
HAL Id: tel-03775554
https://theses.hal.science/tel-03775554

Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-view design for cyber-physical systems
Hui Zhao

To cite this version:
Hui Zhao. Multi-view design for cyber-physical systems. Software Engineering [cs.SE]. Université
Côte d’Azur, 2022. English. �NNT : 2022COAZ4022�. �tel-03775554�

https://theses.hal.science/tel-03775554
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

Multi­Vue Design Pour Cyber­Physical Systems

Hui ZHAO
Université Côte d’Azur, INRIA, I3S

Présentée en vue de l’obtention du garde

de docteur en

Informatique
Sciences et Technologies de l’Information et

de la Communication (STIC) d’Université

Côte d’Azur

Thèse dirigée par: Prof. Frédéric Mallet

Et co­dirigée par: Prof. Ludovic Apvrille

Soutenue le: 22 March 2022

Devant le jury, composé de:

Régine Laleau, Professeur

Université Paris­Est Créteil, Rapporteur

Jean­Michel Bruel, Professeur

Université de Toulouse, Rapporteur

Frédéric Mallet, Professeur

Université Côte d’Azur, Directeur de thèse

Ludovic Apvrille, Professeur

Telecom ParisTech, Co­directeur de thèse

Multi­Vue Design Pour Cyber­Physical Systems

Multi­View Design For Cyber­Physical Systems

Jury:

Rapporteurs

Régine Laleau, Professeur Université Paris­Est Créteil
Jean­Michel Bruel, Professeur Université de Toulouse

Examinateurs

Frédéric Mallet, Professeur Université Côte d’Azur
Ludovic Apvrille, Professeur Telecom ParisTech

iii

Remerciements

Si cette thèse a pu voir le jour, c’est avant tout grâce à l’exemple et au soutien des
personnes qui m’ont été proches jusqu’aujourd’hui, et tout particulièrement celles
quim’ont accompagné durant ces trois dernières années. Je leur dédie naturellement
le premier moment de cet écrit.

Tout d’abord, j’aimerais remercier chaleureusement mon directeur de thèse,
Prof. Frédéric Mallet et co­directeur Prof. Ludovic Apvrille. Je les remercie
pour avoir cru en moi, pour m’avoir soutenu dans les moments difficiles et encour­
agé dans mes regains de dynamisme. Je leur suis surtout reconnaissant pour leur
disponibilité, leur attention, leur investissement et leur optimisme. J’ai beaucoup
appris à leur contact et surement gagné en ouverture d’esprit! Un grand merci égale­
ment à toutes les jury membres.

Je souhaite également remercier profondément Prof.Robert de Simone etMme.Pa-
tricia RIVEILL pour leur accueil enthousiaste au sein de l’équipe KAIROS. Je re­
mercier également Dr. Letitia Li, Prof. Rabea Ameur-Boulifa et tous les mem­
bres de l’équipe LabSoC et KAIROS.

Je remercie particulièrement Dr. Feng Yu et M. Emmanuel Cinneri qui ont été
gentils avec moi et m’ont invité à manger chez eux, c’était mon honneur de les
rencontrer. J’ai aussi remercie à mes amis, Dr. Zihao Wang, Dr. Chuan Xu et
les autres!

Finalement, merci àma famille pourm’avoir porté jusqu’ici. Ames parents, j’arrête
de promettre que c’est le dernier examen que je passe. Ça fait 10 ans que je vous fais
le coup, je sais ... Merci d’avoir toujours cru en moi et de m’avoir donné les moyens
de réussir. je remerecie encore à ma mère Tang Qiaoqing pour m’avoir appris à
regarder et, à travers un regard sans tache, à voir. À mon père Zhao Jianguo pour
m’avoir appris à agir et à transformer ce que je voyais. Je remercie à ma femme
bien­aimée Dr.Min Ju. Je n’ai pas de mots assez forts pour vous remercier.

v

Acknowledgement

First of all, I would like to warmly thank my thesis director, Prof. Frédéric Mal-
let and co­director Prof. Ludovic Apvrille. I thank them for having believed in
me, for having supported me in difficult times and encouraged in my revival of
dynamism. I am especially grateful for their availability, attention, investment and
optimism. I learned a lot from them and certainly gained an open mind! I would
like to thank all of the jury members.

I would also like to express my gratitude towards the committee members, for their
time spent on reading and their constructive comments that enrich this thesis.

I would also like to thank deeply Prof. Robert de Simone and Mme. Patricia
RIVEILL for their enthusiastic welcome to theKAIROS team, aswell as Prof.Marie-
Agnes PERALDI-FRATI, Prof. Eric Madelaine and Prof. Julien Deantoni.
I would also like to thank all the members of the LabSoC team who welcomed and
helped me, Dr. Letitia Li, Prof. Rabea Ameur-Boulifa and the others!

I especially thank Dr. Feng Yu et M. Emmanuel Cinneri who were nice to me
and invited me to eat at home, it was my honor to meet them. I also thankmy friends
of INRIA, Dr. ZihaoWang, Dr. Chuan Xu and the others!

Finally, thank you to my family for bringing me here. To my parents, I stop promis­
ing that this is my last exam. I’ve been doing it for 10 years, I know…Thank you
for always believing in me and for giving me the means to succeed. I still thank my
mother Tang Qiaoqing for teaching me to look and, through a spotless look, to
see. To my father Zhao Jianguo for teaching me to act and transform what I saw.
I especially thank my beloved, Dr.Min JU. I do not have words strong enough to
thank you.

vii

致谢

这篇论文的顺利完成，要感谢所有给过我支持和帮助的可爱的人。在写

论文的的第一刻，我要向他们特别致谢，真诚的说一句『感谢有你们和我在

一起』。

我首先要感谢 Frédéric Mallet教授和 Ludovic Apvrille教授，感谢他
们对我的指导，并让我领悟到严谨科学态度和执着的科研精神。感谢他们对

我的信任，并在我最艰难的时刻支持了我，并鼓励我重新找到方向。

我还要感谢 KAIROS团队和 LabSoC实验室全体成员。感谢在和他们相
处的三年里所有的欢声笑语，他们每一个人的笑容都将永久的镌刻在我的记

忆中。特别是 Robert de Simone，他就像一位慈祥的长者，不仅在学术上
给予我指导，还时刻用他的快乐感染着我和团队中的每一个人。我还要感谢

三年中和我一起的朋友和同事们，回想起三年中的每一天，都有他们的陪

伴，岁月也显得不那么难过。这里特别要提到 Feng Yu博士和 Emmanuel
Cinneri先生，谢谢他们给予我的照顾和关心。

最后也是最重要的，我要深深地感谢我的父亲赵建国先生，母亲唐巧琴
女士，是他们给了我来到这个世界的机会，哺育我长大，让我接受良好的教

育，并在成长的过程中，包容我的任性与不羁。与他们在一起的时刻我才能

感受到人生最大幸福与温暖。在中国人的传统情感中很难启齿说出爱的情

感，特别是与父母之间，在此我要郑重的向他们说，『我爱你们，我的爸爸

妈妈！』。我还要特别感谢我的至爱，巨敏博士，感谢你在我最困难的论文
写作和答辩准备期间一直支持与陪伴。在以后的人生中我们松萝共倚，携手

同行！

谨以此将我对他们所有感谢和爱铭刻在论文里，永久保存！

ix

Abstract

Cyber­Physical Systems (CPSs) are large­scale interconnected systems of heteroge­
neous components that integrate computational parts with physical processes. Un­
like pure digital embedded systems, CPS combine both digital and physical parts,
and integrate the (very uncertain) environment as part of the model in a closed­loop
retroaction fashion. Therefore, while traditional reactive embedded systems are fre­
quently modeled as pure discrete systems, CPS also come with continuous models
of physical phenomena and are therefore considered heterogeneous. The variety of
subsystems demand to gather different expertises and put together different models
and tools going beyond the typical border of software engineering in a field called
systems engineering.

Furthermore, each part of CPS consists of a set of independent sub­systems. Differ­
ent engineer teams develop sub­system independently, and even some sub­systems
come from different sub­contractors. Keeping the consistency among those in­
dependent (sub)systems at system development phase is a challenge. During the
whole development life­cycle, the system designer should consider a wide variety
of domains and involve many different experts to handle domain­specific problems.
For example, in some safety­critical real­time systems, the system engineers focus
on functional issues at first. They also have to consider some non­functional as­
pects that could affect the system reliability and performances, such as security and
timing. Potential attackers can use system vulnerabilities and flaws to hijack the sys­
tem. To deal with the complexity of CPS, we need an integrated framework able
to capture all the different views (models) of such complex systems in a consistent
way.

InModel­Based System Engineering (MBSE), CPS designers bring together a wide
variety of experts who use different sets of languages and tools, while keeping the
model at the center of the process. This variety makes it difficult to combine and

xi

integrate all these models and artefacts. The consistency problem becomes an es­
sential issue. Ensuring consistency is one of the main attention point of this work.

In this thesis, we advocate for a model­centered approach that can combine hetero­
geneous artefacts (called views) into a sound and consistent system model. Rather
than trying to build an universal modeling language to capture all aspects of sys­
tems, we elaborate on subsets of existing languages to keep only what is needed to
conduct the required analyses.

We take a case study and verify this case study with Capella, an open­source so­
lution used by major integrating companies of critical­systems. Capella covers a
wide design flow from functional analysis to component deployment. Even though
Capella is already quite expressive, it does not fit all design requirements to per­
form tasks such as security and safety analysis, or scheduling. It relies on external
plugins or some external Domain­Specific Modeling Language (DSML) for that
purpose. We explore a solution to combine it with another tool, SysML­Sec, which
is an extension of SysML dedicated to security and safety analysis. We extract
only the required subsets to conduct functional analysis with Capella, and security
analysis with SysML­Sec. We do the same exercise with Architecture Analysis &
Design Language (AADL) to do schedulability analysis and show our language is
generic enough to extract subsets of languages and combine them to build views for
different experts. Moreover, the global model also maintains a global consistency
between the different views.

Keywords: Multi­view, Cyber­physical systems,Modeling language, SysML,MDE,
AADL, Security and safety

xii

Résumé

Les systèmes cyber­physiques (CPS) sont des systèmes distribués qui combinent
des parties numériques avec des sous­systèmes physiques. Contrairement aux sys­
tèmes embarqués réactifs traditionnels qui gardent le non­déterminisme en dehors
du modèle, les CPS prennent en compte l’incertitude de l’environnement dans un
système en boucle fermée dans lequel les systèmes de contrôle impactent l’environ­
nement (par exemple la température) ce qui a son tour produit de nouvelles réactions
sur le contrôle (par exemple dans un bâtiment intelligent). Cette hétérogénéité dans
les phénomènes modélisés (sytèmes numériques discrets, phénomènes physiques
continus) fait appel à différentes expertises qui vont bien au delà des compétences
d’un ingénieur logiciel et qui relèvent de l’ingénierie système.

Les concepteurs de CPS doivent prendre en compte de nombreux facteurs en raison
de la complexité et de la diversité des systèmes. Ils impliquent de nombreux experts
pour gérer les problèmes spécifiques à chaque domaine. Ils s’appuient sur différents
modèles et langages, chacun adapté à un sous­domaine particulier, ce qui conduit
à des problèmes de cohérence entre ces modèles et ces langages. Comment mettre
ensemble ces modèles est le point d’étude central de cette thèse.

Nous explorons une approche basée sur des modèles en composant plusieurs arte­
facts hétérogènes (vues) dans un modèle intégré du système cohérent. Plutôt que
d’essayer de créer un langage de modélisation universel pour capturer tous les as­
pects, nous rassemblons de petits sous­ensembles de langages de modélisation pour
nous concentrer sur des capacités d’analyse spécifiques. Nous avons proposé une
approche basée sur un modèle et un langage suffisamment générique pour extraire
des sous­ensembles et les combiner pour créer des vues pour les différents experts.
Le modèle central maintient également une cohérence globale entre les différentes
vues.

xiii

Nous prenons une étude du cas de Capella, une solution open­source utilisée par
les grandes entreprises d’intégration, qui fournit un large support allant de l’analyse
fonctionnelle des exigences au déploiement des composants logiciels ou matériels.
Même si Capella est déjà assez complet pour l’analyse fonctionnelle, il ne répond
pas à toutes les exigences de conception telles que l’analyse de la sécurité et de
la sûreté, ou la planification. Nous montrons comment le combiner avec d’autres
langages dédiés permet d’augmenter l’expressivité globale et la capacité d’analyse.
Nous le combinons, dans un premier temps à SysML­Sec, une extension de SysML
dédiée à l’analyse de la sécurité et de la sûreté. Nous extrayons les sous­ensembles
des deux langages pour construire une vue cohérente et puis, effectuons une analyse
fonctionnelle avec Capella et une analyse de sécurité avec SysML­Sec. Nous util­
isons lemême technique avecAADLpour effectuer une analyse d’ordonnançabilité.
Ces deux cas d’études montrent que notre langage est suffisamment générique pour
extraire des sous­ensembles de langages et maintenir leur cohérence.

Mots clés: Multi­vue, Cyber­physical systems, Langage de modélisation, SysML,
MDE, AADL, sécurité et sûreté

xiv

Publications

1. Zhao, Hui and Apvrille, Ludovic and Mallet, Frédéric (2017). “Multi­View
Design for Cyber­Physical Systems”. In: Proceedings of PhD Symposium
at 13th International Conference on ICT in Education, Research, and Indus­
trial Applications, Ukraine, p. 22–28.

2. Zhao, Hui andApvrille, Ludovic andMallet, Frédéric (2019). “Meta­models
Combination for Reusing Verification Techniques”. In: Proceedings of
7th International Conference onModel­Driven Engineering and SoftwareDe­
velopment (MODELSWARD), Czech Republic, p. 39–50.

3. Zhao, Hui and Mallet, Frédéric and Apvrille, Ludovic (2019). “A language­
based multi­view approach for combining functional and security mod­
els”. Accepted by Asia­Pacific Software Engineering Conference (APSEC),
Malaysia, p. 426–433.

4. Zhao, Hui and Apvrille, Ludovic and Mallet, Frédéric (2020). “A Model­
Based Combination Language for Scheduling Verification”. Accepted by
book Communications in Computer and Information Science (CCIS), Vol.
1161, Springer, p. 27–49.

xv

Table of contents

Remerciements v

Acknowledgement in chinese ix

Abstract xi

Resumé xiii

Publications xv

List of Figures xxi

List of Tables xxiii

1 Introduction 25

1.1 A brief introduction to Cyber­Physical Systems 27

1.2 Motivation and objective . 29

1.3 Problem statement . 31

1.4 Contributions of this thesis . 32

1.5 Organization of this thesis . 35

2 Context: CPS and model-based design 37

2.1 Introduction . 39

2.2 Modeling approaches for CPS design 44

xvii

2.3 Modeling languages and frameworks 50

2.4 MBSE concerns in CPS design 55

2.5 Conclusion . 58

3 State-Of-The-Art 61

3.1 Introduction . 63

3.2 Model transformation . 63

3.3 Modeling languages . 69

3.4 Multi­View Modeling . 74

3.5 Modeling for security & safety 76

3.6 Conclusion . 77

4 Combination Modeling Language 79

4.1 Introduction . 81

4.2 The Combination Modelling Language 82

4.3 Conclusion . 91

5 Support tool 93

5.1 Introduction . 95

5.2 Architecture . 95

5.3 Instrumentation . 97

5.4 Tool comparison . 99

5.5 Conclusion . 100

xviii

6 Bridging Capella with AADL for schedulability analysis 103

6.1 Introduction . 105

6.2 Overview of our approach . 105

6.3 Transformation Rule Library (TRL) 107

6.4 Case study . 116

6.5 Summary . 121

7 Promoting functional design with safety and security properties 123

7.1 Introduction . 125

7.2 Motivation . 127

7.3 Multi­view modeling approach for security and safety design . . . 129

7.4 Case study . 137

7.5 Conclusion . 142

8 Conclusion and Perspective 143

8.1 Conclusion . 144

8.2 Perspectives . 148

List of Abbreviations 149

Bibliography 151

xix

List of Figures

1.1 Horizontal and vertical system views 30

2.1 Software model mimics the behavior of physical asset 41
2.2 CPS interact with operators and managers 43
2.3 Concept of Multi­View Design 48
2.4 Global view of ARCADIA methodology 53
2.5 Meta­Model of Operational Analysis 53
2.6 Allocation on system level 54
2.7 Partial concept for security in TTool 56
2.8 Concept of MBSE for CPS 57

3.1 Excerpt of MT . 65
3.2 Example of Graph­based Transformation 69

4.1 Concept of CML . 83
4.2 Abstract syntax of our language 84

5.1 Architecture of combination tool 96
5.2 Web­based GUI . 97
5.3 Loading models . 98
5.4 Functions and zones . 98
5.5 Specific model . 99

6.1 Overview of Workflow . 106
6.2 Functional view of vehicle 108
6.3 Physical view of vehicle . 113
6.4 Arcadia model of TCU system 116
6.5 AADL model of TCU system 117
6.6 Simulation results of tasks schedule 122

xxi

7.1 Vulnerability trend from 2002 to 2021 126
7.2 Relationships between SysML and SysML­Sec 129
7.3 Workflow for combining security and safety models 131
7.4 Distribution and trends in various vulnerabilities 133
7.5 relationships between Capella and TTool 137
7.6 Workflow for security and safety design 141

xxii

List of Tables

2.1 Applications of Cyber­Physical Systems 42

3.1 Relational/Declarative model transformation tools 67
3.2 Imperative/Operational/Constructive model transformation tools . . 67

4.1 Symbols of transformation rule expression 85

5.1 Evaluation of MT tools on Consumption, Deployment, Complex and
Performance . 101

6.1 Capella and AADL correspondence 111

7.1 Functional and security and safety elements correspondence 136

xxiii

1Introduction

„ Success is not final; failure is not fatal: It is

the courage to continue that counts.

—Winston S. Churchill

(British statesman, army officer, and writer)

Digital systems are pervasive and are present in many aspects of our lives (from

online purchasing and payment to high­speed train and aircraft control systems, as

well as within autonomous cars, smart building or smart cities). While some sys­

tems are designed and deployed independently of each other, others are devised

for being integrated. System engineering attempts to capture and model a set of

heterogeneous sub­systems working together in a bid to understand, predict and

then improve the global behavior emerging from their multiple interactions. It goes

beyond the considerations of pure software engineering as it includes some descrip­

tion of all systems whether digital or not. When it includes a description of physical

phenomenon (e.g., law of motion, thermodynamics) then it is called Cyber­Physical

systems to emphasize the mix of both discrete and continuous, cyber and physical

sub­systems. Simply capturing the various models and keeping the consistency be­

tween them is a challenge in itself that is addressed in this work.

1.1 A brief introduction to Cyber­Physical Systems 27

1.2 Motivation and objective . 29

1.3 Problem statement . 31

1.4 Contributions of this thesis . 32

1.4.1 Combination Modeling Language (CML) 33

25

1.4.2 Combining AADL for scheduling verification 34

1.4.3 Safety and security design 34

1.5 Organization of this thesis . 35

26 Chapter 1 Introduction

1.1 A brief introduction to Cyber-Physical Systems

The term Cyber­Physical System (CPS) emerged around 2006 when it was coined

by Helen Gill at the National Science Foundation in the United States [1]. CPS

concerns go beyond the one of embedded control systems [2] as they bring together

digital computational systems such as embedded systems and communication net­

works (called cyber systems), with surrounding physical processes (e.g., chemical,

bio­medical, civil, and electromechanical systems). Computations are meant to con­

trol and monitor the physical environment with feedback loops. Physical control

process affect computations and vice versa [3, 4, 5].

Applications of CPS are affecting everyone’s life. Looking around people’s daily

life, medical devices assist surgeries, intelligent traffic control systems mitigate

traffic jams and save energy, high­speed train reduces the distance between cities

and makes the Metropolitan Region within 1 hour. A pretty convincing case is the

Rough­Terrain Quadruped Robot – BigDog, which was made by Boston Dynamic.

It is equipped with four legs for movement, allowing it to move across surfaces. In­

stead of wheels or treads, the legs contain a variety of sensors which are controlled

by high­performance embedded systems, including joint position, ground contact,

laser gyroscope, and stereo vision system [6, 7]. It goes beyond standard robotic

systems when integrated with the system infrastructure of a smart cities, in constant

interactions with other devices, whether digital or not, whether fully autonomous

or not.

It is easy to envision new capabilities. A better­embedded intelligence automobile

improves safety and efficiency for transportation systems. Networked building sys­

tems significantly improve energy efficiency, reduce greenhouse gas emissions and

our dependence on fossil fuels by better controlling household electrical appliances,

as well as air­conditioners and lighting systems. Networked autonomous vehicles

could dramatically enhance our automobile’s effectiveness and offer substantially

more effective disaster recovery techniques [8].

However, the CPS have been held to a higher reliability and predictability standard

than general­purpose computing [2]. In a general­purpose embedded system, time

1.1 A brief introduction to Cyber-Physical Systems 27

is considered as a factor to evaluate the performance of the system. Taking longer

time to perform tasks is not a critical issue. It is merely less convenient and less

valuable, yet in the CPS, timing is an issue of vital importance, as the system must

react too late or too early as what the environment, often uncertain, expects.

For instance, the high­speed train system must be a high confidence transportation

system. The so­called signaling system is a safety­critical and real­time system. It is

an essential system to ensure and assist the automatic operation of high­speed trains.

In the scenario of automatic train operation, a train moves into a speed­restricted

zone. The signaling system should send a set of commands to the locomotive sub­

system (including mechanical components) for reducing the speed to an expected

safe interval. The commands must be received and effected in an expected time

bound. In this case, sending a command to slow the train down is a function. The

time of execution is a critical factor in evaluating the system’s risks. Any delay

(in both computations or mechanism) may lead to safety problems and possibly

accidents.

In addition, suppose attackers try to hack a system by using the system’s flaws and

vulnerabilities. Attackingmay lead to the system’s jitters and delays, then the train’s

speed probably has not been reduced to a speed value as slow as expected. It would

also lead to accidents (e.g., derailment or collision) which can injure people, even

cause death. Therefore, the system designers have to consider safety and security

and timing properties throughout the whole design of the system.

The typical characteristics and challenges of CPS are well­known [2, 4], yet global

solutions do not exist:

heterogeneity, in the sense that they capture the different aspects and views relay

on various models, discrete or continuous, state­based or flow­related, digital or

physical.

platform­aware and resource­constrained, embedded system design depends a

lot on the execution platform on which the system should execute, and thus the

program depends on various non­functional properties imposed by the platform.

28 Chapter 1 Introduction

time­sensitive and often safety­critical, the time of execution is a key factor of

the system. The programs and data are allocated to computing resources and data

memory, and there is a distance between them. This spatial distribution requires

performing the temporal scheduling of the execution of programs and loading data

to computing resources. The logical concurrency comes from hardware and data,

and controls dependencies of the applications.

widely distributed with heterogeneous interconnects, simple embedded systems

rely on homogenous interconnects. Compared to traditional embedded systems,

CPS usually contain multiple interconnected embedded subsystems, some of which

are computing devices and some are physical devices. This requires heterogeneous

interconnects.

Since CPS development is extremely complex, the design of CPS requires modeling

methods and frameworks to describe each part of the system. Logical imperative

programs and discrete event models are used to describe the cyber part e.g., de­

terministic modeling frameworks Ptolemy II1. The physical environment is often

understood by models of physics and motions that can be can be characterized as

Partial Differential Equation (PDE) [9].

1.2 Motivation and objective

To deal with the heterogeneity and complexity of CPS, one needs an integrated

framework able to capture all the different views of such complex systems in a

consistent way.

The aim of our research is to propose and study a technique which can build a bridge

between different models (in an horizontal way) while building large system, but

also among inner models at different system levels (in a vertical way). Based on

the idea of refinement, designer can use systematic approach to construct models

gradually and to facilitate a systematic reasoning method by means of proofs. The

vertical axis are different abstraction levels for one single system; lower levels are

refined versions from the above levels and must conform to the above levels. Re­
1http://ptolemy.org/books/Systems

1.2 Motivation and objective 29

finement mechanism usually contains formalized constrains to maintain the consis­

tency of the system [10]. The B method [11, 12] is a frequently mentioned formal

method that supports whole life cycle of the development, throughout requirement,

specification, refinement and implementation [13, 14, 15].

Complex systems should be constructed to be correct according to the standards

of engineering. The discrete technique decomposition allows designer modeling

the complex systems as a set of subsystems [10]. The horizontal axis are differ­

ent systems which have compact interactions among system parties (components),

i.e., a set of components whose interaction semantics are usually informal, and the

heterogeneous components that are expected to satisfy some of the system proper­

ties. By leveraging some of the properties obtained on the component level, we

hope to offer useful mechanisms for the integration stage: verify that components

satisfy system requirements, allow substitution of components and exploration of

alternative costs with regards to both their functional and non­functional properties.

Meanwhile, we intend to conduct execution, verification, and validation activities

at the system level. The two dimensions are shown in Fig.1.1.

Component 3
Component 2

View B

Component 1

View A

Assumption Guarantee

A1?

G2?

P1?

Property 2

Property 1

A1 G1

satisfied?

Component x

How to verify?
Integrate?

G2 A2

Horizontal (Views)

Ve
rti

ca
l (

Re
fin

em
en

t l
ev

el
s)

properties from the View Aproperties in the View B

Fig. 1.1 Horizontal and vertical system views

30 Chapter 1 Introduction

Lots of scientists have contributed to this field for some years and made remark­

able achievements. That is inspired by existing Model­Driven Engineering (MDE)

methodologies and approaches (Arcadia/Capella). ExistingMDE frameworks, e.g.,

Eclipse Modeling Tool 2, integrate various analysis techniques supporting the en­

gineering process within a common environment. The Eclipse Modeling Frame­

work (EMF) is used to capture meta­models as a high­level abstract model. More­

over, we chose TTool 3 as a target for security and safety design purposes. We rely

on TTool to model the security and safety properties and perform formal proofs

and simulation. TTool is a free and open­source support toolkit which supports

UML profiles such as SysML­Sec [16]. TTool offers diagrams for capturing sys­

tem requirements, modeling software/hardware partitioning, and performing perfor­

mance/security/safety proofs, supporting Model Transformation (MT) techniques.

For security and safety proofs, TTool relies on ProVerif andUPPAAL, respectively.

For the purpose of furthermore validating that our language­based solution is able

to be compatible with other modeling method. We also practice with Architecture

Analysis & Design Language (AADL) and its support environment (such as OS­

ATE) to verify scheduling design.

Furthermore, by contrast with the existing model combination technology, we pur­

sue a generic enough method which is easy to use. Based on this method, we pro­

vide a friendly tool that can afford the design engineer full facilities for using this

method. After reviewing and using existing tools, we hope that our tool will have

less learning time and higher execution efficiency.

1.3 Problem statement

As presented in this thesis, the design of CPS spans several domains of engineering.

Each domain relies on specific expertise (mechanisms, aerodynamics, software,

security, hardware, power), tools, and models. Integration and putting together a

variety of properties and models in a semantically correct way is a significant issue

for CPS design and modeling frameworks.

2http://www.eclipse.org
3http://ttool.telecom­paristech.fr/index.html

1.3 Problem statement 31

My thesis was partially sponsored by the CLARITY project [17, 18]. The CLAR­

ITY project is based on the MBSE solution Capella and its extensions. It aims to

construct an ecosystem for modeling a large system and helps the engineer to design

a system model.

Capella is a key technology to reduce system design complexity. It providesmethod­

ological support and guidance for systems engineers. Capella is a disruptive tech­

nology of MBSE [19, 20, 21]. My work is mainly based on Capella. Capella is

further discussed in the background and technical contribution chapters.

Although Capella is a powerful modeling framework, it is still somewhat limited.

Capella could not work together with other tools to design security models, as well

as scheduling models. In this thesis, we advocate for a language­base modeling

approach which can combine heterogeneous artefacts (called views) into a sound

and consistent system model. Rather than trying to build a universal language to

combine all the expressiveness of all the sublanguages, we elaborate on subsets of

existing languages to keep only what is needed to conduct the required analysis.

1.4 Contributions of this thesis

I devote my efforts to combine a variety of models for CPS design and improve

the productivity for modeling CPS. I proposed a modeling language used to estab­

lish a set of relationships among (meta) models. A support tool serves as a parser

for languages. This tool can manipulate the (meta­) models at the abstract level

to assemble an produce a new model to enable further designs. It is also able to

evaluate the properties to determine whether the models satisfy the requirements or

not. We elaborate later on how to combine (meta­) models. We also demonstrate

the combination modeling language applications with two scenarios, the scheduling

and security & safety models (views). More specifically, the contributions of my

thesis are as follows:

32 Chapter 1 Introduction

1.4.1 Combination Modeling Language (CML)

The proposed Combination Modeling Language is a dedicated (meta) language to

extend and enrich one DSML capabilities by combining with other DSMLs. By

using this language, system experts can explicitly capture a set of scenarios and

co­work with different domain experts at the language level. To do that, the syntax

and semantics must be strictly defined, respectively.

For syntax part, Extended Backus �Naur Form (EBNF) is used to define context­

free grammar formally. For the semantics part, the combination pattern is used

to specify different combination relationships. Specific operators are provided to

build up Transformation Rule Expression (TRE). A set of TREs defines a Transfor­

mation Rule Library (TRL) which specifies how to combine different (meta) model

elements. Once the TRL is completed, it can be parsed by an automatic tool.

This CML enables several modeling views which can be considered and designed

at the same abstract level, and it allows that different modeling frameworks to reuse

each other’s artefacts. It largely augments the system design efficiency, reduces the

complexity, and ensures the consistency of the system.

Support tool for CML.According to TRL, the integration engineers can take some

parts of two (meta) models and combine them together, and then export a new

(meta) model. The manual combination of models is error­prone, and wastes a

lot of time, because a TRL may include many TREs. As each TRE involves differ­

ent elements with a set of parameters. The integration engineers have to pay much

more attention to building a new model according to each TRE. Any mistake can

lead to unpredictable results, and it is difficult to detect those mistakes.

Instead of doing this manually, a support tool is designed to accomplish the pro­

cess automatically. It can ensure the correctness of generating a new combined

(meta) model and export the new (meta) model in an easy way. A Graphical User

Interface (GUI) allows integration engineers to import two original (meta) models,

respectively. The relations and elements of the model are shown in the original

model areas. The integration engineers write the TRL to indicating how to transfer

the elements of models. Once the TRL gets ready, then the tool runs in accordance

1.4 Contributions of this thesis 33

to each TRE. Finally, the new combined (meta) model and internal relationships

are built. All of those manipulations are with graphic interface support built­in, and

transforming processes are executed automatically. By using this tool, the correct­

ness of the combination can be ensured to a good level.

1.4.2 Combining AADL for scheduling verification

As we mentioned, one of the CPS characteristics is time­sensitiveness. The time

of execution is a critical factor of the system. The data and programs are allocated

to computing resources according to the architecture of system. AADL is a model­

ing language dedicated to describing the architecture, and it is also able to conduct

a scheduling verification. In order to avoid redundancy, we require to reuse func­

tional models with architecture models for verifying system properties. To this end,

we rely on a new modeling language, CML, a DSML that combines two modeling

languages by defining how to link two (sub­) metamodels. Using the proposed lan­

guage and approach, two models m1 and m2 of two different modeling languages,

respectively: m2 can automatically be augmented with some information of m1 to

perform verification on the enriched model (e.g., scheduling, timing, safety), and

then verification results can be traced to m1.

To validate this contribution, SysML and AADL are selected as two target lan­

guages, and their support environments (tool) Capella/Arcadia and OSATE2 4 are

used to show the design of the example system.

1.4.3 Safety and security design

The Safety& Security issues take a vital role in the CPS, especially in some indus­

trial critical systems, such as automotive and aeronautic areas. While, the Safety&Se­

curity may affect other aspects or be inflected by other aspects, for example, func­

tional aspect and performance aspect. Hence, the Safety& Security issues must be

considered with others aspects (views).

4http://osate.org/index.html

34 Chapter 1 Introduction

In practice, Safety& Security design is very complex to link with the functional

model as it includes a variety of contents and involves a lot of approaches. In or­

der to accomplish all the functions provided by security and safety, people need to

consider each aspect of the system independently. Therefore, we conduct demon­

stration to guide the integration through broken­down the elements and relevant

properties. We detail several examples of TREs.

1.5 Organization of this thesis

This thesis starts with an introductory chapter that presents essential concepts of this

thesis and explains the motivation and objective of our work, and briefly summa­

rizes the technical contributions during my research life. At the end of this chapter,

we illustrate the plan of the whole thesis.

After a brief introduction to the scientific context of the research work. In the chap­

ter background 2, we introduce the CPS concepts and relevant applications. Then,

we present severalmodeling technologies, includingmodeling languages and frame­

works. We present related works, regarding methodologies and toolkits related

to design of CPS, Multi­View (MV) design, DSML/Domain­Specific Language

(DSL), MT and model weaving techniques in the chapter state­of­the­art 3.

Next, we systemically present the detail of the technical contributions. Chapter 4

introduces the main contribution, a DSML for combining different (meta) models

smoothly. This modeling language can coordinate different modeling phases and

(meta) models with a multi­view approach. We also present the overall objectives

and systematic syntax and semantics of Combination Modeling Language (CML).

Then, we show the model fusion tool which supports environment of our proposed

modeling language in the tool chapter. This tool can play two (meta) models with

the rule library. We also hint­light the strengths of this tool in contrast with other

ones.

Chapter 6 presents my contributions of practice to enable Capella co­working with

AADL to design a timing­critical system, applied to perform a unified verification

for tasks scheduling. Chapter 7 presents the methodology of combining different

1.5 Organization of this thesis 35

domains using proposed operators. Moreover, we illustrate analysis of safety and se­

curity properties with the industrial functional design framework Capella and TTool

framework.

Chapter 8 concludes and discusses potential future work.

36 Chapter 1 Introduction

2Context: CPS and

model­based design

„ Your time is limited, so don’t waste it living

someone else’s life. Don’t be trapped by

dogma – which is living with the results of

other people’s thinking.

— Steve Jobs

(CEO, and co­founder of Apple Inc.)

This chapter introduces the technical background and main concepts used in the

remainders of the thesis. We discuss the challenges of the CPS and some related

terms which are mentioned with CPS frequently. Then, we present Model­Driven

Engineering, and the main principles of modeling approaches for CPS design in sec­

tion 2.2. We also present several modeling languages and their supporting frame­

works in section 2.3. Especially, we put a particular emphasis on Domain­Specific

Languages and associated workbenches. Along the presentation of these concepts,

we draw the boundaries of our contributions.

2.1 Introduction . 39

2.1.1 CPS and IoT . 39

2.1.2 Industrial applications 41

2.1.3 Challenges for CPS . 42

2.2 Modeling approaches for CPS design 44

2.2.1 Model­based system engineering 45

37

2.2.2 Multi­view modeling approach 47

2.2.3 Challenges for modeling CPS 48

2.3 Modeling languages and frameworks 50

2.3.1 Capella and Arcadia methodology 51

2.3.2 TTool – A SysML­Sec support toolkit 54

2.4 MBSE concerns in CPS design 55

2.5 Conclusion . 58

38 Chapter 2 Context: CPS and model-based design

2.1 Introduction

Cyber­Physical Systems are concerned with collaborative and interactive activities

between cyber and physical components through sensing and actuation. Recent new

manufacturing and upward trend of smart things (such as smart cities, autonomous

cars) have paved the way for a massive deployment of CPS. Especially, wide re­

quirements of the new generation of manufacturing industry boost CPS develop­

ment and applications, the information from all related perspectives is closely mon­

itored and synchronized between the physical factory level and the cyber compu­

tational space. Networked machines are able to perform more efficiently, collab­

oratively, and resiliently [22]. This evolution trend also has a significant impact

on development issues to adapt and satisfy new requirements. With recent devel­

opments that have resulted in higher availability and affordability of sensors, data

acquisition systems, and computer networks. The competitive nature of today’s

industry forces more factories to move towards implementing high­tech method­

ologies. Consequently, the ever­growing use of sensors, networked machines, and

embedded control systems has resulted in the continuously increasing complexity,

which is known as the challenge of consistency among related systems.

Furthermore, integrating functionalmodels with non­functionalmodels would bring

more applications to improve industrial processes and enhance people’s life quality

in current industrial practices. For example, the safety and security models include

some key properties of the system that are used to help engineers enhance the sys­

tem robustness. In this chapter, we involve and introduce some of CPS related terms

and their technical background, as well as modeling methods of CPS.

2.1.1 CPS and IoT

CPS are frequentlymentioned alongwith the popular terms Internet­of­Things (IoT)

and Industry 4.0. The new industrial revolution is known as the fourth industrial rev­

olution or Industry 4.0 [22, 23, 24]. Multidisciplinary areas, such as CPS andmecha­

tronics, Internet­of­Things, huge sensor network TSensors (Trillion sensors) [25, 1]

and the cloud computing are playing essential roles in this industrial revolution.

2.1 Introduction 39

CPS are considered as a global network infrastructure, and it can provide the founda­

tions for integrating the physical manufacturing facilities and machines with the cy­

ber world of Internet and computer applications into single exploited and explored

system that rely on sensory, communication, networking, and information process­

ing technologies [26, 27]. Cost­saving and real­time deployment are the two domi­

nant features of CPS, and these two features are also the major drivers of Industry

4.0 [28]. The term “CPS” does not only refer to either implementation approaches

(e.g., the “Internet” in Internet­of­Things) or particular applications (e.g., “Indus­

try” in Industry 4.0), but rather CPS focus on the fundamental scientific problems

of combining the traditional engineering of the cyber and the physical worlds.

Industry 4.0 is more used to describe a production­oriented CPS that integrates pro­

duction facilities, warehousing systems, logistics, and even social requirements to

establish the global value creation networks [29]. It gives a vision of a technology

that deeply connects the physical world with the information world.

The IoT is based on connections between physical assets and data. The connections

are made possible by the secure implementation of computer networks, internet,

and communication protocols. This communication is based on typical internet

protocols or dedicated narrowband, low­power network technologies such as NB­

IoT, Zigbee [30].

The similarities of IoT and CPS definitions in using networking, computational

system, and sensors might lead to wonder whether these two terms are different

definitions of the same concept. However, there are similarities, CPS are not the

same thing as IoT.

In the physical world, the machines are connected, and the data would share among

the machine network. In the cyber world, the digitalized object is abstracted to in­

teract with the human through Human­Machine Interface. In fact, the digitalized

object in the cyber world is highly similar to the machine in the physical world.

Thus we call them Digital Twins (DTs). The digitalized object is shown as the data

model or other models (function, behavior), which are images of relative physical

objects. Digital twin is one of the most promising enabling technologies for real­

izing smart manufacturing and Industry 4.0. Digital twins are characterized by the

40 Chapter 2 Context: CPS and model-based design

seamless integration between the cyber and physical world [22, 31]. Fig 2.1 shows

the relationship of IoT, CPS and DT. The CPS are characterized by a physical asset,

a software model that mimics the behavior of the physical asset.

Fig. 2.1 Software model mimics the behavior of physical asset

2.1.2 Industrial applications

Due to unique features, CPS and its design approach have been used in many do­

mains. In what follows, we enumerated some applications of CPS in the table below

(Tab. 2.1).

Let us look at a typical application of manufacturing. A modern factory equips a

digital machine with sensors. The machine units are in different geographical loca­

tions. Sensors measured their status, such as pressure, vibration, and temperature.

The CPS also collects signals such as feed rate and size of the material. On­site

industrial computers (upper monitor) perform the preliminary data­to­information

conversion and provide a low­level interactive interface. More complex adaptive

use­based health and data analysis methods assess the performances and make pre­

diction. Analysis results appear through Human­Machine Interface (HMI) applica­

2.1 Introduction 41

Applications
References

Aeronautic systems [32, 33, 34, 35]
Automotive systems [36, 8]
Public transportation systems (e.g., Railway) [37, 38]
Manufacturing systems [31, 39, 40, 41]
Medical devices [42, 43, 44]
Military systems [5]
Assisted living [24]
Intelligence power generation and distribution (so­
called smart grid)

[45, 34]

Heating, Ventilation and Air Conditioning
(HVAC)

[2, 46]

Physical security (access control and monitoring) [42, 47, 48, 1]
Asset management and distributed robotics (telep­
resence, telemedicine)

[49, 50]

Tab. 2.1 Applications of Cyber­Physical Systems

tions, and the user also can be in the loop and send a control command to operate

the machine unit at any time, so­called human­in­loop decision (see Fig. 2.2).

This case also reveals many technologies, such as data analysis, sensor networks,

communication protocols, and cyber­security [39, 40, 41]. All of those systems

are considered as CPS which are designed with model­based approaches. Using

model­based approaches can also to test and verify systems before industrial appli­

cations [51, 52].

2.1.3 Challenges for CPS

CPS are considered as a new theory that explicitly addresses the interaction between

physical and cyber subsystems. This scientific foundation must provide the basis

for an overall understanding of the system development, design, evolution of CPS,

as well as qualification (certification). It must integrate models of computing and

communication systems, sensing networks, control of physical systems, and the

interactions between humans and CPS.We then introduce some research challenges

for CPS:

42 Chapter 2 Context: CPS and model-based design

Upper-monitors

Data
State

Data
State

Data
State

Data
State

Operation management platform

Supply management

Machine states supervision

Data Analysis

Production management

Human in loop decisions

Human-Machine Interface

Fig. 2.2 Operators and managers will interact with CPS through a variety of
interfaces.

• Safety, Security andRobustness ofCPS:Uncertainty in the environment [53],

system flaws [54], and errors in physical devices make a critical challenge to

ensure overall system robustness, security, and safety. Security and safety

increase the complexity of CPS design [48], i.e., the engineer must consider

security and safety countermeasures and integrate them into functional de­

sign.

• Real­TimeEmbedded Systems: Embedded systemsmust be able to respond

to the requests in time with limited resources, for example, real­time resource

allocation, data aggregation, decision making. All the task execution times

have to be estimated and simulated, and the scheduling has to be arranged in

a proper way.

• Control and Hybrid Systems: CPS process must merge discrete and contin­

uous variables for feedback control. This process must be applied to hierar­

chies involving asynchronous dynamics.

2.1 Introduction 43

• Architectural Consistency: CPS architecture must be consistent across the

whole system. Architectures capture a variety of physical information and

software parameters.

• Sensor and Mobile Networks: The need for increasing system autonomy

in practice requires self­organizing (and re­organizing) mobile networks and

ad­hoc CPS networks. It is essential to collect the knowledge from the vast

amount of raw data.

• Model­based Development of CPS:Models are used today to generate and

test software implementations of control logic. Abstractions that cover the

whole CPS design space must be developed, modified, and integrated. Com­

munications, computing, and physical dynamics must be abstracted and mod­

eled at different levels of scale and time granularity.

• Verification, Validation, and Certification of CPS: Verification technolo­

gies are often used to mitigate the complexity of all the interactions between

functional and non­functional requirements throughout a full development

life­cycle. The gap between formal methods and verification needs to be

bridged. Compositional verification and testing methods that explore the het­

erogeneous nature of CPS models are essential. Verification and Validation

(V&V) must also be incorporated into certification regimes [52].

• Education and Training: Design engineers (development and testing) and

system integrators who are properly trained in the fundamentals of computa­

tion, control, networking, and software engineering are critically needed. All

of the people who are involved in system design must spend much time to

learn numerous design platforms and domain­specific modeling languages.

Creative trade­offs between depth and breadth may need to be adopted.

2.2 Modeling approaches for CPS design

This section focuses on modeling approaches and their challenges to the realiza­

tion of CPS. Models can have formal properties. We can thus say definitive things

44 Chapter 2 Context: CPS and model-based design

about models. The use of models emphasizes understanding the distinction between

a model and the thing being modeled. We call the thing being modeled the target of

the model. A target could have a set of useful models. For example, a microproces­

sor chip may be modeled as a three­dimensional geometry of doped silicon (model

A). The differential equations can describe the semiconductor physics (model B)

and the logical program specifying an embedded system for the chip to run (model

C). The relations network describes the relationship between programs and chips

(model D). Those models are all abstractions of the system, and they consist of

physical aspects of the chip, logical programs, and their relationships.

Every model is described by somemodeling language that provides the syntax (how

it is written down) by which the model is specified and the semantics (what is the

given means). For example, a three­dimensional describing language is used to de­

scribe Model A. Model B is given in the mathematical language of the calculus of

ordinary and partial differential equations. Model C can be specified within a hard­

ware description language such as Verilog 1 and VHDL 2. A high­level modeling

language (e.g., UML­like languages) can be used to illustrate model D. Each lan­

guage is supported within some modeling frameworks, which provides Graphical

User Interface (GUI) and assistance. In this context, the methodology for Multi­

Paradigm Modeling (MPM) of CPS have to be established and standardized. The

precise definition of MPM are provided by the work of working group during the

COST action IC1404 [55, 56]. Reusing multiple existing formalisms and their as­

sociated paradigms is a tendency [57].

2.2.1 Model-based system engineering

Model­based design and Model­Driven Engineering play an essential role in the

full life cycle of CPS development [28, 58, 59]. They are various approaches to

handle and analyze complex systems on different levels and diverse views [60, 48,

61].

1http://www.verilog.com
2http://www.vhdl.org

2.2 Modeling approaches for CPS design 45

The main drivers for the development and evolution of CPS are not only for satis­

fying the system requirements but also for the reduction of development costs and

time. This involves a number of specific domains to construct a comprehensive sys­

tem, to support verification and validation, and to enhance its value. Each domain

specification has different characteristics while the developer considers the domain

as a view separately.

A model­based engineering solution Capella that has been successfully deployed

in a wide variety of industrial contexts [20]. Capella can ensure engineering­wide

collaboration by sharing the same reference architecture, andmastering different en­

gineering levels and traceability with automated transition and information refine­

ment. In fact, system designer benefits from the top­down model­based engineer­

ing, it allows the designer to consider much more aspects at the abstraction level

than code level. For example, security concerns (e.g., confidentiality, integrity,

availability, and authenticity) can be considered together with the functional logic

(and other quality attributes like performance) at a very early stage, which is cru­

cial in engineering secure systems. SysML­Sec [62] is a DSL that extends UML

to perform security analyses. In other words, a DSL that is tailored for specifying

a specific security aspect (e.g., access control) should be more expressive than a

general modeling language like UML. However, the UML profile mechanism can

be used for the definition of security­oriented DSLs as surveyed in [63].

The design of systems at the model level enables model­based verification and val­

idation methods with tool support, which are important for detecting system design

flaws at early stages. If transforming security models into inputs for formal methods

is feasible [64], formal methods such as model checking can be employed for ver­

ifying security properties. Model­based security testing methods can be employed

for validating the resulting secure systems (especially when formal methods would

not be applicable).

Model­based engineering enables automation provided by automatedModel toModel

(M2M) transformations [65] and Model to Text (M2T) transformations. M2M can

take part in the key steps of the engineering process, e.g., composing security mod­

els into functional models or transforming models between different DSLs. M2T

46 Chapter 2 Context: CPS and model-based design

can be used for generating code, including security mechanisms, e.g., a configured

access control mechanism. The automation would make the development process

more productive with higher quality compared to a hand­written code development

process.

2.2.2 Multi-view modeling approach

Multi­View Modeling (MVM) is not a new topic, and terms such as “view” and

“viewpoint” often appear in system engineering literature, including standards such

as ISO 42010 [66]. Because modeling all aspects of a complex system within a sin­

gle model is a difficult task. Multi­viewmodeling is a methodology where different

models or views capture different aspects of the system (a concept of Multi­view

design [35] is shown as Fig 2.3). The whole production system is built by different

aspects. In this figure, we can see an instance of a car. The car is a product, and

it contains numerous views and models, e.g., the design of the engine may rely on

functional view, it is also related to interconnection view and behavior view. The

mechanical parties are split into several physical views. And the hybrid view may

help the engineer to analyze the relationships between control systems and physical

attributes.

As mentioned in section 2.1.3, one of the challenges is consistency, e.g., different

views of a system have some degree of overlap, and we must guarantee that the

aspects (views) do not contradict each other (i.e., they are consistent). Therefore,

MVM is a crucial concern in system design.

Implicitly, MVM is supported by multi­modeling languages such as UML, SysML,

and AADL. For instance, AADL defines separate “behavior and hybrid annexes”

and having separate models in these annexes can result in inconsistencies. But capa­

bilities such as conformance or consistency checking are typically not provided by

the tools when implementing these standards. Architectural consistency is studied

in our work.

2.2 Modeling approaches for CPS design 47

Behaviour view

Control view

Hybrid view

Physical view

Product System

Fig. 2.3 Concept of Multi­View Design

2.2.3 Challenges for modeling CPS

Amodel of CPS comprises models of physical process as well as models of the soft­

ware, computational platforms, and networks. The feedback loop between physi­

cal process and computations encompasses sensors, actuators, physical quantities

(temperature, humidity, pressure), task scheduling, and networks with contention

and communication delays. Modeling such systems with reasonable fidelity and

maintain the consistency among models is challenging as it requires the inclusion

of control engineering, software engineering, electromechanical, sensor networks.

Specifically, the models involve numerous heterogeneous components and differ­

ent aspects. Hence, the CPS design must connect to a large number of domain

experts. To effectively work together and smoothly integrate their artefacts with

others, establishing a mono­language with composition semantics becomes a key

factor. However, the inherent heterogeneity and increasingly complexity pose new

challenges which not only exist at the design stage but are also effective in verifica­

tion & validation and integration stages.

Challenge 1: Complexity of System and Heterogeneous Subsystems: CPS may be

modeled as a hybrid system where continuous time models of dynamics are used to

48 Chapter 2 Context: CPS and model-based design

represent physical process and computations are described using data­flow models,

state machines, and/or Discrete Event (DE) models. Continuous time models work

with solvers that numerically approximate the solutions to Differential Equation

(DE) or Partial Differential Equation (PDE). Integrating heterogeneous models is a

big issue, and that persisted in many available tools. In the paper of Patricia Derler

et al., they mentioned this challenge as “Solver­Dependent, Nondeterminate, or

Zeno Behavior” [5].

One of the problems is that the behavior defined by a model which may be non­

determinate even if the models of the underlying system are determinate. It means

that the model defines a variety of behaviors, rather than a single behavior. This

can occur, for example, when DE models are simultaneous, and the semantics of

the modeling language fails to specify a single behavior. Hence Larsen et al. [67]

proposed a behavior coordination modeling language to specify the coordination

among events. Another problem is that numerical solvers typically dynamically

adjust the step size that they use to increment time, and the behavior of the model

depends on the selected step sizes. The other problem is that some models exposes

Zeno behavior, where infinite events occur in a finite time interval. Such behavior

from amodelmay reflect physical phenomena, such as stuttering, but Zeno behavior

can also arise as an artefact of modeling [68].

Challenge 2: Keeping Model Components Consistent: People can consider a set

of homogeneous (in contrast to heterogeneous) models as the simple and uniform

objects at the same level of design (the same refinement level). The problem arises

as a simple model evolves into a complex one, where the uniform and homogeneous

component in the simple model becomes multiple and heterogeneous components

in the complex one, even the simple model is refined and further designed. How

can we ensure that the components evolve together? We consider the problem of

evolving multiple models with multiple variants of components, all of them while

ensuring some measure of consistency across the design levels and models [28].

In a modeling environment, one element of the model can be copied and reused

in various parts of the model. However, if later a change in the original model

becomes necessary, the same change has to be applied to all other models that are

2.2 Modeling approaches for CPS design 49

copied. This procedure is error­prone because there is no way to ensure that all

copies are updated accordingly.

2.3 Modeling languages and frameworks

The development of CPS software applications for specific domains via modeling

become an arduous task: it requires a full understanding of both the domain space

(e.g., software/hardware systems, mechatronics, production system) and the solu­

tion/implementation space (e.g., modeling/programming language, platform). To

span some of the domain to design a synthesis system, people usually involve do­

main experts to handle the professional design problem. In recent years, there has

been a proliferation of modeling languaged for describing embedded (also adapted

to CPS) systems. Some of these languages have emerged from domain­specific

frameworks, and others are adoptions or extensions of more general purpose lan­

guages. We describe several widely used standard modeling languages:

Unified Modeling Language (UML) is a historical and general visual modeling lan­

guage with a graphical syntax developed for specification, visualization, document­

ing and constructing entities of a system. UML is currently the standard [69, 70]

for representing the structure of object­oriented programs, sequence diagrams and

requirement of systems. Object Constraint Language (OCL) is a formal expression

language for specifying UML constraints unambiguously [71]. It is pure expression

language, and does not have side effects and cannot change anything in the UML

model.

System Modeling Language (SysML) is a modeling language with a graphical syn­

tax developed and standardized by the Object Management Group (OMG). SysML

was designed to describe system, capture the interactions of software with physical

entities. SysML is widely used for systems engineering [72]. In contrast to UML,

SysML has added some support for systems engineering (e.g. requirements engi­

neering, and quantitative analysis of physical aspects of the system), meanwhile

removing some UML constructs.

50 Chapter 2 Context: CPS and model-based design

SysML­Sec is SysML support environment with a more holistic approach, which

introduces both customized SysML diagrams for security matters and an associ­

ated methodology. SysML­Sec aims at helping security experts to intervene on

the design and development of an embedded system together with system design­

ers [73]. A key point of SysML­Sec is its partitioning stage during which safety

& security­related functions are explored jointly and iteratively with regards to re­

quirements and attacks. Once partitioned, the system is designed in terms of system

functions and security mechanisms, and formally verified from both the safety and

the security perspectives. The SysML­Sec methodology and diagrams have been

developed and experimented in the European project EVITA [74, 75]. The support

environment, called TTool, provides design space exploration for SysML­Sec, and

integrates dozen of use cases.

Domain­Specific Languages (DSLs) have been briefly mentioned many times in

previous sections. DSLs are an integral part of CPS development. They are re­

lated to both software and hardware. DSLs have many uses, they are used as an

intermediary step from requirements towards final implementation. They are used

for modeling specific aspect of system, so­called Domain­Specific Modeling Lan­

guage (DSML). They are used to verify critical properties of complex systems such

as safety & security and liveness, and they may be used for automatic code genera­

tion, performance evaluation, and test­case generation.

2.3.1 Capella and Arcadia methodology

The group Alenia Space of Thales, focuses on system engineering, which covers

most areas of its activity spectrum, covering Observation, Navigation, Space Ex­

ploration and Science and Telecommunications. Besides actively sponsoring the

achievement of INCOSECSEP (Certified SystemEngineering Professional) among

its employees and with the goal of fostering a common tooled up approach and use

of the same reference architectures, Thales has conceived a solution based on these

core elements:

• a system engineering methodology, called Sys­EM, which defines the suc­

cessive stages of the overall engineering process

2.3 Modeling languages and frameworks 51

• a model­based engineering method for systems, hardware and software archi­

tectural design, called ARCADIA

• a THALES internal system modeling tool, Melody Advance, now released

in the Open Source as Capella 3

2.3.1.1 Capella project

Capella project consists of Model­Based System Engineering methods and tool

suites for designing systems from a high level of abstractions. Capella also adopts

a multi­view point description to illustrate different specifications, such as physi­

cal part, logical part, and allocation relationships. Capella has been successfully

deployed in a wide variety of industrial contexts.

2.3.1.2 The ARCADIA engineering methodology

ARCADIA (ARChitecture Analysis and Design Integrated Approach) is a model­

based engineering methodology for systems, hardware and software architectural

design. It has been integrated in Capella project and developed by Thales since

2005 [76] through an iterative process involving operational architects from all

the Thales business domains (transportation, avionics, space, radar). ARCADIA

enforces an approach structured on successive engineering phases which establishes

clear separation between needs (operational need analysis and system need analysis)

and solutions (logical and physical architectures) in accordance with the ISO 42001

standard [77].

According to ARCADIA methodology, we give the definition of each phase, and

sketch meta­models using the Eclipse Modeling Framework (EFM)5. Fig 2.4 shows

a global view of ARCADIA methodology from operational phase to the final prod­

uct breakdown phase, red rectangle represents the operational activities, green rect­

angle represents functions and yellow rectangle represents physical components.

3https://www.polarsys.org/capella
4https://www.polarsys.org/capella
5https://www.eclipse.org/modeling/emf/

52 Chapter 2 Context: CPS and model-based design

Fig. 2.4 Global view of ARCADIA methodology4

Operational analysis

At the Operational Analysis phase, we should capture the Operational Activities

and Operational Entities and the interactions between them. The activities include

functional and non­functional properties such as partitioning, safety, security. Fi­

nally, it can describe and structure the needs and the goals of the customer. The

meta­model of our approach is shown in Fig.2.5

Brake
controller

Speed

Brake
Mechanism

Automatic train operation Brake sys

Speed Sensor

Fig. 2.5 Meta­Model of Operational Analysis

System analysis

At the System Analysis phase, we focus on the system level. An architecture is in­

tended to illustrate allocations (Fig.2.6) of functions onto components so as to com­

2.3 Modeling languages and frameworks 53

ply with system needs. Meanwhile, the architecture diagram is also used to check

the feasibility of the customer requirements with a multi­view approach (safety,

cost, consumption).

Fig. 2.6 Allocation on system level

Logical architecture

This phase aims at breaking down the functional design of system. All the func­

tional and non­functional constraints (safety, security, performance, cost, non­technical)

are taken into account, starting from previous functional and non­functional anal­

ysis refined results (functions, interfaces, data flows, behaviors), building one or

several decompositions of the system into logical components.

Physical architecture

The Physical Architecture phase is similar to logical architecture design procedure,

yet it focus more on Physical object. It consists of the selected physical architecture

which includes components to be produced, formalization of all viewpoints and how

take them into account at the components design. Once themodel has been finished,

a more classical development stage can start. The same viewpoint­driven approach

as for logical architecture design is used.

2.3.2 TTool – A SysML-Sec support toolkit

TTool is a SysML­Sec based support toolkit [16, 62], which can capture system

requirements, model software/hardware partitioning. Fig 2.7 shows the partial con­

54 Chapter 2 Context: CPS and model-based design

cept for securing the system in TTool. Once the security goals are assigned, the

security engineers conduct risk analysis. They can next set up the security configu­

rations, e.g., using a key­based method to create a function for authenticating pur­

poses. This is an iteration process which used to help security engineers to achieve

the security goals step by step.

TTool is also proposed to improve both partitioning and prototyping development

stages for security and safety issues. In fact, prototyping can rely on software and

hardware elements that are formally evaluated at partitioning. Partitioning models

can be enhanced using precise parameters that can be obtained during the simulation

at the prototyping level.

The design with security strategies can be quickly validated and iterated. It can help

engineers find an appropriate design solution timely.

TTool furnishes a press­button approach to evaluate the design at a given stage, and

to propagate the results to enhance the system at another stage. Relying on inter­

nal (simulator, model­checkers) and external tools (e.g., ProVerif and UPPAAL),

TTool can perform simulation and formal verification for safety, security and per­

formance [78, 60]. Results can help engineer decide whether safety, performance

and security requirements are fulfilled [79, 80]. Especially, in TTool, it translates

the SysML models into an intermediate form that is sent into the underlying simu­

lation and formal verification utilities. Backtracking to models is then performed

to better inform the users about the verification results. Proofs of safety involve

UPPAAL semantics [81], and security proofs use ProVerif [82].

2.4 MBSE concerns in CPS design

MBSE is a well­known approach that is a key enabler for building large­scale com­

plex cyber­physical control systems [83, 84]. It has features to reduce development

complexity, enhanced productivity, efficient change management, and improved

time­to­market [85]. Therefore, it has been frequently researched and customized

for the development of embedded systems and industrial control systems [23, 86,

2.4 MBSE concerns in CPS design 55

Security Implementation

SW design

Risk analysis Attack tree

The Objective of
Security

 Requires

Security configuration
(strategies)

Target

RAM

Simulation,FormalVerfication,
Testing

F1 F2
AES

Sec Conf

Function
Authentificaiton

Confidential
privacy

key-based

biometric-based…

……

ID

Uses

Implement

Goal Means

Iteration V1
 V2

 Vn

HW design

System Design
Architecture

Application

Partitioning

Fig. 2.7 Partial concept for security in TTool

87]. The Conception of MBSE for full­life development of system is shown in

Fig 2.8.

Modeling functional and structural aspects of embedded systems are the foremost

activities. All other MBSE tasks (i.e., MT, verification, and validation) are centered

on themodel. Therefore, models are developed by taking into consideration theMT,

verification, and simulation requirements. For example, one of themajor challenges

is to model behavioral/temporal aspects of complex embedded systems for further

verification and validation.

56 Chapter 2 Context: CPS and model-based design

Requirements of CPSs

Modeling

UML SysML
AADL

SysML-
Sec

MARTE ŏ

Correction

Model Transformation

M2M M2T

Verification Code Generation

Simulation

Validation

Hardware

SoftwareSensor

Temperature

Chemic Equation

Fig. 2.8 Concept of MBSE for full life­cycle development of CPS

2.4 MBSE concerns in CPS design 57

UML [70] and its profiles, SysML [88] and Modeling and Analysis of Real­time

and Embedded system (MARTE) [69] are frequently used in contemporary system

development practices. They are the key enabler for establishing models of the

system, and all of them can also be used in the development of CPS [4, 5, 89]

to specify systems requirements and to generically model systems. Furthermore,

a number of techniques and languages have been proposed to describe some non­

functional properties related to, among other thing, safety, behavior and temporal

aspects [67, 62, 90]. Once requirements are modeled, different MT techniques/lan­

guages have been applied to develop a platform­specific model and/or source code

generation. Two types of transformations are commonly used, i.e., model­to­model

(M2M) transformation and model­to­text (M2T) transformation [91].

The verification is performed to ensure the correctness of the model/system, and

it is tightly coupled with the modeling technique used to specify non­functional

aspects such as safety and security [78, 60, 47, 92, 93]. Various formal verification

techniques [94, 95, 96, 97] have been used to verify the safety/security aspects of the

system. If the model does not satisfy the verification requirements, then corrections

must be made to the model as shown in Fig 2.8. The validation of the model/system

can be performed through simulation.

2.5 Conclusion

In this chapter, we have presented the background of CPS and introduce CPS chal­

lenges. There are the main challenges to be solved in the remainder of this thesis.

We have also briefly presented the relationships between the terms such as CPS,

Industry 4.0 and IoT. Then, we have given some application examples to show the

potential of them both in academia and industry.

Next, we have presented the modeling languages and frameworks. Modeling lan­

guages have a long and rich history in computer science, and many techniques

have been proposed for supporting their definition. We have pointed at some of

the import languages, such as UML and SysML, for the reader to understand what

follows. Then, we have briefly introduced Capella and Arcadia methodology, a

widely used framework. Specifically, focusing on the ARCADIA modeling ap­

58 Chapter 2 Context: CPS and model-based design

proach in the Capella framework, including the four levels of Arcadia methodology

and Capella project. We have also mentioned SysML­Sec, a SysML’s profile and

support toolkit–TTool as it is used in the following.

2.5 Conclusion 59

3State­Of­The­Art

„ The people who get on in this world are the

people who get up and look for circumstances

they want, and if they cannot find them, make

them.

— George Bernard Shaw

(writer and Novelist)

In the previous chapter, we have described the relevant technologies around CPS,

and mentioned the challenges of the CPS design. In this chapter, we review MDE

approaches and model transformation related technologies in both theoretical and

technological, and their implementation and workbenches. We also review the ap­

plications ofMDE on specific domains such as security & safety and schedulability.

3.1 Introduction . 63

3.2 Model transformation . 63

3.2.1 Classification and tools 64

3.2.2 Relational M2M . 66

3.2.3 Imperative M2M . 67

3.2.4 Graph­based M2M . 68

3.3 Modeling languages . 69

3.3.1 DSML . 70

61

3.3.2 Extending languages . 72

3.4 Multi­View Modeling . 74

3.5 Modeling for security & safety 76

3.6 Conclusion . 77

62 Chapter 3 State-Of-The-Art

3.1 Introduction

MDE advocates the use of models during the whole system development process.

It refers to systematic use of models as first­class entities throughout the system

development life­cycle [98]. By leveraging abstraction and automation, MDE tech­

niques can simplify design activities, and communication, reducing the complexity

of the development, increasing compatibility among subsystems and productivity,

and boosting development efficiency [65, 23]. MDE can also facilitate a more com­

prehensive description of the system, since the different viewpoints of the system

can be described by using models [99, 61]. Model­Driven Development (MDD) is

a special case of MDE. In a model­centric development approach, the models serve

as primary artifacts, e.g., fully executable code is generated automatically according

to the models [100].

In the CPS design, the system designers use MDE approach to handle different as­

pects for one whole system, and there are some issues such as complexity that we

mentioned in the introduction. Thus, system designers need to reuse the model­

ing artefacts [101] and exchange informations between various frameworks. We

specifically look at methods that support combining two different modeling design

frameworks which have different professional design abilities, such as functional

and safety & security design. MT approaches can help system engineers to reuse

the tools and transforming or sharing the designed models between stakeholders.

3.2 Model transformation

Model transformations (MTs) are at the core of MDE, it is a kind of program used

to transform a model or meta­model from one form of representation to another

one. The result of a survey shows a tendency towards applying transformations

betweenmodels and reusing of multiple existing formalisms [57]. MTs are complex

pieces of software then reuse mechanisms are important [102] and needed by the

community [103]. A lot of MT languages and tools have been proposed over the

last few years [104, 65]. MTs must have an input model of transformation which is

called source (model) and conforming to a higher level source (meta­model), and an

3.1 Introduction 63

output model (so­called target model) conforming to a target meta­model in Model

to Model (M2M) transformations [102]. When the target is pure text (not a model),

then we refer to it as Model to Text (M2T) transformations [91].

A MT uses a language to write the description/specification, defining how one or

more source models are transformed to one or more target models. If the trans­

formation description is rule­based, the transformation consists of a set of trans­

formation rules. The transformation engine/tool produces the target model from

the source model according to MT expressions. Meanwhile, the models must be

expressed in a well­defined notation. Thus transformation specifications use the

meta­model to define the appropriate structures, and properties to which a model

must conform. There are higher abstraction of models that define meta­models so­

called meta­meta­models. Meta­meta­models are often reflexive so that they can

be defined based on themselves. While in theory, there is any arbitrary number of

meta­modeling levels, the OMG defined a four meta­modeling level architecture

from M0 to M3. Figure 3.1 shows the architecture of models (left side) defined

by OMG. This figure also shows the MT conception in four levels, each level can

find a corresponding level in left side. In OMG standard, level M0 represents the

real­world system (with the blue box), next level, M1 represents the modeling level

of the system (within the red box) that is an instance of the next level. Level M2

is the meta­modeling level that describes the model in the level M1. The meta­

meta­modeling in level M3 shows that meta­model conforms to itself. The relation

between a model and its meta­model, and the meta­model with one of its models is

shown with conformance and instantiation type respectively.

3.2.1 Classification and tools

WithMDEbecomingmore prevalent in software development, the number ofmodel

transformation techniques/tools has increased rapidly. SeveralMT approaches have

been discussed over the last decade for MT reuse, such as “Melange” proposed

by Degueule et al. [105] and the discussion from Dániel Varró and András Patar­

icza [106]. These approaches can be divided into two categories: approaches for

MT reuse without adaptation (i.e., reuse between isomorphic metamodels) and ap­

proaches allowing adaptations (i.e., structural heterogeneities). A example of MT

64 Chapter 3 State-Of-The-Art

Meta Meta-
Model

Model

Meta-Model

InstanceOf
Model

M1

M2

M3

M0

co
nf

or
m

 to
MOF

MM1 MM2

M2M

MMs

M1

M1+M2

Instance of

Modeling World

Real World

represented by

M2

Input generation

Fig. 3.1 Excerpt of MT and corresponding levels defined by OMG

reuse without adaptation was proposed by Varró and Pataricza who introduced vari­

able entities in patterns for declarative transformation rules [106]. These entities

only express the concepts (types, attributes…) required to apply the rules. This

allows tokens with these concepts to match the pattern and be processed by rules.

Semantic Variation points can be specified through abstract classes defining a tem­

plate [107]. Metamodels can fix these variation points by binding them to classes

extending the abstract classes. Such patterns can be viewed as model types whose

variability has to be explicitly expressed.

3.2 Model transformation 65

In fact, there have been a number of publications [108, 109, 110, 111, 112, 113,

103] systematically classifying and comparing model transformation approaches

and tools over different features. One of them, Bruel al. [114, 103] analyzed the de­

sign space of MT reuse approaches. By the feature model, they classified the alter­

natives for MT reuse across metamodels into six categories, such as Strategy, Map­

pings, Reuse by, Reuse interface, Correctness checking and Properties of reused

transformation.

However, other evaluations and classifications are from MT tool views. Based

on the kind of target of MT, its tools can be classified into three main categories

namely, M2M, M2T and its inverse, text­to­model (T2M) transformations. T2M

transformation tools MoDisco [115], a text­based description as input and models

as output of transformations. Because of T2M tools are usually used for reverse

engineering, we do not consider T2M transformation in our work.

As one of my contribution is an MT tool which can be classified into M2M, so

we mainly study on M2M field. M2M tools server as convertor for transform one

or more source models into one or more targets. Transformation languages pro­

vide a set of constructs or mechanisms to conduct transformations. In the paper of

Kahani et al. [91], they classified the different M2M approaches into three types,

relational, imperative, graph­based. They are different types of approaches to im­

plement M2M MT tools.

Tables 3.1 and 3.2 list a high­level overview of the tools based on a taxonomy of

their transformation language. The first column in the table is the type of tools, and

the last column gives a simple description of the tool.

3.2.2 Relational M2M

Relational/Declarative Approaches focus on what should be transformed into oth­

ers, without specifying a sequence of execution order. Relational approaches have

to define relationships between the elements in the source and target models. These

relations are defined with mathematical method in a formal way, they can be spec­

ified by predicates and constraints.

66 Chapter 3 State-Of-The-Art

Type Tool Description

R
el
at
io
na
l/D

ec
la
ra
tiv
e UML­RSDS A UML based tool with verification support to construct software systems [118]

JTL Specifically focuses on synchronization and change propagation models
Tefkat A rule and template­based engine implementation of Tefkat language [116]
PTL ATL­style rules are combined with logic rules to define transformations [117]
mediniQVT Uses QVTR language in the textual concrete syntax
QVTR­XSLT Based on the graphical notation of QVTR and XSLT [120]
Echo Used for model repair and transformations with the model finder Alloy [121]
TXL A grammar­based tool that can be used for MTs
Tab. 3.1 Relational/Declarative model transformation tools

Type Tool Description

Im
pe
ra
tiv
e/
O
p/
C
o Xtend A statically­typed high­level programming tool for JVM

QVTo­Eclipse An Eclipse implementation based on QVTo [122]
MetaEdit+ A tool for domain­specific modeling and development [123]
Kermeta2 Based on a model­oriented language optimized for meta­models and DSLs [124]
Melange Kermeta2 supports the semantics of the modeling languages [67]
JQVT Based on a compiled QVT engine for Java
Together A set of Eclipse plugins which partially implements the QVTo language

Tab. 3.2 Imperative/Operational/Constructive model transformation tools

Relational approaches include functional programming, and logic programming.

In functional languages, a transformation function can transform the input model

into the output. Object­oriented (OO) languages is a straight approach for MTs.

However, functional language has the strength that the developer does not need

to deal with non­trivial task of writing code for model traversing. Tools such as

Tefkat [116], PTL [117], UML­RSDS [118], JTL [119] are examples of relational

approaches. A special type of high­level relational MT approach is QVT Relation.

In QVT relations, a relation is specified by two or more domains with a pair of when

and where clauses, e.g., mediniQVT, QVTR­XSLT [120], Echo [121]. We listed a

high­level overview of those tools, see Table.3.1.

3.2.3 Imperative M2M

Imperative/Operational/Constructive Approaches are based on imperative lan­

guages that focus on how and when the transformation should be executed, without

considering the relations that must hold between source and target elements. The

language specifies a transformation as sequential actions/rules. The Behavioral Co­

ordination Operator Language (BCOoL) [67] injects events in the metamodel to ob­

serve dans coordinate the execution of twomodels. MetaEdit+ is imperative and use

procedures as a decomposition mechanism to combine a set of elements [123].

3.2 Model transformation 67

There are also languages such asQVTOperational language (e.g., QVTo­Eclipse [122],

Together1, JVQT2) where transformations are defined using mappings. Each map­

ping can transform one or more elements of a source model to the corresponding

target elements. QVTo mappings, similar to relations in QVTr, may contain when

and where clauses. Examples of imperative tools are Mitra2, JQVT, ModelAnt,

Kermeta2, Modelio, Xtend, Umple, MDWorkbench, Melange, WebRatio, Merlin,

Enterprise Architect (EA), and MOFScript. We listed some of those tools, see

Tab.3.2.

There is also a mixed approach that can manipulate the models directly with low­

level constructs and language concepts to support MTs. In this kind of approach,

general­purpose programming languages can be used to implement the core ofMTs,

so­called parsers, which take in charge the interpretation around models. Our pro­

posed approach can be classified into this kind. It does not request the engineer

to spend a lot of time to learn a new language to write transformations. However,

these languages were not primarily designed for direct model manipulation, so users

have to manually implement many required features of MTs, such as traceability or

model exploration.

3.2.4 Graph-based M2M

Graph­based Approaches or Graph­based languages are based on algebraic graph

grammars and represent the source and target models using various graphs, such as

typed graphs and labeled graphs. The transformation based on the graph consists of

a set of graph transformation rules (also called rewiring or production rules [91]).

A source graph of the model applies the rules to create a new target graph of the

model. Each rule consists of a rule graph. The execution of a graph transforma­

tion rule involves the related elements that can be detected by the graph algorithm.

All elements that are in the rule graph but not appearing in the source graph are

combined with original elements, and all the left elements that exist in the source

graph remain unchanged, see Figure 3.2, as an example of graph­based MT. And

1Together. URL: :http://www.borland.com/Products/Requirements­Management/Together. De­
veloped by: Borland.

2JQVT http://sourceforge.net/p/jqvt/wiki/Home/.

68 Chapter 3 State-Of-The-Art

also see some examples of tools, AToMPM [125], MOMoT [126], GROOVE [127],

AGG [128], BOTL [129] and GRoundTram [130].

The major drawbacks of the graphical notation is the complexity and verbosity of

representing the graph transformation rules. Furthermore, they suffer from trace­

ability difficulty between input and output graph instance elements. Triple Graph

Grammars (TGG) [131] were proposed to overcome this weakness by using corre­

spondence graphs or meta­models that maintain N­M relation between source and

target transformed elements. Thus, they can be used to synchronize two different

models and check whether they are consistent. Examples of TGGs tools are Hen­

shin [132], TGG Interpreter, and EMorF [133].

Rules

Graph of model A

Graph of rule model B

Result model C

Rule model

Source elements

Target elements

Fig. 3.2 Example of Graph­based Transformation

3.3 Modeling languages

3.3 Modeling languages 69

3.3.1 DSML

The Object Management Group (OMG) proposes to specify models by relying on a

language that has a well­defined form (syntax), meaning (semantics) and possible

rules of analysis, inferences or proof for its constructs [134]. Thus, MDE proposes

DSML to build models. As a result, a DSML is defined with a (rigorous) syntax and

clear semantics. The syntax is described by a metamodel that defines the concepts

and relations that the language is made up. A metamodel is a model that is devel­

oped by using a “meta­meta language”, e.g., MOF, ECORE. We distinguish three

types of approaches for the semantic definition: Operational [135], Axiomatic [136]

and Translational [137]. Other researchers have also proposed other ways to define

the CPS models [138].

MDE emerged to allow the development of applications based on the definition of

models closer to the problem domain than to the implementation domain, reduc­

ing the complexity of platforms. To do so, MDE makes uses of Domain­Specific

Modeling Languages (DSMLs), which are modeling languages defined for appli­

cation requirements, behavior, and structure within specific domains. A DSML

follows the domain abstractions and semantics, allowing design engineers to per­

ceive themselves as working directly with domain concepts. The definition of a

DSML involves at least three aspects: the abstract syntax that may be domain con­

cepts and rules; the concrete syntax is the notation used to represent these concepts

in textual or graphical; and the semantics of the language.

ADSML allows developing software for a particular application domain effectively

and quickly, generating programs that are easy to understand, reason about, and

maintain [139]. There is a significant overhead in creating the infrastructure needed

to support a DSL. Numerous works were proposed to create reusable and compos­

able language units to tackle this issue. Methodologies have been proposed for

building DSLs embedded within an existing, higher­order, and typed programming

language [140]. Then, techniques have been designed for building modular inter­

preters and tools for such embedded DSLs. Different techniques have been studied

for addressing the challenge of language extension and composition, such as pro­

jectional editing [141]. Spoofax is used to define syntaxes and semantics, which

70 Chapter 3 State-Of-The-Art

rely on meta­languages. They are inherently modular and composable [142]. Al­

though basic import mechanisms are supported, they usually lack powerful support

for customization. More recently, an overview of the support provided by language

workbenches has been provided [143, 144].

In the grammar world, several techniques demonstrated the possibility to create lan­

guage units using attributed grammars [145, 146]. MontiCore applied modularity

concepts for designing new DSLs by extending an existing one or by composing

other DSLs [147]. MontiCore reifies as a first­class object the concept of language

inheritance to allow language feature reuse. Other works propose to leverage con­

cepts from the component­based software engineering community to modularly de­

velop DSLs [148, 149].

In the MDE domain, several meta­tooling platforms propose mechanisms for im­

proving language design modularity. Ledeczi et al. propose to compose domain­

specific design environments using MDE technologies [150].

There are also some frameworks with IDE for building textual DSLs, such as Melu­

sine [151], Xtext [152, 153] and MPS [141, 142].

In both the MDE and grammar domains, the increasing trend to create new DSLs

from scratch or by adapting existing ones causes the emergence of families of DSLs.

A family of DSLs is a set of DSLs sharing common aspects but specialized for a

particular purpose. The emergence of a family of DSLs raises the need to reuse

common tools among a given family [154, 102] and the need to create composable

language units. To ease the language unit composition, Steel et al. [155] and De

Lara et al. [156] propose to define a clear contract and a typing system that can be

used for composing language units. De Lara et al. present the concept mechanism,

along with model templates andmixin3 layers leveraged from generic programming

to MDE [157]. Concepts are close to model types [155] as they define the require­

ments a metamodel must fulfill for its models to be processed by a transformation,

under the form of a set of classes. Sánchez, Wimmer et al. go further than strict

structural mapping by renaming, mapping, and filtering metamodel elements [101,

104]. Erdweg et al. proposed a taxonomy to ease the positioning of approach re­

lated to language composition [158]. According to this classification, our algebra

3.3 Modeling languages 71

supports the language extension, restriction, and unification operators. Addition­

ally, we do not consider that restriction is only a matter of additional validation

rules. Instead, we prune the language from the unwanted parts so that only the

necessary concepts are kept.

3.3.2 Extending languages

One of our technical contributions is extending the SysML­based engineering frame­

work Capella to AADL. Then, we can analyze the relationships among Arcadia

and AADL models in different views at the metamodel level. Likewise, a con­

siderable number of studies have been proposed on “language extension, modeling

languages integration and composable language components”. This subsection pro­

vides a brief introduction to these works.

The complexity of CPS has been a significant issue that puzzles developers. It is not

only from the nature of problems but also from the developed languages. Elaasar

et al. have discussed [159] about the limitations of UML, which exacerbate the

complexity of development and proposes an approach to reduce the complexity of

UML tools by implementing and adapting the ISO 42010 standard on architecture

description.

Efficient integration of different heterogeneous modeling languages is essential.

Modeling language integration is onerous and requires in­depth conceptual and tech­

nical knowledge and effort. Traditional modeling language integration approaches

require language engineers to compose monolithic language aggregates for a spe­

cific task or project. Adapting these aggregates to different contexts requires vast

effort and makes these hardly reusable. Arne Haber et al. [160] presented a method

for the engineering of grammar­based language components that can be indepen­

dently developed, are syntactically composable, and ultimately reusable.

There are also specific attempts either to combine SysML and AADL [161] or to

extend SysMLwith AADL­specific constructs [162]. These approaches differ from
3In object­oriented programming languages, a mixin is a class that contains methods for use by
other classes without having to be the parent class of those other classes. How those other classes
gain access to the mixin’s methods depends on the language. Mixins are sometimes described
as being “included” rather than “inherited”.

72 Chapter 3 State-Of-The-Art

our approach that attempts to extract only the relevant subsets of both with a goal­

oriented approach. In practice, one could design a global system at a high level and

then seamlessly refine the models within AADL and its annex for further analysis

such as scheduling. In other words, our approach can properly extend Arcadia’s

design and analysis capabilities with AADL constructs while trying to keep the two

languages independent.

An approach for translatingUML/Marte detailed design intoAADLdesign has been

proposed by Brun et al. [163]. Their work focuses on the transformation of the

thread execution and communication semantics and does not cover the transforma­

tion of the embedded system component, such as device parts. Similarly, in [164],

Turki et al. proposed a methodology for mapping UML/Marte model elements to

AADL components. They focus on the issues related to modeling architecture, and

the syntactic differences between AADL and UML/Marte are well handled by the

transformation rules provided by ATL tool, yet they did not consider issues related

to the mapping of UML/Marte properties to AADL properties. In [165], Ouni et

al. presented an approach for transformation of Capella to AADL models target to

cover the various levels of abstractions. They take into account the system behavior

and the hardware/software mapping. However, the formal definition and rigorous

syntactic of transformation rules are missing.

Behjati et al. describe how they combined SysML and AADL in [162] and provided

a standard modeling language (in the form of the ExSAM profile) for specifying

embedded systems at different abstraction levels. De Saqui­Sannes et al. [161]

presented an MBE with TTool and AADL at the software level and demonstrated it

with the flight management system. Both these works do not provide the description

in a formal way.

In industrial domain applications, Suri et al [166] proposed a model­based approach

for complex systems development by separating the behavior model and execution

logic of the system. Moreover, they used UML­based languages to model system

behavior and connected the behavior models to the external physical API of CPS.

It focuses on providing a solution for the modularity and interoperability issues

related to Industry 4.0 from a systems integration viewpoint.

3.3 Modeling languages 73

S. Apel et al. [167] also studied different model­driven methods for heterogeneous

systems for Electric vehicles. They have tried to evaluate how model­driven en­

gineering (MDE) combined with generative frameworks can support the transfer

from platform­independent models to deployable solutions within the logistical do­

main.

The work of Kurtev [168] is used in the x­ray machine. It provided a family of

domain­specific languages that integrate existing techniques from formal behav­

ioral and time modeling. F. Scippacercola [169] have explored the application of

model­driven engineering on the interlocking system (a subsystem of signaling sys­

tem of the railway). They discussed how to reduce efforts and costs for develop­

ment, verification, and validation in a critical system.

The modeling language scientists have proposed some specific methods to weave

the models as well as metamodels formally such as [58], Degueule has proposed

Melange, a language dedicated to merging languages [105], and similar works

like [170].

3.4 Multi-View Modeling

Multi­view modeling is used to separate domains in the development of a system,

making it easier to manipulate its complexity. Cicchetti et al. [171, 172] proposed

two multi­viewmodeling approaches: synthetic and projective. Projective contains

an essential meta­model where the views are the focused concepts of this meta­

model. Boulanger et al. [173]’s work follows this approach. Another example of

this approach is the work of Nassar et al. [174], they define a UML profile called

VUML to support multi­view modeling in UML. Synthetic considers each view as

an independent meta­model that describes a part of the system. To build a complete

system, the views must be put together.

Our approach uses UML or UML­like modeling language to describe the multi­

view model, therefore it follows the projective approach. On the other hand, we

specify the views using the profile mechanism. Such a mechanism allows also

following a synthetic approach.

74 Chapter 3 State-Of-The-Art

From the system engineering view, Multi­View approach allows developing both

software and hardware from different domains by quickly and effectively integrat­

ing different domain expert artefacts to build up a sound and consistent system.

Numerous works were devoted to providing efficient dedicated (meta) language for

integrating issues. For instance, Muller et al. [175] proposed using aspect­oriented

modeling to build an executable meta­language by composing action metamodels,

and Jézéquel worked at model weaving approach [58]. In contrast to their languages

or approaches, our approach is dedicated to seamlessly combine different models of

views at high­level, it is meant to be easier to use and understand. Other approaches

addressed modeling consistencies from constraint­based [51] or from architecture

models [176]. On our side, we tackle this problem with an efficient yet simple

combination of (meta) models.

Jörg Kienzle et al proposed a composition technique which is implemented in a tool

called Kompose [177]. Kompose focuses mainly on the merging of class diagrams.

In their proposition, the model elements to be composed must be the same syntactic

type, that is, they must be instances of the same meta model class.

Degueule et al. [105] also provided a so­called “Melange” meta­language. This

language can weave two DSLs to produce new DSLs that integrated the syntax and

semantics of the two languages. Instead of getting a new language, our approach is

meant to take strengths of other tools to complete our needs by combining (meta)

models.

In Thramboulidis et al. [24] paper, they introduced a UML­based approach adapted

to Internet of things (IoT), so­called uml4Iot that can automatically generate the

process which is required for cyber­physical component to be integrated into the

manufacturing environment. Our approach can adapt to other application domains

in embedded systems (including industrial control system, IoT and smart manufac­

turing).

3.4 Multi-View Modeling 75

3.5 Modeling for security & safety

CPS considers two types of functions: physical and cyber. Functions interact with

each other through flows. Functional modeling naturally leaks information that can

be used to attack the system. However, recently, some SysML­based modeling

language and toolkit was developed to address this issue. For example, TTool and

SysML­Sec toolkit [16, 62] can capture system requirements, model software/hard­

ware partitioning, and capture security concerns. Relying on internal (simulation,

model­checkers) and external tools (e.g., ProVerif and UPPAAL), TTool can per­

form simulations and formal verification for safety, security and performance anal­

ysis [78, 60]. Results can help engineers in deciding whether safety performances

and security requirements are fulfilled [79, 80]. Especially, in TTool, the tool trans­

lates SysML models into an intermediate form that is sent into the underlying sim­

ulation and formal verification utilities. Backtracking to models is then performed

to better inform the users about the verification results. Proofs of safety involve

UPPAAL semantics [81], and security proofs use ProVerif [82].

In most MDE projects, requirements are written in plain text. Laleau et al. [14]

present some work to combine SysML requirement diagrams and the B formal spec­

ification language for conducting formal proofs. SysML requirement model is ex­

tended to represent some concepts in the goal­oriented approach. And, derivation

rules are used to translate the SysML goal models into B specifications. By doing

so, they narrow the gap between the requirement phase and the formal specification,

and a more precise semantics of SysML goal models is given.

Albinet et al. [178] proposed to directly include system requirements in the design

process but the separation with the proposed solutions as required by safety stan­

dards such as ISO 262624 is achieved by isolating the following triplet: requirement

models, solution models, and verification and validation models. In the ISO 26262

standard, it imposes a clear distinction between the concepts: the solution has to

be developed independently with respect to the requirements as well as to the veri­

fication and validation (V&V) part. The separation is important because from the

4ISO 26262, an adaptation of the Functional Safety Standard IEC 61508 for automotive electric/­
electronic systems

76 Chapter 3 State-Of-The-Art

given requirements, various solutions can be defined. Also, as cited in [179], the

developed solutions must be evaluated by actors independently of the design pro­

cess, which will promote a diversity of analysis while increasing the coverage and

confidence levels of the safety conclusions. Of course, this is not in contradiction

with an integrated framework where the traceability between the solutions and the

requirements as well as the safety analysis will be maintained.

SysML is semi­formal modelling approach [180]. The large segments of devel­

opment life cycle rely on SysML models and more formal models, specification,

implementation and verification&validation. Yet, the initial model is derived from

the user’s text­based requirements, the gap between textual or semi­formal require­

ments and the formal specification is an obstacle in modeling systems. In addition,

verification and validation require the requirements being described in a formal

way. Therefore, Laleau et al. have used the B method to bridge this gap [14, 13].

Specifically, they define a set of rules to translate UML concepts and SysML con­

cepts into a B specification.

A SysML profile called requirement profile for MeMVaTEX (RPM) has been de­

veloped in [178]. The requirement stereotype of SysML is replaced by the MeM­

VaTEX requirement, by adding various properties such as verifiable, verification

type, derived from, satisfied by, refined by, traced to. So, the traceability is assured

between requirement models, between requirement and solution models, and be­

tween requirement and V&V models using these properties. These V&V models

have also been explored in the work of Guillerm et al. [181].

3.6 Conclusion

In this chapter, we have presented the MT with the architecture of models defined

by OMG. Then we have discussed different kinds of transformation approaches,

such as Relational/Declarative and Imperative/Operational/Constructive andGraph­

based. After that, we have classified the transformation tools related to our work

and we have highlighted the benefits and limitations of each tool.

3.6 Conclusion 77

Next, we have presented themulti­viewmodeling languages and frameworks. Multi­

view modeling languages have been widely used in the CPS world, and many tech­

niques have been proposed for supporting their definition. We have identified the

main techniques. Then, we have presented solutions for the modeling for security

and safety aspects, mentioned toolkits, such as TTool and SysML­Sec. Chapter 7,

we use this toolkit for demonstrating the combination of security and safety parts

with our method.

78 Chapter 3 State-Of-The-Art

4Combination Modeling

Language

„ Precise language is not the problem. Clear

language is the problem.

— Richard Feynman

Multi­view modeling approaches are used to separate domains in the development

of a system, making it easier to manipulate its complexity and diversity. In the

process of development of CPS, engineers also have to combine the separate views

(models) into a uniform modeling view to conduct further analyses. Therefore, we

propose a domain­specific modeling language to combine views, a combination

modeling language.

4.1 Introduction . 81

4.2 The Combination Modelling Language 82

4.2.1 Specification . 82

4.2.2 Combination Patterns . 83

4.2.3 Abstract syntax of CML 84

4.2.4 Meta symbols and notations rule expression 85

4.2.5 Abstract syntax of rule expression in EBNF 87

4.2.6 Operators and Semantics 87

4.2.7 Operational Transformation Rules 90

79

4.3 Conclusion . 91

80 Chapter 4 Combination Modeling Language

4.1 Introduction

Complex systemsmade of various and heterogeneous subsystems. They have differ­

ent aspects and each aspect has its own requirements and properties to be satisfied.

MDE can handle complex systems at different levels and with diverse views. A

model is an abstraction of the real world. This abstraction aims at facilitating an

understanding of what the real world works. In the context of MDE, a software

model enables a designer to reduce the non­essential complexity of an application

by filtering out ‘details’.

Multi­view modeling approaches are used to separate domains in the development

of a system, making it easier to manipulate its complexity. Yet, in the process of de­

velopment of CPS, engineers also have to combine the separate views into a uniform

modeling view to conduct analyses. Besides, each view of the system is captured by

a domain­specific modeling language. However, it is rare to see “one­size­fits­all”

modeling language and/or design tools. So we look at the integration of multiple

views into a single consistent one.

In this chapter, we explore a model­based approach for systems engineering that ad­

vocates the composition of several heterogeneous artifacts (also called views) into

a sound and consistent system viewmodel. Rather than trying to build the universal

language to capture all aspects of systems, we bring together small subsets of lan­

guages to augment specific analysis capabilities while keeping a global consistency

of all these small pieces of languages. Thus, we propose a domain­specific mod­

eling language, called Combination Modeling Language. To make it concrete we

use the example of Capella, a widely used design platform, which provides (among

others) comprehensive support for functional analysis from the requirements down

to the deployment of components. Yet, Capella does not provide direct support for

non­functional features such as security analysis. On the other hand modeling lan­

guages dedicate to security and safety analyses do not provide direct support for

functional analysis. In our example we consider SysML­Sec. Rather than trying

to extend either Capella or SysML­Sec into more expressive languages to add the

missing features, we use the Combination Modeling Language to extract relevant

subsets of both languages and build a view adequate for conducting a security and

4.1 Introduction 81

safety analysis of Capella functional models. Our language is generic enough to

extract proper subsets of languages and combine them to build views for different

experts. Moreover, it maintains a global consistency between the different views.

The chapter is structured as follows. At the beginning of this chapter, we present the

Combination Modeling Language. Our language relies on patterns and correspond­

ing transformation rules. Then, we present the abstract syntax of this language.

Next, we give the definition of meta symbols and notations. We use EBNF to de­

fine rule expression. Next, we present the operators and their semantics, before

concluding.

4.2 The Combination Modelling Language

The proposed modeling language is a dedicated (meta­) language to extend and

enrich one DSML capability by combining other DSMLs. With this language, an

integration engineer can explicitly capture combination scenarios at the language

level. Combination patterns are used to specify different combination relationships.

Specific operators are provided to build up Transformation Rule Expression (TRE),

a set of TREs define a Transformation Rule Library (TRL) which specifies how to

combine different (meta) model elements. Once the TRL is completed, it can be

parsed by an automatic tool that we presented in the previous chapter. Afterwards,

the tool can perform the transformation automatically. The concept of combination

language is illustrated in Figure 4.1.

4.2.1 Specification

A specification consists of combination patterns and corresponding TRL. It defines

what and how elements from different models are combined. Once it is specified,

integration experts can share this specification thus allowing the reuse and tuning

of TRL. As a specification can explicitly describe combination relationships, it can

also be used to decompose models by bi­directional techniques for some decompo­

sition needs.

82 Chapter 4 Combination Modeling Language

TRL (Transformation Rule Library)

Operators Elements+

TRE

TRETRE (Transformation Rule
Expression)

Patterns

Specification

Parsed by

Realise

Tool

Fig. 4.1 Concept of Combination Modeling Language (CML)

4.2.2 Combination Patterns

Currently, we predefine a number of essential combination patterns, which provide

all the declarations used in all the following examples. However, thanks to our lan­

guage, designers can build other combination patterns depending on their problems

and requirements. In that case, they have to define some new combination patterns

in the form of TRL.

1. Association: The Association pattern is the most common phenomenon and

easier to understand. It is used to indicate one element which associates to

another element and their related sub­elements (for example, its embedded

element or associated attributes).

2. Removal: The Removal pattern indicates the situation, where some elements

are not considered for new models according to requirements.

3. Correspondence: The Correspondence pattern indicates building an equiva­

lence relationship among a set of elements.

4. Annotation: The Annotation pattern aims to add information that do not exist

in the model, for example, the dependency relationship among the model

elements, and the nature of the elements.

4.2 The Combination Modelling Language 83

4.2.3 Abstract syntax of CML

We give the abstract syntax of the Combination Modeling Language by using a

metamodel expression in a class diagram (shown in Figure 4.2). The major ele­

ment is a Specification that contains Patterns, Operators and TRL. A Specification

requires importing at least two (meta) models. The imported (meta) models serve

as a source of a set of candidate elements for the following operations. An operator

selects the elements and their attributes from the imported (meta) models, and it

also specifies how to combine selected elements.

Each operator contains a transformation expression that relies on a strict definition

by Extended Backus�Naur Form (EBNF). EBNF are extensions of the basic Backus�

Naur form (BNF) meta syntax notation. Symbols are used to construct the TRE.

For instance, for adding security properties to a logical component of Capella, it has

to specify the corresponding element and their related attributes in TTool by using

TRE.

Specification

1..*

Pattern

Transformation
Rule Expression

Transformation
Rule Library

Operator

1..2

Element

(meta) Model

Attribute

1..*

1..*

1..*

1..*

1..*

Symbol1..*

1..*

patterns

TREs

TRLs

(meta) models

1..*

(meta) models

elem
ents

1..* attributes

attributes

elements

operators

1..2elements

1..*

1..*

operators

TRLs

symbols

Fig. 4.2 A simplified view of abstract syntax of combination language

84 Chapter 4 Combination Modeling Language

4.2.4 Meta symbols and notations rule expression

In this subsection, we firstly introduce some notations and meta symbols which are

fundamental elements for constructing the well­defined Transformation Rule Ex­

pressions (see table 4.1). We use EBNF to strictly define non­ambiguous Transfor­

mation Rule Expression. EBNF is a notation technique for context­free grammars

which is often used to describe the syntax of languages [182].

Symbol Meaning
Γ Beginning of transformation Rule
; End of transformation rule
: Separate elements
→ Transforming
<> Parent node
{ } Attribute
[] Optional value
| Alternative
+ Object to be created
¬ Ignoring
@ Tagging

Tab. 4.1 Symbols of transformation rule expression

The detailed literal meaning of symbols is given below:

1. A Transformation Rule Expression begins with “Γ” and ends with “;”. The
symbol “Γ” 1 also can be used as a Boolean function. If Γ(source, target) is
true, it means there is a relationship between source and target.

2. The symbol “→” indicates a transforming action.

3. A transforming action contains the source elements which in the left side of

“→” and the target elements in the right side. A simple example is given

below:

Γ < parent > source → target;

1In the real TRL file, we use “#” instead of symbol “Γ” to facilitate input.

4.2 The Combination Modelling Language 85

i.e. We intend to transform a “source” object into a “target” object, “parent”

points at the parent of the source object (if it has one).

4. Symbol “:” separates each part of TRE.

e.g, Port{Direction} : {Type} : {Secure}
It means there is an element Port. This element has three attributes, “Direc­

tion”, “Type” and “Secure”. We use “:” to separate these attributes.

5. An angle bracket “<>” encloses the parent node if the element has one or

more parent nodes.

6. A curly bracket “{ }” encloses some attributes.

7. A square braces “[]” delimits optional elements.

8. The alternative value is separated by a pipe “|”. For example, The port has a
directional attribute called Direction which could be in or out shown as:

Port{Direction[in|out]}

9. Symbol “@” indicates tags used to add some extra informations such as depen­
dency and nature. The extra information is handled in a similar way as opera­

tional values: enclosed in []; separated by “,”. For example,Port@[ModelA, Security]
means element Port belongs to ModelA and is used for Security purpose

(view). In such a situation, it makes tools automatically display or hide the

element Port which is in modelA and for security view in the following pro­

cess.

With those symbols, we can build up several TREs. Some more detailed examples

of Transformation Rule Expressions are shown in the listing 4.1.

Remarks:

86 Chapter 4 Combination Modeling Language

• The symbol Γ in function expressions does not have the same meaning as

when used at the beginning of transformation rules. To distinguish the func­

tion and the transformation rules, the formula is underlined.

• The relationships are defined in subsection 4.2.6.1.

4.2.5 Abstract syntax of rule expression in EBNF

As we mentioned in the previous subsection, the TRE consists of one or more se­

quences of symbols. We define here the concrete syntax in EBNF.

⟨expression⟩ ::= Γ ⟨term⟩ → ⟨term⟩;|
⟨expression⟩:⟨term⟩;

⟨term⟩ ::= ⟨element⟩|
⟨operator⟩⟨element⟩|
⟨element⟩⟨operator⟩⟨element⟩

⟨operator⟩ ::= ’@’ | ’+’ | ’¬’ |’→’

⟨element⟩ ::= ⟨element⟩(⟨attribute⟩ |⟨optional value⟩)

4.2.6 Operators and Semantics

The context­sensitive syntax and the operational rules could also be considered as

semantics instead of syntax. For example, the context­sensitive syntax is called

static semantics in the UML specification documents from OMG [70]. In our case,

it specifies how an instance of a construct can be meaningfully connected to other

instances.

In order to make the TRE more clear and precise, we firstly present a set of relation­

ships definitions. This should help the reader understand the semantics of operators.

they may also help users understand the TRE examples shown later.

4.2 The Combination Modelling Language 87

4.2.6.1 Definition of relationships

Here we define a set of essential relationships, which are used to describe the logical

links between two elements of model. We use set theory. Capital symbols (e.g., A,

B) usually represent sets of elements, while lower case symbols are elements of

those sets (e.g., a, b, c ∈ A).

• Relationship: When we identify a relation R between a and x, we denote

(a, x) ∈ R or R(a, x) or aRx depending on the context. For each relation

we assume the existence of a Boolean function such that R(a, x) if there
exist a relation between a and x. When such a relation is identified, then the

transformation becomes possible, from a to x:

R(a, x) =⇒ Γ(a, x)

Note: We use relations here to transform a source into a target (not symmet­

ric) but it also allows the reverse transformation if we want to trace back to

the initial metamodel.

• Equivalence: E(a, x) is a Boolean function that is true if and only if a is

semantically equivalent to x. Similarly, an equivalence is stronger than a

mere Relationship, it may also lead to a transformation and therefore

E(a, x) =⇒ R(a, x) =⇒ Γ(a, x)

• NotIn: if X = {x, y, z} is a set, we lift the Relationship and Equivalence

to sets to identify sets of elements that are neither in relationship nor equiva­

lence.

¬R(a, X) =⇒ ∀x ∈ X, ¬R(a, x)

similarly,

¬E(a, X) =⇒ ∀x ∈ X, ¬E(a, x)

Obviously, no transformation is possible in such cases.

88 Chapter 4 Combination Modeling Language

4.2.6.2 Operators

(a) Transforming operator: We use → indicates transforming operator, for ex­

ample, a → x means that we transform a into x.

(b) Creating operator: In the case of creating a new attribute, the attribute name

is in the curlybrackets with plus “{ }+”. For example, Γa → x{t}+ means

that we transform a to x while adding attribute t. As an example, let us

consider

ΓPortfun → Portcomm{type[data|event|dataevent]}+;

A function port Portfun must be transformed into a communication port

Portcomm, while creating a new attribute type, a enumerate with three possi­

ble literal values (data, event, dataevent).

(c) Ignoring operator: This operator is used to ignored attributes or objects. It is

denoted with symbol “¬” in front of the object. For example, ¬a means a is

NotIn object for a setB, in other words, we can neither find outRelationship

nor Equivalence between a and B. For example,

Γ¬Port{ordering} → Port;

or simplify,

Γ¬Port{ordering};

the attribute “ordering” of Port of original model is not existing in target Port

of target model. Therefore, Ignoring operator shows this transformation rule.

The parser will get this information and ignore transforming this attribute

afterward.

(d) Tagging Operator: This operator is used for tagging the nature of an element

attribute. As an example: Port@[ModelA, Security] presents two attributes
of elementPort with two tags. One isModelA, indicating that the elementPort

4.2 The Combination Modelling Language 89

belongs to ModelA. In other words, It represents a dependency relationship

between this element Port and element ModelA. Another is Security, repre­

senting an element Port for Security purpose. It would be used to catalog the

elements for displaying or fast selecting purpose.

4.2.7 Operational Transformation Rules

TRE is used to represent the transforming relationships. It would be used to guide

the integration engineer and to allow automatic parsing by the transformation en­

gine. We explain how it does work by using some more detailed examples of TRE.

Please refer to the TRE table which is in the listing 4.1.

On line 1 of this example, we firstly transform an element port (it has direction

attribute) of source model to an target object element port, adding a new attribute

Type with three possible values (date, event or dataevent). These “type value” can

be recognised by target model’s DSML and the their support tool. On line 2, it is

similar to the previous one, but the object element function has a parent node called

CompositeComponent which is enclosed in a pair of angle brackets.

Line 3 shows an ignored element, in which the source element cannot find a corre­

sponding one in the object model, or the source element is not needed by the object

model. Finally, lines 4 and 5 show Equivalence relationships between the source

element and the object element, in other words, a set of one by one transformations

which transform “Exfun” to “connection”, “Source” to “source” and “Target” to

“target”, respectively.

1 ΓPort{Direction[in|out]} −> PrimitivePort {Direction [in|out]}:{Type[data|event|data event]}+;
2 ΓFunction −> <CompositeComponent>PrimitiveComponent{AccessIdentifier}+:{InitialValue

}+:{Type[Natural|Boolean]}+;
3 Γ¬Port{ordering};

4 ΓExfun{Source} −> <connections>:connection:{source};

5 ΓExfun:{Target} −> <connections>:connection:{target};

Listing 4.1 The example of Transformation Rule Expressions

90 Chapter 4 Combination Modeling Language

4.3 Conclusion

In this chapter, we present our language, Combination Modeling Language, is used

to combine different modeling views.

Our language is rule based, the transformation specification consists of a set of

transformation rule expressions. The transformation engine/tool produces the target

model from the source model according to MT expressions. The input models must

be valid, as we do not check it.

Although we have applied this language to several examples, there are still some

remaining drawbacks to overcome. The major one is that the traceback function is

not yet implemented automatically.

In our future work, we plan to have a graphical syntax to simplify the process for

users. We also have to implement a mechanism to go back from the target model

back to the initial modeling elements. This is sketched in our workflow with a

dotted arrow. Furthermore, we have not studied the completeness of our language.

We implemented operators that we met in our case studies, that comes directly from

our industrial partners.

4.3 Conclusion 91

5Support tool

„ The Pareto principle (also known as the 80/20

rule, the law of the vital few, or the principle

of factor sparsity)states that, for many events,

roughly 80% of the effects come from 20% of

the causes.

— Vilfredo Pareto

Italian economist

As we introduced in previous chapters, we have proposed a DSML which is dedi­

cated to the composition of heterogeneous (view)models through theirmeta­models.

We have called this new modeling language Combination Modeling Language.

In this chapter, we present the models combination workbench, which reduces the

effort of models combination by syntax parser and adaptors. Instead of doing com­

bination manually, a support tool (CMT) is designed to accomplish the process

automatically. It can ensure the correctness of generating a new combined (meta)

model and export the new (meta) model in an easy way.

5.1 Introduction . 95

5.2 Architecture . 95

5.3 Instrumentation . 97

5.3.1 Meta­model level . 97

5.3.2 Specific model level . 99

5.4 Tool comparison . 99

93

5.5 Conclusion . 100

94 Chapter 5 Support tool

5.1 Introduction

We have defined the syntax and grammar of combination modeling language. How­

ever, a language needs an operational environment to support its execution. Just like

for a program, the (source) code needs a compiler to obtain an execution file so as

to be executed. Instead of combining models manually, a support tool is required

to accomplish the process automatically. Our tool is called Combination Model­

ing Tool (CMT). Once the integration engineers have prepared the TRL; they must

import the source models and TRL, then the CMT combines models automatically

according to TRL.

Furthermore, we know that manually combining models is error­prone and wastes

a lot of time. The integration engineers have to pay much more attention to building

a new model according to rules. Any mistake can lead to unpredictable results, and

it is difficult to detect those mistakes. The CMT should be able to detect grammar

errors of TRE.

In addition, to simply the deployment of our tool, we have developed a web front­

end. That allows integration engineers to work with a friendly interface and a thin,

platform­independent, client.

We summarise here the requirements of CMT:

• Importing source models and exporting target (combined) model

• Detecting error of TRE

• Executing process are automatic and effective

• Easy deployment and multi­user support

5.2 Architecture

Web­based architecture has been selected for fulfilling easy deployment and multi­

user. By leveraging web­based architecture strength, we only focus on server­side.

5.1 Introduction 95

Moreover, we need to maintain the server­side program when fixing bugs and up­

dating.

Node (also calledNode.js) is one of the better­known frameworks and environments

that support server­side JavaScript development. A node server process usually

invoked from the command line, runs single­threaded, yet can serve many clients

concurrently.

Vue.js is one of the most used JavaScript projects in recent years due to its flexibility

and adoption by a large community. Vue.js can be used as a decorator to build user

interfaces.

XML data
(model, TRE)

Adaptor

Json data

XML data
(xsd,xml)

xml data

Fig. 5.1 Architecture of combination tool

We illustrate the architecture of the combination tool in Fig 5.1. The integration en­

gineers (end­user) open a web browser with an address of service. Loading source

models and preparing TREs, then end­user sends the request to web server applica­

tions. The engine of combination (javascript program) runs according to input data

(XML format). When the engine gets the task done, it returns the results (models) to

the web client (end­user) and saves models data to the server’s database as a JSON

file. Depending on the request, if the end­user requires a concrete MT, the engine

invokes an adaptor for adapting object models such as AADL (osate) or TTool. By

doing so, the end­user gets an XML file of the model.

96 Chapter 5 Support tool

5.3 Instrumentation

5.3.1 Meta-model level

Starting tool. The Graphical User Interface (GUI) is shown in Fig 5.2. The exact

look may change depending on the actual browser used.

Fig. 5.2 Web­based GUI

Loading (meta­) models from xml files. Users can load (meta­)models by clicking

“+load model” button (green), and then a pop­up window appears, prompting you

to select a xml file for the metadata import(see Fig 5.3). The (meta­) models is

composed of structural data, attributes and values. All of data are loadedwithmodel

files.

Models appear in the model’s zone (red rectangle), the topology of components and

their captions are illustrated as well (see Fig 5.4).

Attributes and values: When the focus moves on one element (component of

the model), this element attributes and their values are loaded in the “Attribute”

zone (yellow rectangle). Users can change the value by combo, choice box, or text

fields.

TRE Box: “Input” zone (green rectangle) is a container of TRE. People can write

rules in this zone and input symbols by clicking symbol buttons (above input zone).

5.3 Instrumentation 97

Fig. 5.3 Loading (meta­) models files

Result: If source models have been loaded and TREs is ready, the user can click

“combine”, then obtaining the result model, which appears in the result zone (violet

zone). There are two choices. One is saving the result model to a local folder by

clicking “download” button. Another way is to go to ”Specific Model Combina­

tions” by clicking the ”GO TTool” button (on the top bar).

Fig. 5.4 Functions and zones

98 Chapter 5 Support tool

5.3.2 Specific model level

We mentioned that the combination process contains two parts: at the different

model levels, meta­model and concrete model. The specific model combination is

at the concrete model level. The interface is shown in Fig 5.5

“Load model” button (1⃝) guides people to load a functional model (e.g., Capella

model) conform to its meta­model.

Chose a combined meta­model, users have to load a combined meta­model to

guide the concrete model combination. “Load model” button (2⃝) loads a combined

model from a local file. “Import” button (3⃝) imports a combined model from the

previous step (saved in the server).

Combine, this button (4⃝) is to combine models and return a specific model.

Download, people download the result model by clicking “Download” button (5⃝)

and save in a local file.

Fig. 5.5 Specific model

5.4 Tool comparison

We evaluate how well the various tools may perform to handle large and complex

transformations. The result and information are from our practice, published papers

5.4 Tool comparison 99

and online documents of user’s feedback. Thus, this is not a formal evaluation. It

just provides an overall picture of the potential of each tool to work with large and

complex models.

To measure the complexity of a transformation, metrics such as the number of ex­

pressions, transformation rules (e.g., 60) and elements (e.g., 20 of one model). Our

comparison was done on the same PC with an Intel i5 with 8Gb of memory, both

Fedora Linux 64bit and MacOS 10.5. We take the installation of the Oracle Java 8

virtual machine into account as a part of the deployment. In Table 5.1, we evaluate

our tool according to these metrics:

• Memory Usage, Disk Usage: excluding JVM and saved data.

• Time of execution

• Independent: tool is not a plugin and depends on some basic environment

such as Eclipse.

• Pr Lang: programming language of the tool.

• Installation: Hard means that it is hard to install the tool. Medium means that

it is not hard, including tool and support environment. Easy means that it is

easy to install the tool but needs basic knowledge.

• Time of deployment: How long to deploy the tool.

• Deployment: Local means that the tool is installed and runs in a local ma­

chine. Web­based means opening with browser.

• Multi­user: If the tool supports multiple users.

5.5 Conclusion

In this chapter, we have presented our support tool CMT which makes the combi­

nation process automatic. After collecting the requirements for the support tool,

we have proposed a web­based architecture and related technologies to fulfil those

100 Chapter 5 Support tool

Tools
M
em

ory
U
sage

D
isk

U
sage

Tim
e
ofexecution

Independent
Pr

L
ang

Installation
Tim

e
ofdeploym

ent
D
eploym

ent
M
ulti­user

U
M
L­R

SD
S

∼
60

M
B

1
s

Y
Java

M
edium

20
m

Local
N

JTL
512

M
B

70
M
B

>2
s

N
Java

M
edium

>40
m

Local
N

Tefkat
512

M
B

∼
>2

s
N

Java
M
edium

∼
Local

N
PTL

512
M
B

∼
>3

s
N

Java
M
edium

>40
m

Local
N

m
ediniQ

V
T

512
M
B

∼
∼

N
Java

M
edium

>40
m

Local
N

Q
V
TR

­X
SLT

512
M
B

∼
∼

N
Java

M
edium

>40
m

Local
N

C
M
T

100
M
B

10
M
B

1
s

Y
N
ode.js

Easy
15

m
W
eb­based

Y
TX

L
1
G

50
M
B

>3
s

N
Java

M
edium

∼
Local

N
X
tend

512
M
B

100
M
B

1
s

N
Java

M
edium

>30
m

Local
N

Q
V
To­Eclipse

512
M
B

∼
>2

s
N

Java
H
ard

>40
m

Local
N

M
etaEdit+

512
M
B

90
M
B

1
s

Y
M
ER

L
Easy

10
m

Local
N

K
erm

eta2
512

M
B

∼
>2

s
N

Java
M
edium

>30
m

Local
N

M
elange

512
M
B

100
M
B

2
s

N
Java

M
edium

>30
m

Local
N

JQ
V
T

512
M
B

50
M
B

2
s

N
Java

M
edium

>30
m

Local
N

Together
1
G

50
M
B

1
s

N
Java

Easy
>30

m
Local

N
Tab.5.1

Evaluation
ofM

T
toolson

C
onsum

ption,D
eploym

ent,C
om

plex
and

Perform
ance

5.5 Conclusion 101

requirements. Moreover, we have provided an instrumentation of CMT that can

guide integration engineers to use this tool. We have evaluated the MT tools from

resource consumption, deployment, complex and performance by our practice and

the published papers to outline the strong points of our tool. In the following chap­

ters, CMT is used to run different case studies inspired by models of our industrial

partners.

102 Chapter 5 Support tool

6Bridging Capella with AADL

for schedulability analysis

„ Education is what remains after one has

forgotten everything he learned in school.

— Albert Einstein

Physicist

In this chapter, we explore a model­based approach for systems engineering that

advocates the composition of several heterogeneous artifacts (called views) into a

sound and consistent system model. Relying on the proposed modeling language

CML. Thus, rather than trying to build a universal language able to capture all pos­

sible aspects of systems, the proposed language proposes to relate small subsets of

languages to offer specific analysis capabilities while keeping a global consistency

between all joined models. We demonstrate the interest of our approach through

an industrial process based on Capella, which provides (among others) a large sup­

port for functional analysis from requirements to components deployment. Even

though Capella is already quite expressive, it lacks support for schedulability anal­

ysis. AADL is also a language dedicated to system analysis. If it is connected

to backend tools for schedulability analysis, it lacks an extensive support for func­

tional analysis. Thus, instead of proposing ways to add missing aspects in either

Capella or AADL, we would rather extract a relevant subset of both languages to

build a view adequate for conducting schedulability analysis of Capella functional

models. Finally, our combination language is generic enough to extract pertinent

subsets of languages and combine them to build views for different experts. It also

helps maintaining a global consistency between different modeling views.

6.1 Introduction . 105

103

6.2 Overview of our approach . 105

6.3 Transformation Rule Library (TRL) 107

6.3.1 Functional view . 107

6.3.2 Physical view . 112

6.4 Case study . 116

6.4.1 Train traction control system 118

6.4.2 Model transformation . 119

6.4.3 Schedule verification . 119

6.5 Summary . 121

104 Chapter 6 Bridging Capella with AADL for schedulability analysis

6.1 Introduction

In our approach, we combine meta­models, while keeping each language (or tool)

isolated.

Our language combines two modeling languages by defining rules.

To validate the contribution of the proposed approach, SysML and AADL are se­

lected as two target languages, and their support environments (tools) Capella/Ar­

cadia and OSATE21 are used to show the design of example system.

This chapter is organized as follows. In section 6.2, we first identify the workflow of

the proposed approach. Then, we present the reinforced language and the operators

in section 4.2. In section 6.3, we apply these operators on functional and physical

views. To evaluate the proposed formal approach, a train traction control system is

used as an illustration in section 6.4.

6.2 Overview of our approach

In this section, we describe the proposed workflow using an example based on Ar­

cadia and AADL, as shown in Figure 6.1 [183]. Arcadia is well adapted to describe

how to allocate functions, while AADL focuses on the concrete execution behav­

iors of components. In this chapter, we use transformation to enhance Arcadia with

the schedulability analysis features of AADL. The transformation is performed by

proposing a set of rules and operators to specify the relationships at the M2 level.

Those relations are used forMT purpose and a set of all relationships is called Trans­

formation Rule Library (TRL). More specifically, these rules are used to establish a

relationship between Arcadia and AADLmetamodels in a TRL.We assume that Ar­

cadia and AADL define concepts that can be put in relation thanks to the proposed

rules.

In Figure 6.1, the green part represents the concepts borrowed from Arcadia while

the red part represents the extensions borrowed from AADL (e.g., period and exe­
1http://osate.org/index.html

6.1 Introduction 105

Import

Transformation Rule
LIB

Im
port

Arcadia Models

Functional
Design/Analysis

M2

M1
Temporary AADL Models
Architectural + Timing

Design/Analysis

Simulation

schedule 1 schedule 2

Sim
ulate

Traceback

1

2

34

co
nf

or
m

 to

correspondingcorresponding

Legend

conform to

Export

corresponding

to be implemented

co
nfo

rm
 to

Metamodels of AADLMetamodels of ARCADIA

Temporary combinational Metamodel
conform to

Fig. 6.1 Overview of Workflow

cution time). Then, the elements of metamodels are chosen manually depending on

the expectations. The workflow has four steps. In step one, we can get a temporary

combinational metamodel (TCM) at run time by using TRL once the equivalence

relations between the two metamodels have been settled. In step two, the TCM can

be used to combine an AADL model with elements of an Arcadia model, then the

new AADL model can be exported into OSATE for further editing. In step three,

the Cheddar analysis tool [184] is used to conduct schedulability analysis. This tool

can be used to detect design flaws, time and resources conflicts. In step four, the

106 Chapter 6 Bridging Capella with AADL for schedulability analysis

results are mapped back onto the initial Arcadia model in order to help the designer

enhance his/her model.

6.3 Transformation Rule Library (TRL)

In previous content, we mentioned TRE, which plays an important role in the trans­

formation process. Hence, in this section, we will show how the TRL is constructed

by a set of TREs. We also respectively present functional view and physical view

in Arcadia (SysML) and AADL. Each view contains one or more metamodels.

6.3.1 Functional view

6.3.1.1 Logical components in Arcadia

The logical components in Arcadia contain a set of member elements, such as log­

ical component containers, functions, ports, and functional exchanges. In the Ar­

cadia, functional diagrams consist of a set of SysML blocks and its interactions,

named Logical components; The notion of logical components enables better ex­

pression of system engineering semantics compared to SysML, and particularly,

reduces the bias towards software. SysML block definition diagrams (BDDs) and

internal block diagrams (IBDs) are assigned to different abstract and refined layers,

respectively. The definition of a block in SysML can be further detailed by spec­

ifying its parts; ports, specifying its interaction points; and connectors, specifying

the connections among its parts and ports. This information can also be visualized

using logical components in Arcadia. In the definition of logical component, we

present a metamodel of an instance of logical components.

Definition: Logical Component (LC)

A logical component (LC) is a 5­tuple,

LC =< Comp, Fun, Port, Exfun, Mcf >

6.3 Transformation Rule Library (TRL) 107

, where

Comp =
∪
i

F i
un

is a logical component container which contains a set of functional elements.

Fun is a finite set of functional blocks including their name and id attributes. Port is a

finite set of functional ports including directions and allocation attributes. Exfun ⊆
Port × Port denotes a finite set of functional exchange (connection) between two

functional ports, in which it must be a pair of one source and one target. Mcf :

Fun → Comp allocate functions to a logical component container.

Fig. 6.2 An example of functional view of vehicle traction control unit in
ARCADIA

As shown in Figure 6.2, there is a functional instance model of a part of a vehicle

traction control unit in ARCADIA. The blue rectangle is named logical compo­

nent in Arcadia, a logical component container, Comp. The green rectangles are

functions Fun which are contained by Comp. The element Mcf represents this al­

location relationship between logical component containers and functions Mcf :

Fun → Comp. The deep green square with the white triangle is the outgoing port

(Port), which connects an incoming port (Port) that is drawn as a red square with

white triangle, and the green line is the functional exchange between two functional

ports (Exfun).

108 Chapter 6 Bridging Capella with AADL for schedulability analysis

6.3.1.2 The metamodels of software in AADL

AADL is able to model a real­time system as a hierarchy of software components,

predefined software component types in the category of the components such as

thread, thread group, process, data, in which subprogram are used to model the

software architecture of the system.

Definition: Software Composition (SC)

A SC is a 4­tuple:

SC =< Type, Port, Connection, Annex >

where Type specifies the type of components (e.g, system, process, thread). Port

is a set of communication point of component. Port could be different types such as

data port, event port and data event port. And, port can specify the direction such

as in port, out port, in out port. Connection is used to connect ports in the direction

of data/control flow in uni­ or bi­directional. Annex is defined for the refinement

of component. In this chapter, we used hybrid annex to explicitly describe both

discrete and continuous behavior of the train traction control system.

6.3.1.3 Hybrid annex

We use the HA to declare both discrete and continuous variables in the Variables

section, and the initial values of constants are given in constant section. Assert is

used to declare predicates which may be used with invariants to define a condition

of operation. The behavior section is used to specify the continuous behavior of

the annotated AADL component as concurrently executing processes, and has a

continuous evolution — a differential equation specifies the behavior of a physical

controlled variable of a hybrid system. The communication between computing

units and physical components are an essential part of a hybrid system, communi­

cation between physical process uses the channels declared in the channel section,

and communicates with an AADL component that relies on the declared ports in the

component type. Continuous process evolution may be terminated after a specific

6.3 Transformation Rule Library (TRL) 109

time or on a communication event. They are invoked through timed and communi­

cation interrupt, respectively. A timed interrupt preempts the continuous evolution

after a given amount of time. A communication interrupt preempts the continuous

evolution whenever a communication takes places on any of the named ports or

channels. The Hybrid Annex of AADL has no direct equivalent in SysML.

Definition: Hybrid Annex (HA)

A Hybrid Annex is a 8­tuple:

HA =< Ass, Ivar, V arhd, Conshd, Proc, ChP, Itr, Bitr >

where Ass is a finite set of assert for declaring predicates applicable to the intended

continuous behavior of the annotated AADL component. Ivar is associated with

assert to define a condition of operation that must be true during the lifetime. V arhd

is a finite set of discrete and continuous variables. Conshd is a finite set of constants

which must be initiated at declaration. Proc is a finite set of process that are used to

specify continuous behaviors of AADL components. ChP is a finite set of channels

and ports for synchronizing process. Itr is a finite set of time or communication

interrupts. Bitr : Itr → Proc binds interrupts to related process.

6.3.1.4 Functional elements transformation rules

The table 6.1 shows the correspondence between AADL andArcadia elements. The

additional attributes column are the attributes to be created during the transforma­

tion. According to this table, we can write the transformation rules to transforming

Arcadia toAADLon the functional parts.An example as below (listing 6.1 [183]):

1 ΓComp −> Type[system|process]:{Runtime_Protection[true|false]}+;
2 ΓFun −> Type[abstract|thread]:{Dispatch_Protocol[Periodic|Aperiodic|Sporadic|Background|

Timed|Hybrid]}+;
3 ...

Listing 6.1 Functional elements transformation rules example

110 Chapter 6 Bridging Capella with AADL for schedulability analysis

A
rcadia

A
A
D
L

A
dditionalattributes

N
otation

Logicalcom
ponentcontainer(C

o
m

p)
System

,Process
{R

untim
e_Protection[true|false]}+

@
[function|A

A
D
L|scheduling]

Function
(F

u
n)

A
bstract,Thread

{D
ispatch_Protocol[Periodic|A

periodic|Sporadic|B
ackground|

Tim
ed|H

ybrid]}+
@
[function|A

A
D
L|scheduling]

Port(P
o
r
t)

Port
{Type[data|event|data

event]}+
@
[function|A

A
D
L|scheduling]

FunctionalExchange
(E

x
f

u
n)

C
onnection

∅
∅

A
nnex

{Type[abstract|thread]}:{annex}+
@
[function|A

A
D
L|scheduling]

PhysicalN
ode

(N
o
d
e)

D
evice,M

em
ory,Processor,B

us
{D

ispatch_Protocol}+:{Period}:{D
eadline}+:{priority}+

@
[physic|A

A
D
L|scheduling]

PhysicalPort(P
P
)

∅
¬

P
P

@
[physic|A

A
D
L|scheduling]

PhysicalLink
(P

L
)

B
us/B

usA
ccess

{A
llow

ed_C
onnnection_Type}+:{A

llow
ed_M

essage_Size}+:
{A

llow
ed_Physical_A

ccess}+:{Transm
ission_Tim

e}+
@
[physic|A

A
D
L|scheduling]

Tab.6.1
Functionaland

Physicalelem
entscorrespondence

table

6.3 Transformation Rule Library (TRL) 111

6.3.2 Physical view

6.3.2.1 Execution platform in AADL

Processor, memory, device, and bus components are the execution platform compo­

nents for modeling the hardware part of the system. Ports and port connections are

provided to model the exchange of data and event among components. Functional

and non­functional properties, like scheduling protocol and execution time of the

thread, can be specified in components and their interactions.

Definition: Execution Platform (EP)

A EP component is defined as a 3­tuple:

EP =< EC, BA, Conn >

, where

EC defines the execution component such as processor, memory, bus and device.

BA defines the BusAccess which is interactive approach between bus component

and other execution platform components. Conn ⊆ EC × EC denotes a finite set

of connections between two components connected via a bus device.

6.3.2.2 Physical components in Arcadia

The physical component in Arcadia consists of physical Node, Port and Link. The

Physical Port and Link corresponds to port and bus connections in AADL. There are

some choices when a physical Node is translated to AADL such as device, memory,

and processor, hence the designer has to point out what type of target component

during transformation by using transformation rule express.

Definition: Physical Components (PC)

112 Chapter 6 Bridging Capella with AADL for schedulability analysis

Fig. 6.3 An example of physical view of vehicle traction control unit in
ARCADIA

A physical components is a 3­tuple,

PC =< Node, PP, PL >

where, Node is a execution platform, named node in Arcadia. It could be different

type of physical components (e.g, processor, board). PP is the physical component

port. PL is physical link, which could be assigned a concrete type such as bus.

Figure 6.3 shows a part of physical instance model of vehicle traction control unit in

Arcadia. The yellow parts are physical nodes (Node) and the red line is the physical

link (PL) named bus in this case. The bus connects to two physical ports (PP),

which are the small squares in dark yellow.

6.3.2.3 Physical elements transformation rules

According to the table 6.1, we can write transformation rules for physical elements.

Listing 6.2 [183] is shown as a part of the code to transform the physical component

from Arcadia to AADL.

6.3 Transformation Rule Library (TRL) 113

1 ΓNode −> [Device|Process|Memory|Bus]:{Dispatch_Protocol}+:{Period}:{Deadline}+:{

priority}+;

2 ΓPP− > ¬ PP;

3 ΓPL− > Bus/BusAccess:[{Allowed_Connnection_Type}+:{Allowed_Message_Size}+|{
Allowed_Physical_Access}+:{Transmission_Time}+];

Listing 6.2 Physical elements transformation rules example

What we have to explain is the physical link part (see line 3). The Bus device could

be a logical resource or hardware component. Hence, the bus device has different

properties depending on the role. When the bus is considered as a logical resource,

it contains the properties Allowed_connection_type and Allowed_Message_Size.

When the bus is hardware, it contains

Allowed_Physical_Access and Transmission_Time. Therefore, we write the rules

that either

{Allowed_Connnection_Type}+ : {Allowed_Message_Size}+

or

{Allowed_Physical_Access}+ : {Transmission_Time}+

6.3.2.4 Binding

In AADL, the pre­defined property set includes deployment_properties, which is

used to describe the deployment relationship from the software component to execu­

tion platform component. Here, we define bind as an operator between application

software components and execution platform components. (Binding)

In the system with multiple processors, bind is a tuple:

B =< SFC, EP, B >

, where

1. SFC is a set of application software components;

114 Chapter 6 Bridging Capella with AADL for schedulability analysis

2. EP is a set of hardware components;

3. B is a binding relation between software components and hardware compo­

nents.

Arcadia presents a methodology to define, design, analyze and validate systems

with software and hardware architecture. It provides a hierarchical structure with

logical/functional components, physical components. Logical components deploy

into physical components. Here, we define allocate as an operator to describe the

relationship of functional components with physical components. An allocate op­

erator is a tuple:

< Clogi, CP hy >

6.3.2.5 Port and connection

Ports are the logical connection points between different components. AADL de­

fines three types of component ports, for the data transmission by data port, control

information by event port and both of them by data event port. There are two di­

rections of port, input and output. The output port is connected to the input port

to constitute the port connection. Arcadia defines only directions (in and out), in

which the type of port is omitted. Hence, we ought to add the type attribute to com­

plete the form in AADL when doing a transformer. The translating rule writes as

an example in list 6.2 at line 1. It means the transformation between one functional

port Port of Arcadia and a port of AADL (within the parent node <feature>). The

direction attribute and its values in or out can transfer to counterpart directly, and

the data type is additional option, it will be added with its values data, event, data

event, denoted {Type[data|event|data event]}+. For some attribute which does not
exist in AADL such as ordering (see list at line 3), we can write one line with the

symbol ¬, it means the ordering attribute will be ignored for transformation.

A connection is an interaction between two objects via ports. One connection must

have only one source and one target. It is the same in both Arcadia and AADL. An

example of transformation expression is shown in line 4.

6.3 Transformation Rule Library (TRL) 115

Fig. 6.4 Arcadia model of TCU system

6.4 Case study

To illustrate our approach in transforming and using produced AADL models to

analyze the properties, this section presents the experimental results of analyzing

the traction controlling unit of railway signaling system. By using our proposed

116 Chapter 6 Bridging Capella with AADL for schedulability analysis

approach, we transfer and extend Arcadia metamodel, with AADL constructs and

we used OSATE2 with the generated metamodel. Once the concrete models are

created, the scheduling property is chosen to show analysis ability through Cheddar

tool.

Traction Control Unit

Alarm

Tractional coeffi
cient

G
eoM

aps

G
PS value

Setting value

M
apsPosition

HM
I

Locom
otive

O
peration

Display

G
PS

BaliseSensor

20m
s

30m
s

Voter

Voter

Acc/Dec value

status

sync
m

sg

coeffi
cient

Restriction

Restricted
condition

c_m
rin

c_prin
c_routstatus

c_cv

c_sv

c_rv

calculating speed valueCalculating Acc/Dec
Synchronizer

sync

c_cc
c_scc

c_cs

Expected speed

c_sec
c_cs

Current speed
60m

s

Acc/Dec value

40m
s

Fig. 6.5 AADL model of TCU system

6.4 Case study 117

6.4.1 Train traction control system

Train movement is the calculation of the speed and distance profiles when a train is

traveling from one point to another according to the limitations imposed by the sig­

naling system and traction equipment characteristics. As the train has to follow the

track, the movement is also under the constraints of track geometry, speed restric­

tions, then the calculation becomes position­dependent. The subsystem of calculat­

ing the traction effectively under speed restrictions is therefore critical to achiev­

ing train safe running. Nowadays, Communication Based Train Control (CBTC)

system is the main method of rail transit (both urban and high­speed train) which

adopts wireless local area networks as the bidirectional train­ground communica­

tion [185]. To increase the capacity of rail transit lines, many information­based

and digital components have been applied for networking, automation and system

inter­connection, including general communication technologies, sensor networks,

and safety­critical embedded control system. A large number of subsystems consist

of modern signaling systems of railways, therefore, system integration is one of the

key technologies of signaling systems. It plays a significant role in maintaining the

safety of the signaling system [186].

This section uses a subsystem called Traction Control Unit system (TCU) for signal­

ing system of high­speed trains. We use this TCU system to illustrate the MT from

engineering level to detailed architectural level and verified the instance models.

The functional modules such as calculation and synchronization will be transformed

using our approach, and then non­functional properties such as timing correctness

and resource correctness will be verified by Cheddar [184].

First, we start with component functional views and physical view analysis by de­

signing system models in Arcadia (shown in Figure of TCU 6.4 [183]). The func­

tion of using the traction control system is to collect the external data by sensors,

such as a speed sensor. The data from Balise sensors is used to determinate the track

block, and then it is going to seek the speed restriction conditions by matching accu­

rate positioning (if the track blocks are divided fine enough) and digital geometric

maps data. Meanwhile, calculating speed unit receives the speed data from GPS

and speed control commands from HMI (Human­Machine Interface) periodically.

118 Chapter 6 Bridging Capella with AADL for schedulability analysis

GPS data provides speed value periodically (we set a period of 30 seconds in this

case), and HMI data sustainedly sends the operation command with the period of

20 seconds till the value changed (e.g., expected speed value), then the calculating

unit has to output an acceleration value and export to the locomotive mechanical

system. Although they are periodic, the external data does not always arrive on

time due to transmission delay or jitter. Therefore, we should use a synchronizer

to make sure they are synchronized. Otherwise, the result would be wrong with

asynchronous data. Similarly, to ensure the correctness of the command of acceler­

ation (or deceleration), we apply a voting mechanism which can ensure the result

is correct as much as possible. The voter must have the synchronized signal and

restriction condition to dedicate to output the acceleration coefficient request to the

locomotive system. The AADL diagram is shown in Figure 6.5 [183].

6.4.2 Model transformation

Using the combination tool, the metamodel of the TCU system in Capella is trans­

lated into the corresponding AADL metamodel with the rules and approach which

describes in section 6.3. For instance, on one hand, the function class is translated

into the thread in AADL. To analyze the timing properties, several attributes also

have been added such as protocol type, deadline, execution time, period. On the

other hand, the physical part element Node translates to the processor in this case.

Different from simple physical Node in Arcadia, the processor element attaches

rich properties such as scheduling protocol (scheduler type), process execution time.

The allocation relationships on both physical and functional parts are translated into

AADL as well.

6.4.3 Schedule verification

It is an essential safety requirement of the system to ensure external data and internal

process work sequentially, and each task should be scheduled properly. However, in

real­world, the risk of communication quality and rationality of scheduling must be

taken into account. Therefore, the schedule verification is a way to evaluate system

timing property. Cheddar provides a support to check if a real­time application

6.4 Case study 119

meets its temporal constraints. The framework is based on the real­time scheduling

theory and is mostly written for educational purposes [187].

1 thread implementation synchronizer . impl

2 properties

3 Dispatch_Protocol => perodic ;

4 Period => 100 ms;

5 Deadline => 100 ms;

6 Compute_Execution_Time => 50..60ms;

7 end synchronizer . impl;

8

9 thread implementation calalculating . impl

10 properties

11 Dispatch_Protocol => perodic ;

12 Period => 100 ms;

13 Deadline => 100 ms;

14 Compute_Execution_Time => 30ms..40ms;

15 end calalculating . impl;

16

17 thread implementation gps. position

18 properties

19 Dispatch_Protocol => perodic ;

20 Period => 40 ms;

21 Deadline => 40 ms;

22 Compute_Execution_Time => 30ms..40ms;

23 end gps. position ;

24

25 thread implementation HMI.setting

26 properties

27 Dispatch_Protocol => perodic ;

28 Period => 30 ms;

29 Deadline => 30 ms;

30 Compute_Execution_Time => 20ms..30ms;

31 end HMI.setting ;� �
Listing 6.3 Setting of scheduling properties

Listing 6.3 shows a set of 4 periodic tasks (cal, pos, sync and setting) of TCU re­

spectively, defined by the periods 100, 100, 40 and 30, the capacities 60, 40, 30

and 20, and the deadlines 100, 100, 40 and 30. These tasks are scheduled with a

120 Chapter 6 Bridging Capella with AADL for schedulability analysis

preemptive Rate Monotonic scheduler (the task with the lowest period is the task

with the highest priority).

For a given task set, if a scheduling simulation displayed XML results in the Ched­

dar, one can find the concurrency cases or idle periods (see left of figure 6.6, and

comprise the software part and physical device part). People change the parame­

ters directly and reload simulation; a feasible solution can be applied instead. After

tuning, finally, the appropriate setting is displayed in the right part of figure 6.6. Ac­

cording to this simulation result, people can correct the properties value in AADL,

thereby ensuring the correctness of system behavior timing properties.

6.5 Summary

In this chapter, we have used our language for combining different modeling design

artifacts (called views). We select system engineering methodology Arcadia (based

on SysML) and architectural design language AADL as a vehicle for demonstrat­

ing our approach and of model combination language for schedulability analysis.

We did so for two reasons. Firstly, the integration of heterogeneous components

and elaborate model integrity concept in system design are challenging problems

while using numerous model elements to describe different views of one system

(or subsystem). Our proposed language attempts to be generic so that other cases

can also be addressed. Secondly, enriching the functional design with scheduling

ability can uncover conflicts that were not detected on the pure functional model.

Hence, our language is good enough for the composition of several heterogeneous

artifacts (views).

For helping the reader, we have briefly introduced the key elements of Arcadia and

AADL that we have used. We also have given some examples of transformation

rules which guide the transformation from Arcadia to AADL. Finally, a case study

of train traction controlling system is used to demonstrate the transformation from

engineering concerned design into an architectural refinement design which can be

further analyzed by Cheddar.

6.5 Summary 121

(a) Schedule 1 with idle time

(b) Schedule 2 with compact time

Fig. 6.6 Simulation results of tasks schedule

122 Chapter 6 Bridging Capella with AADL for schedulability analysis

7Promoting functional design

with safety and security

properties

„ Eadem mutata resurgo. [θ = 1
b

ln (r
α
)]

Although changed, I arise the same.

— Jacob Bernoulli

Mathematician

The design flaws and attacks on CPSs can lead to severe consequences. Thus, secu­

rity and safety issues should be taken into account with functional design as early

as possible during the development process.

In this chapter, we explore the model combination with security and safety require­

ments. We rely on the proposed modeling language CML to accomplish this goal.

We take Capella, a widely used design platform, which provides (among others)

comprehensive support for functional analysis from the requirements to the deploy­

ment of components. However, Capella does not provide direct support for security

analysis. SysML­Sec is an extension of SysML dedicated to security and safety

analysis, but it does not directly support functional analysis. Rather than trying

to extend either Capella or SysML­Sec into more expressive languages to add the

missing features, we extract proper subsets of both languages to build a view ade­

quate for conducting a security and safety analysis of Capella functional models.

The proposed CML is generic enough to extract proper subsets of languages and

combine them to build views for different experts. Moreover, a case study is used

to show that CML maintains a global consistency between functional and safety

and security views.

123

7.1 Introduction . 125

7.2 Motivation . 127

7.3 Multi­view modeling approach for security and safety design . . . 129

7.3.1 Workflow . 130

7.3.2 Security and safety scopes 130

7.3.3 Properties to verify . 132

7.3.4 Transformation rule library for security and safety 135

7.4 Case study . 137

7.5 Conclusion . 142

124 Chapter 7 Promoting functional design with safety and security properties

7.1 Introduction

With an exponential growth in the development and deployment of various CPSs,

new security and safety challenges have emerged [42, 47]. Various vulnerabilities,

threats, attacks, and controls have been introduced for the new generation of CPSs

and increase rapidly. The hacker also targets industrial systems whose sensors are

increasingly commonly connected with vul nerable information systems. Attacks

threaten the dependability of such systems with various objectives ranging from ex­

tortion to terrorist acts. For instance, recently, an American oil pipeline company

“Colonial Pipeline” has been attacked by a hacker team and paid 4.4M dollar ran­

som1. There is also an example of impact on people’s daily life. Two researchers

have shown that they added a privilege escalation exploit such as CVE­2021­3347

to hack a car2.

In order to accurately understand the growing trend, we developed a “crawler”3

which can automatically collect the NVD4 data files, a U.S. government repository

of standards based vulnerability management data. These data can help us to iden­

tify the main kind of vulnerability and reasonably choose the properties to verify.

We collect the datum covers from 2002 (including the years before 2002) to 2021

(the first half of the year). Figure 7.1shows the growth trend of number of vulnera­

bility per year according to collected NVD data. The curve shows that the number

of vulnerability incresed at a rapid pace in the past few years. The recent, rapid

growth phase coincides with increased commercial and popular interest in CPSs.

The greatest success in the development of CPSs has been achieved in the U.S.

and E.U. Recently, China has joined this race, which is investing huge amounts of

money in this area [188]. Therefore, security and safety issues should be taken into

account and identify flaws and vulnerabilities as early as possible in the system de­

veloping process [189]. In this way, their security vulnerabilities and safety flaws

should be detected and mitigated.

1https://www.bloomberg.com/news/articles/2021­05­09/colonial­hackers­stole­data­thursday­
ahead­of­pipeline­shutdown

2https://www.securityweek.com/tesla­car­hacked­remotely­drone­zero­click­exploit
3https://github.com/conanbos/crawl_cve_data
4https://nvd.nist.gov

7.1 Introduction 125

Fig. 7.1 Vulnerability trend from 2002 to 2021

In contrast, security is traditionally considered as data or communications security

problem to be handled by computer scientists and/or engineers [190]. However,

CPSs have open up a vast new range of potential problems that do not always show

up on the traditional view. CPSs have additional properties that provide opportu­

nities to attackers; for example, their real­time behavior means that attackers can

cause havoc without stealing or corrupting data—simply changing the timing of

key computations is sufficient to put the system into an unsafe state. Therefore,

CPSs require us to take unified view among security, safety, functionality, architec­

ture and their relationship (allocation, connection). When the design of a system

requires different expertise, it is a usual practice to split its design among different

teams that rely on specific views related to their domain of expertise. In this sense,

MDE is suitable for CPSs design as it helps handling its complexity at design time.

Our contribution is providing a manner to combine different views (models) in a

reasonable way.

This chapter shows how the combination of a function and safety and a security

model leads to obtain an enriched model. Finally, the enriched concrete model can

be used for further analysis on security and safety, i.e., the functional models are en­

riched with safety and security properties which are verified by dedicate toolchain

such as TTool. A case study demonstrates how to combine SysML­Sec­based mod­

els [16] with UML­like models, then the security and safety properties are added to

UML­like models. The new generated model is able to perform security verifica­

tions and/or simulations by support environment TTool [60, 62].

126 Chapter 7 Promoting functional design with safety and security properties

The chapter is structured as follows. The next section explains how SysML­Sec

differs from SysML and presents the motivation of our work. In section 7.3, we

identify the security and safety issues and related properties. We also present the

workflow and the process of transforming among different meta­models. Next, we

illustrate a case study about ADAS which demonstrates our approach and language

are effective. At the end of this chapter, we give a conclusion of this chapter.

7.2 Motivation

At present, the topic of autonomous­vehicles [191] are still one of the most promis­

ing research areas as well as the hottest topic in the automotive industry. Au­

tonomous driving consists of many technologies, including sensing, perception,

planning and operation. These new technologies enhance the safety of drivers

and other road participant, mitigate the emission and promote the efficiency of

travel [192]. After the press release fromNissan at Aug. 2013, several major OEMs

(car makers) and Tier 1 suppliers (ECU providers) planned to introduce autonomous

driving products into the market by 2020. However, a set of compliance of stan­

dards (ISO 26262 [193], ISO draft 21448, ISO/SAE 21434) are required by OEMs

and Tier 1 suppliers for their subcontractors. These standards can ensure that the

security and safety requirements are fulfilled. The subcontractors (including Tier

1 suppliers) and OEMs themselves have to reach a corresponding SIL (system in­

tegrity level) for safety part and SL (security level) for security part. Both SIL and

SL are required on system and component level.

To reach the security and safety goal of the system, the requirements are essential.

The security and safety requirements are defined by engineers, or the requirements

are input from Stakeholder. Once the security and safety requirements are deter­

mined (including derived requirements, derived requirement are requirements that

are not explicitly stated in the set of Stakeholder requirements, and yet is required

to satisfy one or more of them). The security and safety engineers analyse these re­

quirements and cooperate with system engineers (system architect) to design system

architecture. The analysis and design are handled byMDE.MDE helps security and

7.2 Motivation 127

safety engineer to select the appropriate countermeasure (algorithms, architectures)

in an easy way.

According to my experience5, we assessed and audited lots of project of Tier 1

suppliers. How to fulfill the requirements of safety and security of the standard are

the widespread problems. In fact, engineers generally focus on functionality design,

and in the end of project, they spent more time to pass the compliance testing, e.g.,

“achilles test”6. In most cases, due to lacking of security and safety consideration,

engineers have to turn parameters or change architectures to pass the testing.

As we understood that the security and safety have to be considered at the early

stage of development. The OEM and Tier 1 engineers get used to function­oriented

design by using MDE. Few security and safety engineers use MDE to design model

from security and safety view. There is a gap between functional and security

and safety design, and a unified methodology to solve this problem is still lack­

ing. We also notice that the traditional function­oriented MDE environment (such

as Capella) could not support security and safety design. Despite the large support

offered by Capella, there is no direct native support for dealing with security and

safety issues, while there are now several tools specifically tailored for security and

safety, such as TTool. Since TTool is based on SysML­Sec, and Capella is also basi­

cally based on a UML profile, they both rely on the same core technology but with

different specific features (see Figure 7.2). The similarities between Capella and

TTool (SysML­Sec) opens a way to leverage TTool somehow to enrich Capella’s se­

curity and safety analysis capabilities. The question that we address here is whether

we can benefit from both Capella and security and safety tools without extending

Capella. Extending Capella (integrating security and safety analysis capabilities

into Capella) can make it bigger and more complicated, while it brings new prob­

lems such as maintenance and consistency. Rather than trying to extend Capella

to adapt to all aspects, we propose to bring together small subsets of each tool to

focus on specific analysis capabilities while keeping the independence and global

consistency of all the small pieces.

5I worked as an auditor at TÜV SÜD Industries Service Dept
6https://www.ge.com/digital/sites/default/files/download_assets/achilles­test­platform­from­ge­
digital­datasheet.pdf

128 Chapter 7 Promoting functional design with safety and security properties

SysM
L-S

ec (TTool)

Formal
Proof

CryptoLib

Simulator

SysML

Activity

Sequence

State Machine

BDD

Package

IBD

Parametric

UseCase

SysML-Sec (TTool)
Capella

SysML

C
ap

el
la

Operational
Analysis

Logical
Architecture

Physical
Architecture

Fig. 7.2 Excerpt of relationships between SysML and SysML­Sec

We choose Capella as an engineeringmodeling platform and TTool as a security and

safety analysis and proof tool. Our approach consists of security and safety features

which are extracted from the metamodel level and a set of operational methods.

The former is an abstract representation of security that allows us to identify and

verify security and safety properties formally, and the latter defines the operational

process that is used to conducting transformation. ADAS serves as a use case that

is used to demonstrate how engineering modeling design combines security and

safety analysis with our proposed approach.

7.3 Multi-view modeling approach for security and

safety design

In this section, we introduce a security/safety­oriented multi­view modeling ap­

proach with the objective to analyze the cyber security/safety of Capella artifacts,

as well as the possible countermeasures and their impact on the performance of the

system, we use TTool as the underlying proof framework.

7.3 Multi-view modeling approach for security and safety design 129

7.3.1 Workflow

Our workflow is depicted in Figure 7.3. Firstly, we give two metamodels as the

original objects which are to be combined. Secondly, we construct a TRL. Once

the TRL is built in the correct way, it is then imported into Step 1⃝, which repre­

sents a generating process of a new metamodel A′ . The step 2⃝ and 3⃝ are the

steps for importing the security metamodel and functional metamodel. With step

1⃝, it can produce a resulting metamodel A′ at step 4⃝ that includes functional

and security entities. In the Next step 5⃝, we import instance models a1:A into

the new metamodel A′ . Finally we get a new instance model a1′:A′ , called Re­

sulting model that strictly conforms to metamodel A′ . The instance model can be

imported to the security framework TTool to perform security analysis, even more

post­processings.

7.3.2 Security and safety scopes

Security requirements can be captured as constraints that depend on security con­

cerns. Security requirements are the needs of stakeholders’ security objectives that

consider the identified threat and assumed system architecture. These requirements

do not say how to satisfy the constraints, but only define the constraints. The secu­

rity requirements are based on the use cases and technical analysis such as “attack

tree”, and derived in a systematic manner. The requirements of security can be

classified according to security properties, such as: Confidentiality, Authenticity,

Integrity, Privacy/anonymity, Freshness, Availability, Controlled access, and Non­

repudiation. As to identification of security requirements, the EVITA project [192]

has shown that they identify the security requirements from two viewpoints. One is

based on functional representation of use cases, providing security requirement by

property (confidentiality, authenticity), another is based on mapping functional rep­

resentation to an architecture, providing both functional and architectural require­

ments.

Safety is also called functional safety (ISO 61508 [194], 5012x [195], 26262 [193]).

Based on the safety goals, a functional safety concept is developed considering the

preliminary architectural assumptions. The functional safety concept is developed

130 Chapter 7 Promoting functional design with safety and security properties

M1

M2

Meta-Model A’

Model a1:A

Model a1’: A’

co
n

fo
rm

 t
o

1
2 3

4

5
co

nf
or

m
 to

Source models

Resulting model

Language A Language B

co
n

fo
rm

 t
o

co
n

fo
rm

 t
o

Meta-Model A
Arcadia

Meta-Model B
TTool

su
bs

et
 o

f

p
os

t-
p

ro
ce

ss
in

g
by

Functional Part Security/Safety Part

TRL

im
p

or
t

fr
om

Fig. 7.3 The workflow for combining safety and security models

with deriving functional safety requirements from the safety goals and allocating

these functional safety requirements to the elements of the item. The functional

safety concept may also include other technologies or rely on external measures. In

those cases, the corresponding assumptions or expected behaviours are validated.

Safety is a key factor to evaluate the system. The requirements of safety are based

on use cases and connecting to functional representation. The safety requirements

can be classified according to safety properties, such as liveness, reachability and

deadlock.

Identification of safety requirements should consider multiple factors (e.g., failure

mode, MTBF, BFR) and involve technical analysis (e.g., hazard analysis, risk as­

7.3 Multi-view modeling approach for security and safety design 131

sessment, impact analysis, failure mode and effects analysis). Conventional safety

suggests that a system should not contain software and hardware flaws which can

prevent a correct functioning. “Safety of the Intended Function” involves avoiding

the situations which the system or its components cannot handle, such as adverse

extreme environmental conditions. Timing can be critical for certain real­time sys­

tems, as the system will need to respond to certain events as quickly as possible,

such as obstacle avoidance, and reducing speed, within a set period to avoid dan­

gerous situations. Any delay could result in a quite severe consequence.

7.3.3 Properties to verify

The first step of V­cycle is requirement determination, including functional, perfor­

mance, security and safety. Once the requirement has been determinated, the prop­

erties to verify should be defined. To ensure that the system works as designed,

safety and security verifications are useful means. What properties to be verified is

a question for engineers.

As shown in the Figure 7.4, the results of statistics for the terms confidentiality, in­

tegrity, availability and authenticity7. Note that the results were restricted to those

vulnerabilities with the relevant terms in the assessment to capture those with a sig­

nificant focus on the subject. The results show a steady growth of these four kinds of

vulnerabilities from less than 10,000 in 2006 to more than 100,000 in 2020. There­

fore, OEMs and Tier 1 suppliers consider “confidentiality, integrity, authentication,

liveness and availability” as main properties of security and safety in most cases in

their projects.

These properties can be formalized and checked by the model­checker such as UP­

PAAL or with reachability graphs [75]. TTool relies on its internal model­checker

and get results to notify users [196]. As for security properties, TTool is also able

to verify these security properties such as authenticity, confidentiality.

To clearly and completely understand the security and safety properties, we give

the key definitions of safety and security properties as below:

7Original data are from NVD dataset

132 Chapter 7 Promoting functional design with safety and security properties

(a) Distribution of vulnerability per year

(b) Trends in various vulnerabilities

Fig. 7.4 Distribution and trends in various vulnerabilities

7.3.3.1 Safety properties

• Reachability is a property that determine if a function or condition is present

in at least one execution path of the system. It also can indicate if the model

7.3 Multi-view modeling approach for security and safety design 133

is correct and all the functions and conditions can be executed as good as

designed.

• Liveness is a property that cannot be violated in a finite execution of an em­

bedded system. In other words, liveness expresses that eventually“something

good must happen” during an execution [197].

• Deadlocks is a situation in which no further action can be taken, e.g., two

functions mutually wait for the other one to make a step before proceeding.

7.3.3.2 Security properties

• Confidentiality property applies to a quantum of information and a set of

authorized entities. If there are only the authorized entities that can know the

quantum of information, the property is satisfied. Privacy relies on confiden­

tiality and can be considered as a special case of confidentiality [192].

• Authenticity is a property that applies to a quantum of information. The

property is satisfied when the data come from a claimed author without any

modification. Note that in most security­oriented frameworks data origin

authenticity implies integrity [192].

• Integrity is also called weak authenticity, which is a property applies to a

quantum of information between two observations. The property is satisfied

when the quantum of information has not been modified by an attacker or

unauthorized individual. It guarantees for instance that the quantum of in­

formation has not been modified between two given read operations, or that

a message sent on a communication channel has not been altered during its

journey. Compare to integrity, strong authenticity is a property related to

communications. Weak authenticity only determines if a message has been

modified by an attacker, while strong authenticity ensures that messages be­

ing received in a certain communication exchange must have been sent in

that exchange. For example, if an attacker captures and replays a message,

then that communication satisfies the property of “Integrity” but not “Strong

authenticity”.

134 Chapter 7 Promoting functional design with safety and security properties

• Availability is a metric that measures the system usability. In other words, an

availability property or requirement applies to a service or a physical device

providing a service, under given conditions over its defined lifetime. The

property is satisfiedwhen service is operational. Denial of service attacks aim

at compromising the availability of their target. For example, if the system

can provide services immediately when requested by authorized users.

• Access control is a security technique that allows only authorized entities to

use resources or perform specific actions in the computing system. It can be

related to both Confidentiality and Authenticity [75]. As an unauthorized en­

tity is not able to access confidential data, it should not be able to modify any

code of a system and invoke any internal components of the system. Access

control techniques should prevent insecurity actions and deny unauthorized

service requests. It is a fundamental concept in security that minimizes risk

to the system.

7.3.4 Transformation rule library for security and safety

By using the proposed combination language, we can construct a set of relationships

between functional meta­models and security/safety­oriented meta­models. The set

of relationships is called TRL, which we mentioned in the above sections. Once the

TRL is established, the following process of generating could be automatic by the

tool. As the combined models include both the functional and security parts, we can

import those models to TTool for security/safety analysis (simulation, verification).

The results can be traced back to the functional design part.

The table 7.1 shows the correspondence between Capella and TTool elements. The

additional attributes column are the attributes to be created during the transforma­

tion. According to this table, we can easily write the transformation rules to trans­

forming Capella to TTool on functional parts.

A simplified schema of relationships between Arcadia meta­model and TTool meta­

model is shown in Figure 7.5. The green flash represents component equivalence

that means the two components are linked by am equivalence relationship (refer

7.3 Multi-view modeling approach for security and safety design 135

Capella TTool Additional attributes
Function PrimitiveComp
Interaction Connection
Port Port Type
Port Type [request, event, channel]
Port <channel>Confidentiality [true, false]
Port <channel>Authenticity [true, false]

Tab. 7.1 Functional and security and safety elements correspondence

to 4). In the box on the left bottom of the figure, these are the first parameters

of the system model. These parameters associate with the “channel” component

in TTool. The “channel” is a kind of port component in TTool which is equiva­

lent to “Functional Exchange” and “ Functional ports (Input, Output)” in Capella

(SysML). The red dotted line flash shows the extended capabilities by model trans­

formation, in other words, the components in one meta­model can be transformed

to another meta­model by CML, then their capability is enhanced. For example, if

the “confidentiality” (or “Authenticity”) is checked, the corresponding algorithm

will be applied to encrypt the data which is sent by this channel. In other words,

the functional components in Capella can be seen as having additional security and

safety properties as long as they are linked to a TTool (SysML­Sec) component

using our proposed language.

Cryptographic configuration are first made to specify security algorithms of the sys­

tem model (e.g., AES). Within activity diagrams, they appear as an upside­down

pentagon marked with their type, as shown in Figure 7.5, where‘AE’represents

Asymmetric Encryption and‘D’represents Decryption. Cryptographic Configura­

tions can be typed as follows: Symmetric Encryption and Asymmetric Encryption

patterns encrypt data along with a key/keys specific to the pattern. A MAC can be

added to messages to authenticate it and determine if it has been modified. Hash

calculates a hash of the data. “Nonces” can be concatenated to messages before

verify authenticity of encryption. Advanced algorithm allows the user to indicate

their own encryption scheme, such as combinations of cryptographic operations.

Figure 7.5 (bottom left) shows the specification of a Cryptographic Configuration.

The designer can choose the algorithm and the corresponding performance proper­

ties. The balance between security algorithms and performance requirements have

136 Chapter 7 Promoting functional design with safety and security properties

Meta-model
SysML

Meta-model
SysML-Sec

«stereotype»
Function

«stereotype»
Functional
Exchange

has has

«stereotype»
Connection

«stereotype»
One-to-One

is_a

«stereotype»
port

has 2x

channeleventrequest

is_a is_a
is_a

Destination Origin

«stereotype»
PrimitiveComp

has has

source

target

has

«stereotype»
bool:confidentiality

bool:authenticity

has

«stereotype»
Functional
Input port

«stereotype»
Functional

Output port

has
has

Component
equivalence

Extended
capability

Fig. 7.5 A simple schema of relationships between security meta­model of
TTool and functional meta­model of Arcadia

to be established [198]. An extensive “Secure Software Development Life Cycle”

catalog is used together with TTool for performance trade­off analysis.

7.3.4.1 An instance of TRL

TRL serves transforming meta­model of Capella into a new meta­model, which

is added as part of TTool’s meta­model. We write the most of TRL details for

transforming Capella’s element to TTool in Listing 7.1.

7.4 Case study

Advanced Driver­Assistance Systems (ADAS) are the typical CPSs. ADAS take

an important role in an autonomous vehicle. Conventional ADAS technology can

detect some obstacles, alert the driver of hazardous road conditions, in some cases,

slow or stop the vehicle. This level of ADAS is great for applications like blind­

7.4 Case study 137

spot monitoring, lane­centering assistance, obstacle avoiding, and forward collision

warning. It means that the “driver is disengaged from physically operating the ve­

hicle by having driver’s hands off the steering wheel and foot off the pedal at the

same time”. However, the freedom given to the driver also brings great risks, e.g,

the underlying flaws are used by attackers to hijack the vehicle such as getting a

remote control, or delaying system response time.

In this case study, we demonstrate how to add safety and security verification abil­

ities for Capella’s functional design by using the proposed approach. The SysML­

Sec further adds the safety and security properties for functional design. Then, we

can perform verification to check if security and safety properties are satisfied. All

the results get back to Capella to correct or adjust the functional design. We illus­

trate the whole workflow that is from the meta­model phase to the final verification

phase, refer to Figure 7.6.

We start with meta­models combination at the meta­model phase (as shown in Fig­

ure 7.3). We use the proposed language to build up TRL, which is presented in 7.3.4.

Once the TRL is done, we enter model phase for functional design on Capella

(shown in the middle of the Figure 7.3.4). All of the sensors (radar, camera…) and

ADAS control system tasks (Perception and Navigation) are designed as functions

on the Capella model, while modeling all the function exchanges.

138 Chapter 7 Promoting functional design with safety and security properties

1 ΓSystem Component −> Composite Component:{Properties[Is abstract| Is human|Is actor]}+;

2 ΓSystem Function −> Primitive Component:{Attributes[access | identifier | initial value | type

]}+;

3 ΓFunction Input Port −> Primitive Port :{Type[Channel|Event|Request]}+;

4 ΓFunction Input Port −> Primitive Port :{Origin[Origin | Destination]}+:{Reference

Requirement}+:{Blocking[Blocking|Non blocking FIFO]}+:{Finite}+:{Dataflow type}+;

5 ΓFunction Output Port −> Primitive Port :{Type[Channel|Event|Request]}+;

6 ΓFunction Output Port −> Primitive Port :{Origin[Origin | Destination]}+:{Reference

Requirement}+:{Blocking[Blocking|Non blocking FIFO]}+:{Finite}+:{Dataflow type}+;

7 ΓFunctional Exchange:{source} −> Connector:{p1};
8 ΓFunctional Exchange:{target} −> Connector:{p2};

Listing 7.1 An example of TRL for transforming to TTool

Next, leveraging TRL (listing 7.1), we transform Capella models into the SysML­

Sec models for further safety and security design and analysis. All the required

attributes and properties would be filled in TTool/SysML­Sec such as port proper­

ties (direction, type). For example, according to the TRL (see listing 7.1), firstly, we

write a TRE is “Γ System Function ­> Primitive Component”, while all the System

Function in Capella model are transformed to PrimitiveComp in TTool model with

their name. Secondly, the next TRE is “Γ Function Input Port ­> Primitive Port”,

there are two types of ports in Capella, “Function Input Port” and “Function Out­

put Port”. The Function Input Port will be transformed to Primitive Port in TTool

with attribute Origin being “Origin”, and Function Output Port is transformed to

Primitive Port with attribute Origin being “Destination”. In this case, the Primitive

Port’s type is “Channel” by default, because there are no “Event” and “Request”

type in Capella. Other attributes, such as “Reference Requirement”, “Blocking”,

we let it be empty at this moment, we further assign their values in TTool.

Once the TRL has been established, we then use “Combination Modeling Tool”

(refer to chapter5) to generate a new meta­model. CML is able to transform the

meta­model according to TRL. The new concrete TTool model is generated accord­

ing to this new meta­model and Capella functional model.

Figure 7.6 shows the whole process. In the left side of the figure, the schema of

transformation is defined. In the model phase (in the middle of Figure 7.6), a

7.4 Case study 139

Capella functional model is transformed into TTool format automatically. In the

right side of the figure, we illustrate further design for security and safety purpose.

For example, we set up essential security properties in TTool such as cryptographic

configuration. Similarly, we also select the safety properties which are to be veri­

fied such as reachability, liveness and absence of deadlock. TTool then performs

verification automatically if the grammar check passes without errors. TTool gives

feedback when the verification process is finished. Engineers can revise the design

according to the results.

140 Chapter 7 Promoting functional design with safety and security properties

M
1

M
2

M
et

a-
M

od
el

 P
ha

se
M

od
el

 P
ha

se
Ve

rifi
ca

tio
n

Ph
as

e

C
ap

el
la

 (F
un

ct
io

na
l D

es
ig

n)

TT
oo

l (
Sy

sM
L-

Se
c)

M
et

a-
M

od
el

 A
’

conform
 to

M
et

a-
M

od
el

 A
Ar

ca
di

a

M
et

a-
M

od
el

 B
TT

oo
l

TR
L

co
n

fo
rm

 t
o

TT
oo

l (
Sy

sM
L-

Se
c)

 f
or

 s
af

et
y

ve
rifi

ca
tio

n

Se
tti

ng
 s

ec
ur

ity
 p

ro
pe

rti
es

Ac

tiv
iti

es
 d

es
ig

n

Re
ac

ha
bi

lit
y/

Li
ve

ne
ss

Fi
g.

7.
6

W
or
kf
lo
w
of
A
D
A
S
de
si
gn

fr
om

m
od
el
in
g
ph
as
e
to
ve
rif
ic
at
io
n
ph
as
e
fo
rs
ec
ur
ity

an
d
sa
fe
ty
pu
rp
os
es

7.4 Case study 141

7.5 Conclusion

In this chapter, we have presented the growth trend of security and safety issues and

impacts of CPSs. Thus security and safety aspects have to be considered at an early

stage of CPSs development along with functionality considerations. MDE is there­

fore proposed to handle CPSs design. Yet, general functional modeling languages

such as SysML have limitations to describe security and safety properties, which ad­

hoc languages can do it pretty well. Therefore, SysML’s extension, SysML­Sec is

used to fill this gap. We also identify the security and safety properties and explain

how we chose the properties to verify.

In a similar way as our previous work on combining Capella and AADL models

so as to perform scheduling verification, we proceed here to address safety and

security. Reusing the same proposed language­based design approach for combin­

ing safety and security artifacts with functional models, we explicitly introduce the

workflow of the proposed approach that identifies security and safety issues and

related properties.

A safety and security­aware design case of an autonomous vehicle system was used

to illustrate how the functional models is equiped with safety and security capabil­

ities by using the proposed language. The analysis and verification are then per­

formed by the TTool toolchain.

142 Chapter 7 Promoting functional design with safety and security properties

8Conclusion and Perspective

„为天地立心，为生民立命。

为往圣继绝学，为万世开太平。

—张载（字子厚）

北宋,横渠先生

In this chapter, we conclude the content of my thesis, including main contributions,

I.) a dedicated modeling language CML to specify combination patterns among

heterogeneous modeling languages; II.) two practices of combining different views

which can help the designer understand the application of this modeling language.

A support tool makes the process easier and automated. The proposed CML seems

to be generic enough with two practices of verifications of scheduling and security

& safety properties. We now discuss the limitations of CML and future works.

8.1 Conclusion . 144

8.1.1 Overview . 144

8.1.2 Contributions . 145

8.1.3 Limitations . 147

8.2 Perspectives . 148

143

8.1 Conclusion

8.1.1 Overview

CPS consists of various components and their interconnections. Thus, the design

of the CPS spans numerous domains and expertises. Handling requirements from

different domains with different characteristics pushes model­based approaches to

their limits. Hence, we intend to find an appropriate way to mitigate the complexity

of CPS design and to use different modeling tools or languages for unified system

design. The CPS have been held to a higher reliability and predictability standard

than general­purpose computing [2]. For example, in a general­purpose embedded

system, the execution time of computation is a factor in evaluating the system per­

formance. Taking a longer time to perform tasks is not a critical issue. It is merely

less convenient and less valuable. But in the CPSs, overtime can put the system

into an unsafe situation, moreover, it can also lead to an accident when being used

in a safety­critical system such as a railway signaling system.

MDE is considered as a well­established development approach that uses abstrac­

tion to bridge the gap between the problem space and the system implementation [65,

199]. MDE uses models to describe complex systems at multiple levels of abstrac­

tion. Models are instances of modeling languages that define their abstract syntax,

concrete syntax, and semantics [200]. As an important issue of MDE, multi­view

modeling integrates different models using various DSMLs and abstracts various as­

pects of systems and subsystems, such as scheduling, behaviors and functionalities.

Therefore, it is critical to understand the relationship among (meta) models.

Since CPS development is extremely complex, the design of CPS requires many

experts with different domains. We have identified the characteristics of CPS: they

are heterogeneous systems, they capture the different aspects and views and the

design relies on a variety of models. CPS are also platform­aware, they can exe­

cute on many platforms and should adapt to the platform with some non­functional

properties. The execution time and safety & security issues are significant issues to

CPS, because they may lead to an unacceptable result. We also considered systems

that are time­sensitive and safety&security­critical. Compared to more traditional

144 Chapter 8 Conclusion and Perspective

embedded systems, CPSs usually contain heterogeneous interconnected embedded

subsystems which are widely distributed. Then, we have identified the challenges

(in section 2.1.3) for CPS design, which is to be addressed in industrial applications

such as safety & security, real­time, verification & validation, and training cost. We

summarise the main challenges as Complexity of system and heterogeneous subsys­

tems and Systems consistency.

To tackle these challenges, we propose a Combination Modeling Language which

enables system engineers to combine and reuse the artifacts (models) of domain

experts. The major element of CML is a specification that contains Patterns, Oper­

ators and TRL. We gave for each element a number of examples to illustrate how

they work. CML is devised to enable system engineer to reuse models designed by

other engineers.

8.1.2 Contributions

In this thesis, I devote my efforts to deal with the significant issues of designing

heterogeneous systems. These are my contributions:

1. Propose a combination modeling language CML to combine heterogeneous

(meta) models.

2. Develop a support tool, which makes the combining process automatic with

a friendly GUI.

3. Show that the proposed language is useful and generic enough with two dif­

ferent use cases from two domains:

• Verifying the schedulability by combining AADL design

• Identifying safety&security properties and conducting verification by

TTool.

This thesis discusses the characteristics and challenges of CPS from a designer’s

view. To handle these issues, a new approach is required to efficiently take strengths

8.1 Conclusion 145

of existing languages and combine them together. The existing approaches can be

classified into two types. The first type is to continuously integrate the necessary

languages into an existing development platform and then progressively build a

comprehensive development platform. However, this type of approach could en­

counter a never­ending process and result in a gigantic framework, thus it is difficult

to use and maintain. The second type is to keep each language (or tool) isolated,

and relate some of the elements from each language with (sub) meta­model so as to

allow different kinds of analyses offered by each method (e.g., scheduling analysis,

safety analysis). Furthermore, each domain expert can work independently using

the second type of approach. However, since each language has its own charac­

teristics, the gaps must be eliminated to handle consistency issues. Therefore, we

have proposed a modeling language to establish a set of relationships among (meta)

models.

The proposedCML is a dedicated (meta) language to extend and enrich one DSML’s

capabilities by combining with other DSMLs. By using CML, system experts can

capture a set of scenarios and co­work with different domain experts at the language

level. We used EBN form to define context­free grammar for the syntax part. More­

over, the combination pattern is used to specify different combination relationships

for the semantics part.

CML enables several modeling views that can be considered and designed at the

same abstract level, and allows different modeling framework to reuse each other

artifacts. It essentially augments the system design efficiency, reduces the complex­

ity, and should hopefully ensure the system consistency.

Since combining models manually is error­prone and time consuming, the integra­

tion engineers have to pay much more attention to building a new model according

to rules. Any mistake can lead to unpredictable results, moreover it is difficult to

detect those mistakes. Instead of combining models manually, a support tool is de­

signed to accomplish the process automatically. It can ensure the correctness of gen­

erating a new combined (meta) model and export the new (meta) model in an easy

way. This tool is web­based, it allows integration engineers to work with a friendly

interface and a thin client (using a browser and being platform­independent). With

146 Chapter 8 Conclusion and Perspective

web­based features, this tool is also able to serve some integration engineers simul­

taneously.

To validate our approach, we first address the field of schedulability analysis by

combiningCapella andAAD.We used the example of a train control system. AADL

tools carry out the analyses to verify that time expectations (e.g., preset values) are

correct.

Then, we have turned to safety and security properties (such as reachability, live­

ness, and authenticity) using TTool, a SysML­Sec support environment. We have

demonstrated how to verify each of the capabilities of our approach to improve the

safety and security of the ADAS of an autonomous vehicle as our running example.

Since the verified models are transformed from a functional design environment

(using Capella in this thesis), the models to simulate are conformed to functional

design.

8.1.3 Limitations

There are still some remaining drawbacks that we try to analyze objectively:

• The integration engineers have to spend time learning the syntax of rule

• The writing of rules is error­prone

• We do not yet implement reverse direction transformation automatically.

InMDE, there is always a learning curve that is sometimes important. Our approach

is not different in this respect.

As we define relations between two meta­models they should be exploited both

ways both for forward and reverse transformations. However, our tool does not

provide, at the moment, any facility to exploit the reverse transformations. This is

a major limitation.

8.1 Conclusion 147

8.2 Perspectives

As we mentioned in the limitations, currently, CML does not support traceback

to the original models. In some scenarios with the loss of the original models

(functional or others), the engineer requests to find the original models back from

combined models with TRL, i.e., the transformation should support bi­directional

operations. We will improve CML’s functionality and add more information and

operators for bi­directional operations in our future work.

It is difficult to find the right limit of expressiveness for a language. CML is suf­

ficient for our examples but we anticipate that having a repetitive capability (like

for­loop or recursive enumeration) could be useful in the future.

The rise of AI computing and Machine Learning technologies have led to new de­

mands for Machine Learning systems to learn complex models with parameters that

promise adequate capacity to offer powerful and real­time predictive analytics. Sys­

tem models are tailored to the unique properties of ML algorithms, and algorithms

are re­designed to better fit into the system models (so­called system and ML algo­

rithm co­design) [201]. We could imagine using ML technologies to improve the

model combination process. In the meantime, we intend to provide tips for TRE

writing and check the logic errors of rules by analyzing the elements of models.

148 Chapter 8 Conclusion and Perspective

List of Abbreviations

AADL Architecture Analysis & Design Language. xii, 31

ADAS Advanced Driver­Assistance Systems. 137

CML Combination Modeling Language. 35

CPS Cyber­Physical System. xi, 27

DE Discrete Event. 49

DE Differential Equation. 49

DSL Domain­Specific Language. 35, 46, 51

DSML Domain­Specific Modeling Language. xii, 51, 70

DT Digital Twin. 40

EBNF Extended Backus�Naur Form. 33

EMF Eclipse Modeling Framework. 31

GUI Graphical User Interface. 33, 45, 97

HMI Human­Machine Interface. 40, 41

149

IoT Internet­of­Things. 39

M2M Model to Model. 46, 64

M2T Model to Text. 46, 64

MARTE Modeling and Analysis of Real­time and Embedded system. 58

MBSE Model­Based System Engineering. xi, 56

MDE Model­Driven Engineering. 31, 45

MPM Multi­Paradigm Modeling. 45

MT Model Transformation. 31

MV Multi­View. 35

MVM Multi­View Modeling. 47

OCL Object Constraint Language. 50

OMG Object Management Group. 50

PDE Partial Differential Equation. 29, 49

SysML System Modeling Language. 50

TRE Transformation Rule Expression. 33, 82

TRL Transformation Rule Library. 33, 82

UML Unified Modeling Language. 46, 50

150 List of Abbreviations

Bibliography

[1]Edward Lee. “The Past, Present and Future of Cyber­Physical Systems: A Focus on
Models”. In: Sensors 15.3 (Feb. 2015), pp. 4837–4869 (cit. on pp. 27, 39, 42).

[2]Edward A Lee. “Cyber Physical Systems: Design Challenges”. In: International Sym­
posium onObject andComponent­Oriented Real­TimeDistributedComputing (ISORC).
IEEE, May 2008, pp. 363–369 (cit. on pp. 27, 28, 42, 144).

[3]Siddhartha Kumar Khaitan and James D McCalley. “Design techniques and applica­
tions of cyberphysical systems: A survey”. In: IEEE Systems Journal 9.2 (July 2014),
pp. 350–365 (cit. on p. 27).

[4]Frédéric Mallet, Eugenio Villar, and Fernando Herrera. “MARTE for CPS and CP­
SoS”. In: Cyber­Physical System Design from an Architecture Analysis Viewpoint.
Springer, 2017, pp. 81–108 (cit. on pp. 27, 28, 58).

[5]Patricia Derler, Edward A. Lee, and Alberto Sangiovanni Vincentelli. “Modeling
Cyber­Physical Systems”. In: Proceedings of the IEEE 100.1 (Jan. 2011), pp. 13–
28 (cit. on pp. 27, 42, 49, 58).

[6]Marc Raibert, Kevin Blankespoor, Gabriel Nelson, and Rob Playter. “BigDog, the
Rough­TerrainQuadrupedRobot”. In: IFACProceedings Volumes 41.2 (2008), pp. 10822–
10825 (cit. on p. 27).

[7]DavidWooden, MatthewMalchano, Kevin Blankespoor, et al. “Autonomous Naviga­
tion for BigDog”. In: International Conference on Robotics and Automation (2010),
pp. 4736–4741 (cit. on p. 27).

[8]Ryosuke Okuda, Yuki Kajiwara, and Kazuaki Terashima. “A survey of technical trend
of ADAS and autonomous driving”. In: International Symposium on VLSI Design,
Automation and Test (2014), pp. 1–4 (cit. on pp. 27, 42).

[9]David Broman, Edward A Lee, Stavros Tripakis, and Martin Törngren. “Viewpoints,
formalisms, languages, and tools for cyber­physical systems”. In: 6th International
Workshop on Multi­Paradigm Modeling. ACM. 2012, pp. 49–54 (cit. on p. 29).

151

[10]Jean­Raymond Abrial and Stefan Hallerstede. “Refinement, decomposition, and in­
stantiation of discretemodels: Application to Event­B”. In:Fundamenta Informaticae
77.1­2 (2007), pp. 1–28 (cit. on p. 30).

[11]Jean­Raymond Abrial.Modeling in Event­B: system and software engineering. Cam­
bridge University Press, 2010 (cit. on p. 30).

[12]Jean­Raymond Abrial and Jean­Raymond Abrial. The B­book: assigning programs
to meanings. Cambridge university press, 2005 (cit. on p. 30).

[13]Régine Laleau and Amel Mammar. “An overview of a method and its support tool
for generating B specifications from UML notations”. In: International Conference
on Automated Software Engineering. IEEE. 2000, pp. 269–272 (cit. on pp. 30, 77).

[14]Régine Laleau, Farida Semmak, AbderrahmanMatoussi, et al. “A first attempt to com­
bine SysML requirements diagrams and B”. In: Innovations in Systems and Software
Engineering 6.1­2 (2010), pp. 47–54 (cit. on pp. 30, 76, 77).

[15]Steve Jeffrey Tueno Fotso, Régine Laleau, Hector Ruiz Barradas, Marc Frappier, and
Amel Mammar. “A Formal Requirements Modeling Approach: Application to Rail
Communication.” In: Proceedings of the 14th International Conference on Software
Technologies (ICSOFT). SciTePress, 2019, pp. 170–177 (cit. on p. 30).

[16]Ludovic Apvrille and Yves impRoudier. “SysML­sec: A SysML environment for the
design and development of secure embedded systems”. In: Asia­Pacific Council on
Systems Engineering (APCOSEC) (Sept. 2013), pp. 8–11 (cit. on pp. 31, 54, 76, 126).

[17]Clarity.“Clarity project”http://www.clarity­se.org. 2015 (cit. on p. 32).

[18]Christophe Boudjennah, Benoit Combemale, Daniel Exertier, Stéphane Lacrampe,
and Marie­Agnès Peraldi­Frati. “CLARITY: Open­Sourcing the Model­Based Sys­
tems Engineering Solution Capella”. In: Second Workshop on Open Source Software
for Model Driven Engineering. CEUR. 2015 (cit. on p. 32).

[19]Capella.“Introduction to Arcadia”http://www.polarsys.org/capella/arcadia.html.
2014 (cit. on p. 32).

[20]Pascal Roques. “MBSE with the ARCADIA Method and the Capella Tool”. In: 8th
European Congress on Embedded Real Time Software and Systems. 2016 (cit. on
pp. 32, 46).

[21]Hui Zhao, Ludovic Apvrille, and Frédéric Mallet. “Multi­View Design for Cyber­
Physical Systems”. In: PhD Symposium at 13th International Conference on ICT in
Education, Research, and Industrial Applications. 2017, pp. 22–28 (cit. on p. 32).

152 Bibliography

[22]Jay Lee, Behrad Bagheri, and Hung­AnKao. “ACyber­Physical Systems architecture
for Industry 4.0­based manufacturing systems”. In: Manufacturing Letters 3 (Jan.
2015), pp. 18–23 (cit. on pp. 39, 41).

[23]Andreas Wortmann, Benoît Combemale, and Olivier Barais. “A Systematic Mapping
Study on Modeling for Industry 4.0.” In: 2017 ACM/IEEE 20th International Confer­
ence on Model Driven Engineering Languages and Systems (MODELS) (2017), p. 25
(cit. on pp. 39, 55, 63).

[24]Kleanthis Thramboulidis and Foivos Christoulakis. “UML4IoT—A UML­based ap­
proach to exploit IoT in cyber­physical manufacturing systems”. In: Computers in
Industry 82.C (Oct. 2016), pp. 259–272 (cit. on pp. 39, 42, 75).

[25]Ragunathan Rajkumar, Lee Insup, Sha Lui, and John Stankovic. “Cyber­physical sys­
tems: the next computing revolution”. In:Design Automation Conference. June 2010,
pp. 731–736 (cit. on p. 39).

[26]Michael Hübner. “Introduction to the special section on multiprocessor system­on­
chip for cyber­physical systems”. In: ACM Trans. Embed. Comput. Syst. 12.1s (Mar.
2013), pp. 1–1 (cit. on p. 40).

[27]Eloy Garcia, Panos J Antsaklis, Luis A Montestruque, et al. Model­based control of
networked systems. Springer International Publishing, 2014 (cit. on p. 40).

[28]Peter Hehenberger, Birgit Vogel­Heuser, David Bradley, et al. “Design, modelling,
simulation and integration of cyber physical systems: Methods and applications”. In:
Computers in Industry 82 (2016), pp. 273–289 (cit. on pp. 40, 45, 49).

[29]Shiyong Wang, Jiafu Wan, Di Li, and Chunhua Zhang. “Implementing smart factory
of industrie 4.0: an outlook”. In: International Journal of Distributed Sensor Net­
works 12.1 (2016), p. 3159805 (cit. on p. 40).

[30]Sakshi Popli, Rakesh Kumar Jha, and Sanjeev Jain. “A survey on energy efficient
narrowband internet of things (NBIoT): architecture, application and challenges”. In:
IEEE Access 7 (2018), pp. 16739–16776 (cit. on p. 40).

[31]Fei Tao, He Zhang, Ang Liu, and A. Y. C. Nee. “Digital Twin in Industry: State­of­
the­Art”. In: IEEE Transactions on Industrial Informatics 15.4 (2018), pp. 2405–
2415 (cit. on pp. 41, 42).

[32]Baheti Radhakisan and Helen Gill. “Cyber­physical systems”. In: The Impact of Con­
trol Technology 12.1 (Mar. 2011), pp. 161–166 (cit. on p. 42).

[33]Krishna Sampigethaya and Radha Poovendran. “Aviation Cyber­Physical Systems:
Foundations for Future Aircraft and Air Transport”. In: Proceedings of the IEEE
101.8 (2013), pp. 1834–1855 (cit. on p. 42).

Bibliography 153

[34]Junhua Zhao, FushuanWen, YushengXue, Xue Li, and ZhaoyangDong. “Cyber phys­
ical power systems: architecture, implementation techniques and challenges”. In: Au­
tomation of Electric Power Systems 34.16 (2010), pp. 1–7 (cit. on p. 42).

[35]Lichen Zhang. “Multi­view approach to model aerospace cyber­physical systems.”
In: 19th International Conference on Automation and Computing (ICAC) (2013),
pp. 1–6 (cit. on pp. 42, 47).

[36]Samarjit Chakraborty, Mohammad Abdullah Al Faruque, Wanli Chang, et al. “Auto­
motive Cyber–Physical Systems: A Tutorial Introduction”. In: IEEE Design & Test
33.4 (2016), pp. 92–108 (cit. on p. 42).

[37]Jiateng Yin, Tao Tang, Lixing Yang, et al. “Research and development of automatic
train operation for railway transportation systems: A survey”. In: Transportation Re­
search Part C: Emerging Technologies 85 (Dec. 2017), pp. 548–572 (cit. on p. 42).

[38]Armin Zimmermann and Günter Hommel. “A train control system case study in
model­based real time system design”. In: International Parallel and Distributed Pro­
cessing Symposium. IEEE. 2003, pp. 8–14 (cit. on p. 42).

[39]SungHyun Kim and Sungbum Park. “CPS (cyber physical system) based manufac­
turing system optimization”. In: Procedia computer science 122 (2017), pp. 518–524
(cit. on p. 42).

[40]Ahmadzai Ahmadi, Chantal Cherifi, Vincent Cheutet, and Yacine Ouzrout. “A review
of CPS 5 components architecture for manufacturing based on standards”. In: 11th
International Conference on Software, Knowledge, InformationManagement and Ap­
plications (SKIMA). IEEE. 2017, pp. 1–6 (cit. on p. 42).

[41]Marco Garetti, Luca Fumagalli, and Elisa Negri. “Role of ontologies for CPS imple­
mentation in manufacturing”. In: Management and Production Engineering Review
(2015) (cit. on p. 42).

[42]Abdulmalik Humayed, Jingqiang Lin, Fengjun Li, and Bo Luo. “Cyber­physical sys­
tems security—A survey”. In: IEEE Internet of Things Journal 4.6 (2017), pp. 1802–
1831 (cit. on pp. 42, 125).

[43]Insup Lee and Oleg Sokolsky. “Medical cyber physical systems”. In:Design automa­
tion conference. IEEE. 2010, pp. 743–748 (cit. on p. 42).

[44]Yin Zhang, Meikang Qiu, Chun­Wei Tsai, Mohammad Mehedi Hassan, and Atif
Alamri. “Health­CPS: Healthcare cyber­physical system assisted by cloud and big
data”. In: IEEE Systems Journal 11.1 (2015), pp. 88–95 (cit. on p. 42).

154 Bibliography

[45]Arjen A van der Meer, Peter Palensky, Kai Heussen, et al. “Cyber­physical energy
systems modeling, test specification, and co­simulation based testing”. In:Workshop
on Modeling and Simulation of Cyber­Physical Energy Systems (MSCPES). IEEE.
2017, pp. 1–9 (cit. on p. 42).

[46]Azfar Khalid, Pierre Kirisci, Zeashan Hameed Khan, et al. “Security framework for
industrial collaborative robotic cyber­physical systems”. In: Computers in Industry
97 (2018), pp. 132–145 (cit. on p. 42).

[47]Jiang Wan, Arquimedes Canedo, and Mohammad Abdullah Al Faruque. “Security­
aware functionalmodeling of cyber­physical systems”. In: 20thConference on Emerg­
ing Technologies & Factory Automation (ETFA). IEEE. 2015, pp. 1–4 (cit. on pp. 42,
58, 125).

[48]Mike Burmester, Emmanouil Magkos, and Vassilis Chrissikopoulos. “Modeling secu­
rity in cyber–physical systems”. In: International Journal of Critical Infrastructure
Protection 5.3­4 (2012), pp. 118–126 (cit. on pp. 42, 43, 45).

[49]Geng Yang, Zhibo Pang, M Jamal Deen, et al. “Homecare robotic systems for health­
care 4.0: visions and enabling technologies”. In: IEEE journal of biomedical and
health informatics 24.9 (2020), pp. 2535–2549 (cit. on p. 42).

[50]Hongpeng Wang, Jingtai Liu, and Jianda Han. “RS­CPS: A distributed architecture
of robotic surveillance cyber­physical system in the nature environment”. In: Inter­
national Conference on Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER). IEEE. 2015, pp. 1287–1292 (cit. on p. 42).

[51]GangYang, Xingshe Zhou, andYuanyuan Lian. “Constraint­BasedConsistencyCheck­
ing for Multi­View Models of Cyber­Physical System”. In: 2017 IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS­C). July
2017, pp. 370–376 (cit. on pp. 42, 75).

[52]Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi. “Modeling and Verification of
Evolving Cyber­physical Spaces”. In: 11th Joint Meeting on Foundations of Software
Engineering. New York, NY, USA: ACM, 2017, pp. 38–48 (cit. on pp. 42, 44).

[53]YongxiangBao,MingsongChen, Qi Zhu, et al. “Quantitative Performance Evaluation
of Uncertainty­Aware Hybrid AADLDesigns Using Statistical Model Checking”. In:
IEEE Transactions on Computer­Aided Design of Integrated Circuits and Systems
(2017), pp. 18–24 (cit. on p. 43).

[54]Muhammad Sabir Idrees, Yves Roudier, and Ludovic Apvrille. “Model the System
fromAdversary Viewpoint ­ Threats Identification andModeling.” In:Electronic Pro­
ceedings in Theoretical Computer Science 165 (Oct. 2014), pp. 45–58 (cit. on p. 43).

Bibliography 155

[55]Moussa Amrani, Dominique Blouin, Robert Heinrich, et al. “Towards a formal spec­
ification of multi­paradigmmodelling”. In: 2019 ACM/IEEE 22nd International Con­
ference onModelDriven Engineering Languages and SystemsCompanion (MODELS­
C). IEEE. 2019, pp. 419–424 (cit. on p. 45).

[56]Moussa Amrani, Dominique Blouin, Robert Heinrich, et al. “Multi­paradigm mod­
elling for cyber–physical systems: a descriptive framework”. In: Software and Sys­
tems Modeling (2021), pp. 1–29 (cit. on p. 45).

[57]Ankica Barišić, Ivan Ruchkin, Dušan Savić, et al. “Multi­paradigm modeling for cy­
ber–physical systems: A systematic mapping review”. In: Journal of Systems and
Software 183 (2022), p. 111081 (cit. on pp. 45, 63).

[58]Jean­Marc Jezequel. “Model driven design and aspect weaving”. In: Software and
Systems Modeling 7.2 (Feb. 2008), pp. 209–218 (cit. on pp. 45, 74, 75).

[59]Jean Bézivin. “Model driven engineering: An emerging technical space”. In:Genera­
tive and transformational techniques in software engineering. Springer, 2006, pp. 36–
64 (cit. on p. 45).

[60]Ludovic Apvrille, Letitia Li, and Yves Roudier. “Model­Driven Engineering for De­
signing Safe and Secure Embedded Systems”. In: 2016 Architecture­Centric Virtual
Integration (ACVI). IEEE, Apr. 2016, pp. 4–7 (cit. on pp. 45, 55, 58, 76, 126).

[61]Aditya A Shah, Aleksandr A Kerzhner, Dirk Schaefer, and Christiaan JJ Paredis.
“Multi­view modeling to support embedded systems engineering in SysML”. In:
Graph transformations and model­driven engineering. Berlin, Heidelberg: Springer,
2010, pp. 580–601 (cit. on pp. 45, 63).

[62]Yves Roudier and Ludovic Apvrille. “SysML­Sec: A model driven approach for de­
signing safe and secure systems”. In: International Con ference onModel Driven Engi­
neering and Software Development (MODELSWARD). Feb. 2015, pp. 655–664 (cit.
on pp. 46, 54, 58, 76, 126).

[63]Phu H Nguyen, Max Kramer, Jacques Klein, and Yves Le Traon. “An extensive sys­
tematic review on the Model­Driven Development of secure systems”. In: Informa­
tion and Software Technology 68 (2015), pp. 62–81 (cit. on p. 46).

[64]Florian Lugou, Letitia W Li, Ludovic Apvrille, and Rabéa Ameur­Boulifa. “Sysml
models andmodel transformation for security”. In: International Con ference onModel Driven
Engineering and Software Development (MODELSWARD). IEEE. 2016, pp. 331–338
(cit. on p. 46).

[65]Hüseyin Ergin, Eugene Syriani, and Jeff Gray. “Design pattern oriented development
of model transformations”. In: Computer Languages, Systems & Structures 46 (Nov.
2016), pp. 106–139 (cit. on pp. 46, 63, 144).

156 Bibliography

[66]ISO IEC IEEE. “Systems and Software Engineering–Architecture Description”. In:
ISO/IEC/IEEE 42010: 2011 (E)(Revision of ISO/IEC 42010: 2007 and IEEE Std
1471­2000) (2011) (cit. on p. 47).

[67]Matias Ezequiel Vara Larsen, Julien DeAntoni, Benoît Combemale, and Frédéric
Mallet. “A Behavioral Coordination Operator Language (BCOoL)”. In: 18th Interna­
tional Conference onModel Driven Engineering Languages and Systems (MODELS).
IEEE, 2015, pp. 186–195 (cit. on pp. 49, 58, 67).

[68]Michael Heymann, Feng Lin, GeorgeMeyer, and Stefan Resmerita. “Analysis of zeno
behaviors in hybrid systems”. In: 41st IEEE Conference on Decision and Control,
2002. Vol. 3. IEEE. 2002, pp. 2379–2384 (cit. on p. 49).

[69]Bran Selic. “UML profile for MARTE: modeling and analysis of real­time embed­
ded systems”. In: Technical Report, report number: formal/2011­06­02 (June 2011),
pp. 1–754 (cit. on pp. 50, 58).

[70]OMG. Unified Modeling Language. [Online]. Available: https://www.omg.org/spec/
UML/About­UML/. Apr. 2019 (cit. on pp. 50, 58, 87).

[71]Julien DeAntoni and Frédéric Mallet. “ECL: the Event Constraint Language, an Ex­
tension of OCL with Events”. In: Research report (July 2012), p. 24 (cit. on p. 50).

[72]Aamir M Khan, Frédéric Mallet, and Muhammad Rashid. “Combining SysML and
Marte/CCSL to Model Complex Electronic Systems”. In: 2016 International Confer­
ence on Information Systems Engineering (ICISE). IEEE, 2016, pp. 12–17 (cit. on
p. 50).

[73]Yves Roudier, Muhammad Sabir Idrees, and Ludovic Apvrille. “Towards the model­
driven engineering of security requirements for embedded systems.” In: 2013 3rd In­
ternational Workshop onModel­Driven Requirements Engineering (MoDRE) (2013),
pp. 55–64 (cit. on p. 51).

[74]Letitia W Li, Florian Lugou, and Ludovic Apvrille. “Security Modeling for Embed­
ded System Design”. In: International Workshop on Graphical Models for Security.
Springer. 2017, pp. 99–106 (cit. on p. 51).

[75]Letitia Li. “Safe and secure model­driven design for embedded systems”. PhD thesis.
Université Paris­Saclay, Sept. 2018 (cit. on pp. 51, 132, 135).

[76]VNormand andDExertier. “Model­driven systems engineering: SysML& theMDSysE
approach at Thales”. In: Ecole d’été CEA­ENSIETA, Brest, France (2004) (cit. on
p. 52).

[77]Capella. Website of Capella/Arcadia. [Online]. Available: https://www.polarsys.org/
capella/arcadia.html. 2019 (cit. on p. 52).

Bibliography 157

https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/UML/About-UML/
https://www.polarsys.org/capella/arcadia.html
https://www.polarsys.org/capella/arcadia.html

[78]Letitia W. Li, Florian Lugou, and Ludovic Apvrille. “Security­Aware Modeling and
Analysis for HW/SWPartitioning”. In: International Con ference onModel Driven En­
gineering and Software Development (MODELSWARD). Porto, Portugal, Feb. 2017,
pp. 302–311 (cit. on pp. 55, 58, 76).

[79]L Li, L Apvrille, and D Genius. “Virtual Prototyping of Automotive Systems: To­
wards Multi­level Design Space Exploration”. In: Conference on Design & Architec­
tures for Signal & Image Processing (DASIP’2016) (2016) (cit. on pp. 55, 76).

[80]Daniela Genius, Letitia Li, and Ludovic Apvrille. “Model­Driven Performance Eval­
uation and Formal Verification for Multi­level Embedded System Design”. In: 5th
International Conference on Model­Driven Engineering and Software Development.
SCITEPRESS, 2017, pp. 78–89 (cit. on pp. 55, 76).

[81]DavidAlexandre, KimGLarsen, Axel Legay,MariusMikučionis, andDannyBøgsted.
“Uppaal SMC tutorial”. In: International Journal on Software Tools for Technology
Transfer 17.4 (2015), pp. 397–415 (cit. on pp. 55, 76).

[82]Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre. ProVerif 2.00: Au­
tomatic Cryptographic Protocol Verifier,User Manual and Tutorial. May 2018 (cit.
on pp. 55, 76).

[83]Jose Fran Ruiz, Carsten Rudolph, Antonio Mana, and Marcos Arjona. “A security
engineering process for systems of systems using security patterns”. In: 8th Annual
IEEE Systems Conference (SysCon). IEEE, 2014, pp. 8–11 (cit. on p. 55).

[84]L Zhang. “Modeling large scale complex cyber physical control systems based on
system of systems engineering approach”. In: 20th International Conference on Au­
tomation and Computing (2014), pp. 55–60 (cit. on p. 55).

[85]Muhammad Rashid, Muhammad Waseem Anwar, and Aamir M Khan. “Toward the
tools selection in model based system engineering for embedded systems—A system­
atic literature review”. In: Journal of Systems and Software 106 (Aug. 2015), pp. 150–
163 (cit. on p. 55).

[86]Ilge Akkaya, Patricia Derler, Shuhei Emoto, and Edward A Lee. “Systems engineer­
ing for industrial cyber–physical systems using aspects”. In: Proceedings of the IEEE
104.5 (2016), pp. 997–1012 (cit. on p. 55).

[87]T Watteyne, P Tuset­Peiro, and X Vilajosana. “Teaching Communication Technolo­
gies and Standards for the Industrial IoT? Use 6TiSCH!” In: IEEE Communication
Magazine (2017), pp. 132–139 (cit. on p. 56).

[88]OMG. Systems Modeling Language. May 2017 (cit. on p. 58).

158 Bibliography

[89]Phu H Nguyen, Shaukat Ali, and Tao Yue. “Model­based security engineering for
cyber­physical systems: A systematic mapping study”. In: Information and Software
Technology 83 (Mar. 2017), pp. 116–135 (cit. on p. 58).

[90]Charles André and Frédéric Mallet. “Specification and verification of time require­
ments with CCSL and Esterel”. In: 2009 ACM SIGPLAN/SIGBED conference on
Languages, compilers, and tools for embedded systems. 2009, pp. 167–176 (cit. on
p. 58).

[91]NKahani and JRCordy. “Comparison and evaluation of model transformation tools”.
In: Queen’s University, Kingston, Tech. Rep (2015) (cit. on pp. 58, 64, 66, 68).

[92]Michael Brunner, Michael Huber, Clemens Sauerwein, and Ruth Breu. “Towards an
Integrated Model for Safety and Security Requirements of Cyber­Physical Systems”.
In: International Conference on Software Quality, Reliability and Security Compan­
ion (QRS­C). IEEE, pp. 334–340 (cit. on p. 58).

[93]Ayan Banerjee, Krishna K Venkatasubramanian, Tridib Mukherjee, and Sandeep Ku­
mar S Gupta. “Ensuring Safety, Security, and Sustainability of Mission­Critical Cy­
ber–Physical Systems”. In: Proceedings of the IEEE 100.1 (2011), pp. 283–299 (cit.
on p. 58).

[94]Florian Lugou, Ludovic Apvrille, and Aurélien Francillon. “SMASHUP ­ a toolchain
for unified verification of hardware/software co­designs.” In: J. Cryptographic Engi­
neering 7.1 (2017), pp. 63–74 (cit. on p. 58).

[95]Verislav Djukić, Aleksandar Popović, and Juha­Pekka Tolvanen. “Domain­specific
modeling for robotics: from language construction to ready­made controllers and end­
user applications”. In: 3rd Workshop on Model­Driven Robot Software Engineering.
NY, USA, July 2016, pp. 47–54 (cit. on p. 58).

[96]Rohit Sinha, Sriram K Rajamani, Sanjit A Seshia, and Kapil Vaswani. “Moat ­ Veri­
fying Confidentiality of Enclave Programs.” In: ACM Conference on Computer and
Communications Security (2015), pp. 1169–1184 (cit. on p. 58).

[97]T Correa, L B Becker, J M Farines, et al. “Supporting the Design of Safety Critical
Systems Using AADL”. In: 15th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS). IEEE, 2010, pp. 331–336 (cit. on p. 58).

[98]D. Ameller, X. Franch, C. Gómez, et al. “Dealing with Non­Functional Requirements
in Model­Driven Development: A Survey”. In: IEEE Transactions on Software Engi­
neering (2019), pp. 1–1 (cit. on p. 63).

[99]Fang Li, Jiafu Wan, Ping Zhang, and Di Li. “A multi­view integration modeling ap­
proach for cyber­physical robot system”. In: International Conference on Machine
Learning and Cybernetics. Vol. 1. IEEE, 2013, pp. 387–392 (cit. on p. 63).

Bibliography 159

[100]BernhardHoisl, ZhenjiangHu, and SoichiroHidaka. “Towards Co­evolution inModel­
Driven Development Via Bidirectional Higher­Order Transformation.” In: Interna­
tional Con ference on Model Driven Engineering and Software Development (MOD­
ELSWARD) (July 2014) (cit. on p. 63).

[101]Manuel Wimmer, Angelika Kusel, Werner Retschitzegger, et al. “Reusing Model
Transformations acrossHeterogeneousMetamodels”. In:Electronic Communications
of the EASST 50 (Jan. 2012) (cit. on pp. 63, 71).

[102]Angelika Kusel, Johannes Schönböck, M. Wimmer, Werner Retschitzegger, and W.
Schwinger. “Reuse in model­to­model transformation languages: are we there yet?”
In: Software & Systems Modeling 14 (May 2013), pp. 1–36 (cit. on pp. 63, 64, 71).

[103]Jean­Michel Bruel, Benoît Combemale, Esther Guerra, et al. “Comparing and classi­
fying model transformation reuse approaches across metamodels”. In: Software and
Systems Modeling 19.2 (2020), pp. 441–465 (cit. on pp. 63, 66).

[104]Jesús Sánchez Cuadrado, Esther Guerra, and Juan De Lara. “Generic model transfor­
mations: write once, reuse everywhere”. In: International Conference on Theory and
Practice of Model Transformations. Springer. 2011, pp. 62–77 (cit. on pp. 63, 71).

[105]Degueule Thomas, Benoît Combemale, Arnaud Blouin, Olivier Barais, and Jean­
Marc Jezequel. “Melange: A meta­language for modular and reusable development
of dsls”. In: Conference on Software Language Engineering. 2015, pp. 25–36 (cit. on
pp. 64, 74, 75).

[106]Dániel Varró and András Pataricza. “Generic and meta­transformations for model
transformation engineering”. In: International Conference on the Unified Modeling
Language. Springer. 2004, pp. 290–304 (cit. on pp. 64, 65).

[107]Arnaud Cuccuru, Chokri Mraidha, François Terrier, and Sébastien Gérard. “Templat­
able metamodels for semantic variation points”. In: European Conference on Model
Driven Architecture­Foundations and Applications. Springer. 2007, pp. 68–82 (cit.
on p. 65).

[108]Cláudio Gomes, Bruno Barroca, and Vasco Amaral. “Classification of model transfor­
mation tools: pattern matching techniques”. In: International Conference on Model
Driven Engineering Languages and Systems. Springer. 2014, pp. 619–635 (cit. on
p. 66).

[109]Soichiro Hidaka, Massimo Tisi, Jordi Cabot, and Zhenjiang Hu. “Feature­based clas­
sification of bidirectional transformation approaches”. In: Software & Systems Mod­
eling 15.3 (2016), pp. 907–928 (cit. on p. 66).

[110]Gabriele Taentzer, Karsten Ehrig, Esther Guerra, et al. “Model transformation by
graph transformation: A comparative study”. In: Workshop Model Transformation
in Practice (2005) (cit. on p. 66).

160 Bibliography

[111]Edgar Jakumeit, Sebastian Buchwald, Dennis Wagelaar, et al. “A survey and compar­
ison of transformation tools based on the transformation tool contest”. In: Science of
computer programming 85 (2014), pp. 41–99 (cit. on p. 66).

[112]Tom Mens and Pieter Van Gorp. “A taxonomy of model transformation”. In: Elec­
tronic notes in theoretical computer science 152 (2006), pp. 125–142 (cit. on p. 66).

[113]Krzysztof Czarnecki and Simon Helsen. “Feature­based survey of model transforma­
tion approaches”. In: IBM systems journal 45.3 (2006), pp. 621–645 (cit. on p. 66).

[114]Jean­Michel Bruel, Benoit Combemale, Esther Guerra, et al. “Model Transformation
Reuse Across Metamodels”. In: International Conference on Theory and Practice of
Model Transformations. Springer. 2018, pp. 92–109 (cit. on p. 66).

[115]Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot. “MoDisco: A
Generic and Extensible Framework for Model Driven Reverse Engineering”. In: In­
ternational Conference on Automated Software Engineering. NY, USA: ACM, 2010
(cit. on p. 66).

[116]Michael Lawley and JimSteel. “Practical declarativemodel transformationwith Tefkat”.
In: International Conference on Model Driven Engineering Languages and Systems.
Springer. 2005, pp. 139–150 (cit. on p. 67).

[117]JesúsMAlmendros­Jiménez, Luis Iribarne, Jesús López­Fernández, and ÁngelMora­
Segura. “PTL: A model transformation language based on logic programming”. In:
Journal of Logical and Algebraic Methods in Programming 85.2 (2016), pp. 332–366
(cit. on p. 67).

[118]Kevin Lano and Shekoufeh Kolahdouz­Rahimi. “Specification and verification of
model transformations using UML­RSDS”. In: International Conference on Inte­
grated Formal Methods. Springer. 2010, pp. 199–214 (cit. on p. 67).

[119]Antonio Cicchetti, DavideDi Ruscio, Romina Eramo, andAlfonso Pierantonio. “JTL:
a bidirectional and change propagating transformation language”. In: International
Conference on Software Language Engineering. Springer. 2010, pp. 183–202 (cit. on
p. 67).

[120]Dan Li, Xiaoshan Li, and Volker Stolz. “QVT­based model transformation using
XSLT”. In: ACM SIGSOFT Software Engineering Notes 36.1 (2011), pp. 1–8 (cit.
on p. 67).

[121]Nuno Macedo and Alcino Cunha. “Implementing QVT­R bidirectional model trans­
formations using Alloy”. In: International Conference on Fundamental Approaches
to Software Engineering. Springer. 2013, pp. 297–311 (cit. on p. 67).

[122]Christopher Gerking and Christian Heinzemann. “Solving the Movie Database Case
with QVTo.” In: TTC@STAF. 2014, pp. 98–102 (cit. on pp. 67, 68).

Bibliography 161

[123]Steven Kelly, Kalle Lyytinen, andMatti Rossi. “Metaedit+ a fully configurable multi­
user and multi­tool case and came environment”. In: International Conference on
Advanced Information Systems Engineering. Springer. 1996, pp. 1–21 (cit. on p. 67).

[124]Zoé Drey, Cyril Faucher, Franck Fleurey, Vincent Mahé, and Didier Vojtisek. “Ker­
meta language reference manual”. In: Manuscript available online http://www. ker­
meta. org (2009) (cit. on p. 67).

[125]Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, et al. “AToMPM: A web­
based modeling environment”. In: 16th International Conference on Model Driven
Engineering Languages and Systems (MODELS). 2013, pp. 21–25 (cit. on p. 69).

[126]Martin Fleck, Javier Troya, and Manuel Wimmer. “Marrying search­based optimiza­
tion and model transformation technology”. In: Proc. of NasBASE (2015), pp. 1–16
(cit. on p. 69).

[127]Arend Rensink. “The GROOVE simulator: A tool for state space generation”. In:
International Workshop on Applications of Graph Transformations with Industrial
Relevance. Springer. 2003, pp. 479–485 (cit. on p. 69).

[128]Claudia Ermel, Michael Rudolf, and Gabriele Taentzer. “The AGG approach: Lan­
guage and environment”. In: Handbook Of Graph Grammars And Computing By
Graph Transformation: Volume 2: Applications, Languages and Tools. World Scien­
tific, 1999, pp. 551–603 (cit. on p. 69).

[129]Peter Braun and FrankMarschall. “Transforming object orientedmodels with BOTL”.
In: Electronic Notes in Theoretical Computer Science 72.3 (2003), pp. 103–117 (cit.
on p. 69).

[130]SoichiroHidaka, ZhenjiangHu,Kazuhiro Inaba, Hiroyuki Kato, andKeisukeNakano.
“GRoundTram: An integrated framework for developing well­behaved bidirectional
model transformations”. In: 26th IEEE/ACM International Conference on Automated
Software Engineering. IEEE. 2011, pp. 480–483 (cit. on p. 69).

[131]Andy Schürr. “Specification of graph translators with triple graph grammars”. In: In­
ternational Workshop on Graph­Theoretic Concepts in Computer Science. Springer.
1994, pp. 151–163 (cit. on p. 69).

[132]Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer. “Henshin: advanced concepts and tools for in­place EMF model transfor­
mations”. In: International Conference onModel Driven Engineering Languages and
Systems. Springer. 2010, pp. 121–135 (cit. on p. 69).

[133]Lilija Klassen and Robert Wagner. “EMorF­A tool for model transformations”. In:
Electronic Communications of the EASST 42.C (2012) (cit. on p. 69).

[134]OMG. Meta Object Facility (MOF) Core Specification. Oct. 2016 (cit. on p. 70).

162 Bibliography

[135]Gordon D Plotkin. “A structural approach to operational semantics”. In: Computer
Science Department, Aarhus University (1981) (cit. on p. 70).

[136]Charles Antony Richard Hoare. “An axiomatic basis for computer programming”. In:
Communications of the ACM 12.10 (1969), pp. 576–580 (cit. on p. 70).

[137]Lars­åke Fredlund, Bengt Jonsson, and Joachim Parrow. “An implementation of a
translational semantics for an imperative language”. In: International Conference on
Concurrency Theory. Springer Berlin Heidelberg, 1990, pp. 246–262 (cit. on p. 70).

[138]Muhammad Waqar Aziz and Muhammad Rashid. “Domain Specific Modeling Lan­
guage for Cyber Physical Systems”. In: 2016 International Conference on Informa­
tion Systems Engineering (ICISE). IEEE, 2016, pp. 29–33 (cit. on p. 70).

[139]John Edward Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen.
“Empirical assessment ofMDE in industry.” In:Proceedings of the 33rd international
conference on software engineering (ICSE) (2011), p. 471 (cit. on p. 70).

[140]Paul Hudak. “Modular Domain Specific Languages and Tools”. In: 5th International
Conference on Software Reuse (June 1999) (cit. on p. 70).

[141]MarkusVölter. “Language and IDEModularization, Extension andCompositionwith
MPS”. In: Pre­proceedings of Summer School on Generative and Transformational
Techniques in Software Engineering (GTTSE) 7680 (July 2011), pp. 359–431 (cit. on
pp. 70, 71).

[142]Markus Völter and Konstantin Solomatov. “Language Modularization and Compo­
sition with Projectional Language Workbenches illustrated with MPS”. In: Software
Language Engineering 16.3 (2010) (cit. on p. 71).

[143]Martin Erwig, Richard F Paige, and Eric Van Wyk. “The state of the art in language
workbenches­conclusions from the languageworkbench challenge”. In: Software Lan­
guage Engineering­6th International Conference (SLE). Vol. 8225. Springer. 2013,
pp. 197–217 (cit. on p. 71).

[144]Jean­Marc Jézéquel, Benoit Combemale, Olivier Barais,MartinMonperrus, and Fran­
cois Fouquet. “Mashup of Meta­Languages and its Implementation in the Kermeta
Language Workbench”. In: Software & Systems Modeling 14 (June 2013) (cit. on
p. 71).

[145]Joao Saraiva. “Component­based programming for higher­order attribute grammars”.
In: International Conference on Generative Programming and Component Engineer­
ing. Springer. 2002, pp. 268–282 (cit. on p. 71).

[146]Uwe Kastens and William Waite. “Modularity and Reusability in Attribute Gram­
mars.” In: Acta Informatica 31 (July 1994), pp. 601–627 (cit. on p. 71).

Bibliography 163

[147]Holger Krahn, Bernhard Rumpe, and Steven Völkel. “MontiCore: A framework for
compositional development of domain specific languages”. In: nternational journal
on software tools for technology transfer 12.5 (Sept. 2010), pp. 353–372 (cit. on
p. 71).

[148]Srdjan Zivkovic and Dimitris Karagiannis. “Towards Metamodelling­In­The­Large:
Interface­Based Composition for Modular Metamodel Development”. In: vol. 214.
June 2015, pp. 414–428 (cit. on p. 71).

[149]Edoardo Vacchi and Walter Cazzola. “Neverlang: A framework for feature­oriented
language development”. In: Computer Languages, Systems & Structures 43 (Feb.
2015) (cit. on p. 71).

[150]Akos Ledeczi, Árpád Bakay, Miklós Maróti, et al. “Composing Domain­specific De­
sign Environments”. In: Computer 34.11 (Dec. 2001), pp. 44–51 (cit. on p. 71).

[151]Jacky Estublier, GermanVega, andAncaDaniela Ionita. “Composing domain­specific
languages for wide­scope software engineering applications”. In: International Con­
ference onModelDriven Engineering Languages and Systems. Springer. 2005, pp. 69–
83 (cit. on p. 71).

[152]Sebastian Erdweg, Paolo G Giarrusso, and Tillmann Rendel. “Language composi­
tion untangled.” In: Proceedings of the Twelfth Workshop on Language Descriptions,
Tools, and Applications (2012), pp. 1–8 (cit. on p. 71).

[153]Moritz Eysholdt and Heiko Behrens. “Xtext: implement your language faster than
the quick and dirty way”. In: International conference companion on Object oriented
programming systems languages and applications companion. ACM, 2010, pp. 307–
309 (cit. on p. 71).

[154]Dimitrios S Kolovos, Louis M Rose, Nicholas Matragkas, et al. “A research roadmap
towards achieving scalability in model driven engineering”. In: The Workshop on
Scalability in Model Driven Engineering. 2013, pp. 1–10 (cit. on p. 71).

[155]Jim Steel and Jean­Marc Jézéquel. “On model typing”. In: Software & Systems Mod­
eling 6 (Dec. 2007), pp. 401–413 (cit. on p. 71).

[156]Juan de Lara, Esther Guerra, and Jesús Sánchez­Cuadrado. “Abstracting modelling
languages: A reutilization approach”. In: International Conference on Advanced In­
formation Systems Engineering. Springer. 2012, pp. 127–143 (cit. on p. 71).

[157]Juan De Lara and Esther Guerra. “Generic meta­modelling with concepts, templates
and mixin layers”. In: International Conference on Model Driven Engineering Lan­
guages and Systems. Springer. 2010, pp. 16–30 (cit. on p. 71).

164 Bibliography

[158]Sebastian Erdweg, Paolo G Giarrusso, and Tillmann Rendel. “Language composition
untangled”. In: 12th Workshop on Language Descriptions, Tools, and Applications.
2012, pp. 1–8 (cit. on p. 71).

[159]Maged Elaasar, Florian Noyrit, Omar Badreddin, and Sébastien Gérard. “Reducing
UML Modeling Tool Complexity with Architectural Contexts and Viewpoints.” In:
International Con ference on Model Driven Engineering and Software Development
(MODELSWARD). 2018, pp. 129–138 (cit. on p. 72).

[160]A. Haber, M. Look, A. N. Perez, et al. “Integration of heterogeneous modeling lan­
guages via extensible and composable language components”. In: International Con ference
on Model Driven Engineering and Software Development (MODELSWARD). Feb.
2015, pp. 19–31 (cit. on p. 72).

[161]Pierre De Saqui­Sannes and Jérôme Hugues. “Combining SysML and AADL for the
design, validation and implementation of critical systems”. In: ERTS. 2012, p. 117
(cit. on pp. 72, 73).

[162]Razieh Behjati, Tao Yue, Shiva Nejati, Lionel Briand, and Bran Selic. “Extending
SysML with AADL concepts for comprehensive system architecture modeling”. In:
European Conference on Modelling Foundations and Applications. Springer. 2011,
pp. 236–252 (cit. on pp. 72, 73).

[163]Matthias Brun, Thomas Vergnaud, Madeleine Faugere, and Jérôme Delatour. “From
UML toAADL: an Explicit Execution SemanticsModellingwithMARTE”. In:ERTS.
2008 (cit. on p. 73).

[164]Skander Turki, Eric Senn, and Dominique Blouin. “Mapping the MARTE UML pro­
file to AADL”. In: 3rd International Workshop on Model Based Architecting and
Construction of Embedded Systems. Citeseer. 2010, pp. 11–20 (cit. on p. 73).

[165]Bassem Ouni, Pierre Gaufillet, Eric Jenn, and Jérôme Hugues. “Model Driven Engi­
neering with Capella and AADL”. In: ERTSS (Jan. 2016) (cit. on p. 73).

[166]Kunal Suri, Arnaud Cuccuru, Juan Cadavid, et al. “Model­based Development of
Modular Complex Systems for Accomplishing System Integration for Industry 4.0.”
In: International Con ference on Model Driven Engineering and Software Develop­
ment (MODELSWARD). 2017, pp. 487–495 (cit. on p. 73).

[167]S. Apel, M. Mauch, and V. Schau. “Model­driven engineering tool comparison for
architectures within heterogenic systems for Electric vehicle”. In: International Con­
ference onModel­Driven Engineering and Software Development (MODELSWARD).
Feb. 2016, pp. 671–676 (cit. on p. 74).

Bibliography 165

[168]Ivan Kurtev, Mathijs Schuts, Jozef Hooman, and Dirk­Jan Swagerman. “Integrating
InterfaceModeling andAnalysis in an Industrial Setting.” In: International Con ference
on Model Driven Engineering and Software Development (MODELSWARD). 2017,
pp. 345–352 (cit. on p. 74).

[169]F. Scippacercola, R. Pietrantuono, S. Russo, and A. Zentai. “Model­driven engineer­
ing of a railway interlocking system”. In: International Con ference on Model Driven
Engineering and Software Development (MODELSWARD). Feb. 2015, pp. 509–519
(cit. on p. 74).

[170]RodrigoRamos, Olivier Barais, and Jean­Marc Jezequel. “Matchingmodel­snippets”.
In: International Conference on Model Driven Engineering Languages and Systems.
Springer. 2007, pp. 121–135 (cit. on p. 74).

[171]Antonio Cicchetti, Federico Ciccozzi, and Thomas Leveque. “Supporting incremental
synchronization in hybrid multi­view modelling”. In: International Conference on
Model Driven Engineering Languages and Systems. Springer. 2011, pp. 89–103 (cit.
on p. 74).

[172]Carlos Gomez, Julien DeAntoni, and Frédéric Mallet. “Multi­view Power Modeling
Based on UML, MARTE and SysML.” In: 38th Euromicro Conference on Software
Engineering and Advanced Applications (Sept. 2012), pp. 17–20 (cit. on p. 74).

[173]Frédéric Boulanger, Christophe Jacquet, Cécile Hardebolle, and Elyes Rouis. “Mod­
eling heterogeneous points of view with ModHel’X”. In: International Conference
on Model Driven Engineering Languages and Systems. Springer. 2009, pp. 310–324
(cit. on p. 74).

[174]Mahmoud Nassar. “VUML: a Viewpoint oriented UML Extension”. In: 18th Inter­
national Conference on Automated Software Engineering, 2003. Proceedings. IEEE.
2003, pp. 373–376 (cit. on p. 74).

[175]Pierre­Alain Muller, Franck Fleurey, and Jean­Marc Jézéquel. “Weaving executabil­
ity into object­orientedmeta­languages”. In: International Conference onModel Driven
Engineering Languages and Systems. Springer. Oct. 2005, pp. 264–278 (cit. on p. 75).

[176]Ajinkya Bhave, Bruce H Krogh, David Garlan, and Bradley Schmerl. “View Consis­
tency in Architectures for Cyber­Physical Systems”. In: 2011 IEEE/ACMConference
on Cyber­Physical Systems. Apr. 2011, pp. 151–160 (cit. on p. 75).

[177]Jörg Kienzle, Wisam Al Abed, and Jacques Klein. “Aspect­orientedMulti­viewMod­
eling”. In: 8th ACM Conference on Aspect­oriented Software Development. 2009,
pp. 87–98 (cit. on p. 75).

166 Bibliography

[178]Arnaud Albinet, Jean­Louis Boulanger, Hubert Dubois, et al. “Model­based method­
ology for requirements traceability in embedded systems”. In: Proceedings of 3rd
European Conference on Model Driven Architecture Foundations and Applications.
2007 (cit. on pp. 76, 77).

[179]Lucio F Vismari, João Batista Camargo, Jorge Rady de Almeida, et al. “A practical
analytical approach to increase confidence in software safety arguments”. In: IEEE
Systems Journal 11.4 (2015), pp. 2072–2083 (cit. on p. 77).

[180]Jean­François Pétin, Dominique Evrot, Gérard Morel, and Pascal Lamy. “Combining
SysML and formal methods for safety requirements verification”. In: 22nd Interna­
tional Conference on Software & Systems Engineering and their Applications. 2010
(cit. on p. 77).

[181]Romaric Guillerm, Hamid Demmou, and Nabil Sadou. “Safety evaluation and man­
agement of complex systems: A system engineering approach”. In: Concurrent Engi­
neering 20.2 (2012), pp. 149–159 (cit. on p. 77).

[182]Daniel D McCracken and Edwin D Reilly. “Backus­naur form (BNF)”. In: Encyclo­
pedia of Computer Science (2003), pp. 129–131 (cit. on p. 85).

[183]Hui Zhao, Ludovic Apvrille, and Frédéric Mallet. “Meta­models Combination for
Reusing Verification Techniques”. In: 7th International Conference onModel­Driven
Engineering and SoftwareDevelopment. SCITEPRESS­Science and Technology Pub­
lications. 2019, pp. 39–50 (cit. on pp. 105, 110, 113, 118, 119).

[184]Frank Singhoff, Jérôme Legrand, Laurent Nana, and Lionel Marcé. “Cheddar ­ a
flexible real time scheduling framework.” In: Proceedings of the 2004 annual ACM
SIGAda international conference on Ada: The engineering of correct and reliable
software for real­time distributed systems using Ada and related technologies (2004),
pp. 1–8 (cit. on pp. 106, 118).

[185]Li Zhu, Yan Zhang, Bin Ning, and Hailin Jiang. “Train­ground communication in
CBTC based on 802.11 b: Design and performance research”. In: International Con­
ference on Communications and Mobile Computing. IEEE. 2009, pp. 368–372 (cit.
on p. 118).

[186]Junfeng Wang and Jungang Wang. “A new early warning method of train tracking
interval based on CTC”. In: IEEE Transactions on Intelligent Transportation Systems
(2017), pp. 1–7 (cit. on p. 118).

[187]LMarcé, F Singhoff, J Legrand, and LNana. “Scheduling andMemory Requirements
Analysis with AADL”. In: International Conference on Ada. NY, USA: ACM, 2005,
pp. 1–10 (cit. on p. 120).

Bibliography 167

[188]Alexey V Bataev and Ariadna Aleksandrova. “Digitalization of the World Economy:
Performance Evaluation of Introducing Cyber­Physical Systems”. In: International
Conference on Industrial Technology andManagement (ICITM). IEEE. 2020, pp. 265–
269 (cit. on p. 125).

[189]George Fortney. “Model based systems engineering using validated executable spec­
ifications as an enabler for cost and risk reduction”. In: Ground Vehicle Systems En­
gineering and Technology Symposium (GVSETS). 2014 (cit. on p. 125).

[190]MarilynWolf and Dimitrios Serpanos. “Safety and security in cyber­physical systems
and internet­of­things systems”. In: Proceedings of the IEEE 106.1 (2017), pp. 9–20
(cit. on p. 126).

[191]Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, et al. “An open approach to autonomous
vehicles”. In: IEEE Micro 35.6 (2015), pp. 60–68 (cit. on p. 127).

[192]EVITA. EVITA Project. [Online]. Available: https: / /www.evita­ project .org. 2009
(cit. on pp. 127, 130, 134).

[193]ISO 26262. Road vehicles – Functional safety. Norm. 2011 (cit. on pp. 127, 130).

[194]IEC61508 IEC. “61508 functional safety of electrical/electronic/programmable elec­
tronic safety­related systems”. In: International electrotechnical commission (1998)
(cit. on p. 130).

[195]CENELEC. “EN50126: Railway applications­The specification and demonstration
of Reliability”. In: Availability, Maintainability and Safety (RAMS) (1999) (cit. on
p. 130).

[196]Alessandro Tempia Calvino and LudovicApvrille. “DirectModel­checking of SysML
Models.” In:MODELSWARD. 2021, pp. 216–223 (cit. on p. 132).

[197]Ekkart Kindler. “Safety and liveness properties: A survey”. In: Bulletin of the Euro­
pean Association for Theoretical Computer Science 53.268­272 (1994), p. 30 (cit. on
p. 134).

[198]Radek Fujdiak, Petr Blažek, Ludovic Apvrille, et al. “Modeling the trade­off between
security and performance to support the product life cycle”. In: Budva, Montenegro,
June 2019 (cit. on p. 137).

[199]Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model­driven software de­
velopment: technology, engineering, management. John Wiley & Sons, Inc., 2006
(cit. on p. 144).

[200]David Harel and Bernhard Rumpe. Modeling languages: Syntax, semantics and all
that stuff . Tech. rep. Technical Report MCS00­16, The Weizmann Institute of Sci­
ence, Rehovot, Israel, Aug. 2000 (cit. on p. 144).

168 Bibliography

https://www.evita-project.org

[201]Eric Xing. “SysML: On System and Algorithm Co­design for Practical Machine
Learning”. In: ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2018, pp. 2880–2888 (cit. on p. 148).

Bibliography 169

	Jury
	Remerciements
	Acknowledgement in chinese
	Abstract
	Resumé
	Publications
	List of Figures
	List of Tables
	1 Introduction
	1.1 A brief introduction to Cyber-Physical Systems
	1.2 Motivation and objective
	1.3 Problem statement
	1.4 Contributions of this thesis
	1.4.1 Combination Modeling Language (CML)
	1.4.2 Combining AADL for scheduling verification
	1.4.3 Safety and security design

	1.5 Organization of this thesis

	2 Context: CPS and model-based design
	2.1 Introduction
	2.1.1 CPS and IoT
	2.1.2 Industrial applications
	2.1.3 Challenges for CPS

	2.2 Modeling approaches for CPS design
	2.2.1 Model-based system engineering
	2.2.2 Multi-view modeling approach
	2.2.3 Challenges for modeling CPS

	2.3 Modeling languages and frameworks
	2.3.1 Capella and Arcadia methodology
	2.3.2 TTool – A SysML-Sec support toolkit

	2.4 MBSE concerns in CPS design
	2.5 Conclusion

	3 State-Of-The-Art
	3.1 Introduction
	3.2 Model transformation
	3.2.1 Classification and tools
	3.2.2 Relational M2M
	3.2.3 Imperative M2M
	3.2.4 Graph-based M2M

	3.3 Modeling languages
	3.3.1 DSML
	3.3.2 Extending languages

	3.4 Multi-View Modeling
	3.5 Modeling for security & safety
	3.6 Conclusion

	4 Combination Modeling Language
	4.1 Introduction
	4.2 The Combination Modelling Language
	4.2.1 Specification
	4.2.2 Combination Patterns
	4.2.3 Abstract syntax of CML
	4.2.4 Meta symbols and notations rule expression
	4.2.5 Abstract syntax of rule expression in EBNF
	4.2.6 Operators and Semantics
	4.2.7 Operational Transformation Rules

	4.3 Conclusion

	5 Support tool
	5.1 Introduction
	5.2 Architecture
	5.3 Instrumentation
	5.3.1 Meta-model level
	5.3.2 Specific model level

	5.4 Tool comparison
	5.5 Conclusion

	6 Bridging Capella with AADL for schedulability analysis
	6.1 Introduction
	6.2 Overview of our approach
	6.3 Transformation Rule Library (TRL)
	6.3.1 Functional view
	6.3.2 Physical view

	6.4 Case study
	6.4.1 Train traction control system
	6.4.2 Model transformation
	6.4.3 Schedule verification

	6.5 Summary

	7 Promoting functional design with safety and security properties
	7.1 Introduction
	7.2 Motivation
	7.3 Multi-view modeling approach for security and safety design
	7.3.1 Workflow
	7.3.2 Security and safety scopes
	7.3.3 Properties to verify
	7.3.4 Transformation rule library for security and safety

	7.4 Case study
	7.5 Conclusion

	8 Conclusion and Perspective
	8.1 Conclusion
	8.1.1 Overview
	8.1.2 Contributions
	8.1.3 Limitations

	8.2 Perspectives

	List of Abbreviations
	Bibliography

