
HAL Id: tel-03777650
https://theses.hal.science/tel-03777650

Submitted on 15 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multidimensional Analysis of The Android Security
Ecosystem

Andrea Possemato

To cite this version:
Andrea Possemato. A Multidimensional Analysis of The Android Security Ecosystem. Cryptography
and Security [cs.CR]. Sorbonne Université, 2021. English. �NNT : 2021SORUS455�. �tel-03777650�

https://theses.hal.science/tel-03777650
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

SORBONNE UNIVERSITE
préparée à EURECOM

École doctorale EDITE de Paris n◦ ED130
Spécialité: «Informatique, Télécommunications et Électronique»

Sujet de la thèse:

A Multidimensional Analysis of The
Android Security Ecosystem

Thèse présentée et soutenue à Biot, le 14/09/2021, par

Andrea Possemato

Rapporteurs Prof. Patrick Gerard Traynor University of Florida
Prof. René Mayrhofer Johannes Kepler University

Examinateurs Prof. Yousra Aafer University of Waterloo
Prof. Antonio Bianchi Purdue University
Prof. Davide Balzarotti EURECOM

Directeur de thèse Prof. Aurélien Francillon EURECOM
Co-Encadrant Dr. Yanick Fratantonio Cisco Systems Inc.

Abstract

With more than 2.5 billion active devices based on Android, Google’s mo-
bile operating system is now one of the most widely used in the world. This
success is also due to the fact that numerous vendors contribute to its diffu-
sion, producing numerous devices that are based on Android, but that offer
several other modifications, both in terms of functionality and usability. Al-
though this introduces diversity into the ecosystem and contributes to its
expansion, from a security point of view, this also introduces challenges.
In fact, having diverse entities contributing and modifying the code means
that the final security of the device is no longer in the hands of a single
entity, but becomes a multi-party effort. Despite all the efforts made by
Google to constantly improve the security of the entire Android ecosystem,
there are still several problems that remain unresolved. In this thesis, we
analyse in detail some of the open problems that affect different components
and players that are part of and contribute to the Android ecosystem. We
start with the security analysis of the network communication of Android
applications, showing how, even if Android provides several techniques to
secure network communications, developers sometimes are still forced to
use cleartext protocols. Our study continues with the analysis of another
issue that puts the security and privacy of the user at risk. We analyze
the vulnerabilities exploited by malicious applications to perform phishing
attacks and how there is still no system in place to allow applications to
protect themselves against these attacks. Last, we analyze what we think
may be the perfect representation of how difficult it is to ensure security in a
domain as extensive as Android analyzing how customizations, even though
beneficial to vendors, can lead to security problems that are lowering down
the overall security of the Android system. In this thesis, for each of the
problems, we analyze the issue in detail, we measure how widespread it is,
and we propose an alternative solution with the aim of solving the problem,
making a step towards a more secure Android ecosystem.

Contents

1 Introduction 1

1.1 Problem statement . 4
1.2 Contributions . 5
1.3 Thesis outline . 8

2 The Layers of Android Security 11

2.1 The Application Layer . 12
2.2 The Android Operating System Layer 15
2.3 The Vendor Layer . 18

2.3.1 Chipset Manufacturer 18
2.3.2 Original Design Manufacturers 19
2.3.3 Original Equipment Manufacturers 20

3 Securing the Application Layer: the Networking Problem 25

3.1 Introduction . 26
3.2 Network Communication Insecurity 28

3.2.1 HTTP . 29
3.2.2 HTTPS and Certificate Pinning 29
3.2.3 User Certificates . 31

3.3 Network Security Policy . 31
3.3.1 Policy Specification . 33
3.3.2 Towards HTTPS Everywhere 35
3.3.3 TrustKit . 37

3.4 Policy Weaknesses . 38
3.4.1 Allow Cleartext . 38
3.4.2 Certificate Pinning Override 39
3.4.3 Silent Man-In-The-Middle 40

3.5 Policy Adoption . 41
3.5.1 Dataset . 42
3.5.2 Dataset Exploration & Weaknesses 42

ii ii

3.5.3 Cleartext . 43
3.5.4 Domains Definition . 44
3.5.5 Policy for 127.0.0.1 . 45
3.5.6 Trusted Certificates. 46
3.5.7 Domain example.com and Invalid Digests 46
3.5.8 Certificate Pinning . 48
3.5.9 Invalid Attributes . 48
3.5.10 TrustKit . 49
3.5.11 Remaining Applications 49
3.5.12 Dataset Evolution . 50

3.6 Android Networking Libraries Adoption 51
3.6.1 Disclosure . 57

3.7 Impact of Advertisement Libraries 57
3.7.1 Dataset . 61
3.7.2 Policy Characterization 61
3.7.3 Ad Libraries in Applications 64
3.7.4 Case Study: MoPub 65

3.8 Network Security Policy Extension 67
3.9 Limitations . 70
3.10 Related Work . 71

3.10.1 Network Security . 71
3.10.2 Code Reuse . 72
3.10.3 Advertisements . 73

4 Securing the System Layer: the Phishing Problem 75

4.1 Introduction . 76
4.2 Phishing Attacks on Android 79

4.2.1 Phishing . 79
4.2.2 Anatomy of a Phishing Attack 80
4.2.3 Characterizing State Inference Attacks 80

4.3 Threat model . 82
4.4 Exploring the Attack Surface: System Services 83

4.4.1 Android System Services 83
4.4.2 Known Potential Pitfalls 85

4.5 Technical Challenges . 85
4.6 Analysis Framework . 87

4.6.1 Overview . 87
4.6.2 Analysis framework organization. 88
4.6.3 Enumerating the Attack Surface 88
4.6.4 Stimulation Strategies 91

Contents iii

4.6.5 Data Serialization . 93
4.6.6 Data Analysis . 94
4.6.7 Comparison with SCAnDroid 95

4.7 Evaluation . 97
4.7.1 Experimental setup . 97
4.7.2 Attack Surface Enumeration 97
4.7.3 Analysis Results . 99
4.7.4 Results Comparison with SCAnDroid 102

4.8 Case Studies . 104
4.8.1 CVE-2019-9292 . 104
4.8.2 CVE-2020-0343 . 105
4.8.3 Won’t Fix . 106

4.9 Detecting State Inference Attacks 108
4.9.1 Peculiarity of Phishing Applications 109
4.9.2 Peculiarity of Benign Applications 111
4.9.3 Benign Application Analysis 111
4.9.4 Results and Observations 112
4.9.5 Proposed Detection System 116
4.9.6 Evaluation . 118
4.9.7 Comparison with Leave Me Alone 121

4.10 Limitations . 123
4.10.1 Availability of Source Code 123
4.10.2 Detection of New Phishing Variants 124

4.11 Related work . 124
4.11.1 Detecting State-Inference Attacks 124
4.11.2 Phishing on Android: Attack and Defense 125

5 Securing the Vendor Layer: the Fragmentation Problem 129

5.1 Introduction . 130
5.2 Life of a ROM . 134

5.2.1 What is in a ROM . 134
5.2.2 ROM Customization 134
5.2.3 Compliance Checks and Requirements 135

5.3 ROM Analysis Framework . 136
5.3.1 Architecture Overview 136
5.3.2 Tag Identification . 137
5.3.3 Analysis of Binary Customization 138
5.3.4 Analysis of SELinux Policies 139
5.3.5 Analysis of Init Scripts 140
5.3.6 Kernel Security Analysis 141

Contents

5.4 Dataset Characterization . 142
5.5 Compliance . 144

5.5.1 Kernel Configurations Compliance 145
5.5.2 SELinux Compliance 149
5.5.3 Binary Compliance . 153

5.6 Additional Customizations . 154
5.6.1 New Functions in System Libraries 154
5.6.2 Compile-time Hardening 156
5.6.3 Android Init Script Customizations 161
5.6.4 SELinux Customization 164

5.7 Related Work . 169
5.7.1 The Perils of Android Customizations 169
5.7.2 SELinux Policy Analysis 171

6 Conclusion and Future Work 175

6.1 Future work . 176
6.2 Conclusion . 180

Appendices 183

A French Summary 185

A.1 Introduction . 186
A.2 Sécuriser la couche d’Application 189

A.2.1 Network Security Policy: Les Faiblesses 190
A.2.2 Network Security Policy: L’adoption 192
A.2.3 Network Security Policy: Les Limites 192

A.3 Sécuriser la couche Système 193
A.3.1 Prévention des attaques par inférence d’état 194
A.3.2 Détection des attaques par inférence d’état 196

A.4 Sécuriser la couche du Fabricant 197
A.4.1 Conformité : Analyse et résultats 199
A.4.2 Personnalisation : Analyse et résultats 201

A.5 Conclusion . 203

List of Figures

3.1 Cumulative Distribution Function of defined domains. 45
3.2 Ecosystem of individual ad network. 60

4.1 Anatomy of a Phishing Attack. 79
4.2 Interaction with ActivityManager System Service. 84
4.3 State-Inference Vulnerabilities Finder Framework. 87
4.4 Impact Of Bootstrap Phase. 119
4.5 Impact of State-Inference Attacks Detection Mechanism . . . 121

5.1 SDK Level Distribution. 143
5.2 Analysis of new exported functions introduced in AOSP li-

braries. 155
5.3 Mean of percentages of binaries using a security feature. . . . 161
5.4 Evolution of Android Init Scripts. 162
5.5 Distribution of SELinux rules in the policies. 165
5.6 Distribution of SELinux domains, types, and classes present

in the policies. 166
5.7 Evolution and Classification of SELinux Modifications. 167

List of Tables

3.1 Compliance of Networking Libraries. 54
3.2 Analysis of Advertisement Libraries. 62
3.3 LibScout external libraries identification. 65
3.4 Distribution of the dataset in terms of inclusion of ad libraries

and cleartext configuration. 66

4.1 Extraction of attacker-reachable services. 98
4.2 Distribution of the dataset in terms of inclusion of ad libraries

and cleartext configuration. 98
4.3 Method Filtering Process. 98
4.4 Systematization of the vulnerable APIs. 100
4.5 APIs whitelisting. 114

5.1 System Hardening Requirements defined in the Compatibility
Definition Document. 146

5.2 Mapping from Kernel Configuration To ELF Symbols. 148
5.3 Violations regarding the kernel configuration. 149
5.4 Violations of permissive domains in the SELinux policy. . . . 151
5.5 AOSP SELinux Violations. 152
5.6 Userspace Mitigation Techniques. 159

Listings

3.1 Network Security Policy . 35
3.2 Network Security Policy API 23 and Lower 36
3.3 Network Security Policy API 24 to 27 Lower 36
3.4 Network Security Policy API 28 and Higher 36
3.5 Network Security Policy - TrustKit 37
3.6 Network Security Policy - Allow Cleartext 38
3.7 Network Security Policy - Certificate Pinning Override 39
3.8 Network Security Policy - Silent MITM 40
3.9 Network Security Policy - (a) Certificate Pinning on example.

com . 47
3.10 Network Security Policy - (b) Certificate Pinning on

example.com . 47
3.11 Network Security Policy - Automatic Evaluation Framework . 55
3.12 Network Security Policy - Extension 68
4.1 CVE-2019-9292: isAppForeground 105
4.2 CVE-2020-0343: getDataLayerSnapshotForUid 106
4.3 Won’t Fix: queryEvents . 107

example.com
example.com
example.com

Chapter 1

Introduction

1

2 2

With its first appearance in September 2007, Android is today one of the
most widely used operating systems in the world [osm21]. Among the many
strengths that have allowed the success of this system, two are perhaps the
most important ones. The first one is that its open source nature allows
different vendors to produce devices based on Android. The second one,
instead, is the wide availability of applications that the user can use. This
success can also be seen in how products that were previously thought and
designed only for use in Personal Computers, such as email clients or office
suites, are now also present for Android. Moreover, services that were pre-
viously available only through web platforms (e.g., banking applications),
are now also finding their place within the Android system. All this gives
the user the ability to perform more and more operations from the comfort
of their smartphones.

This migration of users from Personal Computers to mobile devices, has
made Android a well explored and researched topic since the beginning,
both by academic and industrial research, especially regarding security is-
sues that might affect this new platform. Unfortunately, several problems
identified over the years remain, to date, unresolved. Furthermore, the great
spreading of the system among users has also interested cybercriminals who
have started to hit this new mobile operating system [Zer21]. In fact, over
the years, attacks that were previously used only to compromise PC and web
services, have been slowly adapted to the mobile ecosystem, arriving even
to create new types and categories of attacks that are specific to Android
smartphones [bK21].

The appearance of these new attacks and problems have pushed re-
searchers to study new mitigations aimed at improving the security and
the privacy of users and devices, and presenting, over the years, numerous
research efforts that have made more and more difficult the exploitation
of Android devices. However, this increase in security measures has not
shifted the interests of malicious actors from this platform: on the contrary,
it has pushed attackers to research and employ increasingly innovative and
complex techniques to compromise the security of the system.

Nonetheless, as much as the developers of the Android system try to
create a hardened system, the evolution and complexity of the Android
ecosystem has made it very challenging for Google alone to manage the
security of the entire system.

Indeed, despite efforts to introduce mitigations at the level of the An-
droid Open Source Project (AOSP), which is used by default by all Android-
based devices, it was realized that it was not enough to guarantee the se-
curity of the overall ecosystem [Kra17]. In fact, the great number of actors

3

involved in the development of a single device, whether contributing with
software or hardware, very often have little to do with the security pro-
posed by AOSP. At the same time, each of them contributes to the final
security of the device. It is thus necessary that the developers of each com-
ponent understand the security issues their component is subjected to, and
correctly implement all the necessary security measures to ensure that the
whole system cannot be compromised.

In the Android ecosystem, therefore, the final security of the device and
the user, no longer becomes an effort made only by the main AOSP system
developers, but it becomes a collective effort that includes all the actors
that play a role in the entire supply-chain of the device: we thus argue
that Android system security must be approached from a perspective of a
complex and multi-player ecosystem [wis19].

This, unfortunately, has also given rise to several challenges: these dif-
ferent organizations, in fact, despite collaborating in the development of the
same device, might approach security in different ways, might have different
threat models, and problems that forces them to make decisions that may
not see security as a key and fundamental element [ZLZ+14]. There are
cases in which the security takes a back seat, as developers prefer usability,
functionality, and beating the market. Many times, introducing new secu-
rity features or fixing vulnerabilities can require investing significant time
in refactoring code. Moreover, introducing these new security measures can
make the application not compatible with older versions of Android. Invest-
ing in the security of the application therefore can be seen as an investment
that slows down the application’s release time, and potentially causes a loss
of users: this is when security might become an obstacle, not a feature.

Ensuring that security is enforced and respected at each step of the en-
tire supply-chain is becoming an increasingly widespread problem. Even
though these issues have been extensively analyzed over the years, and nu-
merous papers have been published, this problem still remains unresolved,
and still hides many challenges and problems that have never been previ-
ously studied.

To solve these problems, we first need to fully understand the issues
that prevent the developers to approach security in the right way, and how
these problems can be solved by considering the issues from developers’
perspective. This is the only way to create security measures that will allow
developers and all actors involved in the Android ecosystem to sense security
as an integral part of the product, and not as a barrier.

4 4

1.1 Problem statement

To date, the Android Operating System is one of the most used mobile
systems on the market, and it has reached, over the years, more than 2.5
billion devices built by more than 1,300 different vendors [osm21, wis19].
The great success that has made Android one of the most popular systems
is also due to the large number of applications that can be found in the
official and unofficial stores. Nowadays smartphones allow users to perform
operations that were previously available only on desktop computers.

Unfortunately, the shift of platform by users has pushed attackers to
adapt and create attacks that were previously performed on PCs to mobile
platforms. The interest of attackers in mobile platforms makes it clear how
important it is to study the security of these systems [Zer21, bK21].

As the first goal of this thesis, we set out to understand and analyze how
some of these attacks have evolved and adapted from the web and PCs to
mobile devices. We decided to analyze, specifically, two major issues that
still affect several components of the Android platform: networking attacks
and vulnerabilities that allow attackers to mount phishing. We investigate
how the Android system identifies and mitigates these attacks, whether
applications have mechanisms in place to block them, and what are the
security and privacy risks for the end user.

As mentioned above, the Android ecosystem involves numerous entities
that contribute in different ways to the development of the device and its
operating system, providing components ranging from software to hardware.
Because of this complexity, the security of the system is not in the hands of a
single entity, but requires an effort from all parties involved. However, each
of these players that contribute to the ecosystem have different needs and
they approach security differently. There may be situations where security
cannot be considered unless the developers spend considerable time on it.
Very often this clashes with the objective to introduce a new product on
the market, with the shortest time-to-market possible. Thus, application
developers are sometimes put in a position to choose between usability and
security, and unfortunately, in certain scenarios, the two cannot be taken
simultaneously, forcing the developers to prefer the former at the expense
of the latter.

Therefore, as a second objective of this thesis, we analyze how the ap-
proach to security changes depending on the component and layer that is
taken into account, highlighting how, even today, there is a lack of defense
mechanism that allow the various actors to consider security not as a feature
to be enabled when needed, but as an integral part of the whole system.

1.2. Contributions 5

One of the additional strengths of the Android system is its openness.
This allowed its rapid diffusion, allowing it to reach significant portions of
the mobile market. In particular, this gave the possibility to other vendors
to customize the system entirely, but this also introduced significant secu-
rity issues. It is in fact not uncommon to find vulnerabilities that affect
proprietary components introduced by vendors, or that affect only certain
devices for which the vendor has not correctly applied the security fixes
published by Google in its monthly security bulletin: this problem is also
known as “fragmentation,” and has been afflicting the Android ecosystem
for years.

As the last goal of this thesis, we analyze in detail the evolution of
this issue over the years. We uncover how the entire supply-chain of an
Android-based device is much more complex than we previously believed,
and we show how the actors contributing to the ecosystem might have a
negative impact on the security posture of the final device.

Each of the analysis we performed has highlighted numerous challenges
and brought to light issues that were not known nor addressed by previous
work. This thesis presents the path we took to address these issues, showing
how we tackled them and how we tried to solve the challenges that, at
reporting time, were still open.

1.2 Contributions

The research we present in this thesis has been guided by several key ques-
tions. After having identified a specific interesting problem, one aspect we
wondered about was how widespread the problem was in the real world. De-
termining the extent and spread of the problem also helps us understand,
potentially, how many devices and users are affected by a given issue; The
more widespread the problem, the more important it is to try to solve it.
We therefore focus on the problems that affect the Android ecosystem and
that potentially put millions of users at risk.

Understanding the extent of the problems is just the first step. As a sec-
ond step, our research has looked for problems for which AOSP and Google
have potentially provided solutions and mitigations, but that nevertheless
continue to affect the ecosystem. Understanding why developers did not
adopt available defense mechanisms to mitigate a specific threat poses in-
teresting research questions. Furthermore, for each of these defenses, we
tried to identify how much developer’s effort was required. Indeed, leav-
ing the developer the possibility to configure these components can lead to
numerous problems, such as adopting of configurations that are too permis-

6 6

sive, or in the worst case, opening up devices to critical security problems.
These issues were also the focus of our research, and we attempted to quan-
tify how widespread the problem of incorrect security configurations within
Android systems was. This thesis, however, is not limited to just con-
ducting large-scale analyses to measure the extent of these issues: the last
direction we have set to explore was to make the system safer, thus raising
the bar for attackers that want to compromise the system. Alongside the
measurements, this thesis documents a significant engineering effort aimed
at making at developing new security measures and at making the current
security measures more security, effective, and practical.

In the following paragraphs, we illustrate the three principal contribu-
tions of this thesis. Each contribution is presented in the form of an analysis
of a security problem that affects the system, and aims to study and propose
new approaches to mitigate the problem.

The first problem we address relates to the security of Android applica-
tion, with a focus on their network communications, and how they can be
exploited to compromise the integrity of an application or the entire sys-
tem. The security of Android applications has been the subject of numerous
works, and is a topic that has been studied extensively over the years. Net-
working issues are still of fundamental importance since, nowadays, virtually
all mobile applications rely on network communication to exchange sensi-
tive data with their network backend. Thus, the number of applications,
and consequently users, that might be impacted by this issue is potentially
significant. Unfortunately, despite the efforts and improvements made to
the operating system to mitigate these issues, some problems are still un-
resolved: to date, developers still adopt weak and potentially vulnerable
network security configurations and settings.

As a first contribution, we present the first comprehensive and large-
scale study on the recently introduced Android network security mechanism,
called Network Security Policy. Our study identified several strengths but
also numerous common pitfalls that might occur, and shows that the root
causes leading to weak policies can be attributed to the adoption, by the ap-
plication developer, of external components—like third-party advertisement
libraries—that encourage and require unsafe practices. Since the developer
cannot control or change the security of these components, they must use
these external libraries as they are, even if they are potentially vulnerable.
This reflects the problem discussed above: current incentives push develop-
ers to choose functionality over security. This study identified as one of the
key problems the coarse-grain nature of the security policy, which does not
allow developers to set different policies for different components. To this

1.2. Contributions 7

end, we propose a drop-in extension to the current Network Security Pol-
icy format that allows developers to comply with the needs of third-party
libraries without weakening the security of the entire application.

As a second contribution, we study how the Android framework protects
applications from attacks that have evolved and adapted from the web and
moved on to affect mobile systems, focusing our analysis on “phishing.” The
effectiveness of phishing attacks on the web have led attackers to adapt and
improve it to make it effective on mobile platforms as well. The problem
of malicious applications mounting this attack has been deeply studied over
the years, both in the realm of web security as well as in the realm of mobile
security. Phishing attacks are particularly problematic for mobile platforms
because it is not possible, nowadays, to provide enough information for a
user to reliably distinguish a legitimate application from a malicious app
spoofing its user interface. Despite all the efforts, detecting and preventing
phishing attacks has not been completely solved yet, thus making this a good
research problem. We first studied in detail the various techniques used by
the attackers, and we noticed how a common pattern is to abuse vulnerable
APIs that “leak” the device’s state (e.g., which app the user is currently
interacting with). To this end, we aimed at identifying all vulnerabilities
exploited by malware to mount phishing attacks. As a result, we were
able to identify 18 new vulnerabilities that can be abused by malicious
actors, leading to 6 CVEs. Despite being an important first step towards
eradicating this issue, automatically identifying these vulnerabilities is not
possible: the complexity of the system and its continuous evolution make
it difficult to catch all bugs in the general case. Hence, since the Android
system does not provide a method for applications to protect themselves
from the phishing threat and it does not have a mechanism that detects these
attacks at runtime, we envisioned a new detection system that identifies and
blocks certain categories of phishing attacks at the moment they occur.

As a third contribution, we bring our attention to the security posture
of the entire Android ecosystem. Because of the way the ecosystem has
expanded and evolved over the years, security now has to be analyzed by
considering the perspectives of all its components and players. We believe
that the Android ecosystem has evolved so much that it is important to
analyze how individual entities, such as vendors, implement the various
security mechanisms that are available and introduced on AOSP. In fact,
the mere fact that AOSP introduces or implements certain security features
does not guarantee that vendors will use them in their final products, or
that they will configure them correctly. All the efforts made over the years
to ensure a secure system become meaningless if they are not correctly

8 8

implemented and enabled by all the nodes of the chain that contributes to
the final device.

This perspective pushed us to study how the security of the ecosystem
depends on each of its components, and we show how the remaining
components that contribute to the whole supply-chain of a device ap-
proach security. We perform this by analyzing in detail the largest and
most significant component, the one identified by the various Android
vendors. In this study, we find how the fragmentation of the ecosystem has
repercussions in terms of adoption and configuration of various security
mechanisms. This thesis presents the results of our study, and how this
problem may affect the entire security posture of the vendor system. We
performed the first longitudinal and large-scale analysis of non-Google
devices aimed at understanding the security repercussions of system and
framework customizations. Our analysis takes an in-depth look at two key
aspects. The first one is the “compliance,” which checks whether a certified
system actually follows the rules dictated by Google, while the second one
relates to how customizations may affect the security of the overall device.
We uncover how vendor-specific components significantly lag behind with
respect to the security posture of the main Android Open Source Project.

This research allowed us to explore different issues related to security
in the Android ecosystem. The continuous shift in viewpoints made it pos-
sible for us to analyze how different actors that contribute to this system
sense and approach security differently. Our research showed that there is
still a gap, in terms of security measures and practices, for all the players
contributing to the development and growth of this ecosystem to approach
and sense security as an integral part for the components they develop, and
not as an obstacle. Although there is still a lot of work to be done to make
the Android system completely secure, we believe that this thesis has taken
a step towards this direction, bringing to light new problems, solving old
ones, and proposing new security systems and models that can allow the
various entities of the ecosystem to increase their level of security.

1.3 Thesis outline

The thesis consists of a total of 6 chapters.
Chapter 2 presents the background and how we envisioned the partition

of the ecosystem into layers. For each layer, we describe its role within
the ecosystem, what security issues may affect it, and how security is ap-
proached.

1.3. Thesis outline 9

In Chapter 3, we start by discussing a specific security issue which af-
fects Android applications. Indeed, to better understand how the security
is approached amongst the application developers, we use as example the
security of network communications. In this chapter, we describe in de-
tail the recent introduction of the Network Security Policy (NSP). NSP
is an XML-based configuration file that allows applications to define their
network security settings without defining any code that implements these
configurations. Furthermore, we perform the first comprehensive study and
large-scale analysis on this new network defense mechanism, identifying its
strengths and common pitfalls. Last, we propose a new drop-in replacement
of the Network Security Policy that solves the problems and limitations we
identified.
This chapter is based on the publication “Towards HTTPS Everywhere on

Android: We Are Not There Yet” [PF20].
In Chapter 4, we present a comprehensive study on the issue of phishing

attacks on Android. This is a problem that the entire Android system and
framework has been facing for years but remains unresolved. To properly
understand the problem and identify its root causes, we start with a system-
atic study of the vulnerabilities exploited by malware to mount this attack
during the years. We identify one of the core and active issues: vulnerable
system APIs that “leak” the device’s state. Those APIs provide the attack-
ers with numerous privileged information that allow them to mount more
effective phishing attacks. To address this class of vulnerabilities, we devised
an automatic system that can assist system developers in identifying these
APIs automatically. However, we faced numerous issues and challenges in
this process, and we describe them in the remainder of the chapter, showing
how some of these challenges are still unresolved. We conclude the chapter
by presenting how the experience gained in trying to automatically identify
these vulnerabilities, allowed us to devise a new on-device detection system
to identify phishing attacks at the moment they occur.
This chapter is based on the publication “Preventing and Detecting State

Inference Attacks on Android” [ADY21].
Moving on to Chapter 5, we present the last main contribution of this

thesis. In this chapter we present the analysis on security implications and
repercussions of “fragmentation” of the Android ecosystem. We illustrate
the security issues that can be introduced by the changes made by vendors,
and how they can lower the security of the system, either by reintroducing
old issues already solved, or introducing new ones. Furthermore, this chap-
ter presents the first longitudinal study on Android OEM customizations
and shows how numerous Android-based devices do not meet the security

10 10

prerequisites defined by Google and significantly lag behind with respect to
the security posture of the main Android Open Source Project.
This chapter is based on the publication “Trust, But Verify: A Longitudinal

Analysis Of Android OEM Compliance and Customization” [ASDY21].
Chapter 6 concludes the journey of our thesis. In this chapter, we present

future work and research directions that we hope will be pursued, thus mak-
ing the entire Android ecosystem more secure. Moreover, we describe ideas
for improvement on the research we presented in this thesis, which could
solve limitations or challenges that still remain open despite our efforts. We
conclude this thesis with a summary of the challenges we undertook, how
we solved them, and how we made a step towards a more secure Android
ecosystem.

Chapter 2

The Layers of Android

Security

11

12 12

When we think of an Android smartphone and operating system, the big
and known brands come to mind, such as Google, Samsung, Sony, and LG.
However, the Android ecosystem is a lot more complex than one may think:
in fact, it is made up of numerous layers and actors that cooperate with each
other to produce the final smartphone. Although these entities have impor-
tant and different roles within the smartphone supply chain (a term with
which we indicate the entire process leading to a device, from manufacturing
to software customizations), they are not often analyzed in detail and are
not, to date, the main subjects of research activities. Each of these layers,
contributing differently with hardware and software components to the final
product, offers numerous analysis insights, especially regarding their impact
and implications on security. In fact, from the security perspective, each of
the layer we identified introduces a potential additional attack surface that
attackers can try to exploit to compromise the device. Since these layers
have to face very different security challenges, it is important to analyze
them independently: as we will present next, they vary profoundly in the
way the developers contributing to a given layer approach and view security,
in how they can mitigate a security issue, and how they can improve the
security of the overall layer.

We now introduce the various layers we identified, and we describe how
they are involved in the supply chain of an Android device. There are
many ways this discussion can be organized: for this thesis, we organize
the ecosystem by “software layers.” We identified three major layers: the
Application Layer, which consists of third-party apps normally used by the
user, the Android Operating System Layer, which is the base Android Open
Source Project used as main codebase by vendors to build their system, and,
to conclude, the Vendor Layer, which represents the vendors that package
and sell the smartphone. For each of them, we illustrate their functionality,
the components they manage, how they approach security, what issues they
might introduce, and their impact in terms of devices and users in case of
compromise.

2.1 The Application Layer

Among the various strengths that have allowed the expansion and success
of Android, an important role is played by third-party applications. If one
considers that in the fourth quarter of 2020, only in the Google PlayStore,
Android users were able to choose between 3,14 million different applica-
tions, it is easy to understand the importance of guaranteeing the security
for this layer. To prevent malicious applications from compromising the sta-

2.1. The Application Layer 13

bility and integrity of the device, applications are executed in a protected
and sandboxed environment, which limits and controls their capabilities.
In addition to protecting the underlying system, this sandbox also intro-
duces mechanisms that limit the ability of malicious applications to affect
the security of other apps.

Nowadays, some of the applications are pre-installed on devices, and
normally, these cannot be uninstalled, but (in some cases) only disabled.
Others, instead, like the very popular WhatsApp, Instagram, Facebook,
and TikTok can be freely installed by the user. To understand, in terms
of numbers, the potential amount of users that may be affected in case a
vulnerability impacts one of the applications mentioned above, consider that
these applications alone have more than one billion active unique downloads
and millions of daily users. The great success and evolution of Android has
also meant that many companies that previously developed programs for
personal computers, started to offer the same application on mobile systems.
This allowed users to perform tasks on smartphones, even those that were
previously available only on PCs, such as email and online banking.

The success and popularity of these applications have also attracted
the attention of attackers: over the years, it has been often possible to
find vulnerabilities in these applications, that, once exploited, have allowed
attackers to compromise the integrity of the application itself, and in some
cases, to use them as entry point to compromise then the entire device.

Furthermore, it is interesting to analyze how the complexity of these
applications and their interaction within the system has introduced new
security issues. The applications, being constituted by numerous compo-
nents that interact with each other, with the system, but also with other
installed applications, require numerous efforts to be configured correctly
and to avoid potentially dangerous interactions. This problem applies both
to interactions that are initiated by the application in question, but also to
those that are initiated by external apps, thus needing to manage security
in both directions. This complex system of interactions among applications
and system was found to be an important source of security problems that
attackers started to study. Attackers, in fact, started to target these spe-
cific components of Android applications, creating new attack scenarios that
were previously unknown and for which numerous security mechanisms had
to be studied and implemented to mitigate them. Among the most known
Android-specific attacks, we find for example the exploitation of components
that should not have been exported and reached by other applications, such
as Content Providers or Broadcast Receivers, or vulnerabilities that afflict
the configurations and implementations of WebView and JavascriptInter-

14 14

face.
But the problems do not stop there; on the contrary, in addition to these

new attack surface(s), it is often possible to find known vulnerabilities that
are simply “ported” to work on smartphones. In fact, since applications can
contain components of native code, usually written in memory-unsafe lan-
guages such as C and C++, all the problems that come with these languages
are also present on the application layer, allowing the attacker to use old
techniques to exploit, for example, memory corruption bugs. Moreover, web
attacks can also be exploited to compromise the security of an Android ap-
plication. Among the most popular examples, we can find problems related
to Cross Site Scripting (XSS). This attack, usually exploited on websites,
has been adapted to work also mobile, attacking WebView components of
an application: simple XSS have allowed, over the years, to compromise
the security of entire applications, allowing attackers to mount remote code
execution attacks. This was, for example, the case for CVE-2013-7201 and
CVE-2013-7202, which, when combined, allowed attackers to remotely ex-
ecute code within the PayPal application for Android [Lab14]. This attack
also exploited additional vulnerabilities, such as an incorrect management
of the validation of SSL connections. In this specific instance, the developers
wrongly configured the component handling SSL errors for the WebView:
upon identifying an error in the SSL validation procedure, the logic of the
application would let the HTTP flow continue, instead of stopping it and
raising a warning about a potential network hijack. The bypass of the SSL
validation check allowed the network attacker to inject malicious Javascript
in the application, and achieve remote code execution by exploiting an ex-
posed JavascriptInterface within the vulnerable WebView.

Unfortunately, identifying, testing, and fixing these vulnerabilities takes
significant time, and very often this is at odds with time-to-market goals:
For application developers, it is often more important to publish new ver-
sions of the application with new features than ensuring that they do not
have introduced new vulnerabilities. Going back to our HTTPS-related ex-
ample, there is often the wrong conception that, if the application communi-
cates with a remote server in HTTPS, it is safe and cannot be manipulated.
And for this reason, these issues are often not even considered as security
problems: it is in fact interesting that, at the time of the bug being report,
PayPal was not even considering networking and SSL attacks as security
problems.

By undermining the importance of these attack scenarios, which in this
case proved to be very dangerous, does not help aligning developers’ in-
centives to the security-related incentives, especially when considering that

2.2. The Android Operating System Layer 15

testing for these vulnerabilities can be quite time consuming. In fact, in
this case, a developer would need a proper test environment to simulate a
remote attacker, hijack the SSL connection (in many assumed to be safe)
and inject malicious code. All these testing procedures, unfortunately, take
time, and the identification of eventual vulnerabilities risks prolonging the
time of publication of the application; a risk that is very often not taken.
Moreover, from Paypal’s technical report, it is also possible to evince that
the vulnerable JavascriptInterface component that were exploited to achieve
code execution was not even essential for the app’s functionality, and it had
been already flagged as a component to be removed. Very likely, that func-
tionality was replaced with a new implementation, but developers forgot to
remove the legacy code, thus unnecessarily opening the app to vulnerabili-
ties.

These issues affect in-house components that developers have access to,
but they are also posted by applications containing proprietary components
for which source code is not available (i.e., external libraries) and for which
identifying and mitigating security issues is very challenging. There are a
number of problematic scenarios: for example, a developer may face situ-
ations in which the external library contains vulnerable or outdated code
and non-secure default configurations, possibly because the library itself is
not maintained anymore. To make things worse, if such a library plays
a key role in the application and is integrated with all other components,
the developer may be “forced” to use it, despite the fact that it may intro-
duce security problems and open the app to attacks. These problems and
challenges often bring application developers in front of a choice on what
to prioritize, whether the app’s security or functionality of the application,
and, oftentimes, the current incentives (e.g., time-to-market) unfortunately
do not allow to treat both aspects with the proper importance.

2.2 The Android Operating System Layer

Virtually all Android-based devices use the source code provided by the
Android Open Source Project (AOSP) as a foundation on which to base
their operating systems and customizations. The lead and core contributor
for AOSP is Google: its role is to oversee the engineering process for the
core framework and platform, as well as managing the overall direction of
the project. However, there is nothing that prevents external developers
to contribute to the code of AOSP, by, for example, sending patches to fix
usability or security problems. From a security standpoint, being the base
reference for potentially all Android-running devices, AOSP is of critical im-

16 16

portance for the health of the ecosystem, and there are numerous challenges
to overcome.

To begin with, the impact of a vulnerability affecting a core component
developed in AOSP may potentially affect all devices using such vulnera-
ble versions. Thus, depending on when the vulnerability was introduced,
identified, and fixed, the number of compromised devices may vary. Natu-
rally, the opposite is also true: a patch, or a security measure, introduced in
AOSP can potentially mitigate security issues and improve the overall secu-
rity posture of a large number of devices. These are just some of the reasons
why the AOSP layer plays a key role in managing the security of Android
devices. Given its importance, it is clear that security cannot be seen, as
in the application layer, as something optional. On the contrary, one of the
strengths of the AOSP project is to have been developed throughout the
years with security as a core design principle. However, developing a sys-
tem that is secure and functional often present many technical challenges.
In fact, AOSP must guarantee, for example, the security of the applications
and the integrity of their data, but at the same time it must allow appli-
cations to interact with each other, offering the possibility, when necessary,
to modify data that would normally be protected. As long as we consider
the interaction between benign applications, security issues normally do
not arise. Unfortunately, the execution of malicious applications that aim
to affect the other applications (to steal sensitive data, for example) or the
security of the underlying system is a possible scenario that needs to be
considered. Therefore, the security of AOSP becomes crucial at multiple
levels: its security must guarantee, and protect, interactions that could be
harmful, without affecting the usability of the entire system.

The approach to security changes significantly when compared with that
of the application layer. Since securing Android is essential, mitigating and
fixing security vulnerabilities is considered a top priority, and developers
have strong incentives to properly deal with the security aspects and priori-
tize it over time-to-market of new features. This “security push” is reflected
by the constant evolution of AOSP security over the years. The Android
system has in fact seen a continuous evolution, with new defense mecha-
nisms and features being introduced with each new version of Android. In
many situations, these changes have (successfully) forced application de-
velopers to update their codebases to be considered “compatible” with the
versions of AOSP.

These changes over the years have been very frequent, and continue to
be so today. Among these, one of the most important changes that required
the refactoring of the code, was the new model of permissions management.

2.2. The Android Operating System Layer 17

This new approach saw the introduction of runtime permissions, migrating
from a model that assigned all permissions at installation time, to a model in
which the app must explicitly prompt the user to ask for each “dangerous”
permission. This new model allows users to take more informed decisions
and to be more aware of potential risks of granting a given permission to
the application.

Other Android versions introduced substantial changes regarding the
Application Programming Interface (API). While changing APIs and break-
ing backward compatibility is often seen as a last-resort when comes to up-
dates, in some cases they have proven to be necessary. In fact, over the
years, several APIs have been found to have design vulnerabilities or de-
fault configurations that were too permissive, and many of these updates
have required backward-incompatible changes, potentially risking to intro-
duce unexpected behavior in the applications that use them. For instance,
this was the case for several APIs defined in WebSettings, an important
class that manages WebView configurations and security. One example is
setAllowFileAccessFromFileURLs: this API specifies whether Javascript
code, executed within a file:// or content:// scheme should be able to ac-
cess other resources with the same scheme. The default value for the API
was true for API level 15 and below, but, however, this default configuration
turned out to be too permissive and prone to problems like file-based XSS
or data stealing. Thus, starting from API level 16 and above, the default
value was changed to false: this change forced apps using this API to prop-
erly update their code; And, starting from API level 30, this API has been
deprecated.

These two examples of “breaking” changes discussed above are just two
of the many security improvements that have required developers to actively
update their code base. Among the latest features introduced in AOSP, for
instance, we find a radical change in the management of file permissions
on the external storage, but also a new network policy that, by default,
prevents applications from communicating via HTTP, as it is an insecure
protocol susceptible to MITM attacks. These protection mechanisms not
only work at the application level, but are also made available to other
system components, which operate at a lower, more privileged level.

These many changes witness that AOSP gives security aspects much
higher importance with respect to generic apps. In turn, AOSP provides
developers with a number of defense mechanisms to protect their applica-
tions: it is then up to the developers to decide whether to make good use of
them or not, or whether to implement “quick solutions” that bypass them
altogether.

18 18

2.3 The Vendor Layer

This last layer, the vendor layer, is perhaps the most complex one, as it
consists of numerous contributors to its development, both in terms of soft-
ware and hardware. This is the layer that incorporates many components of
the entire smartphone supply chain, which are often not taken into account,
but are very important for the final security of the device. We now present,
in order, the actors that work from the lowest to the highest level, starting
from the Chipset Manufacturers, then the Original Design Manufacturer,
and finally, the Original Equipment Manufacturer, that is the final node of
the chain, i.e., the company that puts the brand and sells the final product.

2.3.1 Chipset Manufacturer

Starting from the lowest level, the hardware, a mobile device is usually
equipped with a Central Processing Unit (CPU). Between the most known
brands that produce CPU, in the Android world, we find companies like
MediaTek and Qualcomm. These companies can be considered “generic,”
as they provide processors for multiple vendors. Other processors, however,
may be designed and built directly by the companies that sell the final de-
vice. Among these, for example, we can find the Exynos processors, created
directly by Samsung just for specific categories of devices, or the Kirin se-
ries processors produced by HiSilicon, a company that produces processors
for Huawei smartphones. In addition to hardware, these companies also
provide software components that usually run at a privileged level, such as
firmware or kernel drivers. Although the amount of code introduced by the
various chipset manufacturers constitutes a very small portion (especially
when compared to the entire Android system), it is not free from vulner-
abilities that, if exploited, can be used to compromise the security of the
entire device. Moreover, these vulnerabilities are particularly important be-
cause they potentially allow to compromise devices from different vendors
that are using the same chipset. To make things worse, it is difficult for the
devices vendors to mitigate issues on their own, since they would need to
wait for the chipset manufacturer to fix any vulnerabilities. These issues,
unfortunately, are more common than one might think. Just as an exam-
ple, in 2019 it was discovered an issue that affected most of the chipsets
produced by the company MediaTek [Rah20]. As mentioned earlier, Me-
diaTek provides processors for numerous devices, including, for example,
some Samsung smartphones. The vulnerability, an arbitrary read and write
of physical memory addresses, once exploited, allowed a local unprivileged
attacker to mount a privilege escalation and gain root access (temporary —

2.3. The Vendor Layer 19

i.e., not surviving reboot) on the device [Bel20]. This problem (identified
as CVE-2020-0069) has been exploited for many months [LLC20a] before
it was fixed in 2020.

2.3.2 Original Design Manufacturers

The hardware component, however, is not only the responsibility of the
chipset manufacturer: another important layer deals with low-level hard-
ware components such as the design of the entire board and the sensors
(e.g., GPS, NFC), and it is defined by the various Original Design Manu-
facturers (ODM). These companies usually design smartphone models and
hardware for numerous brands. A 2020 analysis showed that five Chinese
companies (Huaqin, Wingtech, LongCheer, CNCE (Chino-E), TINNO) are
responsible, alone, for more than 85% of the market, providing their services
to the most popular brands that make up the Android landscape [nok21].
For example, Wingtech alone has been, between 2019 and 2020, the ODM
of reference for the brands of Samsung, Huawei, Xiaomi, Oppo, Lenovo,
LG, and Nokia. Also in this case, as for chipset manufacturers, the ODM
can introduce different code that normally run with elevated privileges.
Unlike chipset manufacturers though, ODMs can also introduce SELinux
policies, native libraries, and applications [LLC20b]. The importance of
ODMs, and the code they introduce, is reflected in the new structure of An-
droid: starting from Android 10, the code added by ODMs can be optionally
placed in a dedicated directory /odm. As with chipset manufacturers, this
code can contain vulnerabilities that, if exploited, can have serious effects
and compromise the security of the entire device. Considering that one
ODM alone is used by seven different brands, the percentage of devices
that would be exposed to a given vulnerability could be very high. For ex-
ample the vulnerability known as CVE-2019-15340 affects several devices
manufactured by Huaqin. As another example, which shows that these
vulnerabilities are not as rare as one may thing, this ODM released, to-
gether with the device, an application vulnerable to confused-deputy attack
named com.huaqin.factory, which allowed a local attacker to bypass the
restrictions imposed for the arbitrary management of low-level components
such as WiFi, Bluetooth, and GPS, allowing an attacker to manage these
peripherals without the corresponding permissions. To make things worse,
the application, being pre-installed and executed as system, could not be
uninstalled by the user [oST19]. For this specific vulnerability however, it
is interesting to note that, despite Huaqin being an ODM that collaborates
with many brands (e.g., Samsung, Huawei, Xiaomi, Oppo, LG), the vulner-
able application was found only on Xiaomi Redmi series. This shows that,

20 20

within a single layer, it is important to track and analyze the specifics of
various customization efforts to accurately assess the security of the entire
ecosystem.

2.3.3 Original Equipment Manufacturers

Moving to a higher level, and shifting from hardware to software, the
situation becomes even more complex and the number of potential players
increases. Devices produced by ODMs are normally branded with the
names and labels of the Original Equipment Manufacturer (OEM). As of
today, the Android ecosystem counts more than 1,300 brands producing
Android-based devices. Among these, we have Samsung, LG, Lenovo,
HTC, and Huawei. In particular, HTC was the OEM chosen by Google to
launch Android: In September 2008, the HTC Dream was the first device
commercialized running the Android Operating System. An OEM can
make many changes, touching practically all the abstraction levels of the
system, starting from code changes of the bootloader up to graphic changes
of the entire UI of the system. An OEM can introduce changes in several
areas, which we can grouped under three categories: kernel, system, and
applications.

Kernel: Changes to the kernel can involve many aspects. A vendor can in-
troduce changes to introduce new features, can modify components that are
already present (for Android, these changes can be performed, for example,
on Android-specific components like Binder or the “Paranoid Network”),
or can introduce new security mechanisms. Among the OEMs that have
made the most significant changes to the kernel, we find Samsung, which
added a series of security patches that take the name of Real-Time Kernel

Protection (RKP) [GB17]. These modifications have changed significantly
the internal workings of the kernel, adding protection mechanisms from
exploitation techniques such as Jump and Return Oriented Programming
(JOP and ROP), but also protecting the kernel against Data-Only attacks.
Moreover, Samsung was among the first vendors to adopt a custom solution
for implementing Control Flow Integrity (CFI) [Ada21]. These changes have
definitely and significantly raised the bar for attackers, making it harder to
compromise the Samsung kernel or made it almost impossible to reuse public
exploits out of the box. Unfortunately, over the years, all these mitigations
have been bypassed, always allowing the attacker to reach root privileges
and compromise the kernel [She17].

At the same time, however, it is fair to point out that changing signifi-

2.3. The Vendor Layer 21

cantly a complex codebase such as the Linux Kernel (used in Android) can
increase the time needed to patch a vulnerability in the original codebase.
This, in turn, can significantly increase the prevalence of an issue known as
“patch gaping,”, which indicates that there is a delay between “a security
patch is merged into the source tree” and “the security patch is deployed
on devices”. Patch gaping is a problem because an attacker could monitor
projects’ source trees for security-related patches, and could attempt to
write an exploit before the patch reaches the end-user devices.

System: The second area where OEMs make changes is the system and
framework component. This component is very large and can include many
layers of the Android system, starting from the native libraries up to the
framework itself or even the entire system graphics and UI. The changes to
the system are perhaps the most visible to the end user. However, some ven-
dors often make so many changes to the internals and graphics of the original
AOSP code that the final product hardly resembles the original one, thus
resulting in very different custom forks of Android-based systems. Among
the most important forks are ColorOS [Opp13] from Oppo, MIUI [Xia10]
from Xiaomi, and EMUI [Hua12] from Huawei.

From a security point of view, the issues that arise in these situations
are multiple, and very often difficult to be managed correctly. As a matter
of fact these OEMs have to manage the security of two very different
codebases. This introduces many problems, the biggest of which is the
proper management of security updates. The same issue that affects the
Kernel also affects this component: the more the code base of Android is
modified, the more difficult it is to apply automatically and in a timely
manner the security patches provided monthly by Google. Furthermore,
properly managing patches on such a large and modified component opens
up other issues: in fact,Nohl et al. [KN18] showed how, in 2016, only 17%
of Android-based devices were fully updated with the latest set of patches.
Moreover, Dai et al. [DZJ+20] showed how vendors fail to properly patch,
sometimes forgetting to fix all vulnerable components and then applying
all proposed and available patches.

Application: OEMs also make numerous changes at the software appli-
cation level, introducing numerous third-party applications or services to
implement specific services and features. Those applications are very of-
ten deeply integrated in the system and executed in privileged contexts.
Unfortunately, the same problem that affects the previous modified compo-
nents also affects the applications. One of the best known and problematic

22 22

examples at application level, which includes many problems at security
management level, is the one related to “Custom Browsers,” based on forks
of the open-source Chromium project, provided by vendors in their devices
as default browser application.

Vulnerabilities on browsers are particularly dangerous because of the
threat model to which they are exposed, opening the device to remote at-
tacks. In recent years, these components have been subject to numerous
attacks, some of which have exploited the patch gap issue mentioned above,
making known vulnerabilities (so called n-day) effective. Moreover, in 2020
Google detected a sophisticated Android hacking operation that used a com-
bination of both unknown (so called 0-day) known vulnerabilities in Chrome
and Android to remotely compromise a device [Zer21].

Instead, vulnerabilities that exploited new components introduced
by vendors, are for example CVE-2018-20523 [Det18] and CVE-2019-
10875 [Det19]. Both these vulnerabilities affect the default custom browser
of Xiaomi devices. The first bug allowed an attacker to exfiltrate the en-
tire search history of the browser, exploiting a vulnerability in a content
provider (an Android-specific component), while the second bug allowed
URL spoofing due to incorrect parsing. These are just some of the most
recent examples of how these components can be attacked to affect the
confidentially and integrity aspects of modern smartphones.
When it comes to third-party services, however, these can vary greatly de-
pending on the OEM and the various partnerships that are created. In
fact, vendors can decide to rely on external companies to introduce specific
functionalities within their devices, reusing existing technologies. While
this practice potentially shortens the time-to-market for the vendor, it also
potentially introduces numerous problems. In terms of security, depending
on how the external component is delivered (e.g., as source code or binary
form), there are two main potential scenarios for the vendor to address a
vulnerability. If the vendor is in possession of the source code, it will be
able to prepare a patch, in relatively short time. On the other hand, if the
vendor has to wait for the patch to be provided by other companies, this
would likely lengthen and delay the release time of a security update.

This is not just a theoretical problem. For example, Samsung had
to face such a problem. In fact, to introduce system-wide support for a
particular image format (Qmage), Samsung relied on the software company
Quramsoft [Qur20] for everything related to this format. Quramsoft
code was used for all the coding and decoding of this type of image.
This code has been integrated into Samsung’s system by changing all the
components that manage the most common image formats, to integrate

2.3. The Vendor Layer 23

support for Qmage. Unfortunately, the code produced by Quramsoft
had many vulnerabilities in the image decoding process. These problems
allowed Google Project Zero researchers to remotely compromise several
Samsung smartphones, using Multimedia Messaging Service (MMS) as a
remote attack vector [MJ20]. In fact, the changes made by Samsung to the
components that handled multimedia formats widened the attack surface,
adding and exposing remotely the (vulnerable) parsing of this new format.
The several issues found in these proprietary libraries were collectively
assigned CVE-2020-8899.

As we can see, the Android ecosystem is much more complex than one
may initially think, with vulnerabilities potentially affecting a number of
different layers. Having multiple players that contribute and manage im-
portant parts of code introduces many challenges, which, to date, continue
to affect the security posture of the entire ecosystem. It is therefore impor-
tant to analyze in detail these components, especially those that are often
underinvestigated. This allows us to understand how the actors approach
and view security, and makes it possible to develop new methodologies to
increase the security of those components.

24 24

Chapter 3

Securing the Application

Layer: the Networking

Problem

25

26 26

3.1 Introduction

Nowadays, users rely on smartphones for a variety of security-sensitive
tasks, ranging from mobile payments to private communications. Virtually
all non-trivial mobile applications rely on communication with a network
backend. These applications adopt different networking protocols to com-
municate with the remote servers. Given the sensitive nature of the data
exchanged between the application and the backend, developers strive to
protect the network communication by using encryption, so that network
attackers cannot eavesdrop (or modify) the communication content. How-
ever, several works have shown how properly securing network connections
is still a daunting challenge for application developers. The OWASP Mobile
Top 10, a standard awareness document for application developers, shows
how Insecure communication is still one of the most serious security issue for
applications and does not only affect cleartext protocols but also encrypted
connection performed over SSL/TLS.

As these problems can harm the safety of several million users in recent
years, within the context of Android, Google has introduced several new
network security features to tackle these problems at the core of the system.

For example, starting from Android 4.x, Android started to display alert
information to the user if a “custom” certificate was added to the set of
trusted CAs.

Later versions of Android, instead, started supporting two different
repositories for CAs: the System KeyStore, which contains the “default”
set of trusted CAs; and the User KeyStore, which contains custom CAs
“manually” added by the user. This separation allows Google to make ap-
plications trust only the system CAs by default while performing secure
connections.

From Android 6.0, Google started to push towards “HTTPS every-
where” even further, by providing the developer a mechanism to com-
pletely block any connection attempt with a cleartext protocol. It first
introduced a new application attribute—that could be specified in the
AndroidManifest—to specify whether cleartext (e.g., HTTP) connections
should be allowed or blocked. It then extended these settings by introduc-
ing the Network Security Policy (NSP): this mechanism allows a developer,
without modifying the application code and logic, to specify complex poli-
cies (with an XML configuration file) affecting the network security of her
application.

Motivated by the significant security efforts that Google has made to
protect users from network attacks, by these recent changes, and by their

3.1. Introduction 27

potential security impact on the ecosystem, in this chapter we present the
first comprehensive study on these new defense mechanisms. In particular,
we first discuss in detail these new features, the attacks that are mitigated
by the Network Security Policy, and the relevant threat models. We then
highlight several security pitfalls that might occur when a developer is con-
figuring the Network Security Policy: in fact, since the policy is defined by
the developer and it is neither generated automatically nor verified, we iden-
tify some inconsistencies that the developer might introduce while defining
the even simple policies, leading to unwanted behavior. We identified sev-
eral patterns for which policies may provide a false sense of security, while,
in fact, they are not useful. These policies might reassure a developer but
in fact, when the policy is enforced, the developer does not get any security
benefit.

Guided by these insights, we then present the first analysis of the adop-
tion of the Network Security Policy on the Android ecosystem. This analy-
sis, performed over 125,419 Android applications crawled during June and
July 2019, aims at characterizing how developers are using these new fea-
tures and whether they are affected by misconfigurations.

The results are concerning. We found that only 16,332 applications are
defining a Network Security Policy and that more than 97% of them define
a policy to allow cleartext protocols. Since starting from November 2019
Google changed some important default values related to Network Security
Policy (and especially related to cleartext), we repeated the experiments
over a fresh crawl of the same dataset (this time performed from April to
June 2020): Our results show that, while more applications do adopt this
new security mechanism, a significant portion of them still do not take fully
advantage of it (e.g., by allowing usage of insecure protocols).

Guided by this result, we then set out to explore why applications adopt
such permissive policies. Surprisingly, we found that many of these policies
are simply copy-pasted from popular developer websites (e.g., StackOver-
flow), and we noticed that the practice of copying a policy is much more
widespread than we expected. Upon closer inspection, we also found how
many of the weak policies could be “caused” by embedding advertisement
libraries. In particular, we found that the documentation of several promi-
nent ad libraries requires application developers to adapt their policy and
make it very permissive, for example by allowing the usage of cleartext
within the entire application. While the Network Security Policy format
provides a mechanism to indicate a domain name-specific policy, we found
that the complex ad ecosystem and the many actors that are part of it make
it currently impossible to adopt safer security policies.

28 28

Thus, as another contribution, we designed and implemented an ex-
tension of the current Network Security Policy, which allows developers to
specify policies at the “application package” granularity level, and which
solves a key conceptual problem of the Network Security Policy. We then
show how this proposal enables application developers to embed ad libraries
without the need of weakening the policy of the core application, how it is
fully backward compatible, and how it can thus act as a drop-in replacement
of the current version.

In summary, this study has advanced research in the area of application
network security through the following contributions:

• We perform the first comprehensive study on the newly introduced
Android network security mechanisms, identifying strengths and com-
mon pitfalls.

• We perform the first large-scale analysis on the adoption of the Net-
work Security Policy on the Android ecosystem, using a dataset of
125,419 apps. Our study found that a significant portion of applica-
tions using the NSP are still allowing cleartext.

• We investigate the root causes leading to weak policies, and we
found that several popular ad libraries and the complex advertisement
ecosystem encourage unsafe practices. We systematically analyzed the
compatibility of the Network Security Policy with the advertisement
ecosystem, identifying key conceptual problems on the actual design
of this defense mechanism.

• To mitigate this conceptual problem and limitation, we propose a
drop-in extension to the current Network Security Policy format that
allows developers to comply with the needs of third-party libraries
without weakening the security of the entire application.

3.2 Network Communication Insecurity

This chapter explores the different threats that an application might be
exposed to due to insecure network communications. We first present the
problems related to the adoption of cleartext protocols, such as HTTP.
Then, we discuss a number of threats that are relevant in the context of
encrypted communication, as well as the ones introduced by wrong im-
plementations of certificate pinning. We conclude this section by discussing

3.2. Network Communication Insecurity 29

the possible security repercussions when trusting additional Certificates Au-
thorities (CAs) different than the ones pre-installed on an Android device.
For each ofthe issues,we also discuss the relevant threat models.

3.2.1 HTTP

An application using a cleartext protocol to exchange data with a remote
server allows an attacker to mount so-called Man-In-The-Middle (MITM)
attack. A MITM attack consists of an attacker monitoring the network
communications between a client and a server: the data transmitted from
both parties can then be, potentially, eavesdrop or even modified by the
attacker. This, in turn, can lead to the compromisation of the user’s private
information or of the application itself [Lab13, AGoAR17].

The actual severity of this threat changes depending on the nature of the
data exchanged by the application and the network backend. Several works
showed how applications can put at risk the privacy of their users when
sending, in cleartext, personally identifiable information (PII). However,
sending data using an unencrypted channel is not the only cause of threats.
A serious issue is also posed by an application which retrieves data from
an endpoint in cleartext. Other works showed that, depending on the type
of data exchanged, these MITM attacks lead to a number of other attacks,
ranging from phishing attacks to remote code execution [Wel15, PFB+14].

An attacker can exploit the use of unencrypted and unsecured connec-
tions in the following context:

Threat Model 1. An attacker on the same WiFi network (or on the net-
work path) of the victim can eavesdrop and arbitrarily modify applications’
unencrypted connections and data at will.

To avoid these threats, the developer needs to ensure that at least all
the sensitive network operations are performed over a secure channel.

3.2.2 HTTPS and Certificate Pinning

By adopting the “secure” version of HTTP, HTTPS, it is possible to perform
network operations over a secure and encrypted channel. Exchanging data
using HTTPS (SSL/TLS) ensures integrity, confidentiality, and authenticity
over the connection between the application and the remote server. This
mechanism works as follows. First, when an application tries to contact
a remote server using SSL/TLS, a “handshake” is performed. During this
phase, the server first sends its certificate to the client. This certificate
contains multiple pieces of information including its domain name and a

30 30

cryptographic signature by a so-called Certificate Authority (CA). To de-
termine whether the client should trust this CA, the system consults a set of
hardcoded public keys of the most important (and trusted) CAs: If the cer-
tificate is signed (directly or indirectly) by one of these CAs, the certificate
is then considered trusted and the (now secure) connection can proceed;
otherwise, the connection is interrupted [52808].

While SSL/TLS is a powerful mechanism, it does not address all pos-
sible problems. In fact, HTTPS connections can be compromised by an
attacker within the following threat model: While SSL/TLS is a power-
ful mechanism, it can be compromised by an attacker within the following
threat model:

Threat Model 2. An attacker that can obtain a rogue certificate can
perform MITM over HTTPS connections. We consider a certificate to be
“rogue” when it is correctly signed by a (compromised) trusted CA without
an attacker owning the target domain name. An attacker can obtain a
rogue certificates using a compromised CAs [Ley11, Adk11].

Attacks within this threat model can be mitigated by implementing
Certificate Pinning. Certificate pinning consists in “hardcoding” (or, pin-
ning) which is the expected certificate(s) when performing a TLS handshake
with a given server. From the technical standpoint, this “expectation” is
hardcoded within the application itself, and the application can thus verify,
during the handshake, that the certificate sent from the server matches with
the expected one. With certificate pinning, the application is not relying
anymore on the on the Certificate Authorities to verify the certificate, thus
mitigating the threat posed by compromised CA. By using Certificate Pin-
ning, even rogue certificates would not be enough to trick an application
into performing an insecure connection.

Even though pinning is a powerful security mechanism, previous works
have shown how it is very challenging to properly implement it. In fact,
to implement pinning, developers are tasked to rely on a wide variety of
libraries, each of which exposes a distinct set of APIs. Handling diverse
implementations of pinning may push developers to take some shortcuts: It
was shown how it is not uncommon for developers to rely on “ready-to-use,”
but broken, implementations of certificate pinning copied from websites like
StackOverflow [FHM+12]. To make it even worse, these broken implemen-
tations often have a net negative impact, in some cases leading to accept-
ing arbitrary certificates without even verifying which CA signed them, or
whether the certificate was issued for the given domain. Moreover, it has
also been shown how even popular network libraries themselves may fail to

3.3. Network Security Policy 31

properly implement pinning [Koz16].

3.2.3 User Certificates

The Android system comes with a set of pre-installed CAs to trust and uses
them to determine whether a given certificate should be trusted. These
CAs reside in a component named KeyStore. The system also allows the
user to specify a User KeyStore and to install custom CAs. There might
be situations where the custom CAs allow to perform a MITM over SS-
L/TLS connections, as we describe in Chapter 3.4. However, performing
MITM over a secure connection should not always be considered a mali-
cious activity. For example, proxies used to debug network issues rely on
the same technique. Self-signed certificates generated by these tools do not
have a valid trust chain and thus cannot be verified, and the application
would terminate the connection. By adding a custom CA, applications can
successfully establish a network connection.

Unfortunately, User KeyStore and self-signed certificates can also be
abused by malware. Of particular importance is the emerging threat of
“stalkware” (also known as “spouseware”) [Gru19, Cim19]. Attacks on the
device KeyStore can be exploited by an attacker within the following threat
model:

Threat Model 3. An attacker that has physical access to the device can
silently install a new custom certificate to the User KeyStore, and mount
MITM (including on HTTPS connections) to spy the user’s activities.

3.3 Network Security Policy

In the previous chapter we discussed how attacks against network commu-
nications may affect the security and privacy of both users and applications,
and how it is not always straightforward to protect an application from these
threats. To make the adoption and implementation of “secure connections”
easier for a developer, Google recently introduced several modifications and
improvements, which we discuss next in this chapter.

The first problem that Google tried to address relates to the installation
of self-signed certificates. In very early versions of Android, it was possible
to silently install one of these certificates, thus allowing anyone who con-
trols it to perform stealthy MITM on SSL/TLS connections. In Android
4.4, however, Google introduced the following change: if a self-signed cer-
tificate is added to the device, the system would display a warning message
informing the user that the network may be monitored and about the risks

32 32

and consequences of MITM on SSL traffic [Tea14]. The threats posed by
self-signed CAs are still causing a serious problem for the security of the
Android users: starting from 2014, in fact, Google monitored and identi-
fied “several hundred instances each day where users have installed a local
certificate to MITM network connections.” [Tea14]. However, since there
might be scenarios where trusting a (benign) self-signed certificate is nec-
essary (e.g., to perform network debugging), Google decided to split the
KeyStore into two entities. The first one, named System KeyStore, is pop-
ulated with pre-installed CAs, while the second one, named User KeyStore,
allows the user to install self-signed certificates without altering the System
KeyStore.

The second problem Google tried to mitigate is the adoption of cleartext
protocols [Ale16]. Starting from Android 6.0, Google introduced a new se-
curity mechanism to help applications preventing cleartext communication,
named Network Security Policy [AD]. With this new policy, an application
can specify the usesCleartextTraffic boolean attribute in its manifest file
and, by setting it to false, the application can completely opt-out from using
cleartext protocols, such as HTTP. What is important to highlight is that
this defense mechanism is not applied only to HTTP: all the cleartext pro-
tocols without TLS or STARTTLS — like FTP, IMAP, SMTP, WebSockets
or XMPP are covered by this new policy [AD16].

Moreover, from Android 7.0, the new default is that applications do
not trust CAs added to the User KeyStore [Bru16]. However, it is possible
to override this default, but the developer needs to explicitly specify the
intention of using the User CAs within the policy.

Note that, from an implementation point of view, the policy is not en-
forced by the operating system (as it would be impractical), but it is up
to the various network libraries to actually honor it (e.g., by interrupting
an outbound HTTP connection if cleartext traffic should not be allowed).
Note also that, to address backward compatibility concerns, for an applica-
tion targeting an API level from 23 to 27 (i.e., from Android 6.0 to Android
8.1), the default value of the usesCleartextTraffic attribute is true, which
means that the policy would not enforce any constraint, thus allowing clear-
text connections by default. However, if an application targets API level 28
or higher (i.e., Android 9.0+), then the default for that attribute is false,
forcing developers to explicitly opt-out from this new policy in case their
applications require HTTP traffic.

While this policy is a significant improvement, for some applications it
may currently be impractical to completely opt-out from cleartext commu-
nications. In fact, this policy follows an “all-or-nothing” approach, which

3.3. Network Security Policy 33

might be too coarse-grained. This is especially true when a developer is not
in complete control of its codebase, such as when embedding closed-source
third-party libraries. In fact, these third-party libraries may reach out to
remote servers using cleartext protocols or to some domain names that are
not even supporting HTTPS. To allow for a more granular specification,
with the release of Android 7.0, Google introduced an extended version of
the Network Security Policy, which we discuss next.

3.3.1 Policy Specification

The new version of the Network Security Policy, introduced by Google in
Android 7.0, has undergone a complete redesign [AD19]. The policy now re-
sides on an external XML file and it is not mixed anymore with the Android-
Manifest. The most interesting feature introduced in this new version is the
possibility to specify additional network security settings other than allow-
ing or blocking cleartext protocols. Moreover, to overcome the lack of granu-
larity of the previous version, the policy now allows for more customizations
through the introduction of the new base-config and domain-config XML
nodes.

The semantics of these two nodes is the following: all the security set-
tings defined within the base-config node are applied to the entire appli-
cation (i.e., it acts as a sort of default). The domain-config node, instead,
allows a developer to explicitly specify a list of domains for which she can
specify a different policy.

The remainder of this chapter presents additional technical details and
what the main benefits of this new version of the Network Security Policy
are.

Cleartext. Allowing or blocking cleartext protocols can now be easily
achieved with the cleartextTrafficPermitted attribute—as it was already
possible to configure with the first version of the Network Security Policy.
However, the developer can decide “where” to apply this security configu-
ration. This attribute can be defined both within a “base” and “domain”
config node. To enforce this setting at runtime, networking libraries can rely
on the NetworkSecurityPolicy.isCleartextTrafficPermitted() API, which
returns whether cleartext traffic should be allowed for the entire applica-
tion. Instead, to check if cleartext traffic is allowed for a given host, a library
can use the isCleartextTrafficPermitted(String host) API.

Certificate Pinning. It is now possible, for a developer, to define also
Certificate Pinning. Its configuration is now much simpler and straightfor-
ward than it was in the past. First, since Certificate Pinning is used to

34 34

verify the identity of a specific domain, all the configurations need to be
defined in a domain-config. Second, the developer needs to define a pin-set

node (with an optional expiration attribute to specify an expiration date
for this entry).

The pin-set node works as a wrapper for one or multiple pin nodes,
each of which can contain a base64-encoded SHA-256 of a specific server’s
certificate. Multiple pins can be used as a form of backup, to avoid issues
while performing key rotations, or to pin additional entities like the Root CA
that emitted the certificate for the domain. Certificate Pinning validations
kicks-in only when the application tries to reach one of the listed domains.
The connection is allowed if and only if the hash of the certificate provided
by the server matches with at least one hash in the pin-set node.

KeyStore and CAs. The new version of the policy allows a developer
to specify which KeyStore to consider as trusted when performing secure
connections. The developer has first to define a trust-anchors node, which
acts as a container for one or more certificate nodes. Each certificate node
must have a src attribute, which indicates which certificate(s) to trust. The
values for src can be one of the following: system, which indicates that the
System KeyStore, the default one; user, which indicates the user-installed

certificates within the User KeyStore; or a path to an X.509 certificate within
the application package. When multiple certificate nodes are defined, the
system will trust their union.

Besides, the developer can also specify an overridePins boolean attribute
within a certificate node. This attribute specifies whether the CAs within
this certificate node should bypass certificate pinning. For example, if the
attribute’s value is true for the system CAs, then pinning is not performed
on certificate chains signed by one of these CAs.

Debug. Applications protected by the Network Security Policy are more
difficult to debug. To address these concerns, the policy can contain a
debug-overrides node to indicate which policy should be enforced when the
application is compiled in debug mode, by setting the android:debuggable

manifest attribute accordingly—setting its value to true to enable the debug
mode, or false to enable the release mode. However, application must be
compiled in release mode to be accepted on the Play Store. If the developer
leaves a debug-override node in the policy of a release build, the content of
the node is simply ignored.

The debug-overrides nodes overrides the “trust-anchors” with a custom
configuration. The developer can then specify which CAs trust while per-
forming secure connections. If this node is defined, then certificate pinning

3.3. Network Security Policy 35

is not enforced at runtime. It is important to specify that this oversight does
not introduce any security issue to the policy specified by the developer.

Following, a concrete example of a (complex) policy that touches on the
various points previously discussed.

Listing 3.1: Network Security Policy
1 <network-security-config>

2 <domain-config

3 cleartextTrafficPermitted="false">

4 <domain includeSubdomains="false">

5 android.com</domain>

6 <pin-set expiration="2020-12-12">

7 <pin digest="SHA-256">YZPgTZ+woNCCCIW3LH2CxQeLzB/1

m42QcCTBSdgayjs=

8 </pin>

9 </pin-set>

10 </domain-config>

11 <debug-overrides>

12 <trust-anchors>

13 <certificates src="system"/>

14 <certificates src="@raw/custom_cert"/>

15 </trust-anchors>

16 </debug-overrides>

17 </network-security-config>

The policy defines that the application should reach the android.com

domain—but not for its subdomains—only via HTTPS and only with a
specific certificate (i.e., it implements certificate pinning). The policy also
defines an expiration date for this certificate. Moreover, when the applica-
tion is compiled in debug mode, network connections can be trusted if they
are signed with CAs defined within the system KeyStore or with a custom,
hardcoded CA “custom_cert”. Also, no certificate pinning is enforced.

3.3.2 Towards HTTPS Everywhere

Starting from Android 7.0, during the installation of a given application,
the system checks whether the developer did define a policy: if yes, it loads
the policy; otherwise, it applies a default one. Note also that if a policy is
defined but it does not specify a node or an attribute, the system fills the
missing values by inheriting them from a similar node, or, when none are
available, from the default configuration.

The default values applied by the system do change over time depending
on the target API level and are becoming stricter—and by forcing applica-
tion developers to target high API levels to be admitted on the official Play

36 36

Store, Google is leading a push towards HTTPS everywhere. We now discuss
how these default values change depending on the target API level.

API 23 (Android 6.0) and Lower. An application targeting an API
level lower or equal than 23 cannot specify a policy since this mechanism
was introduced from API level 24. In this case, the system will then enforce
the following default policy:

Listing 3.2: Network Security Policy API 23 and Lower
1 <base-config cleartextTrafficPermitted="true">

2 <trust-anchors>

3 <certificates src="system" />

4 <certificates src="user" />

5 </trust-anchors>

6 </base-config>

This configuration allows an application to use cleartext protocols and
to trust the union of CAs from both System and User KeyStore.

From API 24 (Android 7.0) to 27 (Android 8.1). The default policy
for applications targeting API levels from 24 to 27 changes as follows:

Listing 3.3: Network Security Policy API 24 to 27 Lower
1 <base-config cleartextTrafficPermitted="true">

2 <trust-anchors>

3 <certificates src="system" />

4 </trust-anchors>

5 </base-config>

That is, cleartext traffic is still allowed, however, only CAs in the System
KeyStore are trusted by the application. Thus, User KeyStore is not trusted
anymore by default thanks to the given default policy configuration.

API Level 28 (Android 9) and Higher. For applications targeting an
API level greater or equal of 28, the policy is even stricter:

Listing 3.4: Network Security Policy API 28 and Higher
1 <base-config cleartextTrafficPermitted="false">

2 <trust-anchors>

3 <certificates src="system" />

4 </trust-anchors>

5 </base-config>

This change enforces that all cleartext protocols are blocked [AD20].

While developers were free to target any API level, starting from Novem-
ber 1st, 2019, all applications (and updates as well) published on the official

3.3. Network Security Policy 37

Google Play Store must target at least API level 28, corresponding to An-
droid 9.0 [GN19]. This has the effect that the latest policy will be enforced
by default to all applications not defining a custom one.

3.3.3 TrustKit

One library that is particularly relevant for our discussion is
TrustKit [Dat16]. This library allows the definition of a Network Security
Policy for applications targeting versions of Android earlier than 7.0 (which,
as we mentioned before, do not support this new defense mechanism). From
a technical standpoint, this library reimplements the logic behind the Net-
work Security Policy, allowing an application to import it as an external
library. Thus, by using this library, an application can define a custom
policy that will be enforced by the library itself. Note that TrustKit only
supports a subset of features: the developer cannot specify a trust-anchors

within a domain-config node, and it is not possible to trust CAs in the User
KeyStore. However, the library implements a mechanism to send failure re-

ports when pinning failures occur on specific domains, allowing a developer
to constantly monitor for pinning violations. Interestingly, this feature is

not available by the system-implemented Network Security Policy.

Following, a concrete example of a policy configured using TrustKit.

Listing 3.5: Network Security Policy - TrustKit
1 <network-security-config>

2 <domain-config>

3 <domain>www.datatheorem.com</domain>

4 <pin-set>

5 <pin digest="SHA-256">k3XnEYQCK79AtL9GYnT/nyhsabas03V+

bhRQYHQbpXU=</pin>

6 <pin digest="SHA-256">2kOi4HdYYsvTR1sTIR7RHwlf2SescTrpza9ZrWy7poQ

=</pin>

7 </pin-set>

8 <trustkit-config enforcePinning="false">

9 <report-uri>http://report.datatheorem.com/log_report</report-uri>

10 </trustkit-config>

11 </domain-config>

12 <debug-overrides>

13 <trust-anchors>

14 <certificates overridePins="true" src="@raw/debugca" />

15 </trust-anchors>

16 </debug-overrides>

17 </network-security-config>

What it is interesting to see in this configuration, is the report-uri node.
Everytime the library detects a violation of the Certificate Pinning—the

38 38

domain exposes an unexpected certificate to the application—such violation
is reported and logged remotely to the http://report.datatheorem.com/

log_report endpoint.

3.4 Policy Weaknesses

As previously discussed, Network Security Policy is undoubtedly making
the specification of a fine-grained network policy more practical for appli-
cation developers. However, despite the Network Security Policy allows a
developer to define all the security settings in an unique configuration file by
using an easy and declarative syntax, each of the features introduced by the
Network Security Policy may be inadvertently disabled or weakened by an
inexperienced developer during the definition of the policy. Unfortunately,
to date, there are no tools that help developers to verify the correctness of
the defined policy and to check that the settings she wanted to implement
are effectively the ones enforced by the system.

We now discusses several potential pitfalls that may occur when an in-
experienced developer configures a Network Security Policy.

3.4.1 Allow Cleartext

As described in the previous chapter, a developer has multiple ways to de-
fine the usage of cleartext protocols. For example, the developer can define
a list of domains and limit the adoption of cleartext only to them. Oth-
erwise, if the application contacts all the endpoints securely, the developer
can completely opt-out from cleartext communications and be sure to iden-
tify potential regression issues. However, a developer may configure the
application with the following policy:

Listing 3.6: Network Security Policy - Allow Cleartext
1 <base-config cleartextTrafficPermitted="true">

2 ...

3 </base-config>

This configuration allows the application to use cleartext protocols, po-
tentially exposing the user and the application to threats described in Chap-
ter 3.2. To make things worse, as we will discuss throughout the rest of
the chapter, several online resources suggest implementing this very coarse-
grained policy, with the goal of disabling the safer defaults: the main concern
is whether the inexperienced developer is fully aware of the security reper-
cussions of such policy. Note that, as described in Chapter 3.3.2, this is

http://report.datatheorem.com/log_report
http://report.datatheorem.com/log_report

3.4. Policy Weaknesses 39

the default configuration used by applications targeting an API level lower
than 27.

For the sake of clarity, it is important to mention how this specific con-

figuration does not impact an application where all the endpoints are already

reached securely—this policy is useful only when acting as a safety net. In
other words, this configuration does not lower nor weaken the security of
an application performing all the network operations using, for example,
HTTPS. However, this configuration is not able to identify regression is-
sues: if an endpoint is inadvertently moved from HTTPS to HTTP, the
insecure connection is allowed due to this “too open” policy (while the
default policy could have blocked that). A similar scenario also affects com-
plex applications, which are either developed by different teams within the
same organization or that are developed by embedding a high number of
third-party dependencies: in these cases, it is extremely challenging, if not
outright impossible, to make sure that no connection would rely on cleartext
protocols.

Unfortunately, as we previously discussed, even one single endpoint (or
resource) reached through HTTP might be enough to compromise the se-
curity of the entire application.

3.4.2 Certificate Pinning Override

The Network Security Policy makes the adoption and configuration of cer-
tificate pinning straightforward. The developer now only needs to declare
a valid certificate for each of the domains she wants to protect: then, the
system takes care of all the logic to handle the verification of the certifi-
cates at connection time. On the other hand, we identified pitfalls that an
inexperienced developer may not be aware of. For example, consider the
following policy (which we took from a real application):

Listing 3.7: Network Security Policy - Certificate Pinning Override
1 <domain-config>

2 <domain>DOMAIN</domain>

3 <pin-set>

4 <pin digest="SHA-256">VALID_HASH</pin>

5 </pin-set>

6 </domain-config>

7 <trust-anchors>

8 <certificates src="system" overridePins="true"/>

9 </trust-anchors>

We argue that this policy is misconfigured and that it is very likely that
the developer is not aware of it. Given the specification of the pin-set en-

40 40

tries, it is clear that the intent of the developer was to actually implement
certificate pinning. However, the overridePins attribute of the system cer-
tificate entry is set to true: this indicates that certificate pinning should not

be enforced for any CAs belonging to the System KeyStore, thus making the
previous pin-set specifications useless. Not implementing Certificate Pin-
ning mechanism leaves the application unprotected from network attackers
and expose it to threats discussed in Chapter 3.2

We believe that this kind of policy offers a “false sense” of security for a
developer, especially since no warnings are raised at compilation time nor at
runtime. This situation is potentially exposing the developer into thinking
she has correctly implemented the Certificate Pinning mechanism, even if,
at runtime, the verification is not performed.

A more correct configuration of the Network Security Policy, for what
concerns the implementation of the Certificate Pinning, should have the

“pin” node and the “overridePins” attribute mutually exclusive. Instead,
the current configuration of the Network Security Policy, allows a developer
to wrongly configure the policy by mixing these two features, resulting in
the complete override of Certificate Pinning.

3.4.3 Silent Man-In-The-Middle

Switching from HTTP to HTTPS does not always guarantee that the com-
munication cannot be eavesdropped. As described in Chapter 3.2, the only
adoption of SSL/TLS might be not enough to ensure the confidentiality, in-
tegrity and authenticity of the network communication. Under certain spe-
cific circumstances, it is possible to perform MITM over SSL/TLS encrypted
connection, through which an attacker can eavesdrop and even modify the
data sent between a client and a server.

Consider the following policy taken from a real application:

Listing 3.8: Network Security Policy - Silent MITM
1 <trust-anchors>

2 <certificates src="system"/>

3 <certificates src="user"/>

4 </trust-anchors>

This policy may expose an application to MITM, even if it is poten-
tially not allowing any cleartext communication and all the endpoints are
correctly reached via HTTPS. In fact, this policy trusts the union of the
Certificate Authorities in the System and User KeyStore: hence, the traffic
of the application can be eavesdropped by anyone who controls a custom
CA in one of the KeyStores.

3.5. Policy Adoption 41

This policy overrides the default configuration introduced on Android
7.0, which prevents applications from trusting CAs stored in the User Key-
Store when performing secure connections. Even though trusting “user”
certificates may be the norm at the development phase, we believe that a
“release application” that actually trusts user certificate is often a symptom
of misconfiguration since it is very rare that an appliaction would actually
need to trust User defined CAs.

For example, even network-related applications such as VPN apps do not
need to trust User CAs, even when trusting custom certificates is required:
in fact, VPN solutions can hardcode the custom CA within the application,
and add a trust-anchors node pointing to it. This has the net effect of
trusting only this specific certificate, and nothing else.

One scenario where trusting User CAs seems required relates to Mobile
Device Management applications (MDM), which need to install different
CAs coming from different sources and that cannot be pre-packaged within
the released application. However, these MDM solutions constitute a rare
exception, rather than the norm. For the all the other cases (which represent
the majority) this should be considered a misconfigration, because of the
aforementioned reasons.

3.5 Policy Adoption

As one of the contributions of this study, we set out to explore how the
Network Security Policy has been adopted by the Android ecosystem. This
chapter illustrates how the Network Security Policy is used in the Android
ecosystem and it is organized as follows: First, in Chapter 3.5.1, we show
and describe the dataset we used for our large-scale analysis. Second, in
Chapter 3.5.2, we discuss how Android applications use this new security
mechanism. We provide statistics on how frequently each feature of the pol-
icy is used, and we present insights related to applications adopting policies
that are inherently “weak” and that likely constitute inadvertent miscon-
figurations. Last, in Chapter 3.6, we present a security evaluation and
analysis of network libraries, which, from a technical standpoint, is where
the “enforcing” of the policies actually lies, and we show the automatic test-
ing framework we developed to determine whether a given network library
correctly honors the various elements of network policies.

42 42

3.5.1 Dataset

To perform our analysis, we first built a comprehensive and representative
dataset of Android applications. To determine the applications to down-
load, we obtained the list of package names from AndroidRank [And11],
a service that provides “history data of applications on Google Play.” We
opted to select those applications belonging to the “Top Apps” category for
what concerns the installation distribution, with applications whose unique
installation count ranges from 10K to more than a billion. This category
contains the “most-installed applications” on the Google Play Store ac-
cording to AndroidRank. In total, we identified and downloaded 125,419
applications, period of time ranging from June to July 2019.

3.5.2 Dataset Exploration & Weaknesses

Methodology. We now present the methodology used to explore our
dataset. After extracting the policies from the applications, we first per-
form clustering to highlight common patterns and whether two or more
applications share the same exact policy (or specific portions of it). In
particular, we group two policies in the same cluster if they contain the
same nodes, attributes, and values, in any order. The order in which nodes
and attributes are defined is not important, as the system does not take
them into account when processing the policy. This approach also helps us
to determine whether application developers “copied” policies from known
developer websites, such as StackOverflow.

We then analyze the clusters to identify peculiar configurations or weak-
nesses. Once an interesting configuration has been identified, we then pro-
ceed by performing queries on the entire dataset (that is, inter-cluster) to
measure how common this specific aspect of the configuration is and whether
it affects many applications.

Last, we performed an additional analysis step, which is based on similar
clustering techniques, but performed over a normalized dataset. We refer to
a policy as “normalized” after we remove artifacts that are clearly specific
to an application. More specifically, we normalize a policy by replacing all
the concrete values of domains with the symbolic value URL, all certificate
hashes with HASH, and all the expiration dates with DATE. The rationale
behind this normalization step is to be able to group policies “by semantics,”
which is not affected when some specific concrete values differ.

Overview. After the analysis, one of the first insights is that, even though
the Network Security Policy was firstly introduced in Android 6.0 in 2015,

3.5. Policy Adoption 43

we note how 109,087 of the applications do not implement any policy (in
either of the two forms). Of the remaining 16,332 applications that do
implement a policy, only 7,605 of them (6% of the total) adopt the original
version of the policy (available in Android 6.0), while 8,727 (6.95%) adopt
the new, more expressive policy format (available in Android 7.0).

From an API level perspective, our dataset is distributed as follows:

• ∼ 0.5% of the applications (83) target API level 29,

• 75% (12,261) API level 28,

• 11% (1,803) API level 27,

• 12% (2,077) API level 26,

• ∼ 0.6% (108) target API level 25 or lower.

The first clustering process creates in total 271 clusters (where a clus-
ter is formed by at least two apps): these clusters group 7,184 apps out
of the 8,727 apps defining the policy—the remaining 1,543 policies were
unique and did not fit any cluster. The clustering process on the normalized
dataset, instead, generates 170 clusters, this time with only 311 applications
not belonging to any group.

We now proceed to illustrate and discuss interesting insights and com-
mon patterns extracted form the systematic analysis amongst these clusters.

3.5.3 Cleartext

Among the generated clusters, we immediately noticed the presence of a
few very big groups, one of the biggest one representing apps that define
a trivial policy to allow cleartext globally. This cluster is formed by 1,595
applications, all of which share the trivial policy of “allowing cleartext glob-
ally.” The exact same configuration, in terms of nodes and attributes, is
embedded and used also by other 2,016 applications belonging to 60 dif-
ferent clusters. Among the applications not belonging to any cluster, the
configuration that allows the application to use cleartext protocols globally
within the app, appeared other 199 times. This first analysis on the clus-
ters allowed us to identify a total of 4,174 applications that allow cleartext
protocols to be used for all the network communications.

We then investigated, instead, the opposite configuration, namely how
many apps opted out from “global cleartext.” Surprisingly, we identified only
156 applications that entirely block cleartext, and thus forbidding the usage

44 44

of unsecure protocols like HTTP. This result confirms how the problem of
using insecure protocols is still not eradicated in the Android ecosystem, and
how there is still a long way to go for developers to force the application to
use only encrypted communication protocols.

Then, we considered also applications using the first version of the policy
since it also allows a developer to fully opt-in, or opt-out, from cleartext—
even if with less granularity. Among the 7,605 applications using the first
version of the policy, 97.5% (7,416) of them allow cleartext protocols, while
only the 2.48% (189) opted out from them.

As previously discussed in Chapter 3.3, the cleartext attribute can also
be enabled by default if an application is targeting an API level lower or
equal to 27 and it does not override it. By considering also the default
settings, the numbers are even more worrisome. For instance, we noticed
that among the 16,332 applications with a Network Security Policy,

• 84.8% (13,847) allow the usage of cleartext protocols,

• 12.3% (1,837) enable cleartext due to the default configuration not
being overridden

• only 1.2% (170) of the applications opt-out from cleartext just for a
specific subset of domains.

3.5.4 Domains Definition

The second aspect we investigated relates to the adoption and usage of the
domain node. Amongst the applications defining a policy to define a specific
behavior for one or multiple domains, we identified only 2,891 applications
that allow cleartext for a subset of domains while only 219 applications
which force the domain in the list to be reached only securely.

Figure 3.1 shows the cumulative distribution function of the number of
domains defined within policies.

In general, most of the applications (∼ 95%) specify custom policies for
at most three domain names. Note how 62.5% of the applications, instead,
do not define a custom policy for any domain. 21% of the applications in
our dataset define exactly one domain, while 8.5% specifies up to 2 domains
within their policy. As it is possible to see from Figure 3.1, the cumulative
distribution function has a long tail, with several applications defining more
than 30 domains within the same policy, and two applications specifying
368 and 426 domains.

3.5. Policy Adoption 45

Figure 3.1: Cumulative Distribution Function of defined domains.

3.5.5 Policy for 127.0.0.1

Moving on with the analysis, this time by focusing on more complex clusters
in terms of nodes and attributes, we noticed some interesting and recur-
ring patterns. We identify how 492 applications configure a very specific
domain-config node for the IP address 127.0.0.1, localhost.

Even if this policy does not introduce any security vulnerability and
should be considered as a safe policy, we found it interesting for an aspect
that this time is not related to security: while it may be common practice
to spawn a local server, it is very uncommon that all the 492 applications
define the same policy for localhost. This configuration, however, is very
common among other applications not belonging to that cluster: in total,
we identify other 512 applications belonging to 43 different clusters having
the same domain-config setup, and 109 applications defining the same con-
figuration for localhost, but that do not belonging to any cluster. In total,
this specific domain configuration is used by 1,113 applications.

We then set out to pinpoint the underlying source of this policy, and we
eventually determined that this policy is defined by the Audience Network

46 46

Android SDK, the Facebook advertisement framework. In particular, we
noticed how a developer who wants to use this library must modify the
policy to include this specific configuration to avoid unintended behavior.
The official library’s documentation makes clear that this modification is
mandatory due to the internals of the library itself.

This finding opens a scenario that is different than the simple “developers
copy policies”: in this case, an advertisement library explicitly requested
the developer to modify her policy to make the library work. We suspected
that this pattern could be common to many other advertisement libraries.
Unfortunately, our suspicion proved to be correct since we identified several
advertisement libraries that explicitly request developers to copy-paste a
given policy. Moreover, we found how the ad libraries’ documentations often
attempt to convince developers by including misleading and/or inaccurate
arguments, and how many of such policies’ modifications actually negatively
affect the overall security of the entire application. We postpone an in-depth
discussion of these findings and we discuss them in Chapter 3.7.

3.5.6 Trusted Certificates.

As we continue with the exploration and analysis of the other clusters,
we identified another interesting cluster formed by 427 applications, which
use a trust-anchors node for the entire application to trust the union of
System and User CAs. As previously discussed, this configuration might
allow, under specific circumstances, to perform a MITM over SSL/TLS
connections.

Nonetheless, notwithstanding the potentially dangerous consequences to
which an application may be subject as a result of the use of this policy, we
notice how this specific configuration is shared among other 1,083 applica-
tions, 600 of which belong to 24 different clusters.

Going into more detail, we investigated and measured how many ap-
plications that instead use the same configuration for a subset of domains
ending up identifying 73 of them. Thus, in total, we identified 1,159 applica-
tions adopting this specific configuration, among which 1,038 of them allow
their SSL/TLS traffic to be potentially intercepted silently and stealthy.

3.5.7 Domain example.com and Invalid Digests

While we were analyzing the various domains defined in the policies of
the various applications, we realized that some of these domains, repeated
among several policies, were “interesting.” This peculiar domain is exam-

ple.com, and it is used in several configurations of different applications.

3.5. Policy Adoption 47

What it is interesting to observe is that this specific configuration is used
amongst several applications, belonging to different clusters.

The biggest cluster is formed by 41 applications: all of them force the
adoption of secure connection while contacting the domain example.com.
The remaining 58 applications defining a specific policy for that domain
are distributed as follows: 48 applications come from 7 different clusters,
while the remaining 10 do not belong to any cluster and have a very unique
policy configuration.

Since some of these configurations combined both the domain name
(example.com) and an unique digests, we tried to track down the original
policies. We then found that these policies are copied verbatim from the
Android Developer website and from StackOverflow. These policies define
certificate pinning on example.com with the correct hash or with invalid
digests formed by “B” repeated 44 times.

These policies represent two real cases found on our dataset.

Listing 3.9: Network Security Policy - (a) Certificate Pinning on example.

com

1 <domain-config>

2 <domain>example.com</domain>

3 <pin-set>

4 <pin digest="SHA-256">HASH</pin>

5 </pin-set>

6 </domain-config>

Listing 3.10: Network Security Policy - (b) Certificate Pinning on example.

com

1 <domain-config>

2 <domain>valid_domain</domain>

3 <pin-set>

4 <pin digest="SHA-256">BBBBB..BBBBBB</pin>

5 </pin-set>

6 </domain-config>

On the policy (a), it is possible to see how the developer enforced the
certificate pinning on the “example.com” domain, while in the policy (b)
the developer enforced certificate pinning with a wrong digest certificate
formed of only “B.”

We believe that there are two possible explanations to justify the adop-
tion of these (useless) policies. In the first one, the developer wants to define
one specific feature of the policy: she then copies an existing policy that
contains both the requested feature and the unique configuration of certifi-
cate pinning. In the second one, this policy might have been used by a

example.com
example.com
example.com
example.com

48 48

developer who was looking for a certificate pinning implementation and she
copied the first available policy. While copying security policies that con-
tain “dummy” domain names such as example.com is not a security problem
per se, we believe that these policies may create a false sense of security in
the developer’s mind: the developer may wrongly believe that certificate
pinning is correctly implemented in her application, while, in fact, it is not.

3.5.8 Certificate Pinning

The adoption of the Certificate Pinning increases the security of the net-
work communication, ensuring integrity, confidentiality, and authenticity.
Thankfully, implementing this additional defense mechanism via Network
Security Policy is now much simpler than it was in the past.

However, despite all the efforts made to make this defense easier to
use and reducing the number of potential mistakes a developer can make,
we found that only 102 applications enforce it through the policy. Out of
these 102 applications enforcing Certificate Pinning, an interesting cluster
is constituted by those that implement Pinning but then mistakenly override

it. We identified 9 applications that specify one or more pin-set, but also set
the overridePins attribute to true, making the various pin-set useless. We
argue that it is very likely that the developer is not aware of it, otherwise
she would not have specified any pin-set entry. We believe Android Studio
(or other IDEs) should flag this kind of policy as potentially misconfigured.

3.5.9 Invalid Attributes

All the values that can be used in nodes and attributes are well listed in the
official documentation. Although the grammar to be followed is well defined,
we identified a group of applications defining attributes that are not specified
within the official documentation [Dev16]. For example, we pinpointed two
applications defining the usesCleartextTraffic attribute in the policy (even
if this is only valid in the old version of the Network Security Policy), and
two applications defining the cleartextTrafficPermitted attribute within
a wrong node. We also found one application declared the hstsEnforced

attribute, which is not mentioned in the official documentation. However, by
looking at the source code of the policy parser, we notice how this attribute
is actually recognized as valid. This attribute allows a developer to define
HSTS for the WebView component of her application (which would “force”
the WebView to always contact via HTTPS websites sending the HSTS
header [con20]). We note how the concept of HSTS significantly overlaps
with the cleartext aspect of the Network Security Policy. We investigated

3.5. Policy Adoption 49

the reason why this attribute is still available within the policy and we
found out that it may exist because older versions of the WebView were
not enforcing the cleartextTrafficPermitted attribute [Dev16]—but were
enforcing HSTS instead.

3.5.10 TrustKit

As we discussed earlier, applications can use the TrustKit library to im-
plement the Network Security Policy. So, as a further analysis among the
policies defined by the applications in our dataset, we analyzed those that
use this library. The cluster of policies defined using TrustKit is formed
by 53 applications. Among these apps, 10 define a reporting-endpoint to
use when a pinning failure is identified, while 16 applications explicitly dis-
abled this feature. To conclude, we identified 46 applications defining and
implementing Certificate Pinning.

3.5.11 Remaining Applications

Our methodology based on clustering and targeted queries allowed us to sys-
tematically group a vast portion of our dataset. However, as we mentioned
earlier, some applications did not fit in any cluster due to their peculiar
policy configuration: in total, we identified 311 of these applications. We
then manually inspected them all, to look for additional interesting patterns
and configurations.

Among these, we identified 98 applications that define a very unique
policy in terms of domain nodes used with the policy. For instance, we
identify, several applications defining a substantial list of domains, up to
identifying two applications that in total have configured a Network Security
Policy for 368 and 462 unique domains, as shown in Figure 3.1.

The other 46 applications shared a specific policy that did not take
advantage of the “wrapper nodes” like pin-set or domain-config: for each
of the domains, these applications opened a new domain-config node each
time instead of defining all the domains within one node.

We also found 44 applications that specify more than one custom cer-
tificate.

Another interesting configuration comes from apps whose policy appears
very verbose and that could have been reduced. We noticed how 32 appli-
cations specify a default “allow cleartext” for the entire app and, on top of
that, configured a very detailed list of domains and subdomains with the
same exact policy.

50 50

Another interesting peculiarity we found in 21 applications is related
to the definition of additional text—like comments or left-over in between
nodes—that is then removed by the system during the parsing process.

To conclude, the remaining applications defined very unique and com-
plex policies that do not belong to any of the aforementioned groups, but
that, from the security perspective, do not represent anything special.

3.5.12 Dataset Evolution

Starting from November 1st, 2019, all applications must target at least API

level 28 [GN19]. This means, from a Network Security Policy perspective,
that all the new apps, by default, will forbid cleartext—if they do not over-
ride the new default.

Since our dataset was crawled before November, as presented in Chap-
ter 3.5.1, we decided to repeat some of the measurements, this time on a
dataset downloaded after this new mandatory requirement. Our goal is to
investigate how the applications evolved after the introduction of the new
default value that forbids the usage of any cleartext protocol.

We started a re-crawl of the same initial dataset, starting from the
125,419 package names. These applications were re-crawled from April to
June 2020. We were able to download 86.5% of the initial dataset, for a
total of 108,542 applications. Of the remaining apps that we could not re-
download, 15,749 of them were removed from the Google Play Store while
1,128 were moved from a free to “paid” download or introduced in-app pur-
chases not available in our geographical region. The applications that we
were able to re-crawl are now distributed as follows:

• 14.3% (15,531) target an API level 29,

• 46.2% (50,191) target API level 28,

• 9.5% (10,351) the API level 27,

• 12.7% (13,795) API level 26,

• the remaining 17.2% (18,674) target an API level 25 or lower.

Unsurprisingly, the number of apps defining a Network Security Policy
increased: 33.3% of the applications (36,165) now specify one of the two
types of policy. Among them, 65.5% (23,718) still adopts the first ver-
sion of the Network Security Policy through the AndroidManifest, while
the remaining applications (15,492) opted for the new and more recent ver-
sion. Interestingly, 8.4% of the applications (3,045) use both versions of
the policies.

3.6. Android Networking Libraries Adoption 51

We then looked for how many apps effectively adopted the new default

of forbidding cleartext protocols for the entire application. Surprisingly, ap-
proximately the 33% of the entire dataset (35,789 out of 108,542) enforced
a default configuration that does not permit cleartext protocols. Out of
these applications, 419 configured this behavior using the first version of
the policy. The remaining 67% of the apps still configure a Network Secu-
rity Policy that permits cleartext traffic. From this 67%, the 32% (23,229)
still adopt the first version of the policy. However, what it is interesting to
notice is that 58% (42,353) of applications allow cleartext due to default
configuration, dictated by the API level.

To conclude, we note that only a small portion of applications, 0.4%
(349), allow cleartext as base configuration and also define a set of domains
for which they allow only encrypted connections.

These results somehow highlight an ecosystem-wide problem that affects
Android applications: even if Google provides a simple and easy way to
configure the SSL/TLS for an application (the Network Security Policy),
and even though it explicitly changed the defaults to force the usage of
cleartext protocols, a significant portion of applications still opt to stick,
for one reason or another, to plain and unencrypted networking protocols:
while the community is making progress, we are not there yet for a full
adoption of HTTPS by Android applications.

3.6 Android Networking Libraries Adoption

So far, we focused on the exploration of how applications adopt Network
Security Policy. However, we did not tackle the aspect of enforcing these
policies. The Network Security Policy is simply an XML configuration file,
and it is then up to the various networking libraries to properly honor (and
enforce) what is specified by such a configuration file.

To this end, we set out to explore how Android Network Libraries do
enforce these policies. First, we checked the official Android documentation,
which states that “third-party libraries are strongly encouraged to honor the
cleartext setting” [Dev16]. However, we found the documentation concern-
ing, for two reasons. First, the wording of the documentation only mentions
that honoring the policy is “strongly encouraged.” However, we believe that
since the policy relates to security-relevant aspects, network libraries should
be forced to honor the policy—and in case they do not, that should be con-
sidered as a vulnerability. In fact, a network library not honoring the policy
would have the negative side-effect of silently making the policy useless.
Moreover, having a library in charge of network communication that is not

52 52

enforcing the policy might create of a “false sense of security” for the de-
veloper since she might have configured a very strict policy which is then
not enforced by the underline network component embedded into the appli-
cation. Second, the documentation only mentions the “cleartext settings.”
However, as we discussed in Chapter 3.3, the new version of the policy
touches on many more aspects: Unfortunately, the documentation does not
even mention the other features (e.g., which KeyStore to trust, pinning).

Next, we checked the official API, implemented by the
NetworkSecurityPolicy class. This is the API that, in theory, net-
work libraries should rely on to obtain the content of the policy (and
honor it). However, this API appears very limited: the only available API
is isCleartextTrafficPermitted(), which returns whether cleartext traffic
should be allowed. There is no other API to query the remaining fields of
the policy, and it is thus not clear how network libraries are supposed to
enforce them.

For these reasons, we set out to explore how and whether popular net-
work libraries honor the policy. We now discuss how we built a dataset
of network libraries, we present an automatic analysis framework to test
whether a given library honors the various aspects of a policy, and we show
the results of this analysis.

Libraries Dataset. To perform this investigation, we first built a com-
prehensive dataset of the most used networking libraries. We identified
these libraries from AppBrain [App11b], a service that provides multi-
ple statistics on the Android application’s ecosystem such as “Android
libraries adoption” by different applications. Our dataset consists of all
the network libraries mentioned by AppBrain: URLConnection, Robospice,
HttpClientAndroid, AndroidAsync, Retrofit, BasicHttpClient, OkHttp, An-

droidAsyncHTTP, Volley, and FastAndroidNetworking. Except for URL-

Connection, which is the default HTTP library on Android, all the libraries
are “external,” which means that application developers need to manually
specify them as external dependencies. Note that these external libraries,
even though they are not the default, are used by almost 30% of all the
applications published on the Google Play Store (∼ 250K unique applica-
tions) and are used by applications with more than 500M of unique instal-
lations. Table 3.1 provides more detailed statistics about the adoption of
such libraries and summarizes the distribution of our dataset. For each li-
brary, it first presents statistics about the number of applications using the
given library and how many downloads has the top downloaded application.
Then, for each of the tested feature, we mark whether or not the library
passes all the testcases. The last column represents whether an application

3.6. Android Networking Libraries Adoption 53

is honoring the entire policy, only a subset of features or none of them. For
URLConnection, statistics are not available on AppBrain.

Analysis Framework. Determining whether a given library is implement-
ing the Network Security Policy is not a straightforward process. In fact, the
source code of these libraries is often not available, and manual reverse en-
gineering may be challenging and error-prone. Moreover, the library might
come might implement the security checks necessary to honor the Policy
in different ways. Thus, we opted for an automatic approach based on dy-
namic analysis. We built an automatic framework to check whether a given
networking library honors the policy defined in an application. Note that
while for this analysis we tested the ten popular network libraries in our
dataset, our framework is completely generic and can be easily used to vet
an arbitrary network library.

Our framework analyzes each network library individually. For each of
them, it performs the following steps. First, we generate all the possible
combinations of a policy, by combining all possible nodes, attributes, and
representative values. In particular, the framework considers the following
nodes: base-config, domain-config, pin-set, and trust-anchors. For each
node, our framework considers all the relevant child nodes, such as domain,
pin, and certificate. Each node is then configured with all the possible at-
tributes that might be used within a given node, like overridePins for what
concerns trust-anchors, or src for the certificate node. The entire list of the
nodes, please refer to Chapter 3.3. For what concerns the values, we gen-
erate “representative values.” For the value field representing a certificate
hash, we generate various policies with the following values: a valid hash
matching the hash of the certificate actually used during the tests, a valid
hash that is different than the expected one, and a non-valid hash (e.g.,
the character “A” repeated several times). The combinations of all nodes,
attributes, and representative values, generates 72 unique policies. As men-
tioned above, some of the policies will be “properly configured” while others
will “misconfigured,” as described in Chapter 3.4.

Then, the framework creates an application that attempts to connect
to an endpoint via HTTP and via HTTPS by using the library under test.
The application is then built multiple times, each time with a different
policy. Each of these applications is then tested in three different “testing
environments,” each of which simulates the different threat models discussed
in Chapter 3.2:

• the application is tested without attempting to perform MITM,

• we simulate an attacker performing MITM (by using a proxy),

54 54

Table
3.1:

C
om

pliance
ofN

etw
orking

Libraries.

N
e
tw

o
r
k
in
g
L
ib
r
a
r
y

#
o
f
A
p
p
s

T
o
p
A
p
p

D
o
w
n
lo
a
d
s

C
le
a
r
te
x
t

C
e
r
tifi

c
a
te

P
in
n
in
g

T
r
u
st

A
n
c
h
o
r
s

C
o
m
p
lia

n
t

R
etrofit

>
104k

1
B

3
3

3

Volley
>

66k
5
B

3
3

3

O
kH

ttp
>

39k
5
B

3
3

3

A
ndroidA

syncH
T
T
P

>
22k

100
M

7
3

3
G#

A
ndroidA

sync
>

7k
100

M
7

7
7

#
FastA

ndroidN
etw

orking
>

3k
100

M
3

3
3

H
ttpC

lientA
ndroid

∼
1,000

100
M

7
3

3
G#

B
asicH

ttpC
lient

∼
1,000

100
M

3
3

3

R
obospice

∼
1,000

10
M

3
3

3

U
R
LC

onnection
N
/A

N
/A

3
3

3

3
w
hen

the
library

passes
allthe

testcases.
7
w
hen

the
library

fails
at

least
one

testcase.

w
hen

the
library

honors
the

entire
policy.

G#
w
hen

the
library

honors
only

a
subset

ofthe
features

ofthe
policy.

#
w
hen

the
library

does
not

honor
the

policy.

3.6. Android Networking Libraries Adoption 55

• we simulate an attacker performing MITM with the attacker’s custom
CA added to the User KeyStore.

At each execution, the framework logs whether a given connection with
a given policy in a given testing environment was successful or not. These
logs are compared with a ground truth, which is generated by a Python-
based implementation that takes into account the various aspects of the
policy and the various testing environments. We flag a library as compliant

with the Network Security Policy specification if and only if the runtime
logs match with the expectations of the ground truth, otherwise, we mark
it as not-compliant.

Analysis Framework: Simulation. Following an example of how the
framework works: first, it generates one of the possible configuration of the
Network Security Policy.

Listing 3.11: Network Security Policy - Automatic Evaluation Framework
1 <domain-config>

2 <domain>DOMAIN</domain>

3 <pin-set>

4 <pin digest="SHA-256">VALID_HASH</pin>

5 <pin digest="SHA-256">INVALID_HASH</pin>

6 </pin-set>

7 <trust-anchors>

8 <certificates overridePins="false"

9 src="system"/>

10 <certificates overridePins="true"

11 src="user"/>

12 </trust-anchors>

13 </domain-config>

Then, it proceeds by creating an Android application to test the secu-
rity of the a given networking library. The application embeds the network
library and defines in its source code two methods to contact DOMAIN

both via HTTP and HTTPS. Once the application is ready, the framework
embeds the generated policy, compiles the application with the given net-
working library and runs the application. At runtime, it then monitors for
the “success” or “failure” of both the network requests. Then, the same ex-
ecution is repeated with both the MITM scenarios described above. Since
from the policy definition it is possible to infer the expected result, the
framework is then cross-verifying if the expected result matches with the
one analyzed at runtime. For this specific example, the following results are
expected:

• With no MITM, the HTTP connection should fail while the HTTPS

56 56

connection should succeed, since at least one certificate digest is
matched,

• For the first MITM scenario, where the attacker has no certificate on
the device, both the HTTP and HTTPS connection should fail. The
fist one should fail because of the forbidden of cleartext communica-
tion while the second one should fail because of certificate’s signature
mismatch,

• For the second MITM scenario however, the HTTP should still fail
while the HTTPS connection should succeed. In fact, the permis-
sion removes the signature check on the secure connection due to the
overridePins set to True for the “user” certificates.

In case of success, we mark the “testcase” as passed, otherwise we raise a
warning, which means that the library is behaving differently than expected.
If the library passes all the testcases, we mark it as “compliant,” “not-
compliant” otherwise.

Compliance Results. We used our framework to automatically evalu-
ate the compliance to the Network Security Policy of the 10 networking
libraries extracted from AppBrain. Surprisingly, we noticed how not all the
libraries are completely compliant with the standards defined by the Net-
work Security Policy: we identified that HttpClientAndroid, AndroidAsync
and AndroidAsyncHTTP are not honoring the cleartext attribute. These
libraries allow HTTP even though the policy would prohibit it. We note
how these libraries are used by more than tens of thousands of popular apps
with hundreds of millions of unique installations.

Instead, for what concerns certificate pinning and trusted anchors, we
noticed that nine of the ten libraries do correctly honor the policy. Given
the difficulty and missing documentation, we were positively surprised by
this high adoption rate. We thus decided to investigate why libraries are en-
forcing such a difficult part of the policy and not the easier-to-enforce clear-
text settings. For these libraries, we performed manual analysis—including
source code analysis, when available—to determine how the policy is ac-
tually enforced. We found that none of these libraries is implementing
SSL/TLS-related operations from scratch nor defining a custom handler for
CAs. Instead, they are all relying on core Android framework methods to
perform SSL operations, which includes handshake and management of the
KeyStores. All these operations are handled by the Conscrypt [Dev20b]
package, which provides a Java Security Provider (JSP) that implements
parts of the Java Cryptography Extension (JCE) and Java Secure Socket

3.7. Impact of Advertisement Libraries 57

Extension (JSSE). While this is clearly a positive news, we find it surpris-
ing that these popular network libraries do not adhere to arguably more
critical cleartext settings.

We also found that AndroidAsync, used by thousands of apps, does not
support the Network Security Policy at all. In fact, we found that the mere
presence of a domain-config node is enough to break the network library,
leading to an exception, and thus making it essentially incompatible with
the Network Security Policy. Table 3.1 summarizes our findings.

3.6.1 Disclosure

We disclosed our findings to Google, with an emphasis on the misconfig-
uration of the SSL Pinning (which may give a false sense of security to
inexperienced app developers). We also proposed to extend the Android-
Studio IDE with a linter for the Network Security Policy that checks for
these misconfigurations and informs the developer about the potential risks.
Google acknowledged that this is, in fact, a rather odd configuration. For
what concerns the networking libraries not compliant with the actual Net-
work Security Policy (see Table 3.1), we have disclosed our findings to the
developers. We are still working towards full bugs fixes.

3.7 Impact of Advertisement Libraries

Advertisements (ads, in short) play a key role in mobile applications. To
better understand how this ecosystem works, we first provide an overview of
how advertisement libraries (ad libraries) operate and their complexity, and
we then explore the implications for the adoption of the Network Security
Policy.

Ads are the most important source of income for many application de-
velopers, especially when applications can be freely downloaded from the
Google Play Store. An application can simultaneously embed one or mul-
tiple ad libraries. While the app is running, the ad library retrieves ads
content from a remote server and it displays it to the user. Every time an
ad is shown to the user, the developer earns a revenue. If the user clicks on
the ad, the developer then gets a more substantial revenue. Depending on
the type of agreement that the application developer has with the adver-
tiser, the amount of money earned by the application developer may vary
depending on the user’s interaction with the banner ad [ads21].

Even though this mechanism is conceptually simple, the actual imple-
mentation details and the underlying process are far from trivial. We now

58 58

quickly discuss the main steps, which are also depicted in Figure 3.2. The
diagram shows what are the different stages, and players, necessary to make
an application showing a given advertisement to the user.

First, the developer embeds a given ad library (or multiple libraries) in
her application, and implements a set of callbacks and handlers to use when
an ad is ready to be shown. Then, when the application is running, the ad
library contacts its backend server and asks for an ad to be displayed.

Depending on the ad library’s implementation, this first request can
reach one or multiple servers. In case of an individual ad network, the library
contacts a single server, while in case of an ads aggregator the request is
sent to multiple servers. The server then forwards the request to its ad

network, which might be more or less complex. Within the ad network,
the bidding auction starts. Bidding consists of advertisers (brand) declaring
the maximum amount of money they are willing to pay for each impression
(or click) of their ad. The winner sends the content of the ad back to the
library, and the ad is then displayed in the application, normally within a
WebView. By displaying the content of the ad, the application acts as the
content publisher for the brand that won the auction.

The interaction of the user who is using the application with the adver-
tisement just shown can trigger a series of additional operations and network
connections. For instance, if the user clicks on the ad, then the full enriched
content might be retrieved from the server of the auction’s winner (which is
related to the specific ad, and not to the ad library itself). The full content
can then be displayed within the application, or the user can be redirected
to a different component, like a browser, where it is displayed.

The complexity of the ad ecosystem and the interconnection of multi-
ple players—each of which only controls a portion of the ecosystem—opens
interesting questions related to the Network Security Policy. Since the win-
ner of the auction is usually not under the control of the ad library, the
enriched content downloaded upon a user’s click may be served via HTTP:
this aspect makes it interesting to determine how different ad libraries deal
with this “uncertainty” on the protocol used by the advertiser. Motivated
by these observations, we set out to perform the first systematic analysis of
the Network Security Policies defined by ad libraries.

The remainder of the chapter is organized as follows: First, we present
the dataset of ad libraries that we built for the analysis. Then, we ana-
lyze and characterize the different Network Security Policies defined by ad
libraries, and we show how several of these libraries push the application
developers to severely weaken their original policies, oftentimes justifying
these requests with misleading arguments. We conclude our discussion with

3.7. Impact of Advertisement Libraries 59

an in-depth case study. We note that, ideally, it would be interesting to
perform large-scale and automated analysis over many ad libraries and ap-
plications embedding them. However, we refrain from performing such a
study due to ethical concerns: in fact, automatically visiting applications
with the mere goal of generating ad impressions that would not be seen
by real users (or, even worse, automatically clicking on these ads) would
generate illegitimate revenues for the application developer (who could be
framed as fraudster), and it would damage all the ads ecosystem’s parties
involved.

6
0

6
0

Application

ADS
Library

WebView

AD
Network

Ads
Server

Winner
URL

1. Request for
an AD

2. Forward
the request

3. Bidding
auction

4. Who wants to
show an AD?

5. Winner AD
Content to show:

URL, Images

6. Winner AD
7. Forward
the request

8. Content to show
in the WebView of the

application

9. User clicked.
Show the
full content

10. Contact the URL
and retrieve the content

Brand 1

Brand 2

Brand 3

Brand 4

Figure 3.2: Ecosystem of individual ad network.

3.7. Impact of Advertisement Libraries 61

3.7.1 Dataset

To perform this investigation, we first built a comprehensive and repre-
sentative dataset of the most used ad libraries. We choose the Top 29
ad libraries from AppBrain [App11a] based on the ranking “number of ap-
plications.” With these libraries, our dataset covers all different types of
advertisements, from libraries offering “Video Ads,” to the ones offering a
“Mediation service,” and “Native Ads.” Table 3.2 summarizes the statistics
about the ad libraries and synthesizes our dataset.

3.7.2 Policy Characterization

We investigated whether a given ad library requires a Network Security
Policy modification and of which kind. To identify if a library requires a
policy, we start by looking at its official documentation. In case we do
not find any reference to the Network Security Policy, we then proceed by
analyzing the source code of the “reference example application,” which is
always provided by the ad library developers to show how such a library can
be integrated. Since these reference applications use a specific ads library
and should come with a predefined policy, thus becoming valid substitute
in case of lack of official documentation.

Among the 29 libraries that we analyzed, we found that 12 of them do
require the developer to modify the policy. The remaining 17 do not require
any modification, which suggests that their backend infrastructure is fully
compliant with the latest standards and defaults.

We then proceed by inspecting which configuration of the policy is
pushed by the advertisement library. One of these is the Facebook Au-
dience Network ad library, which only requires the developer to specify a
configuration for a single domain, as discussed in Chapter 3.5.2. The other
libraries require more invasive modifications, which we discuss next.

Cleartext. Our first finding is concerning: All the 11 libraries require
the developer to allow cleartext on her application. Amongst the 11 ad li-
braries that force the developer to allow cleartext, we found that MoPub,

HyprMx, HeyZap, Pollfish, AppMediation, and Appodeal do force the devel-

oper to completely allow cleartext protocols for all domains. Moreover, we
also found that AdColony, VerizonMedia, Smaato, AerServ, and DuApps

push the developer to adopt the first version of the policy, with similarly
negative consequences. These configurations make ineffective any safety
net that a Network Security Policy may provide. However, we note that
these ad libraries may be required to ask for this modification since it could

62 62

Table
3.2:

A
nalysis

ofA
dvertisem

ent
Libraries.

L
ib
r
a
r
y

#
o
f
A
p
p
s

T
o
p
A
p
p
s
D
o
w
n
lo
a
d
s

R
e
q
u
ir
e
s
N
e
tw

o
r
k
S
e
c
u
r
ity

P
o
lic
y

A
dM

ob
>

464k
1B

Facebook
A
udience

N
etw

ork
>

96k
500M

3
U
nity

>
67k

50M
A
ppLovin

>
34k

100M
C
hartboost

>
30k

1B
Startapp

>
29k

100M
A
ppsFlyer

>
29k

500M
A
dC

olony
>

24k
100M

3
Vungle

>
20k

100M
M
oPub

>
19k

1B
3

Ironsource
>

19k
50M

A
m
azon

M
obile

A
ds

>
13k

500M
Tapjoy

>
11k

100M
InM

obi
>

11k
100M

Pollfish
>

9k
10M

3
A
ppN

ext
>

8k
100M

A
djust

>
8k

1B
H
eyZap

>
7k

100M
3

Sm
aato

>
4k

100M
3

Fyber
>

4k
100M

M
illennialM

edia
>

3k
500M

3
M
yTarget

>
3k

100M
A
ppodeal

>
3k

50M
3

K
ochava

>
2k

100M
A
erServ

>
2k

100M
3

Tenjin
∼

1,000
100M

H
yprM

X
∼

1,000
100M

3
D
U

A
d

∼
500

100M
3

A
ppM

ediation
N
/A

N
/A

3

3.7. Impact of Advertisement Libraries 63

be that a given ad framework does not have enough control over the type
of URLs (HTTP vs. HTTPS) that are served as part of the ads.

As illustrated in Chapter 3.5, please note that the policy defined by the
“Facebook Audience Network” should not be considered as violating the
least privilege principle even if it is allowing cleartext communications since
the policy declares the adoption of cleartext only for a specific “domain”
that is supposed to be used only locally.
Trusted Anchors. The analysis of the advertisement ecosystem had led
us to imagine that libraries could only force the developer to use cleartext.
To our surprise, we noticed that some libraries also push the developer to
define other parameters for her Network Security Policy. Indeed, we have
identified several ad libraries defining a trust-anchors node. Even in this
case, the findings are concerning: Appodeal [Dev19a] and HeyZap [Dev19b]
suggest the developer to add User KeyStore as trusted, thus providing a
venue to perform MITM attacks. Moreover, none of these libraries provide
any custom CA, nor ask the developer (or the user) to do so, making this
risk completely unnecessary. We believe it is important to emphasize how,
even in the case where the library would have needed a custom Certificate,
it would have configured the policy to trust a local certificate within the
application, and not the entire User KeyStore. We can conclude that the
definition of this policy is not strictly necessary and dangerous.
Misleading Documentation. We argue that the security repercussions
of Network Security Policy modifications should be properly explained and
justified to developers so that they can take informed decisions on whether
to include a given ad library. However, we found how this “transparency”
is not a common practice amongst advertisement libraries. After closely
inspecting the documentation of the 11 ad libraries mentioned above, we
found that none of them inform developers of the possible consequences
of allowing cleartext protocols or trusting User KeyStores. Some of these
libraries simply inform the developers that they need to apply their modi-
fications of the Network Security Policy in the name of “usability” and to
avoid any faulty behavior or to avoid ads with HTTP asset URLs from being
served incorrectly. Moreover, we identified how Millenial Media, Smaato,

HyprMX, and AerServr simply ask the developer to copy-paste the provided
sample AndroidManifest, without explicitly mentioning the fact that such
a sample manifest silently specifies a “usesCleartextTraffic” policy. Even
worse, we found how Du Apps misleadingly justifies the need to allow clear-
text traffic because it is “required for target SDK28.” We believe that the
underlying reason for these problems is that most of these ad libraries found
themselves in difficulty due to their infrastructure not being ready to deal

64 64

with Google’s HTTPS everywhere push.

3.7.3 Ad Libraries in Applications

As previously discussed, we identified some ad libraries that ask developers
to weaken their security policy and to allow cleartext. We performed addi-
tional experiments that aim at determining how frequently these ad libraries
are used within our dataset and whether these applications allow cleartext
as part of their Network Security Policy.

To detect a third-party library within a given application, we use
LibScout [BBD16a], the state of the art static analysis tool for this kind of
task. According to [BBD16a], LibScout can detect the inclusion of external
libraries within applications even when common bytecode obfuscation tech-
niques are used. LibScout supports two types of detection: the first one is
based on a simple matching with the package name, while the second one
relies on code similarity. By default, it reports only matches that have a
similarity of at least 70%. For our experiment, we used the same threshold.
At the time of writing, LibScout supports only the Facebook Audience ad
library. We extended it by creating profiles, necessary for the detection,
for all the ad libraries that require the developer to modify the Network
Security Policy to allow cleartext. Then, for each of the applications in our
dataset, we run LibScout for a maximum time of one hour.

We run LibScout on the first dataset of 16,324 applications (which spec-
ify a Network Security Policy), and also on the second “fresher” dataset of
108,542 apps. For the first dataset, LibScout was not able to conclude
the analysis in time for only 8 applications, while it analyzed correctly the
entire second dataset. In total, the matching engine identified that 19.7%
of the applications belonging to the first dataset (3,230) do have one of
the ad libraries that requires cleartext. For the second dataset, instead, it
determined that 8.8% of the applications (9,645) contain at least one of the
libraries of our dataset.

Table 3.3 summarizes the results. Unfortunately, we suspect that
LibScout might have missed several matches (that is, it does not find li-
braries even if they are included). In fact, Table 3.3 shows how the match-
ing results are dominated by the “package name” heuristic, and how only
41 matches for the first dataset, and 341 for the second, were solely due to
the similarity analysis engine (i.e., all other matches were already covered
by the package name heuristic, hinting that the applications were not ob-
fuscated). We thus remind the reader that, for the numbers reported next,
the accuracy of these numbers is based on the accuracy of the underlying
libraries matching engine, LibScout.

3.7. Impact of Advertisement Libraries 65

Table 3.3: LibScout external libraries identification.

Apps with Ad library matched by Dataset 1 Dataset 2

Package Name (PN) 3,189 9,304
Code Similarity (CS) 2,072 5,918
PN ∧ ¬ CS 1,158 3,727
CS ∧ ¬ PN 41 341
PN ∧ CS 2,031 5,577
PN ∨ CS 3,230 9,645

Dataset 1 represents the analysis over 16,324 applications.
Dataset 2 represents the analysis over 108,542 applications.

We then proceeded by checking how many of the applications identified
by LibScout effectively have a Network Security Policy that allows global
cleartext, as defined by the ad libraries. Table 3.4 summarizes our find-
ings and presents the distribution of the dataset in terms of inclusion of ad
libraries that ask developers to weaken their policy and whether the appli-
cations’ Network Security Policy allows cleartext. We note how for the first
dataset, 89% of the applications (2,891) embedding an ad library do have
a Network Security Policy that allows cleartext. However, 11% (339) do
not allow it: for these applications, the ads served over HTTP will not be
displayed and an exception is thrown. We also note that, even if applica-
tions do not use ad libraries, a large portion of them (83%) still use HTTP.
Thus, while ad libraries asking developers to weaken their security policy
certainly does not help, it does not seem to be the only reason application
developers stick to insecure HTTP connections. For the second dataset, we
found that, among apps that include an ad library, 75.6% of them (7,298)
define a Network Security Policy that permits cleartext. The percentage of
applications that allow cleartext decreases to 66.1% when considering apps
that do not include one of the ad libraries we have checked for.

3.7.4 Case Study: MoPub

We now present an in-depth analysis of one of the most prominent ad li-
braries, MoPub [Dev20a]. This library is an individual ad serving platform

used by over 19k applications, some of which have more than 50M unique
installations. MoPub is one of those libraries that requires a developer to
allow cleartext for her entire application. For this case study, we set out
to determine whether this library really had no other choice but to require

66 66

cleartext on the entire application to properly work. To shed some light, we
aimed at monitoring the network requests performed by this ad library at
run time. We note that a simple network monitor on the traffic generated
by the entire application is not enough: by just observing network traces,
it would be very challenging to determine which traffic has been generated
by the ad library and which by unrelated components of the application.

Thus, we developed an instrumentation framework that records all net-
work activities and, moreover, hooks the network Socket.connect API (by
using Frida [Rav20]). This API is the lowest-level API used for any HTTP
or HTTPS connection and it provides the target domain name and the port.
We we have not considered native implementation of the same API since we
did not find any ad libraries using native components. Every time the API
is invoked, we perform a stack trace inspection to determine which package
has originated the call: this setup allows us to match which component (i.e.,
library) of the application initiated the network request.

Due to the ethical concerns mentioned earlier, we limited ourselves to
a very small-scale experiment: we opted to select and analyze only one
representative application, Hunter Assassin [Stu20], an action game with
more than 50M installations. This app embeds MoPub and specifies a
Network Security Policy that reflects MoPub’s documentation. For the
experiments, we executed the application 10 times, with each execution
lasting 10 minutes. Due to ethical concerns, we opted to not use automatic
UI stimulation techniques, but we performed this analysis step manually, by
just simulating the interaction of a “real” user. This approach allows us to
avoid generating excessive traffic which would have potentially damaged the
reputation of the application developer towards the advertising platform.

During the analysis, our instrumentation framework detected that the
MoPub library initiated connections to 83 unique domains—for this mea-
surement, we discarded the domain names reached by other components of

Table 3.4: Distribution of the dataset in terms of inclusion of ad libraries
and cleartext configuration.

Network Security Policy
Dataset 1 Dataset 2

Ads No Ads Ads No Ads

Cleartext 2,891 10,956 7,298 65,455
No Cleartext 339 2,138 2,347 33,442

Dataset 1 represents the analysis over 16,324 applications.
Dataset 2 represents the analysis over 108,542 applications.

3.8. Network Security Policy Extension 67

the application. Surprisingly, for 82 domains (out of 83) the connection was
actually established using HTTPS, the only exception loaded over HTTP
being an image, retrieved from a MoPub server. Even though this HTTP
connection would be blocked by a non-permissive cleartext policy, we do
not believe this is the core reason why MoPub requires the policy to allow
cleartext for the entire application.

According to the MoPub documentation, it requires HTTP because it
may need to serve ads via HTTP—and to do so, it asks the developer to
weaken the policy for the entire application. Indeed, the official documen-
tation reports “Android 9.0 (API 28) blocks cleartext (non-HTTPS) traffic
by default, which can prevent ads from serving correctly. To mitigate that,
publishers whose apps run on Android 9.0 or above should ensure to add
a network security config file. Doing so allows cleartext traffic and allows
non-HTTPS ads to serve.” [Dev20a]

We believe this to be a clear violation of the principle of least privilege,
as the ad library should allow cleartext for its own connections, without
interfering with the rest of the application. However, we note that this
current situation is not solely fault of the ad library: with the current policy
format, it would be impossible to enumerate all possible domain names
that the ad library should be able to reach since this list is not known
in advance (and since the Network Security Policy cannot be changed at
run-time). We identified a conceptual limitation: the current policy format
allows developers to specify policies per domain, but we believe a better
abstraction for policy specification to be per package. In an ideal world,
the ad library should be able to express that only the connections that are

initiated by the MoPub library itself should be subject to use cleartext,
without the need of weakening the rest of the application. Guided by these
insights, we designed and implemented a drop-in extension to the Network
Security Policy that would address this concern and allows a developer to
adhere to the principle of least privilege.

3.8 Network Security Policy Extension

As previously discussed, third-party libraries can significantly weaken the
Network Security Policy of an application, and as we have demonstrated
through extensive analysis, ad libraries actually often do so. In some sce-
narios, however, it is very challenging for ad libraries to “do better.” In fact,
the complexity of the ad ecosystem may make it impossible, for example,
to know in advance which domain names require HTTP connections, thus
leaving the ad library developers to ask to allow cleartext for the entire

68 68

application. However, this problem is not caused only by advertisement
libraries: conceptually, any third-party library that needs to perform a net-
work operation can potentially force the developer to modify the Network
Security Policy. Please note that not all the modifications made by third-
party libraries are weakening the Network Security Policy. For instance,
if a library defines all its configuration inside a “domain-config” tag (like
the Facebook ADS), it is not going to impact the original definition of the
policy since the configuration will be enforced only on the domains specified
inside the tag. However, as discussed in Chapter 3.7, we highlighted how al-
most all the advertisement libraries that are forcing the developer to modify,
or adopt, a Network Security Policy are tampering the base configuration,
affecting the entire application.

We believe the current format of the policy is fundamentally limited.
The current policy allows developers to specify different policies at the gran-
ularity level of domain names: however, we argue that, in some scenarios
(e.g., ad libraries), this is the wrong abstraction level.

We now discuss and present our proposal for an extension of the Net-
work Security Policy format to allow for the specification of policies at a
different granularity: we propose a new level of granularity, targeting this
time specific application components, identified by their package names.

Our New Extension. The core idea behind the extension is to allow a
developer to bind a specific policy to a specific package name(s). To this end,
we introduce a new XML node, package-config, which allows developers
to specify custom policies for specific external libraries, without the need
to modify (and negatively affect) the policy of the main application, thus
creating a “sandbox” for a third-party library that needs a specific Network
Security Policy configuration. The package-config node contains multiple
package childs. Each of these package nodes contain a name attribute,
pointing to the package name the developer wants to sandbox, as well as a
cleartextTrafficPermitted attribute. To ease the explanation, consider the
following concrete example:

Listing 3.12: Network Security Policy - Extension
1 <base-config cleartextTrafficPermitted="false" />

2 <!--introduced by our extension-->

3 <package-config>

4 <package name="com.adlib.unsafe"

5 cleartextTrafficPermitted="true"/>

6 </package-config>

This policy specifies that, by default, all HTTP traffic should be blocked.
However, it would allow HTTP connections if they are initiated by the

3.8. Network Security Policy Extension 69

com.adlib.unsafe ad library. Note how the ad library can now support oc-
casional HTTP connections even without knowing the list of domain names
a priori and, more importantly, without affecting the policy of the appli-
cation. The same process can also be used by the developer to make sure
that none of the connections originated by com.adlib.unsafe are executed
in cleartext, using insecure communication protocols. The developer will
only need to change the value of the cleartextTrafficPermitted attribute to
false. We believe that our proposal allows a developer to adhere to the least
privilege principle.

Implementation. We implemented this new extension by modifying the
isCleartextTrafficPermitted API to make it aware of the XML policy node.
Our modification performs stack trace inspection to determine which pack-
age name has initiated the call. For each package name appearing in the
stack trace, we then check whether the Network Security Policy contains
a custom policy for a specific package name: if yes, we use that policy.
Otherwise, we apply the default.

If the connection is started from a method belonging to one of the pack-
age names in the “package-config” whitelist, we allow the connection, oth-
erwise, we raise a RuntimeError, indicating a policy violation—since the
connection should not be allowed by the policy definition. It is impor-
tant to highlight how a similar check is already adopted by the libraries
“compliant” with the Network Security Policy: every time a new cleart-
ext connection is made, both the system and libraries should invoke the
isCleartextTrafficPermitted API to verify if they need to allow or deny the
connection.

Adoption & Backward Compatibility. Our extension can be trivially
adopted by application developers and network libraries. In fact, since we
modify an API that all these libraries already invoke—and that was a key
design choice—they can enjoy the benefits of our policy without the need to
make any modification. We also note that our extension is fully backward
compatible and it can act as a drop-in replacement of the old version. In
fact, apps and policies that are not “aware” about our extension are sup-
ported exactly the same as before. For instance, since our implementation
extends a mechanism that is already used by networking libraries, our de-
fense mechanism works on the already compliant libraries (see Table 3.1).
This is a key design choice that will make the adoption of our proposal
flawless and fully backward compatible.

Performance Considerations. We implemented our extension on a Pixel
3A running Android Pie (pie-qpr3-b-release). Our patch consists of less

70 70

than 30 lines of code and modifies only two components of the Android
framework (the policy parser and the isCleartextTrafficPermitted API).
Once the patch is applied to the system, all the networking libraries that
were honoring the Network Security Policy (see Table 3.1) can take advan-
tage of our extension. We measured the overhead of our extension with a
microbenchmark. This benchmark consists in making multiple HTTP con-
nections and measuring the time needed by the isCleartextTrafficPermitted

API to perform all the required checks to identify the origin the requests
and accept or deny the connections based on the configuration of the policy.
More in detail, for our benchmark we wrote an app that performs 1,000
HTTP requests using the OkHttp3 library. We then run the app 100 times,
with and without our modifications, and we compute the difference. The
average execution time of the isCleartextTrafficPermitted API, without
our modification, is 4 µs with a standard deviation of 6 µs. The average
execution time of the same API with our modification is instead 300 µs,
with a standard deviation of 94 µs. We believe that the overhead of our
defense mechanism is negligible, especially when compared to the overhead
incurred by network I/O operations.

3.9 Limitations

Even though our implementation raises the security bar of the current Net-
work Security Policy, we acknowledge that it currently suffers from some
limitations. First, it is important to mention that, since we operate with
the same threat model of the actual Network Security Policy, we do not
protect the application against malicious third-party libraries that want to
evade the policy defined by the developer. We note that this affects the
standard Network Security Policy as well: in fact, a malicious library can
bypass even the strictest security policy by performing network connections
with its “custom” API or by using native code.

A second limitation relates to the fact that we rely on the stack trace to
identify which component initiated the network connection. We acknowl-
edge that there may be benign situations where the stack trace cannot
be fully trusted and there might be the risk of losing the real “caller,”
for example, when using dynamic code loading or threading with worker
threads. A very detailed analysis of the potential problems of using the
stack trace to perform “library compartmentalization” has been studied
in FlexDroid [SKC+16]. Even if the current threat model of FlexDroid is
considering malicious libraries, we believe that their proposal of a secure
inter-process stack trace inspection combined to our defense mechanism

3.10. Related Work 71

might create a full-fledged implementation to tackle the compartmentaliza-
tion problem.

To conclude, we currently support only the cleartextTrafficPermitted

attribute for the package-config tag. However, note that some features
already provide a sufficient granularity and do not need to be sandboxed on
a “per-package” basis. For example, the Certificate Pinning feature already
creates a sort of “per-site sandbox,” and it thus does not need to be restricted
to a single component of the application. For the debug tag, instead, we
believe that the current Network Security Policy works well since its content
is not taken into account once the application is installed on the device.

3.10 Related Work

There are several areas of works that are relevant to this research: network
security, the dangerousness of “code reuse,” and advertisements.

For each of these categories, we now present the state of the art, illus-
trating how related and complementary work to ours has been addressed in
the past.

3.10.1 Network Security

Network security on Android has been the subject of several studies who
have analyzed several of its issues. A concept similar to the Network secu-
rity has been first introduced by Fahl et al. [FHP+13]: this work proposed
a completely new approach to handle SSL security, allowing developers to
easily define different SSL configurations and options, like certificate pin-
ning, just by using a XML policy. Thus, [FHP+13] completely prevents the
developer to write any code responsible of handling the validation and ver-
ification of a given certificate, addressing multiple problems at their roots.
Damjan et al. [BHMW16] performed an analysis over 50k Android applica-
tions aimed at identifying and studying their implementation of SSL/TLS.
Their work, focusing on the custom implementation of the TrustManager

component, showed how more than 20% of the applications embedded a
broken and vulnerable implementation of the component, thus exposing the
applications to network attacks, even on secure connections. To solve the
problem, [BHMW16] propose a new defense mechanism to overcome the
issue of broken SSL/TLS implementations named dynamic certificate pin-

ning, leveraging dynamic instrumentation to patch, at runtime, broken im-
plementation of the TrustManager component. Another category of work,
again focused on SSL and Secure Connections, instead tried to enumerate

72 72

all the possible issues that can lead to having an incorrect configuration
of SSL, and to measure how extensive and common these are among ap-
plications, adopting both static and dynamic analysis approaches. One
such example is by Fahl et al. [FHM+12] who presented “MalloDroid:” in
this work, they applied static code analysis to identify applications with
SSL/TLS code that is potentially vulnerable to MITM attacks. Another
major contribution that is brought by this work is the exhaustive catego-
rization of all possible misconfigurations that can lead to this type of attack.
Hubbard et al. [HWC14] and Onwuzurike et al. [OC15], instead, applied a
combination of static and dynamic analysis to identify SSL vulnerabilities
in popular Android applications. [HWC14] analyzed issues related to the
absence of a standard way of alerting a user of an SSL error, and showed
the possibility of attacks on applications running on both Android and iOS
platform. [OC15] instead, dynamically confirmed the problems described
in [FHM+12], showing how a network attacker can access sensitive infor-
mation, including credentials, files, personal details, and even credit card
numbers. Razaghpanah et al. [RNV+18] instead, measured the adoption
of different libraries performing SSL/TLS operations by fingerprinting their
handshake while Oltrogge et al. [OAD+15] analyzed and measured the adop-
tion of certificate pinning amongst Android application. The analysis per-
formed in [OAD+15], thanks to a survey that involved the developers, have
discovered that the implementation of pinning is considered complex and
hard to correctly implement. This confirms the importance of having more
and more abstract and high level solutions, like the Network Security Policy,
that allow the developer to better configure these protections, without the
risk of introducing bugs at the code level.

To conclude the work on network issues, numerous studies have also
measured how many applications use unencrypted communication channels
to exchange data. Vanrykel et al. [VAHD17] study how applications send
unique identifiers and sensitive information over unencrypted connections
exposing the user to privacy threats. But the adoption of HTTP does not
just lead to privacy issues, it also leads to severe security issues that can
completely compromise a vulnerable application or the entire device. In
fact, the works by Poeplau et al. [PFB+14] and Choi et al. [CK18] showed
how several applications are vulnerable to remote code injection due to code
updating procedures over HTTP.

3.10.2 Code Reuse

Our research confirmed the practice of copying potentially vulnerable code
from the Internet. Several works highlighted how developers rely on on-

3.10. Related Work 73

line platforms like StackOverflow for their development process. Linares-
Vásquez et al. [VBP+14] analyzed more than 213k questions on StackOver-
flow (related to Android) and built a system to pair a given snippet of
code of StackOverflow with a given snippet of code within the Android
framework. With this study, they also highlighted how this practice—ask
questions and change the code—is increasingly common when the behavior
of a given API changes. Fischer et al. [FBX+17], instead, measured the pro-
liferation of security-related code snippets from StackOverflow in Android
application available on Google Play. [FBX+17] showed how more than 200k
applications contain copy-pasted security-related code snippets from Stack-
Overflow. This issue though, does not just afflict the Android ecosystem
and its developers. In fact, a similar work, not focused on Android, is from
Verdi et al. [VSA+19] in which they investigated security vulnerabilities
in C++ code snippets shared on StackOverflow. They showed how 2,859
GitHub projects are still affected by vulnerabilities introduced by vulnerable
C++ code snippet copied from StackOverflow.

3.10.3 Advertisements

Another aspect that we have analyzed in the course of our research is related
to the advertisements used by developers, and how these libraries, due to
the complex ecosystem in which they are organized, can introduce security
issues. This problem has also been analyzed over the years, both in terms of
privacy and security, and numerous solutions have been proposed. The first
category of works studies ad libraries to identify the privacy implications
for the user. Book et al. [BPW13] tracked the increase in the use of ad
libraries among applications and highlight how the permissions used by
these libraries may pose particular risks to user privacy. Son et al. [SKS16]
instead, demonstrate how malicious ads can leak the PII of the user. Last,
Stevens et al. [SGC+], showed how users can be tracked across ad providers
due to the amount of personal information sent from the ads libraries and
expose how these libraries checked for permissions beyond the required ones
to obtain more PII.

The second group of works, instead, focuses mostly on the security im-
pact of ad libraries and proposes different solutions to achieve privilege sep-
aration for applications and ads. AdDroid [PFNW12] proposes a new adver-
tisement API to separate privileged advertising functionality from the host
application, thus allowing the application using AdDroid to show advertise-
ments without requesting privacy-sensitive permissions. AFrame [ZAD13]
and AdSplit [SDW12], instead, propose a different “isolation” approach
to let ad libraries run in a process separate from that of the application.

74 74

[ZAD13] proposed a new XML tag <aframe> to embed in the application
Manifest. Thus, at installation time, the system will parse the new element
and will create a new isolated “user” that will host the advertisements for
the given application. The approach used by [SDW12] instead, implements
this isolation by rewriting the application. In fact, AdSplit automatically
recompiles the application to extract its ad services and run them in a sep-
areted process, owned by a different user.

Chapter 4

Securing the System Layer:

the Phishing Problem

75

76 76

4.1 Introduction

One of the key security features of Android is the application sandbox. This
mechanism aims at enforcing a strong security boundary between different
applications and protects sensitive information. One of such sensitive infor-
mation is the “state” a given application is currently in. With “state,” we
refer to, for example, whether an application is currently in the background,
in the foreground, or is transitioning between these states. Attacks aiming
at determining the state of another application are called state inference

attacks, which are particularly relevant in the context of phishing attacks.
Phishing attacks consist of luring an unsuspecting user into revealing

her sensitive information (e.g., credentials) to a malicious application that
mimics the UI of the legitimate one, a technique we refer to asUI Spoofing. A
recent research conducted by Kaspersky Lab has highlighted how the threats
posed by phishing application, such as “Banking Trojans,” are increasing,
counting only in 2020 a number of installations for these malware equal to
156,710, almost double the number recorded in 2018 [bK21]. The peculiar
problem of mobile platforms is that the user cannot understand whether she
is inserting her credentials into a legitimate or into a malicious application
spoofing its UI. State inference attacks play a key role in this context since,
if the malicious application can infer, for example, that the user is about to

use a specific application, it can show the spoofed UI at the right time, and
hijack the legitimate app’s flow.

In the context of Android security, malicious applications are able to leak
this state-related information by exploiting vulnerable APIs or resources
(e.g., /proc file system). For example, a vulnerable API, when invoked
with specific arguments, may return data that can be used to infer whether
another application was just started, thus allowing the attacker to infer the
state of the target app.

These attacks have been known for several years, and previous works
have shown that several APIs and resources do leak sensitive informa-
tion [CQM14, BCI+15]. Given the security implications of these vulnerabil-
ities, Google has restricted access to the /proc file-system—eradicating po-
tential bugs at its root—and fixed all APIs known to be vulnerable [Kra17].
However, as for many forms of bugs, this is an arms race and there can
potentially be many more vulnerable APIs left to discover.

Therefore, moved by the challenge created by this arms race, we de-
sign, implement, and evaluate a new analysis framework to automatically
pinpoint Android APIs that may disclose state-related information about
other applications or the operating system itself. The main idea is to first

4.1. Introduction 77

systematically enumerate the attack surface in terms of which APIs could
be potentially abused by a malicious application, to then repeatedly invoke
each API—with appropriate arguments—while changing the surrounding
context (e.g., another application is started), and finally, to monitor how
the returned values change, if they do, depending on such context. We note
that we are not the first ones to propose this research direction. A recent
work that tackles a similar problem is SCAnDroid [SPM18], which attempts
to employ a technique similar to ours. We shows that while SCAnDroid’s
direction is indeed promising, there are several conceptual and technical
challenges that were overlooked, leading to undetected vulnerabilities.

One of the main problems we uncover is that previous works have mis-
characterized the attack surface available to a malicious app, leading to
many APIs to not be even selected as candidates for analysis in the first
place: our analysis shows that it considered only ∼44% of the attack sur-
face. One other open challenge is how each of these APIs should be analyzed
to uncover potential problems, and previous works oversimplified this step
as well, missing out vulnerable APIs. As the last example, we found that
even the task of determining whether the return value of an API contains
sensitive information can be challenging, and we find that this is another
venue for mistakes.

Thus, we systematize these challenges and discuss how we solve them:
we show that each of these overlooked challenges is the direct cause of false

negatives of the closest related work, SCAnDroid. A detailed comparison
with this work is performed in Chapter 4.6.7.

We tested the effectiveness of our framework on Android 8.1, 9.0, and 10,
unveiling 18 previously unknown bugs. All the vulnerabilities were reported
to Google and several of these have been already acknowledged and fixed,
leading us to get assigned 6 CVE.

While we believe that our framework is a good first step to automati-
cally detect this category of bugs, we also acknowledge that identifying and
removing all vulnerable APIs is not always possible. This issue is caused
by the fact that our and existing analyses are based on static and dynamic
analysis techniques, which can be conceptually affected by false negatives.

To try to overcome this issue and to reduce the number of false negatives
to a minimum, we decided to look for a complementary solution. We design
and implement an on-device monitoring system to detect state inference
attacks when they occur. This system builds on two observations: the first
is that all existing state inference attacks implement a polling behavior, thus
making it per-se a good candidate for detection. The second observation,
instead, which to the best of our knowledge has not been explored before,

78 78

is based on the following key hypothesis: benign applications rarely rely on

polling and, when they do, the nature of their behaviors is different than

those of malicious applications. In other words, if benign applications do

not commonly employ polling, the mere detection of these behaviors could
be then used as a strong signal for flagging an application as suspicious.

To verify the validity of our hypothesis, we performed an empirical study
over all known families of malware exploiting vulnerabilities to perform
phishing attacks, as well as on a set of more than 10,000 popular benign
applications. The results of this experiment show that, as expected, all
malicious samples implement some form of polling when mounting state
inference attacks. For what concerns the benign applications, our study
unveils a surprising insight: there are several benign apps that also perform
polling; However, more in-depth experiments show that these behaviors are
of different natures, and it is easy to distinguish between them and their
malicious counterparts. We thus show that polling itself can be leveraged
as a strong signal to detect state inference attacks. We implemented this
system as a modification to the Android framework, and our experiments
show that this system would incur a negligible overhead.

We note that using “polling detection” as a mean to identify malicious
applications is not novel per-se: a previous work, Leave Me Alone [ZYN+15],
has explored this aspect. However, we show how this related work is not
suitable when tasked to detect phishing attacks on modern versions of An-
droid. We offer a detailed comparison in Chapter 4.9.7. We thus believe
that our work discusses a new interesting point in the design space of de-
tection approaches.

In summary, the study presented in this chapter makes the following
contributions:

• We systematize and pinpoint open challenges to tackle the auto-
matic detection of APIs vulnerable to state inference attacks. Among
these, we show that the attack surface is bigger than what previously
thought.

• We implement an automatic framework to unveil vulnerable APIs
leading to state inference attacks. We tested its efficacy on Android
8.1, 9.0, and 10, identifying 18 new vulnerable APIs, 6 of which ob-
tained a CVE identifier.

• We hypothesize that the mere polling can be used as a strong sig-
nal to identify in-progress state inference attacks. To validate our
hypothesis, we performed an empirical study on both malware and
benign applications, and we show it is indeed possible to reliably and

4.2. Phishing Attacks on Android 79

while (1) {
ActivityManager am = (ActivityManager)
Context.getSystemService(ACTIVITY_SERVICE);
List<ActivityManager.RunningTaskInfo> apps = am.getRunningTasks(1);
String app = apps.get(0).topActivity.getPackageName();
if (app.equalsIgnoreCase(TARGET_APP)) {
 // Perform the attack
}

}

1

2

3

Figure 4.1: Anatomy of a Phishing Attack.

efficiently pinpoint attacks. This can be the basis for an on-device
detection system that does not have the limitations affecting previous
works.

4.2 Phishing Attacks on Android

We now provide the technical background about phishing attack and how
a malicious application can successfully mount it on an Android system.
Then, we present a systematic survey on all known classes of state inference
vulnerabilities, their role in the context of phishing attacks, and which of
these classes are still problematic on recent versions of Android.

4.2.1 Phishing

One common task of Android malware is “phishing.” With this term, we
refer to malicious applications trying to steal user’s sensitive information
(e.g., credentials). Phishing attacks are particularly problematic for mobile
platforms because they do not provide enough information for a user to
reliably distinguish a legitimate application from a malicious app spoofing
its UI. To make the attack even more effective, malware relies on the ability
to mount state inference attacks, useful to monitor when the user is about

80 80

to interact with a target application. Inferring the right time is important,
as it allows a malicious application to ask for user’s credentials exactly when
the user expects to insert them.

We note that these techniques are not only known and studied in the aca-
demic world [FQCL17, CQM14, RZX+15, SKGM18, SPM18], but they are
used by real-world malware [Jag18, Thr19, WPN17, PNC17, Kev17, Nic18,
Thr18, Kas16, Vit19].

4.2.2 Anatomy of a Phishing Attack

Figure 4.1 depicts the various phases of a phishing attack. We start from a
scenario where the user (1) wants to interact with a sensitive application
(e.g., PayPal). Meanwhile, in the background, the attacker (2) repeat-
edly invokes the once-vulnerable API getRunningTasks API to determine
which application is in foreground. Please note that, to mount this spe-
cific configuration of phishing attack, the attacker needs to have malicious
code—like an application—installed on the device. Before the victim clicks
on the PayPal icon, and thus starting the PayPal application, the attacker
could determine that the foreground application that occupies the screen
is the “Home Launcher.” However, by repeatedly invoking this API and
checking its return value, the attacker could mount a state inference attack
and infer the exact moment the user clicks on the PayPal icon: the attacker
would in fact notice the transition from the Home Launcher to the PayPal
application. At this point, the attacker knows this is the best time to hijack
the PayPal activity with a spoofed one which looks the same as the origi-
nal (3). A successful attack will leave the user completely unsuspecting
since the victim initiated the interaction with the target application herself,
she would not find an authentication request from that particular target
application unexpected.

4.2.3 Characterizing State Inference Attacks

Previous research identified many venues to mount state inference at-
tacks [FQCL17, CQM14, RZX+15, SKGM18, SPM18]. With the goal of
better characterizing this threat and to better understand the state-of-the-
art of Android state inference attacks, we analyzed all the different vul-
nerabilities exploited by malware and discovered during the years [FQCL17,
CQM14, RZX+15, SKGM18, SPM18, Jag18, Thr19, WPN17, PNC17, Kev17,
Nic18, Thr18, Kas16, Vit19]. All existing vulnerabilities can be grouped into
two conceptual categories:

4.2. Phishing Attacks on Android 81

Filesystem layer. The first category relates to the filesystem layer. The
root cause of these vulnerabilities resides in the presence of sensitive infor-
mation obtainable by reading files accessible by any unprivileged applica-
tion. From the technical standpoint, all known vulnerabilities are caused by
unrestricted access to procfs, via the /proc directory. For example, one of
the first vulnerabilities relied on accessing /proc/$PID/cmdline, which con-
tains the name of the program run by a process with a given $PID. By con-
tinuously monitoring the content of this directory, the attacker could iden-
tify the creation of new processes (by monitoring sub-directories of /proc),
and infer the application started by the user (by reading the cmdline file).

Many similar vulnerabilities were discovered, but they all had the same
root cause: unprivileged applications had access to procfs. Thus, to patch
these vulnerabilities, from Android 7.0 the access to almost the entire /proc
directory is forbidden thanks to a more strict SELinux policy. We believe
this solution eradicates this category of vulnerabilities at its root.

Android System Services layer. The second category of vulnerabilities
relates to Android System Services. Services are a fundamental sub-system
in the Android Framework. They allow applications to interact with “lower”
operating system and hardware components, such as GPS, network, etc.
Since this operation normally requires interaction with privileged compo-
nents, services are offered by a process called system_server, which runs as
the privileged system user. This process is in charge of handling almost all
the core services and provides a bridge between the functionality requested
by the application and the service implementing it.

We note that all API-related vulnerabilities identified by previous works
relate to APIs exposed by services. Some of the root-causes identified over
the years are weak protection mechanisms and wrong sanitization of the

return value. For instance, the once vulnerable API getRunningTasks,
implemented in ActivityManagerService, was affected by both problems.
The API was not protected by any permission and the output contained
detailed information about which application was used by the user as well
as all the other applications running on the device.

Even though Google has fixed all known vulnerabilities, the complexity
of the services infrastructure makes it significantly more challenging to
identify the root causes that led to all existing vulnerabilities.

It is important to emphasize that the filesystem category is easier to
identify and fix: applications are not supposed to interact with these files
and there are no legitimate use cases for an application to directly inter-
act with files inside /proc/$PID/ directory not belonging to its own $PID.

82 82

Thus, Google forbids the access to almost the entire /proc directory. How-
ever, fixing Android System Services layer is not that simple and far from
trivial: benign applications are supposed to use all the APIs exposed by
the framework, and identifying whether a given API is leaking sensitive in-
formation or not is not an easy task. For example, the information can be
exposed only when a certain event happens or can be “hidden” in a nested
field of the return value. This chapter focuses on identifying this category of
state-inference attacks and highlights all the technical challenges addressed
to identify vulnerable APIs and prevent their abuse. We show also how
there are several previously overlooked challenges and subtleties that make
the automatic vulnerability discovery process more difficult than what pre-
viously thought, and that this is the direct cause for false negatives in recent
related works [SPM18].

4.3 Threat model

We consider a threat model in which an attacker controls a malicious ap-
plication on the victim’s phone. We also assume that such app can ask
(and obtain) those permissions that are usually available to non-system
third-party applications. Some of these permissions are automatically
granted, while others require user interaction. An example of a permis-
sion automatically granted is the INTERNET permission: at installa-
tion time, the system grants this permission to the application and no
user interaction is required. Instead, examples of permissions that require
user interactions to be granted are ACCESS_COARSE_LOCATION or
PACKAGE_USAGE_STATS. Note that, in Android, this interaction may
be implemented in two ways. The first type of interaction relies on runtime

prompt and it is used to grant the permissions labeled as dangerous, like the
ACCESS_COARSE_LOCATION permission. By interacting with this
prompt, the user can decide whether to grant or deny the permission to
the application. The second type of interaction, which does not rely on
prompts, is reserved for privileged permissions. These permissions might
be labeled as signature, system, signatureOrSystem, privileged, develop-

ment, appop, or retailDemo. An example of this category of permission are
the PACKAGE_USAGE_STATS, SYSTEM_ALERT_WINDOW, and

BIND_NOTIFICATION_LISTENER_SERVICE permissions. For exam-
ple, the PACKAGE_USAGE_STATS permission is used to mainly protect
the UsageStatsManager service [Goo].

With that being said, Android offers a mechanism for third-party appli-
cations to obtain sensitive information accessible only via these permissions,

4.4. Exploring the Attack Surface: System Services 83

even without technically being granted such permissions. From the techni-
cal standpoint, the way it works is that a third-party application can ask
the user of the device to grant the permission through the System Settings,
which updates some internal settings. The sensitive system services that
do have the signature permissions then check such settings to determine
whether a requesting application is entitled to have access to such sensitive
permission-protected information. One may erroneously think that a third-
party application cannot get these permissions. However, we also note that
not only is it possible to access information protected by these signature-
level permissions, but that many real-world applications (both benign and
malicious) currently use them [Nic18, YLC+19, Bro16]. Thus, since third-
party applications may require some of these permissions, we believe it is
appropriate to consider them within our threat model.

We also assume the malicious application cannot obtain the
BIND_ACCESSIBILITY_SERVICE permission (a11y): this permission
alone allows an attacker to fully monitor all UI events [FQCL17], making
mounting phishing attacks trivial. Finally, we do not consider the scenario
where a malicious application can gain root privileges nor perform any privi-
lege escalation: once again, these powerful attackers can easily steal sensitive
information without mounting phishing attacks.

4.4 Exploring the Attack Surface: System Ser-

vices

This study aims at developing an automated approach to identify vulner-
able APIs that could be used to mount state inference attacks. For the
aforementioned reasons, we focus on considering the attack surface exposed
by System Services. We now present the inner workings of system services
and the known security-related pitfalls that affect this component.

4.4.1 Android System Services

System Services are a fundamental sub-system in the Android Framework,
and they are the key mechanisms for applications to interact with low-
level, security-sensitive operating system and hardware components. The
technical details of these mechanisms, and how third-party applications can
rely on them (by means of invoking Android APIs) are not trivial, and it
involves several sub-components, discussed next.

Figure 4.2 gives an overview of how system services work. In the exam-
ple, the goal of the application is to interact with the ActivityManagerSer-

84 84

Application

SystemService
Registry

/dev/binder

IActivityManager
Stub

ActivityManager
Service

1

2

3

4

5

6

System Service
Previously Tested Surface

Hidden Surface

IActivityManager
Proxy

ActivityManager

 IActivityManager

Figure 4.2: Interaction with ActivityManager System Service.

vice: to do so, the app needs:

• to first request a “client” — named Manager (1) — to the
SystemServiceRegistry class to interact with the service.

• Once obtained, the application can start invoking the methods ex-
posed by the Manager.

• Each method invocation is then wrapped and forwarded to another
component, named Proxy (2), in charge of sending the data from
the application to the Binder component (3).

• This component “forwards” the request to its associated Stub (4),
which can be seen as the counterpart of the Proxy, residing in the
Service.

• Finally, Stub forwards the request to the actual implementation of the
Service (5).

The response follows the same, but reversed, flow.
Another important technical aspect is represented by the Interface (6),

written in AIDL (Android Interface Definition Language). AIDL is an
Android-specific language used to define the methods exposed in the Stub

4.5. Technical Challenges 85

that can be reached from the Proxy. The actual code can then be auto-
matically generated by the AIDL compiler for both components, according
to the specification defined by the Interface.

4.4.2 Known Potential Pitfalls

The complexity of system services opens to many potential vulnerabilities.
One specific aspect that has been explored by previous works relates to
inconsistencies in the placement of security checks like permission enforcing
or identity control [ZYH+18, SCM+16, GCY+16]. The common root cause
is that the checks were performed only in the Manager and not also in
the Service counterpart. Thus, a malicious application could use a lower-
level Proxy to communicate directly with the Service, bypassing the security
checks. Another bypass that can be achieved by invoking directly a Proxy to
communicate with the remote component relates to the argument creation.
Indeed, the Manager is also in charge of instantiating some of the arguments
for the method call it wraps. Previous works show how the arguments filled
by the Manager component were not correctly validated at the Service side.
Following the same flow described above, an application using a Proxy can
craft an arbitrary argument and send it directly to the Service, bypassing
the validity checks on arguments. The same logical issue affects not only the
creation of arguments, but also how the return value is handled. Sanitizing
the return value of a method invocation is an important process which
avoids the leak of sensitive information. All the information that are not
belonging to the caller of the method should be removed from the return
value. However, “where” the sanitization is performed is crucial: if it is
performed at the Manager layer, an attacker would still be able to obtain
all the “raw data” just by interacting with a Proxy.

All these existing vulnerabilities have been fixed by Google and do not
pose a threat in recent versions of Android. However, we show that this
“layered” architecture still leads to new challenges and that they play a key
role when looking for APIs vulnerable to state inference attacks. While the
layered architecture is known to create problems in terms of placement of
security checks, we believe we are the first ones to show how this complex
architecture affects other security aspects as well.

4.5 Technical Challenges

One key contribution of this study consists in the design and implemen-
tation of an automatic framework to identify vulnerable APIs leading to

86 86

state inference attacks. We now discuss an overview of the several technical
challenges we faced while designing this system, most of which have been
overlooked by previous works and were a direct cause of false negatives.

The closest related work to ours is SCAnDroid [SPM18]: while we agree
that its direction is indeed promising, we uncover numerous issues that lim-
ited its results, leading it to fail to identify numerous vulnerabilities. Later,
in Chapter 4.6.7 and 4.7.4, we present a complete analysis that compares
our system and the one proposed in [SPM18] both in terms of its functioning
and results obtained.

Enumerating the attack surface. The first key challenge is to determine
the effective attack surface available to a potential attacker. Past works an-
alyzed client- and server-side APIs and they highlighted security-relevant
differences [ZYH+18, SCM+16, GCY+16]. However, we show that there are
server-side APIs (available to an attacker) that do not have their associated

client-side API. There is thus a “hidden” layer of APIs that has not been
considered by previous works. This makes previous approaches that enu-
merate the attack surface by only checking the client-side API significantly
incomplete. In fact, in an attempt to quantify how much attack surface is
“missed” we performed static code analysis on the Android framework itself
and found that, in the best case, only about 44% of the attack surface is
considered. A detailed analysis of this measurement will be presented later
in this Chapter 4.7.4.

Argument creation, validation, and System stimulation When di-
rectly invoking server-side APIs, one has to determine how to create “valid”
arguments, otherwise the API may just return an error. We also note that,
by interacting with the server-side API, one has even more flexibility in
terms of argument creation since the client-side-only sanitization routines
(if any) are bypassed. However, creating a successful object automatically
is not so immediate and hides many challenges. For example, even a single
field of a complex object, if not initialized correctly, can lead to the gen-
eration of exceptions with the risk of completely blocking the automatic
analysis process. Another important challenge consists in properly stimu-
lating the system to induce the information leak. It is important to give, or
create, the chance to the vulnerable APIs to actually leak sensitive data.

Systematic inspection of return values. One last overlooked challenge
relates to how properly inspect values returned by an API. Previous works
have relied on invoking every public (and private) method of the returned
object, hoping to access fields that could be interesting for an attacker.
However, this approach has several problems. First, the proper order of the

4.6. Analysis Framework 87

AOSP
Source
Code

Services Security
Checker

Class
FinderClasses

Methods

Stimulator
Data Analysis

1

2

3

4

5 6

Figure 4.3: State-Inference Vulnerabilities Finder Framework.

invocations is unknown and may make a difference: for example, invoking a
setter method before a getter method may cause the field value to be over-
written and permanently lost. Second, a client-side API may have access to
some security-sensitive information, but it may “sanitize” the information
before returning it to the caller. Even if the sanitization is not present,
there can be private fields that are not accessible via the object’s methods
— not even the private ones. We found that, if not handled properly, this
is yet another direct cause for false negatives.

4.6 Analysis Framework

We now introduce our new analysis framework. We start by presenting an
general overview of how the framework works, we then discuss the various
analysis steps and how we addressed various challenges. We conclude with a
direct comparison with the most recent related work, SCAnDroid [SPM18].

4.6.1 Overview

Our analysis framework is constituted of several steps, each of which tries to
solve one of the challenges listed above. The first step enumerates the attack
surface and its APIs, as described in Chapter 4.6.3. Then, we analyze each

88 88

API to determine if it leaks sensitive information about other applications.
The framework starts invoking it several times while keeping the system
“at rest” (i.e., without performing any other operations). Then, it starts a
victim application (the actual app used for this part of the experiment is not
relevant), while it keeps repeatedly invoking the API under analysis — and
logging every invocation and every returned object. To conclude, we post-
process these logs to identify potential correlations between the returned
value of a given API and changes in the surrounding environment (e.g., the
moment in which the victim application has been started or retrieved from
the background execution). The output of the analysis system is the list of
APIs that could be potentially used to mount state inference attacks.

4.6.2 Analysis framework organization.

The framework is composed of six different modules, and is divided between
an on-device and off-device analysis. Figure 4.3 provides a detailed overview.
First, it enumerates the attack surface: this process involves three modules:
the Extractor (1), which extracts Android services; the SecurityChecker

(2), which removes “candidates” (i.e., Services or Methods) that are caus-
ing any kind of Security Violation when invoked; and the ClassFinder (3),
which, for each service, extracts from the device the name of the classes im-
plementing it (both Managers and Interface). Once the services and classes
have been enumerated, the Extractor and SecurityCheckermodules extract
and analyze all the methods implemented by these classes. All methods
whose invocations do not cause SecurityException are then automatically
invoked by the Stimulator module (4), while, in the background, the
UI-Interaction Automator module (5) injects different types of UI events
to simulate a user starting a potentially sensitive application and her in-
teraction. All the previous modules run on the device itself. Finally, the
collected results are processed by the Data Analysis module (6). Note
that this last analysis step is performed off-device.

4.6.3 Enumerating the Attack Surface

The enumeration of the attack surface is perhaps the fundamental compo-
nent of our system. Its correct identification, however, is not as easy as
one might think and many challenges lie behind this complex process. To
begin with, Android offers multiple ways to register and expose a service
to applications. Moreover, there is not a single central location to locate
all the services inside the source code tree. However, we note that all An-

4.6. Analysis Framework 89

droid services should be exposed to the system by using one of the following
methods:

• addService, in SystemService class, or

• publishBinderService, in SystemService class, or

• registerService, in SystemServiceRegistry class.

The parsing process is handled by the Extractor module and it is built
on top of JavaParser, a parser for Java source code which generates the
Abstract Syntax Trees [Tom15]. We parse the source code of the Android
Open Source Project (AOSP) and extract all the services that are statically
included in the system by looking at the methods listed above. To avoid
missing any reference to a service, we extract the services running on our
test device using the “service” command-line utility. The two lists are then
merged together. Other works used the same approach to enumerate and
list the services available in the Android OS [SCM+16, ZYH+18, GCY+16].

Note that a non-system application cannot interact with all services.
Our threat model, as described in Chapter 4.3, assumes the attacker has
control over a non-system application that can request any non-system per-
missions. However, some privileged services are protected by strict SELinux
policies or by some permissions that only system applications can request
and any attempts to access them cause a SecurityException to be thrown.

To enumerate the services that are accessible by an attacker, we perform
a dynamic analysis step: first, we grant all non-system permissions to our
test application, then we communicate with a given service while in the
background we monitor for security exceptions and violations like SELinux
runtime violation or security exceptions raised by missing permissions.

For those services that we can interact with, we enumerate the methods
accessible to an attacker. To this end, previous works [SPM18] relied on
the Android API reference documentation [LLC08]. However, this docu-
mentation only exposes public client-side methods: this approach entirely
miss the “hidden layer” of server-side methods that do not have their re-
spective client-side one. In our work, we do consider client-side methods,
but we extend this enumeration by considering server-side methods as well,
independently from whether they have a client-side counterpart.

Server-side methods are implemented starting from AIDL specifications.
AIDL is an extension of Java and introduces some meaningful keywords
that are adding information about the behavior of a given method. Since
JavaParser is not handling AIDL as language, we wrote our own parser.

90 90

We note that, for certain aspects, AIDL is more expressive than Java.
In fact, in AIDL, each method and arguments can be prefixed by so-called
keywords. Among the many AIDL keywords, three of them are particularly
important for our work. The first one is the out keyword, which specifies
that an input argument “can be modified by the callee.” All the primi-
tive values are defined, on the opposite, with the keyword in, meaning that
they cannot be changed. This helps us recognize this argument as a poten-
tial output value. The last relevant keyword is oneway. Like out and in,
oneway gives us the information that the method is not going to “return” a
meaningful result, but it instead returns immediately after having sent the
data. It is normally used to register callbacks: since callbacks are normally
triggered after an event occurs, a method in charge of register them can
return immediately. From the documentation, we know that is not possible
to have a situation where we have an argument marked as out and a method
with oneway in its signature. Arguments that are not explicitly defined as
in or out, have a default value of in.

Thus, our analysis proceeds in discarding a method if:
• its return value is void and none of its arguments are marked with the

keyword out, or

• its return value is void and it does not require any argument, or,

• its signature shows that the method is defined with the keyword
oneway.

We note that previous works did not consider these possibilities, leading
to yet another venue for false negatives.

At a first glance, one can be tempted to always discard a method return-
ing void, since it is not returning a value. However, this does not necessarily
mean that no state inference is possible. In fact, an object passed as pa-
rameter can be modified during the method invocation by the callee, and
the modification can then be potentially used to mount the attack.

As an additional filtering step, we also discard methods that have at
least one argument of type IBinder since it is not possible, to the best
of our knowledge, to obtain a reference to a valid IBinder token without
relying on a permission granted only to system applications.

Previous works have addressed the API protection mapping prob-
lem [AZHL12, BBD+16b, ATH+18], however, we opted for a different and
dynamic approach. For each of the potential candidate methods, we re-
peated the dynamic analysis monitoring for security exceptions, and keep-
ing for further analysis only the ones not throwing any security violation
since they are indeed accessible by a malicious application.

4.6. Analysis Framework 91

4.6.4 Stimulation Strategies

Once we collect the candidate methods, we then proceed to invoke them
and analyze their returned values. The idea behind this enumeration is to
perform a “guided testing” on these methods and to show how it can be
helpful to unveil previously-unknown vulnerable APIs that are leaking sen-
sitive data. The module in charge of the automatic testing is the Stimulator

component.

Semantics-aware arguments generation. Understanding the “seman-
tics” of an argument can be very helpful to improve the effectiveness of this
step. This analysis step considers information taken from source code type
information and the argument names. Our analysis extracts the following
arguments’ semantics:

• Application identifiers: this category contains all the arguments iden-
tifying a specific application installed on the device, such as uid or
packageName;

• Process identifiers: arguments identifying a specific process running
on the device, such as pid;

• Filesystem locations: every storage volume in the filesystem can be
identified by a specific UUID such as storageUuid or volumeUuid;

• Time values: arguments related to time and time-ranges, such as be-
ginTime, startTime and endTime.

Identifying and properly supporting these values allows us to maximize
the likelihood that the target method will return something relevant since
we passed an expected value. During our analysis, these arguments are
initialized with specific values defined both statically or dynamically. For
example, for arguments like uid or packageName we can statically define a
value — such as the uid of the application we want to target. Instead, for
arguments like pid, we need to retrieve them at runtime. Moreover, for time-
related values, we enforce a “logical-constraint” such that beginTime will
always be lower than endTime. For the rest of the arguments for which we
do not have a semantic, we automatically instantiate objects with random
content, as discussed next.

Generic argument creation. Even knowing the types of objects, it is not
always trivial to create valid instances. In fact, the objects in the Android
Framework can be very complex, and can contain many references to other

92 92

objects, each of which must be correctly solved in order to correctly create
the final object. To invoke a given method, all the objects necessary to
perform its invocation must be properly created and instantiated: this is,
of course, a process that, if done manually, would be time-consuming. We
decide to adopt an automatic approach and instantiate all the objects using
a recursive algorithm that tries to instantiate an object by iterating through
all the available constructors and recursively tries to create a valid sequence
of object to match at least one of them. We repeat the process for each
nested object and for all objects belonging to the method’s signature. All
the primitive types and their corresponding wrapper classes are filled with
random values. Values for arguments marked as semantically interesting

during the source code analysis are taken from a different bucket of pre-
filled values.

Since a recursive approach may incur in circular dependencies and
crashes due to the increasing size of the call-stack, we configure our sys-
tem with a maximum threshold of five recursive calls. In cases of failure,
we resorted to custom handlers. This was needed for 105 objects (2.4% of
a total of 4,390 Objects that are defined in the Android Framework). We
note that this is a one-off effort (that does not need to be repeated for each
version of Android).
Argument generation strategies. The analysis runs in two configura-
tions. In the first one, a method is invoked multiple times without changing
the arguments. This means that, for every method, the arguments are
created only once. In the second one, instead, arguments mutate at each
invocation of the method. Having multiple configurations is important since
this allows us to analyze different behavior and explore different execution
paths. We identified situations where APIs were leaking sensitive informa-
tion over time only with some particular arguments. For example, we found
a vulnerable API leaking information only when one of its arguments (re-
lated to “time”) was changing from the previous invocation to the new one.
Testing this API without mutating the arguments would end up in wrongly
marking it as “safe.”
User-Interface interaction. Interesting APIs for an attacker are the ones
leaking the current “state” of a target application. An application can be
in one of the following main states: background state, when its UI is not
shown on the screen, and therefore its content is not on top of the system’s
Activity Stack, and foreground state otherwise. When the user taps on
the application icon, it initiates a “state transition” from background to
foreground state. Viceversa, when the user taps on the “Home” button, the
state shifts from foreground to background. In this work, we analyze and

4.6. Analysis Framework 93

trigger the following subsequent states:

• the application is not started yet: background state,

• the user opens it and interacts with it: transition from background to

foreground,

• the user interacts with the application: foreground state,

• the user stops the app: transition from foreground to background,

• the application is not used: foreground state,

• last, the user resumes the application: transition from background to

foreground.

The goal of this module is to inject multiple “events” while, in the back-
ground, the Stimulator repeatedly invokes the API currently under test.
The automatic interaction with the UI tries to mimic the behavior of a real
user. This module is built on top of AndroidViewClient [dtm15], a library
which helps the creation of “Android test automation” scripts [dtm15].

4.6.5 Data Serialization

If the automatic creation of complex objects posed a challenge to solve,
so it is creating a generic serialization method that can be applied to all
objects returned the invoked APIs. To solve this problem, we implemented
a custom serialization algorithm to store both arguments and return value

collected by the Stimulator. The serialization algorithm follows the process
we used to instantiate the different objects, but in a reverse order, following
a depth-first exploration strategy. For each object, we start by defining
a “child node” — represented by the actual object we want to serialize
— we recursively dump all its fields and store both their name and value
in a key-value format. For fields with “primitive” types, we store their
textual representation, otherwise, we recursively apply the same algorithm
to all its fields until we reach the “root” class, java.lang.Object. This
allows us to unfold complex object in a flattened format — a JSON-like
structure. If we detect circularity, we only store the reference of the object
without recursively analyzing it a second time — none of the known JSON
serialization libraries support it. This technique allows us to have a very
detailed representation of a given object, including all (possibly private)
objects that it encapsulates, no matter its complexity.

94 94

Available libraries which are normally used for this task suffer from some
key limitations: for example, GSon, Google JSON Library [Goo12], does not
automatically handle circular dependencies. Handling circular dependencies
with Gown requires a manual effort and this means writing a custom se-
rializer for each object having one of these dependencies which makes the
approach not scalable.

4.6.6 Data Analysis

The last component of our framework is in charge of results analysis. Its
main goal is to find which APIs can be used by an attacker to successfully
mount state inference attacks. More in general, we want to automatically
identify APIs whose return value is somehow influenced by the surrounding
context and leak a meaningful value when the target application is going to
be used by the victim.

Automatically identifying which APIs can potentially be used by an at-
tacker hides many challenges. In fact, applying a too conservative approach
may result in having a large number of false positives to analyze manually.
The opposite problem is the case in which one adopts an overly restrictive
approach, as there is the risk of eliminating a valid API and thus incurring
in false negatives.

Our analysis, divided into two stages, represents a tradeoff. As part of
the first stage, we start by considering all the collected API’s return values.
We consider the keys of these return values and we discard all keys whose
value is constant across all the API invocations. It is safe to discard these
keys because the attacker would not have any chance to infer any state-
change just by observing a constant value.

Then, we identify those keys whose value is particularly noisy, i.e., the
value has almost always a different value. These values are likely not pro-
viding a strong signal for the attacker, but we opted to err on the safe side
and we proceed to further inspection before discarding them. In particular,
we empirically found that the vast majority of these noisy values belong
to one of the following categories: timestamps, incremental values (relative
timestamps and auto-incremented sequential numbers), and pointers (i.e.,
memory addresses). We developed a simple, entirely conservative heuris-
tics to identify whether a noisy value belongs to one of these categories, in
which case, given their non-security-relevant semantics, we can safely dis-
card them. We consider a key to be of a certain category if these conditions
apply:

• Timestamp if, when all the values are converted in a “datetime” object,

4.6. Analysis Framework 95

the dates are always compatible with when we run the experiments;

• Incremental values if, when we calculate the difference between each
consecutive value, these differences are always a small positive number;

• Pointers if all the values, when interpreted as memory addresses,
would point to memory locations within valid, mapped memory pages.

We stress that, if we cannot recognize the semantics of a noisy key, we
do not discard it and we consider it as a potentially interesting. At the end
of this stage we obtain a set of candidate APIs for which at least one key
has not been discarded; that is, these APIs have a chance to be useful for
an attacker. We note that the APIs detected as part of this stage could
already be interesting for an attacker, in the sense that these APIs are
potentially returning a (changing) value that may be correlated with the
outside environment. We then proceed to identify those APIs that can be
used to determine state transitions of other applications.

The second stage is conceptually straightforward: we focus on identify-
ing APIs that return the same value before the application has started, and
that suddenly start returning a different value just after the user (in our
case, the Stimulator module) has started the victim application or moved
it from foreground to background. The resulting APIs are the final output
of the analysis pipeline.

4.6.7 Comparison with SCAnDroid

As we mentioned throughout the chapter, we are not the first ones to pro-
pose an analysis framework to pinpoint Android APIs vulnerable to state
inference attacks. We now offer a direct comparison with a recent work with
a similar goal, SCAnDroid [SPM18], and we show how it overlooked several
of the challenges discussed in Section 4.5. Most of these shortcomings are
not just implementation issues, but they are about important aspects that
were not considered.

The first group of shortcomings relate to how SCAnDroid determines
the set of potential APIs to test. First, they only consider client-side APIs
— the ones implemented in the Manager, by relying on the Android API
documentation [LLC08]. Our analysis, instead, considers a wider attack
surface — the full list of methods exposed by client- and server-side com-
ponents. We determined the list of APIs to test by relying on the source
code of the AOSP project. Second, to limit the number of APIs to analyze,
SCAnDroid performs a filtering step by only considering APIs whose name

96 96

starts with a prefix such as get, query, has or is, assuming that only simi-
larly named methods could constitute vulnerabilities. Our filtering process
instead is based on the internal functioning of the Android system.

Our evaluation shows that these strategies allow SCAnDroid to poten-
tially reach only ∼44% of the available attack surface. The detailed com-
parison on the final results is presented next, in Chapter 4.7.4. Last, we
note how SCAnDroid cannot be easily extended to identify and support the
test of server-side APIs, the ones reachable only via AIDL. These APIs are
not accessible neither via Reflection, nor are described in the official docu-
mentation available to the developers. These two techniques are the ones
used by SCAnDroid to enumerate the attack surface. Thus, it is conceptu-
ally and technically not possible for SCAnDroid to cover and analyze this
important portion of APIs.

One other conceptual limitation relates to the limited ability to invoke
APIs with proper arguments (e.g., pass a valid process id when needed)
and, more importantly, how it inspects the return values. In fact, SCAn-
Droid recursively invokes all methods implemented by the returned object
through Reflection, leading to two conceptual problems. First, the order

these methods are invoked with may permanently modify the return value
and some data may be lost. For example, invoking a setter method before
the getter method of a specific field overwrites the field’s value, potentially
losing information. Second, and more importantly, there is no guarantee

that all information stored in an object is accessible via its public or private

methods. Our approach, instead, relies on a custom serialization that can
recursively dump every field that is directly or indirectly stored within a
given object, do not perform any operation on the object that can tamper
the content of its fields—preserving all the valuable data— thus solving the
problems of the previous approach.

Moreover, inspecting the return value though can hide another issue.
As previously explained, obtaining the return value using the Manager can
mean accessing a return value that is sanitized—by the Manager—and in
which potential values that could lead to a state inference have been elimi-
nated.

Our analysis found that these conceptual limitations are the direct cause
of false negatives for SCAnDroid. In fact, our approach identified vulnerable
APIs that were either not analyzed or for which the analysis wrongly marked
them as “not vulnerable.”

4.7. Evaluation 97

4.7 Evaluation

4.7.1 Experimental setup

We evaluate our framework’s efficacy on three versions of the Android OS:
Android 8.1, running on a Nexus 5X with the latest available security patch
(with security patch, December 2018), Android 9, running on a Xiaomi MI
A2 (August 2019). Finally, we also tested our system on the latest version
available at the time of writing, Android 10. However, we noticed that our
system was not able to identify any new vulnerability on this latest version,
despite the fact that the attack surface had been correctly identified and
several APIs had been tested. Moreover, we have also manually verified and
confirmed that all bugs we identified affecting Android 8.1 and 9 have been
correctly fixed on Android 10. Thus, since no additional vulnerabilities were
found on Android 10, we will focus the discussion and the analysis of the
results obtained on Android 8.1 and 9 versions.

4.7.2 Attack Surface Enumeration

Attacker-reachable services. Our system extracted a total of 160 ser-
vices for Android 8.1. After having applied the filtering steps described in
Chapter 4.6.3, it identified how a non-system application can interact and
reach 100 of them (∼ 62%).

For what concerns Android 9 instead, we identified 180 services, but
only 95 reachable (∼ 52%) from an unprivileged application.

As it is possible to see, for both versions of Android, the majority of
the services not reachable by a third-party application is due to security
violation. By monitoring these denials, in fact, our system identified how
more than the 23% of the services for Android 8.1, and 25% for Android 9.0,
were not reachable by a third-party application due to missing permissions
or SELinux violations. This first filtering procedure applied to services has
allowed our system to extract only those services that can actually be used
by an attacker.

Table 4.1 shows how many services were not reachable and for what
reason.
API enumeration. Starting from the extracted services, we then proceed
by identifying and extract first the Manager and the server-side services
implementation, and then the candidate APIs. On Android 8.1, the 100
services define a total of 157 classes. These classes are divided in 71 Client
classes (∼ 45%) and 86 Server (∼ 55%). From these 157 classes, we iden-
tified a total of 6,219 invocable methods. These are all the methods that

98 98

Table 4.1: Extraction of attacker-reachable services.

Description Android 8.1.0 Android 9

Available Services 160 180

Proprietary Services 2 16
SELinux Denials 35 44

Runtime Permission error 2 1
Unreachable Services 9 14

Native Services 12 10

Attacker-Reachable Services 100 95

Table 4.2: Distribution of the dataset in terms of inclusion of ad libraries
and cleartext configuration.

Methods
Client-side Server-side

Ver. 8.1.0 Ver. 9 Ver. 8.1.0 Ver. 9

Total 3,536 4,092 2,683 2,887
After static analysis 1,080 1,324 1,384 1,472

Table 4.3: Method Filtering Process.

APIs
Fixed Arguments Mutated Arguments

Ver. 8.1.0 Ver. 9 Ver. 8.1.0 Ver. 9

Total 2,464 2,796 2,464 2,796
Accessible by an attacker 1,616 1,931 1,614 1,929

By removing constant APIs 813 1,127 816 1,141
By removing noisy APIs 48 35 51 52

Unique Methods 66

Potentially vulnerable 24

4.7. Evaluation 99

can be potentially used by an attacker to mount state inference attacks. We
then proceed by applying the filtering rules, as described in Chapter 4.6.3.
This process allowed us to obtain, from the initial bucket of 6,219 methods,
2,464 candidates to test on Android 8.1. Out of these 2,464 methods, 1,080
are exposed through the Client while the remaining 1,384 are available from
the Server. We then dynamically tested all these methods looking for se-
curity violations. These methods have to be discarded since a third-party
application cannot invoke them. This stage identified how only 1,616 of
them is effectively reachable by a third-party application. Thus, the com-
bination of both static and dynamic analysis reduced the candidates from
6,219 to 1,616.

We then applied the same identification and filtering process to Android
9. For what concerns this version, from the 95 initial services, we extracted
a total of 157 classes: 76 acting as Client (∼ 48%) and the remaining 81
as Servers (∼ 52%). From these classes, we then extracted a total of 6,979
invocable methods. The first static filtering allowed our system to extract,
from the 6,979 methods, 2,796 candidates (1,324 methods declared in the
Client, while 1,472 defined in the Server). Instead, by removing the methods
raising a security violation at runtime when invoked, our system pinpointed
1,931 methods effectively reachable by a potential malicious application.
Thus, the combination of these pruning strategies allowed us to lower the
number of methods to test from 6,979 to 2,796.

Table 4.2 and Table 4.3 summarize the results obtained during these
pruning stages.

We analyzed each method for an average of 70 seconds (60 seconds plus
time used for booting with both the configurations of the Stimulator). The
overall execution time to run all the experiments is of 63 hours for Android
8.1, while it took 68 hours for Android 9.

4.7.3 Analysis Results

We then proceed to analyze the data collected during the tests. We start by
discarding APIs not leaking any sensitive information due to their values re-
maining constant, as well as very noisy APIs, as described in Chapter 4.6.6.
This process drastically reduces the number of APIs to analyze in the sec-
ond stage. For Android 8.1, we reduced the number of APIs from 1,616 to
51 — discarding ∼96.6%: for Android 9, we started from 1,931 APIs and
we ended up with 52 candidates — discarding ∼97.5% of APIs. In total,
we obtained 66 unique APIs whose return value change appears to be con-
ditioned by the surrounding context. Out of the 66 APIs, the second stage
of the algorithm identified 24 potentially leaking APIs that can be used

100 100

Table
4.4:

System
atization

ofthe
vulnerable

A
PIs.

C
la
s
s
n
a
m
e

M
e
th
o
d

P
e
r
m
is
s
io
n

H
id
d
e
n

A
ff
e
c
te
d
v
e
r
s
io
n
s

F
ix
e
d
?

IA
ctivityM

anager
isA

ppForeground
N
one

Y
e
s

8.1
and

9
C
V
E
-2

0
1
9
-9

2
9

2

IA
ctivityM

anager
getProcessPss

N
one

Y
e
s

8.1
and

9
C
V
E
-2

0
2

0
-0

0
8

7

A
ctivityM

anager
getProcessM

em
oryInfo

N
one

N
o

8.1
and

9
C
V
E
-2

0
2

0
-0

3
7

2

IU
sageStatsM

anager
isA

ppInactive
N
one

N
o

8.1
and

9
C
V
E
-2

0
2

0
-0

3
1
7

IN
etw

orkStatsService
getU

idStats
A
C
C
E
S
S
_
N
E
T
W
O
R
K
_
S
T
A
T
S

Y
e
s

O
nly

9
C
V
E
-2

0
2

0
-0

3
2

7

IN
etw

orkStatsService
getD

ataLayerSnapshotForU
id

A
C
C
E
S
S
_
N
E
T
W
O
R
K
_
S
T
A
T
S

Y
e
s

8.1
and

9
C
V
E
-2

0
2

0
-0

3
4

3

StorageStatsM
anager

getFreeB
ytes

N
one

N
o

8.1
and

9
D
u
p
lic

a
te

StorageM
anager

getA
llocatableB

ytes
N
one

N
o

8.1
and

9
D
u
p
lic

a
te

IA
ctivityM

anager
isU

idA
ctive

P
A
C
K
A
G
E
_
U
S
A
G
E
_
S
T
A
T
S

Y
e
s

O
nly

9
W
on’t

fix
N
etw

orkStatsM
anager

querySum
m
ary

P
A
C
K
A
G
E
_
U
S
A
G
E
_
S
T
A
T
S

N
o

8.1
and

9
W
on’t

fix
N
etw

orkStatsM
anager

queryD
etailsForU

idTagState
P
A
C
K
A
G
E
_
U
S
A
G
E
_
S
T
A
T
S

N
o

O
nly

9
W
on’t

fix
IA

ctivityM
anager

getU
idProcessState

P
A
C
K
A
G
E
_
U
S
A
G
E
_
S
T
A
T
S

Y
e
s

8.1
and

9
W
on’t

fix
IA

ctivityM
anager

getPackageProcessState
P
A
C
K
A
G
E
_
U
S
A
G
E
_
S
T
A
T
S

Y
e
s

8.1
and

9
W
on’t

fix
N
etw

orkStatsM
anager

queryD
etailsForU

idTag
P
A
C
K
A
G
E
_
U
S
A
G
E
_
S
T
A
T
S

N
o

8.1
and

9
W
on’t

fix
U
sageStatsM

anager
queryEvents

P
A
C
K
A
G
E
_
U
S
A
G
E
_
S
T
A
T
S

N
o

8.1
and

9
W
on’t

fix
U
sageStatsM

anager
queryU

sageStats
P
A
C
K
A
G
E
_
U
S
A
G
E
_
S
T
A
T
S

N
o

8.1
and

9
W
on’t

fix
U
sageStatsM

anager
queryA

ndA
ggregateU

sageStats
P
A
C
K
A
G
E
_
U
S
A
G
E
_
S
T
A
T
S

N
o

8.1
and

9
W
on’t

fix
IStorageStatsM

anager
queryStatsForU

id
P
A
C
K
A
G
E
_
U
S
A
G
E
_
S
T
A
T
S

N
o

8.1
and

9
W
on’t

fix
IStorageStatsM

anager
queryStatsForPackage

P
A
C
K
A
G
E
_
U
S
A
G
E
_
S
T
A
T
S

N
o

8.1
and

9
W
on’t

fix
N
etw

orkStatsM
anager

queryD
etailsForU

id
P
A
C
K
A
G
E
_
U
S
A
G
E
_
S
T
A
T
S

N
o

8.1
and

9
W
on’t

fix

4.7. Evaluation 101

to determine whether a target application went to “foreground.” Table 4.3
summarizes all the intermediate results of these filtering stages.

Out of these 24 APIs, 18 are indeed vulnerable: 4 APIs require no
permission at all, 2 require a permission marked as Normal—and so au-
tomatically granted to third-party applications at installation time, while
the remaining APIs are protected with the PACKAGE_USAGE_STATS

permission, which allows an application to collect the usage statistics of
other apps, including the application in foreground. This information, as
discussed in Chapter 4.2.2, is of essence when mounting phishing attacks.
Table 4.4, reports more detailed information about these APIs. For each
API, we report the vulnerable service, the type of permission protecting it,
if the API was present in the Manager or only in the Proxy component,
which version contains the vulnerable API, and if the bug has been fixed.

We now discuss the 6 false positives. Interestingly, two
APIs actually leak some information about the surrounding system:
getInputMethodWindowVisibleHeight, which returns the size of the key-
board on the screen, and getPendingAppTransition, which tells the at-
tacker that an application “is going to be moved on foreground.” The at-
tacker can reliably infer that an application is about to change its state, but
she cannot determine which one. However, since this scenario could lead to a
more generic phishing attack, we conservatively consider these as false pos-
itives. For example, with the getPendingAppTransition API the attacker
can evince that the user is about to interact with an application: Thus, she
can simply display a pop-up a message informing the user that an update is
available—without the need of specifying the name of the application. Since
the timing is perfect, the user might be lured into clicking it. The same at-
tack can be mounted with the getInputMethodWindowVisibleHeight API.
In fact, the attacker can infer when the user is going to use the keyboard,
giving her the chance to show a popup informing the user that a keyboard
update is available.

Two other APIs (createAppSpecificSmsToken and DownloadMan-

ager.Query) return very noisy values, which change at every invocation.
We note how the filtering step described in Chapter 4.6.6 does not discard
these APIs because the noisy values are not belonging to one of the cate-
gories known to not leak information (e.g., timestamps). In fact, a deeper
analysis of these two APIs allowed us to confirm that their return value is
either a pseudo-random token (for the first API) or an object identifiers (for
the latter). Neither of the API, thus, return a value correlated with the
current state of the system. This is another indication that our “filtering’
is indeed conservative.

102 102

The last two APIs that are misinterpreted as potentially interesting are
launchLegacyAssist and getAllCellInfo. Their values changed after the start
of the target application but it does not appear to be correlated to the target
application’s state transition.

For completeness, we manually inspected the remaining 42 APIs out
of the 66 that have been filtered out by the second stage. We identified
how 7 APIs leak “system state” information, such as the total amount of
bytes written by apps, or aggregate statistics about the disk usage. 15
APIs, instead, leak sensitive network information, like the overall network
usage. We found that the remaining APIs do not seem to leak any relevant
information.

An interesting observation comes from the vulnerable 3 APIs affecting
only Android 9. In fact, they are all new features introduced in existing
services, which were also available in Android 8.1. This continuous evolution
underlines the importance of having an automatic analysis tool to flag these

potential problems.

Disclosure. We disclosed our findings to the Android security team. Six

APIs have been acknowledged and fixed by Google and a CVE was assigned.
Table 4.4 provides a detailed list of the APIs fixed and the assigned CVE.
We believe this confirms how seriously Google is considering this class of
vulnerabilities. For what concerns the remaining APIs, the Android security
team considered them as “won’t fix” due to the type of permission protecting
the API. However, it is important to highlight how these APIs are exposing
to the attacker sensitive information about the state of the applications
running on the phone. Moreover, we note how real-world malware already
abuse similar APIs that require the same permission, as documented by
recent findings by security companies [Jag18, Nic18]. We believe it would be
possible to secure these APIs by adjusting the granularity of the information
returned.

4.7.4 Results Comparison with SCAnDroid

To further illustrate the performance of our system, and to show how our
contributions play a key role on the automatic identification of state in-
ference vulnerabilities, we compare our results against those obtained by
SCAnDroid on the same Android version — Android 8.1.

Overall, our system was able to correctly detect all the vulnerable APIs
identified by SCAnDroid. However, we note that most of the vulnerable
APIs identified by SCAnDroid belong to bugs that we categorized as leaking
information related to the system (like the total amount of bytes written by

4.7. Evaluation 103

applications, or aggregate statistics about the disk usage) and network states
(like the overall network usage), as previously described in Chapter 4.7.3.
While these bugs are interesting and they can be exploited with template

attacks, as showed in [SPM18], it is not trivial to weaponize them. In
fact, creating a template for each of the application the malware wants to
attack might be impracticable to adopt in a real scenario since it is highly
dependent and influenceable from the system load, which can vary in a
non-deterministic way, making the template inaccurate.

Our approach focuses on finding vulnerable APIs—and this is one first
difference with SCAnDroid—such as those ones that allow an attacker to
pinpoint which application the user is currently interacting with, or that at
least do not require building “templates” for each target victim application.
As presented in Table 4.4, only two of the bugs we found were marked as
Duplicate, while all the other ones were previously unknown. All the APIs
identified by our system are generic and are not related to a specific feature
or configuration of a specific application, making our findings more generic
and scalable.

Extending the attack surface allows us to examine components and
methods that were not even taken into account by SCAnDroid. To deter-
mine how many methods SCAnDroid missed, we identified the server-side
methods that are not reachable from the Managers. To collect this number,
we first extracted all the server-side methods defined in the Android OS,
version 8.1, obtaining 5,216 methods. Then, we extracted “interesting can-
didates,” as previously discussed in Chapter 4.6.3: we identified that only
1,384 of them are actually potentially reachable by an attacker and thus
represent the attack surface analyzed by SCAnDroid.

Since SCAnDroid uses as entrypoints only a subset of “client-side” meth-
ods, we then determined how many of the 1,384 methods are effectively
reachable from the Managers. To this end, we computed a forward call-
graph for each of the methods defined in the Managers. If one considers
only client-side methods, only 835 methods, out of the 1,384, are potentially
reachable, representing the ∼60% of the attack surface. However, SCAn-
Droid does not take into account all client-side methods, but it applies a
filtering process based on the method’s name. We applied the same filtering
process on the client-side methods and found that SCAnDroid would be
able to reach only 616 server-side methods, which is only about the 44% of

the attack surface.
We also note how, for what concerns Android 8.1, the 33% of the bugs

we identified (5 out of 15) resides in the server-side component. This shows,
once again, that the server-side attack surface should not be overlooked.

104 104

Even more noteworthy is the fact that our analysis correctly detected
10 vulnerable APIs that satisfied SCAnDroid’s filtering. Thus, these APIs
have been tested, but were not marked as vulnerable. All 10 APIs are
present in Android 8.1, are exposed in a Manager and match the prefixes
constraints that would pass SCAnDroid’s filter (e.g., getProcessMemory-

Info, queryUsageStats, or queryAndAggregateUsageStats). We believe that
a possible explanation relates to how SCAnDroid stimulates the APIs or
how it processes the return value. An emblematic case is getProcessMem-

oryInfo(int[] pid). This API leaks statistics about the memory usage of
running applications. However, to detect this leak, the API needs to be in-
voked with a list of valid “process id,” otherwise a set of NULL is returned.
We believe SCAnDroid might have misclassified this API due to not pass-
ing proper arguments. Since our system identified “pid” as a meaningful

argument, our analysis handles this case and spots the vulnerable API.
This is another important result that shows how the argument genera-

tion we applied, described in Chapter 4.6, improves the effectiveness of the
identification of vulnerable APIs.

4.8 Case Studies

We now present three case studies to demonstrate how the vulnerable APIs
we identified can be used to mount phishing attacks. We opted to discuss
specific instances of vulnerabilities highlighting three different categories of
problematic APIs. Each one of the case studies presents a vulnerable API
protected by a different class of permissions, and we report a concrete proof-
of-concepts on how the APIs can be exploited in a real attack scenario. We
start with the class of APIs that does not require any permission, we con-
tinue with one of those APIs that requires permission automatically granted
at install time, and we conclude with an API that requires a Privileged per-
mission that an attacker can ask the user to grant.

Note that to prove the feasibility of exploitation of all the vulnerable
APIs identified by our system and listed in Table 4.4, we provided to Google,
during the disclosure process, a Proof-Of-Concept for each API to show how
it can be used to infer which application is going to be used by the victim.

4.8.1 CVE-2019-9292

The isAppForeground API is implemented by the ActivityManager system
service: it takes as argument a Linux user id (UID) and it returns a boolean
indicating if the application run, by this user, is in foreground. Since in

4.8. Case Studies 105

Android each installed application is assigned a different UID, and since the
UID → mapping can be easily obtained, an attacker can invoke multiple
times the API to check when the target application goes to foreground,
which is the proper time to spoof its UI. This API thus represents the
“ideal” case for an attacker, as she can monitor the state of any application
installed on the device. This API does not require any permission, and it is
only accessible via AIDL interface: that is, no client-side equivalent exists
for this API, making this vulnerability impossible to be found via the client-
side-only analysis. This API is referenced from the Common Vulnerabilities
and Exposures system (CVE) with id CVE-2019-9292.

Listing 4.1: CVE-2019-9292: isAppForeground
1 void attack(int uid) {
2 final Handler handler = new Handler();

3 handler.postDelayed(new Runnable() {

4 /* Executed every second */

5 public void run() {

6 try {

7 /* Obtain a reference to IActivityManageService */

8 Method getServiceMethod = Class.forName("android.os.ServiceManager").

getDeclaredMethod("getService", new Class[]{String.class});
9 IBinder binder = (IBinder) getServiceMethod.invoke(null, new Object[]{"

activity"});

10 IActivityManageService iams = IActivityManagerService.Stub.asInterface(binder

);

11 boolean res = iams.isAppForeground(uid);

12 if (res) {
13 /* Hijack the original activity */

14 startSpoofedUI();

15 }

16 handler.postDelayed(this, 1000);

17 } catch (Exception e) {

18 /* Handle the exception */

19 }

20 }, 1000);

21 }

4.8.2 CVE-2020-0343

The getDataLayerSnapshotForUid API is implemented by the NetworkStats
system service, and it is only available through the AIDL interface. This
API takes the UID of a target application and it returns a NetworkStats ob-
ject encapsulating network statistics for said app. Our framework identified
multiple fields leaking sensitive information; two of them — namely set and
txPackets — can be used in combination to successfully mount a state infer-

106 106

ence attack. The txPackets field indicates how many packets the application
transmitted since the boot, while the set field indicates whether the packets
are sent while in foreground. When the malware notices an increment of
txPackets, in conjunction with a change in the set field, it can infer that the
target application is performing, for example, a login, and can react accord-
ingly. This API requires the ACCESS_NETWORK_STATE permission:
since this permission is “normal,” it is silently granted at installation time
and the user will not be notified. This API is referenced from the Common
Vulnerabilities and Exposures system (CVE) with id CVE-2020-0343.

Listing 4.2: CVE-2020-0343: getDataLayerSnapshotForUid
1 /* First measure of txPackets */

2 public long prevTxPackets;

3 void attack(int uid) {
4 final Handler handler = new Handler();

5 handler.postDelayed(new Runnable() {

6 /* Executed every second */

7 public void run() {

8 try {

9 /* Obtain a reference to INetworkStatsManager */

10 Method getServiceMethod = Class.forName("android.os.ServiceManager").

getDeclaredMethod("getService", new Class[]{String.class});
11 IBinder binder = (IBinder) getServiceMethod.invoke(null, new Object[]{"

netstats"});

12 INetworkStatsService inss = INetworkStatsService.Stub.asInterface(binder);

13 NetworkStats ns = inss.getDataLayerSnapshotForUid(uid);

14 /*

15 * 1 is for foreground data

16 * Check if the application is sending data and if is trasmitting in foreground

17 */

18 if (ns.set == 1 && ns.txPackets > prevTxPackets) {

19 /* Hijack the original activity */

20 startSpoofedUI();

21 }

22 prevTxPackets = ns.txPackets;

23 handler.postDelayed(this, 1000);

24 } catch (Exception e) {

25 /* Handle the exception */

26 }

27 }, 1000);

28 }

4.8.3 Won’t Fix

Amongst the 12 APIs marked as “Won’t fix” by Google, we now present
the queryEvents API. This API is implemented as part of the UsageStats

4.8. Case Studies 107

system service. It takes as input a range of time and returns a UsageEvents

object, which embeds information about all the events triggered by the
applications running during that time span. Our framework identified a
number fields leaking information about the state of an application, which,
if combined together, represent a valuable signal to mount a state inference
attack. In particular, an attacker can combine mPackage, that indicates
the package name of the application performing the “event,” and mEvent-

Type, that specifies the type of the event. Note that other combinations are
effective as well. In this case the attacker is interested in monitoring for
a MOVE_TO_FOREGROUND event, which indicates that the applica-
tion moved to foreground, the ideal moment to show the spoofed UI. This
API requires the PACKAGE_USAGE_STATS permission, which the user
needs to manually approve. Nonetheless, real-world malware has been found

in the wild that had the same exact requirements, showing that this request

is legitimate [Nic18, Thr19, Jag18].

Listing 4.3: Won’t Fix: queryEvents
1 /*

2 * Define start timer, and target app

3 */

4 public long prevTime = System.currentTimeMillis();

5 public String TARGET_APP_PACKAGE_NAME = "com.target.app"

6 void attack() {

7 final Handler handler = new Handler();

8 handler.postDelayed(new Runnable() {

9 /* Executed every second */

10 public void run() {

11 try {

12 UsageStatsManager usm = (UsageStatsManager)getSystemService(Context.

USAGE_STATS_SERVICE);

13 UsageEvents ue = usm.queryEvents(prevTime, System.currentTimeMillis());

14 prevTime = System.currentTimeMillis();

15 while (ue.hasNextEvent()) {

16 UsageEvents.Event e = new UsageEvents.Event();

17 ue.getNextEvent(e);

18 if (e.getPackageName().equalsIgnoreCase(

TARGET_APP_PACKAGE_NAME)) {

19 if (e.getEventType() == 1) {

20 /* Hijack the original activity */

21 startSpoofedUI();

22 }

23 }

24 }

25 handler.postDelayed(this, 1000);

26 } catch (Exception e) {

27 /* Handle the exception */

108 108

28 }

29 }, 1000);

30 }

4.9 Detecting State Inference Attacks

We believe that automatically identifying APIs that make the system vul-
nerable to state inference attacks is a good first step forward to eradicate this
problem at its root. However, all existing techniques combine static and dy-
namic analysis, which potentially open these approaches to false negatives.
To protect users from unknown vulnerabilities, we studied the feasibility of
an additional component, which aims to be a runtime defense and detection

system to identify state inference attacks at the moment they occur. The
design of this component is based on the following two intuitions.

• The first one, which is somehow well known, is that all existing state
inference attacks need to implement polling behaviors. With this term,
we refer to an application invoking multiple times a set of APIs within
a short time window. Malware exploiting vulnerable APIs to mount
state inference attacks need to use polling to ensure they can race the
target application and make their spoofed UI appear on top at the
right time.

• The second intuition, which, to the best of our knowledge, has not
been explored before, is based on the following key hypothesis: benign
applications rarely rely on polling and, when they do, the nature of

their behaviors is different than those of malicious apps. Our hypoth-
esis, if verified, would consequently imply that the polling behavior
could be used as a strong indicator to distinguish between malicious
and benign apps, where with “strong indicator” we refer to a signal
that would not lead to an unacceptable amount of false positives.

The discussion is organized as follows: we start by presenting, in Chap-
ter 4.9.1, the results of the analysis on a dataset of malicious applications.
The aim of this analysis is to identify peculiarities in terms of APIs in-
vocation frequencies adopted by phishing applications. We continue by
performing an analysis on a dataset of about 2K benign application: this
acts as our “training set” to verify the hypothesis mentioned above. Results
related to this analysis are outlined in Chapter 4.9.2. We used the collected
insights to guide the design of an on-device detection system, which is de-
scribed in Chapter 4.9.5, and we discuss the implementation of the system,

4.9. Detecting State Inference Attacks 109

an evaluation on a different dataset of 8K benign applications (which acts
as our “testing set”), and its performance in Chapter 4.9.6. Last, in Chap-
ter 4.9.7 we compare our work with the most closely related work, Leave
Me Alone [ZYN+15].

4.9.1 Peculiarity of Phishing Applications

To verify the validity of our hypothesis, we first perform an empirical study
on malicious applications. For this study, we selected a dataset of 50 sam-
ples from all the families of Android malware. These malicious applications
were discovered in the last four years and are known to mount state inference
attacks to mount phishing. In particular, we analyzed samples and vari-
ants from: Anubis, LokiBot, ExoBot, BankBot, RedAlert, MisteryBot,

BianLian, Asacub, and Gustuff [Jag18, Thr19, WPN17, PNC17, Kev17,
Nic18, Thr18, Kas16, Vit19]. For each family, we analyzed both “malware-
only applications” — apps containing only the malicious code — as well as
“repackaged applications.”

Analyzing sophisticated malware is not always an easy task: we encoun-
tered different situations that made the (automatic) dynamic analysis very
challenging. In these specific cases, for example, we found applications per-
forming integrity checks on the device or anti-hooking techniques, as well
as starting the malicious behavior only after some time or after certain ac-
tions, probably to avoid Google Bouncer analysis. Moreover, many samples
tried to communicate first with a remote C&C server: since most of these
servers were “unreachable” at the time of test, the malware did not start
any activity. To overcome these difficulties, we decided to manually analyze
the samples looking for the code in charge of performing the state inference
attack.

For each family, we extracted the methods used to perform this task.
Our analysis highlighted different techniques used to mount this attack.
To perform polling, malware authors are using different mechanisms like
registering a repeated-delayed task with postDelayed() or AlarmManager.
Another technique relies on anonymous Thread or IntentService to invoke
the vulnerable API every second. Lastly, an even more aggressive technique
consists in executing all the “monitoring logic” inside a while loop, without
any delay between invocations. It is possible to model and define a com-
mon behavior shared among all the families we analyzed: we found that all
malware poll with a maximum delay that spans from 600ms to one second

(i.e., a frequency of at least 1Hz) and that a malware never stops this be-

havior once it is started (i.e., polling is performed for a “sustained” amount
of time).

110 110

During the years, malware evolved and changed frequently the set of
vulnerable APIs and techniques used to identify the starting of a sensi-
tive application to target with a phishing attack. The techniques used
by a malware highly depend on the API level the device of the victim is
targeting. For example, if the device targets an Android lower than 5.0,
the malware will adopt a combination of both getRunningTasks(int) and
getRunningAppProcesses(). Instead, if the device targets a version be-
tween 5.0 and 6.0, then the malware can still rely on the information ex-
posed by the proc filesystem (/proc).

However, as discussed in Chapter 4.2.3, Google fixed all the known com-
ponents leading to a leak of sensitive information like the state of an applica-
tion. Hence, the only available attack vector for the malware is to rely on the
APIs protected by the well known BIND_ACCESSIBILITY_SERVICE

permission (a11y) [FQCL17]. As it is possible to see, some sophisti-
cated malware like Bankosy, Cepsohord, and MysteryBot started mov-
ing from the a11y towards exploiting vulnerable APIs protected by the
PACKAGE_USAGE_STATS [Nic18, YLC+19, Bro16]. This transition
might also be forced by the fact that Google is going to remove all the
applications using the BIND_ACCESSIBILITY_SERVICE permission for
anything except helping disabled users [Dav17].

Moreover, [YLC+19] highlighted how the adoption of the
PACKAGE_USAGE_STATS permission amongst malicious applica-
tions published on the official Google PlayStore is growing. This is an
important result showing that, even if Google is not going to fix the
vulnerable APIs we identified in Chapter 4.7, they are used by malware
developers in real-world attacks [Nic18, YLC+19].

The PACKAGE_USAGE_STATS permission, like
BIND_ACCESSIBILITY_SERVICE, can only be granted through
the Settings application: this means that a malware cannot ask at runtime
this permission. However, as for the attacks based on a11y, the malware
can directly display the Settings application and lure the user through
social engineering to grant the permission. As presented in [Bro16],
malware uses social engineering while masquerading as Google Chrome
by mimicking the application’s icon and name. This technique tricks the
victim into thinking she is granting the PACKAGE_USAGE_STATS

permission to the Google Chrome application, while instead, she is granting
the permission to the malicious application.

4.9. Detecting State Inference Attacks 111

4.9.2 Peculiarity of Benign Applications

As the next step, we characterize whether and how benign applications
perform polling-like behavior, and whether there are some features that can
be used to distinguish them from malicious attempts. To this end, we built
a dataset of 10,108 benign applications. To select a representative dataset,
we consulted AndroidRank [And11] to find popular applications, which we
then crawled from the Play Store. The resulting dataset is constituted as
follows: 9,066 “top applications” with at least 50M installations, while the
remaining 1,042 were chosen randomly from applications with a number of
installations ranging from 10M to 50M. From this dataset, we built two
different datasets: a “training set” of 2,042 applications (roughly 20% of
the dataset), and a “testing set” with the remaining 80% of it.

The rationale behind this choice is the following: we first investigate
how benign applications perform polling by only considering apps within
the training set. Based on the insights of this step, we then:

• enumerate a number of observations that can be used to distinguish
between benign and malicious samples and we use them to build a
detection system,

• evaluate the performance of the proposed system (in terms of miss
detections) by analyzing the applications in the testing set — which
are not considered during the design/training phase.

We believe this two-step approach helps addressing concerns related to
how our evaluation would generalize to a bigger dataset.

4.9.3 Benign Application Analysis

Testing Environment. To study the runtime behavior of benign appli-
cations, we instrumented the Android OS (Android 9 running on a Pixel
3A) to log all binder communications and filesystem activities for a given
application. This log contains information such as the service and the API
invoked by the application, and the correspondent timestamp.

Analysis System. To identify a “polling-like behavior,” we tuned the
analysis to flag all the syscalls and APIs invoked at a rate of at least once
every two seconds (i.e., 0.5Hz), for at least 60 seconds. We believe these
thresholds are a “safe assumption,” since:

• the threshold frequency is twice as low as the minimum frequency
rate at which malware performs polling activities (i.e., 1Hz) and the

112 112

phishing attack would necessarily incur a delay of 2 seconds, making
it visible to the victim,

• the malware does not stop polling activities after it has started it, as
previously described in Chapter 4.9.1).

A very important aspect of the proposed system is that it does not look
for polling by just considering a single API, but it considers the overall num-

ber of invocations. That is, instead of monitoring whether a specific API A
is invoked more frequently than once every two seconds, the system mon-
itors if the application has cumulatively invoked any API more frequently
than our threshold. This design choice introduces the concern of false posi-
tives (which we fully address next), but prevents an attacker to bypass our
detection by simply alternating the invocation of two (or more) different
APIs, thus lowering the per-API frequency.

We now report the results of this analysis. We also note that this analysis
system, configured with the thresholds we mentioned, is able to detect all
the malware samples in our dataset.

4.9.4 Results and Observations

We now discuss the results and the observations after the execution of each
of the 2,042 applications of the training set within our instrumented envi-
ronment. We executed each application for five minutes. We post-processed
the execution traces on our analysis system to identify if also benign ap-
plications perform polling, and, if so, on which component and at which
frequency rate. From the results of the analysis, we draw the following
observations:

Benign applications do perform polling. We found a significant num-
ber of applications were flagged by our system. More interestingly, we ana-
lyzed the traces to identify which APIs were being flagged and we identify
frequent patterns belonging to the following categories:

• Graphical User Interface (GUI): to draw the content of the ap-
plication’s view, the system relies on polling to design the various
component forming the UI of the app;

• Audio and Video: similar to the GUI, multimedia components also
rely on polling. In fact, to reproduce the audio and video stream, the
multimedia services needs to refresh, for each frame, the video and
audio buffer.

4.9. Detecting State Inference Attacks 113

• Digital Right Management (DRM): when playing rights-
protected content, the DRM service first decodes and then forwards
to the multimedia service each chunk of the file to play.

• System Services Internals: operations that are performed each
time a system service is used by an application. For example, when
an application interacts with a system service that operates on global
data, a new Thread is started and multiple acquireWakeLock and
releaseWakeLock APIs are invoked to handle tasks synchronization.

In all these cases polling is performed by system services “on behalf
of the application.” That is, even though the polling logic is implemented
in the system service, it is still related to the context of the application
since the service uses the app’s identity for the subsequent invocations.
We investigated each of these behaviors in detail, and we found that none
of these APIs can lead to abuse or state inference attacks, and we thus
believe that they can easily and safely whitelisted. Table 4.5 provides a
very detailed list of our insights.

1
1
4

1
1
4

Table 4.5: APIs whitelisting.

Category API Example

Graphical User Interface
(GUI)

For this category, we whitelist APIs from the following
classes:

• android.ui.ISurfaceComposer
• android.gui.DisplayEventConnection
• android.gui.IGraphicBufferProducer
• android.gui.SensorEventConnection
• android.view.IWindowSession
• android.hardware.display.IDisplayManager

The GUI system handles all the
operations that allows the system to
display and render the UI of a given app.
The application is in charge, for instance,
of declaring all the supported screen sizes
and pixel densities, but it does not have
to handle the interaction with the actual
frame buffer. The GUI framework will
handle, behind the scene all the rendering
operations and the rescaling, if needed.

Audio and Video

For this category, we whitelist mostly APIs from the
android.media package. This package, provides classes
that manage various media interfaces in audio and
video. For instance, we whitelist:

• android.media.IMediaAnalyticsService
• android.media.IMediaCodecService
• android.media.IMediaExtractorService
• android.media.IMediaMetadataRetriever
• android.media.IMediaRouterService
• android.media.IMediaPlayerService
• android.media.IAudioService
• android.media.IAudioPolicyService

The Audio and Video services on Android
is a complex ecosystem formed of
different components. Every component is
in charge of a specific task. For instance,
when an application wants to play an
audio, it normally relies on the
“MediaPlayer” component, and performs
operations like “start, stop, and pause.”
However, behind the scenes, all the
whitelisted components performs the
tasks of handling the Audio, using the
correct Decoder and Coded, forward the
audio to the proper hardware interface
and handle the refresh of the audio buffer.

4
.9
.
D
e
te
c
tin

g
S
ta
te

In
fe
r
e
n
c
e
A
tta

c
k
s

1
1
5

Digital Rights
Management (DRM)

For this category, the whitelist contains the classes of
the drm package, which handles all the DRM
framework.

DRM is a complex framework: it relies on
plugins and it is strictly connected with
the “Media” system. In fact, DRM
content are normally audio and video file,
protected with digital rights, that are
played by the system player’s. For
example, every time the app starts the
DRM, a series of operations are done
behind the scenes, like loading different
DRM Plugins, setup the connections with
MediaPlayer and the Media System, to
finally decodes and then forwards to the
player each chunk of the file to play.

System Services
Internals

This categories contains a variety of API that are used
by the system, behind the scenes, when dealing with
different system components. For instance, the system
automatically handles from the “synchronization”
operations for what concerns the access to shared
structures to the “reference counting” when dealing
with Content Providers. We whitelist APIs for the
following services:

• ContentProvider
• PowerManager
• PermissionManager
• AlarmManager

As mentioned before, when an application
use a system services shared accross
multiple apps, it does not have to handle
all the operation to acquire and release
the lock. In fact, we noticed these
operations are handled directly by the
service on behalf of the app. It is possible
to see the same behavior when dealing
with reference counting, for example
when interacting with ContentProviders
or other components that can be shared
across multiple apps. Some of the APIs
that we identified are used by the system
services to achieve these tasks are
acquireWakeLock, releaseWakeLock, or

refContentProvider

116 116

For each category, we describe the classes, services, APIs, or packages
we whitelist and we provide a detailed description with concrete exam-
ple. We manually investigated each of the APIs in our whitelist and none
of these APIs can abused by malicious apps to mount state inference attacks.

We also note that the four groups above capture polling behavior for
all applications in our training dataset except for six of them: these six
applications were found to be Application Lockers, which we discuss next in
Chapter 4.9.6.

Bootstrap phase. Another interesting observation is that we have no-
ticed how applications often show a spike of activity during their “boot-
strap time.” This, intuitively, makes sense: when the application is started,
it needs to perform a number of one-off setup operations, e.g., querying
system information, setting up in-memory data structures, requesting per-
missions. However, we also noted how the level of activity (measured as the
frequency of API invocations) decreases as the application transitions from
its “bootstrap” to its “at rest” phase. We note how this characteristic is
profoundly different from state inference attack malware behavior: once the

polling behavior is started, it is never terminated.

4.9.5 Proposed Detection System

Based on the results of the previous empirical study, we implemented a sys-
tem for the detection of polling behaviors on top of Android 9, by modifying
the execTransact method of the Binder class, which is invoked any time a
system service receives a request. This design choice prevents malicious
applications to circumvent our detection system, since our modifications af-
fect only the (privileged) server side of the Binder subsystem. Our system
is setup to raise alerts for apps performing API invocations at a rate of at
least x invocations per y seconds (with x = 1 and y = 2, i.e., a threshold
minimum frequency of 0.5Hz), for at least z seconds (with z = 60, as previ-
ously discussed). Our system is also setup to not consider API invocations
during a “bootstrap phase” of a given application, where with “bootstrap
phase” we indicate the first k seconds from the app’s start up. For our sys-
tem, we empirically selected k = 90, but, for the sake of completeness, we
discuss next how the accuracy of the system changes when k varies (between
0 and 5*60 seconds), and we show that this threshold affects the results in
a minimal way.

Implementation-wise, the system creates a circular buffer for each run-
ning uid in the system. The length of each circular buffer depends on the

4.9. Detecting State Inference Attacks 117

number of invocations allowed in a given timeslot (x). We start the moni-
toring phase after the bootstrap time k, and we do not consider APIs that
have been whitelisted (i.e., the “benign” and not-possible-to-abuse APIs
discussed above belonging to one of the four categories). For each service
invocation, our system stores the current timestamp in the circular buffer
associated to the appropriate uid. When the circular buffer is full, the sys-
tem checks whether the elapsed time from the first invocation in the buffer
is lower than y seconds. Due to the properties of circular buffers, this is
the case if and only if we have recorded x services invocations in less than
y seconds. This means that the caller application has exceeded the invoca-
tions rate that we are interested in detecting. If the threshold is exceeded,
our system enters a so-called “alert mode” and stores the time at which
the polling behavior started in an additional variable (one for each uid).
When handling the following invocations of the service while in alert mode,
our system checks whether the polling behavior is sustained for at least z

seconds, and it does so by comparing the content of this additional variable
with the current time. If the difference is greater than z, our system raises
an exception (preventing the service’s request to be completed) and it raises
a warning to the user.

Note that if subsequent invocations do not meet the minimum threshold
for polling, the system leaves the “alert mode” and it resets the internal
state. We note how this system allows for the detection malicious applica-
tions performing state inference attacks polling on a single API, but, more
importantly, it would also detect situations for which the malware uses mul-
tiple (different) vulnerable APIs to infer the state of the target application.
This is possible due to using a “single bucket” for all APIs invoked by the
same application (identified by their Linux uid).

To err on the safe side and to avoid false negatives, for our defense mech-
anism we set a very conservative detection threshold to half the frequency of

all real-world malware samples. This allows us to detect all current malware
samples analyzed in Chapter 4.9.1, and even if these malware samples would
cut their polling frequency in half, our system would still detect them. In
principle, a malware that reduces even more its polling frequency might by-
pass our detection system. However, to mount a successful phishing attack,
timing is a fundamental component. Thus, lowering down even more than
half the polling frequency, would make the malware and the attack ineffec-
tive, since there would be a very visible delay between the launch of the
legitimate application and the spoofed one. For example, a situation where
the user clicks on the legitimate banking application icon, and she starts
to interact with the application, and only then, say after two seconds, the

118 118

malware displays its spoofed banking app UI asking again for credentials,
would certainly raise some warnings to the victim and the attack would be
noticed.

4.9.6 Evaluation

We evaluated our on-device detection system on the testing set, composed
by 8,066 applications. We stress that we did not access and/or inspect these
apps before having finished developing the entire system. In other words,
we believe this represents a realistic and fair evaluation on how our system
would fair in practice. Our results show that the system would flag only
30 applications as potentially problematic, which represents only the 0.37%

of the entire dataset. We note that this result was obtained by setting a
threshold for k = 90 to identify the bootstrap phase. To evaluate the impact
of this threshold over the results, we varied it from zero seconds (i.e., we
start monitoring the application as soon as it starts) to 240 seconds (i.e.,
we start monitoring the application 4 minutes after it starts): the number
of false positives is not significantly affected — it varies from 39 to 25.
Figure 4.4 shows a graph depicting the impact of the bootstrap phase in
relation to the number of false positives identified by our system. As it is
possible to see, when the bootstrap time is zero, the number reaches 39 and
it decreases as the application execution time increases. The lowest number
of false positives is reached if the bootstrap phase is greater or equals to
210 seconds. We also note that this threshold does not affect the detection
of malicious applications, since all malware samples never stop polling after
they have started.

We now present a detailed analysis of the applications detected as prob-
lematic by our system. For this step, we consider out “worst case” — the
configuration that raised the highest number of false positives (k = 0, 39
false positives). The goal is to analyze the polling behavior exposed by these
applications and determine the nature of their behavior. We identified the
following groups of applications with similar patterns:

• The first group is composed by 10 applications polling only one of
the vulnerable APIs we identified, getProcessMemoryInfo. In these
applications, the code performing the polling belongs to a third-party
library for crash analytics that constantly traces the usage of the app’s
memory. However, this API is safely—and not maliciously—invoked
to only monitor its own memory. We note that Google has now fixed
this API, and it would allow an application to only monitor its own
memory — making the usage of this API safely whitelistable.

4.9. Detecting State Inference Attacks 119

Figure 4.4: Impact Of Bootstrap Phase.

• The second group is composed of 10 applications, which embed ads
libraries that aggressively poll several APIs to monitor the status of
the network, probably to collect information related to nearby net-
works, with the goal of tracking the user [Ach16]. We believe that
users would be pleased to suppress this privacy-invasive functionality.

• The third group of 9 benign applications is constituted by “Appli-
cation Lockers.” These apps work by monitoring which application
the user is interacting with, and by “locking” the device if the user
is interacting with an application she should not interact with (e.g.,
the Settings application). These applications were initially popular as
a way to protect the user phone, but they became less popular with
time, and they are now considered “grey area.” Google also introduced
additional security features that make these applications of dubious
utility. With that being said, these applications are problematic for
our system as they do rely on polling (in this case, the queryEvents

API), making this behavior indistinguishable from malware. Our sys-
tem, as is, would block these applications — and rightfully so. If a
user truly wants to use these applications, she can of course whitelist

120 120

them. But given their declining popularity over time, we argue this is
acceptable.

• The last group is formed by 10 applications whose polling behavior is
caused by bad coding practices: as a representative example, we iden-
tified an application continuously invoking the getRunningServices

API with no sleep between two invocations.

For what concerns the malware detection, we evaluated our system over
synthetic applications configured as real malicious samples. The techniques
used to mimic the malicious behaviour of the applications are described
in Chapter 4.9.1. For these applications, our system was able to correctly
pinpoint the malicious behaviour of all the samples and thus, in a real
scenario, it would have been able to detect and stop the attacks.
Performance Consideration. The design of our detection system relies
on optimized data structures and a fast algorithm. This allows our system
to handle each service invocation in constant time (i.e., O(1)), indepen-
dently from the number of services in the system, the number of running
applications, and the rate at which system services are invoked. An approx-
imation of the required memory is given by napps× (x+ 1)× 8bytes, where
napps is the number of running application and x the entries in the circular
buffers. In an hypothetical scenario of 50 apps invoking multiple services,
we estimate that our system needs in total less than 10KB of memory. We
measured the performance overhead of our detection system over the vanilla
version of AOSP by performing a micro benchmark, consisting in invoking
multiple times the same system service and measuring the time needed for
the system to handle all the requests. More in details, we invoked Activity-

Manager service’s getAppTasks API for 10,000 times. We repeated the test
100 times for both our modified version and a vanilla version of AOSP. For
the purposes of this benchmark, we modified our system to prevent it from
raising exceptions when the polling threshold is surpassed: we do this to not
invalidate the results of the benchmark, since returning an exception to the
caller is much faster than actually invoking the API. Figure 4.5 shows the
results of the benchmark in terms of the average and the standard deviation
of the time needed to serve 10,000 requests. In the graph, the highlighted
points are the arithmetic means computed over 100 runs of the benchmark,
the red boxes represent their standard deviations, while the black lines in-
dicate the minimum and the maximum times recorded for both systems.
Our polling detection system is accountable for an overhead of ∼98.2 ms
per benchmark run (1.98%) in average with respect to the AOSP baseline,
corresponding to ∼9.82 µs per service API invocation. We believe that such

4.9. Detecting State Inference Attacks 121

Polling-detection Vanilla AOSP
0

1

2

3

4

5

6
Ti

m
e

to
 c

om
pl

et
e

th
e

Be
nc

hm
ar

k
(s

) 4.7798 4.6816

Figure 4.5: Impact of State-Inference Attacks Detection Mechanism

a low overhead is acceptable. Additionally, from a usability perspective, we
did not notice any difference while using either a device running the baseline
AOSP or our detection system.

4.9.7 Comparison with Leave Me Alone

Leave Me Alone [ZYN+15] is a recent work whose main goal is to detect and
block malicious applications performing a runtime information gathering

attack on Android, and it is thus related to our work. We now discuss
Leave Me Alone in detail and we offer a direct comparison showing how it
is affected by significant limitations when it has to protect the system from
phishing attacks.

A runtime information gathering attack consists in a malicious appli-
cation stealing or inferring sensitive information about the runtime data
computed in the context of a target application by analyzing the usage
of shared resources. The core component of [ZYN+15] is named “App-
Guardian,” which runs as an unprivileged application. It is in charge of
monitoring the runtime behavior of the running applications and of detect-

122 122

ing which are manifesting a suspicious behavior. To identify these applica-
tions, the system relies on collecting static information of the installed apps
like suspicious permissions. For these suspicious apps, the system collects
runtime behavior when they are running in background (e.g., thread names,
CPU scheduling, kernel time). These behavioral information are collected
by accessing the procfs subsystem. The identification of these suspicious ap-
plications plays a key role when a target app — protected by the Guardian
— is started by the user: when this situation occurs, the system stops all
the suspicious background processes by creating a “safe execution environ-
ment” for the target application. By not letting the suspicious applications
running in background, the “runtime information gathering” attack is not
feasible anymore.

Since our main focus is on detecting polling to prevent phishing attacks,
one may think that Leave Me Alone could be a good candidate to address
the same problem. However, while Leave Me Alone is certainly valuable in
many situations, we argue it would be affected by many limitations when
tasked to prevent phishing attacks.

First, AppGuardian relies on previously known vulnerabilities to collect
runtime information regarding a specific application. Since it is designed to
run as a non-privileged application, all (present and future) vulnerabilities
of this kind will be eventually patched by Google [Kra17], preventing this
approach to work. As a case in point: all sources of side channels mentioned
in the Leave Me Alone paper have been fixed in recent versions of Android.

Second, we note that several of the vulnerable APIs found by our frame-
work do not require any sensitive permission, making malicious applications
using these bugs challenging to be detected by automatic vetting processes.
Our approach, instead, only relies on the presence of polling-like behaviors
and would detect these cases, independently from the requested permissions.

Third, AppGuardian heavily relies on whitelisting to make their ap-
proach work. Quoting the paper, “Overall, among all the popular applica-
tion, Guardian only needs to suspend 19.3% of the apps” when referring to
a dataset of 475 applications, which is 92 apps. To avoid creating usability
problems, the paper states that they rely on a whitelist: “The whitelist
here includes a set of popular apps that pass a vetting process the server
performs to detect malicious content or behaviors. In our implementation,
we built the list using the top apps from Google Play, in all 27 categories.”
Our approach, instead, would only be affecting about 40 applications on a
dataset of more than 10K dataset, which is 20 times bigger than what used
in previous work.

Last, AppGuardian is vulnerable to race conditions when tasked to de-

4.10. Limitations 123

tect on-going phishing attacks. In fact, both the malicious application and
the Guardian are relying on the same side channels: if the malicious app
wins the race (and detects a victim application has been started), it can go
to foreground before Guardian has a chance to kill it. However, once the
malware is in foreground, Guardian does not have a chance to suspend it
— third-party applications are not allowed to do so (they can only suspend
apps that are in background). Our approach is not affected by this limita-
tion. We reached out to the authors of [ZYN+15], they acknowledged the
presence of the race conditions, and they confirmed that, in this scenario,
the Guardian is not able to stop the malicious application but only to inform
the user with a notification.

We acknowledge that this comparison is a high-level one, but we argue
that it is the best we could make, for multiple reasons. First, all the side-
channels used are now fixed, and any evaluation would consequently show
negative results. Second, a significant component of the Leave Me Alone
design is to rely on an off-market vetting system based on the detection of
dangerous permissions. The details of how they perform application vetting
are not given in completeness, making a reproduction of this step difficult
to do correctly. Last, as shown in Table 4.4, we found several APIs that do
not require any permission. Thus, once again, this would lead to obvious
bypasses of the system.

4.10 Limitations

We believe this research represents a step forward in the detection of vulner-
able API leading to a state inference and to detect malicious applications
exploiting these vulnerabilities to perform phishing attacks. However, we
acknowledge that our approach is affected by the following two limitations.

4.10.1 Availability of Source Code

Currently, our tool requires access to the source code of the Android frame-
work. From the source code, it is possible to extract the semantics of the
arguments, which is a fundamental step when creating argument values to
invoke a given method. This, therefore, limits our tool to be used only in
AOSP. Thus, our framework cannot be used to test systems from other ven-
dors whose source code is not available, such as Samsung or Huawei. Note
that, however, our system could be extended to bring the analysis at the
bytecode level, and therefore would not require access to the source code.
At the same time, we would lose important information such as the name of

124 124

the arguments, which are used to generate meaningful values. To solve this
last problem, our system could implement a more deterministic model in
constructing and filling in arguments required for the polling APIs, making
the system working on closed-source non-AOSP systems.

4.10.2 Detection of New Phishing Variants

At the moment, our on-device detection system can detect and stop the
most classic of phishing attacks, the one in which the attacker infer which
is the application that will be used by the victim and, at the right time,
shows the spoofed and malicious activity to steal credentials. This is the
most used phishing variant and its effectiveness is well known. However,
we recognize that other interesting variants of this attack are possible. For
example, the attacker could execute her attack while the victim application
is running, showing a generic error message and luring the victim to re-enter
his credentials. Or, the attacker may show an error message to the victim,
even when the application is not in use, in the hope that the victim enters
the credentials. At the moment, our system is not able to identify and block
these variants because these attack configurations are not necessarily based
on polling. We note that, to date, the effectiveness of these new variants is
unknown, and that it would be interesting to perform a user study.

4.11 Related work

The research we have presented explores two parallel and complementary
paths that, combined, could lay the groundwork for part of the Android
phishing problem to be solved. The two directions we have explored are
the automated search for vulnerabilities that can be exploited by malware
to mount this attack, and an in-depth study and categorization of how
malware on android behaves, in order to be able to differentiate them at
runtime from benevolent applications.

4.11.1 Detecting State-Inference Attacks

Several works have focus the attention on finding vulnerable APIs or other
venues that, if exploited, could lead to state-inference attacks. It is possible
to group these works into two categories, which differ according to the type
of analysis that was done: manual or automatic.

Among the works belonging to the first category, we find in turn works
that have searched for information that can be exploited to perform a state-
inference attack at the filesystem level, or at the API level. One such exam-

4.11. Related work 125

ple of previous work working at filesystem level is by Chen et al. [CQM14],
which found an information leakage exploiting the shared-memory infor-
mation present in the /proc/$PID/statm file. Fernandes et al. [FCP+16]
instead, mounted this attack by analyzing the transaction_log traces of the
Binder component. This log file, exposed in the /sys/kernel/debug/binder
directory, contained the list of all the transactions occuring between pro-
cesses, thus allowing the attacker to understand which process was being
used by the victim. Instead, among the works that have analyzed the An-
droid Framework side, we can find the work by Bianchi et al. [BCI+15].
In this work, as well as new leaks affecting the “proc filesystem,” are also
presented vulnerable APIs vulnerable APIs that can be used to mount state
inference attacks, like getRunningTasks. The latest work in this category
is “Cloak and Dagger” by Fratantonio et al. [FQCL17]. This paper presents
several new attacks that exploit the Android Accessibility Service subsystem
a11y. This issue, to date, as well as the vulnerabilities we have reported
that exploit PACKAGE_USAGE_STATS, has not been fixed by Google
and is one of the most used by Android malware to carry out this type of
attack.

These works, based primarily on a manual approach to researching these
vulnerabilities, has laid a solid foundation for allowing the problem to be
approached automatically. Among the earliest works that used automated
techniques are ProcHarverster [SKGM18] and SCAnDroid [SPM18], both by
Spreitzer et al. ProcHarvester tries to identify potential information leak
that could lead to state-inference attacks by focusing its attention on the
procfs subsystem. The system automatically performs several operations
on the devices, like using the WebBrowser or starting several applications.
At the same time, it monitors any changes to the files in the proc filesys-
tem, recording their change of values. It then tries, with machine learning
algorithm, to correlate the changes in the procfs files with some meaningful
events triggered during the tests. In the same direction, but this time fo-
cusing on the API exposed in the Android Framework and no longer on the
filesystem level, is ScanDroid [SPM18]—which we analyzed and compared
in detail in Chapter 4.6.7 and 4.7.4. In this new work, the technique used
at the backend to correlate changes in value with significant actions is the
same used in ProcHarverster [SKGM18].

4.11.2 Phishing on Android: Attack and Defense

The phishing problem has shifted and evolved from web to mobile, and
many features and peculiarities of the old attacks can be found even today
on mobile phishing attacks. This issue has been studied by numerous works

126 126

over the years that have tried to analyze different points of view, start-
ing from analysis, to defensive points of view up to new types of attacks.
Among the early works that studied the evolution and transition between
web and mobile is “Phishing on Mobile Devices” by Felt et al. [FW11], where
they highlight how the Android system lacks of indicators that can be used
by the user to verify the identity of the application or of a website. This
work is among the first to draw attention to this issue, showing that the
risk of phishing attacks on mobile platforms is greater than has previously
been appreciated. A comprehensive analysis of the various types of attack
is provided by the work of Hossain et al. [SKC15] and Alepis et al. [AP17].
In [SKC15], the discussion on the various phishing attacks using mobile de-
vices brings to light new types of attacks such as Smishing (sms phishing)
and Vishing (voice mail phishing). Instead [AP17], focuses more on the
consequences of this issue, demonstrating in practice how certain configura-
tions of these attacks can lead to sniffing users’ input, tapjacking, or wiping
users’ data.

Regarding the work that focused on creating new implementations of at-
tacks, exploiting new mechanisms, we find, as mentioned earlier [FQCL17],
who proposed new attacks based on a11y. Ren et al. [RZX+15] show how
it is possible to mount “task hijacking,” a new configuration of phishing
attacks, by exploiting vulnerabilities of the Android multitasking and the
Activity Manager Service design. This work has uncovered complex system-
wide issues in how Android manages and models the state transition be-
tween Tasks, and it also shows how the incorrect configuration of activity’s
attributes such as “launchMode” and “taskAffinity” can make an applica-
tion vulnerable to this new type of attack. However, task hijacking is only
one of the multiple available configuration that an attacker can chose when
mounting phishing attacks on Android. Indeed, Xu et al. [XZ12] identified
how it is possible to abuse the Notification system of Android to display
fake notifications and fake icons, and to lure the user into interacting with
a malicious application which tries to imitate the original one. To mount
this type of attack, the attacker does not need to rely on state-inference
attacks. A new type of attack, this time affecting the WebView component
of Android, is presented in the work by Yang et al. [YHG19]. This paper
presents a new class of vulnerability, named “Differential Context Vulnera-
bilies,” which exploits a design flaws afflicting WebViews to mount phishing
attacks on Android by abusing and leveraging iframes and popups.

Among the works instead that have tried to create defense mechanisms
against these types of attacks, we find Longfei et al. [WDW14]: in this work
they combine several OCR techniques to detect spoofed UI and verify if

4.11. Related work 127

the activity shown to the user is authentic or spoofed. Another work that
attempts a similar approach to identify unauthentic Activity is proposed by
Malisa et al. in [MKC17]: they introduce the “Visual Similarity Perception”
technique to identify forged UI. This novel spoofing detection approach aims
at protection mobile application login screens—probably amongst the most
important and valuable target for an attacker—using screenshot extraction
and visual similarity comparison.

A different defense approach, that exploits the internal workings of An-
droid activity management, is proposed by the following works. Ren et al.
envisioned WindowGuard, Systematic Protection of GUI Security in An-
droid [RLZ17]. The idea behind this defense mechanism is to define an
Android Window Integrity policy system which redefines a user session as
a chain of activities, which makes sure that none of the activities defined in
the chain can be obscured by other activities. The generic approach of Win-
dowGuard protects applications against “window overlay attack,” as well as
“task hijacking.” A similar approach is adopted by Cooley et al. [CWS14].
This work introduces the concept of Trusted Activity Chains to protect ap-
plications from phishing attacks by defining a sequences of activities that
should not be interrupted. This sequence cannot be hijacked by other
tasks, otherwise a security warning will be raised. This work however is
subject to “window overlay attack.” One last related work is “Leave Me
Alone” [ZYN+15], by Zhang et al., which is already discussed in Chap-
ter 4.9.7.

128 128

Chapter 5

Securing the Vendor Layer:

the Fragmentation Problem

129

130 130

5.1 Introduction

Mobile devices play a fundamental role in our everyday lives. The vast
majority of them, more than two and a half billion worldwide [Cut19], run
the Android operating system. A Google-led open source project called An-

droid Open Source Project (AOSP) offers both the documentation and the
source code needed to build custom variants of the Android operating sys-
tem (Android OS from now on). These variants are usually called Android
ROMs.

However, AOSP does not include all the components required to build
a complete system. For instance, Google and AOSP cannot provide ker-
nel device drivers for every hardware configuration. Therefore, third-party
vendors (also known as Original Equipment Manufacturers, or OEMs) that
wish to produce an Android-based device need to properly customize and
tweak an AOSP base image according to their needs. These modifications
can affect both user-space components, for instance, by including custom ap-
plications or services, and kernel-space components, such as kernel drivers.

AOSP’s openness and flexibility was a determining factor for the great
success of the platform, leading to its adoption by a vast number of vendors,
which market devices with various hardware configurations and versions of
Android. This resulted in a multitude of different variants, an aspect known
as fragmentation. The different natures of the different devices can lead to
a significant degree of customization (with respect to the baseline AOSP)
that, in turn, can have a massive impact on the security of the resulting
Android ROM.

In particular, we can identify two classes of security problems. The first
is that these customizations may affect the security posture of the overall
system (e.g., by making Google’s hardening efforts vain), increase the attack
surface, and in some cases, even introduce new security vulnerabilities. For
instance, a recent study published by Google Project Zero reports several
critical bugs found in such customizations [sam20].

The second class of problems may originate from the actual compo-
nents that are affected by the OEM customizations. Indeed, customizations
that modify core components of the Android OS may lead to compatibility
problems and delays in the application of security patches, such as the ones
released as part of the monthly Android security bulletins.

Google, who is leading the Android project, is well aware of these prob-
lems, and it has tried to counter them by working in two parallel directions.

The first is compliance: while AOSP is an open source project and thus
it can be freely modified, an OEM that wishes to brand its devices with the

5.1. Introduction 131

“Android” label (which is a trademark of Google) needs to follow a well-
defined set of rules. For example, to be Android-branded, a device needs
to meet the requirements presented in the Android Compatibility Defini-

tion Document (CDD) [and20a], including any documents incorporated via
reference. From a practical standpoint, the CDD is a series of technical
and non-technical requirements specified in natural language. Each of the
requirements has a label that indicates whether it must be adopted, its
adoption is strongly recommended, or just recommended. A new CDD is
published for each new version of Android, and, usually, requirements that
are indicated as ‘strongly recommended’ are later marked as ‘must’ in the
next version of the CDD. To simplify the checking for compliance with these
requirements, Google also released a Compatibility Test Suite (CTS). While
the CTS has the advantage of being fully automated, it only checks for a
subset of the requirements specified in the CDD (this is due to the nature of
some CDD requirements, which is challenging to express in a programmatic
form).

A second Google-led effort to counter the security repercussions intro-
duced by OEM customizations is Project Treble, a re-architecture of the An-
droid OS, introduced in 2017 as part of Android 8.0. This reorganization
aims to separate the vendor-specific components (e.g., drivers for specific
chipsets and other customizations) from the core Android OS framework.
The rationale behind this change is to make it easier for OEM to apply (se-
curity) patches to their customized AOSP. In fact, AOSP patches only touch
AOSP-related code and do not touch the vendor-specific portion. Thus, an
OEM that respects Project Treble’s core principle can always cleanly apply
AOSP security patches without worrying about backward compatibility and
other integration problems.

Finally, with Project Treble, the test suites have also been augmented
with the Vendor Test Suite (VTS), which helps to validate the vendor in-
terface and ensuring forward compatibility of vendor implementations. Ac-
cording to Google’s documentation [vts21], the VTS can be thought of as
an analogous of the CTS, and it can be used to automate the testing of the
hardware abstraction layer and OS kernel, in both legacy and current An-
droid architectures. We note that compliance with the VTS is not strictly
required for any ROM that wishes to run Google’s software suite, also known
as Google Mobile Services (GMS), which includes popular software like the
Google Play Store, GMail, Google Maps, and YouTube. However, VTS
compliance is required for a device to be branded under the ‘Android One’
label [and20c].

Some works show how vendors’ customizations introduce vulnerabili-

132 132

ties with severe security repercussions. Researchers focused on customized
drivers [ZLZ+14] and customizations of the Android framework [AZD16],
but we still lack a complete picture of Android OEM customizations over
time and that tackles different aspects of the OS security perimeter. Hence,
we built a fully automated analysis pipeline tailored to the analysis of An-
droid OEM customizations, and we used our framework to perform the first
large-scale longitudinal study on Android OEM customizations. The anal-
ysis was performed on a dataset of 2,907 ROMs from 42 different OEMs.
This dataset was obtained by crawling OEMs websites, which often contain
direct links to ROMs, and it consists of ROMs published from the year 2010
to 2020 and covering ROMs from Android version 2.3 to version 9.0.

From a high-level perspective, our analysis focuses on two key aspects.
The first one aims to verify whether a given OEM complies with the various
regulations imposed on Android-branded devices (e.g., CDD, CTS, VTS),
while the second key aspect of our analysis verifies whether and how the
various OEM customizations affect the security posture of the entire OEM.
To investigate these two aspects, our study considers a wide range of techni-
cal aspects, including customizations of the security hardening of binaries,
SELinux policies, Android’s init scripts, and kernel security hardening set-
tings.

Our large-scale measurement allows us, for the first time, to answer
several security-related questions. For instance, are Google’s automated
compliance checks sufficient to detect CDD and VTS violations? Do cer-
tified ROMs violate some of the requirements? Do ROM customizations
follow Project Treble’s principle of keeping vendor-specific changes to the
vendor partition (so to ease the application of security patches)? What
kind of customizations is most prevalent? Do these customizations affect
the overall security posture? For what concerns the vendor-specific binaries
and data, how do their security settings (e.g., hardening techniques) fare
when compared to the ones adopted in the main AOSP baseline?

Sadly, the answers to these questions are often worrisome. We identified
that 579 over 2,907 (~20%) Android-branded ROM violate at least one
“must comply” CDD rule, while 289 (~10%) do not implement at least one
“strongly recommended” suggestion.

While some of these violations may have gone unnoticed by Google
because of the technical challenges involved when automatically analyz-
ing ROM—a challenge that we nonetheless successfully overcame—some
of these violations are surprisingly obvious, and even the automated CTS
and VTS tests can raise warnings. This result casts some shadow on the
effectiveness of the ROM certification process. Our analysis also identi-

~
~

5.1. Introduction 133

fied violations concerning Project Treble guidelines: in particular, we found
ROMs that significantly modify non-vendor partitions, thus affecting the
ease of application of security patches. Even though we believe that the
principle and the intent of Project Treble are valuable, its effectiveness is
hampered by the lack of a strict enforcement procedure.

Finally, we identified several customizations whose security impact, re-
gardless of whether they constitute or not a violation of the guidelines, is
significant. For example, we have found that 29% of ROMs with SELinux
modified their policies in a way that bypasses never allow specifications of
the main AOSP SELinux policy: we identified cases that “commented out”
never allow SELinux policies to compile their customized version of the
policies. We also found devices shipping init scripts implementing invasive
customizations. For instance, we found a vendor that ships a ROM with
an outdated version of tcpdump (with a known CVE and public Proof-Of-
Concept), running as root, at boot, and reachable by a remote attack. We
also found several ROMs that do not use many of the hardening techniques
that the Android security team has developed over the years.

We conclude this study with several recommendations for Google. In
particular, we identified several improvements to extend the compliance
requirements that can be automatically verified, and we discuss several pro-
posals in terms of guidelines that Google could add to its official docu-
mentation to discourage customizations that affect the security posture of
customized ROMs.

In summary, our research makes the following contributions:

• We perform the first longitudinal and large-scale analysis on 2,907 An-
droid ROMs, over 42 OEMs and spanning over 10 versions of Android,
to explore how customizations affect the Android System Security.

• Our analysis takes an in-depth look at two key aspects: compliance,
which checks whether a certified ROM actually follows the rules, and
security posture, which focuses on how customizations may affect the
security of the overall device.

• We identified numerous certified ROMs—and thus supposed to have
passed the test suites and compliant with all the requirements dictated
by Google through CDD— that actually do not meet the security
prerequisites.

• We highlight how vendor-specific components significantly lag behind
with respect to the security posture of the main AOSP, and we un-
cover several techniques that, even though are not strict violations of

134 134

the guidelines, create security holes in AOSP main safety nets (e.g.,
SELinux policies, software hardening).

5.2 Life of a ROM

5.2.1 What is in a ROM

We use the term ROM to refer to a phone firmware based on the Android
operating system. Devices come with a pre-installed system, called stock

ROM, which is often provided in the form of an archive (with different com-
pression schemes), to allow users to restore the device to factory settings.
A ROM contains all the necessary software components, policies, and con-
figurations needed by the system to boot and work properly. Among the
software components present in a ROM, we find, for example, the various ex-
ecutables and system libraries, the pre-installed applications, all the scripts
necessary for the system to be configured correctly at boot (Android Init
Script), and a series of security policies (such as SELinux and SECCOMP)
intended to make the system safer.

All these components are organized in a set of partitions. The first
partition common to all systems is the boot partition, which contains the
Linux kernel image. Then, depending on the Android version used by the
vendor as the base for its system, the partition layout, and the filesystem
may vary. For instance, if the system is based on an Android version before
8.0 (SDK 26), all these components are likely placed inside a single /system
partition. Otherwise, if the device is based on an Android version equal or
greater than 8.0 and has been subject to the re-architecture of Project Tre-
ble, all the customizations made by the vendor are delegated to a separate
/vendor partition, which allows for a more straightforward application of
the security patches provided by Google. Unfortunately, our study shows
that in practice, this is often not the case.

5.2.2 ROM Customization

The process of creating an Android-based system requires numerous steps.
First, the vendor must decide which version of Android to use as the basis
for its system. Once the version (and therefore its SDK level) has been
decided, the vendor proceeds to fork the corresponding tagged branch from
the official repositories of the Android Open Source Project.

A counter-intuitive fact is that a single Android version (e.g., Android 9,
codename Pie) might have multiple tags to use as base image: for example,
just for the Android Pie, Google released 47 different base images at different

5.2. Life of a ROM 135

points in time [and21]. Hence, a vendor that bases its custom Android
system on Android Pie can decide which base image to use across those
47 different versions officially provided by Google. Each of these images
might differ from several aspects: a newer release might provide some fix
for disclosed vulnerabilities or other usability issues, introduce new binaries
and services, or change the default configuration for a specific component.

Once a vendor obtains a base image, it then applies customization and
modification to the entire system, either by introducing new components
(e.g., new binaries and services) or modifying core services. Changes are
not limited to user-space software components only. Typically, the vendor
also inserts kernel components into the system (such as drivers for custom
peripherals) and can also make changes to security policies or init scripts.

When the vendor has completed the system modification process and
is ready to market its device, it can decide whether it wants the device to
become an Android Google Mobile Services certified device or to remain a
generic device built on top of the AOSP. If the vendor wants to use the
Android brand on its device, it must request a certification from Google.
Having this certification also allows the vendor to include all Google appli-
cations within its ROM, such as GMail, or Google Maps. Depending on the
type of device that the vendor wants to market, with or without a Google
license, the vendor is required to pass a series of tests, which we illustrate
next.

5.2.3 Compliance Checks and Requirements

We now present the different types of tests vendors must pass to have a
device compatible with AOSP or the GMS certification by Google.

To release an Android-compatible device, vendors must comply with
the guidelines defined in the Android Compatibility Definition Document

(CDD). The CDD enumerates all the requirements that must be satisfied
by a vendor to have a system compatible with a given version of Android.
For each new Android release, Google maintains and publishes a new CDD,
where they define the new guidelines for several aspects, like compatibility
with the multimedia framework or with the hardware. Security also plays
a crucial role in the CDD that, from its first edition, contains an entire
chapter dedicated to the Security Model Compatibility.

If the vendor wants instead to obtain a Google certification and brand
its device as Android, it must pass numerous tests aimed at analyzing and
verifying first the compatibility with AOSP, but also the security of the
whole system. The first class of tests is defined by the Compatibility Test

136 136

Suite, a series of tests aimed at ensuring that the device is entirely compat-
ible with AOSP. Many of the tests performed in this test suite verify that
the requirements defined in the CDD are respected.

If the vendor wants its devices to include all the Google applications,
it must also comply with the GMS Requirements Test Suite (GTS): once
passed, these tests allow the vendor to obtain the Google license for their
applications.

All these tests are run by the device manufacturer [wis19] thanks to
Tradefed [tra20], a continuous test framework designed for running tests on
Android devices. If all tests pass correctly, the device is considered compli-
ant with the CDD and with all the security and compatibility requirements
defined by Google.

Among the various tests that Android offers vendors to verify compati-
bility with their system, vendors can run another test suite named Vendor

Test Suite (VTS). The VTS consists of a set of frameworks and test cases
designed to improve the robustness, reliability, and compliance of the An-
droid system (e.g., Hardware Abstraction Layers and libraries) and low-level
system software like the OS kernel. Despite the importance of the tests that
are performed in this test suite, to date it does not appear to be a fundamen-
tal requirement that vendors must meet to be considered compatible with
Android. Thus, vendors that fail VTS can still get an Android certified
system and run all Google applications and services.

5.3 ROM Analysis Framework

We now present an overview of our ROM analysis framework and we dis-
cuss how we extract different security-relevant information, such as binary
security settings, SELinux policies, init scripts, and kernel security settings.

5.3.1 Architecture Overview

Given a ROM as input, our framework automatically detects the compres-
sion schemes and the filesystem type, and it unpacks the ROM for the anal-
ysis. Once the ROM is unpacked, the system then proceeds by identifying
the AOSP tag used by the vendor to build the firmware. This step is funda-
mental to perform our analysis. In fact, the process of identifying how the
vendor customized a given ROM can be seen as a differential analysis of the
ROM with respect to the AOSP baseline that the vendor selected when cus-
tomizing its version. This phase is fundamental when trying to understand
whether a vendor customization introduced an error, a misconfiguration,

5.3. ROM Analysis Framework 137

or a new vulnerability, or whether the problem was already present in the
original AOSP code.

The tag identification is not straightforward and we discuss next how we
solved this challenge. Once our system identifies the starting AOSP tag, it
then clones and compiles the corresponding repository to build a reference
image on top of which it can perform the differential analysis. This process
is repeated for each ROM.

Finally, for each ROM, the system extracts information related to bi-
naries and libraries (ELF), SELinux policies, init scripts, and Linux kernel
configurations. Each of these components is handled by an ad-hoc plugin,
each of which we discuss in detail next. The entire procedure takes approx-
imately 20 minutes for each ROM.

Implementation Details. The analysis steps above discuss what the pro-
cess needed to analyze a single ROM, but our framework allows for parallel
analysis of multiple ROMs at once. For this work, we parallelized the anal-
ysis of the ROMs across 13 virtual machines (VMs), sending the results to
a centralized database. Each VM is equipped with Ubuntu 20.04, running
on 6 CPU @ 2.4Mhz with 6GB of RAM.

5.3.2 Tag Identification

Finding the right base image (identified by a git tag) used by a vendor as a
starting point for its customization is crucial for our work. Unfortunately,
identifying the base image used by a given ROM is not always a straightfor-
ward process as there are often many different base images for each “main”
version of Android. We now discuss the various techniques and heuristics
we developed to pinpoint the base image used by a given ROM.

During the building process of a system image, the build system adds a
large amount of information that may help recover the exact git tag forked
by the vendor. However, since the vendor controls the entire building sys-
tem, this information might—and, in fact, often is—removed entirely.

In case the vendor did not modify the build system, the ROM usually
includes a build identifier that uniquely identifies the starting base image.
The format of this identifier may change across different Android versions,
and it resides in the ro.build.id property of the build.prop file. Since the
“build.prop” file is present in the system image, we can build a mapping
between build identifiers and base images, starting from the official An-
droid documentation [and21]. This mapping shows that, for example, a
“build id” equal to NOF27B corresponds to Android Nougat release 25
(android-7.1.1_r25).

138 138

However, if the vendor modified the build system and stripped this in-
formation, the identification becomes more challenging. In these cases, we
adopt different strategies. First, we look at different values including the
ro.build.description property (that may still contain the original Android
build identifier) and the ro.com.google.gmsversion property (which, when
combined with the ro.build.version.sdk value, can be used to pinpoint the
base image). It is important to note that this value should always be present
when the vendor obtained the GMS certification. However, there is no guar-
antee that the vendor obtained this certification, and we also found ROMs
that contain GMS applications but that however did not include a corre-
spondent gmsversion property.

If none of these pieces of information is available, we rely on the com-
bination of two properties that are always included: ro.build.version.sdk

(i.e., the Android version) and ro.build.date.utc (i.e., the build date). By
combining these two values, we can determine the “best” candidate to be
considered the base image. In particular, we first list all the AOSP tags

associated with the target Android SDK version, and we then identify the
tag with the nearest creation timestamp.

We note that a vendor cannot easily modify these two final values, be-
cause that would introduce usability problems: changing the sdk value
might introduce undefined and unexpected behavior both from the system
and the applications, while changing the build date might introduce issues
when dealing with system updates (e.g., anti-rollback protections might use
this information to avoid booting older firmware [ant20]).

As we explain next in Chapter 5.4, this process worked well in prac-
tice. Moreover, even if some errors might have occurred, our analysis is not
particularly sensitive to small imprecisions.

5.3.3 Analysis of Binary Customization

We start our analysis by looking at the binaries contained in the ROM. ELF
binaries are not just present as standard executables or libraries, but they
might also part of APKs’ code. Vendors can modify or even add binaries,
libraries, or APKs to the system, thus potentially increasing the attack
surface. Since those components usually run with high privileges, they
are an obvious target for the attackers. This attack surface is particularly
important because most of the critical bugs are found within these binaries
components, as they are created by using memory unsafe languages (e.g.,
C, C++).

Moreover, customizations and proprietary code have been the root cause
of several recent critical 0-click bugs, e.g., those recently reported by Google

5.3. ROM Analysis Framework 139

Project Zero’s in the (custom) Skia component of Samsung devices [sam20].
The Android OS internally uses the Skia library to handle the processing
of pictures for many applications, both installed by the user and the sys-
tem applications. However, since these pictures might be provided by an
untrusted and malicious sources, they can be used as attack vector—both
local and remote. Samsung customized this subsystem to add the support
for a few other custom and proprietary formats, introducing new functions
and logic to Skia. Identifying the code written by Samsung was straight-
forward, thanks to the symbols being shipped with the library. Several of
those functions were vulnerable to memory overwrite, and the exploitation
of this vulnerability allowed an unauthenticated, remote attacker to execute
arbitrary code on the device.

In this phase, we check how customizations affect three main aspects re-
lated to binaries. First, we focus on security hardening techniques: we check
whether vendors introduced customizations that lower the security posture
of existing AOSP binaries. Second, we check whether the vendor introduced
new functionality by adding new binaries or by modifying existing ones (we
check for modifications of these binaries by inspecting ELF metadata such
as the symbol table). Third, we check how the security posture of new
binaries compares to exiting AOSP binaries and settings.

5.3.4 Analysis of SELinux Policies

Security-Enhanced Linux (SELinux) is a Mandatory Access Control (MAC)
system developed by the NSA and Red-Hat and publicly released in Decem-
ber 2000.

To implement its access control mechanism, SELinux enforces a system-
wide security policy. SELinux policies are used to define rules that a process
should follow. Each rule of the policy defines the operations a process can
perform over a specific labeled resource. All the system resources (e.g.,
files, sockets, etc.) are labeled; thus, all the interaction between processes
(running on a given context) and resources can be modeled via the policy.
For instance, a rule can indicate that a process in context X is allowed to

open a network connection. SELinux follows the principle of least privilege:
if no rule grants a capability C to a context X, then X does not have access
to that capability.

With the introduction of SELinux, the concept of root no longer exists,
since processes (even the ones running as root) are confined within a given
context.

In 2012, starting from Android KitKat (4.3), Google officially intro-
duced the support for SELinux on Android (SEAndroid) and partially en-

140 140

forced it on the system [SC13]. Then, starting from Android Marshmallow
(5.0), the system was fully protected by SELinux. Before this date, the
only available sandbox on Android was based on the Linux user-based Dis-
cretionary Access Control (DAC).

However, during the years, SELinux has proved to be at the same time a
powerful exploit mitigation [sel14], but also the direct cause of several critical
security issues due to vendor customizations [cve18]. Indeed, vendors must

customize SELinux policies as every new file (including those introduced
by the vendor) need to be appropriately labeled, and new rules need to be
introduced to give proper access to the right contexts. Therefore a custom
rule needs to be added to the base policy, inherited from the base image
used as a foundation for building the customized system. However, these
customizations may also have security repercussions. For example, since
base AOSP SELinux can be quite restrictive, vendors may be tempted to
relax the policies and somehow circumvent the safety nets implemented by
AOSP. To give an extreme example: AOSP defines several “never allow”
SELinux rules, which are rules that tell the SELinux compiler “refuse to
compile if a different rule is violating it.” We found several ROMs with
customized SELinux policies that violate base AOSP rules: this implies

that the vendor must have commented out the problematic “never allow”

rule instead of redesigning their customization more safely.

Thus, the analysis of SELinux policies plays a crucial role in understand-
ing the impact of third-party customization over the Android hardening
features. Our analysis framework first extracts all customizations to the
base SELinux policy and then inspects them to identify several problematic
patterns, like the one discussed above.

5.3.5 Analysis of Init Scripts

Unlike other Linux systems, Android uses its initialization process. Android
init scripts are textual files with the .rc extension and they are written in
a dedicated language, namely the Android Init Language [and20b]. During
the years, this component has been subject to several attacks [pae14]. Most
of the vulnerabilities were introduced by third-party customizations, and,
most of the time, their exploitation allowed a local attacker to escalate
privileges to root.

Init scripts are loaded at boot, just after the kernel initialization, and
play a crucial role in the Android system setup and bootstrap. Default
AOSP init scripts are located in the /system/ directory, while vendors can
add custom scripts in the /vendor/ or /odm/ folders.

5.3. ROM Analysis Framework 141

If a script is loaded from the /system/ directory, it usually means that
it contains the definition for an Android core system component or service,
like ActivityManager or installd. Instead, if a script is loaded from the
/vendor/ or /odm/ directory, it probably contains instructions to start and
setup custom and proprietary services and components. These components
might be daemons needed for core System-On-Chip functionality, motion
sensor, or other peripheral functionality [and20b].

Init scripts can specify the user/group the binary should be run with,
the Linux capabilities that should be granted, and the SELinux context the
program should be run with (by default, all init scripts run within the init
context).

Given the potential security consequences of improper customizations,
our framework includes support for the analysis of Android init script to
study whether vendors customize default AOSP init scripts or add new ones
and to verify if the new services are executed with appropriate user/group
and Linux capabilities, and as part of a “safe” SELinux context.

Unfortunately, our experiments show that vendors often customize these
scripts, and in some cases, significantly increase the attack surface and leave
the device vulnerable to remotely exploitable bugs (with known CVEs).

5.3.6 Kernel Security Analysis

Kernel security has grown in importance in recent years as the number of
kernel security bugs reported for Android increased almost ten times in only
three years [Kra17]. Moreover, a more detailed analysis of the type of vul-
nerabilities afflicting the Android kernel showed that vendor customizations
introduce 100% of vulnerabilities hitting the Linux Performance Counter

subsystem on such subsystem.

As a consequence, many kernel hardening techniques were recently in-
troduced. These are so important that the CDD itself introduced a number
of “must” requirements in this area that a vendor needs to satisfy to brand
its devices as Android.

In Android ROMs, the kernel is usually provided in a binary form within
the boot.img file. This file contains, in addition to the kernel image, also
the ramdisk. The Vendor Test Suite implements checks for some of the
CDD requirements, but unfortunately, they are quite limited due to the
binary-only format of the kernel.

To study the kernel’s security, our framework includes various analyses
that can extract several security-sensitive information and test for addi-
tional CDD requirements. For each kernel, the system first extracts its
version, and all the information generally provided within the Linux Kernel

142 142

banner [ker92]. It then attempts to extract the kernel build configuration
options.

However, extracting the kernel configurations from a binary ker-
nel is not straightforward. In fact, the configurations are available
if and only if the kernel is compiled with CONFIG_IKCONFIG con-
figuration flag set to Y. This option embeds the entire .config file
within the kernel binary. In this case, it is possible to retrieve the
configuration by using the tools available in the official Linux Kernel
project [lin91, ext10]. However, vendors can also disable this feature,
and thus, not embedding the configuration file within the final kernel bi-
nary. When kernel configurations are not available, we proceed by ex-
tracting the symbols exported by the kernel [vml19]. From the symbols,
it is then possible to infer a subset of configurations used while compil-
ing the final kernel: for instance, the symbol __stack_chk_fail can be
paired with the CONFIG_CC_STACKPROTECTOR_REGULAR and
CONFIG_CC_STACKPROTECTOR_STRONG configurations. How-
ever, symbols are only exported in the __ksymtab Section if and only if
the kernel is compiled with the CONFIG_MODULES option.

It is worrisome to note that, even though this approach does not support
all kernel config options, it was sufficient to identify ROMs that violated
several CDD “must” requirements.

5.4 Dataset Characterization

To perform our longitudinal analysis, we set out to build a comprehen-
sive dataset of Android ROMs that would help us to completely visual-
ize the evolution of the entire ecosystem from a vendor perspective. For
what concerns the official Google ROMs, we downloaded them from their
official website [goo21]. We downloaded the other vendors’ ROMs from
firmwarefile.com [fir15] and stockrom.net [sto21]. In total, our dataset
consists of 2,907 Android ROMs, which span across 42 different vendors
and cover 1,403 different device models. For what concerns the SDK dis-
tribution, our dataset covers the Android system’s evolution from version
2.3.3 to version 9 (i.e., from SDK 10 to 28). The oldest image dates back
to 2010, while the newest is from 2020. Figure 5.1 presents the distribution
of our dataset in terms of SDK distribution.

According to public statistics [ven21], our dataset is also heterogeneous
in terms of coverage of different vendors: half of our dataset is constituted by
“big players” (e.g., Samsung, Huawei, LG, and Xiaomi), while the remaining
ROMs belong to vendors with a market share less than 4% (e.g., Google,

5.4. Dataset Characterization 143

16<= 17 18 19 21 22 23 24 25 26 27 28
SDK Level

0%

5%

10%

15%

20%
Pe

rc
en

ta
ge

 o
ve

r a
 to

ta
l o

f 2
90

7
en

tri
es

Figure 5.1: SDK Level Distribution.

Lenovo, Mobicel, Motorola, Oppo, Realme, and Vivo).
According to public statistics from 2010 to 2020 [ven21], our dataset is

also heterogeneous in terms of coverage of different vendors according their
market share [ven21]. Half of our dataset is constituted by “big players”
(e.g., Samsung, Huawei, LG, and Xiaomi), while the remaining ROMs be-
long to vendors with a market share less than 4% (e.g., Google, Lenovo,
Mobicel, Motorola, Oppo, Realme, and Vivo).

Moreover, as discussed in the previous section, our customization anal-
ysis needs to compare a given ROM against its associated “base image.” To
this end, we also created a set of 326 ROMs by compiling all AOSP ver-
sions (i.e., tags) that are the base image of a least one ROM in our dataset,
as presented in Chapter 5.3.2. Obviously, these last 326 ROMs are not
counted in our statistics.

To identify the tag of the AOSP base image, we relied on the following
heuristics:

• ro.build.id value for the 88% (2,566) of our dataset,

144 144

• Combination of build date (ro.build.date.utc) and
ro.build.version.sdk for 9% of the ROM (261),

• ro.com.google.gmsversion property for 2% (59) of the system image,

• for the remaining 23, the value of the ro.build.description

Note that all the 2,907 ROMs in our dataset contain applications from
the Google Suite; thus, we can assume they all obtained the GMS certifica-
tion from Google.

5.5 Compliance

We now present the results of our compliance analysis. We start by de-
scribing the knowledge base, a set of rules and requirements, extracted from
the CDD defined by Google, that vendors should follow to obtain the GMS
Certification and be compliant and compatible with a given Android ver-
sion. Then, we present the analysis we performed over our dataset to verify
if vendors are effectively enforcing these requirements. Our analysis is di-
vided into three main components: Kernel Configurations, SELinux, and

User-space binary hardening. For each component, we analyze if it is com-
pliant with the requirements defined in the CDD.

Given the fact that we report some cases in which there is a violation
of the Compatibility Definition Document—and the test suites should have
detected it—we double-checked if a given ROM has effectively obtained the
GMS certification; we check for the presence of the Google apps and the
field GMS in the build.prop file.

All the ROMs in our dataset are branded Android and contain appli-
cations from the Google Suite (and thus obtained the GMS certifications).
Therefore, one would expect them to be compliant with the mandatory re-
quirements of the CDD. This is important because system security aspects
always played a crucial role in the CDD, which contained an entire chapter
dedicated to the Security Model Compatibility since its first edition in 2009.
Mandatory requirements are clearly marked as “must,” and a failure to im-
plement them is a clear violation of the CDD. Alternatively, a feature can
be defined as strongly recommended: in this case, not implementing such a
feature is not a strict violation of the CDD.

We manually extracted all these requirements from the CDD of An-
droid 1.6 to Android 9, as listed in Table 5.1. In order of appearance, the
first system hardening requirement was introduced in the CDD of Android
4.3, where Google announced the support of SELinux for Android devices.

5.5. Compliance 145

Therefore all ROMs based on Android 4.3+ must support and implement

the SELinux Mandatory Access Control. Then, starting from Android 7, the
Security Model Compatibility section has focused mainly on kernel configu-
ration options. Surprisingly, the CDD security requirements do not mention
user-space hardening until Android 9, and the only user-space hardening re-
quirement is defined only as strongly recommended. Since the introduction
of Project Treble made updates faster and easier for OEMs to roll out to
devices and introduced several tests to verify and test the OS kernel, we
present our results divided before and after its introduction. This distinc-
tion can help us understand to which extent the introduction of Project
Treble was able to mitigate the problem of Android customizations.

5.5.1 Kernel Configurations Compliance

As previously discussed in Chapter 5.3.6, for each of the 2,907 ROMs, we
analyzed their Linux-based kernel binary to identify potential misconfigura-
tions in contrast with the strict requirements defined in the CDD. However,
we identified that 262 ROMs in our dataset did not contain the kernel
binary, and therefore we excluded them from our analysis.

For 249 of the remaining 2,645 kernels, our system was unable to
extract neither their kernel configuration nor the symbols from the ker-
nel binary. This is because those kernels were compiled without the
CONFIG_IKCONFIG and CONFIG_MODULES [lkm20] configurations.
However, as described in [cor20], both configurations must be enabled for
kernels targeting Android 8.0 and higher. Besides, by reading the Core

Kernel Requirements [cor20] defined in the Vendor Test Suite (VTS) for
Android 8.0 and higher, we noticed how the configuration of these 249 ker-
nels should violate and fail the tests. Out of the 249 kernels missing these
configurations, 162 corresponded to the Android version ≥ 8.0. Thus, as
the first result of this analysis, we highlight how these 162 kernels are not

compliant with Android.
This casts a shadow on the strictness of these requirements’ enforcement,

especially since some of these could have been automatically checked.
For the other 2,396 kernels, we retrieved the textual configuration from

561 kernels and the symbol table for the remaining. Identifying violations
on kernels having their configuration is straightforward as the Compatibility
Definition Document precisely indicates which configuration options must
be used. On the other hand, verifying violations with the only support of the
kernel binary symbols is not immediate. However, we noticed how almost ev-
ery kernel configuration defined in the CDD introduces a set of specific sym-
bols, and therefore it is possible to infer a specific compilation flag based on

146 146

Table
5.1:

System
H
ardening

R
equirem

ents
defined

in
the

C
om

patibility
D
efinition

D
ocum

ent.

S
D
K

V
e
r
s
io
n

C
o
m
p
a
tib

ility
D
e
fi
n
itio

n
D
o
c
u
m
e
n
t

M
U
S
T

S
T
R
O
N
G
L
Y

R
E
C
O
M
M
E
N
D
E
D

4
-17

1.6
-4.2

N
o
n
e

N
o
n
e

18
4.3

S
E
L
in
u
x
:
support

Perm
issive

M
ode

N
o
n
e

19
4.4

S
E
L
in
u
x
:
contexts

installd,netd,and
vold

in
Enforcing

M
ode

S
E
L
in
u
x
:
other

dom
ains

rem
ain

in
Perm

issive
M
ode

20
-23

5.0
-6.1

S
E
L
in
u
x
:
globalEnforcing

M
ode

S
E
L
in
u
x
:
alldom

ains
in

Enforcing
M
ode

S
E
L
in
u
x
:
not

m
odify,om

it,or
replace

the
neverallow

rules
present

w
ithin

the
SELinux

A
O
SP

folder
all

dom
ains

in
Enforcing

M
ode

N
o
n
e

24
-25

7.0
-7.1

K
e
r
n
e
l:

support
for

seccom
p-B

PF
support

(T
SY

N
C
)

N
o
n
e

26
-27

8.0
-8.1

K
e
r
n
e
l:

support
for

C
O
N
FIG

_
C
C
_
STA

C
K
PR

O
T
EC

T
O
R
_
R
EG

U
LA

R
or

C
O
N
FIG

_
C
C
_
STA

C
K
PR

O
T
EC

T
O
R
_
ST

R
O
N
G

K
e
r
n
e
l:

support
for

C
O
N
FIG

_
D
EB

U
G
_
R
O
D
ATA

or
C
O
N
FIG

_
ST

R
IC

T
_
K
ER

N
EL_

RW
X

K
e
r
n
e
l:

support
for

data
read-only

after
initialization

(ro_
after_

init)
K
e
r
n
e
l:

support
for

C
O
N
FIG

_
H
A
R
D
EN

ED
_
U
SER

C
O
PY

K
e
r
n
e
l:

support
for

C
O
N
FIG

_
C
PU

_
SW

_
D
O
M
A
IN

_
PA

N
or

C
O
N
FIG

_
A
R
M

64_
SW

_
T
T
B
R

0_
PA

N
K
e
r
n
e
l:

support
for

C
O
N
FIG

_
R
A
N
D
O
M
IZE_

B
A
SE

28
9

K
e
r
n
e
l:

support
for

C
O
N
FIG

_
PA

G
E_

TA
B
LE_

ISO
LAT

IO
N

or
C
O
N
FIG

_
U
N
M
A
P_

K
ER

N
EL_

AT
_
EL0

K
e
r
n
e
l:

support
for

C
O
N
FIG

_
H
A
R
D
EN

ED
_
U
SER

C
O
PY

U
s
e
r
s
p
a
c
e
:
do

not
disable

C
FI/IntSan

on
com

ponents
that

have
it

enabled

5.5. Compliance 147

the symbols included within the binary. The mapping we use to connect ker-
nel configurations and symbols is summarized in Table 5.2. We noticed how,
however, some kernel configurations might map to the same symbol, while
other kernel configurations, depending on the version of the kernel, might
change the symbol used. For these configurations, we rely on regular expres-
sions to identify valid symbols. It is important to note that since these flags
are interchangeable, we conservatively mark a kernel to be not compliant if
and only if it does not implement any of the available options. For exam-
ple, if a kernel adopts CONFIG_CC_STACKPROTECTOR_STRONG

rather than CONFIG_CC_STACKPROTECTOR_REGULAR, we do

not mark it as not compliant since the CDD requires the vendor to im-
plement at least one of the two. For 3 configurations, we were not able to
identify any symbol for the mapping.

Our analysis identified that 7.9% (190 out of 2,396) of the kernels (from
10 different vendors) violate the CDD for their specific Android version since
they do not implement one or more mandatory security requirement.

Amongst these 162 are used in ROMs re-architectured with
Project Treble, thus targeting an Android version greater or equal
than 8.0. The most common violation, found on 150 ker-
nels, relates to the absence of kernel memory protections aimed
at marking sensitive memory regions and sections read-only or non-
executable (which can be enabled with CONFIG_DEBUG_RODATA or
CONFIG_STRICT_KERNEL_RWX).

We also identified 10% (241 out of 2,396) of the kernels (from
10 vendors) do not implement one or more strongly recommended
features. This time, we noticed how 160 vendors did not enable
CONFIG_RANDOMIZE_BASE (no Kernel Address Space Layout Ran-
domization); hence, these kernels do not implement any randomization of
their base address once loaded. Although these features are not mandatory,
the Vendor Test Suites inform the vendor if any strongly recommended fea-
tures are missing. Thus, even though these vendors were warned about the
lack of these features, they ignored the advice and did not include them in
their final product.

Table 5.3 shows the evolution of violations across different SDK levels.
The table shows that the re-architecture introduced with Project Treble
and the testing performed with the VTS, even though not mandatory, are
not enough to counter the problem of customization on Android from the
Kernel Security perspective.

On the contrary, it can be observed that many kernels still do not com-
ply with the directives imposed by Google and continue to release on the

148 148

Table
5.2:

M
apping

from
K
ernelC

onfiguration
To

ELF
Sym

bols.

K
e
r
n
e
l
C
o
n
fi
g
u
r
a
tio

n
K
e
r
n
e
l
S
y
m
b
o
l

C
O
N
FIG

_
SEC

U
R
IT

Y
_
SELIN

U
X

Sym
bolcontains

se
lin

u
x

C
O
N
FIG

_
SEC

C
O
M
P

Sym
bolcontains

se
c
c
o
m
p

C
O
N
FIG

_
C
C
_
STA

C
K
PR

O
T
EC

T
O
R
_
R
EG

U
LA

R
_
_
sta

ck
_
ch
k
_
fa
il

C
O
N
FIG

_
C
C
_
STA

C
K
PR

O
T
EC

T
O
R
_
ST

R
O
N
G

_
_
sta

ck
_
ch
k
_
g
u
a
rd

C
O
N
FIG

_
D
EB

U
G
_
R
O
D
ATA

ro
d
a
ta
_
e
n
a
b
le
d
,
se
t_

d
e
b
u
g
_
ro
d
a
ta
,
_
_
se
tu
p
_
se
t_

d
e
b
u
g
_
ro
d
a
ta

C
O
N
FIG

_
ST

R
IC

T
_
K
ER

N
EL_

RW
X

m
a
rk
_
re
a
d
o
n
ly

C
O
N
FIG

_
H
A
R
D
EN

ED
_
U
SER

C
O
PY

_
_
ch
e
ck
_
h
e
a
p
_
o
b
je
c
t,
_
_
ch
e
ck
_
o
b
je
c
t_

siz
e

C
O
N
FIG

_
A
R
M

64_
SW

_
T
T
B
R

0_
PA

N
re
se
rv
e
d
_
ttb

r0

C
O
N
FIG

_
R
A
N
D
O
M
IZE_

B
A
SE

Sym
bolcontains

k
a
slr

C
O
N
FIG

_
PA

G
E_

TA
B
LE_

ISO
LAT

IO
N

tlb
_
fl
u
sh
_
m
m
u
_
tlb

o
n
ly

C
O
N
FIG

_
U
N
M
A
P_

K
ER

N
EL_

AT
_
EL0

_
_
in
itc

a
ll_

m
a
p
_
e
n
try

_
tra

m
p
o
lin

e
1

C
O
N
FIG

_
H
A
R
D
EN

_
B
R
A
N
C
H
_
PR

ED
IC

T
O
R

_
_
n
o
sp
e
c
tre

_
v
2

C
O
N
FIG

_
SH

A
D
O
W

_
C
A
LL_

STA
C
K

in
it_

sh
a
d
o
w
_
c
a
ll_

sta
ck

C
O
N
FIG

_
SEC

U
R
IT

Y
_
D
M
ESG

_
R
EST

R
IC

T
d
m
e
sg
_
re
stric

t

C
O
N
FIG

_
SEC

U
R
IT

Y
_
K
PT

R
_
R
EST

R
IC

T
k
p
tr_

re
stric

t

C
O
N
FIG

_
A
R
M

64_
PA

N
c
p
u
_
e
n
a
b
le
_
p
a
n

C
O
N
FIG

_
C
FI_

C
LA

N
G

Sym
bolcontains

_
_
c
fi
_
*

C
O
N
FIG

_
D
EFA

U
LT

_
M
M
A
P_

M
IN

_
A
D
D
R

N
o
sym

bolm
apping

found,variable
C
O
N
FIG

_
C
PU

_
SW

_
D
O
M
A
IN

_
PA

N
N
o
sym

bolm
apping,inline

assem
bly

C
O
N
FIG

_
LT

O
_
C
LA

N
G

N
o
sym

bolm
apping

found

5.5. Compliance 149

Table 5.3: Violations regarding the kernel configuration.

SDK Version # Kernel
Violations

CDD

Strongly

Recommended

18 4.3 77 26 (33.8%) –
19 4.4 599 3 (0.5%) –
26 8.0 145 50 (34.5%) 70 (48.3%)
27 8.1 140 33 (23.6%) 66 (47.1%)
28 9.0 196 78 (39.8%) 101 (51.5%)

2396 190 (7.9%) 237 (9.9%)

market devices equipped with kernels that do not meet the mandatory se-
curity specifications. The numerous tests should have identified (and likely
actually did identify) all these violations, which would be enough to mark
the final ROMs as non-compliant.

5.5.2 SELinux Compliance

For each Android version that supports SELinux, AOSP provides a stan-
dard policy that vendors can use as a base to build and customize their
SELinux configuration. As previously discussed in Chapter 5.3.4, start-
ing from Android 4.3, Google introduced as a strong requirement that all
third-party vendors must adopt this new Mandatory Access Control system.
The Compatibility Definition Document mandates that third-party vendors
must support SELinux in Permissive Mode, which means that every viola-
tion is logged, but not enforced, so to provide vendors enough information
for an adequate fix to the component causing the error. Instead, from An-
droid 4.4, Google started to protect few critical services with SELinux and
forced the vendors to do the same: hence, vendors were required to set up
SELinux in Enforcing Mode at least for the three domains installd, netd,
and vold. Starting from Android 5.0, instead, vendors were required to
set up SELinux in Enforcing Mode for all the domains. Moreover, from
this version, vendors must not modify, omit, or replace some AOSP specific
rules, which act as a safety net for misconfigurations. These rules are the
so-called neverallow rules: if a custom SELinux policy directly or indirectly
violates any of these rules, the SELinux toolchain would throw a compila-
tion error, thus preventing the adoption of unsafe configurations from the
beginning. With these rules, it is possible to avoid and mitigate potential

known security issues and harmful behaviors, such as forbidding any third-

150 150

party application to write to files in the /sys directory or preventing them
from receiving and sending uevent messages. We note that modifying (or
removing) any of these neverallow rules is a strict violation of the CDD.

To determine whether a ROM is compliant with the SELinux require-
ments, we proceed in two steps. First, we look at violations related to
Permissive Mode by inspecting the SELinux policy available in the ROM
(since it is possible to retrieve all the permissive domains directly from
the compiled policy). Second, we look for vendors that manipulated the
base policy provided in AOSP to overcome the restrictions imposed by the
neverallow rules. For this step, we retrieve the tag of used as a base image
by the vendor, as described in Chapter 5.3.2), and we compare the two sets
of policies.

Out of the 2,907 ROMs, we identified 1,090 of them not containing a
SELinux policy. Of these 1,090, 452 are targeting an Android version lower
than 4.3, and it is thus expected that they do not have any policy.

Since SELinux must have kernel support to work, we decided to in-
tersect the remaining ROMs with the results extracted from the previous
kernel analysis, presented in Chapter 5.5.1) and we identified how 29 lack
CONFIG_SECURITY_SELINUX: for those, it is expected that we do not
find SELinux configurations.

The remaining 609 ROMs are divided as follows: for 167 we were not
able to obtain the boot.img, and for 91 of them we were not able to ex-
tract neither the kernel configuration nor the symbol table; thus, we cannot
perform any measurement on these ROMs. For 351 ROMs, we identified
that they correctly support SELinux at kernel level, but no policy has been
found: we suppose these might be incremental updates, not containing the
policy.

We now focus our discussion on the remaining 1,817 ROMs that define a
SELinux policy. Out of them, 7% (108 ROMs) violate the CDD specification
for their corresponding Android version as they still define one or more
permissive domains. We found this violation spread across 16 different
vendors. We also analyzed the distribution of these violations with respect
to their SDK level to determine whether this problem only affects older
versions of Android. Surprisingly, we noticed that even if Google forbids
permissive domains starting from Android 5.0 (and thus from SDK 20),
several ROMs are still not complaint even after four major releases, and
after an almost complete redesign of SELinux on Android 8 [pro17].

Table 5.4 summarizes the results of this analysis. We divided the results
before and after the introduction of Project Treble to show once more how
the problem persisted even after the introduction of the new system design.

5.5. Compliance 151

Table 5.4: Violations of permissive domains in the SELinux policy.

SDK Version
ROM CDD

Violations

Permissive Domains

Max Min Avg σ

21 5.0 1/58 (1.7%) 5 5 5.0 0
22 5.1 26/251 (10.3%) 7 1 3.1 2.2
23 6.0 21/359 (5.8%) 5 1 2.0 1.3
24 7.0 11/226 (4.8%) 2 1 1.0 0.3
25 7.1 2/163 (1.2%) 1 1 1.0 0

26 8.0 21/141 (14.8%) 4 1 2.0 1.3
27 8.1 18/139 (12.9%) 1 1 1.0 0
28 9.0 8/196 (4.0%) 1 1 1.0 0

108/1533 (7.0%)

s We then performed the second analysis to identify whether a vendor
tampered with any of the predefined neverallow rules, which is a strict
violation of the CDD, starting from Android 5.0. However, detecting this
type of violation is not straightforward. Each Android version contains a
preset of SELinux rules: the neverallow rules are part of this base policy. At
compilation time, the SELinux policy compiler verifies if any rules defined

in the policy are in contrast with what is defined by the neverallow rules: if
a violation is identified, the compiler throws a compilation error. However,
these checks are performed only at compilation time and are not enforced at
runtime. Therefore, potentially, a third-party vendor facing a violation of
a neverallow rule introduced by one of its customizations may be tempted
to “solve” the issue by just changing or removing the neverallow rule that
prevents the compilation of the final policy. Thus, by analyzing only the
vendor policy of the final ROM is not possible to conclude whether it violates
the CDD requirement.

To detect these violations, we proceed as follows: for each ROM, we first
retrieved the tag used by the vendor as a base system, and we save both
the textual and the compiled version of the policy. Then, we identify all the
differences between the compiled policies, and we collect the customizations
introduced by the vendor. For each of the additional vendor-only rules, we
then try to recompile the original AOSP policy with the addition of the new
rule, and we check for compilation errors. In case of compilation errors, we
finally check whether it is due to a neverallow rule violation, and if so, we

152 152

Table 5.5: AOSP SELinux Violations.

SDK Version
ROM CDD

Violations

Neverallow Rules Violations

Max Min Avg σ

21 5.0 1/58 (1.7%) 8 8 8.0 0
22 5.1 20/251 (7.9%) 39 1 4.6 10.4
23 6.0 58/359 (16.1%) 121 1 3.6 15.7
24 7.0 8/226 (3.5%) 10 1 7.2 3.9
25 7.1 3/163 (1.8%) 158 1 56.3 88.1

26 8.0 121/141 (85.8%) 27 1 7.2 7.7
27 8.1 110/139 (79.1%) 25 2 7.2 7.5
28 9.0 122/196 (62.2%) 37 1 4.0 8.8

443/1533 (28.9%)

mark the vendor policy as not compliant.

Out of 1,533 ROMs with a SELinux policy (and that target Android
≥ 5), we identified that 29% of them (443) violated the CDD by defining
one or more rules violating one of them default neverallow rules. For all
these images, from 21 unique vendors, it was possible to identify SELinux
policies allowing operations that were not supposed to be available. Ta-
ble 5.5 summarizes the results of this second analysis. Also in this case,
the introduction of Project Treble failed to mitigate the vendors’ problems
related to SELinux customizations. As can be seen from Table 5.5, if we
consider the results for SDK level 26, 27, and 28, we see how this problem
has increased dramatically, reaching peaks of 85% of the ROMs having at
least one violation.

The results we have collected show that vendors actually do violate the

Compatibility Definition Document often, making them not compliant with
the defined rules, and potentially introducing security issues. We would
like to note that these results do not imply maliciousness bad faith on the
vendors’ part: we believe most of the vendors use this practice to fix com-
patibility issues introduced by their customizations quickly. Indeed, modi-
fying or commenting out a neverallow rule is much easier than potentially
re-architecting a customization to fit the requirements.

5.5. Compliance 153

5.5.3 Binary Compliance

The last category of system hardening defined by Google is related to user-
space binaries. As previously discussed, the requirements for binaries were
introduced only in Android 9, and so far, they only cover two aspects: Con-
trol Flow Integrity (CFI) and Integer Overflow Sanitization (IntSan). Con-
trol Flow Integrity is a security mechanism that tries to prevent changes
to the control flow of a compiled binary, making exploitations that require
hijacking the “expected” control flow much harder. Integer Overflow San-
itization, instead, provides compile-time instrumentation to detect signed
and unsigned arithmetic integer overflow: when an overflow is detected, the
process safely aborts.

Both protection systems have been gradually introduced by Google
to harden the Android Media Stack component [med16, med20], which
has been subject to numerous attacks over the years, including Stage-
fright [sta15], which could have been prevented with these two hardening
techniques.

To take advantage of these new protections, the developer must use a
compiler that supports them. Officially, Google uses and supports Clang,
but both features are also available on the GCC compiler.

As presented in Table 5.1, the only requirement for the user-space bina-
ries is defined as strongly recommended, and it asks vendors to not remove
CFI or IntSan compiler mitigations from components that have them en-
abled. Thus, to identify if vendors adhere to this recommendation, we
proceed as follows: for each ROM, we first identify its AOSP base image
and the we extract all binaries shared between the vendor ROM and the
corresponding AOSP base image. Finally, for each of these binaries, we
tested their security features: if the original binary (present in the AOSP
base image) has CFI or IntSan enabled and the corresponding binary in
the third-party ROM does not, we mark the ROM as not respecting the
recommendation suggested in the CDD.

Since both defense mechanisms were introduced in the CDD from An-
droid 9, we only considered the 196 ROMs with SDK ≥ 28. Among them,
85 (4.34× 101 %) contained at least one binary that disabled CFI and 104
(5.31× 101 %) contained at least one that disabled IntSan. In these cases,
six unique vendors lowered the security of a binary, with respect to AOSP,
thus violating the CDD recommendation.

However, these vendors did not entirely disable CFI or IntSan for all
the binaries: on average, among the ROMs that have violated the recom-
mendations, the vendors disabled CFI for 38.7% (σ = 36.5) of the binaries,
while they disabled IntSan for 35.8% (σ = 34.9) of them.

154 154

5.6 Additional Customizations

We now discuss our analysis of OEM customizations that, even though
may not constitute a strict violation of the requirements, do negatively
impact the security posture of the overall ROM. We start by presenting the
analysis on ELF binaries, showing the impact that vendors have, with their
customizations, on binaries and system libraries. We then proceed with
the analysis of the Android Init Script customizations, illustrating which
are the most common patterns of modification by vendors and which may
be the issues they introduce. We conclude by presenting the results of the
SELinux policy study, showing its evolution over the years, and emphasizing
how fragmentation has had and continues to have an important influence
and impact on this component.

5.6.1 New Functions in System Libraries

The vast majority of Android’s core system components are still written in
unsafe memory languages like C and C++ and shipped as ELF libraries.
Vendors can add functionalities to such libraries, which can result in an
increased attack surface. A recent (fixed in May 2020) impactful example
is a bug found in Samsung’s customizations of Google’s Skia library [sam20].
The library is used to process pictures for many applications, and Samsung
customized it to add support for new proprietary formats. Unfortunately,
several of these functions were vulnerable to memory corruption bugs, and
the exploitation of this vulnerability allowed an unauthenticated remote
attacker (i.e., 0-click) to execute arbitrary code on the device. Therefore,
we quantitatively measured the new functions introduced by the vendors
modifying the AOSP libraries to depict this phenomenon.

To assess the prevalence of vendor customizations that add function-
alities, given a ROM as input, we first inspect all binaries that are also
found in the original AOSP (we refer to this subset of binaries with the
term Shared Libraries), and we extract the list of exported functions that
were not present in the original version. For example, let us suppose we
have a ROM containing the library /system/lib/example.so that exports
the functions [f1, f2, f3], and the same library (i.e., same absolute path
and same name) in the base AOSP is exporting just [f1, f2]; it can be safe
to suppose that the vendor introduced f3. Since a vendor can use different
library versions that might have been taken from another AOSP branch,
we opted for the following conservative approach: we consider a ROM to
have added functionality to a given binary if it contains symbols that do not
appear in any (i.e., older or newer) AOSP releases. Moreover, we also con-

5.6. Additional Customizations 155

0%

10%

20%

30%

(I) Mean of percentages of Shared Libraries with new functions

10 15 16 17 18 19 21 22 23 24 25 26 27 28
SDK Level

0

25

50

75

100

125

(II) Mean of numbers of new functions introduced in a Shared Library

Never found in AOSP, i.e., actual vendors' customization
Only found in previous AOSP releases

Figure 5.2: Analysis of new exported functions introduced in AOSP li-
braries.

sidered the scenario in which a vendor is still using a function from an old
version of AOSP that is no longer present in the subsequent AOSP tagged
releases. So, using the example above, if we find a new exported function
f3, we also check if in the entire future history of the AOSP base images,
the library /system/lib/example.so does not export f3. At the end of this
analysis, we obtained all the new functions introduced by the vendors in the
Shared Libraries. Figure 5.2 summarizes our findings.

The two bar plots share the same x-axis (the SDK level) and report
respectively the mean of the percentages of Shared Libraries in a ROM in
which a vendor has introduced new functions and the numbers of new func-
tions (when a vendor introduced at least one). The dark bar highlights the
actual vendors’ customizations, while the soft bar displays a modification
found in a previous version of AOSP. There is no soft bar in the corre-
spondence of SDK 10 because there are no ROMs older than that in our

156 156

dataset.
The results show an almost constant trend of roughly 80 new functions

added to 20% of the system libraries, thus vanishing Project Treble’s efforts.
Nevertheless, we also note that vendors are still using old AOSP functions,
maybe because their code still depends on them. However, using a function
that is no longer maintained in AOSP can be dangerous because it does not
receive security patches.

We suppose that these results might be due to the high percentage of
custom code being added throughout the years; thus, it might be difficult
for vendors to remove all the legacy code from such libraries and restore the
functionalities on separated components.

5.6.2 Compile-time Hardening

In addition to the Compatibility Definition Document, Google also main-
tains a Security Enhancements (SE) webpage [sec20], in which it presents
the security and privacy enhancements for each Android version. While the
CDD only started to discuss binary hardening in Android 9 (2018), the
Security Enhancements discusses this topic since Android 3 (2009). This
webpage is not directly linked from the CDD, so it is not mandatory for
the OEMs to implement such enhancements. However, since these aspects
are security-relevant, we analyzed customizations related to these aspects
as well.

Thus, we first went over all the security features reported in the SE
and collected all mitigation techniques related to binary hardening. We
now present a detailed description of the several mitigation techniques with
which it is possible to protect a binary or library. For each technique we
provide a short description and we explain which artifacts we considered to
detect if and ELF file implements it or not.

I) Stack Canaries. Stack canaries, introduced in Android 1.5, work by
placing a random integer (canary) in memory just before the stack re-
turn pointer. In order to overwrite the return pointer (and thus take
control of the execution flow), stack-based buffer overflows attacks must
also overwrite the canary value. Before a function returns, the stack
canary integrity is checked using the function __stack_chk_fail (or
__intel_security_cookie in an alternative implementation), and if it ap-
pears to be modified due to an overwrite, the program exits immediately.
Thus, we checked for the presence of the aforementioned function among
the binary’s symbols. We highlight how the stack protector works in two
configurations. The first one protects the buffer only if it is greater than a

5.6. Additional Customizations 157

certain size (depending on the architecture), while the second one (named
“strong”) protects buffers even if they are one byte size. We assumed, as
safe assumption, that real world binaries have at least one buffer that can be
protected by this compiler defense mechanism. Even though this assump-
tion might sometimes fail, we believe that the numbers of binaries without a
buffer to protect is negligible and it is not going to affect the overall results
of our measurement.

II) No eXecute (NX). NX marks certain areas of the program as not
executable. NX can be implemented both via software or hardware (al-
most all modern processors uses it). In our analysis, we checked if the
GNU_STACK segment of the binaries, which tells the system whether the
stack should be executable or not.

III) Position Independent Executables (PIE). The code of a PIE
binary can be placed into random locations in memory, and it executes
properly regardless of its absolute address. PIE works in tandem with Ad-
dress Space Layout Randomization (ASLR). ASLR randomly arranges the
address space positions of key data areas of a process (e.g., the base of
the executable, stack, heap, and libraries). If the executable is position
independent, the location of the executable code within the process is also
randomized, making it more difficult for an attacker to predict target ad-
dresses. As of Android 4.0 (SDK 15), the kernel gained support for ASLR,
but Android still lacked userspace support. The Android 4.1 (SDK 16) re-
lease introduced support for full ASLR by enabling heap randomization and
adding linker support for PIE. Android 5 (SDK 21) is the latest step for-
wards, as non-PIE executable support was dropped, and all processes now
have full ASLR. PIE is the security enhancement with the greater adoption
because, after Android 5, the linker does not load non-PIE executables. A
PIE ELF file is of the type ET_DYN, and its .dynamic section contains
the DT_DEBUG tag.

IV) Full Relocation Read-Only (RELRO). A dynamically linked ELF
binary uses a look-up table called Global Offset Table (GOT) to dynamically
resolve functions located in shared libraries. The dynamic linker defers
function-call resolution to the point when the function is called rather than
at load time. This technique is known as lazy binding, and it needs that
the GOT lives in a predefined place and is writable. Hence, if an attacker
finds a bug allowing them to write a few bytes (as many as the length of a
valid address), they can overwrite a GOT entry. If a GOT entry is properly
overwritten, the attacker can hijack a library call to their malicious code.
However, the immediate binding is a valid countermeasure: the linker can

158 158

resolve all the dynamically linked functions at the beginning of execution
and make the GOT read-only. This mitigation is known as Full RELRO, and
it appears in the SE of Android 4.1. If an ELF implements the Full RELRO,
it has the GNU_RELRO segment and its .dynamic section contains the
DT_BIND_NOW tag. The GNU_RELRO segment indicates the memory
region which should be made read-only after relocation is done, while the
.dynamic section contains an array of tags. The DT_BIND_NOW tag
indicates the linker that all relocations must be processed before returning
control to the program, i.e., using immediate binding.

V) FORTIFY_SOURCE. This is a macro (available in both GCC and
Clang) that provides lightweight checks for detecting buffer overflows in
various dangerous functions, like memcpy. Some of the checks can be per-
formed at compile time while other checks take place at run-time and re-
sult in a run-time error if the check fails. FORTIFY_SOURCE works in
two phases: first, it tries to computes the number of bytes of the desti-
nation buffer used in a dangerous function. If it succeed, it replaces the
dangerous functions with their secure _chk counterpart (e.g., memcpy →
__memcpy_chk) adding as new argument the size of the buffer. If an
attacker tries to copy more bytes, the _chk function detects the overflow
and the program’s execution is stopped. If the first step fails, the compiler
cannot harden a function (e.g., it might fail with dynamic memory allo-
cated buffers). For dynamically linked executables, the libc contains the
implementation of the _chk functions. Therefore, we first checked whether
the libc supports FORTIFY_SOURCE, that is, the libc contains at least
one _chk function among its exported symbols. If yes, for each binary, we
check if it contains at least one _chk function among its imported symbols.

VI) setuid/setgid. These are a special type of file permissions that permit
users to run specific executables with temporarily elevated privileges, to
perform a specific task.

We do not mention Control Flow Integrity and Integer Overflow San-
itizer because they were already discussed. We then compiled a list of
artifacts whose presence or absence can be used to infer whether an ELF
binary implements or not each mitigation technique. This list is summarized
in Table 5.6.

This information allowed us to compare the security-related compiler
options used by vendors for their binaries with respect to the one used by
the corresponding AOSP base image. First, we found a positive indication.
The vendor’s binaries in common with the AOSP base image have the same

5.6. Additional Customizations 159

Ta
bl
e

5.
6:

U
se
rs
pa

ce
M
iti
ga

tio
n
Te

ch
ni
qu

es
.

S
D
K

V
e
r
si
o
n

E
n
h
a
n
c
e
m
e
n
t

A
r
ti
fa
c
t

3
1.5

St
ac
k
C
an

ar
ie
s

_
_
st
a
ck
_
ch
k
_
fa
il
fu
nc

tio
n
sy
m
bo

l,
or

_
_
in
te
l_
se
c
u
ri
ty
_
c
o
o
k
ie

fu
nc

tio
n
sy
m
bo

l
9

2.
3

N
o
eX

ec
ut
e
(N

X
)

G
N
U
_
S
T
A
C
K

se
gm

en
t
R
W
-

16
4.

1
Po

sit
io
n
In
de

pe
nd

en
t
Ex

ec
ut
ab

le
s
(P

IE
)

EL
F
ty
pe

E
T
_
D
Y
N
,a

nd
.d
y
n
a
m
ic

se
ct
io
n
w
ith

D
T
_
D
E
B
U
G

ta
g

Fu
ll
R
ea
d-
on

ly
R
el
oc
at
io
ns

(R
EL

R
O
)

G
N
U
_
R
E
L
R
O

se
gm

en
t,

an
d

.d
y
n
a
m
ic

se
ct
io
n
w
ith

D
T
_
B
IN

D
_
N
O
W

ta
g

17
4.

2
FO

RT
IF

Y
_
SO

U
R
C
E

*
_
ch
k
fu
nc

tio
n
sy
m
bo

ls,
an

d
*
_
ch
k
ex
po

rt
ed

fu
nc

tio
n
in

lib
c

18
4.

3
N
o
se
tu
id
/s
et
gi
d
pr
og

ra
m
s

se
tu
id
/s
et
gu

id
bi
t
in

fil
e’
s
pe

rm
iss

io
n

160 160

mitigation techniques, that is, third-party vendors do not (usually) modify
the AOSP settings.

However, the results are different when we compare the binaries that are
only present in the vendor’s ROM (i.e., those binaries that are not present
in any version of vanilla AOSP). Figure 5.3 presents the result of this anal-
ysis as the mean computed over the ROMs aggregated by SDK version.
The vertical red line shows the point in time when the security feature was
mentioned in the Security Enhancement for the first time (Stack Canaries
and NX have no vertical line because they were introduced even before SDK
10). The dash-dotted line represents the means of AOSP binaries, while the
continuous line (supplied with standard deviation) the vendors’ binaries.
All graphs clearly show that the new binaries added by the vendors con-
sistently use fewer mitigation techniques than the binaries in AOSP. At a
closer look, we can also observe other interesting trends. For instance, even
if stack canaries are amongst the oldest security feature, it took several years
for vendors to adopt them—and still today, around 40% of vendors binary
lack this basic feature—probably because it slightly penalizes the perfor-
mance [DMW15]. NX adoption and Full RELRO have instead always been
very common in AOSP binaries, while the gap with the vendors’ binaries is
still substantial.

Moreover, we found an inconsistency concerning NX adoption: the CDD
never mentions NX, while the CTS contains a test to verify at run-time if
NX is enabled [cts11]. The Security Enhancement webpage presents NX
in Android 2.3, released in December 2010, and the test was committed
in March 2011. This fact is odd because the test is checking (and thus
enforcing) for a feature that is not explicitly requested.

Finally, we measured the prevalence of setuid/setgid files. Since An-
droid 4.3 (SDK 18), the AOSP removed all setuid executables. Among
the vendor binaries, we found that 319/447 (71%) of the ROMs with SDK
< 18 and 371/2453 (15%) of the ROMs with SDK ≥ 18 contain at least
one setuid executable. In particular, ROMs with SDK ≥ 18 should never
contain any setuid executables (and in fact AOSP contains none). At a
closer analysis, the binaries that appear more frequently in those ROMs are
su (18%), procmem (17%), netcfg (16%), procrank (12%), and tcpdump

(11%). Developers often use these executables for debugging purposes, but
they should be removed from the final released ROM since the presence
of setuid executables can severely affect the overall security posture of the
device.

5.6. Additional Customizations 161

0%

50%

100%
Stack Canaries (I)

0%

50%

100%
NX (II)

0%

50%

100%
PIE (III)

0%

50%

100%
Full RELRO (IV)

10 15 16 17 18 19 21 22 23 24 25 26 27 28
SDK Level

0%

50%

100%
FORTIFY_SOURCE (V)

First SE appearance AOSP binaries Vendors' binaries

Figure 5.3: Mean of percentages of binaries using a security feature.

5.6.3 Android Init Script Customizations

Among the various binaries added by vendors, some of them are used to
perform critical functionalities for the entire system operation, acting as

162 162

daemons. Android OS relies on a custom init script system to start binaries
at boot time. By default, all the native daemons are started at boot, as
root user. Unfortunately, over the years, this component has been subject to
numerous problems, which have very often led to the introduction of logical
bugs that have resulted in the complete compromise of the device. Most
of the time, it has been noted how these vulnerabilities were introduced by
vendors [pae14].

To study this aspect, our system extracts from each ROM how many
new services it defines with respect to its corresponding AOSP base image.
However, not all services are started every time. Therefore, among them,
we mainly focus on those that start at system boot and that run with root
user privileges.

Figure 5.4 summarizes our findings.

10 15 16 17 18 19 21 22 23 24 25 26 27 28
SDK Level

0

50

100

150

200

250

Se
rv

ice

Service
Service at Boot as Root

Figure 5.4: Evolution of Android Init Scripts.

For each SDK level, the figure displays the distribution of the number
of new services: the left side of the violin plot covers all new services, while
the right side only covers those that start at boot and with root permis-
sions. The plot shows how, over the years, vendors have made considerable

5.6. Additional Customizations 163

changes to init scripts and, in particular, how the total number of newly
defined services is constantly growing—with some ROMs defining almost
250 additional services compared with AOSP.

To put this in terms of absolute numbers, for instance, an AOSP 8.0
(SDK 26) had, on average, 59 services defined in the init script, while
an average ROM had 90, with a peak of vendors defining 195 additional
services. The astonishing number of services that start as root is worrisome,
and vendors are likely violating the least privilege principle. It is, in fact,
much more straightforward for vendors to run a binary as root with respect
to running it with less privilege, granting it only the capabilities that are
strictly needed, and properly configuring SELinux policies.

Another interesting trend we observed while analyzing the init script
ecosystem is how vendors customize AOSP specific services by changing or
adding a root user as the owner of the service. Even though the numbers are
not very high, we noticed how, over the years, starting from Android 4.0.3,
on average, vendors customize at least one service. This customization is
very hard to explain since these core services are supposed to run on the
system without modification. Extending the permissions of these services
might result in having an unnecessary over-privileged service. One possible
cause of this change might be due to aggressive and dangerous customization
that requires root privileges to work correctly.

We also cross-referenced the list of new services with the results ob-
tained in the previous subsection, where we found binaries usually used for
debugging purposes in commercial ROMs. Surprisingly, we found that some
of those binaries are also automatically started at boot. For instance, we
identified 18 ROMs (of 2 different vendors) configured to start tcpdump at
boot and with root privileges. In this case, a manual investigation showed
that the tcpdump process was configured to monitor incoming packets on
all the interfaces and save the first 134 bytes of data from each packet into
a log file. To make it worse, some of these ROMs use tcpdump version
4.9.2, which is outdated (it was released in 2017) and is affected by several
CVEs [tcp20b, tcp20a] some of which with public proof-of-concept exploits.
In another case, we found another service executing tcpdump – however,
not started at boot. This service is named sniffer, and it logs the entire
network packets that pass on the wlan0 interface in a log file in the /s-

dcard/ partition—once readable by any application that has granted the
READ_EXTERNAL_STORAGE permission. Surprisingly, we identified
these problems even in a ROM branded as Android One, and built in 2019.
Listening and processing packets from untrusted sources expose the device
to potential remote and local attackers, thus severely negatively affecting

164 164

the entire device’s security.

5.6.4 SELinux Customization

As previously presented in Chapter 5.5.2, vendors often customize the
SELinux configuration. We now present an in-depth analysis of the most
frequent vendor SELinux-related changes and their impact on the overall
system’s security (independently from whether these changes are compliant
with the CDD and other requirements).

SELinux plays a crucial role in the entire security of Android, and this
component can also be used to introduce temporary patches to mitigate a
vulnerability introduced at the software level. For example, the vold privi-
lege escalation bug was properly mitigated first by a SELinux rule, before
the vulnerable daemon vold was patched [MTC+18, vol14a]. SELinux can
be at the same time a solid defense barrier if properly configured, but it
can also be the direct cause for a complete compromise of the device, if not
correctly configured. Unfortunately, there might be cases in which vendors
modify these policies without verifying whether the change can introduce
new vulnerabilities (or make existing vulnerabilities exploitable). This is
the case for Motorola that, by just introducing one single policy change
for some of its devices, has introduced a logical bug that reverted the
patch introduced to mitigate the problem on vold, allowing attackers to get
root [vol14b]. In other cases, the vulnerability can also be part of the base
AOSP policy defined by Google. This is the case for CVE-2018-9488 in
which one of the default SELinux domain of AOSP was wrongly configured
and allowed a local attacker to perform a privilege escalation [cra18]. Given
this component’s importance, any modification should be tested to ensure
that it does not introduce logical issues and vulnerabilities and does not
enlarge the attachment surface.

These examples show that defining SELinux policies is a delicate and
error-prone process. However, SELinux changes are necessary for the ven-
dors. Every new process, file, and resource must be correctly labeled, and
each new change introduced by a vendor must be configured accordingly.
This means that each new component introduced by the vendor potentially
requires introducing new domains, types, classes, and rules.

In our analysis, we extracted and analyzed all vendor rules that were not
present in the corresponding basic AOSP policy. We identify three different
cases:

• rules that modify a pre-existing rule to extend the permissions and

5.6. Additional Customizations 165

operations allowed on a given resource;

• rules that modify an exiting core policy domain but just by extending
it to support new resources introduced by the vendor;

• rules that are completely new and that operate on domains and re-
sources that are not present in the original AOSP policy.

Since our dataset consists of numerous ROMs distributed over the years,
this analysis also allows us to understand how, over time, vendors have
modified their SELinux policies.

We now present the results of our analysis. Figure 5.5 shows the changes
to the allowrule defined by a vendor for its system, while Figure 5.6 shows
the changes affecting the definition of domains, types, and classes.

18 19 21 22 23 24 25 26 27 28
SDK Level

300

1k

3k

10k

30k

100k

300k

Al
lo

wr
ul

e

AVG Vendor
AVG AOSP

Figure 5.5: Distribution of SELinux rules in the policies.

For each SDK, the first figure shows the distribution of the number
of SELinux rules present in the policy. The graph combines a traditional
boxplot on the left, showing the first and third quartiles, with a violin
plot on the right side to show the distribution of the number of ROMs
that define a given number of rules. The plot also includes two dots to
indicate the average number of rules present in the correspondent AOSP
policy compared to the average number of rules found in the different vendor
policies. Also note that to accommodate outliers better, the Y-axis is plotted
on a logarithmic scale.

166 166

We noticed how these outliers aggressively modified the default policy
defined in AOSP to add a significant number of rules. For example, for SDK
27, an AOSP policy contained in average 10,000 rules, but some vendors
defined a policy containing more than 232,000 rules (i.e., an increment of
over 20 times).

18 19 21 22 23 24 25 26 27 28
SDK Level

500

1K

1.5K

2K

2.5K

3K

3.5K

Do
m

ai
n,

 T
yp

es
, a

nd
 C

la
ss

es

AVG Vendor
AVG AOSP

Figure 5.6: Distribution of SELinux domains, types, and classes present in
the policies.

A similar trend also appears in the changes to the definition of domains,
types, and classes, as presented in Figure 5.6. Although the number of
additions for these new components seems to have stabilized in the latest
versions of Android, we still observe, in almost all versions, the problem
of aggressive vendors introducing an impressive number of new domains,
classes, and types. Analyzing the data for SDK level 26, it is possible to
observe an interesting peak. It is possible to see how, on average, the basic
AOSP policy defines 1418 elements divided between domains, classes, and
types. At the same time, some vendors extend this policy more than twice
as much by defining 3188 of these elements in their policy.

These results highlight how the problem of customization has signifi-
cantly affected SELinux policies and how vendors often behave very differ-
ently from one another. If we consider that even very restrictive policies
with a very limited number of rules, such as those provided by AOSP, have
been found to contain problems, it is difficult to foresee vendors’ policies that
introduce a number of rules 20 times greater than the average can be free

5.6. Additional Customizations 167

from logical misconfiguration or even from real vulnerabilities introduced
by a completely insecure rule.

Figure 5.7 presents a more fine-grained breakdown of the changes. In
this case, for each modified rule, we checked if it applies to new domains
added by the vendor, if it interests AOSP domains, if it is adding permis-
sions to a previous rule, or if it is a modification that interests sensitive
domains. The graph shows that most of the vendors’ changes consist of
rules that involve new domains that are not present in the original AOSP
policy. These new rules are usually introduced by the vendors to config-
ure custom components properly. We also observe a substantial number of
changes to rules that affect domains shared with AOSP, but which see the
introduction of classes and types that are not present in the basic policy.
These numbers exemplify the problem of customization by showing how
many changes the vendor makes to the initial policy configuration so that
new third-party components can interact correctly with the entire system.
But this also shows how intrusive vendor changes are, and how, as noted
above, this dangerous trend is continuing to grow.

18 19 21 22 23 24 25 26 27 28
SDK Level

7

50

400

3k

20k

Al
lo

w
Ru

le
s C

us
to

m
iza

tio
ns

New Permissions
New Vendor rules
Rules on Vendor Domains

Rules on AOSP domain,
Vendor type/class
Sensitive Domains

Figure 5.7: Evolution and Classification of SELinux Modifications.

168 168

Although these changes can lead to severe system security issues, as is
the case with vold, as it is possible to see, vendors continue to make these
dangerous changes. For example, If we analyze the data relating to the
SDK level 27, it is possible to see how this type of changes almost reaches
the levels of the other customizations on the policy made by the vendors.
If we consider that even a simple change to the permissions of a rule was
enough to reintroduce the bug on vold, it is very difficult to think that all
these changes are free from possible security problems.

A more important finding emphasized by Figure 5.7 is the number of
changes vendors made to the base policy, by extending the permissions and
privileges for default AOSP domains. In principle, these rules only affect
AOSP components that the vendor should not modify. However, if a vendor
applies some customizations to services running on these domains, some of
these modifications might raise a runtime SELinux violation since one new
feature introduced by the vendor violates a rule defined in the original policy.
Furthermore, this trend has seen a significant increase in versions from SDK
25 to 27. For instance, in SDK 27, we found vendors introducing more than
130,000 permission changes to the corresponding AOSP core policy.

Depending on the attack model considered, some SELinux policy
changes can be more problematic than others. In particular, two domains,
isolated_app, and untrusted_app, play a particular role in the security of
the system, and therefore their basic policy included in AOSP is very re-
strictive. The isolated_app domain is mainly used as an additional sandbox
for the Chrome renderer process, or to sandbox processes that should not
have permissions of their own. Adding rules to this context could widen
the attack surface for remote attacks, potentially allowing an easier sand-
box escape. The untrusted_app domain is used instead for all third-party
applications, and therefore also for potential malware that might be inad-
vertently installed by the user. Any change to this predefined policy could
widen the attack surface for local privilege escalation attacks.

Figure 5.7 shows that vendors modify these domains less often, but
the numbers are still not negligible. In fact, we noticed how vendors have
drastically reduced the changes to these domains starting from SDK level 24
up to 26. However, this significant decline was followed by a steep rise from
vendors in the next release. By looking at the averages of the changes, in
fact, we moved from an overall average of 6 customizations for the SDK level
26, followed by an average of 95 changes to isolated and untrusted_app

for the next release of Android.
For each domain, we now present significant dangerous changes made

by vendors and discuss their impact on the overall security.

5.7. Related Work 169

Customization isolated_app Domain. We identified a total of 58,776
changes to this context, 1,375 of which are unique. By manually inspect-
ing these modifications, we identified several severe and dangerous cases.
For instance, in SDK 19, we found 44 different ROMs that allowed an
isolated_app process to perform read, write, and ioctl operations directly
on kernel drivers. More recently, some devices targeting SDK 23 and 25
changed a rule that allows a process running on this domain to perform
open, read, and write operations on application data files. We noticed how
this rule is also violating a neverallow rule for this process since isolated
applications and processes should never directly open application data files
themselves.

Customization untrusted_app Domain. Across the years, vendors
have made 95,577 changes to this context, 4,228 of which are unique.
Among these customizations, we found old systems (based on Android 4.4)
that allowed an untrusted_app process to perform read and ioctl operations
directly on kernel drivers. On newer policies, the risks have been reduced
by removing the ioctl capability, while still allowing the domain to read
from kernel components. Another interesting finding, affecting newer de-
vices targeting SDK 27, is related to a rule that allows a process running
on this domain to read files containing the device’s MAC address. Google is
restricting access to this information in many ways, including a neverallow

rule that prevents this operation [mac15]. Despite this effort, we still find
vendors that nullify these defensive measures by allowing, unintentionally,
other applications to access this information.

5.7 Related Work

The research we conducted touched on numerous related to the problem of
fragmentation on Android. Similar problems have been analyzed by previ-
ous works, which however, unlike ours, have focused on a particular aspect
of fragmentation. These works can be divided into two groups: the first, re-
lated to issues related to code customization by vendors, highlight the perils
of Android customizations. The second group of works instead, is related
to the analysis and problems found in the years concerning SELinux. We
now proceed to present these relevant works in detail.

5.7.1 The Perils of Android Customizations

Among the first works that have analyzed the potential vulnerabilities in-
troduced by vendor code changes are the works of Aafer et al. [AZD16]

170 170

and Zhou et al. [ZLZ+14]. In [AZD16] the focus is on the Android secu-
rity features—permissions, UID/GID, components and their protection—
that can cause potential vulnerabilities if wrongly altered by vendor. Their
analysis mainly focused on the framework component, analyzing the vari-
ous modifications between the XML security configurations of the various
ROMs, looking for inconsistencies. The results have demonstrated how ven-
dors have introduced severe security issues within their systems by modify-
ing security components within the Android framework with disastrous con-
sequences for user privacy and safety. In fact, among the identified attack
types, it was possible to find from “Unauthorized factory reset” to “Stealing
of emails.” In [ZLZ+14] instead, the authors envisioned “ADDICTED,” a dy-
namic analysis framework with the focus of identifying security issues related
to customized kernel device driver introduced by vendors. The framework
collects system-call level information to link the device operations protected
by Android permissions to their related Linux files. The mapping is col-
lected on both Google phones and custom devices, and differential analysis
is then applied to identify potential security misconfiguration. The results
of this research are worrisome in that they highlight how the customized
drivers are often sources of security problems and how this problem is not
so widespread and common in the drivers offered by the official Android
platform. Among the various potential attacks identified, it was possible
to bypass the Android permissions system and access the camera without
the relevant permission, exploiting a misconfiguration of the /dev/video0

device driver. Continuing with the works that have analyzed the issue of
customizations, we find the work of Tian et al. [THC+18]. The focus of
this work touches on another very important component for the Android
ecosystem, modems. This paper presents the first comprehensive vulner-
ability analysis of AT Commands within over 2,000 Android smartphone
firmwares across 11 vendors. Among the various attacks that it has been
possible to carry out thanks to this research, some turn out to be partic-
ularly dangerous for the security and privacy of the end user. In fact, it
has been shown that custom and hidden AT commands allowed an attacker
to completely rewrite device firmware or perform screen unlocks, thus by-
passing all the Android security mechanisms in place trying to prevent such
actions. We believe this research has pointed the lights on an aspect not so
much analyzed to date, the security of modems and how they interface with
the system. Another component of the Android ecosystem strongly affected
by customizations are the applications, with particular attention to those
that are pre-installed on the device, since normally these cannot be unin-
stalled. Wu et al. [WGZ+13] and Gamba et al. [GRR+20] illustrate and

5.7. Related Work 171

analyze this issue. Their analysis show how vendors’ customizations and
third-party services—introduced by one of the players in the entire supply
chain—introduce several issues for what concerns the security of the system
as well as the user privacy. Due to the large number of involved parties
that, on a single device, introduce and modify code, and due to the lack
of transparency of this entire process, several potentially harmful behaviors
have been facilitated. This research confirms, as we have shown, that the
problem of fragmentation is still open and, to date, far from being solved.
However, these issues are not only caused by code introduced by vendors,
but also by code that is not introduced. In fact, a problem that has plagued
vendors a lot is to bring security patches on a system that many times,
differs a lot from the original one. Dai et al. [DZJ+20] indeed, illustrate
how the Android customizations on the framework might be a direct cause
of the patch gapping, showing how vendors fail to roll out all of the security
patches published by Google in a reasonable time. On top of [DZJ+20],
Daniel et al. [TBR15] suggest that another reason updates are not provided
in a reasonable time may be due to the large number of entities involved in
the supply chain that have to cooperate for the patch to reach the device.

5.7.2 SELinux Policy Analysis

As well as the perils introduced by code-level customizations, also SELinux
has been analyzed over the years by several works. Reshetova et al.
envisioned two analysis tools that helps OEMs overcome common chal-
lenges and avoid mistakes when writing SELinux policies. The first one,
SELint [RBA17]: the idea and the goal behind this tool is to make policy
writing accessible to non-expert developers, thus allowing the developer to
create a policy easy to configure and extend. To allow the developer to
write these rules, SELint starts with a solid base configuration provided by
an experienced developer, and then, with a series of plugins, allows the less
experienced developer to extend it. To avoid introducing policies and rules
that can introduce security issues, SELint models risky patterns (e.g., rules
working on untrusted_app or tee domains) that are verified before the final
policy is put into production The second work instead, SEAL [RBN+16],
can be used by policy writers to improve the quality and the security of
the final policies. This framework performs a differential analysis between
numerous policies from different vendors, identifying problematic patterns.
These patterns and issues can be used as a knowledge base to avoid their
introduction into future policies. Among the various problems identified, it
is possible to find how vendors overuse Default Types, Predefined Domains,
and how vendors forget useless rules in the final policy. Another relevant

172 172

work in the field is EASEAndroid [WER+15], by Wang et al.. EASEAndroid
is envisioned as an analytic platform for automatic SELinux policy analy-
sis and automated refinement. This refinement process is automated using
semi-supervised learning. The system analyzes SELinux audit logs—the logs
produced when a rule is violated—from devices, in order to identify correct
and proper “denials” (and therefore a potential attack correctly blocked by
the policy), as well as incorrect ones (i.e. benign accesses that instead are
blocked because of a too strict policy). The idea proposed in this paper is
effective and proved applicable to real problems. In fact, the evaluation was
performed over more than 1.3 million audit logs from real-world devices, suc-
cessfully identified 2,518 benign and malicious access patterns, and gener-
ated 331 policy rules as a refinement. The point of view of SELinux analysis
is changed by Im et al. [ICW18]: in their work in fact, they do not focus on
the evolution or issues related to SELinux vendor policies, but rather they
focus on the evolution of SELinux within AOSP, proposing a new metric to
measure the complexity of a given policy. The policy evolution is performed
by analyzing the various git commits made to the official AOSP repository,
identifying those related to SELinux and extracting the point changes that
were added in a given commit. This analysis takes into account 16,100 com-
mits, between January 2012 and August 2018, and shows how the growing
complexity of Android’s SELinux will lead to policies that are increasingly
difficult to understand and analyze To conclude, the last work we present
is BigMAC, by Hernandez et al. [HTY+20]. In [HTY+20], the authors
designed and implemented a new SELinux policy analysis framework that
works on firmware images. This system, unlike many other proposed ap-
proaches, recreates the security state of a running system starting from the
static firmware and the Android domain knowledge, thus eliminating the
need for a physical device and thus allowing this framework to be executed
at scale. The representation of the system security state—and thus the com-
bination of DAC, MAC, etc.— is then embedded in a dataflow graph, which
can be queried by the user to identify potential attack paths between pro-
cesses. The evaluation of BigMAC on firmware images allowed the system
to identify known problems like CVE-2018-9488, but also numerous new
problems such as untrusted applications able to interact with a kernel mon-
itoring service and several processes configured with CAP_SYS_ADMIN

capability.
Our work significantly differs and complements all these previous ones, for
both the type of analysis performed and the components considered, as it
is the first to discuss a longitudinal analysis on OEM customizations, their
compliance aspect, and details about system binaries, libraries, SELinux

5.7. Related Work 173

policies, Android init scripts, and user- and kernel-space hardening tech-
niques.

174 174

Chapter 6

Conclusion and Future Work

175

176 176

6.1 Future work

As we have seen in this thesis, the Android system has positioned itself,
over the years, as a leader in the market of mobile devices, with significant
numbers both in terms of devices sold and active users. The number of
Android-based devices continues to grow yearly, and has now reached 2,5
billion devices produced by over 1,300 brands. The same trend goes for
the evolution of the Google PlayStore, which nowadays allows the 2 billion
Android users to choose from more than 3 million applications.

Just by looking at these numbers, it is easy to understand how important
and extremely difficult it is to ensure security in such extended ecosystem.
Indeed, guaranteeing and ensuring security at every node of the supply-chain
is a problem that is far from being solved.

This thesis did not attempt to solve all the security problems that affect
the ecosystem, but rather set out to analyze security issues from different
perspectives, to provide insights, and to build foundations for further re-
search. We believe that the complexity of the Android ecosystem has led to
the insight that issues affecting individual layers cannot be dealt with in a
generic way: Each of the players in the supply-chain has its own incentives
and views on security, which are influenced by several factors that should
be taken into account when studying and researching a specific issue.

This work has shown that the direction that the Android ecosystem is
taking in approaching its security is very encouraging, but that, as one may
expect, it cannot be considered a problem solved. In fact, there is still a lot
of work to be done to allow all the components involved in the supply-chain
to be able to use the latest security measures without repercussions, and to
allow them to view security as an integral part of their final product.

The research we presented followed an analysis divided into layers. For
each of these, we analyzed a specific issue that characterizes and affects it,
and we studied the limitations and issues that allow this problem to be, still
today, significant for the entire ecosystem.

Starting from the first layer we analyzed, the Android Applications, we
believe Network Security Policy is a great step forward to ensure safety in
the network communications. However, as we discussed in Chapter 3, as
long as advertisements remain a major source of revenue for developers and
as long as their ecosystem will not allow for easy adoption of HTTPS, we
believe that research should focus on an even more aggressive solution.

We believe that a further approach to this problem, which would im-
prove the current state of security even more, would be to study the fea-
sibility of isolating and executing, within a sandboxed process (such as

6.1. Future work 177

isolated_process), all code retrieved unsafely using HTTP. Taking advan-
tage of the Network Security Policy configuration, which already allows to
specify the endpoints that should be reachable in cleartext, and by combin-
ing our solution to specify also the component of the application that should
be able to open unsecured connections, it would be possible to identify the
code that needs to be isolated and executed in a restricted environment.
This approach can, of course, be extended to all those components that
force the developer to use insecure network configurations. As highlighted
in Chapter 3, several previous works already envisioned an isolated exe-
cution of advertisement libraries from the main application. We therefore
believe that research should aim at this direction to have even more usable
solutions for the developer so that she no longer has to perceive security as
a compromise.

Network Security Policy, as we have shown, also suffers from a signif-
icant problem related to misconfiguration. Thus, another complementary
direction that might help addressing this issue involves the study of new ver-
ification methods that can help assuring that a policy is indeed correct, that
it reflects the developer’s intent, and that it is aligned with the application
code.

We believe that research should move in the direction of creating a
verification system that, given a policy and an application, can provide the
developer with information regarding the correctness of the policy, whether
it should be extended or not, or whether it honors the principle of least
privilege.

However, while we believe this approach would be useful, it is very chal-
lenging to make it successful in the general case. For example, if the appli-
cation uses external libraries that dynamically loads content from unknown
endpoints, the system would not know the resources that would be loaded
at runtime and thus could not provide a completely accurate analysis.

Bringing the research towards the development of techniques and
methodologies of automatic testing leads to numerous advantages, among
which certainly the possibility of reducing the time in which problems are
identified, and the possibility of scaling up the testing phase. Indeed, this is
what we attempted to accomplish with the automatic identification of vul-
nerable APIs, presented in Chapter 4, and which allowed us to find as many
as 18 new vulnerable APIs that could be used by attackers to mount state-
inference attacks. The large amount of vulnerable APIs we found raises an
important question, which is whether AOSP has automatic tests aimed at
detecting these type of issues. Even though our work was performed primar-
ily on the Android Open Source Project codebase, we do realize how it can

178 178

be improved and extended. We believe that the addition of code coverage,
and a more detailed and principled approach to the automatic argument
generation, could stimulate new execution paths and, potentially, help our
system to identify even more vulnerabilities.

As we discussed in this thesis, limiting ourselves to analyzing only the
code present on AOSP would give us a distorted and limited view of the
reality of the entire ecosystem. Since only few customizations of the Android
system are released publicly by vendors, this makes it necessary to have
more approaches based on the analysis of compiled code. Therefore, we
believe that to make our system usable in large scale and to allow problems
to be found even in vendor customizations, there is a need to shift it from
source code to bytecode. However, moving this analysis framework from an
environment where we can collect a lot of information just from source code,
to a closed source environment, hides many challenges and risks making the
analysis less accurate and effective.

We believe, however, that the information that is lost by analyzing the
bytecode can be recovered or at least inferred. In fact, attempting an ap-
proach in which Natural Language Processing techniques are applied to the
AOSP source code and its documentation may help to understand, given
the name of an API never seen within the codebase, the task and function-
alities of the given API, and also infer what, if any, arguments it expects,
and its return value. The NLP approach was already heavily used in the
realm of Android security, to infer and automatically extract from different
sources of text, like applications reviews, or source code, like information
used to perform security analysis. Improving our model with the addition
of these new techniques and features could make our research more generic
and applicable to more Android implementations.

To conclude, we believe that the differential analysis between AOSP and
vendor implementations of the system can be applied to numerous other
components and can open several new research directions. Indeed, the wide
diffusion of the Android system even on devices other than smartphones,
such as Android-based televisions, automotives, and watches, has made it
possible that the Compatibility Definition Document started to provide se-
curity requirements also for such devices. The research we presented in
Chapter 5 covers only one of the many layers the ecosystem is constituted
of, but it can be easily extended to analyze also several other aspects. In
fact, by considering the expansion of these new devices, we believe that
research should also move towards this direction by analyzing the security
and privacy issues of these new ecosystems.

During our analysis of vendor-modified binaries and libraries, we noticed

6.1. Future work 179

how we were unable to identify and quantify the security repercussions of the
changes made to the code, or changes to configurations at build time. We
believe that differential analysis can help in this situation as well. For ex-
ample, we envision a new research direction that could help to measure and
analyze code introduced by vendors to assess its security “automatically,”
through software testing techniques like fuzzing and differential testing.

For example, starting from two different implementations of a given
library, from two different vendors, we can analyze several aspects related to
the customizations: for instance, we can analyze if the same input behaves
differently on the libraries, and if so, the reason why this happens. The
same idea and approach can be applied to an input that results in a crash
only on one library but not on another: the analysis can identify whether
the different behavior is due to a modification made by the vendor, a lack
of a patch, or other reasons.

In a similar vein, the same analysis could highlight and identify whether
a change to the compiler configuration flags introduces issues that would
have been identified and stopped at runtime. In this case, we would there-
fore be interested in testing two implementations of the same library, where
the only changes made are at compile time. By using automated testing
techniques, we could identify scenarios where removing a certain flag from
the compiler, like FORTIFY_SOURCE, reintroduces exploitable bug that
were prevented by the compiler or the runtime environment. We therefore
believe that research should focus more deeply on understanding and testing
the possible repercussions of code modified or added by vendors. Moreover,
this effort must see the development of automated or semi-automated so-
lutions for this problem: the large number of devices to be tested, and the
continuous evolution of the ecosystem, in fact, makes a potential manual
approach not very scalable and effective.

180 180

6.2 Conclusion

The various projects that we tackled and discussed in this thesis allowed us
to analyze numerous issues related to the security of the Android ecosystem.
This research allowed us to understand, by constantly changing the point of
view for the analysis, how security is not always considered as an integral
piece of a system. Ensuring the security of the entire ecosystem becomes a
very challenging task: different actors at play, with different requirements
and security constraints, make a generic approach to security ineffective.
This, in turn, pushed us to change perspective when analyzing the problems
of a given player of the ecosystem.

This study allowed us to analyze and measure several security issues
that have affected the Android system for years.

In Chapter 3, we start with the analysis of the first software level we
identified in the ecosystem, the Application layer. We discussed how the
problem related to network communication security still affects this layer,
potentially having repercussions on millions of users. In this chapter we pre-
sented the first large-scale analysis of Network Security Policies, and we sys-
tematically explored the adoption of this new defense mechanism amongst
Android applications. Our analysis showed that despite Google’s effort to
bring HTTPS everywhere, we are not quite there yet. We highlighted, in
fact, how developers are still allowing full cleartext on their application,
despite the fact that the Network Security Policy could fix and eradicate
this issue once and for all. An in-depth study of this layer, and the analy-
sis of some key components in the application developer ecosystem such as
external libraries, allowed us to identify some conceptual limitations to this
defense mechanism: thus, we designed and implemented a drop-in extension
on the actual Network Security Policy, which allows developers to address
these limitations.

Then, in Chapter 4, we continued our journey with the analysis of the
System layer, and we saw how a more aggressive approach to security, during
the years, made it increasingly difficult for malicious applications to mount
some specific attacks. Our study focuses on one specific threat, posed by
phishing. Despite the general advancement of Android security, neverthe-
less, this issue still creates numerous problems and endangers the security
of many users. Therefore, we decided to analyze this interesting problem
with the goal of raising the bar for attackers.

Given the magnitude and the complexity of this problem, we decided to
approach it by using two complementary research directions. The continu-
ous evolution of the Android system, and its constant modification of the

6.2. Conclusion 181

codebase to add functionality, do not allow a manual approach when deal-
ing with the identification of vulnerable APIs, and so, we envisioned and
developed an automatic approach to test the security of the system APIs.

Thus, we systematically studied and uncovered the attack surface that
is actually available to attackers, and we designed an automatic framework
that discovered 18 new vulnerable APIs, affecting both Android 8.1 and 9,
and that allow a malicious application to mount timely phishing attacks.
Nevertheless, the identification of these APIs is only the first step: in fact,
no automatic vulnerability system can always guarantee to find all possible
vulnerabilities (except in some very specific scenarios), and even missing
one vulnerable API may be problematic. Therefore, we implemented a new
on-device detection mechanism based that blocks state inference attacks
at their root at the moment they occur, even when exploiting unknown
vulnerable APIs.

We concluded this thesis by analyzing the security issues from the per-
spective of the last layer we identified, the Vendors layer. This layer is the
one that most of all represents and encloses the problem of fragmentation,
and describes the diversity and complexity of the Android ecosystem. The
analysis we presented in Chapter 5 is the first longitudinal and large-scale
study that tries to analyze security issues due to customizations in impor-
tant system components such as SELinux, system binaries, init scripts, and
the Android Linux kernel.

We observed that, over the years, numerous vendors have failed to
comply with Google’s defined security requirements, releasing systems that
lacked basic protection systems. We conclude by highlighting how there
are several areas of customizations that, even if they do not violate any
strict security requirement, are the root cause for severe security problems
and have serious repercussions on the overall security posture of the final
system. These results demonstrate that the current set of regulations and
checks, although they represent the first step and barrier to mitigate and
limit these issues, are not enough, and that more aggressive controls should
be in place to ensure end-user security.

I believe this thesis has advanced the security of the Android ecosystem
and that it provided useful insights to accelerate the adoption of HTTPS
everywhere on Android applications, that has made it possible to move
forward with Google’s effort to eradicate the phishing problem, and I hope
that it will inspire future works and analyses in the research areas that this
thesis focused on.

182 182

Appendices

183

Appendix A

French Summary

185

186 186

A.1 Introduction

L’ère dans laquelle nous vivons aujourd’hui voit la mobilité et la possibilité
d’être toujours connecté comme des éléments clés de la vie quotidienne. Des
études récentes ont montré que, d’ici 2020, près de 3 milliards de person-
nes posséderont un smartphone, et comment, au cours des cinq dernières
années, le trafic créé par les appareils mobiles a connu une croissance incroy-
able de 700%. Malgré le grand nombre de smartphones et d’utilisateurs,
si nous examinons le choix des systèmes d’exploitation pour ces appareils,
nous constatons que le marché est principalement divisé entre deux sys-
tèmes seulement : Les appareils Android couvrent près de 70% des parts de
marché, et les appareils iOS les 30% restants. Compte tenu du pourcentage
plus important du marché couvert par les appareils basés sur Android, qui
ne se limitent pas aux smartphones mais incluent également les téléviseurs
intelligents, les smartwatches et les appareils automobiles, nous étudions
dans cette thèse la sécurité de l’écosystème Android.

Le succès et la diffusion d’Android sont dus à de nombreux facteurs.
Tout d’abord, on observe que la nature ouverte du Android Open Source
Projet a permis à de nombreux fournisseurs, tels que Samsung, Xiaomi,
etc., de développer leurs propres produits et de les baser sur ce sys-
tème. Cela a également conduit à un plus grand choix pour l’utilisateur
en termes d’appareils à acheter. Deuxièmement, il existe un large éven-
tail d’applications dont les utilisateurs peuvent bénéficier, ce qui leur per-
met d’effectuer des tâches qui étaient auparavant réalisées sur des ordina-
teurs personnels, mais qui le sont désormais aussi sur des smartphones. La
grande diversité en termes de smartphones, de systèmes basés sur Android
et d’applications fait que la gestion de la sécurité de cet écosystème est
aussi délicate que difficile, et nécessite avant tout une analyse minutieuse
prenant en compte tous les points de vue des acteurs qui y contribuent.
Une autre raison pour laquelle une analyse approfondie de la sécurité de cet
écosystème est essentielle est que la migration de la base d’utilisateurs des
ordinateurs personnels vers les smartphones a également attiré l’attention
des attaquants et des cybercriminels, qui ont commencé à étudier soigneuse-
ment de nouvelles stratégies pour compromettre ces systèmes.

Au fil des ans, presque chaque nouvelle version d’Android a introduit
de nombreuses nouvelles fonctionnalités, dont beaucoup concernent la sécu-
rité de la plateforme. Cette amélioration continue a mis la barre plus haut
pour les attaquants, mais cela ne les a pas empêchés d’étudier de nou-
velles techniques plus avancées pour compromettre un appareil. En outre,
outre les efforts déployés par le projet AOSP, de nombreux autres projets de

A.1. Introduction 187

recherche universitaires et industriels ont contribué à améliorer la sécurité
des appareils Android. Cependant, en dépit de ces efforts collectifs, certains
problèmes importants restent non résolus. C’est la complexité et le défi de
ces questions qui m’ont poussé à axer ma thèse sur certains de ces problèmes
qui, bien qu’ayant été étudiés pendant de nombreuses années, sont toujours
ouverts aujourd’hui.

Dans cette thèse, nous présentons une étude de sécurité selon trois
“points de vue” différents, et nous analysons les trois principales couches
qui contribuent au développement de cet écosystème. Nous avons identi-
fié ces trois couches comme étant l’Application, le Système, et la couche
Fabricant.

Chacune de ces couches aborde et voit la sécurité d’une manière unique,
qui est très souvent différente de celle adoptée par les autres composants.
En fait, chacune de ces couches peut avoir des objectifs, des modèles de
menace, des exigences et des contraintes différents et uniques en matière
de sécurité. Il est donc essentiel de comprendre les problèmes rencontrés
par chacun de ces niveaux afin de concevoir et de proposer des mesures de
sécurité qui répondent à leurs exigences, et la seule façon de le faire est
d’examiner le problème à travers leur perspective.

Cependant, tenter de résoudre tous les problèmes affectant les différentes
couches, aussi souhaitable que cela puisse être, est très difficile à réaliser.
C’est pourquoi, pour chacune de ces couches, nous avons décidé d’examiner
de manière détaillée et fondée sur des principes une question spécifique et
importante. Déterminer les questions à aborder n’a pas été facile, nous avons
donc essayé de classer par ordre de priorité celles qui nous semblaient les plus
importantes. Pour nous aider dans ce choix, nous avons essayé de répondre
à certaines questions qui ont guidé notre décision finale. Par exemple, nous
avons essayé de comprendre et de quantifier le nombre de smartphones,
d’applications ou d’utilisateurs qui seraient affectés et exposés à une menace
spécifique. Dans ce cas, nous avons toujours essayé de donner la priorité aux
problèmes affectant le plus grand nombre d’utilisateurs ou de smartphones.
Ou bien, nous nous sommes demandé s’il existait déjà des mesures pour
prévenir ce problème, et si oui, pourquoi elles n’étaient pas utilisées. Une
fois encore, nous avons mis l’accent sur les problèmes pour lesquels, au fil
des ans, des mesures de sécurité ont été envisagées—soit pour prévenir un
problème particulier, soit pour l’identifier—mais qui, pour une raison ou une
autre, ne sont pas totalement efficaces. En fait, pour concevoir une mesure
de sécurité efficace et efficiente, il est d’abord important de comprendre
pourquoi, malgré la disponibilité d’outils qui aideraient les développeurs à
prévenir les erreurs et les problèmes, ceux-ci ne sont pas adoptés.

188 188

Cette étude préliminaire nous a conduit à investiguer et à concentrer
notre attention sur les problématiques suivantes : les menaces derrière
l’utilisation de connexions non sécurisées pour la couche Application, celle
concernant le phishing pour la couche Système, et enfin celle liée aux réper-
cussions de la fragmentation sur la sécurité pour la couche Fabricant. Les
recherches que nous avons menées dans cette thèse ne se limitent cepen-
dant pas à mesurer simplement l’ampleur de ces problèmes, mais s’appuient
sur ces résultats pour proposer de nouvelles mesures de renforcement de
la sécurité qui pourraient aider à résoudre les problèmes que nous avons
explorés.

Nous espérons que les recherches présentées dans cette thèse et ses
contributions pourront servir d’étape vers un écosystème mobile plus sûr,
et qu’elles pourront servir de point de départ et de base pour d’autres
recherches dans ce domaine important.

Cette thèse est structurée comme suit. Le chapitre 2 sert de contexte
et présente notre vision de l’écosystème Android en couches. Chacune des
couches est expliquée en détail, soulignant des aspects importants tels que
le rôle d’une couche donnée au sein de l’écosystème, les questions qui l’ont
affectée au fil des ans, et quels sont les problèmes en matière de sécurité. Ce
chapitre pose les bases et présente les différentes approches de la sécurité,
en expliquant quelles peuvent être leurs limites.

La première couche que nous analysons concerne les applications : dans
le chapitre 3, nous présentons la première étude sur la Network Security
Policy, un nouveau mécanisme de protection qui permet aux développeurs de
configurer la sécurité des connexions réseau de leurs applications sans avoir
à introduire de nouveau code. Cette étude nous a permis d’identifier non
seulement les erreurs potentielles que les développeurs peuvent commettre
et qui rendraient l’utilisation de cette politique inefficace et inutile, mais
aussi les limitations de conception qui empêchent son utilisation correcte.
Ce chapitre se termine par notre version de la Network Security Policy qui
tient compte de ces limitations et permettrait aux développeurs d’adopter
plus largement ce mécanisme de défense.

Dans le chapitre 4, nous étudions le problème du phishing, qui touche
le système Android dès les premières versions. Pour aider à résoudre cette
menace, nous avons décidé de procéder dans deux directions complémen-
taires. La première consiste à identifier automatiquement les vulnérabilités
dans le code source du système d’exploitation qui sont normalement ex-
ploitées par les logiciels malveillants, afin de les identifier et de les corriger
avant que le code ne soit utilisé par l’utilisateur final. Ce système nous a
permis d’identifier de nombreuses vulnérabilités au sein de différentes ver-

A.2. Sécuriser la couche d’Application 189

sions d’Android. La seconde, compte tenu du temps nécessaire pour patcher
un éventuel bug utilisé par les applications malveillantes pour monter le
phishing, est de développer un mécanisme de détection pour identifier ces
attaques au moment où elles se produisent, pour les bloquer au bon moment
et ne pas les laisser compromettre la sécurité d’une application.

Le chapitre 5 introduit la dernière problématique examinée dans cette
thèse. Le problème analysé est celui lié aux répercussions, en termes de sécu-
rité, des personnalisations apportées par les fabricants au système AOSP. Ce
phénomène, connu sous le nom de “fragmentation,” risque de rendre inutiles
tous les efforts déployés au fil des ans pour assurer un système plus sûr. Les
contributions que nous apportons dans ce chapitre montrent que depuis les
premières versions d’Android, les modifications apportées par les fabricants
ont très souvent un impact négatif sur la sécurité globale du système, et
comment les composants spécifiques aux fabricants sont significativement
en retard par rapport à la sécurité de la version Open Source de Android.

Enfin, le parcours de cette thèse, qui visait à montrer comment, dans
l’écosystème Android, la façon dont la sécurité est perçue et abordée change
en fonction de la couche analysée, s’achève avec le chapitre 6, où nous
résumons brièvement les défis auxquels nous avons été confrontés, la façon
dont nous les avons résolus, et où nous fournissons enfin quelques éléments
qui, nous l’espérons, inspireront les recherches futures.

A.2 Sécuriser la couche d’Application

Ce chapitre est basé sur la publication “Towards HTTPS Everywhere on

Android: We Are Not There Yet” [PF20].

Dans le domaine de l’écosystème Android, les attaques réseau sont un
problème qui, encore aujourd’hui, compromet la sécurité des applications.
Ce problème touche à la fois les applications qui utilisent des protocoles
réseau en clair, tels que HTTP, mais aussi celles qui configurent mal les
connexions sécurisées et cryptées qui utilisent SSL/TLS. La résolution de
ces problèmes devient critique car, de nos jours, pratiquement toutes les ap-
plications mobiles reposent sur la communication avec un backend réseau.
Ces dernières années, Google a développé et introduit dans le projet Open
Source Android plusieurs mécanismes de sécurité pour protéger la commu-
nication réseau des applications Android, allant de plusieurs KeyStores à la
récente introduction de la nouvelle Network Security Policy, un fichier de
configuration basé sur XML qui permet aux applications de définir leurs con-
figurations de sécurité réseau. Cette nouvelle politique n’a cependant jamais

190 190

été analysée en détail et nous pensons qu’elle n’a pas reçu une attention suff-
isante. Pour bien comprendre les choix qui ont conduit au développement
de ce nouveau mécanisme de défense, il est nécessaire d’étudier comment,
au fil des ans, les attaques réseau ont permis aux attaquants de compro-
mettre la sécurité des applications et la confidentialité des données des util-
isateurs. Ainsi, dans ce travail, dans un premier temps, nous avons mené
une étude systématique et complète sur les mécanismes de défense réseau
adoptés dans Android au cours des années, nous discutons des attaques
contre lesquelles ils se défendent, des pièges potentiels et des modèles de
menaces pertinents. Cette étude nous permet d’introduire la Network Se-
curity Policy et de l’analyser en connaissant les problèmes qui, au fil des
ans, ont conduit les développeurs à utiliser des configurations réseau incor-
rectes ou non sécurisées. L’analyse de cette nouvelle politique nous a permis
d’identifier ses points forts, mais aussi de découvrir certaines configurations
qui, bien que considérées comme valides pour la politique, exposent toujours
l’application à certaines attaques, risquant ainsi d’introduire un faux sen-
timent de sécurité pour le développeur. Pour vérifier que ces problèmes ne
sont pas seulement théoriques, mais qu’ils sont aussi présents dans des appli-
cations réelles, nous avons mesuré ce phénomène par une analyse à grande
échelle sur plus de 125K applications, montrant que ces problèmes sont
malheureusement très fréquents. Comprendre pourquoi les développeurs
utilisent ces configurations est d’une importance énorme pour apporter des
améliorations à cette nouvelle politique de défense efficace. Grâce à l’analyse
de ces applications, nous avons pu identifier plusieurs problèmes qui limitent
le potentiel de cette politique, et nous avons proposé une nouvelle exten-
sion de la Network Security Policy qui est entièrement compatible, mais qui
cherche à éliminer ces limitations.

A.2.1 Network Security Policy: Les Faiblesses

L’analyse commence par une étude approfondie de toutes les mesures de
sécurité qui ont tenté d’atténuer certaines catégories d’attaques réseau au
fil des ans. La conception de la politique de sécurité du réseau a bénéficié
de toutes ces recherches passées, et a permis la création d’un système effi-
cace permettant au développeur de configurer une application de manière
sécurisée sans introduire de code dans l’application. Avec cette nouvelle
politique, il est possible de spécifier les configurations suivantes, mais aussi
d’introduire des problèmes qui, à notre connaissance, n’avaient jamais été
considérés et analysés avant ce travail.

Texte clair et Man-In-The-Middle: La politique permet au développeur

A.2. Sécuriser la couche d’Application 191

de spécifier les domaines qui seront contactés par des protocoles clairs
(HTTP, SMTP, etc.), et ceux qui ne le seront pas. Comme il est parfois
difficile de dresser une liste exhaustive des domaines qui doivent adhérer à
une règle donnée, la politique autorise des caractères de remplacement qui
permettent au développeur de spécifier des configurations tout ou rien, ou
des domaines qui respectent une expression régulière donnée. Cependant,
un développeur peut configurer son application avec une politique qui per-
met à tous les domaines d’être contactés par des connexions non sécurisées,
exposant ainsi l’ensemble de l’application à des attaques de type Man-In-
The-Middle. Pour aggraver les choses, comme nous le verrons plus loin,
plusieurs ressources en ligne suggèrent de mettre en œuvre cette politique
très grossière et dangereuse.
Autorités de certification et Man-In-The-Middle sur HTTPS: Avec
la Network Security Policy, il est possible de spécifier les autorités de certifi-
cation (AC) auxquelles il faut faire confiance lors des connexions sécurisées.
Il est possible de faire confiance à un ensemble de clés publiques codées
en dur des AC les plus importantes (system), ou à des AC personnalisées
qui sont installées dans le KeyStore (user), ou intégrées dans l’application.
Cependant, le protocole HTTPS ne garantit pas toujours que la commu-
nication ne peut pas être écoutée. En fait, il est possible de configurer la
politique pour faire confiance à l’union des autorités de certification dans
le KeyStore du système et de l’utilisateur : ainsi, le trafic de l’application
peut être écouté par quiconque contrôle une autorité de certification per-
sonnalisée dans l’un des KeyStores. Nous pensons qu’une “application de
production” qui fait effectivement confiance au certificat de l’utilisateur est
souvent le symptôme d’une mauvaise configuration.
L’épinglage des Certificats et sa Neutralisation: L’épinglage des
certificats consiste à “coder en dur” (ou épingler) quel est le ou les certificats
attendus lors d’une poignée de main TLS avec un serveur donné. Avec
cet attribut, le développeur peut définir tous les paramètres de vérification
sans avoir à se soucier de l’implémentation sous-jacente. Cependant, nous
avons réalisé qu’il est possible de configurer la politique de manière à définir
l’épinglage des certificats pour certains domaines, tout en informant le
système que l’épinglage ne doit pas être appliqué. En pratique, nous avons
constaté qu’il est possible d’activer et de désactiver ce mécanisme en même
temps, et que les deux configurations ne s’excluent pas mutuellement. Nous
pensons que ce type de politique offre un “faux sentiment” de sécurité
pour un développeur, d’autant plus qu’aucun avertissement n’est émis à la
compilation ou à l’exécution.

192 192

Malgré certaines limites et certains pièges potentiels, la Network Security
Policy rend incontestablement plus pratique la spécification d’une politique
de réseau à grain fin. Malheureusement, il n’existe à ce jour aucun outil
permettant aux développeurs de vérifier l’exactitude de la politique définie
et de s’assurer que les paramètres qu’ils souhaitaient mettre en œuvre sont
effectivement ceux appliqués par le système.

A.2.2 Network Security Policy: L’adoption

L’identification de ces erreurs potentielles qui peuvent être introduites lors
de la configuration d’une politique, nous a conduit à vérifier combien d’entre
elles étaient effectivement présentes dans les applications du Google Play
Store officiel. L’analyse a été effectuée sur un jeu de données de 125,419
applications. La même analyse a été répétée en retéléchargeant le jeu de
données après un an, afin de mesurer et de quantifier une éventuelle évolu-
tion. Nous avons constaté que, bien que la Network Security Policy permette
d’améliorer considérablement la sécurité des configurations du réseau, elle
a été adoptée par moins de 7% (8,727) des applications lors de la première
mesure. Un an plus tard, nous avons remarqué que le nombre d’applications
utilisant la politique a presque doublé (15,492). C’est un signe important
qui montre que les applications sont en train d’adopter la Network Security
Policy, mais en même temps, cela nous montre que sa diffusion n’est pas
aussi étendue que l’on pouvait l’espérer. En ce qui concerne le type de con-
figurations utilisées et les problèmes rencontrés, nous avons remarqué que
plus de 70% des applications définissant une politique permettent encore
l’utilisation de protocoles en clair. Ce qui est surprenant, cependant, c’est
le très petit nombre d’applications qui utilisent la politique pour mettre
en œuvre l’épinglage des certificats. Sur les 102 applications appliquant
l’épinglage des certificats, nous en avons identifié 9 qui mettent en œuvre
l’épinglage mais l’annulent par erreur.

A.2.3 Network Security Policy: Les Limites

Certaines des politiques analysées ci-dessus ont attiré notre attention en
raison du type de configuration particulière utilisée, mais aussi en raison du
nombre de politiques identiques partagées entre plusieurs applications dans
l’ensemble de données. Une analyse approfondie nous a permis d’identifier
deux problèmes principaux. Le premier, déjà connu depuis longtemps, est
celui qui pousse les développeurs à copier du code depuis l’internet sans vrai-
ment comprendre le résultat final. C’est une des raisons qui peut justifier les
mêmes politiques partagées entre différentes applications. La seconde, qui à

A.3. Sécuriser la couche Système 193

notre connaissance n’a jamais été analysée, est liée aux composants tiers (par
exemple, les bibliothèques de publicité) qui “forcent” les développeurs qui
veulent les utiliser à utiliser certains paramètres dans leur propre politique.
Cette idée nous a conduit à mesurer l’impact des bibliothèques de publicité
sur les politiques de réseau des applications. L’analyse, menée sur les 29 bib-
liothèques les plus utilisées, nous a permis d’identifier comment 12 d’entre
elles poussent le développeur à modifier la politique, et comment 11 d’entre
elles le font de manière non sécurisée. Sur ces 12 bibliothèques, 11 exigent
du développeur qu’il autorise globalement les connections non sécurisées par
l’application, tandis que 2 bibliothèques obligent également le développeur à
faire confiance aux AC des utilisateurs, mais aucune d’entre elles ne fournit
d’AC, ce qui rend ce risque complètement inutile. Ces résultats nous ont fait
réaliser que la granularité offerte par la Network Security Policy n’est pas
suffisante pour couvrir ces cas. Guidés par ces résultats, nous avons conçu
et implémenté une extension qui permet aux développeurs de spécifier une
politique “par paquet.” Le développeur peut ainsi continuer à utiliser ces
bibliothèques, mais peut les confiner dans un bac à sable, sans risquer de
compromettre la stabilité de l’ensemble de la politique d’application.

A.3 Sécuriser la couche Système

Ce chapitre est basé sur la publication “Preventing and Detecting State

Inference Attacks on Android” [ADY21].

Une menace importante qui affecte le système d’exploitation Android
depuis les premières versions est le phishing. L’importance de cette ques-
tion est également soulignée par une récente recherche menée par Kasper-
sky Lab, qui a mis en évidence l’augmentation du nombre d’applications
malveillantes qui mettent en œuvre cette attaque, telles que les “chevaux de
Troie bancaires,” en comptant seulement en 2020 un nombre d’installations
de ces logiciels malveillants égal à 156,710, soit presque le double du
nombre enregistré en 2018. Les attaques par phishing sont particulière-
ment problématiques pour les plateformes mobiles car elles ne fournissent
pas suffisamment d’informations pour qu’un utilisateur puisse distinguer
de manière fiable une application légitime d’une application malveillante
usurpant l’interface utilisateur de l’application légitime. Un facteur clé qui
détermine le taux de réussite d’une attaque de phishing est le bon timing
: l’utilisateur est plus enclin à fournir des données sensibles (telles que des
mots de passe) si l’interface utilisateur malveillante apparaît au moment
où la victime s’attend à interagir avec l’application cible. Sur Android, les

194 194

logiciels malveillants déterminent le bon moment en montant des attaques
par inférence d’état, qui peuvent être utilisées, par exemple, pour déduire
le moment exact où l’utilisateur a lancé une application cible et s’attend
donc à interagir avec elle. Même si le bac à sable Android est conçu pour
empêcher ces attaques, elles sont toujours possibles en abusant des API vul-
nérables qui laissent échapper de telles informations sensibles : le scénario
habituel est celui d’une application malveillante qui “pollue” ces API vul-
nérables, déduit quand une application cible est sur le point d’être utilisée
par l’utilisateur et fait apparaître l’interface utilisateur usurpée en haut de
l’écran au bon moment.

Compte tenu de la dangerosité de ces attaques, nous nous sommes fixés
comme objectif de tenter de résoudre ce problème. Dans ces travaux de
recherche nous explorons et analysons donc deux directions complémen-
taires, qui visent à prévenir ces attaques en identifiant les vulnérabilités
à l’avance, mais aussi à explorer la possibilité de détecter les attaques au
moment où elles sont montées sur le smartphone.

A.3.1 Prévention des attaques par inférence d’état

La première voie que nous avons explorée dans cette recherche est liée à
l’identification des vulnérabilités normalement utilisées par les applications
malveillantes pour réaliser cette attaque. Compte tenu du temps qu’il faut
pour qu’une vulnérabilité soit corrigée, et compte tenu également du grand
problème du retard dans la fourniture des correctifs par les fabricants et de
la lenteur des utilisateurs à les installer, il est nécessaire d’agir de manière
préventive et d’essayer d’identifier ces problèmes avant qu’ils ne soient in-
troduits dans le système final. Ainsi, nous avons imaginé et mis en œuvre
un nouveau système de détection des vulnérabilités qui, en combinant des
techniques d’analyse statique et dynamique, vise spécifiquement à identi-
fier les nouvelles vulnérabilités qui peuvent être utilisées pour monter des
attaques par inférence d’état.

Pour bien comprendre le problème et identifier ses causes profondes,
nous avons commencé par une étude systématique des vulnérabilités ex-
ploitées par les logiciels malveillants pour monter cette attaque au fil des
ans, en identifiant l’un des problèmes fondamentaux et actifs dans la mau-
vaise mise en œuvre des API du système. Pour tenter de prévenir d’autres
vulnérabilités, il est donc nécessaire d’identifier, le cas échéant, d’autres API
susceptibles d’être exploitées par les attaquants. Cependant, en raison de
la taille du système et du nombre toujours croissant d’API disponibles, une
approche manuelle n’est pas recommandée car elle ne serait pas évolutive
et prendrait beaucoup de temps : nous avons donc opté pour un système

A.3. Sécuriser la couche Système 195

automatique. Le développement de ce système cache cependant de nom-
breux défis majeurs. La première concerne la détermination de la surface
d’attaque effective disponible pour un attaquant potentiel : en résolvant ce
premier problème, nous avons remarqué qu’il existe une couche “cachée”
d’API (disponible pour un attaquant) qui n’a jamais été prise en compte et
analysée par les travaux précédents sur le phishing. Une fois que la surface
d’attaque correcte et les API à analyser ont été identifiées, il est nécessaire
d’automatiser ce processus. Cependant, la création automatique d’un objet
valide n’est pas si immédiate et cache de nombreux problèmes. Par exemple,
même un seul champ d’un objet complexe, s’il n’est pas initialisé correcte-
ment, peut conduire à la génération d’exceptions avec le risque de bloquer
complètement le processus d’analyse : pour résoudre ce problème, nous
avons utilisé, lorsqu’elles étaient disponibles, les informations sémantiques
du code source pour guider la génération des arguments.

Dans la continuité, il est nécessaire de simuler autant que possible un
système réel qui se rapproche le plus de celui attaqué par les applications
malveillantes. Pour cette raison, nous avons automatisé et simulé le com-
portement naturel de l’utilisateur, en interagissant automatiquement avec
le smartphone et en effectuant certaines tâches qui sont normalement réal-
isées par l’utilisateur. Ce système, après avoir identifié la surface d’attaque,
extrait les API à analyser et collecté les informations sémantiques liées aux
arguments, procède à un test automatique de chacune des API pendant
que le smartphone est stimulé, et collecte et analyse la valeur de retour de
chaque invocation à la recherche de tout signal qui pourrait permettre de
déduire l’état d’une application.

Nous avons testé notre outil sur 3 versions d’Android (8.1, 9 et 10) et
nous avons pu identifier 18 nouvelles vulnérabilités qui pourraient être util-
isées par des logiciels malveillants pour monter des attaques de phishing sur
ces versions du système. Une analyse plus approfondie de ces vulnérabilités
a confirmé que la couche cachée des API que nous avons identifiée en définis-
sant la surface d’attaque correcte à analyser, s’est avérée être la source de
nombreuses vulnérabilités. En effet, près de 40% (7) de ces vulnérabilités
se situaient précisément dans cette couche, jamais analysée. La dangerosité
des API vulnérables que nous avons identifiées réside dans le fait que, pour 6
d’entre elles, le malware n’a pas besoin de demander la moindre permission
à l’utilisateur, ce qui permet de monter cette attaque de manière totalement
inaperçue.

196 196

A.3.2 Détection des attaques par inférence d’état

La deuxième direction que nous avons explorée est la création d’un sys-
tème de détection à utiliser dans le smartphone pour identifier ces attaques
lorsqu’elles se produisent. Nous pensons que l’identification automatique
des API qui rendent le système vulnérable aux attaques par inférence d’état
est un bon premier pas vers l’éradication de ce problème.

Nous devons cependant reconnaître que le cadre présenté précédemment,
basé sur une combinaison de techniques d’analyse statique et dynamique,
est malheureusement soumis aux limites intrinsèques de ces techniques. Le
risque de ne pas identifier une API comme vulnérable est donc malheureuse-
ment présent, et donc être capable de bloquer les attaques devient d’une
importance fondamentale pour garantir la sécurité du système et des appli-
cations.

Pour protéger les utilisateurs des vulnérabilités inconnues, nous avons
étudié la faisabilité d’un composant supplémentaire, qui se veut être un sys-
tème de défense et de détection à l’exécution pour identifier les attaques par
inférence d’état au moment où elles sont exploitées. Le système que nous
envisageons est basé sur l’hypothèse clé que de simples “comportements de
sondage” peuvent être utilisés comme un signal fort d’une attaque poten-
tielle, indépendamment d’autres facteurs. En fait, tous les logiciels malveil-
lants existants exploitant les attaques par inférence d’état doivent mettre en
œuvre des comportements de sondage. Par ce terme, nous faisons référence à
une application invoquant plusieurs fois un ensemble d’API dans une courte
fenêtre de temps. Les logiciels malveillants qui montent le phishing doivent
utiliser le polling pour s’assurer qu’ils peuvent courir après l’application
cible et faire apparaître leur interface utilisateur usurpée au bon moment.

Notre étude, réalisée sur un ensemble de données contenant des échan-
tillons de toutes les familles de logiciels malveillants Android découverts au
cours des quatre dernières années et connus pour monter des attaques par
inférence d’état, a confirmé que tous les logiciels malveillants interrogent
avec un délai allant de 600 ms à une seconde, et qu’un logiciel malveillant
ne cesse jamais ce comportement une fois qu’il est lancé. Malheureusement,
l’analyse du comportement des logiciels malveillants ne suffit pas à garan-
tir que l’interrogation est un indicateur suffisant. Afin de disposer d’un
système utilisable, il est nécessaire de vérifier que les applications bénignes
ont rarement recours à l’interrogation et que, lorsqu’elles le font, la na-
ture de leurs comportements est différente de celle des logiciels malveillants.
Ainsi, nous caractérisons si et comment les applications bénignes ont un
comportement de type polling, et s’il existe des caractéristiques qui peuvent
être utilisées pour les distinguer des tentatives malveillantes : cette étude

A.4. Sécuriser la couche du Fabricant 197

est réalisée sur un ensemble de données de 10,108 applications bénignes.
L’ensemble de données a été divisé en un ensemble d’entraînement (20% des
applications) et un ensemble de test (les 80% restants). Nous avons exécuté
chaque application de l’ensemble d’entraînement pendant cinq minutes en
recherchant des comportements d’interrogation à une fréquence deux fois
plus faible que le taux de fréquence minimum auquel les logiciels malveil-
lants effectuent des activités d’interrogation. Les résultats montrent, à pre-
mière vue, qu’un nombre important d’applications qui ont exposé un com-
portement d’interrogation similaire à celui du logiciel malveillant. Cepen-
dant, nous avons remarqué que dans tous ces cas, l’interrogation est effec-
tuée par un autre composant “pour le compte de l’application,” c’est-à-dire
que même si la logique d’interrogation n’est pas directement implémentée
dans l’application, elle est toujours liée au contexte de l’application puisque
le composant utilise l’identité de l’application pour les invocations suiv-
antes. Ces cas, qui sont toutefois limités et mis en œuvre dans des sous-
systèmes bien définis, tels que ceux liés aux graphiques, ne constituent pas
une source de vulnérabilité et, par conséquent, après une analyse minu-
tieuse et manuelle, nous avons décidé de ne pas les considérer comme
des “comportements suspects.” De plus, nous avons également remarqué
que les applications bénignes présentent un pic des activités effectuées au
début de l’application, mais que l’interaction avec les services du système
diminue avec le temps. Nous notons que cette caractéristique est profondé-
ment différente du comportement des logiciels malveillants d’attaque par in-
férence d’état, c’est-à-dire qu’une fois que le comportement d’interrogation
est lancé, il ne s’arrête jamais.

Le système que nous avons utilisé pour surveiller le comportement des
applications malveillantes et bénignes, et le système que nous avons utilisé
pour identifier les sondages au sein des applications bénignes, ont fourni la
base du système de défense que nous avons mis en œuvre sous forme de pro-
totype sur AOSP, qui s’est avéré efficace en termes d’efficacité, en identifiant
correctement tous les logiciels malveillants, et de convivialité, car le nombre
de faux positifs sur l’ensemble de test était minime (les 0,37% consistant en
30 applications) et l’overhead était négligeable. L’importance de ce système
réside dans l’avantage de pouvoir détecter les tentatives d’exploitation même
lorsque l’API exploitée n’est pas connue pour être vulnérable à l’avance.

A.4 Sécuriser la couche du Fabricant

Ce chapitre est basé sur la publication “Trust, But Verify: A Longitu-

dinal Analysis Of Android OEM Compliance and Customization” [ASDY21].

198 198

Aujourd’hui, plus de deux milliards d’appareils mobiles fonctionnent
sous Android OS. Au cœur de ce succès se trouvent la nature open source du
Android Open Source Project et la capacité des fabricants à personnaliser
la base de code et à l’expédier sur leurs propres appareils. L’ouverture et la
flexibilité de l’AOSP ont été un facteur déterminant du grand succès de la
plate-forme, qui a été adoptée par un grand nombre de fabricants qui com-
mercialisent des appareils. Cela a donné lieu à une multitude de variantes
différentes, un aspect connu sous le nom de “fragmentation.”

Si la possibilité de personnalisation est bénéfique pour les fabricants, elle
peut potentiellement conduire à des problèmes de compatibilité et de sécu-
rité. En particulier, nous pouvons identifier deux catégories de problèmes
de sécurité.

La première est que ces personnalisations peuvent affecter la sécurité du
système global (par exemple, en rendant vains les efforts de durcissement de
Google), augmenter la surface d’attaque et, dans certains cas, même intro-
duire de nouvelles failles de sécurité. La deuxième catégorie de problèmes
peut provenir des composants réels qui sont affectés par les personnalisations
des OEM. En effet, les personnalisations qui modifient les composants essen-
tiels du système d’exploitation Android peuvent entraîner des problèmes de
compatibilité et des retards dans l’application des correctifs de sécurité, tels
que ceux publiés dans le cadre des bulletins de sécurité mensuels d’Android.

Pour éviter ces problèmes, Google a travaillé dans deux directions par-
allèles et a développé un ensemble d’exigences qui doivent être satisfaites
pour qu’un fabricant puisse marquer ses appareils comme “Android.” La
première est la conformité : alors que l’AOSP est un projet open source
et peut donc être librement modifié, un équipementier qui souhaite ap-
poser le label “Android” (qui est une marque de Google) sur ses appareils
doit suivre un ensemble de règles bien définies. Le deuxième effort mené
par Google pour contrer les répercussions sur la sécurité introduites par
les personnalisations des OEM est le projet Treble, une réarchitecture du
système d’exploitation Android. Cette réorganisation vise à séparer les com-
posants spécifiques aux fabricants (par exemple, les pilotes pour des jeux
de puces spécifiques et d’autres personnalisations) du cadre principal du
système d’exploitation Android. La raison d’être de ce changement est de
permettre aux OEM d’appliquer plus facilement des correctifs (de sécurité)
à leurs AOSP personnalisés. Cependant, ce n’est pas parce qu’il existe des
règles définies à suivre et à respecter qu’elles seront effectivement observées.
Il est donc nécessaire de vérifier que les équipementiers respectent effective-
ment cet ensemble de règles imposées par Google.

A.4. Sécuriser la couche du Fabricant 199

D’un point de vue général, notre analyse se concentre sur deux aspects
clés : le premier consiste à déterminer si un OEM donné respecte les diverses
réglementations imposées aux appareils Android (par exemple, CDD, CTS,
VTS), et le second à déterminer si et comment les diverses personnalisations
de l’OEM affectent la posture de sécurité de l’ensemble de l’OEM. Pour
étudier ces deux aspects, nous avons mené une analyse longitudinale et à
grande échelle sur un ensemble de données de 2,907 ROMs publiées entre
2009 et 2020 et couvrant les ROMs de la version 2.3 à la version 9.0
d’Android, provenant de 42 OEM différents. Le pipeline d’analyse que nous
avons développé nous permet de comparer une ROMmodifiée avec la version
AOSP de départ. Ce cadre nous permet donc d’effectuer de nombreuses
analyses différentielles sur des composants communs et modifiés, mais aussi
d’identifier et d’effectuer une analyse plus approfondie uniquement sur les
composants insérés éventuellement par un fabricant.

A.4.1 Conformité : Analyse et résultats

Pour être compatible avec Android, un appareil doit répondre aux exi-
gences présentées dans le document de définition de la compatibilité An-
droid (CDD). D’un point de vue pratique, le CDD est une série d’exigences
techniques et non techniques spécifiées en langage naturel. Chacune de ces
exigences est assortie d’un label qui indique si elle doit être adoptée, si
son adoption est fortement recommandée ou si elle est simplement recom-
mandée. Pour vérifier si les équipementiers respectent ces règles, nous avons
analysé tous les CDD publiés de la version 1.6 à la version 9.0 d’Android, et
extrait toutes les règles relatives aux paramètres de sécurité qu’un fabricant
doit, ou devrait, respecter. Ainsi, l’analyse effectuée dans cette phase ne
compare pas les ROMs des fabricants avec les ROMs AOSP originales, mais
extrait plutôt les configurations nécessaires des ROMs, et les compare aux
règles définies dans les CDD.

Par ordre d’apparition, la première exigence de durcissement du système
a été introduite dans le CDD d’Android 4.3, où Google a annoncé la prise
en charge de SELinux pour les appareils Android. Par conséquent, toutes
les ROMs basées sur Android 4.3+ doivent supporter et implémenter le
contrôle d’accès obligatoire SELinux. Ensuite, à partir d’Android 7, la sec-
tion Compatibilité des modèles de sécurité s’est principalement concentrée
sur les options de configuration du noyau. Étonnamment, les exigences de
sécurité du CDD ne mentionnent pas le durcissement de l’espace utilisateur
avant Android 9, et la seule exigence de durcissement de l’espace utilisateur
n’est définie que comme fortement recommandée.

Comme il est possible de le constater, il n’y a que trois domaines dans

200 200

lesquels la CDD définit des règles, à savoir le noyau, les politiques SELinux
et certaines configurations binaires de l’espace utilisateur : notre analyse
se concentre donc sur ces trois aspects. En ce qui concerne les noyaux,
notre analyse basée sur la configuration et la récupération des symboles du
binaire du noyau, a identifié que 7,9% (190 sur 2,396) des noyaux (de 10
fabricants différents) violent la CDD pour leur version spécifique d’Android
car ils ne mettent pas en œuvre une ou plusieurs exigences de sécurité obli-
gatoires. Parmi ceux-ci, 162 sont utilisés dans des ROMs ré-architecturées
avec Project Treble, ciblant ainsi une version d’Android supérieure ou égale
à 8.0. La violation la plus courante, trouvée sur 150 noyaux, concerne
l’absence de protections de la mémoire du noyau visant à marquer les ré-
gions et sections de mémoire sensibles en lecture seule ou non exécutables.
Nous avons également identifié que 10% (241 sur 2,396) des noyaux (de 10
fabricants) n’implémentent pas une ou plusieurs fonctionnalités fortement
recommandées. Cette fois, nous avons remarqué que 160 fabricants n’ont
pas activé la randomisation de l’espace d’adressage du noyau.

Pour chaque version d’Android qui prend en charge SELinux, l’AOSP
fournit une politique standard que les fabricants peuvent utiliser comme
base pour construire et personnaliser leur politique SELinux. L’analyse, ef-
fectuée sur 1,817 ROM qui définissent une politique SELinux, a montré que
7% (108 ROM) violent la spécification CDD pour leur version Android cor-
respondante car ils définissent toujours un ou plusieurs domaines permissifs.
Nous avons constaté que cette violation était répartie entre 16 fabricants dif-
férents. Sur les 1,817 ROM, 1,533 ciblent Android supérieur ou égal à 5 et
29% d’entre elles (443) violent la spécification CDD en définissant une ou
plusieurs règles contrairement aux règles par défaut neverallow.

La dernière catégorie de durcissement du système définie par Google
est liée aux binaires de l’espace utilisateur. Comme indiqué précédemment,
les exigences relatives aux binaires n’ont été introduites que dans Android
9, et jusqu’à présent, elles ne couvrent que deux aspects : Control Flow
Integrity (CFI) et Integer Overflow Sanitization (IntSan). Comme ces deux
mécanismes de défense ont été introduits dans le CDD d’Android 9, nous
n’avons considéré que les 196 ROMs dont le SDK est supérieur ou égal à
28. Parmi elles, 85 (43,37%) contenaient au moins un binaire désactivant
CFI et 104 (53,06%) contenaient au moins un binaire désactivant IntSan.
Dans ces cas, six fabricants uniques ont réduit la sécurité d’un binaire, par
rapport à l’AOSP, violant ainsi la recommandation du CDD.

Les résultats de cette première analyse montrent que l’ensemble actuel
de réglementations et de contrôles est clairement insuffisant.

A.4. Sécuriser la couche du Fabricant 201

A.4.2 Personnalisation : Analyse et résultats

L’analyse des dangers et des répercussions des personnalisations sur la sécu-
rité du système étant un vaste sujet, nous avons décidé d’étudier des aspects
spécifiques qui opèrent à différents niveaux et privilèges. Ainsi, dans cette
analyse, nous avons pris en compte les binaires en espace utilisateur, les con-
figurations des scripts “init”, et enfin, les modifications des règles SELinux.
Il est important de souligner que cette analyse ne vise pas à identifier les
violations des règles définies par Google, mais plutôt à mesurer combien et
quelles sont les modifications qui peuvent potentiellement impacter, posi-
tivement ou négativement, la sécurité d’un système.

A ce stade, notre analyse porte sur deux aspects. Le premier, qui est
basé sur l’analyse différentielle, compare les modifications apportées aux
composants déjà présents dans l’AOSP. Le second, en revanche, est lié à
l’analyse des nouveaux composants ajoutés par le fabricant. En ce qui
concerne les personnalisations sur les bibliothèques binaires livrées dans une
ROM, notre analyse montre une tendance presque constante d’environ 80
nouvelles fonctions ajoutées à 20% des bibliothèques système, rendant ainsi
vains les efforts de Project Treble. De plus, cette analyse a également mis en
évidence le fait que les fabricants utilisent encore des fonctions anciennes et
dépréciées de l’AOSP, probablement parce que leur code hérité en dépend
encore. Cela pose un sérieux problème de sécurité car l’utilisation d’une
fonction qui n’est plus maintenue dans l’AOSP ne reçoit aucun correctif
de sécurité ni aucune vérification. Nous avons cependant réalisé que les
modifications apportées aux composants binaires du système ne se limitent
pas seulement au code, mais affectent également la façon dont il est compilé
et distribué. Une analyse systématique des protections introduites par les
compilateurs nous a permis d’identifier plusieurs problèmes : par exemple,
bien que les canaris de pile soient parmi les plus anciennes fonctionnalités de
sécurité présentées dans Android, environ 40% des binaires des fabricants
sont dépourvus de cette fonctionnalité de base. Il en va de même pour
l’adoption des mécanismes No-Execute (NX) et Full RELocation Read-Only
(RELRO). Bien que ces mesures d’atténuation soient largement utilisées
par l’AOSP pour renforcer ses binaires, nous avons remarqué que, parmi les
binaires introduits par les fabricants, ces mécanismes de défense ne sont pas
très répandus.

Le système d’exploitation Android s’appuie sur un système de script
pour lancer les binaires et les services au démarrage. Malheureusement, ce
composant a fait l’objet de nombreux problèmes de sécurité dans le passé,
dans de nombreux cas, en raison de personnalisations introduites par les
fabricants. L’analyse relative aux scripts “init” a révélé plusieurs tendances

202 202

inquiétantes de la part des fabricants. Nos résultats montrent comment,
au fil des ans, les fabricants ont toujours apporté des changements consid-
érables aux scripts init et, en particulier, comment le nombre total de ser-
vices nouvellement définis est en constante augmentation—certaines ROMs
définissant près de 250 services supplémentaires par rapport à l’AOSP. Pour
exprimer cela en termes de chiffres absolus, par exemple, un AOSP 8.0 (SDK
26) avait, en moyenne, 59 services définis dans le script init, alors qu’une
ROM moyenne en avait 90, avec un pic de fabricants définissant 195 services
supplémentaires. De plus, le nombre étonnant de services qui sont lancés
avec des privileges “root” rend la situation encore pire puisqu’une surface
d’attaque importante sur-privilégiée est exposée, et les fabricants violent
probablement le principe du moindre privilège.

La même tendance qui affecte les scripts init affecte également SELinux.
Nous identifions trois grands types de personnalisation : le premier concerne
les règles qui modifient une règle préexistante pour étendre les permissions
et les opérations autorisées sur une ressource donnée. Le second consiste
en des règles qui modifient un domaine de politique de base existant mais
juste en l’étendant pour supporter de nouvelles ressources introduites par le
fabricant, et enfin, des règles qui sont complètement nouvelles et qui opèrent
sur des domaines et des ressources qui ne sont pas présents dans la politique
AOSP originale. Parmi les différents changements identifiés, nous avons
remarqué que certains fabricants étaient particulièrement agressifs dans le
nombre de nouvelles règles ajoutées au système. Nous avons remarqué, par
exemple, que la politique SELinux du SDK 27 contenait en moyenne 10,000
règles, mais que certains fabricants ont défini une politique contenant plus de
232,000 règles (c’est-à-dire une augmentation de plus de 20 fois). Compte
tenu de la sensibilité de ce composant, du fait que même Google, en gérant
les règles les plus restrictives pour l’AOSP, commet des erreurs, et du fait
qu’au fil des ans, une seule règle erronée a suffi à compromettre l’intégrité
d’un appareil en réintroduisant un bogue, il est difficile de croire que des
règles 20 fois plus nombreuses sont exemptes de vulnérabilité.

Les résultats et les perspectives de cette analyse montrent qu’il existe
encore plusieurs domaines de personnalisation qui, même s’ils ne violent
aucune exigence stricte, sont à l’origine de graves problèmes de sécurité.
Bien que le CDD soit un excellent point de départ, nous pensons qu’il devrait
être considérablement étendu pour empêcher les fabricants de personnaliser
leurs ROMs d’une manière qui va à l’encontre de nombreuses pratiques et
principes de sécurité bien établis.

A.5. Conclusion 203

A.5 Conclusion

Dans cette thèse, j’ai voulu montrer comment l’écosystème complexe
d’Android fait face à de nombreux défis concernant sa sécurité. Cette
analyse multidimensionnelle nous a permis de comprendre comment les dif-
férents acteurs, contribuant à cet écosystème, voient et abordent la sécurité
de manière significativement différente. Dans cette thèse, nous avons com-
mencé par montrer comment la sécurisation des connexions réseau reste
un problème ouvert pour les applications Android, et nous avons proposé
une amélioration du nouveau mécanisme de défense Network Security Pol-
icy, qui, nous l’espérons, permettra une plus grande sécurité et une utili-
sation plus répandue. Ce parcours s’est poursuivi par l’analyse d’un autre
problème qui affecte l’écosystème depuis les premières versions, à savoir le
phishing. J’ai abordé cette question de deux manières complémentaires.
La première visait à identifier, dans la phase de développement, les bogues
utilisés par les attaquants pour monter cette attaque, et la seconde visait à
détecter les attaques sur l’appareil au moment où elles se produisent. Ces
deux approches se sont avérées prometteuses, et nous ont permis de trouver
de nouvelles vulnérabilités et de bloquer, sur l’appareil, tous les malwares
connus utilisant cette attaque. J’ai voulu conclure cette thèse par l’étude de
ce qui est peut-être le plus gros problème qui représente le mieux l’ampleur
de cet écosystème: la fragmentation. Avec cette étude, nous avons enfin
mesuré l’impact sur la sécurité des changements apportés par les différents
fabricants au fil des années, montrant que, dans la plupart des cas, ceux-ci
ont un impact négatif sur la posture de sécurité du système.

Cette thèse doit toutefois être considérée comme un point de départ :
nous espérons en effet avoir posé les bases permettant à d’autres chercheurs
d’approfondir, d’étendre et d’améliorer nos idées. Nous espérons voir,
à l’avenir, le développement d’outils qui permettent au développeur de
vérifier la configuration de sa “Network Security Policy,” ou que nous
pourrons obtenir d’avoir une sandbox plus restreinte qui isole l’exécution
du code reçu via HTTP et réduit ses capacités. En outre, nous espérons que
les nouvelles approches et techniques de “Software Testing” pourront être
utilisées pour trouver des vulnérabilités supplémentaires qui permettent
aux logiciels malveillants sur Android d’exécuter des attaques de phishing,
ou pour tester, de manière automatisée, si les changements de code effectués
par un fabricant introduisent des vulnérabilités. Nous espérons que cette
thèse pourra servir de base à ces futurs travaux.

J’espère que cette thèse aura fait progresser, ne serait-ce que légèrement, la

204 204

sécurité de l’écosystème Android, qu’elle aura fourni des indications utiles
pour accélérer l’adoption du HTTPS partout sur les applications Android,
qu’elle aura permis d’avancer dans l’effort de Google pour éradiquer le prob-
lème du phishing, et qu’elle aura inspiré de futurs travaux et analyses dans
le domaine important des personnalisations OEM.

References

[52808] RFC 5280. Internet X.509 Public Key Infrastructure Certifi-
cate and Certificate Revocation List (CRL). http://tools.ietf.
org/html/rfc5280, 2008. Accessed: October 13, 2021.

[Ach16] Jagdish Prasad Achara. Unveiling and Controlling Online

Tracking. (Traçage en ligne : démystification et contrôle). PhD
thesis, Grenoble Alpes University, France, 2016.

[AD] Official Documentation Android Developers. Android Manifest
application. https://developer.android.com/guide/topics/

manifest/application-element.html?#usesCleartextTraffic.
2019, Accessed: June, 2020.

[AD16] Official Documentation Android Developers. Net-
workSecurityPolicy isCleartextTrafficPermitted, API.
https://developer.android.com/reference/android/security/

NetworkSecurityPolicy.html#isCleartextTrafficPermitted(),
2016. Accessed: October 13, 2021.

[AD19] Official Documentation Android Developers. Network secu-
rity configuration. https://developer.android.com/training/

articles/security-config, 2019. Accessed: October 13, 2021.

[AD20] Platform Documentation Android Developers. Android 8.0
Behavior Changes. https://developer.android.com/about/

versions/oreo/android-8.0-changes, 2020. Accessed: Octo-
ber 13, 2021.

[Ada21] Alexandre Adamski. A Samsung RKP Compendium. https:

//blog.longterm.io/samsung_rkp.html, 2021. Accessed: Oc-
tober 13, 2021.

205

http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
https://developer.android.com/guide/topics/manifest/application-element.html?#usesCleartextTraffic
https://developer.android.com/guide/topics/manifest/application-element.html?#usesCleartextTraffic
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted()
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted()
https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://blog.longterm.io/samsung_rkp.html
https://blog.longterm.io/samsung_rkp.html

206 206

[Adk11] Heather Adkins. An update on attempted man-in-the-middle
attacks. https://security.googleblog.com/2011/08/update-

on-attempted-man-in-middle.html, 2011. Accessed: October
13, 2021.

[ads21] Choose a monetization model for your app. https://developer.
android.com/distribute/best-practices/earn/monetization-

options, 2021. Accessed October 13, 2021.

[ADY21] Possemato Andrea, Nisi Dario, and Fratantonio Yanick. Pre-
venting and detecting state inference attacks on android. In
Network and Distributed System Security Symposium. Network
& Distributed System Security Symposium, February 2021.

[AGoAR17] HCL Technologies Alon Galili of Aleph Research. Cordova-
Android MiTM Remote Code Execution, CVE-2017-3160.
https://alephsecurity.com/vulns/aleph-2017013, 2017. Ac-
cessed: October 13, 2021.

[Ale16] Klyubin Alex. An Update on Android TLS Adop-
tion. https://security.googleblog.com/2016/04/protecting-

against-unintentional.html, 2016. Accessed: October 13,
2021.

[And11] AndroidRank. AndroidRank, open android market data since
2011. https://www.androidrank.org, 2011. Accessed: October
13, 2021.

[and20a] Android compatibility definition document. https://source.

android.com/compatibility/cdd, 2020. Accessed October 13,
2021.

[and20b] Android Init Language. https://android.googlesource.com/

platform/system/core/+/master/init/README.md, 2020.
Accessed October 13, 2021.

[and20c] Android ONE. https://www.android.com/one/, 2020. Ac-
cessed October 13, 2021.

[and21] Android Codenames, Tags, and Build Numbers. https:

//source.android.com/setup/start/build-numbers#source-

code-tags-and-builds, 2021. Accessed October 13, 2021.

https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://developer.android.com/distribute/best-practices/earn/monetization-options
https://developer.android.com/distribute/best-practices/earn/monetization-options
https://developer.android.com/distribute/best-practices/earn/monetization-options
https://alephsecurity.com/vulns/aleph-2017013
https://security.googleblog.com/2016/04/protecting-against-unintentional.html
https://security.googleblog.com/2016/04/protecting-against-unintentional.html
https://source.android.com/compatibility/cdd
https://source.android.com/compatibility/cdd
https://android.googlesource.com/platform/system/core/+/master/init/README.md
https://android.googlesource.com/platform/system/core/+/master/init/README.md
https://www.android.com/one/
https://source.android.com/setup/start/build-numbers#source-code-tags-and-builds
https://source.android.com/setup/start/build-numbers#source-code-tags-and-builds
https://source.android.com/setup/start/build-numbers#source-code-tags-and-builds

References 207

[ant20] Verifying Boot - Rollback protection. https://source.android.
com/security/verifiedboot/verified-boot, 2020. Accessed Oc-
tober 13, 2021.

[AP17] Efthimios Alepis and Constantinos Patsakis. Trapped by the
UI: the android case. In Marc Dacier, Michael Bailey, Michalis
Polychronakis, and Manos Antonakakis, editors, Research in

Attacks, Intrusions, and Defenses - 20th International Sympo-

sium, RAID 2017, Atlanta, GA, USA, September 18-20, 2017,

Proceedings, volume 10453 of Lecture Notes in Computer Sci-

ence, pages 334–354. Springer, 2017.

[App11a] AppBrain. AppBrain: Monetize, advertise and analyze An-
droid apps. Ad Networks. https://www.appbrain.com/stats/

libraries/ad-networks, 2011. Accessed: October 13, 2021.

[App11b] AppBrain. AppBrain: Monetize, advertise and analyze
Android apps. Network Libraries. https://www.appbrain.

com/stats/libraries/tag/network/android-network-libraries,
2011. Accessed: October 13, 2021.

[ASDY21] Possemato Andrea, Aonzo Simone, Balzarotti Davide, and
Fratantonio Yanick. Trust, but verify: A longitudinal anal-
ysis of android oem compliance and customization. In IEEE

Symposium on Security & Privacy. IEEE Computer Society,
May 2021.

[ATH+18] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang,
and Ninghui Li. Precise android API protection mapping
derivation and reasoning. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Commu-

nications Security, CCS 2018, Toronto, ON, Canada, October

15-19, 2018, pages 1151–1164. ACM, 2018.

[AZD16] Yousra Aafer, Xiao Zhang, and Wenliang Du. Harvesting in-
consistent security configurations in custom android roms via
differential analysis. In Thorsten Holz and Stefan Savage, ed-
itors, 25th USENIX Security Symposium, USENIX Security

16, Austin, TX, USA, August 10-12, 2016, pages 1153–1168.
USENIX Association, 2016.

https://source.android.com/security/verifiedboot/verified-boot
https://source.android.com/security/verifiedboot/verified-boot
https://www.appbrain.com/stats/libraries/ad-networks
https://www.appbrain.com/stats/libraries/ad-networks
https://www.appbrain.com/stats/libraries/tag/network/android-network-libraries
https://www.appbrain.com/stats/libraries/tag/network/android-network-libraries

208 208

[AZHL12] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David
Lie. Pscout: analyzing the android permission specification.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, the
ACM Conference on Computer and Communications Security,

CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 217–
228. ACM, 2012.

[BBD16a] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-
party library detection in android and its security applica-
tions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, Vienna, Austria, October 24-

28, 2016, pages 356–367. ACM, 2016.

[BBD+16b] Michael Backes, Sven Bugiel, Erik Derr, Patrick D. McDaniel,
Damien Octeau, and Sebastian Weisgerber. On demystifying
the android application framework: Re-visiting android per-
mission specification analysis. In Thorsten Holz and Stefan
Savage, editors, 25th USENIX Security Symposium, USENIX

Security 16, Austin, TX, USA, August 10-12, 2016, pages 1101–
1118. USENIX Association, 2016.

[BCI+15] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick
Fratantonio, Christopher Kruegel, and Giovanni Vigna. What
the app is that? deception and countermeasures in the android
user interface. In 2015 IEEE Symposium on Security and Pri-

vacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages
931–948. IEEE Computer Society, 2015.

[Bel20] Maxime Rossi Bellom. CVE-2020-0069: Autopsy of the Most
Stable MediaTek Rootkit. https://blog.quarkslab.com/cve-

2020-0069-autopsy-of-the-most-stable-mediatek-

rootkit.html, 2020. Accessed: October 13, 2021.

[BHMW16] Damjan Buhov, Markus Huber, Georg Merzdovnik, and
Edgar R. Weippl. Pin it! improving android network security
at runtime. In 2016 IFIP Networking Conference, Networking

2016 and Workshops, Vienna, Austria, May 17-19, 2016, pages
297–305. IEEE Computer Society, 2016.

https://blog.quarkslab.com/cve-2020-0069-autopsy-of-the-most-stable-mediatek-rootkit.html
https://blog.quarkslab.com/cve-2020-0069-autopsy-of-the-most-stable-mediatek-rootkit.html
https://blog.quarkslab.com/cve-2020-0069-autopsy-of-the-most-stable-mediatek-rootkit.html

References 209

[bK21] SecureList by Kaspersky. Mobile malware evolution
2020. https://securelist.com/mobile-malware-evolution-

2020/101029/, 2021. Accessed: October 13, 2021.

[BPW13] Theodore Book, Adam Pridgen, and Dan S. Wallach. Lon-
gitudinal analysis of android ad library permissions. CoRR,
abs/1303.0857, 2013.

[Bro16] Broadcom. Android malware finds new ways
to derive current running tasks. https://

community.broadcom.com/symantecenterprise/

communities/community-home/librarydocuments/

viewdocument?DocumentKey=d3231e0f-67a0-4b31-8adb-

4247ca23243d&CommunityKey=1ecf5f55-9545-44d6-

b0f4-4e4a7f5f5e68&tab=librarydocuments, 2016. Accessed:
October 13, 2021.

[Bru16] Chad Brubaker. Changes to Trusted Certificate Authorities
in Android Nougat. https://android-developers.googleblog.

com/2016/07/changes-to-trusted-certificate.html, 2016.
Accessed: October 13, 2021.

[Cim19] Catalin Cimpanu. Over 58,000 Android users
had stalkerware installed on their phones last year.
https://www.zdnet.com/article/over-58000-android-users-

had-stalkerware-installed-on-their-phones-last-year/, 2019.
Accessed: October 13, 2021.

[CK18] Hyunwoo Choi and Yongdae Kim. Large-scale analysis of re-
mote code injection attacks in android apps. Secur. Commun.

Networks, 2018:2489214:1–2489214:17, 2018.

[con20] MDM contributors. Web technology for developers: Strict-
Transport-Security. https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Strict-Transport-Security,
2020. Accessed: October 13, 2021.

[cor20] Core Kernel Requirements. https://source.android.com/

devices/architecture/kernel/core-kernel-reqs, 2020. Ac-
cessed October 13, 2021.

[CQM14] Qi Alfred Chen, Zhiyun Qian, and Zhuoqing Morley Mao. Peek-
ing into your app without actually seeing it: UI state inference

https://securelist.com/mobile-malware-evolution-2020/101029/
https://securelist.com/mobile-malware-evolution-2020/101029/
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=d3231e0f-67a0-4b31-8adb-4247ca23243d&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=d3231e0f-67a0-4b31-8adb-4247ca23243d&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=d3231e0f-67a0-4b31-8adb-4247ca23243d&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=d3231e0f-67a0-4b31-8adb-4247ca23243d&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=d3231e0f-67a0-4b31-8adb-4247ca23243d&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=d3231e0f-67a0-4b31-8adb-4247ca23243d&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://www.zdnet.com/article/over-58000-android-users-had-stalkerware-installed-on-their-phones-last-year/
https://www.zdnet.com/article/over-58000-android-users-had-stalkerware-installed-on-their-phones-last-year/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://source.android.com/devices/architecture/kernel/core-kernel-reqs
https://source.android.com/devices/architecture/kernel/core-kernel-reqs

210 210

and novel android attacks. In Kevin Fu and Jaeyeon Jung,
editors, Proceedings of the 23rd USENIX Security Symposium,

San Diego, CA, USA, August 20-22, 2014, pages 1037–1052.
USENIX Association, 2014.

[cra18] OATmeal on the Universal Cereal Bus: Exploiting Android
phones over USB. https://googleprojectzero.blogspot.com/

2018/09/oatmeal-on-universal-cereal-bus.html, 2018. Ac-
cessed October 13, 2021.

[cts11] Add Test to Verify NX is Enabled. https://android-review.

googlesource.com/c/platform/cts/+/21776, 2011. Accessed
October 13, 2021.

[Cut19] Stephanie Cuthbertson. Sharing what’s new in Android
Q. https://www.blog.google/products/android/android-q-

io/, 2019. Accessed October 13, 2021.

[cve18] CVE-2018-9488. https://nvd.nist.gov/vuln/detail/CVE-

2018-9488, 2018. Accessed October 13, 2021.

[CWS14] Brett Cooley, Haining Wang, and Angelos Stavrou. Activity
spoofing and its defense in android smartphones. In Ioana
Boureanu, Philippe Owesarski, and Serge Vaudenay, editors,
Applied Cryptography and Network Security - 12th Interna-

tional Conference, ACNS 2014, Lausanne, Switzerland, June

10-13, 2014. Proceedings, volume 8479 of Lecture Notes in Com-

puter Science, pages 494–512. Springer, 2014.

[Dat16] DataTheorem. TrustKit Android: Easy SSL pinning validation
and reporting for Android. https://github.com/datatheorem/

TrustKit-Android, 2016. Accessed: October 13, 2021.

[Dav17] Corbin Davenport. Google will remove Play Store apps that
use Accessibility Services for anything except helping disabled
users. https://www.androidpolice.com/2017/11/12/google-

will-remove-play-store-apps-use-accessibility-services-

anything-except-helping-disabled-users/, 2017. Accessed:
October 13, 2021.

[Det18] CVE Details. Xiaomi Stock Browser: content provider injec-
tion. https://www.cvedetails.com/cve/CVE-2018-20523/,
2018. Accessed: October 13, 2021.

https://googleprojectzero.blogspot.com/2018/09/oatmeal-on-universal-cereal-bus.html
https://googleprojectzero.blogspot.com/2018/09/oatmeal-on-universal-cereal-bus.html
https://android-review.googlesource.com/c/platform/cts/+/21776
https://android-review.googlesource.com/c/platform/cts/+/21776
https://www.blog.google/products/android/android-q-io/
https://www.blog.google/products/android/android-q-io/
https://nvd.nist.gov/vuln/detail/CVE-2018-9488
https://nvd.nist.gov/vuln/detail/CVE-2018-9488
https://github.com/datatheorem/TrustKit-Android
https://github.com/datatheorem/TrustKit-Android
https://www.androidpolice.com/2017/11/12/google-will-remove-play-store-apps-use-accessibility-services-anything-except-helping-disabled-users/
https://www.androidpolice.com/2017/11/12/google-will-remove-play-store-apps-use-accessibility-services-anything-except-helping-disabled-users/
https://www.androidpolice.com/2017/11/12/google-will-remove-play-store-apps-use-accessibility-services-anything-except-helping-disabled-users/
https://www.cvedetails.com/cve/CVE-2018-20523/

References 211

[Det19] CVE Details. Xiaomi Stock Browser: URL spoofind. https:

//www.cvedetails.com/cve/CVE-2019-10875/, 2019. Ac-
cessed: October 13, 2021.

[Dev16] Android Developers. Official Documentation NetworkSecu-
rityPolicy, API. https://developer.android.com/reference/

android/security/NetworkSecurityPolicy, 2016. Accessed:
October 13, 2021.

[Dev19a] Appodeal Android SDK Developer. Appodeal Android SDK.
Android SDK Integration Guide. https://wiki.appodeal.com/

en/android/2-6-4-android-sdk-integration-guide, 2019. Ac-
cessed: October 13, 2021.

[Dev19b] HeyZap Android SDK Developer. HeyZap Android SDK.
http://web.archive.org/web/20190615131844/https:

//developers.heyzap.com/docs/android_sdk_setup_and_

requirements, 2019. Accessed: October 13, 2021.

[Dev20a] MoPub SDK Developer. Integrate the MoPub SDK for An-
droid. https://developers.mopub.com/publishers/android/

get-started/, 2020. Accessed: June 2020.

[Dev20b] Android Developers. AOSP Design Architecture: Con-
scrypt. https://source.android.com/devices/architecture/

modular-system/conscrypt, 2020. Accessed: October 13,
2021.

[DMW15] Thurston H. Y. Dang, Petros Maniatis, and David A. Wagner.
The performance cost of shadow stacks and stack canaries. In
Feng Bao, Steven Miller, Jianying Zhou, and Gail-Joon Ahn,
editors, Proceedings of the 10th ACM Symposium on Informa-

tion, Computer and Communications Security, ASIA CCS ’15,

Singapore, April 14-17, 2015, pages 555–566. ACM, 2015.

[dtm15] dtmilano. AndroidViewClient. https://github.com/

dtmilano/AndroidViewClient, 2015. Accessed: October 13,
2021.

[DZJ+20] Jiarun Dai, Yuan Zhang, Zheyue Jiang, Yingtian Zhou, Jun-
yan Chen, Xinyu Xing, Xiaohan Zhang, Xin Tan, Min Yang,
and Zhemin Yang. Bscout: Direct whole patch presence test
for java executables. In Srdjan Capkun and Franziska Roesner,

https://www.cvedetails.com/cve/CVE-2019-10875/
https://www.cvedetails.com/cve/CVE-2019-10875/
https://developer.android.com/reference/android/security/NetworkSecurityPolicy
https://developer.android.com/reference/android/security/NetworkSecurityPolicy
https://wiki.appodeal.com/en/android/2-6-4-android-sdk-integration-guide
https://wiki.appodeal.com/en/android/2-6-4-android-sdk-integration-guide
http://web.archive.org/web/20190615131844/https://developers.heyzap.com/docs/android_sdk_setup_and_requirements
http://web.archive.org/web/20190615131844/https://developers.heyzap.com/docs/android_sdk_setup_and_requirements
http://web.archive.org/web/20190615131844/https://developers.heyzap.com/docs/android_sdk_setup_and_requirements
https://developers.mopub.com/publishers/android/get-started/
https://developers.mopub.com/publishers/android/get-started/
https://source.android.com/devices/architecture/modular-system/conscrypt
https://source.android.com/devices/architecture/modular-system/conscrypt
https://github.com/dtmilano/AndroidViewClient
https://github.com/dtmilano/AndroidViewClient

212 212

editors, 29th USENIX Security Symposium, USENIX Security

2020, August 12-14, 2020, pages 1147–1164. USENIX Associa-
tion, 2020.

[ext10] extract-ikconfig - Extract the .config file from a kernel
image. https://github.com/torvalds/linux/blob/master/

scripts/extract-ikconfig, 2010. Accessed October 13, 2021.

[FBX+17] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian
Stransky, Yasemin Acar, Michael Backes, and Sascha Fahl.
Stack overflow considered harmful? the impact of copy&paste
on android application security. In 2017 IEEE Symposium on

Security and Privacy, SP 2017, San Jose, CA, USA, May 22-

26, 2017, pages 121–136. IEEE Computer Society, 2017.

[FCP+16] Earlence Fernandes, Qi Alfred Chen, Justin Paupore, Georg
Essl, J. Alex Halderman, Zhuoqing Morley Mao, and Atul
Prakash. Android UI deception revisited: Attacks and defenses.
In Jens Grossklags and Bart Preneel, editors, Financial Cryp-
tography and Data Security - 20th International Conference,

FC 2016, Christ Church, Barbados, February 22-26, 2016, Re-

vised Selected Papers, volume 9603 of Lecture Notes in Com-

puter Science, pages 41–59. Springer, 2016.

[FHM+12] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew
Smith, Lars Baumgärtner, and Bernd Freisleben. Why eve and
mallory love android: an analysis of android SSL (in)security.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, the
ACM Conference on Computer and Communications Security,

CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 50–61.
ACM, 2012.

[FHP+13] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koet-
ter, and Matthew Smith. Rethinking SSL development in an
appified world. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, 2013 ACM SIGSAC Conference on

Computer and Communications Security, CCS’13, Berlin, Ger-

many, November 4-8, 2013, pages 49–60. ACM, 2013.

[fir15] Firmware file. https://firmwarefile.com/, 2015. Accessed Oc-
tober 13, 2021.

https://github.com/torvalds/linux/blob/master/scripts/extract-ikconfig
https://github.com/torvalds/linux/blob/master/scripts/extract-ikconfig
https://firmwarefile.com/

References 213

[FQCL17] Yanick Fratantonio, Chenxiong Qian, Simon P. Chung, and
Wenke Lee. Cloak and dagger: From two permissions to com-
plete control of the UI feedback loop. In 2017 IEEE Symposium

on Security and Privacy, SP 2017, San Jose, CA, USA, May

22-26, 2017, pages 1041–1057. IEEE Computer Society, 2017.

[FW11] Adrienne Felt and David Wagner. Phishing on mobile devices.
05 2011.

[GB17] Project Zero Gal Beniamini. Lifting the (Hyper) Vi-
sor: Bypassing Samsung’s Real-Time Kernel Protec-
tion. https://googleprojectzero.blogspot.com/2017/02/

lifting-hyper-visor-bypassing-samsungs.html, 2017. Ac-
cessed: October 13, 2021.

[GCY+16] Yacong Gu, Yao Cheng, Lingyun Ying, Yemian Lu, Qi Li,
and Purui Su. Exploiting android system services through
bypassing service helpers. In Robert H. Deng, Jian Weng,
Kui Ren, and Vinod Yegneswaran, editors, Security and Pri-

vacy in Communication Networks - 12th International Con-

ference, SecureComm 2016, Guangzhou, China, October 10-12,

2016, Proceedings, volume 198 of Lecture Notes of the Institute

for Computer Sciences, Social Informatics and Telecommuni-

cations Engineering, pages 44–62. Springer, 2016.

[GN19] Hogben Giles and Idika Nwokedi. Protecting against un-
intentional regressions to cleartext traffic in your Android
apps. https://android-developers.googleblog.com/2019/12/

an-update-on-android-tls-adoption.html, 2019. Accessed:
October 13, 2021.

[Goo] Google. UsageStatsManager Documentation. https:

//developer.android.com/reference/android/app/usage/

UsageStatsManager. Accessed: October 13, 2021.

[Goo12] Google. A Java serialization/deserialization library to con-
vert Java Objects into JSON and back. https://github.com/

google/gson, 2012. Accessed: October 13, 2021.

[goo21] Factory images for nexus and pixel devices. https://

developers.google.com/android/images, 2021. Accessed Oc-
tober 13, 2021.

https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://android-developers.googleblog.com/2019/12/an-update-on-android-tls-adoption.html
https://android-developers.googleblog.com/2019/12/an-update-on-android-tls-adoption.html
https://developer.android.com/reference/android/app/usage/UsageStatsManager
https://developer.android.com/reference/android/app/usage/UsageStatsManager
https://developer.android.com/reference/android/app/usage/UsageStatsManager
https://github.com/google/gson
https://github.com/google/gson
https://developers.google.com/android/images
https://developers.google.com/android/images

214 214

[GRR+20] Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan
Tapiador, and Narseo Vallina-Rodriguez. An analysis of pre-
installed android software. In 2020 IEEE Symposium on Se-

curity and Privacy, SP 2020, San Francisco, CA, USA, May

18-21, 2020, pages 1039–1055. IEEE, 2020.

[Gru19] Leonid Grustniy. What’s wrong with “legal” commer-
cial spyware. https://www.kaspersky.com/blog/stalkerware-

spouseware/26292/, 2019. Accessed: October 13, 2021.

[HTY+20] Grant Hernandez, Dave (Jing) Tian, Anurag Swarnim Yadav,
Byron J. Williams, and Kevin R. B. Butler. Bigmac: Fine-
grained policy analysis of android firmware. In Srdjan Capkun
and Franziska Roesner, editors, 29th USENIX Security Sympo-

sium, USENIX Security 2020, August 12-14, 2020, pages 271–
287. USENIX Association, 2020.

[Hua12] Huawei. Huawei EMUI. https://consumer.huawei.com/en/

emui-11/, 2012. Accessed: October 13, 2021.

[HWC14] John Hubbard, Ken Weimer, and Yu Chen. A study of SSL
proxy attacks on android and ios mobile applications. In 11th

IEEE Consumer Communications and Networking Conference,

CCNC 2014, Las Vegas, NV, USA, January 10-13, 2014, pages
86–91. IEEE, 2014.

[ICW18] Bumjin Im, Ang Chen, and Dan S. Wallach. An historical anal-
ysis of the seandroid policy evolution. In Proceedings of the

34th Annual Computer Security Applications Conference, AC-

SAC 2018, San Juan, PR, USA, December 03-07, 2018, pages
629–640. ACM, 2018.

[Jag18] Chandraiah Jagadeesh. Red Alert 2.0: Android Trojan targets
security-seekers. https://news.sophos.com/en-us/2018/07/

23/red-alert-2-0-android-trojan-targets-security-seekers/,
2018. Accessed: October 13, 2021.

[Kas16] Kaspersky. Asacub Android Trojan: From Information
Stealing to Financial Fraud. https://www.kaspersky.com/

about/press-releases/2016_asacub-android-trojan-from-

information-stealing-to-financial-fraud, 2016. Accessed:
October 13, 2021.

https://www.kaspersky.com/blog/stalkerware-spouseware/26292/
https://www.kaspersky.com/blog/stalkerware-spouseware/26292/
https://consumer.huawei.com/en/emui-11/
https://consumer.huawei.com/en/emui-11/
https://news.sophos.com/en-us/2018/07/23/red-alert-2-0-android-trojan-targets-security-seekers/
https://news.sophos.com/en-us/2018/07/23/red-alert-2-0-android-trojan-targets-security-seekers/
https://www.kaspersky.com/about/press-releases/2016_asacub-android-trojan-from-information-stealing-to-financial-fraud
https://www.kaspersky.com/about/press-releases/2016_asacub-android-trojan-from-information-stealing-to-financial-fraud
https://www.kaspersky.com/about/press-releases/2016_asacub-android-trojan-from-information-stealing-to-financial-fraud

References 215

[ker92] Linux Kernel Banner. https://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git/tree/init/version.c, 1992. Ac-
cessed October 13, 2021.

[Kev17] Sun Kevin. BankBot Found on Google Play and Targets
Ten New UAE Banking Apps. https://blog.trendmicro.

com/trendlabs-security-intelligence/bankbot-found-google-

play-targets-ten-new-uae-banking-apps/, 2017. Accessed:
October 13, 2021.

[KN18] Jakob Lell Karsten Nohl. The Android ecosystem contains a
hidden patch gap. https://srlabs.de/bites/android_patch_

gap/, 2018. Accessed: October 13, 2021.

[Koz16] John Kozyrakis. CVE-2016-2402. https://koz.io/pinning-

cve-2016-2402/, 2016. Accessed: October 13, 2021.

[Kra17] Nick Kralevich. Honey, I Shrunk the Attack Sur-
face. Adventures in Android Security Hardening.
https://www.blackhat.com/docs/us-17/thursday/us-17-
Kralevich-Honey-I-Shrunk-The-Attack-Surface-Adventures-In-
Android-Security-Hardening.pdf, 2017. Accessed: October 13,
2021.

[Lab13] MWR F-Secure Lab. Paypal Remote Code Execution,
CVE-2013-7201, CVE-2013-7202. https://labs.f-secure.com/

advisories/paypal-remote-code-execution/, 2013. Accessed:
October 13, 2021.

[Lab14] MWR F-Secure Labs. Paypal Remote Code Execu-
tion. https://labs.f-secure.com/advisories/paypal-remote-

code-execution/, 2014. Accessed: October 13, 2021.

[Ley11] John Leyden. Inside ’Operation Black Tulip’: DigiNotar
hack analysed. https://www.theregister.co.uk/2011/09/06/

diginotar_audit_damning_fail/, 2011. Accessed: October 13,
2021.

[lin91] Linux Kernel. https://github.com/torvalds/linux/, 1991. Ac-
cessed October 13, 2021.

[lkm20] Loadable Kernel Modules. https://source.android.com/

devices/architecture/kernel/loadable-kernel-modules, 2020.
Accessed October 13, 2021.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/init/version.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/init/version.c
https://blog.trendmicro.com/trendlabs-security-intelligence/bankbot-found-google-play-targets-ten-new-uae-banking-apps/
https://blog.trendmicro.com/trendlabs-security-intelligence/bankbot-found-google-play-targets-ten-new-uae-banking-apps/
https://blog.trendmicro.com/trendlabs-security-intelligence/bankbot-found-google-play-targets-ten-new-uae-banking-apps/
https://srlabs.de/bites/android_patch_gap/
https://srlabs.de/bites/android_patch_gap/
https://koz.io/pinning-cve-2016-2402/
https://koz.io/pinning-cve-2016-2402/
https://labs.f-secure.com/advisories/paypal-remote-code-execution/
https://labs.f-secure.com/advisories/paypal-remote-code-execution/
https://labs.f-secure.com/advisories/paypal-remote-code-execution/
https://labs.f-secure.com/advisories/paypal-remote-code-execution/
https://www.theregister.co.uk/2011/09/06/diginotar_audit_damning_fail/
https://www.theregister.co.uk/2011/09/06/diginotar_audit_damning_fail/
https://github.com/torvalds/linux/
https://source.android.com/devices/architecture/kernel/loadable-kernel-modules
https://source.android.com/devices/architecture/kernel/loadable-kernel-modules

216 216

[LLC08] Google LLC. Android API reference. https://developer.

android.com/reference, 2008. Accessed: October 13, 2021.

[LLC20a] Google LLC. CVE-2020-0069. https://source.android.com/

security/bulletin/2020-03-01/, 2020. Accessed: October 13,
2021.

[LLC20b] Google LLC. ODM Partitions. https://source.android.com/

devices/bootloader/partitions/odm-partitions, 2020. Ac-
cessed: October 13, 2021.

[mac15] Android 6.0 Changes - Access to Hardware Identifier. https:

//developer.android.com/about/versions/marshmallow/

android-6.0-changes.html#behavior-hardware-id, 2015.
Accessed October 13, 2021.

[med16] Hardening the media stack. https://android-developers.

googleblog.com/2016/05/hardening-media-stack.html,
2016. Accessed October 13, 2021.

[med20] Control Flow Integrity. https://source.android.com/devices/

tech/debug/cfi, 2020. Accessed October 13, 2021.

[MJ20] Project Zero Mateusz Jurczyk. MMS Exploit: Samsung Qmage
Coded. https://googleprojectzero.blogspot.com/2020/07/

mms-exploit-part-1-introduction-to-qmage.html, 2020. Ac-
cessed: October 13, 2021.

[MKC17] Luka Malisa, Kari Kostiainen, and Srdjan Capkun. Detecting
mobile application spoofing attacks by leveraging user visual
similarity perception. In Gail-Joon Ahn, Alexander Pretschner,
and Gabriel Ghinita, editors, Proceedings of the Seventh ACM

Conference on Data and Application Security and Privacy, CO-

DASPY 2017, Scottsdale, AZ, USA, March 22-24, 2017, pages
289–300. ACM, 2017.

[MTC+18] Huasong Meng, Vrizlynn L. L. Thing, Yao Cheng, Zhongmin
Dai, and Li Zhang. A survey of android exploits in the wild.
Comput. Secur., 76:71–91, 2018.

[Nic18] Lorenz Nicole. MysteryBot - the Android malware
that’s keylogger, ransomware, and trojan. https:

//blog.avira.com/mysterybot-the-android-malware-thats-

https://developer.android.com/reference
https://developer.android.com/reference
https://source.android.com/security/bulletin/2020-03-01/
https://source.android.com/security/bulletin/2020-03-01/
https://source.android.com/devices/bootloader/partitions/odm-partitions
https://source.android.com/devices/bootloader/partitions/odm-partitions
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
https://android-developers.googleblog.com/2016/05/hardening-media-stack.html
https://android-developers.googleblog.com/2016/05/hardening-media-stack.html
https://source.android.com/devices/tech/debug/cfi
https://source.android.com/devices/tech/debug/cfi
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://blog.avira.com/mysterybot-the-android-malware-thats-keylogger-ransomware-and-trojan/
https://blog.avira.com/mysterybot-the-android-malware-thats-keylogger-ransomware-and-trojan/
https://blog.avira.com/mysterybot-the-android-malware-thats-keylogger-ransomware-and-trojan/
https://blog.avira.com/mysterybot-the-android-malware-thats-keylogger-ransomware-and-trojan/

References 217

keylogger-ransomware-and-trojan/, 2018. Accessed: October
13, 2021.

[nok21] Marin nokiamob. Large number of Modern Phones, in-
cluding Nokia, are besigned by ODM companies. https:

//nokiamob.net/2021/01/17/large-number-of-modern-

phones-including-nokia-are-designed-by-odm-companies/,
2021. Accessed: October 13, 2021.

[OAD+15] Marten Oltrogge, Yasemin Acar, Sergej Dechand, Matthew
Smith, and Sascha Fahl. To pin or not to pin-helping app de-
velopers bullet proof their TLS connections. In Jaeyeon Jung
and Thorsten Holz, editors, 24th USENIX Security Symposium,

USENIX Security 15, Washington, D.C., USA, August 12-14,

2015, pages 239–254. USENIX Association, 2015.

[OC15] Lucky Onwuzurike and Emiliano De Cristofaro. Danger is my
middle name: experimenting with SSL vulnerabilities in an-
droid apps. In Proceedings of the 8th ACM Conference on Se-

curity & Privacy in Wireless and Mobile Networks, New York,

NY, USA, June 22-26, 2015, pages 15:1–15:6. ACM, 2015.

[Opp13] Oppo. OPPO ColorOS. https://www.coloros.com/en/

coloros7, 2013. Accessed: October 13, 2021.

[osm21] Mobile operating system market share worldwide. https://gs.
statcounter.com/os-market-share/mobile/worldwide, 2021.
Accessed October 13, 2021.

[oST19] National Institute of Standards and Technology. CVE-2019-
15340. https://nvd.nist.gov/vuln/detail/CVE-2019-15340,
2019. Accessed: October 13, 2021.

[pae14] Practical Android Exploitation. http://theroot.ninja/PAE.

pdf, 2014. Accessed October 13, 2021.

[PF20] Andrea Possemato and Yanick Fratantonio. Towards HTTPS
everywhere on android: We are not there yet. In 29th USENIX

Security Symposium (USENIX Security 20), pages 343–360.
USENIX Association, 2020.

[PFB+14] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi,
Christopher Kruegel, and Giovanni Vigna. Execute this! an-
alyzing unsafe and malicious dynamic code loading in android

https://blog.avira.com/mysterybot-the-android-malware-thats-keylogger-ransomware-and-trojan/
https://blog.avira.com/mysterybot-the-android-malware-thats-keylogger-ransomware-and-trojan/
https://blog.avira.com/mysterybot-the-android-malware-thats-keylogger-ransomware-and-trojan/
https://nokiamob.net/2021/01/17/large-number-of-modern-phones-including-nokia-are-designed-by-odm-companies/
https://nokiamob.net/2021/01/17/large-number-of-modern-phones-including-nokia-are-designed-by-odm-companies/
https://nokiamob.net/2021/01/17/large-number-of-modern-phones-including-nokia-are-designed-by-odm-companies/
https://www.coloros.com/en/coloros7
https://www.coloros.com/en/coloros7
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://nvd.nist.gov/vuln/detail/CVE-2019-15340
http://theroot.ninja/PAE.pdf
http://theroot.ninja/PAE.pdf

218 218

applications. In 21st Annual Network and Distributed System

Security Symposium, NDSS 2014, San Diego, California, USA,

February 23-26, 2014. The Internet Society, 2014.

[PFNW12] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and
David A. Wagner. Addroid: privilege separation for applica-
tions and advertisers in android. In Heung Youl Youm and
Yoojae Won, editors, 7th ACM Symposium on Information,

Compuer and Communications Security, ASIACCS ’12, Seoul,

Korea, May 2-4, 2012, pages 71–72. ACM, 2012.

[PNC17] Duy Phuc Pham, Croese Niels, and Han Sahin Cen-
giz. Exobot - Android banking Trojan on the rise.
https://www.threatfabric.com/blogs/exobot_android_

banking_trojan_on_the_rise.html, 2017. Accessed: Octo-
ber 13, 2021.

[pro17] SELinux for Android 8.0. https://source.android.com/

security/selinux/images/SELinux_Treble.pdf, 2017. Ac-
cessed October 13, 2021.

[Qur20] Quram. QURAM SOFT. http://www.quramsoft.com/, 2020.
Accessed: October 13, 2021.

[Rah20] Mishaal Rahman. Critical MediaTek rootkit affecting mil-
lions of Android devices has been out in the open for
months. https://www.xda-developers.com/mediatek-su-

rootkit-exploit/, 2020. Accessed: October 13, 2021.

[Rav20] Ole André Vadla Ravnås. Dynamic instrumentation toolkit for
developers, reverse-engineers, and security researchers. https:

//frida.re/docs/android/, 2020. Accessed: October 13, 2021.

[RBA17] Elena Reshetova, Filippo Bonazzi, and N. Asokan. Selint: An
seandroid policy analysis tool. In Paolo Mori, Steven Fur-
nell, and Olivier Camp, editors, Proceedings of the 3rd In-

ternational Conference on Information Systems Security and

Privacy, ICISSP 2017, Porto, Portugal, February 19-21, 2017,
pages 47–58. SciTePress, 2017.

[RBN+16] Elena Reshetova, Filippo Bonazzi, Thomas Nyman, Ravis-
hankar Borgaonkar, and N. Asokan. Characterizing seandroid
policies in the wild. In Olivier Camp, Steven Furnell, and Paolo

https://www.threatfabric.com/blogs/exobot_android_banking_trojan_on_the_rise.html
https://www.threatfabric.com/blogs/exobot_android_banking_trojan_on_the_rise.html
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
http://www.quramsoft.com/
https://www.xda-developers.com/mediatek-su-rootkit-exploit/
https://www.xda-developers.com/mediatek-su-rootkit-exploit/
https://frida.re/docs/android/
https://frida.re/docs/android/

References 219

Mori, editors, Proceedings of the 2nd International Conference

on Information Systems Security and Privacy, ICISSP 2016,

Rome, Italy, February 19-21, 2016, pages 482–489. SciTePress,
2016.

[RLZ17] Chuangang Ren, Peng Liu, and Sencun Zhu. Windowguard:
Systematic protection of GUI security in android. In 24th

Annual Network and Distributed System Security Symposium,

NDSS 2017, San Diego, California, USA, February 26 - March

1, 2017. The Internet Society, 2017.

[RNV+18] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-
Rodriguez, Srikanth Sundaresan, Johanna Amann, and
Philippa Gill. Studying TLS usage in android apps. In Pro-

ceedings of the Applied Networking Research Workshop, ANRW

2018, Montreal, QC, Canada, July 16-16, 2018, page 5. ACM,
2018.

[RZX+15] Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei, and Peng
Liu. Towards discovering and understanding task hijacking in
android. In Jaeyeon Jung and Thorsten Holz, editors, 24th

USENIX Security Symposium, USENIX Security 15, Washing-

ton, D.C., USA, August 12-14, 2015, pages 945–959. USENIX
Association, 2015.

[sam20] Issue 2002: Samsung Android multiple interactionless RCEs
and other remote access issues in Qmage image codec
built into Skia. https://bugs.chromium.org/p/project-zero/

issues/detail?id=2002, 2020. Accessed October 13, 2021.

[SC13] Stephen Smalley and Robert Craig. Security enhanced (SE)
android: Bringing flexible MAC to android. In 20th Annual

Network and Distributed System Security Symposium, NDSS

2013, San Diego, California, USA, February 24-27, 2013. The
Internet Society, 2013.

[SCM+16] Yuru Shao, Qi Alfred Chen, Zhuoqing Morley Mao, Jason Ott,
and Zhiyun Qian. Kratos: Discovering inconsistent security
policy enforcement in the android framework. In 23rd Annual

Network and Distributed System Security Symposium, NDSS

2016, San Diego, California, USA, February 21-24, 2016. The
Internet Society, 2016.

https://bugs.chromium.org/p/project-zero/issues/detail?id=2002
https://bugs.chromium.org/p/project-zero/issues/detail?id=2002

220 220

[SDW12] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. Adsplit:
Separating smartphone advertising from applications. In Ta-
dayoshi Kohno, editor, Proceedings of the 21th USENIX Secu-

rity Symposium, Bellevue, WA, USA, August 8-10, 2012, pages
553–567. USENIX Association, 2012.

[sec20] Security Enhancements. https://source.android.com/

security/enhancements, 2020. Accessed October 13, 2021.

[sel14] Android 4.4.3 Patch Finally Closes Up An Ancient Vul-
nerability, Shuts Down Several Serious Security Exploits.
https://www.androidpolice.com/2014/06/04/android-4-4-

3-patch-finally-closes-ancient-vulnerability-shuts-several-

serious-security-exploits/, 2014. Accessed October 13, 2021.

[SGC+] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and
Hao Chen. Investigating user privacy in android ad libraries.

[She17] Di Shen. Defeating Samsung KNOX with zero privilege. https:
//www.blackhat.com/docs/us-17/thursday/us-17-Shen-

Defeating-Samsung-KNOX-With-Zero-Privilege-wp.pdf,
2017. Accessed: October 13, 2021.

[SKC15] Hossain Shahriar, Tulin Klintic, and Victor Clincy. Mobile
Phishing Attacks and Mitigation Techniques. In Journal of

Information Security, volume 06, pages 206–212, 06 2015.

[SKC+16] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik Shin, and
Taesoo Kim. FLEXDROID: enforcing in-app privilege separa-
tion in android. In 23rd Annual Network and Distributed Sys-

tem Security Symposium, NDSS 2016, San Diego, California,

USA, February 21-24, 2016. The Internet Society, 2016.

[SKGM18] Raphael Spreitzer, Felix Kirchengast, Daniel Gruss, and Stefan
Mangard. Procharvester: Fully automated analysis of procfs
side-channel leaks on android. In Jong Kim, Gail-Joon Ahn,
Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo Kim,
editors, Proceedings of the 2018 on Asia Conference on Com-

puter and Communications Security, AsiaCCS 2018, Incheon,

Republic of Korea, June 04-08, 2018, pages 749–763. ACM,
2018.

https://source.android.com/security/enhancements
https://source.android.com/security/enhancements
https://www.androidpolice.com/2014/06/04/android-4-4-3-patch-finally-closes-ancient-vulnerability-shuts-several-serious-security-exploits/
https://www.androidpolice.com/2014/06/04/android-4-4-3-patch-finally-closes-ancient-vulnerability-shuts-several-serious-security-exploits/
https://www.androidpolice.com/2014/06/04/android-4-4-3-patch-finally-closes-ancient-vulnerability-shuts-several-serious-security-exploits/
https://www.blackhat.com/docs/us-17/thursday/us-17-Shen-Defeating-Samsung-KNOX-With-Zero-Privilege-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Shen-Defeating-Samsung-KNOX-With-Zero-Privilege-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Shen-Defeating-Samsung-KNOX-With-Zero-Privilege-wp.pdf

References 221

[SKS16] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. What mobile
ads know about mobile users. In 23rd Annual Network and Dis-

tributed System Security Symposium, NDSS 2016, San Diego,

California, USA, February 21-24, 2016. The Internet Society,
2016.

[SPM18] Raphael Spreitzer, Gerald Palfinger, and Stefan Mangard.
Scandroid: Automated side-channel analysis of android apis.
In Panos Papadimitratos, Kevin R. B. Butler, and Christina
Pöpper, editors, Proceedings of the 11th ACM Conference on

Security & Privacy in Wireless and Mobile Networks, WiSec

2018, Stockholm, Sweden, June 18-20, 2018, pages 224–235.
ACM, 2018.

[sta15] Experts Found a Unicorn in the Heart of Android.
https://blog.zimperium.com/experts-found-a-unicorn-

in-the-heart-of-android/, 2015. Accessed October 13, 2021.

[sto21] Stock rom. https://www.stockrom.net/, 2021. Accessed Oc-
tober 13, 2021.

[Stu20] Ruby Game Studio. Hunter Assassin. https://play.google.

com/store/apps/details?id=com.rubygames.assassin, 2020.
Accessed: October 13, 2021.

[TBR15] Daniel R. Thomas, Alastair R. Beresford, and Andrew C. Rice.
Security metrics for the android ecosystem. In David Lie and
Glenn Wurster, editors, Proceedings of the 5th Annual ACM

CCS Workshop on Security and Privacy in Smartphones and

Mobile Devices, SPSM 2015, Denver, Colorado, USA, October

12, 2015, pages 87–98. ACM, 2015.

[tcp20a] Tcpdump Common Vulnerabilities. https://cve.mitre.org/cgi-

bin/cvekey.cgi?keyword=tcpdump, 2020. Accessed October
13, 2021.

[tcp20b] Tcpdump Public CVE List. https://www.tcpdump.org/

public-cve-list.txt, 2020. Accessed October 13, 2021.

[Tea14] Android Security Team. Google Report: Android Security
2014 Year in Review. https://source.android.com/security/

reports/Google_Android_Security_2014_Report_Final.

pdf, 2014. Accessed: October 13, 2021.

https://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/
https://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/
https://www.stockrom.net/
https://play.google.com/store/apps/details?id=com.rubygames.assassin
https://play.google.com/store/apps/details?id=com.rubygames.assassin
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=tcpdump
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=tcpdump
https://www.tcpdump.org/public-cve-list.txt
https://www.tcpdump.org/public-cve-list.txt
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf

222 222

[THC+18] Dave (Jing) Tian, Grant Hernandez, Joseph I. Choi, Vanessa
Frost, Christie Ruales, Patrick Traynor, Hayawardh Vijayaku-
mar, Lee Harrison, Amir Rahmati, Michael Grace, and Kevin
R. B. Butler. Attention spanned: Comprehensive vulnerability
analysis of AT commands within the android ecosystem. In
William Enck and Adrienne Porter Felt, editors, 27th USENIX

Security Symposium, USENIX Security 2018, Baltimore, MD,

USA, August 15-17, 2018, pages 273–290. USENIX Association,
2018.

[Thr18] ThreatFabric. BianLian - from rags to riches, the malware
dropper that had a dream. https://www.threatfabric.

com/blogs/bianlian_from_rags_to_riches_the_malware_

dropper_that_had_a_dream.html, 2018. Accessed: October
13, 2021.

[Thr19] ThreatFabric. Anubis II - malware and afterlife.
https://www.threatfabric.com/blogs/anubis_2_malware_

and_afterlife.html, 2019. Accessed: October 13, 2021.

[Tom15] Federico Tomassetti. JavaParser - Parser and Abstract Syn-
tax Tree for Java. https://github.com/javaparser/javaparser,
2015. Accessed: October 13, 2021.

[tra20] Trade Federation Overview. https://source.android.com/

devices/tech/test_infra/tradefed, 2020. Accessed October
13, 2021.

[VAHD17] Eline Vanrykel, Gunes Acar, Michael Herrmann, and Claudia
Diaz. Leaky birds: Exploiting mobile application traffic for
surveillance. pages 367–384, 05 2017.

[VBP+14] Mario Linares Vásquez, Gabriele Bavota, Massimiliano Di
Penta, Rocco Oliveto, and Denys Poshyvanyk. How do API
changes trigger stack overflow discussions? a study on the an-
droid SDK. In Chanchal K. Roy, Andrew Begel, and Leon
Moonen, editors, 22nd International Conference on Program

Comprehension, ICPC 2014, Hyderabad, India, June 2-3, 2014,
pages 83–94. ACM, 2014.

[ven21] Mobile vendor market share worldwide. https:

//gs.statcounter.com/vendor-market-share/mobile/

https://www.threatfabric.com/blogs/bianlian_from_rags_to_riches_the_malware_dropper_that_had_a_dream.html
https://www.threatfabric.com/blogs/bianlian_from_rags_to_riches_the_malware_dropper_that_had_a_dream.html
https://www.threatfabric.com/blogs/bianlian_from_rags_to_riches_the_malware_dropper_that_had_a_dream.html
https://www.threatfabric.com/blogs/anubis_2_malware_and_afterlife.html
https://www.threatfabric.com/blogs/anubis_2_malware_and_afterlife.html
https://github.com/javaparser/javaparser
https://source.android.com/devices/tech/test_infra/tradefed
https://source.android.com/devices/tech/test_infra/tradefed
https://gs.statcounter.com/vendor-market-share/mobile/worldwide/#monthly-201003-202007
https://gs.statcounter.com/vendor-market-share/mobile/worldwide/#monthly-201003-202007
https://gs.statcounter.com/vendor-market-share/mobile/worldwide/#monthly-201003-202007
https://gs.statcounter.com/vendor-market-share/mobile/worldwide/#monthly-201003-202007

References 223

worldwide/#monthly-201003-202007, 2021. Accessed
October 13, 2021.

[Vit19] Ventura Vitor. Gustuff banking botnet targets Aus-
tralia. https://blog.talosintelligence.com/2019/04/gustuff-

targets-australia.html, 2019. Accessed: October 13, 2021.

[vml19] vmlinux-to-elf. https://github.com/marin-m/vmlinux-to-elf,
2019. Accessed October 13, 2021.

[vol14a] Android Vulnerabilities: vold asec. https://

androidvulnerabilities.org/vulnerabilities/vold_asec, 2014.
Accessed October 13, 2021.

[vol14b] Root 4.4.X - Pie for Motorola devices. https://forum.xda-

developers.com/moto-x/orig-development/root-4-4-x-pie-

motorola-devices-t2771623, 2014. Accessed October 13,
2021.

[VSA+19] Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse Khomh,
Gias Uddin, and Alireza Karami Motlagh. An empirical study
of C++ vulnerabilities in crowd-sourced code examples. CoRR,
abs/1910.01321, 2019.

[vts21] Vendor Test Suite (VTS) & Infrastructure. https://source.

android.com/compatibility/vts, 2021. Accessed October 13,
2021.

[WDW14] Longfei Wu, Xiaojiang Du, and Jie Wu. Mobifish: A lightweight
anti-phishing scheme for mobile phones. In 23rd International

Conference on Computer Communication and Networks, IC-

CCN 2014, Shanghai, China, August 4-7, 2014, pages 1–8.
IEEE, 2014.

[Wel15] Ryan Welton. Remote Code Execution as System User on
Samsung Phones. https://www.nowsecure.com/blog/2015/

06/16/remote-code-execution-as-system-user-on-samsung-

phones, 2015. Accessed: October 13, 2021.

[WER+15] Ruowen Wang, William Enck, Douglas S. Reeves, Xinwen
Zhang, Peng Ning, Dingbang Xu, Wu Zhou, and Ahmed M.
Azab. Easeandroid: Automatic policy analysis and refinement
for security enhanced android via large-scale semi-supervised
learning. In Jaeyeon Jung and Thorsten Holz, editors, 24th

https://gs.statcounter.com/vendor-market-share/mobile/worldwide/#monthly-201003-202007
https://gs.statcounter.com/vendor-market-share/mobile/worldwide/#monthly-201003-202007
https://gs.statcounter.com/vendor-market-share/mobile/worldwide/#monthly-201003-202007
https://blog.talosintelligence.com/2019/04/gustuff-targets-australia.html
https://blog.talosintelligence.com/2019/04/gustuff-targets-australia.html
https://github.com/marin-m/vmlinux-to-elf
https://androidvulnerabilities.org/vulnerabilities/vold_asec
https://androidvulnerabilities.org/vulnerabilities/vold_asec
https://forum.xda-developers.com/moto-x/orig-development/root-4-4-x-pie-motorola-devices-t2771623
https://forum.xda-developers.com/moto-x/orig-development/root-4-4-x-pie-motorola-devices-t2771623
https://forum.xda-developers.com/moto-x/orig-development/root-4-4-x-pie-motorola-devices-t2771623
https://source.android.com/compatibility/vts
https://source.android.com/compatibility/vts
https://www.nowsecure.com/blog/2015/06/16/remote-code-execution-as-system-user-on-samsung-phones
https://www.nowsecure.com/blog/2015/06/16/remote-code-execution-as-system-user-on-samsung-phones
https://www.nowsecure.com/blog/2015/06/16/remote-code-execution-as-system-user-on-samsung-phones

224 224

USENIX Security Symposium, USENIX Security 15, Washing-

ton, D.C., USA, August 12-14, 2015, pages 351–366. USENIX
Association, 2015.

[WGZ+13] Lei Wu, Michael C. Grace, Yajin Zhou, Chiachih Wu, and
Xuxian Jiang. The impact of vendor customizations on an-
droid security. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, 2013 ACM SIGSAC Conference on

Computer and Communications Security, CCS’13, Berlin, Ger-

many, November 4-8, 2013, pages 623–634. ACM, 2013.

[wis19] Android Security: Taming the Complex Ecosystem.
https://wisec19.fiu.edu/wp-content/uploads/wisec2019-

keynote.pdf, 2019. Accessed October 13, 2021.

[WPN17] Gahr Wesley, Duy Phuc Pham, and Croese Niels. Lok-
iBot - The first hybrid Android malware. https:

//www.threatfabric.com/blogs/lokibot_the_first_hybrid_

android_malware.html, 2017. Accessed: October 13, 2021.

[Xia10] Xiaomi. Xiaomi MIUI. https://consumer.huawei.com/en/

emui-11/, 2010. Accessed: October 13, 2021.

[XZ12] Zhi Xu and Sencun Zhu. Abusing notification services on
smartphones for phishing and spamming. In Elie Bursztein
and Thomas Dullien, editors, 6th USENIX Workshop on Offen-

sive Technologies, WOOT’12, August 6-7, 2012, Bellevue, WA,

USA, Proceedings, pages 1–11. USENIX Association, 2012.

[YHG19] Guangliang Yang, Jeff Huang, and Guofei Gu. Iframes/pop-
ups are dangerous in mobile webview: Studying and mitigat-
ing differential context vulnerabilities. In Nadia Heninger and
Patrick Traynor, editors, 28th USENIX Security Symposium,

USENIX Security 2019, Santa Clara, CA, USA, August 14-16,

2019, pages 977–994. USENIX Association, 2019.

[YLC+19] Yuxuan Yan, Zhenhua Li, Qi Alfred Chen, Christo Wilson,
Tianyin Xu, Ennan Zhai, Yong Li, and Yunhao Liu. Un-
derstanding and detecting overlay-based android malware at
market scales. In Junehwa Song, Minkyong Kim, Nicholas D.
Lane, Rajesh Krishna Balan, Fahim Kawsar, and Yunxin Liu,
editors, Proceedings of the 17th Annual International Confer-

ence on Mobile Systems, Applications, and Services, MobiSys

https://wisec19.fiu.edu/wp-content/uploads/wisec2019-keynote.pdf
https://wisec19.fiu.edu/wp-content/uploads/wisec2019-keynote.pdf
https://www.threatfabric.com/blogs/lokibot_the_first_hybrid_android_malware.html
https://www.threatfabric.com/blogs/lokibot_the_first_hybrid_android_malware.html
https://www.threatfabric.com/blogs/lokibot_the_first_hybrid_android_malware.html
https://consumer.huawei.com/en/emui-11/
https://consumer.huawei.com/en/emui-11/

References 225

2019, Seoul, Republic of Korea, June 17-21, 2019, pages 168–
179. ACM, 2019.

[ZAD13] Xiao Zhang, Amit Ahlawat, and Wenliang Du. Aframe: iso-
lating advertisements from mobile applications in android. In
Charles N. Payne Jr., editor, Annual Computer Security Ap-

plications Conference, ACSAC ’13, New Orleans, LA, USA,

December 9-13, 2013, pages 9–18. ACM, 2013.

[Zer21] Google Project Zero. Introducing the In-the-Wild Se-
ries. https://googleprojectzero.blogspot.com/2021/01/

introducing-in-wild-series.html, 2021. Accessed: October 13,
2021.

[ZLZ+14] Xiao-yong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad
Naveed, and XiaoFeng Wang. The peril of fragmentation: Se-
curity hazards in android device driver customizations. In 2014

IEEE Symposium on Security and Privacy, SP 2014, Berkeley,

CA, USA, May 18-21, 2014, pages 409–423. IEEE Computer
Society, 2014.

[ZYH+18] Lei Zhang, Zhemin Yang, Yuyu He, Zhenyu Zhang, Zhiyun
Qian, Geng Hong, Yuan Zhang, and Min Yang. Invetter:
Locating insecure input validations in android services. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, Proceedings of the 2018 ACM SIGSAC Confer-

ence on Computer and Communications Security, CCS 2018,

Toronto, ON, Canada, October 15-19, 2018, pages 1165–1178.
ACM, 2018.

[ZYN+15] Nan Zhang, Kan Yuan, Muhammad Naveed, Xiao-yong Zhou,
and XiaoFeng Wang. Leave me alone: App-level protection
against runtime information gathering on android. In 2015

IEEE Symposium on Security and Privacy, SP 2015, San Jose,

CA, USA, May 17-21, 2015, pages 915–930. IEEE Computer
Society, 2015.

https://googleprojectzero.blogspot.com/2021/01/introducing-in-wild-series.html
https://googleprojectzero.blogspot.com/2021/01/introducing-in-wild-series.html

	Introduction
	Problem statement
	Contributions
	Thesis outline

	The Layers of Android Security
	The Application Layer
	The Android Operating System Layer
	The Vendor Layer
	Chipset Manufacturer
	Original Design Manufacturers
	Original Equipment Manufacturers

	Securing the Application Layer: the Networking Problem
	Introduction
	Network Communication Insecurity
	HTTP
	HTTPS and Certificate Pinning
	User Certificates

	Network Security Policy
	Policy Specification
	Towards HTTPS Everywhere
	TrustKit

	Policy Weaknesses
	Allow Cleartext
	Certificate Pinning Override
	Silent Man-In-The-Middle

	Policy Adoption
	Dataset
	Dataset Exploration & Weaknesses
	Cleartext
	Domains Definition
	Policy for 127.0.0.1
	Trusted Certificates.
	Domain example.com and Invalid Digests
	Certificate Pinning
	Invalid Attributes
	TrustKit
	Remaining Applications
	Dataset Evolution

	Android Networking Libraries Adoption
	Disclosure

	Impact of Advertisement Libraries
	Dataset
	Policy Characterization
	Ad Libraries in Applications
	Case Study: MoPub

	Network Security Policy Extension
	Limitations
	Related Work
	Network Security
	Code Reuse
	Advertisements

	Securing the System Layer: the Phishing Problem
	Introduction
	Phishing Attacks on Android
	Phishing
	Anatomy of a Phishing Attack
	Characterizing State Inference Attacks

	Threat model
	Exploring the Attack Surface: System Services
	Android System Services
	Known Potential Pitfalls

	Technical Challenges
	Analysis Framework
	Overview
	Analysis framework organization.
	Enumerating the Attack Surface
	Stimulation Strategies
	Data Serialization
	Data Analysis
	Comparison with SCAnDroid

	Evaluation
	Experimental setup
	Attack Surface Enumeration
	Analysis Results
	Results Comparison with SCAnDroid

	Case Studies
	CVE-2019-9292
	CVE-2020-0343
	Won't Fix

	Detecting State Inference Attacks
	Peculiarity of Phishing Applications
	Peculiarity of Benign Applications
	Benign Application Analysis
	Results and Observations
	Proposed Detection System
	Evaluation
	Comparison with Leave Me Alone

	Limitations
	Availability of Source Code
	Detection of New Phishing Variants

	Related work
	Detecting State-Inference Attacks
	Phishing on Android: Attack and Defense

	Securing the Vendor Layer: the Fragmentation Problem
	Introduction
	Life of a ROM
	What is in a ROM
	ROM Customization
	Compliance Checks and Requirements

	ROM Analysis Framework
	Architecture Overview
	Tag Identification
	Analysis of Binary Customization
	Analysis of SELinux Policies
	Analysis of Init Scripts
	Kernel Security Analysis

	Dataset Characterization
	Compliance
	Kernel Configurations Compliance
	SELinux Compliance
	Binary Compliance

	Additional Customizations
	New Functions in System Libraries
	Compile-time Hardening
	Android Init Script Customizations
	SELinux Customization

	Related Work
	The Perils of Android Customizations
	SELinux Policy Analysis

	Conclusion and Future Work
	Future work
	Conclusion

	Appendices
	French Summary
	Introduction
	Sécuriser la couche d'Application
	Network Security Policy: Les Faiblesses
	Network Security Policy: L'adoption
	Network Security Policy: Les Limites

	Sécuriser la couche Système
	Prévention des attaques par inférence d'état
	Détection des attaques par inférence d'état

	Sécuriser la couche du Fabricant
	Conformité : Analyse et résultats
	Personnalisation : Analyse et résultats

	Conclusion

