
HAL Id: tel-03781104
https://theses.hal.science/tel-03781104v4

Submitted on 20 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Packing detection and classification relying on machine
learning to stop malware propagation

Lamine Noureddine

To cite this version:
Lamine Noureddine. Packing detection and classification relying on machine learning to stop mal-
ware propagation. Cryptography and Security [cs.CR]. Université Rennes 1, 2021. English. �NNT :
2021REN1S091�. �tel-03781104v4�

https://theses.hal.science/tel-03781104v4
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1
COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Lamine NOUREDDINE
Packing detection and classification relying on machine learning
to stop malware propagation

Thèse présentée et soutenue à Rennes, le 21 décembre 2021
Unité de recherche : Inria

Rapporteurs avant soutenance :

Frédéric ALEXANDRE Directeur de Recherche, UMR IMN / Inria Bordeaux
Henri-Pierre CHARLES Directeur de Recherche, CEA LIST Grenoble

Composition du Jury :

Président : Jean-François LALANDE Professeur, CentraleSupélec Rennes
Examinateurs : Isabelle CHRISMENT Professeur, Télécom Nancy / Université de Lorraine

Annelie HEUSER Chargé de Recherche, CNRS, IRISA Rennes
Christelle URTADO Maître de Conférences, IMT Mines Alès

Dir. de thèse : Stéphane UBEDA Professeur, INSA de Lyon, détaché à Inria Grenoble
Co-dir. de thèse : Olivier ZENDRA Chargé de Recherche, Inria Rennes

REMERCIEMENTS

Voilà que ces quatre années de thèse s’achèvent par un succès. Je suis tout content
et joyeux d’être devenu docteur en informatique. Dans cette lettre de remerciements,
je souhaiterais exprimer ma reconnaissance et ma gratitude envers tous ceux qui ont
participé, directement ou indirectement, à atteindre ce succès et à remplir cette joie.

Tout d’abord, je veux remercier Dieu, le tout miséricordieux, d’avoir exaucé mes prières
et de m’avoir ainsi offert l’opportunité de poursuivre une thèse de doctorat en France, avec
une thématique passionnante en sécurité informatique, comme je le souhaitais. Oui, cette
thèse s’est déroulée à l’Inria Rennes – Bretagne Atlantique qui, non seulement est un des
meilleurs endroits pour faire de la recherche en sécurité informatique en France, mais qui
se trouve aussi à Rennes, en Bretagne, cette merveilleuse région de France. Je le remercie
également de m’avoir accordé la sérénité, la patience et la persévérance tout au long de
ce parcours, pour finalement l’achever par ce manuscrit et une très belle soutenance.

Je tiens ensuite à remercier mes directeurs de thèse et encadrants. Merci à mon
directeur de thèse Stéphane Ubéda pour les échanges scientifiques fructueux qui m’ont
parfois permis d’éviter de me diriger vers de fausses pistes, en particulier dans le cadre
de ma seconde contribution de thèse. Merci à mon co-directeur de thèse Olivier Zendra
de m’avoir suivi et encadré pendant la majeure partie de cette thèse. Merci pour ses
retours constructifs lors de nos discussions scientifiques hebdomadaires. Merci pour son
soin particulier à répondre à mes diverses préoccupations. Merci pour ses relectures de
mes écrits et présentations. Grâce à ses recommandations, j’ai nettement amélioré ma
clarté à l’oral, mon écrit et la qualité de mes présentations. Il m’a appris à mieux croire
en moi, à toujours rester positif et à ne jamais dénigrer mon travail. Je le remercie pour
toutes ses transmissions, ses encouragements et remotivations sans cesse jusqu’à la fin.
Merci à mon encadrante Annelie Heuser de m’avoir aussi suivi et encadré avec Olivier.
Merci pour sa grande sympathie et gentillesse. Merci pour sa disponibilité, malgré son
emploi du temps très chargé. Aussi, comme pour Olivier, je la remercie pour ses retours
constructifs, ses relectures de mes écrits, son soutien et ses encouragements sans cesse
jusqu’à la fin.

3

Remerciements

Merci à Axel Legay, mon premier directeur de thèse, de m’avoir accueilli au sein de
l’équipe TAMIS et de m’avoir donné la possibilité de poursuivre cette thèse. Merci à
Fabrizio Biondi, mon premier encadrant, de m’avoir suivi et encadré durant ma première
année de thèse. Merci pour les précieuses discussions scientifiques qui ont largement
contribué à me donner une base solide pour la suite de ma thèse et à me former en tant
que jeune chercheur. L’article de recherche que nous avons publié ensemble en restera un
souvenir parlant.

Je remercie tous les membres de mon jury de thèse, à commencer par les rapporteurs
Henri-Pierre Charles et Frédéric Alexandre pour le temps qu’ils ont consacré à relire mon
manuscrit de thèse. Les points qu’ils ont soulevés ont permis d’améliorer ce manuscrit
de thèse dans sa version définitive. Merci à Isabelle Chrisment et à Christelle Urtado
pour l’intérêt qu’elles ont manifesté à l’égard de mes travaux de thèse. De même, merci à
Aurélien Francillon et à Jean-Yves Marion, membres de mon comité de suivi individuel,
pour l’intérêt porté à mes travaux de thèse et pour le suivi de mon avancement annuel.

Je me dois aussi de remercier le partenaire industriel CISCO, en particulier l’équipe
de Steve Rich, pour avoir stimulé les discussions scientifiques et fourni un vaste jeu de
données de malwares réels.

Par ailleurs, j’exprime ma gratitude à Sylvain Guilley. C’est en grande partie grâce à
lui que cette opportunité de thèse s’est présentée à moi.

J’adresse mes remerciements à tous les membres de l’ex-équipe de recherche TAMIS
dans laquelle j’ai passé la plus grande partie de ma thèse. Certains d’entre eux sont
devenus mes amis au fil du temps. Merci pour tous les moments conviviaux, enrichissants
et apaisants que nous avons passés ensemble. Je pense naturellement à Tristan avec qui je
partageais le bureau. Merci pour son accueil, ses échanges divers et agréables, les parties
au jeu de Go et les séances d’escalade. Merci à l’adorable Cassius pour son aide technique
inestimable dans le domaine des malwares et de l’obfuscation, son aide organisationnelle
pour le bon déroulement de ma soutenance, son humour déstressant, son soutien et ses
encouragements jusqu’à la fin. Merci à Stefano pour son dévouement acharné à m’aider
à débloquer des pistes de recherche afin d’apporter ma seconde contribution de thèse.
Merci d’avoir partagé avec moi de nombreuses astuces pour la structuration, l’écriture et
la relecture d’un article scientifique. Merci pour ses retours d’expériences concernant les
conférences et revues scientifiques. Merci pour son soutien et ses encouragements sincères.
Merci à Alex pour les nombreuses discussions assez variées et passionnantes que nous

4

Remerciements

avons eues ensemble, en particulier lorsqu’il s’agissait des malwares et de l’obfuscation.
Merci pour son soutien moral et pour les astuces en tout genre qu’il m’a fait partager
afin que je puisse tenir bon, surtout en fin de thèse. Merci à Sébastien Josse qui m’a
accueilli plusieurs fois chez lui pour partager avec moi un tant soit peu de son large savoir
pointu et technique dans le domaine des malwares et de l’obfuscation, dont les packers
font partie. Merci à Cécile Bouton pour son accueil et son assistance. Je n’oublie pas
bien sûr Christophe, Matthieu, Yoann, Céline, Phuc, Yulliwas, Aghate, Olivier Decourbe,
Nisrine, Delphine, Tania, Ioana, Thomas Given-Wilson, Najah, Laurent ... merci à vous
tous, j’ai énormément appris de vous. Je souhaite à chacun d’entre vous le meilleur et,
qui sait, ne sachant pas ce que l’avenir nous réserve, peut-être que nous nous reverrons
en d’autres occasions.

Mes remerciements vont aussi à tous les membres de l’équipe de recherche DiverSE
dans laquelle s’est effectuée la dernière année de ma thèse. Je n’ai malheureusement pas eu
la chance de véritablement les connaître, notamment en raison de la fin de mon contrat de
thèse avec l’Inria et à cause de la pandémie COVID-19 qui nous a tous obligés à recourir
au télétravail. Néanmoins, merci pour leur accueil, merci d’avoir suivi ma soutenance et
de m’avoir félicité pour ma réussite. Merci à Sophie Maupile pour sa gentillesse et son
assistance. Merci à Olivier Barais de m’avoir soutenu et d’avoir assuré le bon déroulement
de ma dernière année de thèse au sein de son équipe DiverSE.

Je suis également reconnaissant aux membres du personnel de l’Inria qui, par leur
sérieux et dévouement, assurent un environnement de travail très agréable. De même
pour les membres du personnel de l’université de Rennes 1, en particulier ceux de l’école
doctorale MathSTIC, pour leur accueil et leur disponibilité à répondre aux préoccupations
des doctorants, dont je faisais partie.

Je remercie profondément mes proches pour leur soutien, leurs encouragements et leurs
chaleureuses félicitations pour ma réussite au doctorat. Merci du fond du cœur à mon père
Abdelkader et à ma mère Lynda qui, tous deux, n’ont cessé de prier pour mon succès,
m’ont encouragé et m’ont soutenu moralement et financièrement du début à la fin de cette
thèse. Mais plus important, je les remercie de nous (moi, mon frère et ma sœur) avoir
inculqué une très bonne éducation morale, la culture du mérite et à toujours se surpasser
pour être parmi les meilleurs. Merci à vous deux, merci pour vos transmissions et vos
investissements pour voir vos enfants réussir. Vos efforts couplés aux miens m’ont permis
d’arriver à ce stade et de devenir docteur en informatique. Merci à mon petit frère Anis

5

Remerciements

et à ma petite sœur Amel de m’avoir suivi de très près, de m’avoir soutenu et encouragé
tout au long de ce parcours de thèse. Les deux étaient très contents et très fiers de voir
leur grand frère aîné devenir docteur en informatique. Je serai là moi aussi à vous suivre,
à vous soutenir et à vous encourager dans vos études et parcours, c’est promis ! Merci
à Bedra et à Brahim, et merci à leurs deux filles Rima et Sarah à qui je souhaite plein
de réussite. Merci à Nedra et à la petite Narimen à qui je souhaite beaucoup de bonheur
et de succès à l’avenir. Merci à Amina, à Yasmine, à Khalida, à mon oncle Ahmed et
à tous les membres de ma famille qui m’ont soutenu et félicité à la fin. Je pense aussi
à mes grands-parents, particulièrement à ma grand-mère maternelle décédée qui aurait
été si contente et si fière de voir son petit-fils devenir docteur en informatique. Merci
à Farouk pour son soutien moral apaisant et ses précieux conseils d’organisation et de
rigueur dans le travail. Merci à mon ami Mustapha pour sa proximité, son humour unique
et ses anecdotes passionnantes.

Enfin, malgré ma volonté de citer et de remercier toutes les personnes ayant contribué
à mon succès et à ma joie, il est possible que j’en aie oublié certaines. Mes sincères excuses
pour cet oubli involontaire, et merci.

Cet épisode de thèse se termine pour que d’autres épisodes puissent commencer, avec
de nouveaux horizons et de nouvelles aventures. Néanmoins, cette expérience de thèse à
l’Inria Rennes – Bretagne Atlantique, en France, me restera marquée à vie.

6

RÉSUMÉ

Ce résumé donne au lecteur un aperçu des travaux effectués au cours de cette thèse.
Nous commençons par introduire le contexte dans le lequel intervient cette thèse, à savoir
le principe global de l’empaquetage binaire, son déploiement par les logiciels malveillants
et les problèmes qu’il crée au sein de la chaîne d’analyse de logiciels malveillants d’un
antivirus. Puis, nous fixons les objectifs que cette thèse se veut d’atteindre. Enfin, nous
présentons les contributions qu’apporte cette thèse à la littérature.

Contexte

L’empaquetage (packing) a été historiquement utilisé pour la réduction de la taille
des données (compression) en raison d’un manque de ressources informatiques en
termes de capacité de stockage et de débit de transmission. Cependant, ces contraintes
sont rapidement devenues moins pertinentes au fil du temps en raison de l’évolution
considérable de ces ressources informatiques.

Lorsque le contenu d’un exécutable est compressé, sa taille est naturellement réduite,
et une fonction est généralement intégrée au sein du fichier compressé pour le décompresser
au moment de l’exécution, c’est-à-dire retrouver le code et les données d’origine en
mémoire, afin que l’exécutable puisse être exécuté comme à l’état d’origine.

Le fait de compresser un exécutable rend son code original illisible. C’est précisément
cet aspect qui a rapidement motivé les développeurs de logiciels malveillants (malware) à
tirer profit des empaqueteurs (packers) en tant que moyen de camouflage, devenu quasi
omniprésent, dans leur course sans fin contre les logiciels antivirus.

Ainsi, le principe de l’empaquetage a été détourné pour répondre à des fins
malveillantes. Ce principe englobe de nos jours une variété de techniques qui compressent
et/ou cryptent le contenu du logiciel malveillant, produisant un nouveau fichier binaire
syntaxiquement différent de celui d’origine, entravant ainsi l’analyse et la détection
statique en dissimulant le code malveillant.

Détecter qu’un logiciel malveillant est empaqueté et classifier par suite l’empaqueteur
utilisé sont donc deux étapes fondamentales pour pouvoir désempaqueter (unpacking) le
logiciel malveillant et l’étudier, que cela soit manuellement ou automatiquement.

7

Résumé

L’empaquetage cause de nombreux problèmes au niveau de la chaîne d’analyse de
logiciels malveillants d’un antivirus. En effet, les variantes d’un même empaqueteur
rendent ineffectifs les antivirus classiques basés sur des signatures reposant fortement
sur des propriétés syntaxiques pour détecter et classifier les empaqueteurs. Ces signatures
syntaxiques sont souvent en incapacité de capturer de petites différences entre variantes,
donc en incapacité de détecter et de classifier les différentes variantes d’un même
empaqueteur. L’empaquetage crée également un problème d’efficacité, car la détection
et la classification de l’empaqueteur peuvent être très coûteuses, ce qui pourrait rendre
une chaîne d’analyse de logiciels malveillants peu pratique. De plus, les empaqueteurs
évoluent constamment et rapidement au fil du temps, apportant de nouvelles techniques
d’empaquetage qui dégradent l’effectivité des stratégies antivirus pour détecter, classifier
et désempaqueter les binaires malveillants.

Face à ces problèmes, la littérature existante sur la détection et la classification
d’empaquetage s’est focalisée sur l’effectivité. Cependant, la robustesse et l’efficacité
requises pour faire partie d’une chaîne pratique d’analyse de logiciels malveillants restent
peu étudiées.

Objectifs

Cette thèse vise à proposer des solutions de détection et de classification d’empaqueteurs
effectives, efficaces et robustes, constituant des parties pratiques de la chaîne d’analyse de
logiciels malveillants d’un antivirus.

Plus précisément, l’effectivité signifie que nos solutions doivent avoir un taux élevé
de vrais positifs et un taux faible de faux positifs pour la détection et la classification
des échantillons empaquetés. L’efficacité signifie que le coût de calcul moyen nécessaire
pour détecter et/ou classifier un seul échantillon doit être réduit, et ce, afin que nos
solutions puissent faire face en pratique à un grand nombre d’échantillons par jour.
Enfin, la robustesse signifie que nos solutions doivent maintenir leur effectivité dans le
temps, face à l’émergence de nouveaux échantillons comportant de nouvelles techniques
d’empaquetage.

Contributions

Conformément aux objectifs fixés, nous apportons à la littérature deux contributions.

8

Résumé

⋆ Dans notre première contribution, nous présentons une étude visant à mieux
comprendre l’impact de la labellisation (ground truth), la sélection d’algorithme
d’apprentissage automatique (machine learning) et la sélection de caractéristique
(feature) sur l’effectivité, l’efficacité et la robustesse des systèmes de détection et
de classification d’empaqueteurs basés sur l’apprentissage automatique supervisé,
s’inspirant sur des travaux de tests empiriques de l’analyse des logiciels malveillants
avec apprentissage automatique (par exemple [3]). Plus précisément :

• Nous étudions les moyens de produire des labellisations de différentes qualités
et tailles. Puis, nous évaluons l’impact de ces différentes labellisations sur
l’effectivité et la robustesse d’algorithmes d’apprentissage automatique à
détecter et à classifier des empaqueteurs dans un vaste jeu de données de
logiciels malveillants réels. Les algorithmes sont testés à la fois via la méthode
de validation croisée à k blocs (k-fold cross-validation) sur le même jeu de
données ayant servi à l’entraînement, ainsi que contre des échantillons réels
de logiciels malveillants recueillis après la phase d’entraînement. Nos résultats
montrent que la taille d’une labellisation est plus pertinente que sa qualité, et
ce, quand il s’agit d’assurer plus d’effectivité et de robustesse à des algorithmes
d’apprentissage automatique supervisé destinés à détecter et à classifier des
échantillons empaquetés provenant d’environnements réels. En particulier, nos
tests de robustesse montrent que la méthode de validation croisée à k blocs
n’est pas adaptée à des domaines tels que la détection et la classification de
logiciels malveillants et d’empaqueteurs, où de nouveaux échantillons et de
nouvelles techniques d’empaquetage émergent constamment et rapidement dans
l’environnement réel. Cette constatation sur l’évolution rapide de l’écosystème
des logiciels malveillants et des empaqueteurs contribue à expliquer les résultats
de [3] sur les raisons pour lesquelles les algorithmes d’apprentissage automatique
seraient effectives en laboratoire, puis deviendraient défectueux une fois testés
contre des échantillons réels.
• De plus, pour construire des solutions suffisamment efficaces tout en préservant

l’effectivité et la robustesse, nous procédons en deux étapes. Dans la première,
nous extrayons un grand nombre de caractéristiques d’exécutables servant
à la détection et à la classification d’empaqueteurs basé sur l’apprentissage
automatique supervisé. Puis, nous effectuons une sélection minutieuse de ces
caractéristiques se basant sur leurs contributions à la fois à l’effectivité des

9

Résumé

algorithmes et au coût d’extraction à partir d’un échantillon. Dans la seconde
étape, nous effectuons une optimisation à grande échelle des hyperparamètres
de chaque algorithme d’apprentissage automatique, afin de réduire le temps de
détection et de classification d’un échantillon ainsi que le coût nécessaire à son
réentraînement. Grâce à cette sélection et à cette optimisation, nos résultats
montrent qu’une diminution négligeable de l’effectivité permet de réduire le
temps de détection et de classification par échantillon jusqu’à 44 fois de moins.
• Enfin, nous effectuons une analyse du coût de réentraînement, évaluant

quelle combinaison d’algorithmes et de caractéristiques produirait le meilleur
rapport entre la durée d’effectivité d’un algorithme et le coût nécessaire à son
réentraînement. Nos résultats montrent que des algorithmes simples avec moins
de caractéristiques peuvent être plus efficaces à utiliser en pratique que des
algorithmes complexes avec plus de caractéristiques.

Dans cette première contribution, bien que les réentraînements que nous proposons
pour nos modèles supervisés de détection et de classification d’empaqueteurs soient
réguliers et efficaces, nous constatons que ces réentraînements restent assez restreints,
particulièrement pour les modèles supervisés de classification de familles d’empaqueteurs.
En effet, ces modèles supervisés sont en incapacité théorique d’identifier de nouvelles
classes, donc ne peuvent pas identifier les nouvelles familles d’empaqueteurs qui émergent
dans la période de temps survenant entre deux réentraînements. Par conséquent, l’objectif
de robustesse, pour ces modèles en particulier, se restreint face à l’évolution rapide des
empaqueteurs au fil du temps. C’est dans cette insuffisance particulière que notre seconde
contribution se présente.

⋆ Dans notre seconde contribution, nous proposons, concevons et implémentons
SE-PAC, un nouveau framework auto-évolutif de classification d’empaqueteurs
(Self-Evolving PAcker Classifier) qui repose sur le regroupement (clustering)
incrémental de façon semi-supervisée, afin de faire face à l’évolution rapide des
empaqueteurs au fil du temps. Plus précisément :
• Notre technique auto-évolutive prédit les empaqueteurs entrant dans notre

système en les assignant aux groupes (clusters) les plus similaires, et s’appuie
sur ces prédictions pour mettre à jour automatiquement les groupes, les
remodeler et/ou en créer de nouveaux. Par conséquent, SE-PAC apprend en
continu à partir des empaqueteurs entrants. Il améliore, intègre, fait évoluer
et adapte constamment son regroupement en fonction de l’évolution des

10

Résumé

empaqueteurs dans le temps. Nos résultats montrent que SE-PAC atteint
l’objectif de robustesse en identifiant correctement les familles d’empaqueteurs
connues et nouvelles apparaissant au fil du temps, faisant ainsi face à l’évolution
des empaqueteurs dans le temps.
• Nous montrons comment combiner différents types de caractéristiques

d’empaqueteurs dans la construction d’une métrique de distance composée. Nos
résultats montrent que notre distance composée surpasse les distances simples
en termes d’effectivité.
• Nous dérivons une méthodologie de regroupement incrémental établissant un

bon compromis entre effectivité et efficacité. Nos résultats montrent que notre
méthodologie permet de réduire le temps de mise à jour par échantillon d’un
facteur 44 en moyenne.
• Enfin, nous proposons une nouvelle stratégie de sélection post-regroupement

qui extrait un sous-ensemble réduit d’échantillons pertinents de chaque
groupe d’empaqueteurs trouvé, et ce, afin d’optimiser le coût de traitement
post-regroupement. Nos résultats montrent que notre stratégie de sélection
post-regroupement réduit le nombre d’échantillons de 99% en moyenne.

Les expérimentations menées durant cette thèse s’appuient sur deux jeux de données.
Le premier contient plus de 280 000 échantillons de logiciels malveillants réels. Le second
contient plus de 18 000 échantillons d’exécutables manuellement empaquetés. Les résultats
obtenus sont prometteurs en termes d’effectivité, d’efficacité et de robustesse pour la
détection et la classification des empaqueteurs.

Par ailleurs, deux outils ont été développés : PE-PAC implémentant les solutions
proposées dans notre première contribution et SE-PAC implémentant les solutions
proposées dans notre seconde contribution.

Enfin, les deux contributions apportées dans cette thèse ont mené à la publication de
deux articles de recherche. Le premier [1] décrit notre première contribution. Le second
[2] décrit notre seconde contribution.

11

TABLE OF CONTENTS

1 Introduction 20
1.1 Context and Motivations . 20

1.1.1 Security: More Than a Must for Digital Systems 20
1.1.2 The Malware Threat . 22
1.1.3 Packers . 23

1.2 Challenges and Objectives . 25
1.3 Contributions . 27
1.4 Publications . 29
1.5 Outline . 30

2 Background and Related Work 31
2.1 Malware Analysis and Detection . 31
2.2 Packers . 32

2.2.1 Binary Packing and its Usage in Malware 33
2.2.2 In-depth Scanning . 35

2.3 Packers Detection and Classification Approaches 36
2.3.1 Syntactic Signatures . 36
2.3.2 Entropy . 39
2.3.3 Machine Learning . 40

2.3.3.1 Background on Machine Leaning 41
2.3.3.2 Related Work based on Machine Learning 46

3 A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems 51
3.1 Methodology . 52

3.1.1 Supervised Machine Learning Detection and Classification Algorithms 53
3.1.2 Feature Selection and Hyperparameter Optimization 54
3.1.3 Robustness Assessment against the Evolution of Packers over Time 54
3.1.4 Retraining Cost Analysis . 55

12

TABLE OF CONTENTS

3.2 Feature Description and Selection . 55
3.3 Datasets and Ground Truth Generation . 62
3.4 Evaluation Metrics . 64
3.5 Experimental Evaluation . 66

3.5.1 Definition of Classification Scenarios 67
3.5.2 Feature Selection and Hyperparameter Optimization 67
3.5.3 Robustness Assessment against the Evolution of Packers over Time 71
3.5.4 Retraining Cost Analysis . 73

3.6 Discussion . 74
3.6.1 Findings and Insights . 74
3.6.2 Threats to Validity . 76
3.6.3 Limitations and Future Work . 77

3.7 Conclusion . 78

4 SE-PAC: A Self-Evolving PAcker Classifier against rapid packers
evolution 80
4.1 Methodology . 82

4.1.1 Overall Toolchain . 82
4.1.2 Feature Extraction and Selection 84
4.1.3 Composite Pairwise Distance Metric 86
4.1.4 Clustering: Batch and Incremental 87

4.1.4.1 Scattered Representative Points 87
4.1.4.2 Batch Clustering in the Offline Phase 88
4.1.4.3 Incremental Clustering in the Online Phase 88

4.2 Post-Clustering Sample Selection . 92
4.3 Datasets and Ground Truth Generation . 93

4.3.1 Malware Feed . 93
4.3.2 Synthetic Dataset . 95

4.4 Evaluation Metrics . 97
4.4.1 Extrinsic Metrics . 97
4.4.2 Intrinsic Metrics . 98

4.5 Experimental Evaluation . 98
4.5.1 Scenarii Definition . 99
4.5.2 Offline Phase . 99

13

TABLE OF CONTENTS

4.5.3 Online Phase . 101
4.5.3.1 Scattered Representative Points 101
4.5.3.2 Effectiveness and Robustness of SE-PAC 102

4.5.4 PCRS Selection . 108
4.6 Discussion . 110

4.6.1 Findings and Insights . 110
4.6.2 When and How to Retrain? . 111
4.6.3 Threats to Validity . 112
4.6.4 Limitations and Future Work . 112

4.7 Conclusion . 113

5 Conclusion and Future Work 114
5.1 Context and Objectives . 114
5.2 Contributions . 114
5.3 Future Work . 117

Bibliography 120

Appendices 121
1. PE File Format . 121
2. Triangle Inequalities in the Cluster Update Policy (second step) 121
3. Examples of Radare 2 Traces for some Packed Binaries 122

14

LIST OF FIGURES

1.1 The packing detection and packing classification fragment of a typical
malware analysis workflow. The dotted circle highlights the parts explored
in this thesis: packing detection and packing classification. An in-depth
description of this workflow is given in the next Chapter, in Section 2.2.2. . 26

2.1 Life cycle of a program being packed and loaded into memory [23]. The
packer takes all the content of the Windows Portable Executable (PE)
file 1 in the highlighted rectangle (not the header), then compresses and
encrypts this into a new payload. An unpacking stub is added and placed
at the updated start address of the PE file’s execution. The PE header
is updated accordingly. The unpacking is performed when the program is
executed, by the unpacking stub decrypting and decompressing the original
content and recreating the parts of the file shown in the black rectangle.
In particular, the import table shown in the pink rectangle is restored so
that the addresses of the program’s functions are populated when running
on the target machine, as every Windows system may be different. Finally,
the unpacking stub returns execution to the reinstated start address and
the program executes as normal. 33

2.2 A syntactic signature used by PEiD to identify files packed by UPX from
version 0.50 to version 0.72. The signature field represents the sequence
of bytes characterizing the packer and version, while the ep_only flag
determines whether the sequence is found only at the entry point of the
binary or anywhere in it. 37

2.3 Rule used by Yara to identify files packed by the packer PEX version
v099meta. The rule above tells Yara that any file containing the raw bytes
contained in the string a, at the entry point location of the file under
analysis, must be reported as PEXv099meta, which is described by the
field meta as PEX packer version v099meta. 38

2.4 Example illustrating the working principle of decision-tree-based classifiers. 42

15

LIST OF FIGURES

2.5 In this diagram, minPts = 4. Point A and the other red points are core
points, because the area surrounding these points in an eps radius contain
at least 4 points (including the point itself). Because they are all reachable
from one another, they form a single cluster. Points B and C are not core
points, but are reachable from A (via other core points) and thus belong
to the cluster as well. Point N is a noise point that is neither a core point
nor directly-reachable [58]. 45

3.1 Feature extraction costs for the feature categories. The dotted red fopen
time line represents the empirically-calculated average time for opening
the binary before extracting any feature, i.e., 14ms. Extraction cost of the
eb, me, and sc categories is negligible. Extraction cost of the be and re
categories varies widely according to the size of the file, which sections are
present, and whether it is stripped of its debug information and resources.
Extraction cost of the if category is consistently high. 58

3.2 Results of the robustness assessment against the evolution of packers over
time. Each graph evaluates the F-score of the 3 best algorithms by F-score
(Table 3.4a) and the 3 best algorithms by F-score/cost ratio (Table 3.4b)
on a scenario-ground truth combination. Each algorithm is trained on data
collected from February to June 2017 and tested on data collected on the
first two weeks (A) and second two weeks (B) of July to October 2017. . . 72

4.1 Overall toolchain. 83

4.2 Nearest cluster search in incremental update. 89

4.3 PCRS selection from clusters found by SE-PAC in the online phase at tn. . 93

4.4 PCRS selection strategy. Note that the selection of the first core point to
visit is done randomly. 93

4.5 AMI score evolution . 104

4.6 Homogeneity score evolution . 104

4.7 Number of clusters evolution . 104

4.8 DBCV score evolution . 104

16

LIST OF FIGURES

4.9 Instruction substitution obfuscation technique used by YodaCryptor v1.2
packer to generate polymorphic instances of the unpacking stub code.
Using the framework Radare2, the three sequences above were generated
by emulating the execution of the unpacking stub code of three different
binaries packed by YodaCryptor v1.2. The part in blue shows the
instruction substitution obfuscation technique. 108

17

LIST OF TABLES

3.1 Generation of consensus (3cons) and non-consensus (1cons) ground truths
based on three tools (Packerid, Yara, and a Hash-based proprietary tool).
File1 is detected by two tools out of three as TheMida, hence is added to the
non-consensus ground truths as a TheMida sample. File2 is detected by all tools
as UPX, hence is added to the consensus ground truth as a UPX sample. File3 is
not detected as packed by any tool, hence is added to both ground truths as an
unpacked sample. File4 is associated to more than one packing technique, hence
it is not added to any ground truth. 63

3.2 Number of samples for each packer family in the two ground truths. Only families
with ≥ 10 samples are used, so algorithms trained on 3cons will be able to
identify less families than algorithms trained on 1cons. 64

3.3 Hyperparameters used for algorithm optimization. All hyperparameter
combinations for each algorithm have been tested. 68

3.4 Best algorithms and feature categories (Byte Entropy be, Entry Bytes eb,
Import Function if, MEtadata me, SeCtion sc, REsource re) for each
configuration of scenario (detection det, classification clas, or both both) and
ground truth (3cons or 1cons). 69

3.5 Retraining cost analysis for the best algorithms for the both–1cons
scenario–ground truth combinations, assuming that an algorithm has to
be retrained when its F-score drops to 0.96. 74

4.1 Malware Feed. Packers in blue italics are specific to this dataset. Packers
in black belong to families common to both malware feed and synthetic
datasets. “v?” is unspecified version. “x’ is one or multiple sub-versions. . . 94

4.2 Synthetic Dataset. Packers in blue italics are specific to this dataset.
Packers in black belong to families common to both malware feed and
synthetic datasets. 96

4.3 Summary of offline phase results. 100
4.4 Distance comparisons. 100

18

LIST OF TABLES

4.5 Impact of nrp on the effectiveness and update time per sample. 101
4.6 Summary of final results. 103
4.7 Cluster contents and DBCV score for each packer family, in both scenarii,

after both offline and online phases, Part-1. “Not learned” in the offline
phase column indicates training does not include the packer, so the packer
is considered specific, thus new, when used as test packer. “No score” means
there is no cluster to evaluate. Cluster ID “-1” means noise. Results in italics
are misclassifications. 105

4.8 Extension of Table 4.7 . 106
4.9 Extension of Table 4.7 . 107
4.10 Number of PCRS . 109
4.11 Overview of some clusters after PCRS selection (MF/S). 109

19

Chapter 1

INTRODUCTION

This introduction to the thesis starts by presenting in Section 1.1 the context and
motivations, framing it in the global context of computer security, before digging more
specifically into the malware packing problematic. Section 1.2 then explains the challenges
we faced and the objectives we set. Section 1.3 depicts our contributions. Section 1.4 lists
our publications. Finally, Section 1.5 describes the structure of this thesis.

1.1 Context and Motivations

This section first puts our thesis in the global context of computer security, then zooms
in the malware threat. Finally, it focuses on the malware packing problematic, which is
in the heart of our thesis.

1.1.1 Security: More Than a Must for Digital Systems

The digital revolution, also called the “third industrial revolution”, began in the latter
half of the 20th century, with the adoption and proliferation of digital computers and
digital record-keeping, and continues to blossom to the present day [4]. The rise of home
computers, invention of the Internet, invention of the World Wide Web, mainstreaming of
the Internet, Web 1.0, Web 2.0, social media, and smartphones, have undoubtedly moved
our world forward to a new awesome digital age, with unprecedented social and economic
changes in societies. Everything becomes faster, everything becomes more sophisticated.
Withal, these achievements have not finished impressing us yet, the upcoming decades
would bring spectacular technological novelties that no one would have imagined would
become basic things of our daily life.

This digital world can be illustrated as a worldwide circuit where data and software
constantly travel with extraordinary speed. It has provided us an unimaginable comfort,

20

Introduction

work efficiency, communication speed, and closeness. All areas of our daily life are today
highly dependent to it, e.g., banks, e-business, e-learning platforms, electronic journalism,
teleworking, etc.

However, this high dependence does not come without disadvantages. Indeed,
despite the multiple benefits our worldwide information circuit has provided us, it has
unfortunately also provided flexible ways for cybercriminals’ bad intents to fly over the
oceans and continents. Thus considerably increasing the risks that well-designed attacks
would easily succeed to propagate at large scale and break the ice of our digital computing
and communication.

As I write this thesis, the “coronavirus pandemic" [5] (also known as COVID-19
pandemic) has led the governments of many countries over the world to decide to put
their populations in lockdown for many months repeatedly, and to make massive use of
digital computing such as e-learning, e-business, and teleworking, in order to simply keep
life going on, and particularly to hold their economy up.

Unfortunately, during this pandemic, many cybercriminals took advantage of the
situation to launch a cyber pandemic, i.e., to multiply their bad intents in the form of
cyberattacks. Indeed, the study [6] reports that as soon as the COVID-19 pandemic
started, the number of cyberattacks in general thrived up to 350 in April 2020 in
Switzerland, compared to the norm which goes from 200 to 250 cyberattacks. Similarly,
according to [7], United Arab Emirates saw an increase of at least 250% in cyberattacks
during the year 2020.

The cyberattacks reported during the COVID-19 pandemic are quite diverse [8, 9]:
many of them affect user privacy, taking advantage of the poor security awareness of
many users who had to work from home with their unsecured personal computers and
networks; malware attacks exploiting the rushed online launch of certain insecure services
used to keep organizations’ operations going on; etc. Interestingly, [6] also reports that
cyberattacks using previously unseen malware or methods increased by 15% compared to
the norm, such that users fell into the trap in unexpected ways.

In particular, [6] reports that email and SMS phishing attacks increased drastically
during the COVID-19 period. Attackers send different emails or SMS messages with false
claims such as having a “cure” or encouraging donation. Furthermore, [8] reports that
as soon as the “COVID-19’s cure” race started, many laboratories and Biotech firms
that were leading vaccine research were targeted by ransomware attacks. The goal of
these ransomware was to strike the latest breakthrough in vaccine development from

21

Introduction

these medical organizations by stealing thousands of patient records and threatening to
publish their confidential contents. Many healthcare institutions have been targeted as
well, with attackers exploiting the pandemic pressure and numerous vulnerabilities found
in healthcare facility networks, often for business profit [9]. Moreover, on July 2, 2021,
a colossal ransomware attack spread worldwide, affecting thousands of businesses, e.g.,
Swedish grocery store chain Coop to close all of its 800 stores because the whole paying
system at their (self-service) checkouts stopped working [10].

These examples of cyberattacks show where the imagination, cunning, and pitiless of
cybercriminals could go to satisfy their malevolent goals. Still, we are not done yet: at the
time I write this thesis, the pandemic is still going on, and many new malicious strategies
are developed to gain maximum benefits.

The concern is not specifically about COVID-19 pandemic since it is temporary and
things should get back to the norm, but the concern is about observations reported during
the pandemic, which obviously revealed the unavoidable correlation between the drastic
increase of our dependence to digital systems and the drastic increase in emergence of
cyberattacks. Unfortunately, this ascertainment is a bad new since we are projected in
the future to be more and more dependent to digital systems across the world, even
without pandemic diseases, which consequently would lead to face the emergence of more
and more cyberattacks. Today and tomorrow, security becomes more than a must for
digital systems.

1.1.2 The Malware Threat

Malware, standing for malicious software, represents software that is specifically
designed to disrupt, damage, or gain unauthorized access to a computer system [11].
There are a wide variety of malware types, including computer viruses, worms, trojan
horses, ransomware, spyware, adware, rogue software, scareware, etc. These malicious
programs are generally conceived to exploit vulnerabilities of a targeted system. These
vulnerabilities are often due to insecure design or user errors. The intent of these malware
programs can include revealing sensible private information about political and public
persons, hacking an electronic vote system, modifying the contents of medias, stealing
crucial information of bank accounts, conducting a denial of service on critical business
systems, hacking nuclear weapon systems, etc.

Malware are having their (r)evolution over years and are predicted to continue
spreading with greater motivations. Overall, this (r)evolution is in terms of quantity and

22

Introduction

complexity. Indeed, by the end of the year 2019, the number of detected malware exceeded
the bar of 1 billion programs. Currently, this number reaches nearly 1.28 billion programs
[12]. This (r)evolution concerns the complexity as well, since [13] reports that malware
become more and more complex.

This phenomenal (r)evolution takes its energy and its potential mainly from the huge
business profit that malware authors and some cyber-criminal organizations can gain from
their targeted victims. Ransomware damage alone cost more than 5 billion USD in 2017.
It was estimated to reach 20 billion USD by 2021 and to exceed 265 billion USD by
2031 [14]. This latter prediction constitutes an increment of 1325% compared to 2021 and
5300% compared to 2017. According to some studies [15], malware would be the most
expensive attack type for organizations.

Another reason relies on the availability of malware development and deployment
kits, available on the Internet. These kits made the malware weapon becomes no only
available for “malware experts” but also for what it is called “script kiddies” 1. Indeed,
the latter are able with simple clicks to generate many instances (i.e., variants) of the
same malware (family). Furthermore, many of these tools are even tunable and it is
possible to choose different settings that will be applied when composing the malware. In
addition, these engines are bolstered by anti-analysis techniques such as polymorphism
and metamorphism [16] which make it possible to generate complex instances of the same
malware (family), with the goal to better defeat antiviruses by concealing their (syntactic)
fingerprints and thus preventing static analysis. One highly effective technique used by
malware kits to achieve this goal is to pack malware.

1.1.3 Packers

Packers were historically used for data size reduction (compression) because of limited
resources like storage capacity and data transmission rate. Some of these constraints may
still apply under some systems: at some point, we all have had to zip an (executable) file
because its size was too large to be submitted in the (remote) system. However, these
constraints quickly became less relevant over time because of the considerable evolution
of storage resources and network throughput.

When an executable content is packed, its size is naturally reduced, and a function is
typically integrated into the packed file to unpack the binary at runtime, i.e., to recreate

1. Non-expert individuals who use existing scripts or programs developed by other people to attack
computer systems and networks.

23

Introduction

(decompress) the original code and data back in memory, so that it can be executed as it
was originally.

The packing process changes the structure of the original file and makes the original
code unreadable until being unpacked. This packing artifact motivated malware authors
to take advantage of packing facilities as a new camouflage strategies in their never-ending
cat-and-mouse game against antiviruses.

Therefore, the principle of packing has been drifted to fulfill malicious goals, by
encompassing a variety of techniques that compress and/or encrypt the content of the
malware, producing a new binary that is syntactically different from the original one,
hence hiding the malicious code and preventing static analysis of the malware. In addition,
modern packers include a multitude of protection and anti-analysis techniques [17, 18]
(e.g., anti-disassembly, anti-debug, multi-threading, etc.) that aim to hinder the detection,
classification, and thus unpacking of the packed malware. For these reasons, packers
became quickly a favorite weapon of malware authors.

From a security point of view, detecting, classifying, and unpacking a given packed
binary is fundamental to being able to verify whether it is malicious or benign (i.e., makes
use of packing for legitimate purposes, such as digital rights management or software
integrity protection). Antiviruses have adapted to the reality of malware packing by
developing countermeasures at least in terms of effectiveness, i.e., detecting, classifying,
and unpacking the most common packing versions, but this is still largely not sufficient.

Indeed, different packer variants 2 make ineffective the classical signature-based
antiviruses that rely heavily on syntactical properties to detect and classify packers. These
syntactic signatures are often unable to capture small differences between variants, thus
unable to detect and classify different variants of a same packer (family). Besides causing
ineffectiveness, packing creates a problem of efficiency for antiviruses, because the binary
sample must be either unpacked or analyzed dynamically to detect malicious behavior
(see Figure 1.1). Dynamic analysis requires execution of the (packed) malware sample in
a sandbox virtual environment. The computational cost of starting a sandbox being in the
order of seconds or more before the malware analysis can even begin. Otherwise, analyzing
a packed malware statically, by examining the malware code directly via disassembly or
measuring syntactic properties, would lead to a failure in catching the malware because
the malicious code is unreadable, as explained before.

2. In the context of packers, variants can represent different versions, configurations, or polymorphic
instances of the same packer (family).

24

Introduction

Finally, as it happened for malware race, packers did their (r)evolution over time as
well. This last decade saw the emergence of custom packers, which are packing programs
that are either developed from scratch or partially from well-known existing packers (e.g.,
Vanilla UPX 3). Their usage has become so widespread that by 2015, Symantec detected
their use in over 83% of all malware attacks [19]. Some research works have also followed
this (r)evolution (e.g., [18]).

The simple fact that these “custom” packers are novel and not commonly known allows
malware to stay below the radar of obsolete antiviruses which can neither detect them as
being packed nor unpack them effectively, because the unpacking techniques are unknown.
Furthermore, since they appear constantly and rapidly over time, this causes a lack of
robustness for antiviruses, i.e., makes them ineffective over time against the evolution 4 of
packers.

To summarize, packing causes problems of effectiveness, efficiency, and robustness for
antiviruses in analyzing and detecting malware. Therefore, proposing solutions to solve
these problems is an obvious necessity of any modern and practical antivirus. This is
where our thesis comes in.

1.2 Challenges and Objectives

Challenges. Packing makes malware analysis significantly harder since the binary must
be either unpacked or analyzed dynamically to detect malicious behavior (see Figure
1.1). A first challenge (packing detection) then is to detect whether or not a potential
malware sample has been packed. If a sample has been determined to be packed, then
a second challenge (packing classification) to detect which packer was used to pack the
sample. If either of these challenges fails or provides incorrect results, then static analysis
of malware fails; furthermore, dynamic analysis will be required (or applied erroneously).
Thus, effective packing detection and packing classification are crucial to building effective
malware analysis workflow.

However, both packing detection and packing classification must be computationally
much cheaper than dynamic analysis, since in case of multiple layers of packing the
detection-classification-unpacking loop may have to be executed multiple times to prepare
the sample for static analysis (see Figure 1.1).

3. UPX stands for Ultimate Packer for eXecutables.
4. That is, the emergence of new classes or new variants of existing packers.

25

Introduction

Packing
Detection

Packing
Classification

Generalized
Unpacking

Static
Analysis

Dynamic
Analysis

SAMPLE PACKED KNOWN

UNKNOWN
UNPACKED

SUCCESS

FAILURE

Specialized
Unpacking

FAILURE

SUCCESS

Figure 1.1 – The packing detection and packing classification fragment of a typical
malware analysis workflow. The dotted circle highlights the parts explored in this thesis:
packing detection and packing classification. An in-depth description of this workflow is
given in the next Chapter, in Section 2.2.2.

Creating malware detection techniques that perform well on real malware (not just
in laboratory tests) is known to be a hard problem [3]. One main reason for this is that
the malware ecosystem evolves in the wild, changing the frequency and composition of
malware, including the packing used. This forces malware analysis and detection tools to
be constantly updated about the evolution of packers over time in order to keep the pace
with the evolving malware ecosystem.

Objectives. This thesis focuses on proposing solutions for packing detection and
packing classification to be practical parts of a malware analysis workflow. Our solutions
must thus defeat the challenges sketched above by satisfying the following objectives:

• Effectiveness. The solutions have a high true positive and a low false positive rate.
This is measured by testing the technique against packed and unpacked samples.
• Efficiency. The solutions have a low computational cost for packing detection and

classification on a single sample, in order to scale to a large number of samples per
day.

26

Introduction

• Robustness. The solutions maintain their effectiveness when used on samples
different from the ones they have been built with. This is measured by robustness
assessment over time, i.e., testing the solutions on samples captured after the
solutions have been built, representing the evolving ecosystem of packers used by
malware in the wild.

1.3 Contributions

This thesis aims to propose solutions for effective, efficient, and robust packing
detection and classification in order to be practical parts of a real malware analysis
workflow (see Section 1.2 and Figure 1.1).

To this end, our thesis brings in a nutshell two contributions to the literature:
• We introduce a study which aims at understanding the impact of ground

truth generation, machine learning algorithm selection, and feature selection on
the effectiveness, efficiency, and robustness of supervised machine-learning-based
packing detection and classification systems, following the example of works on
empirical testing of machine learning malware analysis including [3].
• We propose, design, and implement SE-PAC, a new Self-Evolving PAcker Classifier

framework that relies on incremental clustering in a semi-supervised fashion, in
order to cope with the fast-paced evolution of packers.

In more details, our first thesis contribution studies ways to produce ground
truth labels of different qualities (in terms of confidence) and sizes in order to train
supervised Machine Learning (ML) based packing detection and classification algorithms
on large-scale real packed malware database. Furthermore, it investigates how these
qualities and sizes impact the effectiveness of our ML algorithms for packing detection
and classification when assessed with k-fold cross-validation method, and when assessed
with packed malware samples gathered from the wild after the training phase.

Our findings show that algorithms trained with higher-reliability and smaller-size
ground truth seem to perform slightly better than lower-reliability and larger-size ground
truth, when tested with k-fold cross-validation method. However, when tested against
samples gathered from the wild after the training phase (representing the evolution of the
packing ecosystem over time), higher-reliability and smaller-size ground truth perform
worst with up to 30% loss in effectiveness, while lower-reliability and larger-size ground
truth were outstandingly more resilient with a maximum loss of 3%.

27

Introduction

Through these findings, we show on the one side that the first results above are just
an artifact of k-fold cross-validation method. On the other side, we show how to establish
a good trade-off between the quality of the packing ground truth and its size to be robust
for detection and classification in in-the-wild scenarios.

Furthermore, to construct efficient solutions that are fast enough to be integrated in
a practical malware analysis workflow while preserving their effectiveness and robustness,
we do two things. One, we extract a large number of features for ML packing detection
and classification, then perform a careful feature selection based on both the features
contribution to the algorithms effectiveness and the cost of extracting features from a
sample. Two, we perform a large scale hyperparameter optimization of ML algorithms, to
reduce the time to classify a sample and cost of retraining an algorithm.

Through these two optimizations, we show that a negligible decrease in effectiveness
can reduce classification time per sample by up to 44 times.

Finally, we perform a retraining cost analysis evaluating which combination of ML
algorithms and features yields the best ratio of uptime to retraining cost. Our findings
show that simple algorithms with less features can be more efficient to use compared to
complex algorithms with more features.

The results of robustness assessment show that packer classifiers loose their
effectiveness over time due to the wide and rapid evolution of malware and thus packer
ecosystems. This decrease in the effectiveness over time is in part because these packer
classifiers rely on supervised ML systems which suffer from the theoretical inability to
identify new classes, thus new packer families can not be classified correctly. While we
offer our models regular and efficient retraining with new packer families (and versions),
these retraining are still limited because supervised packer classifiers would still be unable
to identify new packer families that appear constantly and rapidly in the wild, in the period
of time occurring between each two retraining.

Our second thesis contribution specifically covers this theoretical limitation by
proposing, designing and implementing SE-PAC, a new Self-Evolving PAcker Classifier
framework which relies on incremental clustering in a semi-supervised fashion, aiming to
provide an effective, incremental, and robust solution to cope with the fast-paced evolution
of packers. Our self-evolving technique predicts incoming packers by assigning them to
the most likely clusters, and relies on these predictions to automatically update clusters,
reshaping them and/or creating new ones. Therefore, SE-PAC continuously learns from
incoming packers, adapting its clustering to packers evolution over time.

28

Introduction

In the context of SE-PAC, we show how to combine different types of packer features
in the construction of a composite pairwise distance metric, we derive an incremental
clustering methodology which establishes a good trade-off between effectiveness and
update time performance, and we propose a new post-clustering selection strategy which
extracts a reduced subset of relevant samples from each cluster found, in order to optimize
the cost of post-clustering packer processesing.

The experimentation we conduct during this thesis relies on two datasets. The first is a
real-world malware feed dataset which gathers more than 280,000 samples. The second is
a synthetic dataset which gathers more than 18,000 samples of manually crafted packed
binaries. The results we obtain are promising in terms of effectiveness, efficiency, and
robustness for packing detection and classification.

Finally, we developed two tools: PE-PAC 5 and SE-PAC5. The first tool implements
the solutions we proposed in our first contribution. The second implements the solutions
we proposed in our second contribution.

1.4 Publications

During this thesis, the two contributions explained in the previous section have been
published in two papers, a journal and a conference:

• Fabrizio Biondi, Michael A Enescu, Thomas Given-Wilson, Axel Legay, Lamine
Noureddine, and Vivek Verma. 2019. Effective, efficient, and robust packing
detection and classification. Computers & Security 85 (2019), 436–451 [1].

• Lamine Noureddine, Annelie Heuser, Cassius Puodzius, and Olivier Zendra.
2021. SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution.
In Proceedings of the 11th ACM Conference on Data and Application Security and
Privacy (CODASPY 2021), April 26–28, 2021, Baltimore-Washington DC Area,
MD, USA. (acceptance rate: 24.5%) [2].

5. Implementation of these tools are detailed in Sections 3.5 and 4.5 respectively. For access to these
tools, please contact me on this email: laminho@live.fr.

29

laminho@live.fr

Introduction

1.5 Outline

This thesis is organized as follows. Chapter 2 gives the background material useful to
understand this thesis. It both reports the related work approaches adopted to solve
the packing detection and classification problems, and shows where our thesis takes
its originality. Chapter 3 presents our first thesis contribution in which we introduce a
study covering the impact of several ML parameters (ground truth generation, algorithm
selection, etc.) on supervised ML-based packing detection and classification systems.
Chapter 4 presents our second thesis contribution in which we present SE-PAC, a new
Self-Evolving PAcker Classifier framework that copes with the fast-paced evolution of
packers problem. Finally, Chapter 5 concludes this thesis, and shows possible future
perspectives.

30

Chapter 2

BACKGROUND AND RELATED WORK

This chapter provides the background material necessary to understand this thesis.
It provides as well an analytic analysis of the related work approaches that have been
adopted to solve the packing detection and classification problems, and where our thesis
takes its originality.

This chapter is organized as follows. In Section 2.1, we start by giving a brief
background on malware analysis and detection techniques. Then we recall in Section
2.2 background on packers and their usage in malware. Finally, we present in Section 2.3
the related work approaches adopted for detecting and classifying packers and we discuss
for each approach how our thesis is different. This last section provides as well essential
background for understanding these approaches and ours.

2.1 Malware Analysis and Detection

This section gives a brief background on malware analysis and detection techniques.
To analyse and/or detect malware, systems and analysts rely generally on a set of

(observational) features that can be descriptive of the syntactic and/or semantic (called
also behavioral) aspect of the malware. In practice, the values taken by (part of) these
features are different from the ones taken by legitimate software, which makes possible
the distinction. Furthermore, these features can be extracted principally relying on static,
dynamic, or concolic analysis. We note that these analyses are sometimes combined (i.e.
hybrid analysis).

Static analysis examines the malware without resorting to the execution of its code
directly, i.e., via disassembly or measuring syntactic properties. As a result of a static
analysis, syntactic features are (often) extracted from the malware such as strings, opcode
mnemonics, byte n-grams, entropy, imported calls, header field values, etc., [20].

Dynamic analysis requires executing the malware sample, e.g., in a virtual sandbox
environment. As a result of a dynamic analysis, semantic features are (often) extracted

31

Chapter 2 – Background and Related Work

witnessing the manifestation of malicious actions during the execution of the sample at the
level of the API calls invoked, memory reads/writes/executes, the state of some registers,
the files created/opened/modified/closed, the network activity, etc., [20].

The dynamic analysis makes possible the extraction of semantic features. The latter
are often more resilient to semantic transformation which can easily bypass the syntactic
feature which are often extracted through static analysis. However, the dynamic analysis
is in general largely more expensive that static analysis due to the computational cost of
starting a sandbox being in the order of seconds or more before the malware analysis can
even begin.

The Concolic analysis (a portmanteau of CONCrete and symbOLIC) extracts the
malware’s behavior while covering as many of the binary’s possible execution paths as
possible [21], in contrast to the traditional dynamic analysis which is able to extract
and analyze only one of the possible execution paths (which can be the one which skips
revealing the malicious action) of the analyzed malware. However, since Concolic analysis
integrates symbolic analysis, it is also well-know to be extremely costly and not scalabale
in practice due to the path explosion problem.

Malware authors employ various techniques to defeat these analyses, like inserting
many portions of dead-codes, re-ordering the functions of the malware, detecting and
evading the sandbox virtual machine, executing some actions at specific timing, inserting
opaque predicates, etc., [22]. In particular, packing the malware content is one of the
most common obfuscation techniques used to hinder static analysis. On the one side, it
increases the difficulty to reverse engineer the binaries, which entails higher analysis costs
for malware analysts. On the other side, it makes possible escaping the detection becode
the malicious code is hidden. Therefore, the malware’s code needs to be unpacked before
being analyzed and detected.

2.2 Packers

The first part of this section (2.2.1) explains the principle of binary packing, how it is
employed to obfuscate malware from antiviruses, and what is the degree of its complexity.
The second part (2.2.2) shows how a typical malware analysis workflow deals with the
packing problem.

32

2.2. Packers

Figure 2.1 – Life cycle of a program being packed and loaded into memory [23]. The packer
takes all the content of the Windows Portable Executable (PE) file 1 in the highlighted
rectangle (not the header), then compresses and encrypts this into a new payload. An
unpacking stub is added and placed at the updated start address of the PE file’s execution.
The PE header is updated accordingly. The unpacking is performed when the program is
executed, by the unpacking stub decrypting and decompressing the original content and
recreating the parts of the file shown in the black rectangle. In particular, the import table
shown in the pink rectangle is restored so that the addresses of the program’s functions
are populated when running on the target machine, as every Windows system may be
different. Finally, the unpacking stub returns execution to the reinstated start address
and the program executes as normal.

2.2.1 Binary Packing and its Usage in Malware

Packers were designed to fulfill either or both goals of size reduction and thwart
analysis or detection [23, 24]. Binary Packing consists in compressing and/or encrypting an
executable binary to produce a new binary that is syntactically different from the original
one. It works by taking as input the target binary (called payload) and generating a new
one that embeds the original in a packed, “scrambled” form, together with an unpacking
routine (called unpacking stub) that can, in memory, undo the packing process and execute
the original binary. Therefore, packers are also referred as runtime packers, and sometimes
as self-extracting executables. An overview of the life cycle of a program being packed
and loaded into memory is shown in Figure 2.1.

In the context of malware detection, the main challenge of the analysis of an
unknown packed sample is to determine whether the payload is malicious or benign.
This analysis is only possible after partial or complete unpacking of the sample (see

1. A detailed description of the PE file format is given in the Appendix 1.

33

Chapter 2 – Background and Related Work

Section 2.2.2 below). Classical signature-based antiviruses that heavily rely on syntactical
properties and do not have unpacking capabilities are thus ineffective against packing. So
a special concern for packers is to alter the syntactic properties of the different instances
(i.e., variants) generated from the same malware (family) in order to better defeat
antiviruses. Polymorphic codes take different forms at each instance generation (e.g., using
encryption). Metamorphic codes rewrite themselves at each execution [16]. The protection
features (or called anti-reverse-engineering features) sought by malware developers include
many different techniques for anti-debugging, anti-disassembly, obfuscation, anti-VM, and
other anti-analysis techniques [24] which the goal is to make harder the unpacking process.

This difficulty to unpack a packed binary is refereed as the complexity of packers in [18].
Therefore, depending on the requirements entailed by the developer, various packers would
have different complexities [18]. In this latter work, a taxonomy including six increasing
complexity classes (I to VI) is proposed to evaluate packers, based on the increasing
difficulty to unpack the binary, gauged relatively to the multiple anti-analysis techniques
that are added to the unpacking stub routine. Type I packers are the simplest and work
accordantly to the packing principle aforementioned, including a single unpacking routine
that restores the original program before passing the execution and running it. From Type
II to Type VI, multiple anti-analysis techniques are added, such as multi-layer packing,
interleaved execution of the unpacking stub and original program, shifting decode frames,
etc., [18].

Furthermore, authors added a separate class for virtualization-based packers, which
also provide a way to convert binary files without changing semantics. Despite substantial
differences in its inner working principle in comparison to classical packers, binary
virtualization is seen as an advanced packing technology [25]. Here, the target code is seen
as the bytecode (also termed p-code [26]) of an interpreter (or virtual machine) whose
the language is randomly chosen at the time of protection [26]. The interpreter attached
into the new binary (to execute the bytecoded program) is polymorphic by design with
respect to the randomly chosen language.

Finally, some popular tools work on the similar principle of packing such as
compressors (e.g., Zip, WinZip, WinRAR) and installers that change the syntactical
properties of the original files. The difference, however, is that they aim to obtain file
bundling and size reduction without any special concern with protection against reverse
engineering.

34

2.2. Packers

2.2.2 In-depth Scanning

To determine whether a sample is malicious, the antivirus needs to analyze its
characteristics. This analysis has to account for packing techniques used to obfuscate
malware and hinder reverse engineering. Packing makes malware analysis significantly
harder since the binary must be either unpacked or analyzed dynamically to detect
malicious behavior.

Therefore, if the antivirus determines that the sample is packed, a payload extraction
is attempted before proceeding with the malware analysis. This process is called in-depth
scanning [27] (see Figure 1.1), and it is considered as being the packing detection and
packing classification fragment of a typical malware analysis workflow. The analysis
pipeline starts with very lightweight syntactic operations, and continues when necessary
with more robust and expensive interventions.

If the sample is detected as unpacked, it is analyzed statically. Otherwise, if the sample
is found to be packed, the packing technique is classified. In case of known classification,
the payload is retrieved with a specialized unpacker and delivered back to packing
detection (to account for multi-layered packing). If the classification is unknown or the
specialized unpacking technique fails, generalized unpacking is alternatively attempted,
with the payload delivered back to packing detection in case of successful extraction.
If the generalized unpacking technique fails, the whole sample is analyzed dynamically
otherwise. Observe that a failure of packing detection may lead to a failure of malware
detection if that latter uses static analysis (that tends to fail when the binary is packed), or
attempted unpacking of already unpacked samples likely to conclude in expensive dynamic
analysis.

Specialized unpacking can concern the unpacking function itself, or may concern a
specialized environment for unpacking a specific packed malware. There may be specialized
unpacking functions for common packers; new functions can be developed for new packers.
They are generally lightweight and fairly precise, but require a correct prior identification
of the packer used (and sometimes the version). Generalized unpackers are intended to
handle various packing algorithms. However, they are generally more costly for lower
success rates, especially if the packer is very complex and requires rather a specialized
unpacking.

Therefore, the correct classification of the packer (and version sometimes) is vital for
a good, cost-effective in-depth scanning, by deciding whether a specialized unpacker can
be tried before any attempt with a generalized unpacker that is more expensive and more

35

Chapter 2 – Background and Related Work

likely to end in costly dynamic analysis. Finally, the classification process must also be
efficient enough not to add too much overhead in the analysis workflow.

2.3 Packers Detection and Classification Approaches

Most of the works present in literature use approaches that are based on syntactic
signatures, entropy metrics, or Machine Learning (ML). In some works these categories
are combined (e.g., ML relying on entropy metrics).

This section provides essential background for understanding each approach. Then, it
provides the related work of each approach and discusses how our thesis differs from it.

We start in Section 2.3.1 by introducing a brief background on the syntactic signatures
approaches, the popular tools that rely on these approaches, as well as their advantages
and their limitations. Then in Section 2.3.2, we give a brief background on entropy, before
presenting and discussing on the one side the works that rely strongly on the entropy
metric to detect and classify packers, and on the other side the works that show the
unreliability of this metric against modern sophisticated packers. Then we offer a mediate
discussion to show how such a metric is used in our thesis. Finally, the Section 2.3.3
provides useful background on ML to both understanding the ML-based techniques used
in literature and our ML-based solutions. It provides as well the related work that rely
on ML to solve the problem of packing detection and classification, and how our thesis
distinguish itself.

2.3.1 Syntactic Signatures

In the context of packers, syntactic signatures approaches rely on a set of patterns that
identify a (version of) specific packer. These signatures have different complexities, they
can represent simple sequences of raw bytes, text strings (e.g., PE section names), and/or
more complex anomaly values found in the PE-header fields or PE-content (like high value
of entropy in a specific section of the file) that characterize a (version of) specific packer.

In practice, there are many tools relying on syntactic signatures, but PEiD [28], Yara
[29] and DIE [30] remain nowadays the most popular and actively maintained tools within
the security community. The common principle of these tools is to statically parse a binary
file and match it against a signatures database to see if it is packed or not and by which
packer it has been packed.

36

2.3. Packers Detection and Classification Approaches

PEiD is a well-known signature-based tool working essentially on Windows [28], used
to detect and identify packers for PE files. To detect and identify packers, its signatures are
mainly constituted of sequences of raw bytes that are matched against a sequence of raw
bytes extracted from the PE binary file at different locations, but often at the entry point.
The reason is that at this specific file location the raw bytes sequences represent often
the unpacking stub, since it is assumed that at runtime the packed binary starts directly
executing the unpacking code in order to unpack the malicious payload. The sequence
of raw bytes composing this unpacking code is a strong characteristic for identifying in
distinctive way different packers. An example is shown in Figure 2.2 and used by PEiD
to recognize versions from 0.5 to 0.70 and 0.72 of UPX. We note that PEiD is not open
source, but its signatures are made public [31].

[UPX 0.50 - 0.70]
signature = 60 E8 00 00 00 00 58 83 E8 3D
ep_only = true

[UPX 0.72]
signature = 60 E8 00 00 00 00 83 CD FF 31 DB 5E
ep_only = true

Figure 2.2 – A syntactic signature used by PEiD to identify files packed by UPX
from version 0.50 to version 0.72. The signature field represents the sequence of bytes
characterizing the packer and version, while the ep_only flag determines whether the
sequence is found only at the entry point of the binary or anywhere in it.

Yara is another widely-used signature-based tool to detect and identify packers [29].
It is multi-platform, running on Windows, Linux and Mac OS X. Its packer signatures
are publicly open [32], and are regularly maintained and updated by malware researchers.
A Yara rule has a name and is composed principally by three fields: meta that describe
textually the rule; String, which contains a list of raw bytes, text strings and/or regular
expressions; Condition, which defines boolean expressions over the elements present in
the strings session. For the sake of clarity, an example of Yara rules is shown in Figure
2.3 to show how Yara can recognize a specific packer.

Furthermore, these signatures are based on the scripting language Perl Compatible
Regular Expressions (PCRE). The latter is a library written in C and implements a
regular expression engine, inspired by the capabilities of the Perl programming language
[33]. On the one side, this scripting language offers a great flexibility to generate very

37

Chapter 2 – Background and Related Work

rule PEXv099meta
{

meta:
description = "This is PEX packer version v099met"

strings:
$a = { 60 E8 01 [4] 83 C4 04 E8 01 [4] 5D 81 }

condition:
$a at pe.entry_point

}

Figure 2.3 – Rule used by Yara to identify files packed by the packer PEX version
v099meta. The rule above tells Yara that any file containing the raw bytes contained
in the string a, at the entry point location of the file under analysis, must be reported as
PEXv099meta, which is described by the field meta as PEX packer version v099meta.

complex and powerful rules describing different packer families. On the other side, it
makes Yara engine very lightweight and fast when processing files.

Finally, DIE (Detect It Easy) is a cross-platform (Windows, Linux and MacOSX)
signature-based tool which has totally open architecture of signatures [34]. Its signatures
(or called also algorithms of detects [30]) for packers can be created or modified through
a scripting language very similar to JavaScript, hence offering a great ability to express
complex and very fine-grained rules. Furthermore, its scripting engine is optimized, which
offers a great scalability.

Besides detecting and identifying packers, we note that these tools can detect
essentially non-packed malware, compilers, and some meta-information about the binaries
e.g., OS, architecture, etc., which we do not discuss here as it is out of the this thesis scope.

Overall, the syntactic signatures approach has the advantage to be very fast in
execution and precise towards well-known packers. However, such static syntactic
techniques suffer in practice from several limitations. Indeed, their effectiveness is
restricted to rules priorly generated, they are thus unable to detect new (variants of)
packers which they do not possess a signature.

In particular, malware authors tend to hide their malicious binaries using custom
packers. The latter represent packers that are developed either from scratch or partially
from publicly available ones (e.g., Vanilla UPX). Furthermore, tools relying on these
techniques often need to be manually updated by an analyst who writes signatures as
new (variants of) packers are analyzed. This signature update method (manual reverse

38

2.3. Packers Detection and Classification Approaches

engineering) is extremely costly in practice, given the tremendous number of new malware
appearing every day, which increases the time new (variants of) packers remain undetected
by these tools.

2.3.2 Entropy

Shannon entropy has been classically used as a proxy for packed or encrypted data
in packer detection and classification [35, 36]. To compute byte entropy of n bytes, the
frequency of occurrence F (v) of each of the 256 byte values 2 within n bytes is computed
and expressed as a probability distribution where P (v) = F (v)

n
is the probability that a

byte has value v. Then the entropy of n bytes is computed as:

−
255∑
v=0

P (v)log2P (v)

The first published academic work to considers the problem of packing detection was
[35]. Their approach was to use entropy as a proxy for packing, since packed files tend
to have much higher entropy value due to the random distribution of bytes that compose
the executable. Their approach was calculated to be able to achieve a false positive rate
of 0.038 and false negative of 0.005, however this was not verified experimentally.

Multiple successive works focused on entropy metrics to detect a sample as packed
and/or classify which packer was used for a sample [37–43].

For instance, [41] extracts fragments of fixed size from files and calculates the entropy
scores of the fragments. These entropy scores are then used for computing a similarity
distance matrix for fragments in a file-pair to classify similar (packed) files. Very good
results are reported, but the experiment considered only three different packers and two
XOR-based encoders for preparing the samples.

In [42, 43], authors elaborate a method to classify packing algorithms of a
given executable by converting the entropy values of the executable file loaded into
memory into symbolic representations, for which they used SAX (Symbolic Aggregate
Approximation)[44]. The classification is done into packer families in [42], then in [43] into
three categories: single-layer packing, repacking, or multi-layer packing. The experiments
in [42] involve a collection of 324 packed benign programs and 326 packed malware
programs with 19 unique packing algorithms. They report as results an accuracy of

2. Each byte is composed of 8 bits, thus it can take 256 values.

39

Chapter 2 – Background and Related Work

95.35%, a recall of 95.83%, and a precision of 94.13%. In [43], experiments involve 2196
programs and 19 unique packing algorithms, with results of accuracy of 97.5%, a precision
of 97.7%, and a recall of 96.8%.

Furthermore, the tools PEiD, Yara and DIE (see Section 2.3.1) indicate that an
executable is packed when its entropy is greater than a certain threshold (usually 7).

Broadly, approaches that rely only (or highly) on entropy to detect and classify packers
are strongly based on these two assumptions:

1. If a binary file has high entropy score thus it is most likely packed.

2. If a binary file has low entropy thus it is most likely non-packed.

While the first assumption remains often true in practice, the second assumption has
been severely criticized in the work [45]. Indeed, in the latter work, authors demonstrated
that this measure can be altered (i.e., the entropy score value decreases) by different
techniques that modify randomness. They particularly described two possible attacks:
Random byte insertion and Reduced source alphabet. The first one consists in inserting
strategically in the packed executable file some randomly-selected bytes from a reduced
set of bytes, such that a considerably high number of bytes in the file pertain to that
group. The second one consists in using only a subset of symbols in the source alphabet,
such that the number of symbols necessary to represent the same information (i.e., the
packed data) is higher.

In this thesis, we do not rely only on entropy for detecting and classifying packers,
instead we rely on entropy as one of the elements in a feature vector, leaving to the ML
algorithm to decide how relevant entropy is to detect and classify each specific packer
family.

2.3.3 Machine Learning

This section starts by providing a background that is essential for both understanding
the related work that rely on ML, and our ML-based techniques for detecting and
classifying packers. We note on the one hand that we give just a brief overview of the
working principle of supervised ML algorithms which we used in the first contribution of
this thesis, considering that digging more deeply on these algorithms would be out of this
thesis scope. On the other hand, in our second thesis contribution we design and implement
our own incremental DBSCAN, thus a more extended description of the working principle
of DBSCAN algorithm is needed.

40

2.3. Packers Detection and Classification Approaches

Then, this section provides the related work that rely on ML for detecting and
classifying packers, and discusses how our thesis is different from them.

2.3.3.1 Background on Machine Leaning

Machine Learning is a branch of Artificial Intelligence (AI) and computer science,
seeking to get computers learn and act like humans do, i.e., learn by experience. It is
based on algorithms that can learn and improve their learning autonomously from data
without relying on rules-based programming [46] 3.

ML algorithms infer models based on a set of data samples (called also observations)
described by a set of “features”, forming as whole a “training set”, in order to make
decisions (e.g., predictions) without being explicitly programmed to do so. ML algorithms
have been used during these last decades in a wide variety of applications, such as in
biology, speech recognition, computer vision, and computer security.

In the context of computer security, ML algorithms continuously learn by
automatically analyzing data and building models based on correlations that may be
hidden at the scale of human eye, making possible the recognition of patterns and the
prediction of threats in massive datasets, all at machine speed [47]. Thus offering a better
security for users.

ML is generally based on four basic approaches: supervised learning, unsupervised
learning, semi-supervised learning and reinforcement learning. The latter will not be
developed because it is out of this thesis scope.

Supervised Learning supplies algorithms that learn a general rule that maps a set of
samples (i.e., training set) provided with their labels (called “ground truth” [47]). Supplied
algorithms are thus able to predict the label of a new observation wrt. what they learned
during the training phase.

These supervised learning algorithms are deployed essentially for classification, but
include also regression or active learning [48]. Classification algorithms (called also
“classifiers”) are used when the predicted outputs are restricted to a limited set of values,
often just one representing the label of a given sample (e.g., packed or non-packed).

Many supervised algorithms are there in practice. In the context of this thesis, we
explain briefly the working principle of the algorithms that have been used in our first
thesis contribution, namely: algorithms based on decision trees and Naive Bayes.

3. This definition of ML is an aggregation of the references mentioned in [46].

41

Chapter 2 – Background and Related Work

Figure 2.4 – Example illustrating the working principle of decision-tree-based classifiers.

(i) Decision Trees classifiers rely on a tree-like-structure as predictive model [49]
In this tree-like-structure, each node represents a “test”, which is called also “splitter”, on
the value of a specific feature (e.g., whether the entropy of packed binary is greater than
7.0 or not). Branches represent the outcomes of the tests being proceeded at the level of
each node. Finally, each leaf node represents a class label (e.g., packed or non-packed),
thus the final decision taken after testing all features values.

The whole path taken from the root node to the leaf node in order to classify an
unknown sample, represents classification rules which are inferred statistically from the
training set. Broadly, these classification rules take the form of:

if “condition 1” and “condition 2” and “condition 3” then label

We note that conditions are sequentially checked wrt. their importance in classifying a
given sample. The condition 1 which relates to feature 1 (the root node, see Figure 2.4)
is sequentially checked before the condition 2 which relates to feature 2 (the first branch
of the root node), etc. This sequence marks the feature importance, and the sequence
of features to be checked is decided on the basis of criteria like Gini Impurity Index or
Information Gain metrics [49].

42

2.3. Packers Detection and Classification Approaches

Multiple classifiers are based on the concept of decision tree: Simple Decision Tree
[50], Extra-trees and Random Forest [51]. Obviously, Extra-trees and Random Forest are
more complex than the Simple Decision Tree which constructs only one basic decision
tree at the training phase. Indeed, Extra-trees and Random forest try mainly to limit the
overfitting problem of the Simple Decision Tree as well as errors due to bias by constructing
a multitude of decision trees at training phase, each based on a random subset of features.
The class output is the class selected by most trees (i.e., vote system).

(ii) Naive Bayes classifier is an algorithm based on Bayes’ theorem (see the formula
2.1 below) with a strong naïve independence assumptions between features [52].

P (A|B) = P (B|A)P (A)
P (B) (2.1)

Where A and B are events and P (B) ̸= 0. P (A|B) is a conditional probability:
the likelihood of event A occurring given that B is true. P (B|A) is also a conditional
probability: the likelihood of event B occurring given that A is true. P (A) and P (B) are
the probabilities of observing A and B independently of each other.

In the context of this thesis, event A would represent a class variable (e.g.,
packed/non-packed or the packer used) that we call y, and event B would represent a
vector that we call X, composed by a set of packer features x1, ..., xn. Thus, the formulas
2.1 above becomes:

P (y|x1, ..., xn) = P (x1|y)P (x2|y)...P (xn|y)P (y)
P (x1)P (x2)...P (xn) (2.2)

In simple terms, Naive Bayes classifier assumes that the presence of a particular feature
xi in a class is unrelated to the presence of any other feature xj.

Unsupervised learning supplies algorithms that learn from data without labels, in
contrast to supervised learning. Supplied algorithm scans through data looking for any
meaningful structures. The latter would constitute commonalities that allow splitting data
into different groups.

A central application of unsupervised learning is Clustering. It consists in dividing a
set of elements in subsets (called clusters) following some criterion. The elements can
be treated individually (incremental clustering method) or they can be processed in
batches (batch clustering method) [53]. While the batch method attempts to capture
the underlying structure of the elements in a compact and efficient way, the incremental

43

Chapter 2 – Background and Related Work

method suits the scenario where new data arrive continually and recomputing the clusters
from scratch becomes infeasible due to the volume of data. In particular, incremental
clustering allows incremental learning, where knowledge is enhanced, integrated, adapted
and evolved.

Clustering can be evaluated by intrinsic or extrinsic metrics [54]. Intrinsic metrics
evaluate with some distance metric whether the elements in the same cluster are close
while the elements in different clusters are distant. Extrinsic metrics evaluate the quality
of a clustering by comparing it against a ground truth, also called gold standard, that
represents the expected clustering.

In practice, many clustering algorithms are there. They can be primarily categorized
into prototype-based, hierarchical-based or density-based [55]. The latter has the
particularity of not being sensitive to noise and can deal with different cluster sizes and
different cluster shapes.

(i) DBSCAN [56] is a typical density-based clustering algorithm widely used in
many applications (e.g., malware clustering [57]). DBSCAN refers to density-based spatial
clustering of applications with noise. It is designed to find arbitrary-shaped clusters and
noise (i.e., outliers) in some space. Based on a set of points in some space, DBSCAN
groups together points that are close to each other wrt. some distance measurement (e.g.,
Euclidean distance) and a minimum value parameter of the number of points. It marks
as noise the points that stand alone in low-density regions (i.e., whose nearest neighbors
are too far away).

Basically, DBSCAN algorithm requires two key parameters: eps and minPts.
• eps specifies the neighborhoods distance. That is, two points are considered to be

neighbors if the distance between them is lower or equal to eps.
• minPts specifies the minimum number of points required to form a dense region,

thus to form a cluster.

DBSCAN differentiates also 3 points categories: core point, border point, and noise.
• Core point. A point P is considered as core point if there are at least minPts

(including the point itself) number of points within its neighborhood wrt. a radius
eps. That is, two points are considered to be neighbors if the distance between
them is lower or equal to eps.
• Border point. A point P is considered as border point if it is reachable from a

core point wrt. a radius eps, and there are less than minPts number of points
within its neighborhood wrt. a radius eps.

44

2.3. Packers Detection and Classification Approaches

A C

B

N

Figure 2.5 – In this diagram, minPts = 4. Point A and the other red points are core
points, because the area surrounding these points in an eps radius contain at least 4
points (including the point itself). Because they are all reachable from one another, they
form a single cluster. Points B and C are not core points, but are reachable from A (via
other core points) and thus belong to the cluster as well. Point N is a noise point that is
neither a core point nor directly-reachable [58].

• Noise point. A point P is considered as a noise point if it is not a core point and
not reachable from any core point.

For better clarity, Figure 2.5 is given to illustrate these points and parameters.

DBSCAN algorithm finds clusters starting with an arbitrary point P and retrieves
all points density-reachable from P wrt. eps and minPts [56]. If P is a core point, this
procedure yields a cluster. If P is a border point, no points are density-reachable from P

and DBSCAN visits the next point in the given space. If not, the point P is marked as
noise. During the formation of a cluster, all points within the neighborhood of the initial
point (i.e., the core point) become a part of the cluster. Furthermore, if these new points
are also considered as core points, points that are in their neighborhood are merged to
the initial cluster being formed. The next phase consists in choosing randomly another
point P ′ that has not been visited previously, then the same procedure described above
applies. We note a point that has been marked as noise could be visited again during
the procedure in order to check whether it can be merged to a given cluster. The whole
procedure is completed when all points in the given space are visited.

45

Chapter 2 – Background and Related Work

Semi-Supervised Learning is somehow a mix between supervised learning where all
training samples are labeled, and unsupervised learning where all training samples are
unlabeled. In this approach, we combine a small amount of labeled data with a large
amount of unlabeled data during training (often because the cost associated with the
labeling process of large datasets is very high), thus leaving the ML algorithm the decision
of how to explore data on its own, wrt. some assumptions (continuity assumption, cluster
assumption, etc., [59]). For instance, samples which are close to each other are more likely
to share a label, thus the ML algorithm would affect them the same label accordingly.

2.3.3.2 Related Work based on Machine Learning

Advanced approaches use ML techniques to detect and/or classify the packer. In this
section, we present the related work that rely on ML for detecting and classifying packers
and show how our thesis is different from them. The works are presented wrt. how close
they relate to our two thesis contributions to facilitate showing the differences.

1) First Thesis Contribution.
Supervised learning is the most prevalent technique in literature [39, 60–67]. In this

technique, ML algorithms build packer detectors and packer classifiers models by learning
from a set of syntactic or behavioral features extracted from packed binaries and from
corresponding labels provided as ground truth. These packer detectors and classifiers
models are then used to detect and classify unlabeled binaries.

The challenge of packer detection was considered by [60] that tested a variety of
machine learning approaches on a variety of features. Their best results were using Multi
Layer Perceptron algorithm that achieved 10-fold cross-validation accuracy of 0.9995.
Besides effectiveness in detection, the work claims a fast detection rate by relying on only
9 statically-extracted features relating to sections, entropies and import functions of the
PE file. However, results on fast detection or computational cost of extracting features
were not reported, thus not validated experimentally.

Machine learning on multiple features was also considered in [64]. To highly increase
the accuracy of their packer detectors, they take from a large set of features (69 in total)
the ones for which Information Gain exceeds a certain threshold. Their best detection
results achieved 10-fold cross-validation accuracy of 0.9996 using Fuzzy Unordered Rule
Induction Algorithm (FURIA) with Information Gain on a sample set of 63,000 samples
of which 21,000 were packed.

In [39] the problem of packer detection was generalized to packer classification. Again

46

2.3. Packers Detection and Classification Approaches

the approach was to test multiple algorithms, but used different features from those used in
the works above. Indeed, their features measure essentially the amount of “randomness” in
different parts of an executable program, following [37] that considers that the randomness
distribution of each packer family exhibits a distinctive pattern. At the difference with
[37], the features extraction is performed by employing a refined version of the sliding
window randomness test with trunk pruning method. The experiments were conducted
on a set 17,919 packed samples, including clean packed files and more than 17,000 malware
samples gathered from the wild. Among the classifiers tested, K-Nearest Neighbors (KNN)
algorithm performed the best classification results by achieving 10-fold cross-validation
accuracy of 99.6% true positive rate, and only 0.1% false positive rate. Moreover, KNN
took the least time to build a model on training data with only 0.02 seconds.

In [63] the packed binary is converted to Byte and Markov plots. The Byte plot
represents a grayscale image where a byte value of 0 is black and byte value of 255 is
white. The Markov plot is based on Markov model and uses byte level transitions to
create a signature. These transitions are supposed to capture the encoding schemes used
by a packer, thus to identify it distinctively from non-packed binaries (i.e., detection) and
from other packers (i.e., classification). From these plots, a total of 534 features relating
to image processing were extracted. Experiments are performed on real malware dataset
from which 9 well known packers are selected with 5,000 random samples for each in their
training and test sets. The performance of the system is assessed by comparing the two
models: Byte and Markov plots using a binary-class SVM for the packing detection stage
and multiclass SVM and Random forest for the packer classification stage. The result
obtained wrt. Area Under Curve (AUC) metric is an accuracy of 95% on average with
Markov plot for packer detection and an average of 80 % for packer classification with
Random forest and Markov plot.

The major drawback of this work is the significant cost of converting each time an
incoming binary into a plot before extracting features. Furthermore, a selection is not
performed on the 534 extracted features which constitutes an additional significant cost
in the step of detection and classification of samples.

In [66] authors introduce a framework called “BE-PUM” relying on concolic testing
to generate a metadata signature as feature, to identify each packer family (and
version) uniquely. This metadata signature represents the frequency vector of the
numbers of occurrences of a set of well-known obfuscation techniques (e.g., anti-tracing,
anti-tampering, etc.) found in the unpacking stub code. The set of obfuscation techniques

47

Chapter 2 – Background and Related Work

is carefully defined by observing more than 40 real world malware. The experiments were
performed on 12,814 real malware with 12 packers. The training set is populated by
samples of each of the 12 packers. The testing test is populated by samples that represent
variants of the 12 packers included in the training set. The statistical Chi-square measure
is applied as similarity metric on the obfuscation frequency vectors of test packers to
classify the likelihood of their metadata signature wrt. the training set. Results showed
that the proposed approach outperforms the classical byte signatures used by PEiD.

Like [63] the major drawback of this work is the cost to generate the metadata signature
due naturally to using concolic testing (authors report that experiments costed 10 weeks,
for only 12,814 samples).

The best packer detection results achieved are 10-fold cross-validation accuracy of
0.9996 using FURIA with Information Gain on 63,000 samples of which 21,000 were packed
[64]. The best packer classification results achieved, based on 10-fold cross-validation, are
99.6% true positive rate and only 0.1% false positive rate [39].

Our first thesis contribution shows that our solutions are able to instead achieve an
F-score up to 0.9999 on more than 280,000 samples, but more importantly, studies how
these results depend on the construction of the ground truth, choice of metrics, and
type of validation, and how these results hold in scenarios more realistic than k-fold
cross-validation.

Furthermore, the results cited above focus only on increasing the effectiveness of
detection and classification, but do not consider the efficiency of their systems when
running to scale to millions of samples per day. Indeed, computational cost has largely not
been considered as an aspect of packing detection and classification. In [68] they consider
cost of feature extraction for use in malware classification, with packing detection playing
a minor rôle and the independent cost for packing detection not being considered. In [39]
the timing of building the model for classification was considered, but not the time to
classify a sample. Our first contribution shows that feature extraction may dominate the
classification time if features are not also selected taking into account their extraction
time. Hence feature selection impacts efficiency in ways that were not considered by [39].

Finally, as far as we know, the efficiency in regularly retraining ML algorithms for
packing detection and classification has not been considered in the literature.

2) Second Thesis Contribution.
The fact that most of works above rely on supervised learning makes them unable to

identify new, totally unseen, packer families. Indeed, while supervised ML-based packing

48

2.3. Packers Detection and Classification Approaches

detectors are able to detect new unknown packers because the problem is straightforwardly
binary-class (packed, non-packed), supervised ML-based models classifying packer families
bring a strong theoretical limitation: they are unable to classify new unseen classes, thus
unable to cope robustly with the rapid evolution of packers over time. Our first thesis
contribution offers our models regular and efficient retraining with new packer families
(and variants). However, these retraining are still limited because supervised packer
classifiers would still be unable to identify new packer families spreading constantly and
rapidly in the wild, in the period of time occurring between each two retraining. This is
where our second thesis contribution intervenes by proposing SE-PAC, a new Self-Evolving
PAcker Classifier framework which relies on incremental clustering in a semi-supervised
fashion, aiming to provide an effective, incremental, and robust solution to cope with the
fast-paced evolution of packers.

Very few works [69, 70] in literature proposed solutions to (automatically) identify
completely new unseen packer classes, and more generally to cope robustly with the quick
evolution of packers over time.

In [69] control-flow graphs based on recursive traversal disassembly are extracted from
the entry point function of the packed files. Then a set of normalization and sorting
techniques are then applied on these graphs in order to be resilient against a set of
well-known graph obfuscation techniques, before extracting a final signature of the sample.
Finally, this signature can be compared to a set of signatures in a database of known packer
signatures, to determine which packer is used. Their method was assessed on a dataset
of only 7 well-known packers with 20 for each. Theoretically, for a new packer family, a
new signature is generated and used to update the database with no human intervention.
However, this was not validated in their experiments. Only variants of the same packer
family are validated by tests.

Quite similarly to the work above, in [70] control-flow graphs are extracted from the
entry point function of the packed files. Then graph matching techniques are applied to
identify the critical parts of the graphs for enhancing the accuracy of similarities and
optimizing the pairwise computations. Thus when an unlabeled graph comes, a graph
similarity metric is used to measure the similarity between the critical parts of that
graph and the critical parts of set of graphs present in the database. Their method is
evaluated on three datasets: manually-packed benign applications, wild-packed malware
and non-packed malware. The three datasets contain in total 39,692 non-packed malware
and 15,998 packed samples with a total of 15 unique packers with different versions.

49

Chapter 2 – Background and Related Work

Evaluation shows satisfying results for identifying test packers that represent different
versions of packer families present in the database. However, like [69], catching totally
new packers is not validated in the experiments.

Our second contribution (SE-PAC) holds many differences with the works mentioned
above. Firstly, although the continual update of the packing classification system is
undertaken in the methods proposed in the works mentioned above, their main focus
was essentially on bringing more resilient signatures as alternative of the classical
byte-signatures matching which are unable to capture small differences (that could
be maliciously introduced) beyond the matching rules for identifying variants of the
same packer families Differently, our second thesis contribution (SE-PAC) focuses more
on providing incremental clustering mechanisms for continually updating the packing
classification system in order to cope with the fast-paced evolution of packers over time.
Indeed, our framework “SE-PAC” is incremental and operates in real-time fashion, so we
study more closely how updates take place and adopted a heuristic establishing a trade-off
between the effectiveness and efficiency of the system.

Secondly, we derive in the context of packed binaries a composite pairwise distance
metric which is able to combine any kind of features (e.g., numeric, strings, graphs, etc.).
Thus our distance metric is fully extensible for any kind of other (future) features, in
contrast to the distance metrics proposed in the works above.

Thirdly, regarding the evaluation, our test scenarios are more significant because they
include two datasets containing in total more than 30K packed samples with a total of 32
unique packers (including custom ones), in contrast to [69, 70] which tests entail only 7 and
15 unique well-known packers respectively. In addition, our test scenarios do not include
only different versions of packers but also totally new packer families. Moreover, following
the evolution of the systems proposed above over time was not really considered. In [69]
an updater module is added to integrate the feedback of classification, but the evolution
of packer graphs is weakly followed in the experiments. Differently, we follow the evolution
of clusters posture as long as packed samples come over time by a set of extrinsic and
intrinsic measures, as well as examining more closely how to maximize the lifespan of our
system for a better robustness.

Finally, the works mentioned above do not include a method to optimize the analysis
of the packed samples found, while we propose a post-clustering selection strategy that
provides for each cluster a small subset of relevant samples that can undergo deeper and
more costly analyses, whose results can be extended to all samples in the cluster.

50

Chapter 3

A STUDY OF SUPERVISED

MACHINE-LEARNING-BASED PACKING

DETECTION AND CLASSIFICATION

SYSTEMS

This chapter presents the first contribution of this thesis. We want to construct
ML-based packing detection and classification models that are effective, efficient and
robust in order to be integrated in a practical malware analysis workflow. To this
end, we introduce in this first contribution a study which aims at understanding the
impact of ground truth generation, ML algorithm selection, and feature selection on the
effectiveness, efficiency, and robustness of supervised ML-based packing detection and
classification systems, following the example of works on empirical testing of ML malware
analysis including [3]. More precisely, we:

• Study ways to produce ground truth of different quality and size for training ML
detection and classification algorithms. We apply 3 different methods of packing
detection and classification on a database of 281,344 samples, then produce two
different ground truths: a 3cons ground truth with higher-quality labeling but
fewer samples following [39], and a 1cons ground truth with more samples but
lower-quality labeling. We ask a research question on the relative effectiveness of
algorithms trained on the two ground truths. While algorithms trained on 3cons
seem to perform 1-2% better than algorithms trained on 1cons, we show that this
is an artifact of k-fold cross-validation method.
• Extract a large number of features for ML classification and perform a careful

feature selection based on both the features contribution to the algorithms
effectiveness and the cost of extracting features from a sample. We find that some

51

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

features require 10−1seconds to extract while others require 10−5seconds or even
10−7seconds to extract, hence feature selection strongly impacts classification and
retraining costs.
• Perform a large scale hyperparameter optimization of ML algorithms, each

depending on the choice of: ground truth, features, and scenario. We ask a research
question on how effective and efficient our system is when optimizing for both
F-score and classification cost instead of only for F-score. We find that decreasing
the effectiveness by 1-2% can reduce the classification cost per sample by 17 to 44
times.
• Perform a robustness assessment against the evolution of packers over time by

testing the best algorithms against malware samples gathered from the wild after
the training phase. We ask a research question on how effectiveness decreases as
malware and packing ecosystems evolve over time. We find that algorithms trained
on 3cons lose 6–30% of their effectiveness against 1–3% of the algorithms trained
on 1cons.
• Perform on the basis of the experiments above a retraining cost analysis evaluating

which combination of algorithms and features has the best ratio of uptime to
retraining cost. We ask a research question on whether simple algorithms with less
features or complex algorithms with more features are more efficient to use. We
find that the latter cost up to 60 times more to train for an uptime only 3–4 times
higher than the former.

This chapter is organized as follows. Section 3.1 overviews the research methodology
and questions asked. Section 3.2 describes the features used for packing detection and
classification, the categories they were divided into for selection, and comments on their
extraction costs. Section 3.3 details the datasets and methods used to generate the
ground truth. Section 3.4 sets the evaluation metrics. Section 3.5 presents the experiments
performed to answer the research questions, as well as the results. Section 3.6 discusses
the experimental results. Finally, Section 3.7 concludes.

3.1 Methodology

This section overviews the Research Questions (RQ) considered in this study and the
experimental methodology used to address them.

52

3.1. Methodology

3.1.1 Supervised Machine Learning Detection and Classification
Algorithms

Our approach to perform packing detection and classification is built by evaluating
and choosing between multiple supervised ML algorithms [60, 64, 71].

We recall that in supervised ML, classification algorithms are trained on a ground
truth, i.e., a set of fully-labeled data (see Section 2.3.3.1). In our case, each element in the
ground truth is composed of a label describing the class of the element (packed or unpacked
for detection and packer name for classification) and a vector of features describing the
relevant characteristics of the element. A classification algorithm is trained on the ground
truth to understand how the labels are connected to the corresponding features. Then
this algorithm is tested on a new feature vector and having the algorithm guess the label
of the element corresponding to the new feature vector. In our case, each element is a
binary sample and its features describe properties that can be efficiently extracted from
the binary. The features we chose are described in Section 3.2 together with their average
extraction times.

The ML detection and classification algorithms considered here are two simple
algorithms: Gaussian Naive Bayes and Decision Tree as well as two complex algorithms:
Random Forest, and Extra Trees (see Section 2.3.3.1). The reason why we choose these
algorithms is to show how the simplicity and complexity of ML algorithms could impact
the effectiveness, efficiency, and robustness of packing detection and classification. The
effectiveness of each algorithm is measured by the F-score metric, while its efficiency is
measured as the inverse of the time it costs to predict the label of a sample. Section 3.4
provides more details concerning the metrics set for evaluation.

The generation of the ground truth is a problem in itself: large labeled databases
of packed malware are largely unavailable and the tools used to label them often rely
on different methodologies, so the labels generated from different tools for the same
sample may be different. In [39], labeling a malware database is performed by using
three sources of packer labels: Kaspersky, Microsoft, and the Computer Associates (CA)
Threat Management Team. In addition, PEiD tool (see Section 2.3.1) is used to settle
disagreements between sources: only samples for which all the tools agree on the label are
kept. Moreover, only packer families for which there is at least 100 labeled samples are
kept in the generated ground truth.

53

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

We follow a similar principle of annotating malware with three different sources.
However, we construct two different ground truths based on whether the sources agree
or not, and study how these two different ground truths impact the effectiveness and
robustness of the detection and classification algorithms. Details on our ground truth
generation are given in Section 3.3.

3.1.2 Feature Selection and Hyperparameter Optimization

Using more features does not necessarily increase the effectiveness of the algorithms,
as some features can be misleading or insufficiently related to the class labels. Hence
it is common in ML to experimentally determine which features to keep and which to
discard, in a process known as feature selection. This process is important here since
we want to optimize for speed against features that require a higher time cost for
extraction, classification, and ML algorithm retraining. In addition, ML algorithms have
hyperparameters that can modify their effectiveness and efficiency, so we need to find the
optimal hyperparameters for each feature combination to guarantee a fair comparison. So
the research question that arises is:

RQ1.1 How efficient and effective are packing detection and packing classification
when optimizing for both F-score and classification cost instead of only for F-score?

For each of the scenarios of interest (packing detection, packing classification, or both
at the same time) and each of the two ground truths, we test each algorithm on each
combination of feature categories and hyperparameters. Then we keep the top 3 algorithms
by F-score and the top 3 algorithms by ratio between F-score and total classification cost
per sample (i.e., feature extraction cost plus algorithm classification cost). This provides
insight as to how much F-score is lost when selecting algorithms and features that are
optimized for both F-score and cost instead of only for F-score.

3.1.3 Robustness Assessment against the Evolution of Packers
over Time

As the malware ecosystem evolves over time, new (variants of) packing techniques
appear constantly and rapidly, impairing the effectiveness over time of the packing
detection and classification algorithms. Therefore, regarding the robustness of these

54

3.2. Feature Description and Selection

algorithms against the evolution of packers over time, we derive the following research
questions:

RQ1.2 How do algorithms trained on the 3cons ground truth perform compared to
algorithms trained on the 1cons ground truth?

RQ1.3 How robust are the best algorithms found by feature selection and
hyperparameter optimization against packed binaries collected from the wild after
the training phase?

We test the robustness of our algorithms by training them with two different ground
truth qualities and sizes for data collected from February to June 2017, and testing
them on data collected from July to October 2017, to understand how their effectiveness
degrades with time. This provides insights on how the ground truth quality and size
impact the robustness of algorithms, how robust are the best algorithms, thus how often
the best algorithms have to be retrained to keep the pace against the evolution of packers.

3.1.4 Retraining Cost Analysis

Packing detection and classification algorithms have to be retrained when their
effectiveness drop to a certain point over time. Saving this retraining is important to
ensure practical systems as parts of a malware analysis workflow. To save this retraining,
we consider the uptime and time cost required to retrain the given ML algorithm, then we
determine how many seconds of uptime are obtained for each second spent retraining the
algorithm. Based on this ratio and upon the robustness assessment results, we evaluate
the situation of a malware analyst choosing which algorithms and features to use, thus
we derive the following research question:

RQ1.4 Which combination of algorithms and features yields the best ratio of uptime
to retraining cost?

For illustration, we fix required F-score of at least 0.96 as required, implying that when
the F-score drops below this point the ML algorithm must be retrained.

3.2 Feature Description and Selection

This section overviews the features used in the experiments, including citing other
works that have used them where relevant, and explains how subsets of these features are
selected for packing detection and classification.

55

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

A wide variety of features have been used in prior work on packer detection and
classification (see Section 2.3.3.2), most of which detect possible artifacts of the packing
process such as increased entropy and removal of metadata.

Since packing detection and classification typically play a major role in a larger
malware analysis workflow, the focus in this study is on static features that can be
extracted without dynamic execution, as the cost of extraction is critical to propose
efficient solutions.

Static feature extraction tends to produce syntactic properties (see Section 2.1),
which are severely limited for malware detection and classification. Dynamic feature
extraction tends to produce behavioral properties which are much more expensive to
extract (starting a sandbox for each sample, etc.), but have been shown to be more
appropriate for malware detection and classification [72]. However, the limitations of
syntactic properties for malware detection and classification stem precisely from the
existence of packing techniques: the need for behavioral properties comes from the
fact that syntactic properties would detect and classify the packer instead of malware.
Since detecting and classifying the packer is exactly our goal, syntactic properties are
fitting pretty well for such goals, as shown by the literature on packing detection and
classification. In addition, our approach relies on combining these syntactic properties with
ML, thus offering a better resilience compared to approaches based on merely syntactic
signatures (see Section 2.3.1).

Nonetheless, despite the significant cost of extracting behavioral features, the latter
have been used in some works [18, 73] for packer detection and classification. They
are often used in approaches that dynamically analyze an unknown binary (malicious
or benign), attempting to detect and classify packing behaviors in order to facilitate
unpacking and retrieve the original entry point. We could include in the future very
lightweight behavioral properties, which could give a better accuracy in detecting and
classifying very sophisticated packers, capable of bypassing purely syntactic properties.
Including these behavioral properties would not impact our feature selection, because the
approach we explain below selects features regardless of their nature (syntactic, behavioral
or both).

Due to the lack of extensive feature extraction cost analysis in prior works, our
approach is to extract a large number of features (119) and use feature selection to find
the ones with high contribution to detection and classification while having low extraction
cost.

56

3.2. Feature Description and Selection

There are multiple approaches in literature [74] to select features in supervised
ML. We broadly divide these approaches in two categories: standalone-based and
combination-based. The first category of approaches evaluates the contribution of each
feature standing alone to discriminate different ML classes, based on statistical criteria
such as entropy, variance, etc. The main problem of such approaches is that they do not
consider the relations that could occur when combining with other features. The second
category of approaches evaluates the contribution of possible combinations of features to
discriminate different ML classes. This second category is more robust than the first one,
but it obviously suffers from the combinatorial explosion.

The number of all non-repetitive combinations of a given set S composed of n elements
can be calculated by the following formula:

SumCn =
k=n∑
k=1

(
n

k

)
=

k=n∑
k=1

n!
k!(n− k)! (3.1)

where n is the number of elements of the set S, k is the number of elements (or length
equivalently) that can form non-repetitive combinations from n elements. We note that a
combination of k-elements is considered non-repetitive only if it has at least one different
element from other combinations, regardless of the order. Thus the sum of all possible
non-repetitive combinations of different lengths k of elements n is represented as SumCn.
For 119 features, SumC119 produces around 665∗1033, which is computationally infeasible.

Therefore, we propose a trade-off between catching the links between features and
producing a number of non-repetitive combinations that is computationally feasible. More
precisely, we propose to divide the features into thematic-based categories, then produce
all possible non-repetitive combinations of these categories. Our 119 features are here
divided into 6 feature categories, thus the number of non-repetitive combinations of feature
categories produces SumC6 = 63.

We describe just below the 119 features and the thematic-based categories they belong
to. Note that when a feature value cannot be extracted (e.g., entropy of a missing section),
a constant outside the value range is used instead (e.g., -1 for entropy). In addition, Figure
3.1 summarizes the extraction costs for each feature category.

Byte Entropy – BE. The Byte Entropy (BE) feature category includes features that
measure the Shannon entropy (see Section 2.3.2) of different parts of the binary file. There
are 6 features in this category corresponding to the Shannon entropy of the:

57

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

sc

re

me

if

eb

be

fopen time

Figure 3.1 – Feature extraction costs for the feature categories. The dotted red fopen
time line represents the empirically-calculated average time for opening the binary before
extracting any feature, i.e., 14ms. Extraction cost of the eb, me, and sc categories is
negligible. Extraction cost of the be and re categories varies widely according to the size
of the file, which sections are present, and whether it is stripped of its debug information
and resources. Extraction cost of the if category is consistently high.

• .text section.
• .data section.
• .rsrc section.
• PE header.
• Section containing the entry point.
• Entire file.

The intuition behind the features of this category is that since Shannon entropy
corresponds with compression and encryption, higher Shannon entropy will correspond
to packing. The various byte entropy features attempt to exploit which sections are most
significant. Computing Shannon entropy of the whole file and its sections requires at
least a full file scan to compute the byte frequencies. The extraction costs vary widely
according to file size and which sections are present, as shown in Figure 3.1, and is usually
comparable to the time required to open a file.

Entry Bytes – EB. The 64 Entry Bytes (EB) features are the first 64 bytes of the
binary from the entry point. Each of these 64 features is the value of the byte converted to

58

3.2. Feature Description and Selection

a natural number. The intuition is that the bytes at the entry point often characterize the
unpacking stub. Syntactic signatures are commonly based on the bytes after the entry
point, as shown in Figure 2.2. These bytes can be read directly from the file with a
direct memory access. The average extraction cost for this feature category is consistently
negligible compared to the time required to open a file, as shown in Figure 3.1.

Import Functions – IF. The Import Functions (IF) feature category includes 5
features related to the import table and imported DLLs and functions. Related works
have identified significant features here [36, 64, 68]. The work [64] gives a list of 16 API
functions that are more common in packers and malware than in (non-packed) cleanware.
The features in this category are:
• Number of imported DLLs.
• Number of imported functions in the import table directory.
• Number of addresses found in the import address table.
• Number of imported functions that appear in the [64] list:

— GetProcAddress, LoadLibraryA, LoadLibrary, ExitProcess,
GetModuleHandleA, VirtualAlloc, VirtualFree, GetModuleFileNameA,
CreateFileA, RegQueryValueExA, MessageBoxA, GetCommandLineA,
VirtualProtect, GetStartupInfoA, GetStdHandle, and RegOpenKeyExA.

• Ratio between the number of imported functions listed above and the total number
of imported functions.

The intuition here is that packers often remove the import table to hide the
packed program functionalities, and keep only the functions necessary to reconstruct it.
Extracting these features requires scanning the import table and import address table
when present. The average extraction cost for this feature category is in the tenth of
seconds, as shown in Figure 3.1.

MEtadata – ME. MEtadata (ME) features are those extracted from the PE header
that provide information about the program. The included 21 metadata features here are:
• The 8 PE characteristics.
• PE checksum.
• Base address (converted to decimal) of the:

— Image.
— The .text section.

59

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

• OS major version.
• OS minor version.
• Byte size of the:

— Image.
— .text section.
— Headers.
— Initialized data.
— Uninitialized data.
— Stack reserve.
— Stack commit.
• Section alignment (i.e., size of a memory page).

All of these features have been used in prior works [36, 64, 68].
The intuition here is that this metadata provides information that may characterize

a specific packer, or the information a packer provides to attempt to hide itself. The
information for these features is available in the PE file header at specific addresses, so
the features can be extracted very efficiently with direct file access. The average extraction
cost for this feature category is consistently negligible compared to the time required to
open the file, as shown in Figure 3.1.

REsource – RE. The REsource (RE) feature category includes 2 features relating to
the resource (.rsrc and .rdata) sections of the file, following [68, 75]. The two included
features are:
• Presence of the debug directory in .rdata.
• Number of resources defined in .rsrc.

The intuition for the presence of the debug directory is that packers can remove debug
information to hinder reverse-engineering. The number of resources defined is a proxy to
detect anomalous programs, such as when packers store their packed information in the
resources section. Extracting these features requires checking the presence of the debug
directory and parsing the .rsrc section to count the number of defined resources. The
average extraction cost for this feature category is negligible if no resources exist, but can
vastly increase if parsing a large resources section, as shown in Figure 3.1.

60

3.2. Feature Description and Selection

SeCtion – SC. The SeCtion (SC) feature category gathers 21 features that relate to
the sections information. The majority of features here have been used in prior works [36,
64, 68].

• Ten integer features represent the number of sections of the PE file that are:
— Standard.
— Non-standard.
— Executable.
— Writable.
— Executable and readable.
— Executable and writable.
— Readable and writable.
— Executable, readable, and writable.
— Have raw data size zero.
— Have different virtual and raw data size.
• Seven boolean features relate to the existence of the following packing artifacts:

— .text section not executable.
— A non-.text section is executable.
— .text section is not present.
— Entry point not in .text or .tls section.
— Entry point not in one of the standard sections.
— Entry point not in an executable section.
— Address not matching file alignment.
• The remaining 4 features are:

— Ratio of standard sections to all sections.
— Ratio between the raw data and virtual size of the section with the entry point.
— Maximum ratio of raw data to virtual size.
— Minimum ratio of raw data to virtual size.

The intuition here is that packers can use non-standard sections to change the
program structure (e.g., UPX inserts sections named .upx0, .upx1, etc.). Moreover, packing
introduces many artifacts into the sections of the program. All features in this category
can be extracted from the PE header. The average extraction cost for this feature category
is consistently negligible compared to the time required to open the file, as shown in Figure
3.1.

61

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

3.3 Datasets and Ground Truth Generation

Our experimentation rely on a malware feed dataset. This section details the origin of
this dataset, collection period, and methods used to generate the ground truth.

One challenge in testing, training, and classification, is the lack of high-quality packed
datasets – a lack of a ground truth that can be used to reliably train classifiers. To handle
this challenge, we bootstrap two different ground truths by using three existing packing
detection tools on our dataset: a 3cons ground truth with the files that all three detection
tools agree on (mimicking [71]), and a 1cons ground truth with the files that are detected
as packed by at least one of the detection tools (a superset of all files in the 3cons ground
truth).

We have built a dataset of 281,344 binaries kindly provided by Cisco and prof. Sandeep
K. Shukla. The dataset has been created by capturing binary file streams available to our
partners in the period from February to October 2017, and is thus representative of
the stream of binary files that has to be analyzed by a medium-sized security company
protecting a number of customers. Most of these binary files have been reported as being
malicious by our partners, thus they represent real-world malware samples collected from
the wild.

We ran three heterogeneous signature-based packing detection tools on our dataset:
Packerid 1 [76], the Yara rules for packing detection curated by VirusTotal [32] 2, and a
proprietary tool provided by Cisco that checks the binary hash against Cisco’s database.
If one or two tools detect a binary as being packed by a given packer (e.g., UPX), the
binary is added to the 1cons ground truth. When all three tools agree on a binary being
packed by a given packer, we consider this to be strong evidence that the binary is indeed
packed by this packer, and add it to both the 3cons and 1cons ground truths. If a
file is detected as packed by two different packers or more, the file is discarded to avoid
polluting the labeling in the ground truths. Note that detection tools either report the
detected packing technique, or “unpacked” if none is detected.

The ground truth selection is summarized in Table 3.1. Table 3.2 reports the number
of samples of each packer family in each ground truth. It is clear that the 3cons ground
truth has significantly less samples that the 1cons ground truth, due to the rarity of an
exact consensus between the three tools. In our experiments, we only use packer families

1. Cross-platform and open source alternative of the tool PEiD. It is implemented in Python and relies
on PEiD rules.

2. The techniques used by these tools are explained in Section 2.3.1.

62

3.3. Datasets and Ground Truth Generation

Table 3.1 – Generation of consensus (3cons) and non-consensus (1cons) ground truths based
on three tools (Packerid, Yara, and a Hash-based proprietary tool). File1 is detected by two
tools out of three as TheMida, hence is added to the non-consensus ground truths as a TheMida
sample. File2 is detected by all tools as UPX, hence is added to the consensus ground truth as a
UPX sample. File3 is not detected as packed by any tool, hence is added to both ground truths
as an unpacked sample. File4 is associated to more than one packing technique, hence it is not
added to any ground truth.

File Detection results Ground truth Label

File1
Packerid TheMida

1cons TheMidaYara TheMida
Hash-based unpacked

File2
Packerid UPX 3cons

1cons UPXYara UPX
Hash-based UPX

File3
Packerid unpacked 3cons

1cons unpackedYara unpacked
Hash-based unpacked

File4
Packerid UPX

discarded -Yara Armadillo
Hash-based unpacked

with at least 10 samples, meaning that a classifier trained on the 3cons ground truth will
not be able to correctly classify Armadillo, AutoIt, etc., and no classifier will be able to
correctly classify PEPacK. This can be solved by adding samples of the required families
to the database.

We note that it is not possible for us to evaluate the accuracy of the three techniques
(Packerid, Yara, and Hash-based detection) against an independently-generated ground
truth, since in the context of malware packers, the ground truth is usually built relying
on such techniques. Therefore, evaluating the accuracy of these techniques on another
ground truth produced by the techniques themselves would be unsound. However, these
techniques do represent the state of the art of static signature-based packing detection
tools used in practice by security researchers, so we expect them to be quite accurate in
practice.

Note that the ground truths are very unbalanced towards unpacked and UPX-packed
files. This reflects the class distribution in the data sources we used, and generally means
that algorithms that are better at detecting unpacked and UPX-packed samples will have
a higher F-score than algorithms that are better at detecting other packer families. This
stems from the intent of being able to correctly classify as many samples as possible. Here

63

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

Table 3.2 – Number of samples for each packer family in the two ground truths. Only families
with ≥ 10 samples are used, so algorithms trained on 3cons will be able to identify less families
than algorithms trained on 1cons.

Packer 3cons 1cons Packer 3cons 1cons
Armadillo 0 6,849 NsPacK 17 60
ASPack 6,037 6,172 NeoLite 2 104
ASProtect 179 206 PackMan 24 78
AutoIt 0 1,048 PEArmor 0 793
CAB 0 75 PECloak 0 21
cpEllie 0 119 PECompact 1,240 1,327
cpFlush 0 19 PENinja 0 18
cpGlyph 0 15 PEPacK 6 7
CreateInstall 0 12 PEtite 9 13
D1S1G 0 360 ProtectSW 0 629
DarkComet 0 27 RARSFX 0 65
DevCv 0 36 RLPack 1 123
dlThunder 0 1,192 SafeDisc 0 13
dlUpatre 0 628 StealthPE 0 321
dUP2XPatcher 0 15 TASM 0 101
eXPressor 12 14 TheMida 13 150
EXEStealth 1 91 UPack 62 115
FSG 13 17 UPX 4,857 63,402
InnoSetup 0 975 WinRAR 0 48
InstallShield 4 22 WinZip 69 141
MEW 217 234 WiseInstaller 14 72
MoleBox 7 49 YodaProtect 1 95
mPress 0 847
NSIS 7 2,039 unpacked 188,729 188,729

the averaging technique for multiclass F-score (detailed in Section 3.4) treats all samples
as equally important. This means classification on unpacked samples as “unpacked” is
strongly favored here as this is by far the most dominant family of samples.

3.4 Evaluation Metrics

This section sets the metrics used to evaluate the effectiveness, efficiency, and
robustness of supervised ML-based packing detection and classification systems.

The effectiveness of a trained algorithm is measured by its F-score. We recall that the

64

3.4. Evaluation Metrics

F-score metric is defined as:
2 ∗ Precision ∗Recall

Precision + Recall
(3.2)

Precision represents the number of correctly predicted positive labels over the number
of all positive labels, including those not labeled correctly (i.e., false positives). Recall
represents the number of correctly predicted positive labels over the number of all samples
that should have been labeled as positive.

For binary classification, which means packing detection, calculating the F-score is
straightforward since only two classes (packed/unpacked) are considered, knowing that a
positive label indicates that a sample is “packed”.

For multiclass classification, there are various methods to compute the F-score of
each class separately and aggregate them into a single score, knowing that a positive
label indicates the “packer family” of the packed sample (e.g., UPX). In our case, we
assume our dataset is representative of a malware source, including the highly skewed
distribution of packed and unpacked samples and the high prevalence of samples packed
by common packers instead of rarer ones (see Table 3.2). If the F-scores of each category
were weighted equally, a single misclassified sample out of the five available for a rare
packer would be considered as a 20% misclassification rate and significantly reduce the
aggregated F-score. This would translate as a higher weight on the classification of rarer
packers compared to more common ones. Instead, the F-score for the multiclass packing
classification experiments is computed using the micro-average method, i.e., by considering
all samples as equivalently important (independently from their class).

The micro-average F-score is defined as follows. Consider a data set A of “real”
(sample, label) pairs. Classify the samples of A with the algorithm, obtaining the set
B of “predicted” (sample, labels) pairs. Then the F-score is just the ratio of correctly
labeled samples, i.e., F (A, B) = |A∩B|

|B| . Note that with this averaging method F-score,
precision and recall coincide.

The choice of this averaging method depends on the assumption that the distribution
of the samples in the classes in the ground truth is representative of the real case. A
different choice of F-score averaging function for multiclass classification can be used to
model, for instance, that the analyst is more interested in correctly classifying rare packing
techniques than common ones, or vice versa.

Ideally, the samples in set A should be separate from the samples used to train the
algorithm. For our experiments, we use 5-round 80–20 cross validation, meaning that we
randomly select 80% of the ground truth for training and 20% for F-score computation, we

65

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

repeat this operation 5 times and average the five F-scores to obtain the reported F-score.
However, for the robustness assessment (described in Section 3.1.3), we test the best
algorithms straightforwardly against samples gathered after the training phase, without
resorting to k-fold cross-validation.

We note that in our tests we are not concerned on whether the analyzed samples
contain malicious code or not: packed goodware is detected and classified in the same way
as packed malware, and we have no interest distinguishing between the two.

Finally, the efficiency of a trained classifier algorithm is measured as the inverse of
the total time it takes to label the sample. This time includes the time required to extract
features from the sample (extraction time) and the time for the algorithm to predict the
label (classification time).

3.5 Experimental Evaluation

This section starts with an overview of software and hardware implementations, then
presents the procedure and experiments we have followed to implement and evaluate our
approach, as well as the results we obtained.

For the feature extraction we rely on the PeLib C++ PE file manipulation library
published by Avast [77] and based on the original PeLib library created by [78]. The
PeLib library has been developed by Avast specifically to handle malware, including
corrupted or exotic PE files produced by malware obfuscation and packing techniques. Our
implementation of feature extraction in C++ allows very low feature extraction times.

The ML detection and classification algorithms considered for our experiments
(Gaussian Naive Bayes, Decision Tree, Random Forest, and Extra Trees) are implemented
from the numpy Python library [79] version 1.14.2 and the Scikit Python package [50,
51]. The averaging F-score method used in the experiments (see Section 3.4) is defined
and implemented following the F1-micro in the Scikit Python package [80].

The experiments were conducted on multiple servers running in parallel, with each
server also allowing code to run in parallel in order to signficantly reduce the execution
time. Precisely, the experiments were conducted on 9 Linux servers running in parallel.
Each server features 14-core processors running at 2 GHz, allowing up to 56 parallel
threads, and 128 GB of RAM. Finally, we relied on the Joblib Python library [81] to
handle the parallel processing of Python code.

66

3.5. Experimental Evaluation

3.5.1 Definition of Classification Scenarios

Packing detection and classification can be considered as two separate challenges,
as shown in Figure 1.1. However, by manipulating the ground truth, we can construct
classifiers that address either of the two challenges or both at the same time. We consider
these as different scenarios.

• [DET] Packing detection. An algorithms trained for the det scenario only
determines whether a sample is packed or not. An algorithm can be trained for the
det scenario by relabeling as packed every sample that is not labeled as unpacked
in the ground truth, thus discarding the information about the specific packer
family.

• [CLAS] Packing classification. An algorithm trained for the clas scenario assumes
that a sample is packed, and determines by which family. An algorithm can be
trained for the clas scenario by removing every sample labeled as unpacked from
the ground truth.

• [BOTH] Packing detection and classification. An algorithm trained for the both
scenario determines both whether a sample is packed or not, and by which packer
family if it is packed. An algorithm can be trained for the both scenarios by using
the whole ground truth with samples labeled as unpacked or by family, as shown
in Table 3.2.

Each of the algorithms for the three scenarios above can be trained on the 3cons or
on the 1cons, thus creating six possible scenario–ground truth combinations. In what
comes next, we will refer to them by their scenario name and ground truth name, e.g.,
det–3cons refers to the case in which the classifiers are trained for packing detection on
the 3cons ground truth.

3.5.2 Feature Selection and Hyperparameter Optimization

Section 3.2 details the 119 features we use, divided into six categories: Byte Entropy
(BE), Entry Bytes (EB), Import Functions (IF), MEtadata (ME), REsource (RE), and
SeCtion (SC). Testing the contribution of each category to the detection and classification
would be insufficient, since they are most likely not independent. Hence, to determine
which feature categories fit the effectiveness and efficiency requirements, we test every
combination of feature categories. For six categories, this corresponds to 63 non-empty and

67

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

Table 3.3 – Hyperparameters used for algorithm optimization. All hyperparameter combinations
for each algorithm have been tested.

Algorithm Hyperparameter Values
Naive Bayes prior Gaussian

Decision Tree

splitter best,random
maximum depth 10,15,...,40

maximum features 0.1,0.3,...,0.9
minimum sample split 2,3,10
minimum sample leaf 1,3,5

criterion gini,entropy

Random Forest
Extra Trees

number of estimators 5,10,...,50
maximum depth 10,15,...,40

maximum features 0.1,0.3,...,0.9
criterion gini,entropy
bootstrap true,false

non-repetitive subsets, as shown in Section 3.2. Combined to the six scenario–ground truth
combinations defined at the end of Section 3.5.1, this corresponds to 378 combinations of
scenario–ground-truth–feature-category. To perform a fair comparison, for each of these
378 combinations, we perform a hyperparameter optimization on each of the classification
algorithms, i.e., we create a set of possible hyperparameters for each algorithm shown in
Table 3.3 and we find the best combination of hyperparameters by testing them all.
We measure F-score by k-fold cross-validation, average extraction and classification time
per sample, and we rate the algorithms by the ratio of their F-score to extraction plus
classification time.

Table 3.4a presents for each scenario and ground truth the three algorithm–feature
categories with the highest F-score. This provides insight for each scenario into which
features contribute to the algorithms and which do not.

We can observe the following facts:

• The F-score of the best algorithms for the 3cons ground truth is always higher
than the results for the best algorithms for the 1cons ground truth on the same
scenario. This is expected because the 3cons ground truth has higher quality than
the 1cons ground truth, meaning that less files are labeled incorrectly in 3cons
than in 1cons. However, we recall from Table 3.2 that 3cons contains significantly
less families than 1cons. This means that algorithms trained on 3cons will be less
effective than algorithms trained on 1cons when used against packed malware in

68

3.5. Experimental Evaluation

Table 3.4 – Best algorithms and feature categories (Byte Entropy be, Entry Bytes eb, Import
Function if, MEtadata me, SeCtion sc, REsource re) for each configuration of scenario
(detection det, classification clas, or both both) and ground truth (3cons or 1cons).

(a) Top 3 algorithms by F-score

Scen-GT Name Algorithm Features Ext (s) Clas (s) F-score

det–3cons
D3F1 Extra Trees be eb if sc 0.4248 0.0021 0.9998
D3F2 Extra Trees eb me if sc 0.3922 0.0021 0.9998
D3F3 Extra Trees be eb if re sc 0.6188 0.0015 0.9998

det–1cons
D1F1 Random Forest be eb me if re sc 0.6188 0.0024 0.9897
D1F2 Random Forest be eb me if 0.4284 0.0029 0.9897
D1F3 Random Forest be eb me if re 0.6187 0.0024 0.9895

clas–3cons
C3F1 Random Forest be eb if 0.4284 0.0019 0.9998
C3F2 Random Forest eb me if sc 0.3922 0.0038 0.9998
C3F3 Random Forest eb me if re sc 0.5826 0.0050 0.9997

clas–1cons
C1F1 Random Forest be eb me if re sc 0.6188 0.0048 0.9997
C1F2 Extra Trees be eb me if re sc 0.6188 0.0061 0.9979
C1F3 Extra Trees be eb me sc 0.0502 0.0049 0.9978

both–3cons
B3F1 Extra Trees be eb if 0.4284 0.0055 0.9999
B3F2 Extra Trees eb if re 0.5826 0.0058 0.9999
B3F3 Extra Trees be eb me sc 0.0502 0.0033 0.9999

both–1cons
B1F1 Random Forest be eb me re sc 0.2406 0.0046 0.9875
B1F2 Random Forest be eb me if re sc 0.6188 0.0053 0.9874
B1F3 Random Forest be eb me sc 0.0502 0.0037 0.9873

(b) Top 3 algorithms by F-score / (extraction cost + classification cost)

Scen-GT Name Algorithm Features Ext (s) Clas (s) F-score

det–3cons
D3R1 Decision Tree me sc 0.0140 0.0003 0.9984
D3R2 Decision Tree sc 0.0140 0.0003 0.9979
D3R3 Decision Tree me 0.0140 0.0003 0.9942

det–1cons
D1R1 Decision Tree eb me sc 0.0140 0.0003 0.9765
D1R2 Decision Tree eb me 0.0140 0.0003 0.9748
D1R3 Decision Tree eb sc 0.0140 0.0003 0.9749

clas–3cons
C3R1 Decision Tree me sc 0.0140 0.0003 0.9979
C3R2 Decision Tree sc 0.0140 0.0003 0.9977
C3R3 Decision Tree eb me 0.0140 0.0003 0.9989

clas–1cons
C1R1 Decision Tree me sc 0.0140 0.0003 0.9935
C1R2 Decision Tree eb me sc 0.0140 0.0003 0.9948
C1R3 Decision Tree eb sc 0.0140 0.0003 0.9938

both–3cons
B3R1 Decision Tree sc 0.0140 0.0003 0.9989
B3R2 Decision Tree me sc 0.0140 0.0003 0.9990
B3R3 Decision Tree me 0.0140 0.0003 0.9950

both–1cons
B1R1 Decision Tree eb me sc 0.0140 0.0003 0.9747
B1R2 Decision Tree eb sc 0.0140 0.0003 0.9683
B1R3 Decision Tree me sc 0.0140 0.0003 0.9630

69

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

the wild. This is explored more in detail in Section 3.5.3, and in general represents
a caveat against relying uniquely on k-fold cross-validation for fields with evolving
environments like malware and packing.
• The Random Forest algorithm and its Extra Trees variant completely dominate: no

Naive Bayes or Decision Tree reached the top 3 by F-score in any scenario–ground
truth combination. This validates the intuition that higher complexity algorithms
are required to achieve very high detection and classification scores, due to the
complexity of the packing problem.
• All the top algorithms require many different features to achieve the highest scores.

As a consequence, the feature extraction times are relatively high, often in the
order of half a second per file. The eb feature category appears in all the top 18
algorithms, the be and if categories in 14 of them, the me and sc in 13, and the
re in 9. This provides insight on the contribution of the various feature categories
to the algorithms.

Table 3.4b presents for each combination of scenario and ground truth, the three
algorithm–feature categories with the highest ratio between F-score and extraction plus
classification cost. This provides insight as to which features and algorithms achieve a
high F-score while having a low cost.

We can observe the following facts:
• The Decision Tree algorithm completely dominates, appearing as the algorithm

with the highest F-score to cost ratio in every scenario and ground truth. The
relative simplicity of Decision Tree compared to Random Forest allows it to achieve
a slightly lower F-score with a significantly lower classification time, i.e., 0.3 ms
per sample.
• None of the used feature categories require any significant extraction time over the

14 ms required on average to read the file itself (as explained in Section 3.2). This
restricts the used feature categories to sc (used in 14 of the top algorithms), me
(12 algorithms), and be (8 algorithms).
• Comparing the F-scores with the best algorithms overall for each scenario in Table

3.4a, we note that the F-score of the best algorithms by F-score/cost ratio in Table
3.4b usually does not decrease by more than 1–2%. On the other hand, the sum
of extraction and classification costs per sample are from 17 to 44 times lower.
Thus, with accurate algorithm and feature selection, it is possible to decrease the
classification times significantly while keeping a very high F-score (RQ1.1).

70

3.5. Experimental Evaluation

3.5.3 Robustness Assessment against the Evolution of Packers
over Time

Since the malware and packing ecosystems evolve over time, new (variants of) packing
techniques and families appear. To test the robustness of the packing detection and
classification systems against this packers evolution over time, we are proposing, we
perform a robustness assessment test over time. That is, we select the best algorithms
for each scenario–ground truth combination, we train them with data from February to
June 2017, and we test how they perform against data from July, August, September, and
October 2017 in two-weeks intervals.

Figure 3.2 presents the results of the robustness assessment against the evolution of
packers over time for the six combinations of scenarios and ground truths. The algorithms
were trained on data from February to June as their ground truth, with the label of each
graph indicating which consensus was used for the training. All algorithms were tested
against data from July to October that was determined to be packed or not according to
1cons, since 1cons is symbolically considered in this context more similar to the malware
and packing ecosystems in the wild than 3cons. Hence, k-fold cross-validation was not
used here.

We can observe the following facts:

• The algorithms trained on the 3cons ground truth perform much worse than
the algorithms trained on the 1cons ground truth, losing 6–30% of their F-score
(RQ1.2, RQ1.3). The algorithms trained on 1cons lose only 1–3% of their
F-score, except for the outlier C1R2 (RQ1.3).
The reason is that, as shown in Table 3.2, the 3cons ground truth contains less
data and packer family labels than the 1cons ground truth, hence such algorithms
are not able to recognize a large amount of packer families. Indeed, the packing
classification systems are supervised, thus theoretically unable to recognize new
packer families that appear over time. For packing detection, the decrease in
effectiveness does not come from a lack of family labels, because the problem is
binary-class (packed, non-packed). However, the 3cons ground truth contains less
data, thus many observational feature values of packed binaries are discarded form
the training, which has consequently an impact on packing detection.
These results contrast with the results of Tables 3.4a and 3.4b in Section 3.5.2,
where the algorithms trained on 3cons had a higher F-score than the ones trained

71

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

Ju
l-A

Ju
l-B
Aug

-A
Aug

-B
Sep

-A
Sep

-B
Oct-

A
Oct-

B
0.6

0.8

1

F-
sc

or
e

D3F1
D3F2
D3F3
D3R1
D3R2
D3R3

(a) det-3cons

Ju
l-A

Ju
l-B
Aug

-A
Aug

-B
Sep

-A
Sep

-B
Oct-

A
Oct-

B
0.6

0.8

1

F-
sc

or
e

D1F1
D1F2
D1F3
D1R1
D1R2
D1R3

(b) det-1cons

Ju
l-A

Ju
l-B
Aug

-A
Aug

-B
Sep

-A
Sep

-B
Oct-

A
Oct-

B
0.6

0.8

1

F-
sc

or
e

C3F1
C3F2
C3F3
C3R1
C3R2
C3R3

(c) clas-3cons

Ju
l-A

Ju
l-B
Aug

-A
Aug

-B
Sep

-A
Sep

-B
Oct-

A
Oct-

B
0.6

0.8

1
F-

sc
or

e
C1F1
C1F2
C1F3
C1R1
C1R2
C1R3

(d) clas-1cons

Ju
l-A

Ju
l-B
Aug

-A
Aug

-B
Sep

-A
Sep

-B
Oct-

A
Oct-

B
0.6

0.8

1

F-
sc

or
e

B3F1
B3F2
B3F3
B3R1
B3R2
B3R3

(e) both-3cons

Ju
l-A

Ju
l-B
Aug

-A
Aug

-B
Sep

-A
Sep

-B
Oct-

A
Oct-

B
0.6

0.8

1

F-
sc

or
e

B1F1
B1F2
B1F3
B1R1
B1R2
B1R3

(f) both-1cons

Figure 3.2 – Results of the robustness assessment against the evolution of packers over
time. Each graph evaluates the F-score of the 3 best algorithms by F-score (Table 3.4a)
and the 3 best algorithms by F-score/cost ratio (Table 3.4b) on a scenario-ground truth
combination. Each algorithm is trained on data collected from February to June 2017 and
tested on data collected on the first two weeks (A) and second two weeks (B) of July to
October 2017.

72

3.5. Experimental Evaluation

on 1cons. The reason is that the values in Section 3.5.2 are obtained by k-fold
cross-evaluation, i.e., by testing and training on the same datasets. The important
insight is that k-fold cross-evaluation favors scenarios with the construction of
smaller ground truths and more precise labels, but at the cost of reducing the
representativeness of the ground truth, thus training algorithms that will be
ineffective against real data.

3.5.4 Retraining Cost Analysis

We perform a retraining cost analysis using the algorithms for the both–1cons
scenario–ground truth combinations. Assume that an algorithm is useful while its F-score
is at least 0.96, after which time the algorithm then has to be retrained. Consider the
6 algorithms whose robustness is plotted in Figure 3.2f. For each algorithm, we use the
robustness assessment values to do a quadratic least squares regression and extrapolate
the time at which the algorithm will reach an F-score of 0.96, requiring retraining. Such
projection are presented in the second column of Table 3.5. The third column of Table 3.5
presents the retraining costs for the hyperparameter optimization for the algorithms from
the experiments in Section 3.5.2. Finally, the fourth column of Table 3.5 presents the ratio
between the uptime before retraining and the retraining time, i.e., how many seconds of
uptime are obtained for each second spent retraining the algorithm. As the table shows,
the simple Decision Tree algorithm with just the me and sc feature categories has the
highest ratio, since its very low retraining time cost means that it is more efficient to use
it even if it has to be retrained more frequently than other algorithms (RQ1.4).

We note that the retraining cost analysis presented above considers for simplicity the
time cost as the only cost of retraining, making it easy to evaluate compared to the uptime
of the system. In reality, additional metrics could be used such: as the cost in kilowatts
or currency of retraining the system, rollout costs for pushing an updated classifier, and
various other factors. Such a detailed analysis would require additional information on the
hardware and platform used, and possibly on the local energy and other infrastructure
costs. For this reason such localized and precise costs are not considered in the scope of
our retraining cost analysis.

73

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

Table 3.5 – Retraining cost analysis for the best algorithms for the both–1cons
scenario–ground truth combinations, assuming that an algorithm has to be retrained
when its F-score drops to 0.96.

Algorithm Uptime before
F-score=0.96 (s)

Retraining
cost (s)

Uptime to
retraining
cost ratio

B1R3 7,410,960 5,750 1,289
B1R1 13,560,480 19,704 688
B1R2 11,274,120 18,990 593
B1F1 25,728,120 328,921 80
B1F2 22,048,920 362,979 61
B1F3 20,656,080 356,457 58

3.6 Discussion

This section first discusses the results in more details and summarizes the lessons
learned. It then details the possible threats to the validity of our methodology and
how they were addressed. Finally, it identifies the limitations and suggests potential
improvements for future work.

3.6.1 Findings and Insights

On Feature Selection. We performed an evaluation of the cost and effectiveness
of using different sets of features for supervised classification. Not all features have
the same extraction cost, and training classifiers on large feature sets decreases their
performance compared to training them on smaller feature sets. Hence, the efficiency of
the classification is highly impacted by the features used. Table 3.4 shows that using all
available features does not yield the highest F-score. This confirms that using less features
can improve the extraction, training and classification times. To understand which features
to exclude, we have examined not only their contribution to the F-score of the classification
but also their cost. Similarly, we have evaluated complex algorithms like Random Forest
with simpler algorithms like Decision Tree. The retraining cost analysis in Table 3.5
shows that when both effectiveness and efficiency are considered, then accepting a small
decrease in effectiveness over time (uptime before F-score=0.96) can increase the efficiency
(retraining cost) by orders of magnitude. This addresses research questions RQ1.1 and
RQ1.4.

74

3.6. Discussion

This insight is of paramount importance to analysis and companies running large-scale
ML-based malware and packing detection and classification systems. Due to the evolution
of the malware and packing ecosystems, such systems require regular retraining on
recent data representative of the current ecosystem. While carefully identifying effective
algorithms and selecting features that are cheap to extract and evaluate, the system
uptime to retraining cost ratio can be sharply increased, resulting in lower costs for the
analyst and better protection for the users.

On Ground Truth. Many academic papers manually build a small-size ground truth
of manually-verified samples. This is of course not possible for large-scale ground truths
like the one used in this study. Due to the difficulty and sometimes inherent ambiguity
of classifying samples, producing a highly reliable packing ground truth is extremely
time-expensive and sometimes impossible. Hence, analysts and companies often have to
rely on low-confidence ground truth, where the classification labels cannot be inherently
trusted.

In this study we construct two ground truths of different sizes and reliability to
understand the impact of the size and reliability of the ground truth on supervised
classification: a 3cons ground truth that is smaller but more reliable, and a 1cons
ground truth that is larger but less reliable. Importantly, some packer families that are
present in the 1cons ground truth had to be excluded from the 3cons ground truth due
to the lack of samples from such families that were classified with high enough confidence.

Table 3.4 shows that classifiers trained on the 3cons ground truth achieve a higher
F-score compared to classifiers trained on the 1cons ground truth. However, the F-score
of the classifiers are evaluated by k-fold cross-validation on the same ground truth used to
train them, meaning that the classifiers trained on 3cons are not evaluated on the packer
families that appear in 1cons but in 3cons. This causes the classifiers trained on 3cons
to perform significantly worse than the classifiers trained on 1cons in the robustness
assessment in Figure 3.2, where all the packer families are considered. Research questions
RQ1.2 and RQ1.3 are closely related to this result.

The robustness assessment over time is more representative of packing detection and
classification in in-the-wild scenarios than k-fold cross-validation. Indeed, as explained in
Section 3.4, k-fold cross-validation uses k−1

k
of the total size of data for training and 1

k
for

testing, for each of the k iterations. Thus, k-fold cross-validation assumes that the size
of “known data”, representing the training set, is much larger than the size of “unknown
data”, representing the testing set [3]. While this assumption might be correct for some

75

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

applications in in-the-wild scenarios, this is not valid for malware as well as packing
detection and classification, where data in the wild evolve constantly and rapidly, thus
making the set of “unknown data” much larger than the set of “known data”.

On the one side, this shows that k-fold cross-validation method is not suitable for
fields like malware as well as packing detection and classification. On the other side, this
indicates that training classifiers on a larger, lower-reliability ground truth like 1cons
is preferable than training classifiers on a smaller, higher-reliability ground truth like
3cons. Due to the evolution of the malware and packer ecosystems, wide coverage is
necessary to properly train supervised classifiers, even at the cost of some label quality.
This can be considered good news, since increasing the size of a database with samples
with low-confidence labels is easier than increasing the confidence in the labels of the
database.

3.6.2 Threats to Validity

As remarked in Section 3.3, we chose the three signature-based techniques used to
annotate the database according to their widespread usage among security researchers
and analysts. However, frequently the techniques were in disagreement on the labeling of
a sample, not just whether a technique considers a sample packed and another considers
it unpacked, but also cases where the three techniques labeled the same sample with up to
six different packing families. Samples with such disagreements have been removed from
the database, but this shows the fragility of these techniques against some packers. While
on one hand this motivates the necessity of ML-based techniques like the ones proposed
in this thesis, on the other hand it can be considered a warning on the unreliability of
malware and packing classification ground truth.

As remarked in Sections 3.3 and 3.4, the creation of a database to use as ground truth
requires some care to be aware of the representativeness and bias of the data. Additional
bias is introduced by the choice of the effectiveness metric used to evaluate the classifiers
(in this study, the F-score) and the averaging method for multiclass classification (in this
study, all samples are considered equally important). The choice in this study reflects the
fact that we give the same importance to false positives and false negatives in packing
detection, and that we aim at correctly classifying the highest possible number of samples.
Different choices may have led to different results. Analysts should always consider the
origin of their data and their classification goals when choosing analysis parameters like
the effectiveness metric and its averaging method.

76

3.6. Discussion

The features used in this study have been divided into thematic-based groups
(entropies, metadata, etc.) in Section 3.2. The grouping is necessary since features are
not independent, so their effectiveness has to be evaluated on all possible combinations,
and testing all combinations of 119 features is computationally infeasible, as explained
in Section 3.2. However, dividing the groups by theme means testing together features
with possibly very different extraction costs and effectiveness. For instance, Figure 3.1
shows that the cost of analyzing the resources section of the PE file varies from negligible
to seconds. This is because if the resources section has been removed or is empty this is
verified in negligible time, otherwise parsing it can require several seconds. Unfortunately,
when not using the resource features we lose the very significant information on whether
or not the resources section is empty. Future work should consider alternative feature
groups.

The retraining cost analysis in Section 3.5.4 assumes that the analyst retrains a
supervised classifier when its F-score drops to 0.96. The section shows how in this case it is
more efficient to use simple algorithms and small feature sets to allow cheap and frequent
retraining, increasing greatly the uptime to retraining cost ratio. However, it may be the
case that the analyst requires a much higher F-score, e.g., 0.99, and this is attainable only
by complex algorithm and large feature sets. While this does not invalidate our analysis,
in this case the requirements would obviously not allow the cheap and frequent retraining
we recommend.

3.6.3 Limitations and Future Work

A limit of supervised learning is to not be able to recognize classes that were not present
in the ground truth. In the case of this study, this theoretical limitation does not affect
the packing detection stage because the problem is binary-class (packed, non-packed).
However, it affects the packing classification stage because packer families for which a
classifier has not been trained will not be recognized. This limitation is the main cause of
the ineffectiveness of classifiers trained on the 3cons ground truth, as shown in Section
3.5.3.

More generally, unsupervised learning techniques like clustering should be used to
provide information about malware packed with previously unknown packing techniques.
In the next chapter, we present the framework SE-PAC which particularly relies on
clustering to cover the theoretical limitations of supervised ML-based packing classifiers.

77

Chapter 3 – A Study of Supervised Machine-Learning-based Packing Detection and
Classification Systems

The construction of the ground truth has been shown to be fundamental in determining
the effectiveness of the packing detection and classification processes. Additional packing
detection techniques apart from the ones used in Section 3.3 could be used to improve
the labeling of the ground truth. In particular, despite being costly, unpacking could be
deployed to contribute in constructing the ground truth labels. In addition, it could be
possible to rate the packing detection techniques with different confidence values based on
their reliability, to better understand how to solve conflicting labeling in a more advanced
manner than just the consensus/non-consensus paradigm used in this study.

Future work may examine the case of repacked malware, i.e., malware packed using
multiple packers in sequence. In particular, the last packer may not completely overlay
the outer layer of repacked malware, hence previous packer layers may still appear. We
suppose that this multiform overlapping of multiple packers on the outer layer of malware
is one of the main reasons for generating conflicting labeling (the ones we removed from
the ground truth, as explained in Section 3.3). We refer to [82] for further discussion on
this topic.

3.7 Conclusion

The study we presented in this chapter aims at understanding the impact of ground
truth generation, ML algorithm selection, and feature selection on the effectiveness,
efficiency, and robustness of supervised ML-based packing detection and classification
systems, following the example of works on empirical testing of ML malware analysis
including [3].

We find that the size of the ground truth is more relevant than its quality in in-the-wild
test scenarios. Supervised ML algorithms can classify correctly only for classes they have
been trained on, so having various classes and significant amount of samples for each class
is more relevant than having a few classes of a few samples with highly reliable labeling. In
particular, k-fold cross-validation method is not suitable for fields like malware as well as
packing detection and classification where new types of samples and packing techniques
appear constantly and rapidly in the wild. This contributes to explaining why algorithms
can perform well in the lab and badly in the wild, as reported by [3].

We find that the number and extraction costs of the features used have a dramatic
impact on classification and retraining times, and consequently on the viability of using
ML algorithms. In fact, selecting features and algorithms for both effectiveness and

78

3.7. Conclusion

efficiency can greatly decrease classification and retraining costs against small decreases
in effectiveness. In practice, this implies that using a simple algorithm (e.g., Decision
Tree) on a reduced feature set and retraining it often results in an optimal expenditure
of time compared to using a more complex algorithm (e.g., Random Forest) over many
features and retraining it sparingly. This of course assumes that the minimum F-score
requirements are not too high, in which case complex algorithms on large feature sets
may be necessary. Our retraining cost analysis can be adapted as required considering
cost and robustness.

We note that our results depend on some basic engineering choices, in particular
the implementations of PE feature extraction and ML algorithms. More optimized
implementations would possibly give better results in terms of efficiency.

We encourage other researchers and institutions to evaluate their packing detection and
classification algorithms with the methodology presented in this chapter and to publish
their findings.

79

Chapter 4

SE-PAC: A SELF-EVOLVING PACKER

CLASSIFIER AGAINST RAPID PACKERS

EVOLUTION

We have seen in the previous chapter that packers evolve, constantly bringing new
classes or new variants of existing ones. Indeed, beside the many well-known packers in
use (e.g., UPX, NsPack, ASPack), there is a growing trend for custom packers. The latter
are developed either from scratch or partially from available ones (e.g., Vanilla UPX).
Their usage has become so widespread that by 2015, Symantec detected their use in over
83% of all malware attacks [19]. Research works have also followed this evolution [18].

These new unknown packers complicate unpacking because the specialized unpacking
function is unknown and generic unpackers are not always effective [83], which makes
malware analysis and detection harder. Supervised ML-based packing detectors can detect
new unknown packers because the problem is straightforwardly binary-class (packed,
non-packed). However, we have seen previousely (see Section 3.5.3) that supervised
ML-based models classifying packer families bring a strong theoretical limitation: they
are not able to recognize new unseen classes. While we offer our models regular and
efficient retraining, these retraining are still limited for supervised packer classifiers. The
latter would still be unable to identify new packer families that appear constantly and
rapidly in the wild, in the period of time occurring between each two retraining.

In this chapter, we particularly cover this theoretical limitation by introducing
SE-PAC, a new Self-Evolving PAcker Classifier framework that copes with the fast-paced
evolution of packers. SE-PAC constitutes the second contribution of this thesis.

Broadly, our framework relies on clustering in a semi-supervised fashion in order to
cover the inability of supervised ML-based (and signature-based) systems to discover new
classes. SE-PAC aims to provide an effective, incremental, and robust solution to cope
with the rapid evolution of packers.

80

Our self-evolving technique consists in predicting incoming packers by assigning them
to the most likely clusters, and relies on these predictions to automatically update clusters,
reshaping them and/or creating new ones. Our system continuously learns from incoming
packers, adapting its clustering to packers evolution over time.

The research challenges that we faced during the construction of SE-PAC concerned
the similarity metric, optimization strategies for incremental update and post-clustering
processing, and finally evaluation. We formulate these research challenges in terms of
Research Questions (RQ), which are the following:

RQ2.1a How to define a pairwise distance metric when different types of features are
extracted from packed binaries?

RQ2.1b How effective would such distance metric perform compared to other
commonly used distance metrics?

RQ2.2 How the incremental update process can be optimized to reach a good trade-off
between effectiveness and efficiency?

RQ2.3 Clustering is well-known to be an ill-posed problem for evaluation, so how the
extrinsic quality of a clustering solution S can be evaluated wrt. the problem of
the fast-paced evolution of packers?

RQ2.4 How effective and how robust is SE-PAC against packers evolution,
particularly when dealing with binaries coming from the wild?

RQ2.5 How the post-clustering processing can be optimized?

The contributions that we precisely bring in this work are:
• We point out and experimentally show the importance of constantly updating the

packing classification system.
• We introduce SE-PAC, a new end-to-end framework going from feature extraction,

custom distance metric, to incremental clustering with a self-evolving classifier for
packed binaries.
• We show how to combine different types of features in the construction of a

composite pairwise distance metric, in the context of packed binaries (RQ2.1a).
Furthermore, we show the efficiency of our composite pairwise distance metric by
comparing it against simpler commonly used distance metrics (RQ2.1b).

81

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

• To decrease the update time of the incremental clustering procedure, we derive a
methodology to extract representative samples for each cluster. Interestingly, the
number of representatives extracted from each cluster is not fixed, but related
to the number of samples in the cluster. Furthermore, we study this relation
experimentally to derive a good trade-off between effectiveness and update time
performance (RQ2.2).
• We show how to establish a good trade-off between the homogeneity of the clusters

found and their number, to evaluate the extrinsic quality of a clustering solution
S wrt. the problem of the fast-paced evolution of packers (RQ2.3).
• We propose a new post-clustering selection strategy that extracts a reduced subset

of relevant samples from each cluster, to optimize the cost of post-clustering packer
processing (RQ2.5).
• We support our findings with realistic experiments showing promising results for

effectiveness and robustness (RQ2.4).

This chapter is organized as follows. Section 4.1 presents our methodology, and Section
4.2 our post-clustering selection strategy. Section 4.3 details the datasets and ground truth
generation, and Section 4.4 the evaluation metrics. Section 4.5 presents the experimental
setup and results, which Section 4.6 discusses. Section 4.7 concludes.

4.1 Methodology

This section starts with a brief overview of the methodology of our self-evolving
classifier, before exploring each part in more details.

4.1.1 Overall Toolchain

Our approach comprises two phases (see Figure 4.1). First, the offline phase exploits
and models all available knowledge, by using available packed samples as well as packer
labels to tailor the generation of clusters. In the second phase, the online phase, the
system self-evolves by incrementally updating the clusters as new samples, packed with
either previously seen or unseen packers, are processed. Both phases are divided into three
main steps: feature extraction, distance computation and clustering. Feature extraction
and distance computation are identical for the offline and online phase, whereas clustering
differs notably. Joining supervised learning in the offline phase and unsupervised learning
in the online phase makes the whole system learn in a semi-supervised method.

82

4.1. Methodology

Figure 4.1 – Overall toolchain.

We rely on clustering because it can efficiently cluster similar samples that belong to
the same packer family, regardless whether the class was previously known, and thus fits
our goal of discovering new unknown packer classes. In particular, incremental clustering
provides incremental learning where knowledge about packers constantly evolves, by
creating new clusters for new families, or reshaping existing clusters according to new
variants that can represent different versions, configurations, or polymorphic instances.

Initially, at t0, the offline phase trains the self-evolving packer classifier and tunes
parameters that will be used in the online phase. The initial dataset contains packed
samples and the corresponding ground truth labels. Various static and dynamic features
are extracted from each packed sample, to represent it by a heterogeneous features set.
To define a unique pairwise distance for pairs of packed samples, each individual feature
yields a partial distance metric that is averaged with all the others to obtain the final
distance. Clustering is then used to group similar packed samples into clusters. The best
clustering is found by tweaking the distance between packed samples according to the
ground truth, so that the obtained clustering combines homogeneity (clusters do not mix
packers from different families) with the most coherent number of clusters (the closest
to the number of packer families in the ground truth). At the end of this phase, the
parameters that produce the best clustering, as well as the corresponding clusters, are the
first clustering setup which serves as baseline for the second phase.

83

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

The online phase (t1, ..., tn) has successive self-evolutions, processing one packed
sample at a time, for as long as the model produces accurate results before requiring full
retrain or supervisor intervention. In this phase, the same tasks are repeated for features
extraction and distances computation. Then starting with the clustering setup obtained
from the offline phase, the system self-evolves by relying on incremental clustering that
dynamically includes the incoming packed samples, thus creating new clusters for new
families and reshaping existing clusters with new variants. Since our system classifies new
incoming packed samples in real-time, it can be used in production, hence reinforcing the
security of the user.

4.1.2 Feature Extraction and Selection

We take advantage of the 6 packer feature categories that we extracted in our ML study
for packing detection and classification: metadata (21 features), sections (21 features),
entropies (6 features), resources (2 features), import functions (5 features), and entry
bytes (64 feature). All features are described in the previous Chapter, in Section 3.2.

However, we bring an important improvement over the entry bytes category
representing the unpacking stub code by performing a lightweight dynamic emulation
of the execution of the first instructions following the binary Entry Point (EP), instead of
extracting 64 bytes statically. As instructions are fetched, the corresponding mnemonics
are stored in a list, which is the assembly language (ASM) mnemonic sequence feature.

Dynamic emulation has the advantage to thwart unpacking stub codes that use
obfuscation techniques to impede static analysis, such as far jumps, anti-disassembly and
metamorphism (see Section 2.2.1). Although an attacker can engineer a bunch of code
protection that foreruns the unpacking code routine, this would not mislead our step since
this bunch of code protection would serve as well to identify the packer family.

Our improvement targets particularly the entry bytes feature category because
the unpacking stub code is a strong characteristic feature [66, 69, 70, 84] for
packer classification. The rational is that runtime packers often start executing the
unpacking stub routine before reaching the malicious payload original entry point.
Indeed, from the results that we obtained previously regarding the contribution of
feature categories in classifying packer families (see previous Chapter, Table 3.4a for
clas scenarios), we can observe that the category eb is mostly present in all the
top-ranking scenario–ground-truth–feature–category. Hence, this validates the intuition
of the prominent contribution of this feature category in classifying packer families.

84

4.1. Methodology

So regarding this new context of features and ML algorithms, a selection of feature
categories is performed again for representing packers. We test all possible non-repetitive
category combinations in the offline phase, then we rank them conforming to the criteria
introduced in the previous Chapter, that is effectiveness (AMI score in this context, see
Section 4.4.1) and the ratio between effectiveness and efficiency (time cost on average of
feature category extraction).

When we rank the combinations of feature categories wrt. effectiveness, the best
combination we obtain is sections associated to unpacking stub mnemonic sequences, with
an AMI score of 0.963 on average wrt. the scenarios we designed (described next in Section
4.5.1). The time cost of extracting the two feature categories was 0.244 seconds in total
(0.014 seconds for sections and 0.23 seconds for unpacking stub mnemonic sequences). The
best combination we obtain, by ranking according to the ratio between effectiveness and
efficiency, is sections with an AMI score of 0.909 on average and a time cost of feature
extraction of 0.014 seconds.

We notice that the ratio reduces significantly the time cost of feature category
extraction, where we move down from 0.244 seconds to 0.014 seconds, but a the cost
of a significant decrease in effectiveness, where we move down from an AMI score of 0.963
to 0.909. These results contrast the ones we obtained in the previous Chapter, in Table
3.4a, where the ratio provided a significant reduction in the time cost with, interestingly,
a neglected loss in effectiveness.

In this context, we do not accept this significant loss in effectiveness, because the latter
is favored as being a high priority of the system over the time cost of feature extraction.
Hence, the ratio above no longer provides us an interesting trade-off. So for these reasons,
we decided to go in the direction of the most effective combination of feature categories,
thus selecting the association of the feature category sections and the feature category
unpacking stub mnemonic sequences for representing packers. Besides this combination
provides the best effectiveness, it also solidifies SE-PAC against obfuscation techniques
that can deceive each category taken separately. Furthermore, it reduces ML over-fitting
that could be caused by using each feature category alone.

Regarding the efficiency of SE-PAC, our efforts focused thus on providing a very
lightweight extraction of the unpacking stub mnemonic sequences. The efficiency of the
system concerns also the time cost to update a sample in a clustering procedure, so we
present next in Sections 4.1.4.1 and 4.1.4.3 the optimization strategies we adopted to
reduce that cost.

85

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

4.1.3 Composite Pairwise Distance Metric

Since extracted features are numeric (relating to PE sections) or string sequences
(mnemonic sequences), we need to derive a unique pairwise distance metric able to
combine both types. To this end, we derive a Gower distance [85], a composite metric
overcoming the issue of mixed data type variables by being computed as the average
of partial distances that range in [0, 1] (RQ2.1a). Our work has two different partial
distance metrics: Manhattan distance for numeric features and Tappered Levenshtein
distance for mnemonic sequences. These two distances are then normalized, and their
average computed, thus providing our composite distance metric. Formally:

Gower(i, j) = 1
p

p∑
k=1

NormD(i, j)(fk) (4.1)

i and j are the indices of two samples in the dataset, NormD(i, j)(fk) is the normalized
partial distance metric applied wrt. the data type of the kth feature f , and p is the number
of features. Each packed sample is represented by 22 features (a string and 21 numbers).

The Manhattan distance provides partial distance metrics for numeric features.
The normalized partial distance of a numeric feature f between two samples of indices i

and j is the ratio between the absolute difference of observations x
(f)
i and x

(f)
j and the

absolute maximum range R(f) observed for f among all samples:

NormManh(i, j)(f) =
|x(f)

i − x
(f)
j |

|R(f)|
(4.2)

The Tapered Levenshtein distance provides partial distance metrics for ASM
mnemonic sequences [84]. It has the advantage of quantifying the similarities between
two ASM mnemonic sequences, in contrast to straightforward comparison that cannot
capture small differences in the sequence. Furthermore, the tapered version proportionally
decreases the weight of each element as they appear later in the sequence, punishing more
differences in the beginning of the sequence and less in the end. In our work, the intuition
behind tapering is that most of the times the unpacking stub routine is located directly
at the binary EP, and thus the order in which the instructions appear is important.
Nonetheless, since the length of the unpacking stub is a priori unknown, the focus is
to fetch as few instructions as possible to attain the optimal balance between efficiency
and information gain for packer classification. The normalized partial distance of a string

86

4.1. Methodology

mnemonic sequence f between two packed samples i and j is formally defined as:

NormTapLev(i, j)(f) =
∑L(Si,Sj)−1

k=0 W (Si, Sj)(k)(1− k
L(Si,Sj))

C
(4.3)

where Si and Sj are the respective mnemonic sequences of the two packed samples whose
indexes are i and j. L(Si, Sj) is the maximum length between Si and Sj. W (Si, Sj)(k) is
a factor which is equal to 0 if the ASM mnemonic of Si and Sj are equal at the position
k, or equal to 1 otherwise. Finally, C is the maximum extraction length of any mnemonic
sequence, used to normalize the distance into [0, 1].

Example 1. Let C be set to 50, and Si and Sj the following ASM mnemonic sequences,
extracted from packed samples i and j:

Si = {push, mov, push, push, push, mov, push, mov, sub},

Sj = {push, mov, mov, push, add, mov, add, mov, sub},

then L(Si, Sj) = 9 and NormTapLev(i, j) = 0 + 0 + (1− (2/9)) + 0 + (1− (4/9)) + 0 +
(1− (6/9)) + 0 + 0 = 1.67/50 = 0.033

4.1.4 Clustering: Batch and Incremental

In both offline and online phases we use DBSCAN (a background for the algorithm is
provided in Section 2.3.3.1) as clustering algorithm, because it: (i) does not require the
a priori number of clusters, which fits our ambition of discovering new packers; (ii) can
find arbitrarily-shaped clusters, since the packers may be different in terms of complexity
(see Section 2.2.1), packing techniques, or how they overlay the binary; (iii) has the
notion of noise, which can have multiple interpretations in our context: rare (singleton)
packers, outliers, or packers using very sophisticated obfuscation techniques and thus hard
to group under clusters; (iv) gives control on parameters (eps and minPts), which allows
parameter tuning in the offline phase.

4.1.4.1 Scattered Representative Points

To ease locating the clusters in the hyperplane while reducing comparisons complexity
during the incremental update process, we select for each cluster a subset of its points

87

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

to represent its geometry. To this end, we target the most scattered points of the cluster,
which we call Scattered Representative Points (SRPs), see Figure 4.2.

Finding the most scattered points of a cluster is akin to the farthest neighbors traversal
problem: given a set of N points, find the X points that are the farthest apart from each
other. There are heuristics in literature to solve this problem [86]. In our work, we trade-off
between precision and performance, with a greedy approach: first take the two farthest
points, then incrementally select points for which the sum of distances to the already
selected points is the greatest, repeating this until a specific number of representative
points (nrp) have been selected. This nrp is equal to

⌈
K
√

Nc

⌉
, where Nc is the number of

elements of cluster c, K is a positive constant (that can be experimentally tuned), and
⌈
.
⌉

is the round up number. This means that each cluster has a different nrp, at least equal
to 1, that grows dynamically with the number of elements of the cluster. For the sake of
clarity, a pseudocode is given in Algorithm 1.

4.1.4.2 Batch Clustering in the Offline Phase

In this phase, DBSCAN parameter (eps) is tuned to achieve the best clustering wrt.
the provided ground truth. The clusters are evaluated according to their homogeneity and
number wrt. the number of packer families in the ground truth. The trade-off between
these two constraints is established via clustering metric AMI (see Section 4.4.1).

The intuition behind the offline phase is to derive a generalized eps that is learned
from the already available labeled samples. This experimental eps should work for a big
variety of packers and give the incremental clustering step the ability to handle new
unseen packers, hence the importance of providing a well-varied packer training set at the
beginning. In practice, this variety represents various packer complexities, and techniques,
e.g., self-installers, cryptors, compressors, protectors and virtualizers.

Parameter minPts is left as supervisor choice for the desired minimum number of
samples in clusters. Assuming that some unknown packers (families) can be spread with
very few elements (e.g., only 3), the value of this parameter should be low so that our
clustering encompasses small clusters (in addition to larger ones).

4.1.4.3 Incremental Clustering in the Online Phase

The online phase is responsible for updating the existing clustering as new samples
come in. To this end, we customize an incremental version of DBSCAN [87] including

88

4.1. Methodology

Figure 4.2 – Nearest cluster search in incremental update.

a specific update policy and a set of optimization techniques. This update policy covers
three cases, checked in the following order:

A: The new sample joins the nearest cluster when at least minPts sample, including
the new one, are within radius eps.

B: A new cluster is formed when at least minPts unclassified samples (noise),
including the new one, are within radius eps.

C: The new sample remains unclassified when not A nor B.

A naive update would require computing distances between the new (sample) point
and all the points in the clusters, resulting in a complexity of O(M · Nc) per update,
where M is the number of existing clusters and Nc the number of points in cluster c.
However, using the SRPs in order to select the nearest cluster reduces the computation
to O(M ·nrp) (RQ2.2), in our case O(M ·

√
Nc) (see Section 4.1.4.1). The idea to optimize

the computations is to get gradually closer to the hyperplane region where the potential
points for case A are located. Therefore, in the first step, we compute the distances to
the set of SRPs of each cluster, as illustrated in Figure 4.2, to find the nearest cluster.
In the second step, we delimit the region of points around the nearest SRP for which
distances have to be computed. By exploiting the triangle inequality, using the distances
already computed between the nearest SRP and the points in the cluster, we identify
the set of points that are certainly closer or further than eps from the new point. These
points can thus be directly accepted or rejected (without distance computation) within
the update policy. Then, only the remaining points (those we can not decide using the

89

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

Algorithm 1 Calculate_or_update_SRPs
Input:
Cj with j ∈ {1, 2, 3, ..., l} {the cluster for which SRPs are calculated or updated}
M {the precomputed pairwise distances matrix}
K {the experimental K in

⌈
K
√
|Cj|

⌉
}

Output:
SRPsCj

{list of the best SRPs of the cluster Cj}

Function calculate_or_update_SRPs(Cj, K, M)
1: nrpCj

←
⌈
K
√
|Cj|

⌉
{calculating the number of SRPs for the cluster j}

2: MCj
← M \ Cj {getting only the precomputed distances of the points belonging to

the cluster Cj}
3: points_remaining ← {Cj} {initializing the remaining points set with all the points

belonging to the cluster j}
4: solution_set ← two_farthest_points(MCj

) {initializing the solution set with the
two points having the greatest distance between them in MCj

}
5: points_remaining ← remaining_points \ solution_set {removing the two points

from the remaining points set}
6: for i ∈ {3, ..., nrpCj

} do
7: solution_set← solution_set ∪ point_with_max_sum_distances(solution_set,

points_remaining) {Adding to the solution set the point for which the sum of
distances from it to all the points already in the solution set is the greatest, until a
solution set of nrpCj

points is reached}
8: points_remaining ← points_remaining \ solution_set
9: end for

10: SRPsCj
← solution_set

11: return SRPsCj

90

4.1. Methodology

Algorithm 2 Customized incremental DBSCAN
Parameters used:
M {the precomputed pairwise distances matrix}
best_eps {the best tuned eps in the offline phase}
best_minP ts {chosen by the supervisor}
Pnew {the point representing the new incoming sample}
C {list of clustes formed in the offline phase}
Noise {list of points considered as noise in the offline phase}
K {the experimental K in

⌈
K
√
|Cj |
⌉

with j ∈ {1, 2, 3, ..., l}}
SRP sCj {list of SRPs of each cluster j}

Online Phase
1: Cnear, PSRP ← min_distance(SRP sC , Pnew) {finding the nearest SRP (PSRP) from Pnew in all clusters,

thus finding the nearest cluster}
2: accepted_points← ∅, rejected_points← ∅, remaining_points← ∅
3: if M [PSRP , Pnew] ≤ best_eps then {attempting the triangle inequalities to reduce the number of points to

process in the cluster}
4: for i ∈ {1, ..., |Cnear|} do
5: if M [Pi, PSRP] ≤ best_eps−M [Pnew, PSRP] then
6: accepted_points← accepted_points ∪ Pi {Pi is a cluster point}
7: else if M [Pi, PSRP] > best_eps + M [Pnew, PSRP] then
8: rejected_points← rejected_points ∪ Pi

9: else
10: remaining_points← remaining_points ∪ Pi

11: end if
12: end for
13: else
14: for i ∈ {1, ..., |Cnear|} do
15: if {M [Pi, PSRP] < M [Pnew, PSRP]− best_eps} or {M [Pi, PSRP] > M [Pnew, PSRP] + best_eps} then
16: rejected_points← rejected_points ∪ Pi

17: else
18: remaining_points← remaining_points ∪ Pi

19: end if
20: end for
21: end if
22: if {|accepted_points| + 1) ≥ best_minP ts} or {Check_minP ts_in_eps(Pnew, remaining_points,

best_eps, best_minP ts) = T rue} then
23: Cnear ← (Cnear ∪ Pnew) {Pnew joins the nearest cluster}
24: if

⌈
K
√
|Cnear|

⌉
>
⌈
K
√
|Cnear| − 1

⌉
then

25: calculate_or_update_SRP s(Cnear, K, M) {updating the set of SRPs of the modified cluster when its
nrp increases}

26: end if
27: else if Check_minP ts_noise_in_eps(Pnew, Noise, best_eps, best_minP ts) = T rue then
28: Cl+1 ← create_new_cluster(close_noise_points) {clustering noise points that are close to each other}
29: C ← C ∪ Cl+1 {updating the list of existing clusters}
30: calculate_or_update_SRP s(Cl+1, K, M) {calculating the SRPs of the new formed cluster}
31: else
32: Noise← Noise ∪ Pnew {adding the new incoming sample as noise}
33: end if
34: update_pairwise_distance_matrix(M, Pnew)

91

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

triangle inequality) would require distance computation. A more detailed description of
the possible cases is given in the Appendix 2.

If the new sample joins the nearest cluster (case A), the set of SRPs of the cluster
may have to be updated. Such update, if performed frequently (e.g., at each cluster
modification), would make the incremental process costly. Thus, to be efficient while
still capturing the evolving geometry of the cluster, we limit the update of SRPs to be
recomputed only when nrp increases. For the sake of clarity, a pseudocode is given in
Algorithm 2.

4.2 Post-Clustering Sample Selection

After some amount of updates, an analyst may want to select a subset of
Post-Clustering Relevant Samples (PCRS) 1 from clusters found by SE-PAC in the online
phase, for further packer analysis (see Figure 4.3).

Our strategy consists in representing the cluster by multiple connected regions from
which we select PCRS. The diameter of these regions is set up by the analyst and allows for
quicker or more detailed view on the clusters. The selected samples are ranked according
to their region density in order to provide a measure of their relevance in the cluster. We
call this measure density marker.

Our PCRS selection strategy assumes that any shape generated by DBSCAN consists
of connected core points (see Figure 4.4). Core points that are close (within eps radius)
are relatively similar. A core point can be selected to represent the points (including
core points) comprised within its region. More precisely, for given a cluster C, for each
of its core points Pi our procedure visits, we identify the list of core points P(Pi)

r directly
reachable within radius r (selected by the analyst), i.e., P(Pi)

r = {Pj,j ̸=i|d(Pi, Pj) ≤ r}.
The density marker of Pi is computed as ρr(Pi) = |P(Pi)

r |
|C| . Our traversal procedure visits

a core point Pj only if it does not belong to the list V of previously visited core points,
nor to their reachable core points list, i.e., Pj /∈ {V ∪ P(Pk)

r |Pk ∈ V}. At the end of the
procedure, the cluster is represented by the list of visited core points V , for which samples
with higher ρr are more relevant for further analysis (RQ2.5).

1. Not to be confused with SRPs.

92

4.3. Datasets and Ground Truth Generation

Figure 4.3 – PCRS selection from clusters found by SE-PAC in the online phase at tn.

Figure 4.4 – PCRS selection strategy. Note that the selection of the first core point to
visit is done randomly.

4.3 Datasets and Ground Truth Generation

In our experimentation, we rely on two datasets: a malware feed and a synthetic.
For the malware feed, the origin, collection period, and the ground truth construction is
described in the previous Chapter, in Section 3.3. So in the Section 4.3.1 below, we will just
describe the differences that we mainly brought on this dataset for our experimentation.
For the synthetic dataset, the same information is given next in Section 4.3.2.

4.3.1 Malware Feed

While the samples of this dataset are exactly the same as described previously, we
brought some differences in the construction of the ground truth.

Indeed, we first added the well-reputed signature-based tool DIE (see Section 2.3.1)
as additional tool for building the ground truth labels, then for many packer families, we

93

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

Table 4.1 – Malware Feed. Packers in blue italics are specific to this dataset. Packers in
black belong to families common to both malware feed and synthetic datasets. “v?” is
unspecified version. “x’ is one or multiple sub-versions.

Packer (version, # samples) Total Packers (version, # samples) Total
ActiveMARK (v?, 2), (v5.x, 1) 3 NsPacK (v?, 1), (v3.x, 13) 14

ASPack
(v1.08.x, 2), (v2.1, 13),
(v2.12-2.42, 5,818)

5,833 Packman (v1.0, 23) 23

ASProtect
(v1.0, 1),
(v1.23-2.56, 174)

175 PCGuard (v4.06, 3), (v5.0x, 1) 4

AutoIt (v3, 1,036) 1,036 Shrinker (v3.5, 3) 3
ExeStealth (v2.74, 1) 1 PEPACK (v1.0, 6) 6
eXPressor (v1.3, 11), (v1.4.5.x, 1) 12 PESpin (v1.3x, 6) 6

FishPE (v1.3, 3) 3 Petite (v2.1, 2), (v2.2, 7) 9
FSG (v1.33, 2), (v2.0, 11) 13 RLPack (v1.15-1.18, 1) 1

InnoSetup

(v?, 51), (v1.12.9, 1),
(v1.3.x, 3), (v2.0.x, 6),
(v3.0.x, 7), (v4.0.x, 4),
(v4.1.4, 1), (v4.2.x, 4),
(v5.0.x, 4), (v 5.1.x, 40)
(v5.2.x, 35), (v5.3.x, 73),
(v5.4.x, 45), (v5.5.x, 660)

934 PECompact

(v19x, 1),
(v20x, 14),
(v2.7x, 12),
(v2.80x, 1),
(v2.9x.x, 13),
(v3.0x.x, 1,185)

1,226

InstallShield
(v?, 1), (v7.01.x, 1),
(v9.00.x, 1), (v10.50.x, 1)

4 Themida (v1.8.x-1.9.x, 12) 12

MEW (v1.1-1.2, 217) 217 UPack
(v0.1x/0.20/0.21/0.24,
1), (v0.24-0.27/0.28, 19),
(v?, 21)

41

MoleBox (v2.3.3-2.6.4, 7) 7 WinRAR (v?, 35) 35

NeoLite (v1.0, 2) 2 UPX

(v0.6x, 2), (v0.7x, 5),
(v1.0x, 40), (v1.2x, 2,157),
(v1.9x, 14), (v2.0x, 114),
(v2.9x, 6), (v3.0x, 1,599),
(v3.9x, 609)

4,549

NSIS

(v?, 361), (v1.x, 5)
(v2.0x, 47), (v2.1x, 20),
(v2.2x, 28), (v2.3x, 33),
(v2.4x, 977), (v2.5x, 43),
(v3.0x, 397), (v9.99, 4)

1,916 WinZip (v3.1, 66) 66

Wise (v?, 8) 8
Malware feed All packers 16,159

94

4.3. Datasets and Ground Truth Generation

selected from the feed the binaries for which there was a consensus of at least 3 tools out
of 4 (DIE, Yara, Packerid, and the Hash-based proprietary tool of Cisco).

This 3/4 consensus is a trade-off between the size of the ground truth and its quality in
terms of confidence, conforming to the conclusions made previously regarding the ground
truth construction in in-the-wild scenarios (see Section 3.7). The goal of this trade-off is
to include more families in the offline phase in order to get a more representative “eps”,
while keeping enough quality for training and evaluation.

So with this 3/4 consensus, we selected 16,159 binaries out of the whole feed dataset
of 281,344 binaries. Table 4.1 summarizes selected packer families as well as the packer
versions indicated by DIE to illustrate a possible (low-reliable) version labeling. We note
that the packer version labeling is low-reliable because: 1) it is extremely hard in practice
to meet a 3/4 consensus over the four tools on the exact version of the packer family; 2)
our focus is classifying packers at the family granularity, so a low-reliable version labeling
can just give possible explanations on why some packer families split across multiple
sub-clusters instead of forming just one cluster family (as it will be shown next in Section
4.5.3.2).

We note that the complexity classes (see Section 2.2.1) of most of these packers range
from I to III, like more than 85% of the worldwide packers evaluated in [18]. This means
our packers are quite representative in terms of complexity. They also use diverse packing
techniques: self-installers, compressors, cryptors, protectors, and virtualizers.

4.3.2 Synthetic Dataset

We created a second dataset of 18,798 packed binaries 2. On a freshly installed 32-bit
Windows 7, we collected 694 PE clean binaries mainly from the system 32 folder and
packed them with 31 public, commercial, professional and custom packers. The fact these
binaries are cleanware and not malware is not a problem, since we focus mainly on packers,
which are not necessarily malicious, as explained at the end of Section 3.4.

Packers “Custom Packer i”, i ∈ [1..10], come from public repository Github. Their
families are not recognized by PEiD, Yara nor DIE. Although we could just use known
packers (e.g., UPX, Armadillo) to simulate the arrival of new packer classes after training,
these extra Custom Packers simulate more concretely the arrival of new packers. Indeed, in
practice malware can simply be packed with a very recent custom packer, taking advantage

2. For access to this dataset, please contact me on this email: laminho@live.fr.

95

laminho@live.fr

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

Table 4.2 – Synthetic Dataset. Packers in blue italics are specific to this dataset. Packers
in black belong to families common to both malware feed and synthetic datasets.

Packer
(version,
samples)

Total Packers
(version,
samples)

Total

Armadillo (v2.52, 628) 628 MEW (v1.1, 634) 634
ASPack (v2.36, 633) 633 mPress (v2.19, 593) 593

Custom Packer 1 [88] (v1.0, 125) 125 NeoLite (v2.0, 617) 617
Custom Packer 2 [89] (v1.0, 22) 22 PackMan (v1.0, 640) 640

Custom Packer 3 [90] (v1.0, 277) 277 PECompact
(v3.03.23,
670)

670

Custom Packer 4 [91] (v1.0, 648) 648 PELock (v2.08, 621) 621
Custom Packer 5 [92] (v1.0, 655) 655 PENinja (v1.0, 666) 666
Custom Packer 6 [93] (v1.0, 635) 635 Petite (v2.4, 625) 625
Custom Packer 7 [94] (v1.0, 651) 651 RLPack (v1.21, 645) 645
Custom Packer 8 [95] (v1.0, 651) 651 telock (v0.98, 595) 595
Custom Packer 9 [96] (v1.0, 547) 547 Themida (v2.4.5.0, 612) 612
Custom Packer 10 [97] (v1.0, 655) 655 UPack (v0.39, 664) 664

eXPressor
(v1.8.0.1,
668)

668 UPX
(v3.91, 579)
(v3.95, 579)

1,158

ezip (v1.0, 597) 597 WinRAR (v5.60, 694) 694
FSG (v2.0, 630) 630 WinZip (v5.0, 689) 689

YodaCryptor (v1.2, 653) 653
Synthetic dataset All packers 18,798

of the relatively unknown packer class to evade malware detection systems before these
are updated.

For all 31 packers, default settings were used when packing the binaries. Packing failed
in some cases because the binaries were too small to be packed, or their PE structure could
not be modified. Table 4.2 summarizes the number of samples of each packer family and
the version used. Github references are given for custom packers.

This dataset is quite representative as well, because the packers complexity classes
range from I to III (except Armadillo that has the class IV [18]), and their packing
techniques are quite different.

Finally, the fact that the two datasets have their own specific packers and share packers

96

4.4. Evaluation Metrics

with common families (but not necessarily common versions) is particularly interesting
for our evaluation, because it would exhibit the behavior of our system when facing the
arrival of known packers as well as new, unknown ones. We explain more in details how
we take advantage of this intersection of datasets for our evaluation in Section 4.5.1.

4.4 Evaluation Metrics

Both extrinsic and intrinsic metrics are used to evaluate clusters.

4.4.1 Extrinsic Metrics

Our ground truth packed samples are labeled by their packer families. Each family
comprises many variants (different versions in Table 4.1; this could also be different
configurations or polymorphic instances). Our feed dataset has no absolute ground truth,
since labeling tools do not agree on versions. Variants may be far apart wrt. eps, so we
do not punish a clustering procedure splitting a family into different clusters, provided
sub-clusters contain elements of the same family.

In this context, the homogeneity score indicates how much a cluster contains samples
belonging to a single family (class). Let T be the ground truth classes, and C be the
predicted clusters by the clustering algorithm, then the homogeneity score h is given by:

h = 1−H(T |C)/H(T) (4.4)

where H(·) is entropy and H(·|·) conditional entropy, where h ∈ [0, 1]. Low values
indicate low homogeneity. h does not punish dividing one class in smaller clusters, so high
homogeneity is easy to achieve with a large number of clusters. h is 1 if every element
is clustered into its own size-1 cluster, so we use this metric to evaluate our clustering
homogeneity only, not its global extrinsic quality.

The Normalized Mutual Information (NMI) trades-off between homogeneity of
clusters and their number. We use the Adjusted Mutual Information (AMI), an
adjusted-for-chance version of NMI highly recommended in the clustering literature [98],
defined by:

AMI(T, C) = I(C, T)− E[I(T, C)]√
H(C) ∗H(T)− E[I(T, C)]

(4.5)

where I(·) is the mutual information and E[·] is the expectation. AMI ∈ [0, 1], higher

97

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

values indicate more homogeneous clusters and/or a number of clusters closer to the
number of packer families in T . AMI is 1 when T and C are identical and 0 when any
commonality is due to chance. Thus this metric considers the clusters homogeneity while
punishing clustering with a large number of clusters, since such clustering has a high
H(C) (RQ2.3).

4.4.2 Intrinsic Metrics

We use DBCV (Density-Based Clustering Validation)[99], which can validate
arbitrarily-shaped clusters. This metric computes the density within a cluster (density
sparseness) and the density between clusters (density separation). For a clustering
C = {Ci}, 1 ≤ i ≤ l:

DBCV (C) =
l∑

i=1

|Ci|/|O| Vc(Ci) (4.6)

where |O| is the number of samples, and Vc(Ci) is the validity index of cluster Ci, 1 ≤ i ≤ l,
defined as:

Vc(Ci) =
min

1≤j≤l,j ̸=i
(DSPC(Ci, Cj))−DSC(Ci)

max
(

min
1≤j≤l,j ̸=i

(DSPC(Ci, Cj)) , DSC(Ci)
)

where DSPC(Ci, Cj) is the density separation between clusters Ci and Cj, and DSC(Ci)
is the density sparseness of cluster Ci.

DBCV (C) ∈ [−1, 1], higher values indicate a clustering with high density within
clusters and/or low density between clusters.

4.5 Experimental Evaluation

This section starts with an overview of software and hardware implementations, then
presents the experimental evaluation we performed on our offline and online phases, and
the obtained results.

All experiments were performed in Python 3.6.8 on a Linux server with four 14-core
processors at 2GHz with 128 GB of RAM.

We used the framework Radare2 [100] to emulate the unpacking code execution and
get the trace of ASM mnemonic sequences. Execution is stopped when the ASM sequence
length reaches 50 mnemonics; this length is a trade-off between the relevant information

98

4.5. Experimental Evaluation

(unpacking stub code) and cost of extraction. In [84], up to 30 mnemonics are statically
extracted. We slightly extended this length to 50 to improve the relevant information
quality. We give in the Appendix 3 some examples of traces that we obtained from
emulating the execution of the 50 first instructions of packed binaries. The average time
needed to extract the ASM sequence is 0.23 seconds per sample.

We computed the PE sections features from the PE header of the packed file using a
C++ PE parser able to handle (packed) malware samples [77]. The average time needed
to extract these features is 0.014 seconds per sample, as reported in the previous Chapter,
in the Table 3.4b

We largely modified the online implementation [87] of the incremental DBSCAN to
fit our methodology. In particular, our modifications include the composite pairewise
distance metric we set in Section 4.1.3 as well as the set of optimizations (SRPs and
triangle inequalities) we introduced in both Section 4.1.4.3 and pseudocode 2. For the
batch version of DBSCAN and evaluations metrics, we used Scikit-learn [101].

4.5.1 Scenarii Definition

The two datasets share common packers, but also have their own (see Tables 4.1 and
4.2). So we designed two scenarii to exhibits the behavior of our system when facing the
arrival of known packers as well as new, unknown ones:

MF/S: we use the Malware Feed as training set in the offline phase, then the Synthetic
dataset as test in the online phase.

S/MF: we use the Synthetic dataset as training set in the offline phase, then the
Malware Feed as test in the online phase.

4.5.2 Offline Phase

This phase supervises the creation of clusters with each training set, given the ground
truth, in each scenario. The goal is to fine-tune eps according to the AMI score, the best
found eps will then be used all along the online phase against the testing set, in each
scenario.

In both scenarii, we set the value of minPts to 3 (see Section 4.1.4.2). For eps, we
tune it over [0.001, 2] with 0.00025 increments.

In this phase we select the most effective feature category combinations based on the
best AMI score that we obtain. The selection is done in practice by testing all the possible

99

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

Table 4.3 – Summary of offline phase results.

Training set AMI h # clusters best eps minPts
Malware feed 0.941 0.987 38 0.08 3

Synthetic 0.985 0.993 43 0.06 3

Table 4.4 – Distance comparisons.

AMI
Gower Euclidean Cosine

Scenario
MF/S 0.941 0.890 0.887
S/MF 0.985 0.974 0.974

non-repetitive category combinations, as shown in the previous Chapter, in Section 3.2.
The most effective one we get is “sections” associated to the “unpacking stub mnemonic
sequences”. So for reasons of simplicity, we will report only the results we obtained from
the combination of these two categories.

Table 4.3 summarizes for each training set the best results achieved wrt. AMI score.
Homogeneity h and number of clusters are given to explain the AMI score and detail the
obtained clustering. Note that the best eps found slightly differs between the two training
sets, due to the bias caused by the different variety of packers in each training set. The
resulting clusters and their contents are presented in the column labeled “offline phase”
in Tables 4.7, 4.8 and 4.9.

Finally, we show in this phase the effectiveness of the Gower distance that we derived
for packed binaries, by comparing it over simpler commonly used distances, namely: Cosine
and Euclidean distances. To do that, we start by encoding the feature categories which
have different data types (numerics for sections and string sequences for unpacking code
sequences) in order to have a homogeneous data type for our final feature vectors, thanks
to the One-Hot-Encoder function of Scikit-learn [102]. Then we apply separately Cosine
and Euclidean distances on these final feature vectors across the same interval of eps with
the same value of increments.

Table 4.4 reports the results obtained from the comparisons. We can see clearly that
the Gower distance that we derived for our packed binaries outperforms other distances.
Therefore, these results validate the practical effectiveness of our pairwise composite
distance metric (RQ2.1b).

100

4.5. Experimental Evaluation

Table 4.5 – Impact of nrp on the effectiveness and update time per sample.

K

Scenario
MF/S S/MF

AMI h update
time (s) AMI h update

time (s)# clusters # clusters

10−2 0.933 0.960 1.097 0.934 0.981 1.06682 95

10−1 0.936 0.959 1.190 0.935 0.981 1.12580 95

1 0.945 0.960 3.245 0.937 0.981 3.03576 91

10 0.948 0.960 22.950 0.937 0.981 22.37873 91

100 0.948 0.960 51.196 0.937 0.981 49.54473 91

4.5.3 Online Phase

In this phase, we first study the impact of nrp on the effectiveness and efficiency of
our system (RQ2.2). Then, we evaluate the effectiveness and robustness of our solution
(RQ2.4). Finally, we test our PCRS selection strategy and discuss how it optimizes the
cost of post-clustering analysis tasks (RQ2.5).

4.5.3.1 Scattered Representative Points

Here, we study the impact of nrp (see Section 4.1.4.1) on effectiveness and efficiency
(update time) of our model. Thus, we vary K in

⌈
K
√

Nc

⌉
and then select a K that

provides effectiveness while keeping our solution quite fast. For both scenarii, we try
K among {10−2, 10−1, 1, 10, 100}, in order to largely vary nrp. With our dataset, when
K = 10−2, nrp is 1 (the minimum possible) for all clusters; when K = 100, nrp equals the
number of samples (the maximum possible) for all clusters.

Table 4.5 presents the obtained results. The update time is the average time in
seconds to update the clustering when a new sample arrives, without considering features
extraction time.

Impact on effectiveness. In Table 4.5, we observe in both scenarii that the higher
the K, the slightly higher the AMI score, until stabilizing at K = 10. The AMI score is
controlled by the ratio between homogeneity and number of clusters. Homogeneity stays
stable when K increases, but the number of clusters decreases then stabilizes, so the AMI
score increases then stabilizes. Thus, reaching K = 10, the nrp becomes sufficient for

101

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

our model to achieve its best effectiveness. When SRPs are too few to well represent the
geometric shape of some or all clusters, the model does not always find the nearest cluster
(see Figure 4.2). Thus, the new sample stays “unclassified” or contributes to creating a
new cluster, instead of joining the nearest existing cluster.

Impact on efficiency. In Table 4.5, the more K increases the more update time
increases (drastically). For K = 10−2, average update time is around one second. For
K = 100, it is around 50 seconds, because many more comparisons with SRPs are
performed to find the nearest cluster. These results confirm the paramount importance of
SRPs to optimize computation in the update process.

Optimal K selection strategy. The optimal K trades-off between effectiveness and
efficiency. This work aims to be highly effective and quite fast, so we discard all K values
leading to an update time above 1.5 seconds. We then select the K with the highest AMI
score in the solutions left. K = 10−1 appears as the optimal solution for both our scenarii,
and is thus used in our next experiments.

4.5.3.2 Effectiveness and Robustness of SE-PAC

Here, we evaluate in more details the effectiveness of our SE-PAC (Self-Evolving
PAcker Classifier) system on the various update uses-cases (see Section 4.1.4.3). Then
we study how this effectiveness evolves over time in order to gauge the robustness of the
model. The values of eps, minPts, and K are selected as previously described.

Time-flow of incoming samples. We simulate the arrival of the test packers over
several months. Each month, a number of specific and common packers (see Tables 4.1
and 4.2) appear in each scenario. The specific packers represent new packer classes, and
the common packers represent variants. The specific packers arrive in a random order, one
specific packer appearing each month. The experimental test period covers 17 months (17
specific packers) for MF/S and 15 months (15 specific packers) for S/MF. The samples of
each specific packer are equally distributed from the arrival month of their packer till the
end of experiment: in MF/S, 125/17 samples of Custom Packer 1 appear in month 1, the
rest is then equally distributed over the 16 months left; 22/16 samples of Custom Packer 2
appear in month 2, the rest is distributed over the 15 months left. The samples of common
packers are equally distributed through the whole experimental period: in MF/S, packers
ASPack and UPX appear monthly with a quantity of 633/17 and 1158/17 respectively.

102

4.5. Experimental Evaluation

Table 4.6 – Summary of final results.

Scenario AMI h # clusters DBCV
MF/S 0.936 0.959 80 0.285
S/MF 0.935 0.981 95 0.575

Table 4.6 summarizes the final results regarding AMI, homogeneity, number of clusters,
and DBCV obtained after the whole update process. Figure 4.5 to 4.8 present the monthly
evolution of those metrics. We now explain and discuss these results.

AMI, homogeneity, and number of clusters evolution. In MF/S, AMI stays high
and quite constant over time. In S/MF, it slightly decreases over time (see Figure 4.5)
because S/MF forms a higher number of clusters (which the AMI metric punishes, see
Section 4.4.1) than MF/S (see Figure 4.7). Indeed, the scenario S/MF is more likely to
classify an incoming packer to a new cluster, because the eps range (= 0.06) is smaller,
so the incoming samples of some test packers may not be grouped under one cluster but
form new additonal clusters instead. Therefore, higher homogeneity in S/MF is maintained
since different packer families are more likely not to mix (see Figure 4.6).

DBCV evolution. The significant decrease of the DBCV score was expected (see
Figure 4.8), since SE-PAC tends to find for some packers multiple but very close clusters,
which thus strongly decreases their density separation. Being multiple, they strongly
impact the global mean of the intrinsic clustering quality DBCV(C). This score is worse
in MF/S than in S/MF, because the best eps (= 0.08) is higher in MF/S, hence the model
tends to have lower density within clusters and higher density between clusters.

Tables 4.7, 4.8 and 4.9 present the final results obtained by SE-PAC after the offline
and online phases, considering the content of clusters found and the DBCV score, for each
packer family. We explain and discuss the results of this table next.

Misclassifications. They are marked in italics: e.g., in MF/S, one sample of Custom
packer 2 is wrongly classified with both samples of Custom packer 10 and one sample
of AutoIt, in cluster 47. Since eps tuning trades off between correct classifications and
number of clusters, it may lead to misclassifications, which are reported in the offline
phase. We chose the best AMI score. Experiment shows that scenario S/MF generates
a smaller eps in the offline phase, resulting in less misclassifications during offline and
online phases.

103

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

Figure 4.5 – AMI evolution.

Figure 4.6 – Homogeneity evolution.

Figure 4.7 – # clusters evolution.

Figure 4.8 – DBCV evolution.

104

4.5. Experimental Evaluation

Ta
bl

e
4.

7
–

C
lu

st
er

co
nt

en
ts

an
d

D
BC

V
sc

or
e

fo
r

ea
ch

pa
ck

er
fa

m
ily

,
in

bo
th

sc
en

ar
ii,

af
te

r
bo

th
offl

in
e

an
d

on
lin

e
ph

as
es

,P
ar

t-
1.

“N
ot

le
ar

ne
d”

in
th

e
offl

in
e

ph
as

e
co

lu
m

n
in

di
ca

te
s

tr
ai

ni
ng

do
es

no
t

in
cl

ud
e

th
e

pa
ck

er
,s

o
th

e
pa

ck
er

is
co

ns
id

er
ed

sp
ec

ifi
c,

th
us

ne
w

,w
he

n
us

ed
as

te
st

pa
ck

er
.“

N
o

sc
or

e”
m

ea
ns

th
er

e
is

no
cl

us
te

rt
o

ev
al

ua
te

.C
lu

st
er

ID
“-

1”
m

ea
ns

no
ise

.R
es

ul
ts

in
ita

lic
s

ar
e

m
isc

la
ss

ifi
ca

tio
ns

.

Pa
ck

er
s

Co
nt

en
to

fc
lu

st
er

s:
(C

lu
st

er
ID

–
#

sa
m

pl
es

)
D

BC
V

sc
or

e
pe

rc
lu

st
er

:
(C

lu
st

er
ID

–
sc

or
e)

Sc
en

ar
io

M
F/

S
Sc

en
ar

io
S/

M
F

Sc
en

ar
io

M
F/

S
Sc

en
ar

io
S/

M
F

Offl
in

e
ph

as
e

On
lin

e
ph

as
e

Offl
in

e
ph

as
e

On
lin

e
ph

as
e

On
lin

e
ph

as
e

On
lin

e
ph

as
e

Ac
tiv

eM
AR

K
(-1

–3
)

(-1
–3

)
N

ot
lea

rn
ed

(-1
–3

)
No

sco
re

No
sco

re

AS
Pr

ot
ec

t
(4

–1
73

),
(-1

–2
)

(4
–1

73
),

(-1
–2

)
N

ot
lea

rn
ed

(62
–8

2),
(73

–9
),

(81
–8

1),
(-1

–3
)

(4
–0

.6)
(62

—
0.1

),
(73

—
0.1

),
(81

—
0.1

)

Au
to

It
(2

5–
1)

,(
36

–1
,02

7),
(37

–4
),

(-1
–4

)
(2

5–
1)

,(
36

–1
,02

7)
,

(37
–4

),
(4

7–
1)

,(
-1

–3
)

N
ot

lea
rn

ed
(4

2–
1,0

27
),

(90
–3

),
(-1

–6
)

(25
–0

.6)
,(

36
–0

.8)
,

(37
–0

.2)
,(

47
—

0.2
)

(42
–0

.6)
,(

90
–1

)

Ex
eS

te
al

th
(-1

–1
)

(-1
–1

)
N

ot
lea

rn
ed

(-1
–1

)
No

sco
re

No
sco

re
Fi

sh
PE

(2
0–

3)
(2

0–
3)

N
ot

lea
rn

ed
(3

7–
3)

(20
—

1)
(37

–0
.7)

In
no

Se
tu

p
(32

–8
70

),
(33

–3
8),

(34
–8

),
(35

–3
),

(-1
–1

5)

(32
–8

70
),

(33
–3

8),
(34

–8
),

(35
–3

),
(-1

–1
5)

N
ot

lea
rn

ed
(56

–6
10

),
(57

–2
60

),
(61

–3
8),

(80
–8

),
(84

–3
),

(-1
–1

5)

(32
–0

.4)
,(

33
–1

),
(34

–0
.8)

,(
35

–1
)

(56
–0

.1)
,(

57
–0

.9)
,

(61
–1

),
(80

–0
.7)

,
(84

–1
)

In
st

al
lS

hi
eld

(7
–4

)
(7

–4
)

N
ot

lea
rn

ed
(74

–4
)

(7
–0

.2)
(74

–0
.9)

M
ol

eB
ox

(8
–7

)
(8

–7
)

N
ot

lea
rn

ed
(85

–7
)

(8
–0

.8)
(85

–0
.9)

N
sP

ac
K

(9
–9

),
(10

–5
)

(9
–9

),
(10

–5
)

N
ot

lea
rn

ed
(82

–9
),

(92
–5

)
(9

–0
.8)

,(
10

–0
.7)

(82
–0

.8)
,(

92
–0

.7)

N
SI

S
(7

–3
),

(29
–1

2),
(30

–1
,73

0),
(31

–1
30

),
(-1

–4
1)

(7
–3

),
(29

–1
2),

(30
–1

,73
0),

(31
–1

30
),

(-1
–4

1)
N

ot
lea

rn
ed

(65
–6

),
(66

–2
05

),
(67

–1
12

),
(68

–3
9),

(69
–5

2),
(70

–3
99

),
(71

–1
7),

(72
–1

0),
(76

–2
2),

(77
–9

93
),

(78
–8

),
(79

–6
),

(-1
–4

7)

(7
–0

.2)
,(

29
–0

.4)
,

(30
–0

.2)
,(

31
–0

.5)

(65
–0

.9)
,(

66
—

1),
(67

–0
),

(68
—

1),
(69

–0
.2)

,(
70

–0
.2)

,
(71

–0
.5)

,(
72

–0
.6)

,
(76

–0
.5)

,(
77

—
1),

(78
–1

),
(79

–0
.7)

PE
PA

CK
(17

–5
),

(-1
–1

)
(17

–5
),

(-1
–1

)
N

ot
lea

rn
ed

(88
–5

),
(-1

–1
)

(17
–0

.7)
(88

–0
.7)

PE
Sp

in
(27

–3
),

(-1
–3

)
(27

–3
),

(-1
–3

)
N

ot
lea

rn
ed

(94
–3

),
(-1

–3
)

(27
–0

.9)
(94

–0
.95

8)
PC

G
ua

rd
(26

–3
),

(-1
–1

)
(26

–3
),

(-1
–1

)
N

ot
lea

rn
ed

(93
–3

),
(-1

–1
)

(26
–1

)
(93

–1
.0)

Sh
rin

ke
r

(28
–3

)
(28

–3
)

N
ot

lea
rn

ed
(60

–3
)

(28
–0

.6)
(60

–0
.8)

W
ise

(7
–8

)
(7

–8
)

N
ot

lea
rn

ed
(83

–8
)

(7
–0

.2)
(83

–0
.6)

105

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution
Ta

bl
e

4.
8

–
Ex

te
ns

io
n

of
Ta

bl
e

4.
7

Pa
ck

er
s

Co
nt

en
to

fc
lu

ste
rs:

(C
lu

ste
rI

D
–

#
sa

m
pl

es
)

DB
CV

sc
or

ep
er

clu
ste

r:
(C

lu
ste

rI
D

–
sc

or
e)

Sc
en

ar
io

M
F/

S
Sc

en
ar

io
S/

M
F

Sc
en

ar
io

M
F/

S
Sc

en
ar

io
S/

M
F

Offl
in

ep
ha

se
On

lin
ep

ha
se

Offl
in

ep
ha

se
On

lin
ep

ha
se

On
lin

ep
ha

se
On

lin
ep

ha
se

Ar
m

ad
ill

o
No

tl
ea

rn
ed

(38
–6

27
),

(-1
–1

)
(0

–6
28

)
(0

–6
28

)
(38

–0
.5)

(0
–0

.6)
Cu

sto
m

Pa
ck

er
1

No
tl

ea
rn

ed
(65

–1
23

),
(-1

–2
)

(5
–1

23
),

(-1
–2

)
(5

–1
23

),
(-1

–2
)

(65
–1

.0)
(5

–1
.0)

Cu
sto

m
Pa

ck
er

2
No

tl
ea

rn
ed

(47
–1

),
(54

–1
6),

(77
–5

)
(6

–2
2)

(6
–2

2)
(47

—
0.2

),
(54

—
0.5

),
(77

—
0.3

)
(6

–0
.9)

Cu
sto

m
Pa

ck
er

3
No

tl
ea

rn
ed

(48
–2

77
)

(7
–2

77
)

(7
–2

77
)

(48
–1

)
(7

–0
.9)

Cu
sto

m
Pa

ck
er

4
No

tl
ea

rn
ed

(53
–6

46
),

(-1
–2

)
(8

–6
48

)
(8

–6
48

)
(53

–0
.3)

(8
–0

.5)
Cu

sto
m

Pa
ck

er
5

No
tl

ea
rn

ed
(62

–6
51

),
(-1

–4
)

(9
–6

54
),

(-1
–1

)
(9

–6
54

),
(-1

–1
)

(62
–0

.6)
(9

–0
.6)

Cu
sto

m
Pa

ck
er

6
No

tl
ea

rn
ed

(58
–6

35
)

(10
–6

35
)

(10
–6

35
)

(58
–0

.8)
(10

–0
.8)

Cu
sto

m
Pa

ck
er

7
No

tl
ea

rn
ed

(49
–6

46
),

(78
–3

),
(-1

–2
)

(11
–6

48
),

(12
–3

)
(11

–6
48

),
(12

–3
)

(49
–0

.7)
,(

78
–1

)
(11

–0
.7)

,(
12

–0
.9)

Cu
sto

m
Pa

ck
er

8
No

tl
ea

rn
ed

(66
–6

48
),

(-1
–3

)
(13

–6
48

),
(-1

–3
)

(13
–6

48
),

(-1
–3

)
(66

–0
.9)

(13
–0

.9)
Cu

sto
m

Pa
ck

er
9

No
tl

ea
rn

ed
(55

–5
47

)
(14

–5
47

)
(14

–5
47

)
(55

–0
.9)

(14
–0

.9)
Cu

sto
m

Pa
ck

er
10

No
tl

ea
rn

ed
(47

–6
55

)
(15

–6
55

)
(15

–6
55

)
(47

—
0.2

)
(15

–1
)

ez
ip

No
tl

ea
rn

ed
(52

–5
97

)
(17

–5
97

)
(17

–5
97

)
(52

–0
.8)

(17
–0

.8)
m

Pr
es

s
No

tl
ea

rn
ed

(64
–5

93
)

(22
–5

93
)

(22
–5

93
)

(64
–1

)
(22

–0
.9)

PE
Lo

ck
No

tl
ea

rn
ed

(50
–6

17
),

(79
–3

),
(-1

–1
)

(30
–6

17
),

(31
–3

),
(-1

–1
)

(30
–6

17
),

(31
–3

),
(-1

–1
)

(50
–0

.8)
,(

79
–0

.7)
(30

–0
.8)

,(
31

–0
.8)

PE
Ni

nj
a

No
tl

ea
rn

ed
(63

–6
61

),
(-1

–5
)

(32
–6

63
),

(-1
–3

)
(32

–6
63

),
(-1

–3
)

(63
–0

.6)
(32

–0
.6)

te
loc

k
No

tl
ea

rn
ed

(61
–5

95
)

(35
–5

95
)

(35
–5

95
)

(61
–0

.5)
(35

–0
.5)

Yo
da

Cr
yp

to
r

No
tl

ea
rn

ed

(67
–2

7),
(68

–2
59

),
(69

–3
0),

(70
–7

9),
(71

–5
5),

(72
–5

9),
(73

–7
9),

(74
–4

),
(75

–3
),

(76
–2

2),
(-1

–3
6)

(2
–4

27
),

(3
–2

7),
(4

–3
),

(-1
–1

96
)

(2
–4

27
),

(3
–2

7),
(4

–3
),

(-1
–1

96
)

(67
–1

),
(68

—
0.2

),
(69

—
0.2

),
(70

—
0.3

),
(71

—
0.3

),
(72

—
0.2

),
(73

—
0.2

),
(74

–0
.2)

,
(75

–0
.2)

,(
76

—
0.2

)

(2
—

0.1
),

(3
–1

),
(4

–0
.1)

106

4.5. Experimental Evaluation

Ta
bl

e
4.

9
–

Ex
te

ns
io

n
of

Ta
bl

e
4.

7

Pa
ck

er
s

Co
nt

en
to

fc
lu

ste
rs:

(C
lu

ste
rI

D
–

#
sa

m
pl

es
)

DB
CV

sc
or

ep
er

clu
ste

r:
(C

lu
ste

rI
D

–
sc

or
e)

Sc
en

ar
io

M
F/

S
Sc

en
ar

io
S/

M
F

Sc
en

ar
io

M
F/

S
Sc

en
ar

io
S/

M
F

Offl
in

ep
ha

se
On

lin
ep

ha
se

Offl
in

ep
ha

se
On

lin
ep

ha
se

On
lin

ep
ha

se
On

lin
ep

ha
se

AS
Pa

ck
(0

–5
,70

2),
(1

–9
),

(2
–1

17
),

(3
–3

),
(-1

–2
)

(0
–5

,70
2),

(1
–9

),
(2

–7
48

),
(3

–3
),

(-1
–4

)
(1

–6
33

)
(1

–7
50

),
(43

–4
),

(44
–9

),
(45

–5
,28

2),
(46

–4
16

),
(91

–3
),

(-1
–2

)

(0
–0

.5)
,(

1–
0.4

),
(2

–0
.7)

,(
3–

0.8
)

(1
–0

.4)
,(

43
–0

.9)
,

(44
–0

.5)
,(

45
–0

.4)
,

(46
–0

.4)
,(

91
–0

.8)
eX

Pr
es

so
r

(5
–1

1),
(-1

–1
)

(5
–1

1),
(39

–6
68

),
(-1

–1
)

(16
–6

68
)

(16
–6

68
),

(58
–1

1),
(-1

–1
)

(5
–1

),
(39

–1
)

(16
–1

),
(58

–1
)

FS
G

(6
–1

3)
(6

–6
24

),
(25

–1
),

(40
–7

),
(56

–4
),

(-1
–7

)
(18

–6
11

),
(19

–7
),

(20
–4

),
(-1

–8
)

(18
–6

24
),

(19
–7

),
(20

–4
),

(-1
–8

)
(6

–0
.3)

,(
25

–0
.6)

,
(40

–0
.9)

,(
56

–0
.9)

(18
–0

.1)
,(

19
–0

.9)
,

(20
–0

.5)
M

EW
(6

–2
17

)
(6

–8
51

)
(21

–6
34

)
(21

–8
51

)
(6

–0
.3)

(21
–0

.9)

Ne
oL

ite
(-1

–2
)

(41
–6

14
),

(59
–4

),
(-1

–1
)

(23
–6

12
),

(24
–4

),
(-1

–1
)

(23
–6

14
),

(24
–4

),
(-1

–1
)

(41
–0

.6)
,(

59
–0

.9)
(23

–0
.7)

,(
24

–0
.9)

Pa
ck

m
an

(11
–2

3)
(11

–6
61

),
(-1

–2
)

(25
–6

40
)

(25
–6

63
)

(11
—

0.1
)

(25
–0

.1)

PE
Co

m
pa

ct

(12
–1

,01
6),

(13
–1

6),
(14

–1
40

),
(15

–1
6),

(16
–4

),
(-1

–3
4)

(12
–1

,47
5),

(13
–1

6),
(14

–1
40

),
(15

–1
6),

(16
–4

),
(20

–4
),

(42
–4

3),
(60

–5
),

(-1
–1

93
)

(26
–4

07
),

(27
–4

0),
(28

–3
),

(29
–8

),
(-1

–2
12

)

(26
–4

86
),

(27
–4

1),
(28

–3
),

(29
–3

8),
(47

–8
38

),
(48

–1
7),

(49
–1

40
),

(53
–1

6),
(63

–1
6),

(75
–6

),
(86

–2
4),

(87
–4

),
(89

–7
),

(-1
–2

60
)

(12
—

0.7
),

(13
–0

.7)
,

(14
–1

),
(15

–1
),

(16
–1

),
(20

—
1),

(42
–0

.9)
,(

60
–0

.2)

(26
—

0.9
),

(27
–0

.9)
,

(28
–1

),
(29

–0
.3)

,
(47

–1
),

(48
–1

),
(49

–1
),

(53
–0

.6)
,(

63
–1

),
(75

–1
),

(86
—

0.7
),

(87
–1

),
(89

–1
)

Pe
tit

e
(18

–6
),

(-1
–3

)
(18

–6
),

(43
–6

25
),

(-1
–3

)
(33

–6
25

)
(33

–6
25

),
(64

–6
),

(-1
–3

)
(18

–0
.7)

,(
43

–9
)

(33
–0

.9)
,(

64
–0

.8)
RL

Pa
ck

(-1
–1

)
(44

–6
45

),
(-1

–1
)

(34
–6

45
)

(34
–6

45
),

(-1
–1

)
(44

–0
.9)

(34
–0

.9)
Th

em
id

a
(19

–1
1),

(-1
–1

)
(19

–1
1),

(45
–6

12
),

(-1
–1

)
(36

–6
12

)
(36

–6
12

),
(59

–1
1),

(-1
–1

)
(19

–0
.9)

,(
45

–0
.9)

(36
–0

.9)
,(

59
–0

.9)

UP
ac

k
(22

–1
9),

(23
–2

1),
(-1

–1
)

(22
–1

9),
(23

–2
1),

(24
–6

48
),

(46
–1

6),
(-1

–1
)

(40
–6

48
),

(41
–1

6)
(40

–6
69

),
(41

–1
6),

(55
–1

9),
(-1

–1
)

(23
–1

),
(24

–1
),

(46
–0

.9)
(40

–1
),

(41
–0

.9)
,

(55
–1

)

UP
X

(11
–5

),
(20

–4
,48

7),
(21

–5
5),

(-1
–2

)
(11

–5
),

(20
–5

,06
6),

(21
–5

5),
(51

–6
),

(57
–5

73
),

(-1
–2

)
(37

–1
,15

2),
(38

–6
)

(37
–5

,63
8),

(38
–6

),
(50

–4
),

(51
–5

5),
(-1

–4
)

(11
—

0.1
),

(20
—

1),
(21

–0
.8)

,(
51

–0
.7)

,
(57

—
1)

(37
–0

.7)
,(

38
–0

.6)
,

(50
–0

.8)
,(

51
–0

.8)

W
in

RA
R

(24
–3

0),
(-1

–5
)

(24
–3

0),
(36

–6
94

),
(-1

–5
)

(39
–6

94
)

(39
–6

94
),

(54
–3

0),
(-1

–5
)

(22
–1

),
(23

–1
),

(36
–0

.8)
(39

–1
),

(54
–0

.7)

W
in

Zi
p

(25
–6

6)
(25

–6
6),

(36
–6

89
)

(42
–6

89
)

(42
–6

89
),

(52
–6

6)
(25

–0
.6)

,(
36

–0
.8)

(42
–0

.6)
,(

52
–0

.6)

107

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

Seq 1: pushal, call, pop, sub, mov, lea, mov, lodsb, dec, dec, nop, jmp, ror, dec, stc,
jmp, sub, jmp, nop,rol, sub, ror, rol, nop, jmp, jmp, ror, nop, jmp, stosb, loop

Seq 2: pushal, call, pop, sub, mov, lea, mov, lodsb, rol, jmp, dec, clc, jmp, rol, nop,ror,
nop, jmp, jmp, add, dec, jmp, clc, jmp, add, xor, dec, jmp, add, stosb, loop

Seq 3: pushal, call, pop, sub, mov, lea, mov, lodsb, jmp, stc, sub, ror, ror, jmp, ror,
sub, ror, ror, jmp, jmp, clc, stc, add, rol, dec, dec, xor, nop, xor, stosb, loop

Figure 4.9 – Instruction substitution obfuscation technique used by YodaCryptor v1.2
packer to generate polymorphic instances of the unpacking stub code. Using the framework
Radare2, the three sequences above were generated by emulating the execution of the
unpacking stub code of three different binaries packed by YodaCryptor v1.2. The part in
blue shows the instruction substitution obfuscation technique.

Specific packers. In both scenarii, despite some misclassifications, for most specific
packers, including the custom ones, new clusters are created. This shows our system is
able to identify new packers.

Common packers. They either joined their respective existing packer family clusters
or formed new ones, or both of them. For example, in MF/S all samples of ASPack joined
their family cluster 2, while all samples of eXPressor formed the new cluster 39. For FSG,
many samples joined existing cluster 6, while the others formed new clusters 25, 40 and
56. Some common test packers did not join their existing family clusters mainly because
their versions differ greatly (wrt. eps) from the one used in the training set. For example,
in MF/S samples of Themida version 2.4.5.0 (see Table 4.2) used as test formed the new
cluster 45, instead of joining their packer family cluster 19 that hosts a different version of
the same packer. The same happened to packers eXPressor, Petite, WinRAR and WinZip.

Finally, multiple sub-clusters were formed for some packer families, because of:
(i) Different versions: e.g., see UPX, NSIS and InnoSetup in Table 4.1; (ii) Obfuscation:
e.g., YodaCryptor generates polymorphic instances of its unpacking code by using the
instruction substitution technique that tampers quite arbitrarily the mnemonic sequence
without affecting its behavior (see Figure 4.9), which makes the grouping of ASM
sequences harder, causing additional clusters, and noise.

4.5.4 PCRS Selection

This experiment evaluates how our PCRS selection strategy (see Section 4.2) performs
on the previously obtained clusters.

The total number of samples inside all these clusters is 34,613 in MF/S and 34,304 in

108

4.5. Experimental Evaluation

Table 4.10 – # of PCRS.

Radius r
#Samples

before selection # of PCRS % Decrease

MF/S S/MF MF/S S/MF MF/S S/MF
1 * eps

34613 34304
220 257 99.4% 99.3%

1.5 * eps 105 102 99.7% 99.7%
2 * eps 96 94 99.7% 99.7%

Table 4.11 – Overview of some clusters after PCRS selection (MF/S).

Cluster
ID (PCRS rank – density marker)

12
(1 – 57%), (2 – 32%), (3 – 4%),(4 – 3%), (5 – 1%), (6 – 1%), (7 – 0.4%),
(8 – 0.3%), (9 – 0.3%), (10 – 0.1%) , (11 – 0.1%), (12 – 0.1%), (13 – 0.1%),
(14 – 0.1%) , (15 – 0.1%), (16 – 0.1%) , (17 – 0.1%)

78 (1 – 50%), (2 – 21%) , (3 – 14%), (4 – 7%), (5 – 7%)
66 (1 – 100%)

S/MF. Selection radius r is given by r = α ∗ eps, where eps is the best eps found for each
scenario, and α is evaluated over {1, 1.5, 2}.

Table 4.10 presents the results of our PCRS selection strategy on all the previously
found clusters, with different radii r. For r = 1 ∗ eps, the number of PCRS is 0.6%
(220/34,613) of the total number of samples in clusters in MF/S, thus a percentage
decrease of 99.4% (or one PCRS for 157 samples), and 0.7% (257/34,304) in S/MF, thus a
percentage decrease of 99.3% (or one PCRS for 133 samples). This ratio tends to stabilize
when the selection radius is enlarged, and the number of PCRS converges towards the
number of clusters found.

Table 4.11 shows the results in MF/S of our PCRS selection strategy on three
individual clusters, with r = 1 ∗ eps. The PCRS are ranked by density marker. Clusters
12, 78 and 66 correspond respectively to PECompact and custom packers 7 and 8. The
difference in number and distribution of the PCRS logically lies on how the samples of a
cluster are scattered in the hyperplan. For example, cluster 12 needs 17 PCRS, because
PECompact uses a random key to generate polymorphic instances of the unpacking stub.

109

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

4.6 Discussion

In this section, we first give further insights on our results. Next, we discuss the
possibility of human interaction when using our approach over a large time frame. Then,
we examine experimental properties influencing our results validity. Finally, we identify
the limitations and propose improvements for future work.

4.6.1 Findings and Insights

Our results show that our incremental system stays valid against packers evolution over
time (RQ2.4). In particular, keeping high homogeneity at the cost of a few additional
clusters is favored (RQ2.3). In that sense, it appears that the S/MF scenario is the most
suitable; Reducing eps would reduce the cost of supervisor intervention and ensure longer
user protection.

Furthermore, in spite of a sharp decrease of the intrinsic quality of our model (see
Figure 4.8), extrinsic quality remains effective (see Figure 4.5). Indeed, our update
policy does not autonomously merge close clusters, which prevents potential upcoming
misclassifications, at the cost of a few additional clusters.

Custom packers were accurately classified (see Table 4.8). This validates the
effectiveness of the chosen features to represent packers. This also hints that these packers
are simply inspired from well-known packers. Moreover, the difficulty to group some
samples gives insights on whether the packer was originally developed for obfuscation
purposes, like YodaCryptor or PECompact, or for mere compression and encoding tasks
like WinRAR and WinZip. This could be further exploited by an analyst for threat
intelligence.

Our PCRS selection strategy can reduce post-clustering complexity by 99% (see
Section 4.5.4), a very important optimization for concrete tasks like packer analysis and/or
unpacking. For instance, these optimizations could drastically reduce in practice the cost of
manual reverse-engineering or automated packer analysis in well-instrumented sandboxes
[103]. Furthermore, the density marker rank helps the analyst establish priorities on the
most spread packer variants (RQ2.5).

Therefore, with minimal cost, the packer classification system and unpacking can be
updated, which means updating the:
• Ground truth labels. When the cluster is modified, the prediction of labels is already

performed by affecting the existing cluster label (e.g., UPX) to the new samples

110

4.6. Discussion

that joined that cluster. When the cluster is new, the manual and/or automated
analyses of the PCRS of the new packer would allow to generate a new label.
• Unpacking systems. The results of manual and/or automated analyses would give

the malware analyst a better understanding of the packer in question, hence
lets him on the one hand develop specialized unpackers to quickly and precisely
unpack binaries packed with widespread packers, and on the other hand, develop
effective heuristics to generically unpack binaries packed with packers spread in
few quantities (see Figure 1.1).

In the context of the fast-paced evolution of packers, it might be costly to update
for each new packer found its specialized unpacker. However, the post clustering updates
do not necessarily aim to update for each new packer found its specialized unpacker,
but rather to balance between updating the specialized unpackers and generic unpacking
heuristics, wrt. how spread is the new packer found. Because we remind that the end-goal
is to provide effective and efficient unpacking solutions in the context of an effective and
efficient malware analysis toolchain (see Figure 1.1).

For better illustration, let’s suppose that SE-PAC finds 3 new clusters which would
represent 3 new packers A, B and C spread in the wild with a frequency of 10K samples
per week, 10 samples per month, and 3 samples per month, respectively. So for such an
example, to provide effective and efficient unpacking solutions for an effective and efficient
malware analysis toolchain, it would be worthy to update a specialized unpacker for the
packer A, in contrast to the packers B and C for which it would more efficient to update
the generic unpacking heuristics such to include these two packers.

4.6.2 When and How to Retrain?

After a large amount of incremental updates, a human intervention may be useful,
hence the question of when and how to retrain.

One approach is to exploit the extrinsic metrics that use the available ground truth to
detect misclassifications. We distinguish two cases: (i) misclassification of known packers,
where the error can be detected (e.g., the mix between WinZip and WinRAR packers
in MF/S); (ii) misclassification of unknown packers, where the error is not detectable as
long as the samples inside the clusters are not further analyzed and labeled.

Another approach relies on intrinsic metrics, like DBCV, that can indicate that some
packers are very close, and thus prevent potential upcoming misclassifications.

111

Chapter 4 – SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution

These metrics would help to trigger an alarm for retraining. This retraining includes
readjusting eps, reclustering from scratch, then continuing the incremental clustering.

4.6.3 Threats to Validity

Three elements of biases may have been introduced in our experiments: the training
dataset, evaluation metric, and ground truth granularity. As shown in Section 4.5.2,
different datasets output slightly different eps. In practice, we expect this radius to stabilize
when the training datasets are more varied. Moreover, the selection of evaluation metrics
influences naturally the view on the results. In this work, our aim is for most homogeneous
clusters with a number of clusters that is as close as possible to the number of packers
at the family ground truth granularity. Based on the argumentation on extrinsic metrics
given in Section 4.4.1, we believe that our choices are valid to obtain accurate clusters of
packer families. In general, the classification end-goals is the key to select those choices.

Our clustering updates do not autonomously merge or split clusters. While this
provides our system a high time-resilience by prohibiting autonomous merging of close
different packers, the number of clusters could quickly become larger if the number of
variants of the incoming packed samples is large. Future work would consider including
autonomous merging and splitting in our update policy. Such operations can be done
by autonomousely relabeling the clusters involved: merging would give the same ID to
clusters that become very close to each other, while splitting would add new IDs for
clusters resulting from the splitting of former clusters that became widely scattered.

Noise points do not impact our approach since they are not discarded but kept to be
clustered or left unclassified. In practice, noise may represent hard-to-group samples due
to obfuscation, or rare packers. Post-clustering analysis could reveal their exact nature.

4.6.4 Limitations and Future Work

While the tapered levenshtein distance we applied on our ASM sequences is able to
group light polymorphic codes like those used by YodaCryptor, it remains fragile against
highly polymorphic engines that generate very different variants of the same unpacking
stub code. If these variants are few, the number of clusters generated remains acceptable;
otherwise our clustering system would produce a very high number of clusters. Future
work should consider the extraction of more semantic features and/or code-recompilation
in order to better mitigate high and complex polymorphism.

112

4.7. Conclusion

In addition, future work may pay more attention to examine the case of repacked
malware. Indeed, the overlapping of multiple packers in sequence on the outer layer of
malware is not necessarily uniform. That is, the last packer may not completely overlay the
outer layer of repacked malware, thus previous packer layers may still appear. Therefore,
our features could be impacted by multiple packers. So it would be interesting to pay
more attention on how such binaries impact the prediction of our classifier.

Finally, while the optimization techniques we adopted in the incremental update
process improved significantly the update time performance of our incremental DBSCAN
algorithm (as shown in Table 4.5), we believe that the scalability of SE-PAC can be
further improved by relying on other engineering choices, namely the implementations
of PE feature extraction and incremental DBSCAN algorithm. For the latter, relying on
other engineering choices would mean resorting to lower-level languages and paralleling
the architecture of the incremental DBSCAN.

4.7 Conclusion

This chapter presented SE-PAC, a new self-evolving packer classifier that deals with
the issue of rapid evolution of packers. We derived a composite pairwise distance metric
that is constructed from the combination of different types of packer features. We derived
an incremental clustering approach able to identify both (variants of) known packers
(families) and new ones, as well as automatically and efficiently update the clusters.

We evaluated our solution on two datasets: malware feed, and synthetic. The results
showed that our classifier is effective and robust in identifying both known and new packer
families. Indeed, our approach constantly enhances, integrates, adapts and evolves packer
knowledge, making our classifier effective for longer times.

Moreover, we proposed a new post-clustering strategy that selects a subset of relevant
samples from each cluster found, to optimize the cost of post-clustering processing.

We thus believe our work can help security companies, researchers and analysts
to effectively, efficiently, and continually update their packing classification systems,
specialized unpackers, and generic unpacking heuristics to ensure a better continuity of
security for users over time.

113

Chapter 5

CONCLUSION AND FUTURE WORK

This conclusion to the whole thesis starts by briefly recalling in Section 5.1 the thesis
context and our objectives. It then summarizes in Section 5.2 the contributions we bring
to the literature wrt. packing detection and classification problems, and how they fulfill
to the thesis objectives. Finally, Section 5.3 starts by presenting possible improvements
that can solidify directly our works, then discusses to what extent this thesis solves the
malware packing problem in general and offers accordingly perspectives for future work.

5.1 Context and Objectives

Packing provides malware authors with an effective weapon to hinder static analysis
and/or detection of their malicious codes from antiviruses, because the packed binary
must be either unpacked or dynamically analyzed. Therefore, detecting, classifying, then
unpacking a given packed sample is fundamental to be able to verify whether it is malicious
or benign.

This thesis focuses on the packing detection and classification stages. It aims at
providing effective, efficient, and robust packing detection and classification solutions to
be practical parts of the malware analysis chain of an antivirus.

5.2 Contributions

In line with the thesis objectives, we add two contributions to the literature:
⋆ Our first contribution is presented in Chapter 3 where we introduce a study

whose goal is to understand the impact of ground truth generation, ML algorithm
selection, and feature selection on the effectiveness, efficiency and robustness of
supervised ML-based packing detection and classification systems, following the
example of works on empirical testing of ML malware analysis including [3]. Our
findings are:

114

5.2. Contributions

• We find that the size of the ground truth is more relevant than its quality for
training supervised ML-based packing detection and classification algorithms,
to perform more effectively and more robustly in production against real
samples. In particular, the results of robustness assessment we reported in
Section 3.5.3 show that k-fold cross-validation method is not suitable for fields
like malware as well as packing detection and classification, where new samples
and packing techniques appear constantly and rapidly in the wild. This constant
and rapid evolution of the malware and packing ecosystems contribute to
explaining the findings of [3], on the reasons why ML algorithms can perform
well in in-the-lab scenarios and badly in in-the-wild scenarios.
• Furthermore, we show that selecting features and optimizing the

hyperparameters of ML algorithms can greatly optimize the efficiency of
our solutions. Indeed, the results we reported in Section 3.5.2 show that a
minor decrease in effectiveness can reduce the detection and/or classification
time per sample by up to 44 times.
• Finally, the results of the retraining cost analysis we presented in Section 3.5.4

show that simple algorithms with less features can be more efficient to use
compared to complex algorithms with more features.

Despite the regular and efficient retraining we offer for our models, these retraining
remain particularly limited for supervised packer classifiers. Indeed, the latter would still
be unable to identify new packer families that appear in the period of time occurring
between each two retraining, because of their theoretical inability to find new classes.
Therefore, this theoretical limitation restricts specifically the robustness objective of our
packing classifier solutions against the rapid evolution of packers over time. Our second
contribution called “SE-PAC” arises from this situation.

⋆ Our second contribution is presented in Chapter 4 where we propose, design, and
implement SE-PAC, a new Self-Evolving PAcker Classifier framework that relies
on incremental clustering in a semi-supervised fashion, in order to cope with the
fast-paced evolution of packers. More precisely:
• Our self-evolving technique predicts incoming packers by assigning them to

the most likely clusters, and relies on these predictions to automatically
update clusters, reshaping them and/or creating new ones. Therefore, SE-PAC
continuously learns from incoming packers, constantly enhances, integrates,
evolves, and adapts its clustering to packers evolution over time. The results

115

Chapter 5 – Conclusion and Future Work

presented in Section 4.5.3.2 show that SE-PAC achieves the robustness objective
by correctly identifying both known and new packer families over time, thus
coping with the evolution of packers over time.
• We show how to combine different types of packer features in the construction

of a composite pairwise distance metric. The results presented in Section 4.5.2,
in Table 4.4, show that our composite distance metric outperforms simple
distances.
• We derive an incremental clustering methodology which establishes a good

trade-off between effectiveness and efficiency. The results we presented in
Section 4.5.3.1, in Table 4.5, show that we reduce the update time per sample
by 44 times on average.
• Finally, we propose a new post-clustering selection strategy which extracts a

reduced subset of relevant samples from each cluster found, in order to optimize
the cost of post-clustering packer processing. The results we presented in Section
4.5.4, in Table 4.10, show that our strategy decreases the number of samples
by 99% on average.

We want to highlight that for both contributions, we supported our findings by
realistic experiments, thanks to Cisco for having provided us the malware feed dataset.
Furthermore, our two contributions can be generalized and applied to other problems,
like other malware obfuscation techniques.

These two contributions led to the publication of two papers: [1] is the first journal
paper we published, describing our first thesis contribution, and [2] is the second
conference paper we published, describing our second thesis contribution.

Morever, we developed two tools: PE-PAC which implements the solutions we proposed
in our first contribution, and SE-PAC which implements the solutions we proposed in our
second contribution.

Through this thesis, we believe that our work will help to conceive and implement more
effective, efficient, and robust packing detection and classification systems for malware
analysis chains of antiviruses, to ensure a better security for users.

116

5.3. Future Work

5.3 Future Work

Like any human work, some aspects of this thesis are still incomplete. In this section,
we start by presenting possible improvements that can solidify directly our works. Then
we step back and look from a broader view at the malware packing problem. We discuss
to what extent this thesis solves the problem of malware packing in general, and identify
potential research directions that can be tackled in the future.

Regarding our first contribution, a more comprehensive study could cover the following
points:

• Ground truth. In addition to the signature-based packing detection and
classification techniques used in Section 3.3, new ones could be used to improve the
labeling of the ground truth. Indeed, despite the fact these signature-based tools
have a widespread usage among security researchers and analysts, the techniques
were many times in disagreement on the labeling of a sample, whether when it
came to detect the packing (i.e., packed or non-packed) or classify the packer
where for some cases the three techniques labeled the same sample with up to six
different packing families. Possible perspectives for future would thus be to deploy
unpacking as a next stage to contribute in constructing the ground truth labels.
Moreover, a hierarchy of confidence values based on the reliability of the technique
employed could be used to rate the packing detection and classification labels, i.e
weighted voting, in order to better figure out how to solve conflicting labeling in a
more advanced way than just the consensus/non-consensus paradigm used in our
study.
• Repacked malware. The overlapping of multiple packers in sequence on the outer

layer of malware is not necessarily uniform. In particular, the last packer may not
completely overlay the outer layer of repacked malware, thus previous packer layers
may still appear. We presume that this multiform overlapping of multiple packers
on the outer layer of malware is one of the main reasons that provoked conflicting
labeling when generating the ground truth. In our study, we removed from the
ground truth many of these conflicting labeling which did not fit neither to 3cons
nor 1cons. However, since these conflicting samples are likely repacked malware,
hence they constitute a threat to the security of the user. While some works have
already tackled this topic [82], we advise that future work examine more closely
the morphology of repacked malware.

117

Chapter 5 – Conclusion and Future Work

• Feature selection. The way features have been divided and grouped for selection
is based on their themes (entropies, metadata, etc.) as described in Section 3.2.
However, dividing the groups by theme means testing together features with
possibly very different extraction costs and effectiveness. Future work should
investigate alternative feature groups.

Regarding our second contribution, improvements could cover the following points:

• Ground truth, repacked malware, and feature selection. Our second contribution
relies on many aspects of the first contribution, so improvements regarding the
ground truth labels, repacked malware, and feature selection implies improvements
of SE-PAC. Indeed, although SE-PAC works in an unsupervised fashion in the
online phase, the offline phase remains supervised and thus still highly depends on
the way the ground truth has been constructed. Furthermore, better combinations
in dividing features and selecting them would naturally ease grouping packers in
clusters. Finally, it would be interesting to pay more attention on how repacked
malware would impact the predictions of SE-PAC, and accordingly how a hierarchy
of prediction confidences can be associated.
• Efficiency. Our optimization techniques described in Section 4.1.4.1 and

4.1.4.3 reached an interesting reduction factor (44 on average) in update time
performance. However, this reduction factor can be further improved by paralleling
the architecture of the incremental DBSCAN and resorting to a lower-level
implementation of the update function, which is actually implemented in Python
3.6.8. Such an improvement would allow SE-PAC to scale more efficiently to large
amounts of incoming samples in production.
• Incremental HDBSCAN. The clustering algorithm HDBSCAN [104] has the ability

to find clusters of data with very varied densities, so it theoretically improves
DBSCAN on that specific point. In our context, this means that HDBSCAN is
theoretically able to outperforms DBSCAN in terms of robustness on findings
clusters of packers that may have very different densities, due to the polymorphic
instances of the unpacking stub used in some packer families. An interesting
recent incremental version of HDBSCAN has been published [105]. So it would be
interesting to evaluate how this incremental HDBSCAN would perform in practice
against the incremental version of DBSCAN we implemented, still in the context
of the rapid evolution of packers.

118

5.3. Future Work

Finally, to what extent does this thesis solve the malware packing problem in
general? And what are the potential further research directions that can be
undertaken accordingly in the future?

Malware packing is an open research problem that involves consequently open research
problems at the level of packing detection, classification, and unpacking. This thesis
focused on providing solutions for the packing detection and classification stages. We
relied on machine learning to overcome the fragility of classical signature-based techniques,
but more importantly, we studied and proposed machine-learning-based solutions which
aimed to be effective, efficient, and robust to be practical parts of the malware analysis
chain of an antivirus.

Nevertheless, malware and/or packer authors do not obey any norms or standards
when writing their packers, thus packing features as powerful as they are can be the
subject of a cat-and-mouse game between these packers and antiviruses, to attempt to
make the packing detection stage undecidable. These features can be updated in our
models accordingly to the most up-to-date packing observations without altering the
principles of our solutions. So we believe that the combination of updated features and
machine learning is a good solution to cope with the imagination of the attacker and thus
provide better security for the user.

Finally, in this thesis we did not tackle the problem of unpacking, which is a part of
the malware packing problem as a whole. Therefore, in future work, we would like to
improve the state of the art of unpacking techniques. In particular, a potential research
direction would be to improve generic unpacking by relying on concolic execution to better
the effectiveness of generic unpackers against many anti-analysis mechanisms. The latter
tend to be more and more present in packed binaries specifically to prevent unpacking
the malicious payloads. Thus, concolic execution could serve to avoid anti-analysis
mechanisms and explore many execution paths, including the unpacking stub that leads
to the malicious payload.

However, adopting concolic execution to explore the unpacking stub paths would
pose a research challenge of effectiveness. We would have to find the right path that
leads to unpacking the malicious payload. In addition, adopting concolic execution would
particularly pose a great scalability challenge, since many paths have to be explored
and many heavy unpacking loops would have to be effectively and efficiently executed
concolically. While concolic execution is widely used for malware, to the best we know,
literature has rarely [106] addressed these challenges in the context of generic unpacking,

119

Chapter 5 – Conclusion and Future Work

specifically. Even for the existing works [106], the obtained results are far from being
satisfactory and comprehensive.

A possible research track to defeat these challenges would be to learn from the concrete
dynamic execution of single-path of various unpackers, in order to provide knowledge and
heuristics to concolic execution engines, which could optimize the exploration of paths
along with finding the right one. Still, other research tracks could be explored to offer
solutions to these challenges, or even be compared with each other in terms of effectiveness
and efficiency, in future work.

120

APPENDICES

1. PE File Format

This section details the Windows Portable Executable (PE) file format for which a
summary is shown on the left column of Figure 2.1, considering that this file format is
the focus of this thesis.

The PE format includes a PE header with the magic number (in ASCII) PE00, a file
header, and an optional header. The file header includes metadata such as the number of
sections in the file; the creation time; a pointer to the debug information (if any); the size
of the optional header; and other characteristics. The optional header includes the major
and minor OS version; the size of the code section, of all initialized and uninitialized data,
of the whole image, and of the headers; the address of the image, code, and data sections,
and entry point; the initial (commit) and maximum (reserve) stack sizes; a file checksum;
and an array with pointers to other important parts of the file.

After the PE header the sections of the binary start. Standard sections (and their
common name) include code (.text), initialized data (.data, .crt), uninitialized variables
(.bss), resources (.rsrc), import table and address table (.idata), export table (.edata),
relocations table (.reloc), thread-safe variables (.tls), and debug resources (.rdata). Each
section includes information on its address, virtual and raw data sizes, and whether it is
readable, writable, and/or executable.

2. Triangle Inequalities in the Cluster Update Policy
(second step)

Let eps be the local radius of the nearest cluster, Pnew the point representing the new
sample, PSRP the nearest SRP belonging to the nearest cluster to Pnew, and Pi a cluster
point.

The distance between Pi and Pnew is unknown, however the distances d(Pi, PSRP)
and d(Pnew, PSRP) have already been computed. Using the triangle inequality and the

121

Appendices

previously computed distances, the goal is to accept or reject the point Pi in the update
process by proving that d(Pi, Pnew) ≤ eps or d(Pi, Pnew) > eps, respectively.

Case 1: if d(Pnew, PSRP) ≤ eps and d(Pi, PSRP) ≤ eps− d(Pnew, PSRP) then the point
Pi is accepted.

Proof. Combining d(Pi, PSRP) ≤ eps − d(Pnew, PSRP) with the triangle inequality
d(Pi, Pnew) ≤ d(Pi, PSRP) + d(Pnew, PSRP), we have d(Pi, Pnew) − d(Pnew, PSRP) ≤
d(Pi, PSRP) ≤ eps− d(Pnew, PSRP), hence d(Pi, Pnew) ≤ eps.

Case 2: if d(Pnew, PSRP) ≤ eps and d(Pi, PSRP) > eps + d(Pnew, PSRP) then the point
Pi is rejected.

Proof. Combining d(Pi, PSRP) > eps + d(Pnew, PSRP) with the triangle inequality
d(Pi, PSRP) ≤ d(Pi, Pnew) + d(Pnew, PSRP), we have d(Pi, Pnew) + d(Pnew, PSRP) ≥
d(Pi, PSRP) > eps + d(Pnew, PSRP), hence d(Pi, Pnew) > eps.

Case 3: if d(Pnew, PSRP) > eps and d(Pi, PSRP) < d(Pnew, PSRP)− eps, then the point
Pi is rejected.

Proof. Combining d(Pi, PSRP) < d(Pnew, PSRP) − eps with the triangle inequality
d(Pnew, PSRP) ≤ d(Pi, PSRP) + d(Pi, Pnew), we have d(Pnew, PSRP) − d(Pi, Pnew) ≤
d(Pi, PSRP) < d(Pnew, PSRP)− eps, hence d(Pi, Pnew) > eps.

Case 4: if d(Pnew, PSRP) > eps and d(Pi, PSRP) > d(Pnew, PSRP) + eps, then the point
Pi is rejected.

Proof. Combining d(Pi, PSRP) > d(Pnew, PSRP) + eps with the triangle inequality
d(Pi, Pnew) + d(Pnew, PSRP) ≥ d(Pi, PSRP), we have d(Pi, Pnew) + d(Pnew, PSRP) ≥
d(Pi, PSRP) > d(Pnew, PSRP) + eps, hence d(Pi, Pnew) > eps).

3. Examples of Radare 2 Traces for some Packed
Binaries

Synthetic datatset:

Sample packed with Armadillo [push, mov, push, push, push, mov, push, mov,
sub, push, push, push, mov, call, xor, mov, mov, mov, and, mov, shl, add, mov,
shr, mov, xor, push, call, xor, push, cmp, push, sete, push, call, test, mov, je, call,
push, mov, mov, call, push, cmp, lea, jb]

122

Appendices

Sample packed with ASPack [pushal, call, pop, inc, push, ret, jmp, call, pop, mov,
add, sub, cmp, mov, jne, lea, push, call, mov, mov, lea, push, push, call, stosd, mov,
scasb, jne, cmp, jne]

Sample packed with CustomAmberPacker [jmp, sub, mov, lea, mov, mov, jmp,
mov, mov, sub, and, mov, mov, mov, lea, mov, mov, mov, mov, pushfd, pushfd,
xor, popfd, pushfd, pop, xor, popfd, test, jne, mov, mov, mov, call, sub, mov, cmp,
je, cmp, je, mov, mov, mov, call, sub, mov, mov, mov, mov, lea]

Sample packed with CustomOrigamiPacker []
Sample packed with CustomPackerSimple1 [push, mov, sub, mov, mov, mov,

add, mov, mov, mov, mov, mov, mov, mov, mov, imul, mov, mov, shl, mov, mov,
shl, mov, mov, imul, mov, lea, push, call, mov, mov, imul, mov, mov, shl, mov,
mov, shl, mov, mov, imul, mov, lea, push, mov, push, call]

Sample packed with CustomPEPacker1 [pushal, call, pop, sub, lea, push, call,
lea, push, push, call, mov, push, push, mov, add, push, push]

Sample packed with CustomPePacker2 [mov, mov, add, mov, xor, inc, cmp, jne]
Sample packed with CustomPetoyPacker [nop, nop, pushal, call, pop, sub, mov,

or, je, inc, push, call, mov, push, push, push, push, call, push, mov, lea, push, push,
push, call, push, mov, mov, mov, mov, shr, rep, mov, and, rep, mov, leave, ret, pop,
lea, push, push, call, pushal, mov, mov, cld]

Sample packed with CustomSilentPacker [push, push, push, push, push, push,
push, call, call, pop, ret, sub, mov, call, sub, sub, jmp, call, sub, mov, add, call,
sub, movdqu, call, sub, mov, movdqu, aeskeygenassist, call, pshufd, vpslldq, pxor,
vpslldq, pxor, vpslldq, pxor]

Sample packed with CustomTheArkPacker [push, mov, push, push, add, mov,
mov, mov, mov, mov, lea, mov, call, push, mov, sub, mov, mov, mov, mov, mov,
mov, mov, mov, mov, add, mov, mov, mov, mov, mov, cmp, je, mov, sub, mov,
mov, mov, mov, mov, call, push, mov, sub, mov, mov, mov, mov, mov]

Sample packed with CustomUchihaPacker [nop, nop, nop, push, nop, nop, nop,
push, pushal, mov, mov, cld, mov, xor, movsb, mov, call, add, jne, mov, inc, adc,
ret, jae]

Sample packed with CustomXorPacker []
Sample packed with eXPressor [push, mov, sub, push, push, push, and, jmp,

mov, add, mov, mov, mov, and, je, cmp, jne, cmp, jne, cmp, je, cmp, je, mov,

123

Appendices

mov, cmp, jne, call, mov, mov, sub, ret, mov, push, push, push, push, call, mov,
push, lea, push, push, call, lea, mov, mov]

Sample packed with ezip [jmp, push, mov, sub, push, push, push, lea, push, call,
jmp, push, mov, sub, push, push, push, call, jmp, ret, mov, mov, mov, test, jne,
push, pop, push, push, push, push, push, call, jmp, push, mov, movzx, cmp, jne,
xor, pop, ret, add, test, jne, inc, jmp]

Sample packed with FSG [xchg, popal, xchg, push, movsb, mov]

Sample packed with MEW []

Sample packed with mPress [pushal, call, pop, add, mov, add, sub, mov, lodsw,
shl, mov, push, lodsd, sub, add, mov, push, push, dec, mov, mov, jne]

Sample packed with NeoLite [jmp, mov, and, call, push, push, push, push, push,
enter, push, sub, lea, mov, mov, call, push, push, mov, mov, mov, inc, test, je, xor,
mov, inc, jmp]

Sample packed with Packman [pushal, call, pop, lea, add, mov, lea, push, pop,
add, lodsd, dec, jne, mov, mov, mov, mov, push, push, push, push]

Sample packed with PECompact [mov, push, push, mov, xor, mov, push, inc,
inc, outsd, insd, jo, arpl, mov, pop, pop, daa, add, fild, fisub, pop, adc, add, pop,
scasb, xchg, in, loop, mov, in, push]

Sample packed with PELock [push, push, call, ret, mov, mov, call, cmp, jae, neg,
add, add, test, xchg, mov, push, ret, mov, mov, mov, push, call, mov, mov, mov,
mov, mov, mov, mov, and, mov, cmp, je, or, mov, shl, add, mov, xor, push, mov,
call, cmp, jne, mov, jmp, push]

Sample packed with PENinja [mov, mov, call, push, xor, dec, mov, xor, xor,
lodsb, xor, mov, mov, mov, mov, shr, rcr, jae, dec, jne]

Sample packed with Petite [mov, pushal, lea, push, push, push, push, push, call,
mov, mov, lea, mov, push, call, push, cmp, jae, push, push, push, jmp, push, xor,
xor, lodsb, xor, stosb, dec, jle, call, add, jne, mov, sub, adc, ret, jae]

Sample packed with RLPack [pushal, call, mov, add, cmp, jne, mov, mov, call,
pushal, mov, add, mov, add, mov, add, mov, lea, jmp, cmp, ja, mov, mov, add,
add, dec]

Sample packed with telock [jmp, cld, pushal, call, call, pop, sub, pop, je, mov,
mov, clc, jae, add, lea, call, xor, inc, pop, jmp, aam, dec, jg]

124

Appendices

Sample packed with Themida [push, push, push, call, pop, mov, inc, sub, sub,
add, cmp, jne, mov, mov, push, push, push, push, call, push, mov, push, push,
push, push, mov, mov, shr, mov, mov, test, je, xor, add, add, dec, jmp]

Sample packed with UPack [pushal, call, xor, pop, xchg, jecxz, sub, mov, lodsd,
sub, lodsd, add, push, xchg, lodsd, xchg, rep, pop, lodsd, push, xchg, add, lodsd,
loop]

Sample packed with UPX [pushal, mov, lea, push, or, jmp, mov, sub, adc, jb, mov,
inc, mov, inc, add, jne, mov, add, jne, adc, add, jae, jne, xor, sub, jb, add, jne, adc,
add, jne, adc, jne, inc, add, jne, adc, add, jae]

Sample packed with WinRAR [call, push, mov, sub, and, and, mov, push, push,
mov, mov, cmp, je, lea, push, call, mov, xor, mov, call, xor, call, xor, lea, push,
call, mov, lea, xor, xor, xor, cmp, jne, test, jne, mov, not, mov, pop, pop, mov,
pop, ret, jmp, push]

Sample packed with WinZip [call, push, mov, sub, mov, and, and, push, push,
mov, cmp, mov, je, push, lea, push, call, mov, xor, call, xor, call, xor, call, xor, lea,
push, call, mov, xor, xor, cmp, jne, test, jne, mov, not, mov, pop, pop, pop, leave,
ret, jmp]

Sample packed with YodaCryptor [pushal, call, pop, sub, mov, lea, mov, lodsb,
sub, sub, sub, add, nop, jmp, ror, sub, xor, jmp, stc, add, stc, sub, jmp, sub, sub,
sub, jmp, xor, add, stc, rol, stosb, loop]

Malware feed:

Sample packed with ActiveMARK [mov, jmp, push, jmp, jmp, jmp, push, jmp,
mov, jmp, jmp, push, jmp, jmp, mov, jmp, sub, jmp, mov, jmp, jmp, mov, mov,
jmp, jmp, mov, mov, jmp, cmp, jge, mov, mov, jmp, jmp, mov, jmp, add, mov,
jmp]

Sample packed with ASPack [pushal, jmp, call, pop, jmp, inc, jmp, sub, mov, add,
sub, lea, push, call, lea, push, push, call, push, push, push, push, lea, push]

Sample packed with ASProtect [pushal, call, pop, sub, mov, add, sub, cmp, mov,
jne, lea, push, call, mov, mov, lea, push, push, call, mov, lea, push, push, call, mov,
mov, mov, jmp, push, pop, jmp, push, pop, push, pop, jmp, push, pop, push, pop,
jmp, push, pop, push, pop, jmp]

125

Appendices

Sample packed with AutoIt [call, mov, push, mov, sub, mov, and, and, push,
push, mov, mov, cmp, je, push, lea, push, call, mov, xor, call, xor, call, xor, call,
xor, lea, push, call, mov, xor, xor, cmp, jne, test, jne, mov, not, mov, pop, pop,
pop, leave, ret]

Sample packed with ExeStealth [jmp, jmp, pushal, nop, call, pop, sub, mov, add,
add, jmp, jmp, sub, add, jmp, add, sub, mov, nop, lea, mov, lodsb, add, ror, sub,
clc, add, stc, clc, nop, clc, sub, sub, add, ror, ror, xor, ror, rol, add, sub, dec, stc,
add, ror, sub, stosb, loop]

Sample packed with eXPressor [push, mov, sub, push, push, push, jmp, mov, sub,
mov, cmp, je, mov, cmp, je, and, push, push, push, push, call, mov, push, push,
push, call, mov, lea, mov, mov, movsx, cmp, je, mov, dec, mov, jmp]

Sample packed with FishPE [pushal, call, pop, push, mov, mov, mov, lodsd,
lodsd, mov, add]

Sample packed with FSG [mov, lodsd, xchg, lodsd, xchg, lodsd, push, xchg, mov,
movsb, mov]

Sample packed with InnoSetup [push, mov, add, push, push, push, xor, mov,
mov, mov, mov, mov, mov, mov, mov, mov, mov, call, push, mov, xor, mov, push,
call]

Sample packed with InstallShield [push, mov, sub, push, call, mov, test, jne,
push, call, mov, push, mov, cmp, jne, cmp, jle, mov, test, je, cmp, jle, push, call,
mov, jmp]

Sample packed with MEW []

Sample packed with MoleBox [call, pushal, call, call, call, push, mov, sub, push,
push, push, call, mov, push, push, call, mov, mov, sub, mov, mov, sub, mov, mov,
mov, mov, mov, mov, mov, imul, mov, add, mov, imul, sub, mov, mov, add, mov,
mov, mov, add, mov, mov, mov, add, mov]

Sample packed with NeoLite [jmp, mov, and, call, push, push, push, push, push,
enter, push, sub, lea, mov, mov, call, push, push, mov, mov, mov, inc, test, je, xor,
mov, inc, jmp]

Sample packed with NSIS [sub, push, push, push, push, call, mov, add, mov, mov,
call, mov, push, push, call, push, call, push, push, call, cmp, jne, mov, jmp, mov,
test, jne, push, call, mov, mov, jmp, cmp, je, cmp, jne, push, push, call, jmp, push]

126

Appendices

Sample packed with NsPacK [pushfd, pushal, call, pop, sub, lea, cmp, je, mov,
mov, sub, mov, add, lea, add, push, push, push, push, push, push, call, test, je,
mov, call, pop, mov, add, push, push, call, push, mov, mov, mov, cld, mov, movsb,
call, add, jne, mov, inc, adc, ret, jae]

Sample packed with Packman [pushal, call, pop, lea, add, mov, lea, push, pop,
add, lodsd, dec, jne, mov, mov, mov, mov, push, push, push, push]

Sample packed with PCGuard [cld, push, push, call, pop, jmp, pushal, call, pop,
jmp, inc, jmp, jmp, jmp, popal, pop, pop, jmp, pushal, call, add, mov, call, pushal,
push, push, push, push, call, mov, push, lea, lea, push, push, call, pushal, mov,
mov, cld, mov, xor, movsb, mov, call, add, jne, mov]

Sample packed with PECompact [mov, push, push, mov, xor, mov, push, inc,
inc, outsd, insd, jo, arpl, nop, out, dec, sub, mov, xor, mov]

Sample packed with PEPACK [je, jmp, pushal, call, pop, sub, cmp, je, mov, mov,
sub, mov, mov, mov, add, mov, cmp, jne, push, push, push, push, call, jmp, or, je,
mov, mov, add, lodsd, or, je, mov, add, lodsd, mov, lodsd, or, je, push, push, mov,
mov, rep, pop, push, push, push]

Sample packed with PESpin [jmp, pushal, call, mov, add, sub, dec, sub, pop, out,
add, in, sahf, jne, xor, xor, test, mov, add, jmp, add, add, add, add, add, add, add,
add, add, add, add, add, add, add, add, add, add, add, add, add, add, add, add,
add, add, add, add, add]

Sample packed with Petite [mov, push, push, push, mov, pushf, pushal, push,
mov, add, push, push, call, mov, mov, add, push, push, call, mov, lea, mov, push,
push, push, mov, mov, add, lea, mov, push, mov, mov, push, push, push, push,
push, push, push, push, push, push]

Sample packed with RLPack [pushal, call, mov, add, lea, lea, xor, call, pushal,
mov, or, je, popal, ret, jmp, cmp, jne, push, push, call, pushal, mov, mov, cld,
mov, xor, movsb, mov, call, add, jne, mov, inc, adc, ret, jae]

Sample packed with Shrinker [cmp, push, mov, push, push, jne, push, call, push,
push, call, ret]

Sample packed with Themida [mov, pushal, or, je, mov, mov, push, push, call,
pushal, mov, mov, cld, mov, mov, inc, mov, inc, mov, add, jne, mov, inc, adc, jae,
add, jne, jae, xor, add, jne, jae, add]

127

Appendices

Sample packed with UPack [mov, lodsd, mov, xchg, movsd, xor, xor, stosd, dec,
stosd, neg, mov, rep, shl, mov, rep, lodsd, push, xchg, push, lodsd, xchg, pop, lea]

Sample packed with UPX [pushal, call, pop, sub, push, lea, push, lea, or, xor, nop,
nop, nop, nop, add, jne, mov, sub, adc, jae, mov, inc, mov, inc, jmp]

Sample packed with WinRAR [call, push, mov, sub, push, push, call, mov, ret,
pop, pop, mov, cmp, je, mov, call, push, mov, call, push, mov, sub, push, push,
lea, push, xor, push, mov, call, cmp, seta, mov, push, call, test, setne, mov, inc,
cmp, jb]

Sample packed with WinZip [call, mov, cmp, je, mov, inc, cmp, je, cmp, je, inc,
cmp, jne]

Sample packed with Wise [push, mov, sub, push, push, push, push, pop, push,
mov, call, call, mov, mov, mov, cmp, jne, xor, cmp, je, cmp, je, mov, inc, mov,
jmp]

128

BIBLIOGRAPHY

[1] Fabrizio Biondi, Michael A. Enescu, Thomas Given-Wilson, Axel Legay, Lamine
Noureddine, and Vivek Verma, « Effective, efficient, and robust packing detection
and classification », in: Computers & Security 85 (2019), pp. 436–451, issn:
0167-4048, doi: https : / / doi . org / 10 . 1016 / j . cose . 2019 . 05 . 007, url:
https://www.sciencedirect.com/science/article/pii/S0167404818311040.

[2] Lamine Noureddine, Annelie Heuser, Cassius Puodzius, and Olivier Zendra,
« SE-PAC: A Self-Evolving PAcker Classifier against Rapid Packers Evolution »,
in: Proceedings of the Eleventh ACM Conference on Data and Application Security
and Privacy, CODASPY ’21, Virtual Event, USA: Association for Computing
Machinery, 2021, 281–292, isbn: 9781450381437, doi: 10.1145/3422337.3447848,
url: https://doi.org/10.1145/3422337.3447848.

[3] Kevin Allix, Tegawendé F. Bissyandé, Quentin Jérome, Jacques Klein, Radu
State, and Yves Le Traon, « Empirical assessment of machine learning-based
malware detectors for Android », in: Empirical Software Engineering 21.1 (2016),
pp. 183–211, issn: 1573-7616, doi: 10.1007/s10664-014-9352-6, url: https:
//doi.org/10.1007/s10664-014-9352-6.

[4] The Digital Revolution, 2008, url: https : / / web . archive . org / web /
20081007132355/http://history.sandiego.edu/gen/recording/digital.
html (visited on 10/2021).

[5] Vassilios Zoumpourlis, Maria Goulielmaki, Emmanouil Rizos, Stella Baliou, and
Demetrios A Spandidos, « [Comment] The COVID-19 pandemic as a scientific and
social challenge in the 21st century », in: Molecular medicine reports 22.4 (2020),
pp. 3035–3048.

[6] Impact of COVID-19 on Cybersecurity, 2020, url: https://www2.deloitte.
com/ch/en/pages/risk/articles/impact-covid-cybersecurity.html (visited
on 10/2021).

129

https://doi.org/https://doi.org/10.1016/j.cose.2019.05.007
https://www.sciencedirect.com/science/article/pii/S0167404818311040
https://doi.org/10.1145/3422337.3447848
https://doi.org/10.1145/3422337.3447848
https://doi.org/10.1007/s10664-014-9352-6
https://doi.org/10.1007/s10664-014-9352-6
https://doi.org/10.1007/s10664-014-9352-6
https://web.archive.org/web/20081007132355/http://history.sandiego.edu/gen/recording/digital.html
https://web.archive.org/web/20081007132355/http://history.sandiego.edu/gen/recording/digital.html
https://web.archive.org/web/20081007132355/http://history.sandiego.edu/gen/recording/digital.html
https://www2.deloitte.com/ch/en/pages/risk/articles/impact-covid-cybersecurity.html
https://www2.deloitte.com/ch/en/pages/risk/articles/impact-covid-cybersecurity.html

BIBLIOGRAPHY

[7] 2020: The Year the COVID-19 Crisis Brought a Cyber Pandemic, 2020, url:
https://www.govtech.com/blogs/lohrmann-on-cybersecurity/2020-the-
year-the-covid-19-crisis-brought-a-cyber-pandemic.html (visited on
10/2021).

[8] Rabie A Ramadan, Bassam W Aboshosha, Jalawi Sulaiman Alshudukhi, Abdullah
J Alzahrani, Ayman El-Sayed, and Mohamed M Dessouky, « Cybersecurity
and Countermeasures at the Time of Pandemic », in: Journal of Advanced
Transportation 2021 (2021).

[9] CYBERCRIME: COVID-19 IMPACT, 2020, url: https://www.interpol.int/
News-and-Events/News/2020/INTERPOL-report-shows-alarming-rate-of-
cyberattacks-during-COVID-19 (visited on 10/2021).

[10] Major ransomware attack against U.S. tech provider forces Swedish store closures,
2021, url: https://www.reuters.com/technology/cyber-attack-against-
us-it-provider-forces-swedish-chain-close-800-stores-2021-07-03/
(visited on 10/2021).

[11] Malware definition, 2021, url: https://www.lexico.com/definition/malware
(visited on 10/2021).

[12] Malware, 2021, url: https://www.av- test.org/en/statistics/malware/
(visited on 10/2021).

[13] ENISA Threat Landscape 2020: Cyber Attacks Becoming More Sophisticated,
Targeted, Widespread and Undetected, 2020, url: https://www.enisa.europa.
eu/news/enisa-news/enisa-threat-landscape-2020 (visited on 10/2021).

[14] David Braue, Global Ransomware Damage Costs Predicted To Exceed 265
Billion dollars By 2031, Cybersecurity Ventures, 2021, url: https : / /
cybersecurityventures.com/global-ransomware-damage-costs-predicted-
to-reach-250-billion-usd-by-2031/ (visited on 10/2021).

[15] THE COST OF CYBERCRIME, NINTH ANNUAL COST OF CYBERCRIME
STUDY UNLOCKING THE VALUE OF IMPROVED CYBERSECURITY
PROTECTION, accenturesecurity, 2019, url: https://www.accenture.com/
_acnmedia/pdf-96/accenture-2019-cost-of-cybercrime-study-final.pdf
(visited on 10/2021).

130

https://www.govtech.com/blogs/lohrmann-on-cybersecurity/2020-the-year-the-covid-19-crisis-brought-a-cyber-pandemic.html
https://www.govtech.com/blogs/lohrmann-on-cybersecurity/2020-the-year-the-covid-19-crisis-brought-a-cyber-pandemic.html
https://www.interpol.int/News-and-Events/News/2020/INTERPOL-report-shows-alarming-rate-of-cyberattacks-during-COVID-19
https://www.interpol.int/News-and-Events/News/2020/INTERPOL-report-shows-alarming-rate-of-cyberattacks-during-COVID-19
https://www.interpol.int/News-and-Events/News/2020/INTERPOL-report-shows-alarming-rate-of-cyberattacks-during-COVID-19
https://www.reuters.com/technology/cyber-attack-against-us-it-provider-forces-swedish-chain-close-800-stores-2021-07-03/
https://www.reuters.com/technology/cyber-attack-against-us-it-provider-forces-swedish-chain-close-800-stores-2021-07-03/
https://www.lexico.com/definition/malware
https://www.av-test.org/en/statistics/malware/
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2020
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2020
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031/
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031/
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031/
https://www.accenture.com/_acnmedia/pdf-96/accenture-2019-cost-of-cybercrime-study-final.pdf
https://www.accenture.com/_acnmedia/pdf-96/accenture-2019-cost-of-cybercrime-study-final.pdf

BIBLIOGRAPHY

[16] Xufang Li, Peter KK Loh, and Freddy Tan, « Mechanisms of polymorphic and
metamorphic viruses », in: 2011 European intelligence and security informatics
conference, IEEE, 2011, pp. 149–154.

[17] Mark Vincent Yason, « The art of unpacking », in: Retrieved Feb 12 (2007), p. 2008.

[18] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G Bringas,
« SoK: Deep packer inspection: A longitudinal study of the complexity of run-time
packers », in: 2015 IEEE Symposium on Security and Privacy, IEEE, 2015,
pp. 659–673.

[19] Balaji Prasad, Cloak and Dagger: Unpacking Hidden Malware Attacks,
NortonLifeLock Inc, 2016, url: https://www.symantec.com/blogs/expert-
perspectives/unpacking-hidden-malware-attacks (visited on 10/2021).

[20] Yanfang Ye, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar, « A Survey on
Malware Detection Using Data Mining Techniques », in: ACM Comput. Surv. 50.3
(June 2017), issn: 0360-0300, doi: 10.1145/3073559, url: https://doi.org/
10.1145/3073559.

[21] Andreas Moser, Christopher Kruegel, and Engin Kirda, « Exploring Multiple
Execution Paths for Malware Analysis », in: 2007 IEEE Symposium on Security
and Privacy (SP ’07), 2007, pp. 231–245, doi: 10.1109/SP.2007.17.

[22] Jonathan A.P. Marpaung, Mangal Sain, and Hoon-Jae Lee, « Survey on malware
evasion techniques: State of the art and challenges », in: 2012 14th International
Conference on Advanced Communication Technology (ICACT), 2012, pp. 744–749.

[23] Michael Hale Ligh, Andrew Case, Jamie Levy, and Aaron Walters, The Art of
Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac
Memory, 1st, Wiley Publishing, 2014, isbn: 1118825098, 9781118825099.

[24] Michael Sikorski and Andrew Honig, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software, 1st, San Francisco, CA, USA: No Starch
Press, 2012, isbn: 1593272901, 9781593272906.

[25] Jie Lin, Chuanyi Liu, Xinyi Zhang, Rongfei Zhuang, and Binxing Fang, « VMRe:
A Reverse Framework of Virtual Machine Protection Packed Binaries », in: 2019
IEEE Fourth International Conference on Data Science in Cyberspace (DSC),
IEEE, 2019, pp. 528–535.

131

https://www.symantec.com/blogs/expert-perspectives/unpacking-hidden-malware-attacks
https://www.symantec.com/blogs/expert-perspectives/unpacking-hidden-malware-attacks
https://doi.org/10.1145/3073559
https://doi.org/10.1145/3073559
https://doi.org/10.1145/3073559
https://doi.org/10.1109/SP.2007.17

BIBLIOGRAPHY

[26] Rolf Rolles, « Unpacking virtualization obfuscators », in: 3rd USENIX Workshop
on Offensive Technologies.(WOOT), 2009.

[27] BITDEFENDER ANTIVIRUS TECHNOLOGY, 2007, url: https : / / www .
bitdefender.com/files/Main/file/BitDefender_Antivirus_Technology.
pdf (visited on 10/2021).

[28] PEiD, 2017, url: http://appnee.com/peid/ (visited on 10/2021).

[29] YARA, 2021, url: http://virustotal.github.io/yara/ (visited on 10/2021).

[30] Detect-It-Easy, 2021, url: https://github.com/horsicq/Detect- It- Easy
(visited on 10/2021).

[31] PEiD signatures, 2020, url: https://github.com/sooshie/packerid/blob/
master/userdb.txt (visited on 10/2021).

[32] VirusTotal Packer YARA Ruleset, 2020, url: https://github.com/Yara-Rules/
rules/tree/master/packers (visited on 10/2021).

[33] PCRE - Perl Compatible Regular Expressions, 2015, url: https://www.pcre.
org/ (visited on 10/2021).

[34] Detect-It-Easy signatures database, 2021, url: https://github.com/horsicq/
Detect-It-Easy/tree/master/db (visited on 10/2021).

[35] R. Lyda and J. Hamrock, « Using Entropy Analysis to Find Encrypted and Packed
Malware », in: IEEE Security Privacy 5.2 (2007), pp. 40–45, issn: 1540-7993, doi:
10.1109/MSP.2007.48.

[36] Xabier Ugarte-Pedrero, Igor Santos, Iván García-Ferreira, Sergio Huerta, Borja
Sanz, and Pablo G. Bringas, « On the adoption of anomaly detection for packed
executable filtering », in: Computers & Security 43 (2014), pp. 126 –144, issn:
0167-4048, doi: https://doi.org/10.1016/j.cose.2014.03.012, url: http:
//www.sciencedirect.com/science/article/pii/S0167404814000522.

[37] Tim Ebringer, Li Sun, and Serdar Boztas, « A fast randomness test that preserves
local detail », in: Virus Bulletin 2008, Virus Bulletin Ltd, 2008, pp. 34–42.

[38] Guhyeon Jeong, Euijin Choo, Joosuk Lee, Munkhbayar Bat-Erdene, and Heejo
Lee, « Generic unpacking using entropy analysis », in: Malicious and Unwanted
Software (MALWARE), 2010 5th International Conference on, IEEE, 2010,
pp. 98–105.

132

https://www.bitdefender.com/files/Main/file/BitDefender_Antivirus_Technology.pdf
https://www.bitdefender.com/files/Main/file/BitDefender_Antivirus_Technology.pdf
https://www.bitdefender.com/files/Main/file/BitDefender_Antivirus_Technology.pdf
http://appnee.com/peid/
http://virustotal.github.io/yara/
https://github.com/horsicq/Detect-It-Easy
https://github.com/sooshie/packerid/blob/master/userdb.txt
https://github.com/sooshie/packerid/blob/master/userdb.txt
https://github.com/Yara-Rules/rules/tree/master/packers
https://github.com/Yara-Rules/rules/tree/master/packers
https://www.pcre.org/
https://www.pcre.org/
https://github.com/horsicq/Detect-It-Easy/tree/master/db
https://github.com/horsicq/Detect-It-Easy/tree/master/db
https://doi.org/10.1109/MSP.2007.48
https://doi.org/https://doi.org/10.1016/j.cose.2014.03.012
http://www.sciencedirect.com/science/article/pii/S0167404814000522
http://www.sciencedirect.com/science/article/pii/S0167404814000522

BIBLIOGRAPHY

[39] Li Sun, Steven Versteeg, Serdar Boztaş, and Trevor Yann, « Pattern Recognition
Techniques for the Classification of Malware Packers », in: Proceedings of the
15th Australasian Conference on Information Security and Privacy, ACISP’10,
Sydney, Australia: Springer-Verlag, 2010, pp. 370–390, isbn: 3-642-14080-7,
978-3-642-14080-8, url: http : / / dl . acm . org / citation . cfm ? id = 1926211 .
1926239.

[40] Munkhbayar Bat-Erdene, Taebeom Kim, Hongzhe Li, and Heejo Lee, « Dynamic
classification of packing algorithms for inspecting executables using entropy
analysis », in: 2013 8th International Conference on Malicious and Unwanted
Software: "The Americas" (MALWARE), 2013, pp. 19–26, doi: 10.1109/MALWARE.
2013.6703681.

[41] Jithu Raphel and P. Vinod, « Information Theoretic Method for Classification of
Packed and Encoded Files », in: Proceedings of the 8th International Conference
on Security of Information and Networks, SIN ’15, Sochi, Russia: ACM, 2015,
pp. 296–303, isbn: 978-1-4503-3453-2, doi: 10 . 1145 / 2799979 . 2800015, url:
http://doi.acm.org/10.1145/2799979.2800015.

[42] Munkhbayar Bat-Erdene, Taebeom Kim, Hyundo Park, and Heejo Lee, « Packer
detection for multi-layer executables using entropy analysis », in: Entropy 19.3
(2017), p. 125.

[43] Munkhbayar Bat-Erdene, Hyundo Park, Hongzhe Li, Heejo Lee, and Mahn-Soo
Choi, « Entropy analysis to classify unknown packing algorithms for malware
detection », in: International Journal of Information Security 16.3 (2017),
pp. 227–248.

[44] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu, « A symbolic
representation of time series, with implications for streaming algorithms », in:
Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery, 2003, pp. 2–11.

[45] Xabier Ugarte-Pedrero, Igor Santos, Borja Sanz, Carlos Laorden, and Pablo Garcia
Bringas, « Countering entropy measure attacks on packed software detection »,
in: 2012 IEEE Consumer Communications and Networking Conference (CCNC),
pp. 164–168.

[46] What is Machine Learning?, 2020, url: https://emerj.com/ai- glossary-
terms/what-is-machine-learning/ (visited on 10/2021).

133

http://dl.acm.org/citation.cfm?id=1926211.1926239
http://dl.acm.org/citation.cfm?id=1926211.1926239
https://doi.org/10.1109/MALWARE.2013.6703681
https://doi.org/10.1109/MALWARE.2013.6703681
https://doi.org/10.1145/2799979.2800015
http://doi.acm.org/10.1145/2799979.2800015
https://emerj.com/ai-glossary-terms/what-is-machine-learning/
https://emerj.com/ai-glossary-terms/what-is-machine-learning/

BIBLIOGRAPHY

[47] What Is Machine Learning in Security?, 2021, url: https://www.cisco.com/
c/en/us/products/security/machine-learning-security.html (visited on
10/2021).

[48] Ethem Alpaydin, Introduction to Machine Learning, The MIT Press, 2014, isbn:
0262028182.

[49] Lior Rokach and Oded Z Maimon, Data mining with decision trees: theory and
applications, vol. 69, World scientific, 2007.

[50] Decision Trees, 2020, url: https://scikit-learn.org/stable/modules/tree.
html (visited on 10/2021).

[51] Ensemble methods, 2020, url: https://scikit-learn.org/stable/modules/
ensemble.html (visited on 10/2021).

[52] P Davies, Kendall’s Advanced Theory of Statistics. Volume 1. Distribution Theory,
1988.

[53] Margareta Ackerman and Sanjoy Dasgupta, « Incremental clustering: The case for
extra clusters », in: Advances in Neural Information Processing Systems, 2014,
pp. 307–315.

[54] Evaluation of clustering, 2008, url: https://nlp.stanford.edu/IR-book/html/
htmledition/evaluation-of-clustering-1.html (visited on 10/2021).

[55] PN Tan, M Steinbach, and V Kumar, « Chapter 8 Cluster analysis: basic concepts
and algorithms », in: Introduction to data mining, 6th edn. Peason Addison Wesley,
Boston (2006), pp. 486–568.

[56] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al., « A
density-based algorithm for discovering clusters in large spatial databases with
noise. », in: Kdd, vol. 96, 34, 1996, pp. 226–231.

[57] Joris Kinable and Orestis Kostakis, « Malware classification based on call graph
clustering », in: Journal in computer virology 7.4 (2011), pp. 233–245.

[58] DBSCAN, 2021, url: https://en.wikipedia.org/wiki/DBSCAN (visited on
10/2021).

[59] Philippe Thomas, Semi-Supervised Learning edited by O. Chapelle, B. Schölkopf
and A. Zien, Mar. 2009, url: https : / / hal . archives - ouvertes . fr / hal -
00372719.

134

https://www.cisco.com/c/en/us/products/security/machine-learning-security.html
https://www.cisco.com/c/en/us/products/security/machine-learning-security.html
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/ensemble.html
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
https://en.wikipedia.org/wiki/DBSCAN
https://hal.archives-ouvertes.fr/hal-00372719
https://hal.archives-ouvertes.fr/hal-00372719

BIBLIOGRAPHY

[60] Roberto Perdisci, Andrea Lanzi, and Wenke Lee, « Classification of packed
executables for accurate computer virus detection », in: Pattern Recognition
Letters 29.14 (2008), pp. 1941 –1946, issn: 0167-8655, doi: https://doi.org/10.
1016/j.patrec.2008.06.016, url: http://www.sciencedirect.com/science/
article/pii/S0167865508002110.

[61] T. Wang and C. Wu, « Detection of packed executables using support
vector machines », in: 2011 International Conference on Machine Learning and
Cybernetics, vol. 2, 2011, pp. 717–722, doi: 10.1109/ICMLC.2011.6016774.

[62] C. Burgess, F. Kurugollu, S. Sezer, and K. McLaughlin, « Detecting packed
executables using steganalysis », in: 2014 5th European Workshop on Visual
Information Processing (EUVIP), 2014, pp. 1–5, doi: 10.1109/EUVIP.2014.
7018361.

[63] Kesav Kancherla, J Kevin Donahue, and Srinivas Mukkamala, « Packer
identification using Byte plot and Markov plot », in: Journal of Computer Virology
and Hacking Techniques 12 (2015), pp. 101–111.

[64] Mohaddeseh Zakeri, Fatemeh Faraji Daneshgar, and Maghsoud Abbaspour, « A
Static Heuristic Approach to Detecting Malware Targets », in: section and
Commun. Netw. 8.17 (Nov. 2015), pp. 3015–3027, issn: 1939-0114, doi: 10.1002/
section1228, url: http://dx.doi.org/10.1002/section1228.

[65] Neminath Hubballi and Himanshu Dogra, « Detecting Packed Executable File:
Supervised or Anomaly Detection Method? », in: 2016 11th International
Conference on Availability, Reliability and Security (ARES), IEEE, 2016,
pp. 638–643.

[66] Nguyen Minh Hai, Mizuhito Ogawa, and Quan Thanh Tho, « Packer identification
based on metadata signature », in: Proceedings of the 7th Software Security,
Protection, and Reverse Engineering/Software Security and Protection Workshop,
2017, pp. 1–11.

[67] Erik Bergenholtz, Emiliano Casalicchio, Dragos Ilie, and Andrew Moss, « Detection
of metamorphic malware packers using multilayered LSTM networks », in:
International Conference on Information and Communications Security, Springer,
2020, pp. 36–53.

135

https://doi.org/https://doi.org/10.1016/j.patrec.2008.06.016
https://doi.org/https://doi.org/10.1016/j.patrec.2008.06.016
http://www.sciencedirect.com/science/article/pii/S0167865508002110
http://www.sciencedirect.com/science/article/pii/S0167865508002110
https://doi.org/10.1109/ICMLC.2011.6016774
https://doi.org/10.1109/EUVIP.2014.7018361
https://doi.org/10.1109/EUVIP.2014.7018361
https://doi.org/10.1002/section1228
https://doi.org/10.1002/section1228
http://dx.doi.org/10.1002/section1228

BIBLIOGRAPHY

[68] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofimov, and
Giorgio Giacinto, « Novel Feature Extraction, Selection and Fusion for Effective
Malware Family Classification », in: CODASPY, 2016.

[69] Moustafa Saleh, E Paul Ratazzi, and Shouhuai Xu, « A control flow graph-based
signature for packer identification », in: MILCOM 2017-2017 IEEE Military
Communications Conference (MILCOM), IEEE, 2017, pp. 683–688.

[70] Xingwei Li, Zheng Shan, Fudong Liu, Yihang Chen, and Yifan Hou, « A
consistently-executing graph-based approach for malware packer identification »,
in: IEEE Access 7 (2019), pp. 51620–51629.

[71] Li Sun, Steven Versteeg, Serdar Boztaş, and Trevor Yann, « Pattern recognition
techniques for the classification of malware packers », in: Australasian Conference
on Information Security and Privacy, Springer, 2010, pp. 370–390.

[72] A. Moser, C. Kruegel, and E. Kirda, « Limits of Static Analysis for Malware
Detection », in: Twenty-Third Annual Computer Security Applications Conference
(ACSAC 2007), 2007, pp. 421–430, doi: 10.1109/ACSAC.2007.21.

[73] Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng, Ting Chen, Xiaosong
Zhang, and Jean-Yves Marion, « Towards Paving the Way for Large-Scale
Windows Malware Analysis: Generic Binary Unpacking with Orders-of-Magnitude
Performance Boost », in: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, Toronto, Canada: ACM, 2018,
pp. 395–411, isbn: 978-1-4503-5693-0, doi: 10 . 1145 / 3243734 . 3243771, url:
http://doi.acm.org/10.1145/3243734.3243771.

[74] Girish Chandrashekar and Ferat Sahin, « A survey on feature selection methods »,
in: Computers & Electrical Engineering 40.1 (2014), pp. 16–28.

[75] Randall Balestriero, Hervé Glotin, and Richard G. Baraniuk, « Semi-Supervised
Learning Enabled by Multiscale Deep Neural Network Inversion », in: CoRR
abs/1802.10172 (2018), arXiv: 1802.10172, url: http://arxiv.org/abs/1802.
10172.

[76] Mike Sconzo, Packerid, 2020, url: https://github.com/sooshie/packerid
(visited on 10/2021).

[77] PeLib, 2020, url: https://github.com/avast-tl/pelib (visited on 10/2021).

[78] Sebastian Porst, PeLib, 2005, url: http://www.pelib.com (visited on 10/2021).

136

https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1145/3243734.3243771
http://doi.acm.org/10.1145/3243734.3243771
https://arxiv.org/abs/1802.10172
http://arxiv.org/abs/1802.10172
http://arxiv.org/abs/1802.10172
https://github.com/sooshie/packerid
https://github.com/avast-tl/pelib
http://www.pelib.com

BIBLIOGRAPHY

[79] NumPy, 2021, url: http://www.numpy.org (visited on 10/2021).

[80] Metrics and scoring: quantifying the quality of predictions, 2020, url: https :
//scikit-learn.org/stable/modules/model_evaluation.html (visited on
10/2021).

[81] Joblib: running Python functions as pipeline jobs, 2021, url: https://joblib.
readthedocs.io/en/latest/ (visited on 10/2021).

[82] Munkhbayar Bat-Erdene, Taebeom Kim, Hyundo Park, and Heejo Lee, « Packer
Detection for Multi-Layer Executables Using Entropy Analysis », in: Entropy 19
(2017), p. 125.

[83] Igor Santos, Xabier Ugarte-Pedrero, Borja Sanz, Carlos Laorden, and Pablo
G Bringas, « Collective classification for packed executable identification », in:
Proceedings of the 8th Annual Collaboration, Electronic messaging, Anti-Abuse and
Spam Conference, 2011, pp. 23–30.

[84] Mike Sconzo, I am packer and so can you, 2015, url: https : / / youtu . be /
jCIT7rXX8y0 (visited on 10/2021).

[85] John C Gower, « A general coefficient of similarity and some of its properties »,
in: Biometrics (1971), pp. 857–871.

[86] Erhan Erkut, Yilmaz Ülküsal, and Oktay Yenicerioğlu, « A comparison of
p-dispersion heuristics », in: Computers & operations research 21.10 (1994),
pp. 1103–1113.

[87] Chrysostomos Symvoulidis, An Incremental DBSCAN approach in Python for
real-time monitoring data, 2019, url: https : / / github . com / csymvoul /
Incremental_DBSCAN (visited on 10/2021).

[88] Amber, 2018, url: https://github.com/EgeBalci/Amber (visited on 10/2021).

[89] Origami, 2020, url: https : / / github . com / dr4k0nia / Origami (visited on
10/2021).

[90] Writing a simple PE Packer in detail, 2019, url: https://github.com/levanvn/
Packer_Simple-1 (visited on 10/2021).

[91] PePacker, 2017, url: https://github.com/SamLarenN/PePacker (visited on
10/2021).

137

http://www.numpy.org
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://joblib.readthedocs.io/en/latest/
https://joblib.readthedocs.io/en/latest/
https://youtu.be/jCIT7rXX8y0
https://youtu.be/jCIT7rXX8y0
https://github.com/csymvoul/Incremental_DBSCAN
https://github.com/csymvoul/Incremental_DBSCAN
https://github.com/EgeBalci/Amber
https://github.com/dr4k0nia/Origami
https://github.com/levanvn/Packer_Simple-1
https://github.com/levanvn/Packer_Simple-1
https://github.com/SamLarenN/PePacker

BIBLIOGRAPHY

[92] PE-Packer, 2020, url: https://github.com/czs108/PE- Packer (visited on
10/2021).

[93] PE Toy, 2016, url: https://github.com/qy7tt/petoy (visited on 10/2021).

[94] Silent-Packer, 2020, url: https://github.com/SilentVoid13/Silent_Packer
(visited on 10/2021).

[95] theArk, 2019, url: https : / / github . com / aaaddress1 / theArk (visited on
10/2021).

[96] Simple-PE32-Packer, 2018, url: https://github.com/z3r0d4y5/Simple-PE32-
Packer (visited on 10/2021).

[97] xorPacker, 2020, url: https://github.com/nqntmqmqmb/xorPacker (visited on
10/2021).

[98] Nguyen Xuan Vinh, Julien Epps, and James Bailey, « Information theoretic
measures for clusterings comparison: Variants, properties, normalization and
correction for chance », in: Journal of Machine Learning Research 11.Oct (2010),
pp. 2837–2854.

[99] Davoud Moulavi, Pablo A Jaskowiak, Ricardo JGB Campello, Arthur Zimek, and
Jörg Sander, « Density-based clustering validation », in: Proceedings of the 2014
SIAM international conference on data mining, SIAM, 2014, pp. 839–847.

[100] Radare2, 2019, url: https://rada.re/n/ (visited on 10/2021).

[101] scikit-learn: Machine Learning in Python, 2020, url: https://scikit-learn.
org/ (visited on 10/2021).

[102] One-Hot-Encoder, 2020, url: https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.OneHotEncoder.html (visited on 10/2021).

[103] Deep Packer Inspector, 2017, url: https://www.packerinspector.com/ (visited
on 2019).

[104] Leland McInnes, John Healy, and Steve Astels, « hdbscan: Hierarchical density
based clustering », in: Journal of Open Source Software 2.11 (2017), p. 205.

[105] Matteo Dell’Amico, « Fishdbc: Flexible, incremental, scalable, hierarchical
density-based clustering for arbitrary data and distance », in: arXiv preprint
arXiv:1910.07283 (2019).

138

https://github.com/czs108/PE-Packer
https://github.com/qy7tt/petoy
https://github.com/SilentVoid13/Silent_Packer
https://github.com/aaaddress1/theArk
https://github.com/z3r0d4y5/Simple-PE32-Packer
https://github.com/z3r0d4y5/Simple-PE32-Packer
https://github.com/nqntmqmqmb/xorPacker
https://rada.re/n/
https://scikit-learn.org/
https://scikit-learn.org/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://www.packerinspector.com/

BIBLIOGRAPHY

[106] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G. Bringas,
« RAMBO: Run-Time Packer Analysis with Multiple Branch Observation », in:
Detection of Intrusions and Malware, and Vulnerability Assessment, ed. by Juan
Caballero, Urko Zurutuza, and Ricardo J. Rodríguez, Cham: Springer International
Publishing, 2016, pp. 186–206, isbn: 978-3-319-40667-1.

139

Titre : Détection et classification d’empaquetage s’appuyant sur l’apprentissage automatique
pour contrer la propagation des logiciels malveillants

Mots clés : Empaquetage, Logiciels malveillants, Détection, Classification, Apprentissage

automatique

Résumé : Dans cette thèse, nous proposons
des solutions de détection et de classification
d’empaqueteurs effectives, efficaces et
robustes, constituant des parties pratiques de
la chaîne d’analyse de logiciels malveillants
d’un antivirus.

Nos solutions apportent à la littérature
deux contributions. Dans la première, nous
introduisons une étude visant à mieux
comprendre l’impact de la labellisation,
la sélection d’algorithme d’apprentissage
automatique et la sélection de caractéristique
sur l’effectivité, l’efficacité et la robustesse des
systèmes de détection et de classification

d’empaqueteurs basés sur l’apprentissage
automatique supervisé. Dans la seconde,
nous proposons, concevons et implémentons
SE-PAC (Self-Evolving PAcker Classifier),
un nouveau framework auto-évolutif de
classification d’empaqueteurs qui repose
sur le regroupement incrémental de façon
semi-supervisée pour faire face à l’évolution
rapide des empaqueteurs au fil du temps.

Pour ces deux contributions, nous menons
des expériences réalistes montrant des
résultats prometteurs en termes d’effectivité,
d’efficacité et de robustesse pour la détection
et la classification des empaqueteurs.

Title: Packing detection and classification relying on machine learning to stop malware
propagation

Keywords: Packing, Malware, Detection, Classification, Machine learning

Abstract: In this thesis, we propose effective,
efficient, and robust packing detection and
classification solutions to be practical parts of
the malware analysis chain of an antivirus.

Our solutions bring two contributions to the
literature. In the first one, we introduce a study
which aims at better understanding the impact
of ground truth generation, machine learning
algorithm selection, and feature selection on
the effectiveness, efficiency, and robustness of
supervised machine-learning-based packing
detection and classification systems. In

the second one, we propose, design, and
implement SE-PAC, a new Self-Evolving
PAcker Classifier framework that relies on
incremental clustering in a semi-supervised
fashion, in order to cope with the fast-paced
evolution of packers over time.

For both contributions, we conduct
realistic experiments showing promising
results in terms of effectiveness, efficiency,
and robustness for packing detection and
classification.

	Introduction
	Context and Motivations
	Security: More Than a Must for Digital Systems
	The Malware Threat
	Packers

	Challenges and Objectives
	Contributions
	Publications
	Outline

	Background and Related Work
	Malware Analysis and Detection
	Packers
	Binary Packing and its Usage in Malware
	In-depth Scanning

	Packers Detection and Classification Approaches
	Syntactic Signatures
	Entropy
	Machine Learning
	Background on Machine Leaning
	Related Work based on Machine Learning

	A Study of Supervised Machine-Learning-based Packing Detection and Classification Systems
	Methodology
	Supervised Machine Learning Detection and Classification Algorithms
	Feature Selection and Hyperparameter Optimization
	Robustness Assessment against the Evolution of Packers over Time
	Retraining Cost Analysis

	Feature Description and Selection
	Datasets and Ground Truth Generation
	Evaluation Metrics
	Experimental Evaluation
	Definition of Classification Scenarios
	Feature Selection and Hyperparameter Optimization
	Robustness Assessment against the Evolution of Packers over Time
	Retraining Cost Analysis

	Discussion
	Findings and Insights
	Threats to Validity
	Limitations and Future Work

	Conclusion

	SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution
	Methodology
	Overall Toolchain
	Feature Extraction and Selection
	Composite Pairwise Distance Metric
	Clustering: Batch and Incremental
	Scattered Representative Points
	Batch Clustering in the Offline Phase
	Incremental Clustering in the Online Phase

	Post-Clustering Sample Selection
	Datasets and Ground Truth Generation
	Malware Feed
	Synthetic Dataset

	Evaluation Metrics
	Extrinsic Metrics
	Intrinsic Metrics

	Experimental Evaluation
	Scenarii Definition
	Offline Phase
	Online Phase
	Scattered Representative Points
	Effectiveness and Robustness of SE-PAC

	PCRS Selection

	Discussion
	Findings and Insights
	When and How to Retrain?
	Threats to Validity
	Limitations and Future Work

	Conclusion

	Conclusion and Future Work
	Context and Objectives
	Contributions
	Future Work

	Bibliography
	Appendices
	1. PE File Format
	2. Triangle Inequalities in the Cluster Update Policy (second step)
	3. Examples of Radare 2 Traces for some Packed Binaries

