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RÉSUMÉ

RÉSUMÉ

La compréhension de la vulnérabilité de la gestion de l’eau dans le contexte du change-
ment global est la condition préalable à la conception de mesures d’adaptation. Une éval-
uation complète de la vulnérabilité des modes de gestion de l’eau aux changements futurs
repose sur de nouveaux outils capables de représenter l’impact humain sur les ressources
en eau et sur des cadres innovants capables de générer de nouvelles idées pour informer la
conception de l’adaptation. Par conséquent, cette thèse vise à (1) développer et améliorer
des modèles pour représenter les ressources en eau, la demande en eau et la gestion de
l’eau de manière intégrée ; (2) appliquer un cadre bottom-up "scenario-neutral" et un
cadre top-down "scenario-led" pour identifier et étudier la vulnérabilité et l’impact plau-
sibles dans le cadre du changement global. Ces développements et applications ont con-
cerné le système Neste dans les Pyrénées françaises.

Pour le premier objectif, cette recherche (1.1) inclut des informations sur la neige
qui sont essentielles pour l’estimation des ressources en eau dans la zone d’étude située
en montagne ; (1.2) améliore et applique des méthodes et des modèles basés sur des
observations pour représenter la demande locale en eau ; (1.3) développe un outil de
gestion de l’eau flexible qui est capable de s’adapter à différents scénarios de changement
global et à différents contextes de gestion. La chaîne de modélisation est donc transférable
et applicable à d’autres études de cas sous réserve de connaître les principaux facteurs de
contrôle.

Pour le deuxième objectif, cette recherche utilise les modèles développés pour évaluer
la vulnérabilité de la gestion de l’eau au changement global en appliquant deux cadres :
(2.1) un cadre bottom-up "scenario-neutral" pour répondre à la question "Comment et
quand la performance du système de l’eau passe-t-elle d’acceptable à inacceptable ?";
(2.2) un cadre top-down "scenario-led" pour répondre à la question "Quel est l’impact et
la vulnérabilité potentiels de la gestion de l’eau sous changement global ?". Les résultats
sont cohérents dans les deux cadres, et plus important encore, ils sont complémentaires
pour informer la conception de l’adaptation.

La conclusion générale en termes de vulnérabilité de la gestion de l’eau peut se ré-
sumer ainsi : étant donné les contrats d’eau contraignants actuels et les restrictions envi-
ronnementales, le système va être fortement impacté par le changement climatique avec
des réductions notables de la ressource en eau; tous les usages seront affectés avec des
risques de non garantie des demandes; et, compte tenu des modalités actuelles, l’usage
hydroélectricité est la plus vulnérable au changement global annoncé. Une stratégie
d’adaptation impliquant les acteurs est indispensable sur ce territoire.
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ABSTRACT

ABSTRACT

Understanding the vulnerability of water management under global change is the
premise for designing adaptation actions. A comprehensive assessment of current water
management vulnerability to future changes hinges on new tools that are able to repre-
sent human impact on water resources and innovative frameworks that are able to gener-
ate new insights to inform adaptation designing. Therefore, this dissertation sets out to
(1) develop and improve models to represent water resources, water demand, and water
management in an integrated hydrological modelling framework; (2) apply a "scenario-
neutral" bottom-up framework and a "scenario-led" top-down framework to identify and
investigate plausible vulnerability and impact under global change. These developments
and applications are demonstrated by taking the Neste water system in French Pyrenees
as a case study.

For the first aim, this research (1.1) includes snow information that is critical for the
water resources estimation in the mountainous study area; (1.2) improves and applies
data-driven methods and models to represent local water demand; (1.3) develops a flexible
water management tool that is capable to adapt to different global change scenarios and
different management contexts. The modelling chain is thus transferable and applicable
to other case studies as long as the principal controlling factors are known.

For the second aim, this research uses the developed models to assess the vulnerability
of water management to global change by applying two frameworks: (2.1) a "scenario-
neutral" bottom-up framework to answer the question "How and when the performance
of the water system shifts from acceptable to unacceptable?"; (2.2) a "scenario-led" top-
down framework to answer the question "What is the potential impact and vulnerability
in the water management under global change?". The results are consistent within the two
frameworks, and more importantly complimentary to inform adaption designing.

The general conclusion in terms of water management vulnerability is summarized
as follow: given the current binding water contract and environmental restrictions, the
system will be strongly impacted by climate change with significant reductions in water
resources availability; all water uses will be affected with increasing risks of failing to
meet the demand; and, given the current arrangements, hydropower production is the
most vulnerable to global change. An adaptation strategy involving the stakeholders is
essential in this area.
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This chapter introduces the general context of water resources
planning and management, and the objectives of the work un-
dertaken.
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Chapter 1. General context

1.1 Human and water
Water is the lifeblood of the planet and one of the most important basic necessities

for humankind. Abundant water resource covers 70 to 75 % of the earth’s surface while
finite freshwater accounting for only 1 % of the earth’s surface is available for human use
(Gleick, 1993). While the global supply of freshwater is sufficient to fulfill all present
and foreseeable water needs, the spatio-temporal distribution characteristic of freshwa-
ter resource make it inadequate or excessive for some regions of the world or for some
periods of the year. Drought and flood events, the two major natural disasters that mani-
fest through water, are reported to have the most devastating consequences among all the
disasters that have stricken to human community (e.g., Ritchie and Roser, 2014; WHO,
2007).

Humankind, on the other hand, has been seeking ambitiously ways for efficient con-
trol and movement of water resources in order to minimize damage and maximize uti-
lization. These activities of planning, developing, distributing and managing natural wa-
ter resources through engineering (e.g., reservoirs, canals, and dikes) and non-structural
(e.g., reducing water demand and distribution regulations) measures are defined as wa-
ter resources planning and management (Loucks and van Beek, 2017). Water resources
planning and management is a broad term and is rarely simple. Multiple disciplines and
various associations that deal with water issues have described sophisticated relations be-
tween climate, water cycle and human community (including demographic, governmen-
tal, legal, and socio-economical aspects) (e.g., Bates et al., 2008; Biswas, 2004; Perrone
and Hornberger, 2014). Besides, in terms of its functions and purposes, water can be
planned and managed for food production (agricultural irrigation, fishery and animal hus-
bandry), energy production (hydroelectricity and cooling for thermal and nuclear power
stations), transport (navigation), industrial uses (e.g., chemical products), environmental
protection (e.g., ecosystem preservation), and recreation (e.g., water sports).

1.1.1 Water management in the ancient time: the legacy

The ability to harness and to utilize water’s power in the ancient time supports the devel-
opment of agriculture and the rise of earliest urban areas (Berking et al., 2018). So crucial
was water planning and management to early human societies that historians and archae-
ologists refer to them as "River Valley Civilizations" or "Irrigation Civilizations" (e.g.,
Mithen, 2010). However, coping with unwelcome changes (e.g., climate change, aridifi-
cation) has been a frequent theme in human community throughout history, particularly
in the water sector. For this purpose, early societies have developed complex techniques
and accompanying management rules for using water (Angelakis and Zheng, 2015).

Figure 1.1 illustrates ten examples of water management techniques in the ancient
time and some of them are located in some of what are now considered as the water-
stressed regions in the world (e.g., the Mediterranean region). "Lessons from the past" or
variations thereupon (e.g. Di Baldassarre et al., 2021, 2018; Holt, 2017; Kaptijn, 2017;
Koutsoyiannis et al., 2008) is becoming more popular as water management experiences
from the past can inform nowadays. In another word, understanding how water manage-
ment efforts in the past were able to remain sustainable in the face of changes (e.g., climate
change and increased demographic pressure), or why they failed to do so, can bring valu-
able information for water stakeholders and managers nowadays. For example, a project
of promoting the ancient chinampas technique for agriculture development (a technique
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1.1. Human and water

that raises crops in lakes, see 5 in Figure 1.1) in Mexico during the late 1970s was reported
to fail due to the negligence of indigenous knowledge and the inefficient communication
among stakeholders (Kaptijn, 2017). Other examples such as qanat irrigation and oasis
agriculture (see 8 and 9 in Figure 1.1) in the semi-arid and arid regions (West Asia and
North Africa) are known as global agricultural heritage systems and proved to be resilient
to changes (Koohafkan and Altieri, 2010). Their longevity and sustainability in managing
water may serve as inspirations for addressing the challenges of agricultural production
and water resource management under changes.

Learning from ancient water management: Archeology's role in modern‐day climate change adaptations

WIREs Water, Volume: 5, Issue: 1, First published: 15 October 2017, DOI: (10.1002/wat2.1256) 

Figure 1.1 – Simplified diagrams of ancient water management techniques and their lo-
cations. Source from Kaptijn (2017).

To summarize, the lessons from the past can also inform the implementation of water
management for the future. Furthermore, in the era of global change, these retrospective
experiences are fundamental to the future adaptation design, particularly in the bottom-up
frameworks which focuses on the vulnerability of water management (Benito et al., 2015;
Mendoza et al., 2018).

1.1.2 Water management challenges nowadays: the Anthropocene
The "Anthropocene" was initially proposed by Paul J. Crutzen as the term for the current
geological epoch during a meeting of the International Geosphere-Biosphere Programme
(IGBP, 1999-2003) (Crutzen and Stoermer, 2000). As described by Carruthers (2019):

"On that occasion, Paul J. Crutzen, the Dutch, Nobel Prize-winning atmo-
spheric chemist, and then Vice-Chair of the IGBP, had become increasingly
impatient with his colleagues’ repetitive use of the word ‘Holocene’ and ex-
claimed, ‘Stop using the word Holocene. We’re not in the Holocene any

3



Chapter 1. General context

more. We’re in the. . . the. . . the. . . [searching for the right word]. . . the An-
thropocene!’"

Since then, albeit some debates on formalizing it (e.g., the beginning time), the Anthro-
pocene signifies human impact on the Earth, including but not limited to anthropogenic
climate change (e.g., Ruddiman, 2018; Steffen et al., 2015a; Zalasiewicz et al., 2019).
Water is becoming a major concern in this human-induced era. It was characterized by
the nonstationarity on both water supply and demand sides that challenges the efficiency
and the sustainability of current water management (Cosgrove and Loucks, 2015).NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2903 LETTERS
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Figure 2 | Impacts of climate change on annual mean streamflow and water temperature. a,b, Maps of changes in streamflow (a) and water temperature
(b) for RCP8.5 for 2040–2069 (2050s) relative to the control period 1971–2000. Trends in changes for 1971–2099 are presented based on the
GCM-ensemble mean results (thick lines) and for the five individual GCMs separately (thin dotted lines) for both RCP2.6 (orange) and RCP8.5 (red).
Trends per continent were assessed by calculating mean values in streamflow and water temperature over all continent grid cells. Future changes were
then calculated relative to the control period 1971–2000.

For thermoelectric power, increased power plant efficiencies also
positively contribute in reducing water demands and decreasing the
vulnerability to water constraints under climate change (Fig. 4b).
However, a strong increase in power plant efficiencies up to 20%
(that is, efficiency of, for example, 0.45 will become 0.54) is for most
regions still insufficient to mitigate overall reductions in cooling
water use potential under changing climate. Changes in sources of
fuel are for most regions more effective in reducing plant vulnera-
bilities to water constraints. On average globally, fuel switching to

higher efficiency gas-fired plants with lower cooling water demands
can be sufficient to mitigate plant vulnerability to water constraints
for the 2020s (+2.5% to +2.8% for RCP2.6–8.5) and for the 2050s
under a low concentration (+1.2% for RCP2.6). However, this adap-
tation option will be insufficient for North America, Europa and
Asia under high concentrations for the 2050s (−4.0% for RCP8.5
worldwide). The strongest positive impacts were found for Africa
and Australia, where the relative number of coal-fired plants that
can be substituted by gas-fired plants is high (Supplementary Fig. 3).
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Figure 1.2 – Spatial changes of streamflow are presented under RCP 8.5 for the period
from 2040 to 2069 (2050s) in comparison with the control period from 1971 to 2000.
Temporal trends of streamflow are presented for the continents of North America, Europe,
Asia, South America, Africa, and Australia for the period from 1971 to 2100 with the
thick lines representing mean changes (gray for the control period, orange for RCP 2.6,
and red for RCP 8.5) and thin dotted lines representing the five individual GCM results.
Source from Van Vliet et al. (2016b)

On the water supply side, climate change associated with global warming induced by
the increase of greenhouse gases (e.g., CO2 and CH4) in the atmosphere by human activ-
ities is one of the major drivers that redistributes spatially and temporally water resources
towards an uncertain future (IPCC, 2014). Figure 1.2 illustrates the spatial changes and
temporal trends of global streamflow under climate change scenarios. There is a remark-
able reduction of streamflow in the Mediterranean-climate regions worldwide. Besides,
climate change deeply alters the climatic impact-drivers (CIDs), known as the physical
climate characteristics (e.g., means, occurrences, and extremes) that affect an element of
societies or ecosystems (IPCC, 2021). Figure 1.3 shows that the disasters such as extreme
heat, flood, storm, and drought events are projected to increase with high confidence in a
large number of regions in the world. The general increase in the frequency and magni-
tude of global flood and drought events can lead to severe consequences on environment
and economy (e.g., Arnell and Gosling, 2014; Dai, 2013; Hirabayashi et al., 2013; Tren-
berth et al., 2013). Global crop production could lower by 9-10%, which would worsen
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1.1. Human and water

the stability of global food security (Lesk et al., 2016). The increasing risks of these events
cannot been seen as purely natural hazards anymore (Cai et al., 2014; Tabari, 2020). In
addition, glaciers are significantly impacted by global warming as the Figure 1.3 shows.
Glacier retreat from 1961 to 2016 results in sea-level rise of 27± 22 millimetres that
accounts for 25-30% of the total observed rise, which massively reduces freshwater re-
source on the land (Zemp et al., 2019). Other non-climatic drivers (e.g., land use and land
cover changes) can also alter hydrological regime and eventually impact water availability
(Arheimer et al., 2017).

26

SPM

Summary for Policymakers

Figure SPM.9 | Synthesis of the number of AR6 WGI reference regions where climatic impact-drivers are projected to change

A total of 35 climatic impact-drivers (CIDs) grouped into seven types are shown: heat and cold; wet and dry; wind; snow and ice; coastal; open ocean; and other. 
For each CID, the bar in the graph below displays the number of AR6 WGI reference regions where it is projected to change. The colours represent the direction 
of change and the level of confidence in the change: purple indicates an increase while brown indicates a decrease; darker and lighter shades refer to high and 
medium confidence, respectively. Lighter background colours represent the maximum number of regions for which each CID is broadly relevant.

Panel (a) shows the 30 CIDs relevant to the land and coastal regions, while panel (b) shows the five CIDs relevant to the open-ocean regions. Marine heatwaves 
and ocean acidity are assessed for coastal ocean regions in panel (a) and for open-ocean regions in panel (b). Changes refer to a 20–30-year period centred around 2050 
and/or consistent with 2°C global warming compared to a similar period within 1960–2014, except for hydrological drought and agricultural and ecological drought, which 
is compared to 1850–1900. Definitions of the regions are provided in Sections 12.4 and Atlas.1 and the Interactive Atlas (see https://interactive-atlas.ipcc.ch/).

{11.9, 12.2, 12.4, Atlas.1, Table TS.5, Figures TS.22 and TS.25} (Table SPM.1)

Multiple climatic impact-drivers are projected to change in all regions
of the world

Number of land & coastal regions (a) and open-ocean regions (b) where each climatic impact-driver (CID) is projected 
to increase or decrease with high confidence (dark shade) or medium confidence (light shade)

Climatic impact-drivers (CIDs) are physical climate system conditions (e.g., means, events, extremes) that affect an element 
of society or ecosystems. Depending on system tolerance, CIDs and their changes can be detrimental, beneficial, neutral, 
or a mixture of each across interacting system elements and regions. The CIDs are grouped into seven types, which are 
summarized under the icons in the figure. All regions are projected to experience changes in at least 5 CIDs. Almost all 
(96%) are projected to experience changes in at least 10 CIDs and half in at least 15 CIDs. For many CID changes, there is 
wide geographical variation, and so each region is projected to experience a specific set of CID changes. Each bar in the 
chart represents a specific geographical set of changes that can be explored in the WGI Interactive Atlas.
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represents the maximum number of regions for which each 
CID is relevant. The envelope is symmetrical about the x-axis 
showing the maximum possible number of relevant regions 
for CID increase (upper part) or decrease (lower part).
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Figure 1.3 – Total 35 climatic impact-drivers (CIDs) of 7 types (heat and cold, wet and
dry, wind, snow and ice, coastal, open ocean, and other) are projected to increase or
decrease with high/medieu confidence in the how many land&coastal regions (a) and
open-ocean regions (b). These regions can be explored in the WGI Interactive Atlas.
Source from (IPCC, 2021).

On the water demand side, rapid socio-economic development in the Anthropocene,
and particularly in the Great Acceleration since 1950, boosts current world water con-
sumption as Figure 1.4 shows. Moreover, irrigation dominates all the water use sectors
(≈ 70%) (Gleick, 1993). Kummu et al. (2016) also concluded that global water use in-
creased fourfold over the 20th century and the population under water shortage grew from
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Chapter 1. General context

0.24 billion (14% of global population) to 3.8 billion (58% of global population). Future
water consumption would continuously increase with the socio-economic development
(e.g., Wada et al., 2016). Besides, other drivers, such as climate change, would induce
more agricultural water consumption and shift energy demand pattern (e.g., from heating
in winter to cooling summer) within the Water-Energy-Food nexus (e.g., Huang et al.,
2019; Spinoni et al., 2017b). In addition to human uses, a call upon the natural environ-
ment is gaining increasing attention (e.g., Poff et al., 2015).

Furthermore, water scarcity could arise from not only changes in quantity-based sup-
ply and demand sides but also quality-based pollution (i.e., inadequate water for various
uses due to different water quality requirements). Water quality is affected through com-
plicated series of natural and anthropogenic mechanisms (e.g., sediment load, industrial
chemicals and heavy medal release, and pesticide overuse). The combined effect from
both quantity and quality aggravates water scarcity and augments water treatment cost
(e.g., Ma et al., 2020; Tang et al., 2021; Yu et al., 2019).

Indeed, untangling water management issues will always be challenging under global
change and will unavoidably necessitate the mixing of methodological frameworks be-
cause human and water systems cannot be regarded separately in this Anthropocene epoch
but rather in a co-evolved view with climate. It is thus essential to acknowledging the
"planetary boundary" within which human societies can operate safely and sustainably
(Steffen et al., 2015b). A first step forward is to deepen the understanding of human role
in mitigating and adapting to global change (Van Loon et al., 2016). Information collected
from such frameworks improves practical mitigation and adaptation agendas.
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1.1. Human and water4 The Anthropocene Review 

Figure 1. Trends from 1750 to 2010 in globally aggregated indicators for socio-economic development. 
(1) Global population data according to the HYDE (History Database of the Global Environment, 2013) 
database. Data before 1950 are modelled. Data are plotted as decadal points. (2) Global real GDP (Gross 
Domestic Product) in year 2010 US dollars. Data are a combination of Maddison for the years 1750 to 
2003 and Shane for 1969–2010. Overlapping years from Shane data are used to adjust Maddison data 
to 2010 US dollars. (3) Global foreign direct investment in current (accessed 2013) US dollars based on 
two data sets: IMF (International Monetary Fund) from 1948 to 1969 and UNCTAD (United Nations 
Conference on Trade and Development) from 1970 to 2010. (4) Global urban population data according 
to the HYDE database. Data before 1950 are modelled. Data are plotted as decadal points. (5) World 
primary energy use. 1850 to present based on Grubler et al. (2012), 1750–1849 data are based on global 

 (Continued)

 by guest on January 19, 2015anr.sagepub.comDownloaded from 

Figure 1.4 – The trends of global socio-economic development from 1750 to 2010 for 12
indicators: population, real Gross Domestic Product (GDP), foreign direct investment,
urban population, primary energy use, fertilizer consumption, large dams, water use (an-
nual water consumption for irrigation, domestic, livestock, and industrial uses), paper
production, transportation (global production of new automobiles), telecommunications
(total subscribers to fixed landlines and mobile phones), and international tourism (an-
nual number of international arrivals). The gray vertical dotted lines represent the year
1950, which is the start of the "Great Acceleration" as the characteristics of contemporary
world. Source from Steffen et al. (2015a)
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1.2 Scientific problems and research objectives
Modelling the natural component of the water cycle has long been a focus of hydrol-

ogists; to go beyond that, the hydrological community, the PANTA RHEI initiative of
the International Association of Hydrological Sciences, is currently encouraging the in-
tegration of the human interactions with water resources within hydrological modelling
(Montanari et al., 2013). As such, the questions related to sustainable water management
necessitate the development of new tools capable of representing human influence on wa-
ter resources and of innovative frameworks to evaluate the vulnerability of current man-
agement rules in an evolving context. These advancements are essential for examining
global change impact on water management (e.g., water resource availability and water
use satisfaction under climatic and socio-economic changes) and eventually for outlining
plausible adaptation strategies.

Research is required to uncover the continually evolving link between hydrology,
management rules and water demand. Particularly, the analytical framework tailored
to the management and allocation issues of water systems and to the outlook of future
changes is of great importance for characterizing the global change impact on this human-
water link. This implies identifying the facets of global change to which each user is the
most sensitive and the degree of tolerance of each user to disturbances of current state
or to extreme events. Thereafter vulnerability can be assessed based on the likelihood
of critical changes for different future time slices (beginning, middle and end of the 21st
century).

The European project PIRAGUA 1, in line with the strategy of crossboarder coopera-
tion of the OPCC 2 (Pyrenean Climate Change Observatory), aims ultimately at improving
the adaptation of Pyrenean territories to climate change. This thesis is a scientific contri-
bution to the project and new developments are illustrated on the Neste water system, a
complex multiobjective reservoir water system located in the French Pyrenees. The sus-
tainability of the current water management rules employed for upstream hydropower pro-
duction, downstream water consumption (including irrigation, domestic, industrial uses),
and environmental regulations will be investigated under global change scenarios. This
work was carried out in close collaboration with local water stakeholders and managers
(the SHEM 3 and the CACG 4), and with other research partners in the PIRAGUA con-
sortium (e.g., CLIMPY5).

Among the many components of water resource systems, reservoirs are a long-standing
method for reducing the spatio-temporal variability of natural water supply, and they are
constructed worldwide. However, global change questions the sustainability of reservoir
water management. In this work, we take the example of the Neste water system to in-
vestigate the vulnerability of reservoir water management under global change. The two
main objectives of the thesis are:

1. Developing and improving water demand and management models as pieces

1https://www.opcc-ctp.org/en/piragua
2https://www.opcc-ctp.org/en/
3Société Hydro-Electrique du Midi (www.shem.fr) is a French electricity producing company, a sub-

siniary of ENGIE group.
4Compagnie d’Aménagement des Coteaux de Gascogne (www.cacg.fr) is a water management and

distribution company for the Gascogne region in Southern France.
5https://www.opcc-ctp.org/en/climpy
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1.2. Scientific problems and research objectives

of an integrated hydrological modelling framework:
The thesis is an opportunity to implement models that may reproduce water man-
agement rules of multipurpose reservoirs. An analysis should be firstly carried out
to identify the drivers and regulatory aspects that control water release and storage
actions. The challenges are then to explore the realistic representation of the current
management, but simple enough to be applied to global change scenarios and to be
transferred to other case studies.

The modelling chain is therefore expected to represent the modules of water re-
sources, water demand, and water management that could run in present and future
scenarios. Finally, the outputs of these models will be used to diagnose the sustain-
ability of the management in its current configuration, and to test new adaptation
methods under a modified context.

2. Characterizing the vulnerability of the management mode of the Neste water
system:
There is a growing concern on the sustainability of reservoirs to cope with altered
water supply and demand regimes by global change. The thesis will investigate their
vulnerability based on the bottom-up approach adopted by Sauquet et al. (2019)
that is based on three components: "sensitivity" (how does the system respond to
external disturbances?), "exposure" (what is the probability of occurrence of distur-
bances in the future?), and "threshold" (where are the boundaries within which the
system performs acceptably?).

The challenges of this method remain for characterizing the water management
failures (e.g., storage objectives, capacity to meet high peak demands for energy
and irrigation), correlating the intensity or frequency of failures to those of hydro-
meteorological hazards (e.g., unanticipated flooding or severe low flow), and identi-
fying management metrics (e.g., the performance and the associated critical thresh-
olds for reservoir management mode).

9



Chapter 1. General context

1.3 Structure of the dissertation
This dissertation is organised in eight chapters and is structured around two articles

(one under review and the other submitted):

1. The first chapter aims to introduce the general context and the objectives of the
work undertaken.

2. The second chapter is a literature review, allowing in particular to explore the chal-
lenges of reservoir water management under global change and the potential adap-
tation strategies.

3. The third chapter presents the study case, the Neste water system, and its current
management modes, as well as the dataset used in the following work.

4. The fourth chapter presents the estimation of water resources in the study area.

5. The fifth chapter proposes water demand and management models applied to the
Neste water system.

6. The sixth chapter, based on an article, presents the results of vulnerability assess-
ment of the study area under climate change. This assessment has identified the key
climatic drivers for water management of the Neste water system.

7. The seventh chapter uses a top-down approach to assess the potential impact of
global change on the study area.

Finally, a general conclusion summarises the main results obtained and lists some
perspectives associated with these results.
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CHALLENGES OF RESERVOIR PLANNING AND MAN-
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Abstract
The potential impact of global change on water infrastructure planning and manage-

ment highlights the need for adaptation. Reservoirs are among the most powerful infras-
tructures in resolving water problems and exploiting water uses. Here, we reviewed (1)
the potential implication of global change on hydropower, agricultural, and multi-purpose
reservoir water systems; (2) the plausible adaptation strategies dedicated to reservoir wa-
ter planning and management; (3) the challenges in adaptation procedures in terms of
impact assessment, adaptation design and appraisal, and adaptation implementation. We
found that the performance of reservoir systems is broadly degraded by both climatic and
socio-economic changes that alter water supply and demand. Adaptation of reservoir wa-
ter systems relies on embracing the non-stationary practice on the premise of comprehen-
sive impact assessment, and should be implemented from water supply and demand sides.
The bottom-up assessment approach combined with top-down impact approach provides
complementary information for adaptation, which is promising to design effective strate-
gies. Still, challenges remain in the appraisal and implementation of adaptation, which
needs deeper cooperation among scientific community, stakeholders and water managers.
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Chapter 2. Literature review

2.1 Introduction

Water infrastructure provides essential services for human society, including but not
limited to hydropower generation, agricultural irrigation, drinking water supply, and flood
control. Global change, which encompasses changes in climate, socio-economic develop-
ment, demography, land-use and land-cover, among others (Steffen et al., 2015a), brings
new challenges for planning and management of water infrastructure (Montanari et al.,
2013; Viviroli et al., 2011). Compared with natural river basins, those regulated by water
infrastructures could suffer from more severe water pressure in the future (Nilsson et al.,
2005; Palmer et al., 2008; Vogel et al., 2011). River regulation reduces the natural capac-
ity of rivers to conform themselves to disturbances (Arheimer et al., 2017; Vörösmarty
et al., 2010). Further, potential water supply alterations with large variation and demand
increases induced by global change complicate water planning and management. There-
fore, these challenges highlight the need for innovative analysis frameworks and effective
adaptation strategies to mitigate the adverse impact on water systems (Brown et al., 2015;
Ceola et al., 2016).

Reservoir systems are considered among the most efficient infrastructures in resolv-
ing water problems and exploiting water resource by redistributing water spatially and
temporally. In general, reservoir functionalities can be achieved by regulating natural
flows depending on the magnitude of inflows and water demand at a specific time. Con-
cerning the purposes of reservoirs, they can be divided into single-purpose and multi-
purpose reservoirs. According to ICOLD (2019), almost half of reservoirs registered in
the database are single-purpose ones. Among these single-purpose reservoirs, 47% are
constructed for irrigation supporting and 22% are solely for hydropower generation. As
for multi-purpose reservoirs, the leading objectives are irrigation, flood control, water
supply, and hydropower generation, which cover 80% of all multi-purpose reservoirs reg-
istered. Given these benefits, reservoir systems are world-widely constructed despite their
intensive investment (see Figure 2.1b). On the other hand, reservoir constructions show
a decreasing trend from the late 20th century (see Figure 2.1a) probably because global
major river systems are getting saturated with reservoirs, and the environmental and so-
cial acceptance is now against reservoir constructions (Nilsson et al., 2005; Poff et al.,
2007; Renöfält et al., 2010). However, since 2014, around 3,700 hydropower dams are
either planned (83%) or under construction (17%) to secure future energy supply, espe-
cially in developing countries (Zarfl et al., 2015). To date, the number of large reservoirs
registered is more than 58,000 with their aggregated impoundment approximately 15,000
km3 (ICOLD, 2019). Large reservoirs significantly impact terrestrial water system at the
global scale (Chao et al., 2008; Zhou et al., 2016). In addition, the cumulative effect of
medium or small reservoirs also plays an important role in changes of downstream river
flow regime (Habets et al., 2018; Morán-Tejeda et al., 2012b). As such, reservoir sys-
tems are of great importance for integrated water resource management (Biswas, 2004)
and water security within the food-energy-water (FEW) nexus (Perrone and Hornberger,
2014).

Water resource planning and management is a broad concept with different defini-
tions suggested by numerous associations and individuals (Loucks and van Beek, 2017).
The review here focuses on reservoir water planning and management. Reservoir plan-
ning means that on the basis of the current knowledge of the evolution of water supply
and demand, together with the expected change in operational constraints (e.g., change
in environmental regulations), the best development plan and corresponding engineer-
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Figure 2.1 – (a) The increasing trend of the number of large dams (large: a minimum
of 15 m height above foundation) from 1900 to 2010 in three categories of the world
countries: the OECD countries (members in 2010); the emerging economies defined as
the BRICS countries including Brazil, Russia, India, China (China mainland with Macau,
Hong Kong and Taiwan where applicable), and South Africa; and the rest countries. The
data source is from Steffen et al. (2015a). (b) The drainage area of georeferenced large
dams in the three categories of the world countries. The data source is from the GOODD
dataset (Mulligan et al., 2020).
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ing measures (including reservoir sizing and supporting facilities design) are formulated.
Reservoir management is a set of rules or guidelines during an operation period (single-
year or multi-year) serving reservoir purposes. Historically, reservoir systems have been
planned and managed assuming that water supply and demand were both stationary and,
as such, the available historical records were adequate to represent, statistically, the future
supply and demand distributions (National Research Council, 2011). Nevertheless, the
recent AR6 report of IPCC (2021) reaffirmed that the increasing GHG (GreenHouse Gas)
concentration in the atmosphere has raised global temperature, referred as global warm-
ing. Climate is changing in ways that cannot just be attributed by natural variability with
more occurring extreme events (AghaKouchak et al., 2020; Hari et al., 2020; IPCC, 2014;
Lins and Cohn, 2011). Severe droughts in Europe (representative years of 2003 and 2015,
see Laaha et al. 2017), Australia (Millennium Drought, see Van Dijk et al. 2013), and
Western United States (Griffin and Anchukaitis, 2014) have questioned the ability to face
extreme and unexpected events. Remarkably, the most severe drought events in California
from 2012 to 2015 surpassed historical observations and resulted in less water availability
in the reservoirs than usual, which increased electricity cost of 2 billion dollars by meeting
the demand with other energy sources instead of hydropower (Gleick, 2016; Swain et al.,
2014). The unanticipated and unusual drought events would worsen water scarcity, mak-
ing reservoir planning and management more problematic. Zhou et al. (2015) concluded
that a primary concern for hydropower was precipitation changes. Regarding water de-
mand, global economic and demographic growth boosts freshwater consumption that is
water withdrawals for agricultural, industrial and municipal uses (Boretti and Rosa, 2019).
Global water demand has faced a six-fold increase over the last century and BRICS coun-
tries (the emerging economies including Brazil, Russia, India, China, and South Africa)
have consumed the largest share at about 45% (Ritchie, 2017). Therefore, changes in
both water availability and water demand due to global change pose many challenges for
reservoir planning and management.

Assessing the impacts of water systems to global change is a central premise in de-
signing mitigation and adaptation actions (Bates et al., 2008). Over the last decades,
the issues of implications of global change on water resource have received considerable
attention and has been well documented (e.g., Alcamo et al., 2007; Arnell, 2004; Vörös-
marty et al., 2000). Recent concentration shifts towards a continuous concern that cur-
rent water infrastructure and management are not prepared to handle future uncertainty
(Brown et al., 2020, 2015), and how water systems can be adapt to climate change are
discussed (e.g., Dittrich et al., 2016; Herman et al., 2020; Schaefli, 2015). Guidelines for
stating robust adaptation strategies - those proposing a system that can operate properly
under a wide range of future conditions (Herman et al., 2015) - are still expected. Thus,
this paper aims to review the impact and adaptation induced by global change from the
perspective of reservoir systems. The analysis of the review is based on a large selection
of published papers on reservoir water planning and management from global, regional,
and local aspects. In section 2.2 we explore the implications of global change on reser-
voir purposes. We then proceed to summarize the possible adaptation strategies to global
change (section 2.3). Section 2.4 analyzes the remaining challenges in the procedure of
adaptation. A set of conclusions is finally drawn.
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2.2. Impact of global change on reservoir performance

2.2 Impact of global change on reservoir performance
The performance of water systems could be impacted from water supply and demand

changes. On the water supply side, precipitation change, and Land Use and Land Cover
(LULC) are the leading drivers that result in potential changes in reservoir performance.
While on the water demand side, population growth, climate-induced change in irrigation
(e.g., shortened crop growth period), and human activities (e.g., water market response,
policy, and cropping pattern) are the main drivers. Here, reservoir performance is dis-
cussed based on a reduced set of drivers from both supply and demand sides of reservoir
water resource.

2.2.1 Hydropower reservoirs

As reported by World Energy Council (2013), approximately 15% of the world electricity
production is generated by hydropower installations (including run-of-the-river facilities),
which accounts for about 78% of total renewable energy production. Hydropower is also a
major energy source holding over 50% of annual electricity generation for countries like
Brazil, Canada, Norway, and Switzerland (World Energy Council, 2013). Hydropower
and climate change are double-side: hydropower itself, as a clean and renewable energy
source, contributes to reducing GHG emissions by replacing fossil energy while climate
change can alter streamflow regime and variability, affecting hydropower potential and
production (Berga, 2016; Wasti et al., 2022).

Hydropower potential refers to the amount of energy that can be exploited from water
resource. Gross hydropower potential (GHP) and developed hydropower potential (DHP)
are the two aspects mostly investigated in the literature: the former corresponds to the
total energy to natural runoff over the entire elevation of the study area without any en-
ergy losses; the latter the energy that can be maximized from the existing power plants.
Hydropower production (HPP) is the actual electricity generation through the existing in-
stallations and operation rules. Turner and Voisin (2022) summarized methods employed
in the simulation of GHP, DHP and HPP at subcontinental to global scales. Most studies
attempted to examine the influence of global change on hydropower potential and pro-
duction from a regional or local perspective and the general approach is model-based.
Hydropower potential and production depend directly on changes in water availability of
discharge. Besides, changes in energy market and policy can strongly impact hydropower
production and revenue (Anghileri et al., 2018; Gaudard et al., 2013). Table 2.1 lists re-
cent impact studies on hydropower for three example regions: Asia, Western Europe, and
North America.

The major cause for changes in water availability is climate change, which propa-
gates to hydropower potential and production by altering river flow regime in terms of
discharge range and seasonality. Several global-scale assessments showed regional varia-
tions of hydropower potential (e.g., Gernaat et al., 2017; Van Vliet et al., 2016a,b; Zhang
et al., 2018) and highlighted substantial uncertainty in projected changes in HPP (e.g.,
Hamududu and Killingtveit, 2012; Turner et al., 2017a,b; Yalew et al., 2020; Zhou et al.,
2018). Uncertainty in the sign of the changes is illustrated in the Alps: Hänggi and Wein-
gartner (2012) concluded that the overall warming and increased winter precipitation is
a potential prominent advantage for the HPP in the Swiss Alps while the studies in ta-
ble 2.1 (the row of the HPP of the Alps under the driver of climate change) suggested
the opposite. The warming effect and precipitation variability significantly alter snow
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Table 2.1 – Selected impact studies of hydropower potential and production under various
drivers in three example regions: Asia, Western Europe, and North America

References Targets Drivers Impacts

Asia

Liu et al. (2016) GHP and DHP
of China

CC GHP tended to increase by 6%
while DHP tended to decrease by
4% by the end of the 21st century

Wang et al. (2017) HPP of south-
western China

MC Hydro-wind-solar system signifi-
cantly fluctuated HPP

Qin et al. (2020a) HPP of south-
western China

CC+MC The concurrent effect of CC and
MC increases the mismatch be-
tween HPP and demand

Hecht et al. (2019); Li et al.
(2017); Shrestha et al. (2017)

HPP of Viet-
nam

HA Upstream damming and LULC re-
duces HPP of the lower Mekong
River basin

Western Europe

Anghileri et al. (2018); Ma-
jone et al. (2016); Maran
et al. (2014)

DHP and HPP
of the Alps

CC+PC Compared with CC, PC may have
more significant impact on hy-
dropower revenue

Finger et al. (2012); Schae-
fli et al. (2007); Wagner et al.
(2016)

HPP of the
Alps

CC HPP was estimated to decrease
due to temperature increase and
changes in precipitation

Gaudard et al. (2013, 2014);
Puspitarini et al. (2020);
Savelsberg et al. (2018);
Stanton et al. (2016)

HPP of the
Alps

CC+MC In addition to CC, seasonal con-
sumption shift and the comple-
mentarity with other renewable
energy sources impacted HPP

Hendrickx and Sauquet
(2013)

HPP of the
French Pyre-
nees

CC Reduced annual inflow and mod-
ified seasonal runoff distribution
decreased HPP

North America

Craig et al. (2018); Hamlet
et al. (2010); Markoff and
Cullen (2008); Turner et al.
(2019); Vicuna et al. (2008)

HPP of the Pa-
cific Northwest

CC+MC Seasonal supply/demand mis-
match (more for cooling, less for
heating) and population growth
impacted the performance of HPP

Kern and Characklis (2017);
Kern et al. (2014a,b); Su
et al. (2017)

HPP of the
USA

MC The integration with other renew-
able energy sources influenced
HPP revenue

Haguma et al. (2014); Jabbari
and Nazemi (2019); Minville
et al. (2009, 2010); Oni et al.
(2012)

HPP of Canada CC HPP was projected to increase
while the efficiency did not neces-
sarily improve

Note: CC, MC, PC, and HA represent climate change, energy market change, policy change, and human
activities, respectively.
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accumulation and melt patterns, and eventually the seasonal flow patterns (Barnett et al.,
2005; Fayad et al., 2017; Viviroli et al., 2011). The discordant results in different regions
of the Alps could be attributed to the transition characteristics of the Alps in terms of
precipitation shifting from an increase in North to a decrease in South (Frei et al., 2018;
Gobiet et al., 2014; Smiatek et al., 2016). Moreover, spatial heterogeneity in the Alps
can yield different hydrological regimes and thus different sensitivity to climate change
(Maran et al., 2014). Elsewhere, in the Southern Europe, the hydropower potential and
production converge towards a decreasing tendency due to projected drier climate and in-
creased water competition by socio-economic development (e.g., irrigation and industry
demand) (e.g., Bonjean Stanton et al., 2016; Lehner et al., 2005; Turner et al., 2017b;
Wagner et al., 2019).

Another primary cause for changes in water availability for reservoirs is human activ-
ities, such as damming and LULC. Examples in the Mekong River basin (MRB) are illus-
trated in table 2.1. Damming in the upper MRB, especially the Xiaowan and Nuozhadu
dams that boost the total active storage capacity of the upper MRB from 0.72km3 to
32.1km3, significantly attenuate the HPP in the lower MRB (Hecht et al., 2019). Li
et al. (2017) further concluded that damming and dam regulations in the upper MRB
had stronger influence on annual streamflow of the lower MRB than climate change.
Besides, the rapid transition of LULC (e.g., deforestation for farmland and urban area
expansion) significantly impacted the performance of hydropower generation in the lower
MRB (MRC, 2018). Shrestha et al. (2017) examined the implications of deforestation on
the three most important tributaries (the Sesan, Srepok, and Sekong Rivers) of the lower
MRB. The results showed that deforestation reduced peak flows in all scenarios, and thus
the HPP during wet season. The contradiction to common sense that deforestation in-
creases runoff could be attributed to the increased evapotranspiration due to the transition
from low-density forest to intensive agriculture (Shrestha et al., 2017).

Assessment on HPP from the perspective of energy consumption in market is also
important (Gaudard and Romerio, 2014). Climate change may alter the electricity con-
sumption pattern by increasing demand for cooling and decreasing demand for heating,
which could lead to modification of the price schemes (Gaudard et al., 2013; Golombek
et al., 2011; Mideksa and Kallbekken, 2010; Yalew et al., 2020). Hydropower in the Pa-
cific Northwest is an important component in the energy supply system but vulnerable to
climatic changes (see Table 2.1). In addition to reduced water resource, the seasonal mis-
match between hydropower supply and energy demand impaired the performance of HPP,
and thus reduced the revenue (e.g., Markoff and Cullen, 2008; Turner et al., 2019; Vicuna
et al., 2008). Auffhammer et al. (2017) showed that the peak load of energy consumption
under climate change could be higher and more frequent than business-as-usual situation,
meaning additional energy cost by increasing energy capacity to meet the peak demand.
Furthermore, the population growth in the Pacific Northwest could unduly burden the
hydropower system for summer cooling demand (Hamlet, 2011).

Increasing penetration of other renewable technologies in energy market as an influ-
ence on hydropower should not be neglected (e.g., Danso et al., 2021; François et al.,
2017). Hydropower itself as a renewable energy source without direct emission of CO2 is
playing an important role in the electricity grid of many countries. For instance, the energy
market liberalization from the 2000s in Europe enhanced the role of hydropower in the en-
ergy market (e.g., hydropower-dominant Switzerland and Norway, nuclear-hydropower-
mixed France, and fossil-hydropower-mixed Italy) (Gaudard et al., 2014). Due to their
operational flexibility, hydropower reservoirs are optimal candidates to complement the

19



Chapter 2. Literature review

variability of intermittent energy generation (e.g., wind and solar) (François et al., 2014a).
Run-of-the-river hydropower plants have also been shown to ease integration of solar and
wind energy sources (François et al., 2016). However, the integrated development of
hydropower with other renewable energy sources could fluctuate the hydropower rev-
enue and hydrological regime downstream (e.g., Kern and Characklis, 2017; Kern et al.,
2014a,b; Su et al., 2017; Wang et al., 2017).

2.2.2 Irrigation reservoirs
Irrigation water demand is the quantity of water, in addition to precipitation, that is needed
to ensure crop development and to maintain an acceptable soil moisture content. The
global water supply for irrigation has been significantly improved through the construc-
tion of reservoirs (Biemans et al., 2011). Around 30-40% of the 271 million hectares of
agricultural lands in the world are supported by irrigation reservoirs (World Commission
on Dams, 2000). Global food security highly relies on irrigation reservoirs, which has
contributed 12-16% of world food production and has benefited 1 billion people (World
Commission on Dams, 2000). However, the performance of irrigation-purpose reservoirs
is constrained by the changes in potential water availability and water demand resulting
from climatic and socio-economic changes.

Irrigation reservoir management is sensitive to inflow changes. Irrigation water avail-
ability is generally reported to reduce due to global warming and changes in precipitation
pattern (e.g., Mehta et al., 2013; Qin et al., 2020b; Ronco et al., 2017; Vano, 2020; Varela-
Ortega et al., 2014). Sufficient irrigation water supply in the future might not be main-
tained without constructing new reservoirs (Yoshikawa et al., 2014). For instance, the
largest irrigation system in Europe located in Spanish Pyrenees would experience water
scarcity induced by climate change in the future especially in summer when agricultural
water demand is at peak (Haro-Monteagudo et al., 2020). Supposing that annual irri-
gation water demand and land use remain constant, the agriculture sustainability in this
area is threatened under climate change and the use of the current management strategy.
However, the assumptions of business-as-usual irrigation requirements and land use are
optimistic to analyze the performance of irrigation reservoir management.

Yet, when it comes to the comprehensive assessment of irrigation water system, the
incorporation of irrigation water demand is essential because crops are directly exposed
to climate and changes in climate variables (temperature, CO2 concentration) will alter
water demand pattern (e.g., Ashofteh et al., 2017; Qin et al., 2020b; Stöckle et al., 2010;
Vano et al., 2010). Irrigation water demand has been studied at global scale with an in-
creasing trend in the future (e.g., Wada et al., 2013). By contrast, a slight decrease in
global crop water deficits was reported, which could be attributed to increased precipita-
tion in many rainfed croplands (e.g., in Africa, China, and South America) and reduced
diurnal temperature variation (Zhang and Cai, 2013). At the regional scale, Vidal et al.
(2012) projected more severe and frequent agricultural droughts in France over the 21st
century. In southern India, an increased irrigation water demand in the future was simu-
lated due to changes in other meteorological variables offsetting the precipitation increase
(Rehana and Mujumdar, 2012). Besides, water scarcity for irrigation can be aggravated
by increasing population for food and changes in agricultural land use (e.g., Konzmann
et al., 2013; Mehta et al., 2013; Vörösmarty et al., 2000).

Changes in supply and demand sides challenge the performance of irrigation-purpose
reservoirs. Particularly, the drought events in the Mediterranean region render the man-
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agement of irrigation reservoirs vulnerable to changes (e.g., Fayad et al., 2017; Folton
et al., 2019; García-Ruiz et al., 2011; Spinoni et al., 2017b; Tramblay et al., 2020). For
example, Nunes et al. (2017) concluded that the dry Mediterranean region of southern Por-
tugal could experience a moderate degradation of irrigation water scarcity in the future
under both climate change and socio-economic scenarios. The simulation results indi-
cated that water scarcity resulted from decreased water availability due to climate change
and increased water demand due to combined climate and socio-economic changes. Ad-
ditionally, water quality would decrease through the increase of sediment and phosphorus
inflows into the reservoir, which was attributed to the land use evolution in the socio-
economic scenarios. Similar irrigation water stress in the Mediterranean region was re-
ported (e.g., Dono et al., 2013; Gorguner and Kavvas, 2020; Okkan and Kirdemir, 2018;
Rocha et al., 2020).

2.2.3 Multi-purpose reservoirs

Compared with single-purpose reservoirs, multi-purpose reservoirs are designed to satisfy
two or more functions in a regulation period. Apart from changes in water availability and
water demand, conflicts and tradeoffs arise among various objectives, which drastically
complicate the management of multi-purpose reservoirs. Thus, this section highlights the
inherent conflicts and tradeoffs of multi-purpose reservoirs under global change. They
can be classified as (1) volumetric tradeoffs (given the limited reservoir storage, these
occur when reservoir managers hesitate on how much storage to be allocated for each
objective, such as flood control and water conservation) and (2) temporal tradeoffs (these
occur when the reservoir objectives show different patterns of water use in time, such as
irrigation in summer and hydropower in winter for heating in France, see François et al.
2015, 2014b, and in Spain see Pereira-Cardenal et al. 2014).

Volumetric tradeoffs

Volumetric tradeoffs are usually associated with the objective of flood control. Flood
control requires that the reservoir water level is maintained at a certain level to absorb
flood inflows. This conflicts with the water conservation purpose which requires storing
water as much as possible for future use. Given the global flood risk projections, there is
a widespread concern whether the current reservoir capacity and the flood management
policy are resilient to future flood risks (e.g., Fluixá-Sanmartín et al., 2018; François et al.,
2019; Kundzewicz et al., 2010). The revenue of hydropower production and the reliability
of water supply could be improved when reservoir inflows increased. However, flood risks
are also prone to increase by more extreme flood events, which endangers the reservoir
safety if current management rules remain unchanged (Bates et al., 2008; Bhadoriya et al.,
2020; Park and Kim, 2014). While in regions with generally reduced reservoir water
availability, the volumetric tradeoffs would be more intense under global change (Alam
et al., 2019; Kim et al., 2009; Mehta et al., 2013; Raje and Mujumdar, 2010). The current
flood management threshold might be comparatively oversized for the future climate in
these regions where flood risks are projected to decrease.
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Temporal tradeoffs

Temporal tradeoffs arise when the demand seasonality of objectives is mismatched, es-
pecially for multi-purpose reservoirs serving consumptive purposes and hydropower pro-
duction (Gonzalez et al., 2020; Mereu et al., 2016). Water for consumptive purposes (such
as irrigation, drinking water, and environmental regulations) is allocated by water share
rights or binding contracts in many countries. However, warming climate and population
growth induce a boost in water demand for irrigation and drinking water (Vörösmarty
et al., 2000). Hydropower production is expected to increase owing to its renewable
characteristics and its role in balancing intermittent energy production (see section 2.1)
(Berga, 2016; François et al., 2014a; Zarfl et al., 2015). Zeng et al. (2017) concluded that
over half of the global installed hydropower capacity competes with irrigation while only
8% complements irrigation. Tilmant et al. (2020) also reported that food safety might be
much more sensitive to hydroclimatic changes and allocation policies under the irrigation-
hydropower tradeoffs. Besides, environmental regulations refer to the minimum flow re-
quirement out of the reservoirs and are also found to compete with hydropower (e.g.,
Giuliani and Castelletti, 2013) and irrigation (e.g., Grafton et al., 2011) water uses. More-
over, many regions are arguing for increased environmental flows (e.g., Palmer et al.,
2008; Poff et al., 2015; Poff and Zimmerman, 2010; Renöfält et al., 2010), which drasti-
cally compromises the other water uses.

Temporal tradeoffs among the key functions of multi-purpose reservoirs introduce fur-
ther complexity in reservoir water management. Lower water availability will stimulate
more conservative management policies to store more water for summer irrigation, which
requires tradeoffs from other sectors. Besides, climate change and human activities (e.g.,
deforestation and mining) could yield more frequent flood events and thus increase the
sedimentation in reservoirs, which reduces their storage capacity and increases opera-
tional costs (e.g., Bangash et al., 2013; Fraga-Santiago et al., 2019; Mendes et al., 2015).

2.2.4 Summary

On the basis of the impact studies of global change from above, the possible changes
either climatic or socio-economic will not only be adverse to the performance of water
systems but will also be costly to cope with, both economically and socially. Note that
global change does not always imply negative influence on water resource planning and
management. Global change may create favorable conditions for hydropower generation
(e.g., potential increase under climate change, see Minville et al. 2009, 2010; Oni et al.
2012) or agricultural irrigation (e.g., less irrigation pressure under climate change and
LULC, see Seung-Hwan et al. 2013). These improvements can not be achieved spon-
taneously unless actions are made to exploit the potential benefits and to maintain the
sustainability of water system.

Furthermore, a comprehensive impact assessment on water systems relies on the pre-
cise estimation from both water supply and demand sides. However, water supply studies
under climate change dominate in the literature. In addition to climate change, other
drivers such as policy changes (e.g., Anghileri et al., 2018; Majone et al., 2016), LULC
(e.g., Hecht et al., 2019; Li et al., 2017), and population growth (e.g., Hamlet, 2011;
Vörösmarty et al., 2000) are worth considering in impact research. In particular, assessing
multi-purpose reservoirs under global change are more challenging due to their inherent
tradeoffs. In summary, stationary management and traditional planning based on histori-
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cal experience are no longer reliable and valid to deal with future changes (Brown, 2010;
Brown et al., 2020; François et al., 2019). Actions are thus needed to adapt or mitigate
the impacts of global change.
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2.3 Adaptation of reservoir system under global change

Adaptation or mitigation strategies are designed and implemented on the premise of
the assessment of global change impacts. Adaptation can be adopted from two sides: wa-
ter supply and water demand sides, independently or jointly (Bates et al., 2008). The key
aspect in the supply side is to increase or maintain the water availability and to reduce
the water loss from the reservoir system, such as increasing storage capacity and leakage
control (Palmer et al., 2008). Correspondingly, actions on the demand side aim at re-
ducing water use, such as improving irrigation methods and increasing wastewater reuse
(Grafton et al., 2018; Ronco et al., 2017). Based on the characteristics of adaptation prac-
tices, they can be distinguished into soft measures and hard measures (Sovacool, 2011).
Hard measures refer to increasing the capacity of reservoir water systems to satisfy de-
mand (e.g., increasing storage capacity, increasing the number of supply sources such as
groundwater wells and/or connection to neighbors systems), which normally corresponds
to water planning. It is argued that hard measures are economically expensive, inflexi-
ble, and usually constrained by local communities due to the concern for the environment
(Maran et al., 2014). In contrast to hard measures, soft measures place particular em-
phasis on efficient management (e.g., adaptive reservoir operation rules), which is more
flexible but requires balancing the tradeoffs among stakeholders. However, the hard mea-
sures are reported to be more competent in offsetting the vulnerabilities induced by future
changes (e.g., Ehsani et al., 2017). The combined strategy involving hard measures and
soft measures is also appreciated in dealing with global change (e.g., Du et al., 2020).

2.3.1 Actions in reservoir planning

Changes in reservoir system infrastructure

Hard measures like changes in reservoir system infrastructure are long-standing strategies
to offset the impact of global change. Increasing the total efficiency of hydropower gen-
eration by 10% is able to counteract the future water limit conditions and to maintain the
future energy security for most regions of the world (Van Vliet et al., 2016b). In addi-
tion, converting non-powered dams into pump hydro-storage not only increases the water
use efficiency but also provides an opportunity to cooperate with other renewable energy
sources (Emmanouil et al., 2021; François et al., 2014a; Gaudard et al., 2013; Liu et al.,
2016; Patsialis et al., 2016).

Increasing reservoir storage or constructing new reservoirs is promising in mitigating
the future risks where precipitation is prone to increase and/or water demand is expected
to increase (e.g., Bertoni et al., 2019; Eum and Simonovic, 2010; Finger et al., 2012;
Fletcher et al., 2019; Haguma et al., 2017; Hui et al., 2018; Jeuland and Whittington,
2014; Raje and Mujumdar, 2010). Sufficient reservoir storage in these areas is competent
to stock enough water to compensate for the water loss (Ehsani et al., 2017). For example,
in the regions dominated by the monsoon climate, increasing storage of reservoirs can
maintain (or even improve) the original flood control standard and concurrently store
more water for future use (e.g., Raje and Mujumdar, 2010). Note that this case has a
very high ratio of annual inflow to reservoir volume and spills occur every year during
the rainy season. Notwithstanding some adverse arguments among local communities for
the concern of environment (Maran et al., 2014) and the intensive investment (Zarfl et al.,
2015), this option is commonly recommended as an efficient adaptation to global change
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for these regions in the literature.
Changes in reservoir infrastructure should be made under the full investigation of cli-

mate change, LULC, and water demand to avoid maladaptation (IPCC, 2014). In the
northeastern Portugal mountainous catchment, a new reservoir was planned and built to
cooperate with an existing reservoir to secure agricultural water supply (Carvalho-Santos
et al., 2017). The two-reservoir system was designed to better solve the water shortage
problem than a single reservoir under current climate conditions. However, the reliability
of this solution is projected to decrease under future scenarios due to the small drainage
area of this catchment and the expected drying conditions. Another example is located
in the upper Aragon river basin and the current project is to enlarge the reservoir volume
from 476 hm3 to 1059 hm3 (López-Moreno et al., 2014). The water supply including irri-
gation and environmental targets can thus be maintained. However, the basin is projected
to have lower water availability as a result of climate change and forest regeneration. Con-
sequently, the enlargement of the reservoir could be oversized and reservoir storage would
rarely reach half of the expected capacity. Thus, the lessons from the two over-designing
examples highlight the importance of considering future nonstationarity.

Changes in environmental planning

Poff and Zimmerman (2010) reviewed 165 papers and summarized that flow alteration
degraded ecological performance. Environmental regulation flows are thus essential for
reservoir downstream biota and their abiotic environment. Research has been promoting
a sustainable mitigation planning that is to make environmental regulation flows simi-
lar to natural regimes while assuring human water needs and involving small tradeoffs
from other water use sectors (e.g., Morán-Tejeda et al., 2012b; Poff et al., 2015; Renöfält
et al., 2010). However, improving environmental conditions without large losses from hy-
dropower or irrigation remains challenging. Actions in environmental planning are pro-
posed in the literature and are often context specific. Renöfält et al. (2010) reported that
warming climate made electricity demand and hydrological regimes similar in Sweden
with more winter flows and lower spring flood, which means less reservoir conservation
and restoration efforts to benefit freshwater species and ecosystems. While in dry west-
ern United States, watershed restoration planning is encouraged with structural measures
(e.g., fish pathways) to mitigate the river flow alterations (Reclamation, 2021). In partic-
ular, the method that designs overbank flows to mimic natural flow pulses in major river
reaches is proposed to support the spawning of fish species facing extinction and to reduce
trade-offs from irrigation (Reclamation, 2021).

2.3.2 Actions in reservoir management
Changes in operation rules

Maximum utilization of water resource has always been a research hotspot. There is a
large body of literature regarding mathematical optimization methods that are promising
in reservoir water management (see reviews: Dobson et al. 2019; Fayaed et al. 2013;
Labadie 2004; Rani and Moreira 2009). Additionally, the scientific community has drawn
attention to the optimization methods based on metaheuristic algorithms (e.g., genetic
or evolutionary algorithms) to solve complex reservoir water problems and their critical
tradeoffs (see reviews: Maier et al. 2014; Nicklow et al. 2010; Reed et al. 2013). These
methods are proved powerful in tackling water management under current conditions.
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However, all the changes cannot be anticipated in practice and global change is deepening
the uncertainty in the management issues.

In general, changing the current operating policies to adapt to the future changes (i.e.,
adaptive operations) is low-cost and reversible compared with changes in infrastructure.
Most studies claimed the necessity of adaptive operations by comparing the original op-
eration rules and the adaptive operation strategies under global change scenarios. Ex-
amples are hydropower reservoirs (see Haguma et al. 2015; Jahandideh-Tehrani et al.
2014; Minville et al. 2010), irrigation reservoirs (see Ashofteh et al. 2015, 2013), and
multi-purpose reservoirs (see Ahmadi et al. 2014; Giuliani et al. 2016a; Quinn et al. 2017,
2018).

Some studies attempted to derive adaptive operation strategies by testing some changes
on the original operation rules based on future changes. Concerning the snow-dominated
basins, earlier reservoir refill is commonly proposed to buffer the earlier spring flood
and future water shortage under global warming (Hendrickx and Sauquet, 2013; Payne
et al., 2004). Besides, flood policy needs to be reconsidered in climate change conditions.
Relaxing flood control could be a move to prevent water loss in regions with frequent
drought events, such as California (VanRheenen et al., 2004). The incorporation of fore-
casting information should be accompanied to manage flood risk (Huaringa-Alvarez et al.,
2014; Steinschneider and Brown, 2012). Given the intensified competition for water be-
tween hydropower and irrigation under global change, one possible solution is to shift the
hydro-electricity production from winter (for heating) to summer (for cooling) to align
both water use (Pereira-Cardenal et al., 2014). Note that these adaptive strategies should
be revised with caution as the managers are conservative in changes (Raje and Mujumdar,
2010). Furthermore, the adaptive operation rules should be adopted with a consideration
of environment protection (e.g., Poff et al., 2015; Suen, 2010; Yin et al., 2011).

Changes in conjunctive water use

Reservoir water management should not be limited to a narrow reservoir-scale but ex-
tended to a greater sense, such as integrated water resource management (Biswas, 2004).
Since reservoir water problems are becoming increasingly interrelated and interlinked
(e.g., food, energy, and water nexus, see Perrone and Hornberger 2014), changes in con-
junctive water use are needed to adapt to global change. Tilmant et al. (2009) proposed
a dynamic water transfer process to reduce water competition among agricultural and
hydroelectric sectors by compensating farmers with hydropower benefits. Besides, in-
terbasin water conveyance is a practical manner that can settle the unequal distribution
of regional water resource (Liu et al., 2016). Especially in the agricultural sector, water
transfer among reservoirs is a useful method to deal with drought events (Nunes et al.,
2017). In addition to this, allowing water to move among water users with different wa-
ter rights can reduce the overall agricultural loss caused by climate change (Vano et al.,
2010). As such, water market should play an important role in allocating water resource
and managing drought risks in agricultural and urban water users (Loch et al., 2013).

While in the basin scale, groundwater resource plays an important role in complement-
ing irrigation water use. Drying and warming climate would decrease water resource into
reservoirs and increase the water demand for irrigation (e.g., Vicuña et al., 2012). As a
result, groundwater would be excessively extracted to fulfill the irrigation water deficit
and the drop of underground water level would degrade the environment of the basin,
such as salinization. Thus, integrated management of reservoir water and groundwater

26



2.3. Adaptation of reservoir system under global change

should be highlighted for increasing the resilience of reservoir water supply in face of a
changing climate and more importantly for environment protection. Artificial recharge of
groundwater from the reservoir during wet years is a plausible alternative to improve the
dynamics of aquifers (Bangash et al., 2013).

All these changes require a more integrated and cooperative manner of water resource
management (e.g., Zeff et al., 2016). As supported by Dono et al. (2013), improvements
in water use towards a collective way can better succeed in climate change adaptation.
Madani (2010) summarized methods in resolving water resource conflict and proposed
applying game theory in water resource management. Maran et al. (2014) also suggested
that implementing such integrated water resource management should be enhanced with
water governance, which requires professional, institutional, and political participation.

Changes in water demand

Given the complexity of socio-economic changes, a comprehensive representation of wa-
ter demand is rarely considered roundly. However, demand reduction always stands as
a "no-regret" strategy (Hallegatte, 2009; Walsh et al., 2016). For example, in the Pa-
cific Northwest, reducing electricity consumption is a necessary and prudent measure for
the hydropower system to adapt to climate change (Markoff and Cullen, 2008). Instead
of managing to increase the water availability for hydropower or to raise the efficiency
of hydropower facilities, measures to reduce consumption, such as water market design
and price strategies in the management level (Gaudard and Romerio, 2014), are more
prominent in alleviating water stress in such populated regions. Besides, raising public
awareness is also critical.

As for the irrigation reservoirs or irrigation-incorporated multi-purpose reservoirs, the
key aspect is to guarantee sufficient water supply during dry spells. Possible adaptation
actions are changes in practice such as drainage and flood management, modernisation of
irrigation infrastructure, crop selection, and changes in crop calendars. Promoting crop
types with less water requirement is useful in adapting to climate change (e.g., Okkan
and Kirdemir, 2018). However, this option is deficient for regions focusing on a single
crop like paddy rice or wheat in eastern Asia and other options are needed (see, Nam
et al. 2015; Seung-Hwan et al. 2013). Else, increasing irrigation efficiency by water sav-
ing technologies (e.g., dripping or sprinkler irrigation system) is effective to reduce water
loss. For instance, in the Sacramento Valley, water savings are sufficient to counterbal-
ance the negative impact of climate change without adapting the current water manage-
ment (Purkey et al., 2007). Methods in reducing water demand can be combined when
one option is not sufficient to adapt to climate change. This was the case for the irri-
gation reservoir in the Aidoghmoush River basin of northern Iran, for which a decrease
in natural inflows together with an increase in irrigation demand are projected (Ashofteh
et al., 2015, 2013). Ashofteh et al. (2017) tested three measures on the water demand
side to mitigate future water shortage, including delaying planting, deficit irrigation stress
strategy, and improving irrigation efficiency. The results showed that the deficit irrigation
stress outperformed the other two measures in reducing water use. However, crop yield
would decrease, and thus increasing irrigation efficiency is needed to keep the same level
of crop productivity. Note that increasing irrigation efficiency does not mean reducing
water consumption but water loss and improvements in irrigation technology must be ac-
companied by a method like water accounting to avoid misunderstanding (Grafton et al.,
2018; Lecina et al., 2010).
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2.3.3 Adaptation paradigms of reservoir water system
Adaptation of water resource system to climatic and socio-economic changes has become
a key spotlight in scientific community (McMillan et al., 2016; Montanari et al., 2013;
Wasti et al., 2022). The success of adaptation depends on acknowledging the deep uncer-
tainty stemming from these changes and on a robust assessment that is favorable for the
designing of efficient adaptation options (Wilby and Dessai, 2010). "No-regret" strate-
gies that generate benefits regardless of these changes are commonly proposed to bypass
the difficulty in dealing with future uncertainty (Hallegatte, 2009). How water system is
adapted to global change should be supported in practical cases to share experiences, both
negative and positive. As such, we present three case studies to illustrate considerations
of adaptation strategies based on the SECURE Water Act project reports (Reclamation,
2016, 2021) and scientific research: Columbia River basin, Colorado River basin, and
Sacramento-San Joaquin River basin.

Columbia River Basin

The impact of climate change in the Columbia River basin has been extensively exam-
ined (Cohen et al., 2000; Hamlet et al., 2013; Hamlet and Lettenmaier, 1999; Payne
et al., 2004; Vano et al., 2015). Winter runoff is increased and earlier as a result of snow
melting from warming climate, thus reducing the summer water availability. The multi-
purpose reservoir system is faced with reduced reliability to meet objectives including
flood control, hydropower, fisheries habitat protection, irrigation, and recreation (Cohen
et al., 2000; Payne et al., 2004). Under current operation policies, the altered hydrology
regime would cause: 1) a decrease in future flood risks; 2) a decrease in hydropower pro-
duction and revenue; 3) difficulties to achieve fisheries protection goal; 4) a decrease in
agricultural water supply reliability; 5) a high impact on sustained storage level in summer
for recreation due to the lower resulting storage.

Payne et al. (2004) tested four mitigation operational strategies to reduce exacerbated
tradeoffs, including lower flood evacuation with earlier reservoir refill, reallocating winter
energy demand, increasing storage for fishes, and a combination of the three mentioned.
Each mitigation option can be effective to some extent but tradeoffs still exist between
fishery flow targets and hydropower. Generally, the current flood control policy is rec-
ommended to be reconsidered to reduce the overall losses in fisheries and hydropower
production given the future warmer climate. Population growth in this region is expected
to expand, especially in Washington State (US), by a double value in the late 21st century
according to the GMA assessments 1. Thus, energy demand for heating is expected to
increase 50% in the late 21st century while the demand for cooling can be doubled in
the early 21st century under both warming climate and population growth (Hamlet et al.,
2010). The SECURE Water Act project (Reclamation, 2016) is planning to improve the
hydroelectric facilities at the Coulee Dam, the Palisades Dam, the Hungry Horse Dam,
and the Black Canyon Dam to increase power generation efficiency and delivery. Other
energy sources like solar are recommended to satisfy the demand in summer and conjoint
management strategies with other regions are also appreciated (Hamlet et al., 2010). Irri-
gation water demand in the Columbia River basin would increase slightly while the crop
mix had a positive response to climate change, which makes the agriculture sector less

1GMA: the Washington State Growth Management Act, see http://www.ofm.wa.gov/pop/gma/
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vulnerable (Rajagopalan et al., 2018). The rehabilitation efforts such as providing habitat
access, increasing fish passage, and enhancing instream flows can mitigate the impact of
climate change on fishery protection (Reclamation, 2016, 2021). Hamlet (2011) proposed
that the success of adaptation strategies in the Columbia River basin hinged on the col-
laboration of stakeholders, the efficient communication of water agencies, and the federal
participation.

Colorado River basin

The Colorado River basin is one of the over-allocated regions in the world, where twelve
major reservoirs are cooperated to meet the objectives of agriculture, municipal water de-
mand, flood control, and hydropower production (Castle et al., 2014; Christensen et al.,
2004; Fleck and Udall, 2021). There is a consensus on the reduced water availability in
the Colorado River basin with an increase in temperature, an earlier snowmelting, and a
probable decrease in precipitation (e.g., Clow, 2010; Dawadi and Ahmad, 2012; McCabe
and Wolock, 2007; Vano et al., 2014). The reduced water availability degrades the man-
agement of the Colorado water system, leading to hydropower decreases and contract
violations (Christensen and Lettenmaier, 2007; Christensen et al., 2004). Besides, the
past poor planning of the reservoirs (over-estimated storage requirement) also contributes
to the degradation of Colorado reservoir system performance. Water shortage due to fre-
quent drought events stimulates groundwater consumption and groundwater extraction
will probably not be balanced by recharge, which further aggravates the over-allocation
of water resource in the basin (Castle et al., 2014).

Given the already large storage of Colorado water resource system to annual average
flow ratio (four times based on historical data), it is unlikely that changes in operating
strategies can sufficiently buffer the influence of climate, nor the changes in reservoir
capacity (Christensen and Lettenmaier, 2007; Christensen et al., 2004; Fleck and Udall,
2021). However, Rajagopalan et al. (2009) reported that flexible operation policies could
mitigate some of the adverse effects of reduced water resource in the Colorado River
basin. While the management of the Colorado River basin is very complicated with a set
of agreements and contracts over the last 100 years, the rapid adjustment of policy will not
be a simple task (Udall and Overpeck, 2017). Thus, water deliveries can be maintained
in a sustainable way when the average supply can be reduced to 0-20% compared with
the current state (Barnett and Pierce, 2009). The SECURE Water Act project (Recla-
mation, 2016) proposed a set of portfolios for agricultural (e.g., irrigation with buried
pipes or sprinkler systems to reduce loss, and application of advanced flow meter and au-
tomated valves/gates to increase efficiency) and municipal/industrial water conservation
(e.g., installation of water meters to monitor usage, wastewater reuse, and construction
of recharge basins to maintain groundwater storage). Besides, ocean water desalination,
rainwater harvesting, and importation from other river basins (e.g., Missouri River and
Columbia River basins) increase the water supply capacity of the Colorado River basin
(Reclamation, 2016, 2021). Given the lower water levels of the Hoover Dam and the Lake
Mead, some of the existing hydroelectric turbines are replaced with wide-head turbines
to increase hydropower efficiency (Reclamation, 2016). Also, the SECURE Water Act
project (Reclamation, 2021) actively contributes to enhancing environmental flows of the
Colorado River basin, such as the coordination of reservoir operations and the promotion
of fish recovery program.
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Sacramento-San Joaquin River basin

The Sacramento-San Joaquin river basin consists of two major projects: Central Valley
Project and State Water Project. They are aimed at water deliveries, fish/environment
conservation, hydropower, and flood control. Numerous studies reported a marked warm-
ing effect (Anderson et al., 2007), and a probable increasing trend of precipitation with
large inter-annual variability in California (Brekke et al., 2009, 2004; Georgakakos et al.,
2012b; VanRheenen et al., 2004). In general, the influence of climate change would result
in a seasonal shift of snowing melting, increased winter-spring flood risk, and decreased
water availability during summer (Georgakakos et al., 2012b; Pagán et al., 2016; Vicuna
et al., 2007). As a result, the performance of the two projects is vulnerable to climate
change (Ray et al., 2020). Besides, water competition in the basin will exacerbate the
overuse of groundwater due to reduced water supply from the reservoir system (Alam
et al., 2019; Mehta et al., 2013).

VanRheenen et al. (2004) examined three adaptation actions including earlier reser-
voir refill, adaptive flood control curves, and a combination of the two. The simulation
results showed that the combination of the two outperformed the other actions while the
tradeoffs between hydropower production and fish/environment requirements still exist.
To reduce these tradeoffs, increasing reservoir storage and updating hydroelectric infras-
tructures can be effective (Madani and Lund, 2009; VanRheenen et al., 2004). Tanaka
et al. (2006), Groves et al. (2008), Purkey et al. (2007), and Georgakakos et al. (2012a)
suggested that integrated regional water management and sustainable groundwater man-
agement can be useful to deal with the challenges of warming climate, population growth,
and lifestyle changes. The SECURE Water Act project reported that increasing agricul-
tural, municipal, and industrial water use efficiency improves the system performance at
minimum cost (Reclamation, 2016). The method of transferring to an improved irrigation
technology (e.g., drip and micro-sprinkler) should be accompanied by crop diversifica-
tion to reduce the agricultural vulnerabilities to climate change (Mehta et al., 2013). New
plannings to reduce winter-spring flood risk are also needed, such as constructing flood
bypasses and improving levees (Andrew and Sauquet, 2017). To ensure the implementa-
tion of these adaptive strategies, government participation to enhance the communication
among stakeholders and institutional reform to improve the local authority cooperation
are also essential from a political perspective (Andrew and Sauquet, 2017; Hanak and
Lund, 2011).
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2.4 Challenge of adaptation under global change
How reservoir systems can be adapted to future changes requires not only a far-sighted

view of possible changes in water supply and water demand but also a thorough under-
standing of the socio-hydrology relationship (Di Baldassarre et al., 2018; Kellner, 2021;
Sivapalan and Blöschl, 2015). Adapting to global change must reject stationary practice
that hinges on historical conditions, and embrace non-stationary planning and manage-
ment. Given the deep uncertainty, adaptation of reservoir systems to global change is
challenging. In general, the process of adaptation to global change involves three ba-
sic steps: first, a comprehensive assessment of the system to change; second, adaptive
strategies design and adaptation options appraisal in a decision-making framework; third,
adaptation implementation. Challenges remain in each step.

2.4.1 Challenges in the assessment approaches

As the basis for developing adaptation strategies, there are two main frameworks to con-
duct an investigation of global change on water systems: top-down approach (scenario-
based) and bottom-up approach (vulnerability-based). Figure 2.2 shows the flow chart of
the two approaches.

Top-down approach Initially, IPCC groups project future climate conditions based
on climate models through a sequence of consequences under different scenarios of GHG
emissions. Following this philosophy to investigate the potential implications of climate
change on a specific system (e.g., hydrological, ecological, or socio-economical systems),
the projections of impacts are extended through a succession of models that represent the
system as presented in Figure 2.2a. This method produces the possible alterations of the
system for different future time slices given by scenarios, which can then be compared
with historical system conditions. In the case of reservoir systems, the top-down approach
is implemented as follows. First, future climate conditions are projected from GCMs with
given GHG scenarios as input. Whereas, the coarse estimates, which typically have a spa-
tial resolution of 2 degrees, do not match with the regional or local impact assessment
(Tapiador et al., 2020). Second, these outputs from GCMs are downscaled by statistical
method, or RCMs (see reviews, Ekström et al. 2015; Wilby and Wigley 1997), and there-
after bias correction. Third, the downscaled climatic variables are propagated through a
modelling chain (e.g., hydrological model, a water demand model, and a water system
model) that represents the reservoir system. Finally, a "snap-shot" of future time slices
of reservoir water management can be derived and then compared to current situations to
estimate system performance in the future. Socio-economic features can also be included
in this impact assessment procedure.

Bottom-up approach Contrary to the scenario-led top-down approach, the bottom-
up approach shifts attention to the vulnerability analysis of an existing system to cli-
matic (and non-climatic) attributes as presented in Figure 2.2b. The bottom-up approach
launches by establishing a plausible range (upper and lower bounds) of the driving climate
variables to the system, which can be wider than the limits of climate change projections
(Guo et al., 2017). This plausible range frames the "exposure space" as described in Cul-
ley et al. (2016). Climate change scenarios in the "exposure space" are then generated
through the perturbations of historical climate variables either by parametric method (i.e.,
simple scaling factor, see Prudhomme et al. 2013a,b, 2015; Weiß 2011) or by stochastic
method (i.e., weather generator, see Culley et al. 2019; Guo et al. 2017; Steinschneider
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Figure 2.2 – Adaptation to climate change in the top-down approach (a) and bottom-up
approach (b). The figure of top-down approach is modified from the Figure 1 in Wilby
and Dessai (2010). The figure of bottom-up approach is based on the "scenario-neutral"
concept in Prudhomme et al. (2010).
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and Brown 2013; Steinschneider et al. 2019). The succeeding step involves the sensitivity
analysis (or stress test) to assess the response of the system’s performance indicators to
the spectrum of perturbed climate scenarios. Exposure is climate change projections to
which the system could be exposed. Threshold is the limit beyond which the system per-
forms unsatisfactorily. As such, potential changes can thus be assessed by the sensitivity
and exposure of the system (Prudhomme et al., 2013b). The vulnerability of the system
can thus be perceived by comparing the potential changes to the predefined threshold (a
summary of thresholds in Sauquet et al. 2019). In practice, the "response surface" tool
(see Prudhomme et al. 2010; Sauquet et al. 2019) is employed to illustrate the results of
the bottom-up approach.

Among the two frameworks, the top-down approach dominates in the literature while
the bottom-up approach has emerged as an alternative to bypass the shortcomings of the
top-down assessment (Brown and Wilby, 2012a; Wilby and Dessai, 2010). Table 2.2 sum-
marizes the advantages and the limitations of the top-down and the bottom-up approaches
for the development of adaptation strategies. The bottom-up approach is flexible in that
the "exposure space" is not constrained to climatic variables (e.g., hydrological variables
such as mean flow in Poff et al. 2015 and glacier coverage in Puspitarini et al. 2020; socio-
economic variables such as water demand/supply in Foti et al. 2014, LULC changes in
see Singh et al. 2014, and financial issues in Ray et al. 2018).

Table 2.2 – Advantages and limitations of the top-down and bottom-up approaches for
adaptation development

Advantages Limitations

Top-down An entire timeline of climate
change with respect to history (Kö-
plin et al., 2012)

Identification and quantification of
sources of uncertainty in models
(Vidal et al., 2016)

A cascade of uncertainty propagat-
ing through the modelling chain
(Figure 2.2a)

A lower bound of the full range
of uncertainty (Hallegatte, 2009;
Stainforth et al., 2007)

Not favorable for decision-making
(Prudhomme et al., 2013a)

Bottom-up Flexible and versatile structure
(Prudhomme et al., 2010)

A consideration of extreme events
in the sensitivity analysis (Broder-
ick et al., 2019)

Easier identification of system vul-
nerability under changes to refine
management (Ghile et al., 2013;
Guo et al., 2017)

Lacking generalized tools to pro-
duce non-stationary climate vari-
ables (Steinschneider and Brown,
2013; Vormoor et al., 2017)

Challenges in defining the system
thredhold (Sauquet et al., 2019)

However, when it comes to water planning and management under global change,
managers seek the risk-relevant explanation of future situations (Lempert et al., 2004).
The determination of risk in water planning and management involves two aspects that
are the occurrence probability of an adverse event and its associated consequences (Jones,
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2001). Even though attempts have been made in the top-down approach with ensemble-
based projections to quantify uncertainty (e.g., Harris et al., 2010; Konzmann et al., 2013;
Terray and Boé, 2013a; Vidal et al., 2016; Wada et al., 2013), the realistic (or "true" as
described in Brown et al. 2012) range of uncertainty of climate change implications is un-
known (Stainforth et al., 2007). Rather than a manner of prediction, approaches have been
proposed to first concentrate on understanding the vulnerability of the system to changes
by placing the top-down projections at a later stage to inform risks, instead of driving
risks (e.g., Brown et al., 2012; Brown and Wilby, 2012a; Jones, 2001; Lempert et al.,
2006; Prudhomme et al., 2015, 2010; Sauquet et al., 2019). Through probabilistic pro-
jections of hazards (e.g., Brekke et al., 2009), termed as relative or subjective probability
(Brown et al., 2012), the bottom-up and top-down approaches are linked.

The combined approach that integrates the results from the top-down and bottom-up
approaches provides complementary insights into the system under changes. This ap-
proach takes a step forward in supporting adaptation planning and management decisions
by closely connecting scientists, water managers, and stakeholders (Conway et al., 2019;
Mastrandrea et al., 2010). The results of this combined approach can be immediately up-
dated to inform risks when new projection information is available, which is cost-efficient
(Prudhomme et al., 2010). However, the generated probability information is relative (or
subjective), which should be explained with caution to avoid the pitfalls that managers
take the relative probability as the true occurrence of future events (Brown et al., 2012;
Lempert et al., 2004). A critical challenge remains in defining system performance met-
rics and associated thresholds, which requires deep cooperation with managers and stake-
holders (Sauquet et al., 2019). Besides, the generation of plausible and realistic climate
scenarios requires the effort of the scientific community (e.g., Culley et al., 2019; Guo
et al., 2018; Whateley et al., 2016).

2.4.2 Challenges in the design and appraisal of adaptation
Impact assessment under global change is essential to provide reliable and robust infor-
mation for the design of adaptation options. Section 4.1 illustrated that the bottom-up
approach is highlighted to bring necessary information to support adaptation (Conway
et al., 2019). Table 2.3 lists the selected studies that applied the bottom-up approach on
reservoir water systems for the design of adaptation strategies.

Concerning the design of adaptation, the "predict-then-act" framework (i.e., top-down
framework in Figure 2.2a) is significantly deficient in dealing with projection uncertainty
(Lempert et al., 2004, 2006). Some explored the potential for narrowing projection un-
certainty (e.g., Hawkins and Sutton, 2009, 2010). An alternative is the bottom-up ap-
proach by understanding how the system responds to plausible changes and minimizing
"regret". As such, practical adaptation options can thus be made to reduce vulnerability.
For example, Schlef et al. (2018) demonstrated that a water supply system in the south-
eastern United States was more sensitive to changes in precipitation than temperature.
This implies that the design of adaptation should be capable of withstanding precipita-
tion changes and that reducing the uncertainty of future precipitation projection should
be attached more importance to better inform risks. However, most studies are limited in
testing climatic stresses (i.e., changes in precipitation and temperature from Table 2.3).
Socio-economic stress variables, such as water demand, land use change, and popula-
tion growth, and ecological requirements (e.g., environmental regulation flow) should be
further investigated to refine the adaptation design.
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Section 3.1 presents possible actions that can be implemented for reservoir water sys-
tems to mitigate and adapt to global change. The consequent questions for water re-
source managers are how to choose efficient adaptation measures and to what extent these
measures should be planned. In addition to traditional "cost-benefit" analysis, frame-
works such as "Info-gap" (e.g., Hipel and Ben-Haim, 1999), "Robust Decision Mak-
ing (RDM)" (e.g., Lempert et al., 2004) (including advanced RDM frameworks, such
as Many-Objective RDM, see Kasprzyk et al. 2013, and Hadjimichael et al. 2020 for a
dedicated tool), "Decision Scaling" (e.g., Brown et al., 2012), and "Borg Multiobjective
Evolutionary Algorithm (MOEA)" (e.g., Hadka and Reed, 2013) are proposed to improve
decision-making under uncertainty. In particular, the "Many-Objective RDM" and "Borg
MOEA" frameworks are powerful tools to deal with the tradeoffs in reservoir water plan-
ning and management (e.g., Giuliani et al., 2016b, 2014; Herman et al., 2014). Walker
et al. (2013) further suggested that adaptation decisions could be implemented in a dy-
namic process by monitoring vulnerability changes and updating adaptation actions when
these monitored changes reach the predefined trigger points. To this end, the framework
"Dynamic Adaptive Policy Pathways" is proposed by Haasnoot et al. (2013) to guide
the implementation of future adaptation actions. Several studies (e.g., Dias et al., 2020;
Kingsborough et al., 2016; Zandvoort et al., 2017) applied this framework to water system
adaptation under global change. Efficient adaptation strategies hinge on connecting short-
term actions with long-term planning in a dynamic way (Walker et al., 2013). However,
the functioning of this dynamic adaptation approach could be challenged by intensive
monitoring demand (Metzger et al., 2021).

Adaptation metrics has become a central issue in the appraisal of adaptation options.
Traditionally, RRV (Reliability, Resilience, and Vulnerability) metrics are used to evalu-
ate the performance of water systems in terms of the frequency, duration, and severity of
their failure (Hashimoto et al., 1982b). For instance, Haro-Monteagudo et al. (2020) ap-
plied RRV metrics to evaluate the performance of the irrigation system in northern Spain
under climate change. Further, the concept of "robustness" was proposed in the literature
to guide how to decide in the decision-making framework under deep uncertainty (e.g.,
Hashimoto et al., 1982a; Maier et al., 2016; Wilby and Dessai, 2010) and there are mul-
tiple definitions for robustness metrics (see review Herman et al. 2015). An informed
robustness definition, such as climate-informed robustness index, is supportive in making
decisions under the deep uncertainty of climate change (Whateley et al., 2014). Gener-
ally, robustness is stated when a system performs acceptably to a broad range of plausible
futures (Metzger et al., 2021). However, different definitions of robustness metrics could
lead to different decision-making consequences (Giuliani and Castelletti, 2016). Herman
et al. (2015) also suggested a multivariate mechanism of robustness metrics that is useful
for stakeholders to explore potential decision consequences and to capture their interest.
In brief, a careful formulation of robustness metrics prevents from maladaptation to global
change (Ekström et al., 2018).

2.4.3 Challenges in the participation of stakeholders and managers
Robust adaptation to global change requires active engagements of scientists, stakehold-
ers, and managers not only in the adaptation designing but also in the practical implemen-
tation. The adaptation implementation could be impeded by conflicting interests among
stakeholders. A particular example is the long-lasting debate on whether to construct
reservoirs to mitigate water crisis (e.g., Ansar et al., 2014; Berga, 2016; Poff et al., 2015;
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Zarfl et al., 2015). In addition, how to motivate water managers to positively participate
in adapting to global change is rather challenging. Firstly, changing their attitude from
stationary-based practice to uncertainty-based management is difficult (Bates et al., 2008).
Secondly, managers are conservative in changes for fear of the losses or the risks brought
by changing (see the case described in Raje and Mujumdar 2010). Thirdly, reservoir
managers are reluctant to share data, making it problematic to model reservoir systems
for impact assessment (Schaefli, 2015).

Efficient communication is thus crucial due to gaps in knowledge and professional
backgrounds. A "common language" mechanism should be established to bridge these
gaps (Viviroli et al., 2011), which necessitates the deeper comprehension of the coupled
hydrology-society system (Ceola et al., 2016; Montanari et al., 2013). Multidisciplinary
scientific cooperation and integration between research and management promote pro-
voking and innovative perspectives for decision-makers (Ceola et al., 2016). For exam-
ple, the expertise of economists supports the appropriate decision or policy in adaptation
selection and implementation (Hallegatte, 2009). Although proactive adaptation is more
advantageous to reduce long-term global change risk than reactive adaptation (see the
example in Palmer et al. 2008), the uncertainty regarding the future, the inflexible institu-
tion that increases decision-making time, economic constraints, and other barriers hamper
decision-makers to generate adaptive programs in time. Enhancing institutional capacity
and governance could be essential (Amundsen et al., 2010; Metzger et al., 2021).
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2.5 Conclusion

The previous sections have argued that global change is altering the performance of
reservoir water systems and that adaptation strategies are necessary to reduce the associ-
ated risks. It is broadly accepted that deep uncertainty on future changes not only climatic
but also socio-economic renders the adaptation challenging. The International Associa-
tion of Hydrological Sciences (IAHS) stated a flexible and resilience assessment frame-
work is fundamental to appraise the future risks and design adaptive measures from the
perspective of general water resource system (Ceola et al., 2016). Reservoirs, as major
components in water systems, are worth discussing in detail to contribute to the adapta-
tion of the whole water systems. Therefore, this review contributes to firstly explore the
potential implication of global change on hydropower, agricultural, and multi-purpose
reservoirs, secondly summarize the plausible adaptation strategies dedicated to reservoir
systems with three cases, and thirdly analyze the challenges in adaptation procedures.

Given the global change impact on reservoir water management, the risks raise with
the spatial and temporal changes in water availability, alteration of demand pattern, and
the tradeoffs among reservoir functions. At the global scale, an agreement is found in
the literature that water inflows are likely to increase in high-latitude reservoirs (e.g.,
Canada), and to decrease in mid-latitude reservoirs (e.g., Mediterranean region). Regional
and local heterogeneity require refined evaluation on reservoir system cases (e.g., the
transition characteristics of the Alps). On the other hand, socio-economic changes such
as population growth, land use change, and policies introduce endogenous uncertainty in
the assessment, which is seldom addressed in the literature. Going forward, integration of
the socio-economic drivers is thus essential in thoroughly examining the impact of global
change on reservoir water planning and management by coupling human-natural systems
(Kellner, 2021).

In general, adaptation of large hydropower reservoirs can be realized through in-
creasing hydropower production efficiency and integrated management programs (e.g.,
Van Vliet et al., 2016a,b). Adaptively changing the current operating policies is the most
cost-efficient way for a medium or small-size hydropower reservoir system. As for reser-
voirs involved with irrigation purpose, the key aspect is secure water supply during the
water shortage period. The adaptation strategies should be made from two sides: increas-
ing water supply ability (e.g., building new infrastructure, reasonable use of underground
water) and decreasing water consumption (e.g., water right strategy, crops with less wa-
ter demand). Given the inherent tradeoffs of multi-purpose reservoirs, the possible ways
to alleviate water competition from a management perspective are aligning several water
uses (e.g., hydropower and irrigation), compromising flood standards for some drying ar-
eas, and integrated water resource management. However, Di Baldassarre et al. (2018)
argued that enhancing water supply by building reservoirs could increase the dependency
on reservoirs and thus in turn increase the vulnerability when severe drought events oc-
curs. The characteristics of reservoir systems (e.g., storage capacity and operating policy)
might delay the timely observation of management problems (Garcia et al., 2020). Effi-
cient monitoring and feedback mechanisms are thus essential after adaptation (Metzger
et al., 2021).

In all, robust adaptation hinges on the accuracy and reliability of impact evaluation
on future changes. The scenario-led approach dominates in the literature in outlining
adaptive measures to global change. Despite the benefits in framing the storyline of fu-
ture changes and in quantifying uncertainty sources in modelling chain, this approach
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is flawed in making decisions in the context of adaptation. Flexible vulnerability-based
approach is in favor of designing robust adaptation strategies to improve reservoir wa-
ter planning and management under global change. Finally, unless scientists, reservoir
managers, and stakeholders are actively engaged in participation and communication, the
success of adapting reservoir water systems to global change will not be attained.
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3
Materials

This chapter presents the study case, the Neste water system,
and its current management modes, as well as the dataset used
in the following work.
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Figure 3.1 – A simplified schema of the Neste water system and the associated abbrevia-
tions used in this chapter.
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3.1 General conditions of the Neste water system

3.1.1 Topography and climatology
The Pyrenees is an east-west mountain range as the border between Andorra, France,
and Spain, providing important water resources for local regions. This work targets the
Neste water system in the French Pyrenees and Figure 3.2 shows the location of the sys-
tem. The Neste water system is divided into two parts: the upstream Aure Valley and
the downstream Gascogne region. Figure 3.3 details the topographic and hypsometric
overview for the upstream Aure Valley and the downstream Gascogne region.
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The Aure Valley is located in the Hautes-Pyrénées department of the Occitanie ad-
ministrative region of France. It is characterized as a typical mountainous area with the
summit of 3147 m. The Aure Valley forms the westernmost part of the Garonne Basin
and contributes to the Garonne River through the Neste River.

The Gascogne region, located in the western Occitanie, includes the majority of the
Gers administrative department as well as portions of the surrounding departments. Be-
sides, it is also located in the Lannemezan plateau area downstream the central Pyrenees,
a large fluvio-glacial alluvial cone, with around 80% of plain land. The Gascogne region
was built by the Neste River during the ancient Quaternary after which the course of this
river was diverted to the east during the Quaternary (Icole, 1969; Patin, 1967). The rivers
in the Gascogne region contributes to the middle of the Garonne River.

Figure 3.4 shows the monthly regime of precipitation and temperature for the Aure
Valley and the Gascogne region, respectively. The climate of the Neste water system is
characterized by wet and cold winter, and dry and hot summer.
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Figure 3.4 – The monthly median precipitation and temperature for the Aure Valley and
the Gascogne region during the period from 1979-09-01 to 2014-08-31. The error bars
are defined by 25% and 75% quantiles with black for precipitation and orange for tem-
perature. These values are calculated based on the Safran-PIRAGUA reanalysis data.

The climate in the Pyrenees is influenced by the Atlantic Ocean in the west and the
Mediterranean Sea in the east whose effects are demonstrated into temperate marine cli-
mate (mild summer and cool winter; high annual precipitation) and Mediterranean-style
climate (hot and dry summer; mild and wet winter), respectively. As a central valley of
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the Pyrenees, the Aure Valley has more relatively drought events than the western part,
with a moderate rainfall. The influence of westerly winds, which carry moist air from
the Atlantic Ocean, is less effective here due to the block of the Arbizon massif (Ingrand,
1961). The mean annual precipitation in the Aure Valley is 1438 mm calculated from the
Safran-PIRAGUA reanalysis (Quintana-Seguí et al., 2016, 2017; Vidal et al., 2010) and
most water resource is stored as snow during winter period. In addition, southern heat
penetrates through the border ridge, affecting the upper valley particularly, and snow melt
dominates the spring flows.

Concerning the climate in the Gascogne region, its geographical position determines
the confluence of air masses coming down from the Pyrenees and those coming from
the Atlantic Ocean and, to a lesser extent, Mediterranean influences. The mean annual
precipitation in the Gascogne region is 786 mm calculated from the Safran-PIRAGUA
reanalysis, which is less efficient than that of the Aure Valley. Besides, the mean daily
temperature in the Gascogne region is 12.5 °C, which is higher than that of the Aure
Valley 5.5 °C, due to the higher elevation of the Gascogne region.

3.1.2 Water infrastructures in the Neste water system
The Gascogne region, crossed by fan-shaped valleys, presents an important rural area with
a very wide diversity of landscapes and soil types, which is advantageous for agriculture
development (Icole, 1969). The economy in the area of the Neste water system is based
mainly on agriculture, poultry and livestock. Taking the Gers department as an example,
the agricultural sector represented 12.1% of employment in 2014, three times more than
that of the Occitanie administrative region (Insee, 2014).

Concerning the crop cultivation, maize, wheat, rapeseed, soybean, and sunflower are
the main crops in the Gascogne region. Besides, the crops, mostly maize and soybean,
are irrigated through travelling gun sprinklers (Maton et al., 2005). Particularly, maize
cultivation in the Gers department accounts for around 73% of total irrigated area surface
and 77% of total irrigated water volume from 2000 to 2005 (Teyssier, 2006). As such,
maize cultivation in the Gascogne region is an important source of animal feed and starch
industries for local uses and France (Caubel et al., 2018; Leenhardt et al., 2004a).

The agriculture-based economy structure of the Gascogne region determines its high
water consumption characteristics. However, water resources in the Gascogne region is
naturally inadequate compared with water demand patterns, especially in summer when
agriculture water demand is high and precipitation is low. Besides, as mentioned before,
the Neste River diverts towards east without contributing to the northern Gascogne region
(see Figure 3.2). Therefore, the Gascogne region is separated from the Pyrenees and does
not benefit from Pyrenean snowmelt (Leenhardt et al., 2004a,b).

In order to compensate for this inadequacy of natural water resource in the Gascogne
region, the water distribution system that depends on the Neste Canal was constructed
from 1848 to 1862 to artificially divert abundant water resource from the Neste River
and upstream reservoirs into downstream rivers and reservoirs in the Gascogne region.
Figure 3.5 illustrates the Neste water system that includes the reservoirs in the upstream
Aure Valley, the Neste Canal, and the reservoirs in the downstream Gascogne region. The
Neste Canal, 28.6 km long, transfers water with a maximum capacity of 14 m3/s from
the Neste River at Sarrancolin. It then distributes it to 17 downstream rivers (e.g., Bouès,
Baïs, Baïsole, Gers, Gimone, Save, Louge) via a network of 90 km of channels. Be-
sides, reservoirs in the Neste water system store and redistribute water resource to ensure
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the necessary water demand throughout the year (hydropower production, agricultural ir-
rigation, environmental support, drinking water supply, and industrial uses). Table 3.1
summarizes the general information of the 15 major reservoirs in the Neste water system.
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from CACG (2019).
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Table 3.1 – Main characteristics of the 19 major reservoirs in the Neste water system

Name River Owner Department Max volume [MMMmmm333]

The Aure Valley 50.1

Oule Neste SHEM 65 16.6

Orédon Neste SHEM 65 7.27

Caillaouas Neste SHEM 65 25.4

Pouchergues Neste SHEM 65 0.83

The Gascogne region 73.3

Antin Bouès CACG 65 0.47

Astarac Arrats Department council 32 10.0

Baradée Guiroue Syndicate 32 2.30

Cassagnaou Bouès Syndicate 32 0.60

Esparron Nère Syndicate 31 0.50

Gimone Gimone CACG 31 & 32 24.0

Lizet Osse Department council 32 3.40

Lizon Baïse Department council 65 1.45

Magnoac Gers Department council 65 4.95

Miélan Osse CACG 32 3.72

Puydarrieux Baïsole CACG 65 14.0

Sère Rustaing Bouès CACG 65 2.50

Tillac Bouès Syndicate 32 1.00

Saint-Frajou Aussoue CACG 31 2.93

Marcaoué Marcaoué Authorized association 32 1.50

Note: the department codes 31, 32, and 65 correspond to Haute Garonne, Gers, and Hautes Pyrénées,
respectively. The source is from CACG (2019).

In summary, the water infrastructures of the Neste water system have a pivotal role in
managing water resources of the Aure Valley and the Gascogne region. They are managed
in a coordinated manner to address the issue of water scarcity and water conflicts related
to multipurpose uses of the study area. The current water management for the Aure Valley
and the Gascogne region is presented in the next sub-sections.

3.1.3 Water management in the Neste water system: the Aure Valley

Despite the slight insufficiency of precipitation to the western part of the Pyrenees, the
abrupt topography of the Aure Valley (see Figure 3.3) compensates for this shortage and
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allows the intensive exploitation of hydropower (Ingrand, 1961). Figure 3.6 shows the
location of reservoirs (Oule, Orédon, Caillaouas, and Pouchergues) in the Aure Valley,
including the four corresponding sub-basins located in Figure 3.1: the sub-basins (SB1-
3) upstream the reservoirs and the intermediate catchment (SB4) between the outlets of
the reservoirs and Sarrancolin.
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Figure 3.6 – The drainage area of the Oule, Orédon, Caillaouas, and Pouchergues reser-
voirs.

Figure 3.7 illustrates the sketch of the water system dedicated to hydropower pro-
duction in the Aure Valley. Two main hydroelectricity producers in the valley are the
SHEM company that manages the several reservoirs (in orange in Figure 3.7) of the val-
ley and EDF1 that manages the westernmost part of the valley (including the Cap de
Long, Aubert, and Aumar reservoirs in Figure 3.7). Natural water flow to the Aure Valley
is partly diverted: the westernmost part is transferred outside the Aure Valley (into the
western neighbour Gavarnie Valley for the Pragnères hydropower plant2) and is thus not
considered in this study.

Water in the Oule and Orédon reservoirs generates hydropower in the Eget plant while
water in Caillaouas and Pouchergues reservoirs generates hydropower through a cascade
of plants, the Louron system. The two hydropower groups are presented individually as
follows.

1Electricité de France (www.edf.fr) is a French electric utility company
2https://www.edf.fr/sites/default/files/Hydraulique/Sud-Ouest/documents/

plaquette_edf_hydro_pragneres_2018.pdf
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Eget hydropower group The Oule reservoir is located at the outlet of SB1 with an alti-
tude of 1800 m. Its normal pool level is 1816.5 m and the minimum pool level is
1777.0 m. It receives, in addition to the water volume of SB1, the water transfer
from the Orédon reservoir via an underground pressure pipeline. This Orédon reser-
voir stores water from SB2, and also environmental flows from upstream reservoirs,
Cap de Long and Aubert. Besides, the normal pool level of the Orédon reservoir is
1849.4 m and minimum pool level 1825.0 m. Water stored in the Oule reservoir will
be forced to the hydropower plant with a water fall of 728 m, and then be dropped
into the riverway.

Louron hydropower group The two main reservoirs, the Caillaouas and Pouchergues,
compose the Louron hydropower group. The Caillaouas reservoir, located at the
foot of the glacier Gourgs-Blancs, stores the melted snow water from this glacier.
The normal pool level of the Caillaouas is 2172.5 m and the minimum pool level
2112.0 m. The Pouchergues reservoir receives water from the same glacier, as well
as, by artificial adduction, the water volume from the Aygues-Tortes Lake. Note
that, in Figure 3.6, the drainage area upstream the Pouchergues reservoir includes
two parts and water in the left part (water intake from the Aygne-Tortes Lake) is
transferred into the Pouchergues reservoir in the right part. The normal pool level
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of the Pouchergues is 2111.0 m and the minimum pool level 2105.0 m.

The water storage in the Pouchergues can be transferred into the Caillaouas by
gravity or by pumping station and can also be delivered directly to downstream
cascade power plants. The Lassoula plant exclusively generates electricity with the
water releases by the two reservoirs without any intermediate water adduction. The
downstream Tramezaygues plant does not only use water from Lassoula but also re-
ceives complementary adduction from the upstream rivers (the Neste de Caillaouas,
the Neste de Clarabide, the Neste de Lapes). All these along with water from the
Aube basin will be released into the Loudenvielle-Genos reservoir to produce en-
ergy at the Pont d’Estagnou plant. The discharge out of the Pont d’Estagnou plant
goes directly into the Neste River.

In summary, the favorable condition in the Aure Valley allows full use of hydropower.
Besides, it is required that reservoirs should provide environmental flows (eflows) to sup-
port the downstream riverine ecosystem. Table 3.2 summarizes the physiographic charac-
teristics and environmental flows for the four reservoirs and the corresponding four sub-
basins. Table 3.3 summarizes the main characteristics of the hydropower plants exploited
for the two hydropwer groups.

In addition to hydropower generation, the water storage in the four reservoirs (Oule,
Orédon, Caillaouas, and Pouchergues) is oriented to provide at most 48 Mm3 of water
for uses (irrigation, drinking water, industrial use, and ecological flows) in the Gascogne
region that is managed by CACG. This 48 Mm3 amount of water can only be required by
CACG during the period from 15 June to 1 March of the next year. As such, the man-
agement of the four reservoirs can be expressed in a rational way as: how to achieve the
maximum profit of the hydropower generation under the major constraint of downstream
water demand, as well as the reserve for the support of the environment downstream the
reservoirs.

To simplify the study case, the two hypotheses are: (1) SB4 is seen as near-natural
due to the comparatively small regulation storage of the reservoirs in this sub-basin as
shown in Table 3.2; (2) the Caillaouas and the Pouchergues reservoirs can be considered
as a single one because they are jointly managed.

Current management rules of SHEM

Since the liberalisation of European electric markets that is legislatively acknowledged at
the European Union level in 1996, hydropower has jumped to an important position in the
existing energy grids because it is a low-carbon source of renewable energy (Jamasb and
Pollitt, 2005; Schittekatte et al., 2021). Hydropower is flexible enough to cooperate with
other green energies (e.g., wind and solar resources). Therefore, reservoir water managers
are faced with increasing tradeoffs and conflicts. How to keep the high productivity of
hydropower while the needs of different stakeholders are well satisfied is challenging.

Currently, SHEM optimizes the hydropower groups by forcing the predicted inflows
into the reservoirs, the estimated CACG demand and the predicted electricity price to the
optimization procedure, with some restraint parameters (e.g., eflows and non-availability
of hydropower plants). The outcome of this procedure is water value in unit e/m3 for
each reservoir storage, which guides the management of SHEM. The four reservoirs are
managed together in a single-year pattern to meet multiple purposes. This annual op-
eration process starts from the beginning of April to the end of March of the next year.
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The reservoirs are emptied out every end of March so that they can be able to contain the
capacity of snow melt. In this work, we assume that the reservoir management remains
identical since the liberalization of European electric markets.

The electricity produced by SHEM can be purchased in the electric markets while
some can still be redeemed of what has been promised if not profitable due to unusual
circumstances (unexpected heat in some months causing less energy consumption). The
estimation of electricity price in the markets fluctuates depending on current meteorolog-
ical conditions and other external factors such as gas price.

In addition to hydropower production and regulatory eflows, as said above, SHEM is
committed to provide at most 48 Mm3 of water to CACG for water uses in the Gascogne
region and environmental requirement at Sarrancolin. This 48 Mm3 is more than any of
the storage capacity of the reservoirs in the Aure Valley. As such, the water release from
the four reservoirs is conducted based on the current availability (water value) of water
in each group, the forecast of of natural inflow to come and the CACG water demand
derived from historical information.

Current optimization procedure of SHEM

The procedure plans executed by SHEM are the result of an economic optimization at a
daily time step subject to various constraints based on current and known information,
which are:

1. compliance with the regulatory demand of CACG for water uses in the Gascogne
region and to maintain the good ecological status at Sarrancolin;

2. non-availability known in advance, such as maintenance of turbines;

3. non-spillage of the reservoirs.

The optimization procedure chooses the best hours to operate based on the "water value"
(expressed in e/m3). When the "water value" in the reservoirs is higher than the market
price over a given time period, water is kept in the reservoirs. Otherwise, water is released
to turbines. Given the same volume of water release, the Louron hydropower group pro-
duces more hydropower than the Eget group because of the cascade power plants in the
Louron group as shown in Table 3.3.

As mentioned before, the CACG has the right to request at most 48 Mm3 of water
for each management year and this draw of water is considered as the maximum in the
optimization procedure. Overall, the procedure tries to respect the releases by prioritizing
the water with the lowest value. In another word, the procedure tries to minimize the cost
of non-optimization and this draw of water is placed on hours that are the least interesting
for SHEM to produce energy. It is considered that turbine work is cost-effective when the
release water exceed the eflows and the regulatory flow requested by CACG. Normally,
the cost-effective flows correspond to the peaks placed during hours of high market prices.

The market price, also called spot price, is the price set at midday of one day for an
electricity delivery on the 24 hours of the next day. The forecasts of the market price are
the result of an assimilation of historical data coupled with macroeconomic models that
try to find the balance point in supply and demand.

As for the non-availability of the turbines, this event is usually unforeseen for the most
part, however sometimes it is know well in advance due to regular maintenance of the ma-
chines or even the draining of the reservoirs for clearing away sediments. There is another
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issue that may cause the non-availability of the turbines: during the winter it is important
to ensure that the water stays in motion to prevent frost from clogging damage or explod-
ing the pipe lines. The obligation to operate regularly for the reservoirs represents a cost
of non-optimization, which is not taken into account in this optimization procedure. The
current optimization procedure in SHEM is deterministic and does not take into consid-
eration of the damage either. The procedure can empty a reservoir completely (typically
Oule) without foreseeing a damage on the machines of the other reservoirs.

Typical operation periods of SHEM

A typical management year executed by SHEM for hydropower production is presented
as follow.

April-June: The market prices are low and the water levels of the reservoirs are low.
In May, snowmelt causes intensive contributions of inflow in all reservoirs, which might
risk the overflow for the reservoirs at the same time. The optimization procedure begins
the turbine work of the Eget group well in advance in anticipation of the non-availability
period. At the beginning of June, the Oule reservoir goes to its maximum storage. For the
reservoirs in the Louron group, the situation is less complicated and the risk of overflow
is less important as the capacity of the Caillaouas and Pouchergues reservoirs is around
26 Mm3 compared to the 16 Mm3 of the Oule reservoir. The Caillaouas and Pouchergues
reservoirs reach its maximum storage in late July due to its higher altitude.

July-September: Water release increases to a maximum discharge of 8 m3/s for the
four reservoirs in the middle August, in compliance with the CACG regulatory. The draw
of water goes down to 2 m3/s in November. In order to meet the demand of CACG,
the procedure tends to draw water in the Eget group by start and then completes with
the Louron group when the demand is larger than the water outflow capacity of the Eget
group. In September, the water stock in the Eget group is almost emptied and the Louron
group is at 50% on average of its water reservation.

October-March: The market prices are high of the year and SHEM exploits to gain a
maximum economic benefit. The energy demand is intensive in this period in exception of
Christmas holidays due to the lower industrial activities. The water releases are roughly
stabilized around 2 m3/s. The energy supply is insured by the Eget group on weekends
when the market prices are the lowest in the weekly schedule and by the Louron group on
the weekday period. In this optimization procedure, the weekdays from October to April
are the most profitable period.

3.1.4 Water management in the Neste water system: the Neste Canal
and the Gascogne region

The CACG is in charge of water management of the Neste Canal, the reservoirs in the
Gascogne region, and 48 Mm3 of storage in the Oule, Orédon, Caillaouas and Poucher-
gues reservoirs.

CACG is required to manage the tradeoff between two competing water demand in
the Gascogne region (SB5). One is the consumptive water demand that includes agricul-
tural irrigation, drinking water supply, and industrial uses; the other is the environmental
quality that requires river flows in the SB5 no lower than a minimum target (DOE). The
DOE requirement is assessed at several points most of which are near the confluence to
the Garonne River. These control points are monitored by CACG, particularly to ensure
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sufficient river flows in SB5 during the dry spells in summer. As mentioned before, irriga-
tion water is mostly contributed to the maize cropping. Drinking water is supplied to local
residents with a population of around 180 thousands. Most industrial water is provided for
the Arkéma3. Note that water releases for the environment of SB5 are conducted daily to
remain a good ecological status, which causes water conflicts with storage for future con-
sumptive water demand. Figure 3.8 illustrates the water volume distribution by reservoirs
managed by SHEM and CACG for the four types of water demand according historical
experience of CACG. Nearly total water volume are distributed for the daily environment
and summer irrigation uses. Details on water uses will be detailed later in chapter 5.
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Figure 3.8 – Mean monthly and annual water share in the Gascogne region. Source from
CACG.

Concerning the management of the Neste Canal, the canal extracts water at Sarran-
colin to feed the reservoirs and rivers in SB5 as shown in Figure 3.5. The volume of water
extraction is mainly based on the water availability at Sarrancolin and the water demand of
SB5. Besides, the mandatory environmental legislation furthermore requires that the river
flow at and downstream Sarrancolin should be larger than 4 m3/s (DOE at Sarrancolin).
If not maintained, either more water out of the reservoirs in the Aure Valley (accounted in
the 48 Mm3) or less water abstraction at Sarrancolin for the SB5 uses will be conducted.
However, it is possible to derogate from the 4 m3/s by lowering the constraint to 3 m3/s
up to 90 days in one year.

Current management rules of CACG

The available water volume that can be mobilized by CACG is composed of the storage
in the 15 reservoirs in SB5 with a capacity of 73.3 Mm3 as displayed in Table 3.1 and

3A specialty chemicals and advanced materials company (https://www.arkema.com/)
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the contract of 48 Mm3 in the reservoirs managed by SHEM. In general, there are three
management rules for CACG when demanding water from the reservoirs of SHEM: (1)
CACG should save water as much as possible for SHEM and the 15 reservoirs in SB5
should be released first to meet the four types of water needs; (2) CACG can only demand
water from 15 June to 1 March of the next year as mentioned before; (3) CACG need
to respect DOE at Sarrancolin when extracting water through the Neste Canal to feed
the rivers and reservoirs in SB5. Given the complexity of the management of the Neste
system, there is no formalized water management optimization process by CACG.

However, the system is equipped with a dense network of sensors of river discharge
and a decision supporting system (RIO) that allow real-time water management in co-
ordination with meteorological information and water demand from local stakeholders
(e.g., farmers). Figure 3.9 shows that the Neste Canal transfers water resources from the
Aure Valley to SB5 with the help of water gates and discharge measure sensors. The RIO
system is a multifunction procedure for the strategic management of the Neste system by
CACG, which aims at first anticipating future irrigation requirements at a weekly time
step and second improving decision making for managing water resource. A detailed
description of the RIO system can be found in Leenhardt et al. (2004b).
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Figure 3.9 – Water management in the Neste Canal. Source from CACG.

Water management in terms of agricultural irrigation and environment uses in SB5 is
complex. This is because both water uses consume most water storage of the reservoirs
and cause water competition in summer. In most cases, the irrigation management proce-
dures of CACG can be divided into three levels based on temporal scales (annual, weekly,
and daily) (Leenhardt et al., 2004a). The progressive management levels are presented as
follow.

1. The water volume that may be assigned to agricultural irrigation is determined each
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year based on the existing amount of water storage in the reservoirs of SB5, the reg-
ulatory 48 Mm3 in the four reservoirs of the Aure Valley, and estimated information
of natural water resources. After that, irrigation users are assigned with water vol-
ume quotas depending on the demand. The irrigation users will be charged for the
water volume requested.

2. Weekly decisions are made in the irrigation season concerning the tradeoffs how
much water to release for environment purposes or to store to ensure irrigation
satisfaction.

3. CACG managers make decisions on how much water to release for which purpose
from which reservoir(s) every day.

In summary, the current management of the Neste system by CACG mainly involves
distributing the overall available water, a total storage of 121.3 Mm3 (73.3 Mm3 reser-
voir storage in the Gascogne region and 48 Mm3 quota from the reservoirs in the Aure
Valley), for the four types of water demand. During drought events, a successful man-
agement is: (1) to satisfy all consumptive water demand and (2) to keep downstream
river flows, as well as the Neste Canal extraction location Sarrancolin, always no lower
than DOE requirement. However, when the Neste system is in severe water scarcity, the
CACG managers additionally check whether the weekly volume allocated to irrigation is
overestimated. If so, they will consider lower the water quota for irrigation.
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3.2 Data collection

3.2.1 Climatic drivers

Baseline climate: Safran reanalyses

The near-surface meteorological reanalysis Safran-PIRAGUA that focuses on the Pyre-
nees is used in this study for driving the hydrological modelling. This dataset is a high
resolution (2.5 km× 2.5 km) surface reanalysis based on the Safran algorithm obtained
by merging the Safran-France reanlysis product (Vidal et al., 2010) and the Safran-Spain
reanalysis product (Quintana-Seguí et al., 2016, 2017). It provides daily climate infor-
mation of air temperature and precipitation. The potential evapotranspiration information
is calculated from the Penman-Monteith equation (Allen et al., 1998). Catchment-scale
climatic data of the study area is computed with a weighted mean of all cells intersected
by the catchment surface. The Safran-PIRAGUA dataset is available from 09/1979 to
08/2014.

Besides, the Safran-France reanalysis dataset (resolution 8 km× 8 km) is also used
when the calibration period of hydrological modelling is not overlapped with the Safran-
PIRAGUA dataset. The Safran-France dataset is available from 08/1958 onwards. Figure
3.10 shows the Safran-France and the Safran-PIRAGUA grid center points in the study
area. Compared with Safran-France reanalysis data, Safran-PIRAGUA data can provide
a more detailed information of climate due to its high spatial resolution that allows repre-
senting abundant climate variability.

Snow product: the gap-filled MODIS

The MODIS4 is an important instrument embedded in the Terra and Aqua satellites to
measure the dynamics in Earth’s processes, such as snow cover, vegetation index, and
land-surface temperature. Daily snow cover products are adopted in this study to cali-
brate the hydrological model. However, the missing snow cover observations from satel-
lites due to the coverage of clouds makes it difficult to acquire a full temporal description
on the study area. Gascoin et al. (2015) developed a cloud-free snow cover product in
the Pyrenees based on the MODIS products and a gap-filling algorithm. The accuracy
of the gap-filled MODIS products was validated against in situ snow observations and
Landsat data in the Pyrenees range. The spatial resolution of this gap-filled snow product
is consistent with the original MODIS snow product (0.5 km×0.5 km). The dynamics of
catchment-scale snow cover can thus be computed with a weighted mean of all contribu-
tive cells to the catchment surface. Time series of snow cover area (SCA) were derived
from the MODIS data over the period from 09/2000 to 04/2018.

Water resources in the Aure Valley is dominated by snow accumulation in winter and
snow melt in spring while SB5 is not. As such, only the SCA time series of the Aure
Valley (SB1-4) are extracted from the MODIS snow product. Figure 3.11 shows the
MODIS grid center points in the 5 elevation bands of the Aure Valley. The decomposition
of the Aure Valley (SB1-4) into 5 equi-surface bands will be used for calibrating the snow
module CEMANEIGE (see next chapter) in the hydrological modelling.

4Moderate Resolution Imaging Spectroradiometer ( https://modis.gsfc.nasa.gov/)
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Figure 3.10 – The Neste system area overlaid with Safran-France (a) and Safran-
PIRAGUA (b) gird center points.

Climate change projections

Representative Concentration Pathways (RCPs) 4.5 and 8.5 are moderate and high GHG
concentration trajectories by the IPCC to describe climate futures (IPCC, 2014). Climate
projections considered here originate from a subset of 6 CMIP5 GCMs as shown in Table
3.4 and previously selected for assessing future water resource in Spain run under RCP
4.5 and RCP 8.5 (CEDEX/MAPAMA, 2017). These projections have been previously
downscaled with an analogue downscaling method to generate daily total precipitation
(Ptot), maximum temperature (Tx), and minimum temperature (Tn) over a 5 km× 5 km
grid for Spain and the Pyrenees within the CLIMPY project (Amblar-Francés et al., 2020;
Amblar Francés et al., 2017). The CLIMPY projections have been here further refined in
order to match both the higher spatial resolution and the multiple variables of the Safran-
PIRAGUA surface reanalysis. To this aim a multi-site and multi-variable analogue resam-
pling method has been set-up following the approach proposed by Clemins et al. (2019)
and applied to the Pyrenean area within the PIRAGUA project (Vidal, personnal commu-
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Figure 3.11 – The 5 equi-surface elevation bands of the Aure Valley overlaid with grid
center points of the gap-filled MODIS snow product.

nication).

Table 3.4 – List of selected CMIP5 GCMs.

Acronym Institute Reference

CNRM-CM5 CNRM, France (Voldoire et al., 2013)

MRI-CGM3 MRI, Japan (Yukimoto et al., 2012)

MPI-ESM-MR MPI, Germany (Giorgetta et al., 2013)

MIROC-ESM AORI NIES JAMSTEC, Japan (Watanabe et al., 2011)

inmcm4 INM, Russia (Volodin et al., 2010)

bcc-csm1.1 BCC, China (Wu et al., 2013)

In short, for a target day in a given CLIMPY projection, an analogue date in the
1961-2005 Safran-PIRAGUA surface reanalysis is selected, based on the best possible
match of Ptot, Tn, and Tx over the whole Pyrenean mountain range. This analogue re-
sampling is made on monthly anomalies with respect to a baseline climatology, in both
Safran-PIRAGUA and CLIMPY projections. For Tn and Tx CLIMPY projections, the
baseline climatology is considered as linearly transient from 2006 onwards, in order to
find relevant analogue dates even with temperatures higher than any experienced in the
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Figure 3.12 – Climate change projections of the 6 GCMs in Table 3.4 in terms of annual
precipitation (P), potential evapotranspiration (PET), and temperature (T) under histori-
cal (1961-2005), RCP 4.5 (2006-2100), and RCP 8.5 (2006-2100) scenarios for the Aure
Valley (a) and SB5 (b). The fine lines represent the mean annual changes and the thick
lines represent the trends with loess smoothing method.
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Safran-PIRAGUA 1961-2005 archive. All variables from the analogue dates are used as
values for the target date considered. Results are therefore daily gridded projections over
the Safran-PIRAGUA grid, with all corresponding variables – including precipitation and
temperature required for the hydrological models – for 6 GCMs run under both RCP 4.5
and RCP 8.5 emissions scenarios, for the whole 1961-2100 period. Figure 3.12 shows
the climate change projections of evapotranspiration, precipitation, and temperature un-
der different scenarios of 6 GCMs in Table 3.4. Climate in the Aure Valley and SB5 is
projected to be warmer and drier under the two RCPs. Especially, climate projections
under RCP 8.5 are much more warmer and drier than RCP 4.5.

In addition to regional climate change projections, France temperature projections are
necessary in this study for energy demand simulation (see section 5.1.2). However, the
future temperature projections in France are not available in the CLIMPY project. In order
to be in line with the regional projections of the Neste water system, we apply a linear
interpolation method to calculate the future France temperature based on the regional
temperature projections. Figure 3.13 shows the comparison between the temperature of
the Neste water system (SB1-5) and the France temperature over the period from 09/1979
to 08/2014. The annual temperature regimes show the same pattern with the maximum
values located in summer and the minimum values located in winter while there is a
vertical distance between the two regimes due to the lower latitude of the Neste water
system area (higher temperature in the Neste water system area). The regression line (the
red line in the Figure 3.13) between the France temperature and the local temperature is
calculated as follow.

T(France) = T(Local)×0.945−0.359 (3.1)

The determinant coefficient R2 is 0.94.
In order to validate the method, we calculate the France temperature over the period

from 09/1979 to 08/2014 based on the local temperature by applying this linear regression
line. Figure 3.14 illustrates the annual regimes of the simulated and the observed France
temperature. The simulated France temperature over the period from 09/1979 to 08/2014
well follows the observations. As such, we apply this regression method to calculate the
France temperature projections based on the local temperature projections. The results
are shown in Figure 3.15 and the future France temperature shows a warmer trend similar
to the local temperature projections.

3.2.2 Naturalized inflow
Compared with SB5, river flows in the Aure Valley is highly influenced due to the in-
tensive developement of hydropower (Décamps, 1967; Ingrand, 1961). A study was con-
ducted by Falgon (2014) to reconstruct natural inflows upstream the reservoirs (SB1-3) in
the Aure Valley applying a water balance approach. The principle of this approach is to
sum up all exports for water use and to subtract all imports from other basins. It can be
expressed as the following equation.

Qnatural = Exports f or water use− Imports f rom basins+∆Storage

SB4 is considered as a near-natural sub-basin, and the naturalized inflow of SB4 is the
observed river discharge at Sarrancolin minus the regulated outflows upstream the reser-
voirs. The naturalized inflow of SB5 is estimated by CACG, and it is the observed river
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Figure 3.13 – (a) The annual regime of France daily temperature compared with the
annual regime of the local daily temperature (the daily temperature of the Neste water
system area) over the period from 09/1979 to 08/2014; (b) The linear relationship between
the local temperature of the Neste water system area as shown in Figure 3.2 and the
France temperature. The local temperature is calculated with the SAFRAN-PIRAGUA
dataset and the France temperature is calculated with the SAFRAN-France dataset over
the period from 09/1979 to 08/2014.
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Figure 3.14 – The comparison between the simulated and observed France temperature
over the period from 09/1979 to 08/2014.

discharge minus the sum of the water intake from the Neste Canal and the water releases
from the reservoirs. The naturalized inflows of SB1-5 are at daily time step. The natural-
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Figure 3.15 – The mean annual simulated France temperature projections under histor-
ical (1961-2005), RCP 4.5 (2006-2100), and RCP 8.5 (2006-2100) scenarios. The fine
lines represent the mean annual changes and the thick lines represent the rends with loess
smoothing method.

ization processes for SB1-5 are presented in detail as follow.

Naturalized inflow of SB1

The formula for reconstructing the daily natural flows upstream the Oule reservoir is
derived as:

Qnat1 = e f low1 +Use1 +∆1 +Spil1−Tran1 (3.2)

where

• e f low1 is the daily reserved flow for the environment for the downstream of the
Oule reservoir (see Table 3.2);

• Use1, daily flows out of the Oule reservoir for water uses;

• ∆1, daily variation of the volume of the Oule reservoir;

• Spil1, daily overflow from the Oule reservoir;

• Tran1, daily water transfer from the Orédon reservoir into the Oule reservoir.

The naturalized inflow into the Oule reservoir is calculated from 01/2001 to 12/2018
at daily time step. Figure 3.16 shows the naturalized flow of SB1 compared with the
influenced flow out of the Oule reservoir. The flow regime of SB1 is deeply modified
as the flow peak shift from spring to summer due to CACG water demand (mainly for
irrigation) and winter flow shows an evident increase due to hydropower generation. The
lowest flows in spring is due to reservoir storage purpose in this period.
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Figure 3.16 – Comparison between the naturalized inflow (Qnat1) and the influenced out-
flow (Qin f 1) of SB1 for the period from 01/2001 to 12/2018.

Naturalized inflow of SB2

The formula for reconstructing the daily natural flows upstream the Orédon reservoir is
derived as:

Qnat2 = e f low2 +Tran1 +∆2 +Spil2− e f low0 (3.3)

where

• e f low2 is the daily reserved flow for the environment for the downstream of the
Orédon reservoir (see Table 3.2);

• ∆2, daily variation of the volume of the Orédon reservoir;

• Spil2, daily overflow from the Orédon reservoir;

• e f low0, the daily reserved flow for the environment for the downstream of the Cap
de Long reservoir (0.05 m3/s, see section 3.1.3).

The data length of naturalized inflow for SB2 is from 07/2014 to 12/2018 and the data
quality is relatively low. Figure 3.17 shows the naturalized flow of SB2 compared with the
transferred flow out of the Orédon reservoir. Water use of the Orédon reservoir is realized
through transferring water into the Oule reservoir by a underground pressure pipeline.
Note that the eflow for the downstream of the Orédon reservoir is released directly from
the Orédon reservoir. The transfer period is mainly in the summer to meet the CACG
demand. The rest water volume will be emptied by transferring to the Oule reservoir for
hydropower production in winter. There is no water transfer in spring due to reservoir
refill. Here, due to the lack of data, we consider the water releases from the Cap de Long
and Aubert into the Orédon are environmental flows e f low0 with a total value of 0.05
m3/s.
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Figure 3.17 – Comparison between the naturalized inflow (Qnat2) for the period from
07/2014 to 12/2018 and the transferred outflow (Tran1) of SB2 for the period from
01/2001 to 12/2018.

Naturalized inflow of SB3

SB3 is composed of two reservoirs, the Caillaouas and Pouchergues. The choice was
made to consider the catchments upstream the reservoirs as one. Using a global formula
for SB3, including the Caillaouas and the Pouchergues reservoirs, makes it possible to get
rid of the gravity or pumping water transfer between the two reservoirs (the two informa-
tion, water move by gravity and pumping water transfer, is poorly known). As such, the
sub-basins upstream the Caillaouas and the Pouchergues reservoirs can be considered as
a single one (SB3) to reduce these uncertainties.

The formula for reconstructing the daily natural flows of SB3 is derived as:

Qnat3 = e f low3 +Use3 +∆3 +Spil3 (3.4)

where

• e f low3 is the sum of daily reserved flow for the environment of the downstream of
the Caillaouas and Pouchergues reservoirs (see Table 3.2);

• Use3, daily flows out of the Caillaouas and Pouchergues reservoirs for water uses;

• ∆3, daily variation of the volume of the Caillaouas and Pouchergues reservoir;

• Spil3, daily overflows from the Caillaouas and Pouchergues reservoir.

The naturalized inflow of SB3 is calculated from 01/2001 to 12/2018 at daily time
step. Figure 3.18 shows the naturalized flow of SB3 compared with the influenced flow.
The peak of naturalized flow of SB3 is in spring due to snowmelt. The peaks of influenced
flow are in summer and winter period for CACG demand and energy production, repec-
tively. The lowest outflow from SB3 is in spring as a result of reservoir refill purpose.
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Figure 3.18 – Comparison between the naturalized inflow (Qnat3) and the influenced out-
flow (Qin f 3) of SB3 for the period from 01/2001 to 12/2018.

Naturalized inflow of SB4

SB4 is the sub-basin of the Aure Valley excluding SB1-3 and the drainage area upstream
the Cap de Long, Aubert, and Aumar reservoirs. CACG measures river flow at Sarran-
colin, including that extracted by the Neste Canal and that downstream Sarrancolin (see
Figure 3.9). The formula for reconstructing the daily natural of SB4 is derived as:

Qnat4 = Qcanal +Qds−Qin f 1−Qin f 2−Qin f 3 (3.5)

where

• Qcanal is the daily water flow extracted by CACG into the Neste Canal;

• Qds, the daily river flow downstream Sarrancolin;

• Qin f 1, daily flows out of SB1;

• Qin f 2, daily flows out of SB2;

• Qin f 3, daily flows out of SB3.

Note that the premise of this formula is that SB4 is a near-natural sub-basin. Figure
3.19 shows the regime of the naturalized inflow of SB4 with distinct peak in spring.

Naturalized inflow of SB5

The drainage area of SB5 is the sub-basins upstream the ten control discharge measure
points as shown in Figure 3.20. The red dots in the figure are the control points where
discharge is compared to DOE requirement. The surface of SB5 is 5433 km2.
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Figure 3.19 – Naturalized inflow of SB4 (Qnat4) for the period from 01/2001 to 12/2018.
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stream the ten discharge control points: Beaumarchès, Roquebrune, Nérac, Montestruc,
Saint-Antoine, Castelferrus, Larra, Fousseret, Laffite, and Lavet.
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The naturalized inflow of SB5 is estimated by aggregating the 10 stations into one.
The formula for reconstructing the daily natural of SB4 is derived as:

Qnat5 =
10

∑
n=1

Qn
station−Qcanal−Use5 (3.6)

where

• ∑
10
n=1 Qn

station, represents the sum of daily flows at the ten stations (source from the
Banque Hydro5): Beaumarchès, Roquebrune, Nérac, Montestruc, Saint-Antoine,
Castelferrus, Larra, Fousseret, Laffite, and Lavet;

• Use5, daily flows out of the 15 reservoirs in SB5 (see Table 3.1) for water uses.

The inflow of SB5 is naturalized in a global formula, allowing reducing the error of
water transfer among the reservoirs in SB5. The naturalized inflow of SB5 is available
from 01/2013 to 12/2019. Figure 3.21 shows the naturalized flow of SB5 compared with
the influenced flow. The naturalized flow peak is in February and March. Note that the
influenced flow in SB5 is larger the naturalized flow, especially in summer, mainly due
to DOE requirement. A detailed description of DOE requirement in SB5 will be given in
the section 3.2.4.
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Figure 3.21 – Comparison between the naturalized inflow (Qnat) and the influenced out-
flow (Qinf) of SB5 for the period from 01/2013 to 12/2019.

5Hydrometric data are processed and collected within a single platform managed by the SCHAPI (cen-
tral service for hydrometeorology and flood forecasting support) (see the platform: http://www.hydro.
eaufrance.fr/).
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3.2.3 Water management records of SHEM

Water releases for CACG demand are registered and SHEM releases water via turbines
to gain a marginal profit. The data of water releases for CACG demand is available from
01/2002 to 12/2018.

Figure 3.22 shows the total water release from the Eget and Louron groups in com-
parison with the CACG water demand. As observed from this figure, water demand from
CACG is mostly satisfied, except for year 2015 due to an accident on the pipe line of the
Lassoula plant (non-availability of the Louron group). However, it is obliged to satisfy
the CACG water demand and in this year water out of the Pouchergues reservoir is deliv-
ered to CACG, which is still not enough. As for year 2013 and 2014, there is not much
water demand from CACG during summer time. In year 2013, the snowpack is double
thick than usual time and snow melts late so that this melting snow water is exploited for
hydropower. In year 2014, CACG water demand starts at late summer due to the rainfall
in June and July. Thus, the stored water in the system is used to produce electricity for
the industrial program.

In summary, CACG demand is concentrated in summer mainly for irrigation and en-
vironmental purposes in SB5. However, water releases for CACG shows specific patterns
each year, which indicates a high variability of actual management.
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Figure 3.22 – Daily water release from the Eget and Louron groups in comparison with
CACG regulartory demand for the period from 01/2001 to 12/2018.

Besides, SHEM provides daily operation information on water level of reservoirs,
water transfer among reservoirs. The operation information is from 01/2001 to 12/2018.
Figures 3.23 and 3.24 shows the management information of the Eget and Louron hy-
dropower groups for the extracted period from 01/2015 to 12/2017.
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3.2.4 Water management records of CACG
Records for irrigation, drinking, industrial water uses

Water extraction information in SB5 can be extracted from the BNPE6 in terms of agri-
cultural irrigation, drinking water, and industrial uses. The objective of the BNPE is to
record the annual volumes directly withdrawn from the water resource. These volumes
are distinguished by location (administrative commune scale), nature (surface water or
groundwater) and category of water use. The data availability is from year 2003 to 2017.
Figure 3.25 shows the annual water extraction of SB5 based on the BNPE dataset. Sur-
face water is the major water source in SB5 and surface water extraction for irrigation
dominates the total water use in SB5. Concerning the spatial distribution of water use,
Figure 3.26 shows that drinking water and irrigation extraction from surface water are
almost homogeneous for all the sub-basins of SB5 while industrial water extraction is
concentrated on two sub-basins of SB5.
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Figure 3.25 – Annual groundwater and surface water extraction of SB5 from the dataset
BNPE for drinking water, industrial and irrigation uses from year 2003 to 2017.

In addition, CACG also provides registration of annual drinking water, annual indus-
trial water, and weekly irrigation water releases for the period (CACG, 2019). The annual
drinking water and industrial water releases are in period from 2004 to 2018. The weekly
irrigation water releases are in period from 1995 to 2020. Figure 3.27 compares water
uses for drinking water, industry, and irrigation for the common period 2004-2017 be-
ween BNPE and CACG records. The determinant coefficient (R2) for the drinking water,
industrial, irrigation, and total uses between the two sources of data are 0.24, 0.05, 0.56,

6The Banque Nationale des Prélèvements quantitatifs en Eau (BNPE) is the national tool dedicated to
the distribution of water abstractions for metropolitan France and the overseas departments (see https:
//www.bnpe.eaufrance.fr).
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Figure 3.26 – Mean annual groundwater and surface water extraction of SB5 from the
dataset BNPE for drinking water, industrial and irrigation uses from year 2003 to 2017
for the ten sub-basins upstream the discharge control points: Beaumarchès, Roquebrune,
Nérac, Montestruc, Saint-Antoine, Castelferrus, Larra, Fousseret, Laffite, and Lavet (see
Figure 3.20). The color gray means no water extraction.

and 0.67, respectively. Besides, the magnitude of water use volume are similar between
the two source of data. As such, the registration of CACG water releases is validated.

In this study, we prefer local information registered by CACG compared to the BNPE
extraction data. Water releases from the local water manager (CACG) are considered
more reliable to represent the local water demand.

Environmental water management in SB5

CACG manages to maintain a good environmental and ecological status in SB5. The
locations of the ten control hydrological stations are illustrated in Figure 3.20. Table 3.5
details the DOE requirement for each hydrological station in SB5. As shown by Figure
3.21, the DOE requirement is maintained in the historical management from 2013 to 2019.

Water extraction and releases

CACG management records in terms of the water extraction by the Neste Canal at Sar-
rancolin and water releases from the reservoirs in SB5 are provided.

The data availability of water extraction by the Neste Canal is from 10/1961 to 09/2019.
The river flow downstream Sarrancolin is measured from 01/1992 to 12/2019. River flow
at Sarrancolin can thus be calculated by summing the two series of data. Figure 3.28
shows the regime of water extraction by the Neste Canal at Sarrancolin in comparison
with river flows downstream Sarrancolin and at Sarrancolin for the period from 01/1992
to 09/2019. The Neste Canal extracts water in a seasonal pattern with the peak in summer
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Figure 3.27 – Comparison between BNPE extraction and CACG release records in terms
of drinking water, industiral, and irrigation uses for period for year 2004 to 2017.

period due to the request of releasing the 48 Mm3 volume in the reservoirs managed by
SHEM (see Figure 3.22). Diverted volumes are limited by the capacity of the channel
(14 m3/s). A drop of water extraction in spring is the result of the regular maintenance of
the Neste Canal. As mentioned before, river flow downstream Sarrancolin should be kept
above 4 m3/s (the DOE value at Sarrancolin) after the extraction by the Neste Canal. As
Figure 3.28 shown, the DOE rule at Sarrancolin is well followed.

The storage change data of the 11 reservoirs (Astarac, Baradée, Esparron, Gimone,
Lizet, Lizon, Magnoac, Miélan, Puydarrieux, Saint-Frajou, Marcaoué, see Table 3.1) at
daily time step are available from 10/2012 to 12/2019. The time series of the 11 reservoir
volume changes is validated by the internal calculation of CACG. The total volume of
these 11 reservoirs is 68.7 Mm3 close to the 73.3 Mm3 of the total 15 reservoirs. The
simplification is that the management of the 15 reservoirs in SB5 is considered as one
reservoir. As such, a coefficient of 1.07 will be multiplied to the time series of the sum of
the 11 reservoir volume to extend to the 15 reservoir volume change in SB5.
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Table 3.5 – DOE information of the ten stations.

River Station Banque Hydro
code

DOE in sum-
mer [m3/s]

DOE in win-
ter [m3/s]

Bouès Beaumarchès Q0664020 0.20 0.30

Osse Roquebrune O6834620 0.37 0.55

Baïse Nérac O6692920 1.11 1.35

Gers Montestruc O6312520 2.12 2.12

Arrats Saint-Antoine O6094010 0.27 0.41

Gimone Castelferrus O2883310 0.40 0.48

Save Larra O2552910 0.67 1.01

Louge Fousseret O0964030 0.19 0.29

Noue Laffitte O0295310 0.10 0.15

Lavet Lavet - 0.05 0.05

Total - - 5.48 6.71
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Figure 3.28 – Regime of water extraction (Qcanal) by the Neste Canal to feed SB5 in
comparison with river flows downstream Sarrancolin (Qds) and at Sarrancolin (Qin f s) for
the period from 01/1992 to 09/2019.

Besides, the data availability of water release information from the 15 reservoirs is
from 01/2013 to 12/2019. This data is the daily release volume without specifying the
purpose of water use. Figure 3.29 shows the regime of volume and release of the 15
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reservoirs in SB5 for the period from 01/2013 to 12/2019. Water storage reaches the
maximum value of 73.3 Mm3 at the end of spring. Water release peaks are placed in
summer mainly for maize irrigation and for environmental DOE requirement in SB5.
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Figure 3.29 – Regime of volume and release of the 15 reservoirs in SB5 for the period
from 01/2013 to 12/2019.

3.2.5 Population projections
Historical population and future projection information in the study area is provided by
the INSEE 7. The historical population is provided at the commune scale, which allows
an accurate estimation of the number of inhabitants in the study area. However, the future
population is projected by the INSEE at the departmental scale over the period from 2013
to 2050. Here, we choose the Gers department to represent the future population in the
study area. Figure 3.30 shows the historical and future projected population in the study
area.

In order to have a longer record of population to be in line with the period of climate
change projections (1961-2100), the INSEE projection is interpolated from 2050 to 1961.
As for the period from 2051 to 2100, INSEE declares that there might be a slight decrease
of national population between 2040 (69.3 millions) and 2070 (68.1 millions) depending
more on the assumptions 8. This slight decrease downscaled to the Gers department could
be considered as a near stable state of population. As such, we consider that the population
from 2051 to 2100 remains the same as 2050. The simulated population change over the
period from 1961 to 2100 is shown as red line in Figure 3.30.

7National Institute of Statistics and Economic Studies, see https://www.insee.fr/en/.
8see https://www.insee.fr/fr/statistiques/5893969/
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to 2100.
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3.3 Summary
In summary, the Neste water system relies on the Neste Canal at Sarrancolin that

connects the upstream Aure Valley managed by SHEM and the downstream Gascogne
region managed by CACG. Water management of the Neste water system is multipurpose
with the Aure Valley focusing on the hydropower production and the Gascogne region
focusing on the water consumptive demand (drinking water supply, industrial uses, and
agricultural irrigation) and the environmental demand. In particular, if the Neste River
at Sarracolin is not able to naturally supply necessary water resource for the Gascogne
region, CACG demands extra water release from the reservoirs managed by SHEM with
an annual quota. The management of the Neste water system is operated on annual basis
and the behavior of water managers (i.e., SHEM and CACG) is highly seasonal.

Given the complexity of the Neste system, the next modelling and analysis work in
terms of the water resource estimation, demand, and management requires a number of
hypotheses:

1. The preferred reference period should start from the beginning of the 21st century
considering the current management configuration (e.g., maximum extraction ca-
pacity by the Neste Canal, strategies for energy production, water share quota for
CACG in the reservoirs managed by SHEM)

2. The management of the reservoirs supplying the Pragnères plant will not be con-
sidered and the regulatory obligations of the reserved flow for the environment will
be assumed to be respected.

3. The reservoirs in the Aure Valley will be examined at a certain level of aggregation
sufficient to answer the questions of adaptation and consistent in terms of man-
agement. The Caillaouas and Pouchergues reservoirs will form a single reservoir
because they are jointly managed and it is indeed difficult to assess the exchanges
between the two reservoirs.

4. Water resource estimation in the Gascogne region will be conducted on a global
scale (i.e., the ten sub-basins upstream the hydrological control stations will be
aggregated into one sub-basin). Similarly, water demand and reservoir water man-
agement managed by the CACG will also be modelled on a global scale. Besides,
environmental quality will be examined by the sum of minimum flow requirement
in the ten rivers of the Gascogne region (Bouès, Osse, Baïse, Gers, Arrats, Gimone,
Save, Louge, Noue, and Lavet).

Table 3.6 presents the data collected and the application of the data. SB1-5 represent
the sub-basin upstream the Oule reservoir, the sub-basin upstream the Orédon reservoir,
the sub-basin upstream the Caillaouas-Pouchergues reservoirs, the sub-basin between Sar-
rancolin and the outlets of the four reservoirs above, and the Gascogne region, respec-
tively.

The complexity of the Neste water system is characterized by numerous water in-
frastructures managed by different water managers with different management rules for
various water uses, which causes numerous data sources from different water managers.
Therefore, the uncertainties on the time series and the period of their availability are het-
erogeneous that makes the analysis and thereafter the modelling difficult.
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Generally, the common period of water management for all the data in the Aure Valley
is from 01/2002 to 08/2014. The common period of water management for all the data in
the Gascogne region is from 01/2013 to 07/2018. The naturalized flow for SB1-5 will be
used to calibrate the hydrological model to estimate the water resources availability. Wa-
ter release registrations, water extraction information, and water management operation
data will be used to construct water demand and management models of the Neste water
system. Climatic drivers are the forcing data into the developed models above.
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Table 3.6 – A summary of data collection.

Data type Data length Data use

Climatic drivers

Safran-France 08/1958-07/2018 Hydrological modelling, irrigation water
demand, energy demand modelling

Safran-PIRAGUA 09/1979-08/2014 Hydrological modelling

MODIS 09/2000-04/2018 Hydrological modelling

Climate projections 01/1961-12/2100 Impact assessment

Water resource estimation

Naturalized Q of SB1,
SB3, SB4

01/2001-12/2018 Hydrological modelling

Naturalized Q of SB2 07/2014-12/2018 Hydrological modelling

Naturalized Q of SB5 01/2013-12/2019 Hydrological modelling

Observed Q down-
stream Sarrancolin

01/1992-12/2019 Hydrological modelling and water manage-
ment modelling

Water demand and management

BNPE 2003-2017 Drinking water, industrial, and irrigation de-
mand modelling

CACG registration for
drinking water and in-
dustrial uses

2004-2018 Drinking water and industrial demand mod-
elling

CACG weekly registra-
tion for irrigation

1995-2020 Irrigation demand modelling

DOE requirement - Environmental management

SHEM releases for
CACG demand

01/2002-12/2018 CACG demand and water management
modelling

SHEM reservoir opera-
tion

01/2001-12/2018 Energy demand modelling, Water manage-
ment modelling

Canal extraction by
CACG

10/1961-09/2019 Hydrological modelling and water manage-
ment modelling

CACG reservoir opera-
tion

01/2013-12/2019 Drinking water, industrial, irrigation, envi-
ronmental demand and management mod-
elling

Population information

Population 1961-2100 Drinking water demand modelling
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4
Water resources estimation

This chapter presents the hydrological modelling employed for
this work that contributes to estimate water resources avail-
ability of the Neste system.
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Figure 4.1 – A simplified schema of the Neste water system and the associated abbrevia-
tions used in this chapter.
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Chapter 4. Water resources estimation

4.1 Implementation of models for water resources esti-
mation

4.1.1 Introdution

In order to estimate water resources of the Neste water system, hydrological models can
be implemented to understand and to simulate the hydrological processes. Hydrological
models are the simplifications of hydrological processes in reality, transforming meteo-
rological information into runoff with the consideration of physical characteristics of the
study area. In this work, water resources of the sub-basins SB1-5 in the Neste water
system are simulated to represent the inflows into the reservoirs and the environmental
components of water management.

4.1.2 The hydrological model GR6J-CEMANEIGE

The hydrolgocal model employed to estimate water resources in SB1-5 is the GR6J model
(Pushpalatha et al., 2011), a six parameter lumped model at daily time step developed by
the Catchment Hydrology research group of INRAE1. This conceptual lumped rainfall-
runoff model was developed to improve low-flow simulation based on the extensively
used GR4J hydrological model (Perrin et al., 2003) for French basins.

Since the hydrological processes in the Aure Valley (SB1-4) is dominated by spring
snowmelt, a model that can represent snow information is necessary. A four param-
eter semi-distributed degree-day snow module CEMANEIGE can be coupled with the
GR6J model (Riboust et al., 2018; Valéry et al., 2014a,b). The initial version of the CE-
MANEIGE module can generally be adjusted on ungauged catchments in France where
the influence of snow is mild, as it has an acceptable performance with default parameter
values (Valéry et al., 2014a,b). The recent work by Riboust et al. (2018) has used the
snow cover area (SCA) observations from MODIS to improve the performance of CE-
MANEIGE in representing snow content. It takes into account the snow accumulation
and melt hysteresis between SCA and snow water equivalent (SWE), which is the dy-
namic lag between the two states of snow. In the real world, SCA increases rapidly and
remains stable whereas SWE increases more slowly during the accumulation period. The
situation is opposite in the snowmelt process. This hysteresis results in different patterns
of snow state, which is essential for reservoir refill management in the Aure Valley.

Figure 4.2 shows the structure of the coupled GR6J-CEMANEIGE hydrological model.
Table 4.1 shows the parameters to be calibrated in the GR6J-CEMANEIGE model. Three
time series are needed as the meteorological inputs of the model: (i) potential evapo-
transpiration, (ii) precipitation, and (iii) air temperature time series. Two time series are
simulated as the outputs of the model: (i) catchment runoff and (ii) SCA time series. As
such, the coupled GR6J-CEMANEIGE hydrological model should be calibrated not only
with discharge observations but also with the observed SCA of catchment. The descrip-
tion of model structure and functionality is given below.

We describe how the CEMANEIGE works and be coupled with the GR6J hydrological
model. The first step of CEMANEIGE is to divide the catchment into five equi-surface

1National Research Institute for Agriculture, Food and Environment (see https://webgr.inrae.fr/)
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Figure 4.2 – Schematic representation of the GR6J hydrological model (a) (modified from
(Pushpalatha et al., 2011)) coupled with a snow module CEMANEIGE (b) (modified from
(Riboust et al., 2018)). The meteorological inputs of the model are labelled as blue circles:
potential evapotranspiration (PET), precipitation (P), and temperature (T). The outputs
of the model are labelled as yellow squares: actual evapotranspiration (AET), runoff (Q),
and snow cover area (SCA).

elevation bands based on the hypsometric information of the catchment. The snow content
is calculated for each equi-surface elevation band as follow:

1. The representative precipitation and temperature are extrapolated from the precip-
itation and temperature of inputs. The snow fraction of precipitation is calculated
based on temperature, which allows dividing precipitation into liquid-precipitation
(rain) and solid-precipitation stored in the snow stock reservoir (snow accumulation
process expressed as SWE). The cold content of the snowpack in the reservoir (eTG,
the snowpack thermal inertia in unit °C) is modulated by a weighting coefficient cT
that links the eTG value of previous day and current air temperature. The maximum
eTG value is set to be 0 °C.

2. When the current eTG value is 0 °C and current air temperature is larger than 0 °C,
snow has a potential to melt. A degree-day coefficient K f is involved in this process
to determine how much water can be melted as a maximum limit. The actual snow
melt is calculated by the current SCA value. The more the SCA decreases, the more
snowpack is melted.

3. In order to take account snow hysteresis, the SCA value is calculated in two ways
based on whether snow is accumulated (∆SWE > 0) or melted (∆SWE < 0). If
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Table 4.1 – Parameters of the hydrological model GR6J coupled with the CEMANEIGE
snow module

GR6J

X1[mm] Capacity of the production reservoir

X2[mm/d] Coefficient of the underground exchange

X3[mm] Capacity of the routing reservoir

X4[d] Base time of unit hydrograph

X5[-] Change sign threshold of the underground exchange

X6[mm] Control of the recession slope

CEMANEIGE

cT [-] Weighting coefficient for snowpack thermal state

K f [°C/d] Degree-day melt coefficient

T hacc [mm] SWE-SCA threshold in snow accumulation

T hmelt [mm] SWE-SCA threshold in snowmelt

Note: cT and K f are the two parameters need to be calibrated for the CEMANEIGE module with-
out considering SWE-SCA hysteresis; cT , K f , T hacc, and T hmelt are the four parameters need to be
calibrated for the CEMANEIGE module with considering SWE-SCA hysteresis.

snow is accumulated, current SCA changes is calculated with ∆SWE divided by
the parameter T hacc. The current SCA value is thus the sum of the SCA value
of precious day and the SCA change with the maximum limit of 1 and minimum
limit of 0. If snow is melted, Riboust et al. (2018) proposed a linear melting curve
whose slope, the parameter T hmelt , is determined by the mean annual precipitation
of the elevation band considered. The current SCA value is thus the current SWE
in the snow stock reservoir divided by the parameter T hmelt with a maximum limit
of 1. The melting curve is more gradual than the accumulation curve as snowmelt
process takes more time than snow accumulation process.

The steps 1-2 above are the simulation processes employed by the initial version of
the CEMANEIGE module as in Valéry et al. (2014a,b). The steps 1-3 are the simulation
processes employed by the CEMANEIGE module with consideration of SWE-SCA hys-
teresis as in Riboust et al. (2018). After the above steps for each equi-surface elevation
band, the sum of the initially determined liquid fraction and the snowmelt are then forced
into the GR6J hydrological model as precipitation. The interception process determines
the net precipitation and net evapotranspiration at the catchment scale. If the net precip-
itation is not 0, part of it infiltrates to the production reservoir X1. However, if the net
evapotranspiration is not 0, the actual evapotranspiration is subtracted from the content
of the production reservoir. Then, the percolation from the production reservoir and the
amount of water not infiltrated are fed into the routing part of the model. 90% of rout-
ing flow is routed, via a first unit hydrograph (UH1), to the routing reservoir X3 and the
exponential reservoir X6. 10% of routing flow is routed, via a second unit hydrograph
(UH2), to the outlet of the catchment. The groundwater exchange process and an addi-
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tional exponential routing reservoir X6 contribute to low-flow simulations. Finally, the
sum of the flows from direct routing and routing reservoirs are transferred to the outlet of
the catchment as the daily discharge.

4.1.3 Performance assessment of GR6J-CEMANEIGE

Data and model configuration

As shown in Table 4.1, the GR6J-CEMANEIGE hydrological model with considering
the SWE-SCA hysteresis has ten parameters to calibrate while that without considering
the SWE-SCA hysteresis has eight parameters to calibrate. Table 4.2 summarizes the
version of model (ten or eight calibration parameters), meteorological forcing, calibration
benchmark, and simulation length applied to all the sub-basins of the Neste water system.
The choice of the parameters and forcings is based on both a performance assessment
and a sensitivity analysis for the two sets of GR6J-CEMANEIGE model and two Safran
reanalyses are presented in Appendix A.

The hydrological calibration and simulation of SB1-4 is conducted with the GR6J-
CEMANEIGE model with 10 parameters while those of SB5 is conducted with the model
of 8 parameters. This is because SB1-4 are dominated by snow process while SB5 has
a low influence by snow process. As illustrated in Figure 3.4, the winter temperature in
SB5 is mostly larger than 0 °C. As such, the two parameters of the CEMANEIGE module
for SB5 are fixed with default values with cT = 0.17 and K f = 6.80 °C/d, respectively
(Valéry et al., 2014a,b). The meteorological forcing for the water resources simulation of
SB2 and SB5 is Safran-France data due to the limited length of naturalized inflows.

Table 4.2 – A summary of the calibration elements of the GR6J-CEMANEIGE hydrologi-
cal model for all the sub-basins in the Neste water system.

Area Model param-
eters

Meteorological forcing Benchmark Simulation
length

SB1 10 PET, P, and T from Safran-
PIRAGUA

Q and SCA 01/2001-
08/2014

SB2 10 PET, P, and T from Safran-
France

Q and SCA 07/2014-
07/2018

SB3 10 PET, P, and T from Safran-
PIRAGUA

Q and SCA 01/2001-
08/2014

SB4 10 PET, P, and T from Safran-
PIRAGUA

Q and SCA 01/2001-
08/2014

SB5 8 PET, P, and T from Safran-
France

Q 01/2013-
07/2018

Note: Q and SCA are the naturalized inflow and the snow cover area extracted from the gap-filled
MODIS snow product, repectively. The information on Q and SCA is presented in the previous section.
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Model calibration

Three steps in the calibration process is presented. First, a transformation on target values
of hydrological simulation is often used in calibration process to better focus on high
or low value simulation performance (Garcia et al., 2017). For example, log(Q) is a
log-transformed discharge to focus on low flows (Santos et al., 2018). This study has
no tendency to focus on high or lows flows but the total water resources instead. A root-
square transformation on Q, which does not favor high or low flow, is thus used to calibrate
model (Garcia et al., 2017). No transformation has been applied on SCA.

Second, the KGE criterion is current commonly used criterion for the assessment of
hydrlogical model performance (Gupta et al., 2009; Kling et al., 2012). KGE in Gupta
et al. (2009) is improved to a modified version in Kling et al. (2012) and the new version
has a better ability to evaluate variability error. The formulation of the improved KGE
criterion is presented bellow:

KGE = 1−
√

(r−1)2 +(β −1)2 +(γ−1)2 (4.1)

where

• r, the Pearson correlation coefficient, evaluates the error in shape and timing be-
tween observed values and simulated values:

r =
cov(obs,sim)

σobs
2σsim2

where the numerator is the covariance between observed and simulated values;
σobs

2 and σsim
2 represent the standard deviation of observed and simulated values,

respectively.

• β , evaluates the bias between observed and simulated values:

β =
msim

mobs

where msim and mobs represent the mean of observed and simulated values, respec-
tively.

• γ , the ratio between the observed and simulated coefficients of variation, evaluates
the variability error:

γ =
mobsσsim

msimσobs

The KGE criterion varies from −∞ to 1. The larger the KGE, the better the model per-
formance. In the calibration process, the most suitable parameters are obtained when the
criterion KGE reaches the highest value in the optimization.

Third, two objective functions for two model configurations in Table 4.2 should be
formulated and optimized. In the model set of the hydrological GR6J-CEMANEIGE with
hysteresis (10 parameters), there are two benchmark observations: naturalized inflow Q
and SCA observations from MODIS. An objective function involved discharge Q and
SCA should be established. The work in Riboust et al. (2018) tested several combinations
of both Q and SCA as the objective functions and concluded that a combination of 75%
weighting on Q and 5% on each elevation band is the most advantageous compromise for
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model performance evaluation. If the function has a larger weight on Q, the model gives
more focus on discharge to calibrate and the situation is the same to SCA. As such, the
formulation of the objective function for this model set is:

f = a×KGE(
√

Q)+
5

∑
i=1

bi×KGE(SCAi)

a+
5

∑
i=1

bi = 1

(4.2)

(4.3)

where a is the weighting coefficient for runoff Q calibration, bi the weighting coefficient
for SCAi calibration of elevation zone i. The value of a is 75% and b 5%.

As for the model set of the GR6J-CEMANEIGE without hysteresis (8 parameters),
only one benchmark observations, naturalized inflow Q, should be calibrated. The objec-
tive function is thus formulated:

f = KGE(
√

Q) (4.4)

Model performance

In order to test the calibration robustness (parameter transferability, see Heuvelmans et al.
(2004)) of the GR6J-CEMANEIGE model, split-sample tests are conducted. SB1, SB3,
and SB4 are chosen as examples to test the hydrological model parameter transferability
because their simulation length is longer (see Table 4.2). The common period for all the
data is from 01/2001 to 08/2014. This almost 14-year period is divided in half for model
calibration and validation, separately. Meteorological forcing and benchmarks are from
01/2001 to 08/2007 are used to calibrate the hydrological model. The rest period from
09/2007 to 08/2014 is used for validation assessment with the parameters obtained in the
calibration. Then, the process is turned around with the period from 09/2007 to 08/2014
for calibration and the period from 01/2001 to 08/2007 for validation assessment. Note
that in each evaluation, the beginning two years are chosen to "warm-up" the model.

Table 4.3 shows the KGE values for SB1, SB3, and SB4 in the split-sample tests.
However, SB2 and SB5 are not able to use the split-sample tests due to their short data
length (the limitation of naturalized inflows). The KGE values of Q indicate that the
model generally performs satisfactorily in simulating Q with the KGE values in validation
period close to the those in calibration period. However, SB1 shows a lower performance
for the validation period from 01/2001 to 08/2007, which could be attributed to the uncer-
tainties of naturalized inflows. Besides, the high KGE values of SCA in 5 elevation bands
indicate that the model can well reproduce the snow cover changes with all KGE values
above 0.70, which is highly related to the implementation of the SWE-SCA hysteresis.

As such, the parameter transferability of the GR6J-CEMANEIGE model for SB1,
SB3, and SB4 are justified by the overall good KGE performance. Here, we investigate
the model performance for the whole data length period for SB1-5. Table 4.4 shows the
KGE performance for SB1-5 over this period. The results indicate the satisfied model
simulation in reproducing natural water inflows and snow cover changes. The calibrated
parameters over the whole period are presented in Table 4.5. Note that the value of X1 for
SB3 departs from those obtained by other catchments. The reason is probably due to the
major land cover of bare rocks in SB3 that is characterized by low soil water content and
low evapotranspiration processes. By contrast, other catchments (SB1, SB2, SB4, and
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Table 4.3 – GR6J-CEMANEIGE performance (KGE values) for for SB1, SB2, and SB4 in
the split-sample tests.

√
Q SCA1 SCA2 SCA3 SCA4 SCA5

√
Q SCA1 SCA2 SCA3 SCA4 SCA5

Calibration (01/2001-08/2007) Validation (09/2007-08/2014)

SB1 0.79 0.79 0.91 0.91 0.93 0.93 0.70 0.76 0.89 0.92 0.95 0.94

SB3 0.83 0.83 0.90 0.92 0.92 0.87 0.84 0.84 0.93 0.93 0.92 0.83

SB4 0.87 0.74 0.74 0.72 0.87 0.92 0.86 0.75 0.75 0.73 0.87 0.92

Calibration (09/2007-08/2014) Validation (01/2001-08/2007)

SB1 0.81 0.78 0.89 0.92 0.94 0.93 0.65 0.81 0.90 0.91 0.92 0.91

SB3 0.90 0.79 0.90 0.93 0.93 0.90 0.79 0.79 0.87 0.88 0.90 0.90

SB4 0.86 0.78 0.80 0.80 0.91 0.90 0.85 0.74 0.77 0.77 0.90 0.90

Notes: SCA1−5 represent the snow cover area from the lower to the higher elevation band, respectively.

SB5) are covered by forest and meadow. Thus, the values of X1 for these catchments are
larger than that of SB3 due to larger soil water content and more active evapotranspiration
processes.

Table 4.4 – GR6J-CEMANEIGE performance (KGE values) for SB1-5 over the whole
period of data length.

Calibration period
√

Q SCA1 SCA2 SCA3 SCA4 SCA5

SB1 01/2001-08/2014 0.80 0.80 0.90 0.92 0.93 0.92

SB2 07/2014-07/2018 0.72 0.80 0.92 0.96 0.95 0.88

SB3 01/2001-08/2014 0.83 0.81 0.90 0.92 0.93 0.89

SB4 01/2001-08/2014 0.86 0.75 0.77 0.76 0.89 0.91

SB5 01/2013-07/2018 0.95 - - - - -

4.1.4 Simulation results
Figures 4.3, 4.4, 4.5, and 4.6 show the simulation results of

√
Q and SCA regimes over the

whole data length period (see Table 4.4) for SB1-4 by applying the GR6J-CEMANEIGE
model with a consideration of SWE-SCA hysteresis (10 parameters). Figure 4.7 shows the
simulation results of

√
Q regime over the whole data length period (see Table 4.4) for SB5

by appling the GR6J-CEMANEIGE model without considering SWE-SCA hysteresis (8
parameters). The discharge Q is transferred to

√
Q so as to illustrate the performance of

high and low flow simulations in figures.
The GR6J-CEMANEIGE model is efficient in simulating the hydrological regime as

the simulated Q follows the variability of the naturalized inflow and can capture the high
peaks and low flow spells. We can observe that the recession limbs for SB1-4 during
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Table 4.5 – Parameters of the GR6J-CEMANEIGE model obtained in the calibration over
the whole period of data length.

GR6J

X1 [mm] X2 [mm/d] X3 [mm] X4 [d] X5 [-] X6 [mm]

SB1 256.55 0.51 61.01 1.12 -0.03 18.91

SB2 14.30 0.53 38.86 1.19 -0.03 11.25

SB3 0.01 1.63 30.29 1.17 0.39 7.77

SB4 306.61 0.84 51.82 1.39 0.38 20.91

SB5 160.74 -0.52 13.11 2.22 0.17 10.04

CEMANEIGE

cT [-] K f [°C/d] T hacc [mm] T hmelt [mm]

SB1 0.91 3.75 8.45 0.24

SB2 0.89 3.90 21.40 0.58

SB3 0.95 3.09 9.32 0.20

SB4 0.88 3.40 7.30 0.38

SB5 0.17 6.80 - -

summer period are well fitted. However, the spring flow is underestimated and the winter
flow is overestimated for SB1-4. The low quality of the naturalized inflow of SB2 results
in lower performance of Q simulation. Besides, as for SB5, high flows in winter and
spring are well simulated while the recession limb during summer and low spells during
autumn have a lower performance. This is probably due to the quality of naturalized
inflows of SB5 in different seasons. The reasons are: (1) note that SB5 is not really a
catchment but a combination of catchments (see Figure 3.5) and a consideration of SB5
as a whole by the hydrological model might increase the bias of river flow estimation for
each catchment in SB5; (2) there are many gaps in the naturalized inflows depending on
the problems of measurement (many gauging stations), no major influence in winter, and
high uncertainties in summer due to many sources of perturbation. Water management in
SB5 is intense in summer and autumn mainly for irrigation and DOE requirement. The
observed low flows in the ten stations in this period could amplify the calculation or data
registration errors.

From the SCA changes for SB1-4, the module CEMANEIGE can well reproduce the
seasonality of snow cover changes in the five elevation bands, as well as the accumulation
phase of snow and relatively tardy melting processes. Besides, higher attitudinal elevation
band shows longer snow cover duration as expected. However, the snow melting process
simulation is less efficient than the snow accumulation process given the simple charac-
teristics of the empirical degree-day model in representing snow thermal state changes
(Riboust et al., 2018). SCA variations for SB1-4 are well simulated with a high perfor-
mance in high elevation bands and a moderate performance in medium elevation bands.
This can be attributed to the high variability of snow cover in moderate elevation bands

93



Chapter 4. Water resources estimation

which is difficult to represent in the model.
In summary, from the evaluation of the GR6J-CEMANEIGE hydrological model

above considering the water resources aspects of Q and SCA, this model shows an overall
good performance in representing water resources of the sub-basins in the Neste water
system. Indeed, the snow component of the sub-basins, especially SB1-4, has a domi-
nant influence on the hydrology (and snow processes are particularly difficult to model).
In this study, we concentrate on the SCA changes instead of SWE changes because SCA
data is richer thanks to satellite images. Moreover, the quality of naturalized inflows plays
an important role in hydrological modelling. As such, water accounting in these highly
anthropogenic catchments is thus essential.
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Figure 4.3 – (a) Simulated
√

Q regime compared with naturalized
√

Q regime for SB1; (b)
simulated SCA regimes compared with observed SCA regimes for the five elevation bands
of SB1.
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Figure 4.4 – As in Figure 4.3 but for SB2.
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Figure 4.5 – As in Figure 4.3 but for SB3.
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SB4

01−Jan 01−Apr 01−Jul 01−Oct
2

3

4

5

6

7
Q

 [m
3

s]

Qnat quantiles 25% and 75% Qsim quantiles 25% and 75% Qnat median Qsim median

0635−1189 m

Elevation:

1189−1522 m

Elevation:

1522−1833 m

Elevation:

1833−2198 m

Elevation:

2198−3147 m

Elevation:

SC
A

1
SC

A
2

SC
A

3
SC

A
4

SC
A

5

01−Jan 01−Apr 01−Jul 01−Oct

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

SC
A 

[−
]

SCAobs quantiles 25% and 75% SCAsim quantiles 25% and 75% SCAobs median SCAsim median

(a)

(b)

Figure 4.6 – As in Figure 4.3 but for SB4.
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Figure 4.7 – Simulated
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Q regime compared with naturalized
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Q regime for SB5.
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4.2 Water resources model for the Aure Valley

4.2.1 The implementation and performance of the model
A robust estimation of the Neste river flow at Sarrancolin is important to model the CACG
water management and to frame the integrated water system of the Neste. Here, we estab-
lished a water resources model of the catchment Sarrancolin based on the results obtained
from the hydrological model GR6J-CEMANEIGE. Figure 4.1 shows the simplified sketch
of the Neste water system. Note that the reservoir Cap de Long contributes a small part
of water resource to SB2, and eventually the Neste water system, by reserved flow for the
environment (e f low0).

SB1-4 directly contribute to river flow at Sarrancolin. As such, the calculation of the
influenced flow at Sarrancolin Qin f s is based on the formula as follow.

Qin f s = Qin f 1 +Qin f 2 +Qin f 3 +Qnat4 (4.5)

where

• Qin f 1 is the daily outflow from the Oule reservoir that contributes to Sarrancolin
(Qin f 1 = e f low1 +Use1 +Spil1);

• Qin f 2, daily outflow from the Orédon reservoir that contributes to Sarrancolin (Qin f 2 =
e f low2 +Spil2);

• Qin f 3, daily outflows from the Caillaouas and Pouchergues reservoirs that contribute
to Sarrancolin (Qin f 3 = e f low3 +Use3 +Spil3);

• Qnat4, daily naturalized outflow from SB4.

Note that a large amount of water in the Orédon reservoir is transferred into the Oule
reservoir and there is barely overflow from the Orédon reservoir. Thus, the Orédon reser-
voir contributes to Sarrancolin through eflow. Based on the equations 3.2, 3.3, and 3.4,
the formula to calculate the influenced flow at Sarrancolin can be obtained:

Qin f s = Qnat1 +Tran1−∆1 + e f low2 +Qnat3−∆3 +Qnat4 (4.6)

In order to calculate the influenced flow at Sarrancolin within an integrated hydrolog-
ical modelling framework, the naturalized inflows (Qnat1, Qnat3, and Qnat4) in equation
4.6 can be replaced with the simulated Q by the GR6J-CEMANEIGE model. Besides,
the simulated naturalized flow at Sarrancolin (Qsims) can also be calculated by the simu-
lated Q for SB1-4. Therefore, the equations to calculate Qin f s and Qsims are formulated as
follows. {

Qin f s = Qsim1 +Tran1−∆1 + e f low2 +Qsim3−∆3 +Qsim4

Qsims = Qsim1 +Qsim2 +Qsim3 +Qsim4

(4.7)
(4.8)

where Qsim1, Qsim2, Qsim3, and Qsim4 are the simulated Q by the GR6J-CEMANEIGE
model for SB1-4, respectively.

Here, we use the registered data of water management by SHEM (Tran1, ∆1, and ∆3)
to calculate the equation 4.7 to validate the water resource model for the Aure Valley.
The three water management aspects (Tran1, ∆1, and ∆3) will be replaced by the water
management models (next section) to formalize the final framework of available water
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resource at Sarrancolin of the Aure Valley. Figure 4.8 shows the hydrological regimes
of the observed influenced flow, calculated influenced flow, and calculated natural flow
at Sarrancolin in comparison with releases for energy production and releases for CACG
demand over the period from 01/2002 to 08/2014. The observed influenced flow at Sar-
rancolin (Qobss) is the sum of the water extraction by the Neste Canal (Qcanal) and river
flow downstream Sarrancolin (Qds) from the CACG registration data. The releases for en-
ergy production and CACG demand are sourced from the SHEM management registration
data.

The KGE value between observed influenced flow and calculated natural flow at Sar-
rancolin is 0.69 while the KGE coefficient between observed influenced flow and calcu-
lated influenced flow at Sarrancolin is 0.79. This indicates that the calculated influenced
flow (Qin f s, red line) shows a better fit to the observed influenced flow at Sarrancolin
(Qobss, black line) than the calculated natural flow (Qsims, blue line).
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Figure 4.8 – The regimes of observed influenced flow (Qobss), calculated influenced flow
(Qin f s), and calculated natural flow (Qsims) at Sarrancolin in comparison with releases
for energy production and releases for CACG demand over the period from 01/2002 to
08/2014.

If we compare the calculated influenced flow (Qin f s, red line) with the observed in-
fluenced data from CACG (Qobss, black line) at Sarrancolin, we can conclude that the
calculating framework can well represent the flow at Sarrancolin. Especially in summer,
the calculated influenced flow is consistent with the observed data. However, the cal-
culated influenced flow is underestimated in spring and overestimated in winter, which
can be attributed to the uncertainties of the hydrological model GR6J-CEMANEIGE (the
same behavior for SB1-4). If we compare the calculated influenced flow (Qin f s, red line)
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with the calculated natural flow at Sarrancolin (Qsims, blue line), we can observe that the
calculated influenced flow is smaller than the calculated natural flow for spring due to
the refill of upstream reservoirs. The calculated influenced flow is greater than the calcu-
lated natural flow for winter and summer due to the reservoir regulation for hydropower
production and CACG demand, respectively.

4.2.2 Water accounting for the Aure Valley
Table 4.6 summarizes the mean monthly and annual water accounting for the Aure Valley.
The simulated natural Q (Qsim), the naturalized Q (Qnat), and the influenced outflow Q
(Qin f ) are illustrated for SB1-4, respectively. Given the assumption that SB4 is a near-
natural sub-basin, Qnat4 and Qin f 4 are the same. As for river flow at Sarrancolin, the
simulated natural Q (Qsims), the naturalized Q (Qnats), and the observed Q (Qobss) are also
illustrated. Note that Qnats is the sum of the naturalized Q for SB1-4 over a common
period from 07/2014 to 12/2018 (see Table 3.6).

To validate the water balance within the Aure Valley, influenced outflows from SB1-4
can be compared with the observed flow at Sarrancolin. Here, mean annual Qin f 4 is used
to frame the water balance criterion. The relative error (δ ) between the mean annual Qin f 4
and that based on the calculation from the observed data (see also equation 3.5) can be
derived as follow.

δ =

∣∣∣∣∣(Q
Annual
obss −QAnnual

in f 1 −QAnnual
in f 2 −QAnnual

in f 3 )−QAnnual
in f 4

QAnnual
in f 4

∣∣∣∣∣ (4.9)

The calculated relative error is 1.9%, which validates the water balance within the sub-
basins of the Aure Valley.

Besides, we evaluate the performance of the GR6J-CEMANEIGE model in reproduc-
ing seasonal hydrological regime over the whole length of dataset Safran-PIRAGUA and
Safran-France for SB1-4 and the Aure Valley. Time series of Qsim for SB1-4 and the Aure
Valley are compared with available Qnat and Qin f (or Qobs). Figure 4.9 shows the monthly
hydrological regimes for SB1-4 and the Aure Valley based on the Table 4.6. Generally, the
GR6J-CEMANEIGE model well simulates the seasonal flow variations with high peaks
in spring and low spells in summer. In contrast, the difference betweeen the influenced
outflow and the naturalized inflow for SB1-3 are remarkable. SB1 and SB3 shift high
peaks in summer and winter due to energy and downstream demand. Water in SB2 is
transferred to the Oule reservoir and the outflow is the eflow. River flow at Sarrancolin is
also changed: lower spring flow due to water storage from the upstream reservoirs, higher
summer flow due to reservoir releases for downstream demand, and higher winter flow
due to energy production.
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Figure 4.9 – Monthly hydrological regimes for SB1-4 and the Aure Valley. The values are
extracted from Table 4.6.

104





5
Water demand and management modelling

This chapter presents the water demand models in terms of hy-
dropower demand, drinking water demand, industrial water
demand, irrigation demand, and environmental demand in the
Neste water system. The management behaviors of the two
water managers within the Neste water system, SHEM and
CACG, are simulated.
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5.1 Water demand modelling

5.1.1 Introduction
The impact of global change (e.g., global warming and population growth) induces in-
creases in water demand (e.g., Boretti and Rosa, 2019; IPCC, 2014). The development
of water demand models of the Neste water system thus should consider global change
components (e.g., climatic drivers and population growth). As mentioned in chapter 3,
there are two principal water managers involved in the Neste water system, the SHEM
and the CACG. Water resource in the Aure Valley (SB1-4) is exploited by the SHEM for
intensive hydropower production and water demand from the CACG. Water resource in
the Gascogne region (SB5) is managed by the CACG to provide reliable water supply
for local drinking water, industrial use, irrigation, and environment. As such, five water
demand models are developed as follows.

5.1.2 Water demand for hydropower from SHEM
Model development

The widely used indexes Heating Degree Day (HDD) and Cooling Degree Day (CDD)
are the technical indicators based on air temperature to describe the energy demand for
heating and cooling, respectively (Spinoni et al., 2014). There are different methods and
equations to calculate the HDD and CDD indexes (see the summary in Spinoni et al.
(2017a)). In general, HDD and CDD are expressed as the difference values of daily air
temperature to the base temperature values. The larger the HDD (or CDD) values the
more need for energy for heating (or cooling). The base temperature values of HDD and
CDD are determined by a number of factors of regional characteristics (e.g., buildings,
market strategy, and energy demand behavior). The concept of linking energy demand
to air temperature for water management is performed in other similar studies and shows
efficient to reproduce energy demand (e.g., François et al., 2014b; Gaudard et al., 2013;
Hendrickx and Sauquet, 2013).

In this study, we applied the method from JRC1 to calculate daily HDD and CDD
values of France. The equations to calculate daily HDD and CDD values are derived as
follows: {

HDDt = max(τH−Tt ,0)
CDDt = max(Tt− τC,0)

(5.1)
(5.2)

where Tt (°C) is the air temperature of day t over France, τH (°C) the base temperature
of HDD (15°C for France), τC (°C) the base temperature of CDD (24°C for France). The
HDD and CDD values for France are sourced from Eurostat2.

Figure 5.2 shows the general energy demand pattern in a national scale of France gen-
erated from equations 5.1 and 5.2. In France, energy is mostly needed in winter for heating
while there is barely no demand for summer cooling. However, the CDD value of year
2003 is calculated larger than 0 due to the severe heat wave. In order to meet the demand

1The Jointly Research Centre is the European Commission’s science and knowledge service (https:
//joint-research-centre.ec.europa.eu/).

2Eurostat is the statistical office of the European Union (see https://ec.europa.eu/eurostat/
statistics-explained/).
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5.1. Water demand modelling

for winter energy consumption, the energy structure of France is nuclear-hydropower
mixed: the base load of energy is provided by nuclear stations while hydropower produc-
tion from reservoirs or dams mostly concentrates on peak periods of electricity markets.
Hydropower allows to respond to quick fluctuations in the markets that nuclear production
with lower flexibility are unable to do so.
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Figure 5.2 – Regimes of energy demand indexes HDD (left) and CDD (right) in France
calculated from Safran-France over the period from 08/1958 to 07/2018.

The link between the national energy demand and hydropower production in the Neste
water system is presented. The operation of the reservoirs in the Aure Valley for water
use is highly seasonal. Currently, water is released by SHEM for hydropower production
normally in winter due to high demand for heating (high HDD values) and high market
prices in this period. However, hydropower production in summer for cooling is not
considered as the current objective of SHEM.

Therefore, the philosophy of hydropower demand model is that when HDD values of
France are high, SHEM shows an interest in producing energy as the HDD values rep-
resents a high demand and thus a potentially high profit. A hydropower demand model
can thus be designed from the historical information provided by SHEM operation data.
The hydropower demand model in this study is simplified as a linear relation to the HDD
values of France without considering other influence factors in the energy market (e.g.,
energy policy, energy price fluctuation). However, a deterministic model between hy-
dropower demand and the HDD value can not represent the variability of hydropower
demand. Deterministic modelling should be combined with a stochastic model when the
deterministic model gives too poor results and where information is not available to build
an adapted model. Thus, the quantile regression method (Koenker and Bassett, 1978), a
stochastic method to reproduce the variability, is used to link hydropower demand with
the HDD value.

Moreover, hydropower production in winter by SHEM is divided into two demand
periods: high demand period in weekdays and low demand period in holidays (here refers
to weekends and Christmas vacations from 23/Dec to 01/Jan). Figure 5.3 shows the total
water release and the corresponding produced energy of the two hydropower systems for
weekdays and holidays in the winter season from 01/2002 to 03/2018. What stands out in
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this figure is that SHEM releases much more water (produces more energy) in weekdays
than in the holidays for both systems.
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Figure 5.3 – Water release (top) and corresponding energy production (bottom) in week-
days and holidays for the Eget and Louron power systems in cold months (November to
March) over the period from 01/2002 to 03/2018.

The formulation of hydropower demand can be derived as:

Dene
t =



max
(
min(HDDt×a1|A1 +b1|A1,Dene

max),D
ene
min)
)

if t in low demand period

max
(
min(HDDt×a2|A2 +b2|A2,Dene

max),D
ene
min)
)

if t in high demand period

(5.3)

where

• Dene
t (kWh), is the market demand from SHEM of day t;

• HDDt (°C), the HDD value of day t;

• Dene
min (kWh), minimum hydropower demand, set to be 0;

• Dene
max, maximum hydropower demand defined as DHP in chapter 2, 1.75×106 kWh

calculated from the Table 3.3;

• A1 (or A2), a set of historical energy production linking to historical HDD values in
low(high) demand period from 01/2002 to 03/2018;
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5.1. Water demand modelling

• a1 (or a2) (kWh/°C), the slope of quantile regression line calculated from the set A1
(or A2);

• b1 (or b2) (kWh), the intercept of quantile regression line calculated from the set A1
(or A2);

Given the variations in the management behaviors of SHEM mentioned before, the values
of a1 and b1 (or a2 and b2) is calculated in a stochastic manner with the uniform distri-
bution to randomly select a quantile regression line (Hendrickx and Sauquet, 2013). The
sets A1 and A2 are thus divided into 101 quantile lines from the quantile line 0% to the
quantile line 100%. Figure 5.4 displays the historical energy production sets A1 and A2 in
quantile linear relation to HDD values. The 25%, 50%, and 75% quantile regression lines
are calculated and presented in the figure. Energy production of SHEM is driven by HDD
values. The higher the HDD values, the more hydropower demand will be provided by
SHEM.
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Figure 5.4 – Historical hydropower production for low and high demand periods in linear
relation to HDD values of France over the period from 01/2002 to 03/2018.

In practice, the developed hydropower demand model is forced with daily France
temperature series and their associated dates. As such, the hydropower demand model
can be applied to current and future conditions. The model firstly calculates the daily
HDD and CDD values based on the equations 5.2 and 5.3. Since the current hydropower

111



Chapter 5. Water demand and management modelling

production is focused on heating demand, the calculated HDD values are used and the
associated date information distinguishes them into high and low demand. Secondly,
one quantile regression line is uniformly chosen among the 101 quantile regression lines
for each demand set (each regression line has the same probability to be chosen). The
hydropower demand can thus be calculated based on the chosen quantile regression line
and the calculated HDD values.

Model assessment

Koenker and Machado (1999) introduced a coefficient R1, a local measure of goodness of
fit for a particular quantile regression model. This coefficient is analogous to the conven-
tional coefficient of determination R2 that varies from 0 to 1, where 1 would correspond
to a perfect fit. The formulation of the coefficient R1 is presented bellow:

R1 = 1− V̂ (τ)

Ṽ (τ)
(5.4)

where τ is the quantile value, V̂ (τ) the sum of absolute deviations of the fully parameter-
ized model at a particular quantile τ , and Ṽ (τ) the sum of absolute deviations in the null
(non-conditional) model at a particular quantile τ . The calculation of V terms are given in
Koenker and Machado (1999). Note that R1 values will always be smaller than R2 values
because R1 is calculated with absolute deviations while R2 is calculated with the variance
of squared deviations.

The R2 values between historical hydropower production and associated HDD of
France for low demand set A1 and high demand set A2 are 0.10 and 0.26, respectively.
Table 5.1 shows the goodness of fit of R1 for the 25%, 50%, and 75% quantile regression
lines between historical hydropower production and associated HDD of France for the
two demand sets. Indeed, the various incentives of SHEM reservoir managers, such as
whether to release water and how much water to be released for hydropower production,
cannot be fully interpreted by daily HDD values of France. This can be attributed to the
real water management practiced by SHEM that chooses the best hours of a day with the
most interesting price in the market to produce energy for the highest profitability and
benefits.

Table 5.1 – The performance (R1 values) of the hydropower demand model for 25%, 50%,
and 75% quantile regression lines as examples.

Quantile regression values 25% 50% 75%

Low demand set A1 0.02 0.05 0.09

High demand set A2 0.15 0.15 0.14

Empirical cumulative distribution functions (ECDF) between simulations and obser-
vations are suitable for statistical significance testing and analysis of hydropower demand
model performance. Figure 5.5 compares the ECDF of 10 simulations of the hydropower
demand model with that of the observed SHEM operations. The ECDF of simulations
follows with the observations, which indicates that the hydropower demand model is ca-
pable of representing the probability distribution of observed hydropower production. As
such, the hydropower demand model gives acceptable results.
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Figure 5.5 – ECDF of the 10 trials of the low demand model (and high demand model)
simulated with the HDD of France over the period from 01/2002 to 03/2018 as input
compared with the low hydropower demand set A1 (and high hydropower demand set
A2).

In summary, the energy market is a tremendously complicated and massively coupled
system. The electricity consumption and price are influenced by socio-economic devel-
opment, but they are also susceptible to seasonal and weather-related fluctuations. This
study sets out to simplify the hydropower demand from the electricity markets by only
considering the weather-related change represented by a temperature-based index (HDD
of France). As such, the development of hydropower demand model is not aimed at pro-
ducing accurate hydropower demand from the markets but realizing a general demand
trend. The hydropower demand model generates daily demand in unit kWh with daily
HDD values of France as input and with historical hydropower production practice as
base to calculate linear coefficients.

5.1.3 Water demand for drinking water from CACG

Figure 3.26 displays that drinking water extraction is generally homogeneous in the scale
of SB5. Water demand for drinking water in SB5 can be calculated based on the concept
of drinking water index (DWI), an indicator of the necessary water consumption per local
inhabitant. The water extraction data from BNPE for 2003-2017 is used to calculate DWI
because the BNPE data is downscaled to administrative commune scale. The population
information in each commune is extracted from INSEE over the period from 2006 to
2017. As such, the detailed water extraction and population information for 2006-2017
of the communes in SB5 allows a good estimate of DWI.

Besides, current network efficiency of transferring water is taken into account. De-
quesne and Portela (2019) reported that the value of network efficiency within the major
administrative department associated with SB5 is 70-75% for Gers. Here, we consider
that the network efficiency in SB5 is approximately around 75%.
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Thus, the calculation of current annual DWI can be formulated as follow.

DWI =
Extraction×75%

Population
(5.5)

Figure 5.6 shows the calculated annual DWI values from 2006 to 2017. Therefore, the
mean annual value DWI in SB5 is 39.4 m3 per inhabitant.
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Figure 5.6 – Annual water extraction for drinking water (a), population information (b),
and calculated DWI (c) in SB5 from 2006 to 2017.

The DWI value is then used to calculate the daily release for drinking water demand
from the 15 reservoirs managed by CACG. The daily drinking water demand from the
CACG reservoirs can thus be derived as:

Ddri
t =

DWI
365 ×Poput

et
(5.6)

where Ddri
t (m3/s) is the drinking water demand for the CACG reservoirs of day t, Poput

population in SB5 of day t, and et network efficiency of day t. To apply in the current and
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future conditions, the drinking water demand model is forced with projected population
information and the water transfer network efficiency of both conditions.

5.1.4 Water demand for industrial use from CACG
Industrial water use in SB5 is simplified as a constant since CACG mainly provides wa-
ter for Arkéma as mentioned in Chapter 3. Water transfer efficiency is not considered
here. As such, daily water demand for industrial use is calculated with historical CACG
registration information from 2004 to 2018. The daily industrial water demand from the
CACG storage can be derived as:

Dind
t = 0.338 (5.7)

where Dind
t (m3/s) is the industrial water demand of day t from CACG reservoirs.

5.1.5 Water demand for irrigation from CACG
The ADEAUMIS model

From a technical point of view, irrigation water demand is mainly dependant on a few
principles: understanding the growth stages of the crop, knowing the water and tem-
perature requirement to satisfy each growth stage, climatic conditions that influence the
evapotranspiration of the crop, and estimating irrigation intervals. When natural water
supply (e.g., rainfall and soil water content) is not sufficient for crop growth, irrigation
practices are needed.

In this study, the ADEAUMIS model developed by Leenhardt et al. (2004a,b) that
dynamically simulate crop growth and water demand in each growth step is employed
to represent irrigation water consumption in SB5. This model has shown a good perfor-
mance in simulating irrigation water demand in the Baïse sub-basin of SB5 (Leenhardt
et al., 2004b). In the framework of PIRAGUA project, the ADEAUMIS model is coded,
adapted, and calibrated by Dr. Clotaire Catalogne from ICARE23. This model is modified
from the original version to adapt to the irrigation activities of SB5 under climate change
conditions. The irrigation activities in SB5 is simplified for maize since maize cultivation
consumes the most irrigation water and covers the most irrigation surface. Maize is an
annual crop. Figure 5.7 shows a typical maize cropping and irrigation in the Southern
France with sowing in spring, irrigation in summer, and harvesting in autumn. Water
requirement for irrigation should be adjusted according to the maize growth stage that
varies from one stage to another.

The ADEAUMIS model is a bio-decisional model at daily time step composed of two
sub-models: a sub-model of crop growth coupled with a sub-model of decision rules. Ta-
ble 5.2 summarizes the general configuration information of the ADEAUMIS model. The
inputs of the ADEAUMIS model are climatic variables including potential evapotranspi-
ration (PET), temperature (T), and precipitation (P). The simulation of the ADEAUMIS
model is divided into three steps: (1) determination of sowing date, (2) determination of
crop growth, and (3) determination of irrigation water volume. Each simulation step is
presented as follows.

3An engineer consulting company for agriculture, water, and environment. The communication infor-
mation of Dr. Clotaire Catalogne is provided: clotaire.catalogne@icare2.fr
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Figure 5.7 – A typical practice of maize cropping and irrigation in the Sourthern France.
Source from https: // www. maizeinfrance. com/ .

Table 5.2 – The inputs, outputs, initial conditions, and parameters of the ADEAUMIS
model modified from Leenhardt et al. (2004a).

Inputs PET, P, and T

Initial conditions Sowing period

Model parameters Accumulation of temperature for each crop stage, and threshold val-
ues for irrigation decision-making

Outputs Sowing date, duration of crop growth, duration of irrigation, and ir-
rigation water volume required

(1) Determination of sowing date The sowing date is variant due to soil moisture and
weather conditions. The ADEAUMIS model considers the precipitation as the driver to
determine the sowing date. In order to correspond to the maize sowing in spring of SB5,
the potential sowing period is predefined based on the historical experience of maize
cropping in SB5. Here, the beginning date of sowing period is 07/April and the end is
31/May.

The sowing dates is decided based on the rules of precipitation conditions:
i=t−2

∑
i=t−4

P(i)< 9 mm

P(t−1)< 5 mm

(5.8)

(5.9)

where P(t) (mm) is the precipitation of day t. The dates that fit the rules are the potential
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and suitable days for sowing. The median value of these dates is thus the representative
sowing date (i.e., the starting point of maize growth).

(2) Determination of crop growth duration The duration of maize growth stage is
then determined based on the thermal time (the accumulation of daily temperature for
maize development). To be more specific, the maize is considered to grow in a specific
temperature interval above and below which the crop stops to grow. This temperature
intervals is variant among different maize types. Based on historical maize cropping
experience in SB5, Leenhardt et al. (2004a) summarized that the majority of maize types
are late growing varieties. As such, the temperature intervals of maize growth in SB5
is from 6 °C to 27.5 °C. This indicates that maize grows when and only when daily
temperature is in this interval. Daily temperature less than 6 °C or larger than 27.5 °C
stops maize growth. Besides, Table 5.3 summarizes the parameters of thermal time for
the five major stages of maize: 10-12 leaves stage, flowering stage, early grain filling
stage, 50% grain moisture content, and maturity. The accumulation of daily temperature
reaches each parameter of the five stages of maize growth, indicating the development of
maize to each stage. As such, the days to reach each parameter of the five stages are thus
the duration of each stage for maize growth.

Table 5.3 – The necessary thermal time for the major five stages of maize growth. The
parameters are from Leenhardt et al. (2004a).

Maize growth stage Thermal time [°C day]

10-12 leaves stage 650

Flowering stage 910

Early grain filling stage 1495

50% grain moisture content 1630

Maturity 1990

(3) Determination of irrigation water volume Except in rare circumstances where
irrigation is required to facilitate emergence, maize irrigation is ineffective prior to the
appearance of 10-12 leaves. The maize plants use very little water before that stage. The
decision rules for irrigation of the ADEAUMIS model is based on the surveys from the
20 farmers in the Baïse sub-basin (Leenhardt et al., 2004a). These rules are considered
representative for the irrigation practices of SB5. On this basis, the decision rules are
modified to adapt to the global SB5 irrigation activities and to climate change from the
expertise in the PIRAGUA project framework. Table 5.4 summarizes the decision rules
for irrigation in the ADEAUMIS model. The major change is the rule of "Returning
(without rain)": the irrigation volume is calculated from the arbitrary formula

2×

[
i=t

∑
i=t−4

PET (i)−
i=t

∑
i=t−4

P(i)

]

and the coefficient 2 is confirmed by experts and water managers in SB5.
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Through the three steps above, the outputs are sowing date, the duration of crop
growth stage and associated irrigation duration, and the necessary irrigation water to sat-
isfy each crop growth stage. Although the decisional model works at daily time step, the
results of irrigation date and volume is at weekly time step (maximum 10-day interval
beween the two irrigation activities). Besides, the results of irrigation volume is in unit
mm/week.

The assessment of the ADEAUMIS model

In order to validate the ADEAUMIS model, the information of the maize irrigation area
and the irrigation efficiency in SB5 is necessary. Particularly, the irrigation area of maize
cultivation in SB5 varies from year to year (Teyssier, 2006). These information should
be multiplied with the results from the ADEAUMIS model and then compare with the
weekly irrigation water release registration from CACG. However, this validation of the
ADEAUMIS model is difficult because these information is barely known.

In this study, a concept of "derived irrigation area" (Id) was introduced to link the
simulated irrigation water demand with the release registration of CACG for irrigation
(Clotaire, personnal communication).

The formulations are presented as: Idt =
Iat

Iet

Rirr
obs,t = Dirr

t × Idt

(5.10)

(5.11)

where Iat (km2) is the irrigation area of day t, Iet the irrigation efficiency, Rirr
obs,t (m3/s)

the observed CACG water release for irrigation in SB5 (total release form CACG reser-
voirs and the 48 Mm3 storage in the Aure Valley), and Dirr

t (m3/s/km2) irrigation water
demand simulated from the ADEAUMIS model. Since the two information Iat and Iet is
unknown, they are aggregated into one variable Idt to reduce the difficulty of validation.

Leenhardt et al. (2004a) stated that the simulated irrigation water extraction demon-
strated great sensitivity to the estimation of irrigation surface while the dynamics of water
extraction are well simulated. In another word, the estimation of Idt dominates the an-
nual irrigation release and the simulation results Dirr

t dominates the seasonal irrigation
demand pattern. As such, the performance of the ADEAUMIS model was assessed by
investigating the seasonal dynamics.

The observed irrigation water release at weekly time step from CACG registration is
from 1995 to 2019 (year 1996 is missing). Thus, the irrigation water demand Dirr

t in SB5
is simulated by the ADEAUMIS model with the PET, P, and T variables of each Safran-
France grid in SB5 as inputs over the period from 1995 to 2019. A total 126 grids are
simulated to represent the irrigation activities in SB5.

The Id values for each year from 1995 to 2019 can be calculated by the observed
annual release divided by the simulated annual aggregation of Dirr

t from equation 5.11.
Therefore, the calculated Id values for each year in Figure 5.8 can be seen as the observed
"derived irrigation area".

The calculated Id values for each year are then used to multiply the simulated irri-
gation demand Dirr

t , which can be compared with the observed irrigation release Rirr
obs,t .

Figure 5.9 shows the comparison between the simulated irrigation water demand (mean
simulated irrigation demand of 126 Safran-France grids multiplied by the Id values of
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Figure 5.8 – The calculated Id values for year from 1995 to 2019. Note that the year 2006
is a missing year.

Figure 5.8) aggregated to weekly time step and the observed weekly release from CACG
registration. In general, the simulated irrigation water demand well correspond to the
observed seasonal changes with the peak in summer. The irrigation duration is also well
represented. The KGE value between the simulated and observed irrigation water release
is 0.63.

However, irrigation demand in autumn during October is underestimated. This is
because the simulation only considers the maize irrigation and thus irrigation in autumn
for other crops is ignored. For example, in the autumn of year 2018, CACG released water
for colza and soybean due to drought events (CACG, 2019). Besides, irrigation in spring
during June is slightly underestimated. This is also because the ignorance of other crops
(e.g., colza) and the irrigation in spring is normally one round (25-30 mm) if necessary
according to the specialist advisor Thierry BAQUE from the Chambre d’Agriculture du
Gers. The simulated irrigation water demand in summer is more variant than the observed
because the irrigation release is also managed by CACG. For example, in the summer of
year 2017 (hot and dry), quota for irrigation is reduced by 10-20% due to the increasing
environmental demand.

The simulation results in terms of sowing date, maize growth duration and irrigation
duration are presented in Figure 5.10. The boxplots represent the distribution of the sim-
ulated values for all the 126 Safran-France grids.

According to the interview with the expertises in the agricultural sector of the Gers
department, late or semi-late varieties of maize still dominate the cultivation of maize.
The sowing is done at the beginning of April for SB5. However, the simulated sowing
date is in the period from 20/April to 15/May, which is about one month later than the
real situation. This imperfection is mostly attributed to the predefined configuration in the
sowing date simulation, which is the period from 07/April to 31/May. The configuration
of sowing date in the ADEAUMIS model is compromised to have a better simulation
of irrigation period and peak as presented in Figure 5.9. Besides, the simulated maize
growth duration is 130-190 days. According to Arvalis4, in France, maize completes its

4The French arable crop R&D institute (see https://www.arvalis-infos.fr/).
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Figure 5.9 – (a) The simulated weekly irrigation water demand compared with the ob-
served CACG registration for each year in 1995-2019; (b) The regime of the simulated
weekly irrigation water demand compared with the observed release regime for year
1995-2019.

cycle, from sowing to harvesting, in 4 to 6 months. As such, the simulated duration well
corresponds to the realistic situation. The variance of the simulated maize growth duration
is due to the spatial and temporal variance of temperature of each Safran-France grid in
SB5. The simulated irrigation duration, considered as the duration between the stage of
flowering and the stage of 50% grain moisture content, is 60-80 days. As observed, the
simulated irrigation duration is homogeneous from 1995-2019. Besides, the simulated
three variables (sowing date, maize growth duration, and irrigation duration) share the
similar variation.

In summary, maize irrigation activities in SB5 are highly human-induced and variant
from year to year. Particularly, important information (i.e., annual maize irrigation area
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Figure 5.10 – The simulated sowing date (a), maize growth duration (b), and irrigation
duration (c) in SB5. Maize growth duration is the time interval between sowing date
and the stage of maturity. Irrigation duration is the time interval between the stage of
flowering and the stage of 50% grain moisture content. Last irrigation activity in a year
is after the stage of 50% grain moisture content.

and irrigation efficiency) remains unknown. In this study, maize irrigation activities are
represented by the bio-decisional model ADEAUMIS. In order to link the simulated maize
irrigation water demand with the observed water release, a conceptual variable "derived
irrigation area" is introduced to fix the annual irrigation water demand. In another word,
the simulated annual irrigation water demand and the observed annual irrigation water
release are the same. Although there are some imperfections in the simulation results, the
maize growth stages are well represented with the simulated growth stages coherent with
the realistic maize cropping in France, and weekly irrigation water demand pattern is well
simulated with the KGE value of 0.63.

The daily climate variables (PET, P, and T) and maize irrigation surface (here, the
"derived irrigation area") are necessary inputs into the calibrated ADEAUMIS model to
produce weekly irrigation water demand of SB5 at a year basis (the "derived irrigation
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5.1. Water demand modelling

area" can be variant from year to year). In order to investigate the future irrigation water
demand, future climate change projections of SB5 and future "derived irrigation area"
changes are forced into the calibrated ADEAUMIS model. The results are then used to
compare with the simulations forced with current climate conditions and current "derived
irrigation area".

From the adaptation point of view, the parameters of calibrated ADEAUMIS model
(see Table 5.2) can be changed to represent an adapted irrigation system of SB5. To be
more specific, the initial condition (sowing date) is 07/April-31/May can be changed to
an earlier sowing calendar to adapt to the future warming conditions. The accumulation
of temperature of growth stage can be changed to represent other crops to show that the
cropping strategy is changed as an adaptation. To accompany the changes of cropping
strategy, the irrigation threshold value (see Table 5.4) should also be changed because
different crops have different water demanding. As such, a crop type with less water
consumption can be tested as an adaptation. Moreover, the future "derived irrigation area"
can also be changed as an adaptation strategy. A lower "derived irrigation area" value can
represent a higher irrigation efficiency or a lower irrigation surface.
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5.1.6 Water demand for environment from CACG
As mentioned before, CACG manages to maintain a good status of the environment at a
daily time step. The historical release for the environment can be calculated based on the
formula as follow

Renv
obs,t = Rtot

obs,t−Rdri
obs,t−Rind

obs,t−Rirr
obs,t +Cobs,t (5.12)

where

• Renv
obs,t , is the observed water release for the environment from the CACG reservoirs

of day t;

• Rtot
obs,t , the observed total daily water release from the CACG reservoirs as shown in

Figure 3.29;

• Rdri
obs,t , the observed annual water release for the drinking water from the CACG

reservoirs as shown in Figure 3.27 and then transferred to daily basis;

• Rind
obs,t , the observed annual water release for the drinking water from the CACG

reservoirs as shown in Figure 3.27 and then transferred to daily basis;

• Rirr
obs,t , the observed weekly water release for the irrigation from the CACG reser-

voirs as shown in Figure 5.9 and then transferred to daily basis;

• Cobs,t , the observed daily request from the contract of the 48 Mm3 storage in the
SHEM reservoirs of the Aure Valley.

The term Rtot
obs,t +Cobs,t corresponds to the total water release for the four types of water

demand in SB5. As such, the calculated water release for the environment is calculated
from 01/2013 to 12/2019.

In terms of environmental water demand, there is the DOE requirement (a minimum
river discharge) that should be satisfied as shown in Table 3.5 and Figure 3.21. In addition,
CACG conducts other two actions to support the environmental quality in SB5. Firstly,
CACG releases a flow basis for the environment from the 15 reservoirs. Secondly, CACG
extracts water at Sarrancolin via the Neste Canal (Qcanal) to feed SB5. Finally, CACG
monitors the daily river discharge at the ten control stations near the confluence to the
River Garonne as shown in Figure 3.20 to make sure that it is no lower than the DOE
requirement. If river flow in SB5 is lower than the DOE value, an extra release from
the CACG reservoirs or a higher extraction at Sarrancolin will be conducted to fulfill the
difference.

However, there is no specific rule curves to guide the release of flow for the environ-
ment. CACG releases water from the 15 reservoirs even though the natural water flow
in SB5 is above the DOE value. In this study, we simply assume that the release of the
environmental flow relies on the two drivers: the current state of river discharge in SB5
and the current water availability in the 15 CACG reservoirs. Table 5.5 shows the co-
efficients of determination of the observed water release of the environmental related to
natural discharge in SB5 (Qnat5, see equation 3.6), CACG reservoir storage, and both in
four seasons. The coefficients of determination are higher when considering both drivers
for winter, spring, and autumn seasons. The lower coefficient of determination of both
drivers in summer is probably attributed to the biases from the summer irrigation release.
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Table 5.5 – Coefficient of determination R2 between water release of the environmental
flow from the CACG reservoirs Renv

obs and natural discharge in SB5 (or reservoir storage in
SB5, or both) for four seasons.

Natural discharge in SB5 (Qnat5) CACG reservoir storage V 5 Both

Winter 0.23 0.36 0.43

Spring 0.28 0.02 0.28

Summer 0.02 0.30 0.05

Autum 0.20 0.04 0.33

Here, we use the multiple variable quantile regression method to simulate the daily
release of the flow basis (β ) from the CACG reservoirs for the environment applied to the
four seasons. The flow basis is defined as an outflow for the environment when there is
no need to satisfy the DOE requirement in SB5. This method is similar to the method of
hydropower energy demand and the formulation of this method can be expressed as:

β =



f (VCACG
t ,Q5,t)|Renv

obs,winter if t in winter

f (VCACG
t ,Q5,t)|Renv

obs,spring if t in spring

f (VCACG
t ,Q5,t)|Renv

obs,summer if t in summer

f (VCACG
t ,Q5,t)|Renv

obs,autumn if t in autumn

(5.13)

where VCACG
t is the total water volume of the 15 CACG reservoirs of day t, Q5,t the river

runoff in SB5 of day t, and f the linear quantile regression function derived from different
seasonal datasets (Renv

obs,winter, Renv
obs,spring, Renv

obs,summer, and Renv
obs,auntumn).

As such, the water demand for the environment in SB5 from the 15 reservoirs can be
derived as:

Denv
t = max

(
DOEt−Q5,t− (Qcanal,t−Ct),β

)
(5.14)

where Denv
t is the environmental demand in SB5 from CACG reservoirs of day t, DOEt

the DOE requirement of day t, Q5,t the river discharge in SB5 of day t, Qcanal,t the canal
extraction of day t, and Ct the request from the contract of the 48 Mm3 storage in the
SHEM reservoirs. The term Qcanal,t −Ct indicates the contribution from Sarrancolin to
the environmental water demand in SB5. This contribution to the environment of SB5
will be presented in the next sub-section.

Figure 5.11 shows the regime of the simulated environmental water demand for the
CACG reservoirs compared with the observed environmental water release from the CACG
reservoirs over the period from 01/2003 to 12/2019. Figure 5.12 shows the ECDF of ten
trial simulations of environmental water demand compared with the observed environ-
mental water release from the CACG reservoirs for four seasons over the period from
01/2003 to 12/2019. From the two figures, environmental water demand pattern in win-
ter, spring and autumn is well represented. On the contrary, simulated environmental
water demand in summer is not coherent to the observed release, which is attributed to
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the low quality of the observed environmental release in summer biased by irrigation wa-
ter release.
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Figure 5.11 – The regime of the simulated daily environmental water demand in SB5
compared with the calculated observed daily water release regime for the environment of
SB5 over the period from 01/2003 to 12/2019.
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Figure 5.12 – ECDF of the 10 trials of the environmental water demand (simulated with
naturalized river discharge Qnat5 in SB5, observed canal water extraction, and observed
daily request from SHEM reservoirs by CACG) compared with the observed environmen-
tal water release from the CACG reservoirs for four seasons over the period from 01/2003
to 12/2019.
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5.2 Water management modelling

5.2.1 Introduction
This sub-section explores how to construct water management models in the Neste water
system. Since the SHEM and CACG manage water in different ways, water management
models for each management component are designed separately. Three management
models are presented: the water management model representing SHEM for hydropower
production, the water management model representing CACG extracting water at Sarran-
colin to feed SB5, and the water management model representing CACG sharing water
for the four types of water demand in SB5 (drinking water, industrial use, irrigation, and
environmental use).

5.2.2 Water management model of SHEM
Model development

As mentioned before, the reservoirs in the Eget-Louron system, which are single-year and
multipurpose, are managed in a joint mode. SHEM makes the management plan for the
reservoirs in a deterministic way before the beginning of the management year (typically
April to the end of March of the next year). This procedure predicts inflows into the
reservoirs, water demand from CACG, and the market electricity prices by the experience
of reservoir managers and the tools developed by SHEM. An optimization step is then
involved to make a series of decisions about the volume to be allocated at a given time
is entailed in this procedure. This optimization is required to make the most use of the
available water in the SHEM reservoirs to produce energy for profit while ensuring that
various water demand (eflow and CACG demand) and restrictions (e.g., water release
capacity, no overflow of the reservoirs, and water transfer capacity) are satisfied. It is
considered that water releases are cost-effective when the released volume exceeds the
regulatory volume requested by CACG.

In this study, a water management model is developed to reproduce this management
mode to manage the Orédon, Oule, Pouchergues, and Caillaouas reservoirs in a coor-
dinated manner. Several simplifications are made in the water management model of
SHEM.

• First, the Pouchergues and the Caillaouas reservoirs are aggregated into one reser-
voir in order to reduce the uncertainties in naturalizing the inflows into the two
reservoirs as mentioned in chapter 3. We name it as the Lassoula reservoir.

• Second, we do not include the electricity price model as SHEM does to calculate the
"water value" in the reservoirs to guide the release. The market prices are reflected
as the balance point in supply and demand, which is out of the scope of the thesis.
Instead, the trigger to the hydropower production of SHEM used in this study is
the "interest of release” based on the hydropower demand modelling (Hendrickx
and Sauquet, 2013). The "interest to release" is relevant to the electricity price:
a higher demand in the market normally means a higher market price, and thus a
higher interest in producing hyropower for SHEM.

• Third, we transfer the management period from April-March to July-June for two
reasons: (1) the Lassoula reservoir has a less variant water volume in July (close the
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maximum storage) than water volume in March, which helps to fix the constraint in
the optimization procedure; and (2) this transfer facilitates the impact assessment
of reservoir refill management.

• Fourth, the maintenance of the turbines in the Eget-Louron hydropower system is
not included in the simulation and the hydropower plants can always provide the
maximum energy production.

Figure 5.13 shows the simplification of the Eget-Louron hydropower system for the
optimization process. In the Eget-Louron system, the hydropower plants that have the
highest drop height are those of the Louron system because of the cascade power plants
(see Table 3.3). Thus, 1 m3 of the water in the Louron system produces more energy
than that of the Eget system (K1

t < K3
t ). In the Eget hydropower system, according to

SHEM, water in the Oule reservoir is more cost-effective than that in the Orédon reser-
voir. Although water in the Orédon reservoir is transferred into the Oule reservoir for
hydropower production, we introduce a water-energy transition coefficient for the Orédon
reservoir K2

t that is slightly less than K1
t to guide water management (K2

t < K1
t ). Given

that water-energy coefficients have the relation as K2
t < K1

t < K3
t for all time steps, they

are all considered as constant.
The value of the coefficient K2

t is sourced from Table 3.3, which is 1.73. The value
of the coefficient K1

t is set to be 1.70, a slightly lower value than 1.73. The value of the
coefficient K3

t is calculated as the mean value of the energy-water coefficient range for the
Caillaouas reservoir (water out of the Caiilaouas reservoir for hydropower production will
go through the Lassoula-Caillaouas, Tramezaygues, Pont de Prat, and Pont d’Estagnou
plants as shown in Table 3.3). Thus, the value of K3

t is approximated as 2.05.

Orédon 
Reservoir

Oule 
Reservoir

Lassoula 
Reservoir

 Q2,t

 K1
t

 Q1,t  Q3,t

 K3
t

CACG request  Ct

 R2
t

 R1
t  R3

t

Figure 5.13 – The simplification of the Eget-Louron system for the optimization process.
Q1,t , Q2,t , and Q3,t represents the inflows of day t into the Oule, Orédon, and Lassoula
reservoirs, respectively. R1

t , R2
t , and R3

t represents the outflows of day t from the Oule,
Orédon, and Lassoula reservoirs, respectively. K1

t and K3
t are the water-energy transition

coefficient for the Oule and Lassoula reservoirs, respectively.

The water management model is developed based on the rules mentioned above. The
time step chosen is daily time step to make the full use of data available and to avoid the
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complexity of hourly spot prices in a day. The simulation steps of the management model
of SHEM are presented as follow.

1. Stage variables (consecutive days in a management year):

• t = 1, 2, 3, ..., N

2. Decision variables (water releases from each reservoir for each use at stage t):

• R1
C,t : water release from the Oule reservoir for CACG demand

• R1
S,t : water release from the Oule reservoir for hydropower production

• Spil1
t : water spills from the Oule reservoir

• R2
C,t : water release from the Orédon reservoir for CACG demand

• R2
S,t : water release from the Orédon reservoir for hydropower production

• Spil2
t : water spills from the Orédon reservoir

• R3
C,t : water release from the Lassoula reservoir for CACG demand

• R3
S,t : water release from the Lassoula reservoir for hydropower production

• Spil3
t : water spills from the Lassoula reservoir

3. State variables:

• Vt
1: water volume of the Oule reservoir at early stage t

• Vt
2: water volume of the Orédon reservoir at early stage t

• Vt
3: water volume of the Lassoula reservoir at early stage t

4. State transition functions based on water budget:

• V 1
t+1 =V 1

t +Q1,t +R2
C,t +R2

S,t−R1
C,t−R1

S,t−Spil1
t − e f low1;

• V 2
t+1 =V 2

t +Q2,t−R2
C,t−R2

S,t−Spil2
t − e f low2

• V 3
t+1 =V 3

t +Q3,t−R3
C,t−R3

S,t−Spil3
t − e f low3

5. Target function that is the benefit of water release at stage t:

• Bt = R1
S,t×Kt

1 +R2
S,t×Kt

2 +R3
S,t×Kt

3

6. Objective function:

• fob j = max
(
∑

t=N
t=1 Bt×Pt

)
, where Pt is the "interet of release"

• Pt = 0.00001×Dene
t , where 0.00001 is the coefficient to transfer hydropower

demand to the "interest of release"

7. Constraints:

• CACG water demand: Ct = R1
C,t +R2

C,t +R3
C,t

• eflow downstream the Oule reservoir e f low1 applied to the state transition
function of V 1

t
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• eflow downstream the Orédon reservoir e f low2 applied to the state transition
function of V 2

t

• eflow downstream the Lassoula reservoir e f low3 applied to the state transition
function of V 3

t

• No overflow of the Oule reservoir: V 1
min 6Vt

1 6V 1
max

• No overflow of the Orédon reservoir: V 2
min 6Vt

2 6V 2
max

• No overflow of the Lassoula reservoir: V 3
min 6Vt

3 6V 3
max

• Water release capacity of the Oule reservoir (water use from the Orédon reser-
voir is released through the Oule reservoir): R1

min 6 R1
C,t +R1

S,t +R2
C,t +R2

S,t 6

R1
max

• Water release capacity of the Orédon reservoir: R2
min 6 R2

C,t +R2
S,t 6 R2

max

• Water release capacity of the Lassoula reservoir: R3
min 6 R3

C,t +R3
S,t 6 R3

max

• Spill water capacity of the Oule reservoir: Spil1
min 6 Spil1

t 6 Spil1
max

• Spill water capacity of the Orédon reservoir: Spil2
min 6 Spil2

t 6 Spil2
max

• Spill water capacity of the Lassoula reservoir: Spil3
min 6 Spil3

t 6 Spil3
max

• Minimum water volume of the Orédon reservoir in winter (water in the Orédon
reservoir is transferred to the Oule reservoir for hydropower production in
winter): V 2

winter =V 2
min

• No transfer from the Orédon to Oule reservoir in spring (there is no water
transfer in spring for the refill of the Orédon reservoir): R2

C,spring+R2
S,spring = 0

8. Boundaries (water volume in the reservoirs should achieve the storage target Vini at
the end of the management year):

• V 1
t=1 =V 1

t=N =V 1
ini

• V 2
t=1 =V 2

t=N =V 2
ini

• V 3
t=1 =V 3

t=N =V 3
ini

The core of the management model is to maximize the value of objective function.
Since the objective function and the constraints are all linear, linear programming method
can be applied to solve the optimization problem. The R package "lpSolve"5, which is a
software developed to solve linear programming problems, is used in this study to solve
the large linear equations with large linear constraints. The generated results are daily
water releases from three reservoirs for each water use. Daily water volume in the three
reservoirs can thus be deduced from the step 4 above. Note that the optimization pro-
cess has no parameters to calibrate and all the parameters (e.g., water-energy coefficients,
maximum reservoir storage, and maximum release capacity) are sourced from the current
reservoir configurations.

5https://github.com/gaborcsardi/lpSolve
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Model assessment

In order to assess the performance of the water management model of SHEM, we simu-
late the reservoir volume for the Oule, Orédon, and Lassoula reservoirs as shown in Figure
5.14. The simulation of water transfer from Orédon to Oule reservoir is illustrated in Fig-
ure 5.15. The input data are those of observed energy demand, observed CACG demand,
and simulated water inflow over the period from 07/2002 to 06/2014. The reason why
simulated flow is used instead of naturalized inflow is that the Orédon reservoir does not
have naturalized inflow before 07/2014. The decision variables in the management model
are either 0 when there is no interest to release or maximum value when there is a interest
to release. The regimes of reservoir volume and water transfer among the Orédon, Oule,
and Lassoula reservoirs are calculated with mean, instead of quantiles, so as to reduce
variations in performance assessment.

Reservoir refill in spring and reservoir release in summer for CACG demand and win-
ter for hydropower production are well captured for the three reservoirs. Water transfer
from the Orédon reservoir to the Oule reservoir also follows the observed water transfer
with peaks in summer mainly for CACG demand. The KGE value between simulated
and observed water volume of the Oule reservoir is 0.78 (0.55 for the Lassoula reservoir).
The KGE value between the simulated and observed water transfer is 0.15 between the
Orédon and Oule reservoirs, which shows a lower performance due to the simplification
in the simulation process for making decisions (either 0 or the maximum value).

Figure 5.16 also shows the monthly water release for hydropower production in the
Eget and Louron power plants. Generally, the simulated water release for hydropower
follows the observed trend. However, the simulated water release for the Eget in sum-
mer does not correspond with the observed release, which is probably attributed to the
registration errors by SHEM (water release for CACG registered as water release for hy-
dropower production). It can also be attributed to the unusual high hydropower production
in summer for some years (for example, 2013 and 2014, see Figure 3.18). These years are
translated by the management model as high demand in summer and thus hydropower is
produced in summer by the Louron system due to higher water-energy coefficient.

In all, water management model of SHEM is developed as an optimization process,
which simulates the best water release strategies without considering the various incen-
tives by water managers. Deviations between the simulation results and the observations
are attributed to the actual management by SHEM (day by day designing for hydropower
production based on hourly energy market prices that is different from optimization strat-
egy at daily basis), inflow hazards, and the uncertainties in the meteorological and eco-
nomic forecasts. Although some imperfections in the simulation of SHEM management,
the model shows a good competence in simulating seasonal water release.
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Figure 5.14 – The simulated regimes of water volume in the Oule, Orédon and Las-
soula reservoirs compared with the observed water volume regimes over the period from
07/2002 to 06/2014. The observed water volume of the Orédon reservoir is from 07/2014
to 12/2018.
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Figure 5.15 – The regime of simulated water transfer from the Orédon to Oule reser-
voir compared with the observed water transfer regime over the period from 07/2002 to
06/2014.
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Figure 5.16 – The simulated monthly water release for hydropower production of the
Eget-Louron system compared with the observed water release for hydropower.
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5.2.3 Water management model of CACG

Water management of CACG is to satisfy the four types of water demand in SB5 (drinking
water, industrial, irrigation, and environmental uses). The decisions are made to identify
the contribution to water users from the three water sources: (1) water release from the
CACG reservoirs (Rtot

t ); (2) the request from the quota in the SHEM reservoirs (Ct); and
(3) water extraction at Sarrancolin if water can be diverted through the Neste Canal based
on the DOE requirement (Qcanal,t). The water sources of Ct and Qcanal,t are managed
together at Sarrancolin.

Water management at Sarrancolin

As mentioned in the chapter 3, CACG extracts water at Sarrancolin from the Neste River
via the Neste Canal to feed SB5 while maintaining the river discharge downstream of
Sarrancolin (Qin f s) no lower than 4 m3/s. This DOE requirement at Sarrancolin can be
derogated 3 m3/s for 90 days in case of severe drought events.

The canal extraction managed by CACG has a strong seasonal pattern as Figure 3.28
shows. As such, the simulation of extraction volume can be conducted with seasonal
decision trees. The rules are summarized in Table 5.6. From the table, the water volume
that can be extracted by the Neste Canal depends on the two variables: water demand in
the SB5 and water availability at Sarrancolin.

Table 5.6 – The seasonal extraction rules of the Neste Canal.

Demand Extraction rules

Winter Drinking water, envi-
ronmental support

1. DOE requirement at Sarrancolin

Spring Drinking water, envi-
ronmental support

1. DOE requirement at Sarrancolin; 2. Canal mainte-
nance every 5 years

Summer Drinking water, envi-
ronmental support, irri-
gation

1. DOE requirement at Sarrancolin; 2. CACG re-
leases water first from their reservoirs and then de-
mand water from SHEM; 3. Maximum extraction 14
m3/s

Autumn Drinking water, envi-
ronmental support, irri-
gation

1. DOE requirement at Sarrancolin; 2. CACG tends
to extract 7 m3/s to fill the reservoirs in SB5

Given that the canal water extraction is limited by the DOE requirement at Sarrancolin,
we introduce a potential extraction volume γt to represent the extraction volume before
the DOE management at Sarrancolin. The actual extraction Qcanal can be realized when
the DOE requirement at Sarrancolin is maintained.

The quantile regression method is applied to simulate the potential extraction γt vol-
ume based on the total water demand from SB5. The total water demand of SB5 DSB5

t
is expressed in the equation 5.12. The sum of the observed water release from CACG
reservoirs and the observed daily request from the contract with the SHEM reservoirs is
the total water demand in SB5 (DSB5

t = Rtot
obs,t +Cobs,t , Rtot

obs,t the observed total daily water
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release from the CACG reservoirs and Cobs,t the observed daily request from the SHEM
reservoirs). A model was fitted by season as shown:

γt =



f (DSB5
t )|Qobs,winter

canal if t in winter

f (DSB5
t )|Qobs,spring

canal if t in spring

f (DSB5
t )|Qobs,summer

canal if t in summer

f (DSB5
t )|Qobs,autumn

canal if t in autumn

(5.15)

The process of water extraction by the Neste Canal (Qcanal) is illustrated in Figure
5.17. If river discharge at Sarrancolin Qin f s,t is lower than 4 m3/s before the canal ex-
traction, CACG cannot extract water (Qcanal = 0) and instead request water release from
the SHEM reservoirs. The requested water release is 4−Qin f s,t that is accounted in the
48 Mm3 contract. If river discharge at Sarrancolin Qin f s,t is larger than 4 m3/s before the
canal extraction, water extraction at Sarrancolin can take place and a potential extraction
value is calculated from equation 5.15. If this potential extraction is conducted and the
DOE requirement at Sarrancolin can still be maintained, the Neste Canal can extract this
potential value γt . If not, the process is looped until the DOE requirement at Sarrancolin
is maintained.

In order to validate the water extraction model, we simulate the water extraction with
observed river flow at Sarrancolin Qin f s,t and observed water demand in SB5 DSB5

t . Canal
maintenance in spring is not included in the simulation. Figure 5.18 shows the simulation
results compared with the observations of the water extraction via the Neste Canal in
terms of ECDF and the annual regime. The simulated canal water extraction Qcanal well
follows the seasonal pattern of observations.

Besides, CACG extracts water volume released by SHEM within the contract of 48
Mm3 annual quota at Sarrancolin. CACG request to release water from the SHEM reser-
voirs Ct that is also linked to the total water demand of SB5 DSB5

t as shown in Figure 5.19.
A clear linear relationship can be seen and the coefficient of determination R2 between
the two variables is 0.83.

The simulation of the CACG request Ct is also applied with the quantile regression
method as formulated as follow.

Ct =



f (DSB5
t )|Cobs,winter if t in winter

0 if t in months from March to June

f (DSB5
t )|Cobs,summer if t in summer

f (DSB5
t )|Cobs,autumn if t in autumn

(5.16)

CACG demand is 0 in spring because CACG can not request water from March to
15 June as declared in the chapter 3. In addition, the current water release capacity for
SHEM to meet the CACG demand is 10 m3/s. Figure 5.20 shows the simulation results
compared with the observed CACG demand in terms of ECDF and the annual regime.
The simulated CACG demand well follows the seasonal pattern of observations.
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 Qinfs,t ⩾ 4?

 Qinfs,t − γt ⩾ 4?

Qinf,t

Yes

Request  
 4 − Qinfs,t

No

DSB5

Yes

Qcanal = γt

No

Calculate  γt

Qcanal = 0
Figure 5.17 – The process of maintaining DOE requirement when extracting water via
the Neste Canal at Sarrancolin. Qin f s,t and γt are river discharge at Sarrancolin and a
potential water extraction by the Neste Canal, respectively.

Water management model of CACG reservoirs in SB5

Given the complexity of the Neste water system, CACG applies a real-time management
procedure instead of an optimization planning to provide water for the four types of water
demand (drinking water, industrial use, irrigation, and environmental support). As such,
we apply a parameterization-simulation process to simplify the daily management of the
CACG reservoirs. This process calculates the daily water release from the 15 CACG
reservoirs based on the natural water inflows in SB5, water extraction from the Neste
Canal, and the water demand from the CACG reservoirs. Note that the 15 reservoirs are
simplified into one reservoir with the maximum storage of 73.3 Mm3. The modelling
basis can be derived as follows:

V 5
t+1 =V 5

t +α1×Q5,t +α2×Qcanal,t−α3×DSB5
t (5.17)

where V 5
t is the volume of CACG reservoir storage of day t. Parameters α1, α2, and

α3 can be explained as the proportion of diverting natural inflow of SB5 into the CACG
reservoirs, the proportion of extracting water volume in the Neste Canal into the CACG
reservoirs, and the proportion of releasing water from CACG reservoirs based on the total
water demand in SB5.
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Figure 5.18 – (a) ECDF of the 10 trials of the canal extraction model simulated with
the observed river flow at Sarrancolin and the observed water demand in SB5 over the
period from 01/2013 to 09/2019 as inputs compared with the observed water extraction
from the Neste Canal; (b) The regime of the simulated water extraction from the Neste
Canal compared with the regime of the observations over the period from 01/2013 to
09/2019.
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Figure 5.19 – Linear relation between CACG request to release water from the SHEM
reservoirs and the total water demand of SB5. The two variables are in the period from
01/2013 to 09/2019.
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Figure 5.20 – (a) ECDF of the 10 trials of the CACG demand model simulated with the
observed water demand in SB5 over the period from 01/2013 to 09/2019 as input com-
pared with the observed CACG demand; (b) The regime of the simulated CACG demand
compared with the regime of the observed CACG demand over the period from 01/2013
to 09/2019.

Parameters α1, α2, and α2 are the parameters that need to be calibrated. The ranges
of α1 and α2 are in [0, 1]. The range of α3 is in [1, 2] to account for water losses. Here,
we apply a global optimization of coefficient of determination R2 with the Particle Swarm
Optimization algorithm (Zambrano-Bigiarini and Rojas, 2013). The calibration period is
from 01/2013 to 09/2019 with the naturalized inflow in SB5 (Qnat5), the observed water
extraction via the Neste Canal (Qcanal), and the observed total water demand in SB5
(DSB5

t ) as inputs. The parameters α1, α2 and α3 are thus determined with the optimized
R2 equal to 0.92. 

α1 = 0.273
α2 = 0.384
α3 = 1.368

(5.18)
(5.19)
(5.20)

As noted by CACG, in addition to releasing for water demand, around 20% extra water
volume of the demand is released from the reservoirs in order to make sure that the con-
sumers can receive at least the water volume that they have demanded. The parameter α3
larger than 1.2 is reasonable if we account water losses.

Figure 5.21 shows the simulation results and the KGE value is 0.89. The simulated
volume of the CACG reservoirs follows the observations, with the maximum storage in
spring and minimum storage in autumn. However, the simulated volume of the CACG
reservoirs is overestimated during drought period for some wet years. This can be at-
tributed to the actual reservoir refill management by CACG since the canal extractions
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are not diverted into the reservoirs when the water storage in the reservoirs and the nat-
ural water inflows in SB5 are sufficient for future uses. The extracted water volume is
thus diverted to feed the rivers in SB5. We can also observe that the simulated volume of
the CACG reservoirs is also overestimated in spring. This is because CACG manages to
refill the reservoirs by extracting the natural inflows in SB5 at daily basis with a caution
against reservoir overflow. As such, the fixed extraction parameters α1 and α2 throughout
the year are not capable enough to represent the daily management.
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Figure 5.21 – The simulated volume of CACG reservoirs compared with the observed
volume of CACG reservoirs over the period from 01/2001 to 09/2019.

There are two limitations in the modelling of water management in SB5: (1) all the
steps of the decision making and assimilation processes are not included (e.g., water use
quota is applied to water demand when the volume stored in the reservoirs is low); and
(2) groundwater abstractions are not considered.
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5.3 Summary
This chapter presents the pieces of the water demand and management models devel-

oped to represent the water management of the Neste water system. Table 5.7 summarizes
the inputs and outputs for each model piece. These models take account of global change
drivers as much as possible for the investigation of global change impact in the next chap-
ters. The water management model "CACG management in SB5" will not be used in the
next chapters.

Table 5.7 – The summary of the hydrological model, water demand models, and water
management models with inputs and outputs.

Type Model Input Output

Natural
water
resources

GR6J-
CEMANEIGE

P, T, and PET Q and SCA

Water de-
mand

Energy de-
mand

T (HDD) Demand for hydropower

Drinking wa-
ter demand

Population and network effi-
ciency

Demand for drinking water

Industrial wa-
ter demand

- Demand for industrial use

ADEAUMIS P, T, PET, and irrigation sur-
face

Demand for irrigation

Environmental
demand

Natural Q in SB5, CACG
reservoir storage, and DOE
in SB5

Demand for environmental
support

Water
manage-
ment

SHEM man-
agement

Natural Q in SB1-3, CACG
demand, and energy demand

SHEM reservoir releases for
different uses

Influenced Q
at Sarrancolin

SHEM reservoir releases and
Natural Q in SB4

River discharge at Sarran-
colin

CACG man-
agement at
Sarrancolin

River discharge at Sarran-
colin, total water demand in
SB5, and DOE at Sarrancolin

Canal extraction and water
volume requested by CACG
for SHEM

CACG man-
agement in
SB5

Canal extraction, Q5, total
water demand in SB5

CACG reservoir releases for
different uses
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Vulnerability assessment

This chapter is a research article submitted to Journal of Hy-
drology: Regional Studies, entitled "Vulnerability of water re-
source management to climate change: Application to a Pyre-
nean valley", and currently under review.
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Figure 6.1 – A simplified schema of the Neste water system and this chapter investigates
the vulnerability of water management in the Aure Valley (SB1-4) under climate change
scenarios with a bottom-up framework.
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Abstract
Study region:
The Aure Valley in the French Pyrenees.

Study focus:
This study applies a bottom-up framework for assessing water management vulnera-

bility in terms of hydropower production, environmental regulations, and reservoir storage
management by integrating the sensitivity, the performance metrics, and the exposure of
the water system. The hydrological model GR6J-CEMANEIGE is implemented to sim-
ulate water resource and the management metrics in the study region. The sensitivity of
management metrics to climate change is investigated by comparing simulation results
under current climate conditions and those obtained under perturbed climate series. Re-
sults are demonstrated with response surfaces, which are overlaid with the predefined
thresholds of performance metrics. The thresholds help identifying climate conditions
that are critical for water management. Plausible climate change pathways are displayed
on the response surfaces to assess the probability of critical conditions.

New hydrological insights for the region:
Results show that annual hydropower production is mostly vulnerable to future drier

conditions. Environmental metrics are sensitive to both precipitation and temperature
changes while the current policy render the low-flow management less susceptible to
risks. Reservoir storage management is found to be extremely sensitive to temperature
increase that induces an earlier snowmelt. Although downstream water use is less vul-
nerable to climate change even under a high greenhouse gases emissions scenario, more
intense water competition among stakeholders can be foreseen. Corresponding adaptation
actions are proposed to reduce the vulnerability.
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6.1 Introduction

Snow-dominated mountains, frequently referred to as natural water towers, provide
essential surface water resource that are of great importance for ecosystems and human so-
ciety water use (Barnett et al., 2005; Immerzeel et al., 2019; Viviroli et al., 2011). Water in
these mountains is stored as snowpack or glacier in the cold season and melts in the warm
season to naturally sustain low flows. However, climate change significantly impacts the
snow accumulation-melting patterns, thus altering hydrological regimes and propagating
to water resource management, e.g., hydropower generation, agricultural practices, and
respect of environmental rules (e.g., Farinotti et al., 2019; Pepin et al., 2015; Qin et al.,
2020a). In particular, the Pyrenees mountain range is an important source of water for
regions in Southwestern Europe (e.g., Andorra, France, and Spain) while it is consider-
ably vulnerable to climate change (Amblar-Francés et al., 2020; García-Ruiz et al., 2011;
Morán-Tejeda et al., 2017).

The Pyrenees constitute a transition band from Atlantic to Mediterranean climate con-
ditions, which is recognized as a "hotspot" influenced by climate change (e.g., Chauveau
et al., 2013; Fayad et al., 2017; Spinoni et al., 2017b; Tuel and Eltahir, 2020). As such,
investigating the impact of climate change on Pyrenean water resource and management
is a continuous concern.

The most recent climate change study focusing on the Pyrenees (Amblar-Francés
et al., 2020) with a high spatial resolution (5km× 5km) indicated a marked warming in
the Pyrenees as temperature continues to increase under three Representative Concen-
tration Pathways (RCPs: RCP 4.5, RCP 6.0, and RCP 8.5) while precipitation changes
were not clear due to model uncertainty and spatial heterogeneity. Concerning Pyrenean
water resource changes, numerous studies have reported a general decrease in terms of
snowpack or river flows from in situ observations (e.g., Buendia et al., 2015; López-
Moreno et al., 2020; Morán-Tejeda et al., 2012a; Sánchez-Chóliz and Sarasa, 2015) and
climate change impact projections (e.g., Dayon et al., 2018; Haro-Monteagudo et al.,
2020; López-Moreno et al., 2009, 2011; Morán-Tejeda et al., 2017; Morán-Tejeda et al.,
2014). Specifically, snow processes as the dominant factor in the hydrological regimes in
the Pyrenees are extremely sensitive to changes in temperature, precipitation, and solar
radiation (e.g., Alonso-González et al., 2020; López-Moreno et al., 2008b, 2012). In ad-
dition to the major physical drivers (e.g., latitude, elevation, and slope and aspect) that re-
sults in different sensitivity of snowpack to warming climate, López-Moreno et al. (2017)
further concluded that the Pyrenees is among the most sensitive Mediterranean climate
mountains of the world. Water availability in the Pyrenees is thus questioned by climate
change.

Increasing efforts have also been made to understand the consequences of changes
in hydrological processes on water resource management in the Pyrenees (e.g., Lhuissier
et al., 2016). Agricultural irrigation is the leading consumptive use of water in down-
stream areas, for maize cropping in southern France, and wheat and barley cropping in
northern Spain. Irrigation management is threatened by a decreasing water availabil-
ity and an increasing water demand due to climate change (e.g., Caubel et al., 2018;
López-Moreno et al., 2008a, 2014; Majone et al., 2012; Senthilkumar et al., 2015). Haro-
Monteagudo et al. (2020) investigated the largest irrigation system of Europe in the Span-
ish Pyrenees under climate change scenarios and showed that a decrease of available
water for summer irrigation. Similar results are found for the Yesa reservoir in the Span-
ish Pyrenees with reduced water inflow from the upper basin and an earlier spring snow
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melt, which accounts for the limited water availability to meet the irrigation demand in
summer (López-Moreno et al., 2014). Besides, the increasing water demand that could be
attributed to increased crop evapotranspiration by warming climate and enlarged cropland
is challenging water management for irrigation (Caubel et al., 2018; López-Moreno et al.,
2008a; Majone et al., 2012; Senthilkumar et al., 2015). Regarding hydropower genera-
tion, Hendrickx and Sauquet (2013) developed a simplified hydropower reservoir man-
agement model based on dynamic programming to simulate dam operations in the Ariège
River basin in the French Pyrenees. Results demonstrated that hydropower generation in
winter is projected to decrease due to a reduced annual inflow and an earlier snow melt if
reservoir operations remain unchanged. The management of other water provisioning ser-
vices such as drinking water could also be considerably affected with less water yield and
more sediment retention in the reservoirs (e.g., Bangash et al., 2013). The flood events in
the Pyrenean regions are complex within both meteorological and hydrological processes
while climate change is likely to impair flood control as snowmelt contributes to ampli-
fying the flooding duration instead of triggering the events (e.g., García-Ruiz et al., 2011;
Morán-Tejeda et al., 2019; Pino et al., 2016). Furthermore, the overall reduced water
resource brings about intensive water competition, rendering water management rather
challenging in the Pyrenees.

Given the adverse impact of climate change on Pyrenean water resources and water
management, adaptation strategies are thus highlighted and a comprehensive assessment
under climate change is fundamental to adaptation design. In general, the top-down and
bottom-up approaches are two main frameworks to assess water resource and manage-
ment under climate change. Typically, the top-down approach projects future climate
under different emission scenarios by using global climate models (GCMs) whose out-
puts are downscaled to match regional spatio-temporal scales, and projections are then
forced into an integrated water resource system model to compare with current system
performance (e.g., Schaefli, 2015; Vidal et al., 2016). However, the top-down approach is
reported to cascade uncertainty through the modelling chain and fails to testing more ex-
treme climate change scenarios (Brown and Wilby, 2012b; Wilby and Dessai, 2010). The
alternative bottom-up approach shifts attention to assessing the system vulnerability to a
wide range of scenarios generated by either parametric or stochastic perturbation of his-
torical climate drivers. This approach is flexible and advantageous in identifying which
climatic variables the system is sensitive to (Culley et al., 2016). Several frameworks
based on the bottom-up approach have been proposed in the literature, such as "Scenario
Neutral" (e.g., Prudhomme et al., 2010; Sauquet et al., 2019), "Decision Scaling" (e.g.,
Brown et al., 2012; Ray et al., 2020), and "Robust Decision Making" (e.g., Kasprzyk
et al., 2013; Lempert et al., 2006). The "Scenario Neutral" (SN) approach distinguishes
from the others in leaving decision processes to the decision-maker (Prudhomme et al.,
2015). Prudhomme et al. (2010) suggested that the SN approach can be combined with
the top-down approach by placing climate change projections at a later stage to inform
future risk. This approach has been applied to climate change assessment for natural flow
sensitivity analysis (e.g., Guo et al., 2017), drought management (e.g., Prudhomme et al.,
2015; Sauquet et al., 2019), and flood risk (e.g., Broderick et al., 2019; Prudhomme et al.,
2013a,b).

The main objective of this paper is to present the vulnerability of water management
to a changing climate in the Pyrenees, taking the example of the Aure Valley where water
resources are mainly used for hydropower generation, downstream water use (irrigation,
drinking water, and industrial use), and low-flow support. Based on the literature review
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above, the vast majority of studies on Pyrenean water resources and management adopted
a top-down approach. This paper constitutes the first bottom-up analysis of water man-
agement under climate change in the Pyrenees, which provides complementary insights
into water management vulnerability. In addition, a focus is made on changes in snow-
pack as it is one of the main factor influencing water management in the study area. The
paper is organized as follows: section 2 introduces the study area. Section 3 explores
the data and methods involved in analyzing water management vulnerability. Results and
discussions are given in section 4 and 5, respectively. Conclusions are finally drawn in
section 6.
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6.2 Study area
Water resources in the Pyrenees plays an important role in addressing the issue of wa-

ter shortage during summer in the South of France, known as the Gascogne region (see the
left-top map in Figure 6.2a). This intensive agriculture region in the Lannemezan plateau
does not benefit from mountainous snowmelt because it is separated from the Pyrenees
(Leenhardt et al., 2004a,b). An artificial channel (the Neste Canal, not shown in the map)
connects the Gascogne region with a Pyrenean valley, the Aure Valley, at Sarrancolin
to provide stable water supply. Therefore, the Aure Valley upstream of Sarrancolin is
selected as a representative example of complexity with competing water uses.

The Aure Valley is located in the centre of the French Pyrenees. Figure 6.2a shows
the topographic characteristics of the Aure Valley, including the four corresponding sub-
basins: the sub-basins (SB1-3) upstream the reservoirs (Oule, Orédon, Caillaouas, and
Pouchergues) and the intermediate catchment (SB4) between the outlets of the reservoirs
and Sarrancolin. The influence of westerly winds, which carry moist air from the Atlantic
Ocean, is less effective in the Aure Valley than further west due to the blocking of the
massifs (Ingrand, 1961). In addition, southern heat penetrates through the border ridge,
particularly affecting the upper valley, and snowmelt dominates spring flows. Table 6.1
summarizes the physiographic and hydro-climatic characteristics for the study area.

The major water use in the valley is hydropower generation (Décamps, 1967). Two
main hydroelectricity producers in the valley are the SHEM company1 that manages the
several reservoirs (in orange in Figure 6.2b) of the valley and EDF2 that manages the
westernmost part of the valley (including the Cap de Long, Aubert, and Aumar reservoirs
in Figure 6.2b). Natural water flow to the Aure Valley is partly diverted: the westernmost
part is transferred outside the valley and is thus not considered in this study. Water in the
Oule and Orédon reservoirs generates hydropower in the Eget plant while water in Cail-
laouas and Pouchergues reservoirs generates hydropower through a cascade of plants, the
Louron system, shown in Figure 6.2b. Note that the drainage area upstream the Poucher-
gues reservoir includes two parts and water in the left part (water intake from the Aygne-
Tortes Lake) is transferred into the Pouchergues reservoir in the right part. Besides, water
resource in SB4 also contributes to plants downstream Lassoula (e.g., Tramezaygues as
shown in Figure 6.2b). The management of the four reservoirs is made on an annual basis:
the annual operation process starts from the beginning of April till the end of March of the
next year. In addition to hydropower generation, the water system in the valley is oriented
to provide at most 48 Mm3 of water for uses (irrigation, drinking water, industrial use,
and ecological flows) in the Gascogne region. The mandatory environmental legislation
furthermore requires that the river flow at Sarrancolin where water extraction takes place
should be larger than 4 m3/s. If not maintained, either more water out of the reservoirs
in the Aure Valley or less water abstraction at Sarrancolin for downstream use will be
conducted.

To simplify the study case, the two hypotheses are: (1) SB4 is seen as near-natural
due to the comparatively small regulation storage of the reservoirs in this sub-basin; (2)
the Caillaouas and the Pouchergues reservoirs can be considered as a single one because
they are jointly managed.

1Société Hydro-Electrique du Midi (www.shem.fr) is a French electricity producing company, a sub-
sidiary of ENGIE group.

2Electricité de France (www.edf.fr) is a French electric utility company
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Figure 6.2 – (a) The topographic map of the Aure Valley with the five sub-basins. (b) The
water management system of the Valley.
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6.3 Data and methods
The vulnerability assessment of water resource and management in the Pyrenean Aure

Valley under climate change is conducted by applying the SN framework (Prudhomme
et al., 2010). A schematic flowchart of the overall analytic framework is given in Figure
6.3. The SN framework evaluates vulnerability by comparing plausible climate projec-
tions to the predefined thresholds of water management metrics based on the knowledge of
system sensitivity to the changes of climatic drivers (Prudhomme et al., 2013a,b). To im-
plement the sensitivity analysis of water management, the responses of the water system’s
performance indicators are assessed through the spectrum of perturbed climate scenarios
generated from the baseline climate. Given this, the water resource system in the Aure
Valley is simulated by a rainfall-runoff model. The management metrics with their associ-
ated thresholds are designed through participatory meetings among stakeholders (includ-
ing SHEM) to investigate water management vulnerability. Details of the key steps that
involves data, models and the SN framework are provided in the following subsections.

Baseline climate Perturbation of  
climate

Hydrological 
modelling

Calibration of 
hydrological model

Baseline water 
resource

Perturbed water 
resource

Water management 
sensitivity analysis

Definition of the 
range of 

perturbation

Snow product and 
naturalized inflow

Vulnerability 
assessment 

Climate change 
projections

Water management 
metrics Post-processing

The thresholds of 
water management 

metrics

Figure 6.3 – The Scenario Neutral framework is applied to assessing the vulnerability of
water management in the study area. The inputs and outputs are labelled in blue and red,
respectively.

6.3.1 Climatic drivers
Baseline climate: Safran reanalyses

The near-surface meteorological reanalysis Safran-PIRAGUA that focuses on the Pyre-
nees is used in this study for driving the hydrological modelling. This dataset is a high
resolution (2.5km×2.5km) surface reanalysis based on the Safran algorithm obtained by
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merging the Safran-France reanlysis product (Vidal et al., 2010) and the Safran-Spain
reanalysis product (Quintana-Seguí et al., 2016, 2017). It provides daily climate infor-
mation of air temperature and precipitation. The potential evapotranspiration information
is calculated from the Penman-Monteith equation (Allen et al., 1998). Catchment-scale
climatic data of the study area is computed with a weighted mean of all cells intersected
by the catchment surface. The Safran-PIRAGUA dataset is available from 09/1979 to
08/2014. The Safran-France dataset is also used when the calibration period of hydro-
logical modelling is not overlapped with the SAFRAN-PIRAGUA dataset (see e.g., Table
6.3). The Safran-France dataset is available from 08/1958 to 07/2018.

Snow product: the gap-filled MODIS

MODIS (Moderate Resolution Imaging Spectroradiometer, https://modis.gsfc.nasa.
gov/) is an important instrument embedded in the Terra and Aqua satellites to measure
the dynamics in Earth’s processes, such as snow cover, vegetation index, and land-surface
temperature. Daily snow cover products are adopted in this study to calibrate the hydro-
logical model. However, the missing snow cover observations from satellites due to the
coverage of clouds make it difficult to acquire a full temporal description on the study
area. Gascoin et al. (2015) developed a cloud-free snow cover product in the Pyrenees
based on the MODIS products and a gap-filling algorithm. The accuracy of the gap-filled
MODIS products was validated against in situ snow observations and Landsat data in
the Pyrenees range. The resolution of this gap-filled snow product is consistent with the
original MODIS snow product (0.5km×0.5km). The dynamics of catchment-scale snow
cover can thus be computed with a weighted mean of all contributive cells to the catch-
ment surface. Time series of snow cover area (SCA) were derived from the MODIS data
over the period from 09/2000 to 04/2018.

Climate change projections

Climate projections considered here originate from a subset of 6 CMIP5 GCMs as shown
in Table 6.2 and previously selected for assessing future water resource in Spain run under
RCP 4.5 and RCP 8.5 (CEDEX/MAPAMA, 2017). These projections have been previ-
ously downscaled with an analogue downscaling method to generate daily total precipita-
tion (Ptot), maximum temperature (Tx), and minimum temperature (Tn) over a 5km×5km
grid for Spain and the Pyrenees within the CLIMPY project (Amblar-Francés et al., 2020;
Amblar Francés et al., 2017). The CLIMPY projections have been here further refined
in order to match both the higher spatial resolution and the multiple variables of the
Safran-PIRAGUA surface reanalysis. To this aim a multi-site and multi-variable ana-
logue resampling method has been set-up following the approach proposed by Clemins
et al. (2019). In short, for a target day in a given CLIMPY projection, an analogue date
in the 1961-2005 Safran-PIRAGUA surface reanalysis is selected, based on the best pos-
sible match of Ptot, Tn, and Tx over the whole Pyrenean mountain range. This analogue
resampling is made on monthly anomalies with respect to a baseline climatology, in both
Safran-PIRAGUA and CLIMPY projections. For Tn and Tx CLIMPY projections, the
baseline climatology is considered as linearly transient from 2006 onwards, in order to
find relevant analogue dates even with temperatures higher than any experienced in the
Safran-PIRAGUA 1961-2005 archive. All variables from the analogue dates are used as
values for the target date considered. Results are therefore daily gridded projections over
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the Safran-PIRAGUA grid, with all corresponding variables – including precipitation and
temperature required for the hydrological models – for 6 GCMs run under both RCP 4.5
and RCP 8.5 emissions scenarios, for the whole 1961-2100 period. Here, these projec-
tions are used to calculate the climate change trajectories under both RCPs for time slices
1980s (1971-1990), 1990s (1981-2000), 2000s (1991-2010), 2010s (2001-2020), 2020s
(2011-2030), 2030s (2021-2040), 2040s (2031-2050), 2050s (2041-2060), 2060s (2051-
2070), 2070s (2061-2080), 2080s (2071-2090), and 2090s (2081-2100). The benchmark
period is from 1979 to 2014 so as to be in line with Safran-PIRAGUA.

Table 6.2 – List of selected CMIP5 GCMs.

Acronym Institute Reference

CNRM-CM5 CNRM, France (Voldoire et al., 2013)

MRI-CGM3 MRI, Japan (Yukimoto et al., 2012)

MPI-ESM-MR MPI, Germany (Giorgetta et al., 2013)

MIROC-ESM AORI NIES JAMSTEC, Japan (Watanabe et al., 2011)

inmcm4 INM, Russia (Volodin et al., 2010)

Bcc-csm1.1 BCC, China (Wu et al., 2013)

6.3.2 Naturalized inflow

River flow in the Aure Valley is highly influenced due to the intensive developement of
hydropower (Décamps, 1967; Ingrand, 1961). A study was conducted by Falgon (2014) to
reconstruct natural inflows upstream the reservoirs (SB1-3) in the Aure Valley applying
a water balance approach. The principle of this approach is to sum up all exports for
water use and to subtract all imports from other basins. Thus, the naturalized inflow in
SB4 is the observed river discharge at Sarrancolin minus the observed outflows upstream
the reservoirs. The naturalized inflows is at daily time step and the data length is from
01/2001 to 12/2018 for SB1, SB3, and SB4. However, the data length for SB2 is from
07/2014 to 12/2018.

6.3.3 Hydrological modelling

The conceptual lumped rainfall-runoff model GR6J, developed to improve low-flow sim-
ulation based on the extensively used GR4J model (Perrin et al., 2003) for French basins,
was adopted to simulate the daily inflow into the reservoirs of the water system (Push-
palatha et al., 2011). The GR6J model was largely applied in studies including recon-
struction of low-flow events (e.g., Caillouet et al., 2017), climate change projections
(e.g., Givati et al., 2019), and streamflow forecasts (e.g., Crochemore et al., 2016). The
GR6J model can thus be coupled with a semi-distributed snow-accounting routine CE-
MANEIGE that exploits snow information for five attitudinal layers of equal area (Valéry
et al., 2014a,b). Recent developments have improved the performance of snow cover sim-
ulation by using MODIS observations (Riboust et al., 2018). The CEMANEIGE mod-
ule takes account of the snow accumulation and melting hysteresis between SCA (Snow
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Cover Area) and SWE (Snow Water Equivalent), which is the dynamic lag between the
two states of snow.

The GR6J hydrological model has six parameters to calibrate while the CEMANEIGE
module has four parameters to calibrate. The coupled GR6J-CEMANEIGE model should
be calibrated to the two benchmark observations: naturalized inflow and SCA from the
gap-filled MODIS product. The calibration process is illustrated as follows. First, a root-
square transformation on runoff is chosen to reduce the bias towards high or low flows
(Garcia et al., 2017). Second, the KGE criterion was used to assess the model performance
(Kling et al., 2012) and its formulation is presented bellow:

KGE = 1−
√

(r−1)2 +(β −1)2 +(γ−1)2 (6.1)

where r is the Pearson correlation coefficient, β the percentage bias, and γ the ratio of the
coefficient of variation between simulation and observation. Third, an objective function
f that involves the two observations should be optimized and its formulation is presented
bellow: 

f = a×KGE(
√

Q)+
5

∑
i=1

bi×KGE(SCAi)

a+
5

∑
i=1

bi = 1

(6.2)

(6.3)

where a is the weighting coefficient for runoff Q calibration, bi the weighting coefficient
for SCAi calibration of elevation zone i. We follow here Riboust et al. (2018) who con-
cluded that 75% weighting on runoff with 5% on each elevation zone gives a satisfactory
compromise for the overall model performance. The calibrated hydrological model will
be run under baseline and perturbed climate over the period from 09/1979 to 08/2014 to
simulate water resource conditions in the SN framework as shown in Figure 6.3.

6.3.4 The SN framework for water management

The SN concept

Contrary to the traditional top-down approach, the SN framework investigates water man-
agement issues under climate change by underlining the sensitivity of water systems to
changes. The vulnerability analysis in the SN framework depends on three concepts: the
sensitivity, the exposure, and the performance metric of the water system (Brown et al.,
2012; Prudhomme et al., 2013a,b, 2010; Sauquet et al., 2019). Sensitivity is the response
of the water system to changes and section 6.3.4 presents how the sensitivity domain is
calculated. Exposure is the climatic changes to which the water system could be exposed
and section 6.3.1 details the regional climate projections used in this study. The per-
formance metric is the relevant management indicator to characterize the system and its
adaptive capacity threshold beyond which the system performs unsatisfactorily or cannot
withstand the impact of climate change. Section 6.3.4 presents the performance metrics
associated with water management for this study. As such, by understanding the sen-
sitivity and the plausible exposure of the water system, a vulnerability assessment that
compares changes to the predefined performance metrics can be provided.
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Sensitivity domain

Three steps are involved to produce the sensitivity domain: the generation of perturbed
climate scenarios, the response simulation, and the response plotting.

Perturbed climate scenarios can be generated either by parametric methods (e.g., Cul-
ley et al., 2016; Sauquet et al., 2019) or stochastic methods (e.g., Guo et al., 2017). Here,
the historical climatic data from the Safran-PIRAGUA over the period from 09/1979 to
08/2014 is perturbed by the "delta-change" method based on the single-harmonic function
(Prudhomme et al., 2010). The sensitivity domain of the water system to climate change
is quantified from the key climatic variables, which are precipitation and temperature.

∆P(i) = P0 +AP× cos
[
(i−φP)×

2π

12

]
(6.4)

∆T (i) = T0 +AT ×

{
1− cos

[
(i−φT )×

2π

12

]}
(6.5)

where ∆P(i) and ∆T (i) are the monthly changes in precipitation and temperature; P0
and T0 the mean annual changes in precipitation and temperature; AP and AT the semi-
amplitude of changes in precipitation and temperature; i the indicator of the month (1 to
12); φP and φT phase parameters for changes in precipitation and temperature.

Then, the generated monthly changes in precipitation and temperature are applied
to the historical climate dataset Safran-PIRAGUA to generate daily perturbed climatic
variables:

P∗(d) = P(d)×
PM
(
month(d)

)
+∆P

(
month(d)

)
PM
(
month(d)

) (6.6)

T ∗(d) = T (d)+∆T
(
month(d)

)
(6.7)

where P∗(d) and T ∗(d) are the perturbed precipitation and temperature for day d; P(d)
and T (d) the baseline of precipitation and temperature for day d; PM(month(d)) the
average monthly baseline precipitation for month(d); ∆P(month(d)) and ∆T (month(d))
the precipitation and temperature changes for month(d).

Since precipitation and temperature are the only variables considered in the sensitivity
analysis, changes in potential evapotranspiration is calculated by using the temperature-
based formula by Oudin et al. (2005), as follows:

PET ∗(d) = max

(
PET (d)+

Ra
28.5

×
∆T
(
month(d)

)
100

,0

)
(6.8)

where PET ∗(d) is the perturbed PET at day d; PET (d) the baseline of PET at day d; Ra
the extra-terrestrial global radiation for the catchment.

The range (P0 and T0) and seasonality (AP and AT ) of perturbation are defined based on
the climate change projections from CMIP5 in Western Europe (Terray and Boé, 2013b)
and the most recent work of Amblar-Francés et al. (2020). Other parameters applicable
to France (φP and φT ) are given in Sauquet et al. (2019) so that the summer period gets
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drier and the winter period gets wetter. These parameters are given as follow:

P0 =
20× ( j−7)

3
−20

AP =
20× ( j−1)

3
T0 = j−1

AT = j−1.5
φP = 1
φT = 2

j in 1 to 15

j in 1 to 5

j in 1 to 7
j in 1 to 5

maximum change in July
maximum change in August

As such, a set of 75 precipitation and 35 temperature scenarios can be generated (see
Figure 6.4), resulting in a total of 2625 precipitation and temperature perturbation com-
binations used to define the climate sensitivity domain. The color spectrum in Figure
6.4a indicates that annual change of precipitation ranges from −720 to +400 mm and
the annual change of temperature ranges from −0.5 to +9.5 °C in Figure 6.4b. The sub-
sequent step is the response simulation that involves forcing the 2625 scenarios into the
calibrated hydrological model to simulate the response of the water system to changes
following Figure 6.3. The final step is the response plotting that employs the 2D response
surface to illustrate the sensitivity of the water system to changes in precipitation and
temperature. To determine the most appropriate axes for the response plotting, regres-
sion analysis between response simulation results and seasonal/annual precipitation and
temperature changes is applied. The changes with the highest correlation to the response
simulation results are the most relevant axes.
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Figure 6.4 – The perturbation of precipitation (P) in (a) and temperature (T) in (b) at
monthly time step.

Water management metrics

This section presents the management-relevant metrics that can be characterized by hy-
drological modelling. In this study, three water management metrics are chosen based on
workshops with local stakeholders in terms of hydropower production, ecological flow
management, and reservoir refill management:
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1. annual inflow volume (QA) for hydropower system production;

2. seasonal failure days to meet the need of mandatory ecological flow (DOE) at Sar-
rancolin, as well as the timing of failure (tDOE) (the first day of the year when the
failure appears);

3. seasonal duration of no snow cover area (NSA) for system Eget and Louron, as well
as the timing of no snow cover area (tNSA) (the first day of the year when there is
no snow cover).

Water resource in the system Eget and Louron is managed by SHEM for hydropower
production. The energy market in France is mostly nuclear-hydropower-mixed: nuclear
plants provide base load and hydropower is generated to meet peak demands. The elec-
tricity price in the market fluctuates depending on the weather and other external factors
such as gas price. Based on the experience of the water managers from SHEM, the Eget
system is cost-effective when the annual water inflow into the reservoirs ranges from 28.2
to 41.6 Mm3 for Eget (21.9 to 28.2 Mm3 for Lassoula). Besides, there is a water con-
tract for downstream water supply (irrigation, drinking water, and industrial water use)
extracted from the four reservoirs with at most 48 Mm3 each year. According to SHEM,
the necessary water volume for SHEM to be cost-effective shows an increasing tendency
towards the maximum values. Therefore, we consider the "worst" market scenario, which
is 41.6 Mm3 for the Eget plant and 28.2 Mm3 for the Lassoula plant, and the highest sce-
nario of downstream water demand, which is 48 Mm3, as the thresholds for hydropower
production in the vulnerability assessment.

The DOE requirement indicates that water flow at Sarrancolin should be larger than
4 m3/s while this rule can be violated for 90 days over the low-flow period (summer and
early autumn months). Thus, the threshold value for DOE is the value of 90 days and
those for tDOE are the beginning of low-flow period (July to October).

The metrics of the duration and timing when there is no snow cover in the two sys-
tems are essential to reservoir storage management. However, there is no specifically
predefined metric for the duration of no snow cover. We used here the concept of time
of emergence. Climate conditions under which significant changes in the distribution of
mean NSA time series emerge from that of current climate state can be used as the thresh-
old of NSA to imply the necessity of changing reservoir refill strategy. In this study, the
Kolmogorov-Smirnov test was conducted to verify whether two time series of mean NSA
from one perturbed and the baseline climate scenario are drawn from the same distribu-
tion. This test was applied to all perturbed scenarios to determine the climate threshold
beyond which significant changes of the distribution of mean NSA appears by rejecting
the null hypothesis at 95% significance level. Similar application of the Kolmogorov-
Smirnov test to investigate the impact of climate change on water resource can be found
in the literature (e.g., Gaetani et al., 2020; Muelchi et al., 2021). In terms of the thresh-
olds of tNSA, the beginning dates of reservoir refill months are used as benchmark values
(April to June for the Eget system and April to July for the Lassoula system).
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6.4 Results

6.4.1 Hydrological model performance
The hydrological model GR6J-CEMANEIGE was applied to simulate water resource in
the water system of the Aure Valley. The outputs, including daily Q and SCA changes, are
evaluated with the KGE criterion (Kling et al., 2012) by comparing to naturalized inflow
and observed SCA derived from the MODIS images, respectively. Table 6.3 shows the
KGE values for the four studied basins and the results indicate that the model performs
satisfactorily with all KGE values of Q and SCA above 0.7.

The performance of the GR6J-CEMANEIGE model in reproducing seasonal dynam-
ics is illustrated in Figure 6.5 with simulated discharges compared to naturalized dis-
charges and simulated median SCA patterns compared to observed median SCA patterns.
The simulated Q follows the variability of the naturalized inflow and can capture the high
peaks and low flow spells. Especially, the recession limbs during summer period are well
fitted. However, the hydrological model tends to underestimate spring flow and to overes-
timate winter flow for SB1-4. Note that the hydrological model has a lower performance
for SB2 partly due to the short record of naturalized inflow. The module CEMANEIGE
can well reproduce the seasonality of snow cover changes in the five elevation bands
(Figure 6.4), as well as the accumulation phase of snow and relatively tardy melting pro-
cesses. Besides, higher attitudinal elevation band shows longer snow cover duration as
expected. However, the snow melting process simulation is less efficient than the snow
accumulation process given the simple characteristics of the empirical degree-day model
in representing snow thermal state changes (Riboust et al., 2018). SCA variations for
SB1-4 are well simulated with a high performance in high elevation bands and a moder-
ate performance in median elevation bands. This can be attributed to the high variability
of snow cover in moderate elevation bands which is difficult to represent in the model.

Table 6.3 – GR6J-CEMANEIGE performance (KGE values)

Calibration Validation
√

Q SCA1 SCA2 SCA3 SCA4 SCA5
√

Q SCA1 SCA2 SCA3 SCA4 SCA5

SB1 0.79 0.79 0.91 0.91 0.93 0.93 0.70 0.76 0.89 0.92 0.95 0.94

SB2 0.72 0.80 0.92 0.96 0.95 0.88 - - - - - -

SB3 0.83 0.83 0.90 0.92 0.92 0.87 0.84 0.84 0.93 0.93 0.92 0.83

SB4 0.87 0.74 0.74 0.72 0.87 0.92 0.86 0.75 0.75 0.73 0.87 0.92

Notes: The calibration and validation periods for SB1, SB3, and SB4 are 01/2001 - 08/2007 and 09/2007
- 08/2014, respectively. Given the length of naturalized inflow of SB2, only the calibration is conducted
from 07/2014 to 07/2018 forced by the Safran-France reanalysis product (Vidal et al., 2010).

Finally, the water management metrics are calculated based on both simulated Q and
SCA, and then compared to the observed ones as shown in Table 6.4. The manage-
ment metrics QA, NSA, and tNSA are calculated for SB1-3 to investigate the accuracy
of the model in reproducing hydropower indices and snow changes for reservoir refill.
The management metrics DOE and tDOE are computed for the Sarrancolin catchment
to show the accuracy of the model in reproducing environmental indices. The simulated
natural discharge of the Sarrancolin catchment is the sum of the simulated discharges
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Figure 6.5 – Observed (red) and simulated (blue) median Q (left) and SCA (right) regimes
for SB1(a), SB2(b), SB3(c), and SB4(d). The ribbon area in Q regime represents the
percentile range of 25% and 75%. The SCA regimes are displayed for the five elevation
bands. The observed/simulated period for SB1, SB3, and SB4 is from 01/2001 to 08/2014
while the observed/simulated period for SB2 is from 07/2014 to 07/2018.
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of SB1-4. The simulation of management metrics are satisfactory. However, the metric
tDOE is less accurate due to model uncertainty while the simulated seasonality is well
reproduced. Moreover, management metric simulation of SB2 returns lower performance
due to its lower quality of naturalized inflow. Table 6.5 summarizes the reference values
of these management metrics for the water systems in the Aure Valley under baseline
climate. These values are calculated with the Safran-PIRAGUA dataset over the period
from 09/1979 to 08/2014 to represent the current management performance.

6.4.2 Water management sensitivity analysis
Water management metrics (QA, NSA, and tNSA for the Eget and Lassoula systems;
DOE and tDOE for the Sarrancolin catchment) are generated through the calibrated GR6J-
CEMANEIGE model forced with the total 2625 perturbed climate scenarios as described
in section 6.3.4. The calculated 2625 values of each management metric are classified
into groups and each group incorporates several perturbed climate scenarios (at least 5)
that gather the close precipitation and temperature values. As such, the classified groups
can be localized in the response surface space with average precipitation and temperature
changes of the scenarios in the groups. The classified groups are symbolized as circles
with color gradient indicating the average management metric values and with size indi-
cating the standard deviation (SD) of the scenarios in the groups.

Figure 6.6 displays the 2D response surfaces developed for water management metrics
and associated study area. Concerning the mean value changes of the response surfaces,
the management metrics degrade when climate conditions are warmer and drier. The
values of SD display a patchier pattern for both NSA and tNSA than other metrics. Large
values of SD may reveal transition zones of the hydrological regime and high sensitivity
to the way changes (see section 6.3.4) are distributed within the year.

The response surfaces of QA for the Eget and Lassoula systems are generated over the
whole year period to investigate the annual water volume that is potential for hydropower
production. The response surfaces of DOE and tDOE for the Sarrancolin catchment are
generated over July to October period when environmental flow management is usually
menaced by low water availability and high irrigation water demand downstream. The
response surfaces of NSA and tNSA for the Eget and Lassoula systems are generated
for December to August period that incorporates the actual reservoir refill management
timing from the beginning of April to the end of July. Besides, based on the regression
analysis, the most appropriate axes of the response surfaces of NSA and tNSA are winter-
spring (December to May) precipitation changes as x axis and spring (March to May)
temperature changes as y axis. This also suggests that winter-spring precipitation and
spring temperature dominate the snowmelt process.

From Figure 6.6, QA for both Eget and Lassoula systems are both more sensitive to
precipitation changes, and QA decreases with the decrease of precipitation. It is also no-
table that QA of the Eget system is slightly responsive to temperature because the increase
in PET associated with temperature increase can compensate the increase in precipitation
and thus QA of the Eget system is decreased. In contrast, the Lassoula system does not
clearly show this character. This can be explained by the different land cover types of
the two hydropower systems: the Eget system that includes SB1 and SB2 is covered with
forest and meadow (active evapotranspiration processes) while the Lassoula system that
only includes SB3 is covered with bare rocks (no water demand from vegetation). As
such, the evapotranspiration is more intensive in the Eget system where vegetation cover
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6.4. Results

Table 6.5 – The current management reference values for the water systems in the Aure
Valley

Eget Lassoula Eget+Lassoula Sarrancolin

QA [Mm3] 53.3 29.7 82.9 -

DOE [days] - - - 2.8

tDOE [date] - - - 20/Sep

SCA [days] 46.0 25.1 - -

tSCA [date] 15/Jul 05/Aug - -
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Figure 6.6 – Response surfaces of water management metrics to climate change for QA(a),
DOE and tDOE(b), NSA(c), and tNSA(d) with their associated study area. Note the dif-
ference in x (precipitation changes) and y (temperature changes) axes with each response
surface. The metrics under current climate condition (ref) are also provided (see Table
6.5 for corresponding values).
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6.4. Results

is developed, which results in a higher temperature sensitivity of QA in the Eget system
than the Lassoula system.

Figure 6.6 shows that DOE and its associated tDOE for the Sarrancolin catchment are
sensitive to both precipitation and temperature changes in July to October period. DOE
becomes longer while tDOE becomes earlier with the increase of temperature and the
decrease of precipitation. As the Sarrancolin catchment is covered by vegetation (mainly
forest) in the most part, an increase in temperature leads to higher evapotranspiration and
thus less water availability during July to October period. The effect of reducing precip-
itation by around 100 mm for both DOE and tDOE is close to the effect of increasing
temperature by around 10 to 12°C.

In regard to NSA and tNSA for the two hydropower systems, the contrasting sensi-
tivity to temperature changes is highlighted in Figure 6.6. The values of NSA becomes
longer and tNSA becomes earlier with the increase of temperature. When the increase of
temperature is relatively limited (less than 3°C), the precipitation changes in the winter-
spring period also has an impact on these metrics. However, when the temperature in-
crease exceeds 3 to 4°C, the impact of precipitation on both NSA and tNSA metrics is no
more obvious and changes in these two metrics are predominantly controlled by temper-
ature change. For example, the effect of increasing temperature by 1 to 2°C for the Eget
system is close to the effect of reducing precipitation by 300 mm. The high sensitivity
of Pyrenean snow to temperature changes is also reported in other studies (e.g., López-
Moreno et al., 2008b, 2017, 2012). López-Moreno et al. (2017) explained that the snow
state in the Pyrenees is warm and thick, and thus a slight increase in temperature could
trigger snowmelt.

6.4.3 Water management vulnerability assessment
Figures 6.7, 6.8, and 6.9 display the vulnerability of water management of the study area
under climate change in regard to hydropower production, environmental management,
and reservoir refill, respectively. Based on the knowledge of the water management sen-
sitivity to climate change, threshold lines for each management metric that indicate the
limit of the water system’s satisfactory performance, and climate change pathways that
indicate future climate trajectories are overlaid on the sensitivity domain to assess the vul-
nerability. Climate change trajectories are presented as line-linked squares for the time
slices from 1980s to 2090s with the mean climate driver changes as the central points,
minimum changes as right-bottom points, and maximum changes as left-top points of the
ribbon squares.

Hydropower management in Figure 6.7 is generally more difficult given the future
warmer and drier conditions. In the Eget system, the current performance of value 53.3
Mm3 is not warranted anymore in most cases when annual precipitation decreases by
100 mm. The threshold of 41.6 Mm3 that is the necessary water volume for hydropower
production in the scenario of the lowest energy price in the market could be guaranteed
under RCP 4.5. However, the Eget system would not be cost-effective after the middle
of the century under RCP 8.5. Compared with the Eget system, the Lassoula system is
more vulnerable due to its threshold (28.2 Mm3) that is relatively close to the reference
value (29.7 Mm3). The Lassoula system would not be cost-effective in most climate
change scenarios of two RCPs. As for the total hydropower production of the two systems,
the current performance of value 82.9 Mm3 would not be warranted anymore under two
RCPs and the cost-effectiveness of value 69.8 Mm3 would not be achieved under RCP
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Figure 6.7 – The vulnerability of annual hydropower production under climate change for
the Eget and Lassoula systems. The vulnerability is assessed by combining the sensitiv-
ity domain of QA, the current hydropower cost-effectiveness thresholds, and the climate
change trajectories under RCP 4.5 and 8.5, respectively. The black lines are the isolines
that represent the cost-effectiveness thresholds for the management metric QA.
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Figure 6.8 – As in figure 6.7 but for the environmental management metrics DOE and
tDOE of the Sarrancolin catchment.

8.5. Besides, water demand of the downstream Gascogne region, which is 48 Mm3 at
most, could be guaranteed for most of the climate change scenarios under two RCPs. The
demand of 48 Mm3 could not be meet if considering the conservative attitude of water
managers for hydropower, especially in the climate change scenarios under RCP 8.5.

The vulnerability of environmental management metrics DOE and tDOE during July
to October period is shown in Figure 6.8. The climate change pathways under RCPs
4.5 and 8.5 are heading towards warmer and drier July to October period. The current
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Figure 6.9 – As in figure 6.7 but for the reservoir refill management metrics NSA and tNSA
of the Eget and Lassoula systems.

performance for both metrics would not be warranted when July to October precipitation
decreases by 50 mm or July to October temperature increases by 3°C. The number of
DOE failure days should stay below the 90-day threshold for RCP 4.5 while the threshold
could be violated at the end of the century under RCP 8.5. Besides, the timing of DOE
failure is earlier under both RCPs with more extreme condition for RCP 8.5. Particularly,
at the end of the century under RCP 8.5, the timing of DOE failure date could occur in July
when the downstream Gascogne region might demand water for summer irrigation. This
causes water competition as either less water abstraction for irrigation or more reservoir
release should be conducted to keep river flow at Sarrancolin larger than 4 m3/s.

NSA and tNSA are shown in Figure 6.9 to assess the vulnerability of the current refill
strategy. In the response surface of NSA for the Eget system, the empirical distribution
of NSA deviates from the current one when temperature increases by 1°C in spring and
precipitation decreases of around 30 mm in the winter-spring period. In the Lassoula
system, significant changes appear when temperature increases by 1°C in spring and pre-
cipitation decreases of around 60 mm in the winter-spring period. The duration of NSA
for both systems for December to August period becomes longer under climate change
trajectories of RCP 4.5 and RCP 8.5. The thresholds considered here for both systems
cannot withstand most climate change projections, which indicates the high vulnerability
of current refill strategy to climate change and thus suggests urgent adaptation actions.
Concerning the timing of current refill strategy, the Eget system gets its maximum stor-
age in June and the end of July for the Lassoula system. Note that the difference between
the maximum storage date and the no snow cover timing (tNSA) as tNSA is normally
later than the maximum storage date. From the two response surfaces of tNSA, tNSA for
December to August period will be earlier for both systems. In the worst conditions (RCP
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8.5), no more contribution from snow melting could be expected after May and June for
Eget and Lassoula, respectively, making the target of a maximum of storage around the
current dates uncertain.
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6.5 Discussion

6.5.1 The contribution to the Pyrenean studies

This paper implements the first trial of the bottom-up approach, alternative to the tra-
ditional top-down approach, for the climate change impact assessment in the Pyrenean
region by taking the central Aure Valley as an example. Water management vulnerability
in the Valley in terms of hydropower (QA), environmental regulations (DOE and tDOE),
and reservoir refill (NSA and tNSA) are investigated by integrating the sensitivity of wa-
ter management metrics to perturbed climate scenarios, to the predefined thresholds of
current management capacity, and to the plausible exposure of future climate change pro-
jections. Previous studies applied the top-down approach and demonstrated that climate
change could severely impact water resource and management in the Pyrenees by gen-
erating discrete "snap-shots" of future time slices for comparison with the current state
(e.g., Haro-Monteagudo et al., 2020). However, how the Pyrenean water systems respond
to climate change, and at what degree of climate change the performance of water sys-
tems shifts from acceptable to unacceptable cannot be fully addressed by the top-down
approach. Understanding the response of Pyrenean water systems to changes is critical
for water managers to design mitigation and adaptation strategies.

The sensitivity of these three management components is studied for different tem-
poral scales as seasonal meteorological attributes show different importance for manage-
ment issues. The sensitivity of QA for the selected Eget and Lassoula systems is studied
for the whole annual scale. Annual precipitation was found to be a key meteorological
driver for QA and consequently for hydropower production. The higher sensitivity to
temperature for the Eget system reveals that land cover types in this catchment induces
more intensive PET when temperature increases, which then reduces the water availability
for hydropower production. Still, annual precipitation changes dominate the hydropower
management in the two systems with moderate impact from annual temperature changes.
By combining the predefined threshold and plausible climate change pathways, the vul-
nerability of hydropower can be perceived that the Lassoula system is more vulnerable,
highlighting the need for short term actions to reduce vulnerability. Both DOE and tDOE
metrics of the Sarrancolin catchment are studied for the July to October period when river
flow is low and downstream irrigation demand is intensive. The two metrics are sensitive
to both precipitation and temperature changes as the Sarrancolin catchment has a large
soil moisture content. Given the warmer and drier tendency of climate change, the cur-
rent DOE threshold of 90 days is sufficient for most climate change scenarios before the
end of the century. It is notable that water competition in this period should be dealt with
caution. As for the metrics NSA and tNSA of the two hydropower systems, the study is
focused on the December to August period that includes recharge and spring melting pro-
cesses. A higher sensitivity of both NSA and tNSA to temperature changes is observed,
compared to the other metrics. A warmer climate will induce an earlier snowmelt, what-
ever precipitation changes. More liquid precipitation as a result of temperature increase,
instead of solid precipitation, would flash into the reservoirs, which may endanger the
reservoir safety and cause water spills and losses for future use. Current reservoir refill
strategy should be adapted to climate change.

The sensitivity and vulnerability analyses in the Aure Valley are a powerful visual
aid for identifying water management problems. In general, hydropower production and
reservoir refill are the most vulnerable management indices among the study area, particu-
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larly for the Lassoula system that incorporates the Caillaouas and Pouchergues reservoirs.
However, the large storage volume of the Caillaouas reservoir could mitigate the effect
of earlier and more flashy inflow. As such, dedicated actions should be implemented to
adapt to climate change.

6.5.2 Potential mitigation and adaptation actions
On the premise of the vulnerability assessment of water management in the Aure Valley,
mitigation and adaptation actions can be adopted from two sides to reduce climate change
risk: water supply and demand sides, jointly and independently. Considering the drier
projections in the Aure Valley, increasing reservoir storage is not the best move, let alone
the intensive investment and the concern of environment (Maran et al., 2014; Poff et al.,
2015; Zarfl et al., 2015). On the contrary, on the water demand side, modernisation of
irrigation method (e.g., sprinkler or drip irrigation system), crop promotion for less water
requirement, and changes in crop calendars are efficient in adapting to climate change,
especially for the Mediterranean area (e.g., Galindo et al., 2018; Harmanny and Malek,
2019; Malek and Verburg, 2017).

The hydropower efficiency in the Eget and Lassoula systems can also be increased to
mitigate the loss of hydropower production. Besides, shifting the hydropower production
from winter (for heating) to summer (for cooling) to align several water uses (hydropower,
irrigation, and environmental regulations) is possible to reduce water competition in the
Valley (Pereira-Cardenal et al., 2014). The original refill management that starts from
April and ends in July for the two hydropower systems seems too late and too long in the
face of warmer climate. As such, reservoir refill strategies might be changed with an ear-
lier start and a flexible duration. Increasing the reservoir spillway capacity should also be
considered so as to avoid the extreme high inflow events into the reservoirs that endanger
reservoir safety. In particular, given the small storage volume of the Pouchergues reser-
voir and large storage volume of the Caillaouas reservoir, increasing the capacity of water
transfer from the Pouchergues to the Caillaouas reservoir could mitigate water loss from
spillway release. However, these changes should be scrutinized with caution as managers
might be conservative in changes.

6.5.3 Limitations and future works
This study simplifies the water management processes and thus it is important to acknowl-
edge the limitations that are likely to induce biases in the analysis. Future works focusing
on these limitations will help to improve the understanding of water management vulner-
ability in the study area.

Firstly, uncertainty is partially examined here. The study focuses on climate-related
uncertainty, exploring a broad range of climate conditions. The uncertainty of water man-
agement metrics to climate change is displayed by the SD values in the response surfaces
with larger SD values indicating high dispersion in values for the specified changes. Parts
of the uncertainty are due to natural processes that are not perfectly taken into account by
the models. For example, the snow melting process simulation is less efficient than the
snow accumulation process (see the SCA regimes of Figure 6.5). This results from the
choice of the empirical degree-day model CEMANEIGE and the difficulties in represent-
ing snow thermal state changes (Riboust et al., 2018). Although the GR6J-CEMANEIGE
model has shown satisfying performance, different hydrological models show significant
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variations in water resource estimation (e.g., Vidal et al., 2016). Besides, a hydrological
model calibrated under current climate may not perform robustly for perturbed climate
scenarios due to parameter non-stationarity (e.g., Guo et al., 2017; Westra et al., 2014).
These variations would propagate to the sensitivity domain, which may induce biases in
the vulnerability assessment (Broderick et al., 2019). Therefore, a multi-model method
that involves structurally or conceptually different hydrological models can provide valu-
able insights in the uncertainty quantification.

Secondly, the term "vulnerability" for water management in this study is not presented
as a specially defined index but in a manner of description. Traditionally, vulnerability
is used to characterize the performance of water systems in terms of the severity of their
failure and the mathematical definition is given in Hashimoto et al. (1982b). Some studies
have examined the vulnerability of water management by calculating the water deficit to
meet the total demand (e.g., Haro-Monteagudo et al., 2020; Loucks and van Beek, 2017;
Sandoval-Solis et al., 2011). Furthermore, vulnerability in the bottom-up framework is
derived as "the proportion of exposure simulations that fail below the critical threshold"
in Sauquet et al. (2019) (not computed here), or the combination of the three components
that includes sensitivity, exposure, and threshold (e.g., Mastrandrea et al., 2010; Prud-
homme et al., 2013a,b). In the water management context, the evaluation of management
performance is sometimes qualitative (e.g., reservoir refill) and problematic to be simpli-
fied as an index. Therefore, vulnerability in this study is given by subjective description
with the participation of regional water stakeholders.

Thirdly, downstream water demand is assumed to be the maximum water allocation
portion, which is 48 Mm3 for irrigation, drinking water and industrial use, and to remain
constant under all the scenarios investigated. In the historical experience of downstream
water demand, the maximal value is actually reached for years 2005 (47 Mm3), 2006 (48
Mm3), 2007 (48 Mm3), and 2011 (48 Mm3). As such, a possible adaptation strategy may
suggest to increase maximum water allocation portion by making new water contracts
between SHEM and downstream water uses. Besides, scenarios of land use and water use
changes are worth being included in the sensitivity analysis. Previous studies highlighted
land use and land cover changes, mostly the forest regeneration due to warming effect
in the Pyrenees, could yield less water availability by more intensive PET of vegetation
(e.g., Buendia et al., 2015; López-Moreno et al., 2011; Morán-Tejeda et al., 2014; Vicente-
Serrano et al., 2019).

Finally, the generation of perturbed climate scenarios is based on the "delta-change"
method that parametrically perturbs daily historical climate data with monthly change fac-
tors. This method, applied here for reasons of simplicity (straightforward to apply), has
well-known limitations (e.g., not suitable for extreme events). However, the delta-change
approach was considered relevant to address the vulnerability of a system sensitive to
changes in water resources. Alternatives to the parametric method are stochastic meth-
ods, such as weather generators (e.g., Culley et al., 2019; Steinschneider et al., 2019). In
addition, the climate perturbation is limited to precipitation and temperature in this study.
Although precipitation and temperature mean changes are the main drivers in water man-
agement, the investigation of other variables, such as PET (Guo et al., 2017), precipitation
variability (Poff et al., 2015) and water demand (Foti et al., 2014), could also impact the
performance of water systems.
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6.6 Conclusion

Water resource and management in the Pyrenees under climate change remains a con-
tinuous regional issue. In this study, we illustrated a bottom-up approach to analyze the
vulnerability of Pyrenean water management under climate change with an example of
the central Aure Valley. To achieve this, we firstly developed a hydrological model GR6J-
CEMANEIGE calibrated to the naturalized inflow and observed snow cover derived from
satellite images, and the simulation results point to satisfactory water resource and man-
agement estimation. The next step is to apply the delta-change method, a parametric
method, to perturb historical climate conditions. The current and perturbed climate series
are finally forced into the calibrated hydrological model to simulate potential changes of
water management metrics for sensitivity analysis. Changes in water management met-
rics (hydropower production, environmental regulations, and reservoir refill management)
are demonstrated by the 2D response surface in answer to precipitation and temperature
changes, which is visually practical in identifying the sensitivity of water management to
climatic variables. Response surfaces overlaid with performance threshold isolines and
plausible climate change pathways are essential for the exploration of key vulnerability.

Our findings confirm the high sensitivity of water management in the Aure Valley to
seasonal/annual changes in precipitation and temperature. By integrating the exposure
and the performance metrics of water systems in the Aure Valley, the vulnerability of
water management under climate change can be assessed. The results in the study can be
summarized as follows.

1. Annual hydropower production is mostly dominated by changes in annual precipi-
tation, and secondary by changes in annual temperature. Particularly, the Lassoula
hydropower system is vulnerable to future drier climate conditions as the produc-
tion threshold cannot be maintained under most future climate change projections.

2. The environmental regulations for the Sarrancolin catchment are sensitive to both
precipitation and temperature changes in summer and early autumn. Environmental
management is less vulnerable to climate change while the timing of environmental
water requirement would induce an intensive water competition among irrigation
and hydropower.

3. Reservoir refill management is extremely sensitive to changes in temperature for
the winter-spring-summer period. The earlier snowmelt induces water loss and
reservoir safety issues if the refill strategy remains unchanged.

On the basis of these vulnerability analyses, corresponding adaptation and mitigation ac-
tions can be designed to manage climate change risks. Non-structural measures can be
suggested, which target the efficient use of water, especially in the irrigation domain.
Other actions, such as increasing hydropower plant efficiency and increasing water trans-
fer capacity for more flexible reservoir management could be also appreciated in mit-
igating hydropower losses. Given the earlier snowmelt, reservoir refill strategy should
be correspondingly adjusted accompanied with the increase of spillway capacity for the
reservoir safety.

Although there are some limitations, this study demonstrated valuable insights on
the impact of climate change on water resource and management by firstly applying a
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bottom-up framework in the Pyrenean region. Future works, such as testing other hy-
drological models with different structure for uncertainty quantification, generating per-
turbed climate scenarios with more extreme events, testing water management stress to
other climate variables or socio-economic changes, could advance the understanding in
water management vulnerability. This framework is applicable to other Pyrenean regions
for vulnerability assessment and adaptation design under climate change.
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7
Impact assessment under global change

This chapter presents the water resources, water demand, and
water management changes under global change by applying
a top-down analysis.
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Figure 7.1 – A simplified schema of the Neste water system, and this chapter uses a top-
down framework to investigate the natural water resources changes in the Neste water
system (SB1-5), the water demand changes in the Neste water system (SB1-5), and the
water management changes in the Aure Valley (SB1-4) under global change scenarios.

176



7.1. Introduction

7.1 Introduction
A top-down approach is implemented in this chapter to analyze the impact of global

change. As detailed in chapter 2 (see Figure 2.2a), the top-down approach hinges on the
modelling chain that links the global change projections with the impact models (e.g.,
hydrological models, water demand models, and water management models). Based on
the philosophy of the top-down approach, the schema of the Neste water system under
global change scenarios is illustrated in Figure 7.2.

GCM-downscaled climate change projections  
(PET, P, and T changes)

Natural 
water 

resources in 
SB4

Natural 
water 
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Hydropower 
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Drinking water 
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Impact on water 
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(user satisfaction)

Impact assessment

CACG management in 
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Figure 7.2 – The schema of the modelling chain that represents the Neste water system
under global change. Different colors represent different inputs and models: the color
green represents climate change projections based on GCMs; the color gray the changes
in socio-economic drivers; the color blue the hydrological models in the Neste water
system (SB1-5); the color yellow the water demand models; and the color red the water
management models by the SHEM and CACG.

From the schema above, the modelling chain representing the Neste water system can
be divided into five parts: (1) future climate change projections, (2) future socio-economic
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changes, (3) hydrological models simulating the natural water resources of the Neste wa-
ter system, (4) water demand models simulating the total five water uses (hydropower,
drinking water, industrial water, agriculture, and environment uses) in the Neste water
system, and (5) water management models simulating the behavior of water managers
(SHEM and CACG) on how to satisfy water demand based on natural water availability.

The impact models, including hydrological models, water demand models, and water
management models, are summarized in Table 5.7 with inputs and outputs to represent the
Neste water system. The inputs into the impact models, including future climate change
projections and future socio-economic changes are presented as follows.

Climate change projections in this study are simulated by six GCMs (see Table 3.4)
under two RCPs (RCPs 4.5 and 8.5) with the RCP 4.5 representing a moderate GHG
concentration and the RCP 8.5 representing a high GHG concentration. The six GCMs
and two RCPs provide an ensemble of twelve future climate change projections. Each
future climate change projection is simulated from 1961 to 2100 in the CLIMPY project.
In the whole temporal length of climate change projections, we divide it into three phases:
the near-term over the period from 2021 to 2040, the medium-term over the period from
2041 to 2060, and the long-term over the period from 2081 to 2100 as proposed by IPCC
(2021). The outputs of the six GCMs have been downscaled (see chapter 3) to the Neste
water system and the downscaled projections are used in this section instead of the direct
GCMs outputs. Figures 7.3 and 7.4 show the potential evapotranspiration, temperature
and precipitation changes simulated by the 6 GCMs under the RCPs 4.5 and 8.5 for the
Aure Valley (SB1-4) and the Gascogne region (SB5).

Air temperature in the historical runs from the GCMs is underestimated by 2 °C in
summer when comparing to the Safran-PIRAGUA data for both regions. Besides, precip-
itation in all seasons is also underestimated in the Aure Valley. The annual precipitation
in the Aure Valley is 1438 mm calculated by the Safran-PIRAGUA data as illustrated in
Figure 3.4 while the annual precipitation of the historical runs is around 1200 mm as il-
lustrated in Figure 3.12a. A particular underestimation of precipitation by 30 mm/month
is found in spring and summer. In the Gascogne region, precipitation in summer is also
underestimated when comparing to the Safran-PIRAGUA data. The annual precipitation
in the Gascogne region is 786 mm calculated by the Safran-PIRAGUA data as illustrated
in Figure 3.4 while the annual precipitation in the historical runs is around 650 mm as
illustrated in Figure 3.12a. Besides, there is an underestimation of simulated summer
precipitation and an overestimation of simulated autumn precipitation when comparing to
the Safran-PIRAGUA data.

Under the scenarios of the two RCPs, the climate in the Aure Valley and the Gascogne
region is projected towards warmer and drier conditions with a pronounced warmer and
drier summer as shown by Figures 7.3 and 7.4 (see annual changes in Figure 3.12). Air
temperature is projected to increase for all seasons. Precipitation changes are variant
depending on the GCMs while the projected decreasing trend of precipitation in summer
are consistent for all GCMs. Particularly, the RCP 8.5 scenario projects a much more
severe warm and dry climate with the maximum increase in summer temperature and the
minimum decrease in summer precipitation in the long-term period.

In terms of socio-economic drivers, Table 7.1 summarizes the socio-economic drivers
for population, drinking water network efficiency, agricultural activities, environmental
regulations and hydropower production behavior in the study area. Except for population
growth, other drivers are considered as business as usual conditions (no information about
future changes). Furthermore, investigating the impact under these business as usual sce-

178



7.1. Introduction

HISTORICAL RCP45 RCP85

N
ear−

term
M

edium
−

term
Long−

term

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct

40

80

120

40

80

120

40

80

120

P
E

T
 [m

m
]

HISTORICAL RCP45 RCP85

N
ear−

term
M

edium
−

term
Long−

term

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct

40

80

120

160

40

80

120

160

40

80

120

160

P
 [m

m
]

(To be continued)

179



Chapter 7. Impact assessment under global change

HISTORICAL RCP45 RCP85

N
ear−term

M
edium

−term
Long−term

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

T 
[°C

]

HISTORICAL RCP45 RCP85

N
ear−term

M
edium

−term
Long−term

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

SC
A 

[−
]

bcc−csm1−1
CNRM−CM5

inmcm4
MIROC−ESM

MPI−ESM−MR
MRI−CGCM3

Safran−PIRAGUA

Figure 7.3 – Mean monthly potential evapotranspiration (PET), mean monthly precipi-
tation (T) and mean monthly temperature (T) changes of the Aure Valley under 6 GCMs
(bcc-csm1-1, CNRM-CM5, inmcm4, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3) for the
near-term (2021-2040), medium-term (2041-2060), and long-term (2081-2100) phases
under two RCP scenarios (RCPs 4.8 and 8.5). The changes over historical period (1961-
2005) of the 6 GCMs, along with the reanalysis Safran-PIRAGUA (1979-2014), are illus-
trated to compare with the changes under climate change scenarios. The three sub-figures
in the column "HISTORICAL" are identical to visually help the comparison.
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Figure 7.4 – As in Figure 7.3 but for the Gascogne region.
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narios gives an overview of which water use is the most plausible to fail in the future,
which helps to design adaptation strategies.

The population in the study area is projected by INSEE to increase by 2050 and then
remain stable by 2100. Drinking water network efficiency is considered to remain the
current 75% efficiency state for the future time. The business as usual condition is con-
sidered to represent the future irrigation activities that is the same as the current state with
maize (late varieties) as the major irrigation crop and the "derived irrigation area" of 265
km2 (the mean value from 1995 to 2019, see Figure 5.8). Environmental regulations in
terms of the DOE in SB5, the DOE at Sarrancolin, and the eflows out of the hydropower
reservoirs in the Aure Valley will also not be changed for the future time (see chapter
3). The hydropower in France is still assumed to provide the peak demand in the energy
market in the future like nowadays (same sensitivity to temperature), and the thresholds
to trigger the energy demand are still the same with 15 °C for HDD (24 °C for CDD, but
not considered in impact assessment of the Neste water system).

Table 7.1 – Socio-economic drivers of the Neste water system in the near-term (2021-
2040), medium-term (2041-2060), and long-term (2081-2100).

Near-term (2021-
2040)

Medium-term (2041-
2060)

Long-term (2081-
2100)

Population Increase 13430 in-
habitants

Increase 6362 inhab-
itants

Stable as total
216235 inhabitants

Network efficiency 0.75 0.75 0.75

Industrial water use
[m3/s]

0.338 0.338 0.338

Irrigation crop type Maize (late varieties) Maize (late varieties) Maize (late varieties)

Sowing date intervals 07/April-31/May 07/April-31/May 07/April-31/May

Derived irrigation
area [km2]

265 265 265

DOE in SB5 [m3/s] 5.48 in summer and
6.71 in winter

5.48 in summer and
6.71 in winter

5.48 in summer and
6.71 in winter

DOE at Sarrancolin
[m3/s]

4 4 4

e f low1 [m3/s] 0.055 0.055 0.055

e f low2 [m3/s] 0.051 0.051 0.051

e f low3 [m3/s] 0.025 0.025 0.025

HDD threshold [°C] 15 15 15
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7.2 Climate change impact on natural water resources

To recall, the Neste water system is divided into five sub-basins (SB1-5), where the
Aure Valley (SB1-4) is snow dominated and the Gascogne region (SB5) is less influ-
enced by snow. The changes of natural water resources in the Aure Valley in terms of
discharge (Q) and snow cover area (SCA) are investigated by the calibrated hydrologi-
cal model GR6J-CEMANEIGE with a consideration of SCA-SWE hysteresis (see Table
4.5) under the six GCMs and the two RCPs. The changes of natural water resources in
the Gascogne region in terms of discharge (Q) are investigated by the calibrated GR6J-
CEMANEIGE model without a consideration of SCA-SWE hysteresis (see Table 4.5)
under the six GCMs and the two RCPs. The changes of natural water resources in the
Aure Valley and the Gascogne region are presented as follows.

7.2.1 The Aure Valley (SB1-4)

Figures 7.5, 7.6, 7.7, and 7.8 show the impact of climate change on water resources in
terms of median Q regimes and median SCA regimes under the RCPs 4.5 and 8.5 for
SB1-4 of the Aure Valley. Note that the SCA series of SB1-4 are the medians of the aver-
aged SCA for the five equi-surface elevation bands. In general, we can observe that Q and
SCA simulated under the climate change projections in the historical period for SB1-4
are coherent with the simulations by the reanalysis data Safran-PIRAGUA. The seasonal
variations of Q with high-flow peaks in spring and low-flow spells in summer are well
represented. However, the high-flow peaks simulated under the climate change projec-
tions in the historical period are underestimated compared with the simulation by Safran-
PIRAGUA, which could be attributed to the underestimation of simulated precipitation
in the historical runs. Besides, in terms of the SCA regimes simulated under the climate
change projections in the historical period, the seasonal variations of SCA with full snow
cover in winter and no snow cover in summer are well represented when comparing to
the simulation by Safran-PIRAGUA. Particularly, the snow melting processes for SB1-4
under historical runs are very close to the simulations by the Safran-PIRAGUA. In con-
trast, there is an overall overestimation of SCA in autumn during the snow accumulation
processes under historical runs, which could be also be attributed to the uncertainties in
the CEMANEIGE model and to the seasonal biases of climatic variables simulated by the
GCMs.

As for the general future changes of water resources in the Aure Valley, the simula-
tions under climate change conditions indicate an overall decreasing natural flows with
earlier flow peaks gradually shifting from late spring to early spring under both RCP
scenarios. Besides, SCA changes are more variant in winter than the historical winter
depending on future temperature and precipitation changes under both scenarios. The
timing of no snow cover gradually shifts from summer to spring, and the period of no
snow cover gets longer and longer for both scenarios. In addition, full snow cover cannot
be maintained in winter anymore, especially in the long-term under the RCP 8.5. The de-
tailed descriptions of the water resources changes in SB1-4 under the two RCP scenarios
are given.
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Figure 7.5 – Climate change impact on the median discharge (Q) and median snow
cover area (SCA for the averaged 5 elevation bands) of SB1 under 6 GCMs (bcc-csm1-
1, CNRM-CM5, inmcm4, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3) for the near-term
(2021-2040), medium-term (2041-2060), and long-term (2081-2100) phases under two
RCP scenarios (RCPs 4.8 and 8.5). The simulations over historical period (1961-2005)
of the 6 GCMs, along with the simulations from Safran-PIRAGUA (1979-2014), are il-
lustrated to compare with the simulations under climate change scenarios. The three
sub-figures in the column "HISTORICAL" are identical to visually help the comparison.
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Figure 7.6 – As in Figure 7.5 but for SB2.
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Figure 7.7 – As in Figure 7.5 but for SB3.
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Figure 7.8 – As in Figure 7.5 but for SB4.
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SB1 upstream the Oule reservoir

In the historical period The inflows of SB1 feeds the Oule reservoir with an increasing
trend starting from April due to snowmelt till the end of June with high-flow peaks. Snow
is completely melted in the beginning of July. Since then, there is no snow cover in
SB1 and the inflows into the Oule reservoir remain a low state provided by soil water
content. The no snow period (low flow spells) ends in the beginning of autumn around
September-October when intensive precipitation occurs. SB1 as a typical mountainous
basin, temperature lowers to freezing point in autumn and most precipitation is in solid
form, which causes the increase of SCA with a slight increase of inflows into the Oule
reservoir. Snow fully covers SB1 in the beginning of winter till the spring of the next year.
This seasonal pattern remains stable for most historical years as the median Q and SCA
regimes are not variant.

Under the RCP 4.5 scenario Under the RCP 4.5 scenario characterized by a modest
increase of temperature (particularly in summer) and a modest decrease of precipitation
(particularly in summer), the seasonal pattern as shown in the historical simulations alters.
With a higher temperature in spring, snow starts to melt earlier, which causes an increase
in spring inflows to the Oule reservoir for the near-term, medium-term and long-term
compared with historical simulations. The high-flow peaks shift gradually to earlier dates
from late spring in the near term to middle spring in the long-term depending on GCMs.
The complete melt of snow also advances from the beginning of July to spring months
depending on GCMs. It is notable that the spring season is characterized by a decrease
in the peak flow, which is attributed to snow losses in winter due to temperature increase
and less precipitation in spring for most climate change projections.

The duration of low-flow spells in summer (no snow cover period) is prolonged with
lower summer inflows by less precipitation and higher temperature in summer for the
three phases. The no snow cover period could last 5 months (May-September) in the
long-term for the extremely warm and dry condition simulated by the GCM MIROC-
ESM. However, precipitation in autumn (September-October-November) is more variant
in climate change projections depending on GCMs (see Figure 7.3). From this point
of timing, precipitation is mostly dropped and stored in snow state in SB1 with a late
full snow cover (in the middle of winter) for most climate change projections in three
phases. However, given the temperature increase in winter, an obvious increase in winter
inflows can be observed with a much more variant winter SCA changes for the three
phases than the historical period. For example, in the simulations by the GCM MIROC-
ESM, SB1 cannot be fully covered by snow in winter due to warmer climate transferring
solid precipitation to liquid precipitation and drier climate reducing snow storage capacity,
particularly for the long-term period.

Under the RCP 8.5 scenario For the RCP 8.5 characterized by a high increase of tem-
perature (particularly in summer) and a high decrease of precipitation (particularly in
summer), the changes in the hydrological regime are more pronounced than those of the
RCP 4.5. A much earlier snowmelt than the RCP 4.5 can be observed while the spring
inflows into the Oule reservoir can be higher or lower than the RCP 4.5 depending on
the climate projections by GCMs. The high-flow peaks shift gradually to earlier dates
from late spring in the near term to early spring in the long-term depending on the climate
projections by GCMs. As such, the hydrological regime is transferred from the snow-
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dominated to the rain-dominated regime for most projections for the medium-term and
long-term. The high-flow peaks decrease from the near-term to the long-term due to less
snow storage in winter and less precipitation in spring. The low-flow spells could last
much longer (from April to October in the long-term for the GCM MIROC-ESM) than
the simulations of the RCP 4.5.

Besides, compared with the RCP 4.5, snow cover changes in the RCP 8.5 do not show
many distinct differences for the near-term and medium-term. However, in the long-term,
SCA in SB1 under the RCP 8.5 is more variant than that in the RCP 4.5 due to the extreme
increases of temperature in the RCP 8.5 throughout the year.

Different responses of SB1-4 to climate change

The changes in terms of Q and SCA for SB2-4 are similar to the changes in SB1 under
climate change conditions with an earlier snow melt, reduced spring flows, and more
severe summer low-flow spells. The detailed descriptions of climate change impact on
the SB2-4 will not be repeated.

Instead, different reactions or responses to the warming and drying climate change
projections are compared and discussed among SB1-4, in order to link with the vulner-
ability analysis in chapter 6. The findings in chapter 6 can be summarized as: (1) the
annual natural inflows into the reservoirs for SB1-3 are more sensitive (and vulnerable) to
precipitation changes than temperature changes; (2) the summer low flows in SB1-4 and
are sensitive (and vulnerable) to both summer precipitation and temperature changes; and
(3) the duration of no SCA in summer for SB1-3 are extremely sensitive (vulnerable) to
winter-spring temperature changes.

SB2 upstream the Orédon reservoir SB2 upstream the Orédon reservoir is located
next to SB1 but with a higher elevation. By comparing Figure 7.6 with Figure 7.5, we
can observe that the hydrological regimes of SB1 and SB2 are almost identical in both
historical and climate change projections, except the difference in the Q magnitude due
to different drainage area (larger surface of SB1). The same behavior of Q is probably
attributed to the similar soil type (covered with forest and meadow) and slope gradient for
SB1 and SB2.

In terms of SCA, in the historical period, snow is completely melted in the end of July
for SB2, which is later than that in SB1 (in the beginning of July). No snow duration is
shorter in SB2 (around one month of August) than that in SB1 (around two months from
July to August). Besides, the duration of snow melt from full snow cover to no snow cover
is almost four months for SB2 compared with almost three months for SB1. The duration
of snow accumulation from no snow cover to full snow cover is almost three months for
SB2 compared with almost two months for SB1. These different snow characteristics are
attributed to the higher elevation of SB2 than SB1.

In the RCP 4.5, the more persistent snow characteristics of SB2 than SB1 is observed.
For example, we can always observe a shorter duration of no snow cover in SB2 than
SB1 in the three phases under the simulations of the RCP 4.5. However, in the RCP 8.5
and particularly in the long-term, this more persistent snow characteristics of SB2 than
SB1 seems to fail with the same period of no snow cover in both SB1 and SB2. This is
probably because the extreme warming effect offsets the favorable elevation condition for
snow storage in SB2.
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SB3 upstream the Lassoula reservoir SB3 upstream the Lassoula reservoir is located
in the western part of the Aure Valley with a higher elevation than SB1 and SB2. By
comparing Figure 7.7 with Figures 7.5 and 7.6, we can observe some differences of the
hydrological regime of SB3 from those of SB1-2. In the historical period, the high-flow
peaks in SB3 are in early summer, which are later than those of SB1-2 (in late spring).
This is due to the higher elevation of SB3 that induces a later snowmelt than SB1-2.

Under climate change conditions, the high-flow peaks in SB3 shift to spring imme-
diately even in the near-term under the RCP 4.5. This response of SB3 with a quicker
response to warming than SB1-2 can be attributed to the catchment characteristics of
SB3. SB3 is covered with bare rocks and shows a more gradient slope than SB1-3, which
induces direct snow melt to the outlet of SB3 without many losses from the evapotranspi-
ration processes. By contrast, SB1-2 is covered with forest and meadow, which induces
large losses from evapotranspiration. Thus, Q in SB3 reacts more quickly to warming
effect than SB1-2.

Besides, the snow storage in SB3 is more persistent than those in SB1-2 because the
higher elevation of SB3 cancels the warming effect to some extend. However, the future
drier conditions still reduce the inflows into the Lassoula reservoir.

SB4 By comparing Figure 7.8 with Figures 7.5, 7.6, and 7.7, we can observe that the
hydrological regime of SB4 is characterized by high-flow peaks in spring due to snow
melt, moderate high flows in winter due to winter precipitation part of which is in liquid
form, and low-flow spells in summer in the historical period. The hydrological regime
SB4 is thus snow-dominated but rain-influenced, which is different from the completely
snow-dominated SB1-3. This is because some parts of SB4 have lower elevation com-
pared with SB1-3 and thus SB4 is hardly full-covered by snow (largest SCA value of
0.75 throughout the year). Under climate change conditions, the hydrological regime of
SB4 could be transferred into a rain-dominated one depending on the time leads of future
warming effect projected by the GCMs under the RCPs (e.g., the medium-term projected
by MIROC-ESM under the RCP 8.5 and the long-term projected by inmcm4 under the
RCP 8.5).

SB4 has a forest land cover in most part and the evapotranspiration process is more
intensive than SB1-3. This induces more water losses in SB4 under climate change con-
ditions. For example, the extremely warm and dry projections by MIROC-ESM in the
long-term of the RCP 8.5 show almost no outflow for SB4, which could be attributed to
the double effect of intensive evapotranspiration and less annual precipitation to saturate
the soil.

7.2.2 The Gascogne region (SB5)
Figure 7.9 shows the impact of climate change on water resources in terms of median Q
regimes under the RCPs 4.5 and 8.5 for SB5. The hydrological regime of SB5 is char-
acterized by rain-dominated regime with high flows in winter-spring period and drought
events in summer.

In historical period, the simulations under historical runs are coherent with the simu-
lation by Safran-PIRAGUA. The high-flow peaks are in winter and the low-flow spells are
in summer. However, compared with the simulation by Safran-PIRAGUA, the flows in
autumn under historical runs are overestimated due to the overestimation of autumn pre-
cipitation for some GCMs (for example, bcc-csm1-1). Besides, the low flows in summer
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Figure 7.9 – As in Figure 7.5 but for median Q of SB5.

under historical runs are slightly underestimated due to the underestimation of summer
precipitation for most GCMs.

The climate change projections in SB5 demonstrate reduced winter flows under the
both RCPs 4.5 and 8.5 due to the general decreasing trend of winter precipitation and the
increasing trend of winter temperature that induces higher evapotranspiration. Under the
RCP 4.5, the simulations of winter-spring flows are variant depending on the downscaled
outputs from the GCMs: the minimum flows are simulated by the downscaled outputs
from the GCM MIROC-ESM while the maximum flows are simulated by the downscaled
outputs from the GCM MRI-CGCM3. The simulated flows in late winter by the outputs
from the GCM MRI-CGCM3 are higher than the historical period in the near-term of
the RCP 4.5 due to higher winter precipitation projected by this GCM. By contrast, the
GCM MIROC-ESM projects less winter precipitation and higher winter temperature than
the GCM MRI-CGCM3, which significantly reduces winter flows. In the RCP 8.5, the
decrease of winter flows is more severe. The almost no flow state throughout the year is
found in the simulations by the downscaled outputs from the GCM MIROC-ESM in the
long-term phase under the RCP 8.5.

In summer, climate change projections all simulate a prolonged drought period and
reduced summer flows due to the increase of summer temperature and the decrease of
summer precipitation for all GCMs projections under the two RCPs. The duration of low-
flow spells is variant based on the climate change projections by the GCMs and RCPs,
from the August-October period in the near-term simulated by the downscaled outputs
from the GCM MRI-CGCM3 under the RCP 4.5 to the almost no flows throughout the
year in the long-term simulated by the downscaled outputs from the GCM MIROC-ESM
under the RCP 8.5.

Except for the decrease of high flows in winter and pronounced drought effect in
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summer, the seasonal shifts in terms of the hydrological regime in SB5 are not observed
under climate change conditions. This is because SB5 is rain-dominated that seasonal
precipitation decreases and annual temperature increases reduce the magnitude of flows
without significant temporal changes.
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7.3 Global change impact on water demand

7.3.1 Hydropower demand changes

The general energy demand in the markets is demonstrated by the HDD index that repre-
sents the demand for heating and the CDD index that represents the demand for cooling.
The higher value of the HDD (or CDD) index, the greater the energy need for heating (or
cooling). The value 0 of the two indexes means the lowest energy demand. The HDD and
CDD indexes are computed based on mean France temperature, and thus the calculated
France temperature in the future (see section 3.2.1) are used to estimate the changes of
the two indexes. Analogous to the temperature increase in the Neste water system, the
temperature over France is calculated to have an increasing trend throughout the year with
the maximum increase in summer and the increasing trend from the near-term to the long-
term of the century as illustrated by Figure 3.15. The warming effect is more obvious in
the RCP 8.5 than the RCP 4.5.

Annual changes in terms of HDD and CDD indexes are presented. Figure 7.10 shows
the number of days when there is energy demand for heating (HDD days) and cooling
(CDD days) per year from 1961 to 2100, as simulated by the downscaled outputs from the
GCMs under the RCPs 4.5 and 8.5. Under the current climate, the HDD days simulated
by the downscaled outputs from the GCMs and by Safran-France are in the range of 250-
300 days while the simulated CDD days are in the range of 0-15 days. Thus, the energy
demand in the market is largely dominated by heating demand in the historical period.

Under climate change conditions, the structure of energy demand changes. As Figure
7.10 displays, the number of HDD days decreases and the number of CDD days increases
from the near-term to the long-term of the century. The magnitudes of the decreasing
HDD days and the increasing CDD days are variant depending on the RCP scenarios and
the GCM projections. The maximum decrease of HDD days and the maximum increase
of CDD days can be found in the simulations by the downscaled outputs from the GCM
MIROC-ESM in the long-term under the RCP 8.5. The number of HDD days is decreased
to 125-175 days compared to 250-300 days in the historical period. The number of CDD
days is increased to 60-110 days compared to 0-15 days in the historical period. Thus,
the energy demand structure is shifted with more demand for cooling and less demand for
heating given the increasing trend of France temperature.

In addition to the changes in the structure of energy demand, seasonal alterations
of energy demand are also noticeable. Figure 7.11 shows the changes of the HDD and
CDD regimes over France under climate change conditions for both RCPs 4.5 and 8.5.
In the historical period, the energy demand in terms of the HDD and CDD values over
France simulated by the downscaled outputs from the GCMs follows the pattern of the
simulations by Safran-France reanalysis data. The energy demand in the historical period
is mostly for heating in winter. There is scarcely any cooling demand in summer in the
historical period.

Under climate change conditions, the HDD values over France decrease in winter,
and the duration when HDD=0 is longer and longer in summer from the near-term to the
long-term of the century under both RCPs. This indicates that there is lower and lower
energy demand for heating in winter in the future and that the duration of the lowest
energy demand for heating gets longer and longer. These changes of energy demand for
heating are more distinct under the RCP 8.5.

On the contrary, the CDD values over France increase in summer with the longer
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Figure 7.10 – The number of days when there is energy demand for heating in the mar-
ket within a year (HDD days), and the number of days when there is energy demand for
cooling in the market within a year (CDD days) under 6 GCMs (bcc-csm1-1, CNRM-
CM5, inmcm4, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3) from 1961 to 2100 for two
RCP scenarios (RCPs 4.8 and 8.5). The historical (1961-2005), near-term (2021-2040),
medium-term (2041-2060), and long-term (2081-2100) phases are labelled in gray rib-
bons from left to right. The simulations from Safran-France (1958-2018) are also plotted
to compare with the simulations under climate change scenarios.
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Figure 7.11 – The impact of temperature increase on the mean daily HDD and CDD
values under 6 GCMs (bcc-csm1-1, CNRM-CM5, inmcm4, MIROC-ESM, MPI-ESM-MR,
MRI-CGCM3) for the near-term (2021-2040), medium-term (2041-2060), and long-term
(2081-2100) phases under two RCP scenarios (RCPs 4.8 and 8.5). The simulations over
historical period (1961-2005) of the 6 GCMs, along with the simulations from Safran-
France (1958-2018), are illustrated to compare with the simulations under climate change
scenarios. The three sub-figures in the column "HISTORICAL" are identical to visually
help the comparison.

196



7.3. Global change impact on water demand

and longer duration when the CDD values are larger than 0 from the near-term to the
long-term of the century under both RCPs. This indicates that there is potentially an
increasing demand for summer cooling in France in the future and that the duration of
summer cooling demand gets longer and longer from the near-term to the long-term of
the century. The increasing energy demand and longer demand duration in summer are
remarkable in the long-term under the RCP 8.5 scenario.

In summary, the energy demand in France in the future is projected to decrease in win-
ter for heating and to potentially increase in summer for cooling. These demand changes
in the energy market can induce changes in hydropower demand for the hydropower pro-
ducer SHEM. Here, we consider the business as usual scenario that the SHEM produces
hydropower only for winter heating since we do not know if the needs for cooling will
materialise. The changes in the HDD values over France under climate change conditions
are forced into the hydropower demand model of the SHEM to investigate the changes in
hydropower demand.

Figure 7.12 shows the seasonal changes of hydropower demand from the markets
for the SHEM under climate change conditions. The hydropower demand follows the
changes of HDD values with a decrease in hydropower demand throughout the year and
a marked decrease in winter compared with the historical period. We also note an in-
crease in the duration in which hydropower demand remains constant in summer. This is
attributed to the longer duration when HDD=0 in summer, i.e., the lowest energy demand
in the market (the lowest interest for SHEM to produce energy).
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Figure 7.12 – As in Figure 7.11 but for mean daily hydropower demand for the SHEM.

7.3.2 Drinking water demand changes
Drinking water demand is dominated by population growth in the Gascogne region. In
this study, drinking water network efficiency is considered to remain the same as the
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current situation, which is 75 %. Figure 7.13 shows the changes of daily drinking water
demand for each year from 1961 to 2100. The drinking water demand increases from the
daily demand value 0.255 m3/s in 1961 to the daily demand value 0.360 m3/s in 2050,
and remains stable after.
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Figure 7.13 – The increase of drinking water demand in the Gascogne region from 1961
to 2100. The historical (1961-2005), near-term (2021-2040), medium-term (2041-2060),
and long-term (2081-2100) periods are labelled in gray ribbons from left to right.

7.3.3 Industrial water demand changes
Industrial water demand is always considered as a constant and the daily demand is 0.338
m3/s throughout the temporal range from 1961 to 2100.

7.3.4 Irrigation water demand changes
Irrigation practices in the Gascogne region in the future is assumed to be the same as
the current state. Maize of late maturity varieties is cropped in the period from 07/April
to 31/May. The "derived irrigation area" of maize is 265 km2. As such, these values
configure the irrigation water demand model (ADEAUMIS).

The climate change projections under the 6 GCMs and the 2 RCPs in terms of potential
evapotranspiration, precipitation, and temperature changes over SB5 are forced into the
configured ADEAUMIS model to simulate the irrigation activities (sowing date, maize
growth duration, and irrigation duration) and the corresponding irrigation water demand.

Figure 7.14 shows the distribution of sowing dates under climate change conditions.
In the historical period, the sowing date simulated by the downscaled outputs from the
GCMs is consistent with the simulation by Safran-PIRAGUA. Besides, we can observe
that there is no significant change in terms of sowing date under climate change condi-
tions. The sowing date is in the temporal interval 20/April-20/May for all projections,
which indicates the similar starting date of maize growth.
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Figure 7.14 – The distribution of sowing date in the 6 GCMs (bcc-csm1-1, CNRM-CM5,
inmcm4, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3) for the near-term (2021-2040),
medium-term (2041-2060), and long-term (2081-2100) phases under two RCP scenar-
ios (RCPs 4.8 and 8.5). The simulations over historical period (1961-2005) of the 6
GCMs, along with the simulations from Safran-PIRAGUA (1979-2014), are illustrated to
compare with the simulations under climate change scenarios. The three sub-figures in
the column "HISTORICAL" are identical to visually help the comparison.

Figure 7.15 shows the distribution of maize growth duration and irrigation duration
under climate change conditions. The maize growth duration is the number of days needed
to develop to the maturity stage from the sowing date. The irrigation duration is the
number of days between the stage of 10-12 leaves and the stage of 50% grain moisture
content.

In the historical period, the maize growth and irrigation duration are overestimated
by the downscaled outputs from the GCMs compared with the simulations by the Safran-
PIRAGUA reanlysis data. This is attributed to the underestimation of temperature under
historical runs from May to October (see Figure 7.4). Since the temperature in SB5 under
historical runs is underestimated, the maize crop needs more days to accumulate the ther-
mal time to complete each growth stage as presented in Table 5.3. Therefore, the maize
growth duration is overestimated by 30-50 days in the simulations by the downscaled out-
puts from the GCMs. Meanwhile, the irrigation duration is also overestimated by 10-20
days in the simulations by the downscaled outputs form the GCMs.

Under climate change conditions, we can observed from Figure 7.15 that there is a
general decreasing trend of maize growth duration and irrigation duration under the two
RCPs compared with the historical period. This is attributed to the projected temperature
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Figure 7.15 – As in Figure 7.14 but for maize growth duration (a) and irrigation duration
(b).
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increase in the future in SB5 that shortens the maize growth duration due to a quicker
thermal time accumulation, and thus a decreased irrigation duration. However, we also
note a strange increase of maize growth and irrigation duration in the long-term under
the RCP 8.5. The simulated maize growth and irrigation duration by the downscaled
outputs from the GCMs (bcc-csm1-1, MIROC-ESM, and MPI-ESM-MR) are generally
longer than other simulations under climate change conditions. Particularly, the simulated
irrigation duration by the downscaled outputs from the GCMs (MIROC-ESM and MPI-
ESM-MR) are even longer than the historical period. This is because these GCMs project
extremely high daily temperature, with many days of temperature larger than 27.5 °C,
that stops the maize growth in summer. Thus, maize takes more days to the stage of 50%
grain moisture content (the end stage of irrigation) and to the stage of maturity (the end
stage of growth).

Figure 7.16 shows the regime of daily irrigation water demand under climate change
conditions. The results of the ADEAUMIS model in terms of irrigation water demand
are generated at weekly time step. The simulations are transferred to daily time step by
averaging the results in a week.

In the historical period, the patterns of maize irrigation water demand simulated by the
downscaled outputs from the GCMs generally agree with the simulations by the Safran-
PIRAGUA data. However, the irrigation peaks in summer are overestimated when com-
paring to the simulation by Safran-PIRAGUA, which can be attributed to the underes-
timation of precipitation under historical runs. Besides, the end of irrigation duration
simulated by the downscaled outputs from the GCMs is later than that by the Safran-
PIRAGUA. The reason is the underestimation of temperature under historical runs as
mentioned before.

In the climate change projections, the downscaled outputs from the GCMs mostly
project an earlier start of irrigation, a shortened irrigation duration, and a higher irrigation
water demand from the near-term to the long-term under the RCP 4.5 and from the near-
term to the medium-term under the RCP 8.5. The earlier start of irrigation activities is
due to the warmer climate in the future that makes maize go to the stage of 10-12 leaves
(the starting point of irrigation) more quickly than the historical period. The shortened
irrigation duration is explained before. The higher irrigation water demand is attributed to
the projected less summer precipitation and higher summer potential evapotranspiration
that makes maize more water demanding. Particularly, in the long-term of the RCP 8.5,
the simulations by the downscaed outputs from some GCMS (e.g., MIROC-ESM) show
a later end of the irrigation duration due to the more often extremely warming days in
summer as explained before.

7.3.5 Environmental water demand changes in SB5

Environmental water release from the CACG reservoirs is mainly used to provide a good
ecological status in SB5, particularly the DOE requirement in drought period. Besides, the
water extraction from the Neste River via the Neste Canal also contributes to this purpose.
Equation 5.14 presents the environmental water demand from the CACG reservoir, which
is only the contribution of the CACG reservoirs to the environment. Here, we present the
deficit of the natural flows in SB5 to the DOE requirement as the environmental water
demand in SB5, calculated as follows:

max(DOEt−Q5,t ,β ) (7.1)
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Figure 7.16 – As in Figure 7.14 but for the regime of daily maize irrigation water demand.

Figure 7.17 shows the regime of mean daily environmental water demand under cli-
mate change scenarios. In the historical period, the simulations by the downscaled outputs
from the GCMs are generally consistent with the simulations by the Safran-PIRAGUA
reanlysis data. However, the environmental water demand simulated by the downscaled
outputs from the GCMs in the autumn is underestimated compared with the simulation
by Safran-PIRAGUA. This is attributed to the overestimation of natural flows in SB5 in
autumn that is caused by the higher autumn precipitation projections under historical runs
than the Safran-PIRAGUA data.

Under climate change conditions, there is a remarkable increase of environmental wa-
ter demand in the period when there is DOE requirement (June to March, see Figure 3.21)
under the two RCPs compared with the historical period. This is due to the warmer and
dryer climate in the future than the historical climate that induces lower natural flows
in SB5 and thus higher deficit to the DOE requirement (higher environmental water de-
mand). The environmental water demand under the RCP 8.5 is higher than that under the
RCP 4.5.

7.3.6 Summary
The impact of global change on water demand in the Neste water system is summarized
as:

1. hydropower demand for heating is projected to decrease throughout the year with
the maximum reduction in winter;
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Figure 7.17 – As in Figure 7.14 but for the regime of mean daily environmental water
demand in SB5.

2. drinking water demand is projected to increase till the middle of the century and
then remain stable till the end of the century;

3. industrial water demand remains constant;

4. irrigation water demand is projected to increase in summer with a general shortened
irrigation duration, which indicates a more frequent and higher irrigation water de-
mand;

5. environmental water demand is projected to increase in order to meet the DOE
requirement.

Figure 7.18 shows the regime of total water demand in SB5 under climate change
scenarios. In terms of the magnitude of water demand, the increase of total water demand
is characterized by irrigation water demand in summer and environmental water demand
from summer to winter.

Based on the increasing trend of the total water demand in SB5, the CACG should
tend to request more water from the SHEM reservoirs to feed SB5 and to meet the DOE
requirement at Sarrancolin. Figure 7.19 shows the regime of the CACG request for water
release from the SHEM reservoirs under climate change conditions. Figure 7.20 shows
the mean annual request for water release from the SHEM reservoirs under climate change
conditions.

Note that the two figures only demonstrate the potential how the CACG requests for
the water release from the SHEM reservoirs to feed SB5. As we can observe, the tendency
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Figure 7.18 – As in Figure 7.14 but for the regime of total water demand in SB5.

of the CACG request follows the total water demand in SB5 with the potential to request
more water to feed SB5. Besides, the 48 Mm3 quota is not sufficient to fully satisfy the
CACG request under the climate changes projections, especially in the long-term of the
RCP 8.5.

To summarize, there is an increasing water demand in SB5 dominated by irrigation
and environmental water demand. The CACG tends to request more water from the
SHEM to satisfy the water demand in SB5.
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Figure 7.19 – As in Figure 7.14 but for the regime of mean daily CACG request from the
SHEM.
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Figure 7.20 – As in Figure 7.14 but for the annual CACG request for the SHEM. The red
line is the current limit of the CACG request (48 Mm3).

205



Chapter 7. Impact assessment under global change

7.4 Global change impact on water management

7.4.1 Water management in the Aure Valley

Model coupling

To recall, the Aure Valley (SB1-4) is managed by the SHEM for hydropower production.
Besides, the CACG can request a quota of 48 Mm3 over the period from July to February
from the SHEM reservoir storage. At the outlet of the Aure Valley (Sarrancolin), the
CACG extracts the water volume requested from the SHEM via the Neste Canal. In
addition to the quota of 48 Mm3, the CACG can also extract the Neste River at Sarrancolin
via the Neste Canal to feed the Gascogne region. Whenever the CACG extracts water at
Sarrancolin either from the 48 Mm3 or the Neste River, the CACG should keep the DOE
requirement at Sarrancolin, which is the river discharge downstream Sarrancolin should
always be maintained no lower than 4 m3/s.

Therefore, the management in the Aure Valley for water uses is coupled between the
SHEM and CACG. In another word, the SHEM management for hydropower depends on
the CACG request and in the mean time the CACG management at Sarrancolin is also
influenced by the SHEM release. As such, a coupling process should be involved to rep-
resent the real management when analyzing the impact of global change on the water
management in the Aure Valley as shown in Figure 7.2. Three management models are
coupled, which are the SHEM management model, the model that calculating the influ-
enced river flow at Sarrancolin, and the model of the CACG management at Sarrancolin
(see Table 5.7).

Since the 48 Mm3 quota is a binding contract between the CACG and SHEM, the
satisfaction of the CACG request should be placed with priority within the SHEM man-
agement strategy, so that hydropower production can only be satisfied afterwards. In
order to make the coupled model to adapt to global change, particularly the SHEM man-
agement model to satisfy the CACG request under global change scenarios, we design
four management modes of the SHEM management model as shown in Table 7.2. The
four management modes gradually sacrifice the opportunities for hydropower production
of the Orédon reservoir and then the reservoir refill targets in the SHEM management
model to provide water for the CACG request.

The explanations of the four strategies of management in Table 7.2 are given as fol-
lows.

1. The management mode 1 is the management strategy when the natural inflows into
the reservoirs and the CACG request allows the SHEM to have water storage in the
Oule, Orédon, and Lassoula reservoirs for the optimization of hydropower produc-
tion. This strategy is the SHEM model configuration developed in chapter 5, which
aims at optimizing hydropower production when the CACG demand is satisfied.

2. The management mode 2 is the management strategy that the SHEM reduces the
opportunities for hydropower production in order to satisfy the CACG request. In
the original SHEM model configuration in chapter 5, a constraint that transfers
the water storage in the Orédon reservoir to the Oule reservoir in winter is set to
optimize the hydropower production. In this management mode, the constraint
of transferring water from the Orédon to the Oule reservoir in winter is deleted
to make sure that the Orédon reservoir can achieve the storage target at the end

206



7.4. Global change impact on water management

Table 7.2 – Four management modes of the SHEM management model to satisfy the CACG
request under global change

SHEM man-
agement

Actions Model representation

Mode 1 Satisfy both CACG request
and hydropower production

1. Consider all the constraints

Mode 2 Satisfy CACG request and
reduce hydropower produc-
tion

1. Consider all the constraints except the
water transfer between the Oule and Orédon
reservoirs in winter

Mode 3 Satisfy CACG request, re-
duce hydropower production
and lower reservoir storage at
the end of the management

1. Consider all the constraints except the
water transfer between the Oule and Orédon
reservoirs in winter; 2. the storage target Vini

decrease by 10%, 20%, ... 100% gradually
to satisfy the CACG request for the Oule,
Orédon, and Lassoula reservoirs

Mode 4 Fail CACG request and focus
on reservoir recovery

1. Consider all the constraints except the
CACG request; 2. refill till the storage tar-
get Vini reaching 100%, 90% ... 10% of the
original level for the Oule, Orédon, and Las-
soula reservoirs

of the management. As such, the Orédon reservoir in this management mode is
only used to provide water for the CACG request by sacrificing its opportunities
of hydropower production in winter. The hydropower production from the Oule
and Lassoula reservoir in winter is optimized in this management mode when the
CACG request is satisfied.

3. The management mode 3 is the management strategy to deal with the situation when
the total water storage in the reservoirs and the natural inflows into the reservoirs
are not sufficient to provide water to the CACG request during the request period.
This management mode sacrifices not only opportunities for Orédon hydropower
production in winter (as described in the management mode 2) but also the reservoir
refill targets at the end of the management. This management mode sequentially
tests to lower 10%, 20%, ... 100% of the refill targets of the three reservoirs and
selects the minimum percentage.

4. The management mode 4 is the management strategy when CACG request can-
not be satisfied even by lowering 100% of the refill targets of the Oule, Orédon,
and Lassoula reservoirs. This means that the sum of the storage at the beginning
the management and the natural inflows into the reservoirs is not sufficient for the
CACG request. As such, the CACG demand is failed and the SHEM focuses on
the reservoir recovery. This management mode sequentially tests to refill 100%,
90%, ... 10% of the storage targets of the three reservoirs and selects the maximum
percentage.

The four management modes are sequentially tested from Mode 1 to Mode 4 under
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global change scenarios. If the simulation of one mode fails (for example, the Mode 1),
the simulation of the next mode (for example, the Mode 2) is conducted. In this way, the
sequential process stops when one mode succeeds and the management simulations by
this mode will be exported. The Mode 4 always succeeds because this management mode
is designed to encounter the most severe dry conditions in the future. The four sequential
management modes from Mode 1 to Mode 4 represent the increasing conservative attitude
of the management strategies that can be practiced by SHEM.

The four management modes will be included in the coupled modelling process.
Based on the top-down approach illustrated in Figure 7.2, we detail the model coupling
process between the SHEM management and the CACG management at Sarrancolin by
including the four management modes of SHEM as shown in the Figure 7.21.

Model coupling, which indicates that models are completely linked with bi-directional
data transmission, and one-way chain, which is an uncoupled method with data inter-
change in only one direction, are the two basic forms of conjunctive modeling (Becker
and Burzel, 2016). For example, if we take two models that must be conjunctively con-
nected, if the models are coupled, the simulation results of the first model have an in-
fluence on the simulation results of the second model, and vice versa. This means that
connected models must share information on a time step basis throughout the run time.
When two models are uncoupled, the first model’s simulation results have an impact on
the second, while the second model’s simulation results have no feedback effect on the
first. In this study, we use the bi-directional iterative coupling approach to represent the
coupling process between the SHEM optimization and CACG simulation at Sarrancolin.

The coupling process is presented as follow.

• The coupling process is a loop to gradually search for the results that satisfy the
DOE requirement at Sarrancolin. It is based on a management year that starts from
July and ends at June to link the optimization of the SHEM management model
with the simulation of the CACG management models.

• Firstly, time series of CACG request within a management year is simulated by the
CACG management model based on the total water demand in SB5. The simulated
time series of request are the initial inputs of the coupling process. The time series
of request will be reduced to 48 Mm3 proportionally if the sum of the CACG request
values is larger than 48 Mm3.

• Secondly, the treated CACG request series, natural inflows of SB1-3, and hydropower
demand are forced into the SHEM management model (4 management modes) to
simulate the water release from the Oule, Orédon, and Lassoula reservoirs for each
water use. Then, the influenced flow of the Neste River at Sarrancolin can be cal-
culted with the simulated release from the SHEM reservoirs and the natural water
inflows of SB4.

• Thirdly, the CACG management at Sarrancolin is simulated to generate a new time
series of request. Before the management of CACG to satisfy the DOE at Sarran-
colin, a boolean test is conducted to check whether the SHEM fails to meet the
CACG request. If so, the loop stops and the results are exported, which means that
CACG can only extract less water at Sarrancolin to satisfy the DOE requirement. If
not, the CACG manages to satisfy the DOE requirement within the 48 Mm3 quota.
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Figure 7.21 – The coupling process to represent the current management of SHEM and
CACG at Sarrancolin. The color blue represents the hydrological models associated in
the coupling process; the color yellow the water demand; and the color red water man-
agement models by SHEM and CACG.

• Fourthly, in the process of satisfying the DOE requirement, the CACG starts with
checking whether the DOE requirement is satisfied. If so, the loop stops and the
CACG should not request extra water from SHEM due to the principal of saving
the storage of the SHEM reservoirs. If not, the CACG proceeds to select the days
when there is a DOE deficit at Sarrancolin. If the total DOE deficit is larger than
48 Mm3, the loop is broken because the DOE deficit is beyond the quota that the
CACG can request. If the sum of the total request and the DOE deficit is within
the 48 Mm3 quota, the CACG can request extra release from the reservoirs; if the

209



Chapter 7. Impact assessment under global change

sum of the total request and the DOE deficit is out of the 48 Mm3 quota, the request
series are reduced proportionally to fulfill the DOE deficit.

• Finally, the new CACG request time series replace the initial series and go through
the loop again as mentioned above. The coupling process is set to have a maximum
of 5 iterations to avoid endless loop and computational burden.

Besides, in this study, we consider a completely different management context to com-
pare with the current management in the Aure Valley. The changed management context
is that the CACG has the right to request water as much as the CACG wants. In another
word, there is no constraint on the volume of water that the CACG can request. The
coupling process of the changed management context is illustrated in Figure 7.22.
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Figure 7.22 – As in Figure 7.21 but under a different management context that CACG can
request as much as the CACG wants.

The simulated natural water resources under climate change scenarios and the sim-
ulated water demand under global change scenarios are forced into the two different
management contexts. The plausible impacts on the SHEM management and the CACG
management at Sarrancolin are presented, respectively.
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The impacts on the SHEM management

The impacts of global change in terms of the SHEM management on the reliability of sat-
isfying the CACG demand, the water release for the CACG, the hydropower production,
and the reservoir refill target are presented as follows.

Changes in the reliability of SHEM to satisfy the CACG demand Concerning the
impact on the SHEM management, we firstly investigate the reliability that the SHEM can
satisfy the CACG demand. The opposite to this reliability is the risk that the SHEM fails
the CACG request. Based on Hashimoto et al. (1982a,b), the definition of the reliability
is the proportion of satisfied occurrences in the total occurrences while the risk is the
proportion of failed occurrences in the total occurrences.

By investigating this reliability, the frequency of each management mode used to adapt
to the global change scenarios (the changes in natural water resources, the changes in
water demand, and the changes in different management context) are calculated in Tables
7.3, 7.4, 7.5, and 7.6. In the tables, the frequency sum of the four management modes
under the combination of 1 GCM × 1 RCP × 1 management context should be equal to
1. The frequency sum of mode 1-3 is the reliability that the SHEM satisfies the CACG
demand while the frequency of mode 4 is the risk that the SHEM fails the contract with
the CACG.

The frequencies of the four management modes calculated with the input of Safran-
PIRAGUA analysis into the modelling chain in Figure 7.2 is 1, 0, 0, 0, respectively. The
underestimation of the frequency of mode 1 by GCMs in the historical period in all RCP
and management context scenarios is attributed to the underestimation of precipitation
that lows the possibilities for hydropower production. However, the reliability of the
CACG demand in the historical period and in the Safran-PIRAGUA data is the same (all
equal to 1).

Under the current management context that the CACG can only request 48 Mm3 from
the SHEM (see Tables 7.3 and 7.4), the reliability of CACG demand can be maintained
under the RCP 4.5 while there is a slight decrease in the reliability (a slight increase in
the frequency of mode 4) under the long-term of the RCP 8.5. Thus, the 48 Mm3 can be
mostly satisfied under both RCPs, which corresponds to the vulnerability assessment in
chapter 6.

Under the changed management context that there is no limit on the water volume
that the CACG can request from the SHEM (see Tables 7.5 and 7.6), the reliability of
CACG demand is challenged because there is an increasing trend of failure (increasing
frequency of mode 4) from the near-term to the long-term under both RCPs. Particularly,
in the long-term of the RCP 8.5, the GCMs MIROC-ESM and MPI-ESM-MR project a
complete failure that the SHEM could not satisfy the CACG request at all. In this case, it
is probably because the CACG request is larger than the water resource availability (i.e.,
no matter how SHEM manages the water resources, the request by CACG will be failed).

211



Chapter 7. Impact assessment under global change

Table 7.3 – The utilization frequency of the four management modes in the SHEM man-
agement optimization in the 6 GCMs (bcc-csm1-1, CNRM-CM5, inmcm4, MIROC-ESM,
MPI-ESM-MR, MRI-CGCM3) for the near-term (2021-2040), medium-term (2041-2060),
and long-term (2081-2100) phases under RCP 4.5 and the current management context
(CACG can request 48 Mm3).

RCP 4.5 and current management context

Historical
(1961-2005)

Near-term
(2021-2040)

Medium-term
(2041-2060)

Long-term
(2081-2100)

Mode 1 bcc-csm1-1 0.78 0.65 0.30 0.50

CNRM-CM5 0.71 0.50 0.30 0.40

inmcm4 0.64 0.60 0.25 0.10

MIROC-ESM 0.64 0.15 0.15 0.00

MPI-ESM-MR 0.62 0.80 0.55 0.35

MRI-CGCM3 0.82 0.85 0.70 0.60

Mode 2 bcc-csm1-1 0.22 0.35 0.70 0.50

CNRM-CM5 0.29 0.50 0.70 0.55

inmcm4 0.36 0.40 0.75 0.85

MIROC-ESM 0.36 0.85 0.85 0.95

MPI-ESM-MR 0.38 0.20 0.45 0.45

MRI-CGCM3 0.18 0.15 0.30 0.40

Mode 3 bcc-csm1-1 0.00 0.00 0.00 0.00

CNRM-CM5 0.00 0.00 0.00 0.05

inmcm4 0.00 0.00 0.00 0.05

MIROC-ESM 0.00 0.00 0.00 0.05

MPI-ESM-MR 0.00 0.00 0.00 0.20

MRI-CGCM3 0.00 0.00 0.00 0.00

Mode 4 bcc-csm1-1 0.00 0.00 0.00 0.00

CNRM-CM5 0.00 0.00 0.00 0.00

inmcm4 0.00 0.00 0.00 0.00

MIROC-ESM 0.00 0.00 0.00 0.00

MPI-ESM-MR 0.00 0.00 0.00 0.00

MRI-CGCM3 0.00 0.00 0.00 0.00

The utilization frequency of the management modes 1-4 with Safran-PIRAGUA over
the period from 1979-2014 is 1, 0, 0, and 0, respectively.
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Table 7.4 – As in Table 7.3 but under RCP 8.5 and the current management context (CACG
can request 48 Mm3).

RCP 8.5 and current management context

Historical
(1961-2005)

Near-term
(2021-2040)

Medium-term
(2041-2060)

Long-term
(2081-2100)

Mode 1 bcc-csm1-1 0.78 0.50 0.45 0.10

CNRM-CM5 0.71 0.35 0.30 0.00

inmcm4 0.64 0.30 0.35 0.10

MIROC-ESM 0.64 0.00 0.05 0.25

MPI-ESM-MR 0.62 0.30 0.10 0.05

MRI-CGCM3 0.82 0.60 0.65 0.25

Mode 2 bcc-csm1-1 0.22 0.50 0.55 0.55

CNRM-CM5 0.29 0.50 0.70 0.70

inmcm4 0.36 0.70 0.65 0.75

MIROC-ESM 0.36 0.85 0.75 0.10

MPI-ESM-MR 0.38 0.65 0.75 0.35

MRI-CGCM3 0.18 0.40 0.35 0.75

Mode 3 bcc-csm1-1 0.00 0.00 0.00 0.30

CNRM-CM5 0.00 0.10 0.00 0.25

inmcm4 0.00 0.00 0.00 0.15

MIROC-ESM 0.00 0.10 0.20 0.60

MPI-ESM-MR 0.00 0.05 0.10 0.50

MRI-CGCM3 0.00 0.00 0.00 0.00

Mode 4 bcc-csm1-1 0.00 0.00 0.00 0.05

CNRM-CM5 0.00 0.05 0.00 0.05

inmcm4 0.00 0.00 0.00 0.00

MIROC-ESM 0.00 0.05 0.00 0.05

MPI-ESM-MR 0.00 0.00 0.05 0.10

MRI-CGCM3 0.00 0.00 0.00 0.00

The utilization frequency of the management modes 1-4 with Safran-PIRAGUA over
the period from 1979-2014 is 1, 0, 0, and 0, respectively.
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Table 7.5 – As in Table 7.3 but under RCP 4.5 and the changed management context (no
limit on CACG request).

RCP 4.5 and changed management context

Historical
(1961-2005)

Near-term
(2021-2040)

Medium-term
(2041-2060)

Long-term
(2081-2100)

Mode 1 bcc-csm1-1 0.78 0.65 0.30 0.50

CNRM-CM5 0.71 0.50 0.30 0.40

inmcm4 0.64 0.50 0.25 0.10

MIROC-ESM 0.64 0.15 0.05 0.00

MPI-ESM-MR 0.62 0.75 0.55 0.30

MRI-CGCM3 0.82 0.85 0.65 0.55

Mode 2 bcc-csm1-1 0.22 0.35 0.70 0.50

CNRM-CM5 0.29 0.50 0.55 0.45

inmcm4 0.36 0.35 0.60 0.55

MIROC-ESM 0.36 0.65 0.55 0.55

MPI-ESM-MR 0.38 0.20 0.40 0.30

MRI-CGCM3 0.18 0.15 0.30 0.40

Mode 3 bcc-csm1-1 0.00 0.00 0.00 0.00

CNRM-CM5 0.00 0.00 0.10 0.10

inmcm4 0.00 0.05 0.15 0.20

MIROC-ESM 0.00 0.10 0.20 0.20

MPI-ESM-MR 0.00 0.00 0.05 0.15

MRI-CGCM3 0.00 0.00 0.00 0.05

Mode 4 bcc-csm1-1 0.00 0.00 0.00 0.00

CNRM-CM5 0.00 0.00 0.05 0.05

inmcm4 0.00 0.10 0.00 0.15

MIROC-ESM 0.00 0.10 0.20 0.25

MPI-ESM-MR 0.00 0.05 0.00 0.25

MRI-CGCM3 0.00 0.00 0.05 0.00

The utilization frequency of the management modes 1-4 with Safran-PIRAGUA over
the period from 1979-2014 is 1, 0, 0, and 0, respectively.
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Table 7.6 – As in Table 7.3 but under RCP 8.5 and the changed management context (no
limit on CACG request).

RCP 8.5 and changed management context

Historical
(1961-2005)

Near-term
(2021-2040)

Medium-term
(2041-2060)

Long-term
(2081-2100)

Mode 1 bcc-csm1-1 0.78 0.50 0.45 0.05

CNRM-CM5 0.71 0.35 0.30 0.00

inmcm4 0.64 0.25 0.35 0.00

MIROC-ESM 0.64 0.00 0.05 0.00

MPI-ESM-MR 0.62 0.25 0.15 0.00

MRI-CGCM3 0.82 0.60 0.65 0.20

Mode 2 bcc-csm1-1 0.22 0.45 0.30 0.00

CNRM-CM5 0.29 0.40 0.45 0.15

inmcm4 0.36 0.70 0.55 0.25

MIROC-ESM 0.36 0.55 0.25 0.00

MPI-ESM-MR 0.38 0.40 0.40 0.00

MRI-CGCM3 0.18 0.40 0.25 0.50

Mode 3 bcc-csm1-1 0.00 0.05 0.20 0.15

CNRM-CM5 0.00 0.05 0.20 0.25

inmcm4 0.00 0.05 0.10 0.35

MIROC-ESM 0.00 0.20 0.25 0.00

MPI-ESM-MR 0.00 0.20 0.25 0.00

MRI-CGCM3 0.00 0.00 0.00 0.10

Mode 4 bcc-csm1-1 0.00 0.00 0.05 0.80

CNRM-CM5 0.00 0.20 0.05 0.55

inmcm4 0.00 0.00 0.00 0.40

MIROC-ESM 0.00 0.25 0.45 1.00

MPI-ESM-MR 0.00 0.15 0.20 1.00

MRI-CGCM3 0.00 0.00 0.10 0.20

The utilization frequency of the management modes 1-4 with Safran-PIRAGUA over
the period from 1979-2014 is 1, 0, 0, and 0, respectively.
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Changes in the water release for the CACG In addition to the reliability of the SHEM
to meet the CACG demand under global change, the changes of the water release for the
CACG are presented in Figures 7.23 and 7.24. Figure 7.23 shows the regime of the mean
daily water release for the CACG under global change scenarios. Figure 7.24 shows the
annual water release for the CACG under global change scenarios.

In the historical period, water release for the CACG simulated by GCMs under both
management contexts is consistent with the simulation by Safran-PIRAGUA data. The
release for CACG in the historical period is stabilized at around 30-40 Mm3 per year
under both management contexts.

Under the current management context, Figure 7.23 shows that the summer release
peaks under both RCPs are slightly larger than the historical period. This is attributed
to the increasing demand of SB5 for summer irrigation and environmental demand. Be-
sides, there is an increase of water release for CACG in autumn under both RCPs, which
is attributed to the release to meet the DOE requirement at Sarrancolin. However, the
summer peaks in the RCP 4.5 are larger than those in the RCP 8.5. This is because of the
larger DOE deficit under the RCP 8.5 than the RCP 4.5 that the CACG has to sacrifice
the summer release to fulfill the DOE deficit given the limited quota of 48 Mm3. As we
can see, the autumn release under the RCP 8.5 is larger than that under the RCP 4.5. In
terms of annual water release illustrated in Figure 7.24, the release for CACG gradually
reaches to 48 Mm3 from the near-term to the long-term under both RCPs. Particularly, in
the long-term of the RCP 8.5, the release for CACG is stabilized at 48 Mm3.

Under the changed management context, the seasonal water release for CACG under
the RCP 4.5 in Figure 7.23 is similar to the results of the current management context.
However, there is an increasing trend of failure to meet the CACG demand as illustrated
in Tables 7.3 and 7.5 because there is no limit on the CACG request in this management
context. The failure risk increases to 1 under the RCP 8.5 as illustrated in Tables 7.4
and 7.6. This is because the CACG request large annual water release (see Figure 7.24)
that the storage in the SHEM reservoirs can not supply enough water to meet the CACG
demand. Due to the high value of failure risk in the long-term under RCP 8.5, the regime
in long-term under the RCP 8.5 in Figure 7.23 is lower than other phases.
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Figure 7.23 – The regime of mean daily water release for CACG under 6 GCMs (bcc-
csm1-1, CNRM-CM5, inmcm4, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3) for the
near-term (2021-2040), medium-term (2041-2060), and long-term (2081-2100) phases
under two RCP scenarios (RCPs 4.8 and 8.5) and the two management contexts ((a) the
current management context that the CACG can only request 48 Mm3; (b) the changed
management context that there is no limit on the CACG request). The three sub-figures in
the column "HISTORICAL" are identical to visually help the comparison.
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Figure 7.24 – The annual water release for CACG under 6 GCMs (bcc-csm1-1, CNRM-
CM5, inmcm4, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3) for the near-term (2021-
2040), medium-term (2041-2060), and long-term (2081-2100) phases under two RCP
scenarios (RCPs 4.8 and 8.5) and the two management contexts ((a) the current man-
agement context that the CACG can only request 48 Mm3; (b) the changed management
context that there is no limit on the CACG request). The three sub-figures in the column
"HISTORICAL" are identical to visually help the comparison. The red line is the quota
(48 Mm3) that the CACG can request under the current management context.
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Changes in the hydropower production Concerning the impacts of global change on
the hydropower production by the SHEM, we employ the cost-effectiveness metric as
presented in the chapter 6, the QA metric, to investigate whether the future hydropower
production is still profitable for the SHEM. The necessary water volume for SHEM to
be cost-effective is 41.6 Mm3 for the Eget hydropower plant (the Oule and Orédon reser-
voirs) and 28.2 Mm3 for the Lassoula reservoir when considering the "worst" energy
market scenario for the SHEM. Thus, the threshold that the SHEM can achieve the cost-
effectiveness purpose in the "worst" energy market scenario within a management year is
69.8 Mm3.

Figure 7.25 shows the changes of the annual water release for hydropower produc-
tion under global change scenarios. In the historical period, the simulations by GCMs
are underestimated compared with the simulation by Safran-PIRAGUA due to the under-
estimation of precipitation by GCMs that reduces the natural inflows into the reservoirs.
We note that the current hydropower cost-effectiveness in the "worst" energy market sce-
nario is not achievable in most cases. Under both RCPs and management contexts, the
cost-effectiveness of the worst energy market scenario cannot be maintained anymore.

Besides, water release for hydropower production decreases from the near-term to the
long-term under both RCPs and the current water management context. This is because
the natural inflows into the reservoirs is decreased under climate change scenarios and
the CACG request more water within the 48 Mm3 quota. From the Tables 7.3 and 7.4,
we can see that the frequency of management mode 1 decreases from the near-term to
the long-term with the increase of the frequency of mode 2 and mode 3, which indicates
the less opportunities for hydropower production and more conservative actions to store
water for the CACG request.

However, under the changed management context, there is an increase of hydropower
production under the RCP 8.5 for some GCMs (e.g., MIROC-ESM, MPI-ESM-MR) com-
pared with the RCP 4.5, which is attributed to the increase of CACG request failure (see
Tables 7.5 and 7.6). The SHEM cannot provide the water volume that the CACG re-
quests. The SHEM fails the request and the water volume in the reservoirs are used for
hydropower production.

Figure 7.26 shows the regime of mean daily water release for hydropower under global
change scenarios. Figure 7.27 shows the number of days that the SHEM releases water
for hydropower production. Under both management contexts, the SHEM mostly releases
water in winter to optimize the cost-effectiveness. However, there is a decreasing trend of
winter peaks for hydropower production from the near-term to the long-term under both
RCPs due to the less storage than can be mobilized to produce hydropower. The main
reasons are the reduced water inflows under climate change scenarios and the increased
CACG demand under global change scenarios. The associated number of days when
the SHEM releases water for hydropower production decreases. Note that in the long-
term under the RCP 8.5 and the changed management context, there is an increase in
hydropower production due to the increasing failure of meeting the CACG demand and
thus the water is released for hydropower.
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Figure 7.25 – The annual water release for hydropower production by the SHEM under 6
GCMs (bcc-csm1-1, CNRM-CM5, inmcm4, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3)
for the near-term (2021-2040), medium-term (2041-2060), and long-term (2081-2100)
phases under two RCP scenarios (RCPs 4.8 and 8.5) and the two management contexts
((a) the current management context that the CACG can only request 48 Mm3; (b) the
changed management context that there is no limit on the CACG request). The three sub-
figures in the column "HISTORICAL" are identical to visually help the comparison. The
red line is the threshold of the cost-effectiveness metric (69.8 Mm3).
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Figure 7.26 – The regime of mean daily water release for hydropower production by the
SHEM under 6 GCMs (bcc-csm1-1, CNRM-CM5, inmcm4, MIROC-ESM, MPI-ESM-MR,
MRI-CGCM3) for the near-term (2021-2040), medium-term (2041-2060), and long-term
(2081-2100) phases under two RCP scenarios (RCPs 4.8 and 8.5) and the two manage-
ment contexts ((a) the current management context that the CACG can only request 48
Mm3; (b) the changed management context that there is no limit on the CACG request).
The three sub-figures in the column "HISTORICAL" are identical to visually help the
comparison.
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Figure 7.27 – The annual number of days for hydropower production by the SHEM un-
der 6 GCMs (bcc-csm1-1, CNRM-CM5, inmcm4, MIROC-ESM, MPI-ESM-MR, MRI-
CGCM3) for the near-term (2021-2040), medium-term (2041-2060), and long-term
(2081-2100) phases under two RCP scenarios (RCPs 4.8 and 8.5) and the two man-
agement contexts ((a) the current management context that the CACG can only request
48 Mm3; (b) the changed management context that there is no limit on the CACG re-
quest). The three sub-figures in the column "HISTORICAL" are identical to visually help
the comparison.
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Changes in the reservoir refill target Figures 7.28, 7.29, and 7.30 show the regime
of daily mean volume of the Oule, Orédon, and Lassoula reservoir storage under global
change scenarios, respectively. The three figures are explained with the Tables 7.3, 7.4,
7.5, and 7.6 to investigate the changes of the refill targets of the three reservoirs and the
attitude of the SHEM to release water.

In the historical period, the minimum storage of the reservoirs in spring simulated
by GCMs is overestimated, which reflects that the SHEM has to leave a certain volume
of water in the reservoir to reach the refill target at the end of management. This means
that the underestimated water inflows into the reservoirs (precipitation underestimation by
GCMs) are not sufficient to allow a full use reservoir storage for hydropower production.
As such, water release for the Orédon reservoir hydropower production are sacrificed
in some cases for the reservoir refill at the end of the management as reflected by the
underestimation of the frequency of mode 1 in the tables above.

Under both management contexts, in order to adapt to the higher CACG demand and
the lower water inflows, the SHEM has to leave much more water in the reservoirs to
satisfy the CACG request, instead of releasing water for hydropower production. This
conservative attitude of water management induces less opportunities for hydropower pro-
duction (lower frequency of mode 1, higher frequency of mode 2) so as to reach the refill
target at the end of the management. For example, in the near-term and medium term
of the RCP 4.5 under both management contexts, the water storage in spring is higher
than that of the historical period and the range of the reservoirs (from maximum volume
to the minimum volume) reduces. In the some extremely dry conditions (e.g., the GCM
MIROC-ESM), the minimum storage is placed in autumn for the Oule and Orédon reser-
voir because the spring water inflows only are not sufficient to meet the refill target and
thus the refill process is prolonged to autumn.

When the natural inflows are much less and the CACG demand are much higher,
the refill target of the reservoirs has to be lowered in order to adapt to the difficulty of
the reservoir refill target after satisfying the CACG demand and hydropower production
(higher frequency of mode 3). For example, in the long-term of the RCP 4.5, the near-term
of the RCP 8.5, and the medium-term of the RCP 8.5 under both management contexts,
the reservoir refill targets for the three reservoirs are lowered. If lowering reservoir refill
target to empty is still insufficient to satisfy the CACG request, the SHEM has to fail the
CACG demand. The failure mostly happens in the long-term under the RCP 8.5 and the
changed management context as illustrated in Table 7.6. Particularly, the frequency of the
mode 4 by the GCMs MIROC-ESM and MPI-ESM-MR is 1 and the behavior of reservoir
storage is to store water before the release in winter while keep the 100% of the refill
target.
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Figure 7.28 – The regime of mean daily volume of the Oule reservoir under 6 GCMs
(bcc-csm1-1, CNRM-CM5, inmcm4, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3) for the
near-term (2021-2040), medium-term (2041-2060), and long-term (2081-2100) phases
under two RCP scenarios (RCPs 4.8 and 8.5) and the two management contexts ((a) the
current management context that the CACG can only request 48 Mm3; (b) the changed
management context that there is no limit on the CACG request). The three sub-figures in
the column "HISTORICAL" are identical to visually help the comparison.
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Figure 7.29 – The regime of mean daily volume of the Orédon reservoir under 6 GCMs
(bcc-csm1-1, CNRM-CM5, inmcm4, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3) for the
near-term (2021-2040), medium-term (2041-2060), and long-term (2081-2100) phases
under two RCP scenarios (RCPs 4.8 and 8.5) and the two management contexts ((a) the
current management context that the CACG can only request 48 Mm3; (b) the changed
management context that there is no limit on the CACG request). The three sub-figures in
the column "HISTORICAL" are identical to visually help the comparison.
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Figure 7.30 – The regime of mean daily volume of the Lassoula reservoir under 6 GCMs
(bcc-csm1-1, CNRM-CM5, inmcm4, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3) for the
near-term (2021-2040), medium-term (2041-2060), and long-term (2081-2100) phases
under two RCP scenarios (RCPs 4.8 and 8.5) and the two management contexts ((a) the
current management context that the CACG can only request 48 Mm3; (b) the changed
management context that there is no limit on the CACG request). The three sub-figures in
the column "HISTORICAL" are identical to visually help the comparison.
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The impacts on the CACG management at Sarrancolin

The management of CACG at Sarrancolin is to extract water via the Neste Canal while
maintaining the DOE requirement at Sarrancolin. Figure 7.31 shows the regime of daily
influenced river flow at Sarrancolin under global change scenarios. Figure 7.32 shows the
regime of daily water extraction by the Neste Canal under global change scenarios.

In the historical period of both management contexts, the simulations by GCMs un-
derestimate the flows peaks at Sarrancolin in spring due to the underestimation of spring
precipitation by GCMs when comparing to the simulations by the Safran-PIRAGUA re-
analysis data. The DOE requirement at Sarrancolin can always be maintained in drought
period (summer and early autumn) and the Neste Canal can thus remain a high level of
water extraction during irrigation and environmental demand peaks (summer and autumn)
to feed SB5.

Under the RCP 4.5 of both management contexts, the influenced river flow at Sar-
rancolin is decreased mainly due to less inflows of SB4. The DOE requirement can be
satisfied in most cases by the management of CACG. The achievement of the DOE re-
quirement at Sarrancolin is sacrificed by the canal extraction. As shown in Figure 7.32,
the canal extraction in summer and early autumn is notably decreased even though the
SHEM releases more water for the CACG demand (see Figures 7.23 and 7.24) under
these scenarios.

Under the RCP 8.5 of both management contexts, the DOE requirement at Sarrancolin
starts to fail in summer in the near-term and the medium term even though the Neste Canal
extracts much less than in the RCP 4.5 to compensate for the DOE deficit. Particularly, in
the long-term of some GCMs (e.g., bcc-csm-1, MIROC-ESM, and MPI-ESM-MR), the
DOE requirement cannot be maintained in drought period and even the most part of the
year and the canal can barely extract water to feed SB5.
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Figure 7.31 – The regime of mean daily influenced river flow at Sarrancolin under 6
GCMs (bcc-csm1-1, CNRM-CM5, inmcm4, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3)
for the near-term (2021-2040), medium-term (2041-2060), and long-term (2081-2100)
phases under two RCP scenarios (RCPs 4.8 and 8.5) and the two management contexts
((a) the current management context that the CACG can only request 48 Mm3; (b) the
changed management context that there is no limit on the CACG request). The three sub-
figures in the column "HISTORICAL" are identical to visually help the comparison. The
red line is the DOE requirement at Sarrancolin (4 m3/s)
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Figure 7.32 – The regime of mean daily canal extraction under 6 GCMs (bcc-csm1-1,
CNRM-CM5, inmcm4, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3) for the near-term
(2021-2040), medium-term (2041-2060), and long-term (2081-2100) phases under two
RCP scenarios (RCPs 4.8 and 8.5) and the two management contexts ((a) the current
management context that the CACG can only request 48 Mm3; (b) the changed manage-
ment context that there is no limit on the CACG request). The three sub-figures in the
column "HISTORICAL" are identical to visually help the comparison.
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7.4.2 Summary
In summary, the water management in the Aure Valley under global change scenarios
is estimated by the steps: (1) a coupling method that conjunctively links the SHEM op-
timization and the CACG management models with bi-directional data transmission is
developed to represent the current management context (the CACG can request a max-
imum 48 Mm3 water from the SHEM); (2) the coupling model is then modified to rep-
resent a changed management context to represent a different management context that
the CACG can request water from the SHEM as the CACG wants; (3) based on the top-
down approach, the projected natural water resources in the Aure Valley under climate
change and the projected water demand under global change scenarios are forced into
the coupling management models to investigate the impact of global change; and (4) the
satisfaction of water use in terms of the SHEM objectives (to meet the CACG demand, to
produce hydropower for the cost-effectiveness, and to refill reservoir at the end of manage-
ment for the use of next year) and the CACG objectives (to satisfy the DOE requirement
at Sarrancolin and to extract water at Sarrancolin to feed SB5) are analyzed.

The changes in the satisfaction of the SHEM water management by the reduced natu-
ral water resources and the increased CACG water demand are summarized as follows.

• The CACG demand can be mostly satisfied with few failure under both RCPs for
the current management context. The changed management context decreases the
reliability of satisfying the CACG demand with a notable increase of failure in the
long-term of the century. Particularly, in the changed management context, the
system cannot be solved since water demand and water availability at the end of the
century are unbalanced.

• The hydropower production for the cost-effectiveness purpose can not be main-
tained anymore under both RCPs and both management contexts.

• The reservoir refill target is the most difficult to achieve under the combination of
the RCP 8.5 and the changed management context among all the scenarios consid-
ered.

The changes in the satisfaction of the CACG water management at Sarrancolin are
summarized as follows.

• The CACG can satisfy the DOE requirement at Sarrancolin in most global change
scenarios except the long-term under the RCP 8.5 for both management contexts.

• The water extraction by the Neste Canal shows a decreasing trend due to the lower
water availability at Sarrancolin that is limited by the DOE requirement.

The more conservative water management in the Aure Valley that is characterized by
less flexibility in producing hydropower under global change scenarios is also found in
other studies. Finger et al. (2012) showed that hydropower production in the Swiss Alps
could be reduced by about one third till the end of the century due to glacier retreats,
earlier snow melt, and more severe summer drought conditions. The management of the
hydropower companies in the Swiss Alps that produce maximum energy in winter could
be compromised to save more water for summer uses. Besides, similar results are reported
the Durance River basin in the French Alps (e.g., François et al., 2014a, 2015), the Iberian
Peninsula (e.g., Pereira-Cardenal et al., 2014), and the Ariège River basin in the French
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Pyrenees (e.g., Hendrickx and Sauquet, 2013). These examples have several similarities:
(1) hydropower management in these regions focuses on providing energy for heating de-
mand in winter; (2) water resources availability in these regions is impacted by climate
change with a generally decreased annual inflows and more severe summer drought; and
(3) water for summer uses (e.g., irrigation, lake refill for recreation purposes) is manda-
tory. As such, temporal tradeoffs (definition in chapter 2) in the reservoir management
increase significantly, and the reservoir managers have to sacrifice the opportunities for
hydropower production to satisfy the summer uses. Given these, adaptation strategies for
hydropower management should be prioritized.
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8
Conclusion and perspectives

This chapter draws the general conclusion of the thesis and
provides complementary perspectives.
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8.1 Conclusion

Understanding the vulnerabilities of water systems to global change has particular sig-
nificance for adaptation design. Climate change, combined with the acceleration of an-
thropogenic disturbances, population growth, and restrictions on natural water extraction
for environmental purposes continuously challenge the performance of water systems.
Investigating water management vulnerabilities, and ultimately developing credible adap-
tation solutions, necessitate (1) new tools capable of portraying human impact on water
resources and (2) innovative frameworks to assess the vulnerability of water management
under global change.

This dissertation shows pragmatic approaches (chapters 4 and 5) to evaluate natural
water resources, to estimate water demand, and to represent human impact on multipur-
pose reservoir management by taking the Neste water system in French Pyrenees as an
example (chapter 3). The Neste water system is chosen as the study case based on several
considerations: (1) the impact of global change on water resources and management is a
major concern in the Mediterranean mountainous regions; (2) this complex system allows
an exploration of large global change drivers on various water demand (huge efforts have
been made to collect and analyze data); (3) the active participation of water managers and
stakeholders (e.g., data sharing and discussion) supports the development of modelling
chain; (4) the two different water managers that have different management practices but
are connected with a binding contract make a good example for the investigation of wa-
ter management vulnerabilities and water conflicts under global change. The developed
modelling chain is applicable to a wide range of global change scenarios and transferable
to other case studies as long as the principal controlling factors are known.

Moreover, by scrutinizing the state of the art of the vulnerability assessment frame-
works (chapter 2), this dissertation applies the two most widely used frameworks (bottom-
up and top-down frameworks) in addressing the vulnerabilities in the Neste water system
with the tools developed. The contributions of the bottom-up and top-down frameworks
that seeks to identify the water management vulnerabilities in the Neste water system are
summarized briefly below.

The bottom-up framework (chapter 6) applied in this dissertation focuses on the sen-
sibility and vulnerability of water management metrics to external disturbances (here,
climate change). The sensitivity of water management metrics to climate change is firstly
examined to perceive how the water system responds to changes by testing a wide range
of plausible climate scenarios perturbed from historical climate records. This sensitiv-
ity analysis combined with the exposure, that informs the probability of future climate
occurrence, and the threshold, that describes the boundaries of satisfactory management,
contributes to answering the questions that interest the water managers the most. How
and when the performance of the water system shifts from acceptable to unacceptable?
We show that (1) hydropower management is vulnerable to annual precipitation changes,
and the cost-effectiveness of hydropower can not be maintained from the middle of the
century under the RCP 8.5; (2) environmental management is vulnerable to both precipi-
tation and temperature changes during drought period, and the environmental water target
fails at the end of the century under the RCP 8.5; and (3) reservoir refill management is
extremely vulnerable to temperature changes, and current reservoir refill strategy is no
more suitable from the beginning of the century under the RCP 4.5.

The top-down framework (chapter 7) applied in this dissertation to investigate the wa-
ter management vulnerabilities is formulated as a modelling chain forced with climate
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change projections and socio-economic changes. The modelling chain integrates all the
tools developed including water resources model, water demand models, and water man-
agement models in an iterative coupling way to represent the water management behav-
iors in the study area. Particularly, the modelling chain is flexible enough to incorporate
different management strategies to adapt to global change and different management con-
texts. As such, the framework contributes to addressing the question: what is the potential
impact and vulnerability in the water management under global change? We show that
(1) climate change under both RCPs 4.5 and 8.5 causes a general reduction of natural
water resources, including a temporal shift towards earlier but lower flow peaks and a
more pronounced drought period (longer and worse than the current climate); (2) water
demand changes under global change demonstrate different patterns with decreased hy-
dropower demand in winter for heating (but potentially increased hydropower demand
in summer for cooling), increased drinking water demand, increased irrigation water de-
mand in shorter duration, and increased environmental water demand; (3) given the bind-
ing water contract and environmental restrictions, water management vulnerability under
global change scenarios increases with a more conservative management attitude of hy-
dropower producer and a more intensive water competition among various water uses; (4)
hydropower production is the most impacted and vulnerable aspect under global change
scenarios that concedes water to reservoir storage and downstream water demand; (5)
reservoir storage target is more vulnerable than the satisfaction of downstream water de-
mand because reservoir storage target can be sacrificed to meet the downstream demand;
(6) downstream water extraction is limited under global change so as to maintain the
environmental requirement.

To conclude, the bottom-up and top-down frameworks offer complimentary insights in
evaluating the vulnerability of water management under global change. Insights gleaned
from both frameworks give crucial information for practical adaptation objectives. Adap-
tion strategies may consider: (1) an increase of hydropower efficiency to mitigate hy-
dropower losses; (2) an earlier and more flexible reservoir refill strategy to encounter
earlier snowmelt and less inflows; (3) a consideration of hydropower production in sum-
mer to align several water uses in summer so as to reduce temporal tradeoffs given the
increase for cooling demand in the future; (4) an increase of water transfer capacity among
basins to increase water use efficiency; (5) an increase in irrigation water use efficiency
by modernizing irrigation method (e.g., drip irrigation system), promoting crops with less
water consumption, advancing crop sowing calendars.
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8.2 Perspectives
Although the developments achieved in this dissertation have provided a variety of

contributions to assess the vulnerability of water management under global change, they
have also generated various issues and enabled for the discovery of new difficulties to be
handled. The limitations of the dissertation and the associated future research directions
are discussed below.

First, the models developed in this dissertation have inevitably certain simplifications.
For example, daily time step is coarse to represent hydropower production as energy de-
mand peaks are concentrated upon rush hours in a day in reality. This causes decision
variables in the optimization process are antithetical (i.e., either no release or release with
daily full capacity). Irrigation activities are simplified to only consider the crop of maize,
and the decision rules for maize irrigation are simplified with climatic variables (an over-
look of the influence of the soil water content). No detailed information on the water
use restrictions in the Gascogne region (i.e., how water quotas are applied to water uses
when the water availability is insufficient to total water demand) impedes the thorough
investigation on the water use conflicts under global change. Improvements can be made
to construct more realistic water demand and management models. Various methods in
representing water management are summarized in chapter 2.

Second, the uncertainty related to water resources, water demand, and water manage-
ment modelling under climate change and global change scenarios is not fully addressed,
especially the uncertainty propagation in the modelling chain. The uncertainty in the
bottom-up framework has been highlighted and discussed in chapter 6. Further work
would be needed to quantify the contributions of the different sources of total uncertainty
in the modelling chain of the top-down framework. Several methods of uncertainty quan-
tification are proposed in chapter 2.

Third, from the bottom-up perspective, some limitations in terms of climate pertur-
bation method used in this dissertation (delta-change method) might underestimate the
occurrence of extreme climate events. Stochastic methods (e.g., weather generators) can
be applied and then compared with the current assessment. In a broader sense, the vul-
nerability assessment in the bottom-up framework could extend beyond the climate sen-
sitivity analysis. By applying the modelling chain used in the top-down framework, the
sensitivity of management metrics to socio-economic drivers (e.g., population growth and
irrigation surface) can be further explored.

Finally, efforts should go toward combining the results from bottom-up and top-down
frameworks to support efficient adaptation to the challenge of global change. At the local
level of the Neste water system, the proposed adaptation strategies can be tested in both
frameworks to investigate their effectiveness. Although the top-down framework domi-
nates in the literature for impact assessment and adaptation design, bottom-up framework
needs to be given more credit and importance to support adaptation and decision making.
Few studies have explored the possibilities of integrating both frameworks (e.g., Brown
et al., 2012; Conway et al., 2019; Prudhomme et al., 2010; Sauquet et al., 2019). A robust
and generalized adaptation procedure that closely links the scientists, water managers,
and stakeholders should be established to efficiently use information provided by both
frameworks.
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A
Sensitivity analysis between Safran

reanalyses and the two sets of the
hydrological model GR6J-CEMANEIGE

This Appendix presents the performance between the two sets
of hydrological models forced with the two different Safran re-
anlyses so as to choose a better model set and a better input
data.
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A.1 Model validation
Since two input reanalysis data (Safran-France and Safran-PIRAGUA) and two sets of

models (8-parameter-GR6J-CEMANEIGE and 10-parameter-GR6J-CEMANEIGE mod-
els) are available, a test to choose a better model set and a more relevant meteorological
input can also be implemented in the model validation based on the evaluation of KGE
criteria. From the data summary Table 3.6, a common time period for all the data source
is from year 2001 to 08/2014. This almost 14-year period is divided in half for model
calibration and model validation, separately. Input data and observations from year 2001
to 08/2007 are used to calibrate model. The rest years from 09/2007 to 08/2014 are used
to validate model. The process can also be turned around for a fulfill evaluation, 09/2007
- 08/2014 for model calibration and 2001-08/2007 for model calibration. In each evalua-
tion, the beginning two years are chosen to "warm-up" the model.

Two different inputs data and two different model sets forms four different combina-
tions, which are Safran-France data with the 8-parameter model, Safran-PIRAGUA data
with the 8-parameter model, Safran-France data with the 10-parameter model, Safran-
PIRAGUA data with the 10-parameter model. Both study cases, SB1 upstream the Oule
reservoir and SB3 upstream the Lassoula reservoir (the sum of the Pouchergues and Cail-
laouas reservoirs), are investigated.

A.1.1 A better model set
In order to choose a better model set, tests of the 8-parameter-GR6J-CEMANEIGE model
and the 10-parameter-GR6J-CEMANEIGE model for the input data Safran-France are
conducted. The tests are also applied on the Safran-PIRAGUA data to check if the situa-
tion remains the same. Figure A.1 shows the performance of two sets of models with the
same input SAFRAN on discharge Q and 5 elevation bands SCA1-5 for SB1 and SB3.

From Figure A.1, the model set 10-parameter-GR6J-CEMANEIGE shows a signifi-
cantly better SCA performance and the discharge Q degrades slightly than the model set 8-
parameter-GR6J-CEMANEIGE for the two cases and two different calibration-validation
procedure. The degradation of Q is due to the calibration process where the 10-parameter-
GR6J-CEMANEIGE model sacrifices 25% in the objective function to make up to SCA.
This degree of decrease in Q performance is rather acceptable, not to mention the huge
increase in SCA performance.

If the two sets of models are forced with the Safran-PIRAGUA data, the results re-
mains identical and the KGE results are presented in Figure A.2. As such, no matter
which source of input, the 10-parameter-GR6J-CEMANEIGE model gives an overall bet-
ter simulation performance. The use of two parameters to describe SCA-SWE hysteresis
are robust and efficient in the two cases.

A.1.2 A better forcing data
Since the 10-parameter-GR6J-CEMANEIGE model shows a better performance, it is also
necessary to choose which reanalysis data as input, Safran-France or Safran-PIRAGUA.
The two input data are based on the same calculation algorithm but they have different
size of resolution, 8 km for Safran-France and 2.5 km for Safran-PIRAGUA. They are
forced in the 10-parameter-GR6J-CEMANEIGE model and Figure A.3 shows the KGE
criterion results.
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(b) Calibration 2007-2014 and validation 2001-2007

Figure A.1 – KGE criterion results on two model sets with the Safran-France input data
are presented on two different calibration-validation procedure A.1a and A.1b: the 10-
parameter model set (with a consideration of SCA-SWE hysteresis) are histograms la-
beled "calibrated with snow and Q" and the 8-parameter model set (without a considera-
tion of SCA-SWE hysteresis) are labeled "calibrated with only Q".

From Figure A.3, the KGE criterion results of the tests have no distinct difference
due to the same origin of the two data. However, the Safran-PIRAGUA data shows a
slight better performance. Although the Safran-PIRAGUA data has a higher resolution,
the better performance of the Safran-PIRAGUA data in this model set can not be arbi-
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(b) Calibration 2007-2014 and validation 2001-2007

Figure A.2 – KGE criterion results on two model sets with the Safran-PIRAGUA input
data are presented on two different calibration-validation procedure A.1a and A.1b: the
10-parameter model set (with a consideration of SCA-SWE hysteresis) are histograms
labeled "calibrated with snow and Q" and the 8-parameter model set (without a consid-
eration of SCA-SWE hysteresis) are labeled "calibrated with only Q".

trarily attributed to its higher resolution. If the Safran-PIRAGUA data still shows a bet-
ter performance in the 8-parameter-GR6J-CEMANEIGE model, it is probably the case.
However, in Figure A.4, Safran-France data shows an overall better performance than
Safran-PIRAGUA in the 8-parameter-GR6J-CEMANEIGE model.
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(b) Calibration 2007-2014 and validation 2001-2007

Figure A.3 – KGE criterion results on the 10-parameter-GR6J-CEMANEIGE model with
two different input data Safran-France and Safran-PIRAGUA.

The reason of this behavior is highly related to the implementation of the SCA-SWE
hysteresis. The snow model CEMANEIGE is semi-distributed, dividing the simulation
catchment into 5 equal-surface elevation layers. And the use of SCA-SWE hysteresis
based on MODIS observations (resolution 0.5 km) makes the snow model more efficient
in representing snow content. As the input of the snow model is temperature and precipi-
tation which are highly variable in mountainous area, the finer Safran-PIRAGUA data can
better describe input information than Safran-France and thus this semi-distributed snow
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(a) Calibration 2001-2007 and validation 2007-2014
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(b) Calibration 2007-2014 and validation 2001-2007

Figure A.4 – KGE criterion results on the 8-parameter-GR6J-CEMANEIGE model with
two different input data Safran-France and Safran-PIRAGUA.

model can improve the snow simulation. Globally, the 10-parameter-GR6J-CEMANEIGE
model combined with the Safran-PIRAGUA as input gains a better simulation results.
This combination of model and forcing data is employed to construct the water resources
model.
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Representation of
a multipurpose reservoir system and
vulnerability of water management
under global change

Application to the Neste water system

Résumé

La compréhension de la vulnérabilité de la gestion de l’eau dans le contexte
du changement global est la condition préalable à la conception de mesures
d’adaptation. Une évaluation complète de la vulnérabilité des modes de gestion de
l’eau aux changements futurs repose sur de nouveaux outils capables de représen-
ter l’impact humain sur les ressources en eau et sur des cadres innovants capables
de générer de nouvelles idées pour informer la conception de l’adaptation. Par con-
séquent, cette thèse vise à (1) développer et améliorer des modèles pour représen-
ter les ressources en eau, la demande en eau et la gestion de l’eau de manière
intégrée ; (2) appliquer un cadre bottom-up "scenario-neutral" et un cadre top-down
"scenario-led" pour identifier et étudier la vulnérabilité et l’impact plausibles dans le
cadre du changement global. Ces développements et applications ont concerné le
système Neste dans les Pyrénées françaises.

Mots-clés : Gestion de l’eau, vulnérabilité, impact, système d’eau, réser-
voir, changement global, changement climatique, cadre bottom-up, cadre top-down,
hydroélectricité, irrigation, environnement

Abstract

Understanding the vulnerability of water management under global change is the
premise for designing adaptation actions. A comprehensive assessment of current
water management vulnerability to future changes hinges on new tools that are able
to represent human impact on water resources and innovative frameworks that are
able to generate new insights to inform adaptation designing. Therefore, this disser-
tation sets out to (1) develop and improve models to represent water resources, wa-
ter demand, and water management in an integrated hydrological modelling frame-
work; (2) apply a "scenario-neutral" bottom-up framework and a "scenario-led" top-
down framework to identify and investigate plausible vulnerability and impact under
global change. These developments and applications are demonstrated by taking
the Neste water system in French Pyrenees as a case study.

Keywords : Water management, vulnerability, impact, water system, reser-
voir, global change, climate change, bottom-up framework, top-down framework,
hydropower, irrigation, environment
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