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Résumé:
En tant que branche de la pharmacologie, la pharmacologie de sécurité cardiaque

vise à étudier les effets secondaires des composés sur le système cardiaque, à des doses
thérapeutiques. Ces études, réalisées par le biais d’expériences in silico, in vitro et
in vivo, permettent de sélectionner/rejeter un composé à chaque étape du processus
de développement du médicament. Un vaste sous-domaine de la pharmacologie de
sécurité cardiaque est consacré à l’étude de l’activité électrique des cellules cardiaques
à partir d’expériences in silico et in vitro. Cette activité électrique est la conséquence
d’échanges de structures polarisées (principalement des ions) entre le milieu extracellulaire
et intracellulaire. Une modification des échanges ioniques induit des changements dans
l’activité électrique de la cellule cardiaque qui peuvent être pathologiques (par ex. en
générant des arythmies). Une bonne connaissance de ces signaux électriques est donc
essentielle pour prévenir les risques d’évènements létaux.

Les techniques de patch-clamp sont les méthodes les plus courantes pour enregistrer
l’activité électrique d’une cellule cardiaque. Bien que ces signaux électriques soient bien
connus, ils sont lents et fastidieux à réaliser, et donc, coûteux. Une alternative récente
consiste à considérer les dispositifs de réseaux de microélectrodes (MEA). Développés
à l’origine pour l’étude des neurones, leur extension aux cellules cardiaques permet un
criblage à haut débit qui n’était pas possible avec les techniques de patch-clamp. Un
MEA est une plaque avec des puits dans lesquels des cellules cardiaques (formant un
tissu) recouvrent des électrodes. Par conséquent, l’extension de ces dispositifs aux cellules
cardiaques permet d’enregistrer l’activité électrique des cellules au niveau du tissu (avant
et après l’ajout d’un composé dans les puits). Comme il s’agit d’un nouveau signal, de
nombreuses études doivent être menées pour comprendre comment les échanges ioniques
induisent cette activité électrique enregistrée, et, enfin, pour procéder à la sélection/rejet
d’un composé. Bien que ces signaux soient encore mal connus, des études récentes ont
montré des résultats prometteurs dans la prise en compte des MEA dans la pharmacologie
de sécurité cardiaque. L’automatisation de la sélection/rejet d’un composé est encore
difficile et loin des applications industrielles, ce qui est l’objectif final de ce manuscrit.

Mathématiquement, le processus de sélection/rejet peut être considéré comme un
problème de classification binaire. Comme dans toute classification supervisée (et dans les
tâches d’apprentissage automatique, plus généralement), une entrée doit être définie. Dans
notre cas, les séries temporelles des activités électriques cardiaques sont éventuellement
longues (minutes ou heures) avec un taux d’échantillonnage élevé (∼ kHz) conduisant à
une entrée appartenant à un espace de grande dimension (centaines, milliers ou même
plus). De plus, le nombre de données disponibles est encore faible (au plus quelques
centaines). Ce régime critique nommé haute dimension/faible taille d’échantillon rend
le contexte difficile. Le but de ce manuscrit est de fournir une stratégie systématique
pour sélectionner/rejeter des composés d’une manière automatisée, sous les contraintes
suivantes:

• Traiter le régime de haute dimension/faible taille d’échantillon.



• Aucune hypothèse sur la distribution des données.

• Exploiter les modèles in silico pour améliorer les performances de classification.

• Pas ou peu de paramètres à régler.

La première partie du manuscrit est consacrée au contexte, suivie de la description des
techniques de patch-clamp et de MEA. Enfin, une description des modèles de potentiel
d’action et de potentiel de champ pour réaliser des expériences in silico est donnée.

Dans une seconde partie, deux aspects méthodologiques sont développés en respectant
au mieux les contraintes définies par le contexte industriel. Le premier décrit une stratégie
de réduction de l’espace d’entrée basée sur une fonction score liée au taux de succès de la
classification. Des comparaisons avec des méthodes classiques de réduction de dimension
telles que PCA et PLS (avec leurs paramètres par défaut) sont effectuées, montrant que la
méthode proposée conduit à de meilleurs résultats. La deuxième méthode consiste en la
construction d’un ensemble d’entraînement augmenté basé sur un réservoir de simulations,
en considérant la distance de Hausdorff entre les ensembles et la maximisation de la même
fonction score que pour la première méthode. La stratégie proposée permet de rejeter
automatiquement les données biaisées et/ou mal étiquetées pour construire l’ensemble
d’entraînement augmenté. Une expérience numérique est réalisée sur des potentiels
d’action in silico et une comparaison avec SVM et KNN (avec leurs paramètres par
défaut) est effectuée, montrant que la méthode proposée conduit globalement à des taux
de succès plus élevés.

Dans la troisième partie, deux applications sur des données de patch-clamp sont
réalisées. Dans une première étude, il s’agit d’un problème de régression pour estimer
l’activité des canaux ioniques à partir de signaux de potentiel d’action in silico. Le
couplage de la méthode de réduction de dimension orientée avec un filtre de Kalman
améliore la qualité de l’estimation de l’activité du canal ionique en terme de temps de
calcul et précision. Une deuxième étude est consacrée à la classification (de la forme
impact sur le signal électrique Oui/Non) de composés à partir de signaux de patch-clamp
automatisés. La méthode proposée pour la réduction de dimension à conduit à une
meilleure classification des composés (en particulier à des concentrations intermédiaires)
qu’avec la stratégie de classification proposée par la société avec laquelle nous avons
collaborée.

Enfin, la quatrième partie du manuscrit est consacrée aux signaux de MEA. Dans
une première étude, une méthode de réduction de dimension orientée est appliquée à
des expériences in vitro montrant des résultats qualitativement bons de classification des
canaux ioniques. La deuxième étude est dédiée au couplage des deux méthodes proposées.
En particulier, l’application aux données de la première conduit à l’amélioration du taux
de succès en utilisant la stratégie de construction d’un ensemble d’entraînement augmenté.
Cette partie se termine par une application sur un plus grand ensemble de données est
effectuée pour considérer les deux mèthodes proposées dans un contexte industriel.



Abstract: As a branch of pharmacology, cardiac safety pharmacology aims at investigat-
ing compound side effects on the cardiac system at therapeutic doses. These investigations,
made through in silico, in vitro and in vivo experiments, allow to select/reject a com-
pound at each step of the drug development process. A large subdomain of cardiac safety
pharmacology is devoted to the study of the electrical activity of cardiac cells based
on in silico and in vitro assays. This electrical activity is the consequence of polarised
structure exchanges (mainly ions) between the extracellular and intracellular medium. A
modification of the ionic exchanges induces changes in the electrical activity of the cardiac
cell which can be pathological (e.g. by generating arrhythmia). Strong knowledges of
these electrical signals are therefore essential to prevent risk of lethal events.

Patch-clamp techniques are the most common methods to record the electrical activity
of a cardiac cell. Although these electrical signals are well known, they are slow and
tedious to perform, and therefore, expansive. A recent alternative is to consider microelec-
trode array (MEA) devices. Originally developped for neurons studies, its extension to
cardiac cells allows a high throughput screening which was not possible with patch-clamp
techniques. It consists of a plate with wells in which cardiac cells (forming a tissue)
cover some electrodes. Therefore, the extension of these devices to cardiac cells allow
to record the electrical activity of the cells at a tissue level (before and after compound
addition into the wells). As a new signal, many studies have to be done to understand
how ionic exchanges induce this recorded electrical activity, and, finally, to proceed the
selection/rejection of a compound. Despite these signals are still not well known, recent
studies have shown promising results in the consideration of MEA into cardiac safety
pharmacology. The automation of the compound selection/rejection is still challenging
and far from industrial applications, which is the final goal of this manuscript.

Mathematically, the selection/rejection process can be seen as a binary classification
problem. As in any supervised classification (and machine learning tasks, more generally),
an input has to be defined. In our case, time series of the cardiac electrical activities are
possibly long (minutes or hours) with a high sampling rate (∼ kHz) leading to an input
living in a high-dimensional space (hundreds, thousands or even more). Moreover the
number of available data is still low (at most hundreds). This critical regime named high
dimension/low sample size make the context challenging.

The aim of this manuscript is to provide a systematic strategy to select/reject com-
pounds in an automated way, under the following constraints:

• Deal with high dimension/low sample size regime.

• No assumptions on the data distributions.

• Exploit in silico models to improve the classification performances.

• No or few parameters to tune.



The first part of the manuscript is devoted to the context, followed by the description
of the patch-clamp and MEA technologies. This part ends by the description of action
potential and field potential models to perform in silico experiments.

In a second part, two methodological aspects are developped, trying to comply, at best,
with the constraints of the industrial application. The first one describes a double greedy
goal-oriented strategy to reduce the input space based on a score function related to the
classification success rate. Comparisons with classical dimension reduction methods such
as PCA and PLS (with default parameters) are performed, showing that the proposed
method led to better results. The second method consists in the construction of an
augmented training set based on a reservoir of simulations, by considering the Hausdorff
distance between sets and the maximisation of same score function as in the first method.
The proposed strategy makes it posssible to automatically reject biased and/or wrongly
labelled data to construct the augmented training set. A numerical experiments is
performed on in silico action potentials and comparison with SVM and KNN (with
default parameters) are done, showing that the proposed method globally led to higher
classification success rates.

In the third part, two applications to patch-clamp data are performed. In a first
study, it consists in a regression problem to estimate the ion channel activity from in
silico action potential signals. The coupling of the proposed goal-oriented double greedy
dimension reduction method with an unscented Kalman filter improves the ion channel
activity estimation in terms of computational cost and accuracy. A second study is
devoted to the Hit/No hit classification of compounds based on automated patch-clamp
signals. The goal-oriented dimension reduction methods led to a better classification of
the compounds (particularly at intermediate concentrations) than with the classification
strategy proposed by the company with whom we collaborated.

Finally, the part number four of the manuscript is devoted to MEA signals. In a first
study, a goal-oriented double greedy dimension method is applied to in vitro experiments
showing qualitatively good ion channel classification results. The second study highlights
the improvements of the classification success rate using the augmented training set
construction strategy. This part ends by an application on a larger dataset is performed
to consider the two proposed methods into an industrial context.
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1.1 Context: Safety pharmacology
Drug development is the process starting from the identification of a molecule with a potential

to become a therapeutic agent (drug) and placing it on the market (accessibility to the patient).
This long process (around 10 years) consists in pruning a large number of candidates to keep the
desired ones. Drug development can be divided into different parts, as presented in Figure 1.1.

Figure 1.1: Phases of the drug development process.

The number of approved drugs by the regulation authority (European Medicines Agency,
Food and Drug Administration, Pharmaceuticals Medical Devices Agency, . . . ) is then very low
with respect to the number of candidates at preclinical and clinical stages [HTC+14, WSL19]
and can even drop to less than 10−2% from drug discovery to regulatory approval [YKN21].
Improving the compound selection is then crucial to reduce the delays between the first stage
and the regulatory approval.

At preclinical steps, the selection process consists in the realisation of in vitro and in vivo
assays. Physiological responses under compound addition guide the pharmacologist to select or
reject the compound to prevent lethal events at clinical steps. As a branch of pharmacology, safety
pharmacology aims at selecting/rejecting compounds by predicting the risk of rare lethal deaths,
based on in silico, in vitro and in vivo assays at therapeutic concentrations [PAC08, RWP+02].

In this manuscript we will focus on the cardiac part of the safety pharmacology, the cardiotox-
icity, and more precisely on in vitro experiments. Cardiac safety pharmacology is devoted to the
evaluation of the effects (undesirable or not) of a given candidate at a given concentration on the
cardiovascular system, before clinical trials. For in vitro assays, these experiments are performed
on cultured cardiac cells which can be isolated or forming a functional syncytium (i.e. a cardiac
tissue). Along with these experimental studies, in silico models emerged to better understand
the cardiac cell functionality and improve disease forecasting.

Guidelines such as the International Conference of Harmonisation (ICH) [Bra05, CFG+16]
allow a standardisation of the drug development process. It consists in preventing fatal effects
(such as sudden death caused by arrhythmia1) during clinical steps by systematically removing
compound inducing targeted effects specified by the guidelines.

As an example, hERG2 inhibitors are known to prolong the QT interval3 which is related
1Cardiac rhythm abnormality.
2hERG is the acronym of the human Ether-a-go-go-Related Gene corresponding to a potassium ion

channel. See Section 2.2 for more details on the cardiac cell.
3QT is the duration between the beginning of the Q peak and the end of the T wave in an electrocar-
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to arrhythmia (and Torsades de Pointes [RPM+05] more precisely). For these reasons, hERG
blockers are removed at early stages. However, some of these removed entities might potentially
become drugs [WBD+18]. Therefore this causality between QT prolongation and Torsades de
Pointes risk seems not to be established and other quantities (i.e. biomarkers) might be considered
to detect possible arrhythmia [Hon18]. This example highlights some limitations of the actual
guidelines.

To go deeper into this investigation and avoid removing by excessive caution potential interest-
ing compounds, several international consortiums such as Comprehensive in vitro Proarrhythmia
Assay (CiPA) emerged. This new paradigm is based on a standardisation of the protocols
introducing high throughput screening devices (Automated patch-clamp and MEA4), and aims
at going deeper than the ICH guidelines by:

• Defining more precise biomarkers to better quantify arrhythmia risk.

• Identifying ion channel blockade.

• Considering in silico models.

These investigations are essential to improve the pruning steps in the life cycle of drug
development (see Figure 1.1). For a given compound it corresponds to a series of tests for
which each step can be seen as a "yes/no" answer to a question summarised as "Can we go to
the next step with this compound?". Each step is associated with a specific protocol leading
to an information (e.g. a physiological signal) helping to answer it. Physiologically speaking,
this question can be reformulated as "Does this compound at a given concentration can induce
arrhythmia?" or "Does this compound at a given concentration blocks the potassium channel?".
Other way stated, each compound at a given concentration has to be categorised based on the
induced physiological response.

1.2 Problematic and mathematical aspects
In this manuscript, we described and investigated mathematical methods, which in the form

of a tool, help the pharmacologist to decide whether a compound can pass to the next step of the
drug development.

1.2.1 Classification problem
The problems we are dealing with are of the form: "This compound at this concentration may

induce arrhythmia" or "This compound at this concentration is a high blocker of this ion channel"
depending on the raised question and given an observation gi. These kinds of yes/no answers fall
in the class of supervised classification problems, a topic of applied mathematics and machine
learning. Definition 1 describes a classification problem.

Definition 1
Let Tns

g = {gi ∈ Ω ⊆ Rng} be a set of ns observed elements (i = 1, . . . , ns), paired with
Tns
y = {yi ∈ Ωy ⊆ F = N or R} output elements. Given a new observation g̃ ∈ Ω, the goal of the

classification problem is to determine its unknown output ỹ ∈ Ωy based on the knowledge of the
labelled observations (Tns

g , Tns
y ).

diogram (electrical signals of the heart recorded at specific regions of the body) corresponding to the
delay between the cardiac cell depolarisation and the repolarisation.

4MEA: Microelectrodes array.
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Other way stated, each observation gi is paired with its corresponding output yi. In a yes/no
classification problem, we then have Ωy = {0,1} (with "yes"= 0 and "no"= 1 or the reverse).
The extension to more classes is trivial. In the case where the output belongs to R (F = R) the
problem is a regression problem.

When the output is unknown, i.e. Tns
y does not exist, the problem falls in the unsupervised

classification (or clustering) branch of machine learning.

Then, in a supervised classification problem context, the experimenter has to give some data
paired with a labelled set corresponding to the question to be answered. This labelled database
is called Training set in the machine learning community. The first challenge is then to construct
a classifier which has learnt to discriminate the different classes through the given Training set.
Then, mathematically, a classifier is seen as a function with an observation as an input and the
predicted class as an output, which is formalised as:

Definition 2
Let g ∈ Ω ⊆ Rng be an observation, paired with a label y ∈ Ωy ⊆ N. A classifier is a function C
such that the following holds:

C : Ω→ Ωy

g → y
,

where Card(Ωy) corresponds to the number of classes.

We now have to define an "observation". In the context of this manuscript, we study signals
varying in time (i.e. time series) as a signature of the cardiac cells activities (see Section 2 for
more details). Let G be a set of these signals. For each G(i), i = 1, . . . , ns a set of ng ∈ N∗

quantities is extracted (e.g. amplitudes, durations, wavelet coefficients, . . . ). An observation is
then defined as follows:

Definition 3
Let G(i) ∈ RnT be a signal (time series of nT elements in our case). Let fD be a function defined
as follows:

fD : RnT → Ω ⊆ Rng

G(i) → g
.

We name by "observation" the output g of the function fD.

The set G of the whole observations (i.e. for each element of G) is named the dictionary. It
follows that the observation corresponding to the ith signals is g = G(i).

1.2.2 Challenges
As mentioned above, the signals studied in this manuscript are time series corresponding to

recordings of the electrical cardiac cell activity. These time series have a minimal duration which
is about 250ms (it can change according to the cardiac cell type) [YBS12] and can reach up to
several minutes or even hours.

Indeed, no drug has an immediate effect on ion currents and therefore, a delay is necessary
to observe a possible stabilised effect which leads to a recording of several cardiac beats in a
row [BSV+17, GLG+15].
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With a sampling rate between 20kHZ to 40kHZ [JKT+03, XWL14], it results in at least
5.103 recorded amplitudes for one cardiac beat (meaning that G(i) ∈ RnT , with nT = 5.103, for
i = 1, . . . ,ns). From G we now have to construct the function fD to build G the dictionary matrix.
Due to the large amount of recorded information, a large number of quantities has to be extracted
in order to limit the loss of information carried by the signal. It follows that an observation g
belongs to a high-dimensional space Rng (tens, hundreds, thousands or even more).

To deal with a supervised classification problem, we need observations. However, in many
industrial applications (and in the present context of in vitro assays), the experiments which have
to be performed to get these observations are time consuming and costly. In these circumstances,
a few number of samples are then available to resolve the classification problem.

The input of the classification is therefore in a high-dimensional space (Rng) whereas the
number of observations ns is quite low with respect to ng.

This particular context named high dimension/low sample size is related to the "curse of
dimensionality" introduced by Bellman [Bel15]. This critical regime tends to introduce overfitting
(illustration and explanation are given in the left panel of Figure 1.2).

Figure 1.2: Left panel: Example of overfitting in R2. Blue and orange dots are labelled
data (each colour corresponds to one class) providing from the Training set. The true
delimitation is the horizontal black line. The class delimitation learnt by the classifier
is the red line, meaning that observation above the red line will be classified "blue"
whereas observation below the red line, observation will be classified "orange". Here, the
classifier is too precise and has learnt the noise on the labelled data. It will result in
bad classifications for observed data around the true delimitation line (black line). Right
panel: Illustration of the Hughes phenomenon for different sample sizes ns.

Even worse, for a given sample size ns, the classifier performances will decrease as the
dictionary entry size ng will increase. This behaviour is known as Hughes phenomenon [Tad98]
and is reported into the right panel of Figure 1.2.

Considering the above aspects, the main objective is to provide a set of tools which is able to:

• Deal with high dimension/low sample size regimes.

• Consider low/none assumptions on the observable space (i.e. no a priori on the probability
distributions).

• Exploit in silico models to improve the classification performances.

• Have only a few parameters/hyperparameters to be tuned.
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Being challenging for pharmacologists in terms of precision and timesaver, the tool must in
addition be able to fit into an industrial framework.

1.3 Contributions
The work reported in this manuscript originates from the common laboratory (LabCom)

CardioXcomp that has brought together NOTOCORD® part of Instem company and Inria
(Carmen and Reo teams) started in October 2013 and ended in September 2016. This LabCom
was devoted to mathematical modelling for pharmaceutical research and aimed at improving
measurement devices (in particular microelectrode arrays; see Section 2.3.2) for cardiac cells
more precisely. CardioXcomp project led to several contributions [BRGZ15, CGB+16, RBZ+17,
ABC+18, TRLG18]. These works contributed to a better understanding of MEA modelling
based on (human induced pluripotent stem cells derived to) cardiac cells (see Section 2.2 for
more details) and compound effects on recorded signals. Several recent works followed these
contributions to a better comprehension of MEA signals and its interests in cardiac safety
assessments [JCW+20, Küg20].

In the spirit of these studies, the works presented in this manuscript are interdisciplinary
between mathematics and pharmacology, and was carried out jointly at Inria and NOTOCORD®,
part of Instem company. Its final objective is the introduction of the proposed methods in
NOTOCORD’s software. It would not have been possible without the vision of NOTOCORD’s
founder, Philippe Zitoun, and his collaborators, and without the numerous collaborations they
have made possible with various companies and pharmacologists.

Thanks to Celine Hechard, we realised a first collaboration with Tessa de Korte and Stefan
Braam, members of Ncardia5. Electrogram signals provided by microelectrode arrays (MEA) are
studied without and under compound addition. Several quantities (biomarkers) were extracted
from these signals. A method was proposed to construct a classifier based on a goal-oriented
dimension reduction. A first application to Torsades de Pointes risk was applied on in silico
experiments and led to a classification success rate close to 0.94. A second application based on
in silico and in vitro MEA experiments was performed to assess ion channel blockade. It results
in a classification success rate close to 0.89 for the potassium channel blockade. Classification
results obtained for each tested compound is shown as an example in Figure 1.3.

This collaboration led to a published paper in PLOS Computational Biology [RDKL+20] and
is reported into Section 13.

Despite this first study ended by encouraging results, several questions arose:

1. To perform the proposed strategy, a classification method has to be chosen (e.g. linear
discrimant analysis or support vector machines). How to construct a method, which does
not depend on the choice of the classifier?
To answer this question, we investigated a new dimension reduction strategy:

• Because of the high dimensional - low sample size context presented above, a dimension
reduction strategy is needed to construct the input of the classification. Instead of
using classical dimension reduction methods such as Feature Selection or Principal
Componant Analysis, a goal-oriented strategy is proposed. This goal-oriented
strategy aims at reducing the dimension while maximising the classification success
rate (by considering the most relevant entries of the dictionary G), without depending

5Leiden, Netherlands. ncardia.com

https://www.ncardia.com/
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Figure 1.3: Compounds classification results obtained in Section 13.3.2.3. This ternary
classification task aims at detecting which ion channel (potassium: K, sodium: Na, or
calcium: Ca) is blocked by a compound. Values returned by the classifier (black values in
the polar plots) are the probabilities to block the corresponding channel blocker.

on the choice of a classifier. Thus, a score function related to the classification
success rate was introduced. This score function was compared with distances and
f-divergences usually considered in classification problems. Instead of maximising
the score function over the whole dictionary matrix, which can be challenging, a
Double Greedy Dimension Reduction (DGDR) strategy is proposed to approximate
the solution of the problem. Numerical studies were performed (with ng = 105) to
compare the proposed method with existing dimension reduction methods such as
Neighbourhood Component Analysis and Partial Least Squares. Comparisons with
existing dimension reduction methods were also made on experimental datasets. This
study led to an submitted paper [LR19] corresponding to Section 5 in the manuscript.

The proposed Double Greedy Dimension Reduction (DGDR) method was then applied in
two different occasions:

• A joint work with Esther Pueyo, David Adolfo Sampedro-Puente, Jesus Fernandez-
Bes and Pablo Laguna from Zaragoza University aimed at improving ionic channel
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activity estimation based on Action Potential signals6, combining Unscented Kalman
Filter method and the above algorithm extended to regression problems. Numerical
experiments showed that the goal-oriented dimension reduction method extended to
regression problems and coupled with UKF method improve the estimation of the
ionic channel activities. This work resulted into a published paper into IEEE Journal
of Biomedical and Health Informatics [SPRFB+20] corresponding to Section 9.

• A third collaboration was performed with Kadla Røskva Rosholm, Lasse Homann
and Anders Lindqvist, members of Sophion Bioscience7 to study compound effects on
Nav1.7 channels based on automated patch-clamp signals. The aim of the project
was to automate detection of Nav1.7 channel modulators, thereby increasing speed
and accuracy of large compound screens. This detection consists in studying whether
the recorded electrical signal (patch-clamp signal) is affected by the compound at a
given concentration. This hit/no hit binary classification led to a classification success
rate close to 0.95. The application of the DGDR method showed improvements of
the classification performances if compared to the classification method currently
used at Sophion. In particular, for the second-highest concentrations, the accuracy
obtained with the DGDR method is 0.73 against 0.52 with the current evaluation
used at Sophion.
This work is reported into Section 10 of the manuscript. The collaboration is still in
progress in view of a possible publication.

The relevance of the labelled data, whether it be the training or the validation set is
essential for the dimension reduction process (whatever it is). How to deal with wrongly
labelled data or data badly recorded (e.g. due to noise)? In addition, in several applications,
simulations can be considered to enrich the database. This point can particularly be crucial
in cases of costly experiments. However, how to embed these simulated experiments to
improve classification performances? How to deal with simulations presenting a bias? Is
the bias penalising the answer of the question raised by the experimenter?
To address these questions, a strategy was proposed to automatically construct an aug-
mented training set:

• A methodological work was performed in order to construct an augmented training
set. It consists in selecting the most relevant samples (with respect to a score function)
to construct the training set. An algorithm called ASE-HD based on the Hausdorff
distance between sets is proposed. Some theoretical aspects such as convergence were
highlighted. Numerical examples were performed on three study cases. An application
on in silico action potentials was realised in dimension ng = 24 considering different
levels of bias. This work led to a published paper into ESAIM:M2AN [LR21] and
corresponds to Section 6.

2. While the DGDR method deals with the selection of the most relevant (with respect to
the raised question) entries, the second methodological work deals with the selection of
the most relevant samples (with respect to the same question). Roughly speaking, the
first method works on the rows of the dictionary matrix G, while the second one works on
the columns. How these two methodological works can be combined together to provide a
framework? Two studies were considered to manage this coupling:

6Action Potentials are described in Section 2.2.
7Ballerup, Denmark. sophion.com

https://sophion.com
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• The consideration of the two methodological parts was performed to improve results
obtained in the works realised with Ncardia (first paper). Starting from a classification
success rate close to 0.89 for the potassium channel blockade on a blind test set, the
combination of the two proposed methods reached the classification success rate to
0.98 on this same set. These results are reported in Section 14.

• The last collaboration was perfomed with Udo Kraushaar from NMI8. This work aims
at being the closest as possible to a final industrial application before integration into
a software. This is still an ongoing work.

The methodological aspects described above are general and can be applied to other classifi-
cations problems despite the fact that it is applied to cardiac safety pharmacology. The above
contributions were presented in the historical order of the works and raised questions. The
structure of the manuscript does not follow this timeline but is partitioned following the parts
described in the next section.

1.4 Organisation of the manuscript
The manuscript is partitioned into 4 main parts and resumes the above collaborations and

contributions:

• The first part is devoted to the introduction of the problematic and the description of the
technical aspects needed for the reading of the manuscript:

– A preamble to introduce the problematic and the challenges.
– A cardiac safety pharmacology section devoted to the cardiac cell functionality and

measurement tools to record electrical activities.
– A mathematical modelling and simulations part to perform in silico experiments.

• The second part (see Part II) describes the two methods to answer the problematic described
above:

– A first section describes the goal-oriented dimension reduction method (DGDR
algorithm).

– A second section deals with the construction of an augmented training set based on
synthetic data, generated by numerical simulations (ASE-HD algorithm).

• In the third part, two applications on cardiac action potentials are performed (see Part III):

– Regression problem to detect ion channel activity under β-adrenergic stimulation.
– Hit/no hit classification based on automated patch-clamps signals.

• Finally, the last part is devoted to the application to microelectrode arrays (see Part IV):

– Compound classification using the first version of the dimension reduction method.
– Coupling of the two proposed methodological works and validation on experimental

data.

An additional part is dedicated to the Conclusion (see Part V).
8Reutlinger, Germany. nmi.de

https://www.nmi.de/en/


Chapter 2

Cardiac Safety Pharmacology

Cardiac safety pharmacology is a discipline appearing at preclinical phases of a drug devel-
opment. Its main objective is to investigate whether a molecule could be a good candidate to
become a drug, by detecting potential undesirable pharmacodynamic effects (such as arrhythmia)
at therapeutic range.

In vitro assays allow a preliminary pruning of the candidates before in vivo assays. In cardiac
safety pharmacology, these in vitro assays are performed on cultured cardiac cells. Its electrical
properties being closely related to its contractility, several techniques and devices were developed
to measure it such as patch-clamp or microelectrode arrays.

13
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2.1 Introduction

Safety pharmacology is a discipline which aims at evaluating risk/benefit of molecules
in a drug discovery context [PAC08, PHdK+18]. Each molecule is studied on the heart to
check whether it has an undesirable effect on it. This study falls in the cardiac safety phar-
macology branch, whose assays mainly deal with hemodynamics and electrophysiological
experiments.

To study these molecule effects, as in any physical problems, two tools are needed:
the object we want to observe and how we observe it (the measurement tool). In this
manuscript, we will only focus on the early stages of cardiac safety pharmacology: in
vitro assays. At this stage, no assays on animals (in vivo) are performed yet, meaning
that experiments are achieved on cultured cardiac cells (described in Section 2.2). The
main characterisation of a cardiac cell is its contractility induced by its electrical activity.
This is why different techniques and devices were developed to measure this electrical
activity (see Section 2.3).

This part is divided into two sections. In Section 2.2 a coarse description of the cardiac
cell is given with more details on the origin of the electrical activity. In Section 2.3 main
techniques and tools to measure this electrical activity are presented.

2.2 Cardiac cell

The cardiac cell or cardiomyocyte is the unit base of the heart. Cardiomyocytes are
not all the same in the myocard (e.g. it exists atrial or ventricular cells). However all of
them have the same following properties. It consists in an eukaryote tubular cell due to
its linear chains named myofibrils, themselves made up of sarcomeres [BDVR+03]. Those
sarcomeres are responsible for the mechanical contraction of the cell.

To allow this contraction, the cardiomyocyte needs energy. This energy is provided
thanks to the high density of mitochondria through the Krebs cycle [AB21]. However
the concentration of ADP/ATP is necessary but not sufficient for the cell contraction.
The calcium (mainly present in the sarcoplasmic reticulum), is necessary for the contrac-
tion [ECKT17]. Then, a regulation of the calcium concentration in the cell has to be
performed between the intracellular space and the extracellular space through the plasmic
membrane of the cell (named sarcolemma). This regulation interferes in a series of ionic
moves through the sarcolemma to control the balance of the electro-chemical state of the
cell.

It exists different kinds of cardiac cells due to its role in the heart. These differences
appear (among others) on the cell membrane (kind and number of channels). However,
despite these differences, cardiomyocytes basically work in a same way and its electrical
activity is closely related to the structure of the sarcolemma.

2.2.1 Sarcolemma

The sarcolemma is a permeable wall (mainly a bilayer of lipids) where some ions
and molecules (or macromolecules) can pass through specific channels. These structures
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are very useful for the communication between cells but also for the adherence and the
molecular transportation for the homoeostasis. The molecular transportation and the
ion transportation more precisely are the backbone of the cardiac cycle activity. These
transports are specific to each ion and can be active (such as pumps) or passive (such
as channels) [AJL+02]. Ionic channels allow a rapid and selective current induced by
a stimulation leading to the cardiomyocyte contraction. Then, ionic channels allow
a regulation of each ionic concentration from each side of the sarcolemma (given in
Table 2.1).

Ion Intracellular concentration (mM) Extracellular concentration (mM)
Na+ ∼ 20 ∼ 145

Ca2+ ∼ 0.0001 ∼ 2.5

K+ ∼ 150 ∼ 4

Table 2.1: Main intracellular and extracellular ionic concentrations of a cardiomy-
ocyte [Kla11].

Ions being electrically charged, the ionic regulation induces a polarity of the cardiac
cells.

2.2.2 Electrical activity

When changes appear in the ionic concentrations (see Table 2.1) from each side of the
sarcolemma, the cardiac cell polarity also changes. The permeability of the cell membrane
induces a chemical gradient, meaning that sodium and calcium tend to enter into the cell
whereas potassium tends to leave the cardiomyocyte (also known as Fick diffusion [Phi06]).
However, this chemical gradient is blocked by the electrical equilibrium which prevents
ions to pass (in a passive diffusive way) through the sarcolemma.

2.2.2.1 Electro-chemical equilibrium

This electrical equilibrium or Nernst equilibrium [Ste13] is given in Equation (2.1).

Es =
RT

zF
ln

[s]e
[s]i

, (2.1)

where Es is the electrical equilibrium of species s, R is the universal gas constant
(≈ 8.314J.mol−1.K−1), T is the temperature (in Kelvin), z is the valence (ionic charge),
F is the Faraday constant (≈ 96.103C.mol−1) and [s]j is the intracellular (j = i) or
extracellular (j = e) concentration of species s. Then, Es corresponds to the value of
the transmembrane voltage such that the ion s does not pass through the membrane
(diffusive and electrical forces are counterbalanced).

Changes in the transmembrane potential will then induce changes in the concentrations
due to the passive diffusion. Then, to maintain concentrations even after changes in the
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transmembrane potential, active membrane structures (pumps or exchangers) allow to
maintain the ionic concentrations from each side of the membrane.

2.2.2.2 Stimulation and cardiac action potential

When a cardiac cell is stimulated, the electro-chemical equilibrium is momentarily
disturbed, sodium channels are open and an inward current of Na+ appears. If this
electrical stimulation is strong enough, the cell is then depolarised (all-or-none law).
The potential difference between the extracellular and intracellular media increases from
approximately −90mV to approximately +20mV . These values change with respect to
the cardiac cell (i.e. atrial, ventricular, . . . ). To return to the electro-chemical equilibrium,
calcium channels are open and an inward current of Ca2+ is induced (plateau phase).
Finally, to go back to its rest potential (∼ −90mV ), K+ leaves the cell through the
opened potassium channels (repolarisation phase). These above aspects are quite general
and more specific channels exist. The global electrical activity recording (see Section 2.3.1)
during a cellular cardiac cycle is named Action Potential (AP). An AP example with its
phases is shown in Figure 2.1.

Figure 2.1: Example of action potential with its different electrical phases.

One full AP cycle (as shown in Figure 2.1) corresponds to one cardiomyocyte beat.
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2.2.2.3 Propagation

Up to now, we considered an isolated cardiac cell. However, at tissue and heart
scale, cells are not exactly beating at the same time. Indeed, once a region starts to
beat, the current is transmitted, inducing a contraction of the cell in the neighbourhood.
This conduction is allowed by gap junctions [KG96, KS01]. These gap junctions are
macromolecular structures composed of two hemi-channels belonging to the sarcolemma
of two neighbours cardiomyocytes (see Figure 2.2).

Figure 2.2: Scheme of connected cardiac cells, by [KNG+19] authorized by CCC Right-
sLink®under license 5253561206879.

They allow the stimulation to the neighbour cardiac cell. To prevent the stimulation
of the previous cell (already excited) a refractory period exists. Other way stated, a
cardiac cell newly excited has to wait a certain time (refractory period) before being
excited once again. This refractory period is induced by the inactivation of the sodium
channels. A new contraction is then able once these inactivated channels are reset. At
body scale, the usual extracellular recording of the electrical heart activity corresponds
to the electrocardiogram (ECG) [Ges89].

2.2.3 hIPSC-CM

In order to perform high throughput screening, pharmacologists need a large bank of
cardiomyocytes. However, these cells are difficult to access. Human induced pluripotent
stem cell-derived cardiomyocytes (hIPSC-CM) are therefore a good alternative in cardiac
safety pharmacology [ASD21, SBM17]. The main idea behind these cells is the potency
to reprogram any somatic cell in order to become a pluripotent stem cell. This major
discovery was awarded by a Nobel prize to Gurdon and Yamanaka for their works [KC13].

Once these pluripotent stem cells are obtained they can be induced into differentiated
cells (e.g. cardiomyocytes: hIPSC-CM) [TTO+07, BKGW12]. The assets of this technique
are twofold. On one hand, it avoids using embryonic cells (ethic problems) [Den06, WM03]

https://www.copyright.com/publishers/rightslink/
https://www.copyright.com/publishers/rightslink/
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and, on the other hand, it allows patient-specific studies [Yam07]. For these reasons,
hIPSC-CMs are now widely used in cardiac safety pharmacology for drug assessment and
arrhythmia risk studies [TTM+09, KATW15, HAC+13, MdKD+18, KYO+18].

2.3 In vitro electrophysiological devices

To study compound effect on the heart at early stages, in vitro assays are performed.
These assays are realised on cardiac cells (or cardiomyocytes) which are either isolated
or grouped, forming a tissue. These steps are essential in cardiac safety pharmacology
to detect arrhythmia risks and/or ionic channel blockade. A compound altering the
nominal activity of a cardiomyocyte may impact its contraction and then its electrical
activity. This is the reason why electrophysiology is so important in cardiac safety
pharmacology. To study this electrical activity, several techniques were developed for
compound assessment. In particular, we will focus on Patch-Clamp techniques, a widely
used method in electrophysiology. Another promising device described in this manuscript
is the Microelectrode Array.

2.3.1 Patch-Clamp techniques

Patch-clamp techniques were originally discovered in the 70’s by Erwin Neher &
Bert Sakmann [SN84] which granted them to the Nobel prize. These techniques aim at
recording electrical activity of a cell from ionic currents passing from the extracellular to
the intracellular media. These ionic movements from either side of the cell membrane
are characteristic to the cells (e.g. neurons [SSLN10] or cardiac cells [HML+03]). The
recorded signal can either be a current or a voltage depending on the protocol used by the
analyst. The experimenter can impose a current (current-clamp) or a voltage (voltage-
clamp), which leads to procure the other physical quantity using Ohm’s law [Kor07].
These recorded signals are essential in safety pharmacology to study compounds and
prevent cardiotoxicity and arrhythmia risks. Indeed, the cell membrane (sarcolemma
in the case of cardiomyocytes studies) can tell a lot on the cell functionality through
the reactions which follow intracellular/extracellular ionic exchanges (see Section 2.2.1).
This is one of the main reasons justifying why this technique is widely used in compound
investigations in the context of cardiac electrophysiology [KV02, JVD+10, JVM+12].

2.3.1.1 Overview of Patch-Clamp techniques

The principle is based on the glass properties of the pipettes able to stick to the
cell membrane. It induces a gigaseal area, implying locally an electrical isolation of
the cell membrane ("patch") [CN92]. Patch-clamp techniques are an ensemble of 5
main configurations: Whole cell, Attached cell, Perforated Whole cell, Outside-out and
Inside-out which are described in the following section.

Configurations
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• Whole cell [FBB02]: This is the most commonly used mode of patch-clamp tech-
niques. In this configuration, the whole cell membrane is involved in the current
recording through multiple channels at once. However, the intracellular medium
will be replaced by the electrode solution. Action potential models described in
Section 3.2 are in a sense similar to this technique. A scheme is given in Figure 2.3.

Figure 2.3: Whole cell configuration.

• Attached cell [MSMSR05]: The micropipette (containing a measurement electrode)
is in contact with the cell membrane. The suction (forming the patched area)
induces a tight seal around it. It follows that measured signal corresponds to the
exchange of ions between the micropipette and the patched area. Very few channels
(or even a single one) may lie into this patched region. As the membrane is not
perforated, the cell is not disturbed, and then mechanisms have a nominal activity.
A scheme is given in Figure 2.4.

Figure 2.4: Attached-cell configuration.

• Perforated Whole-cell [Lin13]: This configuration has the same target has the Whole-
cell case. However, instead of applying a suction, a perforation is realised from the
Attached-cell configuration through pore-forming compounds. It allows ions and
small molecules to pass through the perforated patch whereas larger molecules and
organites cannot pass.

• Outside-out: Once the whole cell configuration is performed, the patched region is
detached from the rest of the cell. The selected channel is outside the cell and the
detached patch forms a kind of open vesicle attached to the micropipette. It allows
to study impact of an element from extracellular medium (micropipette solution)
on the selected ionic channel. A scheme is given in Figure 2.5.
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Figure 2.5: Outside-out configuration.

• Inside-out: Here, the patched area is also detached from the rest of the cell.
The selection channel is inside the micropipette whereas the cytosolic part of the
membrane is exposed to the extracellular medium. This technique is well adapted
to study channels activated by intracellular ligands. A scheme is given in Figure 2.6.

Figure 2.6: Inside-out configuration.

Pros & Cons The existence of these different techniques is justified by several benefits
and drawbacks. The experimental protocol has to be driven with respect to the desired
study (e.g. ionic channel specific, global activity or intracellular/extracellular point of
view). These pros and cons are summarised in Table 2.2.

2.3.1.2 Automated Patch-Clamp

While patch-clamp is essential, various drawbacks exist and have to be overcome.
Indeed, this method is very time-consuming and tedious. Thus, automated patch-
clamp method was developed in the late 1990’s and aims at replacing the manual
patch-clamp process to reduce variability and to increase rapidity. Different studies
have shown the interest of automated patch-clamp for high-throughput screening in the
safety pharmacology context [BF21, YXZ12]. Several kinds of automated patch-clamp
techniques exist such as presented in [YXZ12, DBP+08]. One of these techniques is shown
in Figure 2.7.

It represents the bottom of one perforated well, on which a cell is attached and
perforated. A probe is connected between the extracellular space and the intracellular
space allowing the electrical recording of the attached cell.
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Configuration Pros Cons
Whole-cell Record the global current.

Intra- and extra- cellular com-
ponents are known.

Cannot measure a unitary cur-
rent. Dialysis between mi-
cropipette medium and
intracellular medium.

Perforated Whole-cell Record the global current.
Less damaged cell.

Slow perforation.
Tuning cell-dependent.

Attached-cell Intracellular space preserved. Unknown transmembrane po-
tential.

Inside/Outside -out Single channel current mea-
sured.

Cannot measure the global cur-
rent.
Cannot study a current if the
channel depends on intracellu-
lar components.

Table 2.2: Patch-clamp configurations: Pros and Cons.

Figure 2.7: Example of automated patch-clamp technique.

2.3.2 Microelectrode Arrays

Microelectrode arrays (MEA) were originally developed in the 50’s to measure the
neuronal activity [Che07] whereas its first use on cultured cells was performed around
twenty years later [TJSL+72, Pin06]. MEA devices correspond to plates on which several
electrodes are placed in order to record the electrical cells activities. They were highly
developed in the last decades due to its interest in cardiac safety pharmacology [MBGF04,
SEG+03, MdKD+18]. These improvements tend to automise the experimental process of
electrical activity recordings.

2.3.2.1 Devices

Nowadays, in a high throughput screening context, a MEA is a plate presenting
several wells. In each of these wells, some electrodes are placed on its bottom. It exists a
wide zoology of MEA with different numbers of wells and electrodes per well. Moreover,
in some MEA, electrodes may induce a current in order to diversify the protocols. An
example of MEA device is shown in Figure 2.8 and a scheme with a zoom on one well is
shown in Figure 2.9.
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Figure 2.8: Example of MEA device: 6 wells, 9 recording electrodes per well from
Multichannel Systems2.

Figure 2.9: Zoom on one well of the above MEA. The four plates at the well border (left
panel) are the electrical ground.

To fulfil an experiment, the biologist has to prepare a cell culture and put it inside
the wells. At this moment, cells are lining the electrodes. Then, the recording can be
performed. It seems quite similar to the automated patch-clamp. However, contrary to
this one, cells are preserved (absence of perforation), allowing a non-invasive process.
Moreover, the electrical activity being measured at each electrode, recorded signals namely
Field Potentials (FP) contain information on the conduction in the tissue. It results in a
sense to a kind of electrocardiogram at tissue scale.

2.3.2.2 Extensions

In addition to the electrical activities, several extensions were developed to record
other physical quantities. The argument of this is the fact that for some compounds it

2Documentation available here.

https://www.multichannelsystems.com/sites/multichannelsystems.com/files/documents/data_sheets/60-6wellMEA_Layout.pdf


24 CHAPTER 2. CARDIAC SAFETY PHARMACOLOGY

seems that field potential does not change before and after compound addition (at least
to the naked eye), whereas it is known to have an effect. As an example, Blebbistatin,
a myosin II inhibitor, is known to reduce the cardiomyocyte contraction while the field
potential seems to be the same [LSP15]. The idea is then to measure cells contraction
through an impedance signal [OJT+16].

2.4 Conclusion

As the base unit of the heart, the cardiomyocyte is the gateway to preclinical studies
and cardiac safety pharmacology more precisely. Its contractility characterisation is
induced by an electrical current governed by specific ions passing through the sarcolemma
via different macromolecular structures such as channels or pumps. Thus many studies
turned to this cardiomyocyte electrical activity, leading to several measurement techniques
and tools.

Patch-clamp technique is an ensemble of several configurations depending on the
study the experimenter wants to perform: global activity using a current-clamp protocol,
specific ionic current activity using a voltage-clamp protocol, . . . These techniques are
nowadays commonly used in cardiac safety pharmacology and drug development to study
exchanges between the extracellular and intracellular medium. In particular, recorded
signals such as action potentials are well known and a shape modification induced by a
compound can quite easily be identified (sodium, calcium or potassium blockade, early
afterdepolarisations, . . . ).

However, all of these configurations are quite tedious to perform and signal variability
may appear. To overcome this, automated patch-clamp seems quite promising. Indeed, it
allows a high throughput screening, meaning that at a same time different compounds at
a given concentration can be tested.

Another promising technique are MEA devices. They also allow a non-invasive high
throughput screening, but at a tissue scale, leading to signals closer to the electrocardio-
gram.

To preserve the benefit of the high throughput screening, an automated signal analysis
has to be investigated to efficiently guide pharmacologists in their future decisions. In
complement of these measurement tools, in silico models emerged to go deeper in the
study of the cardiomycyte functionality.



Chapter 3

Mathematical modelling and simulations

One of the CiPA initiative goals is to integrate experimental data with standardised in silico
simulations to improve drug assessment [PJYK19, HLLS20]. The use of in silico models allows
to generate a wide database of simulations, aiming at defining a metric to quantitatively evaluate
the impact of a compound on the cardiac electrical activity [PJYK19, Lei20, LRH+19, LMY+20].
These models essentially consist in reproducing Action Potential signals but recent studies have
been done on Field Potential signals or other physiological measurements [JCW+20, Küg20].
Their development allows an improvement of the cardiac electrophysiology comprehension at
different scales: cell, tissue, heart and body.

25
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3.1 Introduction

In this manuscript, we will focus on two kinds of electrophysiological signals: Action
Potential and Field Potential. While the first is widely used in safety pharmacology, the
second one is promising but challenging due to the lack of knowledge. This Simulation
part is divided into two sections. The first section (see Section 3.2) is devoted to Action
Potential simulations and how these in silico models are derived. In the second section
(see Section 3.3), we will focus on Field Potential simulations and how to consider the
different aspects of the MEA.

3.2 Action Potential simulation

Originally A. Hodgkin and A. Huxley tried to explain the ionic mechanism behind
the action potential of a squid axon [HH52] for which the study led to a Nobel prize. The
proposed idea was to consider the cell membrane as a dipole. The lipid bilayer part of
the membrane is assimilated to a capacitance (as an excellent insulator separating the
intracellular and extracellular media) whereas each ion channel carries a current described
by the conductance (specific to the considered ion channel) and the voltage by the use of
the Ohm’s law. An electrical scheme of the model is shown in Figure 3.1.

Figure 3.1: Electrical scheme of the Hodgkin and Huxley model considering sodium (Na),
calcium (Ca) and potassium (K) channels.

It then results in the model described in Equation (3.1).
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Cm
dVm
dt

=
∑
s

g̃s(Es − Vm) + Iapp, (3.1)

where Cm is the membrane capacitance, Vm is the transmembrane potential, t is the
time, g̃s is the conductance of the channel specific to the ion s, Es is the reversal potential
specific to the ion channel s (see Nernst equilibrium in Section 2.2.2.1) and Iapp is the
stimulation. The first term in the right-hand side of Equation (3.1) can be contracted to
Iion as follows:

Iion =
∑
s

g̃s(Es − Vm). (3.2)

However, ion channels contain gates (see Figure 3.2) which can be in an open or closed
state, resulting in: g̃s = g̃s(t, Vm) and can be rewritten as shown in Equation (3.3).

g̃s = gs(Es − Vm)

Nbs∏
i=1

γ
ps,i
s,i (t, Vm), (3.3)

where gs is the maximal conductance for the ion channel s, Nbs is the number of
gates for the ion channel s, γs,i is an ODE corresponding to the gate i of the ion channel
s activation and ps,i ∈ N∗ is a constant related to the opening/closing behaviour of the
gate.

Figure 3.2: Scheme of an ionic channel specific to the ion s which tends to enter into
the cell with 2 gates. Gate γs,1 is closed and gate γs,2 is open. In this configuration, the
channel is closed but available for activation. When both gates are open, the channel is
activated, whereas when both gates are closed, it is inactivated.

In addition, the ODE depends on parameters specific to each channel and cardiac cell
type (i.e. atrial, ventricular, . . . ). It follows that the general action potential model has
the form given in Equation (3.4).
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Cm
dVm
dt

= Iapp +
∑
s

(
gs(Es − Vm)

Nbs∏
i=1

γ
ps,i
s,i (t, Vm)

)
. (3.4)

3.2.1 Different AP models

A wide variety of AP models can be derived from Equation (3.4). Indeed these
models can be fitted on atrial cells, ventricular cells, hiPSC-CM (atrial or ventricular)
cells, considering concentration dynamics (e.g. calcium transient) or not. . . Some of these
models are given in Table 3.2.1.

Name Cell type Number of ODE in Iion
Courtemanche [CRN98] Atrial human ∼ 20

O’Hara Rudy [OVVR11] Ventricular human ∼ 30

Paci [PHASS13] Atrial/Ventricular hiPSC-CMs ∼ 20

Table 3.1: Example of physiological action potential models.

Alternatively, it exists less physiological and more phenomenological models allowing
AP simulations. Simpler, these models allow fast simulations but are less accurate. Two
of them are described in Table 3.2.1.

Name Cell type Number of ODE in Iion
FitzHugh-Nagumo [Fit61, NAY62] Atrial human 1

Minimal Ventricular [BOCF08] Ventricular human 3

Table 3.2: Example of phenomenological action potential models.

Among those models, the O’Hara Rudy model (ORd) is one of the most used models
in cardiac drug assessment [CFG+16, CJVJS16, PHdK+18]. Indeed, this model is able
to reproduce early afterdepolarisations (EAD1) which can result in arrhythmia such as
torsades de pointes [WGK+10]. Examples of simulated AP are shown in Figure 3.3. The
discretisation method used was a backward differentiation formula (BDF3) with a time
step ∆t = 0.1ms.

3.2.2 Drug modelling

Two main quantities are considered in cardiac safety pharmacology to study how a
compound impacts ionic channels: the compound concentration and the IC50s. The
IC50s is the concentration for which a given compound blocks channels specific to the ion
s at 50% of their nominal activity. To render the compound action on the ion channels,
the conductance-block model [BPS+06, MCS+11, ZBS+13] is proposed. This model is
rewritten in Equation (3.5).

1EAD are abnormal depolarisations during phase 2 or 3 of the Action Potential.
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Figure 3.3: Example of AP signals with different models. FHN: FitzHugh-Nagumo.

gs = gcontrol,s

[
1 +

(
[D]

IC50s

)nH ]−1

, (3.5)

where gcontrol,s is the conductance of the ion channel s at control case (baseline,
corresponding to gs in Equation (3.3)), [D] is the concentration of the drug and IC50s is
a constant (specific to the compound) corresponding to the concentration at which the
ion channel s is blocked at 50%. The parameter nH is the Hill coefficient, quantifying
the interaction between the ligand (compound to simulate) and its binding sites (the ion
channel) [Wei97].

Indeed, the model acts as a scale factor between [0,1] in Equation (3.3). When the
compound concentration decreases, the scale factor tends to 1 meaning that the ion
channel is not affected (control case) whereas an increase of the compound concentration
will tend the scale factor to 0 meaning that the ion channel is fully blocked. The scenario
where the compound concentration [D] = IC50s means that the ion channel s is blocked
at 50% (as the definition of the IC50s). An example is shown in Figure 3.4 where the
corresponding IC50s are given in Table 3.2.2.

3.3 Field Potential simulation

Field Potentials (FP) are signals recorded by MEA devices (see Section 2.3.2). How-
ever, the recorded electrical activity is extracellular (we do not record the transmembrane
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Figure 3.4: Example of dose-response curves. Hill coefficient for each considered ion
channel was set to 1. Corresponding IC50s are given in Table 3.2.2.

Channel Sodium Potassium Calcium
IC50 (µM) 100 5 200

Table 3.3: Example of IC50 for sodium, potassium and calcium channels used in the
conductance-block model to generate Figure 3.4.

potential). Moreover, cardiomyocytes are forming a tissue leading to an electrical in-
teraction. In particular, the conduction is permorfed through the gap junctions (see
Section 2.2.2.3).

3.3.1 Finite element mesh

First, we need to physically describe the cell organisation in a MEA well defined as a
discretised domain D ⊂ R2. An example of P1 Lagrange finite element mesh is shown in
Figure 3.5 (left panel) with the corresponding dimensions (right panel).

3.3.2 Bidomain model

Bidomain equations describe the electrical propagation in a cardiac tissue (e.g. repre-
sented by the finite element mesh described in the previous section). They were formulated
in the late 70’s [Tun78a] and aim at studying the electrical activity at heart scale and
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Figure 3.5: Example of P1 Lagrange finite element mesh (left panel), with the corre-
sponding physical dimensions (right panel). Other descriptions of this MEA are given in
Figures 2.8-2.9 of Section 2.3.2.1.

body scale with ECG simulations [PBC05, ZBS+13]. Its derivation is based on the cable
theory and considers the whole tissue (or heart) characterised by an intracellular and
extracellular space separated by a membrane [GM83].

Am
(
Cm

∂Vm
∂t + Iion(Vm, γ)

)
−∇ · (σi∇Vm)−∇ · (σi∇φe) = AmIapp

−∇ ·
(

(σi + σe)∇φe
)
−∇ · (σi∇Vm) = 0

, (3.6)

where Am is the ratio of membrane area per unit volume, Cm is the membrane capac-
itance, Vm the transmembrane potential, Iion is the current given by the action potential
model (see Equation (3.2)), σi and σe the intracellular and extracellular conductivity
respectively, φe is the extracellular potential and Iapp the stimulation.

In the MEA case, we consider a modified version of the bidomain equations (see
Equation (3.7)) to take into account the interaction with the electrodes.

Am
(
Cm

∂Vm
∂t + Iion(Vm, γ)

)
−∇ · (σi∇Vm)−∇ · (σi∇φe) = AmIapp

−∇ ·
(

(σi + σe)∇φe
)
−∇ · (σi∇Vm) = 1

zthick

∑
ek

Ikel
|ek|1ek

, (3.7)

where |ek| denotes the surface of the electrode k, 1ek denotes its indicator function and
zthick is the thickness of the cell layer. The right-hand side term of the second equation,
stands for the electric current Ikel going through the electrode located at ek. More details
are given in [ABC+18]. The Ikel current is computed through an imperfect model of the
electrode (see Section 3.3.3).
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3.3.2.1 Boundary conditions

Let n be the outward normal to the boundary of the domain D (i.e. a well). The
bidomain model extended to the MEA (see Equation (3.7)) is completed by the boundary
conditions defined in Equation (3.8).

σi∇φi · n = 0{
φe = 0 on the region connected to the ground
σe∇φe · n = 0 elsewhere

, (3.8)

where φi = Vm + φe is the intracellular potential. An example is given in the right
panel of Figure 3.5, where ΓN stands for the Neumann boundary condition and ΓD stands
for the Dirichlet boundary condition.

3.3.2.2 Source term: Iapp

The current Iapp = Iapp(x, y, t) is the origin of the activation. The source is supposed
to be located in a unique region and is defined as follows:

Iapp(x, y, t) =

{
I0 exp

[
(t−t0)2

2σ2

]
if (x− x0)2 + (y − y0)2 ≤ r2,

0, otherwise,
(3.9)

where the position (x0,y0) is drawn randomly. Parameter r is the radius of the source,
I0 is the maximum stimulation value and t0 is the time when Iapp is at its maximum.

Remark 1
Sometimes, it may have multiple localised sources in a same well. However, based on in
vitro data, it seems that a unique source appear most of the time (as obtained through
activation maps in [INNW+17, LBM+17, ZSS+17]).

3.3.3 Electrode model

To take the impact of the electrodes on the signal into account, an imperfect electrode
model [RBZ+17] is coupled with the bidomain equations. The model is described in
Equation (3.10).

dIkel
dt

+
Ikel
τ

=
Cel
τ

d

dt
φke,mean, (3.10)

where φke,mean is the averaged extracellular potential on the electrode ek, Rel and Cel
are the electrode resistance and electrode capacitance respectively and Ri is the internal
resistance of the measurement device. τ = Cel(Ri +Rel) is the time constant of the RC
circuit. Then, the field potential φkf measured on the electrode ek is given by φkf = RiI

k
el.

The electrical scheme of the imperfect electrode model is shown in Figure 3.6.
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Figure 3.6: Electrical scheme of the imperfect electrode model.

3.3.4 Heterogeneity

Although cultured hiPSC-CMs are highly pure [MGF+11, FYK+20], some of them
may not beat, or present another phenotype: atrial instead of ventricular as an example.
To simulate this heterogeneity in the cell distribution inside a well, a space stochastic
process was introduced, similarly to what was proposed in [TRLG18]: let (Z,A,P) be a
complete probability space, Z being the set of outcomes, A a σ-algebra and P a probability
measure:

c(x,ζ) : Ω× Z → [0,1]. (3.11)

A hypothesis on the correlation of the process was made and expressed in Equa-
tion (3.12):

fc

[(
x
y

)
,

(
x′

y′

)]
= exp

[
−(x− x′)2 + (y − y′)2

2l2c

]
, (3.12)

that is, the correlation is normal and its length lc was set to 0.25 mm, which cor-
responds approximately to the distance between two electrodes. A Karhunen-Loève
expansion based on the diagonalisation of the correlation kernel was used in order to
generate the heterogeneity fields (see [TRLG18] for details). As shown in [BGMW19] in
a case of a low value for lc, the medium is homogenised which leads to a decrease of the
repolarisation phase. The parameter lc = 0.25 mm was a good choice to qualitatively
reproduce FP signals and more precisely the repolarisation phase.

3.3.5 Example of applications

3.3.5.1 Field Potential simulation at control case

An example of Field Potential simulations with parameters given in Table 3.4 is
presented here.
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Am Cm σe σe
200.0cm−1 1.0µF.cm−2 0.002µS.cm−2 0.002µS.cm−2

Table 3.4: Bidomain equations parameters used for the example.

The time step is 0.1ms. Parameters used for the imperfect electrode model are given in
Table 13.2 and boundary conditions are given in the right panel of Figure 3.5. Parameters
of the stimulation are 50µm, t0 = 5ms, I0 = −80pA/pF and ∆t = 4ms.

Cel Ri Rel
1nF 2MΩ 10MΩ

Table 3.5: Parameters used for the imperfect electrode model.

The heterogeneity field is given by the left panel of Figure 3.7. The action potential
used is the MV model, considering epicardial cells and endocardial cells (parameters given
in [BOCF08]) for the heterogeneity. Right panel of Figure 3.7 shows the propagation
wave at time t = 8ms.

Figure 3.7: Example of simulation. Left: Heterogeneity field (using Epi- and Endo- cardial
cells parameters of the MV action potential model). Right: Extracellular potential on the
whole well at t = 8ms.

Action Potentials and Field Potentials at the electrodes are shown in Figure 3.8.

3.3.5.2 Example of EAD simulation

Using the conductance-block model, we can simulate known or unknown compounds
(for instance, by randomly blocking sodium, calcium and/or potassium channels). Fig-
ure 3.9 shows an example of simulated early afterdepolarisation (EAD) using the ORd
model, as a result of blocking IKr current at 93.5%.



36 CHAPTER 3. MATHEMATICAL MODELLING AND SIMULATIONS

Figure 3.8: Example of simulation. Left: Action Potentials at the electrodes. Right: Field
Potentials at the electrodes.

The FP and intracellular calcium transient shapes are in good qualitative agreement
with in vitro experimental signals [NMM+14, CWL+15, YKI+18].

3.4 Conclusion

While the first in silico Action Potential model has been derived in the 50’s, this
field of research is still in progress for several reasons such as the consideration of new
cells (e.g. hiPSC-CM) or the consideration of intracellular organites (e.g. sarcoplasmic
reticulum). A wide variety of models exists and can be categorised according to two main
types: phenomenological (e.g. FHN or MV) or physiological (e.g. Courtemanche, ORd or
Paci). The drug modelling can be achieved by combining an Action Potential model with
a conductance-block model which takes into account two pharmacological quantities: the
compound concentration and the IC50 for considered ion channels.

Action Potential models are essential to mimic the cardiac electrical activity at higher
scales such as tissue or body. They are coupled with bidomain equations, governing the
electrical propagation in a tissue. The Field Potential simulation can be achieved by
resolving these equations on a finite element mesh of the well with suitable boundary
conditions. Moreover, different Action Potential models or different parameterisations of
an Action Potential model can be used to introduce some heterogeneity in the well.
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Figure 3.9: EAD simulation. Transmembrane action potential (AP, blue), extracellular
field potential (FP, orange) recorded at one electrode and intracellular calcium transient
trace (green) in a simulated EAD case.

The ORd Action Potential model combined with bidomain equations leads to qualita-
tively good signals in EAD case if compared with in vitro experimental traces.

Some improvements could however be done by considering the coating present at
the bottom of the well. Indeed, to attach cells to the bottom of the well, a coating of
fibronectin or collagen is performed in a first step [Bla13].
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Chapter 4

Summary

Electrophysiology is the entry point of the cardiac safety pharmacology resulting into two
main branches at early stages of drug development: in vitro and in silico assays.

In vitro experiments have been made possible through the development of measurement tools
and techniques, Patch-Clamp being the most used. On the other hand, the access to cardiac
cells was improved by properties of cells to be differentiated into cardiomyocytes. More recent
measurement tools have been developed to allow high throughput screening such as automated
patch-clamp and MEA.

In silico models were performed to go deeper into the investigation of cardiac cells func-
tionalities. Based on the original Hodgkin and Huxley model, they were extended and fitted
by considering specific cardiac cells and/or concentration dynamics. Conductance-block model
allows the simulation of compound effects, considering its concentration and the corresponding
IC50s. The derivation of the bidomain equations based on the cable theory aims at describing
the electrical propagation into a tissue. Coupled with an action potential model, it allows to
simulate FP signals from a finite element mesh of the well and suitable boundary conditions.

The complementarity of these two branches has been highlighted in various works [RCAG+15,
Küg20] and confirms the objectives of the consortiums (CiPA, JiCSA, . . . ) for new guidelines.
The access to an in vitro and/or in silico database tends to consider probabilistic and statistical
approaches to improve pharmacologists decisions. It then, opens the door to the use of machine
learning techniques.
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Part II

Methodology
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Introduction

Computer performances as well as the amount of available data allow nowadays to help
scientists to go further in their investigations. Indeed machine learning techniques aim at
automatically treating data based on a probabilistic and statistical point of view. However, it
remains some domains in which there is a lack of data. This is particularly the case in cardiac
safety pharmacology, either because the technique is too slow (e.g. patch-clamp), or it is too
recent (e.g. automated patch-clamp and MEA). Moreover this data contain a high quantity of
information (being time series). These two points lead to a so-called high-dimensional/low sample
size regime (introduced in the Introduction). To overcome this, dimension reduction methods
were developed. However, these techniques are not necessarily well adapted in classification task
context. Indeed, the method can either be too simple (e.g. Feature Selection: FS), not answering
the classification task (e.g. Principal Component Analysis: PCA), not sparse (e.g. Partial Least
Squares: PLS) or depending on many parameters (e.g. Neural Networks: NN). The first part of
this chapter presents a sparse goal-oriented dimension reduction method respecting the following
constraints:

• Sparse dimension reduction,

• Oriented to maximise the classification success rate,

• Few parameters to tune,

in respect with the problematic described in the Introduction.
On top of that, available data may not cover the whole observable space, some of them

might be too noisy to be considered or even wrongly labelled in the case of classification task.
To struggle with this, numerical simulations may help if a mathematical model on the problem
we are working on exists. To deal with these particular cases, many fields of study arose such
as augmented set construction or instance selection. For the same drawbacks described in the
dimension reduction methods existing, the second part of this chapter is devoted to a method
aiming at constructing an augmented set maximising the classification success rate under the
following constraints:

• Fewer samples as possible (to reduce training time).

• Oriented to maximise the classification success rate.

• Few parameters to tune.

The two following chapters of this part led to two submitted papers.
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Chapter 5

Double Greedy Dimension Reduction
method

In numerous classification problems, the number of available samples to be used in order to
construct a classifier is small, and each sample is a vector whose dimension is large (with respect
to the number of samples). This regime, called high-dimensional/low sample size is particularly
challenging when classification tasks have to be performed. To overcome this shortcoming, several
dimension reduction methods were proposed. This work investigates a greedy optimisation method
that builds a low dimensional classifier input. Some numerical examples are proposed to illustrate
the performances of the method and compare it to other dimension reduction strategies.
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5.1 Introduction

This work investigates a method of dimension reduction applied to classification
problems. These arise in many areas of applied sciences in which data are queried to
provide predictions in a form of yes/no answers or more elaborated classification outcomes.
Often, prior of classification, data is pre-processed in order to train in a more effective
way a classifier. Part of the pre-processing phase takes the form of a linear or non-linear
dimension reduction. Hereafter we propose a systematic way of performing this task.

Let G be an ensemble of signals, provided from experimental measurements, numerical
simulations (or both). Let ns ∈ N∗ be the number of samples that will be used to train
the classifier: for each G(i), i = 1, . . . , ns a set of ng ∈ N∗ quantities are extracted from the
signal. These can be either informed linear or non-linear forms identified by experimental
insight or more agnostic features, such as point values of the signal, local average, Fourier
or Wavelets coefficients. We refer to the set of these quantities for all the available signals
as the dictionary entries G(i)

j ∈ R, i = 1, . . . , ns, j = 1, . . . , ng. The present work deals
with classification problems, namely, given an observable signal coming from a physical
system, we want to determine to which class in a set of possible classes the system belongs
to.

In the present work, for sake of simplicity, the method is derived in the case of binary
classification: its extension to multiple classes is straightforward. The methodology
presented is general, and it was motivated by classification problems arising in biomedical
engineering, in which the problems at hand can sometimes be in a different regime with
respect to the ones classically addressed in Machine Learning. Indeed, as in other fields
of science and engineering, the size ng of quantities that can be extracted from the
signal can be extremely large. Moreover, the number of available samples ns , due to
experimental constraints and to the complexity of the systems at hand, can be small if
compared to ng. This regime, called high dimensional/low sample size in the learning
community is particularly critical when performing classification and regression tasks.
The mathematical reason is that we wish to identify a function whose domain dimension
ng is large, and hence we are exposed to the phenomenon of the curse of dimensionality,
introduced for the first time by Bellman in [Bel15] and related to learning theory in [SZ03].

In [CDD+12, FSV12, MUV15] a theoretical analysis is proposed that describes the
ability of approximating a high-dimensional ridge function by point queries and how the
curse of dimensionality can be eventually circumvented. From a probabilistic viewpoint,
for a given sample size, when the dictionary size becomes too large, the classification
error increases: this is referred to as Hughes phenomenon [Hug68, Tru79]. This regime is
appearing in various areas of science and it is nowadays widely studied [DCZ+13, HMN05,
LHNM08, Mec12].

To overcome this difficulty, several strategies have been devised in the literature,
involving dimension reduction and sparsification. There is a vast literature on the setup
of sparse classifiers. This is often obtained by an optimisation problem involving the `1

distance. For an extensive overview of these works the reader is referred to [HTW19] and
to the seminal works [DET05, CRT06, BMB08]. Recent works have been proposed, as for
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instance [CF20, DHM20]. Among the works done in this field, the most similar in spirit
to the work proposed here is [ZRTH03], in which an `1 optimisation is used to construct
a sparse input space of a Support Vector Machine classifier. With respect to this work,
there are several differences: in the present work we try to setup a goal oriented dimension
reduction which aims at improving a classification score, but which is independent of the
classifier chosen. Moreover, we adopt a greedy strategy in order to promote sparsity.

Concerning the dimension reduction of the input space (consider [Fod02] for an
overview), this was considered in machine learning applications in [GF15, HJP03, KPZ07,
LWZY17]. In most of the references, a dimension reduction strategy is applied and the
results in terms of classification are then analysed.

Several methods were proposed, for instance, in metric learning [BHS13], which have
an analogous goal and are similar, in the spirit, to what is proposed in the current work.
Among the methods, we cite and comment the ones which are related the most, and
perform some numerical tests. In partial least square (the reader can refer to [RK05]
for an overview), the objective is to maximise the correlation between two given sets of
variables. This can be adapted to classification and represents a viable way to perform
dimension reduction. The main difference with respect to the present work is that we
do not attempt to maximise correlation; instead, the method maximises a classification
score, which is discussed later on. In the Average Neighbourhood Margin Maximisation
(ANMM) [WZ07], the authors propose to construct a linear subspace (to which data are
projected on), by pulling together, in a neighbourhood, points with the same label, and
try to maximise the distance of points with different labels. This method is similar to
what is proposed in the present work, with some differences: the score which is maximised
here is not related to distance or margin, per se, it is based on a probabilistic argument
and it is the measure of the success event related to the classification; moreover, the
linear subspace is found in a greedy parsimonious way, to promote, as much as possible,
sparsity. In neighbourhood component analysis (NCA), described in [BHS13, QSHZ15],
a linear embedding is learned from data, which, at once, performs dimension reduction
and metric learning. It is meant to maximise the classification score of KNN classifiers.
In the present work we do not seek to learn a metric, but to maximise a measure. The
resulting method could improve the classification score of all kinds of classifiers, as the
numerical experiments show.

The proposed method consists in projecting the dictionary entries into a low-
dimensional linear subspace (obtained by a sparse linear combination of the entries),
which is computed in order to optimise the classification success rate. From a dimen-
sion reduction point of view, the method proposed can be considered as a goal-oriented
dimension reduction.

5.1.1 Notations and assumptions

Let Xng ∈ Rng be a random vector of the probability space (Ω,A,P). We assume
that the probability function (pdf) of Xng is a mixture of the form:

ρ(g) = π0ρ0(g) + π1ρ1(g), (5.1)
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where ρi(g) = ρi(g|y∗ = i) is the conditional probability of g given that its label is
y∗ = i. The scalars πi are the weights of the mixture and they can be seen as the a priori
probability mass of being in the class i. It holds π0 + π1 = 1. A classifier is defined in
Definition 4 with n = ng.

Definition 4
Let g ∈ Rn be an observation, paired with a label y. A binary classifier is a function Cn
such that the following holds:

Cn : Rng → {0,1}
g → y

.

Some geometrical notations are introduced. Let k ≤ ng . The Grassmann manifold
Grk,ng is the set of k-dimensional linear subspace of Rng . The method proposed in the
present work can be seen as an optimisation on the compact Stiefel manifold, denoted by
Mk,ng , whose definition is recalled in Definition 5. An element of the Stiefel manifold
will be denoted by M .

Definition 5
A real Stiefel manifoldMk,ng is a set of all the k-frames in Rng :

Mk,ng
∆
= {Y = (Y1, . . . ,Yk), Yi ∈ Rng | Y T

i Yj = δij ,∀1 ≤ i,j ≤ k},

so that the elements of the compact Stiefel manifold are the matrices of M ∈ Rng×k
with orthonormal columns.

The Stiefel manifoldMng ,ng = O(ng) is the orthogonal group. An element R ∈ O(ng)
satisfies RTR = RRT = Ing . An element of Mng ,ng , can be seen, roughly speaking,
as the concatenation of an element of the Stiefel manifold, and an element belonging
to the orthogonal complement of the subspace spanned by the columns of M , denoted
M⊥, whose columns are orthonormal: R = [M,M⊥]. Let us consider the endomorphism
induced by R, and how the probability ρ is transformed accordingly. The change of
coordinates g = Rξ is applied to the expression in Equation (6.1) leading to:

ρ(ξ) = π0ρ0(Rξ) + π1ρ1(Rξ),

that holds since det(R) = 1.

5.2 Method

The method is detailed. An elementM of a Stiefel manifold is used to reduce the input
dimension: x ∈ Rk (the dimension k is, also, an outcome of the proposed method). Let
Ck be a classifier in the projected space of dimension k (see Section 5.1.1 and Definition 4
with n = k). It is defined as:
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Definition 6
The classifier Ck in the subspace of dimension k � ng is defined as follows:

Ck : Rk → {0,1}
x = MT g → y

,

where g ∈ Rng is an observation, M ∈Mk,ng and y is the label in the projected space.

The objective is to find M ∈Mk,ng which maximises the success rate of the classifier
Ck. In particular, we will introduce an objective function related to the classification
success rate, intrinsically related to the ability of distinguishing the elements belonging
to two classes. As a consequence, the proposed method applies to all kinds of classifiers.

5.2.1 Classification score in the reduced space

The classification score is investigated and its relation to the score in the dictionary
space is derived. Roughly speaking, reducing the dimension also reduces the amount
of information the input carries about the classification output. This loss has to be
quantified and minimised.

First, a consideration on the projected density on a Stiefel manifold element is
presented, which will be used to derive the relationship between the classification score
and the total variation in the reduced input space.

By the properties of orthogonality of the elements Stiefel manifold and one element
belonging to the space orthogonal to the space spanned by its columns, the pdf p in
the projected space of dimension k < ng corresponds to the marginals of ρ as shown in
Equation (5.2). Indeed, let M ∈ Mk,ng and R = [M,M⊥]. Let an input x = MT g; we
denote by ξ ∈ Rng the vector ξ = RT g. It follows that x = [ξ1; . . . ; ξk]. Since R is an
element of the orthogonal group, it holds:

p(x) =

ˆ
Rng−k

ρ(ξ)dξk+1 . . . dξng , (5.2)

and hence:

p(x) = π0p0(x) + π1p1(x). (5.3)

An important consequence is that p is a mixture of the same form as ρ, and, moreover,
pi(x) is the conditional probability density of x given that its label y∗ = i:

pi(x) = p(x|y∗ = i), (5.4)

for i = 0 or 1.

Remark 2
The element M⊥ is arbitrary, and defined up to a unitary transformation. Remark,
however, that the result on the transformation of the probability density p(x) does not
change by virtue of the operation of marginalisation.
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The input space is subdivided into three distinct regions, in relation to what the
classifier Ck (see Definition 6) would provide, based on a probability argument. We denote
by S0 ⊆ Rk, S1 ⊆ Rk and S2 ⊆ Rk:

Definition 7 
S0

∆
= {x = MT g ∈ Rk | π0p0(x) > π1p1(x)}

S1
∆
= {x = MT g ∈ Rk | π0p0(x) < π1p1(x)}

S2
∆
= {x = MT g ∈ Rk | π0p0(x) = π1p1(x)}

.

It follows that:

• Si ∩ Sj = ∅, ∀i 6= j.

• ∪2
i=0Si = S ⊆ Rk.

Let (g, y∗) be a pair such that g ∈ Rng is an observation and y∗ ∈ {0, 1} the
corresponding label (the true label). Let AS be the ensemble of the success events, that is
when the classifier Ck provides as result y = y∗. The set of success events can be defined
as:

Definition 8 
AS0

∆
= {y∗, x = MT g | (y∗ = 0) ∧ x ∈ S0}

AS1

∆
= {y∗, x = MT g | (y∗ = 1) ∧ x ∈ S1}

AS2

∆
= {y∗, x = MT g | (y∗ = 0,1) ∧ x ∈ S2}

.

And,

AS
∆
= ∪2

i=0ASi .

Remark that the sets ASi define the cases in which the label of the classification
obtained by the classifier (x ∈ S0 would be classified y = 0) corresponds to the true labels.
The success rate is henceforth related to the measure of these sets:

µ(AS) =

ˆ
S0

π0p0(x)dx+

ˆ
S1

π1p1(x)dx+
1

2

ˆ
S2

p(x)dx. (5.5)

The 1
2 factor is justified by the fact that we expect to have half of the realisations

to be well classified on S2. This score is analogous to the excess risk measure proposed
in [BCDD14] which consists in evaluating a regression function over the symmetric
difference between the true sets (of each class) and the sets (of each class) obtained
through a Bayesian classifier in the context of set estimation.

One of the contributions of the present work is to relate this measure of the success
rate for a classification problems to other measures which are widely used in the literature.
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An important aspect is that the proposed classification assessment score also applies
to data distributions with very mild regularity assumptions. This is presented in the
following sections.

5.2.1.1 Relation to the total variation

In order to quantify the success rate of the classification, distances or divergences
between densities are commonly used. We denote by δTV the total variation [BGvdM92,
NP16] (see Definition 91 ). The total variation is a f-divergence [Csi64] which is also a
metric over the probability densities.

Definition 9
Let P and Q be two probability distributions on (Ω,A) (with Ω the sample space and A
a σ-algebra) and p and q the corresponding pdf. Then, the total variation is:

δTV (P,Q) =
1

2

ˆ
Ω
|p(x)− q(x)|dx.

The pertinence of the total variation in relation to classification can be hinted by
the following consideration. When the total variation is 0, the probability distributions
corresponding to the two classes coincide almost everywhere. It means that for any obser-
vation (up to a zero measure set), we could attribute either 0 or 1 and no discrimination
between the two classes would be possible based on a probability argument.

In the following of this paper, we make the hypothesis that the total variation between
ρ0 and ρ1 is strictly positive, that is δTV (ρ0, ρ1) > 0. In the case of binary classification,
we also assume that min(π0, π1) > 0. We show hereafter that the measure of success
presented in Equation (5.5) is related to the total variation between the densities p0 and
p1:

Proposition 1
Let p(x) be defined as in Equation (5.3)-(5.4), and the quantity µ(AS) be defined as in
Equation (5.5). It holds:

µ(AS) =
1

2
+

1

2

(ˆ
S
|π0p0 − π1p1|dx

)
. (5.6)

The demonstration of Proposition 1 is given in Section 5.5 in the Appendix.

Remark 3
From Equation (5.6) obtained in the proof, we can directly see that 1

2 ≤ µ(AS) ≤ 1. The
lower bound is attained when S2 = S (π0p0 = π1p1 almost everywhere on S). In that
case, the scaled densities are equal a.e. and the probability of being in class 0 or 1 is 1

2 ,
which means that on average, half of the observations are well classified.

1This definition is a variant of the original definition of the total variation [BGvdM92, GS02]
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Corollary 1
The score µ(AS) is bounded by the total variation as follows:max

(
1
2 ,

1−|π0−π1|
2 + (1 + |π0 − π1|) δTV (p0,p1)

2

)
≤ µ(AS)

µ(As) ≤ min
(

1, 1+|π0−π1|
2 + δTV (p0,p1)

2

) .

The proof is given in Section 5.5 in the Appendix.

Remark 4
Many properties arise from Corollary 1:

1. If p0 = p1 almost everywhere, we have: 1
2 ≤ µ(AS) ≤ 1+|π0−π1|

2 .

2. If π0 = π1, we have: µ(AS) = 1
2 + δTV (p0,p1)

2 .

3. If πi = 1 (then πj = 0 for j 6= i), we have:
max(1

2 , δTV (p0,p1)) ≤ µ(AS) ≤ 1.

4. If δTV (p0,p1) = 1, we have: µ(AS) = 1.

The result of the Proposition presented above states that the success rate of the
classifier using the reduced input x can be directly related to the total variation of the
projected densities. Aiming at quantifying the loss with respect to the classifier that
exploits at best all the dictionary entries, we prove the following result:

Proposition 2
Let ρ0 and ρ1 be the densities defined in Equation (6.1). Then, it holds:

µ(AS) ≤ min
(

1,
1 + |π0 − π1|

2
+
δTV (ρ0,ρ1)

2

)
.

The proof of Proposition 2 in given in Section 5.5 in the Appendix. The result of the
above Proposition shows that the total variation in the dictionary space of dimension
ng is a natural upper bound of the score. By projecting on a Stiefel manifold we cannot
improve with respect to the best classifier that uses all the information.

An illustration of the relationships between the score and the total variation is proposed
in Figure 5.1.

From the inequality shown on µ(AS) in Corollary 1, many relations can be established
with other metrics [GS02]. In this paper we compare the success rate measure to
the Hellinger distance (see 5.2.1.2) and the symmetrised Kullback-Leibler divergence
(see 5.2.1.3).
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Figure 5.1: Example of the pdf of two classes (0 and 1) in the projected space. Here,
π0 = π1 = 1

2 and µL(S2) = 0 (the Lebesgue measure of S2).

5.2.1.2 Relation to the Hellinger distance

The Hellinger distance (see Definition 10) is a f-divergence [Csi64]. For some studies
the Hellinger distance is preferred to other common f-divergences as the Kullback-Leibler
divergence or χ2-divergence which are not metrics [She14].

Definition 10
The Hellinger distance dH between two absolutely continuous probability distributions P
and Q on S, with pdfs p and q respectively is:

d2
H(P,Q) ,

1

2

ˆ
S

(√
p(x)−

√
q(x)

)2
dx.

Using the following inequalities between the Hellinger distance and the total variation
(see [Sur21] for the proofs):

d2
H(P0,P1) ≤ δTV (p0,p1) ≤

√
2dH(P0,P1),

we can establish the following result:

Proposition 3
Let P0 and P1 be two probability distributions on S and p0 and p1 the corresponding pdf.
Then,
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max
(

1
2 ,

1−|π0−π1|
2 + (1 + |π0 − π1|)

d2H(P0,P1)
2

)
≤ µ(AS)

µ(AS) ≤ min
(

1, 1+|π0−π1|
2 +

√
2d2H(p0,p1)

2

) ,

where dH is the Hellinger distance (see Definition 10) and µ(AS) the success event
measure defined previously in Equation (5.5).

The proof of Proposition 3 is immediate using the result of the Corollary 1 and the
inequalities between the Hellinger distance and the total variation, proposed in [DP17].

5.2.1.3 Relation to the symmetrised Kullback-Leibler divergence

The Kullback-Leibler divergence (or relative entropy) [KL51] (see Definition 11) is a
measure of the dissimilarity of a probability distribution to another. It reads:

Definition 11
The Kullback-Leibler divergence between two continuous probability distributions P and
Q on S, with pdf p and q respectively is:

DKL(P ||Q) ,
ˆ
S
p(x) ln

(
p(x)

q(x)

)
dx.

In many classification problems, for symmetry reasons, the symmetrised Kullback-
Leibler divergence is introduced: DSKL(P,Q) , 1

2

(
DKL(P ||Q) + DKL(Q||P )

)
. Aiming

at improving the classification, the maximisation of the symmetrised Kullback-Leibler
divergence is proposed [Big03, LS03, LFGS16, RSB+04]. Hereafter, a result is proved
relating the classification score defined in Equation (5.5) to the symmetrised Kullback-
Leibler divergence.

Proposition 4
Let P0 and P1 be two continuous probability distributions on S (see Definition of the set
S in 7) with pdf p0 and p1 respectively.

If log
(
p0
p1

)
∈ L∞(S) and, moreover, DKL(pi||pj) < + inf for i 6= j, i,j = 0 or 1

(absolute continuity of Pi with rescpect to Pj) then, ∃c > 0 such that the following
inequalities hold:

2
(

2µ(AS)− (1 + |π0 − π1|)
)2
≤ DSKL(P0,P1) ≤ c2µ(AS) + |π0 − π1| − 1

1 + |π0 − π1|
.

Under the hypothesis of Propostion 4, we clearly see that the minimum ofDSKL(P0,P1)
is 0 and it is reached for µ(AS) = 1

2 (the minimum of µ(AS)). Moreover, increasing
the success rate is equivalent to increase the value of the symmetrised Kullback-Leibler
divergence.
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5.2.1.4 Some words on the semi-supervised classification

It may appear that labelled data belong to only one class whereas more than one
class exist in the classification task. In this context, a classical supervised classification
will fail as all the samples will have the same label as the one considered at the learning
phase. To overcome this, we first introduce a dummy class for which the pdf is described
in Equation (5.7)

pdummy = π0p0 + π1p1. (5.7)

This dummy class corresponds to either the labelled samples or unlabelled samples.
We now consider the mixture between the pdf of labelled samples (let say 0) and the pdf
of either labelled and unlabelled samples as shown in Equation (5.8).

p′(x) = π′0p
′
0(x) + π′1p

′
dummy(x). (5.8)

Let µ′(AS) be the corresponding new score. Then from Equation (5.8) the pdf of the
dummy class described in Equation (5.7) and the definition of the score in Equation (5.5)
we have:

µ′(AS) =
1

2
+

1

2

ˆ
S
|π′0p0 − π′1(π0p0 + π1p1)|dx.

As we have less information in semi-supervised classification, it is reasonable to set
the a priori πi and π′i to

1
2 . It immediately yields to:

µ′(AS) = µ(AS)− 1

4
δTV (p0,p1). (5.9)

Under these assumptions, the result in Equation (5.9) is expected. With less informa-
tion (semi-supervised case) we cannot expect to have a better score than in the supervised
scenario. Moreover, the score on the semi-supervised case directly depends on the score
on the supervised case and the total variation between the pdf of the two classes.

5.2.2 Optimisation of the classification success rate

The method proposed consists in choosing an element of the Stiefel manifold to
define the input of the classifier: x = MT g. The goal is to optimise the score µ(AS)
introduced and commented in the section above. Optimising over all the possible elements
of the Stiefel manifolds (of multiple and unknown dimension k) would be prohibitive. To
circumvent this, a double greedy approach is proposed. A comprehensive analysis of the
possible formulation of greedy methods and their analysis is proposed in [Tem15].

The heuristics we follow are the following: the smaller the dimension of the input,
the better it is in terms of palliating the curse of dimensionality; aiming at reducing
possible overfitting phenomena, the sparser the orthonormal vectors of M , the better it is.
Henceforth, the strategy which is investigated is the following: we start with k = 1 and
look for a vector of unitary norm such that at each step of a greedy method, we maximise
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µ(AS). When the error on a validation set stagnates and start increasing (early stopping
criterion [Pre98]), we start considering k = 2. The first column vector of M is the result
of the previous step of the method, and by a greedy approach we construct a second
unitary norm column vector, orthogonal to the first one. This can be iterated until the
error on a validation set starts increasing as soon as we start building the (k + 1)−th
vector.

5.2.2.1 Computation of µ(AS)

Before detailing the double greedy algorithm in Section 5.2.2.2, let us introduce a
strategy to approximate the measure of the success events µ(AS). In general, the densities
p0 and p1 are not known. Instead, samples are given. To approximate the integral in
Equation (5.5), we use a Montecarlo approach: in the present case, it turns out to be
a counting of how many samples are correctly classified, that is y = y∗). The difficulty
is to precisely estimate the regions S0, S1 and S2. For that, an estimation of the values
of p0, p1 is required. Since the dimension k is usually small (for instance k = 1,2,3), a
Kernel Density Estimation (KDE) is a viable way to estimate the values of p0 and p1 and
hence to have an approximation of the decomposition of S. For larger values of k, KDE
could become impractical and costly from a numerical point of view [LW19]. A surrogate
is proposed, based on the use of the Mahalanobis distance [DMJRM00, XNZ08]. This
provides a perfect outcome in the case of Gaussian distributions. Since, in general, the
projected densities p0 and p1 are not Gaussians, an approximation based on hierarchical
clustering is proposed. Roughly speaking, classes i (i = 0,1) may be seen as a mixture of
Gaussian distributions of means (µ

(1)
i , . . . ,µ

(l)
i ) and covariance matrices (Σ

(1)
i , . . . ,Σ

(l)
i ),

that can be computed by clustering. For an observation x with a label y∗ = i the success
event s is given by:

d
(k)
i = (x− µ(k)

i )T [Σ
(k)
i ]−1(x− µ(k)

i ), i = 0,1,

s(x) =

{
1 if mink=1,...,li d

(k)
i < mink=1,...,lj d

(k)
j and y∗ = i (j 6= i)

0 otherwise
. (5.10)

For all the entries of the dataset, the individual score s proposed in Equation (5.10)
can be evaluated. The approximation of µ(AS) to be used reads:

µ(AS) ≈ π0

n0

n0∑
l=1

s(x
(l)
|y∗=0) +

π1

n1

n1∑
l=1

s(x
(l)
|y∗=1),

where n0 + n1 = ns, with n0 and n1 are the number of samples labelled y∗ = 0
and y∗ = 1 respectively. This is an empirical approximation of the score introduced in
Equation (5.5). The error introduced by such an approximation and possible alternatives
are discussed in [BCDD14]. An example of score estimation is shown in Figure 5.2. In
this example, the distribution of the class 0 is a mixture of a Gaussian and a uniform



58 CHAPTER 5. DGDR METHOD

Figure 5.2: Example of classification using Mahalanobis distance. The Kernel Density
Estimation using a Gaussian kernel shows the distribution for the two classes. Cluster
centroids were obtained using DBSCAN. Class 0: uniform distribution on the square
centred on 0 and a side of length 1 and a bivariate Gaussian distribution with µ = (1,5)
and identity covariance matrix. Class 1: Gaussian bivariate distributions µa = (5,4) and
µb = (3, − 1) with Σa = (0.8, 0.2; 0.2, 0.6) and Σb = Id. Sample size of 500 for each
distribution.

distribution; class 1 is a mixture of two Gaussian distributions. Samples are drawn and
the hierarchical clustering algorithm applied.

The bound of the probability of being in class i is then given by the multivariate
Chebyshev inequality [Nav13].

5.2.2.2 DGDR algorithm

Let ns,nv ∈ N∗ be the number of the samples used in the training and the validation
phases respectively. A training and a validation datasets (g(i),y

(i)
∗ )nsi=1, (g(i),y

(i)
∗ )nvi=1 are

given, that consist of couples of dictionary entries and corresponding labels.
Let M̂k,ng ∈Mk,ng be the element of the Stiefel Manifold selected at the k−th outer

iteration of the method. The goal is to find a vector ω∗ ∈ Rng , orthogonal to all the
columns of the matrix M̂k,ng , such that:
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M̂k+1,ng = [M̂k,ng , ω∗],

x ∈ Rk+1, x = M̂T
k+1,ngg,

ω∗ = arg sup
ω∈Rng

µ(AS).

When ng is large, this optimisation can be costly. Furthermore, when the vector ω is
sparse the classification tends to be less prone to overfitting phenomena. For these reasons,
ω is constructed in a greedy way. At first ||ω||`0,ng = 1, so that only one dictionary entry
is chosen, by computing the value of the score (on the training dataset) for all possible
choices and keeping the best.

At the beginning of the l−th inner iteration, ||ω||`0,ng = l− 1 , l− 1 dictionary entries
have been chosen and we have to choose the l−th one. Let the chosen indices be in
the set c(k+1) = {i1, . . . , il−1}. The l−th non-zero entry has to be chosen among the
indices i ∈ c(k+1)

c , the complementary set of c(k+1). Moreover, the best values of the
selected entries of ω are sought, such that the result of the classification is the best
possible (in the sense of the score introduced). Once one candidate to be the l−th
non-zero component is proposed, an optimisation task on the entries of ω is performed
by using the CMAES method, detailed in [IB09, KMH+04]. This does not guarantee
automatically that ω is orthogonal to the subspace spanned by the column of M̂k,ng .
Otherwise stated, [M̂k,ng ,ω] ∈ Grk+1,ng . The projection onto the Stiefel manifold is
obtained by QR decomposition. Let Qm ∈ Rng×k+1, Rm ∈ Rk+1×k+1, it holds:

QmRm = [M̂k,ng ,ω],

M̂k+1,ng = Qm.

Among all the possible optimised choices for the l−th component, the one that
maximises the score is chosen. As said, the stopping criterion for these iterations is the
early stopping strategy [Pre98]: the score is computed on the validation set. A stagnation
of the score ends the inner iteration. As soon as increasing the dimension of the Stiefel
manifold does not produce an improvement on the score computed on the validation, the
outer iterations end. Once the algorithm terminates, the element of the Stiefel manifold
is obtained. Details of the method are shown in Algorithm 5.2.2.2.

Remark 5
When, in the proposed method, ||ω||`0,ng = 1, ∀k, the Feature Selection (FS) [GE03]
reduction is retrieved, as a particular case. Furthermore, when the objective function is
not the quantity µ(AS) but the `2 norm of the samples g reconstruction, the proposed
approach turns out to be a sparse approximation of the Principal Component Analysis
(PCA) of the data (a description is provided in [Bis06, WEG87]). The outcome of the
proposed method is therefore a set of orthonormal modes that does not coincide with the
PCA modes. These two methods, FS and PCA, are the most used dimension reduction
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techniques when dealing with classification problems. A numerical comparison will be
proposed in Section 5.3.

Algorithm 1 DGDR algorithm
k ← 1; c← [1, . . . ,ng] {Dimensional counter; Dictionary entry indices.}
µ(AS)newv ← 1/2 {Minimal reachable value of µ(AS) for the validation set.}
µ(AS)oldv ← 0 {Success event measure of the validation set†.}
M̂ ← [ ] {Empty matrix which will be an element of Grk,ng .}
while µ(AS)newv > µ(AS)oldv do
j ← 1; c(k) ← [ ] {Component counter; Stores selected entry indices.}
while µ(AS)newv > µ(AS)oldv do
µ(AS)oldv ← µ(AS)newv {Update stop criteria.}
µ← [0]ng ;W ← [0]ng×ng {To store scores;weights.}
c

(k)
c ← c\c(k)

for l ∈ c(k)
c do

Initialize ωl {Initialize non-zeros indices for CMAES.}
µ(AS)l,ωl ← CMAES(ωl, (gi,y

∗
i )
ns
i=1) {ωl optimisation††.}

µl ← µ(AS)l{Assign the lth component of µ.}
ω ←Weights(ωl, sj , l){Generate lth weight column vector of W ‡.}
Wl ← ω{Assign the lth column of the weight matrix W .}

end for
l∗ ← arg maxl µl {New dictionary entry position for the contribution.}
ω∗ ←Wl∗ {Extract corresponding weights.}
M̂∗ ← [M̂,ω∗]; M∗ ← QR(M̂∗)
Dv ← (MT

∗ gi,y
∗
i )
nv
i=1; Dt ← (MT

∗ gi,y
∗
i )
ns
i=1 {Projected sets.}

µ(AS)newv ← Score(Dv,Dt) {Compute score on the validation set‡‡.}
sj ← [sj ,l∗]; j ← j + 1

end while
M̂ ← [M̂,ω∗]; k ← k + 1

end while
return M̂

†: Any value lower than µ(AS)newv to enter in the while loop.
††: For each ωl computed at each CMAES step, the QR decomposition of [M̂,ωl] and
projection of the training set (xi = MT gi, y

∗
i )
ns
i=1 are performed to compute µ(AS)l.

‡:[0]ng vector with optimised weights assigned to the non-zero positions sj and l.
‡‡: The validation score is computed using KDE or Mahalanobis distance through the
projected training set.
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5.2.3 Principle of analysis

In this section an analysis of the proposed method is presented. The goal is to show
that, in the limit case of an infinite number of samples, or, in alternative, the perfect
knowledge of the pdf, the proposed method tends to maximise the score. In the case in
which all the dictionary entries are used, the score by exploiting all the entries is retrieved.

Proposition 5
Let M̂k,ng ∈ Mk,ng and M̂k,ng = [M̂k−1,ng ,ω]; let 1 ≤ m < ng, and ||ω||`0,ng = m. The
set of non-zero entries of ω is denoted by c, whose cardinality is #c = m. Let ω̃ ∈ Rng .
The set of non-zero entries of ω̃ is c̃, #c̃ = m+ 1. It holds c ⊂ c̃. Then,

max
ω̃

µ(AS) ≥ max
ω

µ(AS).

This proposition shows that, in the inner iteration, as far as we add terms to the
vector ω, the score improves. The proof is immediate. The function µ(AS) is bounded,
the Stiefel manifold is a compact set, and the set of non-zero entries of ω is strictly
included in the one of ω̃. Henceforth, the conclusion. Indeed, at worst, the non-zero entry
of ω̃ which is not a non-zero entry of ω can be set to zero and the equality would hold.
The outer iteration, the one in which the dimension of the element of the Stiefel manifold
is increased, is the object of the following Proposition.

Proposition 6
Let Mk,ng ∈ Mk,ng and the associated score be µ(A

(k)
S ). Let Mk+1,ng ∈ Mk+1,ng such

that:
Mk+1,ng = [Mk,ng , ω],

where ω ∈ Rng and the associated score be µ(A
(k+1)
S ). Then:

µ(A
(k+1)
S ) ≥ µ(A

(k)
S ).

The demonstration of Proposition 6 is given in Section 5.5 in the Appendix.

Remark 6
Since, at each step of the method, we enforce that the matrices Mk,ng belong to the Stiefel
manifold, when k = ng we retrieve an element of the orthogonal group, whose associated
score is the maximal possible.

5.3 Computational studies

In this section, we compare the algorithm with classical tools used for dimension
reduction in the context of classification problems. The first part consists of comparing the
strategy proposed in this paper with Feature Selection (FS) [GE03]. In the second part
we make the comparison with the Principal Component Analysis (PCA) method [Bis06,
WEG87].
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5.3.1 Comparison with feature selection

FS is a widely used dimension reduction tool consisting of selecting a subset of features,
pertinent to answer a clustering [DL00] or classification [DL97] problem. In the context
of the present work, this would consist in selecting a subset of the dictionary entries, and,
as remarked, it can be seen as a particular case of the proposed method.

In this first test case a synthetic example is constructed by considering a Gaussian
mixture: ρ0(g),ρ1(g) are two normal distributions, of mean and variance (µ0,Σ0) and
(µ1,Σ1) respectively. When dealing with Gaussian distributions, the symmetrised Kullback-
Leibler divergence can be analytically computed. In Section 5.2.1, an equivalence between
the symmetrised KL divergence and the score µ(AS) is shown. The symmetrised Kullback-
Leibler divergence between the distributions reads:

DSKL(ρ0,ρ1) =
1

4

(
tr(Σ−1

1 Σ0 + Σ−1
0 Σ1) + (µ1 − µ0)T (Σ−1

0 + Σ−1
1 )(µ1 − µ0)− 2ng

)
.

Let k ∈ N∗ denote the number of entries selected by the FS, let l ∈ N∗, l ≤ ng be such
that the elements of the Stiefel manifold are (Ml,ng ∈Ml,ng) and m ∈ N∗ be the maximal
number of non-zero entries of the columns of Ml,ng .

When projecting Gaussian distributions on linear subspaces, Gaussian distributions
are retrieved, namely P0,P1, whose densities are p0(x),p1(x). The mean and variances of
these are reported in Table 5.3.1 for the case of FS and the proposed method.

Classification strategy Σ0 Σ1 µ0 µ1

FS Ik βIk, β > 0 0k 1k
DGDR Il βIl, β > 0 0l (

√
m, . . . ,

√
m) ∈ Rl+

Table 5.1: Section 5.3.1: Gaussian parameters for feature selection and double greedy
algorithm study case.

The symmetrised Kullback-Leibler divergence for FS and, respectively, for the double
greedy dimension reduction algorithm (DGDR) reads:

D
(FS)
SKL(P0,P1) =

1

4

(
k

β
+ kβ + k(1 +

1

β
)− 2k

)
,

D
(DGDR)
SKL (P0,P1) =

1

4

(
l

β
+ lβ + lm(1 +

1

β
)− 2l

)
.

An analysis of the above expressions provides some insight on the performances of the
methods. Let us consider the difference between the divergences:

fl,k(β) =

(
k

l
− 1

)
β2 +

(
2− k

l

)
β + 2

k

l
− 1, (5.11)

∆ = D
(DGDR)
SKL (P0,P1)−D(FS)

SKL(P0,P1) ≥ 0⇐⇒m ≥
fl,k(β)

β + 1
. (5.12)

Some properties are highlighted:
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• If k = l, then, ∀β, the symmetrised KL divergence is larger for DGDR if m ≥ 1; in
the case in which m = 1, as commented before, the methods coincide.

• If k < l, ∀β, ∆ ≥ 0: in this case DGDR always outperforms FS.

• if k > l, different scenarios are possible.

• It is interesting to consider the case of identical Gaussians, namely β = 1, the
DGDR outperforms FS if m > k

l . Remark that when l = 1 (DGDR selects just an
element of the unit sphere): ∆ ≥ 0 if m ≥ k.

In general, when both the methods achieve the same result in terms of symmetrised
KL divergence, DGDR method has a reduced dimension smaller (in some cases much
smaller) than FS. This is particularly relevant when a finite (and not so large) number
of samples are available. A comparison is given in Table 5.3.1 where the symmetrised
Kullback-Leibler difference between DGDR and FS is computed for some values of k, l
and m.

m = 1 m = 5 m = 10
∆ l l l

1 5 10 15 20 1 5 10 15 20 1 5 10 15 20
1 0.0 2.0 4.5 7.0 9.5 2.0 12.0 24.5 37.0 49.5 4.5 24.5 49.5 74.5 99.5
5 -2.0 0.0 2.5 5.0 7.5 0.0 10.0 22.5 35.0 47.5 2.5 22.5 47.5 72.5 97.5

k 10 -4.5 -2.5 0.0 2.5 5.0 -2.5 7.5 20.0 32.5 45.0 0.0 20.0 45.0 70.0 95.0
15 -7.0 -5.0 -2.5 0.0 2.5 -5.0 5.0 17.5 30.0 42.5 -2.5 17.5 42.5 67.5 92.5
20 -9.5 -7.5 -5.0 -2.5 0.0 -7.5 2.5 15.0 27.5 40.0 -5.0 15.0 40.0 65.0 90.0

Table 5.2: Section 5.3.1: ∆ difference between symmetrised Kullback-Leibler diver-
gences obtained using DGDR (parameters l and m) and FS (parameter k) defined in
Equation (5.11). Here, the covariance matrix factor β is set to 1 (see Table 5.3.1).

5.3.2 Comparison with PCA

In this section, we compare the proposed double greedy algorithm with the Principal
Component Analysis (PCA), which consists in finding an orthogonal transformation such
that the variance of the dataset in the principal directions is the largest possible [Bis06,
WEG87].

Let G follows a multivariate normal distribution in Rng defined by its covariance
matrix Σ = Ing and its mean µ = 0ng . Let l ∈ N∗ and I = {i1, . . . ,il} be a set of indices.
For this test case, classes 0,1 are defined as:{

y∗ = 0 if gi1 , . . . , gil ≥ 0,

y∗ = 1 otherwise.

In the particular case analysed hereafter, ng = 50 and I = {10,11,12,13}. The total
number of samples in the training set is ns = 1500, 105 for the class 0 and 1395 for the
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class 1. The number of samples for the validation set is nv = 500, 35 samples for the class
0 and 465 for the class 1. The DGDR method led to m = 2 dictionary entries to build
the first direction and m = 3 dictionary entries to build the second direction.

In comparison, the PCA method was applied on the same training set as for the
DGDR method (i.e. same samples starting from the same dimension ng = 50) in such a
way that the output dimension is the same as the one obtained with the DGDR method
(i.e. 2 directions).

In Figure 5.3, the samples projected on the first two principal directions obtained by
PCA are shown. As it can be assessed, PCA does not provide an efficient pre-processing,
the conditional densities of the classes being practically indistinguishable.

Figure 5.3: Samples projected on the first two directions computed by PCA, along with
the marginal conditional densities.

On the other hand, the first two directions identified by the Double Greedy method
proposed (M2,ng) tend to maximise the separation between the conditional densities. The
samples projected on these directions are shown in Figure 5.4.

The results obtained allow to stress an important aspect. PCA is a general purpose
reduction method, which is often effective, but it is not specific to classification tasks,
as the method proposed. Henceforth, there are situations, like the one shown in this
example, in which PCA fails in providing a well performing dimension reduction.

5.3.3 Comparison with metric learning techniques

For this study, the same classification task and dataset as described in Section 5.3.2
are given. The double greedy algorithm (DGDR) is compared with Averaged Neighbour-
hood Margin Maximisation (ANMM), Neighbourhood Component Analysis (NCA) and
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Figure 5.4: Samples projected on M2,ng obtained by the double greedy approach and the
associated marginal conditional densities. The Mahalanobis distance was used for the
classification (see Section 5.2.2.1). Using the early-stopping criterion on the validation
set, two components were chosen for the first dimension and three for the second.

Partial Least Squares (PLS) dimension reduction techniques. For the comparison, all
the dimension reduction tools are set such that the reduced space is bi-dimensional (see
Figure 5.5).

For the same subspace dimension, the DGDR technique shows a better separation
between the two classes. The projection in the first direction is approximately the same
for the DGDR, ANMM and PLS techniques. However, the projection in the second
direction results in a better discrimination of the densities (of each class) for the DGDR
technique.

5.3.4 A high-dimensional low sample size example

We consider a numerical illustration of a high-dimensional low sample size regime.
For this ng = 105, and the number of samples in the training set is ns = 200, evenly
distributed between the two classes. The validation set consists of nv = 100 samples. Let
I = 10, . . . ,20 be a set of indices, whose cardinality is #I = 11. The probability density
function reads:

ρ(g) =
1

2
ρ0(g) +

1

2
ρ1(g),
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Figure 5.5: Samples projected onto a bi-dimensional subspace for different dimension
reduction techniques: Double Greedy method (DGDR), Averaged Neighbourhood Margin
Maximisation (ANMM), Neighbourhood Component Analysis (NCA) and Partial Least
Squares (PLS).

where ρ0 and ρ1 are unitary variance Gaussians, whose mean are µ0 = [0, . . . ,0] and:{
µ1i = η if i ∈ I,
µ1i = 0 otherwise.

For this example, we considered two cases, namely η = 1 and η = 4; the Mahalanobis
distance criterion was used to approximate the score.

The results are shown in Figure 5.3.4, when the dimension of the reduced space is
k = 1. The samples are projected in x ∈ R and the probability densities of the two classes
are plotted for the training and validation sets. In the upper row, ||ω||`0,ng = 1, in the
lower row ||ω||`0,ng = 2. Visually, we can assess that the separation between the densities
increases when we use two components instead of one, and this holds for both the training
and the validation sets; this is confirmed by the increase in the classification score. When
η = 4, the densities of the two classes ρ0, ρ1 have a larger total variation with respect to
the case η = 1. This is also found for the marginal densities p0,p1. The two non-zero
components chosen by the algorithm to construct the first direction (M1,ng) are elements
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Figure 5.6: Test case in Section 5.3.4, projected distributions on x ∈ R for the case η = 1
(left panel) and η = 4 (right panel). Upper row, ||ω||`0,ng = 1, lower, ||ω||`0,ng = 2.

of I described above. Selected non-zero components are 12 and 10 for η = 1 study case
and 14 and 11 for η = 4.

5.3.5 Application to classification problems

To conclude, we present two tests based on realistic datasets. For these studies, the
data used were treated without any pre-processing stage. The classification was performed
with four different classifiers available in the Scikit-Learn library [PVG+11], by using
parameters by default. These classifiers are: Discriminant Analysis (LDA), K-Nearest
Neighbours (KNN), Decision Tree (DT), Naive Bayes (NB) and Support Vector Machines
(SVM).

5.3.5.1 LSVT voice rehabilitation

The LSVT Voice Rehabilitation data set is provided by UCI machine learning reposi-
tory2. This dataset based on dysphonia measures is studied to assess the LSVT protocol
in Parkinson’s disease [TLFR13], and was used, as other datasets in this repository, as a
benchmark to test several classification strategies.

It consists of a sample of size ns = 126, for a features dictionary of ng = 309 entries.
The output is the voice rehabilitation, labelled "Acceptable" or "Unacceptable". For this
binary classification, we trained on the first nt = 100 samples and validate on the last
nv = 26 samples.

The proposed DGDR method stopped providing an input dimension k = 2. The
number of components selected to produce by linear combination x1,x2 are m1 = 2 and
m2 = 2. All the dimension reduction tools (DRT) are set such that the reduced space is
bi-dimensional.

The success rates on the validation set for the two dimension reduction strategies and
the five classifiers are given in Table 5.3.5.1.

2https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php


68 CHAPTER 5. DGDR METHOD

Classifier
LDA KNN DT NB SVM GPC

DRT

DGDR 0.846 0.846 0.846 0.846 0.923 0.846
ANMM 0.692 0.538 0.615 0.346 0.692 0.308
NCA 0.692 0.538 0.538 0.308 0.692 0.308
PCA 0.692 0.538 0.731 0.385 0.692 0.308
PLS 0.692 0.538 0.692 0.385 0.692 0.308

Table 5.3: Section 5.3.5.1: Classification success rates for the same input dimension (2).

Regardless of the classifier, the DGDR technique always gives a better classification
success rate. ANMM and NCA returned a better success rate than DGDR with LDA but
for a subspace of dimension 27 (0.846) and 15 (0.962) respectively.

5.3.5.2 Wisconsin breast cancer

The Wisconsin breast cancer dataset is also provided by UCI machine learning
repository3. It consists of ns = 569 samples and a dictionary of ng = 31 entries. The
output is the breast cancer diagnosis, labelled "Malignant" or "Benign". For this binary
classification, we trained on the first nt = 400 samples and validated on the last nv = 169
samples.

Using the early stopping criterion, the DGDR technique stopped at an input dimension
k = 3. The number of components used to construct the inputs x1, x2 and x3 are
respectively m1 = 17, m2 = 14 and m3 = 1. The comparison is the same as in the
previous section (see Section 5.3.5.1). Classification success rates on the validation set
are given in Table 5.3.5.2.

Classifier
LDA KNN DT NB SVM GPC

DRT

DGDR 0.976 0.935 0.923 0.929 0.941 0.941
ANMM 0.935 0.769 0.899 0.781 0.769 0.769
NCA 0.864 0.763 0.852 0.769 0.769 0.769
PCA 0.935 0.769 0.876 0.781 0.769 0.769
PLS 0.935 0.769 0.893 0.781 0.769 0.769

Table 5.4: Section 5.3.5.2: Classification success rates for the same input dimension (3).

For this study, the dimension reduction using the DGDR technique results in a higher
classification success rate than using the others dimension reduction techniques. Only
LDA and DT classifiers have returned a higher classification success rate, but for larger
values of the subspace dimension (see Table 5.3.5.2). In particular, these values were
always k ≤ 4.

3https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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Classifier
LDA DT

DRT

ANMM 0.982(14) 0.923(4)
NCA 0.988(23) 0.959(12)
PCA 0.988(20) 0.935(6)
PLS 0.988(15) lower

Table 5.5: Section 5.3.5.2: Best classification success rates with the corresponding subspace
dimension (X).

5.4 Conclusion

This paper investigates a double greedy algorithm to construct the input x of a
classifier by exploiting a large number of dictionary entries. The method is designed
to deal with classification problems in a high-dimensional/low sample size regime. The
method can be interpreted as a sparse goal oriented dimension reduction technique. The
first contribution is the introduction of an objective function to be maximised, which is
directly related to the performances of the classifiers in the reduced space. This objective
function was related to quantities which are commonly used to assess the performances
in classification problems. The method proposed is easily parallelisable and hence well
adapted to large problems. Some examples are proposed to illustrate the performances
of the proposed method: first, a comparison in a small-scale problem is performed with
Feature Selection and the Principal Component Analysis; then, the method was tested on
a large scale synthetic example that mimics a high-dimensional/low sample size regime
and a realistic dataset.

Several perspectives arise. One concerns the application of the method to a broader
set of realistic cases. The extension to more than two classes as well as to regression
problems will be considered.



70 CHAPTER 5. DGDR METHOD

5.5 Appendix

Proof of Proposition 1.
A first relationship between the score and the densities is derived from the normalisation

condition. As p(x) is a density, it holds:
ˆ
S
p(x)dx = 1

=⇒
ˆ
S0

π0p0 + π1p1dx+

ˆ
S1

π0p0 + π1p1dx+

ˆ
S2

π0p0 + π1p1dx = 1,

by the properties of the measures and the definition of p(x). The terms of the definition
of µ(AS) are isolated, providing:

µ(AS) +
1

2

ˆ
S2

p(x)dx+

ˆ
S0

π1p1(x)dx+

ˆ
S1

π0p0(x)dx = 1. (5.13)

Second, by adding and subtracting the same terms to the definition of the score,
aiming at highlighting its relationship with the total variation we have:

µ(AS) =

ˆ
S0

(π0p0 − π1p1)dx+

ˆ
S1

(π1p1 − π0p0)dx+

ˆ
S0

π1p1dx+
1

2

ˆ
S2

pdx.

By making the use of the result in Equation (5.13), we get:

µ(AS) =
1

2
+

1

2

(ˆ
S0

(π0p0 − π1p1)dx+

ˆ
S1

(π1p1 − π0p0)dx
)
.

It holds that on S0 we have π0p0 − π1p1 > 0 and the converse holds on S1, almost
everywhere. Moreover, on S2 it holds that π0p0 − π1p1 = 0. Henceforth:

µ(AS) =
1

2
+

1

2

(ˆ
S
|π0p0 − π1p1|dx

)
.

Which concludes the proof.

Proof of Corollary 1.
We start with the second inequality. From the definition of S0 and S1, we have:

µ(AS) =
1

2
+

1

2

( ˆ
S0

|π0p0 − π1p1|dx+

ˆ
S1

|π1p1 − π0p0|dx
)
.

We immediately have µ(AS) ≤ 1. Let ε = π0−π1
2 . Then,

|π0p0 − π1p1| = |(
1

2
+ ε)p0 − (

1

2
− ε)p1| = |

1

2
(p0 − p1) + ε(p0 + p1)|.
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By the use of the triangular inequality, we obtain:

|π0p0 − π1p1| ≤
1

2
|p0 − p1|+ |ε|(p0 + p1).

Then,

µ(AS) ≤ 1

2
+

1

2

(1

2

ˆ
S0∪S1

|p0 − p1|dx+ |ε|
ˆ
S0∪S1

(p0 + p1)dx
)
.

Recalling that the first term in the parenthesis is lower than the total variation between
p0 and p1 and the second term in the parenthesis is majored by 2|ε| as p0 and p1 are
probability density function, for the second inequality we have:

µ(AS) ≤ min
(

1,
1 + |π0 − π1|

2
+
δTV (p0,p1)

2

)
.

For the left part of the inequality, by definition of the sets, it is clear that µ(AS) > 1
2 .

We assume that π0 ≥ π1 and pose ε = π0−π1
2 . By symmetry, we can proceed in the same

way for π1 ≥ π0. Then,

µ =
1

2
+

1

2

[ ˆ
S0

(
(
1

2
+ ε)p0 − (

1

2
− ε)p1

)
dx+

ˆ
S1

(
(
1

2
− ε)p1 − (

1

2
+ ε)p0

)
dx
]
.

⇐⇒

µ =
1

2
+

1

2

[1

2

ˆ
S0

(p0−p1)dx+
1

2

ˆ
S1

(p1−p0)dx+ε

ˆ
S0

(p0+p1)dx−ε
ˆ
S1

(p0+p1)dx
]
. (5.14)

We recall the definition of S0 and S1:{
S0 = {x ∈ Rng |π0p0(x) > π1p1(x)}
S1 = {x ∈ Rng |π1p1(x) > π0p0(x)}

.

Let S′0 and S′1 the two following sets:{
S′0 = {x ∈ Rng |p0(x) > p1(x)}
S′1 = {x ∈ Rng |p1(x) > p0(x)}

.

As π0 > π1 and p0 and p1 are non-negative (since they are probability density
functions), we have the following inclusions:{

S′0 ⊆ S0

S1 ⊆ S′1
.
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Let:{
Ŝ0 = {x|(π0p0 > π1p1) ∧ (p0 = p1)}
S̃0 = {x|(π0p0 > π1p1) ∧ (p0 < p1)}

and

{
Ŝ1 = {x|(π0p0 = π1p1) ∧ (p0 < p1)}
S̃1 = {x|(π0p0 > π1p1) ∧ (p0 < p1)}

.

Then, Si = S′i ∪ S̃i ∪ Ŝi for i ∈ {0,1}, is the union of disjoint sets. We denote
S̃ = S̃0 = S̃1. Thanks to the disjointedness of the sets, we can rewrite each term of µ(AS)
in Equation (5.14) as follows:



1
2

´
S0

(p0 − p1)dx = 1
2

[ ´
S′0

(p0 − p1)dx+
´
Ŝ0

(p0 − p1)dx+
´
S̃

(p0 − p1)dx
]

ε
´
S0

(p0 + p1)dx = ε
[ ´

S′0
(p0 + p1)dx+

´
Ŝ0

(p0 + p1)dx+
´
S̃

(p0 + p1)dx
]

1
2

´
S1

(p1 − p0)dx = 1
2

[ ´
S′1

(p1 − p0)dx−
´
Ŝ1

(p1 − p0)dx−
´
S̃

(p1 − p0)dx
]

−ε
´
S1

(p0 + p1)dx = ε
[
−
´
S′1

(p0 + p1)dx+
´
Ŝ1

(p0 + p1)dx+
´
S̃

(p0 + p1)dx
] .

Then,
µ(AS)=1

2 + 1
2

{
1
2

[ ´
S′0

(p0 − p1)dx+
´
S′1

(p1 − p0)dx
]

+ ε
´
S′0

(p0 + p1)dx

-ε
´
S′1

(p0 + p1)dx+
´
S̃

(
2ε(p0 + p1)− p1 + p0

)
dx

+
´
Ŝ0

(
p0−p1

2 + ε(p0 + p1)
)
dx+

´
Ŝ1

(
ε(p0 + p1)− p1−p0

2

)
dx
}
.

The first term in the brackets is exactly the total variation between p0 and p1. This
is because p0 − p1 > 0 on S′0, p1 − p0 > 0 on S′1, p0 = p1 on S′2 and S = ∪2

i=0S
′
i and they

are disjoint. For term four in the bracket, we have:

2ε(p0 + p1)− p1 + p0 = 2(π0p0 − π1p1),

which is positive on S̃. For term five in the bracket, we know that p0 = p1 on Ŝ0. Then,
the first term in this integral is equal to 0. Finally, for the last term in the bracket, we
have:

ε(p0 + p1)− p1 − p0

2
= π0p0 − π1p1.

However, as this term is integrated on Ŝ1, this term is equal to 0. It follows that:

µ(AS) =
1

2
+

1

2

{
δTV (p0,p1) + ε

ˆ
S′0

(p0 + p1)dx− ε
ˆ
S′1

(p0 + p1)dx

+ ε

ˆ
Ŝ0

(p0 + p1)dx+ 2

ˆ
S̃

(π0p0 − π1p1)dx
}
.

We have: {
ε
´
S′0

(p0 + p1)dx = ε
´
S′0

(p0 − p1)dx+ 2ε
´
S′0
p1dx

−ε
´
S′1

(p0 + p1)dx = ε
´
S′1

(p1 − p0)dx− 2ε
´
S′1
p1dx

.
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It follows that:

ε

ˆ
S′0

(p0 + p1)dx− ε
ˆ
S′1

(p0 + p1)dx = 2εδTV (p0,p1) + 2ε

ˆ
S′0

p1dx− 2ε

ˆ
S′1

p1dx.

Then,

µ(AS) ≥ 1

2
+ (1 + 2ε)

δTV (p0,p1)

2
− ε

Finally, max
(

1
2 ,

1−|π0−π1|
2 + (1 + |π0 − π1|) δTV (p0,p1)

2

)
≤ µ(AS)

µ(AS) ≤ min
(

1, 1+|π0−π1|
2 + δTV (p0,p1)

2

) .

Which concludes the proof.

Proof of Proposition 2.
LetM be an element of the Stiefel manifoldMk,ng , andM⊥ its orthogonal complement

of M . The score µ(AS), by exploiting the change of coordinates and the properties of the
elements of the orthogonal group, can be rewritten as follows:

µ(AS) =
1

2
+

1

2

(ˆ
Mk

∣∣∣∣∣
ˆ
M⊥k

(π0ρ0 − π1ρ1)dξk+1 . . . dξng

∣∣∣∣∣ dξ1 . . . dξk

)
.

By triangular inequality, we can write:

µ(AS) ≤ 1

2
+

1

2

(ˆ
Mk

ˆ
M⊥k

|π0ρ0 − π1ρ1| dξk+1 . . . dξngdξ1 . . . dξk

)
.

µ(AS) ≤ min
(

1,
1 + |π0 − π1|

2
+
δTV (ρ0,ρ1)

2

)
.

Proof of Proposition 4.
The right-hand side inequality is proved by making use of the Pinsker inequal-

ity [FHT03]:

δ2
TV (P0,P1) ≤ 1

2
DSKL(P0,P1).

Then, using the inequality between the total variation distance and the measure of the
success events in Corollary 1, we directly get:

DSKL(P0,P1) ≥ 2
(

2µ(AS)− (1 + |π0 − π1|)
)2
.

To prove the inequality on the left-hand side we consider the definition of the sym-
metrised Kullback-Leibler divergence:

DSKL(P0,P1) =
1

2

ˆ
S

(p0 − p1) ln

(
p0

p1

)
dx.
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As, log
(
p0
p1

)
∈ L∞(S), Hölder inequality leads to:

DSKL(P0,P1) ≤ || log(p0/p1)||L∞
2

ˆ
S
|p0 − p1|dx.

In what follows we set: c = || log(p0/p1)||L∞ . The definition of the total variation is
inserted:

DSKL(P0,P1) ≤ cδTV (P0,P1).

Then,

DSKL(P0,P1) ≤ c2µ(AS) + |π0 − π1| − 1

1 + |π0 − π1|
,

which concludes the proof.

Proof of Proposition 6.
Let us denote h = π0ρ0 − π1ρ1, Sk the space obtained by projecting g ∈ Rng onto the

columns of Mk,ng . Let its orthogonal complement be denoted by S⊥k . The element of the
orthogonal group constructed from Mk,ng is denoted by R = [Mk,ng ,M

⊥
k,ng

]. It holds:

ξ = RT g,

x = [ξ1; . . . ; ξk].

As remarked in Equation (5.2), p(x) is obtained by:

p(x) =

ˆ
S⊥k

ρ(ξ)dξ1, . . . dξk.

The score (and the total variation) is then directly related to the following integral:

I(k) =

ˆ
Sk

∣∣∣∣∣
ˆ
S⊥k

h dξk+1 . . . dξng

∣∣∣∣∣ dξ1 . . . dξk.

Without loss of generality let us suppose that:

ξk+1 = ωT g.

Remark that the orthogonal complement to Sk can be always constructed in this way.
We will denote by S⊥k+1 = S⊥k /ξk+1. Hence:

I(k) =

ˆ
Sk

∣∣∣∣∣
ˆ ∞
−∞

(ˆ
S⊥k+1

h dξk+2 . . . dξng

)
dξk+1

∣∣∣∣∣ dξ1 . . . dξk.

When ω is used to construct the input (x = Mk+1,ng), the integral I(k+1) reads:

I(k+1) =

ˆ
Sk

ˆ ∞
−∞

∣∣∣∣∣
ˆ
S⊥k+1

h dξk+2 . . . dξng

∣∣∣∣∣ dξk+1dξ1 . . . dξk.
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A straightforward inequality follows:

ˆ ∞
−∞

∣∣∣∣∣
ˆ
S⊥k+1

h dξk+2 . . . dξng

∣∣∣∣∣ dξk+1 −

∣∣∣∣∣
ˆ ∞
−∞

(ˆ
S⊥k+1

h dξk+2 . . . dξng

)
dξk+1

∣∣∣∣∣ ≥ 0,

which implies:

µ(A
(k+1)
S )− µ(A

(k)
S ) =

1

2

(
I(k+1) − I(k)

)
≥ 0,

and this concludes the proof.
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Chapter 6

A method to enrich experimental datasets
by means of numerical simulations in view

of classification tasks

Classification tasks are frequent in many applications in science and engineering. A wide
variety of statistical learning methods exists to deal with these problems. However, in many
industrial applications, the number of available samples to train and construct a classifier is
scarce and this has an impact on the classifications performances. In this work, we consider the
case in which some a priori information on the system is available in form of a mathematical
model. In particular, a set of numerical simulations of the system can be integrated to the
experimental dataset. The main question we address is how to integrate them systematically
in order to improve the classification performances. The method proposed is based on Nearest
Neighbours and on the notion of Hausdorff distance between sets. Some theoretical results and
several numerical studies are proposed.
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6.1 Introduction

Classification tasks are frequent in many applications in science and engineering.
The statistical learning methods which are proposed to deal with them rely on the fact
that many examples (where the number of samples depends on the application under
consideration) are available and can be exploited to uncover the underlying structure
of the data and their separation in several classes. After the learning phase has been
performed, a classifier is set up and can be used to infer to which class a new observed
sample belongs to.

In many industrial applications the number of available samples is scarce, impacting
the performances of the classification. A way to circumvent this limitation is to integrate
to the available a posteriori information (provided by the available data) some a priori
information (coming from experimental insight or theoretical knowledge) as proposed for
instance in [MFH+18, MHB96, Joh03, HKC+04].

The use of mathematical models and numerical simulations to construct the training set
of machine learning methods has been recently investigated in [TPYP18, BH20, RMMC20].
In [TPYP18], a model order reduction framework is proposed in order to deal with
classification problems. In this, synthetic outputs obtained by numerical simulations are
used in order to train the machine learning algorithms. The influence of the model error
on the classification performance is investigated. In [BH20], numerical simulations are
used to set up a sparse gaussian process. This is used in order to solve an optimal design
problem for structural anomaly detection. In [RMMC20], a convolutional neural network
framework is proposed to efficiently deal with health monitoring, seen as a classification
problem on multivariate time series. The training of the network is performed by using
numerical simulations of a physical based model of the system.

In this work we consider the case in which some a priori information is available
in form of a mathematical model. Numerical simulations of several instances of the
model can be computed and integrated to an available dataset in order to improve the
classification performances. The main questions to be answered are: how many numerical
simulations should we include, and which ones? Which information is needed in order
to devise a systematic strategy? This work is devoted to the investigation of possible
answers to these questions, in the spirit of what has been proposed in [BM10], in which an
adaptive sampling is proposed in order to improve the performances of a SVM classifier.
The selection of the samples aims at improving the position of the support vectors and
the margin. These questions have also been raised in [LHS14], where each training sample
is weighted in order to solve SVM classification tasks.

This topic is also closely related to two research fields in machine learning: domain
adaptation and instance (or prototype) selection. The main goal of domain adaptation
is to account for the discrepancies between target and test sets and propose ways to
correct for them. An abundant literature on this subject is available, [WD18, SSW15,
PGLC15, ZSMW13]. The main difference with respect to the method proposed in the
present work consists in the fact that in domain adaptation we often try to minimise
a discrepancy between the datasets, whereas in the present work we focus on trying to
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improve a classification score. This is more similar, in the spirit, to the methods proposed
in the field of instance selection. Different kinds of algorithms have been proposed in this
research field and can be divided into 4 different classes (commented and compared in
the recent work [BK20] ):

1. Incremental, such as Condensed Nearest Neighbours [Har68] and its vari-
ants [RWLI75, VSP05] or Instance-based learning [AKA91]. These methods consist
in building the training set by adding samples, chosen according different criteria.

2. Decremental such as Decremental Reduction Optimisation Procedure [WM97,
WM00] or Hit Miss Network [Mar08] consist in defining the training set by prun-
ing samples from an available reservoir of potentially redundant (and corrupted)
samples.

3. Batching such as Edited Nearest Neighbours [T+76], consists in testing whether
each sample of the training set follows a removable criterion. All of the samples
verifying this criterion are removed at once.

4. Fixed size such as Learning Vector Quantisation [NE14] which consists in fixing a
priori the size of the training set and selecting the samples to be used.

Recent studies have proposed in-between methods such as in [CHL05]. These algo-
rithms might have several drawbacks: in the methods in which we test one sample at a
time and we decide if it has to be included or not into the training set, we might obtain a
result which is sensitive to the order with which we test the samples. In some methods,
the fitness function introduced to perform the selection is based on similarity criteria
applied to the input features rather than the classification success rate, which might be
suboptimal in some cases or it might depend upon hyperparameters which need to be
tuned.

The main contributions of the present investigation are the following:

1. A systematic strategy can be set up, that enrich available training sets and improves
the classification performance in a substantial way. The only information which is
exploited is a representative validation set, given even in form of samples or in form
of a set of data and parameters of a reliable mathematical model describing the
phenomenon.

2. The method which is proposed can be decomposed in two phases: an incremental
one, in which we add to the training set samples taken from a reservoir of numerical
simulations; a decremental one in which we prune samples to reduce redundancy
and noise oversensitivity. We tried to reduce as much as possible the number of
hyperparameters.

3. The obtained approach is not a generative one: it is not strictly needed to have
an exhaustive training set distributed as the validation set; it is sufficient to add
the most informative samples, in a sense that will be made more precise in the
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following, and that will be encoded in the fit functions used in the incremental and
decremental phases.

The structure of the work is as follows. In Section 6.2 the method is proposed,
and some properties are investigated from a theoretical standpoint. In Section 6.3 the
discretisation is discussed, and in Section 6.4 some numerical test cases are presented to
illustrate the approach.

6.2 Method

In this section, we detail the method proposed in the present work. The problem
under investigation is a classification task, and, for the sake of simplicity, we restrict to a
binary classification. Four different sets of samples are introduced:

1. An augmented set, for which we know both the input (observations) and the output
(labels). The augmented set is the main unknown of the problem. We wish to devise
a way to construct it, starting from an available scarce (in the number of samples)
set of labelled instances. The training set of the problem (we will use to set up the
classifier) is the augmented set at the end of the enrichment process. The elements
of the augmented set will be denoted by the superscript "tr".

2. A validation set, for which we know both the input (observations) and the output
(labels), whose elements will be denoted by the superscript "v". This is the only
source of information to construct the augmented set.

3. A test set, for which we know just the observation, whose elements will be denoted
by the superscript "te".

4. A reservoir of numerical simulations of the systems, for which we know the ob-
servation and the label, to be used in order to construct or enrich the augmented
set.

Several possible cases are met in realistic applications. First, we can be in a case in
which we have an available experimental dataset covering all the possible meaningful
instances of the problem under scrutiny, having however, not so many samples (or not
enough to have the wished performance on the test set). We will call this a complete
validation case. Second, we could be in an incomplete validation case, meaning that the
experimental dataset to be used as training and validation cover only a subset of the
possible instances (occurring in the test set). In both these situations, we would like to
enrich the dataset by integrating elements of the reservoir in the augmented set. This
is the simplest way to integrate some a priori information coming from mathematical
modelling to the existing a posteriori information of the experimental data. We will
consider here the cases of a perfect model (useful to validate certain aspect of the method)
and the more realistic case in which the model is biased.



82 CHAPTER 6. ASE-HD METHOD

6.2.1 Context and notations

Let X be a random variable, representing the state of a system, for a population
of individuals. A system configuration, identified by the realisation x, can belong to
two classes, labelled y = {0,1}. In an application, the system is observed through a
measurement process and for a given observation g ∈ Rng (which in general results from
the application of a non-linear function to x), we need to uncover whether the state
belongs to the class y = 0 or y = 1.

The system observable for the population can be modelled by a random variable Xng

defined on the probability space (Ω,A,P), with Ω ⊆ Rng , A the σ-algebra of all the
possible observable and P the probability measure. We denote g ∈ Ω a realisation of Xng

and we assume that its probability density distribution, denoted ρ(g), is a mixture of two
densities. Let π0,π1 ∈ (0,1), such that π0 + π1 = 1. The probability density distribution
reads:

ρ(g) = π0ρ0(g) + π1ρ1(g), (6.1)

where ρ0(g) and ρ1(g) are the conditional probability density distributions for the classes
0 and 1 respectively, namely ρ0,1(g) = ρ

(
g|y = (0,1)

)
.

Remark 7
Note that the above assumption is exactly the same as the one described in the DGDR
method (see Section 5.1.1).

In the following, the Lebesgue measure of a generic set A is denoted by µL(A). The
classification success rate is based on a score function µs, which is a measure, introduced
and described in the DGDR method 5.2.1, and that we recall for sake of completeness.
The set of all the subsets in Ω is denoted by 2Ω.

Definition 12
We define the score function µs as follows:

µs :

{
2Ω × 2Ω → R+

(S0,S1) 7→ µs(S0,S1)
,

where we take:
µs(S0,S1) = π0

ˆ
S0

ρs0dg + π1

ˆ
S1

ρs1dg,

with the given densities ρs0 and ρs1, and the superscript "s" denotes either the validation
or the test set.

This score can be evaluated for all pairs of subsets S0 and S1. It is related to the
classification outcome when we compute it for the following pair:{

S0 = {g ∈ Rng , π0ρ
tr
0 (g) > π1ρ

tr
1 (g)}

S1 = {g ∈ Rng , π1ρ
tr
1 (g) > π0ρ

tr
0 (g)}

,
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where "tr" stands for the augmented set. As in the DGDR method (see Section 5.2.1),
we make the following assumption:

µL(S2) = µL

(
{g ∈ Rng , π1ρ

tr
1 (g) = π0ρ

tr
0 (g)}

)
= 0.

Under the hypothesis that the set S2 is a zero measure set, it follows that:

ρsi = ρsi1Si ,∀i=⇒µs = 1.

Remark 8
The main goal is to enrich the augmented set aiming at improving the classification
performance, which is quantified by the above introduced score. To this end, it is not
needed to have the following strong outcome:

πiρ
tr
i = πiρ

v
i , i ∈ {0,1}.

The propose approach is not a generative one seeking at generating samples distributed
as the validation set, but samples which help improve the score. Henceforth, we could
hopefully come up with a method which is less costly from a computational point of view.

6.2.2 Augmented set enrichment based on the Hausdorff distance:
ASE-HD

We assume that Ω (defined in Section 6.2.1) is a measurable non-empty compact set
of Rng , and an observation of a system is g ∈ Ω ⊂ Rng .

At the beginning, the augmented set is given by the union of two known sets: S(0)
0

and S(0)
1 : a sample of the augmented set is henceforth g(tr) ∈ S(0)

0 ∪ S(0)
1 . The goal is to

progressively enrich the augmented set by making use of the samples in the reservoir of
simulations. For the sake of simplicity, in this section, we make the hypothesis that the
reservoir samples can cover Ω.

The information to be exploited comes from the knowledge of the validation set, either
in form of samples or as a set of data and parameters of a mathematical model. This
can be translated into two sets: S∗0,1, with S∗1 = Ω \ S∗0 , such that S∗0 = {g(v) ∈ Ω|y = 0}.
These sets are optimal in the sense of the score function µv:

[S∗0 ,S
∗
1 ] = arg sup

S0,S1⊂Ω
µv.

In the following, we denote µ∗ the score corresponding to these sets.
Let n ∈ N denotes the n−th step of the enrichment, we define S(n)

i ⊆ Ω (for i = 0 or
1), the samples of the augmented set being g(tr) ∈ S(n)

0 ∪ S(n)
1 , as follows:

S
(n)
1 = Ω \ S(n)

0 . (6.2)

The score of the classification corresponding to these sets reads:
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Definition 13

µ(n)
v = π0

ˆ
S
(n)
0

ρv0dg + π1

ˆ
S
(n)
1

ρv1dg,

with: {
S

(n)
0 = {g ∈ Ω, π0ρ

(n)
0 > π1ρ

(n)
1 }

S
(n)
1 = {g ∈ Ω, π1ρ

(n)
1 > π0ρ

(n)
0 }

,

where ρ(n)
i is the pdf of the augmented set of class i and ρvi is the pdf of the validation

set of class i.

Starting from known sets S(0)
i , i = 0,1, the goal is to transform them in order to

converge to S∗i , i = 0,1, which maximises the classification success rate. We construct a
sequence which aims at increasing the cost function µ(n)

v , by observing that it is possible
to make the sets S(n)

i converge towards the optimal sets S∗i by diminishing a suitable
distance between these sets.

Let B(g,ε) ⊂ Ω denotes a ball of centre g and radius ε ≥ 0. The enrichment method
is performed as follows. Let S(n)

0,1 be the available set estimations.

1. Define M (n) = (S∗0 ∩ S
(n)
1 ) ∪ (S∗1 ∩ S

(n)
0 ).

2. Solve the following problem1:

[gn+1, ε∗] = arg sup
g,ε∈Ω

{
ε |B(g, ε) ⊆M (n)

}
.

3. Let B∗ = B(gn+1, ε). The update of the union of the intersections reads:

M (n+1) = M (n) \ B∗,

S
(n+1)
0 =

{
S

(n)
0 ∪ B∗ if B∗ ⊆ S∗0 ∩ S

(n)
1

S
(n)
0 \ B∗ if B∗ ⊆ S∗1 ∩ S

(n)
0

. (6.3)

6.2.2.1 Analysis of the ASE-HD algorithm

The convergence of the sets S(n)
0,1 to the sets S∗0,1 is studied. First, a Lemma is

introduced, clarifying the meaning of the set M (n). Let A∆B be the symmetric differ-
ence [GH08] between the sets A and B.

Lemma 1
For the set M (n), ∀n ∈ N it holds:

M (n) = S∗0∆S
(n)
0 = S∗1∆S

(n)
1 .

1On centrally symmetric sets, this would correspond to quantify the Bernstein widths of the set.



6.2. METHOD 85

The result of this Lemma (demonstration given in Section 6.6 in the Appendix), makes
it possible to prove the following result:

Proposition 7
Using the sequence of operations introduced above, almost surely, we have:

lim
n→+∞

µ(n)
v = µ∗.

See the proof in Section 6.6 in the Appendix. Moreover, the gain on the score between
two consecutive steps can easily be estimated. Its expression is given in the following
result.

Corollary 2
Let µ(n)

v be the score on the validation set at iteration n ≥ 0. Then, ∀n ∈ N, we have:

µ(n+1)
v − µ(n)

v =

ˆ
B∗
|π1ρ

v
1 − π0ρ

v
0|dg ≥ 0,

with B∗ = B(gn+1,ε∗) defined in the previous section. Moreover, the equality holds if and
only if µL(B∗) = 0, where µL denotes the Lebesgue measure.

See the demonstration in Section 6.6 in the Appendix. It follows that the gain is
proportional to the total variation between ρv0 and ρv1 restricted to B∗.

The result of the proposition states simply that, under the hypothesis that the system
observable belongs to a compact set, and the set S∗0,1 are known, the proposed iteration
enriches the augmented set in such a way that the optimal classification score is retrieved.
This algorithm shows some common properties with the algorithm detailed in [BCDD14].
In particular, the set sequence depends on the symmetric difference between the expected
and the current set.

6.2.3 Reducing noise oversensitivity and bias induced errors: pruning

At each stage of the ASE-HD algorithm, the samples of the reservoir contained in
a selected ball B∗ are added to the augmented set (either to S(n+1)

0 or to S(n+1)
1 ). As

remarked in [WM00], a large number of noisy samples could lead to noise oversensitivity.
Moreover, as the augmented set is enriched through numerical simulations, a bias could
potentially pollute the classification results in regions where the samples of the validation
set are scarce. To avoid these phenomena and to make the classification less prone to
overfitting, a pruning phase is introduced, which consists in removing the samples which
are not useful in improving the score.

Once ASE-HD is performed, the obtained augmented set consists in the pair S(n,0) =

(S
(n)
0 , S

(n)
1 ). Since, in practice, we have a finite number of samples, these sets consist in a

finite set of balls centred around a finite number of samples.
A stochastic algorithm is introduced. At the j-th iteration, a sample gj ∈ S(n)

0 ∪ S(n)
1

of the augmented set is randomly selected. It can be considered as the centre of a small
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ball Bj(gj ,εj) whose radius εj is such that the other samples do not belong to Bj . The
score is computed and the following action is taken:

S(n,j+1) =

{
S(n,j) \ Bj if µv(S(n,j) \ Bj) ≥ µv(S(n,j))

S(n,j) otherwise
.

Remark that, by construction, at the end of the pruning step the score is at least as
good as the beginning of the pruning step, and in some cases an improvement is obtained.

6.2.4 On realistic scenarios

In many applications different concerns may arise, such as the possible bias in the
mathematical model (and then the database) [GA18, Ted06] and the incomplete validation
case. We recall that in the present work we consider incomplete a validation set which
does not cover the whole observable space Ω. In this section, a set of results are proposed
to deal with these two cases.

6.2.4.1 Biased database

In general, the database obtained through a collection of experiments and/or simu-
lations may have a bias. Let Stei , (i = 0 or 1) denote the test set which is supposed to
cover Ω, i.e. Ste0 ∪ Ste1 = Ω:{

S
(te)
0 = {g ∈ Rng |π0ρ

∗
0 > π1ρ

∗
1}

S
(te)
1 = {g ∈ Rng |π1ρ

∗
1 > π0ρ

∗
0}

. (6.4)

The samples from these sets are samples drawn from the true underlying densities.
The sets identified by using the densities of the model are:{

S
(m)
0 = {g ∈ Rng |π0ρ

m
0 > π1ρ

m
1 }

S
(m)
1 = {g ∈ Rng |π1ρ

m
1 > π0ρ

m
0 }

. (6.5)

The densities ρm0,1 are in general different from the true ones. This is due to the model
bias, which is such that the difference in the model state is propagated in the model
observable g and hence in the density ρm. This, in turn, affects the sets S(m)

0,1 .
We recall that the sets satisfy:{

Ste,m0 ∪ Ste,m1 = Ω

Ste,m0 ∩ Ste,m1 = ∅
.

We define the biased sets as follows:{
b0 = Sm0 ∩ Ste1
b1 = Sm1 ∩ Ste0

.

The bias sets b0,1 are quantifying, in a sense which is pertinent for the binary classifi-
cation, the effect of the model bias.
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Lemma 2
Let the sets Ste,m0,1 be defined as in Equation (6.4)-(6.5).The following equalities hold:{

Sm0 = (Ste0 ∪ b0) \ b1
Sm1 = (Ste1 ∪ b1) \ b0

.

The result of the Lemma 2 (proof shown in Section 6.6 in the Appendix) makes it
possible to prove the following result on the classification score of the test set:

Proposition 8
Let the hypothesis of Lemma 2 hold. Let

µb = µte(S
m
0 ,S

m
1 ) =

ˆ
Sm0

π0ρ
te
0 dg +

ˆ
Sm1

π1ρ
te
1 dg,

be the score of the classification of the test set when the augmented set is defined by the
model. The maximal score is represented by:

µ∗ = µte(S
te
0 ,S

te
1 ).

It holds:
0 ≤ µb ≤ µ∗,

and, moreover:{
µb = µ∗ ⇐⇒ µL(bi) = 0, for i ∈ {0,1}
µb = 0⇐⇒ Smi = Stej and ρtej = ρtej 1{Stej }, for i,j ∈ {0,1}, i 6= j

.

The demonstration is given in Section 6.6 in the Appendix.

Remark 9
In the case where Smi = ∅, we have µb =

´
Ω πjρ

te
j dg, i 6= j. It is straightforward to observe

that in the case where there is no bias, we have the equality. In practice, we do not know
Stej . It means that, if we only train with the model (database) we will compute the score
over Smj .

6.2.4.2 The Validation set partially covers the set of possible outcomes

In several situations it is possible to assess whether the validation set covers all the
possible scenarios that could occur in the test set (even prior of receiving the test set).
This is possible in particular when there is an underlying parametrisation of the system
at hand, namely when the scenarios of interest are associated with values of data and
parameters that characterise the solution of the models describing the phenomenon. Here,
we consider that the validation set partially covers Ω when the validation set does not
have enough instances, in the sense that there are meaningful scenarios of the real system
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which are not represented in the validation set. This would translate in the following: if
we trained a classifier by using the validation set, it won’t be able to classify well some
query samples of the test set.

When the validation set partially covers Ω (incomplete validation set) we can show
that the score on the test set (which is supposed to cover Ω) is lower than the score
obtained with a validation set covering Ω (see Proposition 9).

Lemma 3
Let, Ss0 ∪ Ss1 = Ω such that Ss0 ∩ Ss1 = ∅ (for s = te or v). Then,

Ste1 \ Sv1 = Sv0 \ Ste0 .

The demonstration is given in Section 6.6 in the Appendix.

Proposition 9
We denote Ssj = {g|πjρsj > πkρ

s
k} (k 6= j), where s = te (test set) or v (validation set).

We denote µcte (resp. µ
p
te) the test set score obtained with a complete (resp. incomplete)

validation set. By complete, we assume that the distribution of ρtej and ρvj are the same.
Then,

µpte ≤ µcte.

The demonstration is given in Section 6.6 in the Appendix. In this scenario, we cannot
use generative adversarial networks (GANs) [GPAM+14] to enrich the augmented set
in regions which are not covered by the validation set. This is due to the fact that the
discriminator has no information on the region where there are no validation samples.

To enrich the augmented set, we propose first to enrich the validation set by adding
to it samples extracted from the reservoir such that the enriched validation set covers all
the possible meaningful scenarios.

If some information on the model bias is available (a statistics on the model bias),
we proceed as follows. Let the bias in the observation be a random variable Gb, whose
realisations are denoted by gb ∈ Rng . A sample of the reservoir is randomly picked in
the region which is not covered by the validation set, whose observation is an element
g(r) ∈ Rng . Then, a sample to be added to the validation set is:

g(v) = g(r) − gb,

and the associated label is y(v) = y(r).

6.3 Discretisation of the method

When the enrichment method proposed in the previous section has to be applied to
realistic cases, we need to account for the fact that the only available quantity is a set of
labelled samples, which can be divided into training and validation sets. The method
needs to be discretised in order to be practically implemented. Several elements need to
be detailed. The first one is the estimation of the score function. Its computation requires
a density estimation.
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6.3.1 Density estimation in high-dimension

To estimate the score by using a Monte Carlo method, we need to estimate a density in
correspondence to a sample, namely the value ρ(g) ∈ R+. This task may be cumbersome
due to the high-dimensionality of the space. Several methods of non-parametric density
estimation are proposed in the literature [Bro07, Fry77, QX18]. For the present work we
consider as a starting point the k–nearest neighbours (KNN) estimation. In the KNN
method, a tree-based algorithm subdivides the samples set into overlapping balls, each
containing a fix number of samples, say knn ∈ N∗ on a total number of N ∈ N∗ samples.
The density is usually estimated by making the assumption that the density is roughly
constant in a ball, leading to:

ρ(g(i)) ≈ knn/N

vol(Bi)
,

where Bi = B(g(i), εi) and vol(Bi) is its volume, computed according to the metric chosen
to select the neighbours. We will denote the `p distance between two elements (g1,g2) as
||g1 − g2||`p,ng .

Remark 10
Following [GSS19], if we want to classify a given sample g∗ by using the Bayes rules,
assuming P(y = 0) = P(y = 1) and N0 = N1 = N , we will obtain the following result.

Let: g
(tr)
0 = arg inf

g∈S(tr)
0

||g∗ − g||`p,ng

g
(tr)
1 = arg inf

g∈S(tr)
1

||g∗ − g||`p,ng
.

Furthermore, let ε0 and ε1 be the radius of the balls centred around g(tr)
0 and g(tr)

1

respectively. The a posteriori probability reads:

P(y = 0|g∗) =
ε
ng
1

ε
ng
1 + ε

ng
0

.

This means that the classification outcome only depends on the distance between the
closest points in each class in the augmented set and their respective kthnn nearest neighbour.
Figure 6.1 shows an example in which, by making use of this approach we wrongly classify
a validation point. As the computed radius is lower for class 1 the validation point is
labelled 1 instead of 0.

The issue shown in Figure 6.1 is mainly due to the assumption that the density is
constant in the ball. We propose of replacing it by an approximation based on Gaussian
radial basis functions (RBFs). Let us introduce ωi ∈ R, i = 1, . . . ,knn; moreover, let the
elements in a ball be g(i) ∈ Rng , i = 1, . . . ,knn and εi > 0 be the radius of the balls the
samples g(i) are the centre of. The density in a ball is expressed as:



90 CHAPTER 6. ASE-HD METHOD

Figure 6.1: Example of a wrongly classified point query point.

ρ(g) ≈
knn∑
i=0

ωie
−
||g−g(i)||2

`2

2ε2
i . (6.6)

Let ρi denotes the density at the sample g(i) obtained by the classical KNN ap-
proximation. The weights ωi are computed as the result of the following optimisation
problem:

ρapp(g) =

knn∑
i=0

ωie
−
||g−g(i)||2

`2

2ε2
i ,

L(ω,λ) =
1

2

knn∑
i=1

|ωi − ρi|2 + λ

(
knn
N
−
ˆ
B
ρapp dg

)
,

(ω∗,λ∗) = arg inf
ω

sup
λ
L(ω,λ).

The interpretation is simple: the weights are close to the classical KNN estimated
density (the Gaussian kernel being equal to one when evaluated at the sample), and when
integrated on the ball, the approximation of the density retrieves the expected value of
the mass in the ball. Let:

Ii =

ˆ
B
e
−
||g−g(i)||2

`2

2ε2
i dg.

The solution reads:



6.3. DISCRETISATION OF THE METHOD 91

ω∗i = ρ(g(i)) + Ii
knn/N −

∑knn
j=0 ρ(g(j))Ij∑knn

j=0 I
2
j

. (6.7)

The following Example aims at illustrating the effect of the above introduced approxi-
mation on a classification task. Let Ω = [−5,5]2 be the domain, and g = (g0,g1) ∈ Ω. We
define the two classes as follows:

y =

{
0, g0 > 0

1, g0 ≤ 0
.

The sample size for the training set is N0,1 = 18. For each class the training set is
uniformly distributed but with a different density (the density is higher for the class 1
as shown in Figure 6.1). The validation set is generated using a regular square mesh of
Ω (with steps ∆g0 = ∆g1 = 0.1) where each node is a sample (it results in a validation
sample size of N te

0,1 = 5000 for each class).
Figure 6.2 shows the result when the density is estimated via the classical KNN

method and with the proposed Gaussian kernel correction. In this test, the accuracy is

Figure 6.2: Comparison of the two methods in a binary classification example. Number
of neighbours: 5. Upper: usual KNN method. Lower: RBF based approximation. Left:
training and validation sets. Right: corresponding confusion matrices.

significantly increased using the proposed technique ( we pass from 0.86 to 0.96).
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6.3.2 Computing the Hausdorff distance of sets

One of the key steps of the proposed method is the approximation of the Hausdorff
distance and the largest ball contained in the set M (n). Given the sets Sn0,1, we can
identify the NM ∈ N∗ samples, belonging to the validation set, which are in M (n) =(
S

(n)
0 ∩ S∗1

)
∪
(
S

(n)
1 ∩ S∗0

)
. We denote I(n)

M ∈ N the indices of these samples: I(n)
M ={

i ∈ 1, . . . , Nv such that g(i) ∈M (n)
}
. The pairwise distance between every element of

M (n) is computed, and the pair of elements maximising the distance is chosen:

i∗,j∗ = arg max
i,j∈I(n)M

||g(i) − g(j)||`p,ng .

We then consider the segment relying the samples g(i∗) and g(j∗). The elements
of this are characterised by the following expression. Let α ∈ [0,1] and the points:
g(α) = (1− α)g(i∗) + αg(j∗). If the centre of the balls is chosen among the points of the
segment, the problem reduces to finding α such that the radius of the ball inscribed in
M (n) is the largest:

α∗ = arg sup
α∈[0,1]

ε,

B(g(α), ε) ⊆M (n).

This problem is solved numerically by extensive search: the segment is discretised by
considering a number of points on it, where the evaluation of the ball radius is performed.

Remark 11
During the enrichment process, it might happen that there are no elements in the reservoir
belonging to the ball chosen to reduce the Hausdorff distance between the sets. We
propose to add to the augmented set the centre of the ball, labelled as the closest sample
belonging to the validation set.

6.3.3 Summary of the method

The overall method is summarised hereafter. Two validation sets are given, namely
S∗0,1 ⊂ Ω, in the form of sets of validation samples g(v). At the beginning of the procedure,
we have two augmented sets S(0)

0,1 ⊂ Ω, given in form of sets of samples g(0). At the

beginning of a generic iteration of the method, say n, we have two augmented sets S(n)
0,1 .

1. Evaluate the intersections between the validation sets and the current augmented
sets:M (n) = (S∗0 ∩ S

(n)
1 ) ∪ (S∗1 ∩ S

(n)
0 ). To do so:

(a) Evaluate the densities ρ(n)
0,1 in the validation sample points g(v) by using the

method described in Section 6.3.1.
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(b) Perform a Bayesian classification providing the labels y.

(c) Compare the labels with the true validation labels y∗.

(d) If y 6= y∗ then g(v) ∈M (n).

2. We compute an approximation of the Hausdorff distance, by evaluating the maximum
of the distance between the well-classified validation samples and the wrongly
classified ones, that belong to M (n).

3. We compute the largest ball that is contained in M (n), by following the steps
presented in Section 6.3.2.

4. We compute S(n+1)
0,1 by adding to them the elements of the reservoir which are

contained in the largest ball computed at the previous step, following Equation (6.3).

Remark 12
The choice of a Bayesian classification derives naturally from the distribution mix-
ture hypothesis given in Equation (6.1). In particular, we have: P(Y = i|G = g) >
1
2⇐⇒πiρi(g) > πjρj(g), i,j ∈ {0,1}, i 6= j. Where i is a realisation of the random variable
Y defined on (Ωcl = {0,1},Acl,P) (corresponding to the class) and g a realisation of G
defined on (Ω ⊆ Rng ,A,P) (corresponding to the observation).

The pseudo-code of the method is given in Algorithm 2.

6.4 Numerical experiments

In this section, several numerical experiments are proposed to illustrate the enrichment
method.

6.4.1 Two-dimensional cases

A two-dimensional application is performed on three study cases for which we consider
Ω = [0,1]2. For each study case, we randomly generated 2000 samples following a uniform
law over Ω. The first half is gathered into the validation set, whereas the second half is
gathered into the test set. Figure 6.4 shows the validation set for each study case. The
colour corresponds to the label and the black line corresponds to the true delimitation of
the two classes.

The same uniform random process was performed to construct the initial augmented
set (of size 20) and the reservoir of simulation (of size 1000). A summary of the sets is
given below:

• Input of the algorithm: validation set (of size 1000), test set (of size 1000), initial
augmented set (of size 20) and reservoir of simulations (of size 1000). Each sample
(in Ω = [0,1]2) is an observation (input of the classifier) with its corresponding label
(output of the classifier).
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Algorithm 2 Augmented set Construction (ASE-HD): Overall algorithm.
Require: Tr;V ;R;knn
{Input: Initial Augmented set; Validation set; Reservoir; Number of neighbours.}

Require: π ← (π0,π1) {A priori in the binary classification case.}
µv ← 0 {Initialise the score on the validation set.}
while µv < 1 do
µv, V

cl ← classify(Tr, V, knn, π)
{Classify the Validation set from the Augmented set. See Algorithm 3.}
pnt0 ← Hausd(V0, V

cl0
1 )

{Get points maximising the Hausdorff distance (for class 0)†. See Algorithm 4.}
pnt1 ← Hausd(V1, V

cl1
0 ) {Same for class 1†. See Algorithm 4.}

r0, c0 ← computeBall(V0, V
cl1

1 , pnt0)
{Get the centre and radius of the biggest ball in the intersection on the segment
delimited by pnt0. See Algorithm 5.}
r1, c1 ← computeBall(V1, V

cl0
0 , pnt1) {Same for class 1. See Algorithm 5.}

for each class i do
nbElem← 0 {Initialise the number of added elements.}
for gR ∈ Ri do
if gR ∈ B(ci, ri) then
Tr ← Tr ∪ gR {We add the element to the current Augmented set.}
nbElem← nbElem+ 1 {Increment the number of added elements.}

end if
end for
if nbElem == 0 then
Tr = Tr ∪ ci {We add the centre of the ball to the current Augmented set.}

end if
end for

end while
return Tr {Output of the algorithm.}

†: V clj
i are elements of the validation set belonging to class i and labelled j. These

steps allow the computation of M (n) described above in the paper.

• Output of the algorithm: augmented set and classification scores on the validation
and test set.

In this study we assume that the reservoir is unbiased. The number of nearest
neighbours is set to knn = 5.

Figure 6.5 shows the constructed training set (augmented set once the algorithm has
stopped) samples for each study case.

Two main points are highlighted by this figure:

• The whole initial database is not a must-have, only a small fraction of it is actually
useful in view of improving the classification score.
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Algorithm 3 Classify method: Classify samples of a Validation set from a Training set.
Require: Tr;V ;knn;π {Input: Training set; Validation set; Number of neighbours; A

priori.}
µv ← 0 {Initialise the score on the validation set.}
V cl ← ∅ {Initialise the output (classified samples).}
for each class i do
j ← {0,1} \ i{In the binary classification case.}
for gv ∈ Vi do
ρi(gv)← estimateDensity(Tri, knn, gv) {Estimate density of gv from Tr†i .}
ρj(gv)← estimateDensity(Trj , knn, gv) {Same for the other class†.}
if πiρi > πjρj then
µv ← µv + 1{Increase the score if well classified.}
V cli
i ← V cli

i ∪ gv{Add the element belonging to class i and labelled i.}
else
V
clj
i ← V

clj
i ∪ gv{Add the element belonging to class i and labelled j.}

end if
end for

end for
µv ← µv/#V {Renormalise the score.}
return µv;V cl {Output of the algorithm.}

†: Using the method described in Section 6.3.1. See Equation (6.6)-(6.7).

• The selected samples to construct the augmented set are mainly closed to the class
delimitation.

Figure 6.6 shows the scores on the test sets for each study case. As the algorithm
is performed on the validation set, the score on the validation set is 1 by construction
(which then induces an overfitting). Despite this overfitting, the constructed augmented
set ensures a high score on the test set for the three study cases. This is particularly true
for the first and second study cases with an average success rate higher than 0.97.

6.4.1.1 Influence of the KNN parameter

In this section, we empirically discuss about the KNN free parameter. Study case 0
was run with 2, 3, 5 and 7 neighbours in the algorithm. The three quantities considered
for the comparison are:

• The score.

• The computation time (normalised with respect to the longest one).

• The compression (augmented set size normalised with respect to the reservoir size.)
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Algorithm 4 Hausd method: Return the two samples maximising the Hausdorff distance.
Require: Vi;V cli

j {Input: Validation set restricted to class i; Validation set restricted to
class j and labelled i.}
pnt← ∅ {Points maximising the Hausdorff distance.}
if #V cli

j > 0 then
dA ← closest(V cli

j ,Vi){For each element of V cli
j return the distance of its closest

neighbour in V †i .}
pA ← argmax(dA){Maximum distance position.}
pntA = (Vi(pA), V cli

j (pA)){Samples maximising the distance.}
dB ← closest(Vi,V

cli
j ){For each element of Vi return the distance of its closest

neighbour in V cli
j
†.}

pB ← argmax(dB){Maximum distance position.}
pntB = (Vi(pB), V cli

j (pB)){Samples maximising the distance.}
if dA > dB then
pnt← pntA{Then, dA is the Hausdorff distance.}

else
pnt← pntB{Then, dB is the Hausdorff distance.}

end if
end if
return pnt {Output of the algorithm.}

†: In this paper, we consider the `∞ distance.

Results are given in Figure 6.7. For each number of neighbours, the random part
(pruning) was repeated 10 times.

Similar results for study cases 1 and 2 are shown in Figures 6.13 and 6.14 respectively
in the Appendix.

Despite the score is significantly high for the three study cases, it globally increases
as the number of neighbours decreases. Moreover, a lower number of neighbours induces
a lower computation time and higher compression. Computation time and compression
are highly correlated with a Pearson correlation close to 0.97 (0.98 for study case 1 and
0.97 for study case 2).

6.4.2 A model in electrophysiology of cells

This part is devoted to an example in electrophysiology. The observed model output,
called action potential (AP) is the potential difference across the cell membrane. This is
influenced by the value of several parameters which represent the conductances of some
of the ion channels of the cell. The model we consider is called Minimal Ventricular
(MV), presented in [BOCF08]; it is a system of parametric ordinary differential equations.
We focus on three classification problems: given the model output determine if the
conductances of sodium, calcium and potassium are above or below a certain threshold.
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Algorithm 5 computeBall method: Return the ball to consider for enrichment.

Require: Vi;V
clj
j ; pnti {Input: Validation set of class i; Validation set of class j classified

j; Hausdorff points.}
r ← ∅; c← ∅{Initialise the radius and centre of the ball.}
line← lineFrom(pnti){Extract discretised line between the two Hausdorff points.}
di ← dist(line, Vi){For each element of line, compute closest distance to V0.}
dj ← dist(line, V

clj
j ){For each element of line, compute closest distance to the well-

classified samples in the other class.}
d̂i;d̂j ← reorder(di,dj){Reorder distances with respect to the descending order of di.}
cpt← 0
while di(cpt) > dj(cpt) do
cpt← cpt+ 1{Go closer to the point belonging to Vi.}

end while
r ← di(cpt){Actualise the radius†.}
c← line(cpt)
return r;c {Output of the algorithm.}

†: For sake of clarity a scheme is given in Figure 6.3.

Figure 6.3: Scheme for Algorithm 5. We call Hausdorff points the two points for which
the Hausdorff distance is computed. S(n)

0 ∩ S∗1 corresponds to the area where the samples
of the validation set belonging to class 1 are labelled 0 at step n (i.e. belonging to S(n)

0 ).
We move on the segment delimited by the Hausdorff points, starting from the farthest
one from S∗0 . At each step, we compute the distances to S∗0 (d0(cpt)) and S(n)

1 (d1(cpt)).
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Figure 6.4: Study cases.

Figure 6.5: Constructed training sets (augmented sets once the algorithm stops).
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Figure 6.6: Boxplots of the scores obtained on the test set for each study case.

The dataset is synthetic and the numerical method used to approximate the model
solution is a third order Backward Differentiation Formula (BDF3) with a time step
∆t = 0.1ms. A periodic source term in the equation is repeated every 1200ms and its
parametrisation is given in Table 6.1.

Duration (ms) Amplitude (pA/pF)
4.0 0.1

Table 6.1: Stimuli parameters.

By starting from the third stimulation the system reaches periodicity (the `2 norm of
the difference between two consecutive periods varies by less than 10−3) we decided to
only store the third period for this study.

A total of ns = 2420 signals were generated with random triplets conductances (for
sodium, calcium and potassium) following a uniform law over [0.6,1]3. It follows that
for a realisation x = [xsodium, xcalcium, xpotassium], the component xi means that channel
i is blocked at 100 ∗ (1 − xc)%. We consider the control case (as a reference) for the
realisation x = [1,1,1] which leads to 100% of activity for each channel.

For each component c of a realisation x, the labels yc are given by:

yc =

{
0 if xc < 0.8 ("blocked")
1 otherwise ("not blocked")

. (6.8)
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Figure 6.7: Influence of the number of neighbours on the score, the computation time
and the compression for the study case 0.

The value 0.8 corresponds to the conductance threshold for the classification task
described at the beginning of this section. As we have three parameters, we divided the
problem into three classification tasks: sodium, calcium and potassium conductances
classification. An example of AP signals at control case (x = [1, 1, 1]) and in random case
is shown in Figure 6.15 of the Appendix.

6.4.2.1 Biased data

Different biased datasets were generated from these ns = 2420 simulated APs. These
biased signals were obtained by computing the Fourier transform and putting to zero the
entries corresponding to the higher frequencies. We considered three different levels of
bias (expressed in terms of energy) as presented in Table 6.2.

Bias level Relative `2 error norm
Low 0.020

Medium 0.035

High 0.065

Table 6.2: Biased datasets.
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An example of an AP signal with its different levels of bias is shown in Figure 6.8.

Figure 6.8: Sample of an action potential signal generated by the MV model with its
different levels of bias.

6.4.2.2 Dictionary entry computation

For each sample (AP signal), we consider ng = 24 observable quantities. These
correspond to pair times and amplitudes in different phases of the AP signal. Its
computations are the following:

• The first two dictionary entries are the amplitude and time of the depolarization
peak.

• The next two dictionary entries are the amplitude and time of the notch.

• Then the amplitude and time of the plateau are considered.

• The others quantities are the amplitudes and times of the different percentage X of
repolarization with respect to the plateau amplitude: where X is equal to 10, 20, 30,
40, 50, 60, 70, 80 and 90. It corresponds to a variant of the action potential duration
at X% of repolarization (APDX), where the reference is the plateau amplitude
instead of the depolarization amplitude.

They are computed in the same way for each sample. An example of extracted
quantities is shown in Figure 6.9.
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Figure 6.9: Sample of an action potential signal generated by the MV model (control
case: x = [1, 1, 1]) with the extracted quantities to generate the dictionary entries.

We denote g(j)
i the ith dictionary entry of the jth AP signal. Considering the control

case as a reference, we propose to consider the following translated dictionary entries:

g
(j)
i = g

(j)
i − g

(ctrl)
i ,∀i,j.

It follows that, in the control case, we have g(ctrl)
i = 0, ∀i = 1, . . . ,ng. All the samples

were then transformed in such a way that the compact domain Ω is the hypercube of
dimension ng = 24, side 1 and centred at c = (1

2 , . . . ,
1
2) ∈ Rng . Inputs and outputs of

the model are summarised below:

• Input of the model to generate one sample: x = [xsodium, xcalcium, xpotassium] ∈
[0.6, 1]3.

• Output of the model: computed entries rescaled with respect to the control case
(computed entries for xc = [1,1,1]) and its corresponding label from x given by
Equation (6.8).

6.4.2.3 Datasets preprocessing

Two study cases are performed: in the first one, we assume that the validation set
covers Ω whereas in the second one we consider an incomplete validation (the validation
set covers only a subset of Ω). To do so, from the unbiased dataset, we randomly extract
nv = 89 from the ns = 2420 signals in such a way that 84 of them have a sodium and
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calcium activity higher than 0.85. The 5 others are randomly chosen in such a way that
at least one sample belongs to the other class (sodium and/or calcium conductance is
lower than the threshold). Dataset’s sizes are summarised in Table 6.3.

Validation set nt (test) nv (validation) ntr (initial augmented) nd (database)
Complete: Covers Ω 1000 400 20 1000

Incomplete: Partially covers Ω 1000 89 20 1000

Table 6.3: Datasets sizes.

Test, validation and initial augmented sets are randomly extracted from the whole
unbiased dataset (ns = 2420). The database can be biased or unbiased depending on
the study (chosen samples are the same, but with different biases). The random process
is performed in such a way that a selected sample belongs to only one set and cannot
be selected more than once. Figure 6.10 shows the densities of the variable x for the
validation and test sets (for each class), in the sodium classification task.

Figure 6.10: Densities of validation and test sets for sodium classification. Black lines
correspond to the class delimitation.

As we can see, when the complete validation case is considered, the density of x is
almost uniform over the whole domain of x (meaning that we have samples for almost all
possible values of x). On the contrary, for the incomplete validation case (in the centre)
we clearly see that there are regions of the domain of x in which we do not have samples.
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6.4.2.4 Computational results

All the following results were obtained using knn = 5 nearest neighbours.

Comparison between complete and incomplete validation set

Figure 6.11 shows the scores obtained with a complete and incomplete validation set.

Figure 6.11: Scores obtained with a complete and incomplete validation set.

1. Complete validation set:

(a) The sodium conductance is easy to classify, whereas calcium conductance is the
most difficult to infer. The fact that potassium and calcium conductances are
more difficult to classify is due to the compensation effect between these two
channels (see Figure 6.15), which is a known phenomenon in electrophysiology.

(b) The scores are not significantly impacted by the bias as the proposed method
naturally rejects it.

2. Incomplete validation set:

(a) The calcium conductance classification shows the lowest success rate whereas
the potassium conductance classification shows the highest score. The fact
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that the potassium has the highest score is expected as no data were removed
for this case.

(b) The score obtained in the unbiased case for the sodium is close to its expected
approximation: around 81% (see Section 6.6.1 of the Appendix for more
details).

3. Complete vs Incomplete validation set:

(a) The test score is lower in the incomplete validation set case. This is because
there are regions of Ω in which we do not have samples of the dataset. As we
do not have information in these empty regions, the score is lower.

(b) For the same reasons as above, the variability on the test score is higher when
the validation set is incomplete.

A comparison with the construction of a classifier considering the full reservoir of data
as the training set is given in Table 6.4. The same conditions were considered for the
three methods (ASE-HD, SVM and KNN). Indeed, for the ’No Bias’ scenario we put in
the reservoir unbiased samples, for the ’Low’ scenario we considered only samples with a
low level bias in the reservoir, and we proceed analogously for the other scenarios. For
all the cases, the samples of the test set are unbiased, meaning, they are drawn from
the ’true’ system. In particular, in absence of bias, considering the whole reservoir as
the training set is globally better. However, in the presence of bias, the augmented set
construction method proposed is better. Moreover, the construction method allows to get
a similar classification success rate irrespective of bias. This is due to the method itself
which reject biased data in an automated way.

Remark 13
In the KNN algorithm implemented in Scikit-Learn [PVG+11], we consider the kthnn closest
samples (from the training set) of a query point irrespective of the class they belong to.
We then classify the query point using the majority vote strategy. This method is quite
different of the proposed strategy proposed in this paper. In particular, we consider the
kthnn closest samples from the training set of a query point for each class to estimate the
density over the two classes (for a binary classification). We then consider a Bayesian
approach to classify the query point. This could justify the success rate difference between
the No Bias case in the ASE-HD method and KNN method.

Remark 14
In this paper we considered a Bayesian approach to classify a query point. However, the
augmented set construction method is not restricted to a particular classification method
(nor density approximation).

Database and validation set enrichment
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Study/Biased Reservoir ASE-HD∗ SVM KNN
Sodium
No Bias 0.91 0.94 0.94

Low 0.91 0.81 0.82

Medium 0.91 0.81 0.80

High 0.91 0.54 0.57

Average (std) 0.91 (0) 0.78 (0.17) 0.78 (0.15)
Potassium
No Bias 0.83 0.91 0.89

Low 0.84 0.86 0.76

Medium 0.84 0.82 0.83

High 0.84 0.83 0.80

Average (std) 0.84 (0.01) 0.86 (0.04) 0.82 (0.05)
Calcium
No Bias 0.81 0.86 0.87

Low 0.81 0.60 0.67

Medium 0.79 0.78 0.79

High 0.80 0.68 0.64

Average (std) 0.80 (0.01) 0.73 (0.11) 0.74 (0.11)
∗See Figure 6.11, left panel and blue legend.

Table 6.4: Comparison between the augmented set construction method and common
classification techniques (using Scikit-Learn library [PVG+11] with default parameters)
considering the whole reservoir (biased or unbiased samples depending on the scenario)
as the training set. Values correspond to the classification success rate on the test set
which is unbiased.

As described in Section 6.2.4.2, once the augmented set enrichment process is performed
on the incomplete validation set, we enrich the validation set with data from the database.
In the case where we have a bias, we may exploit some statistical information on the
bias to generate more pertinent labelled samples. We recall that we have 4 different
study cases based on the database (see Section 6.4.2.1): without bias and with a low,
medium and high level of bias. We assume that we know the a priori for the two classes:
π0 = π1 = 1

2 . Then, we enriched the validation set in such a way the number of samples
is each class is the same, with nv = 400 (we added 311 samples). See Table 6.3.

Unbiased case In the unbiased case, we compute the dictionary entry mean and
standard deviation for each class of the incomplete validation set. We denote π̂i the
estimated a priori. Then, we randomly brows each sample of the database (for each class).
While nv < 400, if one of the entries is outside the corresponding (i.e same class) mean
plus/minus the standard deviation, we add it to the validation set (and remove it from
the database) if the following equation holds:
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min
i
π̂

(n+1)
i > min

i
π̂

(n)
i ,

with π̂(n+1)
i the a priori computed considering the sample into the validation set and

π̂
(n)
i the a priori computed before considering the current sample into the validation set.

In other words, it aims to consider the assumptions on the true a priori πi described
above.

Biased case For the biased case, we compute the average and standard deviation
difference (in the dictionary entry space) between the incomplete validation set and the
simulated data with the same parameters:

bm = E
(
Dθv − Vθv

)
bs =

√
E
(

(Dθv − Vθv)2
) ,

with bj ∈ Rng the mean (j = m) or the standard deviation (j = s) and where
Vθv is the incomplete validation set and Dθv is the simulated dataset obtained with
θv as parameter entries of the simulated model. Then, from these statistics, for each
sample of the database, we generate 4 ghosts samples following the approach described in
Section 6.2.4.2. Here, we assume that the bias computed on the validation set is preserved
on the empty region.

Results The results are shown in Figure 6.12.

1. The enrichment scenario always induces a higher classification success rate on the
test set. It also reduces the variability.

2. Whithout bias, the classification success rate is close to the complete validation set
scenario.

3. The sodium channel is the easiest to classify if compared with the potassium and
calcium channels.

4. The highest gain with the enrichment is for the calcium channel.

5. The gain with the enrichment for the sodium channel is the lowest. This is because
the part of signal induced by the sodium channel (depolarisation) is particularly
sensitive to the bias (see Figure 6.15).

6.5 Conclusion

In the present work a method is proposed to enrich available experimental datasets
by using numerical simulations in view of improving classification tasks performances.
This is an example of potential interaction between statistical learning and mathematical
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Figure 6.12: Scores on the test set considering incomplete/complete validation set and
enriched validation set.

modelling. The method is based on the probabilistic description of the observations of
a phenomenon and a characterisation of the classification performances based on set
distances. The main properties of the method have been investigated from a theoretical
point of view and illustrated through some numerical experiments. The systematic
construction and enrichment of the augmented set can have a significant impact on the
classification score. The proposed method performs a bias rejection to some extent, and,
if statistical information on a model bias is available, these can be naturally integrated in
the algorithm.



6.6. APPENDIX 109

6.6 Appendix

Proof of Lemma 1.
By definition of the symmetric difference, we have:

S∗0∆S
(n)
0 = (S∗0 \ S

(n)
0 ) ∪ (S

(n)
0 \ S∗0).

⇐⇒

S∗0∆S
(n)
0 = (S∗0 ∩ S

(n)C

0 ) ∪ (S
(n)
0 ∩ S∗C0 ),

where S(n)C

0 = Ω \ S(n)
0 and S∗C0 = Ω \ S∗0 are the complementary sets of S(n)

0 and S∗0
respectively. It follows that:

S∗0∆S
(n)
0 = (S∗0 ∩ S

(n)
1 ) ∪ (S

(n)
0 ∩ S∗1) = M (n).

The proof for S∗1∆S
(n)
1 is similar.

Proof of Proposition 7.
By definition of S∗j and S(n)

j (see Equation (6.2)), we have:

(S∗0 ∩ S
(n)
1 ) ∩ (S∗1 ∩ S

(n)
0 ) = ∅.

Then, M (n) is a disjoint union of two sets. This implies that:

µL(M (n)) = µL(S∗0 ∩ S
(n)
1 ) + µL(S∗1 ∩ S

(n)
0 ).

Remark that, by definition of the Lebesgue measure on a set and due to the compactness
of the sets, we have the following inequalities:

0 ≤ µL(M (n)) < +∞.

It is straightforward to show that:

µL(M (n)) = 0⇐⇒ µ(n)
v = µ∗ almost surely,

Let assume that µL(M (n)) > 0. It follows that at least one of the following inequalities is
satisfied: {

µL(S∗0 ∩ S
(n)
1 ) > 0

µL(S∗1 ∩ S
(n)
0 ) > 0

.

Let S′ be the set such that:

S′ = arg max
(
µL(S∗0 ∩ S

(n)
1 ), µL(S∗1 ∩ S

(n)
0 )
)
.
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We then have µL(S′) > 0. Therefore, ∃gn+1 ∈ S′ and ε > 0such that the ball
B(gn+1, ε) ⊆ S′. By definition of M (n) (see Section 6.2.2), we have:

M (n+1) = M (n) \ B.

As B ∈ S′ ⊆M (n) and µL(B) > 0, we have:

0 ≤ µL(M (n+1)) < µL(M (n)).

We have a sequence of measures which is strictly decreasing and bounded. Thus,
this sequence converges to its minimum. Let assume that this minimum is δ > 0. Then,
it exists a non-empty ball such that the measure will decrease, which is impossible. It
follows that:

lim
n→+∞

µL(M (n)) = 0.

Therefore,

lim
n→+∞

S
(n)
i = S∗i ,

almost everywhere for i = 0 or 1. Hence, almost surely, we have:

lim
n→+∞

µ(n)
v = µ∗.

Proof of Corollary 2.
By definition, ∀n ∈ N, we have:

µ(n)
v =

ˆ
S
(n)
0

π0ρ
v
0dg +

ˆ
S
(n)
1

π1ρ
v
1dg.

Then, at iteration n+ 1, we have:

µ(n+1)
v =

ˆ
S
(n+1)
0

π0ρ
v
0dg +

ˆ
S
(n+1)
1

π1ρ
v
1dg,

with:

S
(n+1)
0 =

{
S

(n)
0 ∪ B∗ if B∗ ⊆ S∗0 ∩ S

(n)
1

S
(n)
0 \ B∗ if B∗ ⊆ S∗1 ∩ S

(n)
0

.

Let us consider the first scenario: S(n+1)
0 = S

(n)
0 ∪ B∗. Then using the fact that the

sets are disjoint, we have:

µ(n+1)
v =

ˆ
S
(n)
0

π0ρ
v
0dg +

ˆ
B∗
π0ρ

v
0dg +

ˆ
S
(n)
1

π1ρ
v
1dg −

ˆ
B∗
π1ρ

v
1dg,
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which immediately yields to:

µ(n+1)
v − µ(n)

v =

ˆ
B∗

(π0ρ
v
0 − π1ρ

v
1)dg ≥ 0.

Here, we assumed that B∗ ⊆ S∗0 ∩ S
(n)
1 . The inequality is given by the definition of

S∗0 . On this set, we have: π0ρ
v
0 − π1ρ

v
1 > 0. The equality is then obtained if and only if

µL(B∗) = 0. Considering the second scenario, we finally obtain:

µ(n+1)
v − µ(n)

v =

ˆ
B∗
|π0ρ

v
0 − π1ρ

v
1|dg ≥ 0.

Proof of Lemma 2.
Let us focus on the first equality of the lemma (the proof for the second equality is

similar). We have:
(Ste0 ∪ b0) \ b1 =

(
Ste0 \ b1

)
∪
(
b0 \ b1

)
As b1 ∩ b0 = ∅ we have:

(Ste0 ∪ b0) \ b1 =
(
Ste0 \ b1

)
∪ b0 =

(
Ste0 \ (Sm1 ∩ Ste0 )

)
∪ b0.

⇐⇒

(Ste0 ∪ b0) \ b1 =
(
Ste0 \ Sm1

)
∪ b0 =

(
Ste0 \ Sm1

)
∪
(
Sm0 ∩ Ste1

)
⇐⇒

(Ste0 ∪ b0) \ b1 =
(
Sm0 ∩ Ste0

)
∪
(
Sm0 ∩ Ste1

)
= Sm0 ∩

(
Ste0 ∪ Ste1

)
.

Since Ste0 ∪ Ste1 = Ω, we finally obtain:

(Ste0 ∪ b0) \ b1 = Sm0 .

Proof of Proposition 8.
We have:

µb =

ˆ
Sm0

π0ρ
te
0 dg +

ˆ
Sm1

π1ρ
te
1 dg.

Then from Lemma 2 and based on sets definition, we have:

µb =

ˆ
Ste0

π0ρ
te
0 dg +

ˆ
b0

π0ρ
te
0 dg −

ˆ
b1

π0ρ
te
0 dg +

ˆ
Ste1

π1ρ
te
1 dg +

ˆ
b1

π1ρ
te
1 dg −

ˆ
b0

π1ρ
te
1 dg

⇐⇒
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µb = µ∗ +

ˆ
b0

(π0ρ
te
0 − π1ρ

te
1 )dg +

ˆ
b1

(π1ρ
te
1 − π0ρ

te
0 )dg.

By virtue of the definition of the sets b0, b1, it holds:{
g ∈ b0=⇒π1ρ

te
1 > π0ρ

te
0

g ∈ b1=⇒π0ρ
te
0 > π1ρ

te
1

.

It immediately leads to µb ≤ µ∗. Moreover,

µb = µ∗=⇒µL(bi) = 0, (i ∈ {0,1}),

and,
µL(bi) = 0, (i ∈ {0,1})=⇒µb = µ∗.

Then,
µb = µ∗ ⇐⇒ µL(bi) = 0, (i ∈ {0,1}).

Concerning the left-hand side of the inequality, we have:{
Ste0 = (Ste0 ∩ Sm1 ) ∪ (Ste0 \ Sm1 )

Ste1 = (Ste1 ∩ Sm0 ) ∪ (Ste1 \ Sm0 )
.

In particular, the intersection of the two members for each equation is empty. Then, we
can rewrite µb as follows:

µb =

ˆ
Ste0 ∩Sm1

π0ρ
te
0 dg +

ˆ
Ste0 \Sm1

π0ρ
te
0 dg +

ˆ
Ste1 ∩Sm0

π1ρ
te
1 dg +

ˆ
Ste1 \Sm0

π1ρ
te
1 dg

+

ˆ
Sm0 ∩Ste1

(π0ρ
te
0 − π1ρ

te
1 )dg +

ˆ
Sm1 ∩Ste0

(π1ρ
te
1 − π0ρ

te
0 )dg.

⇐⇒

µb =

ˆ
Sm1 ∩Ste0

π1ρ
te
1 dg +

ˆ
Sm0 ∩Ste1

π0ρ
te
0 dg +

ˆ
Ste0 \Sm1

π0ρ
te
0 dg +

ˆ
Ste1 \Sm0

π1ρ
te
1 dg.

As each integrand is positive or null, we have µb ≥ 0.

1. Let assume that Smi = Stej and ρtej = ρtej 1{Stej }, for i,j ∈ {0,1}, i 6= j. Then, we
have µb = 0.
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2. Let assume that µb = 0. By definition of the different sets, it is easy to show
that µb is defined as a sum of integrals over disjoint sets. As each integrand is
positive or null, it follows that each integral has to be equal to 0. Recalling that
π0ρ

te
0 > π1ρ

te
1 ≥ 0 over Ste0 , it is obvious that we necessarily have Ste0 ⊆ Sm1 . For

the same reason, we have Ste1 ⊆ Sm0 (from the fourth integral). Let x ∈ Sm1 \ Ste0 .
Then, x ∈ Sm1 ∩ Ste1 which is impossible because Ste1 ⊆ Sm0 . It follows that:

Stei = Smj , i,j ∈ {0, 1}, i 6= j.

Then, to ensure that the first two integrals are equal to 0, we necessarily have:

ρtei = ρtei 1{Stei }, i ∈ {0, 1}.

Finally,

µb = 0⇐⇒

{
Sm0 = Ste1 ⇐⇒ Sm1 = Ste0
ρtei = ρtei 1{Stei }

.

In other words, the worst case for µb is obtained when the model is as bad as possible.

Proof of Lemma 3.
Ste1 \ Sv1 = Ste1 \ (Ω \ Sv0 ).

Using some set theory properties,

Ste1 \ Sv1 = (Sv0 ∩ Ste1 ) ∪ (Ste1 \ Ω) = Sv0 ∩ Ste1 = Sv0 ∩ (Ω \ Ste0 ) = Ω ∩ (Sv0 \ Ste0 ).

Then we finally obtain:
Ste1 \ Sv1 = Sv0 \ Ste0 .

Proof of Proposition 9.

µcte =

ˆ
Sv0

π0ρ
te
0 dg +

ˆ
Sv1

π1ρ
te
1 dg.

As ρtej = ρvj , we have Stej = Svj . Then,

µcte =

ˆ
Ste0

π0ρ
te
0 dg +

ˆ
Ste1

π1ρ
te
1 dg.

In the incomplete validation case, we have either:{
Sv1 ⊆ Ste1 and Ste0 ⊆ Sv0
Sv0 ⊆ Ste0 and Ste1 ⊆ Sv1

.

.
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By symmetry of the problem, let assume that:

Sv1 ⊆ Ste1 and Ste0 ⊆ Sv0 .

We then have:

µpte =

ˆ
Sv0

π0ρ
te
0 dg +

ˆ
Sv1

π1ρ
te
1 dg

=

ˆ
Ste0

π0ρ
te
0 dg +

ˆ
Ste1

π1ρ
te
1 dg +

ˆ
Sv0\Ste0

π0ρ
te
0 dg −

ˆ
Ste1 \Sv1

π1ρ
te
1 dg.

Using Lemme 3, we have:

µpte = µcte −
ˆ
Ste1 \Sv1

(π1ρ
te
1 − π0ρ

te
0 )dg.

Moreover, we know that π1ρ
te
1 ≥ π0ρ

te
0 over Ste1 . Hence, the second term of the

previous equation is positive. Then,

µpte ≤ µcte.

6.6.1 MV: scores in the incomplete validation set scenario

For this study we make the following assumptions:

• AP behaviour under sodium blockade does not depend on potassium and calcium
channel activities.

• AP behaviour under potassium and/or calcium channel blockade are dependent.

The following study is coarse, but presented to justify scores obtained in Section 6.4.2.4
of the manuscript.

Sodium channel blockade

In the incomplete validation case, sodium activities for the validation set belong to
(0.85, 1) except knn of them, belonging to the other class (i.e. 0.6,0.8). We recall that each
activity is an independent realisation of a random variable following a uniform law over
(0.6,1). It is then acceptable to assume that all the elements of the test set belonging to
(0.85,1) will be well classified (i.e. 37,5% of the segment (0.6,1)). The average, elements of
the validation set belonging to the other class (i.e. (0.6,0.8)) is 0.7. Then, it is reasonnable
to assume that all the elements of the test with an activity belonging to (0.6,0.7) will be
in average well classified (which corresponds to 25% of (0.6,1)). Finally, on (0.7,0.85) we
can assume that as we do not have enough information, and then, we well classify half of
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Figure 6.13: Influence of the number of neighbours on the score, the computation time
and the compression for the study case 1.

the elements of the test set. In particular, because of the non-linearities of the model it is
not possible to assume that the average class delimitation is at 0.5 ∗ (0.7 + 0.85) = 0.775.

Under the above assumptions, we have the following score:

µ =
0.25 ∗ nt + 1

2 ∗ 0.375 ∗ nt + 0.375 ∗ nt
nt

= 0.8125,

where nt is the number of elements of the test set. Then, by simulation, we expect
to have a score close to 0.81 for the sodium channel blockade study in the incomplete
validation set case.
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Figure 6.14: Influence of the number of neighbours on the score, the computation time
and the compression for the study case 2.
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Figure 6.15: Comparison of different channels blockade (20% of blockade). Sodium channel
blockade is mainly known to reduce the depolarisation peak, calcium channel blockade is
mainly known to reduce the plateau phase and the duration whereas potassium channel
blockade is mainly known to induce a signal prolongation.
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Chapter 7

Conclusions

This methodological part is devoted to the construction of a machine learning tool with a low
number of parameters to tune and easily pluggable into a supervised classification context.

The first section describes a goal oriented double greedy dimension reduction (DGDR) method
based on Stiefel manifold properties and the maximisation of a score function related to the
classification success rate. The interest of the proposed method is twofold. On one hand, the
dimension reduction allows to reduce the overfitting whereas, on the other hand, the success rate
on the validation set is maximised. The knn parameter is the only parameter appearing in the
method during the discretisation process.

The second section (based on the same assumptions as in the DGDR method) aims at
constructing an augmented set by removing irrelevant or biased samples. This selection is
operated in an iterative way by reducing Hausdorff distances between sets. It has been shown
that this minimisation is equivalent to the maximisation of the same score function as described
in the DGDR method. Moreover, the only free parameter of the method is the same as the one
appearing in the DGDR method (i.e. knn parameter).

For the above reasons, the two proposed strategies seem to be suitable to address the arose
problem in the introduction of the manuscript.

Further works could be done to extend and/or improve these proposed methods:

• DGDR technique:

– Extension to regression tasks (see Section 9).

– Extension to more than 2 classes.

– Activation functions can be embedded.

• ASE-HD technique:

– Cross-validation techniques could be considered in order to improve the robustness of
the augmented set construction.

– Hausdorff distance consideration during the pruning phase to remove the random
process.

Despite these improvement opportunities, the proposed methods have shown encouraging
results in several study cases:

• DGDR technique: better results (in average) than usual classification and reduction
techniques.

• ASE-HD technique: relevant augmented training set with a low sample size.

The following chapters are a direct application of the proposed methods in a safety pharma-
cological context.
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Part III

Patch-clamp studies
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Chapter 8

Introduction

Cardiac electrophysiology is a wide field of study at different physical scales: from cell level
to body level. In the context of safety pharmacology, many in vitro studies are performed at
early stages during drug development. These steps are crucial to pursue development phases at
higher scales before being released on the market.

These in vitro techniques are essentially patch-clamp techniques (see Section 2.3.1). They are
nowadays the gold standard to study compound effects on cardiomyocytes (or induced pluripotent
stem cells derived cardiomyocytes). These techniques consist in recording ionic currents passing
from either side of membrane cells (sarcolemma in our case of cardiomyocytes studies).

In this context, two collaborations were performed:

• University of Zaragoza, Spain: Esther Pueyo, David Adolfo Sampedro-Puente, Jesus
Fernandez-Bes & Pablo Laguna: This work aims at estimating ionic channel activities
from Action Potential (AP) signals at control case and under β−adrenergique stimulation.
This work led to the publication of a paper in IEEE Journal of Biomedical and Health
Informatics [SPRFB+20].

• Sophion Bioscience, Ballerup, Denmark: Kadla Røskva Rosholm, Lasse Homann & Anders
Lindqvist: The goal of this study is to combine automated patch-clamp techniques on
multiwell plates to a Hit/No Hit classification. Roughly speaking, the plate allowing to
perform multiple patch clamp recordings at the same time permits a high throughput
screening. It is then crucial to efficiently and quickly classify whether a compound at a
certain concentration has a significant impact on the signal with respect to the control case
(i.e. without compound addition).
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Chapter 9

Channel activity estimation

Objective: Elevated spatio-temporal variability of human ventricular repolarisation has been
related to an increased risk for ventricular arrhythmias and sudden cardiac death, particularly
under β−adrenergic stimulation (β−AS). This work presents a methodology for theoretical
characterisation of temporal and spatial repolarisation variability at baseline conditions and in
response to β−AS. For any measured voltage trace, the proposed methodology estimates the
parameters and state variables of an underlying human ventricular action potential (AP) model
by combining the DGDR method and the Unscented Kalman Filter (UKF). Such theoretical
characterisation can facilitate subsequent characterisation of underlying variability mechanisms.

Material and Methods: In silico AP traces were generated based on the ORd action potential
model. The ionic conductances of a given AP trace were estimated by the DGDR method extended
to regression problems. Those estimates served to initialise and update the ionic conductance
estimation, from the UKF method, which is based on the formulation of an associated non-linear
state-space representation and the joint estimation of model parameters and state variables.
Similarly, β−AS-induced phosphorylation levels of cellular substrates were estimated by the
DGDR-UKF methodology. Performance was tested by building an experimentally calibrated
population of virtual cells, from which synthetic AP traces were generated for baseline and β−AS
conditions.

Results: The combined DGDR-UKF methodology led to 25% reduction in the error associated
with estimation of ionic current conductances at baseline conditions and phosphorylation levels
under β−AS with respect to individual DGDR and UKF methods. This improvement was not
at the expense of higher computational load, which was diminished by 90% with respect to
the individual UKF method. Both temporal and spatial AP variability of repolarisation were
accurately characterised by the DGDR-UKF methodology.

Conclusions: A combined DGDR-UKF methodology is proposed for parameter and state
variable estimation of human ventricular cell models from available AP traces at baseline and under
β−AS. This methodology improves the estimation performance and reduces the convergence
time with respect to individual DGDR and UKF methods and renders a suitable approach
for computational characterisation of spatio-temporal repolarisation variability to be used for
ascertainment of variability mechanisms and its relation to arrhythmogenesis.
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9.1 Introduction

Clinical, experimental and computational studies have demonstrated the important
role of cardiac spatio-temporal variability in electrical function, whether it is at cel-
lular level through AP signals or at body scale through electrocardiograms. On one
hand, spatial variability refers to electrophysiological differences between cardiac cells
or regions of cells and has been to some extent attributed to distinct ionic current
contributions to individual APs [PCV+11, SKH+15, LKMGG07, LFYC98, SBOW+14].
On the other hand, temporal variability refers to AP differences between cardiac beats
and has been suggested to arise from random fluctuations in ionic currents as well as
variations in intracellular calcium handling [PCV+11, LKMGG07, AJD+15, KSH+15,
LdLK11, TGOW05]. Numerous investigations have associated elevated spatial and/or
temporal variability of ventricular repoloraziations with pro-arrhythmicity and sudden
cardiac death [HBT+10, VWvdH+12, SWY+11, WSH+15, SPFBS+20]. In particular,
β−adrenergic stimulation (β−AS) has been shown to produce exaggerated increases in
beat-to-beat variability of repolarisation (BVR), particularly under conditions of reduced
repolarisation reserve [JHB+13, JHP+10, GVdWvdL+07]. In vitro experiments in iso-
lated cardiomyocytes have suggested that this elevation in BVR by β−AS is a relevant
contributor to arrhythmogenesis by the development of afterdepolarisations and triggered
activity [JHB+13, SKH+15, JHP+10, HBI+18, HZJ+13]. In an in vivo animal model of
long QT1 syndrome, β−AS has been shown to induce increments in both temporal and
spatial dispersion of repolarisation and to facilitate the development of early afterdepolar-
isations (EADs) and left ventricular aftercontractions, altogether providing the substrate
and triggers for the ignition of Torsade de Pointes, a life-threatening ventricular arrhyth-
mia [GVdWvdL+07]. Computational investigations have further contributed to shed light
into the mechanisms underlying the relationship between β−AS induced elevation in BVR
and pro-arrhythmic risk [LKMGG07, LdLK11, HZJ+13, PORT16, SPFBP+19]. Never-
theless, most of the computational approaches employed so far in the literature do not
account for realistic modelling of cell-to-cell or beat-to-beat AP differences, which should
be fundamental to better understand the relationship between BVR and arrhythmogenesis
and its modulation by β−AS.

For the above reasons, the development of stochastic cardiac computational AP models
fed with information acquired from human cells or tissues becomes of major interest.
In recent years, different methodologies have been proposed to integrate information
from cardiac AP signals, or from a set of markers derived from them, by identifying
the values of parameters and/or state variables of an underlying electrophysiological
model. This allows obtaining a population of virtual AP models representative of
a set of experimental data of interest, with the advantage of facilitating assessment
of the causes and consequences of BVR by simultaneous assessment of voltage and
ionic currents/concentrations. In [LDC+18, TLRG17, CSC15], methodologies based on
Genetic Algorithms, Moment Matching and Gaussian Process Emulators were designed for
parameter identification at a population level, thus allowing to reproduce the overall AP
characteristics in the investigated cell population but hampering individual identification
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of the parameters associated with each cellular AP trace. In [JCB+16, JBG+16] ionic
parameters were estimated from voltage signals by using Markov Chain Monte Carlo
(MCMC)-based methods, which enable parameter estimation for each individual cell.
However, on top of the high computational load associated with these methods, they
do not account for beat-to-beat variability and do not provide an estimation for other
non-measurable state variables of the model, such as ionic concentrations or channel
open probabilities, as neither do the methods proposed in [LDC+18, TLRG17, CSC15].
In [SPFBV+19], a methodology based on non-linear state-space representations [Sär13]
and the Unscented Kalman Filter (UKF) [JU04] was proposed to identify the parameters
and state variables of stochastic human ventricular AP models. This methodology
provided robust one-to-one model parameter and state estimation for each AP trace
individually, but the computational load was high and it required a long AP signal for
accurate estimation.

On the basis of the above described limitations, a methodology for AP model parameter
and state estimation that combines fast methodologies based on biomarkers’ information
with other more complex methodologies based on AP traces’ information could be most
useful. When condensing AP data into a set of biomarkers, it is important to keep a
sufficient amount of information to avoid any risk of degradation in the estimation. To
ensure this, the number of computed quantities per sample to build the dictionary, can be
potentially substantial (hundreds, thousands, ...) and even higher than the sample size.

In this regime, various phenomena can appear, referred to as the curse of dimensional-
ity [Bel15], which requires data processing to improve classification or regression. The
potency of the DGDR method to reduce the dimension in a goal-oriented way is extended
to solve regression tasks and then perform parameters estimation. It follows that DGDR
method automatically builds a parameter-dimensional regressor input through a sparse
linear combination of the dictionary entries to prevent any overfitting risk [Haw04].

The present in silico study proposes the combined use of DGDR and UKF-based
methodologies to extract information from AP signals at baseline and under β−AS.
Initial DGDR parameter estimates are used to initialise and/or update subsequent UKF
estimates so as to facilitate that these remain close to their actual values. To assess the
performance of the proposed methodology, a population of stochastic ventricular human
cell models is constructed and used to run simulations at baseline conditions and following
β−AS. Methodological performance is first tested over the synthetic AP signals generated
for baseline conditions, from which a set of ionic current conductances are inferred for
each virtual cell. In a second step, the methodology is tested over synthetic AP signals of
the same population following β−AS, from which the phosphorylation levels of a set of
cellular substrates are inferred, considering the previously identified ionic conductances.

This work thus provides a tool to assess mechanisms underlying cardiac spatio-temporal
variability and identify those with pro-arrhythmic potential.
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9.2 Methods

9.2.1 Stochastic AP Models at Baseline and under β−AS

9.2.1.1 Stochastic Human Ventricular ORd Model

A stochastic version of the OHara (ORd) human ventricular epicardial AP
model [OVVR11] was developed to reproduce experimentally observed BVR. Follow-
ing the subunit-based approach described in [PCV+11], the set of ordinary differential
equations (ODEs) describing ion channel gating for the four principal currents active
during AP repolarisation, namely IKs (slow delayed rectifier potassium current), IKr
(rapid delayed rectifier potassium current), Ito (transient outward potassium current) and
ICaL (L-type calcium current), were transformed into stochastic differential equations
(SDEs) by adding a stochastic term of the form shown in Equation (9.1) for a generic
ionic gate xg, where xg∞ is the steady-state value and τxg is the time constant.

dxg =
xg∞ − xg

τxg
dt+

√
xg∞ + (1− 2xg∞)xg√

τxgNg
dw. (9.1)

The added stochastic term containing the increments of a Wiener process (dw)
multiplied by a factor inversely proportional to the number of ion channels (Ng) of the
corresponding type was added to the deterministic term defining xg gating. By including
this stochastic term with an accurately estimated number of channels, realistic fluctuations
in the ionic gates and the whole-cell ionic currents are reproduced (as a Brownian motion),
which are the source for BVR in cellular AP. The number of channels Ng associated with
IKs, IKr, Ito and ICaL were calculated by dividing the default ionic conductance values in
the ORd model by the corresponding single channel conductances reported in literature,
as described in [SPFBV+19].

9.2.1.2 β−Adrenergic Signaling model

β−AS effects were modelled following the approach described in [PORT16], where a
modified version of the Xie et al. model [XGP+13], with definition of graded and dynamic
phosphorylation levels of cellular protein kinase A (PKA) substrates, was used. The Xie
et al. model was updated from the original β−adrenergic signalling formulation proposed
in [SS10] to slow down the IKs phosphorylation and dephosphorylation rate constants
to fit experimental observations. PKA-mediated phosphorylation of phospholemman
was accounted for in [XGP+13] by increasing the Na+ −K+ (NaK) pump affinity for
intracellular Na+ concentration.

9.2.2 Synthetic Data

A population of stochastic AP models was constructed to reproduce the experimentally
reported inter-individual variability in human ventricular electrophysiological properties
(a sample is then a sequence of AP signals). An initial population of in silico cells was
generated by using a Monte-Carlo method in which the conductances of eight main ionic
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conductances were varied in the range ±100% of their nominal values in the ORd model,
with those currents being: IKs, IKr, Ito, ICaL, inward rectifier potassium current IK1,
sodium current INa, sodium-calcium exchanger current INaCa and sodium-potassium
pump current INaK . This corresponded to definition of eight multiplying conductance
factors, namely θKs, θKr, θto, θCaL, θK1, θNa, θNaCa and θNaK , varying between 0
(full blockade) and 2 (activation at twice the baseline activity). These multiplying
conductances factors can be seen as the factor of the conductance-block model described
in Equation (3.5) of Section 3.2.2 to simulate compound effects on the electrical signal.
From the 8000 initially generated samples, only 2373 presenting electrophysiological
properties within physiologically limits were retained, with those limits shown in Table 9.1
as determined based on [OVVR11, GLL+11, BBOV+17, GPB10, JVS+08, PMPI+02,
SHH+98]. The quantified properties included AP duration (APD) at 90% (APD90)
and 50% repolarisation (APD50), resting membrane potential (RMP), peak membrane
potential (Vpeak ), percentage of change in APD90 after blocking individual ionic currents
(∆APD90 ) as well maximal concentrations of intracellular sodium (Na+

i ) and calcium
(Ca2+

i ). The retained models represent in silico cells with distinct ionic properties.

AP characteristic Min. accept. value Max. accept. value
Under baseline conditions

APD90 (ms) 178.1 442.7
APD50 (ms) 106.6 349.4
RMP (mV) −94.4 −78.5
Vpeak (mV) 7.3 −

Under 90% IKs block
∆APD90 (%) −54.4 62

Under 70% IKr block
∆APD90 (%) 34.25 91.94

Under 50% IK1 block
∆APD90 (%) −5.26 14.86

Na+
i concentration in baseline conditions

Max. Conc. (µM) − 39.27

Ca2+
i concentration in baseline conditions

Max. Systolic (µM) − 2.23
Max. Diastolic (µM) − 0.40

Table 9.1: Calibration criteria applied onto ventricular human cell models.

To simulate a range of potentially different β−AS effects in the constructed popula-
tion of stochastic AP models, multiplying factors θfCaL, θfKs and θfNaK for the PKA
phosphorylation levels fCaL , fKs and fNaK were varied so that these phosphorylation
levels ranged between the values at baseline (i.e. without Isoproterenol (ISO)) and the
values after the application of an ISO dose of 1µM associated with maximal effects. This
population of phosphorylation levels, generated by using a Monte-Carlo method, was
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combined with the above described population of stochastic AP models to obtain a global
population of size 2373 with 11 simultaneously varying parameters. This population was
divided into training and validation subpopulations of sizes 2000 and 373 respectively.

AP traces of 1100 beats were simulated at baseline and following β−AS, respectively,
by applying 1ms rectangular stimulus pulses of 52pA/pF amplitude delivered at 1Hz
pacing frequency. The Euler-Maruyama scheme [Mao15] was used to solve the SDEs with
an integration time step of dt = 0.02ms that ensured numerical convergence. The last
100 beats of each condition (baseline, β−AS) were used for further analysis to ensure
convergence had been reached.

Independent standard Gaussian noise was added to the synthetically generated AP
data, as described in [SPFBV+19], to simulate recording noise as in experimentally
acquired data. These noisy APs were input to the estimation methodologies tested in
this study.

9.2.3 State-Space Formulation and Augmented States

9.2.3.1 State-Space Formulation

The stochastic version of the ORd model with unknown ionic conductance factors
(for baseline conditions) or phosphorylation levels (for β−AS conditions) was formulated
as a non-linear discrete-time state-space model [Sär13] following the approach described
in [SPFBV+19]. In these state-space models the only measured variable was considered
to be the transmembrane voltage (AP), while there were a number of hidden variables,
including ionic concentrations and opening probabilities of ionic gates.

For baseline conditions, model parameters to be estimated were the factors multiplying
the nominal conductances of IKs, IKr, Ito, ICaL, IK1, INa, INaCa and INaK . Hence, the
vector of static model parameters was θ = {θKs, θKr, θto, θCaL, θK1, θNa, θNaCa, θNaK},
representing variations in the ionic conductances relative to the default values in the ORd
model, gs = θsgs,ORd, where s ∈ {Ks,Kr, to, CaL,K1, Na,NaCa,NaK} is the channel
species. Note that the same factor θs applies to the number of ion channels of each
species: Ns = θsNs,ORd, as the unitary conductance of each ionic species was assumed to
be constant, based on reported experimental findings [FKF+92].

For β−AS conditions, model parameters to be estimated were the factors multiplying
the phosphorylation levels of the PKA substrates whose phosphorylation had a remark-
ably higher impact on the AP, which were IKs, ICaL and INaK currents [NML+15], in
agreement with findings reported for other β−adrenergic signalling models [HVWR11].
Consequently, the vector of static model parameters was θ = {θfKs, θfCaL, θfNaK}, rep-
resenting variations in the phosphorylation levels fKs , fCaL and fNaK relative to the
default values in the modified Xie model, fs = θsfs,Xie, where s ∈ {Ks, CaL,NaK}. For
both baseline and β−AS conditions, the vector θ of model parameters was estimated for
each given input AP trace.

The state-space representations used in this study were of the form:

x(k) = f
(
x(k − 1), q(k − 1), θ

)
, (9.2)
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y(k) = h
(
x(k)

)
+ r(k), (9.3)

where the process equation (see Equation (9.2)) was defined by a non-linear function
f(·) with three different input vectors: x(k), containing the state variables of the stochastic
AP model; q(k) representing non-additive process noises related to Wiener increments; and
θ containing the model parameters to be estimated. On the other hand, the measurement
equation (see Equation (9.3)) was defined by the function h(·) relating the measured
variable (transmembrane voltage) with the vector of the model state variables. In this
study, y(k) = v(k) + r(k), where v(k) represents the noiseless AP and r(k) was assumed
to be an additive white Gaussian noise.

9.2.3.2 Augmented State-Space

To perform joint estimation of model parameters and state variables for a given input
noisy AP, the state-space representation of Equation (9.2)-(9.3) was reformulated as
described in [SPFBV+19]. In brief, state augmentation [Sär13] was applied to convert
the static parameter vector θ into a time-varying parameter vector θ̃(k) using a random
walk model with drift:

θ̃(k) = θ̃(k − 1) + δ(k),

where δ(k) represents an artificial noise whose components, defined by i.i.d. zero-mean
Gaussian processes with very small variance. An augmented state vector z(k) was built
joining the state variable vector x(k) with the new parameter vector θ̃(k) and the process
noise vector q(k):

z(k) =
[
x(k), q(k), θ̃(k)

]T
.

The previous process (see Equation (9.2)) and measurement equations (see Equa-
tion (9.3)) were replaced with:

z(k) = fa(z(k − 1)) + ε(k), (9.4)

y(k) = ha(z(k)) + r(k), (9.5)

where fa and ha are the augmented versions of f and h respectively, and ε(k) contains
noises related to the Wiener increments of the stochastic AP model represented by q(k)
and to the new parameter vector θ̃(k) represented by δ(k).

9.2.4 Individual and Combined DGDR- and UKF-based Methods

9.2.4.1 DGDR and Dictionary entry computations

Dictionary entry computations: For this study the dictionary entry size is ng = 889.
For each beat, the following quantities are computed: APD30, APD50, APD90, LTV,
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NLTV, NSTV, STV, Trian, Vpeak, Vrest and dVdtmax where definitions are given in
Table 9.2.

Quantity Definition
APDX AP duration at X% of repolarisation [TLRG17]
LTV Long term variability [PDB+18, SPFBV+19]
NLTV N-beats window Long term variability [SPFBP17]
STV Short term variability [PDB+18, SPFBV+19]
NSTV N-beats window Short term variability [SPFBP17]
Trian Triangulation: APD90−APD30

Vpeak Maximum depolarisation
Vrest Resting potential

dVdtmax Maximum value of the AP derivative over time

Table 9.2: Definitions of extracted quantities.

The average and standard deviation of these quantities (over the 100 beats) shape
the first 22 entries. Then, pairwise products are introduced to consider non-linearities,
leading to ng1 = 22 + 253 = 275 entries. Then, the same process was performed on
wavelet coefficients (i.e. extraction for each beat and average and standard deviation
computation over the 100 beats). A total of ng2 = 614 entries are related to wavelet
coefficients. It follows that the total dictionary entry size is ng = ng1 + ng2 = 889. The
same dictionary is computed for control cases (keeping the stochastic process, but with
multiplying factors for ionic conductances set to 1). Finally ratios with respect to the
control case are considered to build the final dictionary G.

DGDR extension to regression problems: The DGDRmethod was used to estimate
the parameters of the stochastic AP model, which represent part of the components of the
augmented state vector z(k). DGDR is based on high-dimensional data analysis and aims
at mitigating the curse of dimensionality [Bel15] by projecting data into a low subspace
through a sparse linear combination of the dictionary entries. In [LR19], data projection
is performed such that a classification success rate is maximal, which can be achieved by
maximising a score function based on the distributions of the projected data of each class.
To apply the DGDR method to regression problems, the score function was replaced by
an `2 norm that minimises the error between the actual values of the ionic conductances
or phosphorylation levels and a sparse linear combination of the dictionary entries in a
training set:

ω∗ = arg min
ωi
||
ng∑
i=1

ωiG
(i) − θc||`2 ,

where ωi are the weights to be determined, ng is the number of dictionary entries,
G(i) is the ith dictionary entry of the training set and θc are the known values of the
parameters in the training set.
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As in [LR19], the early stopping criterion was applied on a validation set to avoid
overfitting risk, which leads to a sparse combination of the dictionary entries and the
weight vector (||ω||`0 << ng). Thus, given a new AP trace in the validation set, the
learned linear combination was applied to estimate the model parameters. For this
study from the ng = 889 extracted entries, 100 were selected for the linear combination
(||ω||`0 = 100) as this already led to improvements in all estimation errors below 10−3

when adding a new dictionary entry over the training set.

The linear combination of 100 entries was a good choice to minimise the cost function
in the training set while avoiding overfitting in the validation set. As expected, the
dictionary entries selected for the estimation of each model parameter were strongly
related to the AP phase where the ionic conductances or phosphorylation factors have a
more dominant role. As an example, the most relevant biomarkers for estimation of θNa
and θK1 were related to the AP upstroke velocity and RMP, respectively (see right panel
of Figure 9.2).

A learning phase was separately performed for each of the model parameters to be
estimated. The selected dictionary entries were not the same, which is a direct consequence
of the goal-oriented concept of the DGDR method and ensures a certain explanation of
the selected entries. The full process for the training step took around 3 hours on about
50 processors for the estimation of the eight ionic current conductances at baseline and
proportionally less for the estimation of the three phosphorylation levels under β−AS.
Once the learning phase was performed, the estimation of a new sample was immediate
by scalar product between the sample vector and the weight vector (computed at the
learning phase).

This training process was performed over a population of 2000 models while evaluation
was carried out over 273 models, leading to adequate levels of accuracy. Figure 9.1
(left panel) illustrates an example of θCaL estimation by DGDR, showing the uniform
dispersion of the point cloud that provides a measure of the uncertainty in the estimation.
In addition, the DGDR method led to similar accuracy levels for training and evaluation
populations as can be observed in Figure 9.1 (right panel) where the distribution of the
absolute error between the actual (θCaL) and estimated (θ̃CaL) parameter values is shown.

Similar results were obtained in the estimation of the other model parameters and are
summarised in Figure 9.2.

Once the training phase is performed, estimated densities on the error (see the middle
panel of Figure 9.2) are quite similar between the training and the validation set, meaning
that the overfitting is weak. The estimation of θNa, θKr, θK1 and θCaL are much easier
to estimate using DGDR than other parameters as the standard deviation error is lower.
θKs estimation is the worst. Most weighted selected entries are relevant with respect to
its estimated parameter (see right panel of Figure 9.2).

These results served to support the adequacy of separating the population into a
training set of 2000 models and a validation set of 373 models.
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Figure 9.1: Left panel: Estimated (θ̂CaL) vs actual (θCaL) values of the factor multiplying
maximal gCaL in the training and validation populations. Right panel: Density of the
absolute error in the estimation of θCaL for the training and validation sets.

9.2.4.2 UKF

The UKF [JU04] was used to estimate the states of the non-linear state-space formu-
lation described by Equation (9.4)-(9.5), which provides estimates for the parameters and
state variables of a stochastic ventricular human cell model for any given AP trace. The
values of three UKF setting parameters, commonly denoted by α, β and κ, were set to
define the spreading of Sigma-Points around the mean state estimates (controlled by α
and κ) and to reflect prior knowledge of states’ statistical distributions (controlled by
β). In this work, α = 1, β = 0 and κ = 3− L (with respect to [WVDMH01]), where L is
the number of states (L = 71 for baseline and L = 68 for β−AS conditions). This led to
a value for the spread of the state covariance matrix corresponding to √γ = 1.7321, in
accordance with feasible values [SCS12], and to sums of weights of means and covariances
equal to one: {∑2L

i=0W
(c)
i = 1∑2L

i=0W
(m)
i = 1

.

Two additional hyper-parameters were set in the UKF implementation, which deter-
mine the process noise variance σ2

θ (the same for all components of the model parameter
vector) and the measurement noise variance σ2

r . A range of values for σ2
θ were tested

and the one rendering best performance was selected. The value for σ2
r was set to

1mV [SPFBV+19].
The initialisation of the mean and covariance matrix of the state vector was ob-

tained from the training population. The state variables related to stochastic AP model
parameters (representing multiplying factors for ionic conductances baseline and for
phosphorylation levels under β−AS) were constrained to remain in the interval [0, 2].
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Figure 9.2: Left panel: Estimated (θ̂c) vs actual corresponding (θc) values of the factor
multiplying maximal gc in the training and validation population sets. Middle panel:
Density of the absolute error in the estimation of θc for the training and validation sets.
Right panel: Weights obtained with DGRD with respect to θ̂c.

9.2.4.3 Combined UKF-DGDR

DGDR and UKF methods were combined to enhance their individual characteristics
in terms of estimation accuracy and computational costs. In particular, DGDR was used
for initialisation and updating of UKF estimation to take parameter estimates closer to
their actual values and to avoid local minima in the estimation:

• Initialisation (INI): The model parameter estimates obtained by DGDR were used
to initialise the corresponding elements of the state vector, which was subsequently
estimated by UKF. DGDR provided estimates for both the mean of the parameter
vector, θ̂DGDR, and its covariance matrix, PDGDR.

• Updating (UP): The model parameter estimates obtained by DGDR were used to
update the UKF-based parameter estimation in each cardiac cycle. At the end of
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each cycle, the corresponding elements of the state vector estimated by UKF (mean
ẑk and covariance matrix Pk) were updated according to the estimates for the mean
θ̂DGDR and covariance matrix PDGDR obtained by DGDR as follows:


d = ẑDGDR −Hẑk
S = HPkH

T + PDGDR

Kup = PkH
TS−1

,

with ẑDGDR =
[
ONx θ̂

DGDRONq

]
, where ONx is a Nx× 1 zero vector, ONq is a Nq × 1

zeros vector and H is a (Nx +Nθ +Nq)× (Nx +Nθ +Nq) matrix of 0 values everywhere,
except for the last Nθ ×Nθ submatrix occupied by an identity matrix. In the above, Nθ

is the number of model parameters, Nx is the number of model state variables and Nq is
the number of Wiener processes.

The UKF-based updated estimates for the mean and the covariance matrix of the
state vector were: {

ẑkup = ẑ−k +Kupd
Pkup = (INθ −KupH)Pk

.

9.2.5 Performance Evaluation

The performance of DGDR, UKF and their combination was evaluated for estimation
of eight ionic current conductances at baseline conditions and for estimation of three
phosphorylation levels under β−AS conditions. In the latter case, the values for the eight
ionic conductances were set at those estimated at baseline. The estimation performance
was evaluated by [SPFBV+19]:

9.2.5.1 AP estimation

The root mean square error between the original noiseless AP trace and the estimated
AP trace was calculated over the last 5 cycles (a larger number of cycles did not improve
the estimation performance [SPFBV+19]):

ξv =

√√√√ 1

KN

KN−1∑
k=0

|v(k)− v̂(k)|2,

where KN is the number of samples contained within the last N = 5 cycles.

9.2.5.2 State and parameter estimation

The mean absolute error between the actual and estimated values of each state was
calculated over the last 5 cycles:
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ηzj =
1

KN

KN−1∑
k=0

|zj(k)− ẑj(k)|,

where zj is the actual value of the state variable j and ẑj is the estimated value, with
j = 1, . . . , L, being L the length of the augmented state vector z(k).

A global accuracy measurement η̄θ of model parameter estimation was defined as the
average of the mean absolute errors ηθi , i = 1, . . . , Nθ, corresponding to all estimated
model parameters:

η̄θ =
1

M

∑
θ′∈θ

ηθ′ ,

where ηθ′ is the mean relative error for model parameter θ′ ∈ θ and M = 8 (for
conductance factors) or M = 3 (for phosphorylation factors).

9.3 Results

9.3.1 Implementation of UKF method

The performance of the UKF method as a function of the process noise standard
deviation σθ is illustrated in Figure 9.3, which shows the mean parameter estimation
error in the ORd model when varying σθ by several orders of magnitude.
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Figure 9.3: Average of mean absolute parameter estimation error E[η̄θ] in the ORd model
as a function of the standard deviation of the process noise σθ.

The minimal average error E[η̄θ] was achieved for σθ = 10−8, which was used for all
subsequent analyses. In the case of the root mean square error in AP estimation, ξv, its
values were minimally affected by the choice of σθ for all tested σθ values. In the following
sections the estimation performances of the DGDR and UKF methods individually and
in combination are presented.

9.3.2 Combined DGDR and UKF Methods: Initialisation Effects

The use of the estimates obtained by DGDR for the mean θ̂DGDR, and the covariance
matrix PDGDR, of the model parameter vector as initialisation for the UKF method led
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to two important benefits. On one hand, it reduced the time required for the estimates
to reach convergence, in turn diminishing the computational cost. On the other hand, it
led to more accurate estimates, as shown in Figure 9.4 for the estimation of θNa in one of
the models of the population at baseline conditions.
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Figure 9.4: Example of actual θNa value and time course of θ̂Na as estimated by DGDR,
UKF and UKF+INI methods for a virtual cell at baseline.

While for the individual UKF method more than 40 beats were required for the
estimation error to be below 0.04, when the combined UKF+INI method was used the
number of required beats was 5 for that particular example.

9.3.3 Combined DGDR and UKF Methods: Updating Effects

The use of the estimates obtained by DGDR for the mean θ̂DGDR, and the covariance
matrix, PDGDR, of the model parameter vector to update the UKF estimation at the
end of each beat helped to retain the parameter estimates close to the actual parameter
values and to reduce the uncertainty in the estimation, as confirmed by a reduction in
the estimation covariance matrix. Additionally, this UKF+UP approach diminished the
convergence time and, thus, the associated computational cost. The benefit of using the
DGDR-derived estimates for UKF updating is illustrated in Figure 9.5 for the estimation
of θKr in one of the models of the population at baseline conditions.

When only UKF is employed, the parameter estimates may fall in a local minimum
and may never reach a value close to the actual one. As can be observed from the figure,
the UKF and UKF+UP estimates were the same for the first beat whereas the updating
subsequently led to remarkably enhanced results.

9.3.4 Performance Comparison

The performances of the individual DGDR and UKF methods and their combinations,
either by initialisation and/or updating, were assessed in terms of the average mean E[η̄θ]
and standard deviation E[σ̄ηθ ] of the absolute error. Top panel of Figure 9.6 illustrates
E[η̄θ] for the five evaluated methods at baseline conditions.
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Figure 9.5: Example of actual θKr value and time course of θ̂Kr as estimated by DGDR,
UKF and UKF+UP methods for a virtual cell at baseline.
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Figure 9.6: Average over the validation population at baseline of mean (top panel) and
standard deviation (bottom panel) of absolute parameter estimation error η̄θ for the five
evaluated methods.

As it can be seen from Figure 9.6, the individual DGDR and UKF methods led to
approximately the same level of error (E[σ̄ηθ ] values of 0.1806 and 0.1775, respectively),
with a larger associated computational cost in the case of the UKF method. The
combination of DGDR and UKF remarkably improved the estimation performance, either
when combined through initialisation or through update and, particularly, when combined
through both (E[σ̄ηθ ] values of 0.1526 for UKF+INI, 0.1396 for UKF+UP and 0.1350
for UKF+INI+UP). Bottom panel of Figure 9.6 presents the estimation uncertainty for
the five evaluated methods. As can be observed, initialisation and updating by DGDR
contributed to reduce the parameter estimation uncertainty of the UKF method.

Figure 9.7 shows boxplots for the mean absolute error in the estimation of each ionic
conductance factor by each of the five evaluated methods at baseline conditions.

As can be observed from Figure 9.7, the combined UKF+INI+UP method presents
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Figure 9.7: Boxplots of absolute estimation errors ηθ for the factors multiplying ionic
current conductances calculated for the five evaluated methods. Statistically significant
differences by Wilcoxon signed-rank test (p-value < 0.05) are denoted by *, while non-
significant differences are denoted by n.s, for a number of cells equal to 373.

better performance than the individual DGDR and UKF methods for almost all estimated
factors. The most accurate results were obtained for θNa, with median estimation errors
θ̂Na being lower than 0.05. On the other hand, the least accurate results were obtained
for θKs, θNaCa and θNaK . Figure 9.8 presents results related to estimation uncertainty.

Figure 9.8, left panel, illustrates the time course of the estimation uncertainty quantified
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Figure 9.8: Left panel: Time course of estimation uncertainty in terms of square root of
covariance matrix

√
PNaK for each of the five evaluated methods. Right panel: Number of

beats required by each evaluated method to reach the same level of accuracy as the UKF
method, as quantified by the averaged covariance over all estimated model parameters.

by the square root of the covariance matrix
√
PNaK in the estimation of θNaK for one

virtual cell in the population at baseline conditions. As can be observed from the figure,
the combination of DGDR and UKF presented lower uncertainty than the individual
DGDR and UKF methods, with the impact of updating being notably larger than the
initialisation. Figure 9.8, right panel, provides an additional characterisation of the
estimation uncertainty quantified by the number of beats required by each UKF-based
method to reach the same value of the averaged standard deviation of the absolute
estimation errors as the individual UKF. The impact of updating on the reduction of the
estimation uncertainty as only few beats are needed instead of decades (with the others
methods) for a same error.

9.3.5 Replication of AP traces and Biomarkers at Baseline

The performance of the five proposed methods to replicate AP traces at baseline
conditions was assessed by generating APs from the ORd model with the different sets
of estimated parameters and by comparing them with the input AP traces. Also, the
comparison was established in terms of AP-derived biomarkers like APD and STV.
Figure 9.9, left panel, shows the probability density function of the differences between
the APD from the input AP trace and the APD calculated from the estimated AP trace
for DGDR, UKF and UKF+INI+UP.

Similarly, Figure 9.9, right panel, shows results for STV. As can be observed from the
figure, the combined UKF+INI+UP method provides the best fitting to the actual data,
as confirmed by the fact that the distributions of ∆APD and ∆STV are more concentrated
around 0. On the other hand, the DGDR method presents reduced accuracy for APD
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Figure 9.9: Probability density function of ∆APD (left panel) and ∆STV (right panel) for
the validation population, with ∆APD (∆STV, respectively) calculated as the difference
between APD (STV, respectively) from the input AP trace and APD (STV, respectively)
from the estimated AP trace for each evaluated method under baseline conditions.

estimation, although very similar to UKF and UKF+INI+UP for STV estimation.

9.3.6 Estimation of Phosphorylation Factors, AP traces and Biomark-
ers under β−AS

Considering the ionic conductance estimates obtained for baseline conditions, the next
step was to test the performance of DGDR, UKF and UKF+INI+UP (for which the best
results were obtained in the previous section) to estimate the phosphorylation levels for
the validation population of models under β−AS effects. Figure 9.10 shows boxplots of
the mean absolute errors η̄θ for the estimation of the three ISO-induced phosphorylation
levels.

As can be observed from the figure, the UKF+INI+UP method increased the accuracy
in the estimation of θfKs and θfNaK with respect to the individual DGDR and UKF
methods, whereas for θfCaL UKF was slightly better in terms of median absolute error,
but not in terms of averaged absolute error (η̄θ = 0.34 for both methodologies). Taking
together the three estimated factors for the phosphorylation levels and results over the
whole validation population, the combined UKF+INI+UP method led to a reduction
in the averaged mean absolute error E[η̄θ], of 15.29% and 20.01% with respect to the
individual use of DGDR and UKF, respectively. The average mean absolute errors, E[η̄θ],
for ISO-induced phosphorylation level factors were higher (0.38, 0.40 and 0.32 for DGDR,
UKF and combination respectively) than those obtained for ionic conductance factors
due to the fact that the error in the ionic conductance estimation was propagated into
the phosphorylation level estimation.

Figure 9.11, left panel, shows the probability density function of the differences between
the APD from the input AP trace and the APD calculated from the estimated AP trace
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Figure 9.10: Boxplots of absolute estimation errors ηθ for the factors multiplying ISO-
induced phosphorylation levels calculated for three evaluated methods. Statistically
significant differences by Wilcoxon signed-rank test (p-value < 0.05) are denoted by *,
while non-significant differences are denoted by n.s, for a number of cells equals to 373.

after estimation of the ionic conductances at baseline and phosphorylation factors under
β−AS for DGDR, UKF and UKF-INI-UP. Figure 9.11, right panel, shows analogous
results for STV.
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Figure 9.11: Probability density function of ∆APD (left panel) and ∆STV (right panel) for
the validation population, with ∆APD (∆STV, respectively) calculated as the difference
between APD (STV, respectively) from the input AP trace and APD (STV, respectively)
from the estimated AP trace for each evaluated method under β−AS conditions.

Again, the combined UKF-INI-UP provided the best fitting for both ∆APD and
∆STV , whereas the DGDR method presented the highest differences between actual and
estimated APD and comparable performance to UKF and UKF+INI+UP in the case of
STV. As an illustration of the above results, Figure 9.12 shows the actual and estimated
APs (mean over 100 beats) calculated from the set of estimated parameters by each of
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the evaluated methods for a cell in the validation population.

0 100 200 300

-50

0

50

0 100 200 300

-50

0

50

Figure 9.12: Actual and estimated APs (mean over 100 beats) calculated from the set of
estimated parameters by each evaluated method at baseline (left panel) and under β−AS
(right panel) for one of the virtual cells in the validation population.

Both at baseline and under β−AS, the AP estimated by DGDR+UKF remarkably
better matched the actual AP as compared to those obtained by DGDR or UKF individu-
ally. Not only the mean AP, but also the variability over 100 beats was better reproduced
by DGDR+UKF as compared to DGDR and UKF.

9.4 Discussion

A novel approach based on the combined use of the Double Greedy Dimension
Reduction (DGDR) and the Unscented Kalman Filter (UKF) has been proposed as a
method for joint estimation of parameters and state variables of computational human
ventricular stochastic models from given input AP traces. By using this combined
methodology, different sets of ionic parameters, namely ionic current conductances and
phosphorylation levels of cellular substrates, are estimated for each given individual AP
trace at baseline conditions and following β−AS. The proposed methodology outperforms
individual DGDR and UKF methods and has an affordable computational cost. It
allows realistic characterisation of spatio-temporal variability at baseline and following
β−AS, thus enabling improved investigation of variability mechanisms and arrhythmic
risk prediction. This can prove fundamental to assess the role of β−AS in leading to
exaggerated increases in BVR that facilitate the occurrence of arrhythmic events in certain
cases but not in others [SPFBP+19]. In the following, relevant characteristics of the
proposed methodology as well as major benefits and shortcomings associated with its use
are discussed.

9.4.1 DGDR Method

The DGDR method was used to obtain estimates for the model parameters, which
were subsequently fed to the UKF method to build the combined DGDR-UKF method.
The intrinsic characteristics of the DGDR method, which include one-to-one matching
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between input AP traces and the set of estimated model parameters, ability to manage
the stochastic behaviour of the AP traces and low computational burden make this
methodology suitable for the problem at hand.

A key factor in the performance of the DGDR method involves a correct training
phase. To obtain high levels of estimation accuracy, training should be performed over
large populations, which in the case of this study corresponds to a large set of synthetic
AP traces. Confirmation on the appropriateness of the training population dimension
was provided by the fact that similar estimation errors were attained in both the training
and validation populations. If training dimension had not been sufficient, estimation
uncertainty in the validation population would have been much greater than that obtained
in the training population. The time required to obtain the estimation dictionaries from
the training population was just three hours, being subsequent calculation of parameter
estimates immediate (scalar product of two vectors) when given a new AP trace of the
validation population.

9.4.2 UKF Method

After formulating the estimation problem as a non-linear state-space representation
where a noisy voltage trace is considered as the observed variable and SDEs defining
a ventricular human cell model are used to describe the process equations, the UKF
method was applied for joint model parameter and state variables, providing not only
mean estimates but also measurements of estimation uncertainty. The UKF algorithm
presents better performance than other methods used for parameter and state estimation
of non-linear state-space representations, such as the EKF algorithm, with the added
advantage of not requiring calculation of Jacobians [JU04]. Also, as compared to other
Monte-Carlo-based methods, such as Particle Filters [SCS12], the UKF algorithm is
associated with notably lower computational costs.

When using the UKF, appropriate calibration of its hyperparameters σθ and σr ,
representing process and measurement variances, respectively, is a critical point to achieve
high levels of accuracy. According to these previous results, an inadequate selection
of these hyperparameters may lead to an increase in the estimation error above 50%
of the value attained for optimally adjusted σθ and σr values. Based on a previous
work [SPFBV+19], σr was set to 1mV , equals to the variance of the measurement noise
added to the clean synthetic AP signal. In the case of σθ , which is closely related to the
convergence speed and potentially oscillatory behaviour of the estimates, its value was set
to σθ = 10−8, as this value led to a minimum average mean absolute error in parameter
estimation, as shown in Section 9.3.1. This value is in the range of feasible values shown
in a previous work [SPFBV+19], with a slight difference in the optimal value justified by
the fact that a higher number of model parameters were estimated in the present study
as well as to the fact that a subunit-based formulation of SDEs for ionic gates, rather
than the channel-based formulation used in [SPFBV+19], was here employed.
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9.4.3 Combined DGDR-UKF Method by Initialisation and Updating

The use of DGDR estimates for both initialisation and updating of the UKF esti-
mates has been demonstrated to play a very significant role in improving the estimation
performance. On one hand, providing an initialisation for the UKF method in terms of
its mean and covariance matrix based on DGDR estimates allowed reducing the mean
estimation error and the uncertainty around it. Also, the convergence time was remarkably
diminished, as described in Section 9.3.2. As a proof, the combined DGDR initialisation
+ UKF approach required approximately 35% of the number of beats than the individual
UKF method to reach the same level of estimation uncertainty.

On the other hand, updating the UKF estimates at the end of each cardiac beat
by using the DGDR estimates allowed the solution of the combined method to remain
within a relatively narrow range around the actual parameter values and avoided the
estimation to fall into local minima. In addition, it contributed to accelerating estimation
convergence, reducing by more than 95% the number of beats required by the UKF
method to reach the same level of uncertainty. It is interesting to highlight that this
updating process improved the estimation of not only the mean and covariance of the
model parameters, but also of all other model state variables.

The combined DGDR-UKF method provides relevant advantages as compared to other
methods used in the literature for similar purposes. The DGDR-UKF method renders
a one-to-one matching between input AP traces and the sets of estimated parameters,
whereas other methods based on Genetic Algorithms, Moment-Matching or Gaussian
Process Emulators provide only parameter estimates at a population level [LDC+18,
TLRG17, CSC15]. In addition, when comparing the DGDR-UKF method with other
methods rendering individual parameter estimates, such as Markov Chain Monte Carlo
(MCMC)-based methods [JCB+16, JBG+16], the DGDR-UKF method presents lower
computational costs. Also, it is able to deal with beat-to-beat variability and to provide
estimates of not only the model parameters but also of the hidden state variables, thus
improving the global estimation accuracy.

The enhanced performance and reduced convergence time attained by the combined
DGDR-UKF method are particularly relevant for subsequent studies aimed at investigating
repolarisation variability from human ventricular experimental voltage traces, which are
commonly of short duration.

9.4.4 Estimation of Ionic Current Conductances at Baseline

Eight ionic current conductances were estimated at baseline conditions, as variations
in those conductances have been postulated to be major factors for spatial (cell-to-cell)
AP variability [PCV+11, SKH+15, LFYC98, SBOW+14, LDC+18]. Other studies in the
literature have addressed estimation of ionic current conductances, even if not in all cases
for as many currents as in this work and not always considering temporal (beat-to-beat)
AP changes but just focusing on a steady-state AP [TLRG17, JCB+16, SPFBV+19].
In the present study, stochastic ventricular human cell models accounting for temporal
variability were developed to improve the estimation accuracy by considering dynamic
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information additional to the static information commonly considered in the literature.
The eight estimated model parameters were multiplying factors for the conductances of
six major ionic currents (IKs, IKr, Ito, ICaL, IK1, INa) and the maximal values of INaCa
and INaK with respect to their nominal values in the ORd model.

The least accurate ionic channel parameter estimations (irrespective of the tested
methodologies) were obtained for θKs in line with results reported in [SPFBV+19]. This
can be due to the intrinsic characteristics of the ORd model, in which the IKs current
has little influence on the AP, and consequently on AP-derived biomarkers, at baseline
conditions. Other experimental and computational studies support this outcome regarding
the limited influence of IKs on the AP shape and duration at baseline [XGP+13, JVB+05,
OR12]. Since a wide range of θKs values generate little differences in the corresponding
AP traces, accurate identification becomes challenging. This issue is framed within
the context of identifiability and observability and may be solved in future studies by
complementing the estimation process with signals obtained while stimulating the cells at
other pacing frequencies or under ionic current blocks. Similarly, the estimation errors
associated with θNaCa and θNaK were among the highest for all tested methodologies,
which can in this case be due to the longer time scale required for INaCa and INaK
variations to impact the AP.

Of note, estimation of θto rendered much higher errors when the DGDR method was
used as compared with any of the other methods involving UKF. This may be attributed
to the fact that none of the defined AP-derived biomarkers may be closely related to the
AP notch, which is the AP phase where this current has the largest influence. Similarly
estimation errors of θK1 were higher for DGDR than for any UKF-based method. In this
case, despite considering biomarkers in the DGDR method like the resting membrane
potential, which are expected to contribute to θK1 identification, the UKF-based methods
can deliver more accurate results because they use all samples of the AP trace, both
during the AP as well as during the resting phase, and thus have a larger amount of
information to adjust θK1 estimation.

9.4.5 Estimation of Phosphorylation Levels of Cellular Substrates un-
der β−AS Conditions

The phosphorylation levels corresponding to the three cellular substrates most sig-
nificantly contributing to AP changes under β−AS were estimated using the proposed
DGDR-UKF method and compared with other tested methods. To the best of our
knowledge, this is the first study where the phosphorylation levels of a β−adrenergic
signalling model have been estimated, together with other state variables, based on
the static and dynamic AP changes induced by β−AS. The results obtained with the
proposed combined method were generally better than those of individual DGDR and
UKF methods. Nevertheless, it should be noted that the average mean absolute errors
obtained for phosphorylation levels under β−AS were higher than those obtained for ionic
conductances at baseline. This can be partly explained because the errors in the estimated
baseline conductances were propagated to the estimation of the phosphorylation levels,
as the latter were calculated based on the corresponding APs estimated at baseline.



9.4. DISCUSSION 149

While ionic conductances and phosphorylation levels under β−AS can be estimated
simultaneously, it is degraded by the multiplicative relation of ionic conductances and
phosphorylation levels in the coupled electrophysiological adrenergic signalling model.
On the basis of such multiplicative relation, many combinations of conductance and
phosphorylation level values could lead to the same estimation results even if the estimated
parameter values were in fact far from their actual values.

9.4.6 Characterisation of Spatio-temporal AP Variability from Param-
eter Estimates

A main purpose of this study is to propose a method suitable for investigation of
temporal and spatial variability in human ventricular repolarisation, with one-to-one
identification of an underlying computational AP model for each experimentally available
voltage trace. Provided data is available at baseline and under β−AS conditions, the
proposed DGDR-UKF method can identify the specific electrophysiological and adrenergic
signalling characteristics at those two conditions. This method was indeed able to precisely
reproduce the AP shape, duration and variability of individual AP traces, rendering
statistical distributions of the errors in the estimation of APD and STV remarkably more
concentrated around 0 than those obtained with other tested methods, particularly when
compared with the DGDR method.

On top of the DGDR-UKF method rendering better match between actual and
estimated AP-derived biomarkers than other methods, it led to improved match between
actual and estimated voltage traces, as illustrated in Section 9.3.6. This can be justified
on the basis that this methodology provides estimates of not only the parameter values
but of the complete vector of model state variables, which allows for more accurate AP
reconstruction.

9.4.7 Limitations and Future Studies

In this work a total of 11 different human ventricular cell model parameters have been
identified, corresponding to 8 ionic current conductances at baseline and 3 phosphorylation
levels under β−AS. Future studies could include estimation of additional ionic current
conductances (e.g. for ICab, INab, IKb or IpCa), phosphorylation levels (e.g. for ryanodine
receptors, phospholamban or troponin I) or time constants of ionic gates (e.g. τxrs, τxs1
or τxk1). Also, stochasticity could be added to other ionic currents like the late sodium
current, which can have a relevant contribution to BVR.

To test the performance of the proposed methodology for estimation of model pa-
rameters and one-to-one replication of AP traces and AP-derived biomarkers, synthetic
voltage traces were generated at 1Hz stimulation frequency. Future studies could test
the extent to which the estimation performance is improved by applying the proposed
DGDR-UKF method onto voltage traces obtained at different stimulation frequencies. In
addition, voltage traces could be generated under different ionic blocks to offer additional
information to be used for parameter identification, which could prove particularly useful
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for identification of θKs, θNaCa, θNaK , whose estimation was the most challenging in the
present work.

A set of AP-derived biomarkers were used in the DGDR method and, consequently,
in the DGDR-UKF method. Those biomarkers reflect AP characteristics related to
its upstroke, repolarisation and resting potential as well as temporal APD variability.
Novel AP-derived biomarkers reflecting additional information from the AP notch and
plateau phases could help in the identification of model parameters, like θto and θCaL
, thus globally improving the performance of the DGDR method and of the combined
DGDR-UKF method.

This study has presented the combined DGDR-UKF method and has assessed its
performance over a large set of synthetically generated AP traces. As a next step, the
proposed method could be tested over experimental AP traces recorded from human
ventricular cardiomyocytes or even extend the method to be applied onto voltage traces
measured from ventricular human tissues. This would allow identification of underlying
computational tissue models with representation of cell-to-cell electrical coupling.

9.5 Conclusion

A novel methodology based on the combined use of Double Greedy Dimension Reduc-
tion (DGDR), with Automatic Generation of Biomarkers, and the Unscented Kalman
Filter (UKF) has been proposed to estimate parameters and state variables of an under-
lying human ventricular action potential (AP) model for any given input voltage trace.
The proposed methodology is tested over synthetic voltage traces generated from an ex-
perimentally calibrated population of stochastic ventricular human cell models at baseline
and under β−adrenergic stimulation. The combined methodology remarkably improves
the estimation performance of individual DGDR and UKF methods while reducing the
computational cost. The estimated ionic current conductances at baseline conditions and
phosphorylation levels of cellular substrates under β−adrenergic stimulation allow for
computational characterisation of spatio-temporal ventricular repolarisation, which can
prove very useful to investigate variability changes induced by disease or drugs, uncover
its underlying ionic mechanisms and establish a relationship with arrhythmia risk.



Chapter 10

Automated Patch-Clamp signal
classification

Automated patch-clamp was developed to increase throughput and reduce the time con-
sumption as compared to manual patch clamp, thereby making the technique feasible for large
compound screens. Indeed, an automated patch-clamp device is able to patch hundreds of indi-
vidual cells at the same time, allowing several compounds at different concentrations to be tested
simultaneously (see Section 2.3.1.2). It follows that drug discovery might be highly accelerated.
Several works on automated patch-clamp have already been done in safety pharmacology [BF21].
To pursue in this direction, it is then necessary to automise the analysis process, for instance
by helping the experimenter to prune irrelevant compounds (within the meaning of a certain
question described by the experimenter).

This work is devoted to the classification of compounds based on the Nav1.7 channel activity of
human rhabdomyosarcoma muscle cells. This classification consists to detect whether a compound
at a given concentration modulates the Nav1.7 channel. To investigate this, two classification
strategies are used to answer the classification problem: a statistical evaluation directly based on
biomarkers and the DGDR method based on the dictionary matrix extracted from the signals.

The following work was performed in collaboration with Kadla Røskva Rosholm, Lasse
Homann and Anders Lindqvist, members of Sophion Bioscience1.

1Ballerup, Denmark. sophion.com
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10.1 Introduction

To preserve the benefit of automated patch-clamp, it is necessary to reduce the time
of signal analysis. Indeed, the strategy is to construct a way to automatically detect
relevant compounds (at a given concentration) with respect to a given question raised
by the experimenter. Taking the benefit of it, the experimenter can go further in the
investigation of retained samples.

In this context, we focused on one ion-channel the voltage-gated sodium channel:
Nav1.7.

Nav1.7 channels are known to take part in the nociception. Its inhibitors are then
studied to treat pain. However, several side effects may appear, showing the importance of
a good dosage [KPCK20]. For these reasons, it is essential to study whether a compound
at a given concentration blocks or modulates the Nav1.7 current.

This question falls into binary classification tasks with ’No Hit’ (control-like) and ’Hit’
(not control-like) as output labels. Some works have already been done on automated
patch-clamp to study drug effects on sodium channels [CPZ+09, LBF11].

In this chapter we use the DGDR method on a dictionary entry constructed from
automated patch-clamp signals in order to maximise the Hit/No Hit classification success
rate on Nav1.7 ionic channels.

10.2 Material & Method

In this section, processes to implement the experiment, prepare data before the
analyses and the post-processing are presented. The Experimental protocol section (see
Section 10.2.1) describes the device, cells and voltage protocol to record patch-clamp
signals. Then, in Section 10.2.2 the methodology to construct the dictionary entry is
described. Finally, the Post-processing part (see Section 10.2.3) shows how samples are
classified.

10.2.1 Experimental protocol

The experiments were performed using the automated patch clamp system Qube384.
The measurement plate for this system is called the QChip and comprise 384 measurement
wells each harbouring one cell for the analysis (see Figure 10.12).

In each well, many cells are deposited, in such a way that one of them is placed on
the electrode to perform the electrical activity recording.

Cells used for this study are human rhabdomyosarcoma muscle cells (RD)3 provided
by ATCC4 and cultured in DMEM5 supplemented 10% FBS penicillin/streptomycin

2Documentation and Figure are available on: https://sophion.com/products/qchips/.
3Cell line documentation available here.
4https://www.atcc.org/.
5* https://www.sigmaaldrich.com/.

https://sophion.com/products/qchips/
https://web.expasy.org/cellosaurus/CVCL_1649
https://www.atcc.org/
https://www.sigmaaldrich.com/
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Figure 10.1: QChip 384 from Sophion Bioscience. The QChip corresponds to the black
plate with its 384 wells (with electrodes to measure the electrical activity) in which each
micropipette (top of the Figure) adds a compound at a given concentration. Used with
permission from Sophion Bioscience.

(100U/ml). Cells were harvested using Detachin6 and stored in EX-CELL serum-free
medium∗ supplemented with 25mM HEPES until experiment.

These cells have the main characteristic to endogenously expressing Nav1.7 ion
channels. This expression allows to study its modulation by compounds. As this channel
is highly expressed in nociceptors and being partly responsible for the pain, it has many
interests in drug assessment to treat pain [CWA+16, KPCK20].

As non-pacemaker cells, a voltage protocol is applied at control case (without com-
pound) and after compound addition. It consists in imposing various voltages at different
times and recording the current response from the cell (see Figure 10.2 for the voltage
protocol).

Each step to −10mV from a holding potential of −100mV induces sodium channel
opening leading to a sodium spike current.

A sweep corresponds to the recorded current in response to one application of the
full voltage protocol, which is then repeated 5 times at each condition (control case and
compound case). Experiment being performed on 10 QChip, it follows that a total of
ns = 19200 samples are available for the study.

10.2.1.1 Compounds

Among the ns = 19200 samples, a total of 7 compounds at 4 different concentrations
were considered in this study. Additionally, Tetrodotoxin at 1µM was used as a positive
control (state-dependent sodium blocker). Cisapride is the only tested compound without

6http://www.genlantis.com/detachin.html

http://www.genlantis.com/detachin.html
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Figure 10.2: Voltage protocol.

blockade action on the sodium channel (non-active). All other blockers have a state-
dependent mechanism except Anemone toxin II which has a delay inactivation effect. A
summary is given in Table 10.1.

Compound Abbreviation C1 C2 C3 C4 Mechanism
Amitriptyline ATT 10 1 0.1 0.01 State-dependent

Anemone toxin II ATXII 0.01 10−3 10−4 10−5 Delays inactivation
Bupivacaine BPV 30 3 0.3 0.03 State-dependent
Cisapride CSP 5 0.5 0.05 0.005 Non-active
Flecainide FCN 30 3 0.3 0.03 State-dependent
Mexiletine MXT 100 10 1 0.1 State-dependent
Tetracaine TRC 30 3 0.3 0.03 State-dependent

Tetrodotoxin TTX 1 - - - State-dependent

Table 10.1: Compounds and concentrations used for the study. Concentrations are in
µM . Mechanism of action on the Nav1.7 channel.

A part of the experimental dataset was performed with 0.3% DMSO as negative
controls which are either tagged ’Blank’ or ’Neg’.
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10.2.1.2 Signal traces

Some examples are shown in Figure 10.3. In the case of ’Hit’ and ’No Hit’ binary
classification, the goal is to detect whether a compound at a given concentration modulates
the signal or not, based on traces recorded such as in Figure 10.3.
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Figure 10.3: Examples of sweeps before (control: blue traces) and after (drug: orange
traces) compound addition.

To construct the classifier based on the DGDR method, we will first need to construct
a dictionary from these signals.

10.2.2 Pre-processing

In order to apply the DGDR method described at the beginning of the manuscript,
we need to extract several quantities to construct the dictionary entry set. The extraction
is performed for each sample, at control case and under compound addition. Once the
dictionary set is constructed, it has to be split into three sets: Training, Validation and
Test set. Finally, a rescaling is performed to improve KNN performances.

10.2.2.1 Dictionary entry computations

First, each sweep is split into 12 traces (one for each spike). Then, for each trace, 6
quantities are computed: amplitude, spike area, electric charge (see original definition in
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Definition 14) at 25%, 50%, 75% and 100% of the trace period (see Figure 10.4 for the
amplitude and electrical charge at 50% of the trace period).

Definition 14
Let I(t) be the current at time t and t1 and t2 two times such that t2 > t1. The electrical
charge Q between t1 and t2 is given by:

Q =

ˆ t2

t1

I(t)dt.

Figure 10.4: Example of amplitude and electrical charge at 50% of the spike trace at
baseline case and under addition of 1µM of TTX (control positive).

In complement, two by two cross products are considered to introduce non-linearities.
It results in 27 quantities extracted per beat. These quantities are computed at control
case and under compound addition. We then consider the ratio between compound entries
and corresponding entries for the control case (in the same well). There are two main
reasons to justify this choice. On one hand, it exists a cell variability between wells. Then,
signals may be different even if the compound and its concentration are the same in two
different wells. However behaviours with respect to its control cases should be closer.
On the other hand, we are considering a Hit/No Hit classification. Using relative values
between control and control (e.g. before addition and without or after negative control
addition) allows us to consider the ’No Hit’ variability.
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As a preliminary study, for the first study case (see its definition in Section 10.2.2.2 and
results in Section 10.3.1) wavelet coefficients were added to enrich the dictionary. These
coefficients are computed on the absolute difference of each beat and on the whole sweep
(absolute difference between the under compound addition case with its corresponding
control case). The strategy used was the same a the one described in Section 13.2.3.2. It
led to a dictionary entry matrix of size ng = 3782.

For other studies (see its definitions in Section 10.2.2.2 and results in Section 10.3.2),
the same quantity of each beat is averaged (over the 12 beats) and considered into the
dictionary. It follows that, for these studies, the dictionary entry size is ng = 27.

10.2.2.2 Sets generation

Once data are collected, a random splitting is performed into three sets in such a way
that each sample belongs to one and only one set. These three sets are the Training set
Tr, the Validation set V a and the Test set Te. The above constraint on each sample
allows us to use all of them and mostly to avoid having a same sample in the different
sets (which can be seen as an inverse crime). In this chapter, 4 studies were performed
following the protocol below:

1. The first test can be seen as a control test and refers to Section 10.3.1. It consists
in the ’Hit’ impact detection of each compound at each concentration.

• Number of repetitions: 10.

• Dictionary entry size: ng = 3782.

• Training set of size 40 (20 samples labelled ’No Hit’ and 20 samples labelled
’Hit’).

• Validation set of size 40 (20 samples labelled ’No Hit’ and 20 samples labelled
’Hit’).

• Test set: Unused elements for the ’Hit’ part and same number for the ’No Hit’
part. Despite each protocol is repeated 5 times, the number of experiments
for each compound at a given concentration is not the same. For this reason
the test set size is not always the same. For this study the average test size is
about 120. The lowest test size is 70 whereas the highest is 170.

2. The second test (see Section 10.6.0.1), referred to as (800) in what follows, consists
in dividing the whole set of experiments into three parts:

• Number of repetitions: 100.

• Dictionary entry size: ng = 27.

• Training set of size 800 (400 samples labelled ’No Hit’ and 400 samples labelled
’Hit’).

• Validation set of size 800 (400 samples labelled ’No Hit’ and 400 samples
labelled ’Hit’).
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• Test set of size 17600 (15155 samples labelled ’No Hit’ and 2445 samples
labelled ’Hit’).

In particular, for training and validation sets, we considered as ’No Hit’: CSP, Blank
and Neg experimental samples and as ’Hit’: ATT, ATXII, BPV, FCN, MXT, TRC
and TTX for all concentrations.

3. The third test (see Section 10.6.0.2), referred to as (C3C4-800) consists in dividing
the whole dataset as follows:

• Number of repetitions: 100.
• Dictionary entry size: ng = 27.
• Training set of size 800 (400 samples labelled ’No Hit’ and 400 samples labelled
’Hit’).

• Validation set of size 800 (400 samples labelled ’No Hit’ and 400 samples
labelled ’Hit’).

• Test set of size 17600 (16450 samples labelled ’No Hit’ and 1150 samples
labelled ’Hit’).

In particular, for training and validation sets, we considered as ’No Hit’: CSP, Blank,
Neg, all the molecules at concentration C4, all the molecules at concentration C3
except TRC, and ATT at concentration C2. We considered as ’Hit’ all the rest. A
summary is given in Table 10.2.

4. The fourth test (see Section 10.3.2.3), referred to as (1600) consists in dividing the
whole dataset as follows:

• Number of repetitions: 100.
• Dictionary entry size: ng = 27.
• Training set of size 1600 (800 samples labelled ’No Hit’ and 800 samples

labelled ’Hit’).
• Validation set of size 1600 (800 samples labelled ’No Hit’ and 800 samples

labelled ’Hit’).
• Test set of size 16000 (15650 samples labelled ’No Hit’ and 350 samples labelled
’Hit’).

In particular, for training and validation sets, we considered as ’No Hit’: CSP, Blank,
Neg, all the molecules at concentration C4, all the molecules at concentration C3
except TRC, and ATT at concentration C2. We considered as ’Hit’ all the rest. A
summary is given in Table 10.2.

Remark 15
For each study cases above, a sample belongs to one and only one set (i.e. Training,
Validation or Test set).



160 CHAPTER 10. AUTOMATED PATCH-CLAMP SIGNAL CLASSIFICATION

Compound C1 C2 C3 C4
ATT Hit No Hit No Hit No Hit
ATXII Hit Hit No Hit No Hit
BPV Hit Hit No Hit No Hit
CSP No Hit No Hit No Hit No Hit
FCN Hit Hit No Hit No Hit
MXT Hit Hit No Hit No Hit
TRC Hit Hit Hit No Hit

Table 10.2: Label given for each compound at each concentration for study cases 3 ad 4.

Remark 16
The Training set size being much lower than the Test set size for study cases two to
four, a higher number of repetitions (100) was performed for the majority vote strategy.
To hilight the convergence, for each repetition n, we compute the normalised Hamming
distance between the classification output obtained through the majority vote up to n− 1
repetitions and up to n repetitions. In particular, for the study number four, it led to a
normalised Hamming distance lower than 7.10−4 for the last repetition (i.e normalised
Hamming distance between the classification output over the first 99 repetitions and the
classification output over the 100 repetitions). It means that, over the 19600 samples,
around 14 do not have the same output label between two consecutive repetitions. The
convergence for the study case number four is shown in Figure 10.12 in the Appendix.

10.2.2.3 Data Rescaling

Once entries are computed they may fall in a high value range. This might be binding,
particularly when using a KNN methods. To avoid this, we suggest rescaling each entry
into a unit hypercube. In particular, it would lead to an easier comprehension of the
selected entries and their weights. Usually, we compute the minimal/maximal value of
each entry of the Training set Tr and proceed as follows for the rescaling:

Mi = max(Tri),mi = min(Tri)
Tri = Tri−mi

Mi−mi
V ai = V ai−mi

Mi−mi
Tei = Tei−mi

Mi−mi

,

where i denotes the ith dictionary entry, Tr is the Training set, V a the Validation
set and Te the Test set. However, it may appear that in some cases, some outliers are
inside the Training set. It follows that the Training set is in the unit hypercube, but
for some directions (i.e. dictionary entries), data are condensed. This would affect the
process of entry selection (based on a KNN approach) and afterwards the classification.
To overcome this, we suggest the following approach:
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

µ
(0)
i = E[Tr

(0)
i ], µ

(1)
i = E[Tr

(1)
i ]

σ
(0)
i = σ(Tr

(0)
i ), σ

(1)
i = σ(Tr

(1)
i )

Mi = max(µ
(0)
i + 2σ

(0)
i , µ

(1)
i + 2σ

(1)
i ),mi = min(µ

(0)
i − 2σ

(0)
i , µ

(1)
i − 2σ

(1)
i )

Tri = Tri−mi
Mi−mi

V ai = V ai−mi
Mi−mi

Tei = Tei−mi
Mi−mi

,

where S(j)
i stands for the ith dictionary of set S ∈ {Tr, V a, Te} restricted to class

j ∈ {0,1}, E[.] and σ(.) denote the empirical mean and standard deviation of the considered
set respectively. This approach leads to a more robust rescaling in the face of the outliers.

Remark 17
The above approach is described for a binary classification problem, but can trivially be
extended to multiclass problems.

10.2.3 Post-processing

As the classification is repeated 100 times, the given label for each sample in the Test
set is the majority voting strategy [Nar05] described in Algorithm 6.

Algorithm 6 Majority voting.
Require: M {Output label for each sample, each time selected to be into the Test set.}
y ← 0 {Initialise output label vector y ∈ Rns to 0.}
for Mi, yi do
ci ← counter(Mi){Count the number of times sample i is classified in each class.}
yi ← argmax(ci){Final label using majority voting on sample i.}

end for
return y

10.3 Results

This section is divided into two parts. The first part corresponds to the first study
case described in Section 10.2.2.2. The second part is devoted to the three other study
cases. All the following studies were performed with 5 nearest neighbours and a priori
π0 = π1 = 1

2 .

10.3.1 First study case: Validation of the method

Results are summarised in Figure 10.5.
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Figure 10.5: First study case: Accuracies obtained for each compound at a given concen-
tration.

The Training set always shows higher accuracy as the DGDR method was performed
on the Training set (inducing a slight overfitting). The Validation set was used to set a
stopping criterion (early stopping). The Test set was not used for the learning process.
The fact that Validation and Test sets show similar results is then expected (this is to
show that the random construction of the sets works).

10.3.1.1 Detailed results:

• State-dependent blockers: For this mechanism, we clearly see that the classification
success rate (accuracy) increases with the concentration. In particular, at low con-
centration, the discrimination between ’No Hit’ and ’Hit’ cannot be well performed.
In particular, MXT at 1µM and BPV at 0.03µM shown in Figure 10.3 fall into the
control case variability. Conversely, at higher concentrations, we are almost sure to
always detect a hit. We can also see that the overfitting on the training set tends
to decrease as the concentration increases.

• Delays inactivation blocker (ATXII): Accuracies for validation and test sets are
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closed to 0.5 regardless of the concentration used. It means that we cannot make the
discrimination between the negative control sample and ATXII. However, ATXII
being deactivated during the course of the experiments, it is then expected to not
detect an effect on these recorded signals.

• Assumptions on the IC50: Tetracaine (TRC) shows good results, even at low con-
centration (0.3µM) which is not the case for the other compounds (and particularly
for those who have the same concentrations: BPV and FCN). The same scenario
appears for BPV with respect to FCN (higher accuracy for the same concentration).
Denoting by IC50(X) the IC50 of the compound X to the Nav1.7 channel, we can
make the following assumption: IC50(TRC) < IC50(BPV ) < IC50(FCN).

The case where the Hit/No Hit classification does not lead to a good classification
score is induced by the fact that there are no relevant entries to solve the classification
task. In particular, from the 10 runs, a higher variability on the selected entries appears.
This scenario is observed for ATXII and compounds at low concentration. Most selected
entries (for the two highest concentrations) are given in Table 10.3.

Name Frequency (%)
AreaD ∗ Ch50 of beat 3 23

Amp of beat 0 19

AreaD of beat 7 13

Table 10.3: First study case: Frequencies (≥ 10%) of selected entries over the 10 runs.
ChX denotes the electric charge at X% of the beat period, Amp the maximal amplitude
of the beat and AreaD the surface of the cell depolarisation.

10.3.2 General Application

In the previous section, results show that the Hit/No Hit classification for a given
compound and concentration works well, particularly for higher concentrations. This
preliminary study is crucial for the Hit/No Hit classification. Indeed, even if for the
highest concentrations we had bad results, we would have no hope to get good results in
a more general case (mixing compounds and concentrations in the Training, Validation
and Test sets). These encouraging results, obtained in the First study case, allow us to
extend Hit/No Hit classification studies into more general cases (i.e. studies two to four).

10.3.2.1 Computational Time

For the study case that took more time, around 8 minutes are needed for the training
phase, which has been run in parallel on 27 physical CPUs. The testing phase took more
or less a couple of seconds. Repeating this process 100 times, in order to have some
statistics, took 13 hours for the training phase and few minutes for the tests. This is
typical of this kind of strategy, in which we decompose the problem solving into two
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parts: an offline phase, which is here the training phase, performed once and for all, in
which we concentrate all the computational efforts; an online phase, which is here the test
phase, which benefits from the learning phase and that can be performed in few seconds.
Remark that, given new data in the same experimental setting, there is no need to re-run
the learning phase.

10.3.2.2 Second and Third study cases

For sake of clarity detailed results of these two study cases are described in the
Appendix (see Sections 10.6.0.1 and 10.6.0.2 for study cases two and three respectively).
As defined in Section 10.2.2.2, the second study does not take into account results obtained
in the first study, meaning that for each compound, the same label is given regardless of
the considered concentration. Despite this choice, the classification success is quite good,
being close to 0.86. To consider the fact that we are not able to distinguish well ’Hit’
and ’No Hit’ samples for the lowest concentrations, the third study was established (see
Section 10.2.2.2 for details on the set generation). For this scenario, the accuracy reached
to 0.95. The fourth study was established to consider a higher Training and Validation
sample size and a more robust classifier. It led to similar results as shown in the following
section.

10.3.2.3 Fourth study case

The confusion matrix for this test case is shown in Figure 10.6.
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Figure 10.6: Fourth study case: confusion matrix obtained for Hit/No Hit classification.

We see that the accuracy rate improves and it reaches 0.95. We improve as well false
positive and negative. Remark that these numbers refer to the case in which we make the
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hypothesis that at the lowest concentration the molecules behave as ’No Hit’. Cohen’s
kappa is around 0.73.

Detailed results: Here are presented classification results for positive Figure 10.7 and
negative Figure 10.8 compounds at each concentration. All compounds are well classified
for its higher concentration (except the ATXII as a deactivated compound).
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Figure 10.7: Fourth study case: Classification details for ’Hit’ compounds. ’Pos’ stands
for the positive control: Tetrodotoxin at 1µM .

TRC is still not that well classified at C3. We see that in this configuration we
improve the confidence of the classification (meaning that we classify as ’No Hit’ the
lowest concentrations and as ’Hit’ the largest, with more certainty). Remark that the
Figures from test cases 3 and 4 are quite similar. This confirms that the approach is quite
robust. Most selected entries are given in Table 10.4.

Remark 18
The most selected entries are essentially the same as for the Third study case (see
Table 10.8), which highlight the robustness of the classifier.

10.3.2.4 Comparisons

In this section, we compare results obtained using the DGDR method and the method
currently used at Sophion (S.E for statistical evaluation).
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Figure 10.8: Fourth study case: Classification details for ’No Hit’ compounds.

Name Frequency (%)
Amp 26

Ch50 16.3

Ch25 ∗ Ch50 15.7

Amp ∗ Ch50 11.1

Table 10.4: Fourth study case: Frequencies (≥ 10%) of selected entries over the 100 runs.
ChX denotes the average electric charge at X% of the beat period and Amp the average
maximal amplitude of the sweep.

Remark 19
For the DGDR method, we considered classifiers obtained with the fourth study. The
label given to a sample is determined by the use of the majority vote strategy described
in Section 10.2.3. However, to make the comparison with the S.E method possible, the
same True label of a tested sample is considered for the two methods. This means that
we do not consider the assumptions made in the fourth study for the tested samples.
This, explains why the accuracy obtained with the DGDR method is not the same in the
following results.

The comparison of the two classifiers is given in Table 10.5.
Compounds are more classified as ’Hit’ with the DGDR method than the S.E method.
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DGDR
No Hit Hit

S.E No Hit 2865 94
Hit 56 126

Table 10.5: Comparison between the ’statistical evaluation’ (S.E) proposed by Sophion
and the DGDR method.

The two strategies are in agreement for approximately 95% of the elements of the whole
sample. Details for each compound are shown in Figure 10.9.

The success rate obtained with the S.E method is around 0.893 whereas it is around
0.894 for the DGDR method. Despite this gain seems very low, data classes are highly
unbalanced (17% of the data have a true label ’Hit’). The DGDR tends to more easily
classify a compound has ’Hit’, resulting in a lower specificity (0.97 versus 0.98 for the
S.E method). However, the gain is higher on the sensitivity (0.52 versus 0.46 for the S.E
method). These results are summarised in Table 10.6.

Quantity DGDR S.E
Accuracy 0.894 0.893

Specificity 0.970 0.980

Sensitivity 0.521 0.465

Precision 0.779 0.825

F1-score 0.624 0.594

Cohen’s kappa 0.565 0.538

Table 10.6: Confusion matrices quantities.

Among these quantities only the specificity and precision are lower with the DGDR
method. The gain on the sensitivity implies that we better classify ’Hit’ compounds with
the DGDR than with the S.E method. A summary for each ’Hit’ compounds at a given
concentration is summarised in Figure 10.9.

The DGDR globally leads to a higher accuracy on ’Hit’ compounds than S.E method
(even for the ATXII which should have not be detected as a deactivated compound).
Moreover, the accuracy increases with the concentration, which is not the case for the
S.E method (ATT, FCN and BPV at lower concentrations). The gain is particularly
significant for the second-highest concentrations (BPV, FCN and MXT).

For the Cisapride case (CSP, which is a negative control), results are given in Fig-
ure 10.10.

As a negative control, we obtain a less good accuracy using the DGDR method than
the S.E method. Several scenarios can explain these results. The first is the unbalanced
dataset. The proportion of ’Hit’ data is much lower than the ’No Hit’ data. The a
priori being set to 0.5 each, it explains why we tend to more classify compounds as ’Hit’.
The second reason is the data preprocessing. Contrary to the S.E method, all the data
were considered to construct the dictionary, meaning that some of them may pollute the
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Figure 10.9: Classification success rate comparisons between DGDR and S.E methods for
each positive compounds at a given concentration.

DGDR process. Further investigations could be made by combining the DGDR method
with the ASE-HD method to construct an augmented training set. Another explanation
concerning the Cisapride, could be that even if it is a negative control, it may affect the
cell (by other mechanisms). The DGDR method may have selected entries for which this
mechanism can be detected. This could explain why the accuracy tends to decrease as
the concentration increases. A preliminary test would be to classify Cisapride as ’Hit’
against control (no compound addition) as ’No hit’.

For each concentration (from C4 to C1, C4 being the lowest and C1 the highest),
6 quantities were computed from the confusion matrices obtained for the two methods:
accuracy, specificity, sensitivity, precision, F1-score and Cohen’s. The comparison of the
two methods are shown in Figure 10.11.

As a deactivated compound, ATXII was tagged ’No Hit’ to compute the confusion
matrices and the resulting extracted quantities. Despite the two classification strategies
show similar quantities at lower and higher concentrations, this is clearly not the case for
in between concentrations. In particular, all the extracted indicators are higher for the
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Figure 10.10: Classification success rate comparisons between DGDR and S.E methods
for Cisapride at a given concentration.

Figure 10.11: Comparison of the DGDR and S.E method using classical indicators. For
this comparison, ATXII was considered as a ’No Hit’ compound.

DGDR method at concentration C2 and concentration C3 (except for the specificity and
precision).
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10.4 Discussion

Studies two to four were performed on a restricted dictionary entry size (27 instead of
3782 for the first study case). Selected entries in study case one were mainly limited to
agnostic entries (i.e. amplitude and electrical charge). Due to computational limits, only
27 entries (corresponding to average agnostic quantities over a sweep) were kept. Indeed,
the process was repeated 100 before performing the majority vote. However, results are
quantitatively good. And by construction of the DGDR method, results obtained using
the largest dictionary entry size would be at least as good as results obtained in studies
two to four.

10.5 Conclusion

The DGDR method applied to automated patch-clamp for ’Hit/No Hit’ classification
of sodium blockers seems to be quite efficient. In particular, as expected, the classification
success rate increases with the concentration. Regarding to study one, the behaviour of
each compound with respect to the concentration seems to allow us to order them in
terms of IC50. Despite ATXII is badly classified, the obtained classification results are
expected by the experimental setup (deactivated compound). All other compounds are
almost perfectly classifiable for its highest concentrations. Moreover, as the overfitting
decreases as the concentration increases, it means that selected entries are more and more
relevant and robust to the classification task. These selected entries are mostly agnostic
entries, such as amplitude or electric charge.

Studies two to four reach to a success rate close to 0.95 according to the label
hypothesis made. These results are in a good agreement with those obtained in study
case one. Despite the gain on the accuracy is weak in comparison with the statistical
evaluation strategy considered at Sophion, the sensitivity increases from 0.465 with the
statistical evaluation to 0.521 with the DGDR method. The quantities extracted from
confusion matrices highlight that the DGDR method is more suitable than the statistical
evaluation, particularly at intermediate concentrations.

Contrary to the statistical evaluation method, the DGDR method considered all the
data without any pruning for preprocessing. An application of the ASE-HD method to
construct the augmented training set could improve the success rate with the DGDR
method.

The selected entries by the DGDR method allows a classification in agreement with
the concentration (i.e the classification success rate for ’Hit’ compounds increases as the
concentration increases). This phenomenon is less clear (at lower concentrations) for the
statistical evaluation strategy.

Further investigations could be done. In particular, the ASE-HD method could
be used to construct an augmented training set and remove irrelevant data. Fewer
compounds/concentrations could therefore be used to design experiments.

A ’Hit/No Hit’ classification on Cisapride could be done to ensure that recorded signals
(under Cisapride addition) does not carry this information as a non-active compound.
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Figure 10.12: Study case four: convergence of the normalized Hamming distance between
two consecutive output classification.

10.6.0.1 Second study case

Obtained confusion matrix is shown in Figure 10.13.
The accuracy is around 0.86 and Cohen’s kappa is around 0.51. Note that the fact that

the two classes are highly unbalanced may affect Cohen’s kappa and then its interpretation.
Here 0.86 is computed by considering the true labels as the one used to construct training
and validation. To better understand false positives and false negatives, more details are
given in the following section.

Detailed results: Here are presented classification results for positive (see Figure 10.14)
and negative (see Figure 10.15) compounds at each concentration.

Except for ATXII, all compounds are well classified for its higher concentration. In
particular, the classification success rate for TRC is higher than 0.5 as of the second
concentration. All negative compounds have a good classification success rate, except for
the highest concentration of Cisapride which is more or less equivalent to flip coin. Most
selected entries are given in Table 10.7.
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Figure 10.13: Second study case: confusion matrix obtained for Hit/No Hit classification.
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Figure 10.14: Second study case: Classification details for ’Hit’ compounds.

10.6.0.2 Third study case

The confusion matrix for this test case is shown in Figure 10.16.
We see that the accuracy rate improves and it reaches 0.95. We improve as well false
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Figure 10.15: Second study case: Classification details for ’No Hit’ compounds.

Name Frequency (%)
Ch25 ∗ Ch50 18

Amp 11

Ch50 11

Table 10.7: Second study case: Frequencies (≥ 10%) of selected entries over the 100 runs.
ChX denotes the average electric charge at X% of the beat period and Amp the average
maximal amplitude of the sweep.

positive and negative. Remark that these numbers refer to the case in which we make the
hypothesis that at the lowest concentration the molecules behave as ’No Hit’. Cohen’s
kappa is around 0.73.

Detailed results: Here are presented classification results for positive Figure 10.17 and
negative Figure 10.18 compounds at each concentration.

All compounds are well classified for its higher concentration (execpt for ATXII as
a deactivated compound). TRC is not that well classified at C3. We see that in this
configuration we improve the confidence of the classification (meaning that we classify as
’No Hit’ the lowest concentrations and as ’Hit’ the largest, with more certainty). Most
selected entries are given in Table 10.8.
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Figure 10.16: Third study case: confusion matrix obtained for Hit/No Hit classification.

10−3 10−2 10−1 100 101 102
Concentration [μM]

0.0

0.2

0.4

0.6

0.8

1.0

S 
cc
es
s r
at
e

ATT
ATX
BPV

FCN
MXT

TRC
Pos

Figure 10.17: Third study case: Classification details for ’Hit’ compounds. ’Pos’ stands
for the positive control: Tetrodotoxin at 1µM .
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Figure 10.18: Third study case: Classification details for ’No Hit’ compounds.

Name Frequency (%)
Amp 21.4

Amp ∗ Ch50 18.9

Ch25 ∗ Ch50 10.7

Table 10.8: Third study case: Frequencies (≥ 10%) of selected entries over the 100 runs.
ChX denotes the average electric charge at X% of the beat period and Amp the average
maximal amplitude of the sweep.
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Chapter 11

Conclusions

The DGDR method seems to be a suitable strategy for safety pharmacology assessment based
on patch-clamp techniques with an easy set up. For studies performed in this part, the following
steps are always the same:

• Record signals at baseline and under compound addition.

• Extract ng quantities from collected signals.

• Construct a dictionary considering control and compound scenarios.

• Define a question to answer and label known data.

• Run the DGDR method.

Its extension to regression tasks by changing the score function by an `2 norm allows the
estimation of ionic channel activities from in silico AP signals. In this case, labels are the ionic
channel activity. These estimations considered into a UKF model improve its convergence in
terms of speed and accuracy. Moreover, the consideration of a stochastic process and compound
simulation inside the in silico model preserve the quality of the results.

DGDR method was also validated on in vitro data provided by automated patch-clamp signals
for a Hit/No Hit classification problem.

Both studies, confirm that DGRD method is well adapted to particularly study sodium
channels using whole-cell patch-clamp configuration.
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Part IV

Microelectrode arrays studies
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Chapter 12

Introduction

The CiPA initiative aims at replacing the 2005 regulatory strategy recommended by the
International Conference of Harmonisation guidelines by a safety pharmacological screening
combining in vitro assay and in silico knowledge [CH14, CGB+16, CFG+16, FHAG+16]. In this
context, the MEA (see Section 2.3.2) is a good candidate for drug screening. While several studies
have already been made on pro-arrhythmia risk monitoring [GLG+15, MDS+18], a very few was
performed on ion channel blockade. Moreover, pro-arrhythmic risk classification studies based on
MEA signals consider few quantities extracted from field potentials (e.g. field potential duration).
However, there is no guarantee yet that this quantity is the best to answer the raised question.

This chapter aims at classifying MEA signals in a safety pharmacological context described
above:

• Arrhythmia risk.

• Ion channel blockade.

The first chapter of this part is the result of a collaboration with Tessa De Korte and
Stefan Braam members of Ncardia1 company, leading to a publication in PLOS Computational
Biology [RDKL+20]. This work was the precursor of the methodology developed at the beginning
of this manuscript (see Section 5).

The second chapter of this part is devoted to the coupling of the two methodological works. A
first application on the Ncardia dataset in the context of potassium channel blockade classification
was performed in order to validate the proposed strategy. A second application resulting in a
collaboration with Udo Kraushaar from NMI was performed on a larger dataset based on the 28
reference compounds defined by the CiPA.

1Leiden, Netherlands. ncardia.com.
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Chapter 13

Oriented dimension reduction method to
assess ion channel blocking and arrhythmia

risk in hIPSC-CMs

Novel studies conducting cardiac safety assessment using human-induced pluripotent stem
cell-derived cardiomyocytes (hiPSC-CMs) are promising but might be limited by their specificity
and predictivity. It is often challenging to correctly classify ion channel blockers or to sufficiently
predict the risk for Torsade de Pointes (TdP). In this study, we developed a method combining in
vitro and in silico experiments to improve machine learning approaches in delivering fast and
reliable prediction of drug-induced ion-channel blockade and pro-arrhythmic behaviour. The
algorithm is based on the construction of a dictionary and a greedy optimisation, leading to
the definition of optimal classifiers. Finally, we present a numerical tool that can accurately
predict compound-induced pro-arrhythmic risk and involvement of sodium, calcium and potassium
channels, based on hiPSC-CM field potential data.
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13.1 Introduction

The Comprehensive in vitro Proarrhythmia Assay (CiPA) is an initiative for a new
paradigm in safety pharmacology to redefine the non-clinical evaluation of Torsade de
Pointes (TdP) [CJVJS16, MDS+18, YKI+18].

It aims to more precisely assess TdP risk in vitro by using a multifaceted approach
that combines in vitro evaluations of electrophysiological responses in human-induced
pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and in silico models providing
reconstructions of drug effects on ventricular electrical activity [DCB+17, PHdK+18].

Since CiPA, in vitro studies using hiPSC-CMs become an increasingly integrated
part of today’s cardiac safety assessment. While encouraging, adequately predicting TdP
risk of unknown drugs based on in vitro studies alone is challenging [BDM+18]. Besides,
the analysis of the large data sets derived from those studies is often far from being
automated.

One of the main challenges in proposing a high-throughput screening based on novel
devices is often related to the variability of the signals measured, that could pose sensible
questions about the ability to extract useful information from them. The main impact of
the present work is related to this aspect, and the proposed framework can be considered
as a first preliminary step towards the setup of a systematic procedure.

The main focus of the present study is to investigate a computational tool that combines
statistical analysis and machine learning approaches (used in this context in [LS16]) to
the mathematical modelling and the numerical simulations (in silico experiments) of the
drug effects on the field potential (FP) of hiPSC-CMs obtained by multi-electrode array
(MEA) technology.

Two problems of interest in the safety pharmacology community will be addressed:
the first one is related to the prediction of the pro-arrhythmic behaviour of a drug, and
the second one to the ion channels blockade. These are typical classification tasks. Some
classification studies in cardiac electrophysiology were proposed in the literature, on
simulated action potentials [LS16, PBL+17] or ECG [BW93, ASM08].

The contributions of the present paper are the following:

1. A dictionary based greedy optimisation method is proposed, that selects the most
pertinent signal features to maximise the classification score. This procedure helps
correct the classical markers used to analyse Field Potential signals and provides
encouraging results.

2. The in vitro dataset is complemented by an in silico dataset. This makes it possible
to explore all the possible scenarios and help mitigate the high-dimensional/low
sample size regime potentially affecting the performances of the classifiers.

3. In constructing the signal database, the uncertainties affecting the experimental
setup are accounted for. Despite many variability sources, the proposed approach
aims at defining a robust classifier. Concerning the problems considered in the
present manuscript, there is enough information in the Field Potential to provide
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an answer to them, irrespective of all the uncertainties affecting the experimental
setup.

4. The proposed approach was tested on real data coming from actual experiments
performed with MEA technology.

The work is structured as follows: the first part is dedicated to the methods used
to reproduce in silico physiological signals (FP and calcium transient signals) based on
the bidomain equations [Tun78b] and the O’Hara, Virág, Varró and Rudy (ORd) ionic
model [OVVR11]. The relation between drug concentration and ion channel activity is
rendered through scaling factors depending on IC50 values (as proposed in [MCS+11,
ZBS+13, BPS+06]. The outputs of the in silico model are the simulations of the Field
Potentials (FP) recorded from extracellular micro electrodes, and the averaged calcium
transient on a well ([Ca2+]i).

The second part is dedicated to the description of the method used to integrate in
silico experiments and in vitro data in order to design an optimised classification tool. The
proposed approach is based on the construction of a dictionary of linear and non-linear
forms applied to the set of in vitro and in silico data; a greedy algorithm is defined to
build a sparse observation-to-prediction relation.

Finally, we applied the classification process in two situations: detecting torsadogenicity
(TdP risk versus non-TdP risk) with a synthetic dataset and detecting ion channel blockade
(for sodium, calcium or potassium channels) by the action of a given compound, on in
vitro MEA data.

The classification results obtained show that the double greedy optimisation strategy
is effective in improving classifiers performances (with only a few parameters to be tuned)
and is well adapted to study compound effects on hiPSC-CM electrophysiology that will
aid in early and predictive cardiac safety assessment.

13.2 Material & Method

In this section, we present the method developed to improve the classification of elec-
trophysiological regimes based on MEA signals. It consists in fusing together information
coming from available experimental MEA data and numerical simulations in order to
design the classifiers to be used.

First, the experimental methods are described; then, we show the different models
used to reproduce FP and calcium signals (see Section 13.2.2) and we end the section by
presenting the optimised classification algorithm (see Section 13.2.4) and the definition
of the dictionary entries (see Section 13.2.3). The structure of this section is shown in
Figure 13.1.

13.2.1 Experimental setup

The methods used to perform the experiments and acquire the recordings of the FP
are presented in detail below.
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Figure 13.1: Scheme of the Materials and Methods section.

13.2.1.1 Cell culture

Human iPSC-CMs (Pluricyte Cardiomyocytes, Ncardia, Leiden, The Netherlands)
were stored in liquid nitrogen until thawed and cultured onto 96 well MEA plates (Axion
Biosystems, Inc., Atlanta, USA) according to manufacturer instructions (see Section 2.2.3
for more details on hiPSC). Briefly, the MEA plates were coated with fibronectin (50µg/mL
in PBS [+Ca2 + & Mg2+], Sigma-Aldrich, St. Louis, MO, USA; Cat. No. F-1141) for 3
hours at 37◦C and 5% CO2. After 3 hours of incubation time, the excess of fibronectin
coating solution was removed and cells were plated in a 5µL droplet at a density of 25000
cells per well. After 1 hour of incubation (37◦C and 5% CO2), 100µL pre-warmed (37◦C)
medium (Pluricyte Cardiomyocyte Medium, Ncardia, Leiden, The Netherlands) was
carefully added to each well. Cells were maintained in Pluricyte Cardiomyocyte Medium
for 8 days and refreshments took place at day 1 post-thaw and subsequently every other
day. MEA recordings were performed at day 8 post-thaw. The choice of these different
parameters of the experimental setup was presented and commented in [ZdKN+19].

13.2.1.2 Test compounds

At day 8 post-thaw, medium was refreshed at least 2 hours before compound addition.
The 12 test compounds were provided by the Chemotherapeutic Agents Repository of
the National Cancer Institute and consisted of a random subset of CiPA compounds.
The compounds were from 3 clinical TdP risk categories: low/no (Loratadine, Mexile-
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Compound* IC50 (µM)** Concentration (µM) Tr/V LabelhERG Cav1.2 Nav1.5 #1 #2 #3 #4
Azimilide < 1† 17.8† 19† 0.01 0.1 1 10 V K [BEJ+98], Na [YT97], Ca [YT97]
Bepridil 0.16 1.0 2.3 0.01 0.1 1 10 V K [HMEHhZ08], Ca [YBS86], Na [YBS86]
Chlorpromazine 1.5 3.4 3.0 0.0951 0.3004 0.9494 3 V K [HMEHhZ08], Ca [CVF84], Na [ONN89]
Cisapride 0.02 11.8 337 0.0032 0.01 0.0316 0.1 V K [HMEHhZ08]
Clarithromycine 32.9 > 30 NA 0.1 1 10 100 V K [HMEHhZ08]
Clozapine 2.3 3.6 15.1 0.0951 0.3004 0.9494 3 Tr K [LKK+06], Ca [NHW+17]
Diltiazem 13.2 0.76 22.4 0.01 0.1 1.0 10 Tr Ca [LT83]
Dofetilide 0.03 26.7 162.1 0.0003 0.001 0.0032 0.01 V K [HMEHhZ08]
Droperidol 0.06 7.6 22.7 0.03169 0.10014 0.31646 1.0 Tr K [HMEHhZ08]
Ibutilide 0.018 62.5 42.5 0.0001 0.001 0.01 0.1 Tr K [HMEHhZ08]
Loratadine 6.1 11.4 28.9 0.001 0.003 0.0095 0.03 V K [Cru00], Ca [NHW+17]
Mexiletine 62.2 125 38 0.1 1.0 10 100 Tr Na [MWZ+13], K [GTBR+15]
* Colours corresponds to the TdP risk (green: low, orange: medium and red: high). See Colatsky et al [CFG+16].
** From Ando et al [AYY+17]. † From Yao et al [YT97].
Tr/V: Considered into the Training (Tr) or Validation (V) set.

Table 13.1: Experimental data information.

tine, Diltiazem), intermediate (Clozapine, Chlorpromazine, Clarithromycine, Cisapride,
Droperidol) and high (Ibutilide, Dofetilide, Bepridil, Azimilide) [CFG+16] (see Table
1). Chemical stock solutions at 1000-fold of the target concentrations were prepared
under sterile conditions in DMSO and stored at −20◦C, according to HESI Myocyte
Phase II Validation Study Protocol instructions. The serial diluted compounds were
further prepared in DMSO on the day of compound assay. The 10-fold final dilutions
of the compounds were prepared with Pluricyte Cardiomyocyte Medium, for single time
use only. Pluricyte Cardiomyocytes were exposed to four different concentrations of the
compound, under sterile conditions in single point additions (i.e. one concentration per
well) in five replicates for each concentration. Vehicle control was 0.1% DMSO. All the
experiments were performed under permits granted from the Commissie Medische Ethiek
Leiden University Medical Center (permit number: NL45478.058.13).

13.2.1.3 MEA recordings

At day 8 post-thaw, 96 well MEA plates seeded with hiPSC-CMs were placed in
the Maestro MEA device (768-channel amplifier) with an integrated heating system,
temperature controller and data acquisition interface (Axion BioSystems, Inc., Atlanta,
USA). The field potential traces of the hiPSC-CMs were recorded prior to (baseline) and
30min after compound addition for 5min. The recording conditions were at 37◦C using
Cardiac Standard filters and amplifiers in spontaneous cardiac mode (12.5Hz sampling
frequency, 2kHz Kaiser Window, 0.1Hz IIR). The beat detection threshold was 300µV .

13.2.2 MEA computational model

This part provides a detailed description of the mathematical models used to simulate
FP in a realistic MEA geometry. Simulated FP studies were already performed for in
silico assessment of drug effects [ZBS+13] or channel activity identification [RBZ+17]
and have shown the potency to reproduce and analyse compound effects on cardiac
electrophysiology.
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The first section concerns the bidomain equations, which governs the electrical activity
propagation in a tissue. Since the cells might not be perfectly uniformly distributed in
a well and the cell population might even be heterogeneous, a stochastic model of the
population distribution was adopted, which is described in Section 13.2.2.1. In the last
part (13.2.2.2) we describe the compound simulation strategy, aiming at reproducing the
experimental protocol used to classify reference compounds holding ion channel blocking
properties.

To simulate MEA recordings, we consider the same model as the one presented in
Section 3.3 with the following parameters and methods:

• Bidomain equations (see Equation (3.7)):

– The discretisation of the partial differential equation was done in space using
P1 Lagrange finite elements and in time using backward differentiation formula
(BDF) schemes with a time step of 0.1ms.

– The ODE part governing the action potential modelling (Iion) was solved using
PDF scheme with adaptive time steps and order, whose implementation is
provided by Sundials’ CVODE[HBG+05]. These space and time discretisations
of the bidomain equations were already used in different studies (in silico ECG
and in silico field potentials) and have shown qualitatively good results com-
pared with real data [ABC+18, CCG13, RBZ+17, SCG16, TSC+18, ZBS+13].
The ionic current Iion(Vm,γ) and the state variable γ are provided by the ORd
model [OVVR11]. Three types of cells are considered to mimic the monolayer
heterogeneity (see Section 13.2.2.1): Epicardial, Mid-myocardial and Endocar-
dial. These cell types are simulated through specific sets of parameters given
in [OVVR11]. This model takes into account the main concentration dynamics
([Na+]i, [Ca2+]i and [K+]i).

– Parameters of the source term Iapp model described in Section 3.3.2.2 are r =
50µm (the radius of the source), I0 = −130pA/pF (the maximum stimulation
value) and σ = ∆t

6 with ∆t = 4ms.

• Electrode model: parameters are given in Table 13.2.

Cel Ri Rel
1nF 2MΩ 10MΩ

Table 13.2: Parameters used for the imperfect electrode model.

• Heterogeneity field: see Section 13.2.2.1.

• Drug modelling: see Section 13.2.2.2.

To mimic experimental measurements, a 10µV standard deviation noise of a zero-mean
Gaussian was added to FP. As some devices are able to get the intracellular calcium
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transient by fluorescence, we made the assumption that we have access to intracellular
calcium transient data. We added a zero-mean Gaussian noise of 10−3µM on the
intracellular calcium transient obtained by simulation with the ORd model.

13.2.2.1 Heterogeneity

The hiPSC-CMs used in this study are > 70% pure cardiomyocytes based on positive
Troponin T (TnT) expression. At least 70% of the TnT positive cells express a ventricular
phenotype (based on ventricular myosin light chain 2 (MLC2v) expression and patch
clamp technology). The other 30% of the cell population is of mesodermal origin. The
actual distribution of these cells inside the well is unknown, and is a source of uncertainty
that we need to take into account when developing the classifier in order to provide
meaningful results in realistic applications.

Here, we consider the strategy developed in Section 3.3.4. When discretised on the
finite element space (P1 Lagrangian elements were used), a cell type was affected to each
node of the finite element mesh according to the following rule:

CellTypei =


Epicardial, if ci < 1

3
Mid-myocardial, if ci > 2

3
Endocardial, otherwise

, (13.1)

where ci ∈ [0,1] is given by the random process c discretised at the node whose coordinates
are x(i) (see Equations (3.11) and 3.12). Example of random heterogeneity obtained with
this method is presented in Figure 13.2.

A photo of the well corresponding to the right panel of Figure 13.2 is shown in
Figure 13.3.

13.2.2.2 Drug modelling

In this study we assume that a drug may affect only sodium, calcium and/or potassium
channels. The conductance-block model is rewritten in Equation (13.2). We refer to
Section 3.2.2 for more details.

gs = gcontrol,s

[
1 +

(
[D]

IC50s

)nH ]−1

, (13.2)

meaning that, for this study, s ∈ {Na,Ca,K}.
Here, we chose to set the Hill coefficient nH at 1. The first reason is due to the

confidence intervals of computed Hill coefficients for different compounds [CDM+17]
which most of the time includes 1. The second reason comes from the use of the EFTPC
in our simulations. Varying the Hill coefficient between 0.6 to 1.4, the standard deviation
of the channel activity is lower than 0.05 for concentrations higher than the IC50 and
lower than 0.03 for concentrations lower than the IC50 (see Figure 13.4). The use of the
EFTPC leads to a low variability in the channel activity according to the Hill coefficient
and studied compounds.
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Figure 13.2: Finite element meshes of MEA used and example of heterogeneity field. Left:
Finite element mesh representing one well including 9 electrodes of the 6-well MEA device
from Multichannel Systems (used in Section 13.3.1). MEA device documentation is avail-
able on: http://www.qichi-instruments.com/bookpic/20163120452599.pdf. Right:
Finite element mesh representing one well including 8 electrodes of the 96-well MEA device
from Axion Biosystems with an example of generated cell heterogeneity field (used in Sec-
tion 13.3.2). MEA device documentation is available on: https://www.axionbiosystems.
com/sites/default/files/resources/mea_plates-brochure-rev_06.pdf.

13.2.3 Dictionary entry computations

The details about the construction of the dictionary entries are provided and com-
mented in this section. As mentioned previously, the dictionary is a collection of linear
and non-linear forms applied to the signals, corresponding to the definition of features
(think, for instance, to the maximum of the signal, or its average, and so on).

The greedy optimisation strategy has been devised to project into a as low as possible
dimensional subspace with a sparse contribution of the entries. This internal stage if the
descent is easily parallelisable, which allows an affordable dictionary size potentially large
(a few hundred in the study, potentially few thousands) in order to avoid a possible loss
of information.

In the present work, the dictionary is divided into two parts:

• non-agnostic, or informed.

• agnostic.

In the informed part, we collect the biomarkers extracted from the signal, identified
by the experts as correlated to some regime of interest. These quantities are meant
to reveal a particular state of the system or alteration of a parameter. For instance,

http://www.qichi-instruments.com/bookpic/20163120452599.pdf
https://www.axionbiosystems.com/sites/default/files/resources/mea_plates-brochure-rev_06.pdf
https://www.axionbiosystems.com/sites/default/files/resources/mea_plates-brochure-rev_06.pdf
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Figure 13.3: Photo of one well corresponding. The corresponding P1 Lagrange finite
element mesh is shown in the right panel of Figure 13.2.

altering the sodium channel activity induces a modification in the depolarisation ampli-
tude [TBVM+18]. The second part of the dictionary is agnostic, meaning that the linear
and non-linear forms introduced are extracted from the signal as a mathematical object.
The goal of the agnostic part of the dictionary is to enrich it, henceforth increasing the
possibilities of computing from the dictionary an input leading to a good classification.
The dictionary entries and their numbering are presented in Table 13.5.

13.2.3.1 Electrophysiological biomarkers

First, some intuitive biomarkers were extracted, e.g. depolarisation amplitude (DA),
field potential duration (FPD), etc. These quantities (called parameters in the electro-
physiology community are presented in Figure 13.5.

Remark 20
In the electrophysiology community we often refer to parameters to designate quantities
extracted from the experimental signals. In the present work, we follow the usage in applied
mathematics and engineering communities, that refers to "parameters" the quantities
affecting the state of the system and not the quantities read from the observable system.

Their computation follows the work in [TRLG18] and it is described in more details
in Section 13.5.1. Concerning the calcium transient signal computation, details are given
in Section 13.5.2.

As these values of these biomarkers are computed in control and drug case, we decided
to use relative values to the control case. For instance, the DA ratio is: DAdrug

DActrl
. The

justification of this choice is shown in Figure 13.6. As we can see, even if the control case
is different, the impact due to a compound is qualitatively the same regardless of the
heterogeneity field.

An example of an effect of a drug on the repolarisation of the cells compared to baseline
is presented in Figure 13.7. In a case where a drug does not affect the repolarisation, we
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Figure 13.4: Channel activity average and standard deviation for a Hill coefficient varying
from 0.6 to 1.4. The abscisse is the concentration factor with respect to the IC50.

should obtain a curve similar to f(x) = x (red line in Figure 13.7).
In the case where the repolarisation is affected by a compound, a distortion appears

on the signal (see black dots lower panel in Figure 13.7 corresponding to an increase in
the FPD). Five markers (from K1 to K5) were extracted from the signal, with FP drugrep

and FP ctrlrep the repolarisation part of the FP for the drug and control case:

• Maximum distance: maxi

√(
FP drugrep (i)− FP ctrlrep (i)

)2
.

• `2 norm:
∣∣∣∣∣∣FP drugrep − FP ctrlrep

∣∣∣∣∣∣
`2
.

• Average deviation: 1
N

∑N
i=1

(
FP drugrep (i)− FP ctrlrep (i)

)
.

• Maximum deviation: maxi
(
FP drugrep (i)− FP ctrlrep (i)

)
.

• Time of the maximum deviation.

13.2.3.2 Wavelet coefficients

In order to construct the agnostic part of the signal, a wavelet decomposition was
considered for the repolarisation phase. The number of coefficients retained is such
that the signal could be represented up to the noise level by the wavelets expansion.
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Figure 13.5: List of the parameters computed on FP (up) and Calcium transient (down).
RC: Repolarization Centre; FPD: Field Potential Duration; DA: Depolarisation Amplitude;
FPN: Field Potential Notch; AUCr: Area Under Curve of the repolarisation wave; RA:
Repolarization Amplitude; RW: Repolarization Width; CA: Calcium Amplitude; DC:
’Drowsing Calcium’; CDX: Calcium Duration

When a new signal is analysed, only the selected coefficients (already computed for the
training database) are then used to reconstruct the signal. If the L2 error is lower than
an arbitrary value, we store these coefficients. Otherwise, we compute the new location
and add the missing locations. The wavelet transform was done on the absolute difference
between the drug case and the control case by considering Daubechies level 8 wavelets.
Despite this choice leads to a Gibbs phenomenon, it induces a smoother reconstructed
signal if compared with Haar wavelets [BL13]. An example of reconstruction is shown in
Figure 13.8. The algorithm to get the positions is presented in the pseudo-code 7.

13.2.4 Classification

Given a molecule which is a candidate to become a drug, several questions arise
concerning its impact on the electrical activity of cells. Basic questions like: Is this drug
blocking channel X? or: Is the drug potentially causing arrhythmia? are naturally treated
by solving a classification problem.

One of the main difficulties related to such a study is the curse of dimensionality [Bel15]
since we are dealing with high dimension, low sample size data. Otherwise stated, the
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Figure 13.6: Moxifloxacin simulation. Simulation of the effect of Moxifloxacin at effective
free therapeutic plasma concentration (10.96µM , see Table 13.6) on the FP (from one
electrode) and intracellular calcium transient (from one well) for two different heterogeneity
fields. A finite element mesh of 96-well MEA device from Axion Biosystems was used for
this simulation (see right panel of Figure 13.2).

function to be identified in view of setting up efficient classifiers is defined over a high
dimensional domain and the number of available data is too low. To tackle this problem,
numerical simulations were exploited. The rationale behind the strategy is twofold: first,
we added virtual in silico experiments to the data set to increase the population size.
Second, we exploited the simulations to extract meaningful low dimensional subsets of the
data, which contributed to the mitigation of the high-dimensionality. Several methods
are available in the literature to extract these low dimensional subsets [SIL07]. However,
the risk in using generic problem independent methods is that the subsets obtained could
drastically reduce the amount of information conveyed about the quantity of interest to
be classified. Henceforth, we constructed a low dimensional subset of the data that has
been exploited in the classifier construction, designed to deliver optimal classification
performances. This method can be applied to all different classification techniques, and
the result is classifier dependent.
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Figure 13.7: Extended dictionary based on repolarisation. Upper panel: FP repolarisation.
Lower panel: Repolarisation of cells affected by a compound with respect to the control
case repolarisation. The red line corresponds to the case where the repolarisation is not
affected.

13.2.4.1 Classification optimisation

The goal-oriented dimension reduction method used in this study was a precursor
of the DGDR method described in Section 5. Let ns be the sample size, y(i)

∗ ∈ {−1,1}
the true label of the ith sample and ŷ(i) ∈ {−1,1} the predicted label of the ith sample
associated with p̂(i) ∈ [1

2 ,1] the confidence of the classifier to be the predicted label. Let
n1 and n−1 be the number of samples labelled 1 and −1 respectively, introduced to avoid
a possible bias due to unbalanced classes. Then, we have ns = n1 + n−1. Let δi(x) be the
Dirac function (δi(c) = 1 if c = i, 0 otherwise). Finally, parameter α ≥ 1 is introduced to
penalise the false positive case (i.e. y(i)

∗ = 1 and ŷ(i) = −1). The expression of the cost
function is presented in Equation (13.3).

µ = − 1

ns

ns∑
i=1

p̂(i)
[ns
n1
δ1(ŷ(i))δ1(y

(i)
∗ ) +

ns
n−1

δ−1(ŷ(i))δ−1(y
(i)
∗ )

− αns
n1
δ−1(ŷ(i))δ1(y

(i)
∗ )− ns

n−1
δ1(ŷ(i))δ−1(y

(i)
∗ )
]
.

(13.3)

This cost function can easily be bounded (see Proposition 13.1) as shown in the
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Figure 13.8: Reconstruction of the absolute difference between the drug and control
signals for the plateau and repolarisation phases, based on wavelets coefficients.

Section 13.5.2 in the Appendix.

Proposition 13.1
Given the cost function defined in Equation (13.3), we have: µ ∈ [−2, 1 + α].

The rationale of including the terms p̂i in the cost function is to better describe the
performances of the classifier, accounting for the confidence in the classification, and
not merely on the success rate. This aims at setting up a robust classification tool.
Following the same principles, the cost function can be extended to c classes as shown in
Equation (13.4):

µ = − 1

ns

ns∑
i=1

p̂(i)

{
c∑
j=1

[ns
nj
δj(ŷ

(i))δj(y
(i)
∗ )− ns

nj
αj

c∑
m=1
m6=j

δm(ŷ(i))δj(y
(i)
∗ )
]}
, (13.4)

where nj is the number of samples labelled j and αj > 0 the weight assigned if the
predicted label is not the class j. The bounds of µ in this general case are given in
Proposition 13.2 and its demonstration in Section 13.5.2 in the Appendix.

Proposition 13.2
Given the cost function defined in Equation (13.4), we have: µ ∈ [−c,

∑c
j=1 αj ].
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Algorithm 7 Wavelet coefficient.
ns {Number of signals to compute positions.}
thr {Threshold for the wavelets transform.}
vp {Empty array of positions.}
for i := 1 to ns do
fi{Get the ith signal.}
cwvlt = CWT (fi, thr) {Computes wavelets coefficients.}
vnzp {Get the non-zeros positions of cwvlt.}
if i==1 then
vp = vnzp

else
vp = vp

⋃
vnzp

end if
end for

In the case where we do not penalise classes, all the αj are equal to 1. A regularisation
term was added to the cost function:

µreg = µ+ β

 k∑
j=1

(1−
Nb∑
i=1

ω2
ji)

 , (13.5)

where β ∈ R+ is a penalisation parameter and k the dimension of the projected
subspace. This term aims at breaking the scaling invariance of the linear combination of
the dictionary entries. In particular, if a linear classifier is used, let α ∈ R, α 6= 0, the
classification score when using αΩ is the same as Ω, irrespective of the value of α. The
optimisation problem reads:

Ω∗ = arg inf
Ω∈Rd×ng

µreg.

The optimisation problem is challenging to be solved for two main reasons. First,
the dimension k of the input space to be found is not known a priori, but has to be
determined. Second, given realistic signals, the number of features that can be extracted,
and hence the size of the dictionary, can be quite large, leading to an optimisation problem
on a large-dimensional space. To mitigate these difficulties, a greedy optimisation strategy
was adopted has proposed in the DGDR method (see Section 5.2.2.2).

13.2.4.2 Cross-validation

As inputs are computed to maximise the classification, a risk is to lose the generalisation
capacity of a good classifier. To prevent the overfitting and to increase the robustness of
the strategy a random K-fold cross-validation was used. A stratification was applied on
the data to ensure the conservation of the output repartition in each fold.
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The pseudo-code is described in Algorithm 8 and the corresponding Scikit-Learn
method was used.

Algorithm 8 Randomised K-fold cross-validation procedure.
1: M : input matrix
2: l: output vector
3: nfold = 2 {Number of folders for each K-Fold.}
4: nkfold = 500 {Number of K-Fold.}
5: E = (1,2,...,ns) {Sample numbering.}
6: Cnt = 0 {Initialise counter vector of size ns.}
7: P = 0{Initialise matrix P ∈ Rns×2 with 0 values.}
8: for i := 1 to nkfold do
9: E′ = getFolders(E,nfold,l) {Generate the nfold folders with respect to the stratifi-

cation.}
10: for j := 1 to nfold do
11: postest = E′[j] {Testing folder (vector of indices).}
12: postrain = E\postest {Complementary of postest.}
13: Mtrain = M [postrain, :] {Extract train submatrice.}
14: ltrain = l[postrain] {Extract train subvector.}
15: Mtest = M [postest, :] {Extract test submatrice.}
16: ltest = l[postest] {Extract test subvector.}
17: clf = Train on (Mtrain,ltrain) {Train the classifier.}
18: proba = Test on (clf,Mtest) {Test the new data with the classifier.}
19: P [postest, :] = P [postest, :] + proba {Add the new probabilities.}
20: Cnt[postest] = Cnt[postest] + 1
21: end for
22: end for
23: for i := 1 to ns do
24: P [i, :] = P [i, :]/Cnt[i]{Compute averaged probability for the ith sample.}
25: end for

The repetition of the random K-fold strategy allows the convergence of the weights
regardless of the training and test set generated. The higher the number of weights to
determine, the higher should be the number of random K-fold.

13.3 Results

Two different studies were performed in the present work: classify compounds for their
risk on TdP; classify compounds for their ion channel blocking properties. The results of
these are presented hereafter.

In the first part of Section 13.3.1, we describe the study results based on the
conductance-block model (see Equation (3.5)). Using this model, we classified the TdP
risk of 86 known compounds based on simulated data using the compound’s IC50 values
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for blocking sodium, potassium and calcium currents and the effective free therapeutic
plasma concentration (EFTPC) values, reported by the literature.

In the second study (see Section 13.3.2) we classified compounds based on experimental
data. The outcome consists in identify which channel is affected (sodium, calcium or
potassium) by a compound. These experiments were performed for 12 compounds using
Pluricyte Cardiomyocytes. Five of them were used for the training set and seven of them
for the validation. Because of the low sample size of data, a simulated database was
generated to enrich the training set.

The stop criterion used for the following results is when the cost variation between
the last two components is lower than 5%. The penalisation parameter β described in
Equation (13.5) was set to 0.1.

13.3.1 TdP classification

This section is dedicated to the torsadogenicity risk classification. Only simulated data
are considered for this study. To predict the risk of TdP of a wide range of compounds,
we simulated the application of 86 known compounds previously reported by [LS16].

13.3.1.1 Tests setup

The numerical choices leading to the results are summarised hereafter:

• The false positive part in the cost function (see Equation (13.3)) was taken α = 2,
to minimise the false positive rate.

• Bidomain equation parameters are summarised in Table 13.3.

Am Cm σi σe
200cm−1 1.0µFcm−2 5.0nScm−2 5.0nScm−2

Table 13.3: Bidomain equation parameters used for Multichannel Systems MEA device.

• Drugs were modelled using Equation (3.5) presented in Section 13.2.2.2. The IC50
values for each compound are given in [MCS+11, KOPM+13]. Concentrations chosen
to simulate compounds are the effective free therapeutic plasma concentrations
(EFTPC). These values are listed in Tables 13.7 and 13.6. Eighteen drugs were
modelled twice because of their different IC50 and EFTPC observed in the literature
(see Tables 13.7 and 13.6).

• The corresponding channels blocked in the ORd model are INa (gNa), IKr (gKr) and
calcium channels (ICaL, ICaNa and ICaK) through the PCa variable as previously
reported in [LS16].

• A 6-well MEA device (Multichannel Systems) with 9 electrodes per well (60-
6wellMEA20030iR-Ti) where the corresponding finite element mesh is presented in



13.3. RESULTS 201

Figure 13.9: TdP risk classification through simulations of 86 compounds. Left: Validation
versus Cost curve depending on the number of components and the dimension. Right:
Drug repartition in the input space after convergence of the algorithm.

the left panel of Figure 13.2. A cell heterogeneity field was applied on this finite
element mesh following the strategy developed in Section 13.2.2.1.

• The sparse optimisation was performed on a dataset of 1520 data points (76 first
compounds, each compound simulated 20 times with different heterogeneity and
sources). The FP traces corresponding to the last 10 compounds were also simulated
20 times with different heterogeneity and sources, but used for the validation set.
The same process was done for the calcium transient signals. The dictionary entries
used for this classification problem are summarised in Table 13.5.

13.3.1.2 Results of TdP classification

We start this section by commenting on the results of the classifier as function of
the input space constructed by the greedy algorithm. In Figure 13.9 the success rate
of the classification for the validation set is plotted as function of the cost presented
in Section 13.2.4.1, Equation (13.3). The cost minimised by the proposed algorithm
is a pertinent descriptor of the success rate of the classifier. The input space selected
by progressively increasing the input space dimension as well as the components per
dimension produces a high success rate. The input space corresponding to the case where
the input is in R2 (with three dictionary components per direction) is shown in Figure 13.9,
from which we can appreciate that the separation between the classes is satisfactory.

The results of the classification are detailed hereafter. Figure 13.10 shows the confusion
matrices for the training set (left, in blue) and for the validation set (right, red). Globally,
the results are similar for training and validation (no apparent overfitting phenomena
were seen). The type II error (wrongly classifying a compound as non-torsadogenic)
is well minimised thanks to the choice to penalise false positives (α = 2 in the cost
function, Equation (13.3)). In the validation set, no compounds were wrongly classified as
non-torsadogenic. Only the Propranolol was misclassified as torsadogenic (see Table 13.7).
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Figure 13.10: Confusion matrices obtained for TdP risk classification of 86 compounds
after convergence of the algorithm. Yes: TdP risk. No: No TdP risk. Left: Training
set (sample size: 1520) using randomised K-fold cross-validation. Sensitivity = 0.98,
Specificity = 0.85 and Accuracy = 0.92. Right: Validation set (sample size: 200).
Sensitivity = 1, Specificity = 0.675 and Accuracy = 0.935.

It is interesting to monitor the classification results at different stages of the algorithm.
The confusion matrices are given in Figure 13.19. Confusion matrices obtained for test
and validation sets show an improved TdP risk classification when we increase the number
of components and dimensions. This improvement is particularly visible on the test set for
the first components. The training on the first dimension is not sufficient to classify well
the validation set, meaning that other dictionary entries would have been selected by the
algorithm (for the first dimension) if the validation set was in the training set. However,
dictionary entries selected for the second dimension seem to be better to discriminate
torsadogenic risk on the validation set.

13.3.2 Channel classification

This section is dedicated to the channel classification of 12 compounds based on in
vitro data derived from MEA recordings of spontaneous beating hiPSC-CMs (Pluricyte
Cardiomyocytes) cultured on 96 well MEA plates (8 electrodes per well, Axion Biosystems),
as described in Section 13.2.1.1. As we are limited by the experimental sample size (see
compound list in Table 13.1), we enriched the experimental database with a simulated
database (for which we know the classification output). For this study only FP traces were
recorded and used for the training and classification, no calcium transient measurements
were performed.

13.3.2.1 Tests setup

The numerical choices leading to the results are summarised hereafter:
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• Bidomain equation parameters are summarised in Table 13.4.

Am Cm σi σe
1200cm−1 1.0µFcm−2 1.2µScm−2 1.2µScm−2

Table 13.4: Bidomain equation parameters used for Axion MEA device with Pluricyte
Cardiomyocytes cell line.

• Drugs were modelled using Equation (3.5) presented in Section 13.2.2.2. The in
silico database was generated blocking alternatively sodium (gNa), potassium (gKr)
or calcium (PCa) channels of the ORd model at a random percentage between
0% and 50%. Other channels are blocked between 0% to 5% to introduce some
variability (e.g. blocking sodium at 35%, calcium at 2% and potassium at 3.5%).
An example is shown in Figure 13.11.

• The simulated sample size is 140 (computed from signals resulting from the simula-
tion performed for different heterogeneity fields).

• A 96-well MEA device (Axion Bioystems) with 8 electrodes per well where the
corresponding finite element mesh is presented in the right panel of Figure 13.2. A
cell heterogeneity field was applied on this finite element mesh following the strategy
developed in Section 13.2.2.1.

The experimental data leading to the results are summarised hereafter:

• In vitro data used for this part are FP traces recorded from a hiPSC-CM monolayer
(Pluricyte Cardiomyocytes, Ncardia) plated on a 96 well MEA plate (8 electrodes
per well) Axion Biosystems (Classic MEA 96 M768-KAP-961).

• The 12 "CiPA" compounds listed in Table 13.1 were tested on Pluricyte Cardiomy-
ocytes and FP traces were recorded before and 30 minutes post compound addition.
MEA results of 5 compounds were used for the training and MEA results of 7
"blind" compounds for the validation.

• Each compound was tested at 4 concentrations, 1 concentration per well and in 5
replicates (n = 5 per concentration).

Using the conductance-block model described in Equation (3.5) we obtain the per-
centage of activity for each channel and concentration. This is shown in Table 13.8.

Two different kinds of classification problems have been studied. A binary classification
(i.e. given a channel, is the molecule affecting its functioning), whose results are shown
in Section 13.3.2.2 and a ternary classification (i.e. is the molecule affecting potassium,
calcium or sodium?), whose results are reported in Section 13.3.2.3. For the numerical
experiments proposed, the success rate of the classifier for the training set was about 90%.
In the following, we present in details the results on the in vitro data in the validation set.

1Documentation available here.

https://www.axionbiosystems.com/resources/product-brochure/mea-plates-brochure
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Figure 13.11: Simulated FP under control and compound conditions. FP trace from
one electrode, showing the effect of drug simulation blocking the sodium channel at 4%,
calcium channels at 3.6% and potassium channel at 27.9%.

13.3.2.2 Binary classification

We start this section by describing the outcome of the greedy algorithm selection.
These are shown, for the three classification problems addressed, in Figure 13.12, in
which the weights of the dictionary entries are plotted. The selected entries are different
(also in number) for the different classification problems. For instance, for the sodium
binary classification, we obtained 3 components for the dimension 1 whereas for the same
dimension, we obtained 4 components for the potassium case and 5 for the calcium case.
In all the cases, the linear combinations retained are sparse.

The classification results are reported hereafter. First, an aggregated result is presented
(considering all the different concentrations, providing an overall label). Then, in the last
part of this section, the results at different concentrations are described.

Aggregated results Figure 13.13 shows classification results for the seven compounds
that were included in the validation set. The value shown for each compound corresponds
to the success rate of classifying the compound correctly as a blocker or non-blocker for
either the sodium, potassium or calcium channel according to their label (see Table 13.1).
The results for the 7 molecules in the validation set are commented.

1. Azimilide: potassium, sodium and calcium channel blocker (Table 13.1)
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Figure 13.12: Binaray classification part): Weights obtained by the optimised classification
algorithm.

Azimilide is well classified as a potassium channel blocker with a high confidence and
for 90% of the sample. The sodium channel blockade by Azimilide is clearly not seen
by the classifier as 90% of the sample is labelled as non-sodium channel blockade
with a confidence close to 100%. The calcium channel blockade classification is also
less clear as only 70% of the samples are labelled as non-calcium channel blockade
with almost 80% of confidence. This could be related to the potency of Azimilide
to block the inward sodium currents and L-type calcium channels is lower than for
blocking the hERG channel [HQ06]. Besides, the highest concentration tested was
lower than the IC50 values for blocking sodium and calcium channels (Table 13.1).
A dictionary entry chosen by the algorithm for potassium and calcium blockade
classification is the ratio RW

RA (see Figure 13.12). As shown in [VZJ+18], hERG
channel block can induce a T-wave flattening in the ECG. This phenomenon is
also observed in the FP repolarisation of Pluricyte Cardiomyocytes for 0.1µM of
Bepridil (see Figure 13.14) and could be an explanation of the RW

RA selection by the
algorithm.

2. Bepridil: potassium, calcium and sodium channel blocker (Table 13.1)
Sodium and potassium channel blockade classification for Bepridil is well captured by
the classifier (with high proportion and high confidence). Calcium channel blockade
is not seen by the classifier for Bepridil. A potential explanation could be that if
calcium and potassium channels are blocked simultaneously, Bepridil does not show
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Figure 13.13: Binary classification part: Experimental data classification in binary case.
Plain (resp. dotted) lines correspond to the average confidence (y-axis) of the LDA
classifier for well classified (resp. misclassified) compound (well classification is according
to Table 13.1). The black values on the lines correspond to the proportion of well classified
observations for each compound.

a specific pattern of a calcium channel blocker, but essentially potassium and sodium
channel patterns are detected as shown in Figure 13.14 (e.g. FPD prolongation due
to potassium channel block and DA decrease due to sodium channel block).

3. Chlorpromazine: potassium, calcium and sodium channel blocker (Table 13.1)
Chlorpromazine is well classified for the potassium and calcium channel classifications
(i.e. it is considered as a potassium channel blocker and calcium channel blocker).
The success rates for Chlorpromazine are similar to those obtained with Loratadine.
An explanation might be the fact that they approximately have the same factor
between the hERG and Cav1.2 IC50 values. In addition, Chlorpromazine is classified
as a sodium channel blocker in only 20% of all cases, but with a probability of 100%.

4. Cisapride: potassium channel blocker (Table 13.1)
If we compare classification results obtained for Chlorpromazine and Cisapride,
the potassium channel binary classification success rate is the same. However, the
classifier is more confident when Cisapride is well classified. Moreover, for the calcium
channel classification, Chlorpromazine is classified as a calcium channel blocker in
60% of the cases whereas Cisapride is classified as non-calcium channel blocker in
50% of the cases with a higher confidence than when Cisapride is misclassified as
calcium channel blocker. Moreover, in 90% of the samples tested, Cisapride is being
classified as a non-sodium channel blocker with a confidence close to 100%.These
results are in good agreement with the high potency of Cisapride to block the
hERG channel, and the multi-channel block ability (hERG, Nav1.5 and Cav1.2) for
Chlorpromazine.
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5. Clarithromycine: potassium channel blocker (Table 13.1)
Clarithromycine is well considered as a non-sodium channel blocker with a high
confidence and for all tested samples. In 70% of the cases Clarithromycine is well
classified as a potassium channel blocker with around 90% of confidence. However,
Clarithromycine is also labelled as a calcium blocker for 80% of the samples and
with more than 80% of confidence. Important to note here is that, although
Clarithromycine is labelled as a non-calcium channel blocker for only 20% of the
samples, the confidence for this well classification is close to 100%.

6. Dofetilide: potassium channel blocker (Table 13.1)
The classifier always returns Dofetilide as a potassium channel blocker with a high
probability. Dofetilide is also classified as a sodium blocker, but only for 10% of
the cases and with a lower probability than when it is not classified as a sodium
blocker. For the calcium channel block classification, Dofetilide is considered as a
non-calcium channel blocker for 40% of the cases but with a higher probability than
when it is considered as a calcium channel blocker.

7. Loratadine: potassium and calcium channel blocker (Table 13.1)
For the sodium channel block classification, Loratadine is always well classified (as a
non-sodium channel blocker) with high confidence (averaged probability returned by
the classifier is close to one, see Figure 13.13). For potassium blockade, Loratadine
is well classified in 80% of the cases. Moreover, when Loratadine is well classified,
the classifier is more confident (> 0.8) than when it is misclassified (< 0.8).

Figure 13.14: Binary classification part, Bepridil classification results: Example of
experimental data with Bepridil, showing an increase in FPD and a decrease in DA of
Pluricyte Cardiomyocytes.
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For most of the cases, drugs are well classified with a high confidence. However,
this is not always the case. For instance, Dofetilide has been perfectly classified as a
potassium channel blocker with a high confidence (around 90%), but Dofetilide has also
been misclassified as a calcium channel blocker with a high confidence (around 70%).

Study for each concentration Details for ion channel block classification of each
concentration of each compound are given in Figure 13.15. This figure shows how each
compound was classified at each concentration. The interest is to study the evolution of
the classification with respect to increasing concentrations.

Figure 13.15: Binary classification part: Experimental data classification in binary case
for each concentration. Some concentrations were not used due to the quiescence or
noisy signal observation. For each concentration, the LDA classifier returns the average
probability for well classified (dotted bars) and misclassified (hatched bars) compounds.

As done in the previous section, we present the results for each of the 7 molecules in
the validation set.

1. Azimilide: potassium, sodium and calcium channel blocker (Table 13.1)
Azimilide is classified as a potassium channel blocker with a probability higher
than 90% for all concentrations tested. However Azimilide is misclassified for
sodium and calcium channel blockade. As above-mentioned, this could be related
to the fact that Azimilide blocks the inward sodium currents and L-type calcium
channels at concentrations 5− 10 times higher than required for blocking the hERG
channel [HQ06].

2. Bepridil: potassium, calcium and sodium channel blocker (Table 13.1)
Bepridil is well classified as a sodium and potassium channel blocker with a high
confidence. This is not the case for the calcium classification. An explanation could
be that the potassium channel blockade hides the effect of the calcium channel
blockade as above mentioned.
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3. Chlorpromazine: potassium, calcium and sodium channel blocker (Table 13.1)
Chlorpromazine is known to block sodium, potassium and calcium channels (see
Table 13.1). Only for the first three concentrations, Chlorpromazine is clearly seen
as a potassium channel blocker (Figure 13.15). The fourth and highest concen-
tration show that sodium and calcium channels are affected instead of potassium.
This is in line with the different potency of Chlorpromazine for the different ion
channels: Chlorpromazine blocks hERG more potently than sodium or calcium (see
Table 13.1).The calcium channel blockade is confirmed by the fact that well-classified
confidence for calcium channel block increases with concentration, in addition to
being well classified in 60% of all cases.

4. Cisapride: potassium channel blocker (Table 13.1)
Well-classified confidence for Cisapride is always higher than misclassified confidence
regardless of the concentration and, particularly for the sodium and potassium
channel classifiers. This is in line with Cisapride being a very potent potassium
blocker (see Table 13.1).

5. Clarithromycine: potassium channel blocker (Table 13.1)
Clarithromycine is better classified as a potassium channel blocker at higher con-
centrations (higher confidence for the third concentration and no misclassification
for the fourth concentration). Also the sodium classifier shows us that for all test
concentrations, Clarithromycine is well classified as a non-sodium channel blocker.
However, for any concentration, the calcium classifier does not give us satisfactory
results, which means that Clarithromycine is wrongly classified as a calcium channel
blocker.

6. Dofetilide: potassium channel blocker (Table 13.1)
Dofetilide was wrongly labelled as a calcium channel blocker in 60% of the cases
(see Figure 13.13). However, the well-classified confidence increases strongly with
the concentration (see Figure 13.15), which means that the confidence of Dofetilide
being a calcium channel blocker decreases when the concentration increases. The
well-classified probability for the sodium channel (Dofetilide being a non-sodium
channel blocker) and potassium channel (Dofetilide being a potassium channel
blocker) is around 90% or even higher for all concentrations tested.

7. Loratadine: potassium and calcium channel blocker (Table 13.1)
We know from Figure 13.13 that Loratadine is always classified as a non-sodium
channel blocker. From Figure 13.15 we can conclude that the confidence of Lorata-
dine being a non-sodium channel blocker increases with higher concentrations. In
addition, Loratadine has also been classified as a potassium channel blocker in 80%
of the cases (see Figure 13.13). Figure 13.15 shows that the classification is the
best at the highest concentration (no misclassification), which can be explained by
the relatively low test concentrations compared to the IC50 values (Table 13.1).
Moreover, for the first two concentrations in the potassium channel classification,
the confidence is higher when Loratadine is well classified than when Loratadine is
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misclassified. A bad mark is the increase of the misclassified confidence for the first
three concentrations. However, for the highest concentration tested, none of the
samples were misclassified. Concerning the classification for the calcium channel,
the success rate of Loratadine to be classified as a calcium channel blocker was 70%
(Figure 13.13); and based on Figure 13.15 we can conclude that the misclassified
confidence decreases strongly when the concentration increases. This is in line
with the differences seen in IC50 values between hERG, Cav1.2 and Nav1.5 (see
Table 13.1).

13.3.2.3 Ternary classification

For the ternary classification we only considered one classifier but with three outputs:
sodium, potassium and calcium channel blocker. Aggregated results for the ternary
classification are presented in Fig 13.16.

Figure 13.16: Ternary classification part: Experimental data classification in ternary case.
Values returned by the classifier (black values in the polar plots) are the probabilities to
block the corresponding channel blocker.

The ternary classifier classified all seven compounds from the validation set as potas-
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sium channel blockers. As expected, the probability returned by the classifier decreases
when the IC50 value increases (for example the probability for Loratadine to be a calcium
channel blocker is 0.41 with IC50 = 11.4µM (see Table 13.1) and the probability for
Dofetilide to be a calcium channel blocker is 0.29 with IC50 = 26.7µM (see Table 13.1)).
These results do not take into account the different concentrations tested. The probabilities
given for each concentration are given in Figure 13.17.

Figure 13.17: Ternary classification part: Experimental data classification in ternary case
for each concentration.

The results for each of the 7 molecules are detailed hereafter. For sake of brevity,
both aggregated and by-concentration results are commented.

1. Azimilide: potassium, sodium and calcium channel blocker (Table 13.1)
Azimilide is well classified as a potassium blocker with a probability of 0.68 (see
Figure 13.16). Although it is known that the potency of Azimilide to block the
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inward sodium currents and L-type calcium channels is lower than blocking the
hERG channel, the probability of being a sodium channel blocker was still lower
than expected and did not change with higher concentrations.

2. Bepridil: potassium, calcium and sodium channel blocker (Table 13.1)
Bepridil is well classified as a potassium channel blocker with a probability equals to
0.63 (see Figure 13.16). The order of the different ion channel blockade probabilities
is in good agreement with the IC50 values order (Table 13.1). The sodium channel
blockade probability is 0.11. This probability is coherent in the sense that Bepidril
is known to block sodium channel; other compounds which are not known as sodium
channel blockers have a lower probability (0.01-0.08) of being a sodium channel
blocker (except for Dofetilide at low concentrations). Unexpectedly, Figure 13.16
shows that the probability to be a calcium channel blocker is similar between Bepridil
and Dofetilide (not a calcium channel blocker). Even for the last concentration
of Bepridil, there is a decreasing confidence of being a calcium channel blocker
in favour of being a potassium and sodium channel blocker (Fig 13.17). This
could be explained by the fact that Bepridil has a higher potency for blocking
hERG compared to blocking calcium channels and that the effects of hERG channel
blockade masked the effects of blocking calcium channels.

3. Chlorpromazine: potassium, calcium and sodium channel blocker (Table 13.1)
Chlorpromazine is well classified as a potassium channel blocker with a probability
equals to 0.56 (Figure 13.16). The probabilities for Chlorpromazine of being a
calcium or sodium channel blocker are close to each other (Figure 13.16), which
was expected as the IC50 values for calcium and sodium channel blockade are close
to each other as well (Table 13.1). The confidence to classify Chlorpromazine as a
sodium channel blocker is the highest for the highest concentration tested (3µM ,
see Table 13.1) (Figure 13.17). An explanation of this result could be that some
compensation effects would appear on the repolarisation due to the simultaneous
block of potassium as well as calcium. 3µM of Chlorpromazine corresponds at a 50%
activity of the sodium channel (see conductance-block model in Section 13.2.2.2),
which is clearly visible on the depolarisation amplitude (see Figure 13.18).

4. Cisapride: potassium channel blocker (Table 13.1)
Cisapride is well classified as a potassium channel blocker with a probability equals
to 0.6 (see Figure 13.16). The second-highest confidence is for the calcium channel
blocker. These channel blockade probabilities are in good agreement with the IC50
values of Cisapride for potassium channel blockade (0.02µM) and calcium channel
blockade (11.8µM) (see Table 13.1). The difference in these values might also
explain the observation that the confidence of being a potassium channel blocker
decreases when the concentration increases, following by a higher confidence of
Cisapride being a calcium channel blocker (Figure 13.17).

5. Clarithromycine: potassium channel blocker (Table 13.1)
Clarithromycine is well classified as a potassium channel blocker with a probability
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equals to 0.56. It is interesting to see that the confidence of being a calcium channel
blocker is lower for Clarithromycine than for Loratadine (see Figure 13.16). This
point is expected because Loratadine is known to block calcium channels with
an IC50 of 11.4µM (see Table 13.1), which is not the case for Clarithromycine
(IC50 > 30µM). Another good point is that the confidence of being a potassium
channel blocker for Clarithromycine slightly increases with higher concentrations
(Figure 13.17).

6. Dofetilide: potassium channel blocker (Table 13.1)
From Figure 13.16, we can see that Dofetilide is well classified as a potassium channel
blocker with a probability equals to 0.59. If we now look at the classification results
of Dofetilide in Figure 13.17, a high concentration gives a higher probability of being
a potassium channel blocker and a lower probability to be a calcium channel blocker
(which is in line with the binary classification method presented in Figure 13.14).
This can be explained by the fact that for the three lower concentrations, the
potassium activity is always higher than 90%(see 13.8 Table) whereas the highest
concentration corresponds to a 75% activity (see 13.8 Table).

7. Loratadine: potassium and calcium channel blocker (Table 13.1)
Loratadine is well classified as a potassium channel blocker with a probability
equals to 0.57 (Figure 13.16). The second-highest probability concerns the calcium
channel blocker, which was expected as Loratadine is more potent to block hERG
(6.1µM , see Table 13.1) than to block the L-type calcium channel (11.4µM , see
Table 13.1). Figure 13.17 shows us that the confidence of the classifier is almost the
same regardless to the concentration.

13.4 Conclusion

Human iPSC-CMs are being increasingly adapted as a novel in vitro model to improve
cardiac safety assessment. Of the many studies that have now investigated the impact of
drugs on the electrophysiology of hiPSC-CMs, the most well-known is the multisite CiPA
initiative. Data presented in [BDM+18] describes the utility of hiPSC-CMs in combination
with MEA and voltage-sensing optical methods in evaluating the electrophysiological
responses to 28 drugs linked to low, intermediate, and high TdP risk categories. Studies
like the CiPA multisite study show promising results. However, predicting TdP risk at
a reasonable level of accuracy remains a challenge. Besides, many screening platforms,
like various MEA and calcium-flux devices, are becoming increasingly sophisticated
and generate large multidimensional datasets. Improved automated analysis methods,
including classification methods to accurately predict the risk for ion-channel block and
TdP, are needed.

In the present work, a preliminary step towards the setup of high-throughput screening
procedures was attempted. In particular, a method was proposed to systematically deal
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Figure 13.18: Ternary classification part, Chlorpromazine classification results: Example
of experimental FP trace with Chlorpromazine.

with classification problems involving "CiPA" compounds for their risk to induce TdP as
well as for their ion channel blocking properties.

13.4.1 Algorithm

This algorithm selects and combines pertinent features extracted from the signals
in order to maximise the classification score (both in terms of the success rate and the
confidence of the classifier) by means of a double greedy optimisation. The algorithm
promotes sparsity (hence mitigating the overfitting risk) and it is fully scalable in terms
of parallelism (remark that the number of cores can potentially equal the dictionary entry
size). In this paper, the input space computed by the algorithm maximise a score by
linearly separating the classes samples, using the classical LDA method. It would be
interesting to test the algorithm with other classifiers such as support vector machine
(SVM) with different kernels or k nearest neighbour (KNN) and against classification
with PCA.

We applied the algorithm on simulated FP and calcium transient data for TdP risk
classification as well as on in vitro data coming from FP signals recorded from hiPSC-CMs
(Pluricyte Cardiomyocytes) that were cultured on 96 well MEA plates and subjected to
12 CiPA reference compounds (5 compounds were used as a training set and 7 were used
to validate the algorithm).
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13.4.2 TdP risk assessment

The classifiers obtained have given encouraging results for a drug safety profile of
the compounds. Compounds known to have a high TdP risk were 100% well classified
according to the arrhythmogenicity risk classification and a compound known to have a
low TdP risk was well classified in 67% of the cases. This is conforming to the fact that
we decided to put a strong weight on the type II error (wrongly classify a compound as
non-torsadogenic). Concerning the torsadogenicity classification, more tests have to be
done with higher concentrations (10xEFTPC, 50xEFTPC, . . . ). Thus, the compound
impact on physiological traces (FP and intracellular calcium transient) would be more
important, which would improve the classification (bigger margin between the data points
and the separation plan). However, even at EFTPC, the TdP risk classification results
are encouraging as only Propranolol was misclassified as torsadogenic. Particularly, the
algorithm allows us to weight the type II error. To improve the arrhythmogenicity
assessment, a ternary classifier could be established to distinguish low, moderate or high
TdP risk.

13.4.3 Ion-channel blockade

Concerning ion-channel blockade classification of compounds, potassium was always
well classified with a high confidence. Moreover, for the ternary classification study,
for most of the tested compounds, the lowest the IC50 for a channel, the highest the
confidence of the classifier to block this channel is.

The binary sodium channel blockade classification is good for all the compounds
except for Chlorpromazine (at low concentration). The ternary classification study shows
similar probabilities of Chlorpromazine for blocking the sodium channel as for blocking the
calcium channel, which is in agreement with the similar IC50 values of Chlorpromazine
for these channels.

However, the binary classification is less good for the calcium channel blockade
classification. This could also be related to the fact that all CiPA compounds from the
validation set block the hERG channel and with higher potency compared to blocking the
calcium channel. The effect of blocking hERG could mask the effect of blocking calcium,
making calcium channel blockade more difficult to classify.

In general, the binary and ternary classification strategies are in a good agreement
(e.g. potassium channel blockade is always well classified). Nevertheless, more tests have
to be done on the algorithm in order to validate and/or improve the classifiers.

For the channel block classification, simulations have been done only on highly pure
channel block properties (no multi-channel blockade), simplified to only three types of
channels: potassium, calcium or sodium, which is often not representative of the total ion
channel blocking effects a compound could have. Training based on in silico multi-channel
blockade would be more realistic and would most likely increase the robustness of the
classification. Moreover, the present experimental protocol was performed at different
concentrations for each compound. The dictionary entry could take this information into
account.
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Each application presented in this paper was based on one specific model of MEA
device. It would also be interesting to know whether the MEA device might have an
impact on the analysis of the drug effect, i.e. to study the case where we learn with
one MEA device and we validate with data coming from another MEA device. The
addition of intracellular calcium transient data would increase the classification in order to
identify not only effects on ion-channels but also to detect negative and positive inotropic
effects thereby having the capability to classify other classes of compounds, such as
calcium-sensitizers or adrenergic receptor agonists.

The time compound dynamic was not studied in this paper. The dictionary could be
extended with new biomarkers as beat rate or depolarisation standard deviation. These
new entries could provide information on the impact of the compound on the monolayer
stability. In order to represent this behaviour in the in silico dataset, a pacemaker action
potential model showing experimental beat rate behaviour (Paci et al [PPC+18]) could be
introduced.

In summary, the algorithm that we developed proved to be a promising tool to classify
compounds for their risk to induce TdP as well as for their ion-channel blocking properties
based on in vitro and in silico data derived from hiPSC-CMs. Therefore, this method can
be implemented in in vitro MEA and/or calcium-flux studies using hiPSC-CMs where
it may serve as a tool to improve machine learning approaches and to deliver fast and
reliable prediction of drug-induced ion channel blockade and pro-arrhythmic behaviour to
advance cardiac safety assessment.
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13.5 Appendix

13.5.1 Field Potential Biomarkers computation

In this section, the computation of the biomarkers from FP time series is detailed.
Let y be a FP signal. We defined as depolarisation part (t1, y1) from t = 0 to t = 100ms
and the repolarisation part (t2, y2) from t = 100 to t = 1200ms.
DA (Depolarisation Amplitude):

Difference between the maximum and minimum value of the FP during the depolari-
sation.

DA = max(y1)−min(y1).

RA (Repolarisation Amplitude):
Maximum in absolute value of the repolarisation.

RA = max(|y2|).

FPD (Field Potential Duration):
Time difference between RA and the maximum in absolute value of the depolarisation.
For the depolarisation:

tdep = t

[
argmax

t
(|y1(t)|)

]
.

For the repolarisation:

trep = t

[
argmax

t
(|y2(t)|)

]
.

Then,
FPD = trep − tdep.

AUCr (Area Under Curve of the repolarisation wave)
To get the repolarisation, y2 is truncated around ±∆t of trep. We used ∆t = 100ms.

The trapezoidal rule is used to approximate the integral.

AUCr =

∣∣∣∣∣
ˆ trep+∆t

trep−∆t
y2(t)dt

∣∣∣∣∣ .
RC (Repolarisation Center)

Offset of the barycenter (with respect to time) of the repolarisation wave.

RC =

ˆ trep+∆t

trep−∆t
tȳ2(t)dt− tdep.
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With ȳ2(t) a rescaling such that it is strictly positive and integrates to 1 on [trep −
∆t, trep + ∆t].
RW (Repolarisation Width)

Standard deviation of the repolarisation wave.

RW =

ˆ trep+∆t

trep−∆t
t2ȳ2(t)dt−

(ˆ trep+∆t

trep−∆t
tȳ2(t)dt

)2
1/2

.

FPN (FP Notch)
Potential value 4ms after tdep. To be less sensitive to noise, the signal is multiplied

by a test function φ(t1) = exp
[
− (t1−(tdep+4))2

0.04

]
.

FPN =

ˆ
t1

y1(t1)φ(t1)dt1.

13.5.2 Calcium Signals Biomarkers computation

In this section, the computation of the biomarkers from intracellular calcium concen-
tration time series is detailed. Let y be the intracellular calcium concentration signal.
CA (Calcium Amplitude):

Difference between the maximum and minimum value of the signal.

CA = max(y)−min(y).

DC (Drowsing Calcium):
Corresponding to the resting calcium, computed as the minimum value of the signal.

DC = min(y).

CDX (Calcium Duration):
Similarly to APD, CDX is the time interval corresponding to X% repolarisation. Let

denote by y1 the signal from t = 0ms to t = t

[
argmax

t
(|y(t)|)

]
ms and y2 the signal from

t = t

[
argmax

t
(|y(t)|)

]
ms to t = 1200ms.

For the depolarisation:

tdep = t

[
argmin

t
(|y1(t)− 100−X

100
CA+DC|)

]
.

For the repolarisation:

trep = t

[
argmin

t
(|y2(t)− 100−X

100
CA+DC|)

]
.
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Electrodes median Electrodes mean Electrodes max Index Entry name

0 7 DA

1 8 RA

2 9 FPD

3 10 AUCr

4 11 RC

5 12 RW

6 13 FPN

14 22 30 RA/DA

15 23 31 DA/RA

16 24 32 RA/FPD

17 25 33 FPD/RA

18 26 34 DA/FPD

19 27 35 FPD/DA

20 28 36 RA/RW

21 29 37 RW/RA

38 CD90

39 CD75

40 CD50

41 CD25

42 CA

43 DC

44 AUC90

45 AUC75

46 AUC50

47 AUC25

48 49 CA*FPD

50 CA*CD90

51 CA*CD75

52 CA*CD50

53 CA*CD25

54 58 FPD*CD90

55 59 FPD*CD75

56 60 FPD*CD50

57 61 FPD*CD25

62 to 66 / 38 to 42 K

67 to 99 / 43 to 157 Wavelets

X: Specific to TdP risk study. X: Specific to channel study.

Table 13.5: Indices and names of the dictionary entries.
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Then,
CDX = trep − tdep.

Proof of Proposition 13.1.
In the perfect case, we have y(i)

∗ = ŷ(i) and p̂(i) = 1,∀i ∈ {1, . . . , ns}. Then,

µ = − 1

ns

ns∑
i=1

[ns
n1
δ1(ŷ(i))δ1(y

(i)
∗ ) +

ns
n−1

δ−1(ŷ(i))δ−1(y
(i)
∗ )
]
.

⇐⇒ µ = − 1

ns

ns∑
i=1

ns
n1
δ1(ŷ(i))δ1(y

(i)
∗ )− 1

ns

ns∑
i=1

ns
n−1

δ−1(ŷ(i))δ−1(y
(i)
∗ ).

Moreover, we know that y(i)
∗ = 1, n1 times and y(i)

∗ = −1, n−1 times. Finally, we find
that the minimum value is µ = −2. In the worst case, we have y(i)

∗ 6= ŷ(i) and p̂(i) =
1, ∀i ∈ {1, . . . ,ns}. Then,

µ = − 1

ns

ns∑
i=1

[
− αns

n1
δ−1(ŷ(i))δ1(y

(i)
∗ )− ns

n−1
δ1(ŷ(i))δ−1(y

(i)
∗ )
]
.

Moreover, we know that y(i)
∗ = 1, n1 times and y(i)

∗ = −1, n−1 times. Then,

µ =
1

ns

(
α
ns
n1
n1 +

ns
n−1

n−1

)
=⇒µ = 1 + α.

Proof of Proposition 13.2.
We have the following cost function:

µ = − 1

ns

ns∑
i=1

p̂(i)

{
c∑
j=1

[ns
nj
δj(ŷ

(i))δj(y
(i)
∗ )− ns

nj
αj

c∑
m=1
m6=j

δm(ŷ(i))δj(y
(i)
∗ )
]}
.

In the best case, we have y(i)
∗ = ŷ(i) and p̂(i) = 1, ∀i ∈ {1, . . . , ns}. Then,

µ = − 1

ns

ns∑
i=1

c∑
j=1

ns
nj
δj(ŷ

(i))δj(y
(i)
∗ ).

We know how many samples are labelled for each class (n1 for class 1 and n2 for class 2).
Then,

µ = − 1

ns

(nsn1

n1
+
nsn2

n2
+ . . .+

nsnc
nc

)
=⇒sns = −c.

On the other hand, in the worst case, we have y(i)
∗ 6= ŷ(i) and p̂(i) = 1,∀i ∈ {1, . . . ,ns}.

Then,
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µ = − 1

ns

ns∑
i=1

{
c∑
j=1

−ns
nj
αj

c∑
m=1
m 6=j

δm(ŷ(i))δj(y
(i)
∗ )

}
.

⇐⇒ µ =
1

ns

ns∑
i=1

c∑
j=1

ns
nj
αj

c∑
m=1
m 6=j

δm(ŷ(i))δj(y
(i)
∗ ).

For the same reasons concerning the number of labels in each class, we have:

µ =
1

ns

(ns
n1
α1n1 +

ns
n2
α2n2 + . . .+

ns
nc
αknc

)
=⇒µ =

c∑
j=1

αj .
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drug Na IC50 (nM) Ca IC50 (nM) K IC50 (nM) EFTPC (nM)
Amiodarone 15900.0 1900.0 860.0 0.8
Astemizole* 3000.0 1100.0 4.0 0.3
Bepridil* 2300.0 1000.0 160.0 35.0

Ceftriaxone 555900.0 153800.0 445700.0 23170.0
Chlorpromazine* 3000.0 3400.0 1500.0 38.0

Cilostazol 93700.0 91200.0 13800.0 128.0
Cisapride* 337000.0 11800.0 20.0 3.0
Clozapine* 15100.0 3600.0 2300.0 71.0
Dasatinib 76300.0 81100.0 24500.0 41.0
Diazepam 306400.0 30500.0 53200.0 29.0
Diltiazem* 22400.0 760.0 13200.0 122.0

Disopyramide* 168400.0 1036700.0 14400.0 742.0
Dofetilide* 162100.0 26700.0 30.0 2.0
Donepezil 38500.0 34300.0 700.0 3.0
Droperidol* 22700.0 7600.0 60.0 16.0
Duloxetine 5100.0 2800.0 3800.0 16.0
Flecainide 6200.0 27100.0 1500.0 753.0
Halofantrine 331200.0 1900.0 380.0 172.0
Haloperidol 4300.0 1300.0 40.0 4.0
Ibutilide* 42500.0 62500.0 18.0 140.0
Lamivudine 1571400.0 54200.0 2054000.0 19540.0
Linezolid 2644500.0 105400.0 1147200.0 59110.0

Loratadine* 28900.0 11400.0 6100.0 0.4
Methadone 31800.0 37400.0 3500.0 507.0

Metronidazole 2073200.0 177900.0 1340200.0 187000.0
Mibefradil 5600.0 510.0 1700.0 12.0

Mitoxantrone 93500.0 22500.0 539400.0 225.0
Moxifloxacin 1112000.0 173000.0 86200.0 10960.0
Nifedipine* 88500.0 12.0 44000.0 8.0
Nilotinib 13300.0 17500.0 1000.0 172.0

Nitrendipine* 21600.0 25.0 24600.0 3.0
Paliperidone 109000.0 193900.0 780.0 69.0
Paroxetine 9800.0 3900.0 1900.0 14.0

Pentobarbital 2686000.0 299000.0 1433900.0 5171.0
Phenytoin 72400.0 21900.0 147000.0 4360.0
Pimozide* 1100.0 240.0 40.0 0.5
Piperacillin 2433800.0 1226000.0 3405100.0 1378000.0

Procainamide 746600.0 389500.0 272400.0 54180.0
Quinidine* 14600.0 6400.0 720.0 3237.0
Raltegravir 824200.0 246700.0 782800.0 7000.0
Ribavirin 2997500.0 622500.0 967000.0 27880.0

Risperidone* 43400.0 34200.0 260.0 2.0
Saquinavir 12100.0 1900.0 16900.0 130.0
Sertindole 6900.0 6300.0 33.0 2.0
Sitagliptin 1220800.0 147100.0 174700.0 442.0
Solifenacin 1500.0 4300.0 280.0 3.0
Sotalol* 7013900.0 193300.0 111400.0 14690.0

Sparfloxacin 2555000.0 88800.0 22100.0 1766.0
Sunitinib 16500.0 33400.0 1200.0 13.0

Telbivudine 1095200.0 713900.0 422700.0 19720.0
Terfenadine* 2000.0 930.0 50.0 9.0
Terodiline 7400.0 4800.0 650.0 145.0

Thioridazine 1400.0 3500.0 500.0 980.0
Verapamil* 32500.0 200.0 250.0 88.0
Voriconazole 1550500.0 414200.0 490900.0 7563.0

Table 13.6: Drugs known as torsadogenic (red) and non-torsadogenic (green) with their
IC50 and EFTPC from Kramer et al. *: CiPA compound[CFG+16].
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drug Na IC50 (nM) Ca IC50 (nM) K IC50 (nM) EFTPC (nM)
Ajmaline 8200.0 71000.0 1040.0 1500.0

Amiodarone 4800.0 270.0 30.0 0.5
Amitriptyline 20000.0 11600.0 3280.0 41.0
Bepridil* 3700.0 211.0 33.0 33.0

Chlorpromazine* 4300.0 nan 1470.0 38.0
Cibenzoline 7800.0 30000.0 22600.0 976.0
Cisapride* 14700.0 nan 6.5 4.9
Desipramine 1520.0 1709.0 1390.0 108.0
Diltiazem* 9000.0 450.0 17300.0 122.0

Diphenhydramine 41000.0 228000.0 5200.0 34.0
Dofetilide* 300000.0 60000.0 5.0 2.0
Fluvoxamine 39400.0 4900.0 3100.0 377.0
Haloperidol 7000.0 1700.0 27.0 3.6
Imipramine 3600.0 8300.0 3400.0 106.0
Mexiletine* 43000.0 100000.0 50000.0 4129.0
Mibefradil 980.0 156.0 1800.0 12.0
Nifedipine* 37000.0 60.0 275000.0 7.7

Nitrendipine* 36000.0 0.35 10000.0 3.02
Phenytoin 49000.0 103000.0 100000.0 4500.0
Pimozide* 54.0 162.0 20.0 1.0
Prenylamine 2520.0 1240.0 65.0 17.0
Propafenone 1190.0 1800.0 440.0 241.0
Propranolol 2100.0 18000.0 2828.0 26.0
Quetiapine 16900.0 10400.0 5800.0 33.0
Quinidine* 16600.0 15600.0 300.0 924.0
Risperidone* 102000.0 73000.0 150.0 1.81
Sertindole 2300.0 8900.0 14.0 1.59
Tedisamil 20000.0 nan 2500.0 85.0

Terfenadine* 971.0 375.0 8.9 9.0
Thioridazine 1830.0 1300.0 33.0 208.0
Verapamil* 41500.0 100.0 143.0 81.0

Table 13.7: Drugs known as torsadogenic (red) and non-torsadogenic (green) with their
IC50 and EFTPC from Mirams et al. *: CiPA compound [CFG+16].

Compound Concentration 1 Concentration 2 Concentration 3 Concentration 4
hERG Cav1.2 Nav1.5 hERG Cav1.2 Nav1.5 hERG Cav1.2 Nav1.5 hERG Cav1.2 Nav1.5

Azimilide NA NA NA NA NA NA NA NA NA NA NA NA
Bepridil 94.1 99.0 99.6 61.5 90.9 95.8 13.8 50.0 69.7 1.6 9.1 18.7
Chlorpromazine 94.0 97.3 96.9 83.3 91.9 90.9 61.2 78.2 76.0 33.3 53.1 50.0
Cisapride 86.2 100 100 66.7 99.9 100 38.8 99.7 100 16.7 99.2 100
Clarithromycine 99.7 NA NA 97.1 NA NA 76.7 NA NA 24.8 NA NA
Clozapine 96.0 97.4 99.4 88.4 92.3 98.0 70.8 79.1 94.1 43.4 54.5 83.4
Diltiazem 99.9 98.7 100 99.2 88.4 99.6 93.0 43.2 95.7 56.9 7.1 69.1
Dofetilide 99.0 100 100 96.8 100 100 90.4 100 100 75.0 100 100
Droperidol 65.4 99.6 99.9 37.5 98.7 99.6 15.9 96.0 98.6 5.7 88.4 95.8
Ibutilide 99.4 100 100 94.7 100 100 64.3 100 100 15.3 99.8 99.8
Loratadine 100 100 100 100 100 100 99.8 99.9 100 99.5 99.7 99.9
Mexiletine 99.8 99.9 99.7 98.4 99.2 97.4 86.1 92.6 79.2 38.3 55.6 27.5

Table 13.8: Percentage of activity using a Hill coefficient equals to 1.
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Figure 13.19: Confusion matrices obtained for TdP risk classification. From top to
bottom we have respectively 1 component in R, 2 components in R, 3 components in R,
3 components in R and 1 component in R2, 3 components in R and 2 components in R2

and 3 components in R and 3 components in R2. The left column corresponds to the
training set and the right column to the validation set. No: No TdP risk. Yes: TdP risk.



Chapter 14

Application of ASE-HD/DGDR coupling
on cardiac field potentials

While the first method (DGDR) consists in the construction of an oriented linear combination
of the entries (see Section 5), the second method (ASE-HD) works on the samples by selecting the
most pertinent in order to construct an augmented training set (see Section 6). In particular, the
construction of the method was performed in such a way that a same score function is maximised
and the same free parameter (number of nearest neighbours) has to be considered. This chapter
aims at taking advantages of these two methodological works in order to improve classification
performances.

In a first study we focused on the potassium channel blockade classification by considering
the same experimental data used in the previous section (see Section 13). These data are cardiac
field potential signals obtained through MEA devices and provided by Ncardia company (see
Section 13.2.1 for more details on the experimental setup). The consideration of the two methods
reaches to a success rate close to 0.98 instead of 0.89 in the previous section.

A second application on cardiac field potentials was performed in collaboration with Udo
Kraushaar from NMI. A set of 28 compounds were available among which 14 were revealed to us.
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14.1 Introduction

In the DGDR method (see Section 5), a training set (and validation set for the
early stopping criterion) is needed to construct the goal oriented lower dimensional
space. However, the learning process may fail for some reason (such as noise or wrongly
labelled data). This main reasons led to the development of the ASE-HD method (see
Section 6). Conversely, the ASE-HD method constructs an augmented training set but
does not consider the dimension of the problem (it does not struggle with the curse of
dimensionality). Table 14.1 summarises the main pros and cons of DGDR and ASE-HD
methods.

Struggle with: DGDR ASE-HD
Curse of dimensionality

"Bad" data
Overfitting ∗

Table 14.1: Pros and cons of the DGDR and ASE-HD methods.∗By consideration of the
early stopping criterion on the validation set.

The main goal of this chapter is to couple these two methods by taking profit of them:

• Oriented dimension reduction (DGDR method).

• Selection of the most relevant samples (ASE-HD method).

The resulting augmented set is then in an as low dimensional space as possible
(depending on the early stopping criterion) and maximises the classification success rate.
In particular, the two methods were developed in such a way that the same score function
has to be maximised. It means that, for both methods, by discretisation of the score
function, the same free parameter k (number of nearest neighbours) has to be considered.
See Section 14.2.1 for more details.

14.1.1 Applications

In this chapter two applications on MEA signals were performed:

1. The first application is devoted to the validation of the coupling strategy. To do this,
we considered in vitro cardiac field potentials provided by Ncardia. In particular, we
focus on the potassium channel blockade classification which led to a classification
success rate close to 0.89.

2. The second application results in a collaboration with Udo Kraushaar from NMI
who provided us the in vitro experimental data. This second application is also
devoted to the potassium channel blockade classification. It aims at being closer to
the real industrial application, through a larger set of compounds to study.

Details on the protocols, datasets and data processing are given hereafter.
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14.2 Method

In this section we describe the strategy to combine the two methods and the classifi-
cation strategy. Preprocessing specific to each study is described in the corresponding
application.

14.2.1 Coupling

For this study, the coupling of the two methodological works is performed in the
following order:

1. ASE-HD: construction of the augmented set.

2. DGDR: oriented dimension reduction.

The rationale is that we need a training set to perform the DGDR process. Then, once
the ASE-HD method is performed the obtained augmented set is used as the training set
of the DGDR method. The validation and test sets are the same for the two methods.

14.2.2 Post-processing

Sets being randomly generated, the construction followed by the ASE-HD/DGDR
methods is repeated N times. The majority vote strategy is then performed (see Sec-
tion 10.2.3). This process aims at improving the robustness of the classification and
can be seen as a cross-validation step. Indeed, the ASE-HD method is optimised over a
validation set, which may induce an overfitting (see Table 14.1 in the Introduction of this
chapter). The cross-validation strategy coupled with the majority vote tends to overcome
this overfitting risk.

14.3 First application: Ncardia dataset

14.3.1 Experimental setup

Some reminders are presented here. We referred to Section 13.2.1 for more details on
the experimental setup. For this study experiments based on human induced pluripotent
stem cells derived to cardiomyocytes (Pluricyte Cardiomyocytes) were performed on a
96 well Maestro MEA device provided by Axion BioSystems. From the 12 available
compounds, a total of 7 compounds belong to the Test set whereas the 5 others belong to
the reservoir or validation set. Experiments were repeated 5 times for each compound at
a given concentration, the protocol consisting in one dose per well.

14.3.2 Pre-processing

The pre-processing part is divided into two phases. The first phase is devoted to the
construction of the reservoir and validation sets to perform the ASE-HD method. The
second phase consists in the rescaling of the data following the strategy defined below:
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where S(j)
i stands for the ith dictionary of set S ∈ {Tr, V a, Te} restricted to class

j ∈ {0,1}, E[.] and σ(.) denote the empirical mean and standard deviation of the considered
set respectively. The choice of this strategy was already argued in Section 10.2.2.3.

14.3.2.1 Datasets construction

In addition of the in vitro experimental datasets, two kinds of sets were considered to
either enrich the validation set either the reservoir:

• Augmented in vitro data: For the ASE-HD process, a statistical model was con-
sidered to enrich the validation set. For each entry, the empirical mean µ̄ and
the empirical covariance matrix Σ is computed among the in vitro experimental
data of each class (i.e potassium channel blocker or not). Then to generate the
population, for each class we considered a gaussian distribution centred at µ̄ and
with a covariance matrix equals to Σ. A total of 2500 data were generated with
this method.

• In silico data: a total of 140 field potential simulations were used to build the
reservoir. These in silico experiments are the same as the one used in the previous
study (see Section 13.2.2 for more details on the simulations).

Then, the reservoir and validation sets were randomly generated: half of the in vitro
experiments, in silico experiments and augmented in vitro data belongs to the reservoir
whereas the other half belongs to the validation set. Then, each sample belongs to one
and only one set. Finally, a rescale is performed on the whole samples following the
process described in Section 10.2.2.3. Thus, most of the data are contained in the unit
hypercube centred at x = (1

2 , . . . ,
1
2).

14.3.3 Results

Figure 14.1 shows success rates obtained with the majority vote strategy for different
randomly constructed sets.

The combination of ASE-HD and DGDR reaches to the highest performances, with a
success rate close to 0.98 (see ASE-HD+DGDR line in the figure). When we only consider
the ASE-HD method (see ASE-HD line in the figure), the success rate is close to 0.87.
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Figure 14.1: Cumulative success rate. The x-axis corresponds to the number of times the
ASE-HD/DGDR methods are repeated. The y-axis corresponds to the success rate using
the majority vote.

This score is quite similar to the 0.89 obtained in the original method (see Figure 13.13 in
Section 13.3.2.2). Without the ASE-HD method, the DGDR method allows to obtain a
score close to 0.16 (see DGDR line in the figure). This is essentially due to the enrichment
process. Indeed, in silico experiments and data generated through the statistical model
are imperfect and badly interfere the potassium channel blockade classification. This
problem points out the drawback raised in Table 14.1. This is particularly obvious if
compared with the case where the DGDR is performed without enrichment (see DGDR
(without enrichment) in the figure). The ASE-HD method highlights that, among the
enriched data, some of them are however relevant to improve performances of the classifier.
The choice of the coupling strategy is therefore confirmed by the above results.

14.4 Second application: NMI dataset

14.4.1 Experimental setup

The MEA device used for the in vitro experiments was a plate with 96 wells and 3
electrodes per well provided by Multichannel Systems1. An example of one plate with

1Documentation available here

https://www.multichannelsystems.com/products/multiwell-plates-multiwell-mea-systems
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the corresponding protocol in each well is shown in Figure 14.2.

Figure 14.2: Scheme of one plate with the corresponding compound (code) and its
concentration.

Cells used for the experiments are human induced pluripotent stem cells derived
cardiomycytes provided by CDI2 company. The MEA device used for the in vitro
experiments is . The 28 compounds of the CiPA list were considered for the in vitro
experiments. They are listed in Table 14.2.

A one dose per well scenario was performed in the experimental protocol. For each
compound at a given concentration several replicates were realised (i.e same experimental
scenario but in different wells of the MEA plate). The number of these replicates is
also given in Table 14.2. Each well was coupled with a code corresponding to a specific
compound. From the 28 CiPA compounds, 14 were revealed to us (see Table 14.2). These
14 compounds were then labelled and considered into the train, reservoir or the validation
set. The 14 unrevealed compounds belong to the Test set.

An example of Field Potential signals recorded at one electrode at baseline and under
compound addition (3nM of Dofetilide) is shown in Figure 14.3.

14.4.2 Pre-processing

For this application, the pre-processing part is divided into three phases. The first
phase consists in the construction fo the dictionary entry matrix. The second phase
is devoted to the construction of the sets: Training, Validation and Test sets (and the

2Madison, USA. https://www.fujifilmcdi.com/.

https://www.fujifilmcdi.com/
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Compound* Concentration (nM) (Replicates) Revealed Antagonist to:#1 #2 #3 #4
Astemizole ? ? ? ? K [HMEHhZ08]
Azimilide ? ? ? ? K [BEJ+98], Na [YT97], Ca [YT97]
Bepridil 1(5) 2(7) 3(5) 4(5) K [HMEHhZ08], Ca [YBS86], Na [YBS86]
Chlorpromazine 1(5) 2(5) 3(5) 4(5) K [HMEHhZ08], Ca [CVF84], Na [ONN89]
Cisapride 1(6) 2(5) 3(5) 4(5) K [HMEHhZ08]
Clarithromycine ? ? ? ? K [HMEHhZ08]
Clozapine ? ? ? ? K [LKK+06], Ca [NHW+17]
Diltiazem 1(5) 2(5) 3(5) 4(5) Ca [LT83]
Disopyramide 1(8) 2(7) 3(9) 4(10) Na [LXEB+20],K [HMEHhZ08]
Dofetilide 1(8) 2(5) 3(5) 4(5) K [HMEHhZ08]
Domperidone ? ? ? ? K [HMEHhZ08],Na [SVD+17]
Droperidol 1(5) 2(5) 3(8) 4(6) K [HMEHhZ08]
Ibutilide 1(5) 2(5) 3(5) 4(5) K [HMEHhZ08]
Loratadine ? ? ? ? K [Cru00], Ca [NHW+17]
Metoprolol ? ? ? ? β blocker [BDM+18]
Mexiletine 1(5) 2(5) 3(5) 4(5) Na [MWZ+13], K [GTBR+15]
Nifedipine ? ? ? ? Ca [ZWC+19]
Nitrendipine 1(5) 2(5) 3(5) 4(5) Ca [YB85], Na [YB85]
Ondansetron ? ? ? ? 5-HT3 [TF92], K [CPP+17]
Pimozide ? ? ? ? K [HMEHhZ08],Ca [EDS+90]
Quinidine 1(5) 2(5) 3(5) 4(6) Na [Rod14], K [HMEHhZ08]
Ranolazine 1(5) 2(5) 3(5) 4(5) K [SZD+04], Na [BSF06]
Risperidone 1(5) 2(5) 3(5) 4(9) K [CWR05], Ca [CWR05]
D,I Sotalol ? ? ? ? K [HMEHhZ08]
Tamoxifen ? ? ? ? Na [HKKW03], K [HKKW03]
Terfenadine ? ? ? ? K [HMEHhZ08]
Vandetanib ? ? ? ? K [LHB+18], Na [LHB+18]
Verapamil 1(6) 2(7) 3(5) 4(7) Ca [ZWC+19]
* Colours corresponds to the TdP risk (green: low, orange: medium and red: high) [CFG+16].

Table 14.2: Experimental data information. The number of replicates corresponds to the
number of wells on which the same experiment was performed.

reservoir when the ASE-HD method is performed). The last phase corresponds to the data
rescaling and is performed in the same way as the strategy described in Section 14.3.2.

14.4.2.1 Dictionary entry computations

For this dataset, a sample is a couple of two beats, one corresponding to a control case
and the second corresponding to a drug case (but for the same electrode of a same well in
a same plate). A total of 18 quantities related to the depolarisation phase were extracted
on the two beats. The first 6 quantities correspond to the depolarisation amplitude,
duration, middle time of the depolarisation and its corresponding amplitude, the maximal
slope and the minimal slope. The 6 others correspond to the average quantities over the
whole beats of the trace (same plate, well and electrode). The last 6 quantities correspond
to the standard deviation. The ratios with respect to the control, form the first 18 entries
of the dictionary. An additional entry corresponds to the beat rate ratio between the
drug case and the control case. This beat rate is computed on the full trace on which the
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Figure 14.3: Example of recorded signals at one electrode. Upper: Traces at control case
(baseline) and under compound addition for around 2 minutes of recordings. Traces are
providing from the same electrode of the same well. Lower: Comparison between one
random beat (from the full trace) at control case (baseline) and one random beat at 3nM
of Dofetilide (from the full trace).

beat was extracted.
Then, 592 computed entries correspond to wavelet coefficients on the absolute difference

between the two beats.
An example of signal and its reconstruction are shown in Figure14.5. The `2 error

norm between the original signal and its reconstruction is approximately 0.49. This
value corresponds to the limit value before being considered as an outlier in Figure 14.6,
meaning that almost all the reconstructed signals have a better reconstruction that the
one shown in Figure 14.5.

The last 592 entries are standard deviations of the wavelet coefficients computed on
beats extracted on the same trace. It means that two samples providing from a same
protocol (same compound, same concentration and same well) have the same last 592
entries. It results in a dictionary entry matrix of size ng = 1203. The sample size ns
depends on the performed study cases shown in Section 14.4.3.

Remark 21
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Figure 14.4: Boxplots of the `2 error norm between the signal and the reconstructed signal
using wavelet coefficients. The ’Known’ set corresponds to revealed compound whereas
the ’Unknown’ set corresponds to the unrevealed compounds (never used for the training
and validation). See Table 14.2 for more details. White circles correspond to means.

These two beats come from the control case and under compound addition. However, in
case of Hit/No Hit classification, the two beats can come from the control case.

14.4.2.2 Datasets construction and data rescaling

All the sets are randomly constructed in such a way that a sample belongs to only
one set. Once the sets are constructed a data rescaling is performed with respect to the
Training set using the same strategy as in the Section 14.3.2.

14.4.3 Results

14.4.3.1 Drug vs Control

The goal of this first study is to verify whether a compound at a given concentration
has enough impact on the Field Potential to get spotted against control cases (without
compound addition). This work is similar to the one previously realised in Section 10.3.1
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Figure 14.5: The signal to reconstruct corresponds to the absolute difference between the
two beats shown in the above panel of Figure 14.3. The reconstruction led to an `2 error
norm close to 0.49.

on automated patch clamp signals. This Hit/No Hit classification was performed on the
14 known compounds (see Table 14.2) at its lower concentration (except for the Dofetilide
which is at 3nM). To construct the Training, Validation and Test sets, a random process
was repeated 10 times in such a way that each sample belongs to only one set. Moreover,
the drug and control sample sizes are the same for each set. Finally, 60% of the total
sample size is devoted to the Training set whereas 20% is devoted for the Validation set
(and then 20% for the Test set). For this preliminary study only the DGDR method was
considered. The classification success rates obtained on the Test sets are summarised in
Figure 14.6.

All the compounds can easily be identified with an averaged success rate higher than
0.9. Moreover, the variability is globally low except for the Mexiletine (at 1nM).
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Figure 14.6: Hit/No Hit classification considering compounds at 1nM except for the
Dofetilide at 3nM . Boxplots are drawn over 10 processes to randomly construct the
Training, Validation and Test sets. White circles correspond to means.



Chapter 15

Conclusions

MEA signals seems to carry enough information to perform an ionic channel blockade
classification. In particular, we reached to a success rate close to 0.89 for the potassium channel
blockade classification. The combined use of the DGDR and ASE-HD methods significantly
improve the success rate to approximately 0.98.

The Hit/No Hit classification performed on the NMI dataset for the lowest concentrations led
to a success rate higher than 0.9 for almost all the known compounds. Only Mexiletine has an
averaged success rate lower than 0.9 while the median is around 0.96. It highlights that enough
information is carried by the signal to discriminate control from a drug, meaning that the affected
signal is higher than noise level at control case. Several investigations are in progress to study ion
channel blockade classification.
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Part V

Conclusion
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This thesis aimed at proposing mathematical methods in order to provide a tool for clas-
sification problems in high dimensional-low sample size regimes, with applications in cardiac
safety pharmacology. Each chapter of the manuscript ending with a dedicated conclusion, a
global conclusion of the methodological part and its applications to cardiac safety pharmacology
is presented hereafter.

Methodological aspects

This thesis proposed two methods addressing the high dimensional-low sample size regimes
to solve classification tasks:

• DGDR: a double greedy dimension reduction method which allows to construct a sparse
linear combination of entries in a "as low as" possible dimensional subspace. This dimension
reduction is performed by maximising a score function related to the classification success
rate and preventing the overfitting through an early stopping criterion.

• ASE-HD: an augmented set construction based on synthetic data generated by numerical
simulations. The method relies on the Hausdorff distance between sets, considering the
same score function as for the DGDR algorithm. It allows an automated rejection of
samples considered as irrelevant to the considered classification problem.

The score function which has to be maximised allows the user to avoid the choice of a specific
classifier and the ensuing hyperparameters (such as LDA or SVM). Its discretisation based on a
K-Nearest Neighbours strategy depends on only one parameter which has to be tuned. Empirical
studies performed in this manuscript suggest that the classification success rate obtained using
the ASE-HD method is not very sensitive to the number of chosen nearest neighbours. However,
a lower number of neighbours (e.g. 2 or 3) seems to reduce the computational time and increase
the compression (meaning that fewer samples are needed to construct the augmented set). These
aspects encourage the construction of a black box framework easy to use for the experimenter
and satisfying the different constraints imposed by the industrial context:

• Deal with high dimension/low sample size regimes.

• Consider low/none assumptions on the observable space (i.e no a priori on the probability
distributions).

• Exploit in silico models to improve the classification performances.

• Have few parameters/hyperparameters to be tuned.

Perspectives

Further works could either improve the proposed methods or open the door to other studies.
These investigations are enumerated hereafter:

• Specific to the DGDR method:

– Once the DGDR method is processed, computed weights are fixed. As in the online
learning topic, in case of new experiments, some works could be done to tune the
weights.
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– The dictionary entries could be the results of different classification methods (e.g. −1
or 1 in the case of a binary classification). The DGDR method will then consist of the
construction of a lower subspace based on the contribution of the different classifiers.
The DGDR method can therefore be seen in a sense as a boosting tool.

• Specific to the ASE-HD method:

– By construction, the ASE-HD method tends to promote overfitting. A majority
voting strategy was therefore considered to reduce it. However, a cross-validation
strategy could be established, avoiding to repeat the DGDR process.

– The extension of the ASE-HD method to regression problems was not studied in this
manuscript. As for the DGDR method, an `2 norm could be considered instead of
the score function in order to construct an augmented set for regression tasks.

• For the two methods:

– Only binary classifications were considered in this thesis. An extension to more than
two classes for the supervised classification problem could be implemented.

– Extensions to semi-supervised and unsupervised classification problems can be inves-
tigated.

– A probabilistic approach could be considered in the case where labelled data (or a
part of them) are tagged with a confidence level.

Cardiac safety pharmacological aspects

In this thesis, cardiac safety pharmacology was the core of the applications raised by
NOTOCORD®. These applications were made possible through several collaborations. They
allowed to:

• Validate the methods: thanks to collaborations with Ncardia, NMI and Sophion companies.

• Extend the methods to regression problems: thanks to Esther Pueyo, David Adolfo
Sampedro-Puente, Jesus Fernandez-Bes and Pablo Laguna, members of Zaragoza University.

Patch-clamp signal studies have shown particularly good results either for ionic channel
activity estimation (on in silico experiments) or for the Hit/No Hit classification of the Nav1.7
channel (on in vitro experiments). As an example, for the first one, the DGDR method combined
with UKF to estimate ion channel activities needs less than 5 cardiac cycles (beats) instead of
decades for a same precision, which speeds up the process. For the second one, the DGDR method
led to an accuracy close to 0.94 and increased the sensitivity from 0.47 (with the evaluation
process performed by Sophion) to 0.52 (preserving a similar specificity).

The combined use of the DGDR and ASE-HD methods improved significantly the potassium
ion channel blockade classification with a classification success rate close to 0.89 going up to 0.98.

Perspectives

Many works have to be done in different directions:

• Technological point of view:
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– The DGDR method was first implemented in Python. For slowness reasons appearing
in high dimensions, a C/C++ version was implemented. The ASE-HD was only
implemented in Python. For the same reasons, a C/C++ version should be more
appropriate for an industrial application.

– Implementation of a serviceable framework for pharmacologists. The actual version
of the algorithms is not user-friendly and several manipulations have to be done to
run the process (command line, paths specifications, . . . ).

• Drug development point of view:

– Coupling between different physiological signals such as impedance or fluorescence
may improve the compound analysis. This scenario is justified by the fact that some
compounds could act on specific organites of the cells without affecting transmembrane
channels (and then the electrical signal) but affecting the contractility (e.g. by blocking
the sarcoplasmic reticulum).

– In silico experiments could be improved. Existing models to simulate field potential
signals consider a bi-dimensional resolution of the bidomain equations. This approxi-
mation could be not enough and some physical aspects could be considered (such as
the layer between cardiac cells and the electrodes) to quantitatively improve in silico
experiments.
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