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Introduction

This thesis will be devoted to the study of the sampling of Restricted Boltzmann
Machines (RBM) and the study of epistasis on an alpha-helix of the TEM-1 β-lactamase.
These two themes may at first seem rather distant, but these two themes will converge
together when we use RBM to study β-lactamases in Chapter 9.

This thesis is divided into four distinct parts.

Part I will be devoted to a general introduction to the Restricted Boltzmann Machines
from a machine learning and physics point of view. The purpose of this part is to introduce
the concepts that will be useful for Part II.

• Chapter 1 introduces the RBM, their different influencing parameters, and the
different learning algorithms used to train them. This chapter reviews the different
applications, past or present, of RBM in the machine learning community.

• Chapter 2 introduces the Hopfield network and different results on storing memories
with it. It links with RBM and shows different ways to store and retrieve memories
with a RBM. It also reviews the various known results on RBM from the statistical
physics community.

Part II will be devoted to the study of the sampling of an energy landscape with
RBM and gathers the main theoretical and numerical results that we found during this
thesis. This section highlights that Alternating Gibbs Sampling is just as inefficient as
Metropolis-Hastings to sample an energy landscape. However, we show that the sampling
can be improved by taking advantage of the representations learned by the RBM in its
hidden space.

• Chapter 3 is devoted to the study of the canonical sampling algorithm, Alternating
Gibbs Sampling. We show that this algorithm is just as inefficient as a classical
Metropolis-Hastings. Nevertheless, the space of hidden units allows extracting a
useful representation of the data, and the use of Metropolis-Hastings in this space
improves the sampling. This chapter is based on our following publication, accepted
in Physical Review E :

[1] Roussel, C., Cocco, S., and Monasson, R. (2021). Barriers and Dynamical
Paths in alternating Gibbs sampling of restricted Boltzmann machines, Physical
Review E

• Chapter 4 is devoted to the study of RBM sampling using the Deep Tempering
algorithm. This algorithm is based on a stack of RBM that can exchange their
configurations to improve the sampling. We show that this overcomes the limitations
observed by our sampling in the hidden space in Chapter 3. This chapter is based on

https://doi.org/10.1103/PhysRevE.104.034109
https://doi.org/10.1103/PhysRevE.104.034109
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our paper, in preparation:

[2] Roussel, C., Cocco, S., and Monasson, R. (2021). Improving Sampling of Restricted
Boltzmann Machines with Deep Tempering, In preparation

Part III will be devoted to a general introduction on proteins, and the use of Potts
models and neural networks to predict their structures and the effects of mutations. This
part is intended to be introductory, and to bring useful elements of understanding for the
Part IV devoted to class A β-lactamases.

• Chapter 5 is an introduction to proteins for physicists. It highlights the importance
of the 3D structure of proteins on their functionalities and the experimental and
theoretical difficulties of obtaining the structure. In addition, it introduces the
concept of protein co-evolution, which gives hope to the determination of the protein
structure from its sequence.

• Chapter 6 introduces in detail the Direct Coupling Analysis, based on Potts models,
which allows predicting the protein structure from the sequences of a protein family,
and to score them. It details the different technical aspects of this method, and also
presents some recent advances using neural networks.

Part IV will be devoted to a particular protein family, the β-lactamases.

• Chapter 7 is devoted to the study of epistasis on the α-helix of the TEM-1 β-
lactamase. We show that a two-state model well captures this epistasis and that
coupled to a Potts model trained on a multiple sequence alignment, it allows de-
termining the sign of the epistasis. This chapter is based on our paper, in preparation:

[3] Birgy, A.†, Roussel, C.†, Kemble, H., Mullaert, J., Panigoni, K., Chapron, A.,
Chatel, J., Magnan, M., Jacquier, H., Cocco, S., Monasson, R., Tenaillon, O., Origins
and breadth of pairwise epistasis in an α-helix of β-lactamase TEM-1, In preparation
(†: joint first authors)

• Chapter 8 presents preliminary results on the influence of amoxicillin concentration
in TEM-1 log-fitness and epistasis.

• Chapter 9 presents how RBM can identify through their weights relevant information
concerning the phylogeny, the functionality, and the structure of class A β-lactamases.
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Résumé substantiel en français

Dans cette thèse, mon attention s’est portée à la fois sur les machines de Boltzmann
restreintes (RBM) ainsi que sur une protéine nommée TEM-1 issue de la famille des
β-lactamases. Ces deux sujets peuvent sembler de prime abord relativement disjoints,
mais comme nous le verrons par la suite, les machines de Boltzmann restreintes, et plus
généralement la physique statistique, se sont trouvées fort utiles pour étudier ladite protéine.

Résultats obtenus sur les machines de Boltzmann restreintes
Présentation succincte des machines de Boltzmann restreintes

Les machines de Boltzmann restreintes sont des réseaux de neurones artificiels inventés
en 1986 par Paul Smolensky (Smolensky, 1986). Ces machines, comme leur nom l’indique,
sont un cas particulier des machines de Boltzmann inventées trois ans plus tôt par Geoffrey
Hinton et Terrence Sejnowski (Hinton and Sejnowski, 1983).

Les machines de Boltzmann restreintes sont des réseaux de neurones artificiels à deux
couches, l’une nommée visible v, qui représente les données, l’autre appelée cachée h, qui
est l’espace des représentations des données (Fig. 1(a)). Ces deux couches forment un
graphe non orienté, et l’ensemble des variables aléatoires v = {vi}i=1...N et h = {hµ}µ=1...M
vérifie une propriété de Markov relativement à ce graphe. Les deux couches sont connectées
par une matrice de poids W, et on peut définir une probabilité jointe de Boltzmann sur
les configurations v et h

P (v,h) = 1
Z

exp(−E(v,h)), (1)

où l’énergie E(v,h) s’écrit sous la forme

E(v,h)=−
N∑
i=1

M∑
µ=1

Wiµvihµ+
M∑
µ=1
Uµ(hµ)+

N∑
i=1
Vi(vi). (2)

Le caractère "restreint" des RBM provient du fait que le graphe est biparti, c’est-à-dire
qu’il n’y a des connexions qu’entre les unités visibles et cachées, et non pas directement
entre les unités visibles d’une part, et les unités cachées d’autre part.

Les machines de Boltzmann restreintes sont entraînées en maximisant la log-
vraisemblance sur les données d’entraînement. Après l’apprentissage, les paramètres
de la machine sont fixés, ce qui détermine la distribution de probabilité (Eq. (1)) ainsi que
la représentation des données.

Une fois entraînées, ces machines peuvent générer de nouvelles données grâce à
l’échantillonnage alterné de Gibbs (Fig. 1(b)). Celui-ci se décompose en deux étapes :

• En partant d’une configuration visible vt au temps t, une configuration cachée ht+1

est échantillonnée selon P (h|vt). Cette étape peut-être vue comme une extraction
stochastique des représentations de la configuration vt.
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Figure 1: Description des machines de Boltzmann restreintes ainsi que l’échantillonnage
alterné de Gibbs. (a) Architecture bipartite des machines de Boltzmann restreintes avec la
couche visible en bleu et la couche cachée en vert. (b) Échantillonnage alterné de Gibbs.
Les couches visibles et cachées sont échantillonnées alternativement.

• Une nouvelle configuration visible vt+1 est échantillonnée selon P
(
v|ht+1). Cette

étape peut-être vue comme une reconstruction stochastique de v à partir de la
représentation ht+1.

Résultats obtenus
Dans cette thèse, nous nous sommes intéressés aux propriétés de l’échantillonnage

alterné de Gibbs. Ces résultats sont détaillés dans le papier suivant (Roussel et al., 2021)
publié dans Physical Review E.

Dans un premier temps, nous avons étudié les trajectoires dans l’espace visible obtenues
à l’aide de l’échantillonnage alterné de Gibbs entre deux minima locaux d’un paysage
énergétique Eeff(v) défini via

P (v) =
∫
dhP (v,h) = 1

Z
exp

(
−Eeff(v)

)
, (3)

Nous avons montré que l’échantillonnage alterné de Gibbs permet de trouver des trajec-
toires optimales entre les minima locaux de Eeff(v). Néanmoins, de larges barrières d’énergie
libre, extensives dans la taille du système, sont présentes le long de la trajectoire. Par
conséquent, l’échantillonnage alterné de Gibbs est tout aussi inefficace que l’échantillonnage
de Eeff(v) à l’aide d’un algorithme de Metropolis-Hastings classique. De plus, pour un
paysage Eeff(v) donné, ce résultat ne dépend pas de la représentation des configurations
visibles dans l’espace des unités cachées, c’est-à-dire que les barrières sont les mêmes pour
tout paysage E(v,h) qui a comme distribution marginale P (v) = 1

Z exp
(
−Eeff(v)

)
.

Ce résultat est valide pour des modèles en champs moyens, et ne semble pas dépendre
de la structure des minima. En effet, que ce soit pour des modèles où les minima sont
décorrélés ou bien reliés par symétrie globale, comme par exemple pour le modèle de Curie-
Weiss ou de Hopfield (1982), ou bien pour des modèles avec structure, où les minima ont
une organisation non triviale et qui représente mieux ce qui est observé sur des données, de
larges barrières d’énergie libre sont observées le long de la trajectoire. Pour les modèles avec
structure, l’organisation non triviale des minima gouvernent les trajectoires optimales dans
Eeff(v). Ces trajectoires peuvent être interprétées plus ou moins facilement dans l’espace
caché. Contrairement aux barrières qui ne dépendent que de Eeff(v), cette interprétation
dépend des représentations apprises par la RBM et donc de E(v,h).



Résumé substantiel en français XIX

Nous avons aussi montré que dans le cas où les représentations dans l’espace des unités
cachées encodent des modes collectifs d’unités visibles relativement indépendantes, et si le
nombre D d’unités cachées à changer d’états est faible pour passer d’un minima de Eeff(v)
à un autre, utiliser l’algorithme de Metropolis-Hastings dans l’espace des unités cachées
permet d’accélérer l’échantillonnage. Cette dimension D dépend à la fois des données et
de la représentation apprise par la RBM. Utiliser des pénalisations de la log-vraisemblance
lors de l’entraînement de la RBM pour imposer une représentation où D est faible est
possible dans certains cas. Néanmoins, dans certains cas, D est du même ordre que le
nombre M d’unités cachées et notre algorithme est inefficace.

Dans un second papier, en cours d’écriture, nous avons étudié une stratégie
d’échantillonnage pour palier le cas où un nombre macroscopique D d’unités cachées
doivent changer d’états au même moment pour changer de mode. Notre stratégie re-
pose sur une pile de machines de Boltzmann restreintes ainsi que sur l’algorithme "Deep
Tempering" développé par Desjardins et al. (2014) pour entraîner des réseaux profonds
(Fig. 2).

Figure 2: (a) Exemple avec trois machines de Boltzmann restreintes. Le nombre d’unités
visibles de (n+ 1)ème RBM est égal au nombre d’unités cachées de la nème RBM. (b)
Illustration du Deep Tempering (ici entre la nème et la (n+1)ème RBM). L’échantillonnage
alterné de Gibbs est utilisé pour générer les configurations. Les dynamiques sont couplées
et des échanges de configurations sont possibles entre les configurations visibles vn+1 de la
(n+ 1)ème RBM et les configurations cachées hn de la nème RBM. Ces configurations sont
échangées avec une probabilité An(htn,vtn+1) (Eq. (1.18)). Cet algorithme a été initialement
développé par Desjardins et al. (2014) pour entraîner des réseaux profonds.

Comme nous avons vu que les machines de Boltzmann restreintes étaient capables
de détecter des modes collectifs dans les données, nous allons utiliser des machines de
Boltzmann restreintes pour détecter des modes collectifs d’unités cachées d’une RBM
donnée pour améliorer son échantillonnage (la RBM en bas de la Figure 2(a)).

Nous avons étudié théoriquement l’échantillonnage de Gibbs alterné pour une RBM
entraînée sur des données représentées par des clusters orthogonaux, et nous l’avons
comparé à l’échantillonnage à l’aide d’une seconde RBM couplée avec l’algorithme du
Deep Tempering (Desjardins et al., 2014). Nous avons montré que diminuer le nombre
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d’unités cachées de la seconde RBM et limiter la norme de sa matrice de poids permet
d’accélérer l’échantillonnage entre les différents modes. De plus, sur des vraies données,
comme MNIST 0/1 (LeCun, 1998) ou les Lattice Protein (Shakhnovich and Gutin, 1990;
Mirny and Shakhnovich, 2001), où un nombre macroscopique D d’unités cachées doivent
changer d’états au même moment pour changer de modes, nous avons montré que cet
algorithme permet en effet d’échantillonner entre des modes distants, là où l’échantillonnage
de Gibbs alterné ou notre version modifiée avec le Metropolis-Hastings dans l’espace caché
échoue à échantillonner correctement entre les modes distants.

Résultats obtenus sur les β-lactamases
Notre travail sur les β-lactamases, et plus particulièrement sur TEM-1 est le fruit d’une

collaboration avec le groupe d’Olivier Tenaillon de l’hôpital Bichat. Les β-lactamases
sont des protéines responsables de la résistance aux antibiotiques à base de β-lactamines,
couramment utilisés pour le traitement des infections à pneumocoques.

Quel est le lien entre cette protéine et la physique statistique ?
Les protéines sont caractérisées par longue séquence de briques élémentaires, appelées

acides aminés. Ces protéines ont une structure 3D qui détermine leurs propriétés. Déter-
miner la structure de la protéine, et donc son phénotype, est un enjeu crucial en biologie
ou en pharmacologie. Expérimentalement, il n’est pas simple d’obtenir la structure d’une
protéine, car cela repose sur des procédés chronophages et coûteux, comme par exemple la
cristallographie. Néanmoins, depuis une vingtaine d’années, les progrès dans le domaine du
séquençage ont permis de constituer de larges bases de données de séquences de protéines.
De nombreuses techniques ont été développées pour essayer de prédire la structure à partir
de la séquence.

La majeure partie de ces techniques reposent sur un alignement de séquences (MSA). Un
alignement de séquences regroupe plusieurs protéines issues de différents types d’organisme,
mais ayant la même fonctionnalité, et donc ayant probablement la même structure. Ces
différentes protéines ont des séquences distinctes du fait de l’évolution. Néanmoins, en
analysant ces alignements de séquences, certaines régularités apparaissent, notamment,
certains sites ont l’air de coévoluer, c’est-à-dire qu’il y a des corrélations à deux points fortes
dans l’alignement. Une hypothèse majeure est de considérer que deux sites qui coévoluent
ont de fortes chances d’être proches dans la structure 3D de la protéine. Néanmoins,
analyser directement les corrélations à deux points pour déterminer les sites en contact
n’est pas satisfaisant : tout comme en physique statistique, des couplages entre deux sites
voisins peuvent créer des corrélations à longue distance. L’idée de Weigt et al. (2009),
appelée Direct Coupling Analysis (DCA), est de trouver les couplages responsables de ces
corrélations, et de les utiliser pour prédire si deux sites sont en contact ou non. Cette
technique repose sur l’inférence d’un modèle de Potts sur l’alignement de séquences et
a montré ses preuves dans la prédiction de sites en contact sur de nombreuses familles
de protéines. De plus, le modèle de Potts apprend une distribution de Boltzmann : plus
l’énergie du modèle est basse, plus une séquence a de chance d’appartenir à la famille
de protéines sur laquelle a été entraînée le modèle de Potts. Cela permet donc d’évaluer
théoriquement l’effet des mutations d’une protéine sur sa fonctionnalité. Et c’est ce que
nous avons fait sur les expériences réalisées par le groupe d’Olivier Tenaillon. Il est aussi
possible d’entraîner des machines de Boltzmann restreintes sur ces alignements de séquences,
pour à la fois donner un score à des séquences via l’énergie de la RBM, et aussi pour
apprendre des représentations de la famille de protéines en question. Comme nous allons
le voir par la suite, les poids de la RBM dans sa phase compositionnelle peuvent encoder
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des fonctionnalités (Tubiana et al., 2019a,b), qui permettent de séparer et classifier les
différentes sous-familles d’une famille de protéines.

Résultats
Leurs expériences consistent à mesurer les effets des mutations d’acide aminés sur une

hélice α de la protéine TEM-1 à travers l’évaluation de la valeur sélective du mutant. La
valeur sélective mesure le taux de croissance d’une bactérie porteur de ce mutant dans un
milieu avec antibiotique. Plus cette valeur sélective est élevée, plus le mutant dégrade le
médicament, et donc plus la bactérie est résistante à l’antibiotique. Nous avons développé
une procédure d’inférence pour déterminer cette valeur sélective à partir des données
expérimentales.

De notre côté, nous avons pu donner un score à chacun de ces mutants grâce à nos
modèles de Potts, ou bien nos RBM. Les prédictions théoriques et expérimentales sont
fortement corrélées, mais non linéairement.

L’objectif de l’expérience était aussi de caractériser l’épistasie. L’épistasie fait référence
à la dépendance contextuelle des effets de la mutation, et plus précisément dans notre cas,
aux interactions entre mutations qui se traduisent par la non-additivité des effets sur la
valeur sélective (en échelle logarithmique). L’épistasie entre les mutations A et B peut être
estimée comme l’écart entre le logarithme de valeur sélective observée des doubles mutants,
AB, et la somme des logarithmes des valeurs sélectives des deux mutations individuelles (A
et B).

La relation entre la valeur sélective et les énergies de nos modèles étant non-linéaire,
les prédictions d’épistasie à partir de la différence des énergies n’est pas un indicateur
pertinent.

Pour expliquer l’épistasie mesurée dans l’expérience, nous avons développé un modèle
à deux niveaux

log
(
W

W0

)
= log

(
1 + exp

(∆G0
RT

))
− log

(
1 + exp

(∆G0 + ∆∆G
RT

))
. (4)

où W (respectivement W0) est la valeur sélective du mutant (respectivement de TEM-
1). Nous avons inféré les paramètres du modèle de stabilité ∆∆G et ∆G0. ∆G0 est
un paramètre global et chaque mutant simple A a son propre ∆∆GA. Une hypothèse
importante est l’additivité de ces paramètres : le paramètre du double mutant AB s’écrit
comme la somme des paramètres des mutants simples A et B (∆∆GAB = ∆∆GA+∆∆GB).
Ce modèle reproduit bien les données observées expérimentales, malgré certaines déviations.
Un résultat intéressant est la linéarité observée entre les paramètres du modèle de stabilité
et l’énergie de nos modèles entraînés sur les alignements de séquences : en combinant les
énergies de nos modèles et le modèle à deux niveaux, nous sommes en mesure de prédire le
signe de l’épistasie expérimentale pour un grand nombre de mutants. Ces résultats sont
détaillés dans une publication à venir.

Nous avons aussi analysé l’évolution de la valeur sélective et de l’épistasie en fonction
de la concentration d’antibiotique dans le milieu. Nous avons observé des effets de
saturation de la valeur sélective : un mutant est viable jusqu’à une certaine concentration
d’antibiotique. Ces effets de saturation ont un effet direct sur l’évolution de l’épistasie en
fonction de la concentration, créant des effets de saturation ainsi qu’une évolution non
monotone en fonction de la concentration, tout en gardant un signe constant. Ces effets
sont qualitativement reproduits par un modèle à deux niveaux où ∆G0 dépend désormais
de la concentration.

Nous avons enfin utilisé nos machines de Boltzmann restreintes pour analyser la classe
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A de la famille des β-lactamases. En nous plaçant dans la phase compositionnelle des
RBM (Tubiana and Monasson, 2017), phase où un nombre faible d’unités cachées sont
activées simultanément pour représenter une séquence, nous avons pu extraire des poids
ayant un sens biologique. De plus, nous avons pu nous servir de ces poids pour séparer
les différentes séquences en différentes sous-familles caractérisées expérimentalement par
Philippon et al. (2016, 2019).



I
1 Restricted Boltzmann Machines: an introduc-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Historical background
1.2 Description of the Restricted Boltzmann Machines
1.3 Training Restricted Boltzmann Machines
1.4 What are RBM for?
1.5 Datasets

2 Storing patterns and statistical mechanics of
Restricted Boltzmann Machines . . . . . . . . . . 17

2.1 Autoassociative memory: Little and Hopfield models
2.2 Bidirectional Associative Memory
2.3 Bernoulli-Bernoulli Restricted Boltzmann Machines are univer-

sal approximators
2.4 Representation and sampling
2.5 What does statistical mechanics tell us about RBM?

Restricted Boltzmann
Machines: an overview

from a machine learning
and statistical mechanics

perspectives



2

Part I summary
Restricted Boltzmann Machines are neural networks that have been studied by several

scientific communities, be it information, statistical physicists, or neuroscientists, for
different purposes.

This first part aims to introduce Restricted Boltzmann Machines, and to understand
their influential parameters, and why they have attracted different communities.

In Chapter 1, we will present in detail the different training algorithms of these machines,
which are mainly based on variants of Alternating Gibbs Sampling, which will be the main
subject of study in Chapter 3.

Chapter 2 will make the link between classical models of statistical physics and RBM.
As we will see, the RBM has an additional richness compared to these models thanks to
its representations in its hidden space. These representations will be the key to go further
than Alternating Gibbs Sampling, and improve the sampling of these models. We will also
detail the known results on RBM derived by the statistical physics community, which will
be useful later on, when we will study the sampling properties of RBM in Chapters 3 and 4,
and we use RBM for analyzing class A β-lactamases in Chapter 9.

This part will give the necessary tools to understand Part II, which is the heart of my
work on the RBM presented in this manuscript.



1
Restricted Boltzmann Machines: an introduction

This chapter presents the Restricted Boltzmann Machines (RBM) from different points
of view. First, from a historical point of view, to understand why RBM are such particular
objects of study and so appreciated by statistical physicists. Then we will describe these
networks and focusing on technical issues, which concern the training of RBM and the
evaluation of its partition function. Finally, we describe briefly the various applications of
RBM and datasets we used for numerical experiments.

1.1. Historical background

Since the XIXth century and the work of the pioneers in thermodynamics James Clerk
Maxwell, Ludwig Boltzmann, and Josiah Willard Gibbs, statistical physicists have been
interested in the macroscopic properties of large ensembles of microscopic particles. These
works have led to important theoretical advances and the development of many concepts,
such as the Boltzmann distribution or the entropy of a system. As Philip Warren Anderson
pointed out in his famous article "More is different": "the behavior of large and complex
aggregates of elementary particles, it turns out, is not to be understood in terms of a
simple extrapolation of the properties of a few particles." (Anderson, 1972). Concepts
like symmetry breaking or phase transitions have been introduced to understand these
differences between finite and infinite numbers of particles. Many models of interacting
particles, later called spins, have been developed to understand these critical phenomena,
such as magnetism (Ising, 1925; Onsager, 1944). To model these phenomena, these
models describe the behavior of a large number N of spins vi =±1 (v = {vi}i=1...N ) via a
Hamiltonian E(v|Θ) which describes the interactions between the spins. Θ describe here
the ensemble of parameters of the Hamiltonian. Critical phenomena emerge in the so-called
thermodynamic limit N →∞ and can be understood as changes of some quantities, called
order parameters.

In the early 1980s, these models were applied to other fields, such as neuroscience and
artificial intelligence. From the 1980s onwards, these models of interacting spins have
been used to describe neural networks. These spins vi±= 1 represent McCulloch Pitts
neurons (McCulloch and Pitts, 1943), and the interactions described in the Hamiltonian
E(v|Θ) correspond to the synapses connecting these different neurons. One of the first
milestones is due to John Hopfield and William Little, who showed that a neural network
could store memories (called patterns) (Little, 1974; Little and Shaw, 1975; Hopfield, 1982).
In the Hopfield model, the parameters Θ of the Hamiltonian are fixed by Hebb’s rule
(Hebb, 1949), which states that "cells that fire together, wire together.". In 1985, Geoffrey
Hinton and Terrence Sejnowski introduced the Boltzmann Machines (BM) (Hinton and
Sejnowski, 1983), where the parameters of the Hamiltonian are restricted to fields and
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couplings (Θ = {gi,Jij}) and can be tuned through Monte Carlo simulations (Ackley et al.,
1985). Instead of having a fixed learning rule such as Hebb’s rule in the Hopfield model,
the parameters Θ of the BM are learned to store the patterns. In 1986, Paul Smolensky
introduced the Restricted Boltzmann Machines (called Harmonium initially), which are a
special case of BM with two distinct layers (Smolensky, 1986).

Although BM and RBM have shown their ability in several tasks, they were abandoned
at the end of the 1980s because of their difficult training. They were supplemented by other
models with different architectures whose learning is based on backpropagation (Rumelhart
et al., 1986). In 2002, Geoffrey Hinton developed an efficient algorithm for training RBM
called Contrastive Divergence (CD) (Hinton, 2002). This algorithm caused a surge in the
use of RBM: RBM will be used as building blocks for deeper networks, such as Deep Belief
Networks (DBN) (Hinton and Salakhutdinov, 2006; Hinton et al., 2006; Salakhutdinov and
Murray, 2008) or Deep Boltzmann Machines (DBM) (Salakhutdinov and Hinton, 2009;
Salakhutdinov and Larochelle, 2010). These deep structures based on a stack of RBM have
shown their ability to learn useful data representations and to generate new data (Bengio
et al., 2013).

Nevertheless, these networks were gradually abandoned by the machine learning com-
munity at the end of the 2010s, due in part to technical improvements in hardware, as well
as to the constitution of large training databases, which allowed the emergence of new deep
neural networks, such as Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997), Convolutional Neural Networks (CNN) (LeCun et al., 1998), Variational Auto
Encoders (VAE) (Kingma and Welling, 2014) or Generative Adversarial Network (GAN)
(Goodfellow et al., 2014). For an introduction to Deep Learning, we invite the reader to
read the book "Deep Learning" by Goodfellow et al. (2016).

However, RBM have remained very popular among physicists as an object of theoretical
studies (Agliari et al., 2012; Tubiana and Monasson, 2017; Decelle et al., 2017, 2018; Barra
et al., 2018; Hartnett et al., 2018; Decelle and Furtlehner, 2020a,b; Alberici et al., 2020;
Leonelli et al., 2021; Roussel et al., 2021; Decelle et al., 2021). They have also shown their
usefulness in some fields, such as extracting interesting representations in proteins families
or for antigens (Tubiana et al., 2019a,b; Shimagaki and Weigt, 2019; Bravi et al., 2021a,b).

1.2. Description of the Restricted Boltzmann Machines
1.2.1 Boltzmann Distribution

Restricted Boltzmann Machines are undirected probabilistic graphical models with
two layers. A visible layer v, which represents the data, is connected to a hidden layer h
through a weight matrix W (Fig. 1.1(a)).

The visible layer includes N units vi, and the hidden layer M units hµ, which can take
discrete or continuous values. The joint probability distribution of the visible configuration
v = {vi}i=1...N and of the hidden configuration h = {hµ}µ=1...M reads

P (v,h) = 1
Z

exp(−E(v,h)), (1.1)

The energy E(v,h) is equal to

E(v,h)=−
N∑
i=1

M∑
µ=1

Wiµvihµ+
M∑
µ=1
Uµ(hµ)+

N∑
i=1
Vi(vi). (1.2)

In the formula above, Uµ and Vi are potentials acting on, respectively, hµ and vi.
Depending on the nature of the data and on the applications, many parametric potentials

are used in the literature, such as
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Figure 1.1: Description of the Restricted Boltzmann Machines and of Alternating Gibbs
Sampling. (a) Bipartite architecture of RBM, with the visible (blue) and hidden (green)
layers. (b) Alternating Gibbs Sampling: hidden and visible configurations are conditionally
sampled from one another.

• Bernoulli potential: U(x) =−gx, with x ∈ {0,1}

• Spin potential: U(x) =−gx, with x ∈ {−1,1}

• Potts potential with q-states: U(x) =−g(x), with x ∈ J1, qK

• Gaussian potential: U(x) = 1
2γx

2 +θx, x ∈ R

• ReLU potential: U(x) = 1
2γ+x

2 +θ+x, x ∈ R+

• dReLU potential: U(x) = 1
2γ+x

2
+ + θ+x+ + 1

2γ−x
2
−+ θ−x−, x ∈ R+, x ∈ R, x+ =

max(0,x), x− = min(0,x).

The properties of the RBM depend crucially on these potentials. In the following,
when the knowledge of potentials is essential, we will put them forward in the following
way: Spin-Gaussian RBM denotes a RBM with Spin potential acting on the visible units
and Gaussian potential acting on the hidden units. As an example, Spin-Gaussian RBM
can represent the Hopfield model, (Agliari et al., 2012) and Bernoulli-Bernoulli RBM are
known to be universal approximators (i.e., can approximate any distribution over the
visible variables) when its number of hidden units goes to infinity (M →∞) (Le Roux and
Bengio, 2008). We will come back to these two models in detail in Chapter 2.

RBM learn a joint Boltzmann distribution P (v,h) by maximizing the log-likelihood of
the data configurations:

P (v) =
∫
dhP (v,h) = 1

Z
exp

(
−Eeff(v)

)
, (1.3)

with

Eeff(v) =
N∑
i=1
Vi(vi)−

M∑
µ=1

Γµ(Iµ(v)), (1.4)

where

Iµ(v) =
N∑
i=1

Wiµvi, (1.5)
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is the input received by hidden unit hµ and

Γµ(I) = log
(∫

dhexp(−Uµ(h) +hI)
)
, (1.6)

is the cumulative generative function associated with the potential Uµ. Parameters Θ≡
{Wiµ,Uµ,Vi} modulate the energy landscape Eeff(v).

Similarly, we can define

P (h) =
∫
dvP (v,h) = 1

Z
exp

(
−Eeff(h)

)
, (1.7)

with

Eeff(h) =
M∑
µ=1
Uµ(hµ)−

N∑
i=1

Γi(Ii(h)), (1.8)

where

Ii(h) =
M∑
µ=1

Wiµhµ, (1.9)

is the input received by visible unit vi and

Γi(I) = log
(∫

dv exp(−Vi(v) +vI)
)
. (1.10)

1.2.2 Sampling
If the set of parameters Θ is known, the RBM model distribution is fully defined. Then,

Alternating Gibbs Sampling between the visible and hidden layers is used to generate
samples from P (v).

The pseudocode of AGS is given in Algorithm 1 (Fig. 1.1(b)). It is mainly composed of
two steps:

• Starting from a visible configuration vt at time t, a hidden configuration ht+1 is
drawn from P (h|vt). This step can be seen as a stochastic feature extraction from
the configuration vt.

• A new visible configuration vt+1 is drawn from P
(
v|ht+1). This step can be seen as

a stochastic reconstruction of v from the latent configuration ht+1.

Algorithm 1: Alternating Gibbs Sampling
Choose a random vector v0;
for t ∈ J0,T K do

ht+1 ∼ P (h|vt);
vt+1 ∼ P

(
v|ht+1);

end

The properties of AGS for sampling an energy landscape will be studied in detail in
Chapter 3.
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1.2.3 Representation in the hidden space
As seen in the previous part, it is easy to go from the visible space to the hidden space

(and vice versa) with RBM, through the stochastic mappings P (h|v) and P (v|h) which
can be factorized. It is therefore possible to define the representation of a vector v of the
visible layer in the space of the hidden units as the most probable h given v

h∗µ = argmax
hµ

P (hµ|v)≡ fµ(v) = (U ′µ)−1(Iµ(v)). (1.11)

We will see in Chapters 3 and 4 that these representations can be used to improve the
sampling of Eeff(v).

1.2.4 Log-likelihood estimation
In the general case, as the evaluation of the partition function Z required the summation

over an exponential number of terms (e.g., 2N terms for binary visible units), it is impossible
to compute the RBM partition function Z, and therefore, to have direct access to the
log-likelihood. Nevertheless, it is essential to be able to estimate this log-likelihood to
compare the performances of our different RBM during the training.

One way to estimate the log-likelihood directly is to use a strategy called Annealed
Importance Sampling (AIS) (Jarzynski, 1997; Neal, 2001; Salakhutdinov and Murray, 2008),
and was used by Jérôme Tubiana during his PhD Thesis (Tubiana, 2018)1.

The idea of this method is to progressively interpolate our distribution of interest P (v)
with a distribution P0(v) whose partition function can be calculated exactly. P0(v) is the
distribution of a RBM with no weights, chosen as the closest independent distribution
to the empirical distribution of the data in terms of Kullback-Leibler divergence. A set
of R intermediate distribution Pβr(v)∝ P (v)βrP0(v)1−βr is built, with β1 = 0, βr+1 > βr
and βR = 1. As P (v) and P0(v) are Boltzmann distributions, Pβr(v) is also a Boltzmann
distribution and its energy is simply a linear interpolation with weight βr between the
energy of P (v) and P0(v). As

Z

Z0
=
〈
P (v)
P0(v)

〉
v∼P0

=
〈
R−1∏
r=1

Pβr+1(v)
Pβr(v)

〉
v∼P0

, (1.12)

the partition function Z can be computed by starting with configuration v sampled
from P0(v) and progressively annealed to P (v) through Pβr(v) with Alternating Gibbs
Sampling.

1.3. Training Restricted Boltzmann Machines

For a given training set of K samples, {vk}k=1...K , the parameters Θ are found by
maximizing the log-likelihood of the data,

LL≡ 〈logP (v)〉data ≡
1
K

K∑
k=1

logP (vk). (1.13)

1Another possible way is to use a proxy to the log-likelihood, called pseudolikelihood, see Section 6.3.2
for its description in the case of Potts model.
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The maximization is done by gradient ascent. The general expression for the gradients
is

∂LL
∂Θ =−

〈
∂Eeff(v)
∂Θ

〉
data

+
〈
∂Eeff(v)
∂Θ

〉
model

, (1.14)

where 〈.〉data denotes the expected value over the data and 〈.〉model over the model.
In practice, Stochastic Gradient Ascent (SGA) (Bottou, 2010; Ruder, 2017) is used

rather than Gradient Ascent (GA). This means that the expected value over the data
is not calculated on all the data, but on a random subset of size B of the training data,
called minibatch, see Algorithm 2. SGA is known to be quicker and has better behavior
for non-convex optimization. η denotes the learning rate. We use learning rate annealing
during the training, i.e. the learning rate is a decreasing function over time, to ensure
convergence to a local maximum of the log-likelihood. For more details and tips on training
RBM, we recommend the following papers (Hinton, 2002; Fischer and Igel, 2014; Tubiana,
2018).

Algorithm 2: Stochastic Gradient Ascent
for t ∈ J1,T K do

Choose a random minibatch of size B {vb}b=1...B in {vk}k=1...K ;
Compute

〈
∂Eeff(v)
∂Θ

〉
minibatch

;

Compute
〈
∂Eeff(v)
∂Θ

〉
model

;
Compute ∂LL

∂Θ (Eq. (1.14));
Θ = Θ +η ∂LL∂Θ

end

〈
∂Eeff(v)
∂Θ

〉
minibatch

can be calculated quickly at each time step and depends only on the

training data. However, expected values over the distribution
〈
∂Eeff(v)
∂Θ

〉
model

are generally
not tractable, because they require the summation over an exponential number of terms,
like the partition function Z. Therefore, these expected values are estimated through Monte
Carlo (MC) methods (Metropolis and Ulam, 1949; Hastings, 1970). The basic idea behind
MC methods is to generate samples from P (v) in order to compute these expected values.
A particular branch of these MC methods is the Monte Carlo Markov Chains (MCMC).
The idea is to build a Markov Chain with P (v) as equilibrium distribution, and to record
the different states of the chain in order to have samples from P (v). AGS described in
Algorithm 1 is such a Markov Chain. It is well known that these methods suffer from
several problems. First, it is necessary to wait a certain number of time steps to reach the
equilibrium distribution P (v). This number of time steps, called burn-in time, is difficult
to evaluate theoretically and can be very large. Therefore, without a good initialization
of these chains, the convergence to the equilibrium distribution is very expensive in time
and computation without a good initialization of these chains. This first point explains
why RBM were abandoned in the late 1980s. Second, these methods can suffer from poor
mixing: sampled configurations can be trapped in one of the regions of high probability,
i.e., of low energy, while other favorable regions are not dynamically explored. This second
point will be discussed in Chapter 3.

Nevertheless, methods have been developed to overcome these limitations and allow
training RBM. These algorithms, mostly based on Alternating Gibbs Sampling between
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the visible and hidden layers, are used to generate samples from P (v) to compute these
expected values. We will quickly describe these different algorithms.

1.3.1 Contrastive Divergence
Geoffrey Hinton introduced Contrastive Divergence in 2002 (Hinton, 2002; Hinton et al.,

2006). Instead of using random configuration v as initialization of Markov Chains, the idea
of CD-k (Contrastive Divergence with k steps) is to use the data of the current minibatch
{vb}b=1...B and then to run AGS for k steps. The expected values

〈
∂Eeff(v)
∂Θ

〉
minibatch

are computed on the B samples obtained after the k steps of AGS. In practice, k is
small (from 1 to 10). Maximizing log-likelihood means maximizing the probability of
the data. Therefore, when initializing the Markov Chain with a training data, the chain
must be in a high probability region. Therefore, CD-k is much faster than MCMC with
random initialization because it avoids the long burn-in time. This algorithm allowed to
train the RBM on real datasets, such as the famous MNIST handwritten digits’ dataset
(LeCun, 1998). Nevertheless, the advantage of this algorithm is also its main weakness.
By initializing the chains next to the training data, only the configurations close to them
are sampled. Therefore, if spurious maxima of P (v) are created far away from the data
during the training, they are never sampled and therefore persist during training (as the
expected value on the data does not take them into account, and as CD-k can not sample
configurations near them). Once the RBM is trained, by sampling new configurations from
random configurations v, RBM can get stuck in these spurious maxima.

1.3.2 Persistent Contrastive Divergence
Tijmen Tieleman introduced a variant of CD, called Persistent Contrastive Divergence

(PCD) (Tieleman, 2008; Tieleman and Hinton, 2009). Instead of resetting the Markov
chains at each time step with the training data, the last visible configurations used to
compute the expected values over the model are kept in memory and used as initialization
for the next time step. As in CD-k, PCD-k (Persistent Contrastive Divergence with k
steps) consists of k steps of AGS with these initial configurations. The idea behind this
is to consider that if these data are well sampled according to the distribution P (v) at
a time t, after one SGA step, these data should be almost at equilibrium provided that
the learning rate is small enough (Younes, 1999). Thus, theoretically, PCD-k allows the
exploration of remote regions of the training data. However, in practice, if the energy
barriers are too large, the dynamics is trapped in a local minimum of the energy landscape
and can not explore efficiently the landscape. Therefore, as CD-k, PCD-k can lead to bad
solutions and to divergence of the likelihood (Fischer and Igel, 2010).

Nevertheless, we use this algorithm for our trainings, because it is a good compromise
between the computation time and the performances reached.

1.3.3 Parallel Tempering
Another possible algorithm is the Parallel Tempering (PT), also known as replica

exchanges MCMC (Swendsen and Wang, 1986; Geyer, 1991). The idea is to run several
Markov Chains at different temperatures and allows exchanges of configurations between
them at each time step. The distribution at inverse temperature β reads

Pβ(v,h) = 1
Zβ

exp(−βE(v,h)). (1.15)

β = 1 corresponds to the original distribution (Eq. 1.1). Markov chains at high
temperature, i.e., low inverse temperature β < 1, mixes better than between the regions of
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high probability than the one at β = 1. However, at low inverse temperature β < 1, Pβ(v,h)
losts track of the details of the distribution. Replica exchanges between the different chains
exploit the fast-mixing properties at low β and high-quality model at β = 1. The algorithm
was adapted to train RBM (Salakhutdinov, 2009; Desjardins et al., 2010b; Cho et al., 2010).

In practice, the marginal

P̃β(v) =
∫
dhPβ(v,h), (1.16)

is used with the same initialization of the Markov Chains as in PCD-k. R chains at
temperature βr ∈ [0,1] are used, with β1 = 1 and βr+1 < βr. vβr denotes configurations
generated at inverse temperature βr with AGS. During sampling, swaps between {vβr =
vtβr ,vβr+1 = vtβr+1

} and {vβr = vtβr+1
,vβr+1 = vtβr} are possible with an acceptance ratio

Ar
(
{vβr = vtβr ,vβr+1 = vtβr+1}→ {vβr = vtβr+1 ,vβr+1 = vtβr}

)
= min

(
1,
P̃βr(vtβr+1

)P̃βr+1(vtβr)
P̃βr+1(vtβr+1

)P̃βr(vtβr)

)
, (1.17)

in order to satisfy the detailed balance. Parallel Tempering improves trainings but has
some disadvantages. First, for each chain, unlike CD and PCD, we have to simulate R
Markov chains instead of one, which is numerically expensive. Secondly, it is difficult to
choose correctly the inverse temperatures, as a linear interpolation between 0 and 1 is not
necessarily a good idea.

1.3.4 Deep Tempering
The last method based on sampling is called Deep Tempering (DT) (Desjardins et al.,

2014) (Fig. 1.2(b)). This algorithm was first introduced to train Deep Belief Networks
(DBN) (Hinton and Salakhutdinov, 2006; Salakhutdinov and Murray, 2008). DBN are
stacks of N RBM (Fig. 1.2(a)). The number of hidden units of the nth RBM is equal
to the number of visible units of the (n+1)th RBM. Usually, these networks are trained
greedily, one RBM by one RBM, from bottom to top (Hinton et al., 2006; Bengio et al.,
2007). The bottom RBM is trained on the data {vk}k=1...K . After the training, the hidden
representations {hk1}k=1...K are drawn from P1

(
h|vk

)
. These hidden representations are

used to train the second RBM of the stack. And so on.
Each RBM of the stack has its own visible landscape Evn(v) (respectively hidden

landscape Ehn(h)) associated with the Boltzmann distribution P vn (v) (respectively P hn (h)).
Deep Tempering consists in training the N RBM of the stack at the same time. The

idea is to used Alternating Gibbs Sampling for all RBM. A Gibbs step at time t is defined
by htn ∼ Pn

(
h|vt−1

n

)
and vtn ∼ Pn

(
v|htn

)
.

In the manner of Parallel Tempering, replica exchange between the visible configuration
vtn+1 of the (n+ 1)th RBM and the hidden configuration htn of the nth RBM is allowed.
These configurations are swapped with probability

An
(
{hn = htn,vn+1 = vtn+1}→ {hn = vtn+1,vn+1 = htn}

)
(1.18)

= min
(

1, P
v
n+1(htn)P hn (vtn+1)
P vn+1(vtn+1)P hn (htn)

)
= min

1,
exp

(
−Evn+1(htn)−Ehn(vtn+1)

)
exp

(
−Evn+1(vtn+1)−Ehn(htn)

)
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With this acceptance ratio, the detailed balance is satisfied (Appendix C.1). In practice,
we have not used this algorithm to train RBM. Nevertheless, we have used it to improve
the sampling of RBM after their training, see Chapter 4 and Algorithm 6.

Figure 1.2: (a) Example with three RBM. The number of visible units of the (n+ 1)th
RBM is equal to the number of hidden units of the nth RBM. (b) Illustration of Deep
Tempering (here for the nth and (n+ 1)th RBM). Alternative Gibbs sampling is used
to generate configurations. The dynamics are coupled. Replica exchanges are possible
between the visible configurations vn+1 of the (n+1)th RBM and the hidden configurations
hn of the nth RBM. These configurations are swapped with a probability An(htn,vtn+1)
(Eq. (1.18)). This algorithm was first introduced in (Desjardins et al., 2014) to train Deep
Belief Networks.

1.3.5 Mean-field and TAP methods
Some methods based on high-temperature approximation of the log partition logZ

have been developed to train RBM (Welling and Hinton, 2002; Gabrié et al., 2015; Tramel
et al., 2018). This approximation has been initially developed for spin glasses (Georges and
Yedidia, 1991). Basically, in the case of RBM, the expected value of the model is replaced
by the average on the fixed points of the following self-consistent equations. At first order,
for a Spin-Spin RBM without any fields, the self-consistent equations read

mv = tanh(W ·mh), (1.19)
mh = tanh

(
WT ·mv

)
. (1.20)

This approximation is justified only when the weights Wiµ are weak or in tree-like
graphs of interactions.

1.3.6 Wasserstein metric method
Maximizing the log-likelihood is equivalent to minimizing the Kullback-Leibler (KL)

divergence between P (v) and the empirical distribution Pd(v) = 1
K

K∑
k=1

N∏
i=1

δvi,vki
as
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DKL(Pd(v)||P (v)) =
∑

v
Pd(v) log

(
Pd(v)
P (v)

)
(1.21)

= −LL+
∑

v
Pd(v) log(Pd(v)) , (1.22)

Nevertheless, Kullback-Leibler divergence is not the only measure of similarity between
two distributions. Wasserstein metric used in optimal transport is also a relevant similarity
measure between two distributions (Monge, 1781; Kantorovich, 1942). This distance is
widely used to train GAN (Arjovsky et al., 2017) but has also been used for training
RBM (Montavon et al., 2016) and does not have the same properties as KL divergence
(Fig. 1.3). Wasserstein RBM relies on PCD to generate configurations and seems to have
the same performance as the maximization of the log-likelihood. For training on MNIST,
Wasserstein RBM produce nice digits but are less diverse than digits in the dataset or
digits generated with a classical RBM (Montavon et al., 2016).

Figure 1.3: Empirical distribution p̂(x) (gray) defined on the set of states {0,1}d, with
d= 3 shown next to two possible modeled distributions defined on the same set of states.
The size of the circles indicates the probability mass allocated to each state. The first
modeled distribution pθ(x) (blue) has low KL divergence and high Wasserstein distance
from the empirical distribution. The second one pθ′(x) (red) has high KL divergence and
low Wasserstein distance, and thus incorporates the desired metric. Figure and caption
from Montavon et al. (2016)

.

1.3.7 With quantum annealer
More recently, a new variant has been proposed by Dixit et al. (2021), where the

configurations used to compute the gradient are sampled using a D-Wave quantum annealer2,
although with the current technical limitations concerning the number of qubits, this
solution only allows to train small size networks.

1.4. What are RBM for?
This section will quickly review the possible applications of RBM, and its different

variations, in the machine learning community.

1.4.1 RBM as building blocks of deep neural networks
Back in the 2010s, RBM were used as building block of deep neural networks. As

explained in Section 1.3.4, RBM can be stacked to form a Deep Belief Network. DBN can
2https://www.dwavesys.com/

https://www.dwavesys.com/
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be trained quickly, one RBM by one RBM, from the bottom RBM to the top one (Hinton
et al., 2006; Bengio et al., 2007). This procedure allows to quickly train a DBN even if it is
not optimal, as the weights of the RBM are not trained simultaneously, but only one layer
by one layer. This is why this procedure is often considered as a pretraining of the DBN.
After the pretraining, DBN is a generative network, and its weights can be fine-tuned with
the wake-sleep algorithm (Hinton et al., 1995, 2006). Once trained, DBN can generate new
data with Gibbs sampling. Another fashionable application in the 2000s was to consider
DBN as feedforward neural networks, with as input the visible layer of the bottom RBM,
and as output the hidden layer of the top RBM. This analogy allows to train quickly
feedforward neural network. The idea is the following: consider a dataset with data and
labels, and you want to train a fully connected feedforward neural network to predict the
labels. Considering only the architecture (and not the dynamics), the feedforward neural
network has the same architecture as the DBN. So, you can use unsupervised pretraining
of DBN on the data, by maximizing the log-likelihood of each RBM one by one, in order
to extract useful features from the data (Erhan et al., 2010). Then, consider DBN as
a feedforward network, its weights can be fine-tuned with backpropagation, to predict
the labels from the data. As DBN has learned useful representation of the data, it is
easier to fine-tune its weights than to train the feedforward network from scratch. This
procedure has been widely used to quickly train feedforward networks for the purpose of
classification, with numerous applications in speech recognition (Dahl et al., 2010, 2012),
acoustic modeling (Mohamed et al., 2012) or images (Ranzato et al., 2011). Thanks to
the increase in the amount of data available and the improvement of the hardware, this
unsupervised pretraining of feedforward network has been gradually abandoned and is no
longer used today.

1.4.2 RBM as generative models
RBM, and its many variants, as Convolutional RBM (Desjardins and Bengio, 2008),

Recurrent Neural Network RBM (Boulanger-Lewandowski et al., 2012) or GAN RBM
(Fisher et al., 2018) can be used to generate new data once trained, with many applications,
such as in image denoising (Tang et al., 2012), generation of textures (Courville et al., 2011;
Kivinen and Williams, 2012), proteins with putative properties (Tubiana et al., 2019a,b)
and even seasonal cooking recipes (Deudon, 2020).

1.4.3 RBM as features extractors and classifiers
RBM are also used as feature extractors: the M columns of the weight matrix W can

be seen as M features extracted from the training data. In a certain regime, called the
compositional phase, these features can be informative and easily interpreted. This is for
example the case when the RBM learns stokes of digits on MNIST (Tubiana and Monasson,
2017) or group of coevolving amino-acids in proteins or antigens (Tubiana et al., 2019a,b;
Bravi et al., 2021a,b).

In many cases, representations of data in the hidden space of RBM have been proven
to be more interpretable and useful for classification than the raw data in the visible space,
for example in character recognition (Larochelle and Bengio, 2008; Coates et al., 2011), or
collaborative filtering (Netflix problem) (Salakhutdinov et al., 2007).

1.5. Datasets
We use different datasets to illustrate our theoretical results in the thesis. For all

datasets, we train RBM using the learning algorithm of Tubiana and Monasson (2017),
available from https://github.com/jertubiana/PGM.

https://github.com/jertubiana/PGM
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1.5.1 Bars and Stripes
Bars and Stripes (BAS) dataset (MacKay, 2003) is made of L×L binary synthetic

images which contain either exclusively bars or exclusively stripes. There are 2L+1− 1
possible configurations (Fig. 1.4(a)).

1.5.2 MNIST
MNIST dataset (LeCun, 1998) is a large dataset of 28×28 pixel images of handwritten

digits. We limit ourselves to zeros and ones (Fig. 1.4(b)), two graphically far digits. We
use the binarized version of MNIST: each pixel is either white or black.

1.5.3 Lattice Protein
Lattice Proteins (LP) are artificial proteins used to investigate protein design (Shakhnovich

and Gutin, 1990; Shakhnovich et al., 1991; Mirny and Shakhnovich, 2001) and bench-
marking inverse modeling procedures (Jacquin et al., 2016). Proteins are sequences of
amino acids, whose 3D structures encode their functionalities. In this model, a structure
is defined as a self-avoiding path of 27 amino-acid-long chains (v represents a sequence)
on the 3× 3× 3 lattice cube. There are N = 103,406 distinct structures (up to global
symmetry). The probability that a protein sequence v folds in a given structure S is given
by

Pnat(v|S) = exp(−E(v,S))∑
S′

exp(−E(v,S′)) , (1.23)

where the energy of the sequence v in a structure S is defined through

E(v,S) =
∑
i<j

cSi,jEMJ(vi,vj). (1.24)

In the previous formula, cSi,j = 1 if the sites i and j are in contact (neighbors on the cube) in
structure S; there are 28 contacts between the amino acids for each structure3. Otherwise,
cSi,j = 0. The pairwise energy EMJ(vi,vj) represents the physico-chemical interactions
between the amino acids, given by the Miyazawa-Jernigan (MJ) potential (Miyazawa and
Jernigan, 1996). Here, we focus on two structures, SA and SB, which define two protein
families (Fig. 1.4(c)). For each structure, we sample ∼ 104 sequences that have a high
probability to fold in this structure (Pnat(v|S)> 0.99) to build our datasets (Jacquin et al.,
2016).

3Contacts along the chain are discarded, as their contribution to the energy is structure independent
and, hence, does not affect the value of Pnat.
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Figure 1.4: (a) BAS: examples of bars (left) and stripes (right) for L= 10. (b) MNIST:
examples of handwritten 0 and 1 digits. (c) Lattice Proteins: two structures SA and
SB defining two families of sequences having large Pnat with either fold, see Eq. (1.23).
Structures from Jacquin et al. (2016).





2
Storing patterns and statistical mechanics of Restricted

Boltzmann Machines

The first four sections of this chapter focus on how to store patterns with Restricted
Boltzmann Machines. The last section focuses on the different properties of RBM deducted
thanks to statistical mechanics. This chapter aims to introduce the concepts that will be
useful in Chapters 3 and 4, which will present our results on sampling an energy landscape
with RBM.

In more detail, the first section outlines famous results on autoassociative memories and
how these results can be related to RBM. The second section focuses on hetero-associative
memories and their link with RBM. The third section, on the universal approximation
theorem of RBM. And the fourth section compares the different solutions proposed in the
previous parts.

2.1. Autoassociative memory: Little and Hopfield models
This section presents the ideas and results of work conducted by Little (1974); Little

and Shaw (1975) and Hopfield (1982) to build artificial neural networks capable of storing
patterns. These networks are recurrent artificial neural networks, and we will refer to them
as autoassociative memory. We will also show how these two models can be represented by
RBM, and thus how RBM can also be used to store patterns.

2.1.1 From neural networks to statistical physics
In both cases, their model is composed of N neurons, all connected to each other by

synapses (we speak in this case of a fully connected model). McCulloch Pitts neurons
(McCulloch and Pitts, 1943) can take two values (vi =±1), where vi = 1 corresponds to an
active neuron and vi =−1 to a silent one. A neuron vi is connected to a neuron vj by a
synaptic connectivity of intensity Jij . This synaptic connectivity is symmetric (Jij = Jji).
Although this hypothesis may be questionable from a biological point of view, it has the
advantage of linking these artificial neural networks to the statistical physics of disordered
systems. This link allows to describe these neural networks by an energy, and to use the
wide range of tools of statistical physics1.

Note that this assumption has also been made previously in the case of RBM, where
the intensity of the relations between a hidden unit hµ and a visible unit vi is characterized

1as explained in Chapter 7 of "Modeling Brain Function" by Amit (1989), the results derived below are
fairly robust if the symmetry constraint is relaxed. The reader is invited to look at the works of Parisi
(1986); Brunetti et al. (1992a,b) in the case of asymmetric Jij or Shinomoto (1987) in the case where Jij
satisfies Dale’s law (Eccles, 1964), i.e., that a neuron i is only excitatory or inhibitory (Jij > 0 or Jij < 0
for all j).
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by a single quantity Wiµ.
In the case of the Hopfield model, the energy reads

EHop(v) =−β2
∑
i,j

Jijvivj , (2.1)

where β = 1
T is the inverse temperature of the model. And for the Little model, as

described in Peretto (1984)

ELittle(v) =−
N∑
i=1

log2cosh

β N∑
j=1

Jijvj

 . (2.2)

As we will see in Section 2.1.5, these two models can be represented using a RBM.
The K patterns to store ξk (k = 1...K) are random and chosen according to

P (ξki ) = 1
2δξki ,1 + 1

2δξki ,−1. (2.3)

Therefore, in the thermodynamic limit N→∞, these patterns are on average orthogonal
two by two 〈

ξk
T ·ξk′

〉
=Nδk,k′ . (2.4)

This property is only true on average, and as we will in Section 2.1.4, the fact that the
patterns are not exactly orthogonal has a crucial importance when the number of patterns
K is of the same order of magnitude as the number N of neurons in the network.

The idea is to find some parametrization of synaptic connectivity Jij so that neural
networks can retrieval these K patterns. In the noiseless limit β→∞, by retrieval, we
mean that the K (finite) patterns are global minima of the previously defined energies. It
also corresponds to fixed points of the following dynamics, where the probability of finding
vi in a given state is given by

P (vi) = 1
2

1 + tanh

β
2 vi

∑
j 6=i

Jijvj

 −→
β→∞


P (vi = 1) if ∑

j 6=i
Jijvj > 0

P (vi = 1) = P (vi =−1) = 1
2 if ∑

j 6=i
Jijvj = 0

P (vi =−1) otherwise.
(2.5)

Consequently, in the noiseless limit, a spin vi is stable if and only if its magnetic field due
to the N −1 other spins, ∑

j 6=i
Jijvj , is aligned with it (i.e., vi

∑
j 6=i

Jijvj > 0). Originally, the

dynamics of the Hopfield model was designed only in this limit β→∞, and asynchronously:
each vi is updated one by one. For the Little model, the dynamics is synchronous: all
spins are updated at the same time. Each update according to this dynamics decreases
the total energy of the system. These different dynamics could cause major differences
between the two models, but as it was shown in the case of a finite number of patterns,
these two models have the same thermodynamic properties (Amit et al., 1985a).

In the noisy case, or when K
N is finite, the patterns can not be perfectly retrieved due

to the fluctuations. However, it is still possible to define the retrieval mk using overlaps
with the memorized pattern ξk as

mk = 1
N

N∑
i=1
〈vi〉ξki . (2.6)
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2.1.2 Choice of the synaptic connectivity
Donald Hebb proposed in 1949 a learning rule based on synaptic plasticity (Hebb, 1949).

This rule suggests that when two neurons are jointly excited or silent, a link between them
is created or reinforced. This rule is often summarized as follows: "cells that fire together,
wire together", and is known as Hebb’s rule. From a more formal point of view, this rule
can be translated as follows

Jij = 1
N

∑
k

ξki ξ
k
j , (2.7)

Jii = 0.

For each memory, this indeed corresponds to the rule recommended by Hebb: Jij =
ξki ξ

k
j > 0, i.e., the connectivity is reinforced, if and only if ξki = ξkj , i.e., if the two neurons

are jointly excited or silent. This rule is summed over the K patterns, and the factor N−1

is here to get intensive quantities in the large N limit. This rule has several advantages.
It is local, i.e., the connection between two spins vi and vj depends only on the patterns
at sites i and j. It is additive, so it is easy to add progressively new patterns over time.
Nevertheless, as we will see in Section 2.1.4.2, this rule is not optimal in the sense that it
does not allow to store a maximum number of patterns.

With Hebb’s rule, Eq. (2.1) reads

EHop(v) =− β

2N

N∑
i,j=1
i 6=j

(
K∑
k=1

ξki ξ
k
j

)
vivj , (2.8)

and Eq. (2.2) reads

ELittle(v) =−
N∑
i=1

log2cosh

 β

N

N∑
j=1
j 6=i

(
K∑
k=1

ξki ξ
k
j

)
vj

 . (2.9)

2.1.3 Finite number of patterns
In this section, we will focus on the case where the number of patterns is finite and

therefore negligible versus the number of neurons (KN →
N→∞

0). This regime is often called
low memory loading. This regime is of particular interest to us because we will find ourselves
in a similar regime in the various results we will present later for RBM in Chapter 4.

2.1.3.1 A quick look at the Curie-Weiss and Mattis models
Before looking at the general results, we will start with the straightforward case where

K = 1. In this case, by injecting Hebb’s rule (Eq. (2.7)) into the energy of the Hopfield
model (Eq. (2.1)), and choosing ξki = 1 for all i, up to a irrelevant additive constant2, we
get:

ECW(v) =− β

2N

N∑
i,j=1

vivj . (2.10)

2Here, Jii = 1
N , contrary to the Hebb’s rule (Eq. 2.7). However, this is irrelevant as ECW(v) =

− β
2N

N∑
i,j=1

vivj = β
2N

N∑
i,j=1
i 6=j

vivj − β
2 .
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This model is called the Curie-Weiss model and is a mean-field version of the Ising
model (Ising, 1925) where Jij = 1

N (see Ellis (1985) for details).
For T < 1 and infinite-size limit N →∞, the average magnetization of the spins,

m= 1
N

N∑
i=1

vi, spontaneously acquires a nonzero value. The value of this order parameter is

determined by minimizing the free energy (per spin), f(m) =−w2

2 m
2−S(m), where

S(m) =−
∑
σ=±1

1 +σm

2 log
(1 +σm

2

)
, (2.11)

is the entropy at fixed magnetization. The free energy f(m) is an even function of m, with
a double-well shape. The two opposite values of the spontaneous magnetization, roots
of f ′(m∗) = 0, define two collective states of the system. Notice that m = 0 is a local
maximum of the free energy. The dynamics defined in Eq.(2.5) converges to m∗ or −m∗:
the system retrieves the memory.

The Curie-Weiss model can be modified to store one specific pattern ξ1 of {−1,1}N
by defining Jij = 1

N ξ
1
i ξ

1
j

3. This model is called Mattis model (Mattis, 1976). With this
parametrization, the global minima of the free energy are reached for configurations with
±m∗ magnetization along ξ1: the system retrieves the memory ξ1.

2.1.3.2 Results for K > 1
The main results presented here are from Amit et al. (1985a).
For the infinite-size limit, N →∞, the energy of the Hopfield model (Eq. (2.1)) with

Hebb’s rule reads

EHop(m) = β
∑
k

m2
k

2 −
1
N

∑
i

log2cosh
(
β
∑
k

ξkimk

)
, (2.12)

where mk are the magnetization along the patterns defined in Eq. (2.6). For T > 1,
there is a single global minimum for mk = 0. The patterns can not be retrieved. In the case
where T < 1, the previous energy has 2K global minima, which are the Mattis states for
the K patterns (Procesi and Tirozzi, 1990). This result is also valid in the case of Little’s
model. Consequently, the patterns can be retrieved, and the Hopfield and the Little models
work as autoassociate memory. For the global minima, the vector of magnetization m has
only one non-zero component.

The energy landscape is much richer than in the case of the Curie Weiss model or the
Mattis model: the landscape has a large variety of saddle points or local minima whose
nature depends on β. These landscape properties will be beneficial in Chapter 4 to compute
the characteristic times associated with Alternating Gibbs Sampling of RBM.

An interesting class of these critical points are the symmetric spurious patterns, which
can be written m =mr(1,1, . . .1︸ ︷︷ ︸

r

,0,0, . . . ,0︸ ︷︷ ︸
K−r

). There is complete symmetry of the solutions

under the permutations of the components of m as well as under the change of sign of any
of them. There are 3K such states of being compared with the 2K Mattis states. Therefore,
for large K�N , these symmetric spurious patterns outnumber the Mattis states.

In the noiseless limit T = 0, it can be shown that the symmetric spurious patterns with
an odd number of components are local minima of the energy landscape: therefore, they
are metastable states, and the dynamics can be trapped in one of these states. As long as

3By defining m= 1
N

N∑
i=1

viξ
1
i , the free energy of the Curie-Weiss model is indeed retrieved.
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0.461< T < 1, all the states are saddle points. As pointed out by Daniel J. Amit in his
well-known book "Modeling Brain Function: The World of Attractor Neural Networks"
(Amit, 1989), the noise has here a positive role, as it eliminates the spurious states, contrary
to the noiseless limit. Nevertheless, the intensity of the Mattis states also depends on the
temperature. The higher the β, the higher the Mattis magnetization, and thus the more
accurately the memory is retrieved.

There are also asymmetric spurious patterns for T < 0.57 but none of them are stable
as long as T > 0.461.

2.1.4 Infinite number of patterns
In this section, we will focus on the case where the number of patterns is non-negligible

compared to the number of neurons (KN →
N→∞

α > 0, where α is the load.) This regime is
different from the previous one because from now on, it is not possible to neglect that
the patterns are orthogonal two by two only on average. With Hebb’s rule, even in the
noiseless limit, patterns ξ may be unstable with the dynamics defined in Eq. (2.5). Indeed,
the local field received by ξ1

1 when v = ξ1 reads

1
N

∑
j 6=i

∑
k

ξki ξ
k
j ξ

1
j , (2.13)

and the stability condition reads

ξ1
1

1
N

∑
j 6=i

∑
µ

ξki ξ
k
j ξ

1
j = N −1

N︸ ︷︷ ︸
signal

+ 1
N

∑
j 6=i

∑
k>1

ξ1
1ξ
k
i ξ
k
j ξ

1
j︸ ︷︷ ︸

noise

> 0 (2.14)

The second term can be identified as a noise term due to the non-orthogonality between
the patterns. Its intensity is of order

√
NK
N →

N→∞
α, compared to intensity of order 1 for

the signal. Therefore, in the regime with α > 0, the patterns may not be retrieved.

2.1.4.1 Phase diagram
As derived in Amit et al. (1985b), three distinct phases exist depending on temperature

and load (Fig. 2.1(a)):

• the paramagnetic phase: at high temperature, the noise dominates and 〈vi〉= 0. No
patterns could be retrieved.

• the spin-glass phase: at low temperature and high load, neurons have a non-zero
polarization 〈vi〉 6= 0, but not aligned with a specific memory: they have weak overlap
with all patterns, and therefore patterns can not be retrieved. This phase is similar
to the one described in Kirkpatrick and Sherrington (1978).

• the ferromagnetic phase: at low temperature and high load, neurons have a non-zero
polarization with on the memory ξk. The ferromagnetic phase is cut in two: at very
low temperatures, retrieval states are global minima of the free energy, and at higher
temperatures, there are only local minima.

There exists a critical load αc ' 0.138. This means that the Hopfield model with N
neurons can store up to K = 0.138N patterns. The case studied in Section 2.1.3 where
the number of patterns is finite corresponds to α = 0. For T < 1, the Mattis states are
indeed global minima of the energy. It should be noted that in the paramagnetic phase
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with 0< α < αc and T = 0, the behavior is different from the case where the number of
patterns is finite (α = 0). As shown in Fig. 2.1(b), patterns are not perfectly retrieved:
there is some noise due to the other patterns, which act as an effective temperature (Amit,
1989).

Figure 2.1: (a) Phase diagram of the Hopfield model derived in Amit et al. (1985b). Figure
from Mézard (2017). (b) Average percentage of errors in the ferromagnetic phase for
β→∞. Figure from Amit et al. (1985b).

2.1.4.2 Improvement of the capacity
Other learning rules of the synaptic weights have been used to improve the performance

of autoassociative memories, such as the pseudo inverse rule (Personnaz et al., 1986; Kanter
and Sompolinsky, 1987) which allows storing correlated patterns. Unlike Hebb’s rule, the
pseudo inverse rule is not a local, as the synaptic couplings depend on the inverse of the
correlation matrix of the patterns. Elizabeth Gardner has shown that the optimal rule
achieves a load αc = 2 for uncorrelated patterns (Gardner, 1987, 1988; Gardner and Derrida,
1988). Nevertheless, for this optimal storage, there is no explicit formula for synaptic
couplings. However, it is possible to find this solution numerically, thanks to an extension
of the perceptron learning rule (Rosenblatt, 1958; Gardner, 1988).

2.1.5 Links between Little and Hopfield model and Restricted Boltzmann Machines
The Hopfield model can be represented with a Spin-Gaussian RBM with N visible

units vi =±1 (with potentials Vi = 0) and M =K continuous hidden units subject to the
quadratic potential U(h) = h2

2 (Barra et al., 2012; Agliari et al., 2012; Leonelli et al., 2021).
The energy of the RBM in Eq. (1.2) reads

EHop(v,h) =−
∑
i,µ

Wiµvihµ+
∑
µ

h2
µ

2 . (2.15)

It is straightforward to check, after integration over the M hidden units, that the effective
energy in Eq. (1.4) coincides with the Hopfield energy in Eq. (2.8) provided the weights
fulfill the constraints ∑

µ

WiµWjµ = w2

N

∑
µ

ξµi ξ
µ
j . (2.16)

These conditions do not uniquely define the weight matrix W. The energy is invariant
under any transformation W→W×O, where O is an orthogonal matrix. It is also
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interesting to note, that in the M �N regime, the Eeff(v) landscape of a Spin-Spin RBM
is equivalent to the Hopfield model, provided that Wiµ = ξµi (Agliari et al., 2012).

The Little model can be represented with a Spin-Spin RBM with N visible units vi =±1
(with potentials Vi = 0) and M =N hidden units hµ =±1 (Uµ(h) = 0). The energy of the
RBM in Eq. (1.2) reads

ELittle(v,h) =−
∑
i,µ

Wiµvihµ. (2.17)

It is straightforward to check, after integration over the M hidden units, that the effective
energy in Eq. (1.4) coincides with the Little energy in Eq. (2.9) provided Wiµ =Wij = βJij ,
where Jij is defined by Hebb’s rule (Eq. (2.7)).

Therefore, RBM can be used to store patterns, similar to Hopfield’s model and Little’s
model. Nevertheless, a major difference exists between RBM and these two models. Indeed,
Hopfield’s and Little’s models are autoassociative memories and thus have only N neurons
vi, which allow storing the patterns. RBM are richer, and have in addition to its N
neurons vi M neurons hµ. Therefore, each memory ξµ has a representation in the space
of hidden units, as seen in Section. 1.2.3. Concerning the Hopfield model, as there is an
invariance for the weight matrix W (Eq. (2.16)), the hidden representation depends on the
parametrization. As we will show in Chapter 3, this choice does not influence the sampling
on the landscape EHop(v) with a RBM with Alternating Gibbs Sampling. Nevertheless, to
improve the sampling and go beyond AGS, a simple representation of the Mattis states in
the space of hidden units will play a crucial role. This representation is achieved for

Wiµ = w√
N
ξµi . (2.18)

In that particular case, a hidden unit hµ is strongly activated only when v is aligned
with ξµ.

Concerning the Little model, in the limit β→∞, the hidden representation of v = ξµ
is h = ξµ. The representation in the hidden space of the memory is identical to the
memory itself. RBM store the memory twice: once in its visible space, another time in its
hidden space. We will see in the next section how to go further than this model, using
heteroassociative memory, another kind of associative memory.

2.2. Bidirectional Associative Memory
2.2.1 Description

Bidirectional Associate Memory (BAM) is a recurrent neural network introduced by
Bart Kosko (Kosko, 1987, 1988). Like autoassociative memories, his idea is to build a
recurrent network capable of storing patterns. However, unlike autoassociative memories
which use a single population of N neurons, BAM uses two distinct populations of N
and M neurons respectively, and is used to store K memory pairs {ξk, ξ̂k}k=1...K , where
ξk ∈ {−1,1}N and ξ̂k ∈ {−1,1}M . Let us call vi the neurons of the first population and hµ
the neurons of the second population. The two populations are connected through a weight
matrix W of size N ×M . There are no couplings within a population. BAM dynamics is

h = sign
(
WT ·v

)
, (2.19)

v = sign(W ·h) .

The matrix W must be tailored such that the pairs of patterns {ξk, ξ̂k} are fixed points
of the previous equations. If the patterns are random and drawn from Eq. (2.3), one
possible choice is to use Hebb’s rule
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Wiµ = 1
N

K∑
k=1

ξki ξ̂
k
µ. (2.20)

If N =M , and ξk = ξ̂k, BAM is like an autoassociative memory at T = 0 with Hebb’s
rule, where both populations of neurons play the same role. Therefore, the patterns are
stored in both populations, as when we use a RBM to represent Little’s model. Just like
the Hopfield model, the optimal load α= K

N can be computed. In the particular case of
N =M , T = 0, (Tanaka et al., 2000) have that there is a critical load αc = 0.1998. This
critical load is slightly larger than the optimal load of the Hopfield model (αc = 0.138).

2.2.2 Link to Restricted Boltzmann Machines
The equations of the BAM dynamics described in Eq. (2.19) are closely related to

the equations of the dynamics of a Spin-Spin RBM in the limit of large couplings (with
Vi = Uµ = 0). Indeed, if we note as 〈h|v〉 the average value of the unit h which receives its
input from v and 〈v|h〉 the average value of the unit v which receives its input from h

〈h|v〉 = tanh
(
WT ·v

)
, (2.21)

〈v|h〉 = tanh(W ·h) .
(2.22)

Therefore, if the inputs received are large, as tanh(I) ∼
I→∞

sign(I), the equations of the
BAM dynamics described in Eq. (2.19) are retrieved.

RBM can therefore be used to store memory pairs {ξk, ξ̂k}, as a BAM. From this
observation, a natural question appears. When training RBM, we can see the data as
patterns ξk. Contrary to BAM, the patterns ξ̂k are not fixed. How are they chosen?
This question will be partially addressed, based on numerical experiments and theoretical
computations, in Chapter 4.

2.3. Bernoulli-Bernoulli Restricted Boltzmann Machines are universal
approximators

2.3.1 Construction of the solution: a geometric interpretation
As derived in Le Roux and Bengio (2008), Bernoulli-Bernoulli RBM are universal

approximators. It means that a RBM can learn any distribution on the hypercube {0,1}N
and therefore Bernoulli-Bernoulli RBM can be used to store patterns. To understand how
works their proof, let’s consider a simple example where the support of the distribution
is K vectors {ξk}k=1..K , with a probability distribution P (v) = 1

K

K∑
k=1

N∏
i=1

δvi,ξki
. For a

Bernoulli-Bernoulli RBM, the energy Eeff(v) (Eq. (1.4)) reads

Eeff(v) =−
N∑
i=1

givi−
M∑
µ=1

log
(

1 + exp
(

N∑
i=1

cµ+Wiµvi

))
. (2.23)

If the sum of the input received by the hidden unit hµ, Iµ(v) =
N∑
i=1

Wiµvi and its field

cµ is large enough (|Iµ(v) + cµ| � 1), the energy can be written as

Eeff(v)'−
N∑
i=1

givi−
M∑
µ=1

max(0, Iµ(v) + cµ) . (2.24)
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We can interpret terms in the sum over the hidden units in a geometrical way. Let us
define the hyperplane Hµ = {x ∈ RN , cµ+

N∑
i=1

Wiµxi = 0}, and its normal nµ

nµ =

w1µ
...

wNµ

 . (2.25)

• If vT ·nµ+cµ > 0 (i.e hµ = 1), then max(0, cµ+Iµ(v)) = cµ+Iµ(v)> 0 is proportional
to the distance of v to the hyperplane Hµ.

• If vT ·nµ+ cµ < 0 (i.e hµ = 0), max(0, cµ+ Iµ(v)) = 0.

The idea of Bengio is to choose the hyperplane Hµ such that vT ·nµ+ cµ > 0 if and
only if v = ξµ (the µth pattern to store). Here, fields on the visible layer are unnecessary
(∀i, gi = 0). In that case, the energy reads

Eeff(v) = −
M∑
µ=1

(Iµ(v) + cµ)
N∏
i=1

δvi,ξki
, (2.26)

This proof can be easily adapted in the case of Spin-Spin RBM. This idea is still to
cut the hypercube {−1,1}N with K hyperplanes, and have hµ = 1 if and only if v = ξµ.
However, visible fields gi are needed in order to compensate the effects of hµ = −1, see
Appendix A.

2.3.2 Representation and sampling
From the construction of this solution, we can draw two important conclusions:

• Landscape Eeff(v) is flat with K holes corresponding to {ξk}k=1..K .

• hµ = 1 if and only if v = ξµ.

In this solution, each hidden unit hµ has a precise role: detecting a single vector vµ.
Each hidden unit hµ is therefore a "grandmother cell" (Barlow, 1972; Churchland, 1986;
Gross, 2002; Bowers, 2011), i.e., a cell which has a particular role4. Although this solution
perfectly stores the patterns, it’s inefficient in terms of patterns retrieval. In fact, the basins
of attractions of ξµ is limited to itself (Fig. 2.2(a)). With Alternating Gibbs Sampling,
starting with ξµ triggers only one hidden unit hµ. Sampling back the visible layer leads
to the same pattern ξµ. However, starting with a random vector v of {−1,1}N , none of
the hidden units will be triggered except if v is equal to one of {ξk}k=1..K . In the case
where none of the hidden units are triggered, sampling back the visible layer leads to
another random vector v of {−1,1}N . Therefore, with this solution patterns retrieval is
very unlikely: at each time step of the Alternating Gibbs Sampling, a random v of the
hypercube is drawn uniformly, up to reach one of the {ξk}k=1..K . O(K−12N ) steps are
needed to retrieve a pattern. Furthermore, once a pattern has been retrieved, the dynamics
is stuck and can not efficiently find the other ones.

We adapted the proof in order to have finite-size basins of attraction (Appendix A.1.1.1).
The basic idea is to have a hidden unit hµ which triggers for all patterns v in a neighborhood

4Grandmother cells are hypothetical neurons are very specific, and they activate only for a very specific
input, such as when you see your grandmother in a photo.
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of ξµ (∀v such that dist(v,ξµ)< dN , where dN denotes a distance). This solution has a
geometric interpretation. Each hyperplane Hµ still separate the hypercube in two, but
instead of having one vector (the pattern) on one side of the hyperplane and 2N −1 on the
other side, now there are 2NS(d) vectors on one side and 2N −2NS(d) vectors on the other
side. S denotes the binary entropy. For orthogonal patterns, d∼ N

4 . The energy landscape
Eeff(v) is still flat, but now the K holes have some width. Each of the K holes contains
2NS(d) vectors (Fig. 2.2(b)). Nonetheless, despite the number of points in the basins of
attractions are exponential in the dimension N , in the thermodynamic limit, 2N(KS(d)−1)

goes to 0.

Figure 2.2: Square boxes represent the space of configuration. (a) Original Bengio’s solution:
basins of attractions of the patterns are reduced to the patterns only. (b) Modified Bengio’s
with extended basins of attractions.

2.4. Representation and sampling
As discussed in the previous sections, there are different ways to store patterns using

RBM. All these solutions are not equivalent. The solution proposed by Le Roux and Bengio
(2008) allows storing exactly the ξk patterns, without any spurious memory. Nevertheless,
this solution suffers from several defects. Starting from a random configuration v, AGS does
not allow reaching quickly one of the patterns. Moreover, this solution is theoretical, and it
is impossible to reach it dynamically by training a RBM by maximizing the log-likelihood
on the patterns.

The comparison between RBM and associative memories also has its advantages and
disadvantages. As we will show numerically in Chapters 3 and 4, these solutions are indeed
found when a RBM is trained by log-likelihood maximization, in the limit K �M,N .
Moreover, starting from a random configuration v, AGS allows converging to one of the
patterns. Nevertheless, there are spurious patterns, and the dynamic can get stuck in one
of its unwanted states. Moreover, the results on associative memories are well understood
when the patterns are random, which is not the case in data in general, where some
structure emerges.

Concerning the representations of the patterns in the hidden layer, we will show in
Chapter 3 that they do not matter when considering only AGS for a RBM. Nonetheless,
when we want to improve the sampling, by adding for example a dynamic in the space of
the hidden units (Chapter 3) or by using a stack of RBM coupled with Deep Tempering
(Chapter 4), the representations are crucial to improve the sampling performances of the
RBM.
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2.5. What does statistical mechanics tell us about RBM?
This section discusses the results deduced on RBM using methods from statistical

mechanics. These results shed light on the different representations accessible by RBM,
as well as on the different phases and their learning capabilities. Decelle and Furtlehner
(2020b) recently published a detailed review on the subject.

Tubiana and Monasson (2017) describe the behavior of RBM when the weights Wiµ

are drawn randomly, with probability p
2 to be equal to 1 or −1, and probability 1−p to be

equal to 0. The hidden units are continuous with a potential ReLU, and they study the
regime where the number of hidden units is of the same order as the number of visible
units (α= M

N =O(1)).
In addition to the traditional ferromagnetic and spin-glass phases, they show that

a compositional phase exists. In this phase, a number 1� L�M of hidden units is
strongly activated simultaneously, and interpolates between the ferromagnetic phase, where
only one hidden unit is strongly activated, and the spin-glass phase where all units are
weakly activated (Fig. 2.3). In this compositional phase, data can be represented using
L features. As shown in a series of papers, these features are interpretable, and encode
for example strokes of digits (Tubiana and Monasson, 2017), or contacts and biological
features of proteins (Tubiana et al., 2019a,b; Bravi et al., 2021a,b). Therefore, this regime
is suitable for representing data, as it is halfway between a prototypical representation of
data (ferromagnetic phase), where representation is trivial, and a completely delocalized
representation of data (spin-glass phase), where representation is not interpretable. We
will place ourselves in this phase to study the class A β-lactamases family in Chapter 9.

Figure 2.3: The three regimes of operation of Random RBM. Red, gray and white hidden
units symbolize, respectively, strong (h = O(

√
N)), weak (h = O(1)) and null (h = 0)

activations. In the ferromagnetic phase, one hidden unit is strongly activated, and the
others are weakly activated. The number of attractors is linear in N . In the spin-glass phase,
all hidden units are weakly activated, with many metastable states. In the compositional
phase, several hidden units are strongly activated, and the others are quiet. The number
of attractors is polynomial in N . Figure and caption adapted from Tubiana (2018).

Agliari et al. (2012) also described the behavior of RBM with random weights (same
distribution as Tubiana and Monasson (2017)), but in the case of Spin-Spin RBM, in the
regime where α= 0. In this regime, Eeff(v) is equivalent to the Hamiltonian of the Hopfield
model. In the regime where p� 1, which corresponds to a strong dilution of the RBM
weights Wiµ

5, an interesting phase appears. RBM is able to remember several patterns at
5It is important to note that even for a strong dilution of the RBM weights, the vi spins are still

connected. This dilution is quite different from the dilution of the Hopfield model, where the connections
between the vi are randomly removed (Sompolinsky, 1986). In this case, it is a Hopfield model on random
graph sparse. While for the RBM weight dilution, the spin connection graph is fully connected, but of lower
intensities. The properties of the networks are therefore different from each other.
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the same time, through parallel states and hybrid states. These states are different from
the traditional spurious states of the Hopfield model, as they correspond to global minima
of the free energy, and at least one of the patterns is perfectly retrieved. Agliari et al.
(2013) introduced these networks in immunology, to illustrate that a sparse lymphocyte
network between B cell and T cell allows targeting several pathogens at the same time
(through these parallel states and hybrid states).

Decelle et al. (2017, 2018) have also studied the Spin-Spin RBM with α=O(1), but
with another assumption on the distribution of the weight matrix. By writing the singular
value decomposition of the weight matrix, it encodes K�M,N singular values, and an
iid Gaussian noise perturbs each term of the matrix. They derive a phase diagram for
RBM similar to the Hopfield model. Moreover, they show the evolution of the RBM in
this phase diagram during training on real data, and the transition from the paramagnetic
to the ferromagnetic phase: during training, a small number K of singular values emerge
from bulk. We also observe this phenomenon in Chapter 4.
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Part II summary
The landscape Eeff(v) of the RBM can represent many models from statistical physics.

Nevertheless, RBM has additional degrees of freedom through its landscape E(v,h) which
controls the representations of a vector v in the hidden space through P (h|v). These
representations are not exploited by the canonical RBM sampling algorithm, Alternating
Gibbs Sampling. Without exploiting these representations, we show that this algorithm is
just as inefficient as Metropolis-Hastings.

These representations are an asset of RBM, and can allow better interpretation of
trajectories in Eeff(v), as well as speed up its sampling, as we will see in Chapters 3 and 4.

• Chapter 3 is based on our following publication:

[1] Roussel, C., Cocco, S., and Monasson, R. (2021). Barriers and Dynamical
Paths in alternating Gibbs sampling of restricted Boltzmann machines, Physics
Review E

• Chapter 4 is based on our paper, in preparation:

[2] Roussel, C., Cocco, S., and Monasson, R. (2021). Improving Sampling of restricted
Boltzmann machines with Deep Tempering, In preparation

https://doi.org/10.1103/PhysRevE.104.034109
https://doi.org/10.1103/PhysRevE.104.034109


3
Barriers and Dynamical Paths in Alternating Gibbs Sampling

of Restricted Boltzmann Machines

3.1. Alternating Gibbs Sampling of multi-modal distributions
This section examines how long it takes for AGS to sample complex energy landscapes

with several states associated with multi-modal distributions, and how the hidden repre-
sentations learned by the RBM can be used to improve the sampling. This section repeats
the results presented in Roussel et al. (2021).

We consider first the Curie-Weiss model at low temperature, where two ferromagnetic
states with opposite magnetizations coexist. We then turn to the case of the Hopfield
model, in which different, uncorrelated states coexist. We finally study the general, more
complex situation, in which multiple correlated states are present. We show that AGS is
just as inefficient as a Metropolis-Hastings algorithm for sampling these energy landscapes.
Nevertheless, RBM can learn useful representations, and the hidden units can encode
collective modes of the data. Using these representations, it is possible to improve AGS by
adding Metropolis Hastings to the space of hidden units.

3.1.1 Case of bi-modal distributions
We consider the Curie-Weiss (CW) model over N spins, vi =±1. The energy function

is defined in Eq. (2.10), with w2 = β.
The CW model can be represented with a RBM with N visible units (with potentials

Vi = 0) and M = 1 hidden unit with a quadratic potential U(h) = h2

2 . The weights Wi,µ=1
are uniform and equal to w√

N
1. The energy of the RBM in Eq. (1.2) reads

ECW(v,h) =− w√
N

N∑
i=1

vih+ h2

2 . (3.1)

After integration over h, it is straightforward to check that the effective energy in Eq. (1.4)
coincides with the CW energy in Eq. (2.10).

3.1.1.1 Barriers and sampling time for MH procedures
As explained in Chapter 2, for w2 > 1 and infinite-size limit N →∞, the average

magnetization of the spins, m= 1
N

N∑
i=1

vi, spontaneously acquires a nonzero value. The free

energy f(m) is an even function of m, with a double-well shape. The two opposite values

1We have checked that numerical experiments with RBM trained by gradient ascent on data sampled
from the Curie-Weiss model converge to this solution.
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of the spontaneous magnetization, roots of f ′(m∗) = 0, define two collective states of the
system. Notice that m= 0 is a local maximum of the free energy.

To go from one mode of the distribution to the other, a macroscopic number of spins
has to be flipped. Local sampling processes, such as Metropolis-Hastings described in
Algorithm 32 take exponential-in-N time to do so:

τ ∼ exp(N∆f), where ∆f ≡ f(±m∗)−f(0), (3.2)

is the free energy barrier between the minima m=±m∗ and the local maximum m= 0 of
the free energy landscape. Consequently, for large N , the system is stuck in one state/mode
for long times, and thermalization is practically impossible.

Algorithm 3: Metropolis-Hastings algorithm
Pick v0 ∈ {−1,1}N at random ;
for t ∈ J0,T K do

v′ = vt ;
Choose i ∈ J1,NK uniformly at random;
v′i =−vti ;
Generate a uniform random u ∈ [0,1] ;
if u≤min

(
1,exp

[
− (Eeff(v′)−Eeff(vt))

])
then

vt+1 = v′ ;
else

vt+1 = vt ;
end

end

3.1.1.2 Optimal sampling paths with AGS
The AGS procedure can be entirely described in terms of the magnetizations m of the

visible configurations and of the values h of the hidden unit. To get intensive quantities in
the large N limit, we rescale h→ h/

√
N . The conditional configuration of the hidden unit

ht+1 given a visible configuration with magnetization mt then simply reads,

P
(
ht+1|mt)= 1√

2π/N
exp

(
−N2

(
ht+1−wmt)2) . (3.3)

Some care must be taken to write the conditional distribution of the magnetization mt

given the hidden unit ht. First, the conditional probability of vt is

P
(
vt|ht

)
=

N∏
i=1

exp
(
wht vti

)
2cosh(wht) (3.4)

= exp
(
N
(
whtmt− log2cosh(wht)

))
,

which depends onmt as expected. Second, to turn the probability over visible configurations
into a probability over magnetizations, we have to take into account the entropies of the
latter. We end up with the normalized (to dominant order in N) conditional probability,

P
(
mt|ht

)
= exp

(
N
(
whtmt− log2cosh(wht)

))
× exp

(
N S(mt)

)
. (3.5)

2The specific choice of the Metropolis rule is irrelevant here; other choices, such as Glauber rule, (Glauber,
1963), do not affect the leading behavior of τ .
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We may now express the probability to go from one minimum of the free energy landscape
to the other in T steps of AGS. To do so, we compute the probability P

(
mT |m0

)
that,

given magnetization m0 =m∗ at time t= 0, the dynamics associated with AGS reaches
magnetization mT =−m∗ at time t= T . This conditional probability may be computed
by means of the saddle-point method in the thermodynamic limit N →∞ (for finite T ):

P
(
mT |m0

)
=

∫
dh1 . . .dhT

∫
dm1 . . .dmT−1

T−1∏
t=0

P (mt+1|ht+1)P (ht+1|mt)

= exp
(
−N min

{mt,ht}
Φ
(
{mt,ht}

))
, (3.6)

where

Φ
(
{mt,ht}

)
=
T−1∑
t=0

δΦ(t→ t+ 1) , (3.7)

and, according to Eqs. (3.3) and (3.5),

δΦ(t→ t+ 1) = 1
2(ht+1−wmt)2 + log

(
2cosh

(
wht+1

))
− wmt+1ht+1−S

(
mt+1). (3.8)

The set of magnetizations mt and hidden-unit values ht minimizing the action Φ in
Eq. (3.6) define the most likely path, with AGS, capable of moving the system from one
state to another in T alternating sampling steps. They are solutions of the following
extremization equations for Φ, which must be fulfilled at all steps 1≤ t≤ T −1:

w(mt+1 +mt) = ht+1 +w tanh(wht+1), (3.9)
arctanh (mt) = w(ht+ht+1)−w2mt.

An example of transition path obtained through brute force numerical minimization of
Φ
(
{mt,ht}

)
is shown in Fig. 3.1(a). It is composed of two portions:

• an initial part of the trajectory ascending the free energy landscape from one stable
state, say, +m∗ up to the free energy local maximum, m= 0. This part is associated
with an exponentially small probability, i.e., to a positive contribution to the action,
δΦ> 0 (Fig. 3.1(b)).

• a final part of the trajectory descending the free energy landscape from the local
maximum m = 0 down to the other stable state, say, −m∗. This stretch does not
seem to contribute to the action, δΦ' 0 (Fig. 3.1(b)).

As the number T of steps increases the total action decreases, as expected, and quickly
converges toward a minimal value (Fig. 3.1(c)). We show below that the scenario above
can be analytically understood when T is sent to infinity.

3.1.1.3 Analytical expressions of the optimal trajectories in the T →∞ limit
In the infinite T limit, the equations of motion (3.9) admit two distinct solutions that

correspond to the two-fold behavior empirically observed for finite T .



34 Chapter 3. Barriers and Dynamical Paths in Alternating Gibbs Sampling of RBM

Figure 3.1: Numerical minimization of Φ
(
{mt,ht}

)
for w = 1.1 with boundary conditions

m0 = −mT = m∗. (a) Optimal time course of the magnetizations for T = 25 (red) and
T = 50 (green) AGS steps. (b) Contributions δΦ(t) and full action Φ(t) as a function of
the number of AGS steps for the optimal paths of duration T = 25 and T = 50. (c) Cost
Φ of the optimal path as a function of T . For large T , Φ reaches from above a plateau
equals to the free energy barrier ∆f of the CW model, see Eq. (3.2). The convergence is
exponentially fast, with decay time Tdecay ∼ 1/ log(w2).

a) Instanton-like trajectories
The ascending trajectories correspond to instantons, connecting a local minimum of

the free energy to the local maximum, and are described by

mt+1 = 1
w2 arctanh (mt),

ht+1 = wmt+1. (3.10)



3.1 Alternating Gibbs Sampling of multi-modal distributions 35

Inserting these equations into Eq. (3.8), the contribution to the action associated with
one AGS step reads, after some algebra,

δΦ = f
(
mt+1)−f(mt), (3.11)

where f(m) is the free energy of the CW model for magnetization m. The only stable fixed
point of this dynamics is the local maximum of f(m) in m= 0. Starting from m0 =m∗, the
dynamics converges to m= 0 for T →∞. Along this path, Φ

(
{mt,ht}

)
−→
T→∞

f(0)−f(m∗) =
∆f (Fig. 3.1(c)). Hence, this path has a log-probability (per variable) equal to minus the
free energy barrier separating the minima of the landscape.

b) Thermalization-like trajectories
The descending portion of the trajectory corresponds to relaxation toward the other

minimum of the free energy and is described by the following solution of the extremization
equations:

mt+1 = tanh
(
w2mt

)
,

ht+1 = wmt. (3.12)

We find that the contribution of an alternating step of AGS to the action vanishes

δΦ = 0. (3.13)

The stable fixed points of the dynamics are the two minima of f(m). Starting from m0 = 0
at time t= 0, the dynamics converges, when T →∞, to the spontaneous magnetization
±m∗ associated with the minima of f(m). Along this relaxation part of the trajectory,
Φ
(
{mt,ht}

)
= 0.

As a summary, the probability that a sequence of T steps of Alternating Gibbs Sampling
brings the system from one minimum of the free energy to the other is given, to the dominant
order in N , by exp(−N∆f). This result holds when N and T are very large (but with
T �N). We conclude that it will take the same time τ as with the MH procedure, see
Eq. (3.2), for the system to switch state. In other words, AGS is as inefficient as MH for
sampling the bi-modal distribution associated with the CW model.

3.1.2 Case of unstructured multi-modal distributions
We now consider the case of a multi-modal distribution, where more than two states

have high probabilities.

3.1.2.1 Hopfield model
Let us call ξµ (µ= 1...M) (M finite) the centers of the states, which we suppose to be

orthogonal in the infinite N limit. We assume that ξµi =±1. The order parameter is the
M -dimensional vector of magnetizations along the centers, called patterns,

mµ = 1
N

N∑
i=1
〈vi〉ξµi . (3.14)

We will hereafter consider the limit M
N → 0. To be more precise, the energy over the visible

configurations corresponds to the Hopfield model (Eq. (2.8)) with β = w2. By inserting
Eq. (3.14) into Eq. (2.8), the free energy (per site) can be written as a function of the
magnetizations along the centers m

f(m) =−w
2

2

M∑
µ=1

m2
µ−SHop(m), (3.15)
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where SHop(m) denotes the entropy of the visible configurations at fixed magnetizations.
It can be computed from the following Legendre formula,

SHop(m) = min
λ

(
1
N

N∑
i=1

log2cosh

 M∑
µ=1

ξµi λµ

− M∑
µ=1

λµmµ

)
. (3.16)

The minimum is reached in the unique λ∗ such that

mµ = 1
N

∑
i

ξµi tanh
(∑

ν

ξνi λ
∗
ν

)
, (3.17)

for all µ’s. SHop(m) can be expressed as a function of λ∗ and the binary entropy S(m)
defined in Eq. (2.11)

SHop(m) = 1
N

∑
i

S
(

tanh
(∑

µ

ξµi λ
∗
µ

))
. (3.18)

The Hopfield model can be represented with a RBM with N visible units (with potentials
Vi = 0) and M hidden units subject to the quadratic potential U(h) = h2

2 (Eq. (2.15)), and
the weights must full the constraints defined in Eq. (2.16).

As explained in Chapter 2, these conditions do not uniquely define the weight matrix W.
The energy is invariant under any transformation W→W×O, where O is an orthogonal
matrix. We choose for now the following parametrization for the weight matrix W:

Wiµ = w√
N
ξµi . (3.19)

Alternative choices will be discussed later.

3.1.2.2 Optimal sampling with AGS
The AGS procedure can be entirely described in terms of M magnetizations m of

the visible configurations and of the values h of the M hidden units. As in the case of
the CW model, to get intensive quantities in the large N limit, we rescale h→ h/

√
N .

The conditional configuration of the hidden unit ht+1 given a visible configuration with
magnetization mt is factorized, and reads

P
(
ht+1
µ |mt)= 1√

2π/N
exp

(
−N2

(
ht+1
µ −wmt

µ

)2)
. (3.20)

The conditional probability of mt given the hidden unit ht can be easily written to the
leading order in N , with the result

P
(
mt
µ|htµ

)
= exp

− N∑
i=1

log2cosh
(
w

M∑
µ=1

ξµi h
t
µ

) (3.21)

× exp

N(w M∑
µ=1

htµm
t
µ+SHop(mt)

).
Similarly to the CW case, the probability of going from one minimum of the free energy

landscape to another in T steps of AGS can be expressed as

P
(
mT |m0

)
= exp

(
−N min

{mt,ht}
Φ
(
{mt,ht}

))
, (3.22)
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Figure 3.2: Hopfield model with N = 128 spins, M = 6 patterns and w = 1.35; each color
refers to one index µ. Examples of transition between two states for Wiµ = w√

N
ξµi (panels

a-b) and for Wiµ = w√
N

∑
νOνµξ

ν
i (panels c-d). (a-c) Magnetizations mµ along the patterns

as functions of the number of AGS steps. (b-d) Hidden unit values hµ as functions of the
number of AGS steps for the same transitions as in panels (a-c).

where the action Φ
(
{mt,ht}

)
is the sum of

δΦ(t→ t+ 1) = 1
2
∑
µ

(ht+1
µ −wmt

µ)2 + 1
N

∑
i

log2cosh
(
w
∑
µ

ξµi h
t+1
µ

)
− w

∑
µ

mt+1
µ ht+1

µ −SHop(mt+1). (3.23)

The set of magnetizations mt and hidden-unit values ht minimizing the action Φ
define the most likely path interpolating between two states in T AGS steps. They are
solutions of the following extremization equations for Φ, which must be fulfilled at all steps
1≤ t≤ T −1:

(λ∗)tµ = w(htµ+ht+1
µ )−w2mt

µ, (3.24)

w(mt+1
µ +mt

µ) = ht+1
µ + w

N

∑
i

ξµi tanh
(
w
∑
ν

ξνi h
t+1
ν

)
.

3.1.2.3 Analytical expressions of the optimal trajectories in the T →∞ limit
As for the CW model, we find

a) Instanton-like trajectories
These are defined by

ht+1
µ = wmt+1

µ = 1
w

(λ∗)tµ, (3.25)

mt
µ = 1

N

N∑
i=1

ξµi tanh

w2
M∑
µ=1

ξµi m
t+1
µ

 .
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The contribution to the action associated with this AGS step reads

δΦ = f
(
mt+1)−f(mt). (3.26)

b) Thermalization-like trajectories
These correspond to

ht+1
µ = wmt

µ = 1
w

(λ∗)t+1
µ , (3.27)

mt+1
µ = 1

N

N∑
i=1

ξµi tanh

w2
M∑
µ=1

ξµi m
t
µ

 .
The contribution to the action associated with such an AGS step vanishes:

δΦ = 0. (3.28)

c) Orthogonal transformation of the weight matrix
The computation can be repeated for a weight matrix W̃ = W×O where O is an

orthogonal matrix. In the limit T →∞, instanton-like and themalization-like trajectories
are found, and contributions to the action for both trajectories are the same as for W.
Therefore, the barriers are identical for all rotations O. However, contrary to the previous
case where the hidden unit hµ codes for the magnetization mµ only (hµ = wmµ), under
an orthogonal transformation of the weight matrix, the hidden unit hµ represents a

superposition: hµ = w
M∑
ν=1

Oνµmν .

3.1.2.4 Transition paths between Mattis states
In the thermodynamic limit, the ξµ are orthogonal. The free energy landscape f(m)

(Eq. (3.15)) exhibits a large variety of critical points when w2 > 1 (Amit et al., 1985a;
Amit, 1989), defined through Eq. (3.14), with

〈vi〉= tanh

w2
M∑
µ=1

ξµi mµ

 . (3.29)

Global minima of Eq. (3.15) are reached for magnetization with only one nonzero component,
called Mattis states (Procesi and Tirozzi, 1990). Numerical experiments for finite N exhibit
transitions between the Mattis states, for all orthogonal transformation W̃ = W×O
(Figs. 3.2(a) and (c)). However, the hidden representations of the path between Mattis
states may be easy or difficult to interpret depending on the orthogonal transformation
(Figs. 3.2(b) and (d)).

Furthermore, as for CW, for large T and N (with T �N), the probability to go from
one Mattis state to another scale as exp(−N∆f). The barrier ∆f depends on w and is
always positive for w2 > 1 (Amit et al., 1985a). Therefore, AGS is as inefficient as MH for
sampling the Hopfield model.

3.1.3 Case of structured multi-modal distributions
We now turn to a more complex case of multi-modal distributions, in which the free

energy minima do not correspond to orthogonal pockets of configurations in the visible
space but are structured. In addition, contrary to the previous models, the hidden units
hµ, which can be discrete or continuous, are now subject to an arbitrary, not necessarily
quadratic potential Uµ(hµ). Common potentials in the machine learning community are
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Figure 3.3: Illustration of the structured model for M = 3 hidden units. The structural
overlap matrix α divides the visible layer into six different areas labeled by µ,ν, with
1≤ µ≤ ν ≤M . For each area, we define the corresponding normalized magnetization mµν .

Bernoulli or ReLU potentials (Nair and Hinton, 2010; Tubiana and Monasson, 2017), see
Appendix B.1.

The N →∞ visible units vi are ±1 variables, and no potential acts on them (Vi = 0).
A visible unit vi is connected to one or two hidden units with equal weights w√

N
, following

a pattern of connections shown in Fig. 3.3. We define the adjacency matrix a of our model
as:

aiµ =
{

1 if Wiµ = w√
N

0 otherwise.
(3.30)

From the adjacency matrix a, we define the overlap matrix α and the magnetization matrix
m:

αµµ = 1
N

N∑
i=1

aiµ
∏
ν 6=µ

(1−aiν), (3.31)

αµν = 1
N

N∑
i=1

aiµaiν , (3.32)

mµµ = 1
αµµN

N∑
i=1
〈vi〉aiµ

∏
ν 6=µ

(1−aiν), (3.33)

mµν = 1
αµνN

N∑
i=1
〈vi〉aiµaiν . (3.34)

In other words, there are αµµN visible units connected only to hµ, and αµνN visible
units connected to both hµ and hν . The overlap matrix α partitions the visible layer into
M(M+1)

2 subsets with associated magnetizations m (Fig. 3.3).
It is straightforward to write down the free energy per variable f(m) as a function of

the M(M+1)
2 magnetizations, with the result

f(m) =−
M∑
µ=1

Γ̂µ
(
w

M∑
ν=1

αµνmµν

)
−
∑
ν≤µ

αµν S(mµν), (3.35)

where Γ̂µ is the rescaled cumulative generative function associated with the hidden potential
Uµ, see Eq. (1.4) and Appendix B.1, and S(m) is the entropy associated with a single ±1
variable with magnetization m. The minima of f(m) obey the following self-consistent
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equations,

m∗µµ = tanh
(
wfµ

(
I∗µ

))
, (3.36)

m∗µν =
m∗µµ+m∗νν
1 +m∗µµm

∗
νν

,

where I∗µ = w
M∑
ν=1

αµνm
∗
µν is the input received by the hidden unit hµ and fµ = Γ̂′µ is the

transfer function associated with the hidden unit hµ.

3.1.3.1 Optimal sampling paths with AGS
We may now express the conditional probabilities of the magnetization matrix m (of

dimension M ×M) and of the hidden-unit value vector h (of dimension M) following what
was done for the simpler models in the previous sections. We first write the conditional
probability of the hidden configuration given a set of visible activities,

P
(
ht+1
µ |mt) =

exp
(
−N

(
Uµ(ht+1

µ )−ht+1
µ Itµ

))
∫
dhexp

(
−N

(
Uµ(h)−hItµ

)) (3.37)

' exp
(
−N

(
Uµ(ht+1

µ )−ht+1
µ Itµ

))
× exp

(
−N Γ̂µ

(
Itµ

))
,

where we have defined the input Itµ = w
M∑
ν=1

αµνm
t
µν received by the hidden unit hµ given

the magnetization matrix mt.
In turn, we write the conditional probability over magnetizations given the set of

hidden-unit values (to dominant order in N),

P
(
mt|ht

)
' exp

N( M∑
µ=1

Itµh
t
µ−αµµ log2cosh

(
whtµ

)) (3.38)

× exp

N(−∑
µ≤ν

αµν log2cosh
(
w(htµ+htν)

)
+αµν S(mt

µν)
).

The probability to go from one minimum of the free energy landscape to another in T
steps of AGS, P

(
mT |m0

)
, takes the same form as Eq. (3.6), where the action Φ

(
{mt,ht}

)
is the sum of

δΦ(t→ t+ 1) =
M∑
µ=1
Uµ(ht+1

µ ) +
M∑
µ=1

Γ̂µ
(
Itµ

)
+

M∑
µ=1

αµµ log2cosh
(
wht+1

µ

)
(3.39)

+
∑
µ≤ν

αµν log2cosh
(
w(ht+1

µ +ht+1
ν )

)
−

M∑
µ=1

(It+1
µ + Itµ)ht+1

µ

∑
µ≤ν

αµν S(mt+1
µν ).

Notice that the previous expression extends the model studied in Section 3.1.1, which can
be recovered for M = 1, α11 = 1 with a quadratic potential U(h) = h2

2 .
We show the best path found through minimization of Φ in the case of M = 2 hidden

units, quadratic U(h), w > 1, and small positive overlap α12. The free energy landscape
f(m) represents two coupled Curie-Weiss models (Fig. 3.4(a)), and displays two global
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minima and two local minima. The green trajectory shows the most likely path connecting
the two global minima in T = 100 steps. Along this path, mt

11 and mt
22, and therefore ht1

and ht2, have asymmetric behaviors. In contradistinction, trajectories along which mt
11 and

mt
22 are equal, have exponentially smaller probabilities, see the red path. We elucidate

this behavior below.

Figure 3.4: (a) Free energy landscape for a coupled Curie-Weiss model with two global
minima and two local minima. M = 2, U(h) = h2

2 , w = 1.15
√

2 and α12 = 0.02. Among
the many paths connecting the two global minima in T = 100 steps, the green path is the
optimal one. The red path is another path, along which both magnetizations m11 and m22
are equal at all times. The blue path is a representative trajectory found by simulating
AGS for N = 400 and 105 steps. (b) Free energy f(mt) along the different paths. (c) Cost
Φ
(
{mt,ht}

)
for the different paths.

3.1.3.2 Optimal trajectories in the T →∞ limit
The set of magnetizations mt and hidden-unit values ht minimizing the action Φ define

the most likely path, with AGS, capable of moving the system from one state to another in
T alternating sampling steps. They are solutions of the following extremization equations
for Φ, which must be fulfilled at all steps 1≤ t≤ T −1:

Itµ+ It+1
µ = Uµ

′(ht+1
µ ) +wαµµ tanh(wht+1

µ ) (3.40)

+ w
∑
ν 6=µ

αµν tanh
(
w
(
ht+1
µ +ht+1

ν

))
,

mt
µµ = tanh

(
w
(
ht+1
µ +htµ

)
−w Γ̂′µ

(
Itµ

))
, (3.41)

mt
µν =

mt
µµ+mt

νν

1 +mt
µµm

t
νν

. (3.42)

In the infinite T limit, these equations of motion admit two distinct solutions.
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a) Instanton-like trajectories
These solutions correspond to an increase of free energy from a local minimum, to a

saddle-point of f(m). These solutions can be written as

ht+1
µ = fµ(It+1

µ ), (3.43)
mt
µµ = tanh(wfµ(It+1

µ )).

Inserting these equations into Eq. (3.39):

δΦ = f(mt+1)−f(mt). (3.44)

b) Thermalization-like trajectories
These solutions make the free energy decrease until a local minimum is reached. The

relaxation solution can be written as:

ht+1
µ = fµ(Itµ), (3.45)

mt+1
µµ = tanh(wfµ(Itµ)).

Inserting these equations into Eq. (3.39):

δΦ = 0. (3.46)

While instantonic and thermalization trajectories are, strictly speaking, defined for
T →∞ qualitatively analogous bouts of trajectories are observed for finite T , see Fig. 3.4(b)
and (c) for the M = 2 example above. The green and the red paths are each composed of a
sequence of instantonic and thermalization stretches. In the case of the red path, starting
from a global minimum, the instantonic dynamics leads to the global maximum of f(m).
The relaxation dynamics then brings the system down to the other global minimum. In
the case of the green path, starting from a global minimum, the instantonic solution leads
to a saddle point of f(m), which is unstable for the instantonic and the thermalization
dynamics. Then, the relaxation dynamics leads to a local minimum of f(m). Through
another pair of instantonic/relaxation dynamics, the second global minimum is finally
reached. Thus, for the green and the red paths, the action Φ

(
{mt,ht}

)
corresponds to the

sum of the free energy barriers along the paths (Figs. 3.4(b) and (c)). These theoretical
findings are corroborated by running AGS on a RBM with N = 400 spins, with the same
overlap matrix α. Along the transition path allowing the RBM to interpolate from one
global state to the other, hidden units are preferentially flipped one by one, see the blue
path in Fig. 3.4(a).

3.1.3.3 Dependence of barrier upon structural overlap α
This section examines the influence of the structural overlap on the free energy barrier

(and on the transition time) separating states. For the sake of simplicity, we focus on the
case of M = 2 hidden units subject to quadratic potentials and restrict ourselves to small
overlap values, α= α12� 1. For α= 0 the two global minima of f(m) are m∗ and −m∗,
where

m∗ =
[
m11 =m∗

m22 =m∗

]
. (3.47)

An optimal path between these two global minima follows the sequence of critical points:[
m∗

m∗

]
→
[

0
m∗

]
→
[
−m∗
m∗

]
→
[
−m∗

0

]
→
[
−m∗
−m∗

]
, (3.48)
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and, for large T , Φ equals the sum of the free energy barriers along the path

Φ = −f
([
m∗

m∗

])
+ 2f

([
0
m∗

])
−f

([
−m∗
m∗

])

= − log2 + w2

2 (m∗)2 +S(m∗). (3.49)

Assume now we make small changes to the weight and overlap values, i.e. w→w+dw,α→
dα. We denote the displacement of the critical points of f(m) by dm, and the variations
of the free energy by df(m). We will consider only contributions to the first order in dα
and dw,

dm = mwdw+mαdα, (3.50)
df(m) = fw(m)dw+fα(m)dα. (3.51)

Expressions for mw, mα, fw(m) and fα(m) are given in Appendix B.2.
As the variation of α changes the critical points of f(m), we have to change w in order

to keep fixed the two global minima ±m∗ of f(m). Therefore, the variation of the cost Φ
between an optimal path for α= dα and one for α= 0 defined in Eq. (3.48) reads

dΦ =−df
([
m∗

m∗

])
+ 2df

([
0
m∗

])
−df

([
−m∗
m∗

])
. (3.52)

As we observe in Fig. 3.5, a small overlap α reduces the cost for a wide range of w and
therefore helps reduce the transition time between the global minima of f .

Figure 3.5: Solid lines: numerical evaluation of dΦ. Dashed lines: first order perturbation
theory evaluated with Eq. (3.52).

3.1.3.4 Time ordering of hidden-unit changes on sampling path
As the optimal paths for the Alternating Gibbs Sampling are the ones that minimize

the sum of the free energy barriers along the paths, the optimal paths depend strongly
on the overlap matrix between the hidden units. If we impose a 1d structure with
periodic boundary conditions for the overlap matrix, i.e. αµν = α for ν = µ− 1 and
ν = µ+ 1,αµµ = 1

M −
M−1

2 α > 0 (the hidden units are on a circle and have an overlap only
with their two neighbors), the optimal path corresponds to an asymmetric behavior of the
hidden units: they evolve one by one, according to their orders on the circle (hµ evolves
then hµ+1 then hµ+2 ...), see Fig. 3.6.
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Figure 3.6: Sampling paths for structured states. M = 4 hidden units are arranged on a ring,
with w= 2.2 and α= 0.02. (a) Numerical minimization of Φ

(
{mt,ht}

)
for T = 250. Hidden

units are flipped according to their ordering on the ring (h1→ h2→ h3→ h4). There are
2M equivalent optimal paths. (b) Numerical experiment on a RBM with N = 400 visible
units. Hidden units are flipped according to their ordering on the ring (h2→ h1→ h4→ h3).

3.1.4 Numerical experiments
We train RBM with the datasets defined in Section 1.5, then test the performances of

Alternating Gibbs Sampling. The different RBM can generate high-quality configurations,
but the dynamics associated with AGS struggles to mix efficiently between the data modes.

3.1.4.1 BAS
We train RBM with 2L real hidden units subject to quadratic potentials and ±1 visible

units. A L1 regularization is added to the log-likelihood to enforce the sparsity of the
weights. With this regularization, each hidden unit focuses on a given bar or a given stripe,
see Section 3.2.2 for further details. Hidden units identify the relevant degrees of freedom
of the visible units. For an image of bars, the hidden units encoding the bars are strongly
magnetized, and the hidden units encoding the stripes are weakly magnetized (they are
silent). It is essential to use real hidden units because each hidden unit must have more
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than two equilibrium positions (strongly magnetized with positive or negative value, and
weakly magnetized with positive or negative value). This behavior is not possible with
discrete units like Bernoulli or Spin. AGS is inefficient for large L and long training, and
the dynamics gets stuck in a bar or stripe configuration (Fig. 3.7). For short training,
dynamics can escape from a given configuration, but sampled configurations are noisy.

Figure 3.7: Example of configurations obtain with AGS starting from an image with stripes
(a) or an image with bars (b). 1000 steps between each frame.

3.1.4.2 MNIST 0/1
We train Spin-Spin RBM (hidden and visible units are ±1 spins). The weights of the

RBM encode the digits’ strokes. Zeros have many strokes in common, and so have ones.
Therefore, the hidden representations of each digit are close to each other (in terms of
Hamming distance). AGS is efficient to sample within a digit class and generate high-quality
data, see Figs. 3.8(a) and (b). However, hidden representations of the zeros and the ones
are far away from each other. Therefore, many hidden units should be simultaneously
flipped to go from one class to another, which is very unlikely with AGS: the dynamics
remains confined to one digit class, see Fig. 3.8(c). Notice that this observation crucially
depends on the restriction of MNIST to 0-1 digits done here. RBM trained on all ten digits
sample much more efficiently all classes and can reach 1 from 0 or vice versa (Desjardins
et al., 2010a; Tubiana and Monasson, 2017), as other digits carve interpolating paths in
the energy landscape.

3.1.4.3 Lattice Proteins
To encode amino acids (which may take 20 values), we introduce RBM with categor-

ical (Potts) visible units. Couplings between the hidden layer and the visible layer are
represented by a M ×N ×20 tensor. Thus, the energy of the RBM can be written as:

E(v,h) = −
N∑
i=1

M∑
µ=1

Wiµ(vi)hµ+
M∑
µ=1
Uµ(hµ)+

N∑
i=1
Vi(vi). (3.53)

The weights of the RBM encode the constraints, such as contacts between different amino
acids defined by the structure. Contrary to the two previous examples, to generate high-
quality proteins with the RBM, i.e., proteins with a high probability to fold in a given
structure, the landscape has to be sampled at low temperatures. Using the trick introduced
in Tubiana et al. (2019b), we copy each hidden unit β ∈ N times and multiply the visible
fields by the same factor β:

Pβ(v)∝
∫ M∏

µ=1

β∏
c=1

P (v|hcµ) = P (v)β. (3.54)
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Figure 3.8: Examples of digits obtained with AGS starting from a 0 (a) and from a 1
(b); 1000 steps between each frame. (c) Probabilities that the visible unit configurations
sampled by the RBM at different times are 0 (blue) or 1 (red), estimated by a random
forest classifier trained on 0-1 data (Ho, 1995; Breiman, 2001). The dynamics is stuck in a
given mode.

With this modification, it is possible to sample the landscape P (v) at inverse temperature
β. RBM generate high-quality proteins but struggles to mix between two families with
essentially dissimilar contact maps, such as structures SA and SB defined in Fig. 1.4, see
Fig. 3.9. Many hidden units would have to change at once, a very unlikely update with
AGS to go from one family to another.
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Figure 3.9: (a) Principal Component Analysis in the sequence spaces, showing the cluster
structure of each family (blue and red colors). Fuchsia and orange paths are the projection
of sampled proteins with AGS, starting respectively from a protein in family A and B.
Sampled proteins are stuck in a given family; 250 Gibbs steps between each cross. This
number of steps is larger than the decorrelation time estimated from the Hamming distance
between sequences vt. (b) Pnat(v|S) of sampled proteins with AGS, for SA and SB, for an
initial protein in the SB family (orange path in panel a). RBM generates high-quality and
diverse proteins, which are different from the training data.

3.2. Alternating Gibbs Sampling and dynamics in the latent space
3.2.1 Principle of the algorithm

We have shown in the previous Section 3.1 that AGS was as efficient as the local MH
procedure to sample the landscape over the visible configurations, defined by the effective
energy Eeff(v). However, RBM offer more than this landscape, and it is natural to wonder
if the representations of data could be exploited to enhance sampling performance. To do
so, we propose a sampling algorithm combining AGS and moves in the hidden unit space,
see Fig. 3.10 and Algorithm 4. The main idea is to exploit the fact that hidden units can
encode specific features of the data. By doing Metropolis steps in the hidden space, we try
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to flip the hidden units one by one, or by blocks, for switching on/off the features they
encode. This flipping procedure must obviously preserve detailed balance. We therefore
need to know the effective energy over hidden configurations, Eeff(h) defined in Eq. (1.8).

Figure 3.10: Modified Alternating Gibbs Sampling with dynamics in the hidden configura-
tion space.

Algorithm 4: Alternating Gibbs Sampling with Metropolis-Hastings steps in
latent space
Pick v0 in the training set;
for t ∈ J0,T K do

ht+1 ∼ P (h|vt);
π = random permutation of J1,MK;
for i= 1...M do

µ= π(i);
ht+1
µ ∼ P (hµ|ht+1

¬µ ) ;
end
vt+1 ∼ P

(
v|ht+1);

end

We can gain intuition about the exponential speed up offered by the algorithm in the
latent space by considering first the CW model. In the absence of any bias (external field)
between the + and − states of the visible variables, the effective energy Eeff(h) is an
even function of the hidden unit value h. A step of the sampling algorithm in the hidden
space, see Algorithm 4, has thus probability 1

2 to flip the hidden unit. Sampling back the
visible layer will change the state of a macroscopic number of visible variables. Using MH
algorithm in the hidden space is similar to using cluster algorithms for the visible spins
(Swendsen and Wang, 1987; Wolff, 1989). For ferromagnetic models, these algorithms are
known to be much more efficient than local MH over spins (Ray et al., 1989; Persky et al.,
1996; Long et al., 2014). The latent variable is here attached to the relevant collective
mode (global reversal) of the spin variables.

For the mean-field structured models defined in Section 3.1.3, as long as the overlap
between the hidden units is weak, the hidden units could be flipped one by one for moderate
system size N . We define the potential acting on one hidden unit, say hµ, conditional to
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the other units h¬µ through

eµ(hµ|h¬µ) = 1
N
Eeff(h = (hµ,h¬µ)

)
. (3.55)

Each flip of a hidden unit corresponds to a move from one local minimum to another in the
landscape eµ(hµ|h¬µ), see Fig. 3.11. Metropolis steps in the hidden space can speed up the
dynamics: the free energy barrier for Metropolis-Hastings in the hidden space, N∆eMH,
where,

∆eMH =− 1
N

log


∞∫
0
dhe−Neµ(h|h¬µ)

0∫
−∞

dhe−Neµ(h|h¬µ)

 , (3.56)

is smaller than the free energy barrier N∆f ‘seen’ by Alternating Gibbs Sampling.

Figure 3.11: Barriers in a structured model with M = 5 hidden units, with w = 1.2
√

5,
αµν = 0.03 for all pairs µ 6= ν. All hidden units are frozen except hµ. For small overlap
between the hidden units, the potential eµ(hµ|h¬µ) has two local minima for two different
values of hµ, h1∗

µ and h2∗
µ . By sampling back the visible layer P (m|h), we see that there are

two local minima for f(m). Flipping the hidden unit hµ allows one to go from one local
minimum to another. The free energy barrier in the hidden space with Metropolis-Hastings
algorithm ∆eMH is smaller than the free energy barrier of the Alternating Gibbs Sampling
∆f .

3.2.2 Application to BAS
We train RBM on BAS with a L1 regularization to enforce the sparsity of the weights.

Each hidden unit focuses on a given bar or a given stripe thanks to the regularization
(Fig. 3.12(a)). The change hµ←−hµ leaves the energy Eeff(h) unchanged: a bar or a



50 Chapter 3. Barriers and Dynamical Paths in Alternating Gibbs Sampling of RBM

stripe can be present or not (Fig. 3.12(c)). We use a Gibbs sampling in the hidden space
where one hidden unit is updated according to Algorithm 4. Our algorithm efficiently
switches on/off these hidden units (Fig. 3.13(a)).

Figure 3.12: Example of weights learned by RBM on BAS, L= 10. (a) With L1 regulariza-
tion. Each hidden unit focuses on a bar or stripe. (b) Without L1 regularization. Each
hidden unit focuses on several bars and stripes. (c) Potential eµ(hµ|h¬µ) for h associated
with a stripe image; the minimum of the energy is set to zero. Solid blue line: hidden unit
hµ encoding a stripe; the two minima coding from the on/off stripe have roughly the same
energy. Solid orange line: hidden unit hµ encoding a bar, the minimum encoding the on
bar has an energy much higher than the one corresponding to the off bar.

Notice that, without regularization, each hidden unit would focus on several bars and
stripes (Fig. 3.12(b)). In that case, allowing for steps in the hidden-unit space does not
help, and our algorithm is inefficient (Fig. 3.13(b)).

Figure 3.13: Visible configurations obtained with Alternating Gibbs Sampling and
Metropolis-Hastings algorithm in the hidden space, L = 10. 25 Gibbs steps between
each frame. (a) With L1 regularization. (b) Without L1 regularization.

3.2.3 Application to the Hopfield model

We have seen in Section 3.1.2 that, for large enough weight amplitude w, the AGS
dynamics is stuck in one Mattis state of the Hopfield model, i.e., the magnetization m
has only one component different from zero in the infinite size limit. The behavior of the
hidden-unit configurations depends on the prescription of the weights, which may or may
not be aligned with the states ξµ (Eq. (2.16)).
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Figure 3.14: Hopfield model encoded by a RBM with N = 128, M = 6 and w = 1.5 and
orthogonal ξµ. (a), (b) and (c) represent the landscape eµ,ν(hµ,hν |h¬µ,ν), where the
M −2 other components of h are fixed. Black dots represent minima of the landscape.
(a) Wiµ = w√

N
ξµi . Initial configuration is hλ strongly magnetized and hµ ∼ hν = O(1) .

Minimum is reached for hµ ∼ hν = O(1). (b) Wiµ = w√
N
ξµi . Initial configuration is hµ

strongly magnetized and hν =O(1). Four minima exist corresponding to the four possible

Mattis states. (c) Case Wiµ = w√
N

N∑
ν=1

Oµνξ
ν
i . There exist only one minimum. (d) and (e)

vt are generated with AGS with MH steps in the hidden space. The fraction of time spent
in a Mattis state is measured through time. (d) Wiµ = w√

N
ξµi : the visible configuration vt

eventually visits all Mattis states with equal probabilities. (e) Wiµ = w√
N

N∑
ν=1

Oµνξ
ν
i : the

dynamics gets stuck in a given Mattis state.

3.2.3.1 Aligned weights
Let us first assume that the weights are aligned with the states, i.e., that Eq. (2.18)

holds. The effective energy over the hidden configurations reads

Eeff(h) =
∑
µ

h2
µ

2 −
∑
i

log2cosh
(

w√
N

∑
µ

ξµi hµ

)
. (3.57)

Identifying hµ
w
√
N

= mµ, the effective energy is equal to the free energy of the Hopfield
model derived in Amit et al. (1985a) at inverse temperature w2. The representations of
the Mattis states are very simple in the hidden space of the RBM. In the presence of ξµ
on the visible layer, one hidden unit, say, µ= 1, is strongly magnetized: h1 =O(

√
N). The
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M−1 other hidden units are weakly activated: hν =O(1) for ν ≥ 2. Eeff(h) has 2M global
minima corresponding to the 2M Mattis states.

a) Single unit potential
According to Eq. (3.57) the potential over the strongly magnetized hidden unit µ= 1

reads, after rescaling h1→ h1/
√
N ,

e1(h1|h¬1) = h2
1

2 − log2cosh(wh1), (3.58)

up to an additive constant. This potential has two global, opposed minima for w2 > 1. The
situation is similar to the CW model studied above: MH steps in the hidden-unit space
allow for efficient sampling on the states ξ1 and −ξ1.

The potential on the other hidden units ν 6= 1 is given by, up to an irrelevant additive
constant and in the large-N limit, after rescaling hν → hν/

√
N ,

eν(hν |h¬ν) = h2
ν

2 − (1−m2
1)
( 1
N

∑
i

ξ1
i ξ
ν
i

)
hν . (3.59)

Sampling this quadratic potential allows to better explore the Mattis state around ξ1, but
it does not help to change state.

b) Two-unit potential
To speed up exploration of different states, we introduce the two-unit potentials,

eµ,ν(hµ,hν |h¬µ,ν) = 1
N
Eeff(h = (hµ,hν ,h¬µ,ν)

)
, (3.60)

where all but two hidden units are kept fixed. These potentials are plotted in Fig. 3.14.
Two typical behaviors are encountered:

• µ,ν are both different from 1. The two-unit potential eµ,ν is simply the sum of the
single-unit potentials eµ and eν , see Eq. (3.59). Therefore, eµ,ν has only one global
minimum (Fig. 3.14(a)). Changing hµ or hν does not allow for moving outside the
state condensed ξ1.

• µ= 1 and ν 6= 1. Contrary to the previous case, h1 is now a free parameter. Therefore,
by tuning h1 and hν , four global minima of e1,ν can be reached, corresponding to the
cases where h1 or hν are strongly magnetized (with positive or negative values), see
Fig. 3.14(b). We can exploit this structure by introducing a block Gibbs sampling in
the hidden space, where two hidden units are updated simultaneously, see Algorithm 5.
The dynamics can now explore all the Mattis states very efficiently, see Fig. 3.14(d).

3.2.3.2 Rotated weights
As already mentioned in Section 3.1.2, the conditions in Eq. (2.16) do not uniquely define

the weight matrix W. The Hopfield model energy is invariant under any transformation
W→W×O, where O is an orthogonal matrix. After this orthogonal transformation, the
hidden representation of a Mattis state is delocalized: each component of h is strongly
magnetized (of the order of

√
N). Single or two-unit potentials have one global minimum

(Fig. 3.14(c)). Therefore, Metropolis-steps in the hidden space do not speed up sampling
(Fig. 3.14(e)) unless all M hidden units are simultaneously updated.

Numerical experiments with RBM trained by gradient ascent on data sampled from
the Hopfield model generally converge to a solution, where the hidden representation of a
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Algorithm 5: Alternating Gibbs Sampling with Metropolis-Hastings updates of
two hidden units
Pick v0 in the training set;
for t ∈ J0,T K do

ht+1 ∼ P (h|vt);
π = random pairing of J1,MK, defining M/2 pairs of elements ;
for i ∈ J1,M/2K) do

µ,ν = π(i) ;
ht+1
µ ,ht+1

ν ∼ P (hµ,hν |ht+1
¬µ,ν) ;

end
vt+1 ∼ P

(
v|ht+1);

end

Mattis state is delocalized (Fig. 3.15(a)) (Decelle et al., 2019). By adding the following
penalty term in the log-likelihood, it is possible to ensure that only one hidden unit is
strongly magnetized and encodes for a specific pattern ξµ, see Fig. 3.15(b):

LLpen =−λpen
L

L∑
`=1

∑
µ6=ν
|fµ(v`)fν(v`)|, (3.61)

where {v`}`=1...L are the L samples in the training set. This penalty favors solutions where
only one hidden unit is strongly magnetized. Its intensity is set by the parameter λpen.

Figure 3.15: Matrix product between the weight matrix WT (sizeM×N) and the matrix of
patterns ξ (size N ×M). N = 128 and M = 6. (a) Without regularization, λpen = 0. Each
pattern ξµ has a delocalized representation in the hidden space. (b) With regularization,
λpen = 0.001. Each pattern ξµ strongly magnetizes only one hidden unit.

3.3. Conclusion
This work presents a combination of analytical and numerical results on the dynamics

defined by Alternating Gibbs Sampling of Restricted Boltzmann Machines and applied to
several mean-field models. We have shown how this sampling procedure can find optimal
transition paths between the local minima of the free energy landscape over the visible
configurations. However, large free energy barriers, extensive in the system size, have to
be crossed to go from one state to another. As a result, AGS is not more efficient than
standard local Metropolis sampling of the effective energy of the visible configurations.
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Notice that our analytical results were derived in a double large-size setting, where the
asymptotics on the size N of the system was considered first, and the time T of transition
paths was made large afterward. In practice, the probabilities that these transitions paths
successfully interpolate between states are exponentially small in N , which implies, in turn,
that transitions almost surely happen on times scales growing exponentially in N (and
equal to the inverse probabilities). As shown in Fig. 3.4(a), the system spends most of this
exponential time attempting to escape local minima of the free energy landscapes, while
transitions between the minima are actually fast (but rare).

The inability of AGS to outperform local sampling procedures in mixing between states
calls for some comments. First, it does not seem to be affected by the presence of structure
in the free energy landscape. Both in the unstructured case, in which the minima of the free
energy are uncorrelated (or related through global symmetries) and in the structured case,
in which the minima exhibit a non-trivial organization (as observed for real data), large
barriers are encountered. For structured distributions, however, the non-trivial organization
of the minima leads to existence of optimal sampling paths, whose interpretation can be
simpler in the hidden space of the RBM. Second, AGS, with Contrastive Divergence or
Persistent Contrastive Divergence, remains an efficient training algorithm for RBM. These
two procedures authorize initializations of the dynamics in different local minima close to
the training data. Thus, even if AGS suffers from poor mixing between far away minima,
the different minima close to the data may be well sampled. Third, AGS can be efficient
when the different modes of data are connected through energy valleys. For example, AGS
of RBM trained on all digits of MNIST can generate a transition between 0 and 1. However,
these transitions go through different intermediate states, which are other digits. When
training RBM on zeros and ones only, as done in this paper, intermediate states do not
exist: the two modes are not connected by low energy funnels, and transitions are unlikely
to occur. Last of all, RBM are supposed to encode meaningful (hidden) representations,
coding for collective features in the data. It is tempting to see these features as modes of
excitation that could be flipped at once, similarly to what cluster algorithms achieve for
ferromagnetic models.

In the case of entangled representations, in which all (or a large number of) the hidden
units are strongly magnetized (with different degrees of activation from one state to
another), our combined AGS-MH procedure is inefficient, as flipping a small number of
hidden units is unable to change the identity of the state, and determining new, adequate
configurations of a large number of hidden units would be computationally prohibitive.
This phenomenon was illustrated on the Hopfield model in the case of ‘rotated’ weights,
compare Figs. 3.14(d) and (e). In much the same way, MH updates of a small subset of
the hidden units of RBM trained on MNIST 0/1 or Lattice Proteins do not significantly
enhance mixing performances. Hidden units capture features of the data, such as digit
strokes for MNIST, which are correlated. Changing state demands to tune a large number
of hidden units, see Fig. 3.16. In other words, the very existence of collective modes of
hidden units prevents the success of our AGS-MH procedure, which is local in the hidden
space. Another illustration of these collective modes in the hidden space is provided by
RBM trained on BAS. Even if our algorithm is efficient to sample within a given class (bars
or stripes), it cannot go efficiently from one class to another. To go from an image of bars
to an image of stripes, the hidden units encoding the bars have to be silent, and the hidden
units encoding the stripes have to be strongly magnetized. These define two collective
modes of the hidden units, which AGS-MH cannot change. We stress that the inability
of AGS to achieve rapid mixing is not limited to mean-field-like models. Even in the
case of RBM tailored to encode finite-dimensional models with high-order ferromagnetic
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Figure 3.16: RBM trained on MNIST 0/1, with M = 200 hidden units. (a) Correlation
matrix of the inputs received by the hidden units on the training data. Hidden units are
sorted according to the components of the top eigenvector on this matrix. Two clusters
emerge, corresponding to 0’s and 1’s: each digit is attached to roughly half the hidden
units. (b) Example of weights Wiµ for a hidden unit µ associated with 1, corresponding to
a stroke specific to 1. (c) Example of weights Wiµ for a hidden unit µ associated with 0,
corresponding to a stroke specific to 0.

interactions, AGS suffers from poor mixing, and efficient sampling could only be obtained
by combining with cluster algorithms such as the Swendsen-Wang procedure (Yoshioka
et al., 2019). In Chapter 4, we show how stack of RBM, with ideas proposed in Bengio
et al. (2013); Desjardins et al. (2014), can detect collective modes of hidden units and thus
improve the sampling of the energy landscape.





4
Improving Sampling of Restricted Boltzmann Machines with

Deep Tempering

This chapter discusses how the Deep Tempering algorithm developed by Desjardins
et al. (2014) can improve the sampling of an energy landscape with RBM. This chapter is
based on three observations.

First, numerical experiments on deep neural networks have shown their ability to
progressively disentangle the principal modes in the data as their depths increase (Bengio
et al., 2013). Representations of the data in the deep layers are more understandable and
disentangled. Better disentanglement leads to better mixing between the different modes.

Second, interesting links between RBM and the renormalization group (RG) have been
shown in a series of papers (Mehta and Schwab, 2014; Koch-Janusz and Ringel, 2018;
Lenggenhager et al., 2020). In these papers, RBM are used to identify relevant degrees
of freedom in some Hamiltonian, as for example Ising or dimmers models, and seems to
perform a RG coarse graining-step.

Third, machine learning algorithms have been developed recently to detect relevant
MC updates in condensed matter models (Liu et al., 2017; Xu et al., 2017; Huang and
Wang, 2017; Nagai et al., 2017; Shen et al., 2018; Nagai et al., 2020a,b). Artificial neural
networks are used to efficiently generate (with MC methods) low-energy configurations of
approximate versions of target Hamiltonian.

Here, we will use the Deep Tempering algorithm differently from what was initially
proposed by Desjardins et al. (2014). In their paper, Deep Tempering is a training algorithm
for Deep Belief Networks, and in their numerical experiments, the number of hidden units
of the different RBM are constant, and they increase the regularization of their RBM with
the depth. DBN obtained with this algorithm are better than DBN trained greedily. In
this chapter, the underlying mechanism is different. Deep Tempering is used as a sampling
of a RBM (called bottom RBM in the following), once it has been trained on data. The
deeper representations are not meant to disentangle the underlying factors of variation of
the data, but to compress the bottom RBM’s hidden representations. Each mode of the
data has a few distinct representations in the hidden space of the top RBM. By reducing
the number of hidden units with the depth, the hidden representations are progressively
compressed, and the sampling between distinct modes of the data improves.

4.1. Deep Tempering algorithm
As explained in Section 1.3.4, Deep Tempering was first introduced as a new algorithm

to train Deep Belief Networks (DBN) (Hinton and Salakhutdinov, 2006; Salakhutdinov
and Murray, 2008). DBN are stacks of N RBM (Fig 1.2(a)). The number of hidden units
of the nth RBM is equal to the number of visible units of the (n+ 1)th RBM.
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In our case, we will not use Deep Tempering to train a DBN, but as an algorithm to
sample the energy landscape of our RBM of interest (called bottom RBM). To do this, once
our bottom RBM is trained on the data {vk}k=1...K , we train a second RBM on the hidden
representations of the bottom RBM {hk1}k=1...K drawn from P1

(
h|vk

)
. If necessary, we

train a third RBM on the hidden representations of the second RBM, and so on. This
learning algorithm is similar to the greedy training of DBN (Hinton et al., 2006; Bengio
et al., 2007). Once all the RBM are trained, we can use the Deep Tempering algorithm to
sample the visible landscape of the bottom RBM (Algorithm 6). We denote as αn = Mn

Nn

the aspect ratio of the nth RBM of the stack. Each RBM of the stack has its own visible
landscape Evn(v) (respectively hidden landscape Ehn(h)) associated with the Boltzmann
distribution P vn(v) (respectively P hn (h)). Deep Tempering allows adjacent RBM in the
stack to exchange their configuration with the following acceptance ratio (the detailed
balance is satisfied, see Appendix C.1)

An
(
{hn = htn,vn+1 = vtn+1}→ {hn = vtn+1,vn+1 = htn}

)
(4.1)

= min
(

1, P
v
n+1(htn)P hn (vtn+1)
P vn+1(vtn+1)P hn (htn)

)
= min

1,
exp

(
−Evn+1(htn)−Ehn(vtn+1)

)
exp

(
−Evn+1(vtn+1)−Ehn(htn)

)


This algorithm will be particularly efficient in the case where the data are composed of
several distant clusters, and where the hidden representations learned by the RBM bottom
are also composed of several distant clusters, as for example in the case of MNIST 0/1 or
the Lattice Protein mentioned in the Chapter 3.

In our cases of interest, the bottom RBM learns a complex energy landscape that allows
for high-quality data generation, but whose large energy barriers between distant modes
make Alternating Gibbs Sampling ineffective for switching between modes.

Deep Tempering, seen as an algorithm for sampling the energy landscape Ev1 (v) of the
RBM bottom, is therefore there to help sample between these distant modes.

In order to use Deep Tempering effectively, there are two criteria to be met. It is
necessary that the RBM on top of the stack can switch from one mode to another faster
than the bottom RBM, i.e. that the energy barriers between two modes in Evn(v) are lower
than in Ev1 (v). At the same time, the acceptance ratio must be high, to ensure that the
RBM exchange their configurations well, i.e. Evn+1(v) must be a good approximation of
Ehn(h). These criteria are similar to those necessary for the proper application of Parallel
Tempering, where temperatures must be set to ensure better exchange between modes,
while ensuring that the acceptance ratio between the different temperatures remains high.

Here, instead of choosing temperatures, we need to make sure that Evn+1(v) is a good
approximation of Ehn(h), to have a high acceptance ratio, while Evn+1(v) having smaller
barriers between modes than Ehn(h) to mix better between modes. So there is a trade-off.
If Ehn(h) = Evn+1(v), the acceptance ratio is high, but the barriers are identical: there is
no interest in Deep Tempering. If Evn+1(v) is a poor approximation of Ehn(h), in the sense
that a class of data (e.g. the zeros or the ones of MNIST), which corresponds to a complex
set of minima of Ehn(h), corresponds to only one minimum of Evn+1(v), then the barriers
will be smaller between two classes of data in Evn+1(v) than in Ehn(h). However, it will be
impossible to exchange the configurations generated by the nth RBM and (n+ 1)th RBM,
because the visible configurations vn+1 generated by the (n+1)th RBM will not correspond
to minima of Ehn(h). It is therefore necessary to keep a balance, to decrease the size of the
barriers while having a high acceptance ratio. To reduce the barriers, Evn+1(v) must lose
some details of Ehn(h), i.e. several minima of Ehn(h) are grouped into only one minimum in
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Evn+1(v). In terms of representations, this means that several vectors in {hkn}k=1...K have
the same representation hn+1. We speak then of compression of representations.

Here, we will put ourselves in a particular configuration where ∀n > 1,αn < 1, and we
add during the training a regularization of the RBM weight matrix to control its norm, in
order to compress both the representations and to have a smoother Evn+1(v) landscape
than the Ehn(h) landscape. By compression of representations, we mean that the number of
unique vectors in {hkn+1}k=1...K is smaller than the number of unique vectors in {hkn}k=1...K ,
i.e. several vectors in {hkn}k=1...K have the same representation hn+1. And we consider
that Evn+1(v) is smoother than Ehn(h) if the typical barrier size Evn+1(v) is smaller than in
Ehn(h).

Algorithm 6: Deep Tempering
isodd = True ;
for t ∈ J0,T K do

if isodd then
n = 1 ;
while n <N do

Swap htn and vtn+1 with probability
An
(
{hn = htn,vn+1 = vtn+1}→ {hn = vtn+1,vn+1 = htn}

)
;

vtn ∼ Pn
(
v|htn

)
;

n = n + 2
end

else
n = 2 ;
while n <N do

Swap htn and vtn+1 with probability
An
(
{hn = htn,vn+1 = vtn+1}→ {hn = vtn+1,vn+1 = htn}

)
;

vtn ∼ Pn
(
v|htn

)
;

n = n + 2
end

end
isodd ← not isodd ;
for n ∈ J1,NK do

ht+1
n ∼ Pn

(
h|vtn

)
;

vt+1
n ∼ Pn

(
v|ht+1

n

)
;

end
end

4.2. Numerical experiments on real data
We illustrate this idea on two different datasets: the zeros and the ones of the MNIST

dataset and artificial proteins sampled from Lattice Protein models. We have shown in
Chapter 3 that Alternating Gibbs Sampling is efficient to sample within a class and generate
high-quality data, but it is improbable to go from one mode to another (Figs. (3.8) and
(3.9)).

In these two examples, data are grouped into two distinct classes. The projection of the
zeros and the ones of the MNIST dataset onto its first and second principal components
reveals two clusters (Fig. 4.1(a)). For Lattice Protein models, the sequences came from
two distinct structures, projections onto the two first components of the PCA distinguish
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the two families, although the two clusters overlap (Fig. 4.2(a)). Hidden representations of
the data are perfectly separated with PCA (Fig. 4.2(b)). In that case, the bottom RBM
has learned useful representations of the data.

Numerically, we remark that the different RBM progressively compress the representa-
tions of the data. The number of distinct hidden representations decreases with the depth,
and AGS is more efficient for the top RBM. In these two examples, Deep Tempering is a
more efficient sampling algorithm than AGS to sample the energy landscape of the bottom
RBM.

The influential parameters of Deep Tempering, be it the number of RBM in the stack,
the number of hidden units as well as the intensity of the regularization were chosen
empirically, in order to guarantee a good acceptance ratio while reducing energies barriers.

4.2.1 Deep Tempering for MNIST 0/1
The stack comprises four RBM, with respectively 200, 100, 25, and 10 hidden units.

Deep Tempering improves the mixing between the modes (Fig. 4.1(c-f)).

Figure 4.1: (a) Projection onto the two first components of the PCA for the data. (b)
Projection onto the two first components of the PCA for the hidden representations of the
data. (c) A random forest classifier is trained on 0/1 MNIST. The classifier predicts the
digit’s probability of the data sampled by the RBM. Deep Tempering algorithm generates
high-quality digits and mixes well between the two classes. (d) Mean number of swaps
between the two digits classes for the two dynamics. The initial configurations of the
dynamics are random digits of 0/1 MNIST. The mean is computed with 2000 random
initial configurations. (e-f) Example of sampled digits. Digits are displayed every 750
Gibbs steps. The two dynamics have the same initial configuration. (e) Alternating Gibbs
Sampling. (f) Deep Tempering.
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4.2.2 Lattice Protein
The stack is made of three RBM, with respectively 800, 50 and 25 hidden units. Deep

Tempering improves the mixing between the modes (Fig. 4.2(c-d)).

Figure 4.2: (a) Projection onto the two first components of the PCA for the data. (b)
Projection onto the two first components of the PCA for the hidden representations of
the data. (c) Pnat(v|S) of sampled proteins with DBN for the two families SA and SB.
Deep Tempering algorithm generates high-quality proteins and mixes well between the two
families. (d) Mean number of swaps between the two families for the two dynamics. The
initial configurations of the dynamics are random proteins of the training set. The mean is
computed with 500 random initial configurations.

4.3. What are the parameters influencing the compression of the
representations?

In this section, we will numerically investigate the influence of the number of stacked
RBM and the number of hidden units on the compression of representations. To do this,
we introduce the {ξk1}k=1...K patterns that represent the data. In order to have a realistic
structure for the patterns, the visible patterns fall into a hierarchical tree: clusters of
patterns are divided into subclusters, which can also be divided into subclusters ... This
specific structure of patterns, called ultra-metricity, appears in the Sherrington-Kirkpatrick
model of spin-glass (Sherrington and Kirkpatrick, 1975; Mézard et al., 1984; Rammal et al.,
1986). Fig. 4.3(a) depicts the correlation matrix of the patterns we have used, with two
main clusters divided into three subclusters. We train several stacks of RBM on these
artificial data. For each RBM, we use the same number of iterations and the same learning
rate during training. Depending on the depth of the stacks and the number of hidden
units, the hidden representations exhibit different behaviors (Fig. 4.3). For the first RBM,
the correlation matrix of hk1 mimics the structure of the correlation matrix of ξk1 , but the
level of details depends on its number of hidden units M1. If M1 is small, each pattern in
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a given cluster has an identical hidden representation (Fig. 4.3(b)). Then, by increasing
the number of hidden units M1, each pattern in a given subcluster has an identical hidden
representation (Fig. 4.3(c)). And finally, for an even larger number of hidden units M1,
each pattern has its own hidden representation (Fig. 4.3(d)).

Figure 4.3: The color map is the same for the different correlation matrices (from dark
blue to yellow). (a) Correlation matrix of 600 visible patterns ξk1 , N = 1000. The patterns
are divided into two clusters. Each cluster also has three subclusters. (b) Correlation
matrix of the hidden patterns hk1 . (c) From the bottom to the top: correlation matrices of
the hidden patterns hk1 and hk2 . (d) From the bottom to the top: correlation matrices of
the hidden patterns hk1 , hk2 and hk3 . (e) Schematic representation of the landscapes Ev1 (v),
Ev2 (v) and Ev3 (v) learned by the different RBM represented in the panel (d). The details
of the landscape are progressively smoothing out, but at the same time the free energy
barriers between the different modes are decreasing.

Therefore, by tuning the number of hidden units, we can control the magnitude of
the compression of the representations. It is important to note that we do not want to
impose any constraints on the bottom RBM, as its goal is to learn an energy landscape
capable of reproducing the data as closely as possible (in the sense of maximizing the
log-likelihood), so that it can then be capable of generating high-quality data. However, we
are free to impose constraints on the number of hidden units as well as on the magnitude
of the weights for the other RBM in the stack.

If the compression is too important, i.e., if the number of hidden units is too small,
the RBM learns a poor representation of the data. Consequently, Evn+1(v) is a crude
approximation of Ehn(h), and therefore the replica exchange rate is low and the dynamics
of the RBM are decoupled: in that case, Deep Tempering would be as efficient as AGS.
Fig. 4.3(d) shows an example where each RBM of the stack learns a different level
of representation of the hierarchical tree: the bottom RBM learns one representation
per pattern, the second RBM one representation per subcluster and the top RBM one
representation per cluster. Fig. 4.3(e) exhibits schematic representations of the different
landscapes learned by the RBM in the stack. Ev1 (v) has local minimum per patterns,
Ev2 (v) per subcluster and Ev3 (v) per cluster: Evn+1(v) has to be a smooth approximation



4.4 Compression of representations with Restricted Boltzmann Machines 63

of Ehn(h) in order to have lower barriers while remaining a good approximation to keep the
acceptance ratio high between the different RBM.

4.4. Compression of representations with Restricted Boltzmann Machines
In this section, we will study the compression of representations. To do so, we will

first define our analytical framework to study this effect, then study numerically the
structure taken by the weight matrix W, and finally show the compression analytically in
the particular case where K = 2.

4.4.1 Analytical framework
To study in more detail, in a numerical and analytical way, the effect of compression of

the representations as well as the smoothing of the energy landscapes, we decided to place
ourselves in the following configuration.

The number of hidden units M , as well as the number of visible units N , will be
taken in the thermodynamic limit, with a finite aspect ratio M

N −→
M,N→∞

α. The number of
patterns K will be considered finite. This last assumption may seem risky, because on real
data, the number of training examples may be arbitrarily large. Nevertheless, for example
in the case of MNIST 0/1, most of the training examples can be seen as variations of a
small number of prototypes, which would represent typical 0’s and 1’s of the training data.
What we call K here, is the number of these prototypes. This hypothesis has already been
formulated, as for example in the work of Decelle et al. (2017, 2018), where the weight
matrix W has K (finite) dominant isolated singular values, disturbed by noise. Therefore,
in our study, we restrict ourselves to K. Nevertheless, it will be interesting later to study
the K infinite case. which has already been partly studied by Leonelli et al. (2021) for a
different purpose.

4.4.2 Numerical experiments
In this section, we study numerically the form of the matrix W. To do so, we train

RBM with Contrastive Divergence on a set of K mutually orthogonal vectors {ξk}k=1...K ,
in the limit K�M,N and M

N −→
M,N→∞

α < 1.

The weight matrix W0 is initialized with small random values chosen from a zero-mean
Gaussian with a standard deviation σ, typically σ =O(N−1).

At the end of the training, by computing the singular value decomposition of the weight
matrix W, we remark that K singular values dominate (Figs. 4.4(a) and (b)). By adding a
L2 regularization, the norms of the M −K other singular values decrease during training
(Fig. 4.4(b)).

The matrix can be written as W = W‖+W⊥, where W‖ =
K∑
k=1

w̃kṽk · h̃k
T corresponds

to the top K modes, and W⊥ to the M −K other modes (W‖ ·W⊥T = 0). With L2
regularization, the norm of W⊥ decreases over time, and therefore we will neglect it in our
theoretical computations.

For the hidden fields, cµ is an increasing odd function of
K∑
k=1

ξ̂kµ (Fig. 4.4(d)). The

hidden fields are small compared to the inputs of the hidden units Iµ(ξk) but enough to
break the symmetry between E(v) and E(−v).

We remark that span({ṽk}k=1...K) = span({ξk}k=1...K), where span(S) denotes the
linear span of the set of vectors S. Therefore, we can write {ṽk}k=1...K in the basis formed
by {ξk}k=1...K , and rewrite the w̃k in this basis: each ξk is associated with a wk. The wk’s
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are of the same order, but different. It is because the ξk’s are not strictly orthogonal in
practice. If there are mutually orthogonal, the wk’s are equal.

The final hidden representations of the patterns depend strongly on the initial weight
matrix W0. We see a strong correlation between sign

(
W0T ·ξk

)
and sign

(
WT ·ξk

)
. As

W0 is a random matrix, and the ξk’s are orthogonal, the initial representations of the data
are nearly orthogonal. At the end of the training, the data representations are still nearly
orthogonal (Fig. 4.4(c)).

Similar results are obtained when training an RBM on non-orthogonal patterns: the
weight matrix W has K singular values emerging from the bulk. However, contrary to the
orthogonal case, the wk are no longer equal. Furthermore, at the end of the training, the
correlation matrix of the hidden representations is different from the correlation matrix of
the hidden representations at the beginning of the training. In Section 4.4.4, we will find
the optimal correlation in the case K = 2.
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Figure 4.4: Numerical experiments with N = 200, M = 60, K = 6. Quantities of
interests are average over 50 different initialization of the ξk’s and W0. (a) Evolution of( ∑
µ>K

σ2
µ

)(
M∑
µ=1

σ2
µ

)−1

through time. The M singular values σµ are ranking in descending

order. (b) Evolution of the singular values through time. K singular values emerge from the
bulk. The (M−K) singular values decrease over time due to the L2 regularization. (c) Blue
line: evolution of 1

M sign
(
W0T ·ξk

)T
· sign

(
WT ξk

)
. The representations of the patterns

are closed to their initial representations. Orange line: evolution of 1
M |sign

(
W0T ·ξk

)T
·

sign
(
WT ·ξk′

)
| for k 6= k′. The representations are nearly orthogonal. (d) Mean value of

cµ as a function of
K∑
k=1

ξ̂kµ.
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4.4.3 Hypothesis on the structure of the weight matrix

In the following, we consider that the weight matrix W can be put in the following
form

Wiµ = 1
N

K∑
k=1

wkξ
k
i ξ̂
k
µ, (4.2)

where {ξk}k=1...K are the K patterns. {ξ̂k}k=1...K are K vectors of {−1,1}M and wk =
O(1). This particular form of the weight matrix W is justified by numerical experiments
(Section 4.4.2). This hypothesis is similar to the one mentioned in Decelle et al. (2017,
2018) although being more simplistic, because we do not consider any iid noise perturbation
to Wiµ.

The correlation matrix of visible patterns is fixed by the data {ξk}k=1...K . The weight
matrix W is similar to the one learned from the Hebb’s rule, except that in our case
we have as additional degrees of freedom, the {ξ̂k}k=1...K . A main question is what are
the optimal representations, depending on the aspect ratio α and {wk}k=1...K . In the
Section 4.4.4, we will study this in detail for the K = 2 case.

Concerning the fields on the visible layer gi and the hidden layer cµ, we will consider
that gi = 0. The cµ fields will be non-zero, enough to break the symmetry between E(v)
and E(−v), but are small compared to the inputs of the hidden units (|cµ| � |Iµ(ξk)|).
Therefore, we neglect the fields cµ in the theoretical computations of the rest of the chapter.

4.4.4 Optimal hidden representations of two correlated patterns

4.4.4.1 Theoretical results

In this section, we describe the case of two patterns, ξ1 and ξ2 with an arbitrary
correlation x (ξ1T · ξ2 = N x). We compute the optimal correlation y between the two
hidden representations ξ̂1 and ξ̂2 (ξ̂1T · ξ̂2 =M y) for a RBM with N visible and M = αN
hidden units. In that case, the weight matrix (Eq. 4.2) reads

Wiµ = w

N

∑
k=1,2

ξki ξ̂
k
µ, (4.3)

We will show that, depending on α and w, there exists a regime where, for x > xc, the
representations are compressed (y = 1).

First, the log-likelihood of the two patterns reads

LL = 1
2
(
logP (ξ1) + logP (ξ2)

)
=−1

2
(
Eeff(ξ1) +Eeff(ξ2) + 2logZ

)
. (4.4)

In the thermodynamic limit N →∞, the partition function can be computed by means
of saddle point (see the general expression for any finite K in Eq. 4.12). By defining
∆± = q1± q2, we have for the log-likelihood
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1
N

LL = 1
2

(
α(1 +y)

(
log
(
cosh

(
w(1 +x)

))
− log

(
cosh(w∆+)

))
(4.5)

+ α(1−y)
(

log
(
cosh

(
w(1−x)

))
− log

(
cosh(w∆−)

)))

+ 1
4

(
∆+ log

(1 +x+ ∆+
1 +x−∆+

)
+ (1 +x) log

(
1− ∆2

+
(1 +x)2

)

+ ∆− log
(1−x+ ∆−

1−x−∆−

)
+ (1−x) log

(
1− ∆2

−
(1−x)2

))
− log2,

with

∆± = (1±x) tanh
(
αw(1±y)tanh(w∆±)

)
. (4.6)

The optimal correlation of the hidden representations y∗(w,x,α) is defined as
1
N
∂LL
∂y

∣∣∣
y=y∗

= 0 and depends on x,α and w. Without loss of generality, we assume that
x > 0 (by symmetry, the following results can be extended to x < 0).

RBM exhibits two typical behaviors depending on the value of w. As long as αw2(1±
x)(1±y)< 1,∆± = 0. In this regime, ∀x < 1,y∗(w,x,α) = 1. RBM has the same hidden
representation for the two patterns.

For large αw, i.e. when ∆+ = (1 +α), Eq. (4.5) can be simplified as follows:

1
N

LL ∼
αw�1

−1
2 exp(−2αw(1−y))(αw(1−y)(1−x)exp(−2αw(1−x)) + (1−x))(4.7)

In that case, ∀x < 1,y∗(w,x,α) = 0: the hidden representations of the patterns are
orthogonal. By computing the derivative of Eq. (4.4) with respect to y, we remark that as
long as 2αw(1−y)� 1, y is a solution with a log-likelihood near 0: there exists a broad
range of y with a log-likelihood near the optimum.

The log-likelihood (Eq. (4.5)) can be optimized numerically with respect to y. y∗(w,x,α)
is a decreasing function of α and w, and an increasing function of x (Figs. 4.5(a-c)). In
Fig. 4.5(c) we remark there exists some x < 1 with y = 1. The threshold xc such that
∀x > xc, y = 1 is an increasing function of α and w (Appendix C.2.1 for the computation of
xc). If x > xc, the two patterns have the same hidden representation: the representations
are compressed. We remark also that if α and w are big enough, RBM tend to orthogonalize
the hidden representations even if x > 0.

The energy landscape Eeff(v) learned by the RBM depends on y:

• For y < 1, ξ1 and ξ2 are global minima of Eeff(v), separated by energy barriers.

• For y = 1, the two patterns are still global minima of Eeff(v) but are included in a
large basin of low-energy: all v such that ∆+ = 1 +x have the same energy.

For numerical simulations, we use Annealed Importance Sampling (Jarzynski, 1997;
Neal, 2001; Salakhutdinov and Murray, 2008) to estimate the RBM partition function
(Appendix C.2.2.1). These numerical results are in agreement with the theoretical ones.

For K = 2, it is important to note that
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Figure 4.5: (a-c) Optimal overlap y∗(w,x,α). Dashed lines: theoretical results obtained
by minimized Eq. (4.5) with respect to y. Dots: numerical results with AIS (N = 200)
(mean value over 25 initialization of ξ1 and ξ2 with a correlation equal to x). Shaded areas
correspond to the empirical error bars. (a) Fixed x = 0.5 (b) Fixed α = 0.5. (c) Fixed
w = 2. Dashdotted lines: theoretical xc. (d) y vs x for numerical maximization of the
log-likelihood with Contrastive Divergence (N = 200).

h1T ·h2 = sign
(
W0T ·ξ1

)T
· sign

(
WT ·ξ2

)
= y, (4.8)

i.e. that the correlation between the hidden representations h1 and h2 is the same as
the one between ξ̂1 and ξ̂2.

We have shown the existence of a critical threshold xc, which is an increasing function
of α and w, above which the hidden representations are compressed (y = 1).

4.4.4.2 Numerical results
We can train RBM with CD or PCD to maximize the log-likelihood (Eq. (4.4)). At the

beginning of the training, the weight matrix W0 is initialized with small random values
chosen from a zero-mean Gaussian with a standard deviation σ, typically σ =O(N−1). By
defining h1 = sign

(
W0T ·ξ1

)
and h2 = sign

(
W0T ·ξ2

)
, the initial correlation y0 can be

computed (Appendix. C.2.2.2):

y0 = 1− 2cos−1(x)
π

. (4.9)

During the training, by computing the singular values decomposition of Wt, we observe
that two singular values emerge from the bulk as long as y < 1 (Fig. C.1(d)). We neglect
the effects of the M −2 other singular values. Wt is of the form of Eq. (4.3), where wt,
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h1t and h2t (and therefore their correlation yt) depend on time. α and x are fixed during
the training, but w increases: y∗(wt,x,α) also depends on time.

During the first steps of the training, as ∆+ = ∆− = 0, the optimal y∗ is equal to
1. Then yt and wt are increasing during the training (Fig. C.1(b)). As wt increases,
the optimal y∗(wt,x,α) changes. However, numerically, this optimal correlation is never
reached. In the regime where αw� 1, the evolution of yt is very slow: yt is in the range
of correlation with a log-likelihood near the optimum. As wt increases over time, the range
of y which has a log-likelihood near 0 is increasing: with finite time steps, yt never reaches
the optimal y∗(wt,x,α) (Fig. 4.5(d)) but corresponds to a solution with a log-likelihood
near 0 (Fig. C.1(c)).

At the end of the training, for a finite number of time steps, the correlation y found
with CD is an increasing function of x and a decreasing function of α. The smaller α is,
the bigger y is. For α small, y(x) is above the bisecting line: the hidden representations
are closer than the initial patterns. Moreover, we notice the existence of a threshold xc
from which for ∀x > xc, y

∗ = 1. In this case, there is a compression of the representations.

4.5. Deep Tempering: barriers and replica exchange

In this section, we will calculate the free energy for an arbitrary number of K (finite)
patterns. This will allow us to compute the characteristic times of Deep Tempering and
to compare it to those obtained with Alternating Gibbs Sampling in the case where the
data are represented by K orthogonal clusters. We then show that Deep Tempering allows
sampling more efficiently than Alternating Gibbs Sampling.

4.5.1 Computation of the partition function

Within the hypothesis defined in Section 4.4.1, we want to compute the partition
function of the RBM

Z =
∑

{vi,hµ=±1}
exp

∑
i,µ

Wiµ vihµ

 . (4.10)

To do so we introduce the order parameters

mk = 1
N

N∑
i=1

vi ξ
k
i , (4.11)

where mk is the magnetization along the pattern ξk. Consequently, the partition
function Z reads
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Z =
∫ ∏

k

dmkdm̂k

(2π/N)K2
∑
{hµ}

exp
(∑

µ

hµ
∑
k

wkmk ξ̂
k
µ

)∑
{vi}

exp
(∑

k

m̂k

(∑
i

vki vi−Nmk

))

=
∫ ∏

k

dmkdm̂k

(2π/N)K2
∑
σ

(
2cosh

(∑
k

wkσkmk

))Mγh(σ)∑
{vi}

exp
(∑

k

m̂k

(∑
i

ξki vi−Nmk

))

=
∫ ∏

k

dmkdm̂k

(2π/N)K2
∑
σ

(
2cosh

(∑
k

wkσkmk

))Mγh(σ)(
2cosh

(∑
k

wkσkm̂k

))Nγv(σ)

×exp
(
−N

∑
k

mkm̂k

)

=
∫ ∏

k

dmkdm̂k

(2π/N)K2
exp(−NF (m,m̂)) , (4.12)

where ∑
σ

runs over the 2K vectors σ of length K with binary coefficients (±1). The

K vectors ξk can be written in a matrix of size N ×K, and γv(σ) is the frequency of σ
among the N lines of this matrix. In the same way, we define γh(σ) for the K vectors ξ̂k.
We have

ξa
T ·ξb = N

∑
σ

γv(σ)σaσb, (4.13)

ξ̂a
T · ξ̂b = M

∑
σ

γh(σ)σaσb. (4.14)

By rescaling αwkm̂k← m̂k , the free-energy F (m,m̂) reads

F (m,m̂) = −
∑
σ

(
αγh(σ) log2cosh

(
K∑
k=1

wkσkmk

)
+γv(σ) log2cosh

(
α

K∑
k=1

wkσkm̂k

))

+
K∑
k=1

αwkm̂kmk (4.15)

where we can identify

m̂k = 1
M

M∑
µ=1

hµ ξ̂
k
µ. (4.16)

Therefore, m̂k is the magnetization along the pattern ξ̂k.
The knowledge of the free energy F (m,m̂) will allow us to calculate the log-likelihood

LL = 1
K

∑
k

logP (ξk), and therefore to determine the optimal representations ξ̂k, as we have
done in the Section 4.4.4 for K = 2.

Moreover, by determining the critical points of F (m,m̂) (Section 4.5.2), we will be able
to determine the size of the barriers in this energy landscape, which will be particularly
useful for theoretical comparison between Alternating Gibbs Sampling and Deep Tempering
(Section 4.5.4).



70 Chapter 4. Improving Sampling of RBM with Deep Tempering

4.5.2 Critical points of F (m,m̂)
To determine the critical points of F (m,m̂), we compute ∂F (m,m̂)

∂m = 0 and ∂F (m,m̂)
∂m̂ = 0,

and end up with following self-consistent equations

m̂k =
∑
σ

γh(σ)σk tanh
(

K∑
k=1

wkσkmk

)
, (4.17)

mk =
∑
σ

γv(σ)σk tanh
(
α

K∑
k=1

wkσkm̂k

)
.

In the specific case where the patterns ξk are orthogonal, and the hidden representations
ξ̂k are also orthogonal, γv(σ) = γh(σ) = 2−K , and by symmetry, wk = w.

In that case, we can solve the self-consistent equations (Eqs. 4.17).
As in the Hopfield model with a finite number of patterns finite number of patterns

(Amit et al., 1985a), we are interested in symmetric spurious patterns of the form ξ =
ξr(1,1, . . .1︸ ︷︷ ︸

r

,0,0, . . . ,0︸ ︷︷ ︸
K−r

). There is complete symmetry of the solutions under the permutations

of the components of m as well as under the change of sign of any of them. We consider
that the r components different from zero are the r first ones and mr > 0. Using Eq. (4.17),
we find

m̂r =


2−r∑

σ
tanh

w
mr +

r∑
i=1
i 6=r

σimr


 if k ≤ r

2−r∑
σ

tanh
(
w

(
r∑
i=1

σimr

))
= 0 if k > r

(4.18)

where ∑
σ

runs over the 2r vectors σ of length r with binary coefficients (±1). Thus, we
can write m̂= m̂r(1,1, . . .1︸ ︷︷ ︸

r

,0,0, . . . ,0︸ ︷︷ ︸
K−r

). Using Eq. (4.17), we get

mr = 2−r
∑
σ

tanh

αw
m̂r +

r∑
i=0
i 6=r

σim̂r


 . (4.19)

There exists a solution with mr > 0 if αw2 > 1. For αwm̂r� 1 and wmr� 1, we can
solve it analytically (Fig. 4.6(a)):

m̂r =mr = 1
22c

(
2c
c

)
, (4.20)

where r = 2c for even r and r = 2c+1 for odd r. This result is similar to the symmetric
spurious memories of the Hopfield model at T = 0 (Amit et al., 1985a).

We can compute the energy Fr of the symmetric spurious patterns with r components:

Fr =
{
−αwrm2

r if r is odd
−
(
αwrm2

r + (1 +α)mr log2
)

if r is even (4.21)

We can order these energies

F1 < F3 < F5 < .. . < F4 < F2. (4.22)
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For even r, the energy is a decreasing function of r. For odd r, the energy is an
increasing function of r (Fig. 4.6(b)). The K fixed points aligned with one of the ξk’s
have the lowest energy. Therefore, with this parametrization of the weights, the RBM
has learned the patterns. The second-lowest energy is reached for r = 3. Numerically,
asymmetric critical points exist, but their energies are higher than the energy of the
symmetric critical points with r = 3. These results are also true for finite values of αw
(Figs. 4.6(c) and (d)).

Figure 4.6: (a-b) mr and Fr for αwm̂r� 1 and wmr� 1. Dashed lines: theoretical results
(Eqs. (4.20) and (4.21)). Dots: numerical results. (a) Value of mr vs r. (b) Energy Fr of
the symmetric spurious patterns with r components vs r. (c-d) mr and Fr against αw.
Black dashed line: threshold where αw2 = 1. (c) Full lines: numerical mr for different
values of r (see legend of panel (d)). Dashed lines: theoretical value for large w. (d) Full
lines: numerical Fr for different values of r.

4.5.3 Gradient of the log-likelihood
In the thermodynamic limit N →∞, thanks to the saddle point in the computation of

the partition function Z (Eq. 4.12), the average over the model 〈∂E
eff(v)
∂Θ 〉model is replaced

by 〈∂F (m,m̂)
∂Θ 〉fixed points, where the mean value 〈.〉fixed points denotes the expected value over

the fixed points defined in Eqs. (4.17). For an operator O depending on {m,m̂}, we get

〈O〉fixed points =
∫ ∏

k

dmkdm̂kO
exp(−NF (m,m̂))

Z
, (4.23)

Z =
∫ ∏

k

dmkdm̂k exp(−NF (m,m̂)) , . (4.24)

The gradients ∂LL
∂W (Eq. (1.14)), for a given training set of K samples {ξk}k=1...K read
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∂LL
∂W = 1

K

K∑
k=1

ξk tanh
(
WT ·ξk

)T
−〈m ·m̂〉fixed points. (4.25)

The knowledge of this gradient will allow us to ensure that the weight matrices proposed
in Section 4.5.4 correspond to maxima of the log-likelihood.

4.5.4 Comparison of Alternating Gibbs Sampling and Deep Tempering to sample K orthog-
onal clusters

In this section, we show in a simple case how the Deep Tempering presented in
Section 1.3.4 and fully defined by Algorithm 6 could help the sampling process. We point
out that in the following computation, there is no compression of the representations.
Nevertheless, this computation is still useful to highlight the trade-off that exists between
guaranteeing a high acceptance ratio while having a top RBM that mixes better than the
bottom one.

Figure 4.7: Definition of characteristic times of Alternating Gibbs Sampling and Deep
Tempering. (a) Definition of the aspect ratios. (b) Definition of characteristic times of
Deep Tempering. (c) Definition of characteristic time of Alternating Gibbs Sampling.

We consider data formed by K orthogonal clusters Ck. These K clusters can be stored
with a single RBM. We compute the characteristic time scale τ1 to go from one cluster
to another in Ev1 (v) with AGS (Fig. 4.7(c)). A second RBM can be stacked on top of
the first one, and Deep Tempering can be used to sample the energy landscape Ev1 (v) of
the first RBM. We compute the characteristic time scale τDT to go from one cluster to
another in Ev1 (v) with Deep Tempering (Algorithm 6). As long as τDT� τ1, τDT is equal to
max(τ2, τswap) where τ2 is the time scale to go from one cluster to another in Ev2 (v) for the
second RBM with AGS and τswap is the time scale between two replica exchanges between
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ht1 and vt2, defined as 〈A1
(
{h1 = ht1,v2 = vt2}→ {h1 = vt2,v2 = ht1}

)
〉−1
{ht1,v

t
2}

(Eq. (1.18),
Fig. 4.7(b)). In fact, to move from one cluster to another with Deep Tempering, if τDT� τ1,
vt2 must change of clusters in Ev2 (v) (with a characteristic time of τ2) and vt2 must be
exchange with ht1 (with a characteristic time of τswap). As these two times are exponential,
the typical time scale is therefore max(τ2, τswap). All these characteristic times can be
calculated analytically and evaluated numerically.

Each cluster Ck is characterized by its center ξk1 ∈ {−1,1}N . The centers {ξk1}k=1...K
are a set of mutually orthogonal vectors (∀k, k′, k 6= k′, ξk

T

1 ·ξk
′

1 = 0). Inside a given cluster
Ck, each spin v1,i of a vector v1 is drawn from P (v1,i) = (1−d)δ(v1,i− ξk1,i)+dδ(v1,i+ ξk1,i).
The mean Hamming distance between a vector v1 ∈ Ck and the center ξk1 is dN .

A RBM with N visible units and M1 = α1N hidden units can encode the K clusters
(Fig. 4.7(a)). There is no potential acting on the visible units. There are hidden fields c1
acting on the hidden units. As shown in Section 4.4.1, the weight matrix W1 is given by:

W1 = w1
N

K∑
k=1

ξk1 · ξ̂k
T

1 , (4.26)

where {ξ̂k1}k=1...K is a set of mutually orthogonal vectors. Without hidden fields, v1
and −v1 have the same energy. The hidden fields c1,µ are an increasing odd function of
K∑
k=1

ξ̂k1,µ: the hidden fields break this symmetry, the patterns ξk1 have a lower free energy

than −ξk1 . In the thermodynamic limit N →∞, all the configurations v ∈ Ck have the same
hidden representations ξ̂k1 (for d� 1√

K−1+1). To enforce that the visible configurations
drawn from P (v|ξ̂k1) belong to the cluster Ck, w1 must be equal to

w1 = tanh−1(1−2d)
α1

, (4.27)

With this parametrization, the log-likelihood of the data reaches a maximum
(∂LL1
∂W

∣∣∣
W=W1

= 0, Eq. (4.25)).
For this RBM with AGS, the characteristic time scale τ1 to go from one cluster to

another in Ev1 (v) scales as

log(τ1)∼NB (α1w1,K) , (4.28)

where the function B is defined in Appendix C.3.1. B (α1w1,K) is an increasing function
of α1w1.

A second RBM with M2 = α2M1 hidden units is trained on the K representations
{ξ̂k1}k=1...K (Fig. 4.7(a)). Its weight matrix W2 can be written

W2 = w2
M1

K∑
k=1

ξ̂k1 · ξ̂k
T

2 , (4.29)

where {ξ̂k2}k=1...K is a set of mutually orthogonal vectors. This second RBM has also
hidden fields c2,µ to break the symmetry between h1 and −h1. The hidden fields c2,µ are

an increasing odd function of
K∑
k=1

ξ̂k2,µ. The main role of this second RBM is to improve the
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sampling of the first RBM between the different clusters Ck. w2 is a free-parameter which
can be tuned by adding a regularization during the training. With this parametrization,
the log-likelihood reaches a maximum (∂LL2

∂W

∣∣∣
W=W2

= 0, Eq. (4.25)). For this second RBM
with AGS, the characteristic time scale τ2 to go from one cluster to another in Ev2 (v) scales
as

log(τ2)∼M1B (α2w2,K) , (4.30)

B (α2w2,K) is an increasing function of α2w2. With AGS, first RBM generates
configurations {vt1,ht1} and second RBM generates {vt2,ht2}. These two chains are coupled
as described in Fig. 1.2(b). Swap between ht1 and vt2 is accepted with an acceptance ratio
A1(ht1,vt2). The mean value of this acceptance ratio can be computed, and we can define a
characteristic time τswap between two replica exchanges (Appendix C.3.2):

log(τswap)∼M1 log(1 + exp(−2α2w2)) . (4.31)

• For α2w2� 1, τ2� τswap: the dynamics of the second RBM can visit the different
minima of Ev2 (v). However, as the acceptance ratio is small, the dynamics of the two
RBM are decoupled. Ev

2 (v) is a poor approximation of Eh1 (h).

• For α2w2� 1, τ2� τswap: the acceptance ratio is high, the dynamics of the two RBM
are coupled. However, the dynamics of the second RBM is stuck in a given minimum
of Ev2 (v). Ev2 (v) is a similar to Eh1 (h) and has also high free energy barriers.

There exists an optimal α2w
∗
2 (Figs. 4.8(c) and (f)). At this optimal value,

max(τ2, τswap)� τ1. In that case, the coupled dynamics with the two RBM improve
the sampling. In this example, at the optimal α2w

∗
2, the landscape Ev2 (v) is a smooth

approximation of Eh1 (h) and the acceptance ratio is high. Choosing the optimal α2w
∗
2 is

similar to choosing the optimal temperature in parallel tempering.
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Figure 4.8: (a-c) Example with K = 3, N = 128, M1 = 32 and M2 = 8 and (d-f) K = 5, N =
256, M1 = 64 and M2 = 32. Dashed lines: theoretical results. Dots: numerical estimations
(Appendix. C.3.4). (a) and (d) Characteristic time τ2 vs α2w2. The offset between the
theory and the numerical results for large value of α2w2 is equal to −(K−2) log(2). This
term corresponds to the logarithm of the number of optimal distinct paths between two
global minima. (b) and (e) Characteristic time τswap vs α2w2. (c) and (f) Characteristic
time of the dynamics vs α2w2. τ1 for the Alternating Gibbs Sampling for the first RBM.
τDT for the Deep Tempering.

4.6. Conclusion
We have shown numerically that the Deep Tempering algorithm can improve the

sampling efficiency when a large number of hidden D units must change states at the
same time, to switch from one data mode to another. The influential parameters of Deep
Tempering, be it the number of RBM in the stack, the number of hidden units as well as
the intensity of the regularization were chosen empirically, in order to guarantee a good
acceptance ratio while reducing energies barriers. Although the theoretical results allow us
to have an idea about the choice of these parameters, we currently do not have an efficient
method to select all these parameters automatically. It would be interesting to see how to
automate this parameter selection, so that Deep Tempering can be used effectively as a
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sampling algorithm.
Theoretically, we have explained the smoothing of the energies barriers in a very simple

example, where the data modes are orthogonal clusters. In this particular example, there is
no compression of representations. We have also explained the compression of the hidden
representations in the specific case K = 2. It would be interesting to combine these two
approaches in a more general framework like for example with a data structure similar
to the hierarchical structure discussed in Section 4.3. We started to study this case, but
unfortunately we did not have time to finish the computation, so we cannot present it in
this manuscript. Moreover, it would be also interesting to relax the assumption of a finite
number of patterns K, and to study properly the infinite case K.

This study concludes our analysis of Alternating Gibbs Sampling. We can make the
following conclusions. When large valleys connect the different minima of the free energy
landscape, AGS is effective in sampling between the minima. When large barriers are
to be crossed, this is no longer true. Using the representations learned from RBM, it
is possible to improve the sampling. If a small number D of hidden units is sufficient
to change minima, then the Metropolis Hastings introduced in Chapter 3 is sufficient to
improve sampling. If D is of the order of M, the Deep Tempering algorithm can improve
the sampling, by progressively compressing the representations and decreasing the free
energy barriers.
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Part III summary
This part aims to introduce proteins to a public of physicists, and to try to make them

understand their primordial role, as well as the many stakes and difficulties that arise from
it, and specifically the passage from genotype to phenotype, i.e. from the sequence of the
protein to its functionality.

Nevertheless, all hope is not lost, and many important advances have been made. We
mainly detail the advances related to Direct Coupling Analysis using the Potts model. We
also briefly mention the advances related to deep learning, to satisfy the reader’s curiosity.

This part aims to give the necessary reading keys to understand the Part IV, which is
dedicated to class A β-lactamase, and presents the main results on the biology counterpart
of my thesis work.



5
An introduction to proteins for physicists

The purpose of this chapter is to quickly introduce proteins and give key concepts to
help physicists better understand protein issues.

5.1. Proteins: the basis of life
Proteins are long polymer chains built with elementary blocks called amino acids. The

amino acids linked by peptide bonds define the sequence of a protein. The number of amino
acids depends on the proteins and ranges from about ten to several thousands (Brocchieri
and Karlin, 2005).

Twenty different amino acids, with different chemical properties, are the basic elements
of all proteins in all living cells. Each human cell contains several billion proteins (Beck et al.,
2011), many are identical, but the distribution of the number of copies of unique proteins in
a single cell is broad: from few copies to several million (Milo, 2013). Proteins are involved
in most biological functions within organisms, such as catalyzing metabolic reactions,
structuring the cell, DNA replication, responding to stimuli, transporting molecules into
the cells ...

5.1.1 How are the proteins built?
Inside the double-stranded DNA, each protein is encoded by a gene that defines its

nucleotide sequence. Each amino acid is defined by a sequence of three nucleotides, called
codons. Four different nucleotides exit (adenine (A), cytosine (C), guanine (G) and thymine
(T)), and then 43 = 64 possible codons. Therefore, there is some redundancy: some of the
twenty different amino acids are encoded by more than one codon.

Genes in the DNA are copied into single-stranded messenger-RNA through a mechanism
called transcription. Then, the messenger-RNA is read by ribosomes. Finally, ribosomes
perform the messenger-RNA translation, assembling several amino acids to make the
protein described by the messenger-RNA. Put in crude terms, messenger-RNA are proteins’
blueprints and ribosomes the factories which build them. It turns out that it is possible to
design and deliver specific messenger-RNA to the ribosomes to synthesize a given protein
in cells. Since the 1990s, and the seminal works of the biochemist Katalin Karikó, (Karikó
et al., 2005), scientists and pharmaceutical industries have used this mechanism to try to
design new vaccines (Pardi et al., 2018; Keener, 2018). The basic idea is to use ribosomes
to build specific antigens of a given virus and then triggering an immune response to train
T-cells (a type of lymphocyte) to recognize the antigens, and therefore the virus.

These long-term efforts have born fruits recently in the fight against the COVID-19
(SARS-CoV-2), and have led to two different vaccines, one from Pfizer-BioNTech (Polack
et al., 2020) and another from Moderna (Jackson et al., 2020). These two vaccines aim at
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the spike protein (S protein) of the coronavirus, the protein that allows the virus to enter
into the cells (Huang et al., 2020).

5.1.2 On the importance of the three-dimensional structure
After its transcription by the ribosomes, the protein quickly folds into a unique three-

dimensional structure called native conformation, on a time scale of about a few milliseconds
(Kubelka et al., 2004). A protein becomes biologically functional after its folding: its
properties depend mainly on its three-dimensional structure.

As we can expect from the short time scale needed for folding, a protein does not explore
all the configurations space of the conformations to find the good one. In his thought
experiment in his well-known paper (Levinthal, 1969), Cyrus Levinthal argues that a
protein with 100 residues typically has 10300 possible conformations due to the large degree
of freedom of the peptide bonds between amino acids (basically the angles between them).
Even if a protein samples each conformation with a typical time scale of the picosecond,
it would need a time larger than the universe’s age to find its correct conformation. The
Nobel Prize Christian Anfinsen exposed the general principles which govern the folding of
the proteins after its experiments on ribonucleases (Haber and Anfinsen, 1962; Anfinsen,
1973): the native structure of a protein is the thermodynamically stable structure. The
native structure depends only on the protein sequence and the solution where it folds (its
temperature, pressure, pH, etc...). Interestingly, it does not depend on the way the protein
folds: a protein folds into its native structure after being transcripted by the ribosomes, if
the protein is helped or not by chaperone molecules (proteins which help other proteins to
fold properly), or if the protein was unfolded and refolded in a test tube. This work has
some important consequences (Dill et al., 2008).

From an experimental perspective, protein folding studies can be conducted in vitro,
i.e., in controlled experiments in test tubes. It is easier and cheaper than experiments in
vivo, i.e., in living organisms.

From a theoretical point of view, although the space of configurations of the proteins
is tremendously large, there are some hopes to describe and predict the structure of the
proteins from their sequences. As there are 20 amino acids, there exists 20100 ' 10130

proteins with 100 residues. For comparison purposes, it is estimated that there are 1082

atoms in the observable universe. As state functions in the theory of thermodynamics at
equilibrium in physics, folding depends only on its equilibrium thermodynamic state and
not on the path that took the protein to reach its native conformation. To push the analogy
further, in the kinetic theory of gases developed in the XIXth century, only a few state
variables, such as temperature, pressure, and volume, are needed to describe the evolution
of a macroscopic number of particles. Thus, finding the minimal set of state variables, if
there exists one, could lead to an elegant and predictive theory of protein folding.

Furthermore, there exist some regularities in structure among all the proteins. There
are four distinct levels of protein structure:

• primary structure: linear sequence of amino acid along the polypeptide backbone,

• secondary structure: highly regular sub-structures resulting from hydrogen bonds in
the backbone. There exist two main types of secondary structure, the α-helices, and
the β-sheets. Linus Pauling predicted the two structures before their experimental
findings (Pauling and Corey, 1951; Pauling et al., 1951). Chapter 7 is dedicated to
the study of the epistasis on an α-helix.

• tertiary structure: three-dimensional native conformation of the protein. The α-
helices and the β-sheets are folded in a compact structure. Many non-covalent
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interactions are critical, such as hydrophobic interactions, salt bridges, hydrogens
bonds, or disulfide bonds between two cysteines,

• quaternary structure: three-dimensional structure of several interacting proteins that
operate together as a single unit called multimer.

Numerical simulations for small proteins with Lattice Protein, shows that folding is
possible thanks to two things: the rapid transition from an exploration phase among
the random coil states to an exploration phase among the semi-contact globule states,
which drastically reduces the number of possible conformations, as well as the existence of
numerous transition states leading to the native structure (Sali et al., 1994a,b; Abkevich
et al., 1994; Shakhnovich, 1997).

Nevertheless, despite all these apparent regularities in structure and the findings of
Anfinsen, the theoretical prediction of the protein structure is one of the most unsolved
difficult problems in science (Science, 2005). We will discuss in the following why it isn’t
easy from an experimental and theoretical point of view. Nevertheless, DeepMind recently
accomplished a major milestone in structure prediction (Senior et al., 2020; Jumper et al.,
2021; Tunyasuvunakool et al., 2021; Evans et al., 2021) (Section 6.4).

Knowing how to predict the structure of a protein from its sequence would have
important consequences in biology and pharmacology. As the protein structure is essential
for its functionality, it would be possible to link the genotype (the sequence) to the
phenotype of a protein (its properties). Progress has been made in this direction, and
proteins with new properties have been manufactured from scratch (Gandhi et al., 2019).
Protein misfolding is also the cause of many neurodegenerative diseases, such as Alzheimer’s
and Huntington’s disease (Kuhlman and Bradley, 2019). Understanding the causes of
this protein misfolding could lead to possible treatments for diseases that are currently
incurable.

5.1.3 Why is it difficult to predict the structure of a protein given its sequence?
5.1.3.1 From an experimental point of view

From an experimental perspective, determining the protein structure is a complicated,
costly, and time-consuming process. Several methods exist, such as X-ray crystallography
(Shi, 2014; Maveyraud and Mourey, 2020), nuclear magnetic resonance (NMR) in solid
(Quinn et al., 2018), NMR in solution (Orts and Gossert, 2018), or more recently, cryo-
electron microscopy (Nobel Prize in Chemistry 2017) (Murata and Wolf, 2018; Danev et al.,
2019). X-ray crystallography and NMR require the crystallization of the proteins, which
can take up to several months (McPherson and Gavira, 2013). Cryo-electron microscopy is
promising, but is currently at a lower resolution than crystallography: median resolution
reached by X-ray crystallography is 2.05Å compared to 3−4Å for cryo-electron microscopy
(Yip et al., 2020). However, these two techniques can be combined to take advantage of
their respective benefits (Wang and Wang, 2017).

On June 8, 2021, on the one hand, 178.451 structures are stored in the Protein Data
Bank (PDB)1 (Berman et al., 2000). On the other hand, in the Uniprot database2,
564.638 annotated by hand sequences (SwissProt) and 214.406.399 automatically annotated
(TrEMBL) are available (The UniProt Consortium, 2021). The ratio of available structures
to available sequences decreases with time: thanks to improvements in DNA sequence
techniques, it is much easier to determine the sequence of a protein rather than its structure.
Predicting the structure from the sequence is therefore a hot topic.

1https://www.rcsb.org/
2https://www.uniprot.org/

https://www.rcsb.org/
https://www.uniprot.org/
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5.1.3.2 From a theoretical point of view
As Anfinsen’s experiments showed, the folding of a protein is determined by its free

energy decrease. From a classical physical point of view, one of the possible methods to
solve that kind of problem is writing a Hamiltonian taking into account the interactions
between the atoms and finding the conformation that minimizes the energy. These methods
belong to Molecular Dynamics (Karplus and Kuriyan, 2005). The basic idea is to initialize
the atomic model, compute the initial molecular forces acting on each atom, move each
atom according to these forces and then advance the simulation time by 1 femtosecond
(and repeat the last three steps until convergence) (Durrant and McCammon, 2011).

Instead of taking into account the interactions at the atomic level, coarse-grained models
also exist that model the interactions at the scale of amino acids. The 20 amino acids (for
a complete list, see Table 5.1) have a common structure, but their side chains differ. Their
properties are well-known: amino acids could be hydrophilic or hydrophobic, positively or
negatively charged, basic or acidic, polar, aromatic, and have various sizes. Hamiltonian
must also consider interactions with solvents because some amino acids are hydrophilic
and some others hydrophobic. In many models in classical physics, Hamiltonian can be
simplified to keep only dominant interaction terms (e.g., to study the interactions between
a proton and an electron, the force of gravity can be neglect compared to electromagnetic
force). However, in the case of protein folding, a majority of interactions have to take
into account (Yang et al., 2007). These interactions are complex and could have opposite
effects. For example, hydrophobic residues tend to be buried into the protein’s core, away
from the aqueous solvent, but polar residues tend to be at the surface of the protein to
interact through hydrogen bonds with the water molecules of the solvent: if they are away
from the solvent, they must form hydrogen bonds to compensate. Simulating these effects
lead to high computational costs.

At the atomic scale or amino acids scale, the use of supercomputers, or collaborative
projects based on distributed computing (such Rosetta@home3 or Folding@home4), allow
tackling this computational burden partially (Lindorff-Larsen et al., 2011; Conchuir et al.,
2015; Huang et al., 2016). Nonetheless, these simulations are limited by the size of the
proteins and the duration time of the simulation (a few milliseconds).

Furthermore, even if the native conformation is found, it is hard to predict the effects
of mutations. On the one hand, two sequences that differ only in one amino acid could
have very different native conformation: for example, inserting a proline in an α-helix,
is known to destabilize it (von Heijne, 1991) (see Chapter 7 for example on TEM-1 α-
helix). Therefore, it changes the secondary structure and consequently the tertiary one
and modifies the properties of the protein as a whole. On the other hand, two proteins
that share only 20% of their amino acids could have the same native conformation.

Advancements in genomics over the last 25 years have led to an important diminution
in the cost of sequencing. According to the National Human Genome Research Institute,
sequencing a human genome cost about $100.000.000 in 2002 and $1.000 nowadays5. As
expressed below, there are currently 215 million sequences in the Uniprot database, but
only about 0.0025% are annotated by hand, i.e., sequences that scientists have studied.
Each sequence does not have its own unique structure: for a given structure, thousands of
sequences can share it. Indeed, sequences from distinct kingdoms (animals, bacteria, fungi,
...) could have the same functionality but have different sequences due to evolution. All
these sequences are likely to share the same structure. Inside a given kingdom, sequences

3https://boinc.bakerlab.org/
4https://foldingathome.org
5https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

https://boinc.bakerlab.org/
https://foldingathome.org
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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can also differ from one species to another due to evolution. For example, two bacteria may
have a common ancestor in the phylogenetic tree, but mutations have led to differences in
their protein sequences. These sequences are grouped and called families of homologous
proteins. The Pfam database6 (Finn et al., 2014), On June 8, 2021, contains 19.179 protein
domains. A protein domain is a subpart of a protein that folds independently of the others.
A protein could have one or several domains. Each of these domains has around 102 to 105

sequences in the Pfam database.
Exploiting the statistical information contained in these sequences is called co-evolution.

Conserved residues, i.e., residues present in all sequences with a given functionality, can
indicate functional importance. Correlation between two amino acids can reveal that they
are closed in the three-dimensional structure. Analyzing this co-evolution is an active field
of research for over fifteen years in bioinformatics, statistical physics, and machine learning.
We will discuss some key concepts in the next section.

Amino Acids Three Letters Code Single letter code Properties
Alanine Ala A Non-polar, hydrophobic
Arginine Arg R Positively charged, hydrophilic

Asparagine Asn N Polar, hydrophilic
Aspartic Acid Asp D Negatively charged, hydrophilic

Cysteine Cys C Polar, hydrophobic
Glutamic Acid Glu E Negatively charged, hydrophilic
Glutamine Gln Q Polar, hydrophilic
Glycine Gly G Aliphatic, hydrophobic
Histidine His H Positively charged, hydrophilic
Isoleucine Ile I Aliphatic, hydrophobic
Leucine Leu L Aliphatic, hydrophobic
Lysine Lys K Positively charged, hydrophilic

Methionine Meth M Aliphatic, hydrophobic
Phenylalanine Phe F Aromatic, hydrophobic

Proline Pro P Hydrophilic
Serine Ser S Polar, hydrophilic

Threonine Thr T Polar, hydrophilic
Tryptophan Trp W Aromatic, hydrophobic
Tyrosine Tyr Y Aromatic, hydrophobic
Valine Val V Aliphatic, hydrophobic

Table 5.1: List of amino acids, their three letters code, single letter code and main
properties.

5.2. Protein co-evolution
As expressed above, thousands of sequences can share the same native conformation.

As different types of living organisms express these proteins and due to natural selection
through the course of evolution, for a given structure, sequences have a lot of diversity,
with only 20% - 40% sequence identity: for two sequences with the same structure, they
share on average only 20% - 40% of their amino acids. This similarity percentage may seem
low, but if amino acids were drawn randomly according to a uniform distribution, sequence

6http://pfam.xfam.org/

http://pfam.xfam.org/
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identity would be only 5% (there are 20 amino acids). Therefore, there is a statistical
signal in the data, and several methods have been developed to extract it.

Before introducing these different methods, we will start to discuss the various means
at our disposal to represent these homologous families through an example: the class A
β-lactamases. This family of proteins will accompany us until the end of this manuscript.
For now, we only need to know that these proteins provide resistance β-lactams antibiotics,
such as penicillin, (Neu, 1969; Kong et al., 2010). β-lactams antibiotics are largely used to
treat pneumococcal infections (McLinn and Williams, 1996).

5.2.1 Multiple Sequence Alignment

For a set of P sequences of a given family of homologous, sequences have various lengths
(i.e., number of amino acids). For example, for our 817 sequences of class A β-lactamases
extracted from (Philippon et al., 2016, 2019) coming from 739 different species: the mean
length is equal to 299 with a standard deviation of 12. These sequences can be put into
a matrix api called Multiple Sequence Alignment (MSA), with P lines and L columns
(Fig. 5.1(a)). In a given family, two sequences may differ due to substitution (mutation of
amino acid), insertion (of amino acid), or deletion (of amino acid). To deal with deletion,
gaps are introduced (symbol ’-’) and act as an 21th amino acid. To build a MSA, the
sequences are aligned to be as similar as possible, i.e., matching the conserved sites while
penalizing the total number of gaps. Building efficiently a MSA is still a field of research,
and several algorithms have been developed to tackle this problem. In our case, we used the
MAFFT software7 (Katoh et al., 2002). On average, the sequences have 37% of residues
in common, with a standard deviation of 10%. Once the MSA is built, we can create its
profile with a Hidden Markov model (HMM) (Durbin et al., 1998; Eddy, 1998). To do
that, we used the HMMer software8 (Finn et al., 2011). Basically, HMM give a score based
on single-residue conservation. Once trained on a MSA, the profile is used for searching
homologs with high score given the profile in databases. This operation allows us to enrich
our dataset with sequences that were not present initially.

5.2.2 Sequence logo

Once the MSA is built, the conservation score can be computed. For the ith column of
the MSA, we can compute the observed frequency fi(a) of each amino acid a (including
the gap). The conservation score reads:

Ci = log21 +
∑
a

fi(a) logfi(a), (5.1)

where ∑
a
fi(a) logfi(a) corresponds to the Shannon entropy (Shannon, 1948) (with a

minus sign). If an amino acid is completely conserved, Ci = log21, if all amino acids are
uniformly distributed, Ci = 0. This conservation score is used in HMM.

With this score, we can build the so-called sequence logo of the MSA. Each column
of the sequence logo corresponds to a column of a MSA; amino acids are stacked with a
height proportional to fi(a), the total height of the stack is equal to Ci. Sequence logo is a
powerful tool for visualizing conserved sites (Fig. 5.1(b)).

7https://mafft.cbrc.jp/alignment/software/
8http://hmmer.org/

https://mafft.cbrc.jp/alignment/software/
http://hmmer.org/
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Figure 5.1: All site numbers are given in the standard Ambler numbering of β-lactamases
(Ambler et al., 1991). Figures were made with a modified version of the code used
by Jérôme Tubiana in his thesis (Tubiana, 2018) and available at the following link,
https://github.com/jertubiana/ProteinMotifRBM. Amino acids with the same physico-
chemical properties are represented with the same color. Red = negative charge (E, D),
blue = positive charge (H, K, R), purple = non-charged polar (hydrophilic) (N, T, S, Q),
yellow = aromatic (F, W, Y), black = aliphatic, hydrophobic (I, L, M, V), green = cysteine
(C), gray = other, tiny (A, G, P). (a) 6 aligned sequences from the MSA. MSA has in
total 253 columns. Here, only a subpart is represented. From site 119 to 129, an α-helix.
Single and double mutations of this α-helix are studied in detail in Chapter 7. From site
130 to 132, ’SDN’ loop, motif linked to catalytic mechanisms and substrate binding. From
site 206 to 209, another α-helix, next to the first one in the native 3D conformation. Red
frames highlight sites that are conserved. Green frames highlight coevolved residues. (b)
Sequence logo for the entire MSA. SDN ’loop’ is almost conserved for all sequences in the
alignment.

https://github.com/jertubiana/ProteinMotifRBM
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5.2.3 Conservation and correlation
As we can see from the MSA and the sequence logo of Figure 5.1, some amino acids

seem to be conserved by almost all the sequences of the class A β-lactamases. For example,
in sites from 130 to 132, a specific motif called ’SDN’ loop, made of Serine, Aspartic acid,
and Asparagine, is highly conserved. These three sites are part of the active site of the
protein (Doucet et al., 2007). Ser130 is assumed to be involved in the proton transfer
from Ser70 to the β-lactam core during acylation. Crystallographic data indicate that
Ser130 and Lys234 would be linked by a hydrogen bond, connecting the protein’s two
domains, and contribute to stabilizing the active site. These three sites are therefore of
major importance for the functionality of the protein. If these sites were not important
for functionality because of mutations through evolution, we should observe variability
at these sites because of mutations through evolution. Here, this is not the case. For a
protein to belong to class A β-lactamases, it must have this ’SDN’ loop at sites 130 to 132.

We can also observe higher-order correlations between amino acids, for example, between
the 123 and 206 sites. If a cysteine is present at site 123, a glutamine is present at site 206.
If an aliphatic amino acid (isoleucine or leucine) is at site 123, a phenylalanine is at site
206. These patterns create second-order correlations, fij(a,b), between amino acid a at
site i and amino acid b at site j. Interestingly, sites 123 and 206 are close in the native
conformation of the protein. The main assumption between co-evolution and structure is
the following: sites which coevolve are more likely to be coupled from a functional point of
view and thus close in the protein’s tertiary structure. Therefore, it would be possible to
extract the structure of a protein from a MSA.

Chapter 6 details the different methods used to extract information on the protein
structure from MSA. We will use these methods in Chapter 7 to predict the effects of single
and double mutations on an α-helix of TEM-1.



6
Protein structure and fitness prediction

This chapter discusses different methods used to predict the structure of a protein
family from its MSA. For more details, we invite the reader to read the review of Cocco
et al. (2018).

6.1. Correct for finite size and bias in MSA: reweighting and pseudocount
Before detailing the different methods used, we start by defining the frequency fi(a)

and the second-order correlation fij(a,b) introduced in Chapter 5. Furthermore, we present
two useful corrections to compensate for the finite size and bias in MSA traditionally used
during inference.

For a MSA with P sequences of length L, i.e., a P times L matrix api , we define

fi(a) = 1
Peff

P∑
p=1

wp δa,api
, (6.1)

fij(a,b) = 1
Peff

P∑
p=1

wp δa,api
δb,apj

, (6.2)

where wp is a weight and Peff =
P∑
p=1

wp is the effective sequence number (Morcos et al.,

2011). Note that if wp = w, fi(a) and fij(a,b) are simply the mean and the two point
correlation of the MSA. The idea behind this reweighting procedure is to try to eliminate
possible phylogenetic bias in the data (Wollenberg and Atchley, 2000; Tillier and Lui,
2003). Indeed, what interests us is the evolution of proteins across many species with a
given functionality. Therefore, we do not want this signal to be biased by over-representing
one species over another.

There are typically two kinds of biases. First, MSA is made of homologous sequences
that have a common ancestor. If an ancestor of several sequences is recent (in terms of
evolution), these sequences can be very similar because they have not had time to evolve.
Second, proteins are more often sequenced in some species than in others. In fact, some
species, such as Escherichia coli, drosophila, or zebrafish, have been much more studied
by biologists than species that are difficult to access, such as species living submarine
hydrothermal vent (e.g., Thermococcus gammatolerans). These causes create biases in the
MSA, and thus in the statistics extracted from the MSA. The idea behind reweighting is to
give a lower weight to close sequences (in terms of Hamming distance). wp is defined as the
inverse number of sequences at a distance less than xL from the sequence ap. Typically,
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choosing x= 0.2 was found to be optimal across several protein families (Morcos et al.,
2011).

Another useful MSA regularization is the so-called pseudocount

fi(a) ← (1−α)fi(a) + α

q
, (6.3)

fij(a,b) ← (1−α)fij(a,b) + α

q2 , (6.4)

where q = 21 corresponds to the number of amino acids. Pseudocount is used to limit
the undersampling of proteins in a given family due to the finite size of the MSA. This
transformation corresponds to adding to the MSA proteins drawn randomly according to a
uniform distribution; it corresponds to a Dirichlet prior (Cocco et al., 2018). Pseudocount
is useful for mean-field inference on MSA (Barton et al., 2014).

Theoretically, reweighting and pseudocount should vanish when the size P of the MSA
is going to infinity.

6.2. Mutual information
Twenty-five years ago, one of the first scores used to extract structural information

from the MSA was based on mutual information (Göbel et al., 1994)

MIij =
∑
a,b

fij(a,b) log
(
fij(a,b)
fi(a)fj(b)

)
. (6.5)

In information theory, mutual information is a measure of the mutual dependence
between two variables. It corresponds to the Kullback-Leibler divergence between the joint
distribution fij(a,b) and the product of the marginals fi(a)fj(b). MIij ≥ 0, and MIij = 0
if and only if fij(a,b) = fi(a)fj(b). Sites i and j which coevolve are likely to have a high
mutual information MIij , as the joint distribution fij(a,b) is not explained by the product
of the marginals fi(a)fj(b). Thus, this metric was used to predict sites that are in contact.
However, using this metric leads to many false positives (Morcos et al., 2011), i.e., pairs of
sites predicted to be in contact but are actually far apart in the structure.

The main reason for this result is that a strong correlation between two sites is not due
solely to their proximity. It is a well-known result in statistical physics: local couplings
can create long-distance correlations. Take for example the famous 2D Ising model on
Z2 with nearest neighbors couplings. At the critical temperature, the correlation length
diverges (Onsager, 1944). Roughly speaking, an important correlation between sites i and
j may be caused by a third-party site (Fig. 6.1(b)). Therefore, decoupling the correlations
due to direct couplings from indirect couplings is necessary to improve predictions. Direct
Coupling Analysis (DCA) (Weigt et al., 2009; Morcos et al., 2011) has made a significant
improvement in that direction.
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Figure 6.1: (a) Direct couplings between sites i and j result in strong correlation between
them. (b) Indirect couplings between sites i and j result in strong correlation between
them.

6.3. Direct Coupling Analysis

Unlike mutual information where the largest correlations are directly extracted from
the MSA, the idea of DCA is to learn a probability distribution P (a|Θ) to model the MSA,
where a is a sequence of size L and Θ a set of parameters which depends on the MSA. The
support of P (a|Θ) is the 21L possible sequences of size L. By tuning θ ∈Θ, we want the P
sequences of the MSA ap to have a high probability in the model P (ap|θ). For technical
reasons, the 21 amino acids (20 natural amino acids and gap) are mapped to an integer
between 0 and 20.

The advantages of modeling an MSA by a probability distribution are multiple. First, we
hope to understand better the interactions between amino acids from the set of parameters
Θ than from the correlations observed in the MSA: this would allow to more easily predict
the structure of the protein. Second, once the parameters θ are set, we can score the 21L
sequences. If the parameters θ are set "correctly", sequences of the MSA would have a high
probability. But others sequences, which are not seen in the MSA, would also have a high
probability. According to the model, these sequences are just as good as the MSA sequences.
Therefore, the distribution P (a|θ) can be used to predict whether a mutation in a given
protein will have a significant effect on its functionality (see, for example, Chapter 7).
Furthermore, by sampling the distribution P (a|θ), it could be possible to design proteins
not seen in nature with particular functionality (Russ et al., 2020).

DCA has made it possible to advance in these two directions: it has improved the
prediction of the structure from the MSA (Morcos et al., 2011) and has allowed designing
new proteins with specific properties (Russ et al., 2020), or to predict of mutations on a
given protein (Figliuzzi et al., 2016).

From a theoretical point of view, modeling an MSA with a probability distribution
P (a|Θ) is not an easy thing. As pointed out by George Box, "all models are wrong, but
some are useful" (Box, 1976). Here, the problem is twofold: choosing the set of parameters
Θ and choosing the correct θ ∈Θ given the MSA. Indeed, we can model the MSA with the
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empirical distribution P (a) = 1
P

P∑
p=1

L∏
i=1

δai,api
, but it is not instructive at all.

For DCA, Potts model (Teller and Ashkin, 1943; Wu, 1982) is used to model the MSA.

P (a|Θ) = 1
Z(Θ) exp(−E(a|Θ)) (6.6)

= 1
Z(Θ) exp

 L∑
i=1

hi(ai) +
∑

1≤i<≤j≤L
Jij(ai,aj)

 , (6.7)

where Z(Θ) is the partition function which ensures that the distribution is properly
normalized, ∑

a
P (a|Θ) = 1, where ∑

a
stands for the sum over the 21L possible sequences.

Each ai can take q = 21 values. hi(a) are local fields acting on a single variable (q× 1
vector) and Jij(a,b) are direct couplings between two variables (q× q matrix). The Potts
model is a generalization of the Ising model (Ising, 1925), with pairwise couplings between
fully connected spins, which can take q different values (called colors, q = 2 for Ising model).
The lower the energy is, the more likely the sequence is. We will show briefly in the rest of
this chapter how this probability distribution can be justified, how the parameters hi(a)
and Jij(a,b) can be set, and how the contacts can be predicted from the couplings Jij(a,b).

6.3.1 Maximum entropy model
As we have seen in Section 5.2, amino acid conservation and correlations, seem to

be important for modeling a protein family. This hypothesis has been experimentally
tested for the WW domain (Sudol et al., 1995). In Russ et al. (2005), they artificially
generated sequences by recombining natural sequences while respecting empirical means
and two-point correlations. Many of these sequences were functional: they could fold and
had the same properties as natural sequences. Therefore, it seems important that the
probability distribution P (a|Θ) respects these statistics:

∑
a
δai,bP (a|Θ) = fi(b), (6.8)∑

a
δai,b δaj ,cP (a|Θ) = fij(b,c). (6.9)

Nevertheless, these criteria are insufficient to characterize a unique distribution: an
infinite number of distributions satisfy these marginals (such as the empirical distribution,
for example). So, how to choose a probability distribution among this infinity of distri-
butions? Edwin Thompson Jaynes gave a possible answer in Jaynes (1957a,b): choose
the least constrained distribution, i.e., the one which maximizes the Shannon entropy
(Shannon, 1948) (from a more philosophical point of view, we can rephrase this proposition
from Occam’s razor, "entities should not be multiplied without necessity"). The Shannon
entropy was defined in information theory as

S =−
∑

a
P (a|Θ)logP (a|Θ). (6.10)

To maximize the Shannon entropy while satisfying the constraints defined in Eqs. (6.8)
and (6.9), we introduce Lagrange’s multipliers λ, hi(a) and Jij(a,b). The optimization
problem reads
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A = −
∑

a
P (a|Θ)logP (a|Θ) +λ

(∑
a
P (a|Θ)−1

)

+
∑
i

∑
b

hi(b)
(∑

a
δai,bP (a|Θ)−fi(b)

)

+
∑

1≤i<j≤L

∑
b,c

Jij(b,c)
(∑

a
δai,b δaj ,cP (a|Θ)−fij(b,c)

)
. (6.11)

By differentiating the previous equation with respect to a, the optimal probability
distribution found is the one defined in Eq. (6.6). This justifies the choice of the Potts
model to model the MSA. Now that this choice is justified, we will see how to determine
the fields and couplings from the MSA.

6.3.2 Inverse statistical problems

Finding fields and couplings from the MSA falls into the category of inverse problem.
Schematically, from a set of observations, in our case the frequencies and the two-point
correlations, we want to find the causal factors, here the fields and couplings, that produced
them.

Usually, in statistical physics, our focus is on direct/forward problems. For example,
when we studied Alternating Gibbs Sampling in Chapter 3, we first defined the model and
then calculated observables. In our case, observables were the free energy barriers and the
characteristic times associated with Alternating Gibbs Sampling.

Nevertheless, we have already tackled inverse problems in this manuscript, but we have
not presented it in this way. Indeed, training an RBM solves an inverse problem: finding
the optimal RBM parameters to reproduce the training data.

As we will see, to find the optimal parameters, we will maximize a log-likelihood as in
the case of RBM. As for the RBM, since the probability distribution of the Potts model is
also a Boltzmann distribution, we will not be able to exactly maximize the log-likelihood
numerically because of our inability to evaluate the partition function. Therefore, we will
have to resort to approximations to solve this maximization problem.

First, we can write the log-likelihood as

LL(Θ) = 1
Peff

P∑
p=1

wp logP (ap|Θ) (6.12)

=
∑
i

∑
a

hi(a)fi(a) +
∑

1≤i<≤j≤L

∑
a,b

Jij(a,b)fij(a,b)− logZ(Θ).

The first two terms correspond to the minus average energy on the data, and the
last term to the minus free energy of the model. Therefore, the sum of three terms
corresponds to minus an entropy: log-likelihood maximization is often called cross-entropy
minimization in the statistical physics community. We can also reformulate this problem
as the minimization of the Kullback-Leibler divergence between the empirical distribution
and the Potts model distribution.

By writing the gradients with respect to hi(ai) and Jij(ai,aj)
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∂LL(Θ)
∂hi(a) = 0 =⇒ fi(a) = 〈δa,ai〉P (a|Θ), (6.13)

∂LL(Θ)
∂Jij(a,b)

= 0 =⇒ fij(a,b) = 〈δa,aiδb,bj 〉P (a|Θ), (6.14)

where 〈.〉P (a|Θ) denotes the expected value over the Potts model. These moment-
matching conditions are exactly those imposed in the equations (6.8) and (6.9). Unfor-
tunately, these expected values cannot be calculated numerically, as they involve the
summation of qL terms. As for the training of RBM, approximate methods have been
developed to solve this problem. Here is a non-exhaustive list of the different methods
used in practice: Boltzmann learning (Ackley et al., 1985), Pseudolikelihood maximization
(PLM) (Ekeberg et al., 2013, 2014), mean-field (Roudi et al., 2009; Morcos et al., 2011),
message-passing algorithm (Pearl, 1982; Weigt et al., 2009), Adaptive Cluster Expansion
(ACE) (Cocco and Monasson, 2011, 2012; Barton et al., 2016). We will discuss the two
first methods (that we used in our training). For more details, the reader can refer to the
following reviews (Nguyen et al., 2017; Cocco et al., 2018).

• Boltzmann learning: as we have seen for the training of RBM (Section 1.3),
Markov chain Monte Carlo methods can be used to evaluate the expected values
〈.〉P (a|Θ), and log-likelihood can be maximized with gradient ascent:

ht+1
i (a) = hti(a) +η

(
fi(a)−〈δa,ai〉P (a|Θ)

)
, (6.15)

J t+1
ij (a,b) = J tij(a,b) +η

(
fij(a,b)−〈δa,aiδb,aj 〉P (a|Θ)

)
. (6.16)

This method is much less computationally intensive than the exact evaluation of
the partition function, but it still has a high computational cost. Many variants
of this algorithm have been used to improve the learning: in Sutto et al. (2015),
gradient ascent with Nesterov momentum is used (Nesterov, 2004), and in Haldane
et al. (2016), quasi-Newton method is used to approximate the Hessian (Dennis and
Moré, 1977). These algorithms are used for protein families with up to L= 200 sites.

• Pseudolikelihood maximization: this approximation is based on considering L
independent single-variable problems, each conditioned to the value of the L− 1
others spins. The log-likelihood (Eq. (6.12)) is replaced by:

LLPLM = 1
Peff

L∑
i=1

P∑
p=1

wp logP (api |a
p
−i). (6.17)

P (api |a
p
−i) is a distribution over a single-variable: contrary to the initial log-likelihood,

where the evaluation of the partition function requires the evaluation of qL , here
only O(qLP ) evaluations are required. Although LLPLM is not an approximation of
the initial log-likelihood, in the limit of infinite data sampled from a Potts model,
the true fields and couplings are recovering by maximizing LLPLM (Ravikumar et al.,
2010). Even more interestingly, this result is still true if the maximization of the
function is performed for the L terms of the sum independently: this algorithm can
therefore be used in parallel. Nevertheless, this procedure creates asymmetry in the
couplings (Jij(a,b) 6= Jji(b,a)) so in practice couplings, after the inference, Jij(a,b)
are estimated as 1

2 (Jij(a,b) +Jji(b,a)). This algorithm has shown good results in
contact prediction and fitness evaluation (Ekeberg et al., 2014; Hopf et al., 2017).
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6.3.3 Contact prediction with DCA
The main idea of the DCA is to disentangle the direct couplings from the indirect

couplings. It results in a fourth rank tensor Jij(a,b) that takes into account the interactions
between two amino acids, a and b, at two different sites, i and j. To predict contacts,
information must be extracted at the site level, i.e., interactions between sites i and j,
regardless of the amino acids present at these sites. In the first place, direct information
was used (Weigt et al., 2009; Morcos et al., 2011). Direct information is similar to mutual
information: however, fij(a,b) is replaced by a probability depending on the couplings
Jij(a,b). More recently, an advance has been made in predicting contacts with DCA in
using the Frobenius norm of the coupling matrix (Ekeberg et al., 2013) with an average
product correction (APC) (Dunn et al., 2008):

Fij =
√∑

a,b

Jij(a,b)2, (6.18)

FAPC
ij = Fij−

∑
l
Fil
∑
k
Fkj∑

k,l
Fkl

. (6.19)

APC was introduced to suppress effects from phylogenetic biases.

6.3.4 Regularization of the Potts model
As we have seen in Section 6.1, reweighting and pseudocount can be used to eliminate

biases of data. In our particular case of class A β-lactamase (L= 253), about 1.4107 must
be inferred when training the Potts model, while about 104 sequences are available in the
MSA (after the enrichment on the Uniprot database). To avoid overfitting, the model
must therefore be regularized. Terms are added to the log-likelihood (Eq. (6.12)) to ensure
regularization (LL(Θ)→ LL(Θ)−∆LL(Θ)). Several regulation schemes are commonly
used:

• L1 regularization, corresponding to a Laplacian prior, favors sparse networks, forcing
some parameters to be exactly null

∆LL(Θ) = γh

L∑
i=1
|hi(ai)|+γJ

∑
1≤i<≤j≤L

|Jij(ai,aj)|. (6.20)

• L2 regularization, corresponding to a Gaussian prior, penalizes large absolute value
of parameters

∆LL(Θ) = γh

L∑
i=1

hi(ai)2 +γJ
∑

1≤i<≤j≤L
Jij(ai,aj)2. (6.21)

Another possible regularization scheme, called color compression, has been introduced
recently (Rizzato et al., 2020). Instead of having a fixed number of colors for all sites
(q = 21), each site i has its own number of colors (qi ≤ 21): the amino acids the least
present in the data at a given site (fi(a)< f0, where f0 is a threshold), are grouped into
a unique Potts state q′, with an empirical frequency fi(q′) =∑

a
fi(a)H(f0−fi(a)), where

H(.) denotes the Heaviside step function. The Potts model is inferred on these compressed
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MSA, which reduces its number of parameters. After the inference procedure, the model
can be decompressed to obtain all fields and couplings.

In our work on predicting epistatic effects on TEM-1 β-lactamase presented in Chapter 7,
we use L2 regularization as well as color compression.

6.3.5 Gauge invariance
The Lq frequencies fi(a) and the 1

2L(L−1)q2 correlations fij(a,b) are not independent.
Indeed, ∀ i,∑

a
fi(a) = 1 and ∀ i,a,∑

j

∑
b
fij(a,b) = fi(a). Therefore, only L(q−1) + 1

2L(L−

1)(q−1)2 parameters are independent. Due to this overparametrization, there is gauge
invariance. P (a) is unchanged, and consequently all its marginals, by the following change
of variables:

hi(a) ← hi(a)−gi+
∑
j 6=i

(Kij(a) +Kji(a)), (6.22)

Jij(a,b) ← Jij(a,b)−Kij(a)−Kji(b) + cij , (6.23)

where Kij(a), gi and cij are arbitrary functions. Two given gauges are used:

• Zero-sum gauge: ∀ i, j,a, ∑
b
hi(b) = 0 and ∑

b
Jij(a,b) = 0. This gauge is used to

calculate the Frobenius norm (Eq. (6.18)) and therefore is useful for contact prediction,
as it is the gauge in which this norm is minimal. The transformation to obtain this
gauge is as follows,

hi(a) ← hi(a)− 1
q

∑
b

hi(b) +
∑
j 6=i

1
q

∑
b

Jij(a,b)−
1
q2

∑
b,c

Jij(c,b)


Jij(a,b) ← Jij(a,b)−

1
q

∑
c

Jij(a,c)−
1
q

∑
c

Jij(c,b) + 1
q2

∑
c,d

Jij(c,d)

• Reference gauge: ∀ i, j,a,hi(ãi) = 0,Jij(a, ãj) = 0 and Jij(ãi,a) = 0. This gauge
sets the energy of a sequence of references to zero (E(ã) = 0). This gauge is use-
ful for predicting the effects of mutations with respect to a given sequence. The
transformation to obtain this gauge is as follows

hi(a) ← hi(a)−hi(ãi) +
∑
j 6=i

(Jij(a, ãj)−Jij(ãi, ãj)) , (6.24)

Jij(a,b) ← Jij(a,b)−Jij(a, ãj)−Jij(ãi, b) +Jij(ãi, ãj). (6.25)

6.3.6 DCA and co-evolution: achievements and limits
Co-evolution within a given protein family appears to be important in determining the

structure and functionalities of proteins. Recently, this finding has been used to determine
the structure of proteins experimentally in a new way. Thanks to recent advances in
sequencing, it is now possible to make all single and double mutants of a given protein
(provided it is short) and measure these mutants’ activities in a single experiment. This
method is called deep mutational scanning (Fowler and Fields, 2014) allows identifying the
sites that coevolve experimentally to deduce the protein structure (Schmiedel and Lehner,
2019; Rollins et al., 2019). Nevertheless, not all effects of a protein can be predicted with
co-evolution. Some higher-order interactions appear to be crucial for proteins (Weinreich
et al., 2013, 2018; Poelwijk et al., 2019; Yang et al., 2019).
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From a theoretical point of view, DCA has shown its ability to predict contacts (Morcos
et al., 2011), to design new proteins (Russ et al., 2020), to predict mutations’ effects
on a given protein (Figliuzzi et al., 2016; Hopf et al., 2017), to predict protein−protein
interactions (Bitbol et al., 2016; Marmier et al., 2019) or to align sequences (Talibart
and Coste, 2021). Contact predictions are now implemented in most molecular dynamics
software, and have improved the predictions of these models (Ovchinnikov et al., 2016,
2017; Zhang et al., 2018).

Potts models relative simplicity, which use only fields and couplings, can encode a
wide variability of effects, such as collective modes of amino acids at more than two sites.
Nevertheless, it isn’t easy to extract this information from the couplings, which makes
their study particularly complex. Several techniques have emerged from analyzing and
detecting collective modes of amino acids. Some, directly on the MSA, such as statistical
coupling analysis (SCA) (Lockless and Ranganathan, 1999; Halabi et al., 2009; Rivoire
et al., 2016), based on the spectral decomposition of a reweighted correlation matrix of the
MSA. The idea behind this technique is to identify independently evolving subgroups of
amino acids, called "sectors". In class A β-lactamases, SCA finds two different sectors that
form physically contiguous structural units (Rivoire et al., 2016). RBM are effective in
detecting important modes in several protein and RNA families (Tubiana, 2018; Tubiana
et al., 2019a,b; Bravi et al., 2021b). We will use RBM in Chapter 9 to analyze class A
β-lactamases.

In recent years, models developed in deep learning have been used to predict the
structure of proteins, generate proteins or assist in experiments. The following section
briefly describes these different advances.

6.4. Some advances with deep neural networks
The biggest and most exciting advance was made by Deep Mind at Critical Assess-

ment of protein Structure Prediction1 13 and 14 (CASP 13 and 14) (Moult et al., 1995;
Kryshtafovych et al., 2019), with respectively AlphaFold and AlphaFold 2. CASP is a
biennial structure prediction competition regrouping more than 100 research groups. In
CASP13 (Senior et al., 2020) and even more in CASP14 (Jumper et al., 2021), DeepMind
has made tremendous progress in structure prediction using deep neural networks. Their
models are trained in a supervised way on structures extracted from Protein Data Bank.
In Senior et al. (2020), given a sequence and a MSA of its family, they used a ResNet
(He et al., 2015), a convolutional neural using skip connections between layers intended
to reproduce pyramidal cells in the cerebral cortex, to predict a distance matrix between
pairs of amino acids and dihedral angles for each amino acid (more precisely, they obtain
a distribution on distances and angles). They used various features as inputs to their
ResNet, such as Potts models parameters trained on the MSA, the Frobenius norm of
the couplings, HMM profile and other evolutionary profiles. Once trained, with this
network, from a sequence and a MSA, they can predict an initial structure. After, they
build a potential and minimize it by gradient descent to find the final structure. The
potential is based on the negative log-likelihood of the distances and angles (predicted by
the network) and on some other physical interactions between amino acids, such as van
der Walls interactions (they use Rosetta software to model it). With this procedure, in
both categories of CASP, the template-based modeling (TBM, where a protein with is
similar sequence has a known structure) and free-modeling (FM, no homologous structure
is known), AlphaFold outperformed their competitors. In CASP, the main metric used is
the Global Distance Test (GDT), which ranges between 0 and 100. Schematically, this score

1https://www.predictioncenter.org

https://www.predictioncenter.org
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corresponds to the fraction of amino acids correctly predicted within a threshold distance
of the experimental structure. In the free-modeling category, for CASP14, AlphaFold 2
outperformed AlphaFold, with a median GDT of 87 compared to about 60. For CASP14,
Jumper et al. (2021) used an attention-based neural network (Vaswani et al., 2017), a
neural network intended to mimic cognitive attention. Tunyasuvunakool et al. (2021), in a
collaboration with European Molecular Biology Laboratory2 apply this attention-based
neural network at the scale of the human proteome (all the proteins in the human body)
to predict the different structures. According to them, they are confident on 58% of the
predicted structures, compared to 18% of the known experimental structures3. Another
variant of the algorithm, called AlphaFold-Multimer, was recently introduced to predict
protein complex (Evans et al., 2021). The use of deep networks has led to improved
predictions of protein structures. Nevertheless, these techniques still rely on information
from MSA and evolutionary data. They can extract information from several families and
are not limited like DCA to a single indicator that is the Frobenius norm of the couplings.
See Torrisi et al. (2020) for a review of the different types of networks used in practice for
structure prediction. In the case of RNA structure prediction, recent progress has also
been made using deep neural networks (Townshend et al., 2021).

Advances have also been made in the field of directed evolution (DE) (Chen and Arnold,
1993; Romero and Arnold, 2009)4 DE mimics in vitro natural evolution cycle. The main
objective is to produce new sequences with a given specificity. The experimental protocol
is the following. From reference sequences, a library of mutants is made experimentally.
Then, these mutants are selected according to a specific criterion (binding affinity, catalytic
activity, fitness, ...). The best performing mutants serve as reference sequences, and the
process is repeated. To create the mutants, several strategies are used, such as point
mutation, insertion or deletion, or gene recombination of top mutants. These procedures
are costly and time-consuming, mainly due to numerous possible mutations. To reduce
these burdens, an in silico mutant selection phase was introduced (Cadet et al., 2018;
Wu et al., 2019). In Wu et al. (2019), machine learning algorithms were trained on the
experimental data up to the tth round, and predict sequences which would be most likely
to have a given specificity for the (t+ 1)th round of selection. This technique makes it
easier to explore the space of configurations and to obtain more diverse sequences.

Deep generative neural networks, such as Variational Auto Encoders (VAE) (Kingma
and Welling, 2014), Generative Adversarial Network (GAN) (Goodfellow et al., 2014),
Protein Language Models (Rives et al., 2021; Meier et al., 2021) or RBM have used to predict
mutations effects or generate new proteins. For predicting mutations effects (Riesselman
et al., 2017; Sinai et al., 2018), VAE have comparable, though slightly better, results than
predictions from Potts model. However, the distribution of VAE cannot be estimated
exactly, and approximations have to be used, such as Evidence Lower Bound. One of the
advantages of VAE over Potts’ models is that it is possible to see in its latent space the
different phylogenetic groups. On our data on the mutations of the α-helix of TEM-1
(Chapter 7), the performance of the RBM is similar to that of the DCA. RBM can however
capture useful biological features of the class A β-lactamases (Chapter 9). Concerning the
sampling of new proteins, GAN (Repecka et al., 2021) and VAE (Hawkins-Hooker et al.,
2021) have been used in the sampling of new proteins and have demonstrated their ability
to sample diverse, functional new proteins with desired properties.

2https://www.embl.org/
3https://swissmodel.expasy.org/repository/species/9606
4Frances Arnold’s work on the use of directed evolution to engineer enzymes was awarded the Nobel

Prize in Chemistry in 2018.

https://www.embl.org/
https://swissmodel.expasy.org/repository/species/9606
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Part IV summary
This part is dedicated to the class A β-lactamase, and more specifically to TEM-1.

Thanks to an enriching collaboration with Olivier Tenaillon’s group, we first studied
epistasis. We show that this can be understood by a global two-state model of the protein,
which can be related to the energy of a Potts model trained on a sequence alignment.

• Chapter 7 is based on our paper, in preparation:

[3] Birgy, A.†, Roussel, C.†, Kemble, H., Mullaert, J., Panigoni, K., Chapron, A.,
Chatel, J., Magnan, M., Jacquier, H., Cocco, S., Monasson, R., Tenaillon, O., Origins
and breadth of pairwise epistasis in an α-helix of β-lactamase TEM-1, In preparation
(†: joint first authors)

Chapter 8 presents preliminary results on the influence of amoxicillin concentration on
log-fitness and epistasis.

And finally, Chapter 9 presents how to use the compositional phase of RBM to isolate
and interpret influential modes of amino acids of subfamilies of class A β-lactamase.



7
Pairwise epistasis in α-helix of β-lactamase TEM-1

This work is the result of a collaboration with Olivier Tenaillon’s group1 at Bichat
Hospital. They performed the experiments on TEM-1 mutants, and have started to analyze
the data.

We then took over the log-fitness inference procedure, the two-state model parameter
inference procedure, the data analysis and the Potts model inference.

7.1. Motivations
As explained in Chapters 5 and 6, sequences of the first proteins triggered the emergence

of molecular evolution and bioinformatics in the 1960s (Hagen, 2000).
Yet, more than 50 years later, despite a massive number of available protein sequences

and a pressing demand from human genetic disease and synthetic biology, the prediction
of nonsynonymous mutation effects, mutation that changes an amino acid of sequence,
remains a challenging task.

Nonetheless, over the last decade, two independent approaches have offered new per-
spectives on the study of nonsynonymous mutation effects. Experimentally, protein deep
mutational scans, in which the impacts of all possible single amino acid changes in a protein
are investigated, have gained momentum allowing to study not only single mutants but
also multiple mutants (Fowler and Fields, 2014). One way to measure the impact of these
mutations is to measure the effect on the exponential growth rate of a bacterium carrying
this mutant protein subjected to a selection pressure, in our case a medium with a certain
concentration of amoxicillin. This growth rate, called absolute fitness Wi, reads

Ni(t+ 1) =WiNi(t), (7.1)

where Ni(t) denotes the population of the mutant i at time t. If Wi > 1, population
increases over time, otherwise the population decreases. To compare the different absolute
fitness, we define as reference fitness the one of the wild-type WWT (here, TEM-1). The
relative log-fitness log(wi) with respect to the wild-type reads

log(wi) = log(Wi)− log(WWT ), (7.2)

therefore, if log(wi)> 0, the mutant grows faster than the wild-type.
At the bioinformatics level, massive protein databases have allowed using multiple

sequence alignment to infer the amino acids that are tolerated or not at a site. Interestingly,
1https://www.iame-research.center/eq1/research-interests/

https://www.iame-research.center/eq1/research-interests/
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experimental and data-driven approaches revealed immediately that mutation impact could
vary with genetic background (Jacquier et al., 2013; Bank et al., 2015, 2016). It was for
instance shown that as little as a single mutation could change quite drastically the impact
of many other mutations throughout a protein (Bloom et al., 2005; Jacquier et al., 2013).
These observations called for a more comprehensive understanding of mutations’ effects
and especially of their interactions.

Epistasis refers to the context-dependency of mutation effects. In population genetics,
pairwise epistasis refers more precisely to mutation interactions that translate in non-
additivity of log-fitness effects. Epistasis between mutation A and B can be quantitatively
estimated as the deviation between the observed log-fitness of the double mutants, AB,
and the sum of the log-fitness of both individual mutations (A and B) (Fig. 7.4(a)). Under
this strict definition, epistasis has been predicted to impact significantly many facets of
evolution, from the evolution of mutation rate and recombination (de Visser and Elena,
2007), to the diversity of adaptive path and the repeatability of adaptation (de Visser
and Krug, 2014). These undoubtful significant consequences of epistasis now call for an
integrated and mechanistic understanding of epistasis causes.

An integrated vision of epistasis may be obtained from a top-down perspective, with
phenomenological models that capture its global properties. These models have shown
that all forms of epistasis mentioned in Figure 7.4(a) can emerge from a simple nonlinear
mapping of phenotype to fitness even if the phenotype is additive. For instance, all possible
forms of pairwise epistasis are observed in the Fisher Geometric Model (Martin et al.,
2007; Gros et al., 2009; Blanquart et al., 2014; Tenaillon, 2014), a smooth singled peaked
phenotypic landscape in which fitness is a Gaussian function of the distance to an optimum
phenotype. These observations motivated the research of an underlying simple phenotype
that could explain globally the pattern of epistasis observed. Accordingly, statistical
analysis of large datasets of multiple mutants have revealed epistasis to be largely described
by an underlying additive phenotype (Otwinowski et al., 2018).

As proteins generally operate in a folded state, mutations’ impacts on protein have
mainly been investigated through their effects on that fold or its affinity with a substrate.
For epistatic interactions, two mutually non-exclusive mechanistic visions have emerged.
With compensatory mutations, characterized by two independently deleterious mutations
that, when combined, outcompete at least a single mutant, the idea of key-lock local
interactions suggested itself. Alternatively, the existence of mutations with a global impact
on protein stability (Bloom et al., 2005) hinted that the cooperative nature of protein
stability could also result in epistatic effects, this time at a more global level (Wylie and
Shakhnovich, 2011). The extent of both types of interactions and the overall prevalence of
epistatic interactions remain however unclear.

To investigate the molecular determinant of epistatic interactions, Olivier Tenaillon’s
group generated a comprehensive library of more than 15,000 single and double mutants
within an α-helix of β-lactamase TEM-1. TEM-1 is a highly successful antibiotic resistance
gene present in about 35% of Escherichia coli natural isolates (EARS-Net France). We
focused on an 11 amino acid α-helix, from residue 119 to 129 (Fig. 7.4(b)), as α-helices are
the most characterized and frequent secondary structure in protein folds. For the sake of
generality, this α-helix is not involved in the active site; it is just a structural component of
the enzyme. The mutants, which cover more than 76% of all possible double mutants, were
analyzed for their impact on protein activity, measured through the minimum inhibitory
concentration (MIC), and more importantly, through their effects on fitness, allowing a
proper estimation of epistasis.
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7.2. Aim of experiment and experimental protocol
In this section, we will describe the aim of the experiment and the experimental protocol.

We will try to be pedagogical, understandable for a physicist audience, while being precise.
The details of this protocol are available in the Supplementary Materials of the paper.

7.2.1 Objectives
The main objective of this experiment is to measure the log-fitness of single and double

mutants log(wi) (Eq. 7.2) of an α-helix of TEM-1, in a medium with a concentration of
amoxicillin of 8 g.L−1.

The idea to measure the log-fitness is to confer to bacteria, here Escherichia coli, the
ability to express one of the mutants. This mutant will bring or not to the bacterium the
capacity to resist the drug, thus multiplying or not in the environment. The plasmids give
the ability to express a given mutant. A plasmid is a small extrachromosomal DNA (0.5
to 5% of the chromosomal DNA) within the cell. In this experiment, plasmids encode
TEM-1, and therefore, are mutated to express the wild-type’s single and double mutants. In
addition, these plasmids contain 20 degenerate nucleotides, called barcodes. Each barcode
is assigned to a given mutant. Several barcodes can be used for the same mutant. These
barcodes are read by a DNA sequencer, which allows counting the number of plasmids for a
given mutant. For each mutant, what is measured is the number of plasmids encoding this
mutant. In practice, as the sequencing is not perfect, a bioinformatics treatment is used to
count the number of plasmids. This treatment is developed in the appendices of the paper.

The experiment we are interested in here was performed with a concentration of 8 g.L−1

of amoxicillin. The plasmids were sequenced at different times, called Tk from T0 to T6.
First, bacteria are placed in an antibiotic-free medium until they reach an optical density
of 0.4 at 600 nm (OD600 = 0.4), which defines the time T0. Then, a part of this solution
is taken and sequenced to obtain the number of plasmids for the different mutants at T0.
Then, another part of the solution is diluted (the dilution factor is called d). The bacteria
are placed in an antibiotic medium until they reach OD600 = 0.2, which defines the time
T1. This phase of growth, measurement, dilution is repeated until time T6. Between time
T0 and T1, there are four population-averaged generations (the total number of plasmids
is multiplied by 24). Between time Tk and Tk+1,k ≤ 1, there are 5 population-averaged
generation. The experiment is depicted in Fig. 7.1(a).
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Figure 7.1: (a) Scheme of the experiment and inference from experimental data. From
mutations to fitness Wi and two-state model energies ∆∆G. (b) Inference of Potts model
from multiple sequence alignment, from sequences to Potts energies E(a).
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7.3. Inference procedure of the log-fitness
In this section, we detail the inference procedure we developed to estimate the log-

fitness of each mutant. We denote as N̂i(Tk) the number of plasmids measured at time
Tk carrying the mutation i (the different barcodes encoding for one given mutation are
grouped together).

7.3.1 Modelization of the DNA sequencer
To infer the fitness of each mutation i, we modeled the evolution of the number of

plasmids over time. Ni(Tk) denotes the total population of plasmids carrying the mutation
i at time Tk

According to the definition of the absolute fitness, Ni(Tk) follows an exponential growth
(Eq. 7.1). However, we do not have access directly to Ni(Tk), the true population, but to
N̂i(Tk), the result of the measurement by the DNA sequencer.

According to the experimental protocol, at each time Tk, due to the different dilutions
after each measure, the population of plasmids in the DNA sequencer at time Tk can be
written as dkW Tk

i Ni, where d is the dilution factor (d= 1
32).

The DNA sequencer does not sample all the plasmids, but samples only a fraction of
them. We use the following modeling for the sampling: each measurement of N̂i(Tk) is a
realization of a binomial distribution B(dkW Tk

i Ni,pk), where dkW Tk
i Ni is the theoretical

population of plasmids in the DNA sequencer carrying the mutation i at time Tk, and
pk is the inferred sampling rate of the DNA sequencer at time Tk. We can estimate the
sampling rate pk at different times

pk =

∑
i
N̂i(Tk)

NOD(Tk)
, (7.3)

where ∑
i
N̂i(Tk) is the total population sampled with the DNA sequencer at time Tk,

and NOD(Tk) is the theoretical population in the DNA sequencer at time Tk. The ratio
of these two quantities is an estimation of the sampling rate of the DNA sequencer. In
practice, as pk is of order 10−2, ∑

i
N̂i(Tk) never exceeds NOD(Tk): during its inference, pk

is always properly defined (pk < 1).

7.3.2 Time parameterization
According to the measurement protocol, the different times steps Tk correspond to a

number of population-averaged generations (T0 = 0, T1 = 4, T2 = 9, T4 = 19 and T6 = 29)2.
We have the following evolution for total number of plasmids

N(Tk) = 2Tk−Tk−1N(Tk−1). (7.4)

However, as a significant fraction of mutants may die due to the antibiotic, the number
of generations may be underestimated during a cycle. Therefore, we redefined the time
scale by the number of generations the wild-type did. Within this new definition of time
TWT , the absolute fitness of the wild-type WWT must be equal to 2. We found indeed this
value with our inference procedure (Fig. 7.2).

2The dilution factor d= 1
32 = 1

25 corresponds to 5 population-averaged doubling, which explains why
Tk+1 − Tk = 5, except for T1 − T0 = 4, as at T0 OD600 = 0.4, and therefore after the dilution only 4
population-averaged doubling are needed to reach OD600 = 0.2.
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Between Tk−1 and Tk, we expect to have a Tk−Tk−1 population-averaged doubling.
During this cycle, the wild-type has made TWT

k −TWT
k−1 doubling. N̂WT (Tk) is the measured

population of wild-type at time Tk. If f(k) is the frequency of wild-type after the kth cycle

f(k) = N̂WT (Tk)∑
i
N̂i(Tk)

, (7.5)

as

2T
WT
k −TWT

k−1 f(Tk−1)
∑
i

N̂i(Tk−1) = f(Tk)
∑
i

N̂i(Tk), (7.6)

we get,

TWT
k −TWT

k−1 = Tk−Tk−1 + log2
f(Tk)
f(Tk−1) . (7.7)

And then

TWT
k =

k∑
k′=1

(Tk′−Tk′−1) + log2
f(Tk′)
f(Tk′−1) (7.8)

= Tk + log2
f(k)
f(0) . (7.9)

The results are reported in Table 7.1.

k = 0 k = 1 k = 2 k = 4 k = 6
Tk 0 4 9 19 29
TWT
k 0 6.6 11.9 22.0 32.1

Table 7.1: Comparison between Tk and TWT
k

In the following, we use TWT
k as reference time scale, but we note it as Tk to simplify

the notations.

7.3.3 Computation of the likelihood
For a given mutation i, we want to estimate the absolute fitness Wi knowing the

measurements of the population {N̂i(Tk)}k at different times Tk. Within our model, the
probability of {N̂i(Tk)}k at different times Tk knowing Wi can be written as

P ({N̂i(Tk)}k|Wi)∝
∑
Ni

∏
k

(
dkW Tk

i Ni

N̂i(Tk)

)
(1−pk)d

kW
Tk
i Ni−N̂i(Tk)p

N̂i(Tk)
k , (7.10)

Without a priori knowledge of the distribution of Wi, using Bayes’ theorem, the
likelihood can be written as

P (Wi|{N̂i(Tk)}k)∝ P ({N̂i(Tk)}k|Wi). (7.11)
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The likelihood for all the mutations reads

Pmodel(Wi|{N̂i(Tk)}k)∝
∏
i

P (Wi|{N̂i(Tk)}k). (7.12)

In the most general case, because of the binomial coefficients in equation 7.10, the
exact likelihood can not be computed analytically or numerically. Nonetheless, we can use
a Gaussian approximation for the likelihood. Within this approximation, we have

Pmodel(Wi|{N̂i(Tk)}k) ∝ max
{Ni}

exp
(

Φ({Wi, N̂i(Tk),Ni})−
1
2 log |Φ′′({Wi, N̂i(Tk),Ni})|

)
,

where

Φ({Wi, N̂i(Tk),Ni}) =
∑
i

∑
k

log(dkW Tk
i Ni)(

1
2 +W Tk

i Ni) (7.13)

− log(dkW Tk
i Ni− N̂i(Tk))(

1
2 +dkW Tk

i Ni− N̂i(Tk))

− log(N̂i(Tk))(
1
2 + N̂i(Tk))

+ log(1−pk)(dkW Tk
i Ni− N̂i(Tk)) + log(pk)N̂i(Tk).

The likelihood is maximized numerically with respect to Wi and Ni. In some cases,
we can compute exactly the true likelihood, and our Gaussian approximation is in good
agreement with the true likelihood (Fig. 7.2).

Once the parameters have been inferred, we have the following log-likelihood

LL({Wi, N̂i(Tk),Ni}) = Φ({Wi, N̂i(Tk),Ni})−
1
2 log |Φ′′({Wi, N̂i(Tk),Ni})|. (7.14)

Therefore, we can estimate the uncertainty on the parameter Wi as

σWi =
√√√√ 1

∂2LL({Wi,N̂i(Tk),Ni})
∂W 2

i

. (7.15)

As by definition of the time, WWT = 2, and σWi
Wi
� 1, the standard deviation σlog(wi)

associated with the relative fitness is equal to σWi
Wi

. In practice, we estimate log-fitness only
between T0 and T2, because at longer times, as yet not understood effects seem to disrupt
the exponential growth of bacteria.
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Figure 7.2: (a). Estimation of WWT . WWT = 2 in agreement with the definition of the Tk.
(b) and (c). Comparison between the exact log-likelihood and the Gaussian approximation
for a given mutant. (b) Comparison between the exact log-likelihood and the Gaussian
approximation for the estimation of Ni. (c) Comparison between the exact log-likelihood
and the Gaussian approximation for the estimation of Wi.

7.3.4 Consistency with Minimum Inhibitory Concentrations and replicas
We can compare our estimations of the log-fitness with measures of Minimum Inhibitory

Concentrations (MIC)3 through experiments at 1, 2, 4, 8, and 16 g/L of amoxicillin. MIC
and log-fitness are very high correlated for both single (Spearman correlation, ρ = 0.98)
and double mutants (ρ = 0.76), although in a non-linear way (Fig. D.1).

Furthermore, Olivier Tenaillon’s group performed a second experiment to measure
again the log-fitness (a second replicate) and for both replicates, the log-fitness of the
single mutants, double mutants, and epistasis are highly correlated (respectively, r2=1.0,
r2=0.95, r2=0.99, Fig. D.2).

In addition, the uncertainty of the log-fitness inferred by our inference procedure as
well as that estimated from the two replicates is correlated (ρ= 0.64 for the single mutants,
ρ= 0.58 for the double mutants, Fig. 7.3).

7.3.5 Definition of the lethality threshold
Mutants were considered lethal under a theoretical lower threshold for log-fitness equals

to − log(2). At this specific value, bacteria do not grow in the solution. In practice, to
limit the noise, we used a higher threshold equals to −0.6.

3MIC is the lowest concentration of a drug that prevents visible growth of bacteria.
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Figure 7.3: Comparison between the experimental error and the inferred error of the
log-fitness. (a) For single mutants. (b) For double mutants.

7.4. Results
7.4.1 Distribution of the log-fitness and epistasis

The distribution of log-fitness effects of single mutants had a bimodal structure with
close to 50% lethal mutants (log-fitness < −0.6) (Fig. 7.4(d)). This suggested an overall
important role of that α-helix. The different residues had very different patterns, with
four sites permissive to mutations, while the others were much more sensitive (Fig. 7.4(c)).
As expected proline, which is known to be incompatible with α-helix structure (von
Heijne, 1991), was lethal or close to lethal at all sites (log-fitness < -0.55) (Fig. 7.4(c)).
The distribution of double mutant effects appeared to be tri-modal with an even more
significant fraction of lethal genotypes (78%) (Fig. 7.4(e)). A dominance effect emerged:
mutant combinations including a lethal mutation were lethal. Out of the 10.887 double
mutants involving at least a lethal mutant, only 105 (1.0%) had a log-fitness higher than
-0.5 (Fig. 7.5(a)). Only 2 (0.02% of total) resulted from the combination of two deleterious
mutations, an instance of sign epistasis in which one of the mutations is deleterious in
one background and beneficial in another. This general dominance effect clarifies the
partial success of methods based on residue conservation (Ng and Henikoff, 2003; Adzhubei
et al., 2013) to predict mutation effect: significant effects such as inserting a proline
within an α-helix are effectively context-independent. This suggests that the key-lock
epistatic compensations, characterized by two independently deleterious mutations that
when combined outcompete at least a single mutant, are rare in the alpha-helix under
study.

We then focused on quantifying epistasis (Figs. 7.5(a) and (b)) and noticed that double
mutants’ log-fitness deviated substantially from the one expected, i.e. the sum of log-fitness
of the two single mutants.

Epistasis could be estimated with high resolution only for non-lethal double mutants
with non-lethal single mutants. Restricting the dataset to these mutants, we could compute
a distribution of epistasis that was both broadly distributed around zero and biased towards
negative values (Fig. 7.5(b)), as observed on other experiments based on proxies of protein
function rather than on true fitness, i.e. binding, or fluorescent protein (Sarkisyan et al.,
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Figure 7.4: Single and double mutants’ log-fitness effects. (a) Pairwise epistasis measures the deviation
of the observed log-fitness of a double mutant from the sum of the log-fitness of its single constituent
mutants. It can also be qualitatively categorized as magnitude, sign, and reciprocal sign as well as
positive or negative. The figures illustrate how this categorization functions in the case of a pair of
deleterious mutations on the left and a pair including a deleterious (b to B) and a beneficial mutation
(a to A) on the right (b) 3D structure of β-lactamase TEM-1. In red the α-helix of interest, and
in blue the Serine residue of the active site. (c) The effects on the log-fitness of all single mutants
per residue. Color scale is given in panels (d-e). (d-e) Distribution of log-fitness effects. Below the
dotted line (log-fitness = -0.6), mutants are considered non-functional. (d) For single mutants. (e)
For double mutants. (f) Log-fitness of the double mutants with missing data in white. Color scale is
given in panels (d-e). (g) Zoom on the double mutants log-fitness involving residues I127 and M129
on top and S124 and M129 at the bottom.

2016). Yet, some large positive epistasis were also found, especially among pairs including
a beneficial mutation and a deleterious one (Fig. 7.5(c)).

We then looked at the log-fitness effect of individual mutations across all different
backgrounds. For a given single mutant A, we plotted the log-fitness of the double mutants
AB minus the log-fitness of the single mutant B (called focal mutation relative log-fitness)
versus the log-fitness of single mutants B (called background log-fitness), see Figure 7.5(e).
In this figure, the white area corresponds to mutants with high resolution on log-fitness for
double mutants AB and single mutant B (log-fitness > −0.6). The blue region corresponds
to lethal double mutants. And finally, the orange area corresponds to lethal single mutant
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Figure 7.5: Pairwise epistasis. (a) Log-fitness of effects of double mutants, against the sum of the
single mutants’ log-fitness. Grey mutants of observed log-fitness and predicted log-fitness lower than
−0.6 can not be used to compute epistasis. The colors of the other points represent the form of
epistasis detected using the color code defined in Fig 7.4(a). (b) Distribution of epistasis using the
same color code, excluding mutants with non-measurable epistasis. (c) Categorization of epistasis for
all mutations, pairs of deleterious (A-/B-), pairs involving one deleterious and one beneficial (A+/B-),
or pairs of beneficial (A+/B+). (d) Relative log-fitness effect of all mutations against the log-fitness
of the different backgrounds in which they were found. The values for three focal mutations, L122A,
R120K, and S124E, are highlighted in blue, green, and red respectively. (e) The fraction of mutations
falling into unconditionally inactivating, deleterious with context-dependency, no context dependency,
and beneficial with context-dependency is presented.

B but where the double mutants AB have log-fitness greater than −0.6. Due to the high
resolution of log-fitness in the white area, we are mainly interested in the patterns that
exhibit the mutations in this area. These plots exhibit mutations with very contrasted and
structured patterns that we grouped in four distinct categories (Fig. 7.5(e)).

Among the 209 possible single mutants, 98 (47%) are lethal across all backgrounds
(the single mutants and all the double mutants including these single mutants have a
log-fitness lower than −0.6). Due to the resolution of our experiments, we can not say so
much about them. 83 (40%) single mutants are deleterious mutations, i.e. have negative
epistasis, see for example blue points (Fig. 7.5(d)). 19 (9%) mutations showed an overall
context-independent mutation effect, i.e. have no epistasis, which correspond to a straight
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line with null slope in Figure 7.5(d), see for example green points (Fig. 7.5(d)). These
mutants had a minor impact on log-fitness (less than a 1% effect on log-fitness). Finally, 9
(4%) mutations with marginally increased log-fitness effects in the ancestral background,
i.e. have positive epistasis, see for example red points (Fig. 7.5(d)).

Strikingly, excluding the 98 mutations that were lethal in all backgrounds, 83% of
the mutations exhibited some strong form context dependencies that were structured by
background log-fitness. A majority of double mutants AB associated with a given single
mutant A exhibit either positive epistasis or null epistasis or negative epistasis, but not
all three at once. This consistency suggests a macroscopic force at play, such as protein
stability.

7.4.2 Protein two-state model
One paradigm in protein analysis is that most residues in protein maintain the func-

tional fold, and therefore mutations at these sites mainly alter its stability but not the
activity (DePristo et al., 2005). Protein stability can be represented by a two-state model,
corresponding to a functional folded state and to several nonfunctional unfolded states
(Privalov, 1979; Wylie and Shakhnovich, 2011) (Fig. 7.6(a) and (b)). The fraction of time
spent in the functional fold reads

Pnat = 1
1 + exp

(
∆G0+∆∆G

RT

) . (7.16)

Upon change of stability, the amount of functioning protein changes according to the
free energy of the wild-type (∆G0) and the impact of the mutation (∆∆G).

One of the main hypothesis in this model is the additivity of the ∆∆G,

∆∆Ga,bi,j = ∆∆Gai + ∆∆Gbj , (7.17)

where ∆∆Ga,bi,j is associated with the double mutations at sites i and j with amino
acids a and b, ∆∆Gai is associated with the single mutation at sites i with amino acids a,
and ∆∆Gbj is associated with the single mutation at sites j with amino acids b.

Pnat can be directly connected to fitness in the case of an antibiotic resistance gene
(Jacquier et al., 2013) and is proportional to the absolution fitness of the mutant. Therefore,
the resulting log-fitness of a mutant can be computed as

log
(

W

WWT

)
= log

(
1 + exp

(∆G0
RT

))
− log

(
1 + exp

(∆G0 + ∆∆G
RT

))
. (7.18)

Depending on the mutant ∆∆G, this model produces patterns of log-fitness effects
according to background log-fitness similar to the one observed in the data (Fig. 7.7(a)).

To have the best possible estimate of the parameters, we decided to estimate the
∆∆G and ∆G0 from the log-fitness of single and double mutants (Appendix D.3). As
we accurately measure the log-fitness only above a threshold of −0.6, we keep only the
111 single mutants (53% of the total) with a log-fitness greater than −0.6. For each pair
of previously chosen single mutants, the associated double mutant is kept if it has been
measured experimentally. Its log-fitness is thresholded at −0.6. The two-state model is
itself thresholded at −0.6 during the inference. Keeping the lethal double mutants allows a
better estimation of the ∆∆G.

We found ∆G0 =−4.55 kcal.mol−1. For both biological semi-replicates, ∆∆G are highly
correlated (r2 = 0.99, Fig. D.2(c)). We found a correlation of ρ= 0.91, r2 = 0.87 between
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Figure 7.6: Stability and context-dependency. (a) Two-state model. Pnat is the probability that the
protein folds. (b) Effects of the mutations on the stability. Black dotted line corresponds to Pnat. Red
dot corresponds to the wild-type. Orange dot corresponds to a single mutation on the α-helix, with
∆∆Gai . Yellow dot corresponds to a single mutation on the α-helix, with ∆∆Gbj . Blue dot corresponds
to double mutations on the α-helix, with ∆∆Gai +∆∆Gbj . Mutations are considered as additive in
∆∆G. However, this results in non-additive effect in Pnat. (c) The relationship between background
log-fitness and mutant’s relative log-fitness predicted by the model of stability is presented. The
protein modeled has a free energy of −4.55 kcal.mol−1, and the impact of mutations, ∆∆G, is -2,
-0.5, 0, 0.5, 2 and 3 kcal.mol−1 from red to blue. (d) Histogram of the 111 ∆∆G estimated. Red line
corresponds to ∆G0. Black dashed line corresponds to Pnat as a function of ∆G0 + ∆∆G.

the observed and predicted log-fitness under the two-state model that has to be compared
to a ρ= 0.87, r2 = 0.65 correlation under the assumption that there is no epistasis. Hence,
the two-state model is giving an improvement. Most importantly, the two-state model
captures the overall background dependency of the mutants (Fig. 7.7(a)), reproduces the
shape and breadth of the distribution of epistasis (Fig. 7.7(b)), with correlation ρ= 0.81,
r2 = 0.55, between observed and predicted epistasis (Fig. 7.8(a)). Therefore, it suggests
that a significant fraction of epistasis between nonsynonymous mutations arises not through
local and specific interactions between amino acids but mainly through global interactions,
which are captured by the two-state model. Moreover, these results are consistent with
previous experiments: R120G is known to have a stabilizing effect (Bershtein et al., 2008;
Salverda et al., 2010) and this effect is indeed capture by the model, with ∆∆G=−1.85
kcal.mol−1 (negative ∆∆G corresponds to stabilizing mutation).

However, a deeper look at the data suggests that the two-state model is not sufficient.
First, keeping only the residues at less than 6Å, the correlation decreased to ρ = 0.88,
r2 = 0.80, while when only distant pairs (>6Å) were considered the correlation improved
to ρ = 0.95, r2 = 0.89. This implies that our model explained less well the interactions
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Figure 7.7: (a) The lines represent the fit of the model for the three mutants from Fig. 7.5(d). Due
to the resolution of our experiments, the lines are valid only in the white area. (b) In blue is the
distribution of epistasis as presented in Figure 7.5(b), and overlaid on it in orange is the distribution
of epistasis obtained with the fitted two-state model. Deviations from the two-state model. Relative
log-fitness according to background fitness for three mutants: R120D (c), M129W (e), and M129H (f).
Red dots represent distant sites and blue dots nearby sites. (d) At residue 120, the decrease of charge
associated with R to D mutation compensates mutations at residue 121 that increased the charge.

between nearby sites than distant sites.

Accordingly, a maximum likelihood model (Appendix D.4) was used to quantify the
error to the two-state model. A model with two different errors was best supported, and
found an error for sites at less than 6Å 1.28 times greater than the one found for sites further
away. For some local interactions, other forces seemed to be at play. For instance, mutation
R120D and M129W showed signs of both positive and negative epistasis, the positive effects
on epistasis being restricted to residues in direct contact (Figs. 7.7(c) and (e)). R120D
mutation leads to a change in charge, deleterious for distant interactions, but became
beneficial when associated with departure from E121 charged amino acid, the neighboring
amino acid (Fig. 7.7(d)). These interactions not captured by the two-state model represent
what we refer to as idiosyncratic epistasis. They may result from the non-additivity of the
∆∆G and the existence of some local forces at play that are not directly linked to stability
but are local. To determine pairs of sites with the strongest idiosyncratic epistasis, we
use as proxy the mean square error between the experimental log-fitness log(wa,bi,j ) and the
log-fitness predicted with the two-state model log(ŵa,bi,j ) (Eq. 7.18),
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Di,j =
√√√√ 1
Ni,j

∑
a,b

(
log(wa,bi,j )− log(ŵa,bi,j )

)2
, (7.19)

where Ni,j is the total number of double mutants for which we can calculate the
log-fitness according to the two-state model between sites i and j. The larger the score
Di,j , the larger the deviations from the two-state model, and thus the more the assumption
of linearity of the ∆∆G is no longer valid (Eq. 7.17). The five pair of sites with the largest
idiosyncratic epistasis are: 128-129, 124-128, 123-127, 127-128 and 120-123. Among these
five pairs, four correspond to the residues at less than 6Å.

Theoretically, we can estimate ∆∆G from the log-fitness of single mutants only by
inverting the equation (7.18). After the estimation of ∆∆G only on single mutants, it
is possible to predict the log-fitness of double mutants from equations (7.17) and (7.18)
and thus predict epistasis. Therefore, the model becomes predictive, because it is possible
to estimate the effect of double mutants without having to experimentally measure their
log-fitness: only measurements of single mutant’s log-fitness are required. With this method,
we obtain satisfactory results to predict the epistasis (Fig. 7.8(b)). We are also able to
predict the sign of the epistasis from the ∆∆G inferred only on single mutants. Measures
of the performances of our predictions are quantified by a ROC curve (Fig. 7.8(c)). We
used a threshold for the epistasis, keeping only experimental epistasis above this threshold
in absolute value (Fig. 7.10(e) represents the AUC for different values of the threshold).

However, by inferring only on single mutants, the estimation of the parameters is less
precise for two main reasons. First, accurate estimation of ∆G0 is complicated from the
single mutants only. Nonetheless, by taking a ∆G0 varying from −7 kcal.mol−1 to −3
kcal.mol−1, we obtain quite robust results (Table 7.2). Second, as stabilizing mutants have
a minor effect on log-fitness as they are on the plateau side of the energies to log-fitness
(Fig. 7.6(b)), noise in the log-fitness estimation can result in a significant change in the
∆∆G estimation. Furthermore, for single mutant with stabilizing effect (∆∆G< 0), i.e.
linked with positive epistasis, we underestimate their energies as their log-fitness is close
to 0 (and therefore associated with ∆∆G= 0): their stabilizing effect only appears when
double mutants are included.

Prediction epistasis, Prediction epistasis Prediction sign epistasis
Spearman (ρ) Pearson (r2) (AUC)

∆∆G 0.6 to 0.7 0.21 to 0.49 0.80 to 0.81
(single mutants)

∆∆G 0.81 0.55 0.88
(single and

double mutants)

Table 7.2: Comparison of the prediction of the epistasis with the two-state model for ∆∆G
inferred on single mutants only, and ∆∆G inferred on single and double mutants. For
estimation on single mutants, ∆G0 is varying from −7 kcal.mol−1 to −3 kcal.mol−1. For
estimation on single and double mutants, ∆G0 =−4.55 kcal.mol−1.
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Figure 7.8: Prediction of pairwise epistasis with two-state model. (a) Epistasis predicted with
two-state model against experimental epistasis. (b) Epistasis predicted with two-state model against
experimental epistasis (∆∆G inferred only on the single mutants, ∆G0 =−4.55 kcal.mol−1). (c) AUC
against epistasis’ threshold for the two-state model. (d) ROC curves for the two-state model for
different epistasis’ threshold. (e) ROC curves for the two-state model for different epistasis’ threshold
(∆∆G inferred only on the single mutants, ∆G0 =−4.55 kcal.mol−1).

7.4.3 Prediction from MSA
To complete our analysis and to see if it is possible to predict before the experiment

the effects observed on the log-fitness and epistasis of the mutants, we trained independent
models and Potts models on multiple sequence alignment built on high-quality homologs
of class A β-lactamases cleaned by hand (Philippon et al., 2016, 2019) and enriched on
SwissProt and TrEMBL (The UniProt Consortium, 2021). Once trained, we score all
the single and double mutants according to their energies E(a) (Fig. 7.1(b)). For the
independent model, E(a) reads

E(a) = −
L∑
i=1

hi(ai), (7.20)

and for Potts model, E(a) reads

E(a) = −
L∑
i=1

hi(ai)−
∑

1≤i<j≤L
Jij(ai,aj). (7.21)

To compare the predictions E(a) and the results of the experiments, we need a proxy
to link the two quantities. The most common proxy is to use the difference of log-
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likelihood between the mutant amut and the wild-type aWT as a proxy for the results of
the experiments (Figliuzzi et al., 2016; Hopf et al., 2017; Zhao et al., 2021)

logP (amut)− logP (aWT ) =−E(amut) +E(aWT ). (7.22)

For the Potts model, we found a correlation ρ= 0.86 for the 209 single mutants and
ρ= 0.64 for the 15.279 double mutants, to be compared with ρ= 0.81 and ρ= 0.59 for the
independent model. Although the independent model leads to comparable results, they are
slightly worse. The Potts model, thanks to its couplings Jij(a,b), allows having a better
estimation of the effects of the mutations, because the couplings take into account the
background of TEM-1, instead of having an average global effect due to all the class A
β-lactamases, as in the case of the independent model.

We noticed a typical “S” shape between Potts energies and the log-fitness (Figs. 7.9(a)
and (b)). Similar results are obtained using RBM (Figs. D.4(a) and (b)). For independent
model, the relationship is even more bimodal (Figs. D.3(a) and (b)). The relation between
MIC and our proxy is more linear for mutations with a high MIC, but saturates for those
with a low MIC (Fig. D.5).

The relation between the log-fitness and our proxy is highly nonlinear. Indeed, our
proxy does not depend on the quantity measured in the experiment. It is well known
that Potts energies can be correlated to MIC (Figliuzzi et al., 2016), specificity constant
( kcatKM

) (Zhao et al., 2021), log-fitness (Hopf et al., 2017), or binding energies (Salinas and
Ranganathan, 2018). All these quantities are indeed correlated, but in a non-linear way
(see for example in our case, the non-linear relation between log-fitness and MIC, Fig. D.1).

Therefore, although the strong correlation between the experimental log-fitness and the
predictions of our models, due to the nonlinearity between these quantities and as epistasis
is a linear function of the log-fitness, Potts models fails to predict the epistatic effects with
our proxy: −E(a

muta,bi,j
)−E(aWT ) +E(amutai ) +E(amutbj ) (ρ=−0.06). This result holds

also for RBM.
The typical “S” shape between the log-fitness and the energies is reminiscent of the

relationship described by the two-state model: the first plateau, corresponding to mutants
with energy close to the one of the wild-type and log-fitness close to 0, implies that
changes in energy have minor effect on the log-fitness. Then, there is the part where
changes in energies implies changes in log-fitness. And finally, for there is a second plateau,
corresponding to mutants with high energies and lethal in our experiments. In this regime,
our experiments do not have enough resolution (for log-fitness < −0.6) and consequently,
the log-fitness saturates. We can not distinguish experimentally lethal mutants from those
predicted to be even more lethal according to their Potts model’s energies.

Therefore, considering the relationship between the energies and ∆∆G, instead of the
log-fitness, we observed a much more linear relation with our predictions, for the single
mutants

∆∆Gai = γ(−E(amutai ) +E(aWT )), (7.23)

with r2 = 0.67, and γ =−0.71, and for the double mutants

∆∆Gai + ∆∆Gbj = γ(−E(a
muta,bi,j

) +E(aWT )), (7.24)

with r2 = 0.66 (Figs. 7.9(c) and (d)), keeping only the mutations where the ∆∆G are
estimated and where the amino acids are available in the MSA. The relation between ∆∆G
and the energy of the independent model is less linear (r2 = 0.37 for the single mutants and
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Figure 7.9: Potts’ energies versus experimental quantities. Blue points are common mutations in panel
(a) and (c) (respectively (b) and (d)), and correspond to the mutations we used to estimate ∆∆G.
Orange points are the other experimental mutations. (a) Experimental log-fitness against −E(amutai )+
E(aWT ) for single mutants. (b) Experimental log-fitness against −E(a

muta,bi,j
)+E(aWT ) for double

mutants. (c) ∆∆Gai against−E(amutai )+E(aWT ). (d) ∆∆Gai +∆∆Gbj against−E(a
muta,bi,j

)+E(aWT ).

r2 = 0.38 for the double mutants, Figs. D.3(c) and (d)), showing that the couplings Jij(a,b)
are paramount to have an accurate estimation of the effects, which takes into account the
TEM-1 background.

After having inferred γ =−0.71 and ∆G0 =−4.55 kcal.mol−1, we can predict the ∆∆G
for the single and double mutants from their energies according to the Potts model by
using equations (7.23) and (7.24). Then, by using two-state model (Eq. 7.18), we can
predict the log-fitness of single and double mutants, and consequently, the epistasis.
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The predicted epistasis and the experimental one are correlated (ρ = 0.44, Fig. 7.10(b)).
This is an improvement compared to the direct predictions from the log-likelihood (ρ=
−0.06), but the model seems to capture only the sign of the epistasis and not its value
(Fig. 7.10(b)). Nonetheless, we can use our estimation of experimental epistasis to predict
the sign of the experimental one. As in Fig. 7.8(c), we measure the performances of our
predictions with ROC curve (Fig. 7.10(g)).

As mentioned before, without the two-state model, the Potts model fails to capture the
epistatic effects (ρ=−0.06 between experimental values and predictions). Nevertheless, we
noticed that the couplings, at the scale of the interactions between sites, seem to capture
the pairs of sites that have the most important idiosyncratic epistasis, i.e. not explained
by the two-state model.

For Potts model, the canonical proxy to measure the interactions between two specific
sites is the Frobenius norm of the couplings matrices Fij =

√∑
a,b
Jij(a,b)2 (with the average-

product correction (Dunn et al., 2008)). The top couplings of this metric are traditionally
used to predict the tertiary contacts (Morcos et al., 2011).

We found that among the five pairs of sites with the largest Frobenius norm, there are
three pairs with significant idiosyncratic epistasis: 124-128, 127-128, 128-129 (Section 7.4.2).
Under the assumption that there is no link between these two quantities, it leads to a
p-value equals to 0.0036 (see Appendix D.8 for the computation).

Therefore, it seems that the most interacting pairs of sites predicted by our models
within the α-helix correspond to the pairs of sites where the two-state model is the less
predictive: local idiosyncratic interactions seem to result in the long term in some specific
coevolution patterns between pairs of sites, which are captured by Potts model. However,
these effects are not captured at the scale of the interactions between two specific sites and
two specific amino acids, but at the scale of the sites.
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Figure 7.10: Prediction of pairwise epistasis. (a) Epistasis predicted with two-state model against
experimental epistasis. (b) Estimated epistasis with Potts energies in two-state model against
experimental epistasis. Our predictions capture the sign of the experimental epistasis. (c) Estimated
epistasis with independent model energies in two-state model against experimental epistasis. (d)
Epistasis predicted with two-state model against experimental epistasis (∆∆G inferred only on
the single mutants, ∆G0 = −4.55 kcal.mol−1). (e) Estimated epistasis with Potts energies in two-
state model against experimental epistasis (∆∆G inferred only on the single mutants, ∆G0 =−4.55
kcal.mol−1). (f) Estimated epistasis with independent model energies in two-state model against
experimental epistasis (∆∆G inferred only on the single mutants, ∆G0 = −4.55 kcal.mol−1). (g)
AUC against epistasis’ threshold for the different models. (h) ROC curves for the two-state model
for different epistasis’ threshold. (i) ROC curves for the Potts energies in the two-state model for
different epistasis’ threshold.
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7.5. Discussion
The deep mutational scan we have performed here to study mutation effects in a local

alpha-helix of the β-lactamase TEM-1 reveals that epistasis is pervasive. We found that
once we exclude mutations carrying irrevocable loss of function, 83% of mutations showed
some strong signature of epistasis. Interestingly, though we work on a small fraction of the
protein, most epistasis do not result from idiosyncratic interactions between sites, but are
mostly captured by a global model of epistasis. In that model, the phenotypic impact of the
mutant adds up in double mutants, but the non-linear translation of phenotype to fitness
results in epistasis (Wylie and Shakhnovich, 2011; Otwinowski et al., 2018). The functional
form of the non-linear mapping between the fitness and the phenotype may reflect the
global impact of the mutations on the protein stability, in particular for the secondary
structure component under investigation, and on its functionality. The phenotype to fitness
mapping therefore the environmental pressure on the activity of the protein, tuned by the
experimental conditions, here determined by the antibiotic concentration (Stiffler et al.,
2015; Otwinowski et al., 2018). Using the two-state model and the single and double
mutations scan, we could estimate for each single mutant a phenotypic effect in the form of
an energy change, ∆∆G. Within this model, we could explain mutants, both qualitatively
and quantitatively, a large fraction of the observed epistasis (ρ = 0.81). Moreover, as,
according to the two-state model, the mutational effects on the phenotype are additive, we
could fit the ∆∆G parameters only from the single mutational data, to predict epistasis
with a good accuracy as estimated with a Spearman correlation ranging from 0.6 to 0.7.
The large contribution of this global epistasis we observed despite our focus on a local
structure of the protein is remarkable and further emphasizes the importance of this form
of epistasis, whose overall relative contribution should only increase as we consider larger
fractions of the protein. The importance of these macroscopic form of epistasis at the
protein level is reminiscent of the negative epistasis found genome-wide in experimental
evolution (Chou et al., 2011; Khan et al., 2011; Wiser et al., 2013; Kryazhimskiy et al.,
2014).

Our precise estimates of log-fitness allowed us to identify some deviations to the two-
state model. Interestingly, there was also some consistency in these deviations that were
more likely to occur between residues in direct contacts in the protein structure. We found
for instance some examples of local interactions linked to charge conservation. Deviation
from the additivity at the phenotypic level may generate these deviations from macroscopic
epistasis. We would like to point out that our alpha helix is not included in the active site of
the protein. We believe that our two-state model would be less predictive for sites included
in the active site, where activity would predominate over global epistasis (Rodrigues et al.,
2016). However, we estimate that for a majority of sites, this global epistasis dominates.

Both global epistasis and deviation from it seem to be connected to the 3D structure
of the alpha-helix under investigation, either through the impact of mutations on protein
stability or through contacts between the residues. Because such structure is highly
conserved, we then questioned whether the determinants of epistasis were conserved enough
to be detected from the analysis of Multiple Sequence Alignments (MSA) of distant
homologues that share the same fold. Interestingly, both the signature of the macroscopic
model and the patterns of deviations were recovered through the integration of MSA in
the Potts model. First, the estimated ∆∆G correlated linearly with the Potts model
mutation energy predictions. However, because macroscopic epistasis results from a precise
non-linear mapping of phenotype to fitness, the Potts model estimates of ∆∆G had to be
inserted in the two-state model to have some predictive power on the observed epistasis
(mostly on the sign of epistasis). Second, pairs of sites that showed the strongest signal of
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coevolution through evolutionary times (as measured through the Frobenius norm of the
couplings of Potts model) were the ones that deviated the most from the macroscopic model.
These idiosyncratic epistatic interactions seem therefore to generate in the long-term some
co-evolution patterns between pairs of sites that can be captured by models trained on
MSA.

The fact that the experimental epistasis we characterized as either global or idiosyncratic
can both be recovered to some extent from the analysis of distant homologues is telling that
the molecular determinants of epistasis are long-lasting. It suggests that the persistence of
the underlying mechanistic selective pressures has been long and strong enough to shape
the long-term evolution of the protein family. Despite the wide-spread level of epistasis we
recovered in our data, these observations reject a model in which epistatic interactions are
fully volatile and change quickly with protein sequence as suggested for instance in the NK
model (Kauffman and Weinberger, 1989). Our data suggest a rather smooth and consistent
protein mutational landscape. This offers the hope that its property could be tractable
and extrapolated from one homologue to another using combinations of mutational scans
and in-depth multiple sequence alignment analysis.



8
Analysis of the effects of amoxicillin concentration

To further analyze the effects of α-helix mutations, experiments presented in Chapter 7
were performed again by the group of Olivier Tenaillon, with different concentrations
of amoxicillin: 2, 4, 5, 6, 8, and 10 g.L−1. For each concentration, the log-fitness of
single and double mutants can be estimated with the inference procedure described in
Section 7.3.3. Therefore, we can compare log-fitness and epistasis for given mutants at
different concentrations.

The detailed study of the various effects is unfortunately not yet complete, and we
present preliminary but encouraging results here. By comparing the log-fitness at different
concentrations, we notice that structured patterns appear: the mutants become deleterious
from a certain concentration of drug, with a threshold that depends on the mutant. This
results in structured patterns when comparing epistasis at different concentrations. By
modifying our two-state model presented in Chapter 7, we are able to qualitatively capture
these patterns.

8.1. Effects of amoxicillin concentration on log-fitness
As expected, the selection pressure on the mutants increases with the concentration of

amoxicillin, and consequently, the fraction of lethal mutants increases with it (Fig. 8.1(a)).
This effect is also noticed in Stiffler et al. (2015)’s experiments. In their experiments, they
subject single mutants of TEM-1 to different ampicillin1 concentrations and notice that as
the concentration increases, the fraction of lethal mutants also increases in turn.
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Figure 8.1: Effects of concentration on log-fitness. (a) Evolution of the fraction of lethal
mutants against concentration. (b) Evolution of the log-fitness of the 209 single mutants
against concentration.

1As amoxicillin, ampicillin is a drug that inhibits β-lactamase.
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To understand this phenomenon, they propose a kinetic model. Schematically, the
drug within the cell neutralizes Penicillin Binding Proteins (PBP)2. PBP activity can be
related to the concentration of the drug in the cell, and this concentration depends on
both the concentration in the medium and the ability of the mutant to hydrolyze the drug.
For each mutant, their model depends on its turnover number kcat and Michaelis constant
Km, which are fitted to the experimental data. The relationship between their parameters
(mutant activity) and fitness is not linear. Fitness saturates for high mutants’ activity.
The saturation threshold depends on the concentration and increases with it. This explains
the increasing fraction of lethal mutants with increasing concentration.

Comparing the MIC results to the log-fitness at different concentrations, we also notice
this saturation effect. The lower the concentration, the more the relationship between
log-fitness and MIC reaches its plateau at low concentrations (Fig. E.1).

Furthermore, we also observe that some mutants have log-fitness close to 0 for low
concentrations, and then become increasingly deleterious above a certain concentration
threshold (Fig. 8.1(b)). Other mutants are lethal at any concentration. Surprisingly, we
notice that the log-fitness do not cross much (Fig. 8.1(b)): this implies that in our concen-
tration range if one mutant is more deleterious than another at a specific concentration, it
is deleterious over the whole concentration range.

For double mutants, we note a nonlinear relationship between the log-fitness measured
at different concentrations (Fig. 8.2). For the figures above the diagonal, the concentration
on the abscissa is greater than the concentration on the ordinate. We observe this
saturation phenomenon, where mutants with a log-fitness close to 0 at low concentrations
are deleterious at higher concentrations (log-fitness < 0).

To capture the saturation of the log-fitness as a function of the concentration, we take
another approach than the one proposed in Stiffler et al. (2015).

First, we naively model the behavior of log-fitness as a function of concentration with a
ReLU function, with three parameters

ReLU(x) = min(a,bx+ c) (8.1)

where a denotes the offset, b the slope, and c the threshold. The dropout, i.e., the
value of x such as bx+ c= 0 is defined as − c

b . Therefore, for mutants with a log-fitness
near 0 at low concentrations, the dropout corresponds to the concentration where their
log-fitness starts to decrease. There seems to be a relationship between slope and dropout
(Fig. 8.3(d)). Up to a dropout of 5 g.L−1, the slope is a slightly decreasing function of the
dropout. As we will see in Section 8.2, this will have consequences on the epistasis. After
5 g.L−1, the slope is an increasing function of the dropout.

We propose modifying the two-state model (Eq. (7.18)) to take into account the effect
of concentration. The idea is still to infer one ∆∆G by single mutants, but to have one
∆G0(c) for each concentration. Therefore, the two-state model reads

log
(

W (c)
WWT (c)

)
= log

(
1 + exp

(∆G0(c)
RT

))
− log

(
1 + exp

(∆G0(c) + ∆∆G
RT

))
. (8.2)

where W (c) is the absolute fitness of the mutant at concentration c, WWT (c) is the
absolute fitness of wild-type at concentration c. By having ∆G0(c) that depends on the
concentration, we can modulate the threshold at which the function described in the
equation (8.2) reaches its plateau.

2PDP are essential in cell-wall synthesis. Therefore, without PBP, a cell has no wall and is not viable.
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Figure 8.2: Comparison of log-fitness at concentrations 2, 4, 5, 6, 8, and 10 g.L−1 of amoxicillin.

We still assume that there is the additivity of the ∆∆G,

∆∆Ga,bi,j = ∆∆Gai + ∆∆Gbj , (8.3)

As we accurately measure the log-fitness only above a threshold of −0.6, we keep
only the 103 single mutants (49% of the total) with a log-fitness greater than −0.6 for all
concentrations. For each pair of previously chosen single mutants, the associated double
mutant is kept if it has been measured experimentally for all concentrations. Its log-fitness
is thresholded at −0.6. The two-state model is itself thresholded at −0.6 during the
inference. Therefore, since we now have six concentrations available to us instead of one as
in the Chapter 7, we have multiplied roughly the number of data by 6 (22.968 experimental
log-fitness), but we have added only five parameters to our two-state model (109 free
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Figure 8.3: (a) Log-fitness obtained with the two-state model for ∆G0 inferred on the data,
and for ∆∆G varying between −2.4 and 5.3 kcal.mol−1 (extreme values obtained on the
data). Each curve corresponds to different ∆∆G. (b) Cross: experimental data. Dashed
lines: two-state models. (c) ∆G0 versus log(c). (d) Relation between dropout and slope.

parameters : 103∆∆G and 6∆G0(c)): the model is largely overconstrained.
This model reproduces qualitatively the shape of log-fitness observed on the data

(compare Fig. 8.3(a) and Fig. 8.1(b)). Furthermore, the model reproduces well the log-
fitness data of single mutants (r2 = 0.93, and see Fig. 8.3(b) for some examples), as well
the log-fitness data of double mutants (r2 = 0.77, and see Fig. 8.3(b) for some examples).
We further note that ∆G0(c) is an increasing linear function of the logarithm of the
concentration (Fig. 8.3(c)): the lower the concentration, the more stable the protein is,
and therefore the weaker the effects of mutations on log-fitness. With the two-state model,
we also observe a relationship between dropout and slope, similar to that observed on the
data (Fig. 8.3(d)). Moreover, by plotting the predictions at different concentrations of the
two-state model (Fig. E.2), we do find the log-fitness saturation effect present in the data
(Fig. 8.2).

Furthermore, with this concentration dependence of ∆G0(c), the model captures
epistasis well at different concentrations (Fig. 8.4).

We can compare these results with those presented in Chapter 7, where the ∆∆G and
∆G0 are inferred only to the concentration 8 g.L−1. We find ∆G0(8) =−4.53 kcal.mol−1

compared to ∆G0 =−4.55 kcal.mol−1, and the ∆∆G are very correlated (ρ= 0.96, r2 =
0.93). Epistasis predictions are slightly worse (ρ= 0.70, r2 = 0.49 compared to ρ= 0.81,
r2 = 0.55).
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Figure 8.4: Predicted epistasis versus experimental epistasis, depending on the concentration
from 2 g.L−1 (top left) to 10 g.L−1 (bottom right).
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8.2. Effects of amoxicillin concentration on epistasis
The distribution of epistasis depends on concentration: strong positive epistasis is

only visible at high concentrations (Fig. E.3). Moreover, the dependence of log-fitness
on concentration as well as the dependence between dropout and slope create non-trivial
relationships between epistasis at different concentrations (Fig. 8.5).

Figure 8.5: Comparison of epistasis at concentrations 2, 4, 5, 6, 8, and 10 g.L−1 of amoxicillin.

These relationships can be separated into two categories, as we have done in Fig-
ure 8.6(a): in blue, double mutants that have greater epistasis at high concentration than
at low concentration, and in orange, double mutants that have greater epistasis at low
concentration than at high concentration.

The plateau we observe in Figure 8.6(a), where the epistasis at low concentration is
zero, and the epistasis at high concentration is non-zero, is a direct consequence of the
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Figure 8.6: (a) Epistasis at 6 g.L−1 against epistasis at 10 g.L−1. (b-d) Each color
corresponds to a given mutant. Black dashed line corresponds to T128N. (b) Epistasis
involving T128N. (c) Log-fitness of double mutants involving T128N. (d) Log-fitness of
single mutants associated with T128N.

log-fitness saturation we observe in Figure 8.2: at low concentrations, the single mutants
and the associated double mutant have a log-fitness close to 0, and the epistasis is therefore
zero. Epistasis is only visible at higher concentrations when one (or several) of these
mutants begin to be deleterious. We also observe that the highest epistasis at 10 g.L−1

correspond to high epistasis at 6 g.L−1.
We also observe a less intuitive phenomenon, corresponding to the orange dots discussed

earlier, where epistasis at low concentration is greater than epistasis at high concentration.
This phenomenon can be interpreted with the help of Figures 8.6(b-d). In the case of the
T128N mutation, we observe the epistasis is a non-monotonic function of the concentration
for several double mutants (Fig. 8.6(b)), and that the single mutants associated with T128N
have a log-fitness close to 0 at any concentration (Fig. 8.6(d)). Therefore, the epistasis
depends on the log-fitness of the double mutant as well as the single mutant T128N. We
observe that several double mutants start to be deleterious at low concentration while the
single mutant T128N still has a log-fitness close to 0 (Fig. 8.6(c)). Therefore, we observe
negative epistasis. At higher concentration, the single mutant T128N also begins to be
deleterious. As seen in Figure 8.6(c), in this regime, the log-fitness decay is greater than
for the mutants that started to be deleterious at lower concentrations. This explains why
epistasis is non-monotonic. Furthermore, as discussed in Section 8.1, the log-fitness curves
do not cross very much (Fig. 8.6(c)). Therefore, although non-monotonic, epistasis does
not change sign. We also observe that some double mutants become deleterious after the
T128N single mutant (Fig. 8.6(c)). The log-fitness decay of these mutants is lower than
that of the single mutant, so we observe positive and monotonic epistasis (Fig. 8.6(b)).
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The effects we observe are robust to changes in the time step of our inference, or else to
redefining the times (Section 7.3). These effects are also captured by the two-state model
(Fig. 8.7). We can see the distinction between mutations whose epistasis is stronger at high
concentration than at low concentration (the blue dots of Fig. 8.7(a)), and mutations whose
epistasis is stronger at low concentration than at high concentration (the orange dots of
Fig. 8.7(a)). Within the model, single mutant T128N and double mutants associated with
also begin to be deleterious at different concentrations, creating these specific patterns of
epistasis.

Our model captures the overall effects, albeit imperfectly. Indeed, the effect of the
model for the orange dots is more pronounced than in the data. Because the two-state
model saturates at −0.6, the epistasis is even zero at high concentration (as single mutants
and the double mutant associated with are lethal within the model), while it is non-zero
at lower concentration. Concerning the blue dots, we retrieve the plateau we observe in
Figure 8.6(a), but this one has now a slope lower than 1: the epistasis at low concentration
is lower than the epistasis at high concentration (Fig. 8.7(a)). The model captures also
that the highest epistasis at 10 g.L−1 correspond to high epistasis at 6 g.L−1, as in the
data.

More generally, by plotting the predictions of epistasis at different concentrations of
the two-state model (Fig. E.4), we do find, in part, the specific patterns of epistasis present
in the data (Fig. 8.5).
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Figure 8.7: (a) Predicted epistasis at 6 g.L−1 against predicted epistasis at 10 g.L−1. (b-d)
Each color corresponds to a given mutant. Black dashed line corresponds to T128N. (b)
Predicted epistasis involving T128N. (c) Predicted log-fitness of double mutants involving
T128N. (d) Predicted log-fitness of single mutants associated with T128N.
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8.3. Conclusion
The study of log-fitness and epistasis at different concentrations has highlighted several

phenomena. There appears to be saturation phenomena of log-fitness as a function of the
concentration. Up to a certain concentration threshold, some mutants have no deleterious
effects on the protein. Beyond this threshold, they start to be deleterious. This saturation
of log-fitness creates patterns when comparing epistasis at different concentrations. A first
pattern, directly related to log-fitness saturation, is that epistasis at low concentrations may
be zero, and become non-zero at high concentrations when the mutants in question become
deleterious. A second, less intuitive reason is that epistasis at low concentration may be
greater than at high concentration. This is because single and double mutants do not
begin to be deleterious at the same concentration, what makes epistasis a non-monotonic
function of concentration. The mentioned effects can be captured by a two-state model,
where the effect of the concentration is captured by ∆G0 depending on it. It appears that
∆G0 is an increasing linear function of the logarithm of the concentration.
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Analysis of class A β-lactamase families with Restricted

Boltzmann Machines

In this chapter, we will use the compositional phase of RBM to analyze the β-lactamase
class A family. As shown by Tubiana and Monasson (2017), in the compositional phase,
RBM have sparse weights and each visible configuration is encoded by several (but finite)
strongly activated hidden units (Section 2.5). These sparse weights can encode for different
biological features, and unlike Potts’ model where the interactions between amino acids
are pairwise, in the case of RBM the weights take into account several amino acids and are
therefore more easily interpretable.

As explained in Section 3.1.4.3 dedicated to Lattice Protein, couplings W between
the hidden layer and the visible layer are represented by a M ×N × q tensor, as each
amino acid is encoded by a Potts state with q = 21 colors. Therefore, the energy can be
written as in Eq. (3.53). In practice, dReLU potentials are used for the hidden potentials
(Section 1.2.1). As W is a third rank tensor, for a given hidden unit, we can extract a
weight matrix associated with it: these weight matrices could encode the biological features
(Figs. 9.1(b) and (c)). We use the same representation as in the thesis of Tubiana (2018):
at each site i, the height of each amino acid a is proportional to the corresponding weight
coefficient Wiµ(a). The amino acids are colored with the same color code as defined in
Figure 5.1.

As for the Potts model, RBM are trained by maximizing the log-likelihood defined in
Eq. (6.12), which considers the reweighting of the sequences (Section 6.1 for more details).
We use the zero-sum gauge for the weights and fields.

The sparsity of weights does not emerge naturally during training, and the RBM is
therefore not in the compositional phase. It isn’t easy to interpret the features learned
by the RBM from a biological point of view as they are very delocalized and intricate
(Fig. (9.1)(b)). Therefore, in addition to a L2 regularization on the gi fields of the visible
layer, a penalty L2

1 is introduced during training on the couplings, where γ controls its
intensity

∆LL = γ
∑
µ

∑
i,a

|Wiµ(a)|2
 . (9.1)

This penalty was introduced by Tubiana et al. (2019b), has several interests. It allows
avoiding overfitting and to reach the compositional phase of the RBM. Nevertheless, if the
regularization is too important, the log-likelihood of the model becomes low. There is thus
a trade-off between a good representation (sparse weights) and a good performance of the
model (a high log-likelihood), see Fig. 9.1.
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Figure 9.1: (a) Train log-likelihood (on training data) and test log-likelihood (on test data,
not seen during the training) for different training with different γ evaluated with Annealed
Importance Sampling (Section 1.2.4). There is an optimal γ = 0.1. However, we use a
stronger regularization to have sparse weights, causing a slight decrease in the log-likelihood.
(b) Example of weights for a given hidden unit (γ = 0). Weights are delocalized and can
not be interpreted. (c) Example of weights for a given hidden unit (γ = 0.8). Weights are
sparse and can be interpreted.

9.1. Description of class A β-lactamase
Before turning to the RBM weights, we will begin by briefly describing the β-lactamases.

Two parallel classifications exist for them. The first one was introduced by Bush et al.
(1995); Bush and Jacoby (2010) and is based on the functional characteristics of the
proteins, i.e., the type of drugs that proteins are able to hydrolyze. This classification has
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three different classes, from 1 to 3, with a consequent number of subclasses.
The second one was introduced by Ambler et al. (1980, 1991) and is based on the

similarity of the sequences. This classification has four different classes, from A to D.
Classes A, B and D are composed of serine enzymes1, with different 3D conformations for
the three classes. Class B is composed of metalloenzymes2, subdivided into 3 subclasses
(B1 to B3).

These two classifications are compatible, and there are regularities from one to the
other: class 1 is composed of class C, class 2 of classes A and D, and class 3 of class D.

TEM-1 β-lactamase belongs to class A as defined by Amber and to class 2b as defined by
Bush. Class A β-lactamases contain highly conserved motifs linked to catalytic mechanisms
and substrate binding: S70xxK3, S130DN, K234TG. This conservation is visible in the
sequence logo, as shown in Figure 5.1(b) for the S130DN motif. Class A is also characterized
by an Ω-loop (from site 161 to 179), where the E166 site plays a crucial role in the catalytic
cycle of hydrolysis (Egorov et al., 2019).

More recently, Philippon et al. (2016, 2019) proposed a refinement of the A class
initially introduced by Amber: class A is subdivided into two classes A1 and A2. These
two classes have many similarities in their sequences, but differ in others, allowing them
to be separated. Class A1 is itself divided into 5 groups (group B to group F). The
differences between these subgroups are due to residues that change the action spectrum of
β-lactamases (from limited-spectrum β-lactamases to wider spectrum β-lactamases). It is
possible to partly relate these classes to phylogeny, as shown in Figure 9.2: classes A1 and
A2 do not correspond to the same phylum4. Group D belongs to a different phylum than
the other groups of class A1 because it includes proteins from Gram-positive bacteria5.
Group B, C, E, and F are Gram-negative bacteria and belong to the same phylum.
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Figure 9.2: Percentage of given phylum in the different groups. The sum of the percentages
in a given column is equal to 100%, and the number of sequences is indicated in brackets.

1The active site of the protein contains a serine.
2The active site of the protein contains zinc ions.
3x denotes a variable site
4Phylum is a level of classification below kingdom. Here, all proteins belong to the bacteria kingdom.
5Gram-positive bacteria have only one membrane, contrary to Gram-negative bacteria which have two

membranes.
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9.2. Results
We will show in this section that RBM are able to identify through their weights relevant

information concerning the phylogeny, the functionality, and the structure of class A β-
lactamases. As our MSA has 253 sites, we highlight only the most important sites, which
are selected automatically: we show only sites i such that

21∑
q=1
|Wiµ(q)| ≥ 0.5max

i

21∑
q=1
|Wiµ(q)|

9.2.1 A1 and A2 families

Figure 9.3: (a) and (b). Weight separating classes A1 and A2. (c) Scatter plot of the
inputs of hidden units associated with the weights defined in (a) and (b).

We have identified in our trainings several weights allowing to separate the two families
A1 and A2.

Weights shown in Figure 9.3(a) focus near the highly conserved motifs linked to catalytic
mechanisms, substrate binding, and the Ω-loop. Philippon et al. (2019) identified that
these sites allowed to discriminate the two families, A1 and A2. Among others, L75, N136,
D157, T160, P167, D233 and G248 are highly conserved for sequences from class A1 and
H75, D136, H233, G248 are highly conserved for sequences from class A2. These amino
acids are indeed found by the RBM and therefore, input I1 =

253∑
i=1

Wi1(ai) is positive for
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sequences belonging to A2 and negative for sequences belonging to A1. Likewise, weights
shown in Figure 9.3(b) focus on three sites. L162, T243 and T266 are highly conserved for
sequences from class A1 and I162, A243 and S266 are highly conserved for sequences from
class A2. Therefore, the inputs of the hidden units associated with these two weights make
it easy to distinguish the two families A1 and A2 (Fig. 9.3(c)).

9.2.2 Gram-negative and Gram-positive bacteria

Figure 9.4: (a) Electrostatic modes. (b) TEM-1 structure (Gram-negative bacteria). PDB:
1BTL, Jelsch et al. (1993). (c) MYC1 structure (Gram-positive bacteria). PDB: 2GDN,
Wang et al. (2006). (d) Gap modes. (e) Scatter plot of the inputs of hidden units associated
with the weights defined in (a) and (d).

https://www.rcsb.org/structure/1btl
https://www.rcsb.org/structure/2GDN
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Weights shown in Figure 9.4(a) focus on two neighboring α-helices in the 3D confor-
mation. We identify an electrostatic mode including sites 124, 128, 209 and 213. This
mode is present for a large part of Gram-positive bacteria but not for Gram-negative
bacteria (Fig. 9.4(e)). We have represented this mode on the 3D conformation of TEM-1,
(Gram-negative bacteria, Fig. 9.4(b)). We see that this mode is not compatible with this
structure, because the positive charges, as well as the negative charges, are face to face,
which creates an electrostatic repulsion that destabilizes the structure. In contrast, for
MYC1 (Gram-positive bacteria), the structure is slightly different: the negative charges
are aligned with the positive charges (Fig. 9.4(c)). The electrostatic mode thus stabilizes
the protein structure.

Weights shown in Figure 9.4(d) represent a gap mode. This mode corresponds to the
insertion of three additional residues (sites 88 to 90) for the proteins found in Gram-negative
bacteria. Therefore, during the sequence alignment procedure, proteins from Gram-positive
bacteria have gaps at sites 88 to 91.

9.2.3 Several groups for Gram-negative bacteria

Figure 9.5: (a) Weights with a disulfide bond (C-C) between sites 79 and 123. (b) Structure
of TEM-1 (group C). (c) Weights with couplings between sites 220 and 244. (d). Scatter
plot of the inputs of hidden units associated with the weights defined in (a) and (c).

We are now interested in the proteins present in Gram-negative bacteria. These proteins
are separated into four distinct groups: B, C, D and F (Philippon et al., 2019).

Group C proteins, of which TEM-1 is a member, are the limited-spectrum β-lactamases
(LSBL). One of the characteristics that separates these proteins from the other groups is
the strong conservation of C77 and C123 between two neighboring α-helices, supposedly
forming a disulfide bond (Figs. 9.5(a) and (b)). Matagne et al. (1998) reported that if an
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Arginine (R) is present at site 244, a Leucine (L) or Asparagine (N) is present at site 220
or 276. This is visible through the weights depicted in Figure 9.5(c). With the help of
coupling between site 220 and 244, and the disulfide bond between sites 77 and 123, it is
possible to separate the C group from the others.

Group E proteins are the wider-spectrum β-lactamases (WSBL). Among the highly
conserved residues in this group E are Q128, Y129, F160 and T171. This mode is detected
by a specific hidden unit and allows separating the group C from the others (Fig. 9.6).

Figure 9.6: (a) Weights on sites 128, 129, 160 and 171. (b) Histogram of the input of
hidden units associated with the weights defined in (a).

9.3. Comparison with Principal Component Analysis
Another approach to isolate groups of coevolved sites is to use Principal Component

Analysis (PCA) (Pearson, 1901; Russ et al., 2005; Halabi et al., 2009; Rausell et al., 2010).
The first two components of the PCA separate the two subfamilies A1 and A2, as well

as some subfamilies of class A1 (Fig. 9.7(b)), which shows that PCA is a useful method to
separate subfamilies.

Nevertheless, the features learned through PCA are difficult to interpret for different
reasons. The components of the PCA are highly delocalized, which makes the interpretation
of biological features relatively difficult (Fig. 9.7(a)). Another drawback of PCA is that it
assumes that the weights are orthogonal, which is not true in general: it is therefore difficult
to decouple the true biological features with it. Therefore, RBM in the compositional
phase, which can learn delocalized modes as well as pairwise couplings, turns out to be a
more flexible and easily interpretable method than PCA. Nevertheless, PCA, because of
its ease of use, remains an important tool in the detection of coevolutionary sites.
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Figure 9.7: PCA on class A β-lactamases. (a) First component of the PCA. (b) Scatter
plot of the projections of the sequences along the two first components of the PCA.



Conclusion and perspectives

In this Ph.D. thesis, we have studied the sampling properties of Restricted Boltzmann
Machines. In the case of the canonical sampling algorithm of this neural network, the
Alternating Gibbs Sampling, we have shown that it is possible to find optimal trajectories
between local minima of the energy landscape, but that these trajectories pass through
large free energy barriers. The characteristic time to go from one minimum to another is
exponential in the size of the system. Therefore, this algorithm is just as inefficient as a
naive sampling based on the Metropolis-Hastings algorithm.

We have also shown that it is possible to use the representations learned by the
Restricted Boltzmann Machines to speed up the sampling. When hidden units encode
essentially independent features of the data, or are block-correlated, updating of one, or
a small number of hidden units with Metropolis-Hastings algorithm in the hidden space
allows for a macroscopic change of visible units and offers rapid mixing between minima.

In the case of entangled representation, a large number of hidden units have to be
updated simultaneously and therefore the Metropolis-Hastings algorithm in the hidden
space is computationally prohibitive. In that case, to improve the sampling, we used a stack
of coupled RBM via the Deep Tempering algorithm. By adding RBM on top of the initial
RBM, while reducing their number of hidden units progressively and regulating the weights
during their training, the representations of the initial RBM are progressively clustered, and
the energy landscape becomes smoother with depth. Deep Tempering algorithm couples
the RBM in the stack by allowing them to exchange configurations: swaps between the
different layers allow combining the advantages of the top RBM fast-mixing properties
and bottom RBM high-quality samples. In-between RBM are here to ensure a reasonable
replica-exchange rate.

There is an extensive number of research directions to undertake regarding the sampling
of RBM. First, a better understanding of the phenomenon of compression of representations
would make it possible to improve its use on real data. Second, even though Alternating
Gibbs Sampling suffers from poor mixing between far away minima, AGS, with Contrastive
Divergence or Persistent Contrastive Divergence, remains an efficient training algorithm
for RBM, as these two procedures authorize initialization of the dynamics in different
local minima close to the training data. Nevertheless, these algorithms could be improved
by including a dynamic that considers the representations identified by the RBM during
training.

In this thesis, we were also interested in β-lactamase TEM-1 protein. Thanks to a
collaboration with Olivier Tenaillon’s group, we were able to study epistasis on a TEM-1
α-helix. We have shown that mutant’s log-fitness are correlated with the energies of our
inferred models on a sequence alignment in a nonlinear way, making it difficult to predict
epistasis from the models. However, most mutations have a macroscopic pattern of epistasis
which can be captured by a simple biophysical two-state model that predicts the emergence
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of epistasis based on the additive effects of mutation. As the mutational effects on the
phenotype are additive, we could fit the parameters only from the single mutational data,
to predict epistasis with a good accuracy. Furthermore, the parameters of this model
are linearly correlated with the energies of our inferred models on a sequence alignment.
Idiosyncratic epistasis, not captured by the two-state model, may lead in the long term to
some co-evolution patterns between pairs of sites. These interactions are not captured by
the models at the level of interactions between amino acids, but are captured at the level
of interaction between specific sites.

We also put forward saturation effects of log-fitness as a function of amoxicillin concen-
tration in the medium. These effects create interesting patterns when comparing epistasis
at different concentrations. We show that a two-state model can capture these effects if we
allow ∆G0 to depend on the concentration.

We were also able to isolate interesting residues motifs in the class A β-lactamase family
using Restricted Boltzmann Machines. Just as Potts’ models have shown their ability to
design new proteins with a given functionality, it would be interesting to use RBM for
this purpose. The advantage of RBM over Potts’ model is that it is possible to fix the
activity of some hidden units coding for a given protein subfamily, and thus in the case
of β-lactamases effective against a given drug. In this case, it is theoretically possible
to sample specifically this subfamily with the RBM, and thus to generate new proteins
belonging to it.

To conclude, it would be interesting to use the advances we have made on RBM
sampling for biological applications. The idea, which was initially the subject of this
thesis, would be to sample transition paths between proteins using RBM and to see if this
path can be interpreted from an evolutionary and phylogenetic perspective. This would
require exploiting the representations learned by RBM and creating a biologically plausible
sampling algorithm. This work is a long-term one, but I think it is worth the effort.
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Appendix summary
This part gathers various technical details concerning the previous chapters, as well as

figures complementary to those exposed in the main text.
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1.1. Spin-Spin RBM are universal approximators
A.1.1 Spin-Spin solution

The solution proposed in Le Roux and Bengio (2008) can be adapted in the case of
Spin-Spin RBM. It can be done by setting

Wiµ = γ
aµ
2 ξ

µ
i , (A.1)

cµ = γ(λ− Naµ2 ), (A.2)

gi = γ
M∑
µ=1

aµ
2 ξ

µ
i . (A.3)

Then, in the case where γ→∞

〈hµ|v〉= sign(−aµdist(v,ξµ) +λ), (A.4)

where dist(u,v) is the Hamming distance between the vectors u and v. a and λ, are
tuned such that 〈hµ|v〉= 1 if and only if v = ξµ, so aµ > λ > 0.

And:

Eeff(v) =
M∑
µ=1

cµ

(
1−2

N∏
i=1

δvi,ξµi

)
. (A.5)

A.1.1.1 Increasing the size of basins of attractions
As each of the ξk has the same statistical weight, aµ = a and we can rewrite Eq. (A.4)

〈hµ|v〉= sign(−adist(v,ξµ) +λ). (A.6)

If a= λ
dN+ε where ε > 0, we get that 〈hµ|v〉= 1 if and only if dist(v,ξµ)≤ dN . How

can we choose the parameter d? To keep this "grandmother solution", we do not want that
a vector v triggers two or more hidden units, so dN < 1

2 min
µ6=ν

dist(ξµ,ξν) (because with this
solution, a vector v which triggers two or more hidden unis could have a lower energy than
the energy of the patterns).
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For the energy we get ∀v such that ∀ξµ,dist(v,ξµ)> dN

Eeff(v) = −γ
(
MN

a

2 −Mλ
)

=
M∑
µ=1

cµ. (A.7)

And ∀v such that dist(v,ξµ) =Nd′ <Nd:

Eeff(v)) = −γ
(
MN

a

2 − (M −2)λ−2aNd′
)
. (A.8)

So the gap between xiµ and a vector v at distance Nd′ <Nd is 2γλNd′
Nd+ε . The energy

landscape E(v) is flat, but now the K holes have some width.
In that case, ∀v, such that dist(v,ξµ)≤ dN v triggers hµ. We can compute the relative

weight of a vector ξk compared to the others vectors in the hole. We called vd′ a vector at
distance d′ of ξk:

P (ξk)
dN∑
d′=0

(N
d′
)
P (vd′)

'
dN�1

(1 + exp(−2a))N '
a�1

exp(N exp(−2a)). (A.9)

As a= λ
dN+ε , we can set λ such that N exp(−2a)→ 0. In that case, sampling back the

visible layer from hµ leads to the pattern ξµ. Therefore, ∀v, such that dist(v,ξµ)≤ dN , v
is in the basin of attraction of ξµ.

If the patterns are random vectors, d∼ 1
4 . Then, if N →∞,

Nd∑
d′=0

(N
d′
)
< 2NS( 1

4 ) (with S is

the binary entropy function). So the fraction of v in the basins of attraction of the patterns
can be bounded by: K2NS( 1

4 )

2N −→
N→+∞

0. The size of the basins of attraction are larger than
in the previous case, but are still small compared to the total number of vectors.
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2.1. General hidden-unit potentials
We consider below three different potentials acting on hidden units, and how they

should scale when N →∞.

B.1.0.1 Quadratic potential
The quadratic potential is defined as Uµ(hµ) = h2

µ

2 . In that case, we should rescale
hµ→ hµ/

√
N . We get:

P
(
hµ|m

)
= 1√

2π/N
exp

(
−N2

(
hµ− Iµ

)2)
, (B.1)

Γ̂µ(I) = I2

2 , fµ(I) = I. (B.2)

B.1.0.2 ReLU potential
We can use the so-called ReLU (Rectified Linear Unit) potential Uµ(hµ) = 1

2γ
+h+2

µ +
θ+h+

µ where h+
µ = max(hµ,0), see for instance (Tubiana et al., 2019b). We should rescale

hµ→ hµ/
√
N and θ+

µ → θ+
µ /
√
N . We get:

P
(
hµ|m

)
= T N

(
N
Iµ−θ+

µ

γ+ ,
1
γ+ ,R

+
)
, (B.3)

Γ̂µ(I) = max

0, 12

(
I−θ+

µ

γ+
µ

)2
 , fµ(I) = max

(
0,
I−θ+

µ

γ+
µ

)
. (B.4)

T N (µ,σ2,R+) denotes the truncated Gaussian distribution of mode µ, width σ and
support R+. This potential is called ReLU because its transfer function is a ReLU function.

B.1.0.3 Binary hidden units
If the hidden units are spins, i.e. hµ ∈ {−1,1}, the potential can be written as a field

Uµ(hµ) =−cµhµ. In that case, we should rescale cµ→ cµ/N , w→ w
√
N . We get

P
(
hµ|m

)
= 1

2
(
1 +hµ tanh(N (Iµ+ cµ))

)
, (B.5)

Γ̂µ(I) = |I+ cµ|, fµ(I) = sign(I+ cµ) . (B.6)

If the hidden units are Bernoulli units, i.e., hµ ∈ {0,1}, the potential acting on the
hidden units is the same as for spins variables, and we get:
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P
(
hµ|m

)
=

exp
(
Nhµ

(
Iµ+ cµ

))
1 + exp

(
N
(
Iµ+ cµ

)) , (B.7)

Γ̂µ(I) = max(0, I+ cµ), fµ(I) =H (I+ cµ) . (B.8)

H(x) is the Heaviside step function.

2.2. Expansion of barrier height to first order in parameter changes
By using first order perturbation theory with the self-consistent equation defined in

Eq. (3.36), we end up with:

mα =
[
gα(m11,m22)
gα(m22,m11)

]
, mw =

[
gw(m11)
gw(m22)

]
, (B.9)

with

gα(x,y) =
(
−x2 + x+y

1 +xy

)( 2w2(1−x2)
2−w2(1−x2)

)
, (B.10)

gw(x) = wx

(
2(1−x2)

2−w2(1−x2)

)
. (B.11)

Inserting these results in the expression of f(m) (Eq. (3.35)) leads to:

fα(m) = −w
2

2 m11

(
m11 +m22
1 +m11m22

+ gα(m11,m22)−m11
2

)
(B.12)

− w2

2 m22

(
m11 +m22
1 +m11m22

+ gα(m22,m11)−m22
2

)
+ gα(m11,m22)

2 arctanh(m11) + gα(m22,m11)
2 arctanh(m22)

+ S(m11) +S(m22)
2 −S(m12) ,

fw(m) = −w
2

2

(
m11

gw(m11)
2 +m22

gw(m22)
2

)
− w4

(
m2

11 +m2
22

)
(B.13)

+ gw(m11)
2 arctanh(m11) + gw(m22)

2 arctanh(m22) .

2.3. Sampling in the hidden space
Numerically, P (hµ|h¬µ) (Algorithm 4) and P (hµ,hν |h¬µ,ν) (Algorithm 5) are dis-

cretized, and the new candidate is drawn from the discretized distribution with the tower
sampling algorithm (Krauth, 2006).

Let us denote the acceptance probability from a configuration h to a configuration h′
by Ah(h→ h′). The Metropolis-Hastings algorithm and Gibbs sampling satisfy detailed
balance in Eeff(h), hence

P (h)Ah(h→ h′) = P (h′)Ah(h′→ h′). (B.14)

For the dynamics defined in Fig. 3.10, we have the following acceptance probability
from a configuration v to a configuration v′
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Av(v→ v′) =
∫
dhdh′P (h|v)Ah(h→ h′)P (v′|h′). (B.15)

Therefore,

P (v)Av(v→ v′) =
∫
dhdh′P (v)P (h|v)Ah(h→ h′)P (v′|h′)

=
∫
dhdh′P (v)P (v,h)

P (v)
P (h′)Ah(h′→ h)

P (h)
P (v′,h′)
P (h′)

=
∫
dhdh′P (v|h)Ah(h′→ h)P (v′,h′)

= P (v′)Av(v′→ v). (B.16)

As a consequence, our algorithm satisfies the detailed balance condition.





C
Appendix to Chapter 4

3.1. Detailed balance
In this part, we prove the detailed balance condition for Deep Tempering with two

RBM. Moreover, the proof can be easily adapted to the general case of N RBM. First, we
lighten the notation for the acceptance ratio

An
(
{hn = htn,vn+1 = vtn+1}→ {hn = vtn+1,vn+1 = htn}

)
≡An

(
htn,vtn+1

)
, (C.1)

and we also get rid of temporal indices. First, the swap satisfies the detailed balance
condition

P vn+1(vn+1)P hn (hn)An (hn,vn+1) = P vn+1(hn)P hn (vn+1)An (vn+1,hn) . (C.2)

Now, we show that combining AGS and the swap also satisfy the detailed balance
condition. We want to prove that

P vn (vn)P hn+1(hn+1)A
(
{vn = vn,hn+1 = hn+1}→ {vn = v′n,hn+1 = h′n+1}

)
= P vn (v′n)P hn+1(h′n+1)A

(
{vn = v′n,hn+1 = h′n+1}→ {vn = vn,hn+1 = hn+1}

)
,

where the acceptance ratio including AGS and the swap reads

A
(
{vn = vn,hn+1 = hn+1}→ {vn = v′n,hn+1 = h′n+1}

)
(C.3)

=
∫
dhndvn+1Pn(hn|vn)Pn+1(vn+1|hn+1)An (hn,vn+1)Pn(v′n|h

′)Pn+1(h′n+1|v
′),

where v′ = vn+1 and h′ = hn if the swap does not occur and v′ = hn and h′ = vn+1
otherwise. In the first case, the two RBM are independent and therefore, as AGS satisfies
the detailed balance for each RBM, the detailed balance condition is fulfilled. For the
latter case, we have
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P vn (vn)P hn+1(hn+1)Pn(hn|vn)Pn+1(vn+1|hn+1) (C.4)
×An (hn,vn+1)Pn(v′n|vn+1)Pn+1(h′n+1|hn)

= P vn (vn)P hn+1(hn+1)Pn(hn,vn)
P vn (vn)

Pn+1(vn+1,hn+1)
P hn+1(hn+1)

×
P vn+1(hn)P hn (vn+1)An (vn+1,hn)

P vn+1(vn+1)P hn (hn)
Pn(v′n,vn+1)
P hn (vn+1)

Pn+1(h′n+1,hn)
P vn+1(hn)

= P vn (v′n)P hn+1(h′n+1)Pn(vn+1|v
′
n)Pn+1(hn|h

′
n+1)

×An (vn+1,hn)Pn+1(hn+1|vn+1)Pn(vn|hn).

Consequently, the detailed balance condition is fulfilled in this case, and therefore Deep
Tempering satisfies the detailed balance.

3.2. Correlated patterns
C.2.1 Computation of xc

We can compute the derivative of the log-likelihood with respect to y

∂
(
LL
N

)
∂y

= 1
2 log

(cosh(w(1 +x))cosh(w∆−)
cosh(w(1−x))cosh(w∆+)

)
. (C.5)

xc is defined such that ∂(LL
N )
∂y

∣∣∣
y=1

= 0. Then,

cosh(w(1 +xc))
cosh(w(1−xc))cosh(w∆+) = 1. (C.6)

xc is therefore the solution of the following self-consistent equation:

1
w

cosh−1
(cosh(w(1 +xc)

cosh(w(1−xc)

)
(C.7)

= (1 +xc)tanh
(

2αw tanh
(

cosh−1
(cosh(w(1 +xc)

cosh(w(1−xc)

)))
.

C.2.2 Numerical experiments
C.2.2.1 Evaluation of the partition function with Annealed Importance Sampling

To estimate the optimal y∗(w,x,α) with AIS, for a fixed w, x and α, we sample random
vectors ξ1, ξ2 with correlation x. For y ∈ [0,1], we sample random vectors ξ̂1, ξ̂2 with a
correlation y. The weight matrix is given by Eq. (4.3). The partition function is evaluated
with AIS. The optimal y∗ is the one which maximizes the log-likelihood (Eq. (4.5)). In
practice, the segment [0,1] is discretized, and the procedure is repeated 25 times for each
x. Dots in Fig. 4.5(c) are the mean value of the optimal y∗, and the shaded areas show the
standard deviation of the optimal y∗.



C.2 Correlated patterns 151

C.2.2.2 Initial correlation
The weight matrix W0 is initialized with small random values chosen from a zero-

mean Gaussian with a standard deviation σ. Iµ(ξ1) and Iµ(ξ2) have a bivariate normal
distribution with x as covariance. Therefore, P (Iµ(ξ1)Iµ(ξ2)> 0) = 1− cos−1(x)

π .
By defining ξ̂1 = sign

(
W0 ·ξ1) and ξ̂2 = sign

(
W0 ·ξ2), we have

y0 = 〈h1
µ = h2

µ〉−〈h1
µ 6= h2

µ〉 (C.8)
= P (Iµ(ξ1)Iµ(ξ2)> 0)−P (Iµ(ξ1)Iµ(ξ2)< 0)

= 1− 2cos−1(x)
π

.

C.2.2.3 Numerical results

Figure C.1: Numerical experiments with N = 200. RBM are trained with Contrastive
Divergence. For each value of x, 10 experiments are conducted with random vectors {ξ1,ξ2}
with a correlation x. Shaded areas depict the standard deviation. (a) Initial correlation y0.
Due to the initialization of the weight matrix, the initial correlation is equal to 1− 2cos−1(x)

π
and does not depend on α. (b) Correlation yt after 40 steps. During these first time
steps, ∆+ = ∆− = 0. (c) Evolution of 1

NLL through time. The results are averaged over
all the correlation x. The dynamics reaches quickly a good solution. The convergence

to the optimal solution is therefore very slow. (d) Evolution of
( ∑
µ>K

σ2
µ

)(
M∑
µ=1

σ2
µ

)−1

through time. The M singular values σµ are ranking in descending order: K singular
values dominate.

We train several RBM with Contrastive Divergence on ξ1 and ξ2. After the training,
two singular values dominate the SVD decomposition of the weight matrix (Fig. C.1(d)).
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The first left eigenvector is aligned with ξ1 + ξ2 and the second one with ξ1− ξ2. By
writing the weight matrix in the basis {ξ1,ξ2}, the two first singular values are equal. We
observe different phases during the training. First, the initial correlation y0 is fixed by
initializing the weight matrix and the correlation x (Fig. C.1(a)). Then, during the first
steps of the training, yt is increasing and independent of α (Fig. C.1(b)). Then, yt depend
on α (Fig. 4.5(c)). For finite time steps, yt never reaches its optimal value but reaches a
good value in terms of log-likelihood (Fig. C.1(c)).

3.3. Computation of the characteristic time scales
In this section, we derive the expression for the different time scales τ1, τ2 and τswap.

C.3.1 Computation of τ1 and τ2

In this part, we compute the characteristic times τ1 and τ2 for the bottom and the
top RBM. τ1 is the typical time scale between a transition between two modes ξ1

1 and
ξ2

1 with the AGS for the bottom RBM. τ2 is the typical time scale between a transition
between two modes ξ̂1

1 and ξ̂2
1 with the AGS for the top RBM. Here, we compute τ1. τ2 has

the same form, but one needs to change M1←N , M2←M1 and w2← w1. As explained
in Section 4.5.2, configurations aligned with one of the patterns have the lowest energy,
and the second-lowest energy critical points of the landscape correspond to configurations
aligned with three different patterns. Therefore

log(τ1) =NB(α1w1,K) =N(F3−F1), (C.9)

where Fr is defined in equation (4.21). This result is valid as long as the symmetric
spurious patterns aligned with r = 3 patterns are saddle points of the energy landscape,
which is the case in our numerical experiments.

F3−F1 can be bounded by

F3−F1 ≤
(

logcosh(αw)− 1
4 logcosh(3

2αw)− 3
4 logcosh(1

2αw)
)
.

In numerical experiments, the number of different optimal paths has to take into account
in the barrier. This term decreases the barrier by a constant −(K−2) log(2).

C.3.2 Computation of τswap
In this part, we compute the characteristic time τswap between two replica exchanges

between configurations vt2 sampled by the bottom RBM and ht1 sampled by the top RBM.
With AGS, the bottom RBM generates vt1 and ht1. The top RBM generates vt2 and ht2.

The two chains are coupled with replica exchanges between ht1 and vt2 with an acceptance
ratio A1(ht1,vt2) (Eq. (1.18)).

As P h1 (ξ̂k1) is very peaked around the ξ̂k1 ’s, ht1 is equal to one of the ξ̂k1 ’s. It means, in
order to have a swap, vt2 must be equal to one of the ξ̂k1 ’s. Therefore, the mean value of

acceptance ratio is equal to 〈A1(ht1,vt2)〉{ht1,vt2} =
K∑
k=1

P v2 (ξ̂k1). We do not take into account
the energy term due to the hidden fields. This term is small compared to M1 and can
be neglect in this computation. As Ev

2 (ξ̂k1) = −M2 log(2cosh(w2)), as K �M1, for a
configuration hd1 at distance d of ξ̂k1 , we have Ev

2 (h1) =−M2 log
(
2cosh((1− 2d

M1
)w2)

)
(we

can neglect the effects of the others patterns which scale as w2

√
2d(K−1)
M1

in the hyperbolic
cosine). We get:
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P v2 (ξ̂k1)
M1

2∑
d=0

(M1
d

)
P v2 (hd1)

'
w2�1

(1 + exp(−2α2w2))−M1 . (C.10)

Thus, P v2 (ξ̂k1) = 1
K (1 + exp(−2α2w2))−M1 and we get that the mean acceptance ratio

is equal to 〈A1(ht1,vt2)〉{ht1,vt2} = (1 + exp(−2α2w2))−M1 . Therefore, we can time define the
time scale

τswap = 1
〈A1(ht1,vt2)〉{ht1,vt2}

= exp(M1 log(1 + exp(−2α2w2))) . (C.11)

C.3.3 Optimal α2w2

As τswap is an increasing function of w2α2 and τ2 is an decreasing function of w2α2, the
minimum of max(τswap, τ2) is reached when τswap = τ2. If the bound Eq. (C.10) is tight

log(1 + exp(−2α2w2)) = 1
4

(
log(cosh(3

2α2w2)) + 3log(cosh(1
2α2w2))

)
. (C.12)

Numerically, we find α2w2 ' 0.771064.

C.3.4 Numerical estimations of the characteristic time scales
We estimate τ1 by sampling {vt1,ht1} with AGS. τ1 is the mean time spent by vt1 in a

given cluster Ck before going to another. τ2 is estimated similarly with {vt2,ht2}.
We estimate τswap by computing the mean time between two replica exchanges with

the Deep Tempering algorithm.
We estimate τDT by sampling configurations {vt1,ht1,vt2,ht2} with Deep Tempering

algorithm. τDT is the mean time spent by vt1 in a given cluster Ck before going to another.
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4.1. Comparison between log-fitness and MIC
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(a) Single mutant, ρ = 0.98
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(b) Double mutant, ρ = 0.76

Figure D.1: Comparison between experimental log-fitness and MIC. (a) For single mutants.
(b) For double mutants.
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4.2. Comparison between two biological semi-replicates

Figure D.2: Comparison between two biological semi-replicates. (a) Single mutants’
log-fitness. (b) Double mutants’ log-fitness. (c) ∆∆G. (d) Epistasis.

4.3. Inference of the two-state model
We denote as wi(a) the relative fitness of the mutant that as the amino acid a at site i

of the α-helix. We denote as wi,j(a,b) the relative fitness of the mutant that as the amino
acid a at site i of the alpha-helix and amino acid b at site j.

The two-state model reads:

log(ŵai ) = log
(

1 + exp
(∆G0
RT

))
− log

(
1 + exp

(∆G0 + ∆∆Gai
RT

))
, (D.1)

log(ŵa,bi,j ) = log
(

1 + exp
(∆G0
RT

))
− log

(
1 + exp

(
∆G0 + ∆∆Gai + ∆∆Gbj

RT

))
.(D.2)

To fit the parameters, we had to assign every single mutant a free entropy value, ∆∆G,
and a value ∆G0 characterizing the wild-type. Though measures of ∆G0 have been done
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in vitro, the cellular environment in which the mutants are evaluated could substantially
affect the value. We, therefore, have also estimated ∆G0. Ideally, estimated log-fitness is
directly connected to ∆∆G for the single mutants, but is limited, as explained in the main
text.

For the inference of the ∆∆G we keep only the single mutant with a log-fitness greater
than −0.6. For each pair of previously chosen single mutants, the associated double mutant
is kept if it exists. Its relative log-fitness is thresholded at −0.6. The two-state model is
itself thresholded at −0.6 during the inference.

The model is over-constrained. By defining the residue associated with a given mutation

ri = log(w)− log(ŵ)
σlog(w)

, (D.3)

with the following cost function

C(∆G0,{∆∆Gai }) = 1
2
∑
i

αiT
2Φ( r

2
i

T 2 ). (D.4)

αi is a statistical weight. For the double mutants, αi = 2. For the single mutants, αi is
equal to the number of double mutants with this single mutation. The weighting gives an
equivalent weight for the single mutants and the double mutants.

We use Φ(x) = arctan(x) in order to penalize the strong outliers. T is a threshold that
controls the importance of the regularization of the outliers and is chosen such that 30% of
the mutations are considered as outliers. The results are consistent for a wide range of
thresholds T .

4.4. Estimation of the error part of the two-state model prediction
Using the whole data set, we could estimate an error to the model using a maximum

likelihood framework. ∆∆G values were fixed. We estimated that the deviation of the
observed log-fitness to the one predicted with the two-state model resulted from an overall
random deviation from the model. This deviation to the model could be either the same
for all pairs of mutations or could be different for residues in contact or not, i.e. a two
model parameters. The two errors model was always much better than the single error,
and always suggested a higher deviation to the model for residues in contact compared to
distant residues.

For the single error model:

σm =
√√√√N−1

∑
i,j,a,b

(
log(wi,j(a,b))− log(ŵa,bi,j )

)2
, (D.5)

where N−1 is the number of terms in the previous sum.
For the double error model:

σmd =
√√√√N−1

d

∑
i,j,a,b

(1− δi,j)
(
log(wi,j(a,b))− log(ŵa,bi,j )

)2
, (D.6)

σmn =
√√√√N−1

n

∑
i,j,a,b

δi,j
(
log(wi,j(a,b))− log(ŵa,bi,j )

)2
, (D.7)
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with δi,j if the chains of residues carrying mutation i and j are less than 6Å away and 0
otherwise. Nd = ∑

i,j,a,b
(1− δi,j) and Nn = ∑

i,j,a,b
δi,j , (N =Nd+Nn).

We used also a model with a specific error between two given sites:

σi,j =
√√√√N−1

i,j

∑
a,b

(
log(wi,j(a,b))− log(ŵa,bi,j )

)2
, (D.8)

where Ni,j is the number of double mutations between the sites i and j.

4.5. Results for independent model

Figure D.3: Independent model’ energies versus experimental quantities. Blue points
are common mutations in panel (a) and (c) (respectively (b) and (d)), and correspond
to the mutations we used to estimate ∆∆G. Orange points are the other experimental
mutations. (a) Experimental log-fitness against −E(amutai )+E(aWT ) for single mutants.
(b) Experimental log-fitness against −E(a

muta,bi,j
)+E(aWT ) for double mutants. (c) ∆∆Gai

against −E(amutai ) +E(aWT ). (d) ∆∆Gai + ∆∆Gbj against −E(a
muta,bi,j

) +E(aWT ).
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4.6. Results for RBM

Figure D.4: RBM’ energies versus experimental quantities. Blue points are common
mutations in panel (a) and (c) (respectively (b) and (d)), and correspond to the mutations
we used to estimate ∆∆G. Orange points are the other experimental mutations. (a)
Experimental log-fitness against −E(amutai ) +E(aWT ) for single mutants. (b) Experi-
mental log-fitness against −E(a

muta,bi,j
)+E(aWT ) for double mutants. (c) ∆∆Gai against

−E(amutai ) +E(aWT ). (d) ∆∆Gai + ∆∆Gbj against −E(a
muta,bi,j

) +E(aWT ).
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4.7. Comparison between MIC and Potts’ energies

Figure D.5: Comparison between MIC and Potts’ energies. (a) For single mutants. (b) For
double mutants.

4.8. Computation of the p-value
If we choose as a null hypothesis that there is no relationship between pairs of sites with

the largest idiosyncratic epistasis and pairs of sites with the largest Frobenius norm, the
probability that among L pairs of sites with the largest idiosyncratic epistasis, c are also
present in the L pairs of sites with the largest Frobenius norm follows an hypergeometric
distribution with parameters N , L and c, where N is the total number of possible pairs.
Therefore, the p-value reads

p=
L∑
k=c

(L
k

)(N−k
L−k

)(N
L

) (D.9)
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5.1. Comparison between log-fitness at different concentrations and MIC

Figure E.1: Comparison between log-fitness at different concentrations and MIC. (a) For
single mutants. (b) For double mutants.
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5.2. Predicted log-fitness for several concentrations of amoxicillin

Figure E.2: Comparison of predicted log-fitness at concentrations 2, 4, 5, 6, 8, and 10 g.L−1 of
amoxicillin.
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5.3. Distribution of epistasis for several concentrations of amoxicillin
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Figure E.3: Distribution of epistasis for 2, 4, 5, 6, 8, and 10 g.L−1 of amoxicillin.
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5.4. Predicted epistasis for several concentrations of amoxicillin

Figure E.4: Comparison of predicted epistasis at concentrations 2, 4, 5, 6, 8, and 10 g.L−1 of
amoxicillin.



Bibliography

1. Abkevich, V. I., Gutin, A. M., and Shakhnovich, E. I. (1994). Specific nucleus as the
transition state for protein folding: Evidence from the lattice model. Biochemistry,
33(33):10026–10036.

2. Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for
boltzmann machines. Cognitive Science, 9(1):147–169.

3. Adzhubei, I., Jordan, D. M., and Sunyaev, S. R. (2013). Predicting Functional Effect of
Human Missense Mutations Using PolyPhen-2. Current protocols in human genetics.

4. Agliari, E., Barra, A., Bartolucci, S., Galluzzi, A., Guerra, F., and Moauro, F. (2013).
Parallel processing in immune networks. Physical Review E, 87(4):042701.

5. Agliari, E., Barra, A., Galluzzi, A., Guerra, F., and Moauro, F. (2012). Multitasking
Associative Networks. Physical Review Letters, 109(26):268101.

6. Alberici, D., Barra, A., Contucci, P., and Mingione, E. (2020). Annealing and Replica-
Symmetry in Deep Boltzmann Machines. Journal of Statistical Physics, 180(1):665–
677.

7. Ambler, R. P., Baddiley, J., and Abraham, E. P. (1980). The structure of β-lactamases.
Philosophical Transactions of the Royal Society of London. B, Biological Sciences,
289(1036):321–331.

8. Ambler, R. P., Coulson, A. F., Frère, J. M., Ghuysen, J. M., Joris, B., Forsman, M.,
Levesque, R. C., Tiraby, G., and Waley, S. G. (1991). A standard numbering scheme
for the class A beta-lactamases. Biochemical Journal, 276(Pt 1):269–270.

9. Amit, D. J. (1989). Modeling Brain Function: The World of Attractor Neural Networks.
Cambridge University Press, Cambridge.

10. Amit, D. J., Gutfreund, H., and Sompolinsky, H. (1985a). Spin-glass models of neural
networks. Physical Review A, 32(2):1007–1018.

11. Amit, D. J., Gutfreund, H., and Sompolinsky, H. (1985b). Storing Infinite Numbers
of Patterns in a Spin-Glass Model of Neural Networks. Physical Review Letters,
55(14):1530–1533.

12. Anderson, P. W. (1972). More Is Different. Science, 177(4047):393–396.

13. Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science
(New York, N.Y.), 181(4096):223–230.

14. Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein Generative Adversarial
Networks. ICML’17: Proceedings of the 34th International Conference on Machine
Learning.

http://dx.doi.org/10.1021/bi00199a029
http://dx.doi.org/10.1021/bi00199a029
http://dx.doi.org/10.1016/S0364-0213(85)80012-4
http://dx.doi.org/10.1016/S0364-0213(85)80012-4
http://dx.doi.org/10.1002/0471142905.hg0720s76
http://dx.doi.org/10.1002/0471142905.hg0720s76
http://dx.doi.org/10.1103/PhysRevE.87.042701
http://dx.doi.org/10.1103/PhysRevLett.109.268101
http://dx.doi.org/10.1103/PhysRevLett.109.268101
http://dx.doi.org/10.1007/s10955-020-02495-2
http://dx.doi.org/10.1007/s10955-020-02495-2
http://dx.doi.org/10.1098/rstb.1980.0049
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1151176/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1151176/
https://www.cambridge.org/core/books/modeling-brain-function/2EA95FDABF616D187220A6B9596091B7
http://dx.doi.org/10.1103/PhysRevA.32.1007
http://dx.doi.org/10.1103/PhysRevA.32.1007
http://dx.doi.org/10.1103/PhysRevLett.55.1530
http://dx.doi.org/10.1103/PhysRevLett.55.1530
http://dx.doi.org/10.1126/science.177.4047.393
http://dx.doi.org/10.1126/science.181.4096.223
http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1701.07875


166 Bibliography

15. Bank, C., Hietpas, R. T., Jensen, J. D., and Bolon, D. N. (2015). A Systematic Survey
of an Intragenic Epistatic Landscape. Molecular Biology and Evolution, 32(1):229–238.

16. Bank, C., Matuszewski, S., Hietpas, R. T., and Jensen, J. D. (2016). On the
(un)predictability of a large intragenic fitness landscape. Proceedings of the Na-
tional Academy of Sciences, 113(49):14085–14090.

17. Barlow, H. B. (1972). Single Units and Sensation: A Neuron Doctrine for Perceptual
Psychology? Perception, 1(4):371–394.

18. Barra, A., Bernacchia, A., Santucci, E., and Contucci, P. (2012). On the equivalence of
Hopfield networks and Boltzmann Machines. Neural Networks, 34:1–9.

19. Barra, A., Genovese, G., Sollich, P., and Tantari, D. (2018). Phase diagram of restricted
Boltzmann machines and generalized Hopfield networks with arbitrary priors. Physical
Review E, 97(2):022310.

20. Barton, J. P., Cocco, S., De Leonardis, E., and Monasson, R. (2014). Large pseudocounts
and L2-norm penalties are necessary for the mean-field inference of Ising and Potts
models. Physical Review E, 90(1):012132.

21. Barton, J. P., De Leonardis, E., Coucke, A., and Cocco, S. (2016). ACE: Adaptive
cluster expansion for maximum entropy graphical model inference. Bioinformatics
(Oxford, England), 32(20):3089–3097.

22. Beck, M., Schmidt, A., Malmstroem, J., Claassen, M., Ori, A., Szymborska, A., Herzog,
F., Rinner, O., Ellenberg, J., and Aebersold, R. (2011). The quantitative proteome of
a human cell line. Molecular Systems Biology, 7:549.

23. Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy Layer-Wise
Training of Deep Networks. In Schölkopf, B., Platt, J., and Hoffman, T., editors,
Advances in Neural Information Processing Systems, volume 19. MIT Press.

24. Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. (2013). Better Mixing via Deep
Representations. In International Conference on Machine Learning, pages 552–560.
PMLR.

25. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H.,
Shindyalov, I. N., and Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids
Research, 28(1):235–242.

26. Bershtein, S., Goldin, K., and Tawfik, D. S. (2008). Intense neutral drifts yield robust
and evolvable consensus proteins. Journal of Molecular Biology, 379(5):1029–1044.

27. Bitbol, A.-F., Dwyer, R. S., Colwell, L. J., and Wingreen, N. S. (2016). Inferring
interaction partners from protein sequences. Proceedings of the National Academy of
Sciences, 113(43):12180–12185.

28. Blanquart, F., Achaz, G., Bataillon, T., and Tenaillon, O. (2014). Properties of selected
mutations and genotypic landscapes under Fisher’s geometric model. Evolution,
68(12):3537–3554.

29. Bloom, J. D., Silberg, J. J., Wilke, C. O., Drummond, D. A., Adami, C., and Arnold,
F. H. (2005). Thermodynamic prediction of protein neutrality. Proceedings of the
National Academy of Sciences of the United States of America, 102(3):606–611.

http://dx.doi.org/10.1093/molbev/msu301
http://dx.doi.org/10.1093/molbev/msu301
http://dx.doi.org/10.1073/pnas.1612676113
http://dx.doi.org/10.1073/pnas.1612676113
http://dx.doi.org/10.1068/p010371
http://dx.doi.org/10.1068/p010371
http://dx.doi.org/10.1016/j.neunet.2012.06.003
http://dx.doi.org/10.1016/j.neunet.2012.06.003
http://dx.doi.org/10.1103/PhysRevE.97.022310
http://dx.doi.org/10.1103/PhysRevE.97.022310
http://dx.doi.org/10.1103/PhysRevE.90.012132
http://dx.doi.org/10.1103/PhysRevE.90.012132
http://dx.doi.org/10.1103/PhysRevE.90.012132
http://dx.doi.org/10.1093/bioinformatics/btw328
http://dx.doi.org/10.1093/bioinformatics/btw328
http://dx.doi.org/10.1038/msb.2011.82
http://dx.doi.org/10.1038/msb.2011.82
https://proceedings.neurips.cc/paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf
https://proceedings.neurips.cc/paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf
http://proceedings.mlr.press/v28/bengio13.html
http://proceedings.mlr.press/v28/bengio13.html
http://dx.doi.org/10.1093/nar/28.1.235
http://dx.doi.org/10.1016/j.jmb.2008.04.024
http://dx.doi.org/10.1016/j.jmb.2008.04.024
http://dx.doi.org/10.1073/pnas.1606762113
http://dx.doi.org/10.1073/pnas.1606762113
http://dx.doi.org/10.1111/evo.12545
http://dx.doi.org/10.1111/evo.12545
http://dx.doi.org/10.1073/pnas.0406744102


Bibliography 167

30. Bottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent.
In Lechevallier, Y. and Saporta, G., editors, Proceedings of COMPSTAT’2010, pages
177–186.

31. Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P. (2012). Modeling tempo-
ral dependencies in high-dimensional sequences: Application to polyphonic music
generation and transcription. In Proceedings of the 29th International Coference on
International Conference on Machine Learning, ICML’12, pages 1881–1888, Madison,
WI, USA. Omnipress.

32. Bowers, J. S. (2011). What is a grandmother cell? And how would you know if you
found one? Connection Science, 23(2):91–95.

33. Box, G. E. P. (1976). Science and Statistics. Journal of the American Statistical
Association, 71(356):791–799.

34. Bravi, B., Balachandran, V. P., Greenbaum, B. D., Walczak, A. M., Mora, T., Monasson,
R., and Cocco, S. (2021a). Probing T-cell response by sequence-based probabilistic
modeling. PLOS Computational Biology, 17(9):e1009297.

35. Bravi, B., Tubiana, J., Cocco, S., Monasson, R., Mora, T., and Walczak, A. M.
(2021b). RBM-MHC: A Semi-Supervised Machine-Learning Method for Sample-
Specific Prediction of Antigen Presentation by HLA-I Alleles. Cell Systems, 12(2):195–
202.e9.

36. Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.

37. Brocchieri, L. and Karlin, S. (2005). Protein length in eukaryotic and prokaryotic
proteomes. Nucleic Acids Research, 33(10):3390–3400.

38. Brunetti, R., Parisi, G., and Ritort, F. (1992a). Asymmetric Little spin-glass model.
Physical Review B, 46(9):5339–5350.

39. Brunetti, R., Parisi, G., and Ritort, F. (1992b). Study of the asymmetric Little model.
Physica A: Statistical Mechanics and its Applications, 185(1):247–253.

40. Bush, K. and Jacoby, G. A. (2010). Updated functional classification of beta-lactamases.
Antimicrobial Agents and Chemotherapy, 54(3):969–976.

41. Bush, K., Jacoby, G. A., and Medeiros, A. A. (1995). A functional classification scheme
for beta-lactamases and its correlation with molecular structure. Antimicrobial Agents
and Chemotherapy, 39(6):1211–1233.

42. Cadet, F., Fontaine, N., Li, G., Sanchis, J., Ng Fuk Chong, M., Pandjaitan, R., Vetrivel,
I., Offmann, B., and Reetz, M. T. (2018). A machine learning approach for reliable
prediction of amino acid interactions and its application in the directed evolution of
enantioselective enzymes. Scientific Reports, 8.

43. Chen, K. and Arnold, F. H. (1993). Tuning the activity of an enzyme for unusual
environments: Sequential random mutagenesis of subtilisin E for catalysis in dimethyl-
formamide. Proceedings of the National Academy of Sciences of the United States of
America, 90(12):5618–5622.

http://dx.doi.org/10.1007/978-3-7908-2604-3_16
https://arxiv.org/abs/1206.6392
https://arxiv.org/abs/1206.6392
https://arxiv.org/abs/1206.6392
http://dx.doi.org/10.1080/09540091.2011.568608
http://dx.doi.org/10.1080/09540091.2011.568608
http://dx.doi.org/10.1080/01621459.1976.10480949
http://dx.doi.org/10.1371/journal.pcbi.1009297
http://dx.doi.org/10.1371/journal.pcbi.1009297
http://dx.doi.org/10.1016/j.cels.2020.11.005
http://dx.doi.org/10.1016/j.cels.2020.11.005
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1093/nar/gki615
http://dx.doi.org/10.1093/nar/gki615
http://dx.doi.org/10.1103/PhysRevB.46.5339
http://dx.doi.org/10.1016/0378-4371(92)90463-Z
http://dx.doi.org/10.1128/AAC.01009-09
http://dx.doi.org/10.1128/AAC.39.6.1211
http://dx.doi.org/10.1128/AAC.39.6.1211
http://dx.doi.org/10.1038/s41598-018-35033-y
http://dx.doi.org/10.1038/s41598-018-35033-y
http://dx.doi.org/10.1038/s41598-018-35033-y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC46772/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC46772/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC46772/


168 Bibliography

44. Cho, K., Raiko, T., and Ilin, A. (2010). Parallel tempering is efficient for learning
restricted Boltzmann machines. In The 2010 International Joint Conference on Neural
Networks (IJCNN), pages 1–8.

45. Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segrè, D., and Marx, C. J. (2011). Diminishing
returns epistasis among beneficial mutations decelerates adaptation. Science (New
York, N.Y.), 332(6034):1190–1192.

46. Churchland, P. S. (1986). Neurophilosophy: Toward A Unified Science of the Mind-Brain.
MIT Press.

47. Coates, A., Ng, A., and Lee, H. (2011). An Analysis of Single-Layer Networks
in Unsupervised Feature Learning. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, pages 215–223. JMLR Workshop
and Conference Proceedings.

48. Cocco, S., Feinauer, C., Figliuzzi, M., Monasson, R., and Weigt, M. (2018). Inverse
Statistical Physics of Protein Sequences: A Key Issues Review. Reports on Progress
in Physics, 81(3):032601.

49. Cocco, S. and Monasson, R. (2011). Adaptive Cluster Expansion for Inferring Boltzmann
Machines with Noisy Data. Physical Review Letters, 106(9):090601.

50. Cocco, S. and Monasson, R. (2012). Adaptive cluster expansion for the inverse Ising
problem: Convergence, algorithm and tests. Journal of Statistical Physics, 147(2):252–
314.

51. Conchuir, S. O., Barlow, K. A., Pache, R. A., Ollikainen, N., Kundert, K., O’Meara,
M. J., Smith, C. A., and Kortemme, T. (2015). A Web Resource for Standardized
Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling
and Design. PLOS ONE, 10(9):e0130433.

52. Courville, A., Bergstra, J., and Bengio, Y. (2011). Unsupervised models of images
by spike-and-slab RBMs. In Proceedings of the 28th International Conference on
International Conference on Machine Learning, ICML’11, pages 1145–1152.

53. Dahl, G. E., Ranzato, M., Mohamed, A., and Hinton, G. (2010). Phone recognition
with the mean-covariance restricted Boltzmann Machine. In Proceedings of the 23rd
International Conference on Neural Information Processing Systems - Volume 1,
NIPS’10, pages 469–477.

54. Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2012). Context-Dependent Pre-Trained
Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Transactions
on Audio, Speech, and Language Processing, 20(1):30–42.

55. Danev, R., Yanagisawa, H., and Kikkawa, M. (2019). Cryo-Electron Microscopy
Methodology: Current Aspects and Future Directions. Trends in Biochemical Sciences,
44(10):837–848.

56. de Visser, J. A. G. M. and Elena, S. F. (2007). The evolution of sex: Empirical insights
into the roles of epistasis and drift. Nature Reviews. Genetics, 8(2):139–149.

57. de Visser, J. A. G. M. and Krug, J. (2014). Empirical fitness landscapes and the
predictability of evolution. Nature Reviews. Genetics, 15(7):480–490.

http://dx.doi.org/10.1109/IJCNN.2010.5596837
http://dx.doi.org/10.1109/IJCNN.2010.5596837
http://dx.doi.org/10.1126/science.1203799
http://dx.doi.org/10.1126/science.1203799
http://proceedings.mlr.press/v15/coates11a.html
http://proceedings.mlr.press/v15/coates11a.html
http://dx.doi.org/10.1088/1361-6633/aa9965
http://dx.doi.org/10.1088/1361-6633/aa9965
http://dx.doi.org/10.1103/PhysRevLett.106.090601
http://dx.doi.org/10.1103/PhysRevLett.106.090601
http://dx.doi.org/10.1007/s10955-012-0463-4
http://dx.doi.org/10.1007/s10955-012-0463-4
http://dx.doi.org/10.1371/journal.pone.0130433
http://dx.doi.org/10.1371/journal.pone.0130433
http://dx.doi.org/10.1371/journal.pone.0130433
http://www.icml-2011.org/papers/591_icmlpaper.pdf
http://www.icml-2011.org/papers/591_icmlpaper.pdf
http://papers.nips.cc/paper/4169-phone-recognition-with-the-mean-covariance-restricted-boltzmann-machine.pdf
http://papers.nips.cc/paper/4169-phone-recognition-with-the-mean-covariance-restricted-boltzmann-machine.pdf
http://dx.doi.org/10.1109/TASL.2011.2134090
http://dx.doi.org/10.1109/TASL.2011.2134090
http://dx.doi.org/10.1016/j.tibs.2019.04.008
http://dx.doi.org/10.1016/j.tibs.2019.04.008
http://dx.doi.org/10.1038/nrg1985
http://dx.doi.org/10.1038/nrg1985
http://dx.doi.org/10.1038/nrg3744
http://dx.doi.org/10.1038/nrg3744


Bibliography 169

58. Decelle, A., Fissore, G., and Furtlehner, C. (2017). Spectral dynamics of learning in
restricted Boltzmann machines. EPL (Europhysics Letters), 119(6):60001.

59. Decelle, A., Fissore, G., and Furtlehner, C. (2018). Thermodynamics of Restricted
Boltzmann Machines and Related Learning Dynamics. Journal of Statistical Physics,
172(6):1576–1608.

60. Decelle, A. and Furtlehner, C. (2020a). Gaussian-spherical restricted Boltzmann
machines. Journal of Physics A: Mathematical and Theoretical, 53(18):184002.

61. Decelle, A. and Furtlehner, C. (2020b). Restricted Boltzmann Machine, recent advances
and mean-field theory. Chinese Physics B.

62. Decelle, A., Furtlehner, C., and Seoane, B. (2021). Equilibrium and non-Equilibrium
regimes in the learning of Restricted Boltzmann Machines. arXiv:2105.13889 [cond-
mat].

63. Decelle, A., Hwang, S., Rocchi, J., and Tantari, D. (2019). Inverse problems for
structured datasets using parallel TAP equations and RBM. arXiv:1906.11988 [cond-
mat].

64. Dennis, J. E. and Moré, J. J. (1977). Quasi-Newton Methods, Motivation and Theory.
SIAM Review, 19(1):46–89.

65. DePristo, M. A., Weinreich, D. M., and Hartl, D. L. (2005). Missense meanderings in
sequence space: A biophysical view of protein evolution. Nature Reviews Genetics,
6(9):678–687.

66. Desjardins, G. and Bengio, Y. (2008). Empirical Evaluation of Convolutional RBMs
for Vision. Technical Report 1327, Département d’Informatique et de Recherche
Opérationnelle, Université de Montréal, page 13.

67. Desjardins, G., Courville, A., Bengio, Y., Vincent, P., and Delalleau, O. (2010a).
Parallel tempering for training of restricted Boltzmann machines. In Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics, pages
145–152. MIT Press Cambridge, MA.

68. Desjardins, G., Courville, A., Bengio, Y., Vincent, P., and Delalleau, O. (2010b).
Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann Machines.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, pages 145–152. JMLR Workshop and Conference Proceedings.

69. Desjardins, G., Luo, H., Courville, A., and Bengio, Y. (2014). Deep Tempering.
arXiv:1410.0123 [cs, stat].

70. Deudon, M. (2020). On food, bias and seasons: A recipe for sustainability. HAL
Archives Ouvertes.

71. Dill, K. A., Ozkan, S. B., Shell, M. S., and Weikl, T. R. (2008). The Protein Folding
Problem. Annual review of biophysics, 37:289–316.

72. Dixit, V., Selvarajan, R., Alam, M. A., Humble, T. S., and Kais, S. (2021). Training
Restricted Boltzmann Machines With a D-Wave Quantum Annealer. Frontiers in
Physics, 9:374.

http://dx.doi.org/10.1209/0295-5075/119/60001
http://dx.doi.org/10.1209/0295-5075/119/60001
http://dx.doi.org/10.1007/s10955-018-2105-y
http://dx.doi.org/10.1007/s10955-018-2105-y
http://dx.doi.org/10.1088/1751-8121/ab79f3
http://dx.doi.org/10.1088/1751-8121/ab79f3
http://dx.doi.org/10.1088/1674-1056/abd160
http://dx.doi.org/10.1088/1674-1056/abd160
http://arxiv.org/abs/2105.13889
http://arxiv.org/abs/2105.13889
http://arxiv.org/abs/1906.11988
http://arxiv.org/abs/1906.11988
https://www.jstor.org/stable/2029325
http://dx.doi.org/10.1038/nrg1672
http://dx.doi.org/10.1038/nrg1672
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj8kdT5-qbyAhUSLBoKHUm6DS0QFnoECAUQAQ&url=http%3A%2F%2Fwww.iro.umontreal.ca%2F~lisa%2Fpublications2%2Findex.php%2Fattachments%2Fsingle%2F194&usg=AOvVaw2WLx5OdtjPPCZAznupxHy-
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj8kdT5-qbyAhUSLBoKHUm6DS0QFnoECAUQAQ&url=http%3A%2F%2Fwww.iro.umontreal.ca%2F~lisa%2Fpublications2%2Findex.php%2Fattachments%2Fsingle%2F194&usg=AOvVaw2WLx5OdtjPPCZAznupxHy-
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.207.2396
http://proceedings.mlr.press/v9/desjardins10a.html
http://arxiv.org/abs/1410.0123
https://hal.archives-ouvertes.fr/hal-02532348
http://dx.doi.org/10.1146/annurev.biophys.37.092707.153558
http://dx.doi.org/10.1146/annurev.biophys.37.092707.153558
http://dx.doi.org/10.3389/fphy.2021.589626
http://dx.doi.org/10.3389/fphy.2021.589626


170 Bibliography

73. Doucet, N., Savard, P.-Y., Pelletier, J. N., and Gagné, S. M. (2007). NMR investigation
of Tyr105 mutants in TEM-1 beta-lactamase: Dynamics are correlated with function.
The Journal of Biological Chemistry, 282(29):21448–21459.

74. Dunn, S., Wahl, L., and Gloor, G. (2008). Mutual information without the influence of
phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics,
24(3):333–340.

75. Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambrigde University
Press. Cambrigde University Press.

76. Durrant, J. D. and McCammon, J. A. (2011). Molecular dynamics simulations and
drug discovery. BMC Biology, 9:71.

77. Eccles, J. C. (1964). The Physiology of Synapses. Springer-Verlag, Berlin Heidelberg.

78. Eddy, S. R. (1998). Profile hidden Markov models. Bioinformatics, 14(9):755–763.

79. Egorov, A., Rubtsova, M., Grigorenko, V., Uporov, I., and Veselovsky, A. (2019). The
Role of the Ω-Loop in Regulation of the Catalytic Activity of TEM-Type β-Lactamases.
Biomolecules, 9(12):854.

80. Ekeberg, M., Hartonen, T., and Aurell, E. (2014). Fast pseudolikelihood maximization
for direct-coupling analysis of protein structure from many homologous amino-acid
sequences. Journal of Computational Physics, 276:341–356.

81. Ekeberg, M., Lövkvist, C., Lan, Y., Weigt, M., and Aurell, E. (2013). Improved contact
prediction in proteins: Using pseudolikelihoods to infer Potts models. Physical Review
E, 87(1):012707.

82. Ellis, R. (1985). Entropy, Large Deviations, and Statistical Mechanics. Classics in
Mathematics. Springer-Verlag.

83. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S.
(2010). Why Does Unsupervised Pre-training Help Deep Learning? Journal of
Machine Learning Research, 11(19):625–660.

84. Evans, R., O’Neill, M., Pritzel, A., Antropova, N., Senior, A. W., Green, T., Žídek,
A., Bates, R., Blackwell, S., Yim, J., Ronneberger, O., Bodenstein, S., Zielinski, M.,
Bridgland, A., Potapenko, A., Cowie, A., Tunyasuvunakool, K., Jain, R., Clancy,
E., Kohli, P., Jumper, J., and Hassabis, D. (2021). Protein complex prediction with
AlphaFold-Multimer.

85. Figliuzzi, M., Jacquier, H., Schug, A., Tenaillon, O., and Weigt, M. (2016). Coevolution-
ary Landscape Inference and the Context-Dependence of Mutations in Beta-Lactamase
TEM-1. Molecular Biology and Evolution, 33(1):268–280.

86. Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R.,
Heger, A., Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E. L. L., Tate, J.,
and Punta, M. (2014). Pfam: The protein families database. Nucleic Acids Research,
42:D222–D230.

87. Finn, R. D., Clements, J., and Eddy, S. R. (2011). HMMER web server: Interactive
sequence similarity searching. Nucleic Acids Research, 39(Web Server issue):W29–37.

http://dx.doi.org/10.1074/jbc.M609777200
http://dx.doi.org/10.1074/jbc.M609777200
http://dx.doi.org/10.1093/bioinformatics/btm604
http://dx.doi.org/10.1093/bioinformatics/btm604
http://dx.doi.org/10.1186/1741-7007-9-71
http://dx.doi.org/10.1186/1741-7007-9-71
https://www.springer.com/gp/book/9783642649424
http://dx.doi.org/10.1093/bioinformatics/14.9.755
http://dx.doi.org/10.3390/biom9120854
http://dx.doi.org/10.3390/biom9120854
http://dx.doi.org/10.1016/j.jcp.2014.07.024
http://dx.doi.org/10.1016/j.jcp.2014.07.024
http://dx.doi.org/10.1016/j.jcp.2014.07.024
http://dx.doi.org/10.1103/PhysRevE.87.012707
http://dx.doi.org/10.1103/PhysRevE.87.012707
https://www.springer.com/gp/book/9783540290599
http://jmlr.org/papers/v11/erhan10a.html
http://dx.doi.org/10.1101/2021.10.04.463034
http://dx.doi.org/10.1101/2021.10.04.463034
http://dx.doi.org/10.1093/molbev/msv211
http://dx.doi.org/10.1093/molbev/msv211
http://dx.doi.org/10.1093/molbev/msv211
http://dx.doi.org/10.1093/nar/gkt1223
http://dx.doi.org/10.1093/nar/gkr367
http://dx.doi.org/10.1093/nar/gkr367


Bibliography 171

88. Fischer, A. and Igel, C. (2010). Empirical Analysis of the Divergence of Gibbs Sampling
Based Learning Algorithms for Restricted Boltzmann Machines. In Artificial Neural
Networks – ICANN 2010, Lecture Notes in Computer Science, pages 208–217. Springer.

89. Fischer, A. and Igel, C. (2014). Training restricted Boltzmann machines: An introduc-
tion. Pattern Recognition, 47(1):25–39.

90. Fisher, C. K., Smith, A. M., and Walsh, J. R. (2018). Boltzmann Encoded Adversarial
Machines. arXiv:1804.08682 [cs, stat].

91. Fowler, D. M. and Fields, S. (2014). Deep mutational scanning: A new style of protein
science. Nature Methods, 11(8):801–807.

92. Gabrié, M., Tramel, E. W., and Krzakala, F. (2015). Training Restricted Boltzmann
Machines via the Thouless-Anderson-Palmer Free Energy. arXiv:1506.02914 [cond-
mat, stat].

93. Gandhi, J., Antonelli, A. C., Afridi, A., Vatsia, S., Joshi, G., Romanov, V., Murray,
I. V. J., and Khan, S. A. (2019). Protein misfolding and aggregation in neurodegen-
erative diseases: A review of pathogeneses, novel detection strategies, and potential
therapeutics. Reviews in the Neurosciences, 30(4):339–358.

94. Gardner, E. (1987). Maximum Storage Capacity in Neural Networks. Europhysics
Letters (EPL), 4(4):481–485.

95. Gardner, E. (1988). The space of interactions in neural network models. Journal of
Physics A: Mathematical and General, 21(1):257–270.

96. Gardner, E. and Derrida, B. (1988). Optimal storage properties of neural network
models. Journal of Physics A: Mathematical and General, 21(1):271–284.

97. Georges, A. and Yedidia, J. S. (1991). How to expand around mean-field theory
using high-temperature expansions. Journal of Physics A: Mathematical and General,
24(9):2173–2192.

98. Geyer, C. J. (1991). Markov Chain Monte Carlo Maximum Likelihood. In Computing
Science and Statistics: Proceedings of the 23rd Symposium on the Interface. Interface
Foundation of North America.

99. Glauber, R. J. (1963). Time Dependent Statistics of the Ising Model. Journal of
Mathematical Physics, 4(2):294.

100. Göbel, U., Sander, C., Schneider, R., and Valencia, A. (1994). Correlated mutations
and residue contacts in proteins. Proteins, 18(4):309–317.

101. Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Adaptive
Computation and Machine Learning Series. MIT Press, Cambridge, MA, USA.

102. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. (2014). Generative Adversarial Networks.
arXiv:1406.2661 [cs, stat].

103. Gros, P.-A., Le Nagard, H., and Tenaillon, O. (2009). The evolution of epistasis
and its links with genetic robustness, complexity and drift in a phenotypic model of
adaptation. Genetics, 182(1):277–293.

http://dx.doi.org/10.1007/978-3-642-15825-4_26
http://dx.doi.org/10.1007/978-3-642-15825-4_26
http://dx.doi.org/10.1016/j.patcog.2013.05.025
http://dx.doi.org/10.1016/j.patcog.2013.05.025
http://arxiv.org/abs/1804.08682
http://arxiv.org/abs/1804.08682
http://dx.doi.org/10.1038/nmeth.3027
http://dx.doi.org/10.1038/nmeth.3027
http://arxiv.org/abs/1506.02914
http://arxiv.org/abs/1506.02914
http://dx.doi.org/10.1515/revneuro-2016-0035
http://dx.doi.org/10.1515/revneuro-2016-0035
http://dx.doi.org/10.1515/revneuro-2016-0035
http://dx.doi.org/10.1209/0295-5075/4/4/016
http://dx.doi.org/10.1088/0305-4470/21/1/030
http://dx.doi.org/10.1088/0305-4470/21/1/031
http://dx.doi.org/10.1088/0305-4470/21/1/031
http://dx.doi.org/10.1088/0305-4470/24/9/024
http://dx.doi.org/10.1088/0305-4470/24/9/024
http://conservancy.umn.edu/handle/11299/58440
http://dx.doi.org/10.1063/1.1703954
http://dx.doi.org/10.1002/prot.340180402
http://dx.doi.org/10.1002/prot.340180402
https://www.deeplearningbook.org/
http://arxiv.org/abs/1406.2661
http://dx.doi.org/10.1534/genetics.108.099127
http://dx.doi.org/10.1534/genetics.108.099127
http://dx.doi.org/10.1534/genetics.108.099127


172 Bibliography

104. Gross, C. G. (2002). Genealogy of the “Grandmother Cell”. The Neuroscientist,
8(5):512–518.

105. Haber, E. and Anfinsen, C. B. (1962). Side-chain interactions governing the pairing of
half-cystine residues in ribonuclease. The Journal of Biological Chemistry, 237:1839–
1844.

106. Hagen, J. B. (2000). The origins of bioinformatics. Nature Reviews. Genetics,
1(3):231–236.

107. Halabi, N., Rivoire, O., Leibler, S., and Ranganathan, R. (2009). Protein sectors:
Evolutionary units of three-dimensional structure. Cell, 138(4):774–786.

108. Haldane, A., Flynn, W. F., He, P., Vijayan, R. S. K., and Levy, R. M. (2016).
Structural propensities of kinase family proteins from a Potts model of residue co-
variation. Protein Science: A Publication of the Protein Society, 25(8):1378–1384.

109. Hartnett, G. S., Parker, E., and Geist, E. (2018). Replica symmetry breaking in
bipartite spin glasses and neural networks. Physical Review E, 98(2):022116.

110. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, page 13.

111. Hawkins-Hooker, A., Depardieu, F., Baur, S., Couairon, G., Chen, A., and Bikard, D.
(2021). Generating functional protein variants with variational autoencoders. PLOS
Computational Biology, 17(2):e1008736.

112. He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image
Recognition. arXiv:1512.03385 [cs].

113. Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. Wiley,
New York.

114. Hinton, G., Dayan, P., Frey, B., and Neal, R. (1995). The "wake-sleep" algorithm for
unsupervised neural networks. Science.

115. Hinton, G. E. (2002). Training Products of Experts by Minimizing Contrastive
Divergence. Neural Computation, page 30.

116. Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A Fast Learning Algorithm for
Deep Belief Nets. Neural Computation, 18(7):1527–1554.

117. Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the Dimensionality of Data
with Neural Networks. Science, 313(5786):504–507.

118. Hinton, G. E. and Sejnowski, T. J. (1983). Optimal Perceptual Inference. Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition, 448:6.

119. Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd International
Conference on Document Analysis and Recognition, volume 1, pages 278–282 vol.1.

120. Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8):1735–1780.

http://dx.doi.org/10.1177/107385802237175
https://www.sciencedirect.com/science/article/pii/S0021925819739453
https://www.sciencedirect.com/science/article/pii/S0021925819739453
http://dx.doi.org/10.1038/35042090
http://dx.doi.org/10.1016/j.cell.2009.07.038
http://dx.doi.org/10.1016/j.cell.2009.07.038
http://dx.doi.org/10.1002/pro.2954
http://dx.doi.org/10.1002/pro.2954
http://dx.doi.org/10.1103/PhysRevE.98.022116
http://dx.doi.org/10.1103/PhysRevE.98.022116
https://www.jstor.org/stable/2334940?seq=1#metadata_info_tab_contents
https://www.jstor.org/stable/2334940?seq=1#metadata_info_tab_contents
http://dx.doi.org/10.1371/journal.pcbi.1008736
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1126/SCIENCE.7761831
http://dx.doi.org/10.1126/SCIENCE.7761831
https://ieeexplore.ieee.org/abstract/document/6789337
https://ieeexplore.ieee.org/abstract/document/6789337
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1126/science.1127647
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.6007&rep=rep1&type=pdf
http://dx.doi.org/10.1109/ICDAR.1995.598994
http://dx.doi.org/10.1162/neco.1997.9.8.1735


Bibliography 173

121. Hopf, T. A., Ingraham, J. B., Poelwijk, F. J., Schärfe, C. P. I., Springer, M., Sander,
C., and Marks, D. S. (2017). Mutation effects predicted from sequence co-variation.
Nature Biotechnology, 35(2):128–135.

122. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79(8):2554–
2558.

123. Huang, L. and Wang, L. (2017). Accelerate Monte Carlo Simulations with Restricted
Boltzmann Machines. Physical Review B, 95(3):035105.

124. Huang, P.-S., Boyken, S. E., and Baker, D. (2016). The coming of age of de novo
protein design. Nature, 537(7620):320–327.

125. Huang, Y., Yang, C., Xu, X.-f., Xu, W., and Liu, S.-w. (2020). Structural and functional
properties of SARS-CoV-2 spike protein: Potential antivirus drug development for
COVID-19. Acta Pharmacologica Sinica, 41(9):1141–1149.

126. Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik,
31(1):253–258.

127. Jackson, L. A., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., Coler,
R. N., McCullough, M. P., Chappell, J. D., Denison, M. R., Stevens, L. J., Pruijssers,
A. J., McDermott, A., Flach, B., Doria-Rose, N. A., Corbett, K. S., Morabito, K. M.,
O’Dell, S., Schmidt, S. D., Swanson, P. A., Padilla, M., Mascola, J. R., Neuzil, K. M.,
Bennett, H., Sun, W., Peters, E., Makowski, M., Albert, J., Cross, K., Buchanan, W.,
Pikaart-Tautges, R., Ledgerwood, J. E., Graham, B. S., Beigel, J. H., and mRNA-1273
Study Group (2020). An mRNA Vaccine against SARS-CoV-2 - Preliminary Report.
The New England Journal of Medicine, 383(20):1920–1931.

128. Jacquier, H., Birgy, A., Le Nagard, H., Mechulam, Y., Schmitt, E., Glodt, J., Bercot, B.,
Petit, E., Poulain, J., Barnaud, G., Gros, P.-A., and Tenaillon, O. (2013). Capturing
the mutational landscape of the beta-lactamase TEM-1. Proceedings of the National
Academy of Sciences of the United States of America, 110(32):13067–13072.

129. Jacquin, H., Gilson, A., Shakhnovich, E., Cocco, S., and Monasson, R. (2016).
Benchmarking Inverse Statistical Approaches for Protein Structure and Design with
Exactly Solvable Models. PLOS Computational Biology, 12(5):e1004889.

130. Jarzynski, C. (1997). Nonequilibrium Equality for Free Energy Differences. Physical
Review Letters, 78(14):2690–2693.

131. Jaynes, E. T. (1957a). Information Theory and Statistical Mechanics. Physical Review,
106(4):620–630.

132. Jaynes, E. T. (1957b). Information Theory and Statistical Mechanics. II. Physical
Review, 108(2):171–190.

133. Jelsch, C., Mourey, L., Masson, J. M., and Samama, J. P. (1993). Crystal structure of
Escherichia coli TEM1 beta-lactamase at 1.8 A resolution. Proteins, 16(4):364–383.

134. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
Tunyasuvunakool, K., Bates, R., Zídek, A., Potapenko, A., Bridgland, A., Meyer, C.,
Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R.,

http://dx.doi.org/10.1038/nbt.3769
https://www.pnas.org/content/79/8/2554
https://www.pnas.org/content/79/8/2554
http://dx.doi.org/10.1103/PhysRevB.95.035105
http://dx.doi.org/10.1103/PhysRevB.95.035105
http://dx.doi.org/10.1038/nature19946
http://dx.doi.org/10.1038/nature19946
http://dx.doi.org/10.1038/s41401-020-0485-4
http://dx.doi.org/10.1038/s41401-020-0485-4
http://dx.doi.org/10.1038/s41401-020-0485-4
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1056/NEJMoa2022483
http://dx.doi.org/10.1073/pnas.1215206110
http://dx.doi.org/10.1073/pnas.1215206110
http://dx.doi.org/10.1371/journal.pcbi.1004889
http://dx.doi.org/10.1371/journal.pcbi.1004889
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1103/PhysRev.108.171
http://dx.doi.org/10.1002/prot.340160406
http://dx.doi.org/10.1002/prot.340160406


174 Bibliography

Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger,
M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior,
A. W., Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021). Highly accurate protein
structure prediction with AlphaFold. Nature.

135. Kanter, I. and Sompolinsky, H. (1987). Associative recall of memory without errors.
Physical Review A, 35(1):380–392.

136. Kantorovich, L. (1942). On the transfer of masses (in russian). Doklady Akademii.

137. Karikó, K., Buckstein, M., Ni, H., and Weissman, D. (2005). Suppression of RNA
Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the
Evolutionary Origin of RNA. Immunity, 23(2):165–175.

138. Karplus, M. and Kuriyan, J. (2005). Molecular dynamics and protein function.
Proceedings of the National Academy of Sciences of the United States of America,
102(19):6679–6685.

139. Katoh, K., Misawa, K., Kuma, K.-i., and Miyata, T. (2002). MAFFT: A novel method
for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids
Research, 30(14):3059–3066.

140. Kauffman, S. A. and Weinberger, E. D. (1989). The NK model of rugged fitness
landscapes and its application to maturation of the immune response. Journal of
Theoretical Biology, 141(2):211–245.

141. Keener, A. B. (2018). Just the messenger. Nature Medicine, 24(9):1297–1300.

142. Khan, A. I., Dinh, D. M., Schneider, D., Lenski, R. E., and Cooper, T. F. (2011).
Negative epistasis between beneficial mutations in an evolving bacterial population.
Science (New York, N.Y.), 332(6034):1193–1196.

143. Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes.
arXiv:1312.6114 [cs, stat].

144. Kirkpatrick, S. and Sherrington, D. (1978). Infinite-ranged models of spin-glasses.
Physical Review B, 17(11):4384–4403.

145. Kivinen, J. and Williams, C. (2012). Multiple Texture Boltzmann Machines. In
Artificial Intelligence and Statistics, pages 638–646. PMLR.

146. Koch-Janusz, M. and Ringel, Z. (2018). Mutual information, neural networks and the
renormalization group. Nature Physics, 14(6):578–582.

147. Kong, K.-F., Schneper, L., and Mathee, K. (2010). Beta-lactam Antibiotics: From
Antibiosis to Resistance and Bacteriology. APMIS : acta pathologica, microbiologica,
et immunologica Scandinavica, 118(1):1–36.

148. Kosko, B. (1987). Adaptive bidirectional associative memories. Applied Optics,
26(23):4947–4960.

149. Kosko, B. (1988). Bidirectional Associative Memories. Ieee Transactions on Systems,
Man, and Cybernetics, 18(1):49–60.

150. Krauth, W. (2006). Statistical Mechanics: Algorithms and Computations. Oxford
Master Series in Physics.

http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/10.1103/PhysRevA.35.380
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi1rYXp_qbyAhVJzRoKHVdhApwQFnoECAMQAQ&url=http%3A%2F%2Fwww.math.toronto.edu%2Fmccann%2Fassignments%2F477%2FKantorovich42.pdf&usg=AOvVaw13v0aMDCBOaEgQosHum-Y0
http://dx.doi.org/10.1016/j.immuni.2005.06.008
http://dx.doi.org/10.1016/j.immuni.2005.06.008
http://dx.doi.org/10.1016/j.immuni.2005.06.008
http://dx.doi.org/10.1073/pnas.0408930102
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC135756/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC135756/
http://dx.doi.org/10.1016/s0022-5193(89)80019-0
http://dx.doi.org/10.1016/s0022-5193(89)80019-0
http://dx.doi.org/10.1038/s41591-018-0183-7
http://dx.doi.org/10.1126/science.1203801
http://arxiv.org/abs/1312.6114
http://dx.doi.org/10.1103/PhysRevB.17.4384
http://proceedings.mlr.press/v22/kivinen12.html
http://dx.doi.org/10.1038/s41567-018-0081-4
http://dx.doi.org/10.1038/s41567-018-0081-4
http://dx.doi.org/10.1111/j.1600-0463.2009.02563.x
http://dx.doi.org/10.1111/j.1600-0463.2009.02563.x
http://dx.doi.org/10.1364/AO.26.004947
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjS6J6b_6byAhXCxIUKHcHkBIsQgAMoAnoECAIQBA&url=https%3A%2F%2Fscholar.google.fr%2Fscholar_url%3Furl%3Dhttp%3A%2F%2Fsipi.usc.edu%2F~kosko%2FBAM.pdf%26hl%3Dfr%26sa%3DX%26ei%3DQ7kSYZOkMMqgmQHFlrVA%26scisig%3DAAGBfm2QeSrxN_u-CXaXiTlBM_1CGRMbKA%26oi%3Dscholarr&usg=AOvVaw3G8vKS0N26vy5GE9YlydEE


Bibliography 175

151. Kryazhimskiy, S., Rice, D. P., Jerison, E. R., and Desai, M. M. (2014). Micro-
bial evolution. Global epistasis makes adaptation predictable despite sequence-level
stochasticity. Science (New York, N.Y.), 344(6191):1519–1522.

152. Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K., and Moult, J. (2019). Critical
assessment of methods of protein structure prediction (CASP)-Round XIII. Proteins,
87(12):1011–1020.

153. Kubelka, J., Hofrichter, J., and Eaton, W. A. (2004). The protein folding ’speed limit’.
Current Opinion in Structural Biology, 14(1):76–88.

154. Kuhlman, B. and Bradley, P. (2019). Advances in protein structure prediction and
design. Nature Reviews Molecular Cell Biology, 20(11):681–697.

155. Larochelle, H. and Bengio, Y. (2008). Classification using discriminative restricted
Boltzmann machines. In Proceedings of the 25th International Conference on Machine
Learning - ICML ’08, pages 536–543, Helsinki, Finland. ACM Press.

156. Le Roux, N. and Bengio, Y. (2008). Representational Power of Restricted Boltzmann
Machines and Deep Belief Networks. Neural Computation, 20(6):1631–1649.

157. LeCun, Y. (1998). The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/.

158. LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2323.

159. Lenggenhager, P. M., Gökmen, D. E., Ringel, Z., Huber, S. D., and Koch-Janusz, M.
(2020). Optimal Renormalization Group Transformation from Information Theory.
Physical Review X, 10(1):011037.

160. Leonelli, F. E., Agliari, E., Albanese, L., and Barra, A. (2021). On the effective
initialisation for restricted Boltzmann machines via duality with Hopfield model.
Neural Networks, 143:314–326.

161. Levinthal, C. (1969). How to fold graciously. Mossbauer spectroscopy in biological
systems, 67:22–24.

162. Lindorff-Larsen, K., Piana, S., Dror, R. O., and Shaw, D. E. (2011). How Fast-Folding
Proteins Fold. Science, 334(6055):517–520.

163. Little, W. A. (1974). The existence of persistent states in the brain. Mathematical
Biosciences, 19(1):101–120.

164. Little, W. A. and Shaw, G. L. (1975). A statistical theory of short and long term
memory. Behavioral Biology, 14(2):115–133.

165. Liu, J., Qi, Y., Meng, Z. Y., and Fu, L. (2017). Self-learning Monte Carlo method.
Physical Review B, 95(4):041101.

166. Lockless, S. W. and Ranganathan, R. (1999). Evolutionarily Conserved Pathways of
Energetic Connectivity in Protein Families. Science, 286(5438):295–299.

167. Long, Y., Nachmias, A., Ning, W., and Peres, Y. (2014). A power law of order 1/4 for
critical mean field Swendsen-Wang dynamics. Memoirs of the American Mathematical
Society, 232.

http://dx.doi.org/10.1126/science.1250939
http://dx.doi.org/10.1126/science.1250939
http://dx.doi.org/10.1126/science.1250939
http://dx.doi.org/10.1002/prot.25823
http://dx.doi.org/10.1002/prot.25823
http://dx.doi.org/10.1016/j.sbi.2004.01.013
http://dx.doi.org/10.1038/s41580-019-0163-x
http://dx.doi.org/10.1038/s41580-019-0163-x
http://dx.doi.org/10.1145/1390156.1390224
http://dx.doi.org/10.1145/1390156.1390224
http://dx.doi.org/10.1162/neco.2008.04-07-510
http://dx.doi.org/10.1162/neco.2008.04-07-510
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1103/PhysRevX.10.011037
http://dx.doi.org/10.1016/j.neunet.2021.06.017
http://dx.doi.org/10.1016/j.neunet.2021.06.017
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjc-56GgKfyAhWPxIUKHYJ2BQoQFnoECAYQAQ&url=https%3A%2F%2Fwww.cc.gatech.edu%2F~turk%2Fbio_sim%2Farticles%2Fproteins_levinthal_1969.pdf&usg=AOvVaw07vvnqPRB2cVIH2tKr5Jg0
http://dx.doi.org/10.1126/science.1208351
http://dx.doi.org/10.1126/science.1208351
http://dx.doi.org/10.1016/0025-5564(74)90031-5
http://dx.doi.org/10.1016/S0091-6773(75)90122-4
http://dx.doi.org/10.1016/S0091-6773(75)90122-4
http://dx.doi.org/10.1103/PhysRevB.95.041101
http://dx.doi.org/10.1126/science.286.5438.295
http://dx.doi.org/10.1126/science.286.5438.295
https://arxiv.org/abs/1107.2970
https://arxiv.org/abs/1107.2970


176 Bibliography

168. MacKay, D. J. C. (2003). Information Theory, Inference and Learning Algorithms.
Cambridge University Press.

169. Marmier, G., Weigt, M., and Bitbol, A.-F. (2019). Phylogenetic correlations can
suffice to infer protein partners from sequences. PLOS Computational Biology,
15(10):e1007179.

170. Martin, G., Elena, S. F., and Lenormand, T. (2007). Distributions of epistasis in
microbes fit predictions from a fitness landscape model. Nature Genetics, 39(4):555–
560.

171. Matagne, A., Lamotte-Brasseur, J., and Frère, J.-M. (1998). Catalytic properties of
class A β-lactamases: Efficiency and diversity. Biochemical Journal, 330(2):581–598.

172. Mattis, D. C. (1976). Solvable spin systems with random interactions. Physics Letters
A, 56(5):421–422.

173. Maveyraud, L. and Mourey, L. (2020). Protein X-ray Crystallography and Drug
Discovery. Molecules, 25(5).

174. McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133.

175. McLinn, S. and Williams, D. (1996). Incidence of antibiotic-resistant Streptococcus
pneumoniae and beta-lactamase-positive Haemophilus influenzae in clinical isolates
from patients with otitis media. The Pediatric Infectious Disease Journal, 15(9
Suppl):S3–9.

176. McPherson, A. and Gavira, J. A. (2013). Introduction to protein crystallization. Acta
Crystallographica. Section F, Structural Biology Communications, 70(Pt 1):2–20.

177. Mehta, P. and Schwab, D. J. (2014). An exact mapping between the Variational
Renormalization Group and Deep Learning. arXiv:1410.3831 [cond-mat, stat].

178. Meier, J., Rao, R., Verkuil, R., Liu, J., Sercu, T., and Rives, A. (2021). Language
models enable zero-shot prediction of the effects of mutations on protein function.
bioRxiv.

179. Metropolis, N. and Ulam, S. (1949). The Monte Carlo Method. Journal of the
American Statistical Association, 44(247):335–341.

180. Mézard, M. (2017). Mean-field message-passing equations in the Hopfield model and
its generalizations. Physical Review E, 95(2):022117.

181. Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., and Virasoro, M. (1984). Nature of
the Spin-Glass Phase. Physical Review Letters, 52(13):1156–1159.

182. Milo, R. (2013). What is the total number of protein molecules per cell volume? A
call to rethink some published values. BioEssays: News and Reviews in Molecular,
Cellular and Developmental Biology, 35(12):1050–1055.

183. Mirny, L. and Shakhnovich, E. (2001). Protein Folding Theory: From Lattice to
All-Atom Models. Annual Review of Biophysics and Biomolecular Structure, 30(1):361–
396.

http://dx.doi.org/10.1371/journal.pcbi.1007179
http://dx.doi.org/10.1371/journal.pcbi.1007179
http://dx.doi.org/10.1038/ng1998
http://dx.doi.org/10.1038/ng1998
http://dx.doi.org/10.1042/bj3300581
http://dx.doi.org/10.1042/bj3300581
http://dx.doi.org/10.1016/0375-9601(76)90396-0
http://dx.doi.org/10.3390/molecules25051030
http://dx.doi.org/10.3390/molecules25051030
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1097/00006454-199609009-00001
http://dx.doi.org/10.1097/00006454-199609009-00001
http://dx.doi.org/10.1097/00006454-199609009-00001
http://dx.doi.org/10.1107/S2053230X13033141
http://arxiv.org/abs/1410.3831
http://arxiv.org/abs/1410.3831
http://dx.doi.org/10.1101/2021.07.09.450648
http://dx.doi.org/10.1101/2021.07.09.450648
http://dx.doi.org/10.1080/01621459.1949.10483310
http://dx.doi.org/10.1103/PhysRevE.95.022117
http://dx.doi.org/10.1103/PhysRevE.95.022117
http://dx.doi.org/10.1103/PhysRevLett.52.1156
http://dx.doi.org/10.1103/PhysRevLett.52.1156
http://dx.doi.org/10.1002/bies.201300066
http://dx.doi.org/10.1002/bies.201300066
http://dx.doi.org/10.1146/annurev.biophys.30.1.361
http://dx.doi.org/10.1146/annurev.biophys.30.1.361


Bibliography 177

184. Miyazawa, S. and Jernigan, R. L. (1996). Residue-residue potentials with a favorable
contact pair term and an unfavorable high packing density term, for simulation and
threading. Journal of Molecular Biology, 256(3):623–644.

185. Mohamed, A., Dahl, G. E., and Hinton, G. (2012). Acoustic Modeling Using Deep
Belief Networks. IEEE Transactions on Audio, Speech, and Language Processing,
20(1):14–22.

186. Monge, G. (1781). Mémoire sur la théorie des déblais et des remblais. De l’Imprimerie
Royale.

187. Montavon, G., Müller, K.-R., and Cuturi, M. (2016). Wasserstein Training of Restricted
Boltzmann Machines. Advances in Neural Information Processing Systems, page 9.

188. Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D. S., Sander, C., Zecchina,
R., Onuchic, J. N., Hwa, T., and Weigt, M. (2011). Direct-coupling analysis of residue
coevolution captures native contacts across many protein families. Proceedings of the
National Academy of Sciences, 108(49):E1293–E1301.

189. Moult, J., Pedersen, J. T., Judson, R., and Fidelis, K. (1995). A large-scale experiment
to assess protein structure prediction methods. Proteins, 23(3):ii–v.

190. Murata, K. and Wolf, M. (2018). Cryo-electron microscopy for structural analysis of
dynamic biological macromolecules. Biochimica et Biophysica Acta (BBA) - General
Subjects, 1862(2):324–334.

191. Nagai, Y., Okumura, M., Kobayashi, K., and Shiga, M. (2020a). Self-learning hybrid
Monte Carlo: A first-principles approach. Physical Review B, 102(4):041124.

192. Nagai, Y., Okumura, M., and Tanaka, A. (2020b). Self-learning Monte Carlo method
with Behler-Parrinello neural networks. Physical Review B, 101(11):115111.

193. Nagai, Y., Shen, H., Qi, Y., Liu, J., and Fu, L. (2017). Self-learning Monte Carlo
method: Continuous-time algorithm. Physical Review B, 96(16):161102.

194. Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th International Conference on International
Conference on Machine Learning, ICML’10, pages 807–814, Madison, WI, USA.

195. Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing,
11(2):125–139.

196. Nesterov, Y. (2004). Introductory Lectures on Convex Optimization: A Basic Course.
Applied Optimization. Springer US.

197. Neu, H. C. (1969). Effect of beta-Lactamase Location in Escherichia coli on Penicillin
Synergy. Applied Microbiology, 17(6):783–786.

198. Ng, P. C. and Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect
protein function. Nucleic Acids Research, 31(13):3812–3814.

199. Nguyen, H. C., Zecchina, R., and Berg, J. (2017). Inverse statistical problems: From
the inverse Ising problem to data science. Advances in Physics, 66(3):197–261.

200. Onsager, L. (1944). Crystal Statistics. I. A Two-Dimensional Model with an Order-
Disorder Transition. Physical Review, 65(3-4):117–149.

http://dx.doi.org/10.1006/jmbi.1996.0114
http://dx.doi.org/10.1006/jmbi.1996.0114
http://dx.doi.org/10.1006/jmbi.1996.0114
http://dx.doi.org/10.1109/TASL.2011.2109382
http://dx.doi.org/10.1109/TASL.2011.2109382
http://papers.nips.cc/paper/6248-wasserstein-training-of-restricted-boltzmann-machines.pdf
http://papers.nips.cc/paper/6248-wasserstein-training-of-restricted-boltzmann-machines.pdf
http://dx.doi.org/10.1073/pnas.1111471108
http://dx.doi.org/10.1073/pnas.1111471108
http://dx.doi.org/10.1002/prot.340230303
http://dx.doi.org/10.1002/prot.340230303
http://dx.doi.org/10.1016/j.bbagen.2017.07.020
http://dx.doi.org/10.1016/j.bbagen.2017.07.020
http://dx.doi.org/10.1103/PhysRevB.102.041124
http://dx.doi.org/10.1103/PhysRevB.102.041124
http://dx.doi.org/10.1103/PhysRevB.101.115111
http://dx.doi.org/10.1103/PhysRevB.101.115111
http://dx.doi.org/10.1103/PhysRevB.96.161102
http://dx.doi.org/10.1103/PhysRevB.96.161102
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwi74-6-gafyAhWRxoUKHXxUBsIQFnoECAQQAQ&url=https%3A%2F%2Fwww.cs.toronto.edu%2F~fritz%2Fabsps%2FreluICML.pdf&usg=AOvVaw1GJX-nFOFDWnCSWvEadeuF
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwi74-6-gafyAhWRxoUKHXxUBsIQFnoECAQQAQ&url=https%3A%2F%2Fwww.cs.toronto.edu%2F~fritz%2Fabsps%2FreluICML.pdf&usg=AOvVaw1GJX-nFOFDWnCSWvEadeuF
http://dx.doi.org/10.1023/A:1008923215028
https://www.springer.com/gp/book/9781402075537
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC377810/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC377810/
http://dx.doi.org/10.1093/nar/gkg509
http://dx.doi.org/10.1093/nar/gkg509
http://dx.doi.org/10.1080/00018732.2017.1341604
http://dx.doi.org/10.1080/00018732.2017.1341604
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1103/PhysRev.65.117


178 Bibliography

201. Orts, J. and Gossert, A. D. (2018). Structure determination of protein-ligand complexes
by NMR in solution. Methods, 138-139:3–25.

202. Otwinowski, J., McCandlish, D. M., and Plotkin, J. B. (2018). Inferring the shape of
global epistasis. Proceedings of the National Academy of Sciences of the United States
of America, 115(32):E7550–E7558.

203. Ovchinnikov, S., Kim, D. E., Wang, R. Y.-R., Liu, Y., DiMaio, F., and Baker, D.
(2016). Improved de novo structure prediction in CASP11 by incorporating coevolution
information into Rosetta. Proteins, 84 Suppl 1:67–75.

204. Ovchinnikov, S., Park, H., Varghese, N., Huang, P.-S., Pavlopoulos, G. A., Kim, D. E.,
Kamisetty, H., Kyrpides, N. C., and Baker, D. (2017). Protein structure determination
using metagenome sequence data. Science, 355(6322):294–298.

205. Pardi, N., Hogan, M. J., Porter, F. W., and Weissman, D. (2018). mRNA vaccines —
a new era in vaccinology. Nature Reviews Drug Discovery, 17(4):261–279.

206. Parisi, G. (1986). Asymmetric neural networks and the process of learning. Journal
of Physics A: Mathematical and General, pages 444–449.

207. Pauling, L. and Corey, R. B. (1951). Atomic coordinates and structure factors for two
helical configurations of polypeptide chains. Proceedings of the National Academy of
Sciences of the United States of America, 37(5):235–240.

208. Pauling, L., Corey, R. B., and Branson, H. R. (1951). The structure of proteins; two
hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the
National Academy of Sciences of the United States of America, 37(4):205–211.

209. Pearl, J. (1982). Reverend bayes on inference engines: A distributed hierarchical
approach. In Proceedings of the Second AAAI Conference on Artificial Intelligence,
AAAI’82, pages 133–136, Pittsburgh, Pennsylvania. AAAI Press.

210. Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572.

211. Peretto, P. (1984). Collective properties of neural networks: A statistical physics
approach. Biological Cybernetics, 50(1):51–62.

212. Persky, N., Ben-Av, R., Kanter, I., and Domany, E. (1996). Mean-field behavior of
cluster dynamics. Physical Review E, 54(3):2351–2358.

213. Personnaz, L., Guyon, I., and Dreyfus, G. (1986). Collective computational properties
of neural networks: New learning mechanisms. Physical Review A, 34(5):4217–4228.

214. Philippon, A., Jacquier, H., Ruppé, E., and Labia, R. (2019). Structure-based
classification of class A beta-lactamases, an update. Current Research in Translational
Medicine, 67(4):115–122.

215. Philippon, A., Slama, P., Dény, P., and Labia, R. (2016). A Structure-Based Classifi-
cation of Class A beta-Lactamases, a Broadly Diverse Family of Enzymes. Clinical
Microbiology Reviews, 29(1):29–57.

http://dx.doi.org/10.1016/j.ymeth.2018.01.019
http://dx.doi.org/10.1016/j.ymeth.2018.01.019
http://dx.doi.org/10.1073/pnas.1804015115
http://dx.doi.org/10.1073/pnas.1804015115
http://dx.doi.org/10.1002/prot.24974
http://dx.doi.org/10.1002/prot.24974
http://dx.doi.org/10.1126/science.aah4043
http://dx.doi.org/10.1126/science.aah4043
http://dx.doi.org/10.1038/nrd.2017.243
http://dx.doi.org/10.1038/nrd.2017.243
http://dx.doi.org/10.1142/9789812799371_0048
http://dx.doi.org/10.1073/pnas.37.5.235
http://dx.doi.org/10.1073/pnas.37.5.235
http://dx.doi.org/10.1073/pnas.37.4.205
http://dx.doi.org/10.1073/pnas.37.4.205
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.294.5479
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.294.5479
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1007/BF00317939
http://dx.doi.org/10.1007/BF00317939
http://dx.doi.org/10.1103/PhysRevE.54.2351
http://dx.doi.org/10.1103/PhysRevE.54.2351
http://dx.doi.org/10.1103/PhysRevA.34.4217
http://dx.doi.org/10.1103/PhysRevA.34.4217
http://dx.doi.org/10.1016/j.retram.2019.05.003
http://dx.doi.org/10.1016/j.retram.2019.05.003
http://dx.doi.org/10.1128/CMR.00019-15
http://dx.doi.org/10.1128/CMR.00019-15


Bibliography 179

216. Poelwijk, F. J., Socolich, M., and Ranganathan, R. (2019). Learning the pattern
of epistasis linking genotype and phenotype in a protein. Nature Communications,
10(1):4213.

217. Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S.,
Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A.,
Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W.,
Hammitt, L. L., Türeci, O., Nell, H., Schaefer, A., Unal, S., Tresnan, D. B., Mather,
S., Dormitzer, P. R., Sahin, U., Jansen, K. U., Gruber, W. C., and C4591001 Clinical
Trial Group (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine.
The New England Journal of Medicine, 383(27):2603–2615.

218. Privalov, P. L. (1979). Stability of proteins: Small globular proteins. Advances in
Protein Chemistry, 33:167–241.

219. Procesi, C. and Tirozzi, B. (1990). Metastable states in the hopfield model. Interna-
tional Journal of Modern Physics B, 04(01):143–150.

220. Quinn, C. M., Wang, M., and Polenova, T. (2018). NMR of Macromolecular Assemblies
and Machines at 1 GHz and Beyond: New Transformative Opportunities for Molecular
Structural Biology. Methods in Molecular Biology (Clifton, N.J.), 1688:1–35.

221. Rammal, R., Toulouse, G., and Virasoro, M. A. (1986). Ultrametricity for physicists.
Reviews of Modern Physics, 58(3):765–788.

222. Ranzato, M., Susskind, J., Mnih, V., and Hinton, G. (2011). On deep generative
models with applications to recognition. In CVPR 2011, pages 2857–2864.

223. Rausell, A., Juan, D., Pazos, F., and Valencia, A. (2010). Protein interactions and
ligand binding: From protein subfamilies to functional specificity. Proceedings of the
National Academy of Sciences, 107(5):1995–2000.

224. Ravikumar, P., Wainwright, M. J., and Lafferty, J. D. (2010). High-dimensional Ising
model selection using L1-regularized logistic regression. The Annals of Statistics,
38(3):1287–1319.

225. Ray, T. S., Tamayo, P., and Klein, W. (1989). Mean-field study of the Swendsen-Wang
dynamics. Physical Review A, 39(11):5949–5953.

226. Repecka, D., Jauniskis, V., Karpus, L., Rembeza, E., Rokaitis, I., Zrimec, J.,
Poviloniene, S., Laurynenas, A., Viknander, S., Abuajwa, W., Savolainen, O., Meskys,
R., Engqvist, M. K. M., and Zelezniak, A. (2021). Expanding functional protein
sequence spaces using generative adversarial networks. Nature Machine Intelligence,
3(4):324–333.

227. Riesselman, A. J., Ingraham, J. B., and Marks, D. S. (2017). Deep generative
models of genetic variation capture mutation effects. arXiv:1712.06527 [cond-mat,
physics:physics, q-bio, stat].

228. Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick,
C. L., Ma, J., and Fergus, R. (2021). Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the
National Academy of Sciences, 118(15).

http://dx.doi.org/10.1038/s41467-019-12130-8
http://dx.doi.org/10.1038/s41467-019-12130-8
http://dx.doi.org/10.1056/NEJMoa2034577
http://dx.doi.org/10.1016/s0065-3233(08)60460-x
http://dx.doi.org/10.1142/S0217979290000085
http://dx.doi.org/10.1007/978-1-4939-7386-6_1
http://dx.doi.org/10.1007/978-1-4939-7386-6_1
http://dx.doi.org/10.1007/978-1-4939-7386-6_1
http://dx.doi.org/10.1103/RevModPhys.58.765
http://dx.doi.org/10.1109/CVPR.2011.5995710
http://dx.doi.org/10.1109/CVPR.2011.5995710
http://dx.doi.org/10.1073/pnas.0908044107
http://dx.doi.org/10.1073/pnas.0908044107
http://dx.doi.org/10.1214/09-AOS691
http://dx.doi.org/10.1214/09-AOS691
http://dx.doi.org/10.1103/PhysRevA.39.5949
http://dx.doi.org/10.1103/PhysRevA.39.5949
http://dx.doi.org/10.1038/s42256-021-00310-5
http://dx.doi.org/10.1038/s42256-021-00310-5
http://arxiv.org/abs/1712.06527
http://arxiv.org/abs/1712.06527
http://dx.doi.org/10.1073/pnas.2016239118
http://dx.doi.org/10.1073/pnas.2016239118


180 Bibliography

229. Rivoire, O., Reynolds, K. A., and Ranganathan, R. (2016). Evolution-Based Functional
Decomposition of Proteins. PLOS Computational Biology, 12(6):e1004817.

230. Rizzato, F., Coucke, A., de Leonardis, E., Barton, J. P., Tubiana, J., Monasson,
R., and Cocco, S. (2020). Inference of compressed Potts graphical models. Physical
Review E, 101(1):012309.

231. Rodrigues, J. V., Bershtein, S., Li, A., Lozovsky, E. R., Hartl, D. L., and Shakhnovich,
E. I. (2016). Biophysical principles predict fitness landscapes of drug resistance.
Proceedings of the National Academy of Sciences of the United States of America,
113(11):E1470–1478.

232. Rollins, N. J., Brock, K. P., Poelwijk, F. J., Stiffler, M. A., Gauthier, N. P., Sander,
C., and Marks, D. S. (2019). Inferring protein 3D structure from deep mutation scans.
Nature Genetics, 51(7):1170–1176.

233. Romero, P. A. and Arnold, F. H. (2009). Exploring protein fitness landscapes by
directed evolution. Nature reviews. Molecular cell biology, 10(12):866–876.

234. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408.

235. Roudi, Y., Tyrcha, J., and Hertz, J. (2009). Ising model for neural data: Model
quality and approximate methods for extracting functional connectivity. Physical
Review E, 79(5):051915.

236. Roussel, C., Cocco, S., and Monasson, R. (2021). Barriers and dynamical paths in
alternating Gibbs sampling of restricted Boltzmann machines. Physical Review E,
104(3):034109.

237. Ruder, S. (2017). An overview of gradient descent optimization algorithms.
arXiv:1609.04747 [cs].

238. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323(6088):533–536.

239. Russ, W. P., Figliuzzi, M., Stocker, C., Barrat-Charlaix, P., Socolich, M., Kast, P.,
Hilvert, D., Monasson, R., Cocco, S., Weigt, M., and Ranganathan, R. (2020).
An evolution-based model for designing chorismate mutase enzymes. Science,
369(6502):440–445.

240. Russ, W. P., Lowery, D. M., Mishra, P., Yaffe, M. B., and Ranganathan, R. (2005).
Natural-like function in artificial WW domains. Nature, 437(7058):579–583.

241. Salakhutdinov, R. and Hinton, G. (2009). Deep Boltzmann Machines. In Artificial
Intelligence and Statistics, pages 448–455. PMLR.

242. Salakhutdinov, R. and Larochelle, H. (2010). Efficient Learning of Deep Boltzmann
Machines. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pages 693–700. JMLR Workshop and Conference Proceed-
ings.

243. Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Restricted Boltzmann machines
for collaborative filtering. In Proceedings of the 24th International Conference on
Machine Learning, ICML ’07, pages 791–798, New York, NY, USA. Association for
Computing Machinery.

http://dx.doi.org/10.1371/journal.pcbi.1004817
http://dx.doi.org/10.1371/journal.pcbi.1004817
http://dx.doi.org/10.1103/PhysRevE.101.012309
http://dx.doi.org/10.1073/pnas.1601441113
http://dx.doi.org/10.1038/s41588-019-0432-9
http://dx.doi.org/10.1038/nrm2805
http://dx.doi.org/10.1038/nrm2805
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1103/PhysRevE.79.051915
http://dx.doi.org/10.1103/PhysRevE.79.051915
http://dx.doi.org/10.1103/PhysRevE.104.034109
http://dx.doi.org/10.1103/PhysRevE.104.034109
http://arxiv.org/abs/1609.04747
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1126/science.aba3304
http://dx.doi.org/10.1038/nature03990
http://proceedings.mlr.press/v5/salakhutdinov09a.html
http://proceedings.mlr.press/v9/salakhutdinov10a.html
http://proceedings.mlr.press/v9/salakhutdinov10a.html
http://dx.doi.org/10.1145/1273496.1273596
http://dx.doi.org/10.1145/1273496.1273596


Bibliography 181

244. Salakhutdinov, R. and Murray, I. (2008). On the quantitative analysis of deep belief
networks. In Proceedings of the 25th International Conference on Machine Learning,
ICML ’08, pages 872–879.

245. Salakhutdinov, R. R. (2009). Learning in Markov Random Fields using Tempered
Transitions. Advances in Neural Information Processing Systems, 22.

246. Sali, A., Shakhnovich, E., and Karplus, M. (1994a). How does a protein fold? Nature,
369(6477):248–251.

247. Sali, A., Shakhnovich, E., and Karplus, M. (1994b). Kinetics of protein folding: A
lattice model study of the requirements for folding to the native state. Journal of
Molecular Biology, 235(5):1614–1636.

248. Salinas, V. H. and Ranganathan, R. (2018). Coevolution-based inference of amino
acid interactions underlying protein function. eLife, 7:e34300.

249. Salverda, M. L. M., De Visser, J. A. G. M., and Barlow, M. (2010). Natural evolution
of TEM-1 β-lactamase: Experimental reconstruction and clinical relevance. FEMS
microbiology reviews, 34(6):1015–1036.

250. Sarkisyan, K. S., Bolotin, D. A., Meer, M. V., Usmanova, D. R., Mishin, A. S.,
Sharonov, G. V., Ivankov, D. N., Bozhanova, N. G., Baranov, M. S., Soylemez, O.,
Bogatyreva, N. S., Vlasov, P. K., Egorov, E. S., Logacheva, M. D., Kondrashov, A. S.,
Chudakov, D. M., Putintseva, E. V., Mamedov, I. Z., Tawfik, D. S., Lukyanov, K. A.,
and Kondrashov, F. A. (2016). Local fitness landscape of the green fluorescent protein.
Nature, 533(7603):397–401.

251. Schmiedel, J. M. and Lehner, B. (2019). Determining protein structures using deep
mutagenesis. Nature Genetics, 51(7):1177–1186.

252. Science (2005). So Much More to Know. Science, 309(5731):78–102.

253. Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C.,
Zidek, A., Nelson, A. W. R., Bridgland, A., Penedones, H., Petersen, S., Simonyan,
K., Crossan, S., Kohli, P., Jones, D. T., Silver, D., Kavukcuoglu, K., and Hassabis,
D. (2020). Improved protein structure prediction using potentials from deep learning.
Nature, 577(7792):706–710.

254. Shakhnovich, E., Farztdinov, G., Gutin, A. M., and Karplus, M. (1991). Protein
folding bottlenecks: A lattice Monte Carlo simulation. Physical Review Letters,
67(12):1665–1668.

255. Shakhnovich, E. and Gutin, A. (1990). Enumeration of all compact conformations
of copolymers with random sequence of links. The Journal of Chemical Physics,
93(8):5967–5971.

256. Shakhnovich, E. I. (1997). Theoretical studies of protein-folding thermodynamics and
kinetics. Current Opinion in Structural Biology, 7(1):29–40.

257. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System
Technical Journal, 27(3):379–423.

258. Shen, H., Liu, J., and Fu, L. (2018). Self-learning Monte Carlo with deep neural
networks. Physical Review B, 97(20):205140.

http://dx.doi.org/10.1145/1390156.1390266
http://dx.doi.org/10.1145/1390156.1390266
https://proceedings.neurips.cc/paper/2009/hash/b7ee6f5f9aa5cd17ca1aea43ce848496-Abstract.html
https://proceedings.neurips.cc/paper/2009/hash/b7ee6f5f9aa5cd17ca1aea43ce848496-Abstract.html
http://dx.doi.org/10.1038/369248a0
http://dx.doi.org/10.1006/jmbi.1994.1110
http://dx.doi.org/10.1006/jmbi.1994.1110
http://dx.doi.org/10.7554/eLife.34300
http://dx.doi.org/10.7554/eLife.34300
http://dx.doi.org/10.1111/j.1574-6976.2010.00222.x
http://dx.doi.org/10.1111/j.1574-6976.2010.00222.x
http://dx.doi.org/10.1038/nature17995
http://dx.doi.org/10.1038/s41588-019-0431-x
http://dx.doi.org/10.1038/s41588-019-0431-x
http://dx.doi.org/10.1126/science.309.5731.78b
http://dx.doi.org/10.1038/s41586-019-1923-7
http://dx.doi.org/10.1103/PhysRevLett.67.1665
http://dx.doi.org/10.1103/PhysRevLett.67.1665
http://dx.doi.org/10.1063/1.459480
http://dx.doi.org/10.1063/1.459480
http://dx.doi.org/10.1016/S0959-440X(97)80005-X
http://dx.doi.org/10.1016/S0959-440X(97)80005-X
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1103/PhysRevB.97.205140
http://dx.doi.org/10.1103/PhysRevB.97.205140


182 Bibliography

259. Sherrington, D. and Kirkpatrick, S. (1975). Solvable Model of a Spin-Glass. Physical
Review Letters, 35(26):1792–1796.

260. Shi, Y. (2014). A glimpse of structural biology through X-ray crystallography. Cell,
159(5):995–1014.

261. Shimagaki, K. and Weigt, M. (2019). Collective-variable selection and generative
Hopfield-Potts models for protein-sequence families. arXiv:1905.11848 [cond-mat,
q-bio].

262. Shinomoto, S. (1987). A cognitive and associative memory. Biological Cybernetics,
57(3):197–206.

263. Sinai, S., Kelsic, E., Church, G. M., and Nowak, M. A. (2018). Variational auto-
encoding of protein sequences. arXiv:1712.03346 [cs, q-bio].

264. Smolensky, P. (1986). Chapter 6: Information Processing in Dynamical Systems:
Foundations of Harmony Theory. In Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, Volume 1: Foundations., pages 194–281. MIT Press
Cambridge, MA.

265. Sompolinsky, H. (1986). Neural networks with nonlinear synapses and a static noise.
Physical Review A, 34(3):2571–2574.

266. Stiffler, M. A., Hekstra, D. R., and Ranganathan, R. (2015). Evolvability as a Function
of Purifying Selection in TEM-1 β-Lactamase. Cell, 160(5):882–892.

267. Sudol, M., Chen, H. I., Bougeret, C., Einbond, A., and Bork, P. (1995). Charac-
terization of a novel protein-binding module — the WW domain. FEBS Letters,
369(1):67–71.

268. Sutto, L., Marsili, S., Valencia, A., and Gervasio, F. L. (2015). From residue coevolution
to protein conformational ensembles and functional dynamics. Proceedings of the
National Academy of Sciences, 112(44):13567–13572.

269. Swendsen, R. and Wang, J.-S. (1986). Replica Monte Carlo Simulation of Spin-Glasses.
Physical Review Letters, 57:2607–2609.

270. Swendsen, R. H. and Wang, J.-S. (1987). Nonuniversal critical dynamics in Monte
Carlo simulations. Physical Review Letters, 58(2):86–88.

271. Talibart, H. and Coste, F. (2021). PPalign: Optimal alignment of Potts models repre-
senting proteins with direct coupling information. BMC Bioinformatics, 22(1):317.

272. Tanaka, T., Kakiya, S., and Kabashima, Y. (2000). Capacity analysis of bidirectional
associative memory. Proc. Seventh Int. Conf. Neural Information Processing, Taejon,
Korea, 2:779–784.

273. Tang, Y., Salakhutdinov, R., and Hinton, G. (2012). Robust Boltzmann Machines
for recognition and denoising. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 2264–2271.

274. Teller, E. and Ashkin, J. (1943). Statistics of Two-Dimensional Lattices with Four
Components. Physical Review, 64(5-6):178–184.

http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1016/j.cell.2014.10.051
http://arxiv.org/abs/1905.11848
http://arxiv.org/abs/1905.11848
http://dx.doi.org/10.1007/BF00364151
http://arxiv.org/abs/1712.03346
http://arxiv.org/abs/1712.03346
http://dx.doi.org/10.1103/PhysRevA.34.2571
http://dx.doi.org/10.1016/j.cell.2015.01.035
http://dx.doi.org/10.1016/j.cell.2015.01.035
http://dx.doi.org/10.1016/0014-5793(95)00550-S
http://dx.doi.org/10.1016/0014-5793(95)00550-S
http://dx.doi.org/10.1073/pnas.1508584112
http://dx.doi.org/10.1073/pnas.1508584112
http://dx.doi.org/10.1103/PhysRevLett.57.2607
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1186/s12859-021-04222-4
http://dx.doi.org/10.1186/s12859-021-04222-4
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwi4uOfUg6fyAhVIyoUKHeW_AXgQgAMoAHoECAEQAg&url=https%3A%2F%2Fscholar.google.fr%2Fscholar_url%3Furl%3Dhttps%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%253Fdoi%253D10.1.1.21.1954%2526rep%253Drep1%2526type%253Dpdf%26hl%3Dfr%26sa%3DX%26ei%3D7r0SYbmLEsWKy9YP966X6A8%26scisig%3DAAGBfm2BgwxADPhBfk5dkTvMjq-FKcokXA%26oi%3Dscholarr&usg=AOvVaw05wRuXGZO1p0zAE3AOfPFT
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwi4uOfUg6fyAhVIyoUKHeW_AXgQgAMoAHoECAEQAg&url=https%3A%2F%2Fscholar.google.fr%2Fscholar_url%3Furl%3Dhttps%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%253Fdoi%253D10.1.1.21.1954%2526rep%253Drep1%2526type%253Dpdf%26hl%3Dfr%26sa%3DX%26ei%3D7r0SYbmLEsWKy9YP966X6A8%26scisig%3DAAGBfm2BgwxADPhBfk5dkTvMjq-FKcokXA%26oi%3Dscholarr&usg=AOvVaw05wRuXGZO1p0zAE3AOfPFT
http://dx.doi.org/10.1109/CVPR.2012.6247936
http://dx.doi.org/10.1109/CVPR.2012.6247936
http://dx.doi.org/10.1103/PhysRev.64.178
http://dx.doi.org/10.1103/PhysRev.64.178


Bibliography 183

275. Tenaillon, O. (2014). The Utility of Fisher’s Geometric Model in Evolutionary Genetics.
Annual Review of Ecology, Evolution, and Systematics, 45(1):179–201.

276. The UniProt Consortium (2021). UniProt: The universal protein knowledgebase in
2021. Nucleic Acids Research, 49(D1):D480–D489.

277. Tieleman, T. (2008). Training restricted Boltzmann machines using approximations
to the likelihood gradient. In Proceedings of the 25th International Conference on
Machine Learning - ICML ’08, pages 1064–1071.

278. Tieleman, T. and Hinton, G. E. (2009). Using fast weights to improve persistent
contrastive divergence. In ICML.

279. Tillier, E. R. and Lui, T. W. (2003). Using multiple interdependency to separate
functional from phylogenetic correlations in protein alignments. Bioinformatics,
19(6):750–755.

280. Torrisi, M., Pollastri, G., and Le, Q. (2020). Deep learning methods in protein structure
prediction. Computational and Structural Biotechnology Journal, 18:1301–1310.

281. Townshend, R. J. L., Eismann, S., Watkins, A. M., Rangan, R., Karelina, M., Das,
R., and Dror, R. O. (2021). Geometric deep learning of RNA structure. Science,
373(6558):1047–1051.

282. Tramel, E. W., Gabrié, M., Manoel, A., Caltagirone, F., and Krzakala, F. (2018). A
Deterministic and Generalized Framework for Unsupervised Learning with Restricted
Boltzmann Machines. Physical Review X, 8(4):041006.

283. Tubiana, J. (2018). Restricted Boltzmann machines : From compositional represen-
tations to protein sequence analysis. These de doctorat, Paris Sciences et Lettres
(ComUE).

284. Tubiana, J., Cocco, S., and Monasson, R. (2019a). Learning Compositional Represen-
tations of Interacting Systems with Restricted Boltzmann Machines: Comparative
Study of Lattice Proteins. Neural Computation, 31(8):1671–1717.

285. Tubiana, J., Cocco, S., and Monasson, R. (2019b). Learning protein constitutive
motifs from sequence data. eLife, 8:e39397.

286. Tubiana, J. and Monasson, R. (2017). Emergence of Compositional Representations
in Restricted Boltzmann Machines. Physical Review Letters, 118(13):138301.

287. Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Zidek, A., Bridgland,
A., Cowie, A., Meyer, C., Laydon, A., Velankar, S., Kleywegt, G. J., Bateman, A.,
Evans, R., Pritzel, A., Figurnov, M., Ronneberger, O., Bates, R., Kohl, S. A. A.,
Potapenko, A., Ballard, A. J., Romera-Paredes, B., Nikolov, S., Jain, R., Clancy,
E., Reiman, D., Petersen, S., Senior, A. W., Kavukcuoglu, K., Birney, E., Kohli, P.,
Jumper, J., and Hassabis, D. (2021). Highly accurate protein structure prediction for
the human proteome. Nature, pages 1–9.

288. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., and Polosukhin, I. (2017). Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, pages
6000–6010.

http://dx.doi.org/10.1146/annurev-ecolsys-120213-091846
http://dx.doi.org/10.1093/nar/gkaa1100
http://dx.doi.org/10.1093/nar/gkaa1100
http://dx.doi.org/10.1145/1390156.1390290
http://dx.doi.org/10.1145/1390156.1390290
https://openreview.net/forum?id=HkbZ_sbdWB
https://openreview.net/forum?id=HkbZ_sbdWB
http://dx.doi.org/10.1093/bioinformatics/btg072
http://dx.doi.org/10.1093/bioinformatics/btg072
http://dx.doi.org/10.1016/j.csbj.2019.12.011
http://dx.doi.org/10.1016/j.csbj.2019.12.011
http://dx.doi.org/10.1126/science.abe5650
http://dx.doi.org/10.1103/PhysRevX.8.041006
http://dx.doi.org/10.1103/PhysRevX.8.041006
http://dx.doi.org/10.1103/PhysRevX.8.041006
http://www.theses.fr/2018PSLEE039
http://www.theses.fr/2018PSLEE039
http://dx.doi.org/10.1162/neco_a_01210
http://dx.doi.org/10.1162/neco_a_01210
http://dx.doi.org/10.1162/neco_a_01210
http://dx.doi.org/10.7554/eLife.39397
http://dx.doi.org/10.7554/eLife.39397
http://dx.doi.org/10.1103/PhysRevLett.118.138301
http://dx.doi.org/10.1103/PhysRevLett.118.138301
http://dx.doi.org/10.1038/s41586-021-03828-1
http://dx.doi.org/10.1038/s41586-021-03828-1
https://arxiv.org/abs/1706.03762


184 Bibliography

289. von Heijne, G. (1991). Proline kinks in transmembrane alpha-helices. Journal of
Molecular Biology, 218(3):499–503.

290. Wang, F., Cassidy, C., and Sacchettini, J. C. (2006). Crystal Structure and Activity
Studies of the Mycobacterium tuberculosis β-Lactamase Reveal Its Critical Role
in Resistance to β-Lactam Antibiotics. Antimicrobial Agents and Chemotherapy,
50(8):2762–2771.

291. Wang, H.-W. and Wang, J.-W. (2017). How cryo-electron microscopy and X-ray
crystallography complement each other. Protein Science: A Publication of the Protein
Society, 26(1):32–39.

292. Weigt, M., White, R. A., Szurmant, H., Hoch, J. A., and Hwa, T. (2009). Identification
of direct residue contacts in protein–protein interaction by message passing. Proceedings
of the National Academy of Sciences, 106(1):67–72.

293. Weinreich, D. M., Lan, Y., Jaffe, J., and Heckendorn, R. B. (2018). The Influence
of Higher-Order Epistasis on Biological Fitness Landscape Topography. Journal of
Statistical Physics, 172(1):208–225.

294. Weinreich, D. M., Lan, Y., Wylie, C. S., and Heckendorn, R. B. (2013). Should
evolutionary geneticists worry about higher-order epistasis? Current Opinion in
Genetics & Development, 23(6):700–707.

295. Welling, M. and Hinton, G. E. (2002). A New Learning Algorithm for Mean Field
Boltzmann Machines. In Dorronsoro, J. R., editor, Artificial Neural Networks —
ICANN 2002, Lecture Notes in Computer Science, pages 351–357, Berlin, Heidelberg.
Springer.

296. Wiser, M. J., Ribeck, N., and Lenski, R. E. (2013). Long-term dynamics of adaptation
in asexual populations. Science (New York, N.Y.), 342(6164):1364–1367.

297. Wolff, U. (1989). Collective Monte Carlo Updating for Spin Systems. Physical Review
Letters, 62(4):361–364.

298. Wollenberg, K. R. and Atchley, W. R. (2000). Separation of phylogenetic and functional
associations in biological sequences by using the parametric bootstrap. Proceedings of
the National Academy of Sciences, 97(7):3288–3291.

299. Wu, F. Y. (1982). The Potts model. Reviews of Modern Physics, 54(1):235–268.

300. Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J., and Arnold, F. H. (2019).
Machine learning-assisted directed protein evolution with combinatorial libraries.
Proceedings of the National Academy of Sciences of the United States of America,
116(18):8852–8858.

301. Wylie, C. S. and Shakhnovich, E. I. (2011). A biophysical protein folding model
accounts for most mutational fitness effects in viruses. Proceedings of the National
Academy of Sciences of the United States of America, 108(24):9916–9921.

302. Xu, X. Y., Qi, Y., Liu, J., Fu, L., and Meng, Z. Y. (2017). Self-learning quantum
Monte Carlo method in interacting fermion systems. Physical Review B, 96(4):041119.

http://dx.doi.org/10.1016/0022-2836(91)90695-3
http://dx.doi.org/10.1128/AAC.00320-06
http://dx.doi.org/10.1128/AAC.00320-06
http://dx.doi.org/10.1128/AAC.00320-06
http://dx.doi.org/10.1002/pro.3022
http://dx.doi.org/10.1002/pro.3022
http://dx.doi.org/10.1073/pnas.0805923106
http://dx.doi.org/10.1073/pnas.0805923106
http://dx.doi.org/10.1007/s10955-018-1975-3
http://dx.doi.org/10.1007/s10955-018-1975-3
http://dx.doi.org/10.1016/j.gde.2013.10.007
http://dx.doi.org/10.1016/j.gde.2013.10.007
http://dx.doi.org/10.1007/3-540-46084-5_57
http://dx.doi.org/10.1007/3-540-46084-5_57
http://dx.doi.org/10.1126/science.1243357
http://dx.doi.org/10.1126/science.1243357
http://dx.doi.org/10.1103/PhysRevLett.62.361
http://dx.doi.org/10.1073/pnas.97.7.3288
http://dx.doi.org/10.1073/pnas.97.7.3288
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1073/pnas.1901979116
http://dx.doi.org/10.1073/pnas.1017572108
http://dx.doi.org/10.1073/pnas.1017572108
http://dx.doi.org/10.1103/PhysRevB.96.041119
http://dx.doi.org/10.1103/PhysRevB.96.041119


Bibliography 185

303. Yang, G., Anderson, D. W., Baier, F., Dohmen, E., Hong, N., Carr, P. D., Kamerlin,
S. C. L., Jackson, C. J., Bornberg-Bauer, E., and Tokuriki, N. (2019). Higher-order
epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme. Nature
Chemical Biology, 15(11):1120–1128.

304. Yang, J. S., Chen, W. W., Skolnick, J., and Shakhnovich, E. I. (2007). All-atom ab
initio folding of a diverse set of proteins. Structure, 15(1):53–63.

305. Yip, K. M., Fischer, N., Paknia, E., Chari, A., and Stark, H. (2020). Atomic-resolution
protein structure determination by cryo-EM. Nature, 587(7832):157–161.

306. Yoshioka, N., Akagi, Y., and Katsura, H. (2019). Transforming generalized Ising
models into Boltzmann machines. Physical Review E, 99(3):032113.

307. Younes, L. (1999). On the convergence of markovian stochastic algorithms with rapidly
decreasing ergodicity rates. Stochastics and Stochastic Reports, 65(3-4):177–228.

308. Zhang, C., Mortuza, S. M., He, B., Wang, Y., and Zhang, Y. (2018). Template-based
and free modeling of I-TASSER and QUARK pipelines using predicted contact maps
in CASP12. Proteins, 86 Suppl 1:136–151.

309. Zhao, V. Y., Rodrigues, J. V., Lozovsky, E. R., Hartl, D. L., and Shakhnovich, E. I.
(2021). Switching an active site helix in dihydrofolate reductase reveals limits to
sub-domain modularity. Biophysical Journal.

http://dx.doi.org/10.1038/s41589-019-0386-3
http://dx.doi.org/10.1038/s41589-019-0386-3
http://dx.doi.org/10.1016/j.str.2006.11.010
http://dx.doi.org/10.1016/j.str.2006.11.010
http://dx.doi.org/10.1038/s41586-020-2833-4
http://dx.doi.org/10.1038/s41586-020-2833-4
http://dx.doi.org/10.1103/PhysRevE.99.032113
http://dx.doi.org/10.1103/PhysRevE.99.032113
http://dx.doi.org/10.1080/17442509908834179
http://dx.doi.org/10.1080/17442509908834179
http://dx.doi.org/10.1002/prot.25414
http://dx.doi.org/10.1002/prot.25414
http://dx.doi.org/10.1002/prot.25414
http://dx.doi.org/10.1016/j.bpj.2021.09.032
http://dx.doi.org/10.1016/j.bpj.2021.09.032






MOTS CLÉS

Machines de Boltzmann Restreintes, Échantillonage, Apprentissage de représentations, β-lactamases, TEM-
1, Épistasie

RÉSUMÉ

Tout au long de cette thèse de doctorat, nous étudierons les propriétés d’échantillonnage des machines de Boltzmann
restreintes (RBM), des réseaux de neurones à deux couches utilisés pour l’apprentissage non supervisé de distributions
de modèles à partir de données. Dans le cas de l’algorithme d’échantillonnage canonique de ces réseaux de neurones,
l’échantillonnage alterné de Gibbs, nous montrerons qu’il est possible de trouver des trajectoires optimales entre des
minima locaux du paysage énergétique, mais que ces trajectoires passent par de grandes barrières d’énergie libre. Le
temps caractéristique pour passer d’un minimum à l’autre est exponentiel dans la taille du système. Par conséquent, cet
algorithme est tout aussi inefficace qu’un échantillonnage naïf basé sur l’algorithme de Metropolis-Hastings.

Nous allons montrer qu’il est possible d’utiliser les représentations apprises par les machines de Boltzmann restreintes
pour accélérer l’échantillonnage. Lorsque les unités cachées codent des caractéristiques essentiellement indépendantes
des données, ou sont corrélées par blocs de faible dimension, la mise à jour d’une, ou d’un petit nombre d’unités cachées
avec l’algorithme de Metropolis-Hastings dans l’espace caché permet un changement macroscopique des unités visibles
et offre un mélange rapide entre les minima. Dans le cas d’une représentation intriquée, l’utilisation d’une pile de RBM
couplées via l’algorithme de Deep Tempering améliore l’échantillonnage.

Nous nous intéresserons également à la protéine β-lactamase TEM-1 et montrerons que la plupart des mutations présen-
tent un schéma macroscopique d’épistasie qui peut être capturé par un modèle biophysique simple à deux niveaux, qui
prédit l’émergence de l’épistasie sur la base des effets additifs des mutations. Nous utiliserons de plus des modèles issus
de la physique statistique, comme les RBM entrainées sur des alignements de séquences, pour étudier théoriquement
les effets de ces mutations et identifier des groupes d’acides aminés encodant des fonctionnalités particulières de la
classe A des β-lactamases.

ABSTRACT

Throughout this Ph.D. thesis, we will study the sampling properties of Restricted Boltzmann Machines (RBM),
bi-layer neural networks used for the unsupervised learning of model distributions from data. In the case of the
canonical sampling algorithm of this neural network, the Alternating Gibbs Sampling, we will show that it is possible
to find optimal trajectories between local minima of the energy landscape, but that these trajectories pass through
large free energy barriers. The characteristic time to go from one minimum to another is exponential in the size of
the system. Therefore, this algorithm is just as inefficient as a naive sampling based on the Metropolis-Hastings algorithm.

We will show that using the representations learned by the Restricted Boltzmann Machines is possible to speed
up the sampling. When hidden units encode essentially independent data features or are low dimensional block-
correlated, updating of one or a small number of hidden units with Metropolis-Hastings algorithm in the hidden
space allows for a macroscopic change of visible units and offers rapid mixing between minima. Furthermore, using
a stack of coupled RBM via the Deep Tempering algorithm improves the sampling in the case of entangled representation.

We will also focus our interest on β-lactamase TEM-1 protein and show that most mutations have a macroscopic pattern
of epistasis which can be captured by a simple biophysical two-state model that predicts the emergence of epistasis
based on the additive effects of mutation. We will also use models from statistical physics, such as RBM trained on
sequence alignments, to theoretically study the effects of these mutations and identify amino acid clusters encoding
particular functionalities of the class A β-lactamases.

KEYWORDS

Restricted Boltzmann Machines, Sampling, Representation learning, β-lactamases, TEM-1, Epistasis
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