
HAL Id: tel-03774851
https://theses.hal.science/tel-03774851

Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spike sorting for massive neurophysiological datasets :
sliding window working set strategy for the estimation

of convolutional models in high dimension
Laurent Dragoni

To cite this version:
Laurent Dragoni. Spike sorting for massive neurophysiological datasets : sliding window working set
strategy for the estimation of convolutional models in high dimension. Optimization and Control
[math.OC]. Université Côte d’Azur, 2022. English. �NNT : 2022COAZ4016�. �tel-03774851�

https://theses.hal.science/tel-03774851
https://hal.archives-ouvertes.fr

Tri de potentiels d’action sur des
données neurophysiologiques

massives

Stratégie d’ensemble actif par fenêtre glissante
pour l’estimation de modèles convolutionnels en

grande dimension

Laurent DRAGONI
Laboratoire Jean-Alexandre Dieudonné (LJAD)

Présentée en vue de l’obtention du
grade de docteur en mathématiques
d’Université Côte d’Azur

Dirigée par : Karim Lounici, Rémi
Flamary, Patricia Reynaud-Bouret
Soutenue le : 25 avril 2022

Devant le jury, composé de :
Thomas Moreau, CR, Inria Saclay
Christophe Pouzat, CR, Université de
Strasbourg
Nelly Pustelnik, CR, ENS Lyon
Alain Rakotomamonjy, Pr, Université
de Rouen
Joseph Salmon, Pr, Université de
Montpellier (Président du jury)

THÈSE DE DOCTORAT

Université Côte d’Azur
École Doctorale de Sciences Fondamentales et Appliquées

Thèse présentée en vue de l’obtention du grade de
Docteur en mathématiques d’Université Côte d’Azur

par Laurent Dragoni

Tri de potentiels d’action sur des
données neurophysiologiques massives

Stratégie d’ensemble actif par fenêtre glissante pour
l’estimation de modèles convolutionnels en grande

dimension

Thèse soutenue le 25 avril 2022
devant le jury composé de

Président du jury :
Joseph Salmon, Professeur des universités, Université de Montpellier

Rapporteurs :
Christophe Pouzat, Chargé de recherche, Université de Strasbourg

Nelly Pustelnik, Chargée de recherche, École Normale Supérieure de Lyon

Examinateurs :
Thomas Moreau, Chargé de recherche, INRIA de Saclay

Alain Rakotomamonjy, Professeur des universités, Université de Rouen

Directeurs de thèse :
Karim Lounici, Professeur des universités, École Polytechnique

Rémi Flamary, Mâıtre de conférences, École Polytechnique
Patricia Reynaud-Bouret, Directeur de recherche, Université Côte d’Azur

1

Université Côte d’Azur
École Doctorale de Sciences Fondamentales et Appliquées

Thesis presented for the obtention of the title of
Doctor in mathematics of Université Côte d’Azur

by Laurent Dragoni

Spike sorting for massive
neurophysiological datasets

Sliding window working set strategy for the estimation
of convolutional models in high dimension

Thesis defended on April 25, 2022
before the jury composed of

President of the jury:
Joseph Salmon, University Professor, Université de Montpellier

Rapporteurs:
Christophe Pouzat, Research Associate, Université de Strasbourg

Nelly Pustelnik, Research Associate, École Normale Supérieure de Lyon

Examiners:
Thomas Moreau, Research Associate, INRIA de Saclay

Alain Rakotomamonjy, University Professor, Université de Rouen

Thesis directors:
Karim Lounici, University Professor, École Polytechnique
Rémi Flamary, University Lecturer, École Polytechnique

Patricia Reynaud-Bouret, Research Director, Université Côte d’Azur

2

Tri de potentiels d’action sur des données

neurophysiologiques massives

Résumé: Au sein du système nerveux, des cellules appelées neurones sont
spécialisées dans la communication de l’information. À travers l’émission
et la propagation de courants électriques nommés potentiels d’action, les
neurones peuvent transmettre l’information dans le corps. Étant donné le
rôle prééminent des neurones, afin de mieux comprendre le fonctionnement
du système nerveux, une vaste gamme de méthodes ont été proposées pour
l’étude de ces cellules. Dans cette thèse, nous nous intéressons à l’analyse
de signaux ayant été enregistrés par des électrodes, et plus spécifiquement,
des tétrodes et des multi-electrode arrays (MEA). Ces appareils mesurant
en général l’activité d’un ensemble de neurones, les signaux enregistrés
forment souvent un mélange de l’activité de plusieurs neurones. Afin de
gagner plus d’information sur ce type de données, un pré-traitement cru-
cial appelé tri de potentiels d’action est requis pour séparer l’activité de
chaque neurone. Actuellement, la procédure générale de tri de potentiels
d’action repose sur une procédure en trois étapes : seuillage, extraction
de caractéristiques et partitionnement de données. Malheureusement cette
méthodologie requiert un grand nombre d’opérations manuelles. De plus,
elle devient encore plus difficile à mettre en oeuvre sur de grands volumes
de données, en particulier pour des enregistrements de MEA qui ont ten-
dance à présenter davantage de synchronisations de neurones. Dans cette
thèse, nous présentons une stratégie de tri de potentiels d’action permet-
tant l’analyse de grands volumes de données et qui requiert peu d’opérations
manuelles. Cette stratégie utilise un modèle convolutionnel dont le but est
de représenter les signaux mesurés en convolutions temporelles entre deux
facteurs : les activations de neurones et les formes de potentiels d’action.
L’estimation de ces deux facteurs est généralement traitée par optimisa-
tion alternée. Étant la tâche la plus difficile, nous nous concentrons ici
sur l’estimation des activations, en supposant que les formes de potentiels
d’action sont connues. Le célèbre estimateur Lasso présente d’intéressantes
propriétés mathématiques pour la résolution d’un tel problème. Néanmoins
son calcul demeure difficile sur des problèmes de grande taille. Nous pro-
posons un algorithme basé sur la stratégie d’ensemble actif afin de calculer
efficacement le Lasso. Cet algorithme exploite la structure particulière du
problème, déduite de propriétés biologiques, en utilisant des fenêtres glis-
santes temporelles, lui permettant d’être appliqué en grande dimension.
De plus, nous adaptons des résultats théoriques sur le Lasso pour mon-
trer que, sous des hypothèses raisonnables, notre estimateur retrouve le
support du vrai vecteur d’activation avec grande probabilité. Nous pro-
posons également des modèles pour la distribution spatiale et des temps
d’activations des neurones qui nous permettent de quantifier la taille du
problème et de déduire la complexité temporelle théorique de notre algo-
rithme. En particulier, nous obtenons une complexité quasi-linéaire par
rapport à la taille du signal enregistré. Finalement nous présentons des

3

expériences numériques illustrant à la fois les résultats théoriques et les
performances de notre approche.

Mots clés : Tri de potentiels d’action, neuroscience, apprentissage automa-
tique, optimisation, sparsité, Lasso.

4

Spike sorting for massive neurophysiological

datasets

Abstract: In the nervous system, cells called neurons are specialized in the
communication of information. Through the generation and propagation of
electrical currents named action potentials, neurons are able to transmit
information in the body. Given the importance of the neurons, in order
to better understand the functioning of the nervous system, a wide range
of methods have been proposed for studying those cells. In this thesis, we
focus on the analysis of signals which have been recorded by electrodes, and
more specifically, tetrodes and multi-electrode arrays (MEA). Since those
devices usually record the activity of a set of neurons, the recorded signals
are often a mixture of the activity of several neurons. In order to gain
more knowledge from this type of data, a crucial pre-processing step called
spike sorting is required to separate the activity of each neuron. Nowadays,
the general procedure for spike sorting consists in a three steps procedure:
thresholding, feature extraction and clustering. Unfortunately this method-
ology requires a large number of manual operations. Moreover, it becomes
even more difficult when treating massive volumes of data, especially MEA
recordings which also tend to feature more neuronal synchronizations. In
this thesis, we present a spike sorting strategy allowing the analysis of large
volumes of data and which requires few manual operations. This strat-
egy makes use of a convolutional model which aims at breaking down the
recorded signals as temporal convolutions between two factors: neuron ac-
tivations and action potential shapes. The estimation of these two factors
is usually treated through alternative optimization. Being the most diffi-
cult task, we only focus here on the estimation of the activations, assuming
that the action potential shapes are known. Estimating the activations is
traditionally referred to convolutional sparse coding. The well-known Lasso
estimator features interesting mathematical properties for the resolution of
such problem. However its computation remains challenging on high dimen-
sional problems. We propose an algorithm based of the working set strategy
in order to compute efficiently the Lasso. This algorithm takes advantage of
the particular structure of the problem, derived from biological properties,
by using temporal sliding windows, allowing it to scale in high dimension.
Furthermore, we adapt theoretical results about the Lasso to show that, un-
der reasonable assumptions, our estimator recovers the support of the true
activation vector with high probability. We also propose models for both
the spatial distribution and activation times of the neurons which allow us
to quantify the size of our problem and deduce the theoretical complexity
of our algorithm. In particular, we obtain a quasi-linear complexity with
respect to the size of the recorded signal. Finally we present numerical re-
sults illustrating both the theoretical results and the performances of our
approach.

Keywords: Spike sorting, neuroscience, machine learning, optimization,
sparsity, Lasso.

5

Remerciements

Je remercie en premier lieu mes encadrants, Karim Lounici, Rémi Flamary
et Patricia Reynaud-Bouret, pour leur bienveillance, leur soutien et leur
infinie patience. Cette thèse n’aurait sans doute pas pu aboutir si je n’avais
pas ainsi bénéficié de leur profonde culture scientifique. Merci également
aux membres de mon comité de thèse, Thomas Laloë et Charles Bouveyron,
pour leurs conseils et leur disponibilité.

Je remercie ensuite Nelly Pustelnik et Christophe Pouzat d’avoir accepté
d’être les rapporteurs de mon manuscrit. Je remercie également Joseph
Salmon, Alain Rakotomamonjy et Thomas Moreau d’avoir bien voulu com-
poser la suite du jury.

Je remercie également mes collègues d’enseignement, Eliot, Maud, Gaëtan
et Nahla, pour la préparation et l’organisation des travaux dirigés.

Merci aussi aux doctorants avec qui j’ai partagé le bureau 801, Armand,
Angel, M’hammed et Benjamin, pour leur gentillesse et leur discrétion.

Je remercie enfin Isabelle Delorme et Anita Ibrahim pour leur appui
administratif, Jean-Marc Lacroix et Roland Ruelle pour leurs nombreuses
assistances informatiques, et plus généralement l’ensemble du laboratoire
Jean-Alexandre Dieudonné.

À Mickaël

6

Contents

Notations 14

1 Introduction 15

Introduction 15
1.1 Introduction to the spike sorting problem 15
1.2 Contributions . 18
1.3 Organization of the manuscript 20

2 Production and transmission of the information in the ner-
vous system 22
2.1 Organization of the nervous system 22

2.1.1 Cells of the nervous system 22
2.1.2 Morphology of the neuron 22
2.1.3 Parts of the nervous system 23

2.2 Membrane potential and action potentials 25
2.2.1 The membrane potential 25
2.2.2 Generation of an action potential 27
2.2.3 Properties of the action potentials 31

2.3 Synaptic potentials and integration 32
2.3.1 Types of synaptic transmission: electrical and chemical 32
2.3.2 Excitatory and inhibitory postsynaptic potentials . . 33
2.3.3 Spatial and temporal summation mechanisms 35

3 Spike sorting 37
3.1 Recording neural activity . 37
3.2 The spike sorting problem 39
3.3 Traditional spike sorting . 40
3.4 Spike sorting difficulties . 42
3.5 Sparse convolutional linear model 43

4 Optimization methods 48
4.1 The Lasso problem . 48

4.1.1 Choice of the Lasso estimator 48
4.1.2 Vectorization of the convolutional model 50
4.1.3 Optimality conditions of the Lasso 51

4.2 Generic working set algorithm for the Lasso 52

7

4.2.1 Principle of the algorithm 52
4.2.2 Efficient implementation on convolutional models . . 53

4.3 Proximal optimization methods 54
4.3.1 Proximity operator 54
4.3.2 Proximal algorithm 55

4.4 State of the art Lasso solvers 58
4.4.1 FISTA for the Lasso 58
4.4.2 Coordinate Descent for the Lasso 60
4.4.3 Least Angle Regression (LARS) 61

5 Sliding window working set algorithm 63
5.1 Biologically based assumptions 63
5.2 Overlaps . 64

5.2.1 Spatial overlaps . 65
5.2.2 Temporal overlaps 66

5.3 Sliding window working set 67
5.3.1 Principle of the algorithm 67
5.3.2 Algorithm solution w.r.t. the original Lasso 69
5.3.3 Numerical complexity and efficient implementation . 70

6 Mathematical results 73
6.1 Control of the spatial and temporal overlaps 73

6.1.1 Spatial overlaps . 73
6.1.2 Temporal overlaps 76

6.2 Control of the noise . 77
6.3 Theoretical properties of the Lasso estimator 78
6.4 Complexity of the sliding window working set algorithm . . 85
6.5 Attenuation model . 87

7 Numerical experiments 90
7.1 Computational complexity 90
7.2 Influence of the noise and the regularization parameter . . . 93
7.3 Comparison with distance-based spike sorting methods . . . 94

Conclusion 96

Bibliography 105

8

List of Figures

2.1 (a) Simplified representation of the structure of a neuron.
The dendritic tree is colored in blue, the axon in red. These
two structures extend from the cell body as branches. The
presynaptic terminals are represented as red triangles at the
edges of the branches of the axon. The brown cylinders cover-
ing the axon represent the myelin sheats which accelerate the
transmission of information (Figure 1-9 from [Luo, 2015]).
(b) Illustration of the specialization of neurons. Their spe-
cific morphologies permit to achieve specific functions. De-
spite this variety, most neurons share the same organization:
axon and dendrites organized around the soma of the cell.
Figure 45.3 from [Hillis et al., 2009]. 24

2.2 Representation of the two main parts of the nervous sys-
tem. The CNS (brain and spinal cord) is in yellow, the PSN
(cranial and spinal nerves) is in purple. Figure 1.12 from
[Purves et al., 2018]. 25

2.3 Illustration of the electrochemical gradient. The width of the
green arrows represents the magnitude of the electrochemi-
cal gradients. Left: in the case where there is no membrane
potential, only the concentration difference decides the move-
ment of the ions (from high concentration to low concentra-
tion areas). Conversely, in the case where there is a potential
difference between the membrane sides, both the electrical
and chemical gradients influence the ion movements. Mid-
dle: when these two factors operate in the same direction.
Right: when these two factors operate in opposing directions.
Figure 2-9 from [Luo, 2015]. 27

2.4 Typical shape of an action potential. Starting from the rest-
ing potential, which is slightly above the K+ equilibrium po-
tential, the membrane potential quickly rises around the Na+

equilibrium potential, then drops down to the K+ equilibrium
potential. Finally the membrane potential slowly returns to
its resting value. The span of the whole process takes only
some milliseconds. Figure 2-24 from [Luo, 2015]. 30

2.5 Representation of a chemical synapese and the series of events
taking place for the transmission of signals between two neu-
rons. Figure 5.4 C from [Purves et al., 2018]. 34

9

2.6 (A) Spatial summation of two excitatory inputs. Arriving at
the cell body at almost the same time, two EPSPs sum and
produce a depolarization larger than the depolarization of
each EPSP alone. (B) Temporal summation of two excitatory
inputs. Arriving from the same synapse during a short span
of time, two EPSPs sum at the cell body and also produce a
larger depolarization than the depolarization of each EPSP
alone. Figure 3-43 from [Luo, 2015]. 36

3.1 Illustration of the different issues to deal with after collecting
an extracellular recording: which neuron is responsible of any
observed spike? How many neurons generated such signal?
The data were recorded from zebra finch lateral magnocellu-
lar nucleus of the anterior neostriatum, with a glass-coated
platinum–iridium electrode. Figure 2 from [Lewicki, 1998]. . 39

3.2 Illustration of the three main steps in the traditional spike
sorting procedure. First, voltage thresholding is performed
in order to detect each spike peak instant. Using a small
window around these peak instants, the spike waveforms can
be extracted. Then feature extraction is achieved. As an
illustration, we can see here the result of the projection of
the spikes in the first two principal components. Finally,
clustering of the spikes is performed, for instance with the
K-means algorithm. Points in color coincide with extracted
waveforms in the first step. Remark that some of them do not
belong to any cluster since they result from the superposition
of individual spikes. Figure 1 from [Ekanadham et al., 2014]. 42

3.3 Illustration of the convolutional model in a simple context
of E = 2 electrodes and N = 2 neurons. The shapes of the
action potentials are represented in the bottom left corner.
The activations vectors are represented in the top right cor-
ner, and the result of the temporal convolution between the
shapes and the activations is represented in the bottom right
corner. For each activation time (depicted as a vertical trait),
the corresponding shape appears at the same instant on the
convolution. Remark the unusual shapes appearing around
the center of the graph. This phenomenon may occur when
two neurons activate at almost the same time (synchroniza-
tion). This causes a superposition of the action potentials
that creates waveforms which are not in the model. 47

4.1 Graphical representation of the soft-thresholding operator. . 59

10

5.1 Illustration of the spatial and temporal overlaps. At the left
hand side, we present an example of 3 spatial overlaps in
the case of 5 neurons, on a regular grid of 36 electrodes.
The position Nj of neuron j is represented by a check, and
the reach of its spikes by a disc of radius r. On the right
hand side, we provide an example of temporal overlaps for
the neurons 1, 2 and 3. We provide the shapes of each neuron
and the reconstructed signal on the electrode e. Remark that
since neuron 1 is far away from e, its shape on e remains
at 0. The independent spatial and temporal overlaps are
illustrated with different colors. 68

5.2 Illustration of the different steps in the proposed algorithm.
Left: observed signal S with model reconstruction and sparse
model ai. The current window is represented as a light
blue background. True activations are illustrated with trans-
parency. Right: optimality conditions (named KKT) vio-
lation at the current step. Temporal instants and neurons
violating the optimality conditions are over the black dashed
line. 72

7.1 First portion (0.1s = 1000 points) of the recorded signal by
one of the electrodes. Notice the five different action potential
shapes corresponding to the five neurons in this simulation. . 92

7.2 Comparison of the execution times for four different algo-
rithms, when the size of the signals T growths. We repre-
sented the median execution times over 40 simulations as the
dotted lines. The bands represent the execution times be-
tween the bottom and top percentiles. 93

7.3 Influence of λ and the signal-to-noise ratio on the perfor-
mances of the Lasso estimator. Results are averaged over 5
draws. 94

7.4 Comparison of Lasso and clustering performances (F-measure).
Results are averaged over 50 draws. 95

11

List of Tables

2.1 The properties of the major species of ions across the mem-
brane at rest of the giant axon of the squid. K+ are more
concentrated inside the cell, while Na+ and Cl- are more
concentrated outside. The membrane at rest is much more
permeable to K+ ions than to Na+ ions. Table 9-1 from
[Kandel et al., 2000]. 28

3.1 Orders of magnitude for the quantities of the problem. This
table illustrates a typical situation for a recording of one hour
at the sampling rate of 30kHz. The number of electrodes and
neurons may greatly variate, depending on the context: a
single recording tetrode only comprises four electrodes, while
a MEA can contain several thousands of electrodes. The
number of recorded neurons ensues from this recording context. 46

7.1 Orders of magnitude for the parameters introduced in As-
sumption 5.1.3. 91

12

List of Algorithms

1 Generic working set algorithm for the Lasso 54
2 Fast iterative soft-thresholding algorithm (FISTA) 57
3 FISTA for the Lasso . 60
4 Sliding window working set 70

13

Notations

In the following, bold upper-case letters (e.g. M) refer to matrices and
bold lower-case letters (e.g. x) refer to vectors.

Notation Quantity Definition

` ∈ N size of the shapes 1.1

E ∈ N number of electrodes 1.1

N ∈ N number of neurons 1.1

T ∈ N number of time steps of each signal 1.1

Y ∈ RE×T recorded signals (matrix) 1.1

Wn ∈ RE×` shapes of the action potentials of neuron n 1.1

a?n ∈ RT temporal activations of neuron n 1.1

Ξ ∈ RE×T random noise (matrix) 1.1

wn,e ∈ R` spike shape of neuron n and electrode e 3.5

λ ∈ R regularization parameter of the Lasso 4.1.1

y ∈ RET recorded signals (vector) 4.1.2

ξ ∈ RET random noise (vector) 4.1.2

a? ∈ RNT temporal activations (vector) 4.1.2

H ∈ RET×NT design matrix of the problem vectorized 4.1.2

ht,n ∈ RET H column for activation of neuron n at time t 4.1.2

w→t ∈ RT push of vector w at position t 4.1.2

∂g(x) ⊂ Rd subdifferential of function g in x ∈ Rd 4.1.3

J ⊂ {1, . . . , NT} working set 4.2.1

proxg proximity operator of function g 4.3.1

S∗ ⊂ {1, . . . , NT} support of a? 5.1

G ∈ RNT×NT Gram matrix H>H 5.1

ω = Jω1, ω2K temporal window of times 1 ≤ ω1 < ω2 ≤ T 5.2.2

δ ∈ R distance between electrodes 6.1.1

r0 ∈ R range of detection of a neuron by an electrode 6.1.1

γc ∈ R critical parameter of spatial percolation 6.1.1

p ∈ R global activation rate of temporal activations 6.1.2

14

Chapter 1

Introduction

1.1 Introduction to the spike sorting prob-

lem

The nervous system is the part of an animal which handles the communi-
cation of the information between various segments of its body. Scientists
refer to the field of study of the nervous system as neuroscience. Encom-
passing a wide range of disciplines, such as physiology, molecular biology
or computer science, neuroscience notably aims at discovering the rules and
mechanisms of complex processes such as consciousness and learning. The
nervous system contains various families of cells which are specialized in the
transmission of the information in the body. Among those cells, some are
capable of generating and transporting electrical potentials, which is the
way animals transmits information inside their body. These cells, called
neurons, are an important focus of the studies of neuroscientists. Because
neurons play such an important role in the nervous system, especially in the
brain, a great variety of approaches have been developped for their study.

As such, neurons can be studied individually, at the microscopic level, in
order to better understand them from molecular and cellular perspectives.
Such studies notably revealed that the morphology of the neurons allows
them to integrate, directly or indirectly, incoming electrical currents from
other cells, and in turns generate and transmit an electrical current to other
cells. Those inward and outward currents are referred as action potentials.
They generally take the form of a sudden rise of the membrane electrical
potential of the neuron, quickly followed by an equally sharp drop of this
potential. This gives action potentials a characteristic shape when recorded,
commonly named spikes. This ability to modify their membrane electrical
potential, through subtle movements of ions accross their membrane, is
the reason why neurons occupy such a central position in the study of the
nervous sytem ([Kandel et al., 2000]).

But because each neuron is the fundamental component of a larger net-
work, neurons can also be studied at a more macroscopic level. In order to
gain knowledge about valuable elements of the neural code, various tech-
niques for macroscopic recordings of the activity of the brain have been

15

developped. In this thesis, we focus on the analysis of signals which have
been recorded by electrodes. Let us introduce two important types of
recording devices belonging to this electrode paradigm. Tetrodes, which
are a bundle of four small electrodes made of metal, are commonly used
in order to record the extracellular field potentials. Another important
type of recording devices, which emerged in the 1970s but gained impor-
tant popularity in the recent years, is the multi-electrode array, or MEA
([Thomas Jr et al., 1972]). This apparatus, usually containaing hundreds
or thousands electrodes, is especially interesting for the study of neural
networks ([Whitson et al., 2006]).

Although these various devices allow convenient recordings of popula-
tion of neurons, the signals they gather are usually a mixture of the activity
of multiple neurons ([Pouzat et al., 2004]). In order to extract the precise
activity of each neuron during the recording, an important pre-processing
step, called spike sorting, is necessary. Since the shape of an action po-
tential generated by a neuron essentially depends on the morphology of this
neuron, the shape tends to remain the same along time ([Hill et al., 2011]).
Therefore, viewing each shape as the signature of the activity of a particu-
lar neuron, the goal of spike sorting is to extract the shapes of the action
potentials, to associate them to their respective neuron and to detect at
which times each particular neuron has generated an action potential (i.e.
to determine the spike train of each neuron).

Considering the importance of this pre-processing step, various strate-
gies have been developped in the last decades in order to solve the spike
sorting problem. In the fullness of time, these strategies have converged
to a general methodology which we will call traditional spike sorting. It
can be roughly described as a three steps procedure: thresholding (re-
trieval of the spike shapes from the signal), feature extraction (extrac-
tion from these shapes relevant features) and clustering (discrimination of
the shapes based on their features). Then a template matching procedure
associates each detected spike to the neuron which has the closest shape
([Lewicki, 1998, Pouzat and Detorakis, 2014]).

Although quite popular in the field of neuroscience, this traditional spike
sorting methodology presents some important practical difficulties. A large
number of manual operations are indeed necessary in order to achieve the
aforementioned three steps. As a consequence, it has been established that
the results obtained strongly depend of the person performing the task
([Wood et al., 2004, Harris et al., 2000]). This task becomes even more
challenging when the recordings present some neuronal synchronizations,
that is when two or more neurons tend to generate their action poten-
tials at almost the same time. In this context, the shapes of the action
potentials are often mixed, which makes the clustering task more diffi-
cult. Since synchronizations between neurons are believed to be an impor-
tant property of the neural code ([Lambert et al., 2018, Albert et al., 2016,
Eytan and Marom, 2006]), one of the major ambition of our work is to pro-
pose a methodology which estimates more precisely the spike trains and is

16

more robust in presence of such synchronizations. The limitations of the
traditional approach usually worsens with data obtained from MEA. Be-
cause these devices can record large populations of neurons, they tend to
generate large amounts of data, which are harder to sort manually. More-
over, for an increasing number of recording sites, it has been noted that the
synchronization problem exacerbates ([Einevoll et al., 2012]).

We present in this thesis a spike sorting procedure which would permit
the analysis of large volumes of data while being less demanding in terms
of manual operations than the traditional approach. This procedure builds
on a convolutional model, which role is to link the recorded signals with
the activity of the neurons. More precisely, writing respectively `, E, N
and T the size of the shapes, number of electrodes, number of neurons and
number of time steps of each signal, this model aims at representing the
recorded signals Y ∈ RE×T as a sum over all the neurons of the temporal
convolution between the shapes Wn ∈ RE×` of the action potentials and the
temporal activations a?n ∈ RT of neuron n. At each instant of activation
of neuron n, the corresponding coordinate in a?n equals 1, elsewhere it is 0.
Mathematically, the model writes as:

Y =
N∑
n=1

Wn ∗ a?n + Ξ, (1.1)

where Ξ is a random noise matrix in RE×T and ∗ is the convolution operator
along time. Originally proposed in [Taylor et al., 1979], this type of model
has been applied for instance to neuroscience ([Roberts, 1979]), speech sig-
nals ([Smaragdis, 2007]), and more recently to spike sorting
([Ekanadham et al., 2011]). An important property of this model is based
on the linearity of the convolution operator, which enables the handling
of synchronizations as additive superpositions of the shapes, which is not
possible with traditional spike sorting relying on clustering [Lewicki, 1998].

The terms in model (1.1) are usually estimated by alternative optimiza-
tion. However, the main computational bottleneck lies in the estimation of
the activations a?n, since the numbers of variables in these terms are propor-
tional to T , while those in the shapes Wn remain bounded. For this reason,
in this thesis we focus on the estimation of the activations a?n, assuming that
the shapes of the action potentials Wn are known. In this context of convo-
lutional dictionary learning, this particular task is often refered to convolu-
tional sparse coding: since the neurons tend to generate few action poten-
tials with respect to T , the number of 1 in a?n is very small compared to the
number of 0. In more mathematical terms, each activation vector a?n is ex-
pected to be a sparse vector. This setting, quite common in the framework of
convolutional sparse coding, motivates the application of an estimation pro-
cedure which promotes the sparsity of its solutions. The favoured procedure
here is the well-known Least Absolute Shrinkage and Selection Operator
(Lasso), introduced by [Tibshirani, 1996]. This estimator is particularly rel-
evant as it tends to produce a solution containing a lot of coordinates equal
to zero. Moreover, its computational feasibility and its statistical precision

17

have brought it an important popularity in a large range of applications. In
particular, it has already been applied in the context of spike sorting, for
example by [Ekanadham et al., 2011] (under the equivalent term basis pur-
suit estimator). From a theoretical perspective, the Lasso is also interesting
thanks to theoretical evidences showing that it is able to recover the sup-
port of the true activations (i.e. the activation times and the active neurons)
under specific conditions ([Bickel et al., 2009, Bunea, 2008, Lounici, 2008]).

Despite these interesting assets, computing the Lasso estimator can be
challenging for high dimensional problems. Indeed, its computational com-
plexity growths cubically with the number of variables in the optimization
problem. Remark that in our setting, this number is proportional to the
length of the signal. In the general context of sparse coding problems,
[Lee et al., 2007] proposed the Feature Sign Search (FSS) algorithm, which
essentially consists in a working set strategy paired with the resolution of a
Quadratic Programming problem. The working set strategy, taking advan-
tage of the optimality condition satisfied by any Lasso solution, consists in
the iterative activation of the coordinates in the solution vector until conver-
gence. Doing so, the strategy aims at solving multiple subproblems of small
size in order to accelerate the computations. They notably showed that
this strategy grants better results than the LARS on practical applications.
[Grosse et al., 2012] proposed an extension of FSS to convolutional sparse
coding applied to audio classification, by splitting the signal into smaller
temporal windows. Although they managed to improve the performances
of the original FSS strategy on large signals, the fact that these windows
were fixed a priori required to consider multiple passes on the whole signal.
Another similar approach, using an a priori partition of the signal proposed
by [Moreau et al., 2018], aimed at solving smaller supbroblems with a lo-
cal coordinate descent algorithm. But since the structure of this strategy
imposes to wait for the convergence on every windows to reach global con-
vergence, its domains of applications remain limited to offline analyses.

1.2 Contributions

We propose to solve the sparse coding problem related to model (1.1) with
an approach based on the working set strategy. This approach refines
the working set strategy by using temporal sliding windows, allowing it
to scale in high dimension. Although close to the methods proposed by
[Grosse et al., 2012] and [Moreau et al., 2018], in our approach the tempo-
ral windows are not fixed a priori, rather they analyze the signal by adapting
to its structure. This allows to treat the whole signal in a single pass and
quickly enough to permit an online analysis.

Then we explain how we can take advantage of some biological proper-
ties of the problem in order to allow this analysis of the signal with sliding
windows. We notably present the notion of overlaps between activations,
which essentially represent the temporal portions of the signal which can be
considered independent in the context of our optimization problem. This

18

notion of temporal overlaps ensures the validity of the sliding window ap-
proach, and also grants the size of the subproblems that need to be solved.
Along the temporal overlaps notion, we also present the notion of spatial
overlaps: taking into account the attenuation phenomenon that an action
potential experiences as the distance with its source neuron increases, we
take advantage of the fact that our problem can be further split into smaller
spatial subproblems.

Furthermore, we also describe how the biological characteritics related
to the spike sorting problem translate into useful mathematical properties.
By adapting standard theoretical results about the Lasso, we show that
these properties ensure the quality of the Lasso estimation. Indeed, we can
prove that with high probability, our estimator recovers the support of the
true activation vector.

In addition, we propose simple yet plausible models for both the spatial
distribution and activation times of the neurons. These models allow us
to quantify the sizes of the aforementioned spatial and temporal overlaps.
Since the sliding window working set algorithm performances strongly de-
pend on these quantities, we can deduce the theoretical time complexity
of the algorithm. In particular, we note that it grows quasi-linearly with
respect to the size of the recorded signal. Other works have tackled similar
optimization problems such as [Jas et al., 2017] and [La Tour et al., 2018],
but to the best of our knowledge, the sliding window working set approach
that we present is the first to fully take advantage of the structure of the
problem and to attain a quasi-linear complexity. Interestingly, since the
algorithm only needs to perform linear operations such as convolutions, it
can be adapted to GPU architectures, allowing a very efficient scaling.

Finally we present numerical results illustrating both the theoretical
results and the performances of our approach. Note that since this algorithm
is designed to solve an estimation problem associated to a convolutional
model, it can potentially be used to other domains, as long as the quantities
of interest verifies similar structural and sparsity properties as in the spike
sorting problem (for instance the recognition of musical notes).

These various contributions have been the subject of three publications:

Technical report

Dragoni L., Flamary R., Lounici K., and Reynaud-Bouret P. (2019). Large
scale lasso with windowed active set for convolutional spike sorting. arXiv
preprint https://arxiv.org/abs/1906.12077.

This article submitted to IEEE CAMSAP 2019 introduces a preliminary
version of the algorithm and its performances with simulations.

Conference proceedings

Dragoni L., Lounici K., Flamary R., and Reynaud-Bouret P., Algorithme
d’ensembles actifs par fenêtre glissante pour l’estimation parcimonieuse de

19

https://arxiv.org/abs/1906.12077

modèle convolutionel, Actes des 52èmes Journées de Statistique de la Société
Française de Statistique, Nice, Juin 2021, pages 308-313.

This article submitted and presented to JDS 2021 adds the size of the
temporal overlaps and the complexity of the algorithm.

Preprint

Dragoni L., Flamary R., Lounici K., and Reynaud-Bouret P. (2021). Sliding
window strategy for convolutional spike sorting with lasso: Algorithm, the-
oretical guarantees and complexity. arXiv preprint https://arxiv.org/

abs/2110.15813.
This article submitted to the peer-reviewed mathematics journal Acta

Applicandae Mathematicae presents in details our whole approach, and in
particular the spatial overlaps as well as the final algorithm.

1.3 Organization of the manuscript

We present here the general organization of the manuscript. Apart from
this first introductory chapter, this report is divided in six main chapters
as follows:

Chapter 2 Production and transmission of the information in the
nervous system: we describe in the second chapter how the nervous
system is organized. Focusing on the role of the neurons, we explain why
those specialized cells are able to receive electrical inputs, and in turn,
generate action potentials and transmit them to other neurons. We see
in particular the importance of the morphology of these cells in order to
perform such complex tasks.

Chapter 3 Spike sorting: we present in the third chapter various tech-
niques for recording the activity of one or multiple neurons. Then aiming
our attention at the devices using electrodes, we motivate the importance of
the spike sorting pre-processing step in order to gain relevant insights from
recordings of those type of devices. We explain the general methodology
which is commonly used nowadays, as well as some of its limitations. Finally,
we give our formulation of the spike sorting problem using a convolutional
model between the shapes of the action potentials and the activation vectors
of the neurons.

Chapter 4 Optimization methods: in the fourth chapter, we begin by
introducing the Lasso estimator in order to solve the sparse coding problem
associated with our convolutional model. We explain why this estimator
is particularly relevant for this task, as opposed to other estimators such
as the least square or the ridge estimators. Then we present the generic
formulation of the working set strategy in order to compute the Lasso more

20

https://jds2021.sciencesconf.org/data/pages/book_jds2021_fr_compressed.pdf
https://arxiv.org/abs/2110.15813
https://arxiv.org/abs/2110.15813

efficiently in high dimension. Lastly, we describe various state of the art
algorithm for the computation of the Lasso, focusing in particular on prox-
imal methods (FISTA). We justify in particular why we choose FISTA as
the inner solver of our working set algorithm.

Chapter 5 Sliding window working set algorithm: we begin the
fifth chapter by formulating various mathematical assumptions about our
problem. These assumptions, inspired from biological properties related to
neurons and action potentials, will be of crucial importance for the analysis
of our methodology. Then the notions of temporal and spatial overlaps are
defined. Thanks to these ideas of overlaps, we see that we can split our
original problem into independent smaller subproblems. Taking advantage
of this, we finally present the sliding window working set algorithm.

Chapter 6 Mathematical results: the sixth chapter is devoted to the
mathematical analysis of the sliding window working set algorithm. We es-
tablish first the size of the temporal and spatial overlaps under reasonable
probabilistic assumptions on both he activation times and the neuron po-
sitions. Then we focus on the statistical properties of the Lasso estimator
under the mathematical assumptions that we introduced in the previous
chapter. We prove an important theorem which ensures that, with high
probability, the Lasso can estimate the support of the true activation vec-
tor. Lastly, we explain how the temporal complexity of the algorithm can
be deduced from the sizes of the overlaps. In particular, we see that this
complexity is quasi-linear with respect to the length of the signal, which
represents an important improvemeent with respect to the generic working
set algorithm.

Chapter 7 Numerical experiments: we give in the seventh chapter
the results of some numerical experiments illustrating the efficiency of our
approach. First we show that the sliding window working set algorithm
achieves as expected quasi-linearity in terms of computation time, with re-
spect to length of the signal. Then we investigate the robustness of the
method for various signal-to-noise ratios. We see in particular the impor-
tance of the calibration of the tuning parameter of the Lasso. Finally we
show that the Lasso is less prone to errors than the clustering method when
the number of synchronizations increases, an attractive consequence of the
convolutional model.

21

Chapter 2

Production and transmission of
the information in the nervous
system

2.1 Organization of the nervous system

2.1.1 Cells of the nervous system

We begin this chapter by introducing fundamental neurobiology elements
about the organization of the nervous system. In an animal, the nervous
system is the component which organizes the transmission of the informa-
tion, from and to the different parts of its body, essentially thanks to the
activity of specialized cells named neurons ([Byrne et al., 2014, Chapter 1]).
The nervous system essentially consists of two types of cells:

• neurons, also called nerve cells, which are electrically excitable cells,

• glial cells, which support the activity of neurons.

The neuron doctrine asserts that the neurons are the fundamental build-
ing blocks and signaling units of the nervous system. By establishing con-
nections and interacting with other nerve cells, each neuron is an element
of a network which has one or multiple behavioral functions.

Although neurons and glial cells derive from the same precursor cells,
they do not share the same morphological and functional features. In partic-
ular, their membranes show notable differences: the membrane of a neuron
is electrically excitable, while the membrane of a glial cell is not. There-
fore, electrical signaling is directly performed by neurons, while glial cells
surround neurons and support their activity ([Kandel et al., 2000, Chapter
3]).

2.1.2 Morphology of the neuron

We now present the morphological properties of neurons, which allow to
understand how such cells can receive, produce and transmit signals. Even

22

though there is a great variability in neurons anatomy, almost all neurons
may be consistently described as the assembly of different functional regions
(see Figure 2.1).

For the vertebrates, the cell body, called soma, includes the nucleus
and the endoplasmic reticulum. This part of the cell is notably respon-
sible for the synthesis of the proteins. The soma is also the place where
the incoming signals from other neurons are processed. Typically, the di-
ameter of the soma from a cortical neuron varies from about 10 to 50µm
([Dayan and Abbott, 2001, Chapter 1]).

Then, usually two types of extensions grow from the cell body. First,
the short leafy extensions called dendrites. The complex branching orga-
nization of the dendritic tree allows a neuron to receive signals from other
neurons. Second, the long tubular extension called the axon. After extend-
ing along some distance from the soma, the axon branches, which permits
the transmission of signals to target neurons. There is a great variability
in the axons anatomy. Although most of them are quite thin compared to
the soma, their diameter may range from 0.2µm to 20µm. Their length also
exhibits a large variability, some of them limited in the brain, but others
traversing large parts of the entire body, with a length sometimes exceeding
1m ([Kandel et al., 2000, Chapter 3]). An isolating sheath made of myelin,
which is a lipid susbtance, surrounds large axons in order to increase the
speed of transmission of signals.

At its end, the axon splits in thin branches which can reach other neu-
rons (note that some of these branches may also reach other types of cells,
such as muscle cells). These structures, called presynaptic terminals are
specialized in the transfer of signals between nerve cells. More generally, we
call synapse the region where the presynaptic cell (the cell generating the
signal) and the postsynaptic cell (the cell receiving the signal) form a con-
nection. The vast majority of the presynaptic terminals form a connection
with the dendrites, less frequently the soma, of the postsynaptic neurons.
Estimations indicate that, in the neocortical regions, a given neuron can
receive connections from up to 10.000 presynaptic cells, and conversely, can
connect to up to 10.000 postsynaptic cells. Since the number of neurons in
the human brain is of order 1011, the complexity of the whole network is
prodigious (Table 1-1 from [Luo, 2015, Chapter 1]).

2.1.3 Parts of the nervous system

The nervous system of all vertebrates and many invertebrate animals is
essentially divided in two parts (see Figure 2.2):

• the central nervous system (CNS), which consists, for the verte-
brates, of the brain and the spinal cord,

• the peripheral nervous system (PNS), which consists of the nerves
and ganglia not in the brain or in the spinal cord.

23

(a) Basic structure
of a neuron.

(b) Specialized neurons.

Figure 2.1: (a) Simplified representation of the structure of a neuron. The
dendritic tree is colored in blue, the axon in red. These two structures
extend from the cell body as branches. The presynaptic terminals are rep-
resented as red triangles at the edges of the branches of the axon. The
brown cylinders covering the axon represent the myelin sheats which ac-
celerate the transmission of information (Figure 1-9 from [Luo, 2015]). (b)
Illustration of the specialization of neurons. Their specific morphologies per-
mit to achieve specific functions. Despite this variety, most neurons share
the same organization: axon and dendrites organized around the soma of
the cell. Figure 45.3 from [Hillis et al., 2009].

The role of the CNS is to analyze the information coming from the body
and, in return, make decision to coordinate its activity. The brain comprises
different structures (e.g. the cerebellum, the diencephalon, etc. [Luo, 2015,
Chapter 1]), which consists of distinctive groups of neurons. These groups
can be distinguished both in terms of development and connectivity proper-
ties. Due to the importance of the brain in the processing of the information,
the majority of the studies tend to focus on this part of the nervous system.
Nowadays, various brain imaging methods allow to study precisely the ac-
tivity of these different regions of the brain. More specifically, the usage of
such techniques in the context of controlled experiments, during which peo-
ple or animals perform certain tasks, shows that specific behaviors mobilize
specialized parts of the brain.

The PNS is formed by nerves (groups of axons wrapped together as
cables) which connect the CNS with the rest of the body, including internal
organs, and also isolated ganglia (bundles of cell bodies of neurons). We can
divide the PNS into two parts, namely the somatic nervous system and the

24

Figure 2.2: Representation of the two main parts of the nervous system.
The CNS (brain and spinal cord) is in yellow, the PSN (cranial and spinal
nerves) is in purple. Figure 1.12 from [Purves et al., 2018].

autonomic nervous system. The somatic nervous system is formed by motor
neurons, which transport signals out of the CNS, to organs such as muscles.
This part of the PNS is under voluntary control. Additionally, the somatic
nervous system also contains sensory neurons, which transmit sensations
such as heat, pressure, or pain. On the other hand, the autonomic nervous
system is a self-regulating system which affects the activity of organs not
in conscious control, such as the digestive system or the heart ([Luo, 2015,
Chapter 1]).

2.2 Membrane potential and action poten-

tials

2.2.1 The membrane potential

In the previous section, we saw that neurons are the cells in charge of the
processing and the transmission of the information in the body. Neurons

25

communicate with each other by analyzing and exchanging signals. In this
section we delve deeper into the neurons anatomy, more specifically their
membrane, in order to explain the nature of these signals and how neurons
generate them.

All the animals feature an uneven distribution of ions between the in-
side of their cells and their extracellular fluid: inside of the cells, there are
more K+ ions, while in the extracellular fluid, Na+ ions are more abundant
([Hillis et al., 2009, Chapter 45.2]). Focusing only on the inside or the out-
side of the cell, the presence of negative ions counterbalance the presence
of the positive charges, such that both the interior of the cell and the ex-
tracellular fluid are electrically neutral. On the other hand, because of the
presence of channels in the membrane of the cell, leak currents imply the
existence of a difference between the electrical charges inside and outside.
The movements of any given type of ion across a membrane channel depend
essentially on two factors. First, the concentration difference of that ion be-
tween the interior and the exterior: ions tend to move from regions of high
concentration to regions of low concentration (chemical gradient). Second,
the voltage difference between the interior and the exterior: positive ions
tend to move to negative regions, while negative ions tend to move to pos-
itive regions (electrical gradient). The combination of these two forces on
any given ion is called its electrochemical gradient. It characterizes the
direction and the magnitude of the force ruling its movement (see Figure
2.3).

Most channels of the membrane only allow a given type of ions to pas-
sively leak through them. Among these discriminating channels, the ma-
jority of them specifically allow K+ ions leakage. Since K+ ions are more
abundant inside of the cell than outside, the chemical gradient tends to
move these ions out the cell. On the other hand, each time a K+ ion leaves
the cell, it also leaves behind a negative charge which is no longer bal-
anced. Therefore, the electric gradient tends to pull back the K+ ion into
the cell. When both these conflicting gradients cancel out, the K+ ions
dynamic reaches an equilibrium. The resulting electrical charges difference
is called membrane potential ([Hillis et al., 2009, Chapter 45.2]). The
potential difference may be measured using a microelectrode, which is es-
sentially a very thin glass pipette containing an electrode and of diameter of
order 1µm at its tip, that can penetrate the cell. In the absence of exterior
stimulation, a constant potential difference of about -50mV is measured in
the cell compared to the exterior. Although all cells in the body present a
membrane potential, some cells (such as neurons or muscle cells) have an
excitable membrane which allows them to modify their membrane poten-
tial. Therefore for these excitable cells, the membrane potential measured
in the absence of any stimulation is called the resting potential. Even
though K+ ions are not the unique ions there, since the most common leak
channels are potassium channels, the measured resting potential Vm is close
to the potassium equilibrium potential EK+ , which can be determined by
the Nernst equation

26

Figure 2.3: Illustration of the electrochemical gradient. The width of the
green arrows represents the magnitude of the electrochemical gradients.
Left: in the case where there is no membrane potential, only the concentra-
tion difference decides the movement of the ions (from high concentration to
low concentration areas). Conversely, in the case where there is a potential
difference between the membrane sides, both the electrical and chemical
gradients influence the ion movements. Middle: when these two factors
operate in the same direction. Right: when these two factors operate in
opposing directions. Figure 2-9 from [Luo, 2015].

EK+ =
RT

F
ln

[K+]o
[K+]i

, (2.1)

where R is the gas constant, T the temperature (in Kelvin), F the Faraday
constant, and [K+]o and [K+]i respectively the concentrations of K+ ions
outside and inside the cell ([Kandel et al., 2000, Chapter 9]).

2.2.2 Generation of an action potential

Regarding most neurons, their membrane potential may undergo fast and
noticeable changes, which are called action potentials. It consists in a
very fast rise followed by a very quick fall of the membrane potential. This
distinctive shape explains why the action potentials are also called spikes
(see Figure 2.4).

The underlying mechanism of these rapid events relies upon the open-
ing and closing of specific ion channels of the neuron membrane. The K+

dynamic presented above is sufficient to roughly explain the existence of a
resting potential, but the notion of action potential requires to study more
deeply the mechanisms of the membrane. More specifically, we now need to
take into account other abundant ions, which are Na+ and Cl- , both present
at high concentrations outside of the cell. When Vm needs to be calculated
in presence of more than a single permeant ion species, each species con-

27

Species Concentration Concentration in Equilibrium Permeability
of in cytoplasm extracellular potential ratios
ion (mM) fluid (mM) (mV)
K+ 400 20 -75 1.0
Na+ 50 440 +55 0.04
Cl- 52 560 -60 0.45

Table 2.1: The properties of the major species of ions across the membrane
at rest of the giant axon of the squid. K+ are more concentrated inside the
cell, while Na+ and Cl- are more concentrated outside. The membrane at
rest is much more permeable to K+ ions than to Na+ ions. Table 9-1 from
[Kandel et al., 2000].

tribution still depends on its concentrations outside and inside the cell, but
also depends on its ability to cross the membrane, which is called the per-
meability (noted P) of this species. Then the membrane potential Vm can
be expressed as the balance of the concentrations and permeability of each
species of ion with the Goldman equation ([Kandel et al., 2000, Chapter 9])

Vm =
RT

F
ln
PK+ [K+]o + PNa+ [Na+]o + PCl− [Cl−]i
PK+ [K+]i + PNa+ [Na+]i + PCl− [Cl−]o

. (2.2)

Note that this applies when the system is at the equilibrium. Clearly when
a given species of ions has an overwhelmingly large permeability compared
to the others, the Goldman equation (2.2) reduces to the Nerst equation
(2.1) associated with this species. An experiment on the giant axon of the
squid performed by [Hodgkin and Katz, 1949] estimated the values of the
permeabilities when the membrane is at rest (see Table 2.1). These values
confirm that the permeability PK+ dominates when the membrane is at
rest. Therefore at the equilibrium, the main contributor for the value of the
resting potential is the K+ ion species. The Cl- and Na+ species presence
tends to slightly raise the resting potential compared to the equilibrium
potential of K+ alone.

We now explain how the membrane is able to leave its electrical equi-
librium state, in order to generate action potentials. Thus far, we only
presented ion channels that are able to let leak a specific ion species. An-
other important class of channels consists of voltage-gated ion channels.
These channels are also able to select a certain species of ion, but contrarily
to leak channels which are always open, these voltage-gated channels are
able to open or close, depending on the evolution of the voltage across the
membrane.

The joint actions of voltage-gated K+ and Na+ channels in the mem-
brane of the axon are responsible for the production of action potentials.
When the neuron is at rest, these channels are closed. When the membrane
depolarizes (i.e. its potential gets more positive than at the resting state)
due to some external stimulus, some voltage-gated K+ and Na+ channels

28

start to open. This causes K+ and Na+ ions to move down their respective
electrochemical gradient. Since K+ ions are more concentrated inside of the
cell, K+ ions tend to leave it through leak channels and the K+ voltage-
gated channels which are opened. Positive charges leaving the cell makes
the potential more negative. On the contrary, Na+ ions are more concen-
trated outside of the cell, therefore they tend to enter the cell through the
voltage-gated Na+ channels which are opened. This inward flow of positive
charges makes the potential of the cell less negative. An important dis-
tinction between K+ and Na+ voltage-gated channels is the fact that the
Na+ channels tend to open more quickly than K+ channels. Therefore the
inward current of Na+ ions tends to depolarize even more the membrane,
thus opening additional voltage-gated channels ([Hillis et al., 2009, Chapter
45.2]).

If the initial depolarization is small, this depolarizing action of the Na+

ions is counterbalanced by the hyperpolarizing action of the K+ ions, since
their electrochemical gradient is further increased due to the inflow of pos-
itive charges. In this situation, the net ionic current returns to zero. How-
ever, if the initial depolarization reaches a certain threshold, roughly 10mV
over the resting potential, the more rapid opening of Na+ channels induces
a positive feedback loop in which the additional opening of Na+ channels
causes more depolarization, and the other way around. This state corre-
sponds to the first phase of the generation of an action potential: its rising
phase. Under these circumstances, the inward Na+ current surpasses the
outward K+ current, in other words there is a net inward ionic current.
The sudden opening of Na+ channels, that is the increasing of the Na+

membrane permeability, leads the membrane potential to quickly move to-
wards the Na+ equilibrium potential, around +40mV. This rising phase of
the action potential stops swiftly after 1 to 2 milliseconds, when the Na+

channels close. At this point, only the K+ channels are left open. This state
corresponds to the second phase of the action potential: its falling phase.
At this stage, the K+ ions leave the cell, causing a repolarization of the
membrane. Because the membrane permeability to K+ ions is higher during
this phase than at the resting state, and since there was an accumulation of
positive charges inside the cell during the rising phase, the electrochemical
gradient of K+ ions is now higher than at rest. Consequently, the membrane
potential returns to a negative value, which is usually more negative than
the resting potential. In this case, the membrane is said to be in a hyperpo-
larized state. Then the voltage-gated K+ channels close, which eventually
brings the potential back to its resting state ([Kandel et al., 2000, Chapter
10], [Squire et al., 2012, Chapter 5]).

This mechanism of action potential generation essentially takes place
at the axon hillock of the neuron, that is where the axon emerges from
the cell body. This is due to the fact that this region is particularly rich
in voltage-gated K+ and Na+ channels. After the emission of an action
potential, this one propagates rapidly down the axon, in direction to the
presynaptic terminals.

29

Figure 2.4: Typical shape of an action potential. Starting from the resting
potential, which is slightly above the K+ equilibrium potential, the mem-
brane potential quickly rises around the Na+ equilibrium potential, then
drops down to the K+ equilibrium potential. Finally the membrane poten-
tial slowly returns to its resting value. The span of the whole process takes
only some milliseconds. Figure 2-24 from [Luo, 2015].

30

Even though the membrane potential undergoes a large variation of its
potential during the generation of a single action potential, the respective
concentrations of K+ and Na+ ions inside and outside the cell are marginally
modified. Therefore the concentration gradients of K+ and Na+ ions remain
almost unchanged, and the cell is able to repeat the whole process in or-
der to generate another action potential. But reiterating this a substantial
number of times may eventually alter the initial concentrations and finally
prevent the cell to fire new action potentials. In order to maintain suitable
concentrations of K+ and Na+ ions inside and outside the cell, sodium-
potassium pumps present in the membrane actively brings K+ ions back
into the cell and Na+ ions back out of it. This transfer of the ions against
their respective electrochemical gradients requires a supply of energy, in
the form of adenosine triphosphate (ATP). For each molecule of ATP hy-
drolyzed, the pump is able to bring back two K+ ions into the cell, and push
out three Na+ ions ([Kandel et al., 2000, Chapter 9]).

2.2.3 Properties of the action potentials

The mechanism described above implies several properties of the action po-
tentials. First, action potentials are said to be all-or-none: as we saw
earlier, if the stimulus depolarizing the membrane is small so that the po-
tential does not exceed the threshold, no action potential is fired. On the
contrary, if the depolarization makes the potential surpass the threshold,
an action potential is fired. Then its waveform essentially depends on the
timings of the voltage-gated channels openings, and on the concentrations
of K+ and Na+ inside and outside the cell. For any given neuron, these
two factors stay approximately constant so, for any stimulus causing the
potential to exceed the threshold, the waveform of the action potential is
essentially the same ([Luo, 2015, Chapter 2]).

Another important property of the actions potentials relies on the open-
ing and closing dynamics of the voltage-gated Na+ channels. These channels
actually have two gates: an activation gate and an inactivation gate. At
rest, the activation gate is closed and the inactivation gate is open. If the
membrane depolarizes to a value higher than the threshold, then the acti-
vation gate quickly opens, while the inactivation gate closes more slowly.
Therefore, the channel remains momentarily open. Then the inactivation
gate stays closed for several milliseconds, after which they open. During this
period of inertia of the inactivation gate, the associated channel is forced
to remain closed. Consequently, after the generation of an action potential,
the Na+ channels which opened become inactivated. This period of inacti-
vation is called the refractory period. If a new depolarizing stimulus is
received during the refractory period, the neuron is not able to fire a new
action potential, because too few Na+ channels are available to open. As a
result, the action potential firing rate of a neuron is limited by its refractory
period ([Luo, 2015, Chapter 2]).

These properties (activation threshold, all-or-none, refractory period)

31

are quite peculiar with respect to biological phenomenons, which more com-
monly react in a continuous manner to exterior stimuli. Since action poten-
tials are all-or-none, varying their amplitude in order to encode information
is not possible. Instead, the nervous system encodes information by ad-
justing the frequency rate at which neurons generate action potentials. For
instance, in response to a higher intensity of light, the central nervous sys-
tem receives a higher number of action potentials. The firing rate being
limited by the refractory period, the information transmitting ability of the
axon is also limited.

Note that, although most neurons fire action potentials in order to trans-
mit information, some of them do not. Rather, they communicate by re-
leasing graded electrical signals, which then induce the release of graded
neurotransmitters ([Luo, 2015, Chapter 2]).

2.3 Synaptic potentials and integration

We now know under which circumstances a neuron is able to fire an action
potential: if the membrane region around its axon undergoes a sufficient
depolarization, and if the neuron is ready to fire (ie is not in its refractory
period), then it generates an action potential. In this section, we explain
where does this initial triggering depolarization originate from. More specif-
ically, we describe how the neuron receives signals from other neurons and
how it integrates these inputs. In section 2.1, we saw that the regions
where the neurons exchange signals are their synapses. For the majority
of synapses, their presynaptic side are on the axon and their postsynaptic
side are on a dendrite, or less commonly on the soma ([Kandel et al., 2000,
Chapter 13]). We need to analyze the synaptic transmission process in order
to understand fully how neurons communicate with one another.

Although the number of synaptic connections may vary greatly for any
given neuron, on average, a neuron shares thousands of connections with
other neurons. Despite this multiplicity and the existence of very specific
synaptic connections in the nervous system, all neurons utilize one of these
two fundamental forms of synapses: chemical or electrical.

2.3.1 Types of synaptic transmission: electrical and
chemical

The most common synapses are chemical synapses. In these synapses, the
transmission of the signal follows a complex series of events (see Figure
2.5). In chemicals synapses, the presynaptic terminal and the postsynaptic
membrane are separated by a small gap called the synaptic cleft, which
is essentially made of extracellular fluid. Let us now describe how a signal
coming from one end is transmitted to the other. First, when an action
potential arrives at the terminal of the presynaptic neuron, the local mem-
brane potential changes. Then voltage-gated Ca2+ channels in the mem-
brane open, and due to the important concentration gradient of Ca2+ ions,

32

a quick inflow of Ca2+ penetrates the presynaptic terminal. The supply of
these ions cause some synaptic vesicles, which essentially contain neuro-
transmitters, to coalesce with the membrane of the presynaptic terminal.
This fusion makes the neurotransmitters move through the synaptic cleft.
This mechanism is known as exocytosis ([Kandel et al., 2000, Chapter 11]).

On the other side, receptors in the postsynaptic membrane allow the
binding of the neurotransmitters that have been released. This induces a
modification of permeability of the postsynaptic membrane, which finally
produces a postsynaptic potential. Ultimately the neurotransmitters are
removed from the synaptic cleft, through diffusion and the action of neigh-
boring glial cells. Note that, between the generation of an action potential
in the presynaptic cell and the postsynaptic potential, there is a delay of
about 1ms. This delay of transmission is essentially caused by the whole
neurotransmitters transfer process: release from the vesicles, diffusion in the
synaptic cleft, binding with the receptors. Chemical synapses can handle
complex interactions between neurons: they can for instance amplify sig-
nals, in the sense that even small presynaptic terminals are able to modify
the reaction of larger postsynaptic cells. They can also cause modifications
in the postsynaptic cells which last from milliseconds to hours. Also note
that the transmissions through chemical synapses are usually unidirectional,
since the postsynaptic neurons do not cause any effect on the presynaptic
neurons ([Blaustein et al., 2011, Chapter 12,13]).

The electrical synapses differ from chemical synapses, in the sense that
they couple two neurons electrically. For these synapses, a tiny space of
a few nanometers separate the presynaptic and the postsynaptic cell. A
specialized structure named gap junction assumes the role of electric cur-
rent pathway between two neurons. Therefore, thanks to this direct ionic
pathway, a depolarization coming from the presynaptic terminal directly
modifies the potential of the postsynaptic terminal. Electrical synapses are
essentially used to send very quick and stereotyped depolarizing signals. For
example, for tasks which require rapid transmissions such as predator es-
cape, electrical synapses are particularly relevant. In fact, their first identi-
fication dates back to the 1950s, between the giant axon and motor neurons
in the crayfish escape circuit. Contrarily to chemical synapses, electrical
synapses allow transmissions in either direction, blurring the distinction
between presynaptic and postsynaptic neurons. Despite their advantages,
electrical synapses are less common than chemical synapses, mainly because
of their lack of flexibility, which is required for complex processes such as
learning ([Hillis et al., 2009, Chapter 45.3]).

2.3.2 Excitatory and inhibitory postsynaptic poten-
tials

In response to the signal transmitted by the presynaptic neuron, the post-
synaptic neuron can react in two ways. First, the potential generated in
the postsynaptic membrane can excite (ie depolarize) the postsynaptic cell.

33

Figure 2.5: Representation of a chemical synapese and the series of events
taking place for the transmission of signals between two neurons. Figure
5.4 C from [Purves et al., 2018].

34

This type of reponse is called an excitatory postsynaptic potential
(EPSP). An EPSP contributes to bring the membrane potential of the
postsynaptic neuron closer to its firing threshold, therefore it increases the
likelihood for a postsynaptic action potential to happen. On the contrary,
the response can inhibit (ie hyperpolarize) the postsynaptic cell. This sec-
ond type of reaction is named an inhibitory postsynaptic potential
(IPSP). An IPSP decreases the likelihood for the postsynaptic neuron to
fire an action potential ([Purves et al., 2018, Chapter 5]). Note that in-
hibitory synapses only involve chemical synapses, since electrical synapses
are always excitatory. This is another important limitation for the electrical
synapses.

Whether the response of the postsynaptic cell is excitatory or inhibitory
essentially depends on the class of ion channels in the postsynaptic mem-
brane. Although not directly responsible for the type of response, the ma-
jority of neurotransmitters induce an unique response. For instance, the
majority of receptors which receive glutamate tend to produce an exci-
tatory response. On the other hand, gamma-aminobutyric acid (GABA)
tends to induce inhibition. Glutamate and GABA constitute the two main
neurotransmitters used in the vertebrate CNS, but more than five hundred
different neurotransmitters have been found so far ([Luo, 2015, Chapter 3]).

2.3.3 Spatial and temporal summation mechanisms

Usually, a single EPSP generated at an excitatory synapse is quite below
the firing threshold of its neuron, and therefore, is not sufficient to produce
an action potential. We need to explain the mechanism ruling the firing
pattern of a neuron in order to understand how postsynaptic potentials can
trigger an action potential. The dendritic tree of a neuron in a mammalian
CNS receives, on average, several thousands of excitatory synaptic inputs.
At any given time, the neuron sums the postsynaptic potentials produced at
its synapses, both in space and time. This summation process (see Figure
2.6) takes place, for most neurons, at the base of the axon, in the axon
hillock ([Kandel et al., 2000, Chapter 13]).

First let us explain the spatial summation mechanism by considering the
very simplified setting where a neuron would receive EPSPs from only two
excitatory synapses. If these EPSPs arrive at the axon hillock at almost
the same time, the two EPSPs sum in the membrane of the axon hillock,
producing a larger EPSP, which may exceed the firing threshold of the
neuron. By this mechanism, the summation of subthreshold EPSPs is able
to cause the production of action potentials.

On the other hand, temporal summation consists in the summation of
EPSPs generated in a rapid sequence at the same synapse. The charac-
teristic of the neuron membrane which allows this summation is its ability
to temporarily store electrical charges. The charge of the second EPSP is
added to the charge of the first EPSP which is temporarily stored. This
temporal summation is only possible if the EPSPs arrive in a short time

35

Figure 2.6: (A) Spatial summation of two excitatory inputs. Arriving at the
cell body at almost the same time, two EPSPs sum and produce a depolar-
ization larger than the depolarization of each EPSP alone. (B) Temporal
summation of two excitatory inputs. Arriving from the same synapse dur-
ing a short span of time, two EPSPs sum at the cell body and also produce
a larger depolarization than the depolarization of each EPSP alone. Figure
3-43 from [Luo, 2015].

frame, which essentially depends on the passive properties of the membrane
([Luo, 2015, Chapter 3]).

Since these summations mechanisms also apply to IPSPs, the decision to
fire an action potential actually results from the balance between excitation
and inhibition, at any given time. In the situation where the sum of EPSPs
and IPSPs gives a depolarization large enough so that the membrane po-
tential exceeds the firing threshold, then the postsynaptic neuron generates
an action potential. On the other hand, when inhibition dominates, the
postsynaptic neuron stays quiet.

In conclusion, we can see that at any given moment a neuron acts like a
complex integrative device. Its anatomical properties allow the integration
and conversion of a large number of analog input signals into a single binary
signal (release of a spike or not). On a larger scale, by organizing neurons
as complex neuronal circuits, and taking advantage of the rich topological
possibilities (number of connections, excitation, inhibition), the nervous
system is able to produce a wide range of tasks, from sensory perception to
behavioral control.

36

Chapter 3

Spike sorting

We have seen in chapter 2 that the nervous system essentially processes
information through the activity of specialized cells, the neurons. In this
chapter, we describe an important tool in neuroscience, which aim to bridge
the gap between recordings from the brain and interpretable results in terms
of neuronal activity: spike sorting.

3.1 Recording neural activity

In the late 18th century, Luigi Galvani discovered that electrical stimula-
tions were able to provoke physical reactions to the legs of a dead frog. This
remarkable event is probably the first time a reliationship was found between
electrical signals and nervous transmission. However, modern devices allow-
ing to measure the nervous activity only appeared in 1921, with the inven-
tion of microelectrodes by Ida Hyde ([Lewicki, 1998]). A microelectrode
is a very thin glass pipette shaped electrode. In order to study the character-
istics of the membrane channels, the first investigations were carried out by
recording the membrane potentials using microelectrode on the whole cell.
Then in 1949, an important achievement due to [Ling and Gerard, 1949],
who tailored the microelectrodes in order to measure the interior of a single
cell, allowed the precise recordings of action potentials and resting mem-
brane potentials. These microelectrodes of a diameter smaller than 0.5µm
are able to pierce the membrane of the cell and enter its cytoplasm. When
the insertion is correctly achieved, the membrane binds over the microelec-
trode, so the cytosplasm of the cell and the extracellular fluid stay separated
([Nicholls et al., 2001, Chapter 4]).

Although these recording devices provided significant improvements of
our knowledge at the scale of a single neuron, such as the electrical mecha-
nisms which trigger action potentials, their contribution to our understand-
ing of the functioning of the brain at the level of a neuronal network was
insufficient. The main reason essentially relies on the technical challenge
that recording the activity of a substancial number of neurons represents
([Taketani and Baudry, 2010]). Being able to bring together our under-
standing of the behavior of a single neuron and a whole network has been

37

an important effort in the last decades. Indeed, complex brain functions
such as memory acquisition or speech recognition rely on large populations
of neurons acting in concert, both in time and space. Pathophysiological
conditions, for instance the Alzheimer’s disease, can also be seen as the
inappropriate activity of many neurons ([Fejtl et al., 2006]).

The introduction of alternative technologies allowed the monitoring of
large numbers of neurons. For instance, the tetrode is another popular
tool for recording the neural activity. It consists of a bundle of four small
electrodes made of metal, named channels. Contrarily to the intracellular
microelectrodes described earlier, tetrodes are used to record the extracellu-
lar field potentials ([McNaughton et al., 1983]). Because the four channels
of a tetrode are usually not equidistant to a given neuron, the action po-
tentials recorded generally do not share the same amplitude. This impor-
tant geometrical feature makes tetrodes more effective at separing spikes
than single recording units ([Harris et al., 2000]), an interesting property
for the task named spike sorting and described in the next section. Another
technique, calcium imaging, makes use of the variations in the intracellu-
lar concentrations of calcium ions to keep track of the electrical activity
of a whole population of neurons ([Purves et al., 2018, Chapter 1]). On
the other hand, many researchers pursued the extension of the microelec-
trode approach. The first multi-electrode array (MEA) was built in
the 1970s ([Thomas Jr et al., 1972]), yet the contribution of these devices
to our knowledge of higher brain functions remained modest until more re-
cent progresses, which were twofold: first, technological advances allowed
the conception of devices able to record and stimulate large populations
of neurons. On the other hand, new computational methods emerged to
study the massive amounts of data that these new tools generate. In order
to perform a direct examination of the temporal dynamics of a popula-
tion of neuron, these new devices must satisfy two major constraints: a
large (up to 100 or more) number of electrodes must be put, without major
harm, in a relatively small volume of tissue. They must also provide an
adequate identification of action potentials generated by individual neurons
([Harris et al., 2000]).

Let us briefly review the advantages and disadvantages of the MEA,
with respect to traditional microelectrodes. Since the electrodes of a MEA
cannot be moved individually, the size of the array must match the physical
configuration of the experiment. The simplicity and quickness of the instal-
lation of a MEA comes at the price of a lower placement precision. Another
consequence is that the electrodes of a MEA do not penetrate the inside
of the cells, therefore the amplitude of their recordings tend to be smaller
than with intracellular recording microelectrodes. From a signal processing
point of view, this reduction of the signal-to-noise ratio makes the analysis
of the data more difficult. Nevertheless, the capacity of recording in parallel
data from thousands of neurons, and changing rapidly both recording and
stimulation eletrodes of the array, makes the MEA a formidable tool for the
study of neural networks ([Whitson et al., 2006]).

38

Figure 3.1: Illustration of the different issues to deal with after collecting an
extracellular recording: which neuron is responsible of any observed spike?
How many neurons generated such signal? The data were recorded from
zebra finch lateral magnocellular nucleus of the anterior neostriatum, with
a glass-coated platinum–iridium electrode. Figure 2 from [Lewicki, 1998].

3.2 The spike sorting problem

In the rest of this chapter, we focus on monitoring methods based on ex-
tracellular recordings with microelectrodes, such as tetrodes and MEA. In
modern neuroscience, these methods are particularly appreciated for their
simplicity and their reasonable cost. Moreover, the high sampling rates of
their recordings, of order 10kHz, allow a precise investigation of the tem-
poral activity of large numbers of neurons. Regrettably, unlike intracellular
microelectrodes, these methods often do not record the activity of a single
neuron on each of their channel. Therefore, extracellular recordings tend to
generate raw data which feature the combination of the activities of multiple
neurons ([Pouzat et al., 2004]).

In order to interpret the results of such recordings, several questions
must be adressed: how many neurons are involved in the observed data,
and, assuming that the activity of the neurons can be properly separated
from the recording noise, which neuron is responsible for any given spike.
These different problems can be envisioned in the recording example pre-
sented in 3.1. Also observe that some spikes may overlap. How do we
classify these overlapping action potentials? Aiming to answer these dif-
ferent interrogations is commonly refered as the spike sorting problem.
For decades, it has represented an important obstacle between the data ac-
quisition and the interpretation of the results for the field of neuroscience
([Lewicki, 1998]).

An important assumption related to the observed action potentials is
based upon the idea that any given neuron generates spikes of consistent
shape during the experiment. From a biophysical perspective, the waveform
of any action potential essentially depends on the morphology of the cell

39

which generated it, as well as its position and the filtering characteristics of
the milieu ([Hill et al., 2011]). Although reasonable from a biological point
of view, we see in section 3.4 that, in practice, this assumption of shape
consistency can be disrupted by various factors. Using these consistent
shapes of the action potentials as the signature of the electrical activity of
each neuron, the spike sorting procedure should identify and associate each
observed spike to a specific neuron. As a result, the temporal activity of
every neuron can be summarized in a spike train, which in turn can be
analyzed by the experimenter.

One of the main motivation of our work is to provide a more pre-
cise estimation of the spike trains, and more particularly, a better detec-
tion of neuronal synchronizations. Synchronizations between neurons
are presumably a sensible part of the neural code ([Lambert et al., 2018,
Albert et al., 2016, Eytan and Marom, 2006]). Recording these synchro-
nizations demands to monitor the activity of a large number of neurons
using a precise time resolution. To perform this task, MEA recordings rep-
resent the right approach ([Pouzat and Detorakis, 2014]). We describe in
the next section how spike sorting is traditionally performed. In particular,
we see that it involves a large portion of manual operations. These tasks get
even more laborious as the number of synchronizations growths. As such, in
the next chapters we will aim to provide a spike sorting methodology which
is scalable to the large amounts of data that a MEA can generate. Since the
synchronization problem worsens as the number of recording sites increases
([Einevoll et al., 2012]), our approach must also treat synchronizations in a
more efficient manner. Nowadays, implantable prostheses comprising hun-
dreds of electrodes can generate massive amounts of data. Ideally, our
approach should also be able to sort in real-time such high volumes in order
to provide steady neural commands ([Wood et al., 2004]).

3.3 Traditional spike sorting

In the previous section, we have seen that spike sorting is an essential task in
order to convert raw extracellular recordings into interpretable neuronal ac-
tivity. In this section, we describe the traditional spike sorting methodology.
Although this problem has been addressed for a long time and a large va-
riety of approaches and refinements exists nowadays, automated solutions
somewhat converged to a general procedure to which we will call tradi-
tional spike sorting, summarized in Figure 3.2. In the literature, the term
clustering can also be found frequently. It essentially consists of three con-
secutive steps: spike detection, feature extraction and clustering of spikes
([Lewicki, 1998]).

The goal of the first step, spike detection, is to identify on every
recording channels the instants when neurons may have fired action poten-
tials. Because action potentials can be observed by a sudden increase of the
local potential, under favorable recording circumstances they can be dis-
criminated from the noise level. Therefore, after applying a high-pass filter

40

in order to remove the low frequency portion of the signal, spike detection
is generally treated by voltage thresholding detection: each time the volt-
age exceeds some settled threshold, this instant is registered as a spike. The
main benefit of this approach is its simplicity, as it requires little software
and hardware efforts. The major downside is the inherent trade-off between
false positives, that is when the background noise cross the threshold, and
false negatives, that is when some true spikes are below the threshold and
are therefore missed. Clearly the higher the signal-to-noise ratio is, the
easier this trade-off problem becomes.

For any detected spike in the first step, its waveform can be derived
from the signal. Then the purpose of the second step, feature extraction,
consists in summarizing these waveforms with a set of relevant features.
In this way, the dimensional complexity of the data is reduced to its most
explanatory parts. First, in order to reduce the variability of the spikes
waveforms, they are temporally aligned on a shared characteristic, such as
their voltage peak instant. Then, for any recorded spike, a feature vector is
computed. One of the first strategy was to quantify some characteristics of
the shape, like its peak-to-peak amplitude or its width and height. This ap-
proach, although cost-effective in terms of required computations, generally
grants lacking spike separation. More advanced solutions, such as wavelets
or principal component analysis, take advantage of modern computational
ressources and provide sets of features of higher value.

Once the spikes features have been extracted, the last step aims at clas-
sifying spikes, using a clustering strategy in the feature space. In an ideal
situation, each cluster should contain every spike of a single neuron. Then
the computation of the average waveform of every spike in each cluster
gives a representative spike waveform for each neuron, called the template
of this neuron. In order to classify spikes which are not yet classified, for
instance if the clustering model has been determined on a portion of the
whole signal, these templates can be used as a template matching strategy
([Einevoll et al., 2012]). A lot of practitioners achieve the clustering task by
hand, using scatter plots of the feature space and delimiting clusters manu-
ally, defining regions with straight lines and polygons. Since this procedure
might be influenced by subjective considerations and is quite cumbersome,
automatic clustering algorithms such as K-means have been suggested in
order to lessen these issues ([Harris et al., 2000]). By definition, any spike
within the boundaries of a cluster is classified as part of this cluster. On
the other hand, if a spike is not in any cluster, it is removed. Therefore, as
in the threshold detection step, there is an intrinsic trade-off between false
negatives (missed spikes) and false positives, and this trade-off applies to
both manual and automatic clustering approaches ([Lewicki, 1998]). Also
note that, for many reasons, the number of clusters is not necessarily equal
to the number of observed neurons. For instance, two neurons that reg-
ularly synchronize so that their respective spikes overlap in the recorded
signal might induce a third cluster to appear which is in fact not related to
a third neuron.

41

Figure 3.2: Illustration of the three main steps in the traditional spike sort-
ing procedure. First, voltage thresholding is performed in order to detect
each spike peak instant. Using a small window around these peak instants,
the spike waveforms can be extracted. Then feature extraction is achieved.
As an illustration, we can see here the result of the projection of the spikes
in the first two principal components. Finally, clustering of the spikes is
performed, for instance with the K-means algorithm. Points in color coin-
cide with extracted waveforms in the first step. Remark that some of them
do not belong to any cluster since they result from the superposition of
individual spikes. Figure 1 from [Ekanadham et al., 2014].

3.4 Spike sorting difficulties

We now discuss more in details the difficulties related to the traditional spike
sorting methodology described in the previous section. We have seen that
this approach relies greatly on manual operations and subjective decisions.
The thresholding step depends notably on the trade-off between false posi-
tives and false negatives that the experimenter desires, especially in presence
of important noise. One can also be biased by large spikes, neglecting neu-
rons that generate smaller action potentials. The features extraction step
is also affected by subjective decisions, for instance the number of features
selected after applying a principal component analysis. [Harris et al., 2000]
showed that the clustering step could greatly benefit from a semi-automatic
classification approach. Indeed, defining manually the clusters in a feature
space of high dimension is prone to errors from the human practitioner.
Semi-automatic strategies provided results closer to the theoretical opti-
mum. In short, the traditional spike sorting methodology, because of its
structure, is subject to error accumulation, time consuming human deci-
sions and performance variability ([Wood et al., 2004]). Moreover, since
the whole procedure is often calibrated to fit a certain environment (record-
ing device, nervous tissue or brain area), a specific spike sorting pipeline
might work in one setting but fail in others ([Einevoll et al., 2012]).

Another significant difficulty in the traditional approach is related to
overlaps between spikes. When two neighboring neurons both fire action
potentials in a small time interval, the recorded waveform is the merging of
the two spikes. Depending on the delay variability due to the firing patterns
of the two neurons, multiple shapes may therefore appear, which all differ
from the respective spikes of these neurons. A wide variety of situations may
arise from this phenomenon. The two spikes may cancel out, thus not been

42

detected by the threshold step. On the other hand, a superposition which
crosses the threshold may be discarded (false negative) by the classification
step, because its waveform is too dissimilar to the waveforms of the clusters.
Since such superposition may be the consequence of a functional synchro-
nization between neurons, removing it from the data might cause a loss of
valuable information, especially if the goal of the practitioner is to explore a
local circuit behavior ([Lewicki, 1998]). With the appearance of large MEA
capable of recording large populations of neurons, this issue becomes even
more problematic. In order to address this problem, various strategies have
been introduced. Most of them are either based on brute-force exploration
of every combinations of waveforms (computationally expensive), or greedy
iterative subtractions of waveforms until the residual reaches the noise level
([Ekanadham et al., 2014]).

An important assumption of the traditional spike sorting procedure is
the stability of the spike waveforms during the experiment. Indeed, it is fun-
damental for the characterization of the neurons and the discrimination of
the spikes into clusters. Unfortunately, this assumption may be violated by
certain factors. The first one is the biological phenomenon called bursting.
A neuron is said to be bursting when it repeatedly generates discrete bursts
of action potentials. During these bursting events, the waveform of the ac-
tion potential often varies. Typically, each successive spike is attenuated,
and may even ultimately shrink to the noise level. Some techniques can
mitigate this issue, such as the cluster aggregation idea of [Fee et al., 1996].
Another factor which may affect the stability of the clusters is the electrode
drift effect ([Bar-Hillel et al., 2006]). After the insertion of the electrode
into the neural tissue, it may slowly move to another position because of
the reaction of the local environment. As a result, this phenomenon may
also slowly modify the waveforms of the recorded spikes. Naturally the drift
might become more important as the experiment duration increases. Meth-
ods applied to the bursting problem can also be satisfyingly applied to the
electrode drift effect.

The last difficulty that we want to briefly mention is related to the com-
parison of scientific studies based on spike sorting. Indeed, as we have seen,
there is no automatic spike sorting reference procedure. This problem is
aggravated by the fact that it is difficult to evaluate the performance of
a given spike sorting procedure, due to the absence of ground truth data.
[Hill et al., 2011] proposed some metrics in order to assess the quality of
spike sorting results, without knowing the ground truth. Other approaches
aim to compare the results with ground truth data, obtained for instance
by simultaneous intra and extracellular recordings, or using numerical sim-
ulations mimicking the electrical dynamic of a neural network.

3.5 Sparse convolutional linear model

We present here the mathematical model on which our spike sorting ap-
proach is based. As in traditional spike sorting approaches, we aim to

43

extract from the measured signal the different shapes of the action poten-
tials and the activation times of the neurons. However, in our approach, the
measured signal is viewed as the temporal convolution between the shapes
and the activation times. In this context, the shapes can be seen as shift-
invariant atoms, which can appear at any time in the signal. The activation
times of the neurons decide at which instants these atoms appear. Let us
first introduce some notations.

We assume that the number of recorded neurons during the experiment
is known and we write it N . This population of neurons is recorded by
E electrodes. Each of these electrodes records a signal of size T , which is
therefore the number of time steps. Let Y the matrix of the observations
in RE×T , which contains the E recorded signals of size T . Then the model,
which use in neuroscience dates back to [Roberts, 1979], writes as:

Y =
N∑
n=1

Wn ∗ a?n + Ξ, (3.1)

where Ξ is a random noise matrix in RE×T and ∗ is the convolution operator
along time 1 defined for any two vectors x ∈ R` and y ∈ RT as:

(x ∗ y)j =

min(`,j)∑
i=1

xi yj−i+1, (3.2)

for any j in {1, . . . , T}. For any neuron n, the matrix Wn in (3.1) can
be described as Wn = [wn,1, . . . ,wn,E]> ∈ RE×`, where wn,e represents the
shape of the action potential of neuron n recorded by electrode e. As we saw
in chapter 2, the duration of an action potential is of order some millisec-
onds. Therefore these shapes wn,e are described by ` points, which can be
assumed very small with respect to T . Note that this model assumes that
the action potentials shapes do not vary during the whole experiment. As
we explained in section 3.4, although these shapes essentially depend on the
physiological properties of the neurons, which generally remain unchanged
throughout the experiment, in practice some factors may induce alteration
of the shapes. For instance, the tissues and the recording electrodes may
slightly move. Additionally, bursting neurons often see the amplitudes of
their action potentials to progressively decrease ([Lewicki, 1998]). Finally
for any neuron n, the vector a?n in RT is called its activation vector. The
non zero entries of a?n correspond to the activation times of this neuron. Re-
mark that, although a reasonable assumption would be that the vectors a?n
are binary, the resulting optimization problem would become NP-complete.
Moreover, taking their values in R, these activation vectors are able to take
into account the change of amplitude of the action potentials, which can
happen as stated in section 3.4.

1For a Python implementation where the handling of the convolution on the bor-
ders can be passed as parameter, see for instance https://docs.scipy.org/doc/scipy/
reference/generated/scipy.signal.convolve.html

44

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html

An illustration of this convolutional model (3.1) is given in figure 3.3 for
E = 2 electrodes and N = 2 neurons. One of the main benefit of this model
relies of the linear property of the convolution operator. As we mentioned in
section 3.4, if two neighboring cells fire their action potentials at almost the
same time, their respective shapes will overlap in the recorded signal. To a
first order approximation, we can see this superposition as the summation of
the two shapes. Therefore the convolutional model appears better adapted
for handling this problem than the traditional spike sorting approaches that
we described earlier.

In view of model (3.1), we can see our spike sorting approach as the es-
timation of the parameters Wn and a?n, which is an inverse problem. This
estimation task is often stated in the signal processing literature as convolu-
tional dictionary learning. It essentially relies on an optimization problem
that seek to determine the atoms (here the shapes of the action poten-
tials) and the activations of these atoms (here the activation times of the
neurons). This stategy has been successfully applied to a wide range of do-
mains, such as biomedical data ([Pachitariu et al., 2013, Adler et al., 2015,
Jas et al., 2017]), audio data ([Mailhé et al., 2008, Grosse et al., 2012]), com-
puter vision ([Kavukcuoglu et al., 2010, Zeiler et al., 2010]), etc.

The convolutional dictionary learning problem usually takes the follow-
ing generic form:

min
W ,A

∥∥∥∥∥Y −
N∑
n=1

Wn ∗ an

∥∥∥∥∥
2

+ λAΩ(A) + λWΩ(W). (3.3)

The terms A and W are tensors of appropriate sizes which respectively
gather the activation vectors an and the shapes matrices Wn. Ω(A) and
Ω(W) are penalization terms which promote the sparsity of A and W ,
proportionately to the regularization parameters λA ≥ 0 and λW ≥ 0.

Let us explain why it is reasonable to look for sparse solutions in A and
W . We give in Table 3.1 the typical orders of magnitude of the different
parameters of the model. Remark that the temporal quantities notably
depends on the sampling recording rate used during the experiment, which
is here equal to 30kHz. Therefore a recording session of one hour generates
signals of size T = 108. In this setting, for a typical neuron spiking rate
of 30Hz, one can expect that the number of non zero coordinates in each
activation vector a?n to be about 105, which is very small with respect to
their size of 108. Similarly, we can expect the matrices Wn to be sparse,
because the activity of each neuron is only recorded by its neighboring
electrodes, which should be very few with respect to the total number of
electrodes E, especially for a large recording device such as a MEA.

Let us assume that the penalization terms in (3.3) are convex. Then the
whole objective function is convex in both W and A, but not jointly con-
vex. This type of problem can be solved using an alterative minimization
strategy, consisting in alternatively minimizing a variable while keeping the
other one fixed. The step which focuses on the estimation of the activations

45

Quantity Notation Orders of magnitude
Number of electrodes E 4-4000
Number of neurons N 1-1000
Number of time steps T 108

Shape length ` 30-150

Table 3.1: Orders of magnitude for the quantities of the problem. This table
illustrates a typical situation for a recording of one hour at the sampling
rate of 30kHz. The number of electrodes and neurons may greatly variate,
depending on the context: a single recording tetrode only comprises four
electrodes, while a MEA can contain several thousands of electrodes. The
number of recorded neurons ensues from this recording context.

A, called convolutional sparse coding, is the hardest part of the optimiza-
tion problem, especially for large data sets. Indeed, due to the orders of
magnitude presented in table 3.1, we can see that the number of variables
in the activation vectors growths linearly with T . On the other hand, the
parameter ` controling the size of the shapes in W is fixed and small. For
this reason, we decide to focus on the estimation of the activations while the
shapes are assumed to be known and stay fixed. Consequently the initial
optimization problem reduces to:

min
A

∥∥∥∥∥Y −
N∑
n=1

Wn ∗ an

∥∥∥∥∥
2

+ λAΩ(A). (3.4)

The action potential shapes can be estimated by using the results of a
traditional spike sorting approach. For instance, one can use the centroids
of the clusters determined by the K-means clustering (see section 3.3). In
particular, we also get the number of neurons N that was assumed to be
known. Our approach therefore lies between two strategies, the first one
learning the dictionary from the data ([Mairal et al., 2010]), the second one
fixing the dictionary, for instance with wavelets ([Mallat, 1999]). Building
our own dictionary offers a better signal reconstruction than generic bases
(e.g. wavelets, Fourier), which are restricted to certain frequency bands.

Our estimation of the activations allows to take care of the problem
of synchronizations more properly. Besides, spikes which were not sorted
by the first algorithm may now be correctly treated. Note also that the
biological signal that we are modeling here, is really small so that there is
no problem in considering an additive superposition of the shapes since it
can never reach the saturation of the device. In the next chapter, we specify
the problem (3.4), by defining the matricial norm ‖.‖ and the penalization
term Ω(A) used. Then we describe some state of the art algorithms for the
resolution of such problem.

46

1

2Ne
ur

on
s

Neurons activations A

Time

Measured signals S

1

2

El
ec

tro
de

s

Neuron 1 Neuron 2

Figure 3.3: Illustration of the convolutional model in a simple context of
E = 2 electrodes and N = 2 neurons. The shapes of the action potentials
are represented in the bottom left corner. The activations vectors are rep-
resented in the top right corner, and the result of the temporal convolution
between the shapes and the activations is represented in the bottom right
corner. For each activation time (depicted as a vertical trait), the corre-
sponding shape appears at the same instant on the convolution. Remark
the unusual shapes appearing around the center of the graph. This phe-
nomenon may occur when two neurons activate at almost the same time
(synchronization). This causes a superposition of the action potentials that
creates waveforms which are not in the model.

47

Chapter 4

Optimization methods

In this chapter, we state precisely the optimization problem that we aim
to solve in order to determine the activations of the neurons. We begin by
specifying problem 3.4 as a Lasso problem, then we motivate the choice of
the Lasso estimator. The rest of the chapter is devoted to the presentation
of some useful mathematical and algorithmic results which will be of great
importance for solving the Lasso problem in high dimension, consequently
for the implementation of our spike sorting algorithm.

4.1 The Lasso problem

4.1.1 Choice of the Lasso estimator

Keeping the notations introduced in section 3.5, we now state precisely
our optimization problem for the estimation of the activations. In problem
(3.4), we set the matricial norm ‖.‖ as the Frobenius norm, written ‖.‖2, and

defined as ‖S‖2 =
(∑

i,j S
2
ij

) 1
2
. Then for the penalization term Ω(A) on

the activations, we choose the sum of the `1 norm of the activation vectors,
defined as ‖u‖1 =

∑
i |ui|. Using a renormalizing factor which will simplify

ulterior computations, we get the following optimization problem:

min
A

∥∥∥∥∥Y −
N∑
n=1

Wn ∗ an

∥∥∥∥∥
2

2

+ 2λ
N∑
n=1

‖an‖1. (4.1)

This problem corresponds to a convolutional formulation of the well-
known Lasso (Least Absolute Shrinkage and Selection Operator) problem,
proposed by [Tibshirani, 1996]. Remark that the only tuning parameter
of this method is the regularization parameter λ > 0, which promotes the
sparsity of the activation vectors. In practice, the value of λ can be cal-
ibrated according to the signal-to-noise ratio. In the following, we briefly
describe the main motivations for the developement of the Lasso, and why
it is relevant to the problem of convolutional sparse coding. The Lasso
problem is more generally formulated in the context of the classical linear
regression model, which we can write as follows:

48

Y = Xβ + ε, (4.2)

with Y in Rn the endogenous variable, X in Rn×d the exogenous variables,
and ε in Rn the error term. Then a classical estimator for the parameter β
is the least-square estimator, defined as:

β̂LS = argmin
β∈Rd

‖Y −Xβ‖22 . (4.3)

Let us assume that d ≤ n and that the design matrix X has full rank d.
Then the least-square estimator is unique and equals β̂LS = (X>X)−1X>Y .
The original motivation of [Tibshirani, 1996] for introducing the Lasso prob-
lem:

β̂lasso = argmin
β∈Rd

‖Y −Xβ‖22 + λ ‖β‖1 , λ > 0, (4.4)

was related to several limitations of the least-square estimator β̂LS. First,
the least-square estimator often exhibits low bias but high variance. In
other words, its prediction accuracy can be unsatisfying. The second and
main motivation was linked to the problem of variable selection: a large
number of predictors in β̂LS can make the interpretation of the results
difficult. The variable selection stategy aims at selecting a smaller subset
of predictors, which have the largest influences on the response Y . At that
time, two different stategies were used to perform this task: subset selection
and ridge regression.

The goal of subset selection is to find the subset of variables of a given
size which minimizes the squared residual. Unfortunately, this problem is
NP-complete ([Welch, 1982]). Other approaches such as forward selection
and backward elimination, which respectively adds and removes variables in
a sequential manner, can be computationally fast, but their greedy essence
may produce unstable and suboptimal results ([Breiman, 1996]). By adding
λ ‖β‖22 as a penalty term in (4.3), the ridge regression tends to shrink the
coefficients of the estimator, but does not set any of them to zero. Therefore
the resulting model is still not straightforward to interpret.

Another severe limitation of the least-square estimator appears when
working on a model with more unknown parameters than observations
(d > n). In this case, β̂LS is not unique and tends to highly overfit the
data. The ideas of sparsity naturally emerged in order to tackle these dif-
ferent mathematical and computational problems, enabling statistical in-
ference for high-dimensional complex data. For geometrical reasons, and
contrarily to the ridge, the `1-norm tend to produce coordinates estimations
exactly equal to zero, thus allowing the Lasso estimator to properly perform
variable selection ([Bühlmann and Van De Geer, 2011, Chapter 2]). More
generally, the Lasso gained a large popularity in a wide range of applica-
tions, thanks to its statistical precision and its computational feasibility. As
such, it frequently appears in the convolutional dictionary learning littera-
ture as an estimator of choice (see the references in section 3.5). Also, it

49

has already been proposed in the context of spike sorting, for instance by
[Ekanadham et al., 2011].

4.1.2 Vectorization of the convolutional model

Using the linearity of the convolution operator, we can reformulate the con-
volutional Lasso (4.1) in its original linear form (4.4), that is to say for
a linear regression problem. Let us introduce some notations in order to
perform this vectorization step. We define the vectorization as the concate-
nation of the temporal signals, i.e. the lines of the multivariate signals,
with:

y = (Y1,1, Y1,2, . . . , YE,T−1, YE,T)>,

ξ = (Ξ1,1,Ξ1,2, . . . ,ΞE,T−1,ΞE,T)>,

a? = (A?1,1, A
?
1,2, . . . , A

?
N,T−1, A

?
N,T)> = (a?>1 , . . . ,a?>N)>,

thus y, ξ and a? are respectively the vectorization of the recorded signals
in Y , the noise signals in Ξ and the activations in A?. Note that in the
following we will sometimes index vectors a with double indices an,t =
An,t, for readability reason. The linear convolutional model in (3.1) can be
expressed in a vectorized format as:

y = Ha? + ξ, (4.5)

where the matrix H ∈ RET×NT . The columns of H will be indexed
here by a time t and neuron index n for a better readability. The ma-
trix H = (h1,1,h1,2, . . . ,hN,T−1,hN,T) is the concatenation of columns ht,n
corresponding to the activation of neuron n at time t. The column hn,t
can be recovered from the shapes wn,e with hn,t = ((w→tn,1)

>, . . . , (w→tn,E)>)>

where w→t is the vector of size T where the shape w has been pushed at
position t > 0 and its remaining components are zero valued.

For a given neuron n and a given electrode e, the corresponding block
of size T × T which appears in the columns (hn,1, . . . ,hn,T) of this neuron
has the following form:

wn,e,1 0 0
... wn,e,1

. . .
...

wn,e,`
...

.
...

0 wn,e,` wn,e,1
. . .

...
...

.
...

. . . 0
0 . . . 0 wn,e,` . . . wn,e,1


∈ RT×T . (4.6)

This particular form of matrix is called a Toeplitz matrix: it notably allows
to write the temporal convolution between the shapes and the activations
as a matrix-vector product. Since the structure of this block is the generic

50

form of the neuron-electrodes blocks which appear in H , the design matrix
of the vectorized model (4.5) is a very structured block Toeplitz matrix.
Let us recall that the length of the shapes ` is expected to be much smaller
than T , thus H is also a very sparse matrix.

Although this form of Lasso problem can be formulated on a wide range
of situations, the dimensionality growth that we observe after the vector-
ization step makes the computations of a solution extremely expensive. In
the following, we will explain how we can use structural properties of our
problem in order to solve it efficiently, despite its large dimension.

4.1.3 Optimality conditions of the Lasso

We conclude this section by giving an important characterization of the
Lasso solutions. This property plays a central role in our strategy for an
efficient resolution of our Lasso problem:

argmin
a∈RNT

‖y −Ha‖22 + 2λ ‖a‖1 , (4.7)

with λ > 0. First, let us introduce the notion of subdifferential of a conti-
nous convex function.

Definition 4.1.1. Let g a continuous convex function from Rd to R. For
any x in Rd, the subdifferential of g in x is defined as:

∂g(x) =
{
u ∈ Rd : ∀v ∈ Rd uT (v − x) + g(x) ≤ g(v)

}
. (4.8)

The vectors u in ∂g(x) are called subgradients, in the sense that these
vectors provide a lower bound of function g in the form of tangent hyper-
planes at point x. Note that in the case where g is also differentiable on x
in Rd, its subdifferential reduces to ∂g(x) = {∇g(x)}.

By definition of the subgradient, any x in Rd minimizes the function g
if and only if 0 ∈ ∂g(x). For any a in RNT , the first term in (4.7) is convex,
differentiable, and its gradient is −2H>(y −Ha). Therefore for any a in
RNT , since the subdifferential of the sum is the sum of the subdifferentials
(Moreau-Rockafellar theorem), we have that the subgradient of the cost
function in a is {−2H>(y −Ha)}+ 2λ∂ ‖.‖1 (a). Consequently, any â in
RNT is a solution of (4.7) if and only if:

0 ∈ {−2H>(y −Hâ)}+ 2λ∂ ‖.‖1 (â)

⇔ {H>(y −Hâ)} ∈ λ∂ ‖.‖1 (â).

We can show that for any x in Rd, the subgradient of the `1-norm takes the
following form:

∂ ‖.‖1 (x) = A1 × · · · × Ad, with Aj =

{
{sign(xj)} , if xj 6= 0,

[−1, 1] , if xj = 0.
(4.9)

51

This grants us the following optimality conditions for the Lasso. Any â
in RNT is a Lasso solution, that is a solution of problem (4.7), if and only
if: {

h>n,t(y −Hâ) = λ sign(ân,t) , if ân,t 6= 0,

|h>n,t(y −Hâ)| ≤ λ , if ân,t = 0.
(4.10)

In particular for a Lasso solution â, we have for any 1 ≤ t ≤ T and 1 ≤
n ≤ N :

if |h>n,t(y −Hâ)| < λ, then ân,t = 0. (4.11)

Condition (4.11) is simple to test and really useful in a context of high
sparsity where the majority of coordinates in â are optimal in 0. This sug-
gests the use of an iterative scheme for the resolution of the Lasso problem:
starting from the null vector, we can activate iteratively the coordinates of
â. This strategy, called working set, is presented in more details in the next
section 4.2.

4.2 Generic working set algorithm for the

Lasso

Although efficient algorithms (presented in the remaining parts of this chap-
ter) have been developed for solving the Lasso, the large size of our problem
makes the computation of a solution prohibitive. In this section, we present
the stategy named working set, also known as active set, which makes no-
tably use of the sparsity of the problem in order to compute a solution
more efficiently. This strategy has been used for several problems such as
the Lasso ([Lee et al., 2007]), the group-Lasso ([Roth and Fischer, 2008]),
as well as in different contexts such as kernel learning ([Bach, 2008]), vari-
able selection ([Obozinski et al., 2010]), or detection of objects in images
([Boisbunon et al., 2014]).

4.2.1 Principle of the algorithm

The main idea of the working set algorithm is, starting from the null vector,
to sequentially activate the coordinates of the solution, using the optimality
condition (4.11) as a criterion and solve the associated subproblems. Since
it uses an inner solver for the computation of the solutions, the working set
strategy is in fact a meta-algorithm.

Let us describe it in the case of the Lasso problem (4.7). We note J
the set of the active coordinates in {1, . . . , NT} of the solution. Initializing
the solution as the null vector, we proceed iteratively as follows: as long as
the optimality condition is not verified, we activate the coordinate j0 that
violates the most the optimality condition (4.11) (line 4 of algorithm 1),
we add it to J (line 5), and we update the solution by solving the Lasso
problem on the current working set using the columns of H in J , noted

52

HJ (line 6). Note that we can use the previous âJ , augmented by the new
coordinate j0, as a warm start for the resolution of the new subproblem.

Thanks to the sparsity of a∗, we expect to solve several Lasso problems
of size ≤ |J |, which remains small with respect to NT . Although other
strategies for the evolution of J exist, for instance adding multiple coordi-
nates at once, or removing some coordinates ([Bach et al., 2011]), adding
the coordinate which violates the most the optimality condition, in other
words which is the most correlated with the current residual, provides a
simple and efficient approach. In particular, this ensures that the working
set algorithm ends in finite time, since in the worst possible case, every
coordinates would be activated.

4.2.2 Efficient implementation on convolutional mod-
els

One simple approach to solve problem (4.1) would be to pre-compute the
matrix H and use it for the optimality condition at line 3 and for the
Lasso solver at line 6 of Algorithm 1, which are the most expensive steps of
the algorithm. But this approach does not scale properly in memory since
the memory complexity of storing H is O(ENT 2), with T typically very
large. The computational complexity of line 3 for a dense matrix H is also
O(ENT 2) which does not scale well with the problem dimensionality.

But in practice H is very sparse, completely defined through W , and
the convolutional operator can be computed exactly with a much smaller
memory footprint. Using direct convolution instead of a general matrix
product, one can compute the gradient of the quadratic loss in line 3 for a
computational complexity of O(ENT`) and a memory complexity of O((E+
N)T). This means that this operation can be used to compute efficiently
the optimality condition and to compute the gradient in the inner Lasso
solver at line 6. Also note that in addition to the efficient implementation
for the convolution operator, the matrix HJ in the working set is still very
sparse with only an order of O(E|J |`) non-sparse lines, which means that
the inner solver can be solved exactly on a much smaller subproblem with
a matrix of size O(E|J |`× |J |).

The efficient implementation discussed above allows to solve larger prob-
lems but several computational bottleneck persists: at each iteration of the
working set, one needs to perform an O(ENT`) operations and since the
number of iterations in the working set will be proportional to T , it leads
to at least a quadratic complexity w.r.t. T , which again does not scale well
and does not allow to provide real time spike sorting. Also note that using
the Fast Fourier Transform, as suggested in [Wohlberg, 2015] for convolu-
tional sparse coding, only reduces the computation cost of the optimality
conditions to O(ENT log2(T)) which is still problematic. We propose in
chapter 5 the idea of sliding window working set, which takes advantage of
the temporal structure of the problem to solve it more efficiently.

53

Algorithm 1 Generic working set algorithm for the Lasso

Require: y,H , λ > 0, ε > 0
1: J ← ∅, â← 0
2: repeat
3: g ←H>(y −Hâ)
4: j0 ← argmaxl∈Jc |gl|
5: J ← J ∪ {j0}
6: âJ ← Solve Lasso (4.7) for sub-problem (HJ ,y)
7: until gj0 < λ+ ε return â, J

4.3 Proximal optimization methods

We have seen in section 4.2 that the working set algorithm repeatedly makes
use of a Lasso solver in order to compute efficiently a global solution. In
this section, we present some mathematical results related to proximal op-
timization. These ideas are essential for the Lasso solver, named FISTA,
that we chose to use in practice. We notably state interesting results in
terms of convergence of this algorithm. We will see in the next section
that some of these ideas also apply to other Lasso solvers. This presen-
tation of the proximal optimization methods essentially follows those in
[Combettes and Pesquet, 2011].

4.3.1 Proximity operator

Let us begin by introducing the idea of proximity operator of a convex
function. This mathematical tool introduced by [Moreau, 1962] naturally
extends the notion of projection operator on a convex set. It plays a major
role in the field of convex optimization problems, and consequently, in the
study of inverse problems, for instance for the signal processing community.

The optimization problem that we consider in this section takes the
following general form:

argmin
x∈Rd

F (x), (4.12)

with F (x) = f(x) + g(x). We also make the following assumptions:

• f : Rd → R is a continuously differentiable convex function, with
Lf -Lipschitz continous gradient, ie for any x and y in Rd

‖∇f(x)−∇f(y)‖2 ≤ Lf ‖x− y‖2 , (4.13)

where Lf is the Lipschitz constant of ∇f , the gradient of f .

• g : Rd → R is a continuous convex function, non necessarily smooth.

• There exists a solution to problem (4.12). Because F is a continuous
function on Rd, a sufficient condition for the existence of such solution
would be for instance F coercive, ie lim

‖x‖2→+∞
F (x) = +∞.

54

The methods and results that we give here can be stated for more general
spaces than Rd, and for larger classes of functions than those described in
the previous assumptions. We choose to avoid technical difficulties to better
focus on the main ideas.

The presence of a non differentiable function g in problem (4.12) may
prevent the application of standard smooth optimization techniques. This
typically happens for problems involving a sparsity penalty term, such as
the Lasso. We now introduce the notion of proximity operator of a convex
function that is of great importance in such scenarios.

Definition 4.3.1. Let g a continuous convex function from Rd to R. For
any x in Rd, the following minimization problem:

argmin
y∈Rd

g(y) +
1

2
‖x− y‖22 , (4.14)

admits an unique solution on Rd. We note this solution proxg (x). Thus we
can define the proximity operator of g as:

proxg : Rd −→ Rd

x 7−→ proxg (x) .
(4.15)

Let C be a convex subset of Rd. If we set g = 1C , with 1C(x) = 0 for
any x in C, and 1C(x) = +∞ for any x in Rd \C, then problem (4.14) cor-
responds to the problem of projection on the convex set C of Rd. Therefore
the proximity operator defined above can be seen as a generalization of the
projection operator on a convex set.

In order to characterize this solution proxg (x), we use once more the
results related to the subdifferential of a function, introduced in subsection
4.1.3. For any x in Rd, the second term in (4.14) is convex and differentiable,
therefore the subgradient at any y in Rd of the whole quantity to minimize
is {y−x}+∂g(y). This implies for the proximity operator of g the following
characterization:

∀(x,p) ∈ Rd × Rd, p = proxg (x)⇔ x− p ∈ ∂g(p). (4.16)

4.3.2 Proximal algorithm

Having introduced the necessary results related to proximity operators, we
can approach the resolution of the general optimization problem (4.12) as
follows: first, we give a characterization of any solution of (4.12) in terms
of proximity operators. We then deduce a general algorithm for the prac-
tical computation of such solution. This algorithm belongs to the group of
methods called proximal methods. This name derives from the proximity
operator of the non smooth functions involved in the optimization problem.

It can be shown that a large class of well known algorithms such as the
projected gradient or the alternating-direction method of multipliers are

55

particular cases of proximal algorithms ([Combettes and Pesquet, 2011]).
Therefore this proximal formalism grants a general structure for the study
of a large number of convex optimization algorithms. We now give the main
result from which we later deduce the FISTA algorithm.

Proposition 4.3.2. Let f and g functions satisfying the assumptions in
section 4.3.1. Then x in Rd is a solution of problem (4.12) if and only if
for any positive number γ, we have:

x = proxγg (x− γ∇f(x)) . (4.17)

Proof. F = f + g is a continuous convex function, therefore for any x in Rd

we have

x = argmin
y∈Rd

F (y)⇔ 0 ∈ ∂F (x)

⇔ 0 ∈ ∂f(x) + ∂g(x)

⇔ 0 ∈ {∇f(x)}+ ∂g(x)

⇔ −∇f(x) ∈ ∂g(x)

⇔ (x− γ∇f(x))− x ∈ γ∂g(x)

⇔ x = proxγg (x− γ∇f(x)) .

Aside from trivial operations on subgradients, we used the fact that the
subgradient of a differentiable function only contains its gradient on the
third line, and the proximity operator characterization (4.16) on the last
line.

Then proposition 4.3.2 allows us to derive an algorithm for the compu-
tation of a minimizer of function F , in the form of a fixed point iterative
scheme:

x(k+1) = proxγkg
(
x(k) − γk∇f(x(k))

)
, (4.18)

with the step size γk in an appropriate bounded interval. Inspired by the nu-
merical analysis terminology used for discretization schemes, the algorithm
(4.18) is called a forward–backward splitting algorithm. Indeed it relies on a
forward (explicit) gradient step on function f , then on a backward (implicit)
step on function g.

Starting from an initial point x(0) in Rd and iterating (4.18) with a suit-
able step size γk provides a proximal method called iterative soft-thresholding
algorithm (ISTA). The main advantage of ISTA is its simplicity. Strong con-
vergence of the iterates to a solution can also be shown. Nevertheless, ISTA
can be a slow algorithm. Although [Bredies and Lorenz, 2008] showed that
ISTA converges linearly in almost every case, they also demonstrated that
under some assumptions, the convergence can be arbitrarily slow.

Let us set x∗ a minimizer of function F . [Beck and Teboulle, 2009]
also showed that ISTA produces a slow convergence of the iterates F (x(k))

56

to F (x∗), but not worse than O(C/k), where C is a constant depend-

ing on Lf and
∥∥x∗ − x(0)

∥∥2
2
. In other words, in order to reach a pre-

scribed precision ε > 0, ISTA would need at most C/ε steps. Several re-
searchers attempted to design an accelerated version of ISTA, for instance
[Bioucas-Dias and Figueiredo, 2007] with a two-step ISTA named TWIST,
as well as [Nesterov, 2013] with an algorithm which gather the past iterates.
In our spike sorting approach, we chose to use an improvement of ISTA
proposed by [Beck and Teboulle, 2009], named FISTA. Smartly choosing a
point as a linear combination of the previous iterates, they managed to ob-
tain a better rate of convergence of F (x(k)) to F (x∗). We give a detailed
description of FISTA in Algorithm 2.

Algorithm 2 Fast iterative soft-thresholding algorithm (FISTA)

Require: x(0) ∈ Rd.
1: z(0) ← x(0), t0 ← 1
2: for k ∈ {1, . . . , K} do
3: y(k) ← z(k) − L−1f ∇f(z(k))

4: x(k+1) ← proxL−1
f g

(
y(k)

)
5: tk+1 ←

1+
√

1+4t2k
2

6: z(k+1) ← x(k+1) + tk−1
tk+1

(x(k+1) − x(k))

7: end for

Note that we set the step size γk = L−1f in Algorithm 2. Unfortu-
nately, the Lipschitz constant Lf of ∇f is not always accessible. In such
situations, the sequence γk can be specified with a backtracking strategy,
without changing the later results. Then we give the main result from
[Beck and Teboulle, 2009], which grants the convergence rate of the F (x(k))
generated by FISTA.

Theorem 4.3.3. Let (x(k))k∈N the sequence generated by FISTA and let x∗

a minimizer of function F . Then we have for all k > 0

F (x(k))− F (x∗) ≤
2Lf

∥∥x(0) − x∗
∥∥2
2

(k + 1)2
. (4.19)

Theorem 4.3.3 demonstrates the convergence rate enhancement, now of
order at worst 1/k2. Also note that the additional operations, that is the
computations of tk and z(k), increase marginally the overall computational
complexity. Indeed, the essential computational cost of FISTA is due to the
gradient and proximal steps.

Although the strong convergence of FISTA has not been established
yet, [Chambolle and Dossal, 2015] demonstrated more recently that a slight
modification of FISTA produces a sequence (x(k))k∈N which weakly con-
verges to a minimizer x∗, in other terms, for any v ∈ Rd, the quantity
< x(k),v > converges to < x∗,v > for k → +∞.

57

4.4 State of the art Lasso solvers

In this section, we present three important state of the art algorithms for
the resolution of the Lasso. First, we apply FISTA (section 4.3) to the
Lasso, in particular we see how the proximity operator can be computed for
this problem. Then we present the Least Angle Regression (LARS) and the
coordinate descent algorithms, and explain why we chose to use FISTA as
the inner solver of the working set.

4.4.1 FISTA for the Lasso

In this section, we explain how proximal methods can apply for the practical
computation of the Lasso. First, let us recall the general form of the Lasso,
as we introduced it in 4.1.1.

β̂lasso = argmin
β∈Rd

‖Y −Xβ‖22 + λ ‖β‖1 , λ > 0. (4.20)

First, let us remark that problem (4.20) is a particular instance of the
more general problem that we introduced in (4.12). Indeed, we have F (β) =
f(β) + g(β), with f(β) = ‖Y −Xβ‖22 and g(β) = λ ‖β‖1. These two
functions satisfy the assumptions in 4.3.1. Therefore it is reasonable to
try to apply FISTA for the computation of a solution β̂lasso. Recall that
the backward step in Algorithm 2 is based upon the computation of the
proximity operator of L−1f g, and is the main difficulty of this algorithm.
For the Lasso, we can give a simple expression of this proximity operator.

This problem takes the following form. For any β0 in Rd, solve:

argmin
β∈Rd

L−1f λ ‖β‖1 +
1

2

∥∥β0 − β
∥∥2
2
. (4.21)

Let α = L−1f λ > 0. An interesting property of this problem relies on the fact
that it can be separated into independent scalar problems, by definition of
the `1 and `2 norms. Thus, for any i in {1, . . . , d}, we consider the following
problem:

argmin
βi∈R

α|βi|+
1

2
(β0

i − βi)2. (4.22)

Therefore, using the proximity operator characterization (4.16) on this scalar
optimization problem grants:

∀(β0
i , pi) ∈ R× R, pi = proxα|.|

(
β0
i

)
⇔ β0

i − pi ∈ ∂(α|.|)(pi). (4.23)

The subdifferential of this function can be easily described as follows:

∂(α|.|)(pi) =


+α , if pi > 0,

−α , if pi < 0,

[−α,+α] , if pi = 0.

(4.24)

Then using the characterization of pi (4.23), we get:

58

Figure 4.1: Graphical representation of the soft-thresholding operator.

pi =


β0
i − α , if β0

i > α,

β0
i + α , if β0

i < −α,
0 , if β0

i ∈ [−α,+α].

(4.25)

These different cases can be more conveniently summarized by considering
the following function (see Figure 4.1):

Tα(x) = (|x| − α)+sign(x), (4.26)

for any x in R. This function, called the soft-thresholding operator accord-
ing to the terminology from [Donoho, 1995], is an important element for
sparse optimization methods. Notice that the terms shrinkage thresholding
from ISTA are based on this property. Here it provides a closed form for
the proximity operator of FISTA applied to the Lasso. Indeed we have that
for any β0 in Rd, the proximity operator p = proxL−1

f λ‖.‖1
(β0) verifies:

pi = TL−1
f λ(β

0
i), ∀i ∈ {1, . . . , d}. (4.27)

We close this chapter by giving FISTA for the Lasso in Algorithm 3.
For simplicity, we chose to present it with the constant step L−1f . Since the

Lipschitz constant Lf = 2λmax(X
>X), with λmax(X

>X) being the biggest
eigenvalue of X>X, this choice may be not suitable for large problems. In
such cases where Lf is hard to compute, a backtracking strategy for the
FISTA steps can be implemented. Also note that the fifth line has to be
understood component by component of x(k+1) and y(k), since Tα has been
defined as a scalar function.

[Chalasani et al., 2013] applied FISTA on convolutional problems, in a
generic context. Despite their implementation of efficient operations, for
instance the application of the convolution operator in order to avoid ex-
pensive matrix products (discussed in 4.2.2), they still needed to compute at

59

each iteration the convolution on the whole data. Therefore, in such generic
settings, FISTA does not provide a scalable method for large signals.

Algorithm 3 FISTA for the Lasso

Require: x(0) ∈ Rd.
1: β(0) ← x(0)

2: t0 ← 1
3: for k ∈ {1, . . . , K} do
4: y(k) ← β(k) − 2L−1f X

>(Xβ(k) − Y)

5: x(k+1) ← TL−1
f λ(y

(k))

6: tk+1 ←
1+
√

1+4t2k
2

7: β(k+1) ← x(k+1) + tk−1
tk+1

(x(k+1) − x(k))

8: end for

4.4.2 Coordinate Descent for the Lasso

We now briefly present an alternative strategy for solving the Lasso problem
(4.20), the coordinate descent (CD) algorithm. The main idea of the CD
is to, at any step, select a single coordinate of the vector to estimate, then
minimize the cost function of the problem with respect to this coordinate,
keeping the other coordinates fixed. Therefore, solving such smaller opti-
mization problems until convergence allows to compute a solution. This
idea is quite general and can therefore be applied to other problems than
the Lasso. Nevertheless, we will see that the main step of the CD for the
Lasso takes a very particular form, intimately related to the ideas developed
for proximal methods (subsection 4.4.1).

At any step, we select a coordinate j in {1, . . . , d} and we want to mini-
mize the cost function of (4.20) with respect to the variable βj. Then using
the ideas of subgradient and convex optimizations given in 4.3.1, simple
computations show that the minimizer β?j of (4.20) with respect to βj is
given by:

β?j =
1

zj
Tλ(wj), (4.28)

with:

wj =
n∑
i=1

Xi,j

(
Yi −

∑
k 6=j

βkXi,k

)
and zj = ‖Xj‖22 , (4.29)

where Xj is the j-the column of X. Remark that, as in proximal methods,
the soft-thresholding operator plays an important role for the computation
of a Lasso solution. Moreover, we get a closed form for the solution, which
is notable since the Lasso does not have a closed form in the multivariate
context. In practice, the choice of the coordinate j at any step can be
handled in various ways, for instance cycle through all the coordinates,

60

choose a random one or greedily select a coordinate based on a certain
criterion. The latter grants better improvements, but at the price of a
higher computational cost. However, it seems to provide the best results in
experimental settings ([Nutini et al., 2015]).

We present in the next chapter our efficient implementation of the work-
ing set for the estimation of the activations. This algorithm aims to apply
the working set strategy on small temporal windows. We chose FISTA over
CD as its inner Lasso solver for two reasons. First, although this algorithm
works on smaller parts of the signal, the size of the associated design matrix
remains quite large, due to the temporal structure of the problem. More-
over, on average the working set tends to add activations which are not too
correlated. In such setting, experimental results from [Bach et al., 2011]
show that FISTA is a more interesting approach than CD in terms of com-
putation times.

An analogous approach which relies on a similar idea of splitting the
signal using small temporal windows can be found in [Moreau et al., 2018],
named Distributed Convolution Coordinate Descent (DICOD). By consid-
ering a temporal partition of the whole signal, this approach aims at solving
small local problems using coordinate descent algorithm. Since the update
of a coordinate only influences its vicinity, these local problems can be
treated in parallel, almost as independent problems. Under mild assump-
tions, they could prove that the computed solution is indeed a Lasso solu-
tion. Although they also demonstrated an important speedup with respect
to the global coordinate descent, they do not provide the theoretical com-
plexity of their algorithm with respect to the sizes of the problem. Taking
advantage of the biological properties of the problem, we prove in the follow-
ing chapters not only that the Lasso estimator retrieves the true support,
but also ascertain the theorical complexity of the sliding window working
set algorithm. Moreover, in our approach, the temporal exploration of the
signal with a window allows to treat the problem in an online manner.

4.4.3 Least Angle Regression (LARS)

We end this chapter with the presentation of another popular Lasso solver,
the Least Angle Regression (LARS) introduced by [Efron et al., 2004]. Orig-
inally proposed as a variable selection algorithm for the linear regression
problem, because of the deep reliationships that the Lasso shares with this
problem, LARS has been successfully adapted to the Lasso.

We essentially follow the presentation of LARS given in [Hastie et al., 2008,
Chapter 3]. As in the forward stepwise regression strategy, LARS itera-
tively adds variables to an active set. The coefficients of these active vari-
ables move towards their least-square value, until their correlations with the
current residual reach the same value of another variable. Then this new
variable is added to the active set, and the whole process is repeated until
all predictors have entered the active set.

Assume that the predictors are standardized so that they have zero

61

mean and unit variance. At the beginning of step k, let Ak the active set of
variables and βAk

the associated coefficients of the active variables. Since
a new variable has just entered Ak, its value in βAk

is zero, and the k − 1
others are non zero. Then set r(k) = Y −XAk

βAk
the current residual. The

direction at step k is defined as:

δ(k) = (X>Ak
XAk

)−1X>Ak
r(k). (4.30)

Then moving the coefficients of the active variables as:

βAk
+ αδ(k), (4.31)

with increasing α, we can show that the correlations of these variables with
the residual remain tied and decrease. The value of α is increased until
another variable has the same correlation with the current residual, then
this variable is added to the active for step k+1. This process continues until
all the variables entered the model, thus ending on the global least-square.

Remark that due to (4.31), the coefficients move in a piecewise lin-
ear manner in LARS. Using the Lagrangian of the Lasso problem and its
Karush-Kuhn-Tucker optimality conditions, one can show that the regular-
ization parameter λ is equal (in absolute value) to the correlation of any
active variable with the current residual. Then assuming that the active set
does not change for λ0 ≥ λ ≥ λ1, it can be deduced that the Lasso solution
path is also linear, when λ moves from λ0 to λ1. From this important ob-
servation, we can conclude that LARS is also able to compute the full Lasso
path, which is piecewise-linear by construction.

LARS is highly efficient, especially in small dimension settings, and does
not seem too sensitive to highly correlated features ([Bach et al., 2011]).
Nevertheless, since LARS provides the full Lasso path instead of a single
estimate for a given λ, it is not directly comparable to solvers such as
FISTA or the coordinate descent. Moreover, an important limitation of
LARS relies on its inability to handle warm starts. Therefore in the context
of our study, which is the design of an efficient working set algorithm, LARS
should not be viewed as a relevant candidate for the inner Lasso solver of
the working set. Using a working set strategy, [Lee et al., 2007] showed that
they obtained better results than with LARS. In the same manner, we will
see in the next chapter that, by making use of the structure of the problem,
especially its temporal characteristic, our efficient working set algorithm
paired with FISTA provides better results than LARS alone.

62

Chapter 5

Sliding window working set
algorithm

In this chapter, we present our novel working set algorithm. This algorithm
builds on the fact that thanks to the structure of the problem and of its so-
lution, it can be decomposed into smaller problems. This will be illustrated
and discussed next in section 5.2. The algorithm is then introduced and
illustrated in section 5.3 and discussed more in detail in subsection 5.3.2.

5.1 Biologically based assumptions

We present here some biological properties about neurons and action po-
tentials and explain how these properties translate into mathematical as-
sumptions related to our model. Taking advantage of these properties in
later sections, we demonstrate that our estimator of a∗ verifies nice statis-
tical and computational properties. Moreover it also allows us to derive the
theoretical temporal complexity of our algorithm.

First we present the following assumption about the support S∗ =
Supp(a?) of the true model parameter a?.

Assumption 5.1.1. (Absolute refractory period) For any given neuron, all
indices in the support S∗ which correspond to this neuron are at least `+ 1
apart.

This assumption is a mathematical reformulation of the idea of refractory
period of a neuron. Right after a neuron fired an action potential, there is
a short period of time during which the neuron can not fire again. In
the following, we assume that every neuron in the model shares the same
refractory period. This refractory period duration is several times longer
than the action potential duration ([Kandel et al., 2000]). For simplicity
reason we suppose that this period is `, which is the length of the potential
shape window. This assumption is of particular importance in our case: it
means that the activation of a particular neuron are far away temporally
which makes them easier to identify statistically.

63

After making some assumption on the support of the true model, we
make some assumptions on the shapes of the action potentials of the indi-
vidual neurons. These shape assumptions are better described as properties
of the Gram matrix G = H>H . From the definition of the columns of H
(see below Equation 4.5), we can recover the following Lemma.

Lemma 5.1.2. For all t and t′ in {1, ..., T} and for all n and n′ in {1, ..., N},
we have:

G(n,t),(n′,t′) = h>n,thn′,t′ =
E∑
e=1

(w→tn,e)
>w→t

′

n′,e (5.1)

In particular it is null when |t− t′| > `.

Note from the lemma above that, similarly to the columns hn,t that are
indexed by neuron n and time t, we will index the components of G such
as G(n,t),(n′,t′). We now define below several correlation assumptions on the
shapes.

Assumption 5.1.3.
2.a (Neurons are recognizable) There exists ε > 0 such that for all n 6= n′

and |t− t′| ≤ `
|G(n,t),(n′,t′)| ≤ ε. (2.a)

2.b (Spikes are peaky) There exists 1 > ρ > 0, such that for all n and
0 < |t− t′| ≤ `

|G(n,t),(n,t′)| ≤ ρ|G(n,t),(n,t)|. (2.b)

2.c (Shapes have bounded energy). There exist c > c > 0 such that for all
n and t,

c ≤ |G(n,t),(n,t)| ≤ c. (2.c)

Assumption 2.a is of great importance for the statistical analysis of our
methodology. It essentially means that the shapes of two distinct neurons
are distinguishable, allowing to attribute each spike to the correct neuron.
This is reasonable due to the difference between neurons but also due to
their spatial localization that will produce different impacts on different
electrodes ([Biffi et al., 2013]). Assumption 2.b is also reasonable due to
the fact that action potentials are also called spikes that will definitely
diminish their autocorrelation in the presence of a temporal delay (see clas-
sical shapes for instance in [Pouzat, 2016]). Finally Assumption 2.c is also
physically plausible since an action potential with too small energy would
be indistinguishable from recording noise and the potential obviously has a
bounded energy [Pouzat, 2016].

5.2 Overlaps

We introduce here the notions of spatial and temporal overlaps that will
be useful in the remaining. These overlaps will allow us to split the large

64

optimization problem 4.1 into several smaller scale problems that are indi-
vidually easier to solve. We first discuss the notion of spatial overlap that
will be important in the MEA case and is related to the physical position
of the neurons. Next we discuss the temporal overlaps that are related to
the temporal activations of the individual neurons.

5.2.1 Spatial overlaps

In the MEA case, solving the problem on the full set of N neurons has a
heavy computational cost. In this section, we want to take advantage of an
important property of the problem: the spatial distribution of the neurons.
Simply put, we harness the fact that two physically distant neurons are
not recorded by the same electrodes. Thus their respective spikes should
not overlap on any electrode, even if these neurons generate simultaneous
spikes.

The problem is in fact a bit more complex than that because there might
be transitive effect. Indeed in Figure 5.1, neuron N1 and N3 are recorded
by disjoint sets of electrodes, but still it is not possible to speak of disjoint
independent Lasso problems, because their spikes might be mixed with the
ones of N2. Hence we need to access the spatial overlaps that they form. We
hope that these overlaps will form much smaller sets that the complete set
of neurons and this is linked to the spatial distribution of the neurons. So
let us first precise why such a phenomenon might appear from a biological
point of view in the MEA case. In the tetrode case, the number of electrodes
is so small that such phenomenon is not relevant.

Neuron density and localization Typical studies of in vitro cultures
report roughly 1000 neurons per mm2 [Biffi et al., 2013]. Note that these
cultures usually provide a higher density of cells than in ex vivo experiments
where slices of brain are used. The range between electrodes in a MEA
depends on the type of MEA and might range from 200µm [Biffi et al., 2013]
to about 30µm [Muthmann et al., 2015]. Finally the electrical signal that is
generated by a neuron suffers from various kind of attenuation and people
analyzing MEA signals usually think that a neuron is recorded by very
few nearby electrodes (for instance only 5 electrodes in the MEA are used
by [Muthmann et al., 2015], which corresponds to a range of about 200µm).
These orders of magnitude mean that in practice the impact of the activation
for a given neuron will be very localized between a few electrodes, which
introduces nice properties discussed below. More precisely, in Section 6.1.1,
we will leverage percolation results to upper bound the size of the spatial
overlaps with large probability. In order to qualify the previous argument,
we should mention that some areas of the brain may present a much higher
density of recordable neurons, for instance the hippocampal area CA1 of
the rat ([Henze et al., 2000]).

To fix the configuration, from now on, the MEA case corresponds to E
electrodes placed on a square lattice.

65

Spatial clustering of the neurons Let us now formalize the concept
of spatial overlaps to explain the algorithm. Two neurons n an n′ are
independent when we have:

∀e, wn,e = 0 or wn′,e = 0. (5.2)

This condition is true when one of the two shapes is the null vector which
happens when the two neurons do not share any electrode where they are
both recorded (they do not overlap). Using this pairwise independence,
one can easily construct a clustering of the neurons as illustrated in Figure
5.1.left where three independent spatial overlaps are recovered. Note that
(5.2) implies that between two neurons n and n′ in two independent clusters
we have h>n,thn′,t′ = 0, ∀t, t′, which means that both the quadratic term
and the Lasso regularizer are separable in several Lasso subproblems (one
by spatial overlap) and that they can be solved independently. This means
that by performing beforehand a clustering of the neurons based on the
shapes of their action potentials, we can greatly decrease the complexity of
the problem. In the following we will suppose that this clustering has been
done and that the problem is solved on a subset of neurons (in a spatial
overlap) and of electrodes (the ones active inside the spatial overlap).

5.2.2 Temporal overlaps

In addition to splitting the optimization problem thanks to the spatial over-
laps of the neurons, one can also use the structure of the problem to split
the problem into almost independent temporal windows. Let us introduce
the following notations: we define a temporal window ω = Jω1, ω2K, where
ω1 ≤ ω2 and ω1, ω2 ∈ {1, . . . , T}, which contains all samples whose temporal
indices ω1 ≤ t ≤ ω2. This temporal window will be used in the following
to index vectors with aω, that contains the temporals samples ω1 ≤ t ≤ ω2

for all neurons n, and matrix Hω where are selected only the columns hn,t
where ω1 ≤ t ≤ ω2, for all neurons n. Let us first review the biological
phenomenon which explains how we can temporally split the problem into
smaller subproblems.

Neuron activations and refractory period Neurons fires quite scarcely
and some classical models are either Poisson processes in continuous time
with a frequency of usually 10Hz (max 100Hz) or their discrete counter-
part that are Bernoulli process (see for instance [Tuleau-Malot et al., 2014,
Reynaud-Bouret et al., 2014] and the references therein). Both models have
been adapted to encode the refractory period, for instance using Poisson
with dead time, which basically consists in erasing the spikes that are too
close. These more precise variations can only decrease the number of spikes.
In case of synchronization, the synchronizations between neurons are usually
simulated by joint Poisson or Bernoulli process [Tuleau-Malot et al., 2014],
so that the firing pattern of the whole system remains globally Poisson (or
Bernoulli).

66

Temporal overlap and independent windows Similarly to spatial
overlaps we can find independent temporal clusters (temporal windows)
of activations. We define two activation at times t and t′ as independent
if |t − t′| > `. Indeed in this case the supports of the convolution (of size
`) do not overlap and it is easy to show that h>n,thn′,t′ = 0, ∀n, n′. This
is interesting because it means that for any windows ω and ω′ such that
ω2 < ω′1 + ` we have H>ωHω′ = 0 where 0 is the null matrix. This implies
again that the optimization problem can be solved independently on ω and
ω′.

Similarly to spatial overlap, one can find independent windows that con-
tain the activations of the neurons, as illustrated in Figure 5.1.right. But
note that this time the temporal overlaps cannot be found A priori since the
actual support of the temporal activations is not known. This means that
despite this nice separability of the problem, one cannot use it to speedup
the optimization until the support of the solution is known. The main mo-
tivation for the sliding window working set algorithm introduced below is to
find this support and independent windows in an efficient and online way.
This will not only permit to analyze signals in real time, but also to reesti-
mate the shapes in order to take into account experimental perturbations,
such as the electrode drift phenomenon [Ekanadham et al., 2014].

Mathematically, the size of the temporal overlaps themselves is also
controlled with large probability (see Section 5.2) and this will impact the
overall complexity of the algorithm.

5.3 Sliding window working set

We present here our sliding window working set algorithm. The main idea
of the algorithm is to work only on a small temporal window and use the
working set principle to simultaneously solve the optimization problem in
the window and find the window that is independent from the rest of the
signal. Note that this algorithm is used on each independent spatial overlap,
so in fact for small values of N and E in the MEA case.

5.3.1 Principle of the algorithm

The main algorithm is detailed in Algorithm 4 where line 3 denotes an
update of the large vector â on the current window. The idea is to solve
the Lasso problem on small windows ω starting at the beginning of the
signal ω = J1, 4`K and perform the following operations until the end of the
signal is reached:

1. Computing the Lasso solution âω, on the window ω with the working
set algorithm.

2. Updating the window ω depending on the support of âω:

67

Neurons activations

Shapes on electrode e

NN 32

N2

Reconstructed signal on electrode e

N3

N1 N3

N4 N5

Spatial overlaps Temporal overlaps

N 1

N1

N2 e

Figure 5.1: Illustration of the spatial and temporal overlaps. At the left
hand side, we present an example of 3 spatial overlaps in the case of 5
neurons, on a regular grid of 36 electrodes. The position Nj of neuron j
is represented by a check, and the reach of its spikes by a disc of radius
r. On the right hand side, we provide an example of temporal overlaps for
the neurons 1, 2 and 3. We provide the shapes of each neuron and the
reconstructed signal on the electrode e. Remark that since neuron 1 is far
away from e, its shape on e remains at 0. The independent spatial and
temporal overlaps are illustrated with different colors.

68

(a) If the support Supp(âω) ∈ Jω1+`, ω2−2`K then the current prob-
lem is independent from the rest of the signal and the window is
updated as ω = Jω2 + 1− `, ω2 + 3`K.

(b) If the support Supp(âω) ∩ Jω1, ω1 + ` − 1K 6= ∅ has components
in the first ` samples of the window, then we merge the current
window with the previous (because the optimality conditions on
the last ` samples of the previous window have changed).

(c) Else the window needs to be extended as ω = Jω1, ω2 + `K.

Once the Lasso is solved on the window ω in step 1, the optimality
conditions are verified on the window. If the support of the activation
Supp(âω) ⊂ Jω1 + `, ω2 − 2`K, it means that the reconstructed signal after
convolution is entirely contained into ω. This means that the solution on
this window is independent from the previous one and probably independent
from the next one (since there is no activations in the last ` samples of the
window). In this case, we have found the Lasso solution for the previous
window, and then we can work on a new window immediately after it (step
2.a). The right border was chosen as 2` instead of ` to promote a better
exploration ahead of time and well separated temporal clusters minimizing
the occurrence of the more expensive case 2.b discussed below. If there
are activations at the beginning of the window however (first ` samples), it
means that the residual and the optimality conditions have changed on the
last ` samples of the previous window and we need to potentially update
the model there, so we merge the current window with the previous one.
Else, if there are activations in the last ` samples of the window, we extend
it in order to ensure that at least ` samples are not activated at the end.
Finally for each iteration after updating the current window, we solve again
the Lasso on this window efficiently thanks to the working set strategy.
For illustration, one execution of the algorithm with one electrode and two
neurons is provided in Figure 5.2. It shows both configurations: when the
window is extended and when the window is shifted to the right.

5.3.2 Algorithm solution w.r.t. the original Lasso

We now address the following question: is the proposed algorithm actually
solving the global optimization problem (4.1)? We provide to this end the
following theorem.

Theorem 5.3.1. The solution â computed by the sliding window working
set is a solution of the initial Lasso problem (4.7).

Proof. By construction of the algorithm, line 4 of the algorithm will return a
list of windows Ω such that ∀ω ∈ Ω the support Supp(âω) ∈ Jω1+`, ω2−2`K
which means that the current model will have an effect only inside ω and
that for two consecutive windows ω and ω′ in Ω the temporal indexes of all
active variables ât 6= 0 with t ∈ ω and ât′ 6= 0 with t′ ∈ ω′ are by construction
|t′ − t| > 3`. This means that as discussed in subsection 5.2.2, the Lasso

69

Algorithm 4 Sliding window working set

Require: y,H , λ > 0
1: â← 0, ω = Jω1, ω2K← J1, 4`K, Empty list of windows Ω = []
2: repeat
3: âω ← Solve Lasso with algo. 1 for sub-problem (Hω,y) using warm-

start âω
4: if Supp(âω) ⊂ Jω1 + `, ω2 − 2`K then
5: Ω← [Ω, ω] //Insert current window ω at the end of list Ω
6: ω ← Jω2 + 1− `, ω2 + 3`K //Independent problem solved so

move window to next time segment
7: else if Supp(âω) ∩ Jω1, ω1 + `− 1K 6= ∅ then
8: ω̃,Ω← Return last window ω̃ = Jω̃1, ω̃2K in Ω and remove it from

the list Ω.
9: ω ← Jω̃1, ω2K // merge current window with last window

10: else
11: ω ← Jω1, ω2 + `K // Extend window to find the independent

temporal overlap
12: end if
13: until ω

(m)
2 ≥ T return â, Ω = [ω1, ω2, . . .]

problems can be split as two independent problems on the support and all
the other components that are not active satisfy the optimality conditions,
implying that they will be 0. The solution â is obtained by successive
juxtaposition of the solutions of independent problems on disjoint windows
that are estimated on line 3.

5.3.3 Numerical complexity and efficient implemen-
tation

We now discuss why the proposed algorithm is more efficient than the con-
volutional working set discussed in section 4.2. In the standard working set,
we recall that the computational cost for the optimality condition is of order
O(ENT`) at each step because of the multiple convolutions necessary to
compute the optimality conditions. In the sliding window working set, the
optimality conditions are computed only on the window ω, and their com-
plexity is reduced to O(|ω|NE`) with |ω| << T . Proving mathematically
this reduced computational complexity is one of the main focus of chapter
6. Note that the complexities above are given on the whole problem, but
as discussed above, in the MEA case, the spatial clustering of the neurons
means the the complexity depends on the size Ec and Nc of the spatial
overlap instead of E and N .

Also note that the sliding window working set proposed in Algorithm 4
can be slightly improved: in the case where a new activation is close to the
beginning or the end of the window, instead of waiting for the convergence
on the current window, the algorithm could immediately merge this window

70

with the previous one (that is if the new activation is in Jω1, ω1 + ` − 1K),
or extend this window (that is if the new activation is larger than ω2− 2`).
Since this modification only marginally improves its performances, we keep
in the following the sliding window working set as formulated in Algorithm
4.

0

Signal, reconstruction and activations at Iteration 0
Signal
Reconstruction

0 100 200 300 400 500
0

1 Activations neuron 1
Activations neuron 2
Current window

0 100 200 300 400 500

3

2

1

0

log correlations at Iteration 0

Correlation neuron 1
Correlation neuron 2
KKT violation threshold
New activation neuron 1

0

Signal, reconstruction and activations at Iteration 1
Signal
Reconstruction

0 100 200 300 400 500
0

1 Activations neuron 1
Activations neuron 2
Current window

0 100 200 300 400 500

3

2

1

0

log correlations at Iteration 1

Correlation neuron 1
Correlation neuron 2
KKT violation threshold
New activation neuron 2

0

Signal, reconstruction and activations at Iteration 2
Signal
Reconstruction

0 100 200 300 400 500
0

1 Activations neuron 1
Activations neuron 2
Current window

0 100 200 300 400 500

3

2

1

0

log correlations at Iteration 2

Correlation neuron 1
Correlation neuron 2
KKT violation threshold

0

Signal, reconstruction and activations at Iteration 3
Signal
Reconstruction

0 100 200 300 400 500
0

1 Activations neuron 1
Activations neuron 2
Current window

0 100 200 300 400 500

3

2

1

0

log correlations at Iteration 3

Correlation neuron 1
Correlation neuron 2
KKT violation threshold

0

Signal, reconstruction and activations at Iteration 4
Signal
Reconstruction

0 100 200 300 400 500
0

1 Activations neuron 1
Activations neuron 2
Current window

0 100 200 300 400 500

3

2

1

0

log correlations at Iteration 4

Correlation neuron 1
Correlation neuron 2
KKT violation threshold
New activation neuron 2

71

0

Signal, reconstruction and activations at Iteration 5
Signal
Reconstruction

0 100 200 300 400 500
0

1 Activations neuron 1
Activations neuron 2
Current window

0 100 200 300 400 500

3

2

1

0

log correlations at Iteration 5

Correlation neuron 1
Correlation neuron 2
KKT violation threshold

0

Signal, reconstruction and activations at Iteration 6
Signal
Reconstruction

0 100 200 300 400 500
0

1 Activations neuron 1
Activations neuron 2
Current window

0 100 200 300 400 500

3

2

1

0

log correlations at Iteration 6

Correlation neuron 1
Correlation neuron 2
KKT violation threshold
New activation neuron 1

0

Signal, reconstruction and activations at Iteration 7
Signal
Reconstruction

0 100 200 300 400 500
0

1 Activations neuron 1
Activations neuron 2
Current window

0 100 200 300 400 500

3

2

1

0

log correlations at Iteration 7

Correlation neuron 1
Correlation neuron 2
KKT violation threshold

0

Signal, reconstruction and activations at Iteration 8
Signal
Reconstruction

0 100 200 300 400 500
0

1 Activations neuron 1
Activations neuron 2
Current window

0 100 200 300 400 500

3

2

1

0

log correlations at Iteration 8

Correlation neuron 1
Correlation neuron 2
KKT violation threshold

0

Signal, reconstruction and activations at Iteration 9
Signal
Reconstruction

0 100 200 300 400 500
0

1 Activations neuron 1
Activations neuron 2
Current window

0 100 200 300 400 500

3

2

1

0

log correlations at Iteration 9

Correlation neuron 1
Correlation neuron 2
KKT violation threshold

Figure 5.2: Illustration of the different steps in the proposed algorithm.
Left: observed signal S with model reconstruction and sparse model ai.
The current window is represented as a light blue background. True ac-
tivations are illustrated with transparency. Right: optimality conditions
(named KKT) violation at the current step. Temporal instants and neu-
rons violating the optimality conditions are over the black dashed line.

72

Chapter 6

Mathematical results

In this chapter, we present the mathematical results for the analysis of
the sliding window working set algorithm. We begin by giving bounds on
the sizes of the spatial and temporal overlaps. Then we present the main
statistical theorem which informs us that the support of the computed Lasso
solution is close to the support of the true activation vector. Finally, we
derive from this theorem the theoretical temporal complexity of the sliding
window working set algorithm.

6.1 Control of the spatial and temporal over-

laps

6.1.1 Spatial overlaps

In the MEA case, the E electrodes are placed on a square lattice with
fixed distance δ between adjacent electrodes. The range of detection of a
neuron by an electrode is r0. We classically approximate the spatial dis-
tribution of the neurons on the lattice by a Poisson process of constant
intensity γ. Note that this approximation is reputed valid for neuron cul-
tures ([Millet et al., 2011]), but not for real tissues.

An electrode detects a neuron if it is at distance less than r0. Therefore
two neurons can be detected by the same electrode if their distance is less
than 2r0.If this is the case, we say that these neurons are ”connected”.
Spatial clusters are given by maximal sets of neurons that are connected
together, or for which there exists a path in between of ”connected neurons”.

This framework is known in probability as a particular case of the
Poisson-Boolean percolation (see [Duminil-Copin et al., 2018] and references
therein). Thanks to this, we can prove the following proposition.

Proposition 6.1.1. There exists a critical value γc > 0 which only depends
on r0, such that, if γ < γc, then for all α in (0, 1), such that E ≥ τ log(3/α)
for some positive constant τ , there exists an event Ωα,s of probability larger
than 1− α, such that on Ωα,s, any spatial overlap of neurons c, with cardi-

73

nality Nc, satisfies
Nc ≤ κ[log(E/α)]2,

with κ > 0, which only depends on γ, δ, τ and r0. Similarly the number
of active electrodes for a given spatial overlap c can be bounded as Ec ≤
κ̄[log(E/α)]2, with κ̄ > 0, which only depends on γ, δ, τ and r0.

The event Ωα,s only depends on the position of the neurons on the lattice
representing the MEA.

Proof. In the sequel we use the term percolation term ”cluster” to refer
to spatial overlap. It has been shown in [Duminil-Copin et al., 2018] that
there exists a critical value γc > 0 which only depends on δ and r0, such
that if γ < γc, the probability for a typical cluster to reach a radius r (or
a diameter 2r) is less than exp(−c(γ, 2r0)r), with c(γ, 2r0) > 0, depending
on γ and r0.

But the number of neurons, N , that can be sensed by the MEA is the
number of neurons which are in a square of area (

√
E + 2)2δ2. This is

therefore a Poisson variable with mean (
√
E + 2)2δ2γ.

So by using basic concentration inequalities for Poisson variables (see
for instance [Reynaud-Bouret, 2003]), we obtain that, for all positive x

P(N > (
√
E + 2)2δ2γ + (

√
E + 2)δ

√
2γx+ x/3) ≤ e−x.

Let us take e−x = α/3 and let us enumerate the points (neurons) of
the Poisson process in the whole plan with the first being the ones in the
square of size (

√
E + 2)δ. We say that a cluster is attached to a neuron if

the neuron belongs to this cluster.
We use a union bound to control the size of each cluster attached to

each neuron n such that n ≤ Q, with Q the largest integer such that

Q ≤ (
√
E + 2)2δ2γ + (

√
E + 2)δ

√
2γ log(3/α) + log(3/α)/3.

So we get that the probability to have one of these clusters of diameter
larger than r is smaller than[

(
√
E + 2)2δ2γ + (

√
E + 2)δ

√
2γ log(3/α) + log(3/α)/3

]
e−c(γ,2r0)r.

We take r such that this bound is less than α/2, that is

r = κ′ log(E/α),

with

κ′ =
1

c(γ, r0)

(
1 +

log(2C)

log(τ)

)
,

and

C = 4δ2γ + 2δ

√
2γ

τ
+

1

3τ
,

which depend only on γ, δ, τ and r0.

74

Finally, we can also control the number of neurons which belong to each
of the Q balls that are used to encompass the Q clusters of the first Q
points.

With similar arguments as before on the control of Poisson variables and
union bound, we can upper bound by α/3 the probability that there is one
of the Q balls with more than κ′′ log(E/α)2 neurons in it.

Therefore if we define Ωα,s as the event where (i) the total number of
neurons is controlled, (ii) the range of the Q first clusters is controlled, and
(iii) the number of neurons per ball for the first Q balls is controlled, we
obtain the desired result.

Let us comment this result qualitatively. First of all γc is a critical
parameter of the percolation theory. When the parameter γ is small with
respect to γc, as usual for crital percolation parameters, clusters cannot
reach infinity, whereas they can if γ is too big. As far as we know, precise
knowledge of γc is unknown, but one can still have the following heuristic
reasoning : if a neuron can be detected at a range of r0 and if the intensity
γ (that is, informally, the density of neurons) is very low, it will be quite
rare to have two connected neurons, and the cluster size will be roughly one.
On the other hand if γ is too large, the distance between neighbors will be
very small and eventually all neurons will belong to one giant cluster.

Nevertheless, in the continuum percolation literature, we can find various
estimations of the percolation constant γc. Taking into account an exact
result from [Meester and Roy, 1996, Theorem 3.10, p85], the bound γ <
0.174/(2r0)

2 would guarantee the hypothesis γ < γc of Proposition 6.1.1.
Note that when the shape of the action potential as perceived by the

various electrodes are known, it is very easy to find these spatial overlaps
before hand and we will easily know if we are in a subcritical regime where
the size of the spatial overlaps varies logarithmically with E or not.

In the rest of this thesis,

(i) either we focus on a tetrode like case where E is small, so that we
discard totally the dependence in E,

(ii) or on a supercritical regime for a lattice MEA, and then Nc is roughly
of the size of N , that is the total number of neurons and we can as
well solve the whole system,

(iii) or we are in a subcritical regime for a lattice MEA and once restricted
to the event Ωα,s, we can solve independently the Lasso problems for
each of the spatial overlaps c. In this case, the number of neurons is
roughly of the order (logE)2.

Note that in (i) or (ii), N is thought to be fixed and a parameter of the
problem whereas in (iii) the number of neurons is a random variable and
the event Ωα,s to which we restrict ourselves depends on it.

75

6.1.2 Temporal overlaps

Here we assume that the activations a∗ are the realisation of a given random
process. More specifically, and as explained in Section 5.2.2, we do not
need to model each neuron individually and we do not need to model the
amplitude of a∗. Hence the following formalism can be seen as a worst case
scenario.

We denote A the joint process of length T with values 0 or 1, 1 meaning
that at least one of the recorded neurons has fired. Note that if we are
in the subcritical regime, A is restricted to the neurons in a given spatial
overlap.

We model A by a Bernoulli process of rate p = Nm∆, withm the average
firing rate, N the number of neurons (of the spatial overlap possibly) (that
is the Ai’s are i.i.d. Bernoulli with parameter p) and ∆ the binning size
of the process. Note that in this setting, we force ∆ << 1/N so that we
cannot analyze too much neurons at the same time. Another way to see this
is to say that p should be small and to fix ideas we assume that p ≤ 1/2.

We are saying that two successive spikes t and t′ in A are overlapping if
|t− t′| ≤ η = 4`.

As from a spatial point of view, from a temporal point of view, the spikes
in A that includes all the activation times of all the neurons (of the spatial
overlap) are therefore partitioned in overlaps. We can, as for the spatial
overlaps, control their size.

Proposition 6.1.2. The temporal overlaps are controlled as follows.

• In the non-subcritical MEA case or in the tetrode case, with a global
activation rate p = Nm∆ ≤ 1/2, there exists an event Ωα,A of proba-
bility larger than 1− α such that on Ωα,A, each temporal overlaps has
a length bounded by

W = c′ log(T/α),

with c′ > 0 depending only on η.

• In the subcritical MEA case, with an activation rate per cluster pc =
Ncm∆ ≤ 1/2, there exists an Ωα,A,s such that, on Ωα,A,s, for each
spatial overlap and for each temporal overlap inside a spatial overlap,
the size of this temporal overlap is bounded by

W = c′′ log(ET/α),

with c” > 0 depending only on η, δ, γ, τ and r0.

Proof. If Ti is the ith index where ATi = 1, then for all i, τi = Ti − Ti−1
are independent Geometric variable on {1, 2, ...} with parameter p, with the
convention T0 = 0.

We define X0 = 1 and

X1 = min{j > 1, τj > η} and Xi = min{j > Xi−1, τj > η}.

76

Similarly, for i ≥ 1, δi = Xi −Xi−1 are independent geometric variables of
parameter (1− p)η.

Therefore the ith overlap, which happens between TXi−1
and TXi

has a
length Di = TXi

− TXi−1
+ 1.

So for all integer k,

P(Di > kη + 1) ≤ P(δi > k) ≤ (1− (1− p)η)k ≤ (1− 0.5η)k.

We have at most R overlaps with R the largest integer such that R ≤
T/η.

By a union bound we can control all the R first overlaps and the prob-
ability to have at least one overlap larger than kη + 1 is controlled by

T/η(1− 0.5η)k.

Forcing this last term to be α gives the value of k and concludes the proof
in the non subcritical case. The complementary event is Ωα,A.

In the subcritical case, using the notation of the proof of Proposition
6.1.1, we need to control it for all the first Q clusters, which lead us to

QTmax/η(1− (1− p)η)k,

hence the other choice of k. The complementary event is Ωα,A. We then
use here Ωα,A,s = Ωα/2,s ∩ Ωα/2,A.

In the subcritical MEA Case, the condition is on the activation rate per
cluster (pc ≤ 1/2), which means that the result holds valid even when the
global activation rate is p > 1/2. In this sense, if the problem is subcritical,
even if the MEA is very large and records a large number of neurons, the
size of the temporal overlaps, which governs the numerical complexity, will
still be reasonable.

Note that in the first case, the event Ωα,A depends only on the distribu-
tion of the spikes, whereas in the second case, Ωα,A,s depends both on the
spiking distribution but also on the spatial distribution of the neurons.

6.2 Control of the noise

Lemma 6.2.1. Assume that the noises ((ξe,t)e,t) are i.i.d. normal random
variables with zero mean and finite variance σ2. For α ∈ (0, 1), define

zα =

√
2σ2c log

(
2NT

α

)
,

where c is given in (2.c) and the event

Ωα,ξ =
⋂
n,t

{∣∣h>n,tξ∣∣ ≤ zα
}
. (6.1)

Then we have
P (Ωα,ξ) ≥ 1− α.

77

Proof. For a fixed (n, t), since the noise is Gaussian, the random variable

h>n,tξ =
E∑
e=1

(ξet , ..., ξ
e
t+`)w

→t
n,e

is also a Gaussian variable with variance bounded by cσ2. Thus the event∣∣h>n,tξ∣∣ ≥ z

is of probability less than 2e−z
2/(2σ2c).

This argument is valid for any (n, t). Therefore, by an union bound
argument, we get, for a fixed α ∈ (0, 1), with the choice z = zα, for all n in
{1, ..., N} and all t in {1, ..., T},∣∣h>n,tξ∣∣ ≤ zα,

with probability larger than 1− α.

This lemma is very classical and helps us to control the level of the
noise. From now on, Ωα refers to the event of probability controlled by
1− α which is either Ωα/2,A ∩Ωα/2,ξ in the tetrode or non-subcritical MEA
case, or Ωα/2,A,s ∩ Ωα/2,ξ in the subcritical MEA case.

6.3 Theoretical properties of the Lasso esti-

mator

Theorem 6.3.1. Fix α ∈ (0, 1/2). Let Assumptions 5.1.1 and 5.1.3 be
satisfied and let us assume that the noises are i.i.d. Gaussian. With the
notation of Propositions 6.1.1, 6.1.2 and Lemma 6.2.1, there exists an event
Ωα of probability larger than 1−α such that, on Ωα, for any temporal window
ω and any solution âω of the Lasso problem (Hω,y) with regularization
parameter λ (possibly restricted in the subcritical MEA case to any spatial
overlap), the following holds.

1. No spurious activation is discovered, that is

Supp(âω) ⊂ S∗ ∩ ω,

where S∗ = Supp(a∗) is the true set of activations, as long as

λ >
c+ 2ρc

c− 2ρc− 4εN
(zα + 2(ρc+ εN)‖a∗‖∞,∂ω) and c > 2ρc+4εN

(6.2)
with the convention that

‖a∗‖∞,∂ω = sup
n,t∈∂ω

|a∗n,t|,

78

where the boundary ∂ω = {t 6∈ ω/∃s ∈ ω, |t− s| < `} and with

N =

{
N in the tetrode or non subcritical MEA case

κ[log(E/α)]2 in the subcritical MEA case
.

2. Moreover, if

inf
(n,t)∈S∗∩ω

|a∗n,t| >
zα + λ+ 2‖a∗‖∞,∂ω (ρc+ εN)

c− 2εN
, (6.3)

then
Supp(âω) = S∗ ∩ ω.

Proof. Note that if Algorithm 4 needs to work with sparse matrices for
computational reasons, mathematically speaking, we can as well work with
the corresponding inflated matrices and this will not change the value of
the solution, but just the space in which it is represented. Therefore, for
the sake of convenience when we investigate the statistical properties of
the method, we define aJ as the vector obtained by setting to 0 all the
coordinates from a with their index not in J . We define similarly HJ as
the matrix obtained by replacing all the columns from H with their index
not in J by the zero vector. Therefore in the sequel vectors a and matrix
H have always the same dimensions.

We work on the event Ωα, which as stated in the remarks below Lemma
6.2.1 is of probability greater than 1− α. We fix a spatial overlap if we are
in the subcritical MEA case or we work with the whole set of sensors in the
other cases. In every cases, the number of neurons in the restricted problem
is bounded by N thanks to Proposition 6.1.1. We also fix a given window
ω.

We now solve the Lasso problem on the temporal window ω on the
possibly restricted set of neurons:

âω = arg min
a/Supp(a)⊂ω

‖y −Hω a‖22 + 2λ‖a‖1,

where we have used a slight abuse of language: ”Supp(a) ⊂ ω” means that
the temporal indices t of a = (an,t)n,t have to be in the temporal window
ω. Let us define the solution of the Lasso optimization problem on S∗ ∩ ω
where we recall that S∗ is the true support of a∗:

âS∗∩ω = arg min
a/Supp(a)⊂S∗∩ω

‖y −HS∗∩ω a‖22 + 2λ‖a‖1,

where we have also made a slight abuse of language: S∗ ∩ ω = {(n, t) ∈
S∗ such that t ∈ ω}. Note that âS∗∩ω and âω are both of dimension NT ,
with (temporal) support inside ω.

Our goal is to prove that âω is null outside of S∗. To this end, we
first prove that the vector âS∗∩ω satisfies the optimality conditions on the
temporal window ω.

79

Noting that Hω âS∗∩ω = HS∗∩ω âS∗∩ω, we see that âS∗∩ω already satisfies
the optimality conditions for any (n, t) ∈ S∗ ∩ ω. We only have to check
the optimality conditions for (n, t) ∈ ω \ S∗ (with the same kind of abuse
of language as before).

To this end, we first need to prove a bound on ‖a∗ − âS∗∩ω‖∞,ω where
‖a‖∞,J := maxn,t∈J |an,t|.

By definition, the Lasso solution âS∗∩ω satisfies the following necessary
condition for all (n, t) ∈ S∗ ∩ ω:

|h>n,t(y −HS∗∩ω âS∗∩ω)| ≤ λ.

We deduce that, for all (n, t) ∈ S∗ ∩ ω,

|h>n,tHS∗∩ω(a∗ − âS∗∩ω)| ≤ λ+ |h>n,tξ|+ |h>n,tHS∗∩ωc a∗|,

with ωc being the complementary in J1, T K of the temporal window ω.

In view of Lemma 5.1.2, we have for all (n, t) ∈ S∗ ∩ ω that

h>n,tHS∗∩ωc a∗ = h>n,tHS∗∩∂ω a
∗.

In addition, Assumption 5.1.3 guarantees that |G(n,t),(n′,t′)| ≤ ε for all
n 6= n′ and |G(n,t),(n,t′)| < ρ for any t 6= t′. Also, given the refractory period,
there can be at most only 1 activation on any interval of length l. Thus we
get, for all (n, t) ∈ S∗ ∩ ω,

|h>n,tHS∗∩ωc a∗| ≤ 2(ρc+ εN)‖a∗‖∞,∂ω. (6.4)

Next, we have for all (n, t) ∈ S∗ ∩ ω

h>n,tHS∗∩ω (a∗ − âS∗∩ω) =
∑

t′ : (n,t′)∈S∗∩ω

G(n,t),(n,t′)(a
∗
n,t′ − (âS∗∩ω)n,t′)

+
∑
n′ 6=n

∑
(n′,t′)∈S∗∩ω

G(n,t),(n′,t′)(a
∗
n′,t′ − (âS∗∩ω)n′,t′).

Given the block-band structure of the Gram matrix G (see Lemma 5.1.2),
the first sum in the above display contains exactly 1 nonzero term corre-
sponding to t′ = t:∑
t′ : (n,t′)∈S∗∩ω

G(n,t),(n,t′)(a
∗
n,t′ − (âS∗∩ω)n,t′) := G(n,t),(n,t)(a

∗
n,t − (âS∗∩ω)n,t).

Regarding the second sum, we also have in view of Lemma 5.1.2:∑
n′ 6=n

∑
(n′,t′)∈S∗∩ω

G(n,t),(n′,t′)(a
∗
n′,t′ − (âS∗∩ω)n′,t′)

=
∑
n′ 6=n

∑
(n′,t′)∈S∗∩ω, |t′−t|≤l

G(n,t),(n′,t′)(a
∗
n′,t′ − (âS∗∩ω)n′,t′)

80

Set ∆n,t := a?n,t − (âS∗∩ω)n,t. Combining the last four displays, we get for
all (n, t) ∈ S∗ ∩ ω,

G(n,t),(n,t)|∆n,t| ≤
∑
n′ 6=n

∑
(n′,t′)∈S∗∩ω, |t′−t|≤l

|G(n,t),(n′,t′)| |∆n′,t′ |+ |h>n,tξ|

+ λ+ 2(ρc+ εN)‖a∗‖∞,∂ω.

Assumption 5.1.3 guarantees that |G(n,t),(n′,t′)| ≤ ε for all n 6= n′ and
G(n,t),(n,t) > c. Also for a given n′, because of the refractory period, there is
at most 2 activations for this particular neuron at distance ` of t. Thus we
get, for all (n, t) ∈ S∗ ∩ ω,

c |∆n,t| ≤ 2εN ‖∆‖∞,ω + max
(n,t)∈S∗∩ω

|h>n,tξ|+ λ+ 2(ρ+ εN)‖a∗a∗‖∞,∂ω,

and consequently, since we are on Ωα,

(c− 2εN)‖∆‖∞,ω ≤ zα + λ+ 2(ρc+ εN)‖a∗‖∞,∂ω.

Combining this result with Lemma 6.2.1, we get

‖a∗ − âS∗∩ω‖∞,ω ≤
zα + λ+ 2(ρc+ εN)‖a∗‖∞,∂ω

c− 2εN
. (6.5)

We now check the optimality conditions for âS∗∩ω on ω \ S∗. For any
(n, t) ∈ ω \ S∗, we have

h>n,t(y −HωâS∗∩ω) = h>n,t(Ha
∗ + ξ −HωâS∗∩ω)

= h>n,t Hω (a∗ − âS∗∩ω) + h>n,t HS∗∩∂ω a
∗ + h>n,t ξ.

In view of (6.4) and (6.5), we have on the event Ωα,A,s∩Ωα,ξ, for all (n, t) ∈
ω \ S∗,

|h>n,t(y −HωâS∗∩ω)|

≤ zα + 2(ρc+ εN)

(
‖a∗‖∞,∂ω +

zα + λ+ 2(ρc+ εN)‖a∗‖∞,∂ω
c− 2εN

)
. (6.6)

We need the following condition to satisfy the strict optimality conditions:

λ > zα + 2(ρc+ εN)

(
‖a∗‖∞,∂ω +

zα + λ+ 2(ρc+ εN)‖a∗‖∞,∂ω
c− 2εN

)
, (6.7)

or equivalently

λ >
1 + 2(ρc+2εN)

c−2εN

1− 2(ρc+2εN)
c−2εN

(zα + 2(ρc+ εN)‖a∗‖∞,∂ω) .

This means that âS∗∩ω satisfies the strict optimality conditions in (6.8)
below on the temporal window ω. Thus we proved that âS∗∩ω is a solution

81

of the Lasso minimization problem on the temporal window ω, on the event
Ωα.

By Lemma 6.3.2 applied to ãω = âS∗∩ω, we get the first inclusion.
We assume in addition (6.3). Then, in view of (6.5), we have on the

event on Ωα

Supp(âS∗∩ω) = S∗.

The following property is an immediate consequence of the convexity of
the Lasso objective function.

Lemma 6.3.2. Consider Crit(a) = ‖y − Hωa‖22 + 2λ‖a‖1. Let ãω be a
minimizer of Crit(a), hence satisfying the optimality conditions:{

h>n,t(y −Hωãω) = λ sign((ãω)n,t) , if (ãω)n,t 6= 0,

|h>n,t(y −Hωãω)| ≤ λ , if (ãω)n,t = 0.
(6.8)

Let
S̃ = {(n, t)/|h>n,t(y −Hωãω)| = λ}.

Then for any other minimizer âω of Crit(a), we have

Supp(âω) ⊂ S̃.

Note that S̃ might be larger than the true support of ãω because there
might be coordinates (n, t) such that (ãω)n,t = 0 and for which |h>n,t(y −
Hωãω)| = λ.

Proof. In view of (6.8), we have for any (n, t) ∈ ω,

h>n,t(y −Hωãω) = λ sn,t,

where (sn,t)(n,t)∈ω is such that,
|sn,t| ≤ 1 , in all cases

sn,t = sign((ãω)n,t) , if (ãω)n,t 6= 0,

|sn,t| < 1 , if (n, t) ∈ S̃c.

Therefore, we have

Crit(ãω + a)− Crit(ãω)

= ‖y −Hω (ãω + a)‖22 − ‖y −Hω ãω‖22 + 2λ(‖ãω + a‖1 − ‖ãω‖1)
= ‖Hω a‖22 − 2 < y −Hωãω,Hω a > +2λ(‖ãω + a‖1 − ‖ãω‖1)

= ‖Hω a‖22 + 2λ(
∑

(n,t)∈ω

|(ãω)n,t + an,t| − |(ãω)n,t| − an,tsn,t).

Set a = âω− ãω. By convexity of the l1-norm, we have for all (n, t) ∈ ω,

|(ãω)n,t + an,t| − |(ãω)n,t| − sn,tan,t ≥ 0.

82

Thus, ∑
(n,t)

(|(ãω)n,t + an,t| − |(ãω)n,t| − sn,tan,t) ≥ 0.

Assume that Supp(âω) is not included in S̃. Then there exists (n0, t0) ∈
Supp(âω) ∩ S̃c such that an0,t0 = (âω)n0,t0 6= 0 and |sn0,t0| < 1. Conse-
quently, we get

|an0,t0| − sn0,t0an0,t0 > 0.

Since both âω and ãω are Lasso solution, we have

0 = Crit(âω)− Crit(ãω)) ≥ 2λ
∑
(n,t)

|(ãω)n,t + an,t| − |(ãω)n,t| − an,tsn,t)

≥ 2λ(|an0,t0| − sn0,t0an0,t0) > 0.

We obtain a contradiction. This means that

Supp(âω) ⊂ S̃.

This theorem is stronger than the usual retrieval of support for Lasso
estimator. Indeed it first applies to all possible subwindows at the same
time, including the whole Lasso estimator itself. Next it does not calibrate
λ by the level of sparsity, that is |S∗|. Indeed in our problem even if |S∗| is
small compared to T , this grows linearly with T since in expectation, under
the assumptions of Proposition 6.1.2, it is roughly pT .

Let us now discuss a bit more the choice of λ and the calibration condi-
tions. The first stringent condition is

c > 2ρ+ 4εN .

Note that by Cauchy Schwarz , we already have that c > ρ, so what we ask
here is a little bit stronger. The shape of the action potentials need to be
picky enough to have ρ small. In the same way, we need action potential
shapes that are sufficiently different to have ε small. The multiplication by
N is in fact very large and a conservative upper-bound to the phenomenon
taking place here. By looking at the proof, we can see that this is in fact
the number of neurons (in a spatial overlap) that synchronizes with a lag
less than `, that is a few milliseconds. In practice, if this phenomenon
is important for the neural coding [Tuleau-Malot et al., 2014], it usually
involves a few neurons, except during epileptic crisis.

Next, a∗ is usually assumed to be a binary 0/1 vector in the classical
problem. Therefore (6.2) means that we need

λ >
c+ 2ρc

c− 2ρc− 4εN

(√
2σ2c log(2NT/α) + 2(ρc+ εN)

)
,

83

On the other hand, Condition (6.3) becomes

λ < c− 2ρc− 4εN −
√

2σ2c log(2NT/α).

So there is room to find such a λ if typically

c > max
(

10ρc+ 8εN , 3
√

2σ2c log(2NT/α) + 4ρc+ 6εN
)
.

This condition is reasonable in the context of spike sorting with high energy
and peaky spike shapes, weak correlations between different neurons and
normal neural activity.

Moreover the windows generated by Algorithm 4 are built to guarantee
that

‖âω‖∞,∂ω = 0,

which would imply that
‖a∗ω‖∞,∂ω = 0.

So in practice,

λ >
c+ 2ρ

c− 2ρ− 4εN
√

2σ2c log(2NT/α)

should be sufficient.

Also the windows which are generated by the algorithm can be con-
trolled, as we can see in the following result.

Corollary 6.3.3. Fix α ∈ (0, 1/2). Let Assumptions 5.1.1 and 5.1.3 be
satisfied and let us assume that the noise variables are i.i.d. Gaussian.
With the notations of Propositions 6.1.1, 6.1.2 and Lemma 6.2.1, on the
same event Ωα of probability larger than 1− α, if λ is chosen so that (6.2)
and (6.3) are satisfied, then all the windows ω ∈ Ω constructed by Algorithm
4 have a length controlled by

W =


c′ log(T/α) in the non-subcritical MEA or the tetrode case

as soon as p = Nm∆ ≤ 1/2,

c” log(ET/α) in the subcritical MEA case

as soon as the rate per cluster pc = Ncm∆ ≤ 1/2.

Also on the same event, steps 7,8 and 9 of the algorithm never occur.

Proof. With the choices provided in Algorithm 4, we start with the window
ω = J1, 4`K. So ω is included in the first temporal overlap of size η = 4`.
Next the algorithm will compute and expand this window ω to the first
time that no activation of âω is found in the last 2` coordinates. Thanks
to Theorem 6.3.1, this means that this is also the first time that a∗ has no
activation in a segment of length 2`. This is not necessarily the first hole
of size 2`, because the algorithm only looks at k` for some integer k, but

84

definitely, the algorithm will stop and start a new window at the first ”hole”
of size 4`.

In this sense, the first window will not be expanded not after the first hole
of size η. Therefore its length is controlled by the control of the temporal
overlap (see Proposition 6.1.2). The next step of the algorithm (Steps 7,8,9)
cannot happen on the same event, indeed it would mean that the lasso
estimator finds something at the beginning of the new window, whereas
the estimator on the previous window (and therefore the truth) have no
activation there. This is not possible since on every window, the Lasso
estimator has the same support as the truth.

Therefore we start a new window without merging with the one before
and expand it again. The same arguments as before will apply recursively
to prove our statement.

6.4 Complexity of the sliding window work-

ing set algorithm

We recall first an important existing result which gives the general (approx-
imate) complexity of solving the Lasso with a working set algorithm.

Theorem 6.4.1 ([Loth, 2011], Section 2.4). Consider the Lasso problem
(4.5) with n observations and p features. Then in order to compute a Lasso
solution which selects k features out of p, the working set algorithm has an
approximate complexity of

Cws(n, p, k) = O(n2pk + nk3 + k4). (6.9)

Therefore applying Theorem 6.4.1 to the resolution of the global Lasso
problem with the working set strategy gives the following complexity.

Proposition 6.4.2. Under the hypothesis of Theorem 6.3.1, the algorithm
1 solves a problem of TE observations with TN features and a number
of true activations O(TN), an application of Theorem 6.4.1 recovers an
approximate complexity of

Cws(TE, TN, TN) = O(T 4(E2N2 + EN3 +N4)). (6.10)

This result informs us that the naive global working set strategy cannot
solve in an efficient manner our problem. For a multi-electrode array, the
constants E and N are expected to be large. But even in the tetrode case,
for which the constants E and N remain small, the length of the signal T
might arbitrarily increase depending on the duration of the experiment. The
quartic complexity in T and N makes it impossible to apply this algorithm
in practical situations.

By contrast, we now state our result regarding the complexity of the
sliding window working set.

85

Theorem 6.4.3. Under the hypothesis of Theorem 6.3.1 and Corollary
6.3.3, there exists an event Ωα of probability larger than 1−α such that, on
Ωα, the sliding window working set algorithm 4 has the following approxi-
mate complexity

• In the non-subcritical MEA case or in the tetrode case

O(T log4(T/α)(E2N2 + EN3 +N4)). (6.11)

• In the subcritical MEA case

O(ET log4(ET/α) log(E/α)8). (6.12)

Proof. In this proof we assume that the problem respects the hypothesis of
Theorem 6.3.1 and Corollary 6.3.3, so there exists such event Ωα of proba-
bility larger than 1− α. The following of the proof suppose that we are on
Ωα.

We first investigate the non-subcritical MEA case or in the tetrode case.
Let us define T̃ = log(T/α) for the bounds on the window sizes. In this
case we need to solve O(T) temporal independent problems whose window
size is bounded by O(T̃) (as proven in Corollary 6.3.3). Those indepen-
dent problems, using notations from Theorem 6.4.1, have dimensionalities
of O(ET̃) observations, O(NT̃) features and O(NT̃) selected features. This
means that the complexity is

C(Alg.4, T etrode) = O(TCws(ET̃ ,NT̃ ,NT̃)

= O(T ((ET̃)2(NT̃)2 + (ET̃)(NT̃)3 + (NT̃ 4)))

= O(T log(T/α)4(E2N2 + EN3 +N4))

which proves the result in equation (6.11).

In the subcritical MEA case, the problem can be solved with O(ET)
independent problems (using both spatial and temporal overlaps). But
those problems are of much smaller size. In order to simplify the notations,
let us now define T̃ = log(ET/α) and Ñ = Ẽ = log(T/α)2 for the bounds on
the window sizes, Nc and Ec. Indeed Corollary 6.3.3 tells us that the size of
the temporal window is bounded in this case by O(T̃) and Proposition 6.1.1
tells us that the size of the spatial overlaps Nc and Ec are bounded in this
case by O(Ñ) and O(Ẽ). This means that the problems we need to solve
have maximum dimensionality of O(ẼT̃) observations, O(Ñ T̃) features and
again O(Ñ T̃) selected features. This means that the complexity of solving
the whole problem is

C(Alg.4,MEA) = O(ETCws(ẼT̃ , Ñ T̃ , Ñ T̃))

= O(ETT̃ 4(Ẽ2Ñ2 + ẼÑ3 + Ñ4))

= O(ET log(ET/α)4 log(E/α)8).

This proves result in equation (6.12) concludes the proof of the theorem.

86

The above result reveals that our sliding window working set can avoid
the high computational quartic costs from Proposition 6.4.2 of the naive
working set method thanks to the structure of the convolution. In addi-
tion our method achieves with high probability a very impressive quasi-
linear time complexity O(T log(T)4) in T for both tetrode and MEA. The
complexity quadratic in E and quartic in N is still quartic in the non-
subcritical MEA case or in the tetrode case but becomes quasi-linear with
O(E log(E)12) in the subcritical MEA case where the spatial overlaps limit
the increase in size for the independent sub-problems.

To the best of our knowledge, this is the first proof of complexity with
high probability that recovers a quasi-linear complexity in the dimensional-
ity of the data for solving the Lasso.

6.5 Attenuation model

In section 4.1.2, we presented the general form of the columns hn,t of the
design matrix H = (h1,1,h1,2, . . . ,hN,T−1,hN,T), where n stands for a neu-
ron in {1, . . . , N} and t stands for a time in {1, . . . , T}. Each column can
be deduced from the spike shapes wn,e as follows:

hn,t = ((w→tn,1)
>, . . . , (w→tn,E)>)>. (6.13)

In order to study more deeply the properties of the design matrix H , we
introduce a model for its columns. The main goal of this model is to take into
account the attenuation phenomenon which affects the voltage amplitude
of the actions potentials as they diffuse in the extracellular environment.
Therefore we want the recorded shapes wn,e to satisfy such property. This
encourages us to consider the following assumption:

Assumption 6.5.1 (attenuation model for the columns of H). For any
neuron n, we assume that there exists a shape wn,. ∈ R` and E real num-
bers (αn,1, . . . , αn,E) in [0, 1] (called attenuation weights) such that the shape
recorded by any electrode e writes as:

wn,e = αn,ewn,..

Using Assumption 6.5.1, we can derive any column hn,t of a given neuron
n from the shape wn,.. This shape can be viewed as an ideal recording of the
action potential generated by neuron n. In view of the recording techniques
presented in section 3.1, we can interpret this shape as the recording we
would get from an intracellular recording of neuron n.

Therefore for any neuron n and any time t, we can write:

hn,t =

αn,1w
→t
n,.

...
αn,Ew

→t
n,.

 = αn,. ⊗w→tn,. , (6.14)

87

where αn,. = (αn,1, . . . , αn,E)> and ⊗ stands for the tensor product between
two vectors.

In practice, the value of any given attenuation weight αn,e essentially
depends on the distance r between the source of the signal, roughly speaking
the center of the soma of the neuron n, and the electrode e recording it.
Naturally the greater the distance r, the larger the attenuation is. In other
words, the amplitude of the recorded voltage is expected to decrease as the
signal propagates in the extracellular environment.

Interestingly, the form which takes this decreasing depends itself on the
shape of the neuron involved. For instance, the potential measured from a
spherical shaped neuron, which can be modeled as a point source, decreases
as 1/r. On the other hand, by the dipolar approximation, the potential
measured from a pyramidal shaped neuron is expected to decrease approxi-
mately as 1/r2 ([Plonsey et al., 2007, Chapter 2]). Moreover, experimental
works from [Henze et al., 2000] inform us that beyond a certain distance rlim
(roughly 200µm), the attenuation becomes large enough so that the action
potentials can no longer be distinguished from the background noise. There-
fore, taking αn,e = 0 when the distance r between neuron n and electrode e
is larger than rlim is realistic and remains coherent with our assumption of
spatial clustering between neurons formulated in chapter 5.

Using this attenuation model for the columns of the design matrix H ,
we can see that:

Proposition 6.5.2. For all t and t′ in {1, ..., T} and for all n and n′ in
{1, ..., N}, we have:

G(n,t),(n′,t′) =< αn,.,αn′,. >RE< w→tn,. ,w
→t′
n′,. >RT , (6.15)

where < x,y >Rp stands for the usual scalar product x>y, between x and
y in Rp.

Proof.

G(n,t),(n′,t′) =< hn,t,hn′,t′ >RET (6.16)

=
E∑
e=1

αn,eαn′,e < w
→t
n,. ,w

→t′
n′,. >RT by (6.14) (6.17)

=< αn,.,αn′,. >RE< w→tn,. ,w
→t′
n′,. >RT . (6.18)

In this chapter, we have seen that the assumption of weak correlations
between the columns of H ((2.a)) is of great importance in order for the es-
timation procedure to be able to distinguish the activity of each neuron. In
practice, neighboring neurons tend to share the same biophysiological prop-
erties, and therefore tend to generate action potentials with similar shapes.
Consequently we see from this attenuation model that the geometrical con-
figuration of the neurons and the electrodes is essential for the study of the
identifiability of our problem.

88

Taking wmax = sup
n∈{1,...,N}

‖wn,.‖2 < +∞, we see from proposition 6.5.2

that, for two neurons n and n′ in the same spatial overlap, that:

| < αn,.,αn′,. >RE | ≤ ε

w2
max

⇒ |G(n,t),(n′,t′)| ≤ ε ∀t, t′. (6.19)

Therefore if the correlations between the attenuation weights are small
enough, we would still be able to guarantee the validity of our hypothesis of
weak correlations, even in the worst case where two neurons have the same
shapes, as in (6.19). In this regard, an interesting prospect would be to
examine the behavior of the terms < αn,.,αn′,. >RE for any neurons n and
n′ in the same spatial overlap. Using a Poisson distribution for the position
of the neurons (as in subsection 6.1.1), and considering the appropriate form
of attenuation, which, as stated previously depends greatly on the type
of cell recorded, would allow the analysis of the correlations between the
attenuation weights, and as a consequence grant an interesting contribution
for the study of the practicality of our method.

89

Chapter 7

Numerical experiments

In this chapter we show with numerical simulations the performance of the
sliding window working set presented in section 5.3. First we compare its
computation time with other approaches. As all these approaches require
to solve efficiently Lasso problems, we used the parallel implementation
of the accelerated proximal gradient FISTA [Beck and Teboulle, 2009] from
[Mairal et al., 2014]. Then we show the accuracy of the support of the Lasso
estimator for several values of the regularization parameter and noise level,
and also when the number of synchronization between neurons grows. All
experiments were performed of a simple notebook having 8GB memory and
a CPU Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz. The Python code
from the experiments will be made available on Github upon publication.

7.1 Computational complexity

In order to illustrate the performances of the sliding window working set,
we present here a comparison of the computation times of four different
approaches detailed below:

• Global solver: This is a generic Lasso solver of [Mairal et al., 2014]
using the accelerated proximal gradient FISTA to solve the global
problem (4.7) with a pre-computed matrix H . Since the size of the
design matrix H growths as O(T 2), this approach rapidly suffers from
the growth of T , both in terms of computation times and memory
usage.

• Working set (naive): This is a straightforward implementation of
working set Algorithm 1 using FISTA as the inner Lasso solver. As
previously stated, this approach does not scale properly in memory.
Moreover, the computational complexity of the computation of the
optimality conditions is O(ENT 2), which also does not scale well with
the problem dimensionality.

• Working set with convolution: As discussed above using stan-
dard solvers with a pre-computed matrix H is not scalable with the

90

Quantity Mean Stdev
ε 173 175
ρ 0.828 0.013
c 24.5 7.7
c 918 1052

Table 7.1: Orders of magnitude for the parameters introduced in Assump-
tion 5.1.3.

signal length T . In this method we adapt the standard working set
algorithm Algorithm 1 to take into account the structure of H . The
computational bottleneck comes from the optimality conditions (line
3 of Algorithm 1). But in practice those conditions can be com-
puted efficiently using a convolution by the shapes W instead of ex-
pensive matrix products. The residual y −Hâ and the correlation
HT (y −Hâ) (a convolution with reversed shapes) can be computed
with complexity O(ENT`), hence linear in T . The use of a working
set also means that the storage of H is not necessary anymore, since
we solve the Lasso on the much smaller HJ . We use the FISTA solver
from [Mairal et al., 2014] to solve the sub-problems at each iteration.
Finally note that HJ will be very sparse due to the convolutional
model and the sub-problem can be solved on a matrix H̃J of O(E|J |`)
lines instead of O(ET).

• Sliding window working set: This is the method proposed in sec-
tion 5.3 and described in Algorithm 4. It focuses only on a small
temporal window and slides the window when the problem is locally
solved. Furthermore, since the research of the new activation is only
carried out on the current window ω and not on the full signal, the
computation cost of the optimality conditions is greatly reduced from
O(ENT`) to O(EN |ω|`).

We have simulated our dataset realistically by using the classical model
from [Hodgkin and Huxley, 1952] for the description of the shape of the ac-
tion potentials, and implemented by [Pouzat, 2016]. In order to focus our
study on the influence of T , we limited ourselves to reasonable values for
the number of neurons (N = 5) and the number of electrodes (E = 4). Note
that these small sizes for the parameters would actually correspond to the
resolution of the problem on a single spatial group or to the tetrode case.
We also set the sampling rate at 10kHz and the single neuron firing rate at
20Hz. The recorded signals are computed as the convolution of the neuron
activations and their respective action potential shapes, without noise (fig-
ure 7.1). We present in Table 7.1, numerical values which correspond to the
parameters introduced in Assumption 5.1.3. These values depend a lot on
the recordings in practice.

91

0.00 0.02 0.04 0.06 0.08 0.10
time (seconds)

Figure 7.1: First portion (0.1s = 1000 points) of the recorded signal by one
of the electrodes. Notice the five different action potential shapes corre-
sponding to the five neurons in this simulation.

We present in figure 7.2 the computation times of the different meth-
ods and their 20/80 and 5/95 percentiles for different values of T (each
simulation is performed 40 times). It is clear from the figure 7.2 that the
proposed algorithm is the most efficient and is actually the only one that
can solve problems with T = 106 temporal samples. The slopes of the differ-
ent methods in the log-log space also show the difference in computational
complexity with a slope near 1 for the proposed algorithm that corresponds
to the O(T log T) obtained in the theoretical results.

Also note that we applied the algorithms to the same data, in order
to verify that they all compute the same activation vectors, and therefore
estimate the same supports.

103 104 105 106

T (sample size)

10 2

10 1

100

101

102

103

m
ed

ia
n

CP
U

tim
e

(s
ec

on
ds

)

Execution times (20/80 percentiles)

FISTA (naive)
Working set (naive)
Working set (convolutions)
Sliding Window Working Set

92

103 104 105 106

T (sample size)

10 2

10 1

100

101

102

103
m

ed
ia

n
CP

U
tim

e
(s

ec
on

ds
)

Execution times (5/95 percentiles)

FISTA (naive)
Working set (naive)
Working set (convolutions)
Sliding Window Working Set

Figure 7.2: Comparison of the execution times for four different algorithms,
when the size of the signals T growths. We represented the median execution
times over 40 simulations as the dotted lines. The bands represent the
execution times between the bottom and top percentiles.

7.2 Influence of the noise and the regular-

ization parameter

Proper calibration of the regularization parameter λ is crucial for the suc-
cess of the estimation. We want to visualize the influence of this choice,
especially for various noise levels. Using real shapes of action potentials
recorded in [Bethus et al., 2012] and that have been already spike sorted by
classical algorithms, we simulate small signals of size T = 500 for different
noise levels, with N = 2 neurons firing at 50Hz and recorded by E = 4
electrodes. As in the previous section, we set the sampling rate at 10kHz.

In order to measure the performance of the algorithm to recover the
true support, we consider first the classical F-measure used for binary clas-
sification, which estimates a balance between false positive and false nega-
tive rates. More precisely, we define the precision as PRE = TP

TP+FP
and

the recall as REC = TP
TP+FN

, where TP , FP and FN are respectively
the numbers of true positives, false positives and false negatives. Then
the F-measure is computed as 2 PRE.REC

PRE+REC
. This measure tends to be pes-

simistic as it penalizes equally short and long temporal deviations in the
estimated activation times. We introduce a softer measure of performance:
CP (x,y) = 1 − ‖K ∗ (x− y)‖1 /(‖x‖1 + ‖y‖1), where K is an uniform
kernel function. Depending on the size of the support of K, this measure
allows us to penalize less small time deviations than large time deviation.
Here we took the size of its support equal to 10, which corresponds to an
error tolerance of 1ms.

We provide on figure 7.3 the performance in F1 score (left) and the

93

101 103 105 107

-20

0

20

40

SN
R

(d
B)

F1-score

0.0

0.2

0.4

0.6

0.8

1.0

101 103 105 107

Conv. perf. (CP)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.3: Influence of λ and the signal-to-noise ratio on the performances
of the Lasso estimator. Results are averaged over 5 draws.

proposed convolutional performance (right). We can see that the support
recovery is very good in a large interval of values for the large SNR but
becomes narrow for low SNR where the support is harder to recover. High
SNR recordings constitute an ideal setting for performing spike sorting,
therefore the extracellular recording devices should be placed so that this
SNR is high enough. Unfortunately this ideal environment may not always
be guaranteed, especially in presence of bursting neurons, which action po-
tential amplitudes may decrease down to the noise level [Lewicki, 1998].
Therefore these experiments show that our method is robust enough to
even treat low SNR recordings, provided that the regularization parameter
λ is well chosen.

7.3 Comparison with distance-based spike sort-

ing methods

We now compare the performance of the Lasso estimator with distance
based methods that rely usually on K-means clustering for spike sorting. In
a clustering setting, the spike shapes Wn are the centroids of the method
([Ekanadham et al., 2014]). After the activation times have been estimated,
classical approaches select the neuron corresponding to the activation as the
one closest to the centroid. Here in the distance-based approach, we actually
do not perform the clustering, but directly use the true action potential
shapes as what would be the centroids of the K-means. We now compare the
Lasso and distance-based spike sorting in the presence of synchronization
between neurons (simultaneous spikes).

Using similar data as in section 7.2, we compare in Figure 7.4 the per-
formances of the methods when the number of synchronizations increases.
To this end, we use the true activation times (left). Therefore the only
unknown information is which neuron generated each activation. We also
use the support recovered with our Lasso estimator (right). The synchro-
nizations have a minor impact on the performances of the Lasso estimator,

94

illustrating the robustness of the method due to the fact that the Lasso
estimator is additive, which imply that it can handle well simultaneous
activations.

0.00 0.25 0.50 0.75 1.00
probability of synchronization

0.6

0.7

0.8

0.9

1.0

F-
m

ea
su

re
From truth

Lasso
Clustering

0.00 0.25 0.50 0.75 1.00
probability of synchronization

0.6

0.7

0.8

0.9

1.0

With Lasso estimation

Lasso
Clustering

Figure 7.4: Comparison of Lasso and clustering performances (F-measure).
Results are averaged over 50 draws.

95

Conclusion

In this thesis, our goal was to propose a new spike sorting methodology
in order to improve the performances of this pre-processing step, especially
when in presence of synchronizations and for large volumes of data. Us-
ing the Lasso for the convolutional sparse coding estimation, we have seen
that this procedure offers nice theoretical guarantees in terms of estimation
quality. Although there exist various state-of-the-art algorithms for com-
puting such estimator, the orders to magnitude of our problem dictates the
need of a faster algorithm. Taking advantage of the convolutional struc-
ture of the problem, the sliding window working set algorithm can analyze
such large signals in a fast and efficient way, as well as satisfying interest-
ing mathematical properties. In particular, we saw that under reasonable
mathematical assumptions, the Lasso estimator estimates correctly the sup-
port of the true activation vectors, with high probability. Moreover, taking
into account the sizes of the temporal and spatial overlaps, we could estab-
lish the theoretical temporal complexity of the sliding window working set
algorithm for the computation of the Lasso. We showed in particular that
this algorithm scales quasi-linearly with the length of the experiment. This
favorable behavior has also been observed on numerical experiments. As
such, it deals with some limitations of the current spike sorting methodol-
ogy. We believe that the approach we developed has the potential to help
achieving fast and precise spike sorting, in particular for signals recorded
by large multi-electrode arrays.

In future works, the natural extension of our approach would focus on
the simultaneous estimation of the spike shapes and the activations. It
should especially look for an update of the shapes along time, in an online
manner. This extension would therefore permit to take into account pro-
gressing variations of the shapes during the experiment, for instance during
bursting episodes or because of the electrode drift phenomenon. As such,
our approach would gain a wider range of applications, provided that its
extension also verifies nice statistical properties, in particular the statistical
identifiability of the problem.

Another extension could revolve around the substitution of the `1-norm
in the Lasso problem by a non-convex penalization term. These types of ap-
proaches are known to often provide faster computations. Moreover, recent
works from [Rakotomamonjy et al., 2021] demonstrated theoretical conver-
gence guarantees for non-convex sparse regularizers.

From a more practical point of view, our approach would need to be

96

experimented on real data, in various settings: tetrode recordings, MEA
recordings, different areas of the brain and different types of neurons recorded,
in order to examine its robustness, and in particular the domain of valid-
ity of our mathematical assumptions. Moreover, since the sliding window
working set uses linear operations such as convolutions, it could be adapted
to GPU architectures in order to provide even faster computation times. Fi-
nally, we believe that it would be interesting to consider a joint collaboration
with practitioners for who the online aspect of our estimation procedure is
critical in their studies. Devices working with real time data such as brain-
machine interfaces could indeed take advantage of the rapidity of the sliding
window working set.

97

Bibliography

[Adler et al., 2015] Adler, A., Elad, M., Hel-Or, Y., and Rivlin, E. (2015).
Sparse coding with anomaly detection. Journal of Signal Processing Sys-
tems, 79(2):179–188.

[Albert et al., 2016] Albert, M., Bouret, Y., Fromont, M., and Reynaud-
Bouret, P. (2016). Surrogate data methods based on a shuffling of the
trials for synchrony detection : the centering issue. Neural Computation,
28(11):2352–2392.

[Bach, 2008] Bach, F. (2008). Exploring large feature spaces with hierar-
chical multiple kernel learning. arXiv preprint arXiv:0809.1493.

[Bach et al., 2011] Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al.
(2011). Convex optimization with sparsity-inducing norms. Optimization
for Machine Learning, 5:19–53.

[Bar-Hillel et al., 2006] Bar-Hillel, A., Spiro, A., and Stark, E. (2006). Spike
sorting: Bayesian clustering of non-stationary data. Journal of neuro-
science methods, 157(2):303–316.

[Beck and Teboulle, 2009] Beck, A. and Teboulle, M. (2009). A fast itera-
tive shrinkage-thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences, 2(1):183–202.

[Bethus et al., 2012] Bethus, I., Poucet, B., and Sargolini, F. (2012). Neural
correlates of goal-directed spatial navigation in the rat dorsal striatum.
In Forum of European Neuroscience, Barcelona, Spain.

[Bickel et al., 2009] Bickel, P., Ritov, Y., and Tsybakov, A. (2009). Si-
multaneous analysis of lasso and dantzig selector. Annals of Statistics,
37(4):1705–1732.

[Biffi et al., 2013] Biffi, E., Regalia, G., Menegon, A., Ferrigno, G., and
Pedrocchi, A. (2013). The influence of neuronal density and maturation
on network activity of hippocampal cell cultures: a methodological study.
Plos one, 8(12):e83899.

[Bioucas-Dias and Figueiredo, 2007] Bioucas-Dias, J. M. and Figueiredo,
M. A. (2007). A new twist: Two-step iterative shrinkage/thresholding
algorithms for image restoration. IEEE Transactions on Image process-
ing, 16(12):2992–3004.

98

[Blaustein et al., 2011] Blaustein, M. P., Kao, J. P., and Matteson, D. R.
(2011). Cellular Physiology and Neurophysiology E-Book: Mosby Physi-
ology Monograph Series. Elsevier Health Sciences.

[Boisbunon et al., 2014] Boisbunon, A., Flamary, R., Rakotomamonjy, A.,
Giros, A., and Zerubia, J. (2014). Large scale sparse optimization for ob-
ject detection in high resolution images. In MLSP-24th IEEE Workshop
on Machine Learning for Signal Processing.

[Bredies and Lorenz, 2008] Bredies, K. and Lorenz, D. A. (2008). Linear
convergence of iterative soft-thresholding. Journal of Fourier Analysis
and Applications, 14(5-6):813–837.

[Breiman, 1996] Breiman, L. (1996). Bagging predictors. Machine learning,
24(2):123–140.

[Bühlmann and Van De Geer, 2011] Bühlmann, P. and Van De Geer, S.
(2011). Statistics for high-dimensional data: methods, theory and ap-
plications. Springer Science & Business Media.

[Bunea, 2008] Bunea, F. (2008). Honest variable selection in linear and
logistic regression models via l1 and l1 + l2 penalization. Electron. J.
Statist., 2:1153–1194.

[Byrne et al., 2014] Byrne, J. H., Heidelberger, R., and Waxham, M. N.
(2014). From molecules to networks: an introduction to cellular and
molecular neuroscience. Academic Press.

[Chalasani et al., 2013] Chalasani, R., Principe, J. C., and Ramakrishnan,
N. (2013). A fast proximal method for convolutional sparse coding. In
The 2013 International Joint Conference on Neural Networks (IJCNN),
pages 1–5. IEEE.

[Chambolle and Dossal, 2015] Chambolle, A. and Dossal, C. (2015). On the
convergence of the iterates of the “fast iterative shrinkage/thresholding
algorithm”. Journal of Optimization theory and Applications, 166(3):968–
982.

[Combettes and Pesquet, 2011] Combettes, P. L. and Pesquet, J.-C. (2011).
Proximal splitting methods in signal processing. In Fixed-point algorithms
for inverse problems in science and engineering, pages 185–212. Springer.

[Dayan and Abbott, 2001] Dayan, P. and Abbott, L. F. (2001). Theoret-
ical neuroscience: computational and mathematical modeling of neural
systems. MIT press.

[Donoho, 1995] Donoho, D. L. (1995). De-noising by soft-thresholding.
IEEE transactions on information theory, 41(3):613–627.

99

[Duminil-Copin et al., 2018] Duminil-Copin, H., Raoufi, A., and Tassion,
V. (2018). Subcritical phase of d-dimensional poisson-boolean percolation
and its vacant set.

[Efron et al., 2004] Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R.
(2004). Least angle regression. The Annals of statistics, 32(2):407–499.

[Einevoll et al., 2012] Einevoll, G. T., Franke, F., Hagen, E., Pouzat, C.,
and Harris, K. D. (2012). Towards reliable spike-train recordings from
thousands of neurons with multielectrodes. Current opinion in neurobi-
ology, 22(1):11–17.

[Ekanadham et al., 2011] Ekanadham, C., Tranchina, D., and Simoncelli,
E. P. (2011). Recovery of sparse translation-invariant signals with contin-
uous basis pursuit. IEEE transactions on signal processing, 59(10):4735–
4744.

[Ekanadham et al., 2014] Ekanadham, C., Tranchina, D., and Simoncelli,
E. P. (2014). A unified framework and method for automatic neural
spike identification. Journal of neuroscience methods, 222:47–55.

[Eytan and Marom, 2006] Eytan, D. and Marom, S. (2006). Dynamics and
effective topology underlying synchronization in networks of cortical neu-
rons. Journal of Neuroscience, 26(33):8465–8476.

[Fee et al., 1996] Fee, M. S., Mitra, P. P., and Kleinfeld, D. (1996). Au-
tomatic sorting of multiple unit neuronal signals in the presence of
anisotropic and non-gaussian variability. Journal of neuroscience meth-
ods, 69(2):175–188.

[Fejtl et al., 2006] Fejtl, M., Stett, A., Nisch, W., Boven, K.-H., and Möller,
A. (2006). On micro-electrode array revival: its development, sophistica-
tion of recording, and stimulation. In Advances in network electrophysi-
ology, pages 24–37. Springer.

[Grosse et al., 2012] Grosse, R., Raina, R., Kwong, H., and Ng, A. Y.
(2012). Shift-invariance sparse coding for audio classification. arXiv
preprint arXiv:1206.5241.

[Harris et al., 2000] Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H.,
and Buzsaki, G. (2000). Accuracy of tetrode spike separation as de-
termined by simultaneous intracellular and extracellular measurements.
Journal of neurophysiology, 84(1):401–414.

[Hastie et al., 2008] Hastie, T., Tibshirani, R., and Friedman, J. (2008).
The elements of statistical learning Second Edition. Springer series in
statistics New York.

[Henze et al., 2000] Henze, D. A., Borhegyi, Z., Csicsvari, J., Mamiya, A.,
Harris, K. D., and Buzsaki, G. (2000). Intracellular features predicted

100

by extracellular recordings in the hippocampus in vivo. Journal of neu-
rophysiology, 84(1):390–400.

[Hill et al., 2011] Hill, D. N., Mehta, S. B., and Kleinfeld, D. (2011). Qual-
ity metrics to accompany spike sorting of extracellular signals. Journal
of Neuroscience, 31(24):8699–8705.

[Hillis et al., 2009] Hillis, D., Sadava, D., Berenbaum, M., and Heller, C.
(2009). Life The Science of Biology 9th edition. WH Freeman and Com-
pany and Sinauer Associates, Inc.

[Hodgkin and Huxley, 1952] Hodgkin, A. L. and Huxley, A. F. (1952). A
quantitative description of membrane current and its application to con-
duction and excitation in nerve. The Journal of Physiology, 117(4):500–
544.

[Hodgkin and Katz, 1949] Hodgkin, A. L. and Katz, B. (1949). The effect
of sodium ions on the electrical activity of the giant axon of the squid.
The Journal of physiology, 108(1):37–77.

[Jas et al., 2017] Jas, M., La Tour, T. D., Şimşekli, U., and Gramfort, A.
(2017). Learning the morphology of brain signals using alpha-stable con-
volutional sparse coding. arXiv preprint arXiv:1705.08006.

[Kandel et al., 2000] Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegel-
baum, S., Hudspeth, A. J., and Mack, S. (2000). Principles of neural
science, volume 4. McGraw-hill New York.

[Kavukcuoglu et al., 2010] Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L.,
Gregor, K., Mathieu, M., Cun, Y., et al. (2010). Learning convolutional
feature hierarchies for visual recognition. Advances in neural information
processing systems, 23:1090–1098.

[La Tour et al., 2018] La Tour, T. D., Moreau, T., Jas, M., and Gramfort,
A. (2018). Multivariate convolutional sparse coding for electromagnetic
brain signals. arXiv preprint arXiv:1805.09654.

[Lambert et al., 2018] Lambert, R., Tuleau-Malot, C., Bessaih, T.,
Rivoirard, V., Bouret, Y., Leresche, N., and Reynaud-Bouret, P. (2018).
Reconstructing the functional connectivity of multiple spike trains using
hawkes models. Journal of Neuroscience Methods, 297:9–21.

[Lee et al., 2007] Lee, H., Battle, A., Raina, R., and Ng, A. Y. (2007).
Efficient sparse coding algorithms. In Advances in neural information
processing systems, pages 801–808.

[Lewicki, 1998] Lewicki, M. S. (1998). A review of methods for spike sort-
ing: the detection and classification of neural action potentials. Network:
Computation in Neural Systems, 9(4):R53–R78.

101

[Ling and Gerard, 1949] Ling, G. and Gerard, R. (1949). The normal mem-
brane potential of frog sartorius fibers. Journal of cellular and compara-
tive physiology, 34(3):383–396.

[Loth, 2011] Loth, M. (2011). Active Set Algorithms for the
LASSO.(Algorithmes d’Ensemble Actif pour le LASSO). PhD the-
sis, Lille University of Science and Technology, France.

[Lounici, 2008] Lounici, K. (2008). Sup-norm convergence rate and sign
concentration property of lasso and dantzig estimators. Electron. J.
Statist., 2:90–102.

[Luo, 2015] Luo, L. (2015). Principles of neurobiology. Garland Science.

[Mailhé et al., 2008] Mailhé, B., Lesage, S., Gribonval, R., Bimbot, F., and
Vandergheynst, P. (2008). Shift-invariant dictionary learning for sparse
representations: extending k-svd. In 2008 16th European Signal Process-
ing Conference, pages 1–5. IEEE.

[Mairal et al., 2010] Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2010).
Online learning for matrix factorization and sparse coding. Journal of
Machine Learning Research, 11(1).

[Mairal et al., 2014] Mairal, J., Bach, F., Ponce, J., Sapiro, G., Jenatton,
R., and Obozinski, G. (2014). Spams: A sparse modeling software. URL
http://spams-devel. gforge. inria. fr/downloads. html.

[Mallat, 1999] Mallat, S. (1999). A wavelet tour of signal processing. Else-
vier.

[McNaughton et al., 1983] McNaughton, B. L., O’Keefe, J., and Barnes,
C. A. (1983). The stereotrode: a new technique for simultaneous isolation
of several single units in the central nervous system from multiple unit
records. Journal of neuroscience methods, 8(4):391–397.

[Meester and Roy, 1996] Meester, R. and Roy, R. (1996). Continuum per-
colation, volume 119. Cambridge University Press.

[Millet et al., 2011] Millet, L. J., Collens, M. B., Perry, G. L., and Bashir,
R. (2011). Pattern analysis and spatial distribution of neurons in culture.
Integrative Biology, 3(12):1167–1178.

[Moreau, 1962] Moreau, J. J. (1962). Fonctions convexes duales et points
proximaux dans un espace hilbertien. Comptes rendus hebdomadaires des
séances de l’Académie des sciences, 255:2897–2899.

[Moreau et al., 2018] Moreau, T., Oudre, L., and Vayatis, N. (2018). Dicod:
Distributed convolutional coordinate descent for convolutional sparse
coding. In International Conference on Machine Learning, pages 3626–
3634. PMLR.

102

[Muthmann et al., 2015] Muthmann, J.-O., Amin, H., Sernagor, E., Mac-
cione, A., Panas, D., Berdondini, L., Bhalla, U. S., and Hennig, M. H.
(2015). Spike detection for large neural populations using high density
multielectrode arrays. Frontiers in neuroinformatics, 9:28.

[Nesterov, 2013] Nesterov, Y. (2013). Gradient methods for minimizing
composite functions. Mathematical Programming, 140(1):125–161.

[Nicholls et al., 2001] Nicholls, J. G., Martin, A. R., Wallace, B. G., and
Fuchs, P. A. (2001). From neuron to brain, volume 271. Sinauer Asso-
ciates Sunderland, MA.

[Nutini et al., 2015] Nutini, J., Schmidt, M., Laradji, I., Friedlander, M.,
and Koepke, H. (2015). Coordinate descent converges faster with the
gauss-southwell rule than random selection. In International Conference
on Machine Learning, pages 1632–1641. PMLR.

[Obozinski et al., 2010] Obozinski, G., Taskar, B., and Jordan, M. I. (2010).
Joint covariate selection and joint subspace selection for multiple classi-
fication problems. Statistics and Computing, 20(2):231–252.

[Pachitariu et al., 2013] Pachitariu, M., Packer, A. M., Pettit, N., Dal-
gleish, H., Hausser, M., and Sahani, M. (2013). Extracting regions of
interest from biological images with convolutional sparse block coding.
Advances in neural information processing systems, 26:1745–1753.

[Plonsey et al., 2007] Plonsey, R., Barr, R. C., and Bioelectricity, A. (2007).
Quantitative Approach. Springer.

[Pouzat, 2016] Pouzat, C. (2016). Origin of the (high frequency) extra-
cellular signal. http://christophe-pouzat.github.io/LASCON2016/

OriginOfTheHighFrequencyExtraCellularSignal.html.

[Pouzat et al., 2004] Pouzat, C., Delescluse, M., Viot, P., and Diebolt, J.
(2004). Improved spike-sorting by modeling firing statistics and burst-
dependent spike amplitude attenuation: a markov chain monte carlo ap-
proach. Journal of neurophysiology, 91(6):2910–2928.

[Pouzat and Detorakis, 2014] Pouzat, C. and Detorakis, G. (2014). Spysort:
Neuronal spike sorting with python. CoRR, abs/1412.6383.

[Purves et al., 2018] Purves, D., Augustine, G., Fitzpatrick, D., Hall, W.,
LaMantia, A., Mooney, R., and White, L. (2018). Neuroscience. Sinauer.

[Rakotomamonjy et al., 2021] Rakotomamonjy, A., Flamary, R., Gasso, G.,
and Salmon, J. (2021). Provably convergent working set algorithm for
non-convex regularized regression.

[Reynaud-Bouret, 2003] Reynaud-Bouret, P. (2003). Adaptive estimation
of the intensity of inhomogeneous poisson process via concentration in-
equalities. Probab. Theory related Fields, 126(1):103–153.

103

http://christophe-pouzat.github.io/LASCON2016/OriginOfTheHighFrequencyExtraCellularSignal.html
http://christophe-pouzat.github.io/LASCON2016/OriginOfTheHighFrequencyExtraCellularSignal.html

[Reynaud-Bouret et al., 2014] Reynaud-Bouret, P., Rivoirard, V., Gram-
mont, F., and Tuleau-Malot, C. (2014). Goodness-of-fit tests and non-
parametric adaptive estimation for spike train analysis. The Journal of
Mathematical Neuroscience, 4(1):1–41.

[Roberts, 1979] Roberts, W. M. (1979). Optimal recognition of neuronal
waveforms. Biological cybernetics, 35(2):73–80.

[Roth and Fischer, 2008] Roth, V. and Fischer, B. (2008). The group-lasso
for generalized linear models: uniqueness of solutions and efficient algo-
rithms. In Proceedings of the 25th international conference on Machine
learning, pages 848–855.

[Smaragdis, 2007] Smaragdis, P. (2007). Convolutive speech bases and their
application to supervised speech separation. IEEE Transactions on Au-
dio, Speech, and Language Processing, 15(1):1–12.

[Squire et al., 2012] Squire, L., Berg, D., Bloom, F. E., Du Lac, S., Ghosh,
A., and Spitzer, N. C. (2012). Fundamental neuroscience. Academic
Press.

[Taketani and Baudry, 2010] Taketani, M. and Baudry, M. (2010). Ad-
vances in network electrophysiology. Springer.

[Taylor et al., 1979] Taylor, H. L., Banks, S. C., and McCoy, J. F. (1979).
Deconvolution with the l1 norm. Geophysics, 44(1):39–52.

[Thomas Jr et al., 1972] Thomas Jr, C., Springer, P., Loeb, G., Berwald-
Netter, Y., and Okun, L. (1972). A miniature microelectrode array to
monitor the bioelectric activity of cultured cells. Experimental cell re-
search, 74(1):61–66.

[Tibshirani, 1996] Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society: Series B (Method-
ological), 58(1):267–288.

[Tuleau-Malot et al., 2014] Tuleau-Malot, C., Rouis, A., Grammont, F.,
and Reynaud-Bouret, P. (2014). Multiple tests based on a gaussian ap-
proximation of the unitary events method with delayed coincidence count.
Neural computation, 26(7):1408–1454.

[Welch, 1982] Welch, W. J. (1982). Algorithmic complexity: three np-hard
problems in computational statistics. Journal of Statistical Computation
and Simulation, 15(1):17–25.

[Whitson et al., 2006] Whitson, J., Kubota, D., Shimono, K., Jia, Y., and
Taketani, M. (2006). Multi-electrode arrays: Enhancing traditional meth-
ods and enabling network physiology. In Advances in Network Electro-
physiology, pages 38–68. Springer.

104

[Wohlberg, 2015] Wohlberg, B. (2015). Efficient algorithms for convolu-
tional sparse representations. IEEE Transactions on Image Processing,
25(1):301–315.

[Wood et al., 2004] Wood, F., Black, M. J., Vargas-Irwin, C., Fellows, M.,
and Donoghue, J. P. (2004). On the variability of manual spike sorting.
IEEE Transactions on Biomedical Engineering, 51(6):912–918.

[Zeiler et al., 2010] Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus,
R. (2010). Deconvolutional networks. In 2010 IEEE Computer Society
Conference on computer vision and pattern recognition, pages 2528–2535.
IEEE.

105

	Notations
	Introduction
	Introduction
	Introduction to the spike sorting problem
	Contributions
	Organization of the manuscript

	Production and transmission of the information in the nervous system
	Organization of the nervous system
	Cells of the nervous system
	Morphology of the neuron
	Parts of the nervous system

	Membrane potential and action potentials
	The membrane potential
	Generation of an action potential
	Properties of the action potentials

	Synaptic potentials and integration
	Types of synaptic transmission: electrical and chemical
	Excitatory and inhibitory postsynaptic potentials
	Spatial and temporal summation mechanisms

	Spike sorting
	Recording neural activity
	The spike sorting problem
	Traditional spike sorting
	Spike sorting difficulties
	Sparse convolutional linear model

	Optimization methods
	The Lasso problem
	Choice of the Lasso estimator
	Vectorization of the convolutional model
	Optimality conditions of the Lasso

	Generic working set algorithm for the Lasso
	Principle of the algorithm
	Efficient implementation on convolutional models

	Proximal optimization methods
	Proximity operator
	Proximal algorithm

	State of the art Lasso solvers
	FISTA for the Lasso
	Coordinate Descent for the Lasso
	Least Angle Regression (LARS)

	Sliding window working set algorithm
	Biologically based assumptions
	Overlaps
	Spatial overlaps
	Temporal overlaps

	Sliding window working set
	Principle of the algorithm
	Algorithm solution w.r.t. the original Lasso
	Numerical complexity and efficient implementation

	Mathematical results
	Control of the spatial and temporal overlaps
	Spatial overlaps
	Temporal overlaps

	Control of the noise
	Theoretical properties of the Lasso estimator
	Complexity of the sliding window working set algorithm
	Attenuation model

	Numerical experiments
	Computational complexity
	Influence of the noise and the regularization parameter
	Comparison with distance-based spike sorting methods

	Conclusion
	Bibliography

