
HAL Id: tel-03779592
https://theses.hal.science/tel-03779592

Submitted on 17 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semiquantitative bond models from quantum chemical
topology

Rubén Laplaza

To cite this version:
Rubén Laplaza. Semiquantitative bond models from quantum chemical topology. Theoretical and/or
physical chemistry. Sorbonne Université; Universidad de Zaragoza (Espagne), 2020. English. �NNT :
2020SORUS342�. �tel-03779592�

https://theses.hal.science/tel-03779592
https://hal.archives-ouvertes.fr


Semiquantitative bond models from
quantum chemical topology

THESIS

submitted the 8th July 2020

for the obtention of
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Résumé
Résumé en Français.

Mots-clés: liaison chimique, théorie de la fonctionnelle de la densité, chimie quantique

Introduction
Cette thèse s’inscrit dans un domaine relativement nouveau de la chimie : la chimie
quantique, développée à partir de la mécanique quantique dans la seconde moitié du
XXe siècle. La chimie quantique combine la chimie avec les méthodes de la mécanique
quantique, ce qui permet de décrire in silico des systèmes chimiques avec une grande
précision.

Cela nécessite un traitement quantique des électrons, qui ne ressemblent rien au
monde macroscopique que nous connaissons. Cependant, les équations de la mécanique
quantique n’ont pas de solutions exactes pour les systèmes polyélectroniques. Par
conséquent, divers modèles simplifiés comprenant des approximations mathématiques
sont couramment utilisés. N’ayant aucune expérience empirique de la dynamique
électronique, les modèles approximatifs de la chimie quantique sont souvent utilisés
comme fondements ontologiques. Par exemple, le concept “orbital moléculaire”, qui est
pratiquement indispensable en chimie, n’est pas défini dans la théorie exacte.

En même temps, la chimie traditionnelle hérite d’un certain nombre de modèles et
de concepts dérivés, résultat d’une longue tradition scientifique. Certains de ces
concepts, tels que “électronégativité” ou la “liaison covalente”, sont fondamentaux pour
comprendre la chimie. Ces types de concepts ne sont pas définis d’un point de vue
quantique, et la grande majorité d’entre eux ne sont pas rigoureusement définis dans
aucune théorie approximative. Cela est problématique car les modèles que nous
utilisons pour comprendre la réalité orchestrent également notre raisonnement : ils nous
permettent de faire des prévisions, d’imaginer de nouvelles espèces chimiques et
d’interpréter les phénomènes observés empiriquement. Comme les modèles basés sur la
mécanique quantique et les modèles basés sur des concepts historiques ne sont pas
réductibles ontologiquement, nous utilisons souvent des concepts issus de différents
modèles

L’utilité d’un modèle est double. Tout d’abord, lors du processus de construction, il
nécessite un effort d’abstraction et de mathématisation. Ensuite, dans son application, il
nous aide à comprendre les interactions entre différents facteurs, y compris les causes et
les effets. En raison de sa grande utilité, la construction et l’application de modèles est une
partie fondamentale de tout domaine scientifique. Cependant, en chimie, nous trouvons
parfois des modèles et des concepts très différents qui conduisent à des arguments opposés
sur la façon de comprendre les processus chimiques.

Cette thèse se concentre sur le développement d’un modèle de liaison chimique basé
sur des composants subatomiques. Contrairement à la plupart des modèles
contemporains, qui se concentrent sur l’idée de l’atome, ce modèle se concentre sur le
concept de liaison chimique : il définit la liaison chimique comme une entité authentique
et localisée qui interagit avec des pseudo-atomes. Cela nous permet de penser au-delà
des atomes et présente donc un potentiel d’innovation. Pour comprendre ses vertus et
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ses défauts, il est nécessaire de comprendre les différents modèles conceptuels qui
existent actuellement, et où ils échouent. Il est également nécessaire de comprendre les
problèmes liés au paramétrage et les fondements des principales méthodes de la chimie
théorique.

Par conséquent, dans cette thèse, le Chapitre 1 est consacré aux concepts qui
appartiennent à la soi-disant intuition chimique. Ensuite, dans le Chapitre 2, les bases
de la chimie quantique sont expliquées en détail d’un point de vue mathématique et
formel. Par la suite, deux Chapitres, 3 et 4, sont consacrés aux cadres interprétatifs
utilisant respectivement les orbitales et les champs scalaires dérivés de la fonction
d’onde. Une fois ces bases établies, le modèle en question est développé et appliqué
dans le Chapitre 5, qui est appelé “ELF-BCM”. Dans le Chapitre 6, certaines questions
concernant la relation entre les propriétés d’une liaison chimique et sa description
computationnelle sont abordées en relation avec le modèle précédent.

Interprétation chimique
L’interprétation chimique fait référence à la manière dont nous devons expliquer et
rationaliser les observations chimiques empiriques, soit in vitro ou in silico. En chimie,
nous essayons généralement de comprendre des processus complexes, tels que les
transformations chimiques, dans des termes qui nous permettent de faire des
prédictions. La théorie interprétative historique utilisée en chimie trouve son origine
moderne dans la révolution chimique des 17ème et 18ème siècles, dont le représentant
plus important est Lavoisier. À ce stade, la chimie se distancie de la philosophie
naturelle et acquiert sa propre entité. Nous appellerons cet ensemble de connaissances,
qui a eu des contributions importantes au 20ème siècle, la “Folk Molecular Theory”
(FMT).

Les trois principaux piliers de la FMT sont la structure chimique, les propriétés
chimiques et les interactions, dans lesquelles nous incluons la formation et la rupture
des liaisons chimiques. On suppose couramment qu’une fois la structure de la matière
est déterminée, des propriétés émergent d’une combinaison de cette structure et des
propriétés fondamentales des éléments. Il est donc important de comprendre les propriétés
que nous associons aux atomes et aux éléments, ce que nous entendons par structure
chimique, et comment ces concepts sont liés à la mécanique quantique.

En chimie quantique, et en mécanique quantique en général, chaque système est
représenté par une fonction d’onde définie dans un espace de Hilbert. Les propriétés du
système résultent de l’application d’un opérateur (dans les espaces Hilbert finis, cet
opérateur est linéaire et hermitique) à cette fonction d’onde. Par conséquent, aucun
objet qui ne peut être représenté comme un opérateur n’est défini.

Cela implique que l’épistémologie de la chimie est coincée entre deux limites
fonctionnelles : l’épistémologie quantique dans le contexte subatomique, et l’expérience
empirique au monde macroscopique, qui est rarement compréhensible en termes de
molécules et d’atomes.

Le concept le plus fondamental dans l’histoire de la chimie est celui de l’élément
chimique. Nous définissons l’élément comme une “espèce” d’atome, tous les atomes
ayant le même numéro atomique. La prise en compte de ces espèces provient de
l’identification d’élémentaux particuliers, et était à l’origine associée à leur numéro de
masse, puisque le tableau périodique de Mendeley date de 1869 et la notion de numéro
atomique de 1913. En général, nous classons les atomes en fonction de la position de
leurs éléments correspondants dans le tableau périodique, et nous associons des
propriétés qui suivent généralement une périodicité aux différents éléments. Quelques
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exemples sont l’électronégativité, dont il existe de nombreuses échelles empiriques en
termes atomiques (un exemple est l’échelle de Pauling, définie dans l’équation 1.1, et le
rayon atomique. Cependant, en termes quantiques, un atome est un système idéal, et
les atomes n’existent pas en tant que partie d’une molécule parce que l’opérateur de
position ne commute pas avec l’hamiltonien du système. De ce fait, les électrons sont
intrinsèquement délocalisés.

Dans la FMT, la structure chimique est comprise comme un ensemble d’atomes
ayant diverses propriétés qui interagissent par des liaisons chimiques, qui sont
généralement compréhensibles en termes de différence de valence ou d’électronégativité.
La molécule est représentée par des symboles atomiques et des symboles liés aux
électrons de valence (liaisons, paires libres). Il est possible de généraliser ces structures
en utilisant des formes résonantes, dont la contribution est proportionnelle à leur
stabilité relative. La stabilité relative est évaluée à l’aide des mêmes critères basés sur la
valence et l’électronégativité. L’arrangement géométrique est souvent prévisible en se
basant sur la théorie de la répulsion des paires d’électrons de valence (VSEPR) qui
repose sur ces idées. En bref, on entend par structure chimique les propriétés des
atomes constitutifs, qui cherchent à avoir des couches de valence complètes et/ou à
satisfaire la VSEPR.

Cependant, pour interpréter les interactions chimiques, nous n’utilisons pas
seulement les propriétés atomiques. Les groupes fonctionnels sont également
fréquemment inclus. Certains groupes d’atomes ont des propriétés spécifiques qui sont
transférables d’un environnement chimique à un autre, comme l’effet inductif ou
certains types de liaisons chimiques.

Liaison chimique

La liaison chimique est l’interaction chimique prédominante : des forces qui agissent sur
les atomes (ou groupes d’atomes) et les maintiennent ensemble en agrégats relativement
stables. Nous ne pouvons pas définir la liaison chimique de cette manière si nous
n’acceptons pas les concepts d’atome et de groupe fonctionnel ci-dessus. En chimie,
nous classons généralement les liaisons chimiques en plusieurs types ayant des
propriétés différentes. Le type de liaison est déterminé par les propriétés des atomes
liés.

La liaison covalente est celle qui repose sur le partage des électrons, et l’exemple
paradigmatique est celui des molécules diatomiques homonucléaires, puisque la force
nette entre les deux atomes est nulle à moins qu’il n’y ait une accumulation de densité
d’électrons dans l’axe internucléaire.

Les liaisons ioniques, au contraire, naissent lorsque cette accumulation est minimale
et ce qui se produit est, fondamentalement, le transfert d’un électron d’un atome à l’autre
et l’interaction électrostatique qui s’ensuit entre les deux atomes. Il n’existe pas de cas
parfait de liaison ionique, mais les sels binaires composés d’atomes alcalins et d’halogènes
en sont un bon exemple.

Le troisième type principal est celui des liaisons métalliques, qui résultent du
partage délocalisé d’électrons entre plusieurs atomes. En plus de ces grands types, il
existe également plusieurs catégories moins établies mais utilisées, comme les liaisons
haptiques, datives ou hydrogène. En général, les types de liaisons chimiques ne sont pas
des catégories définies de manière positive, mais elles sont suffisamment
conventionnelles pour être utiles.
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Fondations de la chimie quantique
La fonction d’onde d’un système non relativiste obéit à l’équation de Schrödinger
dépendant du temps (Equation 2.1). En évitant la dépendance temporelle, nous
pouvons nous concentrer sur les états stationnaires, régis par l’équation de Schrödinger
indépendante du temps (Equation 2.6). Si nous acceptons que les noyaux atomiques
sont des charges ponctuelles qui restent approximativement statiques par rapport aux
électrons (approximation de Born-Oppenheimer), nous pouvons résoudre la structure
électronique pour n’importe quelle configuration nucléaire. Nous appelons surface
d’énergie potentielle (PES) l’hypersurface donnée par l’énergie en fonction des
coordonnées des noyaux d’un système.

Cependant, cette équation n’est généralement pas soluble pour les systèmes à plus
d’un électron. Les solutions analytiques fermées de l’équation mono-électronique sont
appelées orbites. Dans les systèmes polyélectroniques, nous construisons généralement
une fonction d’onde approximative comme un produit antisymétrique des orbitales
(atomiques). La façon la plus courante de construire une fonction d’onde avec ces
caractéristiques est le dénommé déterminant de Slater (Equation 2.22).

La minimisation variationnelle de l’énergie d’une fonction d’onde à un seul
déterminant définit la méthode dite de Hartree-Fock (HF). Ce processus est réalisé de
manière itérative jusqu’à ce que l’on parvienne à une cohérence d’ensemble. Dans la
méthode HF, les électrons n’interagissent pas explicitement entre eux, mais chaque
électron interagit électrostatiquement avec la moyenne de tous les autres électrons par
l’intermédiaire de l’intégrale biélectronique de Coulomb. De plus, l’intégrale
biélectronique d’échange annule exactement la contribution du même électron dans ce
champ moyen. Le problème de minimisation est résolu par calcul en utilisant une base
finie, généralement composée d’orbitales atomiques. Le plus souvent en chimie, les
orbitales atomiques sont exprimées comme des combinaisons linéaires d’orbitales de
type gaussien (GTO).

Grâce au théorème variationnel, nous savons qu’en utilisant l’hamiltonien précis, la
fonction d’onde exacte produit l’énergie minimale. Pour une base finie donnée, l’énergie
la plus basse est obtenue en utilisant la méthode FCI (Full Configuration Interaction). Le
coût de calcul de cette méthode augmente considérablement avec le nombre d’électrons
dans le système. La différence d’énergie entre l’énergie HF et l’énergie FCI est appelée
énergie de corrélation. L’absence de corrélation est le principal problème de la méthode
HF. On subdivise généralement l’énergie de corrélation en deux parties : une partie forte,
due au caractère monodéterminé, qui est meilleure en ajoutant d’autres déterminants à
la fonction d’onde (comme la combinaison linéaire, par exemple) ; et une autre partie,
typiquement appelée faible, qui est plutôt due à l’utilisation du champ moyen. Différentes
méthodes incluent, explicitement ou implicitement, certaines quantités de corrélation
électronique. En général, les méthodes sans corrélation électronique ne sont pas assez
précises pour être utilisées en chimie, mais le coût des méthodes corrélées augmente de
façon exponentielle.

Théorie de la fonctionnelle de la densité

La théorie de la fonctionnelle de la densité (DFT) est basée sur les théorèmes de
Hohemberg et Kohn, qui affirment que l’énergie est une fonction univoque de la densité
électronique ρ(r). La forme de cette fonctionnalité est inconnue, aussi utilise-t-on
généralement le schéma de Kohn et Sham, ce qui donne naissance à ce que l’on appelle
le KS-DFT. Le schéma KS-DFT est analogue à celui de Hartree-Fock et utilise les
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déterminants de Slater et les bases finies. Ce schéma suppose que les orbitales de ce
déterminant correspondent à la fonction d’onde d’un système fictif qui a la même
densité électronique que le système réel. Cela permet de calculer l’interaction moyenne
de champ et l’énergie cinétique en utilisant ces orbitales : la différence entre ces termes
et les énergies réelles (respectivement coulombienne électron-électron et cinétique) est
supposée être faible, et est appelée énergie d’échange-corrélation. Seulemenet cette
petite partie Exc[ρ] de la fonction exacte est inconnue.

Au cours des dernières décennies, de nombreuses approches de la densité
fonctionnelle exacte (DFA) ont été proposées. Les approches les plus simples sont basées
sur le modèle du gaz électronique homogène, et sont appelées approches locales (LDA).
Des approximations plus sophistiquées incorporent des gradients de densité (GGA), des
densités d’énergie cinétique (meta-GGA), ou une certaine quantité d’échange exact
analogue à la théorie HF. Ces dernières approches sont souvent qualifiées d’hybrides, et
beaucoup d’entre elles donnent des résultats très précis. Un exemple de LDA est le
DFA SVWN3; PBE est un GGA et B3LYP est une DFA hybride. Les différents DFA
contiennent différents ingrédients et une quantité variable de paramètres empiriques, de
quelques uns (par exemple B3LYP) à des dizaines (par exemple M062X).

Malgré l’énorme diversité des approches, la plupart d’entre elles comportent des
erreurs communes. La plus importante d’entre elles est l’erreur d’auto-interaction
(SIE). Le SIE est dû au fait que chaque électron, formellement, interagit avec lui-même,
puisqu’il n’y a pas d’annulation exacte entre le champ moyen et le terme d’échange
dans le KS-DFT. Les autres erreurs identifiées sont l’absence de discontinuité dans la
courbe énergie/nombre de particules, et la mauvaise description des effets à longue
distance (due à l’absence de faible corrélation). La dernière erreur prise en compte est
l’erreur dite de densité, qui fait référence à l’erreur due au fait que le potentiel
d’échange-corrélation conduit le système à une densité électronique erronée, plutôt qu’à
l’adéquation de l’approximation à la fonctionnelle d’échange-corrélation.

Interprétation fondé sur orbitales
Les orbites atomiques sont les solutions d’un système mono-électronique. Il semble naturel
d’utiliser les orbitales atomiques pour construire des fonctions d’ondes approximatives,
en combinant les orbitales atomiques des atomes constitutifs pour former de nouvelles
orbitales. Comme les orbitales atomiques ont des énergies et des formes spécifiques pour
chaque type d’atome, le but est de rationaliser la structure électronique d’un système en
fonction de sa composition atomique.

Théorie de l’orbitale moléculaire

La théorie de l’orbitale moléculaire (MOT) admet que la fonction d’onde d’un système
polyatomique peut être décrite à l’aide des orbitales moléculaires (MO), qui sont
dérivées de l’interaction des différentes orbitales atomiques. L’interaction de deux
orbitales atomiques conduit à la formation d’un MO de plus faible énergie (liante) et
d’un MO de plus forte énergie (antiliante). Cela permet de prédire les propriétés
moléculaires, y compris les énergies relatives, en fonction des atomes ou groupes
d’atomes constitutifs, de leurs orbitales et de leur recouvrement.

Dans ce contexte, certains concepts fondamentaux sont définis, tels que l’hybridation,
et l’importance interprétative des orbitales frontières (HOMO et LUMO) est mise en
évidence. Il est également possible de définir des charges atomiques à l’aide de schémas
de localisation orbitale. Les succès de la MOT sont nombreux. Cependant, les MO ne sont
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pas observables : il ne s’agit que de fonctions mono-électroniques et ne sont pas définies,
à moins que l’hamiltonien exact (bielectronique) soit simplifié en un hamiltonien effectif
d’un corps. De plus, les MO ne sont pas des solutions uniques, et il est possible de trouver
des ensembles infinis de MO qui reproduisent l’énergie variationnelle totale. Les limites
des MO se manifestent par des prédictions erronées, telles que la non-stabilité du dimère
He2.

Théorie de la liaison de valence moderne

L’alternative la plus importante à la MOT est la théorie des liaisons de valence (VBT).
Le VBT est basé sur des orbitales atomiques, qu’il combine linéairement pour former des
orbitales de liaison de valence. La fonction d’onde totale est un produit antisymétrique
de ces orbites, qui ne sont généralement pas orthogonales. La construction des orbitales
se fait en termes chimiques, en considérant les structures covalentes (dans lesquelles les
électrons impliqués dans la liaison de deux atomes ont des spins appariés) et ioniques
(dans lesquelles les électrons impliqués dans la liaison occupent les orbitales atomiques
d’un seul atome). Il s’agit donc d’une théorie atomique. La génération des structures
pertinentes est dimensionnée de manière factorielle, elle doit donc généralement être
tronquée en tenant compte des règles standard de stabilité des formes résonantes. Les
fonctions d’onde résultantes, minimisées de façon variable, sont meilleures que celles de
la méthode HF (pour la même base finie) car elles contiennent plus d’un déterminant.

Cependant, ils ne saisissent pas la corrélation électronique complète et sont nettement
plus difficiles à calculer en raison du manque d’orthogonalité. Les orbitales utilisées ont
une interprétation chimique claire, et leur contribution à la fonction d’onde, par le biais
du coefficient respectif dans la combinaison linéaire, correspond à la notion de structure
chimique en termes de formes résonantes avec différentes “probabilités”. En tout cas, les
orbitales restent indéfinies dans la théorie exacte, et celles-ci sont relativement variables
selon la construction des orbitales atomiques.

Topologique chimique quantique
Au lieu d’utiliser les orbitales pour l’interprétation chimique, il est possible de se
concentrer sur la densité des électrons, qui, dans la DFT, détermine l’énergie. La
densité d’électrons est un champ scalaire défini dans l’espace tridimensionnel, de sorte
que la dimensionnalité de l’objet d’étude est considérablement réduite par rapport à la
fonction d’onde pleine. Ce type de champ scalaire peut être étudié de manière très
pratique en utilisant la théorie de Morse, qui se concentre sur les points critiques et
leurs variétés associées. Dans un sens plus large, ce type d’outil mathématique
appartient au domaine de la topologie.

Le champ scalaire par excellence est la densité électronique elle-même, ρ(r). L’étude de
ce phénomène avec des outils topologiques est généralement appelée théorie quantique des
atomes dans les molécules (AIM). Il n’y a que quatre types de points critiques différents
dans la densité d’électrons, qui sont associés aux positions nucléaires (NCP), aux liaisons
chimiques (BCP), aux anneaux (RCP) et aux boîtes (CCP). Le gradient de densité
électronique divise l’espace de manière exhaustive en variétés stables associées aux NCPs,
qui peuvent être interprétées comme des atomes. Nous appelons couramment ces sous-
espaces des “bassins” atomiques ou des atomes topologiques. Si l’action d’un opérateur
linéaire peut être exprimée en termes de densité d’électrons, nous pouvons intégrer cette
fonction dans un bassin atomique pour obtenir des véritables propriétés atomiques, telles
que les charges atomiques.
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De même, nous pouvons analyser d’autres champs scalaires, tels que la fonction de
localisation électronique (ELF). L’ELF est basée sur la relation entre différentes densités
d’énergie cinétique. Généralement, elle est exprimée en termes de ηELF (r) (Equation
4.47) qui est une fonction contrainte entre 0 et 1. Sous forme simplifiée, ηELF (r) approche
1 dans les régions où les électrons sont appariés ou bien localisés, et 0 dans les régions où
les électrons sont non appariés ou très pauvrement localisés. Le gradient de la ELF divise
également l’espace de manière exhaustive, ce qui donne lien à des bassins qui s’associent
aux noyaux (bassins nucléaires) et des bassins qui s’associent aux électrons de valence
(liaisons et paires libres). Les bassins nucléaires contiennent les positions nucléaires du
système et sont petits et forment des couches pratiquement sphériques. Les bassins de
valence sont classés en fonction du nombre de bassins nucléaires adjacents, et diffèrent
grandement par leur forme et leur volume. En règle générale, un bassin associé à une
liaison sera adjacent à deux bassins nucléaires, et par conséquent nous l’appelons une
bassin dysynaptique.

La méthode des atomes quantiques interactifs (IQA) peut être utilisée à partir de
n’importe quelle partition exhaustive de l’espace. Dans cette méthode, des matrices de
densité réduite de premier et de second ordre sont partitionnées, ce qui permet de
répartir l’énergie totale exactement en fonction des différents bassins d’espace. En effet,
l’hamiltonien exact ne dépend que de deux particules. Cette méthode fournit des
énergies quantitatives avec une interprétation directe, mais génère une grande quantité
de termes qui doivent être regroupés. En outre, elle exige l’intégration numérique de
plusieurs termes. Cela est coûteux en termes de calcul et dangereux pour
l’interprétation. Des petites erreurs en termes opposés de grande ampleur produisent
des erreurs qualitatives importantes. En outre, le cloisonnement conditionne
l’interprétation des différents termes. En raison de ces limitations, cette méthode n’est
pas très répandue dans la communauté.

Résultats

Un modèle de charge de liaison moderne
Il est possible de décrire la courbe du potentiel énergétique d’une molécule diatomique
homonucléaire en utilisant un potentiel Morse. Toutefois, il est également possible de
construire un potentiel de la forme W (R) = W0 +W1/R +W2/R

2 où R est la distance
internucléaire. Pour le même nombre de paramètres empiriques, ce modèle est capable
de s’adapter à des résultats empiriques similaires. Selon le théorème du viriel
moléculaire, nous pouvons supposer que le terme W1/R provient de l’énergie
potentielle, et le terme W2/R

2 de l’énergie cinétique. En considérant cela, nous pouvons
construire un modèle de charge de liaison, que nous pouvons décrire en considérant que
la liaison chimique est comme une particule chargée négativement confinée entre deux
atomes chargés positivement de façon distincte. Les deux atomes interagissent de façon
coulombienne, c’est-à-dire, à raison de 1/R. La particule de liaison a une charge nette
négative q, et interagit coulombiquement avec les deux atomes, donc
proportionnellement à q/R. De plus, le lien possède sa propre énergie cinétique, qui
dépend de l’espace dans lequel il est confiné. Dans une molécule diatomique, le volume
accessible est proportionnel à R, comme une particule dans une boîte de potentiel
monodimensionnelle. Par conséquent, nous pouvons supposer que le terme cinétique
s’échelonne comme ∝ 1/νR2, soit ν la fraction accessible de l’espace.

Cela nous permet d’interpréter de manière qualitative l’origine des différents termes
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de la première expression. Parr et ses co-auteurs ont utilisé des expressions analytiques
pour dériver W1/R et W2/R

2 et ont utilisé le modèle résultant pour ajuster différentes
propriétés expérimentales. Il est remarquable que, connaissant l’expression analytique de
W (R), il soit possible d’obtenir la distance d’équilibre internucléaire Req ; la constante
de force ke, avec laquelle la fréquence harmonique peut être calculée, et l’énergie de
dissociation. Cependant, comme il n’existe pas de moyen empirique de quantifier la valeur
de q, il est difficile de paramétrer le modèle de manière cohérente. Pour les systèmes
simples, il est possible d’obtenir des valeurs absurdes des deux paramètres considérés, q
et ν.

Toutefois, le modèle présente des propriétés particulièrement intéressantes. Pour
commencer, il considére explicitement la liaison chimique et ses propriétés. En d’autres
termes, il déconnecte les électrons de valence de leurs atomes respectifs. En ce sens, il
est plus souple pour intégrer des corrections. Par exemple, une liaison sous contrainte
(par exemple dans le cyclopropane) peut être représentée par une charge de liaison
déviée de l’axe internucléaire. Il permet également de faire varier l’ordre de la liaison
formelle de façon continue, en transférant la charge des atomes à la liaison et vice-versa.
Un champ de force atomique nécessite des potentiels différents pour des ordres de
liaison différents.

Le modèle de charge de liaison – fonction de localisation électronique

Si le calcul de q est possible, plusieurs des problèmes du modèle original sont résolus.
D’une part, il est possible de s’assurer que q reste rationnel. D’autre part, il est possible
d’intégrer la migration de la densité électronique, en comprenant la variation dq/dR.
De manière pratique, q et ν peuvent être définis à partir de la topologie ELF. q est
simplement l’intégrale de ρ(r) dans le bassin correspondant a la liaison considerée, et ν
peut être obtenu en soustrayant le rayon des bassins nucléaires à la distance internucléaire.
Cela implique que les atomes sont clairement identifiés avec les bassins nucléaires donnés
par l’ELF. Nous appellerons ces pseudo-atomes nucléaires simplement des noyaux, en
nous rappelant qu’ils comprennent les électrons les plus proches et pas simplement le
noyau atomique ponctuel.

Comme q est le terme fondamental du modèle, nous pouvons proposer une expression
de la forme W = D + V + T +XC, où D est l’énergie du système avec R →∞ ; V est
l’énergie potentielle, qui comprend des termes noyau-noyau proportionnels à 1/R et des
termes noyau-liaison proportionnels à q/R. T est un terme cinétique, pour lequel nous
proposons une forme proportionnelle à q5/3/R2 basée sur une approximation locale. XC
reprend les effets de corrélation et d’échange liés à Exc[ρ]. Nous supposons que ce terme
est petit et négligeable car les bassins ELF minimisent la répulsion de Pauli les uns pour
les autres.

Pour valider le modèle, des calculs ont été effectués en utilisant la méthode
ELF–IQA. En assimilant les termes de notre modèle à des termes rigoureux issus de la
décomposition IQA, il est possible de tester empiriquement les principales hypothèses
du modèle et l’insignifiance relative de XC. En utilisant les données d’un certain
nombre de molécules simples, nous avons confirmé que les principales hypothèses du
modèle sont remplies pour les liaisons covalentes et aussi les partiellement ioniques. Les
liaisons ioniques presque parfaites ne sont pas compatibles, car l’ELF n’est pas capable
d’assigner un bassin à la liaison, et les liaisons métalliques (par exemple Li2) ne sont
pas bien décrites. Cette dernière problématique est cohérente puisque la liaison
métallique ne ressemble pas à la représentation initiale. Le caractère métallique d’une
liaison peut être mesuré quantitativement en utilisant l’Équation 5.28, basée sur
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l’homogénéité de la densité électronique dans le BCP associé.
Nous pouvons donc conclure que le modèle est adapté pour décrire des liaisons chim-

iques covalents très variées de façon robuste.

Application sur la liaison C-C

À titre d’exemple d’application, le modèle que nous avons développé peut être utilisé pour
prédire l’énergie de liaison intrinsèque des liens C–C. L’énergie de liaison intrinsèque est
l’énergie d’une liaison in-situ, et donc une propriété d’équilibre d’un système chimique
qui ne correspond pas à l’énergie de dissociation.

Pour cela, il est nécessaire d’affiner le terme d’énergie cinétique proposé ci-dessus,
puisqu’il était basé sur une densité électronique homogène. Nous incluons un facteur de
blindage pour décrire correctement l’énergie cinétique dans une échelle de R supérieure.
Comme données de référence, nous avons calculé q, Req et l’énergie de liaison
intrinsèque pour 13 liens caractéristiques: C–C C3H6, H3C–CH3, C6H6, H3C4 –C4H3,
H2C––CH2, HC–––C–C–––CH, HC–––CH et C2 pour échantillonner différents ordres de
liens, et les conformations gauche- et trans- du 1,2-Difluoroéthane, ainsi que les
isomères 1,2-Difluoroéthène cis- et trans- et le Tétrafluoroéthène pour montrer l’effet
des différents substituants. Cette base de données est destinée à minimiser les effets de
réarrangement et les interactions entre les fragments autrement que par la liaison C–C
en question.

En utilisant un modèle analytique à trois paramètres, il est possible d’ajuster cette
base de données avec un coefficient de détermination r2 = 0.992 (au niveau
ωB97XD/def2-QZVP). D’autres niveaux de théorie conduisent à des valeurs similaires
pour le même modèle. Si, au lieu de se limiter à un seul niveau de théorie, on prend
comme données les résultats obtenus avec 61 méthodes différentes (59 DFA, HF et
MP2), l’ajustement se détériore à r2 = 0.985, ce qui est de toute façon assez bon. Cela
implique que différentes méthodes établissent un rapport similaire entre les densités et
les énergies des liaisons. La méthode la moins adaptée est la méthode HF, ce qui est
cohérente car cette méthode ne décrit pas la corrélation de manière adéquate et repose
sur des approches différentes au reste. L’erreur associée au modèle ajusté est similaire à
l’erreur estimée pour les DFA contemporains, et donc le modèle est suffisamment
robuste pour être utilisée de manière semi-quantitative. Deux exemples d’application
sont donnés : l’énergie de la liaison C–C dans le cyclopentadiényle est réduite d’environ
14 kcal/mol lorsqu’elle fait partie d’une molécule de ferrocène. D’autre part, nous
estimons que les liaisons du diamant sont similaires aux autres liaisons C–C simples,
tandis que les liaisons du graphite sont plus faibles que celles du benzène.

Liens entre densités et énergies
L’importance des erreurs de densité est une question controversée dans la communauté
des DFT. La plupart des DFAs modernes contiennent un certain nombre de paramètres
empiriques. Ces paramètres sont généralement ajustés pour reproduire certaines énergies,
absolues ou relatives. Certains auteurs suggèrent que cela peut conduire à ce que certains
DFAs entraînent des densités électroniques erronées même si les énergies sont correctes.
Cela implique que le système sera mal décrit en général. Cependant, la quantification
des erreurs dans la densité électronique n’est pas triviale. L’évaluation de l’erreur de
densité en termes d’énergie n’est pas univoque, car il existe au moins deux voies reliant
l’évaluation d’un DFA dans sa densité autoconsistante et l’évaluation d’un autre DFA
dans sa propre densité autoconsistante.
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La plupart de la densité est concentrée autour des noyaux. En comparant la densité
autoconsistante donnée par une méthode avec une densité de référence, on constate que
la plupart des erreurs se concentrent également dans les régions nucléaires. Toutefois, en
termes relatifs, cette erreur est minime (1-2%) alors que dans les régions de valence, où
l’erreur est faible en termes absolus, elle peut être supérieure à 10% en termes relatifs.

De ce fait, il est déconseillé d’utiliser des descripteurs globaux de la qualité de la
densité électronique, et il est recommandé d’opter pour des descripteurs locaux utilisant
des outils topologiques. Par exemple, la population des bassins de liaison donnée par
l’ELF est un indicateur intuitif. En outre, il peut être calculé entre différentes géométries,
et comme nous avons vu précédemment son effet sur d’autres propriétés de liaison peut
être interprété (Req et ke par exemple). En général, la HF entraîne une densité de liaison
excessive dans les systèmes covalents, qui à son tour entraîne des distances d’équilibre
trop courtes et des fréquences harmoniques trop élevées. Cela est dû à l’absence de
corrélation électronique. Les DFA locaux ont un comportement opposé en raison du SIE,
et ont tendance à répartir la densité de manière homogène.

Les DFA hybrides utilisant une grande quantité d’échange exact ont un effet similaire
à celui de la HF sur la densité, leur utilisation est donc déconseillée même si des énergies
très précises peuvent être obtenues. Le SIE agit de manière similaire à la corrélation
électronique dans les régions de liaison, provoquant une répulsion entre les électrons.
L’incorporation de plus de propriétés, plutôt que seulement des énergies et des énergies
relatives, est préconisée dans le paramétrage des nouveaux DFAs.

Paramètres de cellule unité

Dans les liaisons ioniques fortes, la HF conduit à des distances de liaison plus longues
tandis que la DFA locale conduit à un raccourcissement fictif. C’est encore une fois dû
au SIE. La HF préfère distinguer plus clairement les deux ions, tandis que dans la DFT
on obtient des densités plus étalées.

Cette erreur est clairement évidente dans l’optimisation géométrique des systèmes
ioniques périodiques. Les approches LDA conduisent à des paramètres cellulaires
artificiellement petits, tandis que les HF conduisent à des paramètres cellulaires trop
élevés. En général, ces deux limites font office de barres d’erreur par rapport à d’autres
méthodes et des résultats expérimentaux. Dans ce cas, les résultats expérimentaux
obtenus par diffraction des rayons X sont très précis et tombent dans le plupart de cas
entre ces deux limites théoriques.

Conclusions
Cette thèse examine de manière critique les principaux cadres conceptuels et modèles
interprétatifs de la chimie, en mettant l’accent sur l’omniprésence de la perspective
atomistique.

Une révision du modèle de charge de liaison et la ELF a été proposé et développée.
Elle a ensuite été validée empiriquement et ses limites ont été rationalisées en termes
intuitifs. Un exemple concret dans lequel le nouveau modèle peut être utilisé est la
liaison C–C, clairement covalente. Dans ce cas, les énergies de liaison intrinsèques ont
été modélisées avec une précision semi-quantitative. Le modèle soulève des possibilités
futures d’application dans de multiples domaines de la modélisation chimique.

Enfin, les problèmes associés à la quantification des erreurs de la densité
électronique dues à ses caractéristiques locales sont abordés. De ce point de vue, il est
cohérent d’utiliser des techniques locales pour étudier ce type d’erreur. Bien compris,
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les différents modèles entraînent des conséquences cohérentes et introduisent des erreurs
qualitatives dans la description du système. Les distances internucléaires associées aux
liaisons covalentes et ioniques en sont un exemple.
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Resumen
Resumen en Castellano.

Palabras clave: enlace químico, teoría del funcional de la densidad, química cuántica

Introducción
Esta tésis se enmarca dentro de un campo relativamente nuevo de la química: la química
cuántica, desarrollada a partir de la mecánica cuántica de la segunda mitad del siglo XX.
La química cuántica combina la química con los métodos de la mecánica cuántica, lo cual
permite describir sistemas químicos in silico con gran precisión.

Esto requiere un tratamiento cuántico de los electrones, que no se asemejan en
absoluto al mundo macroscópico que experimentamos los seres humanos. Sin embargo,
las ecuaciones de la mecánica cuántica no tienen soluciones exactas para sistemas
polielectrónicos. Consecuentemente, se utilizan rutinariamente distintos modelos
simplificados que incluyen aproximaciones matemáticas. Al no tener experiencia
empírica de la dinámica electrónica, a menudo los modelos aproximados de la química
cuántica se utilizan como fundamentación ontológica. Por ejemplo, el concepto “orbital
molecular”, prácticamente imprescindible en química, no está definido en la teoría
exacta.

Paralelamente, la química tradicional hereda una serie de modelos y conceptos
derivados, fruto de una larga tradición científica. Algunos de estos conceptos, como
“electronegatividad” o “enlace covalente” son fundamentales para comprender la
química. Este tipo de conceptos no están definidos desde un punto de vista cuántico, y
la inmensa mayoría no están definidos de forma rigurosa en ninguna teoría aproximada.
Esto es problemático debido a que los modelos que utilizamos para entender la realidad
orquestan también nuestro raciocinio: nos permiten hacer predicciones, imaginar nuevas
especies químicas e interpretar fenómenos observados empíricamente. Dado que los
modelos fundados en la mecánica cuántica y los modelos fundados en conceptos
históricos no son ontologicamente reductibles, a menudo utilizamos conceptos
provenientes de distintos modelos

La utilidad de un modelo es doble. Primero, durante el proceso de construcción,
require un esfuerzo de abstracción y matematización. Después, en su aplicación, nos
ayuda a comprender las interacciones entre distintos factores, incluyendo causas y efectos.
Debido a su gran utilidad, la construcción y aplicación de modelos es parte fundamental
de cualquier ámbito científico. Sin embargo, en química a veces encontramos modelos
y conceptos muy distintos que llevan a argumentos opuestos sobre cómo entender los
procesos químicos.

Este trabajo está centrado en la elaboración de un modelo de enlace químico basado
en componentes subatómicos. A diferencia de la mayoría de los modelos contemporáneos,
centrados en la idea de átomo, este modelo se centra en el concepto de enlace químico:
define el enlace químico como una entidad genuina y localizada que interacciona con
pseudoátomos. Esto permite pensar más allá de los átomos y por tanto tiene un potencial
innovador. Para comprender sus virtudes y sus defectos, es necesario comprender los
diferentes modelos conceptuales existentes actualmente, y en qué puntos fallan. También
es necesario entender los problemas asociados a la parametrización y los fundamentos de
los principales métodos de la química teórica.

En consecuencia, en esta tésis se dedica el Capítulo 1 a los conceptos que pertenecen
a la llamada intuición química. Después, en el Capítulo 2 se explican con cierto detalle
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los fundamentos de la química cuántica desde un punto de vista matemático y formal.
Posteriormente, se dedican sendos capítulos, 3 y 4 a los marcos interpretativos que utilizan
orbitales y campos escalares derivados de la función de onda respectivamente. Una vez
asentadas estas bases, en el Capítulo 5 se desarrolla y aplica el modelo en cuestión,
que lleva por nombre “ELF-BCM”. En el Capítulo 6 se tratan, en relación con el modelo
anterior, algunas cuestiones concernientes a la relación entre las propiedades de un enlace
químico y su descripción computacional.

Interpretación química
El concepto de interpretación química hace referencia a la manera que tenemos de
explicar y racionalizar las observaciones química empíricas, in vitro o in silico. En
química, generalmente, tratamos de entender procesos complejos, como
transformaciones químicas, en terminos que permitan realizar predicciones. La teoría
interpretativa histórica que se utiliza en química tiene su origen moderno en la
revolución química de los siglos 17 y 18, cuyo máximo representante es Lavoisier. En
este punto la química se distancia de la filosofía natural y adquiere entidad propia.
Llamaremos a este corpus de conocimiento, que tuvo importantes contribuciones en el
siglo XX, la “Folk Molecular Theory” (FMT, teoría molecular tradicional).

Los tres principales pilares de la FMT son la estructura química, las propiedades
químicas y las interacciones, en las que incluímos la formación y ruptura de enlaces
químicos. Se asume rutinariamente que, una vez determinada la estructura de la
materia, las propiedades emergen de una combinación de dicha estructura y las
propiedades fundamentales de los elementos. Por tanto, es importante entender qué
propiedades asociamos a los átomos y a los elementos, qué entendemos como estructura
química y cómo se relacionan estos conceptos con la mecánica cuántica.

En química cuántica, y en mecánica cuántica en general, todo sistema es representado
por una función de onda definida en un espacio de Hilbert. Las propiedades del sistema
resultan de la aplicación de un operator (en espacios de Hilbert finitos, dicho operador es
lineal y hermítico) a dicha función de onda. Por ende, ninguna propiedad que no pueda
ser representada como operador está definida.

Esto implica que la epistemología propia de la química queda atrapada entre dos
límites funcionales: la epistemología cuántica en lo subatómico, y la experiencia empírica
de lo macroscópico, que rara vez es conceptualizado en términos de moléculas y átomos.

Los conceptos más fundamentales en la historia de la química es el de elemento
químico. Definimos elemento como especie de átomo, todos los átomos con el mismo
número atómico. La consideración de estas especies proviene de la identificación de
particular elementales, y originalmente se asociaba a su número másico, ya que la tabla
periódica de Mendeley data de 1869 y la noción de número atómico de 1913.
Generalmente, clasificamos los átomos según la posición de sus elementos
correspondientes en la tabla periódica, y asociamos propiedades a los distintos
elementos. Algunos ejemplos son la electronegatividad, de la que existen muchas escalas
empíricas en términos atómicos (un ejemplo es la escala de Pauling, definida en la
Ecuación 1.1), y el radio atómico. Sin embargo, en términos cuánticos un átomo es un
sistema ideal, y los átomos no existen formando parte de una molécula porque el
operador posición no conmuta con el hamiltoniano del sistema.

En la FMT, la estructura química se comprende como un conjunto de átomos con
propiedades diversas que interaccionan por medio de enlaces químicos, que son
generalmente entendibles en términos de valencia o de diferencia de electronegatividad.
La molécula se representa con símbolos atómicos y símbolos relacionados con los

13



electrones de valencia (enlaces, pares libres). Es posible generalizar estas estructuras
usando formas resonantes, cuya contribución es proporcionalidad a su estabilidad
relativa. La estabilidad relativa se evalua usando los mismos criterios basados en la
valencia y la electronegatividad. La disposición geométrica es predecible a menudo en
base a la teoría de repulsión de los pares de electrones de valencia (VSEPR por sus
siglas en inglés) que se basa en estas ideas. En definitiva, la estructura química se
entiende sujeta a las propiedades de los átomos constituyentes, que buscan tener capas
de valencia llenas y/o satisfacer la VSEPR.

A la hora de interpretar las interacciones químicas, sin embargo, no sólo nos
limitamos a usar propiedades atómicas. También se incluyen frecuentemente grupos
funcionales. Algunos grupos de átomos tienen propiedades concretas transferibles de un
entorno químico a otro, como el efecto inductivo o ciertos tipos de enlace químico.

Enlace químico

El enlace químico es la interacción química predominante: fuerzas que actúan en los
átomos (o grupos de átomos) y los mantienen unidos en agregados relativament
estables. No podemos definir el enlace químico así si no aceptamos los conceptos de
átomo y grupo funcional anteriormente. Habitualmente, en química categorizamos el
enlace químico en varios tipos con distintas propiedades. El tipo de enlace está
determinado por las propiedades de los átomos enlazados.

El enlace covalente es aquel basado en la compartición de electrones, y el ejemplo
paradigmático son las moléculas diatómicas homonucleares, ya que la fuerza neta entre
ambos átomos es cero a menos que haya una acumulación de densidad electrónica en el
eje internuclear.

Los enlaces iónicos, al contrario, surgen cuando esta acumulación es mínima y lo que
tiene lugar es, fundamentalmente, la transferencia de un electron de un átomo a otro y
la posterior interacción electrostática entre los dos átomos. No hay un caso perfecto de
enlace iónico, pero las sales binarias compuestas de átomos alcalinos y halógenos son un
buen ejemplo.

El tercer tipo principal son los enlaces metálicos, que surgen de la compartición de
electrones de forma deslocalizada entre varios átomos. Además de estos tipos
mayoritarios también hay varias categorías menos asentadas pero utilizadas, como los
enlaces hápticos, dativos o de hidrógeno. En general, los tipos de enlace no son
categorías definidas positivamente, pero si lo bastante convencionales como para ser
útiles.

Fundamentos de la química cuántica
La función de onda de un sistema no-relativista obedece la ecuación de Schrödinger
dependiente del tiempo (Ecuación 2.1). Obviando la dependencia del tiempo, podemos
centrarnos en los estados estacionarios, gobernados por la ecuación de Schrödinger
independiente del tiempo (Ecuación 2.6). Si aceptamos que los núcleos atómicos son
cargas puntuales que permanecen aproximadamente estáticas respecto a los electrones
(aproximación de Born-Oppenheimer), podemos resolver la estructura electrónica para
cualquier configuración nuclear. Llamamos superficie de energía potencial (PES, por sus
siglas en inglés) a la hipersuperficie dada por la energía en función de las coordenadas
de los núcleos de un sistema.

De cualquier modo, esta ecuación no es generalmente resoluble para sistemas de más
de un electrón. Las soluciones analíticas cerradas para la ecuación monoelectrónica se
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denominan orbitales. En sistemas polielectrónicos solemos construir una función de
onda aproximada como producto antisimetrizado de orbitales (atómicos). La forma más
habitual de construir una función de onda con estas características es el llamado
determinante de Slater (Ecuación 2.22).

La minimización variacional de la energía de una función de onda
monodeterminantal define el llamado método de Hartree-Fock (HF). Este proceso se
realiza de forma iterativa hasta lograr la autoconsistencia. En el método de HF los
electrones no interactúan explícitamente unos con otros, sino que cada electrón
interacciona electrostáticamente con el promedio del resto de electrones a través de la
integral bielectrónica de Coulomb. Además, la integral de bielectrónica de intercambio
cancela exactamente la contribución de un mismo electrón en este campo medio.
Computacionalmente, el problema de minimización se resuelve utilizando una base
finita, generalmente compuesta de orbitales atómicos. Muy habitualmente en química,
los orbitales atómicos son expresados como combinaciones lineales de gausianas
(Gaussian Type Orbitals, GTOs).

Por el teorema variacional sabemos que, usando el hamiltoniano preciso, la función de
onda exacta produce la energía mínima. Para una base finita dada, la energía variacional
más baja se obtiene utilizando el método FCI (Full Configuration Interaction). El coste
computacional de este método aumenta drásticamente con el número de electrones del
sistema. La diferencia de energía entre la energía HF y la energía FCI se denomina
energía de correlación. La falta de correlación es el principal problema del método HF.
Generalmente subdividimos la energía de correlación en dos partes: una fuerte, debida al
carácter monodeterminantal, que mejora añadiendo otros determinantes a la función de
onda (como combinación lineal, por ejemplo); y otra parte, típicamente llamada débil, que
se debe al uso del campo medio. Distintos métodos incluyen, explícita o implícitamente,
ciertas cantidades de correlación electrónica. En general, los métodos sin correlación
electrónica no tienen precisión suficiente para ser utilizados en química, pero el coste de
los métodos correlacionados escala exponencialmente.

Teoría del Funcional de la Densidad

La teoría del funcional de la densidad (DFT por sus siglas en inglés) se basa en los
teoremas de Hohemberg y Kohn, que aseguran que la energía es un funcional unívoco
de la densidad electrónica ρ(r). Se desconoce la forma de este funcional, por lo que en
general se emplea el esquema de Kohn y Sham, dando lugar a lo que se denomina
KS-DFT. El esquema KS-DFT es análogo al de Hartree-Fock y usa determinantes de
Slater y bases finitas. Este esquema asume que los orbitales en dicho determinante
corresponden a la función de onda de un sistema ficticio que tiene la misma densidad
electrónica que el sistema real. Esto permite calcular la interacción de campo medio y
la energía cinética usando dichos orbitales: la diferencia entre estos términos y las
verdaderas energías (coulombica electrón-electrón y cinética respectivamente) se
presuponen pequeñas, y se denominan la energía de correlación-intercambio. Solo esa
pequeña parte del funcional exacto, Exc[ρ], es desconocida.

A lo largo de las últimas décadas, se han propuesto multitud de aproximaciones al
funcional de la densidad exacto (DFAs, por sus siglas en inglés). Las aproximaciones
más simples se basan en el modelo del gas electrónico homogéneo, y se denominan
aproximaciones locales (LDAs, por sus siglas en inglés). Aproximaciones más
sofisticadas incorporan gradientes de la densidad (GGAs, por sus siglas en inglés),
densidades de energía cinética (meta-GGAs) o cierta cantidad de intercambio exacto
análogo al de la teoría de HF. Estas últimas aproximaciones se suelen denominar
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híbridas, y muchas de ellas consiguen resultados muy precisos. Un ejemplo de LDA es
la DFA SVWN3; PBE es una GGA y B3LYP es una aproximación híbrida. Distintas
DFAs incorporan distintos ingredientes y una cantidad variable de parámetros
empíricos, desde unos pocos (e.j. B3LYP) hasta decenas (e.j. M062X).

A pesar de la enorme diversidad de aproximaciones, la mayoría de las mismas
incurre en algunos errores comunes. El más importante de los mismos es el error de
auto-interaccion (SIE, por sus siglas en inglés). El SIE se debe a que cada electron,
formalmente, interacciona consigo mismo, ya que no hay cancelación exacta entre el
término de campo medio y el de intercambio en KS-DFT. Otros errores identificados
son la falta de una discontinuidad en la curva de energía frente a número de partículas,
y la mala descripción de los efectos de larga distancia (debido a la falta de correlación
débil). El último error considerado es el llamado error de la densidad, que hace
referencia al error debido a que el potencial de correlación-intercambio lleva el sistema a
una densidad electrónica errónea, más que a la adecuación del funcional aproximado.

Interpretación basada en orbitales
Los orbitales atómicos son las soluciones de un sistema monoelectrónico. Parece natural
usar los orbitales atómicos para construir funciones de onda aproximadas, combinando
los orbitales atómicos de los átomos constituyentes para formar nuevos orbitales. Dado
que los orbitales atómicos tienen energías y formas concretas para cada tipo de átomo, el
objetivo es racionalizar la estructura electrónica de un sistema en base a su composición
atómica.

Teoría de Orbitales Moleculares

La teoría de orbitales moleculares (MOT por sus siglas en inglés) acepta que la función
de onda de un sistema poliatómico puede ser descrita usando orbitales moleculares
(MOs por sus siglas en inglés), que se derivan de la interacción de los distintos orbitales
atómicos. La interacción de dos orbitales atómicos lleva a la formación de un MO de
energía menor (enlazante) y uno de energía mayor (antienlazante). Esto permite
predecir propiedades moleculares, incluidas energías relativas, en base a los átomos o
grupos de átomos constituyentes, sus orbitales y el solapamiento entre los mismos.

En este contexto se definen algunos conceptos fundamentales, como el de
hibridación, y se destaca la importancia interpretativa de los orbitales frontera (HOMO
y LUMO). También es posible definir cargas atómicas utilizando esquemas de
localización de orbitales. Los éxitos de la MOT son numerosos. Sin embargo, los MOs
no son observables: sólo son funciones de un único electrón y no están definidas a menos
que el hamiltoniano exacto (bielectrónico) se simplifique a un hamiltoniano efectivo de
un solo cuerpo. Además, los MOs no son soluciones únicas, y es posible encontrar
infinitos sets de MOs que reproducen la energía variacional total. Las limitaciones de la
MOT se manifiestan en predicciones erróneas, como la ausencia de estabilidad del
dímero He2.

Teoría de Enlace de Valencia Moderna

La alternativa más importante a la MOT es la teoría de enlace de valencia (VBT por
sus siglas en inglés). La VBT se basa en orbitales atómicos, que combina linealmente
para formar orbitales de enlace de valencia. La función de onda total es un producto
antisimetrizado de orbitales de este tipo, que por lo general no son ortogonales. La
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construcción de los orbitales se realiza en términos químicos, considerando estructuras
covalentes (en las que los electrones involucrados en el enlace de dos átomos tienen
espines apareados) e ionicas (en el que los electrones involucrados en el enlace ocupan
los orbitales atómicos de un solo átomo). Se trata por tanto de una teoría atómica. La
generación de las estructuras relevantes escala factorialmente, por lo que habitualmente
debe ser truncada teniendo en cuenta las reglas estándar de estabilidad de formas
resonantes. Las funciones de onda resultantes, minimizadas variacionalmente, son
mejores que las del método HF (para una misma base finita) al contener más de un
determinante.

Sin embargo, no capturan toda la correlación electrónica y son significativamente más
difíciles de calcular debido a la falta de ortogonalidad. Los orbitales utilizados tienen
una interpretación química clara, y su contribución en la función de onda, a través del
respectivo coeficiente en la combinación lineal, encaja con la noción de la estructura
química en términos de formas resonantes con distintas “probabilidades”. En cualquier
caso, los orbitales siguen sin estar definidos en la teoría exacta, y éstos son relativamente
variables en función de la construcción de los orbitales atómicos.

Topología química cuántica
En lugar de utilizar orbitales para elaborar la interpretación química, es posible centrarse
en la densidad electrónica, que en DFT determina la energía. La densidad electrónica es
un campo escalar definido en un espacio tridimensional, por lo que la dimensionalidad del
objeto de estudio se reduce sustancialmente respecto a la función de onda completa. Este
tipo de campos escalares puede ser estudiado muy convenientemente utilizando la teoría
de Morse, que se centra en los puntos críticos y sus variedades asociadas. En un sentido
más amplio, este tipo de herramientas matemáticas pertenecen al área de la topología.

El campo escalar por excelencia es la propia densidad electrónica, ρ(r). El estudio
de ésta con herramientas topológicas se suele denominar teoría cuántica de átomos en
moleculas (AIM, por sus siglas en inglés). Sólo hay cuatro tipos de puntos críticos
distintos en la densidad electrónica, que se asocian con las posiciones nucleares (NCPs),
enlaces químicos (BCPs), anillos (RCPs) y cajas (CCPs). El gradiente de la densidad
electrónica particiona exhaustivamente el espacio en variedades estables asociadas a
NCPs, que pueden interpretarse como átomos. Llamamos rutinariamente a estos
subespacios “cuencas” atómicas o átomos topológicos. Si la acción de un operador lineal
puede expresarse en términos de la densidad electrónica, podemos integrar dicha
función en una cuenca atómica para obtener propiedades atómicas genuinas, como
cargas atómicas.

Similarmente, podemos analizar otros campos escalares, como la función de
localización electrónica (ELF, por sus siglas en inglés). La ELF se basa en la relación
entre distintas densidades de energía cinética. Generalmente, se expresa en términos de
ηELF (r) (Ecuación 4.47) que es una función acotada entre 0 y 1. De forma simplificada,
ηELF (r) se aproxima a 1 en regiones en las que los electrones están apareados o
localizados, y a 0 en regiones en las que los electrones están desapareados o muy poco
localizados. El gradiente de la ELF también particiona exhaustivamente el espacio,
dando como resultado cuencas que se asocian con núcleos (cuencas nucleares) y cuencas
que se asocian con los electrones de valencia (enlaces y pares libres). Las cuencas
nucleares contienen posiciones nucleares del sistema y son pequeñas y prácticamente
esféricas. Las cuencas de valencia son clasificadas según el número de cuencas nucleares
adyacentes, y difieren mucho en forma y volumen. Típicamente, una cuenca asociada a
un enlace será adyacente a dos cuencas nucleares, lo que habitualmente se denomina
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disináptica.
El método de átomos cuánticos interactivos (IQA, por sus siglas en inglés) se puede

utilizar partiendo de cualquier particion exhaustiva del espacio. En este método se
particionan las matrices de densidad reducidas de primer y segundo orden, lo cual
permite descomponer la energía total de manera exacta en términos provenientes de las
diferentes cuencas del espacio. Ésto se debe a que el hamiltoniano exacto sólo depende
de dos partículas. Este método proporciona energías cuantitativas y con una
interpretación directa, pero genera una gran cantidad de términos que deben ser
reagrupados. Además, requiere integración numérica de múltiples términos. Esto es
costoso computacionalmente, y no exento de riesgos. Pequeños errores en términos
opuestos de gran magnitud producen errores cualitativos importantes. Además, el
particionado condiciona la interpretación de los diferentes términos. Debido a estas
limitaciones este método por ahora no se ha extendido mucho en la comunidad.

Resultados

Un Modelo de Carga de Enlace Moderno
Es posible describir la curva de energía potencial de una molécula homonuclear
diatómica usando un potencial de Morse. Sin embargo, también es posible construir un
potencial de la forma W (R) = W0 + W1/R + W2/R

2 donde R es la distancia
internuclear. Para un mismo número de parámetros empíricos, este modelo es capaz de
proporcionar ajustes similares a resultados empíricos. Según el teorema del virial
molecular podemos asumir que el término W1/R proviene de la energía potencial, y el
término W2/R

2 de la energía cinética. Considerando esto, podemos construir un modelo
de enlace de carga, que podemos describir considerando que el enlace químico es una
partícula cargada negativamente confinada entre dos átomos de carga netamente
positiva. Ambos átomos interaccionan de forma coulombica, es decir, ∝ 1/R. La
partícula de enlace tiene una carga negativa neta q, e interacciona coulombicamente con
ambos átomos, siguiendo un factor proporcional a q/R. Además, el enlace tiene su
propia energía cinética, que depende del espacio en el que está confinada. En una
molécula diatómica, el volumen accesible es proporcional a R, similar a una partícula
en una caja de potencial monodimensional. Por ello, podemos asumir que el término
cinético escala como ∝ 1/νR2, siendo ν la fracción accesible del espacio.

Esto permite interpretar de forma cualitativa el origen de los distintos términos en
la primera expresión. Parr y coautores utilizaron expresiones analíticas para derivar
W1/R y W2/R

2 y usaron el modelo resultante para ajustar distintas propiedades
experimentales. Cabe destacar que una vez conocida la expresión analítica de W (R) es
posible obtener la distancia internuclear de equilibrio Req; la constante de fuerza ke,
con la que se puede calcular la frecuencia armónica, y la energía de disociación. Sin
embargo, al carecer de una forma empirica de cuantificar q, resulta difícil parametrizar
el modelo de forma consistente. Para sistemas sencillos es posible obtener valores
absurdos de los dos parámetros considerados, q y ν.

Sin embargo, el modelo tiene algunas propiedades particularmente interesantes.
Para empezar, considera explícitamente el enlace y sus propiedades. Dicho de otro
modo, desconecta los electrones de valencia de sus respectivos átomos. En ese sentido,
es más flexible para incorporar correcciones. Por ejemplo, un enlace tensionado (e.g.
ciclopropano) puede ser representado por una carga de enlace desviada del eje
internuclear. También permite variar el orden de enlace formal de manera continua,
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transferiendo carga de los átomos al enlace y viceversa. Un campo de fuerza atómico
require potenciales distintos para distintos ordenes de enlace.

El Modelo de Carga de Enlace – Función de Localización Electrónica

Si calcular q es posible, varios de los problemas del modelo original se solucionan. Por un
lado, resulta posible asegurar que q permanece racional. Por otro, permite incorporar la
migración de densidad electrónica, entendiendo la variación dq/dR. Convenientemente,
tanto q como ν pueden ser definidos a partir de la topología de la ELF. q es simplemente
la integral de ρ(r) en la cuenca correspondiente al enlace, y ν se puede obtener restando el
radio de las cuencas nucleares a la distancia internuclear. Esto implica que los átomos son
identificados claramente con las cuencas nucleares dadas por la ELF. Llamaremos a estos
pseudoátomos nucleares simplemente núcleos, recordando que incluyen los electrones más
próximos y no simplemente el núcleo atómico puntual.

Al ser q el término fundamental del modelo, podemos proponer una expresión de
la forma W = D + V + T + XC, donde D es la energía del sistema con R → ∞;
V es la energía potencial, que incluye términos núcleo–núcleo proporcionales a 1/R y
enlace–núcleo proporcionales a q/R. T es un término cinético, para el que proponemos
una forma propocional a q5/3/R2 basándonos en una aproximación local. XC recoge
efectos de correlación e intercambio relacionados con Exc[ρ]. Asumimos que este término
es pequeño y despreciable debido a que las cuencas de la ELF minimizan la repulsión de
Pauli entre ellas.

Para validar el modelo, se realizaron cálculos utilizando la ELF y el método IQA.
Equiparando los términos de nuestro modelo con términos rigurosos derivados de la
descomposición IQA, es posible poner a prueba empíricamente las asunciones clave del
modelo y la relativa falta de relevancia de XC. Usando datos de una serie de moléculas
sencillas se confirma que las principales asunciones del modelo se cumplen para enlaces
covalentes y parcialmente iónicos. Los enlaces casi perfectamente iónicos no son
compatibles dado que la ELF no es capaz de asignar una cuenca al enlace, y los enlaces
metálicos (e.g. Li2) no están bien descritos. Esto último es coherente dado que el enlace
metálico no se asemeja a la representación de partida. El carácter metálico de un enlace
puede medirse de forma cuantitativa usando la Ecuación 5.28, que se basa en la
homogeneidad de la densidad electrónica en el BCP asociado.

Por tanto, podemos concluir que el modelo es adecuado para describir enlaces cova-
lentes con robustez.

Aplicación en enlaces C-C

Como ejemplo de aplicación, el modelo puede ser utilizado para predecir la energía de
enlace intrínseca de enlaces C–C. La energía de enlace intrínseca es la energía de un enlace
in situ, y por tanto una propiedad de equilibrio de un sistema químico, a diferencia de
la energía de disociación.

Para ello es necesario refinar el término de energía cinética planteado anteriormente,
ya que éste se basaba en una densidad electrónica homogénea. Incluimos un factor de
apantallamiento para describir correctamente la energía cinética en un rango de R
mayor. Como datos de referencia, calculamos q, Req y la energía de enlace intrínseca
para 13 enlaces C–C característicos: C3H6, H3C–CH3, C6H6, H3C4 –C4H3, H2C––CH2,
HC–––C–C–––CH, HC–––CH y C2 para muestrear distintos ordenes de enlace, y las
conformacionesr gauche- y trans- del 1,2-Difluoroetano, así como los isómeros cis- y
trans- del 1,2-Difluoroeteno y el Tetrafluoroeteno para muestrear el efecto de distintos
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sustituyentes. Esta base de datos pretende minimizar efectos de reorganización e
interacciones entre los fragmentos que no sean fundamentalmente a través el enlace
C–C en cuestión.

Usando un modelo analítico con tres parámetros, es posible ajustar esta base de
datos con un coeficiente de determinación r2 = 0.992 (a nivel ωB97XD/def2-QZVP).
Otros niveles de teoría conducen a valores similares para el mismo modelo. Si, en lugar
de limitarse a un solo nivel de teoría, se toman como datos los resultados obtenidos con
61 métodos distintos (59 DFAs, HF y MP2), el ajuste empeora a r2 = 0.985, lo cual es
en cualquier caso un resultado positivo. Esto implica que distintos métodos relacionan
densidades de enlace y energías de forma similar. El método que conduce peor el ajuste es
HF, lo cual es coherente ya que este método no describe la correlación adecuadamente y se
basa en aproximaciones distintas al resto. El error asociado al modelo ajustado es similar
al error estimado para DFAs contemporáneas, y por tanto lo bastante pequeño como para
poder usarlo de forma semicuantitativa. Dos ejemplos de aplicación son proporcionados:
la energía de enlace C–C del ciclopentadienilo se reduce en aproximadamente 14 kcal/mol
cuando éste forma parte de una molécula de ferroceno. Por otra parte, estimamos que
los enlaces del diamante son similares a otros enlaces C–C sencillos, mientras que los
enlaces en el grafito son más débiles que los del benceno.

Densidades de enlace y energías
Una cuestión polémica en la comunidad de la DFT es la importancia de los errores en
la densidad. La mayoría de las DFAs modernas contienen cierta cantidad de parámetros
empíricos. Estos parámetros se ajustan habitualmente para reproducir algunas energías,
absolutas o relativas. Algunos autores sugieren que esto puede conllevar que ciertas DFAs
conduzcan a densidades electrónicas erróneas aunque las energías sean correctas. Ésto
implica que el sistema estará mal descrito en general. Sin embargo, cuantificar los errores
en la densidad electrónica no es trivial. Evaluar el error de la densidad en términos de la
energía no es unívoco, ya que hay al menos dos caminos conectando la evaluación de una
DFA en su densidad autoconsistente y la evaluación de otro DFA en su propia densidad
autoconsistente.

La mayoría de la densidad se concentra en torno a los núcleos. Comparando la
densidad autoconsistente dada por un método con una densidad de referencia, se
aprecia que la mayor parte del error se concentra en las regiones nucleares también. Sin
embargo, en términos relativos, este error es mínimo (1-2 %) mientras que en regiones
de valencia, donde el error es pequeño en términos absolutos, puede suponer más de un
10% en términos relativos.

Debido a esto, se desaconseja usar descriptores globales de la calidad de la densidad
electrónica, y se recomienda optar por descriptores locales usando herramientas
topológicas. Por ejemplo, la población de las cuencas de enlace dadas por la ELF es un
indicador intuitivo. Además, se puede calcular entre distintas geometrías, e interpretar
su efecto sobre otras propiedades de enlace (Req y ke por ejemplo). En general, HF
lleva a un exceso de densidad de enlace en sistemas covalentes, lo que a su vez conduce
a distancias de equilibrio excesivamente cortas y frecuencias armónicas demasiado
elevadas. Ésto se debe a la falta de correlación electrónica. Las DFAs locales tienen un
comportamiento opuesto debido al SIE, y tienden a distribuir la densidad de forma
homogénea.

Las DFAs híbridas que utilizan una gran cantidad de intercambio exacto tienen un
efecto similar a HF en la densidad, por lo que se desaconseja su uso a pesar de que sea
posible obtener energías muy exactas. El SIE actúa de forma similar a la correlación
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electrónica en las regiones de enlace, causando repulsión entre los electrones. Se aboga
por la incorporación de más propiedades, en lugar de sólo energías y energías relativas,
en la parametrización de nuevas DFAs.

Parámetros de celda

En los enlaces fuertemente iónicos, HF lleva a distancias de enlace mayores mientras que
las DFA locales llevan a un acortamiento ficticio. Esto es debido al SIE una vez más.
HF prefiere distinguir más claramente los dos iones, mientras que en DFT se obtienen
densidades más extendidas.

Este error se manifiesta claramente en la optimización geométrica de sistemas
periódicos iónicos. Las aproximaciones LDA llevan a parámetros de celda
artificialmente pequeños, mientras que HF conduce a parámetros de celda demasiado
elevados. En general, estos dos límites actuan como barras de error con respecto a otros
métodos y a los resultados experimentales. En este caso, los resultados experimentales
obtenidos por difracción de rayos-X tienen una gran precisión.

Conclusiones
En este trabajo se revisan de forma crítica los principales marcos conceptuales y modelos
interpretativos de la química, con especial énfasis en la ubiquidad de la perspectiva
atomistica.

Un modelo basado en el modelo de carga de enlace y la ELF ha sido propuesto y
desarrollado. Posteriormente ha sido validado de forma empírica y se han racionalizado
sus limitaciones en términos intuitivos. Un ejemplo concreto en el que el nuevo modelo
puede ser utilizado son los enlaces C–C, claramente covalentes. En este caso, se han
modelado las energías de enlace intrínsecas con precisión semicuantitativa. El modelo
plantea posibles aplicaciones futuras en múltiples áreas de la modelización química.

Finalmente, se discuten los problemas asociados a la cuantificación de los errores de
la densidad electrónica debido a las características locales de la misma. Desde este
punto de vista, resulta coherente utilizar técnicas locales para estudiar ese tipo de
errores. Entendidos correctamente, modelos distintos llevan a consecuencias coherentes
e introducen errores cualitativos en la descripción del sistema. Esto se ejemplifica en las
distancias internucleares asociadas con enlaces covalentes e iónicos.
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Introduction

Quantum chemistry is a relatively recent discipline. As the name indicates, quantum
chemistry combines chemistry with quantum mechanics: it deals with matter by
considering its fundamental constituents, which can only be understood at a quantum
level.

Humans interact with matter at a macroscopic level. In the context of our everyday
experience, bound by time, space and a set of standard conditions, classical mechanics
are suitable. However, not much beyond this well-behaved face of nature, a non-intuitive
reality awaits. Matter is naught but change, nothing remains static unless the laws of
thermodynamics enforce it.

Electrons, which determine the dynamics of matter, can not be apprehended to any
macroscopic experience. To properly describe the electronic structure of matter, we let
go of macroscopic intuition and embrace the principles of quantum mechanics. Once the
step is taken, though, we realize that all certainty is gone: there is very little we can solve
exactly. We are therefore limited to some models, arising from different approximations.

A model can be defined as a stylized description of a target system, usually
constructed with a mathematical structure. Naturally, very different models can
suitably describe the exact same underlying system, particularly so when our empirical
evidence is limited. This is often the case when dealing with detailed quantum
phenomena. Still, we critically examine different hypotheses and choose a model.
Lacking any first hand experience of the motion of quantum particles, an approximate
model of choice often grows into the empty space of intuition: the wave equation
becomes radiation itself, the occupied orbital becomes the electron. As the model
merges with the system, its conceptual apparatus and language becomes real.
Consequently, as models diverge significantly communication between conceptual
frameworks becomes impossible because reality itself diverges as dramatically as the
different models we use. For instance, discussing the properties of phonons, or those of
covalent bonds, seems adequate and representative to some and ridiculous to others.

The usefulness of a model is two-fold. We build models by apprehending and
mathematizing an underlying corpus of evidence; then we manipulate them to acquire
additional understanding. Consequently, models have a privileged standing in the
scientific methods, and there is hardly any science to be done without effective models.
Quite frequently, models are fictional or more specifically non-referring (i.e. they do not
describe a real system), and have little predictive value for experimental observations.
Alternatively, very detailed models can be built which provide quantitative predictions
upon manipulation, but very little insight on the inner workings of the system under
study. Simply put, the models that lead to the most accurate predictions are not
necessarily the most faithful ones.

As of now, several conceptual frameworks and models coexist in the different
branches of chemistry, among which quantum chemistry is a heavy hitting newcomer of
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Introduction

sorts. In the darkness of the electronic structure of matter, models substitute empirical
experience. The simplified concepts that such models entail surge and decay in usage as
the understanding that can be extracted from their two facets fluctuates. Many would
argue that quantum mechanics, and its well-reputed descendants (i.e. the Standard
Model of particle physics) are as strongly predictive as obscure; while others desperate
in the apparent arbitrariness of many chemical principles (e.g. leaving group rankings)
that have been taught and used for decades. Alas, the conundrum of chemical intuition
is set.

A succinct example of this issue is given by the famous words of Charles Coulson:
“Sometimes it seems to me that a bond between two atoms has become so real, so tangible,
so friendly, that I can almost see it. Then I awake with a little shock, for a chemical bond
is not a real thing. It does not exist. No one has ever seen one. No one ever can. It is a
figment of our own imagination”. Many would find themselves agreeing wholeheartedly
with the last sentence, yet it must be kept in mind that chemical bonds are not unlike
other many concepts such as atoms, orbitals or wavefunctions. In this last regard, Erich
Hückel wrote a brief poem (as translated by Felix Block),

Erwin with his psi can do
Calculations quite a few.
But one thing has not been seen:
Just what does psi really mean?

which dwells on the interpretation of Ψ, the wavefunction in Erwin Schrödinger’s
famed equations. A contemporary chemist may wonder, with all due legitimacy, whether
the concept of wavefunction or the concept of chemical bond, as arising from different
non-reducible models, offers more understanding.

It is in this context that this manuscript puts forward a proposal, which is a simple
bond model that connects some long-standing concepts in chemistry with others that
arise from the quantum description of the electronic structure. The proposed model is
invaluably intuitive, semiquantitative and robust. By virtue of its simplicity, it stimulates
thinking outside strictly atomistic conceptions.

In this sense, the mathematical foundations of our model are secondary to its
conceptual foundations. For this reason, a significant effort will be devoted throughout
this manuscript to the conceptual frameworks involved in our crucible. While such a
detour is indeed both necessary and original, the main scientific advances are collected
in Chapters 5 and 6, the former being devoted to the model this manuscript attempts
to put forward, and the latter to a relevant aspect of modern quantum chemistry that
can – and arguably should – be linked to our theoretical assumptions.

A brief outline of the objectives and contents of the different Chapters is offered
below, not without a brief foreword by Erwin Schrödinger himself that synthesizes our
overall intent: “The task is, not so much to see what no one has yet seen; but to think
what nobody has yet thought, about that which everybody sees”.

Chapter 1
In order to justify and contextualize our proposed model, the reigning paradigm in
chemical interpretation before the first quantum revolution (i.e. until the second half of
the 20th century) will be presented and analysed critically. A succinct historical
overview will be given whenever needed to illuminate contemporary usage. This
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apparently naive effort is needed to understand why some apparently ill-defined
concepts have been transferred to the parlance of quantum chemistry. Note that, in
spite of the systematic application of quantum mechanics, quantum chemistry is not
reducible to physics and draws heavily from pre-existing chemical concepts to construct
its models.

The concept of atom, as an all-important concept that founds all atomistic approaches
and leads to atomic properties, will be revisited in some detail. Chemical structure, as
derived from atomistic perspectives, will also be reviewed. Finally, the key concept of
chemical bond, which requires both a concept of atom and the foundations of chemical
structure alike, will be analysed critically. In particular, the locality and categorization
of chemical bonds as opposed to the non-locality and generality of quantum mechanics
will be discussed.

Chapter 2
The foundations of quantum chemistry will be covered from a rather simple yet mostly
mathematical point of view. While an effort has been made to prioritize clarity and
generality, the objective of the Chapter is highlighting the deficiencies and assumptions
of the most fundamental methods (which is attempted using an array of examples), as
well as defining some key concepts in suitable terms that can be used in further discussion.

For a detailed exploration of the methods in quantum chemistry, readers are directed
to reference manuals such as Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory by Atila Szabo and Neil S. Ostlund, Molecular Electronic-
Structure Theory by Trygve Helgaker, Poul Jorgensen and Jeppe Olsen, and A Chemist’s
Guide to Density Functional Theory by Wolfram Koch and Max C. Holthausen, which
are far more complete and educational.

Chapter 3
Orbitals are a key concept in contemporary chemical parlance. Perhaps paradoxically,
orbitals are also subjected to controversy. The objective of this Chapter is presenting the
two most relevant theories that use orbitals, as introduced in the methods of quantum
chemistry, and reviewing the uses, limitations, advantages and disadvantages of orbital-
based approaches for interpretation.

The Chapter is structured quite educationally and uses numerous simple examples.
For a more complete approach to molecular orbital theory, readers are directed to the
very educational Orbital Interactions in Chemistry by Thomas A. Albright, Jeremy K.
Burdett and Myung-Hwan Whangbo. An in-depth review of modern valence bond theory
can be found in Valence Bond Theory by David Cooper.

Chapter 4
As an alternative to orbital-based theories, quantum chemical topology studies scalar
fields derived from the wavefunction. Some relevant mathematical aspects are presented
briefly in this Chapter. Then, the two most relevant scalar fields, the electron density
and the electron localization function, are studied in some detail using the previously
introduced mathematical methods. Again, the strong points and the limitations are
highlighted in order to complete a panoramic of chemical interpretation frameworks,
and a number of examples is given to guide the reader.
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A rather complete outlook on topological methods applied to quantum chemistry is
given in Applications of Topological Methods in Molecular Chemistry by Remi Chauvin,
Christine Lepetit, Bernard Silvi and Esmail Alikhani. Several additional scalar fields are
covered as well, which will not appear in this manuscript but may be of interest for the
reader.

Chapter 5
In this Chapter a bond model based in a previous proposal by Rober Parr and coworkers
is presented. First, attention is devoted to this pre-existent semiclassical approach and
its limitations. Then, a connection with quantum chemical topology is developed, leading
to a new coupled model which avoid parametrization issues.

Critically, we show that deficiencies from the original model are fixed in the new
model, all while preserving an intuitive interpretation. The domain of applicability of the
coupled model, which can be associated with local covalent bonds, is explored empirically
and its limitations (i.e. metallic bonds) are understood. Hitherto unexplored conceptions
of interaction potentials are straightforwardly derived from our model. At the same time,
qualitative approaches that have been used with much success in the context of chemical
structure find in our model a first approach to quantitative mathematization.

Finally, some exemplary applications are given, opening the door to future develop-
ments.

Chapter 6
In this Chapter, errors related to the electron density are shown to affect different
chemical bonds qualitatively. Thus, following from our model that connects chemical
bonds, energies and quantum chemical topology, an attempt is made to shed light on
the connection between these errors and the underlying models. At the same time,
some approaches in the literature that deal with density errors in non-local ways are
examined critically. A local point of view is used to understand errors in chemical
terms, while relating them to other interpretative frameworks (as those introduced in
the previous Chapters).

Then, different models in quantum chemistry are shown to describe different regimes
of chemical bonding differently. Some behaviour are regular over large chemical spaces
and can be predicted intuitively once understood, an example of which is given in terms
of calculated cell parameters in periodic systems.
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Chapter 1. Chemical Interpretation

Parmenides argued that, as all there is is constant and nothing comes out of nothing,
change is merely an illusion: no real change is possible. Democritus, among others, saw
change as an emergent property that does not require ex nihilo creation. Something
fundamental must exist, they argued, that rearranges in what we see as change.

Interestingly, the word chemistry derives from the word alchemy, which in turn may
come from the ancient Greek χυµεíα, the craft of alloying metals. Indeed, perhaps since
its inception, chemistry is a science of change and matter.

The problem of metallurgy bewildered ancient knowledge. Alloys, for instance,
present a conceptual challenge. Two distinct materials – the first elementary metals
available being copper, gold, silver and iron – are combined into something with
different properties. Notably, bronzes and brasses have a lower melting point than
elementary copper, which enables sophisticate casting, and boast better mechanical
properties. Thus, different properties emerge from combination of other substances.
The development of pottery and metallurgy were a historical cornerstone of human
advancement for milennia.

Many of this ancient endeavors, which we now could arguably backtrace as chemistry,
physics and natural philosophy alike, dealt with the dynamics of matter – to a certain
degree, as opposed to the dynamics of astral bodies and human spirit. In spite of some
current views, this unified past belongs to chemistry insomuch as chemistry has inherited
a body of common unsolved problems. However, it seems adequate to take the first
chemical revolution of the 17th and 18th centuries, championed by Lavoisier, as a starting
point in chemical sciences, due to its surprising degree of current validity.

What is apparently clear is that chemistry, at least from the 18th century onwards, has
a separate identity from physics, which can be characterized in a number of ways. Indeed,
it is clear that chemical knowledge can not be derived from pure epistemic reduction of
physics, in part due to an extremely rich conceptual framework that extends through
different domains of expertise, time and scale. There is a genuine, fruitful notion of
what benzene is that can not be grasped from quantum mechanics but has to do with a
surprisingly large underlying conceptual framework, which includes a range of models of
benzene.

Many unvaluable concepts in chemistry are hard to define satisfactorily within the
ontology given by quantum chemistry. Such concepts are often described as fuzzy, but the
language of chemistry would be no more without them: atoms, molecules, bonds, valence,
and many other notions developed over centuries. These concepts stem from models that
have very little to do with quantum mechanics, but are firmly grounded and intertwined
with the pivotal periodic table, molecular structure and the representation and depiction
systems used in chemistry. This corpus of historically accumulated knowledge, somewhat
fuzzy yet practical, has been called Folk Molecular Theory (FMT) by some authors.[1, 2]

Nowadays, the conceptual apparatus of chemistry focuses on three major aspects:
structure, properties and interaction (reactivity). An ideal framework ought to capture
all three in that very order. If we can understand chemical structure (e.g. chemical bonds,
molecular shape, conformations), because properties are emergent from the arrangement
of fundamental entities (e.g. electrophile sites, aromaticity, acidity), we can understand
their origin. If we understand properties of matter, we can rationalize the interactions of
chemical species that we usually discuss as chemical reactions.

The Folk Molecular Theory, which incorporated significant advances in the first half
of the 20th century, gives chemists a rich conceptual framework. Howere, one may ask:
where do this concepts come from? Why do we use them, why – and to what extent – are
they succesful? Which concepts necessitate which others to be effectively understood?
How does quantum mechanics, and quantum chemistry in particular, deal with these
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1.1. Quantum chemical epistemology

questions? And, finally: how do these complex questions influence the construction of
the concepts of quantum mechanics?

A brief historical and critical introduction of several key concepts in classic chemical
parlance will be given in the forthcoming Section, which aims to highlight the successes
and failures of conceptual cornerstones of chemistry. Interpretation from 1960 onwards
has to be understood with a quantum perspective, and therefore will be covered in the
next Chapters, in which we will try to see whether FMT and quantum mechanics have
to be seen as integrated or simply coexisting.

1.1 Quantum chemical epistemology
Before the first chemical revolution, Robert Boyle published his famous treaty The
Sceptical Chymist: or Chymico-Physical Doubts & Paradoxes, which attempted to
distinguish alchemy from the incipient scientific apparatus of chemistry. In this
foundational text of chemistry, Boyle speaks about “unmingled bodies”, minimal entities
of matter. For him, the nature of such bodies and their discrete interactions were
responsible for the properties of matter.

Mechanical philosophers that succeeded him faced the problem of transdiction with
renewed interest. They attempted to explain change as emerging from the properties
and arrangements of the fundamental, impenetrable, natural minima within it. After the
first chemical revolution, chemists theorized that a set of underlying principles ought
to govern the dynamics of matter, and that such principles could be understood in a
mathematical and precise way. Only nowadays, in the 21st century and with quantum
mechanics to help us, have we begun to collectively tackle this issue in real systems down
to the atomic level.

However, the gain in formal mathematization and precision brought by quantum
mechanics, which very soon expanded into quantum chemistry and has been significantly
developed since, is accompanied by stark loses in certainty and accesibility.

After the first quantum revolution of the 20th century, scientists have been limited to
accessing observables: physical quantities that can be measured. Our access is mediated
by a corresponding operator that follows the correspondence principle, ultimately linking
with macroscopic properties.

In the mathematical formulation of quantum mechanics, and restricting ourselves
to finite-dimensional state-spaces H (cf. Chapter 2), operators that represent physical
properties are Hermitian (i.e. have real eigenvalues) which constitute the corpus of what
we can access empirically. Notably, the spectra of Hamiltonian operators give us discrete
energies with which statistical thermodynamics can express macroscopical properties.
On the other hand, it must be noted that there is no consensus on any widely agreeable
interpretation of the measurement operation yet.

Most of the concepts in chemistry are not – and most likely can not be – expressed
as Hermitian operators or relations of expectation values thereof. Therefore, most of the
concepts in chemistry are devoid of rigurous mathematical foundations in the quantum
mechanical context or any subatomic effective field theory so far.

This is not particularly rare in physical sciences. The particularity of chemical
epistemology is given by its domain of interest. In terms of size, chemical epistemology
is bound from below with a quantum description it rarely respects, and bound from
above from a macroscopic world that can rarely be described in atomic and molecular
terms. Physics faces similar yet genuine problems of applicability as well.

In the following Section, we will examine some of the most relevant conceptual
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apparatus in chemistry, examining the empirical foundation and definition of such
concepts critically.

1.2 Concepts in chemistry

Concepts have to be analyzed considering three key notions. First of all, there is the term
itself; in our particular case, covalent bond, atom or valence. Then, there is a meaning
that is associated with the term. Some terms have one – or more – associated meanings
that evolve with time. A notorious example is the concept of atom. Last, but not least,
there is a context, which captures historical, philosophical and scientific circumstances:
how much is or was known at a certain point of time, how useful the concept is or was.

Clarifying a concept requires careful attention to all three facets. This, however, is
surely out of the scope of this manuscript. In this Section we will attemt to contextualize
the current meanings of some fundamental terms of chemistry in the 21st century. For
this very purpose, we will try to remark the current scientific context and the evolution
of the meanings of such terms.

The context of quantum chemistry

Quantum chemistry is N -fermionic quantum mechanics and, as shown in depth in
Chapter 2 and Section 2.4, in the absence of relativity, this means studying the external
potential exerted by pointwise nuclei and the corresponding electron density that
integrates to N .

The ontology of quantum chemistry is supported by the underlying quantum
mechanics, which is an extremely successful framework from the qualitative and
quantitative point of view. However, as discussed in the previous Section, quantum
chemistry is very limited from the epistemological point of view: very few terms from
FMT can be associated with an univocous meaning in this context.

Perhaps the most fundamental concept in FMT that has its meaning unchanged by
the quantum revolution is that of element. An element is defined as a “species of atoms; all
atoms with the same number of protons in the atomic nucleus”.[3] Note that the notion of
element is associated with the external potential of pointwise nuclei. As coulombic decay
is ∝ 1/R2 and therefore nuclear potentials are noticeable over large distances, any and all
stable binding in chemistry must arise from the compensation of repulsive internuclear
potentials due to electrons.

Therefore, the notion of element stems from the local properties of the spherical po-
tential that nuclei exert, i.e. there is a specificity that has to do with the discrete aug-
mentations of such potential. This comes to say that, were nuclear charges a continuum,
there would not be a proper definition of element.

The chemistry of elements is thus the chemistry of the Born-Oppenheimer
approximation (cf. Section 2.1): the chemistry of a discrete local external potential and
the electron density. So far, the context of quantum mechanics within this
approximation is respected. On the other hand, the concept of element is tightly bound
to the concept of atom, which is far more ephemeral in the quantum context.

Indeed, as we will later see, defining atoms without a prior definition of element is
quite complicated, and so the historical background of the concept merits some attention
here.
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1.2.1 Chemical elements
Mechanical corpuscularism of the 17th century held particle shape as a fundamental
property. This is particularly well documented for acid-base reactions that resulted in
salts, in part because inorganic acids were of interest in protochemical alchemy. Acids
where considered elongated spear-like particles, hence aggresive and corrosive, which
would become interlocked in the pores and holes of alkali substances. Matter was thought
to be composed of different fundamental particles with a distinct shape.

Over the 18th century, dynamic atomism, as coined by Newton and others, replaced
much of what was attributed to shape to interparticle forces. Quoting Newton directly:
“There are therefore Agents in Nature able to make the Particles of Bodies stick together
by strong Attractions. And it is the Business of experimental Philosophy to find them
out”. Thus, shape becomes suitability for different forces.

In 1789, Antoine Lavoisier, introduced the modern notion (i.e. in the atomic context)
of element. His list of known elements included light and caloric, but is remarkably
successful in the classification of these newtonian “particles of bodies”.

Until the early 19th century an element would remain distinct from the unified
category of atom. J. J. Berzelius devised a way to quantify atomic weights, which led to
the first plausible classifications and finally to the periodic laws, generally attributed to
D. Mendeleev and his publications in 1869. In his 1889 Faraday Conference before the
(Royal) Chemical Society, Mendeleev would say: “Certain characteristic properties of
the elements can be foretold from their atomic weights”. Naturally, the question of
isotopes was not easily understood, “which for instance led to a dilemma in the case of
Co (ZCo = 27) and Ni (ZNi = 28), as cobalt has a larger atomic mass.

Henry Moseley would derive integer nuclear charges from his work on the X-ray
diffraction pattern of elementary substances. This would eventually support the apparent
arbitrary nature of atomic masses, and would later lead to the elucidation of nuclear
structure. This advancements date from 1913 onwards. Thus, the current atomic notion
of element is roughly ten years older than the Schödinger equation.

Classification of elements is an unsolved problem. While, in general, the division
between metals and non-metals is accepted, the extent of metalloids and functional
subdivisions of metals are contested. Most of these divisions are based in a few selected
properties of elementary substances, which often do not hold under careful
examination. For instance, we know that noble gas compounds exist, including the
Na2He solid under high pressures. The great variability in properties for transition
metals has led to some further subdivisions, such as refractory or noble metals.

While this much seems naive, it is undoubtedly true that this conventional
classification of elements is routinely used. The first thought spared by a chemist when
reflecting on the elementary composition of a solid state system will almost always
regard whether its components are more likely to form a binary solid salt (metals plus
non-metals, hence ionic bonds) and be subsequently insulating, or not. Many other
examples could be given in this same direction, hinting at the conceptual importance of
these conventional cathegories. In the following Subsections this point will be
showcased.

1.2.2 The need for atoms
Let us examine the current meaning of atom: “Smallest particle still characterizing a
chemical element. It consists of a nucleus of a positive charge (Z is the proton number
and e the elementary charge) carrying almost all its mass (more than 99.9%) and Z

31



Chapter 1. Chemical Interpretation

electrons determining its size”.[3] Unsurprisingly, the practical definition and the
historical development of the term are intertwined, and the result is perhaps
deliberately fuzzy: we do not have a satisfactory definition of atom that does not stem
from the notion of element, which is a species of atoms.

The given definition immediately implies that, just as elements are classified in
groups and blocks, atoms belong to the same groups and blocks as their parent
elements. Atomistic theories, and FMT in many ways, are strictly mereological:
substances borrow their properties from the wholes they belong to, and particularities
are treated exceptionally.

Atomistic ontology has consequences in our rationalization. Some will be better
showcased while discussing bonding and chemical structure, but combining the given
definition of atom with the periodic table of elements, straightfowardly we assume that
periodic properties apply to elements and their characteristic atoms, which is often false
because atomic entities do not exist proper in molecular systems. As more chemical
space is explored, areas further away from the guidelines of FMT are discovered and
rationalized. In the best cases, this results in important notions being reinforced. In the
worst cases, it leads to redundant categories and terminology.

We commonly put forward a series of atomic properties: atomic radius (or size, as
referenced in the previous definition), electron affinity, ionization energy, electronegativity
and oxidation states, among others; some of which we consider transferable when building
chemical structures, and some of which we order periodically. Only the ionization energy
is rigorously defined, albeit only for isolated model quantum systems that we can roughly
assimilate with atoms.

Arguably, the concept of atom can be deemed neither necessary nor central. It could
be said that chemistry – in the current context – is better expressed in terms of
arrangements of point-wise nuclei and quantum electrons, which give rise to possible
ideal arrangements: elementary substances and compounds, atoms and molecules, on a
uniform ground. Change – reactivity – is then restricted to the rearrangement of nuclei
and/or electrons. However, much accumulated chemical knowledge would be lost in this
reduction, and atoms play a central role in chemistry.

Electronegativity

Originally, the notion of elemental electronegativity arose from an electrochemical
approach. When a substance is decomposed electrochemically, negatively charged ions
are liberated from the positive pole and vice versa. This comes to show that,
qualitatively, the atoms of some elements attach electrons more strongly than others.

The concept of electronegativity owes its current form to Pauling, defined as “ the
power of an atom in a molecule to attract electrons”. He introduced a revolutionary scale
of electronegativities in 1932. Values were refined by A. L. Allred in 1961.

We will use χA for Pauling’s atomic electronegativity for atom A throughout this
text. Due to its relative character, which runs on a scale from 0.79 (Cs) to 3.98 (F) in
adimensional units.

The original method for the calculation of χA was:

|χA − χB | = (eV )−1/2

√
DH0(AB)− DH0(AA)−DH0(BB)

2 (1.1)

where eV are electronvolts, there to make the scale adimensional; DH0(AB) are
the standart bond dissociation enthalpies for diatomic compounds (or else, depending
on experimental availability) and DH0(H − H) is fixed at 2.20 as a reference. The
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underlying assumption is that bonds with a certain ionic character are stronger than
non-polar homonuclear bonds.

Notably, Pauling’s method may trivially be expanded to substituents by calculating
bond dissociation enthalpies. The only ingredient needed are DH0(AB), which are not
necessarily easy to determine experimentally, but can be generalized to formal oxidation
states, bonds with a particualr functional group, etc. to take into accound the molecular
environment.

Note that, as defined by Pauling, electronegativities are a relational property: the
definition concerns differences in electronegativity, not electronegativities themselves.
Other definitions do give explicit expressions for atomic electronegativities.

Indeed, there are many alternative scales for electronegativities, such as Mulliken’s
and Allen’s scales. However, they normally correlate well to Pauling’s and present a
similar periodic trend. Electronegativity, together with the concept of valence and derived
rules, is a pillar of FMT.

1.2.3 Chemical structure
J. B. Richter proposed the law of definite proportions in 1792. Completed with the
observations of J. L. Proust, and his introduction of the term stoichiometry, the resulting
concepts are still valable in chemistry today. Lavoisier himself, and J. Dalton, participated
in the development of the atomic theory: atoms are discrete and rearrangement leads to
change.

Just as the periodic laws provided a causal relation of sorts between atomic mass
and properties, stoichometry cements atomistic by allowing elementary substances and
compounds. We will refer to the question of this fundamental arrangement of atoms in
matter as chemical structure. This conceptual step is needed to understand atomistic
models of bonding and structure, as opposed to mechanical models that preceded it.

It must be noted that most analytical techniques that are capable of atomistic
resolution have been developed in the last 50 years. For a significant period of time,
only physical and chemical separation and characterization techniques, together with
elementary analysis, were available for the study of chemical structure.

For example, the structue of CH4 can be derived with purely chemical means.
Monosubstitution of methane with Cl leads to a single chemical species with a formula
that matches CH3Cl, hence all C–H bonds must be analogous. Disubstitution leads to
CH2Cl2, which is a single species. Hence, a tetrahedral structure for methane can be
put forward with symmetry considerations. This example reflects the state of affairs in
the beginning of the XXth century.

Models that explain, justify and predict chemical structure have spearheaded
development in the chemical sciences. Consequently, chemical structure is a central
concept of contemporary chemical sciences. We routinely assume that substances are
built by atoms that are held together by chemical bonds in ways that are governed by
symmetry. The notion of atom is therefore necessary to discuss chemical structure.

As the atomistic ontology of chemistry has already been introduced from a historical
and conceptual perspective, we will now focus on the purely structural point of view.

Valence

William Higgins developed a model of divided force theory, which can be understood
in the framework of dynamic atomism. Quoting Higgins directly: “Let us suppose iron
or zinc to attract oxygen with the force of 7, sulphur to attract it with the force of 6 7

8 ,
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Figure 1.1: Chemical structures and bond “forces” as drawn by W. Higgins.

and hydrogen with the force of 6 5
8”, then this force would be due 1

2 to oxygen and 1
2

to sulphur. Then coherently, S–O bonds in the SO2 molecule would have a force ≈ 5
instead of ≈ 6.9. Two of its structures are shown in Figure 1.1

The theory of chemical structures, and the concept of valence as we know it, evolved
during the 19th century with notable contributions by E. Frankland, who coined
combining power, and J. Loschmidt, to whom we owe the multiple line representation
of double and triple bonds. The question of chemical structure is then put forward: if
each atom has a limited combining power, or valence, how do atoms arrange
themselves? And, furthermore, what is the interplay between chemical structure, as
opposed to mere chemical composition, and properties?

Pioneering contributors to chemical structure theory, like A. M. Butlerov and A.
Kekulé, suspected the tetravalency of carbon from 1860 onwards – the famous case of
benzene needs no introduction. However, atomistic models so far did not incorporate
electronic structure explicitely, while the atomic model of E. Rutherford was well on its
way and studies on the electrical nature of matter by S. Arrhenius and others were being
conducted.

G. N. Lewis is responsible for much of the contemporary parlance. In 1916 he iden-
tified chemical bonds with shared pairs of electrons. Together with I. Langmuir and W.
Kossel, the octet rule and the electron-pair model were developed and boasted remark-
able success. Valence became the concept we use nowadays. The resulting framework is
sometimes referred to as the electronic theory, as it partially shifts focus from atoms to
electrons.

Figure 1.2: Mesomeric forms of the I2 molecule as presented by G. N. Lewis. Accordingly,
A) would correspond to an ionic situation I– I+, B) to an abhorrent one-electron bond,
C) to the usual covalently bound I2.

Ionic compounds were then understood on the basis of weakly bound electrons which
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are transferred to satisfy octet rules, while covalent bonds are due to shared electrons
from the atomic valence shells.

Atomic charges were expressed in terms of discrete polar numbers, from which the
contemporary concept of oxidation state can be derived. Partial charges were introduced
by C. Ingold and E. H. Ingold in 1926, who are also responsible for the terms electrophile
and nucleophile as we know them today. Naturally, the concept of valence breaks down in
several cases. Notable examples are what we now call hypervalent molecules (e.g. SF6),
which spark significant controversy even today.

As a small remark, a significant development of the Lewis-Langmuir octet rule and
subsequent bonding model was put forward by J. W. Linnett from 1961 onwards, known
as Linnett double-quartet theory.

Tautomery and resonance

The concept of mesomery is interpreted by the electronic theory of Lewis on the basis of
different bonding possibilities among which structures may switch (see Figure 1.2 for his
take on I2 on the basis of cubic atoms).

Figure 1.3: Three plausible depictions of conjugation in polyenes. A) showcases a partial
valency depiction, B) represents a Lewis-Langmuir approach and C) includes curly
arrows to explain delocalization. Adapted from early work by R. Robinson.

The concept of resonance would later be introduced (we will discuss the term in
Section 3.2) which very nearly mirrors this feature, though mesomerism persists in
chemical language through the work of Ingold among others. Arrow pushing (or curly
arrows), as introduced by R. Robinson, also facilitate the understanding of resonance in
terms of chemical structures, which made sense of some of the biggest flaws of the
theories of valence.

Lewis structures are still commonly used and represented without much modification.
However, his skeptical approach to quantum mechanics (“the entering wedge of scientific
bolshevism”), in spite of his contemporaneity with several forerunners, meant that a true
attempt at unification had to wait for L. Pauling and his seminal book The Nature of
the Chemical Bond in 1939. By then, the contemporary notions of spin and quantum
numbers were already introduced.

Note that Pauling himself had an atomistic take on bonding – in particular, through
the atomic concept of valence – which led him to some notable misconceptions. His
infamous calculation of the frequency at which benzene resonates between the two Kekulé
structures suffices as an example. The fine line between isomerism and tautomerism is
indeed an educational hassle at times, because we tend to associate structural properties
to our conception of bonds. Therefore, two resonant structures with different bond orders
might be incorrectly thought to be geometrically different.
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The basic ideas of qualitative resonance theory can be outlined in few precepts that
are founded in Lewis structures. Any chemical structure can be drawn using atoms –
with their core electrons tightly bound – and valence electrons forming bonds. Covalent
bonds connecting atoms are formed by pairs of electrons of opposite spin, free valence
atoms couple to form lone pairs and unpaired electrons are localized on one or another
atomic center. Ionic bonds can be formed by transferring valence electrons from one atom
to another, which gives rise to localized positive and negative charges.

The “real” molecule is thought to be “resonating” between all structures, which are
simply electronic configurations. Contributions from different structures depends on their
relative stability. Many chemical species have a dominant Lewis structure. The stability
of different Lewis structures is assessed using hierarchical qualitative rules:

• Compliance of the octet rule.

• Maximize the number and the strength of chemical bonds.

• Minimize the number of charged atoms, minimize and maximize separation between
unlike and like charges respectively.

• Localize negative charges in electronegative atoms, positive charges in electroposi-
tive atoms.

• Maintain aromatic substructures locally.

It is inferred that having multiple relevant structures is energetically favorable. The
behaviour and properties of the molecule will be governed by the weighted average of
all contributing structures. Such approaches are succesful at explaining and predicting a
wide array of effects, a notable example being electrophilic substitutions on benzene.

Most of the qualitative rules can be derived from classical physics and need no further
explanation. The last one has to do with aromaticity. Current understanding of what
aromaticity is or implies is somewhat poor and consequently open to an intense debate.
We will avoid this topic for now, as it is far too vast to cover.

Valence shell electron pair repulsion

The Valence Shell Electron Pair Repulsion (VSEPR) model relates the electronic
structure of the valence shell with molecular structure. As its name implies, it is deeply
rooted in the concepts of valence shell and electron pair that were championed by
Lewis, but implements some notable modifications that substantially improve its
predictive power.

Notably, VSEPR theory seemlessly incorporates hypervalence or hypercoordination,
and predicts accurate geometries for many different molecules. Geometries can be
predicted by solving Thomson’s problem using a Coulomb potential and considering the
legitimate entity of lone pairs of electrons.

Many well-known phenomena in chemistry can be rationalized using the VSEPR
model and are not trivial to understand by other means. A notable example is the
anomeric effect in pyranose rings, which is attributed to the repulsion given by the
tetrahedrally located lone pairs of oxygen atoms. Hence, hydroxyl substituents adjacent
to the O atom in the ring favour axial orientations.

However, note that VSEPR fails for many transition metal complexes, species like
TeCl62– , and multiple isoelectronic series. Failure in molecules with heavy atoms is
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usually attributed to the inert pair effect. Uneven number of electrons are also usually
difficult to treat, and result in inconsistent treatments of AB3

• radicals, for instance.
A fairly more substantial criticism could be made with respect to the choice of

potentials for different coordinations. In the simple AXn case, VSEPR-allowed
geometries are solutions for Thomson’s sphere problem for a given potential between
lone pairs and bonds, which is arguably improvable by introducing specific potentials
between such entities.

1.2.4 Atom in a molecule, functional group
Over the 19th century, the elucidation of chemical structures in terms of atoms and
valence was progressively achieved. The underpinning is still an atomic theory, and
furthermore, an atomic ontology. That is, electrons are part of an atom, their effect
notably included in atomic properties assuming all-neutral atoms.

Therefore, the local properties of molecules are largely determined by their atomic
composition, which conditions chemical bonding as well. In the early 19th century, the
term radical was used to refer to a reactive fragment, mono or polyatomic, that preserved
its chemical identity in different contexts. The influential work of C. Gerhardt solidified
the notion of transferability on the basis of groups of atoms.

Much of what is (even today) understood as transferable is based on strict solution
chemistry, and breaks down in other contexts. In any case, the concept of functional
group, functionalization and transformation is still widely used in organic chemistry.

Some noteworthy features that can be considered transferable on the basis of atoms
or functional groups are:

• Electronegativity – and nucleophilicity

• Bond length and angle, characteristic frequencies in infrarred spectra

• Pairwise bond energies, homolytic standard dissociation enthalpies DH0(AB)

• Inductive and mesomeric effects, chemical shifts in nuclear magnetic resonance

In FMT, chemists rationalize chemical reactivity in terms of moieties or sites that
have properties governed by their local (atomic, functional group) properties which are
altered by the inductive and mesomeric effects of other moieties. The setup of (atomic)
chemical structure theory is necessary to understand how we depict chemical bonds.

1.3 Chemical bonding
What do we consider a bond? An accepted definition reads: “There is a chemical bond
between two atoms or groups of atoms in the case that the forces acting between them
are such as to lead to the formation of an aggregate with sufficient stability to make it
convenient for the chemist to consider it as an independent “molecular species”.[3]
Therefore, bonds are both based on atoms and convenience. As both convenience and
atoms are quite vague concepts, the resulting definition is very fuzzy but useful
nevertheless.

Usually chemists distinguish among different types of bonds. Notably, we
orchestrate a difference between (discrete) molecules, separated by non-negligible
distances with respect to their own size, and compounds. Reality is that everything is
interacting with everything forming a vast heterogeneous aggregate that we call matter.
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From a mathematical perspective, the interaction between molecular species can be
treated using perturbation expansions of fragment wavefunctions (perturbation theory
will be covered to a degree in Chapter 2). In a simplified way, we may split chemical
bonds from weaker interactions by considering that chemical bonds are not, by
definition, suitably described using perturbatory treatment. That is, chemical bonding
plays a major role in the wavefunctions of the involved subsystems.

Let us generalize the notion of a chemical bond, in the context of quantum chemistry,
to any situation in which the repulsive potential experienced by a nucleus A with respect
to an arrangement of nuclei B,C,D, etc. is alleviated by the distribution of electron
density between them, giving rise to a minima in the PES of the system that lies between
the cusp of nuclear repulsion (when the two entities approach (R → 0) and a constant
energy (R→∞). If this feature of the PES can be projected as a function of the nuclear
coordinates of two nuclei, RA and RB we will consider this bond to have “two-centers”.

Consequently, we may define what non-bonded might be in the same spirit. Two non-
bonded chemical species may have their respective degrees of freedom decoupled, and
we may displace one or the other set of nuclei in the PES without altering the energy
of the other fragment. Note that this definition is only possible if size-consistency holds,
which will be defined in Section 2.3. It can be nevertheless inferred that such a situation
is highly unlikely in most contexts, i.e. in solution chemistry all solute molecules affect
each other through the solvent. Therefore, this meaning of non-bonded represents an
extreme situation in which the function that couples the internal coordinates of the two
chemical species is constant and equal to zero.

On the other hand, bond types are one of the key aspects that derive from the
atomistic and electronic notions of FMT, and those are increasingly difficult to grasp in
the context of quantum chemistry. In this Section we will critically examine the most
distinct types of chemical bonds, and relate them to each other critically.

1.3.1 Covalent bonding
Covalent bonds could be called electron-sharing bonds in the framework of the electronic
theory of Lewis. From a contemporary point of view, this sharing is understood to be
observable through a significant electron density accumulation between the supposedly
bonded nuclei, which alleviates the nuclear repulsion.

Coherently, more electrons being shared between atoms lead to larger density
accumulation between nuclei and stronger – multiple – bonds. As electron pairs exist
distinctly in the Lewis representation, multiple bonds may operate individually.
Contemporary FMT explanations incorporate some orbital concepts (such as σ and π
orbitals) in order to properly tackle these inconsistencies.

To assign a covalent bond a chemist often traverses two (atomistic) axes:

• Which atom pair is under consideration?

• Is the character of at least one of the atoms non-metallic?

• Is the electronegativity difference between them low?

Covalent bonds are only thought to exist between non-metallic atoms that have similar
electronegativities. This requires an a prioristic knowledge of 1) which pairwise atoms
should be considered; 2) metallic and non-metallic character, which are flexible as we
have seen; 3) electronegativity values, which are quite ill-defined.
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The first point is already troublesome, but the second point is fuzzy as it is. What
should we call the bonds in aluminium carbide Al4C3 or aluminium nitride AlN3?
Should those be covalent enough, as in allotropic carbon forms? The third point is even
worse. ∆χAB = |χA − χB | is often taken as a criterion, but differences in atomic
electronegativities very often fail. For instance, most alkali hydrides (LiH, KH, etc.)
would be covalent, while molecules such as HF and PF3 would be ionic.

All in all, FMT does not have any proper way to define covalent bonds on its own.
The ideal case of covalent bond is simply any main-group homonuclear diatomic. Some
reference values are DH0(HH) = 105 kcal/mol in H2 and DH0(NN) = 226 kcal/mol
for the triple bond in N2.

1.3.2 Ionic bonding
Ionic bonds are usually considered opposite to covalent bonds. If the latter are based on
sharing, ionic bonds are based on transfering electrons. Naturally, this is a Lewis-like
atomic notion, which finds further foundations on the notion of atomic charge and
oxidation number, which corroborates the notion of electron transfer or donation: an
electron is transferred from one neutral atom to another neutral atom with higher
electronegativity. The resulting cation and anion pair interact through electrostatics,
and a significant dipole moment is generated along the bond axis.

The questions to solve in order to assign ionic bonds are similar to those seen for
covalent bonds:

• Which atom pair is under consideration?

• Is the character of at least one of the atoms non-metallic?

• Is the electronegativity difference between them high?

Ionic bonds are thus thought to exist between pairs of non-metallic atoms with very
different electronegativities, with ∆χAB > 1.5 at least. In this particular case, the first
question is usually more troublesome, due to the ubiquity of ionic situations in the
solid state. Take for example the cubic Fm3̃m halite (NaCl) lattice. Are there six ionic
Cl– –Na+ bonds per Cl nuclei in the bulk? Note that the solid state community may
prefer using global – and definitely not pairwise – concepts for describing “bonding” in
such structures, as Madelung constants and lattice energies.

At the molecular level, ionic bonds are associated with strong electrolytes due to the
historical background of solution chemistry. However, Pauling’s scale classifies all H–X
bonds as covalent except for H–F. Triflic (CF3SO3H) and fluorosulfuric (HSO3F) acids
are much stronger acids than sulfuric acid, which signals that the O–H bond is in fact
extremely polarized.

It is generally quite accepted that a covalent ideal case exists, but no ideal ionic bond
exists because, naturally, two charged particles of opposite sign should simply approach
infinitely. Recall, however, that Pauling’s electronegativity scale is based on the notion
that ionic character makes covalent bonds stronger.

1.3.3 Metallic bonding
Metallic bonds fill the remaining gap in the three-question scheme outlined before, and
gather all remaining possible pairs of metallic elements – which are the majority of the
periodic table. The key concept in metallic bonding is delocalization. As such, we do not
expect metallic bonds to be necessarily pairwise. The previous schemes reduce to:
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• Which atom groups are under consideration?

• Is the character of these atoms metallic?

Interestingly, the IUPAC has no definition for metallic bond. In fact, the
fundamental understanding of metals stems mostly from electrochemical studies which
showcase their cationic properties in solution and their conductive properties in the
solid state. The free electron and near free electron models were pioneered by
Sommerfeld in the early 20th century, and have had a lasting impact. The domain of
metallic materials has been historically abandoned by chemistry in favour of other
specialities and their terminologies, albeit the blooming field of inorganic chemistry has
recovered much of the current discourse.

Consequently, bonding in metals is often understood as a delocalized spread of con-
ducting electrons and a fixed lattice of positive nuclei. This is very inconsistent with the
atomistic pictures of covalent and ionic bonds, and FMT as a whole.

Metallic bonds are thought as inherently delocalized, giving rise to conduction bands
in periodic systems. However, as per the last sentence, based on properties, graphene
would be a notable example of metallic bonding, which would be in contradiction with
the basic statement from which we have started. On the other hand, bonding in Li2
can hardly be said to be conducting or delocalized, as a homonuclear diatomic, but is
expected to be metallic as per our initial assumption. Metallic bonds are plagued by
much of the same conceptual problems from which aromatic systems suffer: innately
delocalized phenomena fail to fit into an atomistic view.

Alas, FMT gives no local representation of the bonding present in metals: it can not.
On a sidenote, it is important to notice that relativistic effects have a significant weight
on the properties of metallic elements; which is portrayed quite directly by the melting
point of Au (1100o C) and Hg (-39o C).

1.3.4 Other bonding regimes
The aforementioned bonding regimes are well-respected. However, as we have signaled in
the different Subsections, there are many cases that cannot be cathegorized a priori, nor
based on properties. In any case, they mostly stem as slight variations from the schematic
representations offered by FMT. We will cover some of them as such in the most general
way.

Multicenter-multielectron covalent bonds

Perhaps the most clear case of a breakdown of the covalent bond model of Lewis is the
diborane molecule (B2H6), in which two boron atoms are bridged by two hydrogen atoms,
as shown in Figure 1.4 A. The Lewis picture simply does not hold, boron is attached to
four atoms and hydrogen is attached to two atoms. The plausible pseudofolk explanation
is what has been called a three-center two-electron bond, in which each bridging B–H
bond is only “half” a bond. Agostic bonds, including the several documented cases of H2
coordination to metallic centers, are another example of this type of situation.

Other non-Lewis stable structures have been rationalized with similar ideas, which we
can call multicenter and multielectron bonds or, simply, non-Lewis bonds. Ozone (Figure
1.4 B) is accordingly considered a three-center four-electron bond, like the triiodide anion
(Figure 1.4 C) and the bifluoride anion (Figure 1.4 D). Naturally, non-minima points of
the PES may present similar features quite often, in particular during bond formation
and bond breaking and other activated complex situations.
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A) B)

C) D)

Figure 1.4: A) Diborane B2H6 B) Ozone O3 C) Triiodide anion I3 – D) Bifluoride HF2
–

Many other examples of non-Lewis bonds exist. Simple molecules such as NO or ClO2
are quite hard to rationalize in terms of pairs, leading to other hypothetical two-center
N -electron bonds.

A proper comprehension of all such species is hardly possible from FMT. Quantum
mechanics, and derived concepts, are necessary to understand for instance why ozone is
bent and the triiodine anion is linear, which is not hard to picture by understanding σ
and π systems and overlap integrals.

Dative bonds

Quite opposite to the bountiful examples in the previous Subsection, dative bonds are
considered two-electron two-center bonds in which the electrons involved belong to the
same atom. The paradigmatic example is the complex formed between borane BH3 and
ammonia NH3, where the dative bond takes an electron pair that formally belongs to the
nitrogen atom. This bond is of significant strength (DH0(BN) ≈ 30 kcal/mol). Other
notable examples include tricarbon dioxide C3O2 and hexaphenylcarbodiphosphorane.

Presumably, this situation is similar to many coordination complexes, in which a
ligand (e.g. H2O) donates an available electron pair to a central metal with formal positive
charge. In any case, the resulting bond is expected to be weaker and more ionic in nature
than a standard covalent bond.

It results impossible to distinguish dative bonds from other covalent bonds with just
FMT and without a causal explanation for bond formation (i.e. from a static molecular
representation). A straightforward example is the SO4

2– anion, which could be inferred
to have four S–O dative bonds. This would seem bizarre to any organic chemist. However,
combined with finer quantum details, some qualitative behaviors can be justified (e.g.
the non-linear preference of C3O2).

Haptic bonds

Haptic bonds are a particular type of bond that is better exemplified by ferrocene and
other metallocenes. Haptic bonds are thought to form between the π-system of a ligand
and a central atom. In this sense, they are simply a multicenter generalization of dative
bonds.

They are therefore pestered by the same conceptual issues in which an “origin” has
to be assigned to electrons.
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Chapter 1. Chemical Interpretation

Hydrogen bonds

Hydrogen bonds are a very well known type of interaction arising from the proximity
of a covalently bound hydrogen atom (i.e. with its single formal valence occupied) and
an electron rich moiety in a separate atom. In spite of their typically reduced bond
dissociation enthalpies when compared to formally covalent bonds (e.g. DH0(H···O) ≈ 5
kcal/mol over 1.97 Å in water), they can be of great importance.

Due to the formal limit of one covalent bond for the single electron of hydrogen, the
nature of this ubiquitous interactions has been a historical source of debate, in which
they have been classified as anything from strictly electrostatic interactions to plainly
covalent bonds.

At the same time, the abundance of situations in which hydrogen bonds may arise
fosters the identification of subtypes, such as resonance assisted hydrogen bonds and
symmetric hydrogen bonds.

In any case, the most identifying characteristic is the presence of hydrogen. For
instance, dative explanations at the FMT level are also fitting of hydrogen bonding: a
partially positive center receives an electron pair from an electron-rich moiety.
Furthermore, symmetric hydrogen bonds can be understood as a three-center
four-electron bonds.

Other elementary bonds

Mirroring hydrogen bonds, there are few more bonding regimes that are recognized mostly
on the basis of the atomic participants. Notably, halogen bonds have the same definition
as hydrogen bonds just exchanging the hydrogen atom for a halogen atom.

Subsequently, triel and tetrel bonds have been described based on similar principles,
which in the end reduce to the identification of regions with positive electrostatic potential
that are therefore susceptible to interact with regions with significant electron density.

Critically, many of such bonds respond to tautological premises, which in a way is
also an issue with hydrogen bonds. In different situations, such bonds could probably
be cathegorized using previous schemes, but the atomistic point of view favors an
understanding based on transferability.
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Chapter 2. Foundations of Quantum Chemistry

The wave function of an isolated non-relativistic quantum system abides to the time-
dependent Schrödinger equation: [4]

i~
∂Ψ(x, t)
∂t

= ĤΨ(x, t), (2.1)

where Ĥ is the Hamiltonian operator of the system, and Ψ(x, t) is the wave function
of the N particle system, x = {x1,x2, ...,xN} represents the spin-space coordinates of
all N particles and t is a parameter that accounts for time. More precisely, Ψ(x, t) is a
unit vector defined on a complex finite Hilbert space H and Ĥ is an hermitian operator
acting upon H.

The wave function contains all possible information about the system. First and
foremost, it determines the probability density distribution ρ(x, t) of the system

ρ(x, t) = |Ψ(x, t)|2 (2.2)

On the other hand, Ĥ accounts for the energetics of the physical system under
inspection. The set of i eigenvectors of Ĥ constitutes a complete orthonormal basis for
H, and the corresponding spectrum of eigenvalues Ei are the real values of the energy
of the system. In our particular case, Ĥ is time independent.

Equation 2.1 is a partial differential equation of first order in t and second order in
x. Let us focus on separable solutions, of the form

Ψ(x, t) = f(t)ψ(x) (2.3)

which can be used in Equation 2.1 to show

i~
f ′(t)
f(t) = Ĥψ(x)

ψ(x) = const. = α (2.4)

taking

f(t) = f(0)e−iαt/~ (2.5)

Ĥψ(x) = αψ(x) (2.6)

As previously stated, the eigenvalues of Ĥ are the energies of the system, and hence
the constant α is E. Then, due to the lack of time-dependence, and mirroring classical
mechanics, quantum states in which Equations 2.5 and 2.6 hold are called stationary
states. More precisely, the wave function can be expressed as

Ψ(x, t) = f(0)e−iEt/~ψ(x) = e−iEt/~Ψ(x, 0) (2.7)

Therefore, a stationary state oscillates in time with a complex phase factor and
angular frequency E/~. Consequently, if we are interested in stationary states, only the
eigenvalue problem of Ĥ has to be solved:

Ĥψ(x) = Eψ(x) (2.8)

Equation 2.8 is the time-independent Schrödinger equation. Solving and
understanding this equation for N-electron systems is the underlying objective of most
of this Chapter.
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2.1. Born-Oppenheimer approximation

2.1 Born-Oppenheimer approximation
Using atomic units, in a system formed by N -electron system with M nuclei the non-
relativistic Hamiltonian is given by

Ĥ = −1
2

M∑
A

∇2
A

mA
+
∑
A>B

ZAZB
RAB︸ ︷︷ ︸

Ĥnuc

−1
2

N∑
i

∇2
i +

∑
i>j

1
rij
−
∑
A,i

ZA
riA︸ ︷︷ ︸

Ĥel

(2.9)

where the indexes A,B and i, j run over nuclei and electrons respectively. ∇2
i and

∇2
A are the electron and nuclear Laplacian operators respectively. mA is the mass of

nucleus A, ZA, ZB are the nuclear charges of nuclei A and B respectively. ri and RA are
the space coordinates of electron i and nuclei A, respectively. Distances are expressed as
rij = |ri − rj | with analogous notation for nuclei-nuclei and electron-nuclei terms. Spin
coordinates are omitted because the non-relativistic Hamiltonian is spin-independent.

The first two terms in the definition of Ĥ in Equation 2.9 are the kinetic and
electrostatic nuclear terms, T̂n and V̂nn respectively, which can be grouped into a
nuclear term Ĥnuc. The next two terms, T̂e and V̂ee, are the kinetic and electrostatic
operators for electrons. Together with the final term V̂en which accounts for the
interaction of nuclei and electrons, they can be grouped as Ĥel.

Ĥnuc = T̂n + V̂nn = −1
2

M∑
A

∇2
A

mA
+
∑
A>B

ZAZB
RAB

(2.10)

Ĥel = T̂e + V̂ee + V̂en = −1
2

N∑
i

∇2
i +

∑
i>j

1
rij
−
∑
A,i

ZA
riA

(2.11)

The wave function Ψ(r,R) of such system must contain nuclear R = {R1, ...,RM}
and electronic r = {r1, ..., rN} degrees of freedom. However, given the difference in the
mass of electrons and nuclei (≈ 103 − 105) and that the forces exerted onto one another
must be equal, nuclei must move considerably slower than electrons. Assuming that
nuclear degrees of freedom remain constant with respect to electronic ones, T̂n = 0 and
V̂nn = const. Then the whole term Ĥnuc becomes a constant, and the wave function
becomes separable such as

Ψ(r,R) = Ψel(r;R)Ψnuc(R) (2.12)
where the electronic wave function Ψel(r;R) describes the electronic structure at

a given nuclear configuration R. It depends only parametrically on nuclear degrees of
freedom. The aforementioned approximation that results in the factorization of the wave
function in Equation 2.12 is known as the Born-Oppenheimer approximation.

The eigenvalue equation can then be solved only for the electronic wave function at
a given R

ĤelΨel(r;R) =
(
T̂e + V̂ee + V̂ne

)
Ψel(r;R) = EelΨel(r;R), (2.13)

where Eel is the electronic energy. The total energy can be obtained by adding the
nuclear potential energy V̂nn(R).

E(R) = Eel + V̂nn (2.14)
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Chapter 2. Foundations of Quantum Chemistry

Therefore, by sampling all possible nuclear arrangements it is possible to define a
Potential Energy (hyper)Surface (PES) for a given N -electron system with M nuclei. In
non-linear molecular systems with translational and rotational symmetry, the PES has
3M − 6 dimensions, which might be further reduced by symmetry elements.

In what follows, the main goal will be to solve the electronic structure problem as
presented by Equation 2.13 in order to obtain (and, possibly, explore) the PES for any
given molecular system.

Except whenever explicitly mentioned the el subscript will be dropped, as well as the
parametric dependence on nuclear configuration. Thus, Ĥ will the electronic Hamiltonian,
Ψ (which shall become |Ψ〉 in Dirac notation) will represent a corresponding N -particle
wavefunction, and E will simply be the electronic energy. In this notation, the electronic
time-independent Schrödinger equation is just

Ĥ|Ψ〉 = E|Ψ〉 (2.15)
and analogously the energy can be written as the expectation value of the Hamiltonian

E = 〈Ψ|Ĥ|Ψ〉 (2.16)

2.1.1 Many-electron systems
Equation 2.8 can only be solved analytically for systems with a single electron (N = 1)
such as the hydrogen atom. The analytical closed-form solutions to the one-electron case
are functions called orbitals.

In the hydrogen atom, for a given combination of quantum numbers n, l and m the
corresponding orbital can be expressed as a combination of a radial part Rnl and a
Laplace spherical harmonic Ylm in spherical coordinates,

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (2.17)
It suffices to mention here that the radial part has an exponential decay term e−cr

when moving away from the nuclei that exerts the radial potential, and recall that Laplace
spherical harmonics form an orthonormal set.

Before moving onto more complex systems, it must be noted that electrons posses
spin, an intrinsic angular momentum. Electrons are fermions known to have a value of
the spin quantum number equal to 1

2~ with a z component of ± 1
2~.

Under the non-relativistic model, spin coordinates (σ) are included on the wave
function by two spin functions α(σ) and β(σ), corresponding to eigenvalues of the z
component of the spin operator equal to + 1

2~ and - 1
2~, respectively. These two spin

functions are orthonormal by definition and form a complete set.
Therefore, the electronic wave function in Equation 2.13 must depend on spin coor-

dinates x = {r, σ} and parametrically on the nuclear coordinates R.
Thus, spin functions have to be added to the spatial orbitals in Equation 2.17. Let

us express the spatial part as ψi(r), a function of a position vector r, then spin orbitals
take the form

φα(x) = ψ(r)α(σ)
φβ(x) = ψ(r)β(σ) (2.18)

and thus two electrons occupy the same spatial part in spite of the one-electron nature
of orbitals. For the most part this treatment will suffice for the inquiries of quantum
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2.1. Born-Oppenheimer approximation

chemistry. In the following, we will refer to spatial orbitals simply as orbitals, φi(r) and
will reserve the term spin orbital for whenever spin functions must be explicitly added
due to significance.

Wavefunction ansatz

As a starting guess, many-electron systems can be described using combinations of the
one-electron solutions. This is both convenient and intuitive: it gives a way to express the
total wavefunction in terms of a known solution, and expects that every electron behaves
in a similar way. For instance, a possible wavefunction Ψ for an N -electron system would
be

Ψ(x1,x2, . . .xN ) = φ1(x1)φ2(x2) . . . φN (xN ) (2.19)

However, the fact that electrons are identical particles must be accounted for in the
wavefunction. For instance, in a system with N = 2 and spin-coordinates x1 and x2
respectively, the probability of finding both electrons simultaneously in volume elements
dx1 and dx2 around points x1 and x2 is given by |Ψ(x1,x2)|2dx1dx2. Were the two
particles interchanged, the resulting probability |Ψ(x2,x1)|2dx1dx2 ought to be the same
since electrons are indistinguishable particles irrespective of our arbitrary tags 1 and 2.
Hence,

|Ψ(x1,x2)|2 = |Ψ(x2,x1)|2 (2.20)

which implies that the wavefunction is either symmetric or antisymmetric with respect
to the exchange of electrons 1 and 2,

Ψ(x1,x2) = Ψ(x2,x1) (symmetric)
Ψ(x1,x2) = −Ψ(x2,x1) (antisymmetric)

Electrons are fermions and follow Pauli’s exclusion principle and thus the
antisymmetric option has to be respected. More generally, the wavefunction of an
N -electron system has to satisfy

P̂Ψ(x1,x2, . . . ,xN ) = (−1)pΨ(x1,x2, . . . ,xN ) (2.21)

where P̂ is the permutation operator and p is the number of permuted electron pairs.
The form of the wavefunction presented in Equation 2.19 does not comply and hence is
generally not valid.

A general and compact way to construct a wavefunction for an N -electron system that
satisfies the antisymmetry requirement was given by John C. Slater in 1929 [5] starting
from an orthogonal set of orbitals φi(xi). It is nowadays known as a Slater determinant;

Ψ(x1,x2, ...xN ) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) . . . φN (x1)
φ1(x2) φ2(x2) . . . φN (x2)

...
...

. . .
...

φ1(xN ) φ2(xN ) . . . φN (xN )

∣∣∣∣∣∣∣∣∣∣∣
(2.22)

where 1/
√
N ! is a normalization factor.
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Determinant expansion guarantees that Slater determinants satisfy the antisymmetry
requirement in Equation 2.21. Every electron is indistinguishable. Whenever two rows or
two columns corresponding to particles i and j are swapped, it holds that

Ψ(x1,x2, . . . ,xi,xj , . . . ,xn) = −Ψ(x1,x2, . . . ,xj ,xi, . . . ,xn) (2.23)

Furthermore, Pauli’s exclusion principle is also implicitly satisfied: if φi = φj , two
rows are identical and Ψ = 0. Therefore, there is a maximum of two electrons – with
opposed spins – per orbital. However, limiting the wavefunction to this particular form
has some underlying effects that will be examined in the following sections.

Variational principle

Given that the closed form solutions to the electronic problem are not analytically
available, a computational approach is required to approximate the exact solution.
Dirac notation will slowly be introduced from this point on in order to simplify
notation. The variational principle states that the ground state energy E0 is a lower
bound to the expectation value of Ĥ for any approximate wavefunction Ψ. Let us
proove it for any normalized wavefunction composed by an orthonormal linear
combination of orbitals φi, such as

Ψ =
∑
i

ciφi∑
i

|ci|2 = 1∫
φi(x)φj(x)dx = 〈i|j〉 = δij

(2.24)

the expectation value of the Hamiltonian Ĥ, which is hermitian, can be written as,

〈Ψ|Ĥ|Ψ〉 =
∑
i,j

c∗i cj〈φi|Ĥ|φj〉 =
∑
i

|ci|2Ei (2.25)

which we can rewrite, using the conditions from Equation 2.24,

〈Ψ|Ĥ|Ψ〉 = |c0|2E0 +
∑
i>0
|ci|2Ei (2.26)

Given that by definition E0 is always the lowest energy solution,

〈Ψ|Ĥ|Ψ〉 ≥ E0 (2.27)

in which the equality only applies if Ψ is exactly the ground state wavefunction.
Naturally, the variational principle requires that Ĥ is the exact electronic Hamiltonian.

2.2 The mean-field approximation
Using a single Slater determinant (Equation 2.22) as the form of the wavefunction, an
attempt can be made to solve Equation 2.13. Given that the wavefunction is expressed as
a combination of single-electron functions, it seems reasonable to rewrite the electronic
Hamiltonian as
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2.2. The mean-field approximation

Ĥ =
N∑
i

ĥi + V̂ee (2.28)

where ĥi is the one-electron operator, analogous for every electron i,

ĥi = T̂e + V̂en (2.29)

The expectation value of the energy of the electronic Hamiltonian with a Slater de-
terminant we shall denominate ΨHF can be shown to be exactly

EHF = 〈ΨHF |Ĥ|ΨHF 〉 =
N∑
i

hi + 1
2

N∑
i

N∑
j

(Jij −Kij) (2.30)

where

hi =
∫
φ∗i (x)ĥiφi(x)dx = 〈φi|ĥi|φi〉 (2.31)

represents the kinetic energy and potential energy for the electron described by φi.
The two remaining terms, Jij and Kij , are two electron integrals that arise from the V̂ee
term. They are called Coulomb and exchange integrals respectively,

Jij =
∫ ∫

φ∗i (x1)φi(x1) 1
r12

φ∗j (x2)φj(x2)dx1dx2 = 〈φiφi|r−1
12 |φjφj〉 (2.32)

Kij =
∫ ∫

φ∗i (x1)φj(x2) 1
r12

φ∗j (x2)φi(x1)dx1dx2 = 〈φiφj |r−1
12 |φjφi〉 (2.33)

Jij represents the Coulomb interaction between electron i in φi and an average local
potential given by the other electrons j in the system:

jj(x1) =
∫ [

φ∗j (x2) 1
r12

φj(x2)
]
dx2 (2.34)

which defines a corresponding Coulomb operator ĵj(x1) acting on φi(x1),

ĵj(x1)φi(x1) =
∫ [

φ∗j (x2) 1
r12

φj(x2)
]
dx2φi(x1) (2.35)

On the contrary, there is no classical equivalent for the interpretation of the exchange
term. It arises from the antisymmetry of ΨHF . However, analogously we may write the
following exchange operator k̂j(x1), by its action on a spin orbital φi(x1)

k̂j(x1)φi(x1) =
∫ [

φ∗j (x2) 1
r12

φi(x2)
]
dx2φj(x1) (2.36)

The Coulomb and exchange operators can be combined with the one electron operator,
defining the Fock operator F̂ as

F̂i = ĥi +
N∑
j

[
ĵj − k̂j

]
(2.37)

where the subindex i can be removed, as the operator is equal for all the N -electrons
in the system.
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It is important to notice now that the Fock operator represents a mean-field approx-
imation: the choice of ΨHF determines that V̂ee is only applied as a combination of a lo-
cal Coulomb mean field term and the exchange which is strictly due to antisymmetry.

Analogously, it must be noted that the Hamiltonian (Equation 2.28) is not the Fock
operator (Equation 2.37). Only the former returns the energy of the many-electron sys-
tem, yet the second is retrieved naturally by assuming that a single Slater determinant
is appropriate for the wavefunction.

2.2.1 Hartree-Fock equations
Under the premise of the variational principle, the Hartree-Fock (HF) method attempts
to find the set of orbitals that minimize EHF (Equation 2.30) of the Slater determinant
wavefunction ΨHF . It was developed by Douglas Hartree, Vladimir A. Fock and others.

At the same time, it imposes an orthonormality constraint upon the orbitals through
the overlap integral, which was introduced in Equation 2.24,

〈i|j〉 =
∫
φi(x)φj(x)dx (2.38)

upon which we impose 〈i|j〉 = δij . The problem can be formulated in terms of
Lagrange multipliers. Starting with the following Lagrangian;

LHF = EHF −
N∑
ij

λij(〈φi|φj〉 − δij) (2.39)

where λij are the Langrange multipliers, we enforce that LHF is stationary with
respect to small changes in orbitals

δLHF = δEHF −
N∑
ij

λij(〈δφi|φj〉 − 〈φi|δφj〉) = 0 (2.40)

Solving Equation 2.40 leads to

F̂ |φi〉 =
N∑
j

λij |φj〉 (2.41)

Since F̂ is an hermitian operator, the matrix formed by Langrange multipliers λij
is also hermitian and therefore can be diagonalized by a unitary transformation U such
that

U†λU = λ
′

=
{
λ

′

ij = 0,
λ

′

ii = εi
(2.42)

Using the same unitary transformation for every spin orbital φi, the above equation
turns into a diagonal form, which is just the canonical HF equation

F̂ |φi〉 = εi|φi〉 (2.43)

The corresponding orbitals are the canonical Hartree-Fock spin orbitals and the
eigenvalues εi are known as molecular orbital energies or eigenvalues.

This equation is ruled by an effective one-electron operator, the Fock operator F̂ ,
which couples the N equations of the system together. However, each individual electron
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2.2. The mean-field approximation

does not feel the instantaneous field generated by the remaining N − 1 electrons of the
system.

For the moment, spin parts may be removed under the assumption that α and β
orbitals have identical spatial parts, and thus only N/2 of them are needed for a total of
N electrons. Limitations of the HF method will be covered extensively in Section2.3.

2.2.2 Roothaan-Hall equations
The eigenvalue problem outlined in Equation 2.43 is still quite hard to solve numerically.
Clemens C. J. Roothan and George G. Hall developed a scheme to represent the HF
equations in a non-orthonormal basis set.

Starting with the spatial part of the HF equations, each spatial function ψi can be
expanded in a linear combination of Nbasis, known as spatial functions χν , and expansion
coefficients Cνi:

ψi =
Nbasis∑
ν

Cνiχν(r) (2.44)

If the functions of choice, χν(r), are atomic orbitals, the approach is called the Linear
Combination of Atomic Orbitals (LCAO) method. The naming is usually preserved even
though other convenient functions are often used instead.

Assuming that the set of basis functions is complete, the expansion 2.44 is exact.
Usually, the expansion is limited to a finite set of Nbasis functions, and the orbitals {ψi}
are just approximate solutions of the HF equations.

As a lower bound, note that Nbasis must at least be as large as the number of spin
orbitals under consideration Nbasis ≥ N . An empirical upper bound can be attained with
ease by verifying the convergence of EHF (Equation 2.30) with respect to Nbasis.

Inserting the basis set expansion 2.44 into Equation 2.43 and multiplying by 〈χν |
leads to

Nbasis∑
ν

Cνi〈χµ|F̂ |χν〉 = εi

Nbasis∑
ν

Cνi〈χµ|χν〉 (2.45)

For convenience, an overlap matrix S is defined with elements

Sµν = 〈χµ|χν〉 (2.46)

and a Fock matrix F is defined with elements

Fµν = 〈χµ|F̂ |χν〉 (2.47)

With this in mind, Equation 2.43 may now be rewritten as

Nbasis∑
ν

FµνCνi = εi

Nbasis∑
ν

SµνCνi (2.48)

These are the so-called Roothaan equations, that can be written more compactly as

FC = SCε (2.49)

where C is the matrix of expansion coefficients Cνi and ε is the diagonal matrix of
orbital energies εi.
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In order to calculate C and ε, we need an explicit expression for the Fock matrix
elements,

Fµν = Hcore
µν +

∑
σλ

Pσλ[〈µλ|νσ〉 − 1
2 〈µλ|σν〉] (2.50)

where Hcore
µν is an element of the core Hamiltonian matrix,

Hcore
µν = 〈µ|ĥ|ν〉, (2.51)

and Pµν are elements of density matrix P,

Pµν = 2
N/2∑
j

CµjCνj , (2.52)

Equation 2.49 is a non-linear eigenvalue problem due to the dependence of the Fock
matrix on the expansion coefficients in the density matrix. Thus, the equation has to be
solved by an iterative procedure. The iterative procedure is based on the fact that it is
possible to orthonormalize the basis by using an unitary transformation U such as

U†SU = I (2.53)

where U† is the adjoint matrix of U, and I is the identity matrix. As long as U is
non-singular, Equation 2.49 can be written as

(U†FU)(U−1C) = (U†SU)(U−1C)ε (2.54)

If, once more, we define F′ and C′ as

F′ = U†FU (2.55)

C = UC′ (2.56)

Equation 2.49 is transformed into

F′C′ = C′ε (2.57)

Equations 2.55-2.57 are the transformed Roothaan equations, which are once more
non-linear. The problem is therefore solved iteratively: an initial guess is used to generate
an approximate C and, through transformation, an F′ matrix. A new set of orbitals is
obtained, which can then be used to generate a new Fock matrix, and so on until self-
consistency is achieved in the orbital energy matrix and in the density matrix.

The iterative approach herewith outlined is usually called the Self-Consistent Field
(SCF) method, given its nature.

All the matrices that arise in the development of the Roothaan-Hall equations are
of size Nbasis × Nbasis. In our current formalism, the ground state wave function are
constructed by taking theN/2 eigenvectors of F with lower orbital energies and discarding
the remaining ones. These eigenvectors determine the spatial part of the occupied orbitals,
while the remaining empty eigenvectors are known as virtual orbitals.

As only occupied orbitals are used in the construction of the Fock operator, they
are the only ones which are optimized in the SCF procedure. Virtual orbitals are only
implicitly optimized through their orthogonality with respect to the occupied ones.
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Notes on the SCF procedure

In a very simplified form, the HF equations reduce to:

E = min
φi
〈ΨHF |F̂ |ΨHF 〉 (2.58)

While the Roothaan-Hall procedure gives a convenient way to solve this problem in
matrix form, the SCF procedure is open to various improvements. A very basic technique
is called F -mixing or just SCF damping, in which a contribution of F from a previous
iteration is mixed with the newly calculated one during the SCF. Thus, at iteration n

F = aFn + (1− a)Fn−1 (2.59)

SCF damping can often improve the convergence of the procedure. Some other tech-
niques that have to do with SCF convergence are Direct Inversion of the Iterative Sub-
space (DIIS) introduced by Peter Pulay in 1982, and shooting techniques.[6, 7]

A startling observation might be made with respect to the solutions to the Roothaan-
Hall equations: SCF procedures select self-consistency, leading not necessarily to the
lowest energy wavefunction. Hence, in principle excited states can be calculated in simple
HF theory with a single Slater determinant. Avoiding collapse towards the ground state
solution can be achieved using algorithms such as the Maximum Overlap Method (MOM)
and SCF damping.

As a final remark, it was demonstrated by J. Harris [8] that the convergence of the
energy is to the second order of the convergence of the density. This means that, in
general, verifying that the density matrix P is converged suffices to ascertain that the
energy is converged, while the opposite may not be true.

Basis sets in quantum chemistry

Appropriate selection of basis sets is not trivial. As highlighted previously, the radial
part of nuclei-centered orbitals is akin to

ψSTO(x, y, z) = Cxaybzce−ξr (2.60)

where C is a normalizing constant, x, y, z are Cartesian coordiantes with angular
momentum controled by n = a + b + c, r is the distance from the nuclei and ξ is a
proportionality constant that reflects the effective charge of the nucleus. n is a natural
number that represents the principal quantum number.

Basis sets can be constructed using linear combinations of such radial functions, which
are usually called Slater Type Orbitals (STO). STO basis sets are, in principle, very close
to the spirit of the LCAO method: they constitute a very faithful one-electron basis set.

However, more generally, other functions are used which compromise physical rigor
for ease of computation. The most widely used basis sets in quantum chemistry use
Gaussian Type Orbitals (GTO), given by

ψGTO(x, y, z) = Cxaybzce−ξr
2

(2.61)

Obviously, GTOs can not reproduce the correct behavior of STOs neither at r → 0
nor at r → ∞. Notably, the electronic wavefunction should have a discontinuity on top
of nuclear positions. This is known as Kato’s cusp condition, as pointed out by Tosio
Kato in 1957. This condition is not respected by GTOs, which are cuspless at r = 0.
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However, products and integrals of GTOs are much easier to compute. In order to
compensate for their inaccuracies, several GTOs can be linearly combined into a
Contracted GTO (CGTO) to mimic every atomic orbital,

ψCGTO(x, y, z) =
∑
i

Cix
aybzce−ξir

2
(2.62)

where the contraction coefficients Ci are normalized. The approach is represented in
Figure 2.1.

Very often in chemical applications basis sets are categorized depending on the number
of basis functions (with respective coefficients in the SCF procedure) used per atomic
orbital. As such, minimal basis sets use a single (STO, GTO, CGTO or else) function
per orbital, double-ζ basis sets use two, triple-ζ basis sets use three, and so on.

Many CGTO basis sets exist for different purposes in modern quantum chemistry,
which will not be covered here. Different basis set expansions might be used as well, as
plane waves or polynomials. In any case, the basis set limit can be retrieved by increasing
Nbasis.

2.2.3 Restricted and unrestricted formalisms
The Hartree-Fock equation (Equation 2.43) has been introduced for a general set of
(spin)orbitals {φi}, defined as the product of an orbital φi and an α(σ) or β(σ) spin
function.

In closed-shell chemical systems, with an even number of electrons N , spin
polarization is 0 and the spatial part of α and β spin orbitals is identical. Within the
single-determinant Hartree-Fock framework, this is known as the Restricted
Hartree-Fock (RHF) formalism. However, in some cases it is convenient to have
different spatial parts for α and β spin orbitals, in what is called the Unrestricted
Hartree-Fock (UHF) formalism.

Notably, systems with an unpaired number of electrons are usually better represented
by having a genuine orbital for the unpaired electron. With this in mind, and starting
from Equation 2.43 in terms of the orbitals, in the UHF formalism we have

F̂α|ψαi 〉 = εαi |ψαi 〉 (2.63)

F̂ β |ψβi 〉 = εβi |ψ
β
i 〉 (2.64)

Figure 2.1: Schematic representation of an STO, a GTO and a CGTO basis function.
Three colored GTOs are combined into the black-lined CGTO.
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with a different Fock operator acting upon the α and β parts

F̂α = ĥi +
Nα∑
j 6=i

(ĵαj − k̂αj ) +
Nβ∑
j 6=i

ĵβj (2.65)

F̂ β = ĥi +
Nβ∑
j 6=i

(ĵβj − k̂
β
j ) +

Nα∑
j 6=i

ĵαj (2.66)

The additional term in the spin-resolved Fock operators, ĵαij , acts upon Nα = N −Nβ
orbitals occupied by β electrons and vice-versa. Since F̂α depends on the occupied β
functions, ψβi , and F̂ β depends on the occupied α functions, ψαi , the two equations must
be solved simultaneously.

If the electronic state under consideration has an even number of electrons N , such
that there are N/2 doubly occupied orbitals, we can consider α and β orbitals to be
identical ψαi (r) = ψβi (r) = ψi(r). The number of occupied α and β orbitals are identical
and equal to N/2 and thus only a single spatial part needs to be solved,

F̂i|ψi〉 = εi|ψi〉 (2.67)

where

F̂i = ĥi +
N/2∑
j 6=i

(2ĵj − k̂j) (2.68)

Through which we return to the formalism in Section 2.2.
If the electronic state under consideration does not have an even number of electrons

N , the symmetry-breaking of the Slater determinant with respect to spin induces an
energy lowering, a new analogous way of solving the HF equations has to be used which
is analogous to two coupled Roothaan-Hall procedures, often called the Pople-Nesbet-
Berthier equations.

As a consequence of the instability with respect to symmetry-breaking, note that the
RHF formalism is often uncapable of dissociating covalent chemical bonds properly. If a
molecule would break into two uneven electron fragments, RHF imposes that electrons
will be paired irrespective of the bond length. For a hydrogen molecule in the ground state
(Σ+

g ), the one-dimensional PES for nuclei at a distance R is shown in Figure 2.2. It can
be clearly seen that the excited state with S = 1 is needed to describe the dissociated
situtation at R → ∞, where the spin of the two electrons is unpaired. This can be
achieved by combining two UHF solutions, but simply cannot be described with RHF.

In the simple case in Figure 2.2, the point where symmetry-breaking induces
additional stabilization is shown to be at R ≈ 1.6 Å in what is sometimes called the
Coulson-Fischer point.

The main drawback of lifting the symmetry restriction between α and β orbitals is
that the single-determinantal wavefunction is no longer an eigenfunction of the total spin
operator, 〈Ŝ2〉. If the expectation value of the spin operator differs significantly from the
initial spin, significant mixing from excited configurations has taken place and the results
might not be accurate.

As a result, other formalisms exist based on the symmetry-breaking of the HF
solutions, including the Restricted Open Hartree-Fock (ROHF) formalism and
spin-constrained techniques, which result in quite involved methodologies. The
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Figure 2.2: Dissociation curves for the H2 molecule at different theory levels with a STO-
3G basis set.

existence of such formalisms is noteworthy in a wider context because, as it will be
shown later, HF is often used as the first stepping stone in more sophisticated
calculations. However, they will not be covered in detail in this manuscript.

2.3 Electron correlation
HF theory is founded upon several assumptions. Other than the always implicit Born-
Oppenheimer approximation and the non-relativistic treatment, HF equations constrain
the wavefunction to a single Slater determinant and the true electronic Hamiltonian to
the Fock operator.

Therefore, each electron can only interact with the averaged Coulomb potential of
all other N − 1 electrons, but not with their instantaneous positions. This introduces an
error, which can be quantified by comparing the HF energy (EHF ) and the exact energy
Eexact at the basis set limit.

Ecorr = Eexact − EHF (2.69)
The difference, Ecorr, is often called the correlation energy, and must always be neg-

ative. It accounts for the energy lowering that is achieved when electronic motion is in-
stantaneously correlated instead of averaged.

For instance, near the basis set limit for the H2 molecule, at an equilibrium bond
length R = 0.7609 Å EHF is −1.133141 a.u. and Eexact is approximately −1.173985 a.u.
Thus, Ecorr is merely −0.040846 a.u., a very small 3.4% of the energy. However, chemistry
often arises from small differences in large quantities, and this small percentage is often
the key. Indeed, we see that this Ecorr is 25.63 kcal/mol, which is a significant energy in
chemical terms. HF theory lies at the heart of quantum chemistry, but it turns out that
this limitation makes it unsuitable for quantitative calculations on molecular systems.

This does not mean that the wavefunction is entirely uncorrelated, however.
Electrons with parallel spins are correlated through the antisymmetry of the
wavefunction. However, the term electron correlation is widely used to express the
deficits of the HF approximation, which arise from a purely mathematical reason and
have no intrinsc physical meaning.
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Quite often, scientific literature distinguishes two types of electron correlation, which
are called static and dynamic for an assortment of reasons that have to do mostly with
their mathematical foundations. Utmost care will be taken through this manuscript to
properly discuss the question of correlation. Hence, we will first showcase an explicit
example for the H2 molecule, then we will discuss some other simple examples, and only
afterwards we will discuss possible categories.

2.3.1 Correlation in the hydrogen molecule
As it has been discussed in Subsection 2.2.3, the restricted HF method cannot dissociate
bonds properly. The underlying reason is that constraining the wavefunction to a single
Slater determinant is sometimes too crude of an approximation.

In fact, the HF method fails whenever several possible Slater determinants are
similarly representative of the true wavefunction, which crudely means that they have
similar energies. This was shown in Figure 2.2: in the Coulson-Fischer point the energy
of the singlet and triplet determinants is very similar. To properly describe the system,
one would need to include more than a single determinant in the wavefunction.

Following this intuition, let us expand the wavefunction as a linear combination such
as:

|Ψ〉 =
∑
i

Ci|Φi〉 (2.70)

where every Φi is generally a symmetry-adapted linear combination of Slater
determinants of an N electron system, called a Configuration State Function (CSF). In
many cases Φi is simply a single Slater determinant as defined in Equation 2.22. In
Equation 2.70, Ci would be coefficients that can be obtained variationally by
variationally minimizing the total energy.

Let us exemplify using the H2 molecule. We express orbitals of the system as simple
combinations of s-type atomic orbitals, 1sA centered in one nucleus HA and 1sB centered
in the other nucleus HB , such as

φ1 = Ng

(
1sA + 1sB

)
φ2 = Nu

(
1sA − 1sB

)
where

Ng = 1√
2(1 + S)

Nu = 1√
2(1− S)

and S is just the overlap integral between 1sA and 1sB . Note that we are using a
minimal basis set in this example. Typically, 1sA and 1sB would typically be expanded
in as a linear combination of STOs or GTOs. Thus, φ1 and φ2 are the only two possible
orthogonal combinations of the atomic orbitals: the de facto molecular orbitals.

In a RHF formalism, let us take the two molecular orbitals φi and build a wavefunction
as a Slater determinant. For the ground state we have
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|Φ0(x1,x2)〉 = 1√
2

(
ψ1(r1)α(σ1)ψ1(r2)β(σ2)− ψ1(r1)β(σ1)ψ1(r2)α(σ2)

)
= |φ1α, φ1β〉

(2.71)
where |φi, φj , . . . φN 〉 is short hand notation for the Slater determinant of the N -

electron system. In this case, it is straightforward to separate the spin part such as

|φ1α, φ1β〉 = 1√
2
ψ1(r1)ψ1(r2)(α(σ1)β(σ2)− β(σ1)α(σ2)) (2.72)

which, as pointed before, cannot dissociate correctly as we increase the internuclear
distance and the overlap becomes negligible. The expectation value of the energy would
be the energy of a single H atom and 1/2 of the energy of an H– anion.

Figure 2.3: Dissociation curves for the H2 molecule at different theory levels with a STO-
3G basis set.

Instead, we can build a new multiconfigurational wavefunction using also the excited
state of the same spin symmetry,

|ΨMC〉 = c0Φ0 + c1Φ1 = c0|φ1α, φ1β〉+ c1|φ2α, φ2β〉 (2.73)

and we devise a procedure to variationally minimize the expectation value of the
energy with respect to the coefficients ci:

E = min
ci
〈ΨMC |Ĥ|ΨMC〉 (2.74)

Such a wavefunction is able to dissociate the H2 molecule correctly. This is shown
in Figure 2.3, where the wavefunction in Equation 2.73 is represented by the CAS(2,2)
method. At the Equilibrium distance, In fact, it turns out that the resulting wavefunction
and E are exact for the minimal basis set. Adding CSFs to the wavefunction ansatz
improves upon the HF result, correcting for the lack of electron correlation.

In the following section we will systematize this approach.
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2.3.2 Configuration Interaction methods
To reach the exact result, all possible independent combinations of CSFs must be included
in the wavefunction. If this is the case, the method is called Full Configuration Interaction
(FCI) and it is the exact solution for a given basis set choice.

The appropiate expansion can be generated by exchanging occupied orbitals for
virtual orbitals starting from a single reference CSF, for example, the RHF ground
state. The FCI wavefunction can de written as:

|ΨFCI〉 = c0|Φ0〉+
∑
ai

cai |Φai 〉+
∑
ai,bj

cabij |Φabij 〉+ . . . (2.75)

In which the coefficients cai applies to the different singly excited CSFs, the coefficients
cabij apply to the double excited ones, and so on.

Continuing the example from the previous section, we would only need to consider
single and double excitations in a 2 electron 2 orbital system. Starting from
Φ0 = |φ1αφ1β〉 we would have only one possible linearly independent double excitation,
namely

|Φ22
11〉 = |φ2α, φ2β〉

because the single excitations are redundant. Thus, the expansion in Equation 2.73 is
the FCI wavefunction for a minimal basis set, and the result is exact. The total number
of CSFs NCSF increases proportional to a binomial coefficient:

NCSF ∝
(
Nbasis + 1

N

)
(2.76)

Where Nbasis is the number of basis functions and N is the number of electrons as
usual. As Nbasis increases, which is desirable to approach the basis set limit, the number
of determinants explodes and the computational task at hand becomes impractical.

The expansion has to be truncated at some point for practical reasons, which leads
to methods called Configuration Interaction (CI). Such methods are ranked
hierarchically: Configuration Interaction with Single excitations (CIS), CI with Single
and Double excitations (CISD) and so on.

In the H2 system with a minimal basis set, FCI is the same as CISD and CID. If the
basis set is not minimal, more terms arise because there are much many more unoccupied
orbitals to which every electron can be excited. Several mathematical rules exist that limit
the contribution of certain excitations, such as Brillouin’s theorem and Slater’s rules. We
will not cover CI expansions in detail here.

2.3.3 Multireference methods
As stated in Equation 2.74, we can minimize with respect to the coefficients of the
expansion, and obtain every determinant systematically through excitations starting from
the HF reference.

However, we can also minimize the multideterminantal ansatz in Equation 2.70 with
respect to the expansion coefficients of the basis Cνi at set at the same time,

E = min
ci,Cνi

〈ΨMC |Ĥ|ΨMC〉 (2.77)
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At the FCI level, both approaches give equivalent results, and thus the added
complexity is not desirable. However, with a finite basis set, the legitimate question of
whether adding more determinants or optimizing the expansion coefficients is better.

The general denomination for such methods is Multi-Configurational SCF (MCSCF).
Very often, only some active part of the wavefunction is expanded in terms of several CSFs
in order to reduce the computational effort. These methods are usually called Complete
Active Space (CAS) methods and derivations thereof, such as Restricted Active Space
(RAS) and others.

Such methods only treat a given number of electrons N and orbitals Norb at the
multideterminantal level, and thus carry a term (N ,Norb) to indicate the type of the
expansion. A CAS(2,2) calculation would imply that a complete CSF expansion is used
for 2 electrons in 2 orbitals. As such, in our previous example of minimal basis set H2,
this is once more a FCI calculation.

The selection of the CSFs to include in the expansion for more complex systems is
usually subject to some mathematical and empirical constraints, and it is far from a
solved problem that will not be covered here.

2.3.4 Coupled Cluster methods
Some desirable properties for any computational approach to solve Equation 2.15 are
size-extensivity and size-consistency.

Supposing a method that can provide the wavefunction and corresponding value of
the energy E(A) of a given system A. The size-consistency requirement is required if, for
two systems A and B that are not interacting – for instance, due to a distance RAB =∞
– it holds that

E(AB) = E(A) + E(B) (2.78)
From the practical point of view, this condition is very important whenever interaction

energies between subsystems have to be computed. Size extensivity has to do with the
correct scaling of the electronic energy with the number of electrons N of the system.
We will not elaborate further here.

Truncated CI methods are not size consistent. This can be easily seen by writing a
CID expansion for our test case A, B and AB with distance RAB =∞ at all times,

ΨAB = Φ0
AB + ΦDAB

ΨA = Φ0
A + ΦDA

ΨB = Φ0
B + ΦDB

and so the the condition in Equation 2.78 would hold if

ΨAB = ΨAΨB (2.79)
but in the CID case we have

ΨAΨB −ΨAB = ΦDAΦDB (2.80)
Therefore, the CID wavefunction misses double excitations in the monomers, and

Equation 2.78 does not hold. Coupled Cluster (CC) methods expand the wavefunction
differently to avoid these issues:
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|ΨCC〉 = expT̂ |Φ0〉 = (1 + T̂ + 1
2! T̂

2 + . . .
1
N !N̂

2)|Φ0〉 (2.81)

where T̂ = 1 + T̂1 + T̂2 . . . T̂N is the cluster operator, and the corresponding T̂i
operators generate excitations analogous to the ones covered in CI theory. CC methods
also converge to the FCI result, but they are size-consistent and size-extensive, and are
named in an analogous way: CC Single and Double excitations (CCSD), etc. Note that,
again, CCSD is FCI for H2 in a minimal basis set.

2.3.5 Perturbative methods
Electron correlation may also be recovered using perturbation theory. There are many
possible approaches. For exemplary purposes, we will stick to non-degenerate Rayleigh-
Schrödinger perturbation theory as a framework and Møller-Plesset (MP) perturbation
theory as a method.

As often in perturbative approaches, the Hamiltonian of the system is divided in two
pieces: a zero-order part, Ĥ0, whose solution is known, and a perturbation V̂ .

Ĥ = Ĥ0 + λV̂

Ĥ0|Ψ0
i 〉 = E0

i |Ψ0
i 〉

where Ĥ0 is the HF Hamiltonian which, again, we will use as reference. |Ψ0
i 〉, and E0

i

are its ith eigenvector and eigenfunction respectively. λ is an ordering parameter.
|Ψi〉 and Ei are expanded in a Taylor series in λ that goes from the HF results (λ = 0)

to the fully exact solution (λ = 1),

Ei = E0
i + λE1

i + λ2E2
i + . . . , (2.82)

|Ψi〉 = |Ψ0
i 〉+ λ|Ψ1

i 〉+ λ2|Ψ2
i 〉+ . . . (2.83)

Where Eni and |Ψn
i 〉 are the nth order energy and wavefunction corrections, respec-

tively. First order corrections to En and |Ψi〉 are given by

E1
i =

∑
n>0

〈Ψ0
0|V̂ |Ψ0

n〉
E0
i − E0

n

(2.84)

|Ψi〉 = |Ψ0
i 〉+

∑
n>0

〈Ψ0
0|V̂ |Ψ0

n〉
E0
i − E0

n

|Ψ0
n〉 (2.85)

The 2nd order correction (E2) is the first term which improves upon the HF energy,

E2
i =

∑
n>0

〈Ψ0
0|V̂ |Ψ0

n〉〈Ψ0
0|V̂ |Ψ0

n〉
E0
i − E0

n

. (2.86)

HF enhanced with the 2nd order correction from Equation 2.86 is often called the
MP2 method. Further expansion is possible (MP3, MP4, etc.) but becomes increasingly
expensive. Convergence is not trivial except for very small perturbations, as in usual
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perturbation theory. In fact, the denominator in Equation 2.86 immediately means that
if the energy of the different states is exactly the same the correction will diverge.

MP2 corrections are reasonably cheap and can account for a large percentage of the
correlation energy in many situations. However, perturbative series often face problems
due divergences. As the method is not variational, MP2 corrections may overestimate
correlation effects and lead to artificially low energies beyond the exact limit.

2.3.6 Outlook on electron correlation
To finish this section, some exemplary calculations will be showcased for our model system
so far, the H2 molecule, using different basis sets. We will try to define some concepts
related to electron correlation that will be used later on.

With a minimal basis set, as we have said previously, CAS(2,2), CISD and FCI are
all exactly the same for H2. This is shown in Figure 2.4. Notably, it can be seen that
MP2 lags behind the exact solution with various degrees of success at different values of
the internuclear distance R. Near the equilibrium distance R ≈ 0.76 Å MP2 is very close
to the exact solution.

Figure 2.4: Dissociation curves for the H2 molecule at different theory levels with a STO-
3G basis set.

However, as we approach the Coulson-Fischer point, MP2 breaks down because the
weight of the doubly excited configuration in the multideterminantal expansion is
approximately the same as the weight of the HF reference. Therefore, the perturbation
is not small at all: the reference wavefunction and determinant are very far from the
proper multideterminantal wavefunction.

Let us increase the basis to a double-ζ quality to decouple the exact solutions. In
Figure 2.5 we can now see that the dissociation curves properly tend to the energy of two
hydrogen atoms (−1 a.u.) unlike Figure 2.4. This signals that we are approaching the
basis set limit for this system. However, the Coulson-Fischer problem in MP2 is not fixed
whatsoever. We start seeing some discrepancies between the FCI and CAS(2,2) curves,
but they are not significant.

As a final test, let us increase the basis set to triple-ζ quality, shown in Figure 2.6.
While the MP2 problem persists, the discrepancies between CAS(2,2) and FCI keep
increasing. The increasing number of virtual orbitals means that there is an increasing
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Figure 2.5: Dissociation curves for the H2 molecule at different theory levels with a 6-31G
basis set.

Figure 2.6: Dissociation curves for the H2 molecule at different theory levels with a cc-
PVTZ basis set.

number of excitations which are not accounted for in the CAS(2,2) expansion. These
excitations must have a very small weight in the expansion, but contribute to the energy
expression nevertheless.

In fact, in Figure 2.6, MP2 gives more accurate values than CAS(2,2) near the
equilibrium distance. CAS(2,2) is better again after the Coulson-Fischer point. At the
equilibrium distance, considering many excitations in the perturbative series gives a
better energy than simply considering the main determinants in the multirreference
wavefunction.

Note that correlated methods explore the virtual orbitals, unlike HF theory, and
therefore the energy is lowered much more significantly for the MP2 curve than for the
HF curve when moving from Figure 2.4 towards 2.6. In general, correlated methods
require very large basis sets to converge to the basis set limit.

After considering the different situations and methods in this section, we can attempt
to classify two mathematical origins of electron correlation:
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• Strong correlation is the deficit of a single-reference wavefunction due to the fact
that one or a few CSFs which would have large weights in the FCI expansion have
not been included. Hence, the qualitative description of a strongly correlated system
given by the single reference calculation will be wrong.

• Weak correlation is the error in which a single-reference wavefunction incurs due to
the lack of many CSFs which would have small weights in the FCI expansion. The
qualitative description of weakly correlated systems might be good, but is never
quantitative at the single reference level.

Only FCI is able to treat strongly and weakly correlated systems accurately. For
the most part, perturbative methods are better for weak correlation and multirreference
methods are better for strong correlation.

The de facto golden standard is CCSD(T), which is a CCSD expansion with triple
excitations treated perturbatively. The cost of such an approach scales very steeply with
the number of electrons and orbitals, but it is the most used approach for benchmarking
and comparison.

2.4 Density functional theory
In the previous section we have outlined several approaches that allow us to get increas-
ingly accurate electronic wavefunctions and associated energies. However, the electronic
wavefunction is a highly-dimensional mathematical object which we can hardly imagine
or interpret. What we can interpret comfortably is, in fact, the probability density aris-
ing from the electronic wavefunction (cf. Equation 2.3): the electron density.

As we will see first, with a fast examination, the electron density bears a lot of
information about the system. We will later show that, in fact, it formally bears enough
information to calculate the exact electronic energy directly from it.

The theoretical framework that tries to express the exact electronic energy as a
functional of the electron density is called Density Functional Theory (DFT).

2.4.1 The electron distribution
All the wavefunction expressions we have used in Section2.3 are constructed using spin
orbitals, which are just mathematical objects. Only the square of the wave function has
a true physical meaning.

Considering a single electron in orbital φi(r) with spin α, the wave function is Ψi(x) =
φi(r)α. The probability density of that electron is given by

ρα(r) = |Ψi(x)|2 = |ψi(r)|2 (2.87)

Consequently, the probability of finding the electron in a volume dr is given by inte-
gration:

P (r) =
∫
|ψi(r)|2dr =

∫
ρα(r)dr (2.88)

If ψi is replaced by a normalized N electron wave function Ψ(x1,x2, . . . ,xn), we can
generalize. For any restricted wavefunction we can omit the spin part for simplicity. Then,
the electron density becomes:
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ρ(r1) = Ψ∗(r1, . . . rN )Ψ(r1, . . . rN ) (2.89)

Which integrates to N for a normalized wavefunction. If the wavefunction is a Slater
determinant, then the electron density can be rewritten as a sum over molecular orbitals,

ρ(r) =
∑
i

ni|ψi(r)|2 (2.90)

where ni are the occupation numbers of the i-th molecular orbital. That is, the
probability densities arising from different orbitals over space are additive.

Density matrices

The density matrix of a system is given by [9]

Γ(x1,x2, . . .xN ; x′1,x′2, . . .x′N ) = Ψ(x1,x2, . . .xN )Ψ?(x′1,x′2, . . .x′N ) (2.91)

where xi are spin-spatial coordinates as before. The density matrix contains similar
information to the wavefunction expanded in a given basis set. A more convenient
expression can be obtained in terms of reduced density matrices.

The n-particle reduced density matrix can be expressed as

Γn(x1, . . .xn; x′1, . . .x′n) = n!
(
N

n

)∫
Γ(x1, . . .xN ; x′1, . . .x′N )dxn+1, . . . ,dxN (2.92)

where we assume that integrating over space-spin coordinates is equal to integrating
over spatial coordinates ri and summing over spin coordinates σ. The one particle reduced
density matrix is thus

Γ1(x1; x′1) = N

∫
Ψ(x1,x2, . . .xN )Ψ∗(x′,x2, . . .xN )dx2, . . . ,dxN (2.93)

which is definite positive. Analogously, the two-particle reduced density matrix is

Γ2(x1,x2; x′1,x′2) = N(N − 1)
∫

Ψ(x1,x2, . . .xN )Ψ∗(x′1,x′2, . . .xN )dx3, . . . ,dxN (2.94)

Such compact expressions are useful for discussion. Reduced density matrices are
also hermitian and symmetric with respect to particle permutations. Conveniently, they
integrate to the corresponding number of combinations of n electrons,∫

Γ1(x1; x′1)
∣∣∣
x1=x′

1

dx1 = N (2.95)∫
Γ2(x1,x2; x′1,x′2)

∣∣∣x1=x′
1

x2=x′
2

dx1dx2 = N(N − 1) (2.96)

Both reduced density matrices can be rendered spin-less by integration of the spin
part,

γ1(r1; r′1) =
∫
dσ1Γ1(x1; x′1) (2.97)
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and

γ2(r1, r2; r′1, r′2) =
∫
dσ1

∫
dσ2Γ2(x1,x2; x′1,x′2) (2.98)

The diagonal parts of the one and two-particle reduced density matrices represent
probability densities of finding just a set of n electrons in dr1, . . . drn, because this is
analogous to integrating over all the N electrons of the system except the subset n < N
and noting that every electron is indistinguishable from any other electrons.

For n = 1, we formally retrieve the electron density ρ again (Equation 2.89).

ρ(x1) = γ1(r1; r1) (2.99)

For n = 2, the pair density ρ2(x1,x2) is obtained:

ρ2(r1, r2) = γ2(r1, r2; r1, r2) (2.100)

Note that for single-determinant wavefunctions, the one-particle reduced density
matrix can be written simply as

γ1(r1; r′1) =
∑
i

niψi(r1)ψ?i (r′1) (2.101)

in terms of the molecular orbitals ψi that compose the wavefunction and their occu-
pation number ni. In any restricted formalism, occupation numbers are either 2 for oc-
cupied orbitals or 0 for virtual orbitals. Note that such one-particle reduced density ma-
trix is both diagonal and idempotent.

2.4.2 Bright-Wilson argument
As pointed out in Section 2.2, the wavefunction must have a discontinuity on top of the
nuclear positions Ri or all nuclei Mi with nuclear charge Zi. Thus, the electron density
must present this discontinuity as well. Kato’s cusp condition states that:

dρ(r)
dr = −2ρ(r)Zi (2.102)

when r = Ri and where ρ is the electron density spherically averaged around Ri.
Equation 2.102 is valid for Coulomb systems assuming the Born-Oppenheimer
approximation and point-like nuclei. The electron density then decays exponentially,
satisfying

ρ(r) ∝ e−(
√

2I)r, (2.103)

where I is the first ionisation potential, when r is far from the nuclear positions.
Therefore, just from the electron density we can get the positions of all nuclei as

discontinuities, the nuclear charges through derivatives, and the number of electrons by
integration (Equation 2.89). Therefore, the Coulomb potential of the system is completely
determined just from the exact electron density ρ. [10]

In the rest of the section we will generalize this keen observation, due to E. Bright
Wilson, to any potential. This, in turn, will proof that a functional may exist that recovers
the exact energy from the electron density.
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2.4.3 First Hohenberg-Kohn theorem
The first Hohenberg-Kohn theorem generalizes the previous reasoning. It is usually stated
as the following: [11]

First Hohenberg-Kohn Theorem For any system of N interacting particles in an
external potential Vext(r), this potential is determined uniquely, except for a constant, by
the ground state particle density ρ(r).

Thus, as the complete electronic Hamiltonian Ĥ of the system is determined by Vext(r)
and N , all the properties of the system are determined by ρ(r). Therefore, the energy is
uniquely determined by the ground state particle density.

While there are many refined and generalized ways to demonstrate this theorem, the
classic reductio ad absurdum is given below.

Proof: Let us propose two different external potentials V (1)
ext (r) and V

(2)
ext (r) which

differ in more than a constant and lead to the same ground state density ρ(r).
For each potential there will be a different Hamiltonian, Ĥ(1) and Ĥ(2), with different

corresponding ground state wave functions, Ψ(1) and Ψ(2). Since Ψ(2) is not the ground
state of Ĥ(1), from the variational principle it follows that

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉 (2.104)

Where non-degeneracy of the ground state is assumed. The last term may be rewritten
as

〈Ψ(2)|Ĥ(1)|Ψ(2)〉 = 〈Ψ(2)|Ĥ(2)|Ψ(2)〉+ 〈Ψ(2)|Ĥ(1) − Ĥ(2)|Ψ(2)〉 (2.105)

= E(2) +
∫

[V̂ (1)
ext (r)− V̂ (2)

ext (r)]ρ(r)dr

and thus

E(1) < E(2) +
∫

[V̂ (1)
ext (r)− V̂ (2)

ext (r)]ρ(r)dr (2.106)

The same procedure can be used to derive the analogous expression for E2,

E(2) < E(1) +
∫

[V̂ (2)
ext (r)− V̂ (1)

ext (r)]ρ(r)dr. (2.107)

and adding both Equation 2.106 and 2.107 yields a contradictory inequality E(1) +
E(2) < E(1) + E(2).

Therefore, there cannot be two different external potentials differing by more than a
constant but giving rise to the same non-degenerate ground state electron density.

2.4.4 Second Hohenberg-Kohn theorem
The second Hohenberg-Kohn theorem completes the first one, and leads to the key result
of this section. It states:

Second Hohenberg-Kohn Theorem A functional for the energy E[ρ] in terms of the
density ρ(r) can be defined valid for any external potential Vext(r). The exact ground
state energy of the system is given by the global minimum value of such functional, and
the exact ground state density is the one that minimizes it.
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Once again, there are many subtle ways of demonstrating this. The classic proof is
given below.

Proof: Since all the properties are uniquely determined by ρ(r), each energy term
may be defined as a functional of ρ(r)

E[ρ] = FHK [ρ] +
∫
Vextρ(r)dr (2.108)

where FHK [ρ] is a universal functional of the density which contains the kinetic and
electron-electron interaction energy,

FHK [ρ] = T [ρ] + Vee[ρ] (2.109)

Therefore, the ground state electronic energy of a system with ground state density
ρ(1)(r), external potential V (1)

ext and wavefunction Ψ(1) is given by the energy functional
E(1)[ρ(1)] ,

E(1)[ρ(1)] = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 (2.110)

As per the first Hohenberg-Kohn theorem, any trial electron density ρ(2)(r) uniquely
determines its own external potential V (2)

ext , Hamiltonian Ĥ(2) and wavefunction |Ψ(2)〉.
The variational principle enforces that

E(1)[ρ(1)] = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 ≤ 〈Ψ(2)|Ĥ(1)|Ψ(2)〉 = E(1)[ρ(2)]. (2.111)

Which means that due to the unique correspondence ρ → Vext → Ĥ → Ψ, the
variational principle can be used in terms of ρ. Any trial electron density different from
the exact ground state one leads to a higher energy than the exact one.

A constraint has to be added to ensure that ρ integrates to N , which is sometimes
expressed as the stationary principle:

d

dρ

(
E[ρ]− µ

∫
ρ(r)dr

)
= 0 (2.112)

where µ is a Lagrange multiplier. Other than that, the minimization problem is simply

E = min
ρ

(
FHK [ρ] +

∫
ρ(r)Vextdr

)
(2.113)

and we can express the universal functional as

FHK [ρ] = min
Ψ→ρ
〈Ψ|T̂ + V̂ee|Ψ〉 (2.114)

where the condition Ψ → ρ means simply that the following holds for the
antisymmetric wavefunction Ψ:

ρ(r) = N

∫
|Ψ(x1,x2, . . .xN )|2dx1, dx2, . . . dxN (2.115)

So far, the task of finding the exact energy has been expressed as a double
minimization problem. This is known as the constrained search approach. [12, 13, 14]

However, the exact form of FHK [ρ] is not known. This issue will be tackled in the
next Section.
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2.5 Kohn-Sham formulation
As the exact expression of FHK [ρ] is not known, and with what has been covered so far,
the minimization problems in Equations 2.113 and 2.114 are very hard to solve.

A very effective approach was introduced in 1965 by Kohn and Sham (KS).[15] The
KS approach is based on using a fictitious system of N non-interacting particles that has
the exact same ground-state density as the true system. We will refer to this system as
the KS system.

The non-interacting Hamiltonian ĤKS can be written as

ĤKS = T̂ + V̂KS (2.116)

where T̂ is the kinetic energy operator. V̂KS is the external potential term, which we
will call the KS potential, so that V̂KS =

∫
vKS(r)ρ(r)dr.

Because the KS system is non-interacting, we may enforce that the potential vKS(r)
leads to a Slater determinant wavefunction Φ, from which the ground-state density ρ(r)
may be derived. We then require that the single-reference wavefunction Φ minimizes the
expectation value of T̂ ;

Ts[ρ] = min
Φ→ρ
〈Φ|T̂ |Φ〉 (2.117)

We may now rewrite FHK [ρ] from Equation 2.114 as

F [ρ] = Ts[ρ] + EH [ρ] + Exc[ρ] (2.118)

where the Hartree functional EH [ρ],

EH [ρ] = 1
2

∫ ∫
ρ(r1)ρ(r2)
|r1 − r2|

dr1dr2 (2.119)

is a mean-field term, analogous to HF theory, and Exc[ρ] is an exchange-correlation
functional that accounts for a supposedly small part

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− EH [ρ] (2.120)

that is, a term that accounts for electron correlation beyond the mean field
approximation and the difference between the true kinetic energy functional T [ρ] and
the KS one Ts[ρ]. Let us assume for the time being that the exact expression of Exc[ρ]
is known.

By noting that the explicit expression for the effective KS potential vKS(r) using the
exchange-correlation potential vxc(r) and the external potential vext(r) (usually simply
due to nuclei):

vKS(r) = vext(r) + EH [ρ(r)]
dρ(r) + dExc[ρ(r)]

dρ(r)
= vext(r) + vH(r) + vxc(r)

Then we can rewrite the minimization problem in a self-consistent manner. The KS
system is subject to a familiar eigenvalue equation (cf. Equation 2.43), as Φ can be built
using a set of orbitals φi with eigenvalues εi,

69



Chapter 2. Foundations of Quantum Chemistry

ĤKS |φi〉 = εi|φi〉 (2.121)

Again, there is no explicit V̂ee term in the Hamiltonian. We have chosen Φ to be a
single Slater determinant, which can be treated using the LCAO method with Roothaan-
Hall basis set expansion as we have shown before. ĤKS depends on Φ through ρ(r) in
V̂KS .

Where Exc[ρ] known, whenever self-consistency is achieved, ρ(r) must be the exact
ground state electron density, with which we can then calculate the exact energy. That
is, given the exact Exc[ρ] we can get the exact result at the basis set limit with a very
simple single-reference KS wavefunction and the even simpler electron density, a three-
dimensional scalar field.

2.5.1 Physical content of the exchange-correlation functional
As pointed before, the exact form of FHK [ρ] is not known, and the exact form of Exc[ρ]
is not known either. It is significantly easier to approximate the latter, because it only
captures the physics beyond the mean-field problem, and we have seen in Section 2.2
that this is a small quantity in terms of energy.

Thus, the key problem in KS-DFT is finding a good approximation to Exc[ρ].
Naturally, using an approximate exchange-correlation functional means that the theory
so far is sadly rendered inexact.

Let us partition Exc[ρ] in order to better understand what is needed to emulate it.
First of all, we can dissect it into Ex[ρ] and Ec[ρ], the exchange and correlation functionals
respectively:

Exc[ρ] = Ex[ρ] + Ec[ρ]
Ex[ρ] = 〈Φ|V̂ee|Φ〉 − EH
Ec[ρ] = 〈Ψ|T̂ + V̂ee|Ψ〉 − 〈Φ|T̂ + V̂ee|Φ〉

where Ψ is the true wave function of the system and Φ is the wavefunction of the KS
system as before. The correlation energy may be further decomposed into kinetic and
potential components

Ec[ρ] = Tc[ρ] + Vc[ρ] (2.122)

where Tc[ρ] = T [ρ]− Ts[ρ] and Vc[ρ] = Vee[ρ]− (EH [ρ] + Ex[ρ]).
We can use the pair density as defined in Subsection 2.4.1, ρ2(r1, r2), to further

simplify the spin-less expressions

Vee[ρ] = 〈Φ|V̂ee|Φ〉 = 1
2

∫ ∫
ρ2(r1, r2)

r12
dr1dr2 (2.123)

Let us reflect upon the significance of the exact pair density. In a non-interacting
system, the pair density must be separable into one-particle densities. In a truly correlated
system, it is not. We can express the difference as

ρ2(r1, r2)− ρ(r1)ρ(r2) = ρ(r1)hxc(r1, r2) = −ρxc(r1, r2) (2.124)
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where the term hxc(r1, r2) is usually called the exchange-correlation hole, and
ρxc(r1, r2) is called the exchange-correlation density. The normalization conditions
showcased in Subsection 2.4.1 imply that∫

hxc(r, r′)dr′ = −1 (2.125)

Coherently, we can define the exchange-correlation energy per electron εxc(ρ(r)).

Exc[ρ] = 1
2

∫ ∫
ρ(r1)hxc(r1, r2)

r12
dr1dr2

=
∫
ρ(r1)εxc(ρ(r1))dr1

Therefore, the search for Exc[ρ] may be reformulated in terms of εxc(ρ((r)), which is
often subdivided into εx and εc, exchange and correlation contributions. In other words,
we attempt to model a two-electron function in terms of one electron.

2.5.2 Density functional approximations
In the KS-DFT context, the approximate form of FHK [ρ] (Equation 2.109) is given solely
by the approximate form of Exc[ρ], which is in turn determined by εxc[ρ]. Therefore, the
term Density Functional Approximation (DFA) is used indistinctly to refer to particular
approximations to the exchange-correlation term or the universal functional.

Classically, such approximations are built on increasingly sophisticate sources of
information, which have been historically compared to the rungs in the biblical ladder
of Jacob. We will cover the main families now, and the final Subsection of the Chapter
will be dedicated to current limitations of DFAs.

First rung: Local density approximations

One of the simplest N electron systems is given by a uniform electron gas, moving on
a positive background charge distribution such that the total ensemble is electrically
neutral. In these systems ρ is constant everywhere: this is the Homogeneous Electron
Gas (HEG), also called jellium.

The Thomas-Fermi-Dirac model extensively studies the properties of such systems,
and many accurate results are known. The kinetic energy of an HEG can be expressed
as

THEG[ρ] = CF

∫
ρ5/3(r)dr (2.126)

where

CF = 3
10(3π2)2/3

εHEGT (ρ) = −CF ρ2/3

where CF is the Fermi constant. The exchange energy is also known, which leads to
an expression of the exchange energy per particle εHEGx (ρ):
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EHEGx [ρ] = −Cxρ4/3(r)dr (2.127)

where

Cx = 3
4

( 3
π

)1/3

εHEGx (ρ) = −Cxρ1/3

The exchange energy density εHEGx (ρ) is sometimes called Slater exchange.
First rung DFAs, Local Density Approximations (LDAs) are defined using εHEGx (ρ)

to derive the exchange functional. The remaining εLDAc (ρ) term has been very
accurately derived from quantum Monte-Carlo simulations as a function of ρ and
empirical parameters. Generally, an LDA DFA is expressed as

ELDAxc [ρ] =
∫
ρ(r)εLDAxc dr

=
∫
ρ(r)(εHEGx (ρ) + εLDAc (ρ))dr

Examples of εLDAc will be given later on. While, for the most part we will remain in a
spinless formulation, spin may be trivially introduced in the LDA formulation using the
spin-polarization density ξ(r), defined as

ξ(r) = ρα(r)− ρβ(r)
ρ(r) (2.128)

where the spin densities ρα(r) and ρβ(r) are calculated for electrons of the
corresponding spin and satisfy that ρα + ρβ = ρ. Spin polarization modifies Equation
2.127 slightly to

ELSDAx [ρ] = −21/3 1
2Cx

∫
ρ4/3(r)

[
(1 + ξ(r))4/3 + (1− ξ(r))4/3

]
dr

εLSDAx (ρ, ξ) = ε(ρ, 0) + [εx(ρ, 1)− εx(ρ, 0)]f(ξ)

f(ξ) = 1
2(21/3 − 1)

[(1 + ξ(r)4/3 + (1− ξ(r)4/3)− 2]

(2.129)

The spin-polarized variant is known as the Local Spin-Density Approximation
(LSDA).

In general, LDA and LSDA are appropiate for homogeneous electron densities, which
very rarely arise in molecular systems but are not too far from the situation in a bulk
metal. This is to be expected as per the construction of the approximation.

Some standard LDA DFAs have been proposed by fitting to accurate results. The
flagship example is the SVWN DFA that combines Slater exchange with the VWN
correlation functional of Vosko, Wilk, and Nusair.[16]
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Second rung: Generalized gradient approximations

Starting from the LDA theory, a natural way of adapting to inhomogeneous densities is
adding some dependency on density derivatives to ELDAxc [ρ] trough a gradient
expansion of Exc. Thus, the Generalized Gradient Approximation (GGA) adds a source
of information ρ(r), but also derivatives of ρ(r) in Exc.

A typical GGA exchange energy functional is simply a modification from Equation
2.128:

EGGAxc [ρ] =
∫
ρ(r)εLDAxc (ρ)FGGAxc (ρ, s)dr (2.130)

where FGGAxc (ρ, s) ≥ 0 is the enhancement factor, a function of the adimensional
reduced density gradient s(r), where the dependence on the gradient of the density lies,

s(r) = |~∇ρ(r)|
2(3π)2)1/3ρ(r)4/3 (2.131)

The enhancement factor can be decomposed as usual

FGGAxc (ρ, s) = FGGAx (s) + FGGAc (ρ, s) (2.132)

and we impose both that FGGAxc (ρ, s)→ FGGAx (s) as ρ→∞ and that FGGAx (0) = 1.
Note that for an infinite HEG, s(r) = 0. These are known as the high density and uniform
density limits. This construction attempts to satisfy the properties of the exchange-
correlation hole.

It can be said that, in general, GGAs do not achieve the accuracy that is required for
widespread application in molecular systems. However, there are many ways to build a
GGA DFA, including extensive parametrization at times.

Semiempirical approaches fit a few empirical parameters to reproduce the exact
exchange energy of a reference system, usually atomic. Examples of this approach are
the B88 exchange functional of Becke,[17] the PW91 exchange functional developed by
Perdew and Wang,[18], and the one-parameter correlation functional LYP, developed
by Lee Yang and Parr.[19]

Other DFAs attempt to be free of semiempirical parameters. A notable example is
the PBE DFA developed by Perdew, Becke and Ernzerhof,[20] as well as the correlation
functional of the aforementioned PW91 DFA.

We will not enter into too much detail at this point. Do note, however, that all DFAs
are parametrized because the correlation energy of the homogeneous electron gas is fitted
to a model, generally the VWN. Generally, the number of empirical parameters refers to
the additional parameters which are fitted to actual systems, and not to the HEG.

Third rung: Meta-generalized gradient approximations

Naturally, more information may be added by considering the second derivatives of ρ as
well. After all, such terms would arise in the gradient expansion of the LDA form after
|~∇ρ(r)|. Meta-Generalized Gradient Approximation (mGGA) DFAs therefore include the
Laplacian of ρ(r), ∇2ρ(r) as well as the gradient.

Very often, the Laplacian of the molecular orbitals φi of the KS system is a more
interesting ingredient because it can be used to define several Kinetic Energy Densities
(KED), i.e. integrands of the kinetic energy of the non-interacting system. A particularly
popular one is the positive semidefinite KED, τ(r):
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τ(r) = 1
2
∑
i

|~∇ψi(r)|2 (2.133)

where i runs over all doubly occupied KS orbitals. Some explicit dependency on τ(r)
is usually introduced in the exchange enhancement factor, such as

EmGGAx [ρ] =
∫
ρ(r)εHEGx Fx(s, τ, τw)dr (2.134)

where τw(r) denotes the von Weizsäcker kinetic energy density, which is the kinetic
energy density for a single-orbital system

τW (r) = 1
8
|~∇ρ(r)|2

ρ(r) (2.135)

Note that DFAs of this rung that profit from τ(r) are only implicit functionals of the
electron density. However, the kinetic energy density has a clear physical interpretation,
and the additional flexibility is in any case benefitial for fitting strategies.

Different meta-GGA functionals have been developed, for example the
Perdew-Kurth-Zupan-Blaha (PKZB) exchange-correlation functional which depends on
two fitted parameters,[21], the non-empirical Tao-Perdew-Staroverov-Scuseria (TPSS)
exchange-correlation functional,[22] and the M06L DFA introduced by Truhlar and
coworkers, which has 32 fitted parameters.[23]

These meta-GGA correlation functional are one-electron SIE free. The results
obtained using meta-GGA are generally improved with respect to GGAs, but not
always enough for finer chemical applications.

Fourth rung: Hybrids

Up to this point most of our attention has been devoted to the exchange functional
Ex[ρ]. This is not casual, as it is known that the exchange contribution to hxc(r1, r2) is
majoritary.

The exchange hole hx(r1, r2) may be computed from the HF wave function by Equa-
tion 2.33. Therefore, hybrid DFAs utilize HF-like exchange as a source of information as
well.

Further justification for the need of hybrid functionals can be extracted from the
adiabatic connection argument that follows. By starting from Equation 2.114 we can
write

Fλ[ρ] = min
Ψ→ρ
〈Ψ|T̂ + λV̂ee|Ψ〉 (2.136)

Where ρ is kept constant. λ is a coupling parameter that goes from 0 to 1 as the
interacting term is included in the Hamiltonian. Let us assume that minimization renders
a valid Ψλ

ρ for any value of λ. Note that

Fλ=0[ρ] = Ts[ρ]
Fλ=1[ρ] = T [ρ] + Vee

We can write an expression for the exchange-correlation functional in terms of λ:
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2.5. Kohn-Sham formulation

Exc[ρ] =
∫ 1

0
dλ
Fλ[ρ]
dλ

− EH [ρ]

=
∫ 1

0
dλ〈Ψλ

ρ |V̂ee|Ψλ
ρ〉 − EH [ρ]

=
∫ ∫

ρ(r1)h
λ
xc(r1, r2)
r12

dr1dr2

Hybrid functionals can be pictured as interpolation schemes between the exact
exchange (λ = 0) and the exact exchange-correlation functionals (λ = 1). Generally this
is achieved through parametrization. A simplistic ansatz could be

Ehybridxc [ρ] = aEHFx [ρ] + (1− a)EGGAxc,λ=1 (2.137)

Where a is an empirical parameter. In this rung we find the most widely used DFA,
B3LYP, which combines a previous GGA exchange functional with the LYP correlation
functional: [24]

EB3LY P
xc = aEHFx + (1− a)ELSDAx + bEB88

x + cELY Pc + (1− c)EcVWN (2.138)

where three parameters (a = 0.2, b = 0.72, c = 0.81) were adjusted to the G2 set
of experimental data, and the LYP DFA was used for the correlation part. Other DFAs
attempt to avoid empirical parametrization, such as the PBE0 DFA: [25]

EPBE0
xc = EPBExc + 0.25(EHFx − EPBEx ) (2.139)

Hundreds of hybrid DFAs coexist with various degrees of success, but this rung is re-
sponsible for the widespread popularity of DFT in molecular calculations. Other popu-
lar DFAs of this rung include the M06 and M062x functionals, with 32 and 35 empirical
parameters on top of the fraction of exact exchange.[26]

Beyond Fourth rung: Range-separated hybrids and double hybrids

Further rungs elaborate on the adiabatic formulation. Generally, this is attempted real
space-wise, giving birth to Range-Separated Hybrids (RSH) or virtual space-wise, which
leads to Double Hybrids (DH).

In RSH, we separate electron-electron interactions into short and long range terms
using the error function erf and its complementary erfc:

1
r12

= erf(µr12)
r12

+ erfc(µr12)
r12

(2.140)

where the parameter µ controls the separation between the long-range (erf(µr12)/r12)
and the short-range (erfc(µr12/r12) interactions. This is equivalent to representing Exc
as a short-range and a long-range effect.

ERSHxc = ESRxc (µ) + ELRxc (µ)

Thus it allows the treatment of different effects using different effective µ. The main
justification is the difficulty of expressing all exchange-correlation effects as local or
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semilocal. HF-like exchange terms are far less local than LDA or GGA derived ones.
There are, however, too many complicated approaches to this development to consider
here.

DHs include information from virtual orbitals, normally through perturbation theory.
An example construction could be

EDHxc = (1− a)EGGAx + aEHFx + (1− b)EGGAc + bEMP2
c (2.141)

in which a and b are empirical parameters and the MP2 superindex corresponds to a
second order perturbative correction calculated using the KS orbitals. Again, much can
be said with respect to developments in this direction which does not concern us here.

Some examples of RSH are the famous CAM-B3LYP modification, based on the
Coulomb attenuated method of Yanai and coworkers,[27] and the ωB97XD functional of
the Head-Gordon group.[28] In spite of the complex formulation, the cost is not
significantly increased with respect to hybrid DFAs.

DHs are somewhat less used due to the increased cost of MP2. Honorable menctions
are the PBE0-DH DFA of Brémond and coworkers [29] and the B2PLYP DFA of the
Grimme group.[30]

2.5.3 Current limitations of Density Functional Theory
There are some known constraints that apply to the exchange-correlation functional
Exc[ρ] directly or indirectly. The mathematical derivations are far too extensive to be
included here, but we will sketch a general perspective and some of the main concepts
in terms of the errors that are understood and that, most of all, derive in qualitative
discrepancies.

Note that, formally, errors in KS-DFT are analogous to the issue of electron correla-
tion. The main difference is that, here, we start from a non-interacting system of parti-
cles and thus the exchange term is not naturally included. Crudely, it can be said that
DFT has trouble describing systems which are not well defined by a single Slater deter-
minant (strong correlation) nearly by definition.

Thus, we will focus on the errors that arise from the unphysical approximation of
Exc[ρ], more than in the limitations of a single-reference method. In any case, the exact
universal functional would fix any and all issues.

Self interaction error

Self Interaction Error (SIE) is one of the most well known errors in DFAs. For most DFAs
there is no exchange term Kii to counteract the Coulomb term Jii for a given electron
(for a reminder, see Equation 2.30). This is better seen in one-electron systems, where
the following should hold in DFT.

EH [ρ] = −Exc[ρ] (2.142)

Equation 2.142, which naturally holds in HF methods and derivations thereof, does
not hold for most DFAs: electrons interact with themselves and one-electron systems are
ill-described. In a one-electron system all of the Coulomb interaction that is not removed
is purely SIE, because there are no other electrons. In N -electron systems some of the
Coulomb interactions may arise for the same reason.
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2.5. Kohn-Sham formulation

Quantifying this error exactly is not possible in general because the exact Vee[ρ]
functional is unknown. A possible strategy for designing DFAs without SIE uses a
combination of τ(r) and τw(r) to define it. Starting from the following expression:

τW (r) ≤ τ(r) (2.143)

The equality applies only if ρ(r) is represented by a single orbital. We can therefore
define an indicator of the form

ηSIE(r) = 1− τW (r)
τ(r) (2.144)

and take advantage of the fact that ηSIE → 0 when the system becomes single-orbital-
like to correct for SIE. A straightforward way to correct SIE is to add HF-like exchange
terms, which is in fact used in hybrid, RSH and DH DFAs.

These exchange terms help compensate the self-interacting Coulomb part. No DFA
below third rung can properly account for SIE trivially.

Derivative discontinuity and fundamental gap

It can be shown that the energy and the density of a system (considering that the
external potential is fixed) with respect to the number of electrons N , which may change
fractionally, has to be a straight line between integers:

E(N + δ) = (1− δ)E(N) + δE(N + 1)
ρ(N + δ) = (1− δ)ρ(N) + δρ(N + 1)

Therefore, at integer values both linear piecewise series must show derivative discon-
tinuities with respect to N .

The fundamental gap of a system of N particles, Eg, is given by the following equa-
tions assuming that the exact piecewise behaviour is respected. Note that both EH and
the external potential are continuous with N . Therefore, the discontinuity has to come
from Ts and/or Exc.

Eg = [E(N − 1)− E(N)]− [E(N)− E(N + 1)]

= lim
δ→0

[( dE
dN

)
N+δ
−
( dE
dN

)
N−δ

]
= lim
δ→0

[(dTs[ρ]
dρ

)
N+δ
−
(dTs[ρ]

dρ

)
N−δ

]
+ ∆xc

(2.145)

In which ∆xc is the difference between the right and left derivatives with respect to
N (taking ρ→ N) of the Exc term.

In the N = 1 case it has been shown that the KS kinetic energy term in Equation
2.145 correspond to the difference between the highest occupied and lowest unoccupied
KS eigenvalues. Assuming this may hold for other systems, it still means that ∆xc has to
be taken into account in the calculation of gaps. Furthermore, it means that the exchange
correlation potential vxc must have a discontinuity at integer N .

This is often not the case. Hence, gaps computed with most DFAs are significantly
wrong. Deviations in the dE/dN line are the cause of many of the failures of DFAs.
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Long range correlation

Long range interactions are particularly difficult to model in DFT. From the CI point
of view, such interactions arise from the presence of determinants with low weights that
correspond to CSF with induced electric momenta, i.e. long range excitations over large
distances in atomic orbital space. A multideterminantal minimization procedure forces
all such CSFs to interact and slightly modifies the PES of the system, which is enough
to govern over nuclear repulsion at long distances.

It is very hard for any DFA to capture such long range interactions due to the local
nature of ρ(r). In fact, the asymptotic behaviour of the exchange-correlation potential
vext should fulfil

vext ∝ −
1
R

(2.146)

but it decays significantly faster, as 1/R2, for most DFAs. This is extended to the
decay rate of the density and the orbitals in space.

RSH tackle this issue explicitly, but a very popular solution is to add empirical cor-
rections on top of Exc[ρ], which is generally inexpensive and robust.

A prototypical example are pairwise dispersion corrections parametrized per atom
type (and DFA) by Grimme and coworkers.[31] These take the form

E2−body = −1
2
∑
A,B

(CAB6
R6
AB

+ s8
CAB8
R8
AB

)
(2.147)

which gives the interaction energy for a pair of nuclei A, B in terms of some empirical
coefficients. This form arises from the multipolar expansion of the potential between
two electronic clouds. The first terms are considered to be included in the underlying
calculation, the R−6 and R−8 are considered because they dominate when RAB → ∞,
the 1/R7 factor is ignored and higher order terms are truncated out.

Often, a damping function is added to the denominators in Equation 2.147 to properly
connect the asymptotic ∝ 1/R6 behaviour with the short range (R → 0) effect of the
DFA. A popular option is a Becke-Johnson damping of the form

RiAB → RiAB + (c1R0
AB + c2)i (2.148)

where R0
AB is a minimum distance and ci are empirical parameters once more. The

multipolar treatment breaks down when there is significant overlap between electron
densities and therefore such damping extends the applicability of the corrections.

There are many schemes that attempt to correct for these issues, including other
pairwise corrections. After all, molecular mechanics use Lennard-Jones potentials with
great success. Another significant contribution to the accurate treatment of long range
correlation effects in DFT is the exchange-hole dipole moment model.[32, 33]

Density errors

As we have seen, and remarkably from the constrained search perspective, DFT typically
proceeds on two steps. A trial wavefunction is found that is well-behaved and satisfies
the Kohn-Sham equations under the chosen exchange-correlation potential vxc, which
stems from Exc[ρ]. Then, the energy is evaluated from ρ explicitly (EH [ρ], EHEGxc [ρ], . . .)
or implicitly (Ts, τ, . . .) and the ground state energy is calculated.
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2.5. Kohn-Sham formulation

However, as we have continuously mentioned, Exc[ρ] is often parametrized with
respect to reference data. In this case, nothing guarantees that a very good
exchange-correlation functional has to lead to a proper density or wavefunction. Only
the exact functional gives the exact ground state energy for the exact ground state
density ρ.

To decouple errors due to the functional evaluation from errors due to the approximate
density, it has been proposed to write a density error metric ∆Ed assuming that the exact
functional E[ρ] is known

∆Ed = E[ρ′]− E[ρ] (2.149)
where ρ′ is a trial density and ρ is the exact one. We can also define a functional error

metric ∆Ef , using an approximate E′[ρ],

∆Ef = E′[ρ]− E[ρ] (2.150)
As per the variational theorem, ∆Etotal is never negative. Obviously, we can never fill

in the data in Equation 2.149 from a practical point of view, because the only way we can
generally get the exact energy is as the expectation value of the exact FCI wavefunction.
However, the concepts of density-error and functional-error for an approximate DFA will
be useful for discussion later on, in particular in Chapter 6.

2.5.4 Outlook on Kohn-Sham Density Functional Theory
As in Section 2.3, we will finish by showcasing some of the features and limitations of
KS-DFT using the humble H2 molecule.

Figure 2.7: Dissociation curves for the H2 molecule at different theory levels with a 6-31G
basis set.

In Figure 2.7 several KS-DFT dissociation curves are shown with the RHF and FCI
references as in 2.5. Results are surprisingly poor, but expected: a single-determinant
reference still has troubles past the Coulson-Fischer point.

However, curves are significantly better than the HF one for a sigificant region of
R, as they only break down past R = 2.0 Å. This signals that, in fact, some amount
of strong correlation is being taken into account. Considering that the formal scaling of
KS-DFT computation is analogous to HF, it seems that KS-DFT is indeed superior.
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Figure 2.8: Dissociation curves for the H2 molecule at different theory levels with a 6-
311G basis set.

Results do not change qualitatively upon increasing the basis set (Figure 2.8 ): KS-
DFT, like HF, converges faster with respect to basis set size than methods that explore
virtual orbitals.

Let us simplify the test to the H2
+ cation, for which the RHF and FCI methods give

the same exact result. KS-DFT, however, fails miserably, as seen in Figure 2.9. Due to
a combination of SIE and an incorrect concave behavior of dE/dN , all DFAs shown,
irrespective of the rung, dissociate the cation to an abhorrent energy in a 2H+ 1

2 situation
instead.

Figure 2.9: Dissociation curves for the H2
+ molecule at different theory levels with a

6-31G basis set.

In the opposite direction, let us increase the complexity very slightly and study the
He2 molecule, a rare gas dimer in which there is no formal covalent bond. Coherently,
the curve in Figure 2.10 does not have a deep well, i.e. it is not Morse-like.

However, being a stable dimer, the FCI curve does have a very shallow minima at
R = 3.200 Å. HF has its minima at about R = 3.225 Å, which seems reasonable. The
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Figure 2.10: Dissociation curves for the He2 molecule at different theory levels with a
6-31+G basis set.

LDA we have considered, PBE and ωB97XV have minima at R < 2.75 Å, which incurs
in significant error. B3LYP does not seem to bind the He2 molecule at this theory level.

This comes to show the underpinnings of locality: HF gets a very small qualitative
detail acceptably, but DFT fails at describing the weak long-range interaction that binds
the dimer. In fact, the popular B3LYP DFA is shown to be particularly bad in this aspect.
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Chapter 3. Orbital-based chemical interpretation

As it has been highlighted in Chapter 2, the equations of quantum mechanics in many-
electron chemistry are solved using a finite basis set and approximating the wavefunction
in terms of one-particle functions called orbitals. As the orbitals are optimized in terms
of the basis set, one obtains an approximate wavefunction that contains all information
on the system of interests at a given theory level.

Traditionally, orbitals have been used as a foundation to discuss chemistry. However,
many approaches exist from the theoretical point of view, which subsequently lead to
different interpretations of chemical phenomena.

The two main frameworks that draw on orbitals are Molecular Orbital Theory and
Valence Bond Theory. Both were developed during the XXth century, at the dawn of
quantum mechanics, and competed for relevance in the community of the chemical
sciences. There are several discrepancies between the two theories, but also significant
agreement. Notably, they both converge to the same exact solution in a
multiconfigurational expansion.

However, folk chemical concepts have usually been reinterpreted by using these
theories at a qualitative level, and there the zeroth-order discrepancies outweight the
similarities. Molecular Orbital Theory uses delocalized orbitals by definition, which are
given an energetic relevance. Valence Bond Theory favors a significantly more local
approach in chemical terms which mirror Lewis structures.

In this Chapter, both theories will be discussed. The foundations of the theories will
be demonstrated for rigor, but our goal will rest with the concepts that can be defined
from quantum mechanics and the notion of chemical bond in particular. As such, we will
try to showcase the strengths and limits of both frameworks.

3.1 Molecular orbital theory
As explicitely developed in Chapter 2, and more specifically in Section 2.2, the
fundamental single-determinant methods in quantum chemistry are based on the
Roothaan-Hall equations (Equation 2.49). Therefore, the Molecular Orbitals (MOs)
that build the wavefunction are expressed as a linear combination of basis functions.

In most cases, such basis functions will be Gaussians that mimic Atomic Orbitals
(AOs), which will be placed on top of nuclear positions. However, as a simpler model, let
us expand the spatial functions of the Hartree-Fock equations as:

ψµ =
Nbasis∑
i

Ciµχi(r) (3.1)

Where χi(r) are simply atomic spatial orbitals, placed on different atoms. This is
the so-called Linear Combination of Atomic Orbitals (LCAO) approach that we have
reviewed in Section 2.2.

Every MO ψµ is formed by contributions of different AO χi(r). It is to be expected
that some contributions will be dominant, and therefore an atomistic character is
recovered for some MOs of the system. Then, perhaps the features of the wavefunction
of the system can be predicted by observing the atomic wavefunctions of the
constituents, or the wavefunctions of fragments (e.g. transferable functional groups).

However, note that this approach is quite delocalized in nature. The use of MOs is
akin to treating the system from a “unified particle” limit. From the MO perspective, H2
is quite similar to He, and both systems can be treated using the same basis functions if
desired. In other words, we willingly sacrifice atomic identity towards molecular identity.
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3.1. Molecular orbital theory

In any case, a theoretical and interpretative framework can be built stemming from
these ideas. Such a framework places a great deal of importance on the orbitals that result
from the minimization of the coefficient Ciµ, which will be called Canonical Molecular
Orbitals (CMOs). The resulting theory is often called Molecular Orbital Theory (MOT),
and was pioneered by R. S. Mulliken, F. Hund and others in the late 1920’s.

In this Section we will outline the core principles of MOT and the underlying math-
ematical justifications with the goal of underlining the advantages and disadvantages of
this approach.

3.1.1 Principles of Molecular Orbital Theory
MOs form by linear combination of AOs. Both MOs and AOs are one-electron
eigenfunctions. Therefore, we will assume that an effective one-body Hamiltonian Ĥeff

is known, a bright example of which is the Fock operator from Chapter 2.
Any effective one-electron Hamiltonian Ĥeff may be used instead of the Fock opera-

tor. The interaction between two overlapping AOs is given by the hopping integral Hij ,
defined as:

Hij = 〈χi|Ĥeff |χj〉 (3.2)

The hopping integral Hij takes negative values. Diagonal terms, Hii, are simply AO
energies.

If we limit ourselves to two centers, we can combine the AOs constructively by adding
them, or we can substract them as in a destructive interference. MOT states that the
number of orbitals must remain constant, so that the number of input AOs is the same
as the number of MOs that must result from linear combination.

The linear combination of two atomic orbitals χi and χj that have well defined ener-
gies, such as:

Ei = Hii = 〈χi|Ĥeff |χi〉
Ej = Hjj = 〈χj |Ĥeff |χj〉

leads to two MOs, bonding and antibonding, according to

φ+ = Ci+χi + Cj+χj

φ− = Ci−χi − Cj−χj

The constructive linear combination φ+ will, through constructive interference, take
significant values along the internuclear axis. Consequently, it increases the probability
density for the electrons in this region. We use the term bonding to refer to such MOs,
which are then labeled by symmetry (e.g. σ, π). The destructive interference, φ−,
anihiquilates all density in the internuclear axis: the MO has a nodal plane
perpendicular to the HA –HB bond. Analogously, we use the term antibonding to refer
to MOs with these features, and add a star to their labels (e.g. σ?, π?).

The MO energies ε that are variationally minimized with respect to the coefficients
in the LCAO expansion:
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∂ε±
∂Ci±

= ∂ε±
∂Cj±

= 0 (3.3)

which, taking a general normalized expression for MO energies,

ε± = 〈φ±|Ĥeff |φ±〉
〈φ±|φ±〉

(3.4)

leads to a system of secular equations of the form

(Ei − ε±)Ci± + (Hij − ε±Sij)Cj± = 0
(Ej − ε±)Cj± + (Hij − ε±Sij)Ci± = 0

Such systems have a solution if the determinant is zero, therefore

(Ei − ε±)(Ej − ε±)− (Hij − ε±Sij)2 = 0 (3.5)

where Sij are the overlap integrals between AOs χi and χj . This result holds for
any number of AOs and MOs, by generalizing the system of secular equations to higher
dimensions. These secular equations are central to MOT. We will restrain ourselves to
the two-orbital case for clarity.

Molecular Orbital energies

If χi and χj lead to the same energies Ei = Ej we get the following solutions for the
energies ε± of our MOs φ+ and φ−,

ε± = Ei ±Hij

1± Sij
(3.6)

These energies are symmetric with respect to Ei = Ej if the overlap integral Sij → 0,
but not in general. We can expand the previous expression approximately as

ε± ≈ Ei ± (Hij − EiSij)− Sij(Hij − EiSij) (3.7)

Generally, the term (Hij−EiSij) is negative and therefore we assume that the bonding
MO is less distant from the original AO energies than the antibonding MO. In other
words, the antibonding MO is more antibonding than the bonding MO is bonding. This
is the MOT explanation for the fact that H2 is covalently bound, but He2 is only very
weakly bound – and was thought, until relatively recently, to not bind at all.

If the AOs involved do not have the same energy, and assuming by convention that
Ej − Ei > 0, the expression for the energies of the MOs becomes:

ε± = −b±
√
D

2a (3.8)

where the terms a, b and D stand for:
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a = 1− S2
ij

b = 2HijSij − Ei − Ej
D = b2 − 4a(EiEjH2

ij)

The expression in Equation 3.8 can be approximately expanded to obtain

ε+ ≈ Ei + (Hij − EiSij)2

Ei − Ej

ε− ≈ Ej + (Hij − EjSij)2

Ej − Ei

(3.9)

where it must be noted again that we assumed that χi is more stable than χj . Thus,
the bonding orbital is stabilized with respect to χi, while the antibonding orbital is
less stable than χj . These expressions are used very often to rationalize MO energies
qualitatively in terms of simple integrals. Note that Ei and Ej must be different for such
expressions to work. If the denominator is too large, the energies will be very close to
those of the AOs: no mixing shall take place, the resulting MOs are just the original AOs.

Assuming that the separation is not too large, the bonding MO will be significantly
closer to the lowest lying AO in terms of energy. The antibonding MO will be much closer
to the highest lying AO.

The hopping integral between two AOs, Hij , can be approximated in terms of the
one-particle energies and the overlap integral. As an example, in the Wolfsberg-Hemholtz
formula, used in the extended Hückel method, we assume

Hij ∝
1
2(Ei + Ej)Sij (3.10)

which therefore allows calculation of the energies of all MOs in analytical terms by
fixing an arbitrary proportionality constant.

The qualitative basis of MOT stems from the rationalization of the interactions be-
tween AOs. The way AOs i and j interact can be predicted on the basis of the overlap
integral, Sij , and the AO energies, Hii. Note that in this approximation the sign of Hij

will always be negative (stabilizing) if Sij is positive.

Molecular Orbital coefficients

Following our two-orbital example, the coefficients of the LCAO expansion, Ci± and Cj±
for the weights of AOs χi and χj in the MOs φ+ and φ−, can be derived from the secular
equations and the normalization condition.

For the degenerate case Ei = Ej , we get simply the result shown in Subsection 2.3.1,

Ci+ = Cj+ = 1√
(2(1 + Sij)

Ci− = Cj− = 1√
(2(1− Sij)
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Note that, if Sij is positive, the coefficients of the bonding MO φ+ ought to be smaller
than the coefficients for φ−. The antibonding MO is more diffuse.

For the other case in which Ej−Ei > 0, inserting the approximate result in Equation
3.9 in the secular equations leads to

Ci+ = ti
1√

1 + 2tiSij + t2i

Cj+ = 1√
1 + 2tiSij + t2i

Ci− = 1√
1 + 2tjSij + t2j

Cj− = tj
1√

1 + 2tjSij + t2j

where the mixing coefficients ti and tj are defined as

ti =
(Hij − EiSij

Ei − Ej

)
tj =

(Hij − EjSij
Ei − Ej

)
Note that, as per our initial assumption, the denominator in the mixing coefficients

is negative and the numerator is negative as well, and thus the mixing coefficients are
positive and generally larger than 1.

As we have seen when discussing MO energies, φ+ must lie closer in energy to the
most stable AO, χi. The mixing coefficients determines that the weight of χi will also
be larger – by a factor of ti – than the contribution of χj in φ+. Therefore, the bonding
MO is closer in energy and resembles closer the most stable AO. The opposite is true to
the antibonding MO.

Additionally, note that χj is by definition less stable than χi. Therefore, the
coefficients are indeed expected to be larger for the antibonding combination as per the
numerator in the mixing coefficients.

Key principles of Molecular Orbital Theory

Due to the orthogonality constraints of spherical harmonics, the overlap of many AOs
is 0 by definition. Other overlaps can be rationalized using molecular symmetry with
relatively low effort. Let us examine the principles of Molecular Orbital Theory for two
AOs that have been outlined in this section:

• MOs are formed by linear combination of AOs.

• Combining N AOs must produce N MOs.

• Mixing two AOs produces both a bonding (constructive interference) and an anti-
bonding (destructive interference) MO.

88



3.1. Molecular orbital theory

• Mixing between two AOs χi,χj can only take place if Sij 6= 0 and Ei is not very
different from Ej .

• Bonding MOs are lower in energy than the originating AOs by some quantity
proportional to Sij and |Ej − Ei|.

• Antibonding MOs are higher in energy than the originating AOs by some quantity
proportional to Sij and |Ej −Ei|, which is larger than the one stabilizing bonding
MOs for the same AO pair.

• Population of MOs determines the total energy and the bonding pattern of the
system.

Minimization of the coefficients of the linear combination approximately justifies two
additional rules:

• MOs resemble most the AO that originated them and which is closest in energy.

• Antibonding MOs are more diffuse than bonding MOs.

These rules suffice to build MO diagrams for any molecule at a qualitative level if the
AOs of its atoms are known. Naturally, the framework outlined here can be extended to
linear combinations of more than 2 AOs.

Furthermore, analogous analysis can be done starting with MOs from different
fragments. We will not justify such generalizations mathematically, but they can be
derived from the principles herewith and symmetry considerations. The other key
aspect of MOT for fragment MOs is the notion of hybridization that is developed next.

Hybridization in Molecular Orbital Theory

While two-orbital MOT is very consistent, more numerous linear combinations often
result in qualitative errors. For instance, the AOs on the carbon atom (1s22s22p4) imply,
according to Hund’s rule, a ground state S = 1. From this starting diagram, overlap with
four hydrogenoid 1s orbitals to lead to CH4 can not be devised qualitatively.

Even if one of the 2s electrons is promoted to a 2p orbital, leading to a quintet spin
state, which is energetically feasible as this state is not too energetic, this would predict
three of the bonds to be identical (arising from degenerate 2p orbitals, hence with the
same hopping integral) and one to be different (arising from the remaining 2s orbital).
Obviously, this does not bode well with the fact that methane is completely apolar and
tetraedrically symmetric.

This is a fundamental flaw, which has to do with the limitations of MOT, but can
be addressed in the theory itself, albeit somewhat crudely. The basic assumption is that
AOs on a single center are all orthonormal (Sij = 0) and hence we can build normalized
linear combinations of them.

Whenever needed, MOT assumes that AOs (or fragment MOs) can be combined into
hybrid orbitals that are oriented towards the bonds. In the case of carbon, the quintet
state is assumed to undergo hybridization: the close lying 2s and all 2p AOs combine to
produce four identical sp3 hybrids, as in
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χ1
sp3 = 1

2(χ2s + χ2px + χ2py + χ2pz)

χ2
sp3 = 1

2(χ2s + χ2px − χ2py − χ2pz)

χ3
sp3 = 1

2(χ2s − χ2px − χ2py + χ2pz)

χ4
sp3 = 1

2(χ2s − χ2px + χ2py − χ2pz)

which can now interact identically with four hydrogen atoms. This approach is
sometimes called the bond MO approach. Note that, however, the picture provided by
this approach is elegant, matching the VSEPR model closely, but qualitatively wrong.
From accurate calculation and spectoscopy we know that, in fact, the four C–H bonds
are equal, but no four degenerate orbitals are found in any optimized wavefunction of
methane.

Hybridization is thus a useful notion that, while theoretically belonging to Valence
Bond Theory (VBT), can be conceptually useful in MOT. At the purely qualitative level,
hybridization is often coupled to MOT for a posteriori analysis.

Note that photoelectron spectroscopy shows two distinct peaks for the ionization of
methane, which correspond roughly to the two distinct valence MOs of the molecule.
Hence, effectively, all four C–H bonds are not equivalent.

3.1.2 Fock operator in Molecular Orbital Theory
If a proper computational methodology exists that can evaluate all the required integrals,
and optimize the MOs in terms of the basis set, the principles of MOT that have been
outlined in the previous Subsection can be verified.

Let us bring back the example from Chapter 2 (Subsection 2.3.1) in which we
expressed the wavefunction of the H2 molecule using a LCAO approximation and the
Hartree-Fock method.

By combining two s-type atomic orbitals, 1sA and 1sB , each one centered in one
hydrogen nuclei, we got two MOs φ± = N±(1sA ± 1sB), where N± = 1/

√
2(1± SAB)

and SAB is the overlap integral (cf. Equation 2.46) between the AOs.
Now, the overlap integral integral between such orbitals can be expressed as a function

of the distance R between HA and HB due to the spherical symmetry they both present:

SAB(R) = e−R
(

1 +R+ R2

3

)
(3.11)

Therefore, SAB(0) = 1 and then decreases exponentially as R increases in this
particular case. Recall that generally the overlap integral is bound between −1 and 1.

In HFT, the MO energy for the ith MO, εµ, is given by:

εµ = 〈φµ|F̂ |φµ〉 = hµ +
N∑
ν=1

(Jµν −Kµν) (3.12)

Where all terms are expressed in the notation from Chapter 2. Note that here natu-
rally there are only two non-vanishing two electron integrals, J and K between φ+ and
φ−, so that we can write:
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ε± = h± + (J −K) (3.13)

Therefore, the energy difference between both MOs is due to the one-body term hi,
which we can evaluate here explicitely using the AOs, which are eigenvectors of the
one-electron Hamiltonian with eigenvalue E1s. Let us assume SAB → 0 for simplicity:

h± = 〈φ±|ĥ|φ±〉 = ±E1s (3.14)

E1s is negative. Therefore, the constructive interference φ+ has lower energy than
φ−. This is coherent with our interpretation: the constructive system has probability
density in the internuclear axis and therefore should be more stable. It also matches our
previously derived Equation 3.6, because the hopping integral here is naturally just E1s
again.

As pointed in Subsection 2.3.1(cf. Equation 2.71), in the ground state the spatial part
of the wavefunction is simply

Φ0 = 1√
2
φ+(r1)φ+(r2) (3.15)

which can be expanded in AOs, ignoring normalization constants, as

Φ0 =
[
1sA(r1)1sA(r2) + 1sB(r1)1sB(r2)

]
+
[
1sA(r1)1sB(r2) + 1sB(r1)1sA(r2)

]
(3.16)

Recall that 1sA is centered in nuclei A and 1sB is centered in nuclei B. The first
term in Equation 3.16 can be interpreted as an ionic term, in which both electrons are
placed in an orbital sitting in A, or in atom HA, or in HB . The second term represents
covalency, and has electrons shared between HA and HB .

From this perspective, we can say that the MOT description of H2 has equal weights
for the covalent and the ionic part. The dissociation problem that was showcased in
Subsection 2.3.1 becomes significantly easier to understand: as R → ∞ the
wavefunction should become strictly covalent in an homolytic dissociation. However, the
HFT wavefunction does not have this freedom, and the system incorrectly dissociates to
H− + H+. Let this brief example showcase how naturally MOT and the HFT interact.

Mulliken population analysis

The analysis of the dissociation of H2 in a minimal basis set in terms of ionic and
covalent terms has an underlying assumption, which is rooted in the LCAO method:
we have assigned electrons to atoms based on the allocation of basis functions. That is,
we assume that the 1sA(r1) term corresponds to an electron belonging to the HA, an
hydrogen atom, because the basis function 1sA is centered in the nuclei A.

In other words, by analyzing the composition of the occupied MOs in terms of AOs,
it is possible to derive atomic charges. Let us see a simple example. For the bonding MO
of the previous example, φ+, we can write a probability density as

φ2
+ =

[ 1√
2(1 + SAB)

(1sA + 1sB)
]2

= C2
A+ + C2

B+ + 2CA+CB+SAB = 1 (3.17)

in which we have introduced explicit terms CA+ and CB+ for the coefficients of the
two AOs in the bonding MO φ+, which might naturally be different from each other. We
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have assumed MOs to be normalized. From this expression, a possible interpretation is
that one electron in this MO contributes by C2

A+ to the population of AO 1sA, by C2
B+

to the population of AO 1sB and by 2CA+CB+SAB to the overlap region between the
two of them. The overlap term can be considered to be split equally between both MOs.

This notion can be generalized to any LCAO calculation in which basis functions have
an intrinsic atomic character. This approach is often called Mulliken population analysis.

We define a population matrix P with terms

Pij = DijSij (3.18)

running over the basis functions, which we can assume are AOs, and in which the
density matrix D has elements

Dij = 2
occ.∑
µ

CiµCjµ (3.19)

in which Ciµ are the coefficients of AO i in MO µ as before. This expression assumes
a RHF formalism in which MO occupations are always 2 for occupied MOs. Note that
Sij must be the identity matrix if a set of orthonormal basis functions is used.

The terms of P sum to the number of electrons in the system, N :∑
i

∑
j

Pij = N (3.20)

Diagonal elements are contributions that arise purely from one AO, while off-diagonal
elements belong to overlap regions between pairs of AOs, and threfore should be split
evenly. We define the Gross Orbital Population (GOP) of an AO as

GOPi =
∑
i

Pii + 1
2
∑
i 6=j

Pij (3.21)

Note that the GOP might be unphysically negative. We can then add GOPs according
to the atom on which the AOs – or basis functions – are centered. This term is sometimes
called the Gross Atomic Population (GAP). The atomic charge of atom A, QA, is then
derived by substraction

QA = ZA −
∑
i

GOPAi = ZA −GAPA (3.22)

Due to Equation 3.20, the sum of all atomic charges QA must be equal to the net
charge of the system. While this approach is quite crude, and is extremely inconsistent
due to its initial premises – it requires that basis functions are assigned to atoms – it is
a very natural way to obtain atomic charges from a LCAO framework.

On the same spirit, the bond order BOAB between atoms A and B can be defined
from P as

BOAB =
∑
iA

∑
jB

PiAjBPjBiA (3.23)

in which sums run only over AOs centered in atoms A and B as indicated by the
superscripts. This expression is sometimes called Mayer’s bond order.
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3.1.3 Frontier Molecular Orbital Theory
The Klopman-Salem model decomposes the interaction energy between two chemical
species. We put forward the analytical expression of the energy variation in the Klopman-
Salem model:

∆E = −A+B +
occ.∑
µ

vir.∑
ν

[2C2
iµC

2
jνH

2
ij

εµ − εν

]
(3.24)

where the same convention has been used as before for the indices of AOs i,j and MOs
of the involved species follow indices µ,ν. Note that virtual MOs are included in the third
term as well. The first two terms, A and B, model electrostatic and steric interactions and
are not relevant here. The expression can be further generalized to interactions between
several entities.

Equation 3.24 is governed by the third term in many chemical contexts, notably
when steric or purely electrostatic effects are not very strong. It is controled by the closest
occupied-unoccupied pair, that are usually called the Frontier MOs. Hence, reactivity can
be modelled on the basis of the interaction between the Highest Occupied MO (HOMO)
and the Lowest Unoccupied MO (LUMO).

As this is usually a two-orbital problem, the reasonings that have been put forward
in this Section for the coefficients Ciµ and the hopping integral Hij can all be applied.

Koopman’s theorem

The particular importance of FMOs is coupled to a physical interpretation. The Ioniza-
tion Potential (IP) of a chemical species M is defined as the energy required to go from
M to M+ + e– , that is, to pull an electron from the system. The Electron Affinity (EA)
is defined analogously for the monoanionic species, i.e. from M– to M+ e– .

Suppose that the MOs of a chemical species with N electrons have been optimized
with respect to the energy in HFT. The total energy is then given by

EN =
N∑
i

εi −
1
2

N∑
i

(Jij −Kij) (3.25)

If we assume that the cationic and anionic species might be accurately described by
the same set of MOs as the neutral species, the energy for the same species with an more
or one less electron is simply

EN−1 =
N−1∑
i

εi −
1
2

N−1∑
i

(Jij −Kij)

and hence

EN−1 − EN = −εN (3.26)
which represents the IP as defined before. Therefore, the IP can be approximated as

the negative of the energy of the HOMO. An analogous procedure equiparates EA with
the negative of the energy of the LUMO.

According to this view, the energies of the HOMO and the LUMO also determine the
disposition of a molecule to accept or donate electrons. If the IP of a chemical species
is similar to the EA of a different chemical species, it seems rational to expect that an
interaction is possible in which one electron is transferred between the two.
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Hence, it is coherent to picture interactions between chemical entities as arising from
HOMO-LUMO interactions, and such interactions as controlled by the usual concepts
from MOT, namely the hopping integral and the overlap integral. As we have seen before
(cf. Equation 3.10), the hopping integral can be approximated in terms of orbital energies
and overlap integrals as well.

The regioselectivity and viability of many reactions can be rationalized by the
maximization of the overlap between the HOMO-LUMO pair that is closest in energy,
and the resulting MOs from the interaction can be rationalized using the precepts from
general 2-orbital MOT as well. Such approaches are notably popular in chemisty.

In general, the more electrophile species is expected to react through its LUMO to
accept electrons, and nucleophiles are expected to react through their HOMO. Sometimes
the interaction is allegedly two-fold, as in σ-donation–π-backdonation in coordination
complexes.

3.1.4 Limitations of Molecular Orbital Theory
The applications of MOT and MO diagrams, including MO correlation diagrams, are
far too vast and well-known to cover. As a sidenote, MOT has no problem describing
delocalized bonds and hypervalent molecules (e.g. SF6) that can not be easily understood
from the Lewis picture.

Our interest, however, concerns the limitations of the framework at the quantitative
and qualitative levels.

Routinely, MOs are not rationalized from scratch using constituent AOs, which
would quickly become cumbersome. Instead, MOs are derived from any one-particle
effective Hamiltonian theory expressed in terms of a finite basis set using the
Roothaan-Hall method. Alternatively, the MOs of the Kohn-Sham system might be
used, while in principle those do not represent the variationally minimized wavefunction
of the real system.

The resulting MOs are expressed as linear combinations of the basis functions of
choice. Note that the coefficients are optimized in order to minimize the energy, which is
not explicitely a function of any unoccupied MOs. Only the occupied MOs are optimized.

The MOs that result from the minimization procedure, so-called Canonical MOs
(CMOs), must diagonalize the Fock matrix, which is adequate for the computation in
terms of matrix algebra. On the other hand, this requirement makes them progressively
delocalized. This means that most MOs, in particular those of higher energies, have
contributions from some of the basis functions on every nuclei of the molecule. In other
words, CMOs are very delocalized.

Hence, interpretation of CMOs is very often quite hard. This is the main qualitative
issue the theory faces from the practical point of view. Other issues and some specific
examples will be covered in what follows.

Mathematical limitations

MOT is a one-electron theory. While it might be possible to write the two-body electronic
Hamiltonian as an effective one-body Ĥeff , we do not know how.

The immediate consequence is that MOT can not be quantitative. This shortcoming
is coherently shared by HFT, which arises from similar assumptions (see Section 2.3 of
Chapter 2). Indeed, homolytic dissociation can not be properly described in MOT, as
seen in the extensive discussion concerning the Coulson-Fischer point.
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In other words, MOT is a priori not defined in the exact many-body wavefunction,
which as we have seen in Chapter 2 would require a linear combination of many config-
uration state functions.

Quantum chemistry tipically evaluates the quality of wavefunctions, and MOs therein,
using the variational theorem for the exact Hamiltonian. For instance, it could be said
that MOs for H2 near the equilibrium position are quite representative of the exact
wavefunction. Past the Coulson-Fischer point this can hardly be said: the MOs are not
representatve at all.

The most notable practical consequence of the mathematical limitations of MOs is
their non-uniqueness. That is, there can be infinitely as many MOs that lead to the same
energy in the minimization problem highlighted in Chapter 2 (cf. Equation 2.58). Let us
start from the canonical HF method (Equation 2.43) and define

ηm =
∑
µ

Umµφµ (3.27)

where Umi are elements of a unitary matrix U, the eigenvalue problem becomes

F̂ |ηm〉 = εηµ|ηm〉 (3.28)

where the new matrix of eigenvalue energies is

εη = UεU† (3.29)

The sum of all MO energies will not change because the trace is invariant under any
unitary transformation. Therefore, the total energy will not change: both wavefunctions
will be equally good or bad.

From the energetic point of view, both sets of MOs will be exactly as good. From
the interpretative point of view, however, this has twofold consequences. On one hand,
it questions any reasoning based on individual MO energies and shapes. On the other
hand, it means that one can choose a unitary transformation according to some criteria
to obtain a wavefunction with some advantageous properties. This will be exemplified
later on.

The rationalization of molecular structure in terms of overlap integrals and energies
is thus rendered inadequate, because there are infinitely many ways to represent MOs
with equal accuracy. FMO is equally troubled by this fact: the shape of the frontier MOs
can be modified freely.

Practical limitations

As highlighted before, MOT – and HFT – can never be quantitative. In fact, the simplistic
foundations of MOT given in this Chapter cannot justify any bonding in He2, which was
also discussed in Section 2.3.

As seen in the previous Subsection, two-orbital four-electron interactions are
predicted to be unstable in MOT: two electrons will end up in the resulting bonding
MO, two electrons will end up in the antibonding MO, and the net energy change will
be destabilizing.

While quantitative inconsistencies that are due to the mathematical underpinnings
that have been evidenced so far, there are other situations in which MOT is not intuitive.
A bright example is the CO molecule, which is known to have a dipole moment of 0.122
D that points toward the carbon atom. This is in principle counterintuitive because
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oxygen is more electronegative than carbon, and hence is expected to polarize the charge
distribution towards itself.

Figure 3.1: Qualitative valence MO diagram of the CO molecule.

In MOT, CO is expected to have two core MOs, belonging to the unmixed 1s AOs of
each atom. Then, a pair of σ and σ? as arising from the combination of 2s orbitals. Then,
two π MOs and a σ MOs arising from the interaction between the 2pMOs of both atoms.
This results in a total of 7 MOs, to be occupied by the 14 electrons of the molecule (see
Figure 3.1). As oxygen is in the same row as carbon but has a larger nuclear charge, its
AOs are lower in energy (this can be easily verified).

Hence, and according to the principles of MOT that we have developed in
Subsection 3.1.1, the bonding orbitals resulting from the interaction of the 2p AOs
should be definitely closer in shape to the oxygen AOs. Thus, the probability density of
such MOs should be higher in the vicinity of the oxygen atom, and the dipole moment
should point towards it. This is not the case. This error is corroborated by HFT, which
gives a wrongly signed dipole moment. Furthermore, no interpretation can be given in
terms of intra-molecule orbital interactions, since the CMOs are strictly orthonormal
with one another.

As in this example, MOT sometimes gives wrong qualitative predictions of ground
state equilibrium properties. From the quantitative point of view, including other CSFs
improves the wrong dipole moment of HFT until the FCI limit, which gives the correct
direction and magnitude.

On the other hand, this situation is far more troublesome than the strong correlation
problems due to the lack of some relevant CSFs, because the MO single CSF is relatively
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good energetically, but fails qualitatively in a property that is highly relevant for our
understanding of its chemistry.

Ontological limitations

A more precise way to state the fact that MOs are approximate mathematical construc-
tions is to say that the concept of orbital is non-referring.

If we accept that the epistemology of chemistry is bound by the laws of quantum
mechanics, MOs do not refer to any ulterior physical object: they are purely mathematical
constructions that are useful as a coarse approximation. Electrons in a molecule can not
be assigned to orbitals, nor quantum numbers at all.

Of course, the same can be said for most chemical concepts, including the notion of
atom, molecule, molecular shape and so on. The underlying question is whether chemical
sciences are epistemologically – and ontologically – reductible to quantum mechanics.
The details of such discussion are far beyond the scope of this manuscript.

3.1.5 Localization schemes
CMOs are delocalized in nature. Hence, they are hard to interpret with ease. As the
energy is invariant with respect to unitary transformations of the MOs, it is plausible to
select a particular unitary transformation that produces MOs that have advantages over
CMOs.

One of the main objectives of such transformations is localization, because a set of
localized orbitals is easier to interpret using MOT and related concepts. Some examples
will be given later on. Tipically, this is attempted as a search over unitary transformations
that maximize or minimize the expectation value of an operator, which is tuned by
modifying the MOs of the wavefunction.

In this Subsection, some examples of localization schemes will be presented in order
to better understand the limitations of CMOs and the interpretative framework of MOT.

Foster-Boys localization

The Foster-Boys localization procedure is based on the minimization of the spatial extent
of the orbitals, as given by the expectation value of the |r1 − r2| operator, expressed as

LFB1 (φ) =
N∑
µ

〈φµ(r1)φµ(r1)|r1 − r2|φµ(r2)φµ(r2)〉 (3.30)

which can be shown to reduce to a simpler maximization procedure, in which the
operator r is the operator associated to the distance between the MO centroid and the
arbitrarily chosen origin of the molecular coordinate system,

LFB2 (φ) =
N∑
µ

[
〈φµ|r|φµ〉

]2
(3.31)

The maximization of LFB2 (φ) is far simpler because it requires less computation of
integrals. Let us showcase the application for a two-orbital case, starting from a pair of
MOs φ1 and φ2 towards a new pair ξ1,ξ2 through a standard 2 × 2 unitary matrix in
terms of the angle γ:
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ξ1 = (cosγ)φ1 + (sinγ)φ2

ξ2 = (−sinγ)φ1 + (cosγ)φ2

We can express the maximization function of Equation 3.31 for the new orbitals

LFB2 (ξ) = LFB2 (φ) +A12 +
√
A2

12 +B2
12cos[4(γ − α)] (3.32)

where a simplified notation has been used to define the following integrals

rµν = 〈φµ|r|φν〉

A12 = r2
12 −

1
4(r11 − r22)2

B12 = r2
12(r11 − r22)

and the angle α is defined bound as 0 ≤ α < π/2 and satisfying

cos(4α) = − A12√
A2

12 +B2
12

sin(4α) = B12√
A2

12 +B2
12

The function is maximal when the cosine term is equal to 1, which arises when
γ = α+nπ2 with n ∈ N. In principle, it suffices to iterate pairwise through all MOs until
the unitary transformation matrix converges to a value γ. We will not comment on the
convergence of the procedure.

As the matrix of MO energies ε is diagonal, it can be split into two blocks: occupied
and virtual MOs. Then, occupied and virtual MOs can be localized using this scheme.

Pipek-Mezey localization

Another popular strategy to obtain localized MOs is the one proposed by Pipek and
Mezey. In this case, the value to maximize is

LPM (φ) = 1
N

∑
µ

GOP 2
µ (3.33)

That is, we want to maximize the square of all Mulliken’s GOPs in the system (see
Subsection 3.1.2 for details on GOPs). This function can be expressed as the expectation
value of an operator for computational implementation.

It suffices to say that this procedure suffers from the same basis set dependency as
Mulliken’s partial charges, notably the need for atom-based basis functions. Again, the
procedure can be applied blockwise to occupied and virtual MOs.

Natural Orbitals

Natural Orbitals (NOs) are eigenfunctions of the one-particle reduced density matrix
γ1(r), which was introduced in Chapter 2. NO ηi is an eigenfunction of γ1(r) with
eigenvalue ni, which is thereafter called the occupation number of the i-th NO;
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γ1(r1; r′1)ηi = niηi (3.34)

Note that NOs diagonalize the one-particle reduced density matrix as per the previous
statement,

γ1(r1; r′1) =
∑

niη
?
i ηi (3.35)

Furthermore, note that CMOs in LCAO HFT are also NOs. In RHF all occupation
numbers are either 0 or 2, with the α and β µ-th MO being degenerate. In correlated
theories, NOs are a compact way of expressing the wavefunction.

Recalling Mulliken’s population analysis, which was covered in Subsection 3.1.2, note
that it assumed that off-diagonal elements in the AO basis density matrix are split evenly
between two AOs. This is a coarse assumption. The easiest way to correct this issue is
orthogonalizing the AO basis to ensure that the density matrix in terms of the AO basis
is diagonal. This is achieved by using a symmetric orthogonalization.

GAPs can then be obtained as sums of occupation numbers of all AOs with the same
center, with no off-diagonal terms.

3.2 Valence bond theory
Valence Bond Theory (VBT) is arguably the greatest competitor of MOT in chemical
interpretation. During much of the 20th century both theories competed, argued and
fought over conceputal significance. [34]

In VBT, the wavefunction is built from structures. Structures are CSFs (cf. Section
2.3) that might not be proper spin eigenfunctions. Covalent bonds arise from the overlap
of valence atomic orbitals, generally two unfilled orbitals to produe a spin pair. Such
bonds must be directional, belonging to the axis of maximum overlap between such AOs.

For the most part, MOT triumphed, largely due to the convenience of orthogonal
MOs obtained from LCAOs from the computational point of view (i.e. HFT, KS-DFT).
However, many concepts from VBT still permeate chemical parlance – or vice-versa. This
section is an attempt to delineate such concepts and highlight their mathematical origin.

3.2.1 Modern valence bond theory
MOT can be coupled to any one-particle effective Hamiltonian. However, as the procedure
does become quite involved when the number of electrons and orbitals increases, MOT is
usually coupled to HFT. In other words, HFT (with finite basis set expansions) permeates
MOT because it pushes its mathematization forward by providing solutions. Analogously,
VBT is as of today linked to its genuine computational framework.

Although VBT was developed analytically during a significant period of time, it is
nowadays feasible to solve the electronic structure problem for a Valence Bond (VB)
wavefunction. We will outline the fundamentals of the approach here.

A general VB wavefunction is expressed as a linear combination of CSFs,

ΨV B =
∑
i

wiΦi (3.36)

where wi are coefficients of the linear combination, often called weights in VBT, and
each CSF might be written as a product
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Φi = ÂΩ0Θi (3.37)

where the spatial part Ω0 is a product of VB orbitals, which are AOs of some type,
and Θi is the spin part, which may be approached with the Rumer method (cf. Subsection
3.2.2, Equation 3.52).

Optimal coefficients may be determined by solving a matrix equation of the form

HC = εSw (3.38)

in which Hamiltonian matrix elements are of the form

Hij = 〈Φi|Ĥ|Φj〉 (3.39)

and overlap matrix elements are of the form

Sij = 〈Φi|Φj〉 (3.40)

VB orbitals are ultimately expressed as a linear combination of atomic basis functions,
generally CGTOs as in the Roothaan-Hall method.

Although the procedure will not be covered extensively in this manuscript, we will
assume that VBSCF is the generic procedure through which the optimized
wavefunction is obtained, which involves simultaneous minimization of basis coefficients
and coefficients of AOs – and thus, the CSFs – in the wavefunction. There are other
possible approaches to quantitative VBT, but for the purpose of this Section we will
stay within this mathematical framework.

3.2.2 Principles of Valence Bond Theory
The main features of the approach can once more be exemplified using the H2 system,
for which it was developed by Heitler, London and others.

Starting once again from two hydrogenoid atomic orbitals 1sA and 1sB centered in
HA and HB respectively, a VBT-like wavefunction can be built by taking the expanded
ground state wavefunction given by MOT (Equation 3.16) and building a linear
combination of covalent and ionic terms.

For the spatial part, this yields

ΦV B = wc

[
1sA(r1)1sB(r2) + 1sB(r1)1sA(r2)

]
+wi

[
1sA(r1)1sA(r2) + 1sB(r1)1sB(r2)

] (3.41)

where wc and wi are the weights of the covalent and ionic terms respectively. Natu-
rally, normalization must be imposed upon the weights and/or the CSFs.

Compared to the MOT ground state spatial part of the wavefunction in Equation
3.16, the VBT wavefunction has an additional degree of freedom through the variational
optimization of the coefficients.

Recalling Chapter 2 and Subection 2.3.1 in particular, and noticing that ionic and
covalent terms are indeed CSFs, this can be thought of as a multiconfigurational approach.

In fact, the terms arising from the expansion of ΦV BT in terms of AOs are analogous
to the terms arising from the CI expansion in Equation 2.73, for which the spatial part
would be
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3.2. Valence bond theory

ΦMC = c0

[
1sA(r1)1sB(r2) + 1sB(r1)1sA(r2) + 1sA(r1)1sA(r2) + 1sB(r1)1sB(r2)

]
+c1

[
1sA(r1)1sA(r2) + 1sB(r1)1sB(r2)− 1sB(r1)1sA(r2)− 1sA(r1)1sB(r2)

]
(3.42)

which, as discussed before, can dissociate the molecule correctly because all the
ionic terms are anhiquilated when c0 = c1. Analogously, ΦV BT can dissociate correctly
because the weight of the ionic term, wi, can drop to zero as R increases: both
wavefunctions are the same. However, the splitting of terms in the VBT wavefunction
has a natural interpretation: the optimized weights of the two CSFs represent how
much the wavefunction is akin to the ionic or covalent situation. From the quantitative
point of view, both wavefunctions are exactly the same, as shown in Figure 3.2 for the
VBSCF wavefunctions.

Figure 3.2: Dissociation curves for the H2 molecule at different theory levels with a STO-
3G basis set.

VBT is significantly more localized than MOT because it does not use molecular
orbitals per se. Instead, CSFs are built from atomic orbitals – in a broad sense –, which
hopefully will simplify the interpretation.

In more specific terms, the valence bond wavefunction should be built as a linear
combination of Slater determinants of atomic orbitals, 1sA and 1sB centered in HA and
HB , such as
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Chapter 3. Orbital-based chemical interpretation

|1sAα, 1sBβ〉 = 1√
2

(
1sA(r1α)1sB(r2β)− 1sB(r1β)1sA(r2α)

)
=

= 1√
2

1sA(r1)1sB(r2)(α(1)β(2)− β(1)α(2))

|1sAα, 1sAβ〉 = 1√
2

(
1sA(r1α)1sA(r2β)− 1sA(r1β)1sA(r2α)

)
=

= 1√
2

1sA(r1)1sA(r2)(α(1)β(2)− β(1)α(2))

|1sBα, 1sBβ〉 = 1√
2

(
1sB(r1α)1sB(r2β)− 1sB(r1β)1sB(r2α)

)
=

= 1√
2

1sB(r1)1sB(r2)(α(1)β(2)− β(1)α(2))

in which spin coordinates σ1 and σ2 have been simplified to 1 and 2 for conciseness.
This leads to the VB wavefunction,

ΦV B = w1

(
|1sAα, 1sBβ〉 − |1sAβ, 1sBα〉

)
+ w2|1sAα, 1sAβ〉+ w3|1sBα, 1sBβ〉 (3.43)

where, following our previous reasoning, a covalent term has been devised with weight
w1 that includes both spin couplings for generality, and two ionic terms with weights w2
and w3 represent the two extreme cases of polarization. In VBT, the term structure
is usually reserved for such terms from which a Lewis-like depiction of the molecule is
inferred. Hence, w1 is the weight of the covalent structure and so on, and we can write
the same wavefunction in terms of structures as

ΦV B = w1Φcov + w2ΦionA + w3ΦionB (3.44)

The given expression is general for any two-center two-electron situation. Naturally,
the previous expression simplifies in the strictly symmetric case of H2 to the expression
given in Equation 3.41.

ΦV B = wcovΦcov + wionΦion (3.45)

VB wavefunctions might be built for any system in terms of structures. Structures are
composed of one or more Slater determinants of atomic orbitals that mirrors a chemically
sound structure. In general, atomic orbitals of any type might be used, but for ease of
interpretation it is recommended that only localized one-center functions are included.
Like in Mulliken population analysis, the basis set expansion is embroidered in the theory.

Non-orthogonality

It must be noted that in VBT, CSFs are not orthogonal, because AOs are not generally
orthogonal between different atoms. In fact, overlap between different structures – and
between determinants in a single structure – might be high, and must be evaluated to
calculate both the energy of a given structure and the coupling between structures.

For instance, starting from the wavefunction for H2 in Equation 3.45, the overlap
integral is
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3.2. Valence bond theory

Sion−cov = 〈Φion|Φcov〉 = 2SAB
1 + SAB

(3.46)

where SAB = 〈1sA|1sB〉 as given in Equation 3.11, which is a function of the distance
R between HA and HB . However, the general rule is that the overlap between two AO-
based N -dimensional CSFs requires N ! AO overlap integrals. While this cost might be
reduced using symmetry, as in our model system, the factorial scaling quickly becomes
computationally intractable as the basis set is expanded.

In our model case, the energies for the ionic and covalent structures are relatively
simple:

〈Φcov|Ĥ|Φcov〉 = −1 + 1
R

+ 2KSAB + 2J + J ′ +K ′

1 + S2
AB

(3.47)

〈Φion|Ĥ|Φion〉 = −1 + 1
R

+ 2KSAB + 2J + 5/8 +K ′

1 + S2
AB

(3.48)

where the integrals J , J ′, K and K ′ have been introduced,

J = 〈1sA| −
1
rB1
|1sA〉

K = 〈1sA| −
1
rB1
|1sB〉

J ′ = 〈1sA1sB |
1
r12
|1sA1sB〉

K ′ = 〈1sA1sB |
1
r12
|1sB1sA〉

where rB1 is the distance between nuclei HB and electron 1, and the coupling between
ionic and covalent terms is given by the so-called resonance integral,

〈Φion|Ĥ|Φcov〉 = 2
1 + S2

AB

[
K + JSAB + SAB(−1 + 1

R
) +Q

]
(3.49)

where another term Q has been introduced,

Q = 〈1sA1sB |
1
r12
|1sA1sA〉

Furthermore, the weights of the linear combination must satisfy

2w?ionwcovSion−cov + w2
ion + w2

cov = 1 (3.50)

Thus, the overlap integrals are shown to be absolutely ubiquitous. In any case, we do
not require the analytic expression of all integrals, to review the concepts that arise from
VBT, and so we will consider structures to be fully non-orthogonal.

Valence Bond Structures

There are several ways to build structures in VBT. One of the most chemically intuitive
ones is the so-called perfect pairing approach, which stems from a fundamental assump-
tion: spin-coupling, leading to covalent bonds, is the most important factor in chemical
structure.
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Chapter 3. Orbital-based chemical interpretation

Assuming this, covalent structures can be expressed as products of two-center bond
wavefunctions, under the assumption that the two-center bond is the proper minimal
element. Thus, the covalent structure for a linear H4 molecule with atoms HA to HD and
corresponding orbitals 1sA to 1sD would be

Φcov =
(
|1sAα, 1sBβ〉 − |1sAβ, 1sBα〉

)(
|1sCα, 1sDβ〉 − |1sCβ, 1sDα〉

)
=

= |1sAα, 1sBβ, 1sCα, 1sDβ〉+ |1sAβ, 1sBα, 1sCβ, 1sDα〉
−|1sAα, 1sBβ, 1sCβ, 1sDα〉 − |1sAβ, 1sBα, 1sCα, 1sDβ〉

(3.51)

which leads to four Slater determinants to which a normalization constant 1/
√

4
would be added. In general, for n-centers with n-electrons, the perfect pairing approach
generates 2n determinants.

A general procedure to construct a linearly independent set of atomic Slater
determinants was proposed by Yuri Rumer for singlet states. The spin part of the
wavefunction becomes

Θi =
∏
i,j

1√
2

[
α(i]β(j]− β(i)α(j)

]∏
k

α(k) (3.52)

where i, j run over all presumed “bonds” and k runs over all unpaired electrons. The
procedure involves spreading AOs in a circle, then finding all possible combinations of
lines connecting interacting centers that do not intersect one another. The number of
Rumer structures NRumer for a closed shell system of an N = 2A electron system is
expected to be

NRumer = 2A!
A!(A+ 1)! (3.53)

This comes to show, without further detail, that the number of Slater determinants
becomes very large as the number of electrons increases. This further aggravates the
factorial scaling of overlap integrals. Therefore, as it will be argued later (see Subsection
3.2.3), the expansion is often truncated, in particular for ionic structures. In fact, given
that the mightiest advantage of VBT is its interpretative character, usually structures
can be selected in chemical terms.

Note that sometimes the key assumption of the perfect pairing method will fail
because, as it has been covered with some detail in Subsection 1.3.4, some molecules
cannot be written as naive Lewis structures. It is perfectly possible, however, to include
three-electron two-center bonds as structures in VBT, as well as other exotic
combinations. However, it should be noted that this is quite cumbersome.

Weights

In general, due to normalization, we know that∑
ij

w?iwjSij = 1 (3.54)

where wi are weights of structures and Sij is the overlap integral between such
structures (e.g. the Sion−cov that has been used in Equation 3.50).

However, it is desirable to express weights intuitively so that they mirror the
interpretation of coefficients in the linear combination of MO-based Slater
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3.2. Valence bond theory

determinants, in which the normalization constraint is simply
∑
i |ci|2 = 1. Several

proposals coexist in this regard.
The simplest approach is simply renormalizing the square of the absolute value of the

weights to obtain renormalized weights wrn,

wrni = |wi|2∑
i |wi|2

(3.55)

which is sometimes not very representative because it treats positive and negative
coefficients on the same footing.

A more reputed standard approach is to use the weights wcci defined by Chirgwin and
Coulson,

wcci = w?i
∑
j

wjSij (3.56)

Although these are not guaranteed to be real nor positive, they are still quite present
in the literature.

Other approaches use the so-called inverse weights winvi defined as

winvi ∝ w2
i

S−1
ii

(3.57)

and then renormalized so that
∑
i w

inv
i = 1.

Several other approaches exist, many of which use orthogonalization procedures. The
three examples provided suffice for discussing VBT.

3.2.3 Resonance theory in Valence Bond
The expectation value of the Hamiltonian on the ΦV BT wavefunction in Equation 3.45
can be obtained as a linear combination of the expressions given in Subsection 3.2.2 for
the covalent and ionic structures (Equations 3.47 and 3.48 respectively).

The difference between both energies is simply

〈Φcov|Ĥ|Φcov〉 − 〈Φion|Ĥ|Φion〉 = J ′ − 5/8
1 + S2

AB

(3.58)

as we know that SAB is bound between 0 and 1 in this simple case, the leading factor
will be J ′, which represents the Coulomb repulsion between two charge distributions.
At long R, such term tends to a point charge 1/R term, at short R it explodes to
infinity. Hence, the covalent structure bonds more than the ionic structure on its own
as J ′ decreases, while the ionic structure is expected to be more stable at short R: the
minimum is at a lower distance but the energy is slightly higher. This is shown in Figure
3.3.

Note that, on the other hand, both structures have exactly the same electron density,
and only differ in their two-electron densities.

While the covalent curve is quite accurate, improved results are achieved when the
ionic structure is included. As the covalent structure is variationally bound by the exact
result, we can safely say that the mixing of the ionic structure contributes to the stability
of the molecule.

This provides an underlying mathematical foundation to the concept of resonance
which can be generalized to larger systems with increasingly numerous structures. Adding
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Chapter 3. Orbital-based chemical interpretation

Figure 3.3: Dissociation curves for the H2 molecule for the different valence bond CSFs
with a STO-3G basis set.

Figure 3.4: VBSCF weights of the ionic and covalent structures along the dissociation
curve of the H2 molecule calculated with a STO-3G basis set.

structures to the wavefunction must lower the energy; if the lowering is not noticeable
the weight of such a structure must be negligible – in that particular point of the PES.

The evolution of the weights of the two structures (see Subsection 3.2.2 for details)
as the H2 molecule dissociates further underlines this point. The weight of the ionic
structure is only slightly relevant near the equilibrium geometry and when R→ 0. When
R→∞, it quickly becomes 0 and thus ΦV BT = Φcov.

Concepts such as the Resonance Energy (RE) are easily defined in VBT. In chemical
terms, the resonance energy is usually defined as the difference in energy between the
main Lewis structure of the system (e.g. Kekulé’s benzene) and the fully delocalized
system, the so-called resonance hybrid. In terms of our model, RE is simply written as

RE = 〈ΦLewis|Ĥ|ΦLewis〉 − 〈ΦV BT |Ĥ|ΦV BT 〉 (3.59)

which, as per the variational theorem, must be positive. RE in H2 is be the difference
between the red and black lines in Figure 3.3, which, as expected, is quite small.
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3.2. Valence bond theory

Thus, VBT captures the concepts of the theories of resonance and mesomerism which
are perfectly useful nowadays and which were covered in Subsection 3.2.3.

Analogously, one might use the rules of resonance theory to select structures for a self-
consistent valence bond calculation. This feedback loop between the qualitative theory
and the computational approach is convenient.

Note that selecting which excited Slater determinants in terms of MOs to include
in a multiconfigurational calculation (cf. Section 2.3) is far more difficult to rationalize
intuitively.

This is due to the heavily engrained atomistic, Lewis-based character of VBT.

Atomic orbitals and hybridization in Valence Bond Theory

As it has been shown, VBT is far more atomistic and local than MOT, largely because
it rejects the notion of delocalized MOs and preserves the atomic character of the AO
basis as much as possible.

However, there are two major reasons that lead to the modification of the AO basis.
The first, major reason belongs to the practical realm: on the one hand

onorthogonality simplifies calculations, and on the other, delocalized basis sets improve
the energy.

The first point has been tackled in Subsection 3.2.2 where the N ! number of overlap
integral evaluations has been put forward.

The second point is quite easy to understand from a finite basis set perspective.
Orthogonalization generally generates “tails” of AOs within the spatial domain of other
AOs. As such, the basis set usually spawns more space, which confers more freedom to
the wavefunction. Atomic basis sets are usually not optimized for VBT calculations. If
basis functions are allowed to AOs from different centers (i.e. to be semilocal),
significant additional stabilization is achieved. However, this compromises the validity
of ionic structures in particular because charges are allowed to delocalize using these
unlike-centered basis functions or tails.

The second major reason is hybridization, which was introduced in the MOT
framework (see Subsection 3.1.1) as a rationalization tool. That is, building new AOs
from linear combinations of like-centered existing ones to better depict overlaps. In
VBT it is possible to use hybrid AOs to describe structures. Note that the basis
functions will remain unchanged: only the description of the structures will be different.
However, this preserves the interpretative advantages of the theory.

To better exemplify this point, let us revisit the case of minimal basis set CH4 from
Subsection 3.1.1.

We assume that the valence AOs of methane are orthogonal sp3 hybrids χ1
sp3 to χ4

sp3 .
Let us assume as well that the core AO for C is a 1sC AO that is kept orthogonal with
respect to the valence AOs. The effect from core orbitals is introduced into the effective
Hamiltonian for the valence block and vice-versa. Alternatively, core orbitals might be
kept frozen (i.e. not optimized) during the procedure. This methodological approach will
be highlighted in Section 3.3. The AOs for the different hydrogen atoms are 1s1 to 1s2
in a minimal basis set.

We can write a perfect pairing wavefunction for the valence block of CH4 as the
product of four covalent structures

Φcovval =
4∏
i

(
|χisp3α, 1siβ〉 − |χisp3β, 1siα〉

)
(3.60)
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to which ionic structures can be added. However, the description in covalent terms
might suffice for CH4. Now, not only the description of the system has become more
compact thanks to the use of sp3 hybrids. However, if AOs are expressed as linear
combinations of basis functions, for instance nuclei-centered GTOs, all sp3 hybrids will
enjoy the increased flexibility of s and p type functions. If the basis set is large enough,
a formally ionic structure might lead to an orbital that is localized away from its center.

In a VBSCF procedure, where both the weights of structures and the basis coefficients
are optimized, this will result in a significantly lower energy. In MOT, hybridization does
not formally change the total energy.

The physical interpretation of hybridization is quite important. It is usually assumed
that an energetic cost is paid by the atom (or fragment), which assumes a hybrid AO
electronic structure with the proper multiplicity, which is then recovered with gains by
bond formation. Do note that hybridization must not be understood as a process since
we have removed time evolution from our approach. However, this notion of “preparation
energy”, which is manifest in VBT, will be mirrored in other frameworks.

3.2.4 Limitations of Valence Bond Theory
As in MOT, the applications and success stories derived from VBT are far too many
to cover in this manuscript. Some of its triumphs over MOT have been highlighted,
which can be synthetized in two main points: VBT overcomes the monoconfigurational
limitations of MOT, and has a much clearer chemical interpretation in terms of Lewis
structures.

Expanded octets and other abhorrent species in the folk Lewis picture can be treated
with VBT, which accomodates general N -center N -electron bonds through structures.
If all possible structures and spin couplings are entered in the VB calculation, and basis
set coefficients and structure weights are optimized, the FCI result is obtained because
the complete space is covered.

Hence, in the exact limit both theories give the same result, but they approach this
limit differently. Compared to multideterminantal approaches, methods derived from
VBT, such as VBSCF, have an advantage through the chemical interpretation of CSFs.
On the other hand, the increased cost of VB calculations due to non-orthogonality
strongly limits the number of basis functions and determinants far more than other
multireference approaches.

Very often, the VB treatment has to be reserved for a subset of valence electrons,
while the rest are treated using orthogonal MOT including coulomb effects from VB
orbitals in the effective Hamiltonian.

Other than this practical limitations, we will examine other issues critically. The
ordering is slightly altered with respect to Subsection 3.1.4 for clarity.

Mathematical limitations

VBSCF is formally analogous to CAS methods (see Subsection 2.3.3 for details) in the
sense that it is able to take into account qualitatively important strong correlation effects.
However, truncated VBSCF is often lackluster at describing weak correlation because it
is an effective one-particle theory. This is particularly troublesome given the increase in
computational cost.

Arguably, proper systematic inclusion of all CSFs is less systematic and efficient in
VBT, because different determinants overlap while FCI calculations using Slater
determinants of MOs are strictly efficient.
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It is interesting to note that situations in which the single reference HFT method
fails dramatically are usually attributed to strong correlation. However, a chemical
interpretation has been attributed to situations in which the main Lewis VB structure
(generally, the ensemble of covalent structures) is quite lackluster and requires from
ionic configurations to properly describe the electronic structure. This has sometimes
been called a “charge-shift bond”.

Approaches that improve the accuracy of the VBSCF method by including weak
correlation effects exist, such as the Breathing Orbital Valence Bond (BOVB)
approach,[35] but will not be covered here.

Ontological limitations

As in the case of MOT, orbitals are non-referring mathematical objects. However, in
this sense interpretation is hampered even further because interpretation is given from a
localization perspetive rather than from an energetic standpoint (cf. Koopman’s theorem,
Subsection 3.1.3).

As noted before, this is a Mulliken-like approach, and as such it is plagued by the
same deficiencies as Mulliken’s analysis: it requires a properly localized basis set and it
depends strongly in the basis set size.

Furthermore, as highlighted in Subsection 3.2.3 when discussing hybridization, the
definition of atomic orbitals is highly volatile. Attention has to be drawn to this point.
In VBT, structures are often “drawn” instead of explicitely expressed as determinants.
This highlights the strong side of the framework. However, the exact composition of AOs
in terms of basis functions must always be kept in mind.

3.3 Molecular Orbital Theory and Valence Bond
Theory

After critically examining the two main wavefunction based interpretative frameworks,
both of which place a great deal of importance in orbitals that build up the
antisymmetrized wavefunction, it is necessary to highlight some of the explicit impact
that accepting one or another theory have.

We will point at the things that both frameworks have in common, and some of the
successful combinations that still exist. It must be noted that current (post-folk) chemical
theory juggles between both theories constantly. There is no HOMO-LUMO interaction
without MOT, there are no resonant structures without VBT, and there is no organic
chemistry that can rationalize reactivity of π systems without both.

3.3.1 Combined approaches
From the practical point of view, MOT has undergone much more development than
VBT over the last 50 years. Consequently, VBT draws on MOT approaches more than
MOT does on VBT.

The more significant example is the treatment of core electrons in VBSCF calculations
(and other derived approaches), which is routinely done to reduce the computational cost.
Formally, this is akin to some procedures that are used in MOT, namely active space
and frozen orbital approaches.

Uninteresting orbitals are separated from active orbitals blockwise, which produces
the following form of the wavefunction
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Ψtot = Â(ΦcoreΦval) (3.61)

where Â is the antisymmetrization operator.
The wavefunction is thus blockwise separated between a core and a valence part.

Generally, core orbitals are treated at the RHF level and kept doubly occupied. VBT or
any other multiconfigurational approach can be used to propose a wavefunction for the
valence part. Alternatively, the coefficients of the basis functions in core orbitals might
be kept completely frozen.

3.3.2 Numerical comparison
MOT and VBT, from the mathematical point of view, converge to the FCI result as the
CSF basis increases. Let us compare performances, energy-wise, for a realistic system;
none other than benzene (C6H6).

In both cases we will treat all core electrons and σ bonds at the RHF level. Then,
on the one hand we will treat the 6 valence electrons in the 6 frontier MOs to build a
CAS(6,6) wavefunction, and on the other hand we will generate a multideterminantal
VB valence wavefunction using π AOs centered in the carbon atoms.

With a minimal STO-3G basis set, the CAS wavefunction includes 400 Slater
determinants and the total energy is −227.947399 a.u., which is slightly lower than the
RHF result of −227.890481 a.u. The VBSCF result with the same number of
determinants, and delocalized AOs is −227.947399 a.u., the same as the CAS
wavefunction because they are identical. However, the interpretation is significantly
hampered in VBSCF using semilocal AOs, as pointed out before.

If, instead, we limit π orbitals to contain GTOs with the same nodal plane centered
in a single carbon atom, and σ orbitals to contain none of those functions, the resulting
electronic energy is−226.923080, which is now much higher than the RHF result – in spite
of using 400 determinants. Furthermore, if we only include covalent structures, which
reduces the wavefunction down to 20 determinants, the total energy is −225.475762 a.u.,
which is quite high. The mixing of the ionic structures is thus responsible for a significant
energy lowering.

Hence, we can conclude that a judicious use of VBT must be made, lest the resulting
wavefunction, which might be highly multideterminantal, is considered to be a guaranteed
improvement over humble HFT. The localized nature of AOs, when implemented through
basis set construction – or else, i.e. constraints on the SCF procedure – have an associated
energetic cost, and a higher energy generally means a less representative wavefunction.
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Chapter 4. Quantum chemical topology

In the previous Chapter we have discussed the interpretation of orbitals thoroughly.
The relevance of orbitals is justified in Chapter 2 due to the impossibility of solving
Schrödinger’s equations. However, we also introduced a different approach to the
electronic structure problem in DFT.

While DFT in chemical applications is often reduced to KS-DFT, formally there is
no need for orbitals. In fact, orbital-free DFT boasts remarkable success in other fields.
The fundamental object in DFT is the electron density, ρ(r), and not the wavefunction.
Coherently, any interpretative framework that aspires to be applied to the apparatus of
DFT should focus on the study of ρ(r).

In principle, this change of paradigm implies a loss of information. After all, orbitals
are defined in a many-dimensional space H and the electron density is a humble three-
dimensional scalar field in R3. On the other hand, this is advantageous because three-
dimensional objects are far more intuitive and easier to navigate both conceptually and
mathematically.

When discussing DFT (cf. Section 2.4) we introduced several other scalar fields that
are often used in DFAs. As long as they are defined in R3, similar mathematical tools can
be used to treat them. The ensemble of techniques that study and interpret the electron
density and other fields defined from the application of quantum mechanics in chemistry
has been called Quantum Chemical Topology (QCT).

The purpose of this Chapter is twofold. We will introduce the key mathematical
aspects that are general, and then demonstrate the application and the interpretative
theory that arises from the topological study of two scalar fields in particular, the electron
density and the Electron Localization Function.

4.1 Methods of Quantum chemical topology
We have introduced Quantum Chemical Topology (QCT) [36] quite generally as the
study of a given scalar field. In mathematics, topology is the term used to refer to the
study of aspects of space that are independent from geometry metrics. In our context,
we will assume that the scalar functions of interest are continuous and differentiable at
any point, and thus we can use the mathematical tools of topology to study them.

Indeed, in differential topology, differentiable functions of a manifold may be used
to study its topology. This approach is often called Morse theory. Owing to this fact,
the gradient vector field is an immediate source of information about the shape and key
features of the scalar field to be investigated.

4.1.1 Morse theory
In strict mathematical terms, Morse theory relates the critical points of a smooth function
and the global topology of the manifold in which the function is defined. In our case,
the manifold M can be thought to be simply a three-dimensional Euclidean space R3 for
the most part. Mathematically, smooth manifolds resemble Euclidean spaces locally so
that our analysis can be kept intuitive by thinking in terms of n-dimensional Euclidean
spaces.

The smoothness of a function has to do with the number of continuous derivatives
the function has over a space. As we stated before, the functions of interest in QCT are
at the very minimum differentiable at any point, and thus continous.

For instance, we know that as per Kato’s cusp condition (cf. Equation 2.102) there
should be discontinuities on top of nuclei, and the density should spread approximately
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exponentially from those discontinuities on. If the wavefunction is built using CGTOs as
basis functions, unavoidably the density will be differentiable everywhere as well as its
gradient.

Usually, having defined first and second derivatives is enough to qualify as a smooth
function.

Thus, assuming this degree of smoothness, we may define the gradient of f , ~∇f , in
terms of its first order derivatives f : Mn → R,

~∇f =
[ ∂f
∂r1

. . .
∂f

∂rn

]T
(4.1)

so that the gradient is a column vector per convention, and the total derivative is a
row vector with the same components.

The gradient of a scalar function is a vector field. If the function is smooth as per the
aforementioned usual requirement, it is also continuous. From any given point, it points
towards the direction of steepest ascent. Given a point p ∈ Rn, p = r1, r2, . . . , rn, it is
said to be a regular point of f if ∇f(p) 6= 0, and a Critical Point (CP) pc if the following
holds

~∇f(pc) = ∂f

∂r1
(pc) = ∂f

∂r2
(pc) = . . . = ∂f

∂rn
(pc) = 0 (4.2)

The value of a function in a CP, f(pc), is called a critical value of f ; the image
elsewhere are regular values of f .

To further distinguish between different types of CPs the second derivatives can be
studied at pc. The matrix of second derivatives a a given point p is the Hessian of f . In
R3:

H(p) =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2


p

(4.3)

CP pc is non-degenerate if the Hessian of that point H(pc) is non-singular, i.e.
detH(pc) 6= 0. Then, all its eigenvalues must be non-zero. Otherwise, the CP is
degenerate and at least one of the eigenvalues of the matrix is 0.

Morse functions

In Morse theory, a smooth function f : M :→ R is considered a Morse function if all its
CPs are non-degenerate. Therefore, the Hessian matrix at any CP can be diagonalized
to render n eigenvalues λ1, . . . λn. In QCT, the eigenvalues of H(pc) are ordered from
negative to positive so that λ1 < λ2 ≤ . . . ≤ λn.

Morse functions have some characteristic properties that can be useful for our
interests. The Morse lemma guarantees that given a Morse function in Rd, f : Rd → R,
its behavior in the surroundings of a CP pc is such that there can not be another CP in
the immediate vicinity of the point. Thus, CPs in Morse functions are said to be
isolated.

A non-degenerate CP pc can thereafter be classified by the number of negative
eigenvalues of the Hessian H(pc), which is called the index q of the said CP. This is akin
to the number of directions along which the CP is a maxima. In R3 there are four
possibilities: minima, which have 0; 1-saddles, which have 1; 2-saddles, which have 2;
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and maxima, which have 3. This criterion can be rigorously derived from the expansion
of a diffeomorphic map in the neighbourhood of the CP, which will not be covered here.

In QCT, however, CPs are usually classified in terms of their rank r, and their sig-
nature, s, using the notation (r, s). For non-degenerate CP pc, the rank is the number of
non-zero eigenvalues of H(pc) and the signature is the difference between the number of
positive and negative eigenvalues,

s =
∑
i

λi
|λi|

(4.4)

Consequently, in R3, maxima, 2-saddles, 1-saddles and minima are denoted by (3,−3),
(3,−1), (3,+1) and (3,+3) respectively. Note that the existence of CPs with r 6= 3 would
imply that the function is not a Morse function anymore.

A different notion of index, which we shall designate as I, is often used in the math-
ematical framework of dynamical systems to characterize CPs. I is the number of posi-
tive Lyapunov exponents of an hyperbolic CP. The equivalence of this nomenclature is
summarized in Table 4.1, and is reported for completeness due to the historical usage of
the term.

Critical Point I q (r, s)
Maximum (attractor) 0 3 (3,-3)
2-saddle 1 2 (3,-1)
1-saddle 2 1 (3, 1)
Minimum (repeller) 3 0 (3, 3)

Table 4.1: Classification of the critical points in R3 in different nomenclatures. I is the
index used in dynamical systems, q is the index in Morse theory and (r, s) notation is
used in QCT.

Since non-degenerate CPs are isolated, the topology of any isosurface – or level set –
of the Morse function is determined by its CPs. Roughly, this implies that two spaces are
homeomorphic if they have the same CPs structure, and diffeomorphic if they do not.

Morse inequalities

The total number of CPs of a Morse function f : M→ R is limited by Morse inequalities.
The weak Morse inequality states that the number of CPs cq of some index q are bound
by

cq ≥ βq(M) ∀q (4.5)

in which βq is the qth Betti number of the space. For our interest, it suffices to know
that β0 corresponds to the number of connected components, β1 corresponds to the
number of circular holes, and β2 to the number of two-dimensional cavities. For instance,
in a 2-sphere (Figure 4.1 A) we find β0 = 1, β1 = 0 and β2 = 1. In a 2-torus (Figure 4.1
B), however, β0 = 1, β1 = 2 and β2 = 1, because β1 takes into account both the hole in
the center of the torus and the circular hole inside the surface. Betti numbers of q ≥ 3
are all 0 in both cases.
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4.1. Methods of Quantum chemical topology

If all Betti numbers are finite and 0 beyond a certain q, the alternating sum of all
Betti numbers for a topological space gives the Euler-Poincaré characteristic χ(M):

χ(M) = β0(M)− β1(M) + β2(M)− β3(M) . . . (4.6)

The number of CPs of different indices is connected to χ(M) as∑
q

(−1)qcq = χ(M) (4.7)

This condition is analogous to the Poincaré-Hopf theorem in the field of dynamical
systems, in which it is defined in terms of the index I (see Table 4.1 for equivalences) of
all i isolated CPs pic: ∑

i

(−1)I(p
i
c) = χ(M) (4.8)

Following the previous example, χ(R3) is 2 for a 2-sphere – and all spherical
polyhedra– but 0 for a 2-torus.

A) B)

Figure 4.1: A) 2-sphere B) 2-torus

In QCT, the Euler-Poincaré characteristic χ(M) is formally 1 for isolated systems –
because the gradient field is defined in R3 – and 0 for periodic systems. Hence, for most
applications in this manuscript, the following rule must be followed for any Morse scalar
function:

c3 − c2 + c1 − c0 = 1 (4.9)

where, as previously stated, c3 is the number of (3,−3) maxima, c2 is the number
of (3,−1) 2-saddles, c1 is the number of (3, 1) 1-saddles and c0 is the number of (3, 3)
minima.

4.1.2 Partitioning of space
The gradient flow may be used to decompose a manifold into submanifolds. With this
purpose in mind, we introduce the notion of integral line. Given a Morse function f :
M → R, a curve γ(t) is an integral line of f if ∂γ(t)

∂t = ∇f(γ(t)) for all t ∈ R. That is,
integral lines are tangent to the gradient field at every point.

Integral lines have several interesting properties. First of all, as per the definition, f
increases along the curve. Furthermore, as the integral line is defined for all t ∈ R, γ(t)
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must have an origin orig(γ(t)) and a destination dest(γ(t)), and both must be ±∞ or
an open-ended CP of the Morse function.

It can be shown that two integral lines are either disjoint or the same. Integral lines
spawn all M, and subsequently every regular point of M is traversed by exactly one
integral line.

Given these properties, it seems coherent to partition space into unions of integral
lines according to some criteria, for example their origin and destination. Therefore we
define

• The stable manifold of a CP pc of f , S(pc), is the point itself together with all
regular points whose integral lines end at pc.

• The unstable manifold of pc, U(pc), is the point itself together with all regular
points whose integral lines originate at pc.

as

S(pc) = pc ∪ x ∈M|dest(γ(x)) = pc

U(pc) = pc ∪ x ∈M|orig(γ(x)) = pc

The Morse function f increases as γt goes from orig(γ(t)) to dest(γ(t)) and therefore

f(pc) ≥ f(x) ∀x ∈ S(pc)
f(pc) ≤ f(x) ∀x ∈ U(pc)

Hence, S(pc) and U(pc) might be referred to as the descending and ascending mani-
folds of the CP pc.

Intuitively, they can be pictured as “hills” and “valleys”. They can also be understood
as the dual of each other. For example, in R3, the stable or descending manifold S(pc) of a
local minimum is just the CP itself, pc; while the unstable manifold will be a volume with
pc inside and bound by a set of maxima, saddle points and the integral lines connecting
them. The exact opposite is found for a local maxima. In more general terms, there will
always be a q-sphere of directions along which integral lines approach a CP of index q.

The Morse complex is formed by all descending manifolds of a Morse function f :
M → R. Each descending manifold will naturally contain a CP that is a local maxima,
and be bound by a set of minima, saddle points and integral lines that connect them.

Restraining ourselves to R3, in dynamical systems parlance the descending manifold
of a maximum pM is called the basin, ΩpM , of the CP. The stable manifolds of 2-saddles
are surfaces, those of 1-saddles are integral lines, and those of minima are the CP itself.
Because the combination of these surfaces, saddle points and integral lines partition space
between basins, they are often called separatrices.

Generally speaking, the partitioning of the system given by the Morse complex reigns
supreme in QCT, as it will be shown in the next Section.

Morse-Smale complex

It is possible to define a complex akin to the Morse complex for the ascending manifolds of
a Morse function. However, it is more interesting to define the more general Morse-Smale
complex. For it, we require that the Morse function satisfies some further conditions,
which can be crudely said to be:
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• No pair of CPs of the function with the same index are connected by an integral
line.

• The index q of the CP at orig(γ(t)) must be less than the index at dest(γ(t)).

More formally, the requirement is that stable and unstable manifolds intersect
transversally. A function in which this holds is called a Morse-Smale function.

Then, we can define the Morse-Smale complex of such function f : M → R as the
intersection of the Morse complex of f and the Morse complex of −f . We could
analogously say that it is the intersection of all ascending and descending manifolds.

The Morse-Smale complex tesselates the topological space so that all points inside a
cell belong to integral lines with the same orig(γ(t)) and dest(γ(t)).

4.2 Topology of the electron density
The electron density was introduced in Chapter 2, Subsection 2.4.1. As we have pointed
out in the previous Section, we can assume that the electron density resulting from a
calculation is a Morse function. Hence, all the mathematical concepts introduced may be
applied for the topological analysis of the electron density, ρ(r).

It must be kept in mind at all times that the electron density is well defined in exact
many-body theory because the one-particle reduced density matrix is defined at any
theory level, unlike orbitals. It does not suffer from particular basis set dependencies
or requires any a priori information. It is also, within the DFT framework, enough to
calculate the exact energy of the system due to its relation with the external potential.
The electron density can also be obtained from both an approximate wavefunction and
experiments, through the structure factors from X-ray diffraction experiments. All things
considered, it is a pretty handy observable compared to the very abstract wavefunction.

In many ways, the resulting analysis and the interpretation thereafter owes to the
work of R. F. W. Bader and others.[37, 38] Due to this, the name “Quantum Theory
of Atoms In Molecules”, or more simply “Atoms In Molecules” (AIM) is often used to
refer to any technique that uses the topological analysis of the electron density. These
names point at an important virtue, which is no other than the retrieval of a definition
for atoms in a molecular environment, which, as detailed in Chapter 1 is not a trivial
matter.

4.2.1 Critical points of the electron density
Our goal is the study of a Morse function, ρ : R3 → R, for which we will use Morse
theory.

The gradient of ρ(r), the vector field ~∇ρ(r), can be written as a column vector

~∇ρ(r) =


∂ρ(r)
∂x
∂ρ(r)
∂y
∂ρ(r)
∂z

 (~i,~j,~k) (4.10)

in which we have expanded the spatial coordinates r = {x, y, z} in Euclidean space
R3. As introduced before, there are four distinct types of CPs of ρ(r) given by ~∇ρ(r) = 0.

AIM theory attempts to assign a chemical interpretation to each type of CP of ρ(r).
In the Born-Oppenheimer framework N -fermionic systems are just point-like nuclear
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charges and quantum electrons moving in the resulting external potential. Thus, it seems
logical for the probability density to be maximal near nuclei. This is empirically found
to be true: ρ(r) has maxima on top of nuclear positions. Recall that, in fact, the electron
density should be discontinuous on top of nuclear positions, as given by Kato’s cusp
theorem (Equation 2.102). It can be safely assumed that a maximum will be found near
nuclear positions instead.

Thus, (3,−3) CPs of ρ(r) are often called Nuclear Critical Points (NCPs) or nuclear
attractors. Generally, every nucleus has a corresponding NCP on the exact same position.
This implies that every nuclei has its own stable manifold, or basin.

As an example, the electron density of the H2 molecule is shown in Figure 4.2 (and in
the surface in Figure 4.4 A), and the corresponding gradient is shown in Figure 4.3. Note
that in this case only one coordinate, z, has been taken into account due to the axial
symmetry of the molecule – and the internuclear axis has been aligned with the z-axis.
The position of each hydrogen nucleus matches exactly the position of the maximum in
ρ and hence has an associated CP, i.e. ~∇ρ = 0. Going back to R3, any step towards the
x or y axis will make the value of ρ(r) decrease. Note as well that the stable manifold
of each maximum can be projected on the internuclear axis as the intervals (−∞, 0) and
(0,+∞).

Between the two maxima, another CP is found at z = 0 (cf. Figure 4.3), which is a
local minimum in the z axis, but a (3,−1) saddle point in R3. That is, it is a minimum
only in one coordinate, but a maximum with respect to the x or y-axes. As it can be
infered from classical arguments, but also from previously covered theoretical frameworks
(cf. Subsection 3.1.1, for instance, with the notions of constructive and destructive linear
combination of atomic orbitals), bonding is associated with the region between nuclei.
Hence, (3,−1) CPs are often called Bond Critical Points (BCPs) in AIM theory. The
stable manifold of such CPs is a surface that we often call the separatrix. In the example
of Figure 4.2, the separatrix is composed by all points with z = 0.

In the same spirit, (3,+1) CPs are called Ring Critical Points (RCPs), because they
appear, for instance, in the middle of a perfect square of H atoms. Their stable manifold
is a single integral line. They are local minima in two perpendicular directions, but local
maxima in the remaining one – the direction perpendicular to the “ring”. Analogously,
(3,+3) CPs are local minima in all directions. They are usually referred to as Cage
Critical Points (CCPs).

Summarizing, the AIM interpretation of CPs of ρ(r) is:

• (3,−3) CPs are Nuclear Critical Points (NCPs) that match nuclear positions.

• (3,−1) CPs are Bond Critical Points (BCPs) that signal bonds between atoms.

• (3, 1) CPs are Ring Critical Points (RCPs) that arise in molecular rings.

• (3, 3) CPs are Cage Critical Points (CCPs) that arise in molecular cavities.

Molecular graph

Several examples of CPs in the AIM context are given in Figure 4.5. Note how the pattern
of NCPs and BCPs matches the expected Lewis connectivity of the molecule quite well.
In simple cases, as in H2 (cf. Figure 4.2), the integral lines that join NCPs and BCPs
match the expected position of the chemical bond. Hence, the integral lines joining two
NCPs through a BCP are often called bond paths.[39] In fact, the CPs and bond paths
are usually depicted together in what is usually called the molecular graph.
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Figure 4.2: ρ(z) along the internuclear axis of H2. Calculated at the FCI/aug-cc-pwCVQZ
level. Dashed lines indicate the position of each nucleus.

Figure 4.3: |~∇ρ(z)| along the internuclear axis of H2. Calculated at the FCI/aug-cc-
pwCVQZ level. Dashed lines indicate the position of each nucleus.

A) B)

Figure 4.4: Functions calculated over the σv plane of the H2 molecule at the FCI/aug-
cc-pwCVQZ level: A) ρ(r) B) τ(r) (Equation 2.133).
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A) B)

C) D)

Figure 4.5: CPs of ρ(r) for different molecules calculated at the HF/6-31G? level: A)
Ethane B) Benzene C) Cyclohexane D) Cubane. CPs are shown as spheres. NCPs,
BCPs, RCPs and CCPs are colored red, green, blue and violet respectively.

In the most straightforward cases, the bond paths that connect NCPs and BCPs are
almost strictly straight and match the folk notion of chemical bonds as in the
least-distance connection between two adjoint nuclei. Notable exceptions are strained
hydrocarbons, such as the ones shown in Figure 4.6, in which the integral line is longer
than the geometrical distance between nuclei. The difference between the two distances
may be used as an indicator of strain for such contexts.

Therefore, the chemical “structure” may be derived strictly ab initio from the study
of the CPs of ρ(r), condensed in the molecular graph. Similar information is enclosed in
level sets of ρ(r) (Figure 4.7) in a less compact way.

Being able to define and analyze chemical structure from the electron density is a
forte of AIM theory.

Chemical bonds

The chemical bond is signaled by the presence of a BCP and its corresponding bond
path, and hence might be characterized by the properties of ρ(r) in those points. First
and foremost, the critical value of the electron density at the BCP, ρBCP , is used as an
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A) B)

Figure 4.6: CPs and integral paths of ρ(r) for different molecules calculated at the HF/6-
31G? level: A) Cyclopropane B) Cubane. Integral paths connecting NCPs and BCPs
have been drawn in magenta. CPs are colored with the color scheme of Figure 4.5.

A) B)

Figure 4.7: Isosurfaces of ρ(r) = 0.25 a.u. for different molecules calculated at the HF/6-
31G? level: A) Ethane B) Benzene. Isosurfaces colored blue.

indicator of bond strength.
A typical example is the increase in density with formal bond order in the ethane,

ethene and ethyne series. For instance, the C–C BCP of ethane has ρBCP ≈ 0.26 a.u.,
whereas the formal double bond of thene has ρBCP ≈ 0.36 a.u. and ethyne has ρBCP ≈
0.41 a.u., with small variations due to the theory level and basis set combination. This
gives a proportion of 1−1.4−1.6 for single, double and triple bonds, with have equilibrium
bond lengths of of 1.54 Å 1.33 Å and 1.20 Å respectively. Taking the inverse square of
the bond lengths (1/R2) we find an extremely similar proportion of 1 − 1.3 − 1.6. This
comes to say that equilibrium bond lengths and ρBCP bear approximately the same
information. CPs for the three molecules are shown in Figure 4.8.

To asses π-character, which in MOT and VBT is associated with out-of-plane overlap
of π AOs, the bond ellipticity is defined as an adimensional ratio;
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A) B) C)

Figure 4.8: CPs of ρ(r) for different molecules calculated at the HF/cc-PVTZlevel: A)
Ethane B) Ethylene C) Ethyne. CPs are shown as spheres. NCPs, BCPs, RCPs and
CCPs are colored red, green, blue and violet respectively.

εBCP = λ1

λ2

∣∣∣
BCP

− 1 (4.11)

where λ1 and λ2 are the two first eigenvalues of the Hessian of the electron density
at the BCP, which are chosen to be perpendicular to the bond path, i.e. the direction
of space towards which the double partial derivative is positive. As per the ordering
convention, in a BCP both λ1 < 0 and λ2 < 0 and |λ1| < |λ2| so that the ellipticity εBCP
is bound between 0 – for a cylindrically symmetric bond where λ1 = λ2 – and infinity
for very asymmetric bonds with π-character.

As a paradigmatic example, εBCP ≈ 0.25 in the C–C bonds of benzene, indicating
moderate π-character, and εBCP ≈ 0.45 for ethene. This matches chemical insight
because the bond order of ethene is superior, while the bond in benzene only has 1/2
π-bonds. However, naturally εBCP = 1.0 in acetylene, which should then be understood
as no π-character at all, while MOT suggests that π AOs are involved in the bond.

In general, these approaches can be applied in many contexts but have important
limitations. On the one hand, the density (and its derivatives) at those points is highly
dependant on the geometry, which may or may not be governed by the specific interaction.
On the other hand, different atoms have different valence densities, i.e. very “soft” atoms
will naturally induce richer densities in adjacent BCPs than other “hard” electronegative
ones. In short, this means that ρBCP and other properties evaluated at BCPs are not
usually transferable between different chemical environments.

4.2.2 Atom in a molecule
The Morse complex given by the gradient vector field ~∇ρ(r) satisfies the zero-flux con-
dition at the separatrices of the stable manifold of (3,−3) CPs:

~∇ρ(r) · ~n(r) = 0 ∀r ∈ S (4.12)

where ~n(r) is a normal vector to the surface at point r and ~∇ρ(r) is the gradient of
ρ(r) at r. S is the separatrix surface, which is given by the stable manifold of the CPs
that surround the NCP. As introduced in the previous Section, the stable manifold of
(3,−3) NCPs is often called a basin.

Recalling that (3,−3) CPs of ρ(r) are NCPs associated with nuclei, the basin of the
NCP on top of nuclei A is the basin ΩA that identifies the topological atom A. As per the
Morse complex partitioning, all space – R3 – is partitioned into basins ΩI , belonging to
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the atoms of the system, and stable manifolds of BCPs and RCPs which are just surfaces
or integral lines.

An important property of atomic basins is that the integral of the Laplacian of the
density is guaranteed to be 0 by the divergence theorem and Equation 4.12:∫

ΩI
∇2ρ(r)dr =

∮
S

~∇ρ(r) · ~n(r)ds = 0 (4.13)

The concept of atom is thus retrieved in the AIM context: atoms are the basins ΩI
that arise in the electron density from the NCP of every nuclei. A simple example is shown
in Figure 4.9 for the ethene molecule, which was previously shown in Figure 4.8. Note
that in this particular case all basins spawn infinite volumes because the separatrices
die at ±∞. However, there is a distinct, non-overlapping region of space that can be
considered to belong to every atom.

Figure 4.9: CPs of ρ(r) and separatrices delimitating the stable manifold in the ethene
molecule. Calculated at the HF/cc-PVTZ level.

The partitioning resembles the geometrically inspired patterns that arise when
visualizing isosurfaces of ρ(r), as in Figure 4.7, where carbon atoms were bound by a
surface resembling a tetrahedron.

Recall that the partitioning given by the Morse complex is exhaustive: all points of
space belong to a stable manifold. It follows that the stable manifolds of BCPs and RCPs,
i.e. all separatrices, integral lines and surfaces, are infinitesimally thin. Usually a finite
discrete grid is used to treat the function numerically, and as a result all regular points of
space are attributed to atomic basins. Thus, in practice space is exhaustively partitioned
in terms of topological atoms.

Atomic properties

Once that atoms have been defined and delimited as the stable manifolds of NCPs, we
can assign properties to atoms. More specifically, a (topological) atomic property may
be defined as

〈Â〉ΩA =
∫

ΩA
ρA(r)dr (4.14)
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where ρA is the density of the property associated with a one-particle operator Â.
The perhaps most enticing atomic property, the atomic charge, can be trivially recovered
by integrating the electron density. For an atom A with an associated basin ΩA, we define
its electronic population NA as

NA =
∫

ΩA
ρA(r)dr (4.15)

which substracted to the atomic number ZA leads to the atomic charge QA,

QA = ZA −NA (4.16)

Due to the exhaustivity of the partitioning, the sum of all M atomic populations is
the total number of electrons in the system, N ,

M∑
A

NA = N (4.17)

Analogously, atomic spin densities may be used to define atomic spins. Many other
atomic properties can be defined, with notable examples such as atomic volumes or
dipoles.

Pair properties

Equation 4.14 may be generalized using two-particle pair functions as an integrand. As
an example, integrating the pair density

ΠA,B =
∫

ΩA

∫
ΩB

ρ2(r, r′)drdr′ (4.18)

gives the average number of electron pairs in the region ΩA∪ΩB . This holds because in
this particular case ΩA∩ΩB = 0, i.e. the AIM partition is exhaustive and non-overlapping.

If we integrate the exchange-correlation density ρxc(r, r′), as defined in Section 2.5,
we can define what is often called the delocalization index δA,B , as

δA,B = 2
∫

ΩA

∫
ΩB

ρxc(r, r′)drdr′ (4.19)

and the analogous localization index, ΛA,

ΛA =
∫

ΩA

∫
ΩA

ρxc(r, r′)drdr′ (4.20)

which gives a neat decomposition of the total electron number N ;

N = 1
2
∑

B,A6=B
δA,B +

∑
A

ΛA (4.21)

δA,B is a pairwise property: it relates pairs of topological atoms by integrating
ρxc(r, r′), which is a measurement of how correlated electrons are. Hence, it is akin to a
bond order. Alternatively, we may define the total delocalization of a given atom, δA, as

δA = 1
2
∑

B,A6=B
δA,B (4.22)
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which is akin to a formal valence of the atom, i.e. the number of “shared” electrons a
topological atom has. In single-determinant wavefunctions, localization and delocalization
indices are bound as

0 ≤ δA,B ≤ min(NA, NB)
0 ≤ ΛA ≤ NA

and are therefore guaranteed to have a feasible chemical interpretation. These defini-
tions will also be used to a certain extent in the next Subsection.

4.2.3 Interacting Quantum Atoms
As it has been shown, we can use the AIM partitioning of space to decompose one
and two-particle properties. Naturally, partitioning the electronic energy is of interest.
A quantitative theory based in the AIM scheme, called the Interacting Quantum Atoms
(IQA) approach attempts to do this in an exact way. We will introduce the theoretical
framework here, coupled to the AIM partitioning, but note that the method is valid for
any exhaustive non-overlapping partition of space.[40]

For simplicity, we define a step function ΘA(r) associated with basin ΩA for every
basin in the system,

ΘA(r) =
{

1 ∀ r ∈ ΩA
0 elsewhere

(4.23)

which in the AIM context equates a basin for every topological atom A. Then, the
one and two-particle reduced density matrices (introduced in Chapter 2, Section 2.4, here
with spin-coordinates integrated out) can be partitioned as

Γ1(r1; r′1) =
∑
A

Γ1(r1; r′1)ΘA(r′1) =
∑
A

γ1
A (4.24)

and

ρ2(r1, r2) = ρ2(r1, r2)1
2

[
ΘA(r1)ΘB(r2) + ΘB(r1)ΘA(r2)

]
=
∑
A,B

γ2
A,B (4.25)

in which we have taken only the diagonal part of the two-particle reduced density
matrix. The electronic energy can be computed as

Eel =
∫
ĥγ1(r1; r′1)dr1 + 1

2

∫ ∫
ρ2(r1, r2) 1

r12
dr1dr2 (4.26)

in which we have assumed the non-diagonal part of the one-particle reduced density
matrix for the application of the one-body operator ĥ, but not for integration. The one-
body operator itself can be assumed to be defined as in Hartree-Fock theory (Section
2.2) for the time being.

Let us decompose every part of the Hamiltonian explicitely. The kinetic energy term
in the one-particle operator ĥ is trivially partitioned because AIM basins satisfy the
zero-flux condition (Equation 4.12), and thus
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T =
∑
A

TA =
∑
A

∫
ΩA
−∇

2

2 γ1(r1; r′1)dr1 (4.27)

Analogously, the Ven term is easily partitioned in terms of the electron density, as it
can be expressed as

Ven =
∑
A,B

V A,Ben (4.28)

where

V A,Ben = −
∫

ΩA

ρ(r1)ZB
rB1

dr1 (4.29)

which gives the Coulomb attraction between electrons in a basin ΩA and a nuclei B
with atomic number ZB , as well as the one-atom term V A,Aen .

Finally, the Vee term is partitioned as

Vee = 1
2

∫ ∫
ρ2(r1, r2) 1

r12
dr1dr2 =

∑
A

V A,Aee + 1
2
∑
A

∑
B 6=A

V A,Bee (4.30)

and hence has just one-atom V A,Aee and two-atom V A,Bee contributions as well. Note
that in HFT the two-particle reduced density matrix can be expressed as the product of
one-particle terms.

As nuclear repulsion energy is trivially partitioned into pairwise contributions in the
Born-Oppenheimer framework, by partitioning the electronic energy we have successfully
partitioned the total energy into one-atom and two-atom terms.

Grouping of terms

The IQA method gives many terms which are extremely large in chemical terms. They
must generally be grouped to be understood intuitively. In the IQA framework – and
arguably in quantum mechanics as a whole – chemistry arises from cancellation of large,
opposite terms.

The total energy is written as a sum over atoms and pairs of atoms, i.e.

E =
∑
A

EAintra + 1
2
∑

A,B 6=A
EA,Binter (4.31)

where Eintra contains all intra-atomic terms: V A,Aee , V A,Aen and TA. On the other
hand, Einter contains all pairwise terms: V A,Bee , V A,Ben (and V B,Aen , which is not generally
symmetric) and V A,Bnn .

Note than the “preparation energy”, which we previously associated with hybridiza-
tion (cf. Subection 3.2.3), can be defined quite simply from this framework by compar-
ing EAintra with the energy for the isolated atom,

EAdef = EAintra − EAisolated (4.32)

where EAintra is calculated in a chemical environment of interest, and EAisolated is the
energy of the isolated atom. The deformation energy EAdef represents the energetic “cost”
paid by the atom to adapt to the potential of the chemical environment.
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Extension to Density Functional Theory

As discussed in depth in Section 2.4, DFT models the two-particle reduced density matrix
in terms of a one-body operator through the expression of the exchange-correlation energy
εxc(ρ(r)). The partition of such term is quite straightforward due to locality, but seems
counterintuitive because one would expect that exchange-correlation effects must exist
also between electrons of different atomic basins.

In general, we may rewrite V A,Bee in pair-wise terms as

V A,Bee =
∫

ΩA

∫
ΩB

ρ(r1)ρ(r2) 1
r12

dr1dr2 − EA,Bxc = V A,BCoul − E
A,B
x − EA,Bc (4.33)

where EA,Bx and EA,Bc are pairwise terms for the exchange and correlation energies,
that might be combined into EA,Bxc . These terms are unknown at this point. The first
term, V A,Belec , can be considered to be strictly Coulombic and hence bears the subscript
Coul. Note that this decomposition applies to both EAintra and EA,Binter.

In the same spirit, we may decompose EA,Binter into semiclassical “electrostatic” (sub-
scripted as elec) terms and strictly quantum exchange and correlation factors,

EA,Binter = V A,Belec + εA,Bxc (4.34)

We may write an explicit HF-like expression (note the subscript) for Ex in atomic
terms by summing over occupied MOs (from HFT or KS-DFT alike);

EA,Bx,HFX = −
∑
i,j

∫
ΩA

∫
ΩB

ψi(r1)ψj(r2) 1
r12

ψi(r1)ψi(r2)dr1dr2 (4.35)

and we can therefore define a total exchange energy of any atom as

EAx,HFX = EA,Ax,HFX + 1
2
∑

A,B 6=A
EA,Bx,HFX (4.36)

We can model an intra-atomic exchange-correlation contribution by calculating the
exchange-correlation contribution given by the DFA through simple integration over ΩA
and the HF-like exchange with the same orbitals (assuming a KS-DFT context).

With this goal in mind, we define a weight factor λA for the atomic basin ΩA, as

λA = a+ 1
EAx,HFX

∫
ΩA

ρ(r)εxcdr (4.37)

where εxc is the exchange-correlation energy given by the DFA of choice, and a is the
fraction of exact exchange in the DFA formulation (see Section 2.5 for details)

Finally, we put forward working expressions for the partitioning of EA,Bxc ,

EA,Bxc = 1
2

[
λA + λB

]
EA,Bx,HFX (4.38)

Which is an exchange-based partitioning that includes a formal correlation contribu-
tion. However, it fits in our partitioning scheme and it is therefore used.
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4.3 Topology of the electron localization function
The Electron Localization Function (ELF) was originally derived in the framework given
by HFT.[41] Arising from a monodeterminantal one-electron context, the probability of
finding two particles with spin σ in the same point r is given by

Dσ(r, r′) = ρσ(r)ρσ(r′)− |γ1
σ(r1; r′1)|2 (4.39)

where the σ-spin densities and the sigma one-particle reduced density matrix have
been denoted with σ subindices. As a reminder, the definition for the one-particle reduced
density matrix of σ spin is given below for this context as introduced in Equation 2.101:

γ1(x1; x′1) =
∑
i

niσψiσ(r1)ψ?iσ(r′1) (4.40)

which is exactly the same for σ = α, β in the restricted formalism with niσ = 1.
From Equation 4.39 we define the conditional pair probability, in which an electron

of σ-spin is fixed at r, as

Pσ(r, r′) = ρσ(r′)− |γ
1
σ(r1; r′1)|2

ρσ(r) (4.41)

which we may now expand around r in a spherically averaged fashion. The first term
is 0 due to Pauli repulsion, and therefore the leading term is quadratic in s.

pσ(r, s) = 1
3

[∑
i

|~∇ψiσ|2 −
1
4
|~∇ρσ(r)|2

ρσ(r)

]
s2 + . . . (4.42)

where (r,s) denotes spherically averaged on a shell of radius s around the reference
point r. We may rewrite this expression, truncating at the quadratic term, as

pσ(r, s) = ρσ(r)
[2

3
τσ(r)− τWσ (r)

ρσ(r)

]
s2 (4.43)

where the σ-spin positive semidefinite KED τσ(r) has been used as defined in Equa-
tion 2.133. Analogously, the von Weizsäcker kinetic energy density τw(r) was defined in
Equation 2.135. Note that in this case only σ-spinned orbitals are considered.

From this last expression, we put forward the spinwith ELF kernel χBESσ (r) as intro-
duced by Becke and Edgecombe and generalized by Savin; [42]

χBESσ (r) = τσ(r)− τWσ (r)
τHEGσ (r) (4.44)

in which, again, we draw from Subsection 2.5.2 for the definition of the kinetic energy
density of the homogeneous electron gas, which is simply

τHEGσ (r) = CF ρ
5/3(r) (4.45)

In a closed-shell system, since ρα(r) = ρβ(r) = 1
2ρ(r), the spin-independent ELF

kernel simplifies to χBES(r), which is simply

χBES(r) = τ(r)− τW (r)
τHEG(r) = τP (r)

τHEG(r) (4.46)
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where a new kinetic energy density has been introduced: τP (r) is the kinetic energy
due to the effect of the Pauli exclusion principle, that is, the fermionic nature of electrons
in the non-relativistic model.

There are different suitable definitions for the ELF kernel, particularly so for the
spin-dependent case. In this work we will adopt χBES(r) as defined in Equation 4.46 as
the default one. Having chosen the ELF kernel, we can define the ELF itself as

ηELF (r) = 1
1 + χ2

BES(r) (4.47)

which is a straightforward transformation that bounds the function to the interval
(0, 1) for visualization purposes. The mapping given by Equation 4.47 preserves all
topological features of the ELF kernel χBES(r), since it is monotonically increasing.

We will begin by examining the information borne in this function. The topological
features of ηELF (r) will be discussed in depth later in this Section.

4.3.1 Kinetic energy densities in chemical bonding
The ELF has been defined but no explicit interpretation of it has been put forward yet.
There are many different conceptual ways to analyze this function. Perhaps the most
fundamental notions stem from the virial theorem. The stabilization of the total energy
that takes place in chemical bonds is given by a compensation of potential and kinetic
energy.

The kinetic energy density of the interacting region is thought to decrease
significantly: the electrons must be localized there in order to properly shield the
nuclear repulsion. [43] As such, kinetic energy densities are quite useful as local
descriptors of chemical bonding. [44, 45, 46, 47] There is a plethora of suggestions in
this regard. We will outline some of them while attemtping to provide a clear picture of
the ELF.

Let us examine the components of χBES(r) – and the relations between them – as
presented in Equation 4.46.

First of all, note that the term τw(r)
τ(r) was introduced when discussing SIE in DFT

(cf. Subsection 2.5.3). τw(r) is a good approximation to the kinetic energy density of the
system whenever the system has single-orbital character, and a lower bound otherwise.
Hence, the term goes to zero as the system is further from a single-orbital character.

The numerator in the ELF kernel (Equation 4.46), that is, the Pauli kinetic energy
density τP (r), draws on a similar idea. τP (r) = 0 only in single-orbital points r, and is
positive otherwise. The greater the value it takes, the further the system is from single-
orbital character.

The two split quotients can be interpreted indivdually on their own right, which helps
understand the ELF kernel.

Localized Orbital Locator

The kernel of the Localized Orbital Locator (LOL) is defined as:

tLOL(r) = τHEG(r)
τ(r) (4.48)

which is then bound to define the LOL function ηLOL(r),
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ηLOL(r) = tLOL(r)
1 + tLOL(r) = 1

1 + t−1
LOL(r)

(4.49)

preserving all topological features again. The interpretation of the LOL kernel tLOL(r)
is quite straightforward. If the kinetic energy density of the system under consideration
is much lower than the one given by τHEG(r), which is to say that the electrons are more
“localized”, then tLOL(r) → ∞. On the contrary, if the kinetic energy density is very
high compared to the HEG, tLOL(r)→ 0.

After transformation (Equation 4.49), localization is mapped to ηLOL(r) > 1/2, and
complete delocalization (i.e. fast electrons) is associated with ηLOL(r) < 1/2. If τ(r) and
τHEG(r) match exactly, ηLOL(r) = 1/2. Only perfect localization (tLOL(r) → ∞) or
delocalization (tLOL(r)→ 0) reach the extremes of the function.

In this sense, it must be noted that the kinetic energy density (as defined in this
text or otherwise) is always maximal for the electrons near nuclei, which are under the
effect of a high local potential. Therefore, any bonding indicator requires some sort of
renormalization that removes or rescales core densities.

Bosonic Kinetic Energy Density

The last missing connection is given by the bosonic kinetic energy density, tB(r), which
may be defined as

tB(r) = τW (r)
τHEG(r) (4.50)

and subsequently bound as ηB(r),

ηB(r) = 1
1 + tB(r) (4.51)

tB(r) is a lower bound to t−1
LOL(r), and hence ηB(r) is an upper bound to ηLOL(r). In

nuclear regions, ηB(r) is extremely similar to ηLOL(r) because, as expected, τP (r) ≈ 0.
In all other regions, it highlights localization in a stark way due to the gradient term in
τW (r), which will naturally be zero in regions with constant density.

As a sidenote, tB(r) is related with the reduced density gradient, s(r), which was
introduced in the enhancement factor of GGA DFAs (cf. Equation 2.131), as

tB(r) = 5
3s

2(r) (4.52)

and can henceforth be interpreted in terms of the inhomogeneity of the density as
well. This has notable consequences for the analysis of non-covalent interactions which
will not be covered here.[48, 49]

Pauli Kinetic Energy Density and Electron Localization Function

Having discussed all of its ingredients, it is apparent that the Pauli kinetic energy density
τP (r) is quite simply a measurement of the single-orbital character of the system.

The denominator τHEG(r) is thus simply used to rescale both terms, as in the explicit
expression

χBES(r) = t−1
LOL(r)− tB(r) (4.53)
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so that it measures the effect of non-bosonic character in localization. It is therefore
straightforward to see that χBES(r) is always positive and mandatorily small in nuclear
regions – but not strictly due to what we understand as chemical localization

Expanding the transformed expression, we get

ηELF (r) = 1
1 + t−2

LOL(r) + t2B(r) + 2t−1
LOL(r)tB(r)

(4.54)

from which we can easily see that ηELF (r) = 1 only whenever t−1
LOL(r) = tB(r) or

ηB(r) = ηLOL(r), i.e. τP (r) = 0. This will only happen in one-orbital regions.
Localization, as given by tLOL(r), might be arbitrarily large or small in this sense.

However, if tLOL(r) is very large, that is, the kinetic energy density of the system is
very small compared to that of the HEG, then t−1

LOL(r) will be very small. tB(r) is a lower
bound of the latter, and therefore ηELF (r) ≈ 1 forcefully. In this sense, the ELF measures
localization due to fermionic character but also localization that has to do strictly with
the kinetic energy density itself.

On the other hand, χBES(r) will be large whenever the system has a character that is
significantly different from the single-orbital model in a way that is significant compared
to the homogeneous kinetic energy density for that region. Then, ηELF (r)→ 0.

That is, if the Pauli kinetic energy density τP (r) is large with respect to τHEG(r),
which scales with the density, this can be interpreted as a lack of localization due to
Pauli’s exclusion principle.

Hence, ηELF (r) is often said to be maximal (i.e. nearly 1) for spin-paired regions,
minimal (nearly 0) for spin-unpaired regions, and takes the value 1/2 when the system
resembles the localization of the HEG model.

A comparison of the three bound functions is shown in Figure 4.10 for the CO2
molecule. Note that in this case all three functions are quite similar. However, as per the
nuanced interpretation that we have presented, this might not always be the case.

Figure 4.10: ηb(r), ηELF (r) and ηLOL(r) along the internuclear axis of CO2. Calculated
at the B3LYP/def2-SVP level. Dashed lines indicate the position of each nuclei.

As a final remark, the reader is encouraged to realize the effect of the bounding
transformation critically. In particular, the effect of squaring the kernel function in
Equation 4.47, which normalizes the ηELF (r) = 0.5 and preserves the topology, but
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alters the shape of the function. Other plausible transformations have been proposed
that share these properties. For instance, a family of hyperbolic bounding
transformations is given by

ηnhELF (r) = 1
2 [1 + tanh(χ−nBES(r)− χnBES(r))] (4.55)

where n ≥ 1 in order to achieve a steeper transformation. It must be noted that the
measurement of localization itself is not under judgment here, as all information arises
purely from τP (r), but the representation obtained might differ significantly.

4.3.2 Critical points of the Electron Localization Function
Analogous to the case of the electron density ρ(r) in Subsection 4.2.1, we will attempt
to the study a Morse function, ηELF : R3 → R, using Morse theory. As it will be shown
later, sometimes ηELF will not be Morse function in practice. However, let us assume it
always is for the time being.

Again, we will commence with the vector field to find the CPs of the function.
Similarly, the vector field ~∇ηELF (r) will be zero locally at the CPs, which will be of
four distinct types. Recall that all the bounding transformations that have been
considered are devised to maintain the position of CPs.

(3,−3) maxima in the ELF context are often called attractors. The stable manifold
of an attractor is, as in the AIM framework, a basin that occupies a given volume. As
given by its interpretation, such basins identify regions of space in which electron pairs
are localized. First and foremost, this situation is associated with the position of nuclei.
However, in the case of the ELF topology, attractors are also found in covalent chemical
bonds and in lone pairs – any region with spin-pairing. Thus, the resulting topology is
significantly richer from the chemical and mathematical perspective.

Generally speaking, CPs of the ELF other than local maxima do not have a clear
interpretation. This is consequent with what has been discussed in the previous
Subsection: χBES(r) is only properly bound from below. Therefore, usually CPs are not
rigorously characterized for this function.

A glimpse at the CPs of ηELF (r) is shown in Figure 4.11 for the same molecules as
Figure 4.8. Note that the placement of maxima does indeed match chemical intuition
with respect to electron pairing: every nuclei has one on top of itself, accounting for
core electrons, and covalent bonds have at least one as well. C–H bonds have only one
maxima because the core electrons are involved in the bond in this case. It must be noted
that there is a typical error in Figure 4.11 C), where the D∞h symmetry of the molecule
(and thus, potential and wavefunction) is not respected. This is due to the use of a finite
grid. However, this is a typical problem in the representation of the ELF that we will
discuss in some depth in the next Subsection.

More usually, the representation of the topology of ηELF (r) is given by using a proper
isosurface (usually 0.75 < ηELF (r) < 0.85) which faithfully divides the different basins
of all attractors. Obviously, the isovalue is bound between 0 and 1 in all cases, and a
different bounding transformation may modify this approximate range. The molecules
that were shown before are presented with ηELF (r) = 0.85 isosurfaces in Figure 4.12.
Note that this procedure naturally merges the artificial CPs that rose due to symmetry
breaking in ethyne.

The interpretation of symmetry-broken ELF basins is quite involved. A successful
explanation has been given in terms of Lewis structures. The triple bond in ethyne is
expected to be composed by a σ-bond on the interatomic C–C axis and two out of plane
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A) B) C)

Figure 4.11: CPs of ηELF (r) for different molecules calculated at the HF/cc-PVTZ level:
A) Ethane B) Ethylene C) Ethyne. CPs are shown as spheres. (3,−3), (3,−1), (3,+1)
and (3,+3) CPs are colored red, green, blue and violet respectively. Note the symmetry-
breaking issue in C) (see text)

A) B) C)

Figure 4.12: Isosurfaces of ηELF (r) = 0.85 a.u. for different molecules calculated at the
HF/cc-PVTZ level: A) Ethane B) Ethylene C) Ethyne. Isosurfaces colored green.
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π-bonds. However, the D∞h symmetry of the molecule forbids choosing a proper nodal
plane for the π-orbitals, and hence the ELF gives an average depiction of the π-bonds
over the symmetry elements of the molecule. Hence, the ring-shaped basin in Figure 4.12
C) can be understood as an averaged triple bond.

4.3.3 Lewis entities in a molecule
Finding all local maxima of ηELF (r) in a system allows to differentiate two types of
basins, which are commonly called core and valence basins for ease of interpretation.

Core basins arise from the single-orbital character in the vicinity of the nuclear point
charges and are subsequently quite small and spherical. Several notations exist for core
basins, including C(A), where A stands for nuclei on which the attractor is placed, and
ΩCA where the superscript stands for core.

Valence basins fill the rest of the space exhaustively. The corresponding attractors
usually match the electron pair arrangements of Lewis and, in a more general sense, the
VSEPR model (see Subsection 1.2.3 for a critical introduction). Therefore, it provides
a proper quantum support for concepts of such theories, including lone pairs. Valence
basins are often denoted by V (A,B), where A and B correspond to the nuclei whose
core basins are contiguous to the valence basin. In most cases, A and B will simply
match chemical intuition: they are the atoms bonded by V (A,B). We will also introduce
the notation ΩVA,B for generality. Note that, by definition, valence basins do not contain
nuclei, and hence their classification requires notions on their connectivity.

We define the synaptic order of a valence basin as the number of core basins which
have a common separatrix with it.[50] Valence basins are usually classified by their
synaptic order: asynaptic basins (synaptic order zero), monosynaptic (synaptic order
one), disynaptic (synaptic order two) or polysinaptic (see Table 4.2). Asynaptic and
polysinaptic basins are quite rare. The C(A) and V (A,B) nomenclature that has been
introduced, equivalences of which are captured in Table 4.2 as well, is used for
interpretative purposes but may turn out to be ill-defined mathematically.

Synaptic order Name Basin symbol ELF nomenclature
– Core ΩCA C(A)
0 Asynaptic ΩV –
1 Monosynaptic ΩVA V (A)
2 Disynaptic ΩVA,B V (A,B)
3 Trisynaptic ΩVA,B,C V (A,B,C)
>3 Polisynaptic ΩVA,B,C,... V (A,B,C, . . .)

Table 4.2: ηELF (r) valence basin classification according to their nature and synapticity.

An example of asynaptic basin is found in NH4
– due to the excess of electron

density and in F-centers in solid state systems. Lone pairs are the typical example of
monosynaptic basins, as found in the extremes of the CO2 molecule (cf. Figure 4.10).
Two-center covalent bonds are usually associated with disynaptic basins centered
between them, while higher synaptic orders appear in non-Lewis bonding situations, as
for example agostic bonds with coordination metals.

While polisynaptic basins can be associated with multicenter bonds, note that
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asynaptic basins have no possible Lewis-like interpretation. Usually, covalent bonds
appear as disynaptic basins, and increased bond order results in more than one basin
or, as in the case of ethyne that was discussed before, a larger basin.

Perfectly ionic bonds lack associated ELF basins, which is coherent because there is
no electron pairing associated with the bond. Metallic bonds are associated with large
polisynaptic basins due to the fact that bonding is not localized and the ELF value is
moderately high in all interatomic regions. Thus, a qualitative understanding of bonding
regimes can be gained by the analysis of the basins and level sets of ηELF (r).[51]

Atomic shells

In isolated atoms, several local maxima of ηELF (r) arise. Rigorously, in any spherically
symmetric potential with more than two electrons, subsequent spherically symmetric
basins appear, which resemble the orbital concept of atomic shells. This is another context
in which mono and asynaptic valence basins may arise.

While we are not particularly concerned about such features, it must be acknowledged
as a notably succint example of the utility of the ELF. The ηELF (r) profiles of C and O
(in two multiplicities each) are collected in Figure 4.13 for reference.

A) B)

Figure 4.13: ηELF (r) a.u. along the distance r to the nuclear poisition of: A) carbon
atom, B) oxygen atom. Data calculated at the CCSD/cc-PVTZ level.

Note how the trend on the ηELF (r) values of the second shell invert when passing
from C to O: in O atom it could be suggested that the higher values of ηELF (r) for the
second shell for the S = 1 are due to an increased electron pairing. This is shown to be
inconsistent in the case of C, and hence not true. Let this example showcase how the
interpretation of the ELF solely in terms of electron pairs, if used acritically, might lead
to errors.

Basin properties

The Morse complex ηELF (r) is, once again, an exhaustive non-overlapping partitioning
of space. Hence, all the basin properties introduced in Subsection 4.2.2 by the general
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expressions in Equations 4.14 and 4.18 for the AIM framework may be used in the ELF
context as well.

In fact, due to the reduced relevance of CPs in the analysis of the ELF, basin
properties play a major interpretative role. For instance, we can calculate ab initio
valence states for an atom by substracting the core population N

C

A from the formal
number of electrons of the atom. NC

A represents the average number of electrons in the
core shell of an atom, which can be calculated by integrating over the core basin
associated with the nuclei;

N
C

A =
∫

ΩC
A

ρ(r)dr (4.56)

and we can analogously integrate over any valence basin to calculate its electron
population. The total number of valence electrons associated with an atom will be given
by a sum of the valence basins that have a separatrix in common with the core basin of
the nuclei;

N
V

A =
∫

ΩV
A

ρ(r)dr +
∑
A 6=B

∫
ΩV
AB

ρ(r)dr + . . . (4.57)

Thus, we can also calculate the total number of electrons associated with an atom as

N
CV

A = N
C

A +N
V

A (4.58)

and we expect this number to be quite stable in different chemical environments in
order to verify the famed octet rule. We would also expect a total number of electrons of
approximately 2 for hydrogen basins. Both these assumptions generally hold. Hence, a
quantum mechanical theory of chemical structure can be built upon the topology of the
ELF, which retrieves the notion of valence and Lewis entities.

Naturally, two-basin properties – as delocalization and localization indices – can also
be defined in terms of ELF basins. Furthermore, the whole IQA approach can be coupled
to the ELF partitioning with the caveat of having to choose a kinetic energy density to
integrate. The total energy is recovered nevertheless.

Variance of pairs of Lewis entities

In ELF language, the concepts of variance are more popular than other two-basin prop-
erties. Hence, we will introduce them with respect to the previously defined delocaliza-
tion and localization indices, δA,B and ΛA respectively in Equations 4.19 and 4.20.

The variance σ2
A of the electron population of a basin A is given by

σ2
ΩA = NΩA − ΛΩA (4.59)

and can be decomposed into pairwise terms as

σ2
ΩA =

∑
A6=B

[
NΩANΩB −

∫
ΩA

∫
ΩB

ρ2(r1, r2)dr1dr2

]
= 1

2
∑
A6=B

δΩA,ΩB (4.60)

The interpretation of the contributions to the variance is quite straightforward given
the nomenclature. The variance of the electron population of a given basin ΩA – which
might be of any given kind – is due to fluctuation towards other basins. Generally,
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adjacent basins will present significant delocalization indices, while further away ones
will not.

As in the AIM framework, delocalization indices between ELF basins give a sort of
bond order, or a notion on the degree of interaction between them through formally
shared electrons.
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A Modern Bond Charge Model
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Chapter 5. A Modern Bond Charge Model Ansatz

As we have discussed in some detail over the previous Chapters, the chemical bond
is a central concept in chemistry. The bond types covered in Chapter 1, and, to a lesser
extent, the attribution of degrees of character to bonds, are absolutely fundamental
to discuss chemical phenomena. On the other hand, chemical bonds – and subsequently,
types of chemical bonds – are not rigorously defined whatsoever in the context of quantum
chemistry.

Critically, in quantum chemistry bonds can only be defined between molecules, i.e.
associated with nuclear displacement in the PES. However, in FMT bonds are entities
associated with the interaction of atoms. This is the key reason why theoretical
frameworks that retain atomistic properties tend to support the notion of chemical
bond best.

However, there is yet another approach to the chemical bond that is not strictly
based on atoms or nuclei: we can treat chemical bonds as distinct entities, with distinct
properties, that may interact with other chemical bonds as well as with pseudoatoms.

There is much to be said in this direction. This Chapter will be devoted to a particular
approach to distinct chemical bonds: we will put forward a semiclassical model, we will
try to justify it quantitatively, and we will try to put our model to test.

5.1 The Bond Charge Model
It has been known for a very long time that the potential energy curve of an homonuclear
diatomic can be modeled using a Morse potential. In fact, coupled with corrections and
experimental parameters, a Morse potential might be more accurate than certain levels
of quantum mechanical calculations with the advantage of being fully analytical. For an
homonuclear diatomic molecule A2 with internuclear distance R, a Morse potential takes
the form

W (R) = WR=∞ +De(1− e−β(R−Req))2 (5.1)

in which Req, the equilibrium internuclear distance, De, the well depth, and β controls
the width of the well. Hence, four parameters are needed to model the potential energy
W (R). Another analytical model that achieves similar success for the same situation is
the following

W (R) = W0 + W1

R
+ W2

R2 . . . (5.2)

which, truncated at second order, gives reasonably accurate potential energy curves.
This expression requires one parameter less than Equation 5.1, and does not require
explicit knowledge of the equilibrium region. Note that, W0 = WR=∞ and both can be
set to zero for W (R) in relative terms.

Attemtping to assign a physical meaning to Equation 5.2, we may try to rearrange
the expression into potential V (R) and kinetic T (R) terms and satisfy the molecular
virial theorem, that is

V (R) = 2W +R
(dW
dR

)
and

T (R) = −W −R
(dW
dR

)
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which, when coupled with Equation 5.2 lead to the following

V (R) = 2W0 + W1

R

T (R) = −W0 −
W2

R2

As forces are obtained by taking derivatives of W (R), the term W0 is unimportant
for dynamic properties, and we can assume that it can be split subsequently. For our
interest, it suffices to put forward that the V (R) term and the T (R) term have distinct
forms so that we can build an interpretation on them.

5.1.1 Homonuclear Bond Charge Model
The energy associated with the bond can thereafter be expressed approximately using a
semiclassical approach. For the simplest case, which is a homonuclear diatomic molecule
A2 with internuclear distance R, the potential energy curve W (R) can be modeled as a
sum of three terms in the spirit of Equation 5.2:

W (R) = D + V (R) + T (R) = D + CBNV
q

R
+ CNNV

1
R

+ CBT
q

R2 (5.3)

D is a bond-specific constant accounting for the internal energy of the participating
atoms, hence system-specific and additive (i.e. D = DA +DA in this case). In agreement
with the virial development of Equation 5.2, V (R) is a Coulomb term and T is a kinetic
energy term. CBNV , CNNV and CBT are just proportionality constants whose interpretation
will be clarified later.

Owing to Equation 5.3, the Bond Charge Model (BCM) is a simple proposal by Parr
and coauthors [52, 53, 54, 55] in which the description of a chemical bond is likened to that
of a negatively charged particle between two pseudo-atoms. These pseudo-atoms have,
in principle, positive net charge: pseudo-atom here implies that the bond is “formed” by
valence density from the constituent atoms, and hence the remaining part of the atom
has a significant deficit of electron density. For instance, a chemical representation would
be the nuclei surrounded by only core electrons. For brevity, we shall use the term core
to refer to the pseudo-atom, following this reasoning. The core will naturally behave like
an atomic nuclei shielded by core electrons.

In the BCM chemical bonds are assumed to be well described by a negative electronic
charge or bond charge q placed somewhere between two pseudo-atoms – including a
nucleus – with effective positive charge Z. The bond charge must therefore interact with
the two cores electrostatically, which assuming it is centered in the middle of the bond
means over a distance R/2. Analogously, the two cores must interact with each other over
the internuclear distance R. The zeroth order term in a plausible multipole expansion is
a Coulomb force between point charges, which leads to a 2qZ/R and Z2/R dependencies
for the bond-core and nucleus-nucleus terms in V (R). Hence, written in a compact way,
we have

V (R) = (Z2 − 4qZ)
R

= Z2

R
− 2 qZ

R/2 = CNNV
1
R

+ CBNV
q

R
(5.4)

In which the atomic charges have been grouped into constants which we may devise
to be nuclei or atom-specific.
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Chapter 5. A Modern Bond Charge Model Ansatz

The kinetic term is somewhat harder to picture. The original proposal assumes that
the bond particle is moving in a one-dimensional box between two infinite potentials that
exist in the vicinity of the pseudoatoms. The energy of a particle in a 1D box of length L
follows E ∝ 1/L2. Accordingly, a q/R2 dependency for T , which suits Equation 5.3 and
justifies the following

T (R) = qh2

8meR2
B

= qh2

8meν2R2 = CBT
q

R2 (5.5)

where h is Planck constant, me is the mass of the electron, and ν is a variable such
that νR = RB , where RB is the effective bond length. It is implied that the bond charge
moves in a limited fraction of the total internuclear distance so that RB < R and hence
ν < 1.

So far, we have assigned a meaning to the different terms in Equation 5.3. Assuming
that q must compensate the nuclear charges, Z, to the net molecular charge, i.e. both
terms represent the same parametric degree of freedom, the only model parameters that
do not vanish in the expression of the force dW/dR are q and ν. The model is
schematically presented in Figure 5.1.

Figure 5.1: Schematic representation of an homonuclear diatomic molecule in the BCM.

Thus, W (R) can be expressed in terms of a coefficient of the core-bond potential
CBNV , a coefficient of the core-core potential CNNV , and a bond kinetic energy coefficient
CBT , noting that in principle CBNV and CNNV are related by CNNV = (CBNV )2/16 and
therefore only two parameters are needed. The superscript B will be used to refer to the
bond charge, and the superscript N is used for the core, which is a nucleus plus some
core electrons.

Recall that, as per the expression in Equation 5.3,

WR=∞ = D (5.6)

that is, D is a constant that shifts the potential energy but is non-important in the
relative description. Thus, we can safely drop this variable for most of our analysis.

5.1.2 Heteronuclear Bond Charge Model
Once the interpretation of the model has been put forward, some modifications are needed
for the model to be valid in heteronuclear diatomics – and other asymmetric chemical
environments thereafter.

Formally, this can be achieved in several different ways. Let us remark the two most
straightforward modifications to what has been stated so far.
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5.1. The Bond Charge Model

Naturally, the effective charge of the two cores must differ now. Assuming neutral net
charge, we may write a charge equalization condition between cores and bond charge for
an homonuclear diatomic A2 as

2Z − q = 0 (5.7)

where we have assumed that q is written positive but represents a negative charge.
Obviously, q = Z/2 in this model.

This condition may be extended to an heteronuclear diatomic molecule AB as

ZA + ZB − q = Z(1− δAB) + Z(1 + δAB)− q = 0 (5.8)

in which we have assumed that the most electronegative “atom”, with core A, will
attract more electron density than B. Hence, the net positive charge in the core B is
larger by a factor δAB that is related to the electronegativity difference between A and
B. Z is thus an averaged effective nuclear charge here,

Z = 1
2

(
ZA + ZB

)
= q

2 (5.9)

and the net charge of both cores may be rewritten in terms of the bond charge q as

q = ZA + ZB = Z(1− δAB) + Z(1 + δAB) = q − δ
2 + q + δ

2 (5.10)

where the unspecified δ is the deviation between the effective core charges and q/2.
Given that the Coulomb terms between both cores and the bond charge will be

different now, the position of the centroid of the bond charge might not be in the
middle of the internuclear distance. Consequently, we may split R into two distances
R = r1 + r2 where r1 is the distance between atom B and the bond charge and r2 is the
distance between the bond charge and atom A. The heteronuclear situation is presented
schematically in Figure 5.2.

Figure 5.2: Schematic representation of an heteronuclear diatomic molecule in the BCM.

Thus, we may update the expression in Equation 5.3 to include these developments
as

WAB(R) = DA+DB+VAB(R)+T (R) = D+CBNV 1
q

R
+CBNV 2

q

R
+CNNV

1
R

+CBT
q

R2 (5.11)
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in which we have D = DA +DB as suggested before, and the potential energy term
contains two distinct bond-core terms and a core-core term, which can be expanded as

CBNV 1
q

R
= Z(1 + δAB) 1

α1

q

R

CBNV 2
q

R
= Z(1− δAB) 1

1− α1

q

R

CNNV
1
R

=
(
Z2 − Z2δ2

AB

) 1
R

where α1R = r1 and thus (1 − α1)R = r2. Thus, two additional parameters are
needed, α1 and δAB .

The ratio of the two core-bond potential terms can be expanded as

CBNV 1
CBNV 2

= δAB + 1
δAB − 1 −

1
α1

δAB + 1
δAB − 1 (5.12)

which has a root for δAB = −1 assuming α1 6= 0 and also for α1 = 1 whenever
δAB 6= 1.

It is worth to notice that, to avoid excessive complexity, one of the two additional
parameters presented may be set to the value of the homonuclear model, that is δAB = 0
or α1 = 1/2 i.e. r1 = r2 = R/2. According to our assumptions, α1 does not affect the
core-core term and thus seems less important.

The series expansion of the ratio in Equation 5.12 around δAB = 0 is simply

CBNV 1
CBNV 2

=
( 1
α1
− 1
)

+ δAB

( 2
α1
− 2
)

+ δ2
AB

( 2
α1
− 2
)
. . . (5.13)

and thus, truncating to the first order, which should be valid for small δAB (i.e.
electronegetivity differences), we have

α1 = CBNV 2
CBNV 1 + CBNV 2

= r1

R
(5.14)

upon which we may improve by including higher order terms.
However, as shown in Equation 5.11, both heteronuclear parameters may be merged

into the proportionality constants in Equation 5.3 for the time being without loss of
generality simply by adding an extra ∝ q/R term. Thus, for the most part, we will
remain within the homonuclear model in this Section for simplicity.

5.1.3 Properties from the Bond Charge Model
In what follows, we will drop the dependency onR from the energy terms for simplicity. As
anticipated, the BCM analytical expression of W allows for the advantageous calculation
of equilibrium bond lengths Req, harmonic oscillator strengths ke, and bond energies
dissociation energies BDE (Equations 5.15-5.17), among others:

(∂W/∂R)R=Req = − 1
R3
eq

(
CBNV q + CNNV + 2CBT

q

Req

)
= 0 (5.15)

(∂2W/∂R2)R=Req = 2
R3
eq

(
CBNV q + CNNV + 3CBT

q

Req

)
= ke (5.16)
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WR=Req −D = CBNV
q

Req
+ CNNV

1
Req

+ CBT
q

R2
eq

= −BDE (5.17)

Conversely, these expressions can be used to fit experimental Req, ke and BDE val-
ues. [56] For instance, using

Req = − 2qCBT
qCBNV + CNNV

(5.18)

or

2ω2
h = 1

π2c2µ2R3
eq

(
CBNV q + CNNV + 3CBT

q

Req

)
(5.19)

where c is the speed of light, µ is the reduced mass of the system and ωh is the
harmonic frequency of the bond that results from the force constant ke.

However, without the use of additional constraints the model leads to unphysical
parameters which hamper interpretation.[55] Notably, very large effective bond lengths
may be obtained for simple molecules (reported value of ν = 2.3 for H2). We will explore
this issue in some depth later in this Subsection with an example. Naturally, from the
interpretative point of view, bond charges must remain relatively close to the expected
number of electrons in play, that is, q ≈ 2 for a typical covalent bond and ν < 1 at all
times.

It must be noted that several local minima could coexist in the parametric space of
the original model in Equation 5.3: several different combinations of q and ν may achieve
similarly good fits to a dataset. On the other hand, were q known ab initio, an optimized
fit to data could be performed using expressions in terms of CBNV , CNNV and CBT if the
dependencies of the different terms with respect to q and R hold.

If q were available from empirical data, fitting would be completely justified in the
case of CBT given that the value of ν is unknown. On the other hand, both CBNV and
CNNV are in principle completely determined. Furthermore, an independent scaling factor
for each term may be added. This additional degree of freedom can be understood as a
shielding effect: charges are not strictly punctual, particularly so in bonds. Therefore, the
effective Coulomb term for the CBNV and CNNV terms should be different. In this regard,
the weight of the bond-core term is expected to be higher than that of the core-core
term, both because it is an electrostatic interaction over a shorter distance and because
bonding does take place after all.

Obviously, increasing the parameters of the model leads to improved fits. Our goal,
however, is achieving good fits with an insightful model. The number of parameters – or
constraints thereof – will be interrogated thoroughly in the following Subsections.

Obtaining model parameters

We will exemplify the procedure through which model parameters may be obtained, and
its limitations, using a simple example. In this case, we will use the original model and
the charge normalization condition.

At the B3LYP/def2-TZVP level of theory, the N2 molecule has an equilibrium
internuclear distance Req of 1.091 Å, which is very close to the experimental value of
1.098 Å. We can check the possible values of ν and q for this system using a simplified
form of Equation 5.18 in which we respect the original model
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Req = 4π2

7
1
qν2 (5.20)

which, for Req = 2.0749193 a.u. has a solution whenever ν 6= 0 and q = 2.71807/ν2.
For instance, for ν = 1.0 we obtain q = 2.71807 which seems coherent for the formal
triple bond of N2.

Let us add another source of information using Equation 5.19. At the same level
of theory as before, we obtain a harmonic frequency of 2452.9 cm−1 which is not too
far from the experimental frequency of 2358.1 cm−1. The corresponding force constant
is ke = 3.1879 a.u. for this system. Subsequently, we can use the following simplified
combination of Equation 5.19 and Equation 5.20:

keR
5
eq = 4π2

7
1
qν2

(3π2q

ν2 −
7q2Req

2

)
(5.21)

which may be rewritten as a polynomial assuming ν, q, Req and ke are positive, which
happens to be our case,

14π2qν2Req + 7ν4q5ke − 12π4 = 0 (5.22)

We may now fix Req = 2.0749193 a.u. and ke = 3.1879 a.u. and find the roots in
terms of q and ν. The solutions are quite involved, but there are multiple equally valid
roots. This is an important point that must be kept in mind throughout this Section:
fitting a simple model may lead to several combinations of parameters.

Using the experimental values, the original model of Parr can be fitted to obtain
q = 2.73 and ν = 1.00 for the nitrogen molecule,[55] which is as expected very close from
our first approximation in terms of Equation 5.20. As per the closeness of the calculated
values, the parameters do not change noticeably when using calculated values for Req
and ke, that is, the fit is expected to be very good for the harmonic frequency of the
system.

Let us use this pair of values to express the potential energy curve of N2 as

W = D + V + T = D + 42.732

R
− 82.732

R
+ π2

2
2.73
R2 = D − 29.81

R
+ 13.47

R2 (5.23)

which has a root at R = 0.45 a.u., which is quite coherent as a stability limit. At
R = Req we get WR=Req = D− 11.30 in atomic units. That is, with these parameters we
obtain a BDE of approximately 7091 kcal/mol, a whole order of magnitude larger than
the BDE – experimental or calculated – of N2, irrespective of D (cf. Equation 5.17).

This comes to show an important notion to keep in mind: a fitted model can very
hardly contain more information than it took in. Req and ke are equilibrium properties.
The BDE is not an equilibrium property: there is no way to know the BDE associated to
a dissociation from the equilibrium properties of the system because we can not express
bond energies as an operator to obtain an expectation value from the wavefunction.

Arguably, the failure showcased here is more of a failure of the parametrization
strategy than a failure of the model itself. Hence, the parametrization of a model must
be carefully selected according to the properties we want to extract.

We could now devise a more sophisticate parametrization strategy and include an
experimental or calculated BDE value. However, this would lead to a plethora of possible
solutions for this case due to overdetermination of the model. In the following Section
5.2 we will put forward a different approach.
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Conceptual advantages of the Bond Charge Model potential

Having covered some of the difficulties in the obtention of parameters, one may wonder
why this model is more desirable than a simple Morse potential. More gravely so, simple
harmonic potentials are well-established as the classical representation of chemical bonds
in force fields, which are routinely used to perform atomistic simulations of chemical
systems.

The main advantage that the BCM offers is interpretation. Quite often, chemical
behaviour is determined by non-classical terms (e.g. exchange or correlation), which are
not easily captured in these potentials. The BCM offers a change of paradigm because
it has an interpretation, and thus can accept corrections with a physical, rather than
mathematical, meaning.

For instance, Morse potentials are often corrected in longer ranges in order to properly
reproduce non-covalent interactions at long R. Such features are absent from the default
Morse parametrization scheme, and hence missing in the analytical expression of the
potential. Similarly, force fields usually consider bonded terms and non-bonded terms
separately, using harmonic potentials for the former and Lennard-Jones potentials for
the latter.

In fact, atomistic models in force fields usually require specific parametrization for
different formal coordinations (e.g. C–C single bonds and C––C double bonds have
completely different potentials with no seamless connection between them) This stems
from the fact that electrons (i.e. bonds) are the ones being re-allocated during a
reaction. Consequently, the static view of electrons belonging to one atom, and hence
its oxidation state, can be avoided if the electron pair is taken as the main unit. This is
also the reason why the qualitative VSEPR model has strong predictive power in spite
of disregarding other foundational concepts: valence electrons are not formally
“assigned” to atoms, but rather shared between pointwise sites.

Note that these deficiencies do not arise in the BCM treatment, because bonds are
not constrained to a certain bond order and may smoothly incorporate or donate electron
density to become stronger or weaker with respect to an optimum that depends on the
specific parameters of the bond and its environment. A significant part of the problems
that arise in the development of reactive force fields is simply absent in the BCM.

The use of electron pairs in bonds as a fundamental entity also provides a simpler link
to quantum mechanics. Perfectly paired electrons minimize Pauli correlation between
them, so that exchange-correlation effects, which ought to be harder to model from a
classical perspective, may be minimized.

5.2 The Electron Localization Function - Bond
Charge Model

Were q known, it would be possible to parametrize the BCM in terms of CBNV , CNNV
and CBT , using the very general expressions in Equations 5.15-5.17. The advantages
would be twofold. First of all, we could guarantee the physical interpretation of q, and
hence constrain ν among the many possible solutions in certain cases. On the other
hand, we could possibly extend our model from equilibrium properties onwards using
the dependency of dq/dR.

However, defining and calculating the bond charge q is not trivial, just like defining
bonds is far from a solved problem.
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As it has been discussed in Chapter 4, and Section 4.3 in particular, a possible
approach to localized bonding is given by the ELF, whose topology defines basins, with
an associated electron population, and pseudo-atoms that contain nuclei and core
electrons. Indeed, the localized depiction of chemical bonding given by this model
resembles the partitioning of real space given by the ELF quite strikingly, so that we
may propose a coupled model that uses some of the concepts as defined by the topology
of the ELF and the fundamental ideas of the BCM.

5.2.1 Coupling Localized Bond Charges
Including the extension to heteroatomic bonds, which we will skip for the time being,
the two model parameters of the BCM can be defined and obtained from the topology
of the ELF.

First of all, the bond charge q associated with a covalent bond A–A is given by the
integration of the electron density ρ(r) in the disynaptic ELF basin ΩVA,A. Effective core
charges ZA correspond to the integral over the core basins of the respective bonded atoms,
ΩCA plus the nuclear charge, analogous to how atomic charges were obtained in the AIM
framework. Thus, the electrostatic components may all be obtained. These equivalences
may be applied in any context, noting that the charge equalization condition is no longer
respected.

On the other hand, the effective bond path, RB = νR, can be calculated as the length
of the disynaptic bond basin ΩVA,A, which will naturally be bound by the two axial core
basins ΩCA as per its synaptic order. Simply put, it can be calculated by subtracting
the radii of each of the two core basins from the total internuclear distance. Note that
multiple bonds may lead to multiple disynaptic basins, each accounting for an electron
pair, in agreement with the detailed discussion in Section 4.3.

Each family of terms in Equation 5.3 is discussed in depth below.

Core terms

Bearing in mind that the term D plays a minor role, as it is not determinant in relative
energies and hence independent of R, it does present certain conceptual difficulties from
the coupling point of view that merit some discussion.

We are attempting to couple two models in which bonds are depicted as localized
entities. Accordingly, in both representations “bonds” ought to disappear when the
internuclear distance R is increased enough. This much is perfectly coherent.

However, both representations do not necessarily converge when R→∞. In the BCM
ansatz, D is the energy of the isolated pseudo-atoms, which we have been calling “cores”
so far. In a diatomic molecule, this is pretty straightforward to interpret: there is no bond
over an infinite distance, and W (R) = D which must be an additive constant of atomic
self-energies.

In the ELF representation, however, we may find that the topology of ηELF (r)
changes. Recall that in the Born-Oppenheimer approximation we disregard nuclear
motion: we are limited to snapshots at fixed nuclear positions. Taking two discrete
values of R, the partitionings of space given by ηELF (r) at each R may not be
isotopological. That is, basins may merge, disappear and appear freely.

Isolated atoms have distinct attractor basins, as highlighted in Subsection 4.3.3 of
Section 4.3. Hence, in the coupled model D must be interpreted not as the “core” energy,
even if Z represents effective “core” charges; it represents the total energy of the atomic
system, including the core basin, the valence basins (which have kinetic self-energies)
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and the interactions between those, with proportionality constraints such that the total
energy is indeed the atomic energy for a diatomic molecule.

In general we will restrict ourselves to bond stretching and compressing around
equilibrium distances, which generally turns out to be isotopological in terms of
ηELF (r). It must be kept in mind, still, that these modifications in the topology will
take place during chemical reactions.

Electrostatic terms

The formulation may be extended to heteronuclear bonds A–B without a term δAB , as
we may calculate ZA and ZB explicitly. r1 or α1 may be calculated by using the position
of the attractor of the bond basin ΩVA,B as a reference. However, this last point will be
clarified later on, as other proposals could be valid as well (e.g. using BCPs as reference).

We may now bring back Equation 5.3 for a chemical bond as represented by a disy-
naptic basin connected to core basins containing two distinct nuclei A and B, thus giv-
ing an A–B bond potential as

W = D + V + T +XC = D + CBNV 1
q

R
+ CBNV 2

q

R
+ CNNV

1
R

+ CBT
q

R2 +XC (5.24)

where we expect the dependencies with respect to q and R to hold if our approach is
to be of use, and a new term XC(R) has been added to represent quantum effects – as
well as higher order couplings – that can not be taken into account in the other terms.
Explicitely written, the bond charge associated with this bond is

q =
∫

ΩV
AB

ρ(r)dr (5.25)

We disregard the effective core charges ZA and ZB because in the ELF representation
core basins have almost always constant populations (cf. Equation 4.56) for a given
nucleus, irrespective of the chemical environment. On the contrary, bond populations
q may migrate towards lone pairs or other bonds in polyatomic systems which are not
directly involved in the bonding interaction. This is why it must be underlined that charge
equalization between Z and q may not be sufficient in the context of the ELF-BCM.

Kinetic terms

With respect to ν and α1, we may merge them into the proportionality constants for the
time being due to several reasons. First and foremost, we may suspect that the notion of
effective bond length in 1D is limited if we are to expand the model to larger chemical
systems. Hence, a new kinetic energy term must be devised that is compatible with the
3D representation of bonds given by the ELF.

In any case, we may estimate r1 – and, by definition, r2 – using Equation 5.14 to see
whether it matches chemical intuition. That is, even in cases where ZA ≈ ZB (e.g. C
and N) we expect the more electronegative atom to have more electron density polarized
towards its nuclei depending on the chemical environment.

As a first approximation, for a spherical basin of radius r and volume V , we may put
forward a kinetic term inspired in the homogeneous electron gas (cf. Equation 2.126):

T (R) = CF

∫
ρ

5
3 (r)dV = 4πCF

∫ ( q
r3

) 5
3
r2dr = 4πCF q

5
3

∫ 1
r3 dr = −4π

3 CF
q

5
3

r2 = CBT0
q

5
3

R2

(5.26)
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in which we have assumed that the radius of the sphere r = RB and merged everything
into a proportionality constant once again. Thus, the key addition is the power in q, but
the dependency on the internuclear distance R is kept.

5.2.2 Validation of model assumptions

As we have put forward in the previous Subsection, we want to use ELF-derived param-
eters coupled to the BCM in order to have a semiclassical model in chemical terms. In
this Subsection the coupled model will be tested empirically using quantitative methods
from Chapter 4.

Before, it must be noted that our proposed model is, so far, semiclassical at best. As
previously discussed, we hope that the usage of electron pairs as the basis of
representation will minimize quantum effects or include them implicitely. On the other
hand, we may safely assume that exchange and correlation effects, quantum in nature,
are required for an accurate representation of chemical bonds. This is the final
assumption of the model so far, which has to be added to the points discussed before.

Let us now summarize the key assumptions of the ELF-BCM approach, as presented
in Equation 5.24 and anotated in Equation 5.26:

• Atomic terms : D 6= f(R), D =
∑
iDi

• Electrostatic terms : V ∝ 1
R

• Kinetic terms : T ∝ q5/3

R2

• Quantum terms : XC ≈ 0

If all these assumptions hold for a given chemical space, we can at least assure that
the foundations of the coupled model are reasonable.

With this goal in mind, we may now study the dependency of the different terms
by doing a relaxed scan (i.e. a constrained geometry optimization) along a particular
internal coordinate, an internuclear distance which we shall call R for simplicity. The
necessary reduced density matrices can be calculated at each geometry, and the topology
of ηELF (r) can be explored in order to partition the system exhaustively.

Afterwards, the ELF partitioning can be coupled to the IQA method, which was
introduced with some detail in Subsection 4.2.3, to decompose the total energy in one-
basin and two-basin terms. Recall that the total energy decomposition (cf. Equation 4.31)
in the ELF-IQA approach, at the HF level, is given by

E =
∑
A

ECAintra +
∑
A

EVAintra + 1
2
∑

A,B 6=A
ECA,CBinter + 1

2
∑

A,B 6=A
EVA,VBinter +

∑
A,B

ECA,VBinter (5.27)

in which the CA and VA superindices indicate the nature of the ELF basin, core
or valence, respectively. Recalling that only core basins contain nuclei, we may further
decompose each term as
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Term Assumption∑
AE

ΩCA
intra ≈ const.

E
ΩCA,Ω

C
B

inter ∝ 1
R

E
ΩCA,Ω

V
A,B

inter ∝ 1
R

TΩV
A,B

∝ q5/3

R2

E
ΩCA,Ω

V
A,B

xc ≈ 0

Table 5.1: Summary of model assumptions of the ELF-BCM approach in ELF-IQA terms.

ECAintra = V CA,CAen + V CA,CAee + TCA

EVAintra = V VA,VAee + TVA

ECA,CBinter = V CA,CBee + V CA,CBen + V CB ,CAen + V CA,CBnn

EVA,VBinter = V VA,VBee

ECA,VBinter = V CA,VBee + V CA,VBen

We will assume that the kinetic energy density in Equation 4.27 suffices for our
interests, and all other terms have been explicitely presented in Subsection 4.2.3. In
particular, our attention will be focused in the terms that arise in the simplest cases:
we will consider the disynaptic ΩVA,B as the valence basin of interest, corresponding to a
bond, and two core basins ΩCA and ΩCB , that are adjacent to the bond.

Let us examine now what the assumptions of the ELF-BCM approach imply for these
energy terms. The core intrabasin energies EΩCA

intra must approximately be an additive
constant independent from R.

Then, all the interaction terms between cores and other entities, which are
electrostatic in nature, must evolve proportional to 1/R. The electron-electron terms
here are the sensitive part, because the nucleus in every core basin is effectively a point
charge. Therefore, the assessment in this regard is whether the core basin can be
treated as an effectively shielded nuclei. In fact, the coulombic dependency of the
E

ΩCA,Ω
C
B

inter term is a given considering the very small size of core basins and the
predominance of the nucleus-nucleus V ΩCA,Ω

C
B

nn term. Hence, we can safely infer that this
condition is always met in any reasonable chemical situation.

The kinetic energy term for the bond is perhaps the most difficult assumption, because
our model infers a 1/R2 dependency quite a priori. However, the kinetic energy of the
bond has an immediate equivalent in TΩV

A,B
, whose evolution with R we can evaluate.

Last but not least, we did not include any quantum effects in our model. Hence,
exchange and correlation terms must be zero. In ELF-IQA terms the exchange-correlation
term, ECA,VBxc , which was introduced in Equation 4.38 but not considered for clarity in
the expansion in this section, must be negligible compared to the other terms.

A summary of these assumptions has been collected in Table 5.1.
For simplicity, let us put foward a unified notation for the merged terms in the

ELF-BCM approach: we shall denote E
ΩCA
intra as EAintra due to the straightforward
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interpretation. We will use EA−binter for E
ΩCA,Ω

V
A,B

inter , where A will now use the atomic
symbol of the nuclei in the corresponding core basin, and b stands for “bond”.
Analogously, we will use EA−bxc for E

ΩCA,Ω
V
A,B

xc and we will use T b for TΩV
A,B

. This
notation is less rigorous but simpler to interpret as far as the association of the “bond”
with a disynaptic ELF basin ΩVA,B , and the interpretation of core basins as
pseudoatoms, are kept in mind. Note that EA−binter is a purely electrostatic term if the
corresponding EA−bxc is negligible.

We have thus devised a way to test the key assumptions of our model in a quantitative
and rigorous way, which we will use in the following Subsections. We may now explore a
variety of chemical systems to ascertain whether these assumptions hold in a significant
chemical space. The assumptions of our model may be appropiate for some systems and
completely lackluster for others due to the sheer variability of chemical space.

Subsequently, our attempt will be twofold: validation on one hand, and acquisition of
a proper domain of application in the other.

5.2.3 Empirical testing of model assumptions in covalent bonds
As a first test, we tackle a symple heteronuclear covalent bond, namely the C–X bond
in a series of CH3 –X molecules. Following the proposed methodology, the geometry of
the molecules was optimized at different C–X internuclear distances R at a given theory
level. Then, the total energy was decomposed using a modified version of the PROMOLDEN
code.

Calculations on methanamine

We shall commence our exploration in a single system, namely methanamine CH3NH2,
and we will present other systems afterwards in order to be succint. In particular, we
want to assure at this point that our observations are not biased by the level of theory of
the electronic structure calculations, be it DFA or basis set. This is not unusual, but it is
a gratuitous assumption even in this relatively simple systems. We must also assure that
the ELF-IQA approach is not introducing errors that might obscure our observations.

While the IQA decomposition is exact in principle, there are numerical errors
associated with the integration. The errors in the total energy are generally small
(< 1%) in relative terms, but such inaccuracies might be determining in our analysis if
they are particularly sensitive to R. Therefore, we report the total energies and the
ELF-IQA energies for methanamine at the B3LYP/6-31G(d) level in Table 5.2, which
show that this does not seem to be the case for this system.

This is coherent because the energy density is clearly maximal where the density
is maximal, and thus the integration error is expected to originate mostly from core
densities which are relatively inactive. However, it must be noted that the errors are
enough to be chemically meaningful. This issue has to be kept in mind from the practical
point of view.

In terms of the ELF topology, the methanamine molecule has, as chemical intuition
would infer, a disynaptic ΩVC,N basin connected to the core basins of the carbon and
nitrogen nuclei, ΩCC and ΩCN respectively. A graphical representation is given in Figure
5.5 B further on. The interpretation of the ELF-IQA terms is therefore straightforward
as presented in the previous Subsection.

First of all, we will examine several trends with respect to R with different basis
sets and using the B3LYP DFA for CH3NH2. The data is presented in Table 5.3 for the
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R (Å) E DFT (a.u.) E ELF-IQA (a.u.) ∆E (a.u.) ∆E (%)
1.30 -95.8337 -95.1726 0.66 -0.69
1.40 -95.8507 -95.1947 0.66 -0.68
1.50 -95.8526 -95.1844 0.67 -0.70
1.60 -95.8460 -95.1882 0.66 -0.69
1.70 -95.8348 -95.1661 0.67 -0.70
1.80 -95.8214 -95.1501 0.67 -0.70
1.90 -95.8072 -95.1484 0.66 -0.69
1.47 -95.8497 -95.1939 0.66 -0.68

Table 5.2: Energies and integration errors for the CH3NH2 molecule at the B3LYP/6-
31G(d) level.

kinetic energy term, TΩV
C,N

that we shall denote T b for simplicity, which we expect to
evolve as ∝ 1/R2, as per our previous reasoning (cf. Equation 5.26).

R (Å) 1/R2 (a.u.−2)
B3LYP

6-31G(d) 6-311G(d,p) cc-PVDZ cc-PVTZ
1.30 0.166 3.089 3.127 3.108 3.129
1.40 0.143 2.540 2.540 2.548 2.538
1.50 0.124 2.138 2.137 2.148 2.137
1.60 0.109 1.830 1.828 1.845 1.823
1.70 0.097 1.570 1.566 1.576 1.565
1.80 0.086 1.342 1.330 1.341 1.333
1.90 0.078 1.091 1.097 1.101 1.098

Table 5.3: Internuclear distance R and kinetic energy values T b (a.u.) for the CH3NH2
molecule and the B3LYP DFA using different basis sets.

Our assumption is confirmed in this case, as least-squares fits to const. + const./R2

lead to very high Pearson correlation coefficients. For the different basis sets in Table 5.3,
the coefficients of determination r2 (i.e. the squared Pearson correlation coefficients), are
in all cases > 0.998. The corresponding equations and coefficients are

6-31G(d) : y = 22.124x− 0.596 r2 = 0.999
6-311G(d,p) : y = 22.472x− 0.632 r2 = 0.999

cc-PVDZ : y = 22.256x− 0.602 r2 = 0.999
cc-PVTZ : y = 22.476x− 0.633 r2 = 0.998

that is, very similar independently of the basis set choice. Let us now examine the two
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critical electrostatic terms, that is, the Coulombic interactions between the bond basin
ΩVC,N and the two core basins. The data is reported in Table 5.4 for the carbon basin ΩCC
and Table 5.5 for the nitrogen basin ΩCN .

R (Å) 1/R1 (a.u.−1)
B3LYP

6-31G(d) 6-311G(d,p) cc-PVDZ cc-PVTZ
1.30 0.407 -5.382 -5.395 -5.386 -5.401
1.40 0.378 -4.570 -4.567 -4.585 -4.563
1.50 0.353 -3.951 -3.948 -3.968 -3.942
1.60 0.331 -3.450 -3.445 -3.468 -3.438
1.70 0.311 -3.031 -3.027 -3.046 -3.019
1.80 0.294 -2.655 -2.653 -2.672 -2.645
1.90 0.279 -2.304 -2.301 -2.317 -2.289

Table 5.4: Internuclear distance R and carbon core-bond electrostatic energy values EC−binter

(a.u.) for the CH3NH2 molecule and the B3LYP DFA using different basis sets.

R (Å) 1/R1 (a.u.−1)
B3LYP

6-31G(d) 6-311G(d,p) cc-PVDZ cc-PVTZ
1.30 0.407 -7.809 -7.895 -7.841 -7.908
1.40 0.378 -6.527 -6.523 -6.542 -6.520
1.50 0.353 -5.572 -5.570 -5.591 -5.569
1.60 0.331 -4.800 -4.796 -4.824 -4.785
1.70 0.311 -4.131 -4.124 -4.141 -4.122
1.80 0.294 -3.512 -3.496 -3.513 -3.500
1.90 0.279 -2.852 -2.867 -2.860 -2.866

Table 5.5: Internuclear distance R and nitrogen core-bond electrostatic energy values
EN−binter (a.u.) for the CH3NH2 molecule and the B3LYP DFA using different basis sets.

Again, we see that the obtained values correlate very well with a simple const. +
const./R equation, with r2 > 0.997 in all cases. In particular, the equations for each case
are

6-31G(d) : y = −23.623x+ 4.313 r2 = 0.998
6-311G(d,p) : y = −23.763x+ 4.316 r2 = 0.997

cc-PVDZ : y = −23.616x+ 4.291 r2 = 0.997
cc-PVTZ : y = −23.827x+ 4.390 r2 = 0.997

for EC−binter with respect to R, and
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6-31G(d) : y = −37.637x+ 7.619 r2 = 0.998
6-311G(d,p) : y = −38.094x+ 7.763 r2 = 0.997

cc-PVDZ : y = −37.817x+ 7.664 r2 = 0.998
cc-PVTZ : y = −38.160x+ 7.785 r2 = 0.997

for EN−binter with respect to R. In both cases the fitted equations are quite similar
independently from the basis set choice, and in all cases follow the desired dependency
with R. Note that the interaction with the nitrogen core is approximately 60% larger (at
R = 1) than the interaction with the carbon core.

This is apparently counterintuitive. Intuitively, we expect N to be more
electronegative than C, and hence its effective positive charge should be more shielded.
On the other hand, nitrogen has a larger atomic number (by a mere 16%) and a similar
core configuration 1s2. We may rationalize that the additional electron density pulled
by the nitrogen atom is not shielding the interaction effectively because it is invested in
the lone pair. Using Equation 5.14, we would obtain a distance of approximately 60% of
R between the bond charge and the nitrogen core at R = 1.

However, the superiority of the nitrogen term depends starkly on R, becoming
significantly reduced as it increases, in a way trending towards the atomic number
increase. We can interpret this from a chemical point of view in this case, assuming
shielding effects due to the chemical environment must disappear as the bond is
progressively stretched until it breaks homolytically. We could expect such effects to
diminish less dramatically in more ionic bonds, which tend to break heterolytically.

In any case, we may now investigate the exchange correlation term in EC−binter, reported
in Table 5.6, and the analogous term for the nitrogen core, reported in Table 5.7. At first
glance, note that the EC−bxc and EN−bxc terms are quite insignificant compared to the
classical interaction terms.

R (Å) 1/R2 (a.u.−2)
B3LYP

6-31G(d) 6-311G(d,p) cc-PVDZ cc-PVTZ
1.30 0.166 -0.062 -0.062 -0.063 -0.062
1.40 0.143 -0.052 -0.052 -0.052 -0.051
1.50 0.124 -0.043 -0.043 -0.044 -0.043
1.60 0.109 -0.037 -0.037 -0.037 -0.037
1.70 0.097 -0.032 -0.032 -0.032 -0.031
1.80 0.086 -0.027 -0.027 -0.028 -0.027
1.90 0.078 -0.023 -0.023 -0.024 -0.023

Table 5.6: Internuclear distance R and carbon core-bond exchange-correlation energy
values EC−bxc (a.u.) for the CH3NH2 molecule and the B3LYP DFA using different basis
sets.

The tiny contribution of the exchange-correlation terms to the interbasin energies
is in agreement with our assumption. However, it is also found that the term scales
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R (Å) 1/R2 (a.u.−2)
B3LYP

6-31G(d) 6-311G(d,p) cc-PVDZ cc-PVTZ
1.30 0.166 -0.086 -0.088 -0.087 -0.088
1.40 0.143 -0.068 -0.068 -0.069 -0.068
1.50 0.124 -0.055 -0.055 -0.055 -0.055
1.60 0.109 -0.045 -0.045 -0.046 -0.045
1.70 0.097 -0.037 -0.037 -0.037 -0.037
1.80 0.086 -0.030 -0.029 -0.029 -0.030
1.90 0.078 -0.021 -0.022 -0.022 -0.022

Table 5.7: Internuclear distance R and nitrogen core-bond exchange-correlation energy
values EN−bxc (a.u.) for the CH3NH2 molecule and the B3LYP DFA using different basis
sets.

proportional to 1/R2 very neatly (r2 ≈ 0.999). In the spirit of the previous terms, the
fitted equations are reported below, first for the carbon-bond case, EC−bxc

6-31G(d) : y = −0.436x+ 0.011 r2 = 0.999
6-311G(d,p) : y = −0.439x+ 0.011 r2 = 0.999

cc-PVDZ : y = −0.434x+ 0.010 r2 = 0.999
cc-PVTZ : y = −0.439x+ 0.012 r2 = 0.999

and for the EN−bxc term with respect to R,

6-31G(d) : y = −0.714x+ 0.033 r2 = 0.999
6-311G(d,p) : y = −0.734x+ 0.035 r2 = 0.998

cc-PVDZ : y = −0.726x+ 0.034 r2 = 0.999
cc-PVTZ : y = −0.731x+ 0.035 r2 = 0.998

Once more, the coefficients in the fitted equation are 60% larger for the nitrogen core,
in agreement with what was observed before. The basis set choice does not seem to play
an important role either, so that we can assume that basis set effects are not relevant for
our interests as long as a reasonable basis set is used (i.e. double-ζ or larger).

Figure 5.3 collects all the different terms at the B3LYP/6-31G(d) level, including
the complete intrabasin term for the bond, Ebintra. It can be readily appreciated how
minuscule the exchange-correlation terms are with respect to the other major
components. For more details, Figure 5.4 A presents the kinetic term of the bond, T b
directly versus 1/R2, showcasing the correlation and the accuracy of the fit.
Analogously, Figure 5.4 B presents the two electrostatic terms, EC−binter and EN−binter

against 1/R. Once more, the fit is remarkably accurate.
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Figure 5.3: Energy terms at different internuclear distances R for the CH3NH2 molecule
at the B3LYP/6-31G(d) level of theory.

A) B)

Figure 5.4: Energy terms at different internuclear distances R for the CH3NH2 molecule
at the B3LYP/6-31G(d) level of theory. A) Intrabasin kinetic energy, B) bond-core
electrostatic energy terms.
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Last but not least we need to ascertain that the core energies are indeed approximately
constant with respect to R. Table 5.8 collects the values for the carbon and nitrogen core
basins. The energy values are quite high due to the strong electron-nuclei interactions.
There is a certain degree of fluctuation, but we can safely assume that most of it is due
to numerical errors, as no significant trends can be appreciated in any direction. Core
populations are also extremely stable independently of R.

Note that, far from trivial, the fact that these energies are stable implies that all the
shifting additive constants in the fits to the kinetic and the interaction energies may be
gathered in the shifting term D of the BCM. Were this not the case, we would have to
fit our dependencies to unshifted equations (∝ 1/R2 and ∝ 1/R) without any shifting in
the origin. Luckily, we find that cores are relatively stable in this context, and thus our
usage of additive constants (i.e. const.+ const./R and const.+ const./R2) is justified.

R (Å) ECintra (a.u.) ENintra (a.u.)
1.20 37.322 51.318
1.30 37.284 51.293
1.40 37.265 51.288
1.50 37.256 51.297
1.60 37.254 51.317
1.70 37.256 51.334
1.80 37.259 51.354
1.90 37.261 51.368

Table 5.8: Internuclear distance R and intrabasin core energy values, ECintra and ENintra
for the CH3NH2 molecule at the B3LYP/6-31G(d) level.

Thus, at least for the methanamine molecule, our assumptions as presented and in-
terpreted in Subsection 5.2.2 all seem to hold remarkably well.

Covalent CH3 –X bonds and lone pairs

The same methodology was used to study another three CH3 –X bonds, with various
degrees of polarity and different ELF topologies: CH3CH3, CH3OH and CH3F. The ELF
topologies of all systems, including CH3NH2, are represented in Figure 5.5 for reference.
The ELF representation matches, once again, chemical insight at first glance, and thus
we can identify the ELF-IQA terms without problems.

Integration errors are, as in the previous case, relatively small with respect to the
total energies. The values for all three systems are reported in Tables 5.9 to 5.11. Once
more, the errors are relatively small and do not show trends with respect to R, and
therefore we can safely assume that the decomposition is quantitative.

We may now explore the dependency of the different terms with R as before, in this
case in a rigorous interval of points between 0.9Req and 1.1Req. Analogous results were
obtained for all systems: the assumptions that have been presented in detail for CH3NH2
before all hold for the other molecules here considered. We will tackle the terms in an
ordered manner once again. In this case, we will also include the terms corresponding to
lone pairs, which will be denoted by the lp superscript.
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Figure 5.5: Isosurfaces of ηELF (r) = 0.80 a.u. for different molecules calculated at the
B3LYP/6-31G(d) level: A) CH3CH3 B) CH3NH2 C) CH3OH D) CH3F. ELF basins
are colored according to their classification: hydrogenoid basins are colored blue, core
basins are colored purple, monosynaptic basins are colored orange and disynaptic basins
are colored green. Basin populations in electrons are reported assigned to the respective
basins.
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R (Å) E DFT (a.u.) E ELF-IQA (a.u.) ∆E (a.u.) ∆E (%)
1.20 -79.7309 -79.1050 0.63 -0.78
1.30 -79.7910 -79.1681 0.62 -0.78
1.40 -79.8200 -79.2057 0.61 -0.77
1.50 -79.8299 -79.2150 0.61 -0.77
1.60 -79.8284 -79.2051 0.62 -0.78
1.70 -79.8200 -79.1952 0.62 -0.78
1.80 -79.8080 -79.1819 0.63 -0.78
1.53 -79.8304 -79.2060 0.62 -0.78

Table 5.9: Energies and integration errors for the CH3CH3 molecule at the B3LYP/6-
31G(d) level.

R (Å) E DFT (a.u.) E ELF-IQA (a.u.) ∆E (a.u.) ∆E (%)
1.20 -115.6712 -114.9549 0.72 -0.62
1.30 -115.7043 -115.0152 0.69 -0.60
1.40 -115.7142 -115.0347 0.68 -0.59
1.50 -115.7112 -115.0398 0.67 -0.58
1.60 -115.7013 -115.0416 0.66 -0.57
1.70 -115.6877 -115.0305 0.66 -0.57
1.80 -115.6727 -115.0368 0.64 -0.55
1.90 -115.6573 -114.9960 0.66 -0.57
1.41 -115.7144 -115.0451 0.67 -0.58

Table 5.10: Energies and integration errors for the CH3OH molecule at the B3LYP/6-
31G(d) level.

Bond kinetic energies T b fitted agains const. + const./R2 give rise to very good
determination coefficients, in all cases r2 > 0.997. Lone pair kinetic energies, T lp, are
notably worse, orbiting r2 ≈ 0.99. This implies that the approximate dependency we
have chosen for the bond is suitable, but not necessarily so for the lone pairs on either
end of the scrutinized bond. Then again, this is to be expected. In any case, the slopes
on the lone pair contributions are significantly lower, while the intercept values are
larger. That is, in relative terms, the kinetic energies of lone pairs do not change
dramatically as the adjacent bond elongates. Fitted equations are presented in Table
5.12.

In fact, for R = Req, the kinetic energies of lone pairs are quite small, at least one
order of magnitude smaller than those of bonds in spite of the somewhat comparable
integrated electron density. Interestingly, the slopes decrease from N to F, while the
intercepts increase. This suggests that the lone pair in the less electronegative nitrogen is
more sensitive to the bond to the carbon atom, while lone pairs in more electronegative
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R (Å) E DFT (a.u.) E ELF-IQA (a.u.) ∆E (a.u.) ∆E (%)
1.10 -139.6398 -138.9749 0.66 -0.48
1.20 -139.7030 -139.0135 0.69 -0.49
1.30 -139.7288 -139.0521 0.68 -0.48
1.40 -139.7337 -139.0445 0.69 -0.49
1.50 -139.7272 -139.0372 0.69 -0.49
1.60 -139.7146 -139.0368 0.68 -0.49
1.70 -139.6991 -138.9389 0.76 -0.54
1.38 -139.7339 -139.0410 0.69 -0.50

Table 5.11: Energies and integration errors for the CH3F molecule at the B3LYP/6-
31G(d) level.

atoms are less involved in the interaction.

CH3CH3

T b y = 15.635x+ 0.264 r2 = 1.000
CH3NH2

T b y = 21.946x− 0.585 r2 = 0.997
T lp y = −9.295x+ 4.551 r2 = 0.984

CH3OH
T b y = 23.582x− 1.329 r2 = 1.000
T lp y = −5.629x+ 5.877 r2 = 0.992

CH3F
T b y = 22.259x− 1.819 r2 = 0.999
T lp y = −3.754x+ 6.808 r2 = 0.982

Table 5.12: Fitted equations for bond
kinetic energy values T b (a.u.) and lone
pair kinetic energy values T lp (a.u)
versus 1/R2 (a.u.−2). Coefficients of
determination r2 are given for each fitted
equation.

CH3CH3

EC−binter y = −21.717x+ 2.860 r2 = 0.999
CH3NH2

EC−binter y = −23.366x+ 4.246 r2 = 0.995
EN−binter y = −37.311x+ 7.535 r2 = 0.996
EN−lpinter y = 20.609x− 16.949 r2 = 0.994

CH3OH
EC−binter y = −23.329x+ 5.375 r2 = 0.996
EO−binter y = −46.533x+ 11.693 r2 = 0.999
EO−lpinter y = 16.219x− 20.700 r2 = 1.000

CH3F
EC−binter y = −20.205x+ 5.369 r2 = 0.997
EF−binter y = −47.220x+ 13.608 r2 = 0.998
EF−lpinter y = 10.664x− 22.138 r2 = 0.988

Table 5.13: Fitted equations for bond-
core interaction energy values EA−binter (a.u)
and lone pair-core interaction energy
values EA−lpinter (a.u) versus 1/R (a.u.−1).
Coefficients of determination r2 are given
for each fitted equation.

As a final remark, note that the fitted equation for methanamine is nearly identical
to the one reported previously, which is to be expected since the only difference is the
range of R considered.

Interbasin terms are fitted to const. + const./R once again. Interactions between
bonds and cores EA−binter all present excellent coefficients of determination r2 > 0.995.
The corresponding equations and r2 values are reported in Table 5.13 for all molecules.
Noteworthily, terms with the carbon core are all relatively similar in slope and intercept,
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suggesting a degree of transferability. Terms in which the heteroatom is involved show
a definite increase in magnitude as we move from N to F, which then again is expected
given the increased electronegativity and atomic charge.

As in the previous case, examining the behavior of lone pairs is more difficult due to
the slightly worsened coefficients of determination (r2 < 0.99 for the lone pair in CH3F).
However, for the most part it seems that the reasoning in the kinetic term applies as
well: slopes are significantly reduced, as expected due to the limited interplay of the lone
pair upon bond elongation, while intercepts skyrocket.

We may tentatively incorporate the empirical values of the bond charge q1 and
shielding electron density q2 into our model, calculated by integrating the electron
density over the corresponding basins, i.e. q1 in ΩVA,B (or ΩVA for lone pair terms) and q2
in ΩCA. The resulting fits are collected in Table 5.14 and exhibit analogous features.

Most notably, intercepts in all interaction terms between cores and bonds are
significantly reduced and coefficients of determination are well kept over the r2 = 0.995
mark. Proportions are kept across the dataset. Lone pair terms are significantly worse
in this case, while intercepts increase notably. We may infer that lone pairs are affected
by R more starkly through q1, that is, the electron density transfer to or from the
bond. Not much can be said at this point, however.

CH3CH3

EC−binter y = −2.672x+ 1.085 r2 = 0.998
CH3NH2

EC−binter y = −2.785x− 0.712 r2 = 0.999
EN−binter y = −4.422x− 0.369 r2 = 0.997
EN−lpinter y = 13.387x− 32.141 r2 = 0.956

CH3OH
EC−binter y = −2.953x− 0.441 r2 = 1.000
EO−binter y = −5.851x+ 0.169 r2 = 0.997
EO−lpinter y = 5.441x− 25.311 r2 = 0.992

CH3F
EC−binter y = −2.960x− 9.292 r2 = 1.000
EF−binter y = −6.700x+ 0.358 r2 = 0.999
EF−lpinter y = 3.581x− 24.768 r2 = 0.954

Table 5.14: Fitted equations for bond-core
interaction energy values EA−binter (a.u) and
lone pair-core interaction energy values
EA−lpinter (a.u) versus q1q2/R (e2/a.u.).
Coefficients of determination r2 are given
for each fitted equation.

CH3CH3

EC−bxc y = −0.360x+ 0.068 r2 = 0.998
CH3NH2

EC−bxc y = −0.329x+ 0.072 r2 = 0.989
EN−bxc y = −0.538x+ 0.132 r2 = 0.986
EN−lpxc y = 0.233x− 0.223 r2 = 0.980

CH3OH
EC−bxc y = −0.305x+ 0.077 r2 = 0.989
EO−bxc y = −0.502x+ 0.142 r2 = 0.991
EO−lpxc y = 0.102x− 0.222 r2 = 0.980

CH3F
EC−bxc y = −0.301x+ 0.088 r2 = 0.988
EF−bxc y = −0.452x+ 0.144 r2 = 0.983
EF−lpxc y = 0.087x− 0.232 r2 = 0.935

Table 5.15: Fitted equations for bond-
core interaction energy values EA−bxc (a.u)
and lone pair-core interaction energy
values EA−lpxc (a.u) versus 1/R2 (a.u.−2).
Coefficients of determination r2 are given
for each fitted equation.

Finally, fitted equations for the exchange-correlation terms are reported in Table
5.15. At a first glance, the proportionality constants are shown to be greatly reduced
with respect to all other terms, in agreement with our previous reasoning and our model
assumption. While coefficients of determination are still reasonably high, not much can
be said about them. In any case, not much ought to be said about them because our
main concern is that the terms are negligible with respect to the other terms, and this
seems to be the case.
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Therefore, the key assumptions of the ELF-BCM approach are shown to be valid
for the chemical space herewith, which spawns different CH3 –X covalent bonds with
different polarities and topological features. Consequently, we can expect the model to
be a reasonable choice for describing covalent bonds as the ones reported here.

5.2.4 Empirical testing of model limitations
In the previous Subsection we have empirically validated our model using ELF-IQA
energy decomposition, which justifies its usage within a certain chemical space. On the
other hand, it seems coherent to think that the ELF-BCM simply can not describe certain
chemical bonds properly.

Such an idea does not arise from mathematical or formal limitations as much as it
does from purely conceptual reasons: we are representing bonds as negatively charged
particles confined between two Coulombic potentials. While this seems reasonable – and
valid, so far – for covalent bonds, we can expect it to break down in other bonding
regimes.

Thus, just like in the previous Subsection we have attempted to validate our model
empirically, we will now try to find and understand when and why our assumptions break
down. We will use the same methodology that was presented in Subsection 5.2.2, but focus
in far wilder chemical species: BH3NH3, a classic example of dative bonding; BeH2NH3,
CH3Li and Li2. Our investigation will be focused in the B–N, Be–N, C–Li and Li–Li
bonds respectively. The ELF representations of these four systems is given in Figure 5.6.
Coherently, we expect more delocalized bonds to strain our model further from ideality,
and we happily note that some of the bond basins have significantly increased volumes,
notably those involving Li atoms.

Ideal ionic bonds will not be considered for the time being because they are formally
unattainable and do not present proper ELF topologies that we can use with our ELF-
IQA scheme. The question of ionicity and ideal ionic bonds will be discussed in Chapter
6.2.

The raw data for these four systems is collected in Table 5.18, for the kinetic and
exchange-correlation parts, and Table 5.19 for the electrostatic terms. The corresponding
fitted equations are given in Table 5.16 and 5.17. Let us begin with the first three systems
and reserve Li2, which is clearly anomalous, for last.

In the kinetic term, we observe remarkably good fits for the C–Li bond in CH3Li
and the Be–N bond in BeH2NH3, both of which present a coefficient of determination
r2 > 0.995. The dative B–N bond in BH3NH3 is substantially worse, being the worst fit
so far even with respect to lone pairs in the previous Subsection, not approaching the
r2 = 0.99 mark at all. Therefore, we can safely assume that the ∝ 1/R2 dependency is
not valid in this case. In the case of CH3Li we see that the slope of the fitted model
is of the same magnitude as the ones reported in the previous Subsection. Following
previous observations, we can suggest that the C–Li bond is more polarized than any
of the previous ones. Recall that a small slope can be related with less effect of bond
stretching on the electronic structure of the bond, and thus points to heterolytic bond
breaking and strongly polarized bonds.

Regarding the electrostatic interbasin terms, we find good fits for all three systems as
well except for the interaction between the bond basin and the Li core, which is once again
much worse. On the other hand, this interaction is shown to be far less important than
the one arising from the carbon core in CH3Li, and the interbasin term so far by about
an order of magnitude. This further corroborates our hypothesis regarding the polarity of
the bond. If we use the values around R = 1 Å (close to Req) in Equation 5.14, we obtain
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Figure 5.6: Isosurfaces of ηELF (r) = 0.80 a.u. for different molecules calculated at the
B3LYP/6-31G(d) level: A) BH3NH3 B)BeH2NH3 C) CH3Li D) Li2. ELF basins are
colored according to their classification: hydrogenoid basins are colored blue, core basins
are colored purple, monosynaptic basins are colored orange and disynaptic basins are
colored green. Basin populations are reported with arrows.

a r1/R = 0.85 approximately, suggesting a strongly displaced bond charge placement.
The slope for the term arising from the carbon core is similar to that of CH3F.

The slopes in BH3NH3 are significantly smaller than those reported before, suggesting
that the electrostatic interaction is less important in bond stability in this case. On the
other hand, note that the interbasin term for lone pairs is positive, as seen in the previous
Subsection. Thus, the fact that the interactions with both cores is now stabilizing can be
understood as arising from the dative interaction, and thus highlights an interpretation
on the dative reactivity of lone pairs which may be explored in the future. Values are
significantly reduced in BeH2NH3, which is surprising considering the increase in q at
Req. Note that also the corresponding kinetic energy term was smaller than in BH3NH3.
In a way, we could expect the terms related to the bond to be lesser in the beryllium
adduct considering that BeH2 is a weaker Lewis acid than BH3.

Finally, exchange-correlation terms are shown to be, once more, approximately two
orders of magnitude smaller than the corresponding interbasin and kinetic terms.
Consequently, we may consider such effects as negligible in the first three molecules in
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this Subsection. All things considered, the ELF-BCM assumptions seem reasonably well
founded for these systems.

BH3NH3

T b y = 8.596x+ 1.966 r2 = 0.966
BeH2NH3

T b y = 6.286x+ 2.378 r2 = 0.995
CH3Li

T b y = 15.157x+ 0.542 r2 = 0.998
Li2

T b y = 0.019x− 0.000 r2 = 0.980

Table 5.16: Fitted equations for bond
kinetic energy values T b (a.u.) versus 1/R2

(a.u.−2). Coefficients of determination r2

are given for each fitted equation.

BH3NH3

EB−binter y = −13.479x+ 1.698 r2 = 0.998
EN−binter y = −12.130x− 4.234 r2 = 0.950

BeH2NH3

EBe−binter y = −6.603x+ 0.563 r2 = 0.998
EN−binter y = −8.269x− 6.116 r2 = 0.992

CH3Li
EC−binter y = −19.650x− 0.423 r2 = 0.999
ELi−binter y = −3.686x+ 0.260 r2 = 0.958

Li2
ELi−binter y = −0.003x+ 0.000 r2 = 0.564

Table 5.17: Fitted equations for bond-
core interaction energy values EA−binter

(a.u) versus 1/R (a.u.−1). Coefficients of
determination r2 are given for each fitted
equation.

The Li2 molecule

The case of Li2, however, is a clear outlier. Strikingly, the values for all the relevant terms
(cf. Tables 5.18 and 5.19) are several orders of magnitude (up to five) smaller than all
other reported values. In other words, the molecule is fundamentally atomic, in the sense
that the total energy is given almost strictly by the sum of the intrabasin core terms.

Figure 5.7 summarizes the inadequacies quite directly: the significant reduction in all
terms makes the exchange-correlation term significantly more relevant in relative terms.
This is in spite of the fact that the exchange-correlation term is also reduced, albeit less
dramatically, with respect to other systems. On the other hand, the trends in the T b
and ELi−binter adjust to the proposed dependencies with R far worse than any other terms
considered so far (r2 = 0.980 and 0.564, respectively). Consequently, we can not deem
the ELF-BCM approach suitable for the Li2 molecule.

On a brighter note, this is hardly surprising. As shown in Figure 5.6, the ELF depiction
of Li2 is significantly different from the expected representation. The Li–Li bond is far
more delocalized, surrouding the cores as one would expect in a metallic bonding regime.
This is also in agreement with our observation regarding the energy terms: Li2 is a
metallic bond, and thus better described as an atomic system in which some electron
density is delocalized over space, as in the sea of electrons depiction that was discussed
in Chapter 1. Therefore, it seems perfectly coherent that a localized model such as the
BCM does not resemble this situation.

Other details, as the lengthy equilibrium distance of Li2, the far superior volume
estimate of the ELF bond basin, and the fact that the bond charge q obtained by
integration is nearly independent from R all suggest that the physics underlying the
Li–Li bond are nothing like our semiclassical depiction of a localized bond charge.
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R (Å) 1/R2 (a.u.−2) BH3NH3
T b (a.u.) EB−b

xc (a.u.) EN−b
xc (a.u.)

1.40 0.143 3.231 -0.038 -0.118
1.50 0.124 3.007 -0.029 -0.112
1.60 0.109 2.871 -0.021 -0.109
1.70 0.097 2.794 -0.016 -0.109
1.80 0.086 2.752 -0.011 -0.011
1.67 0.101 2.818 -0.017 -0.109

R (Å) 1/R2 (a.u.−2) BeH2NH3
T b (a.u.) EBe−b

xc (a.u.) EN−b
xc (a.u.)

1.50 0.124 3.169 -0.027 -0.125
1.60 0.109 3.053 -0.021 -0.122
1.70 0.097 2.987 -0.016 -0.120
1.80 0.086 2.927 -0.012 -0.118
1.90 0.078 2.866 -0.009 -0.117
1.79 0.087 3.010 -0.017 -0.122

R (Å) 1/R2 (a.u.−2) CH3Li
T b (a.u.) EC−b

xc (a.u.) ELi−b
xc (a.u.)

1.70 0.097 1.997 -0.086 -0.043
1.80 0.086 1.853 -0.081 -0.037
1.90 0.078 1.726 -0.077 -0.031
2.00 0.070 1.616 -0.072 -0.027
2.10 0.063 1.508 -0.067 -0.023
2.20 0.058 1.415 -0.063 -0.019
2.30 0.053 1.330 -0.060 -0.016
1.98 0.071 1.632 -0.073 -0.028

R (Å) 1/R2 (a.u.−2) Li2
T b (a.u.) ELi−b

xc (a.u.)
2.40 0.0486 0.000698 -0.0000790
2.50 0.0448 0.000636 -0.0000730
2.60 0.0414 0.000583 -0.0000680
2.70 0.0384 0.000515 -0.0000610
2.80 0.0357 0.000424 -0.0000510
2.90 0.0333 0.000413 -0.0000510
3.00 0.0311 0.000395 -0.0000490
3.10 0.0291 0.000318 -0.0000410

Table 5.18: Internuclear distance R and bond kinetic energies T b (a.u.) and core-bond
exchange-correlation energy values EA−bxc (a.u.) at the B3LYP/6-31G(d) level.

Estimation of model limitations

It has been shown that, as somewhat expected, the ELF-BCM approach is suitable for
localized bonding regimes, stretching all the way to dative bonds but failing completely
in metallic systems. However, as metallic and localized character are somewhat diffuse, it
is desirable to find quantitative descriptors from the wavefunction or the electron density
that we can use to anticipate when our model is suitable and when it is not.

From the local point of view, as extensively discussed in Chapter 4, chemical bonds
have historically been characterized by studying the properties of the corresponding BCP
(e.g. the bond ellipticity defined in Equation 4.11). Among them, a bond metallicity
descriptor ξmBCP has been previously defined in the literature [57] as:

ξmBCP = 36
5 (3π2)2/3 ρ(rBCP )5/3

∇2ρ(rBCP ) (5.28)

which is only defined for positive values of the Laplacian at the BCP, ∇2ρ(rBCP ). A
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R (Å) 1/R (a.u.−1) BH3NH3
Eb

intra (a.u.) EB−b
inter (a.u.) EN−b

inter (a.u.)
1.40 0.378 1.430 -3.417 -8.915
1.50 0.353 1.290 -3.045 -8.454
1.60 0.331 1.195 -2.742 -8.157
1.70 0.311 1.135 -2.493 -7.988
1.80 0.294 1.103 -2.290 -7.916
1.67 0.317 1.153 -2.567 -8.039

R (Å) 1/R (a.u.−1) BeH2NH3
Eb

intra (a.u.) EBe−b
inter (a.u.) EN−b

inter (a.u.)
1.50 0.353 1.397 -1.918 -9.054
1.60 0.331 1.331 -1.768 -8.824
1.70 0.311 1.287 -1.641 -8.676
1.80 0.294 1.254 -1.529 -8.567
1.90 0.279 1.219 -1.425 -8.420
1.79 0.295 1.293 -1.650 -8.704

R (Å) 1/R (a.u.−1) CH3Li
Eb

intra (a.u.) EC−b
inter (a.u.) ELi−b

inter (a.u.)
1.70 0.311 1.046 -5.659 -0.911
1.80 0.294 0.954 -5.361 -0.833
1.90 0.279 0.862 -5.065 -0.754
2.00 0.265 0.786 -4.807 -0.689
2.10 0.252 0.714 -4.544 -0.665
2.20 0.241 0.649 -4.302 -0.640
2.30 0.230 0.588 -4.068 -0.614
1.98 0.267 0.800 -4.852 -0.702

R (Å) 1/R (a.u.−1) Li2
Eb

intra (a.u.) ELi−b
inter (a.u.)

2.40 0.220 0.000003 -0.000878
2.50 0.212 0.000003 -0.000867
2.60 0.204 0.000003 -0.000853
2.70 0.196 0.000002 -0.000819
2.80 0.189 0.000002 -0.000780
2.90 0.182 0.000002 -0.000760
3.00 0.176 0.000002 -0.000735
3.10 0.171 0.000002 -0.000692
2.72 0.194 0.000002 -0.000815

Table 5.19: Internuclear distance R, bond intrabasin energies Ebintra (a.u.) and core-bond
electrostatic energy values EN−binter (a.u.) at the B3LYP/6-31G(d) level.

simple interpretation is that a very small positive value for the Laplacian implies that
the electron density is quite flat in the interaction region, BCP and surroundings. We
expect this to be the case for metallic bonds, and thus ξmBCP >> 0 for metallic bonds.
If the Laplacian is negative, we identify the situation with covalent bonds, in which
there is significant charge accumulation in the bonding region. Naturally, we may expect
ξmBCP << 0 for a strongly covalent bond, resulting from a negative Laplacian and a
substantial value for ρ(r).

The values of ρ(r), ∇2ρ(r) and ξmBCP for the bonds studied in the different systems
covered both in Subsection 5.2.3 and in this Subsection are presented in Table 5.20. As
expected, the Li–Li bond in Li2 is a clear outlier, with ξmBCP = 12.780, to be compared
with values in the negative values for conventional covalent bonds and the 1.631 value of
the B–N bond. Therefore, the bond metallicity approach is able to detect situations in
which the ELF-BCM approach is not appropiate with relative ease.

The bonds in the molecules in Subsection 5.2.3 all present negative values, which
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Figure 5.7: Energy terms at different internuclear distances R for the Li2 molecule at the
B3LYP/6-31G(d) level of theory.

agrees with our interpretation. The bonds that we have covered in this Subsection are, in
general, less appropiate. This was partially showcased by the slight worsening of the fits.
However, density values are still in the same approximate order of magnitude. Laplacian
values at the BCP, while positive instead of negative, present values that are also in the
same order of magnitude as the first covalent bonds.

The simple diatomic LiF molecule was also calculated and its descriptors at the BCP
were extracted as well, as reported in Table 5.20 for completeness. The Laplacian takes
a positive yet large value, resulting in a non-metallic ξmBCP value. However, LiF does not
present a disynaptic bond basin except for a very limited range of R, which means that
it is fundamentally ionic and thus not meant to be tackled with the ELF-BCM approach.

Summarizing, we propose that the ELF-BCM approach can be used
semi-quantitatively to describe localized bonds. The degree of localization of a chemical
bond may be estimated by, at least, the ELF topology and the local characteristics of
the BCP. Considering our starting point, which is firmly grounded in quantum chemical
topology, we will not investigate further as an estimate of model limits based on the
same grounds is sufficient.

Naturally, we expect other descriptors based on molecular orbitals (cf. Chapter 3) to
be effective in this regard. For instance, it is reasonably to suggest that chemical bonds
with a majoritary ionic contribution in valence bond terms will not be very suitable.
Neither will be bonds in which the hopping integrals are small or the overlap integrals
between atomic orbitals are very small. Such systems are predominantly metallic, because
bonding is very limited.

5.3 Bond Properties from Equilibrium Properties
In Section 5.1 we have put forward a number of properties that may be calculated if a
properly fitted analytical BCM-type potential is available. Equation 5.17 relates Bond
Dissociation Energy (BDE) to the BCM ansatz.
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Bond ρ(rBCP ) ∇2ρ(rBCP ) ξmBCP q

C–C 0.238 0.532 5.518 1.82
C–H 0.273 −0.904 −4.089 2.00
C–N 0.261 0.670 5.116 1.62
C–O 0.256 0.504 6.560 1.24
C–F 0.233 0.022 130.6 0.90
B–N 0.099 0.420 1.631 1.89
Be–N 0.057 0.337 0.801 2.06
C–Li 0.044 0.213 0.821 2.06
Li–Li 0.013 0.002 12.780 1.82
Li–F 0.074 0.754 0.559 2.45

Table 5.20: Descriptors evaluated at the BCP of the bonds of interest in the systems
reported in Figure 5.5 and Figure 5.6 and LiF. Data calculated at the B3LYP/6-
311G(d,p) level and equilibrium geometries. All values in atomic units.

As the original BCM was combined with experimental data on equilibrium bond
lengths and frequencies, an application in which the ELF-BCM based approach is used
to model and predict bond energies will be given in this Section in order to exemplify a
possible use of the model.

In the forthcoming application, equilibrium properties will be related to bond
strength. As bonds are fuzzily defined, two pragmatic questions must be answered first
thing: what do we mean exactly by bond strength, and why should our notion of bond
strength be related with equilibrium properties whatsoever? Therefore, before we move
onto the application itself we will devote some efforts to clarify what the BCM-ELF
approach should be able to model, in the spirit of the critical perspective of Subsection
5.1.3.

This does not mean, however, that the ELF-BCM approach may not be used in other
applications with different conceptual schemes in mind. What must be noted with our
careful explanation herewith is that, as with any model, attention must be paid to the
parametrization strategy and the underlying connections between input and output.

5.3.1 Bond Energy and Bond Strength
In this work, we have used BDEs several times as a property associated to a chemical
bond. Unmistakingly, insomuch as they are defined, bonds have properties associated to
them which, being often remarkably transferable, are extremely useful for
rationalization. Predicting the weakest bond in a chemical structure is a very desirable
ability in chemistry in order to rationalize, for example, potential chemical
modifications to a scaffold molecule.

It is worth reflecting further on the association between BDEs and bonds. In
chemistry, we usually associate BDEs to the strength of bonds quite acritically.
Equating what we refer to as bond strength to BDE, however, may be far more
nuanced. After all, the BDE is not a strictly vertical energy as the well-depth
parameter in Equation 5.1. This is coherent at times, as we do not understand bond
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breaking as an exclusively vertical process since it does include some effects that are
not strictly related with the bond itself. BDEs contain mostly thermodynamic
information that we can use to predict global energy changes in chemical reactions, but
are ill-suited to understand dynamic chemical phenomena.

Limitations of Bond Dissociation Energies

BDEs have an innate dependency on the reference non-bonded state. For the same
covalent bond (e.g. H2), it is possible to calculate two different BDEs, with respect to
two hydrogen atoms and with respect to H+ and H– . In the case of H2 we expect that
the dissociation into two atoms will be representative, but in other bonds both
situations may coexist, and if the bond has marked ionic character, the dissociation
into a pair of ions might be the most probable outcome. This issue becomes far more
complex in multiply bonded species, where the number of possible non-bonded states
increases exponentially.

The BDE is formally calculated as the difference in energy between two points in the
spin-coordinate PES of a system. This requires assigning a bonded and an un-bonded
state, which is done in terms of spin multiplicity and a single bond coordinate. However,
all other coordinates are usually relaxed. Coupled with potential spin-state relaxation,
this energy lowering is what we call the Reorganization Energy, RE.

If RE is large, it might be the major contribution to the BDE. The other term in the
BDE is the strictly vertical energy of the bond, which we may call the Intrinsic Bond
Energy (IBE) for now and we will develop later on.

At times, separating RE and IBE is reasonably feasible. For instance, the electronic
IBE of ethene can be calculated as the electronic energy difference between H2C––CH2
in its closed-shell singlet state and the two H2C fragments, with the same geometry, in
their triplet 3B1 state (cf. Scheme 5.8 A). The triplet multiplicity is formally suitable for
the formation of the double bond in ethene. In a symmetric covalent bond, polarization
effects can be assumed to be negligible, and thus we assume that this IBE is strictly
vertical. Now, RE may be computed by calculating the energy lowering due to relaxation
of the resulting H2C fragments towards their optimal geometry and electronic state.

In this first case RE is small compared to the IBE, as the geometry and electronic
state for the methylene fragments are close to the optimized minima. However, if we apply
the same decomposition for the electronic IBE of ethyne, which should be computed with
respect to the 4Σ− quartet state of the methylidine radical, we find that the resulting
CH fragments differ in energy from the 2Π doublet minima (Figure 5.8 B) by more than
40 kcal/mol.

In particularly strained systems, RE may be even dominating with respect to IBE. In
turn, the BDEs may suggest that the bond in question is weak or easy to break, which
is the type of information that we are usually after. This is not necessarily true: the
bond breaking might be thermodinamically favored, but require a humongous amount of
energy to break due to a very large IBE.

As we have discussed in depth (cf. Chapter 1.3 and thereafter), the chemical bond
concept is notably fuzzy. Consequently, defining or probing this intrinsic property of
chemical bonds is far from a solved problem. Different approaches have arisen in both
Chapters 3 and 4 over different theories. For this reason, the strength associated with a
chemical bond is hard to estimate, and the BDE reigns supreme as a quantity in spite of
its limitations, and BDEs are far more used in benchmarking and testing efforts within
quantum chemistry than other bond strength indicators.
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Figure 5.8: Energy levels for the homolitic bond breaking of A) ethene into 2 CH2
fragments, with and without geometrical relaxation in the 3B1 state and B) ethyne into
2 CH fragments in the 4Σ− state and relaxed to the 2Π state.

Limitations of Bond Energies

Similar to the BDE, we find the concept of Bond Energy (BE) in the general chemistry
literature. The IUPAC states that the BE is “the average value of the gas-phase bond
dissociation energies (usually at a temperature of 298 K) for all bonds of the same type
within the same chemical species.” [3] Again, this definition is suitable from the point of
view of thermodynamics and experimentation, but it clearly misses some desirable
properties: it averages out the BDEs of bonds that should be very different at an
individual level.

Let us discuss a simple example in this regard. The C–H BE in methane is, according
to this definition, 1/4 of the atomization energy of methane, which can be calculated to
be approximately 390 kcal/mol which suggests a BE of 97.5 kcal/mol for each individual
C–H bond. Naturally, this does not mean that each bond breaking step leading to C+4H
is associated with this BDE, although it may suggest so for an unexperienced reader.

We reasonably expect that every subsequent C–H bond breaking requires a different
amount of energy, and the C–H bonds at every step have significantly different properties
– just like •CH3 is quite different to CH4. Indeed, thermodynamic models and calculations
agree that the first C–H bond has a larger BDE of about 105 kcal/mol, and successive
dissociations have subsequently smaller BDEs to a total of 390 kcal/mol. Hence, the
concept of BE as recognized by the IUPAC is quite ineffective as a way to convey bond
strength which is nevertheless based in the already limited BDE.

Intrinsic Bond Energies

IBEs can be deemed to be an equilibrium property, in the sense that the bond is properly
described by the wavefunction of the system at the equilibrium geometry. The IBE is
something hidden on the molecular wave function that characterizes the fuzzy entity we
call a chemical bond. This becomes apparent using, for example, the VBT framework
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(cf. Section 3.2), but should be generally true because the wavefunction contains all the
relevant information.

Alternatively, we may use the IQA approach (cf. Subsection 4.2.3) to quantify
interbasin energies between subsets of basins, which is an ultimately intrinsic energy.
Such a calculation, however, depends strongly on the topological partitioning of the
system. For the time being, we simply lack a general observable to extract this
information from the wavefunction in a straightforward way.

Undoubtedly, both chemical bonds and IBEs are invaluably important for the ratio-
nalization of chemical phenomena.[58, 59, 60, 61] Relating IBEs and BDEs to geometric
or electronic features is widespread in the chemical community,[62, 63] because IBEs are
a far more representative measurement of the ease of breaking a given bond.

On the other hand, REs can be calculated formally by estimating the relaxation of
the individual fragments, that is, RE is in principle independent of the features of the
bond that was broken; no detailed information of the features of the bond is needed.

Consequently, it is reasonable to think that an equilibrium property, such as the IBE,
could be predicted on the basis of other equilibrium properties. It is not necessary as
clear that the BDE should be predictable on the basis of other equilibrium properties
because the relative stability of fragments is not encoded in such descriptors. In other
words, we do not expect that the stability of constituent fragments, which manifests
in RE, is encoded in the wavefunction of a system. We do expect, however, that the
characteristics of a chemical bond are (e.g. resistance to elongation, forces arising from
electron unpairing).

For this reason, in the following Subsections, a BCM-type ansatz based on the electron
density, the kinetic energy density and geometrical considerations will be presented – all
of those are equilibrium properties. We will fit our model to a selected database in order
to calculate proportionality constants, and use it to estimate IBEs for C–C bonds.

5.3.2 A simple Ansatz for Intrinsic Bond Energies
In the next Subsection we will fit a simple ELF-BCM model to the IBEs of some selected
symmetric C–C bonds. After all, C–C bonds are the basis of organic chemistry and
present a somewhat striking variation in length and formal bond order. They are also
relevant in many other areas, such as materials science, where carbon allotropes are of
interest.

In order to fit our model we only need to use bond charges, q (as given by the
integration of ELF basins) and equilibrium bond lengths Req, which appear in
Equation 5.17. Strictly speaking, we do not require any other information to reach our
goal. While the goal of this Section is mostly exemplary, a model relating these two
simple properties with the IBE would be a potentially useful tool for the interpretation
of electronic structure calculations.

With this goal in mind, we will depart from a simple ELF-BCM conforming expression

W = D + CBNV 2
q

R
+ CNNV

1
R

+ CBT
q

R2 (5.29)

which is a symmetric version of Equation 5.24 in which we assume all exchange-
correlation terms are negligible and all dependencies with respect to R hold.

It must be noted that by fitting a given reference dataset to Equation 5.29 other
properties (e.g. Equations 5.16 and 5.15) are not enforced. Additional constraints
should be added if several properties were to be fitted at the same time. As a
consequence, parameters derived from fitting to Equation 5.29 will produce biased
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dissociation curves with respect to R. High fidelity dissociation curves could be
obtained by enforcing the expressions above with a fixed bond charge q in a more
sophisticate multi-purpose approach.

At this point, it must be noted that the working expression for the kinetic term is not
well-founded regarding the scaling of q, just as we noted in Equation 5.26. This is critical
here because q is one of our two sources of information. Hence, we will first revisit the
crude approach of the previous Section.

Simple kinetic energy terms

The Morse potential in Equation 5.1 may be rewritten to present an attractive and
repulsive term:

W = De(1− e−β(R−Req))2 = De(1 + e−2β(R−Req) − 2e−β(R−Req)) (5.30)

It thus becomes apparent that the equilibrium well results from the difference in the
slopes of two exponential terms.

The positive term, which dominates at small R, has a slope ∝ 2Dee
β(Req−R), while

the negative term has a slope ∝ −2Dee
−2β(Req−R). These two slopes are exactly equal

when R = Req. If R < Req the negative term dominates, and at larger R > Req the
positive one does.

In the BCM ansatz, and given the physical interpretation of the different terms,
stabilization arises from the Coulombic CBNV

q
R term, while destabilization comes from a

combined CNNV 1
R +CBT

q
R2 term, including kinetic and repulsive nuclei-nuclei electrostatic

contributions. The ratio of the slopes of the repulsive and attractive terms in the BCM
is thus ∝ (CNNV R+ 2qCBT )/qCBNV R.

The first term must fulfill CNNV /qCBNV < 1 for the attractive term to eventually
dominate (i.e. for the bonded state to be stable). On the other hand, for most of R –
specially in constrained bonds – the leading term is 2qCBT /CBNV R, which highlights the
critical importance of the kinetic term in the correct description of the bonded state.

Considering that the original kinetic energy term is not particularly well suited for
a 3D system, we already introduced a slight modification in Equation 5.26, in which
the original 1/R2 dependence is unaltered. This dependence was verified extensively in
Section 5.2.

Naturally, this model kinetic energy still suffers from some of the deficiencies of the
original term. In this sense, integrating a more sophisticated inhomogeneous kinetic
energy density within the disynaptic bond basin ΩVC,C should lead to better results,
mirroring DFT development. However, our goal is to be extremely simple.

We may argue that gradient expansions of the kinetic energy density of the
homogeneous electron gas involve square gradients of the density. The integral of such
quantities over a volume is related to the surface integral of the electron density
gradient over the interbasin area. From this crude assumption, we may propose terms
that contain a parameter-free damping of q, as long as it scales with R while preserving
the limits of the original model at R → ∞ and R → 0. These terms stem from the
assumption that, as the distance increases the interbasin surface of the bond must
increase or decrease following an unknown dependency.
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Two plausible terms that satisfy these requirements are

T1 = CBT1
q

5
3acot(Req)

R2
eq

T2 = CBT2
q

5
3atan(Req)

R2
eq

Similar damping expressions can be constructed using the Gauss error function and its
complementary as far as R > 0 in all the parametric space, but trigonometric functions
are easier to manipulate analytically. We consequently favour these expressions so far,
keeping in mind the crudeness of our model.

Indeed, interpretation is straightforward so far. T1 is meant to dissipate the charge
as the bond expands. T2 attains the opposite, dissipating the charge when the bond is
contracted. After all, which beavior will be more representative is unknown.

Simple coulombic terms

As detailed in Section 5.1, CBNV and CNNV are related by CNNV = (CBNV )2/16 in the
original model assuming the charge equalization condition.

Because charge equalization might not hold here, which was discussed in Section
5.2, we should have to explicitly calculate core charges for our model. Alternatively, an
independent scaling factor for each term can be added. This is particularly well justified
as a shielding effect: charges are not strictly punctual, particularly so in bonds. Therefore,
the effective Coulomb term for the CBNV and CNNV terms should be different.

In principle, the weight of the bond-nuclei term is expected to be higher than the
nuclei-nuclei term both because its an electrostatic interaction over a shorter distance
and because, after all, bonding does take place. In any case, both approaches will be
tested empirically.

Note that in the case of symmetric C–C bonds, both
∫

ΩC
C
ρ(r)dr and the size of ΩCC

remain constant, as the core of the carbon atoms does not participate in the bonding:
both Z and ν may be considered constants. Thus, the effective bond path νReq does not
represent bond strength or bond order, which in turn ought to be captured by q and its
variation with R.

As a final remark, recall that the expression in Equation 5.29 is symmetry constrained.
If the dependency of all electrostatic interaction terms is properly adjusted to 1/R,
then the resulting CBNV term will be an average as soon as symmetry is broken (see
Subsection 5.1.2 for details and interpretation). However, we expect a good degree of
atomistic transferability as per the results in the previous Section (cf. Subsection 5.2.3
in particular) and thus we deem this both acceptable and preferrable over introducing
another distinct parameter. As far as possible, we will emphatize simplicity over accuracy,
and thus disregard the inclusion of additional parameters.

Intrinsic Bond Energy ansatzs

According to the discussion before, and departing from Equation 5.29, five different
working expressions are put forward:

IBE1 = CBNV
q

Req
+ (CBNV )2 1

16Req
+ CBT

q

R2
eq

(5.31)
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IBE2 = CBNV
q

Req
+ CNNV

1
Req

+ CBT
q

R2
eq

(5.32)

IBE3 = CBNV
q

Req
+ CNNV

1
Req

+ CBT0
q5/3

R2
eq

(5.33)

IBE4 = CBNV
q

Req
+ CNNV

1
Req

+ CBT1
q

5
3acot(Req)

R2
eq

(5.34)

IBE5 = CBNV
q

Req
+ CNNV

1
Req

+ CBT2
q

5
3atan(Req)

R2
eq

(5.35)

Note that the sophistication increases from IBE1 to IBE4 and IBE5, but also the
degrees of freedom increase from 2 in Equation 5.31 to 3 in all other expressions.

5.3.3 Intrinsic Bond Energies of C-C bonds
As explained in the previous Subsection, our target is the IBE of C–C covalent bonds.
For this, we definitely require a set of reference IBEs, which is not trivial considering the
difficulties highlighted in Subsection 5.3.1.

With these issues in mind, a curated selection of C–C bonds was considered,
covering different bond orders, relative strengths, geometrical constrains and keeping
possible polarization or non-covalent effects to a minimum. Bond breaking should be
accomplishable in a localized way, with negligible 1,4-interactions that bind both
fragments. Secondly, symmetry is deemed desirable to minimize polarization effects
that rightfully belong in RE. Finally, molecular complexity has to be limited in order to
clearly select the appropriate electronic state, based in the C atoms involved in the
bond under examination.

The complete list of molecules in the reference set is the following: C3H6 (1),
H3C–CH3 (2), C6H6 (3), H3C4 –C4H3 (4), H2C––CH2 (5), HC–––C–C–––CH (6),
HC–––CH (7) and C2 (8). A set of fluorinated analogues have been included for
validation purposes, considering the interest some of these molecules arise.[64, 65, 66] It
is the case for the gauche- and trans- conformations of 1,2-Difluoroethane (9 and 10
respectively), the cis- and trans- isomers of 1,2-Difluoroethylene (11 and 12), and
Tetrafluoroethylene (13). This makes a total of 13 different chemical environments for
C–C bonds. Symmetry is respected in all cases. The composition of the set attempts to
minimize RE and nonbonded interactions and hence provide IBEs that are both
accurate and representative.

The calculated molecules are shown in Figure 5.9 with the relevant bonds highlighted
in red. IBEs, internuclear equilibrium distances and ΩVC,C populations q were extracted
accordingly for each bond under consideration. In cases where several disynaptic bond
basins existed, the integration was performed over all of them. In the special case of C2,
the full valence density was considered to belong to the bond, due to the formal bond
order of 4. This assumption will be revisited later.

The influence of Basis Set Superposition Errors (BSSE) and Spin Contamination
(SC) in the IBE calculations was assessed with high level calculations at the CCSD level
using a compound extrapolation scheme for Complete Basis Set (CBS) extrapolation, in
which the HF self-consistent field energy is extrapolated using the cc-PVDZ, cc-PVTZ
and cc-PVQZ basis sets and the correlation energy is extrapolated using the cc-PVDZ
and cc-PVTZ basis sets.[67] Helgaker’s two and three-point extrapolation formulas were
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1 2 3 4

5 6 7 8

9 10 11 12 13

Figure 5.9: Calculated molecules in the parametrization set. H, C and F atoms are
depicted as white, grey and light green balls-and-sticks, respectively. Relevant C–C bonds
are colored in red.
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used to approximate CBS results.[68] Results are expected to be very close to the CBS
limit, and are in approximate agreement with the trends of most DFAs.

SC is not very large nor sensitive to basis set size, as reported by the S2 values in
the different basis set sizes (see Table 5.21), indicated by the dz, tz and qz subscripts.
In particular, note that SC has more impact in HF calculations than in KS-DFT, which
is the main domain of application of our model.

Molecule Emolecule (a.u.) Efragment (a.u.) IBE (kcal/mol) S2
dz S2

tz S2
qz

2 -79.7473 -39.7822 114.73 7.5840 7.5814 7.5838
5 -78.5034 -39.1060 182.84 2.0131 2.0128 2.0131
7 -77.2459 -38.4130 263.41 3.7543 3.7542 3.7543

Table 5.21: Reference data for some molecules in the molecule set at the CCSD/CBS
level.

Test calculations can be performed using the full basis set of the molecule for the
calculations on fragments at the CCSD/cc-PVTZ level. BSSE corrections do not alter
our analysis significantly, as shown by the results in Table 5.22. Do note, however, that
the usage of the full molecular basis set gives IBEs consistently lower than the previous
benchmark due to the increase in basis set flexibility for the monomers.

Molecule Emolecule (a.u.) Efragment (a.u.) IBE (kcal/mol) S2
tz,molecule

2 -79.7040 -39.7642 110.15 7.5839
5 -78.4636 -39.0908 176.97 2.0131
7 -77.2087 -38.4020 253.98 3.7543

Table 5.22: Reference data for some molecules in the molecule set at the CCSD/cc-PVTZ
level using the full molecular basis set.

This comes to show that the basis set choice in our work is appropriate and does
not incur in significant error due to incompletion. The choice of DFA will be discussed
thoroughly later in this Subsection (see the discussion in 5.3.3.0).

As a last necessary thought, we need to verify the consistency of our approach. As we
discussed in the previous Subsection, our idea requires that information about bond order
and geometrical strain must be contained by the combination of the only two parameters,
q and Req. As shown in Figures 5.10 A and 5.10 B for the bonds in our dataset, both
parameters are in fact known to be crude descriptors of bond strength that have been
previously used in the context of C–C bonds.[69]

Historically, the success of these descriptors has been very limited because dependence
of such metrics with respect to IBE or BDE is not linear. In this sense, they are quite
similar to ρ(rBCP ) in the sense that both the ELF population and the distance are
unmistakingly related to the bond strength, but only among strictly analogous chemical
environments. It is important to note that in this case q and Req do encode different
information, since collinearity with each other is not very high (cf. 5.10 C). This signals
that they do contain information about different aspects of the bond.
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Figure 5.10: Linear correlations between Req, q and IBE for the C–C bonds in the
molecule set. All calculations performed at the MP2-FC/def2-QZVP level.

Model selection

The proportionality coefficients were obtained by using the results of calculations of the
dataset of C–C bonds at the ωB97XD/def2-QZVP level. The ωB97XD DFA is widely
considered appropriate when dealing with covalent bonds in organic systems.[70]
Correlation coefficients and parameters for the different models, IBE1 to IBE5 (see
Equations 5.31 to 5.35) are collected in Table 5.23. The fit was performed using an
ordinary least-squares algorithm in all cases.

Without imposing any additional restraints, only models IBE3 and IBE4 seem to
accommodate the desired physical meaning, in which CBNV is the only positive
(stabilizing) contribution to the IBE. They also present the best coefficients of
determination and F − statistic results, while the kurtosis result for IBE4 is
significantly closer to a normal distribution.

The inclusion of the electrostatic shielding degree of freedom from IBE1 to IBE2
is shown, on the basis of the adjusted r2 value, to result in a meaningful improvement.
Similarly, the kinetic energy term derived for IBE3 is noticeably better than the original
BCM one, although it does increase the kurtosis significantly. As hinted in the previous
Section, such term is apt for non-strained covalent bonds, hence outliers are found among
the database here considered. In particular, Cook’s distance for the C2 molecule in the
IBE3 model was found to be 12.861 while no other molecule has a value superior to
0.1. Thus, the inclusion of the damping term at short distances in the equation of IBE4
successfully improves r2 to a quantitative level by smoothing the anomalous C2 molecule,
while preserving the correct physical interpretation and limits.

The root mean square (RMS) error of IBE4 is 4.2029 kcal/mol, which is in the same
order of magnitude that can be assumed for the accuracy of DFT in many applications.

Concluding that IBE4 is our best approximation, a robust linear model was used to
fit the same data in order to check the influence of the fitting algorithm. The fitting was
performed by iterative re-weighted least-squares using Huber weights. Relatively close
parameters CBNV = 229.7770, CNNV = −96.2613 and CBT = −90.2421 were obtained, all
within the standard errors of the coefficients of the ordinary least-squares model, which
corroborates that outliers or high-leverage molecules are not substantially over-weighted
in this model.

Similar conclusions may be drawn from calculations with a different level of theory.
Consequently, we will use the expression of IBE4 given in Equation 5.34 as our working
model for the remaining of this Subsection. This has the implication that the charge is
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Model CBNV CNNV CBT F − statistic Kurtosis r2 Adjusted r2

IBE1 -51.1359 2614.8789 -52.6352 80.0 3.260 0.936 0.924
IBE2 -236.1163 305.9522 278.2517 72.2 2.352 0.956 0.943
IBE3 150.9831 -42.5211 -39.0838 146.7 6.626 0.978 0.971
IBE4 247.6594 -120.5810 -96.6753 401.1 3.519 0.992 0.989
IBE5 -26.6361 232.8136 25.2538 54.9 2.203 0.943 0.926

Table 5.23: Multivariate ordinary least-squares regression parameters CBNV , CNNV and CBT
for models IBE1 to IBE5 (cf. Equations 5.31 to 5.35). The F − statistic is calculated
with respect to the trivial CBNV = CNNV = CBT = 1 model.

additionally dissipated as the bond expands with respect to the original BCM approach.
For completeness, the fitting diagnostics to a selection of popular DFAs is given in Table
5.24.

Model CBNV CNNV CBT Kurtosis r2

BEωB97XD
4 247.6594 -120.5810 -96.6753 3.519 0.992

IBEB3LY P
4 248.5127 -128.7300 -95.8862 3.920 0.988

IBEHSE06
4 236.4620 -111.8291 -91.5913 3.607 0.991

IBEPBEPBE4 225.7251 -100.8176 -85.1020 3.586 0.990
IBEBLY P4 237.1546 -120.5354 -89.5870 3.891 0.987
IBETPSSh4 230.4442 -113.4220 -88.4728 3.442 0.990
IBEM062X

4 246.4509 -114.5167 -96.2583 3.551 0.986
IBEPW2PLY P

4 240.9731 -117.7614 -92.2118 3.774 0.990
IBEB2PLY P

4 237.1362 -115.0569 -90.1315 3.744 0.990
IBEHF4 222.4675 -128.1798 -92.5961 3.196 0.991

Table 5.24: Multivariate ordinary least-squares regression parameters CBNV , CNNV and
CBT for model IBE4 for different levels of theory, where the method is indicated as a
superscript and the basis set is def2-QZVP.

In this regard, it must be noted that the description that many DFAs give of the
C2 molecule, which has sometimes been called pathologically multiconfigurational, is not
necessarily accurate.[71]

General trends of the model in Density Functional Theory

Previously, we have used just 13 datapoints calculated at the ωB97XD/def2-QZVP
level. To study the effect of the DFA choice, as well as the transferability to other
calculation levels, the same procedure was used to fit an extensive database (793
datapoints) including a set of 59 different DFAs in KS-DFT, HF and Frozen Core MP2
methods. The total array of 61 methods will be referred to as the DFA set with
numbers 1 to 61. All calculations were performed with the all electron quadruple-ζ
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def2-QZVP basis set.[72] The complete list, as defined in the Gaussian 09 rev.D01
package[73], is given below including the numbering:

• 1 G96LYP
• 2 BVWN
• 3 M06L
• 4 M06
• 5 M062X
• 6 M06HF
• 7 M05
• 8 M052X
• 9 M11
• 10 N12SX
• 11 MN12SX
• 12 SOGGA11X
• 13 PW91VWN
• 14 TPSSh
• 15 BMK
• 16 BHandH
• 17 BHandHLYP
• 18 HSEH1PBE
• 19 wB97XD
• 20 LC-wPBE
• 21 CAM-B3LYP

• 22 APFD
• 23 B2PLYP-FC
• 24 mPW2PLYP-FC
• 25 HSEVWN
• 26 BRxVWN
• 27 BPBE
• 28 PW91PBE
• 29 PBEPBE
• 30 HSEPBE
• 31 mPW1PBE
• 32 mPW3PBE
• 33 BPW91
• 34 PW91PW91
• 35 PBEPW91
• 36 HSEPW91
• 37 B3PW91
• 38 mPW1PW91
• 39 MP2
• 40 BLYP
• 41 PW91LYP
• 42 PBELYP

• 43 HSELYP

• 44 B3LYP

• 45 mPW1LYP

• 46 HF

• 47 TPSSTPSS

• 48 XAlphaXa

• 49 BB95

• 50 PW91B95

• 51 PBEB95

• 52 HSEB95

• 53 SVWN

• 54 PKZBPKZB

• 55 B3P86

• 56 PKZBKCIS

• 57 BRxKCIS

• 58 OVWN

• 59 OPBE

• 60 OLYP

• 61 OB95

Results are shown in Figure 5.11 A with respect to the model terms, and in Figure
5.11 B with respect to the two parameters, q and Req.

The model derived from ordinary least-squares fitting to the complete database
takes CBNV = 232.2327, CNNV = −107.4466 and CBT = −88.9169, which is quite close to
previous results (see Table 5.23), with a coefficient of determination r2 = 0.985. Various
methods introduce additional variability, thus the kurtosis value increases to 7.036. The
RMS error is slightly increased to 5.7890 kcal/mol, which then again is not too terrible
for a semiquantitative model. In fact, it is remarkable considering its simplicity and the
variability in the data set. In any case, it must be noted that the ensemble parameters
reported above are not recommended for any in-depth analysis: method-specific
parameters as the ones reported in Table 5.24 should be used instead, which lead to
R2 > 0.99 in most cases.

On the other hand, the high quality of the obtained fit reveals major similarities in
the way different DFAs relate geometries, q and IBEs. Indeed, it can be said that all
molecules suit the model irrespective of the calculation method.

Average absolute values of standardized residuals per method are presented in Figure
5.13. Residual values range from 0.5113 for Xα to 2.7600 for HF, which is to be expected.
The kinetic term in IBE4 is a crude correction on top of a homogeneous electron gas
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A) B)

Figure 5.11: Predicted IBEs with respect to A) T and V and B) q and Req. Reference
data points in A) are shown in green. All energies in kcal/mol.

derivation, and therefore simple DFAs should provide good fits – that is, even if the
predicted BEs are not accurate. On the other hand, HF is not based on the electron
density and suffers from very inconsistent correlation treatment for different molecules.
It is therefore coherent that it appears as an outlier here. Accordingly, most DFAs are
evenly treated.

Regarding molecules instead, average absolute values of standardized residuals per
molecule (recall the nomenclature introduced in Figure 5.9) are shown in 5.13. Average
residual values per molecule range from 0.2084 for cyclopropane to 2.1310 for ethyne (7).
No particular issues arise for any of the strained systems; the fact that ethyne is the
upper limit is reasonable considering that it is the only triple bond in the parameter set
and still the standardized residuals are not extremely odd. C2 (8) has a large standard
deviation in this average, pointing at the difficulties of capturing its correlated character
in DFT that were discussed before. Different DFAs give largely different depictions of
the molecule.

Having verified the approximate validity of our model irrespective of the DFA choice,
we can analyze some of the features of our fitted model in some detail.

Assuming a fixed q, the model resembles a dissociation energy curve as seen in Figure
5.14. Note that for any given q, predicted energy minima correspond with extremely short
R. In reality, q changes with R, therefore the energy quickly tends to 0 at long R as the
bond charge is shifted to other regions of the molecule. Stronger bonds (as implied by
higher values of q) are seen to be more sensitive to R, while smaller bond orders spawn
a longer range of distances without changing IBE significantly. The model also gives an
estimation for the maximum possible IBE for any given q.

If we fix Req instead, we find that there must be a number of shared electrons q that
yields a maximal IBE, as shown in Figure 5.15. The curve, which has a global minimum,
becomes steeper as bond length increases. This implies that very lengthy covalent bonds
are constrained to an optimal number of shared electrons, while shorter bonds may exist
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Figure 5.12: Averaged absolute value of standardized residuals per molecule in the test
set. Molecule 7 corresponds to ethyne, molecule 8 corresponds to C2. Error bars spawn
one standard deviation for the given averages.

with different balances of terms. This is obviously coherent with what is found empirically:
a huge variety of C–C bonds within reasonable single-bond and double-bond distances,
but only very rare cases where the C–C distance is very large – as long as 1.8 Å for a
formal single bond in some species.

Regarding C2, it remains somewhat of an outlier but is reasonably well fitted by the
model. This approves the usage of the whole valence density of the molecule as bond
charge q, which corresponds to a formal quadruple bond (q ≈ 8.83 electrons). However,
the somewhat outlier nature of ethyne and dicarbon in our model is related to their
particular nature but also influenced by the lack of other molecules with formal bond
orders between 3 and 4 in the test set. This makes the statistical model inherently biased
towards the lower bond orders, in spite of the use of robust regression techniques as
evidenced in the analysis before.

As a final remark, note that all the fluorinated species are perfectly reproduced in
the model even when isomers have extremely similar Req values. This signals that the
electronic effects are perceived in the C–C bond through q and reflected in IBE. Hence,
we may say that our model is sensitive to the chemical environment, and capable of
modelling electronic features in a sophisticate way in spite of its extreme simplicity and
limited number of parameters.

5.3.4 Applications of the model
In the previous Subsection it was shown that the proposed model is able to recover IBEs
from equilibrium properties Req and q with a reasonable accuracy, in particular when
using DFA-specific parameters. While extrapolating results towards high q and low R
(formal bond orders ≥ 3) may not be accurate due to the construction of the dataset,
interpolation within the single-to-double bond regime should provide highly accurate
results.

Naturally, this may be changed by modifying (or expanding) the reference dataset,
which is focused on single and double bonds. In any case, the model as it is suffices to
demonstrate some simple applications.
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Figure 5.13: Averaged absolute value of standardized residuals per method in the test
set. Method 46 corresponds to HF, method 48 corresponds to the Xα DFA.

Figure 5.14: Evolution of VNN , VBN and T with R according to the fitted model
parameters (IBE4, Equation 5.34) for a fixed value of q.

C–C bonds in ferrocene

Ferrocene is somewhat of a misterious molecule due to its markedly non-Lewis character.
Achieving a rational understanding of the electronic structure and bonding in ferrocene
is quite hard from a FMT interpretative basis. With this in mind, a beautiful yet simple
application of our model is comparing the IBE of C–C bonds of the cyclopentadienyl
anion (Figure 5.16 A) on its own and in the ferrocene Fe(C5H5)2 molecule (Figure 5.16 B)
in order to evaluate the differences in strength of the carbon structure upon coordination.

The optimized geometries and wave functions for both systems, calculated at the
ωB97XD/def2-QZVP level, give q = 2.9002 electrons and Req,C−C = 1.4067 Å for the
anion and q = 2.5414 electrons and Req,C−C = 1.4182 Å for ferrocene. Coherently, a
large amount of charge is transferred to the formally doubly charged iron atom upon
complexation. In spite of this, IBEs of 159.88 and 146.12 kcal/mol are obtained
respectively, which means that each C–C bond becomes 13.76 kcal/mol weaker in
ferrocene.

At this theory level the IBE of C–C bonds in benzene is 159.62 kcal/mol, almost
the same result obtained for the anion. Bond-nuclei attraction VBN is increased in the

183



Chapter 5. A Modern Bond Charge Model Ansatz

Figure 5.15: Evolution of VNN , VBN and T with q according to the fitted model
parameters (IBE4, Equation 5.34) for a fixed value of Req.

A) B)

Figure 5.16: Isosurfaces of ηELF (r) = 0.85 a.u. of A) the cyclopentadienyl anion, B)
ferrocene Fe(C5H5)2. C, H and Fe atoms shown as grey, white and orange balls-and-
sticks respectively. C–C ELF basins are depicted in green, while C–H basins are colored
light blue.

anion with respect to the neutral benzene, as given by the extra electron, but most of
the stabilization is counteracted by an increase in T , rendering approximately the same
IBE. When compared to ferrocene, the small loss in IBE per bond (mostly in form of
VBN , which decreases noticeably as q decreases) is globally justified by the formation of
the haptic bond with the metallic center, and explains why the carbon structure remains
similarly stable in the coordinated species.

From our analysis, we can say that no significant improvement in C–C cleavage is
in principle expected in ferrocene when compared to the anion. The difference in bond
strength, as estimated from the IBE, is in agreement with the changes in the stretching
C–C frequency from ferrocene, around 1400 cm−1, compared to benzene, around 1500
cm−1.[74] Similar analysis may be performed on transition structures and molecular
systems of interest in the context of computational organic and inorganic chemistry, all
at a negligible cost.

184



5.3. Bond Properties from Equilibrium Properties

C–C bonds in carbon allotropes

The presented model may be used to study solid state systems, among which carbon
allotropes are highly important. Periodic systems may be studied computationally as well,
and interpretation is often difficult due to the additional difficulties in orbital localization.

A) B)

Figure 5.17: Isosurfaces of ηELF (r) = 0.85 a.u. of A) diamond, B) graphite. C atoms
are shown as grey spheres. C–C ELF basins are depicted in green.

As an example, we will examine two common allotropes of carbon, diamond and
graphite. Optimizing the geometry of diamond using the HSE06 DFA (Figure 5.17 A)
leads to a C–C equilibrium distance Req,C−C = 1.5359 Å and the integration of the
valence electron density in the ELF basins gives localized covalent bonds with q = 2.0052
electrons. With the HSE06 parameters, an IBE of 113.02 kcal/mol is obtained, which
is analogous to the simple bond in ethane in the set (112.93 kcal/mol). This suggests
that covalent bonds in diamond are very similar to simple C–C bonds elsewhere, with
energetic differences arising purely from reorganization terms. Interestingly, the natural
decomposition of the proposed ansatz shows that the alleviation of nuclear repulsion VNN
in diamond is able to counteract the loss of bond-nuclei stabilization.

Graphite (5.17 B), optimized and calculated at the same level of theory, presents
an Req,C−C = 1.4154 Å and q = 2.6667 electrons, which estimates a IBE of 148.42
kcal/mol, in the order of weaker aromatic bonds. In turn, this supports the notion that
aromaticity in graphite is slightly different from smaller aromatic hydrocarbons, which
has been suggested previously on different basis.[75] Coherently, we expect a graphite
sheet to behave like an extended aromatic system in which bonds are somewhat weaker
than the ones in benzene at the individual level.

This simply comes to show that a variety of systems can be tackled with our approach,
including periodic materials, and coherent results are obtained.
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Chapter 6. Density-Bond Energy Relationships

In Section 2.4 of Chapter 2, some of the main errors that plague DFT were introduced.
In particular, we introduced the notion of density and functional errors in Subsection
2.5.3.

On the other hand, in Chapter 5 we have built an approach to the modelling of
chemical bonds which, in spite of its simplicity, is semiquantitative within its domain
of application. This was shown to be due to the strongly respected assumptions that
the ELF-BCM approach uses as foundations. Several of the fundamental quantities that
are used in this approach – and derivations thereafter – require accurate calculation of
energetic and electronic features.

Thus, there is a feedback connection between both issues. Currently, DFT is not
able to exactly connect the electron density ρ(r) with the energy. We have built a
semiquantitative model that achieves this at a local level using DFT data, but we do
not know what the effect different DFAs have in the relationship between bonds and
energies – we use DFT equilibrium properties to model DFT Intrinsic Bond Energies
(IBEs).

In Section 5.3 it was shown for C–C bonds that, on average, DFAs seem to connect
bonding densities, equilibrium geometries and IBEs similarly. In this Chapter, we will
investigate further in this regard in the wider context of DFT. We will attempt to
understand what the effect of different DFAs is on the local properties of chemical
bonds, and most of all, the qualitative errors that may arise due to these discrepancies.

6.1 Density errors in modern Density Functional
Approximations

As introduced in Section 2.4, DFAs to the exact exchange-correlation functional (Exc[ρ])
are usually ordered along Jacob’s ladder.[76] This classification uses the fact that higher
rungs include more sources of information. An increase in sophistication, however, does
not guarantee an increase in performance.

An increase in the number of sources of information does necessarily increase the
flexibility of DFAs, allowing them to reproduce features that simpler models could not
due to the additional degrees of freedom. Naturally, this is desirable. However, it also
means that improvement can be “artificially” insufflated into DFAs through extensive
parametrization and fitting. Indeed, this is a popular trend in DFA development, with
many DFAs exceeding the 50 parameter mark. Recall, however, that even the simplest
DFA is already parametrized to reproduce the HEG model.

Optimizing the parameters in a given DFA formulation always poses two troublesome
questions: first one must determine which properties are the ones a fitted DFA should
aim to reproduce; afterwards, a set of representative systems has to be chosen for those
properties. In general, there are two viable approaches to this conundrum. One is to
simply reduce the scope of a given DFA to a certain set of systems and properties, akin
to what has been presented in the application of the ELF-BCM approach in Chapter
5, which will be representative for a small chemical space. The main alternative is the
creation of vast datasets of chemical information, in an attempt to blindly cover as much
chemical space as possible.

In the end, the amount of such parameters varies wildly among DFAs. Two general
schools of thought with respect to parametrization coexist nowadays. Some authors try
to avoid it at all costs, continuously searching for strict physical constraints that can
be mathematically transferred to Exc[ρ].[77] Others embrace the inclusion of empirical
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parameters as a necessary yet fruitful tool in the development of accurate DFAs, willing
to counterbalance the increase in accuracy for the reference data with a somewhat limited
scope.

Both approaches have in common that the energy of the system remains the most
relevant observable in terms of parametrization, evaluation, and overall usage, be it in
absolute or in relative terms. This is coherent with the fact that that the energy is the
most important property, the prevalence of the Hamiltonian operator, and the
connection of quantum mechanics and thermodynamics through energies. However, as
it will be covered in the next Subsection, it might not always be the best criteria from
the parametrization point of view – and finding alternative criteria might not be trivial
either.

6.1.1 Quantification of Density Errors

Given the exact expression of Exc[ρ], the energy of a many-electron system is minimal
for the exact density distribution (see Section 2.4). However, with DFAs, the relationship
between energies and densities is not exactly known.

One practical consequence of this lack of an exact connection is that the self consistent
density obtained through a SCF procedure using the KS scheme may not necessarily be
the proper one. The only guaranteed fact is that the resulting density satisfies the KS
equations for the corresponding exchange-correlation potential vxc. As the SCF operates
in terms of the energy, and understanding that the DFA of choice may or may not be close
to Exc[ρ], the self-consistent density might not be accurate at all, quite independently
from the accuracy of the energy. As previously stated, the energy – be it absolute or
relative – is the most relevant property in DFA parametrization and benchmarking. In
this context, it has been strongly suggested that excessive parametrization can lead to
good thermochemical behavior precisely at the cost of a good description of ρ(r) – and
its derived scalar fields.

The electron density ρ(r) can formally be expressed as the derivative of the total
energy with respect to the external potential with a constant number of electrons N .
From the point of view of simple interpolation theory it is easy to understand why a
functional empirically fitted to reproduce the absolute energy may be inaccurate for the
derivatives of the energy: just like any function may be fitted by a polynomial of arbitrary
order, the energy can be fitted, but the derivatives may be completely wrong.

Summarizing: in KS-DFT uncontrolled effects (i.e. spurious error compensation) can
lead to precise results in the energy, the density, both, or the improvement of one precisely
at the cost of the other. As the number of empirical parameters increases, the energies
may improve – as expected, due to the addition of degrees of freedom to the model –
but ρ(r) may worsen. Still, as we have seen in Chapter 4 and Chapter 5, ρ(r)-derived
quantities contain accesible information related to the energy.

Indeed, attention has been drawn by different authors to the quality of the self-
consistent electron density ρ(r) in different DFAs, with a particular focus in recent DFAs
that include a significant number of parameters.[78, 79, 80, 81, 82] However, density
errors are far less trivial to evaluate than energy errors. In fact, ρ(r) is well known for
being rather robust with respect to the calculation level,[83] meaning that differences
are generally small in relative terms.[84] In this Subsection we will try to cover some
proposals and assess critically their potential issues.
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ρ(r) EHF [ρ] ESVWN [ρ] EPBE [ρ] EB3LY P [ρ]
HF -1.132514 -1.136549 -1.165341 -1.172321

SVWN -1.131812 -1.137237 -1.165704 -1.172620
PBE -1.131711 -1.136851 -1.166085 -1.173029

B3LYP -1.131750 -1.136814 -1.166072 -1.173042
FCI -1.082181 -1.103879 -1.133022 -1.136497

Table 6.1: Energies (a.u.) for the H2 molecule at internuclear distance Req = 0.76090
using a cc-PVTZ basis set and different methods evaluated using different densities non-
self-consistently.

Density error for a given Density Functional Approximation

In Subsection 2.5.3 (Equation 2.149) we defined the density error in terms of the energy,
that is, the difference in energy for the exact density functional using the exact density –
which is guaranteed to give the minimum energy – and an approximate density. Naturally,
as the exact functional is not available, we can only use this definition in relative terms.

As an example, we may compare a few DFAs, namely SVWN, PBE and B3LYP,
popular in many contexts, for the humble H2 molecule once again, using an equilibrium
distance Req = 0.76090 Å and a cc-PVTZ basis set. Some key results are summarized
in Table 6.1, where the diagonal elements of the first block are the energy given by a
DFA using its self-consistent density, and non-diagonal elements are the DFA evaluated
on the self-consistent density of a different method. For reference, the FCI energy for
this geometry and basis set is -1.172124 a.u. Note that Table 6.1 is not symmetric, which
means that two DFAs may be connected following two different paths.

Using the reported data, and assuming that the one-particle density matrix from FCI
is exact at this level of theory, we may calculate the density error ∆Ed terms of Equation
2.149 for the DFAs, and thus we obtain

∆EdSVWN = ESVWN [ρ′]− ESVWN [ρ] = −1.137237 + 1.103879 = −0.033358
∆EdPBE = EPBE [ρ′]− EPBE [ρ] = −1.166085 + 1.133022 = −0.033063

∆EdB3LY P = EB3LY P [ρ′]− EB3LY P [ρ] = −1.173042 + 1.136497 = −0.036545

where ρ′ is the self-consistent density of the method and ρ is the FCI density. These
results suggest that the density error is similar for all three DFAs, albeit a bit larger
for B3LYP. As said before, the functional error ∆Ef (cf. Equation 2.150) cannot be
calculated on an approximate density without the exact exchange-correlation functional,
but we may decompose the total error ∆E (with respect to the FCI result) as ∆E =
∆Ed + ∆Ef to obtain the following functional errors:

∆EfSVWN = 0.034887 + 0.033358 = 0.068245
∆EfPBE = 0.006039 + 0.033063 = 0.039102

∆EfB3LY P = −0.000918 + 0.036545 = 0.035627
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In this case, the evolution between rungs seems noticeable: B3LYP has a much smaller
functional error than the LDA representative. Nevertheless, note that this analysis is
highly biased due to the fact that we are not calculating ∆Ef explicitely. Hypothetically,
we could have taken the alternative route, that is, calculating ∆Ef first and then deducing
∆Ed. As the total error is much smaller in B3LYP than in SVWN, the error we evaluate
implicitely will probably be smaller.

Let us take HF as the exact exchange-correlation functional and density in order
to demonstrate this point. Once again, we evaluate ∆Ed (in which the superscript 1
indicates calculated first) as

∆Ed1
SVWN = −1.137237 + 1.136549 = −0.000688

∆Ed1
PBE = −1.166085 + 1.165341 = −0.000744

∆Ed1
B3LY P = −1.173042 + 1.172321 = −0.000721

Again, we get very even and small errors. We now evaluate the functional error ∆Ef
in second place (hence the superscript 2) as before:

∆Ef2
SVWN = 0.004723 + 0.000688 = 0.005411

∆Ef2
PBE = 0.033571 + 0.000744 = 0.034315

∆Ef2
B3LY P = 0.040528 + 0.000721 = 0.041249

According to which, B3LYP is has the largest functional error. Let us calculate the
functional error first now as in Equation 2.150, using HF as the reference “exact” func-
tional;

∆Ef1
SVWN = −1.137237 + 1.131812 = −0.005425

∆Ef1
PBE = −1.166085 + 1.131711 = −0.034374

∆Ef1
B3LY P = −1.173042 + 1.131750 = −0.041292

The resulting ∆Ef is nearly opposite to the previous estimate in all cases. We now
calculate the density error in second place as

∆Ed2
SVWN = 0.004723 + 0.005425 = 0.010148

∆Ed2
PBE = 0.033571 + 0.034374 = 0.067945

∆Ed2
B3LY P = 0.040528 + 0.041292 = 0.081820

The resulting density errors are quite different and significantly larger. Let this
example showcase the problems of this definition: the total error is a sort of state
function, but only the total error is properly defined. Quite simply,
∆Ef1 + ∆Ed2 = ∆Ed1 + ∆Ef2 but in general ∆Ed1 6= ∆Ed2. Consequently, this
approach is not very pragmatic for the quantification of density errors in a global way,
as it would be needed for parametrizing a given DFA ansatz. However, knowing its
limitations it can be used critically at times in order to discuss DFT-related problems.
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Figure 6.1: Radial Distribution Function (RDF) of the electron density of the Ne atom,
calculated with different methods and the def2-QZVPP basis set.

Atomic radial distribution functions

As geometry independent systems, atoms are frequently used models. The radial
distribution function of the electron density may be used to quantify density errors.[78]
As suggested before, the electron density is quite robust, particularly so in atomic
systems. This is due to the extremely strong nuclear potential. Considering the radial
distribution function instead of the electron density itself somewhat alleviates the
problem by downscaling the nuclear cusp, but still the resulting functions are close to a
perfect overlap. This is exemplified on the Ne atom in Figure 6.1.

As a reference, for this system (consider that noble gas atoms are a typical reference
dataset for DFA development) the error in the radial distribution function of ρ(r) is
always bound by 0.10 a.u. in absolute terms, while the function itself is, for the most
part, well over an order of magnitude higher in value. Thus, it is quite hard to appreciate
significant differences using this function as an indicator.

Instead of the density itself, we may examine the gradient of the electron density,
~∇ρ(r). Given the piece-wise pseudo-exponential shape of ρ(r), we expect the gradient
to be more sensitive than the density itself. However, the gradient is still quite robust
for atomic systems, as showcased in Figure 6.3. In fact, it is so robust that basis set or
algorithmic differences may be more significant than the exchange-correlation potential
of choice – for atomic systems in particular.

The differences in gradient are highlighted in Figure 6.4, where it can be noted once
more that the scale is extremely small compared to the function itself. In fact, the error is
mellowed out in relative terms because the radial distribution function does not downscale
the region with the largest values in this case (see Figure 4.3 for reference).

Arguably, the Laplacian of the electron density should be somewhat more sensitive.
However, as argued for the gradient, higher order derivatives are far more sensitive to
all other factors as well, such as integration grids or basis set choices. Hence, it does not
seem that comparing the radial distribution functions of some arbitrary derivative of the
density should be very informative.

Most of these issues stem from the fact that atoms are quite exceptional chemical
systems. In fact, as suggested in Chapter 1, atoms as isolated quantum systems may be
considered more of a model than a chemical species. The density distribution in atoms is
very strongly governed by the nuclear potential and the role of the exchange-correlation
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Figure 6.2: Electron density difference Radial Distribution Function (RDF) of the Ne
atom with respect to the CCSD level, calculated with different methods and the def2-
QZVPP basis set.

Figure 6.3: Radial Distribution Function (RDF) of the electron density gradient of the
Ne atom, calculated with different methods and the def2-QZVPP basis set.

Figure 6.4: Electron density gradient difference Radial Distribution Function (RDF) of
the Ne atom with respect to the CCSD level, calculated with different methods and the
def2-QZVPP basis set.
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potential of choice is very limited. In terms of the density error, we expect ∆Ed to be quite
small for atoms. For instance, the Ne using a cc-PVDZ basis set leads to EB3LY P [ρ′] =
−128.871112 a.u.; if we use the HF density instead we obtain EB3LY P [ρ] = −128.870651
a.u., that is, a negligible difference ∆Ed1

B3LY P = −0.000461 a.u ≈ −0.29 kcal/mol. Similar
results are obtained for other DFAs (e.g. ∆Ed1

PBE = −0.40 kcal/mol) and for other atoms.
In this sense, and considering the values in Table 6.1, it must be noted that the ∆Ed1

here is much smaller in relative terms, considering the much larger energy of Ne. This
trend is actually preserved across a wide chemical space: atoms are very uninteresting
systems because the features that matter most in chemistry (e.g. bonds, lone pairs) are
actually missing. In DFT parlance, we may say that atoms are normal, meaning that the
density error ∆Ed1 is very small. We only expect ∆Ed1 to be large in situations where a
given DFA fails qualitatively in such a way that the self-consistent density is remarkably
bad, and this is not the case for an atom where the density is controlled by the nuclear
potential – and, to a lesser extent, the basis set choice.

On the other hand, because most of the density is accumulated in the nuclear cusps,
atomic densities are very important in the total energy. DFAs relate local properties of
ρ(r) with the energy. Given that the value of ρ(r) is higher in the proximity of the nuclei
than in the rest of the molecule by several orders of magnitude, the energy of atoms may
be a good indicator of the accuracy of a DFA.

Global density differences

Naturally, for a given molecular geometry we may calculate a density difference function
in order to evaluate the quality of the density. As the FCI density is quite unaffordable,
we may use for instance

ρdiff (r) = ρCCSD(T )(r)− ρ(r) (6.1)

in which we assume that the CCSD(T) density matrix is a good reference. This is not
a gratuitous assumption, but can be justified by the accuracy of the CCSD(T) method,
which gives very good energies and also describes molecular dipole moments, which may
be obtained experimentally. This signals that ρCCSD(T )(r) is indeed a proper density
distribution.

For convenience, we may also define a global descriptor Λdiff by integrating over r,
as

Λdiff =
∫
| ρdiff (r) | dr (6.2)

in which the absolute value is taken to avoid compensation from negative and posi-
tive regions. As the integration will usually be performed numerically, verifying the grid
becomes straightforward. We simply need to assure that∫

ρdiff (r)dr = 0 (6.3)

because naturally the number of electrons N is the same. This is quite convenient.
Λdiff is also robust with respect to the integration grid. For example, taking the root
mean square deviation – with respect to a reference density – over space, which is arguably
a more representative statistical moment, is more sensitive to the grid construction (i.e.
uneven sampling of high-error and low-error regions modifies the average significantly).
In any case, both descriptors should be related to the distribution, and thus we will go
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with the advantageous Λdiff for simplicity. Do note that the grid sampling issue is quite
critical, as showcased by the radial distribution function plot of Figure 6.2. There are
several points in which the error is effectively 0, and thus there is a potential sampling
scheme in which the error is zeroed out. We expect to avoid such issues with Λdiff .

The robustness of ρ(r), as well as its prevalence near nuclei, means that distributions
do not change much qualitatively. This is shown for the CO molecule in Figure 6.5 using
HF and the PBE DFA as examples at a fixed geometry (Req = 1.1304 Å). Empirically it
is found that ρdiff (r) is maximal near nuclear positions, which is shown analogously in
Figure 6.6. This is not very surprising, considering that most of the density is surrounding
the nuclei. In this particular case, PBE seems to perform significantly worse in the vicinity
of the nuclei.

However, in relative terms, the error is spread quite differently. Due to the fact that
very small density values – over somewhat large regions of space – account for chemical
bonds and lone pairs, the error in relative terms is usually significantly larger for bonding
regions than for core regions. This is exemplified in Figure 6.7 using the same system as
before. Note how, in relative terms, the error near the nuclei is less than 0.5%, while it
can be up to 10% in some chemically meaningful regions. In fact, sampling a variety of
chemical systems reveals that these relative errors can be even larger, up to a striking
25%.

Thus, at this point it seems coherent to think about density error localization,
rather than quantification. If we attempt to quantify density errors in absolute terms
we will mostly measure errors in core densities (i.e. surrounding the nuclei), which are
not necessarily chemically relevant. Normalized metrics or arbitrary partitions can
forfeit chemically relevant information, as it will be shown later using Λdiff (Equation
6.2), and would naturally compromise any global measurement of ρdiff as an indicator
of quality.

As covered in Section 3.1 of Chapter 3 from the orbital point of view, and in Section
4.2 from the real space point of view, we expect chemistry to arise from deviations from
atomic behavior. This much can be understood as the formation of molecular orbitals
from the interaction of atomic orbitals (e.g. bonding orbitals), leading to larger
probability densities, or as a reorganization of ρ(r) itself (i.e. apparition of critical
points). Core densities are disregarded as chemically meaningful in many contexts,
including frozen core approximations (on which we have commented before),
pseudopotentials in basis set expansions and even in the model developed in Chapter 5.
Chemistry, at least for the most part, is quite disjointed from the feature of inner core
electrons which do not interact, which is perhaps more easily understood considering
the extremely low energies of core orbitals and the derivations in Section 3.1 and
Subsection 3.1.1 in particular. For the most part, core orbitals remain unaltered upon
chemical transformation and their contribution to the total energy is thus constant.

Due to the observations in this Subsection, and the aforemenctioned thoughts on the
relevance of core densities, in the following Subsections we will try to use some tools from
Chapter 4 to dissect the errors in ρ(r) in space, instead of using global descriptors. We
will, however, commence by understanding and demonstrating empirically how poorly
global descriptors behave and how this ineffectivity is linked to the localization of density
errors.

6.1.2 Delocalization Error
As we have seen in the previous Subsection, density errors are more significative (in
relative terms) in bonding regions than in core regions. This observation can be
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Figure 6.5: ρ(z) along the internuclear axis of CO. Calculated with different methods and
the cc-PVDZ basis set. Dashed lines indicate the position of each nuclei.

Figure 6.6: ρCCSD(T )(z)−ρ(z) along the internuclear axis of CO. Calculated with different
methods and the cc-PVDZ basis set. Dashed lines indicate the position of each nuclei.

Figure 6.7: ρdiff (Equation 6.1) as a percentage of ρCCSD(T )(z) along the internuclear
axis of CO. Calculated with different methods and the cc-PVDZ basis set. Dashed lines
indicate the position of each nuclei.
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understood in terms of the SIE (see Subsection 2.5.3), which is often interpreted in
terms of delocalization. As we have discussed, local and semilocal DFAs suffer from
dramatic SIEs which, specially at the low N limit, cause a qualitative breakdown.
Recall that this is given by the fact that electrons interact with themselves because the
exchange integral does not cancel out with the coulomb integral. In HFT, there is no
SIE, but there is no instantaneous electron correlation whatsoever (see Section 2.3 for
details): electrons do not interact with each other instantaneously.

Core electrons are tightly bound to the nuclear potential, which in most cases (as Z
increases) is extremely strong in the vicinity. Hence, correlation effects are less relevant
locally, as the one-electron electron-nuclei term is far larger. This does not mean that the
correlation energy of core electrons is small, in fact it will almost always be very large
(averaged per electron). However, we expect that it will almost always be the same in
different chemical environments. Analogously, SIEs between core electrons will also be
large due to the enormous values of ρ(r) near nuclei, but constant and not qualitatively
meaningful compared to the nuclear potential. Core-valence effects, however, may be
relevant for an accurate description.

As far as covalent bonds are associated with localized electron densities which are far
from the nuclei, it is reasonable to think about them as sensitive to both delocalization
and correlation effects. In such a bond (e.g. covalent bond in H2), there is a significant
density accumulation, owing to the formation of a bonding orbital, in MO theory terms.
The bonding orbital will be a linear combination of the hydrogen 1s AOs, which are
exponentially decaying otherwise, and normalization will impose that it takes significant
values in the internuclear region. Analogously, we expect the kinetic energy density to
be quite reduced in the region belonging to the chemical bond. Now, in this covalent
bond, the two electrons that belong to the bonding orbital have opposite spin and are
consequently correlated through Pauli’s principle. In HFT there is no more correlation
to be seen: the two electrons will only interact electrostatically with an average, and the
probability density of the MO will be maximal near nuclei (for illustrative purposes, the
electron density in H2 is presented in Figure 4.2). Therefore, other than the α and β spin
restriction, the electrons in the bond barely interact with each other.

In a local DFA, however, the situation is quite different. Because the electrons formally
interact with themselves, the coulombic repulsion they feel with respect to each other is
significanlly increased. The two electrons can not be very localized due to this additional
(unphysical) repulsion: they tend to spread more. This is not surprising, as LDA is based
on the homogeneous electron gas, in which electrons are spread homogeneously.

Let us exemplify this. In a minimal basis set calculation of H2 there is no optimization
of the MO coefficients (recall Subsection 3.1.1), therefore the only density difference
between HF and a given DFA is Req, which enters in the MO expression through the
overlap integral, and the energy evaluation that determines the optimal bond length.
Coherently, Req is (using a minimal STO-3G basis set) 0.7122 Å at the HF level, and
increases to 0.7361 Å using the SVWN3 LDA. The FCI result is Req = 0.7349, which lays
in between the two results but significantly closer to the DFT calculation. For reference,
MP2 leads to Req = 0.7237 which is also in between them. In a sense, the DFA mimics
correlation effects, albeit the effect is subtle in this case.

If we move to a more sensitive system, H2
+, we now find Req = 1.0606 for HF/STO-

3G and Req = 1.1454 for the LDA. The difference is almost a 10% of the internuclear
distance because here SIE is not compensated by correlation effects missing in HF.

This fact systematically leads to DFT energetically favouring delocalized densities
due to the energetic penalty SIE inflicts in localized densities. Hence, these errors are
sometimes referred to as delocalization error.
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Bond length alternation

A prototypical example of delocalization error in action is the description of conjugated
systems. Conjugated double bond chains are sensitive to this error because HF tends to
localize electrons, leading to stronger double bonds and weaker single bonds, and LDAs
tends to make all distances similar to each other due to the artificial delocalization of
the density. Thus, as in the previous example, the optimized geometries are significantly
affected by the method.

Thus, we may collect the differences between two approximate methods in a single
number known as Bond Length Alternation (BLA)[85]:

BLA =
∑
i ldb,i − lsb,i

i

where ldb,i and lsb,i are the lengths of adjacent double and single bonds for each ith
–CH––CH– unit. Small BLAs reveal that double and single bonds are very similar in
length and vice-versa. Consequently, we may predict HF to lead to large BLAs, with
strongly localized double and single bonds that are dissimilar in length, and LDAs to
lead to smaller BLAs. A BLA near 0 means that all bonds are nearly equal. Note that
BLAs can be calculated using bond orders or other descriptors for bonds.

The evolution of BLA with the number of –CH––CH– units, calculated with different
methods, is presented in Figure 6.8. As expected, HF provides the least delocalized and
LDA the most delocalized conjugated system. The reference value at hand, calculated
with the a simplified coupled cluster method (details on the CC2 method can be found
in Reference [86]), as well as other calculation levels, all fall within the HF/LDA range.
The difference between the HF and LDA value is quite large: at two –CH––CH– units it
represents 30% of the absolute value, and it increases with the length of the chain. This
leads to a large overall difference between the two methods, and a qualitatively different
description of the system. It also exemplifies a well-known caveat of delocalization error:
it depends on the size of the system, which is a tremendous pitfall for the modelling of
certain periodic systems.
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Figure 6.8: Bond Length Alternation (Å) in a chain of conjugated double bonds as the
length of the chain increases. Calculations carried out with different DFAs, Hartree-Fock
and CC2.
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6.1.3 Localization of Density Errors
Different subspaces of ρ(r) contribute differently to the energy in DFT.[87, 88]
Analogously, different energy-based corrections of DFAs, such as those for
self-interaction errors (cf. Subsection 2.5.3), have been shown to affect the density in a
similar way in internuclear regions.[89, 90]

In Subsection 6.1.1 we have shown how, in relative terms, the description of bonding
regions is far more method-dependant than those of core regions. As discussed in the
previous Subsection, we expect the density on bonding regions to be particularly
important for the correct description of chemical phenomena. Indeed many DFAs are
parametrized with respect to relative energies (e.g. reaction energy barriers), where core
effects are expected to remain quite constant. Thus, there is a possibility that
energy-based parametrization strategies indirectly improve the density in some
meaningful regions of space.

Potentially, this implies that a heavily parametrized DFA that draws on relative
energies may be very accurate at describing bonding densities, even if the core densities
(which are more relevant for absolute energies) are ill-described. As shown before, any
global measurement of the quality of ρ(r) would unfairly deem this DFA “unphysical”
or “density-error prone”, because core densities are prevalent in absolute terms. On the
other hand, it could be argued that such a DFA is more chemical than one that accurately
describes the absolute energy of, for instance, He, but underestimates reaction energy
barriers.

The only way to clarify this question is evaluating the quality of ρ(r) not as a global
indicator, but rather focusing on a given localized region of space. As seen in Chapter
4, partitioning schemes based in the kinetic energy density are particularly well suited
for this purpose. As an example, the electron density and two scalar fields that were
discussed in Chapter 4 for the CO molecule are shown in Figure 6.9. Note how both ELF
and LOL are able to separate the core region containing most of the density from the
valence region.

A) B) C)

Figure 6.9: Functions calculated over the σv plane of the CO molecule at the CCSD/cc-
PVDZ level: A) ρ(r) B) ηELF (r) C) ηLOL(r).

Let us bring back the LOL from Subsection 4.3.1 (see Equations 4.48 and 4.49 for
details). Recall that ηLOL(r) = 1/2 when the kinetic energy density of the system is
equivalent to that of an HEG of the same density.

Figure 6.10 shows ρdiff (r) over the σv plane of the N2 molecule coupled with
ηLOL(r) = 1/2 countours, as calculated at a fixed equilibrium geometry Req = 1.0984 Å
and a very large aug-cc-pCVQZ basis set. Note how the bonding region, as contained
by the LOL isosurface, matches a distinct excess or defect of electron density depending
on the method. Recall that, given the definition in Equation 6.1, ρdiff (r) < 0 imply an
excess of electron density given by the method with respect to CCSD(T).

199



Chapter 6. Density-Bond Energy Relationships

It seems, therefore, that HF accumulates more density than it should in the bonding
region, while local and semilocal DFAs have a deficit of electron density in the bond. The
LDA, GGA and hybrid representatives (SVWN3, PBE and TPSSh) present increasing
quality while belonging to a similar trend in which ρ(r) is generally higher than the
reference in the core region and spreads in a relatively smooth way compared to HF.
The fact that hybrids seem to be somewhat in between HF and local DFAs, and thus
provide a better density, is to be expected: if HF and GGAs manifest opposite trends,
they should somehow compensate each other when HF-like exchange is combined with
local correlation. M062X, on the other hand, exhibits a different error distribution over
the plane, which resembles a linear combination of HF and GGA far less. In a way, this
means that the parametric degrees of freedom in its formulation are able to introduce
significant flexibility with respect to a simpler DFA; but it also means that the behavior is
less predictable in this regard. Note that, so far, our observations agree with the analysis
in Subsection 6.1.2 in terms of delocalization error.

More ρdiff (r) maps are given in Figures 6.11 to 6.13. It is clearly apparent that some
error distributions are related with chemical entities, such as the one of HF or SVWN3,
while others are quite bizarre (e.g. M06L). Given our observation, it can be suggested
that some DFAs localize errors in an intuitive way, while others do not. This does not
interfere with our previous analysis: the error in absolute terms is always maximal in the
core regions, and only by removing those we can begin to appreciate valence errors which
we expect to be more meaninhful. Indeed, these features do not seem to be related with
the global performance of a given DFA, as measured by Λdiff . This is in turn showcased in
Figures 6.14 and 6.15, which are analogous calculations for the CO and C2H6 molecules
at their respective CCSD(T)/aug-cc-pCVQZ equilibrium geometries: DFAs that lead
to very similar Λdiff values have significantly different error localization patterns (e.g.
BHandH and M052X in the case of CO, with almost identical Λdiff = 0.1165 a.u. and
Λdiff = 0.1168 a.u.).

Analogously, it may be noted that HF consistently has an excess of electron density
in the bonds considered, which are in all cases covalent. Other than that, Λdiff increases
significantly on average when moving from CO or N2 to C2H6, in spite of remaining
within the same number of electrons, because more nuclei mean more cusps on which the
error is maximal. Hence, global descriptors are not very transferable (on top of biased).

Figure 6.10: Electron density difference (ρdiff (r), Equation 6.1) maps on the σv planes of
the N2 molecule at Req. ηLOL(r) = 0.5 isolines are shown in black. Methods are detailed
in the top left corners, left to right: HF, SVWN3, PBEPBE, M062X and TPSSh. Basis
set is aug-cc-pCVQZ in all cases.

There is a final, often overlooked, downfall to consider in global descriptors: wherever
we are not purely focused on atoms (see the previous Subsection in that regard) the
geometry comes into play. Λdiff can only be computed with a static molecular geometry.
However, as we have seen, the very subtle – but likely key – differences in bonding regions
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Figure 6.11: Electron density difference (ρdiff (r), Equation 6.1) maps on the σv planes
of the N2 molecule at Req. Methods are detailed in the top left corners, left to right:
HSEh1PBE, B3LYP, M06L and B2PLYP-FC. Basis set is aug-cc-pCVQZ in all cases.

Figure 6.12: Electron density difference (ρdiff (r), Equation 6.1) maps on the σv planes of
the N2 molecule at Req. Methods are detailed in the top left corners, left to right: OPBE,
wPBEhPBE, mPW3PBE and BHandHLYP. Basis set is aug-cc-pCVQZ in all cases.

Figure 6.13: Electron density difference (ρdiff (r), Equation 6.1) maps on the σv planes
of the N2 molecule at Req. Methods are detailed in the top left corners, left to right:
OLYP, BRxKCIS, PKZBKCIS and mPW2PLYP-FC. Basis set is aug-cc-pCVQZ in all
cases.
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Figure 6.14: Electron density difference
((ρdiff (r), Equation 6.1) maps on the σv
planes of the CO molecule at Req. Methods
are detailed in the top left corners, left
to right and top to bottom: BHandH,
M052X, wPBEhVWN and M11. Their
values of Λdiff are: 0.1165, 0.1168, 0.1498
and 0.1503 a.u. respectively. Basis set is
aug-cc-pCVQZ in all cases.

Figure 6.15: Electron density difference
(ρdiff (r), Equation 6.1) maps on the σv
planes of the ethane C2H6 molecule at
Req. Methods are detailed in the top left
corners, left to right and top to bottom:
HF, SVWN3, PBEPBE and M062X. Their
values of Λdiff are: 7.6555, 7.6672, 7.5222
and 7.5271 a.u. respectively. Basis set is
aug-cc-pCVQZ in all cases.

may quickly switch signs if geometries are reoptimized. Such is the scale of the density
differences in bonding regions that a small geometric distortion may affect the difference
significantly, even qualitatively.

For instance, let us assume that HF will always place an excess of electron density in
covalent bond regions with respect to CCSD(T) – at the CCSD(T) equilibrium geometry.
This accumulated density will naturally alleviate the internuclear repulsion, and hence
should lead to a shorter bond if the geometry is reoptimized at the HF level of theory.
The resulting contraction may as well end up dispersing density from the internuclear
axis so that, if each of them is considered in their equilibrium geometries, ρ(r) is the
same. This means that, for the same density, HF alleviates the internuclear repulsion
much better in terms of energy.

The opposite may be happening with local DFAs, which have been shown so far to
place less electron density in bonding regions than CCSD(T). This comes to show the
possible bias introduced by fixing the geometry. Arguably, most “normal” systems do
not have very distinctly different geometries for different (well-established) methods. On
the other hand, precisely the systems in which DFT desperately needs improvement may
have vastly different equilibrium geometries in different levels of theory. For instance, the
He2 dimer that was showcased in Chapter 2 (Subsection 2.5.4) is such an example, in
spite of its simplicity.

Global descriptors and properties

So far we have strongly argued Λdiff , as well as other global descriptors of the quality of
ρ(r), should not be that effective due to the localization of density errors. As in Chapter
5, a diverse array of DFAs is required to test our assumptions empirically. In this Chapter,
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we will use a set of 59 different DFAs in KS-DFT, plus HF and Frozen Core MP2 methods.
The total array of 61 methods will be referred to as the DFA set with numbers 1 to 61.
The list of all DFAs and the numbering is available in the corresponding Subsection 5.3.3,
as it is the same as before. A significantly larger aug-cc-pCVQZ quadruple-ζ basis set
was used in this Chapter to ensure that basis set incompleteness is negligible; this basis
set includes a set of core functions to improve the description of the nuclear cusps.

Let us start by looking at the CO molecule once more. Λdiff was calculated for all
the DFA set. In this particular case, the use of the CCSD(T) density as a reference is
supported by the calculated dipole moment of 0.1169 D, within the uncertainty of the
experimental value of 0.112 ± 0.005 D.[91] As shown in Figure 6.16, Λdiff , for a set of
functionals, is not correlated with the root mean square deviation of absolute or
atomization energies (∆Eatom) with respect to CCSD(T), nor with a better dipole
moment, all calculated at the same geometry. This is particularly telling, because
obviously we expect an appropiate distribution to give an appropiate dipole moment.
As Λdiff measures absolute deviations, we might have hoped that it would be
correlated with worse dipole moments, because at a constant N it could potentially
measure the “charge-transfer” between the two atoms. However, this is not the case,
signaling that most of the reorganization is strictly intra-core. The two largest errors in
the dipole moment do match the two largest values of Λdiff , but all other DFAs are
indistinguishable. At the same time, do note the scale of the errors in the dipole
moment, which can be as large as a 350% – these are not small errors. All things
considered, it appears that such reorganizations are, for the most part, chemically
irrelevant; and therefore Λdiff is not meant to correlate with the accuracy of any
relevant property.

In order to check whether the Λdiff was correlated with the error in localized
regions of space, we computed the population of the ELF disynaptic basin ΩVCO, which
for simplicity we shall denote Ωb where the b subscript indicates simply “bond”. Note
that the population of such disynaptic basins was consistently called q in the context of
the ELF-BCM approach (cf. Section 5.2). As shown in the last panel of Figure 6.16,
there is no correlation between Λdiff values and the accuracy of the electron population
of the triple bond, Ωb. This corroborates that Λdiff is, for the most part, dominated by
errors in core regions.

Summarizing, this example on the CO molecule proofs that the errors in the
electron density cannot be related to the errors in properties on their own. As
previously critisized, recall that Λdiff and similar descriptors must be computed using
frozen geometries and relatively strong electronic forces may be present for some DFAs.
All our observations so far are replicated in N2 (Figure 6.17), C2H6 (Figure 6.18) and
other molecules. Consequently, the minimization of Λdiff as a DFA parametrization
criterion does not seem to be useful at all, nor it is useful for interpretative purposes
because it is not able to grasp the localization patterns of density errors.

Localized descriptors

As we have thoroughly argued and shown that global descriptors, as introduced in
Subsection 6.1.3, are a poor choice for most applications, we will switch to a different
paradigm from now on.

By focusing only on the electronic population of a given covalent bond, given by the
disynaptic ELF basin Ωb, we may reveal explicitly the effect of different DFAs in the
chemical bond. In principle, integrating ρ(r) in Ωb gives a number of electrons associated
with the bond, at any given geometry, and thus constitutes a transferable index because,
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Figure 6.16: Correlation between Λdiff and the relative error with respect to the
CCSD(T) reference in several properties for the CO molecule at Req for the DFA
set. Least-squares fits are drawn as dashed black lines with their Pearson correlation
coefficients shown top left of each plot.

in this case, geometries can be optimized tightly for every method. This is coherent
because, due to the robustness of ρ(r), the change in geometry from a given reference
to the minima of the potential energy surface for each DFA may switch a method from
an “overpopulated” (i.e. more density than the reference in the bond region) basin to
an “underpopulated” one, better reflecting the character of the DFA. Other integrated
topological descriptors, such as AIM charges (see Section 4.2 of Chapter 4), are equally
comparable at different geometries.

Following the previous example, for which we know that the CCSD(T) density is
accurate, the bond populations for all the methods in the DFA set have been
calculated. As in Chapter 5, attractors and basins have been merged accordingly in
order to retrieve the full triple bond population whenever needed, as not all DFAs
provide isotopological ELF profiles due to degeneracy issues (see Section 4.3 for
details). Raw results are presented in the Appendix (Section A.2), but a small selection
is collected in Table 6.2 for illustrative purposes. Once more, results match previous
observations, with HF being clearly the most populated basin, and both PBE and
SVWN3 less populated than the CCSD(T) reference, as per the delocalization error
they suffer. Most higher rungs DFAs give bonding densities somewhat in between.

As noted before, from an electrostatic point of view higher charge concentrations in
bonding domains should coherently lead to stronger bonds, and indeed HF seems to lead
to bonds that are both shorter and have higher densitiy values. Figure 6.19 A shows that
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Figure 6.17: Correlation between Λdiff and the relative error with respect to the
CCSD(T) reference in several properties for the N2 molecule at Req for the DFA
set. Least-squares fits are drawn as dashed black lines with their Pearson correlation
coefficients shown top left of each plot.

Figure 6.18: Correlation between Λdiff and the relative error with respect to the
CCSD(T) reference in several properties for the ethane C2H6 molecule at Req for the
DFA set. Least-squares fits are drawn as dashed black lines with their Pearson correlation
coefficients shown top left of each plot.

Method Pop. Ωb Vol. Ωb Req ωh ∆Eatom
PBEPBE 3.0110 59.09 1.1353 2162.47 269.16
BLYP 2.9835 54.84 1.1355 2161.34 262.21
B3LYP 3.0874 62.45 1.1237 2251.95 255.69
mPW1LYP 3.1014 63.45 1.1218 2266.82 251.96
HF 3.3040 74.56 1.1019 2426.46 175.70
SVWN3 3.0607 59.65 1.1255 2237.59 303.93
CCSD(T) 3.0741 71.51 1.1294 2168.92 257.25

Table 6.2: Descriptors for the respective equilibrium geometries of CO. Population of
Ωb in electrons, volume of Ωb in a.u.−3, equilibrium distances (Req) in Å, harmonic
frequencies (ωh) in cm−1 and atomization energies (∆Eatom) in kcal/mol.
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this is not necessarily the case at all times, as a linear dependency leads to a fitted line
with r2 = 0.5184. The same applies for N2 and C2H6, in Figures 6.20 A and 6.21 A,
respectively. Similar results are obtained for harmonic frequencies (Figures 6.19 C, 6.20
C, and 6.21 C). This is coherent because harmonic frequencies are usually collinear with
bond lengths.

Regarding energetic features, the electronic population of Ωb does not strongly
correlate with the atomization energy ∆Eatom of the C–––O bond, as shown in Figure
6.19B. Neither it does with the atomization energy of N2 (Figure 6.20 B), nor with the
Bond Dissociation Energy (BDE) of the C–C bond in ethane (Figure 6.21 B). It should
be noted that strong trends may be observed in certain handpicked subsets (e.g. DFA
families with the same correlation term), but this does not justify in any way a rigorous
connection between the bonding density and the atomization energy that can be used
as a reference.

Finally, volume and population of Ωb are not inter-correlated (Figures 6.19 D, 6.20 D
and 6.21 D), which signals that the integrated electron density of the basin is related to
the quality of both ρ(r) and τ(r), as a larger volume does not imply a higher integrated
charge. In these cases, bond basins usually are enclosed by larger valence basins (from lone
pairs or hydrogenoid bonds) and thus a reasonable volume estimate can be obtained. Still,
a numerical threshold based on the electron density is used to limit volumes whenever
the function is asymptotically decaying (ρ(r) ≤ 0.001 a.u.).

Perhaps surprisingly, the CCSD(T) result lies within the cloud of DFA results for all
three systems hereby presented (Figures 6.19–6.21) and, in many cases, roughly lies at
separation between pure and hybrid DFAs. The pure-hybrid distinction is blurred in
the case of ethane (Figure 6.21) because certain DFAs overlocalize C–C bonds, while
others favor localizing C–H bonds instead. This circumstance exemplifies how
increasingly polyatomic molecules may achieve, through error compensation, accurate
results in DFT.

For harmonic frequencies, atomization energies and bond lengths, GGAs, meta-GGAs
and low-exact exchange functionals fall close to the MP2-to-CCSD(T) level. The success
of DFT in any of these features, and in bonding densities, is remarkable; moreso when
compared to the HF results which are in principle similar in computational cost and in
nature. CCSD(T), as expected, gives harmonic frequencies, distances and atomization
energies within 1% of the experimental values in all cases.

While DFAs surrounding the CCSD(T) result are very accurate at a relatively low
cost, it is also evident that some hybrid DFAs, specially those with a high percentage
of exact exchange, tend to deviate towards the HF results. Given that HF is exchange-
focused, it may be suggested that there is an underlying connection between exchange
effects, correlation effects and bonding densities. This will be investigated in the following
Subsection in detail.

6.1.4 The role of exact exchange in bonding densities
In Subsection 2.5.2 of Chapter 2 we introduced hybrid DFAs which incorporate exact
exchange, which is justified along the adiabatic connection. In this sense, note that the
success of hybrid DFAs can, a priori, be attributed to a variety of reasons. As we have
discussed before, increased flexibility in the formulation, due to additional adiabatic
parameters, should naturally result in better results in benchmark sets. The SIE
correction, due to exchange cancelling self-interaction, is naturally key in many cases,
as exemplified in H2

+ in Subsection 2.5.4. A third potential reason that we want to
highlight now is the fact that non-local behavior is incorporated through exchange into
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Figure 6.19: Correlation between the population of Ωb and several descriptors for the
CO molecule as calculated by the DFA set, HF, MP2 and CCSD(T). A) Bond length
(Å) B) ∆Eatom (kcal/mol) C) Harmonic frequencies (cm−1) D) Ωb volumes (Å3). Pure
functionals are colored blue, hybrid and double hybrid functionals are colored green, and
wavefunction methods are colored red. Least-squares fits to the DFA set data are drawn
as dashed black lines with their Pearson correlation coefficients shown in each plot.

Figure 6.20: Correlation between the population of Ωb and several descriptors for the
N2 molecule as calculated by the DFA set, HF, MP2 and CCSD(T). A) Bond length
(Å) B) ∆Eatom (kcal/mol) C) Harmonic frequencies (cm−1) D) Ωb volumes (Å3). Pure
functionals are colored blue, hybrid and double hybrid functionals are colored green, and
wavefunction methods are colored red. Least-squares fits to the DFA set data are drawn
as dashed black lines with their Pearson correlation coefficients shown in each plot.

207



Chapter 6. Density-Bond Energy Relationships

otherwise local DFAs. Exchange is non-local by default, while the exchange-correlation
terms in LDAs and GGAs are all based in local properties of ρ(r). Hence, the inclusion
of exact exchange is, beyond question, a valuable asset of DFA development.

In the previous Subsection we have appreciated that the electron density in the ELF
disynaptic basin Ωb is apparently related to the amount of exact exchange in the DFA
formulation. As HF, which is quite poor in energetic aspects but better founded than
DFT in others (recall Subsection 2.5.4) tends to place an excess of electron density in
bonding regions, leading to shorter covalent bonds and coherently wrong dipole moments,
this trend in DFT deserves an investigation.

Consequently, a consistent series of DFAs with increasing HF-like exchange EHFx was
created. A family of simple one parameter hybrid DFAs based on the well-known B3LYP
DFA can be built, which we shall designate BX-LYP.

The BX-LYP single-parameter hybrid series of functionals were built using
Gaussian09 rev.D01. Based on the three-parameter formulation of B3LYP, a simplified
version was used in which the exchange-correlation energy takes the form:

EBX−LY Pxc = aEHFx +(1−a)(ESlaterx +∆EB88
x )+ELDAC +(1−a)(ELY Pc −ELDAc ) (6.4)

The BX-LYP series takes a values ranging from 0.10 to 0.90, with the systematic
nomenclature of B10%LYP, B20%LYP etc. up to B90%LYP.

Analogously, we build a family of one parameter hybrid DFAs based on the simple
SVWN3 LDA, which we shall call SX-VWN3. The SX-VWN3 series takes the form:

ESX−V NW3
xc = aEHFx + (1− a)ESlaterx + ELDAC (6.5)

In which a takes values ranging from 0.10 to 0.90 with the systematic nomenclature
of S10%VWN3 etc. Note that both series converge to the same result when a→ 1.

As a first example, let us calculate and reoptimize CO using the BX-LYP family.
Results are collected in Table 6.3, where the increase in population in Ωb as the EHFx
contribution increases is evident, as well as the shortening of the internuclear equilibrium
distance Req and the increase of the harmonic frequencies ωh. In fact, the percentage of
exact exchange is linearly correlated with these features with very high coefficients of
determination: 0.034 more electrons in the bond basin per 10% more EHFx (r2 = 0.999),
while Req shrinks in 0.0043 Å (r2 = 0.995) and the harmonic frequency increases in 34.85
cm−1 (r2 = 0.997).

Surprisingly, the atomization energy also decreases linearly as EHFx increases: 4.393
kcal/mol less per 10% , with coefficient of determination r2 = 0.999. In fact, this trend is
completely off the mark for many reasons. First of all, because we would expect a shorter,
tighter bond to be stronger as measured by ∆Eatom. In general, we associate larger
bonding densities, shorter distances and larger frequencies with bond strength. However,
as we discussed thoroughly in Subsection 5.3.1 of the previous Chapter, the atomization
energy (which is simply the BDE for a diatomic) is not an intrinsic property. This point
will be revisited later on. Secondly, note that the the CCSD(T) value for ∆Eatom in
CO (as reported in Table 6.2) is 257.25 kcal/mol, with a bond population of 3.0741.
The bond population is nailed at approximately 20% EHFx and the reference atomization
energy is obtained at approximately 10%. This seems to justify a small percentage of
exact exchange, between 10% and 20% , which is not far from the composition of the
original B3LYP DFA and other general-purpose DFAs.

Again, this is not a unique feature of the CO molecule. Figure 6.22 shows analogous
results for N2. The analysis becomes blurred once more atoms are included due to the

208



6.1. Density errors in modern Density Functional Approximations

Figure 6.21: Correlation between the population of Ωb and several descriptors for the
ethane C2H6 molecule as calculated by the DFA set, HF, MP2 and CCSD(T). A) Bond
length (Å) B) Bond Dissociation Energy (kcal/mol) C) Harmonic frequencies (cm−1)D)
Ωb volumes (Å3). Pure functionals are colored blue, hybrid and double hybrid functionals
are colored green, and wavefunction methods are colored red. Least-squares fits to the
DFA set data are drawn as dashed black lines with their Pearson correlation coefficients
shown in each plot.

Method Pop. Ωb Vol. Ωb Req ωh ∆Eatom
B10%LYP 3.0354 58.68 1.1297 2156.56 257.13
B20%LYP 3.0789 61.91 1.1243 2198.18 252.21
B30%LYP 3.1014 62.19 1.1192 2237.55 247.46
B40%LYP 3.1373 64.53 1.1145 2274.88 242.86
B50%LYP 3.1764 68.85 1.1101 2310.33 238.41
B60%LYP 3.2126 67.45 1.1059 2344.07 234.10
B70%LYP 3.2465 71.05 1.1020 2376.21 229.92
B80%LYP 3.2778 753.21 1.0983 2406.88 225.87
B90%LYP 3.3090 76.44 1.0948 2436.16 221.95

Table 6.3: Descriptors for the respective equilibrium geometries of CO. Population of
Ωb in electrons, volume of Ωb in a.u.−3, equilibrium distances (Req) in Å, harmonic
frequencies (ωh) in cm−1 and atomization energies (∆Eatom) in kcal/mol.
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Figure 6.22: Correlation between the population of Ωb (in electrons) of the N2 molecule
and its A) atomization energy (∆Eatom) in kcal/mol, B) equilibrium bond length in Å.
BX-LYP, in blue, consists on a B3LYP modification with increasing amounts of EHFx
(10–90%). SX-VWN3, in green, is a SVWN3 modification with increasing amounts of
HFX (10–90%). Arrows point in the direction of increasing EHFx . Least-squares fits to
each series are drawn as dashed colored lines.

same type of error compensations that arose in the previous Subsection for ethane, but it
is apparent in covalent diatomics that more EHFx linearly leads to a higher population on
the bond, and generally displaces the results in geometries and frequencies towards the
HF limit. Considering the blue crosses in Figure 6.22 A, corresponding to BX-LYP, it can
be clearly seen how a EHFx contribution of 10-20% renders the correct population in Ωb,
as for CO. In this case, accurate atomization energies are obtained with approximately
20% EHFx , while optimal bond lengths (Figure 6.22 B) are obtained at approximately
10% EHFx . Higher percentages lead to a total breakdown. As per the strong collinearity
of bond lengths and harmonic frequencies, the same behavior applies.

Note that in the SX-VWN3 family (green crosses in Figure 6.22) accurate atomization
energies require much higher EHFx content, up to 40%, and are not in line with the
optimization of the bond population. Thus, the correct energetic description can be
artificially obtained by tuning the adiabatic connection, but a proper bonding density
is not achievable within this parametric space. Different properties may indeed have
different optimal spaces in terms of the parameters that have to be adjusted in a given
DFA.[92]

The most immediate takeaway is that, in agreement with what has been covered
in Subsection 5.3.1 in some detail, BDEs are not appropriate for discussing many of
the notions that we associate to bond strength. In particular, note that atomic systems
are quite particular with respect to chemistry as a whole (i.e. they represent a very
limited chemical space). By virtue of their characteristics – high multiplicity and charge
concentration –, atoms are subject to large self-interaction errors, which are alleviated by
EHFx ; an uneven treatment of this error in single atoms may lead to correct – or wrong
– atomization energies for completely unphysical reasons.

However, so far we have used families of DFAs with varying percentages of exact
exchange. In those calculations there will be an associated density error but also an
associated functional error, using concepts from Subsection 6.1.1. We will try to study
both effects independently next.
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Calculations on non-self-consistent densities

As we have shown, higher amounts of EHFx seem to lead to lower atomization energies in
spite of higher populations in Ωb and shorter bonds. The effect of increasing the bonding
density can be explicitly investigated using what has been called Density Corrected DFT
(DC-DFT), which is quite simply analogous to the evaluation of density errors. That is,
the electron density is obtained using a self-consistent field method at a given level of
theory, but the final energy is evaluated using a different DFA. The use of inconsistent
densities has been thoroughly justified both from a conceptual and a practical point of
view recently.[93]

Using the extremely large aug-cc-pCVQZ quadruple-ζ basis set, self-consistent BLYP
densities have been used in combination with the BX-LYP family of DFAs to assess the
effect of EHFx in the DFA that can be associated with the “functional error”. The resulting
composite methods have been named BLYP//BX-LYP (density, then evaluation). On the
other hand, self-consistent densities from the one-parameter hybrid BX-LYP DFA have
been coupled to the BLYP and B3LYP DFAs. As shown before, in this family the bonding
density in Ωb scales linearly with the EHFx percentage. Analogously, the resulting methods
have been termed BX-LYP//BLYP and BX-LYP//B3LYP respectively. This way, the
“density error” can be evaluated. Thus, we isolate the effect of EHFx on the density from
the effect on the DFA. Geometries have been conveniently optimized in all cases using
tight numerical gradients.

Figure 6.23: Dissociation curves for the CO molecule calculated with different methods.
Data points have been fitted to a Morse potential. BLYP and B3LYP are shown in
black solid and dashed lines respectively, and BX-LYP variants (B10%LYP, B50%LYP
and B90%LYP) are shown in red, blue and green small lines respectively. ∆Erel is the
relative energy in atomic units with respect to the isolated atoms.

Let us see the combined density and functional-driven effects in the dissociation
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Method β N2 β CO
BLYP 2.5742 2.2556
B3LYP 2.7966 2.3703
B10%LYP 2.7072 2.3192
B50%LYP 3.0946 2.5487
B90%LYP 3.4491 2.7466
B10%LYP//BLYP 2.5752 2.2662
B50%LYP//BLYP 2.5878 2.3222
B90%LYP//BLYP 2.6562 2.4001

Table 6.4: Well amplitude parameters β in the Morse potential fits for dissociation curves
with different methods for both the N2 and CO molecules. See Equation 5.1 for the Morse
potential function.

curves for the CO molecule and N2 molecules. These are shown in Figures 6.23 and 6.24
respectively, calculated with different methods. The aforementioned effects of increased
EHFx DFAs are noticeable in both cases: equilibrium distances shrink and potential well
amplitudes diminish. We may fit both curves to Morse potentials (recall Equation 5.1)
and analyse the effect in β, the parameter that controls well amplitude. A selection is
presented in Table 6.4. β increases as EHFx does, in agreement with our observation
(albeit not quite as linearly as Req) which leads to steeper potential wells. Note that, as
seen in Figures 6.23 and 6.24, the Morse fits are remarkably good near the equilibrium
region in all cases. In fact, only the highest EHFx methods deviate noticeably from the
Morse potential fit, having an even sharper descent into the well.

If the increase in EHFx affects only the density, as in the BX-LYP//BLYP family,
the effect is the same (i.e. trends in the same direction) but significantly reduced. The
same applies in the BLYP//BX-LYP family. In all cases, functional-driven errors are
predominant and the use of the BLYP density barely perturbs the curves with respect
to the BX-LYP self-consistent densities. However, this much is expected: the difference
in the densities is relatively small, and thus the density error is larger than the density
error.

Figure 6.25 shows, in a different scale, the effect of different bonding densities with
the same DFA. Note that the effects are very subtle because, once more, N2 is what has
been termed as normal (i.e. it does not suffer from a significant density-driven error),
and thus the description given by a DFA does not change significantly upon slightly
varying ρ(r). In any case, as stated before, the effect of increasing the bonding density
non-selfconsistently is akin to increasing the EHFx contribution: it shortens bonds and
reduces the well amplitude.

As a sidenote, the GGA BLYP exhibits significantly greater sensibility to the input
density than the hybrid B3LYP. Thus, BLYP can be considered more “abnormal” than
B3LYP for this specific system. B3LYP DFA is hardly different when evaluated on its
own self-consistent density, the B10%LYP one, or in the B50%LYP one. In this sense, it
is extremely “normal”. In both BLYP and B3LYP the difference between 10% and 50%
HFX is negligible (even more so in B3LYP), yet the difference between 50% and 90% is
noticeable. Considering that the bonding population in Ωb scales linearly with the EHFx
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Figure 6.24: Dissociation curves for the
N2 molecule calculated with different
methods. Data points have been fitted
to a Morse potential. BLYP and B3LYP
are shown in black solid and dashed
lines respectively, and BX-LYP variants
(B10%LYP, B50%LYP and B90%LYP) are
shown in red, blue and green dashed-dotted
lines, respectively. ∆Erel is the relative
energy in atomic units with respect to the
isolated atoms.

Figure 6.25: Dissociation curves for the N2
molecule calculated with different methods.
Data points have been fitted to a Morse
potential. BLYP and B3LYP are shown in
solid and dashed lines respectively. Meth-
ods evaluated on self-consistent densities
are shown in black, while BX-LYP densities
(B10%LYP, B50%LYP and B90%LYP) are
shown in red, blue and green, respectively.
Inset highlights the nearly perfect overlap
between BLYP and B3LYP and their 10%
variants. ∆Erel is the relative energy in
atomic units with respect to the isolated
atoms.

content, this signals that the amplitude of the Morse well has power dependency on the
bonding population – and thus EHFx . This suggests that, in order to correct density-
driven errors, a qualitatively different density should be used, such as the HF one, as
hinted in previous works.[94]

At this point, there is no doubt that the effect of EHFx in covalent bonds leads to
bonds that are not only shorter but also more resilient to elongation, and that this effect
has a density-driven contribution and a functional-driven contribution, both in the same
direction. We expect the density-driven contribution to be small in most “normal” cases.
However, density errors may be superior to those related strictly to the energy evaluation
of the DFA for some abnormal systems. As we have seen, the relative depth of a given
valley on a potential energy curve can change by tuning the density. The effect of density-
based corrections may be even higher if vibrational energies are considered, as in the
calculation of free energy profiles with anharmonicity corrections, and specially so in the
calculation of precise kinetic constants where recrossing effects are considered implicitly
or explicitly.[95] In other words: whenever chemistry is not reduced to differences between
points of a PES.

Hence, at this point we may suggest that incorporating very large percentages of
exact exchange EHFx in a given DFA formulation is not recommendable. This increase
will linearly lead to incorrect bonding densities in covalent bonds, which will have a
clear effect on, at least, calculated bond lengths and frequencies. A reasonable
consensus between LDAs and HF seems to be found in hybrids with a 10–20% of EHFx .
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A balanced treatment of errors in DFT is needed to guarantee that BDEs and
atomization energies are representative of the description of chemical systems, and not
inherently biased towards atoms.

6.2 Qualitative effects of density and functional errors
In the previous Section we have highlighted how delocalization errors affect the density
of localized chemical bonds from both the density-driven and functional-driven points of
view. We have also showcased some of the major effects in selected systems, notably the
bond shortening that HF and DFAs with large amounts of EHFx produce with respect to
a reference.

However, as already discussed, error compensation arises in polyatomic systems,
which somewhat hampers analysis. As in the case of ethane, delocalization errors may
stretch some covalent bonds at the cost of shortening less localized bonds. This mellows
geometric differences, although it carries onto significant features, such as calculated
infrarred spectra. In any case, it is not easy to map this interplay of effects, in which
the scope is already quite limited (i.e. only covalent bonds, only delocalization errors)
in the vast context of general purpose DFT.

In this sense, this Section will be devoted to a particular qualitative example of
limit behavior due to delocalization errors in chemical bonds, which is the calculation of
the optimized geometries of periodic systems. Accordingly, it will be quite succint and
exemplary. The goal is to proof how, in a general way, the observations in the previous
Section can be used to predict qualitative differences due to the different downsides in
one-body Hamiltonian approaches in solid state systems.

6.2.1 Delocalization error in ionic bonds
In the previous Section (cf. Subsection 6.1.2) we have studied the effects of delocalization
error in localized bonds, predominantly covalent. As discussed in some depth in Chapter
1, perfect covalency is defined, unlike perfect ionicity. We can, however, use a model
system, as the Na–Cl dimer, to show how delocalization errors affect very ionic bonds,
just as we did before with H2.

Again, we optimize the Na–Cl internuclear distance with different methods. This time
we will use a significantly larger triple-ζ basis set, def2-TZVP. Using HF, we obtain Req =
2.3838 Å, while a LDA representative (SVWN3) leads to Req = 2.3235 Å. Apparently,
the ordering has been reversed: HF now leads to longer bonds, and LDA leads to shorter
ones. For reference, at the CCSD level we obtain Req = 2.3862 Å, which is much closer
to the HF result, unlike before.

Let us fix a consensus geometry at Req = 2.38 Å to investigate ρ(r) in some detail.
Results are shown in Figures 6.26 to 6.28, in which it is once again clear that errors
are much larger in relative terms in the bonding region, and thus core densities are
approximately constant. The most significant change is that HF now leads to a lack
of electron density in the internuclear region. From a purely electrostatic criteria, and
assuming core densities are nearly identical, this should lead to longer bonds. In other
words, the relative behavior is inversed with respect to covalent bonds once the ionicity
is increased significantly. From a different perspective, the ionic bond can be understood
as electrostatic interactions between effective atomic charges. The Mulliken charges at
the HF level are ±0.730 a.u., which is quite close to the ideal one-electron transfer; LDA
is far less ionic in this sense, ±0.618 a.u. Again, for reference, CCSD natural orbitals lead
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to Mulliken charges of ±0.703 a.u., which is approximately in between and closer to the
HF result. If instead we look at the AIM charges, we obtain ±0.923 a.u., while the LDA
result is ±0.876 a.u., which is once more less ionic.

What this comes to show is how different chemical bonds are affected differently by
delocalization effects. In this particular case, HF leads to a localized situation in atomic
terms: the density is effectively over-localized, but near the atoms instead of in the
internuclear midpoint. On the contrary, LDA still delocalizes unphysically, which results
in an increased density (with respect to the reference) along the internuclear axis, and a
subsequently shortened equilibrium bond length. This reasoning will bear significance in
the following Subsection.

6.2.2 Calculation of cell parameters

DFT is routinely used to model periodic systems. One of the simplest features of a
periodic crystal is the dimension of the unit cell, or cell parameters. From the
experimental point of view, a routine X-ray diffractometer measurement can determine
cell parameters with an excellent precision. With a modern experimental setup, the
uncertainty can be as low as some parts in 10-4 a.u., even for organic crystals, which
can be lessened by a further order of magnitude by employing special techniques.[96]

Let us exemplify with a simple case: NaCl, face-centered cubic sodium chloride. In the
first work by Bragg, dating back to 1913, the value of the cell parameter aexpt was set to
4.45 Å, only to be corrected in the same year to the value of 5.62 Å, which is remarkably
close to the currently accepted value of 5.6401 Å.[97, 98] Owing to its simplicity, the
geometry of the unit cell is often the first quantity that is used to test the adequacy of
a computational model against experimental data.

Noting that the geometry optimization of a solid – which yields the cell parameters
– does not have an associated random error, the calculated cell parameter acalc value
will be affected by systematic errors related to the one-body Hamiltonian approach, the
basis set expansion and small numerical inaccuracies (e.g. integral truncation). We may
thus split the error in acalc with respect to aexpt into modelization errors, that have to
do with the approximation of two-body effects, and discretization errors, which have to
do with the finite treatment of infinite series (i.e. basis set, sampling and truncation).[99]

In the realm of model errors, a key difference between wavefunction and DFT methods
must be noticed: the first ones can build systematic improvements adding correlation on
top of a HF reference (cf. Section 2.3), while DFT is hard to improve systematically.
Indeed, as we have discussed in the previous Section, climbing Jacob’s ladder does not
necessarily mean achieving a better description (i.e. a more expensive or sophisticated
functional will not necessarily lead to a better result). In any case, DFT is by far the
preferred approach to model periodic systems, and many DFAs remain extremely popular.

As discretization errors can be systematically improved, we may focus in model errors
in cell parameters, and we will try to rationalize such errors. Calculations in this Section
were performed using the CRYSTAL code [100] and triple-ζ basis sets (in general, the
POB-TZVP familiy).[101] Details of calculations can be found in the Appendix. As our
two extreme situations, we will use HF and the VBH LDA.[102] In principle, as long as
we avoid non-covalent interactions and strongly correlated systems, the most prevalent
problem should be delocalization error.[103, 104]
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Figure 6.26: ρ(z) along the internuclear axis of Na–Cl. Calculated with different methods
and the def2-TZVP basis set. Dashed lines indicate the position of each nuclei.

Figure 6.27: ρCCSD(z) − ρ(z) along the internuclear axis of Na–Cl. Calculated with
different methods and the def2-TZVP basis set. Dashed lines indicate the position of
each nucleus.

Figure 6.28: ρdiff (Equation 6.1 using ρCCSD(r) as reference) as a percentage of
ρCCSD(z) along the internuclear axis of Na–Cl. Calculated with different methods and
the def2-TZVP basis set. Dashed lines indicate the position of each nucleus.
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Figure 6.29: Structure of the B(OH)3
crystal. Main distances have been labelled
as in Table 6.5.

Distances HF VBH expt.[105]
b1 1.359 1.368 1.377
b2 1.358 1.364 1.351
b3 1.357 1.364 1.349
hb1 1.874 1.398 1.822
hb2 1.882 1.416 1.843
hb3 1.880 1.411 1.911
B–O 3.697 2.758 3.187

Table 6.5: Geometrical parameters of the
B(OH)3 crystal. Bond labels refer to Figure
6.29. Distances are in Å. The structure was
resolved at T=297 K.

Delocalization effects in boric acid crystals

In order to ascertain whether the error in cell parameters is effectively controlled by
delocalization effects – in the absence of strong correlation and non-covalent interactions
–, we will tackle a simple case first.

In the crystal structure of boric acid, belonging to space group P 32 (the corresponding
primitive cell is shown in Figure 6.29 for reference), B(OH)3 molecules are organized in
sheets which are parallel to the a,b plane and perpendicular to the c axis. Presumably, the
sheets in the crystal are stabilized by a network of strong hydrogen bonds, while across-
sheet contacts are regulated by weaker non-covalent interactions. Thus, we expect the
results to be affected both by long-range and delocalization errors differently in different
directions.

Table 6.5 collects the experimental, the HF and VBH LDA values of the relevant
geometrical features: (i) intramolecular B–O bond distances (bn), (ii) intermolecular
O–H hydrogen bonds (hbn) and (iii) and inter-sheet B–O distance (B–O). Results
clearly show that, as expected, intramolecular distances are only slightly affected by the
choice of method (b1 to b3). In fact, HF leads to shorter intramolecular (i.e. covalent)
bonds than the LDA representative – due to the lack of electron correlation–, but the
overall accuracy is good and not subject to important deviations. However, the
description of the non-covalent interactions is terribly described due to the lack of long
range effects (cf. Subsection 2.5.3). Due to the missing attractive potentials, very long
intermolecular distances are obtained. The difference between the values is as large as
0.4 Å for the hydrogen bonds (hb1 to hb3) and is even more significant when looking at
the B–O distance (along the c axis), which accounts for inter-sheet contacts: HF
predicts a distance almost 1 Å larger than LDA. Summarizing: in this case, the wrong
description of non-covalent interactions leads to wrong cell parameters and a
qualitatively wrong description of the crystal.

Hence, as shown by this simple example, our assumptions with respect to delocaliza-
tion effects in lattice parameters seems to hold within the aforementioned limits. How-
ever, as separating effects is not generally trivial, different simple systems will be tack-
led independently in order to ascertain trends and their relation with chemical families.
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Covalent solids

Two a priori covalent solids are carbon allotropes, as appearing in Section 5.3 of Chapter
5: graphite and diamond present no electronegativity differences. However, we expect
graphite layers to interact non-covalently. Such interactions are ill-described by DFT on
their own accord, as shown before for the B(OH)3 crystal, and consequently we will not
study graphite here. Similarly, we will avoid molecular solids for the time being due to
the interference of long range errors.

The structure of diamond (which was previously shown in Figure 5.17) does not
present non-covalent interactions in principle. Cell parameters a calculated with different
methods and basis sets are presented in Table 6.6. In this case, VBH leads to a smaller
cell parameter than HF, while PBE and other higher rung DFAs all lead to larger values
of a. There is a subtle increase in the lattice parameter of almost all methods as the basis
set shrinks from a triple-ζ POB-TZVP to a more limited 6-31d1G, but trends remain
mostly unaltered. The same observation carries on to compressibility curves, as presented
in Figure 6.30, but does not seem to apply to the derivatives of the energy with respect
to a: the three methods are fitted by nearly identical parabolas. Similar but somewhat
accentuated results are obtained for the same A4 structure of Si, where HF lead sto
a = 5.4355 Å but VBH gives a = 5.3505 Å, and the A4 structure of Ge, where HF and
VBH give a = 5.6700 Å and a = 5.5582 Å respectively (all data are reported in the
Appendix). Experimental results are in all cases much closer to the HF values.

These results seem incoherent as per our previous observations: we would naively
expect HF to lead to far more localized C–C, Si–Si and Ge–Ge bonds and thus
compress the unit cell, or perhaps to a unit cell that can be compressed somewhat
easier. This does not seem to be the case. However, the large deviation between VBH
and PBE is quite revealing: the LDA homogeneously smooths out the density, leading
to en electronic structure which is far more conductive. In diamond, the predicted band
gap is approximately 4.1124 eV using VBH, and over 12 eV using HF. For Si, VBH
leads to a very small band gap of 1.0535 eV, while HF predicts 6.3702 eV. This
situation is energetically favored in LDAs, and thus the unit cell is reduced.

On the contrary, HF privileges localized bonding schemes. As the symmetry
imposed in the calculation forbids localization through bond alternation (recall the
discussion in Subsection 6.1.2), the increased average repulsion is handled by expanding
the unit cell and keeping the band structure clearly insulating. In any case, these highly
symmetric structures are hard to interpret due to multiple errors overlapping, including
discretization issues.

Basis set HF VBH PBE B3LYP PW91 M06 M062X
POB-TZVP 3.5493 3.5268 3.5688 3.5675 3.5680 3.5438 3.5576
6-31d1G 3.5594 3.5395 3.5822 3.5802 3.5812 3.5561 3.5671

Table 6.6: Cell parameters a of diamond in Å calculated with different methods and basis
sets.

Ionic solids

The chemical space of pure crystals is richer in ionic bonds than that of single molecules
(e.g. N2). Hence, in spite of our interest for localized bonds, we will test our assumptions
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Figure 6.30: Relative energy per unit cell with respect to primitive cell volume for
diamond as calculated using different methods and the POB-TZVP basis set. Dashed
lines represent parabolic fits to the datapoints.

in typical ionic solids, in which we assume that non-covalent interactions are negligible
and the most important error source is the delocalization error. Recall that the effects of
delocalization error arise from the counterbalance between SIE and the lack of correlation
effects, and may manifest differently for different chemical environments.

Again, we will focus in cell parameters as a representative geometrical property. The
HF and LDA (in this case, championed by the VBH DFA) values of cell parameter a of a
selection of systems are reported in Figure 6.31 (the complete dataset is available in the
Appendix). Parameters calculated with HF and LDA are in all cases smaller and larger,
respectively, than the experimental data. This may seem counterintuitive, but is quite
coherent.

In a way, because HF and LDAs constitute limit cases of delocalization error, they
provide an error bar of sorts that surrounds the experimental values. In Figure 6.31 the
green and black bars represent the absolute and normalized amplitudes, respectively, of
the hypothetical error bars associated to each structure.

Interestingly, some trends are noticeable among families. For instance, in the LiF-KI
family of binary rocksalt structures the absolute error bar in increases with the size of
the cell parameter but the normalized error bar remains fairly constant along the family
(with the sole exception of the smallest structure, LiF). Analogous considerations can be
drawn for other other families reported in Figure 6.31.

Accepting that delocalization errors are responsible for the size of the error bar, this
suggests that chemically related systems present similar qualitative balances of
correlation and self-interaction. On the one hand, this is to be expected, because we
classify such compounds based on properties which ultimately arise from the atomic
composition as well. On the other hand, it means that once that the effect of the
delocalization error on one member of a given family is known, the corresponding
incidence of delocalization errors for different members of the same family can be
quickly estimated. The transferability of delocalization errors may be of interest to
improve upon current DFAs.
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Molecular solids

As anticipated, the discussion of molecular solids is significantly more complex. First
and foremost, correctly describing non-covalent interactions, which we expect to be quite
relevant, is very hard.[106] This issue was introduced in Subsection 2.5.3.

Secondly, thermal expansion, which is very small for other systems, is much more
important in the geometry of the lattice. In fact, in small molecules whose intermolecular
distances contribute to the cell size to a large extent, thermal expansion is significant and
can involve volume expansion up to 8% moving from 0 K to room temperature.[107] The
minimization of the potential energy of the crystal with respect to the lattice parameters
does not account for these thermal effects.

Conveniently, non-covalent interactions are attractive, and therefore shrink the cell,
while thermal effects enlargen it. As the two effects go in opposite directions, they
partially cancel out. We may hope that the cancellation is sufficient to render
delocalization effects the most important once more.

This happens to be the case, as suggested by Figure 6.32, which shows the
experimental values and the HF and LDA limit values, calculated for a series of
molecular solids without accounting for neither thermal nor long range non-covalent
interactions. Some further validation is given in the Appendix A.4. The hypothetical
error bars that the HF and LDA results delimitate is significantly increased for these
systems (Figure 6.32) compared to the ionic ones (Figure 6.31). As discussed for Table
6.5, this is due to the dependence of intermolecular distances on the method employed.
The neglect of thermal expansion and non-covalent interactions are of extreme
importance in the simulation of molecular solids and generally cannot be neglected. In
this case, it seems that the resulting net effect is, for the most part, some orders of
magnitude inferior to the method-dependent error.

As it was the case for ionic solids, all experimental values of cell parameters fall
within the error bars, with the only exception of acetylene crystals. Without further
discussion, this suggests that our hypothesis regarding the effect of delocalization errors
in bond lengths – and, thus, cell parameters – is quite valid. HF and LDAs give extreme
behaviors due to delocalization errors.
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Figure 6.31: Calculated HF (top, triangle) and LDA (bottom, inverted triangle) cell
parameters for 28 binary ionic solids with indication of the experimental reference value.
Green bars represent the width of the error bar, black bars the same quantity normalized
by the experimental cell parameter.
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parameters for 8 molecular solids with indication of the experimental reference value.
The temperature corresponding to the experimental observation is reported.
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Chapter 7

Conclusions and outlook

In this thesis we have developed a model that is able to reproduce the key features of
localized chemical bonds with a simple physical interpretation. Examples of application
have been presented and suggested, and the parametrization conundrum has been
discussed in depth. Relevant to this last aspect and the foundations of the model itself,
the effect of certain density functional approximations in relevant properties through
the electron density have been examined.

This manuscript was conceived to be illustrative, dealing with several interplaying
conceptual and methodological issues in modern quantum chemistry. Hence, numerous
simple examples have been developed and presented in an attempt to guide the reader
without placing too much of a mathematical burden. At the same time, priority has been
given to argumentation over numerical results – the raw in silico results can be found in
the Appendix for interested readers – while hoping to preserve rigour in our treatment
of these complex issues. Having to oversimplify certain aspects, as many numerical ones,
is unavoidable considering the width and breadth of the different branches of quantum
chemistry that are involved in our interests.

The way we think about chemistry is determined, at least up to a certain point, by the
models we deem representative and the conceptual frameworks they bear. For centuries,
chemistry was – and in a way still is – the science of in vitro (i.e. in solution) matter.
For this reason, much of our chemical intuition arises from very specific contexts and
circumstances. This may turn to be very limiting as technical advances let us devise and
operate increasingly sophisticate chemical dispositives. Advances in enzymatic catalysis
and nanotechnology, for example, require atomistic control as of today. As we hardly
can create what we can not imagine, perhaps going beyond the atomistic level requires
intuition beyond that scale as well. Reflecting on this fact, it becomes easy to see how
abundant subatomic concepts are in chemistry, chiefly in the form of electron pairs –
owing much to Lewis. On the other hand, the interplay between such entities and atomic
properties is quite hard to picture because they arise from very different models.

Quite recently, notions such as “frustrated Lewis pairs” or “resonance-assisted
hydrogen bonds” have begun gaining traction, and have been used in order to design
new applications. From the ontology of quantum mechanics, neither Lewis pairs nor
(chemical) resonance amount to much. However, they are useful for the chemical
sciences: there is a parallel ontology, which perhaps is not meant to be reduced to linear
operators, that pursues science and achieves results within its own logic and episteme.

We have also highlighted how methods of quantum chemistry (i.e. electronic structure
solvers) are approximate at many levels. Many of the qualitative approximations have
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Chapter 7. Conclusions and outlook

been discussed in some depth; others (e.g. the Born-Oppenheimer approximation, closed
quantum systems) have been assumed quite plainly. Strictly quantitative discretization
and numerical features have been neglected, as we deem those less relevant. Among those,
we have focused on orbitals and their deficiencies from the conceptual point of view, both
in molecular orbital theory (cf. Section 3.1) and valence bond theory (cf. Section 3.2).
While succinct, the relevant points have been brought to the table for open discussion:
orbitals do not exist in exact many-body theory, they become increasingly difficult to
interpret as system size increases, and they – or concepts defined thereof – are often
sensitive to basis set definitions. Naturally, this does not mean that orbitals can not or
should not be used for chemical interpretation, as long as their limitations are highlighted
as clearly as their strengths.

In Chapter 4, we have reviewed some of the key features of quantum chemical
topology. The three most important advantages of topological techniques are their
privileged connection to DFT, which is the de facto workhorse of quantum chemistry
nowadays; the definition of its scalar fields in exact many-body theory; and the relative
robustness of many of its techniques with respect to discretization errors. However,
many deficiencies still exist, as clear univocous interpretations are still lacking and
many useful scalar fields coexist in the literature. Quantitative approaches to quantum
chemical topology are extremely powerful, but suffer harshly from these issues:
partitioned energy terms can only be as good as the original partitioning is. Some
attention has been devoted to the symmetry-related and isotopological problems of the
ELF, for instance. Still, this is a promising area of development.

The topic of non-covalent interactions merits some discussion in this same direction:
as they are usually hard to describe using DFT, which generally leads to significant
quantitative and qualitative errors, how can we be sure that the scalar fields resulting from
DFT can give a proper interpretation? This is particularly relevant given the prevalence
that so-called dispersion corrections have in modern DFT.

After reflecting on the two main families of chemical interpretation from
computation, we have brought forward a new approach to the modelling of chemical
bonds. Our approach is based in three simple ideas:

i) Chemical bonds can be likened to an electron density accumulation, the bond charge
q, between to effective positive potentials which can be likened to atomic cores.

ii) The bond particle should interact electrostatically with those atomic cores.

iii) The bond particle has a certain kinetic energy that depends on the allowed region
of space for the bond.

These ideas are inherited from a semiclassical approach by Borkman, Parr and
co-workers, which suffered from some undesirable issues that prevented wider
usability.[52, 53, 54, 55] The interpretation of chemical bonds given by the original
model has been merged with the depiction given by the ELF, resulting in a significant
increase in available data and richer interpretation. In fact, thanks to the usage of the
ELF, we have properly identified cores as inert and bonds as resulting from valence
electrons, which more naturally matches chemical insight.

Coherently, we have shown that the main assumptions of this new model can be
transferred to energy terms arising from a quantitative partitioning of the energy. Using
this equivalence, the model has been validated: we have shown that it grasps proper
physical trends, at least in a certain chemical space. Due to the very nature of the
initial assumptions, which imply that the chemical bond is a local entity, the model fails

224



dramatically for metallic bonds. A way to judge the metallicity of a bond is also given
that is able to predict such failures.

The utility of the ELF-BCM approach has been showcased, including the nuanced
parametrization conundrum, by fitting intrinsic bond energies for C–C bonds along the
bond order series. Similar applications can be developed for a variety of properties of
diverse chemical spaces, and the resulting accuracies are expected to be, at least,
semiquantitative.

During the construction and the application of the model, some interesting questions
arose related to the impact of the underlying level of theory. As previously commented,
the effect of the quality of the electron density in quantum chemical topology is an often
overlooked issue. At the same time, the DFT community is immersed in a heated debate
to discern the most sensible approach to new approximate functionals.

Thus, a critical examination on how to evaluate density-related errors in DFT was
given, in which the importance of chemical intuition is highlighted. Core densities are,
for the most part, inert. Errors are localized in such regions but very small in relative
terms. On the other hand, errors in valence regions can often be understood qualitatively
by reflecting on model assumptions and the framework of quantum chemical topology.
While the relevance of the energy can not possibly be understated, it has been shown
that parametrization focused in some specific energy differences may overlook relevant
points, leading to unphysical features and subsequent errors. The brightest example of
these may be given by the effect of localization and delocalization on geometries. A
certain parametric space may require a large amount of exact exchange to fit a certain
energy difference. However, the cost in unphysical localization may be dramatic and end
up incurring in other troublesome failures. In a way, chemical insight should be usable
to design proper approaches to DFA development as much as concepts arising from
computational methods are useful for synthetic chemists.

Contributions
The most relevant contributions of this work can be summarized as:

• A critical overview of the main frameworks of chemical interpretation has been given,
including folk molecular theory, approaches based in orbitals and quantum chemical
topology. Attention was paid to the concept of atom, as subsequently involved in
chemical structure theories and chemical bonding, and the impact that atomistic
thinking has in chemistry.

• A new semiquantitative model, the Electron Localization Function – Bond Charge
Model (ELF-BCM) has been constructed and applied. In its careful construction,
utmost attention was paid to interpretation and validation: a consistent domain
of applicability was found, its limitations clearly understood. Metallic bonds are
not properly described by this model, nor any bond in which a local density
accumulation is not representative of the bond.

• An example application of the ELF-BCM approach was given while involving aspects of
interpretation of chemical bonds and their properties. Semiquantitative predictive
qualities were inferred, in line with many current DFAs.

• An understandable way to study density errors in DFT has been proposed using the
ELF, which matches well-established chemical insight and interpretation. In
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particular, critical misconceptions that may arise from considerations of the
electron density without any chemical consideration were highlighted: core
densities can bias some metrics without bearing much chemical significance.

• It has been argued, in light of previous findings, that DFT development may need
to include more properties than energies – and atomization or bond dissociation
energies in particular – in parametrization sets in order to properly constrain the
optimization of empirical parameters.

Setbacks
Perhaps the most frustrating setback in the developments hitherto covered is the
impossibility of covering an ever expanding chemical space. Simply put, there are too
many systems, ranging from atoms to incredibly exotic molecules. Apparently simple
systems can hide utmost complexity – thinking about how and why C2 is far more
complex than N2 may be a good example –, leading to dramatic failures in approximate
methods. It is therefore extremely hard to establish any hard limit upon any
consideration: we can only extrapolate from minimal samples, hoping that somewhat
vague intuition will hold.

On the other hand, acritically calculating and studying thousands of molecules may
not be particularly useful – in general –, and illustrative –in particular. In this work
we have consistently chosen few familiar examples over larger – but perhaps shallower –
coverage. As the calculations on ethane show, error compensation becomes a major factor
once the molecular complexity stats increasing, which then requires statistical treatment
of increasingly large databases. Ideally, one should always practice depth and breadth.
But, as the reader will perhaps agree, in quantum chemistry circumstances are rarely
ideal. In this sense, the elaboration of curated representative databases is probably a
pragmatic compromise.

The same issues that arise in terms of chemical space apply when regarding the
combinatorial explosion of levels of theory, given by the choice of basis set and method.
In particular, the DFA gallery seems infinite at times. As far as possible, a representative
selection has been used, and basis sets have been shown to be suitable for the goal at
hand – from minimal for simple examples to extremely large at times. Again, we beg the
reader for forgiveness if this or that DFA or approach has not been taken into account.

Other than this significantly frustrating issue, it is perhaps mandatory to emphasize
how forgotten chemistry is in terms of philosophy and history, at least when compared to
other scientific fields as physics and medicine. This is particularly remarkable given how
uncertain the conceptual future of chemistry is. For instance, whether molecular orbital
theory or Lewis structures will survive in undergraduate education in the next 50 years
is quite an open question. The history of atoms and the VSEPR model are taught to
students remarkably early in most curricula. Will this continue to be the case in the next
50 years? Should it be? One wonders. . .

Open issues
Finding a proper closure for this work is quite hard, considering how vast the possible
applications of the ELF-BCM approach are. From the construction point of view, perhaps
cementing a kinetic energy expression that explicitly takes into account more sophisticate
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features of the density would be desirable. Other than that, the model is probably usable
as it is, coupled to DFT, and able to offer significant insight.

For applications, an ambitious but possibly rewarding effort would be developing
atom-based parameters for main group elements. Then, possibly, those potentials could
be used either for subatomic force field development or for tight binding schemes. Both
possibilities are extremely enticing. At a first glance, our approach, which can seamlessly
treat lone pairs and bonds on equal footing, is naturally polarizable. This contrasts
with atomistic force fields, which usually incorporate polarization effects in crude – or
at least, less aesthetic – manner. Strain is equally incorporated in our model without
any particular effort: bonds bend, lone pairs interact on their own and are displaced
at will. The possibilities are doubtlessly interesting and manifold. A major requirement
is verifying whether the partitioning given by the ELF, when condensed to point-wise
entities, is good at describing electrostatic potentials. This more accessible task will surely
be accomplished in the near future, while the complete force field will more than likely
have to wait unless a larger community is involved.

In second place, albeit equally attractive, developing DFAs using alternative
parametrization approaches seems interesting. Starting from a simple hybrid, perhaps
re-optimizing parameters while considering dipole moments or multipole moments as
well as energies would lead to something interesting. Most DFAs are terribly bad at
describing dipole moments, and this can not be understated. Why should, for instance,
a multilevel approach which uses DFT be accurate if the density distribution is
terrible? Luckily, the DFT community is taking these issues quite seriously. We can
only hope that the debate will be prolific and that concerted effort and competition will
lead to better, more accurate DFAs than those available today.

As the work hereby developed has been in close contact with many different subfields
of quantum chemistry, the list of open issues could be continued ad infinitum. However,
any expansion has to be truncated to be useful, and the two major points have been
covered so far. At this point, only the future will tell whether such ambitious tasks will
be developed further, be it by me or by others with shared interests. What is clear is
that quantum chemistry has, as a discipline, an ordeal of an undertaking before itself: it
seems unlikely that we will run out of things to do anytime soon.
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Appendix A. Compendium of in silico results

A.1 Reference data for the fitting of the ELF-BCM
ansatz in C-C bonds

The complete curated dataset is available in an accesible format in R. Laplaza, V. Polo,
and J. Contreras-García, “A bond charge model ansatz for intrinsic bond energies: Ap-
plication to c–c bonds,” The Journal of Physical Chemistry A, vol. 124, no. 1, pp. 176–
184, 2020.

Molecule Req (Å) q (e−) IBE (kcal/mol) q/Req
1 1.4996 1.74 97.54 1.16
2 1.5227 1.80 115.40 1.19
3 1.3868 2.75 159.63 1.99
4 1.4234 2.23 142.25 1.57
5 1.3211 3.35 186.06 2.54
6 1.3720 2.61 169.00 1.90
7 1.1932 5.21 265.40 4.36
8 1.2447 7.83 113.03 6.29
9 1.5021 1.98 107.46 1.32
10 1.5151 1.96 106.07 1.29
11 1.3181 3.78 177.08 2.87
12 1.3169 3.79 176.43 2.88
13 1.3181 4.41 182.46 3.35

Table A.1: Reference data for the molecule set at the ωB97XD/def2-QZVP level.

Molecule Req (Å) q (e−) IBE (kcal/mol) q/Req
1 1.5011 1.73 99.19 1.15
2 1.5211 1.79 118.11 1.18
3 1.3915 2.75 162.36 1.98
4 1.4167 2.24 151.42 1.58
5 1.3298 3.33 188.87 2.51
6 1.3668 2.64 202.47 1.93
7 1.2087 5.20 272.25 4.30
8 1.2558 7.82 154.86 6.23
9 1.4969 1.98 113.04 1.32
10 1.5089 1.96 111.83 1.30
11 1.3242 3.77 183.91 2.84
12 1.3233 3.78 183.12 2.85
13 1.3230 4.37 188.25 3.30

Table A.2: Reference data for the molecule set at the MP2-FC/def2-QZVP level.
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A.1. Reference data for the fitting of the ELF-BCM ansatz in C-C bonds

Molecule Req (Å) q (e−) IBE (kcal/mol) q/Req
1 1.5005 1.74 96.58 1.16
2 1.5225 1.80 113.04 1.18
3 1.3889 2.75 163.52 1.98
4 1.4199 2.25 142.00 1.58
5 1.3245 3.34 186.50 2.52
6 1.3650 2.65 171.43 1.94
7 1.1982 5.19 275.82 4.33
8 1.2510 7.83 130.00 6.26
9 1.4980 1.98 106.81 1.32
10 1.5104 1.96 105.58 1.30
11 1.3191 3.77 178.41 2.86
12 1.3180 3.78 177.74 2.87
13 1.3178 4.39 182.56 3.33

Table A.3: Reference data for the molecule set at the RmPW2PLYP-FC/def2-QZVP
level.
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Appendix A. Compendium of in silico results

A.2 Calculated equilibrium descriptors of simple
molecules

Molecule N2 CO C2H6
Method ∆Eatom Λdiff ∆Eatom Λdiff D ∆Eatom Λdiff
G96LYP 235.89 0.1102 260.13 0.1180 0.184 700.42 7.6048
BVWN 241.23 0.1226 260.99 0.1268 0.162 718.13 7.6766
M06L 225.16 0.1322 259.04 0.1307 0.198 711.76 7.5917
M06 222.97 0.1012 259.79 0.1132 0.058 711.80 7.5671
M062X 227.11 0.0771 259.45 0.0755 0.011 710.00 7.5271
M06HF 227.13 0.2497 257.12 0.2564 -0.168 717.17 7.5081
M05 223.50 0.1332 257.97 0.1316 0.048 713.35 7.5257
M052X 225.87 0.1184 257.22 0.1168 -0.012 711.32 7.5280
M11 233.91 0.1386 259.31 0.1498 0.008 713.39 7.4877
N12SX 214.97 0.1303 253.81 0.1376 0.014 707.97 7.5622
MN12SX 223.09 0.1285 255.87 0.1288 -0.016 703.75 7.5386
SOGGA11X 228.23 0.1051 255.88 0.1104 0.022 710.95 7.5500
PW91VWN 247.00 0.1402 266.39 0.1449 0.155 729.86 7.6629
TPSSh 222.18 0.0340 250.23 0.0428 0.141 718.51 7.5994
BMK 229.41 0.0817 262.49 0.0684 0.056 712.29 7.5473
BHandH 224.83 0.1117 260.35 0.1165 -0.032 742.80 7.4739
BHandHLYP 207.72 0.0874 238.64 0.1108 -0.067 700.74 7.5958
HSEH1PBE 225.03 0.0383 254.83 0.0461 0.093 710.35 7.5245
wB97XD 225.88 0.0408 256.83 0.0508 0.093 712.00 7.5442
LC-wPBE 227.94 0.0626 257.79 0.0616 0.105 710.08 7.5132
CAM-B3LYP 229.09 0.0913 256.98 0.0936 0.054 715.35 7.5625
APFD 225.81 0.0370 255.80 0.0425 0.103 713.35 7.5281
B2PLYP-FC 231.34 0.0961 258.83 0.1189 0.145 710.31 7.6055
mPW2PLYP-FC 228.92 0.1011 257.09 0.1247 0.113 711.61 7.6026
HSEVWN 247.00 0.1468 265.08 0.1503 0.160 726.43 7.6672
BRxVWN 237.29 0.1455 264.27 0.1563 0.118 721.07 7.6783
BPBE 237.36 0.0693 263.81 0.0877 0.217 706.06 7.5397
PW91PBE 243.14 0.0835 269.24 0.1034 0.211 717.78 7.5266
PBEPBE 243.91 0.0791 269.11 0.0999 0.220 716.73 7.5223
HSEPBE 243.06 0.0906 267.90 0.1083 0.216 714.28 7.5299
mPW1PBE 222.63 0.0452 253.49 0.0500 0.091 708.11 7.5279
mPW3PBE 227.93 0.0366 257.82 0.0432 0.111 715.71 7.5332

Table A.4: Atomization energies (∆Eatom) in kcal/mol, Λdiff values in atomic units, and
dipole moments (D) in Debyes for the N2, CO and C2H6 molecules in their respective
CCSD(T) equilibrium geometries. (Part 1)
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A.2. Calculated equilibrium descriptors of simple molecules

Molecule N2 CO C2H6
Method ∆Eatom Λdiff ∆Eatom Λdiff D ∆Eatom Λdiff
BPW91 237.34 0.0733 263.61 0.0908 0.214 706.99 7.5476
PW91PW91 243.12 0.0887 269.03 0.1068 0.207 718.72 7.5346
PBEPW91 243.89 0.0841 268.90 0.1032 0.216 717.67 7.5301
HSEPW91 243.05 0.0962 267.70 0.1120 0.212 715.23 7.5380
B3PW91 226.00 0.0366 255.89 0.0439 0.111 712.59 7.5432
mPW1PW91 222.58 0.0429 253.26 0.0509 0.088 708.99 7.5356
MP2-FC 236.31 0.0002 270.00 0.0621 0.271 707.84 7.6555
BLYP 240.67 0.1370 262.16 0.1426 0.181 704.62 7.6095
PW91LYP 246.42 0.1600 267.54 0.1654 0.174 716.22 7.5986
PBELYP 247.16 0.1559 267.37 0.1626 0.183 715.08 7.5936
HSELYP 246.39 0.1707 266.21 0.1758 0.179 712.71 7.6027
B3LYP 229.95 0.0783 255.65 0.0827 0.083 711.98 7.5923
mPW1LYP 225.84 0.0832 251.88 0.0872 0.054 706.40 7.5953
HF 115.40 0.2325 174.48 0.2848 -0.271 551.63 7.6555
TPSSTPSS 228.35 0.0470 254.36 0.0593 0.187 718.89 7.6091
XAlphaXa 215.13 0.1597 268.58 0.1792 0.230 662.39 7.4367
BB95 244.89 0.1113 271.30 0.1284 0.209 712.17 7.5509
PW91B95 250.63 0.1302 276.65 0.1470 0.202 723.71 7.5390
PBEB95 251.43 0.1263 276.53 0.1435 0.211 722.67 7.5344
HSEB95 250.60 0.1386 275.33 0.1528 0.207 720.25 7.5424
SVWN 274.82 0.1368 303.91 0.1584 0.218 801.31 7.4515
PKZBPKZB 229.91 0.0812 256.36 0.0875 0.225 710.32 7.5459
B3P86 234.08 0.0318 261.59 0.0404 0.102 735.93 7.5405
PKZBKCIS 229.55 0.0878 256.15 0.0957 0.222 695.76 7.5227
BRxKCIS 239.15 0.1323 271.06 0.1428 0.172 721.54 7.5281
OVWN 229.95 0.1343 258.14 0.1366 0.166 725.17 7.6243
OPBE 226.60 0.1337 261.19 0.1314 0.224 714.21 7.4992
OLYP 229.47 0.0946 259.25 0.1019 0.185 711.74 7.5550
OB95 233.96 0.1375 268.67 0.1404 0.214 720.12 7.5067
CCSD(T) 224.61 0.0000 257.25 0.0000 0.117 709.01 0.0000

Table A.5: Atomization energies (∆Eatom) in kcal/mol, Λdiff values in atomic units, and
dipole moments (D) in Debyes for the N2, CO and C2H6 molecules in their respective
CCSD(T) equilibrium geometries. (Part 2)
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Appendix A. Compendium of in silico results

Method Pop. Ωb Vol. Ωb Req ωh ∆Eatom
G96LYP 3.3020 108.25 1.1008 2340.92 235.90
BVWN 3.3077 108.69 1.0999 2343.26 241.23
M06L 3.5682 112.80 1.0951 2413.85 225.18
M06 3.6198 137.33 1.0884 2465.60 223.15
M062X 3.5724 180.76 1.0854 2512.34 227.42
M06HF 3.4571 190.74 1.0759 2615.55 228.11
M05 3.5265 159.81 1.0928 2447.22 223.56
M052X 3.4090 151.71 1.0829 2543.64 226.32
M11 3.4050 113.21 1.0835 2534.05 234.31
N12SX 3.4979 149.83 1.082 2501.05 215.45
MN12SX 3.6475 164.06 1.0869 2504.36 223.33
SOGGA11X 3.5808 163.80 1.0881 2516.18 228.43
PW91VWN 3.3099 116.77 1.099 2348.34 247.00
TPSSh 3.4568 144.80 1.0943 2418.89 222.21
BMK 3.5194 154.03 1.0894 2456.13 229.55
BhandH 3.6265 181.73 1.0746 2608.60 225.91
BhandHLYP 3.6139 187.06 1.0767 2585.54 208.61
HSEH1PBE 3.5089 151.68 1.0884 2480.19 225.20
wB97XD 3.4996 146.07 1.0871 2491.17 226.11
LC-wPBE 3.5550 168.10 1.0863 2520.45 228.21
CAM-B3LYP 3.5051 150.36 1.0855 2498.70 229.39
APFD 3.4987 150.91 1.0893 2471.40 225.95
B2PLYP-FC 3.3980 127.16 1.0977 2346.33 231.35
mPW2PLYP-FC 3.4361 136.91 1.0942 2383.69 228.95
HSEVWN 3.3178 113.13 1.0995 2347.16 247.00
BrxVWN 3.3877 121.91 1.0964 2386.26 237.30
BPBE 3.3339 114.79 1.1018 2350.17 237.38
PW91PBE 3.3361 123.31 1.101 2354.45 243.15
PBEPBE 3.3562 124.60 1.1022 2350.65 243.93
HSEPBE 3.3582 119.95 1.1015 2353.42 243.07
mPW1PBE 3.5105 154.42 1.0882 2481.43 222.82
mPW3PBE 3.4774 144.21 1.09 2459.18 228.05

Table A.6: Descriptors for the respective equilibrium geometries of N2. Population of
Ωb in electrons, volume of Ωb in a.u.−3, equilibrium distances (Req) in Å, harmonic
frequencies (ωh) in cm−1 and atomization energies (∆Eatom) in kcal/mol. (Part 1)
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A.2. Calculated equilibrium descriptors of simple molecules

Method Pop. Ωb Vol. Ωb Req ωh ∆Eatom
BPW91 3.3332 113.55 1.1014 2350.98 237.36
PW91PW91 3.3345 121.92 1.1006 2355.69 243.13
PBEPW91 3.3559 123.15 1.1018 2351.45 243.91
HSEPW91 3.3575 118.77 1.1011 2354.22 243.06
B3PW9 3.4770 143.37 1.09 2458.78 226.12
mPW1PW91 3.5079 153.23 1.0878 2482.51 222.78
MP2-FC 3.2911 103.13 1.1105 2201.86 236.53
BLYP 3.2994 113.55 1.1021 2333.24 240.69
PW91LYP 3.3009 121.40 1.1013 2337.51 246.43
PBELYP 3.3068 114.61 1.1025 2333.58 247.18
HSELYP 3.3102 111.06 1.1018 2336.38 246.41
B3LYP 3.4537 137.62 1.0901 2448.19 230.07
mPW1LYP 3.4769 154.70 1.0881 2468.18 226.03
HF 3.8509 258.21 1.0655 2729.25 117.62
TPSSTPSS 3.4027 139.29 1.0995 2367.54 228.35
XalphaXa 3.3504 111.54 1.0941 2392.73 215.16
BB95 3.3103 114.83 1.1018 2341.84 244.91
PW91B95 3.3120 115.41 1.101 2346.14 250.65
PBEB95 3.3176 115.96 1.1022 2342.36 251.46
HSEB95 3.3356 112.73 1.1015 2345.15 250.62
SVWN 3.3610 106.74 1.0937 2405.14 274.85
PKZBPKZB 3.3734 147.23 1.1087 2326.48 230.09
B3P86 3.4743 141.12 1.0893 2463.13 234.22
PKZBKCIS 3.3618 150.51 1.1088 2323.00 229.73
BrxKCIS 3.3993 121.52 1.0988 2385.94 239.15
OVWN 3.3896 144.95 1.0994 2368.13 229.95
OPBE 3.4163 163.17 1.1017 2372.51 226.62
OLYP 3.3832 150.89 1.1016 2357.41 229.49
OB95 3.3968 153.47 1.1016 2365.27 233.97
CCSD(T) 3.4074 143.46 1.0984 2346.79 224.61

Table A.7: Descriptors for the respective equilibrium geometries of N2. Population of
Ωb in electrons, volume of Ωb in a.u.−3, equilibrium distances (Req) in Å, harmonic
frequencies (ωh) in cm−1 and atomization energies (∆Eatom) in kcal/mol. (Part 2)
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Appendix A. Compendium of in silico results

Method Pop. Ωb Vol. Ωb Req ωh ∆Eatom
G96LYP 2.9885 53.69 1.1344 2169.64 260.17
BVWN 2.9875 56.52 1.1337 2174.92 261.01
M06L 3.2405 80.34 1.1264 2231.17 259.05
M06 3.2279 89.13 1.1216 2268.34 259.88
M062X 3.1841 69.94 1.1193 2286.62 259.60
M06HF 2.9797 45.33 1.1119 2345.17 257.59
M05 3.1173 76.23 1.1267 2228.43 257.98
M052X 2.9914 54.66 1.1178 2297.91 257.42
M11 3.0239 65.90 1.1193 2286.33 259.45
N12SX 3.0901 64.41 1.1183 2294.32 253.98
MN12SX 3.2214 86.93 1.1214 2269.71 255.96
SOGGA11X 3.1734 72.88 1.1220 2264.93 255.96
PW91VWN 2.9912 55.58 1.1326 2183.06 266.41
TPSSh 3.0863 69.73 1.1283 2216.43 250.23
BMK 3.1930 72.24 1.1192 2287.44 262.64
BhandH 3.2369 71.16 1.1077 2379.06 261.07
BhandHLYP 3.1761 67.65 1.1110 2352.76 239.15
HSEH1PBE 3.1281 65.92 1.1219 2266.02 254.91
wB97XD 3.1353 69.73 1.1217 2267.40 256.92
LC-wPBE 3.1585 72.92 1.1207 2275.14 257.90
CAM-B3LYP 3.1289 66.14 1.1193 2286.71 257.12
APFD 3.1217 65.99 1.1228 2259.14 255.86
B2PLYP-FC 3.0717 63.66 1.1286 2213.65 258.83
mPW2PLYP-FC 3.0934 68.70 1.1256 2237.53 257.11
HSEVWN 2.9929 54.75 1.1332 2178.53 265.10
BrxVWN 3.0323 60.55 1.1303 2201.01 264.27
BPBE 3.0050 60.10 1.1352 2163.14 263.86
PW91PBE 3.0092 62.03 1.1342 2171.40 269.27
PBEPBE 3.0110 59.09 1.1353 2162.47 269.16
HSEPBE 3.0112 58.17 1.1347 2166.98 267.94
mPW1PBE 3.1249 71.11 1.1218 2266.82 253.57
mPW3PBE 3.1052 68.24 1.1235 2253.35 257.87

Table A.8: Descriptors for the respective equilibrium geometries of CO. Population of
Ωb in electrons, volume of Ωb in a.u.−3, equilibrium distances (Req) in Å, harmonic
frequencies (ωh) in cm−1 and atomization energies (∆Eatom) in kcal/mol. (Part 1)
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A.2. Calculated equilibrium descriptors of simple molecules

Method Pop. Ωb Vol. Ωb Req ωh ∆Eatom
BPW91 3.0056 59.73 1.1349 2166.08 263.65
PW91PW91 3.0094 58.63 1.1338 2174.32 269.06
PBEPW91 3.0121 58.73 1.1350 2165.38 268.94
HSEPW91 3.0119 57.72 1.1344 2169.90 267.73
B3PW9 3.1043 64.86 1.1236 2252.97 255.94
mPW1PW91 3.1255 70.68 1.1214 2269.92 253.35
MP2-FC 3.0767 75.92 1.1348 2166.23 270.04
BLYP 2.9835 54.84 1.1355 2161.34 262.21
PW91LY 2.9891 56.54 1.1344 2169.46 267.57
PBELYP 2.9897 56.09 1.1356 2160.45 267.42
HSELYP 2.9913 55.63 1.1350 2164.92 266.25
B3LYP 3.0874 62.45 1.1237 2251.95 255.69
mPW1LYP 3.1014 63.45 1.1218 2266.82 251.96
HF 3.3040 74.56 1.1019 2426.46 175.70
TPSSTPSS 3.0401 66.20 1.1335 2176.55 254.38
XalphaXa 3.0548 60.50 1.1261 2233.34 268.59
BB95 2.9964 56.94 1.1354 2162.07 271.35
PW91B95 3.0012 58.73 1.1343 2170.37 276.68
PBEB95 3.0016 55.92 1.1355 2161.32 276.58
HSEB95 3.0019 55.03 1.1349 2165.77 275.37
SVWN 3.0607 59.65 1.1255 2237.59 303.93
PKZBPKZB 2.9957 62.78 1.1432 2103.75 256.61
B3P86 3.1057 64.30 1.1228 2258.76 261.65
PKZBKCIS 2.9859 62.01 1.1432 2103.71 256.40
BrxKCIS 3.0370 60.05 1.1322 2186.67 271.07
OVWN 2.9834 58.65 1.1336 2175.45 258.16
OPBE 3.0287 67.92 1.1354 2161.96 261.24
OLYP 3.0093 60.98 1.1354 2162.23 259.30
OB95 3.0188 64.59 1.1355 2161.04 268.72
CCSD(T) 3.0741 71.51 1.1294 2168.92 257.25

Table A.9: Descriptors for the respective equilibrium geometries of CO. Population of
Ωb in electrons, volume of Ωb in a.u.−3, equilibrium distances (Req) in Å, harmonic
frequencies (ωh) in cm−1 and atomization energies (∆Eatom) in kcal/mol. (Part 2)

239



Appendix A. Compendium of in silico results

Method Pop. Ωb Vol. Ωb RCCeq RCHeq ωh ∆Eatom
G96LYP 1.7943 17.87 1.5362 1.0962 1015.80 89.18
BVWN 1.7944 17.99 1.5397 1.0910 1008.62 87.06
M06L 1.8043 17.38 1.5149 1.0881 1068.41 96.40
M06 1.7897 17.11 1.5154 1.0895 1067.58 96.46
M062X 1.7946 17.32 1.5230 1.0886 1049.91 97.94
M06HF 1.8126 17.94 1.5369 1.0854 1018.91 98.17
M05 1.7889 17.13 1.5184 1.0895 1060.42 94.10
M052X 1.7913 17.17 1.5239 1.0861 1048.89 97.77
M11 1.7958 17.46 1.5263 1.0923 1041.02 97.36
N12SX 1.8054 17.41 1.5153 1.0859 1068.74 97.93
MN12SX 1.8267 17.70 1.5167 1.0919 1063.79 97.41
SOGGA11X 1.8258 17.93 1.5237 1.0911 1047.39 99.18
PW91VWN 1.7933 17.86 1.5369 1.0907 1015.31 90.82
TPSSh 1.8148 17.95 1.5276 1.0919 1038.15 90.57
BMK 1.7937 17.48 1.5319 1.0905 1028.29 98.48
BhandH 1.8186 17.16 1.5031 1.0873 1098.29 105.14
BhandHLYP 1.8184 17.61 1.5172 1.0831 1064.96 89.52
HSEH1PBE 1.8136 17.63 1.5186 1.0912 1059.44 94.58
wB97XD 1.8072 17.55 1.5226 1.0899 1050.48 97.41
LC-wPBE 1.8120 17.52 1.5173 1.0899 1063.18 94.27
CAM-B3LYP 1.8078 17.53 1.5210 1.0892 1054.39 93.85
APFD 1.8111 17.72 1.5224 1.0918 1049.76 95.44
B2PLYP-FC 1.8024 17.64 1.5246 1.0886 1045.97 94.29
mPW2PLYP-FC 1.8044 17.60 1.5226 1.0874 1051.09 94.61
HSEVWN 1.7948 17.92 1.5378 1.0914 1012.95 89.67
BrxVWN 1.7897 18.40 1.5461 1.0879 993.98 86.79
BPBE 1.7996 17.81 1.5296 1.0980 1031.28 93.24
PW91PBE 1.7993 17.68 1.5269 1.0977 1037.79 97.10
PBEPBE 1.8006 17.75 1.5279 1.0988 1035.14 96.87
HSEPBE 1.8008 17.76 1.5278 1.0984 1035.55 95.94
mPW1PBE 1.8126 17.62 1.5190 1.0907 1058.63 93.87
mPW3PBE 1.8097 17.62 1.5205 1.0917 1054.72 94.78

Table A.10: Descriptors for the respective equilibrium geometries of C2H6. Population
of Ωb in electrons, volume of Ωb in a.u.−3, C–C equilibrium distances (RCCeq ) and C–H
equilibrium distances (RCHeq ) in Å, harmonic frequencies (ωh) in cm−1 and atomization
energies (∆Eatom) in kcal/mol. (Part 1)

240



A.2. Calculated equilibrium descriptors of simple molecules

Method Pop. Ωb Vol. Ωb RCCeq RCHeq ωh ∆Eatom
BPW91 1.7991 17.80 1.5297 1.0973 1031.04 92.93
PW91PW91 1.7987 17.68 1.5271 1.0970 1037.56 96.79
PBEPW91 1.7998 17.74 1.5281 1.0982 1034.90 96.55
HSEPW91 1.8005 17.75 1.5279 1.0977 1035.31 95.63
B3PW9 1.8101 17.66 1.5214 1.0913 1052.72 93.28
mPW1PW91 1.8122 17.62 1.5191 1.0900 1058.63 93.55
MP2-FC 1.7951 17.47 1.5213 1.0875 1054.42 100.50
BLYP 1.7925 17.90 1.5382 1.0969 1011.02 90.47
PW91LY 1.7912 17.77 1.5355 1.0966 1017.47 94.21
PBELYP 1.7932 17.84 1.5366 1.0978 1014.72 93.95
HSELYP 1.7932 17.85 1.5364 1.0973 1015.08 93.05
B3LYP 1.8034 17.72 1.5268 1.0905 1039.79 91.71
mPW1LYP 1.8042 17.70 1.5262 1.0894 1041.47 91.11
HF 1.8369 18.10 1.5239 1.0835 1048.91 65.51
TPSSTPSS 1.8122 18.05 1.5319 1.0944 1027.17 90.57
XalphaXa 1.7981 17.19 1.5124 1.1039 1071.29 101.81
BB95 1.7979 17.72 1.5280 1.0961 1035.46 98.54
PW91B95 1.7952 17.60 1.5254 1.0958 1041.88 102.28
PBEB95 1.7983 17.67 1.5264 1.0970 1039.28 102.04
HSEB95 1.7983 17.67 1.5263 1.0965 1039.67 101.13
SVWN 1.8016 17.03 1.5062 1.0986 1087.43 117.93
PKZBPKZB 1.8088 18.15 1.5398 1.1040 1006.27 90.42
B3P86 1.8108 17.57 1.5190 1.0903 1058.62 95.98
PKZBKCIS 1.8019 18.02 1.5382 1.1032 1009.81 90.79
BrxKCIS 1.7896 18.16 1.5357 1.0943 1016.94 94.59
OVWN 1.8088 17.97 1.5303 1.0900 1031.22 88.71
OPBE 1.8161 17.82 1.5209 1.0970 1052.32 95.26
OLYP 1.8067 17.90 1.5288 1.0957 1033.67 92.15
OB95 1.8138 17.73 1.5189 1.0950 1057.58 100.81
CCSD(T) 1.7651 16.63 1.5231 1.0883 1024.52 91.51

Table A.11: Descriptors for the respective equilibrium geometries of C2H6. Population
of Ωb in electrons, volume of Ωb in a.u.−3, C–C equilibrium distances (RCCeq ) and C–H
equilibrium distances (RCHeq ) in Å, harmonic frequencies (ωh) in cm−1 and atomization
energies (∆Eatom) in kcal/mol. (Part 2)
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Appendix A. Compendium of in silico results

A.3 Calculated cell parameters of periodic systems

The complete set of experimental references for the different cell parameters can be
found in F. Peccati, R. Laplaza, and J. Contreras-García, “Overcoming distrust in solid
state simulations: Adding error bars to computational data,” The Journal of Physical
Chemistry C, vol. 123, no. 8, pp. 4767–4772, 2019 and references thereof.

Structure HF LDA PBE Experimental
Acetamide a 11.7302 11.0741 11.4534 11.513
Acetamide c 15.2858 11.5760 13.6922 12.883
AgBr B1 6.1736 5.5398 5.7650 5.7721
AgCl B1 5.8483 5.2972 5.4924 5.5463
AgI B4 a 4.8344 4.3752 4.5310 4.592
AgI B4 c 7.7939 7.1767 7.4257 7.510
AlAs B3 5.6684 5.5689 5.6507 5.661
AlN B4 a 3.1080 3.0906 3.1350 3.111
AlN B4 c 4.9734 4.9411 5.0138 4.981
AlP B3 5.4519 5.3381 5.4142 5.463
AlSb B3 6.1263 6.0018 6.1068 6.136
BaSe B1 6.8619 6.4723 6.6351 6.593
BaS B1 6.5567 6.2311 6.3846 6.389
BaTe B1 7.0939 6.7734 6.9443 7.007
BN B3 3.6050 3.5818 3.6302 3.616
BP B3 4.5894 4.4923 4.5584 4.358
BAs B3 4.8490 4.7776 4.8429 4.777
Benzene a 6.1104 5.2112 5.7515 5.5220
Benzene b 5.1952 5.1327 5.7747 5.4396
Benzene c 8.2223 6.8928 6.9076 7.6726
Boric acid a 7.2444 6.6285 6.9198 7.0453
Boric acid c 11.0798 8.4123 10.1364 9.5608
C A4 3.5493 3.5268 3.5688 3.56679
CaO B1 4.8592 4.7319 4.8458 4.805
Carbonate apatite a 9.6957 9.2769 9.5475 9.521
Carbonate apatite b 9.7777 9.4495 9.7386 9.521
Carbonate apatite c 6.9122 6.7382 6.8929 6.872
CaSe B1 6.1750 5.8685 6.0315 5.916
CaS B1 5.8433 5.5730 5.7239 5.689
CaTe B1 6.3956 6.1531 6.2949 6.348
CaTiO3 3.8546 3.8095 3.8895 3.8240
CdSe B4 a 4.4248 4.20618 4.3299 4.2322
CdSe B4 c 7.1376 6.8052 6.9917 6.9088
CdSe B3 6.2312 5.9368 6.1079 6.052
CdSe B1 5.8075 5.5091 5.6686 5.5445
CdS B4 a 4.3288 4.1027 4.2325 4.1365
CdS B4 c 6.9438 6.6138 6.8112 6.7160
CdS B3 5.9277 5.6507 5.8056 5.818
CdS B1 5.5261 5.2611 5.4028 5.30

Table A.12: Cell parameters in Å.
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A.3. Calculated cell parameters of periodic systems

Structure HF LDA PBE Experimental
Cubic acetylene 5.8457 5.2827 5.6688 6.1020
CuBr III? 6.1298 5.4040 5.6093 5.689
CuBr V? 7.5535 6.5245 6.7548 6.570
CuBr VI? 5.7510 5.1072 5.2918 5.1425
GaAs B3 5.7444 5.6003 5.7215 5.648
GaP B3 5.5367 5.3854 5.4946 5.451
GaSb B3 6.1889 6.0022 6.1660 6.096
Ge A4 5.6700 5.5582 5.6859 5.658
HCN a 4.6689 3.8088 4.4553 4.63
HCN c 4.3952 4.0419 4.2331 4.34
Ice XI a 4.6282 4.1105 4.3508 4.465
Ice XI b 8.3080 7.1658 7.5757 7.859
Ice XI c 7.6290 6.6885 7.0967 7.292
InN B4 a 3.5997 3.5530 3.6226 3.537
InN B4 c 5.7436 5.6875 5.8042 5.704
InAs B3 6.2102 6.0326 6.1959 6.058
InP B3 6.0228 5.8317 5.9859 5.869
InSb B3 6.6198 6.4257 6.6133 6.479
KBr B2 4.1238 3.8123 3.9949 3.74
KBr B1 6.8174 6.3423 6.6475 6.585
KCl B2 3.8523 3.6123 3.7829 3.634
KCl B1 6.4180 6.0430 6.3135 6.29294
KF B2 3.2460 3.0911 3.2526 3.06
KF B1 5.4070 5.1606 5.4049 5.3437
KI B2 4.3053 4.0347 4.2127 3.94
KI B1 7.1000 6.7058 7.0119 7.0655
LaAlO3 3.8152 3.7710 3.8420 3.7913
LiF B1 4.0280 3.9532 4.1099 4.028
MgAl2O4 8.0628 8.0510 8.1980 8.0832
Na2He (ext. pressure 300 GPa) 3.9250 3.8951 3.9305 3.9500
NaCl B1 5.7116 5.4080 5.6420 5.6401
NaF B1 4.6047 4.5096 4.6877 4.6354
Orthorombic acetylene a 6.0403 5.3737 5.7973 6.198
Orthorombic acetylene b 5.9638 5.6665 5.8662 6.023
Orthorombic acetylene c 5.2771 4.4776 5.0035 5.578

Table A.13: Cell parameters in Å. ? The reference value is calculated and not
experimentally determined.
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Appendix A. Compendium of in silico results

Structure HF LDA PBE Experimental
RbBr B1 7.1152 6.6279 6.9420 6.82
RbCl B1 6.6810 6.3022 6.5583 6.53
RbF B1 5.7240 5.5046 5.7441 5.59
RbI B1 7.3409 6.9400 7.2476 7.26
Si A4 5.4355 5.3505 5.4234 5.430
Sodalite frame 9.1110 9.0146 9.1982 8.86343
SrSe B1 6.5568 6.2610 6.4334 6.234
SrS B1 6.2220 6.0130 6.1487 5.990
SrTe B1 6.5975 6.3786 6.5250 6.640
ZnS B1 5.2860 4.9825 5.1282 5.13
ZnS B4 a 3.8227 3.7487 3.8596 3.8227
ZnS B4 c 6.4882 6.1340 6.2930 6.2607
ZnS B3 5.6259 5.3040 5.4539 5.4093
ZnSe B3 5.8400 5.5276 5.6688 5.668
ZnTe B3 6.3063 5.9498 6.1381 6.089

Table A.14: Cell parameters in Å.
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A.4. Thermal expansion and noncovalent interactions in molecular solids

A.4 Thermal expansion and noncovalent interactions
in molecular solids

A derivation of Grimme’s two-parameters dispersion correction (cf. Subsection 2.5.3)
adapted for periodic solid state calculations is implemented in the CRYSTAL code for the
functional B3LYP.[118, 119] The method, that takes the name of B3LYP-D*, has been
tested on molecular crystals extensively.[119]

The optimized geometries for a set of molecular solids using both B3LYP and
B3LYP-D* are presented below in Table A.15. Assuming that B3LYP does not account
for dispersion at all, the percent shrinking of the cell deriving from dispersion can be
calculated comparing to B3LYP-D* and afterwards compared with the cell shrinking
observed when moving from HF to the LDA. Results indicate that the contribution of
dispersion is always inferior to the HF-LDA volume change, showing that dispersion
only has a secondary effect compared to the delocalization error in this regard.

HF LDA PBE EXPT B3LYP B3LYP-D* D Shr. (%) HF-LDA Shr. (%)
acetamide 1821.51 1229.45 1555.51 1478.85 1626.11 1388.15 15 33
cubic acetylene 199.76 147.42 182.17 226.31 185.74 171.92 7 26
orthorombic acetylene 190.10 136.34 170.16 208.20 175.19 161.24 8 28
HCN 95.81 58.63 84.02 93.04 87.39 75.09 14 39
boric acid 503.57 320.10 420.33 410.98 444.44 369.80 17 36
Ice XI 293.34 197.01 233.91 255.32 248.28 241.35 3 33

Table A.15: Volumes of crystallographic cells (Å3) and cell volume shrinking owing to
dispersion effects (D Shr.) and to the change from HF to LDA (HF-LDA Shr.).

The effect of thermal expansion can be modelled using the quasi-harmonic
approximation. Results for hydrogen cyanide and cubic acetlyene, representatives of
dipole-dipole weak interactions and van der Waals effects respectively, are collected in
Figures A.1 and A.2 using the implementation in the CRYSTAL17 code.[120, 100] with a
step amplitude of 3.5% in volume, 100 temperature points from 10 K to 300 K and the
Grüneisen formalism.
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Appendix A. Compendium of in silico results
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Figure A.1: Cell volume dependence on temperature (K) of HCN calculated with the
B3LYP functional with and without Grimme’s D3 dispersion.
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Figure A.2: Cell volume dependence on temperature (K) of cubic aceylene calculated
with the B3LYP functional with and without Grimme’s D3 dispersion.
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A.4. Thermal expansion and noncovalent interactions in molecular solids

The most important variation of the cell volume of both systems is given by the
introduction of the zero-point vibrational energy. From that point on, the volume
dependence on the temperature is smooth until 300 K. With respect to the initial cell
parameter, inclusion thermal effects leads to approximately 11 % volume increase,
which is significantly inferior to the variability associated to the choice of functional for
these systems.
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