�

¸
γ1PN��

PG pγq

@
γ1, ηrws

D
Npγ1, γq�

¸
γ1PN��

PG,lrpγq

@
γ1, ηrws

D	
Npγ, eq ¥ 0.

The density of rational currents given by Proposition 6.2.15 and the continuity of x., .y
then shows that for every current ν P CurrpFn,F^Apφqq and every edge e P ~EpG�G1

PGq,
we have :

xe, νy �
¸

γPNPG,e�γ

�
xγ, νy �

¸
γ1PN��

PG pγq

@
γ1, ν

D
Npγ1, γq �

¸
γ1PN��

PG,lrpγq

@
γ1, ν

D	
Npγ, eq ¥ 0.

Lemma 6.3.27. Let n ¥ 3 and let F be a free factor system. Let φ P OutpFn,Fq be an
exponentially growing outer automorphism. Let f : GÑ G be a CT map representing a
power of φ.

p1q If rνs P KPGpfq, then Supppνq � B2pFn,F ^Apφqq X B2Apφq. In particular, if φ is
expanding relative to F , then KPGpfq � ∅.

p2q Conversely, if ν P CurrpFn,F ^ Apφqq is such that the support Supppνq of ν is
contained in B2pFn,F ^Apφqq X B2Apφq, then rνs P KPGpfq. Thus we have

KPGpfq � trµs P PCurrpFn,F ^Aq | Supppµq � B2pFn,F ^Apφqq X B2Apφqu.

p3q If ν P CurrpFn,F ^Apφqq, we have ‖ν‖F � 0 if and only if ν � 0.

Proof. The proof of p3q being identical to the proof of p1q and p2q replacing G1
PG and

NPG by G1
PG,F and NPG,F , we only prove p1q and p2q. For the proof of both p1q and

p2q, let B be a free basis of Fn and let T be the Cayley graph of Fn associated with B.
Let C pApφqq be the set of elements of Fn associated with Apφq given by Lemma 6.2.11.
Recall that CylpC pApφqqq is the set of cylinder subsets of the form Cpγq, where γ is
a geodesic edge path in T starting at the base point whose associated element w P Fn
contains a word of C pApφqq as a subword.

p1q Let ν P CurrpFn,F ^ Apφqq nonzero be such that Supppνq is not contained in
B2pFn,F ^ Apφqq X B2Apφq. Then Supppνq X B2pFn,Apφqq � ∅. Hence the restriction
of ν to B2pFn,Apφqq induces a nonzero current ν 1 P CurrpFn,Apφqq. By Lemma 6.2.12
applied to A � Apφq and ν 1, there exists Cpγq P C pApφqq such that νpCpγqq ¡ 0. Let w
be the element of Fn associated with γ, and let γ1w be the reduced circuit in G associated
with the conjugacy class of w. Up to taking a larger geodesic edge path γ2 � γ in T such
that νpCpγ2qq ¡ 0 (which exists by additivity of ν), we may suppose that w is cyclically
reduced. By Lemma 6.2.11 p3q, the path γ is not contained in any tree TA such that
rAs P Apφq. As w is cyclically reduced, the translation axis in T of w contains γ. Hence
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tw�8, w�8u R B2Apφq and w is not contained in any subgroup A such that rAs P Apφq.
By Proposition 6.3.13, the circuit γ1w is not a concatenation of paths in GPG and in NPG.
Therefore, there exists an edge e of G such that

xe, νy �
¸

γPNPG,e�γ

�
xγ, νy �

¸
γ1PN��

PG pγq

@
γ1, ν

D
Npγ1, γq �

¸
γ1PN��

PG,lrpγq

@
γ1, ν

D	
Npγ, eq ¡ 0.

Thus, we see that Ψ0pνq ¡ 0 and that rνs R KPGpfq. The second part of p1q follows
from the fact that, if φ is expanding relative to F , then B2Apφq � B2F . This proves p1q.

p2q Let ν P CurrpFn,F ^Apφqq be such that Supppνq � B2pFn,F ^ApφqqXB2Apφq. Let
e be an edge such that xe, νy ¡ 0. By Lemma 6.3.4 p1q, there exists a constant C1 ¡ 0
such that, for every path γ1 P NPG, we have `pγ1q ¤ C1. Recall the definition of the
graph G� and the application pG� : G� Ñ G. from Lemma 6.3.11. Let C2 be the length
of a maximal path in a maximal forest of pG�pG

�q. Let C � maxt2C1, C2u.

Claim. Let γ, δ1 and δ2 be reduced paths such that γ � δ1eδ2, `pδ1q, `pδ2q ¥ 2C and
xγ, νy ¡ 0. Let γ � γ0γ

1
1γ1 . . . γkγ

1
k be the exponential decomposition of γ (where, for

every i P t0, . . . , ku, the path γi is contained in NPG). Either e P ~EG1
PG or e is contained

in an EG stratum and there exists i P t0, . . . , ku such that e � γi.

Proof. Since Supppνq � B2pFn,F ^ Apφqq X B2Apφq, there exists a subgroup A of Fn
such that rAs P Apφq, and two elements a and b of A such that the geodesic path in rG
representing ta�8, b�8u P B2A contains a lift of γ. If b � a�1, then γ is contained in
an iterate of a and, by Proposition 6.3.13, γ is contained in a concatenation of paths in
GPG and NPG. The claim follows in this case. So we may assume that b � a�1. Suppose
first that the axes Axpaq and Axpbq of a and b are disjoint. Then γ is contained in the
axis of a�1b. Thus, by Proposition 6.3.13, γ is contained in a concatenation of paths in
GPG and NPG and the claim follows in this case.

Suppose now that Axpaq X Axpbq � ∅. Let γ1a and γ1b be the reduced circuit in G
associated with a and b. Then γ is contained in the union of γ1a Y γ1b. Recall that, by
Proposition 6.3.13, the paths γ1a and γ1b are concatenation of paths in GPG and NPG.
Hence there exist reduced circuits α and β in G� and reduced arcs τ, τe in G� such that
pG�pαq � γ1a and p�pβq � γ1b and such that pG�pτq � γ and pG�pτeq � e. By the choice
of C, and as `pδ1q, `pδ2q ¥ 2C, one can remove an initial and a terminal segment of τ
so that the resulting path τ 1 is nontrivial, is contained in a subgraph of G� with no leaf
and is such that `ppG�pτ

1qq ¥ 2C � 1. Thus, there exist subpaths τ 11, τ21 , τ
1
2, τ22 of τ and

a reduced circuit δ of G� such that:
piq `ppG�pτ

1
1qq, `ppG�pτ

1
2qq ¥ C,

piiq τ � τ21 τ
1
1eτ

1
2τ

2
2 ,

piiiq τ 1 � τ 11eτ
1
2 � δ.

By Lemma 6.3.11 p1q, the path pG�pδq is a reduced ciruit which contains e. Since
`ppG�pτ

1
1qq, `ppG�pτ

1
2qq ¥ C ¥ 2C1, if γ1 P Nmax

PG ppG�pδqq is such that e � γ1, then
γ1 � τ 11eτ

1
2. Hence it suffices to prove the claim for γ � pG�pδq. As δ is a concatenation

of paths in GPG and in NPG, the claim follows.
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Suppose towards a contradiction that there exists an edge e P G�G1
PG such that:

xe, νy �
¸

γPNPG,e�γ

�
xγ, νy �

¸
γ1PN��

PG pγq

@
γ1, ν

D
Npγ1, γq �

¸
γ1PN��

PG,lrpγq

@
γ1, ν

D	
Npγ, eq ¡ 0.

(6.4)
By additivity of ν, there exists a reduced path γ of length 4C � 1 such that the path

γ has a decomposition γ � γ1eγ2, where for every i P t1, 2u, the path γi has length
equal to 2C and we have νpCpγqq ¡ 0. By Equation 6.4, we can choose γ such that if
γ1 P Nmax

PG pγq, then γ1 does not contain e. Hence e R G1
PG and e is not contained in a

subpath of Nmax
PG pγq. This contradicts the above claim and this concludes the proof.

Let F be a free factor system and let φ P OutpFn,Fq be an exponentially growing
outer automorphism. Note that, by Lemma 6.3.27 and since for every k P N�, we have
Apφq � Apφkq, the space KPGpfq does not depend on the CT map f and does not
depend on the chosen power of φ. Therefore, we will simply write KPGpφq instead.
Moreover, since Apφq � Apφ�1q, we see that KPGpφq � KPGpφ

�1q.

For the next proposition, let C1 ¡ 0 be a constant such that for every path γ P NPG,
we have `pγq ¤ C1. It exists since NPG is finite by Lemma 6.3.4 p1q. Let L be the
malnormality constant associated with Apφq as defined above Lemma 6.2.11 and let
C0 � maxtC1, Lu. Let C be the set of elements of Fn associated with F ^ Apφq given
above Lemma 6.2.11. Let PpF ^ Apφqq be the set of reduced paths γ in G such that
Cpγq P CylpC q, `pγq ¡ C0 and γ is not contained in a concatenation of paths in GPG,F
and NPG,F .

Lemma 6.3.28. Let n ¥ 3, let F be a free factor system of Fn and let φ P OutpFn,Fq be
an exponentially growing outer automorphism. We have

B2pFn,F ^Apφqq �
¤

γPPpF^Apφqq
Cpγq.

Proof. Let A1, . . . , Ar be subgroups of Fn such that F ^ Apφq � trA1s, . . . , rArsu and
C � C pA1, . . . , Arq. By Lemma 6.2.12, we have

B2pFn,F ^Apφqq �
¤

CpγqPCylpC q

Cpγq.

Note that, for every path γ � G, we have

Cpγq �
¤

eP ~EG, `pγeq¡`pγq

Cpγeq.

Hence we have
B2pFn,F ^Apφqq �

¤
CpγqPCylpC q, `pγq¡C0

Cpγq.
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So it suffices to prove that we can restrict our considerations to paths γ which are not
contained in a concatenation of paths in GPG,F and NPG,F . Let γ be a path such that
Cpγq P CylpC q and `pγq ¡ C0. By Lemma 6.2.11 p3q, the path γ is not contained in
any tree TgAig�1 with g P Fn and i P t1, . . . , ru. Moreover, it is not contained in any
path of NPG since `pγq ¡ C1. Suppose that γ is contained in a concatenation of paths
in GPG,F and NPG,F . Suppose first that there does not exist a circuit which contains
γ and which is a concatenation of paths in GPG,F and NPG,F . Recall the definition of
G� and pG� from Lemma 6.3.11 and let G�

F � p�1
G�pGpq. By assumption, either there

does not exist an immersed path (not necessarily an edge path) γ� in G�
F such that

pG�pγ
�q � γ or there exists an immersed path γ� in G�

F such that pG�pγ
�q � γ and γ� is

not contained in a circuit of G�
F (recall that G� might contain univalent vertices). In the

first case, we have `F pγq ¡ 0. In the second case, since G� is finite, by Lemma 6.3.11,
up to considering γ�1, there exists d P N� such that for every path of γ1 such that γγ1 is
a reduced path in G and `pγγ1q � `pγq � d, the path γγ1 is not the image by pG� of an
immersed path in G�

F . Thus we have `F pγγ
1q ¡ 0. Using the fact that

Cpγq �
¤

eP ~EG,`pγeq¡`pγq

Cpγeq,

we can replace γ by paths γ2 such that γ � γ2 and γ2 is not contained in a concatenation
of paths in GPG,F and NPG,F . This concludes the proof.

Let ν be a nonzero current in CurrpFn,F ^ Apφqq. By Lemma 6.3.27 p3q, we have
‖ν‖F � 0. The following result characterizes limits in PCurrpFn,F ^Apφqq. The result
is due to Kapovich [Kap, Lemma 3.5] for a nonrelative context.

Lemma 6.3.29. Let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq be
an exponentially growing outer automorphism. Let prµnsqnPN be a sequence in PCurrpFn,F^
Apφqq and let rµs P PCurrpFn,F ^Apφqq. Let G be a graph whose fundamental group is
isomorphic to Fn and such that there exists a subgraph Gp of G such that FpGpq � F .
Then lim

nÑ8
rµns � rµs if and only if, for every reduced edge path γ P PpF ^ Apφqq, we

have

lim
nÑ8

xγ, µny

‖µn‖F
�
xγ, µy

‖µ‖F
. (6.5)

Proof. Suppose first that lim
nÑ8

rµns � rµs. Thus there exists a sequence pλnqnPN�

of positive real numbers such that lim
nÑ8

λnµn � µ. By continuity of ‖.‖F , we have

lim
nÑ8

‖λnµn‖F � ‖µ‖F . By linearity of ‖.‖F and x., .y in the second variable, for every

reduced edge path γ P PpF ^Apφqq, we have

lim
nÑ8

xγ, λnµny

‖λnµn‖F
� lim

nÑ8

xγ, µny

‖µn‖F
�
xγ, µy

‖µ‖F
.

Suppose now that for every reduced edge path γ P PpF^Apφqq, Equation (6.5) holds.
By Lemma 6.3.28, for every Borel subset B of B2pFn,F ^ Apφqq such that µpBBq � 0,
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we have

lim
nÑ8

µnpBq

‖µn‖F
�
µpBq

‖µ‖F
.

Hence we have lim
nÑ8

rµns � rµs.

6.4 Stable and unstable currents for relative atoroidal outer au-
tomorphisms

Let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq be an atoroidal
outer automorphism relative to F . In this section, under additional hypotheses on φ,
we construct two φ-invariant convex subsets of PCurrpFn,Fq. We will then show in the
following section that, with respect to these convex subsets, the outer automorphism φ
acts with generalized north-south dynamics.

In order to define the extremal points of these simplices, we need some results re-
garding substitution dynamics.

6.4.1 Substitution dynamics

Let A be a finite set with cardinality at least equal to 2. Let ζ be a substitution on A,
that is, a map from A to the set of nonempty finite words on A. The substitution ζ
induces a map on the set of all finite words on A by concatenation, which we still denote
by ζ. We can therefore iterate the substitution ζ. For a word w on A, we will denote by
|w| the length of w on the alphabet A.

To the substitution ζ one can associate its transition matrix M , which is a square
matrix whose rows and columns are indexed by letters in A and, for all a, b P A, Mpa, bq
is the number of occurrences of a in ζpbq. Likewise, for n ¥ 1, the matrix Mn is the
transition matrix for ζn. We say that a substitution ζ is irreducible if its transition
matrix is irreducible, and that the substitution is primitive if its transition matrix is.

Let ` P N� and let A` be the set of words on A of length `. As defined in [Que,
Section 5.4.1], the substitution ζ induces a substitution ζ` on A` as follows. Let w �
x1 . . . x` P A`. Then ζ`pwq � w1w2 . . . w|ζpx1q|, where, for every i P t1, . . . , |ζpx1q|u, the

word wi is the subword of ζpwq of length ` starting at the ith position of ζpx1q. Therefore,
ζ` is the concatenation of the |ζpx1q| first subwords of ζpwq of length `. Note that the
number of i P t1, . . . , |ζpx1q|u such that wi that is not contained in ζpx1q is bounded
by ` � 1. Let | � |` be the length of words on A`. Then |ζ`pwq|` � |ζpx1q|. Denote by
M` the transition matrix of ζ`. Note that, for every n, ` ¥ 1, we have pζnq` � pζ`q

n as
applications on the set of words on A` and thus pMnq` � pM`q

n.
Consider now a partition of the alphabet A �

²k
i�0Bi. Suppose that the transition

matrix associated with the substitution ζ is lower block triangular with respect to this
partition. Therefore, for every i P t0, . . . , ku, for every x P Bi and for every j   i,
the word ζpxq does not contain letters in Bj . In the remainder of the article, for every
i P t0, . . . , ku the diagonal block in M corresponding to the block Bi will be denoted by
MBi .
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The partition of A induces a partition of A` as follows. For every i P t0, . . . , ku, letrBi � A` be the set of all words on A of length ` which start with a letter in Bi and
which, for every j   i do not contain a letter in Bj . Let Bi be the set of all words w on
A of length ` which start with a letter in Bi and such that there exists j   i such that w
contains a letter in Bj (note that B0 is empty). Then rBiYBi is the set of all words on A
of length ` which starts with a letter in Bi. The hypothesis on the substitution ζ implies
that the transition matrix M` is lower block triangular with respect to the partitionrB0 >B1 > rB1 > . . . >Bk > rBk
of A`. As before, for every i P t0, . . . , ku, we will denote by M`,Bi

the diagonal block in

M` corresponding to Bi and by M
`, rBi the diagonal block in M` corresponding to rBi.

Lemma 6.4.1. [Gup1, Lemma 8.8] Let A be a finite alphabet equipped with a partition
A � >ki�0Bi. Let ζ be a substitution and let M be its transition matrix. Let ` P N�.

p1q The eigenvalues of M
`, rBi are those of MBi with possibly additional eigenvalues of

absolute value at most equal to 1.

p2q The eigenvalues of M`,Bi
have absolute value at most equal to 1.

Fix an integer p P t0, . . . , ku. For every i ¥ p, let B
ppq
i be the subset of Bi consisting

in all words w of length ` which start with a letter in Bi and such that there exists j   p
such that w contains a letter in Bj . Then, for every i ¥ p, the block M`,Bi

decomposes

into a lower triangular block matrix where the columns and rows corresponding to B
ppq
i

are on the top left. Let M
`,B

ppq
i

be the corresponding block matrix. By Lemma 6.4.1 p2q,

the eigenvalues of M
`,B

ppq
i

have absolute value at most 1. Moreover, for every i, j ¥ p,

for every word w contained in rBj Y Bj � B
ppq
j , the word ζ`pwq considered as a word on

A` does not contain any word of B
ppq
i . Let M`ppq be the matrix obtained from M` by

deleting, for every i ¥ p, every row and column corresponding to elements in rBi, and

every row and columns corresponding to elements of Bi which do not belong to B
ppq
i .

Note that, by Lemma 6.4.1 p1q, the eigenvalues of M`ppq are those of every block MBj

with j   p with possibly additional eigenvalues of absolute value at most 1.
We can now prove a result concerning the number of occurrences of words in iterates

of a letter. For words w, v on A, we denote by pw, vq the number of occurrences of w in
v, so that M � ppa, ζpbqqa,bPA. For a word w on A, we denote by ||w||ppq the number of
letters in w which are contained in some Bj for j   p.

Proposition 6.4.2. Let A be an alphabet equipped with a partition A � >ki�0Bi. Let ζ be a
substitution on A and let M be its transition matrix. Suppose that M is lower triangular
by block with respect to the partition of A. Let p P N�. Let a P

�
j pBj be such that

ζpaq starts with a. Suppose that there exists j   p such that MBj is a primitive block
whose Perron-Frobenius eigenvalue is greater than 1 and such that there exists nj ¥ 1
such that ζnj paq contains a letter of Bj. Let w be a word such that w contains a letter
in Bj. Then
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lim
nÑ8

pw, ζnpaqq

||ζnpaq||ppq
exists and is finite. Furthermore there exists a word w containing a letter in some Bj
with j   p such that this limit is positive.

Proof. The proof follows [Gup1, Lemma 8.9] (see also [LU1] for similar statements).
First, up to replacing A by the smallest ζ-invariant subalphabet of A containing a (which
still satisfies the hypotheses of Proposition 6.4.2), we may suppose that, for every letter
x P A, there exists nx ¥ 1 such that ζnxpaq contains the letter x. Let α be a word on A
with length ` ¥ 1 that starts with a. Note that, since a P Yj pBj , the word α defines
a column and a row in M`ppq. Recall that for every n the number of occurrences of a
word w in ζnpaq differs from the number of occurrences of the letter w P A` in ζn` pαq by
at most `� 1. Moreover, we have pw, ζn` pαqq �Mn

` ppqpw,αq.
Let S be the set of all s   p such that MBs is a primitive block with associated

Perron-Frobenius eigenvalue greater than 1. By assumption, the set S is a nonempty
finite set. Let S1 be the subset of S consisting in all such Bs such that the associated
Perron-Frobenius eigenvalue is maximal. Call this eigenvalue λ. By Lemma 6.4.1, the
eigenvalue λ is also the maximal eigenvalue of the matrix M`ppq. Let dλ be the size of
the maximal Jordan block of M`ppq associated with λ. Then the growth under iterates

of the maximal Jordan block of M`ppq
λ is polynomial of degree dλ. Therefore, we have

lim
nÑ8

pw, ζnpaqq

λnndλ
� lim

nÑ8

pw, ζn` pαqq

λnndλ
� lim

nÑ8

Mn
` ppqpw,αq

λnndλ
� dw,a,

where dw,a is a real number. Moreover, the limit does not depend on the choice of α
since, for any n, and for any two columns of Mn

` ppq corresponding to words starting with
the same letter, the sum of the values of each column differ by at most `� 1 (see [Gup1,
Lemma 8.6]). Moreover, there exists a word w such that the limit is positive since we
quotiented by the growth of the iterates of the Jordan block with maximal eigenvalue.

Let || � || be the L1-norm on R|A`|. By [LU1, Remark 4.1], since limnÑ8
Mn
` ppqpw,αq

λnndλ
exists, so does

lim
nÑ8

Mn
` ppqpw,αq

||Mn
` ppqpαq||

,

where ||Mn
` ppqpαq|| is the norm of the column of Mn

` ppq corresponding to α.

Claim. Suppose that there exists C ¥ 1 such that for every n P N, we have

||ζnpaq||ppq ¤ ||Mn
` ppqpαq|| ¤ C||ζnpaq||ppq.

Then

lim
nÑ8

pw, ζnpaqq

||ζnpaq||ppq
exists for all words w on A and is positive for some word w.
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Proof. Recall that two sequences punqnPN and pvnqnPN with values in R are equivalent
if there exists a sequence pεnqnPN tending to zero such that un � p1 � εnqvn. Re-
call that there exists C 1 ¡ 0 such that the sequence p‖Mn

` ppqpαq‖qnPN is equivalent
to pC 1λnndλqnPN. Recall also that for every n, the value of ‖ζnpaq‖ppq is the norm of
Mnppqpvaq, where va is the vector whose coordinates is 1 on the coordinate associated
with a and 0 otherwise. Hence, since the matrix Mnppq is nonnegative and not the zero
matrix, there exist Ca, λa P R�

� and da P N such that the sequence p‖ζnpaq‖ppqqnPN is

equivalent to pCaλ
n
an

daqnPN. Thus, by the assumption of the claim, since the limit

lim
nÑ8

Mn
` ppqpw,αq

||Mn
` ppqpαq||

exists, and is not equal to zero for some w, the same is true for

lim
nÑ8

pw, ζnpaqq

||ζnpaq||ppq
.

This proves the claim.

Therefore, in order to conclude the proof of the proposition, it remains to prove that
the hypothesis of the claim is true in our context. Let ζnpaq � x1 . . . x|ζnpaq| and let

ζn` pαq � w1 . . . w|ζnpaq|.

Let Xnpaq be the list x1, . . . , x|ζnpaq| and let Xn
 ppaq be the sublist of Xnpaq consisting

in all letters in Yp�1
i�1Bi. Let Xp`,nqpαq be the list w1, . . . , w|ζnpaq| and let X

p`,nq
 p pαq be

the sublist of Xp`,nqpαq which consists in all elements of Xp`,nqpαq that do not belong to

Yi¤p rBiYBi�B
ppq
i . Note that |X

p`,nq
 p pαq| � ||Mn

` ppqpαq|| and that |Xn
 ppaq| � ||ζnpaq||ppq.

The fact that ||ζnpaq||ppq ¤ ||Mn
` ppqpαq|| follows from the fact that we have an injection

from Xn
 ppaq to X

p`,nq
 p pαq by sending the letter xi P X

n
 ppaq to wi P X

p`,nq
 p pαq. Since

every word of length ` contained in X
p`,nq
 p pαq contains a letter in Xn

 ppaq, we have an

application from X
p`,nq
 p pαq to Xn

 ppaq defined as follows. Let w P X
p`,nq
 p pαq and let

jw P t1, . . . , |ζ
npaq|u be the minimal integer such that xjw P X

n
 ppaq and xjw is a letter in

w. Then the application sends w to xjw . By construction, the cardinal of the preimage
of any x P Xn

 ppaq is at most equal to `. Therefore, we have

||ζnpaq||ppq ¤ ||Mn
` ppqpαq|| ¤ `||ζnpaq||ppq.

This concludes the proof.

6.4.2 Construction of the attractive and repulsive currents for relative almost
atoroidal automorphisms

Let n ¥ 3 and let F � trA1s, . . . , rAksu be a free factor system of Fn. We first define
a class of outer automorphisms of Fn which we will study in the rest of the article. If
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φ P OutpFn,Fq and φ preserves the conjugacy class of every Ai with i P t1, . . . , ku, we
denote by φ|F the element prφ1|A1s, . . . , rφk|Aksq, where, for every i P t1, . . . , ku, the
element φi is a representative of φ such that φipAiq � Ai and rφi|Ais is an element of
OutpAiq. Note that the outer class of φi|Ai in OutpAiq does not depend on the choice of
φi.

Definition 6.4.3. Let n ¥ 3 and let F � trA1s, . . . , rAksu be a free factor system of Fn.
Let φ P OutpFn,Fq be exponentially growing. The outer automorphism φ is almost
atoroidal relative to F if φ preserves the conjugacy class of every Ai with i P t1, . . . , ku
and φ is one of the following:

p1q an atoroidal outer automorphism relative to F .

p2q an outer automorphism which preserves a sequence of free factor systems F ¤ F1 ¤
tFnu with F1 � trB1s, . . . , rB`su and such that:
paq F1 ¤ tFnu is sporadic,
pbq φ preserves the conjugacy class of every Bi with i P t1, . . . , `u, the element φ|F1 is an
expanding atoroidal outer automorphism relative to F and φ is not expanding relative
to F (F might be equal to F1).

The main example of an almost atoroidal automorphism is the following. Suppose
that F1 � rAs and let φ P OutpFn,Fq be such that φprAsq � rAs. Then φ is almost
atoroidal if φ|rAs is expanding relative to F . Indeed, either φ is expanding relative to F
and in this case φ satisfies p1q or φ is not expanding relative to F and φ satisfies p2q.
Almost atoroidality allows us to deal with sporadic extensions.

Let φ P OutpFn,Fq be an almost atoroidal outer automorphism relative to F . In
this section, we construct a nontrivial convex compact subset in PCurrpFn,F ^ Apφqq
associated with φ. We follow the construction of [Uya2] in the context of atoroidal
automorphisms. By Theorem 6.2.10, there exists M ¥ 1 such that φM is represented
by a CT map f : G Ñ G with filtration ∅ � G0 � G1 � . . . � Gk � G and such that
there exists p P t1, . . . , ku such that FpGpq � F . For a splitting unit σ in G, we say
that σ is expanding if limmÑ8 `expprf

mpσqsq � �8. Note that, by Lemma 6.3.23, this is
equivalent to saying that there exists N P N� such that rfN pσqs contains a splitting unit
which is an edge in an EG stratum. Moreover, a splitting unit σ which is an expanding
splitting unit is either an edge in G�G1

PG or a maximal taken connecting path in zero

stratum such that a reduced iterate of σ contains an edge in G�G1
PG as a splitting unit.

In particular, there are finitely many expanding splitting units by Proposition 6.2.5 p3q.
Let γ and γ1 be two finite reduced subpaths of G. We denote by #pγ, γ1q the number

of occurrences of γ in γ1 and by xγ, γ1y the sum@
γ, γ1

D
� #pγ, γ1q �#pγ�1, γ1q. (6.6)

The next proposition shows the existence of relative currents associated with relative
atoroidal outer automorphisms. Once we have constructed these currents for relative
atoroidal outer automorphisms, we will also be able to construct attractive and repulsive
simplices for every almost atoroidal outer automorphisms relative to F . The proposition
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and its proof are inspired by the same result in the absolute context due to Uyanik ([Uya2,
Proposition 3.3]) and by the proof due to Gupta in the relative fully irreducible context
([Gup1, Proposition 8.13]). Recall the definition of PpF ^Apφqq before Lemma 6.3.28
and C before Lemma 6.2.11.

Proposition 6.4.4. Let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq
be an atoroidal outer automorphism relative to F . Let f : G Ñ G be a CT map that
represents a power of φ with filtration ∅ � G0 � G1 � . . . � Gk � G and such that
there exists p P t1, . . . , ku such that FpGpq � F . Let γ P PpF ^ Apφqq and let σ be an
expanding splitting unit with fixed initial direction.

p1q The limit

σγ � lim
mÑ8

xγ, rfmpσqsy

`F prfmpσqsq

exists and is finite.

p2q There exists a unique current ησ P CurrpFn,F ^ Apφqq such that, for every finite
reduced edge path γ P PpF ^Apφqq, we have:

ησpCpγqq � σγ .

Proof. p1q We may suppose that γ occurs in a reduced iterate of σ as otherwise σγ � 0.
We first treat the case where σ is an expanding splitting unit which is an edge in an
irreducible stratum. Let r be the height of σ. In order to prove the proposition in this
case, we want to apply Proposition 6.4.2 to the CT map f seen as a substitution on the
set of splitting units contained in iterates of σ. However, the set of splitting units might
be infinite since exceptional paths may have arbitrarily large widths and INPs arbitrarily
large lengths. Instead, we construct a finite alphabet Aγ depending on γ. The alphabet
is constructed as follows by associating a letter to every splitting unit occurring in a
reduced iterate of σ. However some letters will correspond to infinitely many splitting
units.

paq We add one letter for each of the finitely many edges in irreducible strata that are
contained in a reduced iterate of σ.

pbq We add one letter for each reduced maximal taken connecting path in a zero stratum
contained in a reduced iterate of σ.

pcq We add one letter for each INP contained in a reduced iterate of σ and such that
the stratum of maximal height it intersects is an EG stratum.

pdq Let δ be an INP such that the stratum of maximal height it intersects is an NEG
stratum and such that it appears in a reduced iterate of σ. By Proposition 6.2.5 p11q,
there exist an edge e, an integer s P Z and a closed Nielsen path w such that δ � ewse�1.
Note that γ is not contained in ws since γ P PpF ^Apφqq and ws is a concatenation of
paths in GPG,F and NPG,F by Lemma 6.3.7 and the fact that φ is atoroidal relative to
F . Hence if γ is contained in δ, it is either an initial or a terminal segment of δ. Let
M1 be the maximal integer |d| such that γ contains an INP of the form ewde�1. Let
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M2 be the minimal integer |d| such that γ X pewde�1q is either an initial or a terminal
segment of ewde�1. Let M3 be the maximal integer |d| such that ewde�1 is contained
in rfpσ1qs with σ1 a splitting unit which is either an edge in an irreducible stratum or a
maximal taken connecting path in a zero stratum. Let M � maxtM1,M2,M3u. We add
one letter for each ewde�1 with |d| ¤ M � 1. We add exactly one letter representing
every ewde�1 with |d| ¡M � 1.

peq Let δ be an exceptional path appearing in a reduced iterate of σ. There exist
edges e1, e2, a nonzero integer s and a closed Nielsen path w such that δ � e1w

se�1
2 .

Note that γ is not contained in ws since γ P PpF ^ Apφqq and ws is a concatenation
of paths in GPG,F and NPG,F by Lemma 6.3.7 and the fact that φ is atoroidal relative
to F . Let M4 be the maximal integer |d| such that γ contains an exceptional path of
the form e1w

de�1
2 . Let M5 be the minimal integer |d| such that γ X e1w

de�1
2 is either

a proper initial or terminal segment of e1w
de�1

2 . Let M6 be the maximal integer |d|
such that e1w

de�1
2 is contained in rfpσ1qs with σ1 a splitting unit which is either an edge

in an irreducible stratum or a maximal taken connecting path in a zero stratum. Let
M 1 � maxtM4,M5,M6u. We add one letter for each e1w

de�1
2 with |d| ¤ M 1 � 1. We

add one letter representing every e1w
de�1

2 with |d| ¡M 1 � 1.

We claim that the alphabet Aγ is finite. Indeed, since the graph G is finite, so is
the number of letters in the first category. By Proposition 6.2.5 p3q, the zero strata
of Gr�1 are exactly the contractible components of Gr�1. Hence the number of letters
in the second category is finite. The number of letters in the third category is finite
by Proposition 6.2.5 p9q. The remaining letters of Aγ are finite by definition. Let ζ
be the following substitution on Aγ . If a P Aγ represents a unique path in G, we set
ζpaq � rfpaqs. If a P Aγ represents several paths in G, we set ζpaq � a. We claim that ζ
is a well-defined substitution. Indeed, by Proposition 6.2.5 p6q, if a is a letter in Aγ which
represents a unique path in G, then rfpaqs is completely split and every splitting unit in
rfpaqs is represented by a unique letter by the construction of letters in the fourth and
fifth category. Moreover, if a P Aγ represents several paths, then the definition of ζ does
not depend on the choice of a representative of a. Hence ζ is a well-defined substitution.

We claim that if a P Aγ represents several paths in G, then, for every representative
α of a, the path rfpαqs is represented by a. Indeed, the claim is immediate when a
represents several INPs, so we focus on the case where a represents several exceptional
paths. Let e1, e2 be edges in G, let w be a closed Nielsen path in G and let d P Z be such
that e1w

de�1
2 is represented by the letter a. There exist a splitting unit σ1 of a reduced

iterate of σ by rf s, an integer N P N� and an integer d1 P Z such that e1w
d1e�1

2 is a
subpath of rfN pσ1qs. Thus, using the constants given in peq, we have |d1| ¤ M6 ¤ M .
By the construction of the alphabet Aγ , there exists a letter a1 in Aγ corresponding to
the path e1w

d1e�1
2 and a1 represents a unique path. For every n P N, let dn P Z be such

that rfnpe1w
d1e�1

2 qs � e1w
dne�1

2 . Then the sequence pdnqnPN is monotonic. Let m0 be
the minimal integer such that the path e1w

dm0e�1
2 is represented by a. Note that m0 ¡ 1

as a1 represents a unique path. By monotonicity, dm0 � d1. Thus, if dm0 ¡ d1, then for
every m ¥ m0, we have dm ¥ dm0 and if dm0   d1, then for every m ¥ m0, we have
dm ¤ dm0 . Hence for every m ¥ m0, the path e1w

dm�1e�1
2 is represented by a. This
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shows that if α P a then rfpαqs P a. This concludes the proof of the claim. Hence ζ only
depends on the function rfp.qs.

By reordering columns and rows, we may suppose that, if M is the matrix associated
with ζ, then columns and rows of M with index greater than p are precisely the letters in
Aγ representing splitting units which are concatenations of paths in GPG,F and NPG,F .
By Lemma 6.3.9, iterates by ζ of letters of Aγ representing concatenations of paths in
GPG,F and NPG,F are words on Aγ whose letters represent concatenations of paths in
GPG,F and NPG,F . Thus, the matrix M is a lower block triangular matrix, where every
block of index at most p corresponds to either edges in a common stratum, or the 0
matrix when the associated letter is a maximal taken connecting path in a zero stratum.

Since σ is expanding, it has a reduced iterate which contains splitting units which
are edges in EG strata. Hence if aσ is the letter in Aγ corresponding to σ, the iterates
ζnpaσq contain letters of Aγ in a Perron-Frobenius block with eigenvalue greater than
1. Since the initial direction of σ is fixed by Proposition 6.4.2, for every word w in the
alphabet Aγ , the limit

lim
mÑ8

pw, rζmpσqsq

||ζmpσq||ppq
exists and is finite. Hence the limit

lim
mÑ8

xw, rζmpσqsy

||ζmpσq||ppq

exists and is finite.

Claim. There exists a matrix M 1 obtained from M by multiplying rows and columns by
positive scalars and such that, for every m P N�, we have `F prf

mpσqsq � ‖M 1mpσq‖ppq.

Proof. Remark that if e1w
se�1

2 is an exceptional path, and if e1w
de�1

2 is an exceptional
path with distinct width, then their F-lengths are equal and at most equal to 2. Indeed,
since φ is an atoroidal outer automorphism relative to F , every closed Nielsen path of
G is contained in Gp. Since w is a closed Nielsen path, we see that w is a concatenation
of paths in GPG,F and NPG,F by Lemma 6.3.6. Hence we have

`F pe1w
se�1

2 q � `F pe1q � `F pe2q ¤ 2.

Similarly, if ewse�1 and ewde�1 are INP intersecting the same maximal NEG stratum,
then their F-length are equal and at most equal to 2. Let M 1 be the matrix obtained from
M by multiplying every row correponding to either an exceptional path not contained in
Gp, an INP not contained in Gp, a collection of exceptional paths not contained in Gp, a
collection of INPs not contained in Gp or a maximal taken connecting path not contained
in Gp, by the corresponding F-length. Note that, by the above remarks, this does not
depend on the choice of a representative when the letter corresponds to a collection of
paths. Then for every m P N�, the value ‖M 1mpσq‖ppq corresponds to the sum of the
F-length of every splitting unit in rfmpσqs not contained in Gp. By Lemma 6.3.19,
complete splittings are PG-relative complete splittings. By Lemma 6.3.20 p2q, we have
`F prf

mpσqsq � ‖M 1mpσq‖ppq. This proves the claim.
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By the claim, we see that for every m P N�, there exists a constant K such that we
have

1

K
||ζmpσq||ppq ¤ `F prf

mpσqsq ¤ K||ζmpσq||ppq.

Using the claim in the proof of Proposition 6.4.2 (replacing ‖Mn
` ppqpαq‖ by `F prf

npσqsq
which is possible since `F prf

npσqsq is the norm of a matrix by the claim), the limit

lim
mÑ8

xw, rfmpσqsy

`F prfmpσqsq

exists and is finite. We now construct a finite set of words W pγq in the alphabet Aγ such
that for every m P N�, there exists a bijection between occurrences of γ in rfmpσqs and
occurrences of a word w PW pγq in rζmpσqs. This will conclude the proof of Case 2. Let
W pγq be the set of words in Aγ consisting in every path contained in a reduced iterate of
σ which contains γ, which is completely split and which is minimal for these properties.
By construction, every occurrence of γ in a reduced iterate of σ is contained in a word in
W pγq. We claim that the set W pγq is finite. Indeed, let w be a word in W pγq. Then w
corresponds to a path in a reduced iterate of σ which is a concatenation of splitting units
w � σ1 . . . σk. By minimality of w, if w1 PW pγq is distinct from w1, then the number of
splitting units in w1 is at most equal to k and w1 might differ from w by changing σ1 and
σk. Thus, W pγq is finite. For every w P W pγq, let mw be the number of occurrences of
γ in w. Since γ is not contained in Gp, the value mw does not depend on the choice of
a representative of w if w represents a collection of paths. Therefore, for every m P N�,
we have

xγ, fmpσqy �
¸

wPW pγq

mw xw, f
mpσqy .

This shows that the limit

σγ � lim
mÑ8

xγ, fmpσqy

`F pfmpσqq

exists and is finite. This proves Assertion p1q of the proposition when σ is an edge in an
irreducible stratum.

Suppose now that σ is a maximal taken connecting path in a zero stratum. We prove
the proposition by induction on the height r of the splitting unit σ. Suppose first that
σ is an expanding splitting unit which is a maximal taken connecting path in a zero
stratum of minimal height r. Then rfpσqs has height r � 1, hence it does not contain
splitting units which are maximal taken connecting path in zero strata. In this case, the
proof follows from the above case. Suppose now that σ is a maximal taken connecting
path in a zero stratum. Then its reduced image is completely split and has height at
most r� 1. In this case the claim follows by induction applied to rfpσqs. This concludes
the proof of Assertion p1q.

p2q Let us prove that for every element γ P PpF ^Apφqq, we have:

piq 0 ¤ σγ   8;

piiq σγ � σγ�1 ;
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piiiq σγ �
°
ePE σγe, where E is the subset of ~EG consisting in all edges that are incident

to the endpoints of γ and distinct from the inverse of the last edge of γ.

The point piq follows from Assertion p1q. The second point follows from the def-
inition of xγ, fmpσqy. In order to prove the third point, remark that xγ, fmpσqy and°
ePE xγe, f

npσqy differ only when rfmpσqs ends with γ or γ�1. Therefore the difference
between xγ, fmpσqy and

°
ePE xγe, f

mpσqy is at most 2. This implies that∣∣∣∣∣xγ, fmpσqy`F pfmpσqq
�
¸
ePE

xγe, fmpσqy

`F pfmpσqq

∣∣∣∣∣Ñ 0 as nÑ8.

This proves the third point. By [Gue4, Lemma 3.2], since the map γ ÞÑ σγ satisfies the
conditions piq�piiiq, it determines a projective relative current nσ P PCurrpFn,Fq. This
current is unique since a relative current is entirely determined by its set of values on
cylinders of finite paths γ P PpF ^ Apφqq by Lemma 6.3.28. This concludes the proof.

Definition 6.4.5. Let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq
be an almost atoroidal outer automorphism relative to F and let F1 be a free factor
system such that F ¤ F1 and such that the extension F1 ¤ tFnu is sporadic and such
that φ|F1 is atoroidal relative to F . In the case that φ is atoroidal relative to F , we
assume that F1 � trFnsu. Let f : G Ñ G be a CT map representing a power of φ with
filtration

∅ � G0 � G1 � . . . � Gk � G,

such that there exists i P t1, . . . , k � 1u with FpGiq � F1. We define the simplex of
attraction of φ, denoted by ∆�pφq, as the set of projective classes of nonnegative linear
combinations of currents µσ obtained from Proposition 6.4.4 applied to φ|F1 and f and
which correspond to splitting units σ whose exponential length grows exponentially fast
under iteration of f . The simplex of repulsion of φ, denoted by ∆�pφq, is ∆�pφ

�1q.

Remark 6.4.6. The definitions of attractive and repulsive currents given in Definition 6.4.5
rely on the choice of CT maps representing powers of the almost atoroidal outer auto-
morphisms φ and φ�1. However, it will be a consequence of Proposition 6.4.12 and
Proposition 6.5.24 that the attractive and repulsive currents depend only on φ.

We now prove properties of the subsets ∆�pφq. As explained above Proposition 6.4.4,
there are only finiely many expanding splitting units. Hence the subsets ∆�pφq are
closed. Since PCurrpFn,F ^Apφqq is a Hausdorff, compact space by Lemma 6.2.14 and
since ∆�pφq are closed subsets, we have the following.

Lemma 6.4.7. Let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq
be an atoroidal outer automorphism relative to F . The subsets ∆�pφq are compact and
contain finitely many extremal points.
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Note that one compute ‖µpσq‖F by counting the number of occurrences of every PG-
relative splitting unit of positive F-length in a reduced iterate of σ and taking the limit.
This is precisely the limit of the F-length of reduced iterates of σ by Lemma 6.3.20.
Hence we have the following result.

Lemma 6.4.8. Let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq be
an atoroidal outer automorphism relative to F . We have ‖µpσq‖F � 1.

We now prove that the subsets ∆�pφq are φ-invariant. We first recall some lemmas.

Lemma 6.4.9. [Coop, Bounded Cancellation] Let n ¥ 2 and let G be a marked graph of
Fn. Let f : GÑ G be a graph map. There exists a constant Cf such that for any reduced
path ρ � ρ1ρ2 in G we have

`prfpρqsq ¥ `prfpρ1qsq � `prfpρ2qsq � 2Cf .

Lemma 6.4.10. [LU2, Lemma 5.7] For any graph G without valence 1 vertices there
exists a constant K ¥ 0 such that for any finite reduced edge path γ in G there exists an
edge path γ1 of length at most K such that the concatenation γγ1 exists and is a reduced
circuit.

Lemma 6.4.11. Let f : G Ñ G be as in Proposition 6.4.4. Let K1 ¥ 0 be any constant,
let σ be an expanding splitting unit and let ησ be the current associated with σ given by
Proposition 6.4.4 p2q. Let m P N and let γ1m be a reduced edge path of length at most K1.
Let γm � rfmpσqs�γ1m, where rfmpσqs� is obtained from rfmpσqs by erasing an initial
and a terminal subpath of length K1. For every element γ P PpF ^Apφqq, we have

lim
mÑ8

xγ, γmy

`F pγmq
� xγ, ησy .

Proof. The proof follows [LU2, Lemma 5.8]. Since `pγ1mq ¤ K1, we have

`F prf
mpσqs�q ¥ `F prf

mpσqsq � 2K1.

Since σ is expanding, we have limmÑ8 `F prf
mpσqsq � �8. Hence we have

lim
mÑ8

xγ, γmy

xγ, rfmpσqsy
� 1

and

lim
mÑ8

`F pγmq

`F prfmpσqsq
� 1.

Hence the result follows from Proposition 6.4.4 p1q.

Proposition 6.4.12. Let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq
be an almost atoroidal outer automorphism relative to F . Let f : G Ñ G be as in
Proposition 6.4.4. Let σ be an expanding splitting unit and let ησ be the current associated
with σ given by Proposition 6.4.4 p2q. There exists λσ ¡ 1 such that

φpησq � λσησ.
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Proof. The proof follows [LU2, Proposition 5.9]. Let K ¥ 0 be the constant associated
with G given by Lemma 6.4.10. Let m P N, and let γ1m be the path of length at
most K given by Lemma 6.4.10 such that γm � rfmpσqsγ1m is a reduced circuit. Since
limtÑ8 `expprf

tpσqsq � �8, for large values of m, we have `exppγmq ¡ 0. Let wm be an
element of Fn whose conjugacy class is represented by γm. Note that, by Lemma 6.3.26,
we have `F pγmq � ‖ηwm‖F . By Proposition 6.3.13, since `exppγmq ¡ 0, we see that wm
is F ^Apφq-nonperipheral, hence wm defines a current ηrwms P CurrpFn,F ^Apφqq.

Let αm � rfm�1pσqsrfpγ1mqs. Note that since `pγ1mq ¤ K, the value `prfpγ1mqsq is
bounded by a constant K0 which only depends on K. Let C 1 be the constant given by
Lemma 6.4.9 and let K1 � maxtK0, C

1u. Then, with the notations of Lemma 6.4.11,
the reduced circuit γ2m � rαms can be written as a product γ2m � rfmpσqs�βm where
`pβmq ¤ K1 and `F prf

mpσqs�q ¥ `F prf
mpσqsq � 2K1. Applying Lemma 6.4.11 twice, we

see that, for every element γ P PpF ^Apφqq, we have

lim
mÑ8

xγ, γmy

`F pγmq
� xγ, ησy

and

lim
mÑ8

xγ, γ2my

`F pγ2mq
� xγ, ησy .

By Lemma 6.3.29, we have

lim
mÑ8

ηrwms

‖ηrwms‖F
� ησ.

From the continuity of the OutpFnq-action on PCurrpFn,F^Apφqq and from φpηηrwms
q �

ηφprwmsq, we see that

lim
mÑ8

ηφprwmsq

‖ηrwms‖F
� φpησq.

Since the reduced circuit γ2m represents the conjugacy class φprwmsq, the second of the
above equalities implies that

lim
mÑ8

ηφprwmsq

‖ηφprwmsq‖F
� ησ.

Recall that limmÑ8
`F pγmq

`F prfmpσqsq
� 1, that limmÑ8

`F pγ
2
mq

`F prfm�1pσqsq
� 1, that `F pγmq �

‖ηrwms‖F and that `F pγ
2
mq � ‖ηφprwmsq‖F . Recall from the claim in the proof of Propo-

sition 6.4.4 that `F prfpσqsq is the norm of a matrix. By [LU1, Remark 3.3], there exists
λσ ¥ 1 such that

lim
mÑ8

`F prf
m�1pσqsq

`F prfmpσqsq
� λσ.

Since σ is expanding, we have in fact λσ ¡ 1 and this concludes the proof.

We now prove a lemma which will be used in [Gue6].
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Lemma 6.4.13. Let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq
be an expanding outer automorphism relative to F . Let f : G Ñ G be as in Proposi-
tion 6.4.4. Let σ be an expanding splitting unit and let ησ be the current associated with
σ given by Proposition 6.4.4 p2q.

p1q There exists a projective current rηs P PCurrpFn,F ^ Apφqq whose support is con-
tained in the support of ησ and such that Supppηq is uniquely ergodic. In particular, the
support of every extremal current of ∆�pφq contains a closed subset which is uniquely
ergodic.

p2q There exists only finitely many projective currents rηs P PCurrpFn,F ^Apφqq whose
support is contained in the support of ησ and such that Supppηq is uniquely ergodic.

Proof. p1q Note that, since φ is expanding relative to F , we have F ^ Apφq � Apφq.
Let r P N be the minimal integer such that Hr is an EG stratum and a reduced iterate
of σ contains an edge of Hr. Such a stratum Hr exists since σ is expanding. Let e be
an edge of Hr with fixed initial direction and let ηe be the current in PCurrpFn,Apφqq
associated with e given by Proposition 6.4.4 p2q.

Claim. The support of ηe is uniquely ergodic.

Proof. By minimality of r, every edge contained in a reduced iterate of e is either in Hr

or in G1
PG. Let G1 be the minimal subgraph of G which contains every reduced iterate

of e and let A be a subgroup of Fn such that π1pG
1q is a conjugate of A when π1pGq is

identified with Fn. Then G1 is f -invariant and hence rAs is φ-invariant. Let G1
1, . . . , G

1
k

be the connected component of G1 �Hr and let F 1 be the free factor system of Fn
determined by G1

1, . . . , G
1
k. Let Φ P φ be such that ΦpAq � A. Note that rΦ|As P OutpAq

is fully irreducible relative to F 1. For every i P t1, . . . , ku, we have G1
i � G1

PG. By
Proposition 6.2.5 p3q, for every i P t1, . . . , ku, either G1

i is contractible or G1
i � GPG.

By Proposition 6.3.13 for every subgroup H of Fn such that rHs P F 1, there exists a
subgroup H 1 of Fn such that rH 1s P Apφq and H � H 1. Hence we have F 1 ¤ Apφq.
Moreover by Proposition 6.3.13 and Proposition 6.2.5 p9q, if γ is a cyclically reduced
circuit of G1 of height r whose growth under iteration of f is polynomial, then γ contains
(up to taking inverse) the only height r EG INP σr. As one of the endpoints of σr is not
contained in Gr�1 by [HaM4, Fact I.1.42], we see that either σr is not closed and γ does
not exist or σr is closed and γ is an iterate of σr or σ�1

r . Let b P Fn be the (possibly
trivial) element associated with σr. Then, we have

B2AX B2pFn,Apφqq � B2pA,F 1 Y trbsuq.

Let PCurrpSupppηeqq be the set of projective currents in PCurrpFn,F ^ Apφqq whose
support is contained in Supppηeq. We now construct an injective application

Θ: PCurrpSupppηeqq Ñ PCurrpA,F 1q

such that for every projective current µ P PCurrpSupppηeqq we have

SupppΘprµsqq � Suppprµsq X B2A.
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Let PpF 1q be the set of paths in a Cayley tree of Fn defined above Lemma 6.3.28
(replacing F ^ Apφq by F 1). Let PApF 1q be the set of paths in PpF 1q contained in
G1. By Lemma 6.3.28, the set consisting in elements Cpγq with γ P PpF 1q covers
B2pA,F 1q. Thus, by [Gue4, Lemma 3.2], it suffices to prove that for every projective
current η P PCurrpSupppηeqq, we can associate a function rη : PApF 1q Ñ R such that for
every γ P PApF 1q, we have

piq 0 ¤ rηpγq   8;

piiq rηpγq � σγ�1 ;

piiiq rηpγq � °ePE σγe, where E is the subset of ~EG1 consisting in all edges that are
incident to the endpoints of γ and distinct from the inverse of the last edge of γ.

Let η P PCurrpSupppηeqq. If γ P PApF 1q is not contained in the axis of a conjugate of
b, we may set rηpγq � ηpCpγqq. Since σe is r-legal, a reduced iterate of σe cannot contain
the only height r EG INP. Thus, we may set, for every path γ P PApF 1q contained in
the axis of a conjugate of b: rηpγq � 0. The function rη satisfies conditions piq � piiiq as
η is a relative currents, hence it defines a unique current in PCurrpA,F 1q, which we still
denote by rη. Note that for every element γ P PApF 1q, we have

rηpCpγq X B2AX B2pFn,Apφqqq � ηpCpγq X B2AX B2pFn,Apφqqq,

so that the application PCurrpSupppηeqq Ñ PCurrpA,F 1q is injective. Moreover, we have
Suppprηq � Supppηqq X B2A.

Hence ηe defines a current rηe P PCurrpA,F 1q. This current coincides with the at-
tractive projective current associated with rΦ|As defined by Gupta in [Gup1, Proposi-
tion 8.12]. By [Gup2, Lemma 4.17], the support of rηe is uniquely ergodic. Thus the
support of ηe is uniquely ergodic.

By the claim, it remains to prove that Supppηeq � Supppησq. But an element η P
B2pFn,Apφqq is contained in the support of ησ if for every element γ P PpF ^Apφqq such
that β P Cpγq, we have ησpCpγqq ¡ 0. Thus, the support of ησ contains all the cylinder
sets of the form Cpγq where γ P PpF^Apφqq and γ is contained in a reduced iterate of σ.
In particular, since e is contained in a reduced iterate of σ, we have Supppηeq � Supppησq.
This proves Assertion p1q.

p2q Suppose towards a contradiction that there exist infinitely many pairwise distinct
projective currents prηmsqmPN P PCurrpFn,F ^ Apφqq whose support is contained in
the support of ησ and such that for every m P N, the support Supppηmq is uniquely
ergodic. By compactness of PCurrpFn,F ^ Apφqq (see Lemma 6.2.14) up to passing to
a subsequence, there exists a projective current rηs P PCurrpFn,F ^ Apφqq such that
limmÑ8rηms � rηs. Let K P N� be such that PpF ^Apφqq contains reduced edge paths
of length equal to K. By additivity of η, there exists γ, . . . , γt P PpF ^Apφqq of length
equal to K such that the support Supppηq is contained in

�t
j�1Cpγjq and for every

j P t1, . . . ,mu, we have ηpCpγjqq ¡ 0. Then, there exists N P N� such that, for every
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m ¥ N and every j P t1, . . . , tu, we have ηmpCpγjqq ¡ 0. Hence for every m ¥ N , we
have

Supppηq �
t¤

j�1

Cpγjq � Supppηmq.

By unique ergodicity, for every m ¥ N , we have rηs � rηms, a contradiction.

6.5 North-South dynamics for almost atoroidal outer automor-
phisms

Let X be a compact metric space and let G be a group acting on X by homeomorphisms.
We say that an element g P G acts on X with generalized north-south dynamics if the
action of g on X has two invariant disjoint closed subsets ∆� and ∆� such that, for
every open neighborhood U� of ∆� and every compact set K� � X �∆	, there exists
M ¡ 0 such that, for every n ¥M , we have

g�nK� � U�.

In this section we prove the following theorem. Recall that a relative expanding outer
automorphism is relative atoroidal, hence relative almost atoroidal.

Theorem 6.5.1. Let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq
be a relative expanding outer automorphism. Let ∆�pφq and ∆�pφq be the simplexes of
attraction and repulsion of φ. Then φ acts on PCurrpFn,Fq with generalized north-south
dynamics with respect to ∆�pφq and ∆�pφq.

Theorem 6.1.2 in the introduction follows from Theorem 6.5.1 since every exponen-
tially growing element of OutpFnq is expanding relative to its polynomial part.

6.5.1 Relative exponential length and goodness

Let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq be an almost
atoroidal outer automorphism relative to F . In this section we define and prove the
properties of the objects needed in order to prove Theorem 6.5.1. Let f : G Ñ G be
a CT map representing a power of φ with filtration ∅ � G0 � G1 � . . . � Gk � G
and let p P t1, . . . , ku be such that FpGpq � F . The proof of Theorem 6.5.1 relies on
the study of PG-relative completely split edge paths. More precisely, given a reduced
circuit γ of G, we study the proportion of subpaths of γ which have PG-relative complete
splittings. This proportion will be measured using the exponential length. However, the
lack of equality in Lemma 6.3.16 shows that the exponential length is not well-adapted
to study the exponential length of a path by comparing it with the exponential length
of its subpaths. Instead, we define a notion of exponential length of a subpath relative to
γ. We first need some preliminary results regarding splittings of edge paths.
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Definition 6.5.2. Let γ be a reduced edge path in G and let γ � γ0γ
1
1γ1 . . . γkγ

1
k be the

exponential decomposition of γ (see the beginning of Section 6.3.2). Let α be a subpath
of γ. The exponential length of α relative to γ, denoted by `γexppαq is:

`γexppαq �
ķ

i�1

`exppαX γ1kq.

We define the F-length of α relative to γ similarly replacing `exp by `F and the expo-
nential decomposition by the F-exponential decomposition.

Note that, for every reduced edge path γ of G, we have `γexppγq � `exppγq. The
exponential length relative to a path γ is well-adapted to compute the exponential length
of γ using its subpaths, as shown by the following lemma.

Lemma 6.5.3. Let γ be a reduced edge path and let γ1 � αβ � γ be a subpath of γ. Then

`γexppγ
1q � `γexppαq � `γexppβq.

In particular, when γ1 � γ, we have

`exppγq � `γexppαq � `γexppβq.

The same statement is true replacing `γexp by `γF .

Proof. The proof is similar for both `γexp and `γF , so we only do the proof for `γexp. Let
γ � γ0γ

1
1γ1 . . . γkγ

1
k be the exponential decomposition of γ. Then, for every i P t1, . . . , ku,

the paths αXγ1i and βXγ1i do not contain a subpath of a path in Nmax
PG pγq. In particular,

for every i P t1, . . . , ku, one computes `exppα X γ1iq and `exppβ X γ1iq by removing edges
from G1

PG. Since `γexppγ1q is computed by removing edges in G1
PG from every γ1i with

i P t1, . . . , ku, the proof follows.

In Lemma 6.5.6, we will show that if γ is a reduced edge path in G and that α is a
subpath of γ, then `exppαq and `γexppαq differ by a uniform additive constant. This will
allow us to compute directly `exppαq rather than `γexppαq.

Let γ be a reduced edge path in G and let γ � γ1 . . . γm be a splitting of γ. Let
JCS,PG � tγ1, . . . , γmu be the subset consisting in all subpaths which have a PG-relative
complete splitting. If `exppγq ¡ 0, let

gCT,PGpγ, γ1, . . . , γmq �

°
γiPJCS,PG

`γexppγiq

`exppγq
.

The goodness of γ, denoted by gpγq, is the least upperbound of gCT,PGpγq over all
splittings of γ if `exppγq ¡ 0, and is equal to 0 otherwise. When γ is a circuit, the value
gCT,PGpγq is defined using only circuital splittings.

Since there are only finitely many decompositions of a finite edge path into subpaths,
the value gpγq is realized for some splitting of γ. A splitting for which gpγq is realized is
called an optimal splitting of γ, and an optimal circuital splitting when γ is a circuit.
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A subpath of γ which is the concatenation of consecutive splitting units of an optimal
splitting of γ is called a factor of γ. When `exppγq � 0, we use the convention that the
only factor of γ is γ itself. The factors of γ that admit a PG-relative complete split-
ting are called complete factors. The factors in an optimal splitting which do not admit
PG-relative complete splittings are said to be incomplete. Remark that, by Proposi-
tion 6.2.5 p6q, p8q and by Lemma 6.3.9, the rf s-image of a PG-relative complete path is
PG-relative complete, and the reduced iterates of an incomplete factor are eventually
PG-relative complete.

Using Lemma 6.5.3, we have the following result.

Lemma 6.5.4. Let γ be a reduced edge path and let γ � γ10γ1γ
1
1 . . . γmγ

1
m be an optimal

splitting of γ, where, for every i P t0, . . . ,mu, the path γ1i is an incomplete factor of γ
and, for every i P t1, . . . ,mu, the path γi is complete. Then

gpγq �

°m
i�1 `

γ
exppγiq°m

i�1 `
γ
exppγiq �

°m
j�0 `

γ
exppγ1iq

.

Definition 6.5.5. Let n,F , φ, f, p be as in the beginning of Section 6.5.1. Let K ¥ 1. The
CT map f is 3K-expanding if for every edge e of G�G1

PG, we have

`expprfpeqsq ¥ 3K.

Note that, by Lemma 6.3.21, for every K ¥ 1, the CT map f has a power which is
3K-expanding. Note that, since φ is exponentially growing, we have G � G1

PG, so that
the definition of 3K-expanding is not empty.

In the rest of the section, let K ¥ 1 be a constant such that, for every reduced edge
path σ which is either in NPG or a path in a zero stratum, we have `pσq ¤ K

2 . Such a K
exists since NPG is finite by Lemma 6.3.4 p1q and since every zero stratum is contractible
by Proposition 6.2.5 p3q. We fix a constant Cf given by Lemma 6.4.9. Let

C � maxtK,Cfu. (6.7)

Recall that, if σ is a PG-relative splitting unit, σ is either an edge in an irreducible
stratum, a path in a zero stratum or a path in NPG. Thus, the choice of K implies that
for every PG-relative splitting unit σ, we have `exppσq ¤

K
2 .

Lemma 6.5.6. Let γ be a reduced edge path in G and let γ1 be a subpath of γ. Let γ �
γ0γ

1
1γ1 . . . γkγ

1
k be the exponential decomposition of γ. There exist three (possibly empty)

subpaths δ1, δ2 and τ of γ such that for every i P t1, 2u, the path δi is a proper subpath
of a splitting unit of some γj, we have `exppτq � `γexppτq � `γexppγ1q and γ1 � δ1τδ2. In
particular, we have

`γexppγ
1q ¤ `exppγ

1q ¤ `γexppγ
1q � 2C ¤ `exppγq � 2C.

The same statement is true replacing `exp by `F and `γexp by `γF .
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Proof. The proof is similar for both `exp and `F , so we only do the proof for `exp. Since
γ1 is a subpath of γ, there exist three (possibly trivial) paths δ11, τ 1 and δ12 such that:
paq for every i P t1, 2u, there exists ki P t0, . . . , ku such that the path δ1i is a subpath of
some γki ;
pbq for every j P t0, . . . , ku, either γj is contained in τ 1 or γj does not contain edges of
τ 1;
pcq we have γ1 � δ11τ

1δ12.
The path δ11 has a decomposition δ11 � δ1f1, where f1 is a (possibly trivial) factor

of γk1 and δ1 is properly contained in a splitting unit of γk1 for some fixed choice of
optimal splitting of γk1 . Similarly, the path δ12 has a decomposition δ12 � f2δ2, where f2

is a (possibly trivial) factor of γk2 and δ2 is properly contained in a splitting unit of γk2
for some fixed choice of optimal splitting of γk2 . Let τ � f1τ

1f2. Then γ1 � δ1τδ2. It
remains to show that `exppτq � `γexppτq � `γexppγ1q. Since for every i P t1, 2u, the path fi
is a path in NPG, we have `exppτq � `exppτ

1q. By pbq, one obtains `exppγ
1q by deleting

edges in G1
PG and every path of Nmax

PG pγq contained in τ 1. Hence we have

`γexppτ
1q �

ķ

i�1

`exppτ
1 X γ1kq �

ķ

i�1

`exppτ X γ1kq � `γexppτq.

Since δ1 and δ2 are contained in paths of Nmax
PG pγq, we have `γexppγ1q � `γexppτq, that is,

the second equality holds.
We now prove the final inequalities in the lemma. The first inequality follows from

the fact that every path in Nmax
PG pγ1q is a subpath of some γi for i P t0, . . . , ku. Thus, we

have `γexppγ1q ¤ `exppγ
1q. By Lemma 6.3.16, we have

`exppγ
1q ¤ `exppδ1q � `exppτq � `exppδ2q ¤ `γexppγ

1q � `pδ1q � `pδ2q.

By definition of the constant K and the fact that K ¤ C, we have:

`γexppγ
1q � `pδ1q � `pδ2q ¤ `γexppγ

1q � 2C ¤ `exppγq � 2C,

where the last inequality follows from Lemma 6.5.3.

Lemma 6.5.7. Let f : G Ñ G be a 3K-expanding CT map. Let γ be a PG-relative
completely split edge path of positive exponential length. Then

`expprfpγqsq ¥ 3 `exppγq.

Proof. Consider a PG-relative complete splitting γ � γ10γ1γ
1
1 . . . γmγ

1
m of γ, where, for

every i P t0, . . . ,mu, the path γ1i is either a (possibly trivial) concatenation of paths in
GPG and in NPG or a (possibly trivial) reduced maximal taken connecting path in a zero
stratum and, for every i P t1, . . . ,mu, the path γi is an edge in an irreducible stratum
of positive exponential length. By Lemma 6.3.23, we have

`exppγq �
m̧

i�1

`pγiq.
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γ1 γ2

γ�2

rγs

Figure 6.2: Illustration of Lemma 6.5.8. If a complete factor of γ1 contained in rγs is
not contained in γ�2 , then it is a complete factor of rγs.

Since f is 3K-expanding, for every i P t1, . . . ,mu, we have

`expprfpγiqsq ¥ 3K`exppγiq.

Since the reduced image of a PG-relative complete splitting is a PG-relative complete
splitting by Lemma 6.3.9, by Lemma 6.3.20 p2q, we see that

`expprfpγqsq ¥
m̧

i�1

`expprfpγiqsq ¥
m̧

i�1

3K`exppγiq ¥ 3`exppγq.

This concludes the proof.

Lemma 6.5.8. Let f : G Ñ G be a 3K-expanding CT map. Let γ � γ1γ2 be a (not
necessarily reduced) edge path of positive exponential length, where γ1 and γ2 are reduced
edge paths. Let γ1 � a1b1 . . . akbk be an optimal splitting of γ1 where for every i P
t1, . . . , ku, the path ai is an incomplete factor and for every i P t1, . . . , ku the path bi is
complete. For every i P t1, 2u, let γ1i be the subpath of γi contained in rγs. Let γ11 � γ�1 γ

�
1

be a decomposition of γ11 into two subpaths where γ�1 is the maximal terminal segment of

γ11 such that
°k
i�1 `exppγ

�
1 X biq � 2C. Then every PG-relative complete factor b1 of γ1

contained in γ�1 (for the given optimal splitting) is also a PG-relative complete factor of
rγs.

Remark 6.5.9. p1q We emphasize that, in the statement of Lemma 6.5.8, if the path γ1 is
PG-relative completely split, the path γ11 is not necessarily PG-relative completely split.
Indeed, there might be some identification with the path γ2 that might create incomplete
factors in γ11.

p2q Lemma 6.5.8 also implies that if γ1 is PG-relative completely split, the intersection of
an incomplete factor of rγs with γ11 is contained in a terminal segment of γ11 of exponential
length at most equal to 2C (see Figure 6.2). Indeed, the claim in the proof of Lemma 6.5.8
shows that the path γ�1 is a complete factor of γ1, hence a complete factor of rγs by
Lemma 6.5.8. Moreover, we have k � 1, a1 is trivial and `exppγ

�
1 q � `exppγ

�
1 X b1q.

Proof. Let t P t1, . . . , ku be the minimal integer such that γ�1 is contained in δ1 �
a1b1 . . . atbt. Let bt � δ1 . . . δs1 be a PG-relative complete splitting of bt. Let s P
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t1, . . . , s1u be the minimal integer such that γ�1 is contained in δ � a1b1 . . . atδ1 . . . δs. The
integer s exists since, by maximality of γ�1 , for every i P t1, . . . , ku, either γ�1 X ai � ai
or γ�1 X ai � ∅.

Claim. We have δ � γ�1 .

Proof. By minimality of t and s, the path γ�1 contains an edge of δs. We claim that
δs is contained in γ11. Indeed, it is clear if δs is an edge. Suppose towards a contra-
diction that δs is not contained in γ11. Then the concatenation point of γ11 and γ12 is
contained in δs. If δs is a maximal taken connecting path in a zero stratum, then,
by the choice of K, we have `pδsq ¤

K
2 ¤ C

2 . Since `pγ�1 q ¥ 2C, the path δs X γ11
would be contained in γ�1 , contradicting the fact that γ�1 contains the first edge of
δs. Suppose that δs is a concatenation of paths in GPG and NPG. Then δs has a de-

composition δs � β
psq
1 α

psq
1 β

psq
1 . . . α

psq
ks�1β

psq
ks
α
psq
ks

, where for every i P t1, . . . , ksu, the path

β
psq
i is contained in GPG, for every i P t1, . . . , ks � 1u, the path α

psq
i is contained in

Nmax
PG pσq and α

psq
ks

is a subpath of a path in Nmax
PG pδsq. By the choice of K, we have

`exppδsq ¤ `pαksq ¤
K
2 ¤ C

2 . Since `exppγ
�
1 q ¥ 2C, the path δs X γ11 would be contained

in γ�1 , contradicting the fact that γ�1 contains the first edge of δs. Hence, in every case,
the path δs is contained in γ11. Note that, since γ�1 is the maximal subpath of γ11 for

the property that
°k
i�1 `exppγ

�
1 X biq � 2C, the PG-relative splitting unit δs is not a

concatenation of paths in GPG and in NPG or a maximal taken connecting path in a
zero stratum. Indeed, otherwise it is properly contained in γ�1 , contradicting the fact
that γ�1 intersects δs. Hence δs is an edge and δ � γ�1 .

By the claim, we see that γ�1 � a1b1 . . . atδ1 . . . δs is an optimal splitting of γ�1 . Let
r P t1, . . . , ku be the minimal integer such that γ11 is contained in a1b1 . . . arbr. The last
edge of γ11 is either contained in ar or in br. In the first case, for every i P t1, . . . , ku,
either bi is contained in γ11 or biX γ

1
1 is at most a point. In the second case, it is possible

that br X γ11 � br and that br X γ11 contains an edge. Let α1 be the (possibly trivial)
terminal segment of γ�1 which is properly contained in a splitting unit σ of br. If σ
is a maximal taken connecting path in a zero stratum, then, by the choice of K, we
have `exppα

1q ¤ `pα1q ¤ `pσq ¤ K
2 ¤ C

2 . Suppose that σ is a concatenation of paths in
GPG and NPG. Then α1 has a decomposition α1 � β1α1β1 . . . α`�1β`α`, where for every
i P t1, . . . , `u, the path βi is contained in GPG, for every i P t1, . . . , ` � 1u, the path αi
is contained in Nmax

PG pσq and α` is a subpath of a path in Nmax
PG pσq. By the choice of

K, we have `exppα
1q ¤ `pα`q ¤

K
2 ¤ C

2 . Since `exppγ
�
1 q ¥ 2C, there exists a PG-relative

complete factor α0 of br such that γ�1 � δs�1 . . . δs1at�1bt�1 . . . arα0α
1 � αα1 and

ķ

i�1

`exp pαX biq ¥ C.

We now prove that every PG-relative complete factor of γ1 contained in γ�1 is a PG-
relative complete factor of γ. Note that the decomposition γ�1 α is a splitting. Thus, it
suffices to prove that, for every k P N�, the path rfkpγ�1 qs is contained in rfkpγqs as any
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identification in order to obtain rfkpγqs which involves a path in fkpγ�1 q will be induced
by an identification in order to obtain rfkpγ�1 qs from fkpγ�1 q. By Lemma 6.5.7 applied
to δs�1, . . . , δs1 , to the paths bi with i P t1, . . . , ku such that bi � α and to α0, we have

°k
i�1 `expprfpαqs X rfpbiqsq ¥

s1°
i�s�1

`expprfpδiqsq �
r�1°
i�t�1

`expprfpbiqsq � `expprfpα0qsq

¥ 3
°k
i�1 `exp pαX biq ¥ 3C,

where the first inequality follows from the fact that the decomposition

α � δs�1 . . . δs1at�1bt�1 . . . arα0

is an optimal splitting of α. Note that, since the decomposition γ�1 α is a splitting, for
every k P N�, the path rfkpαqs is contained in rfkpγ�1 αqs. Remark that Lemma 6.4.9 im-
plies that the segment of rfpγ�1 αqs which is C away from the concatenation point between
rfpγ�1 αqs and rfpα1γ12qs remains in rfprγsqs. In particular, the edges of rfpγ�1 αqs which are

cancelled with edges of rfpα1γ12qs are contained in rfpαqs. Recall that
°k
i�1 `expprfpαqsX

rfpbiqsq ¥ 3C and that the subpath of rfpαqs which is contained in rfprγsqs is obtained
by the concatenation of at most C edges of rfpαqs. Thus, we see that the sum over
i of the exponential length of the subpaths of rfpαqs X rfpbiqs which are contained in
rfprγsqs is at least equal to 2C. Hence the path rfpγ�1 qs is a subpath of rfprγsqs and°k
i�1 `expprfpγ

�
1 qs X rfpbiqs X rfprγsqsq ¥ 2C. Thus, we can apply the same arguments

to show that for every k ¥ 1, the path rfkpγ�1 qs is contained in rfkprγsqs and the expo-
nential length of the subpath of rfkpαqs contained in rfkprγsqs is at least equal to 2C.
Hence every PG-relative complete factor of the path γ1 contained in γ�1 is a complete
factor of an optimal splitting of rγs.

Lemma 6.5.10. p1q Let γ � αβ be a reduced path. Let N P N� be such that rfN pαqs has
a PG-relative complete splitting and that rfN pβqs is a concatenation of paths in GPG
and in NPG. For every m ¥ N , let αm, βm and σm be paths such that rfmpαqs �
αmσm and rfmpβqs � σ�1

m βm. For every m ¥ N , we have `exppσmq ¤ C, `exppαmq ¥
`expprf

mpαqsq � C and `exppβmq ¤ C.

p2q Let γ � βp1qαβp2q be a reduced path. Let N P N� be such that rfN pαqs has a PG-
relative complete splitting and, for every i P t1, 2u, the path rfN pβpiqqs is a concatenation

of paths in GPG and in NPG. For every m ¥ N , let αm, β
p1q
m , β

p2q
m , and σ

p1q
m , σ

p2q
m

be paths such that rfmpαqs � σ
p1q
m αmσ

p2q
m , rfmpβp1qqs � β

p1q
m σ

p1q�1
m and rfmpβp2qqs �

σ
p2q�1
m βm. For every m ¥ N , either `exppαmq ¤ 2C or we have `exppσ

p1q
m q, `exppσ

p2q
m q ¤ C,

`exppαmq ¥ `expprf
mpαqsq � 2C and `exppβ

p1q
m q, `exppβ

p2q
m q ¤ C.

Proof. The proof of Assertion p2q follows from Assertion p1q by applying Assertion p1q
twice: one with γ � αβp2q and one with γ � α�1βp1q. If for some m P N�, `exppαmq ¥ 2C,
there is no identification between rfmpβp1qqs and rfmpβp2qqs, so Assertion p2q follows from
Assertion p1q. Therefore, we focus on the proof of Assertion p1q. Let m ¥ N . When σm is
reduced to a point, we have `exppαmq � `expprf

mpαqsq and `exppβmq � `expprf
mpβqsq � 0
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by Lemma 6.3.17. This concludes the proof in this case. So we may suppose that σm
is nontrivial. Let rfmpαqs � a1 . . . ak be a PG-relative complete splitting of rfmpαqs.
Suppose that, for every i P t1, . . . , ku such that ai is a concatenation of paths in GPG
and NPG, the path ai is a maximal subpath of rfmpαqs for the property of being a factor
which is a concatenation of paths in GPG and NPG. For every j P t1, . . . , ku, let rj
be the height of aj . Let i P t1, . . . , ku be such that ai contains the first edge of σm.
Let σ1 P Nmax

PG pσmq. Note that there exists σ2 P Nmax
PG prfmpαqsq such that σ1 � σ2.

By Lemma 6.3.20 p1q applied to σ2 and rfmpαqs, the path σ2 is contained in a factor
which is a concatenation of paths in GPG and NPG. By the maximality assumption,
there exists j P t1, . . . , ku such that σ1 � σ2 � aj . Hence we can compute `exppσmq by
removing, for every j P t1, . . . , ku, paths in the intersection σm X aj . Thus, we have,

`exppσmq �
¸
j¡i

`exppajq � `exppai X σmq.

Note that, by Lemma 6.3.9, the path rfmpβqs � σ�1
m βm is a concatenation of paths

in GPG and in NPG. Let j P ti, . . . , ku.

Claim. If j ¡ i, then either aj is not an edge in an EG stratum and `exppaj X σmq � 0,
or `expppai . . . ajq X σmq ¤ C. If j � i, then `exppaj X σmq ¤ C.

Proof. We distinguish several cases, according to the nature of aj .
piq Suppose that aj is maximal taken connecting path in a zero stratum. By definition
we have `exppaj X σmq � 0.
piiq Suppose that aj is a concatenation of paths in GPG and in NPG. If j ¡ i, we have
aj Xσm � aj . By Lemma 6.3.17 applied to aj , we have `exppaj Xσmq � 0. Suppose that
i � j. Suppose that the first edge of σm is not contained in a path in Nmax

PG paiq. Then
ai has a decomposition ai � a0

i a
1
i a

2
i where a1

i is a path contained in GPG such that the
first edge of σm is contained in a1

i and such that, for every path δ P Nmax
PG paiq, either

δ � a0
i or δ � a2

i . Note that a terminal segment of ai whose first edge is contained in
a1
i is a concatenation of paths in GPG and in NPG. In particular, the path ai X σm is

a concatenation of paths in GPG and in NPG. By Lemma 6.3.17 applied to ai X σm,
we have `exppai X σmq � 0. Suppose now that the first edge of σm is contained in a
path δ P Nmax

PG paiq. Then ai has a decomposition a1
i δa

2
i , where the first edge of σm is

contained in δ. Note that a2
i is a concatenation of paths in GPG and in NPG which is

contained in σm. By Lemma 6.3.16 applied to ai X σm � pδ X σmqa
2
i , by Lemma 6.3.17

applied to a2
i and by definition of the constant K, we have

`exppσm X aiq ¤ `exppσm X δq � `exppa
2
i q � `exppδ X σmq ¤ `pδq ¤ K ¤ C.

piiiq Suppose that aj is an edge in an irreducible stratum with positive exponential
length. Since rfmpβqs is a concatenation of paths in GPG and in NPG, there exists a
path γ1 P Nmax

PG prfmpβqsq such that aj is contained in γ1. By Lemma 6.3.20 p1q, every
path in Nmax

PG prfmpαqsq is contained in a minimal factor of rfmpαqs consisting in PG-
relative splitting units which are concatenation of paths in GPG and NPG. Since aj is a
PG-relative splitting unit of rfmpαqs which is not a concatenation of paths in GPG and
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in NPG, the path aj is not contained in a path of Nmax
PG prfmpαqsq. Hence the path γ1

is not contained in σm as otherwise it would be contained in a path of Nmax
PG prfmpαqsq.

Therefore, we see that pai . . . ajq X σm � γ1. Hence, by the choice of K, we have

`expppai . . . ajq X σmq ¤ `ppai . . . ajq X σmq ¤ `pγ1q ¤ C.

This proves the claim as we considered all possible PG-relative splitting units.

Let m P N�. By the claim, either `expppai . . . ajq X σmq ¤ C or, for every j ¡ i, we
have `exppaj X σmq � 0. In the second case, we have

`exppσmq �
¸
j¡i

`exppajq � `exppai X σmq � `exppai X σmq ¤ C,

where the las inequality follows from the case j � i of the claim. Hence, for every m P N�,
we have `exppσmq ¤ C. Note that, by Lemma 6.3.16 applied to rfmpαqs � αmσm, we
have

`exppαmq ¥ `expprf
mpαqsq � `exppσmq ¥ `expprf

mpαqsq � C.

It remains to prove that `exppβmq ¤ C. But βm can be written as βm � δ1δ2 where
δ2 is a concatenation of paths in GPG and in NPG and δ1 is a (possibly trivial) path
contained in a path of Nmax

PG prfmpβqsq. By Lemma 6.3.17 applied to δ2 and by the choice
of K (since δ1 is a subpath of a path in NPG), we have

`exppβmq ¤ `exppδ1q � `exppδ2q � `exppδ1q ¤ `pδ1q ¤ C.

This concludes the proof.

Lemma 6.5.11. Let L ¥ 1. There exists n0 � n0pLq P N� which satisfies the following
properties. Let γ be a reduced edge path of G such that `exppγq ¤ L. For every n ¥ n0

and every optimal splitting of rfnpγqs, either rfnpγqs is a concatenation of paths in GPG
and in NPG or the following two assertions hold:

paq the path rfnpγqs contains a complete factor of exponential length at least equal to
10C;

pbq the exponential length of an incomplete factor of rfnpγqs is at most equal to 8C.

Proof. By Lemma 6.3.21, there exists an integer m1 P N� depending only on f such that
for every edge e of G�G1

PG and every n ¥ m1, we have `exprf
npeqs ¥ 16C � 1. Let

γ � γ0γ
1
1γ1 . . . γ`γ

1
` be the exponential decomposition of γ. Let

γ � β0α1β1 . . . αkβk

be a nontrivial decomposition of γ such that, for every i P t0, . . . , ku, the path βi is a
concatenation of paths in GPG and in NPG and for every i P t1, . . . , ku, the path αi is a
concatenation of edges in irreducible strata not contained in some γj with j P t0, . . . , `u
and paths in zero strata. The main point of the proof is to show that, up to applying
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an iterate of rf s, there is no cancellation between the subpaths αi. By definition of the
exponential length, for every i P t1, . . . , ku, we have `exppγq �

°k
i�1 `exppαiq. Therefore,

since `exppγq ¤ L, for every i P t1, . . . , ku, we have `exppαiq ¤ L. Note that, for every
i P t1, . . . , ku, we have `exppαiq � `pαiq � `pαi X Zq where Z is the subgraph of G
consisting in all zero strata. By the choice of C the length of every path contained in a
zero stratum is at most equal to C. Hence for every i P t1, . . . , ku, we have `pαiq ¤ CL.
By Proposition 6.2.5 p8q there exists m2 P N� depending only on L such that, for all
i P t1, . . . , ku and m ¥ m2, the path rfmpαiqs is completely split. Let m � m1 � m2.
By Lemma 6.3.20 p2q, for every n ¥ m and every i P t1, . . . , ku, since rfn�m

1
pαiqs is

completely split, one compute its exponential length by adding the exponential length
of all its splitting units. Thus, if rfn�m

1
pαiqs contains a splitting unit which is an edge

e in G�G1
PG, we have

`expprf
npαiqsq ¥ `expprf

m1
peqsq ¥ 16C � 1. (6.8)

Let Cm be a bounded cancellation constant for fm given by Lemma 6.4.9. Note
that, if there exists i P t1, . . . , k� 1u such that `pβiq   Cm, then there might exist some
identifications between rfmpαi�1qs and rfmpαiqs when reducing the paths in order to
obtain rfmpγqs. This is why we replace the decomposition γ � β0α1β1 . . . αkβk of γ by
a new one. This new decompostion is defined as follows. Since every lift of fm to the
universal cover of G is a quasi-isometry, there exists Mm ¡ 0 depending only on m such
that, for every reduced edge path of length `pβq ¡Mm, we have `prfmpβqsq ¥ 2Cm � 1.
Let Γm � tβi | `pβiq ¤ Mmu. Note that |Γm| ¤ k � 1. Note that, by Lemma 6.2.9
and Proposition 6.2.5 p4q and Lemma 6.2.9, for every i P t1, . . . , ku, if βi�1 or βi is not
trivial, then αi is not contained in a zero stratum. In particuliar, we may suppose that,
for every i P t1, . . . , ku, we have `exppαiq ¡ 0. Thus, since `exppγq �

°k
i�1 `exppαiq ¤ L,

and, for every i P t1, . . . , ku, we have `exppαiq ¡ 0, we see that k ¤ L. Hence we have
|Γm| ¤ k � 1 ¤ L� 1.

Claim. There exist m1 ¥ m depending only on |Γm| (and hence on L) and a decompo-

sition γ � β
p1q
0 α

p1q
1 β

p1q
1 . . . α

p1q
k1
β
p1q
k1

such that:

pa1q for every i P t1, . . . , k1u, the path rfm1pα
p1q
i qs is completely split;

pb1q for every i P t0, . . . , k1u, the path β
p1q
i is a concatenation of paths in GPG and in

NPG;

pc1q for every i P t0, . . . , k1u, the subpath of rfm1pβ
p1q
i qs contained in rfm1pγqs is not

reduced to a point;

pd1q for every i P t1, . . . , k1u, for every n ¥ m1, if rfn�m
1
pα

p1q
i qs contains a splitting unit

which is an edge in G�G1
PG then `expprf

npα
p1q
i qsq ¥ 16C � 1.

Proof. The proof is by induction on |Γm|. Suppose first that Γm � ∅. By the defi-
nition of |Γm| and Mm, for every i P t0, . . . , ku, the path rfmpβiqs has length at least
equal to 2Cm � 1. By Lemma 6.4.9, for every i P t0, . . . , ku, the subpath of rfmpβiqs
contained in rfmpγqs is not reduced to a point. So the integer m1 � m and the decom-
position γ � β0α1β1 . . . αkβk satisfy the assertions of the claim (Assertion pd1q follows
from Equation (6.8)).
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Suppose now that Γm � ∅. Then

ķ

i�1

`pαiq �
¸

βiPΓm

`pβiq ¤ kCL�MmL ¤ CL2 �MmL.

Let m1
2 ¥ m be such that for every path β of length at most equal to CL2 � MmL

and every n ¥ m1
2, the path rfnpβqs is completely split. Then γ has a decomposition

γ � β
p2q
0 α

p2q
1 β

p2q
2 . . . α

p2q
k2
β
p2q
k2

such that, for every i P t1, . . . , k2u, the path rfm
1
2pα

p2q
i qs

is completely split and for every i P t0, . . . , k2u, the path β
p2q
i is a concatenation of

paths in GPG and in NPG of length greater than Mm. Let m2 � m1
2 � m1. Then

for every i P t1, . . . , k2u, the paths rfm2pα
p2q
i qs and rfm2�m1

pα
p2q
i qs are completely split.

Moreover, if rfm2�m1
pα

p2q
i qs contains a splitting unit which is an edge in G�G1

PG, then

`expprf
mpα

p2q
i qsq ¥ 16C � 1 as in Equation (6.8). Let Cm2 be a bounded cancellation

constant associated with fm2 and let Mm2 ¥ Mm be such that, for every reduced edge

path of length `pβq ¡Mm2 , we have `prfm1pβqsq ¥ 2Cm2 � 1. Let Γm2 � tβ
p2q
i | `pβiq ¤

Mm2u. Note that |Γm2 |   |Γm|. Hence we can apply the induction hypothesis to the

decomposition γ � β
p2q
0 α

p2q
1 β

p2q
2 . . . α

p2q
k2
β
p2q
k2

to obtain the desired decomposition of γ.
This concludes the proof of the claim.

Let m1 and γ � β
p1q
0 α

p1q
1 β

p1q
1 . . . α

p1q
k1
β
p1q
k1

be as in the assertion of the claim. By
Assertion pc1q of the claim, for every i P t1, . . . , k1u, there is no identification between

edges of rfm1pα
p1q
i qs, rfm1pα

p1q
i�1qs and rfm1pα

p1q
i�1qs when reducing in order to obtain

rfm1pγqs.

For every i P t1, . . . , k1u, since rfm1pα
p1q
i qs is PG-relative completely split, we can

distinguish three possible cases for rfm1pα
p1q
i qs:

piq the path rfm1pα
p1q
i qs contains a PG-relative splitting unit which is an edge in

G�G1
PG (by Lemma 6.3.23 this case happens exactly when `expprf

m1pα
p1q
i qsq ¡ 0);

piiq `expprf
m1pα

p1q
i qsq � 0 and the path rfm1pα

p1q
i qs is a concatenation of paths in GPG

and in NPG;

piiiq `expprf
m1pα

p1q
i qsq � 0 and rfm1pα

p1q
i qs contains a maximal taken connecting path

in a zero stratum.

We claim that if there exists i P t1, . . . , k1u such that rfm1pα
p1q
i qs satisfies piiiq, then

rfm1pγqs is contained in a zero stratum. Indeed, suppose that rfm1pα
p1q
i qs satisfies piiiq.

By Lemma 6.3.23 applied to the PG-relative completely split edge path rfm1pα
p1q
i qs,

since `expprf
m1pα

p1q
i qsq � 0 the path rfm1pα

p1q
i qs does not contain an edge in G�G1

PG.

Therefore, the path rfm1pα
p1q
i qs is a concatenation of paths in G1

PG and in NPG. By
Proposition 6.2.5 p4q and Lemma 6.2.9, there is no path in a zero stratum which is

adjacent to a concatenation of paths in GPG and in NPG. Hence rfm1pα
p1q
i qs � σ, where

σ is a maximal taken connecting path in a zero stratum not contained in GPG. But the
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endpoints of σ are the endpoints of rfm1pβ
p1q
i�1qs and rfm1pβ

p1q
i qs, which are concatenation

of paths in GPG and in NPG. As above, this implies that rfm1pγqs � σ. Since zero strata
are contractible, there exists m3 P N� such that rfm3pγqs is PG-relative completely split.
Hence Assertion pbq of Lemma 6.5.11 follows. Applying a further power of rf s (which
can be chosen uniformly as there are finitely many reduced edge paths contained in a
zero stratum), there exists m4 P N� such that rfm4pγqs is a concatenation of paths in
GPG and in NPG or it satisfies Assertion paq of Lemma 6.5.11. This concludes the proof
of Lemma 6.5.11 in case piiiq.

Hence we may suppose that for every i P t1, . . . , k1u, the path rfm1pα
p1q
i qs satisfies

either piq or piiq. Note that, if i P t1, . . . , k1u is such that the path rfm1pα
p1q
i qs satisfies

piq, then rfm1pα
p1q
i qs also satisfies the hypothesis of Assertion pd1q of the claim. Thus

`expprf
m1�m1

pα
p1q
i qsq ¥ 16C � 1.

Let m1
1 � m1 �m

1 and let n1 ¥ m1
1. Let Λexp � tα

p1q
i | `expprf

n1pα
p1q
i qsq ¥ 16C � 1u. For

every j P t1, . . . , k1u and every n P N�, let α
pnq
j be the subpath of rfnpα

p1q
j qs contained

in rfnpγqs. For every j P t0, . . . , k1u and every n P N�, let β
pnq
j be the subpath of

rfnpβ
p1q
j qs contained in rfnpγqs. Suppose first that Λexp is not empty and let α

p1q
i P

Λexp. By Lemma 6.5.10 p2q applied to βp1q � rfn
1
pβ

p1q
i�1qs, α � rfn

1
pα

p1q
i qs and βp2q �

rfn
1
pβ

p1q
i qs, we have `exppα

pn1q
i q ¥ 14C�1. By Remark 6.5.9 p2q applied twice (once with

γ1 � rfn
1
pα

p1q
i qs and γ2 � rfn

1
pβ

p1q
i . . . α

p1q
k1
β
p1q
k1
qs, and once with γ1 � rfn

1
pα

p1q
i qs�1 and

γ2 � rfn
1
pβ

p1q
0 . . . α

p1q
i�1β

p1q
i�1qs

�1), the path α
pn1q
i contains a complete factor of rfn

1
pγqs of

exponential length at least equal to 14C�1�4C � 10C�1. This proves Assertion paq of
Lemma 6.5.11. Moreover, Remark 6.5.9 p2q implies that the intersection of an incomplete

factor of rfn
1
pγqs with α

pn1q
i is contained in the union of an initial and a terminal segment

of α
pn1q
i of exponential lengths at most 2C. For every i P t1, . . . , k1u such that α

p1q
i P Λexp,

let τ1
i be the maximal initial segment of α

pn1q
i of exponential length equal to 2C and let

τ2
i be the maximal terminal segment of α

pn1q
i of exponential length equal to 2C.

We now prove Assertion pbq of Lemma 6.5.11. Suppose that there exists i P t1, . . . , k1u

such that α
p1q
i R Λexp, so that in particular rfm1pα

p1q
i qs does not satisfy piq. Then

rfm1pα
p1q
i qs satisfies piiq and is a concatenation of paths in GPG and in NPG. By

Lemma 6.3.9 p3q, the path rfn
1
pα

p1q
i qs is a concatenation of paths in GPG and in NPG.

By Lemma 6.3.5, the path rrfn
1
pβ

p1q
i�1qsrf

n1pα
p1q
i qsrfn

1
pβ

p1q
i qss is a concatenation of paths

in GPG and in NPG. Thus, the path β
pn1q
i�1α

pn1q
i β

pn1q
i is a subpath of a concatenation of

paths in GPG and in NPG. Hence rfn
1
pγqs has a decomposition

rfn
1
pγqs � ε1α

pn1,�q
1 ε2 . . . α

pn1,�q
k2

εk2

where for every j P t1, . . . , k2u, the path α
pn1,�q
j is in Λexp and for every j P t0, . . . , k2u,

the path εj is contained in a path ιj which is a concatenation of paths in GPG and in

258



NPG. Hence, for every j P t0, . . . , k2u, we have `exppιjq � 0 by Lemma 6.3.17 and, by
Lemma 6.5.6, we have `exppεjq ¤ 2C.

If γ1 is an incomplete factor of rfn
1
pγqs, as explained above, there exists i P t1, . . . , k2u

such that γ1 is contained in τ2
i�1εi�1τ

1
i . By Lemma 6.5.6, we have

`exppγ
1q ¤ `exppτ

2
i�1εi�1τ

1
i q � 2C.

By Lemma 6.3.16, the exponential length of γ1 is at most equal to

`exppτ
2
i�1q � `exppεi�1q � `exppτ

1
i q � 2C ¤ 6C � `exppεi�1q ¤ 8C.

This proves pbq.

Finally, suppose that Λexp is empty. For every j P t1, . . . , k1u, the path rfm1pα
p1q
j qs

is a concatenation of paths in GPG and in NPG. By Lemma 6.3.5, the path rfm1pγqs is
a concatenation of paths in GPG and in NPG. By Lemma 6.3.9, for every n1 ¥ m1, the
path rfn

1
pγqs is a concatenation of paths in GPG and in NPG. This concludes the proof.

Lemma 6.5.12. Let f : GÑ G be a 3K-expanding CT map. There exists N P N� such that
for every reduced edge path γ and every m ¥ N , the total exponential length of incomplete
factors in any optimal splitting of rfmpγqs is uniformly bounded by 8C`exppγq.

Proof. By Proposition 6.2.5 p8q, there exists N P N� such that, for every reduced edge
path α of length at most equal to C � 1, the path rfN pαqs is completely split. Suppose
first that `exppγq � 0. Then, by definition of the exponential length, the path γ is a
concatenation of paths in G1

PG and in NPG. By Proposition 6.2.5 p4q, every edge in
a zero stratum is adjacent to either an edge in a zero stratum or an edge in an EG
stratum. Moreover, by Lemma 6.2.9, there does not exist a subpath of γ contained in
a zero stratum which is adjacent to a Nielsen path. Hence γ is either a concatenation
of paths in GPG and in NPG or a path in a zero stratum. In the first case, the path
γ is PG-relative completely split. In the second case, by the definition of the constant
K and Equation (6.7), we have `pγq ¤ K ¤ C. By the choice of N , for every m ¥ N ,
the path rfmpγqs is completely split. By Lemma 6.3.19, for every m ¥ N , the path
rfmpγqs is PG-relative completely split. By Lemma 6.3.17, for every m ¥ N , we have
`expprf

mpγqsq � 0.
So we may suppose that `exppγq ¡ 0. Let γ � γ0γ

1
1γ1 . . . γ`γ

1
` be the exponential

decomposition of γ (see the beginning of Section 6.3.2). By Lemma 6.2.9, there does not
exist a subpath of γ contained in a zero stratum which is adjacent to a Nielsen path.
Therefore, the path γ has a decomposition α0β1α1 . . . βkαk where, for every i P t0, . . . , ku,
the path αi is a (possibly trivial) concatenation of paths in GPG and in NPG and, for
every i P t1, . . . , ku, the path βi is a concatenation of a (possibly trivial) maximal reduced
path in a zero stratum and an edge in an irreducible stratum not contained in GPG or
in some γi. By construction of K, for every i P t1, . . . , ku, we have `pβiq ¤ C � 1. By
the choice of N , for every m ¥ N , the path rfmpβiqs is completely split. Note that, for
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every i P t1, . . . , ku, we have `exppβiq � 1 and that

`exppγq �
ķ

i�1

`exppβiq � k.

By Lemma 6.3.9, for every i P t0, . . . , ku and every m ¥ M , the path rfmpαiqs is a
concatenation of paths in GPG and in NPG. By Lemma 6.3.17, for every m ¥ M , we
have `expprf

mpαiqsq � 0. By Lemma 6.5.6, the exponential length of the subpath of
rfmpαiqs contained in rfmpγqs is at most equal to 2C. For every i P t0, . . . , ku (resp.
i P t1, . . . , kuq and every m ¥ N , let αi,m (resp. βi,m) be the subpath of rfmpαiqs (resp.
rfmpβiqs) contained in rfmpγqs. By Remark 6.5.9 p2q, for every i P t1, . . . , ku and every
m ¥ N , the exponential length of any incomplete factor in βi,m is at most equal to 4C.
By Lemma 6.3.16, for every m ¥ N , the sum of the exponential lengths of the incomplete
factors in rfmpγqs is at most equal to

ķ

i�0

`exppαi,mq � 4Ck ¤ 2Cpk � 1q � 4kC ¤ 4Ck � 4Ck � 8Ck � 8C`exppγq.

The conclusion of the lemma follows.

Lemma 6.5.13. Let f : GÑ G be a 3K-expanding CT map. Let γ be a reduced edge path
in G. Suppose that γ has a splitting γ � b1ab2 where, for every i P t1, 2u, the path bi is
a possibly trivial PG-relative completely split. If `γexppaq � 0 then `exppaq � 0.

Proof. Let γ � γ0γ
1
1γ1 . . . γkγ

1
k be the exponential decomposition of γ. By Lemma 6.5.6,

there exist three (possibly trivial) paths δ1, δ2 and τ such that for every i P t1, 2u, the
path δi is a proper initial or terminal subpath of a splitting unit of some γj , we have
`exppτq � `γexppτq � `γexppaq and a � δ1τδ2. Since `γexppaq � 0, we have `exppτq � 0.
Hence τ is a concatenation of paths in G1

PG and in NPG. By Proposition 6.2.5 p4q, every
edge in a zero stratum is adjacent to either an edge in a zero stratum or an edge in an
EG stratum. Moreover, by Lemma 6.2.9, there does not exist a subpath of γ contained
in a zero stratum which is adjacent to a Nielsen path. Hence τ is either a concatenation
of paths in GPG and in NPG or a path in a zero stratum. If τ is contained in a zero
stratum, by Lemma 6.2.9, we see that δ1 and δ2 are trivial, that is, a � τ . Thus, we
have `exppaq � `exppτq � 0.

So we may suppose that τ is a concatenation of paths in GPG and in NPG. Suppose
towards a contradiction that there exists i P t1, 2u such that δi is not trivial. For every
i P t1, 2u such that δi � ∅, let σi be the splitting unit of some γj containing δi and let
ri be the height of σi. By [BH, Lemma 5.11], for every i P t1, 2u such that δi is not
trivial, there exist two distinct ri-legal paths αi and βi such that σi � αiβi and such that
the turn tDfpα�1

i q, Dfpβiqu is the only height ri illegal turn. Moreover, there exists a

path τ 1i such that rfpαiqs � αiτ
1
i and rfpβiqs � τ 1�1

i βi. Let ε
p1q
1 , ε

p2q
1 be two paths such

that σ1 � ε
p1q
1 ε

p2q
1 , the path ε

p1q
1 is contained in b1 and the path ε

p2q
1 is contained in a.

Similarly, let ε
p1q
2 , ε

p2q
2 be two paths such that σ2 � ε

p1q
2 ε

p2q
2 , the path ε

p2q
2 is contained in

b2 and the path ε
p1q
2 is contained in a.
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Claim. p1q For every path b P Nmax
PG pb1q (resp. b P Nmax

PG pb2q), the path b does not

contain edges of ε
p1q
1 (resp. ε

p2q
2 ).

p2q The path ε
p1q
1 is r1-legal and the path ε

p2q
2 is r2-legal.

Proof. We prove the claim for b1, the proof for b2 being similar.

p1q Let b P Nmax
PG pb1q. There exists c P Nmax

PG pγq such that b � c. Moreover, by
Lemma 6.3.4 p3q applied to γ1 � b and γ � c, either b is a concatenation of splitting
units of c, or b is properly contained in a splitting unit of c and is not an initial or a
terminal segment of c. Since b1 is an initial segment of γ, the second case cannot occur.
Hence b is a concatenation of splitting units of c. Since σ1 is not contained in b1, the

path b cannot contain edges of σ1. Since ε
p1q
1 � σ1, the path b cannot contain edges of

ε
p1q
1 .

p2q Suppose towards a contradiction that ε
p1q
1 is not r1-legal. Then it contains the illegal

turn tDfpα�1
1 q, Dfpβ2qu. Recall that the path b1 is PG-relative completely split. By

the description of PG-relative splitting units, the illegal turn must be contained in a
PG-relative splitting unit of b1 which is a concatenation of paths in GPG and in NPG.
Since the last edge of α1 is an edge in an EG stratum, the last edge of α1 must be
contained in a path contained in NPG. Hence ε1 intersects a path in Nmax

PG pb1q. This
contradicts Assertion p1q.

By Assertion p2q of the claim, for every i P t1, 2u such that σi is not trivial, the path

ε
piq
i is ri-legal. Moreover, by Assertion p1q of the claim an INP contained in bi cannot

intersect the path ε
piq
i . Since the paths b1 and b2 are PG-relative completely split, the

paths b1 and b2 split respectively at the origin of ε
p1q
1 and at the end of ε

p2q
2 . So we may

suppose that b1 � ε
p1q
1 and b2 � ε

p2q
2 . Therefore, there exists a (possibly trivial) path τ1

such that, up to taking a power of f so that the length of rfpb1qs is greater than α1, we

have rfpb1qs � α1τ1 and rfpε
p2q
1 qs � τ�1

1 β1. Similarly, there exists a path τ2 such that

rfpε
p1q
2 qs � α2τ2 and rfpb2qs � τ�1

2 β2.
Since γ splits at the concatenation points of b1, a and b2, the paths τ�1

1 and τ2

contained in rfpε
p2q
1 qsrfpτqsrfpε

p1q
2 qs must be identified when passing to rfpaqs. Suppose

first that rfpτqs is a point. Then since the EG INPs σ1 and σ2 are uniquely determined
by their initial and terminal edges by Proposition 6.2.5 p9q, we see that σ1 � σ�1

2 . But
then there are some identifications between b1 and b2, which contradicts the fact that
b1ab2 is a splitting.

Thus, we may suppose that rfpτqs is nontrivial. By Lemma 6.3.9, since τ is a con-
catenation of paths in GPG and in NPG so is rfpτqs. Note that, since an EG INP is
completely determined by its initial and terminal edges by Proposition 6.2.5 p9q, if rfpτqs
contains the initial or the terminal edge of an EG INP σ, then σ is contained in rfpτqs.

Note that there are identifications between edges of rfpε
p2q
1 qs and rfpτqs or between edges

of rfpτqs and rfpε
p1q
2 qs. Therefore, rfpτqs starts with σ�1

1 or rfpτqs ends with σ�1
2 . Thus,

one of the following holds:
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paq rfpτqs � σ�1
1 τ 1 with τ 1 a (possibly trivial) path which is a concatenation of paths in

GPG and in NPG which does not end by σ�1
2 ;

pbq rfpτqs � τ 1σ�1
2 with τ 1 a (possibly trivial) path which is a concatenation of paths in

GPG and in NPG which does not start by σ�1
1 ;

pcq rfpτqs � σ�1
1 τ 1σ�1

2 with τ 1 a (possibly trivial) path.

Note that σ�1
1 τ 1σ�1

2 is reduced, so that there is no identification between α�1
1 and τ 1

and between τ 1 and β�1
2 . Let eσ1 be the terminal edge of σ1 and let eσ2 be the initial

edge of σ2. By Proposition 6.2.5 p9q, both eσ1 and eσ2 are edges in EG strata. Since
f is 3K-expanding, for every i P t1, 2u, the path rfpeσiqs has length at least equal to
3K. Recall that, for every i P t1, 2u, by definition of K, we have `pσiq ¤ K, so that

`pαiq, `pβiq ¤ K. Since rfpε
p2q
1 qs � α1τ1 and rfpε

p1q
2 qs � α2τ2, the path rfpeσ1qs contains

a nondegenerate terminal segment of τ�1
1 and the path rfpeσ2qs contains a nondegenerate

initial segment of length 2K of τ2. As eσ1 is r1-legal and as f is a relative train track by
Proposition 6.2.5 p1q, we see that the last edge of τ�1

1 is not the last edge of α1. Similarly,
the first edge of τ2 is not the first edge of β2. Therefore, we have rτ�1

1 β1σ
�1
1 s � τ�1

1 α�1
1

and rσ�1
2 α2τ2s � β�1

2 τ2. Thus we have

rrfpε
p2q
1 qsrfpτqsrfpε

p1q
2 qss � rτ�1

1 β1σ
�1
1 τ 1σ�1

2 α2τ2s � rτ�1
1 α�1

1 τ 1β�1
2 τ2s,

and there is no identification between τ�1
1 and α�1

1 , α�1
1 and τ 1, τ 1 and β�1

2 and β�1
2

and τ2. Therefore, if τ 1 is not trivial, then we have a contradiction as τ�1
1 and τ2 are

not identified in rfpaqs. Suppose that τ 1 is trivial. Then the paths τ�1
1 and τ2 are

identified in rfpaqs only if a terminal segment of α�1
1 is identified with an initial segment

of β�1
2 . Since EG INP are uniquely determined by their initial and terminal edges by

Proposition 6.2.5 p9q, we see that σ1 � σ�1
2 . Hence α�1

1 � β2 and either τ�1
1 is an initial

segment of τ�1
2 or τ2 is an initial segment of τ1. Up to changing the orientation of γ, we

may suppose that τ�1
1 is an initial segment of τ�1

2 . If τ�1
1 � τ�1

2 , then rfpaqs is a vertex.

Moreover, as σ1 � σ�1
2 , the segment b1 � ε

p1q
1 is equal to b�1

2 . Therefore, a terminal
segment of b1 is identified with an initial segment of b2, a contradiction. If τ�1

1 is a
proper initial segment of τ�1

2 , then τ2 is identified with edges in b1, a contradiction. As
we have considered every case, we see that δ1 and δ2 are trivial and `exppaq � `exppτq � 0.

Lemma 6.5.14. Let f : G Ñ G be a 3K-expanding CT map. There exists n0 P N� such
that for every n ¥ n0, and every closed reduced edge path γ of G, we have the following
relation between the goodness of γ and the one of rfnpγqs:

gprfnpγqsq ¥ gpγq.

Proof. By Lemma 6.3.22, there exists N0 P N� such that, for every n ¥ N0 and every PG-
relative splitting unit σ, the exponential length of the path rfnpσqs is at least equal to the
one of σ. By Lemma 6.5.12, there exists N1 such that for every n ¥ N1 and every closed
reduced edge path γ of G, the total exponential length of incomplete segments in any
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optimal splitting of rfnpγqs is bounded by 8C`exppγq. Let N2 � rlog3p10C�16C2qs P N�

be such that for every x, y ¥ 0 such that px, yq � p0, 0q, we have

p3N2 � 2Cqx

p3N2 � 2Cqx� 8Cp1� 2Cqy
¥

x

x� y
.

Let n0 � maxtN0, N1, N2u.
Let γ be a closed reduced edge path in G. All splittings of γ are circuital splittings

in what follows. Let γ � α0β1α1 . . . βkαk be an optimal splitting of γ, where for every
i P t0, . . . , ku, the path αi is an incomplete factor of γ and for every i P t1, . . . , ku, the
path βi is a PG-relative complete factor of γ. First note that, for every i P t1, . . . , ku, and
for every n ¥ 1, the path rfnpβiqs is PG-relative completely split by Proposition 6.2.5 p6q
and Lemma 6.3.9. Therefore, if n ¥ n0 ¥ N0, the total exponential length of such PG-
relative complete segments is nondecreasing under rfns. We now distinguish two cases,
according to the growth of the paths βi.

Suppose first that for every i P t1, . . . , ku, the exponential length of βi relative to γ
is equal to zero. Since the splitting γ � α0β1α1 . . . βkαk is optimal and since for every
i P t1, . . . , ku, we have `γexppβiq � 0, we have gpγq � 0. Therefore, for every n P N�, we
have gprfnpγqsq ¥ gpγq.

Suppose now that there exists i P t1, . . . , ku such that the exponential length of
βi relative to γ is positive. By Lemma 6.3.21, the sequence p`expprf

npβiqsqqnPN� grows
exponentially with n. We can now modify the splitting of γ into the following splitting:
γ � α10β

1
1α

1
1 . . . β

1
mα

1
m where:

paq for every j P t0, . . . ,mu, the path α1i is a concatenation of incomplete factors and
complete factors of zero exponential length relative to γ of the previous splitting;
pbq for every j P t1, . . . ,mu, the path β1i is a complete factor of positive exponential
length relative to γ of the previous splitting.

Note that, by definition of the exponential length relative to γ, for every i P t1, . . . ,mu
and every path γ1 P Nmax

PG pγq, the path β1i is not contained in γ1. Therefore, if there
exists j P t0, . . . ,mu and γ1 P Nmax

PG pγq such that α1j intersects γ1 nontrivially, then γ1 is
contained in β1j�1α

1
jβ

1
j . In particular, Lemma 6.5.13 applies and for every j P t0, . . . ,mu,

if `γexppα1jq � 0, then `exppα
1
jq � 0. Let Λ be the subset of t0, . . . ,mu such that for every

j P Λ, we have `γexppα1jq ¡ 0.
By Lemma 6.5.6 and Lemma 6.5.7, for every j P t1, . . . ,mu and every M P N�, we

have

`rf
M pγqs

exp prfM pβ1iqsq ¥ `expprf
M pβ1iqsq � 2C ¥ 3M`exppβ

1
iq � 2C 1 ¥ p3M � 2Cq`γexppβ

1
iq.

By Lemma 6.5.6, for every j P t0, . . . ,mu, we have `γexppα1jq ¤ `exppα
1
jq. Note that, for

every i P t1, . . . ,mu, and every n P N�, the path rfnpβ1iqs is PG-relative completely
split. In particular, for every n P N�, any incomplete factor of rfnpγqs is contained in a
reduced iterate of some α1i. Thus, by Lemma 6.5.12, for every n ¥ n0 ¥ N1, the total

exponential length of incomplete segments in rfnpγqs is bounded by 8C
°k
j�1 `exppα

1
jq �

8C
°
jPΛ `exppα

1
jq. Note that the function

x ÞÑ
x

x� 8C
°
jPΛ `exppα

1
jq
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is nondecreasing. Recall that, for every n P N�, the goodness function is a supremum
over splittings of rfnpγqs. Thus, by Lemma 6.5.4, for every n ¥ n0, we have:

gprfnpγqsq ¥
p3n � 2Cq

°m
i�1 `

γ
exppβ1iq

p3n � 2Cq
°m
i�1 `

γ
exppβ1iq � 8C

°
jPΛ `exppα

1
jq
.

By Lemma 6.5.6, we have

8C
¸
jPΛ

`exppα
1
jq ¤ 8C

¸
jPΛ

p`γexppα
1
jq � 2Cq ¤ 8Cp1� 2Cq

¸
jPΛ

`γexppα
1
jq,

where the last inequality follows from the fact that, for every j P Λ, we have `γexppα1jq ¥ 1.
Therefore, since n0 ¥ N2, for every n ¥ n0, we have:

p3n � 2Cq
°m
j�1 `

γ
exppβ1jq

p3n � 2Cq
°m
j�1 `

γ
exppβ1jq � 8Cp1� 2Cq

°
jPΛ `

γ
exppα1jq

¥

°m
j�1 `

γ
exppβ1jq°m

j�1 `
γ
exppβ1jq �

°
jPΛ `

γ
exppα1jq

.

By Lemma 6.5.3, we have

`exppγq �
m̧

j�1

`γexppβ
1
jq �

m̧

j�0

`γexppα
1
jq �

m̧

j�1

`γexppβ
1
jq �

¸
jPΛ

`γexppα
1
jq.

Thus, we see that °m
j�1 `

γ
exppβ1jq°m

j�1 `
γ
exppβ1jq �

°
jPΛ `

γ
exppα1jq

� gpγq,

which gives the result.

Remark 6.5.15. In the next lemmas, we will adopt the following conventions.
Let φ P OutpFn,Fq be an almost atoroidal outer automorphism relative to F . Let
f : GÑ G be a CT map representing a power of φ with filtration

∅ � G0 � . . . � Gk � G.

Let p P t1, . . . , k � 1u be such that FpGpq � F . By Lemma 6.3.21, up to taking a power
of f , we may suppose that f is 3K-expanding. By Lemma 6.5.14, up to passing to a
power of f , we may suppose that for every closed reduced edge path γ of G, we have
gprfpγqsq ¥ gpγq.

Lemma 6.5.16. Let f : GÑ G be as in Remark 6.5.15.

p1q For every δ ¡ 0, there exists m P N� such that for every reduced edge path γ such that
gpγq ¥ δ and every n ¥ m, the total exponential length relative to rfnpγqs of complete
factors in rfnpγqs denoted by TELpn, γq is at least

TELpn, γq ¥ gpγq`exppγqp3
n � 2Cq.

p2q For every δ ¡ 0 and every ε ¡ 0, there exists m P N� such that for every cyclically
reduced circuit γ such that `exppγq ¡ 0, gpγq ¥ δ and every n ¥ m, we have gprfnpγqsq ¥
1� ε.
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Proof. Let γ � α0β1α1 . . . αkβk be an optimal splitting, where for every i P t0, . . . , ku,
the path αi is an incomplete factor of γ and for every i P t1, . . . , ku, the path βi is a
PG-relative complete factor of γ. We may assume that `exppγq ¡ 0, otherwise gpγq � 0
and the result is immediate. Note that, since gpγq ¥ δ ¡ 0, there exists i P t1, . . . , ku
such that `γexppβiq ¡ 0. Let Λγ be the set consisting in all complete factors βi of γ whose
exponential length relative to γ is positive. Let `γexppΛγq be the sum of the exponential
lengths relative to γ of all factors that belongs to Λγ . Note that

`γexppΛγq �
¸
βiPΛγ

`γexppβiq � gpγq`exppγq.

Note that, for every n P N�, the value TELpn, γq is a supremum over all splittings
of rfnpγqs. Thus, by Lemma 6.5.6 and Lemma 6.5.7, for every n P N�, we have:

TELpn, γq ¥
¸
βiPΛγ

`rf
npγqs

exp prfnpβiqsq ¥ p3n � 2Cq`γexppΛγq ¥ p3n � 2Cqgpγq`exppγq.

This proves p1q. We now prove p2q. By Lemma 6.5.12, there exists n0 P N� such
that for every n ¥ n0, the total exponential length of incomplete segments in rfnpγqs is
bounded by 8C`exppγq. By Lemma 6.5.6, the total exponential length relative to γ of
incomplete segments in rfnpγqs is hence bounded by 10C`exppγq. Note that, for every
n P N�, the value gprfnpγqsq is a supremum over all splittings of rfnpγqs. Thus, by
Lemma 6.5.4, for every n ¥ n0, we have:

gprfnpγqsq ¥
gpγq`exppγqp3

n � 2Cq

10C`exppγq � gpγq`exppγqp3n � 2Cq

�
gpγqp3n � 2Cq

10C � gpγqp3n � 2Cq
¥

δp3n � 2Cq

10C � δp3n � 2Cq
.

The last term is independent of γ and converges to 1 as n goes to infinity. Therefore the
conclusion of Lemma 6.5.16 holds for some n large enough which does not depend on γ.
This proves p2q and this concludes the proof.

6.5.2 North-South dynamics for a relative atoroidal outer automorphisms

Let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq be an almost
atoroidal automorphism relative to F . In this subsection we prove Theorem 6.5.1. The
proof of Theorem 6.5.1 is inspired by the proof of the same result due to Uyanik ([Uya2])
in the context of an atoroidal outer automorphism for OutpFnq, that is, in the special
case when F � ∅. The proof relies on the study of splittings of reduced edge paths in the
graph associated with a CT map representing a power of φ. Indeed, we show that, when
a cyclically reduced edge path representing w P Fn has a splitting which is close to a
complete splitting, then some iterate of φ sends rws into an open neighborhood of ∆�pφq
(see Definition 6.4.5), and this iterate can be chosen uniformly (see Lemma 6.5.20).
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Let φ P OutpFn,Fq be an almost atoroidal outer automorphism which satisfies Def-
inition 6.4.3 p2q. Let F ¤ F1 ¤ F2 � trFnsu be a sequence of free factor system given
in this definition. Let f : GÑ G be a CT map representing a power of φ with filtration
∅ � G0 � G1 � . . . � Gk � G and such that there exist p and i in t1, . . . , ku such
that FpGpq � F and FpGiq � F1. We denote by CurrpF1,F1 ^ Apφqq the set of cur-
rents of CurrpFn,F1 ^ Apφqq whose support is contained in B2F1. Note that, since the
extension F1 ¤ trFnsu is sporadic, either F1 � trH1s, rH2su or F1 � trHsu for some sub-
groups H1, H2 of Fn. Up to assuming that H2 is the trivial group, we may assume that
F1 � trH1s, rH2su. Moreover, we have F1^Apφq � trA1s, . . . , rAss, rB1s, . . . , rBtsu where,
for every j P t1, . . . , su, the group Aj is contained in H1 and for every j P t1, . . . , tu, the
group Bj is contained in H2. Since F1 ^Apφq is a malnormal subgroup system, the set
trA1s, . . . , rAssu is a malnormal subgroup system of H1 and the set trB1s, . . . , rBtsu is a
malnormal subgroup system of H2.

Let

XpF1q � CurrpH1, trA1s, . . . , rAssuq � CurrpH2, trB1s, . . . , rBtsuq.

Let µ P CurrpF1,F1 ^ Apφqq. We set ψ1pµq � pµ|B2H1
, µ|B2H2

q P XpF1q. Since µ is Fn-
invariant, ψ1pµq does not depend on the choice of the representatives of the conjugacy
classes of H1 and H2. Let pµ1, µ2q P XpF1q. Since the subgroup system F1 ^ Apφq is
malnormal, for every j P t1, 2u, the current µj can be extended in a canonical way to a
current µ�j P CurrpFn,F1 ^ Apφqq. The current µ�j is such that, for every Borel subset

B of B2pFn,F1 ^Apφqq, we have

µ�j pBq � µ�j pB X B2Hjq � µjpB X B2Hjq.

We set ψ2ppµ1, µ2qq � µ�1 � µ�2 . By the property of µ�j described above, we see that
ψ2ppµ1, µ2qq P CurrpF1,F1 ^Apφqq. The maps ψ1 and ψ2 are clearly continuous.

Lemma 6.5.17. The space CurrpF1,F1 ^Apφqq is homeomorphic to XpF1q.

Proof. We prove that ψ1 and ψ2 are inverse from each other. Let µ P CurrpFn,F1^Apφqq.
Then ψ2 � ψ1pµq � pµ|B2H1

q� � pµ|B2H2
q�. Note that µ and ψ2 � ψ1pµq coincide on Borel

subsets contained in B2F1. Since both have supports contained in B2F1, they are equal.
Conversely, let pµ1, µ2q P XpF1q. Then

ψ1 � ψ2ppµ1, µ2qq � ppµ�1 � µ�2q|B2H1
, pµ�1 � µ�2q|B2H2

q.

But µ�2 |B2H1
� 0 and µ�1 |B2H2

� 0. Hence we have

ppµ�1 � µ�2q|B2H1
, pµ�1 � µ�2q|B2H2

q � pµ�1 |B2H1
, µ�2 |B2H2

q � pµ1, µ2q.

This concludes the proof.

For every φ P OutpFn,Fq, we refer to the definition of PpF ^ Apφqq given above
Lemma 6.3.28.
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Lemma 6.5.18. Let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq
be an almost atoroidal outer automorphism which satisfies Definition 6.4.3 p2q. Let
F ¤ F1 ¤ F2 � tFnu be a sequence of free factor systems given in this definition. Let
f : GÑ G be a CT map representing a power of φ with filtration ∅ � G0 � G1 � . . . �
Gk � G and such that there exist p and i in t0, . . . , k � 1u such that FpGpq � F and
FpGiq � F1.

p1q The graph G�Gi either is a topological arc whose endpoints are in Gi or it retracts
onto a circuit C and there exists exactly one topological arc that connects C and Gi.

p2q There do not exist an EG stratum or a zero stratum of height greater than i. If
G�Gi is a topological arc, every edge in G�Gi is contained in GPG. Otherwise every
edge of the circuit C in G�Gi is contained in GPG.

p3q Let γ be a path of Gi which is not contained in a concatenation of paths of GPG,F1

and NPG,F1. Then γ is not contained in a concatenation of paths in GPG and in NPG.

p4q We have

B2pFn,F ^Apφqq �
¤

γPPpF1^Apφqq
Cpγq.

In particular, we have

PCurrpFn,F ^Apφqq � PCurrpFn,F1 ^Apφqq.

p5q For every edge path γ in G, the value `F1pγq � `exppγq is the number of edges of
G�Gi contained in γ. In particular, for every path γ contained in Gi, we have

`F1pγq � `exppγq

and for every current µ P CurrpFn,F ^ Apφqq whose support is contained in B2F1, we
have

Ψ0pµq � ‖µ‖F1 .

p6q Let γ be a circuit in G. For every m P N�, we have

`F1prf
mpγqsq � `expprf

mpγqsq � `F1pγq � `exppγq.

p7q Suppose that F ^Apφq � trA1s, . . . , rArsu. One of the following holds.

� There exist distinct i, j P t1, . . . , ru such that

Apφq � pF ^Apφqq � trAis, rAjsuq Y trAi �Ajsu.

� There exists i P t1, . . . , ru and an element g P Fn such that

Apφq � pF ^Apφqq � trAisuq Y trAi � xgysu.

In that case, there exists a subgroup A of Fn such that F � trAsu and Fn � A�xgy.
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� There exists g P Fn such that Apφq � F ^ApφqY trxgysu. In that case, there exists
a subgroup A of Fn such that F � trAsu and Fn � A � xgy.

Proof. p1q It is a consequence of [HaM4, Lemma II.2.5]. Note that, in the terminology
of [HaM4, Lemma 2.2.5], the first case is called a one-edge extension and the second case
is called a lollipop extension.

p2q By Proposition 6.2.5 p4q, it suffices to show that there does not exist an EG stratum
of height greater than i. This follows from [BFH1, Corollary 3.2.2] (where the stratum
described in it is the whole graph G�Gi) We now prove the second part of Assertion p2q.
Let w be an element of Fn represented by γ. Then there exists a subgroup A of Fn such
that rAs P Apφq and w P A. Since φ|F1 is expanding relative to F but φ is not expanding
relative to F by Definition 6.4.3 p2q, there exists a reduced circuit γ in G which is not
contained in Gi which has polynomial growth under iterates of f . By Proposition 6.3.13,
the circuit γ is a concatenation of paths in GPG and in NPG. By the first part of
Assertion p2q, the intersection γ XG�Gi does not contain EG INPs, hence consists in
edges in GPG. Hence if G�Gi is a lollipop, then the circuit C in G�Gi is contained
in γ, hence is contained in GPG. If G�Gi is a topological arc, the graph G�Gi is
contained in γ, hence consists in edges in GPG. This proves p2q.

p3q Let γ be as in Assertion p3q. By Assertion p2q, every edge of G�Gi is contained in
an NEG stratum. In particular, there does not exist an EG INP of height greater than
i. Hence NPG � NPG,F1 . Since γ is contained in Gi and since GPG XGi � GPG,F1 , the
path γ is not contained in a concatenation of paths in GPG and NPG.

p4q Since φ|F1 is expanding relative to F , we see that F1 ^Apφq � F ^Apφq. Thus, we
have B2pFn,F^Apφqq � B2pFn,F1^Apφqq. Assertion p4q then follows from Lemma 6.3.28
applied to F1 ^Apφq.

p5q By Assertion p2q, there does not exist an EG INP of height at least i � 1. Hence
`F1pγq differs from `exppγq by the number of edges in GPG of height at least i� 1. Since
every edge in G�Gi is in GPG by Assertion p2q, the conclusion of the first claim of Asser-
tion p5q follows. The claim about paths contained in Gi is then a direct consequence. Let
µ be a current in CurrpF1,F1 ^Apφqq. By Lemma 6.5.17, there exists pµ1, µ2q P XpF1q
such that µ � µ�1 � µ�2 . Since rational currents are dense in CurrpH1, trA1s, . . . , rAssuq
and CurrpH2, trB1s, . . . , rBtsuq by Proposition 6.2.15, linear combination of rational cur-
rents are dense in CurrpF1,F1^Apφqq. The last claim of Assertion p5q then follows from
the linearity and continuity of Ψ0 and ‖.‖F1 .

p6q Let m P N�. By Assertion p5q, it suffices to prove that the number of edges in
G�Gi contained in rfmpγqs is equal to the number of edges in G�Gi contained in γ.
In the case that G�Gi is a lollipop extension and that γ is the circuit C in G�Gi,
then γ is fixed by f by [HaM4, Definition I.1.29 p3q] (that is the filtration associated
with f is reduced). Hence rfmpγqs � γ and the claim follows. Otherwise, if G�Gi
is either a one-edge extension or a lollipop extension, the circuit γ is not contained in
G�Gi. Moreover, if γ or rfmpγqs contains an edge in G�Gi, then it contains G�Gi.
Hence it suffices to count the number of occurrences of G�Gi in γ and rfmpγqs. Since
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f preserves Gi, the result follows from Assertion p1q and [BFH1, Corollary 3.2.2] (where
the stratum in it is the graph G�Gi).

p7q Note that since φ|F1 is expanding relative to F , we have F1^Apφq � F^Apφq. Recall
the definition of the graph G� and the map pG� : G� Ñ G from above Lemma 6.3.11.
By Proposition 6.3.13 and Lemma 6.3.11 p2q, the malnormal subgroup system Apφq is
precisely the subgroup system associated with the fundamental groups of the connected
components of G�. Moreover, the malnormal subgroup system associated with F1 ^
Apφq � F ^Apφq is the subgroup system associated with the connected components of
p�1
G�pGiq. By Assertion p1q, the graph G�Gi is either a topological arc or a lollipop.

Suppose first that G�Gi is a topological arc. By Assertion p2q, the graph G�Gi
consists in edges in GPG. Thus, the graph G� is obtained from p�1

G�pGiq by adding
a topological arc τ . If the endpoints of τ are in two distinct connected components
of G�, then the first case of Assertion p7q occurs and otherwise the second case of
Assertion p7q occurs. Moreover, if the second case occurs, the extension F ¤ trFnsu
is an HNN extension. Thus there exists a subgroup A of Fn such that F � trAsu.
By [BFH1, Corollary 3.2.2], one can obtain an element g of Fn such that Fn � A � g
by taking a circuit in the image of pG� which contains G�Gi exactly once. Suppose
now that G�Gi is a lollipop extension. By Assertion p2q, the circuit C in G�Gi
consists in edges in GPG. Thus, either G� is obtained from p�1

G�pGiq by adding a lollipop
extension, or G� is obtained from p�1

G�pGiq by adding a connected component which is
homotopy equivalent to a circle. If G� is obtained from p�1

G�pGiq by adding a lollipop
extension, the second case of Assertion p7q occurs. If G� is obtained from p�1

G�pGiq by
adding a connected component which is homotopy equivalent to a circle, the third case
of Assertion p7q occurs. The proof of the fact about HNN extension is similar to the
proof for the one-edge extension case. This concludes the proof.

Remark 6.5.19. By Lemma 6.5.18 p1q, G�Gi is either a topological arc or it retracts
onto a circuit C and there exists exactly one topological arc that connects C and Gi. In
the second case, we will adopt the convention that G�Gi � C, so that, by Lemma 6.5.18 p2q,
in both cases of Lemma 6.5.18 p1q, every edge in G�Gi is in GPG.

Lemma 6.5.20. Let φ P OutpFn,Fq and let f : GÑ G be as in Remark 6.5.15.

p1q Let U be an open neighborhood of ∆�pφq, let V be a neighborhood of KPGpφq
(see Definition 6.3.25). There exist N P N� and δ P p0, 1q such that for every m ¥ 1 and
every w P Fn with gpγwq ¡ δ and ηrws R V , we have

pφN qmpηrwsq P U.

p2q Suppose that φ is an almost atoroidal outer automorphism relative to F as in Defi-
nition 6.4.3 p2q. Let F ¤ F1 ¤ F2 be an associated sequence of free factor systems.

For every ε ¡ 0 and L ¡ 0, there exists δ P p0, 1q and M ¡ 0 such that, for
every n ¥ M , for every nonperipheral element w P Fn with gpγwq ¡ δ, there exists

269



rµws P ∆�pφq such that for every reduced edge path γ P PpF ^Apφqq of length at most
L contained in Gi: ���� xγ, rfnpγwqsy`expprfnpγwqsq

�
xγ, rµwsqy

‖rµws‖F1

����   ε.

Proof. The proof is similar to the one of [LU2, Lemma 6.1]. By Lemma 6.5.3 and
Lemma 6.5.16 p1q, up to passing to a power of f , we may assume that for every w P Fn
such that gpγwq ¥

1
2 , and every n P N�, we have gprfnpγwqsq ¥ gpγwq and

`expprf
npγwqsq ¥ TELpn, γq ¥ p3n � 2Cqgpγwq`exppγwq. (6.9)

Let N P N� be such that 3N ¡ 2C. Let λ ¡ 0 be such that, for every edge e P ~EG
and every n P N�, we have

`prfnpeqsq ¤ λn. (6.10)

By Lemma 6.3.29, a sequence prνmsqmPN of projective relative currents tends to a
projective current rνs P PCurrpFn,F ^ Apφqq if for every ε ¡ 0 and R ¡ 0 there exists
M P N� such that, for every m ¥M and every reduced edge path γ P PpF ^Apφqq with
`pγq ¤ R, we have ����xγ, νy‖ν‖F

�
xγ, νmy

‖νm‖F

����   ε. (6.11)

For every F-expanding splitting unit σ, we denote by µpσq the corresponding current
given by Proposition 6.4.4. By Lemma 6.4.8, we have ‖µpσq‖F � 1. Since ∆�pφq is
compact by Lemma 6.4.7, there exist ε, R ¡ 0 such that for every m ¥M , if there exists
ν P ∆�pφq such that νm, ν, R, ε satisfy Equation (6.11), then νm P U . Since there are
only finitely many expanding splitting units of positive exponential length and finitely
many edge paths γ P PpF ^Apφqq such that `pγq ¤ R, there exists M0 P N� such that
for every m ¥M0, for every expanding splitting unit σ and for every reduced edge path
γ P PpF ^Apφqq with `pγq ¤ R, we have:����xγ, rfmpσqsy`F prfmpσqsq

� xγ, µpσqy

����   ε

6
.

Recall that xγ, µpσqy is equal to µpσqpCpγqq by definition of the number of occurrences
of γ in µpσq. Let γ1 be a reduced edge path in G. By Lemma 6.5.6, for every reduced

edge path σ of G contained in γ1, we have `F pσq ¥ `γ
1

F pσq ¥ `F pσq � 2C. Hence there
exists M1 P N� such that for every m ¥ M1, for every expanding splitting unit σ, for
every edge path γ1 containing σ as a splitting unit and for every reduced edge path
γ P PpF ^Apφqq with `pγq ¤ R, we have:����� xγ, rfmpσqsy

`
rfmpγ1qs
F prfmpσqsq

� xγ, µpσqy

�����   ε

6
. (6.12)
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Recall the definition of the continuous function Ψ0 : CurrpFn,F ^Apφqq Ñ R given
above Definition 6.3.25. Recall that, by Lemma 6.3.27 p3q, for every current µ P
CurrpFn,F ^Apφqq, we have ‖µ‖F ¡ 0. Let

Ψ: CurrpFn,F ^Apφqq Ñ R
rνs ÞÑ Ψ0pνq

‖ν‖F .

Since Ψ is continuous and since PCurrpFn,F ^Apφqq � V is compact, there exists s ¡ 0
such that for every ν P PCurrpFn,F ^Apφqq � V , we have:

Ψprνsq ¥ s.

In particular, by Lemma 6.3.26, for every nonperipheral element w P Fn such that
ηrws R V , we have

`exppγwq

`F pγwq
�

Ψ0pηrwsq

‖ηrws‖F
� Ψprηrwssq ¥ s. (6.13)

Now let w P Fn be a nonperipheral element such that gpγwq ¥
1
2 and ηrws R V .

Let γw � α0β1α1 . . . αkβk be an optimal splitting of γw, where for every i P t0, . . . , ku,
the path αi is an incomplete factor of γw and for every i P t1, . . . , ku, the path βi is a
complete factor of γ. Using this optimal splitting, we construct another decomposition
of γw (which is not necessarily a splitting of γw). Since concatenations of paths in GPG
and in NPG have zero exponential length by Lemma 6.3.18, we change the decomposition
in such a way that every subpath of γw which is a concatenation of paths in GPG and
in NPG is in some αi for i P t1, . . . , ku. In particular, for every i P t1, . . . , ku, the
exponential lengths of βi and αi are equal to their exponential lengths relative to γw.

Let i P t0, . . . , ku. The path αi has a decomposition αi � α
p1q
i α

p11q
i . . . α

pkiq
i α

pk1iq
i where,

for every j P t1, . . . , kiu, the path α
pjq
i is a concatenation of paths in GPG and NPG

and, for every j P t1, . . . , kiu, the path α
pj1q
i is a path in G�GPG such that every edge

of α
pj1q
i either has positive exponential length relative to γw or is in a zero stratum.

Note that, by Proposition 6.2.5 p4q, for every j P t1, . . . , kiu and every maximal subpath

τ of α
pj1q
i contained in some zero stratum, the path τ is adjacent to a path in γw of

positive exponential length. Suppose that τ is nontrivial. Since no zero path is adjacent
to a path which is a concatenation of paths in GPG and NPG by Lemma 6.2.9 and

Proposition 6.2.5 p4q, either αi � τ or `exppα
pj1q
i q ¡ 0. In the first case, we have `pτq ¤ C

by definition of C. Thus, there exists n P N� such that rfnpτqs is completely split. Thus,
if the first case occurs, we may suppose, up to taking a power of f , that αi is a completely
split and is a splitting unit of some βj . Let i P t1, . . . , ku. Since βi does not contain
splitting units which are concatenation of paths in GPG and NPG, every splitting unit
of βi is an edge in G�G1

PG or a maximal taken connecting path in a zero stratum. By

Lemma 6.3.21, every splitting unit of βi which is an edge in G�G1
PG is expanding. Let

σ1 be a splitting unit of βi which is a maximal taken connecting path in a zero stratum
and which is not expanding. Let n P N� be such that rfnpσ1qs is completely split. By
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Lemma 6.3.21 and Lemma 6.3.20, the path rfnpσ1qs does not contain splitting units
which are edges in G�GPG. If rfnpσ1qs contains a splitting unit which is contained in a
zero stratum, then an inductive argument shows that, up to taking a larger n, the path
rfnpσ1qs is a concatenation of paths in GPG and NPG. Thus, the F-length of σ1 grows
at most polynomially fast under iterates of f . Thus, we see that γw has a decomposition

γw � a0b0a1c
p1q
1 c

p1q
2 . . . c

p1q
k1
a2b2 . . . atc

ptq
1 c

ptq
2 . . . c

ptq
kt
at�1bt�1at�2,

where:

paq for every i P t0, . . . , t� 2u, the path ai is either possibly trivial, a concatenation of
paths in GPG and in NPG or a maximal taken connecting path whose F-length grows
at most polynomially fast;

pbq for every i P t0, . . . , t � 1u, the path bi is a subpath of positive exponential length
relative to γw of an incomplete path of γw such that every edge of bi either has positive
exponential length relative to γw or is in a zero stratum;

pcq for every i P t1, . . . , tu and every j P t1, . . . , kiu, the path c
piq
j is a (possibly trivial)

expanding splitting unit of a complete factor of γw.

Recall that the length of every path in a zero stratum is bounded by C. Thus, for
every i P t0, . . . , t� 1u, we have

`pbiq ¤ C`exppbiq.

We claim that the exponential length relative to γw of one of the edges at the concate-

nation point of two consecutive nontrivial paths of the form aibi, biai�1, aic
piq
1 , c

piq
j c

piq
j�1

or c
piq
ki
ai�1 is positive. Indeed, for every i P t1, . . . , tu(resp. i P t0, . . . , t� 1u) and every

j P t1, . . . , kiu, the path c
piq
j (resp. bi) either has positive exponential length relative to

γw or is contained in a zero stratum. Note that by hypothesis, for every i P t0, . . . , t�1u,
the path bi is not contained in a zero stratum. Moreover, if bi is adjacent to a path ai,
then the first edge of bi is not in a zero stratum by Proposition 6.2.5 p4q, Lemma 6.2.9 and
the fact that the paths in zero strata that we consider in our subdivision are maximal.
Hence one of the edges at the concatenation point of every path of the form aibi, biai�1

has positive exponential length relative to γw. By maximality of the splitting units con-

tained in zero strata, one of the splitting unit in a path c
piq
j c

piq
j�1 is an edge in G�G1

PG,
hence has positive exponential length relative to γw. Since paths in zero strata and
concatenations of paths in GPG and NPG cannot be adjacent by Proposition 6.2.5 p4q

and Lemma 6.2.9, paths of the form aic
piq
1 and c

piq
ki
ai�1 have positive exponential length

since in this case c
piq
1 or c

piq
ki

is an edge in G�G1
PG. This proves the claim.

Remark that, by construction and the definition of goodness of a reduced path, we
have

ţ

i�1

ki̧

j�1

`exppc
piq
j q � `exppγwqgpγwq.
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Note that the length of reduced iterates of edges in GPG grows at most polynomially
fast, hence the F-length of reduced iterates of edges in GPG grows at most polynomially
fast. Let C 1 ¡ 0 and k P N� be such that, for every splitting unit σ1 which is either
an edge in GPG or a maximal taken connecting path in a zero stratum whose F-length
grows at most polynomially fast, and every m P N�, we have:

`F prf
mpσ1qsq ¤ C 1mk`F pσ

1q.

The constants C 1 and k exist by the claim in Proposition 6.3.13. Let i P t0, . . . , t � 2u
and let ai � α0 . . . α`i be a decomposition of ai such that, for every j P t0, . . . , `iu, α`i
is either an edge in GPG, a path in Nmax

PG paiq or a maximal taken connecting path in a
zero stratum whose F-length grows at most polynomially fast. By Lemma 6.3.16, for
every m P N�, we have

`F prf
mpaiqsq ¤

`i̧

j�0

`F prf
mpαjqsq ¤ C 1mk

`i̧

j�1

`F pαjq � C 1mk`F paiq,

where the last equality follows from the fact that a path in NPG is contained in some
subpath αj by hypothesis. In particular,

t�2̧

i�0

`F prf
npaiqsq ¤ C 1mk

t�2̧

i�0

`F paiq ¤ C 1`F pγwqn
k, (6.14)

where the last inequality follows from the fact that, by hypothesis, every path in Nmax
PG pγq

is contained in some ai. Thus, if gpγwq ¥
1
2 , there exists C2 ¡ 0 such that, for every

n ¥ N , by Equations (6.9), (6.14) and (6.13), we have:

°t�2
i�0 `F prf

npaiqsq

`expprfnpγwqsq
¤

C 1`F pγwqn
k

p3n � 2Cqgpγwq `exppγwq
¤

C 1 1
s`exppγwqn

k

p3n � 2Cqgpγwq `exppγwq
¤ C2 nk

p3n � 2Cqgpγwq
.

Recall that, for every reduced edge path γ of G, we have

`exppγq ¤ `F pγq.

Up to taking a larger N P N�, we may suppose that, for every n ¥ N , we have

C2 nk

p3n � 2Cqgpγwq
¤

ε

48gpγwqR
. (6.15)

For every n ¥ N and every nonperipheral element w P Fn such that gpγwq ¥
1
2 , by

Equation (6.9), we have

2R `exppγwq

`F prfnpγwqsq
¤

2R `exppγwq

p3n � 2Cqgpγwq`exppγwq
�

2R

p3n � 2Cqgpγwq
.

Up to taking a larger N , we may assume that for every n ¥ N and every w P Fn
such that gpγwq ¥

1
2 , we have:
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2R `exppγwq

`F prfnpγwqsq
¤

2R

p3n � 2Cqgpγwq
¤

ε

12gpγwq
. (6.16)

Let

δ � max

$&% 1

1� ε
6

,
1

1� 2RCελN

p3N�2Cq6

,
1

2

,.- .

Thus, in order to prove the first assertion of Lemma 6.5.20, it suffices to show that for
every m ¥ N and every w P Fn such that gpγwq ¡ δ and ηrws R V , the projective current
rνms � φmprηwsq is close to an element rνs in ∆�pφq in the sense of Equation (6.11).
Since the goodness function is monotone by Remark 6.5.15, it suffices to prove it for
m � N . Let w P Fn such that gpγwq ¡ δ and ηrws R V .

By Equation (6.15) and the fact that gpγwq ¥ δ ¥ 1
2 , we have

°t�2
i�0 `F prf

N paiqsq

`F prfN pγwqsq
¤

°t�2
i�0 `F prf

N paiqsq

`expprfnpγwqsq

¤ C2 nk

p3N � 2Cqgpγwq
¤ C2 nk

p3N � 2Cqδ
¤

ε

24R
. (6.17)

Moreover, by Equation (6.16) and the fact that gpγwq ¥ δ ¥ 1
2 , we have

2R `exppγwq

`F prfN pγwqsq
¤
ε

6
. (6.18)

Note that, for every w P Fn such that gpγwq ¡ δ and ηrws R V , we have:

2RCλN p1� gpγwqq`exppγwq

p3N � 2Cqgpγwq`exppγwq
� 2RC

λN

3N � 2C

�
1

gpγwq
� 1



¤ 2RC

λN

3N � 2C

�
1

δ
� 1



¤
ε

6
, (6.19)

where the last inequality follows from the definition of δ.
Let γ P PpF ^Apφqq be of length at most R. By the triangle inequality, we have
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�
�
�
�
�
�

xγ,rfN pγwqsy
`F prfN pγwqsq

�

B
γ,
°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsqµpc

pjq
i q

F

°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq

�
�
�
�
�
�

¤

�
�
�
�
xγ,rfN pγwqsy
`F prfN pγwqsq

�
°t
i�1

°ki
j�1

A
γ,rfN pc

piq
j qs

E
`F prfN pγwqsq

�
�
�
�

�

�
�
�
�
°t
i�1

°ki
j�1

A
γ,rfN pc

piq
j qs

E
`F prfN pγwqsq

�

°t
i�1

°ki
j�1

A
γ,rfN pc

piq
j qs

E
°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq

�
�
�
�

�

�
�
�
�
�
�

°t
i�1

°ki
j�1

A
γ,rfN pc

piq
j qs

E
°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq

�

B
γ,
°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsqµpc

pjq
i q

F

°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq

�
�
�
�
�
�
.

(6.20)
Note that an occurrence of γ or γ�1 in rfN pγwqs might happen either in some

rfN pc
piq
j qs or in some rfN paiqs or in some rfN pbiqs or it might cross over the concate-

nation points. Recall that one of the edges at the concatenation point of paths of the

form aibi, biai�1, aic
piq
1 , c

piq
j c

piq
j�1 or c

piq
ki
ai�1 has positive exponential length relative to

γw. Recall also that the length of γ is at most equal to R. Thus the number of such
crossings is at most 2R`exppγwq. Thus:

������
@
γ, rfN pγwqs

D
`F prfN pγwqsq

�
ţ

i�1

ki̧

j�1

A
γ, rfN pc

piq
j qs

E
`F prfN pγwqsq

������ ¤
2R`exppγwq

`F prfN pγwqsq
�
t�2̧

i�0

@
γ, rfN paiqs

D
`F prfN pγwqsq

�
t�1̧

i�0

@
γ, rfN pbiqs

D
`F prfN pγwqsq

.

Since γ is not contained in a concatenation of paths in GPG,F and NPG,F , if γ
is contained in rfN paiqs for i P t1, . . . , t � 1u, then γ contains an edge of rfN paiqs of
positive F-length relative to rfN paiqs. Hence we have

@
γ, rfN paiqs

D
¤ `F prf

N paiqsq. By
Equations (6.18) and (6.17) with n � N , we have

2R`exppγwq

`F prfN pγwqsq
�
t�2̧

i�0

@
γ, rfN paiqs

D
`F prfN pγwqsq

¤
2R`exppγwq

`F prfN pγwqsq
�

°t�1
i�0 `F prf

N paiqsq

`F prfN pγwqsq
¤
ε

4
.

Moreover, since for every i P t0, . . . , t � 1u, we have `pbiq ¤ C`exppbiq and by Equa-
tions (6.9), (6.13) and (6.19), we see that:

t�1°

i�0

xγ,rfN pbiqsy
`F prfN pγwqsq

¤
t�1°

i�0

`prfN pbiqsq
`F prfN pγwqsq

¤
t�1°

i�0

CλN`exppbiq
p3N�2Cqgpγwq`exppγwq

¤
CλN p1�gpγwqq`exppγwq
p3N�2Cqgpγwq`exppγwq

¤ ε
6 .
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For the third term of Inequality (6.20), note that, since γ P PpF ^ Apφqq, it is not
contained in a concatenation of paths in GPG,F and in NPG,F . Hence an occurrence of
γ always appear with an edge e of c such that `cF peq � 1. Since `pγq ¤ R, such an edge
e can be crossed by at most R occurrences of γ in c. Thus, for every reduced edge path
c in G, we have xγ, cy ¤ 2R`F pcq. Hence we have������

°t
i�1

°ki
j�1

A
γ, rfN pc

piq
j qs
E

°t
i�1

°ki
j�1 `

rfN pγwqs
F prfpc

piq
j qsq

������ ¤ 2R.

Since

`F prf
N pγwqsq �

ţ

i�1

ki̧

j�1

`
rfN pγwqs
F prfN pc

piq
j qsq �

t�1̧

i�0

`
rfN pγwqs
F prfN paibiai�1qsq,

using Lemma 6.5.3 and Lemma 6.5.6 for the last inequality we have:

�����°t
i�1

°ki
j�1

A
γ,rfN pc

piq
j qs

E
`F prfN pγwqsq

�

°t
i�1

°ki
j�1

A
γ,rfN pc

piq
j qs

E
°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq

�����
�

������
�°t

i�1

°ki
j�1

A
γ,rfN pc

piq
j qs

E	�°t�1
i�0 `

rfN pγwqs
F prfpaibiai�1qsq



�°t

i�1

°ki
j�1 `

rfN pγwqs
F prfpc

piq
j qsq


�°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq�

°t�1
i�0 `

rfN pγwqs
F prfN paibiai�1qsq



������

¤

������
�°t

i�1

°ki
j�1

A
γ,rfN pc

piq
j qs

E	�°t�1
i�0 `

rfN pγwqs
F prfpaibiai�1qsq



�°t

i�1

°ki
j�1 `

rfN pγwqs
F prfpc

piq
j qsq


�°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq



������

¤

������
�°t

i�1

°ki
j�1

A
γ,rfN pc

piq
j qs

E	�°t�1
i�0 `F prf

N pbiqsq�2
t�2°
i�0

`F prf
N paiqsq



�°t

i�1

°ki
j�1 `

rfN pγwqs
F prfpc

piq
j qsq


�°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq



������

¤ 2R

������
°t�1
i�0 `F prf

N pbiqsq�2
t�2°
i�0

`F prf
N paiqsq

°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq

������ .
Recall that we have

ţ

i�1

ki̧

j�1

`exppc
piq
j q � `exppγwqgpγwq

and, for every i P t1, . . . , tu and every j P t1, . . . , kiu, we have either `exppc
piq
j q � 1 or

`exppc
piq
j q � 0. Hence, we have:°t

i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq ¥

°t
i�1

°ki
j�1p`F prf

N pc
piq
j qsq � 2Cq ¥

°t
i�1

°ki
j�1p3

N � 2Cq

¥ p3N � 2Cqgpγwq`exppγwq,

where the first inequality follows from Lemma 6.5.6 and the second inequality follows
from the fact that f is 3K-expanding and K ¥ 1. Thus, we have
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2R

�
�
�
�
�
�

°t�1
i�0 `F prf

N pbiqsq�2
t�2°
i�0

`F prf
N paiqsq

°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq

�
�
�
�
�
�

¤ 2R

�
�
�
�

°t�1
i�0 `F prf

N pbiqsq�2
°t�2
i�0 `F prf

N paiqsq°t
i�1

°ki
j�1 `

rfN pγwqss
F prfN pc

piq
j qsq

�
�
�
�

¤ 2R
�
�
�

°t�1
i�0 `F prf

N pbiqsq

p3N�2Cqgpγwq`exppγwq

�
�
� � 2R

�
�
�
2
°t�2
i�0 `F prf

N paiqsq

p3N�2Cqδ`exppγwq

�
�
� .

By Equation (6.10), we have

t�1̧

i�0

`F prf
N pbiqsq ¤

t�1̧

i�0

`prfN pbiqsq ¤ λN
t�1̧

i�0

`pbiq ¤ CλN
t�1̧

i�0

`exppbiq ¤ CλN`exppγwqp1�gpγwqq.

Hence we have:

2R
��� °t�1

i�0 `F prf
N pbiqsq

p3N�2Cqgpγwq`exppγwq

���� 2R
���2°t�2

i�0 `F prf
N paiqsq

p3n�2Cqδ`exppγwq

���
¤ 2R

���CλN p1�gpγwqq`exppγwq
p3N�2Cqgpγwq`exppγwq

���� 2R
��� 2C1`F pγwqn

k

p3N�2Cqδ`exppγwq

��� by Equation (6.14)

¤ 2R
���CλN p1�gpγwqq`exppγwq
p3N�2Cqgpγwq`exppγwq

���� 2R
��� 2C2nk

p3N�2Cqδ

���
¤ 2ε

6 by Equation (6.17) and (6.19).

Finally, using Equation (6.12) and the fact that for every i P t1, . . . , tu and every

j P t1, . . . , kiu, the splitting unit c
piq
j is expanding, we have:������

°t
i�1

°ki
j�1

A
γ,rfN pc

piq
j qs

E
°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq

�

B
γ,
°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsqµpc

pjq
i q

F
°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq

������
�

���������
°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq

�
�

B
γ,rfN pc

piq
j

qs

F

`
rfN pγwqs
F prfN pc

piq
j

qsq

�
A
γ,µpc

pjq
i q

E�
°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq

���������
¤

ε
6

°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq°t

i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq

� ε
6 .

Combining all inequalities, we have������
@
γ, rfN pγwqs

D
`F prfN pγwqsq

�

A
γ,
°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsqµpc

pjq
i q
E

°t
i�1

°ki
j�1 `

rfN pγwqs
F prfN pc

piq
j qsq

������ ¤ ε

4
�
ε

6
�

2ε

6
�
ε

6
¤ ε.

This concludes the proof of Assertion p1q of Lemma 6.5.20 since for every i P t1, . . . , tu

and every j P t1, . . . , kiu, we have µpc
piq
j q P ∆�pφq.

The proof of Assertion p2q is the same one as the proof of Assertion p1q, replacing
`F and `γF by `exp and `γexp, adding the following arguments. Let γ and w P Fn be as in

277



Assertion p2q. Then γ is not contained in a contenation of paths in GPG and in NPG by
Lemma 6.5.18 p3q. If

γw � a0b0a1c
p1q
1 c

p1q
2 . . . c

p1q
k1
a2b2 . . . atc

ptq
1 c

ptq
2 . . . c

ptq
kt
at�1bt�1at�2,

is the same decomposition of γw as in the proof of Assertion p1q, then for every m P N
and every i P t1, . . . , t � 2u, the path γ is not contained in rfmpaiqs by Lemma 6.3.9.
Similarly, for every m P N� and every i P t1, . . . , t � 2u, we have `expprf

mpaiqsq � 0.
Hence we do not need Equation (6.17). By Lemma 6.5.18 p5q, we have

`exppγq � `F1pγq.

Moreover, by Lemma 6.5.18 p5q, for every current rµs P ∆�pφq, we have Ψ0pµq � ‖µ‖F1 .
Replacing `F and `γF by `exp and `γexp in the equations in the proof of Assertion p1q
concludes the proof.

For the next lemma, we need to compute the exponential length of incomplete seg-
ments in a circuit γ in G. Let `exppIncpγqq be the sum of the exponential lengths of the
incomplete segments of an optimal splitting of γ. Let `γexppIncpγqq be the sum of the
exponential lengths relative to γ of the incomplete segments of an optimal splitting of γ.
Note that `γexppIncpγqq do not depend on the choice of an optimal splitting. Note that

`γexppIncpγqq � p1� gpγqq`exppγq ¤ `exppγq.

Lemma 6.5.21. Let φ P OutpFn,Fq and let f : G Ñ G be as in Remark 6.5.15. Let
δ P p0, 1q, and let R ¡ 1. There exists n0 P N� such that for every n ¥ n0 and every
nonperipheral element w P Fn such that ηrws R KPGpφq, we either have

gprfnpγwqsq ¥ δ

or

`rf
npγwqs

exp pIncprfnpγwqsqq ¤
10C

R
`γwexppIncpγwqq and `expprf

npγwqsq ¤
10C

p1� δqR
`exppγwq.

Proof. Let w P Fn be a nonperipheral element such that ηrws R KPGpφq. Suppose that
n P N� is such that gprfnpγwqsq   δ. Assuming for now that we have proved that

`rf
npγwqs

exp pIncprfnpγwqsqq ¤
10C

R
`γwexppIncpγwqq,

we deduce that `expprf
npγwqsq ¤

10C
p1�δqR`exppγwq. Indeed, we have

`rf
npγqs

exp pIncprfnpγqsqq � p1� gprfnpγqsqq`expprf
npγqsq ¥ p1� δq`expprf

npγqsq.

Thus we have

`expprf
npγwqsq ¤ 1

1�δ
`
rfnpγwqs
exp pIncprfnpγwqsqq ¤

10C
p1�δqR

`γwexppIncpγwqq

¤ 10C
p1�δqR

`exppγwq.
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Therefore, it suffices to prove that there exists n0 P N� such that for every n ¥ n0,
if gprfnpγwqsq   δ, then

`rf
npγwqs

exp pIncprfnpγwqsqq ¤
10C

R
`γwexppIncpγwqq.

Consider an optimal splitting γw � α10β
1
1α

1
1 . . . α

1
mβ

1
m, where for every i P t0, . . . ,mu,

the path α1i is an incomplete factor of γw and for every i P t0, . . . ,mu, the path β1i is a
PG-relative complete factor of γw. We can modify the splitting of γw in a new splitting
γw � α0β1α1 . . . βkαk where:

piq for every i P t0, . . . , ku, the path αi is a concatenation of incomplete factors and
complete factors of zero exponential length relative to γw of the old splitting;

piiq for every i P t1, . . . , ku, the path βi is a complete factor of positive exponential
length relative to γw of the old splitting.

In the remainder of the proof, we still refer to the paths αi as incomplete factors. By
the last claim of Remark 6.5.15, we may suppose that gpγwq   δ, that is:

`γwexppIncpγwqq �
ķ

i�0

`γwexppαiq ¥ p1� δq`exppγwq. (6.21)

Claim. For every i P t0, . . . , ku and every m P N�, we have

`rf
mpγwqs

exp pIncprfmpαiqsqq ¤ 24C2 `γwexppαiq.

Similarly, for every m P N�, we have

`rf
mpγwqs

exp pIncprfmpγwqsqq ¤ 24C2 `exppγwq.

Proof. Since a reduced iterate of a complete factor is complete, every incomplete factor
of rfmpγwqs is contained in a reduced iterate of some αi. Thus, we have

`rf
mpγwqs

exp pIncprfmpγwqsqq ¤
ķ

i�0

`rf
mpγwqs

exp pIncprfmpαiqsqq.

Hence it suffices to prove the result for the paths αi with i P t0, . . . , ku. By Property piiq
for every i P t1, . . . , ku, the path βi has positive exponential length relative to γw.
Therefore, if there exists γ1 P Nmax

PG pγwq such that αi intersects γ1 nontrivially, then γ1 is
contained in βiαiβi�1. In particular, Lemma 6.5.13 applies and for every i P t0, . . . , ku,
if `γwexppαiq � 0, then `exppαiq � 0.

Let i P t0, . . . , ku. Suppose first that `γwexppαiq � 0. By the above, we have `exppαiq �
0. By Lemma 6.5.12, there exists N P N� such that for every m ¥ N , such that the total
exponential length of incomplete factors in any optimal splitting of rfmpαiqs is equal to
0. Hence for every m ¥ N , the path rfmpαiqs is PG-relative completely split. Up to
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taking a power of f , we may assume that N � 1. So this concludes the proof of the
claim in the case when `γwexppαiq � 0.

So we may assume that `γwexppαiq ¡ 0. By Lemma 6.5.12, for every m P N�, the total
exponential length of incomplete factors in rfmpαiqs is at most equal to 8C`exppαiq. By
Lemma 6.5.6, for every i P t1, . . . , ku, we have

`exppαiq ¤ `γwexppαiq � 2C ¤ 3C`γwexppαiq.

Hence again by Lemma 6.5.6, we have

`rf
mpγwqs

exp pIncprfmpαiqsqq ¤ `exppIncprfmpαiqsqq ¤ 24C2`γwexppαiq.

This proves the claim.

Let Λγw be the set consisting in all incomplete factors αi of γw whose exponential
length relative to γw is at least equal to p3.108qR6C12 � 1. Let Λ1

γw be the set consisting
in all incomplete factors αi of γw which are not in Λγw . Let `γwexppΛγwq (resp. `γwexppΛ1

γwq)
be the sum of the exponential lengths relative to γw of all incomplete factors of γ that
belongs to Λγw (resp. Λ1

γw). We distinguish between two cases, according to the pro-
portion of `γwexppΛγwq in the exponential length relative to γw of incomplete factors in
γw.

Case 1 Suppose that
`γwexppΛγwq

`γwexppIncpγwqq
 

1

p24C2Rq2
.

This implies that
`γwexppΛ1

γwq

`γwexppIncpγwqq
¥
p24C2Rq2 � 1

p24C2Rq2
. (6.22)

Note that, by Lemma 6.5.6, every path in Λ1
γw has exponential length at most equal

to p3.108qC12R6 � 1 � 2C. By Lemma 6.5.11, there exists n0 P N� such that, for every
edge path β of exponential length at most equal to p3.108qR6C12 � 1 � 2C and every
n ¥ n0 either rfnpβqs is a concatenation of paths in GPG and in NPG or rfn0pβqs
contains a complete factor of exponential length at least equal to 10C. By Lemma 6.5.6,
in the second case, the path rfn0pβqs has a complete factor of positive exponential length
relative to rfn0pβqs. Let Γγw be the set consisting in all incomplete paths αi of γw such
that αi P Λ1

γw and rfn0pαiqs is a concatenation of paths in GPG and in NPG. Let Γ1γw be
the set consisting in all incomplete paths αi of γw such that αi P Λ1

γw and rfn0pαiqs has
at least one complete factor of positive exponential length relative to rfn0pαiqs. Note
that Λ1

γw � Γγw Y Γ1γw . Let `γwexppΓγwq (resp. `γwexppΓ1γwq) be the sum of the exponential
lengths relative to γw of paths in Γγw (resp. Γ1γw).

Subcase 1 Suppose that
`γwexppΓγwq

`γwexppΛ1
γwq

¥
24C2R

24C2R� 1
.
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Then

`γwexppΓγwq ¥
24C2R

24C2R� 1
`γwexppΛ

1
γwq ¥

24C2R� 1

24C2R
`γwexppIncpγwqq.

Note that, for every n ¥ n0 and every path αi P Γγw , we have `expprf
npαiqsq � 0 by

Lemma 6.3.17. By the claim, for every path αi such that αi P Λ1
γw and αi R Γγw , and

for every n P N�, the total exponential length of incomplete factors in rfnpαiqs relative
to rfnpαiqs is at most equal to 24C2`γwexppαiq. Thus, for every n ¥ n0, we have:

`
rfnpγwqs
exp pIncprfnpγwqsqq ¤

°
αiPΛγwYΛ1

γw

`
rfnpγwqs
exp pIncprfnpαiqsqq

¤
°

αiPΛγwYpΛ
1
γw

�Γγw q

24C2`γwexppαiq

¤ 24C2`γwexppIncpγwqq � 24C2 24C2R�1
24C2R

`γwexppIncpγwqq
¤ 1

R`
γw
exppIncpγwqq.

This concludes the proof of Lemma 6.5.21 when Subcase 1 occurs.

Subcase 2 Suppose that
`exppΓγwq

`exppΛ1
γwq

 
24C2R

24C2R� 1
.

Note that the assumption of Subcase 2 and Equation (6.22) imply that

`γwexppΓ
1
γwq ¥

1

24C2R� 1
`γwexppΛ

1
γwq ¥

p24C2Rq2 � 1

p24C2Rq2
1

24C2R� 1
`γwexppIncpγwqq.

Since every path in Γ1γw has exponential length at most equal to p3.108qR6C12�1�2C,
by Lemma 6.5.7, up to taking a larger n0, for every path αi P Γ1γw such that `exppαiq ¡ 0
and every n ¥ n0, the exponential length of a complete factor in rfnpαiqs is at least equal
to 3n�n0`exppαiq. Moreover, for every path αi P Γ1γw such that `exppαiq � 0 and every
n ¥ n0, the exponential length of a complete factor in rfnpαiqs is at least equal to 3n�n0 .
By Lemma 6.5.6, for every n ¥ n0 and every path αi P Γ1γw such that `exppαiq ¡ 0, the
exponential length relative to rfnpαiqs of a complete factor in rfnpαiqs is at least equal
to

3n�n0`exppαiq � 2C ¥ p3n�n0 � 2Cq`exppαiq.

Thus, for every n ¥ n0 and every path αi P Γ1γw , the exponential length relative to
rfnpαiqs of a complete factor in rfnpαiqs is at least equal to

p3n�n0 � 2Cq`exppαiq.

Therefore, for every n ¥ n0, the sum of the exponential lengths of complete factors in
rfnpγwqs is at least equal to

p3n�n0 � 2Cq`γwexppΓ
1
γwq ¥ p3n�n0 � 2Cq

p24C2Rq2 � 1

p24C2Rq2
1

24C2R� 1
`γwexppIncpγwqq. (6.23)
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By the claim, for every n P N�, we have `
rfnpγwqs
exp pIncprfnpγwqsqq ¤ 24C2`γwexppIncpγwqq.

Recall that the goodness function is a supremum over splittings of the considered path.
Thus, by Equation (6.23) for every n ¥ n0, since the maps t ÞÑ t

t�a are nonincreasing
for every a ¡ 0, we have

gprfnpγwqsq ¥
p3n�n0�2Cq p24C

2Rq2�1

p24C2Rq2
1

24C2R�1
`γwexppIncpγwqq

p3n�n0�2Cq p24C
2Rq2�1

p24C2Rq2
1

24C2R�1
`γwexppIncpγwqq�`

rfnpγwqs
exp pIncprfnpγwqsq

¥
p3n�n0�2Cq p24C

2Rq2�1

p24C2Rq2
1

24C2R�1
`γwexppIncpγwqq

p3n�n0�2Cq p24C
2Rq2�1

p24C2Rq2
1

24C2R�1
`γwexppIncpγwqq�24C2`γwexppIncpγwqq

¥
p3n�n0�2Cq p24C

2Rq2�1

p24C2Rq2
1

24C2R�1

p3n�n0�2Cq p24C
2Rq2�1

p24C2Rq2
1

24C2R�1
�24C2

,

which goes to 1 as n goes to infinity. Hence there exists n1 P N which is independent of γw,
such that, for every path γw as in Subcase 2 and every n ¥ n1, we have: gprfnpγwqsq ¥ δ.
This concludes the proof of Lemma 6.5.21 when Case 1 occurs.

Case 2 Suppose that, contrarily to Case 1, we have

`γwexppΛγwq

`γwexppIncpγwqq
¥

1

p24C2Rq2
.

Let α P Λγw and consider the decomposition of the reduced path α into maximal
subsegments αp1q . . . αpkαq of exponential length relative to γw equal to 2000R3C6, except
possibly the last one of exponential length relative to γw less than or equal to 2000R3C6.
Let

Λp1q
γw �

!
αpjq | α P Λγw , j P t1, . . . , kαu, `

γw
exppα

pjqq � 2000R3C6
)
,

Λp2q
γw �

!
αpjq | α P Λγw , j P t1, . . . , kαu, `

γw
exppαq   2000R3C6

)
.

Note that, since for every α P Λγw , we have `γwexppαq ¥ p3.108qR6C12 � 1, we see that

|Λp1q
γw | ¥ 120000R3C6|Λp2q

γw |. (6.24)

Note that every element in Λ
p1q
γw Y Λ

p2q
γw has exponential length at most equal to

2000R3C6 � 1� 2C by Lemma 6.5.6. By Lemma 6.5.11, there exists M P N� depending
only on f such that for every n ¥ M and every reduced edge path α of exponential
length at most equal to p3.108qR6C12 � 1 � 2C, either rfnpαqs is a concatenation of
paths in GPG and in NPG or the following holds:

paq there exists a complete factor of rfnpαqs whose exponential length is at least equal
to 10C;

pbq the exponential length of an incomplete factor of rfnpαqs is at most equal to 8C.
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This applies in particular to every element α P Λ
p1q
γw Y Λ

p2q
γw and to every element

α P Λ1
γw . For every αpjq P Λ

p1q
γw and every n ¥ M , let αpj,nq be the (possibly degenerate)

subpath of rfnpαpjqqs contained in rfnpαqs. Let Λ
p3q
γw be the subset of Λ

p1q
γw consisting in

all αpjq P Λ
p1q
γw such that `exppα

pj,Mqq ¤ 80C2, and let Λ
p4q
γw � Λ

p1q
γw � Λ

p3q
γw .

Suppose first that

|Λp4q
γw | ¡

1

30000R3C6
|Λp3q
γw |. (6.25)

Therefore, as |Λ
p1q
γw | � |Λ

p3q
γw | � |Λ

p4q
γw |, by Equation (6.24), we have

|Λp2q
γw | ¤

30001R3C6

120000R3C6
|Λp4q
γw | � K0|Λ

p4q
γw |,

where K0 is a constant depending only on C and R. Note that Λγw � Λ
p2q
γw YΛ

p3q
γw YΛ

p4q
γw

and for every j P t2, 3, 4u, every path in Λ
pjq
γw has exponential length at most equal to

2000R3C6. Thus, we see that

`γwexppΛγwq ¤ 2000R3C6p|Λp2q
γw | � |Λp3q

γw | � |Λp4q
γw |q ¤ K 1

0|Λ
p4q
γw |

for some constant K 1
0 depending only on C and R.

Recall that if αpjq P Λ
p4q
γw , then `exppα

pj,Mqq ¡ 80C2. Suppose towards a contradic-
tion that rfM pαpjqqs is a concatenation of paths in GPG and in NPG. Since αpj,Mq is

a subpath of rfM pαpjqqs, we have `
rfM pαpjqqs
exp pαpj,Mqq � 0. By Lemma 6.5.6, we see that

`exppα
pj,Mqq ¤ `

rfM pαpjqqs
exp pαpj,Mqq � 2C � 2C, which leads to a contradiction. Hence

rfM pαpjqqs satisfies paq and pbq. Note that αpj,Mq is a subpath of rfM pαpjqqs. Since
`exppα

pj,Mqq ¡ 80C2, since every incomplete factor of rfM pαpjqqs has exponential length
at most equal to 8C by pbq and since an incomplete factor of rfM pαpjqqs is followed by
a complete factor of rfM pαpjqqs, we see that αpj,Mq contains a subpath of a complete
factor of rfM pαpjqqs. Since `exppα

pj,Mqq ¡ 80C2 and since every incomplete subpath
of rfM pαpjqs has exponential length at most equal to 8C, the path αpj,Mq must con-
tain a subpath αpj,Mq1 such that the total exponential length of complete factors of

αpj,Mq1 is at least equal to 10C. Let α
pj,Mq
0 be the minimal concatenation of split-

tings of a fixed optimal splittings of rfmpαpjqqs which contains αpj,Mq1 . Let τ
pj,Mq
1 and

τ
pj,Mq
2 be paths such that rfM pαpjqqs � τ

pj,Mq
1 α

pj,Mq
0 τ

pj,Mq
2 . By Lemma 6.5.8 applied

twice (once with γ � α
pj,Mq
0 τ

pj,Mq
2 rfM pαpj�1q . . . α

pkαk q

k qs and γ1 � α
pj,Mq
0 and once with

γ�1 � rfM pα
p1q
1 . . . αpj�1qqsτ

pj,Mq
1 α

pj,Mq
0 and γ�1

1 � α
pj,Mq
0 ), we see that αpj,Mq contains

a complete factor of rfM pγwqs of exponential length at least equal to 10C � 4C � 6C.
By Lemma 6.5.6, the path αpj,Mq contains a complete factor of rfM pγwqs of exponential
length relative to rfM pγwqs at least equal to C. By Lemma 6.5.7 (with γ a complete

factor contained in αpj,Mq), for every n ¥ M and every αpjq P Λ
p4q
γw , the path αpj,nq con-

tains a complete subpath of rfnpγwqs of exponential length at least equal to 3n�MC.

By Lemma 6.5.6, for every n ¥ M and every αpjq P Λ
p4q
γw , the path αpj,nq contains a

complete subpath of rfnpγwqs of exponential length relative to rfnpγwqs at least equal
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to 3n�MC � 2C. Hence for every n ¥ M , the sum of the exponential length relative to

rfnpγwqs of complete factors contained in rfnpγwqs is at least equal to p3n�MC�2Cq|Λ
p4q
γw |.

By the claim, for every n ¥M , we have

`rf
npγwqs

exp pIncprfnpγwqsqq ¤ 24C2`γwexppγwq ¤ 24C2 1

1� δ
`γwexppIncpγwqq,

where the last inequality holds by Equation (6.21). Using the above equations and the
assumptions of Case 2, we see that

`
rfnpγwqs
exp pIncprfnpγwqsqq ¤ 24C2 1

1�δ `
γw
exppIncpγwqq

¤ 24C2 1
1�δ p24C2Rq2`γwexppΛγwq

¤ 24C2 1
1�δ p24C2Rq2K 1

0|Λ
p4q
γw | � K1|Λ

p4q
γw |,

where K1 is a constant depending only on C, R and δ. Thus, since the goodness function
is a supremum over all splittings of the considered path, for every n ¥M , we have:

gprfnpγwqsq ¥
p3n�MC�2Cq|Λ

p4q
γw |

p3n�MC�2Cq|Λ
p4q
γw |�`

rfnpγwqs
exp pIncprfnpαqsqq

¥
p3n�MC�2Cq|Λ

p4q
γw |

p3n�MC�2Cq|Λ
p4q
γw |�K1|Λ

p4q
γw |

� 3n�MC�2C
3n�MC�2C�K1

,

which converges to 1 as n goes to infinity. Hence there exists M 1 P N� depending only
on f such that for every n ¥M , we have gprfnpγwqsq ¥ δ. This proves Lemma 6.5.21 in
this case.

Suppose now that contrarily to Equation (6.25), we have

|Λp4q
γw | ¤

1

30000R3C6
|Λp3q
γw |. (6.26)

Then

|Λp1q
γw | � |Λp3q

γw | � |Λp4q
γw | ¤

�
1�

1

30000R3C6



|Λp3q
γw |.

Claim 2 Let n ¥ M , let αpjq P Λ
p2q
γw Y Λ

p4q
γw . The total exponential length of incomplete

factors of rfnpγwqs contained in αpj,nq is at most equal to 12C`exppα
pjqq.

Proof. Let σ be an incomplete factor of rfnpγwqs which is contained in αpj,Mq. Then one
of the following holds:

piq the path σ is an incomplete factor of rfnpαpjqqs;

piiq the path σ contains a subpath which is complete in rfnpαpjqqs.

Note that the total exponential length of incomplete factors of rfnpγwqs which satisfy
piq is bounded by the total exponential length of incomplete factors of rfnpαpjqqs. Thus,
by Lemma 6.5.12, the total exponential length of incomplete factors of rfnpγwqs which
satisfy piq is bounded by 8C`exppα

pjqq. Suppose that σ satisfies piiq. Let αpj,nq � a1ca2
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be a decomposition of αpj,nq where for every i P t1, 2u, the total exponential length
of complete factors of rfnpαpjqqs contained in ai is equal to 2C. By Lemma 6.5.8

applied to γ � rfnpαpjqqsrfnpαpj�1q . . . α
pkαk q

k qs and γ1 � rfnpαpjqqs and to γ�1 �

rfnpα
p1q
1 . . . αpj�1qqsrfnpαpjqqs and γ�1

1 � rfnpαpjqqs, the path σ is contained in either

a1 or a2. For every t P t1, 2u, let at � b
ptq
1 b

ptq1

1 . . . b
ptq
s b

ptq1
st be a decomposition of at where,

for every i P t1, . . . , stu, the path b
ptq
i is an incomplete factor of rfnpαpjqqs and for every

i P t1, . . . , stu, the path b
ptq1

i is a complete factor of rfnpαpjqqs contained in at.

Suppose that there exists i P t1, . . . , s1u such that b
p1q1

i is a complete factor of

rfnpγwqs. We claim that for every j ¥ i � 1, the path b
p1q1

j is a complete factor of
rfnpγwqs. Indeed, let n1 ¥ n and let j ¥ i�1. Then there is no identification between an

initial segment of rfn
1
pb
p1q1

i qs and an initial segment of rfnpγwqs not intersecting αpj,n
1q as

otherwise there would exist identifications with rfn
1
pb
p1q1

i qs, contradicting the fact that

b
p1q1

i is complete. Similarly, there is no identification between a terminal segment of

rfn
1
pb
p1q1

i qs and a terminal segment of rfnpγwqs not intersecting αpj,n
1q as otherwise there

would exist identifications with rfn
1
pcqs. The claim follows. Similarly, if there exists

i P t1, . . . , s2u such that b
p2q1

i is a complete factor of rfnpγwqs, then for every j   i, the

path b
p2q1

j is a complete factor of rfnpγwqs. Hence we may assume that for every t P t1, 2u

and every s P t1, . . . , stu, the path b
ptq1
s is incomplete in rfnpγwqs. Therefore, for every

t P t1, 2u, the whole path at is incomplete in rfnpγwqs. Therefore, in order to prove
the claim, it suffices to bound the exponential lengths of a1 and a2. Let t P t1, 2u. By
Lemma 6.3.16, we have

`exppatq ¤
sţ

i�1

`exppb
ptq
i q � `exppb

ptq1

i q.

For every i P t1 . . . , stu, the path b
ptq
i satisfies piq and we already have a bound on the

total exponential length of such paths. Moreover, since the total exponential length of
complete factors of αpj,nq contained in at is at most equal to 2C, we have

sţ

i�1

`exppb
ptq1

i q ¤ 2C.

Thus, the total exponential length of incomplete factors of rfnpγwqs contained in αpj,Mq

is at most equal to

8C`exppα
pjqq �

2̧

t�1

sţ

i�1

`exppb
ptq1

i q ¤ 8C`exppα
pjqq � 4C ¤ 12C`exppα

pjqq,

where the last inequality follows from the fact that every element of Λ
p2q
γw Y Λ

p4q
γw has

positive exponential length.
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By Claim 2 and Lemma 6.5.6, for every n ¥M and every αpjq P Λ
p2q
γw YΛ

p4q
γw , the total

exponential length relative to rfnpγwqs of incomplete factors in the subpath of rfnpγwqs
contained in rfnpαpjqqs is at most equal to 12C`γwexppαpjqq � 2C ¤ 14C`γwexppαpjqq. Hence

by definition, for every n ¥M and every path αpjq P Λ
p2q
γw Y Λ

p4q
γw , we have

`rf
npγwqs

exp pIncprfnpγwqsq X αpj,nqq ¤ 14C`exppα
pjqq.

We claim that, for every n ¥ M , every element in Λrfnpγwqs is contained in an iterate
of an element in Λγw . Indeed, note that, by the choice of M (in the above application
of Lemma 6.5.11), for every element α P Λ1

γw , the exponential length of an incomplete
factor in rfnpαqs is at most equal to 8C. Hence an incomplete factor of rfnpαqs whose
exponential length is at least equal to p3.108qR6C12�1 cannot be contained in an iterate
of an element of Λγw . The claim follows. Therefore, using Equation (6.26) for the third
inequality, the value of `exppΛrfM pγwqsq is at most equal to°

αpjqPΛ
p3q
γw

`exppα
pj,Mqq �

°
αpjqPΛ

p4q
γw

`
rfM pγwqs
exp pIncprfM pγwqsq X αpj,Mqq

�
°

αpjqPΛ
p2q
γw

`
rfM pγwqs
exp pIncprfM pγwqsq X αpj,Mqq

¤ 80C2|Λ
p3q
γw | � 14C

°
βPΛ

p4q
γw

`exppβq � 14C
°

αPΛ
p2q
γw

`exppαq

¤ 80C2|Λ
p3q
γw | � 14Cp2000R3C6q|Λ

p4q
γw | � 14C

°
αPΛ

p2q
γw

`exppαq

¤ 80C2|Λ
p3q
γw | � C|Λ

p3q
γw | � 14C

°
αPΛ

p2q
γw

`exppαq

¤ 81C2|Λ
p3q
γw | � 14C

°
αPΛ

p2q
γw

`exppαq.

Since by Equation (6.24)�
1�

1

30000R3C6



|Λp3q
γw | ¥ |Λp1q

γw | ¥ 120000R3C6|Λp2q
γw |,

we have |Λ
p3q
γw | ¥ 60000R3C6|Λ

p2q
γw |. Hence we have

`
rfM pγwqs
exp pΛrfM pγwqsq ¤ 81C2|Λ

p3q
γw | � 14C

°
αPΛ

p2q
γw
`exppαq

¤ 81C2|Λ
p3q
γw | � p14Cqp2000R3C6q|Λ

p2q
γw |

¤ 81C2|Λ
p3q
γw | � 2C|Λ

p3q
γw | � 83C2|Λ

p3q
γw |.

Let n ¥M . Suppose first that

`
rfnpγwqs
exp pΛrfnpγwqsq

`
rfnpγwqs
exp pIncprfnpγwqsqq

 
1

p24C2Rq2
.
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Then we can apply Case 1 to conclude the proof of Lemma 6.5.21. Otherwise, we have

p24C2Rq2`rf
npγwqs

exp pΛrfnpγwqsq ¥ `rf
npγwqs

exp pIncprfnpγwqsqq.

By Lemma 6.5.12 and Lemma 6.5.6, we have

`
rfnpγwqs
exp pIncprfnpγwqsq ¤ `exppIncprfnpγwqsq ¤ 8C`exppIncprfM pγwqsq

¤ 10C`
rfM pγwqs
exp pIncprfM pγwqsq.

Hence we have

`
rfnpγwqs
exp pIncprfnpγwqsqq

`γwexppIncpγwqq
¤

p24C2Rq2`
rfnpγwqs
exp pIncprfnpγwqsqq

`
rfM pγwqs
exp pIncprfM pγwqsqq

`
rfM pγwqs
exp pIncprfM pγwqsqq

`γwexppIncpγwqq

¤
10Cp24C2Rq2`

rfnpγwqs
exp pΛrfnpγwqsq

`
rfnpγwqs
exp pΛγw q

¤
10Cp24C2Rq2p83C2|Λ

p3q
γw |q

2000R3C6|Λ
p3q
γw |

¤ 10C
R .

This concludes the proof of Lemma 6.5.21.

In the next proposition, we need to work with CT maps that represent both an almost
atoroidal outer automorphism and its inverse. We therefore introduce the following
conventions:

Let f 1 : G1 Ñ G1 be a CT map representing φ�M , which exists by Theorem 6.2.10. We
denote by K 1 the constant similar to the constant K given above Lemma 6.5.6 and by Cf 1

the bounded cancellation constant given by Lemma 6.4.9. We set C 1 � maxtK 1, Cf 1u as
in Equation (6.7). We denote by Gp1 the invariant subgraph of G1 such that FpGp1q � F ,
by `F 1 the corresponding F-length and by `exp1 the corresponding exponential length. Let
g1 be the corresponding goodness function. If w P Fn, we denote by γ1w the corresponding
circuit in G1.

We also need a result which shows that the exponential length is invariant by Fn-
equivariant quasi-isometry. In order to prove this, we need some additional definitions.
Let G be a connected (pointed) graph whose fundamental group is isomorphic to Fn and
let rG be the universal cover of G. Let φ P OutpFnq be an exponentially growing outer
automorphism. Let pG be the graph obtained from rG as follows. We add one vertex vgA
for every left class gA, with g P Fn and A is a subgroup of Fn such that rAs P Apφq
and we add one edge between vgA and a vertex v of rG if and only if the vertex v is

contained in the tree TgAg�1 . The graph pG is known as the electrification of rG (see for

instance [Bow]). For a path γ in G, we denote by rγ a lift of γ in rG. Let pγ be the path
in pG constructed as follows. Let rγ � a1b1 . . . akbk be the decomposition of rγ such that,
for every i P t1, . . . , ku, the path bi is contained in some tree TgiAig�1

i
with gi P Fn, Ai

a subgroup of Fn such that rAis P Apφq and bi is maximal for the property of being
contained in such a tree TgiAig�1

i
. Then pγ is a path pγ � a1c1 . . . akck where, for every

287



i P t1, . . . , ku, the path ci is the two-edge path whose endpoints are the endpoints of bi
and the middle vertex of ci is vgiAi . Note that the path pγ is not uniquely determined.
Indeed, it is possible that there exists i P t1, . . . , ku such that bi is contained in two
distinct trees TA and TB with rAs, rBs P Apφq. However, if pγ and pγ1 are two such paths
associated with rγ, then `ppγq � `ppγ1q.
Proposition 6.5.22. Let n ¥ 3, let φ P OutpFnq and let f : G Ñ G be a CT map repre-
senting a power of φ.
p1q There exists a constant B0 ¥ 1 such that, for every element w P Fn with `exppγwq ¡ 0,
we have:

1

B0
`exppγwq ¤ `pxγwq ¤ B0 `exppγwq.

p2q Let f 1 : G1 Ñ G1 be a CT map representing a power of φ�1. There exists a constant
B ¡ 0 such that, for every element w P Fn, we have:

1

B
`exp1pγ

1
wq ¤ `exppγwq ¤ B`exp1pγ

1
wq.

Proof. p1q Recall the definition of the graph G� from just above Lemma 6.3.11. We can
turn the graph G� into a metric graph by assigning, to every edge e P ~EG�, the length
equal to the length of the path pG�peq in G. Since the graph G� is finite, there exists a
constant B1 such that the diameter of every maximal subtree of G� is at most B1. Let
B0 � 2B1 � 2.

Let w P Fn. Let γw � a1b1 . . . akbk be the decomposition of γw with a1 and bk
possibly empty such that, for every i P t1, . . . , ku, the path bi is a maximal concatenation
of paths in G1

PG and in NPG and, for every i P t1, . . . , ku and every edge e of ai, we have
`γwexppeq � 1. Note that by the definition of the exponential length we have

`exppγwq �
ķ

i�1

`paiq.

Let A be a subgroup of Fn such that rAs P Apφq. Let i P t1, . . . , ku and let α be a
subpath of ai whose lift is contained in TA. By Proposition 6.3.13, the subpath α is
contained in a concatenation of paths in GPG and in NPG. Since ai does not contain
any concatenation of paths in GPG and NPG, the path α is a proper subpath of an EG
INP. By the definition of C (see Equation (6.7)), we see that `pαq ¤ C. Thus, we have:
`paiq ¤ C`ppaiq and

`exppγwq ¤ C
ķ

i�1

`ppaiq.
Claim. Let A be a subgroup of Fn such that rAs P Apφq. Let β be a subpath of γw such
that a lift of β is contained in TA. There does not exist i P t1, . . . , ku such that both
β X bi and β X bi�1 are not reduced to a point.

Proof. Suppose towards a contradiction that such an element i P t1, . . . , ku exists. Then
ai�1 is contained in β. By the above, the path ai�1 is contained in an EG INP σ. Since

288



both bi and bi�1 are concatenations of paths in G1
PG and NPG, the path ai�1 must

contain the initial or the terminal segment of σ. Since β is contained in a concatenation
of paths in GPG and in NPG by Proposition 6.3.13, the EG INP σ must be contained in
β and β X ai�1 � σ. This contradicts the maximality of the paths bi and bi�1.

Hence β is either contained in biai�1 or in ai�1bi�1. Let i P t1, . . . , ku and let β be
a maximal subpath of γw containing edges of ai and such that a lift of β is contained
in some TA with A a subgroup of Fn such that rAs P Apφq. By the claim, the path ai
has a decomposition ai � c�i dic

�
i such that c�i and c�i are possibly trivial, lifts of c�i

and c�i are contained in trees TA� and TA� with A� and A� subgroups of Fn such that
rA�s, rA�s P Apφq and one of the following holds:
paq β � di;
pbq β X ai � β and β X ai P tc

�
i , c

�
i u.

Note that for every i P t1, . . . , ku, we have `ppaiq ¤ `ppdiq � 4. Then

`pxγwq ¥ ķ

i�1

`ppdiq ¥ ķ

i�1

p`ppaiq � 4q �
ķ

i�1

`ppaiq � 4k.

Moreover, if β is a path which satisfies the hypothesis of the claim, then there exists at
most one i P t1, . . . , ku such that βX bi is not reduced to a point. Therefore, we see that
`pxγwq ¥ k. Thus, we have

`exppγwq ¤ C
ķ

i�1

`ppaiq ¤ Cp`ppγwq � 4kq ¤ 5C`ppγwq.
This proves the first inequality of Assertion p1q. We now prove the second inequality.

For every i P t1, . . . , ku, there exists a unique edge path b�i � G� such that p�pb�i q � bi.
Let i P t1, . . . , ku. Since G� is a finite graph, there exist (possibly trivial) reduced paths
β�i , δ

�
i and δ�

1

i such that:
piq the path β�i is a circuit;
piiq the paths δ�i and δ�

1

i are contained in maximal trees of G�;
piiiq we have b�i � δ�i β

�
i δ

�1
i .

By Lemma 6.3.11 p1q, the paths p�pδ�i q, p
�pβ�i q and p�pδ�

1

i q are reduced edge paths
of G. By definition of B1, we have `pδ�i q, `pδ

�1
i q ¤ B1. Since p�pβ�i q is a circuit which

is a concatenation of paths in GPG and in NPG, by Proposition 6.3.13, there exists a
subgroup Hi of Fn such that rHis P Apφq and the conjugacy classes of elements of Fn

represented by p�pβ�i q are contained in rHis. Hence the length of {p�pβ�i q is bounded

by 2. Hence the length of the path pbi is bounded by 2 � 2B1 � B0. Therefore, since
`exppγwq ¡ 0, we have

`ppγwq � ķ

i�1

`paiq � `ppbiq ¤ ķ

i�1

p`paiq �B0q ¤ pB0 � 1q
ķ

i�1

`paiq � pB0 � 1q`exppγwq.

This proves Assertion p1q.
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p2q Let f 1 be as in Assertion p2q and let w P Fn. Suppose first that `exppγwq � 0.
Then γw is a concatenation of paths in G1

PG and in NPG. By Proposition 6.2.5 p4q
and Lemma 6.2.9, there does not exist an edge in a zero stratum which is adjacent to
a concatenation of paths in GPG and in NPG. Since zero strata are contractible by
Proposition 6.2.5 p3q, it follows that γw is a concatenation of paths in GPG and in NPG.
By Proposition 6.3.13, there exists a subgroup A of Fn such that rAs P Apφq and w P A.
Since Apφq � Apφ�1q by Equation (6.1), by Proposition 6.3.13, we have `exp1pγ

1
wq � 0.

So we may suppose that `exppγwq ¡ 0 and that `exp1pγ
1
wq ¡ 0. By Assertion p1q, in

order to prove Assertion p2q, it suffices to prove that pG and pG1 are Fn-equivariantly
quasi-isometric. Since Apφq is a malnormal subgroup system, this follows from [Bow,
Theorem 7.11] and [Hru, proof of Theorem 5.1].

Proposition 6.5.23. Let φ P OutpFn,Fq and let f : G Ñ G be as in Remark 6.5.15. Let
f 1 : G1 Ñ G1 be as in the above convention. Let δ P p0, 1q and let W be a neighborhood of
KPGpφq in PCurrpFn,F ^Apφqq. There exists n0 P N� such that for every n ¥ n0 and
every nonperipheral element w P Fn such that ηrws RW , one of the following holds:

gprfnpγwqsq ¥ δ

or
g1prf 1npγ1wqsq ¥ δ.

Proof. Let w P Fn be a nonperipheral element such that ηrws RW . Let R � 10C
p1�δq2

8C 1B2.

We use the alternative given by Lemma 6.5.21 with the constants δ and R. If the first
alternative of Lemma 6.5.21 occurs, then we are done. Suppose that gprfnpγwqsq   δ.
There exists n0 P N� depending only on f such that for every n ¥ n0, we have

`rf
npγwqs

exp pIncprfnpγwqsqq ¤
10C

R
`γwexppIncpγwqq.

By Lemma 6.5.14, since gprfnpγwqsq   δ, we have gpγwq   δ. Thus, we see that

`γwexppIncpγwqq ¥ p1� δq`exppγwq.

Let γ2 be the reduced circuit in G such that rfn0pγ2qs � γw. Since gpγwq   δ and
rηrwss R KPGpφq, by Lemma 6.5.21, we see that

`γwexppIncpγwqq ¤
10C

R
`γ

2

exppIncpγ2qq.

We have

`exp1prf
1n0pγ1wqsq ¥ 1

B `exppγ
2q ¥ 1

B `
γ2
exppIncpγ2qq

¥ 1
B

R
10C `

γw
exppIncpγwqq ¥

1
B
p1�δqR

10C `exppγwq

¥ 1
B2

p1�δqR
10C `exp1pγ

1
wq � 8C 1 1

1�δ `exp1pγ
1
wq.

But by Lemma 6.5.12, we have:

`
rf 1n0 pγ1wqs
exp1 pIncpf 1n0pγ1wqq ¤ `exp1pIncpf 1n0pγ1wqq ¤ 8C 1`exp1pγ

1
wq.
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Therefore, we see that

g1prf 1n0pγ1wqsq � 1�
`
rf 1n0 pγ1wqs
exp1 pIncprf 1n0pγ1wqsq

`exp1prf 1n0pγ1wqsq
¥ 1� p1� δq � δ ¡ 0.

By Lemma 6.5.16, we see that there exists n1 ¥ n0 depending only on f 1 such that
for every n ¥ n1,

g1prf 1npγ1wqsq ¥ δ.

This concludes the proof.

Proposition 6.5.24. Let φ P OutpFn,Fq and let f : G Ñ G be as in Remark 6.5.15.
Let U� be a neighborhood of ∆�pφq, let U� be a neighborhood of ∆�pφq, let V be a
neighborhood of KPGpφq. There exists N P N� such that for every n ¥ 1 and every
F ^Apφq-nonperipheral w P Fn such that ηrws R V , one of the following holds

φNnpηrwsq P U� or φ�Nnpηrwsq P U�.

Proof. Let δ P p0, 1q and let w P Fn be a nonperipheral element with ηrws R V . By Propo-
sition 6.5.23, there exists n0 P N� such that for every n ¥ n0, we have gprfnpγwqsq ¥ δ
or g1prf 1npγ1wqsq ¥ δ. By Lemma 6.5.20 p1q, there exists n1 ¥ n0 such that for every
n ¥ n1, we have

φNnpηrwsq P U� or φ�Nnpηrwsq P U�.

This concludes the proof.

The above proposition gives a result of North-South dynamics outside of a neighbor-
hood of KPGpφq. As KPGpφq is empty for a relative expanding outer automorphism by
Lemma 6.3.27 p1q, we can now prove Theorem 6.5.1.

Proof of Theorem 6.5.1. Let φ P OutpFn,Fq be an expanding outer automorphism
relative to F . By Lemma 6.3.27, we have KPGpφq � ∅. Let U� be a neighborhood
of ∆�pφq and let U� be a neighborhood of ∆�pφq. By Proposition 6.5.24, there exists
N P N� such that for every n ¥ 1 and every nonperipheral element w P Fn, we have

φNnpηrwsq P U� or φ�Nnpηrwsq P U�.

Recall that, by Proposition 6.2.15, the rational currents are dense in PCurrpFn,F^Apφqq.
Hence we can apply [LU2, Proposition 3.3] to see that φ2N has generalized North-South
dynamics. Then, using [LU2, Proposition 3.4], we conclude that φ has generalized North-
South dynamics.
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6.6 North-South dynamics for almost atoroidal relative outer au-
tomorphism

Let n ¥ 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq be an almost
atoroidal outer automorphism which satisfies Definition 6.4.3 p2q. Let F ¤ F1 ¤ F2 �
trFnsu be a sequence of free factor system given in this definition. We use the convention
of Remark 6.5.19. We will show a result of North-South type dynamics for φ (see Theo-
rem 7.2.7). Note that, if Apφq � trFnsu the simplices ∆�pφq are still defined. Note that,
by Lemma 6.3.27 p3q and Lemma 6.5.18 p4q, for every current µ P CurrpFn,F ^Apφqq,
we have ‖µ‖F1 ¡ 0. Let KPGpφq be the set of polynomially growing currents of φ. Note
that, combining Lemma 6.4.8 and Lemma 6.5.18 p5q, we have KPGpφq X ∆�pφq � ∅.
Let

p∆�pφq � trtµ� p1� tqνs | t P r0, 1s, rµs P ∆�pφq, rνs P KPGpφq, ‖µ‖F1 � ‖ν‖F1 � 1u

be the convexes of attraction and repulsion of φ.
In order to promote a global North-South type dynamics, we need to construct

contracting neighborhoods of p∆�pφq. To this end, following [CU2], we introduce a
notion of goodness for currents of PCurrpFn,F ^Apφqq.

Let f : GÑ G be as in Remark 6.5.15. By Lemma 6.3.21, let N P N� be such that,
for every edge e of G�G1

PG, we have `expprf
N peqsq ¥ 4C � 1. Let CN � CfN be a

constant associated with fN given by Lemma 6.4.9. Let L ¡ 0 be such that for every
path γ of G of length at least L, we have `prfN pγqsq ¥ CN � 1. The constant L exists
since fN lifts to a quasi-isometry on the universal cover of G. Let Pcs be the finite set of
paths of the form γ � γ1eγ2, where, for every i P t1, 2u, the path γi has length equal to
L, the path e is an edge in G�G1

PG and γ1eγ2 is a splitting of γ. In Lemma 6.6.1 p2q,
we prove in particular that Pcs is not empty. We will denote by pγ the edge e.

Let rµs P PCurrpFn,F ^ Apφqq. Recall the definition of Ψ0 just above Defini-
tion 6.3.25. By Lemma 6.3.27 p1q, p2q, we have φpKPGpφqq � KPGpφq. Hence, for
every current rµs R KPGpφq, we have Ψ0pφpµqq ¡ 0. Thus, for every current rµs P
PCurrpFn,F ^Apφqq�KPGpφq, we can define the completely split goodness gpµq of µ by

gpµq �
1

Ψ0pφN pµqq

¸
γPPcs

xγ, µy .

Observe that the function g is continuous and that it defines a well-defined continuous
function PCurrpFn,F ^Apφqq �KPGpφq Ñ R.

Lemma 6.6.1. Let f : GÑ G be as in Remark 6.5.15.
p1q Let w P Fn be such that `exppγwq ¡ 0. We have gprfN pγwqsq ¥ gpηrwsq.

p2q For every rµs P ∆�pφq, we have gprµsq ¡ 0

Proof. p1q The proof of this assertion is similar to the one of [CU2, Lemma 4.9 (2)]. Let
γ P Pcs be such that

@
γ, ηrws

D
¡ 0. Then γ � γw. For every occurrence of γ in γw, by
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the choice of L, CN and by Lemma 6.4.9, the path rfN pγwqs contains rfN ppγqs, which
has exponential length at least equal to 4CN � 1. Therefore, Lemma 6.5.8 implies that
the path rfN pγwqs contains a subpath of rfN ppγqs of exponential length at least 1 which
is a complete factor of rfN pγwqs relative to GPG. Hence we have:

`expprf
N pγwqsqgprf

N pγwqsq ¥
¸
γPPcs

@
γ, ηrws

D
.

By Lemma 6.3.26, we have

Ψ0pφ
N pηrwsqq � `expprf

N pγwqsq � Ψ0pηrφN pwqsq � `exppγφN prwsqq.

Therefore, we have
gprfN pγwqsq ¥ gpηrwsq.

p2q Let rµs P ∆�pφq. Since rµs is a convex combination of extremal points of ∆�pφq
and since for every element γ P Pcs, the application xγ, .y is linear, it suffices to prove
the result for every extremal point of ∆�pφq. So we may suppose that rµs is an extremal
point of ∆�pφq. Let Gi be the minimal subgraph of G such that FpGiq � F1. Since rµs
is extremal and since φ|F1 is expanding relative to F , by Proposition 6.4.4, there exists
an expanding splitting unit σ in Gi whose initial direction is fixed by f and such that,
for every path γ P PpF1 ^Apφqq, we have

xγ, µy � µpCpγqq � lim
nÑ8

xγ, rfnpσqsy

`F1prf
npσqsq

.

By Lemma 6.5.18 p5q, since the path rfnpσqs is contained in Gi and, for every path
γ P PpF ^Apφqq, the above limit is finite, we have

lim
nÑ8

xγ, rfnpσqsy

`F1prf
npσqsq

� lim
nÑ8

xγ, rfnpσqsy

`expprfnpσqsq
.

Hence it suffices to prove that there exists γ P Pcs such that

lim
nÑ8

xγ, rfnpσqsy

`expprfnpσqsq
¡ 0.

Let e be an edge of G�G1
PG. Note that, since σ is a splitting unit, for every m P N�,

the path rfmpσqs is completely split. Hence an occurrence of e in limmÑ8rf
mpσqs is

contained in a splitting unit of limmÑ8rf
mpσqs which is either an INP or is equal to e.

By Lemma 6.3.7 if an INP γ1 contains e, there exists γ10 P NPG such that e � γ10 � γ1.
For every m P N�, we denote by Npm, eq the number of occurrences of e or e�1 in
rfmpσqs which are splitting units of rfmpσqs and by EGINP peq the set of all EG INPs
containing e. Note that, since the set NPG is finite by Lemma 6.3.4, so is the limit

lim
nÑ8

¸
γPEGINP peq

xγ, rfnpσqsy

`expprfnpσqsq
.
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Since for every m P N�, we have

xe, rfmpσqsy � Npm, eq �
¸

γPEGINP peq

xγ, rfnpσqsy ,

we see that the limit

lim
mÑ8

Npm, eq

`expprfmpσqsq

exists. We claim that there exists an edge e of G�G1
PG such that

lim
mÑ8

Npm, eq

`expprfmpσqsq
¡ 0.

Indeed, note that, by Lemma 6.3.23 since rfmpσqs is PG-relative completely split, we
have

`expprf
mpσqsq �

¸
eP ~EpG�G1PGq

Npm, eq.

Hence ¸
eP ~EpG�G1PGq

lim
mÑ8

Npm, eq

`expprfmpσqsq
� 1,

which implies the claim. Let e0 be an edge of G�G1
PG which satisfies the claim. Since,

for every m P N�, the path rfmpσqs is completely split, if an occurrence of e0 or e�1
0 in

rfmpσqs is a splitting unit and if γ is a path in rfmpσqs of the form γ � γ1e0γ2 or γ �
γ1e

�1
0 γ2, then such a decomposition of γ is a splitting of γ. Thus, if `pγ1q � `pγ2q � L,

then the path γ is in Pcs and it contains the occurrence of e0. Hence since µ � µpσq, we
have

lim
mÑ8

Npm, eq

`expprfmpσqsq
�

¸
γPPcs,e0�γ

xγ, µy ¡ 0.

Therefore, there exists γ P Pcs such that xγ, µy ¡ 0 and gprµsq ¡ 0.

Lemma 6.6.2. Let f : G Ñ G be as in Remark 6.5.15. Let U� be open neighborhoods of
∆�pφq. There exist open neighborhoods U 1

� � U� of ∆�pφq such that φ�1pU 1
�q � U 1

�.

Proof. The proof is similar to the one of [CU2, Lemma 4.13]. We prove the result for
∆�pφq, the proof for ∆�pφq being symmetric. By Lemma 6.6.1 p2q, for every rµs P
∆�pφq, we have gprµsq ¡ 0. By compactness of ∆�pφq and continuity of g, there exists
δ0 ¡ 0 such that, for every µ P ∆�pφq, we have gpµq ¥ δ0. Let δ P p0, δ0q. Let U�
be a neighborhood of ∆�pφq. Since the function g is continuous, there exists an open
neighborhood U0

� � U� of ∆�pφq such that, for every rµs P U0
�, we have gprµsq ¡ δ. Up

to taking a smaller U0
�, we may suppose that KPGpφq X U0

� � ∅ (this is possible since
KPGpφq is compact and ∆�pφq X KPGpφq � ∅). In particular, by Lemma 6.3.26, for
every nonperipheral element w P Fn such that ηrws P U

�
0 , we have `exppγwq ¡ 0.
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Let w P Fn be a nonperipheral element such that ηrws P U
�
0 . By Lemma 6.6.1 p1q,

we have
gprfN pγwqsq ¥ gpηrwsq ¡ δ.

By Lemma 6.5.20 p1q, there exists M ¥ N such that, for every w P Fn such that
ηrws P U

0
�, we have φM prηrwssq P U

0
�. Let

U 1
� �

M�1£
i�0

φipU0
�q.

Since φp∆�pφqq � ∆�pφq by Proposition 6.4.12, the set U 1
� is an open neighborhood of

∆�pφq which is stable by φ by density of rational currents (see Proposition 6.2.15) and
continuity of φ. This concludes the proof.

Lemma 6.6.3. Let f : G Ñ G be as in Remark 6.5.15. Suppose that the outer auto-
morphism φ is of type p2q in Definition 6.4.3. Let F ¤ F1 ¤ F2 � tFnu be as in the
beginning of Section 6.6. Let i P t1, . . . , k� 1u be such that FpGiq � F1. Let pV� be open
neighborhoods of p∆�pφq. There exist open neighborhoods pV 1

� of p∆�pφq contained in pV�
such that φ�ppV 1

�q � pV 1
�.

Proof. The proof follows [CU2, Lemma 4.14]. We prove the result for p∆�pφq, the proof
for p∆�pφq being symmetric. Given rµs P PCurrpFn,F ^Apφqq �KPGpφq, a finite set of
reduced edge paths P in G and some ε ¡ 0 determine an open neighborhood Nprµs,P, εq
of rµs in PCurrpFn,F ^Apφqq �KPGpφq as follows:

Nprµs,P, εq �
"
rνs P PCurrpFn,F ^Apφqq �KPGpφq

���� @γ P P,
���� xγ, νyΨ0pνq

�
xγ, µy

Ψ0pµq

����   ε

*
.

Since KPGpφq is compact, if ε is small enough, this defines an open neighborhood of
rµs in PCurrpFn,F ^Apφqq. For a subset X � PCurrpFn,F ^Apφqq �KPGpφq, let

NpX,P, εq �
¤

rµsPX

Nprµs,P, εq.

For L ¡ 0, let P�pLq be the set of reduced edge paths in Gi of length at most equal
to L which are not contained in any concatenation of paths in GPG,F1 and NPG,F1 . By
Lemma 6.5.18 p3q, the set P�pLq is also the set of reduced edge paths in Gi of length
at most equal to L which are not contained in any concatenation of paths in GPG and
NPG. Let rµs P ∆�pφq and let t P r0, 1s. Let

KPGprµs, tq � trp1� tqν � tµs | rνs P KPGpφq, ‖ν‖F1 � ‖µ‖F1 � 1u.

Remark that p∆�pφq �
¤

rµsP∆�pφq, tPr0,1s

KPGprµs, tq.
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Let ε ¡ 0. Let Vpolypεq � rΨ�1
0 pp�ε, εqqs. It is clear, by the continuity of Ψ0 and the

definition 6.3.25 of KPGpφq, that
�
ε¡0 Vpolypεq � KPGpφq. Let t P p0, 1s and rµs P ∆�pφq

and let µ be such that ‖µ‖F1 � 1. By Lemma 6.5.18 p5q, we have Ψ0pµq � 1. Let

Vpolyprµs, t, εq �

"
rνs P PCurrpFn,F ^Apφqq

���� ‖ν‖F1 � ‖µ‖F1 � 1,
tp1� εq ¡ Ψ0pνq ¡ tp1� εq

*
.

Note that, since Ψ0pµq � 1, we have rνs P Vpolyprµs, t, εq if for rνs such that ‖ν‖F1 � 1,
we have

tΨ0pµqp1� εq ¡ Ψ0pνq ¡ tΨ0pµqp1� εq.

Let
V8prµs, tq �

£
LÑ8,εÑ0

NpKPGprµs, tq,P�pLq, εq X Vpolyprµs, t, εq.

Claim 1. For every rµs P ∆�pφq and every t P p0, 1s, we have V8prµs, tq � KPGprµs, tq.

Proof. The inclusion KPGprµs, tq � V8prµs, tsq being immediate since Ψ0 is linear and
vanishes on KPGpφq, we prove the converse inclusion. Let ν P V8prµs, tq. By defini-
tion 6.4.5 of ∆�pφq, for every rµ1s P ∆�pφq and for every reduced edge path γ not
contained in Gi, we have xγ, µ1y � 0. Hence, by Lemma 6.5.18 p4q, the current rµs is
entirely determined by the cylinder sets determined by reduced edge paths contained
in Gi which are not contained in concatenation of paths in GPG,F1 and NPG,F1 . By
Lemma 6.5.18 p3q, the current rµs is entirely determined by the cylinder sets determined
by reduced edge paths contained in Gi which are not contained in concatenation of paths
in GPG and NPG. Let γ be a reduced edge path which is contained in Gi and which is
not contained in a concatenation of paths in GPG and NPG. By Lemma 6.3.27, for every
projective current rν 1s P KPGpφq, the support of ν 1 is contained in B2Apφq. By Proposi-
tion 6.3.13, if g P Fn is such that there exists a subgroup A of Fn such that rAs P Apφq
and g P A, then γg is a concatenation of paths in GPG and NPG. In particular, if γ1 is a
path of G such that tg�8, g�8u P Cpγ1q, then γ1 is contained in a concatenation of paths
in GPG and in NPG. In particular, since γ is not contained in a concatenation of paths
in GPG and in NPG, for every projective current rν 1s P KPGpφq, we have xγ, ν 1y � 0.

Suppose that ‖ν‖F1 � ‖µ‖F1 � 1. By Lemma 6.5.18 p5q, we also have Ψ0pµq � 1.
There exists λ ¡ 0 such that for every path γ which is contained in Gi and which is
not contained in a concatenation of paths in GPG and NPG, we have xγ, νy � xγ, λtµy.
We claim that ν � λtµ P CurrpFn,F ^ Apφqq and that rν � λtµs P KPGpφq. Indeed,
for the first part, it suffices to show that for every path γ P PpF1 ^ Apφqq, we have
pν � λtµqpCpγqq ¥ 0. This follows from the fact that, for every path γ P PpF1 ^Apφqq
such that γ � Gi, the path γ is not contained in a concatenation of paths in GPG and
in NPG. Hence we have xγ, νy � xγ, λtµy. Moreover, if γ P PpF1 ^Apφqq, then we have
µpCpγqq � 0. This shows that ν � λtµ P CurrpFn,F ^Apφqq.

We now prove that rν�λtµs P KPGpφq. Otherwise, by Lemma 6.3.27, the support of
ν � λtµ is not contained in B2Apφq. By Proposition 6.3.13, there exists a path γ which
is not contained in a concatenation of paths in GPG and in NPG such that

xγ, ν � λtµy ¡ 0.
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Consider a decomposition of γ � a1b1 . . . akbk where, for every j P t1, . . . , ku, the path
aj is contained in G�Gi and, for every j P t1, . . . , ku, the path bj is contained in Gi
with a1 and bk possibly empty. By Lemma 6.5.18 p1q, p2q and Remark 6.5.19, up to
taking a larger path γ, we may suppose that b1 is nontrivial. By Lemma 6.5.18 p2q and
Remark 6.5.19, for every j P t1, . . . , ku, the path aj is contained in GPG. Since γ is
not contained in a concatenation of paths in GPG and NPG, there exists j P t1, . . . , ku
such that bj is not contained in a concatenation of paths in GPG and NPG. But then
xbj , νy � xbj , λtµy, that is xbj , ν � λtµy � 0. By additivity of ν � λtµ, we have

xγ, ν � λtµy ¤ xbj , ν � λtµy � 0.

This contradicts the choice of γ. Hence rν � λtµs P KPGpφq. Therefore, we have
Ψ0pν � λtµq � 0. Since rνs P V8prµs, tq and since ‖ν‖F1 � ‖µ‖F1 � 1, we see that

Ψ0pνq � tΨ0pµq.

By linearity of Ψ0 and the fact that Ψ0pµq � 1, we have

t � tΨ0pµq � Ψ0pνq � λtΨ0pµq � λt.

Since t ¡ 0 and Ψ0pµq � 1, we have λ � 1. Suppose first that t � 1. Let ν 1 � 1
1�tpν�tµq,

so that rν 1s P KPGpφq and ‖ν 1‖F � 1. Then rνs � rp1 � tqν 1 � tµs P KPGprµs, tq. Thus,
we have V8prµs, tq � KPGprµs, tq.

Suppose now that t � 1. Then Ψ0pνq � 1 � ‖ν‖F . We claim that if γ P PpF1^Apφqq
is such that νpCpγqq ¡ 0, then γ � Gi. Indeed, otherwise there would exist an edge
e contained in G�Gi such that νpCpeqq ¡ 0. By the description of G�Gi given in
Lemma 6.5.18 p1q, p2q and additivity of the current ν, we can choose the edge e P G�Gi
in such a way that e P GPG. This would imply that ‖ν‖F1 ¡ Ψ0pνq, a contradiction.
The claim follows. But, since for every path γ P PpF1 ^ Apφqq such that γ � Gi, we
have νpCpγqq � µpCpγqq, we see that ν � µ and that ν P KPGprµs, 1q. This concludes
the proof of the claim.

Since p∆�pφq is compact, there exist L ¡ 0 and ε ¡ 0 such that, for every rµs P ∆�pφq
and every t P p0, 1s, we have

V prµs, t, L, εq � NpKPGprµs, tq,P�pLq, εq X Vpolypt, εq � pV�.
When t � 0, there exists ε ¡ 0 such that Vpolypεq � pV�. Let s P p0, 1q, and let V be an
open neighborhood of KPGpφq such that, for every rνs P V with ‖ν‖F1 � 1, we have:

Ψ0pνq   s. (6.27)

For every rµs P
�
Npp∆�pφq, pP�pLq, εq � V

	
X p∆�pφq, there exist rµpolys P KPGpφq,

rµexps P ∆�pφq and t P p0, 1s such that

rµs � rtµexp � p1� tqµpolys.
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By Lemma 6.6.1 p2q, for every rµs P ∆�pφq, we have gprµsq ¡ 0. By compactness
of ∆�pφq and continuity of g, there exists δ1 ¡ 0 such that, for every µ P ∆�pφq,

we have gpµq ¥ δ1. Since Npp∆�pφq, pP�pLq, εq � V X p∆�pφq is compact, and since the
function g is continuous, there exists δ10 ¡ 0 such that the set U � g�1ppδ10,�8qq is

an open neighborhood of pNpp∆�pφq, pP�pLq, εq � V q X p∆�pφq intersecting V . Note that
U XKPGpφq � ∅. We set

pV 1
� �

�� ¤
rµsP∆�pφq, tPp0,1s

V prµs, t, L, εq Y Vpolypεq

�X pU Y V q .

Let δ0 and M0 be the constants given by Lemma 6.5.20 p2q for the above choice of ε ¡ 0
and L ¡ 0. By replacing δ0 with a smaller constant and M0 with a larger one, we may
suppose that δ0 and M0 also satisfy the conclusion of Lemma 6.5.20 p1q for U as well
(where the open neighborhood W of KPGpφq needed in Lemma 6.5.20 p1q is such that
W � V � U).

Claim 2 There exists N P N� such that φN ppV 1
�q � pV 1

�.

Proof. Let w P Fn be a nonperipheral element such that ηrws P pV 1
�. Suppose first that

ηrws P U X pV 1
�. Since ηrws R KPGpφq, by Lemma 6.3.26, we have `exppγwq ¡ 0. By

Lemma 6.6.1 p1q, we have:

gprfN pγwqsq ¥ gpηrwsq ¡ δ10.

By Lemma 6.5.20 p1q, there exists M ¥ M0 � N such that, for every w P Fn such
that ηrws P U X pV 1

� and every n ¥ 1, we have φMnprηrwssq P U X pV 1
� � pV 1

�.

Suppose now that ηrws P V X pV 1
�. By Lemma 6.3.27 p3q and Lemma 6.5.18 p4q for

every projective current rµs P PCurrpFn,F^Apφqq, we have ‖µ‖F1 ¡ 0. For a projective
current rµs P PCurrpFn,F ^Apφqq, let

ΨF1prµsq �
Ψ0pµq

‖µ‖F1

.

Then, by definition of V and by Lemma 6.3.26, we have

ΨF1prηrwssq �
`exppγwq

`F1pγwq
  s.

If rηrwss P KPGpφq, then since φpKPGpφqq � KPGpφq, we are done. Therefore, we
may suppose that rηrwss R KPGpφq and, by Lemma 6.3.26, for every n P N�, we have

`expprf
npγwqsq ¥ 1. Let R ¡ 1 be such that 1

1�
Rp1�δ0q

10C
p1�sq

¤ ε. By Lemma 6.5.21, one

of the following assertion holds:

p1q gprfM pγwqsq ¡ δ0,

p2q `expprf
M pγwqsq  

10C
p1�δ0qR

`exppγwq.
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First assume that Assertion p1q holds. Let rµrφM prwsqss P ∆�pφq be the projective

current associated with rφM prwsqs given by Lemma 6.5.20 p2q. Let

t � ΨF1prηrφM prwsqssq.

We claim that rηrφM prwsqss P V prµrφM prwsqss, t, L, εq. Indeed, we clearly have

rηφM prwsqs P VpolyprµrφM prwsqss, t, εq.

By Lemma 6.5.20 p2q, for every reduced edge path γ P P�pLq, we have������
A
γ, ηrφM prwsqs

E
Ψ0pηrφM prwsqsq

�

A
γ, µrφM prwsqs

E
Ψ0pµrφM prwsqsq

������   ε.

Therefore we have rηrφM prwsqss P NpKPGprµrφM prwsqss, tq,P�pLq, εq. The claim follows by

Equation (6.27). By definition of pV 1
�, we see that φM prηrwssq � rηrφM prwsqss P pV 1

�.
Suppose now that Assertion p2q holds. We claim that rηrφM prwsqss P Vpolypεq. By

Lemma 6.5.18 p1q,p2q and Remark 6.5.19, the graph G�Gi consists in edges in GPG.
By Lemma 6.5.18 p6q, we have

`F1prf
M pγwqsq � `expprf

M pγwqsq � `F1pγwq � `exppγwq.

Hence we have

ΨF1prηrφM pγwqssq �
`expprfM pγwqsq
`F1

prfM pγwqsq
�

`expprfM pγwqsq
`expprfM pγwqsq�`F1

prfM pγwqsq�`expprfM pγwqsq

�
`expprfM pγwqsq

`expprfM pγwqsq�`F1
pγwq�`exppγwq

� 1

1�
`F1

pγwq�`exppγwq

`expprfM pγwqsq

¤ 1

1�
Rp1�δ0q

10C

`F1
pγwq�`exppγwq

`exppγwq

¤ 1

1�
Rp1�δ0q

10C

`F1
pγwq�`exppγwq

`F1
pγwq

¤ 1

1�
Rp1�δ0q

10C
p1�sq

¤ ε.

Note that ψ�1
F1
pp0, εqq � Vpolypεq. Thus, we have ΦM prηrwssq � rηrφM prwsqss P Vpolypεq �pV 1

�. Therefore, by density of the rational currents (see Proposition 6.2.15) and continuity

of φ, we have φM ppV 1
�q � pV 1

�. This proves Claim 2.

Let pV 2
� �

M�1£
i�0

φippV 1
�q.

Since φpp∆�pφqq � p∆�pφq, the set pV 2
� is an open neighborhood of p∆�pφq which is stable

by φ by construction. This concludes the proof.
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Theorem 6.6.4. Let n ¥ 3 and let F be a free factor system of Fn. Let F ¤ F1 ¤
F2 be a sequence of free factor systems such that the extension F1 ¤ F2 is sporadic.
Let φ P OutpFn,Fq be such that φ preserves F ¤ F1 ¤ F2 and φ|F1 is an expanding
automorphism relative to F . Let p∆�pφq be the convexes of attraction and repulsion
of φ and ∆�pφq be the simplices of attraction and repulsion of φ. Let U� be open
neighborhoods of ∆�pφq in PCurrpFn,F^Apφqq and pV� be open neighborhoods of p∆�pφq
in PCurrpFn,F ^Apφqq. There exists M P N� such that for every n ¥M , we have

φ�npPCurrpFn,F ^Apφqq � pV	q � U�.

Proof. The proof is similar to [CU2, Theorem 4.15]. We replace φ by a power so that φ
satisfies Remark 6.5.15. By Lemmas 6.6.2 and 6.6.3, we may suppose that φpU�q � U�
and that φppV�q � pV�. Let M be the exponent given by Proposition 6.5.24 by using U� �
U� and U� � V � pV�. For every current rµs P PCurrpFn,F ^Apφqq�φM ppV	q, we have
φM prµsq P U� since φ�M prµsq R pV�. Therefore, for every rµs P PCurrpFn,F^Apφqq� pV�,
we have φ2M prµsq P U� and for every n ¥M , we have φ2nprµsq P U� since φpU�q � U�.
Therefore for every n ¥M , we see that

φ2npPCurrpFn,F ^Apφqq � pV�q � U�.

A symmetric argument for φ�1 shows that φ2 acts with generalized North-South dy-
namics. By [LU2, Proposition 3.4], we see that φ acts with generalized North-South
dynamics. This concludes the proof.

Corollary 6.6.5. For every open neighborhood pV� � PCurrpFn,F ^ Apφqq of p∆�, there
exist M P N� and a constant L0 such that, for every current rµs P PCurrpFn,F^Apφqq�pV�, and every m ¥M , we have

‖φmpµq‖F ¥ 3m�ML0‖µ‖F .

Proof. Let f : G Ñ G be as in Remark 6.5.15. By Lemma 6.6.1 p2q, there exist a
constant δ ¡ 0 and an open neighborhood U of ∆�pφq such that, for every projec-
tive current rµs P U , we have gprµsq ¥ δ. We first prove Corollary 6.6.5 for currents
rµs P U . By Proposition 6.2.15, it suffices to prove the result for rational currents. By
Lemma 6.6.1 p1q, since U XKPGpφq � ∅, for every element w P Fn such that rηrwss P U ,

we have gprfN pγwqsq ¥ δ. By Lemma 6.5.16 p1q and Lemma 6.5.3, there exists a constant
K1 ¡ 0 depending on δ such that for every m ¥ N and for every element w P Fn such that
rηws P U , we have `expprf

mpγwqsq ¥ TELpm �N, rfN pγwqsq ¥ 3m�NK1`expprf
N pγwqsq.

Since PCurrpFn,F ^Apφqq � pV� is compact and since KPGpφq � pV�, by Lemma 6.3.26
and Lemma 6.3.27 p3q, there exists a constant K2 ¡ 0 such that such that for every

m ¥ N and for every element w P Fn such that rηrwss P U , we have
`expprfN pγwqsq
`F prfN pγwqsq

¥ K2.

Thus, we have

`F prf
mpγwqsq ¥ `expprf

mpγwqsq ¥ 3m�NK1`expprf
N pγwqsq ¥ 3n�MK1K2`F prf

N pγwqsq.
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We set K3 � K1K2. By compactness of PCurrpFn,F ^ Apφqq and Lemma 6.3.27 p3q,
there exists L ¡ 0 such that for every current rµs P PCurrpFn,F ^ Apφqq, we have
‖φN pµq‖F

‖µ‖F ¥ L. Hence for every m ¥ N and for every element w P Fn such that rηrwss P U ,
we have

`F prf
mpγwqsq ¥ 3m�NK3L`F pγwq.

Hence the proof follows when rµs P U .
By Theorem 6.6.4, there exists M1 P N� such that, for every m ¥ M1 and every

rµs P PCurrpFn,F ^Apφqq� pV�, we have φmprµsq P U . Let M �M1�N . By the above,
Lemma 6.3.26, the density of rational currents (see Proposition 6.2.15) and continuity
of φ, for every current rµs R pV�, for every n ¥M , we have

‖φnpµq‖F ¥ 3n�MK3L‖φM1pµq‖F .

By compactness of PCurrpFn,F ^Apφqq and Lemma 6.3.27 p3q, there exists L1 ¡ 0 such

that for every current rµs P PCurrpFn,F ^ Apφqq, we have ‖φM1 pµq‖F
‖µ‖F ¥ L1. Hence for

every n ¥M , we have
‖φnpµq‖F ¥ 3n�MK3LL

1‖µ‖F .

This concludes the proof.
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Chapitre 7

Polynomial growth and subgroups of
OutpFnq

7.1 Introduction

Let n ¥ 3. This paper, which is the last of a series of three papers, studies the exponential
growth of elements in OutpFnq. An outer automorphism φ P OutpFnq is exponentially
growing if there exist g P Fn, a representative Φ of φ, a free basis B of Fn and a constant
K ¡ 0 such that, for every m P N�, we have

`BpΦ
mpgqq ¥ eKm, (7.1)

where `BpΦ
mpgqq denotes the length of Φmpgq in the basis B. If g P Fn satisfies Equa-

tion (7.1) for every representative Φ of φ, then g is said to be exponentially growing under
iteration of φ. Otherwise, one can show, using for instance the technology of relative
train tracks introduced by Bestvina and Handel [BH], that g has polynomial growth un-
der iteration of φ, replacing ¥ eKm by ¤ pm� 1qK in Equation (7.1) (see also [Lev2] for
a complete description of all growth types that can occur under iteration of an outer au-
tomorphism φ). We denote by Polypφq the set of elements of Fn which have polynomial
growth under iteration of φ. If H is a subgroup of Fn, we set PolypHq �

�
φPH Polypφq.

In this article, we prove the following theorem.

Theorem 7.1.1. Let n ¥ 3 and let H be a subgroup of OutpFnq. There exists φ P H such
that Polypφq � PolypHq.

In other words, there exists an element of H which encaptures all the exponential
growth of H: there exists φ P H such that if g P Fn has exponential growth for some
element of H, then g has exponential growth for φ. Theorem 6.1.2 has analogues in
other contexts. For instance, one has a similar result in the context of the mapping class
group of a closed, connected, orientable surface S equipped with a hyperbolic structure.
Indeed, a consequence of the Nielsen-Thurston classification (see for instance [FarM,
Theorem 13.2]) and the work of Thurston [FLP, Proposition 9.21] is that the growth



of the length of the geodesic representative of a homotopy class of an essential closed
curve under iteration of an element of ModpSq is either exponential or linear. Moreover,
linear growth comes from twists about essential curves while exponential growth comes
from pseudo-Anosov homeomorphisms of subsurfaces of S. In [Iva1] (see also the work
of McCarthy [McC]), Ivanov proved that, for every subgroup H of ModpSq, up to taking
a finite index subgroup of H, there exists finitely many homotopy classes of pairwise
disjoint essential closed curves C1, . . . , Ck elementwise fixed by H and such that, for
every connected component S1 of S�

�k
i�1Ci, the restrictionH|S1 � ModpS1q is either the

trivial group or contains a pseudo-Anosov element. One can then construct an element
f P H such that, for every connected component S �

�k
i�1Ci such that the restriction

H|S1 � ModpS1q contains a pseudo-Anosov element, the element f |S1 P ModpS1q is a
pseudo-Anosov.

In the context of OutpFnq, Clay and Uyanik [CU2] proved Theorem 6.1.2 when H is
a subgroup of OutpFnq such that PolypHq � t1u. Indeed, by a result of Levitt [Lev2,
Proposition 1.4, Lemma 1.5], if φ P OutpFnq and if Polypφq � t1u, then there exists a
nontrivial element g P Fn and k P N� such that φkprgsq � rgs. In this context, Clay and
Uyanik proved that, if H does not virtually preserve the conjugacy class of a nontrivial
element of Fn, there exists an element φ P H which is atoroidal : no power of φ fixes
the conjugacy class of a nontrivial element of Fn. From Clay and Uyanik’s theorem,
one can then ask the following question. If H is a subgroup of OutpFnq such that H
virtually fixes the conjugacy class of a nontrivial subgroup A of Fn, is it true that either
H virtually fixes the conjugacy class of a nontrivial element g P Fn such that g is not
contained in a conjugate of A, or there exists φ P H such that the only conjugacy classes
of elements of Fn virtually fixed by φ are contained in a conjugate of A?

Unfortunately, such a result is not true. Indeed, let F3 � xa, b, cy be a nonabelian
free group of rank 3. Let φa (resp. φb) be the automorphism of F3 which fixes a and b
and which sends c to ca (resp. c to cb), and let H � xrφas, rφbsy � OutpF3q. Then every
element φ P H has a representative which fixes xa, by and sends c to cgφ with gφ P xa, by.
Thus, φ fixes the conjugacy class of gφcgφc

�1. However, there always exist φ1 P H,
such that φ1 does not preserve the conjugacy class of gφcgφc

�1. This example illustrates
the main difficulty which appears when generalizing Clay and Uyanik’s theorem: the
fact that PolypHq � t1u implies that every element of H has periodic conjugacy classes
which might not be fixed by the whole group. However, for the above example, we have
PolypHq � F3 and every element of H satisfies Theorem 6.1.2. Therefore, Theorem 6.1.2
is, from this viewpoint, the right generalization of Clay and Uyanik’s theorem.

We now sketch the proof of Theorem 6.1.2. It is inspired by the proof of [CU2,
Theorem A]. However, technical difficulties emerge due to the presence of elements of
Fn with polynomial growth under iteration of elements of the considered subgroup of
OutpFnq. The main difficulties are dealt with in the second article of the series [Gue5].
Let H be a subgroup of OutpFnq. We first consider H-invariant free factor systems F
of Fn, that is, F � trA1s, . . . , rAksu, where, for every i P t1 . . . , ku, rAis is the conjugacy
class of a subgroup Ai of Fn and there exists a subgroup B of Fn such that Fn �
A1 � . . . � Ak � B. There exists a partial order on the set of free factor systems of Fn,
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where F1 ¤ F2 if for every subgroup A1 of Fn such that rA1s P F1, there exists a
subgroup A2 of Fn such that rA2s P F2 and A1 is a subgroup of A2. Hence we may
consider a maximal H-invariant sequence of free factor systems

∅ � F0 ¤ F1 ¤ . . . ¤ Fk � trFnsu.

The proof is now by induction on i P t1, . . . , ku: for every i P t0 . . . , ku, we construct an
element φi P H such that Polypφi|Fiq � PolypH|Fiq (we define the sense of the restric-
tions in Section 7.2.3). Let i P t1, . . . , ku and suppose that we have constructed φi�1.
There are two cases to consider. If the extension Fi�1 ¤ Fi is nonsporadic (see the def-
inition in Section 7.2.1) then the construction of φi from φi�1 follows from the works of
Handel-Mosher [HaM4], Guirardel-Horbez [GuH2] and Clay-Uyanik [CU1]. If the exten-
sion Fi�1 ¤ Fi is sporadic, the construction of φi relies on the action ofH on some natural
(compact, metrizable) space that we introduced in [Gue4]. This space is called the space
of currents relative to PolypH|Fi�1q, denoted by PCurrpFn,PolypH|Fi�1qq. It is defined as
a subspace of the space of Radon measures on a natural space B2pFn,PolypH|Fi�1qq, the
double boundary of Fn relative to PolypH|Fi�1q (see Section 7.2.2 for precise definitions).
In [Gue5], we proved that the element φi�1 that we have constructed acts with a North-
South dynamics on PCurrpFn,PolypH|Fi�1qq: there exist two proper disjoint closed sub-
sets of PCurrpFn,PolypH|Fi�1qq such that every point of PCurrpFn,PolypH|Fi�1qq which
is not contained in these subsets converges to one of the two subsets under positive or
negative iteration of φi�1. This North-South dynamics result allows us, applying clas-
sical ping-pong arguments similar to the one of Tits [Tit1], to construct the element
φi P H such that Polypφi|Fiq � PolypH|Fiq, which concludes the proof.

The element constructed in Theorem 6.1.2 is in general not unique. Indeed, when the
subgroup H of OutpFnq is such that PolypHq � t1u, Clay and Uyanik [CU2, Theorem B]
give necessary and sufficient conditions for H to contain a nonabelian free subgroup
consisting in atoroidal elements.

We now outline some consequences of Theorem 6.1.2. The first one is a result con-
cerning the periodic subset of a subgroup of OutpFnq. Let H be a subgroup of OutpFnq.
We denote by PerpHq the set of conjugacy classes of Fn fixed by a power of every element
of H. In the above example, we constructed a subgroup H of OutpFnq such that PerpHq
contains the conjugacy class of a nonabelian subgroup of rank 2. This is in fact the
lowest possible rank where a generalization of the theorem of Clay and Uyanik using
PerpHq instead of PolypHq cannot work, as shown by the following result.

Theorem 7.1.2 (Corollary 7.5.3). Let n ¥ 3 and let g1, . . . , gk be nontrivial root-free
elements of Fn. Let H be subgroup of OutpFnq such that, for every i P t1, . . . , ku, every
element of H has a power which fixes the conjugacy class of gi. Then one of the following
(mutually exclusive) statements holds.

p1q There exists gk�1 P Fn such that rgk�1s R trg1s, . . . , rgksu and whose conjugacy class
is fixed by a power of every element of H.

p2q There exists φ P H such that Perpφq � trxg1ys, . . . , rxgkysu.
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As we show with Corollary 7.5.4, Case p2q of Theorem 7.1.2 naturally occurs when we
are working with a subgroup of a mapping class group of a compact, connected surface
S whose fundamental group is identified with Fn. Finally, we give in Proposition 7.5.6
a method, using JSJ decompositions of Fn, allowing to compute PolypHq for subgroups
H of OutpFnq which act by global conjugations on some subgroups of Fn.

Acknowledgments. I warmly thank my advisors, Camille Horbez and Frédéric Paulin, for

their precious advices and for carefully reading the different versions of this article.

7.2 Preliminaries

7.2.1 Malnormal subgroup systems of Fn

Let n be an integer greater than 1 and let Fn be a free group of rank n. A subgroup
system of Fn is a finite (possibly empty) set A whose elements are conjugacy classes of
nontrivial (that is distinct from t1u) finite rank subgroups of Fn. Note that a subgroup
system A is completely determined by the set of subgroups A of Fn such that rAs P A.
There exists a partial order on the set of subgroup systems of Fn, where A1 ¤ A2 if for
every subgroup A1 of Fn such that rA1s P A1, there exists a subgroup A2 of Fn such that
rA2s P A2 and A1 is a subgroup of A2. In this case we say that A2 is an extension of A1.
The stabilizer in OutpFnq of a subgroup system A, denoted by OutpFn,Aq, is the set of
all elements φ P OutpFnq such that φpAq � A. If A1 and A2 are two subgroup systems,
we set OutpFn,A1,A2q � OutpFn,A1q XOutpFn,A2q.

Recall that a subgroup A of Fn is malnormal if for every element x P Fn � A, we
have xAx�1XA � teu. A subgroup system A is said to be malnormal if every subgroup
A of Fn such that rAs P A is malnormal and, for all subgroups A1, A2 of Fn such that
rA1s, rA2s P A, if A1 XA2 is nontrivial then A1 � A2. An element g P Fn is A-peripheral
(or simply peripheral if there is no ambiguity) if it is trivial or conjugate into one of the
subgroups of A, and A-nonperipheral otherwise.

An important class of examples of malnormal subgroup systems is given by the free
factor systems. A free factor system of Fn is a (possibly empty) set F of conjugacy
classes trA1s, . . . , rArsu of nontrivial subgroups A1, . . . , Ar of Fn such that there exists a
subgroup B of F n with Fn � A1 � . . .�Ar �B. An extension F1 ¤ F2 � trA1s, . . . , rAksu
of free factor systems is sporadic if there exists ` P t1, . . . , ku such that, for every j P
t1, . . . , ku � t`u, we have rAjs P F1 and if one of the following holds:

paq there exist subgroups B1, B2 of Fn such that rB1s, rB2s P F1 and A` � B1 �B2;

pbq there exists a subgroup B of Fn such that rBs P F1 and A` is an HNN extension of
B over the trivial group;

pcq there exists g P Fn such that F2 � F1 Y trgsu and A` � xgy.

Otherwise, the extension F1 ¤ F2 is nonsporadic. A free factor system F of Fn is
sporadic (resp. nonsporadic) if the extension F ¤ trFnsu is sporadic (resp. nonsporadic).
An ascending sequence of free factor systems F1 ¤ . . . ¤ Fi � trFnsu of Fn is called a
filtration of Fn.
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Given a free factor system F of Fn, a free factor of pFn,Fq is a subgroup A of Fn
such that there exists a free factor system F 1 of Fn with rAs P F 1 and F ¤ F 1. When
F � ∅, we say that A is a free factor of Fn. A free factor of pFn,Fq is proper if it is
nontrivial, not equal to Fn and if its conjugacy class does not belong to F .

In general, we will work in a finite index subgroup of OutpFnq defined as follows. Let

IAnpZ{3Zq � kerpOutpFnq Ñ AutpH1pFn,Z{3Zqq.

For every φ P IAnpZ{3Zq, we have the following properties:

p1q any φ-periodic conjugacy class of free factor of Fn is fixed by φ [HaM4, Theo-
rem II.3.1];

p2q any φ-periodic conjugacy class of elements of Fn is fixed by φ [HaM4, Theorem II.4.1].

Another class of examples of malnormal subgroup systems is the following one. Let
g P Fn and let B be a free basis of Fn. The length of the conjugacy class of g with
respect to B is

`Bprgsq � min
hPrgs

`Bphq,

where `Bphq is the word length of h with respect to the basis B. An outer automorphism
φ P OutpFnq is exponentially growing if there exists g P Fn such that the length of the
conjugacy class rgs of g in Fn with respect to some basis of Fn grows exponentially fast
under positive iteration of φ. One can show that if g is exponentially growing with
respect to some free basis of Fn, then it is exponentially growing for every free basis of
Fn. If φ P OutpFnq is not exponentially growing, one can show, using for instance the
technology of train tracks due to Bestvina and Handel [BH], that for every g P Fn, the
element g has polynomial growth under positive iteration of φ. In this case, we say that
φ is polynomially growing. A result of Levitt [Lev2, Proposition 1.4 p1q] shows that this
definition is equivalent to the definition given in the introduction. For an automorphism
α P AutpFnq, we say that α is exponentially growing if there exists g P Fn such that
the word length of g grows exponentially fast under iteration of φ. Otherwise, α is
polynomially growing. Let φ P OutpFnq be exponentially growing. A subgroup P of Fn
is a polynomial subgroup of φ if there exist k P N� and a representative α of φk such
that αpP q � P and α|P is polynomially growing. By [Lev2, Proposition 1.4], there exist
finitely many conjugacy classes rH1s, . . . , rHks of maximal polynomial subgroups of φ.
Moreover, the proof of [Lev2, Proposition 1.4] implies that the set H � trH1s, . . . , rHksu
is a malnormal subgroup system (see [Gue5, Section 2.1]). We denote this malnormal
subgroup system by Apφq. Note that, if H is a subgroup of Fn such that rHs P Apφq,
there exists Φ�1 P φ�1 such that Φ�1pHq � H and Φ�1|H is polynomially growing.
Hence we have Apφq ¤ Apφ�1q. By symmetry, we have

Apφq � Apφ�1q. (7.2)

Moreover, for every element ψ P OutpFnq, we have

Apψφψ�1q � ψpApφqq.
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In order to distinguish between the set of elements of Fn which have polynomial growth
under positive iteration of φ and the associated malnormal subgroup system, we will
denote by Polypφq the former. We have Polypφq � Polypφ�1q by Equation (7.2). If H is
a subgroup of OutpFnq, we set PolypHq �

�
φPH Polypφq.

Let A be a malnormal subgroup system and let φ P OutpFn,Aq be a relative outer
automorphism. We say that φ is atoroidal relative to A if, for every k P N�, the element
φk does not preserve the conjugacy class of any A-nonperipheral element. We say that
φ is expanding relative to A if Apφq ¤ A. Note that an expanding outer automorphism
relative to A is in particular atoroidal relative to A. When A � ∅, then the outer
automorphism φ is expanding relative to A if and only if for every nontrivial element
g P Fn, the length of the conjugacy class rgs of g in Fn with respect to some basis of
Fn grows exponentially fast under iteration of φ. Therefore, by a result of Levitt [Lev2,
Corollary 1.6], the outer automorphism φ is expanding relative to A � ∅ if and only if
φ is atoroidal relative to A � ∅.

Let A � trA1s, . . . , rArsu be a malnormal subgroup system and let F be a free factor
system. Let i P t1, . . . , ru. By [SW, Theorem 3.14] for the action of Ai on one of its

Cayley graphs, there exist finitely many subgroups A
p1q
i , . . . , A

pkiq
i of Ai such that:

p1q for every j P t1, . . . , kiu, there exists a subgroup B of Fn such that rBs P F and

A
pjq
i � B XAi;

p2q for every subgroup B of Fn such that rBs P F and B X Ai � teu, there exists

j P t1, . . . , kiu such that A
pjq
i � B XAi;

p3q the subgroup A
p1q
i � . . . �A

pkiq
i is a free factor of Ai.

Thus, one can define a new subgroup system as

F ^A �
r¤
i�1

trA
p1q
i s, . . . , rA

pkiq
i su.

Since A is malnormal, and since, for every i P t1, . . . , ru, the group A
p1q
i �. . .�A

pkiq
i is a free

factor of Ai, it follows that the subgroup system F ^A is a malnormal subgroup system
of Fn. We call it the meet of F and A. If φ P OutpFn,F ,Aq then φ P OutpFn,F ^Aq.

7.2.2 Relative currents

In this section, we define the notion of currents of Fn relative to a malnormal subgroup
system A. The section follows [Gue4, Gue5] (see the work of Gupta [Gup1] for the
particular case of free factor systems and Guirardel and Horbez [GuH1] in the context
of free products of groups). It can be thought of as a functional space in which densely
live the A-nonperipheral elements of Fn.

Let B8Fn be the Gromov boundary of Fn. The double boundary of Fn is the Hausdorff
locally compact, totally disconnected quotient topological space

B2Fn � pB8Fn � B8Fnz∆q { �,
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where � is the equivalence relation generated by the flip relation px, yq � py, xq and
∆ is the diagonal, endowed with the diagonal action of Fn. We denote by tx, yu the
equivalence class of px, yq.

Let T be the Cayley graph of Fn with respect to a free basis B. The boundary of T
is naturally homeomorphic to B8Fn and the set B2Fn is then identified with the set of
unoriented bi-infinite geodesics in T . Let γ be a finite geodesic path in T . The path γ
determines a subset in B2Fn called the cylinder set of γ, denoted by Cpγq, which consists
in all unoriented bi-infinite geodesics in T that contains γ. Such cylinder sets form a
basis for a topology on B2Fn, and in this topology, the cylinder sets are both open and
closed, hence compact. The action of Fn on B2Fn has a dense orbit.

Let A be a nontrivial subgroup of Fn of finite rank. The induced A-equivariant
inclusion B8A ãÑ B8Fn induces an inclusion B2A ãÑ B2Fn. Let A � trA1s, . . . , rArsu be
a malnormal subgroup system. Let

B2A �
r¤
i�1

¤
gPFn

B2
�
gAig

�1
�
.

Let B2pFn,Aq � B2Fn � B2A be the double boundary of Fn relative to A. This subset is
invariant under the action of Fn on B2Fn and inherits the subspace topology of B2Fn.

Lemma 7.2.1. [Gue4, Lemmas 2.5, 2.6, 2.7] Let n ¥ 3 and let A be a malnormal subgroup
system of Fn. The space B2pFn,Aq is an open subspace of B2Fn, hence is locally compact,
and the action of Fn on B2pFn,Aq has a dense orbit.

We can now define a relative current. Let n ¥ 3 and let A be a malnormal subgroup
system of Fn. A relative current on pFn,Aq is a (possibly zero) Fn-invariant nonnegative
Radon measure µ on B2pFn,Aq. The set CurrpFn,Aq of all relative currents on pFn,Aq
is equipped with the weak-� topology: a sequence pµnqnPN in CurrpFn,AqN converges to
a current µ P CurrpFn,Aq if and only if for any pair of disjoint clopen subsets S, S1 �
B2pFn,Aq, the sequence pµnpS � S1qqnPN converges to µpS � S1q.

The group OutpFn,Aq acts on CurrpFn,Aq as follows. Let φ P OutpFn,Aq and let
Φ be a representative of φ. The automorphism Φ acts diagonally by homeomorphisms
on B2Fn. If Φ1 P φ, then the action of Φ1 on B2Fn differs from the action of Φ by a
translation by an element of Fn. Let µ P CurrpFn,Aq and let C be a Borel subset of
B2pFn,Aq. Then, since φ preserves A, we see that Φ�1pCq P B2pFn,Aq. Then we set

φpµqpCq � µpΦ�1pCqq,

which is well-defined since µ is Fn-invariant.

Every conjugacy class of nonperipheral element g P Fn determines a relative current
ηrgs as follows. Suppose first that g is root-free, that is g is not a proper power of any
element in Fn. Let γ be a finite geodesic path in the Cayley graph T . Then ηrgspCpγqq
is the number of axes in T of conjugates of g that contain the path γ. By [Gue4,
Lemma 3.2], ηrgs extends uniquely to a current in CurrpFn,Aq which we still denote by
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ηrgs. If g � hk with k ¥ 2 and h root-free, we set ηrgs � k ηrhs. Such currents are called
rational currents.

Let µ P CurrpFn,Aq. The support of µ, denoted by Supppµq, is the support of the
Borel measure µ on B2pFn,Aq. We recall that Supppµq is a lamination of B2pFn,Aq, that
is, a closed Fn-invariant subset of B2pFn,Aq.

In the rest of the article, rather than considering the space of relative currents itself,
we will consider the set of projectivized relative currents, denoted by

PCurrpFn,Aq � pCurrpFn,Aq � t0uq{ �,

where µ � ν if there exists λ P R�
� such that µ � λν. The projective class of a

current µ P CurrpFn,Aq will be denoted by rµs. For every φ P OutpFn,Aq, the action
φ : µ ÞÑ φpµq is positively linear. Therefore, the action of OutpFn,Aq on CurrpFn,Aq
induces an action on PCurrpFn,Aq. We have the following properties.

Lemma 7.2.2. [Gue4, Lemma 3.3] Let n ¥ 3 and let A be a malnormal subgroup system
of Fn. The space PCurrpFn,Aq is compact.

Proposition 7.2.3. [Gue4, Theorem 1.2] Let n ¥ 3 and let A be a malnormal subgroup
system of Fn. The set of projectivised rational currents about nonperipheral elements of
Fn is dense in PCurrpFn,Aq.

7.2.3 Currents associated with an almost atoroidal outer automorphism of Fn

Let n ¥ 3 and let F � trA1s, . . . , rAksu be a free factor system of Fn. If φ P IAnpZ{3Zq
preserves F , we denote by

φ|F � prΦ1|A1s, . . . , rΦk|Aksq P
k¹
i�1

OutpAiq

where, for every i P t1, . . . , ku, the element Φi is a representative of φ such that ΦipAiq �
Ai. Note that the outer class of Φi|Ai in OutpAiq does not depend on the choice of Φi

since Ai is a malnormal subgroup of Fn. Note that, for every i P t1, . . . , ku, the element
rΦi|Ais is expanding relative to F ^ trAisu � trAisu. Hence we will say that φ|F is
expanding relative to F . Let

Polypφ|F q �
k¤
i�1

¤
gPFn

gPolyprΦi|Aisqg
�1 � Fn.

If H is a subgroup of IAnpZ{3Zq which preserves F , we set PolypH|F q �
�
φPH Polypφ|F q.

We now define a class of outer automorphisms of Fn which we will study in the rest
of the article.
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Definition 7.2.4. Let n ¥ 3 and let F be a free factor system of Fn. Let φ P IAnpZ{3Zq.
The outer automorphism φ is almost atoroidal relative to F if Polypφq � trFnsu and if
one of the following holds:

p1q φ is an atoroidal outer automorphism relative to F ;

p2q the extension F ¤ trFnsu is sporadic.

Let φ P IAnpZ{3Zq be an almost atoroidal outer automorphism relative to F . In
this section, we recall from [Gue5] the definition and some properties of some subsets
of PCurrpFn,F ^Apφqq associated with φ. Let KPGpφq be the subspace of all currents
in PCurrpFn,F ^Apφqq whose support is contained in B2Apφq X B2pFn,F ^Apφqq. The
subspace KPGpφq is called the space of polynomially growing currents associated with φ.

Proposition 7.2.5. [Gue5, Proposition 4.4, Proposition 4.12, Proposition 5.23] Let n ¥ 3
and let F be a free factor system of Fn. Let φ P IAnpZ{3Zq be an almost atoroidal
outer automorphism relative to F . There exist two unique proper compact φ-invariant
subsets ∆�pφq of PCurrpFn,F^Apφqq such that the following holds. For every rµs P
∆�pφq Y ∆�pφq, the support of µ is contained in B2F . Let U� be a neighborhood of
∆�pφq, let U� be a neighborhood of ∆�pφq, let V be a neighborhood of KPGpφq. There
exists N P N� such that for every n ¥ 1 and every (F ^ Apφq)-nonperipheral w P Fn
such that ηrws R V , one of the following holds

φNnpηrwsq P U� or φ�Nnpηrwsq P U�.

The subsets ∆�pφq and ∆�pφq are called the simplices of attraction and repulsion of
φ. Let F ¤ F1 � trA1s, . . . , rAksu be two free factor systems of Fn. Let φ P IAnpZ{3ZqX
OutpFn,F ,F1q. We say that φ|F1 is almost atoroidal relative to F if, for every i P
t1, . . . , ku, the outer automorphism rΦi|Ais is almost atoroidal relative to F ^ trAisu.
Let i P t1, . . . , ku. If φ|F1 is almost atoroidal relative to F , we denote by ∆�prAis, φq �
PCurrpAi,F ^ trAisu ^ AprΦi|Aisqq the convexes of attraction and repulsion of rΦi|Ais.
If ψ P IAnpZ{3Zq preserves the conjugacy class of Ai and F ^ trAisu ^AprΦi|Aisq, then
∆�prAis, ψφψ

�1q � ψp∆�prAis, φqq.

We will also need the following result which gives the existence and properties of an
approximation of the length function of the conjugacy class of an element if Fn in the
context of the space of currents.

Proposition 7.2.6. [Gue5, Lemma 3.26, Lemma 3.27 p3q] Let n ¥ 3 and let F be a
free factor system of Fn. Let φ P OutpFn,Fq be an almost atoroidal outer automor-
phism relative to F of type p2q. There exists a continuous, positively linear function
‖.‖F : CurrpFn,F ^Apφqq Ñ R� such that the following holds.

p1q There exist a basis B of Fn and a constant C ¡ 1 such that, for every F ^ Apφq-
nonperipheral element g P Fn, we have ‖ηrgs‖F P N� and

`Bprgsq ¥ C ‖ηrgs‖F .
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p2q For every η P CurrpFn,F ^Apφqq, if ‖η‖F � 0, then η � 0.

Letp∆�pφq � trtµ� p1� tqνs | t P r0, 1s, rµs P ∆�pφq, rνs P KPGpφq, ‖µ‖F � ‖ν‖F � 1u

be the convexes of attraction and repulsion of φ. We have the following result.

Theorem 7.2.7. [Gue5, Theorem 6.4] Let n ¥ 3 and let F be a free factor system of Fn.
Let φ P IAnpZ{3Zq X OutpFn,Fq be an almost atoroidal outer automorphism relative to
F of type p2q. Let p∆�pφq be the convexes of attraction and repulsion of φ and ∆�pφq be
the simplices of attraction and repulsion of φ. Let U� be open neighborhoods of ∆�pφq in
PCurrpFn,F ^Apφqq and pV� be open neighborhoods of p∆�pφq in PCurrpFn,F ^Apφqq.
There exists M P N� such that for every n ¥M , we have

φ�npPCurrpFn,F ^Apφqq � pV	q � U�.

Proposition 7.2.8. [Gue5, Corollary 6.5] Let n ¥ 3 and let F be a free factor system of Fn.
Let φ P OutpFn,Fq be an almost atoroidal outer automorphism relative to F of type p2q.
There exists a continuous, positively linear function ‖.‖F : CurrpFn,F ^ Apφqq Ñ R�

such that the following holds.
For every open neighborhood pV� � PCurrpFn,F ^Apφqq of p∆�pφq, there exists M P

N� and a constant L0 ¡ 0 such that, for every current rµs P PCurrpFn,F ^Apφqq � pV�,
and every m ¥M , we have

‖φmpµq‖F ¥ 3m�ML0‖µ‖F .

7.3 Nonsporadic extensions and fully irreducible outer automor-
phisms

Let n ¥ 3 and let F and F1 � trA1s, . . . , rAksu be two free factor systems of Fn with
F ¤ F1 such that the extension F ¤ F1 is nonsporadic. Let H be a subgroup of
IAnpZ{3Zq which preserves F and F1. We suppose that H is irreducible with respect
to F ¤ F1, that is, there does not exist a proper, nontrivial free factor system F 1

of Fn preserved by H with F   F 1   F1. Suppose that there exists φ P H such
that Polypφ|F q � PolypH|F q. In this section, we show that there exists pφ P H such
that Polyppφ|F1q � PolypH|F1q. The key point is to construct fully irreducible outer
automorphisms relative to F in H in the following sense. Let φ P OutpFn,Fq. We say
that φ is fully irreducible relative to F if no power of φ preserves a proper free factor
system F 1 of Fn such that F   F 1. If φ P OutpFn,F ,F1q, we say that φ|F1 is fully
irreducible relative to F (resp. atoroidal relative to F) if, for every i P t1, . . . , ku, the
outer automorphism rΦi|Ais is fully irreducible relative to F ^ trAisu (resp. atoroidal
relative to F ^ trAisu). If H is a subgroup of OutpFn,F ,F1q, we say that H|F1 is
atoroidal relative to F if there does not exist a conjugacy class of Fn which is H-invariant,
F-nonperiperal and F1-peripheral. First, we recall some properties of fully irreducible
outer automorphisms.
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Proposition 7.3.1. Let n ¥ 3 and let F be a nonsporadic free factor system of Fn. Let
H be a subgroup of IAnpZ{3Zq which preserves F and such that H is irreducible with
respect to the extension F ¤ trFnsu. Let φ P H be a fully irreducible outer automorphism
relative to F .

p1q [Gue5, Corollary 3.14] There exists at most one (up to taking inverse) conjugacy
class rgs of root-free F-nonperipheral element of Fn which has polynomial growth under
iteration of φ. Moreover, the conjugacy class rgs is fixed by φ.

p2q [GuH2, Theorem 7.4] One of the following holds:

paq there exists ψ P H such that ψ is a fully irreducible, atoroidal outer automorphism
relative to F ;

pbq if φ fixes the conjugacy class of a root-free F-nonperipheral element g of Fn, then
rgs is fixed by H.

Hence Proposition 7.3.1 suggests that, if H is a subgroup of Fn which satisfies the
hypotheses in Proposition 7.3.1, one step in order to prove Theorem 6.1.2 is to construct
relative fully irreducible (atoroidal) outer automorphisms in H. This is contained in the
following theorem.

Theorem 7.3.2. Let n ¥ 3 and let H be a subgroup of IAnpZ{3Zq. Let

∅ � F0   F1   . . .   Fk � trFnsu

be a maximal H-invariant sequence of free factor systems. There exists φ P H such that
for every i P t1, . . . , ku such that the extension Fi�1 ¤ Fi is nonsporadic, the element
φ|Fi is fully irreducible relative to Fi�1. Moreover, if H|Fi is atoroidal relative to Fi�1,
one can choose φ so that φ|Fi is atoroidal relative to Fi�1.

Proof. The proof follows [CU1, Theorem 6.6] (see also [CU2, Corollary 3.4]). Let

S � tj | the extension Fj�1 ¤ Fj is nonsporadicu

and let j P S.

Claim. There exists a unique conjugacy class rBjs of a subgroup Bj in Fn such that
rBjs P Fj and rBjs R Fj�1.

Proof. There exists at least one such conjugacy class since Fj�1   Fj . Suppose towards
a contradiction that there exist two distinct subgroups B� and B� of Fn such that
rB�s � rB�s, rB�s, rB�s P Fj and rB�s, rB�s R Fj�1. Then

F 1prB�sq � pFj � trB�suq Y pFj�1 ^ trB�suq

is H-invariant and Fj�1   F 1prB�sq   Fj , which contradicts the maximality hypothesis
of the sequence of free factor systems. The claim follows.

Let Bj be a subgroup of Fn given by the claim. Let Aj,1, . . . , Aj,s be the subgroups of
Bj with pairwise disjoint conjugacy classes such that Aj�1 � trAj,1s, . . . , rAj,ssu � Fj�1
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and s is maximal for this property. By [HaM4, Theorem D], for every j P S, there
exists φ P H such that rΦj |Aj s P OutpBj ,Aj�1q is fully irreducible relative to Aj�1. By
Proposition 7.3.1 p2q, for every j P S such that H|Fj is atoroidal relative to Fj�1, there
exists φ P H such that rΦj |Aj s P OutpBj ,Aj�1q is fully irreducible and atoroidal relative
to Aj�1. Note that, for every j P S, the free factor system Aj�1 is a nonsporadic free
factor system of Bj by the claim and since the extension Fj�1 ¤ Fj is nonsporadic. Let
S1 be the subset of S consisting in every j P S such thatH|Fj is atoroidal relative to Fj�1,
and let S2 � S�S1. By [GuH2, Theorem 4.1,4.2] (see also [Man2, Man3, Hor2, Gup2]),
for every j P S1 (resp. j P S2) there exists a Gromov-hyperbolic space Xj (the Z-
factor complex of Bj relative to Aj�1 when j P S1 and the free factor complex of Bj
relative to Aj�1 otherwise) on which OutpBj ,Aj�1q acts by isometries and such that
φ0 P OutpBj ,Aj�1q is a loxodromic element if and only if φ0 is fully irreducible atoroidal
relative to Aj�1 (resp. fully irreducible relative to Aj�1). The conclusion then follows
from [CU1, Theorem 5.1].

7.4 Sporadic extensions and polynomial growth

Let n ¥ 3 and let F and F1 � trA1s, . . . , rAksu be two free factor systems of Fn with
F ¤ F1. Suppose that the extension F ¤ F1 is sporadic. Let H be a subgroup of
IAnpZ{3Zq XOutpFn,F ,F1q.

In order to prove Theorem 6.1.2, we need to show that if Polypφ|F q � PolypH|F q,
there exists ψ P H such that Polypψ|F1q � PolypH|F1q. Let φ P H be such that
Polypφ|F q � PolypH|F q. Note that, for every element g of Polypφ|F q, there exists a
subgroup A of Fn such that rAs P F^Apφq and g P A. Conversely, for every subgroup A
of Fn such that rAs P F^Apφq and every element g P A, we have g P Polypφ|F q. Thus F^
Apφq is the natural malnormal subgroup system associated with Polypφ|F q � PolypH|F q.
Thus, we see that H preserves F ^ Apφq and hence H acts by homeomorphisms on
PCurrpFn,F ^Apφqq.

Lemma 7.4.1. Let n ¥ 3, let F be a sporadic free factor system of Fn and let H be
a subgroup of IAnpZ{3Zq X OutpFn,Fq which is irreducible with respect to F ¤ trFnsu.
Suppose that there exists φ P H such that Polypφ|F q � PolypH|F q. If Polypφq � PolypHq,
there exists an infinite subset X � H such that for all distinct ψ1, ψ2 P X, we have
ψ1pKPGpφqq X ψ2pKPGpφqq � ∅.

Proof. Let F ^Apφq � trA1s, . . . , rArsu. Suppose towards a contradiction that Apφq �
F ^Apφq. Then

Polypφq � Polypφ|F q � PolypH|F q � PolypHq.

This contradicts the fact that Polypφq � PolypHq. Thus, we have Apφq � F ^ Apφq.
By [Gue5, Lemma 5.18 p7q], one of the following holds.

piq There exist distinct i, j P t1, . . . , ru such that, up to replacing Ai by a conjugate, we
have Apφq � pF ^Apφq � trAis, rAjsuq Y trAi �Ajsu.
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piiq There exists i P t1, . . . , ru and an element g P Fn such that Apφq � pF ^ Apφq �
trAisuq Y trAi � xgysu.

piiiq There exists g P Fn such that Apφq � F ^Apφq Y trxgysu.

Case 1 Suppose that there exist distinct i, j P t1, . . . , ru such that

Apφq � pF ^Apφq � trAis, rAjsuq Y trAi �Ajsu.

Since Polypφ|F q � PolypH|F q and Polypφq � PolypHq, there exists ψ P H such that,
for every n P N�, the element ψn does not preserve rAi � Ajs while preserving rAis and
rAjs. Hence there exist a representative Ψ of ψ such that, for every n P N�, there exists
gn P Fn �Ai �Aj such that ΨnpAiq � Ai and ΨnpAjq � gnAjg

�1
n .

Claim 1. For every n P N�, every g P Fn and every h P Fn, if

h P pgΨnpAi �Ajqg
�1q X pAi �Ajq,

then h is either contained in a conjugate of Ai or a conjugate of Aj .

Proof. Let n P N� and let h P pgΨnpAi � Ajqg
�1q X pAi � Ajq. Suppose towards a

contradiction that h is not contained in a conjugate of Ai or a conjugate of Aj . By [Lev2,
Lemma 1.2], there exists a nontrivial R-tree T equipped with a minimal, isometric action
of Fn with trivial edge stabilizers and such that every polynomial subgroup of φ fixes a
point in T .

The groups Ai � Aj , ggnAi � Ajg
�1
n g�1 and gAi � Ajg

�1 fix points in T . Note that,
if we have ggn P Ai �Aj , then, since gn R Ai �Aj , we have g R Ai �Aj . By malnormality
of Ai � Aj , we have pAi � Ajq X pgAi � Ajg

�1q � t1u. Thus, for every g P Fn, one of the
following holds: pAi �AjqXpgAi �Ajg

�1q � t1u or pAi �AjqXpggnAi �Ajg
�1
n g�1q � t1u.

If Ai �Aj , gAi �Agg
�1 and ggnpAi �Ajqg

�1
n g�1 fix the same point x, then, by induction

on the rank of Stabpxq (which is less than n by [GaL]), one can construct a nontrivial
R-tree T 1 equipped with a minimal, isometric action of a subgroup B1 of Fn containing
Ai �Aj , gAi �Ajg

�1 and ggnAi �Ajg
�1
n g�1 with trivial arc stabilizers, such that Ai �Aj

fixes a point x1, gAi �Ajg
�1 fixes a point x2, ggnAi �Ajg

�1
n g�1 fixes a point x3 and one

of the following holds: x1 � x2 or x1 � x3.
Suppose first that x2 � x3. Then x1 � x2. Since gΨnpAi � Ajqg

�1 � gAi �
pgnAjg

�1
n qg�1, h fixes both x1 and x2. This contradicts the fact that T 1 has trivial

arc stabilizers.
Suppose now that x2 � x3. Since gΨnpAi�Ajqg

�1 � gAi�pgnAjg
�1
n qg�1, and since h

is not contained in a conjugate of Ai or a conjugate of Aj , the element h can be written
as a product of elements a1b1 . . . akbk where, for every i P t1, . . . , ku, ai fixes x2 and bi
fixes x3.

We claim that h is loxodromic in T 1. Let G � xStabpx2q,Stabpx3qy. The minimal
tree T 1G in T 1 of G is simplicial with trivial edge stabilizers and the quotient T 1G{G has
exactly one edge. Hence if g1 P G stabilizes a point in T 1 it is either contained in a
conjugate of Stabpx2q or a conjugate of Stabpx3q. We may suppose that h is a cyclically
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reduced element when written in the generating set tStabpx2q,Stabpx3qu. In particular,
h either fixes x2 or x3. Since h is not contained in a conjugate of Ai or a conjugate of Aj ,
we have k ¥ 2. Hence h cannot fix x2 or x3 and h is a loxodromic element. Therefore h
does not fix x1 and h R Ai �Aj , a contradiction.

Claim 1 implies that, for every distinct m,n P N� and every x P Fn, the intersection
ΨnpAi �AjqX pxΨmpAi �Ajqx

�1q is either contained in a conjugate of Ai or a conjugate
of Aj . By for instance [HaM4, Fact I.1.2], for every distinct m,n P N� and every x P Fn,
we have

B2 pΨnpAi �Ajqq X B2
�
xΨmpAi �Ajqx

�1
�

� B2
�
ΨnpAi �Ajq X xΨmpAi �Ajqx

�1
�

�
�
yPFn

�
B2 pyAiy�1q Y B2 pyAjy�1q

�
.

By definition of KPGpφq, we have rµs P KPGpφq if and only if

Supppµq � B2Apφq X B2pFn,F ^Apφqq � B2trAi �Ajsu X B2pFn,F ^Apφqq.

Moreover, if n P N� and if rµs P ψnpKPGpφqq, then

Supppµq � B2ψnpApφqq X B2pFn,F ^Apφqq � B2trAi � gnAjg
�1
n su X B2pFn,F ^Apφqq.

Let n,m P N� be distinct. Suppose towards a contradiction that

ψnpKPGpφqq X ψmpKPGpφqq � ∅

and let rµs P ψnpKPGpφqq X ψmpKPGpφqq. By Fn-invariance of µ, there exists x P Fn
such that µ gives positive measure to

B2pAi � gnAjg
�1
n q X B2

�
xpAi � gmAjg

�1
m qx�1

�
X B2pFn,F ^Apφqq

�
� ¤
yPFn

B2pyAiy�1q Y B2pyAjy�1q
	
X B2pFn,F ^Apφqq

and the last intersection is empty by the definition of the relative boundary, a contra-
diction.

Case 2 Suppose that either there exists i P t1, . . . , ru and an element g P Fn such that
Apφq � pF ^ Apφq � trAisuq Y trAi � xgysu or there exists g P Fn such that Apφq �
F ^Apφq Y trxgysu.

In order to treat both cases simultaneously, in the case that there exists g P Fn
such that Apφq � F ^ Apφq Y trxgysu, we fix Ai � teu. Case p2q only occurs when the
extension F ¤ trFnsu is an HNN extension over the trivial group. In particular, we
have F � trAsu for some subgroup A of Fn and, up to changing the representative of
rAs, we have Fn � A � xgy and Ai � A. In particular, since H preserves the extension
F ¤ trFnsu, for every ψ P H, there exist a unique representative Ψ0 of ψ and gψ P A such
that Ψ0pAq � A and Ψ0pgq � ggψ. Since H is irreducible with respect to F ¤ trFnsu,
the subgroup H does not preserve the free factor system F Y trgsu. Thus, there exists

315



ψ1 P H such that gψ1 � 1. We claim that there exist ψ P H with gψ R Ai, a representative
Ψ of ψ and h1 P A such that ΨpAiq � Ai and Ψpgq � h1ggψh

�1
1 . Indeed, if gψ1 R Ai, we

are done. Otherwise, since Polypφ|F q � PolypH|F q and Polypφq � PolypHq, there exist
ψ P H and h P A � Ai such that either gψ R Ai, or Ψ0pAq � A and Ψ0pAiq � hAih

�1.
In the first case we are done. Otherwise, we have Ψ0 � Ψ1

0pgq � ggψhgψ1h
�1. Since Ai

is malnormal, we have hgψh
�1 R Ai and gψhgψh

�1 R Ai. The claim follows. Thus, for
every n P N� and ψ P H as in the claim, we have gψn R Ai and there exists hn P A such
that ΨnpAiq � Ai and Ψnpgq � hnggψnh

�1
n .

Claim 2. For every n P N� and every a, h P Fn, if

h P paΨnpAi � xgyqa
�1q X pAi � xgyq,

then h is contained in a conjugate of Ai.

Proof. Let n P N�, let a P Fn and let h P paΨnpAi � xgyqa
�1q X pAi � xgyq. Suppose

towards a contradiction that h is not contained in a conjugate of Ai. First note that
ahnggψnh

�1
n a�1 R aAi � xgy a

�1. Indeed, since Fn � A � xgy, the elements hnggψnh
�1
n can

be written uniquely as a reduced product of elements in A and elements in xgy. Since
hn, gψn P A, if we have ahnggψnh

�1
n a�1 P aAi � xgy a

�1, then hn P Ai and gψnh
�1
n P Ai.

Therefore, gψn P Ai, a contradiction. Thus, we have ahnggψnh
�1
n a�1 R aAi � xgy a

�1.
We claim that there exist a subgroup B1 of Fn containing Ai � xgy, aAi � xgy a

�1

and ahnggψnh
�1
n a�1, and an R-tree T 1 equipped with a minimal, isometric action of B1

with trivial arc stabilizers and such that Ai � xgy fixes a point x11 in T 1, aAi � xgy a
�1

fixes a point x12 in T 1 and ahnggψnh
�1
n a�1 either fixes a point in T 1 distinct from x11

or x12 or is loxodromic. Indeed, by [Lev2, Lemma 1.2], there exists a nontrivial R-tree
T equipped with a minimal, isometric action of Fn with trivial arc stabilizers and such
that every polynomial subgroup of φ fixes a point in T . In particular, Ai � xgy fixes a
point x1 in T and aAi � xgy a

�1 fixes a point x2 in T . If ahnggψnh
�1
n a�1 either fixes

a point in T distinct from x1 or x2 or is loxodromic, we may take T � T 1. Otherwise
x1 � x2, ahnggψnh

�1
n a�1 P Stabpx1q and an induction on the rank of Stabpx1q (which

is less than n by [GaL] and invariant by a power of φ) allows us to conclude since
ahnggψnh

�1
n a�1 R aAi � xgy a

�1.
Suppose first that ahnggψnh

�1
n a�1 fixes x12. Then x11 � x12. Since aΨnpAi � xgyqa

�1

fixes x12, h fixes both x11 and x12. This contradicts the fact that T 1 has trivial arc stabi-
lizers.

Suppose now that ahnggψnh
�1
n a�1 does not fix x12. We claim that h is loxodromic

in T 1. Indeed, note that, since h P aΨnpAi � xgyqa
�1, h can be written as a product

of elements of aAia
�1 and powers of ahnggψnh

�1
n a�1. Since h is not contained in a

conjugate of Ai, we may suppose that:
piq the word h contains at least one occurence of a nontrivial element in aAia

�1 and
one occurrence of a nontrivial power of ahnggψnh

�1
n a�1;

piiq the word h is cyclically reduced when written in the generating set

taAia
�1, ahnggψnh

�1
n a�1u.
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Suppose first that ahnggψnh
�1
n a�1 fixes a point x1 in T 1 (which is distinct from x12).

Then the minimal tree T 10 in T 1 of the subgroup B of Fn generated by Stabpx1q and
Stabpx12q is simplicial and its vertex stabilizers are conjugates of Stabpx1q and Stabpx12q.
We conclude as in the proof of Claim 1 that h is loxodromic. Suppose now that
ahnggψnh

�1
n a�1 is loxodromic and that its axis does not contain x12. Assertion piiq

implies that, if h is not loxodromic, then it fixes x12. Then a ping pong argument shows,
since h satisfies Assertion piq, that h is loxodromic. Finally, suppose that ahnggψnh

�1
n a�1

is loxodromic and that its axis contains x12. Assertion piiq implies that, if h is not lox-
odromic, then it fixes x12. Then the minimal tree T 10 in T 1 of the subgroup B of Fn
generated by Stabpx12q and ahnggψnh

�1
n a�1 is simplicial and its vertex stabilizers are

conjugate of Stabpx12q (it is an HNN extension). In particular, h is loxodromic as it sat-
isfies Assertion piq. Thus h is loxodromic in T 1. Hence h cannot fix x11 and h R Ai � xgy,
a contradiction.

Claim 2 implies that, for every distinct n,m P N� and every x P Fn, we have

ΨnpAi � xgyq X xΨmpAi � xgyqx
�1 �

¤
yPFn

yAiy
�1

and by [HaM4, Fact I.1.2], we have

B2ΨnpAi � xgyq X B2
�
xΨmpAi � xgyqx

�1
�
�
¤
yPFn

B2 pyAiy�1q.

The rest of the proof is then similar to the one of Case 1.

Lemma 7.4.2. Let n ¥ 3, let F and F1 � trA1s, . . . , rAksu be two free factor systems
of Fn with F ¤ F1 such that the extension F ¤ F1 is sporadic. Let H be a sub-
group of OutpFn,F ,F1q X IAnpZ{3Zq such that H is irreducible with respect to F ¤ F1.
Suppose that there exists φ P H such that Polypφ|F q � PolypH|F q. Suppose that
Polypφ|F1q � PolypH|F1q. There exists ψ P H such that for every i P t1, . . . , ku, we
have ψpKPGprΦi|Aisqq XKPGprΦi|Aisq � ∅ and

∆�prAis, φq X ψp∆�prAis, φqq � ∆�prAis, φq X ψp∆�prAis, φqq � ∅.

Proof. The proof follows [CU2, Lemma 5.1]. Recall that, since the extension F ¤ F1

is sporadic, there exists ` P t1, . . . , ku such that, for every j P t1, . . . , ku � t`u, we have
rAjs P F . By Lemma 7.4.1 applied to the image of H in OutpA`q (which is contained
in IApA`,Z{3Zq), there exists an infinite subset X � H such that, for any distinct
h1, h2 P X, we have

h1pKPGprΦ`|A`sqq X h2pKPGprΦ`|A`sqq � ∅.

We now prove that there exist h1, h2 P X such that h�1
2 h1 satisfies the assertion of

Lemma 7.4.2. Note that, for any distinct h1, h2 P X, we have h�1
2 h1pKPGprΦ`|A`sqq X

KPGprΦ`|A`sq � ∅. Hence it suffices to find two distinct h1, h2 such that ψ � h�1
2 h1 sat-

isfies the second assertion of Lemma 7.4.2. Let j P t1, . . . , ku and let rµs be an extremal
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point of ∆�prAjs, φq or ∆�prAjs, φq. By [Gue5, Lemma 4.13], the support Supppµq con-
tains the support of finitely many projective currents rµ1s, . . . , rµss P PCurrpFn,F ^
Apφqq such that, for every t P t1, . . . , su, the support of µt is uniquely ergodic. Let
Eµ � trµ1s, . . . , rµssu. Let Eφ �

�
Eµ, where the union is taken over all j P t1, . . . , ku

and extremal points of ∆�pAj , φq and ∆�pAj , φq. The set Eφ is finite by [Gue5,
Lemma 4.7].

Since the set Eφ is finite, up to taking an infinite subset of X, we may suppose that,
for every s P Eφ, either h1s � h2s for every h1, h2 P X or for every distinct h1, h2 P X,
we have h1s � h2s. Let E1 � Eφ be the subset for which the first alternative occurs and
let E8 � Eφ � E1.

Let h1 P X and, for every s P E8, let

Xs � th P X | h1s � hs1 for some s1 P E8u.

Note that Xs is a finite set. Let h2 P X �
�
sPE8

Xs. For every s, s1 P E8, we have

h1s � h2s
1. If there exists s1 P E1 such that h1s � h2s

1, then s � h�1
1 h2s

1 � s1,
contradicting the fact that s P E8. Thus, for every s P E8, we have h�1

2 h1s R Eφ and
for every s P E1, we have h�1

2 h1s � s. Let ψ � h�1
2 h1. Then, for every s P Eφ, either

ψpsq � s or ψpsq R Eφ.
Let j P t1, . . . , ku, let rµs P ∆�prAjs, φq and suppose for a contradiction that we

have ψprµsq P ∆�prAjs, φq. There exist extremal measures µ�1 , . . . , µ
�
m of ∆�prAjs, φq

and λ1, . . . , λm P R� such that µ �
°m
i�1 λiµ

�
i . Similarly, there exist extremal measures

µ�1 , . . . , µ
�
n of ∆�prAjs, φq and α1, . . . , αn P R� such that ψpµq �

°n
i�1 αiµ

�
i .

Thus, we have
m̧

i�1

λiψpµ
�
i q � ψpµq �

ņ

i�1

αiµ
�
i .

In particular, we have
m¤
i�1

Supppψpµ�i qq �
n¤
i�1

Supppµ�i q.

Let Λ � Supppµ�1 q be the uniquely ergodic support of a current in Eφ. Let Ψ be a
representative of ψ and let B2Ψ be the homeomorphism of B2Fn induced by Ψ. Since
uniquely ergodic laminations are minimal, there exists i P t1, . . . , nu such that we have
B2ΨpΛq � Supppµ�i q. Thus, we have ψprµ�1 |Λsq � rµ�i |Λs. This contradicts the fact that
rµ�1 |Λs and rµ�i |Λs are distinct elements of Eφ since ∆�prAjs, φq X∆�prAjs, φq � ∅.

Proposition 7.4.3. Let n ¥ 3, let F and F1 � trA1s, . . . , rAksu be two free factor systems
of Fn with F ¤ F1 such that the extension F ¤ F1 is sporadic. Let H be a subgroup of
IAnpZ{3Zq XOutpFn,F ,F1q such that H is irreducible with respect to F ¤ F1. Suppose
that there exists φ P H such that Polypφ|F q � PolypH|F q. Suppose that Polypφ|F1q �
PolypH|F1q. There exist ψ P H and a constant M ¡ 0 such that, for all m,n ¥ M , if
θ � ψφψ�1, we have Polypθmφn|F1q � PolypH|F1q.

Proof. The proof follows [CU2, Proposition 5.2]. Let ψ P H be an element given by
Lemma 7.4.2 and let θ � ψφψ�1. For every i P t1, . . . , ku, let Θi be a representative of
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θ such that ΘipAiq � Ai and Φi be a representative of φ such that ΦipAiq � Ai. Note
that, since for every i P t1, . . . , ku, rΦi|Ais is almost atoroidal relative to F , so is rΘi|Ais.
Moreover, for every i P t1, . . . , ku, we have KPGprΘi|Aisq � rΨi|AispKPGprΦi|Aisqq. Let
i P t1, . . . , ku. Let Ai ^ F be the free factor system of Ai induced by F : it is the free
factor system of Ai consisting in the intersection of Ai with every subgroup A of Fn such
that rAs P F . It is well-defined by for instance [SW, Theorem 3.14].

Claim. We have p∆�prAis, φqXψpp∆�prAis, φqq � ∅ and p∆�prAis, φqXψpp∆�prAis, φqq �
∅.

Proof. We prove the first equality, the other one being similar. By Lemma 7.4.2, we
have ∆�prAis, φq X ψp∆�prAis, φqq � ∅ and ψpKPGprΦi|Aisqq XKPGprΦi|Aisq � ∅. Let
rµs P p∆�prAis, φq X ψpp∆�prAis, φqq. By definition, there exist rµ1s P ∆�prAis, φq, rν1s P
KPGprΦi|Aisq, t P r0, 1s, and rµ2s P ψp∆�prAis, φq, rν2s P ψpKPGprΦi|Aisqq, s P r0, 1s
such that

rµs � rtµ1 � p1� tqν1s � rsµ2 � p1� sqν2s.

Note that
B2pF ^ trAisuq X B2Apφq X B2pAi,F ^ trAisu ^Apφqq � ∅.

Moreover, since Polypφ|F q � PolypH|F q, we have Polypθ|F q � PolypH|F q. Therefore,
we see that F ^Apφq � F ^ ψpApφqq. Thus, we have

B2pF ^ trAisuq X ψpB2Apφqq X B2pAi,F ^ trAisu ^Apφqq � ∅.

Recall that, by Proposition 7.2.5, the supports of the currents in

∆�prAis, φq Y ψp∆�prAis, φqq

are contained in B2pF ^ trAisuq. Moreover, by definition, the supports of currents in
KPGprΦi|Aisq are contained in B2Apφq X B2pAi,F ^ trAisu ^Apφqq and the supports of
currents in ψpKPGprΦi|Aisqq are contained in ψpB2Apφqq X B2pAi,F ^ trAisu ^ Apφqq.
Thus, we have

µ1pB
2Apφq X B2pAi,F ^ trAisu ^Apφqqq � µ2pB

2Apφq X B2pAi,F ^ trAisu ^Apφqqq � 0.

Hence the support of ν1 is contained in the support of ν2. By definition of ψpKPGprΦi|Aisqq,
this implies that

ν1 P KPGprΦi|Aisq X ψpKPGprΦi|Aisqq � ∅.

Thus, we necessarily have t � 1. Similarly, we have s � 1. This implies that rµ1s � rµ2s
and that ∆�prAis, φq X ψp∆�prAis, φqq � ∅, a contradiction.

By the claim, there exist subsets U, V, pU, pV of PCurrpAi, pAi^Fq^Apφqq such that:

p1q ∆�prAis, φq � U , p∆�prAis, φq � pU , ∆�prAis, φq � V , p∆�prAis, φq � pV ;
p2q U � pU , V � pV ;
p3q pU X ψppV q � ∅ and pV X ψppUq � ∅.
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Let B and C ¡ 0 be respectively the basis of Fn and the constant given by Propo-
sition 7.2.6 p1q. Let M0pφq (resp. M0pθ

�1q) be the constant associated with φ, U andpV (resp θ�1, ψpV q and ψppUq) given by Theorem 7.2.7. Let M1pφq and L1pφq, (resp.
M1pθq and L1pθq) be the constants associated with rΦi|Ais and pV (resp. rΘi|Ais and
ψppV q) given by Proposition 7.2.8. Similarly, let M1pφ

�1q and L1pφ
�1q, (resp. M1pθ

�1q
and L1pθ

�1q) be the constants associated with rΦi|
�1
Ai
s and pU (resp. rΘi|

�1
Ai
s and ψppUq)

given by Proposition 7.2.8. Let

M � maxtM0pφq,M0pθ
�1q,M1pφq,M1pθq,M1pφ

�1q,M1pθ
�1qu

and let
L � mintL1pφq, L1pθq, L1pφ

�1q, L1pθ
�1qu ¡ 0.

Let M 1 be such that 3M
1
L2 ¡ 1. Let m,n ¥ M �M 1 and let µ P CurrpAi, Ai ^

F ^ Apφqq be a nonzero current. Suppose first that rµs R pV . Then by Theorem 7.2.7,
we have φnpµq P U . By Proposition 7.2.8, we have ‖φnpµq‖F ¥ 3n�ML‖µ‖F . Since
U X ψppV q � ∅, by Proposition 7.2.8, we have

‖θmφnpµq‖F ¥ 3m�ML‖φnpµq‖F ¥ 3m�n�2ML2‖µ‖F .

Note that, since pV X ψppUq � ∅, we have θmφnpµq R pV . Therefore, we can apply the
same arguments replacing µ by θmφnpµq and an inductive argument shows that, for
every n1 P N�, we have

‖pθmφnqn1pµq‖F ¥ 3n
1pm�n�2M�M 1qp3M

1
L2qn

1‖µ‖F .

Therefore, if µ is the current associated with a nonperipheral element g P Ai with rµs R pV ,
for every n1 ¥ 1, by Proposition 7.2.6 p1q we have

`Bppθ
mφnqn

1
prgsqq ¥ 3n

1pm�n�2M�M 1qp3M
1
L2qn

1
C‖µ‖F ¥ 3n

1pm�n�2M�M 1qC.

Hence we have g R PolyprΘm
i Φn

i |Aisq. Suppose now that rµs P pV . Therefore, we have

rµs R ψppUq. By Theorem 7.2.7, we have θ�mprµsq P ψpV q. By Proposition 7.2.8, we have
‖θ�mpµq‖F ¥ 3m�ML‖µ‖F . Moreover, since ψpV q X pU � ∅, we have θ�mprµsq R pU and

‖φ�nθ�mpµq‖F ¥ 3n�ML‖θ�mpµq‖F ¥ 3n�m�2M�M 1
p3M

1
L2q‖µ‖F .

Note that, since pV X ψppUq � ∅, we have φ�nθ�mpµq R ψppUq. Therefore, we can apply
the same arguments replacing µ by φ�nθ�mpµq and an inductive argument shows that,
for every n1 P N�, we have

‖pφ�nθ�mqn1pµq‖F ¥ 3n
1pm�n�2M�M 1qp3M

1
L2q2n

1‖µ‖F .

Therefore, if µ is the current associated with a nonperipheral element g P Ai with rµs P pV ,
for every n1 ¥ 1, we have

`Bppφ
�nθ�mqn

1
prgsqq ¥ 3n

1pm�n�2M�M 1qp3M
1
L2qn

1
C‖µ‖F ¥ 3n

1pm�n�2MqC.
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Hence we have g R PolyprΦ�n
i Θ�m

i |Aisq � PolyprΘm
i Φn

i |Aisq. Therefore, θmφn|F1 is
expanding relative to F ^Apφq. Hence if g P Polypθmφn|F1q, there exists a subgroup A
of Fn such that g P A and rAs P F^Apφq. Note that, if g P Fn is such that there exists a
subgroup A of Fn such that g P A and rAs P F ^Apφq, then g P Polypφ|F q � PolypH|F q.
Thus, we have Polypθmφn|F1q � PolypH|F1q. This concludes the proof.

Proposition 7.4.4. Let n ¥ 3 and let H be a subgroup of IAnpZ{3Zq. Let

∅ � F0   F1   . . .   Fk � trFnsu

be a maximal H-invariant sequence of free factor systems. Let 2 ¤ i ¤ k. Suppose that
Fi�1 ¤ Fi is sporadic. Suppose that there exists φ P H such that
paq PolypH|Fi�1q � Polypφ|Fi�1q;
pbq for every j P t1, . . . , ku, if the extension Fj�1 ¤ Fj is nonsporadic, then φ|Fj is fully
irreducible relative to Fj�1 and if H|Fj is atoroidal relative to Fj�1, so is φ|Fj .

Then there exists pφ P H such that:
p1q PolypH|Fiq � Polyppφ|Fiq;
p2q for every j P t1, . . . , ku, if the extension Fj�1 ¤ Fj is nonsporadic, then pφ|Fj is fully

irreducible relative to Fj�1 and if H|Fj is atoroidal relative to Fj�1, so is pφ|Fj .
Proof. The proof follows [CU2, Proposition 5.3]. If PolypH|Fiq � Polypφ|Fiq, we may

take pφ � φ. Otherwise, by Proposition 7.4.3, there exists ψ P H and a constant M ¡ 0
such that, for every m,n ¥ M , if θ � ψφψ�1, we have Polypθmφn|Fiq � PolypH|Fiq.

Therefore, for every m,n ¥ M , the element pφ � θmφn satisfies p1q. It remains to show
that there exist m,n ¥M such that θmφn satisfies p2q. Let

S � tj | the extension Fj�1 ¤ Fj is nonsporadicu

and let j P S.
Let Bj be a subgroup of Fn given by the claim in the proof of Theorem 7.3.2. Let

Aj,1, . . . , Aj,s be the subgroups of Bj with pairwise disjoint conjugacy classes such that
Aj�1 � trAj,1s, . . . , rAj,ssu � Fj�1 and s is maximal for this property. By Hypothesis pbq,
the outer automorphism rΦj |Bj s P OutpBj ,Aj�1q is fully irreducible relative to Aj�1.
Note that Aj�1 is a nonsporadic free factor system of Bj by the claim and since the
extension Fj�1 ¤ Fj is nonsporadic. Let S1 be the subset of S consisting in every
j P S such that H|Fj is atoroidal relative to Fj�1, and let S2 � S � S1. By [GuH2,
Theorem 4.1,4.2] (see also [Man2, Man3, Hor2, Gup2]), for every j P S1 (resp. j P S2)
there exists a Gromov-hyperbolic space Xj (the Z-factor complex of Bj relative to Aj�1

when j P S1 and the free factor complex of Bj relative to Aj�1 otherwise) on which
OutpBj ,Aj�1q acts by isometries and such that φ0 P OutpBj ,Aj�1q is a loxodromic
element if and only if φ0 is fully irreducible atoroidal relative to Aj�1 (resp. fully
irreducible relative to Aj�1). In particular, since H preserves Fj�1   Fj , and hence ψ
preserves rBjs, the elements rΦj |Bj s and rΘj |Bj s are loxodromic elements of Xj .

Recall that two loxodromic isometries of a Gromov-hyperbolic space X are indepen-
dent if their fixed point sets in B8X are disjoint and are dependent otherwise. Let I � S
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be the subset of indices where for every j P I, the elements rΦj |Bj s and rΘj |Bj s are inde-
pendent and let D � S � I. By standard ping pong arguments (see for instance [CU1,
Proposition 4.2, Theorem 3.1]), there exist constants m,n0 ¥ M such that for every
n ¥ n0, the element rΘm

j Φn
j |Bj s acts loxodromically on Xj . By [CU1, Proposition 3.4],

there exists n ¥ n0 such that, for every j P D, the element rΘm
j Φn

j |Bj s acts loxodromi-
cally on Xj . Hence for every j P S1, the element θmφn|Fj is fully irreducible atoroidal
relative to Fj�1 and for every j P S2, the element θmφn|Fj is fully irreducible relative to
Fj�1. This concludes the proof.

7.5 Proof of the main result and applications

We are now ready to complete the proof of our main theorem.

Theorem 7.5.1. Let n ¥ 3 and let H be a subgroup of OutpFnq. There exists φ P H such
that Polypφq � PolypHq.

Proof. Since IAnpZ{3Zq is a finite index subgroup of OutpFnq and since for every ψ P H
and every n P N�, we have Polypψkq � Polypψq, we see that PolypHq � PolypH X
IAnpZ{3Zqq. Hence we may suppose that H is a subgroup of IAnpZ{3Zq. Let

∅ � F0   F1   . . .   Fk � trFnsu

be a maximal H-invariant sequence of free factor systems. By Theorem 7.3.2, there
exists φ P H such that for every j P t1, . . . , ku such that the extension Fj�1 ¤ Fj is
nonsporadic, the element φ|Fj is fully irreducible relative to Fj�1 and if H|Fj is atoroidal
relative to Fj�1, so is φ|Fj�1 .

We now prove by induction on i P t0, . . . , ku that for every i P t0, . . . , ku, there exists
φi P H such that

paq Polypφi|Fiq � PolypH|Fiq;

pbq for every j P t1, . . . , ku such that the extension Fj�1 ¤ Fj is nonsporadic, the
element φi|Fj is fully irreducible relative to Fj�1 and if H|Fj is atoroidal relative to
Fj�1, so is φi|Fj�1 .

For the base case i � 0, we set φ0 � φ. Let i P t1, . . . , ku and suppose that φi�1 P H
has been constructed. We distinguish between two cases, according to the nature of the
extension Fi�1 ¤ Fi. Suppose first that the extension Fi�1 ¤ Fi is nonsporadic. We
set φi � φi�1. We claim that φi satisfies the hypotheses. Indeed, it clearly satisfies
pbq. For paq, since Polypφi�1|Fi�1q � PolypH|Fi�1q, it suffices to show that for every
element g P Fn which is Fi-peripheral but Fi�1-nonperipheral, if g P Polypφi|Fiq, then
g P PolypH|Fiq. Note that, if φi|Fi is atoroidal relative to Fi�1, by Proposition 7.3.1 p1q,
we have Polypφi|Fiq � Polypφi|Fi�1q. Hence we have PolypH|Fiq � Polypφi|Fiq. So we
may suppose that φi|Fi is not atoroidal relative to Fi�1.

Let g P Polypφi|Fiq be an element which is Fi-peripheral but Fi�1-nonperipheral. By
Proposition 7.3.1 p1q, there exists at most one (up to taking inverse) h P Fn such that
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g P xhy and rhs is fixed by φi. By Proposition 7.3.1 p2qpbq, the conjugacy class of rhs is
fixed by H. Hence the conjugacy class of rgs is fixed by H and g P PolypH|Fiq.

Suppose now that the extension Fi�1 ¤ Fi is sporadic. If Polypφi�1|Fiq � PolypH|Fiq,
we set φi � φi�1. Then φi satisfies paq and pbq. Suppose that Polypφi�1|Fiq � PolypH|Fiq.

By Proposition 7.4.4, there exists pφi�1 P H such that pφi�1 satisfies paq and pbq. Then
we set φi � pφi�1. This completes the induction argument. In particular, we have
Polypφmq � PolypHq. This concludes the proof.

We now give some applications of Theorem 7.5.1. The first one is a straightforward
consequence using the fact that for every φ P OutpFnq, there exists a natural malnormal
subgroup system associated with Polypφq.

Corollary 7.5.2. Let n ¥ 3 and let H be a subgroup of OutpFnq such that PolypHq � t1u.
There exist nontrivial maximal subgroups A1, . . . , Ak of Fn such that

PolypHq �
k¤
i�1

¤
gPFn

gAig
�1

and A � trA1s, . . . , rAksu is a malnormal subgroup system.

If H is a subgroup of OutpFnq is such that PolypHq � t1u, we denote by ApHq
the malnormal subgroup system given by Corollary 7.5.2. If PolypHq � t1u, we set
ApHq � ∅.

The following result is a generalization of [CU2, Theorem A] regarding fixed conju-
gacy classes. If φ P IAnpZ{3Zq, we denote by Fixpφq the set of conjugacy classes of Fn
fixed by φ. Note that, if g P Fn is such that rgs P Fixpφq, then g P Polypφq. Moreover,
by [Lev2, Lemma 1.5], if Polypφq � t1u, the set Fixpφq is nonempty. If P is a subgroup
of Fn, we denote by OutpFn, P

ptqq the subgroup of OutpFnq consisting in every element
φ P OutpFnq such that there exists Φ P φ such that ΦpP q � P and Φ|P � idP .

Corollary 7.5.3. Let n ¥ 3 and let g1, . . . , gk be nontrivial root-free elements of Fn. Let
H be a subgroup of IAnpZ{3Zq such that, for every i P t1, . . . , ku, every element of H
fixes the conjugacy class of gi. Then one of the following (mutually exclusive) statements
holds.

p1q There exists gk�1 P Fn such that rgk�1s R trg1s, . . . , rgksu and whose conjugacy class
is fixed by every element of H.

p2q There exists φ P H such that Fixpφq � trxg1ys, . . . , rxgkysu.
Moreover, if p1q holds, either there exist ` ¥ k � 1 and gk�1, . . . , g` P Fn such that

FixpHq � ApHq � trxg1ys, . . . , rxg`ysu

or H virtually fixes the conjugacy class of a nonabelian free subgroup of Fn of rank 2.
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Proof. First assume that H is finitely generated. Suppose that p2q does not hold. In
particular, by Theorem 7.5.1, we see that ApHq � trxg1ys, . . . , rxgkysu. Let ApHq �
trP1s, . . . , rP`su, where for every i P t1, . . . , `u, Pi is a malnormal subgroup of Fn. Note
that, for every i P t1, . . . , `u, since Pi is malnormal, we have a natural homomorphism
H Ñ OutpPiq whose image, denoted by H|Pi , is contained in the set of polynomially
growing outer automorphisms of Pi. Since H is finitely generated, up to taking a fi-
nite index subgroup of H, we can apply the Kolchin theorem for OutpFnq (see [BFH3,
Theorem 1.1]): there exists a H|Pi-invariant sequence of free factor systems of Pi

∅ � F piq
0   F piq

1   . . .   F piq
ki

� trPisu

such that, for every j P t1, . . . , kiu, the extension F piq
j�1 ¤ F piq

j is sporadic.
Note that, since ApHq � trxg1ys, . . . , rxgkysu, either ` ¡ k or there exists i P t1, . . . , `u

such that the rank of Pi is at least equal to 2. Suppose that ` ¡ k. Let i P t1, . . . , `u. Since

for every j P t1, . . . , kiu, the extension F piq
j�1 ¤ F piq

j is sporadic, for every i P t1, . . . , `u,

the free factor system F piq
1 contains a unique element and the rank of the associated

subgroup is 1. Thus, the group H fixes at least ` distinct conjugacy classes of elements
of Fn and p1q holds.

Otherwise, let i P t1, . . . , `u be such that the rank of Pi is at least equal to 2. Since,

for every j P t1, . . . , kiu, the extension F piq
j�1 ¤ F piq

j is sporadic we have ki ¥ 2. Moreover,

there exists j0 P t1, . . . , kiu and a subgroup Uj0 of Pi such that rUj0s P F piq
j0

and one of
the following holds:
paq there exist two subgroups B1 and B2 of Pi such that rankpB1q � rankpB2q � 1,
rB1s, rB2s P Fj0�1 and Uj0 � B1 �B2;
pbq there exists a subgroup B of Pi such that rankpBq � 1, rBs P Fj0�1 and Uj0 is an
HNN extension of B over the trivial group.

If Case paq occurs, then H acts as the identity on Uj0 since rankpUj0q � 2 and
since every element of H fixes elementwise a set of conjugacy classes of generators of
Uj0 (recall that the abelianization homomorphism F2 Ñ Z2 induces an isomorphism
OutpF2q � GLp2,Zq). Hence Assertion p1q holds.

If Case pbq occurs, let b be a generator of B and let t P Uj0 be such that Uj0 � xby�xty.
Then, since H � IAnpZ{3Zq, for every element ψ of H, there exist Ψ P ψ and k P Z such
that ψpbq � b and ψptq � tbk. In particular, for every ψ P H, the automorphism Ψ fixes
the group generated by b and tbt�1 and p1q holds.

The moreover part follows since either for every i P t1, . . . , `u, the group Pi has rank
1 or there exists i P t1, . . . , ku such that the rank of Pi is at least equal to 2. In the first
case, since H � IAnpZ{3Zq, for every i P ‘t1, . . . , `u, the conjugacy class rPis is fixed by
H. In the later case, the subgroup H fixes the conjugacy class of a nonabelian subgroup
of rank 2 as explained above. This concludes the proof when H is finitely generated.

Suppose now that H is not finitely generated and let pHmqmPN be an increasing
sequence of finitely generated subgroups of H such that H �

�
mPNHm. For every

m P N, we have Hm � OutpFn,FixpHmq
ptqq and for every m1,m2 P N such that m1 ¤ m2,

we have FixpHm2q � FixpHm1q. By [GuL3, Theorem 1.5], there exists N P N such that,

324



for every m ¥ N , we have OutpFn,FixpHmq
ptqq � OutpFn,FixpHN q

ptqq. In particular, we
have FixpHN q � FixpHq. The result now follows from the finitely generated case.

The following result might be folklore, but we did not find a precise statement in
the literature. If S is a compact, connected surface, we denote by ModpSq the group of
homotopy classes of homeomorphisms that preserve the boundary of S.

Corollary 7.5.4. Let n ¥ 3 and let H be a subgroup of IAnpZ{3Zq. The following asser-
tions are equivalent:

p1q ApHq � trxgysu, where g is an element of Fn not contained in a proper free factor
of Fn;

p2q there exists a connected, compact surface S with exactly one boundary component and
an identification of π1pSq with Fn such that H is identified with a subgroup of ModpSq
and H contains a pseudo-Anosov element.

Proof. Suppose that p2q holds. Let φ P H be identified with a pseudo-Anosov element
of S. In particular, φ is a fully irreducible element of OutpFnq. By Proposition 7.3.1 p1q
with F � ∅, the element φ fixes exactly one (up to taking inverse) conjugacy class rgs
of a root-free element g of Fn. Since φ fixes the conjugacy class of the element of Fn
identified with the boundary component of S, the conjugacy class rgs is identified with
the conjugacy class in π1pSq of the element associated with the homotopy class of the
boundary component of S. Hence g is not contained in any proper free factor of Fn.
Moreover, since H is identified with a subgroup of ModpSq, every element of H fixes rgs.
Hence we have ApHq � trxgysu.

Suppose now that p1q holds. Let φ P H be an element given by Theorem 7.5.1. Then
Apφq � ApHq � trxgysu. In particular, since H � IAnpZ{3Zq, the conjugacy class of g
is fixed by every element of H. Let f : G Ñ G be a CT map representing a power of φ
(see the definition in [FH, Definition 4.7]).

Claim. The graph G consists in a single stratum and this stratum is an EG stratum.

Proof. Let Hr be the highest stratum in G. We first prove that Hr is an EG stratum.
Indeed, Hr is either a zero stratum, an EG stratum or a NEG stratum. The stratum
Hr cannot be a zero stratum by [FH, Definition 4.7 p6q]. Moreover, Hr cannot be a
NEG stratum as otherwise by [CU2, Proposition 4.1], the element g would be a basis
element of Fn, contradicting the fact that g is not contained in any proper free factor of
Fn. Hence Hr is an EG stratum. Since g is not contained in any proper free factor of
Fn, the reduced circuit γg in G representing the conjugacy class of g has height r and is
fixed by f . By [HaM4, Fact I.2.3], the stratum Hr is a geometric stratum. By [HaM4,
Proposition I.2.18], the element φ fixes elementwise a finite set C � trgs, rc1s, . . . , rcksu
of conjugacy classes of elements of Fn. Moreover, by [HaM4, Proposition I.2.18 p5q], by
the definition of a geometric stratum in [HaM4] and the fact that G is connected, we
have C � trgsu if and only if Gr�1 is reduced to a point, that is, if and only if G consists
in the single stratum Hr.
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By the claim and [HaM4, Fact I.2.3], the outer automorphism φ is geometric: there
exist a connected, compact surface S with exactly one boundary component and an
identification of π1pSq with Fn such that φ is identified with a pseudo-Anosov element
of ModpSq. Moreover, the conjugacy class rgs is identified with the conjugacy class in
π1pSq of the element associated with the homotopy class of the boundary component
of S. Since rgs is fixed by every element of H, by the Dehn-Nielsen-Baer theorem (see
for instance [FarM, Theorem 8.8] for the orientable case and [Fuj, Section 3] for the
nonorientable case), the group H is identified with a subgroup of ModpSq.

We now give a method to compute ApHq for some subgroups H of OutpFnq. Let P
be a subgroup of Fn. Let F be the minimal free factor of Fn which contains P . Then F
is one-ended relative to P . Let T be the JSJ tree of F relative to P over cyclic subgroups
given by [GuL5, Theorem 9.14]. Let v be a vertex of T . Let Gv be the stabilizer of v
in F . Let Incv be the finite set of all conjugacy classes of groups associated with edges
in T which are incident to v. Following the terminology of [GuL5], either v is a rigid
vertex or v is flexible. When Gv is cyclic, we use the convention that v is rigid. If v
is flexible, by [GuL5, Theorem 9.14 p2q], there exists a compact connected hyperbolic
surface Sv such that π1pSvq is isomorphic to Gv and, for every subgroup Ge of F such
that rGes P Incv, the group Ge is conjugate to a subgroup of π1pSvq associated with a
boundary connected component of Sv. Since the JSJ tree constructed by Guirardel and
Levitt is a tree of cylinders, if v is a flexible vertex of T , the fundamental group of every
boundary component c of Sv fixes at most one edge ec adjacent to v and the stabilizer
of the endpoint of ec distinct from v is cyclic and included in the group generated by
the homotopy class of c. For every flexible vertex v of T , let BCv be the finite set of
conjugacy classes of subgroups of Fn generated by the homotopy classes of the boundary
components of Sv which do not fix an edge in T . Let Vf be the set of flexible vertices
of T . Let T 1 be the tree obtained from T by collapsing every edge of T which is not
adjacent to a flexible vertex. For every vertex C of F zpT 1�Vf q, let GC be the associated
vertex stabilizer. Let

AP � trGCsuCPV pF zpT 1�Vf qq Y
¤
vPVf

pIncv Y BCvq,

which is a finite set of conjugacy classes of finitely generated subgroups of Fn. Note
that, by [Lev2, Proposition 2.1], if v P V T and φ P OutpGvq, then φ extends to an outer
automorphism pφ of OutpFnq which preserves T and T 1.

Lemma 7.5.5. Let v P Vf and let φ1 be the outer automorphism class of OutpGvq as-
sociated with a pseudo-Anosov element of Sv. Let T 1v be the tree obtained from T by
collapsing every edge of T which is not contained in the orbit of an edge adjacent to v.
Then pφ1 preserves T 1v. Moreover, if g P F is loxodromic in T 1v, then g has exponential
growth under iteration of pφ1.
Proof. The fact that pφ1 preserves T 1v follows from the fact that pφ1 preserves T and the
fact that pφ1 acts as the identity on the graph associated with FnzT . In order to prove
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the second part of Lemma 7.5.5, we first construct an R-tree Tv with an equivariant
map Tv Ñ T 1v. Let T0 be the dilating arational Gv-tree associated with φ1 and let
λ ¡ 1 be the stretching factor of φ1. There exists a homothety H0 : T0 Ñ T0 whose
stretching factor is equal to λ and such that, for every h P Gv and every x P T0, we
have H0phxq � φ1phqH0pxq. The arational tree T0 is such that every arc stabilizer is
trivial and the only point stabilizers are cyclic and conjugate to the groups generated
by the homotopy classes of boundary components of Sv. Since the edge stabilizers of T 1v
are precisely groups which are conjugates of groups generated by the homotopy classes
of boundary components of Sv, one can replace the vertex v in T 1v by the tree T0 and
attach the edges to their corresponding point stabilizers. Extending this construction
equivariantly, we obtain a tree Tv with an equivariant map Tv Ñ T 1v. Moreover, sincepφ1 preserves T 1v, the map H0 extends to an equivariant map H 1 : Tv Ñ Tv such that,
for all x, y P Tv, we have dpH 1pxq, H 1pyqq ¤ λdpx, yq. We now follow the construction
given by Gaboriau, Jaeger, Levitt and Lustig in [GJLL]. For every k P N�, let dk be the
pseudo-distance in Tv given by, for all x, y P Tv:

dkpx, yq �
dpH 1kpxq, H 1kpyqq

λk
,

and let d8 be the limit of these pseudo-distances. Then d8 induces a distance on the
set

T8v � Tv{ �,

where � is the equivalence relation generated by x � y if and only if d8px, yq � 0.
Moreover, the metric space T8v is a nontrivial R-tree equipped with a minimal, non-
trivial action of Fn by isometries. Finally, H 1 induces a homothety H : T8v Ñ T8v with
stretching factor equal to λ and such that, for every h P Fn and every x P T8v , we have
Hphxq � pφ1phqHpxq. Note that, for every g P Fn and every n P N�, the translation
length of φ1npgq in T8v is equal to λn times the translation length of g in T8v . Therefore,
if g has polynomial growth under iteration of φ1, then g must fix a point in T8v .

Let g P F be loxodromic in T 1v. By equivariance of the map Tv Ñ T 1v, the element
g is loxodromic in Tv. By the construction of T 1v, the axis of g in Tv contains a vertex
in the orbit of v. Since the group generated by the homotopy class of every boundary
component of Sv fixes at most one edge in T 1v, if the axis of g in T 1v contains a vertex in
the orbit of v, then the axis of g in Tv contains a nondegenerate arc rx, ys in a copy of
T0 in Tv. Since H0 is a homothety of T0 of stretching factor equal to λ, the homothety
H restricts to a homothety of stretching factor λ in the copy of T0 in Tv. Thus we have
d8px, yq � dpx, yq ¡ 0. Hence the characteristic set of g in T8v , which is the projection
of the characteristic set of g in Tv, contains a nondegenerate arc, that is, g is loxodromic
in T8v . Hence g has exponential growth under iteration of φ1.

Proposition 7.5.6. Let n ¥ 3 and let P be a finitely generated subgroup of Fn. Sup-
pose that OutpFn, P

ptqq is infinite. Then either ApOutpFn, P
ptqqq � trFnsu or we have

ApOutpFn, P
ptqqq � AP . Moreover, in the second case, there exists φ P OutpFn, P

ptqq
such that Apφq � AP .
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Proof. The moreover part follows from the first part of Proposition 7.5.6 using The-
orem 7.5.1, so we focus on the first part. Let H � OutpFn, P

ptqq X IAnpZ{3Zq. Then
PolypHq � PolypOutpFn, P

ptqqq.
Note that H preserves the conjugacy class of F and we have an induced homo-

morphism Λ: H Ñ OutpF, P ptqq. By [GuL5, Theorem 9.14], the group ΛpHq fixes the
F -equivariant homeomorphism class T of the above JSJ tree T . Moreover, up to taking
a finite index subgroup of H, we may suppose that the group H fixes the conjugacy class
of every vertex group of T and that ΛpHq acts as the identity on the graph associated
with F zT . Since edge stabilizers of T are cyclic, H fixes the conjugacy class of the
generator of every edge group. In particular, we have

�
vPVf

Incv ¤ ApHq. Moreover,
up to taking a finite index subgroup of H, for every flexible vertex v of T , the group H
fixes the conjugacy classes of subgroups of Fn generated by the homotopy classes of the
boundary components of Sv. Thus, we have¤

vPVf

Incv Y BCv ¤ ApHq. (7.3)

Claim 1. Let C 1 be a connected component of F zpT � Vf q and let C be a connected
subgraph of C 1 which contains at least one vertex of the graph associated with F zT . Let
F zpTC � Vf q be the graph of groups obtained from F zpT � Vf q by collapsing the edges
of F zT contained in C to a vertex c and let Gc be the corresponding vertex group. We
have Gc � PolypHq.

Proof. An interior edge of C is an edge of the graph associated with F zpT �Vf q entirely
contained in C. We remark that the statement of the claim is made in such a way that
we are able to apply an induction argument on the number m of interior edges of C.
If C does not contain an interior edge, then C contains at most one vertex v of F zT
(recall that C is connected). Moreover, v is a rigid vertex. Since v is rigid, by [GuL4,
Theorem 3.9], the group H has trivial image in OutpGvq. Hence the statement is true
when C has no interior edge. Suppose that the number of interior edges m of C is
at least equal to 1. Let e be an interior edge of C. Suppose first that C � e has two
connected components A1 and A2, where the closure is taken in C. For every i P t1, 2u,
let Gai be the subgroup of Fn corresponding to Ai as in the statement of the claim. By
induction, for every i P t1, 2u, we have Gai � PolypHq. Since F is one-ended relative
to P , edge stabilizers are nontrivial. Thus, we have Ga1 X Ga2 � t1u. Since ApHq is
a malnormal subgroup system, there exists a subgroup B of Fn such that rBs P ApHq
and Gc � xGa1 , Ga2y � B. Suppose now that C � e has one connected component A.
Let Ga be the subgroup of Fn corresponding to A as in the statement of the claim. By
induction, we have Ga � PolypHq. Moreover, there exists t P F such that Gc � xGa, ty.
Note that H preserves the conjugacy classes of Ga and Gc as every element of ΛpHq
acts as the identity on the graph associated with F zT . Thus, every element ψ of H has
a representative Ψ such that ΨpGaq � Ga, every element of Ga has polynomial growth
under iteration of Ψ and Ψ sends t to taΨ with aΨ P Ga. Since aΨ has polynomial growth
under iteration of Ψ, there exist s ¡ 0, n P N and a free basis B of Fn such that, for
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every k P N, we have
`BpΨ

kpaΨqq ¤ spk � 1qn.

Hence, for every k P N, we have

`BpΨ
kptqq ¤ 1�

k�1̧

i�0

`BpΨ
ipaΨqq ¤ 1� spk � 1qn�1. (7.4)

Therefore, t has polynomial growth under iteration of Ψ and every element of Gc �
xGa, ty has polynomial growth under iteration of Ψ. Thus, for every ψ P H, we have
Gc � Polypψq and Gc � PolypHq. This proves the claim.

By Claim 1 and Equation (7.3), we have AP ¤ ApHq. We now prove that either
ApHq � trFnsu or AP � ApHq. Let K be a subgroup of Fn such that Fn � F � K.
Suppose first that the rank of K is at most equal to 1 and that the set of vertices Vf is
empty. Let k be a (possibly trivial) generator of K. Recall the definition of T 1 above
Lemma 7.5.5. Then F zT 1 is reduced to a vertex v. Therefore, we have AP � trF su.
Moreover, since H preserves the sporadic free factor system trF su, every element of H
has a representative which sends F to F and k to kg with g P F . In particular, as in
Equation (7.4), we have k P PolypHq, F �K � PolypHq and ApHq � trFnsu.

Claim 2. If either the rank of K is at least equal to 2 or Vf is nonempty, then
ApHq ¤ trF su.

Proof. We distinguish between two cases, according to the rank of K. When the rank
of K is equal to 0, the proof is trivial.

Case 1. Suppose that the rank of K is equal to 1 and that Vf is not empty.

Let k be a generator of K. Let v P Vf , let φ1 be a pseudo-Anosov element of
the surface Sv associated with π1pGvq. As explained above Lemma 7.5.5, the outer
automorphism φ1 induces an outer automorphism pφ1 of F . Let g1 P Gv be such that g1 is
not contained in the conjugacy class of the group generated by the homotopy class of any
boundary component of Sv. Let pΦ1 be a representative of pφ1. Let pΦ be an automorphism
of Fn which acts as pΦ1 on F and sends k to kg1, and let pφ be the outer automorphism
class of pΦ. Suppose that Appφq ¦ trF su. By [Gue5, Lemma 5.18 p7q] applied to F � trF su
with the element pφ1 P OutpFn,Fq (recall that F is a sporadic free factor of Fn), there
exists g P Fn such that Fn � F � xgy and either Appφq � Appφ1q Y trxgysu or there exists
a subgroup A of F such that rAs P Appφ1q and Appφq � pAppφ1q � trAsuq Y trA � xgysu.
In the first case, let h P F be nontrivial. Let Ψ be the automorphism of Fn such that
ΨpF q � F , Ψ|F � pΦ1 and Ψ sends g to gh with h P F nontrivial and let ψ be the outer
automorphism class of Ψ. Note that ψ P OutpFn, P

ptqq. Then ψ does not preserve the
conjugacy class of g. Thus, we have ApHq ¤ Apψq ¤ trF su.

Suppose that there exists a subgroup A of F such that rAs P Appφ1q and Appφq �
pAppφ1q � trAsuq Y trA � xgysu. Note that pφ has a representative pΦ0 such that pΦ0pF q �
F , pΦ0pAq � A and pΦ0pA � xgyq � A � xgy. Then, up to composing pΦ0 by an inner
automorphism ada0 with a0 P A, we may suppose that pΦ0 sends g to ga with a P A.
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Moreover, since we have PolypHq � Polyppφq, if h1 P Fn is an trF su-nonperipheral element
such that h1 P PolypHq, then h1 is contained in a conjugate of A � xgy. Let h P F be an
Appφq-nonperipheral element and let ψ P OutpFn, P

ptqq be such that there exists Ψ P ψ
with ΨpF q � F , Ψ|F � pΦ0|F and Ψ sends g to gh. The element h exists since φ1 is a
pseudo-Anosov of Sv, in particular, pφ1 is an exponentially growing outer automorphism
of F . By Claim 2 in the proof of Lemma 7.4.1, for every a1 P Fn, the intersection
pa1ΨpA � xgyqa1�1q X pA � xgyq is contained in conjugates of A. Note that ΨpA � xgyq
is the only (up to conjugacy) polynomial subgroup of ψpφψ�1 which contains trF su-
nonperipheral element. Thus, every element of A � xgy which is not contained in a
conjugate of A has exponential growth under iteration of ψpφψ�1. In particular, we have
ApHq ¤ trF su.

Case 2. Suppose that the rank of K is at least equal to 2.

Note that we have OutpFn, F
ptqq � OutpFn, P

ptqq and that F is a nonsporadic free
factor of Fn. By [GuH2, Theorem 7.4], since OutpFn, F

ptqq does not preserve the con-
jugacy class of any trF su-peripheral element of Fn, the group OutpFn, F

ptqq contains a
fully irreducible atoroidal element φ2 of Fn relative to trF su. By Proposition 7.3.1 p1q,
there does not exist an trF su-nonperipheral element of Fn which has polynomial growth
under iteration of φ2. Thus we have Apφ2q ¤ trF su. Thus, we have ApHq ¤ trF su. This
proves Claim 2.

By Claim 2 and the paragraph above Claim 2, either ApHq � trFnsu or ApHq ¤
trF su. We are thus left with the case ApHq ¤ trF su. In this case, we prove that
AP � ApHq. Since AP ¤ ApHq, it remains to prove that every AP -nonperipheral
element of F is ApHq-nonperipheral. Let g P F be AP -nonperipheral. Recall that
T 1 is the tree obtained from T by collapsing every edge of T which is not adjacent to
a flexible vertex. Note that, if a vertex v of T 1 is not the image of a flexible vertex
of T , then its stabilizer is a conjugate of some Gc with C a connected component of
F zpT � Vf q. In particular, we have rGcs P AP . Suppose first that g fixes a point in
T 1. Since g is AP -nonperipheral, the element g fixes a flexible vertex v of Fn and is not
conjugate to an element of Fn contained in the group generated by the homotopy class of
a boundary component of Sv. Let φ1 P OutpGvq be the outer automorphism associated
with a pseudo-Anosov element of Sv. Then g has exponential growth under iteration
of pφ1 P OutpFn, P

ptqq. Thus, we have g R PolypHq. Suppose now that g is loxodromic
in T 1. Then its axis contains the image of a flexible vertex v P Vf . By Lemma 7.5.5,

g has exponential growth under iteration of pφ1 P OutpFn, P
ptqq. Therefore, every AP -

nonperipheral element of F is ApHq-nonperipheral. Thus, we have ApHq � AP .
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[KV] S. Krstić et K. Vogtmann. Equivariant outer space and automorphisms of free-
by-finite groups. Comment. Math. Helv. (2) 68 (1993) 216–262.

[Lev1] G. Levitt. Automorphisms of hyperbolic groups and graphs of groups. Geom.
Dedicata. (1) 114 (2005) 49–70.

[Lev2] G. Levitt. Counting growth types of automorphisms of free groups. Geom. Funct.
Anal. 19 (2009) 1119–1146.

[LL] G. Levitt et M. Lustig. Irreducible automorphisms of Fn have north-south dy-
namics on compactified outer space. J. Inst. Math. Jussieu 2 (2003) 59–72.

337



[LS] A. Lubotzky et D. Segal. Subgroup growth. Progress in Mathematics, 212
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[Pau1] F. Paulin. Topologie de Gromov équivariante, structures hyperboliques et arbres
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Titre : Géométrie, dynamique et rigidité de groupes d'automorphismes de produits libres
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Résumé : Dans cette thèse, nous étudions des résul-

tats de rigidité de groupes d'automorphismes de cer-

tains groupes hyperboliques au sens de Gromov. La

première partie de la thèse est consacrée à l'étude

du groupe OutpWnq des automorphismes extérieurs

d'un groupe de Coxeter universel de rang n, pro-

duit libre de n copies d'un groupe cyclique d'ordre

2. Nous montrons que tout isomorphisme entre sous-

groupes d'indices �ni de OutpWnq est induit par une

conjugaison globale par un élément de OutpWnq.
Dans une deuxième partie, nous étudions le groupe

OutpFnq des automorphismes extérieurs d'un groupe

libre non abélien de rang n. Soit H un sous-groupe

de OutpFnq. Nous étudions l'existence d'éléments

génériques dans H au sens suivant. Un élément f
de H est dit générique si, pour toute classe de con-

jugaison c d'éléments de Fn, nous avons la propriété

suivante : il existe un polynôme P à coe�cients dans

R tel que la longueur de fnpcq est équivalente à P pnq
si, et seulement si, pour pour tout élément h de H, il

existe un polynôme Qh à coe�cients dans R tel que la

longueur de hnpcq est équivalente à Qhpnq.

Title: Geometry, dynamics and rigidity of automorphism groups of free products

Keywords: groups, geometric group theory, rigidity, dynamics

Abstract: In this thesis we study rigidity properties

of automorphism groups of some Gromov hyperbolic

groups. In the �rst part of the thesis, the main group

of interest is the group OutpWnq of outer automor-

phisms of a universal Coxeter group of rank n, which
is the free product of n copies of a cyclic group of or-

der 2. We prove that every isomorphism between �nite

index subgroups of OutpWnq is induced by a global

conjugation by an element of OutpWnq. In the sec-

ond part of the thesis, we study the group OutpFnq

of outer automorphisms of a nonabelian free group of

rank n. Let H be a subgroup of OutpFnq. We study

the existence of generic elements of H in the follow-

ing sense. We say that an element f of H is generic

if, for every conjugacy class c of elements of Fn, we
have the following property: there exists a polynomial

P with coe�cients in R such that the length of fnpcq
is equivalent to P pnq if and only if for every element h
of H, there exists a polynomial Qh with coe�cients in

R such that the length of hnpcq is equivalent to Qhpnq.
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