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Résumé étendu

Un sujet récent et passionnant dans le domaine des véhicules aériens autonomes est l’interaction avec le milieu

environnant via la manipulation en vol (récupération, transport, placement). Un tel profil opérationnel dévoile un

énorme potentiel d’applications industrielles et de services. La nouvelle génération de robots aériens permet de

disposer d’un actionneur robotique tridimensionnel capable d’exercer des forces et/ou des couples sur un ou plusieurs

points spécifiques pour des opérations d’acquisition/déploiement, d’outillage ou de perchage.

Des recherches antérieures ont été menées sur ce type de véhicules en ce qui concerne les stratégies de contrôle,

la conception et la modélisation, le transport de charges multi-drones complété par des stratégies de détection

visuelle pour la navigation et la détection d’objets, entre autres.

Les opérations aériennes de prélèvement, de transport et de mise en place ont attiré l’attention des chercheurs

car elles interviennent dans la plupart des applications réelles telles que la livraison de kits de survie, les opérations

de sauvetage, le déploiement et l’acquisition de capteurs, etc. Des telles capacités peuvent être améliorées par

la conjonction de plusieurs véhicules aériens, ce qui implique, en outre, la conception et les études de différents

domaines technologiques. À cet égard, l’idée de la manipulation de charges utiles lourdes par un groupe d’aéronefs

autonomes est prometteuse dans des conditions environnementales difficiles [71, 129, 112, 171, 17, 4].

Dans le cadre de la solution aux tâches susmentionnées, et en ayant à l’esprit la mise en œuvre d’un ensemble

de véhicules aériens, les drones ont été physiquement connectés et étudiés comme une seule chaı̂ne cinématique

multiliée volante avec une morphologie et une structure similaires à celles des robots manipulateurs que l’on peut

trouver dans le domaine industriel et manufacturier [156, 9, 175, 176].

Néanmoins, il est facile de relier cette solution à une structure de véhicule équivalente au sol: les trains. Un train

est défini comme une série de voitures ou de wagons de chemin de fer déplacés en tant qu’unité par une locomotive

ou par des moteurs intégrés. Pourtant, une définition générale peut faire référence à un certain nombre de véhicules

ou d’animaux guidés se déplaçant dans une formation en ligne ou en courbe [154].

Les systèmes naturels fonctionnent souvent selon un principe de transport coopératif comme dans le cas de la

colonie de fourmis [80] ou des abeilles [162]. Néanmoins, des êtres vivants comme les mille-pattes ou les serpents

peuvent présenter une morphologie qui fait que l’on associe les systèmes multiliens de robotique et de transport à

des telles formes. L’anatomie complexe du mille-pattes a inspiré les chercheurs à développer de nouvelles structures



robotiques ainsi que de nouvelles stratégies et méthodologies de contrôle pour surmonter le problème du suivi de

trajectoire et de l’évitement d’obstacles dans des environnements complexes [84, 69, 70].

Il est donc logique de jeter son dévolu sur les systèmes naturels multi-écrans pour résoudre les problèmes

complexes de locomotion et de transpiration.

L’objectif général de ce doctorat est de proposer une configuration multi-drones innovante destinée à réaliser des

tâches de manipulation (récupération/déploiement/transport) dans des environnements complexes via des méthodes

robotiques avancées. Trois approches complémentaires sont étudiées:

1. La première étape consiste à modéliser un nouveau système aérien interactif capable d’effectuer une manipu-

lation collective en vol, où le resserrement définit la configuration du réseau de robots aériens.

2. La deuxième phase de la thèse se concentre sur les aspects de contrôle, notamment pour réaliser différentes

formations avec le système multi-drones proposé, ainsi que sur la dextérité de manipulation de la charge utile

pendant les opérations de transport et de manipulation.

3. La troisième étape est consacrée à l’étude des effets des retards dans le système aérien effectuant les tâches

environnementales interactives comme celles mentionnées précédemment.

Les principaux aspects impliqués dans ce projet sont présentés afin d’établir un cadre de référence pour une

lecture ultérieure.

Les drones, ou officiellement appelés véhicules aériens sans pilote, sont définis comme des véhicules de

transport spatial qui volent sans équipage humain à bord et qui peuvent être contrôlés à distance ou voler de manière

autonome. Ces véhicules ont récemment atteint des niveaux de croissance sans précédent dans divers domaines

d’application militaires et civils [123, 166].

Les drones ont été introduits pour la première fois pendant la première guerre mondiale, enregistrant une longue

implication des militaires. Des études telles que celles rassemblées dans [123, 166], affirment que les drones

continueront à être le secteur de croissance le plus dynamique de l’industrie aérospatiale et que la tendance se

tournera vers des drones plus petits, plus flexibles et plus polyvalents [106].

Il a été établi que la première contribution majeure aux mécanismes autonomes s’est produite à l’époque de

Pythagore. Néanmoins, en Chine, vers 400 avant J.-C., a eu lieu la première idée documentée d’un aéronef à vol

vertical ; et en 1483, Léonard de Vinci a conçu un aéronef capable de planer. Une machine de vol vertical à base de

chaudière a également été conçue dans les années 1840 par Horatio Phillips. Cependant, c’est Ponton d’Amecourt

qui, dans les années 1860, a fait voler de petits modèles d’hélicoptères propulsés à la vapeur. Thomas Alva Edison

présente l’un des véhicules aériens les plus remarquables dans les années 1880. Pourtant, la principale avancée des

temps modernes dans l’histoire des hélicoptères est l’hélicoptère jamais volé d’Igor Ivanovitch Sikorsky (1909) [166].

Parallèlement à la construction de machines à vol vertical et d’hélicoptères, les aéronefs à voilure fixe ont



commencé à évoluer au cours des 100 dernières années, avec le premier vol démontré par les frères Wright en 1903

[122].

L’entrée des drones à petite échelle dans la communauté universitaire a posé des défis dans une variété de

domaines de recherche tels que l’aérodynamique et la modélisation de la dynamique de vol, le contrôle du vol, la

vision par ordinateur, etc. Dans le même temps, elle offre également une excellente occasion de développer des

méthodologies de conception et d’évaluer plus avant leurs performances pratiques.

Il convient de noter qu’à des fins de recherche scientifique, les petits drones sont de préférence classés en

fonction de leur principe de fonctionnement, à savoir les giravions, les avions et les avions à ailes battantes.

Ces dernières années, l’amélioration des capacités des véhicules aériens sans pilote, en termes de manipulation

aérienne, est un domaine d’intérêt pour les scientifiques du monde entier. Dans ce sens, la solution la plus adoptée

a été d’attacher des bras manipulateurs robotiques aux drones, néanmoins, l’auto-conception inhérente implique une

limitation en termes de performance et de dextérité [114].

Afin de surmonter le problème de dextérité susmentionné, de nouvelles configurations de systèmes et de véhicules

aériens sont conçues. Parmi ces plateformes, les manipulateurs aériens ”Snake” se distinguent. Ces véhicules sont

définis, selon [114], comme un type de manipulateur aérien couplé, reconfigurable en fonction des tâches et se

transformant en forme, doté de capacités de manipulation robotique bidimensionnelles ou tridimensionnelles grâce

à l’interaction de multicoptères ou d’hélices qui constituent deux ou plusieurs chaı̂nes cinématiques bifurquées. Il

convient de mentionner que le travail dans [114] offre une vaste et complète enquête sur cette question, à cet égard,

le texte ici peut être une interprétation compacte de l’information disponible, mais avec quelques commentaires

complémentaires que l’auteur a considéré pour être enrichir la discussion.

Malgré l’essor technologique actuel, l’application de ces systèmes aériens multi-corps reste limitée en raison

des problèmes de consommation d’énergie et d’onmidirectionnalité, mais ils permettent d’explorer de nouvelles

méthodologies et techniques dans les domaines de la robotique reconfigurable, de la robotique continue et des

humanoı̈des volants, entre autres.

Néanmoins, selon les perspectives abordées dans la literature, aucune des références consultées ne prend

en considération les effets secondaires possibles qui peuvent être produits par les délais de communication, de

détection, de traitement de l’information.

Les systèmes retardés représentent une classe de systèmes à dimension infinie souvent utilisés pour décrire

les phénomènes de propagation, la dynamique des populations ou les systèmes d’ingénierie. Une caractéristique

distincte de ces systèmes est que leur taux d’évolution est décrit par des équations différentielles qui incluent des

informations sur l’histoire passée, pour cette raison, les systèmes retardés sont également connus sous le nom de

systèmes héréditaires, systèmes avec effets secondaires, ou systèmes avec décalage temporel [58].

L’effet du retard sur la stabilité des systèmes avec des retards dans l’état et/ou l’entrée, est un problème d’intérêt

récurrent puisque la présence d’un retard temporel peut induire des comportements complexes pour les schémas en



boucle fermée ou, pour certains grands retards temporels, le système peut être stabilisé. À cet égard, on dit que

les systèmes de contrôle fonctionnent en présence de retards, principalement en raison du temps nécessaire pour

acquérir les informations permettant de créer des décisions de contrôle et de les exécuter.

Une stratégie de contrôle efficace possible consiste à induire correctement des délais. Par exemple, l’augmentation

ou l’extension du délai dans la boucle de rétroaction peut stabiliser un système qui est autrement instable. Pourtant,

l’intérêt pour l’étude et la compréhension des effets des retards augmente rapidement comme une conséquence

inhérente à l’évolution de la complexité des systèmes de contrôle. En ce sens, le délai est un opérateur de décalage

qui retarde un signal d’entrée d’une quantité constante de temps.

L’objectif principal de l’étude de la stabilité des systèmes soumis à des retards est de déterminer les conditions

nécessaires et suffisantes pour le système en boucle fermée alors que dans l’espace des paramètres de retard de

l’espace des paramètres du contrôleur. En la matière, un système retardé est dit stable en fonction du retard s’il

est stable pour seulement certaines valeurs dans l’espace des paramètres de retard, par contre, si la stabilité tient

indépendamment du retard, le système est dit stable indépendamment du retard. Il peut exister plusieurs régions de

retard disjointes, de sorte que le système est stable à l’intérieur de chaque région, mais devient instable à l’extérieur.

Ces régions, appelées régions de stabilité, deviennent des intervalles de stabilité dans un système à retard unique.

Les intervalles de stabilité peuvent être étendus à une carte bidimensionnelle, appelée carte de stabilité [127, 155].

Le contenu de cette thèse est divisé en deux parties: Partie I qui est consacrée à la modélisation et à l’étude

dynamique de la proposition de système aérien sans pilote multiliaison, y compris l’estimation des perturbations et

les questions de contrôle robuste (chapitres 2, 3 et 4); et la Partie II qui se concentre sur l’étude des effets des délais

dans les opérations des drones (chapitres 5, 6 et 7). En même temps, et comme indiqué, chacune de ces parties est

divisée en chapitres qui correspondent au champ d’application correspondant. Une brève description du contenu de

chaque chapitre composant cette thèse est fournie ci-dessous. En outre, les annexes A, B, C et D complètent la

description des activités réalisées lors de la préparation de ce travail.

Dans les pages suivantes, une brève description de chaque chapitre et annexe, ainsi que les résultats obtenus,

sont brièvement présentés.

Part I: Multi-Link Unmanned Aerial System

Chapter 2: Modeling and Control: Robust Acquiring and Transport Operations

Dans ce chapitre, le concept d’un système aérien sans pilote à liaisons multiples, conçu pour des tâches de transport

de cargaisons multiples, est présenté. Un tel système comporte trois liens qui sont actionnés par quatre robots

volants. La procédure de modélisation dynamique basée sur la formulation Euler-Lagrange est présentée en détail.

Un schéma de contrôle préliminaire basé sur un contrôle robuste par mode glissant intégral adaptatif (AISMC) est



appliqué en tenant compte des incertitudes du modèle ML-UAS et des perturbations externes. L’objectif du contrôle

est de suivre les modèles d’acquisition inspirés par les oiseaux. L’efficacité de la stratégie proposée est validée par

des simulations numériques.

Dans la suite du chapitre, la modélisation longitudinale et la commande robuste du nouveau système interactif

aérien multi-link sont décrites en détail. La chaı̂ne cinématique de vol inspirée par les capacités des véhicules

aériens, la dextérité des manipulateurs de bras et une opération de transport de type train, est ainsi introduite.

Sur la base des résultats obtenus à partir des simulations et de l’analyse de stabilité de Lyapunov, le contrôleur

AISM garantit la stabilité du système et la tolérance aux perturbations afin d’accomplir les opérations de prélèvement

et de transport. Une amélioration de la stratégie de prélèvement sera proposée en se basant sur un objectif mobile,

de plus le mouvement des charges utiles et la vitesse de l’opération seront analysés afin de concevoir une stratégie

pour une transition douce des liens. La dynamique des actionneurs joue un rôle important dans la performance du

système, ce qui suggère la mise en œuvre d’une loi de contrôle robuste pour les aéronefs. L’extension à un espace

tridimensionnel et les expériences concernant la proposition sont laissées pour des travaux futurs.

Chapter 3: Disturbances and Coupling Compensation for Trajectory Tracking

Comme dans le chapitre précédent, celui-ci se concentre sur un système aérien sans pilote à liaisons multiples

mais le système est composé de trois hélicoptères attachés par deux liaisons en forme de barre. Le modèle

mathématique est obtenu par la méthodologie d’Euler-Lagrange, tandis que le contrôleur repose sur un schéma

linéaire classique. Comme le système est fortement couplé, en raison de sa dynamique inhérente et des influences

de la cargaison, une extension dynamique des équations du mouvement pour appliquer un filtre Kalman linéaire est

proposée pour répondre à la spécification de suivi de trajectoire. L’observateur d’état proposé est validé par des

simulations numériques.

Dans ce chapitre, le modèle dynamique d’un système aérien à liaisons multiples, basé sur le formalisme Euler-

Lagrange, est présenté. Même si le nombre de liens et de véhicules aériens est restreint à 2 et 3 respectivement,

comme travail futur, l’étude du système avec n liens et n+1 aéronefs sera abordée.

La représentation linéaire du système et l’ajout des couplages correspondants dans les termes de perturbation

permettent de concevoir un filtre de Kalman linéaire à état augmenté pour estimer ces perturbations. Celui-ci s’avère

avoir une performance acceptable selon les résultats obtenus lors de simulations numériques.

L’implémentation d’un filtre de Kalman étendu, la conception d’une loi de contrôle robuste ainsi que l’ajout de

perturbations dues au vent restent à être inclus dans une version étendue. De plus, l’étude du système dans un

espace tridimensionnel en utilisant différentes structures d’avion comme actionneurs est envisagée pour des projets

futurs.



Chapter 4: Nonlinear Control and ASEKF-Based Disturbances Compensation

Ce chapitre présente une extension de la stratégie de modélisation et de contrôle du ML-UAS introduit précédemment.

À cet égard, le système susmentionné est soumis à des perturbations forfaitaires qui comprennent des perturbations

externes et des incertitudes paramétriques. Un filtre de Kalman étendu à états augmentés destiné à estimer

les incertitudes endogènes et exogènes est conçu et un contrôleur de suivi de trajectoire respectant la stabilité

asymptotique de Lyapunov est synthétisé. Une étape de simulation est menée pour valider l’efficacité de la

proposition.

Un système aérien composé de trois quadrotors reliés entre eux est abordé tout au long du chapitre. Le modèle

dynamique de l’ensemble est décrit en détail. En termes de contrôle, un contrôleur non linéaire basé sur Lyapunov

est utilisé conjointement avec un filtre de Kalman étendu à état augmenté (ASEKF) afin de suivre une trajectoire

dépendante du temps tout en compensant les perturbations paramétriques et externes pendant une tâche de

transport de charges multiples. Pour plus de détails, les contributions de ce chapitre sont les suivantes: (i) La

proposition d’un nouveau concept alternatif de système aérien multilien capable de transporter des charges multiples.

(ii) Une synthèse de contrôle détaillée et une analyse de stabilité prenant en compte la dynamique longitudinale et la

présence d’incertitudes structurelles et non structurelles. (iii) Contrairement à la majorité des travaux traitant de la

compensation des perturbations via un filtre de Kalman à état augmenté, la déduction de la matrice de covariance

basée sur les incertitudes présentes dans le modèle non linéaire complet est introduite. (iv) Une étape de simulation

approfondie est menée pour évaluer l’efficacité de la stratégie de contrôle-estimation proposée. De plus, un scénario

du monde réel est considéré en utilisant les spécifications de capteurs réels concernant le bruit et les défauts.

La dynamique d’une configuration non conventionnelle du ML-UAS est obtenue par le formalisme d’Euler-

Lagrange, mais on ne réussit pas seulement à regrouper les équations du mouvement dans une structure compacte

bien connue, on vérifie également les propriétés utiles du modèle en ce qui concerne la conception de la commande.

Il est intéressant de souligner que ce dernier permet de multiples possibilités de développer contrôleurs potentiels

pour stabiliser ce type de robots aériens.

Le performance du système est dégradée en raison de la dynamique non linéaire fortement couplée ainsi que de

la présence d’incertitudes paramétriques et de perturbations externes non modélisées. Une stratégie conjointe de

contrôle et d’observation, utilisant un ASEKF en cascade avec un contrôle non linéaire basé sur Lyapunov, est mise

en oeuvre, montrant une efficacité accrue en ce qui concerne la performance globale.

Dans la veine du contrôle, un contrôleur basé sur Lyapunov garantissant la stabilité asymptotique globale

est mis en oeuvre pour remplir l’objectif de suivi de trajectoire. Le succès du contrôleur repose sur l’efficacité

de l’estimation ASEKF. En ce qui concerne la couche d’estimation, la déduction de la matrice de covariance du

processus d’un ASEKF ad hoc en tenant compte de la structure réelle des paramètres incertains est validée, puisque

l’estimation des états est suffisamment précise pour surmonter les problèmes parasites et ainsi stabiliser le système.



En l’occurrence, et comme en témoignent les performances de suivi, la perturbation externe globale est estimée

avec précision. De plus, lorsque des anomalies sensorielles se produisent, les états estimés maintiennent une

performance opérationnelle acceptable en restant à proximité de la trajectoire cible.

Les recherches à venir comprennent: (i) le développement expérimental du robot aérien, (ii) des stratégies de

navigation 3D résilientes pour englober des scénarios hautement dégradés, par exemple des perturbations variables

en fréquence/amplitude (rafales de vent) ainsi que (iii) des contrôleurs/observateurs tolérants aux retards.

Part II: Time-Delays on Unmanned Aerial Systems

Chapter 5: Parametric Analysis of PID Delay-Based Controllers for Quadrotor UAVs

Ce chapitre fournit un ensemble de diagrammes de stabilité paramétriques pour un quadrotor effectuant des

manœuvres de stabilisation en présence de délais de rétroaction et soumis à des contrôleurs PID. L’analyse prend

en compte les couplages entre les mouvements de translation (dynamique lente) et de rotation (dynamique rapide).

Les paramètres des contrôleurs, dans le schéma de contrôle global, sont calculés en utilisant la théorie bien connue

des racines croisées de stabilité. Des résultats de simulation numérique, incluant le modèle dynamique complet et le

modèle linéaire correspondant du véhicule, sont présentés pour valider la proposition.

D’un point de vue général, et en se basant sur les preuves fournies par la littérature, on peut conclure que

l’analyse des influences des délais sur les drones est un sujet de recherche avec une croissance exponentielle. Dans

ce sens, ce chapitre est consacré à l’étude d’un quadrotor unique piloté par des contrôleurs PID à base de retard.

Il est supposé que la détection de la position est effectuée par un système de suivi par vision dont les caméras

sont situées à distance, incorporant le retard dans le schéma de contrôle des états de translation comme une

conséquence de la latence des caméras. Le chapitre fournit un ensemble de cartes de stabilité qui permettent de

sélectionner le jeu approprié de gains de contrôle en fonction du délai, du critère de stabilité σ et du gain intégral du

contrôleur. À cette fin, la méthodologie repose sur la disponibilité d’un modèle linéaire pour la conception du contrôle.

D’une manière générale, les travaux futurs envisagent la définition formelle et stricte de la dépendance paramétrique

des régions de stabilité et une étude détaillée de la fragilité du système afin de fournir un outil permettant de mesurer

la robustesse de l’approche de contrôle. De plus, l’extension de ce chapitre prend en compte la stabilité de l’avion

lorsque des perturbations rotationnelles influencent sa dynamique. La comparaison entre cette approche linéaire et le

traitement non-linéaire de la question est également proposée comme un travail à venir. Des efforts supplémentaires

seront consacrés à valider et à compléter ces résultats au moyen d’une expérimentation réelle.



Chapter 6: Time-Delay Control of Quadrotor UAVs: a MID-Based Approach

Ce chapitre traite des effets des retards sur la stabilité des systèmes aériens sans pilote (UAV). La proposition de

la recherche actuelle repose sur l’application de l’approche MID (Multiplicity-Induced-Dominancy) au domaine du

contrôle des véhicules aériens. L’approche MID est appliquée à deux des plateformes de robots aériens les plus

représentatives: un véhicule quadrotor typique et un véhicule quadrotor doté de rotors basculants. L’approche conduit

à un critère de réglage des gains de contrôle, permettant au système de satisfaire un comportement prescrit basé

sur le placement de la racine la plus à droite de la fonction caractéristique en boucle fermée. Enfin, des simulations

numériques détaillées, incluant la dynamique linéaire et non linéaire du véhicule, sont réalisées pour valider la

proposition.

Parmi les nouvelles tendances dans le domaine des systèmes à retard, le suivi du comportement des racines de

l’équation caractéristique comme dans [20], a conduit à l’émergence de la soi-disant approche Multiplicity-Induced-

Dominancy (MID). L’efficacité de cette approche a été largement prouvée pour des phénomènes généraux décrits

par des équations différentielles linéaires à retard [21, 24, 25, 26, 110], cependant, l’application de cette découverte

dans le domaine de la commande des robots aériens, pour autant qu’elle concerne l’auteur, n’a pas été correctement

abordée, de cette manière, la contribution principale du présent travail s’appuie sur ce fait.

Ce travail aborde, au moyen de l’approche MID, les effets d’un délai produit par un système de suivi basé sur

la vision sur la stabilité des drones quadrotors dans le but d’améliorer leur taux de convergence, ce qui peut être

traduit par le fait que le quadrotor atteint l’équilibre aussi rapidement que possible avec une réponse transitoire non

oscillatoire.

Les résultats des simulations détaillées, y compris la dynamique linéarisée du véhicule et la représentation du

modèle non linéaire, vérifient le bon fonctionnement de la proposition. Cependant, l’extension de la recherche à

venir comprend (i) l’étude des contrôleurs PID basés sur le délai au moyen de l’approche MID, (ii) l’application de

l’approche MID au cas du suivi de trajectoire, (iii) une analyse comparative détaillée du véhicule quadrotor lorsqu’il

est manipulé par des contrôleurs linéaires basés sur MID et des approches non linéaires ainsi que (iv) la validation

des propositions dans des environnements conditionnés réels.

Chapter 7: Time-Delay Control of a VTOL Multi-Agent System Towards Transport Opera-

tions

Ce chapitre traite de la commande consensuelle d’un système multi-agents composé de mini-rotors à décollage

et atterrissage verticaux (VTOL) au moyen d’un contrôleur basé sur la paramétrisation du temps et du retard. La

modélisation du système VTOL est présentée en utilisant la paramétrisation des quaternions pour développer la

loi de stabilisation de l’attitude des robots aériens. La dynamique de la position du véhicule est étendue au cas

multi-agent où une commande PID à retardement est conçue afin d’obtenir un consensus général en termes de



commande de formation du système. Enfin, une étude de simulation détaillée est présentée pour valider l’efficacité

de la stratégie de contrôle proposée, où une interaction collective est également considérée.

Le chapitre actuel présente une proposition concernant le contrôle coordonné d’un ensemble de mini-girouettes

VTOL. En plus des travaux cités, il est inclus le problème du suivi de trajectoire du VTOL MAS en tenant compte

du délai dans la communication et dans les capteurs tout en visant à effectuer une interaction collective simple

(transport). Ainsi, un contrôleur à retardement est synthétisé pour remplir l’objectif de stabilisation en considérant

l’interaction collective aérienne pendant l’opération de transport simulée. Des cartes de stabilité explicites dont la

valeur du gain sont utilisées pour réaliser une étude de simulation détaillée.

La stratégie de contrôle consiste en un contrôleur PID tolérant au retard, qui garantit à la fois la stabilité de l’attitude

et de la position d’un robot aérien individuel et le suivi de la trajectoire sous différentes perturbations permettant

la consensualité du système multi-robot. Les résultats de la simulation valident l’efficacité de la méthodologie de

contrôle multi-agent proposée pour un scénario de transport d’objets, qui induit différentes perturbations sur chaque

robot du quartet. La simulation souligne également que, même lorsque les effets du délai sont présents sur le

système, la consensabilité, la formation et le suivi de trajectoire sont réalisables en utilisant la méthodologie de

contrôle proposée. Dans le cadre de travaux futurs, la présentation et l’explication explicites des points de contact de

l’objet et le calcul des forces exercées par les robots sur l’objet seront envisagés et étudiés.

Appendices

Appendix A: Properties of the Multi-Link Unmanned Aerial System

Cette annexe définit les propriétés de la matrice et du vecteur qui composent le modèle dynamique du ML-UAS.

Ces propriétés sont utilisées pour effectuer l’analyse de stabilité du véhicule au moyen des critères de stabilité de

Lyapunov.

Appendix B: ML-UAS Linearization for Observability

Dans le cadre de la conception du filtre de Kalman étendu dans le Chapitre 4, la linéarisation du modèle dynamique

non linéaire des systèmes est obligatoire. La procédure pour accomplir cette tâche est décrite dans cette annexe.

Appendix C: A Pedagogical Approach to Data Fusion and Kalman Filter

Cette annexe expose, de manière pédagogique, le filtre de Kalman pour la fusion de données et son utilisation dans

les systèmes mécaniques. Les équations du filtre de Kalman et du processus de fusion de données sont expliquées

de manière intuitive et appliquées sur deux plates-formes pédagogiques utilisées à l’IPSA comme partie du matériel



de laboratoire pour introduire les étudiants au contrôle des systèmes et aux principes de navigation dans le domaine

de la robotique mobile terrestre et aérienne. Enfin, les outils pour simuler de tels systèmes dans des conditions

réelles d’exploitation dans Matlab et Simulink sont donnés et les résultats sont discutés.

Appendix D: Teaching Activities

Un récapitulatif des activités pédagogiques menées pendant la formation doctorale, dans le cadre du contrat doctoral,

est présenté dans cette dernière annexe. Le contenu de cette section de la thèse comprend une liste détaillée des

cours, une liste des étudiants encadrés et les plateformes pédagogiques développées pour ces buts.
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Contests
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Résumé & Abstract

Résumé

Un sujet récent et passionnant dans le domaine des véhicules aériens autonomes (UAVs) est l’interaction avec l’environnement

via la manipulation en vol (récupération, transport, placement). Ce profil opérationnel dévoile un énorme potentiel vis-à-vis

des applications industrielles et de service. La nouvelle génération de robots aériens permet de disposer d’un actionneur

robotique tridimensionnel capable d’exercer des forces et / ou des couples sur des points spécifiques pour des opérations

d’acquisition / déploiement, d’outillage ou de perchoir. De nos jours, les drones de petite taille sont remarquables en raison de

leur polyvalence, portabilité et maintenance facile, mais leur performance est limitée en raison de problèmes technologiques

concernant la consommation d’énergie, l’efficacité du temps de vol, etc.

Il est donc évident que les opérations de prélèvement aérien, de transport et de placement ont capté l’attention des chercheurs

car elles participent à la plupart des applications réelles telles que la livraison de kits de survie, les opérations de sauvetage, le

déploiement / l’acquisition de capteurs, etc. Ces capacités peuvent être améliorées par la conjonction de plusieurs véhicules

aériens ce qui implique la conception et les études sur différents domaines technologiques. À cet égard, l’idée d’une manipulation

de charges lourdes par un groupe d’UAVs est prometteuse dans des conditions environnementales difficiles.

Dans le cadre de la solution aux tâches susmentionnées, et en ayant à l’esprit la mise en œuvre d’un ensemble de véhicules

aériens, des drones ont été physiquement connectés et étudiés comme une seule chaı̂ne cinématique volante avec une

morphologie et une structure similaires à celles du robots manipulateurs. Néanmoins, il est simple d’associer cette solution à

une structure de véhicule équivalente au sol: les trains. Une définition générale du train peut se référer à un certain nombre de

véhicules guidés ou d’animaux se déplaçant dans une formation en ligne ou en courbe.

Ainsi, des nouveaux systèmes et configurations aériens sont en cours de conception. Parmi ces plates-formes, les manipula-

teurs aériens Snake se démarquent. Ces véhicules sont définis comme une sorte de manipulateur aérien reconfigurable et à

morphing couplée avec des compétences de manipulation robotique bidimensionnelles ou tridimensionnelles grâce à l’interaction

de multi-hélices ou d’hélices qui constituent deux chaı̂nes cinématiques bifurquées ou plus.

L’application de ces systèmes aériens multi-corps est encore limitée en raison de problèmes de consommation d’énergie

et de médiation, mais ils permettent d’explorer de nouvelles méthodologies et techniques dans les domaines de la robotique

reconfigurable, de la robotique continue, des humanoı̈des volants, entre autres.

L’objectif général du doctorat est de proposer une configuration multi-drone innovante destinée à effectuer des tâches de

manipulation (récupération/déploiement/transport) dans des environnements complexes via des méthodes robotiques avancées

1



incluant l’étude des effets des retards dans le système aérien. La présence de retards au niveau du l’état et/ou des entrées d’un

système affectent sa stabilité de telle sorte qu’un délai peut induire des comportements complexes pour les schémas en boucle

fermée ou, pour certains délais importants, le système peut être stabilisé. De plus, il a été démontré que pour les systèmes

interconnectés ou à grande échelle, les retards sont critiques.

Le contenu principal de cette thèse est divisé en: la partie 1 qui est consacrée à la modélisation et à l’étude dynamique du

système aérien autonome à liaisons multiples; et la partie 2 qui se concentre sur l’étude des effets des retards dans les opérations

d’UAV. Egalement, chacune de ces parties est divisée en chapitres qui correspondent à la portée correspondante. Enfin, les

remarques finales sont fournies. De plus, 4 annexes complètent la description des activités réalisées.

Abstract

A recent and exciting topic within the field of unmanned aerial vehicles (UAVs) is the interaction with the surrounding environment

via in-flight manipulation (retrieving, transport, placing). Such operational profile unveils an enormous potential vis-a-vis industrial

and service applications. The new generation of aerial robots allows to have three-dimensional robotic actuator capable of exerting

forces and/or torques on specific point(s) for acquisition/deployment, tooling or perching operations. Nowadays, the small size

UAVs are noteworthy because of their versatile, portable, and easy maintenance yet, their operational performance is restricted as

a matter of technological issues regarding the power consumption, flight time efficiency, etc.

It is thus evident that the aerial picking, transporting and placing operations have captured the eye of researchers as these

take part in most of real applications as survival-kit delivering, rescue operation, sensor deployment/acquiring and so on. Such

capabilities can be improved by the conjunction of several aerial vehicles which implies, in addition, the conception and the studies

on different technological domains. In this regard, the idea of heavy payloads manipulation by a group of autonomous aircrafts is

promising in harsh environmental conditions.

As a part of the solution to the aforementioned tasks, and having in mind the implementation of a set of aerial vehicles, UAVs

have been physically connected and studied as a single flying kinematic multi-link chain with a morphology and structure similar to

those of the manipulator robots. Nevertheless, it is straightforward to relate such solution to a ground-equivalent vehicle structure:

trains. A general definition of train may refer to a number of guided vehicles or animals moving in a line- or curve-like formation.

Thus, new aerial systems and vehicles configurations are being conceived. Amid such platforms, Snake Aerial Manipulators

stand out. These vehicles are defined as a kind of coupled task re-configurable and shape-morphing aerial manipulator with

bi-dimensional or three-dimensional robotic handling skills through the interaction of multi-copters or propellers that constitute two

or more bifurcated kinematic chains.

The application of these multi-body aerial systems is still restricted due to power consumption and onmidirectionality issues,

yet, they allow to explore new methodologies and techniques in the fields of re-configurable robotics, continuum robotics, flying

humanoids, among others.

The general objective of the Ph.D. is to propose an innovative multi-drone configuration meant to perform manipulation tasks

(retrieving/deployment/transport) within complex environments via advanced robotics methods including the study of the effects of

time-delays in aerial system since the presence of time-delays at the state and/or inputs of a given system affects its stability such

that a time-delay may induce complex behaviors for the closed-loop schemes or, for some large time-delays, the system may be

2



stabilized. Additionally, it has been shown that for interconnected or large-scale systems time-delays are thus critical.

Thus, the main content of this thesis is divided into: Part 1 which is devoted to the modelling and dynamical study of the

Multi-Link Unmanned Aerial System proposal; and Part 2 that focuses on the study of the effects of time delays in UAV operations.

At the same time, each of these parts is divided into chapters that fit the corresponding scope. At last, the concluding remarks are

provided. In addition, 4 appendices complement the description of the activities carried out.
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Chapter 1

Introduction

This chapter provides a brief description of the project, in this sense, the state of the art, regarding the different fields of knowledge

addressed during the development of the thesis, is equally included.

The current chapter is outlined as follows. At Section 1.1, a short description of the project is provided. Section 1.2 reveals

some appreciable introductory information on the domain of Unmanned Aerial Vehicles (UAVs) as well as some definitions

commonly adopted in this research field. On the other hand, Section 1.3 reports the advances and current developments on

matters of Multi-Link Unmanned Aerial Systems (ML-UAS). Section 1.4 exposes a brief summary of the effects of time-delays in

the stability of dynamical systems and, lastly, Section 1.5 establishes the general outline of the thesis.

1.1 Thesis Framework

Keywords: Multi-drone Manipulation, Dynamic System Modeling, Nonlinear Control, In-flight Inter-drone Docking, Aerial Pick-

transportation-and-place, Time-Delay Effects.

1.1.1 Thesis Description

A recent and exciting topic within the field of autonomous aerial vehicles is the interaction with the surrounding environment via

in-flight manipulation (retrieving, transport, placing). Such operational profile unveils an enormous potential vis-a-vis industrial and

service applications. The new generation of aerial robots allows to have three-dimensional robotic actuator capable of exerting

forces and/or torques on specific point(s) for acquisition/deployment, tooling or perching operations.

Based on the multi-disciplinary nature of the actual project, it lies within the framework of a joint research collaboration between

the “Laboratoire de Signaux et de Systèmes (L2S)” and the “Institut Polytechnique de Science Avancées (IPSA)” whose aim is to

develop an interactive multi-drone autonomous aerial system.

Previous research has been conducted on such kind of vehicles regarding the control strategies, the design and modeling,

multi-drone load transportation complemented by visual sensing strategies for navigation and object detection, among others. A

further discussion on these regards is provided in the upcoming sections of the chapter.

5
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(a) ”El chepe” train (b) Working ants

Figure 1.1: Cooperative transport operations

(a) Scolopendra gigantea (b) Snake in motion

Figure 1.2: Natural ”multi-link” morphologies

1.1.2 Inspiration

The aerial picking, transporting and placing operations have captured the eye of researchers as these take part in most of

real applications as survival-kit delivering, rescue operation, sensor deployment/acquiring and so on. Such capabilities can be

improved by the conjunction of several aerial vehicles which implies, in addition, the conception and the studies on different

technological domains. In this regard, the idea of heavy payloads manipulation by a group of autonomous aircrafts is promising in

harsh environmental conditions [71, 129, 112, 171, 17, 4].

As a part of the solution to the aforementioned tasks, and having in mind the implementation of a set of aerial vehicles, UAVs

have been physically connected and studied as a single flying kinematic multi-link chain with a morphology and structure similar to

those of the manipulator robots that can be found in the industrial and manufacturing field [156, 9, 175, 176].

Nevertheless, it is straightforward to relate such solution to a ground-equivalent vehicle structure: trains. A train is defined

to be a series of railway carriages or wagons moved as a unit by a locomotive or by integral motors (Fig. 1.1a). Yet, a general

definition may refer to a number of guided vehicles or animals moving in a line- or curve-like formation (Fig. 1.1b) [154]. However,

one of the main differences may be the limitation in matters of mobility due to the railroads which are necessary for the trains to

reach an specific location.

Natural systems often operate under a cooperative transportation principle as in the case of ants colony [80] or bees [162].

Nevertheless, live beings as the centipedes (Fig. 1.2a) or snakes (Fig. 1.2b) may present a morphology which makes one relate

the robotic and transportation multi-link systems to such shapes. Centipedes possess body segments and legs, thus they generate

body oscillations during terrestrial locomotion. Centipede locomotion has the characteristic that body oscillations are absent at low
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speeds but appear at faster speeds; furthermore, their amplitude and wavelength increase as speed does, leading to its study

and dynamical approach with more emphasis [10]. The complex anatomy of the centipede has inspired researchers to develop

new robotic structures as well as new control strategies and methodologies to overcome the problem of trajectory tracking and

obstacle avoidance in complex environments [84, 69, 70].

It is thus logical to place one’s sight on natural multi-ink systems to solve complex locomotion and transpiration issues.

1.1.3 Mission

The general objective of the Ph. D. is to propose an innovative multi-drone configuration meant to perform manipulation tasks

(retrieving/deployment/transport) within complex environments via advanced robotics methods. Three complementary approaches

are investigated:

1. The first stage consists in modeling a novel interactive aerial system capable of performing in-flight collective manipulation,

where tightening define the configuration of the aerial robot array.

2. The second phase of the thesis focuses on the control aspects especially to achieve different formations with the proposed

multi-drone system as well as the manipulation dexterity of the payload during the transportation and manipulation

operations.

3. The third stage is devoted to study the effects of time-delays in aerial system performing the interactive environmental tasks

as the ones previously mentioned.

The main aspects involved in this project are introduced in the following sections to establish a reference framework for ulterior

analysis.

1.2 Unmanned Aerial Vehicles (UAVs): An Overview

UAVs, or formally called Unmanned Aerial Vehicles are defined as space-traversing vehicles that fly without a human crew on

board and that can be remotely controlled or can fly autonomously. Such vehicles have recently reached unprecedented levels of

growth in diverse military and civilian application domains [123, 166].

UAVs were first introduced during World War I, registering a long involvement of the military. In 1997, the total income of the

UAV global market, including the Vertical Take-Off and Landing (VTOL) vehicles, reached $2.27 billion dollars and for the middle

1990’s, the demand for VTOL vehicles was limited, but since then, commercially available products started to increase [166].

Studies as the ones gathered in [123, 166], claim that UAVs will continue to be the most dynamic growth sector of the aerospace

industry and the tendency will shift to smaller, more flexible and versatile UAVs [106].

1.2.1 Early Designs

It has been documented that the first major breakthrough contribution to autonomous mechanisms occurred during the era of

Pythagoras. Nonetheless, in China, at about 400 B.C., took place the first documented idea of a vertical flight aircraft; and by

1483, Leonardo Da Vinci designed an aircraft hovering capable (Fig. 1.3) [166].
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Figure 1.3: Leonardo Da Vinci’s air gyroscope

A boiler-based vertical flight machine was also designed in the 1840’s by Horatio Phillips. However, it was Ponton d’Amecourt

in the 1860’s who flew small helicopter models powered by steam. Thomas Alva Edison introduces one of the most remarkable

aerial vehicles in the 1880’s; he experimented with different rotor configurations and electric motors. Yet, the major breakthrough

of modern times in helicopter history was the never-flown helicopter of Igor Ivanovitch Sikorsky (1909). UAVs entered the military

applications arena during the First World War, nevertheless, as previously mentioned, the field of rotary-wing aviation owes its

success almost entirely to Sikorsky, who built in 1939 the classical modern helicopter.

In parallel with building vertically flying machines and helicopters, fixed wing aircraft started to evolve over the last 100 years,

with the first flight demonstrated by the Wright brothers in 1903 [122].

Nowadays, the small size UAVs noteworthy because of their versatile, portable, and easy maintenance; are employed for the

same applications as larger UAVs on a smaller scale and at a lower cost.

1.2.2 Small-size UAVs

Among different types of UAVs, small-size or small-scale UAVs are gaining top interest and popularity because [29, 50]:

• They represent a powerful tool for scientific research due to characteristics such as low cost, high maneuverability, and easy

maintenance.

• Their civil application range is wide and continue to increase.

• The role of small-scale UAVs in warfare and defense regards is still unique.

To date, and to the best of the author’s knowledge, there is no common method that standardizes the classification of UAVs.

The most essential UAV characteristics such as size, speed, reached altitude, operational range, flight endurance, amidst others,

are often used to classify these vehicles [152, 153]. In general terms, and with base their size, small-scale UAVs are found to fall

into three main categories:

• Small tactical UAVs (Fig. 1.4): the top performance UAVs. Small tactical UAVs are mainly deployed to army serving military

operations, yet, some civil missions can be executed by these. Besides the conventional fixed-wing and single-rotor types,

several are the UAV models that have been conceived, aiming to optimize the aerodynamics and flight endurance.
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(a) Scan Eagle (b) Hornet Maxi (c) V-Bat (d) IT180

Figure 1.4: Examples of small tactical UAVs

• Miniature UAVs (Fig. 1.5): compared with the aforementioned type, these travel at slower speeds with less flight endurance,

possess reduced payload manipulation capability, and operate in a more confined space. Most of these feature a detachable

design. Miniature UAVs can be conveniently integrated into various civil applications.

(a) RQ-11B Raven (b) EBee (c) FlyingCam (d) Dragonfly

Figure 1.5: Examples of miniature UAVs

• Micro UAVs (Fig. 1.6): the primary aim was to develop a UAV prototype that had a wing- or rotor-span no greater than 15

cm and able fly up to 2 hrs. Such specifications may define the vehicles into this category. The recent technology boosting

has shrunk many hobby models into the category.

(a) Black Hornet (b) Nano Hummingbird

Figure 1.6: Examples of micro UAVs

Lastly, in order to resume the information above, Table 1.1 provides the detailed specifications of small-scale UAVs [29].

1.2.3 Typical UAV System

Prior to ulterior discussions, an overview of the general configuration of a UAV is shown in Fig. 1.7. Basically, a complete

Unmanned Aerial System (UAS) consists of four parts: (1) a baseline aircraft, (2) manual control backup, (3) a Ground Control

Station (GCS) for remotely monitoring the UAV’s in-flight status and manipulation; and (4) an on-board Flight Control System
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Figure 1.7: Typical UAV system

(FCS) [29, 152, 153].

As depicted in Fig. 1.7 and briefly introduced, a Flight Control System can be considered as an integration of seven main elements

which are listed below.

• On-board processing units consist of two types: flight control processing unit and mission-oriented processing unit. Its

technological evolution is mainly reflected by the transition from single board computer stacks to all-in-one board integration.

• Navigation sensors provide measurements of the in-flight status of the UAV. Mainly, there are five types of sensors belonging

to this category: (1) accelerometer, (2) gyroscope, (3) magnetometer, (4) GNSS (Global Navigation Satellite System)

receiver, and (5) peripheral sensors (e.g. barometer, odometer, airspeed sensor). Most of the time, several of these sensors

can be found in one of the following elements: (1) Inertial Measurement Unit (IMU), (2) Attitude and Heading Reference

System (AHRS), and (3) GPS-aided AHRS. The evolution of the navigation sensors can be attributed to the development of

MEMS sensors and data fusion techniques.

• Mission-oriented sensors are the companion to the navigation sensors, providing additional information. These can be

classified into two categories: passive and active sensors. Passive sensors may primarily refer to (1) electro-optical cameras,

(2) low-light-level (LLL) cameras, and (3) thermal imagers. On the other hand, active sensors are mainly miniature laser

devices for detection and ranging.

• Communication modules are the rover side of the wireless communication links between the UAV and the GCS. The only

Table 1.1: Small-size UAVs specifications

Specification Small tactical Miniature Micro

Maximal size 10 m 5 m 15 cm
Gross Take-off Weight 10 to 25 kg < 10 kg < 0.1 kg
Speed Up to 130 m/s Up to 50 m/s Up to 15 m/s
Maximal altitude (above ground) 3500 m 1200 m 100 m
Operation range Up to 50 km Up to 25 km Up to 10 km
Flight endurance Up to 48 hrs Up to 48 hrs Up to 20 mins
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system known in practical operation is radio-based communication. Small-scale UAVs generally operate in a frequency

range of 425 MHz to 5.8 GHz.

A GCS for small-scale UAVs is commonly portable. Its main responsibilities include: displaying and monitoring real-time

in-flight status data,displaying navigation view, displaying received images, decision making, mission planning, sending

real-time commands, facilitating the control for ground users, etc. The most obvious advance of GCS development may be

the increasing prevalence of the open-source GCS software toolkits.

• Power source provides electricity to the UAV system in air.

• Data storage is for on-board in-flight or image data storage.

• Optional Radio Control link is the on-board terminal of the RC communication to realize piloted control backup.

Small-scale UAVs’ entrance to the academic community has posed challenges in a variety of research fields such as

aerodynamics and flight dynamics modeling, flight control, computer vision, and so on. In the meantime, it also brings an excellent

opportunity of developing design methodologies and further evaluating their practical performances.

It should be noted that for scientific research purposes, small-scale UAVs are preferably classified in terms of operation

principle, that is, rotorcraft, fixed-wing, and flapping-wing. The process of developing a fully autonomous small-scale UAV mainly

consists of five steps:

1. Platform design and construction

2. Dynamics modeling

3. Flight control

4. Navigation algorithms design and implementation

5. Guidance algorithms design and implementation

For a further discussion on the matter, and in order to witness the popularity growth of these vehicles among the scientific

community, refer to [29, 152, 153, 50, 123, 166] which are the main sources from where the presented information was taken.

1.3 Multi-Link Unmanned Aerial Systems (ML-UASs): State of the Art

In recent years, the improvement of Unmanned Aerial Vehicles (UAVs) capabilities, in terms of aerial manipulation, is an area of

interest for scientist around the globe, as previously introduced in Section 1.2. In this sense, the most adopted solution had been

to attache robotic manipulator arms to UAVs, nonetheless, the inherent self conception implies a limitation in terms of performance

and dexterity [114].

In order to overcome the aforementioned dexterity issue, new aerial systems and vehicles configurations are being conceived.

Amid such platforms, Snake Aerial Manipulators stand out. These vehicles are defined, according to [114], as a kind of coupled task

re-configurable and shape-morphing aerial manipulator with bi-dimensional or three-dimensional robotic handling skills through

the interaction of multi-copters or propellers that constitute two or more bifurcated kinematic chains. It is worth mentioning that the

work in [114] offers a vast and complete survey on this matter, in this regard, the text herein may be a compact interpretation of

the available information yet with some complementary comments that the author considered to be enrich the discussion.
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Figure 1.8: Aerial manipulators configuration [114]

Even with the actual technological surge, the application of these multi-body aerial systems is still restricted due to power

consumption and onmidirectionality issues, yet, they allow to explore new methodologies and techniques in the fields of re-

configurable robotics, continuum robotics, flying humanoids, among others.

Some of the most representative and significant works in the literature that address the conception and development of this

kind of vehicles may be:

• The DRAGON, characterized by using propellers as hovering elements and servomotors for manipulation [176].

• The ODAR FAMILY, where multi-rotors are used as elements of hovering, dexterity and manipulation [132].

• The EHECATL, in which, as in the case of the ODAR FAMILY, the multi-rotors are used as elements of hovering, dexterity

and manipulation yet it includes selective servomotors assistance [113].

Fig. 1.8 depicts the configuration of the cited reference works. A further discussion on the different aspects regarding the

conception, modeling and control of this new aerial vehicle configuration is provided next.

1.3.1 Mechanical Elements and Classification

The main components of these robotic systems have been identified and defined by [114], in this regard, one may divide the

elements in eight major categories as follows:
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• Branching element: the reference point from which at least two kinematic chains fork.

• Kinematic chain: successive union of engine elements with movement transmission elements (usually bar linkages), by

joints.

• Engine elements: the set of multi-copter aircrafts or individual propellers which serve as the main actuators of the system

for hovering, translation and rotation.

• Transmission elements: bar linkages that connect one engine element to other and allow the chained transmission of their

rotations and translations.

• Joint elements: these allow the general mobility and the propagation of relative movements. They could be any type of

bearing or even auxiliary motors.

• Damping elements: components used to control or suppress undesired movements, vibrations or misalignment between

elements.

• Power elements: components that provides the energy to the aircraft and the auxiliary engine elements.

• Elements of sensing and control: on-board electronic and electro-mechanical devices that allow to measure, store and

regulate the states of the robot.

Additionally, according to the linkages material and behavior, the Snake Aerial Manipulators may fall into one of the following

categories [129, 163]:

• Flexible Systems (Fig. 1.9): are based on the use of cables and ropes as linking elements, however, flexible materials can

be used to built the linkages.

Figure 1.9: Flexible ML-UAS [109]

• Rigid Systems (Fig. 1.10): Consist of a set of UAVs or independent propellers mounted on rigid links. Based on the

kinematic chain that the airships or propellers conform, a sub-classification arises:

– Rigid Parallel ML-UAS (Fig. 1.10a): In this classification, the movement and force of the end-effector is determined by

the coordinated operation of each individual engine element in a closed kinematic chain.

– Rigid Serial ML-UAS (Fig. 1.10b): In this case, the movement and force applied to the point of interest follows an open

kinematic chain.
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(a) Rigid parallel ML-UAS [125] (b) Rigid serial ML-UAS [176, 177]

Figure 1.10: Rigid ML-UASs

1.3.2 Flight Dynamics Consideration

Concerning the aerodynamics of the vehicle and its flight mode, a ML-UAS is subjected to be categorized within one of the

following classifications [114]:

• On the flight: this is a dynamic operation mode, requires standard aerodynamic design, which corresponds, mainly, to

wind-related phenomena acting on regular aircrafts [7, 88].

• In situ: this is a quasi-static operation as hovering is required in order to manipulate objects or to do miscellaneous

tasks. The in situ tasks are related to hovering power consumption, the distance between propellers, the distance among

manipulated objects and the operation altitude [78, 47].

• Transformation: is needed in order to change between on the flight and in situ modes. Such change also requires a smooth

motion of the elements [158, 140].

A power source is still necessary in order to enable the motion of the system thus some remarks on the matter are addressed

next.

1.3.3 Design Considerations of Energy and Power

The multi-link aerial manipulators are feasible by the implementation of propellers, valves and turbines; however, they all require a

power source, and according to the options available nowadays in the market, there exist four alternatives: fuel-based sources,

solar energies, batteries and direct wired connections. It is evident that the energy source of an aerial vehicle whereas it is a

single drone or a multi link system, depends on its size and its weight. In this regard, small scale structures are preferred as there

is a vast variety of batteries that satisfy the flight time demanded for the operations [63, 168, 148].

The degree of mobility of the entire aerial structure is highly dependent on the thrust (and on the power source). In this regard,

the ML-UASs are observed to perform at three different optional regimes:

• Planar operation: the roll and pitch angles of each element of the system tend to zero. The only feasible independent

movements are three-dimensional translations and yaw rotations. The execution of three-dimensional angular motion is

exclusive of the gripper [113, 175].

• Omnidirectional operation: in this case, the aerial manipulator has total mobility or beyond the planar configuration [131, 79].
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• Convertible operation: as the vehicles translates to the work area, it commonly keeps its entire structure as some sort of

long-distance aircraft and once in the workplace it transforms itself to a shape-morphing aerial vehicle.

As the last observation to be mentioned on the mechanical regard, when designing ML-UASs, the thruster autonomy is

a consideration of critical importance as the autonomous manipulation task highly depends on this, nevertheless, assisted

manipulation has been studied as a possible solution to extend the performance capability of the vehicles [175].

1.3.4 Considerations on Electronics and Control

As in most of the Snake Aerial Manipulator conception procedures, UAVs are used as the actuators of the system thus, the

inherent problems of these vehicles appear equally on the dynamics of the flying chain. In this vein, some general implications

related to a single vehicle and its control, as well as the implementation of a real time operating system, must be tackled. Some

literature findings [114] establish that the aircraft’s flight mode defines the approach to be followed in order to generate the motion

of the overall kinematic chain, such that:

• Almost pure translational approaches: they focus on bringing the aircraft angles and their respective angular velocities to a

zero reference (except for the yaw angles). The main objective is to achieve smooth translational movements.

• Kinodynamic approaches: they are based on back-stepping techniques, and the idea is to disengage translational and

rotational models, providing a dynamic behavior to the translation and quasi-static character to the orientation.

• Geometric approaches: fully dynamical approaches in which the aircraft orientation is designed to achieve complex,

aggressive and acrobatic movements.

In summary, the operation of a collaborative aerial manipulator depends on the operation of the rotorcrafts that serve as

the actuators. In this manner, the operation of a single vehicle implies specific actions as: reading and control of orientation

and position, propellers command, image processing, internal data communication and storage, signal filtering, among others

[50, 152, 153].

The transformation sequence and the translation to the working area imply several difficulties which include: the coordination

and parallel programming in physically restricted flight, the online disturbances and inertial parameters estimation, the conception

and execution of a transformation/transition method (similar to those of convertible UAVs). The take-off and landing represent

two of the simplest yet dangerous operations, consisting on gradually turning off the motors but taking care that they stay in their

mode of thrust support. For these ends, orientation control takes higher priority in both modes of operation and in consequence

it is crucial to keep the sensors and actuators working in precise times. Additionally, once in aerial manipulation operation, the

restriction on the rotation of the propellers, online hierarchical control and over-actuation optimization must be considered during

the design procedure of the controllers and the command strategy [114].

Nevertheless, according to the perspectives addressed in the current section, none of the consulted references takes

into consideration the possible secondary effects that may be produced by communication, sensing, processing information

time-delays.
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Figure 1.11: Constant delay model

1.4 An Abstract on Time Delays Effects in Systems Stability

Delayed systems represent a class of infinite-dimensional systems often used to describe propagation phenomena, population

dynamics or engineering systems. A distinct feature of such systems is that their evolution rate is described by differential

equations which include information on the past history, for such reason, time-delay systems are also known as hereditary systems,

systems with aftereffects, or systems with time lags [58].

The delay effect on the stability of systems with delays in the state and/or input, is a problem of recurring interest since the

presence of a time-delay may induce complex behaviors for the closed-loop schemes or, for some large time-delays, the system

may be stabilized. In this regard, it is said that control systems operate in the presence of time-delays, mainly due to the time it

takes to acquire the information to create control decisions and to execute these [87, 127].

One possible effective control strategy consists in the properly induction of time-delays. For instance, enlarging or extending the

time delay in the feedback loop may stabilize a system that otherwise is unstable. Yet, the interest in studying and understanding

the effects of delays is rapidly increasing as an inherent consequence of the evolution of control systems complexity. In this sense,

the time-delay is a shift operator that lags an input signal by a constant amount of time as depicted in Fig. 1.11.

The main objective of studying the stability of systems subjected to time-delays is to determine necessary and sufficient

conditions for the closed-loop system whereas in the delay-parameter space of the controller-parameter space. In this matter, a

delayed systems is said to be delay-dependent stable if it is stable for only some values in the delay parameter space, on the other

hand, if the stability holds independently of the delay, the system is called delay-independent stable. Multiple disjoint delay regions

may exist, such that the system is stable within each region, while becoming unstable outside. These regions, which are known as

stability regions, become stability intervals in a system with a single delay. Stability intervals can be extended to a two-dimensional

map, known as a stability chart (see Fig. 1.12) [127, 155].

1.4.1 Examples of Systems with Time Delays

The following examples are provided by [155], thus for further and detailed discussions on the matter, one may refer to the cited

reference. For the purpose of this work, the examples are limited only to show and describe briefly the corresponding cases and

how the time-delay is considered within the overall system dynamics and control.
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Figure 1.12: Stability chart example

Delays in Vehicular Traffic Flow

The reaction of human drivers produces time delays, that is, drivers need a minimal amount of time to become aware of external

events regarding the environment and the vehicle conditions. Vehicular traffic is thus affected by delays which, sometimes, invite

collisions yet, delays can also cause traffic jams and stop-and-go waves, making traffic prone to slinky-type instabilities.

Variable-Pitch Milling Dynamics

In the milling process shown in Fig. 1.13, the clamped metal piece is machined by a rotating cutting teethed tool. Since the cutting

tool and the work-piece are deformable, uncut material is left by each tooth which then requires an additional force of the following

tooth. Thus, a past event affects the evolution of the cutting dynamics. The delay in this context is defined by the tooth-passing

period.

Figure 1.13: Variable pitch milling process
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Delays in Biology

Experiments haven been designed and conducted, alongside the implementation of analytical tools, to analyze the effects of

neuromusculoskeletal torque generation on quiet-standing stability. Such experiments involve the study of the muscle activity at

the ankles. The torque due to the neuromusculoskeletal system is modeled by a critically damped system governed by a neural

controller that exerts corrective actions after a time lag (about 80 ms). A block diagram of the closed-loop quiet-standing system is

depicted in Fig. 1.14.

Figure 1.14: Control diagram for quiet-standing

Epidemics

Understanding the underlying mechanisms of biological processes and epidemics represents a challenge for health enthusiasts.

These mechanisms can be revealed by considering epidemics and diseases as dynamical processes, generally, of the form:

ẋ(t) =−λx(t)+G(x(t − τ)) (1.1)

which formulates the circulating cell populations, where x stands for the circulating cell population, λ is the cell-loss rate, and

the monotone function G describes a feedback mechanism denoting the flux of cells from previous compartments. This model is

also adopted to describe the dynamics of a given population, where the delay represents a maturation period.

As an additional example, in the case of chronic myelogenous leukemia, some models have multiple delays such that the

stability is affected by large (one to eight days) and small (1 to 5 min) delays.

Delays in Operations Research

Among the main components of a supply chain model, the transportation, decision-making, and production are primary sources

of delay as shown in Fig. 1.15. In this context, one of the objectives is to maintain a constant inventory as a safety stock, while

responding to a dynamically changing customer demand, and receiving additional supplies that are not instantaneously available

(transportation delays).
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Figure 1.15: Delays in a supply chain

1.5 Thesis Outline

The main content of this thesis is divided in two parts: Part I which is devoted to the modelling and dynamical study of the

Multi-Link Unmanned Aerial System proposal including the disturbances estimation and robust control matters; and Part II that

focuses on the study of the effects of time delays in UAV operations. At the same time, each of these parts is divided into chapters

that fit the corresponding scope. A brief description about the content of each chapter composing this thesis is provided next. In

addition, the appendices complement the description of the activities carried out during the preparation of this work.

Part I: Multi-Link Unmanned Aerial System

Chapter 2: Modeling and Control: Robust Acquiring and Transport Operations

In this chapter, the concept of a Multi-Link Unmanned Aerial System, designed for multi-cargo transportation tasks, is introduced.

Such system features three links who are actuated by four flying robots. It is presented in detail the dynamics modeling procedure

based on the Euler-Lagrange formulation. A preliminary control scheme based on robust Adaptive Integral Sliding Mode Control

(AISMC) is applied considering the ML-UAS model uncertainties and the external disturbances. The control objective is to

follow/track avian-inspired acquiring patterns for such operations. The effectiveness of the proposed strategy is validated by

numerical simulations.

Chapter 3: Disturbances and Coupling Compensation for Trajectory Tracking

As in the previous chapter, this one focuses on a Multi-Link Unmanned Aerial System yet, the system is composed of three

rotorcrafts attached by two bar like links. The mathematical model is obtained through the Euler-Lagrange energy-based

methodology while the controller relies on a classical linear scheme. As the system is highly coupled, due to its inherent dynamics
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and cargo influences, a dynamic extension of the equations of motion to apply a Linear Kalman filter is proposed to meet the

trajectory tracking specification. The suggested state observer is validated via close-to-reality numerical simulations.

Chapter 4: Nonlinear Control and ASEKF-Based Disturbances Compensation

The chapter presents an extension on the previously introduced modeling and control strategy of the ML-UAS. In this regard, the

aforementioned system is subjected to lumped disturbances which comprise external disturbances and parametric uncertainties.

An Augmented-State Extended Kalman Filter intended to estimate endogenous and exogenous uncertainties is conceived and a

trajectory-tracking controller fulfilling Lyapunov asymptotic stability is synthesized. A simulation stage is conducted to validate the

effectiveness of the proposal.

Part II: Time-Delays on Unmanned Aerial Systems

Chapter 5: Parametric Analysis of PID Delay-Based Controllers for Quadrotor UAVs

The chapter provides a set of parametric stability charts considering a quadrotor rotorcraft performing stabilizing maneuvers

under the presence of feedback time-delays and subjected to PID controllers. The analysis considers the couplings between the

translational (slow dynamics) and the rotational (fast dynamics) motions. The parameters of the controllers, within the overall

control scheme, are computed using the well-known stability crossing roots theory. Numerical simulation results, including the full

dynamic model and the corresponding linear model of the vehicle, are presented to validate the proposal.

Chapter 6: Time-Delay Control of Quadrotor UAVs: a MID-Based Approach

This chapter exploits the effects of time-delays on the stability of Unmanned Aerial Vehicles (UAVs). In this regard, the main

contribution relies on the symbolic/numeric application of the Multiplicity-Induced-Dominancy (MID) property to the control of

UAVs rotorcrafts featuring time-delays. The MID property is considered to address two of the most representative aerial robotic

platforms: a classical quadrotor vehicle and a quadrotor vehicle endowed with tilting-rotors. The aforementioned property leads to

proper control gains (MID tuning criteria), allowing the system to meet prescribed behavior conditions based on the placement of

the characteristic function/polynomial closed-loop rightmost root. Lastly, the results of detailed numerical simulations, including the

linear and non-linear dynamics of the vehicle, are presented and discussed to validate the proposal.

Chapter 7: Time-Delay Control of a VTOL Multi-Agent System Towards Transport Opera-

tions

The present chapter deals with a consensus control for a multi-agent system composed by a mini Vertical Take-off and Landing

(VTOL) rotorcrafts by means of a controller based on time-delay parametrization. The VTOL system modeling is presented

using the quaternion parametrization to develop the attitude-stabilizing law of the aerial robots. The vehicle position dynamics is

extended to the multi-agent case where a time-delayed PID control is designed in order to achieve general consensus in terms of
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formation control of the system. Finally, a detailed simulation study is presented to validate the effectiveness of the proposed

control strategy, where a collective interaction is also considered.

Appendices

Appendix A: Properties of the Multi-Link Unmanned Aerial System

This appendix defines the properties of the matrix and vector which compose the dynamical model of the ML-UAS. These

properties are used to perform the stability analysis of the vehicle by means of the Lyapunov stability criteria.

Appendix B: ML-UAS Linearization for Observability

As a part of the conception of the Extended Kalman Filter in Chapter 4, the linearization of the dynamical non-linear model of the

systems is mandatory. The procedure to accomplish such task is described in this appendix.

Appendix C: A Pedagogical Approach to Data Fusion and Kalman Filter

This appendix exposes, in a pedagogical manner, the Kalman Filter for data fusion and its usage in mechanical systems. The

equations conforming the Kalman Filter and the data fusion process are explained in an intuitive form and applied over two

pedagogical platforms used at the IPSA as a part of the laboratory material to introduce the students to systems control and the

principles of navigation in the domain of terrestrial and aerial mobile robotics. Lastly, the tools to simulate such systems under real

operating conditions in Matlab and Simulink are given and the results are discussed.

Appendix D: Teaching Activities

A recapitulate of the pedagogical activities conducted during the Ph. D. formation, as a part of the doctoral contract, is presented

in this last appendix. The content of this thesis section comprehends a detailed list of courses, a list of the supervised students

and the pedagogical platforms developed for these means.
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Chapter 2

Modeling and Control: Robust Acquiring

and Transport Operations

This chapter is organized as follows: Section 2.1 corresponds to the general description of the paper. Section 2.2 comprises

the equations describing the dynamics of the chain. In Section 2.3, a robust Adaptive Integral Slide Mode (AISM) control law is

designed and the trajectory generation is fully described. The proposal if validated by numerical simulations whose results are

given in Section 2.4. The corresponding conclusions are available at Subsection 8.1.1.

2.1 Introduction

Unmanned Aerial Vehicles (UAVs) have been used for different tasks in the industrial or the scientific field, specially in those

involving aerial environment-interactivity, it is also the case for swarm-based cooperation which demands a high degree of dexterity

[71].

Aerial robots have been extensively used for natural disaster assessment. In this mission context, the contribution of micro

aerial vehicles (MAVs) remains restricted to the collection of images. Thus, the vehicles capable of picking, transporting and

placing represent an ideal solution for several emergency tasks. The impact of these capabilities might be amplified whether one

multiplies the aerial robots and develops efficient interaction algorithms.

There exist different approaches and strategies as well as a vast variety of configurations to address the multi-vehicles

interaction problem. Inspired by parallel manipulators, [156] presents a flying robot composed of three off-the-shelf quadcopters

rigidly attached via an articulated structure yielding to interesting results showing the system’s dexterity as well as enhanced cargo

capacity.

The necessity to increase efficiency flight raises the interest in transformable/morphing flying robots. In [9] the problems of

flight stability and center of gravity shifting, due to the payloads motion, are studied. In this regard, [175] exposes a multi-rotor

aerial vehicle with two-dimensional multi-links and demonstrates stable aerial transformation for high mobility in three-dimensional

environments. The DRAGON aerial robot is introduced in [176] and it has the ability of multi-degree of freedom aerial transformation

25
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Figure 2.1: Multi-linked Unmanned Aerial System description

and full pose control regarding the center of gravity of multi-links.

The task of manipulating several cargos implies the understanding of the phenomena presents in transporting a single

object which is a case widely studied in the literature. Hereof, the implementation of the Kalman Filter to estimate the payloads

disturbances [48] and the trajectory path picking generation in windy environments [49] can be cited along with the use of learning

automatas [27] and of fuzzy logic for computing the effects of the cargos in several quadrotors [17].

Nonetheless, the H∞ control theory has been adopted due to its robustness [74]. By combining the H2 and H∞ controls, [136]

solves the trajectory tracking problem of a tilt-rotor UAV when transporting a suspended load. Sliding Mode Control (SMC) is

another robust control strategy applied to aerial vehicles as in [49, 73, 130].

It is thus that the sequel of this chapter presents the longitudinal modeling and robust control of a novel multi-link aerial

interactive system that is studied for multi-object acquisition and transport tasks while tracking an avian-inspired trajectory [49]

with links-dependant trajectory dynamics. A Sliding Mode Controller alongside an adaptive gain with an integral term of the

tracking error added to the sliding surface is designed [130, 176]. The flying kinematic chain inspired by the capabilities of aerial

vehicles, the dexterity of arm manipulators and a train-like transporting operation is introduced herein to overcome the established

problematic.

2.2 Mathematical Modeling

Let a system of 3 links interconnecting 4 rotorcrafts be considered as a flying kinematic chain and only its longitudinal dynamics as

shown in Fig. 2.1 where the links are attached to the center of gravity of the corresponding vehicles and have frictionless angular

motion [156, 74, 130]. In addition, the links are assume to have the same length ll ∈ R and mass ml ∈ R and, as a consequence,

the same moment of inertia Il ∈ R. The attitude of the links is described by Θ j ∈ R with j = 1,2,3.

The attitude of the i–th rotorcraft (with i = 1,2,3,4) is given by θi ∈ R. The masses and moments of inertia of the vehicles
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are mr ∈ R and Ir ∈ R, respectively. The pose of j–th pendulum-like load is described by β j ∈ R. Furthermore, their masses and

lengths are defined by mp j
∈ R and lp j

∈ R, correspondingly.

The position of the chain ξ = [x z]T ∈ R
2 is related to that of the center of gravity of the middle link, in this sense, the angles Θ j

and β j define the positions of the rotorcrafts ξri
, the links ξl j

and the pendulums ξp j
w.r.t. the inertial frame as follows:

ξri
=







xri

zri






= ξ +

Qill

2







CΘ2
+ViCΘDi

−SΘ2
−ViSΘDi






, ξl j

=







xl j

zl j






= ξ +

Eill

2
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CΘ2
+CΘ j

−SΘ2
−SΘ j






, ξp j
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





xp j

zp j






= ξl j

− lp j







Sβ j

Cβ j






∈ R

2 (2.1)

where S• = sin(•), C• = cos(•), Qk = sign(k−2.5), Dk = (2k+1)/3, Ek = k−2 and Vk = k2 −5k+6. Such functions are defined

based on the established convention to measure the angles and the position of the element w.r.t the reference point in the

structure.

By time differentiating Eqn. (2.1), the velocity of each component is obtained, hence:

ξ̇ri
= ξ̇ − Qill

2







SΘ2
Θ̇2 +ViSΘDi

Θ̇Di

CΘ2
Θ̇2 +ViCΘDi

Θ̇Di






, ξ̇l j

= ξ̇ − Eill

2







SΘ2
Θ̇2 +SΘ j

Θ̇ j

CΘ2
Θ̇2 +CΘ j

Θ̇ j




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, ξ̇p j
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
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Cβ j
β̇ j

−Sβ j
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




∈ R

2 (2.2)

The dynamics of the flying multi-link robot is thus modelled by means of the Euler–Lagrange formalism.

The Lagrangian of the system is expressed as L = K −U ∈ R such that K = Kr +Kl +Kp and U =Ur +Ul +Up stand for the

total kinetic and potential energies, respectively. Both terms are defined by the energies of the quadrotors (Kr and Ur), the links

(Kl and Ul) and the pendulums (Kp and Up), given as

Kr =
4

∑
k=1

[

mr

2

(

ẋ2
rk
+ ż2

rk

)

+
Ir

2
θ̇ 2

k

]

, Kl =
3

∑
k=1

[

ml

2

(

ẋ2
lk
+ ż2

lk

)

+
Il

2
Θ̇2

k

]

, Kp =
3

∑
k=1

mpk

2

(

ẋ2
pk
+ ż2

pk

)

(2.3)

Ur = gmr

4

∑
k=1

zrk
, Ul = gml

3

∑
k=1

zlk , Up = g
3

∑
k=1

mpk
zpk

(2.4)

where g ∈ R
+ is the constant of gravity acceleration.

Let the vector of generalized coordinates be defined as q = [q1 q2 ... q5]
T = [x z Θ1 Θ2 Θ3]

T ∈ R
5. By applying the equation

provided by the Euler–Lagrange formalism, i.e.:

d

dt

∂

∂ q̇a
L− ∂

∂qa
L = τa with a = 1,2, ...,5 (2.5)

to the Lagrangian of the system, the dynamics of the ML-UAS is provided. It must be noticed that the attitudes of the vehicles

are not considered as generalized coordinates since these are used as control inputs instead.

The equations of motion for the translation of the chain can be expressed as
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µ ẍ−
3

∑
k=1

[

Rkαk

(

SΘk
Θ̈k +CΘk

Θ̇2
k

)

−mpk
lpk

(

Cβk
β̈k −Sβk

β̇ 2
k

)]

= τx (2.6)

µ (z̈+g)−
3

∑
k=1

[

Rkαk

(

CΘk
Θ̈k −SΘk

Θ̇2
k

)

+mpk
lpk

(

Sβk
β̈k +Cβk

β̇ 2
k

)]

= τz (2.7)

where Rk = k2 −3k+1 and µ, α1, α2 and α1 ∈ R are constants defined as

µ = 4mr +3ml +
3

∑
j=1

mp j
; α1 = ll

[

mr +
(

ml +mp1

)

/2
]

; α2 = ll
(

mp1
−mp3

)

/2 ; α3 = ll
[

mr +
(

ml +mp3

)

/2
]

(2.8)

Meanwhile, the equations of motion of the links follow the general form:

ι jΘ̈ j −R jα j

[

SΘ j
ẍ+CΘ j

(z̈+g)
]

+E2
j

llα j

2

(
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Θ̇2
2

)

+E jη j

(
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j

)

+ (2.9)

(

1−E2
j

) 3

∑
k=1

[

Ekηk

(

SΘ2−βk
β̈k −CΘ2−βk

β̇ 2
k

)

+
llαk

2

(

CΘk−Θ2
Θ̈k −SΘk−Θ2

Θ̇2
k

)

]

= τl j
(2.10)

By applying Eqn. (2.5) and considering β j instead of the generalized coordinates qa, the dynamics of the payloads can be

represented in the general form:

mp j
l2
p j

β̈ j −mp j
lp j

[

Cβ j
ẍ−Sβ j

(z̈+g)
]

+E jη j

(

SΘ2−β j
Θ̈2 +CΘ2−β j

Θ̇2
2 +SΘ j−β j

Θ̈ j +CΘ j−β j
Θ̇2

j

)

= τp j
(2.11)

Along Eqns. (2.10) and (2.11), new constants were introduced to reduce the expression, such that these are:

η j = mp j
lp j

ll/2 ; ι1 = l2
l

[

mr +
(

ml +mp1

)

/4
]

+ Il ∈ R ; (2.12)

ι2 = l2
l

[

mr +
(

2ml +mp1
+mp3

)

/4
]

+ Il ; ι3 = l2
l

[

mr +
(

ml +mp3

)

/4
]

+ Il ∈ R (2.13)

As previously mentioned, the aerial vehicles are considered as the actuator elements of the system, thus, their thrust and

rotational dynamics are taken into consideration. The control input of the rotational motion, udi
∈ R, closes the corresponding loop

as:

Irθ̈i = udi
(2.14)

The corresponding thrust and desired angles are computed as explained in the upcoming sections of the chapter. For instance,

let one consider the system itself to be composed by the actuators (MAVs) and the rigid links, in this regard, the effects of the

payloads can be treated as disturbances, which leads to a non-linear representation of the dynamics in the form:



2.2. MATHEMATICAL MODELING 29

M(q) q̈+C(q, q̇) q̇+G(q) = u+ρ (2.15)

such that

M(q) =












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
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∈ R
5×5 (2.16)

with the elements of the matrix being defined as m11 = m22 = 4mr + 3ml , m33 = m55 = l2
l (mr +0.25ml) + Il , m34 = m43 =

0.5llαcCΘ1−Θ2
, m44 = l2

l (mr +0.5ml)+ Il , m45 = m54 = 0.5llαcCΘ2−Θ3
and α = ll (mr +0.5ml).

The term C(q, q̇) q̇ in Eqn. (2.15) corresponds to the Coriolis and centripetal effects and it is given as:
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The gravitational effects are comprised in the vector

G(q) =

[

0 m22g αgCΘ1
0 −αgCΘ3

]T

∈ R
5 (2.18)

Finally, the terms at the right part of Eqn. (2.15), correspond to the control input vector u =
[

ux uz uΘ1
uΘ2

uΘ3

]T ∈ R
5 and the

disturbances vector ρ ∈ R
5.

Recalling the fact that the effects of the payloads are assumed as perturbations, the translational disturbances are established,

with base on Eqns. (2.6) and (2.7), as

ρx =
3

∑
k=1

[

−mpk
ẍ+mpk

lpk

(
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ρz =
3

∑
k=1

[

−mpk
(z̈+g)−mpk
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(

Sβk
β̈k +Cβk

β̇ 2
k

)]

(2.20)

For each disturbance affecting the motion of the links, the friction between the corresponding linking element and the pendulous
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payload is considered by the addition of the term γ j

(

β̇ j − Θ̇ j

)

where γ j ∈ R is the friction coefficient which implies that the friction

effect must be equally considered in the dynamics of the cargos (Eqn. (2.11)) in the term τp j
. The aforementioned consideration

leads to the following definitions of the disturbances:
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(2.23)

The well-defined model in Eqn. (2.15) is used in the upcoming section in order to design the AISM controller.

2.3 Control Strategy

For control purposes, let the dynamics of the system provided in Eqn. (2.15) be expressed as:

q̈ = f (q, q̇)+B(q)u+w (2.24)

where f (q, q̇) = fo (q, q̇) + ∆ f is the dynamic state-dependent function of the system defined by the nominal dynamics

fo (q, q̇) =−M−1 (q)(C(q, q̇) q̇+G(q)) and the unmodeled uncertainties ∆ f ∈ R
5. The control matrix B(q) ∈ R

5×5 is conformed by

the nominal control matrix Bo (q) = M−1 (q) and the uncertainties in the control matrix ∆B ∈ R
5×5 resulting in B(q) = Bo (q)+∆B.

The term w = M−1 (q)ρ ∈ R
5 comprises the external disturbances [73].

One must provide a control input u = uo + uw ∈ R
5 such that uo mitigates the nominal dynamics and uw compensates the

parametric and environmental uncertainties [73, 130].

Defining the tracking error vector as e = q−qd ∈ R
5 where the vector qd defines the desired trajectories, the sliding surface is

proposed as follows:

σ = ė+Λe+ ε ∈ R
5 (2.25)

where ε is a vector containing the integral terms of the error [49] and Λ = diag
(

λx λz λΘ1
λΘ2

λΘ3

)

∈ R
5×5 is a diagonal matrix

of control gains such that each λ–gain satisfies λ > 0.

The control input must approach σ to zero and sustain it there (σσ̇ < 0). The nominal control input shall provide stability once

the system has reached σ , i, e. σ̇ = 0 = ë+Λė+ e ∈ R
5.

By the substitution of the error and its time derivatives, it is obtained that
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uo = C(q, q̇) q̇+G(q)+M(q)
(

q̈d −Λė− e
)

(2.26)

To mitigate the plant parameters variation and the external disturbances, a viable solution is to consider uw as:

uw =−M(q)HT (σ) (2.27)

such that H = diag
(

ηx ηz ηΘ1
ηΘ2

ηΘ3

)

∈R
5×5 corresponds to a matrix of adaptive control gains, all subjected to the restriction

η > 0 ∈ R and T =
[

signσx signσz ... signσΘ3

]T ∈ R
5.

Recalling Eqn. (2.25) and the model in Eqn. (2.24), the time derivative of the sliding surface reads as:

σ̇ = fo (q, q̇)+Bo (q)u− q̈d +Λė+ e+WL (2.28)

where the term WL = ∆ f +∆Bu+w ∈ R
5 is the Lumped uncertainties vector, bounded in the manner:

||WL||<
∣

∣

∣

∣

∣

∣H
d
∣

∣

∣

∣

∣

∣ (2.29)

with Hd = diag
(

ηd
x ηd

z ηd
Θ1

ηd
Θ2

ηd
Θ3

)

∈ R
5×5 being the terminal value of H.

In order to achieve Hd , the dynamics of H is defined as

Ḣ = A−1SA ∈ R
5×5 (2.30)

with SA = diag
(

|σx| |σz|
∣

∣σΘ1

∣

∣

∣

∣σΘ2

∣

∣

∣

∣σΘ3

∣

∣

)

∈R
5×5; and A = diag

(

αx αz αΘ1
αΘ2

αΘ3

)

∈R
5×5 which defines the adaptation rate

of the η–gains. To prove the closed-loop stability, let one consider the following Lyanpunov candidate function:

V =
1

2
σT σ +

1

2
1T H̃T AH̃1 ∈ R (2.31)

with H̃ = H−Hd being the adaptation error and 1 ∈ R
5 the ones vector.

By time differentiating Eqn. (2.31) and considering Eqns. (2.26), (2.27) and (2.28), the time derivative of the Lyapunov

candidate function can be expressed as

V̇ = σT
(

WL −HdT (σ)
)

(2.32)
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Figure 2.2: Control strategy for the ML-UAS

and since σT HdT (σ)≥ 0 by definition, and considering the boundness property of WL established in Eqn. (2.29), it follows

that V̇ ≤ 0 ∀t > 0 which ensures the asymptotic stability of the system subjected to the proposed control law.

In order to control the attitude of the vehicles, a PD controller given as udi
= −Kpi

epi
−Kvi

evi
is chosen. The constants

Kpi
, Kvi

∈ R correspond to the proportional and derivative gains, respectively, the position and velocity errors are defined as

epi
= θi −θ d

i ∈ R and evi
= θ̇i − θ̇ d

i ∈ R in which the index d stands for the references. The stability analysis for this well-known

controller can be found in [35].

The desired orientation of the vehicles and the forces to be exerted by each aerial vehicle are computed with base on the

control inputs generated by the AISM controller.

Let one recall the control input vector in Eqn. (2.15) and the description of the system in Fig. 2.1, thus
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(2.33)

As q ∈ R
5 and 8 possible control inputs (the force and attitude of each the vehicle) are available, the ML-UAS is considered to

be an over-actuated system thus, to avoid this issue, let one establish ∀t > 0 θ d = θ d
1 = θ d

2 = θ d
3 = θ d

4 ∈ R which leads to

θ d = tan−1

(

ux

uz

)

(2.34)
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Therefore, the force that each MAV should exert over the system can be computed according to the expression:
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The control section is summarized in Fig. 2.2 which shows the control algorithm in a graphical representation for a better

understanding. The trajectory planning block, as can be appreciated, is described in the following subsection.

2.3.1 Trajectory Planning and Picking Strategy

The altitude trajectory of the overall system is based on a co-sinusoidal function whose parameters (frequency and amplitude) are

updated according to the object location (xo,zo) [49].

The desired trajectory in Ix is established in order to keep a constant velocity vh ∈ R, i.e. xd (t) = vht ∈ R and to reach the

grasping at the time tg = vh/xo ∈ R.

For the motion along Iz, the desired trajectory is defined by tg, the altitude of the chain during the operation zre f ∈ R, the length

of the pendulums lp = lp1
= lp2

= lp3
and the position of the object in the corresponding axis zo ∈ R, as:

zd (t) = zre f +
{

zre f −
(

lp + zo

)}

cos
(

πt/tg
)

(2.36)

The desired attitude of the links is computed with base on a tangent relation with respect to the translational pattern. By time
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differentiation of Eqn. (2.36) and adopting a sign change in the sin function due to the measurement convention, one can compute

Θd
2 ∈ R which, alongside the geometric relations described in Fig. 2.3, defines Θd

1 , Θd
3 ∈ R as follows:

Θd
2 = tan−1

(

π
{

zre f −
(

lp + zo

)}

sin
(

πt/tg
)

/tg
)

(2.37)

Θd
1 = π −2tan−1

(

2
{

zre f −
(

lp + zo

)}

/ll
)

+Θd
2 (2.38)

Θd
3 = 2tan−1

(

2
{

zre f −
(

lp + zo

)}

/ll
)

+Θd
2 −π (2.39)

2.4 Numerical Simulations and Results

To validate the control strategy proposal, a numerical simulation was performed, such study considered the parameters introduced

in Table 2.1, additionally, the initial conditions of the flying chain were all set to zero as well as the initial attitude of the vehicles. A

comparison between the system under the command of a PD controller and the AISM controller was equally addressed, in this

regard, the PD control (PDC) law was defined as

u =−KPe−KVė+M
(

qd
)

q̈d +C
(

qd , q̇d
)

q̇d +G
(

qd
)

(2.40)

where KP, KV ∈ R
5×5 are the diagonal control gain matrices of the PD controller to command the overall system.

The results of the simulation are exposed throughout Figs. 2.4-2.9, where the vertical dashed lines in black represents the

time marks described in Table 2.2. The three different colors at the background indicate the moment when a payload is picked.

Table 2.1: Simulation parameters

Parameter Value Parameter Value

mr 0.62 kg Az 7 m

Ir 0.253 kg m2 tg 40 s

ml 0.1 kg vh 0.25 m/s

Il 0.0125 kg m2 xo 12.5 m

ll 1 m zo 0.5 m

mp1
0.3 kg γ j 0.035

mp2
0.3 kg g 9.81 m/s2

mp3
0.4 kg lp 0.5 m

Table 2.2: Simulation motion phases

Phase Time marks (s)
Az and vh reaching phase 0 ≤ t < 30

Avian inspired trajectory and picking 30 ≤ t < 70

Stabilization and Az reaching phase 70 ≤ t
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Figure 2.4: Translational behavior of the ML-UAS comparison

Fig. 2.4 shows the translational motion of the flying kinematic chain and the corresponding errors. One can infer from the Ix

plot that both controllers drive the system to the desired horizontal velocity. The motion in Iz is successfully tracked by the two

controllers until the picking operation starts.

The motion of the payloads is described in Fig. 2.6 where the amplitude of the oscillation reaches a larger value in the case of the

AISM controller than in the PD controller.

The movement of the cargos influences directly the dynamics of the overall system, Fig. 2.7 shows the magnitude and the behavior

of the disturbances produced by the motion of each payload, altering the translation of the chain.

As depicted by Fig. 2.8, the rotational disturbances follow the same behavior for both cases, differing only in the peak at t = 70 s

when applying the AISMC implying that the transition is suddenly done and that a modification in the transition strategy needs to

be considered in order to have a smoother disturbances influence.

It can be inferred from Fig. 2.9 that the perturbations are mitigated by the MAVs rotational motion. When implementing the AISMC,

the magnitude of the disturbances rises nevertheless, the picking pattern is successfully tracked due to the actuators response.

In the case of the PD control, no considerable oscillations are present in the motion of the aerial vehicles though the picking

trajectory is not followed.
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Figure 2.5: Rotational links behavior of the ML-UAS comparison

Figure 2.6: Payloads motion comparison
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Figure 2.7: Translational motion disturbances

Figure 2.8: Rotational links motion disturbances
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Figure 2.9: MAVs behaviour comparison



Chapter 3

Disturbances and Coupling Compensation

for Trajectory Tracking

The current chapter is distributed as follows: Section 3.1 provides an introduction to the addressed problem. The mathematical

model of the system as well as the disturbed system representation are given in Section 3.2. The results of the aforementioned

section leads to Section 3.3, where the Kalman Filter estimator and the control strategy are explained in detail. The proposal

is validated by numerical simulations whose results are presented in Section 3.4. Finally, the conclusions and future works are

written in Subsection 8.1.2.

3.1 Introduction

Nowadays, the implementation of Unmanned Aerial Vehicles (UAVs) in the industrial and scientific fields has increased due to its

potential and yet unexploited capability to carry out aerial environment-interactivity activities like manipulation, assembling, picking

and transporting [71].

The vehicles capable of picking, transporting and placing represent an ideal solution for tasks such as survival-kit delivering,

rescue operation, sensor deployment/acquiring and so on. The impact of these capabilities might be amplified whether one

multiplies the aerial robots and develop efficient interaction algorithms.

There exist different approaches and strategies which are address the multi-vehicles interaction problem. [156] introduces a

dexterous flying parallel robot composed of three quadrotors rigidly attached via an articulated structure.

Increasing the flight efficiency raises the interest in transformable/morphing flying robots. In [9], the problems of flight stability

and center of gravity shifting due to the payloads motion are studied. In addition, [175] exposes a multi rotor aerial vehicle

with two-dimensional multi-links and demonstrates stable aerial transformation. The DRAGON transformable aerial robot is

introduced in [176]. This flying machine is a dual-rotor-embedded multi-link robot with the ability of multi degree of freedom aerial

transformation and the full pose control regarding the center of gravity of multi-links.

In order to manipulate several cargos at the same time, the phenomena of transporting a single object must be understood,

39
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this last case of study is well referenced in the literature. Hereof, the implementation of a Kalman Filter to estimate the payloads

disturbances [48] [178, 116, 57] and the trajectory path picking generation in windy environments [49] can be cited, along with the

use of learning automatas [27] and of fuzzy logic for computing the effects of the cargos in several quadrotors [17].

Nonetheless, the disturbances can be mitigated by the implementation of a robust control technique, i.e. H∞ [74] [136] or the

Sliding Mode Control [49, 73], just to cite some examples. Yet, this chapter considers an Augmented State Kalman Filter to deal

with the inherent disturbances due to transporting multiple cargos.

3.2 Mathematical Modeling

In order to provide the corresponding dynamic model, let the system in Chapter 2 be considered, yet in this study it may be

conformed by 2 links and 3 rotorcrafts as shown in Fig. 3.1.

Let one adopt the notation and assumptions described throughout Section 2.2. Thus, by a geometric analysis of Fig. 3.1 as

performed in Section 2.2, the position of each element of the chain can be given according to the position of the chain ξ = [x z]T

and the angles Θ j and β j (with j = 1,2). In this sense, the positions of the rotorcrafts ξri
(with i = 1,2,3), the links ξl j

and the

pendulums ξp j
with respect to the inertial frame can be found such that:

ξr1
=







x− llCΘ1

z+ llSΘ1






; ξr2

=







x

z
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
; ξr3

=


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x+ llCΘ2

z− llSΘ2






; ξl1 =


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
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
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


(3.1)

ξp1
=







x−0.5llCΘ1
− lp1

Sβ1

z+0.5llSΘ1
− lp1

Cβ1
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
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Sβ2
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(3.2)
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where one may recall that S• = sin(•), C• = cos(•).

By time differentiating the Eqns. (3.1) and (3.2), it is straightforward to compute the velocity of each component. These

velocities are described in the inertial frame and represented by the vectors ξ̇ri
, ξ̇l j

and ξ̇p j
, respectively.

The dynamics of the flying multi link system is then modelled by the means of the Euler–Lagrange formalism.

3.2.1 Dynamics

The definition of the Lagrangian of the system has already been introduced in Section 2.2, yet, for the corresponding case of study,

the total kinetic and potential energies are respectively defined as:

K =
3

∑
k=1

{

mr

2

(

ẋ2
rk
+ ż2

rk

)

+
Ir

2
θ̇ 2

k

}

+
2

∑
k=1

{

ml

2

(

ẋ2
lk
+ ż2

lk

)

+
Il

2
Θ̇2

k +
mpk

2

(

ẋ2
pk
+ ż2

pk

)

}

(3.3)

U = g

(

mr

3

∑
k=1

zrk
+

2

∑
k=1

(

mlzlk +mpk
zpk

)

)

(3.4)

The vector of generalized coordinates corresponds to q = [q1 q2 q3 q4]
T = [x z Θ1 Θ2]

T ∈ R
4. Then, by applying the equation

provided by the Euler–Lagrange formalism to the Lagrangian, the dynamics of the multi-link system can be established.

The equations of motion for the translation of the chain can be expressed as

µ ẍ+
2

∑
k=1

{

(3−2k)αk

(

SΘk
Θ̈k +CΘk

Θ̇2
k

)

−mpk
lpk

(

Cβk
β̈k −Sβk

β̇ 2
k

)}

= ux (3.5)

µ (z̈+g)+
2

∑
k=1

{

(3−2k)αk

(

CΘk
Θ̈k −SΘk

Θ̇2
k

)

+mpk
lpk

(

Sβk
β̈k +Cβk

β̇ 2
k

)}

= uz (3.6)

where µ = 3mr + 2ml +mp1
+mp2

∈ R, αk = ll(mr + 0.5(ml +mpk
)) ∈ R. Meanwhile, the equations of motion of the links are

described by the expression:

ι jΘ̈ j +(3−2 j)
{

α j

(

SΘ j
ẍ+CΘ j

(z̈+g)
)

−0.5mp j
ll lp j

(

S(Θ j−β j)β̈ j −C(Θ j−β j)β̇
2
j

)}

= uΘ j
(3.7)

with ι j = l2
l (mr +0.25(ml +mp j

))+ Il .

The dynamics of the payloads can be found by following the Euler–Lagrange equation and considering the β j angle instead of

the generalized coordinates, resulting in:

mp j
lp j

{

lp j
β̈ j −Cβ j

ẍ+Sβ j
(z̈+g)−0.5(3−2 j) ll

(

S(Θ j−β j)Θ̈ j +C(Θ j−β j)Θ̇
2
j

)}

= τp j
(3.8)

As in Section 2.2, the aerial vehicles are considered as the actuators of the system, thus, one may refer to such section.
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3.2.2 Disturbed System Representation

The system itself is composed by the actuators (MAVs) and the rigid links. In this regard, the effects of the payloads can be treated

as disturbances and, furthermore, the couplings of the system can also be treated as perturbations, leading to a representation of

the system of the form:

q̈a =
1

bqa

(

uqa
+ρqa

−gqa

)

(3.9)

which is a suitable linear representation for the implementation of Linear Kalman Filter [176, 48]; with a = 1,2,3,4 and

• q̈1 = ẍ, q̈2 = z̈, q̈3 = Θ̈1 and q̈4 = Θ̈2

• bx = bz = 3mr +2ml and bΘ1
= bΘ2

= l2
l (mr +0.25ml)+ Il

• gx = 0, gz = (3mr +2ml)g, gΘ1
= (mr +0.5ml)gll and gΘ2

=−(mr +0.5ml)gll

In Eqn. (3.9), uqa
∈ R represents the control input and ρqa

∈ R stands for the disturbance of the corresponding degree of

freedom. These disturbing terms are defined as

ρx =
2

∑
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ẍ+(2k−3)αk

(

SΘk
Θ̈k +CΘk

Θ̇2
k

)

+mpk
lpk

(

Cβk
β̈k −Sβk

β̇ 2
k

)]

(3.10)
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ρΘ j
=−0.25l2

l mp j
+(2 j−3)

{

α j

[
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ẍ+CΘ j

(z̈+g)
]

−0.5mp j
ll lp j
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SΘ j−β j
β̈ j −CΘ j−β j

β̇ 2
j

)}

(3.12)

With the given rearrangement of the equations of motion of the system, the estimation process and control strategy can be

conceived, as explained next.

3.3 Disturbances Estimation and Control

The current section describes the procedure to design an Augmented-State Linear Kalman Filter (ASLKM) to estimate the

disturbances due to the couplings and the payloads previously introduced. The control strategy proposal is described right after.

3.3.1 Augmented-State Kalman Filter Design

An Augmented-State Discrete Linear Kalman filter is designed regarding the estimation of the couplings and disturbances arising

during the motion of the overall system. The Linear Kalman Filter (LKF) is derived from a continuous system:

ẋ(t) = Ax(t)+Bu(t)+Mζ (t) (3.13)

y(t) = Cx(t)+ γ (t) (3.14)
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that considers that the pair AC verifies the observability property. Additionally, the signals ζ and γ stand for a white Gaussian

random process with zero-mean (E [ζ (t)] = 0 and E [γ(t)] = 0) with constant power spectral density (PSD) W (t) and V (t) defining

respectively:

• The process covariance matrix

Q = E
[

ζ (t)ζ (t + tc)
T
]

=W∆(tc) (3.15)

• The sensor covariance matrix

R = E
[

γ (t)γ (t + tc)
T
]

=V ∆(tc) (3.16)

It is also assumed that both stochastic processes are not correlated. Thus, let one rewrite the system in Eqn. (3.9) in a

state space representation with the state X(t) = [qa q̇a]
T and the output Y (t) = [qa q̇a]

T = X(t) (implying that the translational and

rotational positions and velocities are available), as:
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


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
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(3.17)

The matrices of the system in Eqn. (3.17) are:
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1

bqa







0

1






; P =

1

bqa







0

1






; C =







1 0

0 1






(3.18)

By assuming that the disturbance has a slow time-varying dynamics that can be modeled by a random walk process

ρ̇qa
= 0+ζqa

(t), the extended state-space vector can be introduced as:

Xe (t) =
[

qa q̇a ρqa

]T ∈ R
3 (3.19)

and its associated state-space model:























Ẋe = AeXe +Be(uqa
−gqa

)+Meζqa

Y e = CeXe + γe

Xe(0) = Xe
0

(3.20)

where
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Ae =













0 1 0

0 0 1/bqa

0 0 0













; Be =
1

bqa













0

1

0













; Me =













0

0

1













; Ce =







1 0 0

0 1 0






(3.21)

Finally, the classical Kalman Filter is applied to the system in Eqn. (3.20) [49, 3].

3.3.2 Control Strategy

The trajectory tracking control is given by a PD controller in which the estimation of the disturbances ρ̂qa
, provided by the LKF, and

a gravity compensation term, are considered, i.e.

uqa
=−bqa

(

KPqa
eqa

+KVqa
ėqa

)

− ρ̂qa
+gqa

(3.22)

where KPqa
, KVqa

> 0 ∈ R are the proportional and derivative gains of the PD controller, respectively, and eqa
= qa −qd

a and

ėqa
= q̇a − q̇d

a define the position and velocity tracking errors in which the index d stands for the desired positions and velocities.

The control of the rotational states of the vehicles follows the guidelines in Section 2.3. Nevertheless, the desired rotational

dynamics of the aircrafts must be rewritten as in the current case of analysis the number of elements, conforming the flying chain,

differs from the system in Chapter 2; in this regard, it follows that:



















ux

uz

uΘ1

uΘ2



















=



















Sθ1
f1 +Sθ2

f2 +Sθ3
f3

Cθ1
f1 +Cθ2

f2 +Cθ3
f3

ll
2

(

CΘ1−θ1
f1 −CΘ1−θ2

f2
)

ll
2

(

CΘ2−θ2
f2 −CΘ2−θ3

f3
)



















(3.23)

To avoid the over actuation of the system, recalling Section 2.3, the attitude reference for the vehicles is defined as:

θ d = tan−1

(

ux

uz

)

(3.24)

Therefore the force that each Micro Aerial Vehicle should exert over the flying chain is computed according to the expression:













f1

f2

f3













=
1

3













1 2 1

1 −1 1

1 −1 −2

























√

u2
x +u2

z

(2uΘ1
)/
(

llCΘ1−θ d

)

(2uΘ2
)/
(

llCΘ2−θ d

)













(3.25)



3.4. NUMERICAL SIMULATIONS AND RESULTS 45

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x (m)

0

1

2

3

4

5

z
 (

m
)

Trajectory without ASLKF Trajectory with ASLKF Desired trajectory

Figure 3.2: Desired trajectory and performance comparison

3.4 Numerical Simulations and Results

To validate the control strategy proposal, a numerical simulation was conducted and it considered a system with the parameters

presented in Table 3.1, in addition, the initial conditions of the flying chain were all set to zero as well as the initial attitude of the

vehicles.

In such simulation, the comparison of the behaviour of the system under the same PD control law is shown, yet, the only

difference is the addition of the estimated disturbances computed by the ASLKM. To prove the performance of the estimator the

desired trajectories are described by:

xd = 2sin
( t

5

)

; zd = 3+2cos
( t

5

)

; Θd
1 =

π

8
cos
( t

7

)

; Θd
2 =−π

8
sin
( t

7

)

(3.26)

The desired velocities and accelerations were computed by time differentiation of the desired trajectories, as it is a straightfor-

ward procedure, the corresponding expressions are omitted.

Table 3.1: Parameters of the system for simulations

Parameter Value Parameter Value

mr 0.62 kg Ir 0.253 kg m2

ml 0.1 kg Il 0.125 kg m2

ll 1 m g 9.81 m/s2

mp1
0.15 kg lp1

0.3 m

mp2
0.1 kg lp2

0.4 m
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Figure 3.3: Performance comparison of the controllers in x

The results of the simulation are exposed in Figs. 3.2 - 3.9 which are introduced and described next.

The desired trajectory in the plane is depicted by a magenta line in Fig. 3.2. The performance of the system without the

estimated disturbances considered into the controller (blue) exposes the influence of the couplings and the pendulum-like payloads

in the translational motion of the system, meanwhile, it can be established that the system performs a better tracking operation

when considering the effects of the external disturbances into the control strategy, this asseveration can be made based on the

motion described by the black noisy line.

Moreover, Figs. 3.3 and 3.4 present a comparison between the PD controller with and without disturbances estimation for

the x and z degrees of freedom, respectively. In both cases the improvement of the system performance when considering the

perturbations in the controller turns to be evident.

The rotational degree of freedom of each link follows a similar improvement behavior, and according to Figs. 3.5 and 3.6, the

oscillations presented in the links are attenuated by the estimator leading to a rejection of the pendulums’ motion effects since

these depend on the overall dynamics of the system, as described in Section 3.3.

Fig. 3.7 reinforces what has been discussed in previous paragraphs. In this figure, a comparison of the errors, for a better

appreciation and comprehension, is depicted.

However, the improvement in the trajectory tracking performance of the flying system is the result of a successful estimation

process, to prove this fact, the Figs. 3.8 and 3.9 are presented. In Fig. 3.8, the disturbances of the system and those estimated by

the Kalman Filter are shown. Fig. 3.9 correspond to the error of the estimation process, which leads to conclude that even when

the estimation is not exact, the obtained approximation is close enough to improve the system performance.
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Figure 3.8: Disturbances vs. Estimated disturbances
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Chapter 4

Nonlinear Control and ASEKF-Based

Disturbances Compensation

The sequel of the chapter is outlined as follows: Section 4.1 provides an introduction to the case of study and a brief revision of

the literature. Section 4.2 presents the description of the proposed aerial system. The dynamic model is explained alongside

the mathematical model extension which defines the augmented state space representation. Section 4.3 entails the model’s

uncertainties analysis that shapes the ASEKF estimation algorithm and the Lyapunov-based control strategy. The validation of the

approach via numerical simulation is presented in Section 4.4, the set of results is also discussed. Concluding remarks alongside

forthcoming research are established in Subsection 8.1.3.

4.1 Introduction

Amid the current technological surge, interactive Unmanned Aerial Systems (UAS) have enlarged their application spectrum

including high-precision weather monitoring, swarm-based remote sensing, parcel transport and delivering, precision agriculture,

disaster assessment and infrastructure inspection, among others [149, 71, 28].

Overcoming current operational limitations on aerial transport remains as the main motivation of the actual chapter. On one

hand, it is well known the limited cargo capacity of a single rotorcraft [49, 136, 27]. On the other hand, multi-rotorcraft systems

imply complex control laws to achieve enhanced coordination (inter-agent/obstacle avoidance and formation flight) as well as

inter-agent sensing and communication issues (delays and radio signal degradation) [17, 6]. Inspired by the latter arguments,

inter-linked rotorcrafts configurations can potentially surpass such issues. These appealing features combined with the aerial

versatility are triggering the interest of the research community on such vehicles whose shape adaptability similar to that of

snake-like amphibious robots [103, 161] or that of the serial manipulator robots [64, 138] represents a potential advantage to

enhance the performance of multiple-cargo transportation within complex scenarios. Parallel robots configurations [101, 8] have

also inspired several works nonetheless, the susceptibility to singularities remains as a challenging issue that dispels scientists

attention [156].

51
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To the best of the author’s consideration, the vehicle proposal introduced in [175, 176, 9, 177] represents one of the most

significant efforts to explore and to exploit the capabilities of these configurations as the authors have studied its behavior and

performance in different scenarios including pure pose control, center of gravity (CoG) shifting due to couplings and payloads

motion and the trajectory planning and navigation tasks. While the aforementioned vehicle is equipped with dual-rotors actuators,

the herein proposed concept is endowed with quad-rotors actuators enlarging the flight envelope which reduces singularities and

enhances self-reconfiguration maneuvers. Additionally, previous works [36, 37], have reported the treatment of the nonlinear

dynamics with a robust control approach and a linear representation in which the couplings and non-linearities are estimated and

compensated by a Linear Kalman Filter yet the uncertainties of the system parameters and the carried objects have not been

considered.

As far as one is concerned, and according to [35], parametric uncertainties and external disturbance estimation refers to one

of the main issues to solve in the conception of multi-link aerial systems and the performance of transport maneuvers.

In this regard, Kalman Filter-based estimation techniques have been designed and successfully implemented to ensure a

smooth and reliable aerial transformation [133], to mitigate the wind effects [53] and to compensate the external phenomena

influences on aerial multi-link robots [150]. The basis of the Kalman Filtering technique established in works as [141, 60, 147]

has permitted this filter to evolve in such a manner that it is still a valuable resource in the scientific community nowadays

[56, 83, 46, 13, 139, 134] even when literature gives evidence of the increasing tendency in studying and conceiving new state

observation techniques [117, 118, 40].

A novel aerial system consisting of three linked rotorcrafts, referred as ML-UAS, is addressed throughout the chapter. The

dynamic model of the ensemble is described in detail. In terms of control, a nonlinear Lyapunov-based controller is jointly utilised

with an Augmented-State Extended Kalman Filter (ASEKF) aiming at tracking a time-parametrized trajectory while compensating

parametric and external disturbances during a multiple-load transportation task. For the sake of detail, the contributions of the

actual chapter are listed below:

• The proposition of a novel alternative concept of multi-link aerial system capable of transporting multiple cargo.

• A detailed control synthesis and stability analysis considering the longitudinal dynamics and the presence of structural and

nonstructural uncertainties.

• Unlike the majority of works addressing disturbance compensation via an augmented-state Kalman filter, the deduction of

the covariance matrix based on the uncertainties present in the full nonlinear model is introduced.

• An in-depth simulation stage is conducted to evaluate the effectiveness of the proposed control-estimation strategy.

Moreover, a real-world scenario is considered using actual sensors specifications regarding noise and faults.

4.2 Mathematical Modeling

The system proposed herein consists of three quadrotors physically interlinked by two rods (Fig. 4.1), similar to that of Chapter 3

nevertheless, aerial transportation, manipulation and deployment are possible since controllable 1-DoF robotic manipulators are

attached at the CoG of the rods. As in previous chapters, the analysis is restricted to the longitudinal dynamics as depicted in Fig.

4.2.
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Figure 4.1: 3D CAD scheme of the multi-link system

In order to describe the system, let one adopt the notation established in Section 2.2 which was also used at Chapter 3. In this

regard, the reference tracking point of the system with respect to the inertial frame corresponds to the CoG of the d2 rotorcraft

whose position is denoted as ξξξ r2
= [x z]T ∈ R

2, moreover, from Fig. 4.2, the positions of the UAVs, ξξξ ri
(with i = 1,2,3) and those of

the rigid links, ξξξ l j
, and the payloads, ξξξ p j

(with j = 1,2), are defined as:

ξξξ r1
=







x− llCΘ1

z+ llSΘ1






; ξξξ r3

=







x+ llCΘ2

z− llSΘ2






; ξξξ l1

=







x−0.5llCΘ1

z+0.5llSΘ1






,ξξξ l2

=







x+0.5llCΘ2

z−0.5llSΘ2






; (4.1)

ξξξ p1
= ξξξ l1

−







lp1
Sβ1

lp1
Cβ1






; ξξξ p2

= ξξξ l2
−







lp2
Sβ2

lp2
Cβ2






(4.2)

By differentiating Eqns. (4.1) and (4.2) with respect to time and assuming the parameters of the system to be time-invariant, it

is straightforward to compute the velocity of each component as well as the acceleration.

4.2.1 Dynamics

According to the Euler-Lagrange formalism, the total kinetic and potential energies must be established as these define the

Lagrangian of the system as in Section 2.2, in this sense, it follows that:
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Figure 4.2: ML-UAS longitudinal simplified scheme

K =
3

∑
i=1

(

mr

2
ξ̇ξξ

2

ri
+

Ir

2
θ̇ 2

i

)

+
2

∑
j=1

(

ml

2
ξ̇ξξ

2

l j
+

Il

2
Θ̇2

j +
mp j

2
ξ̇ξξ

2

p j

)

(4.3)

U = g

[

mr

3

∑
i=1

zri
+

2

∑
j=1

(

mlzl j
+mp j

zp j

)

]

(4.4)

where ξ̇ξξ
2

(⋆) = ξ̇ξξ
T

(⋆)ξ̇ξξ (⋆).

Recalling Eqn. (2.5), the Euler-Lagrange equation follows the form:

d

dt

∂

∂ q̇k

L− ∂

∂qk

L = τqk
(4.5)

which implies the definition of a vector q ∈ R
6 of generalized coordinates qk ∈ R (k = 1,2, . . . ,6) which, for this specific case of

study: q1 = x, q2 = z, q3 = Θ1, q4 = Θ2, q5 = β1 and q6 = β2. The term τqk
∈ R stands for the external forces/torques.

The equations of motion of the system are comprised in the expression:

M (q) q̈+C (q, q̇) q̇+G(q) = τττ (4.6)

where the inertial matrix M (q) ∈ R
6×6 and the vector of gravitational terms G(q) ∈ R

6 are defined as:
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M (q) =
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





(4.7)

G(q) = g

[

0 m22 m23 m24 m25 m26

]T

(4.8)

and the Coriolis and centripetal effects matrix C (q, q̇) ∈ R
6×6 is computed such that it satisfies Ṁ (q) =C (q, q̇)+C (q, q̇)T . Due

to the symmetry property of M (q), it is sufficient to define the elements below, where ϑ j = Θ j −β j.

m11 = m22 = 3mr +2ml +mp1
+mp2

; m13 = ll
[

mr +0.5
(

ml +mp1

)]

SΘ1
; m14 =−ll

[

mr +0.5
(

ml +mp2

)]

SΘ2
; (4.9)

m15 =−mp1
lp1

Cβ1
; m16 =−mp2

lp2
Cβ2

; m23 = ll
[

mr +0.5
(

ml +mp1

)]

CΘ1
; m24 =−ll

[

mr +0.5
(

ml +mp2

)]

CΘ2
; (4.10)

m25 = mp1
lp1

Sβ1
; m26 = mp2

lp2
Sβ2

m33 = l2
l

[

mr +0.25
(

ml +mp1

)]

+ Il ; m35 =−0.5mp1
ll lp1

Sϑ1
; (4.11)

m44 = l2
l

[

mr +0.25
(

ml +mp2

)]

+ Il ; m46 = 0.5mp2
ll lp2

Sϑ2
; m55 = mp1

l2
p1

; m66 = mp2
l2
p2

(4.12)

The vector τττ =
[

τx τz τΘ1
τΘ2

τβ1
τβ2

]T ∈ R
6 in Eqn. (4.6) comprises the control inputs produced by the UAVs and the

manipulator arm actuators, uτ ∈ R
6, and the disturbances ρρρ =

[

ρx ρz ρΘ1
ρΘ2

ρβ1
ρβ2

]T ∈ R
6 caused by external unmodeled

phenomena, in this sense τττ = uτ +ρρρ where the vector of control inputs uτ depends on the geometry of the system, the thrusts

f1, f2, f3 exerted by the vehicles, the orientation of the aircrafts θ1, θ2, θ3 and the torques τs1
, τs2

∈R produced by the servomotors

to manipulate the robotic arms, moreover, we assume that the dynamics of the servomotors is significantly faster than that of the

overall system, thus it follows that:
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


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
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


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
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∑
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






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
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(4.13)

By following Eqn. (4.5) and taking into account ξξξ ri
and θi instead of qk, and assuming no friction between the inter-connected

elements, the translational and rotational equations of motion of the rotorcrafts are defined as:
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mr ẍri
= fiSθi

(4.14)

mr (z̈ri
+g) = fiCθi

(4.15)

Irθ̈i = τri
(4.16)

where τri
∈ R is the control torque of the ith vehicle generated by the differential thrust of the quadrotor propellers. The roll and

pitch motions are considered to be successfully stabilized separately [49, 36, 37, 104].

4.2.2 Augmented State Representation

Based on Eqn. (4.6), the dynamics of the multi-link system can be expressed as

q̈ = M (q)−1 [uτ +ρρρ −C (q, q̇) q̇−G(q)] (4.17)

The latest yields to a state space representation of the system as follows:

d

dt
χχχ =







q̇

M (q)−1 [uτ +ρρρ −C (q, q̇) q̇−G(q)]






(4.18)

where χχχ =
[

qT q̇T
]T ∈ R

12. Eqn. (4.18) can be extended to include the external disturbances in the states vector such that it

becomes:

d

dt
χχχe =













q̇

M (q)−1 [uτ +ρρρ −C (q, q̇) q̇−G(q)]

ϑϑϑ













(4.19)

with χχχe =
[

qT q̇T ρρρT
]T ∈R

18. Notice that q, q̇ and ρρρ are functions of time and that the dynamics of the disturbances is modeled

as a random walk process with zero mean (Gaussian) ϑϑϑ (t) =

[

ϑx ϑz ϑΘ1
ϑΘ2

ϑβ1
ϑβ2

]T

∈ R
6. For instance, such system can be

rewritten in the form:

χ̇χχe = F(χχχe,U)+ Jϑϑϑ (4.20)

with
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F(χχχe,U) =













q̇

M (q)−1 [U+ρρρ −C (q, q̇) q̇]

0⋆













(4.21)

J =

[

0 0 I

]T

(4.22)

where 0 ∈ R
6×6 and I ∈ R

6×6 stands for the zero and the identity matrices, respectively, 0⋆ ∈ R
6 is the zero vector and

U = uτ −G(q) ∈ R
6.

4.3 Uncertainties Estimation and Control

Assuming that the parameters of the system in the vector γγγ = [γ1 . . . γ9]
T =

[

mr ml mp1
mp2

ll lp1
lp2

Il g
]T ∈ R

9 are subjected to

some degree of uncertainty, the performance of the system is degraded as a consequence. Even when the gravity acceleration is

not a parameter of the system, a deviation from the nominal value is considered. The influence of parametric uncertainties is

modeled as a noisy Gaussian signal with zero mean ααα =
[

αmr
αml

αmp1
αmp2

αll αlp1
αlp2

αIl
αg

]T
∈R

9 within the system dynamics

in Eqn. (4.20) as follows:

χ̇χχe = F(χχχe,U)+ Jϑϑϑ +Zααα (4.23)

The influence of the parametric deviation is weighted by Z ∈ R
18×9 that contains the partial derivative of the function F(χχχe,U)

with respect to the corresponding parameter, such that:

Z =

[

∂F(χχχe,U)
∂mr

∂F(χχχe,U)
∂ml

. . .
∂F(χχχe,U)

∂g

]∣

∣

∣

∣

χχχe,U

(4.24)

This definition implies the computation of the partial derivatives and their evaluation at each time step and at the current χχχe

and U. In this regard, the dynamics of q and that of ρρρ, as described in Eqn. (4.20), does not depend on γγγ which leads to:

∂ q̇

∂γγγ
=

∂ ρ̇ρρ

∂γγγ
= 0′ ∈ R

6×9 (4.25)

On the other hand, the dynamics of q̇ prevents to compute the partial derivatives with easiness. The definition of q̈ established

in Eqn. (4.17) implies the computation of M (q)−1 which is obtained considering its adjugate, AM ∈ R
6×6, and its determinant

dM ∈ R
+:
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M (q)−1 = d−1
M AT

M (4.26)

Thus, Eqn. (4.17) can be rewritten as follows:

q̈ = d−1
M AT

Mv (4.27)

where v = U+ρρρ −C (q, q̇) q̇. Such substitutions ease the expression manipulation regarding the computation of M (q)−1 and

the derivatives within the software used. Thus, the partial derivative of q̈ in Eqn. (4.27) can be computed as:

∂ q̈

∂γγγ
=

∂

∂γγγ

(

1

dM
AT

Mv

)

=
∂

∂γγγ

(

1

dM
AT

M

)

v+
1

dM
AT

M

∂v

∂γγγ
(4.28)

which can be expanded in such a manner that:

q̈γ =
∂ q̈

∂γγγ
=

1

dM

[

∂AT
M

∂γγγ
v−
(

1

dM
AT

Mv

)

∂dM

∂γγγ

]

+
1

dM
AT

Mvγ (4.29)

Considering Eqns. (4.26) and (4.27), one obtains:

q̈γ = d−1
M

(

AMγ
− q̈dMγ

)

+M (q)−1
vγ (4.30)

where

AMγ
=

[

∂AT
M

∂mr
v

∂AT
M

∂ml
v . . .

∂AT
M

∂ Il
v

∂AT
M

∂g
v

]

∈ R
6×9 (4.31)

dMγ
=

∂dM

∂γγγ
=

[

∂dM

∂mr

∂dM

∂ml
. . . ∂dM

∂ Il

∂dM

∂g

]

∈ R
1×9 (4.32)

vγ =
∂v

∂γγγ
=

[

∂v
∂mr

∂v
∂ml

. . . ∂v
∂ Il

∂v
∂g

]

∈ R
6×9 (4.33)

Redefining Z to be:

Z =

[

0′T q̈T
γ 0′T

]T
∣

∣

∣

∣

∣

χχχe,U

(4.34)

Such definition of Z results advantageous in the computation of the partial derivatives in AMγ
, dMγ

and vγ as they result relatively

ease to manipulate within the software environment. Thus, the most relative expensive computational task to be developed at
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each loop is the computation of M (q)−1. Moreover, one possible solution to this issue could be to implement the definition given in

Eqn. (4.26) in a user-defined function for evaluation only.

The two noise signals in Eqn. (4.23) can be regrouped into one single vector ωωω =

[

αααT ϑϑϑ T

]T

∈ R
15 therefore, Eqn. (4.23)

can be rewritten as:

χ̇χχe = F(χχχe,U)+M ωωω (4.35)

with M =

[

Z J

]

∈ R
18×15. The observation model of the system is directly expressed in a discrete domain [53], [91] as:

Ye
k =Ce

k χχχe
k +VVV k (4.36)

with Ye
k ∈ R

12, VVV k =
[

vxk
vzk

. . . vβ̇2k

]T
∈ R

12 and

Ce
k =







I 0 0

0 I 0






∈ R

12×18 (4.37)

implying that q and q̇ are available but noisy since the vector VVV k corresponds to the variance of the Gaussian noises affecting

the sensors.

4.3.1 ASEKF Estimation Strategy

Due to the high non-linearity and couplings of the dynamics, the discretization process becomes complex and computationally

expensive, thus, a continuous-discrete ASEKF is conceived. In this regard, the prediction phase is executed considering a

continuous time representation of the system (Eqn. (4.35)) meanwhile, Eqn. (4.36) is used in the correction phase [134, 91].

Moreover, the system is considered to be observable at a given operation point (Appendix B).

The signals noises ωωω and VVV k previously introduced in Section 4.2.1, stand for uncorrelated white Gaussian random processes

with zero mean, i.e. E
[

ωωω (t)VVV k (t)
T
]

= 0∗ ∈ R
15×12, E [ωωω (t)] = 0 and E [VVV k (t)] = 0. The process covariance matrix Q ∈ R

15×15 is

characterized by M as:

Q(t) = E
[

ωωωωωωT
]

= E
[

(M w)(M w)T
]

= MWM
T (4.38)

where W = E
[

wwT
]

∈R
15×15 is a diagonal matrix containing the variances of the process noise signals. The covariance matrix

of the measurement noise Rk = diag
(

E[vxk
] E[vzk

] . . . E[vβ̇1k

] E[vβ̇2k

]
)

∈ R
12×12 is defined by the variances of the noisy signals of

the sensors.

The prediction phase of the ASEKF is thus described by:
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˙̂χχχe (t) = F(χ̂χχe,U) (4.39)

Ṗ(t) = Fχe (χ̂χχe,U)P(t)+P(t)FT
χe (χ̂χχe,U)+Q(t) (4.40)

with

Fχe (χ̂χχe,U) =
∂F(χχχe,U)

∂ χχχe

∣

∣

∣

∣

χχχe,U

∈ R
18×18 (4.41)

computed by the same procedure that defined Z. It is worth highlighting that χ̂χχe = χ̂χχe (t) and U = U(t).

The set of differential equations in Eqns. (4.39) and (4.40) is solved via numerical methods to find χ̂χχe (t) and P(t) [91]. For the

first iteration, the initial values of χ̂χχe (t) and P(t) are given as χ̂χχe
0 and P0, respectively. In order to adopt the values obtained during

the prediction phase χ̂χχe
k|k−1 = χ̂χχe (tk) and Pk|k−1 = P(tk) for ulterior computations.

The correction phase is given by the set of equations:

Kk = Pk|k−1Ce
k

T
(

Ce
kPk|k−1Ce

k
T +Rk

)−1
(4.42)

χ̂χχe
k|k = χ̂χχe

k|k−1 +Kk

(

Ye
k −Ce

k χ̂χχe
k|k−1

)

(4.43)

Pk|k =
(

I′−KkCe
k

)

Pk|k−1 (4.44)

where I′ ∈ R
18×18 is the identity matrix. Thus, the estimation of the disturbances is taken from the state estimation:

χ̂χχe
k|k =

[

q̂T
k|k

˙̂qT
k|k ρ̂ρρT

k|k

]T

(4.45)

The sub-index k|k is omitted from now-on for sake of simplicity.

Further information concerning the parameters of the filter and the influence of each of these in the estimation efficiency can

be found at [141, 60, 147, 13, 124].

4.3.2 Control

The control of the overall ML-UAS features a nested control architecture: an external loop related to the flying chain and an inner

loop referred to the control of the rotorcrafts. For a proper identification, a blocks schema is exhibited on Fig. 4.3 where the control

algorithm is built up with the disturbances estimation and q̂, ˙̂q and ρ̂ρρ closing the control loop.

A PD control law with disturbances compensation:
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q̈d

q̇d

qd

+ Flying chain
PD control
Eq.(4.46)

q̇

q

Flying chain
dynamics
Eq.(4.6)

Sensors noise

+Control
Conversion
Eq.(4.72)
Eq.(4.74)

UAVs
dynamics
Eq.(4.16)

UAVs PD
control

Eq.(4.73)

AS-EKF
Eqs.(4.39)-(4.44)

− uτ

θd
uθ

Process noise

+

+

ρρρ

+fd

+

uβ1
, uβ2

P χχχe

˙̂q

q̂ ρ̂ρρ

+

Figure 4.3: Control blocks diagram

uτ = KPe+KV ė+M (qd) q̈d +C (qd , q̇d) q̇d +G(qd)− ρ̂ρρ (4.46)

where KP > 0 ∈R
6×6 and KV > 0 ∈R

6×6 are diagonal matrices that stand for the proportional and derivative gains, respectively,

is applied to the system. The error vectors e = qd −q ∈ R
6 and ė = q̇d − q̇ ∈ R

6 depend on the desired position qd and the desired

velocity q̇d .

The control law in Eqn. (4.46) is based on the theory established in [82, 81]. For a detailed design procedure of such controller

and further information about the effects of each parameter, the reader is encouraged to consult the cited references.

The stability analysis of the closed-loop system, using the Lyapunov stability theory, allows one to select suitable gains values.

Lyapunov Stability Analysis

By considering the control law in Eqn. (4.46) alongside the model of the system in Eqn. (4.6) which holds the properties in

Appendix A and assuming ρ̂ρρ ≈ ρρρ, the closed-loop equation stabilizing the overall error dynamics is written as:

d

dt







e

ė






=







ė

M (q)−1 [−KPe−KV ė−C (q, q̇) ė−h(e, ė)]






(4.47)

The equilibrium ee =
[

eT
e ėT

e

]T ∈ R
12 of Eqn. (4.47) is the origin of the error dynamics phase-portrait ėe =

[

0⋆T 0⋆T
]T

∈ R
12. In

order to ensure the origin’s global asymptotic stability, the uniqueness of the equilibrium point is mandatory. In this regard, the

matrix KP can be selected such that [82]:

λmin (KP)> kg + kM ‖q̈d‖max + kC2
‖q̇d‖2

max (4.48)
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The constants kg, kM and kC1
are defined in the Appendix A. To perform the stability analysis, let it exist a constant ε ∈ R

+

such that it defines the matrices KV and KP as follows:

λMax (KV )≥ λmin (KV )> kh1
+ εb (4.49)

λMax (KP)≥ λmin (KP)>

(

2εa+ kh2

)2

4ε
[

λmin (KV )− kh1
− εb

] + kh2
(4.50)

λMax (KP)≥ λmin (KP)> ε2 λ 2
Max [M (q)]

λmin [M (q)]
(4.51)

with kh1
and kh2

introduced in Appendix A and

a =
1

2

[

λMax (KV )+ kC1
‖q̇d‖max + kh1

]

∈ R
+ (4.52)

b = λMax [M (q)]+
√

6 kC1
∈ R

+ (4.53)

Let the Lyapunov candidate function V (t,e, ė) ∈ R be

V =
1

2
ėT M (q) ė+

1

2
eT KPe+ εfth (e)

T
M (q) ė (4.54)

with fth (e) the hyperbolic tangent function in Appendix A.

Since M (q) and KP are positive definite matrices by definition and as KP satisfies Eqn. (4.51), it is trivial to conclude that

ėT M (q) ė ≥ λmin [M (q)]‖ė‖2 (4.55)

eT KPe ≥ λmin (KP)‖e‖2 (4.56)

∀ q, e, ė ∈ R
6. Moreover, given the properties of the system, it is possible to find that:

εfth (e)
T

M (q) ė ≥−ελMax [M (q)]‖e‖‖ė‖ (4.57)

Thus, V (t,e, ė) is a radially unbounded positive definite function as it satisfies:

V ≥ 1

2







‖e‖

‖ė‖







T 





λmin (KP) −ελMax [M (q)]

−ελMax [M (q)] λmin [M (q)]













‖e‖

‖ė‖






(4.58)

The time derivative of the Lyapunov candidate function V̇ (t,e, ė) ∈ R in Eqn. (4.54) is expressed as:
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V̇ =−ėT KV ė− εfth (e)
T

KPe+ εfth (e)
T [C (q, q̇)−KV ] ė− ėT h(e, ė)− εfth (e)

T
h(e, ė)+ ε ḟth (e)

T
M (q) ė (4.59)

From Appendix A, it follows that:

−ėT KV ė ≤−λmin (KV )‖ė‖2 (4.60)

ε ḟth (e)
T

M (q) ė ≤ ελMax [M (q)]‖ė‖2 (4.61)

−εfth (e)
T

KPe ≤−ελmin (KP)‖fth (e)‖2 (4.62)

εfth (e)
T

KV ė ≤ ελMax (KV )‖ė‖‖fth (e)‖ (4.63)

εfth (e)
T

C (q, q̇)T
ė ≤ εkC1

(

‖q̇d‖max ‖ė‖‖fth (e)‖+
√

6‖ė‖2
)

(4.64)

−ėT h(e, ė)≤ kh1
‖ė‖2 + kh2

‖ė‖‖fth (e)‖ (4.65)

−εfth (e)
T

h(e, ė)≤ εkh1
‖ė‖‖fth (e)‖+ εkh2

‖fth (e)‖2 (4.66)

V̇ (t,e, ė) in Eqn. (4.59) satisfies the inequality

V̇ ≤−ε







‖fth (e)‖

‖e‖







T

RM (ε)







‖fth (e)‖

‖e‖






(4.67)

with RM (ε) ∈ R
2×2 being

RM (ε) =







λmin (KP)− kh2
−
(

a+
kh2

2ε

)

−
(

a+
kh2

2ε

)

1
ε

[

λmin (KV )− kh1

]

−b






(4.68)

thus V̇ (t,e, ė) is a global definite negative function if the matrix RM (ε) is definite positive which is guaranteed if the first element

of the matrix and its determinant are strictly greater than zero. In this regard, it is sufficient and enough that:

λmin (KP)>

(

2εa+ kh2

)2

4ε
[

λmin (KV )− kh1
− εb

] + kh2
(4.69)

λmin (KV )> kh1
+ εb (4.70)

With a proper selection of ε, the matrices KP and KV can be computed such that V (t,e, ė) is a radially unbounded positive

definite function and V̇ (t,e, ė) is a globally negative definite function, thus the V (t,e, ė) is a strict Lyapunov function and the system

possesses globally asymptotically stability [82].



64 CHAPTER 4. NONLINEAR CONTROL AND ASEKF-BASED DISTURBANCES COMPENSATION

Inner-Loop Control

The desired thrust and attitude of the vehicles are computed according to Eqns. (4.13) and (4.46). Taking into consideration

the ML-UAS redundant actuation (6 DOFs and 8 actual control inputs, i.e. fi, θid and tβ j
), the desired orientation angle of the

virtual actuators (rotorcrafts) is established to be θ1d
= θ2d

= θ3d
= θd to avoid the prescribed condition. This assumption can be

considered in Eqn. (4.13), leading to:

uτ =

































ux

uz

uΘ1

uΘ2

uβ1

uβ2

































=

































( f1 + f2 + f3)Sθd

( f1 + f2 + f3)Cθd

ll
2 ( f1 − f2)CΘ1−θd

ll
2 ( f2 − f3)CΘ2−θd

tβ1

tβ2

































(4.71)

Thus, the desired orientation of the UAVs is defined as:

θd = tan−1

(

ux

uz

)

(4.72)

Notice that uz > 0 as it tends to the total desired thrust.

The ith vehicle is driven to θd via a PD controller of the form:

uθi
= Kpθ eθi

+Kvθ ėθi
(4.73)

with Kpθ ,Kvθ > 0 ∈ R the proportional and derivative gains and eθi
, ėθi

∈ R the position and velocity errors of the ith vehicle.

The stability proof and a detailed treatment of the controller are available at [82, 35].

The total thrust exerted by the vehicles is computed such that:

fd =













f1

f2

f3













=
1

3













1 2 1

1 −1 1

1 −1 −2

























√

u2
x +u2

z

2
llCΘ1−θd

uΘ1

2
llCΘ2−θd

uΘ2













∈ R
3 (4.74)

A detailed simulation was carried out in the next section considering close-to-reality scenarios.
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4.4 Numerical Simulations and Results

In this track, three different operational conditions (labeled as c1, c2 and c3) were addressed via numerical simulations conducted

in MATLAB/Simulink® 2018b (using an equipment with an 8GB RAM and an Inter® Core™ i5-8250 CPU @ 1.60 GHz & 1.80 GHz

processor).

The aerial robotic system was intended to reach and track a trajectory qdc1,2,3
provided in Table 4.1 (where ta = t ∈ [0,48),

tb = t ∈ [48,72) and tc = t ∈ [72,120] stand for time intervals [s]) and given in [m] and [deg], correspondingly. The simulation

time and the sampling rate were set as tsim = 120 s and dt = 0.01 s, respectively. The disturbances vector, given in the

corresponding units ([N] and [Nm]), was defined, for each case, as ρρρc1,c2
= [1.5 2cos

(

tπ
55

)

−0.55 cos
(

tπ
33

)

−0.5sin
(

tπ
45

)

0.75]T and

Table 4.1: Desired trajectories

qdc1
qdc2

qdc3

−sin
(

4πt
tsim

)

−1ta ,1tb ,2.5tc 0.05t

3+ cos
(

4πt
tsim

)

2ta ,3tb ,1.5tc 3.5+(2.75− lp)cos
(

2πt
tsim

)

15+14.3cos
(

4πt
tsim

)

30 14.3cos
(

4πt
tsim

)

−37 -45 14.3cos
(

4πt
tsim

)

25 0 15

−28.6sin
(

4πt
tsim

)

0 10

Table 4.2: Simulation parameters

Parameters properties
Parameter Nominal value Variance

mr 0.653 kg 0.0011111 kg2

ml 0.10 kg 0.0000693 kg2

mp1
0.272 kg 0.0002775 kg2

mp2
0.383 kg 0.0002775 kg2

ll 1.25 m 0.000544 m2

lp1
, lp2

0.5 m 0.0002775 m2

Il 0.172 kg m2 0.000100 kg2 m4

g 9.81 m s−2 0.004900 m2 s−4

Sensors parameters
Sensor Variance Sensor Variance

x 2.3×10−4 m2 ẋ 5×10−4 m2 s−2

z 3.5×10−4 m2 ż 6.5×10−4 m2 s−2

Θ1, Θ2 2.6×10−4 rad2 Θ̇1, Θ̇2 1.7×10−4 rad2 s−2

β1, β2 2.3×10−4 rad2 β̇1, β̇2 5.1×10−5 rad2 s−2

Disturbances parameters
Disturbance Variance

ρx, ρz 3×10−4 N2

ρΘ1
, ρΘ2

1×10−4 N2 m2

ρβ1
, ρβ2

7×10−5 N2 m2
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Figure 4.4: Position and orientation of the ML-UAS

ρρρc3
= [2.5−1.5sin

(

πt
55

)

2cos
(

πt
55

)

− 1.75t
tsim

cos
(

πt
33

)

1−0.5cos
(

πt
45

)

−0.5sin
(

πt
45

)

]T .

3 sensors were considered to fail randomly at t = 60, t = 80 and t = 100. In strict order. For c1 and c2, the sensors subjected to

failure were those of x, Θ̇1 and β2, on the other hand, for c3, the selected ones were the z, Θ1 and Θ2 sensors.

For the three scenarios, the system properties and the parameters of the sensors and the disturbances were set ac-

cording to Table 4.2. The initial conditions were all set to zero and the gain matrices in Eqn. (4.46), were chosen to be

KP = diag{8, 10, 19, 19, 7, 7} and KV = diag{8, 15, 25, 25, 12, 12}. The gains in Eqn. (4.73) were set to be Kpθ = 7 and Kvθ = 10.

Additionally:

P0 = 0.01







































I† 0†T

10 10 10 10 1 1

10 500 100 100 1 1

10 100 250 100 1 0

0† 10 100 100 250 0 1

1 1 1 0 3 0

1 1 0 1 0 3







































(4.75)

where I† ∈ R
12×12 and 0† ∈ R

6×12 are the identity and zero matrices, respectively.

Figs. 4.4 and 4.5 show the behavior of the ML-UAS in matters of translational and angular positions and velocities, respectively.

The upper indices, r, k and w, added to the cases label serve to identify the reference values, the performance of the ML-UAS with

the ASEKF estimation and that of the system without compensation, correspondingly. The background color change stands for a

sensor fault.

The behavior of both systems shown in Figs. 4.4 and 4.5 differs from one another, highlighting the fact that the ML-UAS with

no disturbances compensation is observed to stay further from the desired trajectory. As suggested in [150, 36], the enhanced
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Figure 4.5: Velocities of the ML-UAS

Figure 4.6: Disturbances estimation

performance is the product of an adequate estimation process which is further addressed and reinforced by the evidences provided

in Figs. 4.6 and 4.7 where the disturbances estimation and the corresponding estimation errors are depicted, respectively.

Regarding the performance of the system in the presence of sensors faults, which clearly deteriorate the behavior of the flying

chain, closing the loop with the states estimation tends to mitigate the adverse effects thus the states estimation could be used as

a last safety measure to prevent a worst system response as long as reliable sensors data is still available as it is evident that the

estimation tends to diverge in the absence of sensors information.

The response of the ASEKF provides a reliable estimation of the disturbances, even under the assumption of relative slow

time varying dynamics ρ̇ρρ, within an acceptable margin [13, 147, 36] which is evidenced by the enhanced performance of the
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Figure 4.7: Estimation errors

Figure 4.8: Controller response

ML-UAS, notwithstanding a phase change occurs due to the delayed action of the filter at considering the previous state and the

computation time yet it still improves the performance of the system.

According to Eqns. (4.39)-(4.44), the estimated states depend on the process and sensors noises so do the controller

response and the aircrafts as a consequence which can be appreciated in Figs. 4.8 and 4.9, respectively. The signals provided

by the control law in Eqn. (4.46) slightly differ due to the disturbances compensation nevertheless, such difference impacts the

overall performance of the chain as previously discussed. The presence of noise increases as less sensor data is available, in

this regard, the loss of the Θ1 and Θ2 sensors seems to have a more prominent influence. These effects are translated to the

vehicles in terms of thrust and orientation. The results suggest that the disturbances compensation affects mainly the attitude of
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Figure 4.9: Aircrafts performance

the vehicles as the thrust is observed to act within the same operational range in all cases as similarly concluded in [36].
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Part II

Time-Delays on Unmanned Aerial Systems

71





Chapter 5

Parametric Analysis of PID Delay-Based

Controllers for Quadrotor UAVs

The structure of this chapter consists of 6 Sections which are outlined as follows. As it may have been noticed, Section 5.1

provides a brief study of the literature and establishes the main contribution of the chapter. The description of the vehicle and

the linearized representation of its dynamics are provided in Section 5.2. The control scheme conceived for the aerial vehicle is

described in Section 5.3, where, the stability of the system subjected to the proposed time-delay control law is also studied. The

stability charts as well as the results of numerical simulations are exposed in Section 5.4; and, lastly, the concluding remarks are

given in Subsection 8.2.1.

5.1 Introduction

Unmanned Aerial Vehicles (UAVs) have witnessed the enlargement of their application spectrum in the last decades within several

scientific and industrial fields. The technological surge has enabled such vehicles to be implemented in order to develop tasks as

photography, surveillance, high-precision weather monitoring, parcel transport and delivering, precision agriculture and disaster

assessment, among others.

To accomplish the aforementioned tasks, whereas these are performed by a single quadrotor or several of them, control

theory has a critical role. In this vein, the literature gives evidence of the implementation of different control techniques as PD,

PID and Sliding Mode to drive only one vehicle [49, 35] or a set of these [37, 36, 6, 38] during diverse operations. Yet, it is

known that such feedback control schemes experience time-delays caused by the sensors intrinsic implementation, the remote

communication process, the control scheme computation, the vision-based tracking systems, among others. In most of the cases,

these time-delays tend to deteriorate the system’s performance [155].

The stability of aerial vehicles operating under the influence of time-delays, as suggested by [159, 102], has been a matter

of study in recent years. Particularly, UAVs affected by feedback time-delays caused by the sensing process or the image

acquisition and treatment, has been addressed by different approaches which include transient response analysis by means of

73
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Figure 5.1: Quadrotor UAV and vision-based tracking system

Lambert W-funcitons [11] or LQI linear optimal control [151]. Even when such results are firmly grounded on experimentation,

the implementation of linear controllers still restricts the range of operations in which aerial vehicles could be potentially used.

In addition, the linear-based approach may lead to a slightly distinct behavior of the system when translated to real conditions

and environments. Having such constrains in mind, the problem has also been treated by means of non-linear approaches as in

[39, 174].

Time-delays in the communication channel that affect directly the generation and processing of control commands, have also

been subjected to analysis, however, less attention has been focused on this subject [1, 98, 99]. On the other hand, the effects of

time-delays in multi-agent UAVs systems have caught the attention of scientists worldwide. In [31], the impact of communication

delays on a reliable flock of UAVs is studied, establishing the constrains over the time-delay communication. In this same regard, a

consensus time-delay parametrization control scheme is presented and validated via numerical simulations in [6] meanwhile,

the authors of [170] deal with this issue from a different perspective, they combine a nonlinear delayed controller with a model

prediction control to maintain the formation with respect to the leader.

From a general perspective, and with base upon the evidence provided by the literature, one may conclude that the analysis

of time-delays influences over UAVs is a research topic with exponential growth. In this sense, the actual chapter is devoted to

the study of a single quadrotor driven by PID delay-based controllers. It is assumed that the position sensing is performed by a

vision-tracking system whose cameras are located remotely, incorporating the time-delay in the control scheme of the translational

states as a consequence of the cameras’ latency. The chapter provides a set of stability charts which permits to select the proper

set of control gains depending on the time-delay, the σ -stability criteria and the integral gain of the controller. To this end, the

methodology relies on the availability of a linear model for control design purposes.
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5.2 Quadrotor Modelling

In this section, the equations of motion of the quadrotor system in Fig. 5.1 (created from images available at freepik.com) are

discussed. The dynamics of the system is described with respect to two reference frames: (i) the inertial frame OI {xI ,yI ,zI}, and

(ii) the body frame Ob {xb,yb,zb} whose origin matches the center of gravity (CoG) of the vehicle. Furthermore, xb, yb, zb define

to the roll, pitch and yaw axis which are aligned to the corresponding principal axis of inertia. The motion of a rigid body with 6

degrees of freedom (DoFs), which occurs to be the case of the aerial vehicle, can be fully described by the equations provided by

the well-known Newton Euler formulation [35] as follows:

mξ̈ξξ +mg = τττξξξ +ρρρξξξ (5.1)

Iω̇ωω +ωωω × (Iωωω) = τττωωω (5.2)

where m > 0 is the mass of the vehicle and g = [0 0 g]T comprises the constant of gravity acceleration g > 0. These equations

are discussed in detail in the following lines.

The translational motion is described by Eqn. (5.1). Thus, ξξξ = [x y z]T ∈ R
3 denotes the position of the vehicle with respect to

the inertial frame, and its first and second time derivatives stand for the velocity and acceleration, respectively. τττξξξ ∈ R
3 is the

vector of external forces defined as:

τττξξξ = Rηηη

[

0 0 T

]T

(5.3)

where the forces provided by the propellers fi (with i = 1,2,3,4) conform the total thrust T in a sense that:

T =
4

∑
i=1

fi ≥ 0 (5.4)

Furthermore, the rotation matrix Rηηη ∈ R
3×3 provides a vector mapping from the body reference frame to the inertial reference

frame. This matrix depends on the attitude of the vehicle described by the Euler angles ηηη = [φ θ ψ]T ∈ R
3 (or roll, pitch and yaw

angles, respectively) such that:

Rηηη =













Cθ Cψ Sφ Sθ Cψ −Cφ Sψ Cφ Sθ Cψ +Sφ Sψ

Cθ Sψ Sφ Sθ Sψ +Cφ Cψ Cφ Sθ Sψ −Sφ Cψ

−Sθ Sφ Cθ Cφ Cθ













(5.5)

where C(•) = cos(•) and S(•) = sin(•). Such an abuse of this notation is considered throughout the sequel of the chapter unless

other is specified. Lastly, the vector ρρρξξξ =
[

ρx ρy ρz

]T ∈ R
3 represents the external unmodeled forces acting over the vehicle’s CoG

and that disturb its translational motion.
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On the other hand, Eqn. (5.2) describes the rotational motion of the quadrotor in the body reference frame. The diagonal

matrix I = diag{Ix, Iy, Iz} ∈ R
3×3 contains the moments of inertia about the roll, pitch and yaw axis, respectively. The angular

velocity vector ωωω = [p q r]T ∈ R
3 is related to the Euler rates η̇ηη =

[

φ̇ θ̇ ψ̇
]T ∈ R

3 in the sense that:

ωωω =Wηηη η̇ηη ; Wηηη =













1 0 −Sθ

0 Cφ Sφ Cθ

0 −Sφ Cφ Cθ













∈ R
3×3 (5.6)

Finally, the vector τττωωω ∈ R
3 gathers the torques exerted by the propellers over the vehicle and it reads as:

τττωωω =













τx

τy

τz













=













ℓ( f2 − f4)/2

ℓ( f3 − f1)/2

α ( f1 − f2 + f3 − f4)













(5.7)

where ℓ > 0 denotes the diagonal motor-to-motor distance and α > 0 is a proportionality constant that relates the force

produced by the propeller to the corresponding free moment in such a manner that τi = α fi.

As mentioned in Section 5.1, the here-in studied approach addresses the influence of time-delays in the control system and

relies on the availability of a linear model which can be obtained by recalling Eqns. (5.1) and (5.2) and considering the following

assumptions [49, 35, 159, 102, 67]:

1. The vehicle does not perform acrobatic maneuvers. Thus, it operates in a quasi-hover state which implies that φ ≈ 0 and

θ ≈ 0.

2. Small-angle approximation leads to the definitions: Sφ ≈ φ and Cφ ≈ 1 which are equally valid for θ .

3. For sake of simplicity and without loss of generality ∀t ≥ 0, ψ = 0 (being t the time).

4. The Coriolis and Centripetal effects are neglected as the angular velocities are small enough such that the corresponding

terms are smaller in comparison with the inertial ones.

Under these assumptions, Eqns. (5.1) and (5.2) are simplified and rewritten. Consequently, the motion of each DoF can be

described by the following set of linear differential equations:

mẍ = θT ; Ixφ̈ = τx; (5.8)

mÿ =−φT ; Iyθ̈ = τy; (5.9)

mz̈+mg = T ; Izψ̈ = τz (5.10)

The following section describes in detail the control scheme design using the linear formulation of the vehicle dynamics.

Particularly, this analysis considers the frequential form of these equations. In other words, it uses the Laplace transform (with

initials conditions set to zero) to obtain the frequency domain representation:
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X(s) =
1

ms2
θ(s)T (s) ; φ(s) =

1

Ixs2
τx(s); (5.11)

Y (s) =− 1

ms2
φ(s)T (s) ; θ(s) =

1

Iys2
τy(s); (5.12)

Z(s) =
1

ms2
(T (s)−mg) ; ψ(s) =

1

Izs2
τz(s) (5.13)

where s = σ + jω is a complex variable with σ ,ω ∈ R.

5.3 Control Scheme Design

The content of this section provides a discussion concerning the overall closed-loop control scheme proposal, it is also at this

step where the influence of time-delays on the system is taken into account. It is worthy recalling that this relies as one of the

main contributions of this chapter. In this regard, and as depicted in Fig. 5.1, the feedback time-delay is considered and thus,

denoted by a positive fixed value τ ∈ R. The time-delay τ is the time taken by the position-sensing process to treat and send the

information back to the external workstation [42].

Considering the frequency domain representation provided in Eqn. (5.13), it is straightforward to conclude that the dynamics

of z and that of ψ are decoupled. In this regard, the thrust T (s) is used as a control input to drive the system to a desired height

zd ∈ R, and the torque τz(s) is intended to keep the vehicle yaw angle at ψd = 0. Both control inputs are respectively defined by

linear controllers as follows:

T (s) = m(Cz (s)+g) (5.14)

τz(s) = IzCψ (s) (5.15)

Since the translational dynamics of the aircraft is considered to be disturbed by external unmodeled phenomena, the widely

studied PD controller does not ensure to drive and keep the vehicle at the desired position [159, 102, 35, 128] thus, the linear

controller Cν (s) (with ν ∈ ξξξ ) is selected to be a PID controller of the form:

Cν (s) = kpν + kdν
s+ kiν s−1 (5.16)

where kpν ,kdν
,kiν ∈ R stand for the corresponding proportional, derivative and integral gains whose definition is provided in the

upcoming sections of the chapter.

Since the rotational motion is assumed undisturbed, the controller of the ψ motion is defined as a PD controller of the form

Cψ (s) = kpψ + kdψ
s, equally adopted for all the controllers regarding the orientation of the vehicle.

Due to its under-actuated nature, the system features a rotational-translational nested control structure. The inner-loop,

corresponding to the rotational dynamics, is thus faster than the outer-loop driving the translation; in practice, most of the inner-loop

controllers (based on embedded/on-board inertial sensory modules) are considered time-delay-free [102, 159] nevertheless, the
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Figure 5.2: Quadrotor block diagrams

translational dynamics is subjected to time-delays as previously explained. In this vein, Figs. 5.2a and 5.2b respectively describe

the closed-loop dynamics of the z and ψ DoFs where the time-delay is introduced and the plant dynamics is highlighted by a red

dashed box.

From Figs. 5.2a and 5.2b, and considering a proper selection of the control gains, it can be concluded that, for a large enough

time, T (s)→ mg and τz (s)→ 0 [159, 102]. On the other hand, Eqns. (5.11) and (5.12) give evidence of the existing couplings

between the x and θ motions and the y and φ dynamics. In this regard, θ(s)T (s) and −φ(s)T (s) are considered to be the control

inputs for the x and y degrees of freedom, respectively, which reads as follows:

θ(s)T (s) = mCx (s) ; −φ(s)T (s) = mCy (s) (5.17)

Thus, from Eqn. (5.17), the reference values θd ∈ R and φd ∈ R are computed as a function of the controller in Eqn. (5.16) and

the prescribed assumptions, in such a manner that:

φd(s) =−mCy (s)

T
; θd(s) =

mCx (s)

T
(5.18)

The previous reference values are achieved by the action of the linear controllers Cφ (s) and Cθ (s) whose gains can be properly

selected such that the corresponding (inner) rotational dynamics is faster than that of translation.

Assuming the existence of the time-delay τ due to the position sensing process as previously explained, the diagram block of
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the translational DoF x is depicted in Fig. 5.2c (the y dynamics is omitted as it follows the same structure with the corresponding

adaptations) where it is possible to appreciate the inner rotational dynamics (blue dashed box) and the respective translational

motion dynamics (red dashed box).

For instance, let the inner (rotational) dynamics as depicted in Fig. 5.2c be expressed as a single transfer function block of the

form:

Hφ ,θ (s) =
Pφ ,θ (s)

Qφ ,θ (s)
=

kdφ ,θ
s+ kpφ ,θ

s2 +Pφ ,θ (s)
(5.19)

The stability analysis of the quadrotor UAV as well as the definitions of the control gains are provided in the upcoming section.

For a suitable analysis, the rotational dynamics is treated separately from the translational dynamics as it does not depend on

the time-delay. The main goal of the current section is to define the control gains of the translational linear controllers such that the

system stability is guaranteed for a given time-delay.

5.3.1 Rotational Dynamics Stability

From the system described by Eqn. (5.15) and Fig. 5.2b, it is possible to find the control gains that ensure the stability of the

system in matters of rotation. In this regard, the analysis of the ψ dynamics is presented only.

Recalling Eqn. (5.15), it is enough and sufficient that the roots of the characteristic closed-loop function:

∆ψ (s) = s2 + kdψ
s+ kpψ (5.20)

be on the left-side plane of the complex space. For the PD controller, it is sufficient to define the control gains as kpψ ,kdψ
∈ R

+

to ensure the stability of the system.

The previous results can be translated to the φ and θ dynamics to ensure the stability of the inner dynamics block exemplified

in Fig. 5.2c. Thus, for a given set of control gains regarding the rotational motion of the body and a predefined time-delay, the

stability analysis of the translational DoFs is presented next.

5.3.2 Time-Delay Theoretical Definitions

As this dynamics includes the effects of a time-delay, some definitions (established at [68]) are cited and adapted to the current

case of study in order to perform the stability analysis afterwards.

1. For a given time-delay τ > 0, and a linear controller with gains k1,k2 ∈ R, the frequency crossing set Ω ⊂ R is the set of all

frequencies ω such that there exists at least a triplet (k1,k2,τ) for which the closed-loop characteristic function ∆(s;k1,k2,τ)

satisfies:

∆(s;k1,k2,τ) = 0 (5.21)

2. The stability crossing curves T is the set of all parameters (k1,k2,τ) ∈ R
2 ×R

+ for which there exists at least one ω ≥ 0

such that ∆(s;k1,k2,τ) = 0. For a fixed time-delay value τ∗ > 0, any point k = [k1 k2]
T ∈ T is known as a crossing point.
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3. The sigma stability problem can be described as the task of determining the controller gains k1,k2 for which the real part of

the rightmost roots of the characteristic function of the closed-loop system, is smaller than σ < 0.

In this regard, the stability regions for the translational motion of the vehicle are provided, yet, let the closed-loop transfer

functions for the x and z motion, Gx,z(s), be defined. From Figs. 5.2a and 5.2c, the transfer functions of the z and x dynamics are

found such that:

Gz(s) =
Cz (s)

s2 + e−τsCz (s)
(5.22)

Gx(s) =
Cx (s)Pθ (s)

Qθ (s)s2 + e−τsCx (s)Pθ (s)
(5.23)

For the transfer function in Eqn. (5.23), it is assumed that the control gains of the rotational motion have been already selected

and fixed with base on the result of Subsection 5.3.1 thus, the main goal of the analysis is to define the gains of the controllers

Cx (s) and Cz (s).

5.3.3 PID Controllers Analysis

The main issue emerging at analyzing time-delay systems subjected to the action of a PID controller, is the fact that there exist

more gains to determine than equations to solve. In this regard, [92] suggest to establish a proportional relation between two of

these gains such as kd = ki/γ where γ > 0 is the constant of proportionality. The latest limits the spectra of possible gains to be

selected nonetheless, the proposal of this work is to choose a fixed value for ki and to find the corresponding kp and kd based on

parametric stability charts (τ, ki and σ ). Before proceeding, one must ensure that the tuning of the controllers of the rotational

motion has been properly done (see Subsection 5.3.1).

Recalling Eqns. (5.22) and (5.23), and assuming that kix,z > 0 ∈ R, the characteristic functions of the corresponding DoFs

under the influence of a PID controller can be written as:

∆z(s) = s3 + e−τs
(

kdz
s2 ++kpz

s+ kiz

)

(5.24)

∆x(s) =
(

s2 +Pθ (s)
)

s3 + e−τs
(

kdx
s2 + kpx

s+ kix

)

Pθ (s) (5.25)

Considering s = jω with ω > 0 and solving ∆z( jω) = 0 and ∆x( jω) = 0, respectively, the corresponding pairs of gains can be

computed from:







1 0

0 ω













kpz

kdz






= Rτω







ω2

0






+Kiz (5.26)







Aθ −Bθ ω

Bθ Aθ ω













kdx

kpx






= Rτω
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

kpθ ω2 −ω4

kdθ
ω3






+Kix (5.27)
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(a) z stability regions. Left: for kiz = 1 and 0.002 ≤ τ ≤ 0.2 [s]. Right: for 0 ≤ kiz ≤ 15 and τ = 0.13 [s]. Center: kpz
-kdz

plane views.

(b) x stability regions. Left: for kix = 1 and 0.002 ≤ τ ≤ 0.2 [s]. Right: for 0 ≤ kix ≤ 15 and τ = 0.13 [s]. Center: kpx
-kdx

plane views.

Figure 5.3: Stability regions

with:

Rτω =







Cτω −Sτω

Sτω Cτω






∈ R

2×2 (5.28)

Kiz =







0

kiz/ω






; Kix =







−kix kdθ

kix kpθ /ω






∈ R

2 (5.29)

Aθ = kpθ ; Bθ = kdθ
ω (5.30)

The analysis of the special case in which ω = 0 implies the definition and solution of the corresponding characteristic functions

thus, one finds that:

∆z(0) = kiz = 0 (5.31)

∆x(0) = kix kpθ = 0 (5.32)

In this scenario, the only value of kiν that satisfies the previous equations is 0, since kpθ > 0. It is worth highlighting the fact
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that such value of kiν modifies the controller and turns it into a PD controller which has been widely treated in the literature

[102, 159, 68] and whose stability curve for ω = 0 is defined by the gains:







kpz,x

kdz,x






=







0

∈ R






(5.33)

The sigma stability curves and regions can be obtained by considering s = σ + jω and solving Eqns. (5.24) and (5.25) to find

the gains as previously discussed. In this regard, the corresponding gains pairs are defined according to the expressions:







1 σ

0 ω













kpz

kdz






= eτσ Rτω







Rz

Iz






+K

iz
σ (5.34)


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Pθ (σ) Ax

Bθ Bx


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




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kpx

kdx






= eτσ Rτω







Rθ

Iθ






+K

ix
σ (5.35)

with

K
iz
σ =

kiz

σ2 +ω2







−σ

ω






∈ R

2 (5.36)

K
ix
σ =

kix

σ2 +ω2







−Pθ (σ)σ −Bθ ω

Aθ ω






∈ R

2 (5.37)

Ax = Pθ (σ)σ −Bθ ω ; Bx = Pθ (σ)ω +Bθ σ (5.38)

Rz = ω2 −σ2 ; Iz =−2σω (5.39)

Rθ =Rz (Pθ (σ)−Rz)−Iz (Bθ −Iz) (5.40)

Iθ =Rz (Bθ −Iz)+Iz (Pθ (σ)−Rz) (5.41)

For the particular case where s = σ , i.e. ω = 0, it follows that each control gains pair in R
2 defines a crossing curve if the

expressions below are satisfied for the corresponding DoF.

kdz
σ + kpz

=−eτσ σ2 − kiz

σ
(5.42)

kdx
σ + kpx

=−eτσ σ2

(

σ2

Pθ (σ)
+1

)

− kix

σ
(5.43)

The stability regions and crossing curves are presented in the following section alongside the results of numerical control

simulations.
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(a) z sigma stability regions. Left: for kiz = 1, σ = −2 and 0.002 ≤ τ ≤ 0.2 [s]. Center: for 0 ≤ kiz ≤ 15, σ = −2 and τ = 0.13 [s].
Right: for kiz = 1, −4.2 ≤ σ ≤ 0 and τ = 0.13 [s].

(b) x sigma stability regions. Left: for kix = 1, σ =−0.5 and 0.002 ≤ τ ≤ 0.2 [s]. Center: for 0 ≤ kix ≤ 7, σ =−0.5 and τ = 0.13 [s].
Right: for kix = 1, −0.95 ≤ σ ≤ 0 and τ = 0.13 [s].

Figure 5.4: Sigma stability regions

5.4 Results

The current section is intended to expose the stability charts of the quadrotor and the numerical validation of these by simulations

which were performed taking into consideration the linearized model of the vehicle in Eqns. (5.11) - (5.13) and the 6 DoFs dynamic

model provided by Eqns. (5.1) and (5.2).

Let one recall the results exposed in [159, 102] which concern the PD controller for quadrotor systems subjected to time-delays;

in this regard, the results introduced in the aforementioned works, differ from the ones obtained herein in the Kiν and K
iν
σ terms at

the right part of Eqns. (5.26) - (5.43). Such terms are related to the corresponding integral gains and are discussed in the sequel

of the section.
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5.4.1 Stability Charts

Recalling Section 5.3, to obtain the stability charts of the vehicle regarding the motion along xI and yI , the gains of the controllers

that stabilize the rotational dynamics should be defined first. In this sense, the gains of the rotational controllers were set as

kpφ ,θ ,ψ = 20 and kdφ ,θ ,ψ
= 5 [102].

With base on the definitions provided in Subsection 5.3 and the frequency sweeping technique for analyzing time-delay

systems [95], the stability regions for the given systems can be found. Figs. 5.3a and 5.3b show, respectively, the stability regions

for the z and x DoFs under the prescribed conditions. In such plots the red-to-blue color gradient represents the variation on τ and

the blue-to-yellow color gradient is used to indicate the behavior of the stability regions according to the corresponding gain ki. For

both controllers, it can be appreciated that the regions stretch as τ or ki increases. Due to the coupling between the rotational and

the translational dynamics, the stability region of the x PID controller is significantly smaller than that of the z PID controller.

Regarding the σ -stability analysis; Figs. 5.4a and 5.4b show, correspondingly, the sigma stability regions for the z and x

controllers. In such figures, the pink-to-green color gradient represents the σ variation. The introduction of the aforementioned

figures permits to observe the parametric variation of the sigma stability regions. In this sense, the figures that depict the variation

of the stability regions w.r.t. σ may lead to find the maximum σ -stability, that is the minimal value of σ at which the rightmost root

of the quasi-polynomial can be placed; due to this fact, different intervals of sigma were defined for the controllers. In the same

manner, one can observe that a great value of the ki gain may cause that the σ -stability region stretches to the point of almost

being empty (as depicted in Fig. 5.4b). Special attention may be payed also to the singularity of Eqn. (5.35) found at σ =−kpθ /kdθ
,

which for the current case of study corresponds to −4 that is out of the boundary defined by the maximum sigma-stability.

5.4.2 Control Simulations

In order to validate the effectiveness of the previous results, numerical simulations1 were conducted using an equipment with an

8GB RAM and an Intel® Core™ i5-8250 CPU @ 1.60 GHz & 1.80 GHz processor. In this regard, the simulations considered the

set of parameters provided in Table 5.1.

Different scenarios were considered to perform the numerical simulations. In this regard, one scenario considered a constant

fixed point in the space as a desired reference to be reached by the vehicle. In such simulation, the controllers gains were selected

to satisfy the σ -stability criteria. For the z controller, the gains were tuned to ensure that the rightmost roots of the quasi-polynomial

1MATLAB/Simulink® 2018b

Table 5.1: Simulation parameters

Parameter Nominal value

m 0.675 kg
Ix, Iy 0.271 kg m2

Iz 0.133 kg m2

ℓ 0.45 m
g 9.81 m/s2

α 0.34 m
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(a) z PID controllers’ gains within the stability regions (b) x(y) PID controllers’ gains within the stability regions

Figure 5.5: controllers’ gains within the stability regions

stay at the left side of the plane defined by σ =−3 meanwhile, for the x and y controllers, the reference σ value was chosen to

be −0.25. The second scenario considered a ramp signal as a reference input for the position of the aircraft. In this case, the

controller of the z motion was tuned to guarantee that the rightmost roots of the corresponding quasi-polynomial lay at the the left

of the plane defined by σ =−2, in this same regard, the controllers of the x and y motions were conceived to ensure that the roots

of the characteristic functions be found at the left of the plane σ =−0.8.

For both of the cases explained, the special case where kiν = 0 was considered to observe the behavior of the system in the

presence of external disturbances and compare it with the performance of the system driven by a PID controller in which kiν = 1.

Additionally, two different values for the time-delay were taken into consideration, these values were set as 0.08 and 0.13 [s]. The

overall information concerning the gains of the controllers is summarized in Table 5.2.

In addition to what is exposed in Table 5.2, Figs. 5.5a and 5.5b depict the selected gains within the corresponding stability

regions. In these plots, the points represented by a ⋆ correspond to the gains chosen for the time-delay value of 0.08 [s]

meanwhile, the rest of the points are referred to the gains of the controllers operating with a feedback time-delay of 0.13 [s].

The performance of the vehicle, subjected to the first simulation conditions, is exposed throughout Figs. 5.6a - 5.7c. In this

regard, one may find that some curves are referred to with the legend ”Ideal” or ”Real”, such legends denote the dynamic model

used to carry out the simulation; the ”Ideal” responses represent those of the simulation where the linearized model was used, on

the other hand, the word ”Real” denotes the response of the non-linear quadrotor system.

Table 5.2: Translational controllers gains

σ Gain
kiν = 0 kiν = 1

Input
τ = 0.08 τ = 0.13 τ = 0.08 τ = 0.13

-3
kpz 12 7 12 8

Step
kdz

5.5 4 5 4.2

-0.25
kpx,y 1.5 1.5 4 4

Step
kdx,y 3.5 3 3 2.15

-2
kpz 13 13 14 14

Ramp
kdz

7.5 6 4.5 5.5

-0.8
kpx,y 2.2 2.2 3.35 3.35

Ramp
kdx,y 2.2 1.5 1.9 1.6
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(a) Displacement along xI

(b) Displacement along yI

(c) Displacement along zI

Figure 5.6: Translational motion for constant reference inputs

The translational behavior of the vehicle is depicted in Fig. 5.6 where the disturbances considered are equally plotted in a

minor scale. From such figure, it is possible to appreciate that the system driven by the PID controllers successfully reaches the

desired position even in the presence of external disturbances yet, the system operating under the influence of PD controllers

presents an steady state error produced by the perturbations applied to the quadrotor. One may notice the overshoot on the

response of the system actuating under the PID control law, nevertheless such overshoot can be reduced with the proper gains

selection.
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(a) Roll (φ ) motion

(b) Pitch (θ ) motion

(c) Yaw (ψ) motion

Figure 5.7: Rotational motion for constant reference inputs in position

Regarding the rotational performance of the vehicle for the current simulation case (see Fig. 5.7), one can clearly appreciate

oscillations with a considerable magnitude at the transient phase as expected for step reference inputs. Notice that the results

concerning the yaw motion of the vehicle correspond only to those obtained by the full dynamics simulation as, ideally, it is

assumed that it remains always at 0 [deg].

With base on the results exposed in Figs. 5.6 and 5.7, it is immediate to appreciate that the behavior of the linear quadrotor

system differs from that of the vehicle with the full dynamics being considered. In this sense, the system simulated using the
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(a) Displacement along xI

(b) Displacement along yI

(c) Displacement along zI

Figure 5.8: Translational motion for ramp reference inputs

full dynamic model posses a smoother behavior in comparison with the linear system, i.e. no oscillations are appreciated in the

translational response and the angular motion of the aircraft does not reach those peaks presented during the ”ideal” vehicle

simulation.

The results concerning the second simulation scenario (depicted in Figs. 5.8 and 5.9) reinforce the discussion of the results

standing for the first case. Fig. 5.8 shows the evolution of the position of the vehicle in the space; plots of the corresponding error

defined, for ν ∈ ξξξ , as eν (t,τ) = νd(t)−ν(t − τ) are also provided for a better appreciation of the performance. In this manner, and
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(a) Roll (φ ) motion

(b) Pitch (θ ) motion

(c) Yaw (ψ) motion

Figure 5.9: Rotational motion for ramp reference inputs in position

for the cases where PID controllers were implemented, one can appreciate that eν (t,τ)→ 0 as t → ∞ even when in the presence

of disturbances.

The absence of prominent and abrupt oscillation on the rotational response of the vehicle is clearly appreciated in Fig. 5.9. This

behavior is produced as a consequence of the smoothness on the desired position input since it corresponds to ramp-like signal,

yet, one can observe the reaction of the system to disturbances. One may find attractive Figs. 5.10 and 5.11 for supplementary

information that supports the results discussion. In both figures, the velocities of the vehicle and the control signals are depicted.
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(a) Velocities

(b) Control signals

Figure 5.10: Quadrotor velocities and control signals for constant reference inputs, kix,y,z = 0 and τ = 0.13 [s]

(a) Velocities

(b) Control signals

Figure 5.11: Quadrotor velocities and control signals for ramp reference inputs, kix,y,z = 1 and τ = 0.08 [s]



Chapter 6

Time-Delay Control of Quadrotor UAVs: a

MID-based Approach

The sequel of the chapter is outlined in the following manner: Section 6.1 offers an introduction to the problematic. Section 6.2

provides a brief introduction to time-delay differential equations and MID property fundamentals. In Section 6.3, the dynamics of

the quadrotor vehicles is described. Section 6.4 is devoted to the conception of the controllers that stabilize the typical quadrotor

vehicle. On the other hand, Section 6.5 exposes the control strategy adopted to stabilize the UAV endowed with 1-DOF tilting-rotors.

Section 6.6 provides the results of the detailed numerical simulations carried out to validate the proposals. Lastly, concluding

remarks are drawn in Subsection 8.2.2.

6.1 Introduction

Among the actual technological surge, Unmanned Aerial Vehicles (UAVs), witnessed by their extensive applications spectrum,

remain as a popular and challenging topic within the control systems and robotics scientific community. Such attractiveness

relies on friendly design and controllability criteria which have lead to a wide application range such as high-precision weather

monitoring, precision agriculture, swarm-based distributed perception, parcel transport and delivering, disaster assessment and

infrastructure inspection, for instance [143, 149, 28].

The autonomy and capability of UAVs to perform accurate maneuvers are strongly dependent on the efficient synthesis and

implementation of control-task-oriented algorithms. Several of these strategies take into consideration quaternion-based modeling

approaches [5], image-aimed stabilization or the well-known proportional-derivative (PD) and proportional-integral-derivative (PID)

controllers [169, 35] alongside robust control techniques [37, 75] and/or state estimations and observers [49, 36, 38].

Among the vast variety of issues undermining the aerial systems performance, and to the best of the author’s knowledge, the

study of time-delay effects remains relatively as an unexplored topic of interest which conceals an enormous potential regarding the

stability of such vehicles. In practice, UAVs’ control systems operate in presence of time-delays arising from perception processing

for decision-making navigation, control commands and actuators’ delayed dynamics. It has been proved that time-delays induce

91
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oscillatory phenomena rendering the system unstable. Nevertheless, some stabilizing effects of time-delays can be exploited to

improve the system’s performance [126, 155].

The stability of aerial vehicles under the influence of time-delays has been conducted in [102, 34] providing a set of stability

charts to describe the parametric behavior of the stability regions. Meanwhile, [94] considers the full non-linear dynamics to study

the trajectory tracking problem. It is worthwhile highlighting that a considerable part of prior works focuses on the communication

and information exchange processes as the main sources of time-delays [6, 120, 86]. In this regard, the range of solutions to

overcome such issue goes from delay-optimization approaches [93] to Backstepping and non-linear control [43, 77] yet, a vast

variety of different approaches can be found in the literature, see for instance [59, 172, 126, 115, 119].

Amid novel time-delay systems analysis, tracking the behavior of the roots of the characteristic equation, as in [20], has lead to

an increasing interest on studying and exploiting the Multiplicity-Induced-Dominancy (MID) property. This property refers to a

special condition in which a given root of the characteristic function matches the spectral abscissa such that the corresponding

spectral value is dominant.

The MID property has already been suggested for some low-order cases [66] and some other phenomena described by linear

time-delay differential equations [21, 24, 25, 26, 110]. Recent results in this direction provide necessary and sufficient conditions

for roots of maximal multiplicity in reduced-order time-delay systems and their extension to a general class of second-order

differential equation and linear time-invariant single-delay equations, both of retarded type [25, 110]. These findings equally

concern linear time-delay systems of neutral type. [107] extends the MID property in order to stabilize a second order time-delay

neutral system by means of a PID controllers. In addition, in [18], necessary and sufficient conditions for the existence of a root of

maximal multiplicity are provided. Nevertheless, the application of such findings on the domain of aerial robots control, as far as it

is concerned by the author, has not been specifically considered.

The present chapter exploits the effects of the time-delay arising from generic perception vision-based tracking systems in order

to stabilize two popular rotorcraft classes: (i) a classical ”+” quadrotor and (ii) a ”+” quadrotor endowing 1-Degree-Of-Freedom

(DOF) tilting-rotors. The MID property leads to a tuning criteria of the controllers’ gains such that the quadrotors reach the

equilibrium state as fast as possible with a non-oscillatory transient response.

6.2 MID Approach Fundamentals

The MID property refers to a special condition in which multiple roots of the characteristic function match the spectral abscissa

such that the corresponding spectral value is strictly dominant under some given constrains. Moreover, it is worth distinguishing

two possible scenarios regarding the multiplicity of the roots; in this sense, the term Generic MID (GMID) property stands for

the case where maximal multiplicity is reached. The property is simply named MID otherwise. The GMID property is completely

characterized for the single delay case (in both delayed and neutral cases) in [18] permiting one to establish conditions over all

the parameters of the system which is not feasible from a control point of view. A control oriented MID is however proposed in

[25, 15, 16].

Extensive literature is available (see for instance [25, 111]) analysing the behavior of time-delayed linear systems whose

equation structures are written in the form:
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F
(n)(t)+an−1F

(n−1)(t)+ . . .+a0F (t)+ϕn−1F
(n−1)(t − τ)+ . . .+ϕ0F (t − τ) = 0 (6.1)

such that F is an unknown real-valued function, n is a positive integer, ak,ϕk ∈ R for k ∈ {0, ...,n−1} are constant coefficients,

and τ > 0 is a time-delay. Thus, Eqn. (6.1) is named as a retarded delay differential equation due to the fact that the highest order

derivative, F (n)(t), is included only in the time-delay-independent term.

The analysis of Eqn. (6.1) occurs to be important as it represents linear control systems subjected a control input and a

time-delay feedback u(t − τ), such that:

F
(n)(t)+a(n−1)F

n−1(t)+ . . .+a0F (t) = u(t − τ) (6.2)

In the time-delay-free scenario, the control input is often established as u(t) =−ϕn−1F
(n−1)(t)− . . .−ϕ0F (t), assuming that

the measurement of F (t) and its derivatives F (n−1)(t), . . . ,F ′(t) are instantaneously available; thus the roots of the characteristic

function can be strategically chosen, according to a desired exponential behavior, by a proper selection of the coefficients

ϕ0, . . . ,ϕn−1.

Spectral methods are equally adopted to address systems with time-delays. In this regard, the asymptotic behavior of the

solutions depends on the roots of the characteristic function which, for Eqn. (6.1) is defined as ∆ : C→ C for s ∈ C such that:

∆(s) = sn +
n−1

∑
k=0

aksk + e−sτ
n−1

∑
k=0

ϕksk (6.3)

Thus σ0 = sup{Re{s}|s ∈ C,∆(s) = 0} defines the exponential behavior of the solutions of Eqn. (6.1). Such real number σ0 is

named the spectral abscissa of ∆ and it follows that for every ε > 0, there exists a κ < 0 such that, for every solution F of Eqn.

(6.1), one has |F (t)| ≤ κe(σ0+ε)tmaxϑ∈[−τ,0]|F (ϑ)| [65]. In addition, to ensure the exponential convergence of the solutions to 0,

σ < 0 shall strictly hold. Nevertheless, the analysis of the (asymptotic) behavior of the solution of Eqn. (6.1) stands as a challenge

since the corresponding characteristic function ∆ has infinitely many roots.

If ∆ possesses a dominant root with negative real part, then the exponential stability of Eqn. (6.1) is equivalent to it, additionally,

it may often hold, for some characteristic quasipolynomials of time-delay systems, that the real roots of maximal multiplicity are

dominant which gives name to the Multiplicity-Induced-Dominancy (MID) property, and it follows that a root s0 with multiplicity

n ∈ N satisfies:

∆(s0) = ∆′(s0) = . . .= ∆(n−2)(s0) = ∆(n−1)(s0) = 0 (6.4)

The formal definition of a quasipolynomial is provided below.

Definition 6.2.1 A quasipolynomial Λ is an entire function Λ : C→ C which can be written under the form
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Figure 6.1: Quadrotor vehicle and vision-based tracking system (scheme conceived from figures available at
freepik.com)

Λ(s) =
ι

∑
k=0

ρk(s)e
λks (6.5)

where ι is a nonnegative integer, λ0, . . . ,λι are pairwise distinct real numbers, and, for k ∈ {0, . . . , ι}, ρk is a nonzero polynomial

with complex coefficients of degree µk ≥ 0. The integer D = ι +∑
ι
k=0 µk is called the degree of Λ.

When λ0 = 0 and λk < 0 for k ∈ {1, . . . , ι} in Eqn. (6.5), Λ is the characteristic function of a linear time-delay system with delays

−λ1, . . . ,−λι .

A set of necessary results and additional definitions on quasipolynomials for the understanding and analysis of these, are

given next. For an extended and detailed treatment of these concerns, the reader is referred to [21, 25, 119, 15, 16, 111].

• The roots of a quasipolynomial do not change when its coefficients are all multiplied by the same nonzero number, and

hence one may always assume, without loss of generality, that one nonzero coefficient of a quasipolynomial is normalized

to 1, such as the coefficient of the term of highest degree in ρ0.

• Let Λ be a quasipolynomial of degree D in the form of Eqn. (6.5). Then any root s0 ∈ C of Λ has multiplicity at most D.

• Let Λ : C→ C and s0 ∈ C be such that Λ(s0) = 0. It is said that s0 is a dominant (respectively, strictly dominant) root of Λ if,

for every s ∈ C\{s0} such that Λ(s) = 0, one has Re{s} ≤ Re{s0} (respectively, Re{s}< Re{s0}).

• The roots of the quasipolynomial ∆ in Eqn. (6.3) with maximal multiplicity are necessarily dominant and such multiplicity can

be attained only in the real axis.

6.3 Quadrotor Model

Let the quadrotor system be depicted in Fig. 6.1 where the vision-based tracking system permits to know the position of the

vehicle, ξξξ = [x y z]T ∈ R
3, in a conditioned environment. Such sensing strategy often takes a fraction of time τ > 0 to be executed;

this issue is translated to control terms as a feedback time-delay [67, 151].
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The dynamics of the vehicle is described w.r.t. an inertial frame OI {xI ,yI ,zI} and a body frame Ob {xb,yb,zb} whose origin

matches the center of gravity (CoG) of the UAV. xb, yb, zb define the roll, pitch and yaw axes and the corresponding principal

axis of inertia which are associated to the Euler angles ηηη = [φ θ ψ]T ∈ R
3, respectively. The motion of the aerial vehicle can be

described, according to the Newton Euler formulation [35], as:

mrξ̈ξξ +mrg = τττξξξ (6.6)

Iω̇ωω +ωωω × (Iωωω) = τττωωω (6.7)

where mr > 0 stands for the mass of the UAV and g = [0 0 g]T ∈ R
3 does for the vector containing the constant of gravity

acceleration g > 0; I = diag(
[

Ix Iy Iz

]T
) ∈ R

3×3, the inertia matrix, is respectively defined by the moments of inertia about the roll,

pitch and yaw axis, and the function diag : Rn → R
n×n such that, for a given ννν ∈ R

n, it stands as:

diag(ννν) =





















ν1 0 . . . 0

0 ν2 . . . 0

...
...

. . . . . .

0 0 . . . νn





















(6.8)

The angular velocity vector ωωω = [p q r]T ∈ R
3 is related to the Euler rates η̇ηη in a sense that:

ωωω =Wηηη η̇ηη ; Wηηη =













1 0 −Sθ

0 Cφ Sφ Cθ

0 −Sφ Cφ Cθ













∈ R
3×3 (6.9)

where C(•) = cos(•) and S(•) = sin(•). Such an abuse of this notation is considered throughout the sequel of the chapter.

The translational motion described by Eqn. (6.6) is provided in terms of the inertial frame. On the other hand, Eqn. (6.7)

describes the rotational motion of the quadrotor in the body reference frame.

The actuation of the system stands as the main difference between a typical quadrotor and a quadrotor endowed with

tilting-rotors. In this sense, the translational motion of the aircraft is driven by the forces comprised in the vector τττξξξ ∈ R
3 which is

defined, for the typical quadrotor, by the rotation matrix Rηηη ∈ R
3×3 and the forces of the propellers fi ≥ 0 (with i = 1,2,3,4), as:

τττξξξ = Rηηη













0

0

T = f1 + f2 + f3 + f4













and Rηηη =













Cθ Cψ Sφ Sθ Cψ −Cφ Sψ Cφ Sθ Cψ +Sφ Sψ

Cθ Sψ Sφ Sθ Sψ +Cφ Cψ Cφ Sθ Sψ −Sφ Cψ

−Sθ Sφ Cθ Cφ Cθ













(6.10)

For the quadrotor endowed with 1-DOF tilting-rotors, the vector τττξξξ is rewritten in terms of Rηηη , fi and the tilt angles α,β ∈ R as:
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τττξξξ = Rηηη













( f1 + f3)Sβ

−( f2 + f4)Sα

( f1 + f3)Cβ +( f2 + f4)Cα













(6.11)

The rotational states of the aircraft are governed by the torques in the vector τττωωω ∈ R
3 which, for the typical quadrotor structure,

is defined as:

τττωωω =













τφ = ℓ( f2 − f4)/2

τθ = ℓ( f3 − f1)/2

τψ = ε ( f1 − f2 + f3 − f4)













(6.12)

where ℓ > 0 denotes the diagonal motor-to-motor distance and ε > 0 is a proportionality constant that relates the force fi to the

corresponding free moment τi such that τi = ε fi.

For the quadrotor vehicle equipped with tilting-rotors, τττωωω reads as:

τττωωω =













ℓ( f2 − f4)Cα/2+ ε ( f1 + f3)Sβ

ℓ( f3 − f1)Cβ /2− ε ( f2 + f4)Sα

ε
[

( f1 + f3)Cβ − ( f2 + f4)Cα

]













(6.13)

The non-linear description of the vehicles provided in the current section allows one to proceed to the conception of the

controllers as exposed next.

6.4 UAV Control: The Typical Quadrotor Case

Let the quadrotor class be firstly addressed. As it can be found in the literature [67, 35, 34, 102], it is typically assumed that the

vehicle operates at low speeds, such that The Coriolis and Centripetal effects are neglected, at quasi-hovering flight (φ ≈ 0 and

θ ≈ 0) and ,without loss of generality, ψ = 0 holds ∀t ≥ 0. These considerations lead to a linear representation of Eqns. (6.6), (6.7),

(6.10) and (6.12) of the form:















X(s) =
1

mrs2
θ(s)T (s), Y (s) =− 1

mrs2
φ(s)T (s), Z(s) =

1

mrs2
(T (s)−mrg) ,

φ(s) =
1

Ixs2
τφ (s), θ(s) =

1

Iys2
τθ (s), ψ(s) =

1

Izs2
τψ (s)

(6.14)

which corresponds to a representation of the system in the frequency domain where s = σ + jω with σ ,ω ∈ R.

From Eqn. (6.14), it is immediate to observe that the Z(s) and ψ(s) motions are decoupled, yet the X(s) dynamics is coupled

to that of θ(s) and the Y (s) motion is related to that of φ(s). In this regard, let the thrust T (s) be used as the control input to drive

the system to a desired height Zd(s) and τψ (s) does the proper to keep the yaw angle at 0. These control inputs are respectively
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defined, as:

T (s) = mr (Cz (s)Ez(s)+g) and τψ (s) = IzCψ (s)Eψ (s) (6.15)

where the z error reads as Ez(s) = Zd(s)− e−τsZ(s) since the translational states of the quadrotor are subjected to a feedback

time-delay τ due to the inherent latency of the vision-based tracking system, and the ψ error stands as Eψ (s) = −ψ(s) since

ψd(s) = 0. The linear controllers Cz(s) and Cψ (s) correspond to PD controllers of the form:

Cz(s) = kpz
+ kdz

s and Cψ (s) = kpψ + kdψ
s (6.16)

with kpz
,kpψ ∈R defined as the proportional gains and kdz

,kdψ
∈R standing as the derivative gains. The aforementioned control

gains are tuned by means of the MID property in the case of time-delays presence. In the sequel of the chapter, the methodology

is exposed.

Regarding the translational motion of the vehicle, let one consider that, for a large enough time, T (s)→ Tc =mrg as Z(s)→ Zd(s)

[102, 159]. The latter allows one to rewrite the equations of motion for X(s) and Y (s) in Eqn. (6.14) respectively, as:

X(s) =
1

mrs2
θ(s)Tc and Y (s) =− 1

mrs2
φ(s)Tc (6.17)

It is thus considered that θ(s) and φ(s) act as the control inputs for the corresponding DOF, such that the reference values are

defined by linear PD controllers, Cx(s) and Cy(s), as follows

θd(s) =
mr

Tc
Cx(s)Ex(s) and φd(s) =−mr

Tc
Cy(s)Ey(s) (6.18)

with

Cx(s) = kpx
+ kdx

s, Cy(s) = kpy
+ kdy

s (6.19)

Ex(s) = Xd(s)− e−τsX(s), Ey(s) = Yd(s)− e−τsY (s) (6.20)

where the proportional gains correspond to kpx
,kpy

∈ R, and the derivative gains are denoted by kdx
,kdy

∈ R. Nonetheless, the

reference values in Eqn. (6.18) are achieved by the action of the linear PD controllers:

Cθ (s) = kpθ + kdθ
s and Cφ (s) = kpφ + kdφ

s (6.21)
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Xd(s)
mr
Tc

Cx(s) X(s)Tc

mrs2+
IyCθ (s)

1
Iys2

−+−

θd(s)

τθ (s)

θ(s)

e−τs

Zd(s) mrCz(s) Z(s)1
mrs2+ +−

T (s)

e−τs

mrg
+

mrg
−+

IzCψ(s)
1

Izs2

−+
ψd(s) = 0

τψ(s)

ψ(s)

Figure 6.2: Block diagram representation of the typical quadrotor closed-loop system

such that:

τθ (s) = IyCθ (s)Eθ (s) and τφ (s) = IxCφ (s)Eφ (s) (6.22)

with Eθ (s) = θd(s)−θ(s) and Eφ (s) = φd(s)−φ(s). The proportional gains kpθ ,kpφ ∈R as well as the derivative gains kdθ
,kdφ

∈R

are tuned in such a manner that the rotational dynamics is stable converging faster than that of translation [159]. To accomplish

such task, spectral methods can be applied.

To synthesize the previous establishments, the X(s), Z(s) and ψ(s) closed-loop systems are depicted in Fig. 6.2 where the

dynamics of the plant is highlighted in red and the inner dynamics is surrounded by a blue dashed box (if it occurs to be the case).

Notice that the Y (s) dynamics is omitted since it follows the same structure as that of X(s).

6.4.1 MID-Property-Based Controllers Analysis

According to Fig. 6.2, the closed-loop transfer functions of each DOF can be computed such that the characteristic functions

correspond to:

∆x (s) = s2
[

s2 +Cθ (s)
]

+ e−τs
Cx(s)Cθ (s) (6.23)

∆y (s) = s2
[

s2 +Cφ (s)
]

+ e−τs
Cy(s)Cφ (s) (6.24)

∆z (s) = s2 + e−τs
Cz(s) (6.25)

∆ψ (s) = s2 +Cψ (s) (6.26)

Regarding Eqn. (6.26), no time-delay effect is present thus, the exponential behavior of the solutions can be tuned by the

proper placement of the roots of the polynomial. In this sense, it is enough that such roots are on the left-plane of the complex

space, moreover, a non-oscillatory stable system’s response is achieved if the roots are over the negative real axis [159]. The
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latter is comprised in Proposition 6.4.1 below.

Proposition 6.4.1 For the closed-loop dynamics described by Eqn. (6.26), a non-oscillatory stable system’s response is achieved

and guaranteed if the controller’s gains satisfy:

kdψ
= sψ,1 + sψ,2 and kpψ = sψ,1sψ,2 (6.27)

with sψ,2 > sψ,1 > 0 such that the system can be as fast as sψ,1 is placed.

Proof. The proof is provided by the substitution of the gains given in Eqn. (6.27) into Eqn. (6.26) that is solved as:

s2 +
(

sψ,1 + sψ,2

)

s+ sψ,1sψ,2 =
(

s+ sψ,1

)(

s+ sψ,2

)

= 0 (6.28)

such that the roots of the system are located at s =−sψ,1 and s =−sψ,2.

�

It must be noticed that Proposition 6.4.1 can be applied to stabilize the inner-loop dynamics highlighted in blue in Fig. 6.2 as

the existence of negative real roots of the characteristic function of the open-loop system is essential for the MID property to be

exploited.

Regarding the translational dynamics where the time-delay effect is found, the analysis of the Z(s) dynamics is provided at first

place, afterwards, the X(s) dynamics of the vehicle is studied.

The following result, which is a direct consequence of [25], allows to characterize an assignable spectral value guaranteeing

σ−stability as well as the corresponding controller’s gains.

Proposition 6.4.2 For the quasipolynomial in Eqn. (6.25), the following assertions hold:

1. The multiplicity of any given root of the quasipolynomial function is bounded by 4.

2. For a positive delay τ , the quasipolynomial in Eqn. (6.25) admits a real spectral value at s = s0z
with algebraic multiplicity 3 if

and only if:

s0z
=

−2+
√

2

τ
(6.29)

and the controller’s gains satisfy:

kpz
= eτs0z s2

0z

(

s0z
τ +1

)

and kdz
=−eτs0z s0z

(

s0z
τ +2

)

(6.30)

Proof. The first statement of the proposition is a direct assimilation of the results presented at [21]. On the other hand, if s0z
is a

root with multiplicity at least 2, it follows that ∆z(s0z
) = 0 and ∆′

z(s0z
) = 0.

By solving these equations for the control gains, the definitions in Eqn. (6.30) are obtained. The root s0z
reaches a multiplicity

3 if and only if:
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∆′′
z (s0z

) = 2+ e−τs0z

[

τ2
(

kdz
s0z

+ kpz

)

−2τkdz

]

= 0 (6.31)

The substitution of Eqn. (6.30) into Eqn. (6.31) leads to Eqn. (6.29). To prove that s0z
is the dominant root, one may exploit the

result from [25, Theorem 4.2].

�

Let one proceed to study the quasipolynomial in Eqn. (6.23). In this regard, and due to the complexity of the expressions, a

useful proposition based on a symbolic/numerical analysis is provided next.

6.4.2 Symbolic/Numeric Analysis of the MID-Based Controller

Firstly, to study the behavior of the system whose characteristic function corresponds to the quasipolynomial provided in Eqn.

(6.23), one must ensure that the delay-free part of the quasipolynomial has only real roots which occurs if and only if:

k2
dθ

> 4kpθ > 0 (6.32)

One must notice that Eqn. (6.32) is equivalent to Proposition (6.4.1) furthermore, the relation in Eqn. (6.32) is given by the

discriminant δθ ∈ R of the characteristic function of the inner closed-loop (θ(s) dynamics) such that its roots are computed as

sθ ,{1,2} =
−kdθ

±
√

δθ

2
with δθ = k2

dθ
−4kpθ (6.33)

These conditions over the gains kpθ and kdθ
are taken into consideration to exploit the MID property as numerically established

next.

Proposition 6.4.3 For the quasipolynomial in Eqn. (6.23), the following assertions hold:

1. The multiplicity of any given root of the quasipolynomial function is bounded by 7.

2. For a given positive delay τ, an arbitrary root s0x
with algebraic multiplicity 4 is a dominant root of Eqn. (6.23) if s0x

∈ S,

where

S=

{

s0x
: − 3

10τ
< s0x

< 0

}

(6.34)

and the controllers’ gains kpθ , kdθ
, kpx

and kdx
satisfy:
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kpθ = λ s2
0x
, kdθ

=− s0x

9

(

n2λ 2 −n1λ +n0

d2λ 2 −d1λ +d0

)

(6.35)

kpx
=

s2
0x

eτs0x

C 2
θ (s0x

)

{

Cθ (s0x
)(τs0x

+1)
[

s2
0x
+Cθ (s0x

)
]

+ s2
0x

[

Cθ (s0x
)+ kpθ

]

}

(6.36)

kdx
=

−s0x
eτs0x

C 2
θ (s0x

)

{

Cθ (s0x
)(τs0x

+2)
[

s2
0x
+Cθ (s0x

)
]

+ s2
0x

[

Cθ (s0x
)+ kpθ

]

}

(6.37)

where λ is defined as the only positive real root of the following algebraic equation

p3λ 3 + p2λ 2 + p1λ + p0 = 0 (6.38)

with

p3 = 27
(

s2
0x

τ2 +4s0x
τ +2

)4
(6.39)

p2 =−10s9
0x

τ9 −243s8
0x

τ8 −2352s7
0x

τ7 −12090s6
0x

τ6 −36360s5
0x

τ5 −65916s4
0x

τ4 −72288s3
0x

τ3−

47736s2
0x

τ2 −17280s0x
τ −2592 (6.40)

p1 =
(

s3
0x

τ3 +12s2
0x

τ2 +36s0x
τ +24

)(

s3
0x

τ3 +18s2
0x

τ2 +54s0x
τ +24

)(

s4
0x

τ4 +8s3
0x

τ3+

24s2
0x

τ2 +24s0x
τ +12

)

(6.41)

p0 =−
(

s4
0x

τ4 +8s3
0x

τ3 +24s2
0x

τ2 +24s0x
τ +12

)(

s3
0x

τ3 +12s2
0x

τ2 +36s0x
τ +24

)2
(6.42)

and

n2 = 11s12
0x

τ12 +309s11
0x

τ11 +3738s10
0x

τ10 +25938s9
0x

τ9 +115452s8
0x

τ8 +348192s7
0x

τ7 +731016s6
0x

τ6+

1077408s5
0x

τ5 +1105920s4
0x

τ4 +771120s3
0x

τ3 +347328s2
0x

τ2 +90720s0x
τ +10368 (6.43)

n1 =
(

s3
0x

τ3 +12s2
0x

τ2 +36s0x
τ +24

)(

2s6
0x

τ6 +39s5
0x

τ5 +249s4
0x

τ4 +744s3
0x

τ3 +1116s2
0x

τ2 +756s0x
τ +180

)

(

s4
0x

τ4 +8s3
0x

τ3 +24s2
0x

τ2 +24s0x
τ +12

)

(6.44)

n0 = 2
(

s3
0x

τ3 +6s2
0x

τ2 +12s0x
τ +6

)(

s4
0x

τ4 +8s3
0x

τ3 +24s2
0x

τ2 +24s0x
τ +12

)(

s3
0x

τ3 +12s2
0x

τ2 +36s0x
τ +24

)2
(6.45)

d2 = 3
(

2s3
0x

τ3 +9s2
0x

τ2 +12s0x
τ +6

)(

s2
0x

τ2 +4s0x
τ +2

)4
(6.46)

d1 = (s4
0x

τ4 +16s3
0x

τ3 +63s2
0x

τ2 +84s0x
τ +30)(s4

0x
τ4 +8s3

0x
τ3 +24s2

0x
τ2 +24s0x

τ +12)(s2
0x

τ2 +4s0x
τ +2)2 (6.47)

d0 = (s0x
τ +2)(s3

0x
τ3 +12s2

0x
τ2 +36s0x

τ +24)(s4
0x

τ4 +8s3
0x

τ3 +24s2
0x

τ2 +24s0x
τ +12)(s2

0x
τ2 +4s0x

τ +2)2 (6.48)

Proof. The first statement of the proposition is a direct assimilation of the results presented at [21], see also [111]. Furthermore,

Eqns. (6.35)-(6.37) are found as in Proposition 6.4.2. In this regard, if s0x
is a root with multiplicity at least 2, it follows that:
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∆x(s0x
) = s2

0x

(

s2
0x
+ kdθ

s0x
+ kpθ

)

+ e−τs0x
(

kdx
s0x

+ kpx

)(

kdθ
s0x

+ kpθ

)

= 0 (6.49)

∆′
x(s0x

) = s0x

(

4s2
0x
+3kdθ

s0x
+2kpθ

)

− e−τs0x
[

τ
(

kdx
s0x

+ kpx

)(

kdθ
s0x

+ kpθ

)

−
(

2kdθ
kdx

s0x
+ kpx

kdθ
+ kpθ kdx

)]

= 0 (6.50)

By solving Eqns. (6.49) and (6.50) for the control gains kpx
and kdx

, the definitions in Eqns. (6.36) and (6.37) are obtained.

Moreover, the root s0x
reaches a multiplicity 4 if and only if:

∆′′
x (s0x

) = 2
(

6s2
0x
+3kdθ

s0x
+ kpθ

)

+

e−τs0x

{

τ2
(

kdx
s0x

+ kpx

)(

kdθ
s0x

+ kpθ

)

−2τ
(

2kdθ
kdx

s0x
+ kpx

kdθ
+ kpθ kdx

)

+2kdx
kdθ

}

= 0 (6.51)

∆′′′
x (s0x

) = 6
(

4s0x
+ kdθ

)

−

e−τs0x

{

τ3
(

kdx
s0x

+ kpx

)(

kdθ
s0x

+ kpθ

)

+3τ2
(

2kdθ
kdx

s0x
+ kpx

kdθ
+ kpθ kdx

)

−6τkdx
kdθ

}

= 0 (6.52)

The substitution of Eqns. (6.36) and (6.37) into the equations ∆′′
x (s0x

) = 0 and ∆′′′
x (s0x

) = 0 leads to Eqn. (6.35) yet, one must

analyse with detail the results concerning the definitions in Eqns. (6.35) and (6.38). For these ends, let one adopt the change of

variable ς = s0x
τ throughout Eqns. (6.38)-(6.48) yielding to rewrite the expressions as follows:

p⋆3λ 3 + p⋆2λ 2 + p⋆1λ + p⋆0 = 0 (6.53)

p⋆3 = 27
(

ς2 +4ς +2
)4

(6.54)

p⋆2 =−10ς9 −243ς8 −2352ς7 −12090ς6 −36360ς5 −65916ς4 −72288ς3 −47736ς2 −17280ς −2592 (6.55)

p⋆1 =
(

ς3 +12ς2 +36ς +24
)(

ς3 +18ς2 +54ς +24
)(

ς4 +8ς3 +24ς2 +24ς +12
)

(6.56)

p⋆0 =−
(

ς4 +8ς3 +24ς2 +24ς +12
)(

ς3 +12ς2 +36ς +24
)2

(6.57)

n⋆2 = 11ς12 +309ς11 +3738ς10 +25938ς9 +115452ς8 +348192ς7 +731016ς6 +1077408ς5 +1105920ς4+

771120ς3 +347328ς2 +90720ς +10368 (6.58)

n⋆1 =
(

ς3 +12ς2 +36ς +24
)(

2ς6 +39ς5 +249ς4 +744ς3 +1116ς2 +756ς +180
)(

ς4 +8ς3 +24ς2 +24ς +12
)

(6.59)

n⋆0 = 2
(

ς3 +6ς2 +12ς +6
)(

ς4 +8ς3 +24ς2 +24ς +12
)(

ς3 +12ς2 +36ς +24
)2

(6.60)

d⋆
2 = 3

(

2ς3 +9ς2 +12ς +6
)(

ς2 +4ς +2
)4

(6.61)

d⋆
1 = (ς4 +16ς3 +63ς2 +84ς +30)(ς4 +8ς3 +24ς2 +24ς +12)(ς2 +4ς +2)2 (6.62)

d⋆
0 = (ς +2)

(

ς3 +12ς2 +36ς +24
)(

ς4 +8ς3 +24ς2 +24ς +12
)(

ς2 +4ς +2
)2

(6.63)

As previously mentioned, to exploit the results of [23, 16], the non-delayed part of the quasipolynomial must have only real

roots which is guaranteed if Eqn. (6.32) holds, thus it follows that λ > 0 as s2
0x
> 0 and, from Eqns. (6.53)-(6.63), that
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n⋆2λ 2 −n⋆1λ +n⋆0
d⋆

2λ 2 −d⋆
1λ +d⋆

0

> 18
√

λ (6.64)

To ensure the existence of a given λ satisfying the condition above, some restrictions over ς (consequently over τ and

s0x
) must be established. In this regard, the analysis of the polynomial in Eqn. (6.53) can be performed in any mathematical

software that allows the treatment of symbolic and numerical computations. In the current case of study, Maple and its package

RootFinding[Parametric] were used.

The aforementioned maple package divides the space of parameters into two parts: the discriminant variety and its complement.

The discriminant variety is referred as a generalization of the discriminant of a univariate polynomial and contains those parameter

values leading to non-generic solutions, meanwhile, its complement can be expressed as a finite union of open cells such that the

number of real solutions of the system is constant on each cell. In this manner, all parameter values leading to generic solutions of

the system can be described. The underlying techniques used are Gröbner bases, polynomial real root finding, and cylindrical

algebraic decomposition, see for instance [142, 89, 90, 121]. Further details of the package and its implementation are available

at [55, 96]. Thus, the cell decomposition of Eqn. (6.53), assuming the condition in Eqn. (6.64) and that λ > 0, provides three ς

intervals where the conditions holds. These intervals are defined by the projection polynomials:

ϕ1 (ς) = ς12 −78ς10 −120ς9 +2772ς8 +13824ς7 +8208ς6 −105408ς5 −357696ς4 −546048ς3−

456192ς2 −207360ς −41472 (6.65)

ϕ2 (ς) = ς2 +4ς +2, ϕ3 (ς) = ς3 +9ς2 +18ς +6 (6.66)

and their real roots, such that

ςϕ1,1 ≈−0.8478574488 < ς < ςϕ2,2 ≈−0.5857864376 (6.67)

ςϕ2,2 ≈−0.5857864376 < ς < ςϕ3,3 ≈−0.4157745568 (6.68)

ςϕ3,3 ≈−0.4157745568 < ς < 0 (6.69)

where ςϕi, j denotes the j− th real root of the projection polynomial ϕi (ς) (considering that the real roots have been arranged

in increasing order). For instance, only the conditions over ς that ensure the existence of a proper λ have been given thus, one

shall investigate the dominancy of the corresponding roots within the intervals.

Applying the integral factorization suggested in [21, 15, 16], if the quasipolynomial in Eqn. (6.23) possesses a root of multiplicity

at least 4, an integral representation can be adopted. The computation of the control gains as previously performed, allows one to

establish a negative real root of multiplicity 4 thus, the substitution of Eqns. (6.35)-(6.37) into Eqn. (6.23) yields to:
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∆x (s;s0x
,τ) = (s− s0x

)4

(

1+
∫ 1

0
e−(s−s0x )τυ τR3,x (s0x

;τυ)

3!
dυ

)

(6.70)

such that:

R3,x (s0x
;τυ) = s0x

[

s3
0x

τ3υ3

(

1+λ − 1

9

n2λ 2 −n1λ +n0

d2λ 2 −d1λ +d0

)

+6s2
0x

τ2υ2

(

2+λ − 1

6

n2λ 2 −n1λ +n0

d2λ 2 −d1λ +d0

)

+

6s0x
τυ

(

6+λ − 1

3

n2λ 2 −n1λ +n0

d2λ 2 −d1λ +d0

)

+2

(

12− 1

3

n2λ 2 −n1λ +n0

d2λ 2 −d1λ +d0

)]

(6.71)

The results in [23] provide a necessary and sufficient condition for the dominancy of a given multiple root (of maximal

multiplicity) to hold in the first-order case. The main idea of the cited work is used in the current case of study to get sufficient

conditions for the dominancy of the quadruple root at s0x
, such that if:

∣

∣

∣

∣

τR3,x (s0x
;τυ)

3!

∣

∣

∣

∣

≤ 1 ∀ 0 < υ < 1 (6.72)

holds, s0x
is the dominant root of Eqn. (6.23). Nevertheless, to keep the consistency of the proof, one may rewrite Eqn. (6.72)

in terms of ς as follows:

∣

∣

∣R
⋆
3,x (ς ;υ)

∣

∣

∣≤ 1 ∀ 0 < υ < 1 (6.73)

with

R⋆
3,x (ς ;υ) =

1

6

[

ς4υ3

(

1+λ − 1

9

n⋆2λ 2 −n⋆1λ +n⋆0
d⋆

2λ 2 −d⋆
1λ +d⋆

0

)

+6ς3υ2

(

2+λ − 1

6

n⋆2λ 2 −n⋆1λ +n⋆0
d⋆

2λ 2 −d⋆
1λ +d⋆

0

)

+

6ς2υ

(

6+λ − 1

3

n⋆2λ 2 −n⋆1λ +n⋆0
d⋆

2λ 2 −d⋆
1λ +d⋆

0

)

+2ς

(

12− 1

3

n2λ 2 −n⋆1λ +n⋆0
d⋆

2λ 2 −d⋆
1λ +d⋆

0

)]

(6.74)

Due to the high order of the polynomials involved in the definition of R⋆
3,x (ς ;υ), an analytic analysis of its behavior results

complex and computationally expensive, instead, a numerical analysis implies less computational resources and can provide

enough and sufficient information to validate the proposal. In this regard, Fig. 6.3 exposes the plots of R⋆
3,x (ς ;υ) for a given ς

within each of the intervals in Eqns. (6.67)-(6.69) such that υ varies from 0 to 1 in order to verify Eqn. (6.73).

The results depicted in Figs. 6.3 show that for a given ς within the intervals in Eqns. (6.67) and (6.68), respectively, the

condition in Eqn. (6.73) does not hold. On the other hand, for a given ς within the interval in Eqn. (6.69), one can obtain a

bound over ς such that Eqn. (6.73) holds. By solving R⋆
3,x (ς ;υ = 0) = 1, one finds that the aforementioned condition is satisfied if

0 > ς >−0.3109805570 which ends the proof.

�
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Figure 6.3: (left) Behavior of R⋆
3,x(ς ;υ) within the interval 0 < υ < 1. Numerical evidence of the dominancy of the

root s0x within the intervals in Eqns. (6.67)-(6.69) with τ = 0.1 [s]: (Center) Spectral distribution of the roots. (Right)
Time-domain solution.

Notice that the numerical study revealed that for any ς within the intervals in Eqns. (6.67)-(6.69), the dominancy of s0x
holds

(as illustrated in Fig. 6.3) yet, the analytic extension of the validity of the proposition implies a further and more complex analysis

that comprehends the definition of more inequalities and conditions over the integral.

6.5 UAV Control: The Tilting-Rotors Case

The analysis of the quadrotor endowed with tilting-rotors takes into consideration the prescribed linearized conditions established

in Section 6.4 additionally, the small-angle approximation is extended to the tilt angle of the rotors β ,α , i.e. Cβ ≈ 1, Sβ ≈ β , Cα ≈ 1

and Sα ≈ α. In this regard, the dynamic model in Eqns. (6.6), (6.7), (6.11) and (6.13) is linearized such that the corresponding

representation in the frequency domains reads as:

X(s) =
1

mrs2

((

Fp1
(s)+Fp3

(s)
)

β (s)+θ(s)T (s)
)

, Y (s) =
1

mrs2

(

−
(

Fp2
(s)+Fp4

(s)
)

α(s)−φ(s)T (s)
)

(6.75)

Z(s) =
1

mrs2
(T (s)−mrg) , ψ(s) =

1

Izs2
τψ (s) (6.76)

φ(s) =
1

Ixs2

(

τφ (s)+ρφ (s)
)

, θ(s) =
1

Iys2
(τθ (s)+ρθ (s)) (6.77)

Notice that, in Eqn. (6.75), the influence of the free-moments ε
(

Fp1
(s)+Fp3

(s)
)

β (s) and −ε
(

Fp2
(s)+Fp4

(s)
)

α(s) is considered

as a disturbance and denoted instead as ρφ (s) and ρθ (s), respectively. In addition, it can be appreciated that the 6 DOFs of the

current quadrotor vehicle are decoupled which permits a separate treatment nonetheless, for the linearization assertions to hold,

the vehicle should operate at φ ,θ ,ψ ≈ 0, as a consequence the controllers stabilizing the attitude of the vehicle are devoted to

keep the vehicle at such operational point as described next.

As in Section 6.4, the Z(s) and ψ(s) dynamics is addressed firstly as they provide valuable information used in the sequel of

the procedure. Thus, let T (s) and τψ (s) be used as the respective control inputs for Z(s) and ψ(s), such that these are defined in

Eqn. (6.76).

Regarding the φ(s) and θ(s) motions of the vehicle, the corresponding control inputs τφ (s) and τθ (s) are defined as
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τφ (s) = IxC
∗
φ (s)Eφ (s), τθ (s) = IyC

∗
θ (s)Eθ (s) (6.78)

where

C
∗
φ (s) = kdφ

s+ kpφ +
kiφ

s
, C

∗
θ (s) = kdθ

s+ kpθ +
kiθ

s
(6.79)

correspond to linear PID controllers with gains kpφ ,kpθ ,kdφ
,kdθ

,kiφ ,kiθ > 0 since the presence of disturbances can be neutralized

by the effects of the integral term. These controllers can be tuned by means of spectral methods.

To conceive the control strategy of the translational DOFs X(s) and Y (S), one must keep in mind that the rotational dynamics

is faster than that of translation, which let one assume that for a large enough time, φ(s),θ(s),ψ(s)→ 0 and as a consequence

φ(s)T (s), θ(s)T (s)→ 0 which permits to rewrite Eqn. (6.75) as:

X(s) =
1

mrs2

((

Fp1
(s)+Fp3

(s)
)

β (s)
)

, Y (s) =
1

mrs2

(

−
(

Fp2
(s)+Fp4

(s)
)

α(s)
)

(6.80)

Consequently, and as in Section 6.4, it is also considered that, for a large enough time, τψ (s)→ 0 and T (s)→ Tc = mrg, which

in conjunction with the definition of T in Eqn. (6.10) and that of τψ in Eqn. (6.12), leads to conclude that Fp1
(s)+Fp3

(s)→ Tc/2 and

Fp2
(s)+Fp4

(s)→ Tc/2. The latter is translated to Eqn. (6.80) as follows:

X(s) =
Tc

2mrs2
β (s) Y (s) =− Tc

2mrs2
α(s) (6.81)

The set of assumptions leads to define α(s) and β (s) as the only control inputs that drive the translational states of the system

in a sense that:

β (s) =
2mr

Tc
Cx(s)Ex(s) α(s) =−2mr

Tc
Cy(s)Ey(s) (6.82)

with Cx(s), Cy(s), Ex(s) and Ey(s) being linear PD controllers and the error signals as defined by Eqns. (6.19)-(6.20).

The dynamics of the servomotors are neglected since, according to the results reported in the literature (see for instance

[144, 145, 54, 2]), it is relatively much faster than that of the overall aircraft. Thus, the α(s) and β (s) angles are assumed to be

instantaneously tracked.

Lastly, the X(s) and θ(s) closed-loop dynamics of the quadrotor with tilting-rotors are depicted as block diagrams in Fig. 6.4 for

a suitable understanding of the current section. The diagram blocks regarding the Z(s) and ψ(s) dynamics coincide with those of

the typical quadrotor vehicle shown in Fig. 6.2.

From the previous establishment of the control schemes, and recalling that the effect of the time-delay τ affects only the
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Xd(s)
2mr
Tc

Cx(s) X(s)Tc

2mrs2+ −

β (s)

e−τs

IyC
∗
θ (s)

1
Iys2

−+
θd(s) = 0

τθ (s)

θ(s)
+

ρθ (s)

+

Figure 6.4: Block diagram representation of the quadrotor with tilting-rotors closed-loop system

translation of the system, one can find that the characteristic quasipolynomials of the concerned degrees of freedom are:

∆x(s : kpx
,kdx

,τ) = s2 + e−τs
Cx(s), ∆y(s : kpy

,kdy
,τ) = s2 + e−τs

Cy(s), ∆z(s : kpz
,kdz

,τ) = s2 + e−τs
Cz(s) (6.83)

Since the three characteristic quasipolynomials above have the form of that in Eqn. (6.25), Proposition 6.4.2 is used to tune

the controllers’ gains.

6.6 Simulation Results

The actual section provides the results validating the proposed overall control scheme, i.e. a MID-Property-Based control tuning

criteria. The latter is carried out through a set of detailed numerical simulations comprehending both the full non-linear model and

the linearized versions, this latter part actually used to synthesize the control strategy and controllers’ tuning. Both considered

vehicles specification parameters are listed in Table 6.1a, while the translational references to be achieved and tracked were set

as:

Table 6.1: Definition of the vehicle’s parameters and control gains

(a) Parameters of the UAVs

Parameter Nominal value

mr 0.675 kg
Ix, Iy 0.271 kg m2

Iz 0.133 kg m2

ℓ 0.45 m
g 9.81 m/s2

ε 0.34 m

(b) Control gains: Typical quadrotor

DOF kp kd

x, y 1.658539 1.842677
z 7.91223 4.611587

φ , θ 10.80751 10.65158
ψ 10 15

(c) Control gains: Quadrotor endowed with
titling rotors

DOF kp kd ki

x, y, z 7.91223 4.611587
φ , θ 10 15 0.5

ψ 10 15
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xd(t) =


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zd(t) =
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
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
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
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2 0 ≤ t < 30

2− t−30
10 30 < t < 40

1 40 < t < 60

0 60 < t ≤ 70

(6.84)

where xd(t), yd(t) and zd(t) denote the corresponding references and are given in meters [m], and t ≥ 0 stands for the time

given in seconds [s].

The study was conducted within the MATLAB/Simulink® 2018b environment, running on an equipment with an 8GB RAM and

an Inter® Core™ i5-8250 CPU @ 1.60 GHz & 1.80 GHz processor.

Finally, the simulations for both vehicles took into consideration a time-delay τ of 0.1 [s]. Further details concerning the

controllers’ gains and the behavior of each system are provided in the upcoming subsections.

6.6.1 Simulation results: The Typical Quadrotor Case

With base on Proposition 6.4.2 and establishing τ = 0.1 [s], the controller of the altitude (z) was tuned, and the rightmost root was

found to be s0z
≈−5.85786437. On the other hand, for the x and y controllers, Proposition 6.4.3 was used such that s0x

= s0y
=−2.

The results of the tuning criteria led to the control gains summarized in Table 6.1b. In this matter, it is worth highlighting that

with the given control gains sφ ,1 = sθ ,1 ≈ −9.515844632 and sφ ,2 = sθ ,2 ≈ −1.135739338 such that sθ ,1 < s0x
< sθ ,2 (respectively

sφ ,1 < s0y
< sφ ,2) thus, the overall dynamics of the system can be considered to be slightly faster than that of the inner loop but still

bounded. The results of the numerical simulation depicted throughout Fig. 6.5 suggest that such difference is acceptable since

the UAV achieves and successfully tracks the desired references.

In Figs. 6.5, the left-column results correspond to the vehicle’s translational motion, while the right-column plots exhibit the

UAV’s rotational behavior. In this matter, black color stands for the reference values, blue noisy signals correspond to the response

of the non-linear system and orange signals describe the behavior of the linear system.

As it can be appreciated in Fig. 6.5, the vehicle reaches the desired translational references, moreover, the performance of the

non-linear system matches that of the vehicle whose dynamics is provided by the linear model. Nevertheless, one may pay special

attention to the z motion as the behavior of the vehicle differs; in this sense, the vehicle with non-linear dynamics experiences

some disturbances related to the real couplings existing due to the inherent nature of the UAV, however, the vehicle converges to

the reference value in a relatively short time. Regarding the rotational motion of the quadrotor, depicted in Fig. 6.5, it comes to be

evident to relate the corresponding peaks on the signals to the corresponding translation DOFs at which they are coupled, such

that a change in the desired orientation occurs as the translational desired behavior changes.
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Figure 6.5: Motion of the typical quadrotor vehicle: Left) Translational states. Right) Rotational states.

6.6.2 Simulation results: The Tilting-Rotors Case

As discussed in Section 6.5, to tune the controllers regarding the quadrotor vehicle endowed with tilting-rotors, Proposition 6.4.2

was applied to the controller of each translation DOF since the rotational and translational motions of the vehicle are decoupled as

previously discussed. Thus, recalling that τ = 0.1 [s], the control gains in Table 6.1c were computed.

The results of the simulation are depicted throughout Figs. 6.6 such that the translational motion is described by the plots at

the left, and the plots at the right column depicts the rotational the rotational states of the corresponding vehicle. Notice that the

response of the servomotors is also depicted in the aforementioned figures.

In comparison with the typical quadrotor vehicle, the translational states of the system seem to follow the similar behavior,

nevertheless, Fig. 6.6 shows, that in the case where the non-linear dynamic model was considered, there exists a coupling

between the three DOFs, in this sense, one may recall the considerations assumed during the linearization and controllers

conception such that the couplings are given by the tilting-rotors.

Regarding the rotational motion of the system, depicted in Fig. 6.6, it can be appreciated that the states of the system remain

near to 0 [deg] as the servomotors’ action permits to decouple the rotational and transnational motions. Nonetheless, the yaw

angle seems to present a large deviation from the desired value due to the influence of the servomotors actuation which was
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Figure 6.6: Motion of the quadrotor vehicle endowed with tilting-rotors: Left) Translational states. Right) Rotational
states.

neglected during the conception of the controllers yet, the orientation tends to be stabilized with no considerable consequence.



Chapter 7

Time-delay Control of a VTOL Multi-Agent

System

As a matter of fact, it must be highlighted that the current chapter is a product of a research collaboration. In this sense, the

main contributions of mine correspond to the redaction of the introductory section as well as the review of the literature in the

corresponding regard, the verification of the theoretical prerequisites and the dynamics of the vehicle and the modeling of the

multi agent system. Thus, the redaction style may differ from the rest of the thesis. With this being said, the sequel of the chapter

is structured as follows, A brief introduction to the problematic and the corresponding state of the art is provided in Section 7.1. In

Section 7.2, some useful mathematical preliminaries are presented. Section 7.3 is devoted to the mathematical modeling of the

VTOL-mUAV system. Section 7.4 presents the attitude control law for each robot, the formulation of the time-delay tolerant control

law and the consensus strategy for the set of aerial vehicles. The simulation scenario and numerical results are presented in

Section 7.5. The conclusions and future work are presented in Subsection 8.2.3.

7.1 Introduction

The surge in multi-agent systems (MAS) has motivated the scientific community due to the technological advances in autonomous

robotics thus, impacting directly in control theory. Swarm control of autonomous systems feature multiple applications in different

sectors where an agreement between the agents to recognize the states of each individual of the system, or consensus [72, 164],

is required. In this regard, prior works as the ones exposed in [105, 19, 165] give evidence of the long-time-inverted effort to

overcome the aforementioned problem.

Novel control methods for multiple vehicles are rapidly emerging in recent years due to the wide variety of challenges involved

in the large-scale of multi-agent systems development [45]. On this subject, [100] exposes experimental verification of the

asymptotic stability of a distributed formation algorithm in addition with a model predictive control for a group of Unmanned

Aerial Vehicles (UAVs) which brings the aircrafts simultaneously to a prescribed formation shape in a 3 dimensional space. The

development of a collaborative event-based control applied to the formation problem of a group of VTOL-UAVs is proposed in [62].

111
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Each VTOL-UAV decides, based on the difference of its current state and its latest broadcast state, when it has to send a new

value to its neighbors. [44] presents simulation and experimental results of a time-varying formation tracking for a second-order

multi-agent system with switching interaction topologies applied to a set of quadrotors. Stability analysis in the sense of Lyapunov

proves the stability of the proposed approach. Similarly, [41] shows the implementation of a distributed movement coordinate

algorithm for UAVs swarms in exploratory area surveillance missions.

The influence of time delays in communication protocols has become a difficulty widely studied in the literature [137, 4]. The

preceding issue was analyzed by the authors of [160] and has been adopted and adapted to the most recent control techniques in

[157]. To cite an example on this regard, the work in [76] presents a robust sliding mode with time delay estimation method for

controlling the attitude of a tri-rotor UAV in presence of disturbances and uncertainties.

The effects of delays on output feedback control of dynamical systems have been detailed in [127], which simultaneously has

served to develop new approaches, as the ones exposed in [20, 21, 68], to improve the performance of the systems constrained

by such adversities, leading to combine robust control techniques, time delay control theory and multi-agent control strategies.

The research in [167] analyzes the consensus problem caused by the communication protocol in networks of agents constituted

by single and double integrator systems. An estimator of the states allows increasing the time-delay magnitude. In [135], a

consensus control is designed based on a graph-based approach and an input-output linearization scheme is implemented to

a three-robot system whose control commands are affected by time delays. Similarly, the work performed in [12] introduces

a delayed consensus algorithm as a model for interacting agents where the information provided by each neighbor is used to

improve the general convergence. The consensus control problem is transformed into a stability problem of the error system

in [173] where the system is subjected by time delays and the error is computed based on the network reference provided by

the consensus protocol. Else ways, [85] exposes a single-delay Proportional-Retarded protocol to achieve fast consensus in a

multi-agent system with double-integrator agent dynamics.

The actual chapter presents a proposal regarding the coordinating control of a set of mini VTOL rotorcrafts. In addition

to the works cited above, it is included the problem of the trajectory tracking of the VTOL MAS considering time-delay in the

communication and in the sensors while aiming to perform a simple collective interaction (transport). Thus, time-delay controller is

synthesized to fulfill the stabilization objective considering the aerial collective interaction during the simulated transport operation.

Explicit stability charts whose gain value are used to carry out a detailed simulation study.

7.2 Theoretical Prerequisites

The current section presents the mathematical concepts of graph theory and quaternion representation used throughout the

chapter.

7.2.1 Graph Theory

A multi-agent system (MAS) can be modeled as a set of dynamic systems (or agents) in which an information exchange occurs.

Such information flow is mathematically represented by means of graph theory. In this regard, let G = {V,ξ} be defined by the

sets V = 1, ...,N and ξ which represent the vertices (or nodes) and edges of the graph, respectively. Adjacency between two
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nodes, i and j, exists if there is an edge (i, j) that connects both nodes. In this sense, such nodes are said to be adjacent and the

aforementioned relation is formally represented as

ξ = (i, j) ∈V ×V : i, j (7.1)

An undirected graph is described as a graph where the node i can obtain information about the node j and vice versa, i.e.

(i, j) ∈ ξ ⇔ (i, j) ∈ ξ (7.2)

The matrix A is called the adjacency matrix and its elements ai j describe the adjacency between nodes i and j such that

ai j =











1 i and j are adjacent

0 otherwise
(7.3)

If all pairs of nodes in G are connected, then G is called connected. The distance d(i, j) is defined by the shortest path between

nodes i and j and it is equal to the number of edges that conform the path. The degree matrix D of G is the diagonal matrix

with elements di equal to the cardinality of node i’s neighbor set Ni = j ∈V : (i, j) ∈ ξ . The Laplacian matrix L of G is defined

as L = D−A. For undirected graphs, L is symmetric and positive semi-definite, i.e., L = L T ≥ 0. Moreover, the row sums of

L are zero. For connected graphs, L has exactly one zero eigenvalue, and the eigenvalues can be listed in increasing order

0 = λ1(G)< λ2(G)≤ ...≤ λN(G). The second eigenvalue λ2(G) is called the algebraic connectivity.

7.2.2 Unit Quaternion and Attitude Kinematics

Consider two orthogonal right-handed coordinate frames: the body coordinate frame, B(xb,yb,zb), located at the center of

mass of a rigid body and the inertial coordinate frame, N(xn,yn,zn), located at some point in the space (for instance, the

earth NED frame). The rotation of the body frame B with respect to the fixed frame N is represented by the attitude matrix

R ∈ SO(3) = {R ∈ R
3×3 : RT R = I,detR = 1}.

The cross product between two vectors ξ ,ρ ∈ R
3 is represented by a matrix multiplication [ξ×]ρ = ξ ×ρ, where [ξ×] is the

well known skew-symmetric matrix. The n-dimensional unit sphere embedded in R
n+1 is denoted as S

n = {x ∈ R
n+1 : xT x = 1}.

Members of SO(3) are often parameterized in terms of a rotation β ∈ R about a fixed axis ev ∈ S
2 by the map U : R×S

2 → SO(3)

defined as

U (β ,ev) := I3 + sin(β )[e×v ]+ (1− cos(β ))[e×v ]
2 (7.4)

Hence, a unit quaternion, q ∈ S
3, is defined as
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q :=







cos
β
2

ev sin
β
2






=







q0

qv






∈ S

3 (7.5)

where qv = (q1 q2 q3)
T ∈ R

3 and q0 ∈ R are known as the vector and scalar parts of the quaternion respectively. The

quaternion q represents an element of SO(3) through the map R : S3 → SO(3) defined as

R := I3 +2q0[q
×
v ]+2[q×v ]

2 (7.6)

R = R(q) = R(−q) for each q ∈ S
3, i.e. even quaternions q and −q represent the same physical attitude.

Denoting by ~ω = (ω1 ω2 ω3)
T the angular velocity vector of the body coordinate frame, B relative to the inertial coordinate

frame N expressed in B, the kinematics equation is given by







q̇0

q̇v






=

1

2







−qT
v

I3q0 +[q×v ]







~ω =
1

2
Ξ(q)~ω (7.7)

The attitude error is used to quantify mismatch between two attitudes. If q defines the current attitude quaternion and qd the

desired quaternion, i.e. the desired orientation, then the error quaternion that represents the attitude error between the current

orientation and the desired one is given by

qe := q−1
d

⊗q = (qe0
q T

ev
)T (7.8)

where q−1 is the complementary rotation of the quaternion q which is given by q−1 := (q0 −qT
v )

T and ⊗ denotes the quaternion

multiplication.

7.3 Attitude and Position Dynamics of the VTOL Multi-Agent System

If a group of N-VTOL vehicles is considered and each aerial system is modeled as a rigid body, as in Fig. 7.1. Then, according to

[61], the six degrees of freedom model (position and orientation) of the system can be separated into translational and rotational

motions, represented respectively by ΣTi
and ΣRi

in Eqn. (7.9).

ΣTi
:



































ṗppi = vvvi

miv̇vvi =−miggg+R













0

0

ui













; ΣRi
:











q̇i =
1
2 Ξ(qi)ωωω iii

Jiω̇ωω i =−ωωω×
i Jiωωω i +ΓΓΓi

(7.9)
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Figure 7.1: Schematic configuration of a VTOL vehicle in the 3d space.

where i = 1, ...,N. pppi and vvvi are linear positions and velocities vectors, mi is the mass of each aerial system, ggg is the gravity,

R is the rotation matrix, given in Eqn. (7.6). Besides, Ji ∈ R
3×3 is the inertia matrix of the rigid bodies expressed in the body

frame B and ΓΓΓi ∈ R
3 is the vector of applied torques. ΓΓΓi depends on the (control) couples generated by the actuators and the

aerodynamics, such as gyroscopic couples or the gravity gradient.

Note that the rotation matrix R can also be defined according to the Euler angles as:

R(φ ,θ ,ψ) =













Cθ Cψ Sφ Sθ Cψ −Cφ Sψ Cφ Sθ Cψ +Sφ Sψ

Cθ Sψ Sφ Sθ Sψ +Cφ Cψ Cφ Sθ Sψ −Sφ Cψ

−Sθ Cθ Sφ Cθ Cφ













(7.10)

where S· and C· stand for sin(·) and cos(·) respectively. The roll, pitch and yaw angles are given by φ , θ , ψ respectively.

7.4 Attitude and Position Control for the VTOL MAS

The current section is divided in three parts. First, the attitude control law to stabilize the i− th agent’s attitude is introduced and

followed by the position control strategy and finally the multi-agent formation control.

7.4.1 Attitude Stabilization Method

The aim of this subsection is to present the design procedure of an attitude control which drives the aerial vehicles to attitude

stabilization, i.e. given the following asymptotic conditions
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q → [±1 0 0 0]T , ωωω → 0 as t → ∞ (7.11)

Besides, it is also known that the actuator saturation leads to unfeasible control signals, reducing the benefits of the feedback.

The present control law takes into account the physical constraints of the systems in order to apply appropriate control signals.

Given a positive constant M, a continuous, non-decreasing function σM : R→ R is defined by

1. σM = s if |s|< M;

2. σM = sign(s)M otherwise.

The following result, reported previously in [61] is used for the attitude stabilization of rigid bodies.

Consider a rigid body rotational dynamics described by Eqn. (7.9) with the following bounded control inputs ΓΓΓ = (Γ1
i Γ2

i Γ3
i )

T

such that

ΓΓΓk
i =−σMk

i

(

λ k
i [ω

k
i +ρk

i qk
i ]
)

i = 1, ...,N (7.12)

with k ∈ {1,2,3} and where σMk
i

are saturation functions while λi and ρi are positive parameters. Then the inputs in Eqn. (7.12)

asymptotically stabilize the rigid body to the origin (1 0T 0T )T (i.e. q0 = 1,qv = 0 and ~ω = 0) with a domain of attraction equal to

S
3 ×R

3 \ (−1 0T 0T )T .

The proof is not presented here, but it can be obtained in a similar way to that in [108].

7.4.2 Position Control Strategy for the VTOL Multi-Agent System

Assuming that the yaw dynamics can be stabilized by the control law of Eqn. (7.12) at ψ = ψd , then the system in Eqn. (7.9)

becomes:













ṗxi

ṗyi

ṗzi













=













vxi

vyi

vzi













(7.13)













v̇xi

v̇yi

v̇zi













=













− ui

mi
(cosψi sinθi cosφi + sinψi sinθi)

ui

mi
(sinψi sinθi cosφi − cosφi sinψi)

ui

mi
cosφi cosθi −g













(7.14)

With an appropriate choice of the target configuration, it is possible to transform Eqns. (7.13) and (7.14) into three independent

linear triple integrators. For this instance, we define
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φdi
:= arctan

(

r2i

r3i
+g

)

, θdi
:= arcsin





−r1i
√

r2
1i
+ r2

2i
+(r3i

+g)2



 (7.15)

where r1, r2 and r3 will be described in the following sections. The input control is chosen as positive thrust, such that

ui = mi

√

r2
1i
+ r2

2i
+(r3i

+g)2 (7.16)

Let the translational state vector ppp ∈ R
9 be defined as ppp = (p1, p2, p3, p4, p5, p6, p7, p8, p9) = (

∫

px, px,vx,
∫

py, py,vy,
∫

pz, pz,vz),

therefore Eqns. (7.13) and (7.14) become:

Σxi
:























ṗ1i
= p2i

ṗ2i
= p3i

ṗ3i
= r1i

; Σyi
:























ṗ4i
= p5i

ṗ5i
= p6i

ṗ6i
= r2i

; Σzi
:























ṗ7i
= p8i

ṗ8i
= p9i

ṗ9i
= r3i

(7.17)

The control strategy proposed inhere is intended to deal with a multi agent system composed by a set of VTOL vehicles; such

strategy must lead all the agents states to converge to the average of their initial conditions.

Each VTOL vehicle consists of a position control input which is described by the following consensus protocol:

rsi
=−

m

∑
j=1

αi j(psi
− ps j

)−
m

∑
j=1

βi j(ṗsi
− ṗs j

)−
m

∑
j=1

γi j

∫

(psi
− ps j

)+ rs j
(7.18)

with s ∈ {x,y,z}, α, β and γ constants parameters computed in the forthcoming paragraphs. Also, let us define the next

measurement errors for the linear position, velocity and integral of the position

E(i j) = psi
− ps j

; Ė(i j) = ṗsi
− ṗs j

;

∫

E(i j) =
∫

(psi
− ps j

) (7.19)

The interconnection dynamics in Eqn. (7.18) features a communication delay τ1i j
> 0 between the nodes i and j. It is also

considered that every VTOL-system owns another sensor-based system, which implies another delay τ2i j
= 2τ1i j

. Thus, the

time-delayed consensus protocol is written as

rsi
(t) =−

m

∑
j=1

αi j(psi
(t − τ1i j

)− ps j
(t − τ2i j

))−
m

∑
j=1

βi j( ṗsi
(t − τ1i j

)− ṗ( j)(t − τ2i j
))−

m

∑
j=1

γi j

∫

(psi
(t − τ1i j

)− ps j
(t − τ2i j

))+ r(s j)(t) (7.20)

It has been demonstrated that a delayed proportional controller (with a single delay) is not able to stabilize a double integrator.
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To accomplish this task, a proportional plus a derivative delayed controller [22], can be used to explore the stabilizing effect.

However, if the system is under constant disturbances causing stability issues, the design of a robust controller is necessary. Thus,

the objective is to have a proportional-integral-derivative term in order to guarantee stability even under the disturbances produced

by different phenomena. Moreover, since the system subjected to the current study presents a double time delay for position and

velocity data, a first order estimation predictor [12], is used to obtain a new system with a single time delay τ1i j
. This prediction

can be done by a linear extrapolation from past values, namely

p̂ j(t − τ) = p j(t −2τ)+
p j(t −2τ)− p j(t −3τ)

3τ
3τ = 2p j(t −2τ)− p j(t −3τ) (7.21)

Using Eqn. (7.21) for position and velocity in Eqn. (7.20), the model for the multi-agent system considering the time delay is

given by

rsi
(t) =−

m

∑
j=1

αi j(psi
(t − τ1i j

)− ps j
(t − τ1i j

))−
m

∑
j=1

βi j(ṗsi
(t − τ1i j

)− ṗs j
(t − τ1i j

))−
m

∑
j=1

γi j

∫

(psi
(t − τ1i j

)− ps j
(t − τ1i j

))+ rs j
(t) (7.22)

From Eqn. (7.22) the error dynamics is obtained,

Ë(i j)(t) =−
m

∑
j=1

αi jE(i j)(t − τ1i j
))−

m

∑
j=1

βi j(Ė(i j)(t − τ1i j
))−

m

∑
j=1

γi j

∫

(E(i j)(t − τ1i j
)) (7.23)

Whose Laplace transform corresponds to

s2E(s)+
m

∑
j=1

αi je
−τ1i j

s
E(s)+

m

∑
j=1

βi jse
−τ1i j

s
E(s)+

m

∑
j=1

γi j

s
e
−τ1i j

s
E(s) = 0 (7.24)

which conducts to the definition of the quasipolynomial function as:

△(s,τ) = s3 + e
−τ1i j

s
m

∑
j=1

(

αi js+βi js
2 + γi j

)

(7.25)

The following assertions hold for Eqn. (7.25):

i) The multiplicity of any given root of the quasipolynomial function is bounded by 4, it can be attained only on the real axis.

ii) The quasipolynomial admits a real spectral value with algebraic multiplicity 4 if, and only if (7.29), where α :=∑
m
j=1αi j,

β :=∑
m
j=1βi j and γ :=∑

m
j=1γi j.

The degree of the quasipolynomial function is 4. First, the vanishing of the quasipolynomial △ yields the elimination of the

exponential term as a rational function in s. The substitution of the obtained equality in the set of derivatives gives a system of

algebraic equations. Solving the derivatives yields to the solution given by Eqn. (7.29).
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α =
3e2

√
3sin( 1

3
arctan(

√
2)+ 1

6
π)−3(−58+44

√
3sin( 1

3 arctan(
√

2)+ 1
6 π)+7(2

√
3sin( 1

3 arctan(
√

2)+ 1
6 π)−3)2)

τ2
(7.26)

β =
3

2

e2
√

3sin( 1
3

arctan(
√

2)+ 1
6

π)−3(−10+8
√

3sin( 1
3 arctan(

√
2)+ 1

6 π)+(2
√

3sin( 1
3 arctan(

√
2)+ 1

6 π)−3)2)

τ
(7.27)

γ =
3

2

e2
√

3sin( 1
3

arctan(
√

2)+ 1
6

π)−3(−434+328
√

3sin( 1
3 arctan(

√
2)+ 1

6 π)+59(2
√

3sin( 1
3 arctan(

√
2)+ 1

6 π)−3)2)

τ3
(7.28)

s =
2
√

3sin( 1
3 arctan(

√
2)+ 1

6 π)−3

τ
(7.29)

The rest of the proof is not presented here, but it can be obtained from the seminal work of [22].

7.4.3 VTOL Multi-agent Formation Control

For object transportation operations, the set of air vehicles must be able to perform a stable flight and, in addition, each aircraft

must broadcast its angular (ψi) and linear positions states information to their neighbors. Therefore, the aim is to adapt the control

law such that all the robots states converge to the average desired yaw angle and linear positions, which are given by the contact

points of the object. Each agent consists of an attitude (ψ) and position controllers.

Let us define the states Σi = (pxi
, ṗxi

, pyi
, ṗyi

, pzi
, ṗzi

,ψi, ψ̇i) where i ∈ N = {1, ...,N}, and the average angular position and

velocity as ψC, ψ̇C, respectively. The average linear positions and velocities pCMx,y,z
, ṗCMx,y,z

for all the agents are described by

pCMx,y,z
=

1

N

N

∑
i=1

pix,y,z ; ṗCMx,y,z
=

1

N

N

∑
i=1

ṗix,y,z (7.30)

ψC =
1

N

N

∑
i=1

ψi ; ψ̇C =
1

N

N

∑
i=1

ψ̇i (7.31)

Let ψd
C , ψ̇d

C be the desired yaw angular position and velocity and pd
CMx,y,z

, ṗd
CMx,y,z

be the desired average linear positions and

velocities for the group of robots.

Eqn. (7.20) allows the multi-agent system to reach its geometrical flock’s center of mass. However, the objective of the

multi-MAV system is to perform an orientation and position formation linked to the attitude and linear position of the object. In this

regard, let Λ be a set of relative, desired inter-agent distances, such that

Λ = [µi j ∈ R| µi j > 0; i, j = 1, ...,N, i 6= 0] (7.32)

with µi j = µ ji, and where it is assumed that Λ is a feasible formation, that is, there are points χ1, ...,χn ∈ R
3 such that

‖χi −χ j‖= µi j (7.33)

It is possible to extend the consensus algorithms to formation control if the formation is represented by vectors of relative
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Figure 7.2: Multi-VTOL system and the communication flow.

attitudes or linear positions of neighboring agents, thus, Eqn. (7.18) becomes

rsi
=−

m

∑
j=1

αi j(psi
−ps j

−µi j)−
m

∑
j=1

βi j(ṗsi
− ṗs j

)−
m

∑
j=1

γi j

∫

(psi
−ps j

−µi j)+ rs j
(7.34)

7.5 Numerical Simulations and Results

This section is devoted to the presentation of numerical simulation results to validate the proposed consensus-delay control

strategy of a group of four VTOL aerial vehicles for the grasping and transporting of a generic object.

A simulation was carried out in order to prove the effectiveness of the proposed control strategy. The simulation model features

the parameters provided by Table 7.1 for each VTOL vehicle.

Besides, for the case of study presented in this work, four aerial vehicles are considered (N = 4), where the agent N = 1 is

considered as the leader as depicted in Fig. 7.2.

The corresponding adjacency matrix for graph G is given as:

Table 7.1: Physical parameters for the VTOL vehicle

System Description Value Units

Mass (m) 400 g
Distance (d) 20 cm

Quadcopter Inertial moment x (Jφ ) 0.0039 Kg ·m2

Inertial moment y (Jθ ) 0.0039 Kg ·m2

Inertial moment z (Jψ ) 0.0073 Kg ·m2
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A = [ai j] =
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0 1 1 1

0 0 0 1
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0 1 0 0


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
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









(7.35)

First, it is considered that every robot features a 100ms sensor-based algorithm and the communication between neighbors

takes 50ms. To deal with such problem, the predictor given by Eqn. (7.21) is applied to the time-delay originated by the sensor-

based algorithm. Afterwards, the time-delay tolerant control Eqn. (7.22) is applied, where the parameters α and β are computed

according to Eqn. (7.29).

It is considered that the control input of the leader agent 1, consisting also of a delayed PID controller with parameters α,β

and γ given by Eqn. (7.29) is nonzero as well as continuous.

The simulation consisted of four stages described as follows.

• The multi-robot system is initialized at the orientation and 3D position given by the Table 7.2. Then, it is sent to a desired

position given by the object center of mass, located at po = [0.5 1 0.5]T m. The object geometry consists of a square whose

borders measure 20cm and its orientation is ψo = 45◦ related to that of the plane. The VTOL multi-agent system takes off and

performs formation control for position at pd
1 = [0.43 0.93 1]T m, pd

2 = [0.57 0.93 1]T m, pd
3 = [0.57 1.07 1]T m, pd

4 = [0.43 1.07 1]T m.

Then, the set of robots performs formation control for the orientation (ψi) at ψd
i = (45◦ 135◦ − 135◦ − 45◦), while they

descend at pzo = 0.5m. These desired attitudes and positions correspond to the desired contact points on the object, such

that the robots attitudes are perpendicular to the contact points of the object.

Table 7.2: Initial conditions for the system

VTOL MAS ψi pxi
pyi

pzi

1 1◦ 0.3m 0.8m 0.01m
2 3◦ 0.7m 0.9m 0m
3 2◦ 0.6m 1.15m 0.02m
4 -1◦ 0.4m 1.1m 0.01m

• Once the robots reach the desired attitudes and positions linked to the object, they grab it by exerting an equal force on the

object between 11s and 15s.

• In order to transport and to position the object, a trajectory tracking taking into account the position of the center of

mass of the object is executed between the lapse time of 15s and 55s and it is given by ξ d
CMx

= 1+ 0.5sin(0.08t + π),

ξ d
CMy

= 1.2+0.25sin(0.08t +π) and ξ d
CMy

= 0.75+0.25sin(0.09t +π). In order to simulate such task, different disturbances

are considered to affect each robot during this stage.

• Finally, when the object center of mass reaches the desired position pod = [1.5 1.5 1]T m, the VTOL multi-agent system drops

the object and the simulation finishes, accomplishing a 60s operation.

Fig. 7.3 shows the behavior of the set of VTOL vehicles on the 3d space during the simulation with communication and

sensor-based delay.
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Figure 7.3: Behavior of the multi-agent VTOL system in the 3d space.

Fig.7.4 presents from top to bottom, the angular and linear positions of the multi-agent system. The different stages of the

simulation are represented in the figures: the green area stands for the position and orientation formation stage; the first area

in white corresponds to the object grasping stage; the yellow area represents the transportation stage, i.e. where the tracking

positions and velocity are achieved; and, lastly, the second white area shows the moment in which the aerial robots arrive to the

desired area and drop the object.

Fig.7.5 presents, from top to bottom, the angles φ and θ for every VTOL system during the simulation. In this case, it is easily

appreciated how the forces exerted on the object act as a disturbance during the trajectory tracking.

The behavior of the system depicted in the figures suggests that even when the system is subjected to time delay communica-

tion, it is possible to reach consensus and, in consequence, to perform formation control for linear position and orientation.
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Figure 7.4: Angular (ψi) and linear positions for the multi-agent system featuring communication and sensor delay
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Figure 7.5: Attitude (φi,θi) behavior of the different aerial vehicles during the simulation



Chapter 8

Concluding Remarks

This last chapter of the thesis gathers the concluding remarks as well as the consideration on forthcoming research. In this vein,

Section 8.1 is devoted to the conclusions of the first part of the manuscript, i.e. the study of the Multi-Link Unmanned Aerial

System. On the other hand, Section 8.2 exposes the concluding remarks concerning the study of aerial vehicles subjected to

time-delay effects. Finally, the general discussion about the overall thesis results is provided in Section 8.3.

8.1 Part I: Multi-Link Unmanned Aerial System

In strict order, the concluding remarks of each chapter contained in Part I are exposed next.

8.1.1 Chapter 2: Modeling and Control: Robust Acquiring and Transport Operations

The dynamic model of a novel flying kinematic chain has been provided, besides, a robust controller based on sliding mode control

and adaptive parameters was conceived. Based on the results obtained from the simulations and the Lyapunov stability analysis,

the AISM controller guarantees the stability to the system and the tolerance of disturbances in order to accomplish the picking and

transport operations.An improvement of the picking strategy shall be proposed with base on a moving objective, in addition the

motion of the payloads and the velocity of the operation will be analyzed to design a strategy for smooth links transition. The

dynamics of the actuators play an important roll in the performance of the system which suggest the implementation of a robust

control law to the aircrafts. The extension to a three dimensional space and the experiments concerning the proposal are left for

future works.

8.1.2 Chapter 3: Disturbances and Coupling Compensation for Trajectory Tracking

In this chapter, the dynamical model of a Multi Link Aerial System, based on the Euler-Lagrange formalism, was introduced. Even

when the number of links and the aerial vehicles was restricted to 2 and 3 respectively, as future work the study of the system with

n links and n+1 aircrafts will be addressed.
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The linear representation of the system and the addition of the corresponding couplings into the disturbance terms allowed one

to design an Augmented State Linear Kalman Filter to estimate such perturbations. This one was proved to have an acceptable

performance according to the results obtained during numerical simulations.

The implementation of an Extended Kalman Filter, the design of a robust control law as well as the addition of wind disturbances

are left to be included in an extended version of the current work. In addition, the study of the system in a three dimensional space

using different aircraft structures as actuators is considered for future projects.

8.1.3 Chapter 4: Nonlinear Control and ASEKF-Based Disturbances Compensation

The dynamics of an unconventional ML-UAS configuration was obtained via the Euler-Lagrange formalism yet one did not only

succeed to regroup the equations of motion into a well-known compact structure but also useful model’s properties regarding

control design purposes were verified. It is worth highlighting that the latter enables multiple possibilities of potential controllers to

stabilize these kind of aerial robots.

The performance of the system is degraded due to the nonlinear highly-coupled dynamics as well as the presence of

parametric uncertainties and unmodeled external disturbances. A joint control-observer strategy, using an ASEKF in cascade with

a Lyapunov-based non-linear control, was implemented, showing an enhanced effectiveness regarding the overall performance.

In the control vein, a Lyapunov-based controller guaranteeing global asymptotic stability was implemented to fulfill the

trajectory-tracking objective. The controller success relies on the ASEKF estimation effectiveness. Regarding the estimation

layer, deducing an ad-hoc ASEKF’s process covariance matrix considering the actual structure of uncertain parameters was

validated, since the states estimation is accurate enough to overcome parasitic issues and thus stabilizing the system. In this

matter, and witnessed by the tracking performance, the overall external disturbance is accurately estimated. Moreover, when

sensory anomalies occur, the estimated states maintain acceptable operational performance remaining in the vicinity of the target

trajectory.

Forthcoming research entails: (i) the experimental development of the aerial robot, (ii) resilient 3D navigation strategies to

encompass highly degraded scenarios, e.g. frequency/amplitude-variable disturbances (wind gusts) as well as (iii) time-delay

tolerant controllers/observers.

8.2 Part II: Time-Delays on Unmanned Aerial Systems

The conclusions of the chapters conforming Part II are given in the upcoming subsections.

8.2.1 Chapter 5: Parametric Analysis of PID Delay-Based Controllers for Quadrotor UAVs

Along this chapter, a preliminary parametric study, concerning the stability regions of PID controllers for quadrotor vehicles

subjected to feedback time-delays, was exposed. In this sense, a set of stability charts was provided allowing a suitable selection

of the controllers’ gains as a function of the parameters τ , ki and/or σ . The results of the conducted simulations verify that for the

gains inside the stability regions, the stability of the system holds and, additionally, justify the implementation of PID controllers in

the presence of external and unmodeled disturbances affecting the translational behavior of the vehicle.
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In a general overview, future works consider the formal and strict definition of the parametric dependency of the stability

regions and a fully detail study on the fragility of the system to provide a tool to measure the robustness of the control approach.

Additionally, the extension of this chapter takes into account the stability of the aircraft when rotational disturbances influence

its dynamics. The comparison between this linear approach and the non-linear treatment of the issue is also suggested as an

upcoming work. Further efforts will be devoted to validate and complement these results by means of real experimentation.

8.2.2 Chapter 6: Time-Delay Control of Quadrotor UAVs: a MID-based Approach

In this chapter, the MID property has been exploited regarding the controllers tuning for two classes, classical quadrotor and its

tilting-rotor version, of aerial systems. It has been shown that time-delayed feedback critically degrades the translational motion of

the vehicles, for this case, the MID property permits to assign the rightmost root of the characteristic function in such a manner

that system’s convergence rate or the exponential behavior are guaranteed while providing fast non-oscillatory response. Specific

conditions and corresponding proofs were introduced and detailed, leading to the definitions of the control gains with respect to

the time delay amount. The latter could equally serve as a tuning methodology proposal whether a time-delay can be induced in

the feedback loop.

To the best of my knowledge, similar analytical and numerical method to accurately determine the gains of the controllers for

quadrotors, under the conditions herein considered, is not available in current related literature.

The results of the detailed simulations, including the linearized dynamics of the vehicles and the non-linear model representa-

tions, verify the proper functioning of the proposal yet, the forthcoming research extension entails (i) the study of PID delay-based

controllers by means of the MID approach, (ii) the application of the MID approach to the trajectory tracking case, (iii) a detail

comparative analysis of the quadrotors vehicle when manipulated by MID-based linear controllers and non-linear approaches as

well as (iv) the validation of the proposals in real conditioned environments.

8.2.3 Chapter 7: Time-Delay Control of a VTOL Multi-Agent System Towards Transport

Operations

A control methodology to stabilize the collective motion (consensus) of a group of VTOL vehicles, featuring different kinds of

time-delays, in order to perform grasping and transport operations, was described. Such control strategy consists of a time-delay

tolerant PID controller, which guarantees both attitude and position stability of an individual aerial robot and the trajectory tracking

under different disturbances allowing the consensability of the multi-robot system. Simulation results validate the effectiveness

of the proposed multi-agent control methodology for an object transportation scenario, which induces different disturbances on

every robot conforming the quartet. The simulation also highlights that, even when the effects of the time-delay are present on the

system, consensability, formation and trajectory tracking are achievable using the proposed control methodology.

As future work, explicit presentation and explanation of the object contact points and computation of the forces exerted by the

robots on the object will be considered and studied.
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8.3 General Conclusions

During the development of this thesis two different concepts were addressed: (i) the conception, modeling and control of a

Multi-Link Unmanned Aerial System and (ii) the control of aerial systems subjected to time-delays.

For the case of the ML-UAS, the results allow one to think of a promising platform to study and use in a vast variety of

circumstances and operations. In this vein, even when the dynamical analysis has been successfully accomplished, there still

exists an incomplete task to perform which is the corresponding modelling a 3 dimensional space yet, the results of this work may

ease the upcoming research approach.

Another concern to be addressed in the continuity of this work is referred to the construction of the flying kinematic chain and

the corresponding validation of the analysis conducted. In this sense, it is recommended to consider a full-time student devoted to

the mechanical conception and construction of the system. As a matter of personal opinion, it should be firstly tackled the proper

functioning of the proposal by using quadrotors vehicles before proceeding to implement different UAV configurations. The main

issue faced that did not allow one to execute the real experimentation was the unfortunate sanitary situation which impacts the

development of the thesis in a sense that the pandemic came right at the moment when the experimental setup was supposed to

be performed, nevertheless, a complementary solution was conceived: the introduction of time-delays to aerial vehicles and the

respective theoretical study.

As previously mentioned, addressing the effects of time-delays over unmanned aerial vehicles came as an option to take

advantage of the sanitary situation and the expertise of the thesis’ advisors. In this matter, one could potentially establish that the

MID property was exploited to tune the controllers of aerial vehicles, which stands as the main result of the thesis part concerned.

As in the case of the ML-UAS, the experimental validation is still missing thus, the general remarks on this vein are oriented to

perform such studies.

The latter may allow future students to focus their research efforts on combining the versatility and novelty of unmanned aerial

vehicles and translation of the theoretical results regarding time-delay systems to real conditions, since, according to the literature,

the synergy of both seems to increasingly draw the attention of scientist around the globe.



Appendix A

Properties of the Multi-Link Unmanned

Aerial System

In general terms, a mechanical system whose dynamics can be expressed as:

M (q) q̈+C (q, q̇) q̇+G(q) = τ (A.1)

satisfies the properties cited in the current appendix, nonetheless, it is worth recalling the definition of each term on the above

equation. In this regard, the matrix M (q) ∈ R
n×n stands for the inertia matrix, C (q, q̇) ∈ R

n×n corresponds to the centripetal effects

and Coriolis terms matrix, G(q) ∈ R
n is known as the gravitational terms vector and, lastly q ∈ R

n and τ ∈ R
n are, respectively, the

state and the external forces (and/or torques) vectors.

As it has been shown throughout Part I, the dynamics of the Multi-Link Unmanned Aerial System fits the form of Eqn. (A.1)

thus, the properties exposed herein have been proved to be satisfied by this aforementioned system dynamics.

The elements that compose the dynamical model introduced in Eqn. (A.1) possess a set of properties which is listed as

follows.

1. The inertia matrix M (q) is a symmetric positive definite matrix that satisfies:

(a) M (q)≥ ϑI ∀ q ∈ R
6 with ϑ ∈ R

+ and I ∈ R
n×n the identity matrix.

(b) λMax [M (q)]≤ ς ∀ q ∈ R
n with ς ∈ R

+.

(c) ||M (x)z−M (y)z|| ≤ kM ||x−y|| ||z|| ∀ x, y, z ∈ R
n and kM ∈ R

+.

(d) ||M (x)y|| ≤ k′M ||y|| ∀ x, y ∈ R
n and k′M ∈ R

+.

2. The centripetal effects and Coriolis terms matrix C (q, q̇) can be non-unique nevertheless, the vector C (q, q̇) q̇ is unique.

Additionally, this matrix satisfies the following properties:

(a) C (q,0⋆) = 0 ∀ q ∈ R
n with 0 ∈ R

n×n being the zero matrix.

(b) ∀ q,x,y ∈ R
n, ‖C (q,x)y‖ ≤ kC1

‖x‖‖y‖ where kC1
∈ R

+.
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(c) ∀ v,w,x,y,z ∈ R
n and kC1

,kC2
∈ R

+, it holds that ‖C (x,z)w−C (y,v)w‖ ≤ kC1
‖z−v‖‖w‖+ kC2

‖x−y‖‖w‖‖z‖

(d) C (q, q̇)+C (q, q̇)T = Ṁ (q)

3. For the gravitational terms vector G(q), it holds that:

(a) ∀ τt ∈R
+,
∫ τt

0 G(q)T
q̇ dt = U (q(τt))−U (q(0)) where q(τt) is the vector q measured t = τt and the vector q(0) refers

to the initial condition.

(b) ∀ τt ∈ R
+ and kU = minq [U (q)] ∈ R

+,
∫ τt

0 G(q)T
q̇ dt +U (q(0))≥ kU .

(c) ∀ x,y ∈ R
6, ‖G(x)−G(y)‖ ≤ kg ‖x−y‖ with

kg ≥
∥

∥

∥

∥

∂G(q)

∂q

∥

∥

∥

∥

≥ λMax

[

∂G(q)

∂q

]

∈ R
+ (A.2)

(d) ‖G(q)‖ ≤ k′ ∀ q with k′ ∈ R
+.

4. The residual dynamics h(e, ė) ∈R
n is a vector, most commonly associated to the dynamics of a robot and the position and

velocity errors, and it is defined as:

h(e, ė) = [M (qd)−M (qd − e)] q̈d +G(qd)−G(qd − e)+ [C (qd , q̇d)−C (qd − e, q̇d − ė)] q̇d (A.3)

Such vector satisfies that ∀ e, ė ∈ R
6 and kh1

,kh2
∈ R

+, ‖h(e, ė)‖ ≤ kh1
‖ė‖+ kh2

‖fth (e)‖ where

fth (e) =

[

tanh(ex) . . . tanh
(

eβ2

)

]T

∈ R
n (A.4)

is the hyperbolic tangent function which has the following properties for ∀ e, ė:

‖fth (e)‖ ≤ ‖e‖ (A.5)

‖fth (e)‖ ≤
√

n (A.6)

‖fth (e)‖2 ≤ fth (e)
T

e (A.7)

∥

∥ḟth (e)
∥

∥≤ ‖ė‖ (A.8)



Appendix B

ML-UAS Linearization for Observability

Due to the nonlinear and coupled dynamics of the ML-UAS, a linearization of Eqn. (4.20) is used to prove local observability at a

given operational point χχχe
⋆,U⋆. The observation equation (Eqn. (4.36)) is already linear. In this sense, considering a Taylor series

approximation and neglecting the high-order terms, the linearization of Eqn. (4.20) corresponds to:

∆∆∆χ̇χχe = Ae
l ∆∆∆χχχe +Be

l ∆∆∆U (B.1)

such that ∆∆∆χ̇χχe = χ̇χχe −F(χχχe
⋆,U⋆) ∈ R

18, ∆∆∆χχχe = χχχe −χχχe
⋆ ∈ R

18, ∆∆∆U = U−U⋆ ∈ R
6 and

Ae
l =

∂F(χχχe,U)

∂ χχχe

∣

∣

∣

∣

χχχe
⋆,U⋆

; Be
l =

∂F(χχχe,U)

∂U

∣

∣

∣

∣

χχχe
⋆,U⋆

(B.2)

where χχχe
⋆ ∈ R

18 and U⋆ ∈ R
6 represent the operational point at which the linearization is made and Ae

l ∈ R
18×18, Be

l ∈ R
18×6.

Since the observability proof implies only the knowledge of Ae
l and Ce

k , we exclusively present the expression that describes Ae
l

for its ulterior evaluation. Following the same procedure introduced in Section 4.2.1 to redefine Z as in Eqn. (4.34). From the

dynamics of q given in Eqn. (4.20), one finds that:

∂ q̇

∂ χχχe
=

[

∂ q̇
∂q

∂ q̇
∂ q̇

∂ q̇
∂ρρρ

]

=

[

0 I 0

]

∈ R
6×18 (B.3)

∂ q̈

∂ χχχe
=

[

∂ q̈
∂q

∂ q̈
∂ q̇

∂ q̈
∂ρρρ

]

∈ R
6×18 (B.4)

∂ ρ̇ρρ

∂ χχχe
=

[

∂ ρ̇ρρ
∂q

∂ ρ̇ρρ
∂ q̇

∂ ρ̇ρρ
∂ρρρ

]

=

[

0 0 0

]

∈ R
6×18 (B.5)

To extend the definition of the partial derivative in Eqn. (B.4), let one recall q̈ given in Eqn. (4.27), such that the partial

derivatives can be rewritten as:
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∂ q̈

∂ q̇
=−M (q)−1

Cq̇
∂ q̈

∂q
= Q̈q

∂ q̈

∂ρρρ
= M (q)−1 (B.6)

where

Cq̇ =

[

∂C(q,q̇)q̇
∂ ẋ

∂C(q,q̇)q̇
∂ ż

. . .
∂C(q,q̇)q̇

∂ β̇2

]

∈ R
6×6 (B.7)

Q̈q =
1

dM

(

AMq
− q̈dMq

)

+M (q)−1
vq ∈ R

6×6 (B.8)

AMq
=

[

∂AT
M

∂x
v

∂AT
M

∂ z
v . . .

∂AT
M

∂β1
v

∂AT
M

∂β2
v

]

∈ R
6×6 (B.9)

dMq
=

[

∂dM

∂x
∂dM

∂ z
. . . ∂dM

∂β1

∂dM

∂β2

]

∈ R
1×6 (B.10)

vq =

[

∂v
∂x

∂v
∂ z

. . . ∂v
∂β1

∂v
∂β2

]

∈ R
6×6 (B.11)

Such that Ae
l evaluated at χχχe

⋆,U⋆ is defined as:

Ae
l =













0 I 0

Q̈q −M (q)−1
Cq̇ M (q)−1

0 0 0













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χχχe
⋆,U⋆

(B.12)



Appendix C

A Pedagogical Approach to Data Fusion

and Kalman Filter

The methodology used in the appendix consists on a full pedagogical discussion and representation about the Kalman filter for

data fusion followed by the sensors characterization and the dynamics modelling of the systems to be studied in the examples.

Simulations were carried out to illustrate the behavior of the systems with and without the Kalman filter. The conclusions obtained

are lastly exposed.

C.1 Introduction

The current chapter is addressed to under graduated students interested in sensors and data fusion techniques. This work is

written in an easy scientific language in order to be understood by the students. It is proposed the usage of the Kalman Filter as a

first approach to data fusion as it is widely used in different research fields and applications as cited by [146, 52].

In this matter, [97] define Data fusion as the combination of the data from multiple sensors to achieve specific inferences that

could not be achieved by the usage of one single sensor. Different techniques can be applied to carry out the aforementioned

task, nevertheless Kalman Filtering is one of the most significant due to the robustness of the approach, the easy-reasoning-and-

understanding of the filtering principle, among other benefits and advantages discussed by [146, 51] who also mention several

variations of this filter which improve the performance of the data fusion operation and/or estimation.

The literature offers a wide amount of papers and research concerning the application of Kalman Filtering techniques in

data fusion, to mention some, [146] used the Kalman Filter to improve the performance of autonomous robots to accomplish the

navigation and trajectory-tracking tasks. [179] compute the dynamic displacement of a given structure based on on-line multi-rate

data fusion of high-sampling rate acceleration with time-varying bias and low-sampling rate displacement measurements. In

addition, a linear Kalman Filter is implemented by [36] to meet the trajectory tracking specifications of a multi-link unmanned aerial

system described in detail by [37].
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C.2 Methodology

To understand the Kalman filtering algorithm, let one consider a linear system to be described in a discrete domain by the

expressions:

xk = Axk−1 +Buk +wk (C.1)

yk = Hxk + vk (C.2)

Eqn. (C.1) establishes that the current state of the system xk ∈ R
n is given in some proportion (A ∈ Rn×n and B ∈ R

n×m) by the

previous state xk−1 ∈ R
n and the control input uk ∈ R

m. The term wk ∈ R
n is called process noise and represents the influence of

unmodeled phenomena. Eqn. (C.2) defines the measurement value yk ∈ R
p as a linear combination of the current state (in some

proportion H ∈ R
p×n) and the measurement noise vk ∈ R

p which is normal distributed, i.e. Gaussian. One should notice that the

better the noise parameters are defined, the better estimates one gets.

Based on Eqns. (C.1) and (C.2), the Kalman Filter equations are conceived such that these are divided in two sets: Time

Update (prediction) and Measurement Update (correction). The first set is formed by the expressions:

x̂−
k
= Ax̂k−1 +Buk (C.3)

P−
k

= APk−1AT +Q (C.4)

Kk = P−
k

HT
(

HP−
k

HT +R
)−1

(C.5)

While the correction set is defined by:

yk = sensor measurement (C.6)

x̂k = x̂−
k
+Kk

(

yk −Hx̂−
k

)

(C.7)

Pk = (I −KkH)P−
k

(C.8)

Both sets are applied at each step or iteration in strict order, moreover, I ∈ R
n×n stands for the identity matrix, Pk ∈ R

n×n is the

error covariance matrix and, R ∈ R
p×p and Q ∈ R

n×n are the covariance matrices of the environment noise and the process noise,

respectively. Often, these ones result difficult to compute.

To start the process, one needs to know the estimate of x and P at the beginning of the process, these values are called initial

conditions and are represented as x̂0 andP0, respectively.

The Filter explained above in Eqns. (C.3)-(C.8) is often used for estimation tasks, in order to implement it as a data fusion

technique some modifications and assumptions need to be taken into account.

Let one consider a mechanical system whose states are the position and velocity, i.e. x and ẋ, and a pair of sensors at one’s

disposal for knowing the position and acceleration, an ultrasonic sensor and an accelerometer, for instance.
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The position captured by the ultrasonic sensor is written as xu ∈R that can be derived with respect to time to obtain the velocity

ẋu ∈ R and the acceleration ẍu ∈ R. By integrating the acceleration signal coming out from the accelerometer ẍa ∈ R, also the

velocity ẋa ∈ R and the position xa ∈ R can be known.

To estimate the states of the system with more accuracy, ẍa is used at the Prediction stage of the Kalman Filter and xu is used

in the correction stage, as shown next.

By simple kinematics, the position and the velocity of the system can be obtained [32], i.e.

x = x0 + ẋt +
ẍt2

2
(C.9)

ẋ = ẋ0 + ẍt (C.10)

Where x0 ∈ R and ẋ0 ∈ R are the initial position and velocity of the system, t ∈ R
+ stands for the time. The discrete

representation of Eqns. (C.9) and (C.10) is given as:

xk = xk−1 + ẋk−1dt +
ẍkdt2

2
(C.11)

ẋk = ẋk−1 + ẍkdt (C.12)

Such that dt ∈ R
+ is the sample time. The latter Eqns. (C.11) and (C.12) can be comprised in a matrix form as follows

Xk = AX Xk−1 +BXUk (C.13)

With

Xk =







xk

ẋk






; AX =







1 dt

0 1






; BX =







dt2

2

dt






; Uk = ẍk (C.14)

In this case, the vector Uk will contain ẍa measured at the instant k.The fact that we can observe the position by means of the

ultrasonic sensor implies an observation equation as follows:

Yk = HX Xk ; HX =

[

1 0

]

(C.15)

The information provided by Eqns. (C.13) - (C.15) allows us to rewrite the Kalman filter Eqns. (C.3) - (C.8) as shown below.
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Figure C.1: The mini car robot: Left) Real mini car robot. Right) Mini car free body diagram

X̂−
k

= AX X̂k−1 +BX ẍak
(C.16)

PXk

− = AX PXk−1
AT

X +QX (C.17)

KXk
= PXk

−HT
X

(

HX P−
Xk

HT
X +RX

)−1
(C.18)

Yk = xuk
(C.19)

X̂k = X̂−
k
+KXk

(

Yk −HX X̂−
k

)

(C.20)

PXk
= (I −KXk

HX )PXk

− (C.21)

Notice that now, the signals of the ultrasonic sensor and the accelerometer take part of the Kalman filter equations also it is

worth to mention that at the output of the filter, the vector X̂k contains the states of the system computed from the measurement of

both sensors thus it is used to close the control loop as explained later. Further and detailed information about the Kalman Filter

theory is available in the references cited.

C.3 Pedagogical Examples

C.3.1 Mini Car Robot

Fig. C.1 shows the Mini car robot used in this example. The real platform can be observed at the left, meanwhile the free body

diagram is depicted at the right. This vehicle features an Arduino Due board, a Raspberry Pi 3 connected to a camera, an IMU

(Inertial Measurement Unit), an ultrasonic sensor and an Arduino Motor shield. The actuators of the system are two continuous

servo motors. In the front of the robot a free-to-rotate wheel is placed to balance the system.

For sake of simplicity, one may be interested only in the translational linear movement of the car. Notice that in Fig. C.1, two

different frames have been defined: the inertial reference frame (OI defined by the axis xI and yI) which is fixed to some point in

the space and the body-fixed reference frame (Ob with the axis xb and yb) which is located at the center of gravity of the vehicle.

The position of the vehicle is described by x ∈ R and measured as shown, additionally, the velocity and the acceleration of the car

are represented as ẋ ∈ R and ẍ ∈ R, respectively defined by the first and second time derivatives.

In order to control the vehicle, it is important to have the mathematical description of it. The dynamic model can then be
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obtained by the Newton Euler formalism or by the Euler Lagrange formalism [32]. For the simplest case of our robot, by both

procedures, the dynamics is found to be:

mcẍ = Fx (C.22)

Notice that the friction force between the wheels of the car and the floor has been omitted. Fx ∈ R represents the force applied

over the vehicle along the xI . The mass of the vehicle is expressed as mc > 0.

Let us assume that the force Fx can be easily manipulated, this allows us to define such force as the control input ux ∈ R, i.e.:

Fx = ux (C.23)

The main goal of the controller in this example is to make the vehicle go to a desired specific point in the space located at a

distance xd ∈ R in the xI axis. To do so, one can apply different control techniques however, a PD controller is applied[35]:

ux = Kpx
ex +Kvx

ėx (C.24)

where Kpx
and Kvx

(both ∈ R
+) are the proportional and derivative gains of the controller, meanwhile ex = xd − x ∈ R is the

position error and ėx = ẋd − ẋ =−ẋ ∈ R is the velocity error. Notice that as the desired position is a fixed point in the space, i.e. it is

a constant, its time derivative is always 0.

Based on Eqns. (C.23) and (C.24), Eqn. (C.22) can be rewritten such that:

mcẍ = Kpx
ex −Kvx

ẋ (C.25)

Eqn. (C.25) will be used at the simulation stage to implement the data fusion for merging the information of the sensors.

C.3.2 Mini Bi-rotor Platform

Analogously to the analysis of the mini car robot, the modelling and control of the bi rotor shown in Fig. C.2 are conceived in this

subsection. The main features of the platform are the Arduino Nano board, a PDB or Power Distribution Board to power up the

electronics as well as one IMU that measures the acceleration of the vehicle, an ultrasonic sensor to know the distance z ∈ R from

the ground and two ESCs (Electronic Speed Controllers) to manipulate the brushless motors velocity.

One may be interested only in the vertical linear movement of the vehicle. For sake of simplicity, Fig. C.2 depicts, at the right,

a free body diagram of the system. Two different frames are established: the inertial reference frame (OI defined by the axis yI

and zI) which is a fixed point in the space and the body-fixed reference frame (Ob with the axis yb and zb) which is located at the

center of gravity of the vehicle. The velocity and the acceleration of the vehicle are represented as ż ∈ R and z̈ ∈ R, respectively

defined by the first and second time derivative.

The mass of the aircraft is represented by mv > 0 and the gravity acceleration g = 9.81 m⁄s2 acts over the vehicle as depicted,

defining the equation of motion, according to the Newton Euler formalism, to be:

mvz̈+mvg = f1 + f2 (C.26)
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Figure C.2: The bi-rotor platform: Left) Real Bi-rotor platform. Right) Bi-rotor free body diagram

In this case, the sum of the forces acts as the control, i.e.

f1 + f2 = uz (C.27)

Once more, the objective of the controller is to stabilize the vehicle at certain constant altitude zd ∈ R above the ground. As in

the previous example, a PD controller is used to accomplish such goal nevertheless one may add the gravitational terms to the

equation as follows:

uz = Kpz
ez −Kvz

ż+mvg (C.28)

with Kpz
and Kvz

(both ∈R
+) are the proportional and derivative gains of the controller, meanwhile ez = zd − z ∈R is the position

error. The definitions in Eqns. (C.27) and (C.28) allow one to rewrite the dynamics of the closed loop system in Eqn. (C.26) such

that:

mvz̈+mvg = Kpz
ez −Kvz

ż+mvg (C.29)

Further information about the dynamics of the vehicle and its control, as well as other models for pedagogical implementation

can be found in [33, 32, 49, 35].

C.3.3 Sensors Characterization

In order to study the proposed data fusion algorithm, the characterization and correct simulation of the sensors are a most.

In this regard, the accelerometer can be simulated as a signal with an addition of some white noise (Gaussian) and a given

offset, this because the accelerometer measures also the gravity acceleration and, depending on its attitude, the sensor gives

back some acceleration value even when the vehicle is not in motion [14] thus, the total acceleration measurement coming from

the sensor is composed by the sum of three components: the real acceleration of the vehicle, the Bias acceleration (or Offset)

and the Gaussian distributed noise. One should be warned that obtaining the velocity and position from the integration of the

accelerometer information can produce significant errors due to the (almost) constant which becomes a linear function when
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integrated the first time and a quadratic function after the second integration.

The ultrasonic sensor, in simulation, has the advantage of not carrying a derivation accumulative error for both, velocity

and acceleration, computations but presents the disadvantage of amplification of the velocity and accelerations as well as not

considering the initial positions and velocities of the system as when using the accelerometer. In addition, the sensing process

with this kind of sensors is slow compared with that of the accelerometer [30]. For short, in Matlab/Simulink, this sensor signal

will be composed by the real position of the vehicle and a Gaussian distributed noise with slower sampling time than that of the

acceleration sensor previously described.

One should have in mind that most of the times, control simulations are carried out considering ideal elements (actuators and

plants) that can provide the desired control command to the system which, in fact, does not happen in reality. Moreover, one must

think of which kind of control signals one needs, e.g. for translational mechanical systems the signal control is given (typically) in

Newtons yet sometimes the actuators provide actions or signals that are related to displacements (meters or radians) and torques

(Newton-meters) which implies that a conversion is needed, leading to more errors and less accuracy in the prediction of the

response. In these examples, one may consider only a saturation of the control input and assume that one can directly provide

such command in the corresponding units.

C.4 Simulation Results

The proposed fusion data technique can be proved to be valid via numerical simulations, in order to do so, Matlab and Simulink

provide the most appropriate tools and environment.

Before giving the detail information about the development of the simulation environment, let one introduce the Table C.1

which contains all the parameters used in simulation as well as the corresponding value or magnitude.

Table C.1: Simulation parameters and conditions

Simulation parameters

Total simulation time 30 s
Sampling time dt 0.001 s
Gravity acceleration (g) 9.81 m⁄s2

Sensors parameters

Accelerometer variance 0.0001
Mean Bias value -0.97 m⁄s2

Bias variance 0.001
Ultrasonic sensor variance 0.0001
Ultrasonic sensor sampling time 30 dt

Mini car properties Bi-rotor properties
and parameters and parameters

mc 1 kg mv 0.5 kg

x0 0 m z0 2 m

ẋ0 0 m/s ż0 0 m/s

Kpx 1 Kpz 1
Kvx 1 Kvz 1
xd 2 m zd 0.75 m
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Figure C.3: Matlab code: Systems properties and conditions

Figure C.4: Matlab code: Kalman filter elements

For both systems, the total simulation was set to 30 s with a sampling time of 0.001 s in order to perform a fixed time step

simulation. In the case of the Bi rotor platform the gravity acceleration is also established in the program according to Table C.1. In

addition, it was assumed that the accelerometer and the ultrasonic sensor installed on the robots have the characteristics exposed

in Table C.1. In this regard, Fig. C.3 shows the Matlab code defining what has been commented in this paragraph.

Eqns. (C.16) – (C.21) were used in the simulation to make the data fusion, nevertheless the covariance matrices and those of

the system were defined in the Matlab code as exposed by Fig. C.4. In this matter, the covariance matrix of the process noise

is most of the times defined as the zero matrix because it is difficult to be defined in reality yet sometimes it is used to indicate

parameters variation and or errors in the mathematical modelling process. In this case, one used this matrix to define an error in

the computation of the velocity as it comes from an integration of the accelerometer data which has an offset as explained before.

In this sense, in this important to keep in mind that the greater the matrix Q, the slower response of the filter [36].

Fig. C.4 also gives evidence of the instructions used to launch the simulation in Simulink. Two different files were used to
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Figure C.5: Simulink environment: up left corner: ideal performance of the sensors; up right corner: usage of the
ultrasonic sensor only; bottom left corner: usage of the accelerometer only, and, bottom right corner: data fusion by
the Kalman Filter

complete the simulation nevertheless the structure of both files is exactly the same, the only thing that changes is the properties of

the systems according to Table C.1 and the equations provided in the subsections of each pedagogical platform. For such reason

only the Simulink file of the mini car simulation will be explained and shown next.

Before going any further in the Simulink environment, in the “Model Parameters Configuration” option the simulation time is

changed as well as the simulation type which in our case it corresponds to the fixed step time with the given sampling time in

Table C.1.

Four different scenarios were simulated for the same system: The first one corresponded to the ideal performance of the

sensors, the second one considered only the accelerometer, the third one was defined in order to use only the ultrasonic sensor

and lastly, the last one merged the data coming from both sensors by means of the Kalman filter. In the four scenarios, the

saturation of the motors was taken into consideration. Fig. C.5 depicts what is discussed in this paragraph.

In the middle of the Fig. C.5, surrounded by a circle, you find the clock connected to a “To Workspace block” which allows us

to store the time. All the blocks of the file have a sampling time dt given in Table C.1. Notice that we have used the “From” and

“Goto” blocks to avoid having too many connections which would make more difficult the interpretation of the block diagram below.

The initial conditions of the system took part on the two in-chain integral blocks connected at the output of the Matlab function

block. The first integrator (the one connected to the output port of the Matlab function blocks) computes the velocity and the

second one does the proper for the position, correspondingly the initial conditions were assigned.

The Matlab function block that appears in the four scenarios has as inputs the position and the velocity of the system. Inside

this block, one can find the control equation with the saturation and the dynamics equation at the end to finally send the acceleration

and the saturated control signal to the Simulink space. The code lines and the structure are exposed in Fig. C.6 where one may

observe that, in reality, the function have several additional inputs. These four additional variables were considered as parameters

of the block and not inputs, it was done by clicking over the “Edit data” option in the Matlab editor and changing the Scope option

from input to parameter for xd, Kpv, Kvc and mc.

With this being said, the simulation concerning the ideal performance of the sensors can be run. For a better presentation the

results are sent to Matlab where they are plotted once the simulation has finished with better quality than in Simulink.

The other 3 scenarios are simulated with base on the simulation at the up left corner block diagram in Fig. C.5. The block
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Figure C.6: Mini car simulation results

Figure C.7: Accelerometer noise and offset blocks

diagram located at the bottom let corner of Fig. C.5 differs from the ideal case by the addition of the accelerometer noise and

the corresponding offset as described in Section C.3. Once these two components are added to the acceleration given by the

Matlab function block, it is integrated to compute the velocity and then integrated once more to obtain the position. These two

computations were sent back to close the loop. The block parameters are shown in Fig. C.7. By defining two different sample

times, we established that one part varies in time faster than other one.

Similarly, the blocks diagram of the up right corner, which corresponds to the system when using only the ultrasonic sensor,

differs from the ideal case by the addition of the ultrasonic sensor noise at the output of the integrator that computes the position.

Once the position is obtained by a double integration process and the noise had been added to it, the results is derived with

respect to time once to get the velocity and twice to compute the acceleration. The noise of this sensor is characterized as

depicted in Fig. C.8.

The noisy position and velocity were used as feedback to close the system as can be appreciated in Fig. C.5.

To implement the Kalman filter for data fusion, it has been considered the accelerometer and the ultrasonic sensor as described

for the previous scenarios. The signals are given as inputs to the Kalman filter Matlab function block alongside the covariance

matrix as shown in Fig. C.5. “Memory” blocks were used to avoid the algebraic loop problem and also to initialize the filter as they

contained the corresponding initial values of the position, velocity and covariance matrix. The code written inside the Kalman

function block is given in Fig. C.9.

Once the Simulink environment was ready, the file was saved with the name “SimCar” and the simulation was run from the

Matlab main file previously explained. It is worth to mention that the files should be located in the same folder.
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Figure C.8: Ultrasonic sensor noise block

Figure C.9: Mini car simulation results

The results of the mini car robot and the bi-rotor platform simulations are depicted in Figs. C.10 and C.11, respectively. In both

cases the position of the vehicle, the velocity and the accelerations as well as the control inputs are depicted.

Similar conclusions can be made for both systems. One can observe, in the position plots, that when using only the

accelerometer for closing the control loop, it exists a steady state error which is caused by the offset of the sensor and the

saturation of the actuators in addition to the accumulative error in the integration process. To use only the ultrasonic sensor seems

to work in terms of position and, as expected, the system in which the Kalman filter was implemented accomplishes the goal.

The velocity plots show the disadvantage of using only the ultrasonic sensor as the computed velocity becomes noise and its

magnitude is big in comparison with the velocity in the ideal scenario. The Kalman filter provides a noisy velocity that tracks the

desired behavior. The velocity obtained only by the integration of the accelerometer signal behaves far from the desired response.

In this sense, the Kalman Filter provides a better velocity estimation.

The acceleration plots show a magnification of the acceleration in the case where only the ultrasonic sensor is used. On the

other hand, the acceleration given by the accelerometer is clearly affected by the offset and the noise. For the case of the Kalman

Filter implementation, one can conclude that even when the acceleration provided by the accelerometer is not the real one, the
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Figure C.10: Mini car simulation results

Figure C.11: Bi-rotor simulation results

data fusion technique does a correct estimation of the position and the velocity, making the system reach the desired position

even with wrong acceleration measurements. The influence saturation of the actuators is more evident in the case of the mini car

robot as depicted by the corresponding plots, however the system is able to overcome such issue when implementing the data

fusion by means of the Kalman Filter.

C.5 Conclusions

After a further and detailed results discussion given in the previous section, one can establish that a pedagogical approach to

Kalman Filtering was given and explained considering two examples where such technique was used to illustrate the data fusion

algorithm. In addition, the characterization of an ultrasonic sensor and an accelerometer was established and can be considered

in future simulations for students. It is expected the usage of the in-here studied technique to improve the results of academic

projects in engineering formation.



Appendix D

Teaching Activities

D.1 IPSA Courses

According to the PhD contract, during the PhD studies, 64 hours per scholar year are demanded by the funding institution, i.e.

l’IPSA. In this regard, the Table D.1 shows, in a compact format, the courses and the corresponding hours covered until this

moment.

Table D.1: Courses list

Course Name Level Course Hours
Year Responsible (Cs/TD/TP)

Commandes M2 Assia 28
Intelligentes 2018-2019 BELBACHIR (4/0/24)

Drones et M2 Jonatan 24
Asservisement visuel 2018-2019 ALVAREZ (0/8/16)

Principes de guidage des M1 Jonatan 24
systemes autonomes 2018-2019 ALVAREZ (0/0/24)

Commandes M2 Assia 16
Intelligentes 2019-2020 BELBACHIR (4/0/12)

Drones et M2 Jamy 8
Asservisement visuel 2019-2020 CHAHAL (2/2/4)

Projet CURSUS M2 Assia 24
2019-2020 BELBACHIR (4/0/20)

Principes de guidage des M1 Jamy 24
systemes autonomes 2019-2020 CHAHAL (0/0/24)

Commandes M2 Assia 20
Intelligentes 2020-2021 BELBACHIR (4/0/16)

Drones et M2 Jamy 8
Asservisement visuel 2020-2021 CHAHAL (2/2/4)

Projet CURSUS M2 Assia 24
2020-2021 BELBACHIR (4/0/20)

Principes de guidage des M1 Jamy 16
systemes autonomes 2020-2021 CHAHAL (0/0/16)

I collaborated at the 2019 IPSA International Summer School as the responsible of the Practical Aspects (18 hours).
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D.2 Pedagogical Platforms

In addition to the teaching activity, I have worked in the development of pedagogical platforms in order to improve the comprehension

of the courses and to facilitate the translation of the theory to the practical application field. In this sense, I may introduce them as

follows:

⊲ Edu-copter rehabilitation

This already existing platform was not in operation in the laboratory, it was re-built and re-programmed to perform the

basic stabilization tasks concerning different propulsion operational profiles as fixed or tilting motors configurations. Due to

confidentiality declarations, early stages of the prototype are shown in the figure below.

Figure D.1: Edu-copter pedagogical platform

⊲ Mini-car vehicle

The vehicle was re-designed in order to enhance the space and material distribution over the platform in order to provide to

the student a strong platform easy to manipulate, with a simple design and a small structure. Figure 2 shows the re-designed

vehicle at the left and the vehicle at the right corresponds to a bought pedagogical model also used in the laboratory.

Figure D.2: Mini-car vehicle platforms

⊲ 1(2)-DOF(s) Bi-rotor platform

This platform was conceived for the IPSA international summer school and the introductory courses on control of aerial

vehicles. The platform provides two different control scenarios: altitude stabilization and altitude/orientation stability.

⊲ Home-made visual tracking system

In order to perform basic experimental tests at the IPSA laboratory concerning the vision courses, a visual tracking system



D.2. PEDAGOGICAL PLATFORMS 147

Figure D.3: 1(2)-DOF(s) Bi-rotor platform

based on ROS, Aruko markers and a Web-cam available at the workplace was conceived.

Figure D.4: Home-made visual tracking system

⊲ Edu-wing conception

This platform is devoted to the control and stability analysis, in terms of a 1-DOF rotational motion, of mini aerial fixed-wing

vehicles through 2 different locomotion configuration: a tilting propeller or an aerodynamic control surface.

Figure D.5: Edu-wing conception
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⊲ Aerial mechanical gripper

In the regard of aerial vehicles applications, the design and conception of efficient mechanical grippers for perching an

grasping operations are being studied at the laboratory. Figure 6 provides the evidence of some built grippers.

Figure D.6: Aerial mechanical gripper

⊲ Quadrotor tuning platform

Using the structure of the Edu-copter test-bed, a home-built quadrotor is adapted to it in order to allow it to rotate freely

about its x (or y) axis to tune the controllers gain to ensure the rotational dynamics stability at first (Figure 7).

Figure D.7: Quadrotor tuning platform
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D.3 Internships Mentoring

The content of this section is devoted to present a list of the corresponding internships supervised during the development of the

thesis. All of the projects took place at the laboratory of autonomous aerial systems of the Institut Polytechnique des Sciences

Avancées, located at Ivry-sur-Seine.

• 4th-year stage: [Co-Advisor]

Pauline GIL (Polytech Sorbonne, Sorbonne Université), Mechanical Design of a 2-DOF Docking Mechanism, @ Laboratoire

des Systemes Aeriens Autonomes (LS2A) IPSA, Ivry-sur-Seine, Île de France, France. (2018).

• 3th-year final project : [Co-Advisor]

Lucas KLEPIC (Institut Polytechnique des Sciences Avancées), Aero - pendulum position control with Reinforcement

Learning, @ Laboratoire des Systemes Aeriens Autonomes (LS2A) IPSA, Ivry-sur-Seine, Île de France, France. (2018).

• 1-month international master visit : [Advisor]

Jean Karlo GOMEZ REYES (Autonomous University of Queretaro), ROS control of a Bee-bop quadrotor, @ Laboratoire

des Systemes Aeriens Autonomes (LS2A) IPSA, Ivry-sur-Seine, Île de France, France. (2018).

• PMI (Project Master IPSA): [Co-Advisor]

Jordan MARQUES, Kévin BOYER, (Institut Polytechnique des Sciences Avancées), 3D design of a quadrotor frame, @

Laboratoire des Systemes Aeriens Autonomes (LS2A) IPSA, Ivry-sur-Seine, Île de France, France. (2018).

• PMI (Project Master IPSA): [Advisor]

Marvin DESTOUR, Antoine MERVANT, Bryan TROVATI CHAVES, (Institut Polytechnique des Sciences Avancées),

Design and modeling of a platform for aerodynamics control tests: EDU-wing, @ Laboratoire des Systemes Aeriens

Autonomes (LS2A) IPSA, Ivry-sur-Seine, Île de France, France. (2018).

• PMI (Project Master IPSA): [Advisor]

Heitor Adalberto SILVA, Venira Sofia CARDOSO DE PINA, (Institut Polytechnique des Sciences Avancées), Mechanical

conception of a testing platform for aerodynamics characterization of propeller-motor systems, @ Laboratoire des Systemes

Aeriens Autonomes (LS2A) IPSA, Ivry-sur-Seine, Île de France, France. (2018).

• 4th-year stage: [Advisor]

Chéryne AREF (Institut Polytechnique des Sciences Avancées), Design Improvement of the pedagogical platform EDU-

Wing, @ Laboratoire des Systemes Aeriens Autonomes (LS2A) IPSA, Ivry-sur-Seine, Île de France, France. (2019).

• 4th-year stage: [Advisor]

Briac GRAUBY (Polytech Sorbonne, Sorbonne Université), Conception of a mechanical claw for perching drone maneuvers,

@ Laboratoire des Systemes Aeriens Autonomes (LS2A) IPSA, Ivry-sur-Seine, Île de France, France. (2019).

• 2-months international master visit : [Co-Advisor]

Suphanut PLENGKHAM (Faculty of Engineering Kasetsart University Bangkhen), Mechanical conception of a mini-car

robot and a mini bi-rotor vehicle structures, @ Laboratoire des Systemes Aeriens Autonomes (LS2A) IPSA, Ivry-sur-Seine,

Île de France, France. (2019).
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• 5th-year stage: [Advisor]

Mauricio Franklin VERA VERA (Ecole Nationale Supérieure de Mechanique et des Microtechniques), Construction and

Control of UAV Pedagogical Platforms, @ Laboratoire des Systemes Aeriens Autonomes (LS2A) IPSA, Ivry-sur-Seine, Île

de France, France. (2019).

• 5th-year stage: [Advisor]

Johvany GUSTAVE (Polytech Sorbonne, Sorbonne Université), Control and tracking of vehicles using Robot Operating

System, @ Laboratoire des Systemes Aeriens Autonomes (LS2A) IPSA, Ivry-sur-Seine, Île de France, France. (2019).

• PMI (Project Master IPSA) Anticipé: [Advisor]

Nicolas BOJIKIAN, Valentin LEGRIS, Lucas KLEPIC, Luc PARMENTIER (Institut Polytechnique des Sciences Avancées),

Martial Rover @ Laboratoire des Systemes Aeriens Autonomes (LS2A) IPSA, Ivry-sur-Seine, Île de France, France. (2020).
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Résumé : Un sujet passionnant dans le domaine des 
véhicules aériens autonomes est l'interaction avec 
l'environnement par la manipulation en vol, y 
compris la récupération, le transport et le 
déploiement, qui dévoile un énorme potentiel vis-à-
vis des applications industrielles et de service. À cet 
égard, cette thèse doctoral se concentre sur la 
conception et l'étude dynamique basé sur l'énergie 
d'un système aérien sans pilote à liaisons multiples 
capable d'effectuer des tâches de manipulation.  

L'étude de ce système aérien comprend le contrôle 
du véhicule volant à liaisons multiples par la théorie 
du contrôle en mode glissant, la conception de 
contrôleurs basés sur le principe de Lyapunov et, 
parallèlement, à l'application de filtres de Kalman 
pour l'estimation de l'état et des perturbations. La 
dernière partie de la thèse est consacrée à l'examen 
des effets des retards sur les drones. Des résultats 
de simulation sont fournis pour prouver l'efficacité 
de la proposition globale de la thèse. 
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Abstract : A recent and exciting topic within the field 
of autonomous aerial vehicles is the interaction with 
the surrounding environment via in-flight 
manipulation, including retrieving, transport and 
deployment, which unveils an enormous potential 
vis-a-vis industrial and service applications.  In this 
regard, the actual thesis focuses on the conception 
and energy-based dynamical study of a multi-link 
unmanned aerial system able to perform 
manipulation tasks. 

The study of the aforementioned robotic aerial 
system includes the control of the flying multi-link 
vehicle by the sliding mode control theory and the 
conception of Lyapunov-based controllers 
alongside the application of Kalman Filters for state 
and disturbances estimation. The last part of the 
thesis is devoted to the examination of time-delays 
effects on unmanned aerial systems. Detailed 
simulation results are provided to prove the 
effectiveness of the overall thesis proposal.  
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