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Résumé de la thèse

Dans cette thèse, nous nous intéressons principalement aux modèles semiparamétriques qui ont
reçu beaucoup d’intérêt par leur excellente utilité scientifique et leur complexité théorique in-
trigante. Dans la première partie, nous considérons le problème de l’estimation d’un paramètre
θ, dans un espace de Banach, en maximisant une fonction critère qui dépend d’un paramètre de
nuisance inconnu h, éventuellement de dimension infinie. Nous montrons que le bootstrap m

out of n, dans ce cadre général, est consistant sous des conditions similaires à celles requises
pour la convergence faible des M-estimateurs non-réguliers. Dans ce cadre délicat, des tech-
niques avancées seront nécessaires pour faire face aux estimateurs du paramètre de nuisance à
l’intérieur des fonctions critères non régulières. Nous étudions ensuite le bootstrap échangeable
pour les Z-estimateurs. L’ingrédient principal est l’utilisation originale d’une identité différen-
tielle qui s’applique lorsque la fonction critère aléatoire est linéaire en termes de mesure em-
pirique. Un grand nombre de schémas de rééchantillonnage bootstrap apparaissent comme des
cas particuliers de notre étude. Des exemples d’applications de la littérature sont présentés pour
illustrer la généralité et l’utilité de nos résultats. La deuxième partie est consacrée aux mod-
èles statistiques semiparamétriques de ruptures multiples. L’objectif principal de cette partie est
d’étudier les propriétés asymptotiques des M-estimateurs semiparamétriques avec des fonctions
critères non lisses des paramètres d’un modèle de rupture multiples pour une classe générale
de modèles dans lesquels la forme de la distribution peut changer de segment en segment et
dans lesquels, éventuellement, il y a des paramètres communs à tous les segments. La consis-
tance des M-estimateurs semi-paramétriques des points de rupture est établie et la vitesse de
convergence est déterminée. La normalité asymptotique des M-estimateurs semiparamétriques
des paramètres est établie sous des conditions générales. Nous étendons enfin notre étude au
cadre des données censurées. Nous étudions les performances de nos méthodologies pour des
petits échantillons à travers des études de simulations.

Mots-clés: Processus empirique; M-estimateur; Z-estimateur; Classification; Données cen-
surées; Données manquantes; Convergence faible; Entropie métrique; Échangeable; Rééchan-
tillonnage; Point de ruptures.
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Thesis abstract

In this dissertation we are concerned with semiparametric models. These models have success
and impact in mathematical statistics due to their excellent scientific utility and intriguing the-
oretical complexity. In the first part of the thesis, we consider the problem of the estimation
of a parameter θ, in Banach spaces, maximizing some criterion function which depends on an
unknown nuisance parameter h, possibly infinite-dimensional. We show that the m out of n

bootstrap, in a general setting, is weakly consistent under conditions similar to those required
for weak convergence of the non smooth M-estimators. In this framework, delicate mathe-
matical derivations will be required to cope with estimators of the nuisance parameters inside
non-smooth criterion functions. We then investigate an exchangeable weighted bootstrap for
function-valued estimators defined as a zero point of a function-valued random criterion func-
tion. The main ingredient is the use of a differential identity that applies when the random
criterion function is linear in terms of the empirical measure. A large number of bootstrap re-
sampling schemes emerge as special cases of our settings. Examples of applications from the
literature are given to illustrate the generality and the usefulness of our results. The second
part of the thesis is devoted to the statistical models with multiple change-points. The main pur-
pose of this part is to investigate the asymptotic properties of semiparametric M-estimators with
non-smooth criterion functions of the parameters of multiple change-points model for a general
class of models in which the form of the distribution can change from segment to segment and
in which, possibly, there are parameters that are common to all segments. Consistency of the
semiparametric M-estimators of the change-points is established and the rate of convergence is
determined. The asymptotic normality of the semiparametric M-estimators of the parameters of
the within-segment distributions is established under quite general conditions. We finally extend
our study to the censored data framework. We investigate the performance of our methodologies
for small samples through simulation studies.

Key word Empirical processes; M-estimator; Z-estimator; Classification; Censored data;
Missing data; Weak convergence; Metric entropy; Exchangeable; Bootstrap; Change-points.
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Chapter 1

Introduction

In this thesis we are mainly concerned with semiparametric theory. Semiparametric models
are seen in a simple way as sets of probability distributions that cannot be indexed by only a
Euclidean parameter, i.e., models that are indexed by an infinite dimensional parameter. Semi-
parametric models can vary widely in the amount of structure they impose; for example, they
can range from nonparametric models for which the model consists of all possible probability
distributions, to simple regression models that characterize the regression function parametri-
cally but leave the residual error distribution unspecified. The attention to the semiparametric
models is mainly motivated by the problem of misspecification of statistical models. The semi-
parametric approach to misspecification is to allow the functional form of some components of
the model to be unrestricted. We put less restrictions on the probabilistic constraints that our
data might have by allowing the space of parameters to be partly infinite dimensional. This
approach is an important complement to fully nonparametric models, which may not be very
useful with small amounts of data or data of large dimension.

1.1 Introduction

Statistical problems are described using probability models. That is, the data are considered as a
realization of a vector of random variables X1, . . . ,Xn , where each one of the variables Xi can be
a vector of random variables itself, corresponding to the data collected on the i -th individual in
a sample of n individuals chosen from some population of interest. Each of these Xi , i = 1, . . . ,n

are measurable functions from some probability space, say (Ω,U ,P) to some measurable space
(X ,A ). We assume that the observations are independent and identically distributed, i.e., we
assume an i.i.d. sample. These Xi have a distribution P on (X ,A ), so (X ,A ,P) is a mea-
sure space. One then believes that the distribution P belongs to some statistical or probability
model, where a model consists of a class of distributions or densities that we believe the data is
generated from. The distributions in a model are identified through a set of parameters.

Recall, a statistical inference aims at learning characteristics of the population from a sam-
ple: the population characteristics are parameters and sample characteristics are statistics. The
parameters are unknown then to be more informative about them we need to do estimation by

3



CHAPTER 1. INTRODUCTION

making use of these statistics. The theory of estimation is divided into two main branches;
the first one is parametric estimation, which consists in estimating through parametric models,
defined as follows.

Definition 1.1.0.1 A model P that can be indexed by a Euclidean vector, a vector of a finite
number of real values (the parameters), is called a finite-dimensional parametric model.

For finite-dimensional parametric models, the class of distributions can be described as

P =
{
Pθ : θ ∈Θ⊂Rd

}
. (1.1.1)

The dimension d is some finite positive integer. By considering such a parametric model, we
make a lot of assumptions about the data and then the shape of our distribution is fixed and only
we consider the estimation of the d true unknown parameters to characterize the distribution
of the data. Without making any assumptions on the distribution of the data we obtain the
nonparametric model defined as follows.

Definition 1.1.0.2 A model P containing all probability distributions on the measurable space
(X ,A ), is called a nonparametric model.

In this case, we do not have a finite-dimensional component of the parameter, it is fully infinite-
dimensional. The estimation through this model held the second branch known as a nonpara-
metric estimation. In many practical applications of statistics it is unreasonable to make full
finite dimensional parametric assumptions on the probability distributions of the phenomena
we observe. On the other hand a nonparametric model might lose “too much” of the structure
that nevertheless is at hand. So if we want the flexibility of the nonparametric model and want
to answer the questions that a parametric model allows us to ask, we will choose a model that
is intermediate between them, which is well known as; semiparametric model for which the
theory in this thesis is mainly developed. It is defined as follows.

Definition 1.1.0.3 A model P containing probability distributions described through a param-
eter that contains both a finite-dimensional component and an infinite-dimensional component
is referred to as a semiparametric model.

In this case, the class of distributions is so large that the parameter indexing the model is infinite-
dimensional. Thus, a semiparametric model can be seen as an infinite-dimensional model that is
essentially smaller than the set of all possible distributions. By allowing the space of parameters
to be infinite-dimensional, we are putting less restrictions on the probabilistic constraints that
our data might have. A semiparametric model will be denoted by:

P = {
Pθ,h : θ ∈Θ,h ∈H

}
. (1.1.2)

The main interest will be typically in the finite-dimensional parameter θ ∈ Θ ⊂ Rd , which we
call the parameter of interest and the infinite dimensional part h belonging to a Banach space
H will be referred to the nuisance parameter.
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CHAPTER 1. INTRODUCTION

1.1.1 Examples and motivation

We give some important examples in the study of the semiparametric model, the last two exam-
ples will be used later in the next chapters of this thesis.

Example 1.1.1.1 (Cox model) We observe a pair (T,Z), where T is a survival time and Z is a
covariate. The conditional hazard of T given Z is given by λ(t | z) = λ0(t )eθ

⊤z , where λ0 is an
unknown baseline hazard function, θ is a parameter of interest that expresses the proportional
difference between hazard functions, and the distribution of Z is unrestricted.

Example 1.1.1.2 (Parametric models) Let µ be a fixed σ -finite measure on a sample space
(X ,A ). We observe X with distribution P from the class P = {

Pθ≪µ | θ ∈Θ}
, where θ is

an open subset of Rd and the parametrization θ 7→ Pθ satisfies the following. The mapθ→√
dPθ
dµ from θ to L2(µ) is Fréchet differentiable with derivative s(θ) ∈ Rd . The Fisher d × d

information matrix for θ given by I(θ) = ∫
s(θ)⊤s(θ)dµ is nonsingular. Finally, the map θ→

si (θ) is continuous from θ to L2(µ) for i = 1, . . . ,d . Then P is a (finite dimensional) regular
parametric model. Such a model is of course a special case of a semiparametric model, see
Chapter 2 of Bickel et al. [1993].

Example 1.1.1.3 (Copula model) We observe X = (X1,X2) with two-dimensional distribution

FX (x1, x2) = Gθ (G1 (x1) ,G2 (x2)) ,

where Gθ(·) is a bivariate distribution function known up to the parameter θ and with uniform
marginals. The marginal distribution functions Gi (·) can both be unknown or one can be known.
The purpose of the copula model is to model the covariance structure between X1 and X2 by the
parameter θ without affecting the marginal distributions, see Klaassen and Wellner [1997].

Example 1.1.1.4 (Regression) Let Z and ϵ be two independent random vectors and suppose
that Y = µ(Z;θ)+σ(Z;θ)ϵ for known functions µ and σ. We observe the pair X = (Y,Z). If ϵ
has a parametric distribution and the observed value of Z is treated as a constant, then this is
just a classical regression model. When the distribution of ϵ belongs to an infinite dimensional
set, such as all mean zero distributions, we obtain a semiparametric version of the regression
model, for instance, see Horowitz [2012].

Example 1.1.1.5 (Interval censoring) At the random censoring time C we observe whether the
"death" time T has occurred, i.e. we observe X = (C,∆) where ∆ is the indicator of the event
{T ≤ C}. The distribution of T and C may be as in the previous example, refer to Van Der Laan
and Robins [1998].

Example 1.1.1.6 (Frailty) Let two survival times T1 and T2 conditional on the random variable
(W,Z) be independent with conditional hazards of the form λ(t | z) = wλ0(t )eβ

⊤z . However,
the variable W is not observed but independently of Z it follows a gamma distribution with
mean one and variance θ. Thus W and θ model the unobserved heterogeneity and we observe
X = (T1,T2,Z) , refer to Nielsen et al. [1992].
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CHAPTER 1. INTRODUCTION

Example 1.1.1.7 (Missing at random) Suppose that the second coordinate of (Y1,Y2) sometimes
is missing. If the conditional probability that Y2 is observed depends only on Y1, then we say that
Y2 is missing at random (MAR). The interest parameter is typically a function of the distribution
of Y, for details see van der Vaart [1998].

Example 1.1.1.8 (Random censoring) We observe a survival time T if it occurs before an inde-
pendent censoring time C, otherwise C is observed. If ∆ is the indicator variable for observing
T, then the observation is the pair X = (T∧C,∆). The distribution of T and C may be completely
unknown or T might follow the Cox model in Example 1.1.1.1 in Andersen et al. [1993].

1.2 M- and Z-estimators

We now give the method that will be used to estimate the parameter of interest, say θ0. The most
important method of constructing statistical estimators is to choose the estimator maximizing
some criterion functions. We shall call such estimators M-estimators (from "maximum" or
"minimum"). So an M-estimator θn is the approximate maximum of a data-dependent function.
To be more precise, let the parameter set be a metric space (Θ,d) and let X1, . . . ,Xn be i.i.d.
observations, the common type of the data-dependent function is:

θ 7→ Mn(θ) ≡Pnmθ =
1

n

n∑
i=1

m (θ,Xi ) , (1.2.1)

for known objective function m (θ, ·) on the sample space. By changing the sign of m (θ, ·) we
get the least-squares estimators and by choosing m (θ, ·) = log pθ(·), where pθ(·) is the density of
the observations, we get the corresponding maximum likelihood estimator, these two estimators
are the most important examples included by this method, but there are many examples as well.
In many situations estimators that maximize a certain map also solve a system of equations,
to see this; if the objective function m (θ, ·) is Férechet differentiable with respect to θ, the
maximizing value of the criterion function in (1.2.1) is sought by setting the derivative equal to
zero. We shall refer to such kind of estimators as; Z-estimators (from "zero") i.e., estimators
that satisfies:

ψn(θ) ≡Pnm′
θ =

1

n

n∑
i=1

m′ (θ,Xi ) = 0, (1.2.2)

where m′ (θ,Xi ) = ∂m(θ,Xi )
∂θ . Note that generally in the literature the name M-estimator is also

used for what we call Z-estimator and the distinction between the different types of estimators
is not always made.
Sometimes the maximum of the criterion function Mn is not taken or the estimating equation
ψn does not have an exact solution. Then it is natural to use as an estimator a value that almost
maximizes the criterion function or is near zero. This yields approximate M-estimators or Z-
estimators. Estimators that are sufficiently close to being a point of maximum or a zero often
have the same asymptotic behavior.
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CHAPTER 1. INTRODUCTION

This class of estimators was first introduced by Huber [1967] for the study of the robustness
of has received an important part of the development of modern robust statistics. Huber [1967]
and Serfling [1980] studied their asymptotic properties in parametric models. Pakes and Pollard
[1989] extended these results by using the modern empirical process theory, which we suggest
as in the book of van der Vaart [1998]. Theorems 1.2.0.1 and 1.2.0.2 show the consistency of
M− and Z−estimators while Theorem 1.2.0.3 shows their asymptotic normality.
Clearly, the "asymptotic value" of θ̂n depends on the asymptotic behavior of the functions Mn

andψn . Under suitable normalization there typically exists a deterministic "asymptotic criterion
function" θ 7→ M(θ) and θ 7→ψ(θ), which in general they have the following expression;

M(θ) =Pmθ =
∫

mθdP, (1.2.3)

ψ(θ) =Pm′
θ =

∫
m′
θdP. (1.2.4)

It seems reasonable to expect that the maximizer (zero point) θ̂n of Mn (ψn) respectively, con-
verges to the maximizing (zero) value θ0 of M (ψ) respectively, this is proved in the following
theorems, and we say that θ̂n is (asymptotically) consistent for θ0.

Theorem 1.2.0.1 Let Mn be random functions and let M be a fixed function of θ such that for
every ε> 0

sup
θ∈Θ

|Mn(θ)−M(θ)| P→ 0 (1.2.5)

sup
θ:d(θ,θ0)≥ε

M(θ) < M(θ0) (1.2.6)

Then any sequence of estimators θ̂n with Mn
(
θ̂n

)≥ Mn (θ0)−oP(1) converges in probability to
θ0.

Theorem 1.2.0.2 Let ψn be random vector-valued functions and let ψ be a fixed vector valued
function of θ such that for every ε> 0

sup
θ∈Θ

∥∥ψn(θ)−ψ(θ)
∥∥ P→ 0 (1.2.7)

inf
θ:d(θ,θ0)≥ε

∥ψ(θ)∥ > 0 = ∥∥ψ (θ0)
∥∥ (1.2.8)

Then any sequence of estimators θ̂n such that ψn
(
θ̂n

)= oP(1) converges in probability to θ0.

The natural step after showing the convergence of these estimators concerns the order at which
the discrepancy θ̂n−θ converges to zero which depends on the specific situation, but for estima-
tors based on n replications of an experiment the order is often n−1/2. Then multiplication with
the inverse of this rate creates a proper balance, and the sequence

p
n

(
θ̂n −θ)

converges in dis-
tribution, most often a normal distribution. These statements are characterized in the following
theorem as given in van der Vaart [1998]. Here we can use a characterization of M-estimators
either by maximization or by solving estimating equations.
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Theorem 1.2.0.3 For each θ in an open subset of Euclidean space, let x 7→ m′
θ

(x) be a mea-
surable vector-valued function such that, for every θ1 and θ2 in a neighborhood of θ0 and a
measurable function ṁ with Pṁ2 <∞∥∥∥m′

θ1
(x)−m′

θ2
(x)

∥∥∥≤ ṁ(x)d(θ1,θ2).

Assume that P
∥∥∥m′

θ0

∥∥∥2 <∞ and that the map θ 7→Pm′
θ

is differentiable at θ0, with nonsingular

derivative matrix Vθ0 . If ψn
(
θ̂n

)=Pnm′
θ̂n

= oP
(
n−1/2

)
, and θ̂n

P→ θ0, then

p
n

(
θ̂n −θ0

)=−V−1
θ0

1p
n

n∑
i=1

m′
θ0

(Xi )+oP(1).

In particular, the sequence
p

n
(
θ̂n −θ0

)
is asymptotically normal with mean zero and covari-

ance matrix V−1
θ0

Pm′
θ0

m′
θ0

⊤ (
V−1
θ0

)⊤
.

In some important cases the objective function m (θ, ·) is differentiable which yields the rate of
convergence to be

p
n and M-estimators can treated as Z-estimators. There are other interesting

situations where the objective function is not smooth with respect to the parameter of interest
and then we can’t see M-estimators as Z-estimators which implies, in most cases, that the

p
n-

consistency replaced by some less rate rn . The study of this kind of rates was introduced firstly
by Chernoff [1964] in the study of the median where he showed that θ̂n defined as the maximizer
of the function

θ 7→Pn[θ−1,θ+1],

is the M-estimators of the true value of the median θ0 defined as the maximizer of

θ 7→P[θ−1,θ+1],

converge with rate n1/3, the interested reader can check the example 3.2.13 of van der Vaart and
Wellner [1996] for more detail. Kim and Pollard [1990] extended this result to more general
cases. Before giving theorems for the study of these cases we begin by introducing some nota-
tions which will be used after and their definitions are given in chapter 2. Let Fδ be a class of
functions defined as Fδ =

{
mθ−mθ0 : d(θ,θ0) ≤ δ} with envelope function Fδ, we require the

local bracketing entropy integral to be finite∫ ∞

0
sup
δ<δ0

√
logN[ ]

(
ϵ∥Fδ∥2 ,Fδ,L2(P)dϵ<∞. (1.2.9)

This condition is needed in order to make all the uniform Lindeberg central limit theorems
involved in Theorem 1.2.0.5 work. The next theorem shows the rate of convergence while The-
orem 1.2.0.5 treat the asymptotic distribution for M-estimators based on non smooth objective
function, we note that the most used method here is the argmax theorem: Theorem 2.2.0.1 given
in chapter 2. These theorems are the same as in van der Vaart and Wellner [1996].
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Theorem 1.2.0.4 (Rate of convergence). Let Mn(θ) be stochastic processes indexed by a Eu-
clidean space θ and M : θ 7→R a deterministic function, such that for every θ in a neighborhood
of θ0 and some positive constant c > 0,

M(θ)−M(θ0) ≤−cd 2(θ,θ0).

Furthermore, assume that there exists a function φ such that δ 7→ φ(δ)/δα is decreasing for
some α< 2 and for every n, the centered process Mn −M satisfies

P sup
d(θ,θ0)<δ

|(Mn −M)(θ)− (Mn −M)(θ0)| ≤ φ(δ)p
n

. (1.2.10)

Let
r 2

nφ

(
1

rn

)
≤p

n, for every n.

If the sequence θ̂n satisfies Mn
(
θ̂n

)≥ Mn (θ0)−OP

(
r−2

n

)
and converges in probability to θ0, then

rnd
(
θ̂n ,θ0

)= OP(1). If the displayed conditions are valid for every θ and δ, then the condition
that θ̂n is consistent is unnecessary.

To derive the limit distribution of rn
(
θ̂n −θ0

)
using the argmax theorem, we need to estab-

lish the convergence of a multiple of the processes γ 7→ Pn
(
mθ0+γ/rn −mθ0

)
in ℓ∞(γ : ∥γ∥ ≤ K)

for every K, where ℓ∞(A) denote the set of bounded functions from A to R, Theorems 2.11.22

and 2.11.23 in van der Vaart and Wellner [1996] give the conditions for their weak convergence.

Theorem 1.2.0.5 (Convergence in distribution) For each θ in an open subset of Euclidean
space, let mθ be a measurable function such that θ 7→ M(θ) is twice continuously differentiable
at a point of maximum θ0, with nonsingular second-derivative matrix V. Let the entropy condi-
tion (1.2.9) hold. Assume that for some continuous function φ, such that φ2(δ) ≥PF2

δ
and such

that δ 7→φ(δ)/δα is decreasing for some α< 2, and for every η> 0,

lim
δ↓0

PF2
δ

{
Fδ > ηδ−2φ2(δ)

}
φ2(δ)

= 0,

lim
ε↓0

limsup
δ↓0

sup
∥l−g∥<ε,∥l∥∨∥g∥≤K

P
(
mθ0+δg −mθ0+δl

)2

φ2(δ)
= 0,

lim
δ↓0

P
(
mθ0+δg −mθ0+δl

)2

φ2(δ)
= E(G(g )−G(h))2,

for all K and some zero-mean Gaussian process G such that G(g ) = G(l ) almost surely only if
l = g . Then there exists a version of G with bounded, uniformly continuous sample paths on
compact. Define rn as the solution of r 2

nφ (1/rn) = p
n. If θ̂n nearly maximizes the map θ 7→

Pnmθ for every n and converges in probability to θ0, then the sequence rn
(
θ̂n −θ0

)
converges

in distribution to the unique maximizer γ̂ of the process γ 7→ G(γ)+ 1
2γ

′Vγ.

This theorem provides a good illustration of the combination of the argmax theorem as in 2.2.0.1
and the rate theorem as in Theorem 1.2.0.4 which it should not be viewed as the only approach
for proving the weak convergence.

9



CHAPTER 1. INTRODUCTION

These results concern parametric models which are extended to nonparametric models by many
authors. The maximum likelihood method has been applied for estimating infinitely dimen-
sional parameters, such as cumulative distribution or hazard functions, using entropy methods
Wong and Severini [1991] studied its convergence rate and its asymptotic efficiency in estimat-
ing smooth functionals of the parameter. They obtained consistency of the maximum likelihood
estimator of a nonregular basic parameter at rates of the order nc , with 0 < c < 1/2. Gill [1989]
showed the efficiency of nonparametric maximum likelihood by the von Mises method and then
a revision version was given by Gill and van der Vaart [1993], van der Vaart [1995] extend these
results and he showed the efficiency of infinite-dimensional M-estimators. For more details the
interested reader can refer to the monographs of van der Vaart and Wellner [1996].
In the preceding paragraphs we have introduced some basic results on M-estimators for para-
metric and nonparametric models. As previously mentioned, we are mainly concerned with the
M-estimators for semiparametric models where there is both a Euclidean parameter of interest
θ and a nuisance parameter h. Obviously, the semiparametric maximum likelihood estimators
(MLE) as discussed in Bickel et al. [1993], van der Vaart [1998] and Kosorok [2008] are im-
portant examples of semiparametric M-estimators, where the objective function is the empirical
likelihood one. However, there are numerous other examples of semiparametric M-estimators,
including estimators obtained from misspecified semiparametric likelihoods, least-squares and
least-absolute deviation.
Let X1, . . . ,Xn be i.i.d. observations drawn from a semiparametric model

{
Pθ,h : θ ∈Θ,h ∈H

}
,

where Θ is an open subset of Rd endowed with the Euclidean norm ∥ · ∥ and H is a possibly
infinite-dimensional set with a norm ∥·∥H . Assume that the true unknown parameter is (θ0,h0).
An M-estimator (θ̂n , ĥ) for (θ0,h0) is defined as(

θ̂n , ĥ
)= argmaxMn(θ,h), (1.2.11)

where

(θ,h) 7→ Mn(θ,h) ≡Pnmθ,h = 1

n

n∑
i=1

m (θ,h,Xi ) ,

and m(·, ·, ·) is a known, measurable function defined from Θ×H ×X to R. We assume the
limit criterion function M(θ,h) = Pmθ,h , has a unique and "well-separated" point of maximum
(θ0,h0), i.e., M(θ0,h0) > sup

(θ,h)∉G
M(θ,h) for every open set G that contains (θ0,h0).

Analysis of the asymptotic behavior of M-estimators can be split into three main steps: (1)
establishing consistency; (2) establishing a rate of convergence; and (3) deriving the limiting
distribution.
A typical scheme for studying general semiparametric M-estimators is as follows. First, con-
sistency is established with the argmax theorem as in Theorem 2.2.0.1 or a similar method.
Second, the rate of convergence for the estimators of all parameters can then be obtained from
convergence rate theorem such as Theorem 1.2.0.4. We briefly discuss in the following Section
1.2.1 consistency and rate of convergence results in the semiparametric M-estimation context.
The asymptotic behavior of estimators of the Euclidean parameter can be studied with Theorem
1.2.2.1 presented in Section 1.2.2 below.
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1.2.1 Consistency and Rate of Convergence

The first steps are to establish consistency and rates of convergence for all parameters of the
M-estimator (θ̂n , ĥ). General theory for these aspects is presented in Theorem 1.2.0.4 where the
only parameter θ can replaced by the joint parameter (θ,h).
Consistency of M-estimators can be achieved by careful application of the argmax theorem,
as discussed, for example, in Section 14.2 in Kosorok [2008]. Application of the argmax
theorem often involves certain compactness assumptions on the parameter sets along with
model identifiability. In this context, it is often sufficient to verify that the class of func-
tions

{
mθ,h : θ ∈Θ,h ∈H

}
is P-Glivenko-Cantelli. Such an approach is used in the proof of

consistency for Example 1.2.3.1, given below in Section 1.2.3. More generally, establishing
consistency can be quite difficult.
The basic tool in establishing the rate of convergence for an M-estimator is control of the mod-
ulus of continuity of the empirical criterion function using entropy integrals over the parameter
sets as in (1.2.10). Entropy results in van de Geer [2000] give rate of convergence results for a
large variety of models, as we will demonstrate for Examples 1.2.3.1 and 1.2.3.2.

1.2.2 Weak convergence

In this section, we develop theory for establishing
p

n consistency and asymptotic normality for
the Euclidean parameter θ̂n obtained from a semiparametric objective function m(·). In most
situations in the literature and along this thesis we consider the M-estimator of θ0 is defined by:

θ̂n = argmaxθ∈ΘMn
(
θ, ĥ

)= argmaxθ∈Θ
1

n

n∑
i=1

m
(
θ, ĥ,Xi

)
, (1.2.12)

where we substitute an estimator ĥ for the unknown nuisance parameter h. As mentioned
previously, if the objective function is derivable so the M-estimator can be viewed as Z-estimator
and θ0 is then estimated by solving:

ψn(θ, ĥ) ≡Pm̃θ,ĥ = 1

n

n∑
i=1

m̃
(
θ, ĥ,Xi

)= 0, (1.2.13)

where

m̃ (θ,h) = ∂

∂θ
m(θ,h)+ ∂

∂t

∣∣∣∣
t=0

m(θ,h(t )).

In particular, when m(θ,h) = loglik(θ,h), (1.2.13) trivially holds and m̃(θ,h) becomes the well
studied efficient score function for θ in semiparametric models, see van der Vaart [1998]. Let
ψ(θ,h) = Pm̃θ,h be a deterministic function, which denotes the limit of ψn(θ,h) as n →∞. In
some cases, estimators satisfying (1.2.13) may not exist. Hence (1.2.13) can weakened to the
following “nearly-maximizing” condition:

Pnm̃
(
θ̂n , ĥ

)= oP
(
n−1/2) .

11
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Theorem 1.2.2.1 Suppose that θ̂n satisfying ψn
(
θ̂n , ĥ

) = oP
(
n−1/2

)
is a consistent estimator

of θ0 that is the unique solution to ψ (θ,h0) = 0 in Θ, and that ĥ is an estimator of h0 satisfying∥∥ĥ −h0
∥∥

H = OP

(
n−β) for some β> 0. Suppose that the following conditions are satisfied.

(i) (Stochastic equicontinuity.)∣∣n1/2
(
ψn −ψ)(

θ̂n , ĥ
)−n1/2

(
ψn −ψ)

(θ0,h0)
∣∣

1+n1/2
∣∣ψn

(
θ̂n , ĥ

)∣∣+n1/2
∣∣ψ(

θ̂n , ĥ
)∣∣ = oP(1); (1.2.14)

(ii) n1/2ψn (θ0,h0) = OP(1);

(iii) (Smoothness.) (a) If β = 1/2, function ψ(θ,h) is Fréchet differentiable at (θ0,h0), i.e.,
there exists a continuous and nonsingular d×d matrix ψ̇θ (θ0,h0) and a continuous linear
functional ψ̇h (θ0,h0) such that∣∣ψ(θ,h)−ψ (θ0,h0)− ψ̇θ (θ−θ0)− ψ̇h (θ0,h0) [h −h0]

∣∣= o (|θ−θ0|)
+o (∥h −h0∥) ;

or (b) if 0 < β< 1/2, for some α> 1 satisfying αβ> 1/2 we have∣∣ψ(θ,h)−ψ (θ0,h0)− ψ̇θ (θ−θ0)− ψ̇h (θ0,h0) [h −h0]
∣∣= o (|θ−θ0|)

+O
(∥h −h0∥α

) ;

(iv) n1/2ψ̇h (θ0,h0)
[
ĥ −h0

]= OP(1).

Then θ̂n is n1/2-consistent, and further we have

n1/2 (
θ̂n −θ0

)= {−ψ̇θ (θ0,h0)
}−1 n1/2 {(

ψn −ψ)
(θ0,h0)+ ψ̇h (θ0,h0)

[
ĥ −h0

]}+oP(1).

1.2.3 Examples

Example 1.2.3.1 Cox regression model with right censored data. In the Cox regression model,
the hazard function of the survival time T of a subject with covariate Z is modeled as

λ(t | z) ≡ lim
∆→0

1

∆
P(t ≤ T < t +∆ | T ≥ t ,Z = z) = λ(t )exp

(
θ⊤z

)
,

where λ(·) is an unspecified baseline hazard function and θ is a regression vector. In this model,
we are usually interested in θ while treating the cumulative hazard function h(y) = ∫ y

0 λ(t )d t

as the nuisance parameter. The MLE for θ is proven to be semiparametric efficient and widely
used in applications. Here we consider the estimation θ0, which corresponds to the study of the
log-likelihood as the criterion function m(θ,h).

With right censoring of survival time, the data observed is X = (Y,δ,Z), where Y = T∧C: C

is a censoring time, δ = 1I{T ≤ C}, and Z is a regression covariate belonging to a compact set
Z⊂Rd . We assume that C is independent of T given Z. The log-likelihood is obtained as

m(θ,h) = δθ⊤z −exp
(
θ⊤z

)
h(y)+δ logh{y},

12
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where h{y} = h(y)−h(y−) is a point mass that denotes the jump of h at point y . The parameter
space H is restricted to a set of non decreasing cadlag functions on the interval [0,τ] with
h(τ) ≤ C for some constant C, see chapter 2 for the definition of cadlag functions. By some
algebra, we have

m̃(θ,h)(x) = ∂

∂θ
m(θ,h)+ ∂

∂t

∣∣∣∣
t=0

m(θ,h(t ))

= [
δz − z exp

(
θ⊤z

)
h(y)

]
−

[
δH†(θ,h)(y)−exp

(
θ⊤z

)∫ y

0
H†(θ,h)(u)dh(u)

]
,

where

H†(θ,h)(y) = Pθ,hZexp
(
θ⊤Z

)
1{Y ≥ y}

Pθ,h exp
(
θ⊤Z

)
1{Y ≥ y}

.

Conditions of Theorem 1.2.2.1 were verified in Cheng [2009]. The convergence rate β= 1/2 of
the estimated nuisance parameter is established in Theorem 3.1 of Murphy and Van Der Vaart
[1999], then n1/2

(
θ̂n −θ0

)
converges in distribution to N (0,V), where

V =
[{

(∂/∂θ)|θ=θ0Pm̃θ,h0

}−1
]
Pm̃θ0,h0 m̃⊤

θ0,h0

[{
(∂/∂θ)|θ=θ0Pm̃θ,h0

}−1
]⊤

. (1.2.15)

Example 1.2.3.2 Cox regression model with current status data. Current status data arises
when each subject is observed at a single examination time, Y, to determine if an event has
occurred. The event time, T, cannot be known exactly. If a vector of covariates, Z, is also
available, then the observed data are n i.i.d. realizations of X = (Y,δ,Z) ∈R+×{0,1}×Rd , where
δ = 1I{T ≤ Y}. The model of the conditional hazard given Z is the same as in the previous ex-
ample. Throughout the remainder of the discussion, we make the following assumptions: T

and Y are independent given Z. Z lies in a compact set almost surely and the covariance of
Z− E(Z | Y) is positive definite which guarantees the efficient information to be positive defi-
nite. Y admits a Lebesgue density which is continuous and positive on its support [σ,τ], for
which the true nuisance parameter h0 satisfies h0(σ−) > 0 and h0(τ) <C<∞, and this density
is continuously differentiable on [σ,τ] with derivative bounded above and bounded below by
zero. Under these assumptions the maximum likelihood estimator of (θ,h) exists, θ̂n is asymp-
totically efficient and

∥∥ĥ −h0
∥∥

L2
= Op

(
n−1/3

)
, where ∥ · ∥L2 is the norm on L2([σ,τ]). This is

done by defining d((θ,h), (θ0,h0)) = ∥θ−θ0∥+∥h −h0∥L2 , we use (θ,h) instead of θ and tak-
ing φ(δ) =p

δ
(
1+

p
δ

δ2pn

)
in (1.2.10) under entropy conditions as in example 25.11.1 of van der

Vaart [1998] we can conclude a convergence rate of n1/3 for both ∥θ̂n −θ0∥ and ∥ĥ −h0∥L2 .
The n1/3 convergence rate is optimal for the estimation of h, as discussed in Groeneboom and
Wellner [1992]. Note that the conditions on the density of Y ensure that ∥h −h0∥L2 is equivalent

to
(∫ τ
σ

(
h(y)−h0(y)

)2 dFY(y)
)1/2

, where FY(y) is the distribution of the observation time Y. The
corresponding criterion function, that is, the loglikelihood, is derived as

m(θ,h) = δ log
[
1−exp

(−h(y)exp
(
θ⊤z

))]− (1−δ)exp
(
θ⊤z

)
h(y),

13
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then the score function is given, for a ∈ L2([σ,τ]), by

m̃(θ,h) = ∂

∂θ
m(θ,h)+ ∂

∂t

∣∣∣∣
t=0

m(θ,h(t ))

= (zh(c)−a(c))Q(x;θ,h),

where

Q(x;θ,h) = eθ
⊤z

 δ

exp
(
eθ

⊤zh(c)
)
−1

− (1−δ)


and

a(c) = h(y)
Pθ,h

(
ZQ2 (X;θ,h) | Y = y

)
Pθ,h

(
Q2 (X;θ,h) | Y = y

) .

For more detail see Cheng and Kosorok [2008]. The conditions of Theorem 1.2.2.1 were verified
in the same reference then asymptotic normality of θ̂n holds with variance has the same form
as in (1.2.15).

It is well known that the asymptotic inferences of semiparametric models often face practical
challenges. In particular, the confidence set construction and the asymptotic variance estimation
of the estimator for the Euclidean parameter as in (1.2.15), both involve estimating and invert-
ing, hard to estimate, infinite-dimensional operators. One of the most used and it’s a powerful
method in statistics is the bootstrap method, introduced by Efron [1979] and Efron [1982], who
gave a natural way to circumvent the difficulties if its asymptotic validity is established and
the feasibility of evaluating M-estimators repeatedly is compatible with available computing
resources.

Theoretically, the bootstrap technique is validated for a given problem or a class of problems
if we can prove its "consistency": conditional on the observed data, the bootstrap distribution
has the same asymptotic behavior, either in probability or almost surely, as the sampling distri-
bution of the original estimator, appropriately centered and scaled see for instance Gill [1989],
Giné and Zinn [1990], Præstgaard and Wellner [1993] and Barbe and Bertail [1995]. Princi-
pally, we can expect that the asymptotic validity of the nonparametric bootstrap can be proved
in a similar way as the asymptotic normality is proved. However, the asymptotic normality of
some well-known estimators in many important models has often been explored in the context
of those particular models, and it is often not easy to see how to generalize the techniques to
obtain asymptotic validity of the nonparametric bootstrap due to the technicalities involved in
those models. As discussed before the method of M-estimation provides a general framework
that contains many of these estimators. General limit theorems for M-estimators certainly help
to envision the common theme behind those examples, not to reinvent the wheel each time a
new problem comes up. Note that such a generalisation provides a clean proof for the cor-
responding bootstrap limit theorems, given the asymptotic results now available for bootstrap
empirical processes, for instance, in Giné and Zinn [1990] and Præstgaard and Wellner [1993].

The transfer from a central limit theorem for M-estimators to the corresponding bootstrap
limit theorem is based on the fact that the usual stochastic equicontinuity as in (1.2.14) implies
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bootstrap equicontinuity under a mild integrability condition which will be discussed in the next
chapters. This proof relies on a multiplier inequality similar to that developed by Præstgaard
and Wellner [1993]. This type of inequality has different versions in the literature as in Giné
and Zinn [1990] and van der Vaart and Wellner [1996] all of them based on a simple formula
of summation by parts. For recent reference on the subject, we refer to Cheng [2015] where the
general Lp multiplier inequality is developed.

Arcones and Giné [1992] combined the work of Huber [1967] and Pakes and Pollard [1989]
on M-estimators with Giné and Zinn [1990] bootstrap central limit theorem for empirical pro-
cesses to obtain a.s. bootstrap limit theorems with Efron’s multinomial weights for finite dimen-
sional M-estimators. Their results make use of stronger conditions on the remainder functions
than stochastic equicontinuity. These conditions would be much more difficult to verify in in-
finite dimensional spaces if a generalization was available. On the other hand, validity of the
nonparametric bootstrap in probability is strong enough for practical purposes, which is the rea-
son why we confine ourselves to the “in probability” versions of the bootstrap limit theorems
for M-estimators in this thesis. The nonparametric bootstrap technique has been extended to es-
timating the posterior distribution for some statistics. The idea is to explore the new possibility
brought by considering bootstrap weights other than Efron’s multinomial weights. This gen-
eral resampling scheme was first introduced by Rubin [1981], and extensively studied by Barbe
and Bertail [1995], who suggested the name “Weighted bootstrap” and in Mason and Newton
[1992] and Præstgaard and Wellner [1993], who showed that, for a large class of exchangeable
weights, the bootstrap empirical processes are asymptotically validated both in probability and
almost surely sense. Note that other version of Efron’s bootstrap are also studied in Chatterjee
and Bose [2005] using the term “Generalized bootstrap”. Wellner and Zhan [1996] treated the
bootstrapped version of Z-estimators, which had given by van der Vaart [1995] in a nonpara-
metric setting, see also Kosorok [2008]. For semiparametric models, Ma and Kosorok [2005]
obtained some theoretical results in the case that the bootstrap weights are assumed to be i.i.d.
Dixon et al. [2005] studied the piggyback bootstrap which is invented solely to draw inferences
for the functional parameter h when it is

p
n-consistence. Then Cheng and Huang [2010] gave

the general theory for the “Weighted bootstrap”, and they used examples given in section 1.2.3
to illustrate the applications of their results. As noted before if the objective function is not
smooth, the rate of convergence will not be

p
n and the bootstrap theory is destroyed, this is

well known from Knight [1998]’s works. He showed that for the one dimensional median, the
“usual” bootstrap is not consistent in non regular situations while the m out of n bootstrap is
consistent. This result was generalised to the m out of n bootstrap for nonstandard M-estimators
by Bose and Chatterjee [2001]. Lee and Pun [2006] gave the result in the presence of nuisance
parameters in parametric models. Then Lee [2010] proved the consistency of such kind of
bootstrap in a nonparametric setting. The latest results in this kind of M-estimators are consid-
ered by Delsol and Van Keilegom [2020] in semiparametric framework as in (1.2.12), where
they showed that under general conditions rn

(
θ̂n −θ0

)
is asymptotically normal. In the last

mentioned reference no bootstrap result is investigated.
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1.3 Change-points problems

There are many fields of applications where the parameter of interest θ may change from seg-
ment to segment. To be more precise, let us assume that we have a sequence of independent
variable X1, . . . ,Xn and there exist unknown point n1, . . . ,nk ; 0 = n0 < n1 < ·· · < nk < nk+1 = n,
such that, for each j = 1,2, . . . ,k +1; Xn j−1+1, . . . ,Xn j are identically distributed with a distribu-
tion that depends on j ; Fn j (·), this is the well known change-points model. The study of the
change-points problem was originally stated by Page [1954], Page [1955] and Page [1957] who
first proposed a procedure to detect only one change in a parameter. These models are used in a
wide variety of fields, including financial modeling Talih and Hengartner [2005], bioinformat-
ics Muggeo and Adelfio [2011], signal processing Kim et al. [2009], climatology Reeves et al.
[2007], and medical imaging Nam et al. [2012]. Many further examples are provided in the
monographs Chen and Gupta [2000] and Csörgő and Horváth [1997]. These specific applica-
tions may be concerned with changes in the mean, variance, correlation, regression coefficients,
or other measures. The parameter of interest θ can change as in these two cases.

1. Change in mean: the mean of Xi is given by

θi =



θ1, if 1 ≤ i ≤ n1,

θ2, if n1 +1 ≤ i ≤ n2,

·
·
·

θk+1, if nk +1 ≤ i ≤ n,

where θ1 ̸= θ2 ̸= · · · ̸= θk+1 and the discrete unknown parameter ni indicates the location
of the change-points in the sample.

2. Change in variance: the variance of Xi is given by

θi =



θ1, if 1 ≤ i ≤ n1,

θ2, if n1 +1 ≤ i ≤ n2,

·
·
·

θk+1, if nk +1 ≤ i ≤ n,

where θ1 ̸= θ2 ̸= · · · ̸= θk+1 and the discrete unknown parameter ni indicates the location
of the change-points in the sample.

Figure 1.1 below illustrates changes in each of these properties on two separate plots.
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Figure 1.1: Change-points in means (left) and variances (right) of data generated by samples from a
Gaussian distribution.

It is important to study the asymptotic behaviour of a change-point estimator, which includes
its consistency, its convergence rate as well as its asymptotic distribution.

Over the years, considerable attention has been devoted to testing and estimation about the
change-points. We list methods that could be used in change-point detection tests in literature;
Least-square tests, Bayesian analysis tests, maximum likelihood ratio tests, and nonparametric
tests are the most widely used among them.

For a single change-point, as in Page [1957], it is assumed that the samples were generated
from the same distribution but with different parameters. The estimated location of change-
point is the one that maximizes the likelihood function of the hypothesis and the author firstly
introduced the CUSUM algorithm in the change-point detection problem. Fisher [1958] is the
first to apply the least-squares criterion for a change-point problem to the best of our knowledge.
Note that his approach does not come from likelihood maximization but rather from variance
minimization. Chernoff and Zacks [1964] estimated the current mean of a normal distribution
which was subjected to changes in time. Hinkley [1970] considered the likelihood-based infer-
ence to obtain the asymptotic distribution of the maximum likelihood estimator of the change-
point under the assumption that the other parameters in the model are known. Hinkley [1972]
argued that this asymptotic distribution is also valid when the parameters are unknown. Tang
and Gupta [1987] extended the likelihood based approach to the model with a change in vari-
ance within normally distributed observations. Yao and Au [1989] proved that the estimated
change-point is consistent in probability under mild assumptions, namely the continuity of the
cumulative distribution function of the observations and a moment hypothesis. These assump-
tions are weakened further in Bai and Perron [1998] and the minimax convergence rate of 1/n
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is obtained, here n is the sample size. The least-squares estimation procedure was also shown
to be consistent in the case of dependent processes (ARMA) with a single change-point in Bai
[1994]. This work extended for weak dependent processes (mixingales) by Bai and Perron
[1998]. The technique of using Bayesian inference was applied as a technical device leading to
simple robust procedures. A quadratic loss function was used to derive a Bayesian estimator of
the current mean for a priori probability distribution on the entire real line, for instance see Chen
and Gupta [1997]. Chen [1998] studied the problem of change in the regression coefficients of
a linear regression model. Horváth and Rice [2014] studied the change-point problem in the
mean of a normal distribution. Dong et al. [2015] studied the change-point in the variance of
measurement error and explored its convergence rate.

While in multiple change-points; Chen and Gupta [1997] explored testing and locating mul-
tiple variance change-points in a sequence of independent Gaussian random variables, assuming
known and common mean. Lavielle [1999]; Lavielle and Ludeña [2000] showed the consis-
tency of the least-squares estimate when the number of change-points is known for a large class
of dependent processes. He and Severini [2010] showed the rate of convergence of the maxi-
mum likelihood estimator for the change-points under a compactness hypothesis and technical
assumptions on the behavior of the log-likelihood function assuming the number of changes
is known. In the same vein, by using the nonparametric theory of U-statistics Döring [2011]
proved the convergence in distribution for the multiple change-points estimators. Hušková and
Meintanis [2006] considered a test statistic based on empirical characteristic function, and in-
vestigated the probability of type I error and the power of the test by some simulation studies,
for the change in distribution. Zou et al. [2014] proposed a nonparametric maximum likelihood
approach to detect multiple change-points without any parametric assumption on the underlying
distributions of the dataset, when the number of changes is unknown. Thus, it is suitable for
detection of any change in the distributions.

1.4 Organization of the dissertation

Chapter 2. Mathematical background

This chapter is devoted to the preliminary results for a few specific topics which we will need
to be self-contained and better understand the forthcoming chapters. We also review some of
the standard facts concerning empirical processes and their weak convergence, with special
attention given to the basic tools needed in the treatment of M-estimators and their bootstrap.
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Chapter 3. General M-Estimator Processes and their m out of n Bootstrap
with Functional Nuisance Parameters

Let us consider the problem of the estimation of some parameter of interest parameter θ, by
maximizing some criterion function as follows

θ̂n = argmaxθ∈ΘMn
(
θ, ĥ

)= argmaxθ∈Θ
1

n

n∑
i=1

m
(
θ, ĥ,Xi

)
,

where we substitute an estimator ĥ for the unknown nuisance parameter h, which belongs
to some infinite-dimensional space. Classical estimation methods are mainly based on maxi-
mizing the corresponding empirical criterion by substituting the nuisance parameter by some
nonparametric estimator. In the context of non smooth objective function Delsol and Van Kei-
legom [2020] studied the asymptotic properties of the M-estimator of the parameter θ and they
showed that it converges weakly to a maximizers of Gaussian processes in the case of Euclidean
parameter with rate slower than

p
n, which is known in this kind of situations. It’s well known

also that the conventional bootstrap method fails in general to consistently estimate the limit
law of this M-estimator. In this chapter; firstly, we extend the work of Delsol and Van Keilegom
[2020] by proving the weak convergence of the estimator of the parameter of interest θ, which
we suppose it belongs to some Banach space under general conditions by using closed bounded
subset instead of compact subset, which is given in the part (i ) of Theorem 3.3.3.3. Then we
show that the m out of n bootstrap, in this general setting, is weakly consistent under conditions
similar to those required for weak convergence of the M-estimators extending of the work of
Lee [2010] to semiparametric framework this is in part (i i ) of Theorem 3.3.3.3. We do this
by first establishing abstract results on the empirical processes in Theorem 3.3.3.2. Non trivial
Examples of applications from the literature are given to illustrate the generality and the use-
fulness of our results. To be more precise, we have considered in detail the single index model
with monotone link function in Section 3.4.1, the classification with missing data in Section
3.4.2 and the binary choice model with missing data in Section 3.4.3. Finally, we investigate
the performance of the methodology for small samples through a simulation study for the model
described in Section 3.4.2. In our simulation we were faced with the delicate problem of the
choice of the bootstrap sample size, we refer to Remark 3.3.3.6.

Chapter 4. Central limit theorems for functional Z-estimators with Func-
tional Nuisance Parameters

In this chapter we study ways of bootstrapping the Z-estimators with bootstrap weights differ-
ent from the multinomial ones which yield the ordinary (or Efron’s) bootstrap. More specifi-
cally, we consider an exchangeably weighted bootstrap for function-valued estimators defined
as a zero point of a function-valued random criterion function. We suppose that the bootstrap
weights W = {Wni , i = 1,2, . . . ,n,n = 1,2, . . .} are a triangular array defined on the probability
space (Z ,E , P̂). Let Wn ≡ (Wn1, . . . ,Wnn) be an exchangeable vector of nonnegative weights
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which sum to n. Then the exchangeably weighted bootstrap empirical measure is defined by

P̂n = 1

n

n∑
i=1

WniδXi .

The bootstrap scores are defined by

ψ
(
θ, P̂n

)
(h) = P̂nB(θ)(h) for h ∈H .

A bootstrap asymptotic Z-estimator θ̂
∗
n makes the bootstrap scores or estimating equations

ψ
(
θ, P̂n

)
approximately zero (in probability), i.e.,

∥∥∥ψ(
θ̂
∗
n , P̂n

)∥∥∥
H

= oP∗
(
n−1/2) ,

where P ≡ P∞× P̂. A large number of bootstrap resampling schemes emerge as special cases
of our settings. The main ingredient is the use of a differential identity that applies when the
random criterion function is linear in terms of the empirical measure, given in (4.2.14). We have
extended this identity to the semiparametric case, which is of independent interest. Our results
presented in Theorem 4.2.2.8 are general and do not require linearity of the statistical model in
the unknown parameter. The bootstrap limit theorem based on the linearity identity allows the
validity of bootstrap to be established with respect to a possibly different norm not equivalent
to the one under which the consistency is established. Then we apply these results to justify
the bootstrap validity of drawing nonparametric inferences in three complex examples; random
right censoring, a simplified frailty model and the double censoring model of nonparametric
models. We also consider the semiparametric models and we extend the work of Zhan [2002]
to a more delicate framework. The theoretical results established in this chapter, are (or will be)
key tools for many further developments in the parametric and the semiparametric models.

Chapter 5. Asymptotic Properties of Semiparametric M-Estimators with
Multiple change points

This chapter focuses primarily on the multiple change-points problems in the framework of
semiparametric models with smooth objective function. We are interested in models when
the distribution of the data is characterized by two parameters of interest, the first one can
change from segment to segment and the other is common to all segments where the nuisance
parameter may depend on it. Suppose that there exists a random real-valued function Mn :

Υ×∏k+1
j=1 Θ j ×H −→ R depending on the data X1, . . . ,Xn , such that Mn(α,θ1, . . . ,θk+1,λ,h0) is

an approximation of M(α,θ1, . . . ,θk+1,h0). In many situations, we have that

M(α,θ1, . . . ,θk+1,λ,h) =
k+1∑
j=1

(n j −n j−1

n

)
E[m j (Xn j ,α,θ j ,h)],

and

Mn(α,θ1, . . . ,θk+1,λ,h) = 1

n

k+1∑
j=1

n j∑
i=n j−1+1

m j (Xi ,α,θ j ,h),

20



CHAPTER 1. INTRODUCTION

where m j (·) are a measurable real-valued functions for any 1 ≤ j ≤ k +1 such that

(α0,θ0
1, . . . ,θ0

k+1,n0
1, . . . ,n0

k ) = argmax
0<n1<n2<···<n;θ j∈Θ j ,1≤ j≤k+1,α∈Υ

M(α,θ1, . . . ,θk+1,λ,h0).

Statistical models on this setting are used in many fields; however, the theoretical properties
of semiparametric M-estimators of such models have received relatively little attention. The
main purpose of this chapter is to investigate the asymptotic properties of semiparametric M-
estimators with non-smooth criterion functions for a general class of models. These problems
form a basically unsolved open problem in the literature. In this general framework, delicate
mathematical derivations will be required to cope with estimators of the nuisance parameter
inside non-smooth criterion functions, which is not the case in the standard estimation prob-
lems with smooth criterion functions. Consistency of the semiparametric M-estimators of the
change-points is established and the rate of convergence is determined in Theorems 5.3.1.1 and
5.3.2.1, respectively. The asymptotic normality of the semiparametric M-estimators of the pa-
rameters of the within-segment distributions is established under quite general conditions in
Theorem 5.3.3.2. These results, together with a generic paradigm for studying semiparamet-
ric M-estimators with multiple change-points, provide a valuable extension to previous related
research on semiparametric maximum-likelihood estimators. Our theoretical are applied in the
classification problem with missing data in the presence of multiple change-points, the details
are given in Section 5.3.4. For illustration, we investigate the classification with missing data
through a short simulation result.

Chapter 6. Asymptotic properties of M-estimators based on estimating
equations and censored data in semi-parametric models with multiple change
points

This chapter is devoted to the study of multiple change-points in the general setting of the M-
(Z-)estimators where the data are right censored. Survival data in clinical trials or failure time
data in reliability studies, for example, are often subject to such censoring. To be more specific,
many statistical experiments result in incomplete samples, even under well-controlled condi-
tions. For example, clinical data for surviving most types of disease are usually censored by
other competing risks to life which result in death. We assume that the distributions of the ran-
dom variables and the censored random variables change from segment to segment in the same
time; this yields a change in the nuisance parameter which is estimated by the Kaplan-Meier
estimator in this case. We assume also that the distribution has a common interest parameter
for all segments. This setting is harder than in Chapter 5 due to the change of the Kaplan-
Meier estimator. This situation is not studied in literature, and gives the main motivation of the
work. More precisely, we estimate the unknown parameters n j , α and θ j , j = 1, . . . ,k + 1 by
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maximizing the estimating equations defined by:

ℓ≡ ℓ(α,θ1, . . . ,θk+1,n1, . . . ,nk ) =
k+1∑
j=1

(n j −n j−1)

n

∫
R

m j (α,θ j , x)d F̂n j (x),

(1.4.1)

where 1− F̂n j (·) is the usual Kaplan-Meier product limit estimator of 1−Fn j (·) introduced by
Kaplan and Meier [1958] and defined by

1− F̂n j (x) =
n j∏

i=n j−1+1

(
1− di

ni

)1I{Y(i )≤x}
, (1.4.2)

where

ri =
n j∑

k=n j−1+1
1I{Y(i )≤Yk }

and

di =
n j∑

k=n j−1+1
1I{Y(i )=Yk ,δk=1},

denoting the number of individuals still at risk at time Y(i ) and the number of deaths at time
Y(i ) respectively, and Y(i ) denotes the order statistic of Yn j−1+1, . . . ,Yn j and 1IE denoting the in-
dicator function of E. For each sample Xn j−1+1, . . . ,Xn j , j = 1, . . . ,k +1, and m j (·, ·, ·) is a given
measurable function from Υ×Θ j ×R to R; where Υ and Θ j are the parameter spaces of α and
θ j for j = 1, . . . ,k +1, respectively. He and Severini [2010] showed the asymptotic properties
of the maximum likelihood estimators of the change-points and the parameters of the distri-
bution in parametric case with complete data, here we extend their results to the case of the
M-estimators for semiparametric models in the presence of censored data. We investigate the
asymptotic properties of M-estimators of the parameters of a multiple change-points model for
a general class of models in which the form of the distribution can change from segment to seg-
ment and in which, possibly, there is a parameter that is common to all segments, in the setting
of a known number of change-points. Consistency of the M-estimators of the change-points is
established and the rate of convergence is determined as in Theorems 6.3.0.1 and 6.3.0.3. The
asymptotic normality of the M-estimators of the parameters of the within-segment distributions
is established via Theorem 6.4.0.4. Since the approaches used in the complete data models are
not easily extended to multiple change-points models in the presence of censoring, where we
have used some general results of Kaplan-Meier integrals. We investigate the performance of
the methodology for samples through a simulation study. We have considered several scenarios
to illustrate the performances of the proposed methodology, in particular we have considered
the situation of 10 changes in the sample that presents hard problems for the optimization pro-
cedures.
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Chapter 2

Mathematical background

2.1 Mathematical Background

In this chapter, we present some of the basic tools and concepts that will be used in the remain-
der of this thesis. In particular, we make a presentation of the most essential notions and tools
concerning semiparametric theory, this being with the most important bibliographical references
(for more details, we refer to Bickel et al. [1993], van der Vaart and Wellner [1996] van der Vaart
[1998] and Kosorok [2008]). More precisely, we review important aspects of semiparametric
theory and empirical processes that we need to better understand the main results. We begin
by introducing Metric spaces, which are crucial since they provide the descriptive language by
which the most important results about stochastic processes are derived and expressed. Outer
expectations and outer integrals are crucial to the definition and use of the outer modes of con-
vergence for quantities which are not measurable. Since many statistical quantities of interest
are not measurable with respect to the uniform topology, which is often the topology of choice
for applications. Linear operators and functional derivatives also play a major role in empirical
process methods and are key tools for Z (M)-estimator theory.

2.1.1 Metric Spaces

We introduce some concepts and results for metric spaces. Before giving the definition of metric
spaces, we briefly review the topological spaces, the σ-fields, and the measure spaces.

Definition 2.1.1.1 A collection O of subsets of a set X is a topology in X if:

(i) ;∈O and X ∈O , where ; is the empty set;

(ii) If U j ∈O for j = 1, . . . , l , then
l⋂

j=1
U j ∈O ;

(iii) If {Ui }i∈I is an arbitrary collection of members of O (finite, countable or uncountable),
then

⋃
i∈I

Ui ∈O .
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When O is a topology in X , then X (or the pair (X ,O )) is a topological space, and the members
of O are called the open sets in X . For a subset A ⊂X , the relative topology on A consists of the
sets {A∩B : B ∈O }. A set B in X is closed if and only if its complement in X , denoted X −B,
is open. The closure of an arbitrary set E ∈X , denoted Ē, is the smallest closed set containing
E; while the interior of an arbitrary set E ∈ X , denoted E◦, is the largest open set contained in
E. A subset A of a topological space X is dense if Ā =X . A topological space X is separable
if it has a countable dense subset.

Definition 2.1.1.2 A collection A of subsets of a set X is a σ-field in X (sometimes called a
σ-algebra ) if:

(i) X ∈A ;

(ii) If U ∈A , then X−U ∈A ;

(iii) The countable union
∞⋃

j=1
U j ∈A whenever U j ∈A for all j ≥ 1.

When A is a σ-field in X , then X (or the pair (X ,A )) is a measurable space, and the members
of A are called the measurable sets in X .

Definition 2.1.1.3 For a σ-field A in a set X , a map µ : A 7→R is a measure if:

(i) µ(A) ∈ [0,∞] for all A ∈A ;

(ii) µ(;) = 0;

(iii) For a disjoint sequence
{

A j
} ∈A ,µ

(
∞⋃

j=1
A j

)
=

∞∑
j=1

µ
(
A j

)
(countable additivity).

If X ⊂ ⋃
i∈I

Ai , where I is finite or countable set of indices with µ (Ai ) <∞ for all i ∈ I, then µ

is σ-finite. The triple (X ,A ,µ) is called a measure space. If µ(X ) = 1, then µ is a probability
measure. For a probability measure P on a set X with σ-field A , the triple (X ,A ,P) is called
a probability space.

Definition 2.1.1.4 1. A map d :D×D 7→ [0,∞) is a metric or distance if it satisfies;

(i) d(x, y) = d(y, x);

(ii) d(x, z) ≤ d(x, y)+d(y, z) (the triangle inequality);

(iii) d(x, y) = 0 if and only if x = y .

2. A metric space is a set D together with a metric.

If the map d(·, ·) satisfies only (i ) and (i i ) then it is called a semimetric or pseudometric. Tech-
nically, a metric space consists of the pair (D,d), but usually only D is given and the underlying
metric d is implied by the context. A map f : D 7→ Y between two semimetric spaces is con-
tinuous at a point x if and only if f (xn) → f (x) for every sequence xn → x and it is bounded
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if; there exist a constant M > 0, such that; for every x ∈ D, we have d( f (x),0) < M; where the
last metric is associate to the space Y. Let Cb(D) denote the set of all continuous and bounded
functions f : D 7→ R, this set plays an important role in the weak convergence on the metric
space D as we will see in the forthcoming sections.

Definition 2.1.1.5 A subset K is totally bounded if and only if for every r > 0, K can be covered
by finitely many open r -balls.

A very important example of a metric space is a normed space, which are defined below.

Definition 2.1.1.6 1. A map ∥ · ∥ : D 7→ [0,∞) is a norm if the following axioms are satisfy;
for all x, y ∈D and α ∈R

(i) ∥x + y∥ ≤ ∥x∥+∥y∥ (triangle inequality);

(ii) ∥αx∥ = |α|×∥x∥;

(iii) ∥x∥ = 0 if and only if x = 0.

2. A normed space D is a vector space (also called a linear space) equipped with a norm.

The map ∥ · ∥ is a seminorm if it satisfies only (i ) and (i i ). Note that a normed (respectively
seminormed) space is a metric (respectively semimetric) space with d(x, y) = ∥x − y∥, for all
x, y ∈D.

Definition 2.1.1.7 A complete normed space is called a Banach space (completeness being
understood with respect to the metric induced by the norm).

Definition 2.1.1.8 Let D be a Banach space with a norm ∥ · ∥. A real valued function 〈·, ·〉 :

D×D→R is called an inner-product (or scalar-product) on D if it has the following properties
for any x, y, z ∈D and α,β ∈R

(i) 〈x, x〉 = ∥x∥2 ≥ 0 with equality iff x = 0;

(ii) 〈x, y〉 = 〈y, x〉;

(iii) 〈αx +βy, z〉 = α〈x, z〉+β〈y, z〉.

The inner product also allows one to talk about orthogonality: We say that " x is orthogonal to
y " for x, y ∈D if 〈x, y〉 = 0 and use the notation x ⊥ y to indicate that x is orthogonal to y .

Definition 2.1.1.9 A Hilbert space is a Banach space with an inner product.

A very important result for bounded linear functional in Hilbert spaces is the following:

Theorem 2.1.1.10 (Riesz representation theorem) If T :H 7→ R is a bounded linear functional
on a Hilbert space, then there exists a unique element h0 ∈ H such that T(h) = 〈h,h0〉 for all
h ∈H, and, moreover, ∥T∥ = ∥h0∥ .
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The definition of a normed space D requires that the space is a vector space (and therefore it
contains all linear combinations of elements in D). However, it is sometimes of interest to apply
norms to subsets K ⊂D which may not be linear subspaces. In this setting, let lin(K ) denote
the linear span of K (all linear combinations of elements in K ), and let lin(K ) the closure
of lin(K ). Note that both lin(K ) and lin(K ) are now vector spaces and that lin(K ) equipped
with the restriction of the norm to element of K is also a Banach space.

We present three important examples of metric spaces, the first one is the set of bounded real
functions f : S 7→R, where S is an arbitrary set, this space is denoted ℓ∞(S). The uniform norm
∥x∥S ≡ sup

t∈S
|x(t )| makes ℓ∞(S) into a Banach space consisting exactly of all functions z : S 7→R

satisfying ∥z∥S <∞. Second one is the space C[a,b], where a,b ∈R, which consists of contin-
uous functions z : [a,b] 7→ R. Finally the space D[a,b], which is the space of cadlag functions
which are right-continuous with left-hand limits (cadlag is an abbreviation for continue à droite,
limite à gauche). We usually equip these spaces with the uniform norm ∥ · ∥[a,b] inherited from
ℓ∞([a,b]). Note that C[a,b] ⊂ D[a,b] ⊂ ℓ∞([a,b]).

2.1.2 Outer Integrals

Let (X ,A ,P) be an arbitrary probability space and T : X 7→R an arbitrary map.

Definition 2.1.2.1 The outer integral (outer expectation) of T with respect to P is defined as

E∗T = inf{EU : U ≥ T,U : X 7→R measurable and EU exists },

Here, EU is understood to exist if at least one of EU+or EU−is finite, where U+ and U− are the
envelope functions of U. Analogously, the outer probability of an arbitrary subset B of X is

P∗(B) = inf{P(A) : A ⊃ B, A ∈A }.

Inner integral and inner probability can be defined in a similar fashion their definition should
be obvious. Equivalently, they can be defined by E∗T = −E∗(−T) and P∗(B) = 1−P∗(X −B),
respectively.

Lemma 2.1.2.2 For any T : X 7→ R, there exists a minimal measurable majorant T∗ : X 7→ R

with

(i) T∗ ≥ T;

(ii) For every measurable U : X 7→R with U ≥ T a.s., T∗ ≤ U a.s.

For any T∗ satisfying (i ) and (i i ),E∗T = ET∗, provided ET∗ exists. The last statement is true if
E∗T <∞. Note that a maximal measurable minorant is defined by T∗ = −(−T)∗ and satisfies the
obvious relations in (i ) and (i i ).
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2.1.3 Linear operator

Definition 2.1.3.1 A linear operator is a map T : D 7→ Y between two normed spaces with the
property that T(ax +by) = aT(x)+bT(y) for all scalars a,b and any x, y ∈D.

When the range space Y is R, then T is a linear functional. When T is linear, we will often use
Tx instead of T(x).

Definition 2.1.3.2 Let D,Y be normed spaces and T :D 7→Y be a linear operator. The operator
T is said to be bounded if there exists a C > 0 such that

∥Tx∥Y ≤ C∥x∥D for all x ∈D.

The norm of the operator is defined as

∥T∥ := sup
x∈D,x ̸=0

∥Tx∥
∥x∥ = sup

x∈D,∥x∥≤1
∥Tx∥. (2.1.1)

Here, the norms ∥ ·∥D and ∥ ·∥Y are defined by the context.
Let B(D,Y) be the space of all bounded linear operators T : D 7→ Y, where D and Y are

normed spaces. This structure makes the space B(D,E) into a normed space with norm ∥ · ∥
defined in (2.1.1). When E is a Banach space, then B(D,E) is also a Banach space. When D is
not a Banach space, T has a unique continuous extension to D, for instance, see Kosorok [2008].

Definition 2.1.3.3 For any T ∈ B(D,Y), the null space of T is :

N (T) ≡ {x ∈D : Tx = 0}

and its range space is:
R(T) ≡ {y ∈Y : Tx = y for some x ∈D}.

We have the following two results for inverse operators.

Lemma 2.1.3.4 Assume D and Y are normed spaces and that T ∈ B(D,Y). Then T has a con-
tinuous inverse T−1 : R(T) 7→ D if and only if there exists a c > 0 so that ∥Tx∥ ≥ c∥x∥ for all
x ∈D.

Lemma 2.1.3.5 Let A = T +K : D 7→ Y be a linear operator between Banach spaces, where
T is both continuously invertible and onto and K is compact. Then if N (A) = {0}, A is also
continuously invertible and onto.

Theorem 2.1.3.6 Banach-Steinhaus Theorem Let D and Y are two Banach spaces and let
(Tn)n≥1 a sequence of B(D,Y). Then the limit Tx = lim

n→∞Tn x exists for every x in D if and only
if

(i) the limit Tx exists for every x in a fundamental set, and

(ii) for each x in X the supremum supn |Tn x| <∞.

When the limit Tx exists for each x in D, the operator T is bounded, and

|T| ≤ liminf
n→∞ |Tn | ≤ sup

n
|Tn | <∞.
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2.1.4 Differential of functions

In this section we focus on the concept of differentiation, in the following definitions the two
spaces D and Y are normed spaces.

Definition 2.1.4.1 f :D 7→Y is Gâteaux differentiable at x ∈D if

∀h ∈D,∃ Tx ∈ B(D,Y)1, such that, as t → 0,

∥∥∥∥ f (x + th)− f (x)

t
−Tx(h)

∥∥∥∥→ 0.

The operator Tx is called the Gâteaux derivative of f at x.

Definition 2.1.4.2 f :D 7→Y is Hadamard differentiable at x ∈D if there exist Tx ∈ B(D,Y) such
that, ∀h ∈D, if t → 0,∥ht −h∥→ 0, then∥∥∥∥ f (x + tht )− f (x)

t
−Txh

∥∥∥∥→ 0.

The operator Tx is called the Hadamard derivative of f at x. The Hadamard differentiability is
equivalent to compact differentiability, where compact differentiability satisfies

sup
h∈K,x+th∈D

∥∥∥∥ f (x + th)− f (x)

t
−Txh

∥∥∥∥→ 0, as t → 0, (2.1.2)

for every compact K ⊂D.
Gâteaux requires the difference quotients to converge to some Tx(h) for each direction h;

Hadamard requires a single Txh that works for every direction h. It is equivalent to the conver-
gence in the definition of Gâteaux differentiability being uniform over h in a compact subset of
D.

Definition 2.1.4.3 f : D 7→ Y is Fréchet differentiable at x ∈ D if there exist Tx ∈ B(D,Y) such
that, ∀h ∈D, if ∥h∥→ 0, then ∥∥∥∥ f (x + th)− f (x)−Txh

∥h∥
∥∥∥∥→ 0.

This can be viewed as (2.1.2) holds uniformly in h on a bounded subset of D.
Hadamard requires the difference quotients to converge to zero for each direction, possibly

with different rates for different directions; Fréchet requires the same rate for each direction.
Since compact sets are bounded, Fréchet differentiability implies Hadamard differentiability.
They are equivalent for D=Rd .

Gâteaux differentiability is usually not strong enough for the applications of functional
derivatives needed for Z-estimators, while Fréchet differentiability will be needed for Z-estimator
theory, while Hadamard differentiability is useful in the delta method.

Much of these materials and discussions are inspired by Section 6 of Kosorok [2008], where
there are the proofs of all theorems presented here.

1Some authors drop the requirement for linearity here.
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2.1.5 Weak convergence

In this section we give some notions for the weak convergence of a stochastic process. It should
be noted that the weak convergence of a stochastic process is a generalization of the conver-
gence in law from random vectors to sample paths of the stochastic process. Let (X ,A ,P)

be a probability space on which we define the sequence X1, . . . ,Xn and a collection of random
variables X = {X(t ) = X(t ,ω),ω ∈X , t ∈ T}, T is an arbitrary index set. Suppose that the set T is
equipped with a semi-metric ρ and (D,d) is a metric space.

Definition 2.1.5.1 • The collection X = {X(t ) = X(t ,ω),ω ∈ X , t ∈ T}, is a stochastic pro-
cess.

• An empirical process is a stochastic process based on a random observations X1, . . . ,Xn .

• For a fixed point ω ∈X , the map:

X(·,ω) : T 7→D,

is called the sample path of the stochastic process X.

Note that the space ℓ∞(T) is where most of the action occurs for statistical applications of em-
pirical processes, so in next we will consider D= ℓ∞(T), and for x, y ∈D : d = sup

t∈T

∣∣x(t )− y(t )
∣∣

is the uniform distance on D.
Now we say that the process Xn converges weakly to a Borel measurable process X, and

we write Xn⇝ X, if the sample paths of Xn behave in distribution like X when n →∞. This is
reflected in

Xn⇝X ⇐⇒ ∀ f ∈ Cb (D) : E∗
(

f (Xn)
)−→E

(
f (X)

)
, (2.1.3)

where
Cb (D) := {

f :D→R;with f continuous and bounded
}

.

If P is the law of X then the last expression can be rewrite as

E∗ f (Xn) →
∫

f (x)dP(x), for every f ∈ Cb(D).

However in practice the latter formulation is not easy to handle. An equivalent theorem is
given in Theorem 2.1 in Kosorok [2008].

Theorem 2.1.5.2 (Kosorok [2008]) The stochastic process Xn converges weakly to a tight stochas-
tic process X in ℓ∞(T), if and only if:

(i) For all finite {t1, . . . , tk } ⊂ T, the finite-dimensional distribution of {Xn(t1), . . . ,Xn(tk )} con-
verges to that of {X(t1), . . .X(tk )};
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(ii) There exists a semi-metric ρ for which T is totally bounded such that for all ϵ> 0:

lim
δ→0

limsup
n→∞

P∗
{

sup
s,t∈T:ρ(s,t )<δ

|Xn(t )−Xn(s)| > ϵ
}
= 0. (2.1.4)

Very useful results are the continuous mapping theorem and the Slutsky’s Theorem:

Theorem 2.1.5.3 (Continuous mapping) Let g : D 7→Y be continuous at all points in D0 ⊂ D,
where D and Y are metric spaces. Then if Xn⇝X in D, with P∗ (X ∈D0) = 1, then g (Xn)⇝ g (X).

Theorem 2.1.5.4 (Slutsky’s theorem) Suppose Xn⇝ X and Yn⇝ c, where X is separable and
c is a fixed constant. Then the following are true:

(i) (Xn ,Yn)⇝ (X,c).

(ii) If Xn and Yn are in the same metric space, then Xn +Yn⇝X+ c.

(iii) Assume in addition that the Yn are scalars. Then whenever c ∈ R, YnXn ⇝ cX. Also,
whenever c ̸= 0,Xn/Yn⇝X/c.

Generally when dealing with empirical processes the index set T = F is a class of mea-
surable functions. For this, in the following section we give some definitions and examples
concerning these classes.

2.1.6 Classes of functions

This section is devoted to the entropy that is a fundamental tool for the empirical process.
The main use of such entropy calculus in this thesis is for establishing rate of convergence
M-estimators as discussed in Chapter (1) and evaluating whether the class of functions F

is Glivenko-Cantelli and/or Donsker or neither. There are several additional uses of entropy
bounds, we refer the interested reader to the monographs of van der Vaart and Wellner [1996]
and Kosorok [2008], see also Pakes and Pollard [1989].

Definition 2.1.6.1 An envelope function of a class F is any function x 7→ F(x) such that

| f (x)| ≤ F(x),

for every x and f .

Definition 2.1.6.2 A class of subsets C on a set C is called a VC-class if there exists a polyno-
mial P(·) such that, for every set of N points in C, the class C picks out at most P(N) distinct
subsets.

Definition 2.1.6.3 The subgraph of a function f : X 7→R is the subset of X ×R given by

{(x, t ) : t < f (x)}.
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Definition 2.1.6.4 A class of functions F is called a VC-subgraph class if the collections of all
subgraphs of the functions in F form a VC-class of sets in X ×R.

Example 2.1.6.5 let C = {C ⊂X } and F (C ) = {
1{X∈C},C∈C

}
. Then F (C ) is a VC-subgraph

class if and only if C is a VC class of sets.

Definition 2.1.6.6 A class F of measurable functions is P-measurable if the map

(x1, . . . , x2) 7→ sup
f ∈F

∥∥∥∥∥ n∑
i=1

ei f (xi )

∥∥∥∥∥
is measurable for all (e1, . . . ,en) ∈Rn .

A stronger, but easier to verify, measurability assumption is pointwise measurability defined as:

Definition 2.1.6.7 The class F is pointwise measurable if there exists a countable subset G ⊂
F such that for every f ∈F there exists a sequence

{
gl

} ∈G with gl (x) → f (x) for every x.

Definition 2.1.6.8 (Covering number). Let (F ,∥ · ∥) be a subset of a normed space of real
functions f on some set. The covering number N(ε,F ,∥ · ∥) is the minimal number of balls
{g : ∥g − f ∥ < ε} of radius ε needed to cover the set F . The entropy (without bracketing) is the
logarithm of the covering number. Define

J(δ,F ) = sup
Q

∫ δ

0

√
1+ logN

(
ε∥F∥Q,2,F ,L2(Q)

))
dε,

where the supremum is taken over all finitely discrete probability measures Q with ∥F∥Q,2 > 0.

Definition 2.1.6.9 (Bracketing number). Given two functions l and u, the bracket [l ,u] is the
set of all functions f with l ⩽ f ⩽ u. An ε bracket is a bracket [l ,u] with ∥l −u∥ < ε. The
bracketing number N[](ε,F ,∥ ·∥) is the minimum number of ε brackets needed to cover F . The
entropy with bracketing is the logarithm of the bracketing number. For a given norm ∥·∥, define
a bracketing integral of a class of functions F as

J[](δ,F ,∥ ·∥) =
∫ δ

0

√
1+ logN[](ε||F∥,F ,∥ ·∥)dε.

The next lemma, presents a link between the covering and the packing numbers of a func-
tions class F .

Lemma 2.1.6.10 For a class of functions F we have:

N[] (2ϵ,F ,d) ≤ N(ϵ,F ,d) ≤ N[] (ϵ,F ,d) .

The following lemma concerns the covering numbers of a VC- type class of functions.
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Example 2.1.6.11 The set F of all indicator functions 1{(−∞,t ]} of cells in R satisfies :

N(ϵ,F ,L2(Q)) ≤ 2

ϵ2
,

for any probability measure Q and ϵ≤ 1. Notice that :

∫ 1

0

√
log

(
1

ϵ

)
dϵ≤

∫ ∞

0
u1/2 exp(−u)du ≤ 1.

For more details and discussion on this example refer to Example 2.5.4 of van der Vaart and
Wellner [1996] and [Kosorok, 2008, p. 157]. The covering numbers of the class of cells (−∞, t ]

in higher dimension satisfy a similar bound, but with higher power of (1/ϵ), see Theorem 9.19
of Kosorok [2008].

Example 2.1.6.12 (Classes of functions that are Lipschitz in a parameter, Section 2.7.4 in
van der Vaart and Wellner [1996]). Let F be the class of functions x 7→ϕ(t , x) that are Lipschitz
in the index parameter t ∈ T. Suppose that:

|ϕ(t1, x)−ϕ(t2, x)| ≤ d(t1, t2)κ(x)

for some metric d on the index set T, the function κ(·) defined on the sample space X , and all x.
According to Theorem 2.7.11 of van der Vaart and Wellner [1996] and Lemma 9.18 of Kosorok
[2008], it follows, for any norm ∥ ·∥F on F , that :

N(ϵ∥F∥F ,F ,∥ ·∥F ) ≤ N(ϵ/2,T,d).

Hence if (T,d) satisfy J(∞,T,d) = ∫ ∞
0

√
logN(ϵ,T,d)dϵ<∞, then the conclusions holds for F .

Example 2.1.6.13 Let us consider as example the classes of functions that are smooth up to
order α defined as follows, see Section 2 ofvan der Vaart and Wellner [1996]. For 0 < α<∞ let
⌊α⌋ be the greatest integer strictly smaller than α. For any vector k = (k1, . . . ,kd ) of d integers
define the differential operator :

Dk. := ∂k.

∂k1 · · ·∂kd
,

where :

k. :=
d∑

i=1
ki .

Then, for a function ϕ : X →R, let :

∥ϕ∥α := max
k.≤⌊α⌋

sup
x

|Dkϕ(x)|+ max
k.=⌊α⌋

sup
x,y

Dkϕ(x)−Dkϕ(y)

∥x − y∥α−⌊α⌋ ,

where the suprema are taken over all x, y in the interior of X with x ̸= y . Let Cα
M(X ) be the set

of all continuous functions ϕ : X →R with :

∥ϕ∥α ≤ F.
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Note that for α ≤ 1 this class consists of bounded functions ϕ(·) that satisfy a Lipschitz con-
dition. Kolmogorov and Tihomirov [1961] computed the entropy of the classes of Cα

F(X ) for
the uniform norm. As a consequence of their results van der Vaart and Wellner [1996] shows
that there exists a constant K depending only on α,d and the diameter of X such that for every
measure γ and every ϵ> 0 :

logN[ ](ϵFγ(X ),Cα
F(X ),L2(γ)) ≤ K

(
1

ϵ

)d/α

,

N[ ] is the bracketing number, refer to Definition 2.1.6 of van der Vaart and Wellner [1996]
and we refer to Theorem 2.7.1 of van der Vaart and Wellner [1996] for a variant of the last
inequality. By Lemma 9.18 of Kosorok [2008], we have :

logN(ϵFγ(X ),Cα
F(X ),L2(γ)) ≤ K

(
1

ϵ

)d/α

.

2.2 Some useful notes for studying M-estimators

First we begin by introducing some notation needed in this thesis. Let X1, . . . ,Xn are i.i.d. P on
X . Then the empirical measure Pn is defined by

Pn := 1

n

n∑
i=1

δXi ,

where δx denotes the Dirac measure at x. For each n ≥ 1,Pn denotes the random discrete
probability measure which puts mass 1/n at each of the n points X1, . . . ,Xn . For a real valued
function f on X , we write

Pn( f ) :=
∫

f dPn = 1

n

n∑
i=1

f (Xi ) .

If F is a class of functions defined on X , then
{
Pn( f ) : f ∈F

}
is the empirical measure

indexed by F . Let us assume that

P f :=
∫

f dP,

exists for each f ∈F . The empirical process Gn is defined by

Gn :=p
n (Pn −P),

and the collection of random variables
{
Gn( f ) : f ∈F

}
as f varies over F is called the empirical

process indexed by F . We define the following quantity :

∥Gn∥F := sup
f ∈F

∣∣Gn( f )
∣∣ .

As we discussed in Chapter 1 in the estimating of some parameter of interest θ by the
method of M-estimation we need firstly to prove its consistency and this can hold by using the
argmax theorem which is given below :
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Theorem 2.2.0.1 (Argmax Theorem) Let Mn ,M be stochastic processes indexed by a metric
space D such that Mn ⇝M in ℓ∞(K) for every compact K ⊂ D. Suppose also that almost all
sample paths γ 7→ M(γ) are upper semicontinuous and possess a unique maximum at a (random)
point γ̂, which as a random map in D is tight. If the sequence γ̂n is uniformly tight and satisfies

Mn
(
γ̂n

)≥ sup
γ∈D

Mn(γ)−oP(1),

then
γ̂n⇝ γ̂ in D.

The most time we have Mn = Pn and M = P to derive the weak convergence or the con-
vergence in probability between these quantities indexed by some class of functions F which
is one of the main assumptions to derive the asymptotic for M-(Z)-estimators as in the argmax
theorem or Theorem 1.2.0.1 we need that the class F to be Donsker class or as a restriction
Glivenko-Cantelli class, these types of classes is defined below :

Definition 2.2.0.2 A class F of measurable functions f : X →R with P| f | <∞ for every f ∈F

is called Glivenko-Cantelli (GC) if

∥Pn −P∥F := sup
f ∈F

∣∣Pn f −P f
∣∣→ 0, in probability (or almost surely).

Definition 2.2.0.3 A class F of measurable functions f : X → R is Donsker if the empirical
process

{
Gn f : f ∈F

}
indexed by F converges in distribution in the space ℓ∞(F ) to a tight

random element.

The next step after proving consistency in the study of estimators constructed from data of
size n is at which rate they converge. Generally these rates are function of the size of data n,
in our setting of M-estimators in most situation the rate is

p
n, or some less rates rn in non

smooth cases as described before in Chapter 1, these rates can obtained from the modulus of
continuity of the criterion function and its limits at the true parameter that is the main problem
in this step. A simple, but not necessarily efficient, method is to apply the maximal inequalities
given below:

Theorem 2.2.0.4 (van der Vaart and Wellner [1996]) (Entropy control with covering num-
ber). Let F be a P-measurable class of measurable functions with measurable envelope F.
Then

E
[∥∥Gn( f )

∥∥∗
F

]
⩽KJ(1,F )∥F∥P,2,

where K does not depend on F and F.

Theorem 2.2.0.5 (van der Vaart and Wellner [1996]) (Entropy control with bracketing num-
ber) Let F be a class of measurable functions with envelop F. Then

E
[∥∥Gn( f )

∥∥∗
F

]
⩽KJ[]

(
1,F,L2(p)

)∥F∥P,2,

where K does not depend on F or F.
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2.2.1 Bootstrapped Empirical processes

Let Pn be the empirical measure of an i.i.d. sample X1, . . . ,Xn from a probability measure P.
Given the sample values, let X∗

1 , . . . ,X∗
n be an i.i.d. sample from Pn . The bootstrap2 empirical

measure and process are, respectively, defined by

P̂n = 1

n

n∑
i=1

δX∗
i

,

and
Ĝn =p

n
(
P̂n −Pn

)
.

Giné and Zinn [1990] proved the following result, for a class of function F with its envelope
F. Here we will consider that the class F is the collection of indicator functions of sets of the
form [0,c], 0 < c ≤ 1. Then under measurability restriction on F , we have:

Gn⇝G and PF2 <∞,

is equivalent to
Ĝn⇝G for almost all data sequences X1,X2, . . . ,

where G is some tight Brownian bridge and the weak convergence is in ℓ∞(F ). This result
is proved "in probability" by the same authors and they settled questions about the validity of
Efron’s bootstrap in a wide range of situations. We can remark that, the bootstrap empirical
measure given before can be expressed as

P̂n = 1

n

n∑
i=1

δX∗
i
= 1

n

n∑
i=1

ξniδXi ,

where ξni is the number of times that Xi is "redrawn" from the original sample. As observed
by [Efron, 1982, Section 2.9, pages 17-72], this suggests that there are, in fact, not just one
way but several ways to bootstrap; and this is the idea of the exchangeable-weighted bootstrap.
Let W = {Wni , i = 1,2, . . . ,n,n = 1,2, . . .} are a triangular array defined on the probability space
(Z ,E , P̂). Let Wn ≡ (Wn1, . . . ,Wnn) be an exchangeable vector of nonnegative weights which
sum to n. Then the exchangeably weighted bootstrap empirical measure is defined by

P̂n = 1

n

n∑
i=1

WniδXi ,

with corresponding bootstrap empirical process

Ĝn =p
n

(
P̂n −Pn

)= 1p
n

n∑
i=1

(Wni −1)δXi . (2.2.1)

The formulation of the weighted bootstrap was originally initiated by Lo [1993]. Mason and
Newton [1992] and Præstgaard and Wellner [1993] established sufficient conditions on the
weights W for the exchangeable weighted bootstrap to work asymptotically, where they sug-
gested the following general conditions on W

2The bootstrap is the statistical procedure which models sampling from a population by the process of resam-
pling from the sample.
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(B.1) The vectors Wn = (Wn1,Wn2, . . . ,Wnn)T are exchangeable for all n = 1,2, . . ., i.e., for any
permutation π= (π1, . . . ,πn) of (1,2, . . . ,n), the joint distribution of

π (Wn) = (
Wnπ1 ,Wnπ2 , . . . ,Wnπn

)T

is the same as that of Wn .

(B.2) Wni ≥ 0 for all n, i and
n∑

i=1
Wni = n for all n.

(B.3) The following L2,1 norm of Wn1 is uniformly bounded:

Rn =
∫ ∞

0

√
P̂ (Wn1 ≥ u)du ≤ K <∞

(B.4) lim
λ→∞

lim sup
n→∞

sup
t≥λ

t 2P̂ {Wn1 ≥ t } = 0.

(B.5) 1
n

n∑
i=1

(Wni −1)2 → c2 > 0 in P̂-probability.

We note that the Efron’s nonparametric bootstrap (or multinomial bootstrap) corresponds to the
choice of the weights

Wn ∼Multinomial(n;n−1, . . . ,n−1)

for which conditions (B.1)–(B.5) are satisfied. In general, in order to satisfy the conditions
(B.3)–(B.5) we have to impose some moment conditions on Wni , see their Lemma 3.1. The
other sampling schemes that satisfy conditions (B.1)–(B.5), include Bayesian bootstrap, Mul-
tiplier bootstrap, Double bootstrap and Urn bootstrap. These examples are sufficient to show
that conditions (B.1)–(B.5) are very general. It is worth noticing that the value of c in (B.5) is
independent of the sample at hand and depends only on the chosen resampling method, e.g.,
c = 1 for the nonparametric bootstrap and Bayesian bootstrap, whereas c = p

2 for the double
bootstrap. A more precise discussion of this general formulation of the bootstrap and further
details can be found in Mason and Newton [1992], Præstgaard and Wellner [1993], Barbe and
Bertail [1995], [van der Vaart and Wellner, 1996, §3.6.2., p. 353], [Kosorok, 2008, §10. p.
179], Cheng and Huang [2010]. The interested reader may refer to Billingsley [1968], Aldous
[1985] and Kallenberg [2002] for excellent general coverage of the theory of exchangeability.
One could claim that general first-order limit theory for the bootstrap was known to Laplace
by about 1810 (since Laplace developed one of the earliest general central limit theorems); and
that second-order properties were developed by Chebyshev at the end of the 19th Century, as
mentioned by Peter Hall in http://www.cms.zju.edu.cn/conference/2005/zlx/peter.pdf. In 1923
Hubback began a series of crop trials, in the Indian states of Bihar and Orissa, in which he devel-
oped spatial sampling schemes. In 1927 he published an account of his work in a Bulletin No.
166 of the Indian Agricultural Research Institute. Notice that the idea of bootstrap appeared in
different forms in Mahalanobis [1946], Quenouille [1949, 1956], Tukey [1958], [Simon, 1969,
Chapters 23-25] and Maritz and Jarrett [1978].
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We assume further that the collection F possesses enough measurability for randomization
with i.i.d. multipliers to be possible and the usual Fubini’s theorem can be used freely; such
a set of conditions is F ∈ NLDM(P) (Nearly Linearly Deviation Measurable), and F 2,F ′2 ∈
NLSM (P) (Nearly Linearly Supremum Measurable) in the terminology of Giné and Zinn
[1990]. Here F 2 and F ′2 denote the classes of squared functions and squared differences
of functions from F , respectively. When all of these conditions hold, we write F ∈ M(P). It
is known that F ∈ M(P) if F is countable, or if the empirical processes Gn are stochastically
separable, or if F is image admissible Suslin (see [Giné and Zinn, 1990, p. 853 and 854]). The
following Præstgaard and Wellner [1993]’s result concerns a central limit theorem in probabil-
ity, for bootstrap empirical process as given in (2.2.1) indexed by the class F .

Theorem 2.2.1.1 Let F ∈ M(P) be a class of L2(P) functions, and let W be a triangular array
of bootstrap weights satisfying assumptions (B.1)–(B.5). Then

F is P−Donsker

implies that

Ĝn = 1p
n

n∑
j=1

(
Wn j −1

)
δX j ⇝ cG in l∞(F ) in probability,

where c is given by assumption (B.5).

If in addition the envelope function F is square integrable then, the result holds almost every-
where.

These results for bootstrapped empirical processes can then be applied to many kinds of
bootstrapped estimators since most estimators can be expressed as functionals of empirical
processes. Much of the bootstrap results for such estimators will be deferred in Chapters 3
and 4 where we discuss M-estimation and Z-estimation.
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Chapter 3

General M-Estimator Processes and their
m out of n Bootstrap with Functional
Nuisance Parameters

Ce chapitre développe le contenu d’un article soumis, mis en forme pour être inséré dans le
présent manuscrit de thèse.
Title : General M-Estimator Processes and their m out of n Bootstrap with Functional Nui-
sance Parameters.

abstract

In the present paper, we consider the problem of the estimation of a parameter θ, in Banach
spaces, maximizing some criterion function which depends on an unknown nuisance parameter
h, possibly infinite-dimensional. Classical estimation methods are mainly based on maximizing
the corresponding empirical criterion by substituting the nuisance parameter by a nonparamet-
ric estimator. We show that the M-estimators converge weakly to maximizers of Gaussian
processes under rather general conditions. The conventional bootstrap method fails in general
to consistently estimate the limit law. We show that the m out of n bootstrap, in this extended
setting, is weakly consistent under conditions similar to those required for weak convergence of
the M-estimators. The aim of this paper is therefore to extend the existing theory on the boot-
strap of the M-estimators. Examples of applications from the literature are given to illustrate
the generality and the usefulness of our results. Finally, we investigate the performance of the
methodology for small samples through a short simulation study.

Keywords: Gaussian process; M-estimation; Empirical process; m out n of bootstrap; Asymp-
totic distribution; Nuisance parameter; Semiparametric estimation; non standard distribution;
Missing data.
AMS Subject Classifications: Primary : 62G05; 60F17; Secondary : 60F05; 62G09; 62G20;
62H10; 60F15.
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CHAPTER 3. GENERAL M-ESTIMATOR PROCESSES AND THEIR M OUT OF N
BOOTSTRAP WITH FUNCTIONAL NUISANCE PARAMETERS

3.1 Introduction

The semiparametric modeling has proved to be a flexible tool and provided a powerful statistical
modeling framework in a variety of applied and theoretical contexts [refer to Pfanzagl [1990],
Bickel et al. [1993], van der Vaart and Wellner [1996], van de Geer [2000], and Kosorok [2008].
An important work to be cited is the paper of Pakes and Pollard [1989], where a general central
limit theorem is proved for estimators defined by minimization of the length of a vector-valued,
random criterion function with no smoothness assumptions. The last reference was extended
in different settings, among many others, by Pakes and Olley [1995], Chen et al. [2003], Zhan
[2002]. Recall that the semiparametric models are statistical models where at least one pa-
rameter of interest is not Euclidean. The term “M-estimation” refers to a general method of
estimation, where the estimators are obtained by maximizing (or minimizing) certain criterion
functions. The most widely used M-estimators include maximum likelihood (MLE), ordinary
least-squares (OLS), and least absolute deviation estimators. Notice that the major practical
problem of maximum likelihood estimators is the lack of robustness, while many robust esti-
mators achieve robustness at some cost in first-order efficiency. The appeal of the M-estimation
method is that in addition to the statistical efficiency of the estimators when the parametric
model is correctly specified, these estimators are also robust to contamination when the ob-
jective function is appropriately chosen. Throughout the available literature, investigations on
the asymptotic properties of the M-estimators, as well as the relevant test statistics, have priv-
ileged the parametric case. However, in practice, we need more flexible models that contain
both parametric and nonparametric components. This paper concentrates on this specific prob-
lem. To formulate the problem that we will treat in this paper, we need the following notation.
Let X = (X1, . . . ,Xn) be n independent copies of a random element X in a probability space
(S ,A ,P). For a Banach spaces B and H equipped with a norm ∥ · ∥ and a metric denoted by
dH (·, ·) respectively, let MΘ,H be a class of Borel measurable functions mθ,h : S →R, indexed
by θ over some parameter space Θ⊂B and h ∈H , where θ is the parameter of interest and h0

the true value of h consists of nuisance parameter. We define the empirical measure to be

Pn = n−1
n∑

i=1
δXi ,

where, for x ∈S , δx is the measure that assigns mass 1 at x and zero elsewhere. Let f (·) be a real
valued measurable function, f : S → R. In the modern theory of the empirical it is customary
to identify P and Pn with the mappings given by

f →P f =
∫

f dP, and f →Pn f =
∫

f dPn = 1

n

n∑
k=1

f (Xi ).

The M-estimand of interest θ0 and its corresponding M-estimator θn are assumed to be well-
separated maximizers of the processes

{
Pmθ,h0 : θ ∈Θ

}
and

{
Pnmθ,ĥ : θ ∈Θ

}
for a given con-

sistent sequence of estimators ĥ for h0, respectively. Under suitable entropy conditions on
MΘ,H (defined below) and moment conditions on its envelope, we show that there exist norm-
ing sequences {αn} and {rn} such that the random process

{
αnPn(mθ0+γ/rn ,ĥ −mθ0,ĥ) : γ ∈ K

}
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converges weakly, in the sense of Hoffmann-Jørgensen [1991], see van der Vaart and Wellner
[1996], in particular their Definition 1.3.3., to the process {Z(γ) : γ ∈ K}, for each closed bounded
subset K ⊂B. It follows by an argmax continuous mapping theorem, refer to Kosorok [2008] in
particular Chapter 14, that rn(θn−θ0) converges weakly to argmaxγZ(γ). The latter weak limit
has a complicated form in general and does not permit explicit computation. It would therefore
be of interest to estimate the sampling distribution of rn(θn −θ0) by the bootstrap for inferenc-
ing purposes. Bootstrap samples were introduced and first investigated in Efron [1979]. Since
this seminal paper, bootstrap methods have been proposed, discussed, investigated and applied
in a huge number of papers in the literature. Being one of the most important ideas in the
practice of statistics, the bootstrap also introduced a wealth of innovative probability problems,
which in turn formed the basis for the creation of new mathematical theories. The bootstrap can
be described briefly as follows. Let T(P) be a functional of an unknown distribution function
P, X1, . . . ,Xn a sample from P, and Y1, . . . ,Yn an independent and identically distributed [i.i.d.]
sample with common distribution given by the empirical distribution Pn of the original sample.
The distribution of {T(Pn)−T(P)} is then approximated by that of {T(P̂∗

n)−T(Pn)} conditionally
on X1, . . . ,Xn , with P̂∗

n being the empirical distribution of Y1, . . . ,Yn . The key idea behind the
bootstrap is that if a sample is representative of the underlying population, then one can make
inferences about the population characteristics by resampling from the current sample. The
asymptotic theory of the bootstrap with statistical applications has been reviewed in the books
among others Efron and Tibshirani [1993] and Shao and Tu [1995]. Chernick [2008], Davison
and Hinkley [1997], van der Vaart and Wellner [1996], Hall [1992] and Kosorok [2008]. A
major application for an estimator is in the calculation of confidence intervals. By far the most
favored confidence interval is the standard confidence interval based on a normal or a Student
t-distribution. Such standard intervals are useful tools, but they are based on an approximation
that can be quite inaccurate in practice. Bootstrap procedures are an attractive alternative. One
way to look at them is as procedures for handling data when one is not willing to make assump-
tions about the parameters of the populations from which one sampled. The most that one is
willing to assume is that the data are a reasonable representation of the population from which
they come. One then resamples from the data and draws inferences about the corresponding
population and its parameters. The resulting confidence intervals have received the most the-
oretical study of any topic in the bootstrap analysis. Roughly speaking, it is known that the
bootstrap works in the i.i.d. case if and only if the central limit theorem holds for the random
variable under consideration. For further discussion we refer the reader to the landmark paper
by Giné and Zinn [1989]. It is worth noticing that some special examples reveal that the con-
ventional bootstrap based on resamples of size n breaks down; see, for example, Bose and Chat-
terjee [2001] and El Bantli [2004]. We focus on a modified form of bootstrap methods, known
as the m out of n bootstrap, with a view to remedy the problem of inconsistency. The m out of
n scheme modifies the conventional scheme by drawing bootstrap resamples of size m = o(n).
See, for example, Bickel et al. [1997] for a review of this technique in a variety of contexts.
For more recent references on the bootstrap one can refer to Bouzebda [2010], Bouzebda and
Limnios [2013], Bouzebda et al. [2018], Alvarez-Andrade and Bouzebda [2013, 2015, 2019]
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and the reference therein. Denote by θ̂
∗
m the M-estimator calculated from a bootstrap resample

of size m. Weak convergence in probability of the conditional distribution of rm

(
θ̂
∗
m −θn

)
to the

distribution of argmaxg Z(g ) is established under essentially similar conditions for weak con-
vergence of rn(θn−θ0), provided that m = o(n),m →∞ and a2

mm−1/2 logn/log(n/m+1) = o(1)

for a fixed sequence {am} depending on the size of the envelope for MΘ,H . The asymptotic
properties of θn have been established by, among many others, Bose and Chatterjee [2001] and
El Bantli [2004], under appropriate concavity or differentiability conditions. Empirical process
methods are instrumental tools for evaluating the large sample properties of estimators based
on semiparametric models, including consistency, distributional convergence, and validity of
the bootstrap. In particular, modern empirical process theory provides a more general approach
to theoretical investigation of general M-estimators; see, for example, Dudley [1999], Kim and
Pollard [1990], Pollard [1985], van de Geer [2000] and van der Vaart and Wellner [1996]. Most
results obtained thus far are, however, restricted to the cases where the Gaussian process Z has
either quadratic mean function or quadratic covariance function. In order to establish stronger
results which cover cases where the covariance and mean functions of Z may take on more
general structures, we will use the empirical process approach. Applications of the bootstrap to
M-estimation have been investigated deeply in the literature extensively. Relevant theoretical
results concern mostly M-estimators with rn = n1/2 and asymptotically Gaussian limits. The
most common technique for studying bootstrap M-estimators is the linearization which can not
be used in a nonstandard setting. Under standard regularity conditions, the Edgeworth expan-
sions for bootstrap distributions of finite-dimensional M-estimators are Lahiri [1992]. Under
a weak form of differentiability condition, Arcones and Giné [1992] investigated bootstrap-
ping finite-dimensional n1/2-consistent M-estimators and established an almost sure bootstrap
central limit theorem. An in-probability bootstrap central limit theorem for possibly infinite-
dimensional Z-estimators is investigated by Wellner and Zhan [1996]. In the setting of the
nonregular vector-valued M-estimators obtained from mθ concave in θ, Bose and Chatterjee
[2001] investigated a weighted form of the bootstrap including the m out of n bootstrap is a
special case. The M-estimation for linear models under nonstandard conditions was considered
by El Bantli [2004], and proved that the m out of n bootstrap is consistent but the conventional
bootstrap is not in general. The Bose and Chatterjee [2001] and El Bantli [2004] results are re-
stricted to the case where Z has a quadratic covariance function, concavity and differentiability
assumptions. Lee and Pun [2006] prove m out of n bootstrap consistency for vector-valued M-
estimators under twice-differentiability of the process Pmθ, where θ may contain a subvector
of nuisance parameters, in which case the process Z has a quadratic mean function. Lee [2012]
gives general result of m out of n bootstrap of M-estimators without the presence of nuisance
parameter. Under nonstandard conditions, Lee and Yang [2020] proposed a one-dimensional
pivot derived from the criterion function, and prove that its distribution can be consistently esti-
mated by the m out of n bootstrap, or by a modified version of the perturbation bootstrap. They
provide a new method for constructing confidence regions which are transformation equivariant
and have shapes driven solely by the criterion function.
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The main purpose of the present work is to consider a general framework of non-smooth semi-
parametric M-estimators extending the setting of Lee [2012] to the B-valued M-estimators
in presence of nuisance parameter where the rate of convergence of the nuisance parameter
may be different of that of the parameter of interest. More precisely, we consider the m out
n bootstrapped version of the M-estimator investigated in Delsol and Van Keilegom [2020],
where these authors showed that, their M-estimator converges weakly to some process which
is composed on Gaussian process and some deterministic continuous function, which is harder
to evaluate for practical use. For that we propose in this paper as a solution of this problem the
m out of n bootstrap. We mention at this stage that parameter θ, in the present paper, belongs
to some Banach space which is different from the last mentioned work where the parameter
of interest is Euclidean. Hence, we restate the results of Delsol and Van Keilegom [2020]
under more general conditions. The main aim of the present paper is to provide a first full
theoretical justification of the m out of n bootstrap consistency of M-estimators with non-
smooth criterion functions of the parameters and gives the consistency rate together with the
asymptotic distribution of the parameters of interest θ0. This requires the effective application
of large sample theory techniques, which were developed for the empirical processes. The Lee
[2012] results are not directly applicable here since the estimation procedures depend on some
nuisance parameters. These results are not only useful in their own right but essential for the
derivation of our asymptotic results.

The paper is organized as follows. Section 3.2 introduces the notation and assumptions. Section
3.3 states the main theorems. Though our main objective in the paper is theoretical, we provide
in Section 3.5 Monte Carlo simulations of simulations to look at the method’s performance
in practice. Some concluding remarks are given in Section 7.1. All proofs are gathered in
Section 3.6. In the Appendix we apply our theorems and prove as corollaries new m out of n

bootstrap consistency results for three examples.

3.2 Notation

We abuse notation slightly by identifying the underlying probability space (S ,A ,P) with the
product space (S ∞,A ∞,P∞)×(Z ,C , P̃). Now X1, . . . ,Xn are equal to the coordinate projections
on the first n coordinates. All auxiliary variables, assumed to be independent of the Xi , depend
only on the last coordinate. We will use the usual notation of the empirical processes of van der
Vaart and Wellner [1996]. Let Q denote some signed measure on S . Let F be a class of
measurable functions f : S →R. Define

∥Q f ∥F = sup
f ∈F

|Q f |.

For any r ≥ 1, denote by Lr (Q) the class of measurable functions f : S →R with∫
| f |r dQ<∞,
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where Q is a probability measure. The Lr (Q)-norm ∥ ·∥Q,r is defined by

∥ f ∥Q,r =
(∫

| f |r dQ

)1/r

,

for f ∈ Lr (Q). The essential supremum of f ∈ L∞(Q)is denoted by ∥ f ∥Q,∞. The covering
number N(ϵ,F ,Lr (Q)) of a function class F ⊂ Lr (Q) is computed with respect to the Lr (Q)-
norm for radius ϵ > 0. To be more precise, N(ϵ,F ,Lr (Q)) is the minimum number of balls
{g : ∥g −h∥Q,r < ϵ} of radius ϵ covering F .
For some random element Z, the probability measure induced by Z is denoted by PZ, conditional
on all other variables. The empirical process is defined to be

Gn = n1/2(Pn −P).

The outer and inner probability measures derived from P are designated by P∗ and P∗, re-
spectively. Outer and inner probability measures to be understood in the sense used in the
monograph by van der Vaart and Wellner [1996], in particular their definitions in page 6. Let
T be any map from the underlying probability space to the extended real line R. The minimal
measurable majorant and maximal measurable minorant of T are denoted by T∗ and T∗, re-
spectively. For any subset B of the probability space, by similar notation, its indicator function
satisfies 1B∗ = 1∗

B and 1B∗ = (1B)∗. We draw randomly with replacement from X independent
bootstrap observations Y1, . . . ,Ym . Let us define

P̂∗
m = m−1

m∑
i=1

δYi ,

so that

P̂∗
m =

m∑
i=1

WiδXi ,

where mW = m(W1, . . . ,Wn) is a multinomial vector with m trials and parameters (n−1, . . . ,n−1),
independent of the Xi . The probability measure induced by bootstrap resampling conditional
on X is denoted by PW . Let us define the bootstrappped empirical process by

Ĝ∗
m = m1/2

(
P̂∗

m −Pn

)
.

Let Tn denote a sequence of maps. Let D be a metric space. Let T be aD-valued measurable map
from the underlying probability. If Tn is bounded in outer probability, we will write Tn = OP∗(1),
in a similar way, if Tn converges in outer probability to zero, we will write Tn = oP∗(1). Assume
that

lim
M→∞

liminf
n→∞ PW

{
∥Tn∥ < M

}
∗ = 1. (3.2.1)

If (3.2.1) holds along almost every sequence X1,X2, . . ., we write Tn = OP∗
W

(1) a.s. (almost
surely). If for any subsequence {Tn′}, there exists a further subsequence {Tn′′} with Tn′′ = OP∗

W
(1)

a.s., we write Tn = OP∗
W

(1) i.p. (in probability). We write Tn = oP∗
W

(1) a.s., if, for any ϵ> 0, we
have

PW

{
∥Tn∥ > ϵ

}∗ → 0, as n →∞ (3.2.2)
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almost surely. We write Tn = oP∗
W

(1) i.p., in the case when the convergence (3.2.2) is in proba-
bility. The weak convergence of Tn to T, in the sense of Hoffmann-Jørgensen [1991], is denoted
by Tn⇝T. The space of D-valued functions in R bounded by 1 in the Lipschitz norm is denoted
by BL1(D). The conditional weak convergence of Tn to a separable T in D is characterized by
the condition

sup
f ∈BL1(D)

∣∣∣P∗
W f (Tn)−P f (T)

∣∣∣→ 0. (3.2.3)

In the case of the convergence (3.2.3) is in outer probability, we will write write Tn⇝T i.p., in
a similar way, if it is outer almost sure, we write Tn⇝T a.s.

Define MS,H = {mθ,h : θ ∈ S,h ∈ H } ⊂ MΘ,H , where S ⊂ Θ. For any δ,δ1,η > 0, let us
denote by Mδ,δ1 (η) and Mδ,δ1 the class of functions

Mδ,δ1 =
{

mθ,h −mθ0,h : ∥θ−θ0∥ ≤ δ,dH (h,h0) ≤ δ1,θ ∈Θ,h ∈H
}

,

Mδ,δ1 (η) =
{

mθ,h−mψ,h : ∥θ−ψ∥ < η,∥θ−θ0∥∨∥ψ−θ0∥ < δ,dH (h,h0) ≤ δ1,θ,ψ ∈Θ,h ∈H
}

.

The envelope function of Mδ,δ1 is denoted by Mδ,δ1 . For eachψ ∈B and h ∈H with θ0+ψ ∈Θ,
define m̃ψ,h = mθ0+ψ,h −mθ0,h . For any T ⊂ B, the class of bounded functions from T to R
is denoted by ℓ∞(T ), equipped with the sup norm. In the sequel, for all x ∈ S and closed
bounded K ⊂Θ, assume that

sup
θ∈K,h∈H

|mθ,h(x)−Pmθ,h | <∞.

In the sequel, we denote by C a positive constant that may be different from line to line. The
choice of the bootstrap sample size m is theoretically governed by (AB1) and (C4). The above
conditions are typically satisfied by taking m ∝ nc , for some sufficiently small c ∈ (0,1). Em-
pirical determination of m has long been an important problem which has not yet been fully
resolved, for more comments see Remark 3.3.3.6 below.

3.3 Main results

In this section, we present four main theorems, each of independent interest, which lead even-
tually to weak convergence of rn(θn −θ0) and in-outer-probability m out of n bootstrap consis-
tencies in the context of general M-estimation by applying the argmax theorem in van der Vaart
and Wellner [1996] and in Lee [2012] respectively. Let us recall the basic idea. If the argmax
functional is continuous with respect to some metric on the space of the criterion functions, then
convergence in distribution of the criterion functions will imply the convergence in distribution
of their points of maximum, the M-estimators, to the maximum of the limit criterion function.
First, we establish consistency of θn and θ̂

∗
m for θ0 by the following theorem.
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3.3.1 Consistency

In our analysis, we consider the following assumptions. Assume that the sequence of positive
constants rn ↑∞, for some fixed ν> 1 and for some function ℓ : (0,∞) → [0,∞) which is slowly
varying at ∞.

(A1) P
(
ĥ ∈H

)−→ 1 as n −→∞ and dH (ĥ,h0)
P∗
−→ 0.

(A2) MΘ,H is Glivenko-Cantelli:

∥Pn −P∥MΘ,H = oP∗(1).

(A3) limdH (h,h0)→0 supθ∈Θ |Pmθ,h −Pmθ,h0 | = 0.

(A4) The parameter of interest θ0 lies in the interior of Θ and satisfies, for every open O con-
taining θ0,

Pmθ0,h0 > sup
θ∉O

Pmθ,h0 .

(A5) The M-estimator θn satisfies Pnmθn ,ĥ ≥Pnmθ0,ĥ −Rn , with

r νnℓ(rn)Rn = oP∗(1).

(AB1) m = mn →∞, m = o(n) and r νmℓ(rm) = o
(
r νnℓ(rn)

)
.

(AB2) dH (ĥm ,h0) = oP∗
W

(1) i.p.

(AB3) The m out of n bootstrap M-estimator θ̂
∗
m satisfies P̂∗

mm
θ̂
∗
m ,ĥm

≥ P̂∗
mmθ0,ĥm

− R̂n , with

r νmℓ(rm)R̂n = oP∗
W

(1), i.p.

Remark 3.3.1.1 (i) Assumption (A2) fulfilled under some entropy and moment condi-
tions; see for example, Theorem 2.4.3, (p.123) of van der Vaart and Wellner [1996].

(ii) Assumption (A3) is automatically hold for example if; there exist function G(·) and
such that for any h in the neighborhood of h0 and any θ ∈Θ, we have:

|m(Xi ,θ,h)−m(Xi ,θ,h0)| ≤G(Xi )dH (h,h0).

The function G(·) satisfies;
PG(X) <∞,

or the function h 7→ m(x,θ,h) is Lipschitz uniformly over x and θ.

(iii) Assumptions (A5) and (AB3) are trivially fulfilled when

Pnmθn ,ĥ ≥ sup
θ∈Θ

Pnmθ,ĥ −Rn ,

and
P̂∗

mm
θ̂
∗
m ,ĥm

≥ sup
θ∈Θ

P̂∗
mmθ,ĥm

− R̂n ,

respectively, which allows to deal with approximations of the value that actually
maximizesθ 7→Pnmθ,ĥ and maximizesθ 7→ P̂∗

mmθ,ĥm
respectively.
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(iv) Assumption (AB2) poses no difficulty in practice and is met trivially by, for example,
setting ĥm = ĥ.

(v) For the finite-dimensional θ, (A5) and (AB3) can be achieved by a global maximiza-
tion of the processes Pnmθ,ĥ and P̂∗

mmθ,ĥm
, in this situation Rn = R̂n = 0. For the

infinite-dimensional θ, the maximization of the processes may be very complex or
not practically feasible. To circumvent this, we need sophisticated algorithms to
construct θn and θ̂

∗
m fulfilling (A5) and (AB3).

(vi) Finally, it’s possible to replace the following assumptions (A2) and (A4) by:

(A1′) For every compact K ⊂Θ, MK,H is Glivenko-Cantelli.

(A2′) The map θ 7→Pmθ,h0 is upper semicontinuous with a unique maximum at θ0.

(A3′) θn is uniformly tight.

(AB1′) θ̂∗m is uniformly tight i.p.

Theorem 3.3.1.2 (i) Assume (A1)-(A5). Then

θn −θ0 = oP∗(1).

(ii) Assume (A2), (A3), (A4) and (AB1)-(AB3). Then

θ̂
∗
m −θ0 = oP∗

W
(1) i.p.

Note that, the result of part (i) holds if we replaced (A2) and (A4) by ((A1′)-(A3′) and the
result of part (ii) holds if we replaced (A2) and (A4) by (A1′), (A2′) and (AB1′).

In the sequel, we refer to the sets of assumptions which imply the parts (i) and (ii); (C) and
(CP); respectively. Next we give the set of assumptions needed to identify rates of convergence
of θn and θ̂

∗
m to θ0, which is the important step for studying the weak convergence of these

estimators.

Remark 3.3.1.3 We highlight that the parameter of interest θ is not restricted to belong to
some Euclidean space as in Delsol and Van Keilegom [2020]. More precisely, we consider
the general framework in which θ ∈ Θ, where Θ is a subset of some Banach space B. Notice
that the result (i) of Theorem 3.3.1.2 is a bit more general than the analogous stated in the last
reference, by the fact the conditions imposed are more general in our setting and extend those
of Lee [2012] to the semiparametric models.

3.3.2 Rates of Convergence

Let us introduce the following assumptions:

(B1) vndH (ĥ,h0) = OP∗(1) for some vn −→∞.
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(B2) For all δ1 > 0, there exist α < ν, K > 0, δ0 > 0, for all n ∈ N there exist a function ϕ for
which δ 7→ ϕ(δ)

δα is decreasing on (0,δ0] and r νnℓ(rn)n−1/2ϕ(1/rn) ≤ C for n sufficiently
large and some positive constant C, such that for all δ≤ δ0,

P∗

 sup
∥θ−θ0∥≤δ,dH (h,h0)≤ δ1

vn

|Gnm̃θ−θ0,h |

≤ Kϕ(δ).

(B3) There exist η0 > 0, C > 0 and two positive and non-decreasing functions ψ1 and ψ2 on
(0,η0] such that for all θ ∈Θ satisfying ∥θ−θ0∥ ≤ δ0:

Pm̃θ−θ0,ĥ ≤ Wnψ1(∥θ−θ0∥)− (C+oP∗(1))ψ2(∥θ−θ0∥).

Moreover, there exist β2 > α,β1 < β2,δ0 > 0 such that δ 7→ψ1(δ)δ−β1 is non-increasing
and δ 7→ψ2(δ)δ−β2 is non-decreasing on (0,δ0] , and such that, for some sequence rn →
∞,

ψ1

(
r 1−ν

n ℓ−1(rn)
)

Wn = OP∗
(
ψ2

(
r 1−ν

n ℓ−1(rn)
))

.

for definition of P-measurability.

(BB1) vmdH (ĥm ,h0) = OP∗
W

(1) i.p. for some vm −→∞.

(BB2) With the same notation in assumption (B2) we replace rn (vn) by rm (vm) with assump-
tion (AB1) we have;

P∗P∗
W

 sup
∥θ−θ0∥≤δ,dH (h,h0)≤ δ1

vm

|Ĝ∗
mm̃θ−θ0,h |

≤ Kϕ(δ).

(BB3) With the same notation in assumption (B3) we replace rn by rm with assumption (AB1)
in mind we have;

Pm̃θ−θ0,ĥm
≤ Wmψ1(∥θ−θ0∥)− (C+oP∗(1))ψ2(∥θ−θ0∥),

where for some sequence rm →∞,

ψ1

(
r 1−ν

m ℓ−1(rm)
)

Wm = OP∗
W

(
ψ2

(
r 1−ν

m ℓ−1(rm)
))

, i.p.

Remark 3.3.2.1 (i) Assumption (B1) is a high-level assumption. Such condition on the
nuisance parameter ĥ could be obtained by many asymptotic results. In the present
paper, we are primarily concerned with the cases where the convergence rate of the
M-estimator of θ is not affected by the estimation of the nuisance parameter h.

(ii) Assumption (B2) is fulfilled if we assume that for any x the function (θ,h) → m(x ,θ,h(x ,θ))−
m (x ,θ0,h (x ,θ0)) is uniformly bounded on an open neighborhood of (θ0,h0), i.e., on{

(θ,h) : ∥θ−θ0∥ ≤ δ0,dH (h,h0) ≤ δ′1
}

,
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for some δ0,δ′1 > 0. We consider the class Mδ,δ′1 for any δ ≤ δ0 and its envelope
Mδ,δ′1 . For any δ1, we have, for n large enough; δ1v−1

n ≤ δ′1. After by the entropy
conditions on Mδ,δ′1 ,∫ 1

0
sup
δ<δ0

sup
Q

√
1+ logN

(
ϵ
∥∥∥Mδ,δ′1

∥∥∥
L2(Q)

,Mδ,δ′1 ,L2(Q)

)
dϵ<+∞, (3.3.1)

where the second supremum is taken over all finitely discrete probability measures
Q on S . We get;

P∗

 sup
∥θ−θ0∥≤δ,dH (h,h0)≤ δ1

vn

|Gnm̃θ−θ0,h |

≤ K1

√
P∗

[
M2
δ,δ′1

]
,

see Theorems 2.14.1 and 2.14.2 in van der Vaart and Wellner [1996]. Then the last
part of (B2) holds if ϕ(δ) can be chosen such that

∃K0,∀δ≤ δ0 :

√
P∗

[
M2
δ,δ′1

]
≤ K0ϕ(δ). (3.3.2)

Note that, all the different rate of convergence rn in the literature for smooth or not
smooth function satisfied the last term in assumption (B2).

(iii) We choose for simplification ψ1(x) = Id(x) = x and ψ2(x) = x2 in assumption (B3),
so it’s hold under the following conditions :

(a) Θ⊂B, where B is a Banach space.

(b) There exists δ2 > 0 such that for any h satisfying dH (h,h0) ≤ δ2, the function
θ 7→ P(m(X,θ,h)) is twice Fréchet differentiable on an open neighborhood of
θ0,

lim
∥θ−θ0∥→0

sup
dH (h,h0)≤δ2

∥θ−θ0∥−2
∣∣Pmθ,h −Pmθ0,h −Γ(θ0,h)(θ−θ0)

+1

2
Λ(θ0,h)(θ−θ0,θ−θ0)

∣∣∣∣= 0.

For more detail see [Allaire, 2005, p.306].

(c) Γ(θ0,h)(·) is a continuous linear form, with ∥Γ(θ0, ĥ)∥ = OP∗
(

1
r ν−1

n ℓ(rn )

)
and

Γ(θ0,h0) = 0.

(d) Λ(θ0,h)(·, ·) is bilinear form with Λ(θ0,h0) is bounded, symmetric, positive def-
inite and elliptic (i.e. Λ(θ0,h0)(u,u) ≥ C∥u∥2) and h 7→Λ(θ0,h) is continuous
in h0, i.e.,

lim
dH (h,h0)→0

sup
u∈Rk ,∥u∥=1

∥(Λ (θ0,h)−Λ (θ0,h0))u∥ = 0.

These assumptions and the fact that the bilinear form is bounded, it results
when dH (ĥ,h0) ≤ δ2;

Pmθ,ĥ −Pmθ0,ĥ = Γ(θ0, ĥ)(γθ)− 1

2
Λ(θ0,h0)(γθ,γθ)+oP∗(∥γθ∥2)+o(∥γθ∥2)

≤ Wn∥γθ∥−C∥γθ∥2 +βn(∥γθ∥),
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where γθ = θ−θ0. So (B3) holds with

Wn = ∥∥Γ(
θ0, ĥ

)∥∥ .

Note that when the space Θ⊂ E where E is some Euclidean space, the Fréchet
derivatives Γ(θ0,h) and Λ(θ0,h) become the usually derivatives i.e., the Gra-
dient and the Hessian matrix respectively, which is given in Remark 2(v) of
Delsol and Van Keilegom [2020].

(iv) Assumption (BB1) poses no difficulty in practice and is met trivially by, for example,
setting ĥm = ĥ, like in Remark 3.3.1.1 (iv).

(v) Assumption (BB2) is a ’high-level’ assumption. It serves to control the modulus of
continuity of the bootstrapped empirical processes; which is needed to derive the
rate of convergence of the bootstrapped estimator θ̂

∗
m . Note that when we are in

the situation of the n out of n bootstrap this condition is given in Ma and Kosorok
[2005] and in Lemma 1 of Cheng and Huang [2010] for more generally in the ex-
changeable bootstrap weights. In our setting; it’s fulfilled under some entropy con-
ditions, for brevity with the same notation in (ii), let Ñ1, Ñ2, . . . be i.i.d. symmetrized
Poisson variables with parameter 1

2 m/n and ε1,ε2, . . . are i.i.d. Rademacher vari-
ables independent of Ñ1, Ñ2, . . . and X1,X2, . . .. Denote by R = (R1, . . . ,Rn) a random
permutation of {1,2, . . . ,n}, independent of all other variables. Let us introduce

PR
k = k−1

k∑
i=1

δXRi
,

for each k ∈ {1, . . . ,n}. By Lemma 3.6.6 of van der Vaart and Wellner [1996] and the
paragraph before it (ahead) with sub-Gaussian inequality for Rademacher process
we obtain

P∗
W

∥∥Ĝ∗
m

∥∥
Mδ,δ′1

≤ 4PÑ

∥∥∥∥∥ 1p
k

n∑
i=1

|Ñi |εiδXi

∥∥∥∥∥
Mδ,δ′1

. (3.3.3)

Applying now Lemma 3.6.7 of van der Vaart and Wellner [1996] to the right side of
(3.3.3) with n0 set to 1 we get;

P∗
W

∥∥Ĝ∗
m

∥∥
Mδ,δ′1

≤ 4PÑ

∥∥∥∥∥ 1p
k

n∑
i=1

|Ñi |εiδXi

∥∥∥∥∥
Mδ,δ′1

≤
√

n

k

∥∥Ñi
∥∥

2,1 max
1≤k≤n

PRPε

∥∥∥∥∥ 1p
k

k∑
i=1

εiδXRi

∥∥∥∥∥
∗

Mδ,δ′1

≤ C max
1≤k≤n

PR

(
PR

k Mδ,δ′1

)1/2

≤ C
(
PnMδ,δ′1

)1/2
, (3.3.4)

where C >
√

n
k

∥∥Ñi
∥∥

2,1 see Problem 3.6.3 of van der Vaart and Wellner [1996]. By
Jensen’s inequality the outer expectation of the left side of (3.3.4) is bounded by
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C
√
P[M

δ,δ
′
1
]2, for every δ< δ1. The inequality in assumption (BB2) holds for every

n ∈N this implied by the fact that the variables we consider are i.i.d.

(vi) Finally, for the assumption (BB3) with the same discussion given in (iii) only the
choice Wn = ∥∥Γ(

θ0, ĥ
)∥∥ becomes

Wm = ∥∥Γ(
θ0, ĥm

)∥∥ ,

with Wm = OP∗
W

(
1

r ν−1
m ℓ(rm )

)
i.p.

Theorem 3.3.2.2 (i) Assume (C) and (B1)-(B3). Then

rn(θn −θ0) = OP∗(1).

(ii) Assume (CP) and (BB1)-(BB3). Then

rm

(
θ̂
∗
m −θ0

)
= OP∗

W
(1) i.p.

Remark 3.3.2.3 The result (i) of this Theorem still holds for θ belongs to Banach space which
is more general of the Theorem 2 of Delsol and Van Keilegom [2020], where the authors are
interested in the finite dimensional case. Noting that the choice of ν= 2 and ℓ≡ 1 in assumptions
B2 and B3, reduces to the assumptions B2 and B3 respectively of the last reference.

3.3.3 Weak Convergence

We start this section by introducing some notation. For any θ ∈Θ and h ∈H , let K = {
γ ∈ E :

∥γ∥ ≤ K
}

for K > 0. Define, for sufficiently large n and for γ ∈K , the empirical processes

Mn(γ,h) = r νnℓ(rn)(Pn −P)m̃γ/rn ,h ,

M̂n(γ,h) = r νmℓ(rm)(P̂∗
m −Pn)m̃γ/rm ,h , (3.3.5)

which can be treated as random elements in ℓ∞(K ). Also let for any δ> 0;

Mδ(·) ≥ sup
∥θ−θ0∥≤δ

|m(·,θ,h0)−m(·,θ0,h0)| ,

Mδ =
{

m(·,θ,h0)−m(·,θ0,h0) : ∥θ−θ0∥ ≤ δ
}

,

Mδ(η) =
{

mθ,h0 −mψ,h0 : ∥θ−ψ∥ < η,∥θ−θ0∥∨∥ψ−θ0∥ < δ,θ,ψ ∈Θ
}

.

Finally, for any p ∈N and any f :Θ−→R and for any γ= (γ1, . . . ,γp ) ∈Θp , denote

f γ = ( f (γ1), . . . , f (γp ))⊤.

We give the set of assumptions for the asymptotic distribution of the processes given in (3.3.5)
and their maximum.

(C1) rn∥θn −θ0∥ = OP∗(1) and vndH (ĥ,h0) = OP∗(1) for some sequences rn −→∞ and vn −→
∞, and r ν−2

n ℓ(rn) < C for some C > 0.
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(C2) θ0 lies to the interior of Θ, where Θ⊂ (B,∥ ·∥).

(C3) For all δ2,δ3 > 0,

sup
∥θ−θ0∥ ≤ δ2

rn

dH (h,h0) ≤ δ3
vn

|(Pn −P)m̃θ−θ0,h + (Pn −P)m̃θ−θ0,h0 |
r−ν

n ℓ−1(rn)+|Pnm̃θ−θ0,h |+ |Pnm̃θ−θ0,h0 |+ |Pm̃θ−θ0,h |+ |Pm̃θ−θ0,h0 |
= oP∗(1).

(C4) There exists a sequence {an} with

a2
mm−1/2 logn/log(n/m +1) = o(1) and a−1

n = O(1),

such that, for all C,η> 0 and for every sequence { jn} with an = o( jn),

r 2ν
n ℓ2(rn )

n P∗
[

M2
C

rn

]
= O(1) and r 2ν

n ℓ2(rn )
n P∗

M2
C

rn

1I{
M C

rn
> η jn n1/2

rνn ℓ(rn )

}= o(1).

(C5) For all K and for any ηn −→ 0,

sup
∥γ1−γ2∥<ηn ,∥γ1∥∨∥γ2∥≤K

r 2ν
n ℓ2(rn)

n
P

[
m

(
X,θ0 +

γ1

rn
,h0

)
−m

(
X,θ0 +

γ2

rn
,h0

)]2

= o(1).

(C6) For x , the function θ 7→ m(x ,θ,h0) and almost all paths of the two processes θ 7→ m(x ,θ, ĥ)

and θ 7→ m(x ,θ, ĥm) are uniformly bounded on closed bounded sets (over θ).

(C7) There exist a random and linear function Wn : B −→R, a deterministic and bilinear func-
tion V : B×B −→R and βn = oP∗(1); such that for all θ ∈Θ;

Pm̃θ−θ0,ĥ = Wn(γθ)+V(γθ,γθ)+βn∥γθ∥2 +o(∥γθ∥2)

and

Pm̃θ−θ0,h0 = V(γθ,γθ)+o(∥γθ∥2),

where γθ = θ−θ0 and the notation o(∥γθ∥2) means

lim
∥γθ∥−→0

o(∥γθ∥2)

∥γθ∥2 = 0.

Moreover, for any bounded closed set K ⊂B,

∃τ,δ1 > 0,r ν−1
n ℓ(rn) sup

γ∈K ,δ≤δ1

∥γ∥≤δ

∣∣∣Wn(γ)
δτ

∣∣∣= OP(1) and sup
γ,γ′∈K ,δ≤δ1

∥γ−γ′∥≤δ

|V(γ,γ)−V(γ
′
,γ

′
)|

δτ
<∞.
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(C8) There exists a zero-mean Gaussian process G defined on B and a continuous function Λ
such that for all p ∈N and for all γ= (γ1, . . . ,γp ) ∈K p ,

r ν−1
n ℓ(rn)Wnγ+ r νnℓ(rn)Pnm̃ ·

rn
,h0γ
⇝Λγ+Gγ.

Moreover, G(γ) =G(γ
′
) a.s. implies that γ=γ′

, and

P∗
(

limsup
∥γ∥−→∞

(Λ(γ)+G(γ)) < sup
γ∈B

(Λ(γ)+G(γ))

)
= 1.

(C9) There exists a δ0 > 0 such that

∞∫
0

sup
δ≤δ0

sup
Q

√
log

(
N(ϵ∥Mδ∥Q,2,Mδ,L2(Q))

)
dϵ<∞.

(C10) For all δ,η> 0, the classes Mδ,Mδ(η) and Mδ(η)2 are P-measurable, see [van der Vaart
and Wellner, 1996, p.110] for definition of P-measurability.

(C11) For all C > 0, there exists n0 ∈N such that for all n0 ≥ n,

Pnmθn ,ĥ ≥ sup
∥θ−θ0∥≤ C

rn

Pnmθ0,ĥ −Rn ,

where Rn is given in (A5).

(CB1) rm∥θ̂∗m−θ0∥ = OP∗
W

(1) i.p. and vmdH (ĥm ,h0) = OP∗
W

(1) i.p. for some sequences rm −→
∞ and vm −→∞ and r ν−2

m ℓ(rm) ≤ C.

(CB2) For all δ2,δ3 > 0,

sup
∥θ−θ0∥ ≤ δ2

rm

dH (h,h0) ≤ δ3
vm

|(P̂∗
m −Pn)m̃θ−θ0,h + (P̂∗

m −Pn)m̃θ−θ0,h0 |
r−ν

m ℓ−1(rm)+|Pnm̃θ−θ0,h |+ |Pnm̃θ−θ0,h0 |+ |P̂∗
mm̃θ−θ0,h |+ |P̂∗

mm̃θ−θ0,h0 |
= oP∗(1).

(CB3) There exists a random and linear function Wm : B −→R, and βm = oP∗(1), such that for
all θ ∈Θ;

Pm̃θ−θ0,ĥm
= Wm(γθ)+V(γθ,γθ)+βn∥γθ∥2 +o(∥γθ∥2)

and
Pm̃θ−θ0,h0 = V(γθ,γθ)+o(∥γθ∥2).

Moreover, for any closed bounded set K ⊂ E,

∃τ,δ1 > 0,r ν−1
m ℓ(rm) sup

γ∈K ,δ≤δ1

∥γ∥≤δ

∣∣∣Wm(γ)
δτ

∣∣∣= OP∗
W

(1) i.p., sup
γ,γ′∈K ,δ≤δ1

∥γ−γ′∥≤δ

|V(γ,γ)−V(γ
′
,γ

′
)|

δτ
<∞.
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(CB4)
r ν−1

m ℓ(rm)Wmγ+ r νmℓ(rm)P̂∗
mm̃ ·

rm
,h0γ
⇝Λγ+Gγ i.p.,

whereΛ and G are given in (C8) and the weak convergence is conditionally on the sample.

(CB5) For all C > 0, there exist m0 ∈N such that for all m ≥ m0,

P̂∗
mm

θ̂
∗
m ,ĥm

≥ sup
∥θ−θ0∥≤ C

rm

P̂∗
mmθ0,ĥm

− R̂n ,

where R̂n is given in (AB3).

Remark 3.3.3.1 (i) We can obtained the first part of condition (C1) by part (i) of Theo-
rem 3.3.2.2.

(ii) Assumption (C3) holds under the common condition: for all δ2,δ3 > 0,

sup
∥θ−θ0∥≤ δ2

rn
,dH (h,h0)≤ δ3

vn

∣∣(Pn −P)m̃θ−θ0,h + (Pn −P)m̃θ−θ0,h0

∣∣= oP∗(r−ν
n ℓ−1(rn)),

which is implied by the fact that; there exists a function f and a constant δ0 > 0 such
that for all δ2,δ3 < δ0,

r νnℓ(rn) f

(
δ2

rn
,
δ3

vn

)
= o

(p
n

)
,

and

P∗

 sup
∥θ−θ0∥≤ δ2

rn
,dH (h,h0)≤ δ3

vn

∣∣(Pn −P)m̃θ−θ0,h + (Pn −P)m̃θ−θ0,h0

∣∣


≤ 2P∗

 sup
∥θ−θ0∥≤ δ2

rn
,dH (h,h0)≤ δ3

vn

∣∣Gnm̃θ−θ0,h
∣∣


≤ 1p
n

f

(
δ2

rn
,
δ3

vn

)
.

Using the same arguments as in Remark 3.3(ii), we get the last inequality.

(iii) If we assume that jn = p
n, and noting; γ 7→ Mn(γ,h0) = r νnℓ(rn )p

n
Gnm̃γ/rn ,h0 is the

empirical process with indexed class r νnℓ(rn )p
n

M C
rn

then, under assumption (B2), the
assumptions (C4) and (C5) hold by the following conditions: there exists a δ4 > 0

such that for all δ≤ δ4, P∗(M2
δ

) ≤ Kϕ2(δ) for some C > 0,

lim
δ−→0

P∗
[

M2
δ

1I{Mδ>ηδ−2ϕ2(δ)}

]
ϕ2(δ)

= 0,

for all η> 0 and

lim
ϵ−→0

lim
δ−→0

sup
∥γ1−γ2∥<ϵ,∥γ1∥∨γ2≤K

P
[
m

(
X,θ0 +γ1δ,h0

)−m
(
X,θ0 +γ2δ,h0

)]2

ϕ2(δ)
= 0,

for all C > 0, corresponding the case to Theorem 3.2.10 in van der Vaart and Wellner
[1996].
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(iv) Let K be an arbitrary closed bounded subset in B, the first part of condition (C8) is
used to assume the convergence of the marginals of the process γ 7→ r ν−1

n ℓ(rn)Wn(γ)+
r νnℓ(rn)Pnm̃ γ

rn
,h0

for deriving its weak convergence in ℓ∞(K ) by the fact that it is
asymptotically tight; which is fulfilling by using (C4), (C5), (C9) and the preceding
discussion in (iii). If

r ν−1
n ℓ(rn) sup

γ∈K ,γ ̸=0
∥Wn(γ)∥γ∥−1∥ = oP(1),

we treat the given process as in the parametric case, where its marginals converge
provided that

lim
n→∞

r 2ν
n ℓ2(rn )

n P

{[
m

(
X,θ0 + γ1

rn
,h0

)
−m

(
X,θ0 + γ2

rn
,h0

)]2
}

=P
[(
G

(
γ1

)−G(
γ2

))2
]

,

for all γ1,γ2 and we lead to a rate of convergence rn as the solution of

r νnℓ(rn)ϕ(1/rn) =p
n,

for more detail see Theorem 3.2.10 of van der Vaart and Wellner [1996]. Note that
almost all sample paths of the process γ 7→Λ(γ)+G(γ) have a supremum affiliated
to their attitude on bounded closed set, which is guaranteed by the last assump-
tion. The dominant term of the deterministic part Λ is usually a negative definite
quadratic form and hence exponential inequalities could lead to such result, for ex-
ample when we are in the situation of the smooth function, one can refer to Lee
and Pun [2006], Ma and Kosorok [2005], Kosorok [2008], Kristensen and Salanié
[2017] among many others.

(v) Assumption (C9) is a technical assumption, which is the same in the parametric case
where the nuisance parameter h0 is known, needs to show that; the process γ 7→
r νnℓ(rn)Pnm̃ γ

rn
,h0

is asymptotically tight, see Theorem 3.2.10 of van der Vaart and
Wellner [1996].

(vi) First part of (CB1) follows by part (ii) of Theorem 3.3.2.2.

(vii) Assumption (CB2) is automatically hold under the condition : for all δ2,δ3 > 0,

sup
∥θ−θ0∥≤ δ2

rm
,dH (h,h0)≤ δ3

vm

∣∣(P̂∗
m −Pn)m̃θ−θ0,h + (P̂∗

m −Pn)m̃θ−θ0,h0

∣∣= oP∗
W

(r−ν
m ℓ−1(rm)) i.p.

This condition is hold if: there exists a function g and a constant δ0 > 0 such that
for all δ2,δ3 < δ0,

r νmℓ(rm)g

(
δ2

rm
,
δ3

vm

)
= o

(p
m

)
,
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and

P∗P∗
W

 sup
∥θ−θ0∥≤ δ2

rm
,dH (h,h0)≤ δ3

vm

∣∣(P̂∗
m −Pn)m̃θ−θ0,h + (P̂∗

m −Pn)m̃θ−θ0,h0

∣∣


≤ 2P∗P∗
W

 sup
∥θ−θ0∥≤ δ2

rm
,dH (h,h0)≤ δ3

vm

∣∣Ĝ∗
mm̃θ−θ0,h

∣∣


≤ 1p
m

g

(
δ2

rm
,
δ3

vm

)
.

Using the same arguments as in Remark 3.3(v), we get the last inequality.

(viii) Following similar discussion of the condition (C7) provided in Remark 3(iv) of
Delsol and Van Keilegom [2020], we only change the random function Wn(γ) for the
bootstrap version to Wm(γ) = 〈Γ(θ0, ĥm),γ〉. If we are in the situation where ĥm is
calculated from a dataset independently from the bootstrapped sample (X∗

1 , . . . ,X∗
m),

so it is sufficient for assumption (CB4) to suppose the conditional weak convergence
of each term; r ν−1

m ℓ(rm)Wmγ and r νmℓ(rm)P̂∗
mm̃ ·

rn
,h0γ

separately. We can get the
convergence of the second one as the same in the situation without the nuisance
parameter, the interested reader is referred to Lemma 1 of Lee [2012]. Note that if
r ν−1

m ℓ(rm)Γ(θ0, ĥm) → W conditionally in distribution, the marginals of the process
γ 7→ 〈r ν−1

m ℓ(rm)Γ(θ0, ĥm),γ〉 tend in distribution to the marginals of γ 7→ 〈W,γ〉.
Furthermore, if rm =p

m and ℓ≡ 1, it is common to assume that

Γ(θ0, ĥm) = m−1
m∑

i=1
Ui ,m +oP∗

W

(
m−1/2) ,

where Ui ,m , i = 1, . . . ,m, are independent and centered random variables. The con-
vergence follows from Lindeberg’s condition.

Theorem 3.3.3.2 (Weak Convergence of Empirical Processes). For all K > 0, let K = {
γ ∈

E : ∥γ∥ ≤ K
}

be a closed bounded subset of B, treating γ 7→Mn(γ, ĥ) and γ 7→ M̂n(γ, ĥm) as
random elements in ℓ(K ) for sufficiently large n, we have the following results:

(i) Assume (C1)-(C10). Then

r νnℓ(rn)Pnm̃ γ
rn

,ĥ⇝Λ(γ)+G(γ).

(ii) Assume (A2), (AB1), (B2), (C2)-(C6),(C9)- (C11) and (CB1)-(CB4). Then

r νmℓ(rm)P̂∗
mm̃ γ

rm
,ĥm
⇝Λ(γ)+G(γ) i.p.

Our main results concerning weak convergence of rn(θn −θ0) and m out of n bootstrap consis-
tency are embodied in the following theorem.
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Theorem 3.3.3.3 Assume for any such K that almost every sample path of the process γ 7→
Λ(γ)+G(γ) achieves its supremum at a unique random point γ0 = argmax

γ∈B
Λ(γ)+G(γ), then;

(i) Assume (C1)-(C11). Then
rn (θn −θ0)⇝ γ0.

(ii) Assume (A2), (AB1), (B2), the first part of (C1), (C2)-(C6),(C9)- (C11) and (CB1)-(CB5).
Then

rm

(
θ̂
∗
m −θn

)
⇝ γ0 i.p.

Remark 3.3.3.4 The result (i) of the Theorem 3.3.3.2 is the same result of Lemma 1 of Delsol
and Van Keilegom [2020] where the parameter of the interest θ is in a Euclidean space, for the
particular case ν= 2 and ℓ≡ 1, then by the application of Theorem 3.2.2 of van der Vaart and
Wellner [1996] and the uniform tightness of the sequence rn(θn −θ0), the authors established
the weak convergence to some tight random variable γ0 in ℓ∞(K ) for the compact set K

in their Theorem 3 which is given in the result (i) of the Theorem 3.3.3.3 in this case. In
our setting, we provide the weak convergence of the same sequence for the Banach valued
parameter by using Theorem of van der Vaart and Wellner [1996] where the compact sets and
the uniformed tightness of rn(θn −θ0) are replaced, respectively, by closed bounded sets with
a similar structure as the set K and rn(θn −θ0) = OP∗(1), as given in Lee [2012] without the
nuisance parameter h0.

Note that (i) still holds if (C4) is replaced by this more weak condition

n−1r 2ν
n ℓ(rn)2P∗M2

c/rn

{
Mc/rn > ηnr−ν

n ℓ−1(rn)
}→ 0.

In order to prove the conditional stochastic equicontinuity of the bootstrapped process M̂n we
need the condition (C4), that is fulfilled if the uniform integrability condition is imposed for
jn ≥ nc , for some 0 < c < 1/4.

Remark 3.3.3.5 It is well known that Theorem 3.3.3.3 can be used easily through routine boot-
strap sampling, which we describe briefly as follows. More precisely, this can be used, for
example, to form confidence bands for the true parameter θ based N, be a large integer, sam-

pled samples Yk
1 , . . . ,Y(k)

m , k = 1, . . . ,N. Let
(
θ̂
∗
m

)(k)
the bootstrapped estimator of θ based on the

sample Y(k)
1 , . . . ,Y(k)

m , k = 1, . . . ,N. An application of Theorem 3.3.3.3 implies that(
θ̂
∗
m

)(1)

(
rn (θn −θ0) ,rm

((
θ̂
∗
m

)(1) −θn

)
, . . . ,rm

((
θ̂
∗
m

)(N) −θn

))
⇝

(
γ0,γ(1)

0 , . . . ,γ0
(N)

)
i.p.,

where γ(1)
0 , . . . ,γ(N)

0 are independent copies of γ0. Notice that we have

lim
n→∞P

(
θn − r−1

n c(α) ≤ θ0 ≤ θn + r−1
n c(α)

)=P(|γ0| ≤ c(α)) = 1−α.
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In order to approximate c(α), one can use the sampling estimator ĉ(α), of c(α), as the smallest
z such that

1

N

N∑
k=1

1{
rm

((
θ̂
∗
m

)(k)−θn

)
≤z

} ≥ 1−α.

Remark 3.3.3.6 In nonregular problems where the conventional n out of n bootstrap is in-
consistent, the m out of n bootstrap provides a useful remedy to restore consistency. In prac-
tice, however, choosing an appropriate m needs careful attention. Asymptotically,

p
n, logn or

20logn satisfy the o(n) requirement, but in finite sample settings the actual results can vary
dramatically depending on the choice. Let Xn = (X1, . . . ,Xn) be a random sample drawn from
an unknown distribution F, and Tn (Xn ,F) be a statistical functional of interest. Under mild
conditions the m out of n bootstrap distribution L ∗

m,n provides a consistent estimator of the
distribution Ln of Tn (Xn ,F) , provided that the bootstrap sample size m is properly chosen, re-
fer to Götze and Račkauskas [2001] and Bickel et al. [1997]. Empirical selection of m has long
been an important problem, which has been discussed by, for example, Datta and McCormick
[1995], Hall et al. [1995] and Politis et al. [1999a] in different contexts. The prevailing idea is
to estimate a theoretically optimal sample size m, defined in a frequentist sense to be the value
of m which minimises the expected value of some metric measure d

(
Ln ,L ∗

m,n

)
between Ln

and L ∗
m,n . The problem can be solved using bootstrap samples of size m, where m →∞ and

m/n → 0. Bickel and Sakov [2008] proposed an adaptive rule to select a value m̂ and discuss
its properties. The authors show, under some conditions, that m̂/n

P→ 1 when the n bootstrap
works, but m̂ → ∞ and m̂/n → 0 when the n-bootstrap does not work. More precisely, the
authors suggested the following rule for choosing m:

1. Consider a sequence of m’s of the form

m j =
⌊

q j n
⌋

, for j = 0,1,2, . . . , 0 < q < 1,

where ⌊α⌋ denotes the smallest integer ≥ α.

2. For each m j , find L∗
m j ,n (in practice this is done by Monte-Carlo).

3. Let d be some metric consistent with convergence in law, and set

m̂ = argmin
m j

d
(
L∗

m j ,n ,L∗
m j+1,n

)
.

If there is more than one value of m which minimizes the difference, then we pick the largest
one. These results mean that the rule behaves well under both situations. Swanepoel [1986]
proposed m = (2/3)n to obtain the desired coverage probability of a confidence interval. Alin
et al. [2017] have considered m = n j where the value j satisfies n j = 2

3 n. Solving this equation
for j , this expression leads to the choice

m = n j for j = 1+ log
(2

3

)
log(n)

,
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for which we note 0 < j < 1, so that m = o(n). Götze and Račkauskas [2001] have suggested
the estimation m by minimising d

(
L ∗

m,n ,L ∗
m/2,n

)
, yielding an optimal bootstrap sample size

in the sense of Wei et al. [2016], provided that the latter has order oP(n). Wei et al. [2016]
have investigated stochastic version of the optimal bootstrap sample size, defined as the min-
imiser of an error measure calculated directly from the observed sample. The authors have
developed procedures for calculating the stochastically optimal value of m. The performance
of their methodology is illustrated in the special forms of Edgeworth-type expansions which are
typically satisfied by statistics of the shrinkage type.

Remark 3.3.3.7 An alternative approach, known as subsampling, uses without-replacement
subsamples instead of with-replacement bootstrap samples to estimate the limiting distribu-
tion. Unlike the m out of n bootstrap, the consistency of which derives from a notion of local
uniform continuity on the space of distribution functions, validity of subsampling follows from
the asymptotics of a U-statistic of degree m, and consistency can be proved under minimal
conditions (see, e.g., Politis and Romano [1994] and Politis, Politis et al. [1999b] for a gen-
eral exposition of subsampling), Thus, subsampling is more general than the m-bootstrap since
fewer assumptions are required. However, the m-bootstrap has the advantage that it allows for
the choice of m = n. In particular, if the n-bootstrap works and is known to be second order
correct for some pivotal roots, the selection rule for m includes the particular case m/n → 1.
In that case, unlike subsampling, the m-bootstrap enjoys the second order properties of the
n-bootstrap. We mention that the higher-order asymptotic results are clearly essential for a
detailed comparison of the two approaches under conditions when they are both consistent. Re-
sults so far are only sporadic for either approach, however. Under regularity conditions, both
approaches suffer from a loss of efficiency, which can be recovered to some extent by extrapo-
lation (Bickel et al. [1997], Politis et al. [1999b]). Bickel and Sakov [2008] studied the effects
of extrapolation also for nonregular cases that admit Edgeworth expansions of a particular
form. We note that extrapolation is easier to implement on the m out of n bootstrap than on
subsampling, for which a finite-population correction factor is explicitly required. Since in all
situations of interest, so far, the conditions for consistency of the m-bootstrap are satisfied, we
consider only the sampling with replacement case. It is easily seen that if m = o(n1/2), then ties
in bootstrap samples are asymptotically negligible, and the two approaches are equivalent to
first order. For more details, for instance, we refer Lee and Pun [2006], Romano and Shaikh
[2012], Bertail [1997], Bertail et al. [1999] and Politis et al. [2001].

3.4 Applications

We present in this section some examples which can not handled with the classical theory
of semiparametric estimators and their m out of n bootstrap version cannot be applied while
theory of the paper can be applied. This illustrates the usefulness of our results. Delsol and
Van Keilegom [2020] provided some examples of situations in which the existing theory on
semiparametric estimators cannot be applied, whereas their result could be applied. It is worth

67



CHAPTER 3. GENERAL M-ESTIMATOR PROCESSES AND THEIR M OUT OF N
BOOTSTRAP WITH FUNCTIONAL NUISANCE PARAMETERS

noticing that the aim of this section is to verify the bootstrap conditions that are different from
those used for the non bootstrapped estimators checked in the last mentioned reference. Al-
though only three examples will be given here, they stand as archetypes for a variety of models
that can be investigated by the methodology of the present paper.

3.4.1 Single index model with monotone link function

The single index regression models are typical examples which are given

Y = g
(
X⊤β

)+ε (3.4.1)

where P(ε|X) = 0,Var(ε|X) < ∞ and we assume that the unknown function g (·) is monotone,
we refer to Ichimura [1993] for more details. On the basis of the sample (X1,Y1) , . . . , (Xn ,Yn)

coming from the model (3.4.1), we make use of the the pool-adjacent-violators algorithm to
construct and estimator of the function g (·). This gives a non-smooth estimator ĝβ(·) of gβ(z) =
E
[
Y|X⊤β= z

]
. Next, by using the least-squares estimation method we estimate β

β̂= argmax
β

[
−n−1

n∑
i=1

(
Yi − ĝβ

(
XT

i β
))2

]
.

By the fact that ĝβ(·) is of non-smooth nature implies that the criterion function is not smooth
in β. This is a situation where the theory of the present paper can be applied.

3.4.2 Classification with missing data

Let X1 = (X11,X12), . . . ,Xn = (Xn1,Xn2) be independent and identically distributed random copies
of the random vector X = (X1,X2), coming from two underlying populations. For j = 0,1, let
Yi = j when the Xi comes from the population j . Let us denote by Y the population indica-
tor associated with the vector X. Using the information of available data, we seek to find a
classification method for novel observations with unknown true population.

The classification is performed by regressing X2 on X1 making use of the parametric criterion
function fθ(·), and choosing θ that maximize the following

P1I{Y=1,X2≥ fθ(X1)} +P1I{Y=0,X2< fθ(X1)}. (3.4.2)

Let θ0 denote the maximizer of (3.4.2) with respect to all θ ∈ Θ, here Θ is assumed to be a
compact subset of Rk containing as an interior point θ0. Now assume that Yi ’s are subject to
some missing mechanism. Let ∆i be a random variable (respectively ∆) equals to 1 when we ob-
serve the random variable Yi (respectively Y), and 0 otherwise. Let Z1 = (X1,Y1∆1,∆1), . . . ,Zn =
(Xn ,Yn∆n ,∆n) be the observations at hand. The missing at random mechanism in considered in
the following sense

P
(
1I{∆=1}|X1,X2,Y

)=P(
1I{∆=1}|X1

)
:= p0 (X1) .
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Note that the relation (3.4.2) can be written

E

[
1I{∆=1}

p0(X1)

{
1I{Y=1,X2≥ fθ(X1)} +1I{Y=0,X2< fθ(X1)}

}]
.

We define
mθ,p (Z) = 1I{∆=1}

p(X1)

{
1I{Y=1,X2≥ fθ(X1)} +1I{Y=0,X2< fθ(X1)}

}
,

here the infinite dimensional nuisance parameter p(·) belonging to some functional space P to
be specified later. Consequently, the estimator θn of θ0 is given by

θn = argmax
θ∈θ

Pnmθ,p̂ ,

where, for any x and a bandwidth sequence h = hn ,

p̂(x) =
n∑

i=1

Kh(x −Xi 1)
n∑

j=1
Kh(x −X j 1)

1I{∆i=1},

where the kernel function K(·) is assumed to be a density function having support [−1,1],

Kh(u) = K
( u

h

)
h . Nonparametric regressions with missing have long attracted a great deal of at-

tention, for good sources of references to research literature in this area along with statistical
applications consult Müller [2009], Pérez-González et al. [2009] and Koul et al. [2012] among
many others.

3.4.3 Binary choice model with missing data

Let us define the binary choice model, in the linear regression function framework, by{
U = X⊤β−ε,

Y = 1I(U ≥ 0),

where we assume that ε is zero median conditionally on X. The random variable Y is missing at
random with the probability, to observe Y, depending on X via the following relation

P(1I{∆=1}|X,Y) =P(
1I{∆=1}|X⊤γ

)
:= p

(
X⊤γ

)
,

where ∆= 1 when we observe Y and 0 elsewhere. The observed data for the preceding model are
given by of i.i.d. triplets (X1,Y1∆1,∆n) , . . . , (Xn ,Yn∆n ,∆n). To estimate pγ(z) = P(

1I{∆=1}|X⊤γ= z
)

,

we use the following

p̂γ(z) =
n∑

i=1

Kh
(
X⊤

i γ− z
)

n∑
j=1

Kh

(
X⊤

j γ− z
)1I{∆i=1}.

The parameter estimate is given by

(β̂, γ̂) = argmax
β,γ

Pnmβ,γ,p̂γ ,
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where
mβ,γ,p = 1I{∆i=1}

p
(
X⊤

i γ
) [

21I{Yi=1} −1
]

1I{X⊤
i β≥0}.

The existing theory cannot be applied here by the fact that the function mβ,γ,p is smooth in γ
but non-smooth in β.

Now we will study in full detail the example in 3.4.2 and we work out the verification of the
conditions of Theorems 3.3.1.2, 3.3.2.2, 3.3.3.2 and 3.3.3.3 the most of this conditions verified
in Section 7 of Delsol and Van Keilegom [2020] by noting that ν= 2 and ℓ≡ 1, so our focuses
is to verify the conditions needed for the m out of n bootstrapped version. In the beginning we
give some information about the nuisance function and her space and some notation. Let P be
the space of functions p : RX1 →R that are continuously differentiable, for which

sup
x1∈RX1

p(x1) ≤ M <∞, sup
x1∈RX1

|p ′
(x1)| ≤ M and inf

x1∈RX1

p(x1) > η/2,

where
η= inf

x1∈RX1

p0(x1) > 0

and RX1 is the support of X1, where we suppose it is a compact subspace of R. We equip the
space P with the supremum norm:

dP (p1, p2) = sup
x1∈RX1

|p1(x1)−p2(x1)| for any p1, p2 ∈P .

After, the conditions of the consistency are verified as follows, (A1) holds true provided the
functions p0(·) and K(·) are continuously differentiable. For assumption (A2) we can showing
that the bracketing number of the class F = {mθ,p ,θ ∈Θ, p ∈ P }; N[ ] (ϵ,F ,LP) is finite for all
ϵ> 0, by using Corollary 2.7.2 of van der Vaart and Wellner [1996], we get

N[ ] (ϵ,P ,LP) ≤ exp{Kϵ−1}, (3.4.3)

and
N[ ]

(
ϵ, { fθ,θ ∈Θ},LP

)≤ exp{Kϵ−1},

by the properties of the set P and the fact that x 7→ fθ(x) is continuously differentiable over θ
with bounded derivative and as a consequence it’s easily to show that

N[ ] (ϵ,T ,LP) ≤ exp{Kϵ−1}, (3.4.4)

for the class T = {
(x1,x2) → 1I{x2≥ fθ(x1)} : θ ∈Θ}

. From (3.4.3) and (3.4.4) we get;

N[ ] (ϵ,F ,LP) ≤ exp{Kϵ−1}.

Then assumption (A3) is straightforward. Assumption (A4) is an identifiability condition to
ensure the uniqueness of θ0 and (A5) is verified by construction of the estimator θn . The
consistency of θn is then follows. For the conditions of the bootstrap version they are verified
as follows; fist part of assumption (AB1) is satisfied by definition of the m out of n bootstrap,
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where the second part in this situation follows directly by noting that if rn = nκ, we get rm = mκ

for some κ> 0, by consequent we have r 2
m = o(r 2

n). For (AB2) as mentioned in remark 3.1(v)
we take p̂m(·) = p̂(·) where we replace the variables X1i and ∆i by X∗

1i and ∆∗
i respectively in

p̂(·); i.e.,

p̂m(x1) =
m∑

i=1

Kh(x1 −X∗
i 1)

m∑
j=1

Kh(x1 −X∗
j 1)

1I{∆∗
i =1},

we remark that

PW

(
1

m

m∑
i=1

Kh(x1 −X∗
i 1)1I{∆∗

i =1}

)
= 1

n

n∑
i=1

Kh(x1 −Xi 1)1I{∆i=1},

which implies dH

(
p̂m , p̂

)= oP∗
W

(1) i.p. By the triangular inequality we get

dH

(
p̂m , p0

)≤ dH

(
p̂m , p̂

)+dH

(
p̂, p0

)= oP∗
W

(1), i.p.

(AB3) is verified by construction of the estimator θ̂
∗
m . Which implies the consistency of θ̂

∗
m .

Next for the rate of convergence we show only conditions (B2) and (B3). For (B2), it suffices
by remark 3.3(ii) to show (3.3.1) and (3.3.2). For that by uses of the relation between covering
and bracketing numbers and Corollary 2.7.2 of van der Vaart and Wellner [1996] we get that

logN

(
ϵ
∥∥∥Mδ,δ′1

∥∥∥
L2(Q)

,Mδ,δ′1 ,L2(Q)

)
≤ exp{Kϵ−1},

for every probability measure Q on R4, which implies our relation in (3.3.1), (3.3.2) is verified
by the choice ϕ(δ) = p

δ as consequence we get (B2). For (B3), it follows directly like in
section7 of the same reference which described this example and by the choice of the two
functions ψ1(·) and ψ2(·) given in Remark 3.3(iii), which implies (B3). By their discussion for
the rates rn , vn and the bandwidth h of the kernel; it follows

θn −θ0 = OP∗
(
n−1/3) .

We verify the assumption (BB1) as in the verification of condition (AB2) by choosing p̂m(·) =
p̂(·) we get v−1

m =
√

logm
mh +h, where h = hm . Assumption (BB2) holds by the same argument

given for (B2). For assumption (BB3), we check conditions (b)-(d) of Remark 3.3(iii). We
obtain

Γ
(
θ0, p

)=P[
p0 (X1)

p (X1)

{
1−2P

(
1I{Y=1}|X1,X2

)}
fX2|X1

(
fθ0 (X1)

) ∂
∂θ

fθ0 (X1)

]
, (3.4.5)

and

Λ
(
θ0, p

)=P[
p0 (X1)

p (X1)

{
1−2P

(
1I{Y=1}|X1,X2

)}{
f ′

X2|X1

(
fθ0 (X1)

)( ∂
∂θ

fθ0 (X1)

)2

+ fX2|X1

(
fθ0 (X1)

) ∂2

∂θ2 fθ0 (X1)

}]
,
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provided the derivatives in Λ
(
θ0, p

)
all exist. By the definition of maximum it follows that

Γ
(
θ0, p0

)= 0 and Λ
(
θ0, p0

)
is negative. Noting that

∥Γ(
θ0, p̂m

)∥ = OPW (r−1
m ) i.p.

if rm satisfies

rm

(
m−1/2 +hm + logm

mhm

)
= O(1),

by noting that the expectation in (3.4.5) is taken with respect to Z and W when we are working
with p̂m , since our function are measurable, we obtain such result by applying Fubini’s Theo-
rem. This condition on rm and the other given in (BB2) which is satisfied for rm = O(m1/3) are
reconcilable provided

mh3
m = O(1) and

(logm)3/2

mh3/2
m

= O(1).

Note that if we assume that p0(·) is twice continuously differentiable we can weaken the first

condition to mh6
m = O(1), as a consequence we get the v−1

m of p̂m would be O
(√

logm
mhm

+h2
m

)
,

which is faster than r−1
m = m−1/3 of θ̂

∗
m provided mh3

m −→∞. The level of complexity of the
latter case is less than the case where p0 is only once differentiable, And we do not discuss it
any further, therefore. We conclude that,

θ̂
∗
m −θ0 = OP∗

W
(m−1/3) i.p.

Finally, for the weak convergence of θn , we note that our assumptions (C4) is satisfied for
jn =p

n like in Remark3.5 (iii) and (C9) hold similarly to (B2). By consequence n1/3(θn −θ0)

converges weakly. Where assumption (CB1) follows from part (ii) of Theorem (3.3.2.2) and
condition (BB1), by similar proof of condition (BB2) we get (CB2). We get from Remark 3.3
(iii), (vi) and Remark 3.5 (viii) that assumption (CB3) holds, provided that

|Λ(θ0, p0)| <∞.

Clearly we have for some positive constant c > 0 that m−1/3 < C. For assumption (CB4), we
have

rmWm(γ) = rmΓ(θ0, p̂m)γ= oPW (1) i.p.,

provided mh3
m = o(1) and log3/2 m

mh3/2
m

= o(m−1/2), by using what we discuss already for (BB3).

Next, by the result given to the process in (3.6.7) i.e., the process γ 7→Gn
r 2

mp
m

m̃ γ
rm

,h0
converges

weakly to the process G(γ) and condition (AB1), we get

r 2
mP̂

∗
mm̃ γ

rm
,p0

= r 2
m

[(
P̂∗

m −Pn
)

m̃ γ
rm

,p0
+

√
m

n
Gn

m̃ γ
rm

,p0p
m

+Pm̃ γ
rm

,p0

]
= r 2

m

(
P̂∗

m −Pn
)

m̃ γ
rm

,p0
+ 1

2
Λ(θ0, p0)γ2 +oP(1),

with Γ(θ0, p0) = 0 and

Λ(γ) = 1

2
Λ(θ0, p0)γ2.
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The process γ→ r 2
m

(
P̂∗

m −Pn
)

m̃ γ
rm

,p0
are the same given in Lee [2012] where there is no pres-

ence of nuisance parameter. Hence, we can follow the same steps given in Lemma 1 of Lee
[2012] and get the convergence of the marginals using Lindeberg’s condition and some regu-
larity assumption on fX1/X2 and θ 7→ fθ. By construction of the estimator θ̂

∗
m , condition (CB5)

follows. Then we get the asymptotic distribution of rm

(
θ̂
∗
m −θn

)
from part (ii) of Theorem

3.3.3.3.

3.5 Numerical results

We provide numerical illustrations regarding the asymptotic distribution of estimators in the
classification with missing data, details are provided in Section 3.4.2. The computing program
codes were implemented in R. In our simulation, we will show resampling bootstrap samples of
size n fails while resampling with size m satisfies the conditions given in previous sections for
the consistency of the bootstrap. Let us describe the model, define

X2 = max(min(U+ϵ,1),0),

where U ∼U [0,1], ϵ∼U [−.1, .1] and X1 ∼U [0,1], with X1, ϵ and U are independent. Let

Y =1{U ≥ fθ(X1)}, (3.5.1)

were fθ(x1) = θx1, for some θ, we define

p (x1) =P (∆= 1 | X1 = x1) = α0 + (x1 −0.5)2 .

The data is composed of Zi = (Xi 1,Xi 2,Yi∆i ,∆i ) i = 1,2, . . . ,n from the described model. For
the bandwidth, we use hn = chp

n
(hm = chp

m
), which satisfies the requirements of regularity con-

ditions of the asymptotic theory. In this simulation, we use the quadratic kernel defined by

K(u) = 15

16

(
1−u2)2

1{|u| ≤ 1},

which is a density function having support [−1,1]. The results given below are based on three
different value of n, we took n = 250, n = 1000 and n = 2000 and the true value to be θ0 = 1,
we choose ch = 3.5 and α0 = 0.5, this choice is not restrictive, we can obtain the same desired
result with different value of ch and α0 for example ch = 2 or 5 and α0 = .25 or .75. The
bootstrap procedure is as follows, for each value of m we generate B independent bootstrap
samples

{
Z∗

i b : i ≤ m
}

for b = 1, . . . ,B, using some method of bootstrapping, and for each given
value of m, we compute an estimator θ(b)

m based on the b-th bootstrapped sample. Our main
objective is to give a comparison between the distribution of n1/3

(
θn −θ0

)
with the m out of

n bootstrap distribution of m1/3
(
θ̂∗m −θn

)
. To achieve this goal, we have used the Kolmogorov

distance between the distributions of n1/3
(
θn −θ0

)
and m1/3

(
θ̂∗m −θn

)
by averaging over 1000

and 1500 m out of n bootstrap sample drawn from one chosen arbitrarily random sample.
Table 3.1 displays the results for n = 250, n = 1000 and n = 2000 which show that the most
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accurate estimates are given for the choices of m = 50, m = 60 and m = 110 respectively.
Deviations from these choices in either direction result in deteriorating accuracy. In Figures
3.1-3.3, we give the empirical distribution of the true distribution and the empirical distribution
of the bootstrapped one for some values of m given in Table 3.1, which each figure compares the
estimated bootstrap empirical distribution with those of n1/3

(
θn −θ0

)
for the different values of

n. All these figures show that the classical bootstraps (n out n bootstrap) fail while the m out
n bootstraps are consistent. Figures 3.4-3.6 show the root mean squared error (RMSE) of the
estimator θ̂∗m for several values of m given in Table 3.1, for each value of n. In figures 3.7-3.9
we draw the graph of the criterion function for some given values of m for each value of n.
Figure 3.10 presents the concentration of the different estimator values of θ0 based on 1000

replica random sample with the corresponding graph of the criterion function as a function of θ
for a different value of n.

One can see as in any other inferential context, the greater the sample size, the better.

n = 250 n = 1000 n = 2000

m KD m KD m KD

10 0,1733 50 0,0880 50 0,0730
20 0,1267 60 0,0843 100 0,0780
30 0,0853 70 0,0870 110 0,0717
40 0,0687 80 0,1267 120 0,1150
50 0,0527 90 0,1197 130 0,0950
60 0,0793 100 0,1040 140 0,1103
70 0,0780 110 0,1180 150 0,0997
80 0,1213 120 0,1133 160 0,1437
90 0,0953 130 0,1080 170 0,1557

100 0,1183 140 0,1283 180 0,1337
125 0,1383 150 0,1073 190 0,1523
150 0,1453 200 0,1553 200 0,1480
175 0,1773 275 0,2187 300 0,2073
200 0,1757 350 0,2543 400 0,2530
225 0,2057 425 0,2917 500 0,2833
250 0,1993 500 0,2990 750 0,3533

750 0,3787 1000 0,3953
1000 0,4187 1250 0,4310

1500 0,4537
2000 0,5240

Table 3.1: Kolmogorov Distance (KD) Between Distributions of n1/3
(
θn −θ0

)
and m1/3

(
θ̂∗m −θn

)
, for

n = 250, n = 1000 and n = 2000.
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Figure 3.1: Empirical distribution of n1/3
(
θn −θ0

)
compared with those of m1/3

(
θ̂∗m −θn

)
, m = 50,

m = 110, m = 200, m = 250 and n = 250.
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Figure 3.2: Empirical distribution of n1/3
(
θn −θ0

)
compared with those of m1/3

(
θ̂∗m −θn

)
, m = 50,

m = 60, m = 275, m = 1000 and n = 1000.
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Figure 3.3: Empirical distribution of n1/3
(
θn −θ0

)
compared with those of m1/3

(
θ̂∗m −θn

)
, m = 50,

m = 110, m = 500, m = 2000 and n = 2000.
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Figure 3.4: The RMSE of θ̂∗m in function of m, for n = 250.
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Figure 3.5: The RMSE of θ̂∗m in function of m, for n = 1000.
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Figure 3.6: The RMSE of θ̂∗m in function of m, for n = 2000.
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Figure 3.7: Graph of the criterion function based on bootstrapped sample for n = 250.

Figure 3.8: Graph of the criterion function based on bootstrapped sample for n = 1000.
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Figure 3.9: Graph of the criterion function based on bootstrapped sample for n = 2000.
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Figure 3.10: Concentration of estimators and the graph of each corresponding criterion function for
different values of n = 250, n = 1000 and n = 2000.
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3.6 Mathematical developments

In this section, we give the proofs of the asymptotic results of our M-estimator θn and its
bootstrap version.

Proof of Theorem 3.3.1.2

Part (i) follows directly from Theorem 1 of Delsol and Van Keilegom [2020]. For (ii), note that
(AB1) and (A2) imply that

∥P̂∗
m −P∥MΘ,H = oP∗

W
(1) a.s. (3.6.1)

By using the result in Lemma 3.6.16 of van der Vaart and Wellner [1996]. We have; for every
η> 0 there is δ> 0, such that

P∗
W

(
∥θ̂∗m −θ0∥ > η

)
≤ P∗

W

(
Pmθ0,h0 −Pm

θ̂
∗
m ,h0

> δ
)

≤ P∗
W

(
2sup
θ∈Θ

|Pmθ,ĥm
−Pmθ,h0 |+Pmθ0,ĥm

−Pm
θ̂
∗
m ,ĥm

> δ
)

≤ P∗
W

(
2sup
θ∈Θ

|Pmθ,ĥm
−Pmθ,h0 |+2∥P̂∗

m −P∥MΘ,H > δ− R̂n

)
.

Making use of the assumption (AB3), there is n0 ∈N, such that for every n ≥ n0, we obtain the
existence of δ′ > 0, such that δ− R̂n ≥ 4δ′ i.p., and the last expression is bounded by:

P∗
W(∥θ̂∗m −θ0∥ > η)

≤ P∗
W

(
2sup
θ∈Θ

|Pmθ,ĥm
−Pmθ,h0 |+2∥P̂∗

m −P∥MΘ,H > 4δ′
)

≤ P∗
W

(
sup
θ∈Θ

|Pmθ,ĥm
−Pmθ,h0 | > δ′

)
+P∗

W

(∥P̂∗
m −P∥MΘ,H > δ′) .

By using the assumptions (AB1), (A3), (AB3) in combination with (3.6.1), we obtain the de-
sired result. □

Proof of Theorem 3.3.2.2

Firstly note that, we will give the proof of this theorem for the particular choice of function

ψ1(x) = Id(x) = x and ψ2(x) = xν

ℓ(1/x)
for every x ̸= 0.

It worth noticing that this condition is in agreement with those used in Lee [2012] in the para-
metric setting. Let βn be the oP∗(1) in assumption (B3) and we define the sets

S j ,n =
{
θ ∈Θ : 2 j−1 < rn∥θ−θ0∥ ≤ 2 j

}
,
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we observe

Θ\θ0 =
∞⋃

j=1
S j ,n .

Our objective is to show that; for any ϵ> 0, there exists τϵ > 0 such that

P∗ (rn∥θn −θ0∥ > τϵ) < ϵ, (3.6.2)

for any n sufficiently large. In the sequel, we work with arbitrary fixed ϵ > 0. For any
δ,δ1,M,K,K

′ > 0, by using the condition (A5), we readily obtain

P∗ (
rn∥θn −θ0∥ > 2M)

≤ ∑
M≤ j ,2 j≤δrn

P∗
(

sup
θ∈S j ,n

[Pnmθ,ĥ −Pnmθ0,ĥ] ≥−Kr−ν
n ℓ(rn)−1, An

)
+P∗ (2∥θn −θ0∥ ≥ δ)+P∗ (

r νnℓ(rn)|Rn | > K
)+P∗

(
r ν−1

n ℓ(rn)|Wn | > K
′)

+P∗
(
|βn | > C

2

)
+P∗

(
dH

(
ĥ,h0

)> δ1

vn

)
,

where

An =
{

r ν−1
n ℓ(rn)|Wn | ≤ K

′
, |βn | ≤ C

2
,dH

(
ĥ,h0

)≤ δ1

vn

}
.

Indeed, we can write

P∗ (
rn∥θn −θ0∥ > 2M,2∥θn −θ0∥ < δ,r νnℓ(rn)|Rn | ≤ K, An

)
≤ ∑

j≥M,2 j≤δrn

P∗ (
θn ∈ S j ,n ,r νnℓ(rn)|Rn | ≤ K, An

)
≤ ∑

j≥M,2 j≤δrn

P∗
(

sup
θ∈S j ,n

[
Pnmθ,ĥ −Pnmθ0,ĥ

]
≥−Rn ,r νnℓ(rn)|Rn | ≤ K, An

)

≤ ∑
j≥M,2 j≤δrn

P∗
(

sup
θ∈S j ,n

[
Pnmθ,ĥ −Pnmθ0,ĥ

]
≥−Kr−ν

n ℓ(rn)−1, An

)
.

Condition (C) implies, for all δ> 0, that there exists nϵ, such that, for n > nϵ, we have

P∗
(
2∥θn −θ0∥ ≥ δ

)
< ϵ

6
.

By the definitions of Rn , Wn and under condition (B1), there exist δ1,Kϵ,K
′
ϵ and K2,ϵ such that

we have
P∗ (

r νnℓ(rn)|Rn | > Kϵ

)< ϵ
6 , P∗

(
r ν−1

n ℓ(rn)|Wn | > K
′
ϵ

)
,

P∗ (|βn | > C
2

)< ϵ
6 , P∗

(
dH (ĥ,h0) > δ1

vn

)
< ϵ

6 .
(3.6.3)

For n large than some n1. We fix δ< δ0 and suppose n ≥ max(n0,n1,nϵ), for 2 j ≤ δrn , we have
the assumptions (B2) and (B3) are fulfilled on all S j ,n . For each fixed j such that 2 j ≤ δrn ,

82



CHAPTER 3. GENERAL M-ESTIMATOR PROCESSES AND THEIR M OUT OF N
BOOTSTRAP WITH FUNCTIONAL NUISANCE PARAMETERS

under assumption (B3), for all θ ∈ S j ,n , we then have

Pnmθ,ĥ −Pnmθ0,ĥ

≤ Pmθ,ĥ −Pmθ0,ĥ + sup
∥θ−θ0∥≤ 2 j

rn

∣∣∣Pnmθ,ĥ −Pnmθ0,ĥ −Pmθ,ĥ +Pmθ0,ĥ

∣∣∣
≤ |Wn |2

j

rn
− (C−βn)

2ν( j−1)

r νnℓ(2−( j−1)rn)
+ sup

∥θ−θ0∥≤ 2 j
rn

∣∣∣Pnmθ,ĥ −Pnmθ0,ĥ −Pmθ,ĥ +Pmθ0,ĥ

∣∣∣
≤ |Wn |2

j

rn
− (C−βn)

1

2− jνr νnℓ(2− j rn)
+n−1/2 sup

∥θ−θ0∥≤ 2 j
rn

∣∣∣Gnm̃θ−θ0,ĥ

∣∣∣ .

Consequently, we obtain the following inequalities;

P∗
(

sup
θ∈S j ,n

[
Pnmθ,ĥ −Pnmθ0,ĥ

]
≥−Kϵr

−ν
n ℓ(rn)−1, An

)

≤ P∗

n−1/2 sup
∥θ−θ0∥≤ 2 j

rn
,dH (h,h0)≤ δ1

vn

∣∣Gnm̃θ−θ0,h
∣∣≥ C

2

2 jν

r νnℓ(2− j rn)
−K′

ϵ

2 j

r νnℓ(rn)
−Kϵ

1

r νnℓ(rn)


≤ P∗

n−1/2 sup
∥θ−θ0∥≤ 2 j

rn
,dH (h,h0)≤ δ1

vn

∣∣Gnm̃θ−θ0,h
∣∣

≥ 2 jν

r νnℓ(2− j rn)

(
C

2
−K′

ϵ

ℓ(2− j rn)

2 j (ν−1)ℓ(rn)
−Kϵ

2− jνℓ(2− j rn)

ℓ(rn)

))
.

For any λ> 0, we can find a non-decreasing function ξ such that

xλℓ(x) ∼ ξ(x) as x →∞.

It follows that 2− jλℓ(2− j rn )
ℓ(rn ) is uniformly bounded for M ≤ j ≤ log2δrn and for all n. Making

use of the condition (B2) in combination with the Chebyshev’s inequality and the fact that
ϕ(cδ) ≤ cαδ for all c ≥ 1, there exists a positive constant C′ and for any λ> 0, we have

P∗
(

sup
θ∈S j ,n

[
Pnmθ,ĥ −Pnmθ0,ĥ

]
≥−Kϵr

−ν
n ℓ(rn)−1, An

)

≤ C′2− jνr νnℓ
(
2− j rn

)
n−1/2ϕ

(
2 j

rn

)
≤ C′2− j (ν−λ)r νnℓ (rn)n−1/2ϕ

(
2 j

rn

)
≤ C′2− j (ν′−α)r νnℓ(rn)n−1/2ϕ

(
1

rn

)
,

83



CHAPTER 3. GENERAL M-ESTIMATOR PROCESSES AND THEIR M OUT OF N
BOOTSTRAP WITH FUNCTIONAL NUISANCE PARAMETERS

where ν′ = ν−λ> α. By choosing small value of λ and by using the proprieties of the function
ϕ(·), we infer that

∑
M≤ j ,2 j≤δrn

P∗
(

sup
θ∈S j ,n

[Pnmθ,ĥ −Pnmθ0,ĥ] ≥−Kr−ν
n ℓ(rn)−1, An

)
≤ ∑

M≤ j
2− j (ν′−α),

the last expression tends to 0 as M →∞, so we obtain the result (i) of our theorem for sufficiently
large value of M and n.
For (ii) we have :

P∗
W

(
rm∥θ̂∗m −θ0∥ > 2M

)
≤ ∑

M≤ j ,2 j≤δrm

P∗
W

(
sup
θ∈S j ,n

[P̂∗
mmθ,ĥm

− P̂∗
mmθ0,ĥm

] ≥−Kr−ν
m ℓ(rm)−1, Am

)
+P∗

W

(
2∥θ̂∗m −θ0

∥∥∥≥ δ)+P∗
W

(
r νmℓ(rm)|R̂n | > K

)+P∗
W

(
r ν−1

m ℓ(rm)|Wm | > K
′)

+P∗
W

(
|βn | > C

2

)
+P∗

W

(
dH

(
ĥm ,h0

)> δ1

vm

)
. (3.6.4)

We obtain from assumption (BB3), for each fixed j such that 2 j < δrm and for all θ ∈ Sm, j

P̂∗
mm̃θ−θ0,ĥm

≤ Pm̃θ−θ0,h + sup
∥θ−θ0∥≤ 2 j

rm

∣∣∣P̂∗
mm̃θ−θ0,ĥm

−Pnm̃θ−θ0,h +Pnm̃θ−θ0,h −Pm̃θ−θ0,h

∣∣∣
≤ |Wm | 2 j

rm
− (C−βn)

1

2− jνr νmℓ(2− j rm)
+m−1/2 sup

∥θ−θ0∥≤ 2 j
rm

∣∣∣Ĝ∗
mm̃θ−θ0,ĥm

∣∣∣
+n−1/2 sup

∥θ−θ0∥≤ 2 j
rm

∣∣∣Gnm̃θ−θ0,ĥm

∣∣∣ .

This gives us, by using Chebyshev’s inequality, for some C′ > 0

P∗
W

(
sup
θ∈S j ,n

[P̂∗
mm̃θ−θ0,ĥm

] ≥−Kr−ν
m ℓ(rm)−1

)

≤ P∗
W

n−1/2 sup
∥θ−θ0∥≤ 2 j

rm
,dH (h,h0)≤ δ1

vm

∣∣Gnm̃θ−θ0,h
∣∣+m−1/2 sup

∥θ−θ0∥≤ 2 j
rm

,dH (h,h0)≤ δ1
vm

∣∣Ĝ∗
mm̃θ−θ0,h

∣∣
≥ 2 jν

r νmℓ(2− j rm)

(
C

2
−K′

ϵ

ℓ(2− j rm)

2 j (ν−1)ℓ(rm)
−Kϵ

2− jνℓ(2− j rm)

ℓ(rm)

))
≤ C′2− jν′r νmℓ(rm)m−1/2

{
P∗

W

∥∥Ĝ∗
m

∥∥
M

2 j /rm ,δ1/vm
+m1/2n−1/2 ∥Gn∥M

2 j /rm ,δ1/vm

}
.

From assumptions (B2) and (BB2) the outer expectation of the first term in right of (3.6.4) is
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bounded by

∑
M≤ j ,2 j≤δrm

PP∗
W

(
sup
θ∈S j ,n

[P̂∗
mmθ,ĥm

− P̂∗
mmθ0,ĥm

] ≥−Kr−ν
m ℓ(rm)−1, Am

)

≤ ∑
M≤ j ,2 j≤δrm

C′2− jν′r νmℓ(rm)m−1/2
{
PP∗

W

∥∥Ĝ∗
m

∥∥
M

2 j /rm ,δ1/vm
+m1/2n−1/2P∥Gn∥M

2 j /rm ,δ1/vm

}

≤ ∑
M≤ j ,2 j≤δrm

C′2− jν′r νmℓ(rm)m−1/2ϕ

(
2 j

rm

)

+ ∑
M≤ j ,2 j≤δrm

C′m1/2n−1/22− jν′r νmℓ(rm)m−1/2ϕ

(
2 j

rm

)
≤ C′ ∑

M≤ j
2− j (ν′−α) +C′m1/2n−1/2

∑
M≤ j

2− j (ν′−α),

with assumption (AB1) in mind the last two terms converge to 0 as M,n →∞, the outer expec-
tation of the others terms in (3.6.4) are oP∗

W
(1) i.p., by Lemma 3 of Cheng and Huang [2010],

which completes the proof of Theorem 3.3.2.2. □

Proof of Theorem 3.3.3.2

The proof of the first part (i) of Theorem 3.3.3.2 is given in Lemmas 1, 2 and 3 of Delsol
and Van Keilegom [2020], where in our setting we use bounded closed subsets in the place of
compact subsets. We note by their Lemma 2, we obtain the existence of ξ1,n ,ξ2,n ,ξ3,n such that

sup
γ∈K

|ξl ,n | = oP(1), for l = 1,2,3,

and the following decomposition

r νnℓ(rn)Pnm̃ γ
rn

,ĥ(1+ξ1,n) =
[

r ν−1
n ℓ(rn)Wn + r νnℓ(rn)Pnm̃ γ

rn
,h0

]
(1+ξ2,n)+ξ3,n .

By their Lemma 3, the properties of the function γ 7→ Wn(γ) and the assumptions of Theorem
3.3.3.2; we obtain the weak convergence of the process

γ 7→ r ν−1
n ℓ(rn)Wn(γ)+ r νnℓ(rn)Pnm̃ γ

rn
,h0

.

Briefly, we have the following decomposition;

Tn(γ) = r ν−1
n ℓ(rn)Wn(γ)+ r νnℓ(rn)Pnm̃ γ

rn
,h0

= T1,n(γ)+T2,n(γ),

where
T1,n(γ) =Mn(γ,h0)

and
T2,n = r νnℓ(rn)Pm̃ γ

rn
,h0

+ r ν−1
n ℓ(rn)Wn(γ).

The process γ 7→ T1,n(γ) does not depend on the estimation of nuisance parameter, so it can be
studied in a similar way as in the parametric model, by Theorem 2.11.1 of van der Vaart and
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Wellner [1996] and the use of assumptions (C4), (C5), (C9) and (C10), we obtain its uniformly
asymptotic equicontinuity. For the process γ 7→ T2,n(γ), we can show that it is asymptotically
uniformly equicontinuous by the same method given in the proof of their Lemma 3. By Theorem
1.5.7 and 1.5.4 of van der Vaart and Wellner [1996], we obtain the asymptotic tightness and the
weak convergence of Tn to Λ+G in ℓ(K ) and using Addendum 1.5.8 in the same reference;
the almost all paths of the limiting process on K are uniformly continuous with respect to ∥ ·∥.
Finally by Slutsky’s theorem we obtain the desired result. □

For part (ii) we are in the situation to show the weak convergence of the bootstrapped process,
which follows directly from Slutsky’s theorem and Lemmas 3.6.0.1 and 3.6.0.2 given bellow.

Lemma 3.6.0.1 Let K = {
γ ∈ E : ∥γ∥ ≤ K

}
. Then under assumptions of part (ii) of Theorem

3.3.3.2, for all γ ∈K , there exist z0,m , z1,m , z2,m , such that

sup
γ∈K

∣∣z j ,m
∣∣= oP∗

W
(1), i.p., j = 0,1,2,

and

r νmℓ(rm)P̂∗
mm̃ γ

rm
,ĥm

(
1+ z0,m

)
=

[
r νmℓ(rm)P̂∗

mm̃ γ
rm

,h0
+ r ν−1

m ℓ(rm)Wm(γ)
](

1+ z1,m
)+ z2,m .

Proof of Lemma 3.6.0.1

We need to introduce the following notation

α0,n(γ) =
Pnm̃ γ

rm
,ĥ −Pm̃ γ

rm
,ĥ −Pnm̃ γ

rm
,h0

+Pm̃ γ
rm

,h0

r−ν
n ℓ−1(rn)+

∣∣∣Pnm̃ γ
rm

,ĥ

∣∣∣+ ∣∣∣Pnm̃ γ
rm

,h0

∣∣∣+|Pm̃ γ
rm

,ĥ |+
∣∣∣Pm̃ γ

rm
,h0

∣∣∣ ,

α0,m(γ) =
P̂∗

mm̃ γ
rm

,ĥ −Pnm̃ γ
rm

,ĥ − P̂∗
mm̃ γ

rm
,h0

+Pnm̃ γ
rm

,h0

r−ν
m ℓ−1(rm)+

∣∣∣P̂∗
mm̃ γ

rm
,ĥ

∣∣∣+ ∣∣∣P̂∗
mm̃ γ

rm
,h0

∣∣∣+|Pnm̃ γ
rm

,ĥ |+
∣∣∣Pnm̃ γ

rm
,h0

∣∣∣ ,

sn,h(γ) = sign
[
Pnm̃ γ

rn
,h

]
,

sh(γ) = sign
[
Pm̃ γ

rn
,h

]
,

sm,h(γ) = sign
[
P̂∗

mm̃ γ
rm

,h

]
.

The set K is bounded and θ0 belongs to the interior of Θ, there exist mK such that for all
m ≥ mK and for all γ ∈K , the quantity θ0 + γ

rm
is in Θ. Then for all γ ∈K we have;

P̂∗
mm̃ γ

rm
,ĥ = P̂∗

mm̃ γ
rm

,h0
+Pm̃ γ

rm
,ĥ −Pm̃ γ

rn
,h0

+α0,m(γ)
(
r−ν

m ℓ−1(rm)+
∣∣∣P̂∗

mm̃ γ
rm

,ĥ

∣∣∣
+

∣∣∣P̂∗
mm̃ γ

rm
,h0

∣∣∣+|Pnm̃ γ
rm

,ĥ |+
∣∣∣Pnm̃ γ

rm
,h0

∣∣∣)
+α0,n(γ)

(
r−ν

n ℓ−1(rn)+
∣∣∣Pnm̃ γ

rm
,ĥ

∣∣∣+ ∣∣∣Pnm̃ γ
rm

,h0

∣∣∣+|Pm̃ γ
rm

,ĥ |+
∣∣∣Pm̃ γ

rm
,h0

∣∣∣) .
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This can be rewritten as follows

r νmℓ(rm)P̂∗
mm̃ γ

rm
,ĥm

(
1−α0,m(γ)sm,ĥ(γ)

)
= r νmℓ(rm)P̂∗

mm̃ γ
rm

,h0

(
1+α0,m(γ)sm,h0 (γ)

)
+r νmℓ(rm)Pm̃ γ

rm
,ĥm

(
1+α0,n(γ)sĥ(γ)

)
−r νmℓ(rm)Pm̃ γ

rm
,h0

(
1−α0,n(γ)sh0 (γ)

)+ z ′
2,m , (3.6.5)

where;

z ′
2,m = α0,m(γ)+ r νmℓ(rm)

(
α0,m(γ)+α0,n(γ)

)∣∣∣Pnm̃ γ
rm

,ĥ

∣∣∣
+r νmℓ(rm)

(
α0,m(γ)+α0,n(γ)

)∣∣∣Pnm̃ γ
rm

,h0

∣∣∣+ r νmℓ(rm)

r νnℓ(rn)
α0,n(γ).

We get from the assumption (CB1) and (CB3) that

r νmℓ(rm)
[
Pm̃ γ

rm
,ĥ −Pm̃ γ

rm
,h0

]
= r ν−1

m ℓ(rm)Wm(γ)+ r ν−2
m ℓ(rm)βn∥γ∥2

+r ν−2
m ℓ(rm)o(∥γ∥2)

:= r ν−1
m ℓ(rm)Wm(γ)+α1,n(γ). (3.6.6)

By combining 3.6.5 and 3.6.6, we infer that

r νmℓ(rm)P̂∗
mm̃ γ

rm
,ĥm

(
1+ z0,m

)
=

[
r νmℓ(rm)P̂∗

mm̃ γ
rm

,h0
+ r ν−1

m ℓ(rm)Wm(γ)
](

1+ z1,m
)+ z2,m ,

where

z0,m(γ) =−α0,m(γ)sm,ĥ(γ)

z1,m(γ) = α0,m(γ)sm,h0 (γ)

z2,m(γ) = z ′
2,m(γ)+ z ′′

2,m(γ),

and

z ′′
2,m(γ) = α0,n(γ)

[
1+ (

V(γ,γ)+ r ν−2
m ℓ(rm)o(∥γ∥2)

)(
sĥ + sh0

)
(γ)

+(
r ν−1

m ℓ(rm)Wm(γ)+α1,n(γ)
)(

sĥ − sn,h0

)
(γ)

]
+α1,n(γ)

(
1+ z1,m(γ)

)
.

It is easily to show that

sup
γ∈K

∣∣z j ,m
∣∣= oP∗

W
(1) i.p., for j = 0,1,2,

by using assumptions (A2), (AB1) (C3), (CB2), (CB3) and Lemma 3 of Cheng and Huang
[2010]. □

Lemma 3.6.0.2 Under the assumptions of Lemma 3.6.0.1, the process

γ 7→ r νmℓ(rm)P̂∗
mm̃ γ

rm
,h0

+ r ν−1
m ℓ(rm)Wm(γ)

converges weakly conditionally in probability to the process

γ 7→Λ(γ)+G(γ) in ℓ∞(K ).
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Proof of Lemma 3.6.0.2

Making use of the assumption (CB4), we need only to show the equicontinuity of the process

Tm : γ 7→ r νmℓ(rm)P̂∗
mm̃ γ

rm
,h0

+ r ν−1
m ℓ(rm)Wm(γ).

One can see that the process Tm can be decomposed into the sum three processes in the follow-
ing way

Tm =
3∑

i=1
Ti ,m ,

where

T1,m : γ 7→ r νmℓ(rm)
(
(P̂∗

m −Pn)m̃ γ
rm

,h0

)
,

T2,m : γ 7→ r νmℓ(rm)
(
(Pn −P)m̃ γ

rm
,h0

)
,

T3,m : γ 7→ r νmℓ(rm)Pm̃ γ
rm

,h0
+ r ν−1

m ℓ(rm)Wm(γ).

We shall study separately the properties of each process. Firstly, we note that by assumption
(C6), (CB3) and (AB1), for sufficiently large m, we have θ0 + K

rm
⊂ Θ and then the processes

T1,m , T2,m and T3,m take values in ℓ∞(K ). The process T2,m can be treated as in the proof of
part (i) by reformulating it to this form

T2,m(γ) = r νmℓ(rm)
(
(Pn −P)m̃ γ

rm
,h0

)
=

√
m

n
Gn

r νmℓ(rm)p
m

m̃ γ
rm

,h0
, (3.6.7)

as in the proof of (i) apply Theorem 2.11.22 of van der Vaart and Wellner [1996] to the process

γ 7→Gn
r νmℓ(rm)p

m
m̃ γ

rm
,h0

,

by assumptions (C4), (C5), (C9) and (C10) we get its uniform equicontinuity with respect to
∥ ·∥ on K and by the use of assumption (AB1), we obtain our main result for the process T2,m .
Then the process T1,m also does not depend to the estimation of the nuisance parameter, it can
be treated in the same way as in part (ii) of Lemma 2 in Lee [2012]. Briefly, we want to show
that

∆n
def= P∗

W sup
{∣∣T1,m(γ)−T1,m(γ′)

∣∣ : ∥γ−γ′∥ ≤ δn ,γ,γ′ ∈K
}→ 0 i.p.

Define the class
Hn = r v

mℓ (rm)m−1/2Md/rm (δn/rm) ,

and let
M̃n = r v

mℓ (rm)m−1/2Md/rm

its envelope function. Making use of the condition (B2), we readily infer that

P∗ sup
{| f | : f ∈Hn

}≤ CP∗M̃n ≤ C <∞.
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It follows by Lemmas 2.9.1 and 3.6.6 of van der Vaart and Wellner [1996] that, for 1 ≤ n0 ≤ n;

P∗∆n ≤ Cn0m−1/2
(
E max

1≤i≤n
Ñi

)
P∗M̃n

+Cn1/2m−1/2
∫ ∞

0

(
P

{∣∣Ñ1
∣∣> x

})1/2
d x max

n0≤ j≤n
P∗

∥∥∥∥∥ j−1/2
j∑

i=n0

ϵiδXi

∥∥∥∥∥
Hn

,

where Ñ = (Ñ1, Ñ2, . . .) and ε= (ϵ1,ϵ2, . . .) are independent sequences of i.i.d. symmetrized Pois-
son variables with parameter m/(2n) and i.i.d. Rademacher variables, respectively and both
being independent of X1, . . . ,Xn . By Jensen’s inequality, problem 3.6.3 of van der Vaart and
Wellner [1996] and (B2), we readily get

P∗∆n ≤ Cn0m−1/2 logn/log(n/m +1)+C max
n0≤ j≤n

P∗
∥∥∥∥∥ j−1/2

j∑
i=n0

ϵiδXi

∥∥∥∥∥
Hn

. (3.6.8)

By taking
n0 = n0,n = amm1/4{log(n/m +1)/logn}1/2 ∈ [1,n],

it follows, by condition (C4), that

n0m−1/2 logn/log(n/m +1) → 0 as n →∞. (3.6.9)

We refer to the integrand in (C9) by N (ϵ) for ϵ > 0. By using the triangular inequality, the
properties of sub-Gaussianity of Rademacher processes, under (C10) and using the Cauchy-
Schwarz inequality with (B2), we obtain

max
n0≤ j≤n

P∗
∥∥∥∥∥ j−1/2

j∑
i=n0

ϵiδXi

∥∥∥∥∥
Hn

= max
n0≤ j≤n

PXPε

∥∥∥∥∥ j−1/2
j∑

i=n0

ϵiδXi

∥∥∥∥∥
Hn

≤ 2 max
n0≤ j≤n

PXPε

∥∥∥∥∥ j−1/2
j∑

i=1
ϵiδXi

∥∥∥∥∥
Hn

≤ C max
n0≤ j≤n

{
P∗

(∫ ψn, j

0
N (ϵ)dϵ

)2
}1/2 (

P∗M̃2
n

)1/2

≤ C max
n0≤ j≤n

{
P∗

(∫ ψn, j

0
N (ϵ)dϵ

)2
}1/2

, (3.6.10)

where
ψn, j = sup

{
∥ f ∥P j ,2 : f ∈Hn

}
.

Our aim is to show that

ψnk , jk
= oP∗(1) as k →∞, (3.6.11)

for an arbitrary subsequence {nk : k = 1,2, . . .} of {n}, and any arbitrary sequence
{

jk
}

such that
n0,nk ≤ jk ≤ nk for all k = 1,2, . . . . Write m∗

k = mnk . Define, for any γ ∈K ,

Zki (γ) = r v
m∗

k
ℓ
(
rm∗

k

)
m∗−1/2

k j−1/2
k m̃γ/r∗

mk
(Xi ) .
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As in the proof of part (ii) of Lemma 2 of Lee [2012]; he showed these variables satisfy the
condition of Theorem 2.11.1 of van der Vaart and Wellner [1996], which is implies our result
in (3.6.11) for arbitrary subsequence nk and jk ∈ [

n0,nk ,n
]
, by arguing as in the proof of this

Theorem. It then follows by the dominated convergence theorem that the bound in (3.6.10) has
limsup equal to 0 as n →∞. Substituting this and (3.6.9) into (3.6.8) to obtain the desired result.
Finally, for the process T3,m , for large value of m, we have θ0+ γ

rm
∈Θ by using the assumption

(CB3), we get, for all 0 < δ< δ1,

sup
γ,γ′∈K ,∥γ−γ′∥≤δ

∣∣T3,m(γ)−T3,m
(
γ′

)∣∣
= sup

γ,γ′∈K ,∥γ−γ′∥≤δ
∣∣∣r ν−1

m ℓ(rm)Wm
(
γ−γ′)+ r ν−2

m ℓ(rm)
(
V(γ,γ)−V

(
γ′,γ′

))
+r νmℓ(rm)

(
o

(∥γ∥2

r 2
m

)
+o

(∥∥γ′∥∥2

r 2
m

))∣∣∣∣∣
≤ δτ

(
r ν−1

m ℓ(rm) sup
γ∈K ,δ≤δ1,∥γ∥≤δ

∣∣∣∣Wm(γ)

δτ

∣∣∣∣+ r ν−2
m ℓ(rm) sup

γ,γ′∈K ,δ≤δ1,∥γ−γ′∥≤δ

∣∣V(γ,γ)−V
(
γ′,γ′

)∣∣
δτ

)
+bm

:= δταm +bm , (3.6.12)

where

bm ≤ sup
γ,γ′∈K

r νmℓ(rm)

(
o

(∥γ∥2

r 2
m

)
+o

(∥∥γ′∥∥2

r 2
m

))
→ 0, as m →∞,

and αm = OP∗
W

(1) i.p. uniformly over δ≤ δ1. From this, we obtain, for any ϵ> 0 and η> 0,

P∗
W

(
sup

γ,γ′∈K ,∥γ−γ′∥≤δ
∣∣T3,m(γ)−T3,m(γ′)

∣∣> ϵ)
≤P∗

W

(
δταm +bm > ϵ,αm ≤ C, |bm | < ϵ

2

)
+P∗

W (αm > C)

≤P∗
W

(
δτ > ϵ

2C

)
+P∗

W (αm > C).

By choosing Cη such that the last term is bounded by η for large value of m, and taking δ ≤
δ1 ∧

(
ϵ

2Cη

) 1
τ , which implies the main result for the process T3,m . Finally by using the fact that

Tm = T1,m +T2,m +T3,m ,

we obtain the desired result on the process Tm . □

Proof of Theorem 3.3.3.3

Making use of the result (i) in Theorem 3.3.3.2 in connection with the assumption (C8), we
infer that we have almost all paths of the process γ 7→G(γ)+Λ(γ) are uniformly continuous on
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every K ⊂B, and reaching the supremum at an unique point γ0. For part (i), an application of
(i) in Theorem 3.3.3.2, for any closed bounded K ⊂B, gives

Tn(γ) = r νnℓ(rn)Pnm̃ γ
rn

,ĥ⇝Λ(γ)+G(γ), in ℓ∞(K ).

We get from the assumption (C11) that

Tn (rn(θn −θ0)) ≥ sup
γ≤K

Tn(γ)−oP(1).

Noting that γ0 is the unique, well-separated, maximizer of G(γ)+Λ(γ), then part (i) follows by
Theorem 3.2.2 of van der Vaart and Wellner [1996], where compact sets and uniform tightness
of rn(θn −θ0) are replaced respectively by closed bounded sets with similar structure as the set
K and

rn(θn −θ0) = OP∗(1).

For part (ii), we infer that

T̂m(γ) = r νmℓ(rm)P̂∗
mm̃ γ

rm
,ĥm
⇝Λ(γ)+G(γ) i.p. in ℓ(K ).

By combining the assumption (CB5) with the first part of (CB1), we have respectively

T̂m

(
rm(θ̂

∗
m −θ0)

)
≥ sup

γ≤K
T̂m(γ)−oP∗

W
(1)

and
rm(θ̂

∗
m −θ0) = OP∗

W
(1), i.p.

An application of Lemma 4(ii) of Lee [2012] gives

rm(θ̂
∗
m −θ0)⇝ γ0, i.p.

It follows from the first part of the assumptions (C1), (AB1) and Slutsky’s theorem that

rm(θ̂
∗
m −θn) = rm(θ̂

∗
m −θ0)− rm

rn
rn(θn −θ0)⇝ γ0 i.p.

Hence the proof of the statement (ii) is complete. □
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Chapter 4

Central limit theorems for functional
Z-estimators with Functional Nuisance
Parameters

Ce chapitre développe le contenu d’un article soumis, mis en forme pour être inséré dans le
présent manuscrit de thèse.
Title : Central limit theorems for functional Z-estimators with Functional Nuisance Parameters.

Abstract

We consider an exchangeably weighted bootstrap for function-valued estimators defined as a
zero point of a function-valued random criterion function. A large number of bootstrap re-
sampling schemes emerge as special cases of our settings. The main ingredient is the use of
a differential identity that applies when the random criterion function is linear in terms of the
empirical measure. Our results are general and do not require linearity of the statistical model
in terms of the unknown parameter. We consider also the semiparametric models extending
the work of Zhan [2002] to a more delicate framework. The theoretical results established in
this paper, are (or will be) key tools for many further developments in the parametric and the
semiparametric models.
Key words : Bootstrap; Z-estimators; estimating equations; exchangeable; infinite-dimensional;
nonparametric maximum likelihood; score equation; self-consistency; weak convergence; Semi-
parametric inference; M-estimators.
Mathematics Subject Classification : 62F03, 62F10, 62F12, 62H12, 62H15.

4.1 Introduction and motivations

Parametric estimation has been the subject of intense investigation for many years and this has
led to the development of a large variety of methods. Because of numerous applications and
their important role in mathematical statistics, the problem of estimating the parametric models
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has been the subject of considerable interest during the last decades. For good sources of refer-
ences to research literature in this area along with statistical Pfanzagl [1994], Lindsey [1996],
Bickel et al. [1998], Lehmann and Casella [1998], van der Vaart [1998], Lehmann and Ro-
mano [2005] and Cheng [2017]. Assume that the model can be parameterized as θ 7→Pθ where
θ is the parameter that we are interested in. Various parametric methods of estimation have
been extensively investigated, among others, including the method of moments, Least Square
Estimator (LSE), Maximum of Likelihood (ML) and Delta method. Attention was confined
to parametric models and much effort has been expended in constructing efficient estimators.
This paper is devoted to the investigation of “Z-estimators” in a general setting, in other words,
estimators that are the solutions of estimating equations. Note that the limiting distributions of
the resulting Z-estimators are rather complicated, which does not permit explicit computation
in practice. To overcome that difficulty, we shall propose a general bootstrap and study some
of its asymptotic properties by means of the modern theory of the empirical processes. The
interest in considering general bootstrap instead of particular cases lies in the fact that we need,
in general, a more flexible modeling to handle the problems in practice. In a variety of statistical
problems, the bootstrap provides a simple method for circumventing technical difficulties due
to intractable distribution theory and has become a powerful tool for setting confidence inter-
vals and critical values of tests for composite hypotheses. Bootstrap samples were introduced
and first investigated in Efron [1979]. Since this seminal paper, bootstrap methods have been
proposed, discussed, investigated and applied in a huge number of papers in the literature. Be-
ing one of the most important ideas in the practice of statistics, the bootstrap also introduced
a wealth of innovative probability problems, which in turn formed the basis for the creation
of new mathematical theories. The asymptotic theory of the bootstrap with statistical appli-
cations has been reviewed in the books among others Chernick [2008a], Manly [2007], Good
[2005], Chernick [2008b], Davison and Hinkley [1997], van der Vaart and Wellner [1996], Hall
[1992] and Kosorok [2008]. A substantial body of literature, reviewed in Beran [2003], gives
conditions for the bootstrap to be satisfied in order to provide desirable distributional approx-
imations. In Bickel et al. [1997], the performance of different kinds of bootstrap procedures
is investigated through asymptotic results and small sample simulation studies. Note that the
bootstrap, according to Efron’s original formulation (see Efron [1979]), presents some draw-
backs. Namely, some observations may be used more than once while others are not sampled
at all. To overcome that problem, a more general formulation of the bootstrap has been intro-
duced, the weighted (or smooth) bootstrap, which has also been shown to be computationally
more efficient in several applications. For a survey of further results on weighted bootstrap the
reader is referred to Barbe and Bertail [1995]. Another resampling scheme was proposed in
Rubin [1981] and was extensively studied by Bickel and Freedman [1981], who suggested the
name “weighted bootstrap”, e.g., Bayesian Bootstrap when the vector of weights

(Wn1, . . . ,Wnn) = (Dn1, . . . ,Dnn),

98



CHAPTER 4. CENTRAL LIMIT THEOREMS FOR FUNCTIONAL Z-ESTIMATORS
WITH FUNCTIONAL NUISANCE PARAMETERS

is equal in distribution to the vector of n spacings of n −1 ordered uniform (0,1) random vari-
ables, that is,

(Dn1, . . . ,Dnn) ∼ Dirichlet(n;1, . . . ,1).

The interested reader may refer to Lo [1993]. The case

(Dn1, . . . ,Dnn) ∼ Dirichlet(n;4, . . . ,4),

was considered in [Weng, 1989, Remark 2.3] and [Zheng and Tu, 1988, Remark 5]. These
resampling plans lead to the interest of a unified approach, generically designated as general
weighted resampling, was first proposed by Mason and Newton [1992] and amongst others
extended by Præstgaard and Wellner [1993].
The main purpose of the present work is to consider a general framework of the bootstrap of the
Z-estimators completing the work of Zhan [2002]. More precisely, we consider the exchange-
able bootstrapped version of the Z-estimators investigated in Zhan [2002]. Zhan [2002] showed
that the Z-estimators converge weakly to some process which is hard to evaluate for practical
use. To overcome this problem, we propose in this paper the exchangeable bootstrap. The main
aim of the present paper is to provide a first full theoretical justification of the exchangeable
bootstrap consistency of Z-estimators with the same spirit of Zhan [2002]. This requires the
effective application of large sample theory techniques, which were developed for the empirical
processes. The Zhan [2002] results are not directly applicable here since we are considering the
bootstrapped versions. These results are not only useful in their own right but essential for the
derivation of our asymptotic results. At this point, it is worth noting that the approaches adopted
in the present paper are different from those used in Zhan [1996], where the traditional argu-
ments are used. The second aim of this work is to consider the semiparametric Z-estimators.
Semiparametric models are statistical models where at least one parameter of interest is not
Euclidean. The most basic scenario is one in which the finite-dimensional parameters are the
parameters of interest, the unknown functions, also called infinite-dimensional parameters, are
nuisance parameters. The success of semiparametric methods is due to both; their excellent
scientific intriguing theoretical and flexibility of modeling framework for complex data, and
proven to be useful in a variety of contexts Banerjee et al. [2009], Cheng [2009], Huang [1999],
Zeng and Lin [2007], Zhang and Yu [2008], Cheng and Huang [2010] and Ma and Kosorok
[2005]. To highlight the importance of the semiparametric models, Kosorok [2009] expanded
the scope of the review of Wellner et al. [2006] into new domains, including scientific philos-
ophy and graduate education, as well as to touch on a few additional theoretical aspects not
discussed previously. The second aim of the present paper is to extend the work of Zhan [2002]
to the delicate semiparametric setting. In particular, we have extended the key tool of Zhan
[2002], Lemma 4.2.2.1, that will be instrumental for the generalisation to the semiparametric
framework.

The paper is organized as follows. Section 4.2 introduces the notation and the framework of the
exchangeable bootstraps. Section 4.2.2 states the main theorems, Theorem 4.2.2.5 and 4.2.2.8
for the limiting distributions. In Section 4.3 we apply our theorems to some non-trivial examples
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including the random right censoring, the simplified frailty model and the double censoring
model. Section 4.4 provides the results for the semiparametric setting where the main results
are presented in Theorems 4.5.3.1 and 4.5.4.2. All proofs are gathered in Section 4.6.

4.2 Bootstrapped Z-estimators

In the sequel, we use a notation similar to that used in Zhan [2002] including some changes ab-
solutely necessary for our setting. Let Xi , i = 1,2, . . . be independent and identically distributed
observations from a distribution P ∈ P on a probability space (X ,A ), where P denotes the
set of all probability measures on (X ,A ). For definiteness and for ease of dealing with mea-
surability issues, we view Xi as the i th coordinate projection from the canonical probability
space (X ∞,A ∞,P∞) into the i th copy of X . Suppose that the collection P is parametrized by
θ ∈Θ, where Θ is assumed to be a smooth surface in a Banach space (B,∥ · ∥) with a norm ∥ · ∥.

We are interested in estimating a functional parameter θ0 ∈Θ, the true parameter. Let ℓ∞(H )

denote the set of bounded functions from H to R, for some set H , and let ∥ · ∥H denote the
uniform norm on ℓ∞(H ). Suppose that ψ is a sequence of random maps (functions of the data
X1, . . . ,Xn) from Θ to ℓ∞(H ). Thus ψ(θ)(h) is a real-valued random variable for each θ ∈Θ and
h ∈H , and

∥∥ψ(θ)
∥∥

H <∞ for each θ ∈Θ. These are often given by

ψ(θ,Pn)(h) =PnB(θ)(h) for h ∈H ,

where B(θ) is a map (the score operator for Θ) from H to some subset F (θ) of L2 (Pθ) for each
θ ∈ Θ. Define the set F (Θ) = ⋃

θ∈ΘF (θ). For simplicity of notation, we omit Θ in F (Θ) and
simply write F , for instance, see van der Vaart [1995] for a similar formulation. The empirical
measure Pn of the first n observations is defined by

Pn = 1

n

n∑
i=1

δXi

and the empirical process is
Gn =p

n (Pn −P)

as usual we will use linear functional notation, and write P f = ∫
f dP for f ∈ F ⊂ L2(P), and

we will consider Gn as indexed by some collection of functions F and P ∈P . Suppose that ψ
is a deterministic map from Θ to ℓ∞(H ); this can be viewed as the "population version" of the
maps ψ. When ψ is given in terms of B(θ) as above,

ψ(θ,P)(h) =PB(θ)(h) for h ∈H .

Suppose that B(θ) is bounded in the sense that ∥ψ(θ,P)∥H = ∥PB(θ)∥H < ∞ for all P ∈ P .

Then ψ(θ,P) ∈ ℓ∞(H ) for each fixed θ ∈ Θ. The empirical process GnB(θ) acting on B(θ) is
also a function in ℓ∞(H ) for fixed θ ∈Θ. An asymptotic functional Z-estimator is a sequence
of estimators

{
θ̂n

}
of θ0 which makes the "scores" PnB(θ)(h) approximately zero: that is∥∥ψ(

θ̂n ,Pn
)∥∥

H = oP∗
(
n−1/2) .
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In this section we will focus on the asymptotic validity of the exchangeably weighted bootstrap
of infinite-dimensional Z-estimators in the following sense: if the weak convergence of this
estimator demonstrated by Zhan [2002], then the asymptotic consistency of the bootstrapped
version is guaranteed by some additional assumptions as we will describe in the following
subsections. Let us recall the main idea of his work. First to prove the weak convergence of a
Z-estimators and its bootstrapped version, the common technique used is to write it as a linear
approximation of some process which converges to some Brownian bridge, i.e.,

ψ
(
θ̂n ,P

)−ψ (θ0,P) = ψ̇ (θ0)
(
θ̂n −θ0

)+oP∗
(∥∥θ̂n −θ0

∥∥)
, (4.2.1)

and

ψ
(
θ̂
∗
n ,P

)
−ψ (θ0,P) = ψ̇ (θ0)

(
θ̂
∗
n −θ0

)
+oP∗

(∥∥∥θ̂∗n −θ0

∥∥∥)
, (4.2.2)

where θ̂
∗
n is the bootstrapped version of θ̂n defined in the next section. This linearisation is

validated by using the Taylor series applied to ψ (θ,P), which is Fréchet differentiable with
respect to the norm ∥ · ∥ of the parameter space Θ. The theory of empirical process can be used
to rewrite the last equations respectively as;

ψ̇ (θ0)
(p

n
(
θ̂n −θ0

))=−GnB(θ0)+oP∗
(p

n
∥∥θ̂n −θ0

∥∥)+oP∗(1), (4.2.3)

and

ψ̇ (θ0)
(p

n
(
θ̂
∗
n −θn

))
=−ĜnB(θ0)+oP∗

(p
n

∥∥∥θ̂∗n −θ0

∥∥∥)
+oP∗

(p
n

∥∥θ̂n −θ0
∥∥)+oP∗(1),

(4.2.4)

were Ĝn is defined in (4.2.9), then by the boundedness and the invertibility of the derivative
ψ̇ (θ0) with respect to the same norm ∥·∥, we can prove that θ̂n and θ̂

∗
n are

p
n−consistency. By

assuming that; GnB(θ0)⇝Z0 and ĜnB(θ0)⇝ Ẑ0 it follows that
p

n
(
θ̂n −θ0

)
⇝−ψ̇−1 (θ0) (Z0)

and
p

n
(
θ̂
∗
n −θn

)
⇝ −ψ̇−1 (θ0)

(
Ẑ0

)
are asymptotically normal, by applying the continuous

mapping theorem, as a consequence the desired result hold, for more detail we refer the reader
to van der Vaart [1995] and Wellner and Zhan [1996]. The problem which can occur is that
the invertibility of the derivative operator ψ̇ (θ0) and the differentiability of the function ψ(θ,P)

cannot hold with respect to the same norm ∥ · ∥. Let us clarify this point and we focus in esti-
mating the distribution function in double censoring modal where the natural parameter space
Θ in this case is the set of all distribution functions on [0,∞) as described in more details in
example (4.3.3). In such case we remark that; the derivative ψ̇ (θ0) is only invertible with re-
spect to the weaker norm ∥ · ∥K and the differentiability of ψ(θ,P) can hold only for the strong
norm ∥ · ∥, consequently, the preceding arguments fail to demonstrate the weak convergence of
the Z-estimators and of its bootstrapped version. To overcome this problem, Zhan [2002] devel-
oped an identity in his Lemma 2.1 which connect the Fréchet differentiability of the function
ψ(θ,P) and the Fréchet differentiability of the function θ 7→Pθ, as a consequence he obtained a
connection between

p
n

(
θ̂n −θ0

)
and GnB(θ0):

ψ̇
(
θ̂n

)(p
n

(
θ̂n −θ0

))=−Ṗθ̂n

(p
n

(
θ̂n −θ0

))
B

(
θ̂n

)
.
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This identity was derived before in ad hoc manner, in the multiplicative censoring model Vardi
and Zhang [1992], in the double censoring model Gu and Zhang [1993] and in the interval
truncation model Tsai and Zhang [1995]. To examine the efficiency of the MLE van der Laan
[1995] also derived an identity. Note that the common feature in these problems is that the
probability measures Pθ are convex linearly indexed by θ as in the multiplicative and double
censoring model, or nearly so up to a normalizing constant as in the interval truncation model.
For a general class of models in which convex linearity can be boundedly extended to the linear
span of the parameter space, such linearity identity can be proved by Fréchet differentiability of
the likelihood equations ψ(θ,Pθ) = 0. For more details see Section 2.1 of Zhan [2002] also see
Wellner and Zhan [1996]. The idea is to allow a linearization applied to Pθ instead of ψ(θ,P)

through its derivative operator Ṗϑ(·). Models where Pθ is bounded convex linearity, the dif-
ferential Ṗθ̂n

(p
n

(
θ̂n −θ0

))
B

(
θ̂n

)
exactly equals the difference

p
n

(
ψ

(
θ̂n ,Pθ̂n

)
−ψ(

θ̂n ,Pθ0

))
.

Consequently, we have

ψ̇
(
θ̂n

)(p
n

(
θ̂n −θ0

))=−pnψ
(
θ̂n ,Pθ0

)
=−GnB(θ0)+oP∗(1). (4.2.5)

One can see the difference between the last expression and the other given in (4.2.3), where θ̂n

must converge with n−1/2 rate with respect to the norm ∥ · ∥ to validate the linearization, then
the asymptotic normality, such a condition is not needed in (4.2.5) because the linearization is
perfect. The sequence of Z-estimators θ̂n still converge at the n−1/2 rate in any norm as long as
the derivative operators ψ̇(θ̂n) is boundedly invertible with respect to it. This circumvents the
problem described before by obtaining a weak convergence as well as the rate control in one
step. Intuitively the same problem can occur in the study of the bootstrapped version θ̂

∗
n in such

case, so we will use the same arguments given by Zhan [2002] with some additional arguments
needed for the bootstrap study, which allow us to show the weak convergence in probability of
the bootstrapped Z-estimators θ̂

∗
n .

4.2.1 Definitions and notation

We begin by some definitions which is needed in the following results described in Section
4.2.2. The function ψ(θ,P), as a map from Θ to ℓ∞(H ), is Fréchet differentiable with respect
to the norm ∥ ·∥ at a point ϑ ∈Θ if there is a bounded linear operator ψ̇ (ϑ,Pϑ) (·) mapping from
(lin(Θ),∥ ·∥) to (ℓ∞(H ),∥ ·∥H ) such that∥∥ψ (θ,Pϑ)−ψ (ϑ,Pϑ)− ψ̇ (ϑ,Pϑ) (θ−ϑ)

∥∥
H = o(∥θ−ϑ∥).

Denote the operator ψ̇ (θ,Pθ) by ψ̇(θ) : ψ̇(θ) ≡ ψ̇ (θ,Pθ). The operator ψ̇(θ) is continuous as a
function of θ at ϑ if

∥ψ̇(θ)− ψ̇(ϑ)∥ ≡ sup
∥a∥≤1

∥ψ̇(θ)(a)− ψ̇(ϑ)(a)∥H −→ 0 (4.2.6)

as ∥θ−ϑ∥ → 0. Recall that for a fixed ϑ ∈ Θ, the operator B(ϑ) is bounded in the sense that
∥PB(ϑ)∥H < ∞ for all P ∈ P . Thus for a fixed ϑ ∈ Θ, the probability measure Pθ induces
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a mapping θ 7→ PθB(ϑ) from Θ to ℓ∞(H ). The map PθB(ϑ), as a function of θ, is Fréchet
differentiable with respect to the norm ∥·∥ at a point ϑ ∈Θ if there is a linear operator Ṗϑ(·) such
that Ṗϑ(·)B(ϑ) is bounded and∥∥PθB(ϑ)−PϑB(ϑ)− Ṗϑ(θ−ϑ)B(ϑ)

∥∥
H = o(∥θ−ϑ∥).

Given that Θ is a subset in a Banach space (B,∥ · ∥), the closure lin(Θ) is a Banach space with
the same norm ∥ · ∥ (Lemma II.1.3 on page 50 , Dunford and Schwartz [1958], Part I). Because
(ℓ∞(H ),∥ ·∥H ) is also a Banach space, the bounded operators ψ̇−1(θ) and ψ̇(θ) can be uniquely
extended to the closures of their domains by continuity (see, e.g., Lemma I.6.16 on page 23 of
Dunford and Schwartz [1958], Part I). The unique continuous extensions of ψ̇−1(θ) and ψ̇(θ)

on the closures of their domains are also denoted by ψ̇−1(θ) and ψ̇(θ). The extension ψ̇−1(θ)

on R(ψ̇) is also the inverse of the extension ψ̇(θ) on lin(Θ). For the examples we deal with
in Section 4.3, and for other examples, it is true that R(ψ̇) does not depend on θ. We use
R(ψ̇) instead of R(ψ̇(θ)) to denote the common subspace on which every ψ̇−1(θ) reside. Now
consider bootstrapping the functional Z-estimators described before. We shall consider a wide
class of bootstrap procedures as possible. We will use the notation and results of Præstgaard
and Wellner [1993] for “exchangeably weighted” bootstraps. We suppose that the bootstrap
weights W = {Wni , i = 1,2, . . . ,n,n = 1,2, . . .} are a triangular array defined on the probability
space (Z ,E , P̂). Let Wn ≡ (Wn1, . . . ,Wnn) be an exchangeable vector of nonnegative weights
which sum to n. Then the exchangeably weighted bootstrap empirical measure is defined by

P̂n = 1

n

n∑
i=1

WniδXi .

The bootstrap scores are defined by

ψ
(
θ, P̂n

)
(h) = P̂nB(θ)(h) for h ∈H . (4.2.7)

A bootstrap asymptotic Z-estimator θ̂
∗
n makes the bootstrap scores or estimating equations

ψ
(
θ, P̂n

)
approximately zero (in probability):

∥∥∥ψ(
θ̂
∗
n , P̂n

)∥∥∥
H

= oP∗
(
n−1/2) , (4.2.8)

where P ≡P∞× P̂. Moreover, define the product probability space(
X ∞,B∞,P∞)× (Z ,E , P̂) = (

X ∞×Z ,B∞×E ,P
)

,

for the joint randomness involved. The notation superscript "∗" or subscript "∗" denotes outer
or an inner probability respectively: e.g., P∗ indicates outer probability corresponding to P∞.
Here are the hypotheses which will be imposed on the bootstrap weights Wn:

(B.1) The vectors Wn = (Wn1,Wn2, . . . ,Wnn)T are exchangeable for all n = 1,2, . . ., i.e., for any
permutation π= (π1, . . . ,πn) of (1,2, . . . ,n), the joint distribution of

π (Wn) = (
Wnπ1 ,Wnπ2 , . . . ,Wnπn

)T

is the same as that of Wn .
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(B.2) Wni ≥ 0 for all n, i and
∑n

i=1 Wni = n for all n.

(B.3) The following L2,1 norm of Wn1 is uniformly bounded:

Rn =
∫ ∞

0

√
P̂ (Wn1 ≥ u)du ≤ K <∞

(B.4) limλ→∞ limsupn→∞ supt≥λ t 2P̂ {Wn1 ≥ t } = 0.

(B.5) (1/n)
∑n

i=1 (Wni −1)2 → c2 > 0 in P̂-probability.

The bootstrap empirical process Ĝn is defined by

Ĝn =p
n

(
P̂n −Pn

)
. (4.2.9)

Discussion about these conditions and weights is given in Section 2.2.1.

4.2.2 Main results

In this subsection we introduce the conditions needed to obtain the results of Zhan [2002] for
the weak convergence of θ̂n , after we give the key assumption for our main theorems which
treat the weak convergence in probability of the bootstrapped version θ̂

∗
n .

(C.1) For all θ ∈Θ,ψ (θ,Pθ) =PθB(θ) ≡ 0 in ℓ∞(H ).

(C.2) As n →∞, for any decreasing δn ↓ 0, the stochastic equicontinuity condition

sup
{∥Gn (B(θ)−B(θ0))∥H : ∥θ−θ0∥ ≤ δn

}= oP∗(1)

holds at the point θ0.

(C.3) At the point θ0,GnB(θ0) ⇝ Z0 in ℓ∞(H ), where ⇝ indicates weak convergence in
ℓ∞(H ) to a tight Borel measurable random element Z0.

(C.4) For a fixed ϑ ∈ Θ, the operator PθB(ϑ) as a function of θ is Fréchet differentiable with
respect to the norm ∥ · ∥ at ϑ. Furthermore, the function θ 7→ψ(θ,P) from Θ to ℓ∞(H ) is
Fréchet differentiable with respect to the norm ∥ · ∥. The operator ψ̇(θ) is continuous as a
function of θ in the sense of (4.2.6).

(C.5) For every fixed θ ∈ Θ, the operator ψ̇(θ) from (lin(Θ),∥ · ∥) to (ℓ∞(H ),∥ ·∥H ) has a
bounded inverse ψ̇−1(θ) on a fixed subspace R(ψ̇) ⊂ ℓ∞(H ). Furthermore ψ̇−1(θ) as
an operator sequence converges to ψ̇−1 (θ0) as ∥θ−θ0∥→ 0 :∥∥ψ̇−1(θ)( f )− ψ̇−1 (θ0) ( f )

∥∥−→ 0

for all f ∈R(ψ̇).
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Let us define the following notation;

D ≡D(R) = {B(θ)(h) : h ∈H ,∥θ−θ0∥ ≤ R}. (4.2.10)

The envelope function of the class D(R) is:

D(R) ≡ sup{|B(θ) (h)(x)| : h ∈H ,∥θ−θ0∥ ≤ R}. (4.2.11)

For a sequence of positive numbers δn as in condition (C.2), let

Dn ≡ {B(θ)(h)−B(θ0) (h) : h ∈H ,∥θ−θ0∥ ≤ δn}

≡ {Bn (θ,θ0) (h) : h ∈H ,∥θ−θ0∥ ≤ δn} , (4.2.12)

with envelope function defined as:

Dn(x) ≡ sup{|Bn (θ,θ0) (h)(x)| : h ∈H ,∥θ−θ0∥ ≤ δn} , (4.2.13)

with this notation, condition (C.2) can be rewritten as

∥Gn∥Dn = oP∗(1).

In the following Lemma we recall the identity which is the key idea for solving the problem
introduced in Section 4.2, which is a direct result of Lemma 4.5.1.1 without the nuisance pa-
rameter.

Lemma 4.2.2.1 (Zhan [2002]) Assume (C.1). For any ϑ ∈ Θ, suppose that ψ(θ,P) is Fréchet
differentiable with respect to the norm ∥ · ∥ in a neighborhood of ϑ, and the operator ψ̇(θ) is
continuous as a function of θ at ϑ as in (4.2.6). If PθB(ϑ) is Fréchet differentiable with respect
to the norm ∥ · ∥ at ϑ ∈Θ, then the operator ψ (θ,Pθ) as a function of θ is Fréchet differentiable
with respect to the norm ∥ ·∥ at ϑ ∈Θ and the following identity holds for all a ∈ lin(Θ);

ψ̇(ϑ)(a)+ Ṗϑ(a)B(ϑ) = 0 in ℓ∞(H ). (4.2.14)

Theorem 4.2.2.2 [Zhan [2002]] Let
∥∥θ̂n −θ0

∥∥→P∗ 0 be a sequence of consistent Z -estimators.
Assume (C.1) through (C.5). Then

p
n

(
θ̂n −θ0

)
⇝−ψ̇−1 (θ0) (Z0) in (lin(Θ),∥ ·∥).

In this theorem the weak convergence is proved by the author for models where Pθ is not
linearly parametrized, which implies that the linearity identity given in (4.2.14) is not perfect
which implies that

ψ̇
(
θ̂n

)(p
n

(
θ̂n −θ0

))= Ṗθ̂n

(p
n

(
θ̂n −θ0

))
B

(
θ̂n

)
=−GnB(θ0)+oP∗

(p
n

∥∥θ̂n −θ0
∥∥)+oP∗(1).
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In this case, we must show that θ̂n is
p

n−consistence, then by (C.5) ψ̇−1(θ) converges to
ψ̇−1(θ0) as ∥θ− θ0∥ 7→ 0 which implies the operator ψ̇−1

(
θ̂n

)
is uniformly bounded in P∗-

probability by the Banach-Steinhaus theorem, by consequence the desired result hold by apply-
ing the continuous mapping theorem.
Now we will focus in models where Pθ is linearly convex, this means that; if θ= λ1θ1 +λ2θ2 ∈
lin(Θ) implies Pθ = λ1Pθ1 +λ2Pθ2 ∈P for any θ1,θ2 ∈Θ and any real numbers λ1 and λ2 such
that λ1 ≥ 0,λ2 ≥ 0 and λ1 +λ2 = 1. Convex linearity is referred to as bounded with respect to a
norm ∥ ·∥ on lin(Θ) if:

(C.6) For any θ1, . . . ,θk in Θ, and any real numbers λ1, . . . ,λk ,k ≥ 1, there is a constant C<∞
such that ∥∥∥∥∥ k∑

i=1
λiPθi B(ϑ)

∥∥∥∥∥
H

≤C

∥∥∥∥∥ k∑
i=1

λiθi

∥∥∥∥∥
holds for every fixed ϑ ∈Θ, where we recall B(ϑ) is the score operator mapping from H

to F .

Lemma 4.2.2.3 If the parametrization θ 7→ Pθ is boundedly convex linear, then the mapping
PθB(ϑ) is Fréchet differentiable with respect to the norm ∥ · ∥ at all ϑ ∈ Θ and the derivative
operator Ṗϑ(·)B(ϑ) is given by Ṗϑ (θ1 −θ2)B(ϑ) = Pθ1 B(ϑ)−Pθ2 B(ϑ) for any θ1,θ2 and ϑ in Θ.

This lemma follows directly as a special case from Lemma 4.5.4.1 without the nuisance pa-
rameter. One can remark by the identity developed in (4.2.14) and the Lemma 4.2.2.3 we get a
perfect linearization, i.e., we have for all a = (θ1 −θ2) ∈ lin(Θ) and ϑ ∈Θ that;

ψ̇(ϑ)(θ1 −θ2) =−Ṗϑ(θ1 −θ2)B(ϑ)

=Pθ2 B(ϑ)−Pθ1 B(ϑ). (4.2.15)

For such model Zhan [2002] use the following assumptions for his main theorem:

(C.4′) The function ψ(θ,P) as a map from Θ to ℓ∞(H ) is Fréchet differentiable with respect to
the norm ∥ ·∥. The operator ψ̇(θ) is continuous as a function of θ in the sense of (4.2.6).

(C.5′) For every fixed θ ∈ Θ, the operator ψ̇(θ) from (lin(Θ),∥ · ∥K) to (ℓ∞(H ),∥ ·∥H ) has a
bounded inverse ψ̇−1(θ) on a fixed subspace R(ψ̇) ⊂ ℓ∞(H ). Furthermore ψ̇−1(θ) as an
operator sequence converges to ψ̇−1 (θ0) as ∥θ−θ0∥→ 0 :∥∥ψ̇−1(θ)( f )− ψ̇−1 (θ0) ( f )

∥∥
K −→ 0

for all f ∈R(ψ̇).

In condition (C.4′) we have not to assume that the function θ 7→ Pθ is Fréchet differentiable as
in (C.4), because it holds by the definition of the convex linearity of the model, while (C.5′)
differs from (C.5) by the use of the norm ∥ · ∥K, where the derivative operator ψ̇(θ) is invertible
with respect to it instead the norm ∥ ·∥ and this is the main ingredient used for solving the main
problem as given in the following theorem.
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Theorem 4.2.2.4 [Zhan [2002]] For a model with bounded convex linearity specified in (C.6),
assume (C.1) through (C.3), (C.4′) and (C.5′). Then a sequence of consistent Z-estimators θ̂n

such that
∥∥θ̂n −θ0

∥∥→P∗ 0 is actually asymptotically normal:
p

n
(
θ̂n −θ0

)
⇝−ψ̇−1 (θ0) (Z0) in

(
lin(Θ),∥ ·∥K

)
.

In models where the parametrization θ 7→ Pθ is boundedly convex linear as in (C.6) and by
choosing θ1 =ϑ= θ̂n and θ2 = θ0 in (4.2.15), we get by (C.1);

ψ̇
(
θ̂n

)(p
n

(
θ̂n −θ0

))=−pnPθ0 B
(
θ̂n

)
=−GnB(θ0)+oP∗(1).

This identity is perfect which give us a great flexibility for choosing any norm as long as that the
operator derivative ψ̇(θ) is boundedly invertible with respect to it, then the rate of convergence
and the weak convergence obtained in one step.
In the rest of this section we will give the condition needed for the asymptotic limit of the
bootstrapped version of Z-estimator θ̂

∗
n satisfies (4.2.8) and our main Theorems. The following

condition on the envelope function Dn(x) is used for validity of the bootstrap consistency as
given in Wellner and Zhan [1996]:

(CB) For each sequence δn → 0 the envelope functions Dn of the classes Dn satisfy

lim
λ→∞

limsup
n→∞

sup
t≥λ

t 2P∗ (Dn (X1) > t ) = 0.

For our bootstrap results, we further assume that the collection D or D(R) possesses enough
measurability for randomization with i.i.d. multipliers to be possible and the usual Fubini’s
theorem can be used freely; such a set of conditions is D ∈ NLDM(P) (Nearly Linearly Devi-
ation Measurable), and D2,D′2 ∈ NLSM (P) (Nearly Linearly Supremum Measurable) in the
terminology of Giné and Zinn [1990]. Here D2 and D′2 denote the classes of squared functions
and squared differences of functions from D, respectively. When all of these conditions hold,
we write D ∈ M(P). It is known that D ∈ M(P) if D is countable, or if the empirical processes
Gn are stochastically separable, or if D is image admissible Suslin (see Giné and Zinn [1990],
page 853 and 854 ).

Theorem 4.2.2.5 Let θ̂n be a sequence of consistent asymptotic Z-estimators and θ̂
∗
n be a se-

quence of consistent bootstrap asymptotic Z-estimators with exchangeable bootstrap weights
satisfying (B.1) through (B.5):

∥∥θ̂n −θ0
∥∥ →P∗ 0 and

∥∥∥θ̂∗n −θ0

∥∥∥ →P∗ 0 in P∗-probability. If
assumptions (C.1) through (C.5) and (CB) hold, then

(i) p
n

(
θ̂n −θ0

)
⇝−ψ̇−1 (θ0) (Z0) in (lin(Θ),∥ ·∥).

(ii) p
n

(
θ̂
∗
n − θ̂n

)
=−ψ̇−1 (θ0)

(
ĜnB(θ0)

)+oP̂(1)

⇝−ψ̇−1 (θ0)
(
c · Ẑ0

)
in (lin(Θ),∥ ·∥),
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in P∗ -probability, where Ẑ0
d=Z0, and c is the constant given in (B.5).

To prove the last theorem, we need the following two lemmas, in the first we establish the
bootstrap equicontinuity condition which implies by the stochastic equicontinuity condition
(C.2), then by making use of this result, it holds the

p
n−consistency of θ̂

∗
n in the second

lemma.

Lemma 4.2.2.6 Under (C.2), (CB), (B1)-(B5) and assume that D ∈ M(P) for some R > 0. Then
for any positive sequence δn → 0, it holds that

∆n ≡ sup
{∥∥Ĝn (B(θ)−B(θ0))

∥∥
H : ∥θ−θ0∥ ≤ δn

}= ∥Ĝn∥Dn = oP∗(1)

That is ∆n = oP̂(1) in P∗−probability.

This result holds directly by applying the multiplier inequality as in Lemma 4.1 of Wellner and
Zhan [1996] to the empirical process indexed by Dn .
In the following, we use OP∗(1) to denote maps whose norm is of order OP∗(1). The same
rule will be applied to terms of order oP∗(1), and oP∗(1) respectively. In the proof of Theorem
4.2.2.5, the stochastic equicontinuity assumption (C.2) and the Fréchet differentiability assump-
tion (C.4) and the convergence of the operator ψ̇−1(θ) to ψ̇−1(θ0) as ∥θ−θ0∥→ 0. The condition
(C.5) is used to deduce

p
n−consistency of θ̂n from consistency. Similarly, bootstrap equicon-

tinuity given in the preceding lemma together with the differentiability assumption (C.4) and
the convergence of the operator ψ̇(θ) (C.5) allows us to prove

p
n−consistency of the bootstrap

starting from consistency of the bootstrap estimator.

Lemma 4.2.2.7 Assume conditions of Theorem 4.2.2.5 hold and θ̂
∗
n is consistent: ∥θ̂∗n −θ0∥ =

oP̂(1) in P∗−probability, then in P∗−probability, we have

p
n∥θ̂∗n −θ0∥ = oP̂(1).

One can remark that for proving the asymptotic normality of the sequence
p

n
(
θ̂
∗
n − θ̂n

)
in the

previous theorem, we began by proving the
p

n−consistency of θ̂
∗
n with respect to the norm ∥·∥,

which is both the operator ψ(θ,P) is Fréchet differentiable and the operator ψ̇(θ) is invertible
with respect to it. As we noticed in the previous section that there are some cases where these
cannot hold, as given in Zhan [2002] and examples in Section 4.3. Now we are in position to
give a solution for this problem where the weak convergence and the

p
n−consistency of θ̂

∗
n are

proved in one step and this is hold with respect to any chosen norm which is the operator ψ̇(θ)

is invertible with respect to it. The following theorem is one of our main results of this work.

Theorem 4.2.2.8 Let θ̂n be a sequence of consistent asymptotic Z-estimators and θ̂
∗
n be a se-

quence of consistent bootstrap asymptotic Z-estimators with exchangeable bootstrap weights
satisfying (B.1) through (B.5):

∥∥θ̂n −θ0
∥∥→P∗ 0 and

∥∥∥θ̂∗n −θ0

∥∥∥→P∗ 0 in P∗ -probability. For a
model with bounded convex linearity specified in (C.6), assume (C.1) through (C.3), (C.4′) and
(C.5′) then
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(i′) p
n

(
θ̂n −θ0

)
⇝−ψ̇−1 (θ0) (Z0) in (lin(Θ),∥ ·∥K).

(ii′) p
n

(
θ̂
∗
n − θ̂n

)
=−ψ̇−1 (θ0)

(
ĜnB(θ0)

)+oP̂(1)

⇝−ψ̇−1 (θ0)
(
c · Ẑ0

)
in (lin(Θ),∥ ·∥K),

in P∗ -probability, where Ẑ0
d=Z0, and c is the constant given in (B.5).

4.3 Examples

In this section we give three examples to illustrate the usefulness of Theorem 4.2.2.5 and Theo-
rem 4.2.2.8. The first two example concern models without convex linearly parametrization, the
first one is the classical model of random right censorship and the second is a simplified frailty
model, these models have a nice analytical properties such that all derivatives and their inverses
are quite explicit and easily calculable, so the asymptotic normality of the bootstrapped version
of the MLE can established by traditional arguments and the same conclusion can also be ob-
tained by Theorem 4.2.2.5. These examples are given in Zhan [2002], for which our bootstrap
are validated.

4.3.1 Random right censoring

Here we have X ∼ F and Y ∼ G on R+, and we observe (a random sample of data) with the
distribution of (Z,∆) ≡ (

X∧Y,1[X≤Y]
)
. Following Gill [1989], we parametrize the model in

terms of the cumulative hazard function Λ(·) corresponding to F(·) given by

Λ(x) =
∫ x

0

1

1−F(u−)
dF(u).

We are interested in estimating the unknown cumulative hazard function Λ0(·) on [0,∞) on the
basis of n of i.i.d. observations (Zi ,∆i ) from

P(0)
Λ (z) =PΛ{Z ≤ z,∆= 0} =

z∫
0

F(y)dG(y), (4.3.1)

P(1)
Λ (z) =PΛ{Z ≤ z,∆= 1} =

z∫
0

G(x−)dF(x), (4.3.2)

where F(·) = 1−F(·) and G(·) = 1−G(·). Let Θ be the set of all cumulative hazard functions on
the positive real line [0,∞[, equipped with the uniform norm ∥ · ∥. Then assuming that Λ(·) and
G(·) are absolutely continuous with densities λ(·) and g (·) respectively, the joint density density
of (Z,∆) on R+× {0,1} is given by

PΛ,G(z,∆) = λ(z)∆exp(−Λ(z))g (z)1−∆(1−G(z))∆, for z ∈R+,∆ ∈ {0,1}.
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Following Gill [1989], consider one-dimensional parametric submodels of the full nonparamet-
ric model by defining

{
Λη : |η| ≤η0

}
by

dΛη
dΛ

(x) = 1+ηh(x),

for h(·) bounded. The score for this submodel (for n = 1) is:

∂

∂η
logPΛη,G (z,∆)

∣∣∣∣
η=0

=∆h(z)−
∫ z

0
hdΛ≡ B(Λ)h(z,∆).

In this model, we choose H = {
ht =1[0,t ] : 0 ≤ t ≤ τ} where τ < τH ≡ inf{x : H(x) = 1} and

1−H(x) = (1−F0(x)) (1−G0(x)) =P0(Z > x). ∞. The parameter space Θ can thus be identified
with all cumulative hazard functions restricted to the interval [0,τ]. Then we have

B(Λ) (ht ) (z,∆) =∆1[0,t ](z)−
∫ z

0
1[0,t ](u)dΛ(u)

=∆1[0,t ](z)−Λ(z ∧ t ),

ψ(Λ,Pn)(ht ) =PnB(Λ) (ht ) = 1

n

n∑
i=1

{
∆i1[0,t ] (Zi )−

∫ t

0
1[Zi≥u]dΛ(u)

}
, (4.3.3)

and

ψ(Λ,PΛ0 ) =PΛ0 B(Λ) (ht ) =
∫ t

0
G(u−)dF0(u)−

∫ t

0
H(u−)dΛ(u)

=
∫ t

0
H(u−)dΛ0(u)−

∫ t

0
H(u−)dΛ(u). (4.3.4)

From (4.3.3) it follows that the score equations for the maximum likelihood estimator Λ̂n(·) of
Λ(·) are

0 =ψ(Λ̂n ,Pn)(ht ) =PnB(Λ̂n) (ht )

= 1

n

n∑
i=1

∆i1[0,t ] (Zi )− 1

n

n∑
i=1

∫ t

0
1[Zi≥u]dΛ̂n(u)

≡ H(1)
n (t )−

∫ t

0
Hn(u−)dΛ̂n(u) for 0 ≤ t ≤ τ.

In this case the score equations have an explicit solution: from (4.3.3) it follows that

Λ̂n(t ) =
∫ t

0

1

Hn(u−)
dH(1)

n (u), 0 ≤ t ≤ τ, (4.3.5)

the well-known Nelson-Aalen estimator of Λ(·). From here the maximum likelihood estimator
of F(·) is given by the product integral:

1− F̂n(t ) = ∏
s≤t

(
1−∆Λ̂n(s)

)
, 0 ≤ t ≤ τ
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this is the Kaplan and Meier [1958] "product-limit" estimator of F(·). Note that we choose this
example to well clarify for the reader the difference between using the traditional arguments
as in Wellner and Zhan [1996] and the result in Theorem 4.2.2.5, for our Theorem we need
to show that the inverse operator of the derivative is uniformly continuous, let us clarify more.
Condition (C.1) holds directly by substitute PΛ0 ≡P with PΛ for any Λ ∈Θ in (4.3.4), (C.2) and
(C.3) here are the same as (A.2) and (A.3) in Wellner and Zhan [1996], so we don’t check them
here, for (C.4) we observe that; the operator

Λ 7→PΛB(ϑ) =
∫ t

0
H(u−)d (Λ−ϑ) (u),

is linear in Λ and the second term is independent of Λ which implies its Fréchet differentiability
at all Λ ∈Θ and its operator derivative is given by for any ϑ ∈Θ;

ṖΛ(Λ−Λ0)B(ϑ) =
∫ t

0
H(u−)d (Λ−Λ0) (u). (4.3.6)

With the same arguments for ψ(Λ,P) it follows by using the integration by parts for any Λ ∈Θ;

ψ̇(Λ)(Λ−Λ0)(ht ) =−
∫ t

0
H(u−)d (Λ−Λ0) (u)

=−H(t ) (Λ−Λ0) (t )+
∫ t

0
(Λ−Λ0) (u)dH(u). (4.3.7)

The operators ψ̇(Λ)(·) and ṖΛ(·)B(ϑ) are bounded linear from (lin(Θ),∥ · ∥) to (ℓ∞(H ),∥ ·∥H ),
we observe that by combining (4.3.6) and (4.3.7), the identity in (4.2.14) holds. From (4.3.7) we
remark that the operator ψ̇(Λ) is uniformly continuous as function of Λ, which can be rewritten
as; ψ̇(Λ)(J)(t ) = K(t ), for a given K ∈R(ψ̇) ⊂ ℓ∞(H ). It follows that;

ψ̇−1(Λ)(K)(t ) =−
∫ t

0

1

H(u−)
dK(u) = J(t ).

One can remark that for all Λ ∈ Θ we have; ψ̇(Λ)(·) = ψ̇(Λ0)(·) as an operator independent of
Λ, which implies the condition (C.5). From (C.1) to (C.5) it follows from Theorem 4.2.2.5 that
the Maximum Likelihood Estimator Λ̂n , i.e., the Nelson-Aalen estimator, satisfies

p
n

(
Λ̂n −Λ0

)
⇝−ψ̇−1(Λ0) (Z0) in (lin(Θ),∥ ·∥).

To prove that the bootstrap Theorem 4.2.2.5, it suffices to verify the envelope integrability as-
sumption (CB), which is the same as assumption (A.5) in Wellner and Zhan [1996], then it
follows for any exchangeable weighted bootstrap with weights satisfying (B.1)-(B.5) the valid-
ity of the bootstrapped version Λ∗

n in probability as in Theorem 4.2.2.8;
p

n
(
Λ̂∗

n − Λ̂n
)
⇝−ψ̇−1

0 (Λ0)
(
c · Ẑ0

)
in (lin(Θ),∥ ·∥),

in P∗-probability, where Ẑ0
d= Z0. The Efron’s nonparametric bootstrap of this estimator is

studied by Akritas [1986] and Gill [1989], and for the Bayesian bootstrap see Lo [1993]. For
further examples of such weights, we refer the reader to the monograph Præstgaard and Wellner
[1993].
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4.3.2 A simplified frailty model

Let Z ∼ Gamma(ν0,1) be a known gamma frailty. Conditional on Z = z, we observe indepen-
dent random variables (X,Y) with a common, absolutely continuous hazard function zΛ0. Based
on n i.i.d. observations (Xi ,Yi ) with distribution

P{X > x,Y > y} = 1/
[
1+Λ0(x)+Λ0(y)

]ν0 ,

we are interested in estimating Λ0 on [0,τ], where τ<∞ is a real number such that Λ0(τ) <∞.
Let Θ ⊂ ℓ∞

(
Hp

)
be the parameter space, where Hp is a set of real functions h(·) defined on

[0,∞) with bounded variation ∥h∥v < p on [0,τ] and identical to zero on (τ,∞). The set Hp is
considered as a space equipped with the variation norm ∥ ·∥v defined by

∥h∥v ≡ |h(0)|+∨τ0(h).

A bounded linear functional Λ(h) ∈ ℓ∞ (
Hp

)
is given by

Λ(h) =
∫

[0,∞)
h(x)dΛ(x),

with
∥Λ∥Hp = sup

h∈Hp

∣∣∣∣∫
[0,∞)

h(x)dΛ(x)

∣∣∣∣<∞.

The parameter space Θ can thus be identified with all absolutely continuous integrated hazard
functions Λ restricted to the interval [0,τ], such that Λ(u) ≡ Λ0(u) for u > τ. We will not
distinguish between a functional Λ ∈ Θ and a hazard function Λ(u). The score operator B(Λ)

is obtained by differentiating the log-likelihood along a curve passing through Λ ∈ Θ. It is a
function of Λ mapping from Hp to a set F of L2(P) functions defined on the sample space:

B(Λ)(h)(x, y) = h(x)+h(y)− (ν0 +2)

∫
[0,x]

h(u)dΛ(u)+
∫

[0,y]
h(u)dΛ(u)

1+Λ(x)+Λ(y)
.

This example was considered by Murphy [1995] in the context of counting process, general-
ized by Parner [1998] to the case with covariates, van der Vaart [1995] used it as an example
to motivate the Central Limit Theorem for functional parameters and Wellner and Zhan [1996]
for studying the consistency of the bootstrap in these models, where they used the traditional
argument, we show that the same asymptotic results are obtainable from Theorem 4.2.2.5. Note
that the most conditions were verified in Zhan [2002], hence we need only to verify the enve-
lope integrability condition (CB). The envelope function Dn defined in (4.2.13) in this case is
bounded by

Dn(x) = sup
{|Bn (Λ,Λ0) (h)(x)| : h ∈Hp ,∥Λ−Λ0∥ ≤ δn

}
≤ 2(ν0 +2)sup


∣∣∣∣∣∣∣∣∣
∫

[0,x]
h(u)dΛ(u)+

∫
[0,y]

h(u)dΛ(u)

1+Λ(x)+Λ(y)

∣∣∣∣∣∣∣∣∣ : h ∈Hp ,∥Λ−Λ0∥ ≤ R


≤ 2p (ν0 +2) .
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Hence condition (CB) holds directly and then we get from Theorem 4.2.2.5;
p

n
(
Λ̂n −Λ0

)
⇝−ψ̇−1(Λ0) (Z0) in (lin(Θ),∥ ·∥Hp ),

and p
n

(
Λ̂∗

n − Λ̂n
)
⇝−ψ̇−1(Λ0)

(
c · Ẑ0

)
in (lin(Θ),∥ ·∥Hp ),

in P∗-probability, where Ẑ0
d=Z0.

4.3.3 The double censoring model

Let X ∼ F0 be a non-negative random variable. Let (Y,Z) be a pair of nonnegative random
censoring times independent of the random variable X that satisfies P(Y ≤ Z) = 1. We observe a
pair (W,∆) of random variables, defined by

(W,∆) =


(X,1) if Y < X ≤ Z;

(Z,2) if X > Z;

(Y,3) if X ≤ Y,

where (W,∆) ∼P. We are interested in estimating the distribution function F0(·) from i.i.d. pairs
(Wi ,∆i ) ∼P, i = 1, . . . ,n. Let K(t ) = GY(t )−GZ(t ), where GY(t ) =P(Y ≤ t ) and GZ(t ) =P(Z ≤ t )

are the marginal distribution function of Y and Z, respectively. It follows from the censoring
mechanism that the distribution PF0 is equivalent to the following three marginals for ∆= 1,2,3,

P
(1)
F (t ) ≡PF{W ≤ t ,∆= 1} =

∫
[0,t ]

K(u−)dF(u), (4.3.8)

P
(2)
F (t ) ≡PF{W ≤ t ,∆= 2} =

∫
[0,t ]

(1−F(u))dGZ(u), (4.3.9)

P
(3)
F (t ) ≡PF{W ≤ t ,∆= 3} =

∫
[0,t ]

F(u)dGY(u). (4.3.10)

The marginal distribution function for W(·) under the true F0(·) is

HP(t ) =
3∑

j=1
P

( j )
F0

(t ).

Let Θ be the set of all distribution functions defined on [0,∞[. For parametric submodels of the
full model of the form

{
PFη,G : |η| ≤ η0

}
with Fη(x) given by

dFη
dF

= 1+η
(
h −

∫
[0,∞)

hdF

)
,

where h(·) is any given bounded measurable function on R+, it is straightforward to compute
the score operator B(F)(h) :

B(F)(h)(w,δ) = 1[δ=1]

(
h(w)−

∫
[0,∞[

hdF

)
−1[δ=2]

∫
[0,W]

(
h −

∫
[0,∞)

hdF

)
dF

(1−F(w))

+1[δ=3]

∫
[0,w]

(
h −

∫
[0,∞[

hdF

)
dF

F(w)
.
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When h = ht ∈H = {
ht = 1[0,t ](·) : t ∈ [0,∞)}, the last equation can be rewritten as

B(F)(ht ) (w,δ) = (
1[0,t ](w)−F(t )

)−1[δ=2,w≤t ]
1−F(t )

1−F(w)
+1[δ=3,w>t ]

F(t )

F(w)
. (4.3.11)

Integrating with respect to P we get the operator ψ, for t ∈ [0,∞[

ψ(F,P) (ht ) = HP(t )−F(t )−
∫

[0,t ]

1−F(t )

1−F(u)
dP(2)

F0
(u)+

∫
(t ,∞)

F(t )

F(u)
dP(3)

F0
(u). (4.3.12)

The set of all Z -estimators F̂n in this model contains the set of all self-consistent estimators
defined by ψ

(
F̂n ,Pn

)
(ht ) ≡ 0 for all t ≥ 0. It is well known that F̂n is consistent in the uniform

norm, see Gu and Zhang [1993] and Wellner and Zhan [1996]. Before verifying the conditions,
we will discuss some results and clarify the situation here, for that we define some notation
which will be used for what follows. Let τ0 = sup{t : F0(t ) = 0} and τ1 = inf{t : F0(t ) = 1}. Let
D0 [τ0,τ1] be the Banach space of all real-valued functions defined on [τ0,τ1] which are right-
continuous and have left-limits:

D0 [τ0,τ1] = {a : F0(t ) = 0⇝ a(t ) = 0,F0(t−) = 1⇝ a(t−) = 0,F0(t ) = 1⇝ a(t ) = 0} .

Let (DK [τ0,τ1] ,∥ ·∥K) denote the completion of D0 [τ0,τ1] under the K-norm ∥a∥K = ∥Ka∥.
Further restrict Θ to be all distribution functions on [0,∞) such that F ∈ Θ implies F− F0 ∈
D0 [τ0,τ1]. Note that the operator given in (4.3.12) is a Fréchet derivative operator with respect
to the uniform norm ∥ ·∥ with derivative given by

−ψ̇(F)(a) (ht ) = (K+A)(a)(t ), (4.3.13)

where

(Ka) (ht ) = K(t )a(t )

A ≡ A(F,GY,GZ) (a) (ht ) =
∫

[0,t ]

1−F(t )

1−F(u)
a(u)dGZ(u)+

∫
(t ,∞)

F(t )

F(u)
a(u)dGY(u).

We must assume that inf
τ0≤t≤τ1

K(t ) > 0; to show the invertibility of the operator ψ̇(F) with respect

to the uniform norm ∥ · ∥. This is done if we remark that the operator A is a compact operator
following from the proof of Lemma 2 in Gu and Zhang [1993] and the range of K(t ) is not
closed without the above condition, then it results that the operator ψ̇(F) is not invertible with
respect to ∥ ·∥. Under the following conditions

(DC1)

K(t−) > 0 on {t : F0(t ) > 0 or F0(t−) < 1} . (4.3.14)

(DC2) For any 0 < η< 1,∫
0<F0(u)<1−η

dGZ(u)

GY(u)−GZ(u)
+

∫
η<F0(u)<1

dGY(u)

GY(u)−GZ(u)
<∞. (4.3.15)
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Gu and Zhang [1993] showed the weak convergence of the self-consistent estimator in the entire
support i.e., p

n
(
F̂n −F0

)
⇝−ψ̇−1(F0) (Z0) in (DK [τ0,τ1] ,∥ ·∥K) ,

where they are shown that the operator ψ̇(F) is indeed invertible with respect to the norm ∥ ·∥K,
without assuming that inf

τ0≤t≤τ1
K(t ) > 0. Leaving the case of self-consistent estimator to the

general case of Z-estimators, intuitively the question is: can we apply the traditional argu-
ments to get such results of Gu and Zhang [1993] on the F̂n and the bootstrapped version F∗

n

? Unfortunately, this cannot hold because the operator ψ (F,P) given in (4.3.12) is not Fréchet
differentiable with respect to the norm ∥ · ∥K, which allows to Wellner and Zhan [1996] to ob-
tain the weak convergence in some restrict interval, i.e., they showed that for some c,d satisfy
0 ≤ τ0 < c < d < τ1 that

p
n

(
F̂n −F0

)
⇝−ψ̇−1(F0) (Z0) in (D[c,d ],∥ ·∥),

and p
n

(
F̂∗

n − F̂n
)
⇝−ψ̇−1(F0)

(
c · Ẑ0

)
in (D[c,d ],∥ ·∥),

in P∗-probability, where Ẑ0
d= Z0, and c is the constant given in the definition (B.5) for the

exchangeable weights. Now our theory takes place and let us obtain the weak convergence on
the entire support as described below: for the verification of the conditions we need only to
verify the assumption (CB), because the rest of them are the same as verified by Zhan [2002].
For that we remark for some R > 0, the class of function

{|B(F)(ht ) (w,δ)| : t ∈ [0,∞[,∥F−F0∥ ≤ R}

has a constant envelope 1, as a consequence the class of functions Dn in (4.2.12) has an envelope
Dn in (4.2.13) which is bounded by 2, hence (CB) holds.
Note that the operator ψ̇(F)(·) in (4.3.13) can be regarded as a mapping from DK [τ0,τ1] into
D0 [τ0,τ1], under the condition (DC1) and (DC2) it has a bounded inverse on D0 [τ0,τ1] :

ψ̇−1(F) : D0 [τ0,τ1] 7→ DK [τ0,τ1]. Furthermore ψ̇−1(F) is continuous in F :∥∥ψ̇−1(F)( f )− ψ̇−1 (F0) ( f )
∥∥

K → 0,

for any f ∈ R(ψ̇) = D0 [τ0,τ1] and F such that ∥F−F0∥ → 0 and F−F0 ∈ D0 [τ0,τ1]. For more
detail see Lemma 2 of Gu and Zhang [1993]. The conditions (C.1)-(C.3), (C.4′), (C.5′), (C.6)
and (CB) are verified, then we have the following theorem.

Theorem 4.3.3.1 Suppose that (CD1) and (CD2) hold. Then all asymptotic Z -estimators F̂n

are asymptotically normal
p

n
(
F̂n −F0

)
⇝−ψ̇−1(F0) (Z0) in (DK [τ0,τ1] ,∥ ·∥K),

where Z0 is a Gaussian random element in D0 [τ0,τ1]. For any bootstrap weights satisfying
(B.1) through (B.5), all bootstrap asymptotic Z-estimators F̂∗

n are also asymptotically normal:
p

n
(
F̂∗

n − F̂n
)
⇝−ψ̇−1(F0)

(
c · Ẑ0

)
in (DK [τ0,τ1] ,∥ ·∥K)

in P∗ -probability, where Ẑ0
d= Z0, and c is the constant given in the definition (B.5) for the

exchangeable weights.
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Bootstrap weights

Let us present some examples of the bootstrap weights satisfying the conditions (B.1)–(B.5),
we can refer to Præstgaard and Wellner [1993] and Cheng [2015] for further details. More
precisely, the following examples are provided in this compressed form Cheng [2015], we have
included some minor changes necessary for our setting.

Example 4.3.3.2 (i.i.d.-Weighted Bootstraps) In this example, the bootstrap weights are de-
fined as Wni =ωi /ωn , where ω1,ω2, . . . ,ωn are i.i.d. positive r.v.s. with ∥ω1∥2,1 <∞, where

∥Wn1∥2,1 =
∫ ∞

0

√
PW(Wn1 ≥ u)du,

ωn =
n∑

i=1
ωi .

Thus, we can choose ωi ∼ Exponential(1) or ωi ∼ Gamma(4,1). The former corresponds to the
Bayesian bootstrap. The multiplier bootstrap is often thought to be a smooth alternative to the
nonparametric bootstrap; see Lo [1993]. The value of c2 is calculated as

Var (ω1)/(Eω1)2.

Example 4.3.3.3 (Efron’s bootstrap) As already mentioned, the weights for the Efron boot-
strap satisfy the conditions (B.1)–(B.5) with c2 = 1 and are Wn ∼Multinomial(n;n−1, . . . ,n−1).

Example 4.3.3.4 (The delete-h Jackknife) In the delete-h jackknife, see Shao and Wu [1987],
the bootstrap weights are generated by permuting the deterministic weights

wn =
{ n

n −h
, . . . ,

n

n −h
,0, . . . ,0

}
with

n∑
i=1

wni = n.

Specifically, we have Wn j = wnRn ( j ) where Rn(·) is a random permutation uniformly distributed
over {1, . . . ,n}. In Condition (B.5), c2 = h/(n −h). Thus, we need to choose h/n → α ∈ (0,1)

such that c > 0. Therefore, the usual jackknife with h = 1 is inconsistent for estimating the
distribution.

Let us recall some examples from Janssen [2005].

Example 4.3.3.5 The m(n) out of n-bootstrap weights

Wni = m(n)1/2
(

1

m(n)
Mni − 1

n

)
are given by a multinomial distributed random variable (Mn1, . . . ,Mn,n) with sample size

m(n) =
n∑

i=1
Mni

and equal success probability. In this case, the conditions (B.1)–(B.5) are valid, (details of the
proof are given in [Janssen and Pauls, 2003, (8.37)-(8.46)]).
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Example 4.3.3.6 The m(n)-double bootstrap can be described by the weights

Wni = m(n)1/2

p
2

(
1

m(n)
M′

ni −
1

n

)
Here (M′

n1, . . . ,M′
nn) denotes a conditional multinomial distributed variable with sample size

m(n) =∑n
i=1 Mni and success probability Mni /m(n) for the i -th cell given by the first example,

(details of this example are discussed in Lemma 6.2 of Janssen [2005]).

Remark 4.3.3.7 As was pointed out in Præstgaard and Wellner [1993], the preceding men-
tioned bootstraps are “smoother” in some sense than the multinomial bootstrap since they put
some (random) weight at all elements in the sample, whereas the multinomial bootstrap puts
positive weight at about 1−(1−n−1)n → 1−e−1 = 0.6322 proportion of each element of the sam-
ple, on the average. Notice that when ωi ∼ Gamma(4,1) so that the Wni /n are equivalent to
four-spacings from a sample of 4n−1 Uniform (0,1) random variables. In Weng [1989] and van
Zwet [1979], it was noticed that, in addition to being four times more expensive to implement,
the choice of four-spacings depends on the functional of interest and is not universal.

Remark 4.3.3.8 It is worth noticing that an appropriate choice of the bootstrap weights Wni ’s
implies a smaller limit variance, that is, c2 is smaller than 1. For instance, typical example is
the multivariate hypergeometric bootstrap, refer to [Præstgaard and Wellner, 1993, Example
3.4] and the Subsample Bootstrap, [Pauly, 2012, Remark 2.2-(3)]. A detailed discussion about
the choice of the weights is certainly out of the scope of the present paper, we refer for review
to Barbe and Bertail [1995] and Shao and Tu [1995].

4.4 Semiparametric framework

The context for a central limit theorem for Z-estimators includes an empirical measure Pn for
n i.i.d. observations and a score operator B(θ,η) depending on a parameter θ of interest and a
nuisance parameter η. Let us give some clarification of this context; assume that the model P

can be parametrized as (θ,η) 7→Pθ,η, where both θ and η belongs to an infinite-dimensional sets.
Denote P as the expectation under the true distribution. More generally, consider a statistical
model Pθ,η(X), with n i.i.d. observations X1, . . . ,Xn drawn from Pθ,η, where θ ∈ Θ and η ∈ ℑ.
Assume that the two spaces Θ to be a smooth surface in a Banach space (B,∥ · ∥Θ) with a norm
∥ · ∥Θ and (ℑ,∥ · ∥ℑ) possibly but not necessarily subset of Banach space with a norm ∥ · ∥ℑ,
respectively and the true unknown parameter is

(
θ0,η0

)
. An M-estimator

(
θ̂n , η̂n

)
of (θ,η) has

the form (
θ̂n , η̂n

)= argmax

{
1

n

n∑
i=1

m(θ,η,Xi )

}
, (4.4.1)

where m(·) is a known deterministic function. If we assume that m(·) is Fréchet differentiable
with respect to both parameters, so often the maximizing value in (4.4.1) is sought by setting
derivatives equal zero, which is given by:

ψ
(
θ̂n , η̂n ,Pn

)≡PnB
(
θ̂n , η̂n

)= 0,
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where B(·, ·) : H ×L 7→ F is the score operator acting on the two linear spans of the partial
derivative of m(·) with respect to θ and η respectively, i.e.,

B(θ,η)(h, l ) = ∂

∂θ
m(θ,η)h − ∂

∂η
m(θ,η)l ,

and F is some subset of L2(Pθ,η) for each (θ,η) ∈Θ×ℑ, for that we define the set

F (Θ,ℑ) = ⋃
θ∈Θ,η∈ℑ

F (θ,η).

For notational convenience, we omit Θ and ℑ in F (Θ,ℑ) and write F . We are interested in
proving a central limit theorem for Z-estimators

{
θ̂n

}
which is estimated by solving

ψ
(
θ, η̂n ,Pn

)=PnB
(
θ, η̂n

)= 0, (4.4.2)

where we substitute an estimator η̂n for the unknown nuisance parameter.

Remark 4.4.0.1 1. In some cases, the estimators satisfying (4.4.2) may not exist. We give
its weaken version which is known by "nearly maximizing" condition:

ψ
(
θ, η̂n ,Pn

)=PnB
(
θ, η̂n

)= oP(n−1/2), (4.4.3)

2. If Θ is included in Rk and

m(θ,η, x) = ℓ(θ,η, x) = loglik(θ,η)(x)

the likelihood function of (θ,η), then

B(θ,η)(a, l ) = a⊤ ∂

∂θ
ℓ(θ,η)− ∂

∂η
ℓ(θ,η)l ,

where a⊤ is the transpose of the vector a ∈Rk . One way of estimating θ is by solving the
efficient score equations

Pn

(
a⊤ ∂

∂θ
ℓ(θ,η)− ∂

∂η
ℓ(θ,η)l

)
= 0.

For more details see, for instance, van der Vaart [1998].

Let P denote the true probability. To prove the central limit theorem, traditional argument
assumes that the operator ψ(θ,η,P) is Fréchet differentiable in θ and η with respect to the norm
∥ · ∥ on the product space, we can take it as ∥ · ∥ = ∥ · ∥Θ+∥ · ∥ℑ, with derivative ψ̇θ and ψ̇η,
respectively. One expands ψ(θ,η,P) at the true (θ0,η0) and evaluates the linear approximation
at (θ,η) in some neighborhood of (θ0,η0), i.e.,

ψ
(
θ,η,P

)−ψ(
θ0,η0,P

) = ψ̇θ

(
θ0;η0

)
(θ−θ0)+ ψ̇η(θ0,η0)([η−η0])

+oP∗
(∥θ−θ0∥Θ

)+oP∗
(∥∥η−η0

∥∥ℑ
)

. (4.4.4)
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Suppose
ψ

(
θ0,η0,P

)=PB
(
θ0,η0

)= 0,

and that the theory of empirical process can be used to show

GnB
(
θ̂n , η̂n

)=GnB
(
θ0,η0

)+oP∗(1),

where Gn is the empirical process and (θ̂n , η̂n) is some sequence converging to (θ0,η0). By
(4.4.3) and some algebra, the difference

p
n

(
ψ

(
θ̂n , η̂n ,P

)−ψ(
θ0,η0,P

))=−GnB
(
θ0,η0

)+oP∗(1),

(see Lemma 4.5.3.2 for details), so that the linearization in (4.4.4) implies

ψ̇θ

(
θ0,η0

)(p
n

(
θ̂n −θ0

)) = −GnB(θ0)+p
nψ̇η(θ0,η0)([η̂n −η0])

+oP∗
(p

n
∥∥θ̂n −θ0

∥∥
Θ

)+oP∗
(p

n∥η̂n −η0∥ℑ
)+oP∗(1).(4.4.5)

The asymptotic distribution of
p

n
(
θ̂n −θ0

)
is determined by the asymptotic joint distribution

of the random variables GnB
(
θ0,η0

)
and

p
nψ̇η(θ0,η0)([η̂n −η0]). By assuming the bounded

invertibility of the operator ψ̇θ

(
θ0,η0

)
with respect to the same norm ∥ · ∥Θ used in (4.4.5), we

can improve on the consistency of θ̂n and prove that θ̂n actually converges with a n−1/2 rate,
i.e., p

n
∥∥θ̂n −θ0

∥∥
Θ = OP∗(1),

(see Lemma 4.5.3.3). With this boundedness and the
p

n−consistency of η̂n the dominant
error term oP∗

(p
n

∥∥θ̂n −θ0
∥∥
Θ

)
and oP∗

(p
n∥η̂n −η0∥ℑ

)
in (4.4.5) vanishes as n goes to infinity.

Hence, by the continuous mapping theorem,

p
n

(
θ̂n −θ0

)
⇝−ψ̇−1

θ

(
θ0,η0

)
(Z0) ,

where Z0 is the limit low of the process

−GnB(θ0)+p
nψ̇η(θ0,η0)([η̂n −η0]).

In the rest of the paper we refer to the last process as

Zn =−GnB
(
θ0,η0

)+p
nψ̇η(θ0,η0)([η̂n −η0]).

The same problem described before can occur in the setting of semi-parametric framework
when the parameter of interest is lying to some infinite dimensional space, where the main
difficulty with the classical arguments is that the boundedness invertibility of the derivative
operator ψ̇θ

(
θ0,η0

)
with respect to the norm ∥ · ∥ used in linearization (4.4.4). For example,

without the nuisance parameter, we can see it clearly in the double censoring model given
before in (4.3.3). To prove that the estimator θ̂n converge to θ0 with rate n−1/2 and thereby
validate the linearization and prove a central limit theorem by this argument, however, both
the invertibility of ψ̇θ

(
θ0,η0

)
and the differentiability of ψ(θ,η,P) with respect to θ have to be
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established with respect to the same norm ∥ · ∥Θ. At this point one may wonder if the weaker
norm ∥·∥K should be used in the place of ∥·∥Θ in linearization given that the derivative operator
is invertible with respect to it. The answer is no; in the double censoring model ψ(θ,η0,P) is
not differentiable with respect to the ∥ ·∥K norm, as we saw this before.
In an interesting class of models, there is an identity that connects

p
n

(
θ̂n −θ0

)
to the weakly

convergent quantity Zn:

ψ̇θ

(
θ̂n ,η0

)(p
n

(
θ̂n −θ0

))=−p
nψ̇η(θ̂n ,η0)(η̂n −η0)

− Ṗθ̂n ,η0

(p
n

(
θ̂n −θ0

)
,
p

n(η̂n −η0)
)

B
(
θ̂n , η̂n

)
(with ϑ= θ̂n , ν= η0, a =p

n(θ̂n−θ0) and b =p
n(η̂n−η0) in Lemma 4.5.1.1). To the best of our

knowledge there is not such an identity in the semiparametric framework. A common feature
in these problems is that the probability measures Pθ,η are convex linearly indexed by (θ,η), or
we can weaken it to only be convex linearly indexed by (θ,η). For a general class of models
in which convex linearity can be boundedly extended to the linear span of the parameter space,
this linearity identity can be established via Fréchet differentiability of the likelihood equa-
tions ψ

(
θ,η,Pθ,η

)= 0. See Section 4.5.4 for more details, also see Section 4.2.2 for functional
parameters. This identity allows a linearization applied to Pθ,η instead of ψ(θ,η,P) through
its derivative operator Ṗϑ,ν(·, ·) with respect to θ and η. For models Pθ,η with bounded con-
vex linearity, the differential Ṗθ(θ̂n ,η0)

(p
n

(
θ̂n −θ0

))
B

(
θ̂n ,η0

)
exactly equals the differencep

n
(
ψ

(
θ̂n ,η0,Pθ̂n ,η0

)
− ψ

(
θ̂n ,η0,Pθ0,η0

))
and the differential Ṗη(θ̂n ,η0)

(p
n

(
η̂n −η0

))
B

(
θ̂n ,η0

)
exactly equals the difference

p
n

(
ψ

(
θ̂n ,η0,Pθ̂n ,η̂n

)
− ψ

(
θ̂n ,η0,Pθ0,η0

))
as in Lemma 4.5.4.1.

Consequently, we have

ψ̇θ

(
θ̂n ,η0

)(p
n

(
θ̂n −θ0

))=−Zn +oP∗(1). (4.4.6)

Unlike (4.4.5) where θ̂n must converge with an n−1/2 rate with respect to ∥ · ∥Θ to validate the
linearization, there is no need to require this condition in (4.4.6) because the linearization is
perfect. The Z-estimators

{
θ̂n

}
still have to converge at the n−1/2 rate, but they may converge in

any norm as long as the derivative operator is invertible with respect to it. Theorem 4.5.4.2 is
a rigorous statement of this argument. For a model Pθ,η that is not linearly parameterized, the
linearity identity leads to

ψ̇θ

(
θ̂n ,η0

)(p
n

(
θ̂n −θ0

))=−ZnB(θ0)+oP∗
(p

n
∥∥θ̂n −θ0

∥∥
Θ

)+oP∗
(p

n
∥∥η̂n −η0

∥∥ℑ
)+oP∗(1).

The term oP∗
(p

n
∥∥θ̂n −θ0

∥∥)
comes from approximating Ṗθ

(
θ̂n ,η0

)(p
n

(
θ̂n −θ0

))
B

(
θ̂n ,η0

)
by

the difference
p

n
(
ψ

(
θ̂n ,η0,Pθ̂n ,η0

)
− ψ

(
θ̂n ,η0,Pθ0,η0

))
. In this case, the uniform boundedness

of ψ̇θ(θ,η)(·) with respect to the norm ∥·∥Θ is required to improve the rate of convergence for θ̂n

to make the linearization valid, and a central limit theorem follows. Theorem 4.5.3.1 formulates
this argument precisely.
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4.5 Central limit theorem

For product space ℓ∞(H ×L ) we define its norm as

∥ ·∥H ×L = ∥·∥H +∥·∥L .

For each fixed θ ∈Θ, η ∈ℑ and P ∈P , define the operator ψ(θ,η,P) =PB(θ,η) from H ×L to
the real line R. Suppose that B(θ,η) is bounded in the sense that

∥ψ(θ,η,P)∥H ×L = ∥PB(θ,η)∥H ×L <∞,

for all P ∈ P . Then ψ(θ,η,P) ∈ ℓ∞(H ×L ) for each fixed (θ,η) ∈ Θ×ℑ. The empirical
process GnB(θ,η) acting on B(θ,η) is also a function in ℓ∞(H ×L ) for fixed (θ,η) ∈ Θ×ℑ.
A functional Z-estimator for θ0 is a sequence of estimates

{
θ̂n

} ∈Θ which makes the "scores"
PnB(θ, η̂n)(h, l ), (h, l ) ∈H ×L , approximately zero:∥∥ψ(

θ̂n , η̂n ,Pn
)∥∥

H ×L = oP∗
(
n−1/2) ,

where P∗ denotes the outer probability of P∞.

4.5.1 A differential identity

The function ψ(θ,η,P) as a map from Θ×ℑ to ℓ∞(H ×L ), is Fréchet differentiable with
respect to (θ,η) and to the norm ∥ · ∥ at a point (ϑ,ν) ∈ Θ×ℑ if there is two bounded linear
operators ψ̇θ

(
ϑ,ν,Pϑ,ν

)
(·) and ψ̇η

(
ϑ,ν,Pϑ,ν

)
(·) the partial Fréchet differential; mapping from

(lin(Θ),∥·∥Θ) to (ℓ∞(H ×H ),∥ ·∥H ×L ) and from (lin(ℑ),∥·∥ℑ) to (ℓ∞(H ×L ),∥ ·∥H ×L ) such
that ∥∥ψ(

θ,η,Pϑ,ν
)−ψ(

ϑ,ν,Pϑ,ν
)− ψ̇θ

(
ϑ,ν,Pϑ,ν

)
(θ−ϑ)− ψ̇η

(
ϑ,ν,Pϑ,ν

)
(η−ν)

∥∥
H ×L

= o(∥θ−ϑ∥Θ)+o(∥η−ν∥ℑ).

For notational convenience, we denote the operators

ψ̇θ

(
θ,η,Pθ,η

)
by ψ̇θ(θ,η) : ψ̇θ(θ,η) ≡ ψ̇θ

(
θ,η,Pθ,η

)
,

and
ψ̇η

(
θ,η,Pθ,η

)
by ψ̇η(θ,η) : ψ̇η(θ,η) ≡ ψ̇η

(
θ,η,Pθ,η

)
.

Recall that for a fixed ϑ ∈Θ and ν ∈ℑ the operator B(ϑ,ν) is bounded in the sense that

∥PB(ϑ,ν)∥H ×L <∞ for all P ∈P .

Thus for a fixed (ϑ,ν) ∈Θ×ℑ the probability measure Pθ,η induces a mapping (θ,η) 7→Pθ,ηB(ϑ,ν)

fromΘ×ℑ to ℓ∞(H ×L ). The map Pθ,ηB(ϑ,ν), as a function of θ and η is Fréchet differentiable
with respect to the norm ∥ · ∥ at a point (ϑ,ν) ∈Θ×ℑ if there is two linear operators Ṗθ(ϑ,ν)(·)
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and Ṗη(ϑ,ν)(·) the partial Fréchet differential; such that Ṗθ(ϑ,ν)(·)B(ϑ,ν) and Ṗη(ϑ,ν)(·)B(ϑ,ν)

are bounded and∥∥Pθ,ηB(ϑ,ν)−Pϑ,νB(ϑ,ν)− Ṗθ(ϑ,ν)(θ−ϑ)B(ϑ,ν)− Ṗη(ϑ,ν)(η−ν)B(ϑ,ν)
∥∥

H ×L

= o(∥θ−ϑ∥Θ)+o(∥η−ν∥ℑ).

Lemma 4.5.1.1 Assume that ψ
(
θ,η,Pθ,η

) ≡ 0 for all (θ,η) ∈ Θ×ℑ. For any (ϑ,ν) ∈ Θ×ℑ,
suppose that ψ(θ,η,P) is Fréchet differentiable with respect to the norm ∥·∥ in a neighborhood
of (ϑ,ν), and the operators ψ̇θ(θ,η) and ψ̇η(θ,η) are continuous as functions of (θ,η) at (ϑ,ν),
i.e.;

∥ψ̇θ(θ,η)− ψ̇θ(ϑ,ν)∥ ≡ sup
∥a∥≤1

∥ψ̇θ(θ,η)(a)− ψ̇θ(ϑ,ν)(a)∥H ×L −→ 0 (4.5.1)

∥ψ̇η(θ,η)− ψ̇η(ϑ,ν)∥ ≡ sup
∥b∥≤1

∥ψ̇η(θ,η)(b)− ψ̇η(ϑ,ν)(b)∥H ×L −→ 0 (4.5.2)

as ∥θ−ϑ∥Θ → 0 and ∥η−ν∥ℑ → 0, respectively. If Pθ,ηB(ϑ,ν) is Fréchet differentiable with
respect to the norm ∥·∥ at (ϑ,ν) ∈Θ×ℑ, then the operator ψ

(
θ,η,Pθ,η

)
as a function of θ and η

is Fréchet differentiable with respect to the norm ∥·∥ at (ϑ,ν) ∈Θ×ℑ and the following identity
holds for all (a,b) ∈ lin(Θ)× lin(ℑ) :

ψ̇θ(ϑ,ν)(a)+ ψ̇η(ϑ,ν)(b)+ Ṗθ(ϑ,ν)(a)B(ϑ,ν)+ Ṗη(ϑ,ν)(b)B(ϑ,ν) = 0. (4.5.3)

4.5.2 A condition of uniform boundedness

The uniform boundedness of the operators ψ̇θ(θ0,η0) is needed to establish the rate of con-
vergence for a sequence of Z-estimators

{
θ̂n

}
. This property is also needed to asymptotically

replace ψ̇−1
θ

(
θ̂n , η̂n

)
(−Zn) by ψ̇−1

θ

(
θ0,η0

)
(−Zn) for a consistent estimator

(
θ̂n , η̂n

)
and thus al-

lows us to apply the continuous mapping theorem on ψ̇−1
θ

(
θ0,η0

)
(Zn) to obtain a central limit

theorem. As mentioned in the preceding paragraph our parameter of interest is θ ∈ Θ, as a
consequence we focus on the partial Fréchet derivative the operator ψ̇θ(θ,η) and its inverse
ψ̇−1
θ

(θ,η), rather than the partial Fréchet derivative the operator ψ̇η(θ,η), where Θ is a subset in
a Banach space (B,∥·∥Θ), the closure lin(Θ) is a Banach space with the same norm ∥·∥Θ (Lemma
II.1.3 on page 50, Dunford and Schwartz [1958] Part I). Because (ℓ∞(H ×L ),∥ ·∥H ×L ) is also
a Banach space, the bounded operators ψ̇−1

θ
(θ,η) and ψ̇θ(θ,η) can be uniquely extended to the

closures of their domains by continuity (see, e.g., Lemma I.6.16 on page 23 of Dunford and
Schwartz [1958], Part I ).

The unique continuous extensions of ψ̇−1
θ

(θ,η) and ψ̇θ(θ,η) on the closures of their domains
are also denoted by ψ̇−1

θ
(θ,η) and ψ̇θ(θ,η). The extension ψ̇−1

θ
(θ,η) on R(ψ̇θ) is also the

inverse of the extension ψ̇θ(θ,η) on lin(Θ). We use R(ψ̇θ) instead of R(ψ̇θ(θ,η)) to denote the
common subspace on which every ψ̇−1

θ
(θ,η) resides.
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Lemma 4.5.2.1 Suppose that, for every fixed (θ,η) ∈ Θ×ℑ, the operator ψ̇θ(θ,η) mapping
from

(
lin(Θ),∥ ·∥K

)
to (ℓ∞(H ×L ),∥ ·∥H ×L ) has a bounded inverse ψ̇−1

θ
(θ,η) on a fixed sub-

space R(ψ̇) ⊂ ℓ∞(H ×L ). Further assume that ψ̇−1
θ

(θ,η) converges on R(ψ̇) to ψ̇−1
θ

(θ0,η0)

with respect to a norm ∥ ·∥K : for any f ∈R(ψ̇)∥∥ψ̇−1
θ (θ,η)( f )− ψ̇−1

θ (θ0,η0)( f )
∥∥

K −→ 0 (4.5.4)

as ∥θ−θ0∥Θ → 0 and
∥∥η−η0

∥∥ℑ → 0. Assume that
∥∥θ̂n −θ0

∥∥
Θ →P∗ 0,

∥∥η̂n −η0

∥∥ℑ →P∗ 0 and
that Zn⇝Z0 in ℓ∞(H ×L ) as n →∞. Then:∥∥(

ψ̇−1
θ

(
θ̂n , η̂n

)− ψ̇−1
θ

(
θ0,η0

))
(Zn)

∥∥
K = oP∗(1).

4.5.3 A central limit theorem

We need the following assumptions for a central limit theorem.

(H.1) For all (θ,η) ∈Θ×ℑ;ψ
(
θ,η,Pθ,η

)=Pθ,ηB(θ,η) ≡ 0 in ℓ∞(H ×L ).

(H.2) As n →∞, for any decreasing δn ↓ 0, the stochastic equicontinuity condition

sup
{∥∥Gn

(
B(θ,η)−B

(
θ0,η0

))∥∥
H ×L :

(∥θ−θ0∥Θ∨
∥∥η−η0

∥∥ℑ
)≤ δn

}= oP∗(1),

holds at the point (θ0,η0).

(H.3)
p

n∥η̂n −η0∥ℑ = OP∗(1).

(H.4) The process Zn =−GnB
(
θ0,η0

)+p
nψ̇η(θ0,η0)([η̂n−η0])⇝ Z0 in ℓ∞(H ×L ), where⇝

indicates weak convergence in ℓ∞(H ×L ) to a tight Borel measurable random element
Z0.

(H.5) For a fixed (ϑ,ν) ∈ Θ×ℑ, the operator Pθ,ηB(ϑ,ν) as a function of θ and η is Fréchet
differentiable with respect to the norm ∥ · ∥Θ×ℑ = ∥ · ∥Θ +∥ · ∥ℑ at (ϑ,ν). Furthermore,
the function (θ,η) 7→ψ(θ,η,P) from Θ×ℑ to ℓ∞(H ×L ) is Fréchet differentiable with
respect to the norm ∥ ·∥ at (ϑ,ν), i.e., the following equality hold respectively:∥∥ψ(

θ,η,Pϑ,ν
)−ψ(

ϑ,ν,Pϑ,ν
)− ψ̇θ (ϑ,ν) (θ−ϑ)− ψ̇η (ϑ,ν) (η−ν)

∥∥
H ×L

= o(∥θ−ϑ∥Θ)+o(∥η−ν∥ℑ),

∥∥Pθ,ηB(ϑ,ν)−Pϑ,νB(ϑ,ν)− Ṗθ(ϑ,ν)(θ−ϑ)B(ϑ,ν)− Ṗη(ϑ,ν)(η−ν)B(ϑ,ν)
∥∥

H ×L

= o(∥θ−ϑ∥Θ)+o(∥η−ν∥ℑ).

The operators ψ̇θ(θ,η) and ψ̇η(θ,η) are continuous as a function of θ and η respectively
in the sense of (4.5.1) and (4.5.2).
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(H.6) For every fixed (θ,η) ∈Θ×ℑ the operator ψ̇θ(θ,η) from (lin(Θ),∥·∥Θ) to (ℓ∞(H ×L ),∥ ·∥H ×L )

has a bounded inverse ψ̇−1
θ

(θ,η) on a fixed subspace R(ψ̇) ⊂ ℓ∞(H ×L ). Further-
more ψ̇−1

θ
(θ,η) as an operator sequence converges to ψ̇−1

θ
(θ0,η0) as ∥θ−θ0∥Θ → 0 and∥∥η−η0

∥∥ℑ → 0 we have ∥∥ψ̇−1
θ

(θ,η)( f )− ψ̇−1
θ

(
θ0,η0

)
( f )

∥∥
Θ
−→ 0.

Theorem 4.5.3.1 Let
∥∥θ̂n −θ0

∥∥
Θ →P∗ 0 be a sequence of consistent Z-estimators. Assume

(H.1) through (H.6). Then

p
n

(
θ̂n −θ0

)
⇝−ψ̇−1

θ

(
θ0,η0

)
(Z0) in (lin(Θ),∥ ·∥Θ).

We begin to prove Theorem 4.5.3.1 with the following lemma. It asserts that the standardized
estimating equations behave asymptotically as GnB(θ0) under our assumptions.

Lemma 4.5.3.2 Let (H.1) and (H.2) hold. Then

p
nψ

(
θ̂n , η̂n ,P

)=−GnB
(
θ0,η0

)+oP∗(1).

The next lemma shows that
p

n
(
θ̂n −θ0

)
is actually OP∗(1) under the mentioned assumptions.

Lemma 4.5.3.3 Assume (H.1) through (H.6) and that θ̂n is consistent:
∥∥θ̂n −θ0

∥∥→P∗ 0. Then

p
n

∥∥θ̂n −θ0
∥∥= OP∗(1).

4.5.4 Bounded convex linearity

The parametrization (θ,η) 7→ Pθ,η is said to be convex linear if (θ,η) = (λ1θ1 +λ2θ2,λ′1η1 +
λ′2η2) ∈ lin(Θ)× lin(ℑ) implies

Pθ,η = λ1λ
′
1Pθ1,η1

+λ2λ
′
1Pθ2,η1

+λ1λ
′
2Pθ1,η2

+λ2λ
′
2Pθ2,η2

∈P ,

for any (θ1,η1), (θ2,η2) ∈ Θ×ℑ and any real numbers λ1, λ′1, λ2 and λ′2 such that λ1,λ′1 ≥
0,λ2,λ′2 ≥ 0 and λ1+λ2 = λ′1+λ′2 = 1. Convex linearity is referred to as bounded with respect to
a norm ∥ ·∥ on lin(Θ)× lin(ℑ) if

(H.7) For any (θ1,η1), . . . , (θk ,ηk ) in Θ×ℑ, and any real numbers λ1, . . . ,λk ,λ′1, . . . ,λ′k ,k ≥ 1,

there is a constant C <∞ and α> 1 such that∥∥∥∥∥ k∑
i=1

k∑
j=1

λiλ
′
jPθi ,η j

B(ϑ,ν)

∥∥∥∥∥
H ×L

≤ C

∥∥∥∥∥ k∑
i=1

λiθi

∥∥∥∥∥
Θ

+C

∥∥∥∥∥ k∑
j=1

λ′jη j

∥∥∥∥∥
α

ℑ
, (4.5.5)

holds for every fixed (ϑ,ν) ∈ Θ×ℑ where B(ϑ,ν) is the score operator mapping from
H ×L to F .
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Lemma 4.5.4.1 If the parametrization (θ,η) 7→ Pθ,η is boundedly convex linear, then the map-
ping Pθ,ηB(ϑ,ν) is Fréchet differentiable with respect to the norm ∥·∥ at all (θ1,η1) ∈Θ×ℑ and
the partial derivative operator Ṗθ(θ1,η1)(·)B(ϑ,ν) and Ṗη(θ1,η1)(·)B(ϑ,ν) are given by

Ṗθ(θ1,η1)(θ−θ1)B(ϑ,ν) =Pθ,η1
B(ϑ,ν)−Pθ1,η1

B(ϑ,ν),

Ṗη(θ1,η1)(η−η1)B(ϑ,ν) =Pθ1,ηB(ϑ,ν)−Pθ1,η1
B(ϑ,ν),

for any (θ,η), (θ1,η1) and (ϑ,ν) in Θ×ℑ.

In view of Lemma (4.5.1.1) the differential identity (4.5.3) for models with bounded convex
linearity can be improved to

ψ̇θ(θ1,η1)(θ−θ1)+ ψ̇η(θ1,η1)(η−η1) =−Pθ,η1
B(θ1,η1)−Pθ1,ηB(θ1,η1), (4.5.6)

for any (θ1,η1), (θ,η) ∈Θ×ℑ. We choose (θ1,η1) = (θn ,ηn) and (θ,η) = (θ0,η0), we get;

ψ̇θ(θn ,ηn)(θ0 −θn)+ ψ̇η(θn ,ηn)(η0 −ηn) =−Pθ0,ηn
B(θn ,ηn)−Pθn ,η0

B(θn ,ηn).

For these models, a strong enough norm ∥ · ∥Θ may be used to obtain the differentiability of
ψ

(
θ,η,Pθ,η

)
and condition (H.6) and therefore the identity (4.5.6). Then a weaker norm ∥ · ∥K

applied to the space Θ can be used to establish the invertibility of ψ̇−1
θ

(θ,η) and the pointwise
convergence in (4.5.4). The difference on the right of (4.5.6) also implies that no rate control,
such as that in Lemma 4.5.3.2 is needed. This is the reason for which we can actually obtain
asymptotic normality with the weaker norm. This usually improves the applicability of the
central limit theorem. To be more specific, the assumptions replacing (H.5) and (H.6) are the
following.

(H.5′) The function ψ(θ,η,P) as a map from Θ×ℑ to ℓ∞(H ×L ) is Fréchet differentiable
with respect to the norm ∥ · ∥Θ×ℑ = ∥ ·∥Θ+∥ ·∥ℑ. The operators ψ̇θ(θ,η) and ψ̇η(θ,η) are
continuous as a function of θ and η respectively in the sense of (4.5.1) and (4.5.2).

(H.6′) For every fixed (θ,η) the operator ψ̇θ(θ,η) from (lin(Θ),∥·∥K) to (ℓ∞(H ×L ),∥ ·∥H ×L )

has a bounded inverse ψ̇−1
θ

(θ,η) on a fixed subspace R(ψ̇) ⊂ ℓ∞(H ×L ). Further-
more ψ̇−1

θ
(θ,η) as an operator sequence converges to ψ̇−1

θ
(θ0,η0) as ∥θ−θ0∥Θ → 0 and∥∥η−η0

∥∥ℑ → 0 we have ∥∥ψ̇−1
θ

(θ,η)( f )− ψ̇−1
θ

(
θ0,η0

)
( f )

∥∥
K
−→ 0.

Theorem 4.5.4.2 For a model with bounded convex linearity specified in (H.7) assume (H.1)
through (H.4), (H.5′) and (H.6′), for a sequence of consistent Z-estimators (θ̂n , η̂n), we have θ̂n

is asymptotically normal and,

p
n

(
θ̂n −θ0

)
⇝−ψ̇−1

θ

(
θ0,η0

)
(Z0) in (lin(Θ),∥ ·∥K).
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Theorem 4.5.4.2 is mainly motivated by Vardi and Zhang [1992] on the multiplicative censoring
model and Gu and Zhang [1993] on the double censoring model. The key assumptions are
formulated in (H.5′) and (H.6′) which are not explicit in these two papers. Other assumptions
such as (H.1), (H.2) and (H.3) are mainly from the traditional arguments, see Huber [1964],
Huber [1967], Pakes and Pollard [1989], Pollard [1989], Pollard [1985], van der Vaart [1994]
and van der Vaart [1995].

4.6 Mathematical developments

This section is devoted to the proofs of our main result. The previously presented notation
continues to be used in the following.

Proof of Lemma 4.2.2.7

By (C.5), as ∥θ− θ0∥ → 0 the sequence of continuous linear operators ψ̇−1(θ) converge on
R(ψ̇) to ψ̇−1(θ0) as mapping from the Banach space R(ψ̇) to the Banach space lin(Θ). So
by the Banach-Steinhaus theorem (for example, Theorem II.3.6 on page 60 of Dunford and
Schwartz [1988]) the norm of the operators ψ̇−1(θ) is uniformly bounded:

sup
∥θ−θ0∥≤β

∥ψ̇−1(θ)∥ ≤ 1/γ<∞,

for some positive numbers β,γ> 0. Thus for any a ∈ lin(Θ), we have

∥a∥ = ∥ψ̇−1(θ)ψ̇(θ)(a)∥ ≤ ∥ψ̇(θ)(a)∥H

γ
, (4.6.1)

for all θ such that ∥θ−θ0∥ ≤ β. In identity (4.2.14), we take a = p
n

(
θ̂
∗
n −θ0

)
and ϑ = θ̂

∗
n ,

it follows by the linearity of Ṗϑ(a)B(ϑ) in a, the definition of Féchet differentiability of θ 7→
PθB(ϑ) and (C.1) that;

ψ̇
(
θ̂
∗
n

)(p
n

(
θ̂
∗
n −θ0

))
= −Ṗ

θ̂
∗
n

(p
n

(
θ̂
∗
n −θ0

))
B

(
θ̂
∗
n

)
= p

n
(
Pθ0 B

(
θ̂
∗
n

)
−P

θ̂
∗
n

B
(
θ̂
∗
n

))
+oP∗(∥pn(θ̂

∗
n −θ0)∥)

= p
n

(
Pθ0 −Pn

)(
B

(
θ̂
∗
n

)
−B(θ0)

)
+pn

(
Pn − P̂n

)(
B

(
θ̂
∗
n

)
−B(θ0)

)
−pnP̂n (B(θ0))+oP∗(∥pn(θ̂

∗
n −θ0)∥). (4.6.2)

The last one holds by the definition of θ̂
∗
n given in (4.2.8). Therefore by the triangular inequality

we have for a consistent θ̂
∗
n that;∥∥∥ψ̇(

θ̂
∗
n

)(p
n

(
θ̂
∗
n −θ0

))∥∥∥
H

−∥∥Ĝn (B(θ0))
∥∥

H ≤ ∥Gn∥Dn +∥Ĝn∥Dn +oP∗(∥pn(θ̂
∗
n −θ0)∥)

= oP∗(1)+oP∗(∥pn(θ̂
∗
n −θ0)∥).
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Then by this result and the boundedness in (4.2.8) we obtain in P∗ for n sufficiently large:

γ
p

n
(
θ̂
∗
n −θ0

)
≤

∥∥∥ψ̇(
θ̂
∗
n

)(p
n

(
θ̂
∗
n −θ0

))∥∥∥
H

≤ ∥∥Ĝn (B(θ0))
∥∥

H +oP∗(1)+oP∗(∥pn(θ̂
∗
n −θ0)∥).

Since (C.3) and Theorem 2.2 of Præstgaard and Wellner [1993] imply that
∥∥Ĝn (B(θ0))

∥∥
H =

oP̂(1) in P∗−probability, consequently the desired result follows. □

Proof of Theorem 4.2.2.5

By assumptions (C.1), (C.4) and the identity (4.2.14) we get that;

ψ̇
(
θ̂
∗
n

)(p
n

(
θ̂
∗
n −θ0

))
=p

nPθ0 B
(
θ̂
∗
n

)
+oP∗

(
∥pn(θ̂

∗
n −θ0)∥

)
(4.6.3)

and

ψ̇
(
θ̂n

)(p
n

(
θ̂n −θ0

))=p
nPθ0 B

(
θ̂n

)+oP∗
(∥pn(θ̂n −θ0)∥) . (4.6.4)

Subtracting (4.6.3) from (4.6.4), we obtain

ψ̇
(
θ̂
∗
n

)(p
n

(
θ̂
∗
n −θn

))
−

[(
ψ̇

(
θ̂n

)− ψ̇(
θ̂
∗
n

))(p
n

(
θ̂n −θ0

))]
= p

nPθ0

(
B

(
θ̂
∗
n

)
−B

(
θ̂n

))+oP̂

(
∥pn(θ̂

∗
n −θ0)∥

)
+oP∗

(∥pn(θ̂n −θ0)∥)
= −pnP̂nB(θn)+ Ĝn

(
B(θn)−B(θ̂

∗
n)

)
+Gn

(
B(θn)−B(θ̂

∗
n)

)
+oP̂

(
∥pn(θ̂

∗
n −θ0)∥

)
+oP∗

(∥pn(θ̂n −θ0)∥)
= −ĜnB(θ0)+ Ĝn

(
B(θ0)−B(θ̂

∗
n)

)
+Gn

(
B(θn)−B(θ̂

∗
n)

)
+oP̂

(
∥pn(θ̂

∗
n −θ0)∥

)
+oP∗

(∥pn(θ̂n −θ0)∥) . (4.6.5)

Note that the operator ψ̇(·) is continuous as in (4.2.6) and the sequence
p

n
(
θ̂n −θ0

)
is asymp-

totically tight, making use of (C.2), the result in Lemmas 4.2.2.6 and 4.2.2.7 and the definition
of θ̂n; then the triangular inequality with (4.6.5) leads to:

ψ̇
(
θ̂
∗
n

)(p
n

(
θ̂
∗
n −θn

))
=−Ĝn (B(θ0))+oP∗(1). (4.6.6)

By applying the Banach-Steinhaus theorem to the convergent sequence of operators ψ̇−1(θ) by
(C.5), then the consistency of θ̂

∗
n imply that the operator norm of ψ̇−1(θ̂

∗
n) is uniformly bounded

in P∗−probability when n is sufficiently large. It maps a term of oP∗(1) in the ∥ · ∥H -norm into
a term of oP∗(1) in ∥ ·∥-norm: ψ̇−1

(
θ̂
∗
n

)
(oP∗(1)) = oP∗(1). This means that

p
n

(
θ̂
∗
n −θn

)
= ψ̇−1

(
θ̂
∗
n

)(
ĜnB(θ0)+oP∗(1)

)
= ψ̇−1

(
θ̂
∗
n

)(
ĜnB(θ0)

)+oP∗(1). (4.6.7)
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Since ĜnB(θ0)⇝ c · Ẑ0 in ℓ∞(H ) in P∗−probability by (C.3) and Theorem 2.2 of Præstgaard
and Wellner [1993], then by the triangular inequality and Lemma 2.2 in Zhan [2002] (applied
with the K-norm replaced by ∥ ·∥) we obtain

ψ̇−1
(
θ̂
∗
n

)(
ĜnB(θ0)

)= ψ̇−1 (θ0)
(
ĜnB(θ0)

)+oP∗(1),

in P∗−probability. Noting that a term of order oP∗(1) is also a term of an order oP∗(1) in
P∗−probability. Hence it follows

p
n

(
θ̂
∗
n −θn

)
⇝−ψ̇−1 (θ0)

(
c · Ẑ0

)
in P∗−probability, in (lin(Θ),∥ · ∥) as n →∞ by Slutsky’s theorem and the continuous mapping
theorem. □

Proof of Theorem 4.2.2.8

By Lemma 4.2.2.3, take ϑ= θ1 = θ̂∗n , and θ2 = θ̂ in (4.2.15), (C.1) and use P to denote Pθ0 , we
obtain by the linearity of the parametrization θ 7→Pθ

ψ̇
(
θ̂
∗
n

)(p
n

(
θ̂
∗
n −θn

))
= p

nPθn−θ0 B
(
θ̂
∗
n

)
+p

nPB
(
θ̂
∗
n

)
= ψ̇

(
θ̂
∗
n

)(p
n (θ0 −θn)

)+p
nPB

(
θ̂
∗
n

)
= p

nPB
(
θ̂
∗
n

)
+

[(
ψ̇

(
θ̂
∗
n

)
− ψ̇(

θ̂n
))(p

n (θ0 −θn)
)]

+ψ̇(
θ̂n

)(p
n (θ0 −θn)

)
= p

nP
(
B

(
θ̂
∗
n

)
−B

(
θ̂n

))+[(
ψ̇

(
θ̂
∗
n

)
− ψ̇(

θ̂n
))(p

n (θ0 −θn)
)]

= −ĜnB(θ0)+ Ĝn

(
B(θ0)−B(θ̂

∗
n)

)
+Gn

(
B(θn)−B(θ̂

∗
n)

)
+

[(
ψ̇

(
θ̂
∗
n

)
− ψ̇(

θ̂n
))(p

n (θ0 −θn)
)]

.

Now the asymptotic tightness of the sequence
p

n
(
θ̂n −θ0

)
with respect to ∥ · ∥K holds from

i′, by assumption (C.4′), (C.2), Lemma 4.2.2.6 and the consistency of θ̂
∗
n , the last equality is

written as;

ψ̇
(
θ̂
∗
n

)(p
n

(
θ̂
∗
n −θn

))
=−ĜnB(θ0)+oP∗(1),

where the term oP∗(1) denotes a term whose ∥ · ∥H −norm is of order oP∗(1). Since ψ̇−1(θ)

converges to ψ̇−1 (θ0) on R(ψ̇), the Banach-Steinhaus theorem implies that the operator norm
of ψ̇−1

(
θ̂
∗
n

)
is uniformly bounded in P∗−probability when n is sufficiently large. It then maps a

term of oP∗(1) in the ∥ · ∥H −norm into a term of oP∗(1) in K−norm: ψ̇−1
(
θ̂
∗
n

)
(oP∗(1)) = oP∗(1).

This means that

p
n

(
θ̂
∗
n −θn

)
= ψ̇−1 (

θ̂n
)(−ĜnB(θ0)+oP∗(1)

)
= −ψ̇−1

(
θ̂
∗
n

)(
ĜnB(θ0)

)+oP∗(1).
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Since ĜnB(θ0)⇝ c · Ẑ0 in ℓ∞(H ) in P∗−probability by (C.3) and Theorem 2.2 of Præstgaard
and Wellner [1993], then by the triangular inequality and Lemma 2.2 in Zhan [2002], we obtain

ψ̇−1
(
θ̂
∗
n

)(
ĜnB(θ0)

)= ψ̇−1 (θ0)
(
ĜnB(θ0)

)+oP∗(1).

Hence p
n

(
θ̂
∗
n −θn

)
⇝−ψ̇−1 (θ0)

(
c · Ẑ0

)
in

(
lin(Θ),∥ ·∥K

)
in P∗−probability as n →∞ by Slutsky’s theorem and the continuous mapping theorem. □

Proof of Lemma 4.5.1

For any (ϑ,ν) ∈Θ×ℑ, we have

ψ
(
θ,η,Pθ,η

)−ψ(
ϑ,ν,Pϑ,ν

) = Pθ,ηB(θ,η)−Pϑ,νB(ϑ,ν)

= Pϑ,ν(B(θ,η)−B(ϑ,ν))+ (
Pθ,η−Pϑ,ν

)
B(ϑ,ν)

+(
Pθ,η−Pϑ,ν

)(
B(θ,η)−B(ϑ,ν)

)
. (4.6.8)

Since ψ(θ,η,P) is Fréchet differentiable at (ϑ,ν) and the map Pθ,ηB(ϑ,ν) as a function of (θ,η)

is Fréchet differentiable with respect to the norm ∥ · ∥ at (ϑ,ν) the two first term of (4.6.8) can
be written respectively as

Pϑ,ν(B(θ,η)−B(ϑ,ν)) = ψ
(
θ,η,Pϑ,ν

)−ψ(
ϑ,ν,Pϑ,ν

)
= ψ̇θ

(
ϑ,ν,Pϑ,ν

)
(θ−ϑ)+ ψ̇η

(
ϑ,ν,Pϑ,ν

)
(η−ν)

+o(∥θ−ϑ∥Θ)+o(∥η−ν∥ℑ),

and

(
Pθ,η−Pϑ,ν

)
B(ϑ,ν) = Ṗθ(ϑ,ν)(θ−ϑ)B(ϑ,ν)+ Ṗη(ϑ,ν)(η−ν)B(ϑ,ν)

+o(∥θ−ϑ∥Θ)+o(∥η−ν∥ℑ).

The operator Pθ,η acts on B(ϑ,ν) linearly, the rest term on the right hand of (4.6.8) can be
handled as

(
Pθ,η−Pϑ,ν

)(
B(θ,η)−B(ϑ,ν)

)
= Pθ,η

(
B(θ,η)−B(ϑ,ν)

)−Pϑ,ν
(
B(θ,η)−B(ϑ,ν)

)
= ψ̇θ (ϑ,ν) (θ−ϑ)+ ψ̇η (ϑ,ν) (η−ν)− ψ̇θ

(
θ,η

)
(θ−ϑ)− ψ̇η

(
θ,η

)
(η−ν)

+o(∥θ−ϑ∥Θ)+o(∥η−ν∥ℑ)

= (
ψ̇θ (ϑ,ν)− ψ̇θ

(
θ,η

))
(θ−ϑ)+ (

ψ̇η (ϑ,ν)− ψ̇η

(
θ,η

))
(η−ν)

+o(∥θ−ϑ∥Θ)+o(∥η−ν∥ℑ).
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We obtained the first term in the last equality by applying the Fréchet differentiability ofψ
(
ϑ,ν,Pθ,η

)=
Pθ,ηB(ϑ,ν) at (θ,η). Applying the triangle inequality and the conditions of continuity of ψ̇θ(θ,η)

and ψ̇η(θ,η), we get

∥(
Pθ,η−Pϑ,ν

)(
B(θ,η)−B(ϑ,ν)

)∥H ×L = o(∥θ−ϑ∥Θ)+o(∥η−ν∥ℑ).

Which implies the Fréchet differentiability of ψ
(
θ,η,Pθ,η

)
as a function of (θ,η) with respect

to the norm ∥ ·∥ at (ϑ,ν) and its Fréchet derivative is given by

ψ̇θ(ϑ,ν)(a)+ ψ̇η(ϑ,ν)(b)+ Ṗθ(ϑ,ν)(a)B(ϑ,ν)+ Ṗη(ϑ,ν)(b)B(ϑ,ν).

By the uniqueness of the Fréchet derivative and the fact that ψ
(
θ,η,Pθ,η

) ≡ 0 the identity in
(4.5.3) holds. □

Proof of Lemma 4.5.2.1

For any compact set C⊂R(ψ̇) ⊂ ℓ∞(H ×L ), let C(δ) be the δ-enlargement of C defined by

C(δ) =
{

f ∈R(ψ̇) :
∥∥ f − f ′∥∥

H ×L ≤ δ for some f ′ ∈C
}

.

We show that

sup
{∥∥(

ψ̇−1
θ

(
θ̂n , η̂n

)− ψ̇−1
θ

(
θ0,η0

))(
f
)∥∥

K : f ∈C(δ)
}−→ 0 (4.6.9)

as ∥θ−θ0∥Θ → 0 and then δ→ 0+. Indeed, by (4.5.4) and the Banach-Steinhaus theorem, the
operator norm of ψ̇−1

θ
(θ,η) is uniformly bounded:

sup
(∥θ−θ0∥Θ∨∥η−η0∥ℑ)≤β

∥∥ψ̇−1
θ (θ,η)

∥∥≤ M <∞,

for some positive numbers β > 0 and M > 0. The uniform boundedness of the operators
ψ̇−1
θ

(θ,η) is equivalent to their uniform continuity as mappings in Banach spaces, so that the
pointwise convergence in (4.5.4) directly implies the uniform convergence in the norm ∥ · ∥K.
Now since Zn ∈R(ψ̇) converges weakly to Z0 in

(
R(ψ̇),∥ ·∥H ×L

)
, by its asymptotically tight-

ness: for every ϵ> 0 there exists a compact set C⊂R(ψ̇) such that

liminf
n→∞ P∗ {Zn ∈C(δ)} ≥ 1−ϵ,

for every δ> 0; see van der Vaart and Wellner [1996] Section 1.3. Making use of the equation
(4.6.9), we have ∥∥(

ψ̇−1
θ

(
θ̂n , η̂n

)− ψ̇−1
θ

(
θ0,η0

))
(Zn)

∥∥
K = oP∗(1),

as n →∞ and then δ→ 0+. □
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Proof of Lemma 4.5.3.2

Since ψ
(
θ,η,Pθ,η

) ≡ 0 for all (θ,η) ∈ Θ×ℑ, we have by the definitions of ψ(θ,η,P) and the
Z-estimator ∥∥pnPnB

(
θ̂n , η̂n

)∥∥
H ×L = oP∗(1),

and
p

n
(
ψ

(
θ̂n , η̂n ,P

)−ψ(
θ0,η0,P

))=−Gn
(
B

(
θ̂n , η̂n

))+oP∗(1)

=−GnB
(
θ0,η0

)−Gn
(
B

(
θ̂n , η̂n

)−B
(
θ0,η0

))+oP∗(1).

By (H.2), the consistency of (θ̂n , η̂n) and the fact that;

P∗ {∥∥Gn
(
B(θ,η)−B

(
θ0,η0

))∥∥
H ×L ≥ ϵ}

≤ P∗
{

sup
(∥θ−θ0∥Θ∨∥η−η0∥ℑ)≤δn

∥∥Gn
(
B(θ,η)−B

(
θ0,η0

))∥∥
H ×L ≥ ϵ

}
+P∗ {∥∥θ̂n −θ0

∥∥
Θ > δn

}+P∗ {∥∥η̂n −η0

∥∥ℑ > δn
}

,

it follows that ∥∥Gn
(
B

(
θ̂n , η̂n

)−B
(
θ0,η0

))∥∥
H ×L = oP∗(1).

Hence: ∥∥GnB
(
θ0,η0

)+p
n

(
ψ

(
θ̂n , η̂n ,P

)−ψ(
θ0,η0,P

))∥∥
H ×L

≤ ∥∥Gn
(
B

(
θ̂n , η̂n

)−B
(
θ0,η0

))∥∥
H ×L +oP∗(1)

= oP∗(1).

By the last inequality and (H.1) the desired result follows. □

Proof of Lemma 4.5.3.3

Mapping from the Banach space R(ψ̇) to the Banach space lin(Θ), the sequence of continuous
linear operators ψ̇−1(θ,η) converges on R(ψ̇) to ψ̇−1

(
θ0,η0

)
as ∥θ−θ0∥Θ→ 0 and

∥∥η−η0

∥∥ℑ →
0 by (H.6). Hence, by the Banach-Steinhaus theorem (for example, Theorem II.3.6 on page 60
of Dunford and Schwartz [1988]), the norm of the operators ψ̇−1(θ,η) is uniformly bounded:

sup
(∥θ−θ0∥Θ∨∥η−η0∥ℑ)≤β

∥∥ψ̇−1(θ,η)
∥∥≤ 1/α<∞,

for some positive numbers
0 < α<∞ and β> 0.

Thus for any a ∈ lin(Θ), we have

∥a∥Θ = ∥∥ψ̇−1(θ,η)(ψ̇(θ,η)(a))
∥∥
Θ

≤ ∥∥ψ̇−1(θ,η)
∥∥×∥ψ̇(θ,η)(a)∥H ×L

≤ (1/α)∥ψ̇(θ,η)(a)∥H ×L .
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Hence

α∥a∥ ≤ ∥ψ̇(θ,η)(a)∥H ×L , (4.6.10)

for all θ such that ∥θ−θ0∥Θ ≤ β. Take a =p
n

(
θ̂n −θ0

)
, b =p

n
(
η̂n −η0

)
, ϑ = θ̂n and ν = η̂n

in identity (4.5.3). By the linearity of the operators Ṗϑ(a)B(ϑ,ν), ψ̇η(ϑ,ν)(b) and Ṗν(b)B(ϑ,ν)

in a and b respectively and the definition of Fréchet differentiability of Pθ,ηB(ϑ,ν) as function
of (θ,η), we have;

ψ̇θ

(
θ̂n , η̂n

)(p
n

(
θ̂n −θ0

))
= −ψ̇η

(
θ̂n , η̂n

)(p
n

(
η̂n −η0

))− Ṗθ (
θ̂n , η̂n

)(p
n

(
θ̂n −θ0

))
B

(
θ̂n , η̂n

)
−Ṗη

(
θ̂n , η̂n

)(p
n

(
η̂n −η0

))
B

(
θ̂n , η̂n

)
= −pnψ̇η

(
θ̂n , η̂n

)(
η̂n −η0

)−p
n

(
Ṗθ

(
θ̂n , η̂n

)(
θ̂n −θ0

)
B

(
θ̂n , η̂n

)
+ Ṗη

(
θ̂n , η̂n

)(
η̂n −η0

)
B

(
θ̂n , η̂n

))
= −pnψ̇η

(
θ̂n , η̂n

)(
η̂n −η0

)−p
n

(
Pθ̂n ,η̂n

B
(
θ̂n , η̂n

)+Pθ0,η0
B

(
θ̂n , η̂n

)
+ oP∗

(∥θ̂n −θ0∥Θ
)+OP∗

(∥η̂n −η0∥αℑ
))

= −pnψ̇η

(
θ̂n , η̂n

)(
η̂n −η0

)−p
nψ

(
θ̂n , η̂n ,P

)+oP∗(
p

n∥θ̂n −θ0∥Θ)

+OP∗(
p

n∥η̂n −η0∥αℑ)

= −Zn +oP∗
(p

n∥θ̂n −θ0∥Θ
)+oP∗(1).

The last equality holds by Lemmas 4.5.3.2 and (C.5). Therefore, by the boundedness (4.6.10)
we obtain

α
p

n
∥∥θ̂n −θ0

∥∥
Θ ≤ ∥∥ψ̇θ

(
θ̂n , η̂n

)(p
n

(
θ̂n −θ0

))∥∥
H ×L

≤ ∥Zn∥H ×L +oP∗(1) ·pn
∥∥θ̂n −θ0

∥∥
Θ+oP∗(1),

in P∗ -probability when n is sufficiently large. The conclusion of the lemma follows from (H.4)
which assert that the term ∥Zn∥H ×L is of an order of OP∗(1). □

Proof of Theorem 4.5.3.1

By the Fréchet differentiability of Pθ,ηB(ϑ,ν) at (ϑ,ν) we have

Pθ,ηB(ϑ,ν)−Pϑ,νB(ϑ,ν)− Ṗθ(ϑ,ν)(θ−ϑ)B(ϑ,ν)− Ṗη(ϑ,ν)(η−ν)B(ϑ,ν)

= o(∥θ−ϑ∥Θ)+o(∥η−ν∥ℑ).

Substituting θ̂n for ϑ, θ0 for θ, η̂n for ν and η0 for η and using P to denote Pθ0,η0
, we obtain

Ṗθ
(
θ̂n , η̂n

)(
θ̂n −θ0

)
B

(
θ̂n , η̂n

)
+Ṗη

(
θ̂n , η̂n

)(
η̂n −η0

)
B

(
θ̂n , η̂n

)
= Pθ̂n ,η̂n

B
(
θ̂n , η̂n

)−Pθ0,η0
B

(
θ̂n , η̂n

)
+oP∗

(∥∥θ̂n −θ0
∥∥)+oP∗(∥η0 − η̂n∥ℑ)

= ψ
(
θ̂n , η̂n ,P

)+oP∗
(∥∥θ̂n −θ0

∥∥)
+oP∗(∥η0 − η̂n∥ℑ).
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Note that by the identity (4.5.3) we have

ψ̇θ

(
θ̂n , η̂n

)(p
n

(
θ̂n −θ0

)) = −pnψ
(
θ̂n , η̂n ,P

)−p
nψ̇η

(
θ̂n , η̂n

)(
η̂n −η0

)
+oP∗

(p
n

∥∥θ̂n −θ0
∥∥
Θ

)+oP∗(
p

n∥η0 − η̂n∥ℑ)

= GnB
(
θ0,η0

)−p
nψ̇η

(
θ0,η0

)(
η̂n −η0

)+oP∗(1).

The last equality follows from the consistency of (θ̂n , η̂n), (H.1) through (H.6), Lemma 4.5.3.2
and Lemma 4.5.3.3. Note that by (H.6) the operator sequence ψ̇−1

θ
(θ,η) converges to ψ̇−1

θ

(
θ0,η0

)
on R(ψ̇) as ∥θ−θ0∥Θ and

∥∥η−η0

∥∥ℑ both converge to 0. Hence the Banach-Steinhaus theo-
rem and the consistency of (θ̂n , η̂n) imply that the operator norm of ψ̇−1

θ

(
θ̂n , η̂n

)
is uniformly

bounded in P∗-probability for n is sufficiently large. It maps a term of oP∗(1) in the ∥ · ∥H ×L -
norm into a term of oP∗(1) in ∥ ·∥Θ-norm, that is

ψ̇−1
θ

(
θ̂n , η̂n

)
(oP∗(1)) = oP∗(1).

This means that

p
n

(
θ̂n −θ0

)= ψ̇−1
θ

(
θ̂n , η̂n

)(
GnB

(
θ0,η0

)−p
nψ̇η

(
θ0,η0

)(
η̂n −η0

)+oP∗(1)
)

=−ψ̇−1
θ

(
θ̂n , η̂n

)
(Zn)+oP∗(1).

By the triangle inequality and Lemma 4.5.2.1 (applied with the K-norm ∥ · ∥K replaced by
∥ ·∥Θ) we obtain ψ̇−1

θ

(
θ̂n , η̂n

)
(Zn) = ψ̇−1

θ

(
θ0,η0

)
(Zn)+oP∗(1). Hence we have

p
n

(
θ̂n −θ0

)
⇝−ψ̇−1

θ

(
θ0,η0

)
(Z0)

in (lin(Θ),∥ ·∥) as n →∞ by the continuous mapping theorem. □

Proof of Lemma 4.5.4.1

Let (θ,η) =∑k
i=1

∑k
j=1(λiθi ,λ′jη j ) ∈ lin(Θ)×lin(ℑ) be a linear combination of the (θi ,ηi ) ’s. We

want to prove that

Lθ,ηB(ϑ,ν) =
k∑

i=1

k∑
j=1

λiλ
′
jPθi ,η j

B(ϑ,ν), (4.6.11)

is a bounded bilinear extension of Pθ,ηB(ϑ,ν) to lin(Θ)× lin(ℑ). First by (4.5.5), if a linear
combination of the elements θ1, . . . ,θk and η1, . . . ,ηk is equal to the zero element

k∑
i=1

k∑
j=1

(λiθi ,λ′jη j ) = 0,

then
k∑

i=1

k∑
j=1

λiλ
′
jPθi ,η j

B(ϑ,ν) = 0

as well. From this observation, the value of the mapping Lθ,ηB(ϑ,ν) is uniquely determined
by (θ,η) ∈ lin(Θ)× lin(ℑ). It is not hard to verify that Lθ,ηB(ϑ,ν) is a bilinear mapping from
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lin(Θ)× lin(ℑ) to ℓ∞(H ×L ). The boundedness
∥∥Lθ,ηB(ϑ,ν)

∥∥
H ×L

≤ C∥(θ,η)∥ of Lθ,ηB(ϑ,ν)

follows from (4.5.5). And it is easy to verify that Lθ,ηB(ϑ,ν) is an extension of Pθ,ηB(ϑ,ν) to
lin(Θ)× lin(ℑ) with Lθ,ηB(ϑ,ν) ≡Pθ,ηB(ϑ,ν) for all (θ,η) ∈Θ×ℑ by (4.6.11).

For any bounded bilinear mapping A : lin(Θ)× lin(ℑ) 7→ ℓ∞(H ×L ), the Fréchet derivative
of A at (ϑ,ν) is simply given by

d Aϑ,ν(a,b) = A(a,ν)+A(ϑ,b).

Now the mapping Lθ,ηB(ϑ,ν) : lin(Θ)× lin(ℑ) 7→ ℓ∞(H ×L ) is bounded and bilinear, hence it
is Fréchet differentiable at (θ1,η1) ∈ lin(Θ)× lin(ℑ), and its derivative operator is given by for
(a,b) ∈ lin(Θ)× lin(ℑ)

La,η1
B(ϑ,ν)+Lθ1,bB(ϑ,ν).

Since Lθ,ηB(ϑ,ν) =Pθ,ηB(ϑ,ν) for any (θ,η) ∈Θ×ℑ, we have

Ṗθ1,η1
(a,b)B(ϑ,ν) = Ṗθ(θ1,η1)(a)B(ϑ,ν)+ Ṗη(θ1,η1)(b)B(ϑ,ν)

= La,η1
B(ϑ,ν)+Lθ1,bB(ϑ,ν),

by the uniqueness of the Fréchet derivative. Therefore, for a = θ−θ1 with θ and θ1 belonging
to Θ and b =η−η1 with η and η1 belonging to ℑ, we have

Ṗθ(θ1,η1)(θ−θ1)B(ϑ,ν) = L(θ−θ1,η1)B(ϑ,ν)

= L(θ,η1)B(ϑ,ν)−L(θ1,η1)B(ϑ,ν)

=Pθ,η1
B(ϑ,ν)−Pθ1,η1

B(ϑ,ν),

Ṗη(θ1,η1)(η−η1)B(ϑ,ν) = L(θ1,η−η1)B(ϑ,ν)

= Lθ1,ηB(ϑ,ν)−Lθ1,η1
B(ϑ,ν)

=Pθ1,ηB(ϑ,ν)−Pθ1,η1
B(ϑ,ν),

which completes the proof of the lemma. □

Proof of Theorem 4.5.4.2

By Lemma 4.5.4.1, we take θ1 = θ̂n , η1 = η0, θ = θ0 and η = η̂n in 4.5.6 and use P to denote
Pθ0,η0

, we obtain the following three equality, by using (H.1), (H.7) and the boundedness of the
score operator

ψ̇θ(θ̂n ,η0)(θ0 − θ̂n) = −ψ̇η(θ̂n ,η0)(η̂n −η0)−Pθ0,η̂n
B(θ̂n ,η0)−Pθ̂n ,η0

B(θ̂n ,η0)

= −ψ̇η(θ̂n ,η0)(η̂n −η0)−Pθ0,η0
B(θ̂n ,η0)+OP(∥η̂n −η0∥αℑ)

= −ψ̇η(θ̂n ,η0)(η̂n −η0)+ (Pn −P)
(
B(θ̂n ,η0)−B(θ̂n , η̂n)

)
−Pn

(
B(θ̂n ,η0)−B(θ̂n , η̂n)

)−P(
B(θ̂n , η̂n)

)+oP
(
n− 1

2

)
+OP(∥η̂n −η0∥αℑ).
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Hence we have

ψ̇θ(θ̂n ,η0)
(p

n
(
θ0 − θ̂n

)) = Zn −Gn
(
B(θ̂n ,η0)−B(θ̂n , η̂n)

)
+OP

(
n1/2−α/2)+oP (1)

= Zn +oP (1) .

While the last two equalities follow from the continuity of the operator ψ̇η(·, ·) by (H.5), Lemma
4.5.3.2 and (H.2). The above term oP∗(1) denotes a term whose ∥·∥H ×L -norm is of order oP∗(1)

since ψ̇−1
θ

(θ,η) converges to ψ̇−1
θ

(
θ0,η0

)
on R(ψ̇), the Banach-Steinhaus theorem implies that

the operator norm of ψ̇−1
θ

(
θ̂n ,η0

)
is uniformly bounded in P∗-probability when n is sufficiently

large. It then maps a term of oP∗(1) in the ∥ ·∥H ×L -norm into a term of oP∗(1) in K-norm

ψ̇−1
θ

(
θ̂n ,η0

)
(oP∗(1)) = oP∗(1).

This means that

p
n

(
θ̂n −θ0

) = −ψ̇−1
θ

(
θ̂n ,η0

)
(Zn +oP∗(1))

= −ψ̇−1
θ

(
θ̂n ,η0

)
(Zn)+oP∗(1).

By Lemma 4.5.2.1
ψ̇−1
θ

(
θ̂n ,η0

)
(Zn) = ψ̇−1

θ

(
θ0,η0

)
(Zn)+oP∗(1).

Hence, by the continuous mapping theorem, we have as n →∞
p

n
(
θ̂n −θ0

)
⇝−ψ̇−1

θ

(
θ0,η0

)
(Z0) in

(
lin(Θ),∥ ·∥K

)
.

Thus the proof Theorem 4.5.4.2 is complete. □
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Chapter 5

Asymptotic Properties of Semiparametric
M-Estimators with Multiple Change
Points

Ce chapitre développe le contenu d’un article soumis, mis en forme pour être inséré dans le
présent manuscrit de thèse.

Title : Asymptotic Properties of Semiparametric M-Estimators with Multiple Change Points.

abstract

Statistical models with multiple change-points are used in many fields; however, the theoret-
ical properties of semiparametric M-estimators of such models have received relatively little
attention. The main purpose of the present work is to investigate the asymptotic properties of
semiparametric M-estimators with non-smooth criterion functions of the parameters of multi-
ple change-points model for a general class of models in which the form of the distribution can
change from segment to segment and in which, possibly, there are parameters that are com-
mon to all segments. Consistency of the semiparametric M-estimators of the change points is
established and the rate of convergence is determined. The asymptotic normality of the semi-
parametric M-estimators of the parameters of the within-segment distributions is established
under quite general conditions. These results, together with a generic paradigm for studying
semiparametric M-estimators with multiple change-points, provide a valuable extension to pre-
vious related research on (semi)parametric maximum-likelihood estimators. For illustration,
the classification with missing data in the model is investigated in detail and a short simulation
result is provided.

Key words : Semiparametric inference; multiple change-points; change-point fraction; com-
mon parameter; consistency; convergence rate; M-estimators; Empirical processes; bracketing
numbers.

Mathematics Subject Classification : 62F03, 62F10, 62F12, 62H12, 62H15.
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5.1 Introduction and motivations

Change-point detection has become a popular tool for identifying locations in a data sequence
when a stochastic system is subject to sudden external influences and is encountered in almost
every field of science. Reasons behind these changes might be different and their detection helps
to investigate them and properly react to them. The problem of detecting breaks in a sequence
of random variables has a long history. Early work on this problem can be found in Page [1954,
1955, 1957] who investigated quality of control problems and proposed a sequential scheme for
identifying changes in the mean of a sequence of independent random variables, numerous au-
thors have worked on this problem. Despite a relatively long tradition in statistics, change point
analysis is a very active field and has become increasingly popular in the last years due to its
importance in many areas where data is collected over time. More precisely, methods in change
point analysis have been developed to address data analytic questions in a lot of fields for exam-
ple bioinformatics (recombination detection, Minin et al. [2005]), prediction of transmembrane
helix locations Lio and Vannucci [2000], segmentation of microarray data Erdman and Emer-
son [2008], detection of changes in the DNA copy number Olshen et al. [2004], Fu and Curnow
[1990] and Braun et al. [2000], medicine (estimation of phase transitions in pain symptoms
Desmond et al. [2002]), climate (analysis of tropical cyclone activity Chu and Zhao [2004]
and Reeves et al. [2007] for review), security applications (monitoring for denial-of-service at-
tacks Wang et al. [2004]), and other intrusions in computer networks Tartakovsky et al. [2006],
bio-informatics Liu et al. [2018], linguistics (text segmentation Choi [2000]), audio and video
processing (audio segmentation Lu et al. [2002]), speech segmentation Shriberg et al. [2000],
network traffic data analysis Lung-Yut-Fong et al. [2012], temporal video segmentation Koprin-
ska and Carrato [2001], quality control (calibration for aircraft testing Mahmoud et al. [2007]),
or economics and finance (identifying and dating change-points in stock market volatility Ag-
garwal et al. [1999]), in modeling and forecasting of changes in financial data Lavielle and
Teyssière [2006], Spokoiny [2009], in the evolution of macroeconomic variables Bai and Per-
ron [2003], change point detection in comparative genomics for early cancer diagnosis Lai et al.
[2005] and in many cases such methodology has become standard. The change point is of prime
importance in many learning tasks such as signal segmentation Abou-Elailah et al. [2015] and
Kim et al. [2009]. Mazhar et al. [2018] investigated change point detection and clustering for
sequences of data points. Building upon recent theoretical advances characterizing the limiting
distribution-free behavior of the Wasserstein two-sample test, Cheng et al. [2019] proposed a
novel unsupervised algorithm for distribution-free change point detection. Chen [2019] pro-
posed an approach based on nearest neighbor information for change-point with interesting
application in detecting global structural changes in social networks. The statistical commu-
nity now enjoys a vast literature on change point analysis where many of the most natural and
common questions have received at least some attention. For a broader presentation of the field
of change-point analysis along with statistical applications and machine learning, we refer the
reader to the monographs by Brodsky and Darkhovsky [1993], Carlstein et al. [1994], Chen
and Gupta [2000], Wu [2005], Pons [2018], Tartakovsky et al. [2015] and Truong et al. [2020].
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There are numerous approaches to investigate the change point problem, the reader is referred
to the monograph Csörgő and Horváth [1997] for an in-depth treatment of these approaches.
The problem of detecting abrupt changes has been discussed intensively in a time series con-
text, we may refer to Jandhyala et al. [2013], Aue and Horváth [2013], Alvarez-Andrade and
Bouzebda [2014] and Horváth and Rice [2014] for a review of the literature. The problem of
detecting change-points in a sequence of random variables can be stated as follows: a sequence
of random variables has a set of characteristics, such as the mean and/or the variance, that fol-
low a piecewise constant structure. Then, the goal is to detect the number of times that these
characteristics change from a set of values to another, as well as the location of the changes.
Additionally, it is of interest to estimate the characteristics in each constant period. Compared
to single change-point detection, multiple change-points detection is a much more challenging
problem. Change point problems have been mainly focused on changes in the mean and/or the
variance of univariate sequences and in the mean and/or the covariance matrix of multivariate
sequences. The problem of semiparametric change-point problems have attracted considerable
attention in the literature. For example, Guan [2007] considered semiparametric tests for one
change-point and one epidemic alternatives models by maximum empirical likelihood method.
In the semiparametric change-point regression model, Xing and Ying [2012] have developed an
estimation procedure that relies on recent advances in semiparametric analysis based on count-
ing process argument and multiple change-points inference. In Bouzebda and Keziou [2013]
and Bouzebda [2014], a semiparametric maximum-likelihood-type test statistic is proposed and
proved to have the same limit null distribution as the classical parametric likelihood one. Un-
der some mild conditions, the limiting law of the proposed test statistic, suitably normalized
and centralized, is shown to be double exponential, under the null hypothesis of no change in
the parameter of copula models In Bouzebda and Keziou [2013], the asymptotic distribution of
the proposed statistic under specified alternatives is shown to be normal, and an approximation
to the power function is given. Zhang and Tian [2020] suggested the semiparametric test for
the multiple change-points problems, by using the maximum empirical likelihood to get the
estimations of change-points.

However, the case of general semiparametric M-estimation has been much less explored.
It is worth noticing that semiparametric M-estimation was investigated in the case where the
criterion function satisfies certain smoothness properties, which are not satisfied in some appli-
cations. To overcome this problem, Delsol and Van Keilegom [2020] investigated the semipara-
metric M-estimation in a general setting, in order to cover non-smooth M-estimators as well.
The main purpose of the present work is to consider a general framework of non-smooth semi-
parametric M-estimators in multiple change-points models. Our paper is to provide a first full
theoretical justification of the consistency of M-estimators with non-smooth criterion functions
of the parameters of a general class of multiple change-points models and gives the asymp-
totic distribution of the parameters of the within-segment distributions by using the abstract
theory of the empirical processes. This requires the effective application of large sample theory
techniques, which were developed for the empirical processes.
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Although the idea of our estimation approach follows that in He and Severini [2010], we al-
low for infinite-dimensional nuisance parameters in our estimation procedures as in Delsol and
Van Keilegom [2020]. He and Severini [2010] have established asymptotic properties of the
likelihood estimates for parametric models. Their results are not directly applicable here since
the two-step estimation of the semiparametric model depends on some nuisance parameters,
yielding to the use of different arguments in our proofs to cope with the general framework of
non-smooth semi-parametric M-estimators. These results are not only useful in their own right
but essential to the investigation of the present paper. In this sense, we extend the work of He
and Severini [2010] to the multiple change points in the semiparametric model. The addition of
the multiple change points in the model adds more extra complexity in the proofs compared to
the paper of Delsol and Van Keilegom [2020].

The layout of the paper is organized as follows. Section 5.2 introduces the proposed estima-
tion procedure, notation and definition needed to state our main results. Section 5.3 derives the
asymptotic properties of the non-smooth semi-parametric M-estimators including the consis-
tency with rate and the asymptotic distribution. The finite sample performance of the proposed
procedure is illustrated by means of Monte Carlo simulations in Section 5.4. Finally, Section 7.3
provides some conclusions. To avoid interrupting the flow of the presentation, all mathematical
developments are relegated to Section 5.5.

5.2 Notation and definitions

During the whole of the paper, we suppose that the data X1, . . . ,Xn are independent random
vectors. The set Υ×Θ denotes a parameter set (usually but not necessarily of finite dimension)
and H denotes an infinite-dimensional parameter set. Suppose that there exists a non-random
measurable real-valued function M :Υ×Θ×H −→R, such that

(α0,θ0) = argmax
(α,θ)∈Υ×Θ

M(·,α,θ,h(·,α)),

and suppose (α0,θ0) is unique and belongs to the interior of Υ×Θ. Let (α0,θ0) and h0 ∈H be
the true unknown finite- and infinite-dimensional parameters. We allow that the functions h ∈
H depend on the parameters α and the vector X, But we will always suppress this dependency
for notational convenience when no misunderstanding is possible. We also use, for example ,
the following abbreviated notation:

(α,θ,h) := (α,θ,h(·,α)), (α,θ,h0) := (α,θ,h0(·,α)), and (α0,θ0,h0) := (α0,θ0,h0(·,α0)).

We suppose the sets Θ, Υ and H are metric spaces and we denote their metrics by d1, d2 and
dH , respectively. Since the nuisance parameter is permitted to depend on α, by implication we
define dH (h,h0) uniformly over α, i.e.,

dH (h,h0) := sup
α∈Υ

d 1
H (h(·,α),h0(·,α)),
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for some metric d 1
H

(·, ·). Assume that there exists unknown change points n1, . . . ,nk ,

0 = n0 < n1 < n2 < ·· · < nk < nk+1 = n,

such that, for each j = 1, . . . ,k +1, Xn j−1+1, . . . ,Xn j are identically distributed with a distribution
that depends on j . The following notation will be used

λ j = n j

n
, for any j = 1, . . . ,k,

λ0
j =

n0
j

n
, for any j = 1, . . . ,k,

λ = (λ1,λ2, . . . ,λk ),

λ0 = (λ0
1,λ0

2, . . . ,λ0
k ),

where n0
j , j = 1, . . . ,k are the true change-points locations. Note that λ0 is taken to be a constant

vector as n goes to infinity, which is a common assumption in the literature, see for example He
and Severini [2010] and Zou et al. [2014].
Suppose that there exists a random real-valued function

Mn : Υ × ∏k+1
j=1Θ j × H −→ R depending on the data X1, . . . ,Xn , such that

Mn(α,θ1, . . . ,θk+1,λ,h0) is an approximation of M(α,θ1, . . . ,θk+1,h0). In many situations, we
have that

M(α,θ1, . . . ,θk+1,λ,h) =
k+1∑
j=1

(n j −n j−1

n

)
E[m j (Xn j ,α,θ j ,h)],

and

Mn(α,θ1, . . . ,θk+1,λ,h) = 1

n

k+1∑
j=1

n j∑
i=n j−1+1

m j (Xi ,α,θ j ,h),

where m j (·) are a measurable real-valued functions for any 1 ≤ j ≤ k +1 such that

(α0,θ0
1, . . . ,θ0

k+1,n0
1, . . . ,n0

k ) = argmax
0<n1<n2<···<n;θ j∈Θ j ,1≤ j≤k+1,α∈Υ

M(α,θ1, . . . ,θk+1,λ,h0).

Suppose that for each α there is an initial non-parametric estimator ĥ(·,α) for h0(·,α). This
nonparametric estimator depends on the model in question and can be based on, e.g., kernels,
splines or neural networks. Again, for notational simplicity, we let (α, ĥ) = (α, ĥ(·,α)). We have
to estimate the unknown parameter (α0,θ0

1, . . . ,θ0
k+1,n0

1, . . . ,n0
k ) by any

(
α̂, θ̂1, . . . , θ̂k+1, n̂1, . . . , n̂k

)
that “approximately solves” the following sample maximization problem

(α̂, θ̂1, . . . , θ̂k+1, n̂1, . . . , n̂k ) = argmax
0<n1<n2<···<n;θ j∈Θ j ,1≤ j≤k+1,α∈Υ

Mn(α,θ1, . . . ,θk+1,λ, ĥ).

In the set of conditions given in the next sections, we will formalize what we mean with “ap-
proximate solution”. Let us introduce the following notation

φ j = (α,θ j ) for any j = 1, . . . ,k,

φ0
j = (α0,θ0

j ) for any j = 1, . . . ,k,

φ = (α,θ1,θ2, . . . ,θk+1),

φ0 = (α0,θ0
1,θ0

2, . . . ,θ0
k+1).
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Define

Mn(φ j ,λ0
j ,h) = 1

n

n0
j∑

i=n0
j−1+1

m j (Xi ,α,θ j ,h),

M(φ j ,λ0
j ,h) = (λ0

j −λ0
j−1)E[m j (Xn0

j
,α,θ j ,h)].

The proof of the consistency of our estimators is based in the following approach

W = 1

n

k+1∑
j=1

n j∑
i=n j−1+1

[
m j (Xi ,α,θ j , ĥ)−m j (Xi ,α,θ j ,h0)

]
+ 1

n

k+1∑
j=1

n j∑
i=n j−1+1

[
m j (Xi ,α,θ j ,h0)−E(m j (Xi ,α,θ j ,h0))

]

− 1

n

k+1∑
j=1

n0
j∑

i=n0
j−1+1

[
m j (Xi ,α0,θ0

j ,h0)−E(m j (Xi ,α0,θ0
j ,h0))

]

+
k+1∑
j=1

(λ j −λ j−1)E[m j (Xn j ,α,θ j ,h0)]

−
k+1∑
j=1

(λ0
j −λ0

j−1)E[m j (Xn0
j
,α0,θ0

j ,h0)]

= Mn(φ,λ, ĥ)−Mn(φ,λ,h0)+Mn(φ,λ,h0)−M(φ,λ,h0)−Mn(φ0,λ0,h0)

+M(φ0,λ0,h0)+M(φ,λ,h0)−M(φ0,λ0,h0). (5.2.1)

We obviously have that

argmax
0<n1<n2<···<n;θ j∈Θ j ,1≤ j≤k+1,α∈Υ

W= argmax
0<n1<n2<···<n;θ j∈Θ j ,1≤ j≤k+1,α∈Υ

Mn(α,θ1, . . . ,θk+1,λ, ĥ).

Let us introduce

U = Mn(φ,λ, ĥ)−Mn(φ,λ,h0)

= 1

n

k+1∑
j=1

n j∑
i=n j−1+1

m j (Xi ,α,θ j , ĥ)−m j (Xi ,α,θ j ,h0). (5.2.2)

L = Mn(φ,λ,h0)−M(φ,λ,h0)−Mn(φ0,λ0,h0)+M(φ0,λ0,h0)

= 1

n

k+1∑
j=1

n j∑
i=n j−1+1

[
m j (Xi ,α,θ j ,h0)−E(m j (Xi ,α,θ j ,h0))

]

− 1

n

k+1∑
j=1

n0
j∑

i=n0
j−1+1

[
m j (Xi ,α0,θ0

j ,h0)−E(m j (Xi ,α0,θ0
j ,h0))

]
.
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Alternatively, we may write

L = 1

n

k+1∑
j=1

k+1∑
i=1

{ ∑
t∈ñ j i

[
m j (Xt ,α,θ j ,h0)−E(m j (Xt ,α,θ j ,h0))

]
− ∑

t∈ñ j i

[
mi (Xt ,α0,θ0

i ,h0)−E(mi (Xt ,α0,θ0
i ,h0))

]}
, (5.2.3)

where
ñ j i = [n j−1 +1,n j ]∩ [n0

i−1 +1,n0
i ] for i , j = 1,2, . . . ,k +1.

Note that when the families

F j = {m j (·,φ j ,h),φ j ∈Φ j ,h ∈H }

are Glivenko-Cantelli for each j = 1,2, . . . ,k +1, we have L approaches 0 as n −→ 0 and

M(φ,λ,h0)−M(φ0,λ0,h0) =
k+1∑
j=1

k+1∑
i=1

n j i

n

∫
R

[m j (x,α,θ j ,h0)−mi (x,α0,θ0
i ,h0)]dFn0

i
(x).

(5.2.4)

where n j i is the number of observations of the interested variables in the set [n j−1 + 1,n j ]∩
[n0

i−1 +1,n0
i ], for i , j = 1, . . . ,k +1, and Fn0

i
(·) is the true function of distribution for each sub-

sample Xn0
i−1+1, . . . ,Xn0

i
. All through of the paper, we use OP(1) and oP(1) notation of Mann and

Wald [1943], as exposed in Chernoff [1956], where P is the joint probability defined on product
spaces. When applied to vectors and matrices, the symbols should be interpreted entry by entry.

5.3 Main results

5.3.1 Consistency

In this section, we consider the consistency of the M-estimators that can be achieved by the
argmax theorem in van der Vaart and Wellner [1996]. Let us recall the basic idea. If the argmax
functional is continuous with respect to some metric on the space of the criterion functions, then
convergence in distribution of the criterion functions will imply the convergence in distribution
of their points of maximum, the M-estimators, to the maximum of the limit criterion function.
So in this section we will introduce the set of sufficient assumptions which guarantee the weak
consistency of the estimators α̂, θ̂1, . . . , θ̂k+1, λ̂1, . . . , λ̂k , which it will be considered as an ini-
tial step for the next subsequent sections, where we will treat the rate of convergence and the
asymptotic distribution of the estimators α̂, θ̂1, . . . , θ̂k+1. The proof of the asymptotic distribu-
tion of λ̂1, . . . , λ̂k , should require a complex methodology, and we leave this problem open for
future research.
Without loss of generality and unlike to the work of Delsol and Van Keilegom [2020], we
assume our functions and estimators are measurable so we don’t use the terminology of outer
expectation and probability, see Pakes and Pollard [1989].
In our analysis, we consider the following assumptions.
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(A1) φ̂ ∈Φ, λ̂ ∈Λ and Mn(φ̂, λ̂, ĥ) > Mn(φ0,λ0, ĥ)+oP(1).

(A2) For all ϵ> 0, there exist a δ> 0 such that d(φ,φ0) > ϵ or
∥∥λ−λ0

∥∥∞ > ϵ implies

M(φ0,λ0,h0) > M(φ,λ,h0)+δ.

(A3) It is assumed that for j = 1, . . . ,k +1,

m j+1(·,α0,θ0
j+1,h0) ̸= m j (·,α0,θ0

j ,h0)

on a set of non-zero measure.

(A4) P(ĥ ∈H ) −→ 1 as n −→∞ and dH (ĥ,h0)
P−→ 0.

(A5) For any j = 1,2, . . . ,k +1 and any integers s, t satisfying 0 ≤ s < t ≤ n,

E

[
max

θ j∈Θ j ,α∈Υ

(
t∑

i=s+1
m j (Xi ,α,θ j ,h0)−E[m j (Xi ,α,θ j ,h0)]

)2]
≤ A(t − s)r ,

where r < 2 and A is a constant.

(A6) There exist function G(·) and such that for any h in the neighborhood of h0, any j =
1,2, . . . ,k +1 and any θ j ∈Θ j , α ∈Υ we have:

|m j (Xi ,α,θ j ,h)−m j (Xi ,α,θ j ,h0)| ≤G(Xi )dH (h,h0).

The function G(·) satisfies for any i = 1,2, . . . ,k +1,∫
G2(x)dFn0

i
(x) <∞.

We state now our fist result.

Theorem 5.3.1.1 (Consistency) Under assumptions (A1)-(A6), we have

λ̂i
P−→ λ0

i , θ̂ j
P−→ θ0

j and α̂ P−→α0,

where λ̂i = n̂i
n for i = 1, . . . ,k and j = 1, . . . ,k +1.

Note that if we are in the situation of the estimator of maximum likelihood in parametric models,
i.e.

m j (x,α,θ j ,h0) = log f j (x,α,θ j ,h0),

where f j (·,α,θ j ,h0) is the density function with known true function h0, Theorem 5.3.1.1 re-
duces to the Theorem 2.1 of He and Severini [2010].

Remark 5.3.1.2 Let us discuss in this remark the imposed conditions to highlight their gener-
ality.
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(i) Assumption (A1) is trivially fulfilled if

Mn(φ̂, λ̂, ĥ) ≥ sup
φ∈Φ,λ∈Λ

Mn(φ,λ, ĥ)+oP(1).

(ii) Assumption (A3) guarantees that the distributions in two neighboring segments are dif-
ferent; clearly, this is required for the change points to be well defined.

(iii) Assumption (A5) is technical requirements on the behavior of the function m j (·) between
and within segments, respectively. This condition is used to ensure that the information
regarding the within- and between-segment parameters grows quickly enough to establish
the consistency and the rate of convergence of the parameters estimators. Note that where

m j (·,φ j ,h0) = log f j (·,φ j ,h0)

these conditions are relatively weak; it is easy to check that they are satisfied by at least
all distributions in the exponential family, for detail see He and Severini [2010], Lavielle
[1999] and Lavielle and Ludeña [2000].

(iv) Assumption (A6) is automatically fulfilled when : for any j = 1,2, . . . ,k +1 the function
m j (·) is continuously differentiable in h = h(·), we note its derivative by

G j (x,α,h) = ∂m j (x,α,θ j ,h)

∂h
|h=h(x,α),

G j (x,α) = G j (x,α,h0),

and assume that the function G j (·) exists a.e. Also assume that there is envelopes G j (·)
with the property that

|G j (x,α,h)| ≤G j (x),

and ∫
G2

j (x)dFn0
i
(x) ≤K for some K <∞ for any j , i = 1, . . . ,k +1.

So we have for any h in the neighborhood of h0:

m j (Xi ,α,θ j , ĥ)−m j (Xi ,α,θ j ,h0) = G j (Xi ,α,h(Xi ,α))(ĥ(Xi ,α)−h0(Xi ,α)),

where h(x,α) ∈ [ĥ(x,α),h0(x,α)]. Under this conditions we obtain that:

|m j (Xi ,α,θ j , ĥ)−m j (Xi ,α,θ j ,h0)| ≤G j (Xi )dH (ĥ,h0).

We can choose for example
G(·) = max

1≤ j≤k+1
G j (·).
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5.3.2 Rate of convergence

In the present section, we will consider the rate of convergence of the considered estimators.
Generally speaking, the basic tool in establishing the rate of convergence for an M-estimator is
control of the modulus of continuity of the empirical criterion function using entropy integrals
over the parameter sets, one can refer at this point to the books of van der Vaart and Wellner
[1996], van de Geer [2000] and Kosorok [2008]. To establish the convergence rate, we need
to assume their consistency, such a result can be held by using the Theorem 5.3.1.1. Theorem
5.3.2.1 provides the rate of convergence for the estimators of change points. Theorem 5.3.2.3
gives the rate of convergence of the parameters of the within-segment distributions. The fact
that the rate of convergence of λ̂ to λ0 is faster than the rate convergence given in Theorem
5.3.2.3, will be instrumental for the results in the following section.
We introduce the following assumptions.

(B1) For any j = 1, . . . ,k +1, any α, θ j ; for i = 1, . . . ,k +1,∫
R

m j (x,α,θ j ,h0)dFn0
i
(x) ≤

∫
R

mi (x,α0,θ0
i ,h0)dFn0

i
(x).

We can check under condition (B1), there exist C1 > 0 for any φ ∈Φ such that

M(φ,λ,h0)−M(φ0,λ0,h0) ≤−C1
∥∥λ−λ0

∥∥∞ , (5.3.1)

where
∥λ−λ0∥∞ = max

1≤ j≤k
|λ j −λ0

j |.

Theorem 5.3.2.1 Under assumptions (A3)-(A6) and (B1), we have

lim
η−→∞ lim

n−→∞P
(
n

∥∥λ̂−λ0
∥∥∞ ≥ η)= 0,

where
λ̂= (λ̂1, . . . , λ̂k ),

∥∥λ̂−λ0
∥∥∞ = max

1≤ j≤k

∣∣∣λ̂ j −λ0
j

∣∣∣ .

That is, for i = 1,2, . . . ,k,
λ̂i −λ0

i = OP

(
n−1) .

Once more, we stress the fact Theorem 5.3.2.1 extends and complements Theorem 2.2 of He
and Severini [2010], by including the estimator of maximum likelihood, in parametric models,
as a particular case.

Remark 5.3.2.2 Assumption (B1) is to ensure that the expectation of the function associates
with the true parameters is the maximum in the true sample, when we consider the particular
case m j (·,φ j ,h) = log f j (·,φ j ,h), this assumption comes directly from the distance of Kullback-
Leibler, for further details, we refer to He and Severini [2010], or when the function m(·, ·, ·)
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is independent of the index j , i.e., the same function of all segments for example when the
variables are assumed to be from normal distribution and there is a change in variances and
having the same mean, or conversely, so we have all parameters are in the same set, i.e., θ j ∈Θ
for any j = 1,2, . . . ,k + 1. Another example is that the variables are assumed to follow the
Weibull’s distribution. In the M-estimation theory, this condition is required to ensure that the
true parameters are the points that maximize the criterion function. For more details, see also
van der Vaart and Wellner [1996].

In the following theorem, we give the rate of convergence of the parameters of the within-
segment, we give the general conditions extending those in Delsol and Van Keilegom [2020] to
cope with the general setting of multiple change point problems.

(B2) d(φ̂,φ0)
P−→ 0 and vndH (ĥ,h0) = OP(1) for some vn −→∞.

(B3) For all δ1 > 0, there exist α < 2, K > 0, δ0 > 0 and n0 ∈ N such that for all n ≥ n0 there
exists a function ψn for which δ 7→ ψn (δ)

δα is decreasing on (0,δ0] and for all δ≤ δ0,

E

 sup
d(φ,φ0)≤δ,dH (h,h0)≤ δ1p

n

|Mn(φ,λ0,h)−Mn(φ0,λ0,h)−M(φ,λ0,h)+M(φ0,λ0,h)|

≤ K
ψn(δ)p

n
.

(B4) There exists a constant C > 0, a sequence rn −→ ∞, and variables Wn = OP(r−1
n ) and

βn = oP(1), such that for all φ ∈Φ satisfying d(φ,φ0) ≤ δ0:

M(φ,λ0, ĥ)−M(φ0,λ0, ĥ) ≤ Wnd(φ,φ0)−Cd(φ,φ0)2 +βnd(φ,φ0)2.

(B5) We have

Mn(φ̂, λ̂, ĥ) ≥ Mn(φ0,λ0, ĥ)+OP(r−2
n ),

r 2
nψn(r−1

n ) ≤p
n and r 2

n = o(n).

Under these conditions and after giving the rate of convergence of the estimators of change
points fractions, we will prove the r−1

n -consistent of the estimator φ̂ like in the i.i.d. case. Hence,
the sequence rn plays an important role in the above assumptions and should be chosen in the
sharpest possible way. Before giving the theorem and its proof, we discuss these assumptions
in more detail and clarify that they have the ability to hold even when there is a change in the
distribution.

In the following theorem we provide the rate of convergence of φ̂ to φ0.

Theorem 5.3.2.3 Under conditions (B1)-(B5), we have, as n →∞,

rnd(φ̂,φ0) = OP(1).
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Remark 5.3.2.4 (i) Assumption (B2) is a “high-level” assumption. Many asymptotic results
make it possible to get those conditions on both, the M-estimator φ̂ and the nuisance
estimator ĥ.In general, the nuisance estimator ’s convergence rate is slower than the best
convergence rate of the M-estimator. We are interested in researching instances where
the convergence rate of the M-estimator is not influenced by the fact that the nuisance
parameter needs to be calculated.

(ii) Assumption (B3) is a “high-level” assumption, and it fulfilled if we impose this condi-
tion in each of the true sub-sample Xn0

j−1+1, . . . ,Xn0
j

for each j = 1, . . . ,k + 1. For this
end, we assume for each j that for any z the function (α,θ j ,h) 7→ m j (z,α,θ j ,h(z,α))−
m j (z,α0,θ0

j ,h(z,α0)) is bounded on open neighborhood of (φ0
j ,h0), i.e., on

{(φ j ,h) : d(φ j ,φ0
j ) ≤ δ0,dH (h,h0) ≤ δ′

1}

for some δ0,δ
′
1 > 0. Let us consider for each j the class

F
j

δ,δ
′
1

= {m j (·,α,θ j ,h(·,α))−m j (·,α0,θ0
j ,h(·,α0)),d(φ j ,φ0

j ) ≤ δ,dH (h,h0) ≤ δ′
1}

for any δ≤ δ0 and denote its envelope by M
j

δ,δ
′
1

. For any δ1, we have δ1
vn

≤ δ′
1 for n large

enough. Let us recall the definition of the bracketing numbers. For any borel measurable
function f : S 7→ R, we define the bracket � f −, f +�, between two Borel functions f −

and f +, to be the set of Borel functions f fulfilling f − ≺ f ≺ f +, the symbol ≺ standing
for the everywhere pointwise comparison between real functions on S . Denoting by
N[ ](ϵ,F ,∥·∥Q,2) the minimal number of brackets with ∥·∥Q,2 diameter less than ϵ needed
to cover F , refer to Definition 2.1.6 of van der Vaart and Wellner [1996].) Then under
entropy conditions on F

j

δ,δ
′
1

; we get,

sup
δ≤δ0

∫ 1

0

√
1+ logN[ ]

(
ϵ
∥∥∥M j

δ,δ′1

∥∥∥L2 (P∗) ,F j
δ,δ′1

,L2(P)
)
dϵ<+∞, (5.3.2)

there exist K1 > 0 independent of δ such a way that for all δ≤ δ0, we have

E

 sup
d(φ,φ0)≤δ,dH (h,h0)≤δ′1

|Mn(φ j ,λ0
j ,h)−Mn(φ0

j ,λ0
j ,h)−M(φ j ,λ0

j ,h)+M(φ0
j ,λ0

j ,h)|


≤ K1

√
E[M j

δ,δ
′
1

]2

p
n

,

see Theorems 2.14.1 and 2.14.2 in van der Vaart and Wellner [1996]. Then the last part
of (B3) holds if ψn(δ) can be chosen such that

∃K0,∀δ≤ δ0 :
√
E[M j

δ,δ
′
1

]2 ≤ K0ψn(δ). (5.3.3)
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For more details of this assumption, entropy condition and the case of the function ψn(·)
whose give us the different expression of the rate rn , we refer the reader to Delsol and
Van Keilegom [2020], all the different rate of convergence rn in the literature for smooth
or not smooth function satisfied the last term in assumption (B3). Note that the function
ψn(·) can not be the same as all true sub-sample for this in the last expression 5.3.3 we
will have k functions ψ j

n(·) for this case we can take

ψn(·) =
k∑

j=1
ψ

j
n(·), or ψn(·) = max

1≤ j≤k
ψ

j
n(·),

the same think with the rate rn maybe there are a k rates of convergence r j
n , for showing

this theorem and the weak convergence in the next section we need to ensure that: all this
different rates are equivalent sequences, or more generally

max
1≤ j≤k

r j
n

r i
n

−→ ai ,

where ai ∈]0,1] for any i = 1, . . . ,k. So in this case we can take rn = max
1≤ j≤k

r j
n , or one of

these rates.

(iii) With the same argument in the previous remark assumption (B4) is implied when the
following conditions hold for every true sub-sample:

(a) Υ×Θ j ⊂Rd+d j for some integers d ,d j for j = 1, . . . ,k +1 and

d(φ j ,φ0
j ) = ∥φ j −φ0

j∥∞,

this usual norm is chosen for technical calculation for giving the result to our sam-
ple, note that the usual norms on Rm are equivalent, consequently, our choice is not
restrictive.

(b) There exists δ2 > 0 such that for any h satisfying dH (h,h0) ≤ δ2, for any j =
1, . . . ,k + 1 the function φ j 7→ E(m j (X,φ j ,h)) is twice continuously differentiable
on an open neighborhood of φ0, we have:

lim
∥φ−φ0∥−→0

sup
dH (h,h0)≤δ2

∥φ−φ0∥−2
∣∣∣M(φ,λ0

j ,h)−M(φ0,λ0
j ,h)−Γ j (φ0,h)(φ−φ0)

−1

2
(φ−φ0)⊤Ω j (φ0,h)(φ−φ0)

∣∣∣∣= 0.

(c) ∥Γ j (φ0, ĥ)∥ = OP(r−1
n ) and Γ j (φ0,h0) = 0.

(d) Ω j (φ0,h0) is negative define, and h 7→ Γ j (φ0,h) is continuous in h0. These condi-
tions imply :

E(m j (X,φ j , ĥ))−E(m j (X,φ0
j , ĥ)) = 〈Γ j (θ0, ĥ),γφ j 〉+

1

2

(
γφ j

)T
Ω j (θ0,h0)

(
γφ j

)
+

∥∥∥γφ j

∥∥∥2
oP∗(1)+o

(∥∥∥γφ j

∥∥∥2
)

≤ Wnd(φ j ,φ0
j )−Cd(φ j ,φ0

j )2 +βnd(φ j ,φ0
j )2,
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where γφ j =φ j −φ0
j , then we can get

d(φ,φ0) ≤
k+1∑
j=1

d(φ j ,φ0
j ) ≤ kd(φ,φ0),

it holds also when we replace this norm by d(·, ·)2.

(iv) Condition (B5) holds automatically under the following classical assumption:

Mn(φ̂, λ̂, ĥ) ≥ sup
λ∈Λ,φ∈Φ

Mn(φ,λ, ĥ)+OP(r−2
n ).

Under the condition r 2
n = o(n), we obtain the rate

p
n and this is needed for the

result of Lemma 5.5.0.5, where we give the weak convergence of the parameters of
the within-segment distributions. Note that when all the points of change are known
or when there isn’t a change in the distribution we can drop this condition and we
add the possibility that rn reaches

p
n. Kim et al. [1990] seminal paper, dealing with

the estimation in parametric models, is to be mentioned here. In a neighborhood of
a fixed parameter point, an rn = n1/3 rescaling of the parameter is compensated
for by an n2/3 rescaling of the empirical measure, resulting in a limiting Gaussian
process. The authors arguments rely on a simple new sufficient condition for a
Gaussian process to achieve its maximum almost surely at a unique point. More
precisely, the authors have deduced limit theorems for several statistics defined by
maximization or constrained minimization of a process derived from the empirical
measure by introducing a modified continuous mapping theorem for the location of
the maximizing value. In particular the authors have established a new functional
central limit theorem for empirical processes indexed by classes of functions. An
extension to the setting rn = nα for some α > 0 may be found in van der Vaart and
Wellner [1996] and Kosorok [2008], where the interested reader may found more
details on the subject.

5.3.3 Asymptotic distribution

In the preceding results, we have obtained

λ̂−λ0 = OP

(
1

n

)
,

and

rnd(φ̂,φ0) = OP(1).

Our aim now is to study the asymptotic distribution of rn(φ̂−φ0). In this section we will assume
that the parameter spaceΦ is equipped with the Euclidean norm ∥·∥. Let us start by giving some
notation, for any φ ∈Φ and h ∈H , let
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Bn(φ,λ,h) = Mn(φ,λ,h)−Mn(φ0,λ,h),

B(φ,λ,h) = M(φ,λ,h)−M(φ0,λ,h),

Mδ(·) ≥ sup
∥φ−φ0∥≤δ

∣∣∣∣∣k+1∑
j=1

[m j (·,φ j ,h0)−m j (·,φ0
j ,h0)]

∣∣∣∣∣ ,

M j ,δ(·) ≥ sup
∥φ j−φ0

j ∥≤δ

∣∣∣m j (·,φ j ,h0)−m j (·,φ0
j ,h0)

∣∣∣ ,

for any δ> 0. Also, let

M j ,δ = {m j (·,φ j ,h0)−m j (·,φ0
j ,h0),∥φ j −φ0

j∥ ≤ δ},

and

Mδ =
{

k+1∑
j=1

m j (·,φ j ,h0)−m j (·,φ0
j ,h0),∥φ−φ0∥ ≤ δ

}
.

Finally, for any p ∈N, for any f :Φ−→R and for any γ= (γ1, . . . ,γp ) ∈Φp , denote

f γ = ( f (γ1), . . . , f (γp ))⊤.

We give the assumptions to investigate the weak convergence without change in the distribution
followed by their adaptation for each true sub-sample.

(C1) rn∥φ̂−φ0∥ = OP(1) and vndH (ĥ,h0) = OP(1) for some sequences rn −→∞ and vn −→
∞.

(C2) φ0 belongs to the interior of Φ and Φ⊂ (E,∥·∥), where E is a finite dimensional Euclidean
(i.e., E =Rm for some m).

(C3) For all δ2,δ3 > 0,

sup
∥φ−φ0∥≤ δ2

rn
,dH (ĥ,h0)≤ δ3

vn

|Bn(φ,λ0,h)−B(φ,λ0,h)−Bn(φ,λ0,h0)+B(φ,λ0,h0)| = oP(r−2
n ).

(C4) For all K,η> 0 and for any j = 1, . . . ,k +1

r 4
n

n E

[
M2

j , K
rn

]
= O(1) and

r 4
n

n E

[
M2

j , K
rn

1I{r 2
n M

j , K
rn

>ηn}

]
= o(1).

(C5) For all K > 0, for any j = 1, . . . ,k +1 and for any ηn −→ 0,

sup
∥γ1−γ2∥<ηn ,∥γ1∥∨∥γ2∥≤K

r 4
n

n
E

[
m j

(
X,φ0

j +
γ1

rn
,h0

)
−m j

(
X,φ0

j +
γ2

rn
,h0

)]2

= o(1).

(C6) For z ∈ F, fol all j = 1, . . . ,k +1, the function φ j 7→ m j (z,φ j ,h0) and almost all paths of
the process φ j 7→ m j (z,φ j , ĥ) are uniformly (over φ j ) bounded on compact sets.
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(C7) There exists βn = oP(1), a random and linear function Wn : E −→ R, and a deterministic
and bilinear function V : E×E−→R such that for all φ ∈Φ.

B(φ,λ0, ĥ) = Wn(γφ)+V(γφ,γφ)+βn∥γφ∥2 +o(∥γφ∥2),

and
B(φ,λ0,h0) = V(γφ,γφ)+o(∥γφ∥2),

where γφ =φ−φ0. Moreover, for any compact set K ⊂ E,

∃τ,δ1 > 0,rn sup
γ∈K ,δ≤δ1

∥γ∥≤δ

|Wn (γ)
δτ | = OP(1) and sup

γ,γ′∈K ,δ≤δ1

∥γ−γ′∥≤δ

|V(γ,γ)−V(γ
′
,γ

′
)|

δτ <∞.

(C8) For all K > 0, there exists n0 ∈N such that for all n ≥ n0,

Mn(φ̂, λ̂, ĥ) ≥ sup
∥φ−φ0∥≤ K

rn

Mn(φ, λ̂, ĥ)+oP(r−2
n ).

(C9) There exists a deterministic continuous function Γ and a zero-mean Gaussian process G
defined on E such that for all p ∈N and for all γ= (γ1, . . . ,γp ) ∈ Ep ,

rnWnγ+ r 2
nBn

(
φ0 + ·

rn
,λ0,h0

)
γ

⇒ Γγ+Gγ,

where “⇒” denotes the weak convergence. Moreover, G(γ) = G(γ
′
) a.s. implies that

γ=γ′
, and

P

(
limsup
∥γ∥−→∞

(Γ(γ)+G(γ)) < sup
γ∈E

(Γ(γ)+G(γ))

)
= 1.

(C10) There exists a δ0 > 0 such that

∞∫
0

sup
δ≤δ0

√
log

(
N[ ](ϵ∥Mδ∥P,2,Mδ,L2(P))

)
dϵ<∞.

We will show that rn(φ̂−φ0) converges to the unique maximizer of the process γ 7→ Γ(γ)+G(γ),
where Γ(·) and G(·) are defined in (C9). At first we discuss the above assumptions in more detail.

Remark 5.3.3.1

(i) From Theorem 5.3.2.3 we can obtain the first part of assumption (C1).

(ii) Assumption (C3) is automatically fulfilled if we have for each true sub-sample : for all
δ2,δ3 > 0

sup
∥φ j−φ0

j ∥≤
δ2
rn

,dH (h,h0)≤ δ3
vn

|Bn(φ j ,λ0
j ,h)−B(φ j ,λ0

j ,h)−Bn(φ j ,λ0
j ,h0)+B(φ,λ0

j ,h0)| = oP(r−2
n ),
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where

Bn(φ j ,λ0
j ,h) = Mn(φ j ,λ0

j ,h)−Mn(φ0
j ,λ0

j ,h),

and

B(φ j ,λ0
j ,h) = M(φ j ,λ0

j ,h)−M(φ0
j ,λ0

j ,h).

This condition is satisfied if: there exists a function f j and a constant δ0 > 0 such that for
all δ2,δ3 < δ0,

r 2
n f j

(
δ2

rn
,
δ3

vn

)
= o(

p
n),

and

E

 sup
∥φ j−φ0

j ∥≤
δ2
rn

,dH (ĥ,h0)≤ δ3
vn

∣∣∣Bn(φ j ,λ0
j ,h)−B(φ j ,λ0

j ,h)−Bn(φ j ,λ0
j ,h0)+B(φ,λ0

j ,h0)
∣∣∣


≤ 1p
n

f j

(
δ2

rn
,
δ3

vn

)
.

This last bound may be obtained using the same arguments as in Remark 3.6(ii).

(iii) We assume that assumption (B3) holds with ψn ≡ψ not depending on n and continuous.

Let us mention that in the particular case when ψn(·) =
k∑

j=1
ψ

j
n(·), where ψ j

n(·) is calcu-

lated for each true sub-sample Xn0
j−1+1, . . . ,Xn0

j
for each j = 1, . . . ,k +1, which is formed

by i.i.d. random vectors, leads to the functions ψ j
n(·) ≡ψ j (·) independent of n for each

j = 1, . . . ,k +1, one can refer to van der Vaart and Wellner [1996] and Kosorok [2008])
for more discussion. If we consider the situation when rn −→∞ such that r 2

nψ(r−1
n ) =p

n,
then assumption (C4) and (C5) are implied by the following ones: there exists a δ4 > 0

such that for all δ≤ δ4, for all j = 1, . . . ,k +1, E(M2
j ,δ) ≤ Kψ2(δ) for some K > 0,

lim
δ−→0

E
[

M2
j ,δ1I{M j ,δ>ηδ−2ψ2(δ)}

]
ψ2(δ)

= 0

for all η> 0, and

lim
ϵ−→0

lim
δ−→0

sup
∥γ1−γ2∥<ϵ,∥γ1∥∨γ2≤K

E
[

m j

(
X,φ0

j +γ1δ,h0

)
−m j

(
X,φ0

j +γ2δ,h0

)]2

ψ2(δ)
= 0

for all K > 0, using the same arguments as in the proof of Theorem 3.2.10 in van der Vaart
and Wellner [1996]. These assumptions are used for the investigation of the variance of
each process

γ 7→ r 2
n

(
Bn

(
φ0

j +
γ

rn
,λ0

j ,h0

)
−B

(
φ0

j +
γ

rn
,λ0

j ,h0

))
and in the proof of their weak convergence.
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(iv) Assumption (C6) ensures that for any compact K ⊂ E each process γ 7→ r 2
nBn

(
φ0

j +
γ
rn

,λ0
j , ĥ

)
and
γ 7→ r 2

nBn

(
φ0

j +
γ
rn

,λ0
j ,h0

)
+rnWn(γ), j = 1, . . . ,k+1 take value in ℓ∞(K ), for the second

process we used also assumption (C7), which gives us that

γ 7→ r 2
nBn

(
φ0 + γ

rn
,λ0, ĥ

)
and

γ 7→ r 2
nBn

(
φ0 + γ

rn
,λ0,h0

)
+ rnWn(γ)

are in ℓ∞(K ) like sum of process taking their values in this set.

(v) We assume the assumptions (a)-(d) from Remark 3.6(iii) hold for each j = 1, . . . ,k + 1.
Following the same ideas as in this remark, it’s easy to show (C7) is fulfilled if we have
for each j = 1, . . . ,k +1

B(φ,λ0
j , ĥ) = W j ,n(γφ)+V j (γφ,γφ)+βn∥γφ∥2 +o(∥γφ∥2)

and
B(φ,λ0

j ,h0) = V j (γφ,γφ)+o(∥γφ∥2),

with E =Rm ,

Wn(γ) =
k+1∑
j=1

W j ,n(γ) =
k+1∑
j=1

〈Ω j (φ0, ĥ),γ〉

and

V(γ,γ) =
k+1∑
j=1

V j (γ,γ) = 1

2
γ⊤Γ(φ0,h0)γ;

where Γ(·, ·) =
k+1∑
j=1

Γ j (·, ·) whenever

sup
u∈Rm ,∥u∥=1

∥Γ(φ0,h0)u∥ <∞.

We assume also the two last expressions in (C7) hold when we replace Wn(·) and V(·, ·)
by W j ,n(·) and V j (·, ·) respectively.

(vi) Assumption (C8) allows to consider estimators φ̂ that are approximations of the value
that actually maximizes the map φ 7→ Mn(φ, λ̂, ĥ).

(vii) If we assume that assumption (C9) is fulfilled for every process

γ 7→ r 2
nBn

(
φ0

j +
γ

rn
,λ0

j ,h0

)
+ rnW j ,n(γ), j = 1, . . . ,k +1;

so this condition is used for showing their weak convergence (in the ℓ∞(K )) to the pro-
cesses γ 7→ Γ j (γ)+G j (γ), j = 1, . . . ,k +1 from the fact that they are asymptotically tight.
If

rn sup
γ∈K ,γ ̸=0

∥W j ,n(γ)∥γ∥−1∥ = oP(1), j = 1, . . . ,k +1,
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we are in the same situation as in the parametric case and we obtain the convergence
of the marginals of each process of the true sub-sample and with this we can obtain the
convergence of the marginals of the sum of these processes like in the assumption (C9)
because the variables are independent. The last part of this assumption on the process
γ 7→ Γ(γ)+G(γ) is used to show that almost all sample paths have a supremum which is
only related to their behavior on compact sets. The dominant term of the deterministic
part Γ is usually a negative definite quadratic form and hence exponential inequalities
could lead to such a result, see Remark 3(vi) of Delsol and Van Keilegom [2020].

(viii) We used assumption (C10) to show the asymptotically tightness of the process

γ 7→ r 2
nBn

(
φ0 + γ

rn
,λ0,h0

)
,

it’s automatically fulfilled if we assume for each j = 1, . . . ,k +1

∞∫
0

sup
δ≤δ0

√
log

(
N[ ](ϵ∥M j ,δ∥P,2,M j ,δ,L2(P))

)
dϵ<∞,

these are used to show that the processes

γ 7→ r 2
nBn

(
φ0

j +
γ

rn
,λ0

j ,h0

)
, for j = 1, . . . ,k +1

are asymptotically tight which, in turn, implies the result for the sum of these processes.
For weaker conditions of these assumptions based on converging numbers we refer the
reader to Theorems 2.11.22, 2.11.23 and 3.2.10 of van der Vaart and Wellner [1996],
those are the same as in the parametric case, where h0 is known (see Theorem 3.2.10 in
van der Vaart and Wellner [1996]). The same holds true with (C4)-(C5).

After giving the assumptions for the asymptotic distribution of φ̂−φ0 and their clarification,
we give now the main result of this paper. Notice that in the model without change in the
distribution of the data, our theorem reduces to Theorem 3 in Delsol and Van Keilegom [2020].

Theorem 5.3.3.2 Under conditions (C1)-(C10) we have; for all K > 0 the process

γ 7→ r 2
nBn

(
φ0 + γ

rn
, λ̂, ĥ

)
converges weakly to

γ 7→ Γ(γ)+G(γ) in ℓ∞(K )

where K = {γ ∈ E : ∥γ∥ ≤ K}. Moreover for any such K almost all paths of the limiting process
have a unique maximizer γ0 on K . We assume now that γ0 is measurable. Then, rn(φ̂−φ0)

converges in distribution to γ0.
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Remark 5.3.3.3 In the present work we have assumed that the number of changes in the sample
is known, which is not the case in the real applications. To circumvent this, we can use the
binary segmentation method proposed in Vostrikova [1981], which is a “top down” procedure,
in the sense that one tests all the data to determine if there is at least one change-point and
iterates the procedure in the intervals immediately to the “left” and “right” of the most recently
detected change-point.

Remark 5.3.3.4 For notational convenience, we have considered that the nuisance parameter
h(·) depends only on the common parameter α and not on the within-segment parameters. This
situation is fulfilled when we study the change point for the copula semiparametric models. In
this situation it commonly assumed that the nuisance parameters (the nonparametric margins)
are not subject to changes within-segment, only the dependence parameters vary from segment
to segment, we refer to Bouzebda and Keziou [2013], Bouzebda [2012, 2014] and the references
therein.

5.3.4 Example : classification with missing data in model with change
point

We will give an example of classification with missing data and we keep the same notation as
in Delsol and Van Keilegom [2020] where we add in this example the case of many but known
changes in distribution. We recall the example without a change point. Let us consider i.i.d.
data Xi = (Xi 1,Xi 2) (i = 1,2, . . . ,n) having the same distribution as X = (X1,X2). We suppose
that these data come in reality from two underlying populations. Let Yi be j if observation i

belongs to population j ( j = 0,1), and let Y be the population indicator for the vector X. Based
on these data, we wish to establish a classification rule for new observations, for which it will
be unknown to which population they belong. The classification consists in regressing X2 on X1

via a parametric regression function fθ(·), and choosing θ by maximising the criterion

P(Y = 1,X2 ≥ fθ(X1))+P(Y = 0,X2 < fθ(X1)). (5.3.4)

Let θ0 be the value of θ that maximizes (5.3.4) with respect to all θ ∈Θ, where Θ is a compact
subset of Rk , whose interior contains θ0. We suppose now that some of the Yi ’s are missing.
Let ∆i (respectively ∆) be 1 if Yi (respectively Y) is observed, and 0 otherwise. Hence, our data
consist of i.i.d. vectors Zi = (Xi ,Xi∆i ,∆i ) (i = 1,2. . . ,n). We assume that the missing at random
mechanism holds true, in the sense that

P(∆= 1|X1,X2,Y) =P(∆= 1|X1) := p0(X1).

Note that the expression 5.3.4 can be written as follows

E

[
1{∆= 1}

p0(X1)

{
1{Y = 1,X2 ≥ fθ(X1)}+1{Y = 0,X2 < fθ(X1)}

}]
,

where 1{A} denotes the indicator function of A. The reader could find the expression of m(Z,θ, p),
M(θ, p), Mn(θ, p) and the non-parametric estimator p̂(·) of p0(·) in the same reference. We will
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adapt the preceding problem formulation to the context of change point, i.e., we consider inde-
pendent data Xi = (Xi 1,Xi 2) (i = 1,2, . . . ,n) where they are i.i.d. if n0

j−1 < i ≤ n0
j j = 1,2. . . ,k +1

where n0
j is the true point of change in distribution and k is the known number of change and we

assume that the data (Xi 1) (i = 1,2, . . . ,n) are i.i.d. with the same distribution as X1, under this
model we obtain k+1 parametric functions fθ j (·), and choosing θ j by maximizing the criterion

P
(
Y = 1,Xn0

j 2 ≥ fθ j (Xn0
j 1)

)
+P

(
Y = 0,Xn0

j 2 < fθ j (Xn0
j 1)

)
. (5.3.5)

Let θ0
j be the value of θ j that maximizes (5.3.5) with respect to all θ j ∈Θ j , where Θ j is a com-

pact subset of Rd j , whose interior contains θ0
j . We suppose that some of the Yi ’s are missing. in

this case our data consist of independent vectors Zi = (Xi ,Yi∆i ,∆i ) (i = 1,2. . . ,n) where they are
i.i.d. if n0

j−1 < i ≤ n0
j j = 1,2. . . ,k+1. We assume like in model without a change in distribution

that the missing at random mechanism holds true, in the following sense

P(∆= 1|Xi 1,Xi 2,Y) =P(∆= 1|Xi 1) := p0(X1).

We introduce our statistics, for j = 1, . . . ,k +1,

m j (Zi ,θ j , p) = 1{∆i = 1}

p(Xi 1)

{
1{Yi = 1,Xi 2 ≥ fθ j (Xi 1)}

+ 1{Yi = 0,Xi 2 < fθ j (Xi 1)}
}

. (5.3.6)

where the nuisance function p(·) belongs to a space P to be defined later. Also, let

Mn(φ,λ, p) = 1

n

k+1∑
j=1

n j∑
i=n j−1+1

m j (Zi ,θ j , p) (5.3.7)

M(φ,λ, p) =
k+1∑
j=1

(λ j −λ j−1)E[m j (Zi ,θ j , p)], (5.3.8)

where φ = (θ1, . . . ,θk+1), λ = (λ1, . . . ,λk ) and Φ = Rd1+···+dk+1 . Consequently the estimators φ̂
and λ̂ of φ0 and λ0 respectively are given by

(φ̂, λ̂) = argmax
0<n1<...<nk<n;φ∈Φ

Mn(φ,λ, p),

where for any x1,

p̂(x1) =
n∑

i=1

Kh(x1 −Xi 1)
n∑

j=1
Kh(x1 −X j 1)

1{∆i = 1},

where K(·) is a density function with support [−1,1], Kh(u) = K( u
h )

h and h = hn is a bandwidth
sequence. Non parametric regression with missing data has been studied very extensively in
the literature, see, e.g., Müller [2009], Pérez-González et al. [2009], Koul et al. [2012], among
many others. This is one of examples where we can apply our theory in semiparametric es-
timators with model of change point and the usefulness of the asymptotic result of this paper
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in such cases where the criterion function is not-differentiable with respect to θ j for every
j = 1,2, . . . ,k +1. Now we will study in full detail this example, and we work out the verifica-
tion of conditions of Theorems 5.3.1.1, 5.3.2.1, 5.3.2.3 and 5.3.3.2 the most of these conditions
verified in Section 7 of Delsol and Van Keilegom [2020] for each true sub sample or when our
data are i.i.d. In the beginning we give some information about the nuisance function, their
appropriate space and some notation. Suppose d(φ,φ0) is the euclidean distance ∥·∥. Let P be
the space of functions p : RX1 →R that are continuously differentiable, and for which

sup
x1∈RX1

p(x1) ≤ M <∞, sup
x1∈RX1

|p ′
(x1)| ≤ M and inf

x1∈RX1

p(x1) > η/2,

where η = inf
x1∈RX1

p0(x1) > 0, and where RX1 is the support of X1 which is supposed to be a

compact subspace of R. We equip the space P with the supremum norm:

dP (p1, p2) = sup
x1∈RX1

|p1(x1)−p2(x1)|,

for any p1, p2 ∈P . After, the conditions of the consistency are verified as follows, (A1) is ver-
ified by construction of the estimators φ̂ and λ̂. Condition (A2) is an identifiability condition,
needed to ensure the uniqueness of φ0 and λ0, also (A3) is to ensure that there is a change
in distribution, (A4) holds true provided the functions p0(·) and K(·) are continuously differ-
entiable. Concerning the condition (A5), we have the functions m j (·,θ j , p) and [m j (·,θ j , p)]2

are bounded for all θ j ∈Θ j , j = 1,2, . . . ,k +1, note that for each j = 1,2, . . . ,k +1; the function
θ j → m j (·,θ j , p)−Em j (·,θ j , p) take value in [− 1

η , 1
η ] for all θ j ∈Θ j which implies the existence

of θ∗j such that

max
θ j∈Θ j

|m j (·,θ j , p)−Em j (·,θ j , p)| ≤ m j (·,θ∗j , p)−Em j (·,θ∗j , p).

So the assumption (A5) is satisfied with r = 1; for any j = 1,2, . . . ,k +1, any 0 ≤ s < t ≤ n, we
have

max
θ j∈Θ j

(
t∑

i=s+1
m j (Zi ,θ j , p0)−Em j (Zi ,θ j , p0)

)2

≤ max
θ j∈Θ j

{
t∑

i=s+1

(
m j (Zi ,θ j , p0)−Em j (Zi ,θ j , p0)

)2

+2
∑

s+1≤i<k≤t

∣∣(m j (Zi ,θ j , p0)−Em j (Zi ,θ j , p0)
)(

m j (Zk ,θ j , p0)−Em j (Zk ,θ j , p0)
)∣∣}

≤
t∑

i=s+1
max
θ j∈Θ j

(
m j (Zi ,θ j , p0)−Em j (Zi ,θ j , p0)

)2

+2
∑

s+1≤i<k≤t

(
m j (Zi ,θ∗j , p0)−Em j (Zi ,θ∗j , p0)

)(
m j (Zk ,θ∗j , p0)−Em j (Zk ,θ∗j , p0)

)
.

The result follows from the fact that the variables are independent. The condition (A6) is veri-
fied directly for this model, for each j = 1,2, . . . ,k +1 we have;

|m j (Zi,θ j , p)−m j (Zi,θ j , p0)| ≤ 1{∆i = 1}

2η2
dP (p, p0),
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and hence the consistency of θ̂ j , λ̂ j j = 1,2, . . . ,k +1 follows. Next, we verify the B-conditions.
Condition (B1) is implied by the definition of θ0

i that maximizes the probability in (5.3.5) in
each true sub-sample n0

i−1+1, . . . ,n0
i where i = 1,2, . . . ,k+1; to clarify this let θ j ∈Θ j we obtain∫

R
m j (z,θ j , p0)dFn0

i
(z) =P

(
Y = 1,Xn0

i 2 ≥ fθ j (Xn0
i 1)

)
+P

(
Y = 0,Xn0

i 2 < fθ j (Xn0
i 1)

)
≤P

(
Y = 1,Xn0

i 2 ≥ fθ0
i
(Xn0

i 1)
)
+P

(
Y = 0,Xn0

i 2 < fθ0
i
(Xn0

i 1)
)

,

this holds true for each i , j = 1,2, . . . ,k + 1, which implies the rate of convergence of λ̂ j j =
1,2, . . . ,k. The condition (B2) holds with

v−1
n = K[(nh)−1/2(logn)1/2 +h].

Conditions (B3) and (B4) hold by the Remark 3.6(ii) and (iii) respectively if they are satisfied
for each true sub-sample which holds for this example. We conclude that

φ̂−φ0 = OP

(
n

1
3

)
,

note that this rate verifies the last part of (B5). Finally, we check the conditions needed for
establishing the asymptotic distribution of φ̂. Condition (C1) follows from Theorem 5.3.2.3
and condition (B2), whereas (C2) is immediately satisfied. Condition (C3) holds with the same
method given for condition (B3) for each true sub-sample. For (C4) and (C5), we remark the
function ψn(δ) = Kδ1/2 in condition (B3) is independent of n and continuous. (C4) and (C5)
are therefore verified, provided the conditions set out in Remarks 3.7(iii) are verified. Next,
condition (C6) easily follows from the fact that our functions m j (z, ·, p) j = 1,2, . . . ,k +1 are
sums of indicator functions for fixed z and p(·). After for condition (C7), it’s satisfied provided
that

|Γ(φ0,h0| <∞,

following Remarks 3.6(iii) and 3.7(v). Condition (C8) holds true by construction of the esti-
mator φ̂. For condition (C9), we note that for each j = 1,2, . . . ,k +1,

rnW j ,n(γ) = rnΩ j (φ0, p̂)γ= oP(1),

provided nh3 = o(1) and (logn)3/2

nh3/2 = o(1), with the same argument as in Delsol and Van Keilegom
[2020] for their condition (C9) we obtain the result. (C10) can be demonstrated in a similar
manner as (B3). The asymptotic distribution of rn(φ̂−φ0) now follows from Theorem 5.3.3.2.

5.4 Numerical results

We provide numerical illustrations regarding the bias and the root mean-squared error (RMSE).
The computing program codes were implemented in R. In our simulation, the scenario of two
change-points is considered, i.e.,

Xi 2 = max(min(U+ϵ,1),0),
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where U ∼U [0,1], ϵ∼U [−r,r ] for small value of r > 0, and X1 ∼U [0,1], with X1, ϵ and U are
independent. Let

Yi =1{Ui ≥ fθ j (Xi 1)}, n j−1 +1 ≤ i ≤ n j , j ∈ {1,2,3}; i = 1, . . . ,n,

where X11, . . . ,Xn1 (U1, . . . ,Un) are i.i.d. sample of X1 (U) and fθ j (x1) = θ j x1, for some θ =
(θ1,θ2,θ3), we define

p (x1) =P (∆= 1 | X1 = x1) = α0 +α1 (x1 −0.5)2 .

The data is composed of (Xi 1,Xi 2,Yi∆i ,∆i ) i = 1,2, . . . ,n from the described model. For the
bandwidth, we work with h = chp

n
, which satisfies the requirements of regularity derived from

the asymptotic theory and for kernel we worked with quadratic kernel; K(u) = 15
16

(
1−u2

)2
1{|u| ≤

1}. In Table 5.1 and 5.2, we show the bias and the RMSE of the estimator (θ̂, n̂1, n̂2) for two
values of the size of the sample n = 500 and n = 1000, where we consider for two different
values of n; r = 0.1 and r = 0.2, α0 = 0.25,α0 = 0.5 and α0 = 0.75, α1 = 1 and ch = 2,ch =
3.5 and ch = 5. For the sample 500, we consider the true value (TV) of the parameter to be
estimated is (θ0,n0

1,n0
2) = (0.75,1,1.5,150,350) and for the sample size 1000 is (θ0,n0

1,n0
2) =

(0.75,1,1.5,350,650). The results are based on 1000 Monte Carlo runs. In the estimation of the
parameter of the change point model as in any other inferential context, the greater the sample
size, the better. From the following two tables we observe that both the bias and the RMSE
are quite small, for moderate sample size. The results are better when α0 increases or r de-
creases. From the results reported in tables, one can see that the estimation of (θ,n1,n2) is not
very sensitive to the choice of the bandwidth h. In order to extract methodological recommen-
dations for the use of the procedures proposed in this work, it will be interesting to conduct
extensive Monte Carlo experiments to compare our procedures with other scenarios presented
in the literature, but this would go well beyond the scope of the present paper.
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Table 5.1: M-estimators of the parameters of within segments and change-points, with sample size 500.

ch = 2.0 ch = 3.5 ch = 5.0

α0 T.V BIAS RMSE BIAS RMSE BIAS RMSE

r
=

0.
1

0.75 0.05 0.125 0.057 0.12 0.063 0.118
1 0.016 0.145 0.002 0.146 -0.017 0.156

0.25 1.5 0.113 0.199 0.107 0.188 0.116 0.196
150 -2.197 9.818 -2.283 9.819 -3.507 10.459
350 1.589 9.28 2.53 9.299 3.011 9.944

r
=

0.
1

0.75 0.075 0.116 0.079 0.118 0.086 0.121
1 -0.027 0.155 -0.044 0.162 -0.055 0.17

0.5 1.5 0.121 0.186 0.131 0.193 0.135 0.191
150 -4.31 10.152 -5.265 10.843 -5.982 10.942
350 3.85 10.019 4.954 10.345 5.374 10.705

r
=

0.
1

0.75 0.083 0.113 0.094 0.119 0.096 0.122
1 -0.041 0.159 -0.058 0.172 -0.073 0.178

0.75 1.5 0.124 0.178 0.146 0.187 0.149 0.19
150 -5.093 10.35 -6.318 10.793 -6.825 11.101
350 4.789 9.937 5.525 10.615 6.155 11.11

r
=

0.
2

0.75 0.051 0.147 0.053 0.141 0.058 0.144
1 0.025 0.166 0.009 0.171 0 0.17

0.25 1.5 0.113 0.214 0.117 0.209 0.129 0.214
150 -2.332 10.424 -2.8 10.247 -3.312 10.452
350 1.161 9.968 2.324 10.237 2.346 10.12

r
=

0.
2

0.75 0.066 0.128 0.072 0.128 0.078 0.127
1 -0.016 0.166 -0.033 0.169 -0.048 0.174

0.5 1.5 0.128 0.201 0.134 0.204 0.15 0.205
150 -4.221 10.336 -4.899 10.858 -5.705 10.934
350 3.64 10.113 4.635 10.481 5.45 10.607

r
=

0.
2

0.75 0.081 0.123 0.09 0.125 0.09 0.125
1 -0.035 0.165 -0.054 0.178 -0.061 0.177

0.75 1.5 0.134 0.192 0.156 0.201 0.158 0.203
150 -4.682 10.504 -6.111 10.879 -6.472 11.009
350 4.348 10.072 5.449 10.631 5.743 10.81
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Table 5.2: M-estimators of the parameters of within segments and change-points, with sample size 1000.

ch = 2.0 ch = 3.5 ch = 5.0

α0 T.V BIAS RMSE BIAS RMSE BIAS RMSE

r
=

0.
1

0.75 0.072 0.106 0.068 0.107 0.072 0.107
1 -0.005 0.149 -0.01 0.147 -0.016 0.15

0.25 1.5 0.111 0.172 0.108 0.171 0.119 0.175
350 -3.447 10.037 -3.83 10.159 -4.156 10.127
350 2.474 9.567 2.753 9.632 3.157 9.757

r
=

0.
1

0.75 0.062 0.1 0.067 0.104 0.074 0.106
1 0.005 0.132 -0.012 0.143 -0.024 0.149

0.5 1.5 0.096 0.152 0.107 0.161 0.113 0.163
350 -3.066 9.672 -3.678 10.087 -4.37 10.242
350 1.748 9.272 2.478 9.906 3.102 10.146

r
=

0.
1

0.75 0.077 0.106 0.086 0.112 0.093 0.115
1 -0.028 0.152 -0.049 0.164 -0.06 0.171

0.75 1.5 0.119 0.166 0.132 0.176 0.138 0.179
350 -3.882 10.105 -5.549 10.728 -5.923 10.878
350 3.866 9.956 4.867 10.46 5.717 10.746

r
=

0.
2

0.75 0.069 0.121 0.066 0.119 0.066 0.117
1 0.002 0.162 -0.004 0.161 -0.003 0.162

0.25 1.5 0.126 0.196 0.123 0.189 0.121 0.192
350 -3.678 10.385 -3.325 10.338 -3.768 10.293
350 2.318 9.975 2.412 10.143 2.879 10.127

r
=

0.
2

0.75 0.062 0.11 0.064 0.112 0.07 0.115
1 0.019 0.144 -0.003 0.151 -0.021 0.162

0.5 1.5 0.114 0.164 0.118 0.172 0.134 0.182
350 -2.85 9.24 -3.72 9.948 -4.647 10.189
350 1.706 9.129 2.631 9.496 3.512 10.135

r
=

0.
2

0.75 0.078 0.111 0.085 0.116 0.088 0.118
1 -0.018 0.156 -0.038 0.166 -0.048 0.173

0.75 1.5 0.132 0.176 0.14 0.179 0.143 0.182
350 -4.332 10.03 -5.271 10.329 -5.585 10.813
350 3.473 9.887 4.675 10.273 4.881 10.457
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5.5 Mathematical developments

This section is devoted to the proofs of our results. The previously defined notation continues
to be used below. Before giving the proof of the Theorem 5.3.1.1, we start with two lemmas
needed to establish the weak convergence and their convergence rate.

Lemma 5.5.0.1 Under assumption (A4) and (A6), we have for any λ ∈Λ and any φ ∈Φ

U = oP(1).

This lemma is the basic idea for giving the results like consistency and the rate of convergence
for our M-estimators, it shown that the variable U is defined in (5.2.2) is near zero when ĥ is
close to h0 for any φ j j = 1,2, . . . ,k +1 and any ni i = 1,2, . . . ,k, when n grows, under general
condition and even there is a change in the distribution.

Proof of Lemma 5.5.0.1

For any δ> 0, under assumption (A6), we have

P

(
max

λ∈Λ,φ∈Φ
|U| > δ

)
= P

(
max

λ∈Λ,φ∈Φ

∣∣∣∣∣ 1

n

k+1∑
j=1

n j∑
i=n j−1+1

m j (Xi ,α,θ j , ĥ)−m j (Xi ,α,θ j ,h0)

∣∣∣∣∣> δ
)

≤ P

(
max

λ∈Λ,φ∈Φ

{
1

n

k+1∑
j=1

n j∑
i=n j−1+1

|m j (Xi ,α,θ j , ĥ)−m j (Xi ,α,θ j ,h0)|
}
> δ

)

≤ P

 1

n

k+1∑
j=1

n0
j∑

i=n0
j−1+1

G(Xi )

dH (ĥ,h0) > δ

2

 .

We take the result from (A4) and the law of large numbers for i.i.d. variables since by assump-
tions, for any i = 1,2, . . . ,k +1, we have∫

G2(x)dFn0
i
(x) <∞.

Hence the proof is complete. □

Lemma 5.5.0.2 Under assumption (A5) it follows: for any j = 1,2, . . . ,k+1, any 0 ≤ m1 < m2 ≤
n and any positive number ϵ > 0, there exists a constant A j , independent of ϵ, and a constant
r > 2, such that

P

(
max

m1≤s<t≤m2,θ j∈Θ j ,α∈Υ

∣∣∣∣∣ t∑
i=s+1

m j (Xi ,α,θ j ,h0)−E[m j (Xi ,α,θ j ,h0)]

∣∣∣∣∣> ϵ
)

≤ A j
(m2 −m1)r

ϵ2
. (5.5.1)
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Proof of Lemma 5.5.0.2

By the fact that the all variables are independent so with Assumption (A4) in mind, equation
(5.5.1) can be achieved by induction with respect to m2. The induction method is similar to the
one used in Móricz et al. [1982], so its proof is omitted here. □

Proof of Theorem 5.3.1.1

Let us introduce

Λη = {λ ∈Λ :
∥∥λ−λ0

∥∥∞ > η},

Φη = {φ ∈Φ : d(φ,φ0) > η},

Φ = Υ×Θ1 ×Θ2 ×·· ·×Θk+1,

Λ = {(λ1,λ2, . . . ,λk )|λ j =
n j

n
: j = 1, . . . ,k;0 < n1 < ·· · < nk < n}.

We have the following chain of inequalities

P(
∥∥λ̂−λ0

∥∥∞ > η)

≤ P

(
max

λ∈Λη,φ∈Φ
W> 0

)
= P

(
max

λ∈Λη,φ∈Φ
{U+L+M(φ,λ,h0)−M(φ0,λ0,h0)} > 0

)
≤ P

(
max

λ∈Λη,φ∈Φ
|U+L| > M(φ0,λ0,h0)− max

λ∈Λη,φ∈Φ
M(φ,λ,h0)

)
≤ P

(
max

λ∈Λη,φ∈Φ
|U| > δ

2

)
+P

(
max

λ∈Λη,φ∈Φ
|L| > δ

2

)
≤ P

(
max

λ∈Λη,φ∈Φ
|U| > δ

2

)
+P

(
max

λ∈Λη,φ∈Φ

∣∣∣∣∣ 1

n

k+1∑
j=1

n j∑
i=n j−1+1

[
m j (Xi ,α,θ j ,h0)−E(m j (Xi ,α,θ j ,h0))

]

− 1

n

k+1∑
j=1

n0
j∑

i=n0
j−1+1

[
m j (Xi ,α0,θ0

j ,h0)−E(m j (Xi ,α0,θ0
j ,h0))

]∣∣∣∣∣∣> δ

2


≤ P

(
max

λ∈Λη,φ∈Φ
|U| > δ

2

)
+P

(
max

λ∈Λη,φ∈Φ

∣∣∣∣∣ 1

n

k+1∑
j=1

n j∑
i=n j−1+1

[
m j (Xi ,α,θ j ,h0)−E(m j (Xi ,α,θ j ,h0))

]∣∣∣∣∣> δ

4

)

+P
∣∣∣∣∣∣ 1

n

k+1∑
j=1

n0
j∑

i=n0
j−1+1

[
m j (Xi ,α0,θ0

j ,h0)−E(m j (Xi ,α0,θ0
j ,h0))

]∣∣∣∣∣∣> δ

4


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≤
k+1∑
j=1

P

(
max

0≤n j−1<n j≤n,θ j∈Θ j ,α∈Υ
1

n

×
∣∣∣∣∣

n j∑
i=n j−1+1

[
m j (Xi ,α,θ j ,h0)−E(m j (Xi ,α,θ j ,h0))

]∣∣∣∣∣> δ

4(k +1)

)

+
k+1∑
j=1

P

∣∣∣∣∣∣ 1

n

n0
j∑

i=n0
j−1+1

[
m j (Xi ,α0,θ0

j ,h0)−E(m j (Xi ,α0,θ0
j ,h0))

]∣∣∣∣∣∣> δ

4(k +1)


+P

(
max

λ∈Λ,φ∈Φ
|U| > δ

2

)
.

It follows from Lemma 5.5.0.1 and Lemma 5.5.0.2 the result. For φ̂, we similarly obtain

P(d(φ̂,φ0) > η)

≤ P

(
max

λ∈Λ,φ∈Φη

W> 0

)
= P

(
max

λ∈Λ,φ∈Φη

{U+L+M(φ,λ,h0)−M(φ0,λ0,h0)} > 0

)
≤ P

(
max

λ∈Λ,φ∈Φη

|U+L| > M(φ0,λ0,h0)− max
λ∈Λ,φ∈Φη

M(φ,λ,h0)

)
≤ P

(
max

λ∈Λ,φ∈Φη

|U| > δ

2

)
+P

(
max

λ∈Λ,φ∈Φη

|L| > δ

2

)
≤ P

(
max

λ∈Λ,φ∈Φη

|U| > δ

2

)
+P

(
max

λ∈Λ,φ∈Φη

∣∣∣∣∣ 1

n

k+1∑
j=1

n j∑
i=n j−1+1

[
m j (Xi ,α,θ j ,h0)−E(m j (Xi ,α,θ j ,h0))

]

+ 1

n

k+1∑
j=1

n0
j∑

i=n0
j−1+1

[
m j (Xi ,α0,θ0

j ,h0)−E(m j (Xi ,α0,θ0
j ,h0))

]∣∣∣∣∣∣> δ

2


≤ P

(
max

λ∈Λ,φ∈Φη

|U| > δ

2

)
+P

(
max

λ∈Λ,φ∈Φη

∣∣∣∣∣ 1

n

k+1∑
j=1

n j∑
i=n j−1+1

[
m j (Xi ,α,θ j ,h0)−E(m j (Xi ,α,θ j ,h0))

]∣∣∣∣∣> δ

4

)

+P
∣∣∣∣∣∣ 1

n

k+1∑
j=1

n0
j∑

i=n0
j−1+1

[
m j (Xi ,α0,θ0

j ,h0)−E(m j (Xi ,α0,θ0
j ,h0))

]∣∣∣∣∣∣> δ

4


≤

k+1∑
j=1

P

(
max

0≤n j−1<n j≤n,θ j∈Θ j ,α∈Υ
1

n

×
∣∣∣∣∣

n j∑
i=n j−1+1

[
m j (Xi ,α,θ j ,h0)−E(m j (Xi ,α,θ j ,h0))

]∣∣∣∣∣> δ

4(k +1)

)
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+
k+1∑
j=1

P

∣∣∣∣∣∣ 1

n

n0
j∑

i=n0
j−1+1

[
m j (Xi ,α0,θ0

j ,h0)−E(m j (Xi ,α0,θ0
j ,h0))

]∣∣∣∣∣∣> δ

4(k +1)


+P

(
max

λ∈Λ,φ∈Φη

|U| > δ

2

)
.

It follows from Lemma 5.5.0.1 and Lemma 5.5.0.2 the desired result. □

Proof of Theorem 5.3.2.1

Let us first define, for any η> 0,

Λη,n = {λ ∈Λ : n
∥∥λ−λ0

∥∥∞ ≥ η}.

Because of the consistency of λ̂, we need to consider only those terms observations are in ñ j , j−1,
ñ j , j and ñ j , j+1 for all j in equation (5.2.3). Therefore we have

P(n
∥∥λ̂−λ0

∥∥∞ ≥ η)

≤ P

(
max

λ∈Λη,n ,φ∈Φ
W> 0

)
≤ P

(
max

λ∈Λη,n ,φ∈Φ
{U+L+M(φ,λ,h0)−M(φ0,λ0,h0)} > 0

)
≤ P

(
max

λ∈Λη,n ,φ∈Φ

[
U+ M(φ,λ,h0)−M(φ0,λ0,h0)

2

]
> 0

)
+P

(
max

λ∈Λη,n ,φ∈Φ

[
L+ M(φ,λ,h0)−M(φ0,λ0,h0)

2

]
> 0

)
.

The second term is bounded by

P

(
max

λ∈Λη,n ,φ∈Φ

[
L+ M(φ,λ,h0)−M(φ0,λ0,h0)

2

]
> 0

)
≤

k+1∑
j=1

P

(
max

λ∈Λη,n ,φ∈Φ

{
1

n

∑
t∈ñ j j

[
m j (Xt ,α,θ j ,h0)−E(m j (Xt ,α,θ j ,h0))

]
− 1

n

∑
t∈ñ j j

[
mi (Xt ,α0,θ0

i ,h0)−E(mi (Xt ,α0,θ0
i ,h0))

]+ M(φ,λ,h0)−M(φ0,λ0,h0)

6(k +1)

}
> 0

)

+
k+1∑
j=2

P

(
max

λ∈Λη,n ,φ∈Φ

{
1

n

∑
t∈ñ j , j−1

[
m j (Xt ,α,θ j ,h0)−E(m j (Xt ,α,θ j ,h0))

]
170



CHAPTER 5. ASYMPTOTIC PROPERTIES OF SEMIPARAMETRIC M-ESTIMATORS
WITH MULTIPLE CHANGE POINTS

− 1

n

∑
t∈ñ j , j−1

[
m j−1(Xt ,α0,θ0

j−1,h0)−E(m j−1(Xt ,α0,θ0
j−1,h0))

]
+ M(φ,λ,h0)−M(φ0,λ0,h0)

6k

}
> 0

)

+
k∑

j=1
P

(
max

λ∈Λη,n ,φ∈Φ

{
1

n

∑
t∈ñ j , j+1

[
m j (Xt ,α,θ j ,h0)−E(m j (Xt ,α,θ j ,h0))

]
− 1

n

∑
t∈ñ j , j+1

[
m j+1(Xt ,α0,θ0

j+1,h0)−E(m j+1(Xt ,α0,θ0
j+1,h0))

]
+ M(φ,λ,h0)−M(φ0,λ0,h0)

6k

}
> 0

)

≡
k+1∑
j=1

I1 j +
k+1∑
j=2

I2 j +
k∑

j=1
I3 j . (5.5.2)

First, consider the probability formula I1 j in the above equation for any j = 1,2, . . . ,k +1. The
consistency of λ̂ allows us to restrict our attention to the case n j j > 1

2 (n0
j −n0

j−1). For this case,
there exists a constant C> 0 such that

M(φ,λ,h0)−M(φ0,λ0,h0) =
k+1∑
j=1

k+1∑
i=1

n j i

n

∫
R

[m j (x,α,θ j ,h0)−mi (x,α0,θ0
i ,h0)]dFn0

i
(x)

≤
n0

j −n0
j−1

2n
E(m j (X,α,θ j ,h0)−m j (X,α0,θ0

j ,h0))

≤−C
n0

j −n0
j−1

2n
. (5.5.3)

Therefore the probability I1 j is upper bounded by

I1 j ≤ P

(
max

n0
j−1≤s<t≤n0

j ,θ j∈Θ j ,α∈Υ

t∑
i=s+1

[
m j (Xt ,α,θ j ,h0)−E(m j (Xt ,α,θ j ,h0))

]>C
n0

j −n0
j−1

12(k +1)

)

+P
(

t∑
i=s+1

[
mi (Xt ,α0,θ0

i ,h0)−E(mi (Xt ,α0,θ0
i ,h0))

]>C
n0

j −n0
j−1

12(k +1)

)
.

The result in Lemma 5.5.0.2 shows that I1 j −→ 0 as n,η−→∞. Next, we consider I2 j in (5.5.2),
for any j = 2, . . . ,k +1. For this case we have λ j−1 < λ0

j−1, and I2 j is bounded by

I2 j ≤ P

(
max

λ∈Λη,n ,φ∈Φ

{
1

n

∑
t∈ñ j , j−1

[
m j (Xt ,α,θ j ,h0)−E(m j (Xt ,α,θ j ,h0))

]
+M(φ,λ,h0)−M(φ0,λ0,h0)

12k

}
> 0

)
+P

(
max

λ∈Λη,n ,φ∈Φ

{
1

n

∑
t∈ñ j , j−1

[
m j−1(Xt ,α,θ j−1,h0)−E(m j−1(Xt ,α,θ j−1,h0))

]
+M(φ,λ,h0)−M(φ0,λ0,h0)

12k

}
> 0

)
≡ I(1)

2 j + I(2)
2 j .

With the same method we show that I(1)
2 j and I(2)

2 j are negligible for n and η grow to infinity, so
we just treat the first term. Only two cases have to be considered.
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If n0
j−1 −n j−1 ≤ η, then

I(1)
2 j ≤ P

(
max

n j−1≤s<t≤n0
j−1,θ j∈Θ j ,α∈Υ

∣∣∣∣∣ t∑
i=s+1

[
m j (Xt ,α,θ j ,h0)−E(m j (Xt ,α,θ j ,h0))

]∣∣∣∣∣> C1η

12k

)

≤
(n0

j−1 −n j−1)r

(C1η)2
(12k)2 ≤ ηr−2

(
12k

C1

)2

.

If n0
j−1 −n j−1 > η, for the other case, then

M(φ,λ,h0)−M(φ0,λ0,h0) ≤−C1

(n0
j−1 −n j−1)

n
.

Therefore, we obtain that

I(1)
2 j

≤ P

(
max

n j−1≤s<t≤n0
j−1,θ j∈Θ j ,α∈Υ

∣∣∣∣∣ t∑
i=s+1

[
m j (Xt ,α,θ j ,h0)−E(m j (Xt ,α,θ j ,h0))

]∣∣∣∣∣> C1(n0
j−1 −n j−1)

12k

)

≤ (n0
j−1 −n j−1)r−2

(
12k

C1

)2

.

The result is a direct consequence of Lemma 5.5.0.2. In the same way we can prove the same
result for I3 j . For the first term we obtain from 5.5.3 and assumption (B1) that

P

(
max

λ∈Λη,n ,φ∈Φ

[
U+ M(φ,λ,h0)−M(φ0,λ0,h0)

2

]
> 0

)

≤P
(

max
λ∈Λη,n ,φ∈Φ

[
1

n

k+1∑
j=1

n j∑
i=n j−1+1

m j (Xi ,α,θ j , ĥ)−m j (Xi ,α,θ j ,h0)

]
>C

λ0
j −λ0

j−1

2

)

≤P
(

max
λ∈Λ,φ∈Φ

[
1

n

k+1∑
j=1

n j∑
i=n j−1+1

m j (Xi ,α,θ j , ĥ)−m j (Xi ,α,θ j ,h0)

]
>C

′
)

,

the last term converges to zero as n −→ ∞ by applying Lemma 5.5.0.1. Therefore Theorem
5.3.2.1 is proved. □

Proof of Theorem 5.3.2.3

Recall that ξn is the OP(r−2
n )-quantity involved in assumption (B5). We introduce the sets

S j ,n = {φ ∈Φ : 2 j−1 < rnd(φ,φ0) ≤ 2 j },

we observe
Φ\φ0 =∪∞

j=1S j ,n .

Our objective is to show that for any ϵ> 0 there exist τϵ > 0 such that

P(rnd(φ̂,φ0) > τϵ) < ϵ, (5.5.4)
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for any n sufficiently large. In the next we work with arbitrary fixed ϵ. For any δ,δ1,K,K
′
,K

′′
,

K1,K2 > 0, we obtain the following bound using condition (B5) and the result in Theorem 5.3.2.1

P(rnd(φ̂,φ0) > 2M)

≤ ∑
M≤ j ,2 j≤δrn

P

(
sup
φ∈S j ,n

[Mn(φ,λ0, ĥ)−Mn(φ0,λ0, ĥ)] ≥−Kr−2
n , An

)

+P(
2d(φ̂,φ0)≥ δ)+P

(
r 2

n |ξn | > K
′)+P(

rn |Wn | > K
′′)+P(

|βn | > C

2

)
+P

(
dH (ĥ,h0) > δ1

vn

)
+P(

n
∥∥λ̂−λ0

∥∥> K2
)

,

where
An =

{
rn |Wn | ≤ K

′′
, |βn | ≤ C

2
,dH (ĥ,h0) ≤ δ1

vn
,n

∥∥λ̂−λ0
∥∥≤ K2

}
.

Indeed, we can write

P
(
rnd(φ̂,φ0) > 2M,2d(φ̂,φ0) < δ,r 2

n |ξn | ≤ K
′
,n

∥∥λ̂−λ0
∥∥≤ K2, An

)
≤ ∑

M≤ j ,2 j≤δrn

P
(
φ̂ ∈ S j ,n ,r 2

n |ξn | ≤ K
′
,n

∥∥λ̂−λ0
∥∥≤ K2, An

)
≤ ∑

M≤ j ,2 j≤δrn

P

(
sup

φ∈S j ,n ,λ∈Λ
[Mn(φ,λ, ĥ)−Mn(φ0,λ0, ĥ)] ≥−K

′
r−2

n ,n
∥∥λ̂−λ0

∥∥≤ K2, An

)

= ∑
M≤ j ,2 j≤δrn

P

(
sup

φ∈S j ,n ,λ∈Λ
[Mn(φ,λ, ĥ)−Mn(φ,λ0, ĥ)+Mn(φ,λ0, ĥ)

−Mn(φ0,λ0, ĥ)] ≥−K
′
r−2

n ,n
∥∥λ̂−λ0

∥∥≤ K2, An

)
≤ ∑

M≤ j ,2 j≤δrn

P

(
sup

φ∈Φ,λ∈Λ
[Mn(φ,λ, ĥ)−Mn(φ,λ0, ĥ)]+ sup

φ∈S j ,n

[Mn(φ,λ0, ĥ)

−Mn(φ0,λ0, ĥ)] ≥−K
′
r−2

n ,n
∥∥λ̂−λ0

∥∥≤ K2, An

)
≤ ∑

M≤ j ,2 j≤δrn

P

(
sup
φ∈S j ,n

[Mn(φ,λ0, ĥ)−Mn(φ0,λ0, ĥ)] ≥−Kr−2
n , An

)
.

Note that the passage from the before last expression to the last is justified by the result in
lemma (5.5.0.3). Assumption (B2) implies for all δ> 0 there exists nϵ, such that, for n > nϵ,

P(2d(φ̂,φ0) ≥ δ) < ϵ

7
.

By definition of ξn , Wn , under assumption (B2) and the result of theorem 5.3.2.1, there exist
δ1,k

′
ϵ,k

′′
ϵ and K2,ϵ such that

P
(
r 2

n |ξn | > K
′
ϵ

)
< ϵ

7 , P
(
rn |Wn | > K

′′
ϵ

)
, P

(|βn | > C
2

)< ϵ
7 ,

P
(
dH (ĥ,h0) > δ1

vn

)
< ϵ

7 and P
(
n

∥∥λ̂−λ0
∥∥> K2,ϵ

)< ϵ
7 .

(5.5.5)

For n large than some n1. We fix δ< δ0 and suppose n ≥ max(n0,n1,nϵ), for 2 j ≤ δrn we have
the assumption (B3) and (B4) are fulfilled on all S j ,n . For each fixed j such that 2 j ≤ δrn , we
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have under assumption (B4), for all φ ∈ S j ,n :

Mn(φ,λ0, ĥ)−Mn(φ0,λ0, ĥ)

≤ M(φ,λ0, ĥ)−M(φ0,λ0, ĥ)

+ sup
d(φ,φ0)≤ 2 j

rn

|Mn(φ,λ0, ĥ)−Mn(φ0,λ0, ĥ)−M(φ,λ0, ĥ)+M(φ0,λ0, ĥ)|

≤ |Wn |2
j

rn
− (C−βn)

22 j−2

r 2
n

+ sup
d(φ,φ0)≤ 2 j

rn

|Mn(φ,λ0, ĥ)−Mn(φ0,λ0, ĥ)−M(φ,λ0, ĥ)+M(φ0,λ0, ĥ)|.

Consequently, we obtain the following inequality:

P

(
sup
φ∈S j ,n

[Mn(φ,λ0, ĥ)−Mn(φ0,λ0, ĥ)] ≥−Kr−2
n , An

)

≤ P

 sup
d(φ,φ0)≤ 2 j

rn
,dH (h,h0)≤ δ1

vn

|Mn(φ,λ0,h)−Mn(φ0,λ0,h)−M(φ,λ0,h)+M(φ0,λ0,h)|

≥ 22 j−2

r 2
n

(
C

2
−K

′′
ϵ22− j −K

′
ϵ2

2−2 j
))

.

Now, there exists Mϵ such that for all j ≥ Mϵ, we have

C

2
−K

′′
ϵ22− j −K

′
ϵ2

2−2 j ≥ C

4
.

By consequent, if M ≥ Mϵ, using assumption (B3) in combination with Chebyshev’s inequality
we readily obtain

∑
M≤ j ,2 j≤δrn

P

(
sup
φ∈S j ,n

[Mn(φ,λ0, ĥ)−Mn(φ0,λ0, ĥ)] ≥−Kr−2
n , An

)

≤ ∑
M≤ j ,2 j≤δrn

P

 sup
d(φ,φ0)≤ 2 j

rn
,dH (h,h0)≤ δ1

vn

|Mn(φ,λ0,h)−Mn(φ0,λ0,h)

−M(φ,λ0,h)+M(φ0,λ0,h)| ≥ C22 j−2

4r 2
n

)

≤ ∑
M≤ j ,2 j≤δrn

4Kr 2
n

C22 j−2

ψn( 2 j

rn
)

p
n

≤ 4Kr 2
n

C
p

n

∑
M≤ j ,2 j≤δrn

2 jαψn( 1
rn

)

22 j−2

≤ 16K

C

∑
M≤ j

2 j (α−2).
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By the fact that α< 2, the series
∑

M≤ j
2 j (α−2) converges, so there exists M

′
ϵ ≥ Mϵ, such that

16K

C

∑
M≤ j

2 j (α−2) ≤ ϵ

7
.

The theorem is proved by choosing τϵ = 2M
′
ϵ in (5.5.4). □

Lemma 5.5.0.3 Under conditions (A3)-(A6) and (B1) we obtain : for any φ ∈Φ and h ∈H

Mn(φ, λ̂,h) = Mn(φ,λ0,h)+OP

(
1

n

)
.

Proof of Lemma 5.5.0.3

We have the following decomposition

Mn(φ, λ̂,h)−Mn(φ,λ0,h)

= 1

n

k+1∑
j=1

n̂ j∑
i=n̂ j−1+1

m j (Xi ,α,θ j ,h)− 1

n

k+1∑
j=1

n0
j∑

i=n0
j−1+1

m j (Xi ,α,θ j ,h)

= 1

n

k+1∑
j=1

1I{n0
j ≤n̂ j ,n0

j−1≤n̂ j−1}

 n̂ j∑
i=n0

j +1

m j (X,α,θ j ,h)−
n̂ j−1∑

i=n0
j−1+1

m j (X,α,θ j ,h)


+1I{n0

j <n̂ j ,n̂ j−1<n0
j−1}

 n̂ j∑
i=n0

j +1

m j (X,α,θ j ,h)+
n0

j−1∑
i=n̂ j−1+1

m j (X,α,θ j ,h)


+1I{n̂ j<n0

j ,n0
j−1≤n̂ j−1}

− n0
j∑

i=n̂ j+1
m j (X,α,θ j ,h)−

n̂ j−1∑
i=n0

j−1+1

m j (X,α,θ j ,h)


+1I{n̂ j≤n0

j ,n̂ j−1<n0
j−1}

− n0
j∑

i=n̂ j+1
m j (X,α,θ j ,h)+

n0
j−1∑

i=n̂ j−1+1
m j (X,α,θ j ,h)

 .

It follows from Theorem 5.3.2.1 the desired result. □

Proof of Theorem 5.3.3.2

In the first we prove the weak convergence of the process

γ 7→ r 2
nBn

(
φ0 + γ

rn
, λ̂, ĥ

)
,

which is proved in Lemma 5.5.0.4. The rest of the proof is based on somewhat similar argu-
ments as those used to state the Argmax theorem in van der Vaart and Wellner [1996] without a
change points, where the weak convergence of the empirical process implies the convergence in
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distribution of its point of maximum, the M-estimators. Note that the set E is σ-compact metric
space i.e.,

E =∪∞
j=1K j ,

where, for any positive sequence (a j ) j∈N∗ ,

K j = {γ ∈ E : ∥γ∥ ≤ a j }.

After we deduce from assumption (C9), Lemma 5.5.0.5 and Lemma 5.5.0.6 together that al-
most all paths of the limiting process γ 7→ Γ(γ)+G(γ) attain their supreme at the unique point
γ0, following the same ideas in the parametric case without change points (see Theorem 3.2.10
in van der Vaart and Wellner [1996]). We assume now that γ0 is measurable. The weak conver-
gence of rn(φ̂−φ0) to γ0 is equivalent to the statement (Portmanteau’s Theorem) :

limsup
n−→∞

P
(
rn(φ̂−φ0) ∈ C

)≤P(
γ0 ∈ C

)
, for every closed set C.

Let C be an arbitrary closed subset of E and fix ϵ> 0. The set E is σ-compact and which implies
that the random γ0 is tight combining this with the assumption (C1) we can find Kϵ > 0 and a
compact set

Kϵ = {γ : ∥γ∥ ≤ Kϵ},

such that
P(γ0 ∉ Kϵ) ≤ ϵ/2 and P(rn(φ̂−φ0) ∉ Kϵ) ≤ ϵ/2.

It follows from these last expressions

limsup
n−→∞

P
(
rn(φ̂−φ0) ∈ C

)
≤ P

(
rn(φ̂−φ0) ∈ C∩Kϵ,γ

0 ∈ Kϵ

)
+ limsup

n−→∞
P

(
{rn(φ̂−φ0) ∉ Kϵ}∪ {γ0 ∉ Kϵ}

)
≤ P

(
rn(φ̂−φ0) ∈ C∩Kϵ,γ

0 ∈ Kϵ

)+ϵ. (5.5.6)

Now we use Lemma 5.5.0.4 and assumption (C8) we obtain that

limsup
n−→∞

P
(
rn(φ̂−φ0) ∈ C∩Kϵ,γ

0 ∈ Kϵ

)
≤ limsup

n−→∞
P

(
sup

γ∈Kϵ∩C
r 2

nBn

(
φ0 + γ

rn
, λ̂, ĥ

)
≥ sup
γ∈Kϵ

r 2
nBn

(
φ0 + γ

rn
, λ̂, ĥ

)
+oP(1),γ0 ∈ Kϵ

)

≤ P

(
sup

γ∈Kϵ∩C
(Γ+G)(γ) ≥ sup

γ∈Kϵ

(Γ+G)(γ),γ0 ∈ Kϵ

)
, (5.5.7)

by Slutskys lemma and Portmanteaus theorem. On the other hand, for every open set G con-
taining γ0, we have

(Γ+G)(γ0) > sup
γ∈GC∩Kϵ

(Γ+G)(γ).
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This together with (5.5.7) imply

limsup
n−→∞

P
(
rn(φ̂−φ0) ∈ C∩Kϵ,γ

0 ∈ Kϵ

)≤P(
γ0 ∈ C

)
.

Consequently, it follows from (5.5.6) that for all ϵ> 0,

limsup
n−→∞

P
(
rn(φ̂−φ0) ∈ C

)≤P(
γ0 ∈ C

)+ϵ.

The last inequality hold for every ϵ> 0, so it also holds for ϵ= 0. Consequently, the result holds
from Portmanteau theorem. □

Lemma 5.5.0.4 For all K > 0, let K = {γ ∈ E : ∥γ∥ ≤ K} be a compact subset of E. Then, under
assumptions of Theorem 5.3.3.2, the process

γ 7→ r 2
nBn

(
φ0 + γ

rn
, λ̂, ĥ

)
converges weakly to the process

γ 7→ Γ(γ)+G(γ) in ℓ∞(K ).

Moreover, almost all paths of the limiting process are continuous (uniformly on every compact
K ) with respect to ∥ ·∥.

Proof of Lemma 5.5.0.4

The result of this lemma follows directly from Slutsky’s theorem, Lemma 5.5.0.5 and Lemma
5.5.0.6. On the other hand, ∥ ·∥ makes K totally bounded (since it is compact) and

γ 7→ r 2
nBn

(
φ0 + γ

rn
,λ0,h0

)
+ rnWn(γ)

is asymptotically uniformly ∥ · ∥-equicontinuous in probability, asymptotically tight and con-
verges weakly to

γ 7→ Γ(γ)+G(γ)

in ℓ∞(K ) (see proof of Lemma 5.5.0.6). Thus, almost all paths of the limiting process are
uniformly ∥ · ∥-continuous on K (see Theorem 1.5.7 in van der Vaart and Wellner [1996]).
Moreover, because E may be covered by a countable sequence of such compact sets, almost all
paths of the limiting process are ∥ ·∥-continuous on E. □

Lemma 5.5.0.5 Let K = {γ ∈ E : ∥γ∥ ≤ K}. Then under assumptions of Theorem 5.3.2.1 and
assumptions of Theorem 5.3.3.2 we have respectively :

1. Bn

(
φ0 + γ

rn
, λ̂, ĥ

)
= Bn

(
φ0 + γ

rn
,λ0, ĥ

)
+OP(n−1).

2. There exist ξ1,n ,ξ2,n ,ξ3,n such that sup
γ∈K

|ξl ,n | = oP(1), l = 1,2,3, and

r 2
nBn

(
φ0 + γ

rn
,λ0, ĥ

)
(1+ξ1,n) =

[
r 2

nBn

(
φ0 + γ

rn
,λ0,h0

)
+ rnWn(γ)

]
(1+ξ2,n)+ξ3,n .
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Proof of Lemma 5.5.0.5

The first assertion is a direct application of Lemma 5.5.0.3. We have

Bn

(
φ0 + γ

rn
, λ̂, ĥ

)
= Mn

(
φ0 + γ

rn
, λ̂, ĥ

)
−Mn(φ0, λ̂, ĥ)

= Mn

(
φ0 + γ

rn
,λ0, ĥ

)
−Mn(φ0,λ0, ĥ)+OP(n−1)

= Bn

(
φ0 + γ

rn
,λ0, ĥ

)
+OP(n−1).

We can use the same proof of Lemma 2 in Delsol and Van Keilegom [2020] for showing the last
assertions where we have the true change points in the expression of our process and it satisfies
their conditions, hence we obtain the result. □

Lemma 5.5.0.6 Let K = {γ ∈ E : ∥γ∥ ≤ K}. Then, under the assumptions of Theorem 5.3.3.2
the process

γ 7→ r 2
nBn

(
φ0 + γ

rn
,λ0,h0

)
+ rnWn(γ)

is asymptotically tight, asymptotically uniformly equicontinuous with respect to ∥·∥ on K , and
it converges weakly to the process

γ 7→ Γ(γ)+G(γ) in ℓ∞(K ).

Proof of Lemma 5.5.0.6

The proof of this lemma is the same as Lemma 3 in Delsol and Van Keilegom [2020], we can
write the process

T j ,n :γ 7→ r 2
nBn

(
φ0

j +
γ

rn
,λ0

j ,h0

)
+ rnW j ,n(γ),

for each j = 1, . . . ,k +1 as the sum of two process

Y j ,n = r 2
n

(
Bn

(
φ0

j +
γ

rn
,λ0

j ,h0

)
−B

(
φ0

j +
γ

rn
,λ0

j ,h0

))
and

Z j ,n = r 2
nB

(
φ0

j +
γ

rn
,λ0

j ,h0

)
+ rnW j ,n .

Here we have k process satisfy the assumptions of the Theorem 5.3.3.2 converging weakly by
application of the Lemma 3 in the same reference, so we obtain the result by summing these
process i.e.,

r 2
nBn

(
φ0 + γ

rn
,λ0,h0

)
+ rnWn(γ) =

k+1∑
j=1

T j ,n(γ).

Almost all paths of the limiting process γ 7→ Γ(γ)+G(γ) on K are uniformly continuous with
respect to ∥ ·∥ by the Addendum 1.5.8 in van der Vaart and Wellner [1996]. □
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Chapter 6

Asymptotic properties of M-estimators
based on estimating equations and
censored data in semi-parametric models
with multiple change points

Ce chapitre développe le contenu d’un article publié dans le journal “Journal of Mathematical
Analysis and Applications.”497 (2021), no. 2, 124883, mis en forme pour être inséré dans le
présent manuscrit de thèse.
Asymptotic properties of M-estimators based on estimating equations and censored data in
semi-parametric models with multiple change points. JMAA. 497 (2021), no. 2, 124883,

Abstract

Statistical models with multiple change points in presence of censored data are used in many
fields; however, the theoretical properties of M-estimators of such models have received rel-
atively little attention. The main purpose of the present work is to investigate the asymptotic
properties of M-estimators of the parameters of a multiple change-point model for a general
class of models in which the form of the distribution can change from segment to segment and
in which, possibly, there are parameters that are common to all segments, in the setting of a
known number of change points. Consistency of the M-estimators of the change points is estab-
lished and the rate of convergence is determined. The asymptotic normality of the M-estimators
of the parameters of the within-segment distributions is established. Since the approaches used
in the complete data models are not easily extended to multiple change-point models in the
presence of censoring, we have used some general results of Kaplan-Meier integrals. We in-
vestigate the performance of the methodology for small samples through a simulation study.

Key words: Semiparametric inference; multiple change-points; change-point fraction; common
parameter; consistency; convergence rate; M-estimators; Z-estimators; censored data; Kaplan

185



CHAPTER 6. ASYMPTOTIC PROPERTIES OF M-ESTIMATORS BASED ON
ESTIMATING EQUATIONS AND CENSORED DATA IN SEMI-PARAMETRIC MODELS

WITH MULTIPLE CHANGE POINTS

Meier integrals; Argmax theorem; Central limit theorem.
Mathematics Subject Classification :62F12; 62F03; 62G20; 60F05; 62N02; 62E20; 62P20.

6.1 Introduction and motivations

In major real data investigation, the stationarity assumption has been frequently used. How-
ever, in practice, time series entail in their dependence structure and therefore modelling non-
stationary processes using stationary methods to capture their time-evolving dependence aspects
most likely result in a crude approximation. Change-point detection plays a critical role in such
situations. Notice that the problem of change-points in a sequence of random variables has a
long history. Early work on this problem can be found in Page [1954, 1955, 1957] who in-
vestigated quality control problems and proposed a sequential scheme for identifying changes
in the mean of a sequence of independent random variables. Over time, methods in change
point analysis have been developed to address data analytic questions in fields ranging from
biology to finance, and in many cases such methodology has become standard. The statistical
community now enjoys a vast literature on change point analysis where many of the most nat-
ural and common questions have received at least some attention. For a broader presentation
of the field of change-point analysis along with statistical applications, we refer the reader to
the monographs by Brodsky and Darkhovsky [1993], Csörgő and Horváth [1997], Chen and
Gupta [2000], Wu [2005] and Pons [2018], just to cite a few. We refer to the paper of Lee
[2010] for a list of comprehensive bibliography of books and research papers on this topic. The
problem of detecting abrupt changes has been discussed intensively in a time series context, we
may refer to Jandhyala et al. [2013] and Aue and Horváth [2013] for a review of the literature.
Recent references on the subject include Chen [2019], Chu and Chen [2019], Garreau and Arlot
[2018], Tan and Zhang [2019], Nkurunziza and Fu [2019], Qian et al. [2019] and El Ktaibi and
Ivanoff [2019]. Compared to single change-point detection, multiple change-points detection is
a much more challenging problem. Work on detection for multiple change-points began in the
1980s (e.g., Vostrikova [1981], Yin [1988], Yao [1988]). There exists a rich literature devoted
to this field, we refer to Truong et al. [2020] for review of change-point and some extensions.
For the censored setting, there are only a few papers dealing with detection of changes, for
single change-point, we refer to Stute [1996] who provided an estimator of the change point
based on the U-statistics. Gombay and Liu [2000], Hušková and Neuhaus [2004], Al-Awadhi
and Aly [2005], Wang and Zheng [2012] have considered test procedures for change-point. He
[2017, 2015] considered the multiple change-points for particular distributions. To our best
knowledge there the case where the change occurs for the two variables, i.e., the censored vari-
able and the censorship variable in general setting was not investigated in the literature up to
present. Notice that multiple change-points problem occurs for the survival function due to
hazard change according to evolving time. For example, a cancer survival function can change
abruptly or smoothly at a few time points. For example, Kim et al. [2020] applied their method
to find the change-points for leukemia survival data and identified the change-points. However
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multiple change-points problems are not much considered due to its computational complexity
and theoretical difficulty. Hušková and Neuhaus [2004] have investigated the problem of single
change when the variables are assumed to be independent but not necessarily identically dis-
tributed. While the body of work about the change-point constitutes a rich literature, it mainly
deals with the inference of a single change in a short or moderate sized sequence. Detecting
multiple change-points in a very long sequence has emerged as an important problem that has
attracted more and more attention recently, we refer to Niu et al. [2016]. There is a literature on
the change-point problem and their applications and it is not the purpose of the present paper to
survey this extensive literature.

The main purpose of the present work is to consider a general framework and the character-
ization of the asymptotic properties of semi-parametric M-estimators based on censored data in
models with multiple change-points, this generalization is far from being trivial and harder to
control the estimator of Kaplan-Meier of each sample, which form a basically unsolved open
problem in the literature. We aim at filling this gap in the literature by combining results He and
Severini [2010] with techniques handling the Kaplan Meier integrals. However, as will be seen
later, the problem requires much more than “simply” combining ideas from the existing results.
In fact, delicate mathematical derivations will be required to cope with Kaplan Meier integrals
in our context.

We start by giving some notations and definitions that are needed for the forthcoming sec-
tions. Let X1, . . . ,Xn be n independent random variables censoring by n independent random
variables C1, . . . ,Cn respectively, where Xi and Ci are independent for all i , so we observe

(
Yi = Xi ∧Ci ,δi = 1I{Xi≤Ci }

)
, for 1 ≤ i ≤ n.

Survival data in clinical trials or failure time data in reliability studies, for example, are often
subject to such censoring. To be more specific, many statistical experiments result in incomplete
samples, even under well-controlled conditions. For example, clinical data for surviving most
types of disease are usually censored by other competing risks to life which result in death. We
suppose that there exists unknown change points n1, . . . ,nk , such that

0 = n0 < n1 < ·· · < nk < nk+1 = n,

where for each j = 1, . . . ,k +1, (Xn j−1+1,Cn j−1+1), . . . , (Xn j ,Cn j ), are i.i.d. with distribution func-
tion depending on j . Here, we consider semi-parametric change-points models in which the
distribution function of Xn j−1+1, . . . ,Xn j is parametric. We suppose that the theoretical distribu-
tion Fn0

j
(·) =: F(α0,θ0

j , ·) of Xi , i = 1, . . . ,n, depends on the real common parameter α0 for all

j = 1, . . . ,k +1 and the real within-segment θ0
j , for each j = 1, . . . ,k +1 which are assumed to

be unknown. In this model, there are k real change points n0
1, . . . ,n0

k but unknown, where the
number of change point k is assumed to be known. We estimate the unknown parameters n j , α
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and θ j , j = 1, . . . ,k +1 by maximizing the estimating equations defined by:

ℓ≡ ℓ(α,θ1, . . . ,θk+1,n1, . . . ,nk ) =
k+1∑
j=1

(n j −n j−1)

n

∫
R

m j (α,θ j , x)d F̂n j (x),

(6.1.1)

where 1− F̂n j (·) is the usual Kaplan-Meier product limit estimator of 1−Fn j (·) introduced by
Kaplan and Meier [1958] and defined by

1− F̂n j (x) =
n j∏

i=n j−1+1

(
1− di

ni

)1I{Y(i )≤x}
, (6.1.2)

where

ri =
n j∑

k=n j−1+1
1I{Y(i )≤Yk }

and

di =
n j∑

k=n j−1+1
1I{Y(i )=Yk ,δk=1},

denoting the number of individuals still at risk at time Y(i ) and the number of deaths at time Y(i )

respectively, and Y(i ) denotes the order statistic of Yn j−1+1, . . . ,Yn j and 1IE denoting the indicator
function of E. For each sample Xn j−1+1, . . . ,Xn j , j = 1, . . . ,k+1, and m j (·) is a given measurable
function from Υ×Θ j ×R to R; Υ and Θ j are the parameter spaces of α, θ j for j = 1, . . . ,k +1,
respectively. Simple calculation gives

ℓ(α,θ1, . . . ,θk+1,n1, . . . ,nk ) = 1

n

k+1∑
j=1

n j∑
i=n j−1+1

m j (α,θ j ,Yi )δi

S
n j

C (Y−
i )

, (6.1.3)

where S
n j

C (·) is the Kaplan-Meier product limit estimator of 1 − Gn j (·), for each sample
Cn j−1+1, . . . ,Cn j , j = 1, . . . ,k +1.

Our result is a generalization for the work of He and Severini [2010] in the sense that we
consider the M-estimation in the censored data setting. He and Severini [2010] investigated
statistical models with multiple change-points and established the theoretical properties of the
maximum likelihood estimators. Their results are not directly applicable here since we consider
a more general framework. These results are not only useful in their own right but essential to
establish the theoretical properties of our estimators. Under no censoring, there are a num-
ber of results available on the asymptotic properties of parameter estimators in change-point
models with m j (α,θ j , x) = log f j (α,θ j , x). See, for example, Hinkley [1970, 1972], Hink-
ley and Hinkley [1970], Bhattacharya [1987], Fu and Curnow [1990a,b], Jandhyala and Fo-
topoulos [1999, 2001] and Hawkins [2001]; the two monographs Chen and Gupta [2000] and
Csörgő and Horváth [1997], and for the M-estimators we refer to Hušková [1996]. In Gombay
and Horváth [1994], a maximum-likelihood-type statistic is proposed for testing a sequence
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of observations for no change in the parameter against a possible change, this work is ex-
tended to the semi-parametric setting in Bouzebda and Keziou [2013] and Bouzebda [2014].
It is worth noticing that M-estimators include the least squares estimators, several robust ver-
sion of means and notably their predecessor, the maximum likelihood estimate (MLE) with
m j (α,θ j , ·) = log f j (α,θ j , ·), f (·) being the probability density function. Strong consistency of
M-estimators can be verified as that of the MLEs, and it is possible to avoid the differentia-
bility condition of the density function f j (α,θ j , x) in the MLE case. This approach was first
employed by Wald [1949] and later extended, for example, by LeCam [1953], Kiefer and Wol-
fowitz [1956], Bahadur [1967], Huber [1967], Pfanzagl [1969] and Perlman [1972] among
others. Asymptotic properties of Huber’s M-estimators based on complete data are well un-
derstood nowadays and can be found, for example, in Huber [1981] and van der Vaart [1998],
among others.

In the presence of censoring very little is known about the general large sample properties of
M-estimators. Reid [1981] derived the influence function and the asymptotic normality of a
truncated type M-estimator. (Some modifications are required in Reid’s arguments, cf. Ander-
sen et al. [2012]. Oakes [1986] considered M-estimators with m j (α,θ j , ·) = log f j (α,θ j , ·) and
called them approximate MLEs since the corresponding M-estimators are no longer the MLEs.
Borgan [1984] studied the asymptotic properties of the MLE. Another type of M-estimator,
based on the cumulative hazard function and aiming at inclusion of the MLEs under censor-
ing, is discussed in Hjort [1985]. Wang [1995] has established the strong consistency of this
type of estimators under general conditions which can be applied to parametric, semi-and non-
parametric models.

The main objective of our paper is to provide a full theoretical justification of the consistency
of M-estimators of the parameters of a general class of multiple change-points models and
gives the asymptotic distribution of the parameters of the within-segment distributions. This
requires the effective application of large sample theory techniques, which were developed for
the empirical processes, refer to Section 6.4 where we have used results from the work of Pakes
and Pollard [1989].

The article is structured as follows. Section 6.2 is devoted to the statement of our notations
and assumptions. In Section 6.3, the asymptotic properties of our estimators are derived. The
general theory of the Z-estimators is considered in Section 6.4. In Section 6.5, we specify the
estimation procedure for the maximum likelihood. The finite sample performance of the latter
is illustrated by means of Monte Carlo simulations in Section 6.6. Some concluding remarks are
given in Section 7.4. To avoid interrupting the flow of the presentation, all mathematical devel-
opments are relegated to Section 6.7. Section 6.8 gives some basic definitions and preliminaries
needed to state our results.
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6.2 Notation and assumptions

In this section, we introduce the notation needed to state the asymptotic results in Section 6.3.
The parameter spaces Υ and Θ j are the subset of Rd and Rd j respectively. Let

λ j = n j

n
, for any j = 1, . . . ,k,

λ0
j =

n0
j

n
, for any j = 1, . . . ,k,

λ = (λ1,λ2, . . . ,λk ),

λ0 = (λ0
1,λ0

2, . . . ,λ0
k ),

θ = (θ1,θ2, . . . ,θk+1),

θ0 = (θ0
1,θ0

2, . . . ,θ0
k+1),

φ = (α,θ1,θ2, . . . ,θk+1),

φ0 = (α0,θ0
1,θ0

2, . . . ,θ0
k+1),

SFn0
j
(·) = 1−Fn0

j
(·),

SGn0
j
(·) = 1−Gn0

j
(·).

We have for each j = 1, . . . ,k,

1−Hn0
j
(·) = (1−Gn0

j
(·))(1−Fn0

j
(·)).

Let τFn0
j
(·) (resp. τGn0

j
(·)) be the upper bound of the support of Fn0

j
(·) (resp. Gn0

j
(·)). Note that

λ0 is taken to be a constant vector as n goes to infinity. Let Λ be the set of the configurations
of change-points and Φ the set of parameters,

Λ = {(λ1,λ2, . . . ,λk ) : λ j =
n j

n
, j = 1, . . . ,k, 0 < n1 < ·· · < nk < n},

Φ = Θ1 ×Θ2 ×·· ·×Θk+1 ×Υ.

The criterion function computed over the segment j of λ is defined by

Gn(Y j ,θ j ,α) = (n j −n j−1)

n

∫
R

m j (α,θ j , x)d F̂n j (x).

Consequently, we can rewrite the function ℓ given in (6.1.1) as

ℓ=
k+1∑
j=1

Gn(Y j ,θ j ,α).

Estimators of all change-points, all within-segment parameters and the common parameter are
defined by maximization of the function ℓ in Λ×Φ, i.e.,

(α̂, θ̂1, . . . , θ̂k+1, n̂1, . . . , n̂k ) = argmax
0<n1<n2<···<n;θ j∈Θ j ,1≤ j≤k+1,α∈Υ

ℓ. (6.2.1)
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For a given configuration λ,
(
θ̂ j (λ j ), α̂(λ j )

)
maximizes Gn(Y j ,θ j ,α). We can remark that, when λ=λ0, the estimate of (θ0,α0) obtained

by maximizing ℓ(α,θ1, . . . ,θk+1,n0
1, . . . ,n0

k ) converge to (θ0,α0)

under the Assumptions 6.2.0.1 and the first part of the Assumption 6.2.0.2 for complete data,
by the result of van der Vaart [1998] and by add the first part of Assumption 6.2.0.5, we get the
convergence for censored data by the result of Wang [1995]. In the case where the change point
fraction λ0 is unknown, the M-estimators

(λ̂, θ̂, α̂) is the value of (λ,θ,α) that maximizes ℓ(α,θ1, . . . ,θk+1,n0
1, . . . ,n0

k ) in Λ×Φ. Thus

(θ̂ j , α̂)
def= (

θ̂ j (λ̂ j ), α̂(λ̂ j )
)

is the M-estimator of (θ0
j ,α0

j ) computed in the segment j of the estimated configuration of
change-points n̂ j , refer for similar arguments to Lavielle and Ludeña [2000]. Let us introduce

L0(α,θ1, . . . ,θk+1) =
k+1∑
j=1

(n0
j −n0

j−1)

n

∫
R

m j (α,θ j , x)dFn0
j
(x), (6.2.2)

where Fn0
j
(·) (respectivement Gn0

j
(·)) is the true function of distribution for the sample

Xn0
j−1+1, . . . ,Xn0

j
(resp. Cn0

j−1+1, . . . ,Cn0
j
), j = 1, . . . ,k +1. The following decomposition will play

an instrumental role in the proofs of Theorem 6.3.0.1 and Theorem 6.3.0.3. Define a function
W

′
by

W
′ =

k+1∑
j=1

k+1∑
i=1

n j i

n

{∫
[m j (α,θ j , x)−mi (α0,θ0

i , x)]dFn0
i

}

+ 1

n

k+1∑
j=1

n j∑
i=n j−1+1

{
m j (α,θ j ,Yi )δi

S
n j

C (Y−
i )

−E(m j (α,θ j ,Xi ))

}

− 1

n

k+1∑
j=1

n0
j∑

i=n0
j−1+1


m j (α0,θ0

j ,Yi )δi

S
n0

j

C (Y−
i )

−E(m j (α0,θ0
j ,Xi ))

 , (6.2.3)

where n j i is the number of observations of the interested variables in the set

[n j−1 +1,n j ]∩ [n0
i−1 +1,n0

i ],

for i , j = 1, . . . ,k +1. We obviously have that

argmax
0<n1<n2<···<n;θ j∈Θ j ,1≤ j≤k+1,α∈Υ

ℓ= argmax
0<n1<n2<···<n;θ j∈Θ j ,1≤ j≤k+1,α∈Υ

W
′
;

thus, the M-estimators may be defined as the maximizers of W
′
rather than as the maximizers of

ℓ. Our idea is to replace EKM S
n j

C (·) in (6.2.3) by the theoretical survival function SGn0
j
(·) and to

proof the difference between the EKM based on the estimated survival function and the EKM
based on the theoretical survival function is negligible, in probability, as n goes to infinity, see

(6.7.0.3). Notice that S
n0

j

C (·) converges to SGn0
j
(·), so we can replace the EKM, at the price of
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some complicated calculations. Let b(α,θ j ,α0,θ0
i ) be defined by

b(α,θ j ,α0,θ0
i ) = E(m j (α,θ j ,Xi ))−E(mi (α0,θ0

i ,Xi ))

=
∫
R

[m j (α,θ j , x)−mi (α0,θ0
i , x)]dFn0

i
(x), (6.2.4)

for i , j = 1, . . . ,k+1. We substitute W
′
by W after replacing the EKM by its true survival function

and we define
W = W1 +W2,

where

W1 =
k+1∑
j=1

k+1∑
i=1

n j i

n
b(α,θ j ,α0,θ0

i ) (6.2.5)

and

W2 = 1

n

k+1∑
j=1

n j∑
i=n j−1+1

m j (α,θ j ,Yi )δi

SGn0
j
(Y−

i )
−E(m j (α,θ j ,Xi ))


− 1

n

k+1∑
j=1

n0
j∑

i=n0
j−1+1

m j (α0,θ0
j ,Yi )δi

SGn0
z
(Y−

i )
−E(m j (α0,θ0

j ,Xi ))

 .

Alternatively, we may write

W2 = 1

n

k+1∑
j=1

k+1∑
i=1

 ∑
t∈ñ j i

m j (α,θ j ,Yt )δt

SGn0
j
(Y−

t )
−E(m j (α,θ j ,Xt ))


− ∑

t∈ñ j i

mi (α0,θ0
i ,Yt )δt

SGn0
i

(Y−
t )

−E(mi (α0,θ0
i ,Xt ))

 , (6.2.6)

where
ñ j i = [n j−1 +1,n j ]∩ [n0

i−1 +1,n0
i ].

We note that in the particular case where m j (·) = log f j (·), we get W1 is a weighted sum of the
negative Kullback-Leibler distances, and W2 → 0 as n → 0, by applying Proposition 6.8.1.1.
In our analysis, the following assumptions will be needed.

Assumption 6.2.0.1 1. Assume that for j = 1, . . . ,k +1,

m j+1(α0,θ0
j+1, x) ̸= m j (α0,θ0

j , x)

on a set of non-zero measure.

2. For any j = 1, . . . ,k +1, any α, θ j ; for i = 1, . . . ,k +1,∫
R

(m j (α,θ j , x))dFn0
i
(x) ≤

∫
R

(mi (α0,θ0
i , x))dFn0

i
(x).
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The first part of this assumption guarantees that the distributions in two neighboring segments
are different. Clearly, this is required for the change-points to be well defined, and the second
part is to ensure that the expectation of the function associates with the true parameters is the
maximum in the true sample, when we consider the particular case m j (·) = log f j (·), this as-
sumption comes directly from the distance of Kullback-Leibler, for further details, we refer to
He and Severini [2010], or when the function g (·) is independent of the index j , i.e., the same
function of all segments for example when the variables are assumed to be from normal distri-
bution and there is a change in variances and having the same mean, or conversely, so we have
all parameters are in the same set, i.e., θ j ∈Θ for any j = 1,2, . . . ,k+1, for the uncensored case,
another example if the variables are assumed to follow the Weibull’s distribution. In the M-
estimation theory, this condition is required to ensure that the true parameters are the points that
maximize the criterion function. For more details see also van der Vaart and Wellner [1996].

Assumption 6.2.0.2 Assume that

1. for j = 1, . . . ,k +1, θ j and θ0
j are contained in Θ j , where Θ j is a compact subset of Rd j ;

α and α0 are contained in Υ, where Υ is a compact subset of Rd ; here d ,d1, . . . ,dk+1 are
non-negative integers.

2. ℓ(α,θ) is second-order continuously differentiable with respect to α, θ, and there is an
interchangeability of integration and differentiation in (6.2.2).

Compactness of the parameter space is used to insure that the maximum is achievable and to
establish the consistency of the M-estimators of

n1

n
, . . . ,

nk

n
,θ1, . . . ,θk+1,α,

for discussions and details on this condition and its necessity in general model, the reader can
refer to Huber [1981] for complete data and Wang [1995] for censored data. Differentiability
of the given function is used to justify some Taylor series expansions, interchangeability of
integration and differentiation is a technical assumption used for the variance expression in
(6.4.5). The second part of the Assumption 6.2.0.2 ensures the existence of the variance of the
M-estimates. Both parts of Assumption 6.2.0.2 are relatively weak and are essentially the same
as conditions used in parametric models for censored data without change-points, see Wang
[1999].

Assumption 6.2.0.3 Assume that

1. for any j = 1, . . . ,k +1 and any integers s, t satisfying 0 ≤ s < t ≤ n,

E

 max
θ j∈Θ j ,α∈Υ

 t∑
i=s+1

k+1∑
z=1

m j (α,θ j ,Yi )δi

SGn0
z
(Y−

i )
1I{nz−1+1≤i≤nz } −E(m j (α,θ j ,Xi ))

2≤ C(t − s)r ,

where r < 2 and C is a constant.
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2. for any j = 1, . . . ,k +1 and any integers s, t satisfying n0
j−1 ≤ s < t ≤ n0

j ,

E

 max
θ j∈Θ j ,α∈Υ

 t∑
i=s+1

k+1∑
z=1

m j (α,θ j ,Yi )δi

SGn0
z
(Y−

i )
1I{nz−1+1≤i≤nz }

−
m j (α0,θ0

j ,Yi )δi

SGn0
j
(Y−

i )
−b(α,θ j ,α0,θ0

j )

2≤D(t − s)r ,

where b(α,θ j ,α0,θ0
j ) is introduced in equation (6.2.4), r < 2 and D is a constant.

Parts 1 and 2 of Assumption 6.2.0.3 are technical requirements on the behavior of the function
m j (·) between and within segments, respectively. This condition is used to ensure that the
information regarding the within- and between-segment parameters grows quickly enough to
establish consistency and asymptotic normality of the parameter estimators. Note that where
m j (·) = log f j (·) these conditions are relatively weak; it is easy to check that they are satisfied
by at least all distributions in the exponential family, for more details refer to He and Severini
[2010].

Assumption 6.2.0.4 1. The parameter φ0 is the unique root of ρ(φ) = 0.

2. The matrix C(φ0) defined in (6.4.3) is finite.

Assumption 6.2.0.5 1. Assume that (R1), in the appendix, hold for τFn0
j

and τGn0
j

for any

j = 1,2, . . . ,k +1.

2. Assume that (R2) and (R3), in the appendix, hold for any j = 1,2, . . . ,k+1 when we replace
ϕ by ψ j (l ), 1 ≤ l ≤ d +d1 +·· ·+dk+1, γ0(·) by γ j 0(·), H1(·) by H j 1(·), C(x) by C j (x) and
F(·) by Fn0

j
(·).

Assumption 6.2.0.6 Assume that for every j = 1, . . . ,k and for t > 0; S
n j

C (t ) > 0 and SGn0
j
(t ) > 0.

The first part of the Assumption 6.2.0.4 is quite classical condition in the Z-estimation theory.
The second part is used to justify the existence of variance-covariance expression. We use the
Assumption 6.2.0.5 for the SLLN and CLT of each true sub-sample in the presence of censoring.
Assumption 6.2.0.6 is imposed to justify the finiteness of some expressions when we have S

n j

C (·)
and SGn0

j
(·) in the denominator for each j .

6.3 Asymptotic results

In this section, we establish the consistency of the M-estimators by using the argmax theorem
in van der Vaart and Wellner [1996]. For reader convenience, let us recall the basic idea. If
the argmax functional is continuous with respect to some metric on the space of the criterion
functions, then convergence in distribution of the criterion functions will imply the convergence
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in distribution of their points of maximum, the M-estimators, to the maximum of the limit
criterion function. So in this section we will give our first main result; the weak consistency
of the estimators α̂, θ̂1, . . . , θ̂k+1, λ̂1, . . . , λ̂k , which it will be considered as an initial step for
the next results, where we will treat the rate of convergence and the asymptotic distribution of
the estimators α̂, θ̂1, . . . , θ̂k+1. The results presented in this section extends and complements
the theory of He and Severini [2010] in several ways. On the first hand, when all the data
are observed and the criterion function is replaced by the probability density function, i.e.,
m j (·) = log f j (·), our Theorem 6.3.0.1 becomes their Theorem 2.1 and our Theorem 6.3.0.3
becomes their Theorem 2.2. On the other hand, we consider the censored data setting in semi-
parametric models that is quite different from the framework of the last mentioned reference.
Let us recall that the estimators (α̂, θ̂1, . . . , θ̂k+1, n̂1, . . . , n̂k ) are defined in equation (6.2.1). The
following theorem gives the consistency of the model’s parameters estimators

(α̂, θ̂1, . . . , θ̂k+1, n̂1, . . . , n̂k ).

Theorem 6.3.0.1 (Consistency) Under Assumption 3.1, part 1 of Assumption 3.2, part 1 of
Assumption 3.3 and Assumption 3.6, we have, as n →∞,

λ̂i
P−→ λ0

i , θ̂ j
P−→ θ0

j and α̂
P−→ α0,

where
λ̂i = n̂i

n
for i = 1, . . . ,k and j = 1, . . . ,k +1.

Remark 6.3.0.2 It is worth noting that n̂i , i = 1, . . . ,k are not consistent. Here we consider the
consistency of the change point fractions λ̂i , i = 1, . . . ,k, in a similar spirit as in Hinkley [1970].
The weak consistency of the parameters α̂ and θ̂ j , j = 1, . . . ,k +1 is based on the classical M-
estimators techniques for the censored data in the complex setting of the multiple change-points
models.

The proof of this theorem is based on the proof of Theorem 6.3.0.1 in He and Severini [2010].
The proof of Theorem 6.3.0.1 is captured in the forthcoming Sect. 6.7.

The following theorem give the convergence rate of the estimator λ̂1, . . . , λ̂k the change-
points coefficients λ1, . . . ,λk .

Theorem 6.3.0.3 (Convergence rate) Under Assumption 3.1, part 1 of Assumption 3.2, As-
sumption 3.3 and Assumption 3.6, we have

lim
η→∞ lim

n→∞P
(
n

∥∥λ̂−λ0
∥∥∞ ≥ η)= 0,

where
λ̂= (

λ̂1, . . . , λ̂k
)

,
∥∥λ̂−λ0

∥∥∞ = max
1≤ j≤k

∣∣∣λ̂ j −λ0
j

∣∣∣ .

That is, for i = 1,2, . . . ,k,
λ̂i −λ0

i = OP

(
n−1) .
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The proof of this theorem is based on the proof of Theorem 2.2 in He and Severini [2010].
The proof of Theorem 6.3.0.3 is captured in the forthcoming Sect. 6.7.

Remark 6.3.0.4 The proof of the asymptotic distribution of λ̂1, . . . , λ̂k , should require a complex
methodology, and we leave this problem open for future research.

Remark 6.3.0.5 In the comparison of the nonparametric regression estimators, Korostelëv and
Tsybakov [1993] argued that the minimax approach is one of the correct ways. Raimondo
[1998] considered the sharp change-point problem as an extension of earlier problems in
change-point analysis related to the nonparametric regression. Raimondo [1998] proposed a
test function for the local regularity of a signal that characterizes such a point as a global maxi-
mum and developed a suboptimal wavelet estimator. Goldenshluger et al. [2008] considered the
problem of nonparametric estimation of signal change-points from indirect and noisy observa-
tions, where the estimation problem is analyzed in a general minimax framework. The authors
provide lower bounds for minimax risks and propose rate-optimal estimation procedures, one
can refer to the last reference for more details on the subject. Shiryaev [2016] considered the
change-point quickest detection problem for Brownian motion. The minimax test proposed by
Lorden [1971], is used to solve this problem. An original complete and remarkable proof of the
CUSUM statistics optimality is constructed and given in detail. Pergamenchtchikov and Tar-
takovsky [2019] established very general conditions for some models under which the weighted
Shiryaev-Roberts procedure is asymptotically optimal, in the minimax sense. In the setting of
the multiple change-points when the number of change-points in known, Bai and Perron [1998]
obtained the rate 1/n in the multiple linear regression setting, even the least-squares estimator
is consistent with the optimal rate 1/n; see Hao et al. [2013] and the references therein. Using
the maximum likelihood estimators, He and Severini [2010], obtained the same rate, while in
the nonparametric maximum likelihood approach Dumbgen et al. [1991] showed that the op-
timal rate is 1/n in the single change-point setting, which is generalized by Zou et al. [2014a]
when they fixed the number of change-points. Notice that the rate 1/n obtained in Theorem
6.3.0.3 is the minimax rate when the number of change-points is known. The rate convergence
1/n of the estimated change-points fractions plays a crucial role to obtain standard root-n

asymptotic normality of the estimated parameter φ̂.

6.4 Z-estimators

In this section, we give the Z-estimators of φ when the functions m j (·) are differentiable in φ,
in two step the first step is maximizing the equation (6.1.1) in n j , j = 1,2. . . ,k, and in the second
step, we find the solution to the estimating equation given by

ρn(α,θ1, . . . ,θk+1) = ∂ℓ

∂φ
=

k+1∑
j=1

(n̂ j − n̂ j−1)

n

∫
R
ψ j (α,θ j , x)d F̂n̂ j (x),

=
k+1∑
j=1

(λ̂ j − λ̂ j−1)ρn̂ j (α,θ j ), (6.4.1)
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where n̂ j is the maximizers of n j and ψ j (α,θ j , x) = ∂m j (α,θ j ,x)
∂φi

, i = 1, . . . ,k +2, from Υ×Θ j ×R
to Rd+d1+···+dk+1 ; satisfies

ρ(α0,θ0
1, . . . ,θ0

k+1) =
k+1∑
j=1

(n0
j −n0

j−1)

n

∫
R
ψ j (α0,θ0

j , x)dFn0
j
(x) = 0,

and, for each j = 1,2, . . . ,k +1,

ρn0
j
(α0,θ0

j ) =
∫
R
ψ j (α0,θ0

j , x)dFn0
j
(x) = 0.

Let

ρ0
n(α,θ1, . . . ,θk+1) = ∂ℓ0

∂φ
=

k+1∑
j=1

(n0
j −n0

j−1)

n

∫
R
ψ j (α,θ j , x)d F̂n0

j
(x).

=
k+1∑
j=1

(λ0
j −λ0

j−1)ρ0
n0

j
(α,θ j ).

Notice that Z-estimators include the maximum likelihood estimators, when

ψ j (φ, x) = ∂ log f j (φ, x)

∂φ
,

where f (·) is the density function, generalized method of moment estimators when

ψ j (φ, x) = h(x)−Eφh(x),

for some function h(·), asymptotic properties are given in Huber [1981], Serfling [1980], van der
Vaart and Wellner [1996] and van der Vaart [1998] among others. For the censored data, the
case

ψ j (φ, x) = ∂ log f j (φ, x)

∂φ
,

no longer correspond to the maximum likelihood estimators. Oakes [1986] referred to this
particular type of Z-estimator as the approximate maximum likelihood estimators and points out
its computational and potential robustness advantages over the classical maximum likelihood
estimators. Wang [1999] has established the strong consistency of this type of estimators. The
asymptotic normality is obtained, under restrictive conditions, by Reid [1981]. Wang [1999]
established general asymptotic normality results, which are comparable to those in Cramér
[1946], Huber [1967] and subsequent work, he provided the influence curves of a Z-estimator.
In this section, we give the asymptotic results and the rate of convergence of Z-estimators under
censored data in models with multiple change-points, after approximating the points of change
and giving the general conditions for the asymptotic normality, similar to those considered
in Wang [1999]. The main hurdle for the full development of the asymptotic properties of
Z-estimators is the work of Stute [1995] obtained the most general CLT for

∫
ϕd F̂n with an

arbitrary function ϕ(·). For any j = 1,2, . . . ,k +1, let ψ j (l )(α,θ j , ·) denote the l -th component of
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ψ j (α,θ j , ·). Replace ϕ(·) by ψ j (l )(α,θ j , ·) in (6.8.3) and (6.8.5), H0(·) (resp. H1(·), Hpn(·)) by
H j 0(·) (resp. H j 1(·), H j ,pn(·)) in (6.8.1) and (6.4.2) where

H j ,pn(y) = 1

n0
j −n0

j−1

n0
j∑

i=n0
j−1

1I{Yi≤y,δi=p}, for p = 0,1, (6.4.2)

H(·) (resp. F(·), G(·)) by Hn0
j
(·) (resp. Fn0

j
(·), Gn0

j
(·)), C(·) by C j (·) in (6.8.3) and (6.8.4) and

denote the corresponding γi (·)’s and U by γ j i (l )(·), i = 0,1,2 and U(ψ j (l )) respectively. It now
follows from Proposition 6.8.1.2, and the multivariate central limit theorem that,

p
n

∫
R
ψ j (α,θ j , x)d(F̂n0

j
−Fn0

j
)(x)

converges in distribution to a multivariate normal distribution with zero mean and covariance
matrix C j (ψ j ,α,θ j ,Fn0

j
,Gn0

j
), whose (i , l )-entry is

C j (i l )(ψ j ,α,θ j ,Fn0
j
,Gn0

j
) = E(U(ψ j (i ))U(ψ j (l )))

= E

{
[ψ j (i )(α,θ j ,Y)γ j 0(i )(Y)δ+γ j 1(i )(Y)(1−δ)−γ j 2(i )(Y)

∫
R
ψ j (i )(α,θ j , x)dF(x)]

[ψ j (l )(α,θ j ,Y)γ j 0(l )(Y)δ+γ j 1(l )(Y)(1−δ)−γ j 2(l )(Y)−
∫
R
ψ j (l )(α,θ j , x)dF(x)]

}
.

Let

C(φ) =
k+1∑
j=1

(λ0
j −λ0

j )C j (ψ j ,α,θ j ,Fn0
j
,Gn0

j
), (6.4.3)

and
∂

∂φ
ψ j (α,θ j , x) =

(
∂

∂φl
ψ j (i )(α,θ j , x)

)
i l

,

denote the (d +d1 +·· ·+dk+1)× (d +d1 +·· ·+dk+1) derivative matrix of ψ with respect to φ,
let ΓFn0

j
(t ) and Γ(t ) denote the (d +d1 +·· ·+dk+1)× (d +d1 +·· ·+dk+1) matrix with

ΓFn0
j
(t ) =

∫
∂

∂φ
ψ j (α,θ j , x) |φ=t dFn0

j
(x),

Γ(t ) =
k+1∑
j=1

n0
j −n0

j−1

n
ΓFn0

j
(t ), (6.4.4)

Σ= [
Γ(φ0)

]−1
C(φ0)

[
Γ(φ0)⊤

]−1
, (6.4.5)

where A⊤ denotes the transpose of a matrix A.
The following theorem gives the consistency of φ̂.

Theorem 6.4.0.1 Under the Assumptions of Theorem 6.3.0.3, the function ρ(·) is continuous
and for every ϵ> 0, for n →∞,

sup
φ∈Φ

∥∥ρ0
n(φ)−ρ(φ)

∥∥ P−→ 0,

inf
φ:∥φ0∥≥ϵ

∥∥ρ(φ)
∥∥> 0 = ∥∥ρ(

φ0)∥∥ .

Then any sequence of estimators φ̂ such that ρn
(
φ̂

)= oP(1) converges in probability to φ0.
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The proof of Theorem 6.4.0.1 is captured in the forthcoming Sect. 6.7.
The conditions of the last theorem are given in van der Vaart [1998] when the data are complete
and without change in distribution, here we give the conditions under the presence of censoring
where we use the Kaplan-Meier integral, the first condition of this theorem is satisfies when the
families

F j = {ψ j (α,θ j , ·),α ∈Υ,θ j ∈Θ j }

are Glivenko-Cantelli and the functions Fn0
j
(·) are continuous for each j = 1,2, . . . ,k+1 for more

detail see Stute [1995] and Bae and Kim [2003], compactness of the set Φ and the continuity of
ψ j (·) for any j = 1,2, . . . ,k +1 with the first part of Assumption 6.2.0.4 implies the condition 2
of Theorem 6.4.0.1.
In the next theorem, we will give weaker conditions than those in the previous theorem, these
conditions are introduced in Pakes and Pollard [1989]. Note that the first condition is to insure
the estimator φ̂ is taken as any value that comes close enough to provide a global minimum
for ∥ρn(·)∥, since φ0 is included in the set over which the minimum is taken, ∥ρn(φ̂)∥ cannot
be much bigger than ∥ρn(φ0)∥. If the quantity ρn(φ0) is eventually close to zero, the second
assumption on ρ(φ0) implies that ρn(φ̂) must also get close to zero. If small values of ∥ρn(φ)∥
can occur only near φ0, this forces φ̂ to be close to φ0 by the third condition.

Theorem 6.4.0.2 Under the following conditions

(i) ∥∥ρn
(
φ̂

)∥∥≤ oP(1)+ inf
φ∈Φ

∥ρn(φ)∥;

(ii)
ρn(φ0) = oP(1);

(iii)
sup

∥φ0∥>η
∥ρn(φ)∥−1 = OP(1) for each η> 0.

Then any sequence of estimators φ̂ such that ρn
(
φ̂

)= oP(1) converges in probability to φ0.

The proof of Theorem 6.4.0.2 is captured in the forthcoming Sect. 6.7.
The next theorem gives conditions under which φ̂, which is now assumed to converge in

probability to φ0, satisfies a central limit theorem like a Z-estimator. The argument breaks
naturally into two steps. First we establish

p
n-consistency by means of a comparison between

∥ρ0
n(φ̂)∥ and ∥ρ0

n(φ0)∥. Informally stated, the new equicontinuity condition (iii) implies that

∥ρ(φ)∥ ≤ OP(∥ρn(φ)∥)+OP

(∥∥ρn
(
φ0)∥∥)+oP

(
n−1/2)

uniformly near φ0. Since φ̂ comes close to minimizing ∥ρn(·)∥, the quantity ∥ρn(φ̂)∥ cannot
be much larger than ∥ρn(φ0)∥, which is of order OP(n−1/2). Approximate linearity of ρ(·) in
a neighborhood of φ0 transfers the same rate of convergence to φ̂−φ0. The argument for the
second step need only values of φ in a OP

(
n−1/2

)
neighborhood of φ0 (see page 1040 in Pakes
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and Pollard [1989]). The combination of conditions (ii) and (iii) shows that ρ0
n(·) is uniformly

well approximated by a linear function Ln(·). The φ∗
n that minimizes ∥Ln(·)∥ has an explicit

form, from which asymptotic normality of
p

n(φ∗
n −φ0) is easily established. A comparison

between ∥ρn(φ∗
n)∥ and ∥ρ0

n(φ̂)∥ shows that φ̂ must lie within OP(n−1/2) of φ∗
n , which implies

the desired central limit theorem.
The following theorem provides the central limit theorem for the estimator φ̂.

Theorem 6.4.0.3 Let φ̂ be a consistent estimator of φ0, under the Assumptions of Theorem
6.3.0.3, Assumption 6.2.0.4 and

(i) ∥ρ0
n(φ̂)∥ ≤ oP(n−1/2);

(ii) ρ(·) is differentiable at φ0 with a derivative matrix Ω of full rank;

(iii) for every sequence ηn of positive numbers that converges to zero,

sup
∥φ−φ0∥<ηn

∥ρ0
n(φ)−ρ(φ)−ρ0

n(φ0)∥
n−1/2 +∥ρ0

n(φ)∥+∥ρ(φ)∥ = oP(1);

(iv) φ0 is an interior point of Φ,

then we have, as n →∞,

p
n(φ̂−φ0)⇝N

(
0,(Ω−1)C(φ0)(Ω−1)⊤

)
.

The proof of Theorem 6.4.0.3 is captured in the forthcoming Sect. 6.7.
From Proposition 6.8.1.2 the central limit theorem follows. Note that if we can interchange
between the integration and differentiation in (6.4.5), we take

Ω= Γ(φ0).

The proof of Theorem 6.4.0.3 is similar to the proof in Pakes and Pollard [1989] but in our case,
ρ0

n(·) (resp ρ0
n0

j
(·), j = 1,2, . . . ,k +1) is not available, we have only ρn(·) (respectively ρn̂ j (·), j =

1,2, . . . ,k+1), the result expression (6.7.4) in Lemma 6.7.0.4 gives us the asymptotic equivalence
when n is large enough. The condition (i) and (iii) are automatically fulfilled when

(i)
′ ∥∥∥∥ρ0

n0
j
(α,θ j )

∥∥∥∥≤ oP(n−1/2), j = 1,2, . . . ,k +1;

(iii)
′

sup
∥(α,θ j )−(α0,θ0

j )∥<ηn

∥∥∥∥ρ0
n0

j
(α,θ j )−ρn0

j
(α,θ j )−ρ0

n0
j
(α0,θ0

j )

∥∥∥∥= oP(n−1/2), j = 1,2, . . . ,k +1.
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Note that for the conditions (i) (resp (i)
′
) and (iii) (resp (iii)

′
) which they are assumed for ρ0

n(·)
(respectively ρ0

n0
j
(·)) the same under result in Lemma 6.7.0.4, we can show this conditions are

required also for ρn(·) (respectively ρn̂ j (·)) and conversely. In the next theorem, we give the
asymptotic normality of

p
n(φ̂−φ0) for φ̂ as an M-estimator or Z-estimator the proof is much

similar.

Theorem 6.4.0.4 (Asymptotic normality) Under part 2 of Assumption 6.2.0.2 for φ in a
neighborhood of φ0, and let Γ(φ0) defined in (6.4.4) be a finite and non-singular (d +d1 +
·· ·+dk+1)× (d +d1 + ·· ·+dk+1) matrix. Assume that the assumptions of Lemma 6.7.0.5 with
part 1 of Assumption 6.2.0.5 hold for

s(φ, x) =
(
∂

∂φl
ψ j (i )(α,θ j , x)

)
i l

, 1 ≤ i , l ≤ d +d1 +·· ·+dk+1,

for any j , and part 2 of Assumption 6.2.0.5. Under Assumption 6.2.0.3 and Assumption 6.2.0.4,
any sequence of Z-estimates φ̂ satisfying

φ̂
P→φ0

is asymptotically normal with p
n(φ̂−φ0)⇝N(0,Σ),

where Σ is defined in (6.4.5).

The proof of Theorem 6.4.0.4 is captured in the forthcoming Sect. 6.7.

Remark 6.4.0.5 Change-point detection has received enormous attention due to the emergence
of an increasing amount of temporal data. In the present work, we are mainly concerned with
the estimation of the model parameters. We have assumed that the number of changes in the
sample is known, which is not the case in real application. Without the need to know the number
of change-points in advance, Zou et al. [2014b] proposed a nonparametric maximum likelihood
approach to detecting multiple change-points. It is worth noting that the determination of the
number of change-points k in a dataset has been crucial to multiple change-points analysis for
a long time. It is often approached as a model selection problem, since k drives the model di-
mension. we can use the binary segmentation (BinSeg) method proposed in Vostrikova [1981],
which is a “top down” procedure, in the sense that one tests all the data to determine if there is
at least one change-point and iterates the procedure in the intervals immediately to the “left”
and “right” of the most recently detected change-point. This procedure is widely used moti-
vated by the low computational complexity and the is conceptually easy to implement compared
to the Exhaustive Search as described by Niu et al. [2016] in Section 3.1. Each stage of Bin-
Seg involves search for a single change-point, which means that if a given segment contains
multiple change-points in certain unfavourable configurations, BinSeg may fail to perform ad-
equately on it, as it attempts to fit the “wrong” model. Fryzlewicz [2014] shows that relatively
restrictive theoretical assumptions are needed for BinSeg to offer near-optimal performance
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in terms of the accuracy of estimation of the change-point locations, refer to Korkas and Fry-
zlewicz [2017] and Fryzlewicz [2018]. In the last reference a new solution is proposed giving
a ‘tail-greedy’, bottom-up transform for one-dimensional data, which results in a nonlinear but
conditionally orthonormal, multiscale decomposition of the data with respect to an adaptatively
chosen unbalanced Haar wavelet basis, which avoids the disadvantages of the classical divi-
sive BinSeg. When the number of changes is unknown, Lavielle [1999], Lavielle and Ludeña
[2000] proposed its estimation by minimizing a penalized contrast function. Very recently, Zou
et al. [2020] proposed a data-driven selection criterion that is applicable to most kinds of pop-
ular change-point detection methods, including in particular the binary segmentation and the
optimal partitioning algorithms. The main idea is to select the number of change-points that
minimizes the squared prediction error, which measures the fit of a specified model for a new
sample. The authors investigated a unified parametric framework which includes classical uni-
variate or multivariate location and scale problems, ordinary least-squares, generalized linear
models, and many others as special cases, provided that the corresponding objective (likelihood
or loss) function can be recast into their asymptotically equivalent least-squares problems. In
Zou et al. [2014c], the number of change-points is determined by the Bayesian information cri-
terion and the locations of the change-points can be estimated via the dynamic programming
algorithm and the use of the intrinsic order structure of the likelihood function. Under some
general conditions, Zou et al. [2014c] showed that the new method provides consistent estima-
tion with an optimal rate. We refer to the last reference for more discussions. For more details,
we refer to Truong et al. [2020], where the authors presented a selective survey of algorithms
for the offline detection of multiple change-points.

6.5 Maximum likelihood estimators

In this section we will consider the maximum likelihood estimators in models with multiple
change points in the censored data framework. To unburden our notation a bit, we assume that
the censoring variables C are independent and identically distributed with distribution function
G(·) and density function g(·), with respect to the Lebesgue measure λ. Let the lifetime X

and the censoring time C be positive continuous random variables assumed to be independent.
Recall that, the distribution function of the lifetime X is F(α,θ, ·) with density function f (α,θ, ·),
with respect to the Lebesgue measure λ, where α and θ are the unknown parameters to be
estimated. In the random censorship from the right model, one observes the pairs(Y,δ), where
Y = min(X,C) and δ = 1I{X ⩽ C}. Let (Yi ,δi ) ,1⩽ i ⩽ n, denote a random sample of (Y,δ) that
one observes, and Y(1) < ·· · < Y(m) denote the m distinct ordered values of Y’s. When there are
ties among the Y′s, we have m < n. The likelihood function for this sample is given by

L (α,θ) =
n∏

i=1
fY,∆

(
α,θ,δi , yi

)
,

where fY,∆(·) is the density function of the couple (Y,∆) with respect to the product measure
λ⊗µ with λ is the measure of Lebesgue and µ is the counting measure on the set {0,1}. The
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likelihood function can be rewritten as follows

L (α,θ) =
n∏

i=1
fY,∆

(
α,θ,δi , yi

)= n∏
i=1

(
f
(
α,θ,δi , yi

)
G

(
yi

))δi
(
g
(
yi

)
(1−F

(
α,θ,δi , yi

)
)
)1−δi .

(6.5.1)
By the hypothesis that the distribution of the censored data is independent of the unknown
parameters α and θ so the maximization of (α,θ) 7→ L (α,θ) is equivalent to the maximization
of the pseudo-likelihood given by

L(α,θ) =
n∏

i=1

(
f
(
α,θ, yi

))δi
(
1−F

(
α,θ, yi

))1−δi . (6.5.2)

Now, we consider model with known k change in the distribution, i.e.,

Xi ∼ F(α,θ, x), n j−1 +1 ≤ i ≤ n j , j = 1, . . . ,k +1; i = 1, . . . ,n.

In this case, the likelihood function given in (6.5.2), can be written as follows

L(α,θ1, . . . ,θk+1,n1, . . . ,nk ) =
k+1∏
j=1

n j∏
i=n j−1+1

(
f
(
α,θ j , yi

))δi
(
1−F

(
α,θ j , yi

))1−δi ,

which implies that the log-likelihood function is given by

ℓ ≡ ℓ (α,θ1, . . . ,θk+1,n1, . . . ,nk )

= 1

n

k+1∑
j=1

n j∑
i=n j−1+1

{
δi log f

(
α,θ j , yi

)+ (1−δi ) log(1−F
(
α,θ j , yi

)
)
}

, (6.5.3)

where F
(
α,θ j , y

)> 0 for all j = 1, . . . ,k+1. The maximization is taken with respect to the vector
(α,θ1, . . . ,θk+1,n1, . . . ,nk ), so the multiplication by the factor 1/n does not affect the optimiza-
tion problem, which is needed for asymptotic results.
Although only two examples will be given here, they stand as archetypes for a variety of para-
metric families that can be investigated in a similar way. Let us specify the log-likelihood
function for the exponential and Gaussian random variables.

Exponential distribution

We consider the following model

Xi ∼ Exp(θ j ), n j−1 +1 ≤ i ≤ n j , j = 1, . . . ,k +1; i = 1, . . . ,n.

Ci ∼ Exp(β j ), n j−1 +1 ≤ i ≤ n j , j = 1, . . . ,k +1; i = 1, . . . ,n, (6.5.4)

where β= (β1, . . . ,βk+1) is assumed to be known. The log-likelihood function is given by

ℓ (θ1, . . . ,θk+1,n1, . . . ,nk ) = 1

n

k+1∑
j=1

n j∑
i=n j−1+1

{
δi log

(
θ j e−θ j yi

)
+ (1−δi ) log

(
e−θ j yi

)}
(6.5.5)

= 1

n

k+1∑
j=1

n j∑
i=n j−1+1

{
δi log

(
θ j

)−δiθ j yi − (1−δi )θ j yi
}

= 1

n

k+1∑
j=1

n j∑
i=n j−1+1

{
δi log

(
θ j

)−θ j yi
}

,
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where yi are the observed values.

Normal distribution

We now consider the uncensored case, where the variables are normal with change only in mean
from segment to segment and fixed variance, this means that the change occurs only in θ j and
α≡ 1, i.e.,

Xi ∼N (θ j ,1), n j−1 +1 ≤ i ≤ n j , j = 1, . . . ,k +1; i = 1, . . . ,n. (6.5.6)

The log-likelihood function in this case is given by

ℓ (θ1, . . . ,θk+1,n1, . . . ,nk ) =− 1

n

k+1∑
j=1

n j∑
i=n j−1+1

(xi −θ j )2

2
.

6.6 Numerical results

This section is concerned with the evaluation of the finite sample performance of the proposed
estimation procedure using the the maximum likelihood in (6.5.2) with samples of different
sizes and different censoring rate. We provide numerical illustrations regarding the bias, the
variance and the root mean-squared error RMSE. The computing program codes were imple-
mented in R. In our simulation, we choose one sample of n = 1000 observations with 10 change-
points, i.e., k = 10 with true location;

nλ0 = (50,150,240,330,410,520,610,710,820,930)

and we consider two cases of true within-parameter

a. The first case is:

θ0 = (5,3,1,6,2,7,3,1,8,2,7). (6.6.1)

b. The second case is:

θ0 = (0.5,0.3,1,1.6,0.2,0.75,0.35,1,0.5,2,1.5). (6.6.2)

We will consider different intensities of censoring in the sample. The censoring random vari-
ables C1, . . . ,Cn are generated from distribution depending on some parameter β = (β1, . . . ,β11)

calibrated to attain the desired censoring rate (5%, 10% or 30%). The three scenarios of the
censoring rate (proportion) (cr) are given for the first case of true within-parameter as follows.

(i) cr = 5%, with censoring random variables

Ci ∼ Exp(β j ), n j−1 +1 ≤ i ≤ n j , j = 1, . . . ,k +1; i = 1, . . . ,n,

where β= (0.26,0.16,0.05,0.32,0.11,0.37,0.16,0.05,0.42,0.11,0.37);
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(ii) cr = 10%, with censoring random variables

Ci ∼ Exp(β j ), n j−1 +1 ≤ i ≤ n j , j = 1, . . . ,k +1; i = 1, . . . ,n,

where β= (0.56,0.33,0.11,0.67,0.22,0.78,0.33,0.11,0.89,0.22,0.78);

(iii) cr = 30%, with censoring random variables

Ci ∼ Exp(β j ), n j−1 +1 ≤ i ≤ n j , j = 1, . . . ,k +1; i = 1, . . . ,n,

where β= (2.14,1.29,0.43,2.57,0.86,3,1.29,0.43,3.43,0.86,3).

The following figures display the simulated data.

The simulation results are reported in the following Tables 6.1-6.8.

cr=5%
Parameter True value Mean BIAS SD RMSE

n1 50 41.889 -8.111 8.17 11.512
n2 150 149.757 -0.243 0.938 0.969
n3 240 240.086 0.086 0.5 0.507
n4 330 329.256 -0.744 1.794 1.942
n5 410 413.289 3.289 1.137 3.48
n6 520 524.486 4.486 1.591 4.76
n7 610 607.943 -2.057 0.248 2.071
n8 710 707.961 -2.039 1.783 2.708
n9 820 819.895 -0.105 0.531 0.541
n10 930 930.058 0.058 0.246 0.252
θ1 5 5.018 0.018 0.278 0.279
θ2 3 3.153 0.153 0.093 0.179
θ3 1 0.952 -0.048 0.024 0.053
θ4 6 5.665 -0.335 0.143 0.363
θ5 2 2.104 0.104 0.055 0.118
θ6 7 6.747 -0.253 0.167 0.302
θ7 3 2.943 -0.057 0.083 0.101
θ8 1 0.83 -0.17 0.019 0.17
θ9 8 6.217 -1.783 0.181 1.791
θ10 2 2.257 0.257 0.05 0.262
θ11 7 7.398 0.398 0.206 0.448

Table 6.1: Maximum likelihood estimator for censored case sample size 1000, Exponential distribution,
cr=5%.
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cr=10%
Parameter True value Mean BIAS SD RMSE

n1 50 44.402 -5.598 10.202 11.637
n2 150 149.192 -0.808 1.794 1.967
n3 240 240.285 0.285 1.536 1.562
n4 330 328.762 -1.238 2.248 2.567
n5 410 413.502 3.502 1.594 3.847
n6 520 526.493 6.493 2.786 7.065
n7 610 607.891 -2.109 0.35 2.137
n8 710 708.551 -1.449 2.156 2.598
n9 820 819.698 -0.302 0.931 0.978
n10 930 930.252 0.252 1.409 1.431
θ1 5 4.712 -0.288 0.324 0.433
θ2 3 2.978 -0.022 0.114 0.116
θ3 1 0.903 -0.097 0.034 0.102
θ4 6 5.408 -0.592 0.211 0.628
θ5 2 2 0 0.075 0.075
θ6 7 6.349 -0.651 0.218 0.686
θ7 3 2.758 -0.242 0.11 0.265
θ8 1 0.79 -0.21 0.027 0.211
θ9 8 5.934 -2.066 0.223 2.077
θ10 2 2.136 0.136 0.068 0.152
θ11 7 7.029 0.029 0.276 0.278

Table 6.2: Maximum likelihood estimator for censored case sample size 1000, Exponential distribution,
cr=10%.
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cr=30%
Parameter True value Mean BIAS SD RMSE

n1 50 46.634 -3.366 11.468 11.952
n2 150 147.882 -2.118 3.559 4.142
n3 240 240.709 0.709 3.765 3.832
n4 330 327.203 -2.797 3.874 4.778
n5 410 415.482 5.482 4.573 7.139
n6 520 526.44 6.44 5.595 8.531
n7 610 607.617 -2.383 0.808 2.516
n8 710 709.498 -0.502 2.976 3.018
n9 820 818.8 -1.2 3.079 3.304
n10 930 930.896 0.896 3.987 4.086
θ1 5 3.689 -1.311 0.412 1.374
θ2 3 2.318 -0.682 0.161 0.7
θ3 1 0.699 -0.301 0.051 0.304
θ4 6 4.284 -1.716 0.346 1.75
θ5 2 1.56 -0.44 0.119 0.455
θ6 7 5.014 -1.986 0.342 2.014
θ7 3 2.121 -0.879 0.169 0.894
θ8 1 0.613 -0.387 0.042 0.388
θ9 8 4.683 -3.317 0.321 3.332
θ10 2 1.658 -0.342 0.105 0.357
θ11 7 5.481 -1.519 0.456 1.585

Table 6.3: Maximum likelihood estimator for censored case sample size 1000, Exponential distribution,
cr=30%.
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The uncensored case with exponential distribution
Parameter True value Mean BIAS SD RMSE

n1 50 51.99 1.99 7.333 7.598
n2 150 151.035 1.035 4.612 4.727
n3 240 239.578 -0.422 1.711 1.762
n4 330 330.995 0.995 4.8 4.902
n5 410 409.522 -0.478 3.634 3.665
n6 520 521.002 1.002 7.534 7.601
n7 610 611.214 1.214 4.83 4.98
n8 710 709.687 -0.313 1.23 1.269
n9 820 820.649 0.649 2.977 3.047
n10 930 929.143 -0.857 3.341 3.449
θ1 5 5.327 0.327 0.793 0.858
θ2 3 2.992 -0.008 0.309 0.309
θ3 1 0.994 -0.006 0.109 0.109
θ4 6 6.162 0.162 0.705 0.724
θ5 2 1.975 -0.025 0.231 0.232
θ6 7 7.222 0.222 0.754 0.786
θ7 3 3.015 0.015 0.347 0.347
θ8 1 0.995 -0.005 0.102 0.102
θ9 8 8.16 0.16 0.799 0.814
θ10 2 1.995 -0.005 0.196 0.196
θ11 7 7.177 0.177 0.913 0.93

Table 6.4: Maximum likelihood estimator for uncensored case sample size 1000, Exponential distribu-
tion.
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cr=5%
Parameter True value Mean BIAS SD RMSE

n1 50 51.806 1.806 1.101 2.115
n2 150 150.306 0.306 0.813 0.869
n3 240 240.098 0.098 0.669 0.676
n4 330 328.851 -1.149 0.486 1.247
n5 410 410.159 0.159 0.722 0.739
n6 520 516.455 -3.545 4.788 5.958
n7 610 610.061 0.061 0.247 0.254
n8 710 709.884 -0.116 0.429 0.444
n9 820 820.073 0.073 0.325 0.333
n10 930 962.175 32.175 6.143 32.756
θ1 0.5 0.452 -0.048 0.014 0.049
θ2 0.3 0.274 -0.026 0.006 0.026
θ3 1 0.901 -0.099 0.021 0.1
θ4 1.6 1.608 0.008 0.037 0.038
θ5 0.2 0.199 -0.001 0.005 0.005
θ6 0.75 0.708 -0.042 0.019 0.046
θ7 0.35 0.331 -0.019 0.009 0.02
θ8 1 1.09 0.09 0.025 0.094
θ9 0.5 0.496 -0.004 0.01 0.011
θ10 2 1.852 -0.148 0.035 0.151
θ11 1.5 1.315 -0.185 0.053 0.192

Table 6.5: Maximum likelihood estimator for censored case sample size 1000, Exponential distribution,
cr=5%.
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cr=10%
Parameter True value Mean BIAS SD RMSE

n1 50 51.267 1.267 2.348 2.668
n2 150 150.536 0.536 1.206 1.32
n3 240 240.3 0.3 1.574 1.602
n4 330 329.284 -0.716 1.276 1.463
n5 410 410.441 0.441 1.492 1.556
n6 520 517.234 -2.766 5.228 5.915
n7 610 610.114 0.114 0.347 0.366
n8 710 709.815 -0.185 0.568 0.597
n9 820 820.118 0.118 0.387 0.404
n10 930 959.984 29.984 8.658 31.209
θ1 0.5 0.43 -0.07 0.019 0.072
θ2 0.3 0.26 -0.04 0.008 0.04
θ3 1 0.854 -0.146 0.03 0.148
θ4 1.6 1.512 -0.088 0.07 0.111
θ5 0.2 0.188 -0.012 0.007 0.014
θ6 0.75 0.671 -0.079 0.026 0.082
θ7 0.35 0.312 -0.038 0.012 0.039
θ8 1 1.035 0.035 0.034 0.049
θ9 0.5 0.471 -0.029 0.014 0.032
θ10 2 1.759 -0.241 0.05 0.246
θ11 1.5 1.251 -0.249 0.072 0.258

Table 6.6: Maximum likelihood estimator for censored case sample size 1000, Exponential distribution,
cr=10%.
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cr=30%
Parameter True value Mean BIAS SD RMSE

n1 50 50 0 4.247 4.247
n2 150 151.532 1.532 2.612 3.028
n3 240 242.759 2.759 6.564 7.12
n4 330 329.113 -0.887 1.923 2.117
n5 410 410.806 0.806 3.192 3.292
n6 520 517.033 -2.967 7.82 8.364
n7 610 610.573 0.573 1.508 1.613
n8 710 710.099 0.099 3.118 3.119
n9 820 819.151 -0.849 1.898 2.079
n10 930 953.294 23.294 15.092 27.756
θ1 0.5 0.34 -0.16 0.028 0.162
θ2 0.3 0.202 -0.098 0.013 0.098
θ3 1 0.67 -0.33 0.048 0.332
θ4 1.6 1.19 -0.41 0.084 0.417
θ5 0.2 0.144 -0.056 0.01 0.056
θ6 0.75 0.526 -0.224 0.036 0.226
θ7 0.35 0.24 -0.11 0.018 0.11
θ8 1 0.805 -0.195 0.055 0.202
θ9 0.5 0.36 -0.14 0.022 0.14
θ10 2 1.362 -0.638 0.095 0.644
θ11 1.5 0.984 -0.516 0.137 0.533

Table 6.7: Maximum likelihood estimator for censored case sample size 1000, Exponential distribution,
cr=30%.
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The uncensored case with exponential distribution
Parameter True value Mean BIAS SD RMSE

n1 50 52.22 2.22 7.01 7.353
n2 150 149.176 -0.824 4.311 4.389
n3 240 239.614 -0.386 11.84 11.847
n4 330 330.306 0.306 1.468 1.5
n5 410 409.383 -0.617 3.368 3.424
n6 520 521.288 1.288 7.961 8.065
n7 610 609.221 -0.779 5.202 5.26
n8 710 711.774 1.774 9.263 9.431
n9 820 819.397 -0.603 2.822 2.886
n10 930 935.153 5.153 17.891 18.618
θ1 0.5 0.53 0.03 0.079 0.085
θ2 0.3 0.296 -0.004 0.029 0.03
θ3 1 0.999 -0.001 0.115 0.115
θ4 1.6 1.673 0.073 0.184 0.199
θ5 0.2 0.2 0 0.022 0.022
θ6 0.75 0.766 0.016 0.075 0.076
θ7 0.35 0.344 -0.006 0.041 0.041
θ8 1 1.038 0.038 0.112 0.119
θ9 0.5 0.493 -0.007 0.046 0.047
θ10 2 2.077 0.077 0.23 0.243
θ11 1.5 1.462 -0.038 0.246 0.249

Table 6.8: Maximum likelihood estimator for uncensored case sample size 1000, Exponential distribu-
tion.

After we consider the case of complete data, i.e., Yi = Xi and δi = 1 for all i = 1, . . . ,n in the
same model given in (6.5.4), the log-likelihood in (6.5.5) is written in this form

ℓ (θ1, . . . ,θk+1,n1, . . . ,nk ) = 1

n

k+1∑
j=1

n j∑
i=n j−1+1

{
log

(
θ j

)−θ j yi
}

,

with the same true location λ0 and the same true within-parameters θ0, we have the following
results in Table 6.4.
Finally, consider the case of normal distribution for complete data model given in (6.5.6), with
sample size n = 1000 with 10 change-points, with true location given by

nλ= (70,160,250,340,440,540,630,730,820,920)

and the true within-parameter is given

θ= (−5,3,0,4,−1,3,−3,10,4,−2,0).
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The results are reported in Table 6.9.

The uncensored case with normal distribution
Parameter True value Mean BIAS SD RMSE

n1 70 70 0 0 0
n2 160 160.003 0.003 0.55 0.55
n3 250 249.998 -0.002 0.24 0.24
n4 340 340.001 0.001 0.104 0.104
n5 440 440.002 0.002 0.268 0.268
n6 540 540.002 0.002 0.044 0.044
n7 630 630 0 0 0
n8 730 730.001 0.001 0.07 0.07
n9 820 820 0 0.044 0.044
n10 920 920.048 0.048 1.301 1.302
θ1 -5 -5.004 -0.004 0.123 0.123
θ2 3 2.996 -0.004 0.105 0.105
θ3 0 -0.003 -0.003 0.104 0.104
θ4 4 4.004 0.004 0.106 0.106
θ5 -1 -1.005 -0.005 0.097 0.097
θ6 3 2.999 -0.001 0.099 0.099
θ7 -3 -2.997 0.003 0.103 0.103
θ8 10 9.995 -0.005 0.095 0.095
θ9 4 3.997 -0.003 0.103 0.103
θ10 -2 -2.004 -0.004 0.098 0.099
θ11 0 0.003 0.003 0.112 0.112

Table 6.9: Maximum likelihood estimator for uncensored case sample size 1000, normal distribution.

From tables and figures, the best results are obtained when the data is complete, and the re-
sults in the censoring case are satisfactory when the censoring rate is moderate 5%, 10% and
30% and the performance are deteriorated when the censoring rate increase. The follow-
ing figures are computed for the three rates of censoring and for complete data for model
given in (6.5.4) with 1000 replicate from samples with sizes from 1000 to 10000 i.e., size =
(70,90,90,90,100,100,90,100,90,100,80)∗k; k = 1, . . . ,10,. By inspecting Figures 6.1-6.6 for
the first case (6.6.1) and Figures 6.7-6.12 for the second one (6.6.2), one can see that as in
any other inferential context, the greater the sample size, the better. In the literature, it is
commonly used two or three changes in the sample for the finite sample experiments. In the
present simulations, we have optimized the likelihood criterion with respect to 21 parameters
(n1, . . . ,n10,θ1, . . . ,θ11) simultaneously, including 10 changes in the sample, which has a com-
putational cost. This can be circumvented by using the penalized likelihood criterion. In order
to extract methodological recommendations for the use of the procedures proposed in this work,
it will be interesting to conduct extensive Monte Carlo experiments to compare our procedures
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Figure 6.1: Bias of n̂ j , j = 1, . . . ,10.

with other scenarios presented in the literature, but this would go well beyond the scope of the
present paper.
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Figure 6.2: Standard deviation of n̂ j , j = 1, . . . ,10.
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Figure 6.4: Bias of θ̂ j , j = 1, . . . ,11.
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Figure 6.5: Standard deviation of θ̂ j , j = 1, . . . ,11.
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Figure 6.6: Root of MSE of θ̂ j , j = 1, . . . ,11.
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Figure 6.10: Bias of θ̂ j , j = 1, . . . ,11.
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Figure 6.11: Standard deviation of θ̂ j , j = 1, . . . ,11.
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Figure 6.12: Root of MSE of θ̂ j , j = 1, . . . ,11.

225



CHAPTER 6. ASYMPTOTIC PROPERTIES OF M-ESTIMATORS BASED ON
ESTIMATING EQUATIONS AND CENSORED DATA IN SEMI-PARAMETRIC MODELS

WITH MULTIPLE CHANGE POINTS

6.7 Mathematical developments

This section is devoted to the proofs of our results. The previously defined notation continues
to be used below.
The proof of Theorem 6.3.0.1 will based on the Lemma 6.7.0.1 and Lemma 6.7.0.2. The fol-
lowing lemma gives a bound for the term W1 given in equation (6.2.5).

Lemma 6.7.0.1 Under the Assumption 3.1 and the first part of Assumption 3.2, there exist two
positive constants C1 > 0 and C2 > 0 such that, for any λ and φ, we have

W1 ≤−max{C1∥λ−λ0∥∞,C2ϱ(φ,φ0)},

where
∥λ−λ0∥∞ = max

j
|λ j −λ0

j | and ϱ(φ,φ0) = max
j

|b(α,θ j ,α0,θ0
j )|.

Proof of Lemma 6.7.0.1

The proof of this lemme follows the similar arguments used in the proof of Lemma 3.1 in He
and Severini [2010]. Recall that

b(α,θ j ,α0,θ0
i ) = E(m j (α,θ j ,Xi ))−E(mi (α0,θ0

i ,Xi ))

=
∫
R

[m j (α,θ j , x)−mi (α0,θ0
i , x)]dFn0

i
(x).

Let us define, for i = 1,2, . . . ,k,

hi (β,φ0) = sup
1≤ j≤k

sup
θ j∈Θ j

sup
α∈Υ

[βb(α,θ j ,α0,θ0
i+1)+ (1−β)b(α,θ j ,α0,θ0

i )],

where β ∈ [0,1]. We have

hi (0,φ0) = hi (1,φ0) = 0 for i = 1,2, . . . ,k.

One can check that hi (β,φ0) is a convex function with respect to β for any i = 1,2, . . . ,k. Let

Hi (φ0) = 2hi (1/2,φ0).

It follows from the Assumption 6.2.0.1 that Hi (φ0) < 0. If we let

H(φ0) = max
1≤i≤k

Hi (φ0),

then we have H(φ0) < 0. Let
∆0
λ = min

1≤ j≤k−1
|λ0

j+1 −λ0
j |.

Consider the change-point configuration λ in such a way that

∥λ−λ0∥∞ ≤∆0
λ/4.
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For any j = 1,2, . . . ,k, there are two cases: a candidate change-point fraction λ j may be on the
left or on the right of the true change-point fraction λ0

j . For any j with λ j on the right of λ0
j , we

have that λ j−1 ≤ λ0
j ≤ λ j . Then

W1 ≤
n j , j+1

n
b(α,θ j ,α0,θ0

j+1)+ n j j

n
b(α,θ j ,α0,θ0

j ).

If we define
β j , j+1 =

n j , j+1

n j , j+1 +n j j
,

the case ∥λ−λ0∥∞ ≤∆0
λ

/4 gives that β j , j+1 ≤ 1/2 and

W1 ≤ (λ j −λ0
j )H(φ0).

For any j with λ j on the left of λ0
j , we have that λ j ≤ λ0

j ≤ λ j+1. Similarly, we define

β j , j−1 =
n j , j−1

n j , j−1 +n j j
,

we get β j , j−1 ≤ 1/2 and
W1 ≤ (λ0

j −λ j )H(φ0).

Therefore, if ∥λ−λ0∥∞ ≤∆0
λ

/4, we readily obtain that

W1 ≤ ∥λ−λ0∥∞H(φ0).

On the other hand, we have

W1 ≤ min
1≤ j≤k+1

b(α,θ j ,α0,θ0
j )

n j j

n
=− max

1≤ j≤k+1
|b(α,θ j ,α0,θ0

j )|n j j

n
.

For any j , we have n j j

n ≥∆0
λ

/2, so we infer that

W1 ≤−1

2
∆0
λϱ(φ,φ0).

Now, consider the other case of change-point fraction configuration λ, where

∥λ−λ0∥∞ >∆0
λ/4.

It is obvious that there exists a pair of integers (i , j ) such that ni j ≥ n∆0
λ

/4, ni , j+1 ≥ n∆0
λ

/4 and
ni j ≥ ni , j+1. Let

βi , j+1 =
ni , j+1

ni , j+1 +ni j
.

For any φ, we have

W1 ≤
ni , j+1 +ni j

n
[βi , j+1b(α,θi ,α0,θ0

j+1)+ (1−βi , j+1)b(α,θi ,α0,θ0
j )]

≤ 1

2

(
∆0
λ

2

)2

H(φ0).
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Combining the results from the two cases of ∥λ−λ0∥∞ ≤∆0
λ

/4 and ∥λ−λ0∥∞ >∆0
λ

/4, it follows
that

W1 ≤ 1

2

(
∆0
λ

2

)2

H(φ0)∥λ−λ0∥∞,

and

W1 ≤−∆
0
λ

2
min

[
ϱ(φ,φ0),−∆

0
λ

4
H(φ0)

]
. (6.7.1)

Note that (6.7.1) can be simplified. Let us define

ρ(φ,φ0) = max
1≤ j≤k+1

sup
θ j∈Θ j

sup
α∈Υ

|b(α,θ j ,α0,θ0
j )|.

It follows from the inequality (6.7.1) that we have

W1 ≤−∆
0
λ

2
ρ(φ,φ0)min

[
ϱ(φ,φ0)

ρ(φ,φ0)
,−∆

0
λ

4
H(φ0)/ρ(φ,φ0)

]
.

If −∆0
λ

4 H(φ0)/ρ(φ,φ0) ≤ 1, then we infer that

W1 ≤ (∆0
λ/2)2(ϱ(φ,φ0)/ρ(φ,φ0))(H(φ0)/2).

If −∆0
λ

4 H(φ0)/ρ(φ,φ0) > 1, we readily obtain

W1 ≤−(∆0
λ/2)ϱ(φ,φ0).

Letting
C2 = min{(∆0

λ/2)2|H(φ0)|/(2ρ(φ,φ0)),∆0
λ/2},

inequality (6.7.1) implies that
W1 ≤−C2ϱ(φ,φ0).

Setting
C1 = (∆0

λ/2)2|H(φ0)|/2,

we finally have the desired result. □

The following lemma describes between-segment properties and within-segment properties of
the model.

Lemma 6.7.0.2 Under the Assumption 6.2.0.6, part 1 and 2 of the Assumption 6.2.0.3 respec-
tively, it follows that

(I) For any j = 1,2, . . . ,k+1, any 0 ≤ m1 < m2 ≤ n and any positive number ϵ> 0, there exists
a constant A j , independent of ϵ, and a constant r > 2, such that

P

 max
m1≤s<t≤m2,θ j∈Θ j ,α∈Υ

∣∣∣∣∣∣
t∑

i=s+1

k+1∑
z=1

m j (α,θ j ,Yi )δi

SGn0
z
(Y−

i )
1I{nz−1+1≤i≤nz } −E(m j (α,θ j ,Xi ))

∣∣∣∣∣∣> ϵ


≤ A j
(m2 −m1)r

ϵ2
. (6.7.2)
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(II) For any j = 1,2, . . . ,k +1 and any positive number ϵ > 0, there exist a constant B j , inde-
pendent of ϵ, and a constant r > 2, such that

P

 max
n0

j−1≤s<t≤n0
j ,θ j∈Θ j ,α∈Υ

 t∑
i=s+1

k+1∑
z=1

m j (α,θ j ,Yi )δi

SGn0
z
(Y−

i )
1I{nz−1+1≤i≤nz }

−
m j (α0,θ0

j ,Yi )δi

SGn0
j
(Y−

i )
−b(α,θ j ,α0,θ0

j )

> ϵ
≤ B j

(n0
j −n0

j−1)r

ϵ2
. (6.7.3)

Proof of Lemma 6.7.0.2

By the fact that all variables at hand are independent and keeping the part 1 of the Assumption
6.2.0.1 in mind, equation (6.7.2) can be achieved by induction with respect to m2. The induction
method is similar to the one used in Móricz et al. [1982], so its proof is omitted here. Using
part 2 of the Assumption 6.2.0.1, equation (6.7.3) can be proved similarly by the same induction
method. For more details, we can refer to He and Severini [2010]. □

Proof of Theorem 6.3.0.1

Let us introduce the following notation

Λ = {(λ1,λ2, . . . ,λk ) : λ j =
n j

n
, j = 1, . . . ,k;0 < n1 < ·· · < nk < n},

Λη = {λ ∈Λ : ∥λ−λ0∥∞ > η},

Φ = Θ1 ×Θ2 ×·· ·×Θk+1 ×Υ,

Φη = {φ ∈Φ : ϱ(φ,φ0) > η}.

Then, for any η> 0, it follows from an application of Lemma 6.7.0.1 that

− max
λ∈Λη,φ∈Φ

W1 ≥ C1η and − max
λ∈Λ,φ∈Φη

W1 ≥ C2η.
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Therefore, we readily obtain that

P(∥λ−λ0∥∞ > η)

≤P
(

max
λ∈Λη,φ∈Φ

W > 0

)
≤P

(
max

λ∈Λη,φ∈Φ
W2 >− max

λ∈Λη,φ∈Φ
W1

)
≤P

(
max

λ∈Λη,φ∈Φ
|W2| > C1η

)

≤P
 max
λ∈Λη,φ∈Φ

k+1∑
j=1

1

n

∣∣∣∣∣∣
n j∑

i=n j−1+1

m j (α,θ j ,Yi )δi

SGn0
j
(Y−

i )
−E(m j (α,θ j ,Xi ))


∣∣∣∣∣∣> C1η

2


+P

k+1∑
j=1

1

n

∣∣∣∣∣∣
n0

j∑
i=n0

j−1+1

m j (α0,θ0
j ,Yi )δi

SGn0
j
(Y−

i )
−E(m j (α0,θ0

j ,Xi ))


∣∣∣∣∣∣> C1η

2


≤

k+1∑
j=1

P

 max
0≤n j−1<n j≤n,θ j∈Θ j ,α∈Υ

1

n

∣∣∣∣∣∣
n j∑

i=n j−1+1

m j (α,θ j ,Yi )δi

SGn0
j
(Y−

i )
−E(m j (α,θ j ,Xi ))


∣∣∣∣∣∣> C1η

2(k +1)


+

k+1∑
j=1

P

 1

n

∣∣∣∣∣∣
n0

j∑
i=n0

j−1+1

m j (α0,θ0
j ,Yi )δi

SGn0
j
(Y−

i )
−E(m j (α0,θ0

j ,Xi ))


∣∣∣∣∣∣> C1η

2(k +1)

 .

It follows from Lemma 6.7.0.2 that, as n −→+∞,

P(∥λ−λ0∥∞ > η) ≤ 2

[
2(k +1)

C1η

]2
(

k+1∑
j=1

A j

)
nr−2 −→ 0.

For the estimator φ̂, we obtain in a similar way that

P(ϱ(φ̂,φ0) > η) ≤P
(

max
λ∈Λ,φ∈Φη

W > 0

)

≤
k+1∑
j=1

P

 max
0≤n j−1<n j≤n,θ j∈Θ j ,α∈Υ

1

n

∣∣∣∣∣∣
n j∑

i=n j−1+1

m j (α,θ j ,Yi )δi

SGn0
j
(Y−

i )
−E(m j (α,θ j ,Xi ))


∣∣∣∣∣∣> C2η

2(k +1)


+

k+1∑
j=1

P

 1

n

∣∣∣∣∣∣
n0

j∑
i=n0

j−1+1

m j (α0,θ0
j ,Yi )δi

SGn0
j
(Y−

i )
−E(m j (α0,θ0

j ,Xi ))


∣∣∣∣∣∣> C2η

2(k +1)

 .

Once more, an application of Lemma 6.7.0.2 shows, as n →+∞, that

P
(
ϱ(φ̂,φ0) > η)−→ 0.

Noting the fact that b(α,θ j ,α0,θ0
j ) = 0 if and only if α = α0 and θ j = θ0

j , for j = 1, . . . ,k + 1,
completes the proof of Theorem 6.3.0.1. □

Proof of Theorem 6.3.0.3

Let us first define, for any η> 0,

Λη,n = {
λ ∈Λ : n∥λ−λ0∥∞ ≥ η}

.

230



CHAPTER 6. ASYMPTOTIC PROPERTIES OF M-ESTIMATORS BASED ON
ESTIMATING EQUATIONS AND CENSORED DATA IN SEMI-PARAMETRIC MODELS
WITH MULTIPLE CHANGE POINTS

Making use of the consistency of the change point fraction λ̂, we need to consider only the
observations in ñ j , j−1, ñ j , j and ñ j , j+1 for all j in equation (6.2.6). Therefore, we have

P
(
n∥λ̂−λ0∥∞ ≥ η)
≤

k+1∑
j=1

P

 max
λ∈Λη,n ,φ∈Φ

 1

n

∑
t∈ñ j j

m j (α,θ j ,Yt )δt

SGn0
j
(Y−

t )
−E(m j (α,θ j ,Xt ))


− 1

n

∑
t∈ñ j j

m j (α0,θ0
j ,Yt )δt

SGn0
j
(Y−

t )
−E(m j (α0,θ0

j ,Xt ))

+ 1

3(k +1)
W1

> 0


+

k+1∑
j=2

P

 max
λ∈Λη,n ,φ∈Φ

 1

n

∑
t∈ñ j , j−1

m j (α,θ j ,Yt )δt

SGn0
j
(Y−

t )
−E(m j (α,θ j ,Xt ))


− 1

n

∑
t∈ñ j , j−1

m j−1(α0,θ0
j−1,Yt )δt

SGn0
j−1

(Y−
t )

−E(m j−1(α0,θ0
j−1,Xt ))

+ 1

3k
W1

> 0


+

k∑
j=1
P

 max
λ∈Λη,n ,φ∈Φ

 1

n

∑
t∈ñ j , j+1

m j (α,θ j ,Yt )δt

SGn0
j
(Y−

t )
−E(m j (α,θ j ,Xt ))


− 1

n

∑
t∈ñ j , j+1

m j+1(α0,θ0
j+1,Yt )δt

SGn0
j+1

(Y−
t )

−E(m j+1(α0,θ0
j+1,Xt ))

+ 1

3k
W1

> 0


≡

k+1∑
j=1

I1 j +
k+1∑
j=2

I2 j +
k∑

j=1
I3 j .

First, consider the probability formulas I1 j in the above equation for any j = 1,2, . . . ,k +1. The
consistency of λ̂ allows us to restrict our attention to the case n j j > 1

2 (n0
j −n0

j−1). For this case,
we have that

W1 ≤
n0

j −n0
j−1

2n
b(α,θ j ,α0,θ0

j ).

Therefore, we readily obtain that

I1 j ≤P
 max

n0
j−1≤s<t≤n0

j ,θ j∈Θ j ,α∈Υ

 t∑
i=s+1

 j+1∑
z= j−1

m j (α,θ j ,Yi )δi

SGn0
z
(Y−

i )
1I{nz−1+1≤i≤nz }

−
m j (α0,θ0

j ,Yi )δi

SGn0
j
(Y−

i )
−b(α,θ j ,α0,θ0

j )

>
a(n0

j −n0
j−1)

6(k +1)


≤

(n0
j −n0

j−1)
r

(n0
j −n0

j−1)
2 (6(k +1))2 = nr−2(λ0

j −λ0
j−1)

r−2
(6(k +1))2,

where
a = max

θ j∈Θ,α∈Υ
|b(α,θ j ,α0,θ0

j )|.
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Equation (6.7.3) can then be applied to show that I1 j → 0 as n,η→∞. Next, we consider the
probability formula I2 j for any j = 2, . . . ,k +1. In this case, we can see that

λ j−1 < λ0
j−1.

We infer readily

I2 j ≤P
 max
λ∈Λη,n ,φ∈Φ

 1

n

∑
t∈ñ j , j−1

m j (α,θ j ,Yt )δt

SGn0
j
(Y−

t )
−E(m j (α,θ j ,Xt ))

+ 1

6k
W1

> 0


+P

 max
λ∈Λη,n ,φ∈Φ

− 1

n

∑
t∈ñ j , j−1

m j−1(α,θ j−1,Yt )δt

SGn0
j−1

(Y−
t )

−E(m j−1(α,θ j−1,Xt ))

+ 1

6k
W1

> 0


≡I(1)

2 j + I(2)
2 j .

Notice that I(1)
2 j and I(2)

2 j can be handled in the same way, so we just show how to handle I(1)
2 j .

Only two cases have to be considered.
If n0

j−1 −n j−1 ≤ η, then

I(1)
2 j ≤P

 max
n j−1≤s<t≤n0

j−1,θ j∈Θ j ,α∈Υ

∣∣∣∣∣∣
t∑

i=s+1

m j (α,θ j ,Yt )δt

SGn0
j
(Y−

t )
−E(m j (α,θ j ,Xt ))

∣∣∣∣∣∣> C1η

6k


≤

(n0
j−1 −n j−1)r

(C1η)2
(6k)2

≤ ηr−2
(

6k

C1

)2

.

Equation (6.7.2) of Lemma 6.7.0.2 gives that I1
2 j → 0, as n,η→∞. If n0

j−1 −n j−1 > η, for the
other case, then we have

W1 ≤−C1

(n0
j−1 −n j−1)

n
.

Therefore, we infer that

I(1)
2 j ≤P

 max
n j−1≤s<t≤n0

j−1,θ j∈Θ j ,α∈Υ

∣∣∣∣∣∣
t∑

i=s+1

m j (α,θ j ,Yt )δt

SGn0
j
(Y−

t )
−E(m j (α,θ j ,Xt ))

∣∣∣∣∣∣>
C1(n0

j−1 −n j−1)

6k


≤ (n0

j−1 −n j−1)r−2
(

6k

C1

)2

,

which converges to zero as n,η→∞, by equation (6.7.2) of Lemma (6.7.0.2). I3 j can be han-
dled in a similar way as I2 j . Therefore the proof of Theorem 6.3.0.3 is complete. □

The following lemma establishes that the difference between the Kaplan Meier based on esti-
mated proportion of the sample and the true one is asymptotically negligible.

Lemma 6.7.0.3 Assume that, for i = 1,2, . . . ,k,

λ̂i −λ0
i = oP(1).

We have for each i = 1,2, . . . ,k(
1− F̂n̂i (x)

)= (
1−Fn0

i
(x)

)
+oP(1).
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Proof of Lemma 6.7.0.3

For every ϵ> 0 there exist η
′ > 0 and η

′′ > 0 such that

P

 sup
x≤τF

n0
j

|F̂n̂ j (x)− F̂n0
j
(x)| > ϵ


= P

 sup
x≤τF

n0
j

|F̂n̂ j (x)− F̂n0
j
(x)| > ϵ, n̂ j−1 = n0

j−1, n̂ j = n0
j


+P

 sup
x≤τF

n0
j

|F̂n̂ j (x)− F̂n0
j
(x)| > ϵ, n̂ j−1 ̸= n0

j−1, n̂ j ̸= n0
j


+P

 sup
x≤τF

n0
j

|F̂n̂ j (x)− F̂n0
j
(x)| > ϵ, n̂ j−1 ̸= n0

j−1, n̂ j = n0
j


+P

 sup
x≤τF

n0
j

|F̂n̂ j (x)− F̂n0
j
(x)| > ϵ, n̂ j−1 = n0

j−1, n̂ j ̸= n0
j


≤ 2P(n̂ j−1 ̸= n0

j−1)+2P(n̂ j ̸= n0
j )

≤ 2P(|λ̂ j−1 −λ0
j−1| > η

′
)+2P(|λ̂ j −λ0

j | > η
′′
)

P−−−−→
n→∞ 0.

Hence the proof is complete. □

The following lemma gives the approximation of the Kaplan Meier integral based on the esti-
mated proportion of the sample.

Lemma 6.7.0.4 For any j = 1, . . . ,k +1, under the conditions of Theorem 6.3.0.3 and the result
of Lemma 6.7.0.3 we have

∫
R
ψ j (α,θ j , x)d F̂n̂ j (x)−

∫
R
ψ j (α,θ j , x)d F̂n0

j
(x) = OP

(
1

n

)
.

As a consequence of this lemma, for every φ ∈Φ, we have that

ρn(α,θ1, . . . ,θk+1) =
k+1∑
j=1

(λ̂ j − λ̂ j−1)
∫
R
ψ j (α,θ j , x)d F̂n̂ j (x)

=
k+1∑
j=1

(
λ0

j −λ0
j−1 +OP

(
n−1))(∫

R
ψ j (α,θ j , x)d F̂n0

j
(x)+OP(n−1)

)
= ρ0

n(α,θ1, . . . ,θk+1)+OP

(
n−1) . (6.7.4)
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Proof of Lemma 6.7.0.4

We have ∫
R
ψ j (α,θ j , x)d F̂n̂ j (x)−

∫
R
ψ j (α,θ j , x)d F̂n0

j
(x)

=

n̂ j∑
i=n̂ j−1+1

(n0
j −n0

j−1)
ψ j (α,θ j ,Yi )∆i

S
n̂ j
C (Y−

i )
−

n0
j∑

i=n0
j−1+1

(n̂ j − n̂ j−1)
ψ j (α,θ j ,Yi )∆i

S
n0

j
C (Y−

i )

(n0
j −n0

j−1)(n̂ j − n̂ j−1)

= 1I{n̂ j≤n0
j ,n0

j−1≤n̂ j−1}


n̂ j−1∑

i=n0
j−1+1

−ψ j (α,θ j ,Yi )∆i

(n0
j −n0

j−1)

(
SGn0

j
(Y−

i )+oP(1)

)

+
n̂ j∑

i=n̂ j−1+1

(
(n0

j −n0
j−1)− (n̂ j − n̂ j−1)

)
ψ j (α,θ j ,Yi )∆i

(n̂ j − n̂ j−1)(n0
j −n0

j−1)

(
SGn0

j
(Y−

i )+oP(1)

)

+
n0

j∑
i=n̂ j+1

−ψ j (α,θ j ,Yi )∆i

(n0
j −n0

j−1)

(
SGn0

j
(Y−

i )+oP(1)

)


+1I{n̂ j≤n0
j ,n̂ j−1<n0

j−1}


n0

j−1∑
i=n̂ j−1+1

ψ j (α,θ j ,Yi )∆i

(n̂ j − n̂ j−1)

(
SGn0

j
(Y−

i )+oP(1)

)

+
n̂ j∑

i=n0
j−1+1

(
(n0

j −n0
j−1)− (n̂ j − n̂ j−1)

)
ψ j (α,θ j ,Yi )∆i

(n̂ j − n̂ j−1)(n0
j −n0

j−1)

(
SGn0

j
(Y−

i )+oP(1)

)

+
n0

j∑
i=n̂ j+1

−ψ j (α,θ j ,Yi )∆i

(n0
j −n0

j−1)

(
SGn0

j
(Y−

i )+oP(1)

)


+1I{n0
j <n̂ j ,n0

j−1≤n̂ j−1}


n̂ j−1∑

i=n0
j−1+1

−ψ j (α,θ j ,Yi )∆i

(n0
j −n0

j−1)

(
SGn0

j
(Y−

i )+oP(1)

)

+
n0

j∑
i=n̂ j−1+1

(
(n0

j −n0
j−1)− (n̂ j − n̂ j−1)

)
ψ j (α,θ j ,Yi )∆i

(n̂ j − n̂ j−1)(n0
j −n0

j−1)

(
SGn0

j
(Y−

i )+oP(1)

)

+
n̂ j∑

i=n0
j +1

ψ j (α,θ j ,Yi )∆i

(n̂ j − n̂ j−1)

(
SGn0

j
(Y−

i )+oP(1)

)

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+1I{n0
j <n̂ j ,n̂ j−1<n0

j−1}


n0

j−1∑
i=n̂ j−1+1

ψ j (α,θ j ,Yi )∆i

(n̂ j − n̂ j−1)

(
SGn0

j
(Y−

i )+oP(1)

)

+
n0

j∑
i=n0

j−1+1

(
(n0

j −n0
j−1)− (n̂ j − n̂ j−1)

)
ψ j (α,θ j ,Yi )∆i

(n̂ j − n̂ j−1)(n0
j −n0

j−1)

(
SGn0

j
(Y−

i )+oP(1)

)

+
n̂ j∑

i=n0
j +1

ψ j (α,θ j ,Yi )∆i

(n̂ j − n̂ j−1)

(
SGn0

j
(Y−

i )+oP(1)

)
 .

An application of Theorem 6.3.0.3 gives the desired result. □

Proof of Theorem 6.4.0.1

For every ϵ> 0 there exists η> 0, such that we have

P
(∥φ̂−φ0∥ > ϵ)
≤ P

(∥ρ(φ̂)−ρ(φ0)∥ > η)
≤ P

(∥ρ(φ̂)−ρ0
n(φ̂

)+ρn(φ̂)−ρ0
n(φ̂)+ρn(φ̂)−ρ(φ0)∥ > η)

≤ P

(
sup
φ∈Φ

∥ρ0
n(φ)−ρ(φ)∥ > η

3

)
+P

(
∥ρn(φ̂)−ρ0

n(φ̂)∥ > η

3

)
+P

(
∥ρn(φ̂)−ρ(φ0)∥ > η

3

)
,

the assumptions of Theorem 6.4.0.1 combined with the relation (6.7.4) show that the last term
converges in probability to zero as n converges to infinity. □

Proof of Theorem 6.4.0.2

Let us first take ϵ> 0 and η> 0 fixed constants. Condition (ii) implies that there exists a finite
M, such that for large value of n, we have

P

(
sup

∥φ−φ0∥>η
∥ρn(φ)∥−1 >M

)
< ϵ.

Notice that the parameter φ̂ satisfies

ρn(φ̂) = OP(1),

so we readily obtain
P

(∥ρn(φ̂)∥−1 >M
)−→ 1.
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It follows that, with probability of at least 1−ϵ for all n large enough,

∥ρn(φ̂)∥−1 >M≥ sup
∥φ−φ0∥>η

∥ρn(φ)∥−1.

These inequalities force φ̂ to lie within a distance η of φ0, that is,

P
(∥φ̂−φ0∥ > η)≤ ϵ.

Since ϵ and η can be chosen arbitrarily close to zero, the asserted convergence in probability is
established. □

Proof of Theorem 6.4.0.3

We will follow the proof of Pakes and Pollard [1989]. First we prove
p

n-consistency. The
assumed consistency allows us to choose a sequence ηn that converge to zero slowly enough to
ensure that

P
(∥φ̂−φ0∥ > ηn

)−→ 0.

With probability tending to one for this sequence, the supremum in the condition (iii) runs over
a range that includes the random value φ̂. Thus we have

∥ρ0
n(φ̂)−ρ(φ̂)−ρ0

n(φ0)∥ ≤ oP(n−1/2)+oP(∥ρ0
n(φ̂)∥)+oP(∥ρ(φ̂)∥).

By the triangle inequality, the left-hand side is larger than

∥ρ(φ̂)∥−∥ρ0
n(φ̂)∥−∥ρ0

n(φ0)∥.

Thus we obtain

∥ρ(φ̂)∥[1−oP(1)] ≤ oP(n−1/2)+∥ρ0
n(φ̂)∥[1+oP(1)]+∥ρ0

n(φ0)∥.

From conditions (i) and the asymptotic normality of
p

nρ0
n(φ0) it follows that

∥ρ(φ̂)∥ = OP(n−1/2).

The differentiability condition (ii) implies the existence of a positive constant C for which, near
φ0, (recall that ρ(φ0) = 0), we have

∥ρ(φ)∥ ≥ C∥φ−φ0∥.

In particular, we infer that ∥∥φ̂−φ0
∥∥= OP

(∥ρ(φ̂)∥)= OP

(
n−1/2) .

Next, we establish asymptotic normality of
p

n(φ̂−φ0), by arguing that ρ0
n(φ) is very well

approximated by the linear function

Ln(φ) =Ω(
φ−φ0)+ρ0

n

(
φ0)
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within a OP

(
n−1/2

)
neighborhood of φ0. More precisely, we need the approximation error to

be of order oP
(
n−1/2

)
at φ̂ and at the φ∗

n that maximizes ∥Ln(·)∥ globally. This follows directly
from (ii) and (iii) together with the

p
n-consistency results already established∥∥ρ0

n

(
φ̂

)−Ln
(
φ̂

)∥∥ ≤ ∥∥ρ0
n

(
φ̂

)−ρ(
φ̂

)−ρ0
n

(
φ0)∥∥

+∥∥ρ(
φ

)−Ω(
φ̂−φ0)∥∥

≤ oP
(
n−1/2)+oP

(∥∥ρ0
n

(
φ̂

)∥∥)+oP
(∥∥ρ(

φ̂
)∥∥)

+oP
(∥∥φ̂−φ0

∥∥)
= oP

(
n−1/2) .

To correspond to a minimum of ∥Ln(·)∥, the vector Ω(φ∗
n −φ0) must be equal to the projection

of −ρ0
n(φ0) onto the column space of Ω. Hence, we obtain

p
n(φ∗

n −φ0) =−pn(Ω⊤Ω)−1Ω⊤ρ0
n(φ0).

The right-hand side has the asymptotic normal distribution specified in the statement of the
theorem. Consequently

φ∗
n =φ0 +OP(n−1/2).

Because φ0 is in the interior point of Φ this implies that φ∗
n lies in Φ with probability tending

to one. From the differentiability condition (ii) and condition (iii), we readily obtain that

∥ρ0
n(φ∗

n)∥ = OP(n−1/2).

Then we can argue as for φ̂ to deduce that

∥ρ0
n(φ∗

n)−Ln(φ∗
n)∥ = oP(n−1/2).

We now know that ρ0
n and Ln are close at both φ̂, which almost minimizes ∥ρ0

n∥, and φ∗
n , which

minimizes ∥Ln∥. This forces φ̂ to come close to minimizing ∥Ln∥. That is,

∥Ln(φ∗
n)∥ = ∥Ln(φ̂)∥+oP(n−1/2).

So we have
∥Ln(φ∗

n)∥2 = ∥Ln(φ̂)∥2 +oP(n−1),

the across product term being absorbed into oP(n−1) because ∥Ln(φ∗
n)∥ is of order OP(n−1/2).

The quadratic form of ∥Ln(φ)∥2 has the simple expansion

∥Ln(φ)∥2 = ∥Ln(φ∗
n)∥2 +∥Ω(φ−φ∗

n)∥2,

about its global minimum. Put φ equal to φ̂, then equate the two expressions for ∥Ln(φ̂)∥2 to
deduce that

∥Ω(φ̂−φ∗
n)∥2 = oP

(
n−1/2) .
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Since the matrix Ω has full rank, this is equivalent to
p

n(φ̂−φ0) =p
n(φ∗

n −φ0)+oP(1),

from which the asserted central limit theorem follows. □

If we replace conditions (i) by (i)
′

and (iii) by (iii)
′

in Theorem 6.4.0.3 we will obtain the
same result of Theorem (3.3) in Pakes and Pollard [1989] under each true sub sample, we get
Ln(φ) is sum of k +1 linear function given by

Ln0
j
(φ) = ΓFn0

j
(φ0)(φ−φ0)+ρ0

n0
j
(φ0), j = 1,2, . . . ,k +1.

For notation ease, we put φ in function for each subsample because there is no influence for
other parameters to the ones we are working on.

The following lemma gives the convergence of the Kaplan Meier integrals.

Lemma 6.7.0.5 Let s(φ, x) be any real function with, for any j = 1,2, . . . ,k +1,∫
R
|s(φ0, x)|dFn0

j
(x) <∞.

Assume that the condition (R1) (in the appendix) with replacement of the functions H(·), F(·)
and G(·) by the functions Hn0

j
(·), Fn0

j
(·) and Gn0

j
(·) respectively for each j = 1,2, . . . ,k +1, holds

for
ϕ(x) = s(φ0, x).

For any sequence φ̂ P−→φ0, it follows that, for any j = 1,2, . . . ,k +1,∫
R

s(φ̂, x)d F̂n̂ j (x)
P−→

∫
R

s(φ0, x)dFn0
j
(x),

provided that any one of the following conditions holds, for any j = 1,2, . . . ,k +1,

(i) s(φ, x) is continuous at φ0 uniformly in x.

(ii) ∫
R

sup
{φ:|φ−φ0|≤β}

|s(φ, x)− s(φ0, x)|dFn0
j
(x) = hβ→ 0 as β→ 0.

(iii) s(·, ·) is continuous in x for φ in a neighborhood of φ0, and

lim
φ→φ0

∥s(φ, ·)− s(φ0, ·)∥V = 0.

(iv)
∫
R s(φ, x)dFn0

j
(x) is continuous at φ=φ0, and s is continuous in x for φ in a neighbor-

hood of φ0, and
lim
φ→φ0

∥s(φ, ·)− s(φ0, ·)∥V <∞.

(v)
∫
R s(φ, x)dFn0

j
(x) is continuous at φ=φ0, and∫

R
s(φ, x)d F̂n0

j
(x)

P−→
∫
R

s(φ, x)dFn0
j
(x) <∞,

uniformly for φ in a neighborhood of φ0.

238



CHAPTER 6. ASYMPTOTIC PROPERTIES OF M-ESTIMATORS BASED ON
ESTIMATING EQUATIONS AND CENSORED DATA IN SEMI-PARAMETRIC MODELS
WITH MULTIPLE CHANGE POINTS

Proof of Lemma 6.7.0.5

The proof of this lemma is based on the Lemma 6.7.0.4 and Lemma 1 in Wang [1999]. □

Proof of Theorem 6.4.0.4

Note that ρn(φ) is differentiable in φ by the conditions imposed on ψ j (·). The multivariate
mean value theorem thus implies that

ρn(φ̂) = ρn(φ0)+
(

k+1∑
j=1

(λ̂ j − λ̂ j−1)ΓF̂n̂ j
(ξn)

)
(φ̂−φ0),

where
∥ξn −φ0∥ ≤ ∥φ̂−φ0∥

and recall that ∥ ·∥ is the Euclidean norm. By using the fact that

ρn(φ̂) = 0,ρn0
j
(α0,θ0

j ) = 0

in combination with Lemma 6.7.0.4, we infer that

p
n(φ̂−φ0) =−

(
k+1∑
j=1

(λ̂ j − λ̂ j−1)ΓF̂n̂ j
(ξn)

)−1 [
k+1∑
j=1

(λ̂ j − λ̂ j−1)

(p
n

{∫
ψ j (α0,θ0

j , x)d F̂n0
j
(x)

−
∫
ψ j (α0,θ0

j , x)dFn0
j
(x)

}
+OP(n−1/2)

)]
.

Once more, Lemma 6.7.0.4 implies that we have

ρn(φ0) =
k+1∑
j=1

(λ̂ j − λ̂ j−1)
∫
ψ j (α0,θ0

j , x)d F̂n̂ j (x)

=
k+1∑
j=1

(λ̂ j − λ̂ j−1)

[∫
ψ j (α0,θ0

j , x)d F̂n0
j
(x)+OP(n−1)

]
.

By Theorem 6.3.0.3, we have entries of
k+1∑
j=1

(λ̂ j − λ̂ j−1)ΓF̂n̂ j
(ξn)

converges in probability to the entries of Γ(φ0). The theorem now follows from combining
Proposition 6.8.1.2, Theorem 6.3.0.3 and Slutsky’s theorem. □

6.8 Appendix

In the sequel of this section, we use a notation similar to that used in Wang [1999] including
some changes absolutely necessary for our setting. We present, for the convenience of the
reader, the random censorship model in Section 6.1 without change points. Let F(·) denote the
lifetime distribution of X and G(·) the censoring distribution of C. Assume the independence of
X and C, which implies that the distribution H(·) of the observation Y = min(X,C) satisfies

1−H(·) = (1−F(·))(1−G(·)).
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6.8.1 SLLN and CLT for Kaplan Meier integrals

Let us begin by introducing some results on the Kaplan Meier integrals playing a central role in
this study. For any specified real function ϕ(·), we state in this section the strong law of large
numbers (SLLN) and the central limit theorem (CLT) for the Kaplan Meier integral∫

R
ϕ(x)d F̂n(x).

Such results constitute the main tools to study the limiting behavior of M-(Z)-estimates in the
next sections. For any distribution function L(·), let

τL = sup{x : L(x) < 1}

denote the upper bound of the support of L(·). Let

△L(x) = L(x)−L(x−)

denote the probability mass of L(·) at x. Since one can only observe data in the range of [0,τH],
it is possible to estimate

∫
Rϕ(x)dF(x) consistency only if τF = τH or if ϕ(x) is zero for x ≥ τH.

The specific requirement for strong consistency is formulated in the following condition :

(R1) at least one of (i) or (ii) below holds:

(i) For some u < τH, ϕ(x) = 0 for u < x ≤ τH.

(ii) τF ≤ τG, where equality may hold except when G(·) is continuous at τF and

△F(τF) > 0.

Note that (R1) (ii) implies τF = τH, and is the necessary and sufficient condition so that F(·) can
be estimated consistently on its entire support. Such a requirement can be dispensed with only
the fact that the function ϕ(·) satisfies the requirement (R1) (i) which then results in a truncated
Kaplan-Meier integral. Note that only one of the two, but not both, conditions in (i) and (ii)
need to hold for (R1). We state in the next proposition the strong consistency of∫

R
ϕ(x)d F̂n(x),

which follows from the condition (R1), Theorem 1.1 and Corollary 1.2 of Stute and Wang
[1993]. Note that the original strong law in Stute and Wang [1993] requires further that F(·)
and G(·) have no common point of discontinuity. Such a restriction was later discovered to be
dispensable, see Stute [1995] for details.

Proposition 6.8.1.1 (Strong law of Large Numbers) Under the condition (R1) and for any
function ϕ(·) fulfilling ∫

R
|ϕ(x)|dF(x) <∞,
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it follows, with probability one, that∫
R
ϕ(x)d F̂n(x) →

∫
R
ϕ(x)dF(x).

Moreover, under (R1) (ii), it follows, with probability one, that

sup
−∞<x≤τH

|F̂n(x)−F(x)|→ 0.

Proposition 6.8.1.1 essentially implies that the law of large numbers for censored data hold
under the same condition, namely the integrability of ϕ(·), as for the uncensored case. The CLT
however requires a little more than the uncensored case. Denote m(y) = P(δ = 1|Y = y) and
denote the subdistribution functions for the censored and uncensored observations, respectively,
by

H0(y) = P(Y ≤ y,δ= 0) =
y∫

−∞
(1−m(t ))dH(t ) =

y∫
−∞

(1−F(t ))dG(t ),

H1(y) = P(Y ≤ y,δ= 1) =
y∫

−∞
m(t )dH(t ) =

y∫
−∞

(1−G(t−))dF(t ),

(6.8.1)

and let the corresponding empirical estimates be denoted by

Hpn(y) = 1

n

n∑
i=1

1I{Yi≤y,δi=p}, for p = 0,1. (6.8.2)

Note that
H0(·)+H1(·) = H(·).

The asymptotic representation of
∫
Rϕ(x)d F̂n(x) as a sum of i.i.d. variables defined in (6.8.5)

and (6.8.7), is based upon the following expressions

γ0(x) = exp

{∫
R

1I{y<x}dH0(y)

1−H(y)

}
,

γ1(x) = [1−H(x)]−1
∫
R

1I{y<x}ϕ(x)γ0(y)dH1(y), (6.8.3)

γ2(x) =
∫
R
ϕ(z)γ0(z)C(x ∧ z)dH1(z),

where

C(x) =
∫
R

1I{y<x}dH0(y)

[1−H(y)]2
=

∫
R

1I{y<x}dG(y)

[1−F(y)][1−G(y)]2
, (6.8.4)

refer to Stute [1995] for more details. Let U denote the random variable defined by

U =ϕ(Y)γ0(Y)δ+γ1(Y)(1−δ)−γ2(Y)−
∫
R
ϕ(x)dF(x). (6.8.5)
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It turns out that E(U) = 0. The variance of U depends on ϕ(·), F(·) and G(·) and is given by

σ2(ϕ,F,G) = Var(U)

=
∫
R
ϕ2(y)γ2

0(y)dH1(y)−
∫
R
γ2

1(y)dH0(y)

−
(∫
R
ϕ(x)dF(x)

)2

+
∫
R

γ2
1(y)[1−m(y)]2

1−H(y)
△H(y)dH(y). (6.8.6)

Clearly, the last integral vanishes for a continuous H(·). The additional requirements for the
asymptotic normality of

∫
Rϕ(x)d(F̂n(x)−F(x)) are

(R2)

E[ϕ(Y)γ0(Y)δ]2 =
∫
R
ϕ2(y)γ2

0(y)dH1(y) <∞,

(R3) ∫
R
|ϕ(x)|C1/2(x)dF(x) <∞.

For more discussion of these conditions see Wang [1999]. We now present the asymptotic
normality results of ∫

ϕ(x)d(F̂n(x)−F(x)),

which follow from Theorem 1 of Stute [1995] and (R1).

Proposition 6.8.1.2 (Central limit theorem) Assume that the conditions (R1)-(R3) are satis-
fied. Then we have the following representation∫

R
ϕ(x)d(F̂n −F)(x) = n−1

n∑
i=1

Ui +oP
(
n−1/2) , (6.8.7)

where the Ui s are i.i.d. copies of the variable U by replacing the Y and δ in (6.8.5) by Yi and
δi , respectively. Thus, for σ2(ϕ,F,G) defined in (6.8.6), we have the following convergence in
distribution, as n →∞,

n1/2
∫
R
ϕ(x)d(F̂n −F)(x)⇝N(0,σ2(ϕ,F,G)). (6.8.8)

For continuous distribution function H(·), the asymptotic variance in (6.8.8) becomes

σ2(ϕ,F,G) =
∞∫

−∞

 ∞∫
x

ϕ
′
(t )[1−F(t )]d t

2

[1−H(x)]2 dH1(x). (6.8.9)

The last equality in (6.8.9) follows from (6.8.1). A variance estimate can be obtained by replac-
ing F(·), H1(·) and H(·) respectively by their empirical estimates, for more details we refer the
reader to Wang [1999].
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Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. J.
Amer. Statist. Assoc., 53, 457–481. 188

Kiefer, J. and Wolfowitz, J. (1956). Sequential tests of hypotheses about the mean occurrence
time of a continuous parameter Poisson process. Naval Res. Logist. Quart., 3, 205–219
(1957). 189

245



CHAPTER 6. ASYMPTOTIC PROPERTIES OF M-ESTIMATORS BASED ON
ESTIMATING EQUATIONS AND CENSORED DATA IN SEMI-PARAMETRIC MODELS

WITH MULTIPLE CHANGE POINTS

Kim, J., Cheon, S., and Jin, Z. (2020). Bayesian multiple change-points estimation for hazard
with censored survival data from exponential distributions. J. Korean Statist. Soc., 49(1),
15–31. 186

Korkas, K. K. and Fryzlewicz, P. (2017). Multiple change-point detection for non-stationary
time series using wild binary segmentation. Statist. Sinica, 27(1), 287–311. 202

Korostelëv, A. P. and Tsybakov, A. B. (1993). Minimax theory of image reconstruction, vol-
ume 82 of Lecture Notes in Statistics. Springer-Verlag, New York. 196

Lavielle, M. (1999). Detection of multiple changes in a sequence of dependent variables.
Stochastic Process. Appl., 83(1), 79–102. 202

Lavielle, M. and Ludeña, C. (2000). The multiple change-points problem for the spectral dis-
tribution. Bernoulli, 6(5), 845–869. 191, 202

LeCam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related
Bayes’ estimates. Univ. California Publ. Statist., 1, 277–329. 189

Lee, T.-S. (2010). Change-point problems: bibliography and review. J. Stat. Theory Pract.,
4(4), 643–662. 186

Lorden, G. (1971). Procedures for reacting to a change in distribution. Ann. Math. Statist., 42,
1897–1908. 196

Móricz, F. A., Serfling, R. J., and Stout, W. F. (1982). Moment and probability bounds with
quasisuperadditive structure for the maximum partial sum. Ann. Probab., 10(4), 1032–1040.
229

Niu, Y. S., Hao, N., and Zhang, H. (2016). Multiple change-point detection: a selective
overview. Statist. Sci., 31(4), 611–623. 187, 201

Nkurunziza, S. and Fu, K. (2019). Improved inference in generalized mean-reverting processes
with multiple change-points. Electron. J. Stat., 13(1), 1400–1442. 186

Oakes, D. (1986). An approximate likelihood procedure for censored data. Biometrics, 42(1),
177–182. 189, 197

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41, 100–115. 186

Page, E. S. (1955). A test for a change in a parameter occurring at an unknown point.
Biometrika, 42, 523–527. 186

Page, E. S. (1957). On problems in which a change in a parameter occurs at an unknown point.
Biometrika, 44(1/2), 248–252. 186

246



CHAPTER 6. ASYMPTOTIC PROPERTIES OF M-ESTIMATORS BASED ON
ESTIMATING EQUATIONS AND CENSORED DATA IN SEMI-PARAMETRIC MODELS
WITH MULTIPLE CHANGE POINTS

Pakes, A. and Pollard, D. (1989). Simulation and the asymptotics of optimization estimators.
Econometrica, 57(5), 1027–1057. 189, 199, 200, 236, 238

Pergamenchtchikov, S. and Tartakovsky, A. G. (2019). Asymptotically optimal pointwise and
minimax change-point detection for general stochastic models with a composite post-change
hypothesis. J. Multivariate Anal., 174, 104541, 20. 196

Perlman, M. D. (1972). On the strong consistency of approximate maximum likelihood es-
timators. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and
Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. I: Theory of statistics, pages
263–281. 189

Pfanzagl, J. (1969). Consistent estimation of a location parameter in the presence of an inci-
dental scale parameter. Ann. Math. Statist., 40, 1353–1357. 189

Pons, O. (2018). Estimations and tests in change-point models. World Scientific Publishing Co.
Pte. Ltd., Hackensack, NJ. 186

Qian, G., Wu, Y., and Xu, M. (2019). Multiple change-points detection by empirical Bayesian
information criteria and Gibbs sampling induced stochastic search. Appl. Math. Model., 72,
202–216. 186

Raimondo, M. (1998). Minimax estimation of sharp change points. Ann. Statist., 26(4), 1379–
1397. 196

Reid, N. (1981). Influence functions for censored data. Ann. Statist., 9(1), 78–92. 189, 197

Serfling, R. J. (1980). Approximation theorems of mathematical statistics. John Wiley & Sons,
Inc., New York. Wiley Series in Probability and Mathematical Statistics. 197

Shiryaev, A. N. (2016). On the minimax optimality of CUSUM statistics in change point prob-
lems for Brownian motion. Teor. Veroyatn. Primen., 61(4), 837–844. 196

Stute, W. (1995). The statistical analysis of Kaplan-Meier integrals. In Analysis of censored
data (Pune, 1994/1995), volume 27 of IMS Lecture Notes Monogr. Ser., pages 231–254. Inst.
Math. Statist., Hayward, CA. 197, 199, 240, 241, 242

Stute, W. (1996). Changepoint problems under random censorship. Statistics, 27(3-4), 255–
266. 186

Stute, W. and Wang, J.-L. (1993). The strong law under random censorship. Ann. Statist., 21(3),
1591–1607. 240

Tan, L. and Zhang, Y. (2019). M-estimators of U-processes with a change-point due to a co-
variate threshold. J. Bus. Econom. Statist., 37(2), 248–259. 186

247



CHAPTER 6. ASYMPTOTIC PROPERTIES OF M-ESTIMATORS BASED ON
ESTIMATING EQUATIONS AND CENSORED DATA IN SEMI-PARAMETRIC MODELS

WITH MULTIPLE CHANGE POINTS

Truong, C., Oudre, L., and Vayatis, N. (2020). Selective review of offline change point detection
methods. Signal Processing, 167, 107299. 186, 202

van der Vaart, A. W. (1998). Asymptotic statistics, volume 3 of Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, Cambridge. 189, 191, 197, 199

van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and empirical processes.
Springer Series in Statistics. Springer-Verlag, New York. With applications to statistics. 193,
194, 197

Vostrikova, L. J. (1981). Discovery of “discord” in multidimensional random processes. Dokl.
Akad. Nauk SSSR, 259(2), 270–274. 186, 201

Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. Ann. Math.
Statistics, 20, 595–601. 189

Wang, J. and Zheng, M. (2012). Wavelet detection of change points in hazard rate models with
censored dependent data. J. Nonparametr. Stat., 24(3), 765–781. 186

Wang, J.-L. (1995). M-estimators for censored data: strong consistency. Scand. J. Statist.,
22(2), 197–205. 189, 191, 193

Wang, J.-L. (1999). Asymptotic properties of M-estimators based on estimating equations and
censored data. Scand. J. Statist., 26(2), 297–318. 193, 197, 239, 242

Wu, Y. (2005). Inference for change-point and post-change means after a CUSUM test, volume
180 of Lecture Notes in Statistics. Springer, New York. 186

Yao, Y.-C. (1988). Estimating the number of change-points via Schwarz’ criterion. Statist.
Probab. Lett., 6(3), 181–189. 186

Yin, Y. Q. (1988). Detection of the number, locations and magnitudes of jumps. Comm. Statist.
Stochastic Models, 4(3), 445–455. 186

Zou, C., Yin, G., Feng, L., and Wang, Z. (2014a). Nonparametric maximum likelihood approach
to multiple change-point problems. Ann. Statist., 42(3), 970–1002. 196

Zou, C., Yin, G., Feng, L., and Wang, Z. (2014b). Nonparametric maximum likelihood ap-
proach to multiple change-point problems. Ann. Statist., 42(3), 970–1002. 201

Zou, C., Yin, G., Feng, L., and Wang, Z. (2014c). Nonparametric maximum likelihood approach
to multiple change-point problems. Ann. Statist., 42(3), 970–1002. 202

Zou, C., Wang, G., and Li, R. (2020). Consistent selection of the number of change-points via
sample-splitting. Ann. Statist., 48(1), 413–439. 202

248



Chapter 7

Conclusions and perspectives

7.1 Concluding remarks : Chapter 3

In Chapter 3, we have considered the estimation of a parameter θ that maximizes a certain
criterion function depending on an unknown, possibly infinite-dimensional nuisance parame-
ter h. We have followed the common estimation procedure by maximizing the corresponding
empirical criterion, in which the nuisance parameter is replaced by some nonparametric esti-
mator. We show that the M-estimators converge weakly to maximizers of Gaussian processes
in an abstract setting permitting a great flexibility for applications. We have established that
the m out of n bootstrap, in this extended setting, is weakly consistent under conditions similar
to those required for weak convergence of the M-estimators in the general framework of Lee
[2012], when an additional difficulty comes from the nuisance parameters. The goal of this
paper is therefore to extend the existing theory on the bootstrap of the M-estimators, this gener-
alization is far from being trivial and harder to control the nuisance parameter in non-standard
framework, which form a basically unsolved open problem in the literature. This requires the
effective application of large sample theory techniques, which were developed for the empirical
processes. Examples of applications are given to illustrate the generality and the usefulness of
our results. It would be interesting to extend the results to dependent framework, this would
require further theory which are out of the scope of the present article. An important question is
how to extend our findings to the setting of incomplete data (consored data, missing data, etc).
This will be a subject of investigation for future work.

7.2 Concluding remarks : Chapter 4

In Chapter 4, we are primarily interested in the exchangeably weighted bootstrap for function-
valued estimators defined as a zero point of a function-valued random criterion function. The
motivation of considering general bootstrap it to permit a unified treatment for resampling meth-
ods and provides a more flexible framework to handle practical problems. We have used a differ-
ential identity that applies when the random criterion function is linear in terms of the empirical
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measure, that is crucial to establish our main results for the bootstrap. In particular, we do not
require linearity of the statistical model in the unknown parameter. The second part of this work
is devoted to the semiparametric models extending the results of Zhan [2002] to a more delicate
framework. It will be of interest to develop a non-asymptotic Gaussian approximation theory
for distributions of Z-estimators together with a Gaussian multiplier bootstrap approximation
method. The proof of such a statement, however, should require a different methodology than
that used in the present paper, and we leave this problem open for future research.

7.3 Concluding remarks : Chapter 5

In Chapter 5, we investigate the asymptotic properties of semiparametric M-estimators with
non-smooth criterion functions of the parameters of a multiple change-point model for a gen-
eral class of models in which the form of the distribution can change from segment to segment
and in which, possibly, there are parameters that are common to all segments. The simulation
results show the good performance of the procedure. More precisely, we derive the consistency
with rate together with the asymptotic distribution by using the modern theory of the empiri-
cal processes. It would be of interest to establish the asymptotic distribution of estimators of
the change point coefficient λ. A future research direction would be to study the problem of
estimation in semi-parametric models as such investigated in this work in the setting of seri-
ally dependent observations, which requires nontrivial mathematics, that goes well beyond the
scope of the present paper.

7.4 Concluding remarks : Chapter 6

In Chapter 6 some important problems in the analysis of multiple change-point models were not
considered. One is that the asymptotic distribution of the M-estimator of the vector of change
points was not considered, see for example Hinkley [1970] for a treatment of this problem
in a single change-point model and Döring [2011] for multiple change points. Thus, this is
essentially a separate research topic. However, the asymptotic properties obtained in this paper
are necessary for the establishment of the asymptotic distribution of the M-estimator of the
vector of change points in this model. This will be a subject of investigation for future work.

Another important problem is to extend the results of this paper to the case in which the
number of change points is not known and must be determined from the data. Another direction
of research is that the methods and arguments in this paper can be extended to other types of
incomplete data (e.g. truncation, double censoring, interval censoring etc.) or data subject to
sampling bias, where the Kaplan-Meier product-limit estimate F̂n j (·) will be replaced by an ap-
propriate estimate, usually the non-parametric maximum likelihood estimate of the true lifetime
distribution function. Such an extension is straightforward whenever, for the suitable choice of
F̂n j (·), the CLT of

∫
Rϕ(x)d F̂n j (x) have been established for an arbitrary function ϕ(·). It would

be interesting to cleanly extend the results to this, but this would require further theory which
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are out of the scope of the present article. Change point estimation is a classical problem in
mathematical statistics which, with its broad range of applications in learning problems, has
started to gain attention in the machine learning community. An important question is how
to apply our findings in such problems. Finally, the optimization problems become computa-
tionally complex when the number of parameters is large, it will be interesting to consider the
penalized version of the likelihood function to alleviate such difficulties.
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