
HAL Id: tel-03775271
https://theses.hal.science/tel-03775271v1

Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and experimental observation of mixing and
violent relaxation in an analogue gravitational system

Martino Lovisetto

To cite this version:
Martino Lovisetto. Modeling and experimental observation of mixing and violent relaxation in an
analogue gravitational system. Analysis of PDEs [math.AP]. Université Côte d’Azur, 2022. English.
�NNT : 2022COAZ4018�. �tel-03775271�

https://theses.hal.science/tel-03775271v1
https://hal.archives-ouvertes.fr


M O D É L I S AT I O N E T O B S E RVAT I O N E X P É R I M E N TA L E D U M I X I N G E T D E
L A R E L A X AT I O N V I O L E N T E D A N S U N S Y S T È M E G R AV I TAT I O N N E L

A N A L O G U E

Martino LOVISETTO

Laboratoire de Mathématiques J. A. Dieudonné (LJAD)

Présentée en vue de l’optenation du grade de:
Docteur en Sciences de l’Université Côte d’Azur

Discipline: Mathématiques

thèse dirigée par: Didier CLAMOND
co-dirigée par: Bruno MARCOS

soutenue le: 10 Mai 2022

devant le jury composé de:

Pierre-Henri CHAVANIS Directeur de recherche, Université Paul Sabatier Président du jury

Didier CLAMOND Professeur, Université Côte d’Azur Directeur de thése

Guillaume DUJARDIN Chargé de recherche, Centre Inria de l’Université de Lille Rapporteur

Oliver HAHN Professeur, Universität Wien Examinateur

Bruno MARCOS Maître de conférences, Université Côte d’Azur Co-Directeur de thése

Antonio PICOZZI Directeur de recherche, Université Bourgogne Franche-Comté Rapporteur

Francesca RAPETTI Maitre de Conférences, Université Côte d’Azur Examinatrice

Delphine WOLFERSBERGER Professeure, CentraleSupélec Université Paris-Saclay Examinatrice





M O D E L I N G A N D E X P E R I M E N TA L O B S E RVAT I O N O F M I X I N G A N D
V I O L E N T R E L A X AT I O N I N A N A N A L O G U E G R AV I TAT I O N A L S Y S T E M

Martino LOVISETTO

Laboratoire de Mathématiques J. A. Dieudonné (LJAD)

Université Côte d’Azur
PhD Thesis

Discipline: Mathematics

supervisor: Didier CLAMOND
co-supervisor: Bruno MARCOS

defense date: May 10
th

2022

jury members:

Pierre-Henri CHAVANIS Senior Researcher, Université Paul Sabatier President of the Jury

Didier CLAMOND Professor, Université Côte d’Azur Supervisor

Guillaume DUJARDIN Researcher, Centre Inria de l’Université de Lille Reviewer

Oliver HAHN Professor, Universität Wien Examinator

Bruno MARCOS Senior Lecturer, Université Côte d’Azur Co-Supervisor

Antonio PICOZZI Senior Researcher, Université Bourgogne Franche-Comté Reviewer

Francesca RAPETTI Senior Lecturer, Université Côte d’Azur Examinator

Delphine WOLFERSBERGER Professor, CentraleSupélec Université Paris-Saclay, Examinator





R É S U M É

Les équations du type Schrödinger-Newton apparaissent naturellement dans nom-
breux domaines de recherche. En cosmologie elles sont employées dans la modélisa-
tion de structures à grandes échelles dans l’Univers, alors qu’en astrophysique, elles
sont employées comme description semi-classique pour l’évolution des particules élé-
mentaires de matière noire. L’équation de Schrödinger-Newton est aussi utilisée en
optique, pour décrire la propagation d’un rayon de lumière à travers un milieu avec
une non-linéarité thermo-optique. Tous ces systèmes, bien qu’ils soient très différents
les uns des autres, sont caractérisés par des interactions à longue portée. Les systèmes
avec interactions à longue portée, en général relaxent vers un état quasi-stationnaire
hors de l’équilibre, avec examples astrophysiques significatifs comme les galaxies et
les amas globulaires. Ces états ne peuvent pas être décrits par la mécanique statis-
tique standard, mais sont formés par un processus de nature très différente, appelé
relaxation violente. Cependant, les échelles de temps astrophysiques sont si grandes
qu’il n’est pas possible d’observer directement la dynamique de relaxation. Dans cette
thèse, nous développons un simple modèle expérimental qui capture la dynamique
des systèmes avec interactions à longue portée et permet d’observer directement le
mécanisme de la relaxation violente, qui donne lieu à la formation d’un analogue
optique d’une galaxie. L’expérience permet de contrôler une gamme de paramètres,
y compris la force d’interaction non locale (gravitationnelle) et la force du couplage
gravitationnel quantique  h/m, fournissant ainsi un banc d’essai efficace pour les mo-
dèles gravitationnels qui ne peuvent autrement être directement étudiés dans des
expériences expérimentales.

Par ailleurs, une partie centrale de la thèse est dédiée à l’étude numérique de
l’équation de Schrödinger-Newton. Ici, nous présentons une nouvelle méthode nu-
mérique efficace qui peut être utilisée non seulement pour résoudre l’équation de
Schrödinger-Newton, mais toutes les équations du type Schrödinger, avec différents
types d’interactions. La méthode numérique développée, qui exploite la liberté of-
ferte par la condition de jauge du potentiel, est une amélioration de la technique
du facteur intégrant (méthode de Lawson). Les conditions de jauge optimales sont
dérivées en considérant l’équation et la résolution numérique temporelle avec un
schéma intégré adaptatif d’ordre arbitraire. Nous montrons que cette optimisation
augmente significativement la vitesse de calcul globale, parfois d’un facteur cinq ou
plus. De plus, nous effectuons une comparaison approfondie de la nouvelle méthode
développée, avec d’autres intégrateurs populaires, souvent utilisés pour résoudre nu-
mériquement ce type d’équations. Nous nous concentrons en particulier sur les al-
gorithmes du type Split-Step et les méthodes appartenant à la famille du facteur
intégrant. Les comparaisons sont faites dans une et deux dimensions spatiales, avec
des conditions aux limites différentes, soit pour l’équation de Schrödinger–Newton
soit pour l’équation de Schrödinger non-linéaire. Nous concluons que pour le poten-
tiel à courte portée de l’équation de Schrödinger non-linéaire, le facteur intégrant
est plus efficace que le Split-Step, tandis que pour le potentiel à longue portée de
l’équation de Schrödinger–Newton, cela dépend du système considéré.
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A B S T R A C T

Equations of the Schrödinger-Newton type appear naturally in different domains
of research. In cosmology, they are used to model the formation of large scale struc-
tures in the universe, while, in astrophysics, they are employed as a semi-classical
description for the evolution of elementary particles of dark matter. The Schrödinger-
Newton equation is also used in optics, to describe the propagation of a beam of
light through a medium with a thermo-optical nonlinearity. All of these systems,
despite being very different from each other, are characterized by long range in-
teractions. Long range interacting systems, relax generically to out-of-equilibrium
quasi-stationary states, with significant astrophysical examples such as galaxies and
globular clusters. These states cannot be described by standard statistical mechanics,
but are formed through a process of very different nature, called violent relaxation.
However, astrophysical time-scales are so large that it is not possible to directly ob-
serve the relaxation dynamics. In this thesis, we develop a table-top experimental
model that captures the dynamics of long range interacting systems and allows to di-
rectly observe violent relaxation mechanism, leading to the formation of a table-top
optical analogue of a galaxy. The experiment allows to control a range of parame-
ters, including the nonlocal (gravitational) interaction strength and the strength of
quantum gravity coupling  h/m, thus providing an effective test-bed for gravitational
models that cannot otherwise be directly studied in experimental settings.

In addition, a central part of the thesis is devoted to the numerical study of the
Schrödinger-Newton equation. Here, we present a new efficient numerical method
which can be employed not only to solve the Schrödinger-Newton equation, but
any Schrödinger-like equations, with different kind of interactions. The numerical
method developed, which exploits the freedom provided by the gauge condition of
the potential, is an improvement of the integrating factor technique. Optimal gauge
conditions are derived considering the equation and the temporal numerical reso-
lution with an adaptive embedded scheme of arbitrary order. We show that this
optimization increases significantly the overall computational speed, sometimes by a
factor five or more. Moreover, we make an extensive comparison of the new method
developed, together with other popular integrators, commonly use to numerically
solve this kind of equations. We focus in particular on splitting algorithms and meth-
ods belonging to the integrating factor family. Comparisons are done in one and two
spatial dimensions, with different boundary conditions, both for the Schrödinger–
Newton equation and the Non-Linear Schrödinger equation. We conclude that for
the short range potential of the Non-Linear Schrödinger equation, integrating fac-
tor methods perform better than the Split-Step algorithm, while for the long range
potential of the Schrödinger–Newton equation it depends on the particular system
considered.
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1
I N T R O D U C T I O N

Equations of the Schrödinger–Newton (or Schrödinger–Poisson) type, are used to
describe a large variety of phenomena in different domains of science. Historically,
the Newton–Schrödinger equation was introduced in 1969 by Ruffini and Bonazzola
[1]. In their work, they derived the equation from the coupling between the weak
field limit of general relativity and quantum mechanics, to describe a many-body
system of self-gravitating bosons. The resulting state, is a gravitationally bounded
Bose–Einstein condensate, which they called “Boson star” [2]. This equation has also
been used to describe the phenomenon of the quantum wavefunction collapse, by
Diosi [3] in 1984 and then by Penrose [4, 5] in 1996. In their works, they tried to
describe the quantum state reduction mechanism, a phenomenon which takes place
whenever a measurement is performed for a given quantum system, as a consequence
of some self-gravitational interaction. As shown for the first time by Widrow and
Kaiser [6] in 1993, the Schrödinger–Newton equation can be used also for simulating
numerically collisionless matter, modeled as a continuous fluid. This is often done in
astrophysics, plasma physics and cosmology. For example, it is used to model Fuzzy
Dark Matter [7, 8] as well as to simulate the formation of large-scale structures in the
early universe [9, 10]. The Newton–Schrödinger equation is also used in optics, to
describe the evolution of a laser beam propagating through a nonlinear and nonlocal
medium [11–13].

Regardless of the particular domain of application considered, in dimensionless
units the equation takes the form

i
∂ψ

∂t
+
1

2
∇2ψ − V ψ = 0, (1.1a)

∇2 V = g |ψ|2, (1.1b)

where ψ is a function of the spatial coordinates r and of the time t, ∇2 is the Laplace
operator, and V is the potential, given by the Poisson equation (1.1b), g being a
coupling constant. The sign of g determines the nature of the interaction: for g > 0
it is attractive, while, for g < 0, it is repulsive. The reason why this equation is called
Schrödinger–Newton, is because if |ψ|2 is interpreted as a mass density, the potential
V results in the classical, newtonian, potential.

The Newton–Schrödinger system can also be written in a different form. Introduc-
ing U(r− r ′), the Green function of the laplacian, defined such that ∇U(r− r ′) =

δ(r− r ′), one has

V(r, t) = g

∫
dr ′U(r− r ′) |ψ(r ′, t)|2, (1.2)

and plugging (1.2) into (1.1a) yields

i
∂ψ

∂t
= −

1

2
∇2ψ + gψ

∫
dr ′U(r− r ′) |ψ(r ′, t)|2, (1.3)

1
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which, being the same as (1.1), is a nonlinear, nonlocal integro-differential equation.
For this reason, even though (1.1) is a system of two coupled partial differential
equations, we often refer to it as Newton–Schrödinger equation.

1.1 the violent relaxation mechanism

The non-locality of the equation implies that the interaction associated with the
potential V is long range. In general, many-body systems with long range interac-
tions exhibit a macroscopic dynamics which gives rise to collective phenomena [14].
In these systems, starting from an arbitrary initial condition, a generic formation
of out-of-equilibrium quasi stationary state rapidly takes place. The process that
leads to the formation of such out-of-equilibrium quasi-stationary states is called vi-
olent relaxation [15]. The reason why these structures are called quasi-stationary
states is because, at least in the astrophysical context, they evolve over a much longer
timescale towards thermodynamic equilibrium [16]. A well known example of such
quasi-stationary state is a galaxy, for which the time needed to reach the thermody-
namic equilibrium is indeed typically larger than the age of the Universe.

The violent relaxation mechanism is also included in the dynamics of the Newton–
Schrödinger equation in the form of (1.1) when it is regarded as a mean-field limit,
namely as a system of N particles in the limit where N → ∞. However, in this
case there are two crucial aspects which must be taken into account: quantum ef-
fects and the mean-field approximation itself. Indeed, the former must be negligible
compared to the contribute of the long range interacting potential, which is the term
responsible for the violent relaxation. On the other hand, as long as the mean-field
approximation is concerned, the system cannot relax to the thermodynamic equilib-
rium because of the limit N → ∞, which avoids collisions to occur. This is because
the relaxation to the Maxwell-Boltzmann thermodynamic equilibrium takes place in
a time which scales generically with the number of elementary constituents of the sys-
tem[15]. Therefore, the mean-field Newton–Schrödinger equation does not describe
the thermodynamic equilibrium, however it fully incorporates the dynamics of the
formation of the quasi-stationary state through the violent relaxation mechanism.

A central part of the thesis, is devoted to the realization of a table-top experiment
with an optical setup modeled by the Newton–Schrödinger equation. Theoretically
and numerically preparing the experiment, we report the first observations of a vio-
lent relaxation process and the subsequent formation of a quasi-stationary state.

1.2 numerical solution

The other key part of this thesis work, is related to the numerical study of the
Schrödinger–Newton equation. In addition, we also focus on other Schrödinger-
like equations with nonlinear potentials: the nonlinear Schrödinger and the Gross–
Pitaevskii–Poisson equations.

In the case of the nonlinear Schrödinger equation, the potential term, g |ψ|2, is
nonlinear, but local,

i∂tψ +
1

2
∇2ψ − g |ψ|2 = 0, (1.4)
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where g is a coupling constant. For g > 0 the interaction is repulsive, while it is
attractive for g < 0. This equation describes various physical phenomena, such as
Bose–Einstein condensates [17], laser beams in some nonlinear media [18] and water
wave packets [19].

The Gross–Pitaevskii–Poisson (GPP) equation involves both the interaction term
appearing in the nonlinear Schrödinger and Schrödinger–Newton systems,

i∂tψ +
1

2
∇2ψ − V1ψ− V2ψ = 0 (1.5a)

∇2V1 = g1 |ψ |
2 (1.5b)

V2 = g2 |ψ |
2 . (1.5c)

This equation appears in many fields, such as optics [20, 21], Bose-Einstein conden-
sates [22] and cosmology, to simulate scalar field dark matter [23–25].

The above equations cannot be solved analytically (except for very special cases)
and numerical methods must be employed. In this thesis, we focus on spectral meth-
ods for the spatial resolution, which are known to be particularly efficient and accu-
rate [26]. Specifically, we rely on fast Fourier transform techniques. For the temporal
resolution, two families of methods are commonly employed to solve Schrödinger-
like equations: integrating factors [27] and split-step integrators [28]. The latter
methods have been used to integrate both the Schrödinger–Newton and nonlinear
Schrödinger equations, but the former is used essentially to solve the nonlinear
Schrödinger equation, with very performing results [29, 30]. A natural question,
which is one of the subjects of the thesis, is how the integrating factor performs
when considering the long range interactions of the Schrödinger–Newton system in-
stead of short range ones of the nonlinear Schrödinger. In addition, we perform an
extensive numerical study of equations of the Schrödinger–Newton type, introducing
a new, efficient, numerical method to integrate them.

1.3 thesis overview

This thesis is organized in three parts: theoretical aspects, numerical aspects and
experiment. Each part is organized in different chapters, outlined below.

— Theoretical aspects.
— In Chapter 2, we introduce and discuss in details the Newton–Schrödinger

equation in its different domains of applications, focusing in particular on
self-gravitating systems and optics.

— In Chapter 3, we explain in details the main features of the dynamics of long-
range interacting systems, focusing in particular on classical self-gravitating
systems.

— In Chapter 4, we list the main theoretical results achieved in the context of
the preparation of the experiment.

— Numerical aspects.
— In Chapter 5, we list and explain the different numerical algorithms we use

to solve not only the Newton–Schrödinger system but also other Schrödinger-
like equations with different potential terms.

— In Chapter 6, we introduce a new method to solve Schrödinger-like equa-
tions.
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— In Chapter 7, we make an extensive comparison of the algorithm we de-
veloped with other popular methods, often employed in the literature, for
solving Schrödinger-like equations.

— Experiment.
— In Chapter 8, we describe the experiment performed on a optical system

modeled by the Newton–Schrödinger equation.
— In Chapter 9, we discuss the analysis of the data collected during the mea-

surements and we present the experimental results.



Part I

T H E O R E T I C A L A S P E C T S





2
D O M A I N S O F A P P L I C AT I O N O F T H E
N E W T O N – S C H R Ö D I N G E R E Q U AT I O N

In this chapter, we introduce the Newton–Schrödinger equation and discuss its
physical applications, focusing in particular on self-gravitating systems and optics.
First, we write the equation in the case where it describes a single particle, then we
discuss the many-body case, sketching-out the derivation of the mean-field approxi-
mation. Second, we explain how this equation can be used to describe collisionless
matter, considering some applications in astrophysics and cosmology. Finally, we
write the Newton–Schrödinger equation in the optical environment and we explain
how it can be derived from Maxwell equations under appropriate approximations.

2.1 the single-particle newton-schrödinger equation

The Newton-Schrödinger equation can be used to describe the quantum evolution
of a single particle. The interaction is purely classical, i. e. Newtonian, and the wave-
function ψ satisfies

i  h
∂ψ

∂t
+

 h2

2m
∇2ψ − mV ψ = 0 (2.1a)

∇2V = 4 πGm |ψ|2 , (2.1b)

which is a Schrödinger equation coupled with a Poisson equation for the potential
V , whose source is the probability density |ψ|2 obtained from the wavefunction; G is
the gravitational constant, ∇2 is the 3-dimensional Laplace operator,  h the reduced
Planck constant and m the mass of the particle.

This equation has been employed by Diosi [3] in 1984 and then by Penrose [4, 5]
in 1996 and 1998 to describe the phenomenon of the quantum wavefunction collapse,
which takes place whenever a measurement is performed for a given quantum sys-
tem. In their works, they tried to describe the quantum state reduction mechanism
as a consequence of a self-gravitational interaction. This interaction is supposed to
be fundamentally classical and, for this reason, the Schrödinger equation has been
coupled to the Poisson equation in the context of the wavefunction collapse. Entering
into the details of this description for the phenomenon of the wavefunction collapse
is, however, not in the purposes of this thesis. We rather focus on the introduction
of the equation in the simple case of a single particle and then discuss, in the next
section, the N particles case.

2.2 the many-body newton–schrödinger equation

Historically the Newton–Schrödinger equation was introduced in 1969 by Ruffini
and Bonazzola [1] in a very different physical context compared to the wavefunction
collapse. In their work, they introduced the equation to describe a many-body system

7
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of self-gravitating bosons as the weak field limit of general relativity. The resulting
state is a gravitationally bounded Bose–Einstein condensate, called “Boson star” [2].

In order to obtain this equation, the starting point is the Schrödinger equation
for N identical particles. In the case where all particles have the same mass m, the
equation is

i  h
ΨN
∂t

= Ĥ ΨN, (2.2)

where ΨN is the many-body wavefunction ΨN = ΨN (x1, x2, ..., xN, t), x` being
the position of particle `, with 1 6 ` 6 N, Ĥ is the quantum Hamiltonian and the
“hat” notation is used to stress that the underneath quantity is an operator. The
Hamiltonian includes a kinetic term K̂ and a potential term V̂ due to gravity, therefore
Ĥ = K̂+ V̂ , with

K̂ = −
 h2

2m

N∑
`=1

∇2` (2.3)

where in three dimension ∇2` = ∂2

∂x2`
+ ∂2

∂y2`
+ ∂2

∂z2`
.

Interpreting the modulus squared of the wavefunction as the mass density, as done
by Ruffini and Bonazzola [1], the interaction term is given by

V̂ = Gm2
∑
` 6= j

1∣∣x` − xj∣∣ (2.4)

Plugging (2.4) in (2.2), the N-body Schrödinger equation reads

i  h
ΨN
∂t

= −
 h2

2m

N∑
`=1

∇2`ΨN, +Gm2
∑
` 6= j

1∣∣x` − xj∣∣ ΨN, (2.5)

2.2.1 Mean-field limit

In most cases one is interested into studying a system where the number of parti-
cles N is very large, making the solution of the N-body Newton–Schrödinger equa-
tion practically impossible to achieve. For this reason, the Hartree approximation is
often employed, allowing to switch from theN-particles wavefunction ΨN (x1, x2, ..., xN, t),
to a mean-field wavefunction ψ (x, t), in the limit of a very large number of particles,
i. e. N → ∞. This approximation starts from the assumption that the at t = 0, the
N-body wavefunction can be written in a factorized form, namely

ΨN (x1, x2, ..., xN, t = 0) =
N∏
`=1

ψ (x`, t = 0) , (2.6)

and leads to a mean-field solution ψ(x, t) that for all t > 0 obeys to the Hartree
equation

i  h
∂ψ

∂t
= −

 h2

2m
∇2ψ − Gm2

∫
dx ′U(

∣∣x− x ′∣∣) ∣∣ψ(x ′, t)∣∣2 ψ(x, t), (2.7)
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where U(|x− x ′|) = 1
|x−x ′| . Despite being formally identical the the single particle

case, (2.7) describes a quantum system of N self-gravitating bosons, in the limit N→∞, as a mean-field approximation.
Here, we sketch out the derivation of this equation, which requires the implemen-

tation of the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) quantum hierarchy
in the limit N → ∞. Interested readers can consult [31–33] for further details. This
derivation is performed with the the N-body density matrix ρN, defined as

ρN
(
x1, ..., xN, x ′1, ..., x ′N, t

)
= Ψ∗N (x1, ..., xN, t)ΨN

(
x ′1, ..., x ′N, t

)
, (2.8)

where “∗” denotes the complex conjugation. We fix the notation:

Xn = (x1, x2, ..., xn) ∀ 1 6 n 6 N (2.9a)

XnN = (xn+1, xn+2, ..., xN) ∀ 1 6 n < N. (2.9b)

For simplicity, we consider the adimensional N-body Newton–Schrödinger equation

i
ΨN
∂t

=

−
1

2

N∑
`=1

∇2` +
1

N

∑
` 6= j

U (
∣∣x` − xj∣∣ )

 ΨN, (2.10)

where the 1/N factor, also known as “weak-coupling scaling”, is due to the extensiv-
ity of the potential. Here the wavefunction is normalized to unity, namely∫

dXn|ΨN(Xn, t)|
2 = 1 ∀ t ∈ R. (2.11)

If one defines the sequence of n-marginals of ρN,

ρN,n (Xn, YN, t) =

∫
ρN (Xn, Z

n
N, YN, Z

n
N, t) dZ

n
N, 1 6 n < N, (2.12)

with ρN,N = ρN and ρN,n = 0 ∀n > N, then the following “N-body Schrödinger
hierarchy” is satisfied:

i  h
∂ρN,n (Xn, Yn, t)

∂t
= −

 h2

2m

(
∇2Xn −∇

2
Yn

)
ρN,n (Xn, Yn, t)

+
n−N

N
Cn,n+1ρN,n+1 (Xn, Yn, t)

+
1

N

∑
16k6`6n

[U(|xk − x`|) −U(|yk −y`|)] ρN,n (Xn, Yn, t) , (2.13)

where Cn,n+1 is an operator, defined as

Cn,n+1ρN,n+1 (Xn, Yn, t) =

N∑
k=1

∫
[U(|xk − z|) −U(|yk − z|)]

×ρN,n+1 (Xn, z, Yn, z, t)dz. (2.14)

Fixing n, and formally taking the limit N → ∞ (see [31] for the details of this
operation) in (2.13) leads to

i  h
∂ρn (Xn, Yn, t)

∂t
= −

 h2

2m

(
∇2Xn −∇

2
Yn

)
ρn (Xn, Yn, t)

+Cn,n+1ρn+1 (Xn, Yn, t) , (2.15)
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which also goes under the name of “infinite Schrödinger hierarchy”.
One can show [33] that if ψ(x, t) is a solution of

i
∂ψ

∂t
= −

1

2
∇2ψ −

∫
dx ′U(

∣∣x− x ′∣∣) ∣∣ψ(x ′, t)∣∣2 ψ(x, t), (2.16)

and the factorized initial condition ΨN(XN, t = 0) =
∏N
`=1ψ(x`) is assumed to

satisfy∫
ΨN (Xn, Z

n
N, Yn, Z

n
N, t = 0)dZ

n
N → ρn (Xn, Yn, t = 0) (2.17)

as N→∞, then

ρn (Xn, Yn, t) =

n∏
`=1

ψ∗ (x`, t)ψ (y`, t) (2.18)

is a solution of the infinite hierarchy (2.15), as rigorously proved in [34–36].
This implies that the sequence of n-marginals ρN,n converges as N → ∞ to

ρn (Xn, Yn, t), built on the solution of

i
∂ψ

∂t
= −

1

2
∇2ψ −

∫
dx ′U(

∣∣x− x ′∣∣) ∣∣ψ(x ′, t)∣∣2 ψ(x, t), (2.19)

which is the mean-field Newton–Schrödinger equation, describing a quantum system
of N self-gravitating bosons in the limit N→∞.

2.3 the newton–schrödinger equation as a numerical method in

astrophysics

In astrophysics, plasma physics and cosmology, the Newton–Schrödinger equation
is often employed as a model for simulating numerically collisionless matter. In this
context, matter is modeled as a continuous fluid by smoothing out the graininess of
the discrete particle distribution. If the interparticle spacing is negligible with respect
to the size of the structures of interest, the collisionless matter fluid can be described
with a continuous phase-space distribution f(x, v).

Usually, this distribution is obtained with the so called “N-body simulation” [37],
where a coarse-grain is applied to the distribution function which is then statistically
described by N virtual superparticles [38]. Here, Newton equations are used to
evaluate the N positions and velocities of the particles,

ẍi =

N∑
j=1

Fij, Fij =


0 if i = j,

Gm 1

|xi−xj|
2 if i 6= j

, (2.20)

and then the coarse-grained phase-space distribution is approximated with

fN(x, v, t) =

N∑
i=1

δ (x − xi(t)) δ (v − ẋi(t)) , (2.21)
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which is also known as Klimontovich phase-space distribution [39]. This method
however is limited by the presence of finite N effects, which arise from the initial
time [40].

Finite N effects can be avoided with a mean-field approach, resulting in the col-
lisionless Boltzmann equation. The latter, which is also known as Vlasov–Poisson
equation [14], reads

∂f

∂t
=

3∑
i=1

∂V

∂xi

∂f

∂vi
− vi

∂f

∂xi
(2.22a)

∇2V = 4 πGm2
∫
dv f (x, v, t) , (2.22b)

where x = (x1, x2, x3), v = (v1, v2, v3) are the position and velocity coordinates and
V is the gravitational potential. However, solving (2.22) is in general a hard numerical
task because of the computational cost required to compute the 6-dimensional phase-
space distribution. In addition, the latter often gives birth to fine-grained structures
[41] which represent a further numerical challenge. For these reasons alternative
methods have been proposed and used.

The Newton–Schrödinger equation, on the other hand, represents a valid and at-
tractive model to describe collisionless matter as a continuous field [6]. Furthermore,
it is able to compete with the N-body simulations in terms of computational time.
Here the Newton–Schrödinger equation must be considered in the context of a many-
body self gravitating system in the Hartree approximation,

i  h
∂ψ

∂t
+

 h2

2m
∇2ψ − mV ψ = 0 (2.23a)

∇2V = 4 πGm |ψ|2 , (2.23b)

where the modulus squared of the wavefunction is interpreted as a mass density.
The latter, being only a function of the 3-dimensional space variable x, determines
the advantage in terms of computational cost with respect to the Vlasov–Poisson
equation.

At the same time, a phase-space distribution can be built from the wavefunction
ψ. However, because of the uncertainty principle, simultaneous values of position
and velocity are not allowed in the quantum mechanics framework. For this reason,
the quantum phase-space function results in quasi-probability distributions. There
are many possible definitions to define such quasi-probability distributions, like the
Wigner or the Husimi functions [42]. The Wigner distribution function [43] is not
positive-defined, while the Husimi representation [44] does not provide the cor-
rect charge and current density when integrated; for these reasons they are quasi-
probability distributions. However, this approach remains valid as long as  h

m is in-
terpreted as a parameter, whose manipulation, in the limit  h

m → 0, allows to recover
the classical behavior, as we explain in the next section.

2.3.1 Classical limit of the Newton–Schrödinger equation

As we already mentioned, formally, the classical limit of the Newton–Schrödinger
equation can be recovered by sending  h

m → 0. Indeed, as this parameter gets smaller
the dynamics of the equation becomes more similar to the classical one [45].
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In the case of the Husimi representation [44] for example, the quantum phase-space
distribution is

fH(x, p, t) =

∣∣∣∣∣
(

1

2 π  h

)3/2(
1

πη2

)3/4
× (2.24)

∫
dxψ(x, t) exp

[
−
(x− r)2

2 η2
− i
p · (r− x/2)

 h

]∣∣∣∣2 ,
where η is a parameter that corresponds to the resolution in phase-space. This pa-
rameter, for a system whose typical size of spatial variation is L and whose typical
momentum is P, must satisfy  h

P � η� L [46].
As done in [47], one can prove that the quantum phase-space distribution fH de-

fined in (2.24) verifies

∂fH
∂t

=

3∑
i=1

(
m
∂V

∂xi

∂fH
∂vi

−
pi
m

∂fH
∂xi

)
(2.25)

+ O

(
η2

L2

)
∂fH
∂t

+ O

(
 h2

η2 P2

)
∂fH
∂t

which, taken into account that by definition  h
P � η � L, in the limit  h/m → 0

coincides with the Vlasov equation (2.22) .
In Figure 2.1, three different simulations where the parameter  h/m has been changed,

are shown, taking respectively the values 10−1, 10−2 and 10−3. Specifically, we plot
the density, ρ = |ψ|2, obtained from an one-dimensional self-gravitating system sim-
ulated with the Newton–Schrödinger equation with the same gaussian initial con-
dition. As the value of  h/m decreases, the phase-space evolution displays a more
similar behavior to the classical system, with filaments which become more distin-
guishable and more numerous.
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Figure 2.1 – Snapshots of ρ = |ψ|2 at t = 10tdyn (time is expressed in units of tdyn =
σ√
mG

, where σ is the standard deviation of the gaussian initial condition) for
simulations with different values of  h/m. The density is normalised to 1 and the
horizontal axis is in adimensional units.
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2.3.2 Fuzzy Dark Matter

The Newton–Schrödinger equation in astrophysics, is also applied in the descrip-
tion of dark matter. The true nature of this hypothetical form of matter, which is
estimated to account for approximately 85% of the matter in the Universe, is still un-
known. However, most cosmologists agree on the Cold Dark Matter (CDM) model
[48–51], according to which dark matter is characterized by collisionless particles
which are cold, namely with very low velocity dispersion. According to the CDM
model, dark matter tends to form structures in a hierarchical way, with small objects
first collapsing because of the self-gravitational interaction and then merging to form
more massive and larger objects. There are many candidates for Cold Dark Matter
particles, such as WIMPs (Weakly Interacting Massive Particles) [52, 53], MACHOs
(Massive compact halo objects) [54] and axions, in the contest of the Fuzzy Dark
Matter model [7, 8]. For the latter in particular, dark matter is found in a state of a
Bose–Einstein condensate which can be well modeled by a complex scalar fieldψ(r, t)
obeying to the Newton–Schrödinger equation in the mean-field approximation (see
(2.2.1))

i  h
∂ψ

∂t
+

 h2

2m
∇2ψ − mV ψ = 0 (2.26a)

∇2V = 4 πG |ψ|2 , (2.26b)

where m the mass of the dark matter particle, called the axion. Here ψ is normalised
such that∫

|ψ|2dr =M, (2.27)

where M is the total mass of the system.
The hypothesis that dark matter is composed by an ultralight bosonic field, the

axion, is indeed one of the most attractive possibilities [7] to explain several prob-
lems which appear in the field of structure formation, such as the non observation of
“cuspy” haloes which is pointed out in N-body simulations [8, 55–59], the "too big to
fail" problem [60] and the missing satellites problem [61, 62]. The model is motivated
from particle physics, solving the strong CP problem of the standard model of ele-
mentary particles [63]. In this context, fuzzy dark matter is naturally produced with
very low velocity dispersion, being in the state of a Bose-Einstein condensate. Regard-
ing structure formation, it presents very similar properties at large scales, compared
to the standard (classical) cold dark matter models. The main difference resides in
the small scales properties, in which a quantum pressure appears. This is due to the
fact that the quantum pressure, naturally present in the Newton–Schrödinger equa-
tion, allows to explain the homogeneous distribution of dark matter near the center
of galaxies [8], while the classical picture, which relies on N-body simulations, fails
in justifying this feature. This quantum pressure is due to the Heisenberg uncertainty
principle: the mass of the axion is expected to be so small (∼ 10−22 eV) so that its De
Broglie wavelength is estimated to be around 1kpc, a galactic scale, the size of our
galaxy being estimated around 30 kpc.
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2.3.3 Large scale structure formation of the Universe

Another version of the Newton–Schrödinger equation, has an important applica-
tion in cosmology to simulate the formation of large-scale structures in the early
Universe. The main difference from the previous case is an additional term in the
Poisson equation, which is related to the expansion of the Universe, together with
the scale factor a(t). For a cosmological model where gravitational effects are weak
and can be well described with the Newtonian potential, the nonrelativistic field ψ
satisfies

i  h
∂ψ

∂t
+

 h2

2ma
∇2ψ − amV ψ = 0 (2.28a)

∇2V = 4 πGρ0 a
2
(
|ψ|2 − 1

)
, (2.28b)

where a(t), with a(t0) = 1, is the scale factor, t0 being the current age of the Uni-
verse; ρ0 is the critical density, namely the average density of matter required for the
Universe to just halt its expansion, and the wavefunction is normalized to unity. The
explicit expression of the scale factor depends on the particular cosmological model
considered, for example, for the Einstein–De Sitter Universe one has a(t) = ( tt0 )

3
2 .

Usually the cosmological initial condition consists of a constant density with some
small fluctuation

ψ(x, t = 0) =
√
ρ0 + δρ(x)e

iθ0(x), (2.29)

where θ0 is related to the initial velocity v0, specifically ∇θ ∝ v, field and ρ0 is the
background constant density. The fluctuations term, δρ(x), is generated as

δρ(x) = F−1[R(k)
√
P(k)], (2.30)

where R(k) is a gaussian random field, with zero average and unitary variance, while
P(k) is called the power spectrum.

2.3.3.1 Power spectrum in the linear regime

There exists an analytical solution of (2.28) in the regime where δρ� ρ0. To derive
it, we consider for simplicity the case of a static Universe, i. e. a(t) = 1 ∀t > t0. The
adimensional equation (see Appendix A) reads

i
∂ψ

∂t
+
1

2
∇2ψ − V ψ = 0 (2.31a)

∇2V = g
(
|ψ|2 − 1

)
, (2.31b)

where g = 4 πGρ0 L
4
(
m
 h

)2 and L is arbitrary spatial scale chosen for the adimen-
sionalization.

The starting point is performing a Madelung transformation [64]

ψ =
√
ρeiθ, (2.32)

where ρ and θ are two real functions of space and time.
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Plugging (2.32) inside the Schrödinger equation and taking its imaginary part,
yields

∂t
√
ρ = −

1

2

[
2(∇√ρ) · (∇θ) + (∇2θ)√ρ

]
, (2.33)

which can be written as a continuity equation if one defines the velocity field v = ∇θ

∂tρ+∇ · (ρv) = 0. (2.34)

The real part of the equation on the other hand, yields

∂tθ = −

[
(∇θ)2
2

− V −
1

2

∇2√ρ√
ρ

]
. (2.35)

Applying the gradient to this equation, one obtains

∂tv+ (v · ∇)v−∇V −

[
(∇θ)2
2

− V −
1

2
∇
(∇2√ρ√

ρ

)]
= 0. (2.36)

Linearising (2.34) and (2.36) for δρ = ρ − 1 � 1, the system together with the
Poisson equation for the potential V becomes

∂tδρ+∇ · v = 0 (2.37a)

∂tv−∇V −
1

4
∇
(
∇2δρ

)
= 0 (2.37b)

∇V = g δρ. (2.37c)

These three equations can be combined taking the time derivative of the first one
and the spatial derivative of the second one,

∂2tδρ− gδρ+
1

4
∇2
(
∇2δρ

)
= 0, (2.38)

which can be easily solved in Fourier space,

∂2t δ̂ρ =

(
g−

k4

4

)
δ̂ρ, (2.39)

where Fourier transforms are denoted with a “hat”.
The solutions depend on the value of the Jeans wavenumber kJ = 4

√
4g, in particu-

lar they are stable for k > kJ and unstable for k 6 kJ.

In Figure 2.2 we plot the one dimensional Power Spectrum P(k, t) =

〈∣∣∣δ̂ρ(k, t)∣∣∣2〉
in the linear regime and compare it with the simulations; the agreement is quite good
up to t = 3tdyn.
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Figure 2.2 – Power Spectrum comparisons for the simulations of the one dimensional cos-
mological Schrödinger-Newton equation. Time is expressed in units of tdyn =(
Gρ0 L

4
(
m
 h

)2)−1/2.The subscript “ex” denotes the exact analytical solution in
the linear regime.

2.4 the newton–schrödinger equation in optics

In optics, the Newton–Schrödinger equation describes the evolution of the field E

of an optical beam, propagating through a nonlinear and nonlocal medium

i
∂E

∂z
+

1

2 k
∇2⊥E + k0∆nE = 0 (2.40a)

∇2⊥∆n = −
αβ

κ
|E|
2 , (2.40b)

where z is the propagation direction of the beam,∇2⊥ = ∂2

∂x2
+ ∂2

∂y2
is the 2-dimensional

transverse Laplace operator, k = nb k0 and k0 are the wave-numbers of the beam, in-
side the medium and in void respectively, nb is the medium background refractive
index, ∆n is the variation of the refractive index, α the absorption coefficient, β is the
medium thermo-optic coefficient and κ the thermal conductivity.

The nonlocality is due to the variation of the refractive index with the intensity of
the beam I = |E|

2, described by (2.40b) and resulting in a self-focusing interaction. As
we shall see next, (2.40b) is the result of heat-like equation in the stationary regime,
where the heat source is due to the laser increasing the temperature of the medium
while propagating through it. This system is schematically represented in Figure 2.3.
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Figure 2.3 – Illustration of the beam propagating inside the self-focusing thermo-optical
medium.

2.4.1 From Maxwell equations to the optical Newton–Schrödinger equation

The optical Newton–Schrödinger equation can be derived directly from Maxwell
equations with proper approximations. Here we list and explain the most important
of these assumptions, following the approach described in [65]. We consider the case
of a continuous wave beam, propagating inside a nonlinear optical medium.

From Maxwell equations, it is known that the electric-field vector E obeys to

∇2E −
1

c2
∂2E

∂t2
=

1

ε0 c2
∂2P

∂t2
, (2.41)

where c is the speed of light in the medium considered, ε0 is the vacuum permittivity
and P is the induced polarization vector. The latter can always be split in a linear
part PL and a nonlinear one PNL

P(r, t) = PL(r, t) + PNL(r, t), (2.42)
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which are related to the electric field through the susceptibility tensors [66], i. e. χ(1)

and χ(3)

PL(r, t) = ε

∫∞
−∞ χ(1)(t− t ′) · E(r, t ′)dt ′ (2.43a)

PNL(r, t) = ε

∫∞
−∞ χ(3)(t− t1, t− t2, t− t3)× (2.43b)

× E(r, t1)E(r, t2)E(r, t3)dt1 dt2 dt3.

These equations can be remarkably simplified by taking into account some assump-
tions, listed and justified below.

— The nonlinear response is assumed to be instantaneous so that the time de-
pendence of χ(3) is given by the product of three delta functions of the form
δ(t− ti). Than (2.43b) reduces to

PNL(r, t) = εE(r, t)E(r, t)E(r, t). (2.44)

This corresponds to neglecting the contribution of molecular vibrations to χ(3).
— PNL can be treated as a small perturbation to PL because nonlinear changes in

the refractive index are always ∆nn � 1 for media with this kind of nonlinearity.
— The optical field is assumed to maintain its polarization along the medium, so

that a scalar approach can be used, this is valid in the isotropic materials case.
— We make the ansatz

E(r, t) =
1

2
p̂[E(r, t)e−iω0t + c.c.] (2.45)

where ω0 is the carrier frequency, p̂ is the polarization unit vector, k = k0nb =
2πnb
λ is the propagation constant in terms of the optical wavelength λ = 2πc

ω0
,

c.c. denotes the complex conjugated and E(r, t) is called envelope function.
The polarization components PL(r, t) and PNL(r, t) can also be expressed in a
similar way:

PL(r, t) =
1

2
p̂[PL(r, t)e

−iω0t + c.c.] (2.46)

PNL(r, t) =
1

2
p̂[PNL(r, t)e

−iω0t + c.c.] (2.47)

— When (2.45) is substituted in (2.44), the envelope function of PNL is found to
have a term oscillating at ω0 and another term oscillating at the third-harmonic
frequency, 3ω0. The latter term necessitates phase matching and can be ne-
glected. With this slowly varying envelope approximation, it is found that [65]

PNL(r, t) ≈ ε εNL E(r, t), (2.48)

where the nonlinear contribution to the dielectric constant is defined as

εNL
def
=
3

4
χ(3) |E(r, t)|2. (2.49)
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— When a perturbative approach is employed, the dielectric constant, which in-
cludes both linear and nonlinear refractive index and absorption effects, is ap-
proximated as [67]

ε = n2b + 2nb nnl(I) +nb
iα
ω0

. (2.50)

In the latter expression, α is the absorption coefficient, nnl(I) indicates the
nonlinear component of the refractive index, that is a function of the light beam
intensity I = |E|2 and nb is the background refractive index. The full refractive
index is defined as

n = nb + nnl(I) (2.51)

— The thermo-optical nonlinearity can be included by assuming that the nonlinear
part of the refractive index varies with temperature [68] according to

nnl =
dn

dT
Tl (2.52)

where Tl represents the laser induced change in temperature. The quantity
β = dn

dT is a constant called the medium thermo-optic coefficient. Assuming
that Tl obeys to the heat-transport equation, one has

ρ0C
∂Tl
∂t

− κ∇2Tl = αI, (2.53)

where ρ0C denotes the heat capacity per unit volume.
— The paraxial approximation [69] is applied, assuming that the beam propagates

in the z direction and diffract or self-focuses in the transverse plan r⊥ = (x, y).
This means that within a distance ∆z = λ, the change ∆E is much smaller than
E itself. Therefore one has

4E� E⇔4z� λ ⇒ ∂E

∂z
� E

λ
=

Ek

2π
(2.54)

⇒ ∂E

∂z
� kE,

∂2E

∂z2
� k2E.

The condition ∂2E
∂z2
� k2E implies that, once the ansatz (2.45) is plugged into

(2.41), one formally gets ∇2 ≈ ∇⊥ + 2ik ∂∂z .
Taking into account these assumptions, with some algebraic manipulations, plug-

ging the ansatz for E and P into (2.41) leads to the Paraxial Helmholtz equation

2ik
∂E

∂z
+∇2⊥E+ 2kk0∆nE = 0 (2.55)

which, with the definition ∆n = n−nb, corresponds to (2.40).

2.4.2 Absorption and time dependence

To model a real optical medium, (2.40) should incorporate a time dependence and
the contribution of the absorption, which in general is not negligible. In this case, the
Newton–Schrödinger equation, must be written as

i
∂E

∂z
+

1

2 k
∇2⊥E + k0∆nE + i

α

2
E = 0 (2.56a)

ρ0C

κ

∂∆n

∂t
−∇2⊥∆n =

αβ

κ
|E|
2 , (2.56b)
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The time dependence implies that for a beam of radius s, there exists a thermal
diffusion time τ, which may be estimated as

1

τ
=

κ

s2 ρ0C
. (2.57)

This can directly be observed switching to Fourier space, which, for (2.56b) yields

ρ0C

κ

∂∆̂n

∂t
+ k2∇2⊥∆̂n =

αβ

κ
Î, (2.58)

whose solution is

∆̂n(k, t) =
αβ

κ
Î
(
1 − e−

κ
ρ0 C

k2 t
)

. (2.59)

Hence, the ρ0C
κ

∂∆n
∂t term in the heat equation can be neglected if one waits long

enough, such that the stationary regime is reached, namely for t� τ.
On the other hand, the presence of the absorption introduces an exponential drop

of the total power P of the beam∫
dr⊥ |E (r⊥, z)|

2 = e−αzP, (2.60)

which weakly influences the dynamics in the case where a propagation length z �
α−1 is considered.
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D Y N A M I C S O F L O N G R A N G E I N T E R A C T I N G S Y S T E M S

In this chapter, we introduce the main features of the dynamics of classical long-
range interacting systems, focusing in particular on self-gravitating systems. As men-
tioned in Section 2.3.1, quantum long-range interacting systems display the same fea-
tures when approaching the classical limit, namely when  h

m → 0. In addition, when
this limit is not perfectly reached, but the long range interacting potential still dom-
inates over quantum effects, similar dynamical features take place. Indeed, we shall
see how in this regime, one has both the classical solution and the quantum part (also
known as soliton). First, we give the definition of long-range force and long range
potential, mentioning, under a statistical mechanics point of view, some of the most
important aspects of this interaction. Second, we describe the equilibrium state to
which this kind of systems evolve, explaining the main mechanisms that rules this
process. Finally, we discuss the virial theorem and give some examples of how it
applies to the Newton–Schrödinger equation, both for the quantum regime and the
classical limit.

3.1 long range interacting systems

Self-gravitating systems are characterized by an interaction, the gravitational one,
which is known to be long-range [70]. The formal definition of long range interaction
comes from statistical mechanics: in a d-dimensional space, a system is called long-
range if it interacts with a potential U(r→∞) ∼ 1/rγ, decaying with the interparticle
distance r, with an exponent γ smaller then the dimensionality d of the embedding
space [71–73]. However, as specified in [74], some of the features of long range
interacting systems, like the existence of quasi-stationary states, are not ensured by
the large distance behavior of the interaction alone. This requires a classification of
pair interactions based on the convergence properties of the forces acting on particles
as a function of system size [75]. Specifically, one should distinguish between the
γ > d− 1 and the γ 6 d− 1 cases. In the former, also known as “dynamically short-
range” case, the dominant contribution to the force at a given site arises from particles
in a finite neighborhood around it. For γ 6 d− 1 on the other hand, the dominant
contribution to the force comes from the mean field due to the bulk potential. This
is also known as “dynamically long-range” case. Both those cases share the same
features for the dynamics at the statistical equilibrium. However for γ > d− 1 the
dynamics before the equilibrium is driven by short range interactions.

Beyond astrophysics [70, 76], other physical examples of systems belonging to this
category can be found in: (i) two-dimensional hydrodynamics such as geophysical
flows and vortex models [77–79], (ii) in atomic and nuclear physics such as quantum
spin models [80], dipolar excitons [81], cold atom models [82], colloids at interfaces
[83] and in (iii) plasma physics, e.g. magnetically confined plasmas [84].

In the next sections, we explain the most important dynamical features typical of
these systems. Indeed, because of the long-range nature of the interaction, for which
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every elementary constituent is subjected to a force whose major contribute is not
only given by the neighboring ones. In this kind of systems the energy is non-additive
[73]. The non-additivity implies that long-range interacting systems manifest some
very unusual and counter-intuitive properties like inequivalence of statistical ensem-
bles and possible apparition of negative specific-heat in the microcanonical ensemble
[73, 85].

3.1.1 Formation of the quasi-stationary State

The long range nature of the force has important consequences for the macro-
scopic dynamics. Starting from an arbitrary initial condition, these systems give
rapidly birth to a generic formation of out-of-equilibrium quasi stationary states [86,
87]. Then they slowly relax the Maxwell-Boltzmann thermodynamic equilibrium,
in a time which scales generically with the number of elementary constituents [15].
One speaks of out-of-equilibrium states because the quasi-stationary state is not ex-
tremum of the free energy or a meta-stable state. In addition, the reason why it is
called "quasi-stationary", is that during this transient the time evolution is very slow
compared with the dynamics of the thermodynamic equilibrium, allowing to define
weakly varying macroscopic observables.

Examples of such quasi-stationary states are galaxies, for which the time needed to
reach the thermodynamic equilibrium is typically larger than the age of the Universe.

The quasi-stationary state formation process is called collisionless relaxation, and
is a generic combination of two phenomena [15]:

1. Mixing, which is caused by the motion of particles in a non-harmonic potential
created self-consistently by the distribution of particles itself, which tends to
mix the phase space.

2. Violent relaxation, which mix the energy of particles because the potential cre-
ated by the distribution of particles is not stationary in time.

The mixing phenomenon can be directly observed looking at the phase-space distri-
bution of the system f(x, v, t), as shown in Figure 3.1. This phase-space distribution,
is defined such that f(x, v, t)dxdv represents the probability of finding a particle in
the volume dx within a velocity dv at time t. This quantity, in the limit where the the
number of particles is very large and collisions can be neglected, follows an incom-
pressible evolution in phase-space, namely

df

dt
= 0. (3.1)

Applying the chain rule to (3.1), one obtains

df

dt
=
∂f

∂t
+ ẋ · ∇xf+ v̇ · ∇vf = 0, (3.2)

where ∇x and ∇v, respectively, denote the gradient with respect to position and
velocity variables. Plugging Newton equation v̇ = F

m , where F(x, t) is the force at the
position x at time t,to (3.2) yields

∂f

∂t
+ ẋ · ∇xf+

F

m
· ∇vf = 0, (3.3)
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which is the Vlasov equation (see Section 2.3).
In general, this equation cannot be analytically solved. All one can say about

the stationary phase-space is that, for a given initial condition, the solution is any
function Q of the energy, i. e.,

f(x, v, t→∞) = Q
(m
2
v2 + V

)
, (3.4)

as it can be found by imposing ∂f/∂t = 0. Here, V is the mean-field potential, given
by F = −∇V and related to the interacting one by V(x, t) =

∫
dv ′ dx′U(|x− x′|) f(x, v ′).

Mathematically, the relation between the quasi-stationary state and the Maxwell-
Boltzmann equilibrium distribution can be explained by a kinetic theory, using an
expansion of the classical BBGKY hierarchy in powers of 1/N as N → ∞ [88–91].
Specifically, the quasi-stationary state is obtained when the limit N → ∞ is taken
before the t → ∞ one, and the Boltzmann equilibrium is obtained when the limit
t→∞ is taken before the N→∞ limit.

In Figure 3.1 and Figure 3.3, we illustrate for a classical one-dimensional self-
gravitating system, the evolution of phase space with time. It exhibits a “filamenta-
tion” from the very beginning, which shows the presence of the mixing phenomenon.
Then it reaches a quasi-stationary state, where it slowly evolves with time.

3.1.2 Entropy

We now explain another feature of long-range interacting systems, namely the fact
that their entropy does not increase with time. In order to do that, we first define the
entropy of the system,

S(t) = C1 −C2

∫
dxdv f ln f, (3.5)

where C1 and C2 are two constants and f is the phase-space distribution. From (3.1)
it follows that the entropy does not evolve with time

∂S

∂t
= 0. (3.6)

Even though the microscopic entropy does not change, usually one is rather inter-
ested in a macroscopic entropy when describing such systems. In fact long-range
systems contain both short-range and long-range interactions. This is due to the rate
at which long-range interactions drop, which is slower than the rate at which the
interparticle distance increases. For this reason, short-range interaction features, like
collisions, will always appear at very small scales. In addition, the lack of information
concerning the dynamics at small scales always determines an increase of the macro-
scopic entropy. For this reason, when long range interactions dominate, a physically
more relevant entropy can be defined, performing a coarse-graining over these scales.
This macroscopic entropy is obtained averaging f over small cells in the (x, v) space.
It is defined as

S̄(t) = C1 −C2

∫
dxdv f̄ ln f̄, (3.7)
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Figure 3.1 – Evolution of phase-space with time (horizontal axis is the position x and the
vertical one the velocity v) of an one-dimensional classical self-gravitating system.
Time is expressed in units of tdyn = σ√

mG
, where σ is the standard deviation of

the gaussian initial condition for the matter density distribution.
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Figure 3.2 – Evolution of the phase space at early times for times for 1000 particles and t = n,
n ∈N.

where f̄ is the coarse-grained distribution. Phase space and coarse-grained phase
space are normalized to unity, i. e.,∫

dxdv f =

∫
dxdv f̄ = 1. (3.8)

In the next section, we shall see with an example that the coarse-grained entropy
does increase with time.

3.1.2.1 A pedagogical example

Let us consider a very simple example, focusing on a system where only mixing
takes place. The system under investigation is a set of non-interacting real classical
oscillators. The equation of motion of each oscillator is

ẍ(t) = sin(x(t)). (3.9)

Let us look at the evolution of the phase-space solving (3.9) for a set of particles
which are homogeneously distributed in phase space in the region 1 6 x 6 2 and
velocity −1/10 6 v 6 1/10. The evolution for early times appear in Figure 3.2. The
volume of phase-space is rigorously conserved, and so is the entropy (3.6).

In Figure 3.3, we plot the evolution of the phase-space, starting from the last plot of
Figure 3.2, with much larger time-interval between the plots. We observe the filamen-
tation of the phase-space. The volume of phase-space is still rigorously conserved,
and so is the entropy (3.6).

In Figure 3.4, we show the phase-space at a very large time. The filamentation
of the phase-space continues to go on at smaller and smaller scales, beyond the
resolution of the simulation and, more importantly, beyond the resolution in which



26 dynamics of long range interacting systems

Figure 3.3 – Evolution of the phase space at large times for 1000 particles and times t = 10n,
n ∈N, starting from t = 16.

we are interested in. In a similar way of equilibrium statistical physics, in which one
is not interested in all the details of the system but only in macroscopic quantities.

In our very simple particular case, we can compute the stationary state using that
(i) we observe in the simulation that the stationary phase-space is homogeneous and
(ii) the initial velocities are negligible. Then, stationary phase-space is bounded by
the two curves 1/2v2 − (cos x− cos(1)) and 1/2v2 − (cos x− cos(2)), as it can be seen
in Figure 3.5.

As discussed in Section 3.1.2, the microscopic entropy does not change, only the
macroscopic coarse-grained one varies with time. To explicitly see that, we start
by observing that because of the normalization, we have that f(x, v, t = 0) is zero
everywhere except for the region 1 6 x 6 2, −1/10 6 v 6 1/10 in which f(x, v) = 1

5 .

Figure 3.4 – Phase space for 1000 particles at time t = 1000.
.
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Figure 3.5 – Phase space for 1000 particles at time t = 1000.
.

For the stationary regime, f̄ is zero outside the regions bounded by the curves in
Figure 3.5 and f̄ ≈ 0.14 between the curves. Then

S(0) = S̄(0) = C1 −C2 ln(1/5) ≈ C1 + 1.6C2 (3.10)

and

S̄(t→∞) = C1 −C2 ln(0.14) ≈ C1 + 1.95C2. (3.11)

Therefore the coarse-grained entropy has increased S̄(t → ∞) > S̄(0), even though
Boltzmann entropy has remained constant S(t→∞) = S(0).

3.1.3 Violent relaxation

In the last example, we illustrated the mixing phenomenon, which is the simplest
mechanism which causes relaxation in gravitational systems. The violent relaxation
mechanism, on the other hand, requires, an exchange of energy in order to take place.
Since for a classical system one has

dE

dt
=
d

dt

(
1

2
mv2 + V(x)

)
(3.12)

= ∇vE ·
∂v

∂t
+
dV

dt

= −m v · ∇V
m

+
dV

dt

= −v · ∇V +
∂V

∂t
+∇V · v

=
∂V

∂t
,

it is easy to see that an exchange of energy between the particle and the potential
can take place only with a time varying potential. It is possible to explore whether
a given system is exhibiting an energy exchange looking at its energy distribution.
This quantity can be obtained by constructing the histogram ν(E, t)

ν(E, t) =

∫
dr δ [E− E(r, t)] ρ(r, t), (3.13)
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Figure 3.6 – Snapshots of the energy distribution as a function of time for a classical 2-
dimensional self-gravitating systems of N = 65536 particles. Time is expressed
in units of tdyn = σ√

mG
, where σ is the standard deviation of the gaussian

initial condition for the matter density distribution. On the horizontal axis the
energy is expressed in the units where m = G = 1 while on the vertical axis νE
represents the normalized number of particles with energy E.

where E(x, t) is the total energy density, and ρ(r, t) is the mass density.
In Figure 3.6, we show the time evolution of the energy distribution obtained from

a N-body simulation of a 2-dimensional self-gravitating system of N = 65536 par-
ticles. From the plots, it is clear how the violent relaxation starts at the more neg-
ative energies, which correspond to the particles that are closer to the center. This
is also the region where fast particles cross the slow ones for the first time. This
phenomenon, known as shell-crossing [92], leads to the formation of caustics singu-
larities in the density field, as the velocity field of the solution of the Vlasov–Poisson
equations becomes multi-valued.

As a last remark, it is important to stress that the violent relaxation mechanism
requires a potential that needs to be both non-harmonic, which triggers the mixing,
and time-dependent. Indeed, it is possible to construct a potential which depends on
time that nevertheless present an invariant energy distribution [93].

3.2 virial theorem

The virial theorem is a way to characterize the stationarity of a system. For this
reasons, it can be employed also to describe the quasi-stationary state of long range
interacting systems. We start from its explanation in the classical case, and then focus
on the quantum version. Then, we explain the relation between the two versions,
focusing on the particular case of the Newton-Schrödinger equation and its classical
limit.
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3.2.1 Classical virial theorem

The virial theorem in its classical version, provides a relation between the time
average of kinetic and potential energy. Specifically, for a system of N particles, the
theorem states

2K =

N∑
i=0

ri · ∇iVi, (3.14)

where K is the total kinetic energy, ri is the position of the ith particle, ∇i denotes
the gradient with respect to coordinates ri, Vi = V(ri) is the bulk potential experi-
enced by particle ith and the bar indicates a time average. The relation between the
interacting potential U and the bulk (mean field) one is, for a system of N particles

V(ri) =

N∑
j=1, j 6=i

U(
∣∣ri − rj∣∣). (3.15)

In the case of an interacting potential which decays as a power law with the inter-
particle distance, U(r) = αr−n, with n > 0, the theorem takes the form

2K = −nV . (3.16)

For example, in the case of 3-dimensional gravity (n = 1) one has

2K = −V . (3.17)

In the case of 2-dimensional gravity, the interacting potential is a logarithm and
the virial theorem cannot be applied in the power-law form. Indeed, for a a 2-
dimensional system of N self-gravitating particles with unitary mass, one has

V =

N∑
i,j=1, j 6=i

U(
∣∣ri − rj∣∣) = N∑

i,j=1, j 6=i
log
∣∣ri − rj∣∣, (3.18)

and therefore

ri · ∇iVi =
N∑

j=1, j 6=i
ri · ∇i log

∣∣ri − rj∣∣ = N∑
j=1, j 6=i

ri ·
ri − rj∣∣ri − rj∣∣2 , (3.19)

which, using ri ·
(
ri − rj

)
+ rj ·

(
rj − ri

)
=
∣∣ri − rj∣∣2 leads to

2K =
N2

2
. (3.20)

In Figure 3.7, we show for a 2-dimensional system of N = 4096 particles self-
interacting through classical gravity and initially distributed with a gaussian density,
the total kinetic energy as a function of time. The process through which this quantity
oscillates, with an amplitude which decreases with time, around the value K = 1

4V

is called virialization. We rescale the total kinetic energy on the vertical axis with the
virialization value Kv = r·∇V

2 , in such a way that it oscillates around 1. This value
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Figure 3.7 – Total kinetic energy in units of the virialized value Kv = r·∇V
2 , as a function of

time for a classical 2-dimensional self-gravitating systems of N = 4096 particles.
Time is expressed in units of tdyn = σ√

mG
, where σ is the standard deviation of

the gaussian initial condition for the matter density distribution.

is also used to defined the virial ratio, i.e. the ratio between the initial value of the
kinetic energy K0 and Kv,

Γv =
K0
Kv

. (3.21)

The value of this ratio allows to discriminate between different types of initial dy-
namics: the Γv > 1 case corresponds to the “hot initial condition", because the initial
kinetic energy is larger then the virial value and therefore the dynamics is initially
dominated by the kinetic pressure. On the other hand, the Γv < 1 case corresponds
to “cold initial conditions", where the dynamics is characterized by an initial gravita-
tional collapse, as the case of Figure 3.7.

3.2.2 Quantum virial theorem

So far in this chapter we discussed classical systems, we conclude by presenting
the quantum formulation of the virial theorem and showing how in the limit  h/m

one recovers the classical behavior. For a quantum system the formulation of the
theorem is analogue, with the prescription that time-averages must be substituted
with averages over the state of the system, which must by an eigenfunction of the
Hamiltonian. Specifically, the quantum virial theorem [94] states that, if the system
is in an eigenstate of the Hamiltonian,

〈2K̂〉ψ = 〈r̂ · ∇V̂〉ψ, (3.22)
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where K̂ is the kinetic energy operator, V̂ is the potential operator, and ψ is an eigen-
state of the Hamiltonian. Averages of a given operator Ô over a given state ψ are
denoted as

〈Ô〉ψ def
=

∫
drψ∗(r, t) Ôψ(r, t). (3.23)

3.2.3 Application to the Schrödinger–Newton equation

In the particular case of the Schrödinger–Newton system, where the potential
obeys to Poisson equation, it is possible to evaluate the right hand side of (3.22)
exploiting U(r, r′), the Green function of the 2-dimensional Laplace operator. Since
the latter is U(r, r′) = 1

2π log |r− r′|, one has

V̂ = 2 πGm2
∫
U(r, r′) |ψ(r′, z)|2 dr′ (3.24)

= Gm2
∫

log |r− r′| |ψ(r′, z)|2 dr′.

Subsequently, after applying some manipulations (see Section 3.2.1), one finds the
value to which the kinetic energy relaxes

Kv =
Gm2

4
(3.25)

In Figure 3.8, we show the virialization of the kinetic energy for the 2-dimensional
Newton–Schrödinger equation initialized with a gaussian wavefunction ψ(r, t = 0) =

e−
r2

2σ2 /
√
πσ2, for different values of  h

m . The gaussian is not an eigenfunction of the
Newton–Schrödinger Hamiltonian, so the result of the quantum virial theorem in
principle is not valid in this case. However, we observe that, as the value of  h/m

gets smaller, the total kinetic energy of the system behaves in a more similar way
to the classical case, displaying oscillations around the virialization value, as shown
in Figure 3.9. This behavior is due to the classical limit of the Newton–Schrödinger
equation, explained in Section 2.3.1.
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Figure 3.8 – Total kinetic energy in units of the virialized value Kv = Gm2

4 , as a function of
time for the 2-dimensional Newton–Schrödinger equation. Time is expressed in
units of tdyn = σ√

mG
, where σ is the standard deviation of the gaussian initial

condition.
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Figure 3.9 – Total kinetic energy in units of the virialized value Kv = Gm2

4 , as a function
of time for the 2-dimensional Newton–Schrödinger equation and for a classical
(N-body) 2-dimensional self-gravitating systems of N = 4096 particles. Time is
expressed in units of tdyn = σ√

mG
, where σ is the standard deviation of the

gaussian initial condition for the matter density distribution, which is the same
for both simulations.
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T H E O R E T I C A L P R E PA R AT I O N O F T H E E X P E R I M E N T

In this chapter, we discuss some theoretical results obtained for the Schrödinger-
Newton equation in the context of the preparation of the experiment. First, we show
the mapping which must be applied to obtain the full mathematical correspondence
between optics and self-gravitating systems through the Schrödinger-Newton equa-
tion. Second, we list the most important scales along with their physical interpre-
tation for both the optical and the gravitational domain of application. Third, we
define the solitonic solutions of the equation. Finally, we introduce a variational
model which is able to provide an analytical approximation for the early part of the
dynamics.

4.1 mathematical correspondence

To the purpose of describing the mapping which must be applied in order to ob-
tain the full correspondence between the the gravitational framework of Schrödinger-
Newton equation and optics, let us start considering both equations. On the one
hand, the Schrödinger-Newton equation, describing a system of self-gravitating par-
ticles of mass m

i  h∂tψ+
 h2

2m
∇2ψ+mΦψ = 0

∇2Φ = −4 πG |ψ|2,

(4.1)

with the wavefunction normalized to the total mass
∫
|ψ|2 dr =M.

On the other hand, the Paraxial-Helmholtz equation for an optical beam propagat-
ing through a medium with a thermo-optic nonlinearity

i∂zE+
1

2 k
∇2⊥ E+ k0∆nE = 0

∇2⊥∆n = −
αβ

κ
|E|2,

(4.2)

with the optical field normalized to the beam power
∫
|E|
2 dr⊥ = P.

It is clear that, in the case where we consider the two dimensional version of (4.1),
namely where the Laplacian is ∇ = ∂2

∂x2
+ ∂2

∂y2
, the two equations are formally equiv-

alent under a mathematical point of view. Regarding the physical parameters, the
correspondence remains valid as long as the time variable in the gravitational con-
text is mapped into the propagation coordinate of the optical system. If this is taken
into account, then the time evolution of the self-gravitating mass density ρ = |ψ|2,
corresponds to the propagation of a laser beam, with intensity I = |E|

2, through the

33
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thermo-optical medium. To be more specific, the correspondence between the two
systems is given by the following mapping:

 h↔ 1

t↔ z

ψ↔ E

m↔ k (4.3)

Φ↔ k0∆n

4πG↔ αβ

κnb

M↔ P.

4.2 important scales

We describe the most relevant physical scales of the system; the knowledge of
these scales is crucial for preparing the experiment, correctly tuning the experimental
parameters in order to observe the violent relaxation. First, we focus on the spatial
scales, and then we consider the dynamical ones. We derive each quantity for the
two-dimensional version of the equation in the gravitational context, and then give
the results for the optical environment using the mapping (4.3).

4.2.1 Spatial scales

The Schrödinger-Newton equation has in general two physically relevant spatial
scales. These scales also appear in the context of the Schrödinger equation in quan-
tum mechanics

i  h∂tψ+
 h2

2m
∇2ψ− V ψ = 0, (4.4)

where V is a general potential, and ψ is the wavefunction. We choose the first of the
two relevant spatial scales to be the average size of the system, defined as

R = 〈r〉 =
∫
drψ∗ rψ∫
dr |ψ|2

, (4.5)

where r is the modulus of the position vector. The second important spatial scale is
the De Broglie wavelength,

λDB =
h

〈p〉 =
h
∫
dr |ψ|2∣∣−i  h
∫
drψ∗∇ψ

∣∣ , (4.6)

where p is the modulus of the momentum operator, which in coordinate space is
defined as p = −i  h∇. This λDB can also be interpreted, in addition to the wave-
particle duality, as the inverse of the average size of the system in Fourier space. To
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Figure 4.1 – Example of the interplay between the two spatial scales, the average size of the
system R and the De-Broglie wavelength λDB for a snapshot of the solution of
the Newton–Schrödinger equation in one dimension. The initial condition is a

gaussian ψ(x, t = 0) = e
−
x2

2s20 . The x-axis is in units of s0.

see this, it is sufficient to consider the definition of the De Broglie wavelength in (4.6),
in k-space

λDB =
h

〈p〉 =
h
∫
dk
∣∣∣ψ̂∣∣∣2∫

dk ψ̂∗  hk ψ̂
=
2π
∫
dk
∣∣∣ψ̂∣∣∣2∫

dk
∣∣∣ψ̂∣∣∣2 k , (4.7)

where k is the modulus of the wavevector.
Notice that there exists at least one case where those two scales are essentially the

same, which is the gaussian wavefunction. Indeed, considering ψ(r) = e−r
2/(2σ2),

one has R ∝ σ and λDB ∝ σ, which is related with the very well known saturation
of the Heisenberg uncertainty relation for a gaussian wavepacket. An example of the
interplay between these two spatial case is showed in Figure 4.1.

4.2.1.1 A pedagogical example

Here we discuss a pedagogical example which clarifies the multiscale nature of the
equation. We consider a one dimensional wavefunction, which is qualitatively very
similar to the one we deal with in the experimental setup

ψ(x) = N e−
x2

2σ2 cos
x

µ
, (4.8)

where N is the normalization constant, defined in such a way that
∫
dx |ψ(x)|2 = 1, σ

is the standard deviation of the gaussian and µ is related to the oscillation frequency.
Evaluating R, using (4.6), one has

R =

∫
dx |x| |ψ(x)|2 =

2 e
σ2

µ2 σ
[
µ− σD

(
σ
λ

)](
1+ e

σ2

µ2

)√
πσ

, (4.9)
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where D(y) = e−y
2 ∫y
0 et

2
dt is the Dawson function, whose asymptotic behaviors are

the following: D(y) ≈y→0 y and D(y) ≈y→∞ 0.
Whereas evaluating λDB according to (4.7) yields

λDB =
2π∫

dk
∣∣∣ψ̂∣∣∣2 k =

2 π

(
1+ e

σ2

µ2

)√
πσµ

2µ+ e
σ2

µ2
√
πσ erf σµ

, (4.10)

where the Fourier transform of ψ, ψ̂(k) = e
−
σ2(kµ−1)2

2µ2 +e
−
σ2(kµ+1)2

2µ2√
2
(
1+e−σ2/µ2

)√
π/σ

has been used.

From (4.9)-(4.10), it is straightforward to notice that in the case where µ � σ, one
has R ≈ σ and λDB ≈ µ. This confirms how R is indeed related to the average size of
the system and λDB to the minimal size of its spatial fluctuations.

4.2.2 Classicality

We now define a very useful parameter which is employed to describe and identify
the different physical regimes of the Schrödinger–Newton equation. This parameter
points out how much the quantum effects are negligible compared to the effect due
to the gravitational interaction, thus, how close one is to the semiclassical regime
of the system. In the optical framework on the other hand, it can be interpreted as
a parameter which quantifies how much the self-focusing interaction is dominating
over diffraction.

This parameter is defined as

χ =
λDB
R
, (4.11)

which is the ratio between the two spatial scales we introduced, λDB and R, such
that the more the De Broglie wavelength is small compared to the average size of the
system, the more the quantum pressure related to the Heisenberg uncertainty relation
can be neglected. In general this is a dynamical quantity, because both R and λDB
change with time. However, near the quasi-stationary state, it can be approximated
with a constant. One way to do that, is defining the typical De Broglie wavelength as
the scale at which the kinetic and the potential energy are of the same magnitude. In
the case of two spatial dimensions, one has

 h2

mλ2DBeq
≈ mGM ⇒ λDBeq =

 h

m

1√
GM

. (4.12)

Through numerical simulations, we observe that the typical average size of the sys-
tem reamins of the same order of magnitude compared with the initial size. For this
reason we take Rtyp = σ. In this way, one obtains for the expression of χ

χ =
 h

m

1√
GMσ

. (4.13)

In the optical system, the values of λDB,eq and χ can be obtained either by doing
the same computations, or by using the mapping defined in (4.3), leading to

λDB =

√
2 π κnb
k2 αβP

χ =

√
2 π κnb
k2 αβP σ2

. (4.14)
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Figure 4.2 – Plot of the average size of the laser beam < r >= R as a function of the longitu-
dinal coordinate z in units of zdyn, for different values of χ.

In Figure 4.2, we show how varying χ affects the dynamics of the average size of
the system, obtained from the numerical simulations for the optical version of the
Newton–Schrödinger equation. When χ & 1, analogue quantum effects start being
important, with the system initially expanding because of the quantum pressure (or
diffraction in the optical framework) dominating over gravity (self-focusing interac-
tion). Whereas, in the semi-classical regime, with χ� 1, the dynamics is dominated
by an initial collapse.

4.2.3 Dynamical scales

Here, we focus on the dynamical scales of the system. As for the spatial case,
the Schrödinger-Newton equation is characterized by two time-scales: one related to
the quantum pressure (or diffraction in optics) and the other one coming from the
gravitational (self-focusing) interaction.

The first one can be defined considering the magnitude of the term containing the
time derivative inside the equation, namely i h∂tψ and comparing it to the kinetic
energy −

 h2

2m ∇2ψ. Thus one has

 h

tk
≈

 h2

mλ2DB
⇒ tk ≈

m
 h
λ2DB. (4.15)

The time-scale related to the gravitational interaction on the other hand, can be
estimated comparing the term containing the time derivative to the potential term,
mVψ

 h

tG
≈ mV, (4.16)

where V is evaluated via the Green’s integral

V(r, t) = 2 πG

∫
dr′G(r, r′) |ψ(r′, t)|2 ≈ GM. (4.17)
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Combining (4.16) and (4.17) one obtains

tG ≈
 h

m

1

GM
. (4.18)

Notice how if on the one hand tk is proportional to the ratio m
 h , on the other

hand tG ∝  h
m , meaning that when the classical limit is considered, i.e. formally

 h
m → 0, the former goes to infinity and the latter goes to zero. Whenever close to the
classical limit, a more meaningful way to quantify the typical scale of the gravitational
interaction, which we call tdyn, is exploiting Newton’s law, namely

m r̈ = −∇V . (4.19)

In this way, using that ∇V ≈ −GMm
R , one has

mR

t2dyn
≈ GMm

R
⇒ tdyn =

R√
GM

. (4.20)

In the optical system, the quantity tdyn is related to the propagation scale z. It can
be obtained using the mapping (4.3), leading to

zdyn =

√
nb κ

αβ

R

P
. (4.21)

4.2.4 Virial Ratio

Another important dynamical scale is the virial ratio Γv, defined in Section 3.2 as
the ratio between the initial value of the kinetic energy K0 and the value of equilib-
rium, given by the virial theorem. As explained in Section 3.2.2, the theorem states
that for any eigenstate of the Hamiltonian, the kinetic energy satisfies

Kv = −
1

2
〈r · ∇V〉, (4.22)

In order to evaluate this quantity, one first needs to compute V = −mΦ in a
suitable form. The computations are done for the adimensionalized equation in the
form of (A.4), with f = 0 and h = 0 (see Appendix A). Since the Green function U of
the two dimensional Laplace operator is U(r, r′) = log |r− r′| [95], one has

〈−r · ∇V〉 = 2 πGm〈
∫
r · ∇U(r, r′) |ψ(r′, t)|2 dr′〉 (4.23)

= Gm

∫∫
r · (r− r′)
|r− r′|2

|ψ(r′, t)|2 |ψ(r, t)|2 dr′dr.

Interchanging r ↔ r′ and exploiting the identity r · (r− r′) + r′ · (r′− r) = |r− r′|2,
together with the normalization of ψ, one obtains

〈−r · ∇V〉 = GM2m

2
. (4.24)

Therefore

Kv =
GM2m

4
, (4.25)
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independently of the initial condition.
For a Gaussian initial condition, ψ(r, t = 0) =

√
M/

(
σ
√
π
)

e−r
2/(2σ2), one has for

the initial kinetic energy

K0 =
− h2

2m

∫
ψ∗(r, t = 0)∇2ψ(r, t = 0)dr =

 h2M

2mσ2
(4.26)

Therefore the virial ratio in this case is

Γv =
K0
Kv

= 2 χ2, (4.27)

which shows how in two spatial dimensions the virial ratio is directly related to the
parameter χ.

As shown in Figure 4.3, where the same quantities as those of Figure 3.8 are plotted
in terms of Γv, for Γv < 1 the system initially collapses while for Γv > 1 it initially
expands before collapsing. Specifically, the Γv > 1 case corresponds to “hot initial
condition" in the gravitational framework, because the initial kinetic energy is larger
then the virial value and therefore the dynamics is initially be dominated by the
kinetic pressure. On the other hand, the Γv < 1 case corresponds to “cold initial
conditions", where the dynamics is characterized by an initial collapse.
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Figure 4.3 – Total kinetic energy in units of the virialized value Kv = (4 χ2)−1, as a function
of time for the 2-dimensional Newton–Schrödinger equation.

4.3 the soliton profile

As discussed in Section 3.2, self-gravitating systems undergo a virialization pro-
cess. In the quantum regime, as described by the quantum virial theorem, the viri-
alization takes place only when the system is in an eigenstate of the Hamiltonian.
However, as mentioned in Section 3.2.2), as the system approaches the classical limit,
namely as  h

m → 0, the classical virialization behavior is recovered. Here, we show
that in the case of the Newton–Schrödinger equation it is possible to compute the
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density profile of the stationary state in the center of the structure by looking for
time-independent solutions of the equation. These time-independent solutions of the
Schrödinger–Newton equation are usually called “solitons” [8, 96]. To derive it, as
done in [97], we consider the equation in the form

−
 h2

2m
∇2ψ+mV ψ = Eψ (4.28)

∇2V = 4 πG |ψ|2,

which can be obtained applying the separation of variables method to the time-
dependent Schrödinger equation. Here ψ and V are only functions of the spatial
coordinates; in addition we focus on real and spherically symmetric functions, i.e.
V = V(r) and ψ = ψ(r) with ψ ∈ R.

With the change of variable

ψ = aS (4.29)

E− V = bW,

where a =
 h√

4πGm3
and b =

 h
m , the equations become

1

2
∇2S+ SW = 0 (4.30)

∇2W = −S2.

These equations are characterized by a scale invariance property: if S(r) and V(r)

are solutions of the system, then the same is true also for ζ2S(r/ζ) and ζ2V(r/ζ),
with ζ being a nonzero scalar. This rescaling can be used to impose a posteriori the
normalization of S.

We look for solutions that are finite and smooth everywhere, which implies

lim
r→∞S(r) = 0 (4.31)

∂S

∂r

∣∣∣∣
r=0

= 0

∂W

∂r

∣∣∣∣
r=0

= 0.

To obtain these solutions, we employ a numerical shooting method as done by Moroz
et al. in [97], then we compare the virialized inner density profile outputted by
time-dependent numerical simulations with the solitonic solution S(r). In Figure 4.4
we show the time-average, |ψ|, of the modulus of the virialized solution profile |ψ|

and the soliton S(r). We observe how |ψ| can be well fitted by S(r) near the origin.
Moreover, the agreement gets more accurate in the cases where χ & 1, see Figure 4.5.
This is due to the fact that the closer one is to the deep quantum regime, the larger the
magnitude of the De Broglie wavelength λDB gets and subsequently the size of the
central soliton increases. On the other hand, as the χ parameter increases, the systems
gets closer to the classical limit and the size of the central solitonic structure decreases
as a consequence of the quantum pressure becoming weaker. For this reason, outer
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regions are not solution of the soliton, but solution of the classical evolution [8], and
in the deep quantum regime they disappear.

Figure 4.4 – Comparison between |ψ| and the soliton solution S(r) in the cases: χa = 0.02,
χb = 0.08, χc = 0.25, χd = 0.35. The plot is in adimensional units.

Figure 4.5 – Comparison between |ψ| and the soliton solution S(r) in the χ = 0.78 case. The
plot is in adimensional units.
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4.4 variational model

In this section, we introduce a variational approach in order to derive an analytical
solution of the Schrödinger-Newton equation. This method so far has only been pre-
sented in three dimensions [98], we derive here the two dimensional version in order
to apply it to the case of interest in optics. The results allow to obtain an approx-
imated analytical solution, which we often employed in order to make some rapid
test or prediction on the system. We start introducing the hydrodynamical picture of
the Schrödinger–Newton equation, which can be obtained with the Madelung Trans-
formation, and then we employ a gaussian ansatz to build the variational model. The
results obtained are finally compared with the numerical solution.

4.4.1 Hydrodynamical picture

Let us consider the Schrödinger–Newton equation

i  h∂tψ+
 h2

2m
∇2ψ−mV ψ = 0

∇2V = 4 πG|ψ|2.
(4.32)

and let us apply the Madelung transformation [99]. This transformation consists of
separating the modulus and phase fields of the the wavefunction, hence switching
from a complex variable ψ(r, t) to two real variables ρ(r, t) and S(r, t). This change
of variable is defined as

ψ(r, t) =
√
ρ(r, t) eiS(r,t). (4.33)

Plugging (4.33) in (4.32) and separating the real and imaginary part, yields

∂ρ

∂t
−

 h

m
∇ρ · ∇S+

 h

m
∇2Sρ = 0 (4.34)

∂S

∂t
−

 h

2m

(∇2√ρ√
ρ

− |∇S|2
)
+
m
 h
V = 0 (4.35)

∇2V = 4 πGρ. (4.36)

Introducing the quantity u =
 h
m∇S, which physically has the dimension of a velocity,

and applying the gradient to (4.36), one gets

∂ρ

∂t
+∇(ρ ·u) = 0 (4.37)

∂u

∂t
+u(∇ ·u) = −∇V +

 h

2m
∇
(∇2√ρ√

ρ

)
(4.38)

∇2V = 4 πGρ. (4.39)

This result can be interpreted as an equivalence between the Schrödinger-Newton
system and a hydrodynamical system. Indeed, (4.37) and (4.38) represent respectively
the continuity and the Euler equation for a fluid with density ρ, velocity field u and

subjected to a potential V , given by (4.39). The 12∇(
∇2√ρ√
ρ ) term can be interpreted as a

pressure. In particular, since it comes from the kinetic energy term of the Schrödinger
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equation, one can interpret it as a kinetic pressure due to Heisenberg uncertainty
relation.

It is convenient at this point, to derive a Lagrangian density associated with this
system. To do that, we write a Lagrangian density as done in [98] for the three
dimensional case and check that it actually gives back (4.37),(4.38),(4.39)) when one
writes the equations of motion associated with it. The Lagrangian density is

L(ρ, S, V) =
 h

m

ρ

2
(∇S)2 + ρ ∂S

∂t
+

 h

m

|∇ρ|2
8ρ

+
m
 h

|∇V |2
8 πG

+
m
 h
ρV . (4.40)

Indeed, writing the Euler-Lagrange equations associated with L, leads to

∂L

∂ρ
= ∇ ·

(
∂L

∂(∇ρ)

)
+
∂

∂t

(
∂L

∂(∂ρ∂t )

)
∂L

∂S
= ∇ ·

(
∂L

∂(∇S)

)
+
∂

∂t

(
∂L

∂(∂S∂t )

)
∂L

∂V
= ∇ ·

(
∂L

∂(∇V)

)
+
∂

∂t

(
∂L

∂(∂V∂t )

)
.

(4.41)

The first equation gives back Euler equation, the second one gives back continuity
equation and the third one, Poisson equation.

4.4.2 Gaussian ansatz

We know try to explicitly solve (4.37),(4.38),(4.39), through a gaussian ansatz for
the function ρ,

ρ(r, t) = N e
− r2

R(t)2 , (4.42)

where N is a normalization constant, fixed in such a way that∫
dr ρ(r, t) =M ⇔ N =

M

πR(z)2
(4.43)

given that we are considering the case of two spatial dimensions.
With this ansatz (4.39), can be solved analytically. Its general solution is

V(r, t) = a−GM Ei
(
−

r2

R(t)2

)
+ b log(r) (4.44)

where Ei is a special function, called Exponential-Integral function, defined as

Ei(r) =
∫∞
−r

e−t

t
dt. (4.45)

Since the integration constants a is just a global constant which does not change the
physics, it can be set to zero. The other integration constant, b, is chosen in such a
way that the potential is finite at the origin. This choice is motivated from the fact
that in the optical setup we are interested in, the potential corresponds to a variation
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of refraction index and it cannot be singular at the origin. Considering the Taylor
expansion of the Exponential-Integral function near the origin

Ei(−r2) = γ+ 2 log r+O
(
r2
)
, (4.46)

where γ is the Euler’s constant, with numerical value γ ≈ 0.577216, one gets that
the potential has finite value at the origin for b = 2G. This choice of the integration
constants lead to

V(r, t) = −GM Ei
(
−

r2

R(t)2

)
+ 2GM log(r). (4.47)

Concerning the continuity equation, it is exactly solved by the velocity field u(r, t) =
Ṙ(t)
R(t)r, as it can be easily checked by substitution. The phase function is therefore

S(r, t) =
m

2  h

Ṙ(t)

R(t)
r2 (4.48)

where the dot denotes a derivative with respect to time.
Plugging (4.42),(4.47),(4.48) in (4.41), one gets the Lagrangian density associated

with the gaussian ansatz, which at this point only depends on r = (x, y) and time.
Since the information about the r dependence are already contained in the ansatz, it
is possible to switch from the Lagrangian density L to the Lagrangian, integrating
the spatial variables. However, this operation must be done carefully because the

term
∫
m
 h

|∇V |2

8πG dr is not bounded. For this reason, the Lagrangian density is split in
two parts

L(r, t) = L1(r, t) +L2(r, t) (4.49)

L1(r, t) =
 h

m

ρ

2
(∇S)2 + ρ ∂S

∂t
+

 h

m

|∇ρ|2
8ρ

+
m
 h
ρV (4.50)

L2(r, t) =
m
 h

|∇V |2
8 πG

. (4.51)

The first term L1 can be directly integrated with respect to r. Concerning the second
term, L2, first we write the equation of motions associated with it and then we
integrate them with respect to spatial variables. This ensures all the integrals not to
be divergent.

The equation of motion can therefore be written as

R̈ =
 h2

m2
1

R3
−
MG

R
(4.52)

which represents, in the Newtonian picture, the equation of motion of a point-like
particle of mass m evolving in an external potential Φ(R) = −

 h2

2m
1
R2

+mMG logR.
The first term of this potential is repulsive and associated with a kinetic pressure,
while the second term, is attractive and associated with two dimensional gravity. For
small values of R the first term dominates on the second one, while when R is large,
gravity is the dominant interaction.



4.4 variational model 45

0 0.1 0.2 0.3 0.4

0

1

2

3

4

5
10

-4

Figure 4.6 – Comparison for the function R(z) between the variational model and the
Newton–Schrödinger equation.

4.4.2.1 Application to the optical setup

This variational model can be useful in the optical framework of the Newton–
Schrödinger equation, when a gaussian beam initial condition is considered. Indeed,
in this case one expects the real solution to be not so different from a Gaussian for a
small propagation distance.

The variational model in the optical framework can be derived applying the map-
ping defined by Equation 4.3, with

I(r⊥, z) =
P

πR2(z)
e
−

r⊥
R2(z) . (4.53)

In this case the variational approach yields

R̈ =
1

k2
1

R3
−

P αβ

2πκnb

1

R
(4.54)

where dots indicate derivatives with respect to z.

4.4.3 Comparison with numerical solution

Even though equation (4.54) can be analytically solved only for the inverse function
z(R), the so obtained solution z(R) cannot be inverted analytically, for this reason we
solve the equation numerically.

In Figure 4.6 we show the comparison for the function R(z) between the variational
model and the Newton–Schrödinger equation. For the latter, R(z) as been evaluated
as

R(z)
def
=

2√
π
〈
√
x2 + y2〉 = 2√

π

∫∫
dxdy I(x, y, z)

√
x2 + y2∫∫

dxdy I(x, y, z)
(4.55)

given that plugging equation (4.53) into (4.55) returns R(z).
As shown in Figure 4.7, the model approximates accurately the solution only in the

early phase of the dynamics, for values of propagation distance much smaller than
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Figure 4.7 – Comparison of several snapshots of ρ(x, y = 0, z) in the early part of the dynam-
ics between the variational model ρVM and the Newton–Schrödinger equation
ρSN.
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Figure 4.8 – Comparison of several snapshots of ρ(x, y = 0, z) near the collapse between the
variational model ρVM and the Newton–Schrödinger equation ρSN.

zc ≈ 0.2m, the minimum point of R(z), which is associated with the collapse. This
is due the to fact that for z � zc the solution is not far from a gaussian, and then
as z increases it develops some more complicated features which break the gaussian
profile, as shown in Figure 4.8.
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5
N U M E R I C A L M E T H O D S

The Newton–Schrödinger equation is a system of nonlinear and nonlocal partial
differential equations whose solution can generally be evaluated with a numerical
method. In this chapter we list and explain the different numerical algorithms ex-
ploited during this thesis work, to solve not only the Newton–Schrödinger system
but also other Schrödinger-like equations with different potential terms. First, we
discuss the spatial resolution, focusing on spectral methods based on fast Fourier
transform techniques. Second, we consider the temporal resolution. For the latter,
there are essentially two families of methods commonly employed to solve this kind
of equations: the integrating factor technique and the Split-Step algorithm. Finally,
we explain how those methods work, both in the case of fixed and adaptive time-
steps. The comparisons between all the different numerical schemes considered, the
advantages and disadvantages of each method together with an improvement of the
integrating factor algorithm, are then discussed in the next chapters.

5.1 numerical spatial resolution

The numerical spatial resolution of Schrödinger-like equations, can be addressed
with several categories of numerical methods. Among the most popular ones, one
can find finite difference methods [100] and spectral (or pseudo-spectral) methods
[101–103]. While a finite difference scheme often introduces excessive numerical er-
rors, spectral methods are known to be more efficient, combining very high accuracy
with a small computational cost. In addition, spectral methods are characterized by
an exponential error decay rate, which is much faster if compared to the polynomial
one, typical of finite difference schemes. Moreover, methods belonging to the spec-
tral family are quite advantageous and flexible whenever higher order derivatives
and different types of partial differential equations are considered. In the context
of meteorology, ocean waves, seismology and turbulence for example, they are well
known to be a robust and successful numerical tool [103]. These are the main reasons
why, in this thesis, we choose to focus on spectral methods rather than finite differ-
ence techniques, for the spatial numerical resolution of the equations considered. The
details of this chosen methods, are explained in the next sections.

5.1.1 Spectral and pseudo-spectral Fourier methods

When solving a differential equation with a spectral method, the solution ψ(x) is
decomposed as

ψ(x) =

N∑
n=0

anφn(x), (5.1)

where φn are some differentiable functions which represent a basis and an are the
coefficients. In the context of a numerical solution the series (5.1) is obviously trun-
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cated, resulting in a approximation. The derivative with respect to the variable x are
then evaluated analytically by means of this decomposition. In this way, every time
a spatial derivative is computed, the information coming from the entire domain is
taken into account. This is a crucial advantage compared to finite difference methods,
which compute derivatives exploiting information coming only from a few neighbor-
hood points. The coefficients an can be calculated following several approaches, in-
terested readers can consult [104] for further details. We focus on the pseudo-spectral
method case, for which those coefficients are evaluated in some fixed points of the
domain. In particular we use pseudo-spectral Fourier methods, which employ a de-
composition with trigonometric series, allowing to exploit the Fast-Fourier-Transform
algorithm. In the next paragraph, we briefly illustrate how this method works.

5.1.1.1 Fast Fourier transform

The fast Fourier transform algorithm computes the discrete Fourier transform of
a function, in an efficient way. If one considers the definition of the discrete Fourier
transform for the N-dimensional vector x = (x0, x1, ..., xN−1),

Xk =

N−1∑
n=0

xn e−
2π in
N k k ∈ {0, 1, 2, ..., N− 1}, (5.2)

and devise the algorithm by simply applying this procedure, the number of opera-
tions needed for the computation is O(N2). Nevertheless, because of the symmetry
of the discrete Fourier transform, it is possible to divide the sum (5.2) of N terms into
two sums of N2 terms each,

Xk =

N/2−1∑
n=0

x2n e−
2π in
N/2

k
+ e

2π ik
N

N/2−1∑
n=0

x2n+1 e−
2π in
N/2

k
,

separating the contributes of the odd even and even index values. This allows to
compute the discrete Fourier transform recursively in O(N logN) operations and is
known as Cooley-Tukey fast Fourier transform algorithm [105]. Here, to evaluate the
Fourier transforms which appears in all the numerical algorithms we consider, we
use the FFTW library implementation [106].

5.1.2 Spatial discretization in Fourier space and Nyquist frequency

The spatial discretization in Fourier space is in general subjected to some con-
straints. First, in order to achieve a proper sampling of the signal, the discretization
must incorporate a large enough number of points N. If the physical space is char-
acterized by N points, over a domain of size L, then the discretization step is by
definition

∆x =
L

N
, (5.3)

and each site xn, with n ∈ {0, 1, ..., N− 1} satisfies

xn = ∆xn =
L

N
n. (5.4)
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The second constraint is that the step of the spatial discretization in Fourier space
must be defined as

∆k =
2 π

L
, (5.5)

which also defines the fundamental frequency.
Each mode kn verifies

kn = ∆kn =
2 π

L
n. (5.6)

Moreover, there exists a critical frequency, called the Nyquist frequency, defined as
kNyquist = 1

2∆x , for which the maximal frequency of the signal kmax must satisfy

kmax < kNyquist. (5.7)

Therefore positive frequencies k (+)
n and negative ones k (−)

n must obey to

0 6 k
(+)
n 6 kNyquist, n ∈ {0, 1, ..., [N/2] − 1} (5.8)

−kNyquist 6 k
(−)
n 6 0, n ∈ {[N/2] + 1, ..., N− 1},

where squared brackets denote the integer part. This taken into account, we define
the numerical Fourier modes as

kn =

2πL n if n ∈ {0, 1, ..., [N/2] − 1},
2π
L (n − N) if n ∈ {[N/2] + 1, ..., N− 1},

(5.9)

where the n =
[
N
2

]
case corresponds to the Nyquist frequency, whose corresponding

signal value must be put to zero.

5.1.3 Aliasing errors

While dealing with a spectral method, a particular category of numerical errors,
known as aliasing errors [101], must be considered and treated properly. The origin
of these errors is the truncated decomposition, defined in (5.1), for which a discrete
sum of a Fourier transform is truncated in a finite number of modes. If for example
a simple product between two functions in physical space is considered, it is easy to
check that the discretization of the product does not correspond to the product of
the discretised functions. Looking at the Fourier space, one has indeed a convolution
in the first case and a circular convolution in the second one. This is the source
of aliasing errors, which would destabilize the numerical solution for high wave-
numbers in Fourier space, if not treated properly.

A very simple way to avoid this kind of errors is the zero-padding technique with
the 4

2 -rule [102]. This anti-aliasing procedure deals with extending the spectrum of
the solution, i.e., the sizes of the discretization grid, of a factor 2 and then artificially
imposing all the frequency in the extended region to be zero. In the case where
one needs to numerically evaluate with a spectral method the modulus square of a
given signal, say |ψ|2 for example, this nonlinearity will be subjected to the filtering
described in Algorithm 1.
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Algorithm 1 : dealiasing

1: ψ

2: FFT [ψ]

3: FFT [ψ]← FFT [ψ]f
4: FFT−1[FFT [ψ]f]

5: |ψ|2 ← FFT−1[FFT [ψ]f]
∗FFT−1[FFT [ψ]f].

Here the subscript f, which stands for “filtered”, denotes the zero-padding filter
with the 4

2 -rule, FFT indicates the Fast-Fourier-Transform and the “star” notation is
related to complex conjugation. In Figure 5.1 we show an example of dealiasing for
the |ψ|2 nonlinearity, for a simulation where the Fourier transform is repeated 100
times, by coming back to real space with an inverse one.

0 10 20 30 40

10
-15

10
-10

10
-5

10
0

Figure 5.1 – Fourier transform of |ψ|2 = |e−
x2

2 |2 with the aliasing treatment (red line) and
without it (black line). The aliasing treatment is the one described in Algorithm
1 with the 42 -rule. 10−16 is the machine precision.

5.1.4 Resolution of Poisson’s equation

We now discuss in detail the pseudo-spectral Fourier method employed to obtain
the solution φ of the Poisson equation,

∇2φ(x) = ρ(x), (5.10)

which appears in the Schrödinger–Newton system. Here, we assume that both the
function φ and ρ are defined on an open set of Rd, for some integer d > 1. In
addition, we assume that the source ρ is well known.
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When a pseudo-spectral Fourier method is employed, the Poisson equation in
Fourier space becomes,

φ̂(k) = Ĝ(k)ρ̂(k), (5.11)

where the hat indicates Fourier transform of the underneath function, which is de-
fined, in d dimensions, for the generic function f(x) as

f̂(k) =
∫
ddx f(x) exp(ik · x). (5.12)

The function Ĝ(k) is the Fourier transform of the Green function of the Laplace
operator, defined as

∇2G(x) = δ(x). (5.13)

In general, boundary conditions must be taken into account when computing G. In
(5.13) we considered the free-space Green function. Switching to Fourier space, (5.13)
reads

Ĝ(k) = −
1

|k|2
. (5.14)

The original function is retrieved applying the inverse Fourier transform

f(x) =
1

(2π)d

∫
ddk f̂(k) exp(−ik · x). (5.15)

It is in principle simple to calculate the solution of the Poisson equation by calculating
the inverse Fourier transform of (5.11). However, one has to be careful when the
density source has not zero average, i.e.

M =

∫
ddx ρ(x) 6= 0. (5.16)

This is due to the fact that ρ̂(k = 0) = M gives a numerical divergence for k = 0

which needs to be treated carefully. It is a tricky task if in addition the system is
subjected to open boundary conditions, i.e.,

φ(r→∞) ∼MG(r), (5.17)

where r = |x|. Two main families of methods appear in the literature: the one due to
Hockney [38] and the one due to James [107]. We focus on the former, providing a
simple pedagogical example in d = 1; readers interested to James method can also
consult [108] for a more compact description.

In Hockney’s method the divergence is regularized in k = 0 doubling, for each
spatial dimension, the simulation box, and modifying the Green’s function in an ap-
propriate manner. In one spatial dimension (see [38] and [109] for a straightforward
generalization to d = 2 and d = 3 respectively) the Green’s function, for an original
simulation box of size L centered in x = L/2, is modified as

GH(x) =

G(x) 0 6 x 6 L

G(2L− x) L < x 6 2L
(5.18)
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When this modified Green function is repeated periodically, with period 2 L, the
correct potential is reproduced in the region [0, L]. The singularity in Fourier space
at k = 0 is then artificially removed, imposing Ĝ(k) = 0. The potential is calculated
computing the discrete Fourier transform of (5.18) (using a fast Fourier transform
technique). For a spatial discretization with N points, in one dimension xn = Ln/N,
km = 2πm/L (where n and m are integers) the Fourier coefficients are

Ĝm =

N−1∑
n=0

Gn exp
(
i
2π

N
mn

)
, (5.19)

with Gn = G(xn) and Ĝm = Ĝ(km). The inverse discrete Fourier transform is

Gn =
1

N

N−1∑
n=0

Ĝm exp
(
−i
2π

N
mn

)
. (5.20)

The potential φn is calculated performing the inverse discrete Fourier transform
(5.20) of

φ̂m = Ĝm ρ̂m, (5.21)

where φ̂m and ρ̂m are defined analogously to Ĝm. Note that this doubling procedure
leads to a use of 2d more points than using only the original simulation box. In
Figure 5.2 this method is illustrated for a Gaussian density

ρ(x) =
1√
2πσ2

exp
(
−
(x− x0)

2

2σ2
,

)
(5.22)

whose potential is known analytically,

φ(x) =
1

2
(x− x0) erf

(
x− x0√
2σ

)
+

σ√
2π

exp
(
−
(x− x0)

2

2σ2

)
, (5.23)

with L = 1, x0 = 1/3 and σ = 0.04. We observe that the correct potential is obtained
in the interval x ∈ [0, L].

5.2 numerical time resolution

Like the spatial integration, also the time integration can be performed with dif-
ferent numerical schemes. In general a temporal integrator can be either explicit or
implicit. In the case of explicit methods, the information about the system at the
present instant of time is used to evaluate the solution at a larger time. For implicit
schemes on the other hand, the solution is evaluated considering the information
about the system at a present instant of time and at the successive one. Albeit im-
plicit methods usually allow more stability also when dealing with stiff equations,
they are computationally more expensive, this is why in this thesis we consider only
explicit methods.

For the the Schrödinger equation, there are two main families of methods that are
usually employed to recover the numerical solution: the integrating factor technique,
which is essentially a change of variable allowing the equation to be solved with an
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Figure 5.2 – Left: computation of φ(x) for the density (5.22) with the Hockney’s method and
with the analytical solution (5.23). Right: relative difference between numerical
and analytical solution for a grid of N = 105 points. 10−16 is the machine
precision

integrator that typically relies on some Runge-Kutta scheme, and Splitting methods.
Both of those families can carry on the numerical integration either by using a fixed
time-step, or with an adaptive one.

For each class of the aforementioned numerical methods, we start by describing
how it can be derived in a general framework, and then we proceed by explaining
how it can be applied in the particular case of the Schrödinger equation. We explain
how one can switch from the fixed time-step scheme to the adaptive one and list the
particular numerical algorithms we relied on.

5.2.1 Integrating factor

The integrating factor, or Lawson transform [27, 110], is a numerical method which
allows to simplify the temporal resolution of a given differential equation exploiting
a change of variable. It can be applied whenever one deals with a partial differential
equation of the form

∂tψ = f(ψ(r, t), t). (5.24)

The right hand side is split into linear and nonlinear parts, so the equation is
rewritten

∂tψ + Lψ = N(r, t, ψ) , (5.25)

where L is an easily computable autonomous linear operator and N
def
= F + Lψ is

the remaining (usually) nonlinear part. At the n-th time-step, with t ∈ [tn, tn+1],
considering the change of dependent variable

φ
def
= exp[ (t− tn)L ]ψ, (5.26)

one has

ψt = exp[ (tn − t)L ] (φt − Lφ ) (5.27)
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so φ = ψ at t = tn. The equation (5.25) is rewritten

φt = exp[ (t− tn)L ]N. (5.28)

The operator L being well chosen, the stiffness of (5.25) is considerably reduced and
the equation (5.28) is (hopefully) well approximated by algebraic polynomials for t ∈
[tn; tn+1]. Thus, standard time-stepping methods, such as an adaptive Runge–Kutta
method [111, 112], can be used to efficiently solve (5.28). In Figure 5.3 we show the
advantages of the integrating factor technique, comparing the solution of (5.24) with
a direct integration, namely in the form of (5.25) and without the exponential change
of variable (5.28). As expected the integrating factor allows to improve remarkably
the accuracy of the simulation, conserving the energy with zero machine precision
and guaranteeing at the same time a much larger time-step, resulting in a smaller
global computational time.
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Figure 5.3 – Comparison of the solution of one-dimensional nonlinear Schrödinger, solved
with the Dormand & Prince adaptive Runge-Kutta algorithm with a direct inte-
gration (DI), namely in the form of (5.25) and with the integrating factor (IF), i.e.
(5.28). Left: time-step ∆t as a function of time. Right: error on the conservation
of energy ∆E as a function of time. The exact definition of ∆E, together with the
details of the numerical simulation can be found in Section 7.2 and Section 7.3.1
respectively.

5.2.2 Modified integrating factor

If properly chosen, the integrating factor is able to reduce the stiffness of the equa-
tion, making the numerical integration more efficient. In addition, the magnitude of
the nonlinear part of (5.28) also contributes to the efficiency of the numerical integra-
tion. Specifically, if N is zero, ∂tφ = 0 and the integrating factor technique is exact.
Thus, the efficiency of the algorithm is expected to increase as the magnitude of N

gets smaller, and subsequently the overall computational time should be reduced.
For this reason, one possible strategy to improve the integrating factor is minimizing
the magnitude of N at each time-step.

The modified integrating factor method [113] consists in subtracting from both
sides of (5.25) a polynomial in time, P(t),

ψ ′(t) + Lψ(t) − P(t) = N(t, ψ(t)) − P(t). (5.29)



5.2 numerical time resolution 57

To keep exactly the same numerical result compared to the standard integrating fac-
tor method, the degree of this polynomial must not be larger than the order of the
numerical integrator employed. Performing the change of variable

ψ(t) = e−L(t−t0)φ(t) +

∫t
t0

eL(t ′−t)P(t ′)dt ′, (5.30)

equation (5.29) reads

φ ′(t) = eL(t−t0) (N(t, ψ(t)) − P(t)). (5.31)

The time derivative of (5.30) being

ψ ′(t) = −L e−L(t−t0)φ(t) + e−L(t−t0)φ ′(t) (5.32)

−

∫t
t0

L eL(t ′−t) P(t ′)dt ′ + P(t). (5.33)

We choose P(t) such that the right hand side is zero at the initial time t0, namely
φ ′(t0) = 0. Hence,

P(t) =

p∑
`=0

(t− t0)
`

`!

[
ψ(`+1)(t0) +Lψ(`)(t0)

]
, (5.34)

where p is the order of the method employed to numerically integrate the equation.
Using (5.25) one can easily check that this form of P(t) satisfies P(t0) = N(t0, ψ(t0)).
The terms of the sum with ` > 0 require to evaluate the higher order derivatives of
ψ, which can be calculated using an approximation, like the Dense Output method
[111].

In order to keep the computational cost of the method as low as possible, we choose
to truncate the sum at the 0th order, i.e.,

P(t) = ψ ′(t0) +Lψ(t0) = N(t0, ψ(t0)). (5.35)

Therefore the modified integrating factor method deals with solving (5.32) imposing
(5.35) at the beginning of each time-iteration.

As discussed in Chapter 7, the improvement of this method compared to the stan-
dard integrating factor technique depends on the system. For example, as shown
in Figure 5.4, the improvement is remarkable in the nonlinear Schrödinger equation
case, and quite negligible for the Newton-Schrödinger equation.
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Figure 5.4 – Time-step as a function of time for the modified Integraing factor method com-
pared with the standard integrating factor, applied to the two dimensional non-
linear Schrödinger (left) and Newton-Schrödinger equations (right) with the
adaptive Dormand & Prince solver.
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5.2.2.1 Fixed time-steps explicit Runge–Kutta methods

A temporal Runge–Kutta integrator of order q with standard time-stepping meth-
ods, is a numerical algorithm which allows to obtain the exact numerical solution of
a differential equation for a polynomial whose order is smaller or equal to q. For an
equation of the form

∂tφ = f(φ(r, t), t). (5.36)

the explicit Runge–Kutta schemes is denoted as

φ`+1 = φ` + h

s∑
i=0

bi ki, (5.37)

where s is the number of stages needed to evaluate the solution, h is the time step, `
indicates the number of iterations. The quantities ki are defined as

k1 = h f( t`, φ` ) (5.38)

k2 = h f( t` + c2 h, φ` + ha2,1 k1 )

k3 = h f( t` + c3 h, φ` + h (a3,1 k1 + a3,2 k2) )

...

ks = h f( t` + cs h, φ` + h (as,1 k1 + as,2 k2 + . . . as,s−1 ks−1) ),

where the coefficients ai, bi and ci are expressed by some known relations whose
derivation can be found in [111]. This coefficient are usually arranged in the so-called
Butcher tableau [111] attached to the method. The latter takes the form

0

c2 a2,1

c3 a3,1 a3,2

...
...

...
. . .

cs as,1 as,2 . . . as,s−1

b1 b2 . . . bs−1 bs.
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For example, for a 4th order Runge–Kutta method, the corresponding Butcher tableau
is

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6 .

Thus one has

φ`+1 = φ` +
1

6
( k1 + 2 k2 + 2 k3 + k4 ), (5.39)

where the quantities ki, i ∈ {1, 2, 3, 4}, are

k1 = h f( t`, φ` ) (5.40)

k2 = h f( t` +
h

2
, φ` +

k1
2

)

k3 = h f( t` +
h

2
, φ` +

k2
2

)

k4 = h f( t` + h, φ` + k3 ).

5.2.2.2 Application to the Schrödinger equation

We now show how to apply the integrating factor technique to the Schrödinger
equation. We consider its adimensional form without loss of generality (see Ap-
pendix A), and we discuss the case of a general potential V ,

i∂tψ +
1

2
∇2ψ − V ψ = 0. (5.41)

The kinetic energy term, i.e. 1
2 ∇2ψ, represents the linear part, while, in the

Schrödinger-Newton equation for example, the potential acts on the wavefunction
as a nonlinear operator. Switching to Fourier space in position the equation becomes

i
∂ψ̂

∂t
−
1

2
k2 ψ̂ − V̂ ψ = 0. (5.42)

Therefore the system is now in a form where the application of the integrating factor

method is straightforward. Setting φ(k, t) = ψ̂(k, t)ei k
2

2 (t−t0), one obtains

∂φ

∂t
= −i ei k

2

2 (t−t0) V̂ ψ. (5.43)
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5.2.2.3 Adaptive Runge–Kutta integrators

Adaptive Runge–Kutta methods [111, 112], also known as embedded Runge–Kutta
methods, allow to numerically solve a differential equation with a time-step which
is not fixed but changes in a smart way with the dynamics. For the time stepping,
embedded Runge–Kutta methods estimate an error of quadrature comparing the
results of two orders of the time integrator [111]. For a solver of order N with an
embedded (N− 1)-order scheme (hereafter schemes of orders {N,N− 1}), at the n-th
time step, the error ∆n is

∆n
def
=

√√√√√ 1

M

M−1∑
m=0


∣∣∣φ(km, tn) − φ̃(km, tn)

∣∣∣
TOL + max

(
|φ(km, tn)| ,

∣∣φ̃(km, tn)∣∣)× TOL

2, (5.44)

where M is the number of spatial nodes, φ(km, tn) is the N-th order solution at the
m-th Fourier mode, the “tilde” notation indicating the solution at order N− 1, and
TOL is the tolerance (parameter determining the precision of the time-integration).
The time step hn is accepted if the error ∆n is smaller than than the tolerance TOL,
otherwise hn is reduced and this step is recomputed. hn being accepted, the next
time step hn+1 is obtained assuming the largest error equal to the tolerance. The
latter is set as a free parameter at the beginning of the simulation and the smaller
its value is, the better the accuracy gets; in contrast, the time-step decreases, slowing
down the simulation. In Figure 5.5 we display this interplay between speed and
accuracy when the tolerance is changed: it confirms how decreasing the tolerance
improves the precision of the simulations, in particular zero machine precision is
achieved for the error on the energy conservation with a tolerance of 10−9. The
computational cost of this small tolerance is however relatively small in this case:
switching from tol = 10−7 to tol = 10−9, leads to an average time step which is only
about 2.5 smaller
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Figure 5.5 – Comparison of the solution of the one-dimensional nonlinear Schrödinger,
solved with the Dormand & Prince adaptive Runge-Kutta algorithm with the
integrating factor technique for different values of tolerances. Left plot: time-
step ∆t as a function of time. Right plot: error on the conservation of energy ∆E
as a function of time.
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As standard time-stepping methods, also adaptive Runge-Kutta methods are at-
tached with a Butcher tableau representing all the coefficients which characterize the
scheme. For an equation of the form

∂tφ = f(φ(r, t), t), (5.45)

the explicit embedded Runge–Kutta scheme is denoted as

φ`+1 = φ` + h

s∑
i=0

bi ki (5.46)

φ̃`+1 = φ` + h

s∑
i=0

b̃i ki,

where s is the number of stages needed to evaluate the solution, h is the time step, `
indicates the number of iterations and ki are defined as

k1 = h f( t`, φ` ) (5.47)

k2 = h f( t` + c2 h, φ` + ha2,1 k1 )

k3 = h f( t` + c3 h, φ` + h (a3,1 k1 + a3,2 k2) )

...

ks = h f( t` + cs h, φ` + h (as,1 k1 + as,2 k2 + . . . as,s−1 ks−1) ).

The latter Butcher tableau encompassing the values of the coefficients ai, bi, b̃i and
ci in this case is

0

c2 a2,1

c3 a3,1 a3,2

...
...

...
. . .

cs as,1 as,2 . . . as,s−1

b1 b2 . . . bs−1 bs

b̃1 b̃2 . . . b̃s−1 b̃s.

Popular integrators we use in this thesis are the Dormand & Prince 5(4) [114], Tsi-
touras 5(4) [115] and Fehlberg 7(8) [111].

pi step-control In order to avoid an excess of rejected time steps, we use the
Proportional Integral (PI) Step Control [116], which chooses the optimal time step
hn+1 as

hn+1 = hn∆
−b
n ∆cn−1, (5.48)
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where b = 0.7/p, c = 0.4/p, p being the order of the chosen integrator [117]. Inter-
ested readers should refer to [116] for details on this classical procedure.

dormand & prince The Dormand & Prince method [114], is a 5th order solver,
embedded with a 4th order scheme. The corresponding Butcher tableau is

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 −5615

32
9

8
9

19372
6561 −253602187

64448
6561 −212729

1 9017
3168 −35533

46732
5247

49
176 − 5103

18656

1 35
384

500
1113

500
1113

125
192 −21876784

11
84

35
384 0 500

1113
125
192 −21876784

11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40 .

Thus the solutions are

φl+1 = φl +
35

384
k1 +

500

1113
k3 +

125

192
k4 −

2187

6784
k5 (5.49)

+
11

84
k6

φ̃l+1 = φl +
5179

57600
k1 +

7571

16695
k3 +

393

640
k4 −

92097

339200
k5

+
187

2100
k6 +

1

40
k7,

where

k1 = h f(tl, φl) (5.50)

k2 = h f(tl +
1

5
h, φl +

1

5
k1)

k3 = h f(tl +
3

10
h, φl +

3

40
k1 +

9

40
k2)

k4 = h f(tl +
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5
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15
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9
k3)
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25360
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k4)

k6 = h f(tl + h, φl +
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k1 −
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33
k2 +

46732
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5103
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k5)

k7 = h f(tl + h, φl +
35

384
k1 +

500

1113
k3 +

125

192
k4 −

2187

6784
k5 +

11

84
k6).
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tsitouras The Tsitouras method [115], is another 5th order solver, embedded
with a 4th order scheme. Even though this algorithm is of the same order of the Dor-
mand & Prince one, depending on the equation considered it can provide a greater
computational speed by keeping the same accuracy compared with the other 5(4)
method we described. The corresponding coefficients of Butcher tableau are listed in
Appendix B.

fehlberg The Fehlberg method [111], is a 7th order solver, embedded with a 8th

order scheme. We employ this high order scheme to establish reference simulation
which is used for further discussions and comparisons on the accuracy of the other
methods described so far. The corresponding Butcher tableau is
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5.2.3 Splitting methods

The Split-Step method [28] can be applied to any differential equation of the form

∂ψ(r, t)
∂t

= D̂ψ(r, t), (5.51)
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where D̂ is a differential operator, which can be split in two terms

D̂ = F̂+ R̂, (5.52)

in such a way that the differential equations

∂ψF(r, t)
∂t

= F̂ψF(r, t) (5.53)

∂ψR(r, t)
∂t

= R̂ψR(r, t),

can be easily solved, as long as D̂ does not depend on time and D̂ψ(r, t) is continuous
with continuous derivatives. In this case, one formally has

ψF(r, t) = eF̂tψ(r, 0) (5.54)

ψR(r, t) = eR̂tψ(r, 0),

where the exponential of an operator must be interpreted as a series

eD̂t =
∞∑
n=1

tn
D̂n

n!
. (5.55)

The Split-Step method, applied in a time interval [0, t], deals with subdividing the
interval in N small steps of size h and applying in each step the two operators F̂
and R̂ separately. For example, a simple splitting method can be derived from (5.55),
using

eD̂t = e(F̂+R̂)t = eF̂teR̂t +O(t2). (5.56)

and then applying this to the solution of the equation

ψ(r, tn+1) = eF̂heR̂hψ(r, tn) n ∈ {0, 1, 2, ..., N− 1}, (5.57)

tn+1 = tn + hn, t0 = 0, tN−1 = t.

5.2.3.1 Local Truncation Error: Symmetric 2nd order Split-Step example

The error of this method is related to the O(t2) term in (5.56), also known as local
truncation error. The latter is zero in the case where F̂ and R̂ commute, i.e.

[F̂, R̂] = F̂R̂− R̂F̂ = 0

which, as discussed in the next paragraph, is in general not true in the Schrödinger
equation case. It is possible though, to reduce the local truncation error, considering
a more accurate splitting

eD̂t = e
F̂
2teR̂te

F̂
2t +O(t3) = e

R̂
2 teF̂te

R̂
2 t +O(t3) (5.58)

as can be easily proved considering the series in (5.55) up to second order. This is
called symmetric 2nd order Split-Step method and follows the ideas of other similar
algorithms as the Leap-Frog one, often employed in molecular dynamics simulations
[118]. Moreover, when many steps are applied successively, the algorithm efficiency
can be increased by merging two consecutive iterations, yielding

ψ(r, tk+1) = e
F̂
2heR̂heF̂heR̂he

F̂
2hψ(r, tk). (5.59)
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5.2.3.2 Adaptation to the Schrödinger equation

In the particular case of the Schrödinger equation, the operator D̂ coincides with
the Hamiltionian Ĥ = K̂ + V̂ , which is split in the kinetic energy term K̂ and the
potential one V̂ . The assumptions according to which D̂ψ(r, t) ∈ C1 is , in the
Schrödinger equation case, true, as it models a physical system and therefore the
wave function together with its derivatives have to be continuous.

In the case where D̂ is time dependent, the solution is more complicated. However,
as discussed in the next paragraph, such operator is usually evaluated over small
steps where it can be assumed almost constant. In order to analyse in detail how the
method works, let us consider the Schrödinger equation for a general Hamiltonian,

i∂tψ = Ĥψ. (5.60)

The solution of (5.60) is given by

ψ(r, t) = e−iĤ(t−t0)ψ(r, t0). (5.61)

Except for very few cases where an analytical solution is known, it is not possible to
apply the operator e−iĤ(t−t0) to ψ(r, t0). Moreover, since K̂ and V̂ do not commute,
one has

e−iĤ(t−t0) 6= e−iK̂(t−t0)e−iV̂(t−t0), (5.62)

so it is not possible to simply apply the kinetic and the potential energy operators
separately. Nevertheless it is possible to approximate at a given order the quantity
e−iĤ(t−t0) as a product of a sequence of the potential and the kinetic term separated
with appropriated coefficients. For example up to order 2 in (t− t0) one has

e−iĤ(t−t0) = e−iK̂( (t−t0)
2 e−iV̂(t−t0)e−iK (t−t0)

2 +O
(
(t− t0)

3
)
, (5.63)

which is also known as Trotter Splitting formula [119] and corresponds to the Split-
Step order 2 integration method. At higher order the problem, also known as Suzuki-
Trotter expansion [120], is in general more complicated and there exist more than one
solution, which can be determined with the Baker – Campbell – Hausdorff formula
[119]. In this thesis we consider the Split-Step order 2 (SS2), order 4 (SS4) and order
6 (SS6), together with and adaptive scheme, all these algorithms are described in
Appendix B.

schrödinger–newton with time-dependent potential In order to ap-
ply this algorithm to the case of a time-dependent potential one can still identify D̂
with the Hamiltonian of the system, F̂ with the kinetic energy and R̂ with the poten-
tial energy operators. Since the latter is time-dependent, instead of (5.54) one can
write

ψ(r, t) = e
∫t
0 dt

′R̂(t ′)ψ(r, 0). (5.64)

However, if a time step small enough compared with the variation of the potential
is chosen, the integral can reasonably be approximated as a product between the
integrand and the step, thus (5.54) remains valid. In this way one can evolve the
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wavefunction according to the usual quantum time evolution operator Û(t, t0 = 0) =
e−iĤt, considering the kinetic K̂ and the potential V̂ contribute in the Hamiltonian Ĥ
separately. The advantage of this is that the K̂ and V̂ operators are local, respectively
in Fourier and in real space, thus

e−iK̂hψ = F−1[e−iKhψ̃(k, t)] = F−1[e−ik
2

2 hψ̃(k, t)] (5.65)

e−iV̂hψ = e−iVhψ(r, t)

being ψ̃(k, t) the Fourier transform in r of ψ, k2 the modulus square of the wave
vector, V the potential and F−1 denoting the inverse Fourier transform.

5.2.3.3 Adaptive time-step

It is also possible to design an adaptive time-step scheme with this method. Here,
we use and adaptive embedded splitting pair [121] of order 4(3). It is characterized
by a fourth order splitting solver derived by Blanes and Moan [122] embedded with
third order scheme constructed by Thalhammer and Abhau [121, 123]. In the same
spirit of adaptive Runge-Kutta schemes, the step selection consists in re-modulating
the time-step as a function of the difference between the solution at the two consecu-
tive orders and the tolerance TOL

hopt = hnmin

{
α

(
tol

∆n

) 1
4

, β

}
(5.66)

where we set α = 0.9, β = 3 and

∆n =

√√√√√∑Ni=1
∣∣∣ψ(xi, tn) − ψ̃(xi, tn)∣∣∣2∑N
j=1

∣∣ψ(xj, tn)∣∣2 . (5.67)

In this case ψ denotes the solution at the 4th order and ψ̃ at the 3rd one. Hereafter
will denote this algorithm as "SSa". The pseudo-code and the coefficients of this
algorithm are shown in Appendix B.



6
N E W N U M E R I C A L M E T H O D

In this chapter, we introduce a new numerical method to integrate Schrödinger-like
equations, based on an optimization of the integrating factor technique. As explained
in Section 5.2.2.2, for the Schrödinger equation,

i∂tψ + 1
2 ∇2ψ − V ψ = 0, (6.1)

the integrating factor, allows to analytically integrate the linear part, i.e. 12 ∇2ψ. In
this way, the stiffness of the equation is reduced, thus making the numerical inte-
gration more efficient. This is done performing the change of variable φ(k, t) =

ψ̂(k, t)ei k
2

2 (t−t0), which yields

∂tφ = −i ei k
2

2 (t−t0) V̂ ψ. (6.2)

The new method we present here, is based on a the same principles of the modified
integrating factor, explained in Section 5.2.2, namely the fact that the efficiency of the
algorithm is expected to further increase as the magnitude of the nonlinear term, N =

−i ei k
2

2 (t−t0) V̂ ψ , gets smaller. However the approach used here is very different, as
it exploits a gauge invariance of the Schrödinger equation. Indeed, if at a given time
t, ψ is a solution of (6.1), then Ψ def

= ψ e−iC t is a solution of

i∂t Ψ + 1
2 ∇2Ψ − (V + C) Ψ = 0, (6.3)

as one can easily verify. Thus, at each time-step, adding a constant Cn to V in (6.1),
modifies the solution as

ψ(tn) → ψ(tn) e−iϕ, ϕ
def
=

n∑
j=1

Cj hj, (6.4)

where hj
def
= tj+1 − tj is the j-th time-step. Of course, at the end of the computations,

the operation (6.4) can be easily reverted if the original phase is relevant.
In this chapter, we derive some analytic formulas giving an optimal Cn in order

to maximise the time-step, i.e., to minimize the overall computational time of the
numerical resolution. Using this procedure, we observed up to a five-fold speed in-
crease (the overall computational time is divided by about five) compared to taking
Cn = 0. Of course, the speed-up varies depending on the initial condition, of the
(spatial and temporal) numerical schemes and on the choice of gauge corresponding
to Cn = 0. Two strategies are presented. In Section 6.1, a first natural approach
to derive a suitable Cn is based on the analytical structure of the equation and it is
independent of the numerical algorithm employed for its resolution. More precisely,
Cn is obtained minimizing a norm of the right-hand side of the equation (5.25). This
provides an easy manner to obtain a formula that is moreover computationally cheap.
This expression is however only near optimal, so a better expression is subsequently

67
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derived. Considering both the equations and the numerical algorithms, a second opti-
mal expression for Cn is derived in Section 6.2. This approach consists in minimizing
exactly the numerical error and thus explicitly dependents on the numerical scheme.
This provides a more accurate, but computationally expansive, solution. Finally, the
advances of these special choices are illustrated numerically in Section 6.3.

6.1 near optimal Cn

As mentioned above, if properly chosen, the integrating factor is able to reduce the
stiffness of the equation, making the numerical integration more efficient. In addition,
the magnitude of the nonlinear part of (5.28) also contributes to the efficiency of the
numerical integration. Specifically, if N is zero, ∂tφ = 0 and the integrating factor
technique is exact. Thus, the efficiency of the algorithm is expected to increase as
the magnitude of N gets smaller, and subsequently the overall computational time
should be reduced. Here, we show how to choose the arbitrary constant Cn in order
to reduce the magnitude of the nonlinear part N. In the case of the Schrödinger
equation, one has

N(k, t;φ;Cn) = −i exp
[ i
2k
2(t− tn)

]
F{(V + Cn) ψ}, (6.5)

where F denotes the Fourier transform and

ψ(x, t) = F−1{exp
[
− i
2k
2(t− tn)

]
φ(k, t)}. (6.6)

A natural strategy is to minimise the L2-norm, namely

Gn(Cn)
def
=
1

M

[M/2]−1∑
m=−[M/2]

| N(km, tn;φ;Cn) |2, (6.7)

where M is the number of spatial modes, square brackets denote the integer part and
km is the m-th Fourier mode. The explicit expression of Gn can be found exploiting
the definition of the discrete Fourier transform. For simplicity, we do the calculations
in one dimension (1D) without loss of generality, since the final result is independent
of the spatial dimension d. From Parseval theorem, one obtains

Gn(Cn) =

[M/2]−1∑
`=−[M/2]

(V` + Cn)
2 |ψ`|

2, (6.8)

where ψ`
def
= ψ(x`) and V`

def
= V(x`) at time tn. Since the function Gn(Cn) is a second-

order polynomial in Cn, it admits an unique minimum, which is obtained from the
equation dGn(Cn)/dCn = 0, yielding

Cn = −

 [M/2]−1∑
`=−[M/2]

V` |ψ`|
2

 / [M/2]−1∑
`=−[M/2]

|ψ`|
2

 def
= C̃n. (6.9)

Therefore, at each time step n, C̃n, which is the value of Cn minimizing the L2-norm
of N, is obtained from (6.9). We show below that even though this approach is not
unique (i.e., different norms could be considered), the provided solution is quite
advantageous compared to others, being computationally cheap and independent on
the order of the numerical scheme.
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6.2 optimal Cn

We show here another way to choose the arbitrary constant Cn in order to improve
the algorithm efficiency and reduce the overall computational time. This approach
is based on the principles of the adaptive time-step procedure, where, as explained
in Section 5.2.2.3, at each time step n, an error ∆n between two approximated solu-
tions of different orders is estimated. Since the smaller this quantity the larger the
time-step, minimizing ∆n allows to choose a larger time-step, speeding-up the nu-
merical integration and keeping roughly the same numerical error. More specifically,
the error ∆n depends on the arbitrary constant Cn, hence the minimization can be
performed (see below) choosing an appropriate Cn. Although the determination of
Cn can be formally presented for any embedded Runge–Kutta schemes, this results
in very cumbersome calculations with little insights. Thus, for brevity and clarity,
we illustrate the method with the Heun method (that is a second-order Runge–Kutta
method with an embedded first-order explicit Euler scheme for the time stepping
[124]). We then sketch-out how this procedure can be implemented for generic em-
bedded Runge–Kutta methods.

6.2.1 Optimum time step

Since the constant Cn can be chosen freely, we seek for the value of Cn providing
the largest time-step. This can be done considering the step-control formula intro-
duced in 5.2.2.3, thus maximizing the right-hand side of

hn+1 = hn∆
−b
n ∆cn−1. (6.10)

Since hn and ∆n−1 are determined at the previous time-step, only ∆n in (6.10) de-
pends on Cn. Thus, in order to maximize hn+1, ∆n must be minimized, i.e., one
must solve d∆n/dCn = 0. This derivation being characterized by cumbersome alge-
bra for general embedded Runge–Kutta schemes, we illustrate the case of the Heun
algorithm (that is a second-order Runge–Kutta method with an embedded first-order
explicit Euler scheme for the time stepping [124]), the principle being the same for
higher order integrators. Also for simplicity, we give the calculations in one dimen-
sion (1D) without loss of generality, since the final result is independent of the spatial
dimension.

6.2.1.1 Optimum Cn for Heun’s method

Heun’s method consists, here, in solving the initial value problem (for t > tn)

i∂tφ = f(k, t;φ;Cn) = −i exp
[ i
2 k
2 (t− tn)

]
F{ (V + Cn)ψ }, (6.11)

and

φ(k, t)
def
= exp

[ i
2 k
2 (t− tn)

]
F{ψ(x, t)}. (6.12)

Hereafter, for brevity, we denote

φn = φn(k)
def
= φ(k, tn), (6.13)

ψn = ψn(x)
def
= ψ(x, tn),

Vn = Vn(x)
def
= V(x, tn).
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At time t = tn+1, the first- and second-order (in hn) approximations of φ, respec-
tively φ̃n+1 and φn+1, are

φ̃n+1 = φn + hn f(k, tn;φn;Cn), (6.14)

φn+1 = φn + 1
2 hn[ f(k, tn;φn;Cn)

f(k, tn + hn;φn + hn f(k, tn;φn;Cn);Cn) ]. (6.15)

The next time-step hn+1 is chosen using equation (6.10). For our equation, the differ-
ence between the first- and second-order approximations ∆φn+1

def
=
∣∣∣φn+1 − φ̃n+1∣∣∣

is such that

(∆φn+1)
2 = 1

4 h
2
n | f(k, tn;φn;Cn)

− f(k, tn + hn;φn + hnf(k, tn;φn;Cn);Cn) |
2

= 1
4 h

2
n

∣∣∣f(k, tn;φn;Cn) + i eik2hn/2×

F
{
(Vn+1 + Cn)F

−1
{

e−ik2hn/2 (φn + hnf(k, tn;φn;Cn))
}}∣∣∣2 ,

(6.16)

where Vn+1 = V(x, tn + hn). We note that the absolute value in (6.16) is of first-
order in hn, as one can easily check with a Taylor expansion around hn = 0, so
(∆φn+1)

2 = O
(
h4n
)
. More precisely, after some elementary algebra, one finds

(∆φn+1)
2 = 1

4 h
4
n

∣∣F {(Vn + Cn)
2ψn

}
+ iF {∂tVnψn} (6.17)

+ F {∂xVn ∂xψn}+
1
2 F {∂xxVnψn}

∣∣2 + O
(
h5n
)
,

which, defining

α(x, t;Cn)
def
= (Vn + Cn)

2ψn,

β(x, t)
def
= i∂tVnψn + ∂xVn ∂xψn + 1

2 ∂xxVnψn, (6.18)

can be rewritten as

(∆φn+1)
2 = 1

4 h
4
n |F {α(Cn) +β}|

2 + O
(
h5n
)

. (6.19)

Introducing the mean quadratic error

En(Cn)
def
=

1

M

[M/2]−1∑
m=−[M/2]

∆φ2n+1(km, tn;Cn), (6.20)

substituting (6.19) into (6.20) and exploiting the definition of the discrete Fourier
transform, one obtains (using Parseval theorem)

En(Cn) =
1

M

[M/2]−1∑
m=−[M/2]

∣∣∣∣∣∣
[M/2]−1∑
`=−[M/2]

e−2iπm`/M(α`(Cn) +β`)

∣∣∣∣∣∣
2

×

1
4 h

4
n + O

(
h5n
)

=

[M/2]−1∑
`=−[M/2]

|α`(Cn) +β`|
2 1
4 h

4
n + O

(
h5n
)

. (6.21)
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The minimum of En(Cn), obtained from the equation dEn(Cn)/dCn = 0, is such that

[M/2]−1∑
`=−[M/2]

d |α`(Cn)|
2

dCn
+ 2 Re

(
dα`(Cn)

dCn
β∗`

)
= 0, (6.22)

Therefore, the optimum Ĉn providing the largest hn+1, in the case of Heun’s method,
is a solution of (6.22).

6.2.1.2 Optimum Cn for generic embedded Runge–Kutta schemes

The optimum Cn for general embedded Runge–Kutta schemes can be obtained fol-
lowing the same principles illustrated above with the Heun algorithm. However, the
algebraic calculations get rapidly cumbersome, leading to expensive computations
that, in most cases, exceeds the time gained with a larger step. Here, we sketch-out
the procedure for generic embedded Runge–Kutta methods, considering solvers of
order N with an embedded (N− 1)-order scheme (for other embedded or extrapola-
tion methods, the procedure is completely analogue). For a s-stage method, the error
∆φn+1 can be written as [116]

(∆φn+1)
2 =

∣∣∣∣∣
s∑
`=1

d`w`

∣∣∣∣∣
2

, d`
def
= as,` − b`,

w`
def
= hn f

(
k, tn + c` hn;φn +

`−1∑
r=1

a`,rwr;Cn

)
, (6.23)

where a`,r, b` and c` are the coefficients of the Butcher tableau which characterizes
the integrator [116]. Using Taylor expansions and un-nesting the scheme, it is possi-
ble to prove that a result with a similar structure compared with (6.19) is obtained. In
this case, the number of stages s appears as exponent in the function α, which takes
the form α(x, t;Cn) = (Vn + Cn)

2sψn. The function β, on the other hand, becomes
explicitly dependent on Cn, involving a number of terms growing exponentially with
s. For this reason, even though the exact result can always be achieved, the compu-
tational time needed to minimize the error (5.44) is often larger than the time gained
with a larger step, especially for higher order schemes (s > 3). In the next section, we
show how, for practical applications, an exact solution is not necessary to improve
the algorithm, and (6.9) represents a fast and accurate method.

6.3 numerical examples

Here, we consider numerical examples where we apply this method, focusing
on both the Schrödinger–Newton (SN) and Nonlinear Schrödinger (NLS) equations
solved with the Dormand and Prince 5(4) integrator [114] in one and two spatial
dimensions. In all cases, we set open boundary conditions for the potential, while
the initial conditions and the value of the physical parameters are chosen to be very
close to regimes of physical interest, as described in [17–19].

For the one-dimensional NLS, we considered the case g = −1 (see 1.4) and we
used ψ(x, t = 0) =

√
2 sech

(√
2 x
)

as initial condition. We discretized the space with
N = 2048 points, in a computational box of length L = 80. The two-dimensional
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NLS, which is often employed in optics to model self-focusing beams in a medium
with a cubic non-linearity [125, 126], presents a finite time (blow-up) singularity [127].
Specifically, whenever the initial conditionψ0 satisfies Eg =

∫
drψ0

(
−12∇2 +

g
2
|ψ0|

2
)
ψ∗0 < 0,

the norm of the solution, or of one of its derivatives, becomes unbounded in finite
time. For this reason, we stop the simulation at tfin = 5, i.e., before the singularity
occurs. We set ψ(r, t = 0) = e−r

2/2/
√
π as initial condition and we consider the

g = −6 case, for which the corresponding initial energy is E(g = −6) ≈ 0.02, hence
quite close to the singular regime; for the spatial discretization we used L = 120 and
N = 40962 (squared box with side L = 120 discretized with 4096× 4096 nodes). For
both the one and two dimensional SN equations, we set g = 500 and considered a
Gaussian initial condition, ψ(x, t = 0) = Ne−|x|2/2 where N is the normalisation fac-
tor, fixed such that

∫
dx |ψ(x, t = 0)|2 = 1. The parameters of the spatial discretization

are L = 20 and N = 2048 in 1D, while for the 2D case we set L = 20 and N = 10242.
The gain factor provided by the method depends on the optimal value of Cn com-

pared to the Cn = 0 case, which changes from case to case as a function of the bound-
ary conditions for the potential and of the profile of the solution. Specifically, since
the gain factor is evaluated with respect to the Cn = 0 case, the more the optimal
value of Cn is far from zero, the larger the gain factor gets.

For the one-dimensional NLS, some analytical stationary solutions are known. We
then use one of these solutions (see (7.8)) as initial condition. For all other cases
(SN and NLS 2D), no such stationary solutions are known, so we use gaussian initial
conditions.

In Figure 6.1, we show the average time-step hav =
∑Nh
n=1 hn /Nh, for an entire

simulation with Nh time steps, as a function of Cn for the one-dimensional SN and
NLS equations. These plots are generated taking Cn constant for the entire simu-
lations, in order to better appreciate the strong dependence of the time-step on the
choice of the gauge for the potential. In Figure 6.2, we report the result of simulations
performed choosing the near optimal Cn = C̃n at each time-step. Note that, for the
one-dimensional NLS, the solution being stationary, hn and the optimum Cn do not
change in time, that is not the case in 2D. We show the time-step hn as a function of
time for the one-dimensional SN and NLS equations, comparing the Cn = 0 case with
Cn = C̃n. In both cases, the time-step chosen by the algorithm with the optimisation
of the gauge constant proves to be larger, compared to the Cn = 0 case. In Table 6.1,
we show the number of time-loops N∆t required to run each simulation and the time
T needed to run the simulation (in seconds) for the cases Cn = 0 and C = C̃n. For
NLS, in the one dimensional case we achieve roughly a 30% improvement in terms of
speed gain between the C = 0 and C = C̃n cases, while in two dimensions the speed
gain is only approximately 10% since, here, the value of C̃n is very close to zero. As
long as the SN equation is concerned, (6.9) proved to reduce remarkably both the
number of time loops and the effective time for the total simulation, providing up to
a factor 5 of improvement with respect to the Cn = 0 case in 1D and up to a factor 3
in 2D.
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Figure 6.1 – Average time-step hav = 1
Nh

∑Nh
n=1 hn with a constant Cn for the IF method

applied to the one dimensional NLS (left) and SN (right) equations.
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Figure 6.2 – Comparison between Cn = C̃n and Cn = 0 for time-step hn as a function of
time, for the IF method applied to the NLS1D (top left), NLS2D (top right), SN1D
(bottom left) and SN2D (bottom down).

Eq. SN1D SN1D SN2D SN2D NLS1D NLS1D NLS2D NLS2D

C 0 C̃n 0 C̃n 0 C̃n 0 C̃n

N∆t 20819 3871 8382 2682 6047 4781 754 690

T(s) 66.7 12.1 12856 4736 18.9 14.5 23769 22843

Table 6.1 – Comparisons for the SN and the NLS equations, in one and two spatial dimen-
sions, between different values of Cn.
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N U M E R I C A L C O M PA R I S O N O F T H E D I F F E R E N T
T I M E - I N T E G R AT O R S

In this chapter, we present a large and detailed comparison about the implementa-
tion of all methods previously described: Splitting algorithms, the integrating factor
technique, the modified integrating factor and the new method we developed. The
comparisons are done considering both speed and precision for each algorithm, sim-
ulating systems with different interactions, boundary and initial conditions. First, we
explain one of the key differences between the two categories of methods under con-
sideration, focusing on the fact that Splitting algorithms are symplectic integrators
and therefore time-reversible, while methods belonging to the integrating factor fam-
ily are not. This is a key point which must be taken into account when comparing
these algorithms. Second, we discuss the different estimators we use to determine
the precision of the different integrators. Finally, we test the methods on different
equations, comparing their accuracy and computational speed in each case. In par-
ticular, we focus on the Nonlinear Schrödinger, the Newton–Schrödinger and the
Gross–Pitaevskii–Poisson equations, in one and two spatial dimensions, considering
different physical regimes and exploring both the open and periodic boundary con-
ditions case. The results of the one and two dimensional cases are shown to be very
similar, hence analogue conclusions are expected also in 3D.

7.1 time reversibility and symplectic integrators

One of the most important differences between Splitting algorithms and methods
belonging to the Runge–Kutta family, to which the integrating factor is closely related,
is that the former are symplectic integrators [128, 129]. This property implies that
Splitting methods are in general designed both to conserve the energy and to be
time-reversible, namely numerical errors related to the conservation of this constant
of motion remain stable.

Here, in order to better understand the meaning of this feature, we apply to both
the Split-Step method and the integrating factor algorithm time inversion tests. In
each of these tests, the simulation starts at initial time t0 and is run up to a final
instant tfin, then time is reversed until it reaches back the initial value. The tests
were made for the Nonlinear Schrödinger equation, with the second order Split-Step
integrator and the Dormand & Prince adaptive algorithm combined with the integrat-
ing factor, although analogue results are obtained independently of the differential
equation considered and the order of the integrators.

To estimate the error on the conservation of energy, we start from the quantity

∆Ei =

∣∣∣∣ Eti
E(tin)

− 1

∣∣∣∣ , (7.1)

75
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where tin is the initial time and ti denotes the ith time-step of the numerical integra-
tion. The energy E for the Schrödinger equation, being defined as

E =
1

2

∫
drψ∗(−∇2 + V)ψ. (7.2)

Since ∆E varies with time, to the purpose of estimating the precision of each algo-
rithm, we consider

∆̂E = max
i

[∆Ei] , (7.3)

namely we take the maximal energy difference with respect to the initial value, dur-
ing the whole simulation.

As shown in Figure 7.1, the error on the energy conservation remains relatively
stable with the Split-Step algorithm and when time is reversed it retraces the forward
pattern. The Dorman & Prince integrator on the other hand exhibits a clear increasing
trend, pointing out a weak stability as long as this particular type of numerical error
is considered.

However, as shown in Figure 7.2, this trend reduces as the tolerance is decreased,
down to a very small value, whose magnitude depends on the particular equation
considered. For the Nonlinear Schrödinger equation for example, we find that with
a tolerance TOL = 10−9, double machine precision is achieved.
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Figure 7.1 – Time-reversion plots of the energy error, ∆E =
∣∣∣ EE0 − 1∣∣∣, as a function of time for

different numerical methods: Split-Step order 2 and Dormand & Prince (with
tolerance 10−10), for the Schrödinger–Newton equation.
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Figure 7.2 – Time-reversion plots of the energy error, ∆E =
∣∣∣ EE0 − 1∣∣∣, as a function of time

for different numerical methods: Dormand & Prince, with tolerances 10−8 and
10−9.

7.2 estimators of the precision of the time-integration algorithms

For the comparison between all algorithms, we estimate the precision of the time-
integration, looking not only at the error on the conservation of energy, but also at
other types of the numerical errors, related to the solution. These precision estimators
are listed below.

1. The error on the energy conservation, as defined in (7.3).

2. Another constant of motion for the considered equation, is the mass,

M =

∫
dr |ψ|2. (7.4)

This quantity is automatically conserved with machine precision when using
splitting algorithms, while it is not in general the case with the integrating
factor. For this reason, when the latter technique is employed, we impose mass
conservation at each time-step, multiplying the solution ψ by M0/

∫
dr |ψ|2,

where M0 is the initial mass.

3. The error on the solution performing time inversion tests. This quantity is
obtained by running a simulation up to a given time tfin, then reversing the
time and evolving back to the initial instant. The error is monitored using the
L∞-norm of the difference between the solution at the initial time at beginning
of the simulation and at the end of it. Denoting the “backward” solution by
∆ψrev, one has

∆ψrev = max
i

[|ψ(xi, tin) −ψbackward(xi, tin)|] . (7.5)

4. The two estimators described above favorize time-splitting algorithms because
they are symplectic and reversible integrators whereas the integrating factor
is not. For this reason, we also compare the result of the simulations with a
“reference one”, very accurate, using an adaptive Fehlberg integrator of order 7
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embedded within an order 8 scheme, with a very small tolerance, tol = 10−14.
Defining this estimator as ∆ψref, one has

∆ψref = max
i

[∣∣ψ(xi, tf) −ψF7(8)(xi, tfin)∣∣] , (7.6)

where ψ is the numerical solution provided by the particular method consid-
ered and ψF7(8) is the one outputted by the Fehlberg 7(8) integrator.

7.3 numerical comparisons

We start by implementing and comparing the numerical methods on the 1D Non-
linear Schrödinger equation, which is used as benchmark since in this case an ana-
lytical solution is known. We then focus on the 1D Newton–Schrödinger equation,
with open and periodic boundary conditions. Then we switch to the 2D case for
the Nonlinear and Newton–Schrödinger equations, the latter for both open and pe-
riodic boundary conditions. Finally, we present the results for the two dimensional
Gross–Pitaevskii–Poisson equation, which can be regarded as a hybrid version of the
Newton–Schrödinger and Nonlinear Schrödinger systems.

For brevity we use the following shorthand notation.

1. NLS: Nonlinear Schrödinger equation

2. SN: Newton–Schrödinger equation

3. GPP: Gross–Pitaevskii–Poisson equation

4. SS2: Split-Step order 2

5. SS2: Split-Step order 4

6. SS2: Split-Step order 6

7. SSa: Adaptive Split-Step order 4(3)

8. IF: Integratig factor

9. MIF: Modified integratig factor

10. IFC: Integratig factor with optimal gauge condition for the potential

7.3.1 1d Nonlinear Schrödinger equation

In order to validate the code and verify the accuracy of the algorithms, we first
consider the case of the one dimensional nonlinear Schrödinger equation

i
∂ψ

∂t
+
1

2

∂2ψ

∂x2
+ |ψ|2ψ = 0, (7.7)

where the potential is simply given by V(x, t) = − |ψ(x, t)|2. In this case there is a
simple analytical solution, which is called the soliton

ψ(x, t) =
√
2 sech

(√
2x
)
eit, (7.8)

In the simulations, we discretised space with N = 2048 points, in a box of length
L = 80 and we used the analytical solution at t = 0 as initial condition.
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We run a first set of simulations in order to compare the efficiency of the different
variants of the integrating factor: IF, MIF, and IFC. For these simulations we use the
Dormand & Prince integrator, which resulted to perform better for this system than
the ones of the Tsitouras family. The results, using a fixed tolerance tol = 10−9, are
shown in Figure 7.3. The MIF is in this case the most efficient one in terms of number
of time-loops employed whereas the IFC method is the fastest one. The details of the
comparisons are illustrated in Table 7.1.
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Figure 7.3 – Comparisons for the 1D nonlinear Schrödinger equation of the time-step (left)
and the error on the energy conservation (right) with the Dormand & Prince
integrator and at fixed tolerance, tol = 10−9.

Method N∆t ∆ψrev ∆ψref T(s)

MIF 4122 3.3 · 10−10 6.3 · 10−10 17.1

IFC 4781 1.2 · 10−9 7.8 · 10−10 14.5

IF 6047 3.6 · 10−10 3.8 · 10−10 18.9

Table 7.1 – Comparisons for the 1D nonlinear Schrödinger equation of different methods with
the Dormand & Prince integrator at fixed tolerance, tol = 10−9. N∆t denotes the
number of time-loops required and T is the time needed to run the simulation, in
seconds.

We present a second set of simulations, in order to compare the Split-Step inte-
grators with the IFC (the fastest of the previous methods) looking at the energy
conservation error, the error on the solution and the total time needed to run each
simulation. The results are illustrated in Figure 7.4 and Table 7.2. We observe that the
IFC solver is the fastest one by at least a factor 2, presenting at the same time the best
results to all the indicators: it uses a larger time-step, presents equal or better energy
conservation, returns a slightly worse ∆ψrev and it is one of the best, if compared to
the reference simulation. We conclude that in this case the IFC solver is best one.
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Figure 7.4 – Comparisons for the 1D nonlinear Schrödinger equation of different methods
between the time-step (left) and the error on the energy conservation (right) for
the IFC method and the Split-Step solvers.

Method ∆t ∆̂E ∆ψrev ∆ψref T(s)

SS2 10−3 7.5 · 10−13 6.3 · 10−10 1.1 · 10−4 86.7

SS4 5 · 10−3 10−15 8.2 · 10−10 5.8 · 10−7 38.1

SS6 2 ·10−2 10−15 2.0 · 10−10 3.7 · 10−9 29.3

SSa, tol = 10−6 2.1 · 10−2 1.6 · 10−12 3.5 · 10−10 6.5 · 10−10 34.0

IFC, tol = 10−9 2.1 · 10−2 10−15 1.2 · 10−9 7.8 · 10−10 14.5

Table 7.2 – Comparison for the 1D nonlinear Schrödinger equation between the IFC method
and the Split-Step solvers. T is the total time required to run each simulation,
measured in seconds. The ∆t for the adaptive algorithms is the averaged one.

7.3.2 1D Schrödinger-Newton equation

We now focus on the SN system, starting from the case of a single spatial dimen-
sion,

i
∂ψ

∂t
+
1

2

∂2ψ

∂x2
− Vψ = 0

∂2V

∂x2
= g |ψ|2 .

(7.9)

The solutions of (7.9) depend on the initial condition and on the single parameter g.
We set ψ(x, t = 0) = e−x

2/2/ 4
√
π as initial condition. The potential V is calculated

using the Hockney’s method [38]. We perform a set of tests with the different inte-
grating methods for g = 10, which corresponds to a system in the quantum regime,
i.e., with an associated De Broglie wavelength of the order of the size of the system,
and g = 500, which corresponds to a system closer to the semiclassical regime, with
an associated De Broglie wavelength about 20 times smaller than the size of the sys-
tem. Snapshots of the evolution of this system are plotted in Figure 7.5: the initial
condition oscillates, exhibiting a complex dynamics. This is particularly evident in
the semiclassical regime, where high frequency oscillations appear in the wavefunc-
tion (see last row of the figure). The simulation is run in a box of length L = 80,
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Figure 7.5 – Snapshots of the modulus of the solution of the 1D Newton–Schrödinger equa-
tion |ψ|. The upper panel (first six plots) corresponds to the g = 10 case while
the lower one is associated with g = 500.

discretised into N = 2048 points in the g = 10 case, while for g = 500 we set L = 20

and N = 2048. The characteristic time of dynamics is defined as tdyn = |g|−1/2.
In this case, we use the Tsitouras solver for integrating factor algorithms, which

resulted to perform better than the Dormand and Prince one. In Figure 7.6 we show
its efficiency for the different methods IF, MIF and IFC. We observe oscillations in ∆t,
which corresponds to spatial oscillations of the system during the evolution. Thanks
to the time-adaptive integrator, we do not observe such oscillations in the energy
conservation ∆E, as the integrator automatically chooses the optimal time-step for
the chosen accuracy. There is no sensible difference between the standard IF method
and the MIF, however the IFC performs much better: the average time step is around
one order of magnitude larger whereas it attains a better energy conservation, for the
simulations in the two regimes, g = 10 and g = 500. Table 7.3 confirms these results:
for similar errors in the inversion test and in the one comparing with a reference
simulation, ∆ψrev and ∆ψref respectively, the IFC is about one order of magnitude
faster.
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Figure 7.6 – Comparisons of the time-step and the error on the energy conservation for the
1D Newton–Schrödinger equation with the Tsitouras integrator at fixed tolerance,
tol = 10−10 with the IF, IFC and MIF methods and for both the cases g = 10

(upper plots) and g = 500 (lower plots).

g Method N∆t ∆ψrev ∆ψref T(s)

10

MIF 27425 1.4 · 10−10 3.3 · 10−11 111.5

IF 27484 1.3 · 10−10 3.3 · 10−11 52.5

IFC 1592 1.3 · 10−10 3.3 · 10−11 5.0

500

MIF 18639 1.1 · 10−8 1.5 · 10−7 77.8

IF 18784 1.0 · 10−8 1.4 · 10−7 52.5

IFC 3915 2.3 · 10−8 1.5 · 10−8 11.9

Table 7.3 – Comparisons for the 1D Newton–Schrödinger equation between different meth-
ods for the Tsitouras integrator at fixed tolerance, tol = 10−10. N∆t denotes the
number of time-loops required and T is the time needed to run the simulation, in
seconds.

In Figure 7.7 and Table 7.4, we compare the Split-Step integrators with the IFC,
looking at the energy conservation error, the error on the solution and the total time
needed to run each simulation. In this case splitting algorithms are the most efficient
ones, even though the IFC is able to compete, providing the same order of magnitude
for the accuracy parameters.
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Figure 7.7 – Comparison for the 1D Newton–Schrödinger equation between the time-step
and the error on the energy conservation for the IFC method and the Split-Step
solvers for both the cases g = 10 (upper plots) and g = 500 (lower plots).

g Method ∆t ∆̂E ∆ψrev ∆ψref T(s)

10

SS2 10−4 5.5 · 10−10 4.5 · 10−11 4.5 · 10−9 123.3

SS4 2 · 10−3 2.9 · 10−12 2.5 · 10−12 5.5 · 10−11 11.1

SS6 2 · 10−2 1.5 · 10−13 4.0 · 10−12 1.1 · 10−11 3.5

SSa 1.5 · 10−2 4.2 · 10−12 8.5 · 10−11 5.9 · 10−11 6.4

IFC 7.5 ·10−3 1.8 · 10−12 1.3 · 10−10 3.3 · 10−11 5.0

500

SS2 10−5 6.0 · 10−9 1.1 · 10−10 5.2 · 10−8 120.0

SS4 5 · 10−4 2.5 · 10−9 4.9 · 10−12 1.3 · 10−7 5.4

SS6 2 · 10−3 1.8 · 10−10 2.8 · 10−11 7.6 · 10−8 3.5

SSa 2 · 10−3 1.0 · 10−10 6.4 · 10−8 2.9 · 10−8 6.7

IFC 3.5 · 10−4 1.8 · 10−9 2.3 · 10−8 1.5 · 10−8 11.9

Table 7.4 – Comparison for the 1D Newton–Schrödinger equation between the IFC method
and the Split-Step solvers. The SSa simulations and IFC have been performed with
a tolerance tol = 10−7 and tol = 10−10 respectively for g = 10 and tol = 10−6

and tol = 10−10 respectively for g = 500. The ∆t for the adaptive algorithms is
the averaged one. T is the total time required to run each simulation, measured
in seconds.
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7.3.2.1 Periodical case

We now switch to cosmological version of the SN system, introduced in Sec-
tion 2.3.3. We consider the simplest case of a static universe taking a = 1; we do
not expect modifications of our conclusions for a different cosmological model. In
one dimension the equations reads

i
∂ψ

∂t
+
1

2

∂2ψ

∂x2
− Vψ = 0 (7.10a)

∂2V

∂x2
= g(|ψ|2 − 1), (7.10b)

where the wavefunction |ψ|2 is normalized to unity. The potential V , with peri-
odic boundary conditions, is obtained by calculating the inverse of the Laplacian
in Fourier space and transforming back the result to real space. We take cold initial
conditions (see [45, 130]), namely,

ψ(x, t = 0) =
√
ρ0 + δρ(x)e

iθ(x), (7.11)

where θ is related to the initial velocity field (see Section 2.3.3), which we set to zero
for simplicity, ρ0 is the background constant density and δρ(x) the density fluctua-
tions, generated as

δρ(x) = F−1[R(k)
√
P(k)], (7.12)

where R(k) is a Gaussian random field, with zero average and variance unity and
P is the power spectrum (see Section 2.3.3). In addition, the initial condition are
numerically initialized by applying an additional filter F(k) in Fourier space with the
aim of setting to zero all the modes which correspond to a space scale comparable or
smaller with respect to the grid-step

F(k) =
1

cosh
[
(k/kF)

10
] , (7.13)

with kF = kN/8, where kN is the Nyquist wavelength, defined in Section 5.1.2. Thus,
our initial condition is

ψ(x, t = 0) = F−1
[
F(k)F

[√
ρ0 + δρ(x)

]]
. (7.14)

In the simulations, we discretize space with N = 1024 points, in a box of length
L = 1 and we use a constant power spectrum as initial condition. We show the
results of simulations in the semiclassical regime taking g = 106 (we do not observe
differences in the performance in the quantum regime, i.e., for smaller values of g)
and ρ0 = 1. The reason why we set the parameter g to such a large value is because
the semiclassical limit we are interested in can be taken by formally sending to zero
the value of the reduced Plank constant, and the coupling constant g turns out to be
proportional to the inverse of this quantity, namely g ∝ 1

 h2
.

The Dormand & Prince solver resulted to be the faster than the Tsitouras one in this
case. In Figure 7.8 we show the typical evolution of the system in the cosmological
context: the initial condition is spatially homogeneous with small fluctuations. The
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fluctuations grow due to the gravitational interaction, up to be dominated by the
finite size of the simulation box. The characteristic time of dynamics is defined as
tdyn = |g|−1/2.
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Figure 7.8 – Snapshots of the modulus squared of the solution of the 1D SN equation (peri-
odical case) |ψ|2.

In Figure 7.9 we observe that the IF and IFC are the best integrators among the
integrating factor family methods. There is a little difference between them because
in this case the C̃n ≈ 0. We observe for t & 5tdyn that the time-step decreases; this
is due to the fact that the dynamics switches from a regime where the largest scales
are still linear, to a regime where all the scales are nonlinear[131]. It indicates, along
with Figure 7.9 that the IF family integrator is particularly efficient in the weakly
non-linear regime, which is the regime of interest in cosmological simulations.
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Figure 7.9 – Comparison for the 1D SN equation (periodical case) of the time-step (left plots)
and the error on the energy conservation (right plots) for the Dormand & Prince
integrator and at fixed tolerance, tol = 10−12.
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Method N∆t ∆ψrev ∆ψref T(s)

MIF 1258 1.8 · 10−9 4.5 · 10−10 2.7

IFC 898 1.8 · 10−10 6.7 · 10−11 1.3

IF 901 3.5 · 10−9 7.0 · 10−11 1.3

Table 7.5 – Comparisons for the 1D SN equation (periodical case) of different methods for the
Dormand & Prince integrator at fixed tolerance, tol = 10−12. N∆t denotes the
number of time-loops required and T is the time needed to run the simulation, in
seconds.

In Figure 7.10 we compare the Split-Step integrators with the IFC. We observe that
the Split-Step integrators (except SS2) perform in the same manner in the weakly
non-linear and strongly non-linear regime. We observe that IFC outperforms the
tested Split-Step integrators in the first regime, whereas, in the second one it becomes
equally efficient compared to the split-step methods. This is consistent with the
observation of Section 7.3.2: since the dynamics corresponds to a highly non-linear
regime, the Split-Step method is more performing than the IFC one. Looking to
Table 7.6 it is clear that, for the whole simulation, in this case the IFC is the most
performing integration method.
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Figure 7.10 – Comparison for the 1D SN equation (periodical case) between the time-step (left
plot) and the error on the energy conservation (right plot) for the IFC method
and the Split-Step solvers. The ∆E(t) plots is in a logarithmic scale.

Method ∆t(tdyn) ∆̂E ∆ψrev ∆ψref T(s)

SS2 10−5 1.6 · 10−8 8.3 · 10−9 8.5 · 10−10 276.5

SS4 3 · 10−3 1.9 · 10−8 1.3 · 10−9 1.5 · 10−11 1.8

SS6 7 · 10−3 1.1 · 10−8 1.1 · 10−8 3.1 · 10−11 2.3

SSa, tol = 10−9 5.8 · 10−3 2.3 · 10−9 3.3 · 10−9 1.2 · 10−11 4.3

IFC, tol = 10−12 6.5 · 10−3 1.1 · 10−8 1.8 · 10−10 6.7 · 10−11 1.3

Table 7.6 – Comparison for the 1D SN equation (periodical case) between the IFC method
and the Split-Step solvers. T is the total time required to run each simulation,
measured in seconds. The ∆t for adaptive algorithms is the averaged one.
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7.3.3 2D Nonlinear Schrödinger equation

In the 2D NLS case, one has

i
∂ψ

∂t
+
1

2
∇2ψ− g |ψ|2ψ = 0. (7.15)

As mentioned in Section 6.3, the dynamics of (7.15) presents a finite time (blow-
up) singularity [127]. More specifically, whenever the initial condition ψ0 satisfies
Eg =

∫
drψ0,

(
−12∇2 +

g
2
|ψ0|

2
)
ψ∗0 < 0, the norm of the solution, or of one of its

derivatives, becomes unbounded in finite time.
We take as initial condition ψ(r, t = 0) = e−r

2/2/
√
π and we study the cases g = −1

and g = −6, for which the corresponding initial energies are Eg=−1 ≈ 0.42 and
Eg=−6 ≈ 0.02, hence the latter being associated with an initial energy which is closer
to the singular regime. We run the simulation in a box of side L = 80, discretized
into N = 10242 points in the g = −1 case, while for g = −6 we set L = 120 and
N = 40962, the characteristic time of dynamics is defined as tdyn = |g|−1/2. In this
case, we use the Dormand & Prince solver for the integrating factor. In Figure 7.11,
snapshots of the modulus of the solution in the two cases are shown. We observe
that, as expected, the final size of the system with g = −6 is much smaller than the
one with g = −1 because the system is closer to the blow-up singularity. The results
of the comparison between the different methods based on the integrating factor are
shown in Figure 7.12) and table Table 7.7. Here, the MIF proved to be very efficient
in the case where the dynamic is closer to the singular regime, i.e. g = −6, reducing
substantially both computational time and number of time loops required to perform
the numerical integration.
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Figure 7.11 – Snapshots of the modulus of the solution of the 2D NLS equation |ψ|. The
upper panel (first six plots) corresponds to the g = −1 case while the lower one
is associated with g = −6.
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Figure 7.12 – Comparison for the 2D NLS equation of the time-step (left panel) and the error
on the energy conservation (right panel) for the Dormand & Prince integrator
and at fixed tolerance, tol = 10−10. The top row corresponds to the g = −1 case
while the bottom one corresponds to g = −6. The last time-step is chosen in
such a way that the final time is the same in all simulations, in order to ensure
that ∆ψrev and ∆ψref are evaluated properly, which explain the step which
appears for the last time point in ∆t.

g Method N∆t ∆ψrev ∆ψref T(s)

-1
MIF 57 2.5 · 10−9 5.0 · 10−11 241

IF 55 3.0 · 10−10 2.1 · 10−11 155

IFC 55 3.0 · 10−10 1.6 · 10−11 169

-6

MIF 439 3.0 · 10−9 9.4 · 10−9 20541

IF 754 1.5 · 10−10 2.5 · 10−9 23769

IFC 690 1.3 · 10−10 3.5 · 10−9 22843

Table 7.7 – Comparisons for the 2D NLS equation between different methods for the Dor-
mand & Prince integrator and at fixed tolerance, tol = 10−10 for the g = −1 case
and for tol = 10−11 for g = −6. N∆t denotes the number of time-loops required
and T is the time needed to run the simulation, in seconds.

Finally we compare the Split-Step integrators with the IFC, looking at the energy
conservation error, the error on the solution and the total time needed to run each
simulation. The results are illustrated in Figure 7.13 and Table 7.8.
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Figure 7.13 – Comparison for the 2D NLS equation between the time-step (left panel) and the
error on the energy conservation (right panel) for the IFC method and the Split-
Step solvers. The last time-step is chosen in such a way that the final time is the
same in all simulations, in order to ensure that ∆ψrev and ∆ψref are evaluated
properly, which explain the step which appears for the last time point in ∆t.

g Method ∆t ∆̂E ∆ψrev ∆ψref T(s)

-1
SS2 10−3 3.3 · 10−8 4.5 · 10−8 5.0 · 10−10 6939

SS4 2 · 10−2 1.1 · 10−9 3.5 · 10−13 7.0 · 10−11 830

SS6 10−1 4.5 · 10−11 2.5 · 10−14 6.2 · 10−11 445

SSa 6 · 10−1 7.0 · 10−10 3.0 · 10−10 2.5 · 10−11 267

IF 5 · 10−1 4.5 · 10−10 3.0 · 10−10 2.1 · 10−11 155

-6
SS2 10−4 8.8 · 10−7 1.4 · 10−11 7.9 · 10−7 405012

SS4 10−3 6.3 · 10−9 2.5 · 10−12 3.7 · 10−9 82891

SS6 10−2 1.7 · 10−9 1.6 · 10−12 1.8 · 10−9 24453

SSa 1.5 · 10−2 6.5 · 10−9 1.4 · 10−10 5.4 · 10−9 29117

MIF 1.1 · 10−2 9.2 · 10−9 3.0 · 10−9 9.4 · 10−9 20541

Table 7.8 – Comparisons for the 2D NLS equation between different methods for the Dor-
mand & Prince integrator. The ∆t for adaptive algorithms is the averaged one.
T is the total time required to run each simulation, measured in seconds. The
tolerances of the integrator SS4(3) is tol = 10−6, for the IF integrator tol = 10−10

and for the MIFC one tol = 10−11.

Here, the gain factor between the splitting algorithms and the methods relying on
the integrating factor, namely the IFC and MIF is remarkable.
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7.3.4 2D Schrödinger-Newton equation

In the 2D SN case, one has

i
∂ψ

∂t
+
1

2
∇2ψ− Vψ = 0

∇2V = g |ψ|2 .
(7.16)

We simulate two analogous systems than in the 1d case: Gaussian initial conditions
ψ(r, t = 0) = e−r

2/2/
√
π and two values of the coupling constant, g = 10 and g = 500.

The former corresponds to a system in the quantum regime and the latter is closer
to the semiclassical one. The potential V , as in the 1D case, is calculated using the
Hockney method [38]. We run the simulation in a box of side L = 40, discretized into
N = 10242 points in the g = 10 case, while for g = 500 we set L = 20 and N = 10242,
the characteristic time of dynamics is defined as tdyn = |g|−1/2. In Figure 7.14,
snapshots of the modulus of the solution in the two cases are shown. We observe for
g = 500, as in the 1D case, a more complex dynamics with the formation of rings.
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Figure 7.14 – Snapshots of the modulus of the solution of the 2D SN equation |ψ|. The upper
panel (first six plots) corresponds to the g = 10 case while the lower one is
associated with g = 500.
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Here, we used the Tsitouras solver for the integrating factor methods. The results
of the comparison between the different methods based on the integrating factor are
shown in Figure 7.15 and Table 7.9.

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30

∆
t

t(tdyn)

IFC
IF

MIF

10−16

10−14

10−12

10−10

10−8

10−6

0 5 10 15 20 25 30

∆
E

t(tdyn)

IFC
IF

MIF

0

0.0002

0.0004

0.0006

0.0008

0.001

0 5 10 15 20

∆
t

t(tdyn)

IFC
IF

MIF

10−16

10−14

10−12

10−10

10−8

10−6

0 5 10 15 20

∆
E

t(tdyn)

IFC
IF

MIF

Figure 7.15 – Comparisons for the 2D SN equation between the time-step and the error on
the energy conservation with the IF, IFC and MIF methods and for both the
cases g = 10 (tol = 10−10, upper plots) and g = 500 (tol = 10−12, lower plots).

g Method N∆t ∆ψrev ∆ψref T(s)

10

MIF 637 1.0 · 10−7 4.0 · 10−8 2798

IF 689 9.5 · 10−8 2.5 · 10−8 2028

IFC 376 5.8 · 10−8 2.9 · 10−8 1172

500

MIF 7403 1.2 · 10−9 9.1 · 10−9 25541

IF 7572 1.2 · 10−9 9.0 · 10−9 17947

IFC 2462 3.0 · 10−10 1.6 · 10−9 6637

Table 7.9 – Comparisons for the 2D SN equation between different methods. N∆t denotes
the number of time-loops required and T is the time needed to run the simulation,
in seconds.

In Table 7.10 and Figure 7.16 we compare the Split-Step integrators with the IFC,
looking at the energy conservation error, the error on the solution and the total time
needed to run each simulation.
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Figure 7.16 – Comparison for the 2D SN equation between the time-step and the error on the
energy conservation with the IFC method and the Split-Step solvers for both
the cases g = 10 (upper plots) and g = 500 (lower plots).

g Method ∆t ∆̂E ∆ψrev ∆ψref T(s)

10

SS2 10−3 1.8 · 10−8 3.5 · 10−12 1.0 · 10−7 9070

SS4 2 · 10−2 6.0 · 10−10 1.4 · 10−11 3.8 · 10−8 959

SS6 6 · 10−2 4.6 · 10−11 1.6 · 10−7 4.1 · 10−8 932

SSa 6 · 10−2 4.7 · 10−11 1.4 · 10−7 3.9 · 10−8 1174

IFC 10−2 1.3 · 10−10 5.8 · 10−8 2.9 · 10−8 1172

500

SS2 10−5 2.0 · 10−8 3.1 · 10−10 9.1 · 10−8 84030

SS4 2 · 10−4 5.6 · 10−10 2.8 · 10−11 7.0 · 10−9 8401

SS6 10−3 6.1 · 10−12 9.1 · 10−11 4.1 · 10−9 5143

SSa 2 · 10−3 1.9 · 10−11 2.0 · 10−11 3.9 · 10−9 6676

IFC 4.5 · 10−4 7.5 · 10−11 3.0 · 10−10 1.6 · 10−9 6637

Table 7.10 – Comparison for the 2D SN equation between the IFC method and the Split-Step
solvers. The ∆t for adaptive algorithms is the averaged one. The tolerance for the
SSa algorithm is tol = 10−6 and tol = 10−7 for g = 10 and g = 500 respectively,
and for the IFC algorithm tol = 10−10 and tol = 10−12 for g = 10 and g = 500

respectively.

The results are similar to the one dimensional case: the adaptive splitting algo-
rithms proved to be as efficient as the IFC. Here, the SS4 and SS6 performed better
if compared to the adaptive integrators. This is due the fact that, for this particular
system, the extra computational cost due to the implementation of the adaptive-step
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is not fully compensated by the time-gain in terms of computational speed. Indeed,
splitting algorithms with fixed time-step require a smaller number of computational
operations to be implemented. For this reason, here, choosing a “proper” fixed time-
step still results in a slightly faster numerical integration compared to an adaptive
scheme. However, for systems with a more complicated dynamics, the implementa-
tion of an adaptive time-step is crucial to achieve an efficient numerical integration.

7.3.4.1 Periodical case

For the 2D periodical case, we run the simulations in a box of side L = 1 with
N = 10242, again by using a constant power spectrum as initial condition with the
parameter g = 106, ρ0 = 1 and a zero initial velocity field. In Figure 7.17 some
snapshots of the modulus squared of the solution are shown, expressing time in
units of tdyn = 1/

√
g.
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Figure 7.17 – Snapshots of the modulus squared of the solution of the 2D SN equation (peri-
odical case) |ψ|2.
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Here we used the Dormand & Prince solver for the adaptive time-step case, the
results of the comparison between the different methods based on the integrating
factor are shown in Figure 7.18 and Table 7.11.
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Figure 7.18 – Comparison for the 2D SN equation (periodical case) of the time-step (left plots)
and the error on the energy conservation (right plots) for the Dormand & Prince
integrator and at fixed tolerance, tol = 10−12.

Method N∆t ∆ψrev ∆ψref T(s)

MIF 1882 2.8 · 10−6 8.3 · 10−6 5050

IF 1135 4.6 · 10−6 8.9 · 10−7 2147

IFC 1104 4.6 · 10−6 8.9 · 10−7 2232

Table 7.11 – Comparisons for the 2D SN equation (periodical case) of different methods for
the Dormand & Prince integrator at fixed tolerance, tol = 10−12. N∆t denotes
the number of time-loops required and T is the time needed to run the simulation,
in seconds.

In table Table 7.12 and Figure 7.19, we compare the Split-Step integrators with the
IFC, looking at the energy conservation error, the error on the solution and the total
time needed to run each simulation.
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and the Split-Step solvers. The ∆E(t) plots is in a logarithmic scale.



96 numerical comparison of the different time-integrators

Method ∆t(tdyn) ∆̂E ∆ψrev ∆ψref T(s)

SS2 10−4 1.8 · 10−8 4.5 · 10−9 1.0 · 10−5 31711

SS4 3 · 10−3 4.2 · 10−8 3.1 · 10−6 5.3 · 10−6 2485

SS6 7 · 10−3 3.5 · 10−8 4.5 · 10−10 5.1 · 10−6 3046

SSa, tol = 10−7 8 · 10−3 2.3 · 10−7 8.5 · 10−7 1.2 · 10−6 3362

IF, tol = 10−12 6 · 10−3 9.5 · 10−8 4.6 · 10−6 8.9 · 10−7 2147

Table 7.12 – Comparison for the 2D SN equation (periodical case) between the IFC method
and the Split-Step solvers. T is the total time required to run each simulation,
measured in seconds. The ∆t for adaptive algorithms is the averaged one.

Here we obtain the same result than in one dimension, with the IFC being the most
efficient method.

7.3.5 Gross–Pitaevskii–Poisson equation

We conclude by presenting the results for the 2D Gross–Pitaevskii–Poisson equa-
tion, which is a combination of the NLS and SN equations

i∂tψ +
1

2
∇2ψ − V ψ = 0

V = V1 + V2

∇2V1 = g1 |ψ |
2

V2 = g2 |ψ |
2 .

In the case of open boundary conditions, we would expect the split-step or the in-
tegrating factors to outperform one the other, depending on the values of g1 and
g2. We set them to g1 = −3 and g2 = 100 which are very close to the one typically
employed when simulating the collapse of a self-gravitating Bose-Einstein conden-
sate with attractive self-interaction [24]. The numerical parameters are N = 20482,

L = 40 and tf = 5 while the initial condition is a Gaussian, ψ(r, t = 0) = e−
r2

2 /
√
π.

In Table 7.13 comparisons between the most efficient methods tested for the NLS
(SS6 or SSa, depending on the parameters) and the SN (IFC method) are shown. For
the values of g1 and g2 we use, the IFC method outperforms the split-step solvers.
Moreover, we observe that for our particular initial condition, the smaller the g1g2 ratio
is, the better the IFC performs with respect to the splitting methods, with a robust
difference already appearing for g1g2 / 0.1.

Method ∆t ∆̂E ∆ψrev ∆ψref T(s)

SS6 2.5 · 10−3 1.2 · 10−9 4.5 · 10−11 4.5 · 10−8 32753

SSa, tol = 10−7 4 · 10−3 2.4 · 10−11 2.2 · 10−8 1.4 · 10−8 63315

IFC, tol = 10−11 2 · 10−3 7.7 · 10−10 6.2 · 10−8 2.3 · 10−8 28273

Table 7.13 – Comparison for the 2D Gross–Pitaevskii–Poisson equation between the IFC and
the Split-Step methods. T is the total time required to run each simulation, mea-
sured in seconds.
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D E S C R I P T I O N O F T H E E X P E R I M E N T

In this chapter, we describe the experiment we performed to observe the violent re-
laxation mechanism in an optical setup. First, we outline the main goals of the exper-
iment. Second, we illustrate the experimental setup and procedure. Finally, we dis-
cuss some additional elements one needs to incorporate in the Newton–Schrödinger
equation to model more accurately the system.

8.1 goal

The goals of this experiment, are the following.

1. Provide a quantitative comparison between theory and experiment, comparing
the measurements with the prediction of the Newton-Schrödinger model.

2. Observe experimentally the violent relaxation mechanism.

3. Observe characteristic phenomena of long range interacting systems, such as
the formation of a quasi stationary state, mixing and shell-crossing.

To our knowledge, none of the aforementioned goals has been achieved so far, ex-
cept for qualitative comparisons, which have been already done in other experiments
[132, 133]. Indeed, experiments with these kind of systems with long range interac-
tions, which mimic the gravitational one, are difficult to realize. For instance, possi-
ble physical environments for the observation of violent relaxation are: cold classical
atoms [134], different kind of Bose gases [135–137] such as trapped electron plasma
[138–145], quasi-two-dimensional superfluids [78, 146], and atomic gases [147]. How-
ever, because of the presence of the stochastic noise, in all of these systems it is only
possible to observe the thermodynamic equilibrium, not the violent relaxation mech-
anism. This mechanism is similar to to Landau damping in plasma physics, where
there is an exchange of energy between the electromagnetic wave generated by the
particles of the plasma and the particles themselves [148]. Landau damping has been
observed, for repulsive interactions, in plasma experiments [140–143, 149–151] and in
space plasma turbulence [144]. Moreover, some theoretical works about the possible
observation of such phenomena in electron rings are described in [152, 153].

8.2 experimental setup and procedure

To achieve the experimental goals, one need to measure the laser beam optical
field E. This is in general a complex quantity, hence the information about both the
intensity profile I(r⊥, z) = |E(r⊥, z)|

2 and the phase θ(r⊥, z) = argE(r⊥, z) are needed.
The experimental setup is summarized in Figure 8.1: a continuous-wave laser with

a Gaussian profile centered at λ = 532nm passes through a 90 T : 10 R non-polarizing
beam splitter, where the reflected part becomes the reference beam (a), and the trans-
mitted part becomes the target beam (b). Whereas (a) goes through a telescope with
a 4:1 magnification factor so that a significantly large profile in the (x, y) plane is

99
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obtained (in order to have a good approximation of a reference plane wave), (b) goes
through a telescope with a 1:2 magnification factor and then shines onto three slab
of lead-doped glass (each one with height D = 5mm, length l0 = 100mm and width
W = 40mm ), which is a self-focusing nonlinear optical medium with the follow-
ing optical parameters: thermal conductivity κ = 0.7Wm−1K−1, background refrac-
tive index nb = 1.8, absorption coefficient α = 1m−1, and thermo-optic coefficient
β = ∂n

∂T = 1.4 · 10−5K−1.
The sets of beam intensity profiles and interferograms are collected for powers

ranging from 0.19W to 5.47W, with a 0.25W step. The experimental values of the
beam intensity at the output facet of the medium are obtained by means of an imag-
ing technique. Specifically, after the l = 300mm nonlinear propagation, the output
facet of the medium is imaged onto a CMOS camera. The collection of information
on the phase of the same beam requires a tool called Off-Axis Digital Holography,
which is fully explained in [154]. In the Off-Axis Digital Holography technique, a
target beam and a reference plane wave are imaged together onto a detector, creating
an interference pattern in direct space (x, y): this interferogram has intensity fringes
whose number and tilt depend on the angle α between the directions of propagation
z1 and z2 of the target beam and the reference wave, and the relative polarization
of the two beams is tuned by using one λ/2 waveplate in order to have the highest
visibility of the fringes. When a Fourier transform is operated on this interference
profile, two identical copies of the Fourier transform of the target beam are observed
in the (kx, ky) plane at a distance from the (kx = 0, ky = 0) point that depends on the
angle α; one of these Fourier transforms copies is then inversely transformed to direct
space, resulting in a complex matrix A(x, y) = A0(x, y)e

iθ(x,y), where A0(x, y) and
θ(x, y) are the retrieved amplitude and phase profiles of the target beam, respectively.
It is possible to switch from collecting the interferograms to collecting the intensities
simply by stopping the reference beam.

8.3 exact modeling of the experimental setup

We now discuss some aspects of the experimental setup which need to be incor-
porated in the model, together with the range of validity of the approximations em-
ployed so far. First, we discuss the role of dissipations, such as absorption and back-
reflections. Then, we explain how the dynamics along the propagation direction
can be reconstructed by only performing measurements at the end of the material
interface and not inside it. Finally, we discuss the contribute of boundary effects.

8.3.1 Absorption and back-reflections

In this experimental setup, there are dissipation effects, due to the absorption and
back-reflections, which need to be taken into account in the model. As discussed
in Section 2.4.2, absorption can be modeled adding an extra term in the equation
describing the propagation of the laser beam

i
∂E

∂z
+

1

2 k
∇2⊥E + k0∆nE + i

α

2
E = 0, (8.1)
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Figure 8.1 – Illustration of the experimental setup for obtaining the intensity and phase
profiles of a beam undergoing an optical analogue evolution of the Newton–
Schrödinger equation. A continuous-wave laser with a Gaussian profile centered
at λ = 532nm passes through a 90 T : 10 R non-polarizing beam splitter, where
the reflected part becomes the reference beam (a), and the transmitted part be-
comes the target beam (b). Whereas (a) goes through a telescope with a 4:1
magnification factor so that a significantly large profile in the (x, y) plane is ob-
tained (in order to have a good approximation of a reference plane wave), (b)
goes through a telescope with a 1:2 magnification factor and then shines onto
three slab of lead-doped glass.

which introduces an exponential drop of the total power P of the beam,∫∫
dr⊥ |E (r⊥, z)|

2 = e−αzP. (8.2)

In our setup configuration, the value of the absorption coefficient is α = 0.01 cm−1,
while the total propagation length is zfin = 30 cm. Hence the contribute of absorp-
tion is expected to attenuate the total power by a factor e−0.3 ≈ 0.74.

Another important dissipation effect, which must be taken into account, is the
contribute of back-reflections. The latter comes from the experimental configuration
as well. Specifically, given that the medium is obtained by combining three identi-
cal samples, each one with length l = 100mm, and transmittance of the transverse
surface T = 0.92, power drops take place at each facet through which the beam propa-
gates. These power drops can be incorporated in the model, multiplying the intensity
by a factor T = 0.92 at the values of z where a back-reflection is taking place. Thus,
the intensity is multiplied by the following function

BR(z) =



T if z = 0

T3 if z = 10 cm

T5 if z = 20 cm

T6 if z = 30 cm.

(8.3)

However, taking into account only back-reflections which take place during the ac-
tual propagation inside the medium, the z = 0 and z = 30 cm contributions can be
excluded. This results in an attenuation by a factor T4 ≈ 0.72, during the propagation
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length. Regarding the total power injected in the medium, it is reduced of a factor
T6 ≈ 0.6.

Therefore, the combination of these two effects, absorption and back-reflections,
reduces the total power of roughly 50%. However, this dissipation does not prevent
the violent relaxation mechanism to take place. Indeed, in the astrophysical picture
of the Newton–Schrödinger equation, power loss along the propagation direction
are mapped into mass loss in time. Specifically, the absorption would corresponds
to a global loss of mass in the system of amount M(t) = M(0) exp(−αt) and each
reflection in the experiment would determine mass loss of amount 1− T , which do
not alter the presence of violent relaxation in the system.

8.3.2 Reconstructing the dynamics along the propagation direction

To reconstruct the dynamics along the propagation direction, one should in princi-
ple measure the laser beam optical field E(r⊥, z) at different values of the propagation
coordinate z. This would result in performing measurements inside the medium as
well, which can however be avoided exploiting a scaling symmetry of the equation
which model the system. Indeed, if E(r⊥, z) and ∆n(r⊥, z) are solutions of

i
∂E

∂z
+

1

2 k
∇2⊥E + k0∆nE = 0 (8.4)

∇2⊥∆n = −
αβ

κ
|E|
2 ,

then, γE(γ r⊥, γ2 z) and γ∆n(γ r⊥, γ2 z) are solutions of (8.4) as well, for any value
of γ. This scaling symmetry implies that changing the power and the width of the
laser beam, is equivalent to explore different values of z. Notice how, in presence of
losses, like absorption, this scaling symmetry does not hold anymore. However, in
our experimental regime, a mapping between power and propagation length can still
be applied. This is discussed in Appendix C, where we show that the undergoing
physics in this system in not significantly changed by the presence of losses.

In addition, for small values of the χ parameter, defined in Section 4.2.2,

χ =
λB
s

=

√
2πκnb
k2αβPs2

(8.5)

it is possible to explore different values of z only by changing the power, leaving the
width of the laser beam unaltered. This is due to the fact that, as Figure 8.2 shows, for
χ� 1, the dynamics of the system does not display significant differences when vary-
ing χ, especially before the collapse. Therefore, at small χ, the full dynamics along
the propagation length z can be reconstructed by only performing the measurements
at the output facet of the medium.

An example of this procedure is illustrated in Figure 8.3, where the power axis
must be interpreted as a quantity playing the role of the longitudinal coordinate z.

8.4 role of the longitudinal nonlocality

Another important element, which has been studied in [155] and must be taken
into account when modeling this optical system, is the role of the longitudinal nonlo-
cality. Here, we discuss a simple example, addressed to our experimental setup. The
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Figure 8.2 – Plot of the average size of the laser beam < r >= R as a function of the longitu-
dinal coordinate z in units of zdyn, for different values of χ.

problem, discussed in Section 2.4.1, concerns the range of validity of neglecting the
∂2z term in the heat equation. The latter, in the stationary regime, reads

κ∇2(∆T)3d(r) = −αI(r), (8.6)

where (∆T)3d is the change in temperature, related to the refractive index variation
∆n through the medium thermo-optic coefficient, ∆T = β∆n. The problem is three-
dimensional, so the Laplace operator in (8.6) is, in Cartesian coordinates,

∇2 = ∂2x + ∂2y + ∂2z. (8.7)

In the current model, it is assumed that the derivative along the propagation axis
z is much smaller than the one in the transverse plane (x, y), i.e., defining ∇2⊥ =

∂2x + ∂
2
y, one has that ∇2⊥ � ∂2z. When this paraxial approximation is applied (see

Section 2.4.1), (8.6) can be written as

κ∇2⊥(∆T)2d(r⊥, z) = −αI(r⊥, z). (8.8)

Using (8.8) instead of (8.6) is equivalent to assume that, when calculating ∆T(r⊥, z0)
for a given z0 with (8.6), I(r⊥, z) = I(r⊥, z0) ∀ z. This coincides with assuming that
the the system is spatially infinite along the direction z.

In order to better understand the paraxial approximation, let us perform an explicit
calculation for a Gaussian beam of size s = 300µm and a propagation medium of
L = 30cm. For simplicity, we assume that the intensity is

I(r⊥, z) =
1

2πs2
exp

(
−
r2⊥
2s2

)
, (8.9)

for all z ∈ [0, L]. One can calculate (∆T)3d with the Green integral

∇2(∆T)3d(r) = −
α

κ

∫
D

dr ′
I(r ′)
|r − r ′|

, (8.10)



104 description of the experiment

Figure 8.3 – Intensity profile measurements at the end of the material interface for different
powers.

where D is the whole glass. Using cylindrical coordinates (ρ, z), such that r = ρr̂+ zẑ
and choosing ρ to be parallel with the x axis, one has

|r − r ′| =
√
|ρ− ρ ′|+ (z− z ′)2 =

√
ρ2 + ρ ′2 − 2ρρ ′ cosφ+ (z− z ′)2. (8.11)

In this system of coordinates (8.10) reads

∇2(∆T)3d(ρ, z) = −
α

2κπσ2

∫L
0

dz ′
∫∞
0

dρ ′ρ ′e−ρ
′2/2σ2

×
∫2π
0

dφ
1√

ρ2 + ρ ′2 − 2ρρ ′ cosφ+ (z− z ′)2
. (8.12)

Integrating over φ one obtains

∇2(∆T)3d(ρ, z) = −
α

κπσ2

∫L
0

dz ′
∫∞
0

dρ ′ρ ′e−ρ
′2/2σ2 (8.13)

×

 K
(
− 4ρρ ′

(z−z ′)2+(ρ−ρ ′)2

)
√
(ρ− ρ ′)2 + (z− z ′)2

+
K
(

4ρρ ′

(z−z ′)2+(ρ+ρ ′)2

)
√
(ρ+ ρ ′)2 + (z− z ′)2

 .

The remaining integrals in (8.13) have to be performed numerically.
Before looking to some numerical examples, it is interesting to understand how

the solution of (8.8) can be obtained from (8.10). Changing the order of integration,
the integrals of (8.12) are modified into

∇2(∆T)2d(ρ) = −
α

2κπσ2

∫∞
0

dρ ′ρ ′e−ρ
′2/2σ2 (8.14)

×
∫2π
0

dφ

∫∞
−∞ dz ′

1√
ρ2 + ρ ′2 − 2ρρ ′ cosφ+ z ′2

,
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where the dependence on z has been removed because (∆T)2d does not depend on it
anymore 1.

Since we are implicitly imposing the potential of a distribution which is spatially
extended up to infinity, to be zero at infinity, the integral about z ′ in (8.14) is not con-
vergent. However, this divergence can be treated by removing an (infinite) constant,

lim
L→∞

∫L
−L
dz ′

1√
|ρ− ρ ′|+ z ′2

= lim
L→∞ 2 ln

(√
|ρ− ρ ′|2 + L2 + L

|ρ− ρ ′|

)
. (8.15)

Performing an expansion at first order around L→∞ one obtains

lim
L→∞

∫L
−L
dz ′

1√
|ρ− ρ ′|+ z ′2

= lim
L→∞ 2 ln

(
2L

|ρ− ρ ′|

)
+O

(
1

L2

)
. (8.16)

Once the limit is taken, one has∫∞
−∞ dz ′

1√
|ρ− ρ ′|+ z ′2

= −2 ln
(
|ρ− ρ ′|

)
+ 2 lim

L→∞ ln(2L), (8.17)

which is the Green’s kernel of our two-dimensional problem, except the (infinite)
constant which has been removed. Since the chosen intensity is normalized to unity,
(8.14) yields

∇2(∆T)2d(ρ) =
α

κπσ2
lim
L→∞ ln(2L) (8.18)

−
α

κπσ2

∫∞
0

dρ ′ρ ′e−ρ
′2/2σ2

∫2π
0

dφ ln
(
ρ2 + ρ ′2 − 2ρρ ′ cosφ

)
.

In this particular case it is possible to obtain an analytical solution of (8.18),

∇2(∆T)2d(ρ) =
α

κπσ2
lim
L→∞ ln(2L) (8.19)

−
α

κπσ2

[
Ei
(
−
ρ2

2σ2

)
− 2 log(ρ)

]
.

In Figure 8.4 we show the ratio (∆T)3d/(∆T)2d, removing appropriately the diver-
gence in (∆T)2d, for the whole crystal along z (note that the z axis is divided by
L). Length is in units of the initial radius of the beam (s“=”300µm). We observe a
not negligible discrepancy for a relatively large part of the material. However, if one
looks to the gradient of (∆T), since this quantity is less long-range than (∆T), the dis-
crepancy is much smaller. Indeed, Figure 8.6 and Figure 8.5 show that the direction
of the gradient is correct except up to z ≈ L/10 at each side of the sample.

For small values of the parameter χ, namely when the semiclassical limit is ap-
proached, the relevant quantity is not ∆T , but the the gradient of ∆T . Indeed for a
classical system, the meaningful quantity is the force, namely the gradient of the po-
tential, not the potential itself. For this reason the role of the longitudinal nonlocality
can be safely neglected in our experimental configuration.

1. In our physical problem ∆T depends indeed on z, what we actually do when calculating ∆T(ρ, z0)
is to replace (implicitly) in (8.14) I(ρ ′, z ′) by I(ρ ′, z0).
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Figure 8.4 – Ratio (∆T)3d/(∆T)2d for the whole crystal along z (note that the z axis is divided
by L). Length is in units of the initial radius of the beam (i.e. 1“=”300µm).
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Figure 8.5 – Normalized to unity gradient of (∆T)2d Length is in units of the initial radius of
the beam (i.e. 1“=”300µm). Horizontal axis z/L, vertical axis ρ.

8.5 boundary conditions

When solving the Newton–Schrödinger equation, proper boundary conditions must
be incorporated both for the field E and the variation of the refractive index ∆n. Con-
cerning the former, for a Gaussian beam initial condition, the intensity is expected
to be zero very far from the center of the signal. In the case of a medium with infi-
nite size one would simply have E(r⊥ → ∞, z) → 0 ∀ z, while, for our setup, since
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Figure 8.6 – Normalized to unity gradient of (∆T)3d Length is in units of the initial radius of
the beam (i.e. 1“=”300µm). Horizontal axis z/L, vertical axis ρ.

the medium transverse section is much large then the size of the laser beam, open
boundary conditions can be set for E.

Boundary conditions for the refractive index variation on the other hand, require a
deeper discussion. Indeed, in the case of a sample with finite sizes, the temperature
distribution at the edges of the thermo-optical medium must be taken into account.
To do that, one should in principle measure the temperature along the boundaries of
the medium, which in general can also be non-uniform in z and asymmetrical. This
might lead, because of the nonlocality, to important effects for the beam profile, as
typically happens in nonlocal media [155–157]. For example, asymmetric boundary
conditions can produce, starting from a radially symmetric initial condition, an ellip-
tic soliton beam [12]. However, as we shall see next, in our setup configuration these
boundary effects can be safely neglected.

Boundary conditions for ∆n can be of several nature: for example in the case
where the edges of the medium are kept at a fixed temperature, Dirichlet boundary
conditions should be used; if there is a prescribed heat flux from the medium to the
external environment, Neumann’s boundary conditions must be taken into account.
In the most general case one has a linear combination of the two, which goes under
the name of Robin boundary condition or convective boundary condition

a∆n(r⊥, z) + b
∂∆n

∂n̂
(r⊥, z) = f(r⊥, z) ∀ r⊥ ∈ ∂Ω, (8.20)

where a and b are some nonzero constants, ∂
∂n̂ is the derivative in the direction n̂

perpendicular to the boundaries which are denoted as ∂Ω and f is a given function.

8.5.1 Distributed loss model

In the case where the boundary conditions are symmetrical and uniform in z, as an
alternative, one can consider a phenomenological model which incorporates thermal
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losses due to the presence of the boundaries [158]. In this way, the refractive-index
equation is modified into a screened Poisson equation

∇2⊥∆n−
1

σ2
∆n = −

αβ

κ
|E|2 (8.21)

where σ is the non-locality degree which represents the interaction length scale set
by thermal diffusion. Defining the response function R(r⊥) as

∆n(r⊥, z) =
∫∫
dr′⊥ R(r⊥ − r′⊥) |E(r

′
⊥, z)|

2, (8.22)

it is easy to check that for the distributed loss model case, the response function is a
modified Bessel function of the second kind

R(r⊥) ∝ K0
(r⊥
σ

)
, (8.23)

which avoids the logarithmic divergence of the 2-dimensional Poisson equation in the
open boundary conditions case. In Fourier space, since ∆̂n(k⊥, z) = R̂(k⊥) Î(k⊥, z),
one has

∆̂n =
αβσ2

κ

|̂E|2

1+ σ2k2
. (8.24)

Notice that in the limit σ → ∞ the infinite space model is recovered, with (8.24)
becoming the standard Poisson equation and the modified Bessel function of the
second kind, tending to the logarithm

R(r⊥) = K0
(r⊥
σ

)
= − log

r⊥
σ

+ const+O

(
r2⊥
σ2

)
. (8.25)

This approximation is more accurate for a laser beam whose widthw is much smaller
compared to the shortest side D of the medium. The nonlocal degree is then approx-
imated with half the characteristic size of the medium, i.e. σ ≈ D/2.

In Figure 8.7, we compare the dynamics of the system for different boundary con-
ditions: Dirichlet, Neumann and open boundary conditions. In our configuration,
where the boundaries are sufficiently far from the laser beam, there are minimal dif-
ferences between the open boundary conditions case and the distribution loss model.
Hence, for simplicity, the latter can be used when simulating the system as long as
s� D, which is our case.
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Figure 8.7 – Comparison between the outputs of the Newton–Schrödinger equation simu-
lation with the Distributed loss Model (DLM) and Dirichlet (DBC), Neumann
(NBC) and open boundary conditions (open) for the average size of the beam
profile as a function of power.





9
E X P E R I M E N TA L R E S U LT S

In this chapter, we present the results of the experiment. First, we discuss the
analysis of the data collected during the measurements, explaining how the noise
is treated and how the initial condition is interpolated. Second, we compare the
experimental data with simulations, both in real space for the intensity profile and
the average beam size, and in phase-space with the Wigner distribution. Finally, we
show the most important indicators for the violent relaxation mechanism: mixing,
shell-crossing and energy exchange.

9.1 noise treatment

The experimental intensity profiles are characterized by a background noise. The
latter results as an offset different from zero at large distances from the main body
of the beam, as shown in Figure 9.1 where one-dimensional slices of the intensity
profile are plotted. This noise is relatively small and hardly appreciable if the two-
dimensional intensity profiles are plotted, as shown in Figure 9.2. However, it
becomes very important when integral quantities, such as the average beam size
R(z) =

∫
dxdy

√
x2 + y2I(x, y, z)/P are evaluated.
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Figure 9.1 – Row data of one dimensional slices of the laser beam intensity profile for differ-
ent values of power, acquired with an imaging technique. The x-axis is in units of
camera pixels, with 1 pixel= 5.3µm. The vertical axis, which is in a logarithmic
scale, has been renormalized to the maximal value of intensity.
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Figure 9.2 – Row data of the laser beam intensity profile for different values of power, ac-
quired with an imaging technique. The x and y-axes are in units of camera
pixels, with 1 pixel= 5.3µm.

It is important to carefully treat the noise, in order to avoid cutting the weak inten-
sity contributions to the signal. The technique we apply for noise treatment consists
in averaging out the intensity coming from some pixels that are at the edge of the
(x, y) beam profiles. This average is then used as an estimate for the background
noise and then subtracted from the whole experimental data. A noise mask is then
applied, i.e. the intensity points far from the main body of the beam profile are
set to zero. This noise treatment procedure is crucial to obtain robust results when
evaluating integral quantities, such as the average beam size for example.

As long as the interferogram data are concerned, a noise treatment is not needed.
This is due to the fact that the Off Axis Digital Holography technique, selecting a
small window around the Fourier transform of the beam, automatically filters all
high-frequency contributions to the signal.

9.2 interpolation of the initial condition

To correctly simulate the beam propagation in the thermo-optical medium, the
exact profile of the injected beam is needed. This quantity is employed as initial
condition for the numerical simulation of the Newton-Schrödinger equation, which is
used for quantitative comparisons with the experimental data. In order to obtain this
information, we interpolate the input beam injected into the sample with a Gaussian
field and an initial phase

Efit(x, y, z = 0) = Ae
−

(x−x0)
2+(y−y0)

2

2s2 e−ik
(x−x0)

2+(y−y0)
2

2f , (9.1)

being A, x0, y0, s, f, the best fit parameters. The fitting curve resulted into profile
with s = 350µm and an initial phase f = −1m.
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9.3 real-space comparisons

For the real-space comparisons, we consider both the intensity profile and the aver-
age size of the beam. The former is analyzed considering a slice of the beam intensity
profile as a function of one transverse coordinate for numerical simulation and exper-
iment. We observe a good qualitative agreement, as shown in Figure Figure 9.3.

Figure 9.3 – y = 0 slice of the beam intensity profile as a function of one transverse coordinate
x and power, obtained from experimental data (a) and the numerical simulation
(b).

The global dynamics of the system is studied following the evolution of the average
size of the beam profile, with the quantity

R(z) =
1

Py0

∫
I(x, y = 0, z) |x|dx, (9.2)

with Py0 =
∫
I(x, y = 0, z)dx. The reason why we choose the one dimensional version

of R, integrating over the y = 0 slice of the intensity profile instead of the full one,
is that in this way a larger weight is given to the central part of the beam compared
with the peripheral regions. The latter are indeed harder to experimentally measure
with good accuracy, given that their relative intensity compared to the maximum one
is very small.

In Figure 9.4, we show how varying χ affects the dynamics of the average size of the
beam, obtained from the numerical simulations the Newton–Schrödinger equation.
When χ & 1, diffraction effects start being important, as the beam width increases.
Whereas, for small values of χ, the dynamics is dominated by the self-focusing col-
lapse of the laser beam. The latter represents the regime where the semi-classical
limit is approached.
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Figure 9.5 – Comparison between experiment and simulation of the average size of the beam
profile as a function of power.
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Figure 9.4 – Plot of the average size of the laser beam over the y = 0 slice of the intensity
profile as a function of the longitudinal coordinate z in units of zdyn, for different
values of χ.

The evolution of R as a function of the input power (which can be mapped in z)
in both the experimental case and the numerical simulation, is shown in Figure 9.5.
Before the maximal collapse, the agreement is very good which indicates that the
physics is well modeled by the Newton-Schrödinger equation. After the collapse, at
large values of powers, the agreement is relatively good but not perfect. This is an
expected feature since the oscillations predicted by the simulation are known to be
chaotic [159], thus with a strong dependence on experimental parameters, such as
the medium length and off-centering, as discussed in the next section.
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9.3.1 Medium length and off-centering

The optical medium of our experimental setup is made of 3 identical samples,
each of 100mm length, however the exact propagation distance covered by the beam
is slightly larger. This is due to the fact that, at each interface between two samples,
in order to avoid the back reflected beam to superpose with the incident one, a very
small angle is introduced between the normal directions of the two facets. For this
reason the propagation length inside the thermo-optical medium is expected to be
a few millimeters larger. Simulations show how this quantity, which has not been
directly measured, has an important influence on the behavior of the R(P) curve. As
shown in Figure 9.6, where a difference of 1cm is taken into account, this parameter
does not change significantly the results before the collapse. However, the difference
becomes relatively important at large values of power, where a phase difference in
the nonlinear oscillations appears.

0 1 2 3 4 5 6

100

200

Figure 9.6 – Comparison of the average size of the beam profile as a function of power
between two simulations, with media of lengths 30cm and 31cm.

Another parameter which is observed to strongly influence the behavior of the R(P)
curve, is the off-centering, namely the correct identification of the pixel containing
the center of the beam intensity profile. This is relatively easy, as long as the beam
maintains a gaussian profile, with a single central peak. In this case, which is related
to small values of power, the center can be simply identified with the pixel of the
camera image corresponding to the maximal intensity. However after the collapse,
several peaks appear and the central one does not always coincide with the maximal
intensity, because of the presence of rings and oscillations. For this reason, identify-
ing the exact position of the beam profile center could be more problematic, leading
to another possible source of error which has some small - but still non negligible -
consequences for the average size of the beam profile curve as a function of power,
as shown in Figure 9.7.
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Figure 9.7 – Comparison of the experimental average size of the beam profile as a function
of power with different off-centering.

9.4 phase-space comparisons

The existence of mixing in the system is studied experimentally and numerically,
looking at the evolution of the phase space. To do that we use the Wigner distribution
[43]

F(r,k, z) =
∫
d2r ′ E

(
r +

r ′

2
, z

)
E∗
(

r −
r ′

2
, z

)
eik·r

′
, (9.3)

where E is the complex field (amplitude and phase) of the beam, obtained experi-
mentally from the interferograms.

As done with the R(P) quantity, also in this case we consider a one dimensional
version of the Wigner distribution, by integrating over the y = 0 slice of the beam
field instead of the full one

F(x, kx, z) =

∫
dx ′ E

(
x+

x ′

2
, y = 0, z

)
E∗
(
x−

x ′

2
, y = 0, z

)
eikxx

′
. (9.4)

The results, which are shown in Figure 9.8, are in good agreement with simulations:
at the beginning, the system has a Gaussian distribution in space and a very narrow
dispersion along the k-axis, then phase mixing starts first “rolling up” phase space
and then forming characteristic filaments (see e.g. [16]). The observed behavior of
the evolution of phase space is the one expected when the violent relaxation process
is present. The differences for the evolution of phase space and intensity profile with
or without violent relaxation are discussed in details in the next section.
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Figure 9.8 – Results of experiment (first row) and simulation (second row) for the y = 0, ky =

0 profiles of the Wigner distribution.

9.4.1 Differences of the evolution of phase space and intensity profile with or without violent
relaxation

As discussed in Section 3.1.1, if the mechanism of mixing process is driven by the
existence of a (static) an-harmonic potential, the violent relaxation mechanism on
the other hand requires the presence of a z-dependence on the potential. To better
show the differences between this two cases, we look at the evolution of Newton-
Schrödinger model, which presents phase-space mixing and violent relaxation, and
the Snyder-Mitchell model [160], which only presents phase mixing. The Snyder-
Mitchell model consist in a Schrödinger equation coupled with a nonlinear refractive-
index profile calculated using the input beam profile E0 = E(~r⊥, z = 0), namely

i∂zE+
1

2k
∇2⊥E+ k0∆nE = 0

∇2⊥∆n = −
αβ

κ
I0,

(9.5)

where I0 = |E0|
2.
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Figure 9.9 – Left plots: y = 0 slice of the beam intensity profile as a function of one transverse
coordinate x and power, obtained from the Newton-Schrödinger equation (SN)
(top left) and Snyder-Mitchell (SM) model (bottom left); both plots are in loga-
rithmic color-scale. Right plot: comparison between the outputs of the Newton-
Schrödinger equation simulation (black curve) and SM model (red curve) for the
one dimensional average size of the beam profile as a function of power.

Figure 9.9 shows a quantitative comparison between the Newton-Schrödinger equa-
tion and the Snyder-Mitchell model: the dynamics is qualitatively similar, showing
in both cases a collapse followed by nonlinear oscillations. At small power the differ-
ence between the structure of the output intensity profile is quite small, while after
the minimum of the R(P) curve, the dynamics of the two systems starts to differ in an
important way. In particular one can see for the Newton-Schrödinger model an os-
cillating peak surrounded by concentric rings, while for the Snyder-Mitchell system
the rings are less extended and the peak less pronounced, as shown in Figure 9.10.
Indeed, the Newton-Schrödinger equation output intensity profile is in agreement
with the one observed in the experiment, as at large power it is characterized by an
autonomous central oscillating soliton surrounded by rings. On the other hand, the
Snyder-Mitchell result is quite different, being more similar to a Fresnel diffraction
pattern from a circular aperture.
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Figure 9.10 – Left plots: intensity profile predicted by the Newton-Schrödinger model as a
function of the two transverse spatial coordinates (top left) and y = 0 slice
(bottom left). Right plots: intensity profile predicted by the Snyder-Mitchell
model as a function of the two transverse spatial coordinates (top right) and
y = 0 slice (bottom right). All plots are at P=5.46W, as in both cases the central
peak is at an absolute maximum at that power.

We arrive at the same conclusions looking at the phase-space dynamics, shown in
Figure 9.11. At the beginning, the two models are very similar. At large powers, and
in particular after the collapse (P ≈ 2W), the Newton-Schrödinger model exhibits a
more complicated dynamics (akin to the experimental Wigner distribution) compared
with Snyder-Mitchell.
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Figure 9.11 – Results of the NSE simulation (first row) and Snyder-Mitchell model (second
row) for the y = 0, ky = 0 profiles of the Wigner distribution.

9.4.2 Shell-crossing

Another typical feature of the dynamics of long range interacting system, essential
for the violent relaxation mechanism, is the shell crossing phenomenon [15]. As ex-
plained in Section 3.1.3, during shell crossing the potential changes abruptly, leading
to an exchange of energy between shells. This happens because different shells reach
the center at different times.

In the optical framework, this corresponds to different "shells" of the intensity
profile of the beam which self-focus by experiencing a potential well which changes
during the propagation.

To observe the shell crossing phenomenology in the experiment, we study the
map of the radial velocity distribution. The latter is obtained evaluating the gradient
of the phase of the optical beam E. Before doing this, the phase, measured with
the holography technique, must be unwrapped, to prevent discontinuities associated
with the its periodical behavior, which are not physical.

In Figure 9.12, we plot different snapshots of the evolution of the for experimental
the velocity field. The color indicates the magnitude (with the sign) of the radial
velocity. Specifically, we assign different red colors to the inward flux (red regions
are collapsing toward the center) and blue colors to the outward flux (blue regions
are going away from the center). At the beginning everything is red, since the system
is self-focusing, then, after the collapse (P ≈ 1.8W) the velocity flux starts going
outward, exhibiting both rings going toward the center and rings going away from
it. This corresponds to the shell crossing phenomenon [161], as we observe that there
are shells which are going inwards, while other are going outwards.
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Figure 9.12 – Snapshots of the evolution of the for experimental the velocity field. The color
indicates the magnitude (with the sign) of the radial velocity: red regions corre-
sponds to the inward flux and blue regions to the outward flux.
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9.5 energy distribution comparisons

To detect the actual signature of the violent relaxation process we look at the evolu-
tion of the energy distribution of the system. The local energy density can be defined
as

E(r, z) =
|∇⊥E(r, z)|2

2k |E(r, z)|2
− k0∆n(r, z), (9.6)

the first term corresponding to the kinetic energy density and the second one to the
potential one. Different definitions are possible for the kinetic term, all giving the
same result for χ→ 0 (see Appendix D). The energy distribution, is then defined as

ν(E, z) =
1

P

∫
d2r⊥ δ [E− E(r⊥, z)] I(r⊥, z), (9.7)

where δ is the Dirac Delta function and E is the energy density. For the optical
Newton–Schrödinger equation,

As explained in Section 3.1.3, the energy distribution is expected to evolve in a
system where an energy exchange takes place. In our optical setup, the violent
relaxation is not the only possible source of energy exchange, because of the presence
of reflections and absorption, as well as finite χ effects. For the latter, because of the
considerations made in Section 4.2.2, we know that in our experimental regime they
have a small impact on the dynamic of the system. This is explicitly shown in the
next section. On the other hand, as long as dissipation effects are concerned, since all
measurements are taken at the same value of z, the effect of reflections and absorption
is the same for all powers. For these reasons, we can conclude that changes in the
energy distribution are dominated by violent relaxation.

The evolution of the energy distribution is shown in Figure 9.13, for simulations
(top) and experiment (bottom). Before the maximal self-focusing (around P ≈ 1.8W),
the energy distribution globally decreases because it is dominated by the potential
energy and the system is collapsing. The energy is redistributed along the system
essentially just before and just after the collapse, which is the moment where the vi-
olent relaxation is more efficient. After the collapse, the energy distribution presents
two characteristic bumps: one at smallest energies, corresponding to the central re-
gion which has already completely relaxed (consisting of both the classical stationary
state and the soliton), and the second bump at higher energies related to the more pe-
ripheral regions, which have not completely relaxed yet. We observe how, as power
increases after the collapse, the energy distribution tends asymptotically to the quasi-
stationary state, which has not been completely reached yet. At larger powers we
observe also the formation of a soliton, associated with the minimal energy of the
system. In Figure 9.14, we show the evolution of the energy distribution for each
power. We observe a good quantitative agreement between experience (red curves)
and simulation (blue curve). This confirms unambiguously the observation of the
violent relaxation process.

9.5.1 Evolution of the energy distribution: finite χ effects

We determine the importance of finite χ effects in the evolution of the energy
distribution, performing simulations with different values of χ, without dissipation
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Figure 9.13 – Energy distribution map a for simulation (top) and the experiment (bottom).
The energy axis is in units of E0 = (2πκ) / (αβk0P).

-0.5 0 0.5
0

2
P=0.58WSim

Exp

-0.5 0 0.5
0

2

4
P=0.78W

-0.5 0 0.5
0

2
P=0.98W

-0.5 0 0.5
0

2
P=1.2W

-0.5 0 0.5
0

2

4
P=1.4W

-0.5 0 0.5
0

5 P=1.6W

-0.5 0 0.5
0

2

4
P=1.8W

-0.5 0 0.5
0

5
P=2W

-0.5 0 0.5
0

5 P=2.1W

-0.5 0 0.5
0

5 P=2.3W

-0.5 0 0.5
0

5
P=2.5W

-0.5 0 0.5
0

2
P=2.7W

-0.5 0 0.5
0

5 P=2.9W

-0.5 0 0.5
0

5 P=3.1W

-0.5 0 0.5
0

5
P=3.3W

-0.5 0 0.5
0

5 P=3.5W

-0.5 0 0.5
0

1

2
P=3.7W

-0.5 0 0.5
0

5 P=3.9W

-0.5 0 0.5
0

2
P=4.1W

-0.5 0 0.5
0

5
P=4.3W

-0.5 0 0.5
0

2

4
P=4.5W

-0.5 0 0.5
0

5
P=4.7W

-0.5 0 0.5
0

2

4
P=4.9W

-0.5 0 0.5
0

5
P=5.1W

Figure 9.14 – Energy distribution at different values of power for simulation (blue curves) and
experiment (red lcurves). The energy axis is in units of E0 = (2πκ) / (αβk0P).
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and reflections. We plot the evolution of the energy distribution in Figure 9.15, for
different values of z, expressed in units of zdyn. In the experiment, zdyn = 7.5 cm (the
end of the material) for P ≈ 1.77W (see Table 9.1). For values z . 0.75zc, we observe a
weak finite χ effect, for all values simulated. For z & 3 zdyn, we observe a convergence
for the smallest values of χ, which coincides with the corresponding values of χ used
in the experiment. We can conclude that the experiment χ is sufficiently small in
order to have little incidence on the change of the energy distribution compared with
violent relaxation.

z(zc) 1.00 1.52 2.00 2.48 3.00 4.00 6.00 8.00

P(W) 0.11 0.26 0.44 0.70 1.00 1.77 3.98 7.08

χ 0.24 0.16 0.12 0.10 0.08 0.06 0.04 0.03

Table 9.1 – Some values of the power P with the associated value of χ and z in units of zc. In
the experiment the minimal value of the power is 0.39, the maximal one 5.46.
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Figure 9.15 – Simulation of the evolution of the energy distribution for different values of the
power χ. The energy axis is in units of E0 = (2πκ) / (αβk0P)
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C O N C L U S I O N S

In this thesis, we focused on multiple aspects of the Newton–Schrödinger equation,
investigating both theory and numerics and performing an experiment.

The experimental work, performed with a monochromatic laser beam propagat-
ing through a nonlinear non-local medium modeled by the Newton–Schröodinger
equation, reported for the first time the violent relaxation mechanism, leading to
the formation of a quasi-stationary state. This phenomenon, which is theoretically
known for decades, but were not possible to observe in nature, is a crucial mecha-
nism, responsible to the formation of galaxies and globular clusters. In addition, the
experiment allows to control a range of parameters, including the nonlocal (gravita-
tional) interaction strength and the strength of quantum gravity coupling  h/m, thus
providing an effective test-bed for gravitational models that cannot otherwise be di-
rectly studied in experimental settings. The ability to tune the parameters of the
interaction also provided a valid test-bed to compare theory and observations and a
new approach to the study of the dynamics of long range interacting system.

The numerical work provided important results as well, both with the development
of a new efficient method and the comparisons with the already existing ones.

Concerning the new method developed, exploiting a gauge condition on the po-
tential, we optimized the integrating factor technique applied to Schrödinger-like
equations. We called this method “IFC”. Although the exact values of the piece-
wise constant Cn minimizing the error (5.44) (therefore maximizing the time-step) is
in principle always possible to compute (e.g., with a computer algebra system), its
expression depends on the particular numerical scheme chosen and it becomes com-
plicated as the order of the method increases, resulting in a high computational cost.
However, the near-optimal value obtained from the minimization of the L2-norm of
the nonlinear part of the equation, proved to be an accurate and efficient solution in
the tested cases. Thus, being computationally extremely cheap and independent of
the particular numerical scheme employed, this is the approach one should choose for
most simulations, at least when the computation of the nonlinear term is not very ex-
pensive. For Schrödinger-like equations with hard to compute potentials, most of the
computational time is spent in the calculation of the nonlinear term. For these very
demanding equations, the extra cost needed to compute the optimum Ĉn (instead of
the near optimum C̃n) is negligible in comparison, so Ĉn could be preferable. For
the cases tested here, we found a speed-up in the computation time up to a factor 5,
the speed-up depending on the equation and on the physical regime. The numerical
examples considered, show that this approach provides significant speed improve-
ments, that with minor modifications of the original algorithm. Though we focused
on the nonlinear Schrödinger and Schrödinger–Newton equations, the method prin-
ciple is independent on the particular potential considered, so this approach can be
extended to other Schrödinger-like equations. More generally, the idea behind the
method presented can be, at least in principle, generalized and extended to other
equations with similar gauge conditions.
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Concerning the numerical comparisons between different methods, we studied the
numerical integration of the Nonlinear Schrödinger and the Newton–Schrödinger
equations using the integrating factor technique. This method was compared with
another family of time-integrating solvers, the Split-Step integrators. For methods
belonging to the integrating factor family, we tested fifth order time-adaptive al-
gorithms while for the Split-Step family we focused on second, fourth and sixth
order algorithm with fixed time-step and a fourth-order algorithm with adaptive
time-step. We performed extensive tests with systems in one and two spatial di-
mensions, and with open or periodic boundary conditions. The comparisons be-
tween the results obtained in the tested cases, show that the IFC method can be
more efficient than splitting algorithms, especially in the Nonlinear Schrödinger and
periodical Newton–Schrödinger equations cases. For the Newton–Schrödinger equa-
tion in the non-periodical case on the other hand, splitting algorithms proved to be
more efficient, even though the optimized integrating factor provided competitive
results in terms of both speed and accuracy. Moreover, the results obtained for the
Gross–Pitaevskii–Poisson equation pointed out how the presence of a short-range
interaction term puts the integrating factor method in a clear more performing posi-
tion. Finally, the achieved results show how, among the splitting algorithms at fixed
step, working with higher order integrators is always more efficient. In particular,
the Split-Step order 6 proved to be around 10 times faster compared with the lower
order ones, while conserving the energy with the same error. The adaptive Split-Step
produced good results as well, making the development of higher order version of
this algorithm a very promising field of research.
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A
A D I M E N S I O N A L I S AT I O N

We discuss the adimensionalisation of the Newton–Schrödinger equation. Consid-
ering the most general case, one has

ia
∂ψ

∂t
+
b

2
∇2ψ− cVψ+ i

d

2
ψ = 0(

∇2 − s
)
V = p |ψ|2 ,

(A.1)

where a, b, c, d, s, p are real constants (some of them possibly null), whose value
and physical dimensions depend on the system considered. Adimensional variables,
denoted with a "bar", are defined as

ψ = αψψ t = αtt r = αrr V = αVV . (A.2)

Choosing

αψ =

√
N

αdr
αt =

aα2r
b

αV =
b

α2rc
(A.3)

where N =
∫
ddr |ψ|2 and αr is arbitrary, the equations can be written as

i
∂ψ

∂t
+
1

2
∇2ψ− Vψ+ i

f

2
ψ = 0(

∇2 − h
)
V = g |ψ|2

(A.4)

where the bar notation has been dropped for simplicity. In the latter equation, f =
dα2r
b , g = cNpα4−dr

b and h = α2rs.
Notice that in this way one has∫

ddr |ψ|2 = e−ft. (A.5)
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b.1 tsitouras solver

In (B.1) we list the coefficients of Butcher tableau for the Tsitouras method.

a2,1 = 0.161

a3,1 = −0.00848065549235699

a3,2 = 0.3354806554923570

a4,1 = 2.89715305710549

a4,2 = −6.359448489975075

a4,3 = 4.362295432869581

a5,1 = 5.32586482843926

a5,2 = −11.74888356406283

a5,3 = 7.495539342889836

a5,4 = −0.09249506636175525

a6,1 = 5.86145544294642

a6,2 = −12.92096931784711

a6,3 = 8.159367898576159

a6,4 = −0.07158497328140100

a6,5 = −0.02826905039406838,

b1 = 0.09646076681806523

b2 = 0.01

b3 = 0.4798896504144996

b4 = 1.379008574103742

b5 = −3.290069515436081

b6 = 2.324710524099774

b7 = 0,

b̃1 = 0.0946807557658394

b̃2 = 0.0091835655403432

b̃3 = 0.4877705284247615

b̃4 = 1.2342975669304789

b̃5 = −2.7077123499835254

b̃6 = 1.8666284181705870

b̃7 =
1

66
,

c1 = 0 (B.1)

c2 = 0.161

c3 = 0.327

c4 = 0.9

c5 = 0.9800255409045097

c6 = 1

c7 = 1.

b.2 fixed time-step algorithms

We list below the pseudocodes for the Split-Step method at order 2 (SS2), 4 (SS4)
and 6 (SS6) all at fixed time-step.
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Algorithm 2 : SS2

1: t← tin
2: ψ← ψ(~r, tin)

3: while t < tfin do
4: ψ← FFT−1[e−iK̂a1hFFT [ψ]]

5: ψ← e−iVb1hψ

6: ψ← FFT−1[e−iK̂a1hFFT [ψ]]

7: t← t+ h

8: end while

Algorithm 3 : SS4

1: t← tin
2: ψ← ψ(~r, tin)

3: while t < tfin do
4: ψ← FFT−1[e−iK̂a1hFFT [ψ]]

5: ψ← e−iVωb1hψ

6: ψ← FFT−1[e−iK̂a2hFFT [ψ]]

7: ψ← e−iVb2hψ

8: ψ← FFT−1[e−iK̂a2hFFT [ψ]]

9: ψ← e−iVωb1hψ

10: ψ← FFT−1[e−iK̂a1hFFT [ψ]]

11: t← t+ h

12: end while
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Algorithm 4 : SS6

1: t← tin
2: ψ← ψ(~r, tin)

3: while t < tfin do
4: ψ← FFT−1[e−iK̂a1hFFT [ψ]]

5: ψ← e−iVb1hψ

6: ψ← FFT−1[e−iK̂a2hFFT [ψ]]

7: ψ← e−iVb2hψ

8: ψ← FFT−1[e−iK̂a3hFFT [ψ]]

9: ψ← e−iVb3hψ

10: ψ← FFT−1[e−iK̂a4hFFT [ψ]]

11: ψ← e−iVb4hψ

12: ψ← FFT−1[e−iK̂a5hFFT [ψ]]

13: ψ← e−iVb5hψ

14: ψ← FFT−1[e−iK̂a6hFFT [ψ]]

15: ψ← e−iVb5hψ

16: ψ← FFT−1[e−iK̂a5hFFT [ψ]]

17: ψ← e−iVb4hψ

18: ψ← FFT−1[e−iK̂a4hFFT [ψ]]

19: ψ← e−iVb3hψ

20: ψ← FFT−1[e−iK̂a3hFFT [ψ]]

21: ψ← e−iVb2hψ

22: ψ← FFT−1[e−iK̂a2hFFT [ψ]]

23: ψ← e−iVb1hψ

24: ψ← FFT−1[e−iK̂a1hFFT [ψ]]

25: t← t+ h

26: end while

where h is the time step, FFT and FFT−1 denote the fast Fourier transform and its
inverse respectively, K̂ is the kinetic energy operator in Fourier space and V is the
potential. The values of the coefficients ai, bi are listed in table Table B.1.

b.3 adaptive split-step

The pseudo-code for the adaptive Split-Step algorithm is described in ALG. (5),
while the coefficients are listed in Table B.2.
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SS2 SS4 SS6

a1 =
1
2 a1 =

ω
2 a1 = 0.0502627644003922

b1 = 1 b1 = 1 b1 = 0.148816447901042

a2 =
1−ω
2 a2 = 0.413514300428344

b2 = 1− 2ω b2 = −0.132385865767784

a3 = 0.0450798897943977

ω = 2+21/3+2−1/3

3 b3 = 0.067307604692185

a4 = −0.188054853819569

b4 = 0.432666402578175

a5 = 0.541960678450780

b5 = 0.5− (b1 + b2 + b3 + b4)

a6 = 1− 2(a1 + a2 + a3 + a4 + a5)

Table B.1 – Values of the ai, bi coefficients for the Split-Step algorithms.

Algorithm 5 : SSa
1: t← tin
2: ψ← ψ(r, tin)
3: while t < tf do
4: Φ← ψ

5: ψ← FFT−1[e−iK̂a1hFFT [ψ]]

6: ψ← e−iVb1hψ

7: ψ← FFT−1[e−iK̂a2hFFT [ψ]]

8: ψ← e−iVb2hψ

9:
...

10: ψ← FFT−1[e−iK̂a7hFFT [ψ]]

11: ψ← e−iVb7hψ

12: ψ̃← FFT−1[e−iK̂ã1hFFT [Φ]]

13: ψ̃← e−iVb̃1hψ̃

14: ψ̃← FFT−1[e−iK̂ã2hFFT [ψ̃]]

15: ψ̃← e−iVb̃2hψ̃

16:
...

17: ψ̃← FFT−1[e−iK̂ã7hFFT [ψ̃]]

18: ψ̃← e−iVb̃7hψ̃

19: err←
√∑N

i=1|ψ(xi,tn)−ψ̃(xi,tn)|
2∑N

j=1|ψ(xj,tn)|
2

20: if err 6 tol then
21: t← t+ h

22: else
23: ψ← Φ

24: end if

25: h← hmin
{
α
(
tol
∆n

) 1
4
, β

}
26: end while
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SSa

Order 4 Order 3

a1 0 ã1 0

b1 0.0829844064174052 b̃1 0.0829844064174052

a2 0.245298957184271 ã2 0.245298957184271

b2 0.3963098014983680 b̃2 0.3963098014983680

a3 0.604872665711080 ã3 0.604872665711080

b3 -0.0390563049223486 b̃3 -0.0390563049223486

a4 0.5 - (a2 + a3) ã4 0.5 - (a2 + a3)

b4 1. - 2(b1 + b2 + b3) b̃4 1. - 2(b1 + b2 + b3)

a5 0.5 - (a2 + a3) ã5 0.3752162693236828

b5 -0.0390563049223486 b̃5 0.4463374354420499

a6 0.604872665711080 ã6 1.4878666594737946

b6 0.3963098014983680 b̃6 -0.0060995324486253

a7 0.245298957184271 ã7 -1.3630829287974774

b7 0.0829844064174052 b̃7 0

Table B.2 – Values of the parameters for the SSa.





C
L O S S E S E F F E C T

In absence of losses and in the limit χ→ 0, the mapping between P and z described
in Section 8.3.2 is exact. In this case the only mechanism responsible to the evolution
of the energy distribution is the violent relaxation.

We first investigate the effect of losses in the mapping between P and z. In Fig-
ure C.1 (a-c) we show the difference between studying the dynamics in z (which cor-
responds to the original system) or in terms of the power (following the employed
experiment procedure). Specifically, in Figure C.1 (a) we show the evolution of the
beam intensity profile I(x, y = 0, z;P = 5.46W) as a function of the propagation
coordinate z/zdyn, at fixed power, obtained from a simulation without losses. In
Figure C.1 (c) on the other hand, we show the evolution of the intensity profile
I(x, y = 0, z = L = 30 cm;P), obtained from a simulation with losses, varying the
power, and expressing the propagation coordinated as L/zdyn. The latter reproduces
the experimental configuration. In both simulations we observe the same qualitative
behavior. In Figure C.1 (b) we show the evolution of the transverse size of the system
R(z) for the same simulations presented in (a) and (c): without losses (blue curve)
and with losses (black curve). The main difference is that the black curve collapses
later compared with the blue one. This is due to the presence of losses, which slow-
down the dynamics. For the same reason, the average beam size obtained varying
the power at constant z, is shown to be slightly larger, compared to the blue curve.
Despite these differences, the undergoing physics remains the same.

We now investigate the effect of losses in the evolution of the energy distribution
after the collapse. In Figure C.1 (d) we show the evolution of the energy distribu-
tion, obtained from numerical simulations, from the lowest power to the largest one.
The orange curve corresponds to the experimental configuration, with losses. The
yellow curve correspond to a simulation without losses. In order to have both curves
corresponding to the same output intensity, the yellow one is multiplied by a factor
T4e−αL, which take into account losses. We observe that the difference form the
initial energy distribution is much larger than the differences between these curves,
which allows to conclude that the effect of violent relaxation dominates over losses
in the evolution of the energy distribution.
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Figure C.1 – (a): evolution of the intensity profile I(x, y = 0, z;P = 5.46W) for a simulation
without losses. (b): evolution of the transverse size of the beam R(z) without
losses (blue curve) and with losses (black curve). (c): evolution of the intensity
profile I(x, y = 0, z = 30 cm;P) for a simulation with losses, with P expressed
in terms of z/zdyn (see text). (d): evolution of the energy distribution from the
initial condition (blue curve) to the largest power, with losses (orange curve) and
without losses (yellow curve).



D
K I N E T I C E N E R G Y D E N S I T Y I N T H E C L A S S I C A L L I M I T

Here we show that computing the kinetic energy in the classical limit, using the
operator Laplacian, gradient or Husimi distribution are equivalent. Let us define the
Husimi representation of phase space [44]:

Ψ(x,p, t;η) =
1

2π h

(
1

πη2

)1/2 ∫
d2rE(r, t) exp

(
−
|x− r|2

2η2
− i
p · (r− x/2)

 h

)
. (D.1)

The distribution function is given by

F(x,p, t;η) = |Ψ(x,p, t;η)|2. (D.2)

The classical limit is obtained by first taking the limit  h → 0 and second η → 0 [45].
In practice, in a simulation or in a experiment, the smallest value of η is chosen to
be compatible with the condition η � ξ, where ξ is the healing length, the smallest
structure in the system. The value of η gives the spatial resolution.

To compute the kinetic energy in a classical system one must evaluate the quantity
〈|p|2〉 which can be computed using (D.1):

〈|p|2〉 =
∫
d2pF(x,p, t;η) |p|2. (D.3)

Using (D.2) one obtains

〈|p|2〉 =
(
1

2π h

)2
1

πη2
× (D.4)∫

d2r d2r ′ d2pE(r, t)E∗(r ′, t)e−|x−r|2/2η2e−|x−r ′|2/2η2e−ip·r/
 heip·r

′/ h |p|2.

One can manipulate the above equation in two different ways, which will make ap-
pear the Laplacian or the squared gradient respectively. First, using that

|p|2e−ip·r/
 h = − h2∆re

−ip·r/ h, (D.5)

where ∆r is the Laplacian on the variable r, and integrating (D.4) by parts twice
about the variable r or r ′ one gets

〈|p|2〉 = −
1

πη2
1

2

{∫
d2rE∗(r, t)e−|x−r|2/2η2∆r

[
E(r, t)e−|x−r|2/2η2

]
+∫

d2rE(r, t)e−|x−r|2/2η2∆r

[
E∗(r, t)e−|x−r|2/2η2

]}
. (D.6)

Second, using that

|p|2e−ip·r/
 heip·r

′/ h =  h2
[
∇re−ip·r/ h

] [
∇r ′eip·r

′/ h
]
, (D.7)
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where ∇r is the gradient on the variable r, and integrating (D.4) by parts about the
variables r and r ′ one has

〈|p|2〉 = 1

πη2

∫
d2r

∣∣∣∇r [E(r, t)e−|x−r|2/2η2
]∣∣∣2 . (D.8)

Equations (D.6) and (D.8) are exact. In the classical limit they can be simplified
using that, in this limit,

∇rE(r, t) ∼ E(r, t)/ξ� ∇re−|x−r|2/2η2 ∼ e−|x−r|2/2η2/η, (D.9)

because η� ξ. One can then rewrite (D.6) as

〈|p|2〉 ' −
1

πη2
1

2

∫
d2r e−|x−r|2/η2 [E∗(r, t)∆rE(r, t) + E(r, t)∆rE

∗(r, t)] (D.10)

and (D.8) as

〈|p|2〉 '
∫
d2r e−|x−r|2/η2 |∇rE(r, t)|2 . (D.11)

Taking first the limit η→ 0 of (D.10) and then the classical limit, one obtains

−
1

2
[E∗(x, t)∆xE(x, t) + E(x, t)∆xE

∗(x, t)] ≈ |∇xE(x, t)|2 . (D.12)
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