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THÈSE DE DOCTORAT
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ABSTRACT

Automation of Quality Control and Reduction of Non-Compliance using Machine
Learning Techniques at Faurecia Clean Mobility

Charbel El Hachem
University of Bourgogne Franche Comté, 2022

Supervisors: Raphaël Couturier, Gilles Perrot and Loı̈c Painvin

Quality control applications in the automotive industry are numerous. Automotive compa-

nies are working on the automation of these applications and add a particular focus on

securing their processes.

In this thesis, the first contribution proposes an automated quality control for component

presence. It allows to classify if the component is present, missing or has been replaced

by another component. The algorithm can achieve an accuracy of 100% with live tests.

The second contribution focuses on automating the quality control of welding seams that

haven’t been reached by leak tests, covering external aspects of welding defects. The

images collected from the plants are not balanced, data augmentation techniques have

been applied to reach more balanced dataset. In this contribution, a standard deep learn-

ing algorithm applied on raw data has been compared to data augmentation approaches.

The target, defined by the plant, 97% of defected reference parts detection, has been

reached on half of the welds. The challenge remains present on the other half.

In the third contribution, deep learning model explainability and welding seams classifi-

cation accuracy are combined. A hybrid approach of CNN-Machine learning classifier is

proposed to improve the accuracy reached in the second contribution. This work presents

a new model-driven optimization reaching an accuracy above 98% when applied on weld-

ing seams dataset.

In the fourth contribution, ceramic monolith position and their relative breakages are stud-

ied. The quality control of these monoliths should be done during the production of ex-

haust pipes. A comparison between image processing filters for straight lines detection is

presented. The tests were carried out by applying a rotation to the ceramic in a 5-degree

step. The results show that canny filter applied with hough lines allows to achieve an
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accuracy of 99%.

Finally, a Human Machine Interface (HMI) has been developed aiming to provide a Plug

& Play system to the plants. The integration of this digital solution in the plant’s cycle time

will be discussed, as well as its architecture.

KEYWORDS: deep learning, image classification, convolutional neural network, data

augmentation, industry automation



RÉSUMÉ

Automatisation du contrôle qualité et réduction des non conformités en utilisant
des techniques de machine learning chez Faurecia Clean Mobility

Charbel El Hachem
Université de Bourgogne Franche Comté, 2022

Encadrants: Raphaël Couturier, Gilles Perrot and Loı̈c Painvin

Les applications de contrôle qualité dans l’industrie automobile sont nombreuses. Les

constructeurs automobiles travaillent sur l’automatisation de ces applications et mettent

un accent particulier sur la sécurité de leurs processus. Dans cette thèse, la première

contribution propose un contrôle automatisé de présence de composants. La méthode

proposée permet de déterminer si le composant est présent, absent ou a été remplacé

par un autre composant. L’algorithme peut atteindre une précision de 100% avec des

tests en conditions réelles.

La deuxième contribution porte sur la classification des cordons de soudure non atteints

par les tests d’étanchéité. Cette classification est relative aux aspects externes des

soudures. Les images collectées à partir des usines ne sont pas équitablement réparties

sur les classes du modèle d’intelligence artificielle. Des techniques d’augmentation de

données ont été appliquées pour atteindre un ensemble de données mieux réparti. Dans

cette contribution, un algorithme standard d’apprentissage profond appliqué sur des

données brutes a été comparé à des approches d’augmentation de données. L’objectif,

défini par l’usine, de 97% de détection des pièces de référence défectueuses a été atteint

sur deux soudures. Le défi reste présent sur les deux autres soudures.

Dans la troisième contribution, une approche hybride de CNN-Machine Learning Classi-

fier est proposée pour améliorer la précision atteinte dans la seconde contribution. Ce

travail présente une nouvelle optimisation pilotée par un modèle atteignant une précision

supérieure à 98% lorsqu’elle est appliquée sur un jeu de données de cordons de soudure.

Dans la quatrième contribution, les criques de monolithes en céramique sont étudiées.

Leur contrôle qualité doit se faire lors de la fabrication de pots d’échappement. Une
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comparaison entre différents filtres de traitement d’images permettant la détection de

l’orientation de la céramique est présentée. Les tests ont été réalisés en appliquant une

rotation de la céramique par pas de 5 degrés. Les résultats montrent qu’avec la méthode

canny + hough lines, une précision de 99% est atteinte.

Enfin, une Interface Homme Machine (IHM) a été développée et son objectif est de fournir

un système Plug & Play aux usines. Cette contribution abordera les étapes à suivre pour

déployer une solution numérique : son intégration dans le temps de cycle de l’usine suiv-

ant le Système de Gestion du Programme d’Innovation et son architecture.

Mots clés: apprentissage profond, classification d’images, réseau neuronal convolutif,

augmentation de données, automatisation de l’industrie
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1

INTRODUCTION

This thesis focuses on advancing the state-of-the-art of quality control in the automotive

industry, with a specific focus on component presence control, welding seam classifi-

cation, and brick orientation adjustment. The presented research was carried out in a

CIFRE thesis: a collaboration between Faurecia Clean Mobility and the Department of

Informatics and Complex Systems (DISC in French) of FEMTO-ST Institute laboratory.

Throughout the remainder of this thesis, the writer will be referred to as “we”, rather than

“I”. This is because this thesis presents research performed in a collaborative setting in

Bavans-France, as part of the Digital Expertise and Development (DE&D) innovation lab-

oratory team.

This chapter provides an introduction to the work conducted in this thesis. It addresses

the general context and the considered quality control use cases, then presents briefly

the contributions of this thesis.

1.1/ THESIS CONTEXT

This thesis is an industry oriented research, aiming to apply academic research results

for manufacturing profit by using research to improve industrial processes. Faurecia is a

major actor in the Automotive industry and develops technologies for sustainable mobility

and personalized experiences for the Cockpit of the Future.

This thesis is mainly located at the Research and Development (R&D) center of Faurecia

Clean Mobility, more specifically in the DE&D service. This business group is exhaust

systems oriented: vast number of references is produced and copies of the same refer-

ence may have dissimilarities. For that, quality control is necessary and should be applied

to every reference part.
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6 CHAPTER 1. INTRODUCTION

1.2/ INTRODUCTION TO INDUSTRY AUTOMATION

By definition, quality control is testing an output sample against specifications. In the

manufacturing sector, the plant follows the specification needs to respond to the client’s

requirement before delivering products. Quality control applications in the automotive in-

dustry are numerous, and today’s manufacturing industry has enabled the use of artificial

intelligence and image processing algorithms in its applications. These applications allow

the automation of quality control making by that the plants autonomous. A great deal

of work has been done recently with deep learning and image processing in the man-

ufacturing sector, and the benefits on the production line are significant. One evolving

role of artificial intelligence is to be able to learn continuously and to progress by time.

Automated quality control in the production line will allow the reduction of unnecessary

tasks, shocking the cycle time. Earnings of this automation are calculated in terms of

maintaining the continuity of the process.

Factory automation is the incorporation of automation from end-to-end manufacturing

processes. Industrial automation uses control systems and equipment, whether com-

puters, process controllers or robots to replace a human being. Automation increases

productivity, eliminates error, and allows for better control of the manufacturing process.

Three types of industry automation systems can be identified: the first one is the fixed

system, where the production equipment is fixed and is often used to execute repetitive

tasks. Assembly lines in the automotive industry are an example of fixed systems. The

second one is the programmable system, used in batch process production. It is able to

be reconfigured depending on the batches of products and their specifications. Industrial

robots are an example of programmable system. The third one is the flexible automa-

tion system, used when the product changes frequently. Each particular job requires a

code, the necessary tools and equipment for the production. The product changeovers

are brought by the control system, no time needed for reconfiguration between batches.

Computer Numerical Controls (CNC) machines are an example of flexible system. Artifi-

cial intelligence (AI) and image processing techniques has become indispensable in the

industry automation, particularly in quality control systems.

The work done in this thesis addresses numerous algorithms ready to be deployed in a

manufacturing environment. All of the developed solutions follow an industrial process

so they can be deployed: starting with a proof of concept (POC), a prototype, a pilote

and finally a standardized solution is obtained. The data studied in this work correspond

to 2D images collected from Faurecia plants. The purpose of this thesis is therefore to

suggest digital solutions to automotive plants. The contributions concentrate specifically

on component presence control, welding seam classification and brick orientation adjust-

ment in which various deep learning and image processing approaches are presented to

solve different challenges. Lastly, the final contribution is relative to the Human Machine
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Interface (HMI) that has been developed to provide the plants with a Plug & Play system.

1.3/ USE CASE: QUALITY CONTROL IN THE AUTOMOTIVE INDUS-

TRY

Different types of quality control are done in the automotive industry, such as component

presence control, welding seam classification, geometric control, and brick orientation

adjustment. Two main parameters should be taken into consideration when automating

quality control. Firstly, is the integration in the production line; proof of concept realized at

the innovation laboratory has different environment conditions compared to plants. Sec-

ondly, the impact on the cycle time has to be taken into consideration so the production

won’t be affected by the algorithm execution time.

1.4/ MAIN CONTRIBUTIONS OF THIS DISSERTATION

The main contributions in this dissertation fall within the automation of quality control

by applying artificial intelligence and image processing techniques to classify extracted

features. The main contributions can be summarized as follows:

1. We proposed an automated quality control for component presence. The proposed

method is based on ResNet50 architecture and allows to classify if the component

is present, missing or replaced by another component. This algorithm is able to

achieve an accuracy of 99% with live tests. Furthermore, the other performance

matrices used in this work are reliability and cycle time. A comparison between the

software execution time and human inspection is presented. The results show that

automating component presence control obtains better Overall Equipment Effec-

tiveness (OEE) than manual inspection and avoids performance degradation over

the operator’s shift.

2. Classification of welding seams is performed using a deep neural network. Four

welding seams are not covered by leak tests, this is why visual inspection is nec-

essary. This classification is relative to external aspects of welding defects. The

images collected from the plants are imbalanced between classes, data augmen-

tation techniques have been applied to reach more balanced dataset. MobileNet

architecture has been used for image classification. In this contribution, a standard

deep learning algorithm applied on raw data has been compared to data augmen-

tation approaches. The target, defined by the plant’s team, of 97% of detection of
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defected reference parts has been reached on two welds. The challenge remains

present on two other welds.

3. We emphasize the contribution of deep learning model explainability and the im-

provement of welding seams classification accuracy obtained in the second contri-

bution. A hybrid approach of CNN-Machine Learning Classifier is proposed, com-

bining the model prediction scores and visual explanation heatmap. The hybrid

approach proposed in this paper reaches high accuracy on weld defects classifica-

tion. The highest accuracy improvement was by +72.7% for the second weld using

MobileNet-XGboost classifier and by +22.6% for the third weld using MobileNet-

SVM Poly5 Kernel or MobileNet-XGboost classifier.

4. Ceramic monoliths risk breakage during production. This is due to their position at

a specific angle. Quality control should be done on each brick during the production

of the exhaust pipes. This control aims to adjust, if needed, the positioning of the

brick before starting the production. We compared several image processing filters

for straight lines detection. Vision parameters (gain, exposure time and aperture

range), have been tested in this contribution in order to have a better visibility of

the reference part. Tests were carried out by applying a rotation to the ceramic in

five degree steps. The results show that with the canny + hough lines method, an

accuracy of 99% is achieved. The proposed solution will be deployed in a Faurecia

factory in order to validate the algorithm under real lighting conditions.

5. Having the plant autonomous is a key factor in the manufacturing industry. A solu-

tion has been developed by the Digital Expertise and Development (DE&D) service

and aims at providing a Plug & Play system to the plants. This contribution will

discuss the steps to be followed for deploying a digital solution in Faurecia’s plants:

integration of the solution in the plant’s cycle time, architecture of the HMI, and im-

plementation of the solution following the Innovation Program Management System

(IPMS).

1.5/ DISSERTATION OUTLINE

The rest of this dissertation is organized as follows: chapter 2 discusses the product life-

cycle in a Faurecia Clean Mobility plant and its quality control. Chapter 3 presents the

state-of-the-art of neural network based computer vision and its applications in an indus-

trial context. Chapter 4 presents the first contribution of this dissertation: the component

presence control realized with ResNet50 deep learning model. Chapter 5 discusses the

welding seam classification previously done manually by the operator, and integrates

an automated solution with MobileNet architecture. Chapter 6 resolves the limitations



1.5. DISSERTATION OUTLINE 9

of the contribution presented in Chapter 5 by offering a hybrid deep learning approach.

Chapter 7 applies image processing techniques to adjust brick orientation in the plants,

avoiding by that potential defects and breakages. Chapter 8 presents the HMI used to

integrate the computer vision contributions in Faurecia’s plants. Chapter 9 concludes the

work that has been done in this thesis.
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INDUSTRIAL CONTEXT: QUALITY CONTROL IN

THE AUTOMOTIVE INDUSTRY
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2

TYPES OF QUALITY CONTROL IN THE

AUTOMOTIVE INDUSTRY

2.1/ INTRODUCTION

The goals of manufacturing activities include achieving product realization, establishing

and maintaining a state of control and facilitating continual improvement. The quality

system of manufacturing activities provides assurance that the desired product quality is

routinely met, suitable process performance is achieved, and that the control sets are

appropriate. One of the main responsibilities of manufacturing activities is to evaluate

improvements of the production line. In this chapter, we will discuss the life cycle of a

product in faurecia plants and the importance of automating factory procedures.

2.2/ PRODUCT LIFE CYCLE IN FAURECIA PLANTS

Confidential

2.3/ INDUSTRY AUTOMATION

The process of automated resources making actions at decision time without any hu-

man involvement is what we call automated decision-making. One of the crucial reasons

for automating an industrial operation is worker safety. Heavy machinery, running at hot

temperatures, and sharp objects increase the hazards of the factory environment. An-

other benefit of automation is freedom from fatigue. Machines can produce the same way

the same part all day long without losing quality over time. Industrial automation does

impact other parameters such as security, data integrity, interoperability, scalability, reli-

ability, availability, and many others. Companies take a giant stride forward on financial

13
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and technological aspects when they invest in manufacturing automation.

In agriculture [29], wood industry [40], robotic process [38], and many other fields, au-

tomation has proved its importance in accelerating decision-making. Automotive compa-

nies are also working on this automation and add a particular focus on quality automation

to secure their processes. Instead of using the operator to control the quality of the ref-

erence part manually, an automated system needs to be deployed in order to verify the

product’s specifications.

2.4/ EXISTING SOLUTIONS IN THE MARKET

Following is the discussion the service Digital Expertise & Development (DE&D) had with

an entreprise delivering quality control systems. Their quality control is focused on de-

fects detection (dimensional control, aspect control and image classification), character

reading (including distorded characters), and tracking with a robot (sending/receiving in-

formation from/to a personal computer).

The proposed system offers many advantages, such as providing deep learning model

able to be trained with multi-classes. By that, multiple quality control applications can

be gathered together in a single system. An other advantage is that this system has al-

ready been tested in a Faurecia plant and the network integration has been done in some

plants. The information exchange between the provided system and Faurecia network is

thus guaranteed.

Although the added value of this system is well identified, there are some disadvantages

to take into account. Firstly, the price of the system bypasses the budget of the plants.

Secondly, the system is fully delivered and treated as a package. It targets a quality

control application and cannot be used for different types of quality control. Thirdly, the

system does not cover remote access for maintenance. A physical move must be made

in case of a breakdown of the system.

Due to the disadvantages presented above, Faurecia decided to develop its own auto-

mated system. The proposed system will guarantee the advantages of existing solutions

in the market, and additionally it will provide the ability to cover different types of quality

control in a single system.

2.4.1/ EXAMPLES OF QUALITY CONTROL

In this section, we will list some of the quality control types to be insured in the product’s

lifecycle. There are other types of quality control which we will discuss in more details in

the next chapters.
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GEOMETRY CONTROL

Confidential

SPATTERS CONTROL

Confidential

Figure 2.1: OK sensor boss on the left, NOK sensor boss (spatters inside) on the right

CRACK CONTROL

Confidential

Figure 2.2: Different types of end forming applied in the manufacturing industry
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2.5/ CONCLUSION

We have presented, in this chapter, different phases of a manufacturing product starting

with the truck reception area until the truck preparation area. Different types of quality

control need to be applied throughout the product’s lifecycle, and can be carried out

manually or automatically.

A compromise should be defined between the speed of production and the various types

of quality control. For that, manufacturing plants require automatized quality control in

order to guarantee the quality of their products and maintain the same performance during

different shifts. Automated solutions for quality control do exist in the market and able to

provide high quality and sustainable performance. Given the inability to have a remotely

accessible system, and a re-usable system to the different types of quality control, the

DE&D service has developed a complete system. This system ranges from the computer

vision (deployed algorithms) to the Human Machine Interface (HMI) to interact with the

plant’s operators.

In the next chapters we will be first presenting the state of the art of the neural network

based computer vision. Then, we will continue listing the different types of quality control,

in the contributions section, for which the DE&D service has adapted deep learning and

image processing algorithms to automate them. And finally, we will present the HMI that

has already been deployed in Faurecia plants, allowing the plants to be autonomous in

terms of trace-ability and management of reference parts.



3

NEURAL NETWORK BASED COMPUTER

VISION

3.1/ INTRODUCTION

Computer vision is an interdisciplinary field of artificial intelligence, evaluated and chal-

lenged by humans on a daily basis. It has proven its efficiency in problem solving in

several areas: from automated farming to medical equipment, from global telecommuni-

cations to educational opportunities, from virtual reality to self-driving cars.

Among computer vision algorithms, many of them are based on neural networks. These

algorithms have improved their performance compared to traditional image processing

algorithms, especially in extracting useful information from images. In this chapter, we

will go through the state of the art of computer vision based on neural networks. We will

differentiate between artificial intelligence, machine learning and deep learning and we

will discuss convolutional neural networks and some of their architectures. Lastly, we will

present some of the image processing techniques used for analysing images.

3.2/ COMPUTER VISION DEFINITION

Computer science is the study of computers to solve problems. It employs theories

on how computer work to design, test and analyze data. It includes hardware, human

computer interaction, computational theory, vision and graphics, artificial intelligence,

database systems, security and programming languages.

Computer vision is a field of computer science where computers can interpret and under-

stand visual data: able to make decisions and take actions based on the data observed.

Computer vision is applied for the benefit of different domains such as autonomous vehi-

cles in the automotive industry, product assembly and defect detection in manufacturing,

and many others.

17
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3.3/ ARTIFICIAL INTELLIGENCE DEFINITION

Artificial Intelligence (AI) is a collection of theories and techniques implemented to make

machines capable of simulating human intelligence, i.e. understand a text, compose

music, move a player, . . . . One of the current applications of AI is machine learning, as

represented in Figure 3.1.

Typical AI algorithms take actions to improve their performances, ie. during their learning

phase, their parameters are progressively updated. The objective of an AI algorithm can

be simple ie. predict housing price, and it can also be very complex, ie. learn to drive.

3.4/ MACHINE LEARNING

Machine learning is a discipline of artificial intelligence (as shown in Figure 3.1), that offers

to computers the possibility to access to data and let them learn by themselves from a set

of observations called a learning set. It is mostly applied for problems for which existing

solutions require a lot of hand-tuning and for getting insights about complex problems and

large amount of data. A machine learning system can adapt to new data and is able to

be deployed in a fluctuating environment.

Figure 3.1: Artificial intelligence vs. Machine learning vs. Deep learning
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3.4.1/ MACHINE LEARNING SYSTEMS

Three categories of machine learning systems are identified and can be listed as follows:

1. Unsupervised learning: this type of learning is most commonly used for analysing

and classifying images in an unlabeled test dataset. It looks for instances, called

outliers, that seem to fit least to the remainder of the dataset. Anomaly detection is

an example of unsupervised learning.

2. Supervised learning: in this type of learning, data is fed to the algorithm and in-

cludes the desired solution. Labels are assigned to each input and distributed be-

tween classes.

The classification algorithm is an example of a supervised learning. It is used to

predict discrete values for binary classification (true or false, spam or not spam), as

well as for multi-classification (handwritten numbers: one or two or three. . . ).

Another example of a supervised learning is the regression algorithm. It is used to

predict continuous values. A very common type of regression is linear regression. It

is used in statistics to quantify the relationship between a predictor and a response

variable (i.e. finding a relationship between business advertising spending and rev-

enue).

3. Reinforcement learning: the learning system (an agent) can observe the environ-

ment, selects and performs actions and gets returns: a reward is assigned to the

agent if the action is relevant, whereas penalties can be allocated for irrelevant ac-

tions. It learns by itself what is the best strategy. DeepMind’s AlphaGo program is

an example of reinforcement learning [11].

3.4.2/ TYPES OF LEARNING

Two types of learning can be considered: batch and online. Batch learning systems, also

called offline learning systems, are incapable of learning incrementally and thus require

a lot of computing resources. As for online learning systems, their training phases are

performed in an incremental way by providing input data sequentially, either individually

or by small groups called mini-batches. Online learning systems are mostly used when

computing resources are limited.

3.4.3/ CHALLENGES OF MACHINE LEARNING

Main challenges of machine learning are listed as follows:
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1. Bad data: this means that the data used to train the model are either too few, non-

representative, of poor quality or are displaying irrelevant features. The industrial

context does not always allow a controlled environment: the defects vary and the

data with defaults may not be always easy to collect. Thereby, dataset collection

has to cover this diversity.

2. Bad algorithm: this results in overfitting or underfitting the training data. Overfitting

is when the trained model is not able to perform well on new presented data. Un-

derfitting the data is when the trained model is unable to capture the relationship

between input data and output data. Thereby, the choice of the algorithm architec-

ture and its parameters have to be adapted to each use case in order to prevent

overfitting or underfitting.

3. Imbalanced dataset: it means that the input data classes are not evenly distributed:

some classes are more represented than others. This problem is faced in binary

class as well as in multi-class datasets.

4. Noisy labels: it corresponds to inaccurate or incorrect labels in the training datasets.

The percentage of examples with incorrect labels in the dataset has a crucial impact

on model performance.

In order to get a clear idea of the accuracy of an AI model, many methods can be tested.

One of these methods is the Confusion matrix.

3.4.4/ CONFUSION MATRIX

Confusion matrix is a method that allows to measure the performance of an AI model. It

displays how many categories or classes were correctly predicted and how many were

not.

An example of a confusion matrix is shown in Figure 3.2. The rows in the confusion

matrix correspond to what the machine learning algorithm learned, while the columns

correspond to the known truth.

Parameters of a confusion matrix are usually expressed in percentage or in numbers.

Following are the four identified parameters and an example of each parameter in a self

driven car scenario:

1. True positive: is an outcome where the model correctly predicts the positive class

(ie. there is a pedestrian and the model says that there is a pedestrian).

2. True negative: is an outcome where the model correctly predicts the negative class

(ie. there is no pedestrian and the model says that there is no pedestrian).
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3. False positive: is an outcome where the model incorrectly predicts the positive class

(ie. there is no pedestrian but the model says that there is a pedestrian).

4. False negative: is an outcome where the model incorrectly predicts the negative

class (ie. there is a pedestrian but the model says that there is no pedestrian).

In Figure 3.2, the top left corner, contains the true positives. The true negatives are in

the bottom right-hand corner. The bottom left-hand corner contains the false negatives.

Lastly the top right-hand corner contains the false positives.

The numbers along the diagonal tell how many times the samples were correctly classi-

fied. The numbers not on the diagonal are samples the algorithm messed up.

When comparing two confusion matrix of two different AI models trained on the same

dataset, the best model is the model having the highest percentage of true positive and

true negative.

Figure 3.2: Confusion matrix of an AI model

3.5/ DEEP LEARNING

Deep learning (DL) is a subcategory of machine learning (as shown in Figure 3.1). These

algorithms are particularly effective when the human brain is efficient too, for example ob-

ject recognition using a picture, or in transcribing a discussion into text. These algorithms

work by simulating neural networks, thus mimicking the functioning of the brain (a network

of neurons).

There are many types of DL models, and each is suitable for different contexts. For

example, Convolutional Neural Networks (CNN) are very effective in topics related to vi-

sion, Recurrent Networks (RN) are more effective at transcribing speech to text [70], and
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Generative Adversarial Networks (GAN) are able to create new images [64].

3.5.1/ CONVOLUTIONAL NEURAL NETWORK

DL models have achieved promising results in detecting the difference between two im-

ages. These algorithms are used in the classification of images to prevent any bad deci-

sion making. One of the most popular DL architectures is the CNN.

The output signal strength of a CNN is independent of where the features are located,

but simply whether the features are present or not. For example, in an alphabet classifi-

cation, the character could be sitting in different position and the CNN would still be able

to recognize it.

3.5.2/ CONVOLUTIONAL NEURAL NETWORK APPLICATIONS

CNN has proved to be very efficient in extracting deep features [26, 17, 16]. The archi-

tecture of a CNN, based on a succession of layers, reduces images without losing the

important features, which leads to getting good prediction. Each layer transforms the in-

put volume to an output volume. CNN performs well on a series of visual applications and

tasks, such as image classification [49, 28, 30], image detection [35, 42, 22] and image

denoising [45, 46, 27].

CNNs have been applied on manufacturing use case and proved their adaptability to the

environment’s conditions [62, 63, 77]. In a binary classification, where the dataset is com-

posed of two classes, a CNN will learn the specific features of a class. Once the learning

phase is done, the output model will be able to predict if the given image belongs to the

first or the second class.

3.5.3/ HOW CONVOLUTIONAL NEURAL NETWORKS WORK

Each image is divided in three channels: red, green and blue. For each pixel, a value

is assigned to each of these channels. The computer is able to recognize them and

identifies the image size. Four steps can be identified in a convolutional neural network

architecture:

1. Convolution: this step consists on browsing the image with a filter. Each pixel is

multiplied by its corresponding value in the filter. The result is a buffer with a size

equal to the filter’s size. The filter is then moved around and the same procedure is

done at any pixel in the image.

Figure 3.3 shows the parameters of the convolution phase, from left to right: Image,

Kernel, and Convolved feature.
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Figure 3.3: Convolution phase: parameters

An example of the first convolution step is represented in Figure 3.4. The kernel

is placed on the top left of the image. Each pixel is multiplied by its correspond-

ing value in the kernel. The sum of all of these coefficients is then added in the

convolved feature.

Figure 3.4: Convolution phase: Step 1

The second step of the convolution is represented in Figure 3.5, on the left. In

this step, the kernel has been moved one pixel to the right. As in the first step, each

pixel is multiplied by its corresponding value in the kernel and the sum of all of these

coefficients is then added in the convolved feature.

The third step is when the kernel is moved again to the right and same calculations

of the previous steps are applied. In the fourth step, according to Figure 3.5 on the

right, the kernel has been moved to the second line and so on.

An example of the final step obtained at the end of the convolution phase is repre-
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Figure 3.5: Convolution phase: intermediate steps

sented in Figure 3.6. Each element of the convolved feature has been assigned a

value.

Figure 3.6: Convolution phase: step 9 (last step)

2. Activation function: it is applied on a node and determines its output given an input

or set of inputs.

ReLU: Rectified Linear Unit is an example of an activation function. It only activates

a node if the input is above a certain quantity: while the input is below zero, the

output is zero, but when the input rises above a certain threshold, it has a linear

relationship with the dependant variable.

In Figure 3.7, different types of activation functions are represented, such as: Tanh,

ReLu, Sigmoid, and Linear.

3. Pooling layer: pooling layers are used after the convolutional layers to order layers

that may be repeated several times in a single model. By that, the number of pa-

rameters to learn from and the computation complexity are reduced. This reduction

makes the model more robust to variations of the features’ positions. An example

of a max pooling phase and an average pooling phase are shown in Figure 3.8.

The stride is equal to 2 and a result of 2x2 pooling is obtained.
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Figure 3.7: Activation functions applied in deep learning

Figure 3.8: Pooling phase

4. Fully connected layer: in this step, the last layers in the network are fully connected,

meaning that neurons of preceding layers are connected to every neuron in subse-

quent layers. The classification happens in this step.

5. Retro-propagation: characteristics and weights are adjusted to reduce the error

when repeating the cycle of the four steps presented above (convolution, activa-

tion function, pooling, and fully connected layers). Each value is increased or de-

creased, and the new network error value is recalculated, with each iteration. Re-

gardless of the adjustment made, if the error decreases, the adjustment is retained.
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Figure 3.9: Neural network architecture

3.5.4/ STEPS TO DESIGN A NEURAL NETWORK

The global steps to train a neural network are identified as follows:

1. Data collection: images for both classes are collected; whether collected from an

online dataset or live images collected from a specific use case.

2. Data cleaning: data’s verification is done in this phase. Biased images should be

removed. If there is any need to apply specific filters or crop before training the

model, these steps should be applied in this phase.

3. Training phase: extract features from images while training the model. As shown in

Figure 3.9, the neural network receives an input and assigns a weight to it. Then,

transmits it to hidden layers until reaching the output layer. The existing layers are

interconnected between each others in order to extract features. These features are

then distributed between different classes, each class representing an output.

4. Validation phase: To deliver an output, the model is tested on input that have not

been trained. At the end of each iteration, the model adjusts its weights based on

the data used for validation. It allows to evaluate the current state of the learning

phase in terms of accuracy and loss.

3.6/ CNN ARCHITECTURES

Some CNN architectures have proven their efficiency when applied in an industrial con-

text. In this section, we will be discussing two of these applications and their architectures:

ResNet50 and MobileNet.
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3.6.1/ RESNET50 APPLICATIONS

Mangalam et al. [15] have invested in ResNet50 for bird call recognition. Spectrograms

(visual features) extracted from the bird calls were used as input and were able to achieve

60 to 72% of birds call recognition.

Jiang et al.[31] have worked on detecting and classifying Floral disease. The database

includes images of the leaves of the affected plants. This classification is done using a

neural network that requires 900 images per class and uses the Resnet50 architecture.

The results obtained reach a disease detection percentage equal to 98%.

Rezende et al. [8] applied ResNet50 to classify malicious software. Malware samples

were represented as byteplot grayscale images and were provided to the input layer. The

experimental results reached an accuracy of 98.62% for classifying malware families.

Theckedath et al. [44] investigated in 3 architectures: VGG16, ResNet50 and SE-

ResNet50. This method reuses weights of already developed models to train a CNN

and detects 7 basic affect states. The evaluation shows that ResNet50 outperforms other

networks reaching a validation accuracy of 99.47%.

Wen et al. [19] is an example where ResNet50 is applied in the manufacturing domain.

The dataset includes bearing damage, motor bearing, and self-priming centrifugal pump

dataset. By adding one layer in order to transfer time-domain fault signals to RGB images

format as input for ResNet50, the prediction accuracies reach around 99%.

3.6.2/ RESNET50 ARCHITECTURE

ResNet50 has 48 convolution layers along with one average pool layer and one fully con-

nected layer. ResNet50 uses shortcut connections which ensures that the higher layer

will perform at least as good as the lower layer, and not worse. The input is an image

tensor. Each three convolution layers forms a block called bottleneck block. The input of

each block is added to the next block, thereby a shortcut connection (or skip connection)

is created. Figure 3.10 illustrates how layers communicate with each other.

The dotted lines refer to a change in the dimension of the input that is needed. For ex-

ample, if the number of channels of the previous layer is equal to 256 and the next one

is equal to 512, a change of the number of channels of the previous basic block should

be applied in order to be equal to the next block. In this case, it should be multiplied by

2. Finally, the average pooling and fully connected layers are added. Average pooling

means downsampling the feature map (output of one filter applied to the previous layer)

by calculating the average of each patch of the feature map (2x2 square). Then, the fully

connected layer flattens the output of the average pooling, going through its backpropa-

gation process in order to define the most accurate weights.

Following are the details of each and every block: a block takes an input to perform
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Figure 3.10: Skip connection and bottleneck in ResNet50 Architecture

convolution, produces an output, and then activates the output. It will repeat this same

procedure for the second and the third block. On the other hand, for the second and third

block, to activate the output, the same input is added, and then the output is activated.

So, instead of adding convolution layers to improve accuracy, ResNet adds, skip connec-
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tions.

In the following sections, we will be talking about the MobileNet CNN, its applications and

architecture.

3.6.3/ MOBILENET APPLICATIONS

MobileNet architecture proved its efficiency when applied on different domains [61, 72,

53], by constructing lightweight deep convolutional neural networks.

Pan et al. [37] proposed an example where MobileNet is applied to ensure the quality

of the weld structure. They proposed a new transfer learning model based on the Mo-

bileNet architecture by adding a new Full Connection layer and a Softmax classifier. This

method has been tested on the welding defects dataset and the model is able to reach

an accuracy of 97.69%.

3.6.4/ MOBILENET ARCHITECTURE

In a traditional CNN, the input is an image following this format: S = s × s × c, where S is

the size of the image in bytes, s is the width and height of the image, and c its number of

channels (equal to 3 for an RGB image).

MobileNet separates the convolution phase in two smaller parts:

1. Depthwise convolution : having the same image as input with size S = s × s × c,

the kernel size remains the same (n × n) but this time, the kernel iterates only one

channel of the image. The output is an image with size s1 where s1 = s − n + 1 with

depth = 1.

2. Pointwise convolution: this convolution takes place after the depthwise convolution.

In this case, the kernel has a size sk, where sk = 1 × 1 × c. The output of this

convolution is an image with a size s1 where s1 = s − n + 1 with depth = 1. Then, this

kernel is applied f times in order to obtain f number of feature maps.

Image processing techniques remain robust techniques for analysing images. In the next

section, we will present some applications where image processing were applied for high-

lighting edges either with the canny filter or the laplacian edge detector.

3.7/ IMAGE PROCESSING

Some of the applications for detecting edges with image processing can be listed as

follows:
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1. Detection of retinal disease: diabetic retinopathy is highlighted by detecting the con-

tour of the fundus[54]. This method transforms RGB images into grayscale images.

The canny edges approach will be applied to the latter in order to highlight the con-

tours of the eyes and to detect the disease.

2. The detection of traffic lanes by means of a camera installed inside the vehicle was

carried out by Rossi et al. [39]: canny edges and Hough lines algorithms are applied

to detect traffic lanes.

3. The detection of bladder cancer by image processing using the Laplacian edges

detector algorithm was carried out by Lorencin et al. [33]. This method allows

areas of interest to be highlighted and achieves an accuracy of 99% on nearly 3000

images.

3.8/ CONCLUSION

In today’s manufacturing industry, AI is being applied in many applications to automate

systems and processes. In this chapter, we have covered the state of the art of CNN-

based computer vision and have seen its efficiency when applied in industrial applica-

tions. In the next chapters, we will put these advancements in an automotive context.

For quality control to be automated, it is not only necessary to achieve the precision re-

quired by the customer, but it is also necessary that this response be provided within a

time frame suitable for the cycle time of the production lines. Types of quality control stud-

ied in this thesis are component presence control, welding seam classification and brick

orientation adjustment. The quality control to be automated will be based on the state of

the art drawn up above.
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COMPONENT PRESENCE CONTROL IN

THE AUTOMOTIVE INDUSTRY USING

DEEP LEARNING

4.1/ INTRODUCTION

This part examines the main contributions in this thesis. As discussed in the previous

chapters, the proposed approaches and methods are designed to solve different chal-

lenges in the data collection and data processing phases of an artificial intelligence ap-

plication deployed in industry.

In modern factories, especially in the transportation industry, factories often have to pro-

duce a vast number of different references. Within each reference, some functional part

dimensions may show dissimilarities. For that, quality control is necessary and should

be applied to every reference part. Several technologies are used such as visual & ge-

ometric control, leak test, and many other functional tests. Today, the implementation of

these tests is expensive, whether because of the necessary tools or the manpower. Vi-

sual control is done by the operator who checks each part manually, making the reliability

highly improvable. At first, the automation of the inspection can be carried out by different

methods: camera, thermography, laser scanning, and in conjunction with artificial intel-

ligence techniques [26, 19]. Then, it will be necessary to correlate these quality results

with different parameters (processing and environmental) to reduce non-conformities.

The main goal of this contribution is to provide automatic control of the manufactured

products in the automotive industry by detecting the presence or absence of a compo-

nent and to overcome the need for human intervention. This quality control needs to be

done primarily to assembling the exterior part of the car because once these two parts

are joined, the component may not be accessible anymore.

Our contribution will help the current state of manufacturing by offering an automatic vi-

sual inspection, which will lead to other innovative projects in the automotive industry.

33
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4.2/ PROBLEM STATEMENT

Figure 4.1 is an example of a sub-assembly that takes place in the vehicle. The presence

or absence of 10 screws of three different models, respectively called Rivstud, Rivnut and

Flexitol, each in its own region of interest, should be checked. In the Figure, the regions

of interest are presented with their right screws.

The component control should be done while taking into consideration the different light-

ing conditions of the plant.

Figure 4.1: Sub-assembly part to be checked. The three types of screws and their ex-
pected locations are displayed by the means of the black arrows.

The same type of screw may be the right one for a specific region of interest and the

wrong screw for another region. Three possibilities can show up:

1. The right screw is present in the right region of interest.

2. The screw is missing.

3. There is a screw, but not the one we expected. This case is considered as NOT OK

(NOK).

The reference part is OK if the first possibility, defined above, has been identified on all of

the ten regions of interest. The reference part is NOK if one of the ten regions of interest

is assigned to the second or third possibility. In this case, the reference part should be

sent to rework.
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4.3/ AUTOMATIC CONTROL IMPLEMENTATION

4.3.1/ DATA COLLECTION

All images have been collected in the plant during multiple shifts to cover different lighting

conditions. The camera used is an 18MP device, positioned above the part at a distance

of 500mm. The image size has a length of 4912 pixels and a width of 3684 pixels. Each

global image is split into ten small images, centered on the ten regions of interest (each

cropped image has a length varying between 200 and 400 pixels and a width varying

between 150 and 250 pixels). The coordinates of each region of interest were defined

prior to cropping. With 1920 global images obtained from the plant, the data set contains a

total count of 19200 cropped images. Among these 19200 images, we randomly selected

70% of them for the model training, 20% for the model validation and the remaining 10%

for the testing phase.

4.3.2/ ANALYSIS OF THE COLLECTED DATA

Based on the collected data, some regions should have the same type of component and

look the same for the camera. As shown in Figure 4.1, the rivstud model is expected in

regions 1 and 2. These two regions look the same for the camera.

For some other regions, the same component is expected, but look totally different for the

camera, according to Figure 4.1. These similarities help in grouping some regions and

allow associating the most possible images to a specific class. These common areas are

grouped in four categories:

1. Category 1: contains regions 1 and 2.

2. Category 2: contains regions 3, 4 and 5.

3. Category 3: contains regions 6, 8 and 10.

4. Category 4: contains regions 7 and 9.

As displayed in Figure 4.2, each line represents a category and each column repre-

sents a component model. Categories are divided into four different classes according

to the different possible cases. For example, images from Category 1 are split as follow:

Category1-flexitol, Category1-rivstud, Category1-rivnut, Category1-missing. The class

Category1-missing represents the images where none of the components is present in

Category 1.
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Figure 4.2: Sample of each class in the trained model

4.3.3/ EXPERIMENTAL ENVIRONMENT

The experimental environment is powered by Intel i5 CPU with 64-bit Windows 10 operat-

ing system, a memory of 8 GB, and 2.30 GHz basic frequency. The software programming

environment is python. It is based on Keras framework, having Tensorflow and Theano

as backend.

In the image classification model, Adam is selected as an optimizer of the CNN. The

learning rate is set to 10−5. Concerning the ResNet50 weights, a pre-trained version of

the network, trained with the ImageNet database has been loaded.

The input of the CNN is a 4D array. It has a shape of (batch size, height, width, depth).

The batch size (equal to 32 in our case) defines the number of samples that will be propa-

gated through the network. The other parameters represent the height, width, and depth

of the image. In our case, the input has the following values (32, 224, 224, 3). The model

has been trained with 100 epochs. Each epoch passes the entire data set through the

neural network, only once.

4.4/ EXPERIMENTAL RESULTS

4.4.1/ ACCURACY IMPROVEMENTS

Our approach for sub-assembling family classification is assumed from a CNN model

based on the Residual Network architecture with 50 layers (ResNet50), presented in

chapter 3.

Table 4.1 shows that the accuracy reaches 100% with our deep learning model. The
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software is able to detect not only the presence or absence of the component but also the

presence of a screw of the wrong type.

Table 4.1: Accuracy comparison between human-being check and ResNet50

Component type Human-being check(%) ResNet50-offline(%)
flexitol 98 100
rivstud 97 100
rivnut 98 100
missing 93 100

Comparing the results between the human-being check and the autonomous control of

ResNet, an upgrade of the average precision is noticed from 96.5% to 100.0% respec-

tively (as presented in Table 4.1). These results show that replacing the human-being

check by an automatic visual inspection system provide better accuracy.

4.4.2/ CYCLE TIME AND RELIABILITY IMPROVEMENTS

Ten operators have been chosen randomly (having five to twenty five years of experience)

and have been given an OK part (containing all 10 regions with their right screws). It is

easier for an operator to make the visual inspection of an OK part than inspecting a NOK

part. Moreover, this same part has been processed with the ResNet50 neural network

architecture. The test was repeated ten times.

As in Table 4.2, the average time spent by operators to check this part ranges from 6

to 8 seconds depending on the operator, while the average execution time of the neural

network with this same part is around 5 seconds. The neural network provides a stable

performance, it will not be affected during the day. The total execution time decomposes

as follow: ResNet50 needs 0.4 seconds per region and the cropping of all 10 regions

needs 1 second.

When evaluating a NOK part, an operator has to consider four different possible situations

for each region of interest. That leads to increase the average human inspection time for

NOK parts. At the opposite, we are sure that the ResNet50 will run in 5 seconds. Cycle

time is then improved with the automated visual inspection.

In addition to these two parameters, we must take into account the overall equipment

effectiveness (OEE). Its calculation is based on three factors:

1. Availability: it concerns the events that stopped planned production long enough,

and need to track a reason for being down.

2. Performance: it concerns anything that causes the industrial process to run at less

than the maximum possible speed when it is launched.
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Table 4.2: Cycle time’s comparison between human-being check and ResNet50

time (in seconds)

Operator
Test

Test 1 Test 2 Test 3 Test 4 Test 5 Average

Operator 1 9.24 8.40 8.67 9.45 8.22 8.796
Operator 2 9.85 8.63 8.19 9.03 8.15 8.770
Operator 3 8.40 7.29 7.01 7.46 7.58 7.548
Operator 4 7.56 7.77 7.65 6.54 7.18 7.340
Operator 5 8.74 9.52 7.20 7.33 8.42 8.242
Operator 6 6.48 5.88 6.39 5.91 6.02 6.136
Operator 7 8.85 9.32 8.66 9.27 8.33 8.886
Operator 8 8.58 9.08 9.25 8.85 8.19 8.790
Operator 9 8.72 7.48 7.56 7.37 8.11 7.848
Operator 10 7.36 7.82 8.66 7.44 8.23 7.902
ResNet50 5.21 5.42 5.08 5.28 5.39 5.276

3. Quality: it considers good parts as parts that successfully pass through the man-

ufacturing process the first time without needing any rework. By that, it takes into

account all manufactured parts that need rework. It is calculated as the ratio of

Good Part Count to Total Part Count.

With our proposed model, OEE is clearly enhanced. Firstly in terms of performance:

reducing the number of operators for the visual inspection increases the reliability. This is

due to the fact that the algorithm will avoid performance degradation over the operator’s

shift.

On the other hand, better quality is reached: by detecting defective parts at an early

stage before being assembled with others. This increases the percentage of good parts

passing through the manufacturing process for the first time without needing any rework.

Controlling presence or absence in automotive industry is not needed for screws only.

Many topics need quality control such as welding, spatters, holes, and many others. The

proposed solution can be tested on these different topics and may be applied safely in

plants.

4.5/ CONCLUSION

We proposed a method based on deep learning to control component presence. The fea-

tures of the dataset are extracted by ResNet50, which fully achieves the ability to extract

images’ features. The results show that the maximum accuracy of the proposed method

is 100%, which can meet the requirements for visual inspection in the production line. The

images collected as data set for classification have been all carried out offline. After the

required accuracy is reached, new images were taken in the actual industrial production.
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The model tested on these images reached 100% accuracy. Thereby, the effectiveness

and practicability of the proposed model are verified by the plant. Results show that the

automation of quality control in the automotive industry does improve reliability, accuracy,

and cycle time.

In our future work, we plan to detect object movement and being able to readjust the

camera’s angle in order to increase the flexibility and the robustness of this system. In

other words, a self-adjusting system regardless of environmental disturbances.
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WELDING SEAM CLASSIFICATION IN

THE AUTOMOTIVE INDUSTRY USING

DEEP LEARNING ALGORITHMS

5.1/ INTRODUCTION

Welding is one of the processes that allow to connect two pieces of metal together. Many

industries use welding to connect parts of their products. For example, in the aviation in-

dustry [76], welding is used in the manufacturing and maintenance processes of aircrafts.

It requires lightweight components and flawless welds to comply with safety standards

before taking off to the skies.

Welding is also employed in the construction of buildings, where the creation of the struc-

tural frameworks is based on metal components. Thereby, it is used to support walls, roof

and floors of many buildings.

In the automotive industry, robustness of the welds and leakage absence are highly re-

quired. A discontinuity in a welding seam may have a huge impact on the quality of the

product, thereby on client’s satisfaction. That is why welding seam inspection is done at

each step of the assembly process.

The most fundamental reason for inspecting a weld is to determine whether its quality

reaches the requirements for its intended application. If the weld is identified as deficient

(NOK), rework should be applied on this weld.

Acceptance criteria should be defined when measuring the two main characteristics of a

specific weld: its size and the presence of discontinuities. In order to prevent weld failure

due to these defects, a welding inspection is necessary and should be done right after

the welding phase.

In order to validate the automatic welding seam inspection, it should be able to reach high

precision in detecting defective parts: reaching 97% of accuracy when applied on NOK

41
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parts, as requested by the client.

5.2/ WELDING SEAMS IN THE AUTOMOTIVE INDUSTRY

5.2.1/ TYPES OF WELD JOINTS

According to [82], weld joints can be classified as follows:

1. Butt joint: a joint where two pieces of metal are placed together in the same plane

and the side of each metal is joined by welding. This is the most common type

of joints used in the fabrication of structures and piping system. Many different

variations can be applied to achieve the desired result. They are made in a variety

of ways and each one serves a different purpose. Varying factors include the shape

of the groove, the layering and the width of the gap. As shown in Figure 5.1, there

are different types of butt joints, such as: Square, Single bevel, Single V, Double

bevel, Single U and Single J.

Figure 5.1: Butt joint types

The area of the metal surface that is melted during the welding process is called

the faying surface. It can be shaped before welding to increase the weld strength

which is called the edge preparation. The edge preparation may be the same on

both members of the butt joint or each side can be shaped differently.

2. Tee joint: it is formed when two pieces intercept in a ninety degrees angle. This

results when the edges are coming together in the center of a plate or a component

of a T-shape. Tee joints are considered as a type of a filled weld and they can also

be formed when a tube or a pipe is welded on a base plate. There are different types

of tee joints, as shown in Figure 5.2 from left to right: Plug, Bevel groove, Fillet, and

Flare-bevel. The most used tee joints at Faurecia are Fillet, and Flare-bevel.

3. Corner joints: they have similarities with Tee welding joints. However, the difference

is the location of where the metal is positioned. In Tee joints, it is placed in the

middle, whereas in corner joints it meets in the corner in either an open or closed

manner forming an L shape. Figure 5.3 represents two types of corner joints, from

left to right: Spot and Fillet. These types of joints are among of the most common
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Figure 5.2: Tee joint types

in the sheet metal industry such as in the construction of frames, boxes and other

applications.

Figure 5.3: Corner joint types

4. Lap joint: they essentially are a modified version of butt joints. They are formed

when two pieces of metal are placed in an overlapping pattern on top of each other,

as shown in Figure 5.4. They are most commonly used to join two pieces with

different thickness together. Welds can be made on one, or both sides. Lap joints

are rarely used on thicker materials and are commonly used for sheet metal.

Figure 5.4: Lap joint example

5. Edge joint: the metal surfaces are placed together so that the edges are even. One

of both plates may be formed by bending it at an angle, as represented in Figure

5.5.
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Figure 5.5: Edge joint example

5.2.2/ TYPES OF WELDING TECHNOLOGIES

As represented in Figure 5.6, and according to [83, 84], welding seams can be classified

as follows:

1. Metal Active Gas (MAG) welding: fusion welding process uses an electrical arc be-

tween a continuous filler metal electrode and the weld pool. The process incorpo-

rates the automatic feeding of a continuous, consumable electrode that is shielded

by an externally supplied gas.

2. Tungsten Inert Gas (TIG) welding: fusion welding process, that uses an electrical

arc between a non-consumable tungsten electrode and the work piece to create the

weld pool. The process may incorporate filler wire and is shielded by an externally

supplied gas.

3. Plasma Arc Welding (PAW): fusion welding process, that uses an electrical arc be-

tween a non-consumable tungsten electrode and the work piece to create the weld

pool. The tungsten is recessed into the torch and a constricting nozzle is used to

restrict the arc into a narrow column. The process may incorporate filler wire and is

shielded by an externally supplied gas.

In this contribution, we will focus on MAG welding. The target is to alert if the welding is

NOK or not at the end of each operation. The size of the inspected welding seams ranges

between 50 and 60 mm.

5.2.3/ TYPES OF WELDING SEAMS QUALITY CONTROL

In this thesis context, the quality control of welding seams is applied on exhaust systems.

Welding joints are thus evaluated as follows:
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Figure 5.6: Types of welding technologies

1. Visual control of the external appearance (non-destructive): in this type of quality

control, the weld must be completed according to drawing specifications, no missing

sections or interruptions are allowed. A circular weld may not have a constriction at

the overlap.

Other welding defects to be inspected such as burn through or holes, visual fusion

defects (ie. weld misses one or more of the components locally and completely,

cold weld) are not allowed. Examples of a welding seam considered as OK, as well

as welding seams considered as NOK, are shown in Figure 5.7.

Figure 5.7: Reference weld (OK) and five possible defects (NOK) for MIG/MAG welding

2. Evaluation via cut & etch samples (destructive): a weld sample is cut out perpen-

dicularly to the weld with a smooth or polished plane, as in Figure 5.8. The smooth

plane is etched to show the fusion boundaries. Cut & etch samples are evaluated
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with an optical magnification of at least 8-fold. These samples are cut out at a po-

sition of minimum 10 mm measured from the weld start and end point on welds

longer than 20 mm. On welds shorter than 20 mm, the section is taken on the half

of the weld length.

Figure 5.8: Effect of MIG wire feed speed on the welding tested by cutting and etching

3. Measurement of weld lengths (non-destructive): when measuring the weld length,

one must consider two types of weld beads: a so-called linear weld (where both

ends are not on the same position) and an all-around weld, where there is an over-

lap at start and end. The length of an all-around weld does not have to be measured.

As represented in Figure 5.9, the weld length is to be measured as the distance be-

tween the visible weld bead‘s start and end along the virtual weld bead center line

while compared to the length specified on the drawing. If the measured length is

equal to or greater than the length specified on the drawing, then the weld bead

length is in conformance. In this contribution, we are working with welding seam

size ranging between 50 and 60mm.

Figure 5.9: Measurement of the weld length

The focus of the proposed quality control is on automating the visual control of the exter-

nal appearance.

5.2.4/ WELDING SEAMS INSPECTION

Visual inspection is a necessary operation for manufacturing industries [48, 41, 25]. As

displayed in Figure 5.10, its main function (MF1) is to visually check a product during its

production process. Many criteria interfere in the visual inspection process, such as:
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Figure 5.10: Diagram representing the main function (MF1) of visual inspection and its
related parameters

1. Equipment: it refers to all the fixtures, technical equipment, computers and machin-

ery used in a plant, ie. robot, programmable logic controller and personal computer.

2. User: it is the operator who loads/unloads the product.

3. Environment: it includes all the surroundings or conditions in the plant’s area, ie.

light and dust.

These criteria’s correlations may have an impact on the production line in terms of avail-

ability, performance and quality. Visual inspection is actually done by the operator, making

the reliability highly improvable, as demonstrated in Chapter 4. The goal is to automate

the connection between the operator and the visual inspection. The impact of the automa-

tion on the reliability in detecting defective parts in the production line will be tracked.

5.2.5/ LEAK TEST

Testing manufactured parts to make sure fluids can’t leak into or out of the part is called

a leak test. It allows to ensure the proper function and maintenance of industrial systems

and pipelines while calculating the loss of pressure. This loss of pressure is measured

with an air diffusion that enters from the inlet and then gets out from the outlet. If a

pressure loss is detected, a rework should be manually applied by the operator on the

concerned welding seam.
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5.3/ VISUAL INSPECTION OF WELDING SEAMS IN FAURECIA

PLANTS

5.3.1/ REFERENCE PART

Figure 5.11 shows the reference part: it is the cold line sub-assembly of the exhaust

system, in which four welding seams need to be inspected. These seams are obtained

via MIG and MAG welding.

Figure 5.11: Sub-assembly part to be checked

5.3.2/ DATA COLLECTION

The camera installation is shown in Figure 5.12. Implementing artificial intelligence in

the plants remains a challenge in today’s manufacturing industries [67, 57, 71]. One of

the challenges encountered when collecting data from the plant is the defined procedure.

We have previously tested a data collection to train the AI model. The operator used to

launch manually the image acquisition for every reference part. This data collection has

impacted the cycle time of the operator and did not meet the expectations of the plant.

For that, data collection of this project was made automatically and took eight months.

We have collected around 250 welded reference parts per month and have faced con-

nectivity issues while transferring data outside the plant. Hence, these are some of the

constraints linked to the equipment’s parameter as listed in Figure 5.10. The camera used

is an 18MP device, positioned above the reference part at a distance of 1200mm in order

to cover all regions of interest. Figure 5.13 represents the images collected for each ref-

erence part. On the left, we can notice the first side of the reference part, containing three

welding seams. On the right, we have the remaining forth welding seam to be inspected.
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Figure 5.12: The camera installation in a Faurecia plant

Figure 5.13: Images collected for each reference part

All images should be cropped so the Artificial Intelligence (AI) model can focus on the

different regions of interest. Cropping is performed prior to training the model in order

to verify that the defect is still present inside the image even after the image has been

resized. Collected images are cropped in four smaller images in order to cover the four

different welding seams. Around 80% of the collected data were used for training and

20% for testing. The classification of images is done by the plant and this classification

allows the validation of the test dataset once the AI models are created.
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5.3.3/ OPERATING PROCEDURE

The welding seam is done by the robot. Once the welding of a specific reference part is

finished, the associated information is sent to the Programmable Logic Controller (PLC).

A PLC plays an intermediate role between the robot and the Personal Computer (PC). Its

aim is to convert hexadecimal data received from the robot to binary data, understandable

by the PC, and vice versa. Then, the PLC alerts the PC in order to launch the image

acquisition of the reference part. This procedure is repeated each time a new reference

part is welded by the robot. After that, the leak test process takes place.

By verifying all welding seams, the quality of the product is guaranteed. Due to their

positions, four of these welding seams cannot be verified by the leak test, so operators

have to manually inspect their quality. Hence, an automated visual inspection need to be

implemented.

5.3.4/ PARAMETERS CONTRIBUTING TO THE QUALITY OF WELDING SEAMS

Confidential

Figure 5.14: Representation of alpha and beta angles used in the torch angle parameter

5.4/ DEEP LEARNING SOLUTION FOR AUTOMATED WELDING

SEAMS QUALITY CONTROL

In Chapter 3, we presented deep learning architectures able to classify images. One of

these architectures is MobileNet. Its depthwise convolution makes that fewer number of

parameters and fewer multiplications are used. By that, the model’s size and complexity
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are reduced. Hence, a MobileNet architecture provides smaller model to predict, which

implies less execution time per prediction.

The MobileNet architecture will be applied on the collected dataset.

5.4.1/ DATASET CHALLENGES

Images have been collected in a Faurecia plant, following the operating procedure de-

scribed in Section 5.3. The distribution of images relative to four welds, each one having

five different defects for NOK images, is represented in Table 5.1. It shows that around

2000 OK images were collected per weld, while NOK images varies between 66 and 215

per weld. We can identify an imbalanced dataset in the collected images which makes

the model’s predictions biased.

Table 5.1: Distribution of collected images for OK and NOK classes

Weld area OK training NOK training OK test NOK test
Weld1 100 100 1736 44
Weld2 50 50 1944 16
Weld3 90 90 1848 25
Weld4 150 150 1659 65

5.4.2/ DATA AUGMENTATION DEFINITION

The performance of a neural network is directly proportional to the amount and diversity

of data available during training. Many techniques can be applied on the images in order

to obtain balanced dataset [2, 4, 50, 13]. One of these techniques is data augmentation,

which permits better control on the given input to the neural network [50, 13]. Applying

data augmentation techniques can be done while training the neural network. It is used to

increase the amount of data by adding modified copies of existing data. It helps enlarging

the dataset while feeding the neural network with relevant data: data having same prop-

erties as the original dataset. By that, overfitting is reduced because the neural network

treats these images as distinct images.

In this contribution, the approach is as follows:

1. Adjust the imbalanced dataset (insufficient NOK images) of real reference parts

collected from the plant using data augmentation techniques.

2. Test different DL approaches (including the raw dataset) aiming to reach the re-

quired precision in detecting defective parts.
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5.4.3/ DATA AUGMENTATION FILTERS

In order to obtain better precision when predicting, filters can be applied on the images.

Seven of them were tested on weld1 as shown in Figure 5.15. Following is the description

of each applied filter:

1. RGB filter: it takes an RGB image as input and splits the three channels before

saving each one in a separate image. It is represented in Figure 5.15 by RGB Filter

Red, RGB Filter Green and RGB Filter Blue. This filter multiplies the original dataset

by four.

2. Mode filter: it is used to remove noise from an image. It selects, inside a fixed-

size square window, the most frequently occurring pixel value. Then, it assigns the

selected value to all the pixels belonging to the window. The most frequently used

kernel sizes are three, five, seven and nine. Figure 5.15 displays the example of

Mode Filter 9. This filter multiplies the original dataset by five.

3. Box blur filter: each pixel is assigned with the average value of the neighboring

pixels inside a squared window. In our training, the size values of the box blur filter

vary between four and seven. Figure 5.15 shows only the Box Blur 7 version. This

filter multiplies the original dataset by five.

4. Rank filter: Rank filters uses the local gray-level ordering to compute the filtered

value. In our applications, we only use the max, min and median ranks. They are

represented in Figure 5.15 by Rank Filter Max 9, Rank Filter Min 9, and Rank Filter

Median 9. Each filter is trained alone with rank values equal to three, five, seven

and nine. Thereby, the original dataset is multiplied by five for each rank value (Max,

Min and Median).

5. Translation: it performs a geometric transformation which changes the position of

each pixel inside the input image. Ten different variations were applied vertically,

ranging from −5 to +5 (Figure 5.15 displays the example of Translation 5). Hence,

the original dataset is multiplied by eleven.

6. Rotation: a rotation of the original image is applied with an angle equal to 180°. It

changes the sense of direction of the welding seam while keeping its geometry (rep-

resented in Figure 5.15 by Rotation 180). This filter multiplies the original dataset

by two.

7. Flip: this mirror effect is done by reversing the pixels horizontally. In this case, the

flipped image keeps the shape of the welding seam (represented in Figure 5.15 by

Flip). This filter multiplies the original dataset by two.
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Figure 5.15: Examples of data augmentation techniques applied on weld1

5.5/ IMPLEMENTATION DETAILS

5.5.1/ ANALYSIS OF THE COLLECTED DATA

Based on the collected data, some regions of interest have less than 100 NOK images.

For example, we only have a total of 66 NOK images of the weld2 region. 80% of this

dataset (around 50 images) has been used for training, only 16 images remained for

testing. This number is not sufficient to validate the model.

Merging images from different welds may be a benefit for welds where the number of

NOK images is insufficient. This method will allow regions with low number of NOK

images (such as weld2), to benefit from regions with sufficient number of NOK images

(such as weld4). The detailed results presented in Table 5.2 confirm that better results are

obtained with the merged model (weld1-2-3-4) compared to a standard model (weld2).

5.5.2/ CROSS VALIDATION

Cross validation is a resampling technique that allows to ensure that the AI model has

learned the data features in a correct way. In other terms, it reduces the impact of noise

in its decision making process, guaranteeing its efficiency and accuracy [51, 75, 69]. The

model will be able to predict the output correctly when new images are presented as

input.

The method used in our case to test cross validation is the holdout method. The collected
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Table 5.2: Comparison between different data augmentation filters applied on four welding
seams

Weld Number Data augmentation filter OK accuracy (%) NOK accuracy (%)
Weld1 No data augmentation 87 98
Weld1 RGB 98 93
Weld1 Mode 97 95
Weld1 Box blur 97 100
Weld1 Rank 98 97
Weld1 Translation 97 98
Weld1 Rotation 98 93
Weld1 Flip 96 91
Weld2 No data augmentation 53 81
Weld2 RGB 70 93
Weld2 Mode 90 56
Weld2 Box blur 99 75
Weld2 Rank 99 76
Weld2 Translation 87 87
Weld2 Rotation 53 87
Weld2 Flip 15 100
Weld3 No data augmentation 100 16
Weld3 RGB 94 96
Weld3 Mode 100 36
Weld3 Box blur 98 72
Weld3 Rank 99 76
Weld3 Translation 92 84
Weld3 Rotation 93 68
Weld3 Flip 99 32
Weld4 No data augmentation 96 98
Weld4 RGB 99 86
Weld4 Mode 96 97
Weld4 Box blur 98 95
Weld4 Rank 98 93
Weld4 Translation 95 97
Weld4 Rotation 97 91
Weld4 Flip 97 95
Weld1-2-3-4 No data augmentation 96 95
Weld1-2-3-4 RGB 96 95
Weld1-2-3-4 Mode 97 95
Weld1-2-3-4 Box blur 97 95
Weld1-2-3-4 Rank 97 95
Weld1-2-3-4 Translation 94 95
Weld1-2-3-4 Rotation 91 96
Weld1-2-3-4 Flip 88 97

dataset is manually splitted in 3 sub categories: training, validation and testing. This way,

the data presented as test data in the first learning phase, will be used as the training

data in the second one. If the results of both trainings are close to each other, then the
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model got most of the patterns from the data correct.

Table 5.3 shows the results of cross-validation when applied in three different tests on

weld4. Having an accuracy of 96% and 98% on the OK and NOK predictions respectively

means that the collected model is robust and will reach around the same accuracy once

applied on live data.

Table 5.3: Results of cross validation applied on weld4

Index % OK % NOK
Cross validation 1 96% 98%
Cross validation 2 94% 100%
Cross validation 3 98% 97%
Average 96% 98%

5.5.3/ EXPERIMENTAL ENVIRONMENT

The experimental environment is powered by Intel i5 CPU, 2.30 GHz with 64-bit, Windows

10 system and 8 GB memory. The software programming environment is Python. It uses

Tensorflow as backend. In the image classification model, Root Mean Squared Propaga-

tion (RMSProp) is selected as an optimizer of the CNN. The learning rate decay type is

exponential starting with a value of 0.01 and ending with a value of 0.0001. The input of

the CNN is a 4D array. It has a shape of (batch size, height, width, depth). The batch size

defines the number of samples that will be propagated through the network. The other

parameters represent the height, width, and depth of the images. In our experiment, the

input has the following values (32, 128, 128, 3). The model has been trained with 9000

epochs. Each epoch processes the entire data set through the neural network only once.

5.6/ EXPERIMENTAL RESULTS

Table 5.2 shows the results obtained on the weld1, weld2, weld3 and weld4 welding

seams. With weld1, the box blur filter bypasses the target and reaches 100% of accuracy

on the NOK parts. For weld2 and weld3, the RGB filter provides the best results, with

93% and 96% of accuracy on NOK parts respectively. As for weld4 the target of 97%

for NOK parts is reached with several filters (mode and translation filters). The best

balance of accuracy between the OK and the NOK parts of weld4 is reached when no

data augmentation is applied. This model has been chosen for live tests.

The model where all welds are merged reaches the target with 98% of accuracy on NOK

parts when it is trained with the mode filter.
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5.7/ CONCLUSION

This contribution proposes a method based on deep learning and image processing to

inspect welding seams, the features of the dataset are extracted by MobileNet architec-

ture.

The results show that the target of 97% is reached with the weld1 and weld4 with an ac-

curacy of 100% and 98% on NOK predictions respectively. As for weld2 and weld3 with

an accuracy of 93% and 96% respectively, the challenge remains present.

Generative Adversarial Networks (GAN) allow to obtain augmented relevant dataset. This

architecture uses two neural networks: a generative model and a discriminative model,

competing with each other to become more accurate in their predictions [5].

Besides, One Class (OC) architecture proposes to train the model with one class in or-

der to extract features. Eventually, One Class Convolutional Neural Networks (OC-CNN)

apply the OC concept on a standard CNN and have already reached a high precision in

detecting intrusions when compared to the trained cluster [14]. In our future work, we

plan to apply GANs and OC-CNNs on the welds’ dataset in order to reach the defined

accuracy’s target.
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PARAMETERS CORRELATION OF DEEP

LEARNING MODEL

6.1/ INTRODUCTION

As presented in Chapter 5, welding is a manufacturing process consisting in joining two

or more elements in a permanent way while ensuring continuity between these elements

[47]. The assembly is done either by heating, by applying mechanical pressure, or com-

bining both techniques.

In the previous chapter, we applied MobileNet architecture to identify welding defects.

The model has been evaluated solely by its accuracy and the percentage of true positive

and true negative results it achieves. However, reaching the accuracy target with the AI

model prediction may be insufficient to guarantee that the model is accurate.

Model interpretation is becoming a primary evaluation metric as well as its performance

[9]. One of the interpretation methods is the heatmap, a visual representation assigning

colors to data importance, created by a software algorithm. A compromise between ex-

plainability and accuracy is more and more necessary in industrial applications.

The proposed approach in this contribution consists of:

1. Displaying the heatmap of a deep learning model trained with the welding seam

dataset.

2. Correlating the heatmap with traditional deep learning classes’ scores.

3. Proposing a hybrid approach: integrating machine learning classifiers in order to

improve the overall accuracy.
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6.2/ PARAMETERS CORRELATION

Causality is an indication of how strongly one variable depends on another (relationship

between cause and effect). In deep learning, the accuracy parameter measures how well

a trained model is performing.

Displaying the heatmap, relative to an AI model, allow to identify which variable is having a

high or low correlation with regard to another variable. In this section, we will first present

the heatmap definition and how to interpret it visually. Then, we will discuss the deep

learning accuracy calculation and how to improve the model reliability.

6.2.1/ VISUAL EXPLANATION OF THE HEATMAP

The explainability of the AI model reinforces the credibility of the obtained results and

allows to evaluate the reliability of the model and its behavior if a partial change occurred

in data [78, 36, 24]:

Selvaraju et al. [10] have first proposed the Gradient-weighted Class Activation Mapping

(Grad-CAM) method, a visualization technique able to tell which parts of a given image

led the trained CNN to its final classification decision. This method makes it easy to

debug the decision process of a CNN, especially in the case of misclassification. The

result of this method is an activation heatmap indicating the parts of the image that have

contributed the most to the final decision of the network.

In the same context, Zhang et al. [78] have applied such model explainability to interpret

the deep learning models trained to classify multiple sclerosis types in the brain using

the Grad-CAM method. The experimental results showed that Grad-CAM gives the best

heatmap localizing ability, and CNNs with a global average pooling layer and pre-trained

weights achieve the best classification performance.

The Grad-Cam method has proven its ability in explaining deep learning model’s decision-

making. This method will be added to MobileNet architecture aiming at further improving

its accuracy.

6.2.2/ DEEP LEARNING ACCURACY CALCULATION

Since weld defects are not always present in production, images corresponding to Not

OK (NOK) class occur with a lower probability than images associated to OK class, so

this is obviously an imbalanced dataset problem [34].

Welding seam’s classification was initially solved by applying data augmentation

techniques[56]. A deep learning model based on MobileNet architecture has been trained

on a set of images corresponding to four welding seams. Figure 6.1 shows how each

welding seam’s dataset is classified.
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Figure 6.1: Decision-making approach for MobileNet architecture

The proposed solution has reached the client’s requirements: 97% of NOK predicted

as NOK on weld1 and weld4. We have noticed that the flip filter has reached 100% of

detected NOK images on weld2. However, its OK accuracy is 15%, making by that the

prediction highly improvable and not sufficient as it is. In order to prevent over quality

and avoid sending OK reference parts to rework, we will try to find a better compromise

between OK and NOK accuracy of weld2.

As for weld3, none of the data augmentation filters has reached the accuracy target of

97% on NOK parts. For that, we have chosen the rotation filter, with 93% and 68% of

precision for OK and NOK parts respectively.

The challenge remains present on weld2 and weld3 with an average accuracy value of

respectively of 57.5% and 80.5%. Hence the need to look for other methods to overcome

this problem. Table 6.1 displays the best accuracy results, obtained when applying data

augmentation techniques on MobileNet architecture.

Table 6.1: Best results reached with data augmentation techniques on weld1, weld2,
weld3 and weld4

Weld Number Data augmentation filter Accuracy
Weld1 Box blur 98.5%
Weld2 Flip 57.5%
Weld3 Rotation 80.5%
Weld4 No data augmentation 96.5%

6.2.3/ MODEL RELIABILITY

Model reliability is considered as an important criterion when choosing the best model

[18, 23, 65]. Even if the accuracy target is achieved, the model might use a biased part of

images to perform the classification, which causes a drop of accuracy when facing new

input data.

Heatmap visualization is a graphical representation of numerical data. It uses matrices

where each cell represents the intensity of the studied event. In deep learning, heatmap

is used to represent the weights distribution relative to the model’s decision-making [85].

Warm colors represent high-value weights in the deep learning model while cool colors
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represent low-value weights.

Figure 6.2: Heatmap visualization of OK and NOK weld2 images.

Figure 6.2 shows an example of both OK and NOK images and their relative heatmap

visualization. The red square in the OK image represents the zone of interest on which

the model should be based on when classifying an OK image. The OK heatmap shows

the section on which the model relied on for classification (warm colors sections). The

NOK image shows two defects, surrounded by the red squares. As for the NOK heatmap,

it shows that the warm colors are not correctly distributed: the warm colors are not super-

imposed with the zones of interest displayed on the NOK image. This means that the

model used a biased decision-making, based on pixels excluded from the zone of interest.

Indeed, this NOK image has been misclassified by the model.

Although the model has good overall accuracy on the dataset, it is necessary to study

the reliability of the model: in addition to its accuracy, a possible correlation between the

activation heatmap results and the model classes’ scores can be identified.

6.3/ STATE OF THE ART OF HYBRID METHODS

Ahlawat et al. [21] have implemented a hybrid method using CNN and Support Vector

Machine (SVM) classifier for handwritten digit recognition: CNN works as an automatic

feature extractor and SVM works as a binary classifier. Their results showed that the

hybrid approach achieved an accuracy of 99.28% on the Modified National Institute of

Standards and Technology (MNIST) dataset.

Soumaya et al. [74] have tested a hybrid classification model using a genetic algorithm

and SVM to detect Parkinson’s disease. Their method attempts to give an accuracy of
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80% and 72.50% using two kernels of SVM. The hybrid method seems to ensure the op-

timization of the classification system by minimizing the dimension of the features vector

and maximizing the accuracy.

In the same context, Ahammad et al. [20] have suggested a new CNN-deep

segmentation-based boosting classifier for spinal cord injury prediction. This method

gives 10% improvement on the classification rate.

Another hybrid method is developed by Liu et al. [12] for CO2 welding defects detection

by using CNN for primary features extraction and Long Short-Term Memory (LSTM) for

feature fusion. The algorithm reaches 94% of prediction accuracy.

Hybrid methods can reach higher accuracy when the right parameters are correlated

together.

6.4/ METHODS FOR IMPROVING THE AI MODEL RELIABILITY

6.4.1/ MODEL EXPLAINABILITY

The main approach of this contribution is based on the Grad-CAM method, introduced by

Selvaraju et al. [10]. This method assigns importance to each weight value in the last

convolutional layer by producing a coarse localization map of important regions in images.

It computes the linear combination of activations, weighted by the corresponding output

weights of the predicted class. The resulting class activation mapping is then resampled

to the size of the input image. Grad-CAM allows to ensure that the deep learning model

is looking at the correct patterns.

6.4.2/ HEATMAP ANALYSIS

Each pixel of the heatmap is assigned to one of these clusters : red cluster, green cluster

or blue cluster. The choice is made based on the channels values of each pixel, the

pixel will be assigned to the cluster relative to the channel having the highest value. For

example, if a pixel has a color intensity distributed as follows: 128 in the red channel, 181

in the blue channel, 100 in the green channel. Then, this pixel will be added to the blue

cluster.

Pixels that belong to the red cluster will be more similar in color, in particular in Red

intensity, than pixels belonging to another cluster. Once all of the pixels are distributed on

the three clusters, the Red Color Ratio (RCR) of an image can be calculated. Following

is the formula applied to get the RCR:

RCR =
Number of red cluster pixels

Total number of pixels
× 100
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Figure 6.3 shows the distribution of classes’ scores related to weld3 images. These

scores are the result of the trained AI model with MobileNet architecture presented in

Chapter 5. Each blue dot is a defective weld (NOK image), and orange triangles represent

non-defective weld in reality (OK image). Defining a threshold in order to separate both

clusters is not possible with classes’ scores.

Figure 6.3: Distribution of weld3 images per classes’ scores

A better visualization of both clusters is represented in Figure 6.4. It is obtained by corre-

lating the RCR parameter with classes’ scores. This correlation offers better visibility on

the cluster’s distribution, compared to Figure 6.3.

This correlation will be used for the rest of this study. Having numerical input data, a

Machine Learning (ML) classifier should be used to assign a class label to these data

inputs.

6.4.3/ MACHINE LEARNING CLASSIFIERS

We have tested many ML classifiers to improve the decision-making. Following are the

tested ML classifiers:

1. Extreme Gradient Boosting (XG-Boost) classifier: it is a gradient boosting algorithm

that offers a panel of hyperparameters. It is possible to have total control over the

implementation of Gradient Boosting [6]. During the experiments, this booster is

called gbtree and uses a tree-based boosting. In our actual experiments, the step
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Figure 6.4: Correlating classes’ scores with Red Color Ratio for weld3 images

size shrinkage was set to 0.5 and the uniform selection was chosen as sampling

method.

2. Decision tree classifier: it uses the Gini function to measure the quality of the split.

Gini index measures the probability of an observation [87] and identifies the degree

of a particular variable being wrongly classified when it is randomly chosen. The

max depth is set to the default value so that the tree nodes are expanded until all

leaves are pure or contain less than two elements.

3. Support Vector Machine (SVM) classifiers: they are machine learning algorithms

that solve classification and regression problems, known for their strong theoretical

guarantees and their great flexibility.

SVM projects data into a higher-dimensional space and makes them separable.

They become a universal approximator [1]: with enough data, such an algorithm can

always find the best possible boundary to separate two classes. SVMs uses Kernel

functions called SVM kernels, they systematically find Support Vector Classifiers

(SVC) in higher dimensions.

In this contribution, two SVM kernels were used:

• Linear Kernel: it is a linear classifier. Data are assumed to be linearly separa-

ble using a single line.
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• 5-Polynomial Kernel: it has a parameter d that stands for the degree of the

polynomial. When d=1, the polynomial kernel computes the relationships

between each pair of observations in 1-Dimension and these relationships

are used to find a SVC. When d=2, the Polynomial kernel computes the 2-

Dimensional relationships between each pair of observations and those rela-

tionships are used to find a SVC. The polynomial degree applied in our tests,

is equal to five.

Adding a machine learning classifier changed the way each welding seam has been

classified (previously presented in Figure 6.1). This solution offers a classification scheme

as presented in Figure 6.5.

Figure 6.5: Proposed decision-making approach: adding Grad-CAM heatmap and Red
Color Ratio

6.5/ IMPLEMENTATION DETAILS

6.5.1/ DATA COLLECTION

The dataset we used in [55] has been collected in order to improve the accuracy in de-

tecting defective parts, which the client wanted above 97%. However, the target was not

reached on weld2 and weld3 with our previous experiments. Many data augmentation

filters have been applied on these two welds and one specific dataset has been chosen

for each of these welds, based on the potential improvement of their associated accuracy,

as below:

1. Flip filter has been selected for weld2: previously reached 15% on OK images and

100% on NOK images (an average of 57.5%).

2. Rotation filter has been selected for weld3: previously reached 93% on OK images

and 68% on NOK images (an average of 80.5%).
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6.5.2/ EXPERIMENTAL ENVIRONMENT

The experimental environment was powered by one Intel i5 CPU, 2.30 GHz with 64-

bit, Windows 10 system and 8 GB memory. The software programming environment is

Python. It used both Keras and Tensorflow as backends. RMSProp was selected as the

optimizer of the MobileNet model. The chosen learning rate decay type was exponential

starting with a value of 0.01 and ending with a value equal to 0.0001. The model has

been trained with 9000 epochs.

6.6/ EXPERIMENTAL RESULTS

Four of the machine learning classifiers have been applied following the proposed ap-

proach. As detailed in Table 6.2, weld2’s accuracy was improved by +41.8% with XG-

Boost classifier. While weld3’s accuracy was improved by +18.2% with XG-Boost and

SVM 5-Polynomial classifiers.

Table 6.2: Proposed decision making results when applied on weld2 and weld3

Welding Accuracy per Classifier
Seams XG-Boost Decision Tree SVM Linear SVM Poly5
Weld2 99.3% 98.1% 98.8% 98.8%
Weld3 98.7% 97.2% 98.1% 98.7%

These results prove that adding a statistical machine learning classifier after the feature

extractor and class activation heatmap does increase the overall accuracy of the model for

both welds. The target accuracy is reached, with a tiny advantage to XG-boost classifier.

6.7/ CONCLUSION

In this contribution, a hybrid approach of CNN-Machine Learning Classifier is proposed

for welds defects classification. This approach adds a new reliability score calculated us-

ing the Grad-CAM heatmap.

The hybrid approach proposed reaches high accuracy on weld defects classification. The

highest accuracy improvement was by +72.7% for weld2 using MobileNet-XG-Boost clas-

sifier and by +22.6% for weld3 using MobileNet-SVM Poly5 Kernel or MobileNet-XG-

Boost classifier. The target defined by the plant’s team of 97% detection of NOK parts is

now reached and we were able to get rid of the over quality.

This work presents new model-driven optimization methods to improve the accuracy of
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vision systems. In future work, this approach can be applied on other deep learning

architectures to validate its efficiency.
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BRICK ORIENTATION ADJUSTMENT

USING IMAGE PROCESSING

TECHNIQUES

7.1/ INTRODUCTION

Ceramic monoliths sit right in the center of exhaust pipes and transform dangerous gases

from the engine into harmless gases. They act as a filter. Quality control has already been

applied, at filter level, to measure the distribution of particles [3]. Quality control should

also cover the performance of soot combustion in ceramic monoliths [32] and particle fil-

tration, based on the theory of the packed bed of spherical particles [43].

Faurecia is working on guaranteeing the quality of their productions. For this purpose,

one supplementary parameter that needs to be controlled was identified: the angular po-

sition of the ceramic during the assembly step. It needs to reach a 99% level of accuracy

with a tolerance of ±5 degrees. This quality control also needs to be automated and im-

plemented in an accurate and repeatable system. Moreover, in order to interact promptly

with the operator, the automated control algorithm should run in less than 0.8 seconds.

In this chapter, the approach will be the following:

1. Listing the related works to detect straight lines.

2. Diving into image processing techniques to detect straight lines of ceramic mono-

liths.

3. Comparing between different image processing techniques, and validating the cho-

sen technique with a repeatability test.
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7.2/ PROBLEM STATEMENT

7.2.1/ STUFFING TECHNIQUE

Ceramic monoliths sit right in the center of exhaust pipes and transform dangerous gases

from the engine into harmless gases. These gases are born from the combination of

precious metals such as Platinium, Palladium and Rhodium. An example of a ceramic

monolith is represented in Figure 7.1. Confidential

Figure 7.1: Example of a ceramic monolith

Figure 7.2: Stuffing technique
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7.2.2/ RISK OF BREAKAGE

The orientation of the ceramic monoliths does not affect the filtration of engine exhaust

gases, but a bad angle increases the risk of breakage during the production of the ex-

haust systems: in particular, during the welding process that comes right after the stuffing

technique.

To avoid too many breakages, we proposed to adjust, when needed, the orientation of

the brick before starting the production. The ceramic monolith would be positioned man-

ually by the operator and the automated control process will display whether the angular

position is OK or NOT OK with no delay.

The orientation of the brick can be adjusted once the direction of brick’s channels (its

straight lines) is detected.

7.2.3/ DEEP LEARNING vs. IMAGE PROCESSING

Detection of straight lines can be achieved through two main approaches: image pro-

cessing and deep learning [59, 73, 58, 52, 68, 60, 66]. According to the state of the art

listed in Chapter 3, some parameters to take into consideration when making a decision

such as the time for setup. For example, a deep learning solution can not be integrated in

the plants conditions within one day, this is due to the number of images to be collected

for the training. In addition, the training cannot be prepared in advance because lighting

conditions are relative to the experimental environment. Due to the impact of deep learn-

ing on the time to market parameter, the image processing approach will be tested on this

brick orientation adjustment.

7.2.4/ ANGLE ANALYSIS

Thanks to the particular mesh of the brick, symmetry is obtained respectively with vertical

and horizontal directions. These symmetries reduce the number of possible angles from

[0;360] to a range of [0;90].

The tolerance defined by the plant is ±5 degrees. Therefore, the calculated angle has to

be in the range [real angle − 5o; real angle + 5o].

Moreover, since the channels of the brick have two perpendicular directions and that the

detection of one direction or the other does not pose any constraint, this allows us to

deduce that an angle equal to 0 degree in real can be detected by the algorithm as a 90

degrees angle. If a real angle is equal to 35, the algorithm can detect it as a 35 degrees

or a 55 degrees with a tolerance of ±5 degrees.

As presented in the image processing’s state of the art in Chapter 3, the methods to be

tested for highlighting edges are the Canny filter and the Laplacian detector.
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7.3/ IMAGE PROCESSING METHODS FOR ANGULAR POSITION

MEASUREMENT

In this section, two steps need to be differentiated: firstly, the highlighting of the edges

and secondly the straight lines detection. The highlighting of the edges is a preparation

step before the straight lines detection. The Canny and Laplacian filters will be tested for

edges’ highlighting, Hough transformation will be used for straight lines detection.

7.3.1/ HIGHLIGHTING EDGES

CANNY FILTER

The Canny filter method allows to smooth an image and transform it into a binary image

[81]. Two parameters are used to smooth an image: the minimum threshold and the

maximum threshold allow to determine the desired edge using the gradient formula.

When applying this image processing technique, a pixel belongs to the searched edge if:

1. The pixel gradient is greater than the max threshold.

2. The pixel gradient is between the min threshold and the max threshold and is related

to a pixel belonging to the edge.

A pixel does not belong to the searched edge if:

1. The pixel gradient is below the minimum threshold.

2. The pixel gradient is between the min threshold and the max threshold and is not

linked to a pixel belonging to the edge.

LAPLACIAN EDGES DETECTOR

The Laplacian is a mathematical function that acts on each dimension of an image (x or y)

[81]. It retrieves the evolution of the pixels of each dimension to apply a second derivative.

The first derivative makes it possible to know the position of the most accentuated pixels

and thus to be able to trace the contours of the images.

The second derivative has the same objective but also eliminates residual noises from the

image. Once the function has been re-derived, the only points of interest are the points

where the curve vanishes.
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7.3.2/ HOUGH LINES

Hough lines allow to detect straight lines in an image. This detection is done either with

the polar coordinate system or with the cartesian coordinate system. In this study, the

OpenCV implementation is applied; it relies on the polar coordinate system [80].

In this function, a track of the intersection between the curves of every point in the image

is kept. The threshold defines the number of intersections needed in order to declare it

as a line. This line has θ and rθ as parameters of the intersection point.

The impact of the methods listed above is represented in Figure 7.3. The original im-

age is displayed on the left, we overlayed in the middle of Figure 7.3 the Canny+Hough

result with the original image. On the right is displayed the Laplacian + Hough result

overlayed with the original image. The yellow line represents the straight line detected by

the algorithm the dotted line (in white) represents the vertical direction that serves as the

reference direction. The alpha angle is the angle to be adjusted.

Figure 7.3: Image processing methods applied on the ceramic monolith

7.4/ IMPLEMENTATION DETAILS

7.4.1/ EXPERIMENTAL ENVIRONMENT

The experimental environment is powered by an Intel i5, 2.30 GHz processor with 64-bit

on Windows 10 and 8 GB of RAM. The software programming environment is Python. As

for the acquisition of images, a Basler acA2500-14gc camera equipped with a FUJINON

HF8XA-5M C-mount has been installed (as shown in Figure 7.4). In the plant conditions,

the canning machine has a cylinder above, this is why the camera is at twenty five degrees

from the vertical direction of the ceramic monolith in the realized tests.
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Figure 7.4: Experimental environment: installation of the Basler camera

7.4.2/ IMAGES COLLECTION

Images were collected as in the environment of Figure 7.4. The algorithm automatically

collects images of the ceramic monolith with the fixed camera. A step of five degrees

is applied on a range from zero to ninety degrees. Thereby, both methods (Hough and

Laplacian) are tested on different angles.

The dataset used in this contribution is available here: brick dataset [79].

7.4.3/ VISION PARAMETERS

In order to determine the most appropriate camera’s configuration, many vision param-

eters have been tested to get a clear view of the brick channels (straight lines of the

ceramic monolith) [86]:

1. The gain parameter has been tested with different values, as shown in Figure 7.5,

from left to right: 0, 30, and 60. It represents the electronic amplification of the

signal. A gain increase results in a more brightening image and negatively impacts

the quality. We chose to add no gain and to keep the associated value to the

minimum (0).

2. The exposure time parameter, represented in Figure 7.6, has been tested with dif-

ferent values, from left to right: 0.12, 0.48, and 0.80.
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Figure 7.5: Gain: 0 on the left, 30 in the middle and 60 on the right

Figure 7.6: Exposure time: 0.12 on the left, 0.48 in the middle and 0.80 on the right

It is the time during which the sensor of the shooting device retrieves information

from the image. It depends on the brightness and the aperture of the camera lens.

If the exposure time is too low, the sensor cannot recover the pixel values and, as a

result, the image is black. Conversely, if the exposure time is too high the image is

white. For this project, the exposure time was set to 0.48s.

3. The aperture range parameter, represented in Figure 7.7, is related to the size

of the aperture of the camera’s mount. The larger the aperture, the more light

comes in, the more information the sensor can collect, resulting in a brighter photo.

f represents the focal length of the lens divided by the diameter of the aperture

opening. In this project, the value chosen for the aperture is equal to f / 4.

Figure 7.7: Possible aperture values

These parameters have been adapted in order to reach the best visibility of the brick

channels and applied on the collected images.
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7.5/ EXPERIMENTAL RESULTS

7.5.1/ COEFFICIENT OF DETERMINATION

R-squared (R2), called coefficient of determination, is a way of measuring how well the

regression line approximates the actual data. It is an important indicator of how well the

model will interact with future outcomes. The formula of coefficient of determination is as

follows:

R2 =
RS S
TS S

where RSS is the sum of squares residuals and TSS is the total sum of squares.

Figure 7.8: Results of Canny-Hough and Laplacian-Hough with linear regression

The results of Figure 7.8 show that:

1. 83% of the predicted angle values with Laplacian + Hough method fit with the real

angle values.

2. 99.7% of the predicted angle values with Canny + Hough method fit with the real

angle values.

Thereby, the Canny + Hough method bypasses the accuracy required by the plant(99%)

with a tolerance of ±5 degrees. The algorithm execution is 0.6 seconds per image.
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7.5.2/ REPEATABILITY TEST

A repeatability test is applied on this method to validate its efficiency. In this repeatability

test, the ceramic monolith is fixed, and thousands of images are launched automatically

to validate the accuracy of the algorithm through light changes. The first position is at 0

degree, while the last position is at 90 degrees. A step of five degrees is applied.

Figure 7.9: Repeatability test validated with Canny-Hough method

The results of Figure 7.9 show that good detection has a percentage varying between

98% and 100% with an overall average of 99.826%. The algorithm execution of 0.6

seconds is also validated in this test. The Canny-Hough method is now ready to be

deployed.

7.6/ CONCLUSION

Quality control of brick channels being executed manually remains not optimal. The au-

tomation of such control needs to be done via an algorithm deployed within a cell, offering

complete autonomy to the factory.

In this contribution, the orientation of the ceramic is questioned and is addressed by the

means of image processing techniques. Similar methods, previously applied for traffic

lanes detection [39], have now been validated on the brick channels detection. Tests

were carried out by applying a rotation of the ceramic by five degrees. The results show

that with the Canny-Hough method, an accuracy of 99.826% is achieved within a toler-

ance of ±5 degrees, as requested by the plant.

The proposed solution will be deployed in a Faurecia factory in order to validate the al-

gorithm under real lighting conditions. This deployment will be carried out by the Digital
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Expertise & Development team. A Human Machine Interface is still to be designed.
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TOWARDS AUTONOMOUS PLANTS:
DEVELOPMENT AND DEPLOYMENT OF

DIGITAL SOLUTIONS IN THE

AUTOMOTIVE INDUSTRY

8.1/ INTRODUCTION

For an innovation to be accepted in manufacturing, it is necessary to have an under-

standable result, no additional time on the plant’s cycle, and a real added value. In the

previous chapters, we presented the added value of integrating deep learning and image

processing in quality control’s automation. In this chapter, we will focus on the Human

Machine Interface (HMI) to be installed in the plants. This HMI has been developed by

the Digital Expertise and Development (DE&D) team and aims at providing a Plug & Play

system to the plants team . It plays an intermediate role between the plant’s team and the

automated system, by that it enables non-developers to interact with its user interface.

In this chapter, we will present the software development context and the industrial con-

text of the HMI, covering different types of quality control. Finally, we will detail the added

value of the DE&D digital solution, once deployed in Faurecia’s plants.

8.2/ PROBLEM STATEMENT

8.2.1/ FEATURES REQUIRED IN PLANTS

As presented in the state-of-the-art of existing solutions in the market for automatic quality

control, following criteria are not covered:
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1. re-usable application: to be able to use the same solution for different applications.

The software’s architecture remains the same, the only difference is the automated

type of quality control ie. component presence control, welding seam classification,

or brick orientation adjustment.

2. remote access: the plant receives the application’s hardware and is then able to

install the application following the documentation. Remote support for the plant is

possible and takes into consideration the network architecture at Faurecia.

8.2.2/ NETWORK ARCHITECTURE

Confidential

Figure 8.1: Network architecture

8.2.3/ CYCLE TIME OF A TURNTABLE

Confidential

8.3/ SOFTWARE DEVELOPMENT CONTEXT

It consists in defining the work methodology to be implemented, as well as the develop-

ment stages to be followed and the HMI architecture.
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Figure 8.2: Loading/Unloading side of a turntable in a Faurecia plant

Figure 8.3: Cycle time of a turntable

8.3.1/ AGILE METHODOLOGY

In this section, we will define the agile methodology implemented in the development of

this project. Additionally, we will present the agile terminologies and roles.

AGILE DEFINITION

Agile is a methodology that values a pragmatic mindset and a flexible approach. This

methodological framework breaks the project into several phases. It consists on continu-

ously delivering results to clients in an iterative approach. This way, team members can

quickly adapt to requirement changes while delivering the highest quality product and in-

creasing customer satisfaction.
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Figure 8.4: Welding side of a turntable in a Faurecia plant

The DE&D team working on the HMI project is composed of eight members: two Ph.D

students, two vision engineers, one roboticist, one automation engineer, one manufactur-

ing project leader and one team manager. The author of this thesis occupies the position

of a product owner, an agile role that will be defined later in this section.

AGILE TERMINOLOGIES

Some terminologies are often used in an agile project, following are their definitions:

1. User story: it describes the user experience using the user’s language, vocabulary

and terminology. For example, a name that succinctly describes the function of

the product, the importance that defines the priority of the story, an estimate of the

work required and a demonstration. A simple test of the story that will need to be

validated and the notes include all the information needed to complete the story.

2. Product backlog: it is the requirements generated from user stories. It represents a

mirror of what needs to be done to fulfill the customer’s needs and deliver the user

story. For example, creating the interface of an application and adding functionality.

This product backlog will constantly evolve to reflect new customer needs. Once

this product backlog is validated, the realization of the project starts and will be split

into several iterations, called sprints.

3. Sprint: it begins with a sprint planning meeting. Then, during the sprint session,

the priority elements in the product backlog will be identified and developed. Each

sprint lasts from two to four weeks and includes several steps: development, quality

control (validation test), and a delivery. All the deliveries of the cumulative sprints

are called the backlog sprint.
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At the end of each sprint, another meeting will be organized: a sprint meeting re-

view. It’s about showing the solution through a demonstration, and getting feedback

from the client. Any suggested improvement and encountered problems will then

be broken down in the product backlog and prioritized in the next sprints.

4. Scrum: it is a meeting are organized on a daily basis during the sprints. It lasts only

fifteen minutes and takes place at the beginning of the day. The scrum allows the

team to measure the progress of the project and ensure the quality of deliverables

and the respect of deadlines.

AGILE ROLES

Now that we have defined agile terminologies, we can identify common routine roles

implemented in an agile environment. These roles are listed as follows:

1. Scrum master: ensures good communication between team members identifies

organizational obstacles and works to remove those obstacles.

2. Team members: are the ones that are taking the understanding of the project vision

and defining what needs to be done for implementation.

3. Product owner: defines the functional specifications and establishes the list of prior-

ities to be developed. This agile actor validates functionalities and user stories with

the team members, defines sprints with the client, prepares the product backlogs

and organizes the scrum meetings. Additionally, in this HMI development, the prod-

uct owner proposes Unified Modeling Language (UML) diagrams of the application.

8.3.2/ HMI DEVELOPMENT
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DEFINITION OF NEED
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MOCKUP DEFINITION

A mockup is a conceptual tool used to communicate the structure of an application’s

design by representing detailed design elements. It allows to convert ideas and concepts
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Figure 8.5: HMI development steps

into a actual design.

Figure 8.6 represents an example of a mockup, designed for the setup module.

Figure 8.6: mockup representing the HMI management of a reference part

ACTIVITY DIAGRAM

It graphically represents the behavior of a method or the flow of a use case [88]. An

activity represents an execution of a mechanism, a succession of sequential steps. An

action corresponds to a treatment which modifies the state of the system. One or more

actions form an activity. The sequence of actions constitutes the flow of control.

Different types of nodes are presented in this diagram (bifurcation node, junction node,

test-decision node). The work done in this project focused on the test-decision node, rep-
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Figure 8.7: activity diagram example representing the test-decision node

resented in Figure 8.7. The test-decision node makes a choice between several outgoing

flows according to the guard conditions of each flow. A test-decision node has only one

input flow. Two output streams are allowed:

1. the first one corresponding to the condition checked,

2. the second one dealing with the case otherwise [if-else].

SEQUENCE DIAGRAM

A example of a sequence diagram is displayed in Figure 8.8. It represents the interac-

tions between objects by indicating the chronology of the message exchanges [88]. A

sequence diagram describes the behavior of objects in one single scenario. It shows

objects and messages transmitted between these objects.

A lifelines represents all the operations performed by an object. It shows the period of

time during which the object exists. Objects communicate by exchanging messages. The

vertical dimension represents the flow of time.

CLASS DIAGRAM

A class diagram describes the static structure of the essential entities in the system to be

implemented [88]. It is based on:

1. The concept of object: implementing real-world entities.
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Figure 8.8: communication between actors in a sequence diagram (arrows representing
messages

2. The concept of class: a class can be defined as a data field that has unique at-

tributes and behavior (methods).

3. Different types of association between classes such as composition and aggrega-

tion.

The class diagram manages the visibility of attributes and operations, the notion of multi-

plicity, as well as the relations of composition and aggregation. Figure 8.9 is an example

of a class diagram.

A simple association between two classes represents a structural relation between peers,

ie. between two classes of the same conceptual level. Neither of the two is more impor-

tant than the other. The multiplicity indicates a domain of values used to specify the

number of instances of a class regarding another class for a given association.

An aggregation represents a structural link between a class and one or more other

classes. It is used to model a relationship between a larger element and a smaller el-

ement.

A composition is an aggregation relationship in which there is a lifetime constraint be-

tween the component class and the compound class.

A link is a physical or conceptual connection between instances of classes and therefore

between objects.
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Figure 8.9: Representation of class diagram’s elements

VALIDATION TEST
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8.3.3/ HMI ARCHITECTURE
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Now that we have discussed the software development context, in the next section we

will be talking about the industrial context.

8.4/ INDUSTRIAL CONTEXT

Confidential

Figure 8.10 represents the software computations to be integrated.
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8.4.1/ INNOVATION PROGRAM MANAGEMENT SYSTEM (IPMS) STEPS

The IPMS is the procedure to be followed in order to deploy an innovative project in Fau-

recia plants. This procedure starts with an idea of a project until the project deployment,

passing by all of the development phases.

According to Figure 8.11, following are the different phases of the IPMS procedure: Ex-

periment, Concept, Feasibility, Validation, Development, Standardization, and Deploy-
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Figure 8.10: Integrating deep learning and image processing at a hidden time in the cycle
of a turntable

ment.

Figure 8.11: Steps of Innovation Program Management System (IPMS)
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8.4.2/ RELEASE PHASES

Facts and data should be presented to go to the next step, through a defense in front of a

jury (the steering committee).

RELEASE OUTCOMES
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STEERING COMMITTEE MEMBERS
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RELEASE TARGET TIME
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8.5/ ADDED VALUE OF THE PROPOSED SOLUTION
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8.6/ CONCLUSION

In this chapter, the digital solution to be deployed in Faurecia plants is presented. This

solution allows operators to access the whole automated quality control process from an

HMI. The setup is also provided by this HMI: software administrators are able to create,

modify or delete reference parts and can define region of interests of any specific con-

nected camera. The software architecture is distributed over modules, which are being

deployed progressively in plants by the DE&D team.

A Plug & Play system will be provided to the plants and all the logs will be sent into the

private cloud for analysis purposes. These results will then be analyzed in order to further

improve the overall quality by identifying correlations among the various parameters.
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CONCLUSION & PERSPECTIVES

9.1/ CONCLUSION

In this thesis, automated quality control for component presence control as well as for

welding seam classification and brick orientation adjustment have been proposed in order

to reduce non-conformities in the automotive industry. In the first part, we have presented

the applications of an automated quality control and have covered the scientific back-

ground of deep learning, whereas in the second part we have detailed our contributions

in this field.

We first presented the product life cycle at Faurecia plants, the need to automate pro-

cesses in the industry and the existing solutions for this automation in the market. Then,

we discussed the state of the art of computer vision techniques: machine learning, deep

learning and convolutional neural networks.

In the second part of this dissertation, we detailed our contributions, beginning with the

automation of the component presence control, where our proposed solution reached a

100% accuracy on real-life images, collected in the plant’s environment. This automation

reduces the cycle time by replacing the human visual inspection by an automatic system,

delivering high quality results in an optimized time.

The next research work focused on classifying welding seams, by the means of an au-

tomated visual control of their external appearance. A weld defect detection rate of over

97% was targeted by the client. The challenge encountered was linked to the imbalanced

dataset collected from the plant. To overcome this limitation, we benchmarked many data

augmentation techniques in combination with several neural network architectures. Out

of the four welding seams to control, we have been able to achieve the minimum defect

detection rate on two welding seams while for the remaining two, more data would have

been needed.

Nevertheless, to improve the welding bead classification performance detailed above, we

then proposed a complementary hybrid approach: combining the visual heatmap results
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with the neural network architecture and adding a pre-trained CNN-Machine Learning

Classifier. This hybrid solution allowed to achieve the targeted detection rate on all of the

four welding seams.

The last research focused on the quality control when assembling ceramic monoliths:

positioned at a wrong angle may cause breakages in them. We created an image capture

setup, which allowed us to take one picture of the brick before the canning stage. A

Canny edge detection filter, followed by a Hough transformation allowed to compute the

orientation of the brick with a tolerance of five degrees. The estimated angle value is then

displayed to the operator, in order to adjust the brick orientation accordingly.

In this thesis, special attention was given to the integration of deep learning algorithms

in the production line and we presented our approach towards providing a Human Ma-

chine Interface to the plants. We designed and developed a whole HMI software, in a

modular way, ready to run current or future quality control applications. The project has

been deployed following the rigorous internal Innovation Program Management System

procedures and is currently running in Faurecia’s plants.

We believe that the solutions proposed in this thesis for various challenges in the auto-

motive industry’s quality control can serve as additional and efficient solution choices or

tools to address the above-mentioned challenges in automating industrial processes.

9.2/ PERSPECTIVES

There are many perspectives to propose when the work environment is in continuous

improvement. The key focus of this thesis was to suggest solutions for automating differ-

ent types of quality control. The applied solutions are part of deep learning and image

processing techniques. One of the main challenges encountered with data collection is

that the proposed solutions require thousands of images to be collected. This challenge

remains difficult especially when the collected dataset is imbalanced: the number of NOK

images is much smaller than the number of OK images. Thereby, one of the approaches

to be considered for future researches is to apply Generative Adversarial Networks (GAN)

for data augmentation: generating a relevant dataset virtually. By that, the reduction of

the needed time to obtain an accurate solution with a traditional deep learning method

will result in deploying digital solutions faster.

By definition, GANs are generative modeling approaches that use deep learning methods

[7] to automatically discover and learn regularities or patterns from the input data. The

model can then be used to generate new examples that could plausibly have been drawn

from the whole original data.

GANs are defined as iterative games played between a generator and a discriminator. A
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generator is a neural network that generates new instances of data, while the discrimi-

nator evaluates its authenticity. The main goal of the generator is to improve its ability in

converting random noise into fake data while the discriminator aims at improving its ability

in differentiating real data from fake data.

As already stated, the quality control has to be automated in today’s manufacturing in-

dustry. The work presented in this thesis focused on the integration of the algorithm into

the cycle time, but the framework suffers a common weakness: the time to market, ie. the

time elapsed between the conception of a product and its availability for sale. GANs have

the potential to increase the amount of relevant data and to generate realistic defected

images. By that, the challenge of the imbalanced dataset could be solved.

Moreover, One Class Classification (OCC) is a type of deep learning algorithms able to

detect abnormal data points (outliers) compared to the instances of the known class.

These algorithms can solve the problem of imbalanced dataset, in particular the welding

seam type of quality control presented in this thesis.

Furthermore, transformers usually applied for natural language processing have been

very effective when applied in computer vision, called vision transformers. This deep

learning model is based on the attention mechanism. It computes relationships among

pixels in various small sections of the image. These sections are then arranged into a

linear sequence which creates a series of positional embedding patches. In the end, they

are fed to the encoder: a machine learning model that describes an image with a sen-

tence. Vision transformers can be applied in an image classification scenario such as the

classification used for quality control in the automotive industry.

Finally, the work done in this thesis opens up limitless perspectives in various research

lines. One of the future works is to study applications that can combine different types of

quality control in a single deep learning model and to be able to generate automatically

relevant features corresponding to the plants environment.
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OLIVER, I. M. Medical image detection using deep learning. In Deep Learning

in Healthcare. Springer, 2020, pp. 3–16.

[36] OSAWA, Y., WATANUKI, K., KAEDE, K., AND MURAMATSU, K. Visualization of
features in multivariate gait data: Use of a deep learning for the visualization
of body parts and their timing during gait training. In International Conference

on Applied Human Factors and Ergonomics (2020), Springer, pp. 1007–1013.

[37] PAN, H., PANG, Z., WANG, Y., WANG, Y., AND CHEN, L. A new image recog-
nition and classification method combining transfer learning algorithm and
mobilenet model for welding defects. IEEE Access 8 (2020), 119951–119960.

[38] RADKE, A. M., DANG, M. T., AND TAN, A. Using robotic process automation (rpa)
to enhance item master data maintenance process. LogForum 16, 1 (2020).

[39] ROSSI, A., AHMED, N., SALEHIN, S., CHOUDHURY, T. H., AND SAROWAR, G. Real-
time lane detection and motion planning in raspberry pi and arduino for an
autonomous vehicle prototype. arXiv preprint arXiv:2009.09391 (2020).

[40] SALIM, R., MANDUCHI, A., AND JOHANSSON, A. Investment decisions on au-
tomation of manufacturing in the wood products industry: A case study. Bio-

Products Business (2020), 1–12.

[41] SHEVCHIK, S., LE-QUANG, T., MEYLAN, B., FARAHANI, F. V., OLBINADO, M. P.,

RACK, A., MASINELLI, G., LEINENBACH, C., AND WASMER, K. Supervised deep
learning for real-time quality monitoring of laser welding with x-ray radio-
graphic guidance. Scientific reports 10, 1 (2020), 1–12.

[42] SULTANA, F., SUFIAN, A., AND DUTTA, P. A review of object detection models
based on convolutional neural network. In Intelligent Computing: Image Pro-

cessing Based Applications. Springer, 2020, pp. 1–16.

[43] TAN, P.-Q., WANG, D.-Y., YAO, C.-J., ZHU, L., WANG, Y.-H., WANG, M.-H., HU, Z.-

Y., AND LOU, D.-M. Extended filtration model for diesel particulate filter based
on diesel particulate matter morphology characteristics. Fuel 277 (2020),

118150.

[44] THECKEDATH, D., AND SEDAMKAR, R. Detecting affect states using vgg16,
resnet50 and se-resnet50 networks. SN Computer Science 1, 2 (2020), 1–7.



BIBLIOGRAPHY 101

[45] TIAN, C., XU, Y., LI, Z., ZUO, W., FEI, L., AND LIU, H. Attention-guided cnn for
image denoising. Neural Networks 124 (2020), 117–129.

[46] TIAN, C., XU, Y., AND ZUO, W. Image denoising using deep cnn with batch
renormalization. Neural Networks 121 (2020), 461–473.

[47] WANG, B., HU, S. J., SUN, L., AND FREIHEIT, T. Intelligent welding system tech-
nologies: State-of-the-art review and perspectives. Journal of Manufacturing

Systems 56 (2020), 373–391.

[48] YANG, Y., PAN, L., MA, J., YANG, R., ZHU, Y., YANG, Y., AND ZHANG, L. A high-
performance deep learning algorithm for the automated optical inspection of
laser welding. Applied Sciences 10, 3 (2020), 933.

[49] YU, C., HAN, R., SONG, M., LIU, C., AND CHANG, C.-I. A simplified 2d-3d cnn
architecture for hyperspectral image classification based on spatial-spectral
fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing (2020).

[50] ZHOU, F., YANG, S., FUJITA, H., CHEN, D., AND WEN, C. Deep learning fault
diagnosis method based on global optimization gan for unbalanced data.

Knowledge-Based Systems 187 (2020), 104837.

[51] ABDULAAL, M. J., CASSON, A. J., AND GAYDECKI, P. Critical analysis of cross-
validation methods and their impact on neural networks performance inflation
in electroencephalography analysis. IEEE Canadian Journal of Electrical and

Computer Engineering 44, 1 (2021), 75–82.

[52] AGRAWAL, P., CHAUDHARY, D., MADAAN, V., ZABROVSKIY, A., PRODAN, R., KI-

MOVSKI, D., AND TIMMERER, C. Automated bank cheque verification using im-
age processing and deep learning methods. Multimedia Tools and Applications

80, 4 (2021), 5319–5350.

[53] CHEN, J., ZHANG, D., SUZAUDDOLA, M., NANEHKARAN, Y. A., AND SUN, Y. Identi-
fication of plant disease images via a squeeze-and-excitation mobilenet model
and twice transfer learning. IET Image Processing 15, 5 (2021), 1115–1127.

[54] DANDEKAR, N., KULKARNI, J., RAUT, R., AND RAUT, K. Extracting features from
the fundus image using canny edge detection method for predetection of dia-
betic retinopathy. VIVA-Tech International Journal for Research and Innovation 1,

4 (2021), 1–6.

[55] EL HACHEM, C., PERROT, G., PAINVIN, L., AND COUTURIER, R. Automation of
quality control in the automotive industry using deep learning algorithms. In



102 BIBLIOGRAPHY

2021 International Conference on Computer, Control and Robotics (ICCCR) (2021),

IEEE, pp. 123–127.

[56] EL HACHEM, C., PERROT, G., PAINVIN, L., ERNST-DESMULIER, J.-B., AND COU-

TURIER, R. Welding seam classification in the automotive industry using deep
learning algorithms. In 2021 IEEE International Conference on Industry 4.0, Arti-

ficial Intelligence, and Communications Technology (IAICT) (2021), IEEE, pp. 235–

240.

[57] GOH, G., SING, S., AND YEONG, W. A review on machine learning in 3d printing:
Applications, potential, and challenges. Artificial Intelligence Review 54, 1 (2021),

63–94.

[58] HAQ, M. A., RAHAMAN, G., BARAL, P., AND GHOSH, A. Deep learning based su-
pervised image classification using uav images for forest areas classification.

Journal of the Indian Society of Remote Sensing 49, 3 (2021), 601–606.

[59] JIA, S., JIANG, S., LIN, Z., LI, N., XU, M., AND YU, S. A survey: Deep learning for
hyperspectral image classification with few labeled samples. Neurocomputing

448 (2021), 179–204.

[60] KIM, Y., AND DODBIBA, G. A novel method for simultaneous evaluation of par-
ticle geometry by using image processing analysis. Powder Technology 393

(2021), 60–73.

[61] KULKARNI, U., MEENA, S., GURLAHOSUR, S. V., AND BHOGAR, G. Quantization
friendly mobilenet (qf-mobilenet) architecture for vision based applications on
embedded platforms. Neural Networks 136 (2021), 28–39.

[62] KUMAR, A., VASHISHTHA, G., GANDHI, C., ZHOU, Y., GLOWACZ, A., AND XIANG, J.

Novel convolutional neural network (ncnn) for the diagnosis of bearing defects
in rotary machinery. IEEE Transactions on Instrumentation and Measurement 70

(2021), 1–10.

[63] KUMAR, P., AND SHANKAR HATI, A. Convolutional neural network with batch
normalisation for fault detection in squirrel cage induction motor. IET Electric

Power Applications 15, 1 (2021), 39–50.

[64] LEE, J., AND PARK, K. Gan-based imbalanced data intrusion detection system.

Personal and Ubiquitous Computing 25, 1 (2021), 121–128.

[65] LIU, Y., ZHANG, Z., LIU, X., WANG, L., AND XIA, X. Performance evaluation of
a deep learning based wet coal image classification. Minerals Engineering 171

(2021), 107126.



BIBLIOGRAPHY 103

[66] MANWAR, R., ZAFAR, M., AND XU, Q. Signal and image processing in biomedi-
cal photoacoustic imaging: a review. Optics 2, 1 (2021), 1–24.

[67] MARCUS, J. Challenges and frontiers in implementing artificial intelligence in
process industry. Impact and Opportunities of Artificial Intelligence Techniques

in the Steel Industry: Ongoing Applications, Perspectives and Future Trends 1338

(2021), 1.

[68] NGUGI, L. C., ABELWAHAB, M., AND ABO-ZAHHAD, M. Recent advances in im-
age processing techniques for automated leaf pest and disease recognition–a
review. Information processing in agriculture 8, 1 (2021), 27–51.

[69] OSKOOEI, A., CHAU, S. M., WEISS, J., SRIDHAR, A., MARTÍNEZ, M. R., AND
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