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Résumé v

Modèles espace-état pour la prévision de séries temporelles. Application aux
marchés électriques.

Résumé

L’électricité étant difficile à stocker, prévoir la demande est un enjeu majeur pour maintenir l’équilibre
entre la production et la consommation. L’évolution des usages de l’électricité, le déploiement des énergies
renouvelables, et plus récemment la crise du coronavirus, motivent l’étude de modèles qui évoluent au
cours du temps, pour tenir compte des changements de comportements. L’objectif de ce travail est de
proposer des méthodes adaptatives de prévision, et nous nous sommes intéressés tout spécialement au
cadre des modèles espace-état. Dans ce paradigme, on représente l’environnement (ou le contexte) par
un état caché. À chaque instant, la demande dépend de cet état que nous cherchons donc à estimer
grâce aux observations dont nous disposons, et selon les hypothèses que l’on effectue sur la dynamique
du système. L’estimation de l’état nous permet ensuite de prévoir la demande.
Un premier objectif de la thèse est de contribuer au lien entre l’optimisation et l’estimation dans les
modèles espace-état. Nous interprétons en effet les méthodes que nous utilisons comme diverses façons
de paramétrer un algorithme de descente de gradient de second ordre, et nous avons détaillé ce lien
dans un cas particulier. Une seconde contribution de la thèse est de proposer différentes méthodes
d’estimation dans les modèles espace-état. Le principal enjeu nous semble être de définir la dynamique
avec laquelle évolue l’état, et nous proposons deux méthodes dans ce but. Le troisième apport de ce
manuscrit est d’appliquer ces méthodes espace-état à la prévision de consommation d’électricité. Nos
prévisions s’appuient sur des modèles de prévision existants, par exemple le modèle additif généralisé,
que nous cherchons à adapter. Ainsi, nous tirons parti de certaines dépendances complexes capturées
par les modèles existants, par exemple la sensibilité de la consommation d’électricité à la température,
tout en profitant de la faculté d’adaptation des modèles espace-état.

Mots clés : modèles espace-état, prévision de consommation électrique, séries temporelles

Abstract

Electricity storage capacities are still negligible compared to the demand. Therefore, it is fundamental
to maintain the equilibrium between consumption and production, and to that end, we need load fore-
casting. Numerous patterns motivate the study of time-varying models, including: changes in people’s
habits, increasing renewable capacities, more recently the coronavirus crisis. This thesis aims to propose
adaptive methods for time series forecasting. We focus on state-space models, where the environment
(or context) is represented by a hidden state on which the demand depends. Thus, we try to estimate
that state based on the observations at our disposal. Based on our estimate, we forecast the load.
The first objective of the thesis is to enrich the link between optimization and state-space estimation.
Indeed, we see our methods as second-order stochastic gradient descent algorithms, and we treat a
particular case to detail that link. The second contribution concerns variance estimation in state-space
models. Indeed, the variances are the parameters on which the models’ dynamics crucially relies. The
third part of the manuscript is the application of these methods to electricity load forecasting. Our
methods build on existing forecasting methods like generalized additive models. The procedure allows to
leverage advantages of both. On the one hand, statistical models learn complex relations to explanatory
variables like temperature. On the other hand, state-space methods yield model adaptation.

Keywords: electricity load forecasting, state-space models, time series

Laboratoire de Probabilités, Statistique et Modélisation
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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Outline of Contributions

Chapters 1 and 2 are respectively the French and English versions of an introduction to the
thesis subject, both from an industrial perspective and a formal one. We give an overview of the
contributions.

Stochastic Optimization as a Static State-Space Model
In Chapter 3, we propose a new convergence proof of the stochastic gradient descent algo-

rithm (Robbins and Monro, 1951). We interpret our analysis as a non-asymptotic variant of the
Robbins-Siegmund theorem.

Chapter 4 is a study of the extended Kalman filter (Fahrmeir, 1992) in a degenerate setting
called static. We compare this algorithm to standard gradient algorithms such as the online
Newton step of Hazan, Agarwal, and Kale, 2007.

The Choice of the Variances in a State-Space Model
Chapter 5 considers the setting of hyper-parameters in a state-space model where the vari-

ances are assumed to be constant. We present the application of the well-known expectation-
maximization algorithm. However, as the loss that is optimized is non-convex, we propose another
heuristic that we call iterative grid-search, where we look for the optimum on a grid but in an
iterative way to reduce complexity.

In Chapter 6, we present an approach that we name Viking to estimate the variances of
a state-space model adaptively. We augment the state-space model, treating the variances as
auxiliary latent variables that we estimate jointly with the state. We rely on variational Bayes
(Šmídl and Quinn, 2006).

Application to Electricity Load Forecasting
The first application of the thesis was on the confidential data from EDF, and we obtained

promising results. In this manuscript, we present our studies on public data sets.

In Chapter 7, we apply state-space approaches to adapt forecasting models of the French
electricity load. We focus on the break of Spring 2020 caused by the coronavirus crisis, and we
test pre-covid, break, and post-covid performances.

In Chapter 8, we apply our methods to a city-wide demand of an unknown location. We
present the data set of a competition that we won, and we present our strategy. The competition

1



2 Outline of Contributions

was held in an online manner. Each of 30 consecutive days, we had to forecast the next day’s
hourly load, and we received feedback of the load in the past to adjust our models.

In Chapter 9, we present a smaller scale forecasting task. We present our predictions on the
data set of a competition that we won where the objective was to predict the electricity load of
a building. This competition was also held in an online manner. Each of 5 consecutive days, we
had to forecast the next day’s load with 15-minute intervals, before receiving feedback.

Chapter 10 is a study of adaptive models for probabilistic forecasting. Indeed, while fore-
casting the mean consumption is important, risk management must have some information on
the forecast error distribution. For instance, it is not the same to be sure to have a 50 GW
consumption, or to forecast that there is a 90% chance the consumption ranges between 48 GW
and 52 GW.

Publications
Chapters 4, 7 and 8 led to the following publications:
— Joseph de Vilmarest and Olivier Wintenberger, Stochastic Online Optimization using

Kalman Recursion, Journal of Machine Learning Research 22.223, pp. 1-55, 2021.
— David Obst, Joseph de Vilmarest and Yannig Goude, Adaptive Methods for Short-Term

Electricity Load Forecasting During COVID-19 Lockdown in France, IEEE Transactions
on Power Systems 36.5, pp. 4754–4763, 2021.

— Joseph de Vilmarest and Yannig Goude, State-Space Models for Online Post-Covid Elec-
tricity Load Forecasting Competition, IEEE Open Access Journal of Power and Energy,
2022.

Chapter 6 is based on a submitted article.

Presentations at International Conferences
— Poster presentation at the time-series workshop of the International Conference on Ma-

chine Learning, 2021.
— Presentation at the panel session Performance evaluation of artificial intelligence methods

for energy consumption forecasting using open data sets at the IEEE Power & Energy
Society General Meeting, 2021.

Competitions
We were awarded first place in the two following competitions:
— Day-Ahead Electricity Demand Forecasting: Post-COVID Paradigm hosted by IEEE Dat-

aPort (Farrokhabadi, 2020). See Chapter 8.
— Competition on building energy consumption forecasting. See Chapter 9.

Implementation
The experiments of the thesis were realized using the R language. The implementation of the

forecasting strategy presented in Chapter 8 is available online 1.

1. https://gitlab.com/JosephdeVilmarest/state-space-post-covid-forecasting

https://gitlab.com/JosephdeVilmarest/state-space-post-covid-forecasting


Chapitre1
Introduction (française)

L’objectif de ce chapitre est d’introduire précisément la thèse en français. Nous présentons
les motivations industrielles, ainsi que le cadre théorique dans lequel elle s’inscrit. Puis nous
décrivons brièvement les contributions apportées par cette thèse.

Sommaire

1.1 Cadre industriel 3
1.2 Cadre théorique 5

1.2.1 Prévision adaptative . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Modèle espace-état et filtre de Kalman . . . . . . . . . . . . . . . . . 6
1.2.3 Le filtre de Kalman, un algorithme de descente de gradient . . . . . 9

1.3 L’optimisation stochastique, un modèle espace-état statique 9
1.3.1 Cadre des modèles linéaires généralisés . . . . . . . . . . . . . . . . . 9
1.3.2 Description des résultats . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Choix des variances dans un modèle espace-état 14
1.4.1 Variances constantes . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 Variances dynamiques . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Application à la prévision de consommation électrique 18
1.5.1 Utilisation du modèle linéaire gaussien . . . . . . . . . . . . . . . . . 18
1.5.2 Prévision en moyenne . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.3 Prévision probabiliste . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1 Cadre industriel

La prévision de séries temporelles est un enjeu majeur. Il peut s’agir de prévision météoro-
logique ou climatique pour les agriculteurs, de prévision de ventes et donc de stocks pour les
commerçants, de prix et de coûts pour les industriels, chacun dépend fondamentalement de pré-
visions qui l’ont mené à prendre une décision. Dans cette thèse nous étudions le secteur électrique
qui présente une singularité en comparaison des applications mentionnées. Comme on ne peut
pas stocker l’électricité à grande échelle, il est primordial pour le réseau électrique que l’équilibre

3



4 CHAPITRE 1. Introduction (française)

offre-demande soit assuré : à chaque instant, la production d’électricité (offre) doit être égale à
la consommation (demande).

Pour obtenir cet équilibre il est nécessaire de prévoir la demande à tous les horizons de temps.
À long, voire très long terme (mois, années, décennies), la prévision est utilisée pour déterminer
le parc de production adéquat, et ainsi construire de nouvelles unités et décider les dates de
maintenance des unités existantes. Les prévisions moyen terme (semaines, mois) permettent
d’actualiser les programmes de maintenance, et permettent de décider de l’exploitation ou non
d’une unité de production pilotable en fonction de son utilité potentielle future. À court terme
(jour), prévoir la consommation permet de définir un planning de production pour les moyens
pilotables dont le changement de puissance demande quelques heures (les centrales nucléaires,
dans une moindre mesure les centrales thermiques à flamme). À très court terme (moins d’un
jour) ce planning de production est réactualisé pour que l’erreur résiduelle soit la plus faible
possible, et celle-ci est traitée par le gestionnaire de réseau avec des moyens très réactifs, à
commencer par les barrages hydrauliques.

Ce bref aperçu de la gestion d’un réseau électrique présuppose que la demande serait une
grandeur unique et qu’une entité centralisée prendrait l’ensemble des décisions. Ce n’est pas
le cas pour différentes raisons. D’une part, l’ouverture à la concurrence du secteur électrique
français réduit la centralisation. Aujourd’hui les fournisseurs d’électricité doivent s’occuper de
l’équilibre offre demande pour leurs clients : ils doivent produire l’électricité consommée par leurs
clients, ou bien se fournir auprès d’un autre producteur. Chaque fournisseur gère cet équilibre au
mieux puis, le réseau étant utilisé par l’ensemble, l’équilibre national est géré par RTE (Réseau de
Transport d’Electricité). Pour résorber l’écart résiduel national RTE fait appel à des réserves (des
producteurs qui acceptent d’augmenter ou baisser leur production) et inflige des pénalités aux
fournisseurs selon les écarts de chacun. D’autre part, s’il est nécessaire de respecter l’équilibre à
l’échelle nationale, les contraintes du réseau incitent à fournir la demande à une échelle plus locale.
Certains pays présentent une décorrélation spatiale de la production et de la consommation,
et l’acheminement de l’électricité produite dans une région vers une autre est coûteux, non
seulement à cause des pertes en ligne mais également parce que cela nécessite une infrastructure
plus importante, puisque le réseau est dimensionné en proportion du transport qu’il assume.

EDF a continument amélioré la prévision de la demande au cours des dernières décennies.
Classiquement, les méthodes de prévision modélisent le comportement observé dans un certain
historique (typiquement cinq ans). Cependant, pour pouvoir extrapoler et prévoir la consomma-
tion future, une hypothèse de stabilité est nécessaire.

Ces dernières années, cette hypothèse a été remise en question pour de nombreuses raisons.
Suite à l’ouverture à la concurrence EDF prévoit la consommation d’un portefeuille de clients qui
évolue au cours du temps. D’autre part, l’électrification des usages et en particulier le dévelop-
pement des véhicules électriques pourrait changer structurellement la consommation. Bien que
l’impact soit aujourd’hui négligeable, il est à prévoir que ce ne soit plus le cas dans quelques an-
nées. De plus, si la stabilité de la consommation est vérifiée à l’échelle nationale c’est de moins en
moins vrai à mesure que l’échelle devient plus locale. Le cas extrême de la prévision d’un logement
individuel est évocateur : si le logement devient vacant il est primordial de changer le modèle de
prévision. Le récent développement des énergies renouvelables dites fatales (le solaire et l’éolien,
sur lesquels on ne peut influer) change fondamentalement la gestion de l’équilibre entre l’offre et
la demande. Les moyens pilotables ne sont plus employés pour satisfaire la consommation, mais
pour satisfaire la consommation nette, une fois soustraite la production non pilotable. La variable
d’intérêt devient donc la demande nette, qui présente une plus forte variabilité. Enfin, la crise
liée au coronavirus a fortement déstabilisé le réseau électrique. Les confinements mis en place
dans de nombreux pays ont fait chuter brutalement la demande, et les évolutions fréquentes sur
les restrictions ont impliqué de plus grandes évolutions des comportements que d’ordinaire, ce
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qui a donné lieu à une difficulté accrue pour la prévision.
De nouveaux modèles plus réactifs ont été mis au point par EDF pour être plus performants

dans des situations instables. Parmi eux, l’agrégation d’experts est une technique générale qui
combine plusieurs modèles de prévisions et tire parti de leur diversité. En effet, les modèles ne
sont pas tous performants dans les mêmes contextes et l’agrégation a pour objet d’être plus
robuste, puisqu’elle permet de profiter de chaque modèle. Cette méthode très étudiée par la
communauté de prévision de séries temporelles a été significativement améliorée au cours d’une
thèse chez EDF (Gaillard, 2015).

L’objectif de cette thèse est de poursuivre la recherche de modèles plus adaptatifs. Pour ce
faire on se concentre sur les représentations espace-état, un cadre qui a déjà été étudié pour la
prévision de consommation au cours d’une thèse chez EDF (Dordonnat, 2009). Le changement
de comportement des données étudiées toujours plus instables motive de nouveaux travaux sur
le sujet. De plus, une différence notable avec les travaux de Dordonnat, 2009 est que nous
profitons de modèles statistiques ou de Machine Learning comme le multi-layer perceptron, que
nous combinons avec des modèles espace-état. En particulier, le modèle additif généralisé (GAM)
est aujourd’hui largement utilisé. Certaines méthodes ont été mises au point pour l’adapter au
cours du temps, en changeant directement les coefficients du modèle (Ba et al., 2012), ou bien en
utilisant un modèle correctif sur les résidus (auto-régressif, par exemple). Notre approche étend
la première option, nous ne corrigeons pas les résidus du modèle, mais nous adaptons directement
certains coefficients.

1.2 Cadre théorique

Dans cette section nous détaillons le formalisme sur lequel se construit la thèse. Nous notons
yt ∈ R la variable à prévoir à l’instant t (par exemple, la consommation électrique). Cet instant
est un entier qui commence à 1 par convention, et le pas de temps peut être le jour, l’heure,
la demi-heure... Pour évaluer une méthode fournissant une prévision ŷt, nous nous intéressons
à l’erreur commise yt − ŷt, que l’on cherche à minimiser. Plus généralement nous cherchons à
minimiser une perte `(yt, ŷt), la plus classique étant la perte quadratique `(yt, ŷt) = 1

2 (yt − ŷt)2.
Pour prévoir yt nous avons accès à de l’information, et l’on note xt ∈ Rd un vecteur de taille

d, dont chaque entrée est une variable explicative (par exemple la température, le jour de la
semaine).

1.2.1 Prévision adaptative

Classiquement on paramètre le modèle de prévision par un vecteur : on cherche le meilleur
θ de sorte à prévoir ŷt = fθ(xt), par exemple fθ(xt) = θ>xt. Dans le cas non adaptatif ou
offline, on cherche à optimiser θ sur un ensemble d’entraînement. On définit ainsi l’Empirical
Risk Minimizer (ERM) de la façon suivante :

θ̂
(ERM)
N ∈ arg min

θ

1

N

N∑
t=1

`(yt, fθ(xt)) ,

qui peut être transformé en ajoutant des termes de pénalités au problème d’optimisation précé-
dent afin de le rendre plus robuste.

Cependant, le cadre de la thèse est celui des modèles adaptatifs, dans lequel on souhaite pré-
voir non plus fθ(xt) mais fθt(xt). On peut utiliser une méthode offline pour définir une méthode
dite incremental offline dans laquelle au lieu d’utiliser θ̂(ERM)

N on estime θ̂(ERM)
t à chaque étape.
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Cependant cette stratégie donne lieu à deux inconvénients. D’une part, la complexité d’une telle
procédure peut être prohibitive (il peut être coûteux de calculer l’ERM, et d’autant plus s’il faut
le ré-estimer à chaque étape). D’autre part, cette méthode donne une méthode "faiblement adap-
tative", dans le sens où elle évolue très lentement, alors que l’on peut souhaiter un algorithme
plus réactif.

Le problème de l’optimisation en ligne est donc de trouver une transformation Φ telle que l’on
définisse récursivement θ̂t+1 = Φ(θ̂t, xt, yt) et la qualité de la prévision ŷt = fθ̂t(xt) est évaluée
par la perte subie `(yt, fθ̂t(xt)). L’algorithme d’optimisation en ligne le plus simple est l’Online
Gradient Descent (OGD) introduit par Zinkevich, 2003, qui consiste à faire un pas dans la
direction opposée au gradient de la perte instantanée : à chaque étape on définit

θ̂t+1 = θ̂t − γt
∂`(yt, fθ(xt))

∂θ

∣∣∣
θ̂t
, (1.1)

où γt > 0 est le paramètre de l’algorithme appelé pas de gradient. Les algorithmes développés
pendant la thèse sont très proches de l’OGD, le lien est présenté en section 1.2.3.

1.2.2 Modèle espace-état et filtre de Kalman
Au cours de la thèse on se concentre sur des modèles espace-état, dont un exemple est le

modèle linéaire gaussien suivant :

État : θt = θt−1 + ηt , ηt ∼ N (0, Qt) ,

Espace : yt = θ>t xt + εt , εt ∼ N (0, σ2
t ) .

L’équation d’état régit la dynamique du modèle : l’état suit ici une marche aléatoire, à chaque
étape on lui ajoute un bruit gaussien centré de matrice de covariance Qt ∈ Rd×d. L’équation
d’espace définit la distribution de l’observation sachant les variables explicatives xt et l’état du
modèle θt. Les variances (Qt et σ2

t ) sont les deux hyper-paramètres du modèle.
Remarquons tout d’abord un cadre dégénéré intéressant, que l’on appelle statique : Qt = 0

et σ2
t = σ2. Dans ce cas on retrouve un modèle non adaptatif, avec θt = θt−1.
Dans le cadre général, sous l’hypothèse que le modèle espace-état soit vérifié on cherche à

estimer l’état à l’instant t avec comme information les observations allant jusqu’à un instant m,
et l’on s’intéresse essentiellement à l’espérance et la variance conditionnelles de l’état :

θ̂t|m = E[θt | x1, y1, · · · , xm, ym] ,

Pt|m = E[(θt − θ̂t|m)(θt − θ̂t|m)> | x1, y1, · · · , xm, ym] .

Une propriété intéressante du modèle espace-état linéaire gaussien est que lorsque la distribution
initiale de l’état est gaussienne, la distribution de θt sachant les observations jusqu’en m reste
gaussienne. Cela justifie l’estimation de θ̂t|m et Pt|m puisque l’ensemble de la distribution est
déterminée par son espérance et sa matrice de covariance.

Le problème le plus classique est celui de l’estimation de la distribution de l’état à l’instant
t sachant les observations passées (jusqu’en t − 1). C’est l’objectif principal dans le cadre de
la prévision. Cette estimation est réalisée de façon exacte par le filtre de Kalman (Kalman et
Bucy, 1961).
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Figure 1.1 – Différence entre le filtre et le lissage de Kalman. Les données ont été générées selon
le modèle espace-état à variances constantes, et l’on peut donc se comparer à la vraie valeur de
θt.

Théorème 1.1 (Filtre de Kalman). Sous réserve que le modèle espace-état soit vérifié pour des
variances connues (σ2

t , Qt)t, les récursions suivantes sont satisfaites :

Pt|t−1 = Pt−1|t−1 +Qt , θ̂t|t−1 = θ̂t−1|t−1 ,

Pt|t = Pt|t−1 −
Pt|t−1xtx

>
t Pt|t−1

x>t Pt|t−1xt + σ2
t

, θ̂t|t = θ̂t|t−1 −
Pt|t

σ2
t

(
xt(θ̂

>
t|t−1xt − yt)

)
.

Inversement, le lissage de Kalman (Kalman smoothing) permet d’obtenir la distribution de
l’état sachant les observations futures par une récursion dans le sens inverse :

Théorème 1.2 (Lissage de Kalman). Sous réserve que le modèle espace-état soit vérifié pour
des variances connues, les récursions suivantes sont satisfaites :

θ̂t|n = θ̂t|t + Pt|tP
−1
t+1|t(θ̂t+1|n − θ̂t+1|t) ,

Pt|n = Pt|t + Pt|tP
−1
t+1|t(Pt+1|n − Pt+1|t)P

−1
t+1|tPt|t .

Ce second résultat nous permet de lisser l’estimation de l’état sur une trajectoire, c’est ce
qu’on illustre en figure 1.1. En effet, le premier passage sur les données donne le meilleur estima-
teur sachant le passé, mais le bruit sur l’observation (εt) trompe le filtre de Kalman. En ayant
accès au futur, l’estimateur est plus lisse car la tendance de fond est bien capturée.

Le filtre de Kalman dispose de nombreux avantages. Les mises à jour sont récursives au sens
où l’on obtient les estimateurs à partir de leurs valeurs précédentes ainsi que de l’observation
de xt, yt. Ces mises à jour sont efficaces (le coût est proportionnel à d2, d étant la dimension
de l’état). De plus elles donnent de façon exacte l’espérance et la variance de l’état sachant les
observations passées.

La difficulté majeure pour appliquer le filtre de Kalman est que dans la plupart des applica-
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tions on ne connaît pas les variances telles que le modèle espace-état soit satisfait. Au contraire,
dans de nombreuses applications, le modèle est dit mal spécifié, ce qui signifie que l’hypothèse
espace-état n’est pas satisfaite, quelles que soient les variances σ2

t , Qt. Une vaste littérature porte
sur l’estimation de ces variances, les vraies dans le cas bien spécifié, et les "meilleures" dans le
cas mal spécifié, "meilleures" étant un terme à définir, par exemple relativement à l’erreur de
prévision.

Une première méthode porte sur l’optimisation de variances constantes : on suppose que
σ2
t = σ2, Qt = Q, puis on estime les meilleures valeurs de σ2 et Q en maximisant la vraisem-

blance (Brockwell et Davis, 2016 ; Durbin et Koopman, 2012 ; Fahrmeir et Tutz, 2013).
Nous mettons en pratique ce paradigme au cours de la thèse, mais notons qu’il présente deux
inconvénients. Premièrement, le modèle obtenu est moins vaste puisqu’on a restreint les valeurs
possibles des variances au cas où elles sont constantes au cours du temps. Deuxièmement, maxi-
miser la vraisemblance est un problème complexe pour lequel on n’obtient pas d’autre garantie
que la convergence vers un optimum local, non global.

D’autres méthodes d’optimisation des variances ont donné lieu à de nombreux algorithmes
appelés adaptive Kalman filters, qui sont donc adaptatifs plus en profondeur, dans lesquels le
filtre de Kalman est appliqué avec des variances estimées au cours du temps (Mehra, 1972).

Enfin, nous ne nous sommes pas exclusivement intéressés au modèle espace-état linéaire gaus-
sien, même si c’est le cadre que nous utilisons pour l’application à la prévision de la consommation
électrique. Les autres cadres étudiés dans ce manuscrit s’écrivent de la façon suivante :

État : θt = Kθt−1 + ηt , (1.2)

Espace : yt = h(θ>t xt) + εt , (1.3)

où ηt et εt sont des bruits centrés non nécessairement gaussiens de variances respectives Qt et σ2
t ,

et h est une fonction de lien entre un modèle linéaire et l’espérance de yt. Des extensions au filtre
de Kalman ont été développées dans ce cadre plus général. Nous avons considéré l’utilisation
de l’Extended Kalman Filter (EKF) (Jazwinski, 1970), bien décrit par Durbin et Koopman,
2012, qui consiste à linéariser l’équation d’espace. Précisément, en notant h′ la dérivée de h, on
fait l’approximation de premier ordre suivante :

yt ≈ h(θ̂>t xt) + h′(θ̂>t xt)x
>
t (θt − θ̂t) + εt .

Puis on applique le filtre de Kalman standard, la différence étant que les bruits ne sont pas
nécessairement gaussiens et donc on estime l’espérance et la variance de l’état sans avoir la
propriété de loi a posteriori gaussienne et connue exactement. Partant des estimateurs de la
moyenne et de la variance de θ0, notés θ0|0, P0|0, cet estimateur est donné par les récursions
suivantes à tout instant t :

Pt|t−1 = KPt−1|t−1K
> +Qt , Pt|t = Pt|t−1 −

h′(θ̂>t|t−1xt)
2Pt|t−1xtx

>
t Pt|t−1

h′(θ̂>t|t−1xt)
2x>t Pt|t−1xt + σ2

t

,

θ̂t|t−1 = Kθ̂t−1|t−1 , θ̂t|t = θ̂t|t−1 −
Pt|t

σ2
t

(
h′(θ̂>t|t−1xt)xt(h(θ̂>t|t−1xt)− yt)

)
.

Par ailleurs, mentionnons l’Unscented Kalman Filter de Julier et Uhlmann, 1997 comme
alternative à l’EKF pour l’estimation de l’état dans le cadre non linéaire.
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1.2.3 Le filtre de Kalman, un algorithme de descente de gradient

Revenons à notre problème qui est de prévoir la variable yt en minimisant une perte `(yt, ŷt).
Dans le cas classique où `(yt, ŷt) = 1

2 (yt − ŷt)2, on peut observer que le filtre de Kalman (Théo-
rème 1.1) donne une formule de mise à jour de θ̂t très proche de celle de l’OGD (Equation 1.1).
En effet, en explicitant le gradient dans l’OGD on a :

Online Gradient Descent : θ̂t+1 = θ̂t − γt
(
xt(θ̂

>
t xt − yt)

)
,

Filtre de Kalman : θ̂t+1|t = θ̂t|t−1 −
Pt|t

σ2
t

(
xt(θ̂

>
t|t−1xt − yt)

)
.

La différence entre les deux méthodes se situe donc au niveau du pas de gradient, c’est un scalaire
dans le cas de l’OGD, et une matrice dans le cas du filtre de Kalman. Ainsi l’OGD effectue un
pas dans la direction opposée à celle du gradient, alors que le filtre de Kalman utilise une matrice
de pré-conditionnement pour transformer la direction du gradient. Ainsi on peut interpréter le
filtre de Kalman comme un algorithme de descente de gradient de second ordre, que l’on peut
rapprocher des méthodes de Newton (la matrice Pt sera proche en un certain sens de l’inverse de
la hessienne de la perte). Alors que l’OGD nécessite de choisir γt, le filtre de Kalman apprend
une matrice Pt|t à partir des hyper-paramètres σ2

t et Qt, que l’on peut donc voir comme une
paramétrisation du gradient. Qt est la variance du bruit de la marche aléatoire de l’état et peut
donc être vue comme la vitesse d’évolution du système. Plus Qt est grande, plus le système est
perturbé au cours du temps. Observons dans le théorème 1.1 que la matrice Pt|t est plus grande
pour Qt grand, et le pas de gradient effectué est donc plus grand, ce qui est bien ce que l’on
souhaite.

Cette double interprétation du filtre de Kalman comme une méthode bayésienne (estimation
de la distribution a posteriori de l’état) et comme un algorithme de descente de gradient en ligne
peut être généralisée à l’EKF, comme l’a noté Ollivier, 2018.

Nous gardons cette vision tout au long de la thèse. La première partie sur l’analyse de l’EKF
dans le cas statique fait le lien avec les algorithmes de descente de gradient dont le pas décroît
au cours du temps (γt → 0). Puis dans la seconde nous considérons le cas où Qt < 0, et nous
voyons le choix des variances comme un problème d’estimation du pas optimal dans une descente
de gradient.

1.3 L’optimisation stochastique, un modèle espace-état sta-
tique

La première contribution de cette thèse est de renforcer le lien entre les statistiques bayé-
siennes et l’optimisation en s’appuyant sur le parallèle présenté en section 1.2.3. Nous étudions
l’EKF dans le cadre statique, c’est le but de la partie I.

1.3.1 Cadre des modèles linéaires généralisés

Pour notre analyse nous nous restreignons aux fonctions de perte qui s’écrivent comme l’op-
posé de la log-vraisemblance d’un modèle linéaire généralisé (McCullagh et Nelder, 1989).
Formellement, nous supposons que la perte est de la forme `(y, θ>x) = − log pθ(y | x), et que pθ
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appartient à une classe de la famille exponentielle paramétrée ainsi :

pθ(y | x) = c(y) exp
(yθ>x− b(θ>x)

a

)
,

où a est une constante et b et c sont des fonctions univariées. Ce modèle inclut notamment la ré-
gression gaussienne, la régression logistique (voir l’exemple ci-dessous) et la régression de Poisson.
Notre analyse utilise des hypothèses supplémentaires sur la perte `, notamment la convexité.
Exemple (Régression Logistique). On considère la classification binaire de y ∈ {−1, 1}, et l’on
modélise L(y | x) ainsi :

pθ(y | x) =
1

1 + e−yθ>x
= exp

(
yθ>x− (2 log(1 + eθ

>x)− θ>x)

2

)
.

Alors la perte est `(y, θ>x) = log(1 + e−yθ
>x).

Une propriété notable des distributions de la famille exponentielle est la forme explicite de
leur espérance et de leur variance. Avec nos notations nous avons E[y | θ>x] = b′(θ>x) et
V ar[y | θ>x] = ab′′(θ>x), où b′ et b′′ sont les deux premières dérivées de la fonction b. Ainsi nous
considérons le modèle espace-état

Etat : θt = θt−1 ,

Espace : yt = b′(θ>t xt) + εt ,

pour lequel les formules de mise à jour deviennent

Pt|t−1 = Pt−1|t−1 , θ̂t|t−1 = θ̂t−1|t−1 ,

Pt|t = Pt|t−1 −
b′′(θ̂>t|t−1xt)Pt|t−1xtx

>
t Pt|t−1

b′′(θ̂>t|t−1xt)x
>
t Pt|t−1xt + a

, θ̂t|t = θ̂t|t−1 −
Pt|t

a

(
xt(b

′(θ̂>t|t−1xt)− yt)
)
.

Puis, la formule de Sherman et Morrison (alias lemme d’inversion matricielle) donne

P−1
t|t = P−1

t−1|t−1 +
b′′(θ̂>t|t−1xt)xtx

>
t

a
.

Enfin, en notant `′ et `′′ les deux premières dérivées de ` par rapport à la seconde variable, puis
définissant Pt = Pt|t−1 et θ̂t = θ̂t|t−1, nous obtenons

P−1
t+1 = P−1

t + `′′(yt, θ̂
>
t xt)xtx

>
t , θ̂t+1 = θ̂t − Pt+1

(
xt`
′(yt, θ̂

>
t xt)

)
. (1.4)

Cette dernière récursion donne l’écriture suivante pour Pt+1 :

Pt+1 =
(
P−1

1 +

t∑
s=1

`′′(ys, θ̂
>
s xs)xsx

>
s

)−1

.

Nous avons intuitivement une décroissance de Pt en 1/t, et l’EKF est donc proche d’une descente
de gradient avec un pas de gradient proportionnel à 1/t. Cependant nous avons une matrice
de pré-conditionnement au lieu d’un pas de gradient scalaire. Comme `′′(ys, θ̂>s xs)xsx>s est la
hessienne de la perte à l’instant s, sous réserve que θ̂t converge, Pt+1 devrait être proche de
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H−1/t, où H est l’espérance de la hessienne de la perte à la limite de θ̂t.

1.3.2 Description des résultats
Nous catégorisons les garanties sur des algorithmes d’optimisation en deux types. Dans le

cadre adversarial, aucune hypothèse n’est faite sur le processus de génération des données et
(xt, yt) peut être défini par un adversaire, autrement dit l’objectif est une analyse dans le pire
des cas. L’objectif est de borner le regret

∑n
t=1 `(y, θ̂

>
t xt)− `(y, θ?>xt), différence entre la perte

subie et la perte subie par l’oracle constant.
Inversement, dans le cadre stochastique, les données (xt, yt) sont supposées indépendantes et

identiquement distribuées, puis l’on définit le risque L(θ) = E[`(y, θ>x)]. L’objectif est alors de
minimiser ce risque.

Nous nous plaçons dans un cadre intermédiaire et nous obtenons des garanties sur le risque
cumulé

∑n
t=1 L(θ̂t)− L(θ?) où θ? minimise le risque.

Dans un premier temps, nous obtenons un résultat sous une hypothèse très forte de conver-
gence de l’EKF, définie ci-dessous.

Hypothèse (Localisée). Définissons τ(ζ) = min{k ∈ N | ∀t > k, ‖θ̂t− θ?‖ ≤ ζ} pour tout ζ > 0.
Pour tout δ, ζ > 0, il existe T (ζ, δ) ∈ N tel que P

(
τ(ζ) ≤ T (ζ, δ)

)
≥ 1− δ.

L’hypothèse consiste à supposer que, à partir d’un certain rang, avec grande probabilité,
l’estimateur de l’EKF est piégé dans une boule de rayon ζ arbitrairement petit autour de θ?.
Nous prouvons cette propriété ensuite dans les cadres quadratique et logistique.

Théorème 1.3. En partant de θ̂1 ∈ Rd et P1 � 0, sous certaines hypothèses dont l’hypothèse
localisée, pour tout δ > 0, nous avons simultanément pour n ≥ 1

T (ζ,δ)+n∑
t=T (ζ,δ)+1

L(θ̂t)− L(θ?) ≤ C(log n+ log δ−1) ,

avec probabilité au moins 1− 3δ.

Structure de la preuve. Nous décomposons la preuve en trois étapes.
1. Le point de départ est une borne dans le cadre adversarial sur le développement du regret

à l’ordre 2 :
n∑
t=1

((
`′(yt, θ̂

>
t xt)xt

)>
(θ̂t − θ?)−

1

2
(θ̂t − θ?)>

(
`′′(yt, θ̂

>
t xt)xtx

>
t

)
(θ̂t − θ?)

)
= O(log n) .

(1.5)

Cette borne présentée dans le lemme 4.2 est obtenue directement depuis les formules
récursives (1.4) et tient donc sans hypothèse sur (xt, yt). Puis notre travail consiste à faire
le lien entre cette borne et une borne sur le risque cumulé. Ce sont les étapes 2 et 3.

2. Le problème de la borne précédente est qu’elle concerne le développement d’ordre 2 de
la perte, mais on ne sait pas borner la perte par cette expression. Nous passons alors au
risque L (espérance de la perte `), et nous montrons que nous pouvons borner le risque
par un développement d’ordre 2. Précisément, nous comparons les termes d’ordre 1 et 2
(proposition 4.1). Pour tout ρ < 1, il existe un voisinage Vρ de θ? tel que pour tout θ ∈ Vρ,

∂L

∂θ

∣∣∣>
θ

(θ − θ?) ≥ ρ(θ − θ?)> ∂
2L

∂θ2

∣∣∣>
θ

(θ − θ?) .
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En tirant parti de cette propriété et en utilisant la convexité de la perte (et donc du
risque) nous obtenons la borne d’ordre 2 suivante sur le risque (proposition 4.2) : pour
tout θ ∈ Vρ et 0 < c < ρ,

L(θ)− L(θ?) ≤ ρ

ρ− c

(
∂L

∂θ

∣∣∣>
θ

(θ − θ?)− c(θ − θ?)> ∂
2L

∂θ2

∣∣∣
θ
(θ − θ?)

)
. (1.6)

3. Enfin nous relions les équations (1.5) et (1.6). Pour ce faire nous étudions la différence entre
les termes d’ordre 1 et 2 du développement de Taylor de la perte et ceux du développement
du risque. Nous étudions donc dans le lemme 4.1 l’accroissement de martingale défini par :

∆Mt =

n∑
t=1

(
∂L

∂θ

∣∣∣
θ
− `′(yt, θ̂>t xt)xt

)>
(θ̂t − θ?) .

Ce résultat nous permet d’avoir une borne optimale sur le risque cumulé, mais sous l’hypothèse
de localisation. Nous prouvons cette hypothèse dans deux cas. Pour la perte quadratique nous
appliquons les résultats de Hsu, Kakade et Zhang, 2012. Dans le cas logistique, nous prouvons
la propriété de convergence pour un EKF statique légèrement modifié à la manière de Bercu,
Godichon et Portier, 2020 :

Proposition 1.1. Rappelons la perte logistique `(y, θ>x) = log(1 + e−yθ
>x). Soit 0 < β < 1

2 .
Définissons l’algorithme suivant :

P−1
t+1 = P−1

t + max
(
`′′(yt, θ̂

>
t xt),

1

tβ

)
xtx
>
t , θ̂t+1 = θ̂t − Pt+1

(
xt`
′(yt, θ̂

>
t xt)

)
,

avec les mêmes notations que l’EKF statique. Alors cet algorithme que l’on appelle tronqué vérifie
la propriété localisée. De plus, sa mise à jour coïncide avec celle de l’EKF statique à partir d’un
certain rang.

Formellement, en gardant la notation pour τ(ζ) dans le cadre de cet algorithme tronqué, nous
avons pour tout δ, ζ > 0, l’existence d’un T (ζ, δ) défini explicitement tel qu’avec probabilité au
moins 1− δ,

τ(ζ) ≤ T (ζ, δ) ,

∀t ≥ T (ζ, δ), `′′(yt, θ̂
>
t xt) ≥

1

tβ
.

La coïncidence avec l’EKF statique est cruciale car elle permet d’appliquer l’analyse locale à
partir de T (ζ, δ). Ainsi, les T (ζ, δ) premiers termes sont traités à part, puis le risque cumulé est
borné grâce au Théorème 1.3.

Structure de la preuve. Nous décomposons la preuve en trois étapes.

1. Le seuil 1
tβ

est introduit dans un objectif clair, celui de bien contrôler Pt. En effet, on peut
facilement borner Pt inférieurement (Pt < cI/t). À l’inverse, on ne peut pas obtenir de
borne supérieure du type Pt 4 cI/t lorsque `′′(yt, θ̂>t xt) peut être arbitrairement petit, ce
qui est le cas de la régression logistique. Ainsi, le seuil nous permet d’obtenir le contrôle
suivant dans la proposition 4.4 : pour tout δ > 0, il existe T1(δ) tel qu’avec probabilité au
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moins 1− δ,

∀t > T1(δ), Pt 4
4

Λmint1−β
I ,

avec Λmin la plus petite valeur propre de E[xx>]. Une hypothèse est donc que cette matrice
soit inversible.

2. Repartons de l’équation de mise à jour de θ̂t et utilisons le fait que `′′ ≤ 1
4 . Nous supposons

que ‖xt‖ ≤ DX presque sûrement. Alors nous obtenons la récursion suivante sur le risque :

L(θ̂t+1) ≤ L(θ̂t)−
∂L

∂θ

∣∣∣>
θ̂t

Pt

(
`′(yt, θ̂

>
t xt)xt

)
+ 2D4

Xλmax(Pt)
2 . (1.7)

De cette récurrence, Bercu, Godichon et Portier, 2020 obtiennent la convergence
presque sure de θ̂t vers θ? en appliquant le théorème de Robbins-Siegmund. En effet, ce
résultat est intuitif car grâce au contrôle obtenu sur Pt nous avons∑

t

(2D4
Xλmax(Pt)

2) <∞ ,

car 0 < β < 1
2 , et le terme du milieu permet une décroissance en espérance du risque que

l’on peut borner inférieurement par 1
t ‖

∂L
∂θ |θ̂t‖

2.

3. Pour obtenir notre borne non asymptotique, nous estimons la probabilité d’avoir un risque
loin du risque optimal (à une distance supérieure à un certain η > 0). Pour ce faire, nous
utilisons le fait que les variations de l’algorithme sont lentes, et nous regardons la dernière
itération (si elle existe) telle que le risque soit proche du risque optimum (à une distance
inférieure à η/2).
Formellement, nous définissons Bk,t l’événement (∀k < s < t, L(θ̂s) − L(θ?) > η/2), et
nous pouvons utiliser la loi des probabilités totales :

P(L(θ̂t)− L(θ?) > η) = P
(

(L(θ̂t)− L(θ?) > η) ∩B0,t

)
+

t−1∑
k=1

P
(

(L(θ̂t)− L(θ?) > η) ∩
(
L(θ̂k)− L(θ?) ≤ η

2

)
∩Bk,t

)
.

Afin d’estimer ces probabilités, nous itérons l’équation (1.7) :

L(θ̂t)− L(θ̂k) ≤
t−1∑
s=k

(
∆Ms − λmin(Ps)

∥∥∥∥∂L∂θ ∣∣∣θ̂s
∥∥∥∥2

+ 2D4
Xλmax(Ps)

2

)
,

où (∆Mt) est une différence de martingale. Alors nous séparons les différents k en deux,
ce que nous illustrons par la figure 1.2. Pour k suffisamment petit par rapport à t, la dé-
croissance en espérance du risque rend improbable de rester longtemps loin de l’optimum.
Pour k plus proche de t, le contrôle de Pt permet de borner la probabilité que l’algorithme
se soit éloigné de l’optimum en t− k étapes.

Dans le chapitre 3 nous présentons une version plus simple de cette preuve de convergence
pour l’algorithme stochastic gradient descent à pas décroissant. Cet algorithme nous permet de
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Figure 1.2 – Illustration de la preuve de convergence de l’EKF ou de SGD. La trajectoire bleue
est peu probable car l’algorithme est loin de l’optimum pendant longtemps. La trajectoire rouge
est peu probable car l’algorithme s’éloigne de l’optimum rapidement.

traiter une classe de fonctions L plus large. Comme le pas de gradient utilisé est un scalaire au
lieu d’une matrice de pré-conditionnement, nous n’avons pas besoin de l’étape 1 de la preuve.
De même que pour l’EKF statique, nous établissons une version non-asymptotique de la preuve
de convergence établie par Robbins et Monro, 1951.

1.4 Choix des variances dans un modèle espace-état

Nous n’avons pas introduit le modèle espace-état pour ne considérer que le cas statique,
mais plutôt pour le cadre dynamique. Rappelons le modèle espace-état linéaire gaussien qui nous
intéresse particulièrement :

Etat : θt = θt−1 + ηt , ηt ∼ N (0, Qt) , (1.8)

Espace : yt = θ>t xt + εt , εt ∼ N (0, σ2
t ) . (1.9)

Le filtre de Kalman donne une estimation exacte et récursive de l’état, à variances connues Qt
et σ2

t , voir la section 1.2.2. Ces variances sont les hyper-paramètres du modèle espace-état, et ne
sont pas connues dans la plupart des applications. Il n’y a pas de consensus quant à leur choix.

Nous proposons dans la partie II différentes approches, que nous divisons en deux paradigmes :
ou bien nous considérons que les variances sont constantes au cours du temps et nous les estimons
sur un historique d’entraînement, ou bien nous ne les supposons pas constantes et nous les
estimons dynamiquement. Pour reprendre le parallèle du filtre de Kalman avec un algorithme de
gradient (1.2.3), nous pouvons voir le cas statique comme un pas de gradient convergeant vers
0, le cas dynamique à variances constantes est proche d’un pas de gradient adaptatif tel Adam
avec pas constant (Kingma et Ba, 2014) et le cas dynamique à variances dynamiques est une
étape supplémentaire d’adaptation.
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Figure 1.3 – Log-vraisemblance dans un cadre bien spécifié en dimension 2. Nous affichons la
log-vraisemblance en fonction de Q, en fixant les autres hyper-paramètres. À gauche : Q = qI2.
À droite : Q = diag(1− q, q).

1.4.1 Variances constantes
Le choix plus courant dans la littérature que nous avons considérée consiste à supposer que les

variances sont constantes au cours du temps (Brockwell et Davis, 2016 ; Durbin et Koopman,
2012 ; Fahrmeir et Tutz, 2013). Formellement, les variances des équations (1.8) et (1.9) sont
alors Qt = Q et σ2

t = σ2.
Dans ce cadre, l’objectif qui fait consensus est de maximiser la vraisemblance sur un certain

jeu de données (xt, yt)1≤t≤n. Pour cela, le principal algorithme est l’Expectation-Maximization
(EM), dans lequel on alterne entre deux étapes :

1. Expectation : à variances fixées, on estime les paramètres (θ̂t|n, Pt|n)t par le filtre de Kal-
man (théorème 1.1) et le lissage de Kalman (théorème 1.2). Puis on en déduit l’espérance
de la log-vraisemblance complète comme une fonction de Q et σ2.

2. Maximization : à paramètres fixés, on estime les hyper-paramètresQ et σ2 en maximisant
l’espérance de la log-vraisemblance complète.

Dans le cadre du modèle linéaire gaussien, ces deux étapes admettent des formes closes : à
hyper-paramètres fixés, l’estimation des paramètres est exacte, et à paramètres fixés, il en est de
même de l’estimation des hyper-paramètres qui maximisent l’espérance de la log-vraisemblance
complète. De plus, cette procédure itérative présente une garantie attirante : à chaque étape la
vraisemblance croît.

L’algorithme EM présente cependant deux inconvénients qui ne sont pas négligeables. D’une
part, c’est un algorithme coûteux qui converge lentement. D’autre part, s’il garantit la conver-
gence vers un maximum local de la vraisemblance, il ne converge pas vers un maximum global.
En effet, la log-vraisemblance n’est pas nécessairement une fonction concave, voir la figure 1.3.

Une alternative que nous proposons consiste en une maximisation de la vraisemblance par
une recherche itérative sur une grille sur Q dans laquelle nous nous restreignons aux matrices
diagonales. Cette restriction revient à supposer que les coefficients de θt évoluent indépendam-
ment les uns des autres et nous paraît une restriction raisonnable sur le modèle. Notons que
cette hypothèse d’évolution indépendante des coefficients ne se traduit pas en une évolution in-
dépendante des coefficients de l’estimateur θ̂t. Comme son nom l’indique, nous optimisons les
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Figure 1.4 – Données synthétiques dans un cadre mal spécifié. Nous utilisons une dimension
d = 2, un état déterministe θt = cos( 2πt

100 ) · (1, 1)>, puis xt ∼ N (0, I) et yt − θ>t xt ∼ N (0, 1). Le
délai est k = 50, ce qui signifie que nous sommes en opposition de phase. Le mieux est de varier
très peu.

coefficients diagonaux de Q sur une grille, et nous cherchons de manière itérative donc non ex-
haustive. À chaque étape nous calculons la vraisemblance d’un certain nombre de matrices Q
ayant un seul coefficient différent de celle de l’itération précédente, et nous gardons celle qui ob-
tient la vraisemblance la plus grande. Nous n’obtenons pas non plus de garantie de convergence
vers le maximum global, mais nous avons constaté de meilleurs résultats en pratique.

Il nous semble que ces meilleurs résultats proviennent d’une plus grande robustesse à deux
phénomènes provenant du monde réel. Premièrement, en général, le modèle espace-état linéaire
gaussien à variances constantes est mal spécifié. Cela signifie que les données ne suivent pas
réellement le modèle, que les variances ne sont pas constantes par exemple. Cela ne remet pas en
cause le modèle qui approche bien les données, l’interprétation comme un algorithme de gradient
en section 1.2.3 justifie que l’algorithme soit robuste, mais cela justifie qu’une méthode plus
empirique puisse mieux fonctionner.

Deuxièmement, la recherche itérative sur une grille permet d’introduire un délai de disponi-
bilité des données, qui existe dans la plupart des applications. En effet, dans le cas du réseau
électrique nous ne savons pas instantanément quelle est la consommation, elle est estimée petit
à petit. Nous disposons d’estimations fiables au bout de quelques jours, et les valeurs finales
consolidées ne sont publiées par RTE que des mois plus tard. Ce délai signifie formellement que
pour prévoir yt, nous disposons des variables xt et des observations x1, y1, . . . , xt−k, yt−k où k est
le délai. Notre approche permet d’optimiser une fonction proche de la vraisemblance qui en tient
compte, et nous évitons ainsi une forme de sur-apprentissage. Ce n’est pas le cas de l’EM, comme
nous le verrons en section 5.4, et nous illustrons notre propos en figure 1.4 avec un exemple jouet.

Enfin, la simplicité de la méthode introduite implique sa généralité. L’algorithme peut être
appliqué à n’importe quel modèle espace-état et n’importe quelle variante du filtre de Kalman.
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1.4.2 Variances dynamiques

Un second paradigme consiste à estimer les variances d’un modèle espace-état au cours du
temps, c’est ce qui a été fréquemment appelé adaptive Kalman filtering (Mehra, 1972). Dans
le chapitre 6, nous développons une nouvelle méthode d’estimation conjointe de l’état et des
variances que nous appelons Viking.

Formellement, notons Ft = σ(x1, y1, . . . , xt, yt) la filtration naturelle. Nous cherchons à appli-
quer une méthode bayésienne. Nous partons d’un prior p(θ0, σ

2
0 , Q0 | F0) et nous supposons un

modèle p(θt, σ2
t , Qt | θt−1, σ

2
t−1, Qt−1) sur la dynamique de ces trois variables. À l’instant t, nous

appliquons une étape de prévision (suivant la dynamique du modèle), et une étape de filtrage
(loi de Bayes) :

Prévision : p(θt, σ
2
t , Qt | Ft−1) ,

Filtrage : p(θt, σ
2
t , Qt | Ft) .

Cependant, il n’y a pas de distribution paramétrique naturelle sur la loi jointe telle que
la distribution a posteriori reste dans la classe de distributions considérée. Nous appliquons
alors l’approche Variational Bayes (VB) (Šmídl et Quinn, 2006). Cela consiste à approcher la
distribution jointe par une distribution produit dont chaque loi marginale a une forme simple.

Nous utilisons une loi gaussienne pour l’état afin de coïncider avec la distribution exacte
a posteriori dans le cas particulier où les variances sont connues. Nous introduisons alors des
distributions paramétriques sur σ2

t et Qt de la forme PΦt|t et PΨt|t , de densités pΦt|t et pΨt|t , où
Φt|t et Ψt|t sont les paramètres. Nous estimons alors θ̂t|t, Pt|t,Φt|t,Ψt|t tels que la distribution
produitN (θ̂t|t, Pt|t)×PΦt|t×PΨt|t soit la "meilleure" approximation de la distribution a posteriori
notée PFt . Formellement, nous minimisons la divergence de Kullback-Leibler :

KL
(
N (θ̂t|t, Pt|t)× PΦt|t × PΨt|t || PFt

)
,

où KL(P || Q) =
∫
x

log(p(x)/q(x))p(x)dx pour toutes distributions P et Q de densités p et q.
Dans l’approche VB nous avons donc à résoudre à chaque étape un problème d’optimisation en
trois distributions.

L’étape de prévision est déterminée par la dynamique du modèle supposé. Notons N (x | µ,Σ)
la densité de la distribution gaussienne N (µ,Σ) au point x. Avec les hypothèses adéquates,
partant d’un prior

p(θt−1, σ
2
t−1, Qt−1 | Ft−1) = N (θt−1 | θ̂t−1|t−1, Pt−1|t−1)pΦt−1|t−1

(σ2
t−1)pΨt−1|t−1

(Qt−1) ,

nous obtenons naturellement la densité ci-dessous :

p(θt, σ
2
t , Qt | Ft−1) = N (θt | Kθ̂t−1|t−1,KPt−1|t−1K

> +Qt)pΦt|t−1
(σ2
t )pΨt|t−1

(Qt) ,

où nous avons une forme simple pour Φt|t−1 et Ψt|t−1. Cette étape de prévision est introduite
comme un prior dans l’étape de filtrage, qui donne la densité suivante pour la distribution
posterior :

p(θt, σ
2
t , Qt | Ft) =

p(xt,Ft−1)

p(Ft)
N (yt | θ>t xt, σ2

t )

N (θt | Kθ̂t−1|t−1,KPt−1|t−1K
> +Qt)pΦt|t−1

(σ2
t )pΨt|t−1

(Qt) .
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Notons que quelles que soient les distributions introduites pour σ2
t et Qt, la distribution jointe

a posteriori de l’état et des variances ne peut être factorisée. Il est donc naturel d’appliquer l’ap-
proche VB pour estimer la distribution a posteriori avec une forme simple. De plus, le terme
croisé entre θt et Qt dans la densité précédente nous empêche d’appliquer la méthode proposée
par Tzikas, Likas et Galatsanos, 2008 pour obtenir une forme analytique de minimisation de
la divergence KL. Nous obtenons des bornes supérieures de la divergence KL, dont la minimisa-
tion admet des formes closes. Minimiser ces bornes supérieures ne garantit pas de minimiser la
divergence KL mais de la réduire à chaque étape, c’est la règle de l’evidence-lower bound (ELBO).

Dans ce bref aperçu de l’approche VB, nous avons traité des distributions paramétriques géné-
rales pour σ2

t et Qt. Détaillons enfin notre choix de ces distributions, qui donne lieu à l’algorithme
Viking. L’estimation récursive de la distribution a posteriori ne motive pas de distributions natu-
relles qui simplifient l’optimisation de la divergence KL. Nous choisissons alors de représenter les
variances par des variables gaussiennes. Un avantage notable d’une variable latente gaussienne
est d’introduire naturellement une dynamique sous la forme d’une marche aléatoire. Cependant,
comme les variances doivent être positives, nous transformons ces variables latentes. Précisément,
nous utilisons σ2

t = exp(at) (loi log-normale) et Qt = f(bt), où at, bt suivent des distributions
gaussiennes. La fonction f est un paramètre de l’algorithme dont nous proposons différents choix
possibles. Grâce à la représentation gaussienne des différentes variables latentes, l’approche est
résumée par le modèle ci-dessous :

θ0 ∼ N (θ̂0, P0) , a0 ∼ N (â0, s0) , b0 ∼ N (b̂0,Σ0) ,

at − at−1 ∼ N (0, ρa) , bt − bt−1 ∼ N (0, ρbI) ,

θt −Kθt−1 ∼ N (0, f(bt)) ,

yt − θ>t xt ∼ N (0, exp(at)) ,

dans lequel nous introduisons les paramètres (positifs ou nuls) ρa et ρb qui régissent la dynamique
des variables at et bt, représentant les variances σ2

t et Qt.

1.5 Application à la prévision de consommation électrique

Dans la partie III, nous appliquons des modèles espace-état pour la prévision de consommation
d’électricité dans différents pays et à différentes échelles. Dans un cadre il s’agit de prévision de
consommation nette, différence entre la consommation et la production non pilotable. Nous
introduisons en section 1.5.1 une méthode générique pour se rapporter à un modèle linéaire
gaussien. En section 1.5.2 nous présentons la prévision en moyenne (ou en médiane), au sens
où nous mesurons une erreur absolue et nous attribuons la même performance à une erreur
positive qu’à une erreur négative. Dans le chapitre 10 introduit en section 1.5.3, nous estimons
les différents quantiles de la consommation, c’est la prévision probabiliste.

1.5.1 Utilisation du modèle linéaire gaussien
Nous résumons la méthode par un schéma en figure 1.5. Plus précisément, dans chaque

problème de prévision de série temporelle, nous avons des variables explicatives et nous cherchons
à prévoir une variable d’intérêt. Notre approche se synthétise en 4 étapes, la troisième étant le
cœur de la thèse :

1. Pré-traitement. Nous nettoyons les données en sélectionnant les variables explicatives
intéressantes. De plus, nous pré-calculons des quantités d’intérêt comme des lissages ex-
ponentiels de la température, nous corrigeons des prévisions météorologiques...
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Figure 1.5 – Schéma de la méthode employée pour la prévision de consommation électrique. La
démultiplication des flèches indique une augmentation du nombre de modèles due à une étape, et
tous ces modèles sont fusionnés finalement dans la dernière étape pour ne donner qu’une unique
prévision.

2. Modèles Statistiques / Machine Learning. Nous utilisons des modèles classiques
pour la prévision de séries temporelles : l’auto-régressif, la régression linéaire, le modèle
additif généralisé (GAM) et le multi-layer perceptron (MLP). Dans la plupart de nos
applications ces modèles sont calibrés par heure de la journée, s’il s’agit de prévision
horaire nous avons donc 24 modèles différents, chacun étant adapté à une heure précise
de la journée. Cette étape nous donne déjà potentiellement plusieurs choix possibles.

3. Adaptation Espace-état. Nous adaptons les différents modèles obtenus à l’étape 2
par le modèle espace-état linéaire gaussien, avec les différentes estimations des variances
introduites en partie II. Pour ce faire nous linéarisons les modèles, car le modèle espace-
état n’a pas de sens dans le cas, par exemple, de l’adaptation d’un réseau de neurones.
Pour le GAM, nous figeons les effets non linéaires et nous adaptons une combinaison
linéaire de ces effets, linéaires et non linéaires. Pour le MLP, nous figeons les couches les
plus profondes et nous n’adaptons que la dernière. Autrement dit, nous utilisons l’étape
2 pour apprendre de nouveaux features que nous utilisons comme variables explicatives
dans un modèle espace-état linéaire.
Formellement, nous cherchons à prévoir une quantité yt à l’aide de variables explicatives
xt. L’étape 2 nous permet d’obtenir de nouvelles covariables qui définissent un vecteur
f(xt), et nous obtenons le modèle espace-état suivant :

Etat : θt − θt−1 ∼ N (0, Qt) ,

Espace : yt − θ>t f(xt) ∼ N (0, σ2
t ) .

Nous testons alors les différentes méthodes d’estimation de σ2
t et Qt. Nous utilisons le
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cas dégénéré statique (Qt = 0), le paradigme où les variances sont constantes, et le cadre
de variances dynamiques. Les données incluant la période de crise du coronavirus présen-
taient une telle rupture que nous avons introduit un cadre incluant cette rupture. Nous la
modélisons comme une matrice de covariance QT grande à l’instant T de la rupture, en
comparaison avec les valeurs de Qt en dehors de cette rupture.

4. Post-traitement. Nous devons transformer les prévisions de l’étape 3 pour obtenir une
unique prévision, et pour ce faire nous avons souvent eu recours à l’agrégation d’experts,
détaillée dans la thèse de Gaillard, 2015. Nous avons des prévisions (experts) ŷt,1, . . . ŷt,K
qui proviennent de l’étape 3 et notre prévision finale s’écrit comme une moyenne de ces
prévisions,

∑
k pt,kŷt,k. Nous utilisons une moyenne convexe, i.e.

∑
k pt,k = 1. Les poids

pt,1, . . . , pt,K sont estimés dynamiquement, ils évoluent au cours du temps pour prendre
en compte le fait que les performances d’un expert peuvent évoluer au cours du temps.
Préalablement à l’agrégation, nous utilisons pour l’un des jeux de données une étape
de correction infra-journalière, qui permet de prendre en compte la corrélation entre les
différentes heures de la journée.

1.5.2 Prévision en moyenne
Nous avons appliqué cette méthode sur les jeux de données détaillés ci-dessous et présentés

graphiquement en figure 1.6. Nous évaluons la performance des modèles par différentes fonctions
de l’erreur. Les plus classiques sont l’erreur moyenne absolue (mean absolute error, MAE) et
la racine de l’erreur quadratique moyenne (root-mean-square error, RMSE), définie pour des
observations (y1, . . . yn) et leurs prévisions associées (ŷ1, . . . ŷn) par

MAE =
1

n

n∑
t=1

|yt − ŷt| , RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2 .

Chapitre 7 : rupture du printemps 2020 en France

L’application première de la thèse est la consommation électrique française. Prévoir la consom-
mation française est en effet un enjeu important pour EDF. Nous étudions donc l’intérêt des
méthodes présentées dans la thèse pour ce jeu de données. Nous évaluons sur une période "nor-
male" préalable à Mars 2020, puis nous étudions tout particulièrement la période de crise du
coronavirus dont l’impact fut très fort, spécialement lors du premier confinement de Mars à Mai
2020.

Par rapport à un modèle additif généralisé non adaptatif, auquel nous appliquons une correc-
tion ARIMA, nous obtenons une réduction de la RMSE de 7% sur une période pré-covid. Puis,
pendant le premier mois de confinement, le filtre de Kalman réduit la RMSE de 11%, boosté à
28% en modélisant la rupture. Durant les 2 mois suivants (une période plus stabilisée mais tou-
jours chahutée), nous réduisons la RMSE de 42%. L’agrégation d’experts permet d’augmenter
significativement le gain.

Chapitre 8 : compétition sur la prévision post-covid d’une ville

Puis nous avons participé à la compétition Day-Ahead Electricity Demand Forecasting : Post-
COVID Paradigm (Farrokhabadi, 2020). L’objectif des organisateurs était de mettre au point
de nouvelles techniques de prévision robustes à une rupture telle que celle du coronavirus, et le
jeu de données était une ville dont la localisation n’était pas donnée. Alors que dans le chapitre 7
nous nous intéressons avant tout à la période de confinement (le cœur de la rupture), dans cette
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Figure 1.6 – Jeux de données utilisés pour la prévision de consommation électrique à différentes
échelles : la France (gauche), une ville inconnue (milieu) ou un immeuble de localisation inconnue
aussi (droite).

compétition, la période d’évaluation est en Janvier-Février 2021, un an environ après la rupture.
Ainsi, alors que la rupture d’un confinement est un événement extrême, la compétition visait
une période moins chahutée, et avait pour objectif de définir des modèles de prévision adaptés à
l’avenir plutôt que focalisés sur une période passée.

Nous avons remporté cette compétition, améliorant de plus de 30% en MAE la méthode naïve
donnée par la compétition (persistance).

Chapitre 9 : compétition sur la prévision d’un immeuble

Nous avons participé à une seconde compétition, appelée Competition on Building Energy
Consumption Forecasting, dont l’objectif était de prévoir la consommation d’électricité d’un
immeuble. Cette compétition était l’occasion pour nous d’appliquer la méthode à une échelle
beaucoup plus locale. Il nous semble que les méthodes adaptatives sont nécessaires dans ce cadre
car le changement de comportement d’un individu a un impact non marginal, ce qui n’est pas le
cas lorsque les données sont agrégées au niveau d’un pays ou d’une grande ville.

Nous avons également remporté cette compétition, en améliorant de plus de 30% en MAE
une méthode naïve (persistance).

1.5.3 Prévision probabiliste
Dans le chapitre 10 nous nous intéressons à la prévision probabiliste. Plutôt que de chercher à

minimiser l’erreur absolue de notre prévision avec la variable à prévoir, nous cherchons à prévoir
ses quantiles. Rappelons que yt ∈ R est la variable à prévoir. Nous cherchons à prévoir ŷt,q ∈ R
tel que P(yt < ŷt,q) = q. Nous testons différentes approches.

— Remarquons tout d’abord que le filtre de Kalman fournit une prévision probabiliste par
essence. En effet, nous estimons la distribution a posteriori de l’état θt comme la loi
gaussienne N (θ̂t|t−1, Pt|t−1). Or l’état est défini tel que yt− θ>t xt ∼ N (0, σ2

t ). Ainsi, nous
pouvons prévoir yt comme une loi gaussienne. Son q-quantile s’écrit alors

ŷt,q = θ̂>t|t−1xt + Uq

√
σ2
t + x>t Pt|t−1xt ,

où Uq est le q-quantile de la loi normale centrée réduite.
— Cependant, la propriété de distribution a posteriori gaussienne de l’état repose fortement

sur le modèle espace-état, et gardons à l’esprit que le monde réel ne vérifie pas l’hypothèse
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2 la perte est plus grande lorsque y prend des valeurs négatives, et
inversement.

de modèle linéaire espace-état de variances connues. Ainsi, il est préférable en pratique
d’utiliser les modèles espace-état pour prévoir la consommation moyenne, puis nous mo-
délisons la distribution des résidus (différence yt − ŷt, où ŷt est la prévision en moyenne).
Plutôt que de chercher à minimiser l’erreur absolue de notre prévision avec la variable
à prévoir, nous utilisons une erreur asymétrique qui attribue une perte plus grande à
une erreur négative (ou positive). Cette perte est appelée la perte pinball, définie comme
ρq(y, ŷq) = (1y<ŷq − q) (ŷq − y) et représentée en figure 1.7. L’optimisation de cette perte
résulte en des prévisions probabilistes, ce qui est justifié par la proposition suivante :
Proposition 1.2. Soit Y une variable aléatoire à valeurs réelles. Pour tout 0 < q < 1,
notons Yq le quantile de Y de niveau q. Alors nous avons Yq ∈ arg minE[ρq(Y, Yq)].
Intuitivement, lorsque q ≤ 1

2 , la perte pinball prenant des valeurs plus grandes lorsque l’er-
reur est négative, nous aurons tendance à sous-estimer y : nous aurons bien une prévision
pour le quantile q inférieure à la médiane.

Nous considérons deux jeux de données, représentés en figure 1.8.

Données régionales de consommation nette en Grande-Bretagne

Nous considérons le jeu de données introduit par Browell et Fasiolo, 2021. Il consiste en la
consommation nette (demande réduite de la production solaire et éolienne), en Grande-Bretagne.
La Grande-Bretagne est décomposée en 14 régions, et nous reprenons les modèles de Browell
et Fasiolo, 2021, calibrés région par région. En effet, un aspect peu abordé dans cette thèse est
qu’il est primordial non seulement d’équilibrer le réseau au niveau national, mais également au
niveau local.

Nous évaluons sur une période normale pré-covid, puis nous regardons l’évolution des diffé-
rents modèles en 2020 et 2021.
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Figure 1.8 – Jeux de données utilisés pour la prévision probabiliste : consommation nette en
Grande-Bretagne décomposée en 14 régions (à gauche), consommation à New York (à droite).

Consommation de New York

Le dernier jeu de données utilisé au cours de ce travail porte sur des données américaines,
introduites par Ruan et al., 2020. Nous étudions l’évolution de la consommation à New York.
Nous nous intéressons à la consommation quotidienne, alors que les jeux de données précédents
considéraient une consommation à un pas de temps plus fin (15 min, 30 min ou une heure).
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Chapter2
Introduction (English)

In this chapter, we introduce the thesis. We first present the industrial context motivating this
work. Then we detail the theoretical framework that will be followed throughout the manuscript.
The rest of the chapter is devoted to the description of our contributions.
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2.1 Industrial Context

Time series forecasting is a fundamental issue. A few non-exhaustive examples are weather
and climate forecasting for farmers, sales and inventory forecasting in retail, price and cost
forecasting for industrials. Every decision we make crucially depends on forecasts. In this thesis,
we study the electricity sector, presenting a specificity compared to the applications mentioned.
As electricity cannot be stored on a large scale, it is essential for the electrical network that the
supply-demand balance is ensured. At any time, electricity production (supply) must equal the
consumption (demand).

25
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To achieve this equilibrium, it is necessary to forecast the demand at various time horizons.
In the long or very long term (months, years, or even decades ahead), the forecast is used to
determine the adequate production units. The forecast allows to decide whether new units
must be built and the maintenance dates of existing units. Medium-term forecasts (weeks,
months ahead) are used to update the maintenance calendar and decide whether to operate a
controllable production unit according to future needs. In the short term (day-ahead), forecasting
consumption allows defining a production schedule for controllable means whose power change
requires a few hours (nuclear power plants and, to a lesser extent, fossil fuel power plants). This
production schedule is updated frequently to reduce the residual error in the very short term
(less than a day ahead). This final error is handled by the transmission system operator with
very reactive production means such as hydroelectricity.

This brief overview of power system management assumes that demand is a single quantity
and that a central entity makes decisions. This is not the case for several reasons. On the one
hand, the opening of the French electricity sector to competition reduces centralization. Nowa-
days, electricity suppliers have to take care of the supply-demand balance for their customers.
They have to produce the electricity their customers consume or buy it from another producer.
Each supplier manages this balance as well as possible. Since all the suppliers share the net-
work, the global equilibrium is managed by RTE (Réseau de Transport d’Electricité), the French
transmission system operator. To reduce the residual national imbalance, RTE calls on reserves
(producers who agree to increase or decrease their production) and imposes penalties on suppliers
according to their imbalances. On the other hand, while it is necessary to respect the balance
at the national level, it is also preferable to satisfy the supply-demand equilibrium at a more
local level. Some countries have a spatial decorrelation between generation and consumption.
The transmission of electricity from one region to another is costly because of line losses and
because it requires more extensive infrastructure. Indeed, the network is sized in proportion to
the transmission.

EDF has significantly improved demand forecasting over the past decades. Classical forecast-
ing methods are based on the observed behavior over typically five years. However, to extrapolate
and forecast future consumption, an assumption of stability is necessary.

This assumption has been reassessed in recent years for many reasons. Following the opening
to competition, EDF forecasts the consumption of an evolving customer portfolio. Moreover,
changes in consumption and in particular the development of electric vehicles could structurally
change load patterns. Although the impact of electric cars is still negligible today, it is expected
that this will no longer be the case in a few years. Furthermore, while the national load is
relatively stable, this is less and less true as the forecasting scale is more local. The extreme
case of the forecast of an individual home is interesting: if the dwelling becomes vacant, the
forecasting model needs to be changed. The recent development of renewable energies that are
not controllable (solar and wind energy) fundamentally changes the management of the supply-
demand equilibrium. Controllable means are no longer used to achieve the consumption but the
net consumption (reduced of solar and wind production). The variable of interest thus becomes
net demand, which is more unstable and has more volatility. Finally, the coronavirus crisis has
been a significant source of instability for the power system. The lockdowns in many countries
caused a sudden drop in demand. Frequent evolutions on restrictions have implied more time-
variability than before. Load forecasting difficulty was increased.

EDF has designed new strategies to be more efficient in an unstable context. Expert aggre-
gation is a model-agnostic approach that combines several forecasting models and leverages their
diversity. Indeed, models do not perform well in the same contexts, and the aggregation aims
to be more robust since it takes advantage of each model’s specificities. This method has been
widely studied by the time series community and has been significantly improved during a thesis
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at EDF (Gaillard, 2015).
This thesis aims to pursue the research of more adaptive models. We focus on state-space

representations, a framework that has already been studied during a thesis at EDF (Dordonnat,
2009). Continuing the investigation is motivated by the data itself as the load becomes more
unstable. A notable difference with the work of Dordonnat, 2009 is that we take advantage of
statistical or Machine Learning models such as the multi-layer perceptron, and we combine it with
space-state models. In particular, the generalized additive model (GAM) is widely used today
at EDF. A few methods have already been developed to adapt it, either by directly changing
the coefficients of the model (Ba et al., 2012) or by using a corrective model on the residuals
(auto-regressive, for instance). Our approach extends the first option, we do not correct the
model’s residuals, but we directly adapt some model coefficients.

2.2 Theoretical Framework

In this section, we introduce the theoretical setting of the thesis. We denote by yt ∈ R the
variable of interest at time t (for instance, the electricity consumption). By convention, the time
t starts at 1, and the frequency may be daily, hourly, half-hourly ... We build a forecast ŷt, and
we evaluate it through the error yt − ŷt that we try to minimize. More formally, we minimize a
loss `(yt, ŷt), for instance the quadratic loss `(yt, ŷt) = 1

2 (yt − ŷt)2.
To forecast yt, we have access to some explanatory variables represented by a vector xt ∈ Rd.

Each coordinate of xt is an explanatory variable such as the temperature, the day of the week ...

2.2.1 Adaptive Forecasting

It is usual to parametrize the forecasting model by a vector: we look for the best possible θ
in order to forecast ŷt = fθ(xt), for instance fθ(xt) = θ>xt. In the nonadaptive setting, often
denoted by the term offline in this manuscript, we find θ performing best during a training set.
That is the definition of the empirical risk minimizer (ERM):

θ̂
(ERM)
N ∈ arg min

θ

1

N

N∑
t=1

`(yt, fθ(xt)) .

We can add penalty terms to the previous optimization problem to make it more robust.
However, the objective of the thesis is to design adaptive models, in which we wish to predict

fθt(xt) instead of fθ(xt). From the offline method it is natural to define the incremental offline
method, where instead of θ̂(ERM)

N we estimate θ̂(ERM)
t at each time step t. However, this strategy

has several drawbacks. On the one hand, the complexity of such a procedure can be prohibitive
(in general, it is expensive to estimate the ERM at each step). On the other hand, this method
yields a "weakly adaptive" method because it evolves very slowly, whereas one might wish for a
more reactive algorithm.

The goal of online optimization is thus to define an efficient transformation Φ such that the
model is updated recursively by θ̂t+1 = Φ(θ̂t, xt, yt). The quality of the forecast ŷt = fθ̂t(xt) is
evaluated by the loss `(yt, fθ̂t(xt)). A simple online optimization algorithm is the online gradient
descent (OGD) introduced by Zinkevich, 2003, which consists in applying a step in the direction
opposite to the gradient of the instantaneous loss: at each step we define

θ̂t+1 = θ̂t − γt
∂`(yt, fθ(xt))

∂θ

∣∣∣
θ̂t
, (2.1)
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where γt > 0 is the algorithm parameter called gradient step size. The methods applied in the
thesis are linked to the OGD, see Section 2.2.3.

2.2.2 State-Space Model and Kalman Filter

We focus on state-space models, an example of which is the following linear Gaussian model:

State: θt = θt−1 + ηt , ηt ∼ N (0, Qt) ,

Space: yt = θ>t xt + εt , εt ∼ N (0, σ2
t ) .

The state equation governs the dynamics of the model. The state follows a random walk, that
is, at each step, we add a centered Gaussian noise of covariance matrix Qt ∈ Rd×d. The space
equation defines the distribution of the observation given the explanatory variables xt and the
state θt. The variances (Qt and σ2

t ) are the two hyper-parameters of the model.
Let us first notice an interesting degenerate setting called static: Qt = 0 and σ2

t = σ2. In
this case we find a time-invariant model θt = θt−1.

In the general framework, under the hypothesis that the space-state model is verified, we try
to estimate the state at time t with information from observations up to time m, and we are
essentially interested in the conditional expectation and covariance matrix of the state:

θ̂t|m = E[θt | x1, y1, · · · , xm, ym] ,

Pt|m = E[(θt − θ̂t|m)(θt − θ̂t|m)> | x1, y1, · · · , xm, ym] .

An attractive property of the linear Gaussian state-space model is that provided that the initial
state distribution is Gaussian, the distribution of the state θt given observations up to time m is
also Gaussian. This motivates the estimation of θ̂t|m and Pt|m, as the distribution of a Gaussian
distribution is entirely determined by its mean and covariance matrix.

The main objective in the context of forecasting is estimating the state’s distribution at time
t, knowing the past observations (up to t − 1). This estimation is done exactly by the Kalman
filter (Kalman and Bucy, 1961):

Theorem 2.1 (Kalman Filter). Provided that the data-generating process is the state-space
model with known variances (σ2

t , Qt)t, the following recursions are satisfied:

Pt|t−1 = Pt−1|t−1 +Qt , θ̂t|t−1 = θ̂t−1|t−1 ,

Pt|t = Pt|t−1 −
Pt|t−1xtx

>
t Pt|t−1

x>t Pt|t−1xt + σ2
t

, θ̂t|t = θ̂t|t−1 −
Pt|t

σ2
t

(
xt(θ̂

>
t|t−1xt − yt)

)
.

Conversely, Kalman smoothing yields the distribution of the state given future observations.
This is done with a backward recursion:

Theorem 2.2 (Kalman Smoothing). Provided that the data-generating process is the state-space
model, the following recursions are satisfied:

θ̂t|n = θ̂t|t + Pt|tP
−1
t+1|t(θ̂t+1|n − θ̂t+1|t) ,

Pt|n = Pt|t + Pt|tP
−1
t+1|t(Pt+1|n − Pt+1|t)P

−1
t+1|tPt|t .

This result yields a smoothing of the state estimation trajectory. Indeed, the forward recursion
gives the best estimator knowing the past, but the noise on the observation (εt) means the
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Figure 2.1 – Kalman Filtering and Smoothing. Data is generated under the state-space model
with constant variances, and we can therefore compare the estimates with the true state value
θt.

trajectory of the Kalman filter is a little chaotic. The backward recursion is smoother because
the trend is well captured, having access to the future. We illustrate that in Figure 2.1.

The Kalman filter has many advantages. The updates are recursive in the sense the estimators
are obtained from their previous values and the new observation xt, yt. These updates are efficient
(the cost is proportional to d2, d being the dimension of the state). Moreover, they give the exact
expected value and covariance matrix of the state given the past observations.

The primary issue in applying the Kalman filter is that in most applications, one does not
know the variances such that the state-space model is satisfied. On the contrary, in many
applications, the model is called misspecified. This means the state-space assumption is not
satisfied, whatever the variances σ2

t and Qt. A vast literature is devoted to estimating these
variances, the true ones in the well-specified case and the "best" ones in the misspecified case,
where "best" may be defined, for instance, with respect to the model likelihood or the forecasting
error.

A first paradigm consists in assuming that the variances are constant: we assume that σ2
t =

σ2, Qt = Q and we estimate the best values of σ2 and Q by maximizing the likelihood (Brockwell
and Davis, 2016; Durbin and Koopman, 2012; Fahrmeir and Tutz, 2013). We apply this approach
in the course of the thesis, but we observe that it has two drawbacks. First, the resulting model
is less extensive since we have restricted the possible values of the variances to the case where
they are time-invariant. Second, maximizing the likelihood is a complex problem for which we
can only guarantee convergence to a local but not a global optimum.

Other variance choices have led to many algorithms called adaptive Kalman filters, which are
thus more deeply adaptive. In these approaches, the variances are estimated over time, and the
Kalman filter is applied with these variance estimators (Mehra, 1972).

Finally, we are not exclusively interested in the linear Gaussian state-space model, although
this is the framework we use for the application to power consumption forecasting. The other
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frameworks developed in this manuscript are written as follows:

État: θt = Kθt−1 + ηt , (2.2)

Espace: yt = h(θ>t xt) + εt , (2.3)

where ηt and εt are centered noises of respective variances Qt et s2
t and that are not necessarily

Gaussian. In the space equation, h is a link function between a linear model and the expected
value of yt. Extensions of the Kalman filter have been developed in this more general setting.
We have considered the extended Kalman filter (EKF), where the space equation is linearized
(Jazwinski, 1970; Durbin and Koopman, 2012). Precisely, denoting by h′ the first-order derivative
of h, we use the following first-order approximation:

yt ≈ h(θ̂>t xt) + h′(θ̂>t xt)x
>
t (θt − θ̂t) + εt .

Then we can apply the standard Kalman filter. The difference lies in the fact the noises are
not necessarily Gaussian, and therefore the a posteriori distribution is not necessarily Gaussian.
Moreover, the estimation of the expectation and variance is not exact anymore. Starting from
initial estimators of the mean and covariance matrix of θ0, denoted by θ0|0, P0|0, the EKF is
defined by the following recursions at time t:

Pt|t−1 = KPt−1|t−1K
> +Qt , Pt|t = Pt|t−1 −

h′(θ̂>t|t−1xt)
2Pt|t−1xtx

>
t Pt|t−1

h′(θ̂>t|t−1xt)
2x>t Pt|t−1xt + σ2

t

,

θ̂t|t−1 = Kθ̂t−1|t−1 , θ̂t|t = θ̂t|t−1 −
Pt|t

σ2
t

(
h′(θ̂>t|t−1xt)xt(h(θ̂>t|t−1xt)− yt)

)
.

Finally, let us mention the Unscented Kalman Filter (Julier and Uhlmann, 1997) as an alter-
native to the EKF for state estimation in the nonlinear framework.

2.2.3 Kalman Filter as a Gradient Descent Algorithm

Let us keep in mind that our objective is to predict a variable yt by minimizing a loss `(yt, ŷt).
When the loss is the classical quadratic loss `(yt, ŷt) = 1

2 (yt − ŷt)2, we remark that the Kalman
filter (Theorem 2.1) is very similar to the OGD (Equation 2.1). Indeed, if we write explicitly the
gradient we have:

Online Gradient Descent: θ̂t+1 = θ̂t − γt
(
xt(θ̂

>
t xt − yt)

)
,

Kalman Filter: θ̂t+1|t = θ̂t|t−1 −
Pt|t

σ2
t

(
xt(θ̂

>
t|t−1xt − yt)

)
.

Therefore, the difference between both methods lies in the gradient step. It is a scalar in the
OGD and a matrix in the Kalman filter. Thus the OGD performs a step in the opposite direction
of the gradient, while the Kalman filter uses a preconditioning matrix to transform the direction
of the gradient. Thus we can interpret the Kalman filter as a second-order gradient descent
algorithm, which can be compared to Newton’s methods (the Pt matrix is close in some sense
to the inverse Hessian of the loss). While the OGD depends on the choice of the gradient step
size γt, the Kalman filter estimates the matrix Pt|t from the hyper-parameters σ2

t et Qt. These
variances may thus be interpreted as parameters of a gradient descent. Qt is the state noise
covariance matrix and may be interpreted as the speed of system evolution. The larger Qt is,
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the more the system is disturbed over time. We remark in Theorem 2.1 that the larger Qt is,
the larger Pt|t is, and the larger the gradient step on θ̂t|t−1. That is what we expect.

This dual interpretation of the Kalman filter as a Bayesian method (estimating the a posteriori
distribution of the state) and as an online gradient descent algorithm can be generalized to the
EKF, as described by Ollivier, 2018.

We develop this interpretation throughout the thesis. The first part, on the analysis of the
EKF in the static case, links the EKF to gradient descent algorithms whose step decreases with
time (γt → 0). In the second part, we consider the case where Qt < 0, and we present the choice
of variances as a problem of estimating the optimal gradient step of a gradient descent.

2.3 Stochastic Optimization as a Static State-Space Model

The first contribution of this thesis is to enrich the link between Bayesian statistics and
stochastic optimization, building on the parallel presented in section 2.2.3. We study the EKF
in the static setting; this is the goal of Part I.

2.3.1 Generalized Linear Models

In our analysis presented in Chapter 4, we focus on loss functions that may be written as the
negative log-likelihood of a generalized linear model (McCullagh and Nelder, 1989). Precisely,
we assume that the loss function is of the form `(y, θ>x) = − log pθ(y | x), where pθ belongs to
a subclass of the exponential family parametrized as follows:

pθ(y | x) = c(y) exp
(yθ>x− b(θ>x)

a

)
,

where a is a constant and b and c are univariate functions. This includes Gaussian linear regres-
sion, logistic regression (see the example below), and Poisson regression. Our analysis requires
further assumptions about the loss ` such as convexity.

Example (Logistic Regression). We consider binary classification. We predict y ∈ {−1, 1} and
we model L(y | x) by the following distribution parametrized by θ:

pθ(y | x) =
1

1 + e−yθ>x
= exp

(
yθ>x− (2 log(1 + eθ

>x)− θ>x)

2

)
.

The loss function becomes `(y, θ>x) = log(1 + e−yθ
>x).

A remarkable property of distributions in the exponential family is the explicit form of their
expectation and variance. In our notations we have E[y | θ>x] = b′(θ>x) and V ar[y | θ>x] =
ab′′(θ>x), where b′ and b′′ are the first two derivatives of the function b. We consider the following
static state-space model:

State: θt = θt−1 ,

Space: yt = b′(θ>t xt) + εt .
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The recursive updates become:

Pt|t−1 = Pt−1|t−1 , θ̂t|t−1 = θ̂t−1|t−1 ,

Pt|t = Pt|t−1 −
b′′(θ̂>t|t−1xt)Pt|t−1xtx

>
t Pt|t−1

b′′(θ̂>t|t−1xt)x
>
t Pt|t−1xt + a

, θ̂t|t = θ̂t|t−1 −
Pt|t

a

(
xt(b

′(θ̂>t|t−1xt)− yt)
)
.

The Sherman-Morrison formula (also known as matrix inversion lemma) yields

P−1
t|t = P−1

t−1|t−1 +
b′′(θ̂>t|t−1xt)xtx

>
t

a
.

We denote by `′ and `′′ the first two derivatives of ` with respect to the second variable. We
define Pt = Pt|t−1, θ̂t = θ̂t|t−1 and we obtain:

P−1
t+1 = P−1

t + `′′(yt, θ̂
>
t xt)xtx

>
t , θ̂t+1 = θ̂t − Pt+1

(
xt`
′(yt, θ̂

>
t xt)

)
. (2.4)

This update rule yields the following expression:

Pt+1 =
(
P−1

1 +

t∑
s=1

`′′(ys, θ̂
>
s xs)xsx

>
s

)−1

.

Intuitively, Pt+1 decays at the rate 1/t. Therefore, the EKF should be close to a gradient descent
where the gradient step size is proportional to 1/t. However, instead of a scalar gradient step
size we have a preconditioning matrix. As `′′(ys, θ̂>s xs)xsx>s is the Hessian of the instantaneous
loss at time step s, provided that θ̂t converges, Pt+1 should be similar to H−1/t where H is the
Hessian of the expected loss taken at the limit of θ̂t.

2.3.2 Results

We categorize guarantees on optimization algorithms into two types. In the adversarial
framework, no assumptions are made on the generation of the data and (xt, yt) can be defined
by an adversary, id est, the objective is a worst-case analysis. The only assumption is that the
data are bounded, and the objective is to bound the regret

∑n
t=1 `(y, θ̂

>
t xt) − `(y, θ?>xt), the

difference between the loss incurred and the loss of a constant oracle.
Conversely, in the stochastic framework, (xt, yt) are assumed to be independent and identically

distributed. It allows the definition of the risk L(θ) = E[`(y, θ>x)]. The objective is to minimize
this risk.

We consider an intermediate setting and we obtain bounds on the cumulative risk, defined
as
∑n
t=1 L(θ̂t)− L(θ?) where θ? minimizes the risk.

First, we obtain an upper bound under a strong assumption of convergence of the EKF,
defined as follows.

Assumption (Localized). We define τ(ζ) = min{k ∈ N | ∀t > k, ‖θ̂t − θ?‖ ≤ ζ} for any ζ > 0.
For any δ, ζ > 0, we have T (ζ, δ) ∈ N such that P

(
τ(ζ) ≤ T (ζ, δ)

)
≥ 1− δ.

The assumption states that, from a certain time, with high probability, the EKF estimator
is trapped in a ball of radius ζ arbitrarily small around θ?. We prove this property next in the
quadratic and logistic settings.
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Theorem 2.3. Starting from θ̂1 ∈ Rd, P1 � 0, under some assumptions including the localized
assumption, for any δ > 0, it holds simultaneously for n ≥ 1:

T (ζ,δ)+n∑
t=T (ζ,δ)+1

L(θ̂t)− L(θ?) ≤ C(log n+ log δ−1) ,

with probability at least 1− 3δ.

Sketch of Proof. We decompose the proof into three steps.

1. We start from an adversarial bound on the second-order Taylor expansion of the regret:

n∑
t=1

((
`′(yt, θ̂

>
t xt)xt

)>
(θ̂t − θ?)−

1

2
(θ̂t − θ?)>

(
`′′(yt, θ̂

>
t xt)xtx

>
t

)
(θ̂t − θ?)

)
= O(log n) .

(2.5)

This bound is presented in Lemma 4.2. We obtain it directly from the recursive up-
dates (2.4). It holds without any assumption on (xt, yt).
Then we transform this bound into a guarantee for the cumulative risk; that is what we
do in Steps 2 and 3.

2. The issue with the previous logarithmic bound is that we cannot control the loss with its
second-order expansion. We consider the risk L (expected value of the loss `), and we
prove a control of the risk by a second-order expansion (proposition 4.1). For any ρ < 1,
there exists a neighbourhood of θ? denoted by Vρ such that for any θ ∈ Vρ,

∂L

∂θ

∣∣∣>
θ

(θ − θ?) ≥ ρ(θ − θ?)> ∂
2L

∂θ2

∣∣∣>
θ

(θ − θ?) .

From this property, and using the convexity of the loss (hence of the risk) we obtain the
following second-order bound on the risk (proposition 4.2): for any θ ∈ Vρ and 0 < c < ρ,

L(θ)− L(θ?) ≤ ρ

ρ− c

(
∂L

∂θ

∣∣∣>
θ

(θ − θ?)− c(θ − θ?)> ∂
2L

∂θ2

∣∣∣
θ
(θ − θ?)

)
. (2.6)

3. Finally, we combine Equations (2.5) and (2.6). To that end, we estimate the difference
between the first two terms of the Taylor expansion of the loss and those of the second-
order expansion of the risk. In particular, we study in Lemma 4.1 the following martingale

∆Mt =

n∑
t=1

(
∂L

∂θ

∣∣∣
θ
− `′(yt, θ̂>t xt)xt

)>
(θ̂t − θ?) .

This result yields an optimal bound on the cumulative risk; however, we need the strong
localized assumption. We prove this hypothesis in two settings. For the quadratic loss, we apply
the results of Hsu, Kakade, and Zhang, 2012. In the logistic setting, we prove the localized
assumption for a slightly modified variant of the static EKF, in the manner of Bercu, Godichon,
and Portier, 2020:

Proposition 2.1. We recall the logistic loss `(y, θ>x) = log(1 + e−yθ
>x). Let 0 < β < 1

2 . We
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define the following algorithm:

P−1
t+1 = P−1

t + max
(
`′′(yt, θ̂

>
t xt),

1

tβ

)
xtx
>
t , θ̂t+1 = θ̂t − Pt+1

(
xt`
′(yt, θ̂

>
t xt)

)
,

where we keep the notations of the static EKF with some abuse. This so-called truncated algorithm
satisfies the localized assumption, and its recursion coincides with the one of the static EKF after
some time.

Formally, keeping the notation τ(ζ) for the truncated algorithm, for any δ, ζ > 0, we can
define explicitly T (ζ, δ) such that with probability at least 1− δ, it holds:

τ(ζ) ≤ T (ζ, δ) ,

∀t ≥ T (ζ, δ), `′′(yt, θ̂
>
t xt) ≥

1

tβ
.

It is crucial that the recursions coincide with these of the static EKF because it allows us
to apply the local analysis from T (ζ, δ). We treat the first T (ζ, δ) terms independently, and the
cumulative risk is bounded based on Theorem 2.3.

Sketch of Proof. We decompose the proof into three steps.

1. The objective of the threshold 1
tβ

is to control Pt. Indeed, it is easy to lower bound
Pt by Pt < cI/t. However, we don’t have upper bounds of the form Pt 4 cI/t when
`′′(yt, θ̂

>
t xt) may be arbitrarily small, which is true for logistic regression. The threshold

yields the following control in Proposition 4.4: for any δ > 0, we have T1(δ) such that
with probability at least 1− δ, it holds:

∀t > T1(δ), Pt 4
4

Λmint1−β
I ,

where Λmin is the smallest eigenvalue of E[xx>]. A necessary assumption is thus that the
latter matrix is invertible.

2. From the recursive updates (2.4), we use the bound `′′ ≤ 1
4 . We assume ‖xt‖ ≤ DX

almost surely. It yields the following recursion on the risk:

L(θ̂t+1) ≤ L(θ̂t)−
∂L

∂θ

∣∣∣>
θ̂t

Pt

(
`′(yt, θ̂

>
t xt)xt

)
+ 2D4

Xλmax(Pt)
2 . (2.7)

From this recursion Bercu, Godichon, and Portier, 2020 obtain the almost sure conver-
gence of θ̂t to θ? applying the Robbins-Siegmund theorem. This result is intuitive because
the control on Pt yields ∑

t

(2D4
Xλmax(Pt)

2) <∞ ,

because 0 < β < 1
2 , and the middle term of Equation (2.7) yields a decrease of the risk in

expectation. The expected value of the middle term is lower bounded by 1
t ‖

∂L
∂θ |θ̂t‖

2.

3. We obtain non-asymptotic convergence by estimating the probability of the risk being far
from the optimal risk (at a distance greater than η > 0). To that end, we use the fact
that the variations of the algorithm are slow, and we look at the last iteration (if it exists)
such that the risk is close to the optimum risk (at a distance at most η/2).
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Figure 2.2 – Illustration of the proof of convergence of EKF or SGD. The blue trajectory is
unlikely because the iterates are far from the optimum during a long period. The red trajectory
is unlikely because the algorithm jumps from the inner ball to the outer ball in a few steps.

Formally we denote by Bk,t the event (∀k < s < t, L(θ̂s)− L(θ?) > η/2). We use the law
of total probability:

P(L(θ̂t)− L(θ?) > η) = P
(

(L(θ̂t)− L(θ?) > η) ∩B0,t

)
+

t−1∑
k=1

P
(

(L(θ̂t)− L(θ?) > η) ∩
(
L(θ̂k)− L(θ?) ≤ η

2

)
∩Bk,t

)
.

To estimate each probability we iterate Equation (2.7):

L(θ̂t)− L(θ̂k) ≤
t−1∑
s=k

(
∆Ms − λmin(Ps)

∥∥∥∥∂L∂θ ∣∣∣θ̂s
∥∥∥∥2

+ 2D4
Xλmax(Ps)

2

)
,

where (∆Mt) is a martingale difference. We divide the various k into two groups, and
we illustrate in Figure 2.2. For k small enough compared to t, the decrease of the risk
in expectation makes it unlikely that the estimate stays far from the optimum for a long
period. For k closer to t, the control of Pt yields a control on the probability that the
algorithm moves fast, and it makes it unlikely that the estimate moves away from the
optimum in t− k steps.

In Chapter 3 we present a more straightforward convergence proof for the stochastic gradient
descent algorithm with annealing step size. This algorithm allows us to consider a broader class
of functions L. As the gradient step is a scalar instead of a preconditioning matrix, we don’t
have to apply Step 1. Similarly as for the static EKF, we establish a non-asymptotic version of
the almost sure convergence proof Robbins and Monro, 1951.
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2.4 The Choice of the Variances in a State-Space Model

Obviously, we have not introduced the state-space model to consider the degenerate static
setting only. Our objective is to study the dynamic setting. We recall the linear Gaussian
state-space model, in which we are especially interested in this thesis:

State: θt = θt−1 + ηt , ηt ∼ N (0, Qt) , (2.8)

Space: yt = θ>t xt + εt , εt ∼ N (0, σ2
t ) . (2.9)

As presented in Section 2.2.2, the Kalman filter provides the exact estimation of the state re-
cursively for known variances Qt and σ2

t . In most applications, these variances are not known.
There is no consensus in the literature regarding the choice of these variances in a state-space
model.

In Part II we propose several approaches that we segment into two different paradigms.
Either we assume the variances are time-invariant and we estimate them on a training period, or
we don’t assume time-invariance and we estimate the variances adaptively. Let us prolong the
parallel between the Kalman filter and a gradient algorithm (2.2.3). The static setting is similar
to a gradient step converging to 0. The dynamic setting with constant variances is close to an
adaptive step size such as Adam with constant step sizes (Kingma and Ba, 2014). The dynamic
setting where variances are estimated online is a deeper adaptation level.

2.4.1 Constant Variances

The most usual choice in the literature we considered is to assume that the variances are
time-invariant (Brockwell and Davis, 2016; Durbin and Koopman, 2012; Fahrmeir and Tutz,
2013). Formally, the variances of Equations (2.8) and (2.9) are Qt = Q and σ2

t = σ2.
In that paradigm, the consensual objective is maximum likelihood on a training data set

(xt, yt)1≤t≤n. The most widely used method is the expectation-maximization (EM), consisting
of two alternating steps:

1. Expectation: for fixed variances, we estimate (θ̂t|n, Pt|n)t using Kalman filtering (Theo-
rem 2.1) and Smoothing (Theorem 2.2). Then we deduce the expectation of the complete
log-likelihood as a function of Q, σ2.

2. Maximization: for fixed (θ̂t|n, Pt|n)t we estimate the hyper-parameters Q, σ2 maximizing
the expectation of the complete log-likelihood.

In the linear Gaussian state-space model, these two steps admit closed-form solutions. Fixing
the variances, Kalman filtering and smoothing is exact. Conversely, fixing the Kalman estimates,
the maximum of the expectation of the complete log-likelihood has a closed-form expression.
Furthermore, this iterative procedure yields an appealing guarantee: at each step, the likelihood
increases.

However, the EM algorithm has two significant drawbacks. On the one hand, it is a costly
algorithm that converges slowly. On the other hand, while it guarantees the convergence towards
a local maximum of the likelihood, it does not converge towards a global maximum. Indeed, the
log-likelihood is not necessarily a concave function; see Figure 2.3.

We propose an alternative procedure. We estimate maximum-likelihood by an iterative grid
search on Q, and we restrict ourselves to diagonal covariance matrices. This restriction means
we assume that the coefficients of θt evolve independently from each other, and we believe it is
a reasonable restriction on the model. Remark that this assumption of independent evolution
of the coefficients does not yield independent evolution of the coefficients of the estimator θ̂t.
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Figure 2.3 – Log-likelihood for varying Q in a well-specified setting in dimension d = 2. We fix
σ2, θ̂1|0, P1|0. On the left: Q = qI2. On the right: Q = diag(1− q, q).

As the name iterative grid search suggests, we search in a grid for the diagonal coefficients of
Q; however, we do it iteratively and not exhaustively. At each step, we compute the likelihood
of the matrices Q having only one coefficient different from the previous iteration, and we keep
the one achieving the highest likelihood. Similarly as the EM algorithm, iterative grid search
does not guarantee the convergence to the global maximum, but we have seen better results in
practice.

We believe these better results come from greater robustness to two real-world phenomena.
First, the linear Gaussian state-space model with time-invariant variances is usually misspecified.
This means that the data are not generated by Equations (2.8) and (2.9) whatever the constant
variances Qt = Q and σ2

t = σ2. This does not undermine the model in practice. The interpreta-
tion as a gradient algorithm in Section 2.2.3 justifies that the algorithm is robust. However, the
misspecification may explain that a more empirical method may work better.

The second phenomenon exists in a lot of applications. It is the data availability delay. For
instance, in the case of the electric network, the consumption is not perfectly known in real-time;
instead, it is incrementally estimated. We have reliable estimation after a few days, and the final
consolidated load is published by RTE only months afterward. Formally, the delay means that
in order to forecast yt, we have at our disposal xt and observations x1, y1, . . . , xt−k, yt−k where
k is the delay. In the iterative grid search, we can optimize a variant of the likelihood taking the
delay into account. In a sense, we avoid overfitting. That is not the case of the EM algorithm,
as we show in Section 5.4. We illustrate that phenomenon in Figure 2.4 with a toy example.

Finally, an advantage of iterative grid search is its simplicity. It may be applied in any
state-space model with any variant of the Kalman filter.

2.4.2 Dynamical Variances

A second paradigm consists in estimating the variances of a state-space model over time. This
has frequently been called adaptive Kalman filtering (Mehra, 1972). In Chapter 6, we develop a
new method called Viking, estimating the state and the variances jointly.

Formally, we denote by Ft = σ(x1, y1, . . . , xt, yt) the natural filtration. We seek to apply
a Bayesian method. We start with a prior p(θ0, σ

2
0 , Q0 | F0) and we assume a model on the



38 CHAPTER 2. Introduction (English)

0 200 400 600 800 1000

−
2

−
1

0
1

2

Time

S
ta

te
 e

st
im

at
e 

(f
irs

t c
oo

rd
in

at
e)

Real θt, 1
KF estimate with Expectation−Maximization
KF estimate with iterative grid search

Figure 2.4 – Synthetic data in a misspecified setting. We use the dimension d = 2. The state
is defined as θt = cos( 2πt

100 ) · (1, 1)>, then xt ∼ N (0, I) and yt − θ>t xt ∼ N (0, 1). The delay is
k = 50, which is the worst-case scenario in terms of phase offset. The best is to have a small
matrix Q and not move too fast.

dynamics of these three variables p(θt, σ2
t , Qt | θt−1, σ

2
t−1, Qt−1). At each iteration t, we apply a

prediction step (following the dynamics of the model), and a filtering step (Bayes’ rule):

Prediction: p(θt, σ
2
t , Qt | Ft−1) ,

Filtering: p(θt, σ
2
t , Qt | Ft) .

However, there is no natural parametric class of distributions on the joint distribution such
that the posterior remains in the class considered. We then apply the Variational Bayes (VB)
approach (Šmídl and Quinn, 2006). This consists in approximating the joint distribution with a
product distribution of which each marginal has a simple form.

We keep a Gaussian marginal for θt in order to coincide with the exact posterior in the
degenerate setting where the variances are known. We introduce parametric distributions on σ2

t

and Qt of the form PΦt|t and PΨt|t and of densities pΦt|t and pΨt|t , where Φt|t and Ψt|t are the
parameters. We then estimate θ̂t|t, Pt|t,Φt|t,Ψt|t such that the product N (θ̂t|t, Pt|t)×PΦt|t×PΨt|t

is the "best" approximation of the posterior distribution denoted by PFt . Formally, we minimize
the Kullback-Leibler (KL) divergence:

KL
(
N (θ̂t|t, Pt|t)× PΦt|t × PΨt|t || PFt

)
,

where KL(P || Q) =
∫
x

log(p(x)/q(x))p(x)dx for any distributions P and Q of densities p and
q. At each step, the VB approach yields a coupled optimization problem in three distributions.

The prediction step is determined by the dynamics we propose in the model. We denote by
N (x | µ,Σ) the density of the Gaussian distribution N (µ,Σ) at point x. Starting from the prior

p(θt−1, σ
2
t−1, Qt−1 | Ft−1) = N (θt−1 | θ̂t−1|t−1, Pt−1|t−1)pΦt−1|t−1

(σ2
t−1)pΨt−1|t−1

(Qt−1) ,
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we naturally obtain the following density with suitable assumptions:

p(θt, σ
2
t , Qt | Ft−1) = N (θt | Kθ̂t−1|t−1,KPt−1|t−1K

> +Qt)pΦt|t−1
(σ2
t )pΨt|t−1

(Qt) ,

where Φt|t−1 and Ψt|t−1 have simple forms. This prediction step is introduced as a prior in the
filtering step, yielding the following posterior distribution:

p(θt, σ
2
t , Qt | Ft) =

p(xt,Ft−1)

p(Ft)
N (yt | θ>t xt, σ2

t )

N (θt | Kθ̂t−1|t−1,KPt−1|t−1K
> +Qt)pΦt|t−1

(σ2
t )pΨt|t−1

(Qt) .

We remark that whatever the parametric distributions on σ2
t and Qt, the joint posterior

distribution of the state and variances cannot be factorized. Therefore, it is natural to apply
the VB approach in order to estimate the posterior distribution with a simple factorized one.
Furthermore, the crossed factor involving θt and Qt in the preceding density prevents us from
applying the method introduced by Tzikas, Likas, and Galatsanos, 2008 to obtain an analytical
form for the KL minimum. We obtain upper bounds on the KL divergence, whose minimization
yields closed forms. Minimizing these upper bounds does not yield the KL minimum, but we
reduce the KL divergence at each step; this is the evidence-lower bound (ELBO) rule.

This brief overview of the VB approach was written for general parametric distributions for
σ2
t and Qt. Let us detail how we propose to define them in order to derive the algorithm Viking.

The recursive estimation of the posterior distribution does not suggest natural distributions sim-
plifying the KL divergence minimization. Therefore, we choose to represent the variances using
Gaussian variables. A significant advantage of a Gaussian latent variable is that dynamics is
naturally introduced in the form of a random walk. However, as variances must be nonnegative,
we transform these Gaussian variables. Specifically, we use σ2

t = exp(at) (log-normal distribu-
tion) and Qt = f(bt), where at, bt follow Gaussian distributions. The function f is a parameter
of the algorithm, for which we propose different possible choices. Thanks to this full Gaussian
representation, the approach may be summarized as follows:

θ0 ∼ N (θ̂0, P0) , a0 ∼ N (â0, s0) , b0 ∼ N (b̂0,Σ0) ,

at − at−1 ∼ N (0, ρa) , bt − bt−1 ∼ N (0, ρbI) ,

θt −Kθt−1 ∼ N (0, f(bt)) ,

yt − θ>t xt ∼ N (0, exp(at)) ,

where we introduce the (nonnegative) parameters ρa and ρb. These parameters govern the
dynamics of the latent variables at and bt, representing the variances σ2

t and Qt.

2.5 Application to Electricity Load Forecasting

In Part III, we apply state-space models to electricity load forecasting in various countries and
at various scales. One data set considers electricity net-load, defined as the difference between
the consumption and the embedded solar and wind productions, that we cannot control. We
introduce in Section 2.5.1 the generic framework on which we build our forecasting strategies. In
Section 2.5.2 we present mean forecasting (or median forecasting): we measure absolute errors,
and we attribute similar performances to positive and negative errors. In Chapter 10 introduced
in Section 2.5.3 we estimate consumption quantiles, that is probabilistic forecasing.
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Figure 2.5 – Flowchart of the method applied to forecast the electricity load. The increasing
number of arrows means an increase of the model numbers at a step. The different forecasting
models are aggregated or merged in the last step to yield a final forecast.

2.5.1 Application of the Linear Gaussian State-Space Model

We sum up the method in the flowchart of Figure 2.5. Specifically, for each time series fore-
casting problem encountered, we have explanatory variables, and we seek to forecast a variable
of interest. Our approach can be summarized in 4 steps, and we highlight the third as it is the
core of the thesis:

1. Pre-processing. We clean the data, and we select interesting explanatory variables.
We compute hand-designed features like exponential smoothing of the temperature. We
correct meteorological forecasts ...

2. Statistical / Machine Learning Models. We use classical time series forecasting
models. We focus on autoregressive, linear regression, generalized additive model (GAM)
and multi-layer perceptron (MLP). In most of our applications, these models are estimated
independently for each time of day. For instance, if we forecast the hourly consumption,
we have 24 different models. This step yields several possible models.

3. State-space Adaptation. We adapt the different models of Step 2 using the linear Gaus-
sian state-space model. We use the different variance estimation introduced in Part II.
Before applying the state-space model, we linearize the models that we adapt. For the
GAM, we freeze the nonlinear effects, and we adapt a linear combination of the (linear
and nonlinear) effects. For the MLP, we freeze the deepest layers, and we adapt the last
one only. In other words, we use Step 2 to learn new features, and we use these features
as explanatory variables in a linear Gaussian state-space model.

Formally, we forecast a quantity yt given explanatory variables xt. From Step 2 we obtain
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a new covariate vector f(xt), and we consider the following state-space model:

State: θt − θt−1 ∼ N (0, Qt) ,

Space: yt − θ>t f(xt) ∼ N (0, σ2
t ) .

We test the different estimation methods for σ2
t , Qt. We use the degenerate static setting

(Qt = 0), the time-invariant variances paradigm, and the dynamical variances framework.
The coronavirus crisis yielded a big break in the data. Therefore, in the data sets including
this crisis period, we introduce a break in the model itself at a specified time (mid-March
2020). To take the break into account, we define a big covariance matrix QT at the
specified break time T , and this matrix is set large compared to the usual values of Qt.

4. Post-processing. Finally, we transform the forecasts of Step 3 to obtain a final forecast.
To that end, we often relied on expert aggregation, detailed in the thesis of Gaillard, 2015.
Formally, we have different forecasts (experts) ŷt,1, . . . ŷt,K provided by Step 3. Our final
prediction is a weighted average of these experts,

∑
k pt,kŷt,k. In the linear combination

we use
∑
k pt,k = 1. The weights pt,1, . . . pt,K are estimated dynamically, that is, they are

time-varying to take into account the evolution of each expert’s recent performances.
Before this aggregation step, we use for one of the data sets an intraday correction in
order to take into account the correlation between the consumption at the different times
of the day.

2.5.2 Mean Forecast
We have applied this method on the data sets detailed below and displayed in Figure 2.6.

We evaluate through various evaluation metrics. The most classical are the mean absolute error
(MAE) and the root-mean-square error (RMSE), defined below for observations (y1, . . . yn) and
their associated forecasts (ŷ1, . . . ŷn):

MAE =
1

n

n∑
t=1

|yt − ŷt| , RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2 .

Chapter 7: Spring 2020 in France

The first application of the thesis is the French electricity consumption. Indeed, forecasting
French consumption is an essential issue for EDF. We therefore study in particular the interest of
the approach presented in the thesis for the French data set. We evaluate on a "normal" period
before March 2020. Then we study the special period of the coronavirus crisis, whose impact
was very strong, especially during the first lockdown from March to May 2020.

Compared to a non-adaptive generalized additive model, to which we apply an ARIMA
correction, we obtain a 7% reduction in RMSE on a pre-covid period. During the first month
of lockdown, the Kalman filter reduces the RMSE by 11%, boosted to 28% when we model the
break. During the following two months (a more stabilized but still chaotic period), we reduce
the RMSE by 42%. The aggregation of experts increases the gain significantly.

Chapter 8: Post-covid City-wide Forecasting Competition

We participated in the competition Day-Ahead Electricity Demand Forecasting: Post-COVID
Paradigm (Farrokhabadi, 2020). The organizers’ objective was to develop new forecasting strate-
gies robust to disruption, such as the coronavirus. The data set was a city whose location was
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Figure 2.6 – Data sets used for electricity load forecasting at different scales: France (left), an
unknown city (middle) or a building of unknown location (right).

undisclosed. While in Chapter 7 we are primarily interested in the lockdown period, in this
competition, the evaluation period was January-February 2021, about one year after the break.
Thus, while the lockdown is an extreme event, the competition’s setting was a less turbulent
period and aimed at defining prediction models adapted to the future rather than focused on a
past period.

We won the competition, improving the naive method given by the competition (persistence)
by over 30% in MAE.

Chapter 9: Building Forecasting Competition

We participated in a second competition, called Competition on Building Energy Consumption
Forecasting, whose objective was to forecast the electricity consumption of a building. This
competition allowed us to apply the method at a much smaller scale. It seems that adaptive
methods are necessary in this framework because the behavior change of one person has a non-
marginal impact, whereas this is not the case when the data are aggregated at the level of a
country or a large city.

We also won this competition, improving a naive method (persistence) by more than 30% in
MAE.

2.5.3 Probabilistic Forecast
In Chapter 10, we consider probabilistic forecasting. Instead of trying to minimize the abso-

lute error of our forecast with the variable of interest we forecast its quantiles. Precisely, let us
recall that yt is the variable to forecast, we seek to predict ŷt,q ∈ R such that P(yt < ŷt,q) = q.
We test different approaches.

— Let us first notice that the Kalman filter provides a probabilistic prediction by essence.
Indeed, we estimate the a posteriori distribution of the state θt as the Gaussian distribution
N (θ̂t|t−1, Pt|t−1). Furthermore, the state is defined such that yt−θ>t xt ∼ N (0, σ2

t ). Thus,
we can predict yt as a Gaussian distribution. Its q-quantile is then written as

ŷt,q = θ̂>t|t−1xt + Uq

√
σ2
t + x>t Pt|t−1xt ,

where Uq is the q-quantile of the standard normal distribution.
— However, the Gaussian a posteriori distribution property of the state relies heavily on

the state-space model. Let us keep in mind that the linear state-space model of known



2.5. Application to Electricity Load Forecasting 43

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pinball Loss for Various Quantile Levels

y

ρ q
(y

, 0
)

q=0.2
q=0.4
q=0.5
q=0.9

Figure 2.7 – Value of the pinball loss for different quantile levels, for ŷq = 0 and y variable. When
q ≤ 1

2 , the loss is more significant when y takes negative values and vice versa.

variances is not satisfied in the real world. Thus, in practice, it is best to use the state-
space models to forecast average consumption. Then we build a model on the distribution
of residuals (difference yt − ŷt, where ŷt is the forecast average).
Rather than seeking to minimise the absolute error of our forecast with the variable to be
forecast, we use an asymmetric error that assigns a larger loss to a negative (or positive)
error. This loss is called the pinball loss, defined as ρq(y, ŷq) = (1y<ŷq − q) (ŷq − y) and
displayed in Figure 2.7. The following proposition justifies that the optimization of this
loss results in probabilistic forecasts:
Proposition 2.2. Let Y be a real-valued random variable. For any 0 < q < 1, we denote
by Yq the q-quantile of Y . Then we have Yq ∈ arg minE[ρq(Y, Yq)].
Intuitively, when q ≤ 1

2 , the pinball loss takes larger values when the error is negative.
We thus tend to underestimate y: we will have a forecast for the quantile q lower than
the median.

We consider two data sets displayed in Figure 2.8.

Regional Net-load in Great Britain

We use the data set introduced by Browell and Fasiolo, 2021. It consists of the net-load
(demand reduced by solar and wind production) in Great Britain. Great Britain is decomposed
into 14 regions, and we use the models of Browell and Fasiolo, 2021, calibrated region by region.
Indeed, an aspect not much discussed in this thesis is that it is essential to balance the network
at more local levels, besides national equilibrium.

We evaluate on a normal pre-covid period and then look at the evolution of the different
models in 2020 and 2021.
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Figure 2.8 – Data sets considered for probabilistic forecasting: net-load in Great Britain decom-
posed in 14 regions (left), load in New York (right).

New York Load

The last data set used in this thesis is US data introduced by Ruan et al., 2020. We study
the evolution of consumption in New York. We are interested in daily consumption, whereas
previous data sets considered consumption at a finer time granularity (15 min, 30 min, or one
hour).
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Stochastic Optimization as a Static
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Chapter3
Non-asymptotic Robbins-Monro

In this chapter, we present a convergence analysis for a simple gradient descent algorithm,
relying on Azuma-Hoeffding inequality. This yields, with high probability, the convergence of
unconstrained stochastic gradient algorithms to a localized phase where the iterates are trapped
around the optimum. It may be helpful in order to extend guarantees obtained on constrained al-
gorithms to their equivalent on the unconstrained version. This technique is applied in Chapter 4.
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3.1 Introduction

We consider the classical problem of minimizing a convex function, having access to unbiased
estimates of its gradient. This problem is well-understood, and numerous guarantees have been
obtained on various algorithms.

The most widely used algorithm remains the simple stochastic gradient descent (SGD) of
Robbins and Monro, 1951, as well as its averaged variant (Polyak and Juditsky, 1992; Bach,
2014). More complex methods have been designed relying on second-order information. The
online Newton step (Hazan, Agarwal, and Kale, 2007) has been designed in the online setting
where the objective is to compete with an adversary, and guarantees have been generalized to
the stochastic setting where the gradients are independent and identically distributed (Mahdavi,
Zhang, and Jin, 2015). More simple methods have been designed to reduce the computational
cost of algorithms implying the estimation of a matrix of size the squared dimension of the
problem, still leveraging second-order information. That is the goal of AdaGrad (Duchi, Hazan,
and Singer, 2011) and Adam (Kingma and Ba, 2014).

The guarantees obtained on all these algorithms are not necessarily comparable because they
split into two interesting settings in the optimization community, online and stochastic. In the

47
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online setting, we have access to a series of loss functions `1, `2 . . . or their gradients. The objective
is to minimize the regret

∑n
t=1(`t(θ)− `t(θ?)), where θ? is the minimum of the cumulative loss,

depending on the horizon n and the loss functions `1, . . . `n that may be designed by an adversary.
We focus here on the stochastic setting where the goal is to minimize a convex function L that
is fixed. We assume that there exists a minimizer for L that we denote by θ?, and we have
access to `1, `2 . . . such that L(θ) = E[`t(θ)], or to ∇`1,∇`2 . . . such that ∇L(θ) = E[∇`t(θ)],
where ∇L is the gradient of L. Then a stochastic optimization algorithm defines an estimate
θn having observed `1, . . . `n (or their gradient equivalents), and the objective is to upper-bound
L(θn)− L(θ?).

We refer to Section 4.1.1 for a detailed presentation of the various guarantees existing in the
stochastic optimization literature. We don’t claim in this chapter to provide optimal bounds.
Instead, our objective is to provide a more elementary proof of convergence for SGD. We in-
terpret our result as a non-asymptotic variant of Robbins-Monro analysis. The latter yields
the almost sure convergence of the estimate to the optimum. We prove, with high probability,
the convergence of the algorithm to a localized phase where the estimates of the algorithm are
trapped in a small region around the optimum. This is a general method that can be applied
to any stochastic gradient algorithm, as is done in Chapter 4. Applying our approach leads
to deriving a two-step analysis for unconstrained algorithms. The first phase is a convergence
phase where the algorithm is hard to control. We control the duration of that first phase. In
the second (localized) phase, we can apply tight analyses that have been designed for constrained
algorithms.

In what follows, we consider the following recursion:

θ1 ∈ Rd ,
θt+1 = θt − γt∇`t(θt) ,

where γt is the gradient step size and ∇`t is the unbiased estimate of the gradient of L, which
we observe at time t. Our analysis considers γt = 1/tβ for some β.

We focus on SGD as it yields proofs that are more reader-friendly than algorithms relying on
a preconditioning matrix before the gradient. Instead of applying a scalar step size before the
gradient, a matrix is used to transform the gradient direction in these latter algorithms. This
matrix is generally designed to take second-order information into account.

3.1.1 Related Work: Application of Robbins-Siegmund Theorem
We present in this section a standard convergence analysis of SGD. We assume the gradients

of the losses are bounded, as well as the Hessian of the risk:

Assumption 3.1. There exists constants g, h > 0 such that for any θ ∈ Rd, it holds:
— ‖∇`t(θ)‖ ≤ g for any t ≥ 1.
— The Hessian of L denoted by ∇2L(θ) satisfies 0 4 ∇2L(θ) 4 hI.

Lemma 3.1. Let t ≥ 1. Under Assumption 3.1, we have:

L(θt+1) ≤ L(θt)− γt‖∇L(θt)‖2 + γ2
t g

2h+ ∆Mt ,

where ∆Mt = −γt∇L(θt)
>
(
∇`t(θt)−∇L(θt)

)
.

Proof. We first apply a second-order Taylor expansion on L: there exists 0 ≤ αt ≤ 1 such that

L(θt+1) = L(θt) +∇L(θt)
>(θt+1 − θt) +

1

2
(θt+1 − θt)>∇2L(θt + αt(θt+1 − θt))(θt+1 − θt) .
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Using the update formula on θ, as well as the upper bound on the Hessian of L, we obtain

L(θt+1) ≤ L(θt)− γt∇L(θt)
>∇`t(θt) + γ2

t g
2h ,

and the result follows.

Lemma 3.1 allows a recursive control of L(θt). Indeed, we have E[∆Mt] = 0. Therefore, the
recursive evolution of L(θt) in expectation depends on the sign of −γt‖∇L(θt)‖2 + γ2

t g
2h. The

classical convergence proof relies on the following theorem (Robbins and Siegmund, 1971):

Theorem 3.1 (Robbins-Siegmund Theorem). Let (zt), (βt), (ξt), (ζt) be non-negative random
variables adapted to a filtration (Ft), and satisfying

E[zt+1 | Ft] ≤ zt(1 + βt) + ξt − ζt, t ≥ 1.

Then on {
∑∞
t=1 βt <∞,

∑∞
t=1 ξt <∞}, we have almost surely the convergence of (zt) to a finite

limit, and almost surely
∑∞
t=1 ζt <∞.

This theorem, along with Lemma 3.1, yields the convergence of SGD under a few hypotheses.
Standard assumptions in the stochastic setting include independence and identical distribution
(i.i.d.), as well as the existence of a minimizer:

Assumption 3.2. ∇`1,∇`2, . . . are i.i.d. copies and ∇L = E[∇`1].

Assumption 3.3. There exists θ? ∈ Rd such that L(θ?) = min
θ∈Rd

L(θ).

To apply the Robbins-Siegmund theorem and deduce the almost sure convergence, we will
see that the following assumption is natural.

Assumption 3.4. For any η > 0, there exists Dη such that for any θ ∈ Rd,

L(θ)− L(θ?) >
η

2
=⇒ ‖∇L(θ)‖ > Dη .

These definitions yield the following convergence result.

Theorem 3.2. If Assumptions 3.1, 3.2, 3.3 and 3.4 are satisfied, and if the gradient steps satisfy∑∞
t=1 γt = +∞ and

∑∞
t=1 γ

2
t <∞, then almost surely L(θt) converges to L(θ?).

Proof. Let (Ft) be the natural filtration (σ(∇`1, . . . ,∇`t))t. Then from Lemma 3.1 we obtain

E[L(θt+1) | Ft] ≤ L(θt)− γt‖∇L(θt)‖2 + γ2
t g

2h .

We apply Theorem 3.1 with
∑∞
t=1 γ

2
t g

2h < ∞. Almost surely L(θt) converges to a finite limit,
and also almost surely

∑∞
t=1 γt‖∇L(θt)‖2 <∞.

We note that
∑∞
t=1 γt‖∇L(θt)‖2 <∞ and

∑∞
t=1 γt =∞ alone do not imply the convergence

of ‖∇L(θt)‖ to 0. Furthermore, as we do not assume that θ? is the unique minimum of L, the
convergence of ‖∇L(θt)‖ would not in turn imply the convergence of L(θt) to L(θ?). Assump-
tion 3.4 is the natural sufficient condition such that

∑∞
t=1 γt‖∇L(θt)‖2 <∞ is incompatible with

the convergence of L(θt) to a different limit than L(θ?). Indeed, for any η > 0, we have:

L(θt)→ L(θ?) + η =⇒ max{t ∈ N | ‖∇L(θt)‖ ≤ Dη} <∞

=⇒
∞∑
t=1

γt‖∇L(θt)‖2 =∞ .
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Assumption 3.4 is related to the local strong convexity that we define below. We show in
Proposition 3.1 that the local strong convexity is stronger than Assumption 3.4.

Assumption 3.5 (Local Strong Convexity). For any θ1, θ2 ∈ Rd such that ‖θ1 − θ?‖ ≤ ε and
‖θ2 − θ?‖ ≤ ε, it holds

L(θ2) ≥ L(θ1) +∇L(θ1)>(θ2 − θ1) +
µε
2
‖θ2 − θ1‖2 .

Proposition 3.1. If Assumption 3.5 is satisfied for given ε and µε, then Assumption 3.4 holds
for Dη =

√
min(µ2

εε
2, µεη).

Proposition 3.1 is proved in Appendix A.1. However, we state in the following example that
Assumptions 3.4 and 3.5 are not equivalent. Our interpretation is that Assumption 3.4 is not
sensitive to null eigenvalues in the Hessian, while the local strong convexity constant is the
minimal eigenvalue of the Hessian at θ? when ε is arbitrarily small.

Example. Let d = 2 and L((θ1 θ2)>) = 1
2θ

2
1. L is not locally strongly convex but satisfies

Assumption 3.4 with Dη =
√
η.

3.2 From Robbins-Siegmund to Azuma-Hoeffding

In this section, we rely on Azuma-Hoeffding inequality to prove the convergence of L(θt) to
L(θ?) with a non-asymptotic rate on SGD with the gradient step size γt = 1/tβ . We restrict to
the case 1/2 < β < 1, for which Robbins-Monro conditions stated in Theorem 3.2 are satisfied.

Our convergence proof crucially relies on the recursive upper bound on the risk provided by
Lemma 3.1. In this control, we need to estimate the decrease in expectation, that is, we need
to lower bound ‖∇L(θt)‖2. As in the proof of Theorem 3.2 we rely on Assumption 3.4. These
similar condition on Theorem 3.2 and 3.3 highlight the link between both results and motivate
our expression of non-asymptotic Robbins-Monro.

Theorem 3.3. Under Assumptions 3.1, 3.2, 3.3 and 3.4, for any η > 0 and

t ≥ max
(( 2(1− β)

D2
η(1− (1/2)1−β)

( 2g2h

2β − 1
+ L(θ1)− L(θ?)

)) 1
1−β

, 2 + 2
(4g2h

η

) 1
2β−1

)
,

it holds:

P (L(θt)− L(θ?) > η) ≤ (1 + t/2) exp
(
−D4

ηt
2(1−β)

(1− (1/2)1−β

2(1− β)

)2 (2β − 1)

16g4

)
+ (1 + t/2) exp

(
− η2(t/2− 2)2β−1 (2β − 1)

128g4

)
.

The two terms on the right-hand side outline the main idea of the proof. Indeed, similarly as
in the Robbins-Siegmund theorem, we rely on Lemma 3.1, and we consider a compromise between
two phenomena. On the one hand, the recursive evolution in expectation with

∑∞
t=1 γt = ∞

yields an estimate of the probability that the algorithm stays far from the optimum during a
long period. On the other hand, the decrease of the gradient step sizes with

∑∞
t=1 γ

2
t <∞ yields

a bound on the probability that the algorithm moves fast. That is illustrated in Figure 3.1.
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Figure 3.1 – Illustration of the proof of Theorem 3.3. We estimate the probability that the
algorithm moves from a small ball around θ? to a larger one. We build on the compromise
between the decrease in expectation and the slowness of the algorithm. The blue trajectory is
unlikely because the iterates are far from the optimum during a long period. The red trajectory is
unlikely because the algorithm jumps from the inner ball to the outer ball in a few steps. We note
that Theorem 3.3 is a result on the convergence of L(θt) to L(θ?), not of θt to θ? (in particular,
θ? may not be unique). This graph is nonetheless more intuitive than a unidimensional graph
on L(θt).

Theorem 3.3 implies that for any η > 0, P (L(θt)− L(θ?) > η) converges to 0. We translate
this into a rate of convergence. To that end, we need an explicit definition of Dη, otherwise
we cannot relate both exponential terms of the theorem to one another. Motivated by Proposi-
tion 3.1, we consider the case D2

η = ηµ, implied by local strong convexity (but not equivalent).
Setting β = 3/4 is optimal.

Corollary 3.1. We set β = 3/4. We assume 3.1, 3.2, 3.3 are satisfied, as well as 3.4 for
D2
η = ηµ with 0 < µ ≤ 1/

√
2. For t ≥ 8 and 0 < δ ≤ 1, it holds:

L(θt)− L(θ?) ≤
18g2(

√
ln δ−1 +

√
ln(t+ 2))

t1/4
max

(
µ−1,

(
2h+

L(θ1)− L(θ?)

4g2

)1/3

,
( h

10g2

)1/2)
,

with probability at least 1− δ.

Corollary 3.1 is proved in Appendix A.2. We now prove the convergence result.

Proof of Theorem 3.3. We start from Lemma 3.1: for any t,

L(θt+1) ≤ L(θt)−
1

tβ
‖∇L(θt)‖2 +

1

t2β
g2h+ ∆Mt ,

where ∆Mt = − 1
tβ
∇L(θt)

>
(
∇`t(θt)−∇L(θt)

)
. It yields, for any k < t,

L(θt)− L(θk) ≤
t−1∑
s=k

(
∆Ms −

1

sβ
‖∇L(θs)‖2 +

g2h

s2β

)
. (3.1)
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We are then interested in P(L(θt)−L(θ?) > η) for some η > 0. For 0 ≤ k ≤ t, we define Bk,t
the event (∀k < s < t, L(θs)− L(θ?) > η/2). Then we use the law of total probability:

P(L(θt)− L(θ?) > η) = P ((L(θt)− L(θ?) > η) ∩B0,t)

+

t−1∑
k=1

P
(

(L(θt)− L(θ?) > η) ∩
(
L(θk)− L(θ?) ≤ η

2

)
∩Bk,t

)
≤ P ((L(θt)− L(θ?) > η) ∩B0,t) +

t−1∑
k=1

P
((
L(θt)− L(θk) >

η

2

)
∩Bk,t

)
.

We get from Equation (3.1) and Assumption 3.4 that for any 1 ≤ k < t,

P ((L(θt)− L(θk) > η/2) ∩Bk,t) ≤ P

(( t−1∑
s=k

∆Ms > f(k, t)
)
∩Bk,t

)

≤ P

(
t−1∑
s=k

∆Ms > f(k, t)

)
,

where f(k, t) = η
2 +D2

η

t−1∑
s=k+1

1
sβ
− g2h

t−1∑
s=k

1
s2β

for any 1 ≤ k < t. Similarly, we get

P ((L(θt)− L(θ?) > η) ∩B0,t) ≤ P

(
t−1∑
s=1

∆Ms > f0(t)

)
,

with f0(t) = η − (L(θ1)− L(θ?)) +D2
η

t−1∑
s=1

1
sβ
− g2h

t−1∑
s=1

1
s2β

for any t ≥ 1.

We have E[∆Ms | x1, y1, ..., xs−1, ys−1] = 0, and almost surely |∆Ms| ≤ 2g2

sβ
. We can therefore

apply Azuma-Hoeffding inequality: for t, k such that f(k, t) > 0,

P

(
t−1∑
s=k

∆Ms > f(k, t)

)
≤ exp

(
−f(k, t)2 (2β − 1) max

(
1/2, (k − 1)2β−1

)
8g4

)

because
t−1∑
s=k

1
s2β

<
+∞∑
s=k

1
s2β
≤ 1

(2β−1) max(1/2,(k−1)2β−1)
. Similarly, for t such that f0(t) > 0,

P

(
t−1∑
s=1

∆Ms > f0(t)

)
≤ exp

(
−f0(t)2 2β − 1

16g4

)
.

We use the following controls on f(k, t), f0(t):

— If 1 ≤ k ≤ t/2− 1, as
t−1∑

s=k+1

1
sβ
≥ t1−β−(k+1)1−β

1−β and
t−1∑
s=k

1
s2β
≤ 2

(2β−1) we obtain:

f(k, t) ≥ η

2
− g2h

2

(2β − 1)
+D2

η

1− (1/2)1−β

1− β
t1−β ,
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and for t ≥
(

2(1−β)
D2
η(1−(1/2)1−β)

(
2g2h
2β−1 + L(θ1)− L(θ?)

)) 1
1−β

we have

f(k, t) ≥ D2
η

1− (1/2)1−β

2(1− β)
t1−β ,

f0(t) ≥ D2
η

1− (1/2)1−β

2(1− β)
t1−β .

— If k > t/2− 1 ≥ 2, as
t−1∑
s=k

1
s2β
≤ 1

(2β−1)(k−1)2β−1 we obtain

f(k, t) ≥ η

2
− g2h

1

(2β − 1)(t/2− 2)2β−1
,

and for t ≥ 2 + 2
(

4g2h
η

) 1
2β−1

we have f(k, t) ≥ η
4 .

This yields the result.

3.3 Application to Averaged Stochastic Gradient Descent

In this section, we apply our result to averaged SGD. Our sub-optimal convergence rates
are thus motivated by a two-step procedure relying first on the high probability convergence
bound and then accelerated to obtain optimal bounds. Averaging the estimates of SGD is known
to accelerate the convergence (Polyak and Juditsky, 1992). For any n, we define the averaged
iterate:

θn =
1

n

n∑
t=1

θt .

We provide an upper bound on the excess risk L(θn) − L(θ?). To that end, we use Jensen’s
inequality:

L(θn)− L(θ?) ≤ 1

n

n∑
t=1

(L(θt)− L(θ?)) , (3.2)

and we estimate the cumulative excess risk.
We start from the definition of SGD update. In the adversarial setting, we derive the following

bound on the first-order Taylor expansion of the excess risk. It holds without the need for i.i.d.
assumption or any form of convexity assumption.

Lemma 3.2. For any 1 ≤ k ≤ n and θ ∈ Rd, the following inequality holds in the adversarial
setting:

n∑
t=k

∇L(θt)
>(θt − θ) ≤

n∑
t=k

∆Nt +
1

2

n∑
t=k

‖θt − θ‖2
β

t1−β
+

1

2

n∑
t=k

‖∇`t(θt)‖2

tβ
,

where ∆Nt = (∇L(θt)−∇`t(θt))>(θt − θ).

From this result, we could obtain sub-optimal rates under Assumption 3.4. Indeed, from
Theorem 3.3 we obtain the convergence of θt to θ?. Therefore, the first term of the right-hand
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side of Lemma 3.2 is of order O(
√
n), the second term of order O(nβ) and the third of order

O(n1−β). As β > 1/2, the largest is O(nβ) asymptotically. Using Equation (3.2) and the
first-order convexity bound, we would bound the excess risk in O(1/n1−β).

We show in the following that under local strong convexity, we accelerate to the optimal
O(1/n) excess risk, with high probability.

In the vein of Corollary 3.1 we obtain the following corollary. For a locally strongly convex
risk, for any ball arbitrarily small around the optimum, we define explicitly a convergence time
such that the iterates of the SGD are trapped in the local ball after that convergence time with
high probability.

Corollary 3.2. We set β = 3/4 and we assume 3.1, 3.2, 3.3, and 3.5. For any ε, δ > 0, we
define

k =

(
2560g4

µ4
εε

4

(
ln δ−1 + ln(g4/(µ4

εε
4)) + 9

))2

.

Then it holds P

(
∞⋂

t=k+1

(‖θt − θ?‖ ≤ ε)

)
≥ 1− δ.

Motivated by this convergence property, we propose a two-step analysis for the averaged
SGD, and we decompose the cumulative risk into two parts. For a given ε and δ, we have a
first convergence phase that we bound using Corollary 3.2. The second phase is localized: the
iterates of SGD are trapped in the ball of radius ε around the optimum with high probability.
In that localized phase, we use local strong convexity in order to obtain the optimal rate.

We consider a final assumption which is that the gradients are Lipschitz. We already as-
sumed the gradient of the risk is Lipschitz, due to the second point of Assumption 3.1, but the
assumption on the losses is a little stronger.

Assumption 3.6. For any θ ∈ Rd such that ‖θ − θ?‖ ≤ ε it holds ‖∇`t(θ)‖ ≤ CLip‖θ − θ?‖
almost surely for any t.

We can now state our result for the averaged SGD.

Theorem 3.4. We assume 3.1, 3.2, 3.3, 3.5 and 3.6 are satisfied. We assume that we have an
integer k ≥ 1 satisfying k ≥ (4 max(1, C2

Lip)/µε)
1/β and P(∩∞t=k+1(‖θt− θ?‖ ≤ ε)) ≥ 1− δ. Then

for any n ≥ 1 and δ > 0, it holds

L(θn)− L(θ?) ≤ 16g2 ln δ−1

µεn
+

1

n

k∑
t=1

(L(θt)− L(θ?)) ,

with probability at least 1− 2δ.

The first term of the bound O(g2 ln δ−1/(µεn)) is optimal. However, we remark that if we
set β = 3/4 and if we use the value of k provided by Corollary 3.2, then the leading term in
Theorem 3.4 is the second term. Indeed, applying Corollary 3.1, we should be able to bound
this initializing cumulative excess risk (from 1 to k) as O(g2µ−1

ε (
√

ln δ +
√

ln k)k3/4). Removing
logarithmic terms and applying Corollary 3.2, we would then obtain

k∑
t=1

(L(θt)− L(θ?)) = O
( g8

µ7
εε

6
(ln δ−1)2

)
. (3.3)
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We obtain the fast 1/n rate but the leading constant is far from the optimal g2 ln δ−1/µε. There
is room for improvement:

— The first way to improve Theorem 3.4 is to consider a gradient step γt = γ/tβ for a well-
chosen γ depending on the horizon n as in Bach, 2014. Indeed, if we set 1/2 < β < 3/4
and γ = 1/n(3−4β)/2, the proofs of Theorem 3.3 and Corollary 3.1 are almost unchanged
and we claim it yields an excess risk with high probability of O(g2µ−1

√
ln δ−1/n1−β) for

iterate n (of SGD, not the averaged version). This yields an improvement on Corollary 3.2,
which in turn propagates to Theorem 3.4.
This strategy would reduce the exponents of Equation (3.3) but the second term of The-
orem 3.4 will still be greater than O(g2µ−1

ε ln δ−1/n).
— A second lead would be to relax the convergence property. Indeed, the assumption of

Theorem 3.4 (that we prove) is that the algorithm stays trapped in a small region around
the optimum. The property that with high probability, the algorithm does not leave
this small region is substantial. However, it could be possible to relax that property and
to split the cumulative excess risk into two sums. On the one hand, the sum over the
time steps when the algorithm is inside the ball around the optimum would be estimated
similarly with O(g2µ−1

ε ln δ−1/n). On the other hand, the second sum would be smaller
than the one of Theorem 3.4 by definition of k.

— Finally, a more structural change would be to estimate k and average only after the first
k steps. Algorithmically, it may be possible to compute the average only on the last steps
included in a small ball around the last iterate.

3.4 Conclusion

In this chapter, we proposed a new analysis of stochastic gradient descent. Relying on Azuma-
Hoeffding inequality, we proved a strong convergence property. With high probability, the esti-
mates stay trapped in a region arbitrarily small around the optimum. This motivates a two-phase
analysis, using that convergence and tighter bounds in the local phase. We applied that idea
in order to obtain a high probability bound on the excess risk of averaged stochastic gradient
descent.

We apply a very similar analysis in Chapter 4, where we analyze the static setting of the
extended Kalman filter.
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Chapter4
Stochastic Online Optimization using
Kalman Recursion

We study the Extended Kalman Filter in constant dynamics, offering a bayesian perspective
of stochastic optimization. For generalized linear models, we obtain high probability bounds on
the cumulative excess risk in an unconstrained setting, under the assumption that the algorithm
reaches a local phase. In order to avoid any projection step we propose a two-phase analysis.
First, for linear and logistic regressions, we prove that the algorithm enters a local phase where
the estimate stays in a small region around the optimum. We provide explicit bounds with high
probability on this convergence time, slightly modifying the Extended Kalman Filter in the lo-
gistic setting. Second, for generalized linear regressions, we provide a martingale analysis of the
excess risk in the local phase, improving existing ones in bounded stochastic optimization. The
algorithm appears as a parameter-free online procedure that optimally solves some unconstrained
optimization problems.

This chapter is based on a joint work with Olivier Wintenberger published in Journal of Ma-
chine Learning Research.
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4.1 Introduction

The optimization of convex functions is a long-standing problem with many applications. In
supervised machine learning it frequently arises in the form of the prediction of an observation
yt ∈ R given explanatory variables Xt ∈ Rd. The aim is to minimize a cost depending on the
prediction and the observation. We focus in this article on linear predictors, hence the loss
function is of the form `(yt, θ

>Xt).
Two important settings have emerged in order to analyse learning algorithms. In the online

setting (Xt, yt) may be set by an adversary. The assumption required is boundedness and the
goal is to upper estimate the regret (cumulative excess loss compared to the optimum). In
the stochastic setting with independent identically distributed (i.i.d.) (Xt, yt), we define the
risk L(θ) = E[`(y, θ>X)]. We focus on the cumulative excess risk

∑n
t=1 L(θ̂t) − L(θ?) where

θ? minimizes the risk. We obtain bounds holding with high probability simultaneously for any
horizon, that is, we control the whole trajectory of the risk. Furthermore, our bounds on the
cumulative risk all lead to similar ones on the excess risk at any step for the averaged version of
the algorithm.

Due to its low computational cost the Stochastic Gradient Descent (SGD) of Robbins and
Monro, 1951 has been widely used, along with its equivalent in the online setting, the online
gradient descent (Zinkevich, 2003) and a simple variant where the iterates are averaged (Ruppert,
1988; Polyak and Juditsky, 1992). More recently Bach and Moulines, 2013 provided a sharp
bound in expectation on the excess risk for a two-step procedure that has been extended to
the average of SGD with a constant step size (Bach, 2014). Second-order methods based on
stochastic versions of Newton-Raphson algorithm have been developed in order to converge faster
in iterations, although with a bigger computational cost per iteration (Hazan, Agarwal, and Kale,
2007).

In order to obtain a parameter-free second-order algorithm we apply a bayesian perspective,
seeing the loss as a negative log-likelihood and approximating the maximum-likelihood estimator
at each step. We get a state-space model interpretation of the optimization problem: in a well-
specified setting the space equation is yt ∼ pθt(· | Xt) ∝ exp(−`(·, θ>t Xt)) with θt ∈ Rd and the
state equation defines the dynamics of the state θt. The stochastic convex optimization setting
corresponds to a degenerate constant state-space model θt = θt−1 called static. As usual in
State-Space models, the optimization is realized with the Kalman recursion (Kalman and Bucy,
1961) for the quadratic loss and the Extended Kalman Filter (EKF) (Fahrmeir, 1992) in a more
general case. A correspondence has recently been made by Ollivier, 2018 between the static EKF
and the online natural gradient (Amari, 1998). This motivates a risk analysis in order to enrich
the link between Kalman filtering and the optimization community. We may see the static EKF
as the online approximation of bayesian model averaging, and similarly to its analysis derived
by Kakade and Ng, 2005 our analysis is robust to misspecification, that is we don’t assume the
data to be generated by the probabilistic model.

The static EKF is very close to the Online Newton Step (ONS) introduced by Hazan, Agarwal,
and Kale, 2007 as both are second-order online algorithms and our results are of the same flavor
as those obtained on the ONS (Mahdavi, Zhang, and Jin, 2015). However the ONS requires the
knowledge of the region in which the optimization is realized. It is involved in the choice of the
gradient step size and a projection step is done to ensure that the search stays in the chosen
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region. On the other hand the static EKF yields two advantages at the cost of being less generic.
First, there is no costly projection step and each recursive update runs in O(d2) operations,

where d is the dimension of the features Xt. Therefore, our comparison of the static EKF with
the ONS provides a lead to the open question of Koren, 2013. Indeed, the problem of the ONS
pointed out by Koren, 2013 is to control the cost of the projection step and the question is
whether it is possible to perform better than the ONS in the stochastic exp-concave setting. We
don’t answer the open question in the general setting. However, we suggest a general way to get
rid of the projection by dividing the analysis between a convergence proof of the algorithm to
the optimum and a second phase where the estimate stays in a small region around the optimum
where no projection is required.

Second, the algorithm is (nearly) parameter-free. We believe that bayesian statistics is the
reasonable approach in order to obtain parameter-free online algorithms in the unconstrained
setting. Parameter-free is not exactly correct as there are initialization parameters, which we
see as a smoothed version of the hard constraint imposed by bounded algorithm, but they have
no impact on the leading terms of our bounds. Static Kalman filter coincides with the ridge
forecaster and similarly the static EKF may be seen as the online approximation of a regularized
empirical risk minimizer.

4.1.1 Related Work

Theoretical guarantees for online and stochastic algorithms are multi-criteria and of various
natures. The comparison of upper-bounds or computational complexity highly depends on the
values of d the dimension of the explanatory vectors and n the time horizon, leading to different
views on whether the dependence on d or n is the most important. The nature of the guarantee
obviously depends on the objective pursued.

In the advesarial setting, the learner suffers a loss `t(θ̂t) depending on its estimate θ̂t at each
time step t. It is natural to minimize the cumulative loss, or equivalently the regret

n∑
t=1

`t(θ̂t)−
n∑
t=1

`t(θ
?) ,

where θ? reaches the minimum value of the cumulative loss and thus highly depends on (`t)1≤t≤n.
Under an assumption of bounded gradients, Zinkevich, 2003 proved that a first-order online
gradient descent yields a regret bound in O(

√
n). The Online Newton Step (ONS) is a second-

order online gradient descent that has been designed to obtain a regret bound in O(lnn) (Hazan,
Agarwal, and Kale, 2007) under the assumption that the losses are exp-concave. The improved
guarantee comes at a cost of O(d2) operations per step instead of O(d), along with a projection
at each step whose cost depends on the data.

In the stochastic setting where the losses (`t) are assumed i.i.d., the aim is to minimize the risk
L(θ) = E[`(θ)]. A natural candidate is the Empirical Risk Minimizer (ERM), whose asymptotics
are well understood (see for example Murata and Amari, 1999). Assuming the existence of θ?

minimizing the risk and that the Hessian matrix H? = ∂2

∂θ2L(θ?) is positive definite, the ERM
θ̂n satisfies

E[L(θ̂n)]− L(θ?) =
tr(G?H?−1)

2n
+ o(1/n) , G? = E

[ ∂
∂θ
`(y, θ?>X)

∂

∂θ
`(y, θ?>X)>

]
.

Although in the well-specified setting the identity tr(G?H?−1) = d holds, in the misspec-
ified case there is no general estimate for tr(G?H?−1). Recently a non-asymptotic bound
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ERM Averaged SGD ONS This article
Regret O(lnn)

Excess risk in expectation O( 1
n ) O( 1

n )

Excess risk w.h.p. O( ln δ−1

n ) O( ln δ−1
√
n

)

Cumulative excess risk w.h.p. O(lnn+ ln δ−1) O(lnn+ ln δ−1 + S(δ))
Cost per iteration Implicit O(d) O(d2) + Tproj O(d2)

Table 4.1 – Summary of existing results along with the static EKF for which we prove the
bound for the cumulative excess risk. We focus on the dependence on n, and δ for the bounds
holding with probability 1 − δ (w.h.p.). S(δ) is the cumulative excess risk of the convergence
phase. In Chapter 3, we prove that averaged SGD can achieve an excess risk O((ln δ−1)2/n) with
probability 1− δ, but with sub-optimal constants (Theorem 3.4).

L(θ̂n)− L(θ?) = O(tr(G?H?−1) ln δ−1/n) holding with probability 1− δ has been shown by Os-
trovskii and Bach, 2021 on the ERM. However the ERM is defined only implicitly and may have
important computational cost, hence recursive algorithms based on gradient descent have been
studied under different sets of assumptions to bound tr(G?H?−1).

The most simple is Stochastic Gradient Descent (SGD), where each step is in the opposite
direction of the gradient. This algorithm has been widely used with various step sizes. Sharp
results have been obtained by Bach, 2014 for a constant gradient step size C/

√
n with fixed

horizon n. Under the assumption that gradients are bounded by R we have tr(G?H?−1) ≤ R2/µ
where µ is the minimal eigenvalue of H?. The fast rate E[L(θn)] − L(θ?) = O(R2/(µn)) is
obtained by Bach, 2014 for the averaged estimate θn of SGD. In the same article the author
also derives a bound with high probability but with a slower rate: it degrades into L(θn) −
L(θ?) = O(log δ−1/

√
n) with probability 1 − δ. Finally, in the quadratic setting a fast rate

L(θn) − L(θ?) = O(1/(nδα)) is achieved with probability 1 − δ for a defined α > 0 (Bach and
Moulines, 2013).

To obtain fast rates with high probability beyond the quadratic setting, it seems necessary
to use second-order information as in the ONS (Mahdavi, Zhang, and Jin, 2015). Under the
assumption that the loss is α-exp-concave, tr(G?H?−1) ≤ d/α and for the averaged version of
the ONS the rate L(θn) − L(θ?) = O(d(lnn + ln δ−1)/(αn)) with probability 1 − δ is obtained.
From our perspective, the result is stronger than what is claimed by Mahdavi, Zhang, and Jin,
2015: the bound obtained is

n∑
t=1

L(θ̂n)− L(θ?) = O(lnn+ ln δ−1) , (4.1)

holding simultaneously for any n with probability 1 − δ. Note that although averaging this
bound with Jensen’s inequality leads to a sub-optimal bound on the excess risk of the last
averaged estimate, it is conversely not possible to obtain Equation (4.1) from

L(θ̂n)− L(θ?) = O(ln δ−1/n) ,

holding with probability 1− δ.

4.1.2 Contributions

Our first contribution is a local analysis of the static EKF under assumptions defined in
Section 4.2, and provided that consecutive steps stay in a small ball around the optimum θ?. We
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derive local bounds on the cumulative risk with high probability from a martingale analysis. Our
analysis of Section 4.3 is similar to the one of Mahdavi, Zhang, and Jin, 2015 and we slightly
refine their constants as a by-product.

We then show that the convergence property crucial in our analysis is reachable. To that
end we focus on linear regression and logistic regression as these two well-known problems are
challenging in the unconstrained setting. In linear regression, the gradient of the loss is not
bounded globally. In logistic regression, the loss is strictly convex, but neither strongly convex
nor exp-concave in the unconstrained setting. In Section 4.4, we develop a global bound in the
logistic setting on a slight modification of the algorithm introduced by Bercu, Godichon, and
Portier, 2020. We prove that this modified algorithm converges and stays into a local region
around θ? after a finite number of steps. Moreover we show that it coincides with the static EKF
and thus our local analysis applies. In Section 4.5, we apply our local analysis to the quadratic
setting. We rely on Hsu, Kakade, and Zhang, 2012 to obtain the convergence of the algorithm
after exhibiting the correspondence between Kalman filter in constant dynamics and the ridge
forecaster, and we therefore obtain similarly a global bound.

Finally, we demonstrate numerically the competitiveness of the static EKF for logistic regres-
sion in Section 4.6.

4.2 Definitions and Assumptions

We consider loss functions that may be written as the negative log-likelihood of a general-
ized linear model (McCullagh and Nelder, 1989). Formally, the loss is defined as `(y, θ>X) =
− log pθ(y | X) where θ ∈ Rd, (X, y) ∈ X ×Y for some X ⊂ Rd and Y ⊂ R and pθ is of the form

pθ(y | X) = h(y) exp

(
y θ>X − b(θ>X)

a

)
, (4.2)

where a is a constant and h and b are one-dimensional functions on which a few assumptions
are required (Assumption 4.3). This includes logistic and quadratic regressions, see Sections 4.4
and 4.5. We display the static EKF in Algorithm 1 in this setting (see Appendix B.1 for a
derivation relying on Durbin and Koopman, 2012). In the quadratic setting, noting that the
EKF estimate θ̂t does not depend on the (unknown) variance σ2, we consider the quadratic loss
`(y, ŷ) = (y − ŷ)2/2 by convention.

Algorithm 1 : Static Extended Kalman Filter for Generalized Linear Model

1. Initialization: P1 is any positive definite matrix, θ̂1 is any initial parameter in Rd.
2. Iteration: at each time step t = 1, 2, . . .

(a) Update Pt+1 = Pt − PtXtX
>
t Pt

1+X>t PtXtαt
αt with αt =

b′′(θ̂>t Xt)
a .

(b) Update θ̂t+1 = θ̂t + Pt+1
(yt−b′(θ̂>t Xt))Xt

a .

Due to matrix-vector and vector-vector multiplications, Algorithm 1 has a running-time com-
plexity of O(d2) at each iteration and thus O(nd2) for n iterations.

Note that although we need the loss function to be derived from a likelihood of the form (4.2),
we do not need the data to be generated under this process. We need two standard hypotheses
on the data. The first one is the i.i.d. assumption and bounded random design (all along the
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paper ‖.‖ is the Euclidean norm):

Assumption 4.1. The observations (Xt, yt)t are i.i.d. copies of the pair (X, y) ∈ X × Y and
there exists DX such that ‖Xt‖ ≤ DX almost surely (a.s.).

Working under Assumption 4.1, we define the risk function L(θ) = E
[
`(y, θ>X)

]
. Note

that in Section 4.3 we don’t need E[XX>] invertible, but we will make such an assumption
in Sections 4.4 and 4.5 to prove the convergence of the algorithm in the logistic and quadratic
settings, respectively. In order to work on a well-defined optimization problem we assume there
exists a minimum:

Assumption 4.2. There exists θ? ∈ Rd such that L(θ?) = inf
θ∈Rd

L(θ).

We treat two different settings requiring different assumptions, summarized in Assumption 4.3
and 4.4 respectively. First, motivated by logistic regression we define:

Assumption 4.3. There exists (κε)ε>0, (hε)ε>0 and ρε −−−→
ε→0

1 such that for any ε > 0 and any

θ, θ0 ∈ Rd satisfying max(‖θ − θ?‖, ‖θ0 − θ?‖) ≤ ε, we have
— `′(y, θ>X)2 ≤ κε`′′(y, θ>X) a.s.
— `′′(y, θ>X) ≤ hε a.s.
— `′′(y, θ>X) ≥ ρε`′′(y, θ>0 X) a.s.

Here `′ and `′′ are the first and second derivatives of ` with respect to the second variable.
Assumption 4.3 requires local exp-concavity (around θ?) along with some regularity on `′′ (`′′

continuous and `′′(y, θ?>X) ≥ γ > 0 a.s. is sufficient). That setting implies Y bounded, because
`′ depends on y whereas `′′ doesn’t. In logistic regression, Y = {−1,+1} and Assumption 4.3 is
satisfied for κε = eDX(‖θ?‖+ε), hε = 1

4 , ρε = e−εDX .
Second, we consider the quadratic loss, corresponding to a Gaussian model. In order to

include the well-specified setting and to bound G? = E[(y − θ?>X)2XX>], we assume y sub-
gaussian conditionally to X and not too far away from the model:

Assumption 4.4. The distribution of (X, y) ∈ X × Y satisfies
— There exists σ2 > 0 such that for any s ∈ R, E

[
es(y−E[y|X]) | X

]
≤ eσ

2s2

2 a.s.,
— There exists Dapp ≥ 0 such that |E[y | X]− θ?>X| ≤ Dapp a.s.

Both conditions of Assumption 4.4 hold with Y = R and Dapp = 0 for the well-specified
Gaussian linear model with random bounded design. The second condition of Assumption 4.4 is
satisfied for Dapp > 0 in misspecified sub-gaussian linear model with a.s. bounded approximation
error.

4.3 The Algorithm Around the Optimum

In this section, we analyse the cumulative risk under a strong convergence assumption. Pre-
cisely we define

τ(ε) = min{k ∈ N | ∀t > k, ‖θ̂t − θ?‖ ≤ ε} ,

where (θ̂t)t are the estimates of the static EKF, and with the convention min ∅ = +∞. We
assume a bound on τ(ε) holding with high probability:
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Assumption 4.5. For any δ, ε > 0, there exists T (ε, δ) ∈ N such that

P
(
τ(ε) ≤ T (ε, δ)

)
≥ 1− δ .

Assumption 4.5 states that with high probability there exists a convergence time after which
the algorithm stays trapped in a local region around the optimum. Sections 4.4 and 4.5 are
devoted to define explicitly such a convergence time for a modified EKF in the logistic setting
and for the true EKF in the quadratic setting.

We present our result in the bounded and sub-gaussian settings. The results and their proofs
are very similar, but two crucial steps are different. First, Assumption 4.3 yields a bound on
the gradient holding almost surely. We relax the boundedness condition for the quadratic loss
with a sub-gaussian hypothesis, requiring a specific analysis. Second, our analysis is based on a
second-order expansion. The quadratic loss is equal to its second-order Taylor expansion but we
need Assumption 4.5 along with the third point of Assumption 4.3 otherwise.

The following theorem is our result in the bounded setting.

Theorem 4.1. Starting the static EKF from any θ̂1 ∈ Rd, P1 � 0, if Assumptions 4.1, 4.2, 4.3,
4.5 are satisfied and if ρε > 0.95, for any δ > 0, it holds for any n ≥ 1 simultaneously

T (ε,δ)+n∑
t=T (ε,δ)+1

L(θ̂t)− L(θ?) ≤ 5

2
dκε ln

(
1 + n

hελmax(P1)D2
X

d

)
+ 5λmax

(
P−1
T (ε,δ)+1

)
ε2

+ 30
(
2κε + hεε

2D2
X

)
ln δ−1 ,

with probability at least 1− 3δ.

The constant 0.95 may be chosen arbitrarily close to 0.5 with growing constants in the bound
on the cumulative risk. There is a hidden trade-off in ε: on the one hand, the smaller ε the
better our upper-bound, but on the other hand T (ε, δ) increases when ε decreases, and thus our
bound applies after a bigger convergence time.

For the quadratic loss, we obtain the following result under the sub-gaussian hypothesis.

Theorem 4.2. In the quadratic setting, starting the static EKF from any θ̂1 ∈ Rd, P1 � 0, if
Assumptions 4.1, 4.2, 4.4 and 4.5 are satisfied, for any δ > 0 and any ε > 0, it holds for any
n ≥ 1 simultaneously

T (ε,δ)+n∑
t=T (ε,δ)+1

L(θ̂t)− L(θ?) ≤ 15

2
d
(
8σ2 +D2

app + ε2D2
X

)
ln

(
1 + n

λmax(P1)D2
X

d

)

+ 5λmax

(
P−1
T (ε,δ)+1

)
ε2 + 115

(
σ2
(

4 +
λmax(P1)D2

X

4

)
+D2

app + 2ε2D2
X

)
ln δ−1 ,

with probability at least 1− 5δ.

We observe a similar trade-off in ε as in Theorem 4.1. Up to numerical constants, the tight
constant d(σ2 +D2

app) (see for instance Hsu, Kakade, and Zhang, 2012) is achieved by choosing
ε arbitrarily small, at the cost of a loose control of the T (ε, δ) first steps.

Both results follow from a regret analysis close to the one on the ONS (see Section 4.3.1),
and on a control on the martingales stated below:

Lemma 4.1. Let k ≥ 0 and (∆Nt)t>k be any martingale difference adapted to the filtration
(Ft)t≥k such that for any t > k, E[∆N2

t | Ft−1] <∞. For any δ, λ > 0, we have the simultaneous
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Algorithm 2 : Recursive updates of the ONS and the static EKF
Online Newton Step Static Extended Kalman Filter

P−1
t+1 = P−1

t + `′(yt, w
>
t Xt)

2XtX
>
t , P−1

t+1 = P−1
t + `′′(yt, θ̂

>
t Xt)XtX

>
t ,

∇t = `′(yt, w
>
t Xt)Xt , ∇t = `′(yt, θ̂

>
t Xt)Xt ,

wt+1 =

P−1
t+1∏
K

(
wt −

1

γ
Pt+1∇t

)
, θ̂t+1 = θ̂t − Pt+1∇t ,

where
P−1
t+1∏
K

is the projection on K for the norm ‖.‖P−1
t+1

.

property
k+n∑
t=k+1

(
∆Nt −

λ

2
((∆Nt)

2 + E[(∆Nt)
2 | Ft−1])

)
≤ ln δ−1

λ
, n ≥ 1 ,

with probability at least 1− δ.

This result proved in Appendix B.2.1 is a corollary of a martingale inequality from Bercu and
Touati, 2008 and a stopping time construction (Freedman, 1975).

We detail the key ideas of the proofs in the rest of the Section, and we defer to Appendix B.2
the proof of the intermediate results along with the detailed proof of Theorems 4.1 and 4.2.
Specifically, we display in Section 4.3.1 the parallel with the ONS, where we compare with the
existing result on the cumulative risk, and a similar analysis yields an adversarial bound on a
second-order expansion of the loss. In Section 4.3.2 we compare the excess risk with its second-
order expansion thanks to Assumption 4.5, and we use a martingale analysis to obtain a bound
on the cumulative excess risk.

4.3.1 Comparison with Online Newton Step and Adversarial Analysis
We display the parallel between the ONS and the static EKF in Algorithm 2 through their

recursive updates. We observe that the square of the first derivative of ` is replaced with the
second derivative. Thus tP−1

t in the static EKF is an estimate of the Hessian H? which is the
optimal preconditioning matrix as shown in Corollary 3 of Murata and Amari, 1999. Then the
recursion on the parameter (wt and θ̂t) has two differences: there is a gradient step size 1/γ in
the ONS absent in the static EKF, and after the gradient step the ONS applies a projection.
Lemma 4.1 yields the following refinement on the bound of Mahdavi, Zhang, and Jin, 2015
obtained on the cumulative excess risk of the ONS:

Corollary 4.1. Assume the search region K has diameter D and the gradients are bounded
by R. Let (wt)t be the ONS estimates starting from w1 ∈ K, P1 = λI and using a step-size
γ = 1

2 min( 1
4RD , α) with α the exp-concavity constant of ` on K. Then for any δ > 0, it holds for

any n ≥ 1 simultaneously

n∑
t=1

L(wt)− L(θ?) ≤ 3

2γ
d ln

(
1 +

nR2

λd

)
+
λγ

6
D2 +

(
12

γ
+

4γR2D2

3

)
ln δ−1 ,

with probability at least 1− 2δ.
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For the sake of consistency, we display Corollary 4.1 as a bound on the cumulative excess
risk, whereas Theorem 3 of Mahdavi, Zhang, and Jin, 2015 is a bound on the excess risk of the
averaged ONS. The latter follows directly from an application of Jensen’s inequality. The proof of
Corollary 4.1 consists in replacing Theorem 4 of Mahdavi, Zhang, and Jin, 2015 with Lemma 4.1.
We obtain similar constants in Theorem 4.1 and in Corollary 4.1, as κε is the inverse of the exp-
concavity constant α. The use of second-order methods with well-tuned preconditioning is crucial
in order to replace the leading constant R2/µ obtained for first-order methods by d/α (µ is the
minimum eigenvalue of the hessian H?).

Our results on the static EKF are less general than the ones obtained on the ONS as a control
of the convergence time τ(ε) ≤ T (ε, δ) is required with high probability. On the other hand the
results obtained on the ONS require the knowledge of the exp-concavity constant α whereas the
static EKF is parameter-free. That is why we argue that the static EKF provides an optimal
way to tune the step size and the preconditioning matrix. Indeed, as ε is a parameter of the
EKF analysis but not of the algorithm, we can improve the leading constant κε on a local region
arbitrarily small around θ?, at a cost of a loose control of the T (ε, δ) first steps. In the ONS the
choice of a diameter D > ‖θ?‖ makes the gradient step-size sub-optimal and impacts the leading
constant.

Once the parallel between the ONS and the static EKF has been displayed (Algorithm 2),
it is natural to adopt an approach similar to the one in Hazan, Agarwal, and Kale, 2007. The
cornerstone of our local analysis is the derivation of an adversarial bound on the second-order
Taylor expansion of `, from the recursive update formulae.

Lemma 4.2. For any sequence (Xt, yt)t, starting from any θ̂1 ∈ Rd, P1 � 0, it holds for any
θ? ∈ Rd and n ∈ N that

n∑
t=1

((
`′(yt, θ̂

>
t Xt)Xt

)>
(θ̂t − θ?)−

1

2
(θ̂t − θ?)>

(
`′′(yt, θ̂

>
t Xt)XtX

>
t

)
(θ̂t − θ?)

)

≤ 1

2

n∑
t=1

X>t Pt+1Xt`
′(yt, θ̂

>
t Xt)

2 +
‖θ̂1 − θ?‖2

λmin(P1)
.

We cannot compare the excess loss with the second-order Taylor expansion in general, and it
is natural to use a step size parameter. In Hazan, Agarwal, and Kale, 2007, the regret analysis
of the ONS is based on a very similar bound on(

`′(yt, w
>
t Xt)Xt

)>
(wt − θ?)−

γ

2
(wt − θ?)>

(
`′(yt, w

>
t Xt)

2XtX
>
t

)
(wt − θ?) ,

where γ is a step size parameter. Then the regret bound follows from the exp-concavity property,
bounding the excess loss `(yt, w>t Xt) − `(yt, θ?>Xt) with the previous quantity for a specific γ.
The dependence of γ on the exp-concavity constant and the bound on the gradients require that
the algorithm stays in a bounded region around the optimum θ?, and a projection on this region
is used, potentially at each step.

We follow a very different approach, to stay parameter-free, unconstrained and to avoid any
additional cost in the leading constant. In the stochastic setting, we observe that we can upper-
bound the excess risk with a second-order expansion, up to a multiplicative factor.

4.3.2 From Adversarial to Stochastic: the Cumulative Risk

In order to compare the excess risk with a second-order expansion, we compare the first-order
term with the second-order one.
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Proposition 4.1. If Assumptions 4.1, 4.2 and 4.3 are satisfied, for any θ ∈ Rd, it holds

∂L

∂θ

∣∣∣>
θ

(θ − θ?) ≥ ρ‖θ−θ?‖(θ − θ?)>
∂2L

∂θ2

∣∣∣
θ
(θ − θ?) .

This result leads immediately to the following proposition, using the first-order convexity
property of L.

Proposition 4.2. If Assumptions 4.1, 4.2 and 4.3 are satisfied, for any θ ∈ Rd, 0 < c < ρ‖θ−θ?‖,
it holds

L(θ)− L(θ?) ≤
ρ‖θ−θ?‖

ρ‖θ−θ?‖ − c

(
∂L

∂θ

∣∣∣>
θ

(θ − θ?)− c(θ − θ?)> ∂
2L

∂θ2

∣∣∣
θ
(θ − θ?)

)
.

Lemma 4.2 motivates the use of c > 1
2 , thus we need at least ρ‖θ−θ?‖ > 1

2 . In the quadratic
setting, it holds as an equality with ρ = 1 because the second derivative of the quadratic loss is
constant. In the bounded setting we need to control the second derivative in a small range, and
we can achieve that only locally, therefore we separate the condition ρ‖θ−θ?‖ > 1

2 between the
third point of Assumption 4.3 and Assumption 4.5.

Then we are left to obtain a bound on the cumulative risk from Lemma 4.2. In order to
compare the derivatives of the risk and the losses, we need to control the martingale difference
adapted to the natural filtration (Ft) and defined as

∆Mt =

(
∂L

∂θ

∣∣∣
θ̂t

−∇t
)>

(θ̂t − θ?), where ∇t = `′(yt, θ̂
>
t Xt)Xt .

We thus apply Lemma 4.1 to this martingale difference.

Lemma 4.3. Starting the static EKF from any θ̂1 ∈ Rd, P1 � 0, if Assumptions 4.1 and 4.2 are
satisfied, for any k ≥ 0 and δ, λ > 0, it holds simultaneously

k+n∑
t=k+1

(
∆Mt − λ(θ̂t − θ?)>

(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

)
≤ ln δ−1

λ
, n ≥ 1 ,

with probability at least 1− δ.

The proof of Theorems 4.1 and 4.2 deferred to Appendix B.2 builds on the above results.
Summing Lemma 4.2 and 4.3, we obtain for any δ, λ > 0 the simultaneous bound

T (ε,δ)+n∑
t=T (ε,δ)+1

(
∂L

∂θ

∣∣∣>
θ̂t

(θ̂t − θ?)− (θ̂t − θ?)>
(1

2
∇(2)
t + λ∇t∇>t +

3

2
λE
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

)

≤ 1

2

T (ε,δ)+n∑
t=T (ε,δ)+1

X>t Pt+1Xt`
′(yt, θ̂

>
t Xt)

2 +
‖θ̂1 − θ?‖2

λmin(PT (ε,δ)+1)
+

ln δ−1

λ
, n ≥ 1 ,

with probability at least 1 − δ, where we define ∇(2)
t = `′′(yt, θ̂

>
t Xt)XtX

>
t for any t. In the

last equation, we control (see Appendix B.2.4 and B.2.5) the quadratic term in θ̂t − θ? on the
left hand-side in terms of (θ̂t − θ?)> ∂

2L
∂θ2 |θ̂t(θ̂t − θ

?) in order to lower-bound the left expression
proportionally to the cumulative excess risk using Proposition 4.2 for well chosen λ.
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Algorithm 3 : Truncated Extended Kalman Filter for Logistic Regression

1. Initialization: P1 is any positive definite matrix, θ̂1 is any initial parameter in Rd.
2. Iteration: at each time step t = 1, 2, . . .

(a) Update Pt+1 = Pt − PtXtX
>
t Pt

1+X>t PtXtαt
αt, with αt = max

(
1
tβ
, 1

(1+eθ̂
>
t Xt )(1+e−θ̂

>
t Xt )

)
.

(b) Update θ̂t+1 = θ̂t + Pt+1
ytXt

1+eytθ̂
>
t Xt

.

4.4 Logistic Setting

Logistic regression is a widely used statistical model in classification. The prediction of a
binary random variable y ∈ Y = {−1, 1} consists in modelling L(y | X) with

pθ(y | X) =
1

1 + e−yθ>X
= exp

(
yθ>X − (2 ln(1 + eθ

>X)− θ>X)

2

)
.

In the GLM notations, it yields a = 2 and b(θ>X) = 2 ln(1 + eθ
>X)− θ>X.

4.4.1 Results for the Truncated Algorithm

In order to prove the convergence of the algorithm needed in the local phase, we follow a trick
introduced by Bercu, Godichon, and Portier, 2020 consisting in changing slightly the update on
Pt. Indeed, when the authors tried to prove the asymptotic convergence of the static EKF
(which they named stochastic Newton step) using Robbins-Siegmund Theorem, they needed the
convergence of

∑
t λmax(Pt)

2. This seems very likely to hold as we have intuitively Pt ∝ 1/t.
However, in order to obtain λmax(Pt) = O(1/t), one needs to lower-bound αt, that is, to upper-
bound |θ̂>t Xt|, and that is impossible in the global logistic setting. Therefore, the idea is to force
a lower-bound on αt in its definition. We thus define, for some 0 < β < 1/2,

αt = max

(
1

tβ
,

1

(1 + eθ̂
>
t Xt)(1 + e−θ̂

>
t Xt)

)
, t ≥ 1 .

This modification yields Algorithm 3, where we keep the notations θ̂t, Pt, τ(ε) with some
abuse in the rest of this section. We impose a decreasing threshold on αt (β > 0) and we prove
that the recursion coincides with Algorithm 1 after some steps. The sensitivity of the algorithm
to β is discussed at the end of Section 4.4.2. Also, note that the threshold could be c/tβ , c > 0, as
in Bercu, Godichon, and Portier, 2020. We consider 1/tβ for clarity. We control the convergence
time τ(ε) of this version of the EKF:

Proposition 4.3. Starting Algorithm 3 from θ̂1 = 0 and any P1 � 0, if Assumptions 4.1 and
4.2 are satisfied and E[XX>] is invertible, for any ε, δ > 0, it holds τ(ε) ≤ T (ε, δ) along with

∀t > T (ε, δ), αt =
1

(1 + eθ̂
>
t Xt)(1 + e−θ̂

>
t Xt)

,

with probability at least 1− δ, where T (ε, δ) ∈ N is defined in Corollary 4.2.
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Besides the convergence of the truncated EKF, the proposition states that the truncated
recursions coincide with the static EKF ones after the first T (ε, δ) steps. Thus we can apply our
analysis of Section 4.3. We state the global result for ε = 1/(20DX):

Theorem 4.3. Under the assumptions of Proposition 4.3, for any δ > 0, it holds for any n ≥ 1
simultaneously

n∑
t=1

L(θ̂t)− L(θ?) ≤ 3deDX‖θ
?‖ ln

(
1 + n

λmax(P1)D2
X

4d

)
+
λmax(P−1

1 )

75D2
X

+ 64eDX‖θ
?‖ ln δ−1

+ T
( 1

20DX
, δ
)( 1

300
+DX‖θ̂1 − θ?‖

)
+ T

( 1

20DX
, δ
)2λmax(P1)D2

X

2
,

with probability at least 1− 4δ, where T (1/(20DX), δ) is defined in Corollary 4.2.

4.4.2 Explicit Definition of T (ε, δ) in Proposition 4.3

It is proved that ‖θ̂n− θ?‖2 = O (lnn/n) almost surely (Bercu, Godichon, and Portier, 2020,
Theorem 4.2). We don’t obtain a non-asymptotic version of this rate of convergence, but the
aim of this paragraph is to prove Proposition 4.3 for an explicit value of T (ε, δ) for any δ, ε > 0.

The objective of the truncation introduced in the algorithm is to improve the control on Pt.
We state that fact formally with a concentration result relying on Tropp, 2012. We define Λmin

the smallest eigenvalue of E[XX>].

Proposition 4.4. Under the assumptions of Proposition 4.3, for any δ > 0, it holds simultane-
ously

∀t >
(

20D4
X

Λ2
min

ln

(
625dD8

X

Λ4
minδ

))1/(1−β)

, λmax(Pt) ≤
4

Λmint1−β
,

with probability at least 1− δ.

This proposition justifies the choice β < 1/2 in the introduction of the truncated algorithm to
satisfy the condition

∑
t λmax(Pt)

2 < +∞ with high probability. Motivated by Proposition 4.4,
we define, for C > 0, the event

AC :=

∞⋂
t=1

(
λmax(Pt) ≤

C

t1−β

)
.

To obtain a control on Pt holding for any t, we use the relation λmax(Pt) ≤ λmax(P1) holding
almost surely. We thus define

Cδ = max

(
4

Λmin
, λmax(P1)

(
20D4

X

Λ2
min

ln
(625dD8

X

Λ4
minδ

)))
,

and we obtain P (ACδ) ≥ 1− δ. We obtain the following theorem under that condition.

Theorem 4.4. Under the assumptions of Proposition 4.3, we have for any δ, ε > 0 and t ≥



4.5. Quadratic Setting 69

exp
(

28D8
XC

2
δ (1+eDX (‖θ?‖+ε))3

Λ3
min(1−2β)3/2ε2

)
,

P(‖θ̂t − θ?‖ > ε | ACδ) ≤ (
√
t+ 1) exp

(
− Λ6

min(1− 2β)ε4

216D12
X C

2
δ (1 + eDX(‖θ?‖+ε))6

ln(t)2

)
+ t exp

(
− Λ2

min(1− 2β)ε4

211D4
XC

2
δ (1 + eDX(‖θ?‖+ε))2

(
√
t− 1)1−2β

)
.

The beginning of our convergence proof starts similarly as the analysis of Bercu, Godichon,
and Portier, 2020: we obtain a recursive inequality ensuring that (L(θ̂t))t is decreasing in expec-
tation. However, in order to obtain a non-asymptotic result we cannot apply Robbins-Siegmund
Theorem. Instead we use the fact that the variations of the algorithm θ̂t are slow thanks to the
control on Pt. Thus, if the algorithm was far from the optimum, the last estimates were far too
which contradicts the decrease in expectation of the risk. Consequently, we look at the last k ≤ t
such that ‖θ̂k − θ?‖ < ε/2, if it exists. We decompose the probability of being outside the local
region in two scenarii, yielding the two terms in Theorem 4.4. If k <

√
t, the recursive decrease

in expectation makes it unlikely that the estimate stays far from the optimum for a long period.
If k >

√
t, the control on Pt allows a control on the probability that the algorithm moves fast,

in t− k steps, away from the optimum.
The following corollary explicitly defines a guarantee for the convergence time.

Corollary 4.2. Proposition 4.3 holds with for any ε, δ > 0

T (ε, δ) = max

((
2(1 + eDX(‖θ?‖+ε))

)1/β

, exp
(3 · 215D12

X C
2
δ/2(1 + eDX(‖θ?‖+ε))6

Λ6
min(1− 2β)3/2ε4

)
, 6δ−1

)
.

This definition of T (ε, δ) allows a discussion on the dependence of the bound Theorem 4.3
on the different parameters. Note that the choice ε = 1/(20DX) in Theorem 4.3 is artificially
made for simplifying constants since the bound actually holds for any ε > 0 simultaneously.
The truncation has introduced an extra parameter 0 < β < 1/2 that does not impact the
leading term in Theorem 4.3. However, it impacts the first step control in an intricate way.
On the one hand, when β is close to 0, the algorithm is slow to coincide with the true EKF as
T (ε, δ) = eO(1)/β . On the other hand, the larger β, the larger our control on λmax(Pt) and thus
we get T (ε, δ) = eO(1)/(1−2β)3/2

. Practical considerations show that the truncation is artificial
and can even deteriorate the performence of the EKF, see Section 4.6. Thus Bercu, Godichon,
and Portier, 2020 suggest to choose β = 0.49.

The dependence on δ is even more complex. The third constraint on T (ε, δ) is O(δ−1) which
should not be sharp. To improve this lousy dependence in the bound, one needs a better control of
Pt. It would follow from a specific analysis of the O(ln δ−1) first recursions in order to "initialize"
the control on Pt. However the objective of Corollary 4.2 was to prove Proposition 4.3 and not
to get an optimal value of T (ε, δ). A refinement of our convergence analysis following from a
tighter control on Pt of the EKF than the one provided by Tropp, 2012 is a very important and
challenging open question.

4.5 Quadratic Setting

We obtain a global result for the quadratic loss where Algorithm 1 becomes the standard
Kalman filter (recall that we take σ2 = 1, that is `(y, ŷ) = (y − ŷ)2/2 and a = 1, b′(θ̂>t Xt) =

θ̂>t Xt, αt = 1).
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The parallel with the ridge forecaster was evoked by Diderrich, 1985, and it is crucial that
the static Kalman filter is the ridge regression estimator for a decaying regularization parameter.
It highlights that the static EKF may be seen as an approximation of the regularized ERM:

Proposition 4.5. In the quadratic setting, for any sequence (Xt, yt), starting from any θ̂1 ∈ Rd
and P1 � 0, the static EKF satisfies the optimisation problem

θ̂t = arg min
θ∈Rd

(
1

2

t−1∑
s=1

(ys − θ>Xs)
2 +

1

2
(θ − θ̂1)>P−1

1 (θ − θ̂1)

)
, t ≥ 1 .

Note that the static Kalman filter provides automatically a right choice of the ridge reg-
ularization parameter. This equivalence yields a logarithmic regret bound for the Kalman
filter (Theorem 11.7 of Cesa-Bianchi and Lugosi, 2006). It follows from Lemma 4.2 as the
quadratic loss coincides with its second-order Taylor expansion. The leading term of the bound
is d lnnmaxt(yt − θ̂>t Xt)

2, thus yt − θ̂>t Xt needs to be bounded.
As the static Kalman filter estimator is exactly the ridge forecaster, we can also use the

regularized empirical risk minimization properties to control T (ε, δ). In particular, we apply the
ridge analysis of Hsu, Kakade, and Zhang, 2012, and we check Assumption 4.5:

Proposition 4.6. Starting from any θ̂1 ∈ Rd and P1 � 0, if Assumptions 4.1, 4.2 and 4.4
hold and if E[XX>] is invertible then Assumption 4.5 holds for T (ε, δ) defined explicitly in
Appendix B.4, Corollary B.1.

Up to universal constants, defining Λmin as the smallest eigenvalue of E[XX>], we get

T (ε, δ) . h

(
ε−1

Λmin

(
‖θ̂1 − θ?‖2

p1
+

D2
X

Λmin
(1 +D2

app)
√

ln δ−1 + σ2d

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

p1
+ σ2

)
ln δ−1

))
,

with h(x) = x lnx. We obtain a much less dramatic dependence on ε than in the logistic setting.
However we could not avoid a Λ−1

min factor in the definition of T (ε, δ). It is not surprising since
the convergence phase relies deeply on the behavior of Pt.

As for the logistic setting, we split the cumulative risk into two sums. The sum of the first
terms is roughly bounded by a worst case analysis, and the sum of the last terms is estimated
thanks to our local analysis (Theorem 4.2). However, as the loss and its gradient are not bounded
we cannot obtain a similar almost sure upper-bound on the convergence phase. The sub-gaussian
assumption provides a high probability bound instead.

Theorem 4.5. Under the assumptions of Proposition 4.6, for any ε, δ > 0, it holds simultane-
ously

n∑
t=1

L(θ̂t)− L(θ?) ≤ 15

2
d
(
8σ2 +D2

app + ε2D2
X

)
ln

(
1 + n

λmax(P1)D2
X

d

)
+ 5λmax(P−1

1 )ε2

+ 115

(
σ2(4 +

λmax(P1)D2
X

4
) +D2

app + 2ε2D2
X

)
ln δ−1

+D2
X

(
5ε2 + 2(‖θ̂1 − θ?‖2 + 3λmax(P1)DXσ ln δ−1)2

)
T (ε, δ)

+
2λmax(P1)2D4

X(3σ +Dapp)2

3
T (ε, δ)3, n ≥ 1 ,
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with probability at least 1− 6δ.

Note that the dependence of the cumulative excess risk of the convergence phase on δ is
O(log(δ−1)3).

4.6 Experiments

We experiment the static EKF for logistic regression. Precisely, we compare the following
sequential algorithms that we all initialize at 0:

— The static EKF and the truncated version (Algorithm 3). We take the default value
P1 = Id along with the value β = 0.49 suggested by Bercu, Godichon, and Portier, 2020.
Note that a threshold 10−10/t0.49 as recommended by Bercu, Godichon, and Portier, 2020
would coincide with the static EKF.

— The ONS and the averaged version. The convex region of search is a ball centered in 0
and of radius Dθ = 1.1‖θ?‖, a setting where we have good knowledge of θ?. We consider
two choices of the exp-concavity constant on which the ONS crucially relies to define the
gradient step size. First, we use the only available bound e−DθDX . Second, in the settings
where the step size is so small that the ONS doesn’t move, we use the exp-concavity
constant κ0 at θ?. This yields a bigger step size, though the exp-concavity is not satisfied
on the region of search.

— Two Averaged Stochastic Gradient Descent as described by Bach, 2014. First we test the
choice of the gradient step size γ = 1/(2D2

X

√
N) denoted by ASGD and a second version

with γ = ‖θ?‖/(DX

√
N) denoted by ASGD oracle. Note that these algorithms are with

fixed horizon, thus at each step t, we have to re-run the whole procedure.

4.6.1 Synthetic Data
We first consider well-specified data generated by the process of Bercu, Godichon, and Portier,

2020. The explanatory variables X = (1, Z>)> are of dimension d = 11 where Z is a random
vector composed of 10 independent components uniformly generated in [0, 1], thus DX =

√
d.

With this distribution for X we define three synthetic settings that we evaluate:
— Well-specified 1: we define θ? = (−9, 0, 3,−9, 4,−9, 15, 0,−7, 1, 0)>, and at each itera-

tion t, the variable yt ∈ {−1, 1} is a Bernoulli variable of parameter (1 + e−θ
?>Xt)−1.

— Well-specified 2: in the first well-specified setting the Bernoulli parameter is mostly
distributed around 0 and 1 (see Figure 4.1), thus we try a less discriminated setting with
θ? = 1

10 (−9, 0, 3,−9, 4,−9, 15, 0,−7, 1, 0)>.
— Misspecified: In order to demonstrate the robustness of the EKF we test the algorithms

in a misspecified setting switching randomly between two well-specified logistic processes.
We define θ1 = 1

10 (−9, 0, 3,−9, 4,−9, 15, 0,−7, 1, 0)> and θ2 where we have only changed
the first coefficient from −9/10 to 15/10. Then yt is a Bernoulli random variable whose
parameter is either (1 + e−θ

>
1 Xt)−1 or (1 + e−θ

>
2 Xt)−1 uniformly at random. We checked

that Assumption 4.2 is still satisfied.
We evaluate the different algorithms with the mean squared error E[‖θ̂t − θ?‖2] that we approx-
imate by its empirical version on 100 samples. We display the results in Figure 4.2.

4.6.2 Real Data Sets
To illustrate better the robustness to misspecification, we run the same procedures on real

data sets:
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Figure 4.1 – Density of the Bernoulli parameter on 107 samples: on the left and on the middle
density of (1+e−θ

?>X)−1 for the two well-specified settings (left, the ordinate is in log scale), and
on the right density of (1 + e−θ

>
j Xt)−1 with j ∈ {1, 2} uniformly at random for the misspecified

setting. On the right we observe the two modes E[(1+e−θ
>
1 Xt)−1] ≈ 0.28 and E[(1+e−θ

>
2 Xt)−1] ≈

0.79.
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Figure 4.2 – Mean squared error in log-log scale for the three synthetic settings. For the first
well-specified setting (left) the ONS is applied using the exp-concavity constant κ0 ≈ 1.7 · 10−15

instead of e−Dθ
√
d to accelerate the algorithm, and both the ONS and its averaged version still

don’t move. In the other two (middle and right) we use e−Dθ
√
d for the ONS. We observe that

the EKF and the truncated version coincide in the two last settings.
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Setting d λmax(H?)/µ tr(G?H?−1) R2/µ deDθDX dκ0

Synthetic well-specified 1 11 6.9 · 102 1.7 · 102 1.0 · 105 9.2 · 1037 6.4 · 1015

Synthetic well-specified 2 11 1.5 · 102 7.1 · 101 2.5 · 103 5.4 · 104 3.3 · 102

Synthetic misspecified 3 11 1.5 · 102 7.1 · 101 2.0 · 103 3.6 · 103 7.4 · 101

Forest cover type 54 ∞ ∞ ∞ 9.2 · 1032 3.8 · 104

Adult income 98 2.5 · 107 7.2 · 105 5.3 · 108 1.8 · 1062 1.8 · 107

Table 4.2 – For the different experimental settings we display the dimension d and the condition
number of the Hessian at θ? (λmax(H?) and µ are the maximal and minimal eigenvalues of H?).
We present the value of tr(G?H?−1) which is bounded either by R2/µ, or by deDθDX because
e−DθDX bounds the exp-concavity constant on the centered ball of radius Dθ. We add to the
table dκ0 ≤ deDθDX where κ0 is the inverse of the exp-concavity constant of the loss at θ?.

— Forest cover-type (Blackard and Dean, 1999): the feature vector is of dimension d = 54,
and as it is a multi-class task (7 classes) we focus on classifying 2 versus all others. There
are n = 581012 instances and we randomly split in two halves for training and testing.

— Adult income (Kohavi, 1996): the objective is to predict whether a person’s annual
income is smaller or bigger than 50K. There are 14 explanatory variables, and we obtain
d = 98 once categorical variables are transformed into binary variables. We use the
canonical split between training (32561 instances) and testing (16281 instances).

For each data set, we standardize X such that each feature ranges from 0 to 1. At each step
we sample within the training set (with replacement). We evaluate through an empirical version
of E[L(θ̂n)] − L(θ?) estimated on 100 samples and where L is estimated on the test set, see
Figure 4.3.

4.6.3 Summary

Our experiments show the superiority of the EKF for logistic regression compared to the ONS
or to averaged SGD in all the settings we tested. We display in Table 4.2 a few indicators of the
data sets. In particular, it is interesting that the static EKF works well even in a setting where
the Hessian matrix H? is singular.

It appears clear that low exp-concavity constants are responsible of the poor performances of
the ONS. One may tune the gradient step size at the cost of losing the exp-concavity property
and thus the regret guarantee of (Hazan, Agarwal, and Kale, 2007) or its analogous for the
cumulative risk (Mahdavi, Zhang, and Jin, 2015). Averaging is crucial for the ONS, whereas it
is useless for the static EKF. Indeed we chose not to plot the averaged version of the EKF for
clarity, but the EKF performs better than its averaged version.

It is important to note that in the first synthetic setting the truncation deteriorates the
performance of the EKF, as well as in the adult income data set to a lesser extent, whereas the
results are the same in the other settings. Bercu, Godichon, and Portier, 2020 argue that the
truncation is artificially introduced for the convergence property, thus they use the threshold
10−10/t0.49 instead of 1/t0.49 and the truncated version almost coincides with the true EKF.
We confirm here that the truncation may be damaging if the threshold is set too high and
we recommend to use the EKF in practice, or equivalently the truncated version with the low
threshold suggested by Bercu, Godichon, and Portier, 2020.
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Figure 4.3 – Excess test risk for forest cover type (left) and adult income (right). As the ONS
doesn’t move when applied with the exp-concavity constant e−DθDX we use instead the exp-
concavity constant at θ?: κ0 ≈ 1.4 · 10−3 for forest cover type and κ0 ≈ 5.5 · 10−6 for adult
income. The EKF and the truncated version almost coincide for both data sets.
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4.7 Conclusion

We studied an efficient way to tackle some unconstrained optimization problems, in which we
get rid of the projection step of bounded algorithm such as the ONS. We presented a bayesian
approach where we transformed the loss into a negative log-likelihood. We used the Kalman
recursion to provide a parameter free approximation of the maximum-likelihood estimator. We
demonstrated the optimality of the local phase for locally exp-concave losses which can be ex-
pressed as GLM log-likelihoods. We proved the finiteness of the convergence phase in logistic and
quadratic regressions. We illustrated our theoretical results with numerical experiments for lo-
gistic regression. It would be interesting to generalize our results to a larger class of optimization
problems.

Finally, this article aimed at strengthening the bridge between Kalman recursion and the
optimization community. Therefore we made the i.i.d. assumption, standard in the stochastic
optimization literature and we focus on the static EKF. It may lead the way to a risk analysis
of the general EKF in non i.i.d. state-space models.
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Chapter5
Constant Variances in a Kalman Filter
with Delayed Observations

In this chapter, we discuss the choice of the hyper-parameters in a linear Gaussian state-space
model. We compare two heuristics. First, we derive the widely used expectation-maximization
algorithm. Second, building on the fact the log-likelihood is not necessarily a convex function,
we propose a more empirical approach. We provide a toy example on a time series with delayed
observations, and we claim that the proposed algorithm takes that practical delay into account,
while that is not the case of the EM algorithm.
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5.1 Introduction

We consider the linear Gaussian state-space model with time-invariant variances:

yt = θ>t xt + εt, εt ∼ N (0, σ2) , (5.1)
θt+1 = θt + ηt, ηt ∼ N (0, Q) . (5.2)

79
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For any integers t and m we define

θ̂t|m = E [θt | x1:m, y1:m] , Pt|m = E
[
(θt − θ̂t|m)(θt − θ̂t|m)> | x1:m, y1:m

]
,

where x1:m denotes the set (x1, . . . xm) and similarly for y. The context of this thesis is time
series forecasting, where xt ∈ Rd is the covariate vector and yt ∈ R is the variable to predict.
Therefore we are mostly interested in θ̂t|t−1, Pt|t−1. These values are exactly obtained by the
Kalman filter (Kalman and Bucy, 1961):

Pt|t = Pt|t−1 −
Pt|t−1xtx

>
t Pt|t−1

x>t Pt|t−1xt + σ2
, θ̂t|t = θ̂t|t−1 , (5.3)

Pt+1|t = Pt|t +Q , θ̂t+1|t = θ̂t|t−1 + Pt|txt(yt − θ̂>t|t−1xt) . (5.4)

Then, at each time step, we know that the distribution of yt given x1:(t−1), y1:(t−1), xt is the
Gaussian distribution of mean θ̂>t|t−1xt and variance x>t Pt|t−1xt + σ2.

The problem at hand is the choice of the hyper-parameters of the state-space model: the
model variances σ2, Q, along with the prior θ̂1|0, P1|0. We define the set of hyper-parameters
Θ = (σ2, Q, θ̂1|0, P1|0).

It is classical to maximize the likelihood in order to choose hyper-parameters. In this chapter
we present two heuristics. We first derive the expectation-maximization (EM) algorithm (see,
for instance, Watson and Engle, 1983), where the likelihood is expressed as the expectation of
the complete likelihood:

p(x1:n, y1:n | Θ) =

∫
θ1:n

p(x1:n, y1:n, θ1:n | Θ) .

Then we present a new heuristics maximizing directly the likelihood with an iterative algorithm
close to a grid search. It relies on the following expression of the log-likelihood:

ln p(x1:n, y1:n | Θ) =

n∑
t=1

ln p(yt | x1:(t−1), y1:(t−1), xt,Θ) + c ,

= −1

2

n∑
t=1

(
ln(2π) + ln(σ2 + x>t Pt|t−1xt) +

(yt − θ̂>t|t−1xt)
2

σ2 + x>t Pt|t−1xt

)
+ c , (5.5)

where c =
∑n
t=1 ln p(xt | x1:(t−1), y1:(t−1),Θ) is assumed independent of Θ in the model. In what

follows, we remove the constant c. For clarity, we don’t write θ̂t|t−1, Pt|t−1 as functions of Θ.

5.2 The Complete Likelihood and EM Algorithm

The most standard approach to optimize the log-likelihood is the EM algorithm. This algo-
rithm is an iterative algorithm increasing the likelihood at each step.
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5.2.1 Principle

Building on the complete likelihood, we observe that for any probability density function q,
it holds:

ln p(x1:n, y1:n | Θ) = ln

∫
θ1:n

p(x1:n, y1:n, θ1:n | Θ)dθ1:n

= ln

∫
θ1:n

p(x1:n, y1:n, θ1:n | Θ)

q(θ1:n)
q(θ1:n)dθ1:n

≥
∫
θ1:n

ln

(
p(x1:n, y1:n, θ1:n | Θ)

q(θ1:n)

)
q(θ1:n)dθ1:n

= Eq [ln p(x1:n, y1:n, θ1:n | Θ)] +H(q) := L(q,Θ) ,

where H(q) = −
∫
q ln q is the entropy of q. Third line is the application of Jensen inequality.

This inequality is an equality if q(θ1:n) = p(θ1:n | x1:n, y1:n,Θ). Thus we get for any Θ,

ln p(x1:n, y1:n | Θ) = L(p(. | x1:n, y1:n,Θ),Θ) = max
q
L(q,Θ) .

Furthermore, if Θ? is in arg maxΘ′ L(p(. | x1:n, y1:n,Θ),Θ′) then

ln p(x1:n, y1:n | Θ?) ≥ L(p(. | x1:n, y1:n,Θ),Θ?) ≥ L(p(. | x1:n, y1:n,Θ),Θ) = ln p(x1:n, y1:n | Θ) .

We have thus an iterative way to increase the log-likelihood at each step, called the expectation-
maximization algorithm. At each iteration k we have Θ(k) in hand. The E-step consists in
estimating p(. | x1:n, y1:n,Θ

(k)). The M-step consists in maximizing L(p(. | x1:n, y1:n,Θ
(k)),Θ)

in Θ. The guarantee of this algorithm (proved above) is that the likelihood is increased at each
step. However, there is no global guarantee.

We consider a deterministic prior θ1 = θ̂1|0, that is P1|0 = 0. This is not too strong because
the algorithm provides Q � 0 and thus (Pt|t−1) converges to an ergodic stationary process
(Bougerol, 1992), that is, the initial matrix P1|0 is vanishing. Then we have

ln p(x1:n, y1:n, θ1:n | θ̂1|0, Q, σ
2) = − 1

2

n−1∑
t=1

(θt+1 − θt)>Q−1(θt+1 − θt)−
n− 1

2
ln detQ

− 1

2

n∑
t=1

(yt − θ>t xt)2

σ2
− n

2
ln(σ2)− 2n− 1

2
ln 2π . (5.6)

As the previous expression is independent of θ̂1|0, we incorporate in the E-step a maximization
of the log-likelihood with respect to θ̂1|0. The EM algorithm thus consists of the following two
steps at each iteration:

— E-step: estimate θ̂(k+1)
1|0 maximizing the log-likelihood with fixed Q(k), σ2(k), then com-

pute θ̂t|n, Pt|n for given (θ̂
(k+1)
1|0 , Q(k), σ2(k)).

— M-step: maximize E
[
ln p(x1:n, y1:n, θ1:n | θ̂(k+1)

1|0 , Q(k), σ2(k)) | x1:n, y1:n, (θ̂t|n, Pt|n)t

]
with

respect to Q(k) and σ2(k).
The increase of the log-likelihood still holds even with this optimization in θ̂1|0 in the E-step.
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Algorithm 4 : Expectation-Maximization

— Input: x1:n, y1:n,θ̂
(0)
1 (default 0), Q(0) (default I), σ2(0) (default 1), N .

— Iteration: for k in 0 : (N − 1):
E-step:

1. Kalman Filter. Estimate θ̂∗t|t−1, Pt|t−1 as well as Ct|t−1 using Equations (5.3) and
(5.4), as well as (5.7) starting from θ̂∗1|0 = 0, P1|0 = 0 and using the variances
Q(k), σ2(k).

2. Set θ̂(k+1)
1 using Equation (5.8). Then set θ̂t|t−1 = θ̂∗t|t−1 + Ct|t−1θ̂

(k+1)
1 .

3. Kalman Smoothing. Compute (θ̂t|n, Pt|n)t with Equations (5.9) and (5.10).

M-step:
4. Compute σ2(k+1) using Equation (5.11).

Compute Q(k+1) using Equation (5.12).

— Outputs: θ̂(N)
1 , P1 = 0, σ2(N), Q(N).

Indeed, the update of θ̂(k)
1|0 increases the log-likelihood, and so does the M-step as explained at

the beginning of the section.

5.2.2 The EM Algorithm

We derive precisely the step-by-step procedure, and we summarize in Algorithm 4.

1. We first remark from Equations (5.3) and (5.4) that the estimate of the Kalman filter can
be decomposed as θ̂t|t−1 = θ̂∗t|t−1 + Ct|t−1θ̂1|0, where θ̂∗t|t−1 is the estimate obtained with
θ̂∗1|0 = 0, and

Ct+1|t =
(
I − P ∗t|txtx

>
t

)
Ct|t−1, t ≥ 1. (5.7)

2. Therefore the expression of the log-likelihood given in Equation (5.5) may be rewritten
as:

−1

2

n∑
t=1

(
ln(σ2 + x>t Pt|t−1xt) +

(yt − (θ̂∗t|t−1 + Ct|t−1θ̂1|0)>xt)
2

σ2 + x>t Pt|t−1xt

)
,

up to a constant. Therefore, we see that for fixed Q(k), σ2(k) and corresponding values of
(θ̂t|t−1, Pt|t−1, Ct|t−1)t, the maximum likelihood with respect to θ̂1|0 is obtained for

θ̂
(k+1)
1|0 =

(
n∑
t=1

C>t|t−1xtx
>
t Ct|t−1

1 + x>t Pt|t−1xt

)−1 n∑
t=1

(yt − θ̂∗>t|t−1xt)C
>
t|t−1xt

1 + x>t Pt|t−1xt
. (5.8)

3. We then need Kalman smoothing in addition to Kalman filtering: this is a downward
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recursion:

θ̂t|n = θ̂t|t + Pt|tP
−1
t+1|t(θ̂t+1|n − θ̂t+1|t) , (5.9)

Pt|n = Pt|t + Pt|tP
−1
t+1|t(Pt+1|n − Pt+1|t)P

−1
t+1|tPt|t . (5.10)

4. We obtain also a closed-form solution for the M-step. The expression of the expected
complete log-likelihood (5.6) is easily maximized with respect to σ2:

σ2 =
1

n

n∑
t=1

E[(yt − θ>t xt)2 | x1:n, y1:n, θt ∼ N (θ̂t|n, Pt|n)]

=
1

n

n∑
t=1

(
(yt − θ̂>t|nxt)

2 + x>t Pt|nxt

)
. (5.11)

Similarly, the maximum with respect to Q is obtained with:

Q =
1

n− 1

n−1∑
t=1

E
[
(θt+1 − θt)(θt+1 − θt)> | θt ∼ N (θ̂t|n, Pt|n)

]
=

1

n− 1

n−1∑
t=1

(
Pt+1|n + (θ̂t+1|n − θ̂t|n)(θ̂t+1|n − θ̂t|n)> + Pt|n (5.12)

− Pt+1|nP
−1
t+1|tPt|t − Pt|tP

−1
t+1|tPt+1|n

)
. (5.13)

5.3 Likelihood Optimization by Grid Search

This section is much inspired by Section 8.5 of Brockwell and Davis, 2016. In Section 5.3.1
we follow the same ideas. However no method was proposed to optimize the reduced likelihood
(Brockwell and Davis, 2016, Equation (8.5.12)), and we show in Section 5.3.2 that the obtained
optimization problem is not convex. We provide a heuristic in Section 5.3.3.

5.3.1 Derivation of the log-likelihood

We start from Equation (5.5):

ln p(x1:n, y1:n | Θ) = −1

2

n∑
t=1

(
ln(2π) + ln(σ2 + x>t Pt|t−1xt) +

(yt − θ̂>t|t−1xt)
2

σ2 + x>t Pt|t−1xt

)
.

We define P ∗t|t−1 = Pt|t−1/σ
2 and Q∗ = Q/σ2. Indeed, a remarkable property is that

θ̂t|t−1, P
∗
t|t−1 only depend on θ̂1|0, P

∗
1|0, Q

∗. In terms of forecasting, this means that the best
mean forecast fo yt, which is θ̂>t|t−1xt, depends only on θ̂1|0, P

∗
1|0, Q

∗. For probabilistic forecast-
ing it is however necessary to estimate σ2 and Pt|t−1, because the conditional variance of yt is
x>t Pt|t−1xt + σ2. Therefore,

ln p(x1:n, y1:n | Θ) = −n
2

(
ln(2π) + ln(σ2)

)
− 1

2

n∑
t=1

(
ln(1 + x>t P

∗
t|t−1xt) +

1

σ2

(yt − θ̂>t|t−1xt)
2

1 + x>t P
∗
t|t−1xt

)
.
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For fixed θ̂1|0, P
∗
1|0, Q

∗ and corresponding (θ̂t|t−1, P
∗
t|t−1), the maximum likelihood with respect

to σ2 is obtained for

σ2 =
1

n

n∑
t=1

(yt − θ̂>t|t−1xt)
2

1 + x>t P
∗
t|t−1xt

. (5.14)

It allows reducing the dimension of the optimization problem. Removing constants, we minimize
in θ̂1|0, P

∗
1|0, Q

∗ the following quantity:

S(θ̂1|0, P
∗
1|0, Q

∗) =
1

2

n∑
t=1

ln(1 + x>t P
∗
t|t−1xt) +

n

2
ln

(
1

n

n∑
t=1

(yt − θ̂>t|t−1xt)
2

1 + x>t P
∗
t|t−1xt

)
.

As in the last section, we observe that if θ̂∗t|t−1 is the Kalman estimate obtained with θ̂∗1|0 = 0,
we have θ̂t|t−1 = θ̂∗t|t−1 + Ct|t−1θ̂1 where Ct|t−1 is defined recursively (5.7). It yields:

S(θ̂1|0, P
∗
1|0, Q

∗) =
1

2

n∑
t=1

ln(1 + x>t P
∗
t|t−1xt) +

n

2
ln

(
1

n

n∑
t=1

(yt − θ̂∗>t|t−1xt − θ̂
>
1|0C

>
t|t−1xt)

2

1 + x>t P
∗
t|t−1xt

)
.

For given P ∗1|0, Q
∗, the minimum is reached for

θ̂1|0 =

(
n∑
t=1

C>t|t−1xtx
>
t Ct|t−1

1 + x>t P
∗
t|t−1xt

)−1 n∑
t=1

(yt − θ̂∗>t|t−1xt)C
>
t|t−1xt

1 + x>t P
∗
t|t−1xt

. (5.15)

Eventually, the maximum likelihood is reduced to the minimization of

`(P ∗1|0, Q
∗) =

1

2

n∑
t=1

ln(1 + x>t P
∗
t|t−1xt) +

n

2
ln

(
1

n

n∑
t=1

(yt − θ̂∗>t|t−1xt − θ̂
>
1|0C

>
t|t−1xt)

2

1 + x>t P
∗
t|t−1xt

)
. (5.16)

5.3.2 A Non-convex Log-likelihood

We relied on the ideas of Brockwell and Davis, 2016 to reduce the maximum likelihood
problem to the minimization of `(P ∗1|0, Q

∗). However, we claim that optimizing this function is
a complex problem because it is not convex. In particular, there can be multiple local optima.

We consider the smallest possible setting. We use 2-dimensional xt ∼ N (0, I2), and then yt
is generated by the well-specified state-space model: θ1 ∼ N (0, I2) and

yt − θ>t xt ∼ N (0, 1) ,

θt+1 − θt ∼ N (0, 10−3I2) .

For this data we plot the log-likelihood and its reduced version for varying Q∗ in Figure 5.1. We
observe that the log-likelihood has a nice shape for matrices proportional to I2, and the maximum
of the likelihood is reached for q ≈ 4 · 10−4. However, on the segment between diag(1, 0) and
diag(0, 1), the log-likelihood admits two local optima. It proves that the negative log-likelihood
is not necessarily convex or even quasiconvex. It explains why maximum likelihood estimation
has been a long-standing problem, and is likely to stay an interesting topic with no consensus
but various heuristics. The second conclusion of Figure 5.1 is that a priori knowledge on Q may
be very useful: maximizing the likelihood is simple when we know that Q is proportional to I2.
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Figure 5.1 – We fix P ∗1|0 = I and we plot the log-likelihood for different Q∗ with n = 1000. On
the top the likelihood is the one of (5.5) for known θ̂1|0, P

∗
1|0, σ

2. On the bottom we display the
reduced likelihood obtained for varying Q∗ and the associated values of σ2 and θ̂1|0 obtained
by Equations (5.14) and (5.15). We add constants to obtain comparable functions. On the left:
Q∗ = qI2. On the right: Q∗ = diag(1− q, q).
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Algorithm 5 : Iterative Grid Search
— Input: x1:n, y1:n, P ∗1|0 < 0 (default Id), qlist (default (0, 2−31, 2−30, . . . 1)).
— Initialization: Q∗(0) = 0, k = 0.
— Iteration: while Q∗(k) 6= Q∗(k−1):

— For any i ∈ {1, . . . d}, for each q in qlist, define Q∗i,q = Q∗(k) and set the coefficient i
of the diagonal of Q∗i,q to q, then:

1. Compute θ̂∗t|t−1, P
∗
t|t−1 using Kalman filter starting from θ̂1|0 = 0, P1|0 = P ∗1|0 and

with variances σ2 = 1, Q = Q∗i,q. Compute also Ct from Equation (5.7).

2. Compute θ̂1|0 from Equation (5.15).
3. Compute `(P ∗1|0, Q

∗
i,q) from Equation (5.16).

— Define Q∗(k+1) as the one maximizing `(P ∗1|0, Q
∗
i,q) among the matrices Q∗i,q.

Increment k → k + 1.
— Final steps: Set Q∗ = Q∗(k). As in each iteration step θ̂1 is computed given P ∗1|0, Q

∗.
Then we also compute σ2 from Equation (5.14).

— Outputs: θ̂1|0, P1 = σ2P ∗1|0, σ
2, Q = σ2Q∗.

In what follows, we derive a new algorithm to choose hyper-parameters. It consists in con-
straining the matrix Q to be diagonal, then selecting the best by an iterative grid search to
minimize the expression of Equation (5.16). Similarly as for the EM algorithm, the guarantee is
an increase of the likelihood at each step.

5.3.3 Grid Search

As the function `(P ∗1|0, Q
∗) is not convex, we don’t apply gradient descent, but we would

rather do some grid search. Precisely, our procedure consists in fixing P ∗1|0 to some value (by
default Id), and then try different diagonal matrices Q∗ where the coefficients are in a defined
list (by default, 0 or 2k, k ∈ {−30, . . . , 0}).

A grid search would yield a complexity O(Ld) where L is the size of the list, and that could
be very big even for moderate dimensions (L = 31 and d = 10 yields Ld ≈ 8 · 1014). Instead, we
optimize it in a greedy fashion first described in Obst, Vilmarest, and Goude, 2021: we begin
with Q∗(0) = 0, and at each step of the procedure, we change one coefficient increasing the most
the likelihood, see Algorithm 5. We stop when there is no possibility of increasing the likelihood
with only one coefficient change. Thus, each step has a cost O(Ld), and although there is no
guarantee of less than Ld steps, in practice, we do approximately d, leading to an empirical
O(Ld2) running time.

In the applications we considered, we believe the restriction for Q∗ is an advantage of our
approach. The evident drawback is that it degrades the optimal attainable likelihood. However,
our applications are misspecified, and we believe our algorithm reduces overfitting while main-
taining enough flexibility. In particular, we start from Q∗(0) = 0, and consequently, we obtain a
sparse covariance matrix.
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5.4 Experiment on Time Series With Delayed Observations

In most practical applications, the setting is not strictly online. The first challenge is the
delay in the availability of the observations. In the context of electricity consumption, it is
even more complex. The load is never perfectly known, but its estimation improves with time.
An estimate is available within a short period, but the demand estimate is final only months
afterward. In our applications in Part III, we didn’t consider noisy data, but we assume that the
estimate is final and exact with a delay k. As the state noise is centered and i.i.d., we can easily
obtain the mean and covariance matrix of θt conditionally to the observations we know:

θ̂t|t−k = θ̂t−k|t−k, Pt|t−k = Pt−k|t−k + kQ . (5.17)

A second operational constraint is that the model is not really updated at each time step.
Indeed, models are updated once a week, for example. From a prediction perspective, this
constraint means that the delay k is not constant anymore. The closer from the last update we
are, the smaller k.

The literature is limited concerning estimating the variances in a state-space model with
delayed observations. This is because if the state-space model is well-specified (that is, if Equa-
tions (5.1) and (5.2) generate the data), the introduction of a delay does not alter the data-
generating process and the likelihood. In that case, the best forecaster is still the Kalman filter
with the true state noise covariance matrix, using the estimate of Equation (5.17).

However, the data is misspecified in most practical applications, at least for those considered
in this manuscript. A Kalman filter handles conveniently misspecified data due to its robustness.
Still, for this sort of data, we should see the Kalman filter as a way to parametrize a gradient
descent algorithm, and we claim that it is natural to apply a more empirical hyper-parameter
selection.

Indeed, if we have some delay, we would prefer a careful model, not adapting too fast. Instead
of maximizing Equation (5.5) we maximize an altered likelihood:

n∑
t=1

(
−1

2
ln(2π)− 1

2
ln(σ2 + x>t Pt|t−kxt)−

1

2

(yt − θ̂>t|t−kxt)
2

σ2 + x>t Pt|t−kxt

)
.

The delay can also be a time-varying k(t). We expect this variant of the iterative grid search to
yield a smaller Q than the EM algorithm.

We confirm that intuition in practice on a toy data set. We use d = 2, a deterministic
θt = cos( 2πt

100 ) · (1, 1)>, then xt ∼ N (0, I) and yt − θ>t xt ∼ N (0, 1). The time period is n = 103

and the delay is k = 50, worst case scenario in terms of phase offset. We divide the data set in
two, we learn the hyper-parameters on the first half and we compute the root-mean-square-error
on the second. We obtain an error of 5.4 for the EM and 2.2 for the grid search. We display in
Figure 5.2 the evolution of the first coordinate of θt as well as the two Kalman estimates.

5.5 Conclusion

In this chapter, we considered the choice of the hyper-parameters in a state-space model under
the assumption of constant variances. We proposed two heuristics to maximize the likelihood.
The first one is the expectation-maximization algorithm. Then we introduced the iterative grid
search procedure. Three issues motivate this more empirical approach. The log-likelihood is
not convex, therefore we claim there is no efficient algorithm to maximize it. In general, the
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Figure 5.2 – Experiment on synthetic data with a constant delay k = 50.

data is not well-specified (generated by the state-space model with constant variances). Finally,
real-world data are often available with some delay.

Both methods crucially rely on the constant assumption and have the same goal, maximum
likelihood estimation. We present in Chapter 6 a totally different approach where the variances
are estimated adaptively.



Chapter6
Viking: Variational Bayesian Variance
Tracking

We consider the problem of time series forecasting in an adaptive setting. We focus on the
inference in state-space models under unknown and potentially time-varying noise variances.
We introduce an augmented model in which the variances are represented as auxiliary Gaussian
latent variables in a tracking mode. As variances are nonnegative, a transformation is chosen
and applied to these latent variables. The inference relies on the online variational Bayesian
methodology, which minimizes a Kullback-Leibler divergence at each time step. We observe that
the minimum of the Kullback-Leibler divergence is an extension of the Kalman filter, taking
into account the variance uncertainty. We design a novel algorithm named Viking, using these
optimal recursive updates. We use second-order bounds for the auxiliary latent variables, whose
optimum admit closed-form solutions. Experiments on synthetic data show that Viking behaves
well and is robust to misspecification (violation of the state-space data generation assumption).
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6.1 Introduction

Linear state-space models have been widely used to model a time series as a Gaussian random
variable whose mean is a time-varying linear function of covariates. The linear parameter is a
latent variable called state, and the hyper-parameters of the state-space model are the covariance
matrices of the state and space noises. When these variances are known, optimal recursive
estimation is achieved by the Kalman filter (Kalman and Bucy, 1961).

However, in most practical applications, the state and space noise variances are unknown. A
vast amount of literature has emerged to choose them. The paradigm of time-invariant variances
leads to maximum likelihood estimation on a historical data set (see for instance Brockwell and
Davis, 2016; Durbin and Koopman, 2012, as well as Chapter 5). Another approach is to estimate
these variances (fixed or not) in an online fashion, that is adaptive filtering (Mehra, 1972).

Recently, recursive variational Bayesian (VB) methods as introduced in (Beal, 2003; Šmídl
and Quinn, 2006) have gathered attention in the Kalman filtering community. The objective is
the online estimation of potentially time-variant parameters. The difference with the classical
Bayesian approach is that an approximation is realized at each step in order to make the inference
tractable: the distribution of the parameters is estimated by simple factorized distributions. The
best factorized distribution is defined as the one minimizing its Kullback-Leibler divergence with
the posterior.

A VB approach was first applied to estimate the observation noise covariance matrix in a
Kalman filter (Sarkka and Nummenmaa, 2009), then extended in Agamennoni, Nieto, and Nebot,
2012 to be robust to non-Gaussian noise and in Särkkä and Hartikainen, 2013 to nonlinear state-
space models. The covariance matrix is assumed diagonal and the prior used is a product
of inverse Gamma distributions. To allow for a dynamical noise variance, the authors use a
forgetting factor, multiplying the variances of the inverse Gamma posterior distributions by
a constant. The method was extended with an inverse Wishart prior (Huang et al., 2017).
At the same time, the authors apply the VB approach to correct the covariance matrix of
the state after applying Kalman recursions with an inaccurate state noise covariance matrix.
The inverse Wishart distribution appears as a nice conjugate prior to generalize the inverse
Gamma distribution. More recently, another adaptive Kalman filter was proposed in Huang et
al., 2020 to estimate the state and space noise covariance matrices simultaneously. The method
applies Kalman filtering and smoothing on a slide window and could be described as an online
Expectation-Maximization algorithm. In all these methods, the dynamics of the variances are
introduced through a forgetting factor.

Up to our knowledge, to deal with unknown covariance matrices in state-space models, all
existing methods apply at each step the standard Kalman filter with an estimate of the variances
updated in an adaptive fashion. In other words, the Kalman filter is combined with a variance
estimation algorithm. We claim that it is suboptimal and that the recursive update of the state
estimates should leverage the variance uncertainty. This article treats the variances as auxiliary
latent variables yielding an essential degree of freedom in an augmented latent representation.



6.2. Variance Tracking 91

We apply the VB approach, and we rely on second-order upper bounds to tackle the intractability
of the VB step.

6.1.1 Overview

In Section 6.2 we present the state-space inference problem, we introduce the VB principle,
and we motivate our augmented dynamical model. In Section 6.3 we study the VB minimiza-
tion problem. The algorithm is detailed in Section 6.4, and we provide experimental results in
Section 6.5.

6.1.2 Notations

Besides canonical notations we use the following.
— For any distribution P of probability density function (PDF) p, and any function φ,

Ex∼P [φ(x)] is defined as
∫
p(x)φ(x)dx.

— N (x | µ,Σ) is the PDF at point x of the Gaussian distribution N (µ,Σ).
— For any matrix M , ∆M is the vector composed of the diagonal coefficients of M . Recip-

rocally, for any vector v, Dv is the diagonal matrix whose diagonal is composed of the
coefficients of v.

— If φ : R→ R and x ∈ Rd, φ(x) is the d-dimensional vector obtained by applying φ to each
coordinate of x.

6.2 Variance Tracking

We consider the problem of time series forecasting in the univariate setting for simplicity. At
each time t we aim at forecasting yt ∈ R. To that end we have access to covariates xt ∈ Rd
as well as the past observations x1, y1, . . . xt−1, yt−1. We focus on a state-space representation
where yt is modelled as a linear function of xt whose linear parameter evolves dynamically:

θt = Kθt−1 + ηt ,

yt = θ>t xt + εt ,

where ηt ∼ N (0, Qt) and εt ∼ N (0, σ2
t ) are the (independent) state and space noises, and the

state follows the initial distribution θ0 ∼ N (θ̂0, P0). When σ2
t and Qt are known, the state vector

θt given the past observations follows a Gaussian distribution whose mean and covariance can
be estimated recursively by the standard Kalman filter (Kalman and Bucy, 1961). We focus on
the setting where these variances are unknown and need to be estimated jointly with the state.

6.2.1 Bayesian Approach

We apply a Bayesian approach in order to estimate jointly the state θt and the variances σ2
t , Qt

given the past observations. Remark, however, that the problem at hand remains the forecast of
yt; thus, the latent variable of interest is θt. Estimating σ2

t is necessary for a probabilistic forecast
of yt since it drives the noise variance. The covariance matrix Qt is added to open flexibility for
the estimation of the other variables in a dynamical way.

We introduce the filtration of the past observations Ft = σ(x1, y1, . . . , xt, yt). Then we define
a prior on the latent variables p(θ0, σ

2
0 , Q0 | F0), as well as a model on the dynamics of the

three latent variables represented by a transition density p(θt, σ
2
t , Qt | θt−1, σ

2
t−1, Qt−1). At
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each iteration t, the Bayesian approach consists of a prediction step using the dynamical model
assumed and a filtering step using Bayes’ rule:

Prediction: p(θt, σ
2
t , Qt | Ft−1) ,

Filtering: p(θt, σ
2
t , Qt | Ft) .

In the case of known variances, the standard Kalman filter is applied. The prediction step
yields θ̂t|t−1 and Pt|t−1 such that p(θt | Ft−1) = N (θt | θ̂t|t−1, Pt|t−1). Then the filtering step
yields θ̂t|t and Pt|t such that the posterior is p(θt | Ft) = N (θt | θ̂t|t, Pt|t).

We explain in the following paragraphs that for natural dynamical models, the posterior
distribution is analytically intractable. Therefore we estimate it with simple distributions.

6.2.2 Variational Bayesian Approach

A standard approach, referred to as recursive variational Bayes (VB), is to approximate the
posterior distribution recursively with a factorized distribution where each component is of a
simple form (Šmídl and Quinn, 2006). We apply this framework, and we estimate our posterior
distribution with a product of three distributions. We keep a Gaussian marginal for θt in order
to coincide with the exact posterior in the degenerate setting where the variances are known.
We introduce parametric distributions on σ2

t and Qt of the form PΦt|t and PΨt|t , where Φt|t
and Ψt|t are the parameters we want to estimate recursively. We denote by pΦt|t and pΨt|t their
PDFs. We look for θ̂t|t, Pt|t,Φt|t,Ψt|t such that the product N (θ̂t|t, Pt|t)×PΦt|t×PΨt|t is the best
approximation of the posterior distribution denoted by PFt . The approximation is quantified by
the Kullback-Leibler (KL) divergence:

KL
(
N (θ̂t|t, Pt|t)× PΦt|t × PΨt|t || PFt

)
, (6.1)

where KL(P || Q) =
∫
x

log(p(x)/q(x))p(x)dx for any distributions P and Q of PDFs p and q.
At each step, the VB approach yields a coupled optimization problem in three distributions.

The prediction step is determined by the dynamics we propose in the model. The state
equation yields the following transition density:

p(θt, σ
2
t , Qt | θt−1, σ

2
t−1, Qt−1) = N (θt −Kθt−1 | 0, Qt)p(σ2

t , Qt | σ2
t−1, Qt−1) .

Propagating the factorized approximation

p(θt−1, σ
2
t−1, Qt−1 | Ft−1) ≈ N (θt−1 | θ̂t−1|t−1, Pt−1|t−1)pΦt−1|t−1

(σ2
t−1)pΨt−1|t−1

(Qt−1) ,

the prediction step becomes:

p(θt, σ
2
t , Qt | Ft−1) ≈

∫∫∫
N (θt −Kθt−1 | 0, Qt)p(σ2

t , Qt | σ2
t−1, Qt−1)

N (θt−1 | θ̂t−1|t−1, Pt−1|t−1)pΦt−1|t−1
(σ2
t−1)pΨt−1|t−1

(Qt−1)dθt−1dσ
2
t−1dQt−1

≈ N (θt | Kθ̂t−1|t−1,KPt−1|t−1K
> +Qt)∫∫

p(σ2
t , Qt | σ2

t−1, Qt−1)pΦt−1|t−1
(σ2
t−1)pΨt−1|t−1

(Qt−1)dσ2
t−1dQt−1 .

The last double integral depends on the dynamical model imposed on σ2
t and Qt. It is natural
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to assume a dynamical model where the prediction step yields a factorized distribution:

p(θt, σ
2
t , Qt | Ft−1) ≈ N (θt | Kθ̂t−1|t−1,KPt−1|t−1K

> +Qt)pΦt|t−1
(σ2
t )pΨt|t−1

(Qt) .

Remark that this is in particular the case when the model is σ2
t = σ2

t−1 and Qt = Qt−1.
The filtering step uses the prediction step as a prior and yields the following posterior PDF:

p(θt, σ
2
t , Qt | Ft) =

p(xt,Ft−1)

p(Ft)
N (yt | θ>t xt, σ2

t )

N (θt | Kθ̂t−1|t−1,KPt−1|t−1K
> +Qt)pΦt|t−1

(σ2
t )pΨt|t−1

(Qt) .

We remark that whatever the parametric distributions on σ2
t and Qt, the joint posterior

distribution of the state and variances cannot be factorized. We mean that when we assert that
the posterior distribution is intractable. One could opt for numerical approaches. However, our
objective is to obtain recursive algorithms. Therefore, it is natural to apply the VB approach in
order to estimate the posterior distribution with a simple factorized one.

6.2.3 Absence of Conjugate Prior for Qt

The term N (θt | Kθ̂t−1|t−1,KPt−1|t−1K
> +Qt) in the posterior distribution makes a conju-

gate prior for Qt impractical in a VB method. Indeed, the standard procedure to maximize the
KL divergence (Tzikas, Likas, and Galatsanos, 2008) builds on the important following property:

Proposition 6.1. Let V = {θt, σ2
t , Qt} be the set of variables and (p?θt , p

?
σ2
t
, p?Qt) the PDFs

minimizing the KL divergence (6.1). For any variable x ∈ V, if EV\{x}[ln p(θt, σ2
t , Qt | Ft)] is of

the form ln px(x) then there exists a constant c such that

ln p?x(x) = EV\{x}[ln p(θt, σ2
t , Qt | Ft)] + c .

Therefore the standard algorithm to solve the KL minimization problem (6.1) starts from
some PDFs (pθt , pσ2

t
, pQt) and updates alternately one out of three, optimizing the KL with

respect to this one distribution and fixing the other two. For each x ∈ V, the update of its
distribution fixing the other two consists of the computation of EV\{x}[ln p(θt, σ2

t , Qt | Ft)] and
then the update

px(x) ∝ exp
(
EV\{x}[ln p(θt, σ2

t , Qt | Ft)]
)
.

This update works well for θt. Indeed, we obtain the logarithm of a Gaussian up to a constant:

Eσ2
t ,Qt∼PΦt|t×PΨt|t

[ln p(θt, σ
2
t , Qt | Ft)] = −1

2
(yt − θ>t xt)2Eσ2

t∼PΦt|t
[(σ2

t )−1]

− 1

2
(θt −Kθ̂t−1|t−1)>EQt∼PΨt|t

[(KPt−1|t−1K
> +Qt)

−1](θt −Kθ̂t−1|t−1) + c ,

where c is a constant independent of θt.
We can also obtain a conjugate prior for σ2

t . The inverse Gamma distribution, generalized
by the inverse Wishart distribution, yields an exact closed-form solution of the KL minimization
with respect to the distribution of σ2

t . That is well explained by Sarkka and Nummenmaa, 2009.
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However there is no conjugate prior for Qt. Precisely, we have

Eθt,σ2
t∼N (θ̂t|t,Pt|t)×PΦt|t

[ln p(θt, σ
2
t , Qt | Ft)] = ln pΨt|t−1

(Qt)−
1

2
ln det(KPt−1|t−1K

> +Qt)

− 1

2
Tr
(

((θ̂t|t −Kθ̂t|t−1)(θ̂t|t −Kθ̂t|t−1)> + Pt|t)(KPt−1|t−1K
> +Qt)

−1
)

+ c ,

where c is a constant independent of Qt. In particular the usual inverse Wishart distribution is
not a conjugate prior for Qt.

Proposition 6.1 is not applicable. Therefore we directly optimize the KL divergence, see
Section 6.3. We need approximations in the posterior estimation.

On the contrary, related work has focused on avoiding the KPt−1|t−1K
> + Qt matrix in

order to apply the approach of Tzikas, Likas, and Galatsanos, 2008. In Huang et al., 2017 the
authors focus on the correction of the matrix Pt|t−1, equivalent of KPt−1|t−1K

> + Qt. That
is the quantity obtained in the posterior distribution and the natural quantity to correct based
on the observations. However, the authors do not estimate Qt. Hence they cannot learn from
previous observations what correction should be applied on the Kalman filter. More recently,
the approach proposed by Huang et al., 2020 consists of applying a few iterations of Kalman
smoothing with the previous estimates of the variances σ̂2

t−1 and Q̂t−1. Then the authors estimate
the posterior distribution of σ2

t , Qt given Ft and the distribution of (θt−L, . . . , θt) obtained by
Kalman smoothing. In that way they get rid of the crossed matrix KPt−1|t−1K

> +Qt.

6.2.4 The Variance Tracking Model

We have presented the VB approach with general parametric distributions for σ2
t and Qt.

Let us detail how we define them in order to derive the algorithm Viking.
The recursive estimation of the posterior distribution does not suggest a natural distribution

for the covariance matrix Qt simplifying the KL divergence minimization. Therefore, we choose
Gaussian representations. A significant advantage of a Gaussian latent variable is that dynamics
is naturally introduced in the form of a random walk. In contrast, the dynamics is imposed on
inverse Wishart distribution with a forgetting factor (Sarkka and Nummenmaa, 2009; Huang
et al., 2020). However, as variances must be nonnegative, we transform these Gaussian variables.
Specifically, we use σ2

t = exp(at) (log-normal distribution) and Qt = f(bt), where at, bt follow
Gaussian distributions. We detail the choice of f in Section 6.3.2 where we define either scalar
covariance matrices (proportional to I) or diagonal ones. Remark that bt can be of any dimension,
as long as f(bt) is a d×d positive semidefinite matrix. Thanks to this full Gaussian representation,
the approach may be summarized as follows:

θ0 ∼ N (θ̂0, P0) , a0 ∼ N (â0, s0) , b0 ∼ N (b̂0,Σ0) ,

at − at−1 ∼ N (0, ρa) , bt − bt−1 ∼ N (0, ρbI) ,

θt −Kθt−1 ∼ N (0, f(bt)) ,

yt − θ>t xt ∼ N (0, exp(at)) ,

where we introduce the (nonnegative) parameters ρa and ρb. These parameters govern the
dynamics of the latent variables at and bt, representing the variances σ2

t and Qt.
Although we remarked in Section 6.2.3 that the inverse Gamma yields an analytical KL

minimum with respect to the distribution of σ2
t , we deliberately choose a log-normal distribution,

for which KL minimization is inexact. Two reasons motivate that choice. First, we highlight
the unity of the approach with a full Gaussian latent representation, with the appealing random
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walk interpretation of their trajectories. Second, this choice demonstrates the robustness of
Gaussian representations for the variances. Indeed, we show experimentally in Section 6.5.1
that, for known Qt, our model with log-normal σ2

t is equivalent to the estimation of Sarkka and
Nummenmaa, 2009 with an inverse Gamma. The introduced parameter ρa is the equivalent of
the forgetting factor ρ of Sarkka and Nummenmaa, 2009 (ρa is close to 0 whereas ρ is close to
1).

In the preceding set of equations we implicitly assume that we have

p(θt, at, bt | θt−1, at−1, bt−1) = p(θt | θt−1, bt)p(at | at−1)p(bt | bt−1) .

Applying the VB approach, we look for θ̂t|t, Pt|t, ât|t, st|t, b̂t|t,Σt|t such that the product of
Gaussian distributions N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) is the best approximation of the pos-
terior distribution.

Treating the approximation at time t−1 as a prior at time t, following the posterior derivation
of Section 6.2.2 we obtain:

p(θt, at, bt | Ft) =
p(xt,Ft−1)

p(Ft)
N (yt | θ>t xt, exp(at))N (θt | Kθ̂t−1|t−1,KPt−1|t−1K

> + f(bt))

N (at | ât−1|t−1, st−1|t−1 + ρa)N (bt | b̂t−1|t−1,Σt−1|t−1 + ρbI) . (6.2)

6.3 Kullback-Leibler Minimization

We first present a detailed expression of the KL divergence in the variance tracking model.
The proof of the results of this section are deferred to Appendix C.

Lemma 6.1. There exists a constant c independent of θ̂t|t, Pt|t, ât|t, st|t, b̂t|t,Σt|t such that

KL
(
N (θ̂t|t, Pt|t)×N (ât|t, st|t)×N (b̂t|t,Σt|t) || PFt

)
= −1

2
log detPt|t −

1

2
log(st|t) +

1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt) exp(−ât|t +
1

2
st|t) +

1

2
ât|t

− 1

2
log det Σt|t +

1

2
Ebt∼N (b̂t|t,Σt|t)

[ψt(bt)] +
1

2(st−1|t−1 + ρa)
(st|t + (ât|t − ât−1|t−1)2)

+
1

2
Tr
((

Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>
)
(Σt−1|t−1 + ρbI)−1

)
+ c ,

where

ψt(bt) = log det(KPt−1|t−1K
> + f(bt))

+ Tr
(

(Pt|t + (θ̂t|t −Kθ̂t−1|t−1)(θ̂t|t −Kθ̂t−1|t−1)>)(KPt−1|t−1K
> + f(bt))

−1
)
.

The rest of this section is devoted to minimizing the KL divergence expressed in Lemma 6.1.
We present the optimization in the state distribution in Section 6.3.1. This yields insights on
how to choose f , see Section 6.3.2. While the minimum of the KL divergence admits closed-form
solutions with respect to θ̂t|t, Pt|t, it does not with respect to the other parameters. We derive
closed-form approximations to the VB recursive step in Sections 6.3.3 and 6.3.4. We use the first
two moments of Gaussian distributions in second-order upper bounds. Minimizing the upper
bounds does not necessarily lead to the minimization of the KL divergence, but it guarantees
the decrease of the instantaneous KL divergence at each step.
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6.3.1 State Estimation

We easily obtain a closed-form solution to minimize the KL divergence with respect to
θ̂t|t, Pt|t.

Theorem 6.1. Given ât|t, st|t, b̂t|t,Σt|t, the values of θ̂t|t, Pt|t minimizing the KL divergence are
given by

At = Ebt∼N (b̂t|t,Σt|t)
[(KPt−1|t−1K

> + f(bt))
−1] , (6.3)

Pt|t = A−1
t −

A−1
t xtx

>
t A
−1
t

x>t A
−1
t xt + exp(ât|t − 1

2st|t)
, (6.4)

θ̂t|t = Kθ̂t−1|t−1 +
Pt|txt

eât|t−st|t/2
(yt − x>t Kθ̂t−1|t−1) . (6.5)

The updates defined above are the ones of the Kalman filter with known variances σ2
t and

Qt, where we have replaced σ2
t with exp(ât|t − 1

2st|t) which is Eat∼N (ât|t,st|t)[exp(at)
−1]−1 and

KPt−1|t−1K
> + Qt with Ebt∼N (b̂t|t,Σt|t)

[(KPt−1|t−1K
> + f(bt))

−1]−1. If st|t = 0,Σt|t = 0 then

we know the variances and we obtain the Kalman filter with σ2
t = exp(ât|t) and Qt = f(b̂t|t).

Otherwise if Σt|t 6= 0, the result states that the update of the Kalman filter with unbiased
estimated variances in place of the unknown variances is suboptimal in the sense of the Kullback-
Leibler divergence. It implies also that we do not expect to obtain unbiased estimates of the
variances.

It is important to remark that as long as ρb > 0 we do not have the convergence of Σt|t to
0. Therefore we do not recover the standard Kalman filter asymptotically. On the contrary,
existing adaptive Kalman filters use the standard Kalman recursive updates with estimates of
the variances (Sarkka and Nummenmaa, 2009; Agamennoni, Nieto, and Nebot, 2012; Särkkä
and Hartikainen, 2013; Huang et al., 2017; Huang et al., 2020). Therefore, in a well-specified
setting where the underlying generating process is the state-space model with time-invariant
variances, our method should be outperformed by adaptive Kalman filters with consistent vari-
ance estimates. We believe this drawback is a reasonable price to pay to get robustness to
misspecification.

Furthermore note that (6.5) may be interpreted as a gradient step on the quadratic loss,
where instead of a gradient step size we have the preconditioning matrix Pt|t/ exp(ât|t − 1

2st|t).
Therefore the algorithm derived in this article may be seen as a way to parameterize a second-
order stochastic gradient algorithm.

6.3.2 Choice of f

The natural transformation for the latent variables at and bt is the exponential, see Tyagi and
Davis, 2008 for a filter on latent variables lying in a Riemannian manifold. We use the exponential
to represent σ2

t . However setting f(bt) = exp(bt)I for a unidimensional bt contradicts a careful
property that we define as follows using the gradient interpretation of Section 6.3.1. We claim
that the algorithm should be more careful with uncertainty (Σt|t � 0) than without (Σt|t = 0).
By more careful we mean smaller gradient steps, that is formally A−1

t 4 KPt−1|t−1K
>+ f(b̂t|t).

By Jensen’s inequality, we have

At <
(
KPt−1|t−1K

> + Ebt∼N (b̂t|t,Σt|t)
[f(bt)]

)−1

.
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Therefore a sufficient (but not necessary) condition providing the careful property is f concave,
again thanks to Jensen, and that is the contrary of the exponential. Unfortunately we cannot
have both f concave and f < 0 (unless f is constant). We propose to use a function which is
zero on negative numbers and concave elsewhere:

φ(b) =

{
0 if b < 0 ,

log(1 + b) if b ≥ 0 .

Then we consider two settings for f : First a scalar setting where f(bt) = φ(bt)I for a unidi-
mensional bt. Second, a diagonal setting where bt ∈ Rd and f(bt) = Dφ(bt) is a diagonal matrix
whose diagonal coefficients are defined by the function φ applied to each coefficient of bt.

6.3.3 Observation Noise Variance Estimation

We present recursive updates for the observation variance distribution. As the KL divergence
does not admit analytical solutions with respect to ât|t, st|t, we optimize an upper bound of the
KL. Instead of the true optimum, we find approximations where the guarantee is to decrease the
instantaneous KL at each iteration.

Optimum in st|t

We are looking for st|t ≥ 0 minimizing the KL divergence. As the conditional variance of at
given Ft−1 is st−1|t−1 + ρa, we look for st|t in the interval [0, st−1|t−1 + ρa]. In this interval we
simply use a linear upper bound for the exponential:

Proposition 6.2. For any st|t ∈ [0, st−1|t−1 + ρa] we have

KL
(
N (θ̂t|t, Pt|t)×N (ât|t, st|t)×N (b̂t|t,Σt|t) || PFt

)
≤ 1

4
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât|tst|t +

1

2
(st−1|t−1 + ρa)−1st|t −

1

2
log(st|t) + cs ,

where cs is a constant independent of st|t. Furthermore, the upper bound is minimized by:

st|t =
(

(st−1|t−1 + ρa)−1 +
1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât|t

)−1

. (6.6)

Optimum in ât|t

To upper bound the exponential with a polynomial form also in ât|t we need to bound ât|t,
and we consider the segment [ât−1|t−1 −Ma, ât−1|t−1 + Ma] (we set arbitrarily Ma = 3st−1|t−1

to include more than 99% of the Gaussian distribution).

Proposition 6.3. For any ât|t ∈ [ât−1|t−1 −Ma, ât−1|t−1 +Ma] we have

KL
(
N (θ̂t|t, Pt|t)×N (ât|t, st|t)×N (b̂t|t,Σt|t) || PFt

)
≤ 1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât−1|t−1+st|t/2

(
− (ât|t − ât−1|t−1) +

eMa

2
(ât|t − ât−1|t−1)2

)
+

1

2
(st−1|t−1 + ρa)−1(ât|t − ât−1|t−1)2 +

1

2
ât|t + ca ,
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where ca is a constant independent of ât|t. Furthermore the upper bound is minimized by:

â = ât−1|t−1 +
1

2

( 1

st−1|t−1 + ρa
+

1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât−1|t−1+st|t/2+Ma

)−1

(
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât−1|t−1+st|t/2 − 1

)
,

ât|t = max(min(â, ât−1|t−1 +Ma), ât−1|t−1 −Ma) . (6.7)

We remark that ((yt − θ̂>t|txt)
2 + x>t Pt|txt)e

−ât−1|t−1+st|t/2 − 1 is the gradient with respect to
â of

E(θt,at)∼N (θ̂t|t,Pt|t)×N (â,st|t)
[logN (yt | θ>t xt, exp(at))]

= −1

2
â− 1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−â+st|t/2 ,

therefore (6.7) may be seen as a projected gradient step on an expected log-likelihood.

6.3.4 State Noise Covariance Matrix Estimation

The minimum of the Kullback-Leibler is also intractable in b̂t|t,Σt|t due to the absence of
analytical form for the expected value of ψt. In the following we focus on the specific settings
that are introduced in Section 6.3.2, namely the scalar setting f(bt) = φ(bt)I and the diagonal
setting f(bt) = Dφ(bt). For these two possible choices of f we have the following second-order
upper bound for ψt:

Proposition 6.4. In the scalar and diagonal settings defined in Section 6.3.2, for any t such
that f(b̂t−1|t−1) � 0, the following holds for any bt in a neighborhood of b̂t−1|t−1:

ψt(bt) ≤ ψt(b̂t−1|t−1) +
∂ψt
∂bt

∣∣∣>
b̂t−1|t−1

(bt − b̂t−1|t−1) +
1

2
(bt − b̂t−1|t−1)>Ht(bt − b̂t−1|t−1) ,

where Bt = Pt|t + (θ̂t|t −Kθ̂t−1|t−1)(θ̂t|t −Kθ̂t−1|t−1)>, Ct = KPt−1|t−1K
> + f(b̂t−1|t−1), and

then

∂ψt
∂bt

∣∣∣
b̂t−1|t−1

= Tr(C−1
t (I −BtC−1

t ))φ′(b̂t−1|t−1) ,

Ht = −Tr(C−1
t BtC

−1
t )φ′′(b̂t−1|t−1) + 2 Tr(C−2

t BtC
−1
t )φ′(b̂t−1|t−1)2 ,

in the scalar setting, and

∂ψt
∂bt

∣∣∣
b̂t−1|t−1

= ∆C−1
t (I−BtC−1

t ) � φ
′(b̂t−1|t−1) ,

Ht = −
(
C−1
t BtC

−1
t Dφ′′(b̂t−1|t−1)

)
� I + 2C−1

t BtC
−1
t � C−1

t � φ′(b̂t−1|t−1)φ′(b̂t−1|t−1)> ,

in the diagonal setting, with � the Hadamard (pointwise) product.

The upper bound of the Kullback-Leibler divergence obtained thanks to the proposition above
admits a closed-form minimum:
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Proposition 6.5. In the scalar and diagonal settings, for any t such that f(b̂t−1|t−1) � 0 and
any b̂t|t,Σt|t,

KL
(
N (θ̂t|t, Pt|t)×N (ât|t, st|t)×N (b̂t|t,Σt|t) || PFt

)
≤ −1

2
log det Σt|t +

1

2

∂ψt
∂bt

∣∣∣>
b̂t−1|t−1

(b̂t|t − b̂t−1|t−1)

+
1

2
Tr
(

(Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>)
(

(Σt−1|t−1 + ρbI)−1 +
1

2
Ht

))
+ cb ,

where Ht is defined in Proposition 6.4 and cb is a constant independent of b̂t|t,Σt|t. The minimum
of the upper bound detailed above is obtained with:

Σt|t =
(

(Σt−1|t−1 + ρbI)−1 +
1

2
Ht

)−1

, (6.8)

b̂t|t = b̂t−1|t−1 −
1

2
Σt|t

∂ψt
∂bt

∣∣∣
b̂t−1|t−1

. (6.9)

Similarly as (6.7) we can interpret (6.9) as a gradient step on ψt and we can remark that
ψt(b̂) is the following expected log-likelihood:

ψt(b̂) = Eθt∼N (θ̂t|t,Pt|t)
[logN (θt | Kθ̂t−1|t−1,KPt−1|t−1K

> + f(b̂))] .

Thus, except the exact recursive steps on θ̂t|t, Pt|t which are extensions of the Kalman filter steps,
our recursive steps resemble stochastic gradient variational Bayes as described in Knowles, 2015.
This novel class of algorithms is very popular for tuning complex deep learning networks; see
for instance Kingma and Welling, 2014; Tjandra et al., 2015. There, the expectation of the log-
likelihood is approximated by Monte-Carlo simulation, and only the first order of the gradient is
used.

6.4 Viking

We now introduce the algorithm following the recursive updates described in the previous
section.

6.4.1 Definition of the Algorithm

Theorem 6.1 yields exact recursive updates for θ̂t|t, Pt|t but A−1
t does not admit an explicit

form. We propose to run Monte-Carlo estimation of At with very small samples (nmc = 10
draws by default). As the KL optimization is a coupled problem we solve it in a classical
iterative fashion, that is, we repeat N times the updates alternately (N = 2 is a good default
value). We summarize the procedure in Algorithm 6. We name it Viking (Variational Bayesian
Variance Tracking).

6.4.2 Complexity
We decompose the number of operations of Viking in Table 6.1. Although matrix multipli-

cation and inversion have the same asymptotic complexity, inversion is more costly in practice.
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Algorithm 6 : Viking at time step t
Time-invariant parameters: ρa, ρb, nmc, f .
Default: ρa = e−9, ρb = e−6, nmc = 10, f(·) = Dφ(·).
Inputs: θ̂t−1|t−1, Pt−1|t−1, ât−1|t−1, st−1|t−1, b̂t−1|t−1, Σt−1|t−1, xt, yt.
Initialize:
Set â(0)

t|t = ât−1|t−1, s
(0)
t|t = st−1|t−1 + ρa.

Set b̂(0)
t|t = b̂t−1|t−1, Σ

(0)
t|t = Σt−1|t−1 + ρb.

Iterate: for i = 1, . . . , N :
— 1. Set At using (6.3) with Monte-Carlo from nmc samples of N (b̂

(i−1)
t|t ,Σ

(i−1)
t|t ).

Compute A−1
t .

2. Set P (i)
t|t , θ̂

(i)
t|t using (6.4) and (6.5), with A−1

t from Step 1 and â(i−1)
t|t , s

(i−1)
t|t .

— If we learn σ2
t :

3. Set s(i)
t|t using (6.6) with θ̂(i)

t|t , P
(i)
t|t , â

(i−1)
t|t .

4. Set â(i)
t|t using (6.7) with θ̂(i)

t|t , P
(i)
t|t , s

(i)
t|t .

— If we learn Qt:
5. Set Σ

(i)
t|t , b̂

(i)
t|t using (6.8) and (6.9). Apply threshold b̂(i)t|t = max(b̂

(i)
t|t , 0).

Outputs: θ̂t|t = θ̂
(N)
t|t , Pt|t = P

(N)
t|t , ât|t = â

(N)
t|t , st|t = s

(N)
t|t , b̂t|t = b̂

(N)
t|t ,Σt|t = Σ

(N)
t|t .

Steps Operations
1 nmcS + (nmc + 1)I(d) +O(M(d))
2 O(d2)

3 and 4 O(d2)
5 3I(d) +O(M(d))

Whole N
(
nmcS + (nmc + 4)I(d) +O(M(d))

)
Table 6.1 – Complexity of Algorithm 6. S denotes the complexity of gaussian draw, M(d) and
I(d) denote the complexity of matrix multiplication and inversion.

We suggest N = 2 and nmc = 10 as default. Therefore, the complexity of Viking is essentially
driven by the complexity of matrix inversion. Consequently, it is proportional to the one of
methods relying on Kalman smoothing as in Huang et al., 2020.

6.5 Experiments

We run several experiments, arguing that our method behaves well for misspecified data.
We begin with well-specified data generated under a state-space model with smoothly varying
variances. Then we focus on misspecified data.
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Figure 6.1 – Trajectory of the observation variance estimated by our algorithm and compared
to the estimate provided by Sarkka and Nummenmaa, 2009. For both methods, we display the
expected value of the estimated distributions.

6.5.1 Well-Specified Data with Unknown σ2
t and Known Qt

We reproduce the experiment presented in Sarkka and Nummenmaa, 2009 on the stochastic
resonator model:

θt+1 −

1 0 0

0 cos(ω∆t) sin(ω∆t)
ω

0 −ω sin(ω∆t) cos(ω∆t)

 θt ∼ N (0, Q) ,

yt − (θt,1 + θt,2) ∼ N (0, σ2
t ) ,

where we set ω = 0.05 and ∆t = 0.1 and the known covariance matrix of the process noise
is Q = D(0.01,0,0.0001). We display the variance trajectories for one simulation in Figure 6.1,
and we observe that Viking almost coincide with VB-AKF (Sarkka and Nummenmaa, 2009).
Also, running the experiment 100 times, both methods obtain the same mean squared error
(MSE): 0.46981 for Viking and 0.46989 for VB-AKF (the 100 MSE have a standard deviation of
approximately 0.01 for both). In this comparison, we take the best value of ρa for Viking as well
as the best ρ for the VB-AKF in the list e−i, 1 ≤ i ≤ 10. These very similar performances are a
good a posteriori justification of the use of a log-normal distribution for σ2

t . This distribution is
close to the inverse Gamma, and we don’t see any deterioration of performances.

6.5.2 Well-Specified Data with Unknown σ2
t and Qt

We run a second simulation inspired by Huang et al., 2020 in a well-specified setting. We
generate xt ∈ [0, 1]5 using two possible alternatives:

1. Uniform i.i.d. design: (xt) is independent identically distributed. For each t, xt is
composed of 4 independent coefficients generated with uniform distributions on [0, 1] and
one deterministic 1 coefficient.
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Figure 6.2 – Example of trajectory of the 5 components of the vector xt considered in the setting
uniform non-iid.

2. Uniform non-i.i.d. design: (xt) has the same distribution but is not i.i.d., a sample is
displayed in Figure 6.2. Precisely x1 is generated as before. Then for j ∈ {1, 2, 3, 4} and
t ≥ 2, we consider zt,j = xt−1,j + εt,j where εt,j ∼ N (0, 10−3) and we generate

xt,j =

{
zt,j if 0 ≤ zt,j ≤ 1 ,

dzt,je − zt,j otherwise.

Then we generate yt by the following state-space model:

θ0 ∼ N (0, I) ,

θt − θt−1 ∼ N (0, Qt) ,

yt − θ>t xt ∼ N (0, σ2
t ) ,

where

σ2
t = 1 + 0.1 cos

4πt

n
,

Qt =
(

0.25 + 0.2 cos
4πt

n

)
D(0,0,1,1,1) .

The simulation time is n = 103. In Figure 6.3 we compare Viking to the slide window variational
adaptive Kalman filter (SWVAKF) introduced by Huang et al., 2020, which we tune in several
ways. First, we increase the window length from 5 to 20, resulting in a significant improvement
at the cost of more computations. Second, we tune the forgetting factor, and to play fair with
Viking, we define different forgetting factors for the estimation of σ2

t and Qt. We select the best
a posteriori, and we do the same for Viking. Third, we enforce diagonal and scalar variants of
the SWVAKF: the diagonal variant is defined by replacing by 0 each non-diagonal coefficient
after each update. On top of that, in the scalar variant, we replace each diagonal coefficient with
the averaged diagonal.
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6.5.3 Misspecified Data with Unknown σ2
t and Qt

To analyze the sensitivity to misspecification, we consider a state-space model with two states
evolving independently with identical processes, and the observation is generated using one of
them uniformly at random. That is summarized by the following set of equations:

θ
(i)
0 ∼ N (0, I) , i ∈ {0, 1} ,

θ
(i)
t − 0.9 θ

(i)
t ∼ N (0, Qt) , i ∈ {0, 1} ,

it ∼ B(1/2) ,

yt − θ(it)>
t xt ∼ N (0, σ2

t ) ,

where we assume all Gaussian noises to be independent of each other and of (it). We consider
the same settings for xt as well as the same variances σ2

t , Qt defined in Section 6.5.2.
The contraction (here by a coefficient 0.9) is necessary to have the convergence of the dis-

tribution of yt as well as of the conditional distribution of yt given the filtration Ft−1. In the
tracking mode (no contraction), the variance of the conditional distribution would diverge to∞,
and therefore the error of any forecasting strategy would also diverge to ∞.

We refer to Figure 6.3 for an evaluation on the mean squared error. We observe that Viking in
the diagonal setting behaves poorly compared to the SWVAKF for well-specified data with i.i.d.
design but better in the other three experiments. As mentioned in Section 6.3.1, we believe it is
natural that a consistent adaptive Kalman filter should be closer to the true Kalman filter than
our algorithm, which cannot be written using Kalman recursion. However, the careful property
(see the design of f in Section 6.3.2) allows us to outperform existing methods for misspecified
data. To a minor extent, this interpretation of the observation generation may be transposed to
the design generation. Indeed, in our non-i.i.d. design, a shift in the data should be harder to
attribute to one state coefficient, and therefore it should be harder to learn the variances. That is
why the difference between the two Kalman filters with constant variances is more minor. Thus
the latent model should not be trusted too much.

6.5.4 Impact of nmc

The number of Monte-Carlo samples used at each step to compute A−1
t is a crucial factor

of the complexity of Viking. Therefore, it is necessary to evaluate its impact on performance in
order to reach the best compromise between forecasting and computational efficiencies. We refer
to Figure 6.4 for an evaluation of the error with different values of nmc. Setting nmc = 10 as
default seems reasonable.

6.6 Conclusion

We have introduced Viking, an adaptive time series forecasting algorithm relying on state-
space models with unknown state and space variances. We derived an augmented latent model
and applied variational Bayes for the inference. We extend the Kalman filter to an uncertain
environment. For the additional latent variables, we use approximative steps close to the recursive
steps of stochastic gradient variational Bayes. The prediction performances are better than state-
of-the-art in misspecified settings at the same computational cost.

The choice of the function applied to the latent variable to obtain the state noise covariance
matrix is a perspective of future research. We provide a specific choice leading to promising
experimental results on simulations in both well-specified and misspecified settings. However, we
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Figure 6.3 – Mean Squared Error in the four settings introduced in Sections 6.5.2 and 6.5.3: i.i.d.
(left) or non-i.i.d. (right) design, well-specified (top) or misspecified (bottom). We compare
Viking to the SWVAKF of Huang et al., 2020 in the scalar and diagonal settings. For Viking
we set nmc = 10. The oracles to which we compare are the Kalman filter with known variances
when they exist (well-specified settings) and two Kalman filters with constant variances: the
state noise covariance is either Q = q · D(0,0,1,1,1) or Q = q · I and in both we set the space
noise variance to σ2 = 1. We evaluate through the mean squared error on the second half of the
experiment in order to not depend too much on the initialization (even if we have same initial
expected variances for Viking and SWVAKF).
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wrote most of the article considering this function is a parameter of Viking because we believe
other functions may be of interest.
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Part III

Application to Electricity Load
Forecasting





Chapter7
Electricity Load Forecasting in France
During Covid

The coronavirus disease 2019 (COVID-19) pandemic has urged many governments in the
world to enforce a strict lockdown where all nonessential businesses are closed and citizens are
ordered to stay at home. One of the consequences of this policy is a significant change in elec-
tricity consumption patterns. Since load forecasting models rely on calendar or meteorological
information and are trained on historical data, they fail to capture the significant break caused
by the lockdown and have exhibited poor performances since the beginning of the pandemic.
In this paper we introduce two methods to adapt generalized additive models, alleviating the
aforementioned issue. Using Kalman filters and fine-tuning allows to adapt quickly to new elec-
tricity consumption patterns without requiring exogenous information. The proposed methods
are applied to forecast the electricity demand during the French lockdown period, where they
demonstrate their ability to significantly reduce prediction errors compared to traditional models.
Finally, expert aggregation is used to leverage the specificities of each predictions and enhance
results even further.

This chapter is based on a joint work with David Obst and Yannig Goude published in IEEE
Transactions on Power Systems.
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7.1 Introduction

Accurate electricity load forecasting is of paramount importance for the balancing of the
electricity grid, since they are the main inputs of the production planning at different horizons
(Bunn and Farmer, 1985) and storage capacities are still limited regarding the consumption
needs. Load forecasting is performed at different horizons of time, ranging from intra-day (10
minutes to 24 hours ahead) to daily, weekly, monthly or even a few years in advance for industrial
needs covering production planning, demand response, grid management, electricity trading, risk
management, optimization of production units maintenance and commercialization.

The field has been thoroughly studied the past decades, especially by the time series, statistics
and machine learning communities. Time series approaches are very efficient for very-short term
forecasts (typically less than 24 hours ahead). They rely on auto-regressive moving-average
(ARIMA) models (Huang and Shih, 2003) or functional approaches (Antoniadis et al., 2016;
Cho et al., 2013) exploiting daily and weekly patterns in the electricity load data. Machine
learning models are usually stronger at incorporating exogenous information for short and mid-
term predictions (more than 1 day ahead). They use calendar characteristics (such as the time of
the year, day of the week...) as well as meteorological effects (temperature, wind speed) or tariff
options as inputs and are then trained on a large set of historical data (usually 3 to 5 years).
A good overview of load forecasting practices has been given by the Global Energy Forecasting
Competitions (GEFCOM) (Hong, Pinson, and Fan, 2014). Popular algorithms include black box
machine learning models such as gradient boosting machines (Lloyd, 2014) and neural networks
(Park et al., 1991; Ryu, Noh, and Kim, 2017) or statistical models like Generalized Additive
Models (GAM) (Pierrot and Goude, 2011; Fan and Hyndman, 2012; Goude, Nedellec, and
Kong, 2013; Fasiolo et al., 2021). Black box models are attractive due to their good forecasting
performances but generally suffer from their lack of interpretability. GAMs are very attractive
to electric utilities as they combine the flexibility of fully nonparametric models, the simplicity
of multiple regression model and are computationally efficient to scale with big data (Wood,
Goude, and Shaw, 2015). The main French electricity provider, EDF (Électricité de France) uses
GAM as their lead forecasting tool.

However, the coronavirus pandemic has significantly affected consumption patterns all over
the world. As presented by Narajewski and Ziel, 2020; IEA, 2020, the closure of nonessential
businesses as well as the stay-at-home directives have led to a significant drop of the power
demand and changes in the daily consumption patterns. Figure 7.1 shows the French and Italian
electricity load over time in 2020, whose decrease due to the lockdown (which happens before in
Italy) is clearly seen. Daily profiles of the French consumption before and after the lockdown are
represented in Figure 7.2. After lockdown for both countries the daily shapes of the load have
converged towards the one of Saturdays.

Since models are trained on historical data and make the underlying assumption that future
behavior will be similar to past one, they will fail to produce satisfactory predictions during
the lockdown period. For instance in France GAM usually achieve around 1% MAPE (mean
absolute percentage error) (Pierrot and Goude, 2011), but were around 5% during the first few
weeks of the lockdown thus requiring manual intervention to correct the model forecasts. Not
only do these poor forecasts have a high cost for electricity producers and system operators, but
they represent a threat to the proper functioning of the electrical network as well, which could
have even more consequences than usual during a pandemic.
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This is why finding novel approaches to better predict the load demand during these troubled
times is of paramount importance. However to our knowledge, up to this date only a few
papers have addressed this problem. Nagbe, 2020 is among the first to propose an efficient
strategy to improve the predictions during the COVID-19 lockdown period in France. Using
an adaptive functional state-space model and assimilating the period to non-workable days, the
author was able to achieve significantly better performance compared to the French system
operator. However, these models lack of interpretability, making other approaches preferred in
the industrial context. Furthermore the aforementioned work requires to artificially set all days
to weekends or holidays, which may be unviable in the long-term. Chen, Yang, and Zhang, 2020
combine the integration of mobility data with multi-task learning to improve the forecasting
during the lockdown. They show that mobility is indeed a relevant feature that should be
integrated in load demand models, and that joint training of a neural network for multiple
geographical areas yields additional benefits and compensates for the lack of data. Nonetheless
their forecasting errors remain high compared to pre-COVID standards, neural networks lack
of interpretability as well and the introduction of exogenous features can be problematic in the
future due to the sustainability of such data in operations.

We consider here the framework of GAM and propose two new adaptive versions of these
models. The idea of adaptive models is to take advantage of data observed in an online fashion
to update an initial model. This will make them able to adapt to the changes in consumption
patterns spontaneously, without exogenous variable or intervention. In every adaptive forecasting
method a trade-off has to be found between a good reactivity to a change (whether it is a smooth
drift or a break) and a good behavior during stable periods. One of the most popular algorithm for
that is the Kalman filter (Kalman and Bucy, 1961) already applied to electricity load forecasting
by Harvey and Koopman, 1993 and Dordonnat, Koopman, and Ooms, 2009. We propose here to
couple Kalman filters with GAM to obtain a forecasting procedure which performs well before
the lockdown, exploiting the nice properties of GAM but also reacting quickly to the sudden
change in the data at the beginning of the lockdown. The second approach we present leverages
ideas from transfer learning to fine-tune a GAM on the lockdown period. Transfer learning
(also referred as learning-to-learn or knowledge transfer) is a branch of machine learning that
aims at reusing knowledge from one source task on another target one (Pan and Yang, 2010;
Weiss, Khoshgoftaar, and Wang, 2016). It has shown great success, particularly when the source
data is plentily available and the target one scarce. Recently it has even found applications for
electricity load forecasting to transfer information from one set of customers to another one (Cai
et al., 2020). In our case our source data will be the data before the lockdown and the target one
the data during the lockdown in the country of interest (France in our study), or even a similar
one where the lockdown came before (e.g. Italy here). The contributions of our work are the
following:

1. Two mathematical approaches are proposed to efficiently adjust a historical model to
consumer behavior change over time, even in the case where data is scarce. Furthermore
they do not require the integration of additional features.

2. The two methodologies have been successfully applied on the difficult period of the
COVID-19 lockdown in France, achieving forecast accuracy close to the one observed
before the pandemic.

3. An empirical strategy is suggested to anticipate the impact of the lockdown on the load
using another country’s data, thus enabling satisfactory predictions from the very first
day of stay-at-home order.

The rest of the paper is organized as following. In Section 7.2 we introduce the two model
adaptation methods relying on Kalman filtering and fine-tuning. Section 7.3 presents the data
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and the GAM model used for the French load and Section 7.4 summarizes the main results of
our experiments. Finally Section 7.5 concludes our study and suggests further work.

7.2 Adaptation of Additive Models

We consider additive models whose assumption is that the response variable yt is decomposed
as

yt = β0 +

d∑
j=1

fj(xt,j) + εt ,

where (εt) is an independent identically distributed (i.i.d.) random noise, xt = (xt,1, ..., xt,d) are
the explanatory variables at time t, and each nonlinear effect fj is decomposed on a spline basis
(Bj,k) with coefficients βj :

fj(x) =

mj∑
k=1

βj,kBj,k(x) .

where mj depends on the dimension of the spline basis. The fj ’s are centered to ensure the
identifiability of the model, and more details concerning the basis are given in Section 7.3.2.
The coefficients β0,β1, . . . ,βd then are estimated by penalized least-squares. The penalty term
involves the second derivatives of the functions fj , forcing the effects to be smooth (see Wood,
2017).

The random residuals εt are supposed to be Gaussian i.i.d. in the first place. Later in the
numerical experiments we will introduce another variant of this model, where the residuals are
supposed to be an ARIMA model optimised with classical time series methods. We focus here
on structural adaptation of the GAM over time. We present two different levels of adaptation.
Firstly, we consider the reduced problem of adapting a linear combination of the frozen effects
f1, ..., fd. Secondly we try to adapt the whole model by fine-tuning.

7.2.1 Multiplicative Correction of the Effects

In order to reduce the dimension of the adaptation problem, a strategy is to freeze the
nonlinear effects, and to correct these effects by a multiplicative factor. Precisely, we define
f(xt) = (1, f1(xt,1), ..., fd(xt,d))

> where f j is a normalized version of fj obtained by subtracting
the mean on the train set and dividing by the standard deviation. Then we adaptively estimate
a vector θt such that

E[yt | xt] = θ>t f(xt) .

The estimator at time t will be denoted as θ̂t in both Section 7.2.1 and Section 7.2.1. Thus we
reduce the number of coefficients from 1 +

∑d
j=1mj to 1 +d. This is a good trade-off to obtain a

simple model which will react quickly to a break in the data generation process but also complex
enough to fit well with the nonlinear properties of the load.
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Exponential Least-Squares (exp-LS)

An empirical method consists in solving at each step a least-squares problem where we specify
a weight decreasing exponentially with the time difference. Precisely we define

θ̂t ∈ arg min
θ∈Rd

t−1∑
s=1

e−µ(t−s)
(
ys − θ>f(xs)

)2

,

and we predict ŷt = θ̂>t f(xt). This formalisation leads to a single parameter, the exponential
forgetting factor µ. The advantage of this type of adaptation lies in its simplicity. The forgetting
factor µ is determined by minimizing the RMSE on a validation set composed of the last year
of the train set for a GAM trained on the beginning of the train set, then we keep the same µ
for the GAM trained on the whole train set. Previous work has been done on estimating this
parameter online, but leads to computational issues and potential instability of the model (Ba
et al., 2012).

Kalman Filter

We present also a state-space model approach. We assume the following equations:

yt = θ>t f(xt) + εt ,

θt+1 = θt + ηt ,

where (εt) and (ηt) are Gaussian white noises of respective variance / covariance σ2 and Q. This
is the setting of Kalman filtering (Kalman and Bucy, 1961), thus we use the recursive formulae
of Kalman providing the expectation and covariance of the state θt given the past observations,
and these estimators yield the mean and variance of yt given the past. This is described in
Algorithm 7. Note that the exp-LS method has a very similar recursive form starting from t0
such that Pt0 = (

∑t0−1
s=1 e−µ(t0−s)f(xs)f(xs)

>)−1 exists. Indeed, the same update rule stands
for θ̂t (with σ = 1) and the update on Pt is the following:

Pt+1 = eµ
(
Pt −

Ptf(xt)f(xt)
>Pt

f(xt)>Ptf(xt) + 1

)
.

The simplicity stands in a single scalar parameter eµ as multiplicative factor for the update of
Pt, whereas Kalman Filter needs a matrix parameter Q added in the recursion.

There is a wide literature concerning the setting of the hyper-parameters θ̂1, P1, σ
2, Q on

which the Kalman Filter crucially relies (Brockwell and Davis, 2016; Durbin and Koopman,
2012; Fahrmeir and Tutz, 2013). We refer to Chapter 5 for a detailed presentation. We observe
that the iterates of θ̂t depend only on θ̂1, P

∗
1 = P1/σ

2 and Q∗ = Q/σ2, reducing the set of
hyper-parameters as in Brockwell and Davis, 2016.

An interesting degenerate covariance matrix is the static setting Q∗ = 0 (the state equation
becomes θt+1 = θt). Defining θ̂1 = 0, P ∗1 = I, the estimate θ̂t becomes a Ridge Forecaster:

θ̂t = arg min
θ∈Rd

(
t−1∑
s=1

(ys − θ>f(xs))
2 + ‖θ‖2

)
.

To obtain a dynamic setting we maximize the likelihood on the training set. The expectation-
maximization algorithm is a renowned algorithm allowing to find a local optimum. However the
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Algorithm 7 : Kalman Filter

Initialization: the prior θ1 ∼ N (θ̂1, P1) where P1 ∈ Rd×d is positive definite and
θ̂1 ∈ Rd.

Recursion: at each time step t = 1, 2, . . .

1. Prediction:

E [yt | (xs, ys)s<t,xt] = θ̂>t f(xt) ,

V ar [yt | (xs, ys)s<t,xt] = σ2 + f(xt)
>Ptf(xt) .

2. Estimation:

θ̂t+1 = θ̂t +
Ptf(xt)

f(xt)>Ptf(xt) + σ2
(yt − θ̂>t f(xt)) ,

Pt+1 = Pt −
Ptf(xt)f(xt)

>Pt
f(xt)>Ptf(xt) + σ2

+Q .

lack of global guarantee makes it inefficient in our case, and we applied instead some kind of
grid search. Precisely we decided to set P ∗1 = I as in the static setting, and for a given Q∗ the
optimal θ̂1 for the likelihood has a closed-form solution. Q∗ is of dimension 10×10 and we chose
to restrict ourselves to diagonal matrices whose coefficients are in the set {2j ,−30 ≤ j ≤ 0}.
This is still a set of around 8 ·1014 elements, thus we used an iterative greedy procedure: we start
from Q∗(0) = 0 and at each step, having Q∗(k) in hand, we compute the likelihood of each matrix
where only one coefficient differ from Q∗(k), and we define Q∗(k+1) as the one maximizing the
likelihood among those tested. This algorithm yielded less than 104 evaluations of the likelihood.

In order to take the lockdown into account in the state-space representation, it is natural to
consider a varying state noise covariance Qt. Indeed, we expect the model to change much faster
during and after the lockdown than before. It motivates a dynamic estimation of Qt, however
due to the amplitude of the crisis we modelled a break in the data at the lockdown beginning.
We chose to change only the state noise covariance at the break time T , and for t 6= T we use
Q∗t = 0 in the static setting or Q∗t = Q∗ in the dynamic setting. We don’t want to put any a
priori on the break, therefore we defined Q∗T = P ∗1 = I � Q∗.

7.2.2 Correction of the Full Model

In the previous methods the nonlinear effects fj(·) were frozen and adjusted with a multi-
plicative factor. However it may be insufficient on certain new types of behavior. Since learning
a new model from scratch is inadvisable considering the few samples of target data available, we
would like to start from the model trained on historical data and adapt it on the few instances
available. This is a particular case of the framework of transfer learning, more specifically of
model fine-tuning (FT). It consists in reusing a part of the parameters learned on the source set
(typically neural network layers) and adjust them with a few gradient iterations on the target
one for instance. Model fine-tuning has been successful in different fields such as computer vision
(Shin et al., 2016) or even time series forecasting (Laptev, Yu, and Rajagopal, 2018).

In our case we will fine-tune the parameters of our GAM. Since it boils down to a penalized
linear regression problem, it consists in fine-tuning a linear model. This framework was elaborated
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by Obst et al., 2021. Starting from the coefficients β̂0 learned on the historical source data, for
each time step we perform K iterations of batch gradient descent with fixed step size α on the
following objective function to yield an adjusted parameter vector β̂t:

Lt(β) =

t−1∑
s=1

(
ys −

d∑
j=1

mj∑
k=1

βj,kBj,k(xs,j)
)2

Let B(xs) be the vector of the Bj,k(xs,j) and B(Xt) denote the matrix made by the con-
catenation (by row) of the B(xs) for s = 1, . . . , t − 1. Again more details concerning the basis
(Bj,k) is found in Section 7.3.2. As discussed by the aforementioned paper, the choice of the
step size α is not crucial, as long as it is small enough. In practice a good step size is α = α∗/5

where α∗ = 2/
(
λmax(B(Xt)

>B(Xt)) +λmin(B(Xt)
>B(Xt))

)
with λmax(M) and λmin(M) being

respectively the maximum and minimum eigenvalue of M . Ergo the major hyper-parameter to
tune is K the number of gradient iterations to perform. Theoretical methods are currently being
investigated in the aforementioned paper and have been used to guide our choice here, but it was
also observed empirically that K between 50 and 100 yields good results. Therefore a number of
iterations in that range is always considered, and this choice usually coincides with the suggested
theoretical guidelines.

7.3 Data and Model Presentation

In this section we detail the GAM model that has been used to forecast the French electricity
consumption, as well as the data on which is has been applied.

7.3.1 Presentation of the Data

The French electricity consumption is freely available on the website of the system operator
RTE (Réseau et Transport d’Électricité) 1. Our dataset ranges from the 1st of January 2012 to
the 7th of June 2020 with a 30 minutes temporal resolution.

As explanatory variables we obtained national averaged temperature on the website of the
French weather forecaster Météo-France 2. We took observed temperatures instead of forecasts
in order to use only open data and make the results reproducible. As our goal is to compare
different forecasting strategies on the same data this choice is relevant and allows a more precise
comparison as we don’t include in the score the uncertainty due to physical meteorological
forecast.

We train the models on historical data from the beginning of 2012 to the end of August 2019.
In this paper we are interested in predicting the load during and after the COVID-19 lockdown
period in France. Since the consumer behavior changed abruptly during the first month and
stabilized during the second one, we divide the crisis test data in two periods. The first one
ranges from March 16th to April 15th and the second one from April 16th to June 7th. Note that
although the lockdown officially begun Tuesday the 17th of March 2020 at midday in France,
we consider March 16th as the first day of our lockdown period as the behavior had already
changed. Finally, in order to assess the suitability of the offline methods and of the ones that
do not model the break we consider the pre-lockdown period between September 1st 2019 and
March 15th 2020.

1. https://opendata.rte-france.com
2. https://donneespubliques.meteofrance.fr/

https://opendata.rte-france.com
https://donneespubliques.meteofrance.fr/
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7.3.2 The Additive Model

The time of day is crucial for load forecasting. It doesn’t appear in the following definition
of the additive model because we build one model for each instant of day, i.e. we treat the 48
half-hour time series independently:

yt =

7∑
i=1

1∑
j=0

αi,j1DayTypet=i1DLSt=j

+

7∑
i=1

βiLoad1Dt1DayTypet=i + γLoad1Wt (7.1)

+ f1(t) + f2(ToYt) + f3(t,Tempt) + f4(Temp95t)
+ f5(Temp99t) + f6(TempMin99t,TempMax99t) + εt ,

where at each day t,
— yt is the electricity load for the considered instant,
— DayTypet is a categorical variable indicating the type of the day of the week,
— DLSt is a binary variable indicating whether t is in summer hour or winter hour,
— Load1D and Load1W are the load of the day before and the load of the week before,
— ToYt is the time of year whose value grows linearly from 0 on the 1st of January 00h00

to 1 on the 31st of December 23h30,
— Tempt is the national average temperature,
— Temp95t and Temp99t are exponentially smoothed temperatures of factor α = 0.95 and

0.99. E.g. for α = 0.95 at a given instant i,
Temp95i = αTemp95i−1 + (1− α)Tempi,

— TempMin99t and TempMax99t are the minimal and maximal value of Temp99t at the
current day.

The models are trained in R using the library mgcv (Wood, 2015). We use the default thin plate
spline basis to represent the fj ’s, except for the time of year effect f2 for which we choose cyclic
cubic splines (see Wood, 2017 for a complete description of spline basis). The dimensions of the
bases are usually below 5, excluding f2 which uses a basis of dimension 20.

As previously mentioned in Section 7.2, we suppose that εt is a Gaussian noise with 0 mean
and constant variance. However this hypothesis is rarely true in practice and we observe an
auto-correlation structure in the error. We thus propose to model it with an ARIMA model
by selecting the best model with AIC criteria (Akaike, 1978) in the family of ARIMA(p,d,q)
where p, q 6 100 and d 6 1 (we use the R function auto.arima of R. Hyndman). In that case
the forecast are performed adding GAM forecasts and the short term correction of the ARIMA
models exploiting recent observations.

7.3.3 Knowledge Transfer from Italy

Italy was the first country to be massively affected by the novel coronavirus in Europe. The
Italian government decreed a total lockdown from the 9th of March 2020, hence 7 days before
the French one. Since GAM models for both countries usually exhibit similar behavior (see
Figure 7.3 for a comparison of residuals) and indices such as the Oxford COVID-19 Government
Response Tracker (Hale et al., 2021) show that both countries took comparable measures during
the lockdown, our idea is to use this one week head-start and to adjust our GAM model for
France accordingly to the changes observed in Italy. We have at our disposal data from the
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Italian system operator Terna 3 and meteorological data gathered through the R package Riem
available from the 1st of January 2015 to the 28th of June 2020 with a 1 hour temporal resolution.
For each instant, a model similar to (7.1) is constructed on the data on the range 2015-2019, with
the main differences being that the effects f3(·) and f6(·) are removed, and that f2(·) is replaced
by a sum of 7 effects, one for each day of the week. Then the same procedure as described in
Section 7.2.2 is applied. Let β̂IT0 be the coefficient learned on the Italian source data, and β̂ITt be
the coefficients obtained by performing the aforementioned fine-tuning on Italian data ranging
from the 28th of February up to date t (typically t could correspond to the 15th of March, the day
before the stay-at-home order begun in France). We thus obtain δ̂t = β̂ITt − β̂IT0 the adjustment
of the model on the beginning of the lockdown period. We then use β̂FRt = β̂FR0 + ρ δ̂t to
perform the predictions for France, where ρ is a scale parameter accounting for the difference of
load levels between the two countries. We refer to this model as GAM-δ. Since the ToY effect
is modelized differently for the Italian model (one function per day of the week), we will not
adjust the corresponding coefficients in the French model. This is further justified by the fact
that in general the ToY effect is very specific to a country, and it should be learned on a whole
year at least. As for the choice of ρ, making the assumption that the consumption in France and
Italy are proportional with a factor ρ allows us to use the simple estimate ρ̂ =

∑
t y
FR
t /

∑
t y
IT
t

summed over a year for instance. The advantage of GAM-δ is that it can be applied to reduce
the prediction error starting at the very first day of lockdown. One can afterward combine this
procedure with fine-tuning on the eventually available French data. The procedures for both
regular fine-tuning and GAM-δ are summarized in Algorithm 8.

Feb Mar Apr May Jun
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Figure 7.3 – Comparison of the smoothed residuals of the French and Italian GAMs in 2020.
The dashed lines represent the start of the respective lockdowns.

7.4 Experiments

We present the application of our methods to the French dataset. While accuracy metrics
are of paramount importance, we also focus on the interpretation of our results and on model
behavior.

3. https://www.terna.it

https://www.terna.it


7.4. Experiments 119

Algorithm 8 : Transfer learning at time step t
Inputs: Step size α, number of iterations K, French and Italian historical source
parameters β̂FR0 , β̂IT0 , scale parameter ρ.

If GAM fine-tuned:
1. Initialize β̂FRt ← β̂FR0 .
2. Repeat K times:

β̂FRt ← β̂FRt − α∇LFRt−1(β̂FRt ).

3. Predict ŷt = β̂FRt
>B(xt).

If GAM-δ:
1. Initialize β̂ITt ← β̂IT0 .
2. Repeat K times:

β̂ITt ← β̂ITt − α∇LITt−1(β̂ITt ).

3. Set δ̂t = β̂ITt − β̂IT0 , β̂FRt = β̂FR0 + ρ δ̂t.

4. Predict ŷt = β̂FRt
>B(xt).

If GAM-δ fine-tuned:
1. Perform steps 1) to 3) of GAM-δ, obtaining β̂FRt = β̂FR0 + ρ δ̂t.
2. Repeat K times:

β̂FRt ← β̂FRt − α∇LFRt−1(β̂FRt ).

3. Predict ŷt = β̂FRt
>B(xt).

7.4.1 Model Dynamics

The moving average of the error of the different models are represented in Figure 7.4. At the
beginning of the lockdown all the models will tend to overpredict the load. However most of our
adaptive methods quickly accommodate to the lower demand and progressively reduce their bias,
notably Kalman with Dynamic Break and GAM fine-tuned. On the contrary regular GAM does
not succeed in reducing the error (even with the help of an ARIMA) as it keeps overpredicting
the demand. GAM-δ on the other hand is very good during the first couple of days, efficiently
taking advantage of the change in patterns observed in Italy. However it quickly drifts away
over time because the Italian consumption recovers faster than the French one during the second
month of lockdown (see Figure 7.1). However since the objective of GAM-δ is to provide an
initial boost of performance during the first couple of weeks while the other models adjust, this
is only a minor issue (see Section 7.4.2).

We test the Kalman filter in a static and a dynamic setting as described in Section 7.2.1.
For both we assess the introduction of a break state noise covariance matrix at lockdown. The
evolution of the state estimate θ̂t is displayed in Figure 7.5 for different settings. In the static
setting the Kalman filter optimizes a state which is assumed to be constant, hence explaining
a slow evolution compared to the faster changes of the dynamic one. However both variants
change faster during lockdown than they did before. As expected the introduction of a break
covariance matrix at the beginning of the lockdown allows the model to adapt much faster.

The model dynamics can be analysed for the fine-tuning too. For GAM-δ the only coefficients
of δ̂t with a significant evolution after fine-tuning are the ones pertaining to the lagged load (γ for



120 CHAPTER 7. Electricity Load Forecasting in France During Covid

Nov Jan Mar May

−
20

00
−

10
00

0
10

00
20

00

Kalman DynamicBreak
Kalman StaticBreak
Kalman Dynamic
Kalman Static
exp−LS
ARIMA

GAM+ARIMA
GAM
GAM delta
GAM delta FT
GAM FT

Date

14
 d

ay
s 

m
ov

in
g 

av
er

ag
e 

of
 th

e 
er

ro
r 

(M
W

)

Figure 7.4 – Moving average of the error of the different models at 8-8:30 PM.
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Figure 7.5 – Evolution of the state coefficients for different Kalman variants at 8-8:30 PM (sub-
tracting the coefficients on September 1st 2019).

Load1W and βi, i = 1..7 for Load1D) and have been represented in Figure 7.6. The other ones
are zero and have been omitted for clarity. The coefficients of the working days drop, especially
the Monday, whereas the ones of the weekend increase, notably Saturday. It can be interpreted
as follows: the historical model learned a certain transition between the different days of the
week. With the lockdown now all the days are similar and close to a Saturday, which has a lower
demand than Monday and thus the associated coefficient plummets. The coefficient of Saturday
soars because the demand on Fridays is now much lower than it used to be and that daily profiles
are similar. Finally since during the first weeks the electricity demand progressively decreases
(see Figure 7.1) the coefficient of γ drops as well.

7.4.2 Aggregation

We proposed 2 load forecasting models (ARIMA, GAM) and different variants to adapt them
to the lockdown period (exp-LS, Kalman adaptation, transfer learning) leading to 11 candidates
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Figure 7.6 – Value of δ̂t fine-tuned on the period 16/03-15/04 at 8-8:30 PM.

which we call experts in the following. A natural approach is then to aggregate them in a
single forecast which will take benefit of the best one in function of time. This is the main idea
behind online aggregation methods which have already demonstrated their benefits in the field
of electricity load forecasting (Gaillard and Goude, 2015; Goehry et al., 2019). Since Figure 7.2
shows the convergence of the daily profiles towards the Saturday shape, this as well as Nagbe,
2020 motivates adding another expert named GAM Saturday, whose prediction is made by the
regular GAM as if every day was a Saturday.

We recall briefly the main principles of the online aggregation approach and refer the inter-
ested reader to Cesa-Bianchi and Lugosi, 2006 for a complete presentation. A bounded sequence
of observations (here half-hourly French electricity consumption) y1, . . . , yn ∈ [0, B] is observed
(B being an unknown constant). We have access to a set of N experts producing forecasts of
the sequence at each instant t based on past values of y. After that, aggregation is computed
step by step: ŷt =

∑N
j=1 p̂j,tŷ

j
t where the weights are updated according to past performances

of each experts which are measured with a convex loss function. In accordance to the RMSE
criterion used in our case study we consider the square loss `t(x) = (yt − x)2. At time t expert
e suffers loss `t(ŷet ) = (yt − ŷet )

2 and the aggregation `t(ŷt) = (yt − ŷt)
2. We call Oracle an

optimal forecast which is unknown in advance and usually hard to beat in terms of forecasting
accuracy (Cesa-Bianchi and Lugosi, 2006). We denote it by ŷ∗t . For example, it could be the
best fixed convex aggregation or the best expert (best w.r.t the entire time interval performance,
of course unknown a priori). The goal of aggregation algorithms is to minimise the total loss∑T
t=1(yt − ŷt)2 that can be expressed:

1

T

T∑
t=1

(yt − ŷt)2 ,
1

T

T∑
t=1

(yt − ŷ∗t )2 +RT ,

where RT is the so-called regret term, it is the error suffered by our algorithm relatively to the
error of the oracle (Cesa-Bianchi and Lugosi, 2006). The aim is thus to propose algorithms that,
regarding competitive oracles, achieve low regrets. In our study we use the ML-Poly algorithm
of Gaillard, Stoltz, and Van Erven, 2014, implemented in the R package opera (Gaillard and
Goude, 2016) and already used successfully for load and price forecasting (Gaillard and Goude,
2015; Gaillard, Goude, and Nedellec, 2016). It is described in Algorithm 9. An expert who has
a high regret, which means that he suffers a higher loss than the aggregation, will receive less
weight for the next round. The time-varying learning rate ηe,t could be seen as a vector step size
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Algorithm 9 : ML-Poly
Initialization: p̂1 = (1/N, . . . , 1/N) and R0 = (0, . . . , 0)
Recursion: at each time step t = 1, 2, . . .

— Pick the learning rates: ηe,t−1 = 1/
(

1 +
∑t−1
s=1

(
`s(ŷs)− `s(yes)

)2).
— Compute the weights p̂t : p̂e,t = ηe,t−1 (Re,t−1)+ / ηt−1 · (Rt−1)+

where R+ is the non-negative parts of R.
— Output prediction ŷt =

∑N
e=1 p̂e,tŷ

e
t .

— For each expert e update the regret: Re,t = Re,t−1 + `t(ŷt)− `t(yet ),
Rt = (R1,t, . . . , RN,t).

parameter of gradient descent varying with time so that no parameter tuning is needed.
Finally a few experts are introduced in the aggregation only at lockdown. Indeed, before

lockdown the transfer learning experts don’t make sense (there is no target data), the Kalman
experts modelling the break coincide with the other ones, and the expert GAM Saturday was
only introduced for the lockdown period. These specialized experts are added to the aggregation
at the lockdown period with a uniform weight (1/12), and the experts present before share the
rest of the weight proportionally to their previous weight (Devaine et al., 2013).

The evolution of the weights of the experts over time is displayed in Figure 7.7. It gives insight
on which predictions are the most useful in the aggregation at a given time. The lockdown acts
as a break and causes a significant shift in the weights distribution. As such, GAM Saturday
immediately takes a large weight: this is due to the aforementioned resemblance between the daily
profiles during the lockdown with Saturdays. Moreover, this expert predicts a lower consumption
than reality, compensating for the overestimation of the other experts at the beginning of the
lockdown. GAM-δ also has high importance, as it has knowledge of what happened in Italy and
thus suits the new patterns of load demand in France. For instance on the two first days of
lockdown (16 and 17th of March) GAM-δ yields 1984 MW of RMSE, compared to 2674 and 3005
for Kalman Dynamic Break and regular GAM respectively. However their importance dwindle
with time as the adaptive Kalman and fine-tuning methods have seen enough data and have
become more competitive.

7.4.3 Numerical Results

As usual in electricity load forecasting, the performance metrics are the root mean squared
error (in MW) and the mean absolute percentage error (in %):

RMSE =

√√√√ 1

n

n∑
t=1

(
yt − ŷt

)2
, MAPE =

100

n

n∑
t=1

∣∣yt − ŷt
yt

∣∣ ,
where n is the number of instances in the test set.

We display the numerical performance of our methods in Table 7.1. We observe that any
of our methods have lower RMSE or MAPE than GAM + ARIMA on both post-COVID test
sets. As expected, the Kalman Dynamic with break yields the best results for the two error
metrics during the first part of the lockdown period but the fine-tuned methods are very close
to it. Similarly, the two break approaches are the best ones after the lockdown. The additional
benefits brought by expert aggregation is emphasized by the two last rows. The algorithm
manages to take advantage of the individual specificities of the different predictions, leading to
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Figure 7.7 – Weights attributed to each expert by the aggregation method at 8-8:30 PM. Dashed
lines split the test sets.

further error reduction. While individually poor, the inclusion of GAM Saturday in the mixture
brings significant improvement for the first testing period (see the end of Section 7.4.2) because
it compensates for the overestimation of the demand at the beginning of the lockdown.

The significativity of our results was assessed with two statistical tests: a Diebold-Mariano
(DM) test (Diebold and Mariano, 2002) and a Wilcoxon test as proposed by Zhang, Ding, and
Sun, 2020, both on the absolute error. For two methods A and B it allows to test the null
hypothesis that method B outperforms or is equivalent to method A, against the alternative
hypothesis that method A outperforms method B. In Table 7.2 we display the results of the
tests for the most relevant forecasting models at the significance level 0.01. At each row i and
column j we display the p-values of Wilcoxon test in blue and of the Diebold-Mariano test in
purple, the alternative hypothesis is "method i outperforms j". We use the symbol ε when
the p-value is below 0.01 and otherwise we give a 0.01 approximation. For clarity we consider
only the best non-adaptive method and selected adaptive ones, and we order them according to
the performance on the last test set. These tests confirm that on both post-COVID test sets,
the improvement brought by our adaptive procedures on an ARIMA correction of the GAM is
statistically significant, and so is the improvement of the aggregation compared to any of our
method. Results coincide for the two tests, ergo consolidating our results even further.

7.5 Conclusion

In this paper, we proposed two novel approaches of adaptive generalized additive models to
improve load forecast during the COVID-19 pandemic, one relying on Kalman filtering and the
other on transfer learning with GAM fine-tuning. We showed that Kalman filtering approaches
can be significantly improved by re-initializing the online update at the beginning of the lockdown
period (Break approach). This helps the Kalman filter to adapt quickly to a change in the
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Method 2019/09/01 - 2020/03/15 2020/03/16 - 2020/04/15 2020/04/16 - 2020/06/07
ARIMA 4.10 %, 3341 MW 5.44 %, 3248 MW 5.59 %, 3135 MW
GAM 1.39 %, 1085 MW 4.83 %, 2961 MW 3.12 %, 1753 MW

GAM + ARIMA 1.34 %, 1050 MW 4.28 %, 2654 MW 2.65 %, 1464 MW
exp-LS 1.26 %, 982 MW 3.94 %, 2521 MW 1.97 %, 1029 MW

Kalman Static 1.38 %, 1077 MW 4.81 %, 2923 MW 2.85 %, 1588 MW
Kalman Static Break - 2.79 %, 1954 MW 1.59 %, 855 MW
Kalman Dynamic 1.26 %, 979 MW 3.66 %, 2351 MW 1.89 %, 1002 MW

Kalman Dynamic Break - 2.73 %, 1902 MW 1.62 %, 854 MW
Fine-tuned - 2.78 %, 1917 MW 1.80 %, 938 MW
GAM δ - 4.11 %, 2364 MW 6.09 %, 2713 MW

GAM δ - Fine-tuned - 2.81%, 1912 MW 1.72 %, 905 MW
GAM Saturday 8.33 %, 6425 MW 6.09 %, 3970 MW 8.40 %, 4616 MW

Aggregation without GAM Saturday 1.28 %, 1005 MW 3.01 %, 2014 MW 1.44 %, 745 MW
Aggregation with GAM Saturday - 2.54 %, 1636 MW 1.49 %, 766 MW

Table 7.1 – Numerical performance in MAPE (%) and RMSE (MW).

2020/03/16-2020/04/15 1 2 3 4 5 6
1. Aggregation 1 1 0.44 ε ε ε ε ε ε ε ε ε

2. Kalman Dynamic Break 0.56 1 1 1 0.12 0.06 ε ε ε ε ε ε
3. GAM δ Fine-Tuned 1 1 0.88 0.94 1 1 ε ε ε ε ε ε

4. exp-LS 1 1 1 1 1 1 1 1 ε ε 0.08 0.28
5. GAM + ARIMA 1 1 1 1 1 1 1 1 1 1 0.99 1

6. GAM δ 1 1 1 1 1 1 0.92 0.72 0.01 ε 1 1
2020/04/16-2020/06/07 1 2 3 4 5 6

1. Aggregation 1 1 ε ε ε ε ε ε ε ε ε ε
2. Kalman Dynamic Break 1 1 1 1 ε ε ε ε ε ε ε ε

3. Gam δ Fine-Tuned 1 1 1 1 1 1 ε ε ε ε ε ε
4. exp-LS 1 1 1 1 1 1 1 1 ε ε ε ε

5. GAM + ARIMA 1 1 1 1 1 1 1 1 1 1 ε ε
6. GAM δ 1 1 1 1 1 1 1 1 1 1 1 1

Table 7.2 – Wilcoxon test and Diebold-Mariano test on the absolute error on the last two test
sets. ε for p-value below 0.01.
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data and update the forecasts taking advantage of recent observations. Transfer learning was
successfully adapted to this problem in two ways: we fine-tuned a GAM learned before the
COVID-19 crisis on the lockdown period, and we transferred information from Italian data to
French data. We illustrated the benefits of the transfer from Italy at the beginning of the
lockdown, as well as the efficiency of adaptive methods to significantly improve predictions, all
without relying on the inclusion of new exogenous features. As all these new approaches have
time-varying performances (the best forecasts vary with time), we proposed to use online expert
aggregation to enhance results even further.

While in this paper we focused on adapting GAM, the proposed framework can be applied
to other approaches. The use of neural networks, for instance, will soon be investigated. We
also plan to include exogenous information such as mobility data proposed by Chen, Yang, and
Zhang, 2020, macro-economic indicators, or data from social media such as Twitter. Regarding
load data, exploiting regional data could be relevant as the propagation of the pandemic and its
impact on consumption was different depending on the region in France and Italy. The inclusion
of more countries could be helpful as well. For these next steps, transfer approaches will be of
fundamental importance but also adaptive ones, as the effects of exogenous variables are likely
to vary with time or even be added at some point.
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Chapter8
Competition Day-Ahead Electricity Load
Forecasting: Post-Covid Paradigm

We present the winning strategy for the IEEE DataPort Competition on Day-Ahead Elec-
tricity Load Forecasting: Post-Covid Paradigm. This competition was organized to design new
forecasting methods for unstable periods, such as the one starting in Spring 2020. First, we
pre-process the data with a statistical correction of the meteorological variables. Second, we
apply standard statistical and machine learning models. Third, we rely on state-space models to
adapt the aforementioned forecasters. It achieves the right compromise between two extremes.
Indeed, machine learning methods allow to learn complex dependence on explanatory variables
on a historical data set but fail to forecast non-stationary data accurately. Conversely, purely
time-series models such as autoregressive are adaptive in essence but fail to capture dependence
on exogenous variables. Finally, we use aggregation of experts, and we leverage the diversity of
the set of obtained forecasters to improve our final predictions. The evaluation period of the
competition was the occasion of trial and error, and we put the focus on the final procedure.

This chapter is based on a joint work with Yannig Goude published in IEEE Open Access Journal
of Power and Energy.
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8.1 Introduction

Electricity demand forecasting is a crucial task for grid operators. Indeed the production must
balance the consumption as storage capacities are still negligible compared to the load. Time
series methods have been applied to address that problem, relying on calendar information and
lags of the electricity consumption. Statistical and machine learning models have been designed
to use exogenous information such as meteorological forecasts (the load usually depends on the
temperature, for instance, due to electric heating and cooling).

The field has been thoroughly studied over the past decades, as shown in the bibliometric
review of Yang et al., 2021. We will not propose here an exhaustive bibliographic study and refer
to the recent surveys (Hong and Fan, 2016; Almalaq and Edwards, 2017; Nti et al., 2020). We
focus on recent results in the different forecasting challenges related to this field. The Global
Energy Forecasting Competitions (GEFCOM) (Hong, Pinson, and Fan, 2014; Hong et al., 2016;
Hong, Xie, and Black, 2019) provide a large benchmark of popular and efficient load forecasting
methods. Black box machine learning models such as gradient boosting machines (Lloyd, 2014)
and neural networks (Ryu, Noh, and Kim, 2017; Dimoulkas, Mazidi, and Herre, 2019) rank
among the first as well as statistical models like generalized additive models (GAM) (Nedellec,
Cugliari, and Goude, 2014; Dordonnat, Pichavant, and Pierrot, 2016) or parametric regression
models (Charlton and Singleton, 2014; Ziel, 2019). Ensemble methods or expert aggregation are
also a common practice for competitors (Gaillard, Goude, and Nedellec, 2016; Smyl and Hua,
2019).

The consumption behavior changed abruptly during the coronavirus crisis, especially during
lockdowns imposed by many governments. These changes in consumption mode have been
challenging for electricity grid operators as historical forecasting procedures performed poorly.
Therefore, designing new forecasting strategies to take that evolution into account is important
to reduce the cost of forecasting errors and ensure the stability of the network in the future.

It is to be noted that purely time series methods like autoregressive didn’t drift as they are very
adaptive in essence. However, they fail to capture the dependence of the load on, for instance,
meteorological variables. We claim that state-space models allow the best of both worlds. First,
machine learning models trained on historical data are used to design new feature representations.
Second, a state-space representation yields a methodology to adapt these complex forecasting
models.

Our work extends a previous study on the French electricity load (Obst, Vilmarest, and
Goude, 2021) where a state-space approach was presented to adapt generalized additive models
in the context of online learning. The idea is to plug a Kalman filter on the estimated effects of a
GAM to gain in online reactivity. The novelty of this article lies both in the forecasting method
and in the application. First, besides generalized additive models, we extend our procedure to
other widely used machine learning models, including neural networks. Second, after applying
the standard Kalman filter (Kalman and Bucy, 1961), we apply another state-space approach
named Viking (Vilmarest, Goude, and Wintenberger, 2021). Viking is a generalization of Kalman
filter allowing to estimate jointly the state and the variances in a state-space model. Third, our
procedure resulted in the winning strategy in a competition on post-covid day-ahead electricity
demand forecasting (Farrokhabadi, 2020), motivating the efficiency of the proposed approach.

A diagram of our forecasting strategy is provided in Figure 8.1. The article follows its
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Figure 8.1 – Diagram of the forecasting strategy. The multiple arrows mean multiple outputs.
Precisely, the pre-processing step yields one unique output. Then we have several classical
forecasting methods, each of which has different adaptation flavors. The intraday correction
doubles the number of forecasts, and all of them are combined in the aggregation step, yielding
the final forecast.

structure. Section 8.2 is an introduction to the data set, and we detail our pre-processing with
a focus on meteorological variables. In Section 8.3 we present standard forecasting models. The
core of our strategy is Section 8.4 where we propose a generic state-space framework to adapt
these methods. We discuss the numerical performances of the various models in Section 8.5, and
we combine them through aggregation of experts to leverage each model’s advantages.

8.2 Data Presentation and Pre-Processing

The objective of the competition was to predict the electricity load of an undisclosed location
of average consumption 1.1 GW, that is of the order of one million people in western countries.
The break in the electricity demand in March 2020 is clear in Figure 8.2. The objective of the
competition was to design new strategies for day-ahead forecasting in order to be robust to this
unstable period.

8.2.1 Time segmentation

The competition’s setting was to forecast the hourly load 16 to 40 hours ahead in an online
manner. Precisely, we had to predict the consumption of each hour of day d with data up to
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Figure 8.2 – On top: electricity load from March 18th 2017 to February 16th 2021. On the bottom:
daily profiles of the electricity load in March-April 2019 (solid lines) compared to March-April
2020 (dashed lines).

8 AM day d-1. After our prediction was sent, a new batch of data up to 8 AM day d was released
so that we had to predict day d+1 ...

The evaluation was based on the Mean absolute error on the period ranging from January
18th to February 16th 2021. To build a forecasting model, the historical load starting from
March 18th 2017 was provided, as well as meteorological forecasts and realizations during the
same period.

8.2.2 Meteorological Forecasts

Aside from calendar variables, it is usual that the most important exogenous factor explaining
the electricity demand is meteorology. The dependence of the load on the temperature, for
example, is due to electric heating and cooling. Moreover, the dependence of the electricity
demand on meteorology is augmented by the development of decentralized renewables. Indeed,
small renewable production is often used by its owner, yielding a net consumption that highly
depends on wind or solar radiation. Therefore the error of a forecasting model for the electricity
demand crucially depends on the performance of the meteorological forecasts.

The competition data include forecasts and realization of the temperature, the cloud cover,
the pressure, the wind direction and speed. These forecasts are assumed to be known 48 hours
in advance and invariant after. Thus they can be used to forecast the load at the 16 to 40 hours
horizon.

However, from the statistical properties of the meteorological forecasting residuals (c.f. Fig-
ure 8.3), we conjecture that the forecasts come from physical models that need to be statistically
corrected. Indeed, as the forecasts are available 48 hours in advance, if a statistical correction
had been applied, then auto-correlations of the residuals over 48 hours would be negligible. We
thus use correction models close to autoregressives on the residuals.

Formally, let (zt) be any of the meteorological variable and (ẑt) the forecast given in the data
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Figure 8.3 – On top: auto-correlation plots of the temperature (left) and cloud cover (right) fore-
casting residuals, with lags in hours. On the bottom: auto-correlation plots of the temperature
residuals focused on a specific hour of the day (midnight on the left, 3 AM on the right), with
lags in days.
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Initial Last daily lag Corrected
Temperature (°C) 3.00 2.11 1.69
Cloud cover (%) 17.28 18.74 14.99
Pressure (kPa) 0.506 1.30 0.423

Wind Speed (km/h) 4.53 3.49 2.53

Table 8.1 – Mean absolute error of different meteorological forecasts. The first column is the
forecast given in the data set. The second one consists in using the variable of interest with a
24 or 48-hour delay. The last is our corrected forecast. We evaluate through the mean absolute
error during 2020 while we train the corrections on the data before 2020.

set. Then we use the model

zt = αẑt +
∑

l∈Lp,P,h(t)

βl(zt−l − ẑt−l) + γzt−l0(t) + δ + εt ,

where h(t) ∈ {0, . . . , 23} is the hour of the day of time t and

l0(t) =

{
24 if h ≤ 7 ,

48 if h > 7 ,

Lp,P,h =

{
{24, . . . , 24 ∗ P, h+ 17, . . . , h+ 16 + p} if h ≤ 7 ,

{48, . . . , 24 ∗ (P + 1), h+ 17, . . . , h+ 16 + p} if h > 7 .

In other words, we forecast the residual of the variable of interest with a linear model on
— the last P available daily lags of the residual,
— the last p available lags of the residual (up to 7 AM of the previous day),
— the forecast,
— the last daily lag of the variable of interest.
We optimize the coefficients separately for each hour of the day for the temperature, whereas

we use the same coefficients at each hour of the day for the cloud cover, pressure, and wind
speed (except the intercept term). We don’t correct the wind direction. The parameters p and
P are selected based on BIC. We display in Table 8.1 the error of the initial forecast, compared
to simply using the last daily lag of the variable of interest, and our corrected forecast.

8.3 Time-Invariant Experts

We summarize the explanatory variables used in our forecasting models:
— calendar variables: the hour of the day, the day of the week, the time of year (Toy)

growing linearly from 0 on January 1st to 1 on December 31st, and a variable growing
linearly with time to account for a trend,

— meteorological forecasts after statistical correction: the temperature along with exponen-
tial smoothing variants of parameters 0.95 and 0.99 (respectively Temps95 and Temps99),
the cloud cover, the pressure, the wind direction and speed,

— lags of the electricity load: the load a week ago LoadW and the last load available LoadD
(a day ago for the forecast before 8 AM and two days ago after 8 AM, this constraint
coming from the availability of the online data during the competition).
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Figure 8.4 – Dependence of the load at 3PM on different covariates on the data up to January
1st 2020.

The dependence on the hour of the day and the day of the week is well observed in Figure 8.2.
We display in Figure 8.4 the dependence of the load on a few of the aforementioned covariates.

We define independent models for the different hours of the day as is usual in electricity load
forecasting. For each model, we use the same structure for the different hours, but we learn
the model parameters independently for each time of day based on the training data of that
particular time of day. In what follows, we denote by yt the load at time t.

— Autoregressive. We consider a seasonal autoregressive model based on the daily and
weekly lags of the load:

yt =
∑

l∈Lh(t)

αlyt−l +
∑

1≤l≤6

α7×24lyt−7×24l + εt , (8.1)

Lh =

{
{24, 48, 72} if h ≤ 7 ,

{48, 72, 96} if h > 7 .

— Linear regression. We use a linear model with the following variables: temperature,



134 CHAPTER 8. Competition on Post-Covid Load Forecasting

2020 2021
−

30
0

−
20

0
−

10
0

0

Date

F
or

ec
as

tin
g 

er
ro

r 
at

 3
P

M
 in

 M
W

 (
2−

w
ee

k 
m

ov
in

g 
av

er
ag

e)

Autoregressive
Linear Regression
Generalized Additive Model
Multi−Layer Perceptron

Figure 8.5 – Evolution of the forecasting error for the different models introduced in Section 8.3
trained on the data up to January 1st 2020.

cloud cover, pressure, wind direction and speed, day type (7 booleans), time of year, linear
trend variable, and the two lags LoadW and LoadD.

— Generalized Additive Model (GAM). We propose a Gaussian generalized additive
model (Wood, 2017):

yt =

6∑
i=1

βi1DayTypet=i + γTemps95t + f1(Toyt)

+ f2(LoadDt) + f3(LoadWt) + αt+ β0 + εt ,

where f1 is obtained by penalized regression on cubic cyclic splines and f2, f3 on cubic
regression splines.

— Random Forest (RF). We build a random forest (Breiman, 2001) with the following
covariates: linear trend variable, time of year, day type, the two lags, and the two expo-
nential smoothing variables of the temperature. Quantile variants were also computed.

— Random Forest (RF_GAM). We also correct the GAM using a random forest on
the GAM residuals, with the same covariates as in RF to which we add the GAM effects
f1(Toyt), f2(LoadDt), f3(LoadWt) as well as lags (one week, one or two days) of the
GAM residuals.

— Multi-Layer Perceptron (MLP). Finally, we test a multi-layer perceptron of 2 hidden
layers of 15 and 10 neurons using hyperbolic tangent activation. We take as input: the
linear trend variable, time of year, day type, the exponential smoothing variable Temps95,
and the two lags.

8.4 Adaptation using State-Space Models

Due to the lockdowns the consumer’s behaviors changed abruptly and therefore the models
presented in Section 8.3 perform poorly during Spring 2020 and afterward, see Figure 8.5. To
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Figure 8.6 – Diagram of the definition of the features to adapt the MLP. The network has two
hidden layers of 15 and 10 neurons, we freeze all the weights except the last ones.

adapt the models in time, we rely on linear Gaussian state-space models, summarized as

θt − θt−1 ∼ N (0, Qt) ,

yt − θ>t xt ∼ N (0, σ2
t ) ,

where θt is the latent state, Qt the process noise covariance matrix and σ2
t is the observation

variance.

8.4.1 Definition of xt
This state-space representation is natural for linear regression for which xt is the vector con-

taining the explanatory variables detailed in Section 8.3. Autoregressive models also fit directly
in that framework, as they are, in fact, linear models on lags of the load, see Equation (8.1). We
linearize the models to adapt GAM and MLP, and xt is just another feature representation. We
freeze the nonlinear effects in the GAM as in Section 7.2.1, and xt contains the different effects,
linear and nonlinear. We apply a similar approach for the MLP, for which we freeze the deepest
layers and we learn the last one, that is, xt is the final hidden state, see Figure 8.6.

The state-space approach is not applied to the random forest. For the latter, we compare
with incremental offline random forests, consisting of re-training the random forest each day with
all the data available at the time.

8.4.2 Kalman Filter

Bayesian estimation of the state θt in linear Gaussian state-space models is well understood
under known variances σ2

t , Qt. The best estimator is obtained by the well-known Kalman filter
(Kalman and Bucy, 1961). It yields an exact recursive estimation of the mean and covariance
matrix of the state given the past observations, denoted by θ̂t and Pt. However, there is no
consensus in the literature as to how to tune the hyper-parameters, see Chapter 5. The widely
used expectation-maximization algorithm is an iterative algorithm that guarantees convergence
to a local maximum of the likelihood. However, there is no global guarantee, and in our case, it
performs poorly. We propose the following settings instead, building on Section 7.2.1:

— Static. We consider the degenerate setting where Qt = 0 and θ̂1 = 0, P1 = I, σ2
t = 1.
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— Static break. We consider a break at March 1st 2020 by setting θ̂1 = 0, P1 = I, σ2
t =

1, Qt = 0 except QT = I where T is March 1st 2020.
— Dynamic. We approximate the maximum-likelihood for constant variances σ2

t = σ2 and
Qt = Q. We set P1 = σ2I and we observe that for a given Q/σ2 we have closed-form
solutions for θ̂1, σ

2. Then we restrict ourselves to diagonal matrices Q/σ2 whose nonzero
coefficients are in {2j ,−30 ≤ j ≤ 0} and we apply a greedy procedure: starting from
Q/σ2 = 0 we change at each step the coefficient improving the most the likelihood. That
procedure is designed to optimize Q on the training data (up to January 1st 2020).

— Dynamic break. We use similar θ̂1, P1, σ
2
t = σ2, Qt = Q as in the dynamic setting

except QT = P1 = σ2I where T is March 1st 2020.
— Dynamic big. We simply use σ2 = 1 and a matrix Q proportional to I defined based on

the 2020 data.
Also, it is important that we estimate a Gaussian posterior distribution, therefore we have

a probabilistic forecast for the load. Precisely, our estimate is θt ∼ N (θ̂t, Pt), thus we have
yt ∼ N (θ̂>t xt, σ

2 + x>t Ptxt). The likelihood that is optimized to obtain the dynamic setting is
built on that probabilistic forecast of yt given the past observations. In the competition, we
added quantiles of these Gaussian distributions as forecasters in the expert aggregation.

8.4.3 Dynamical Variances
The idea behind the break settings introduced in the previous paragraph is that we would like

the model to adapt faster during an evolving period such as a lockdown than before. However,
it consists in modeling a break in the data, a sudden change of state resulting from a noise of
much bigger variance at a specific time specified a priori. A way to extend the approach would
be to define a time-varying covariance matrix depending, for instance, on a lockdown stringency
index such as defined by Hale et al., 2021. However, the competition policy forbade the use of
external data, and the location was undisclosed.

In a more long-term perspective, let it be hoped that lockdowns won’t drive the evolution of
the electricity load. Therefore, it is more generic to learn the variances of the state-space model
in an adaptive fashion. Consequently, we apply a novel approach for time-series forecasting intro-
duced in Vilmarest, Goude, and Wintenberger, 2021 and named Variational Bayesian Variance
Tracking, alias Viking. We briefly recall how the method works. This method was designed in
parallel of the competition and was improved afterward. We present the last version only.

We treat the variances as latent variables and we augment the state-space model:

at − at−1 ∼ N (0, ρa) , bt − bt−1 ∼ N (0, ρb) ,

θt − θt−1 ∼ N (0, exp(bt)I) ,

yt − θ>t xt ∼ N (0, exp(at)) .

Instead of estimating the state θt with variances fixed a priori, we estimate both the state and
the variances represented by at, bt. Although we have removed σ2

t , Qt as hyper-parameters, we
now have to set priors on a0, b0 along with the parameters ρa, ρb controlling the smoothness of
the dynamics on the variances.

We apply a Bayesian approach. At each step, we start from a prior p(θt−1, at−1, bt−1 | Ft−1)
obtained at the last iteration, where we introduce the filtration Ft = σ(x1, y1, ..., xt−1, yt−1).
Then we obtain a prediction step thanks to the dynamical equations yielding p(θt, at, bt | Ft−1).
Finally Bayes’ rule yields the posterior distribution p(θt, at, bt | Ft).

However the posterior distribution is analytically intractable, therefore the principle of Viking
is to apply the classical variational Bayesian approach (Šmídl and Quinn, 2006). The posterior
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distribution is recursively approximated with a factorized distribution. In our setting we look
for the best product N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) approximating p(θt, at, bt | Ft). The
criterion minimized is the Kullback-Leibler (KL) divergence

KL(N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || p(θt, at, bt | Ft)) ,

where KL(p, q) =
∫

log(dp/dq)dp. At each step it yields a coupled optimization problem in
the three Gaussian distributions. The classical iterative method (see for instance Tzikas, Likas,
and Galatsanos, 2008) consists in computing alternately exp(E[log p(θt, at, bt | Ft)]) where the
expected value is taken with respect to two of the three latent variables, and identifying the
desired first two moments with respect to the other latent variable. However the expression
exp(Eθt,bt [log p(θt, at, bt | Ft)]) doesn’t match a Gaussian distribution in at, and similarly for bt.
We therefore use the first two moments of the Gaussian distribution to derive an upper-bound
of the KL divergence for which we have an analytical solution. We refer to Vilmarest, Goude,
and Wintenberger, 2021 for the detailed derivation of the algorithm. Chapter 6 presents a final
version of Viking.

8.5 Experiments

We display the performance of the introduced methods that we call experts. Then we use
aggregation of experts to leverage specificities of each forecaster. The end of the section is
devoted to discussing our day-to-day strategy during the competition. Finally, we refer to the
implementation for more details 1.

8.5.1 Intraday Correction

Although it performs better to use different models at different hours of the day, let it be
noted that the correlation between different hours is important. To capture intraday information,
we fit on the residuals of each model an autoregressive model incorporating lags of the 24 last
available hours and optimized for each forecast horizon. This follows from the intuition that to
predict the load at 8 AM, instead of using as the latest available data a delay of 48 hours, we
can use a 25-hour delay.

We apply this correction to the models presented in Section 8.3 as well as to the ones resulting
from the adaptation framework of Section 8.4. We display in Table 8.2 the gain for the statistical
and machine learning methods of Section 8.3. To present the improvement brought by the
intraday correction, we give the performance during a stable period (after the training of the
model, but before the covid crisis). We observe that the only model for which the intraday
correction doesn’t improve the performance (RF_GAM) is the one including already a residual
correction. The improvement during the evaluation period (2021) is much bigger (57% decrease of
the MAE for the MLP, for instance). It is natural as the intraday correction is an autoregressive,
that is, an adaptive model.

8.5.2 Adaptation of Individual Experts

Then we focus on adaptive models to show the improvements due to each setting, see Ta-
ble 8.3. We have four different models (autoregressive, linear, GAM, and MLP). We try the
various adaptation settings (no adaptation, Kalman filters, and Viking) for each one. Kalman

1. https://gitlab.com/JosephdeVilmarest/state-space-post-covid-forecasting

https://gitlab.com/JosephdeVilmarest/state-space-post-covid-forecasting
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Adaptation AR Linear GAM RF RF_GAM MLP
No intraday 29.3 20.8 20.7 24.6 23.0 21.2
With intraday 27.0 19.9 19.3 24.4 23.7 20.6

Table 8.2 – Mean absolute error (in MW) of each method of Section 8.2 during normal test
period. Models are trained up to Jan. 1st 2020 and tested during the next two months before
the break of March.

Adaptation AR Linear GAM MLP
Offline 14.6 22.8 22.7 16.7
Static 20.5 15.7 17.0 22.9

Static break 27.9 14.4 28.4 35.4
Dynamic 14.4 14.9 15.3 13.0

Dynamic break 16.2 13.6 14.3 12.3
Dynamic big 14.3 11.2 12.4 12.4

Viking 14.4 11.5 12.7 12.5

Table 8.3 – Mean absolute error (in MW) of each method during the competition evaluation
set (2021-01-18 to 2021-02-16). The performances are displayed for each model after intraday
correction. As a comparison, re-training the random forest every day yields an online RF of
MAE 15.0 MW, and an online GAM_RF of MAE 18.1 MW. The organizers propose a naive
benchmark (relying on persistence) of MAE 15.5 MW.

filters with a constant covariance matrix proportional to the identity obtain the best results.
That is not the case on the data previous to the competition, and it depends on the intrinsic
evolution of the data.

We illustrate the different settings in Figure 8.7 where we display the evolution of the state
coefficient for the GAM adaptation strategies.

Furthermore, in Figure 8.8 we present the evolution of the GAM model adapted by Viking
for the 24 different hours of the day. This, as well as Figure 8.2, shows the necessity of different
models for the different hours of the day. However, the resemblance of close hours motivates the
intraday correction to benefit from the correlation between hours, see Section 8.5.1.

8.5.3 Aggregation

Online robust aggregation of experts (Cesa-Bianchi and Lugosi, 2006) is a powerful model
agnostic approach for time series forecasting, already applied to load forecasting during the
lockdown (see for instance Section 7.4.2). We use the ML-Poly algorithm proposed by Gaillard,
Stoltz, and Van Erven, 2014 and implemented in the R package opera (Gaillard and Goude,
2016) to compute these online weights.

The aggregation weights are estimated independently for each hour of the day. We summarize
different variants in Table 8.4. First, for each family of models we compute the aggregation of all
the adaptation settings (7 for each). Then we aggregate all of them (28 models). An example of
the weights obtained at 3 PM is displayed in Figure 8.9. The aggregation presented in this paper
obtains a performance close to our strategy winning the competition (degradation of about 0.05
MW).
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Figure 8.7 – Evolution of the state coefficients for various adaptations of the GAM, see Section 8.4.
On the top left, we use the Kalman filter in the static setting (degenerate covariance matrix
Qt = 0). On the top right, the dynamic setting where the variances are constant, and we provide
the ratio Q/σ2 = diag(2−17, 0, 2−8, 2−16, 2−14, 0, 0): we observe that the coefficient corresponding
to the largest coefficient of Q (the effect of Temps95) evolves much faster. On the bottom, the
Viking setting where we estimate the variances adaptively.

Adaptation AR Linear GAM MLP All
Best expert 14.3 11.2 12.7 12.3 11.2
Aggregation 14.4 11.4 11.7 11.9 10.9

Table 8.4 – Mean absolute error of aggregation strategies (in MW) during the competition eval-
uation set (2021-01-18 to 2021-02-16).
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Figure 8.8 – Evolution of the Viking adaptation of the GAM for the 24 different hours of the
day. On the left: evolution of 4 of the 7 coefficients as in Figure 8.7. We plot night hours (8 PM
- 8 AM) in dashed lines and daylight hours (8 AM - 8 PM) in solid lines to show the groups. On
the right: impact of the evolution on the forecast. Precisely, on the right graph, we display the
difference between the forecast of Viking and the forecast that would have been made by Viking
on January 1st 2020.
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Figure 8.10 – Segmentation of the data set. Meteorological corrections as well as time-invariant
forecasts were trained on the train period (up to January 1st 2020). Adaptive forecasting methods
were evolving on the whole period. Then the aggregation weights were trained by MLpol from
July 1st 2020, and the expert selection was determined with respect to the validation set.

8.5.4 Day-to-day Forecasts

During the competition, our predictions were not exactly the ones of the aggregation method
presented in the previous subsection. There are mainly two reasons for that.

First, we considered a bigger set of forecasting methods (we had 72 experts). It seemed
reasonable to prune the strategy for the sake of the paper’s clarity, at the cost of a very small
change of error. Still, it is interesting to present also the predictions used during the evaluation.
We found a trade-off in the selection of experts. Indeed, too many experts in the aggregation
yield poor performances. We applied a greedy procedure to select the experts we keep in the
aggregation: we begin with an empty set, and at each step, we add the one improving the
performance the most. That performance was evaluated with the MAE on the last month of
the training data set. We provide in Figure 8.10 a graphical representation of how we defined
different time periods. We refer to Figure 8.11 for the evolution of the validation MAE as the
selection grows. We observe a sharp decrease of the error as experts are added with high diversity,
and then a slow increase of the loss as the set of experts becomes too large.

Second, we were constantly experimenting the different strategies. We used a variational
Bayesian method that was a prior version of the one of this paper. We also changed a lot the
aggregation procedure.

We refer to Appendix D for a detailed presentation of our daily strategy. Official results of the
challenge and additional significance analysis are described by Farrokhabadi et al., 2021. Overall,
these day-by-day changes degraded the performance; if we had stayed on the first strategy with
no change at all, our MAE would have been 10.51 MW instead of 10.84 MW. The critical issue in
such unstable periods is to find the suitable validation period to select the prediction procedure.
The month before the evaluation period seems a posteriori a good compromise. During the
competition, we changed "manually" based on the performances in a shorter range, considering
for instance an expert performing well on the last few weeks for a specific day type ... We should
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Figure 8.11 – Evolution of the validation MAE as the expert selection grows from 1 to 30 experts.
The nomenclature is provided in Appendix D.

have trusted the aggregation’s robustness.

8.6 Conclusion

In this paper, we presented our procedure to win a competition on electricity load forecasting
during an unstable period. Our approach relies heavily on state-space models, and the compe-
tition was the first data set on which was applied a recent approach to adapt the variances of
a state-space model. Some perspectives have been raised during the competition, such as inter-
pretability of the global approach and a better understanding of the error propagation along the
different adaptations (intraday correction, Kalman filtering, variance tracking, and aggregation).

Finally, similar state-space methods have been applied to obtain first place in another com-
petition in which the objective was to forecast the electricity consumption of a building. We
present this competition in Chapter 9.



Chapter9
Competition on Building Energy
Consumption Forecasting

We participated in a competition where the objective was to forecast the electricity consump-
tion of a building. Our aim was to motivate state-space models to forecast the electricity load at
a low level of aggregation. Indeed, the load at a small scale is expected to be unstable because
a change of behavior of a single person may have a non-negligible impact on the variable of
interest. Therefore, we claim that adaptive methods are necessary. We won the competition and
we present in this chapter the strategy implemented.
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9.1 Introduction

The objective of the competition was to forecast the electricity load of a building at a 15-
minute granularity. To predict the 96 quarters of an hour of day d, we had access to the whole
day d − 1. It corresponds to predicting at midnight the whole following day, having access to
the data with no delay. The evaluation period of the competition was February 10th to 14th

2020. The training period started January 1st 2019 and ended at the beginning of the evaluation
period.

We describe the electricity load in Figure 9.1. We observe an almost constant base consump-
tion during nights and weekends, probably due to inactivity in the building. The main variation
of the load occurs during weekdays between 8 AM and 8 PM. The metric used to evaluate the
participants of the competition is non-standard (Pinto et al., 2021). We detail it in Section 9.5.
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Figure 9.1 – Electricity load of the building considered in the competition. On the left: load per
quarter of an hour in the whole data set, and 7-day moving average. On the right: daily profiles
of the electricity load for each day of the week.

We have access to many explanatory variables. First, the data set contains the consumption
and generation, as there are solar panels on the building. We don’t see any possible use of the
generation variable for the forecasting task at hand. However, as presented in Chapter 10, this
data may be helpful if one wishes to forecast the net-load (reduced of the local generation).
Second, meteorological data from a near weather station was provided (temperature, humidity,
and solar radiation), as well as a second temperature variable that we deem likely to be measured
closer to the building. Third, the building is decomposed into various zones, and we had access to
the past load of each zone, as well as sensor information (temperature, humidity, lamp intensity).
Our method doesn’t take that disaggregated data into account. Finally, each day of the evaluation
period, after we sent our prediction, we were given the data of the forecasted day.

Our strategy is decomposed into four steps, following the diagram of Figure 1.5. We first
pre-process the data in Section 9.2, then we present two statistical models in Section 9.3. In
Section 9.4, we adapt the statistical models, and finally we combine different forecasts in Sec-
tion 9.5.

9.2 Pre-Processing

We aim to forecast at a 15-minute granularity while the data is provided with 5-minute
intervals. We don’t use that subdivision. Instead, we average each variable at 15-minute intervals,
yielding 96 times of day. When the data is missing, we use linear interpolation per time of day.

Among the explanatory variables that were given we assess that the most useful ones are the
humidity and radiation features from the weather_data table, and the temperature variable from
the building_sensor table, see Figure 9.2. However, these covariates are realized meteorological
variables, and we are not given forecasts for them. Thus we have two options. Either we use
lags of the realized variables, or we forecast them. In some sense, we do both simultaneously:
we forecast them with autoregressive models. Formally, each variable of interest zt is modeled
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Figure 9.2 – Humidity (left), radiation (middle) and temperature (right) variables.

by the following equation:

zt =
∑
l∈L

αlh(t)zt−l + εt ,

where h(t) ∈ {0, 1, . . . , 95} is the time of day of t, εt is an i.i.d. Gaussian noise and L is a set
of lags. Therefore, for each variable of interest and each time of day, we learn a linear model on
lags of the variable of interest, and we use that linear model to make forecasts using the data
provided at the prediction time. For humidity and temperature, we use the last 10 available
values (end of the previous day) and the last 10 days at the same time of day. For radiation, we
use the last 2 days at the same time of day.

Finally, our forecast for time t depends on the following covariates:
— Humt, Radt, T empt, T emps99t: the forecasts for the humidity, radiation, and tempera-

ture variables, and an exponential smoothing of parameter 0.99 of the temperature fore-
cast.

— LoadDayt, LoadWeekt, LoadLastt: lags one day and one week of the electricity load, as
well as the last load available (the day before at 11:45 PM).

— DayTypet: day of the week ranging from 1 to 7.

9.3 Statistical Models

We forecast the load using the variables defined in Section 9.2. Our models are defined per
time of day, that is, we build 96 models independently of each other but using the same structure
as follows.

We first define a linear regression where we use different effects of the lags and different
intercepts for the different days of the week:

Loadt = α1Humt + α2Radt + α3Tempt + α4Temps99t + α5LoadLastt

+

7∑
i=1

βi1DayTypet=iLoadDayt +

7∑
i=1

γi1DayTypet=iLoadWeekt +

7∑
i=1

δi1DayTypet=i + εt .

Then we design a generalized additive model (GAM). The difference from the linear model
is limited to the meteorological forecasts. In the GAM, we define a nonlinear effect of the
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temperature, and we remove the other meteorological forecasts:

Loadt = s(Tempt) +

7∑
i=1

βi1DayTypet=iLoadDayt +

7∑
i=1

γi1DayTypet=iLoadWeekt

+

7∑
i=1

δi1DayTypet=i + εt ,

where the effect of the temperature is decomposed on a spline basis. The optimization is realized
by penalized least-squares using the R package mgcv (Wood, 2015).

9.4 Adaptation

As mentioned previously, we claim that adaptive methods are crucial to forecast at a low
level of aggregation. It is remarkable that the models detailed above are already very adaptive
as they essentially depend on the lags. However, we reduce the error of the predictive models
using a Kalman filter. We use the following state-space model:

State: θt − θt−1 ∼ N (0, Q) ,

Space: Loadt − θ>t xt ∼ N (0, σ2) ,

where the vector xt is defined differently for the linear regression and for the GAM. It is naturally
defined as the initial covariate vector for the linear regression. For the GAM, it is composed of the
5 effects (linear or nonlinear) of the GAM as in Section 7.2.1. We use the standard Kalman filter
with the following hyper-parameters: θ̂1 = 0, P1 = I,Q = 10−4I, σ2 = 1. Indeed, estimating the
state and space variances as in Part II didn’t lead to improving the performances, and we believe
that may be due to the lack of a sufficiently wide data set.

9.5 Final Forecasts and Performances

In this section, we assess the performances of the different methods, and we present the
strategy we followed during the competition.

First, we define precisely the competition metric, which may be interpreted as a combination
of mean absolute error (MAE) and root mean squared error (RMSE). For each day, let (e1, . . . e96)
denote the difference between the realized loads and the forecasts. Then we define a slight
modification of the MAE to penalize high errors and to penalize business hours. Precisely, we
define ci = 4 for the 12 times between 7 AM and 8 PM of highest errors, ci = 2 for the other
times between 7 AM and 8 PM, and ci = 1 otherwise. It allows to define m = 1

96

∑96
i=1 ci|ei|.

Then the metric is defined as the weighted average 5
6m + 1

6s where s is the standard deviation
of (e1, . . . e96). Finally, on a period of more than one day, the metric is computed per day, then
averaged.

We present in Table 9.1 the numerical performances on a validation set consisting of Jan-
uary 1st to February 9th 2020, while the models are trained on 2019. We compare the models
introduced previously with naive persistent benchmarks:

— Last Load: we predict the load of the whole day as being constant equal to the one of the
day before at 11:45 PM.

— Load 1 Day and Load 1 Week are the lags of the electricity load. We also compare with
the average of these two lags.
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Val. MAE (W) Val. RMSE (W) Val. Metric (W) Eval. Metric (W)
Last Load 1509 2739 3703 3615
Load 1 Day 1179 2074 2813 1567
Load 1 Week 968 1748 2252 1544
Average of lags 929 1563 2179 1151
Weekly Profile 1330 1635 2616 1706
Linear Offline 721 1292 1761 1067
Linear Kalman 693 1263 1681 968
GAM Offline 710 1246 1733 1058
GAM Kalman 686 1206 1674 913
Average Kalman 681 1222 1656 916
Final Forecast 648 1211 1625 883

Table 9.1 – Performances of different benchmarks and our models. We display the mean absolute
error (MAE), the root mean squared error (RMSE), as they are more interpretable, and then
the competition metric, all on the validation set. The last column is the result on the evaluation
period. Average Kalman is the average of both Kalman filters.

— Weekly Profile: we forecast the load with the average load in 2019 at the specific day of
the week and the specific time of day.

To boost the performances, it is natural to combine different forecasts to leverage specificities
of each one. We first reduce the error slightly using the average of both Kalman filters.

Furthermore, it is interesting to study the daily profile of the error. We see that the best
method is not the same for all the 15-minute intervals, see Figure 9.3. We display the mean
absolute error as the competition metric is not defined per time of day. We observe that the
last load available is the best forecast up to 8 AM, which seems reasonable as the load is almost
constant during the night. Then, from 8:15 AM to 8 PM, the average of the Kalman filters
performs better. Finally, from 8:15 PM, the average of lags is the best method. Our final
forecast selects the best of these three methods depending on the time of day. Compared with
the average of Kalman filters, this selection reduces the competition metric by about 2% on the
validation period and 4% on the evaluation period, see Table 9.1.

9.6 Conclusion

We obtained first place in this competition using a straightforward application of our method-
ology. Therefore we believe there are promising perspectives in applying our work to low-level
data.
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Figure 9.3 – Mean Absolute Error of different forecasts on the validation set depending on the
time of day. Notice that the scale is logarithmic on the y-axis. Therefore, although there is an
important relative gain before 8 AM using the last load, it has a moderate impact because the
error is small for all models.



Chapter10
Adaptive Probabilistic Forecasting of
Electricity (Net-)Load

In this chapter, we present adaptive methods for probabilistic forecasting. We consider two
data sets: the electricity net-load of Great Britain (load reduced of embedded solar and wind
generation) at a half-hour time granularity, and the daily load of New York City.
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10.1 Introduction

In Chapters 7, 8 and 9, we were interested in point forecasting. The objective was to make
a prediction achieving the minimum of a loss function. In Chapter 7 we considered mostly the
root-mean-square-error (RMSE) for which the best forecast is the expected value of the load. In
the competition presented in Chapter 8, the objective was to minimize the mean absolute error

149
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(MAE), and the best forecast is the median. The evaluation of the competition presented in
Chapter 9 was more intricate and may be interpreted as a combination of MAE and RMSE.

However, the electricity system relies on more than point forecasting. Indeed, the expected
value of the load is not sufficient for risk management, and it is better to have some information
on the distribution of the load around its mean. An interesting indicator is its variance, which
may also be estimated by existing approaches, including the Kalman filter. In this chapter, we
are interested in forecasting the quantiles of the load, that is called probabilistic forecasting.

Probabilistic load forecasting has been widely studied. We refer to the review of Hong and
Fan, 2016, as well as to the last two Global Energy Forecasting Competitions (Hong et al., 2016;
Hong, Xie, and Black, 2019). Our aim is to design adaptive methods in the vein of the state-space
approach presented in the previous chapters for point forecasting.

In Section 10.2 we present adaptive methods for probabilistic forecasting. Then we apply them
to two data sets. In Section 10.3 we consider the regional net-load in Great Britain (Browell
and Fasiolo, 2021). As the renewable generation increases, the available production means must
meet the net-demand, that is, the load reduced of the wind and solar production (that are not
controllable). Therefore it becomes fundamental to forecast the net-load. In Section 10.4 we
apply the methods on the load in New York City (Ruan et al., 2020). In this latter application,
we use daily data to determine whether our approach works well at this time granularity.

10.2 Theoretical Framework

This section presents the procedure we apply to obtain adaptive probabilistic forecasting.

10.2.1 Offline Model

Motivated by Browell and Fasiolo, 2021, we decompose our model into two steps. We use a
generalized additive model (GAM) to forecast the mean, and then we use quantile regression on
the GAM residuals to forecast the quantiles. This two-step procedure is essentially motivated
by computational time. Indeed, we could also use quantile GAM (Fasiolo et al., 2021), but it is
more time-consuming than simple quantile regressions. Formally, let yt ∈ R be the variable of
interest.

1. We model yt as a Gaussian random variable whose mean is predicted using the covariates
xt,1, . . . xt,d and the following formula:

ŷt =

d∑
j=1

fj(xt,j) ,

where the effects f1, . . . fd are either linear or nonlinear. In the latter case, the effects are
decomposed on spline bases (Wood, 2017).

2. The Gaussian assumption yt − ŷt ∼ N (0, σ2) is violated in practice, and therefore we fit
a set of quantile regressions (Koenker and Bassett Jr, 1978) on the residual to predict the
distribution of the variable. We use a different vector of covariates zt ∈ Rd0 , and for some
q, we define a vector βq ∈ Rd0 by the following minimization problem on a training set T :

βq ∈ arg min
β∈Rd0

∑
t∈T

ρq(yt − ŷt, β>zt) .
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where ρq(y, ŷq) = (1y<ŷq − q) (ŷq − y) is the pinball loss. This pinball loss is motivated
by the following lemma (Koenker and Hallock, 2001):
Lemma 10.1. Let Y be an integrable real-valued random variable. For any 0 < q < 1 the
q-quantile of Y denoted by Yq satisfies Yq ∈ arg minE[ρq(Y, Yq)].

Finally we predict the quantile for probability level q with ŷt + β>q zt.

10.2.2 Adaptation of the Mean Forecast
We adapt the GAM as described in Section 7.2.1. We freeze the nonlinear effects, and

we rely on a linear Gaussian state-space model to adapt a linear model on the new covariates
f1(xt,1), . . . fd(xt,d). We use the standard Kalman filter applied with the variances obtained from
our iterative grid search algorithm introduced in Section 5.3.3.

10.2.3 Adaptation of the Quantile Forecast
The specificity of this chapter lies in the adaptation of probabilistic forecasts. We compare

different methods, besides incremental offline models where we re-train the model frequently with
an increasing data set.

We first remark that the Kalman filter does not only yield a mean forecast but already a prob-
abilistic forecast. Indeed, the Kalman filter yields estimates of the expected value and covariance
matrix of the state vector given the past observations. Moreover, the a posteriori distribution of
the state is Gaussian as long as the state-space assumption is satisfied. The observation is thus
predicted as a Gaussian random variable whose mean and variance are estimated by the Kalman
filter. It yields a first adaptive probabilistic forecast.

However, this first adaptive forecaster would be the generalization of an offline Gaussian
distribution on the offline GAM residuals. The quantile regressions were specifically introduced
because the Gaussian assumption is violated in practice. We then remark that if the conditional
distribution of the residual yt − ŷt given the covariates zt is constant, then the offline quantile
regression model should work well. The need for adaptive methods is motivated only by changes
in the residual distribution. Therefore we test the combination of the state-space adaptation
of the GAM and the offline quantile regressions. Indeed, a critical property of the Kalman
filter is that the residuals are stationary, provided that the state-space model is well-specified.
Therefore, it is natural that the dependence of the residuals of the state-space GAM on the
quantile covariates should be more stable than for the offline GAM.

Finally, we define an online quantile regression by simply applying online gradient descent
(OGD) on the pinball loss. Precisely, we defined the offline quantile regression for the q-quantile
as βq ∈ arg minβ∈Rd0

∑
t∈T ρq(yt − ŷt, β>zt). The OGD allows to estimate recursively a vector

βt,q. We start from β1,q ∈ Rd0 and at each step we update it with a step on the direction opposite
to the gradient of the loss:

βt+1,q = βt,q − α
∂ρq(yt − ŷt, β>zt)

∂β

∣∣∣
βt,q

.

We use a constant gradient step size α, and we standardize the covariates zt.

10.3 Net-Load Forecasting in Great Britain

We first study the data set created by Browell and Fasiolo, 2021. We thank them for updating
the data for us. Indeed, they studied the data from 2014 to 2018, and they augmented the period



152 CHAPTER 10. Adaptive Probabilistic Forecasting of Electricity (Net-)Load

2014 2016 2018 2020 2022

0
50

0
10

00
15

00
20

00
25

00

Evolution of the Net−load for Each Region

Date

4−
w

ee
k 

M
ov

in
g 

A
ve

ra
ge

 o
f t

he
 N

et
−

lo
ad

 (
M

W
)

A
B

C
D

E
F

G
H

J
K

L
M

N
P

0 5 10 15 20

0
50

0
10

00
15

00
20

00
25

00
30

00

Daily Profiles of the Net−load for Each Region

Hour of day

A
ve

ra
ge

 N
et

−
lo

ad
 (

M
W

)

A
B

C
D

E
F

G
H

J
K

L
M

N
P

Figure 10.1 – On the left: evolution of the net-load of the 14 regions. On the right: daily
profiles. We observe that in region P (North Scotland) the embedded generation often exceeds
the consumption and the daily profile is close to 0. Also, this high generation means higher
volatility, and the net-load does not have a clear yearly profile as in the other regions.

to range from 2014 to 2021, allowing us to integrate the unstable covid period. We refer to Browell
and Fasiolo, 2021 and Browell, 2021 for more details on the data set. Due to Brexit, the day-
ahead electricity price definition changed. Thus, we decided to remove the variable from the
data set.

10.3.1 Data Presentation and Offline Model

We are interested in forecasting the electricity net-load, defined as the difference between
electricity consumption and embedded generation (wind and solar production). We consider
the data from Great Britain at a region-scale. Great Britain is divided into 14 regions called
Grid Supply Point Groups. The time granularity is half an hour. We display in Figure 10.1
the evolution of the net-load in each region, as well as the daily profiles. We observe different
behaviors. In particular, region P (North Scotland) often has a negative net-load, meaning the
consumption is smaller than the embedded production.

For each region independently, the model designed by Browell and Fasiolo, 2021 to predict
quantiles of the net-load is decomposed into three steps. First, a GAM is fitted to forecast
the mean. Second, a set of quantile regressions is fitted on the GAM residuals (between 2.5%
and 97.5%). Third, extreme quantiles are modeled by a generalized Pareto distribution. We
only interest ourselves in non-extreme quantiles, and we consider the two steps introduced in
Section 10.2.1.

1. The mean model we detail here is the only model of the present manuscript where we
consider a unified model for all times of day. Indeed, most of the models presented are
designed independently for each time of day (hour, half-hour), each following the same
model structure. We use the formula of the GAM Point of Browell and Fasiolo, 2021,
where we removed the electricity price. The normalized electricity net-load at time t is
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modeled as a Gaussian random variable whose mean is the sum of
— linear functions of t and t2 (polynomial trend),
— linear functions of sin(2πToyt), sin(4πToyt), cos(2πToyt) and cos(4πToyt) where Toyt

is the time of year, growing linearly from 0 on January 1st to 1 on December 31st,
— a linear function of the one-day lag of a moving average of the normalized net-load

(at any time of day d this lag is the average of the normalized net-load between day
d− 15 and day d− 2 included),

— a linear effect of the categorical variableWeekDayt, which is the day of the week except
during school holidays (it is either Monday to Sunday, either Christmas, February half-
term, Easter, Summer or Autumn holidays),

— a linear effect of the categorical variable SchoolHolt, defining if the day is a Christmas
holiday, another school holiday or a normal day,

— three nonlinear effects of the time of the day Todt ∈ {0, . . . , 47}: one global, one
depending on the value of WeekDay and one depending on the value of SchoolHol,

— two nonlinear effects: one of the temperature at maximum population density and one
of a two-day moving average of that temperature,

— a nonlinear effect of the product between the solar radiation and the embedded solar
capacity,

— a linear effect of the wind speed, as well as a nonlinear effect of the wind speed
depending on the embedded wind capacity,

— a nonlinear effect of the precipitation,
— two tensor products: one of the temperature and the time of day, one of the precipi-

tation and the time of day.
All nonlinear effects are decomposed on cubic regression splines.

2. For the quantile regressions, we also use the model of Browell and Fasiolo, 2021: the
GAM residuals are modeled as a linear function of the GAM prediction, the squared
prediction, the product of solar radiation and embedded solar capacity, the wind speed,
the temperature, as well as of the categorical versions of the time of day and WeekDay.
For these two latter variables, we have an additive constant defined for each value of the
categorical variable.
When we use quantile regression on the residuals of the GAM adapted by the Kalman
filter, we replace the square of the prediction with the estimated variance of the obser-
vation. Indeed, the Kalman filter estimates the mean and covariance matrix of the state
vector, from which we obtain the mean and variance of the observation.

10.3.2 Performances of Mean Forecast

Similarly as in the previous chapter we improve the mean forecast performance in almost all
regions and all years using state-space adaptation, we display the root-mean-square error (RMSE)
for each region and each year in Figure 10.2. We also compute the RMSE of the aggregated data:
the root of the mean squared error for the standardized net-load of the 14 regions. We display it
in Table 10.1 for different methods and different years. When we compare the dynamic Kalman
filter to the incremental offline GAM, we have a much lower computational cost per day; we
reduce the RMSE by approximately 3% in 2019, 11% in 2020 and 11% in 2021.

10.3.3 Performances of Quantile Forecast

There are many ways to evaluate quantile forecasts. A first qualitative evaluation is reliability,
also known as calibration. A quantile forecast is reliable if the observed frequency coincides with
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Figure 10.2 – Normalized RMSE for each region in Great Britain. We compare the offline GAM
to the incremental offline GAM (trained each day on incremental training data), the Kalman
filter static (degenerate covariance matrix of the state noise Q = 0), and the Kalman filter in the
dynamic setting with iterative grid search method. We divide the test set in three (2019, 2020
and 2021). For the last two years we compare also with the GAM re-trained each year: GAM y
is the GAM trained with the data up to year y − 1 included.

Method 2019 2020 2021
Offline GAM 0.334 0.479 0.560

Incremental offline GAM (yearly) - 0.377 0.324
Incremental offline GAM (daily) 0.310 0.340 0.308

Kalman GAM 0.301 0.302 0.273

Table 10.1 – Aggregate RMSE on the standardized net-load of the 14 regions. Two incremental
offline methods are presented, updated either at the end of each year, or each day.



10.3. Net-Load Forecasting in Great Britain 155

2019 2020 2021
Offline method 0.179 0.278 0.334

GAM Kalman (Gaussian Quantiles) 0.161 0.163 0.148
GAM Kalman + QR Offline 0.155 0.161 0.144

GAM Kalman + QR OGD (10−2) 0.155 0.155 0.141
GAM Offline + QR OGD (10−3) 0.167 0.213 0.202
GAM Offline + QR OGD (10−2) 0.156 0.169 0.146
GAM Offline + QR OGD (10−1) 0.191 0.189 0.202

Table 10.2 – Average of the Ranked Probability Score on the 14 regions for the different models
and the three test years.

the quantile level. The forecast of a q-quantile is expected to be empirically bigger than the
quantity of interest for a fraction q of the data set and smaller for a fraction 1 − q. We display
reliability diagrams in Figure 10.3. We observe that the offline model is not reliable, probably
because of the bias in the mean model. The two adaptation methods proposed yield more reliable
forecasts. On the one hand, when a Kalman filter adapts the mean model, we obtain reliable
quantile forecasts either using Gaussian Kalman quantiles or offline quantile regressions. On the
other hand, it is also sufficient to adapt the quantile regression model with OGD on the residuals
of the offline GAM.

Numerical evaluation of forecasts is obtained by the pinball loss. However, we have 14 regions,
and many quantile levels: as in Browell and Fasiolo, 2021 we use 0.0005, 0.001, 0.0025, 0.005,
0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and symmetrically for the right tail.

A way to combine the pinball losses at different quantile levels is to use the continuous ranked
probability score (CRPS) (Gneiting and Raftery, 2007), defined equivalently by the two following
expressions:

CRPS(F, y) =

+∞∫
−∞

(F (x)− 1y≤x)2dx = 2

1∫
0

ρq(y, F
−1(q))dq ,

where y is the observation and F the cumulative distribution function. Remark that we have
ρ0(y, F−1(0)) = ρ1(y, F−1(1)) = 0, therefore the CRPS is not a good performance indicator for
the tail estimation.

We use the discrete approximation of last integral. We have a set of forecasted quantiles
ŷq1 , . . . , ŷql , and we define the RPS as the integral of the piecewise linear function interpolating
0, ρq1(y, ŷq1), . . . ρql(y, ŷql), 0 at the points 0, q1, . . . ql, 1. It yields

RPS
(
(ŷq1 , . . . , ŷql), y

)
=

l∑
i=1

ρqi(y, ŷqi)(qi+1 − qi−1) ,

where we define q0 = 0, ql+1 = 1. Then we naturally define the RPS on a test set for the
forecasts (ŷt,q1 , . . . ŷt,ql) of (yt) as the average of RPS((ŷt,q1 , . . . ŷt,ql), yt). We display this RPS
in Figure 10.4, and we provide in Table 10.2 the RPS averaged on the 14 regions for the different
models. We obtain an important gain in RPS by adapting the GAM using the Kalman filter
and keeping an offline quantile regression, even for the stable period (the year 2019). Adapting
the quantile regression with an OGD is outperformed by this adaptation of the mean model.
However, the difference is tenuous for a well-chosen gradient step size on which the OGD result
crucially depends. Combining both levels of adaptation boosts the performances a little.
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GAM Kalman (Gaussian Quantiles): 2021
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GAM Kalman + RQ Offline: 2019
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GAM Kalman + RQ Offline: 2020
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GAM Kalman + RQ Offline: 2021
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GAM Offline + RQ OGD (10^−2): 2019
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GAM Offline + RQ OGD (10^−2): 2020
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GAM Offline + RQ OGD (10^−2): 2021
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GAM Offline + RQ OGD (10^−1): 2019
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Figure 10.3 – Reliability diagrams for the different methods and the different years.
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Figure 10.4 – Ranked Probability Score for each region in Great Britain.
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Figure 10.5 – Daily electricity load in New York.

10.3.4 Learning the Embedded Capacities

Another interesting advantage of model adaptation is that it reduces the need for good
explanatory variables that can prove difficult to obtain. In particular, we show that our Kalman
GAM can learn the embedded generation capacities, in the sense that removing these variables
does not significantly change the predictions, contrary to the offline method.

Precisely, in the GAM and in the quantile regression model presented in Section 10.3.1, we
remove the solar and wind generation capacities. We consider solar radiation only instead of
its product with solar capacity. In the nonlinear GAM effect of the wind speed, we remove the
dependence on the embedded wind capacity. We thus evaluate removing the capacities in the
offline model, as well as in the Kalman adaptation of the GAM. We evaluate during 2019 to not
include the coronavirus crisis.

For mean prediction, removing the capacities increases the RMSE of the offline method by
more than 7%, while it reduces the RMSE by 0.2% for the Kalman adaptation of the GAM.

For probabilistic prediction, removing the capacities increases the RPS by more than 7% for
the offline model and by less than 0.1% for the offline quantile regression on the residuals of
GAM Kalman.

10.4 Load Forecasting in New York

We also test our framework on US data during the coronavirus crisis (Ruan et al., 2020).

10.4.1 Data Presentation and Offline Model

We focus on New York City and we consider daily data, represented in Figure 10.5. We
display the dependence of the load on meteorological variables in Figure 10.6.

We follow the structure presented in Section 10.2. We forecast the mean with a GAM, then
we fit quantile regressions on the residuals.
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Figure 10.6 – Dependence of the load on the temperature and humidity covariates. Air-
conditioning is more important than heating. It is the opposite in France.

— The generalized additive model we consider has the following form:

Loadt =

7∑
i=1

αi1WeekDayt=i + βBHt + γWBt + δLoadDt + f1(LoadWt) + f2(t)

+ f3(Tempt) + f4(Humt) + f5(Toyt) + εt ,

where εt is a Gaussian i.i.d. noise and for each day t,
— WeekDayt is the day of the week,
— BHt (respectivelyWBt) is a boolean denoting if the day is a bank holiday (respectively

in the winter break),
— LoadDt and LoadWt are lags of the load with a one-day and one-week delays,
— t is the day (variable growing linearly with time),
— Tempt and Humt are the temperature and humidity,
— Toyt is the time of year (variable growing linearly from 0 on January 1st to 1 on

December 31st).
The nonlinear effects f1, f2, f3, f4, f5 are decomposed on a spline basis of thin plate splines
for the first four, and of cubic cyclic splines for f5, as the effet of the time of the year is
cyclic.

— The quantile regression we fit on the residuals uses as covariates the (linear and nonlinear)
effects of the GAM, as well as the squared prediction as in Section 10.3.

10.4.2 Performances of Mean Forecast

We display the evolution of the error in Figure 10.7. The error is evaluated through the
RMSE. From January 1st 2020 to November 30th 2021, the offline GAM achieves 289 MW of
RMSE. Applying the Kalman filter in the degenerate static setting (Qt = 0) yields a decrease of
33% (195 MW RMSE). A dynamic Kalman filter, with a constant covariance matrix Q learned
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Figure 10.7 – Evolution of the error for the Kalman variants, compared to the base GAM. On
the left: rolling version of the error. On the right: rolling version of the RMSE.

with the iterative grid search of Chapter 5 yields a decrease of 73% (108 MW RMSE). Introducing
a break on March 16th as in Section 7.2.1 yields a small boost (106 MW RMSE). This boost
essentially comes from a 15% decrease of the RMSE in the two months following the break
introduced.

10.4.3 Performances of Quantile Forecast

We display in Figure 10.8 the reliability diagram for the different forecasts, as well as the
pinball loss for different quantiles. We observe that contrary to the study on the GB data set,
the offline quantile regression on the residuals of Kalman GAM does not yield well-calibrated
forecasts. Gaussian quantiles of the Kalman filter yield better-calibrated forecasts, and the OGD
method is also reliable.

The Gaussian quantiles of the Kalman filter are not far from achieving the best pinball loss.
While the OGD adaptation of the quantile regression yields a smaller RPS, there is a significant
sensibility to the gradient step size.

The RPS obtained is of 193 MW for the offline model, 56 MW for the Gaussian Kalman
quantiles, 80 MW for the offline quantile regression on the residuals of Kalman GAM, 49 MW
(resp. 47 MW) for the OGD adaptation of the quantile regression with best step size for the
GAM (resp. Kalman GAM) residuals.

10.5 Conclusion and Future Work

In this chapter, we presented adaptive methods for probabilistic forecasting. The applications
on Great Britain regional net-load and New York load show that state-space models might also
be helpful for probabilistic forecasting. Indeed, the Kalman filter already provides a probabilistic
forecast performing quite well, considering it relies on Gaussian quantiles. Quantile regressions
on the residuals of the mean model improve the quantile forecasts. We can adapt these quantile
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Figure 10.8 – On the left: reliability diagram for the different methods. On the right: pinball loss
for the quantiles estimated. On the x-axis of the right graph we use the quantiles of the standard
normal distribution (to be more readable in the extremes). It corresponds to the quantile levels
0.0005, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and symmetrically.

regressions by online gradient descent, but it is very sensitive to the choice of the gradient step
size.

We see two interesting leads for future research. The first one is expectile regression (Newey
and Powell, 1987). Expectiles generalize the mean as quantiles generalize the median. While
the mean is the minimum of the squared loss, expectiles minimize an asymmetric squared loss.
We believe that adaptive expectile regression should be easier to obtain than adaptive quantile
regression. Indeed, the squared loss is strongly convex while the absolute loss is not even strictly
convex, and it should be possible to use second-order methods similar to the Kalman filter. The
main issue concerns the expectile-to-quantile transform (Schnabel and Eilers, 2013).

The second is to study extreme quantiles. For the quantiles outside the 2.5%−97.5% interval,
Browell and Fasiolo, 2021 use the generalized Pareto distribution. Indeed, as extreme quantile
regressions are not well-calibrated, the distribution they consider is piecewise linear using the
quantile regressions between 2.5% and 97.5%, and the generalized Pareto distribution models
the tails. Adaptive extreme estimation is difficult because of the inherent scarcity of extreme
values. We believe that adapting the mean model would improve extreme forecasts in the same
way it improves quantile regression forecasts.
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Conclusion and Perspectives

In this thesis, we have presented several contributions to state-space estimation in the view of
time series and the application of state-space models to the electricity market. Throughout the
manuscript, we have highlighted the connection between Bayesian methods such as the Kalman
filter and stochastic optimization algorithms. In Part I, we have provided an analysis of the
extended Kalman filter in the degenerate static setting where the state is assumed constant and
estimated recursively. We obtained a theoretical comparison between an extension of the Kalman
filter and gradient descent algorithms of annealing step sizes. In Part II, we have detailed the
critical issue state-space models encounter in most real-world applications, the estimation of the
variances governing the dynamics of the underlying process. We extended the gradient descent
parallel, interpreting the choice of the variances as the estimation of optimal gradient step size
in stochastic optimization. In Part III, we have detailed the application of state-space models to
electricity load forecasting. The objective we pursued was to demonstrate the generality of the
approach to various countries, various scales and various objectives. We claim that the methods
employed have not unleashed their full potential yet.

Estimating the state and space noise variances in a state-space model is challenging, especially
in the adaptive fashion. It has occupied many researchers for decades, and there is still no
consensus. The estimation algorithm we presented in Chapter 6, Viking, is a promising lead.
However, we claim there is still much room for improvement. We applied the variational Bayes
framework, and our approach crucially relies on the definition of the dynamical model we assume.
Two leads seem particularly interesting to investigate. The first one is a better understanding
of the representation of the state noise covariance matrix, leading to a better selection of the
function applied to the Gaussian latent variable to recover the covariance matrix. A second
opportunity for enhancement may come from a combined model on both variances. Indeed, it
is intuitive that their evolution should not be independent. In our simulation, we observe that
Viking tends to correlate their evolution anyway, so we concluded that it was robust to this
hypothesis. Our heuristics for constant variances presented in Chapter 5 suggests the important
parameter is the variance ratio Q/σ2. In light of that analysis, it could be interesting to study
a dynamical model with independent evolutions of σ2

t and Qt/σ2
t .

To apply state-space models to the problem of electricity load forecasting, we considered a
hybrid approach. We first use statistical and machine learning methods. We linearize these
models in order to apply linear Gaussian state-space models. We demonstrate that it achieves
a nice compromise between the complex relations learned by machine learning models and the
reactivity of state-space methods. This work considered simple offline models: mainly linear
regression, generalized additive models, and multi-layer perceptron. It would be interesting to
combine state-space models with deeper neural networks. Indeed, deep learning is known to
capture complex relations, and deep neural networks may provide better features.

While we focused on mean forecasting in most of Part III, probabilistic forecasting has much
interest in practice, and the approach has potential in this domain. Expectiles seem an interesting
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lead to obtain second-order methods similar to the Kalman filter or Viking. Also, as the Kalman
filter already provides a probabilistic forecast performing quite well, improvements on Viking
may turn Viking into a method performing well in the task of probabilistic forecasting.

Finally, while this thesis spotlights the electricity load forecasting task, we believe the meth-
ods developed are pretty general. It would be interesting to apply them to other time series
forecasting problems.
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Supplementary Material for Chapter 3

We provide the proofs for all the claims of Chapter 3.
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A.1 Proof of Proposition 3.1

Proof of Proposition 3.1. Provided that ‖θ − θ?‖ ≤ ε we have

‖∇L(θ)‖2 ≥ 1

‖θ − θ?‖2
(∇L(θ)>(θ − θ?))2

≥ 1

‖θ − θ?‖2
(
L(θ)− L(θ?) +

µε
2
‖θ − θ?‖2

)2

≥ 4

‖θ − θ?‖2
(L(θ)− L(θ?))

µε
2
‖θ − θ?‖2

= 2µε(L(θ)− L(θ?)) (A.1)

The first inequality is Cauchy-Schwarz inequality, the second is Assumption 3.5 and the third
line comes from (a+ b)2 ≥ 4ab for any a, b ∈ R.

Moreover, using again Assumption 3.5:

‖θ − θ?‖ = ε =⇒ L(θ)− L(θ?) ≥ µε
2
‖θ − θ?‖2 ,

therefore Equation (A.1) yields

‖θ − θ?‖ = ε =⇒ ‖∇L(θ)‖2 ≥ µ2
εε

2 .

165
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The convexity of L yields

‖θ − θ?‖ > ε =⇒ ‖∇L(θ)‖2 ≥ µ2
εε

2 .

To conclude, let η > 0, and θ ∈ Rd such that L(θ) − L(θ?) > η/2. On the one hand, if
‖θ − θ?‖ > ε we have ‖∇L(θ)‖2 ≥ µ2

εε
2. On the other hand, if ‖θ − θ?‖ ≤ ε, Equation (A.1)

yields ‖∇L(θ)‖2 ≥ µεη.

A.2 Proof of Corollary 3.1

Proof of Corollary 3.1. β = 3/4 yields

2(1− β)

(1− (1/2)1−β)
≈ 3.14 ≤ 4 ,

(1− (1/2)1−β

2(1− β)

)2

≈ 0.101 ≥ 1/10

We therefore apply Theorem 3.3 with these bounds. For any η and

t ≥ max
(( 4

ηµ

(
4g2h+ L(θ1)− L(θ?)

))4

, 2 + 2
(4g2h

η

)2)
,

it holds:

P (L(θt)− L(θ?) > η) ≤ (1 + t/2) exp
(
− η2µ2t1/2

1

320g4

)
+ (1 + t/2) exp

(
− η2 (t/2− 2)1/2

256g4

)
.

If t ≥ 8 then t/2− 2 ≥ t/4 and we obtain

P (L(θt)− L(θ?) > η) ≤ (t+ 2) exp
(
− η2t1/2

min(µ2, 1/2)

320g4

)
.

Therefore, fixing t ≥ 8 and 0 < δ ≤ 1, we define ηt =
√

320g4(ln δ−1+ln(t+2))
t1/2µ2 , and we obtain

P (L(θt)− L(θ?) > ηt) ≤ δ provided that

t ≥ max
(( 4

ηtµ

(
4g2h+ L(θ1)− L(θ?)

))4

, 2 + 2
(4g2h

ηt

)2)
.

We write sufficient conditions such that last equation holds.
— We have

( 4

ηtµ

(
4g2h+ L(θ1)− L(θ?)

))4

=
tµ4256

(
4g2h+ L(θ1)− L(θ?)

)4

3202g8(ln δ−1 + ln(t+ 2))2µ

≤ 1

2
tµ3
(
h+

L(θ1)− L(θ?)

4g2

)
,

because ln δ−1 ≥ 0 and ln(t+ 2) ≥ ln 10 ≥ 2. Therefore if µ3 ≤
(

2h+ L(θ1)−L(θ?)
2g2

)−1

we

obtain t ≥
(

4
ηtµ

(
4g2h+ L(θ1)− L(θ?)

))4

.
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— Furthermore, we write:

2 + 2
(4g2h

ηt

)2

= 2 + t1/2µ2 32g2h

320g4(ln δ−1 + ln(t+ 2))

≤ 2 + tµ2 h

20g2
.

Therefore if µ2 ≤ 10g2

h , as t ≥ 8, we have t ≥ t/2 + 2 and t ≥ 2 + 2
(

4g2h
ηt

)2

.
To summarize, we have obtained for t ≥ 8 and 0 < δ ≤ 1, that with probability at least 1− δ

it holds:

L(θt)− L(θ?) ≤
√

320g4(ln δ−1 + ln(t+ 2))

t1/2
1

µ
,

as long as µ3 ≤
(

2h+ L(θ1)−L(θ?)
4g2

)−1

and µ2 ≤ 10g2

h . If we define

µ0 = min
(
µ,
(

2h+
L(θ1)− L(θ?)

4g2

)−1/3

,
(10g2

h

)1/2)
= max

(
µ−1,

(
2h+

L(θ1)− L(θ?)

4g2

)1/3

,
( h

10g2

)1/2)−1

,

then Assumption 3.4 is satisfied with D2
η = ηµ0, and the result follows, remarking

√
320 ≈ 17.9 ≤

18 and
√

ln δ−1 + ln(t+ 2) ≤
√

ln δ−1 +
√

ln(t+ 2).

A.3 Proofs for the Averaged Stochastic Gradient Descent

Proof of Lemma 3.2. We apply the standard approach for averaged SGD. We start from the
recursive update: for any t ≥ 1 we have θt+1 = θt − γt∇`t(θt) and therefore

‖θt+1 − θ‖2 = ‖θt − θ‖2 −
2

tβ
∇`t(θt)>(θt − θ) +

1

t2β
‖∇`t(θt)‖2 .

Defining ∆Nt = (∇L(θt)−∇`t(θt))>(θt − θ), we obtain

∇L(θt)
>(θt − θ) = ∆Nt +∇`t(θt)>(θt − θ)

= ∆Nt +
tβ

2
(‖θt − θ‖2 − ‖θt+1 − θ‖2) +

1

2tβ
‖∇`t(θt)‖2 .

Summing from k to n yields

n∑
t=k

∇L(θt)
>(θt − θ) =

n∑
t=k

∆Nt +
1

2

n∑
t=k

‖θt − θ‖2(tβ − (t− 1)β)− nβ

2
‖θn+1 − θ‖2

+
1

2

n∑
t=k

‖∇`t(θt)‖2

tβ

≤
n∑
t=k

∆Nt +
1

2

n∑
t=k

‖θt − θ‖2tβ(1− (1− 1/t)β) +
1

2

n∑
t=k

‖∇`t(θt)‖2

tβ
.
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We then use Bernoulli’s inequality (1 − 1/t)β ≥ 1 − β/t. Plugging it into last inequality, we
obtain

n∑
t=k

∇L(θt)
>(θt − θ) ≤

n∑
t=k

∆Nt +
1

2

n∑
t=k

‖θt − θ‖2
β

t1−β
+

1

2

n∑
t=k

‖∇`t(θt)‖2

tβ
.

Proof of Corollary 3.2. We use a union bound for any k:

P

( ∞⋃
t=k+1

(‖θt − θ?‖ > ε)

)
≤

∞∑
t=k+1

P(‖θt − θ?‖ > ε) .

Assumption 3.5 yields ‖θ − θ?‖ > ε =⇒ L(θt)− L(θ?) > µεε
2

2 . Thus, for any t, it holds:

P(‖θt − θ?‖ > ε) ≤ P
(
L(θt)− L(θ?) >

µεε
2

2

)
.

We apply Theorem 3.3 with D(µεε2)/2 =
√

min(µ2
εε

2, µ2
εε

2/2) =
√
µ2
εε

2/2. As in the proof of
Corollary 3.1, we observe that with β = 3/4 we have

2(1− β)

(1− (1/2)1−β)
≈ 3.14 ≤ 4 ,

(1− (1/2)1−β

2(1− β)

)2

≈ 0.101 ≥ 1/10 .

It yields, as long as

t ≥ max
(( 8

µ2
εε

2

(
4g2h+ L(θ1)− L(θ?)

))4

, 2 + 2
(8g2h

µεε2

)2)
,

it holds:

P
(
L(θt)− L(θ?) >

µεε
2

2

)
≤ (1 + t/2) exp

(
− µ4

εε
4t1/2

1

1280g4

)
+ (1 + t/2) exp

(
− µ2

εε
4 (t/2− 2)1/2

1024g4

)
.

If t ≥ 8 then t/2− 2 ≥ t/4 and as long as µεε2 ≤ 1/2 we obtain

P
(
L(θt)− L(θ?) >

µεε
2

2

)
≤ (t+ 2) exp

(
− µ4

εε
4t1/2

1

1280g4

)
.

For any a > 0 and t ≥ (3/a)2 we have exp(−at1/2) ≤ 1/t3/2. Therefore, for t ≥
(

10g
µεε

)8

we
obtain

P
(
L(θt)− L(θ?) >

µεε
2

2

)
≤ t+ 2

t3/2
exp

(
− µ4

εε
4t1/2

1

2560g4

)
≤ 2

t1/2
exp

(
− µ4

εε
4t1/2

1

2560g4

)
.
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Moreover

∞∑
t=k+1

P
(
L(θt)− L(θ?) >

µεε
2

2

)
≤
∞∫
k

2

u1/2
exp

(
− µ4

εε
4u1/2 1

2560g4

)
du

=
5120g4

µ4
εε

4
exp

(
− µ4

εε
4k1/2 1

2560g4

)
.

For k =

 ln δ−1+ln

(
5120g4/(µ4

εε
4)

)
µ4
εε

4/(2560g4)

2

we obtain P

(
∞⋃

t=k+1

(‖θt − θ?‖ > ε)

)
≤ δ. The result

follow from ln 5120 ≤ 9.

Proof of Theorem 3.4. Let k ≥ 1 such that P(∩∞t=k+1(‖θt − θ?‖ ≤ ε)) ≥ 1 − δ. Thanks to
Assumption 3.5, it holds with probability 1− δ that

n∑
t=k+1

(L(θt)− L(θ?)) ≤
n∑

t=k+1

(
∇L(θt)

>(θt − θ?)−
µε
2
‖θt − θ?‖2

)
.

The rest of the proof consists in controlling the first-order term by ‖θt − θ?‖2 with constants
smaller than µε/2. We apply Lemma 3.2:

n∑
t=k+1

(L(θt)− L(θ?)) ≤
n∑

t=k+1

(
∆Nt +

1

2
‖θt − θ?‖2

( β

t1−β
− µε

)
+
‖∇`t(θt)‖2

2tβ

)
, (A.2)

We apply Lemma B.1 from Bercu and Touati, 2008 in order to control the martingale differ-
ence: for any n ≥ k and any λ > 0, it holds:

E
[

exp
(
λ

n∑
t=k+1

∆Nt −
λ2

2

n∑
t=k+1

(∆N2
t + E[∆N2

t | Ft−1])
)]
≤ 1 , (A.3)

where (Ft) is the natural filtration (σ(∇`1, . . . ,∇`t))t.
We apply Markov inequality: for any λ, δ > 0, we have

P
( n∑
t=k+1

∆Nt >
λ

2

n∑
t=k+1

(∆N2
t + E[∆N2

t | Ft−1]) +
ln δ−1

λ

)
= P

(
exp

(
λ

n∑
t=k+1

∆Nt −
λ2

2

n∑
t=k+1

(∆N2
t + E[∆N2

t | Ft−1])
)
> δ−1

)
≤ 1

δ−1
E
[

exp
(
λ

n∑
t=k+1

∆Nt −
λ2

2

n∑
t=k+1

(∆N2
t + E[∆N2

t | Ft−1])
)]
≤ δ ,

where the last inequality is provided by (A.3). The square of the martingale difference is con-
trolled by the second-order term that we seek: for any t, it holds:

∆N2
t ≤ 4g2‖θt − θ?‖2 , E[∆N2

t | Ft−1] ≤ 4g2‖θt − θ?‖2 .
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Therefore, for any λ, δ > 0, it holds

n∑
t=k+1

∆Nt ≤ 4λg2
n∑

t=k+1

‖θt − θ?‖2 +
ln δ−1

λ
,

with probability at least 1 − δ. This yields the desired control for the martingale difference in
Equation (A.2). The last term is controlled thanks to Assumption 3.6.

We now combine our findings. For any λ, δ > 0, it holds

n∑
t=k+1

(L(θt)− L(θ?)) ≤ ln δ−1

λ
+

n∑
t=k+1

(
4λg2 +

β

2t1−β
+
C2

Lip

2tβ
− µε

2

)
‖θt − θ?‖2 ,

with probability at least 1− 2δ. The final step is the choice of λ, k such that

4λg2 +
β

2k1−β +
C2

Lip

2kβ
− µε

2
≤ 0 .

We observe that this inequality is satisfied if the following holds:

4λg2 ≤ µε
4
,

β

2k1−β ≤
µε
8
,

C2
Lip

2kβ
≤ µε

8
.

This motivates the definition of λ = µε
16g2 . We observe that β

2k1−β ≤ 1
2kβ

because 1/2 < β < 1,
and therefore k ≥ (4 max(1, C2

Lip)/µε)
1/β is sufficient.

We conclude with Equation (3.2).
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Supplementary Material for Chapter 4

The Appendix follows the structure of the article:
— Appendix B.1 presents the EKF for generalized linear models.
— Appendix B.2 contains the proofs of Section 4.3. Precisely, Lemma 4.1 is proved in Section

B.2.1, the intermediate results of Sections 4.3.1 and 4.3.2 are proved in Sections B.2.2 and
B.2.3, then Theorem 4.1 is proved in Section B.2.4 and Theorem 4.2 in Section B.2.5.

— Appendix B.3 contains the proofs of Section 4.4. We derive the global bound (Theorem
4.3) in Section B.3.1, then we obtain the concentration result on Pt in Section B.3.2, and
finally we prove the convergence of the truncated algorithm in Section B.3.3.

— Appendix B.4 contains the proofs of Section 4.5. We prove Theorem 4.5 in Section B.4.1
and then in Section B.4.2 we prove the convergence of the algorithm, and we define an
explicit value of T (ε, δ) satisfying Assumption 4.5.
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B.1 Derivation of the Static EKF for Generalized Linear
Models

As in Section 10.2 of Durbin and Koopman, 2012 we consider the following state-space model:

yt = Zt(θt) + εt ,

θt+1 = Tt(θt) + ηt .

where εt and ηt are independent with mean zero and variances ht(θt), Qt(θt). The state-space
version of equation (4.2) is

p(yt | Xt) = h(yt) exp

(
ytθ
>
t Xt − b(θ>t Xt)

a

)
.

The preceding equation matches the space equation form with Zt(θt) = b′(θ>t Xt) and ht(θt) =
ab′′(θ>t Xt). Thus we can write the EKF as follows (see Equation 10.4 of Durbin and Koopman,
2012): denoting by Ṫt the derivative of Tt,

vt = yt − b′(θ̂>t Xt) , Ft = X>t PtXtb
′′(θ̂>t Xt)

2 + ab′′(θ̂>t Xt) ,

θ̂t|t = θ̂t + PtXtb
′′(θ̂>t Xt)F

−1
t vt , Pt|t = Pt − PtXtF

−1
t X>t Ptb

′′(θ̂>t Xt)
2 ,

θ̂t+1 = Tt(θ̂t|t) , Pt+1 = ṪtPt|tṪt
>

+Qt(θ̂t|t) .

We focus on the static setting where the state equation becomes θt+1 = θt, thus we have θ̂t+1 =
θ̂t|t and Pt+1 = Pt|t. We rewrite the update on Pt as follows:

Pt+1 = Pt −
PtXtX

>
t Ptb

′′(θ̂>t Xt)/a

X>t PtXtb′′(θ̂>t Xt)/a+ 1
.

Moreover we have Pt+1Xt = PtXtF
−1
t ab′′(θ̂>t Xt) thus we can rewrite the update on θ̂t as follows:

θ̂t+1 = θ̂t +
Pt+1Xt(yt − b′(θ̂>t Xt)

a
.

This yields Algorithm 1.

B.2 Proofs of Section 4.3

B.2.1 Proof of Lemma 4.1
We prove the following Lemma inspired by the stopping time technique of Freedman, 1975

from which we derive Lemma 4.1. We give a general form useful in several proofs.

Lemma B.1. Let (Fn) be a filtration, and we consider a sequence of events (An) that is adapted
to (Fn). Let (Vn) be a sequence of random variables adapted to (Fn) satisfying V0 = 1, Vn ≥ 0
almost surely for any n, and

E[Vn | Fn−1, An−1] ≤ Vn−1, n ≥ 1.
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Then for any δ > 0, it holds

P

(( ∞⋃
n=1

Vn > δ−1

)
∪
( ∞⋃
n=0

An

))
≤ δ + P

( ∞⋃
n=0

An

)
.

An important particular case is when (Vn) is a super-martingale adapted to the filtration
(Fn) satisfying V0 = 1 and Vn ≥ 0 almost surely: then we have simultaneously Vn ≤ δ−1 for
n ≥ 1 with probability larger than 1− δ.

Proof. We define

Ek =

k⋃
n=1

(
Vn > δ−1 ∪An−1

)
.

As (Ek) is increasing, we have, for any k ≥ 1,

P(Ek) =

k∑
n=1

P
(
En ∩ En−1

)
=

k∑
n=1

P
(
An−1 ∩ En−1

)
+

k∑
n=1

P
(
Vn > δ−1 ∩ En−1 ∩An−1

)
.

First, we have

k∑
n=1

P
(
An−1 ∩ En−1

)
≤ P

(
k−1⋃
n=0

An

)
.

Second, we apply Markov’s inequality:

k∑
n=1

P
(
Vn > δ−1 ∩ En−1 ∩An−1

)
≤

k∑
n=1

E
[
Vn
δ−1

1En∩En−1∩An−1

]

= δ

k∑
n=1

E
[
Vn(1En−1∩An−1

− 1En)
]

= δ

k∑
n=1

(
E
[
Vn1En−1∩An−1

]
− E

[
Vn1En

])
.

The second line is obtained since En ⊂
(
En−1 ∩An−1

)
. According to the tower property and

the super-martingale assumption,

E
[
Vn1En−1∩An−1

]
= E

[
E[Vn | Fn−1, An−1]1En−1∩An−1

]
≤ E

[
E[Vn | Fn−1, An−1]1En−1

]
≤ E

[
Vn−11En−1

]
.
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Therefore, a telescopic argument along with V0 = 1 and Vk1Ek ≥ 0 yields

k∑
n=1

P
(
Vn > δ−1 ∩ En−1 ∩An−1

)
≤ δ .

Finally, for any k ≥ 1, we obtain

P (Ek) ≤ P

(
k−1⋃
n=0

An

)
+ δ

and the desired result follows by letting k →∞.

Proof of Lemma 4.1. Let λ > 0. For any n ≥ 1, we define

Vn = exp

(
k+n∑
t=k+1

(
λ∆Nt −

λ2

2
((∆Nt)

2 + E[(∆Nt)
2 | Ft−1])

))
.

Lemma B.1 of Bercu and Touati, 2008 states that (Vn) is a super-martingale adapted to the
filtration (Fk+n). Moreover V0 = 1 and for any n, it holds Vn ≥ 0 almost surely. Therefore we
can apply Lemma B.1.

B.2.2 Proof of Lemma 4.2

Proof of Lemma 4.2. We start from the update formula θ̂t+1 = θ̂t +Pt+1
(yt−b′(θ̂>t Xt))Xt

a yielding

(θ̂t+1 − θ?)>P−1
t+1(θ̂t+1 − θ?) = (θ̂t − θ?)>P−1

t+1(θ̂t − θ?) + 2
(yt − b′(θ̂>t Xt))X

>
t

a
(θ̂t − θ?)

+X>t Pt+1Xt

(
yt − b′(θ̂>t Xt)

a

)2

.

With a summation argument, re-arranging terms, we obtain:

n∑
t=1

(
(b′(θ̂>t Xt)− yt)X>t

a
(θ̂t − θ?)−

1

2
(θ̂t − θ?)>(P−1

t+1 − P
−1
t )(θ̂t − θ?)

)

=
1

2

n∑
t=1

X>t Pt+1Xt

(
yt − b′(θ̂>t Xt)

a

)2

+
1

2

n∑
t=1

(
(θ̂t − θ?)>P−1

t (θ̂t − θ?)− (θ̂t+1 − θ?)>P−1
t+1(θ̂t+1 − θ?)

)
.

We bound the telescopic sum: as P−1
n+1 < 0, we have

n∑
t=1

(
(θ̂t − θ?)>P−1

t (θ̂t − θ?)− (θ̂t+1 − θ?)>P−1
t+1(θ̂t+1 − θ?)

)
≤ (θ̂1 − θ?)>P−1

1 (θ̂1 − θ?) ≤
‖θ̂1 − θ?‖2

λmin(P1)
.
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The result follows from the identities

(b′(θ̂>t Xt)− yt)Xt

a
= `′(yt, θ̂

>
t Xt)Xt , P−1

t+1 − P
−1
t = `′′(yt, θ̂

>
t Xt)XtX

>
t .

B.2.3 Proofs of Section 4.3.2

Proof of Proposition 4.1. The first-order condition satisfied by θ? is

E
[
− (y − b′(θ?>X))X

a

]
= 0 ,

yielding E [yX] = E[b′(θ?>X)X]. Therefore

E
[

(b′(θ>X)− y)X

a

]>
(θ − θ?) =

1

a
(θ − θ?)>E

[
X(b′(θ>X)− b′(θ?>X))

]
.

Considering the function f : λ→ (θ − θ?)>E
[
Xb′(θ>X + λ(θ − θ?)>X))

]
, we know there exists

λ ∈ [0, 1] such that f ′(λ) = f(1)− f(0). This translates into

∂L

∂θ

∣∣∣>
θ

(θ − θ?) =
1

a
(θ − θ?)>E

[
Xb′′

(
θ>X + λ(θ? − θ)>X

)
(θ − θ?)>X

]
.

Then we use Assumption 4.3:

b′′
(
θ>X + λ(θ? − θ)>X

)
b′′ (θ>X)

=
`′′
(
yt, θ

>X + λ(θ? − θ)>X
)

`′′ (yt, θ>X)
≥ ρ‖θ−θ?‖ ,

yielding

∂L

∂θ

∣∣∣>
θ

(θ − θ?) ≥ ρ‖θ−θ?‖(θ − θ?)>E
[
`′′(y, θ>X)XX>

]
(θ − θ?)

= ρ‖θ−θ?‖(θ − θ?)>
∂2L

∂θ2

∣∣∣
θ
(θ − θ?) .

Proof of Proposition 4.2. We first recall that L(θ)−L(θ?) ≤ ∂L
∂θ

∣∣∣>
θ

(θ− θ?), then Proposition 4.1
yields

∂L

∂θ

∣∣∣>
θ

(θ − θ?)− c(θ − θ?)> ∂
2L

∂θ2

∣∣∣
θ
(θ − θ?) ≥ (1− c

ρ‖θ−θ?‖
)
∂L

∂θ

∣∣∣>
θ

(θ − θ?) ,

and the result follows.
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Proof of Lemma 4.3. We first develop (∆Mt)
2:

(∆Mt)
2 =

(
(E [∇t | Ft−1]−∇t)> (θ̂t − θ?)

)2

= (θ̂t − θ?)>
(
E[∇t | Ft−1]E[∇t | Ft−1]> +∇t∇>t

−∇tE[∇t | Ft−1]> − E[∇t | Ft−1]∇>t
)

(θ̂t − θ?)

≤ 2(θ̂t − θ?)>
(
E[∇t | Ft−1]E[∇t | Ft−1]> +∇t∇>t

)
(θ̂t − θ?)

≤ 2(θ̂t − θ?)>
(
E[∇t∇>t | Ft−1] +∇t∇>t

)
(θ̂t − θ?) .

The third line holds because if U, V ∈ Rd, it holds −UV > − V U> 4 UU> + V V >. The last one
comes from E

[
(∇t − E[∇t | Ft−1])(∇t − E[∇t | Ft−1])> | Ft−1

]
< 0.

Also, we have the relation

E[(∆Mt)
2 | Ft−1] ≤ (θ̂t − θ?)>E[∇t∇>t | Ft−1](θ̂t − θ?) .

It yields

(∆Mt)
2 + E[(∆Mt)

2 | Ft−1] ≤ (θ̂t − θ?)>
(
3E[∇t∇>t | Ft−1] + 2∇t∇>t

)
(θ̂t − θ?) ,

and the result follows from Lemma 4.1.

We derive the following Lemma in order to control the right-hand side of Lemma 4.2, in both
settings.

Lemma B.2. Assume the second point of Assumption 4.3 holds. For any k, n ≥ 1, if ‖θ̂t−θ?‖2 ≤
ε for any k < t ≤ k + n then we have

k+n∑
t=k+1

Tr
(
Pt+1(P−1

t+1 − P
−1
t )

)
≤ d ln

(
1 + n

hελmax(Pk+1)D2
X

d

)
.

Proof. We apply Lemma 11.11 of Cesa-Bianchi and Lugosi, 2006:

k+n∑
t=k+1

Tr
(
Pt+1(P−1

t+1 − P
−1
t )

)
=

k+n∑
t=k+1

(
1− det(P−1

t )

det(P−1
t+1)

)

≤
k+n∑
t=k+1

ln

(
det(P−1

t+1)

det(P−1
t )

)

= ln

(
det(P−1

k+n+1)

det(P−1
k+1)

)

≤ ln det

(
I +

k+n∑
t=k+1

`′′(yt, θ̂
>
t Xt)(P

1/2
k+1Xt)(P

1/2
k+1Xt)

>

)

=

d∑
i=1

ln(1 + λi) ,



B.2. Proofs of Section 4.3 177

where λ1, ..., λd are the eigenvalues of
k+n∑
t=k+1

`′′(yt, θ̂
>
t Xt)(P

1/2
k+1Xt)(P

1/2
k+1Xt)

>. Therefore we have

k+n∑
t=k+1

Tr
(
Pt+1(P−1

t+1 − P
−1
t )

)
≤ d ln

(
1 +

1

d

d∑
i=1

λi

)

≤ d ln

(
1 +

1

d
nhελmax(Pk+1)D2

X

)
.

B.2.4 Bounded Setting (Assumption 4.3)
Proof of Theorem 4.1. Let δ > 0. On the one hand, we sum Lemma 4.2 and 4.3. We obtain, for
any λ > 0,

T (ε,δ)+n∑
t=T (ε,δ)+1

(
E[∇t | Ft−1]>(θ̂t − θ?)−

1

2
Qt

− λ(θ̂t − θ?)>
(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

)
≤ 1

2

T (ε,δ)+n∑
t=T (ε,δ)+1

X>t Pt+1Xt`
′(yt, θ̂

>
t Xt)

2 +
‖θ̂1 − θ?‖2

λmin(PT (ε,δ)+1)
+

ln δ−1

λ
, n ≥ 1 , (B.1)

with probability at least 1 − δ, where we define Qt = (θ̂t − θ?)>
(
`′′(yt, θ̂

>
t Xt)XtX

>
t

)
(θ̂t − θ?)

for any t.
On the other hand, thanks to Assumption 4.3, we can apply Proposition 4.2 with c = 0.75 to

obtain, for any t ≥ 1,

‖θ̂t − θ?‖ ≤ ε

=⇒ L(θ̂t)− L(θ?) ≤ ρε
ρε − 0.75

(∂L
∂θ

∣∣∣>
θ̂t

(θ̂t − θ?)− 0.75(θ̂t − θ?)>
∂2L

∂θ2

∣∣∣
θ̂t

(θ̂t − θ?)
)
,

=⇒ L(θ̂t)− L(θ?) ≤ 5
(
E[∇t | Ft−1]>(θ̂t − θ?)− 0.75E[Qt | Ft−1]

)
, (B.2)

because ρε > 0.95.
In order to bridge the gap between Equations (B.1) and (B.2), we need to control the quadratic

terms of Equation (B.1) with E[Qt | Ft−1]. First, for any t, if ‖θ̂t − θ?‖ ≤ ε, we have Qt ∈
[0, hεε

2D2
X ], and we apply Lemma A.3 of Cesa-Bianchi and Lugosi, 2006 to the random variable

1
hεε2D2

X
Qt ∈ [0, 1]: for any s > 0,

E
[
exp

(
s

hεε2D2
X

Qt −
es − 1

hεε2D2
X

E [Qt | Ft−1]

)
| Ft−1, ‖θ̂t − θ?‖ ≤ ε

]
≤ 1 .

We fix s = 0.1 and we define

Vn = exp

 T (ε,δ)+n∑
t=T (ε,δ)+1

(
0.1

hεε2D2
X

Qt − (e0.1 − 1)E
[

1

hεε2D2
X

Qt | Ft−1

]) .
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The sequence (Vn) is adapted to (FT (ε,δ)+n), almost surely we have V0 = 1 and Vn ≥ 0. Finally,

E
[
Vn | FT (ε,δ)+n−1, ‖θ̂T (ε,δ)+n − θ?‖ ≤ ε

]
≤ Vn−1 ,

and (‖θ̂T (ε,δ)+n − θ?‖ ≤ ε) belongs to FT (ε,δ)+n−1. We apply Lemma B.1:

P

(( ∞⋃
n=1

Vn > δ−1

)
∪
( ∞⋃
n=1

(‖θ̂T (ε,δ)+n − θ?‖ > ε)

))
≤ δ + P

( ∞⋃
n=1

(‖θ̂T (ε,δ)+n − θ?‖ > ε)

)
.

We define Aεk =
∞⋂

n=k+1

(‖θ̂n − θ?‖ ≤ ε) for any k. The last inequality is equivalent to

P
( ∞⋃
n=1

( T (ε,δ)+n∑
t=T (ε,δ)+1

Qt > 10(e0.1 − 1)

T (ε,δ)+n∑
t=T (ε,δ)+1

E [Qt | Ft−1] + 10hεε
2D2

X ln δ−1
)
∩AεT (ε,δ)

)
≤ δ . (B.3)

We then bound the two quadratic terms coming from Lemma 4.3: using Assumption 4.3 we
have the implications

‖θ̂t − θ?‖ ≤ ε =⇒ (θ̂t − θ?)>∇t∇>t (θ̂t − θ?) ≤ κεQt ,

‖θ̂t − θ?‖ ≤ ε =⇒ (θ̂t − θ?)>E
[
∇t∇>t | Ft−1

]
(θ̂t − θ?) ≤ κεE [Qt | Ft−1] .

Therefore, we get from (B.3)

P

( ∞⋃
n=1

( T (ε,δ)+n∑
t=T (ε,δ)+1

(1

2
Qt + λ(θ̂t − θ?)>∇t∇>t (θ̂t − θ?)

+
3

2
λ(θ̂t − θ?)>E

[
∇t∇>t | Ft−1

]
(θ̂t − θ?)

)
>

(
10(e0.1 − 1)(

1

2
+ λκε) +

3

2
λκε

) T (ε,δ)+n∑
t=T (ε,δ)+1

E [Qt | Ft−1]

+ 10(
1

2
+ λκε)hεε

2D2
X ln δ−1

)
∩AεT (ε,δ)

)
≤ δ .

We set λ = 0.75−5(e0.1−1)

(10(e0.1−1)+ 3
2 )κε

, so that

10(e0.1 − 1)(
1

2
+ λκε) +

3

2
λκε = 0.75 ,

1

2
+ λκε =

1

2
+

0.75− 5(e0.1 − 1)

10(e0.1 − 1) + 3
2

≈ 0.59 ≤ 0.6 ,
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and consequently

P

( ∞⋃
n=1

(
T (ε,δ)+n∑
t=T (ε,δ)+1

(
E[∇t | Ft−1]>(θ̂t − θ?)− 0.75E[Qt | Ft−1]

)
> 6hεε

2D2
X ln δ−1

+

T (ε,δ)+n∑
t=T (ε,δ)+1

(
E[∇t | Ft−1]>(θ̂t − θ?)−

1

2
Qt

− λ(θ̂t − θ?)>
(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

))
∩AεT (ε,δ)

)
≤ δ .

We plug Equation (B.2) in the last inequality:

P

( ∞⋃
n=1

(
T (ε,δ)+n∑
t=T (ε,δ)+1

(L(θ̂t)− L(θ?)) > 30hεε
2D2

X ln δ−1

+ 5

T (ε,δ)+n∑
t=T (ε,δ)+1

(
E[∇t | Ft−1]>(θ̂t − θ?)−

1

2
Qt

− λ(θ̂t − θ?)>
(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

))
∩AεT (ε,δ)

)
≤ δ .

We then use Equation (B.1) with 1
λ =

(10(e0.1−1)+ 3
2 )κε

0.75−5(e0.1−1) ≈ 11.4κε ≤ 12κε. It yields

P

( ∞⋃
n=1

(
T (ε,δ)+n∑
t=T (ε,δ)+1

(L(θ̂t)− L(θ?)) >
5

2

T (ε,δ)+n∑
t=T (ε,δ)+1

X>t Pt+1Xt`
′(yt, θ̂

>
t Xt)

2

+
5‖θ̂1 − θ?‖2

λmin(PT (ε,δ)+1)
+ 30(2κε + hεε

2D2
X) ln δ−1

)
∩AεT (ε,δ)

)
≤ 2δ .

Thanks to Assumption 4.3, we have

X>t Pt+1Xt`
′(yt, θ̂

>
t Xt)

2 ≤ κε Tr
(
Pt+1(P−1

t+1 − P
−1
t )

)
, t > T (ε, δ) ,

therefore we apply Lemma B.2: for any n, it holds

T (ε,δ)+n∑
t=T (ε,δ)+1

X>t Pt+1Xt`
′(yt, θ̂

>
t Xt)

2 ≤ dκε ln

(
1 + n

hελmax(PT (ε,δ)+1)D2
X

d

)
.

As PT (ε,δ)+1 4 P1, we obtain

P

( ∞⋃
n=1

(
T (ε,δ)+n∑
t=T (ε,δ)+1

(L(θ̂t)− L(θ?)) >
5

2
dκε ln

(
1 + n

hελmax(P1)D2
X

d

)

+
5‖θ̂1 − θ?‖2

λmin(PT (ε,δ)+1)
+ 30(2κε + hεε

2D2
X) ln δ−1

)
∩AεT (ε,δ)

)
≤ 2δ .
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To conclude, we use Assumption 4.5.

B.2.5 Quadratic Setting (Assumption 4.4)

We recall two definitions introduced in the previous subsection:

Aεk =

∞⋂
n=k+1

(‖θ̂n − θ?‖ ≤ ε), k ≥ 1 ,

Qt = (θ̂t − θ?)>XtX
>
t (θ̂t − θ?), t ≥ 1 .

The sub-gaussian hypothesis requires a different treatment of several steps in the proof. In the
following proofs, we use a consequence of the first points of Assumption 4.4. We apply Lemma
1.4 of Rigollet and Hütter, 2015: for any X ∈ Rd,

E[(y − E[y | X])2i | X] ≤ 2i(2σ2)iΓ(i) = 2(2σ2)ii!, i ∈ N? . (B.4)

First, we control the quadratic terms in ∇t = −(yt − θ̂>t Xt)Xt in the following lemma.

Lemma B.3. 1. For any k ∈ N and δ > 0, we have

P

( ∞⋃
n=1

(
k+n∑
t=k+1

(θ̂t − θ?)>∇t∇>t (θ̂t − θ?)

> 3
(
8σ2 +D2

app + ε2D2
X

) k+n∑
t=k+1

Qt + 12ε2D2
Xσ

2 ln δ−1

)
∩Aεk

)
≤ δ .

2. For any t, it holds almost surely

(θ̂t − θ?)>E[∇t∇>t | Ft−1](θ̂t − θ?) ≤ 3
(
σ2 +D2

app + ‖θ̂t − θ?‖2D2
X

)
E[Qt | Ft−1] .

Proof. 1. We recall that for any a, b, c, we have (a+ b+ c)2 ≤ 3(a2 + b2 + c2). Thus

(θ̂t − θ?)>∇t∇>t (θ̂t − θ?) = Qt(yt − θ̂>t Xt)
2

≤ 3Qt

(
(yt − E[yt | Xt])

2 + (E[yt | Xt]− θ?>Xt)
2 + ((θ? − θ̂t)>Xt)

2
)

≤ 3Qt

(
(yt − E[yt | Xt])

2 +D2
app + ‖θ̂t − θ?‖2D2

X

)
. (B.5)

To obtain the last inequality, we use the second point of Assumption 4.4 to bound the
middle term. Then we use Taylor series for the exponential, and we apply Equation (B.4).
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For any t and any µ satisfying 0 < µ ≤ 1
4Qtσ2 , we have

E
[
exp

(
µQt(yt − E[yt | Xt])

2
)
| Ft−1, Xt

]
= 1 +

∑
i≥1

µiQitE[(yt − E
[
yt | Xt])

2i | Xt

]
i!

≤ 1 + 2
∑
i≥1

µiQiti!(2σ
2)i

i!

≤ 1 + 2
∑
i≥1

(
2µQtσ

2
)i

≤ 1 + 8µQtσ
2, 2µQtσ

2 ≤ 1

2

≤ exp
(
8µQtσ

2
)
.

Therefore, for any t,

E
[
exp

(
1

4ε2D2
Xσ

2
Qt
(
(yt − E[yt | Xt])

2 − 8σ2
))
| Ft−1, Xt, ‖θ̂t − θ?‖ ≤ ε

]
≤ 1 .

We define the random variable

Vn = exp

(
1

4ε2D2
Xσ

2

k+n∑
t=k+1

Qt
(
(yt − E[yt | Xt])

2 − 8σ2
))

, n ∈ N .

(Vn)n is adapted to the filtration (σ(X1, y1, ..., Xk+n, yk+n, Xk+n+1)n, moreover V0 = 1
and Vn ≥ 0 almost surely, and

E
[
Vn | X1, y1, ..., Xk+n−1, yk+n−1, Xk+n, ‖θ̂k+n − θ?‖ ≤ ε

]
≤ Vn−1 .

Therefore we apply Lemma B.1: for any δ > 0,

P

( ∞⋃
n=1

(Vn > δ−1) ∩Aεk

)
≤ δ ,

which is equivalent to

P

( ∞⋃
n=1

(
k+n∑
t=k+1

Qt(yt − E[yt | Xt])
2 > 8σ2

k+n∑
t=k+1

Qt + 4ε2D2
Xσ

2 ln δ−1

)
∩Aεk

)
≤ δ .

Substituting in Equation (B.5), we obtain the desired result.

2. We apply the same decomposition as for Equation (B.5): for any t,

(θ̂t − θ?)>E[∇t∇>t | Ft−1](θ̂t − θ?)

≤ 3(θ̂t − θ?)>E
[
XtX

>
t

(
(yt − E[yt | Xt])

2 +D2
app + ‖θ? − θ̂t‖2D2

X

)
| Ft−1

]
(θ̂t − θ?) .

Assumption 4.4 implies that for any Xt, E[(yt − E[yt | Xt])
2 | Xt] ≤ σ2. Thus, the tower
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property yields

(θ̂t − θ?)>E[∇t∇>t | Ft−1](θ̂t − θ?)

≤ 3
(
σ2 +D2

app + ‖θ̂t − θ?‖2D2
X

)
(θ̂t − θ?)>E[XtX

>
t | Ft−1](θ̂t − θ?) .

Second, we bound the right-hand side of Lemma 4.2, that is the objective of the following
lemma.

Lemma B.4. Let k ∈ N. For any δ > 0, we have

P

( ∞⋃
n=1

(
k+n∑
t=k+1

X>t Pt+1Xt(yt − θ̂>t Xt)
2 > 12λmax(P1)D2

Xσ
2 ln δ−1

+ 3
(
8σ2 +D2

app + ε2D2
X

)
d ln

(
1 + n

λmax(Pk+1)D2
X

d

))
∩Aεk

)
≤ δ .

Proof. We apply a similar analysis as in the proof of Lemma B.3 in order to use the sub-gaussian
assumption, and then we apply the telescopic argument as in the bounded setting. We decompose
yt − θ̂>t Xt:

X>t Pt+1Xt(yt − θ̂>t Xt)
2

≤ 3X>t Pt+1Xt

(
(yt − E[yt | Xt])

2 + (E[yt | Xt]− b′(θ?>Xt))
2 + ((θ? − θ̂t)>Xt)

2
)

≤ 3X>t Pt+1Xt

(
(yt − E[yt | Xt])

2 +D2
app + ‖θ̂t − θ?‖2D2

X

)
. (B.6)

To control (yt−E[yt | Xt])
2X>t Pt+1Xt, we use its positivity along with Equation (B.4). Precisely,

for any t and any µ > 0 satisfying 0 < µ ≤ 1
4X>t Pt+1Xtσ2 , we have

E
[
exp

(
µ(yt − E[yt | Xt])

2X>t Pt+1Xt

)
| Ft−1, Xt

]
= 1 +

∑
i≥1

µi(X>t Pt+1Xt)
iE
[
(yt − E[yt | Xt])

2i | Xt

]
i!

≤ 1 + 2
∑
i≥1

µi(X>t Pt+1Xt)
ii!(2σ2)i

i!

= 1 + 2
∑
i≥1

(
2µX>t Pt+1Xtσ

2
)i

≤ 1 + 8µX>t Pt+1Xtσ
2, 0 < 2µX>t Pt+1Xtσ

2 ≤ 1

2

≤ exp
(
8µX>t Pt+1Xtσ

2
)
.

We apply the previous bound with a uniform µ = 1
4λmax(P1)D2

Xσ
2 . As λmax(Pt+1) ≤ λmax(P1) for
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any t, we get µ ≤ 1
4X>t Pt+1Xtσ2 . Thus, we define

Vn = exp

(
1

4λmax(P1)D2
Xσ

2

k+n∑
t=k+1

(
(yt − E[yt | Xt])

2 − 8σ2
)
X>t Pt+1Xt

)
, n ∈ N .

(Vn) is a super-martingale adapted to the filtration (σ(X1, y1, ..., Xk+n−1, yk+n−1, Xk+n))n sat-
isfying almost surely V0 = 1, Vn ≥ 0, thus we apply Lemma B.1:

P

( ∞⋃
n=1

(Vn > δ−1)

)
≤ δ ,

or equivalently

P

( ∞⋃
n=1

(
k+n∑
t=k+1

X>t Pt+1Xt(yt − E[yt | Xt])
2

> 8σ2
k+n∑
t=k+1

X>t Pt+1Xt + 4λmax(P1)D2
Xσ

2 ln δ−1

))
≤ δ .

Combining it with Equation (B.6), we get

P

( ∞⋃
n=1

(
k+n∑
t=k+1

X>t Pt+1Xt(yt − θ̂>t Xt)
2 > 3

(
8σ2 +D2

app + ε2D2
X

) k+n∑
t=k+1

X>t Pt+1Xt

+ 12λmax(P1)D2
Xσ

2 ln δ−1

)
∩Aεk

)
≤ δ .

Then we apply Lemma B.2: the second point of Assumption 4.3 holds with hε = 1, thus

k+n∑
t=k+1

Tr
(
Pt+1(P−1

t+1 − P
−1
t )

)
≤ d ln

(
1 + n

λmax(Pk+1)D2
X

d

)
, n ≥ 1.

We conclude with X>t Pt+1Xt = Tr(Pt+1(P−1
t+1 − P

−1
t )).

We sum up our findings and we prove the result for the quadratic loss. The structure of the
proof is the same as the one of Theorem 4.1.

Proof of Theorem 4.2. On the one hand, we sum Lemma 4.2 and Lemma 4.3: for any λ, δ > 0

T (ε,δ)+n∑
t=T (ε,δ)+1

(
E[∇t | Ft−1]>(θ̂t−θ?)−

1

2
Qt−λ(θ̂t−θ?)>

(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t−θ?)

)

≤ 1

2

T (ε,δ)+n∑
t=T (ε,δ)+1

X>t Pt+1Xt(yt − θ̂>t Xt)
2 +
‖θ̂T (ε,δ)+1 − θ?‖2

λmin(PT (ε,δ)+1)
+

ln δ−1

λ
, n ≥ 1 , (B.7)
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with probability at least 1− δ. On the other hand, we have

T (ε,δ)+n∑
t=T (ε,δ)+1

(L(θ̂t)− L(θ?)) ≤ 1

1− 0.8

T (ε,δ)+n∑
t=T (ε,δ)+1

(
E[∇t | Ft−1]>(θ̂t − θ?)− 0.8E[Qt | Ft−1]

)
.

(B.8)

We aim to relate Equations (B.7) and (B.8) as in the proof of Theorem 4.1. To that end, we
apply Lemma B.3:

P

( ∞⋃
n=1

(
T (ε,δ)+n∑
t=T (ε,δ)+1

(
1

2
Qt + λ(θ̂t − θ?)>

(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

)

>
(1

2
+ 3λ(8σ2 +D2

app + ε2D2
X)
) T (ε,δ)+n∑
t=T (ε,δ)+1

Qt

+
9

2
λ
(
σ2 +D2

app + ε2D2
X

) T (ε,δ)+n∑
t=T (ε,δ)+1

E [Qt | Ft−1] + 12λε2D2
Xσ

2 ln δ−1

)

∩AεT (ε,δ)

)
≤ δ .

As in the proof of Theorem 4.1 we apply Lemma A.3 of (Cesa-Bianchi and Lugosi, 2006) and
Lemma B.1: for any δ > 0,

P

( ∞⋃
n=1

( T (ε,δ)+n∑
t=T (ε,δ)+1

Qt > 10(e0.1 − 1)

T (ε,δ)+n∑
t=T (ε,δ)+1

E[Qt | Ft−1] + 10ε2D2
X ln δ−1

)

∩AεT (ε,δ)

)
≤ δ .

We combine the last two inequalities:

P

( ∞⋃
n=1

(
T (ε,δ)+n∑
t=T (ε,δ)+1

(
1

2
Qt + λ(θ̂t − θ?)>

(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

)

>

(
10(e0.1 − 1)

(1

2
+ 3λ(8σ2 +D2

app + ε2D2
X)
)

+
9

2
λ(σ2 +D2

app + ε2D2
X)

)
T (ε,δ)+n∑
t=T (ε,δ)+1

E [Qt | Ft−1]

+

(
10ε2D2

X

(1

2
+ 3λ(8σ2 +D2

app + ε2D2
X)
)

+ 12λε2D2
Xσ

2

)
ln δ−1

)

∩AεT (ε,δ)

)
≤ 2δ . (B.9)
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We set

λ =
(
0.8− 5(e0.1 − 1)

)(
30(e0.1 − 1)(8σ2 +D2

app + ε2D2
X) +

9

2
(σ2 +D2

app + ε2D2
X)

)−1

in order to obtain

10(e0.1 − 1)
(1

2
+ 3λ(8σ2 +D2

app + ε2D2
X)
)

+
9

2
λ(σ2 +D2

app + ε2D2
X) = 0.8 ,

1

109σ2 + 28D2
app + 28ε2D2

X

< λ <
1

108σ2 + 27D2
app + 27ε2D2

X

,

10ε2D2
X

(1

2
+ 3λ(8σ2 +D2

app + ε2D2
X)
)

+ 12λD2
Xε

2σ2 ≤ 8ε2D2
X

1

λ
≤ 28(4σ2 +D2

app + ε2D2
X) .

Combining Equations (B.7), (B.8) and (B.9), we obtain

P

( ∞⋃
n=1

(
0.2

T (ε,δ)+n∑
t=T (ε,δ)+1

(L(θ̂t)− L(θ?))

>
1

2

T (ε,δ)+n∑
t=T (ε,δ)+1

X>t Pt+1Xt(yt − θ̂>t Xt)
2 +

ε2

λmin(PT (ε,δ)+1)

+ 28(4σ2 +D2
approx + ε2D2

X) ln δ−1 + 8ε2D2
X ln δ−1

)
∩AεT (ε,δ)

)
≤ 3δ .

Finally, we apply Lemma B.4 with PT (ε,δ)+1 4 P1 and we use Assumption 4.5: it holds simulta-
neously

T (ε,δ)+n∑
t=T (ε,δ)+1

L(θ̂t)− L(θ?) ≤ 5

(
3

2

(
8σ2 +D2

app + ε2D2
X

)
d ln

(
1 + n

λmax(P1)D2
X

d

)
+ λmax

(
P−1
T (ε,δ)+1

)
ε2 + 28(4σ2 +D2

approx + ε2D2
X) ln δ−1

+ 8ε2D2
X ln δ−1 + 6λmax(P1)D2

Xσ
2 ln δ−1

)
, n ≥ 1 ,

with probability at least 1− 5δ. To conclude, we write

28(4σ2 +D2
approx + ε2D2

X) + 8ε2D2
X + 6λmax(P1)D2

Xσ
2

≤ 28

(
σ2(4 +

λmax(P1)D2
X

4
) +D2

app + 2ε2D2
X

)
.

B.3 Proofs of Section 4.4
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B.3.1 Proof of Theorem 4.3

Proof of Theorem 4.3. We check Assumption 4.3 with κε = eDX(‖θ?‖+ε), hε = 1
4 and ρε =

e−εDX > 0.95. We can thus apply Theorem 4.1 with

λmax(P−1
T (ε,δ)+1) ≤ λmax(P−1

1 ) +
1

4

T (ε,δ)∑
t=1

‖Xt‖2 ,

5κε
2

< 3eDX‖θ
?‖, 30

(
2κε +

ε2D2
X

4

)
< 64eDX‖θ

?‖, 5ε2D2
X ≤ 1/75 .

We then control the first terms. To that end, we use a rough bound at any time t ≥ 1:

L(θ̂t)− L(θ?) ≤ E
[

yX

1 + eyθ̂
>
t X
| θ̂t
]>

(θ̂t − θ?)

≤ DX‖θ̂t − θ?‖

≤ DX(‖θ̂1 − θ?‖+ (t− 1)λmax(P1)DX) ,

because for any s ≥ 1, we have Ps 4 P1 and therefore ‖θ̂s+1 − θ̂s‖ ≤ λmax(P1)DX . Summing
from 1 to T ( 1

20DX
, δ) yields the result.

B.3.2 Concentration of Pt

We prove a concentration result based on Tropp, 2012, which will be used on the inverse of
Pt.

Lemma B.5. If Assumption 4.1 is satisfied, then for any 0 ≤ β < 1 and t ≥ 41/(1−β), it holds

P

(
λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
<

Λmint
1−β

4(1− β)

)
≤ d exp

(
−t1−β Λ2

min

10D4
X

)
.

Proof. We wish to center the matrices XsX
>
s by subtracting their (common) expected value.

We use that if A and B are symmetric, λmin(A−B) ≤ λmin(A)− λmin(B). Indeed, denoting by
v any eigenvector of A associated with its smallest eigenvalue,

λmin(A−B) = min
x

x>(A−B)x

‖x‖2

≤ v>(A−B)v

‖v‖2

= λmin(A)− v>Bv

‖v‖2

≤ λmin(A)−min
x

x>Bx

‖x‖2

= λmin(A)− λmin(B) .
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We obtain:

λmin

(
t−1∑
s=1

XsX
>
s

sβ
−

t−1∑
s=1

E
[
XsX

>
s

sβ

])
≤ λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
− λmin

(
t−1∑
s=1

E
[
XsX

>
s

sβ

])

= λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
− Λmin

t−1∑
s=1

1

sβ

≤ λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
− Λmin

t1−β − 1

1− β
.

Therefore, we obtain

P

(
λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
<

Λmin(t1−β − 2)

2(1− β)

)

≤ P

(
λmin

(
t−1∑
s=1

(
XsX

>
s

sβ
− E

[
XsX

>
s

sβ

]))
<

Λmin(t1−β − 2)

2(1− β)
− Λmin

t1−β − 1

1− β

)

= P

(
λmax

(
t−1∑
s=1

(
E
[
XsX

>
s

sβ

]
− XsX

>
s

sβ

))
>

Λmint
1−β

2(1− β)

)
.

We check the assumptions of Theorem 1.4 of Tropp, 2012:

— Obviously E
[
XsX

>
s

sβ

]
− XsX

>
s

sβ
is centered,

— λmax

(
E
[
XsX

>
s

sβ

]
− XsX

>
s

sβ

)
≤ λmax

(
E
[
XsX

>
s

sβ

])
≤ D2

X almost surely.

As 0 4 E
[(

E
[
XsX

>
s

sβ

]
− XsX

>
s

sβ

)2
]
4 E

[(
XsX

>
s

sβ

)2
]
4 D4

X

s2β
I 4 D4

X

sβ
I, we get

0 4
t−1∑
s=1

E

[(
E
[
XsX

>
s

sβ

]
− XsX

>
s

sβ

)2
]
4

(
t−1∑
s=1

D4
X

sβ

)
I 4

(
D4
X

t1−β

1− β

)
I .

Therefore we can apply Theorem 1.4 of Tropp, 2012:

P

(
λmax

(
t−1∑
s=1

(
E
[
XsX

>
s

sβ

]
− XsX

>
s

sβ

))
>

Λmint
1−β

2(1− β)

)

≤ d exp

(
− Λ2

mint
2(1−β)/(8(1− β)2)

D4
Xt

1−β/(1− β) +D2
XΛmint1−β/(6(1− β))

)
= d exp

(
−t1−β Λ2

min

8D4
X

1/(1− β)2

1/(1− β) + Λmin/(6D2
X(1− β))

)
= d exp

(
−t1−β Λ2

min

8D4
X

(
1− β +

Λmin(1− β)

6D2
X

)−1
)
.

Using Λmin/D
2
X ≤ 1 and β ≥ 0, we obtain 8(1 − β + Λmin(1−β)

6D2
X

) ≤ 8(1 + 1/6) = 28/3 ≤ 10,
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therefore

P

(
λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
<

Λmin(t1−β − 2)

2(1− β)

)
≤ d exp

(
−t1−β Λ2

min

10D4
X

)
.

The result follows from 1
2 t

1−β − 2 > 0 for t ≥ 41/(1−β).

We can now do a union bound to obtain Proposition 4.4.

Proof of Proposition 4.4. We first move our problem to the setting of Lemma B.5:

λmax(Pt) = λmin

(
P−1

1 +

t−1∑
s=1

XsX
>
s αs

)−1

≤ λmin

(
P−1

1 +

t−1∑
s=1

XsX
>
s

sβ

)−1

,

because αs ≥ 1/sβ . Therefore, for t ≥ 8 ≥ 41/(1−β),

P
(
λmax(Pt) >

4

Λmint1−β

)
≤ P

λmin

(
P−1

1 +

t−1∑
s=1

XsX
>
s

sβ

)−1

>
4

Λmint1−β


= P

(
λmin

(
P−1

1 +

t−1∑
s=1

XsX
>
s

sβ

)
<

Λmint
1−β

4

)

≤ P

(
λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
<

Λmint
1−β

4

)

≤ d exp

(
−t1−β Λ2

min

10D4
X

)
,

where we applied Lemma B.5 to obtain the last line. We take a union bound to obtain, for any
k ≥ 7,

P
(
∃t > k, λmax(Pt) >

4

Λmint1−β

)
≤
∑
t>k

d exp

(
−t1−β Λ2

min

10D4
X

)
≤ d

∑
t>k

exp

(
−bt1−βc Λ2

min

10D4
X

)
= d

∑
m≥1

exp

(
−m Λ2

min

10D4
X

)∑
t>k

1bt1−βc=m

We bound
∑
t>k

1btc=m: for any m

bt1−βc = m =⇒ m1/(1−β) ≤ t < (m+ 1)1/(1−β) ,
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then using ex ≤ 1 + 2x for any 0 ≤ x ≤ 1, we have

(m+ 1)1/(1−β) = m1/(1−β)(1 + 1/m)1/(1−β)

= m1/(1−β) exp(ln(1 + 1/m)/(1− β))

≤ m1/(1−β) exp(1/(m(1− β)))

≤ m1/(1−β)(1 + 2/(m(1− β))) ,

as long as m ≥ 2 ≥ 1/(1− β). Therefore

(m+ 1)1/(1−β) −m1/(1−β) + 1 ≤ 2m1/(1−β)−1/(1− β) + 1 ≤ 4m+ 1 ≤ 4(m+ 1) ,

and that is true for m = 1 too. Hence

P
(
∃t > k, λmax(Pt) >

4

Λmint1−β

)
≤ 4d

∑
m≥bk1−βc

(m+ 1) exp

(
−m Λ2

min

10D4
X

)

= 4d
exp

(
− Λ2

min

10D4
X

)bk1−βc

1− exp
(
− Λ2

min

10D4
X

) (bk1−βc+ 1 +
exp

(
− Λ2

min

10D4
X

)
1− exp

(
− Λ2

min

10D4
X

))

≤ 4d
exp

(
Λ2

min

10D4
X

)
1− exp

(
− Λ2

min

10D4
X

)(k1−β +
1

1− exp
(
− Λ2

min

10D4
X

)) exp

(
− Λ2

min

10D4
X

)k1−β

,

where the second line is obtained deriving both sides of
∑

m≥bk1−βc
rm+1 = rbk

1−βc+1

1−r with respect

to r. Also, as 1− e−x ≥ xe−x for any x ∈ R, we get

P
(
∃t > k, λmax(Pt) >

4

Λmint1−β

)
≤ 4d

10D4
X

Λ2
min

exp

(
2

Λ2
min

10D4
X

)
(k1−β +

10D4
X

Λ2
min

exp

(
Λ2

min

10D4
X

)
) exp

(
− Λ2

min

10D4
X

)k1−β

.

Furthermore, as xe−x ≤ e−1 for any x ≥ 0, we get for any k ≥ 7:(
k1−β +

10D4
X

Λ2
min

exp

(
Λ2

min

10D4
X

))
exp

(
−k1−β Λ2

min

20D4
X

)
≤ 20D4

Xe
−1

Λ2
min

exp

(
10D4

X

Λ2
min

exp

(
Λ2

min

10D4
X

)
Λ2

min

20D4
X

)
=

20D4
Xe
−1

Λ2
min

exp

(
1

2
exp

(
Λ2

min

10D4
X

))
.
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Combining the last two inequalities, we obtain

P
(
∃t > k, λmax(Pt) >

4

Λmint1−β

)
≤ d800D8

Xe
−1

Λ4
min

exp

(
2

Λ2
min

10D4
X

+
1

2
exp

(
Λ2

min

10D4
X

))
exp

(
−k1−β Λ2

min

20D4
X

)
≤ d625D8

X

Λ4
min

exp

(
−k1−β Λ2

min

20D4
X

)
,

and the result follows. The last line comes from Λmin ≤ D2
X and consequently

800e−1 exp

(
2

Λ2
min

10D4
X

+
1

2
exp

(
Λ2

min

10D4
X

))
≤ 800e−1+0.2+0.5e0.1 ≈ 624.7 ≤ 625 .

The condition k ≥ 7 is not necessary because(
20D4

X

Λ2
min

ln

(
625dD8

X

Λ4
minδ

))1/(1−β)

≥ 20 ln(625δ−1) ,

and either δ ≥ 1 and the result is trivial, either δ < 1 and 20 ln(625δ−1) ≥ 128.

B.3.3 Convergence of the Truncated Algorithm

In order to prove Theorem 4.4, we state and prove an intermediate lemma.

Lemma B.6. Let θ ∈ Rd.

1. For any η > 0, we have

L(θ)− L(θ?) > η =⇒
∥∥∥∥∂L∂θ ∣∣∣θ

∥∥∥∥ ≥ Dη

where Dη =
Λmin

√
η

√
2DX(1+e

DX (‖θ?‖+
√

8η/D2
X

)
)

.

2. For any ε > 0, we have

‖θ − θ?‖ > ε =⇒ L(θ)− L(θ?) >
Λmin

4(1 + eDX(‖θ?‖+ε))
ε2 .

Proof. Both points derive from a second-order identity, turned in an upper-bound in the one
case and in a lower-bound in the other. Using ∂L

∂θ (θ?) = 0, there exists 0 ≤ λ ≤ 1 such that

L(θ) = L(θ?) +
1

2
(θ − θ?)>E

[
1

(1 + e(λθ+(1−λ)θ?)>X)(1 + e−(λθ+(1−λ)θ?)>X)
XX>

]
(θ − θ?) .

1. We first have

L(θ)− L(θ?) ≤ D2
X

8
‖θ − θ?‖2 .

Assume L(θ)− L(θ?) > η. Then ‖θ − θ?‖ ≥
√

8η/D2
X . Also, using the Taylor expansion
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of θ? around some θ0 ∈ Rd, we get

L(θ?) ≥ L(θ0) +
∂L

∂θ

∣∣∣>
θ0

(θ?− θ0) +
1

4(1 + eDX(‖θ?‖+‖θ0−θ?‖))
(θ0− θ?)>E

[
XX>

]
(θ0− θ?) ,

and that yields

∂L

∂θ

∣∣∣>
θ0

(θ0 − θ?) ≥ L(θ0)− L(θ?) +
Λmin

4(1 + eDX(‖θ?‖+‖θ0−θ?‖))
‖θ0 − θ?‖2 .

Therefore, as L(θ0)− L(θ?) ≥ 0,∥∥∥∥∂L∂θ ∣∣∣θ0
∥∥∥∥ ≥ Λmin

4(1 + eDX(‖θ?‖+‖θ0−θ?‖))
‖θ0 − θ?‖ .

Finally, as L is convex of minimum θ?,∥∥∥∥∂L∂θ ∣∣∣θ
∥∥∥∥ ≥ min

‖θ0−θ?‖=
√

8η/D2
X

∥∥∥∥∂L∂θ ∣∣∣θ0
∥∥∥∥

≥ Λmin

4(1 + eDX(‖θ?‖+
√

8η/D2
X))

√
8η/D2

X

≥ Λmin
√

2DX(1 + eDX(‖θ?‖+
√

8η/D2
X))

√
η .

2. On the other hand we have

L(θ) ≥ L(θ?) +
Λmin

4(1 + eDX(‖θ?‖+‖θ−θ?‖))
‖θ − θ?‖2 .

Thus, as L is convex of minimum θ?, if ‖θ − θ?‖ > ε it holds

L(θ)− L(θ?) > min
‖θ0−θ?‖=ε

L(θ0)− L(θ?) ≥ Λmin

4(1 + eDX(‖θ?‖+ε))
ε2 .

Proof of Theorem 4.4. We prove the convergence of (L(θ̂t))t to L(θ?) and then the convergence
of (θ̂t)t to θ? follows. The convergence of (L(θ̂t))t comes from the first point of Lemma B.6. The
link between the two convergences is stated in the second point.

To study the evolution of L(θ̂t) we first apply a second-order Taylor expansion: for any t ≥ 1
there exists 0 ≤ αt ≤ 1 such that

L(θ̂t+1) = L(θ̂t) +
∂L

∂θ

∣∣∣>
θ̂t

(θ̂t+1 − θ̂t) +
1

2
(θ̂t+1 − θ̂t)>

∂2L

∂θ2

∣∣∣
θ̂t+αt(θ̂t+1−θ̂t)

(θ̂t+1 − θ̂t) . (B.10)

We have ∂2L
∂θ2 4 1

4E[XX>], therefore, using the update formula on θ̂, the second-order term
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is bounded with

(θ̂t+1 − θ̂t)>
∂2L

∂θ2

∣∣∣
θ̂t+αt(θ̂t+1−θ̂t)

(θ̂t+1 − θ̂t) ≤
1

(1 + eytθ̂
>
t Xt)2

X>t P
>
t+1

E[XX>]

4
Pt+1Xt

≤ 1

4
D4
Xλmax(Pt+1)2 ≤ 1

4
D4
Xλmax(Pt)

2 .

The first-order term is controlled using the definition of the algorithm:

θ̂t+1 − θ̂t =

(
Pt −

PtXtX
>
t Pt

1 +X>t PtXtαt
αt

)
ytXt

1 + eytθ̂
>
t Xt

,

and as αt ≤ 1, ∥∥∥∥−αt PtXtX
>
t Pt

1 +X>t PtXtαt

ytXt

1 + eytθ̂
>
t Xt

∥∥∥∥ ≤ D3
Xλmax(Pt)

2 .

Also,
∥∥∂L
∂θ

∥∥ ≤ DX . Substituting our findings in Equation (B.10), we obtain

L(θ̂t+1) ≤ L(θ̂t) +
∂L

∂θ

∣∣∣>
θ̂t

Pt
ytXt

1 + eytθ̂
>
t Xt

+ 2D4
Xλmax(Pt)

2 . (B.11)

We define

Mt =
∂L

∂θ

∣∣∣>
θ̂t

Pt
ytXt

1 + eytθ̂
>
t Xt
− E

[
∂L

∂θ

∣∣∣>
θ̂t

Pt
ytXt

1 + eytθ̂
>
t Xt

| X1, y1, ..., Xt−1, yt−1

]
=
∂L

∂θ

∣∣∣>
θ̂t

Pt
ytXt

1 + eytθ̂
>
t Xt

+
∂L

∂θ

∣∣∣>
θ̂t

Pt
∂L

∂θ

∣∣∣
θ̂t

.

Hence we have

∂L

∂θ

∣∣∣>
θ̂t

Pt
ytXt

1 + eytθ̂
>
t Xt

≤Mt − λmin(Pt)

∥∥∥∥∂L∂θ ∣∣∣θ̂t
∥∥∥∥2

≤Mt −
1

tD2
X

∥∥∥∥∂L∂θ ∣∣∣θ̂t
∥∥∥∥2

,

because Ps < I
sD2

X
. Combining it with Equation (B.11) and summing consecutive terms, we

obtain, for any k < t,

L(θ̂t)− L(θ̂k) ≤
t−1∑
s=k

(
Ms −

1

sD2
X

∥∥∥∥∂L∂θ ∣∣∣θ̂s
∥∥∥∥2

+ 2D4
Xλmax(Ps)

2

)
. (B.12)

We recall that there exists Cδ such that P(ACδ) ≥ 1− δ where

ACδ :=

∞⋂
t=1

(
λmax(Pt) ≤

Cδ
t1−β

)
.

On the previous inequality, we see that the right-hand side is the sum of a martingale and a term
which is negative for s large enough, under the event ACδ .

We are then interested in P((L(θ̂t) − L(θ?) > η) | ACδ) for some η > 0. For 0 ≤ k ≤ t, we
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define Bk,t the event (∀k < s < t, L(θ̂s)−L(θ?) > η/2). Then we use the law of total probability:

P(L(θ̂t)− L(θ?) > η | ACδ)

≤ P
(

(L(θ̂t)− L(θ?) > η) ∩B0,t | ACδ
)

+

t−1∑
k=1

P
(

(L(θ̂t)− L(θ?) > η) ∩
(
L(θ̂k)− L(θ?) ≤ η

2

)
∩Bk,t | ACδ

)
(B.13)

≤ P
(

(L(θ̂t)− L(θ?) > η) ∩B0,t | ACδ
)

+

t−1∑
k=1

P
((
L(θ̂t)− L(θ̂k) >

η

2

)
∩Bk,t | ACδ

)
.

Lemma B.6 yields

L(θ̂s)− L(θ?) >
η

2
=⇒

∥∥∥∥∂L∂θ ∣∣∣θ̂s
∥∥∥∥ ≥ Dη .

We combine the last equation, along with Equation (B.12) and the definition of ACδ to get,
for any 1 ≤ k < t,

P
(

(L(θ̂t)− L(θ̂k) > η/2) ∩Bk,t | ACδ
)
≤ P

(( t−1∑
s=k

Ms > f(k, t)
)
∩Bk,t | ACδ

)

≤ P

(
t−1∑
s=k

Ms > f(k, t) | ACδ

)
,

where f(k, t) = η
2 +

D2
η

D2
X

t−1∑
s=k

1
s − 2D4

XC
2
δ

t−1∑
s=k

1
s2(1−β) for any 1 ≤ k < t.

Similarly, we get

P
(

(L(θ̂t)− L(θ?) > η) ∩B0,t | AC
)
≤ P

(
t−1∑
s=1

Ms > f0(t) | AC

)
,

with f0(t) = η − (L(θ̂1)− L(θ?)) +
D2
η

D2
X

t−1∑
s=1

1
s − 2D4

XC
2
δ

t−1∑
s=1

1
s2(1−β) for any t ≥ 1.

We have E[Ms | X1, y1, ..., Xs−1, ys−1] = 0, and almost surely |Ms| ≤ 2D2
Xλmax(Ps). We can

therefore apply Azuma-Hoeffding inequality: for t, k such that f(k, t) > 0,

P

(
t−1∑
s=k

Ms > f(k, t) | ACδ

)
≤ exp

(
−f(k, t)2 (1− 2β) max

(
1/2, (k − 1)1−2β

)
8D4

XC
2
δ

)
,

because
+∞∑
s=k

1
s2(1−β) ≤ 1

(1−2β) max(1/2,(k−1)1−2β)
. Similarly, for t such that f0(t) > 0,

P

(
t−1∑
s=1

Ms > f0(t) | ACδ

)
≤ exp

(
−f0(t)2 1− 2β

16D4
XC

2
δ

)
.
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We need to control f(k, t), f0(t). We see that for t large enough, when k is small compared

to t, f(k, t) is driven by D2
η

D2
X

ln(t) and when k ≈ t, f(k, t) is driven by η/2. The following Lemma
formally states these approximations as lower-bounds. We prove it right after the end of this
proof.

Lemma B.7. For t ≥ max

(
e

16D6
XC

2
δ

D2
η(1−2β) ,

(
1 +

(
8D4

XC
2
δ

η(1−2β)

) 1
1−2β

)2
)
, it holds

f(k, t) ≥
D2
η

4D2
X

ln(t), 1 ≤ k <
√
t,

f(k, t) ≥ η

4
,

√
t ≤ k < t .

Similarly, for t ≥ e
2D2
X

D2
η

(
L(θ̂1)−L(θ?)+

4D4
XC

2
δ

1−2β

)
, we have

f0(t) ≥
D2
η

2D2
X

ln(t) .

Then, defining C1 =
D4
η(1−2β)

256D8
XC

2
δ
and C2 = η2(1−2β)

128D4
XC

2
δ
, we finally get for t large enough:

P
(

(L(θ̂t)− L(θ?) > η) ∩B0,t | ACδ
)
≤ exp

(
−4C1 ln(t)2

)
,

P
(

(L(θ̂t)− L(θ?) > η) ∩ (L(θ̂k)− L(θ?) ≤ η

2
) ∩Bk,t | ACδ

)
≤

{
exp

(
− C1 ln(t)2

)
if 1 ≤ k <

√
t ,

exp
(
− C2(k − 1)1−2β

)
if
√
t ≤ k < t .

Substituting in Equation (B.13) yields:

P(L(θ̂t)− L(θ?) > η | AC)

≤ exp
(
−4C1 ln(t)2

)
+

d
√
te−1∑
k=1

exp
(
−C1 ln(t)2

)
+

t−1∑
k=d
√
te

exp
(
−C2(k − 1)1−2β

)
≤ (
√
t+ 1) exp

(
−C1 ln(t)2

)
+ t exp

(
−C2(

√
t− 1)1−2β

)
.

Finally, Point 2 of Lemma B.6 allows to obtain the result: defining η = Λminε
2

4(1+eDX (‖θ?‖+ε))
, we

obtain

P(‖θ̂t − θ?‖ > ε | ACδ) ≤ P(L(θ̂t)− L(θ?) > η | ACδ)

≤ (
√
t+ 1) exp

(
−C1 ln(t)2

)
+ t exp

(
−C2(

√
t− 1)1−2β

)
.
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In order to obtain the constants involved in the Theorem, we write

Dη =
Λmin

√
Λminε2

4(1+eDX (‖θ?‖+ε))

2DX(1 + exp
(
DX(‖θ?‖+

√
Λminε2

D2
X(1+eDX (‖θ?‖+ε))

)
)

)
≥
(

Λmin

1 + eDX(‖θ?‖+ε)

)3/2
ε

4DX
,

C1 ≥
Λ6

min(1− 2β)ε4

216D12
X C

2
δ (1 + eDX(‖θ?‖+ε))6

,

C2 ≥
Λ2

min(1− 2β)ε4

211D4
XC

2
δ (1 + eDX(‖θ?‖+ε))2

,

and the conditions of Lemma B.7 become

t ≥ exp

(
28D8

XC
2
δ (1 + eDX(‖θ?‖+ε))3

Λ3
min(1− 2β)ε2

)
,

t ≥

1 +

(
32D4

XC
2
δ (1 + eDX(‖θ?‖+ε))

(1− 2β)Λminε2

) 1
1−2β

2

,

t ≥ exp

(
32D4

X(1 + eDX(‖θ?‖+ε))3

Λ3
minε

2

(
L(θ̂1)− L(θ?) +

4D4
XC

2
δ

1− 2β

))
.

We would like to obtain a single condition on t, thus we write1 +

(
32D4

XC
2
δ (1 + eDX(‖θ?‖+ε))

(1− 2β)Λminε2

) 1
1−2β

2

= exp

2 ln

1 +

(
32D4

XC
2
δ (1 + eDX(‖θ?‖+ε))

(1− 2β)Λminε2

) 1
1−2β


≤ exp

(
2

1− 2β
ln

(
1 +

32D4
XC

2
δ (1 + eDX(‖θ?‖+ε))

(1− 2β)Λminε2

))

≤ exp

 2

1− 2β

√
32D4

XC
2
δ (1 + eDX(‖θ?‖+ε))

(1− 2β)Λminε2


≤ exp

(
28D8

XC
2
δ (1 + eDX(‖θ?‖+ε))3

Λ3
min(1− 2β)3/2ε2

)
,

The third line is obtained with the inequality ln(1 + x) ≤
√
x for any x > 0. Obviously, as

0 < 1− 2β < 1, the first threshold on t is bounded by:

exp

(
28D8

XC
2
δ (1 + eDX(‖θ?‖+ε))3

Λ3
min(1− 2β)ε2

)
≤ exp

(
28D8

XC
2
δ (1 + eDX(‖θ?‖+ε))3

Λ3
min(1− 2β)3/2ε2

)
.

To handle the third one, we use D2
XCδ ≥

4D2
X

Λmin
≥ 4 and as θ̂1 = 0 we obtain L(θ̂1) − L(θ?) ≤
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ln 2 ≤ 4D4
XC

2
δ

1−2β , hence

exp

(
32D4

X(1 + eDX(‖θ?‖+ε))3

Λ3
minε

2

(
L(θ̂1)− L(θ?) +

4D4
XC

2
δ

1− 2β

))
≤ exp

(
28D8

XC
2
δ (1 + eDX(‖θ?‖+ε))3

Λ3
min(1− 2β)3/2ε2

)
.

Proof of Lemma B.7. We recall that for any k ≥ 1,

t−1∑
s=k

1

s
≥ ln t− ln k ,

t−1∑
s=k

1

s2(1−β)
≤ 1

1− 2β

1

max(1/2, (k − 1)1−2β)
.

Therefore:

f(k, t) ≥ η

2
+
D2
η

D2
X

(ln t− ln k)− 2D4
XC

2
δ

1− 2β

1

max(1/2, (k − 1)1−2β)
,

f0(t) ≥ η − (L(θ̂1)− L(θ?) +
D2
η

D2
X

ln t− 4D4
XC

2
δ

1− 2β
.

— For any 1 ≤ k <
√
t, it holds ln k ≤ 1

2 ln t, and we have

f(k, t) ≥
D2
η

2D2
X

ln(t)− 4D4
XC

2
δ

1− 2β
.

Taking t ≥ e
16D6

XC
2
δ

D2
η(1−2β) yields f(k, t) ≥ D2

η

4D2
X

ln(t).

— For t ≥ 2 and any k ≥
√
t, we have

f(k, t) ≥ η

2
− 2D4

XC
2
δ

(1− 2β)(k − 1)1−2β
≥ η

2
− 2D4

XC
2
δ

(1− 2β)(
√
t− 1)1−2β

.

Then if t ≥
(

1 +
(

8D4
XC

2
δ

η(1−2β)

) 1
1−2β

)2

, we get f(k, t) ≥ η
4 .

— Last point comes from f0(t) ≥ D2
η

D2
X

ln t− (L(θ̂1)− L(θ?)− 4D4
XC

2
δ

1−2β .

Proof of Corollary 4.2. We apply Theorem 4.4: for any t ≥ exp

(
28D8

XC
2
δ/2(1+eDX (‖θ?‖+ε))3

Λ3
min(1−2β)3/2ε2

)
,

P(‖θ̂t − θ?‖ > ε | ACδ/2
) ≤ (

√
t+ 1) exp

(
−C1 ln(t)2

)
+ t exp

(
−C2(

√
t− 1)1−2β

)
,

where

C1 =
Λ6

min(1− 2β)ε4

216D12
X C

2
δ/2(1 + eDX(‖θ?‖+ε))6

, C2 =
Λ2

min(1− 2β)ε4

211D4
XC

2
δ/2(1 + eDX(‖θ?‖+ε))2

.
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We use a union bound: for any T ≥ exp

(
28D8

XC
2
δ/2(1+eDX (‖θ?‖+ε))3

Λ3
min(1−2β)3/2ε2

)
,

P

( ∞⋃
t=T+1

(‖θ̂t − θ?‖ > ε) | ACδ/2

)
≤
∑
t>T

(
√
t+ 1) exp

(
−C1 ln(t)2

)
+
∑
t>T

t exp
(
−C2(

√
t− 1)1−2β

)
.

— If T ≥ e
3

2C1 , we have∑
t>T

(
√
t+ 1) exp

(
−C1 ln(t)2

)
≤
∑
t>T

(
√
t+ 1)

1

t5/2
≤ 2/T .

— For t ≥ 4, 1− 1/
√
t ≥ 1/2, then for t ≥

(
12

C2(1−2β)

)4/(1−2β)

,

t3 exp
(
−C2(

√
t− 1)1−2β

)
≤ exp

(
3 ln(t)− C2

2
t(1−2β)/2

)
≤ exp

(
12

1− 2β
ln

(
12

C2(1− 2β)

)
− 6

1− 2β

(
12

C2(1− 2β)

))
≤ 1 ,

because for any x > 0, we have lnx ≤ x/2.

Thus for T ≥
(

12
C2(1−2β)

)4/(1−2β)

∑
t>T

t exp
(
−C2(

√
t− 1)1−2β

)
≤ 1/T .

Finally, for T satisfying the previous conditions as well as T ≥ 6δ−1, we obtain

P

( ∞⋃
t=T+1

(‖θ̂t − θ?‖ > ε) | ACδ/2

)
≤ 3/T ≤ δ/2 .

We now compare the constants involved. As long as εDX ≤ 1, we have

exp

(
28D8

XC
2
δ/2(1 + eDX(‖θ?‖+ε))3

Λ3
min(1− 2β)3/2ε2

)
≤ exp

(
3 · 215D12

X C
2
δ/2(1 + eDX(‖θ?‖+ε))6

Λ6
min(1− 2β)3/2ε4

)
.

Furthermore, as 1− 2β ≤ 1, we have

exp

(
3

2C1

)
= exp

(
3 · 215D12

X C
2
δ/2(1 + eDX(‖θ?‖+ε))6

Λ6
min(1− 2β)ε4

)

≤ exp

(
3 · 215D12

X C
2
δ/2(1 + eDX(‖θ?‖+ε))6

Λ6
min(1− 2β)3/2ε4

)
.
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Finally, (
12

C2(1− 2β)

)4/(1−2β)

= exp

(
4

1− 2β
ln

12

C2(1− 2β)

)
= exp

(
4

1− 2β
ln

12 · 211D4
XC

2
δ/2(1 + eDX(‖θ?‖+ε))2

Λ2
min(1− 2β)2ε4

)

= exp

(
8

1− 2β
ln

12 · 211D4
XC

2
δ/2(1 + eDX(‖θ?‖+ε))2

Λ2
min(1− 2β)ε4

)

≤ exp

 8

1− 2β

√
3 · 213D4

XC
2
δ/2(1 + eDX(‖θ?‖+ε))2

Λ2
min(1− 2β)ε4


= exp

(√
629D2

XCδ/2(1 + eDX(‖θ?‖+ε))

Λmin(1− 2β)3/2ε2

)

≤ exp

(
3 · 215D12

X C
2
δ/2(1 + eDX(‖θ?‖+ε))6

Λ6
min(1− 2β)3/2ε4

)
.

B.4 Proofs of Section 4.5

Proof of Proposition 4.5. The first order condition of the optimum yields

arg min
θ∈Rd

t−1∑
s=1

(ys − θ>Xs)
2 +

1

2
(θ − θ̂1)>P−1

1 (θ − θ̂1) = θ̂1 + Pt

t−1∑
s=1

(ys − θ̂>1 Xs)Xs .

Therefore we prove recursively that θ̂t− θ̂1 = Pt
∑t−1
s=1(ys− θ̂>1 Xs)Xs. It is clearly true at t = 1.

Assuming it is true for some t ≥ 1, we use the update formula

θ̂t+1 − θ̂1 = (I − Pt+1XtX
>
t )(θ̂t − θ̂1) + Pt+1ytXt − Pt+1XtX

>
t θ̂1

= (I − Pt+1XtX
>
t )Pt

t−1∑
s=1

(ys − θ̂>1 Xs)Xs + Pt+1(yt − θ̂>1 Xt)Xt .

We conclude with the following identity:

(I − Pt+1XtX
>
t )Pt = Pt − PtXtX

>
t Pt +

PtXtX
>
t PtXtX

>
t Pt

X>t PtXt + 1
= Pt −

PtXtX
>
t Pt

X>t PtXt + 1
= Pt+1 .

B.4.1 Proof of Theorem 4.5

We first prove a result controlling the first estimates of the algorithm.
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Lemma B.8. Provided that Assumptions 4.1, 4.2 and 4.4 are satisfied, starting from any θ̂1 ∈ Rd
and P1 � 0, for any δ > 0, it holds simultaneously

‖θ̂t − θ?‖ ≤ ‖θ̂1 − θ?‖+ λmax(P1)DX

(
(3σ +Dapprox)(t− 1) + 3σ ln δ−1

)
, t ≥ 1,

with probability at least 1− δ.

Proof. From Proposition 4.5, we obtain, for any t ≥ 1, θ̂t − θ̂1 = Pt
∑t−1
s=1(ys − θ̂>1 Xs)Xs.

Consequently,

θ̂t − θ? = Pt

t−1∑
s=1

(ys − θ̂>1 Xs)Xs − Pt

(
P−1

1 +

t−1∑
s=1

XsX
>
s

)
(θ? − θ̂1)

= Pt

t−1∑
s=1

(ys − θ?>Xs)Xs + PtP
−1
1 (θ̂1 − θ?) ,

and using PtP−1
1 4 I, we obtain

‖θ̂t − θ?‖ ≤ ‖θ̂1 − θ?‖+ λmax(Pt)DX

t−1∑
s=1

|ys − θ?>Xs|

≤ ‖θ̂1 − θ?‖+ λmax(P1)DX

t−1∑
s=1

(|ys − E[ys | Xs]|+Dapp) . (B.14)

We apply Lemma 1.4 of Rigollet and Hütter, 2015 in the second line of the following: for any
µ such that 0 < µ < 1

2
√

2σ
,

E [exp(µ|yt − E[yt | Xt]|)] = 1 +
∑
i≥1

µiE[|yt − E[yt | Xt]|i]
i!

≤ 1 +
∑
k≥1

µi(2σ2)i/2iΓ(i/2)

i!

≤ 1 +
∑
i≥1

(√
2µσ

)i
, because Γ(i/2) ≤ Γ(i) = (i− 1)!

≤ 1 + 2
√

2µσ, because 0 <
√

2µσ ≤ 1

2

≤ exp
(

2
√

2µσ
)
.

Therefore
(

exp

(
1

2
√

2σ

t∑
s=1

(|ys − E[ys | Xs]| − 2
√

2σ)

))
t

is a super-martingale to which we can

apply Lemma B.1. We obtain, for any δ > 0,

t−1∑
s=1

|yt − E[yt | Xt]| ≤ 2
√

2(t− 1)σ + 2
√

2σ ln δ−1, t ≥ 1,

with probability at least 1− δ. The result follows from Equation (B.14) and 2
√

2 ≤ 3.

Proof of Theorem 4.5. We first apply Theorem 4.2: with probability at least 1 − 5δ, it holds
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simultaneously for all n ≥ T (ε, δ)

n∑
t=T (ε,δ)+1

L(θ̂t)− L(θ?) ≤ 15

2
d
(
8σ2 +D2

app + ε2D2
X

)
ln

(
1 + (n− T (ε, δ))

λmax(P1)D2
X

d

)
+ 5λmax

(
P−1
T (ε,δ)+1

)
ε2

+ 115

(
σ2(4 +

λmax(P1)D2
X

4
) +D2

app + 2ε2D2
X

)
ln δ−1 .

Moreover, λmax

(
P−1
T (ε,δ)+1

)
≤ λmax(P−1

1 ) + T (ε, δ)D2
X .

Then we derive a bound on the first T (ε, δ) terms. For any t ≥ 1, we have L(θ̂t) − L(θ?) ≤
D2
X‖θ̂t − θ?‖2, thus, using (a + b)2 ≤ 2(a2 + b2) and applying Lemma B.8 we obtain the simul-

taneous property

L(θ̂t)− L(θ?) ≤ 2D2
X(‖θ̂1 − θ?‖+ 3λmax(P1)DXσ ln δ−1)2

+ 2λmax(P1)2D4
X(3σ +Dapp)2(t− 1)2, t ≥ 1,

with probability at least 1− δ. A summation argument yields, for any δ > 0,

T (ε,δ)∑
t=1

L(θ̂t)− L(θ?) ≤ 2D2
X(‖θ̂1 − θ?‖+ 3λmax(P1)DXσ ln δ−1)2T (ε, δ)

+ λmax(P1)2D4
X(3σ +Dapp)2 (T (ε, δ)− 1)T (ε, δ)(2T (ε, δ)− 1)

3
,

with probability at least 1− δ.

B.4.2 Definition of T (ε, δ)
We now focus on the definition of T (ε, δ). We first transcript the result of Hsu, Kakade, and

Zhang, 2012 to our notations in the following lemma.

Lemma B.9. Provided that Assumptions 4.1, 4.2 and 4.4 are satisfied, starting from any θ̂1 ∈ Rd

and P1 = p1I, p1 > 0, we have, for any 0 < δ < e−2.6 and t ≥ 6
D2
X

Λmin
(ln d+ ln δ−1),

‖θ̂t+1 − θ?‖2Σ ≤
3

t

(
‖θ̂1 − θ?‖2

2p1
+

D2
X

Λmin
D2

app

4(1 +
√

8 ln δ−1)

0.072
+

3σ2(d/0.035 + ln δ−1)

0.07

)

+
12

0.072t2

(
‖θ̂1 − θ?‖2

p1

D2
X

Λmin
(1 +

√
8 ln δ−1)

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

2p1

)2

(ln δ−1)2

)
,

with probability at least 1− 4δ.

Proof. We first observe that

arg min
w∈Rd

1

t

t∑
s=1

(ys − w>Xs)
2 + λ‖w − β̂1‖2 = arg min

w∈Rd
1

t

t∑
s=1

(ys − β̂>1 Xs − w>Xs)
2 + λ‖w‖2 ,
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therefore we apply the ridge analysis of Hsu, Kakade, and Zhang, 2012 to (Xs, ys − β̂>1 Xs). We
note that (ys− β̂>1 Xs) has the same variance proxy and the same approximation error, therefore
it only amounts to translate the optimal w, that is denoted by β.

For any λ > 0, we observe that

d2,λ ≤ d1,λ ≤ d , ρλ ≤
DX√
d1,λΛmin

, bλ ≤ ρλ(Dapp +DX‖β − β̂1‖) .

Therefore we can apply Theorem 16 of Hsu, Kakade, and Zhang, 2012: for 0 < δ < e−2.6 and
t ≥ 6 DX√

Λmin
(ln(d)+ln δ−1), it holds that ‖β̂t+1,λ−β‖2Σ = 3(‖βλ−β‖2Σ +εbs +εvr) with probability

1− 4δ, with

εbs ≤
4

0.072

( D2
X

Λmin
E[(E[y | X]− β>X)2] + (1 +

D2
X

Λmin
)‖βλ − β‖2Σ

t
(1 +

√
8 ln δ−1)

+
( DX√

Λmin
(Dapp +DX‖β − β̂1‖) + ‖βλ − β‖Σ)2

t2
(ln δ−1)2

)
,

δf ≤
1√
t

DX√
Λmin

(1 +
√

8 ln δ−1) +
1

t

4

√
D4
X

Λ2
mind

+ 1

3
ln δ−1 ,

εvr ≤
σ2d(1 + δf )

0.072t
+

2σ2
√
d(1 + δf ) ln δ−1

0.073/2t
+

2σ2 ln δ−1

0.07t
.

Moreover E[(E[y | X]−β>X)2] ≤ D2
app and Λmin ≤ D2

X , hence, using ‖βλ−β‖Σ ≤ λ‖β− β̂1‖
we transfer the result in our KF notations, that is, θ̂t = β̂t,p−1

1 /2(t−1), β̂1 = θ̂1, β = θ?. We obtain,
for any 0 < δ < e−2.6 and t ≥ 6 DX√

Λmin
(ln(d) + ln δ−1),

εbs ≤
4

0.072

( D2
X

Λmin
D2

app +
D2
X

Λmin

‖θ̂1−θ?‖2
p1t

t
(1 +

√
8 ln δ−1)

+
( DX√

Λmin
(Dapp +DX‖θ?‖) + ‖θ̂1−θ?‖√

2p1t
)2

t2
(ln δ−1)2

)
,

δf ≤
1√
t

DX√
Λmin

(1 +
√

8 ln δ−1) +
1

t

4

√
D4
X

Λ2
mind

+ 1

3
ln δ−1 ,

εvr ≤
σ2d(1 + δf )

0.072t
+

2σ2
√
d(1 + δf ) ln δ−1

0.073/2t
+

2σ2 ln δ−1

0.07t
,

‖θ̂t+1 − θ?‖2Σ ≤ 3

(
‖θ̂1 − θ?‖2

2p1t
+ εbs + εvr

)
,

with probability at least 1− 4δ. For t ≥ D2
X

Λmin
ln δ−1, as ln δ−1 ≥ 1, we get

δf ≤
1√

6 ln δ−1
(1 +

√
8 ln δ−1) +

1

6

4

3

√
1

d
+ 1 ≤ 1 +

√
8√

6
+

2
√

2

9
≈ 1.9 ≤ 2 .
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Thus, as
√
ab ≤ a+b

2 for any a, b > 0, we have

εvr ≤
σ2

0.07t

(
3d

0.07
+ 2

√
3d ln δ−1

0.07
+ 2 ln δ−1

)

≤ σ2

0.07t

(
6d

0.07
+ 3 ln δ−1

)
≤ 3σ2(d/0.035 + ln δ−1)

0.07t
.

It yields the result.

Lemma B.9 allows the definition of an explicit value for T (ε, δ), as displayed in the following
Corollary.

Corollary B.1. Assumption 4.5 is satisfied for T (ε, δ) = max(T1(δ), T2(ε, δ), T3(ε, δ)) where we
define

T1(δ) = max

(
12

D2
X

Λmin
(ln d+ ln δ−1),

48D2
X

Λmin
ln

24D2
X

Λmin

)
,

T2(ε, δ) =
24ε−1

Λmin

(
‖θ̂1 − θ?‖2

2p1
+

D2
X

Λmin
D2

app

4(1 +
√

8 ln δ−1)

0.072
+

3σ2(d/0.035 + ln δ−1)

0.07

)

ln
12ε−1

Λmin

(
‖θ̂1 − θ?‖2

2p1
+

D2
X

Λmin
D2

app

4(1 +
√

8 ln δ−1)

0.072
+

3σ2(d/0.035 + ln δ−1)

0.07

)
,

T3(ε, δ) =

√
96ε−1

0.072Λmin

(
‖θ̂1 − θ?‖2

p1

D2
X

Λmin
(1 +

√
8 ln δ−1)

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

2p1

)2

(ln δ−1)2

)1/2

ln
96ε−1

0.072Λmin

(
‖θ̂1 − θ?‖2

2p1
(1 +

D2
X

Λmin
)(1 +

√
8 ln δ−1)

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

2p1

)2

(ln δ−1)2

)
.

We recall that for any η ≤ 1, we have ln t
t ≤ η for t ≥ 2η−1 ln(η−1), and we use it in the

following proof.

Proof of Corollary B.1. We define δt = δ/t2 for any t ≥ 1. In order to apply Lemma B.9 with a
union bound, we need t ≥ 6

D2
X

Λmin
(ln d+ln δ−1

t ). If t ≥ 12
D2
X

Λmin
(ln d+ln δ−1) and t ≥ 48D2

X

Λmin
ln

24D2
X

Λmin
,
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we obtain

t ≥ t

2
+

√
t

2

√
t

≥ 6
D2
X

Λmin
(ln d+ ln δ−1) +

12D2
X

Λmin
ln t, as ln t ≤

√
t

= 6
D2
X

Λmin
(ln d+ ln δ−1

t ) .

Therefore, we define T1(δ) = max
(

12
D2
X

Λmin
(ln d+ ln δ−1),

48D2
X

Λmin
ln

24D2
X

Λmin

)
, and we apply Lemma

B.9. We get the simultaneous property

‖θ̂t+1 − θ?‖2Σ ≤
3

t

‖θ̂1 − θ?‖2

2p1
+

D2
X

Λmin
D2

app

4(1 +
√

8 ln δ−1
t )

0.072
+

3σ2(d/0.035 + ln δ−1
t )

0.07


+

12

0.072t2

(
‖θ̂1 − θ?‖2

p1

D2
X

Λmin
(1 +

√
8 ln δ−1

t )

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

2p1

)2

(ln δ−1
t )2

)

for all t ≥ T1(δ), with probability at least 1− 4δ
∑

t≥T1(δ)

t−2 ≥ 1− δ because T1(δ) > 4.

Thus, as ln t ≥ 1 for t ≥ T1(δ) and ‖θ̂t+1 − θ?‖2Σ ≥ Λmin‖θ̂t+1 − θ?‖2, we obtain

‖θ̂t+1 − θ?‖ ≤
6 ln t

Λmint

(
‖θ̂1 − θ?‖2

2p1
+

D2
X

Λmin
D2

app

4(1 +
√

8 ln δ−1)

0.072
+

3σ2(d/0.035 + ln δ−1)

0.07

)

+
48(ln t)2

0.072Λmint2

(
‖θ̂1 − θ?‖2

p1

D2
X

Λmin
(1 +

√
8 ln δ−1)

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

2p1

)2

(ln δ−1)2

)

for all t ≥ T1(δ, with probability at least 1 − δ. Finally, both terms of the last inequality are
bounded by ε/2.

From Corollary B.1, we obtain the asymptotic rate by comparing T2(δ) and T3(δ). We write
T2(δ) = 2A2(δ) lnA2(δ), T3(δ) = 2A3(δ) lnA3(δ) with

A2(δ) .
ε−1

Λmin

(
‖θ̂1 − θ?‖2

p1
+

D2
X

Λmin
D2

app

√
ln δ−1 + σ2(d+ ln δ−1)

)

A3(δ) .

√√√√ ε−1

Λmin

(
‖θ̂1 − θ?‖2

p1

D2
X

Λmin

√
ln δ−1 +

(DX(Dapp +DX‖θ?‖)√
Λmin

+
‖θ̂1 − θ?‖√

p1

)2

(ln δ−1)2

)
.

where the symbol . means less than up to universal constants. As
√
a+ b .

√
a +
√
b and
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√
ab . a+ b, we obtain

A3(δ) .

√
ε−1

Λmin

(√
‖θ̂1 − θ?‖2

p1

D2
X

Λmin

√
ln δ−1

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

p1

)
ln δ−1

)

.

√
ε−1

Λmin

(
‖θ̂1 − θ?‖2

p1
+

D2
X

Λmin

√
ln δ−1

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

p1

)
ln δ−1

)
.

Thus, as long as ε−1

Λmin
≤ 1, we get

A2(δ), A3(δ) .
ε−1

Λmin

(
‖θ̂1 − θ?‖2

p1
+

D2
X

Λmin
(1 +D2

app)
√

ln δ−1 + σ2d

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

p1
+ σ2

)
ln δ−1

)
.
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We provide the proofs for all the claims of Chapter 6.
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C.1 Kullback-Leibler Derivation

Proof of Lemma 6.1. We start from the expression of (6.1) that we decompose as follows:

KL
(
N (θ̂t|t, Pt|t)×N (ât|t, st|t)×N (b̂t|t,Σt|t) || PFt

)
= Eθt∼N (θ̂t|t,Pt|t)

[logN (θt | θ̂t|t, Pt|t)]

+ Eat∼N (ât|t,st|t)[logN (at | ât|t, st|t)] + Ebt∼N (b̂t|t,Σt|t)
[logN (bt | b̂t|t,Σt|t)]

− E(θt,at,bt)∼N (θ̂t|t,Pt|t)N (ât|t,st|t)N (b̂t|t,Σt|t)
[log p(θt, at, bt | Ft)] .

The last term can be split using the factorized form of (6.2). We observe that on the one hand,

E(θt,at,bt)∼N (θ̂t|t,Pt|t)N (ât|t,st|t)N (b̂t|t,Σt|t)
[logN (yt | θ>t xt, exp(at))]

= −1

2
log(2π)− 1

2
ât|t −

1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt) exp(−ât|t +
1

2
st|t) ,

and on the other hand,

E(θt,at,bt)∼N (θ̂t|t,Pt|t)N (ât|t,st|t)N (b̂t|t,Σt|t)
[logN (θt | Kθ̂t−1|t−1,KPt−1|t−1K

> + f(bt))]

= −d log(2π)

2
− 1

2
Ebt∼N (b̂t|t,Σt|t)

[ψt(bt)] ,

where ψt is defined in the lemma. Combining the last equations with the value of the entropy of
gaussian random variables yields the result.

205
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C.2 State Estimation

Proof of Theorem 6.1. Thanks to Lemma 6.1 we have

KL
(
N (θ̂t|t, Pt|t)×N (ât|t, st|t)×N (b̂t|t,Σt|t) || PFt

)
=

1

2
Tr
(

(Pt|t + (θ̂t|t −Kθ̂t−1|t−1)(θ̂t|t −Kθ̂t−1|t−1)>)At

)
+

1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt) exp(−ât|t +
1

2
st|t)−

1

2
log detPt|t + cθ ,

where cθ is a constant independent of θ̂t|t, Pt|t, and At is defined in the theorem. To conclude
we write the first order conditions:

− 1

2
P−1
t|t +

1

2

(
At +

xtx
>
t

exp(ât|t − 1
2st|t)

)
= 0 ,

−
(yt − θ̂>t|txt)xt

exp(ât|t − 1
2st|t)

+At(θ̂t|t −Kθ̂t−1|t−1) = 0 .

C.3 Observation Noise Variance Estimation

Proof of Proposition 6.2. Thanks to Lemma 6.1, we have

KL
(
N (θ̂t|t, Pt|t)×N (ât|t, st|t)×N (b̂t|t,Σt|t) || PFt

)
=

1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât|t+st|t/2 +

1

2
(st−1|t−1 + ρa)−1st|t −

1

2
log(st|t) + cs ,

where cs is a constant independent of st|t. Moreover, if 0 ≤ st|t ≤ st−1|t−1 + ρa then

est|t/2 ≤ e(st−1|t−1+ρa)/2 +
1

2
(st|t − (st−1|t−1 + ρa)) .

The last two equations yield the upper bound of the proposition. To obtain (6.6) we write the
first order condition of optimality:

1

4
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât|t − 1

2
s−1
t|t +

1

2
(st−1|t−1 + ρa)−1 = 0 .

Proof of Proposition 6.3. Thanks to Lemma 6.1 we have

KL
(
N (θ̂t|t, Pt|t)×N (ât|t, st|t)×N (b̂t|t,Σt|t) || PFt

)
≤ 1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât|t+st|t/2 +

1

2
(st−1|t−1 + ρa)−1(ât|t − ât−1|t−1)2 +

1

2
ât|t + ca ,
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with ca a constant independent of ât|t. Moreover, if ât|t ∈ [ât−1|t−1−Ma, ât−1|t−1 +Ma] we have
the following upper bound:

e−ât|t ≤ e−ât−1|t−1

(
1− (ât|t − ât−1|t−1) +

eMa

2
(ât|t − ât−1|t−1)2

)
.

The last two equations yield the upper bound of the proposition. To obtain (6.7) we write the
first-order condition:

1

st−1|t−1 + ρa
(ât|t − ât−1|t−1) +

1

2

+
1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât−1|t−1+st|t/2

(
− 1 + eMa(ât|t − ât−1|t−1)

)
= 0 ,

C.4 State Noise Covariance Matrix Estimation

To prove Propositions 6.4 and 6.5 we first compute the first and second derivatives of ψt for
the scalar and diagonal settings:

Lemma C.1. Let Ct = KPt−1|t−1K
>+f(bt) and Bt = Pt|t+(θ̂t|t−Kθ̂t−1|t−1)(θ̂t|t−Kθ̂t−1|t−1)>.

— If f(·) = φ(·)I then for any bt, we have

ψ′t(bt) = Tr(C−1
t (I −BtC−1

t ))φ′(bt) ,

ψ′′t (bt) = Tr(C−1
t (I −BtC−1

t ))φ′′(bt) + 2 Tr(C−2
t (BtC

−1
t − I/2))φ′(bt)

2 .

— If f(·) = Dφ(·) then for any bt, we have

∂ψt
∂bt

= ∆C−1
t (I−BtC−1

t ) � φ
′(bt) ,

∂2ψt
∂b2t

= C−1
t (I −BtC−1

t )Dφ′′(bt) � I + 2C−1
t (BtC

−1
t − I/2)� C−1

t � φ′(bt)φ′(bt)> ,

where � is the Hadamard (pointwise) product.

Proof. — In the scalar setting we recall that

ψt(b) = log det(KPt−1|t−1K
> + φ(b)I) + Tr(Bt(KPt−1|t−1K

> + φ(b)I)−1) .

We denote by log and exp the univariate logarithm and exponential and by Log the
matrix logarithm. Note that if A � 0, it holds detA = exp Tr(LogA). We define Ct =
KPt−1|t−1K

> + φ(bt)I and we obtain:

log det(KPt−1|t−1K
> + φ(b)I)− Tr Log(Ct)

= Tr Log(KPt−1|t−1K
> + φ(b)I)− Tr Log(Ct)

= Tr Log
(
I + (φ(b)− φ(bt))C

−1
t

)
= Tr

((
φ′(bt)(b− bt) +

1

2
φ′′(bt)(b− bt)2

)
C−1
t −

1

2

(
φ′(bt)(b− bt)C−1

t

)2
+ o((b− bt)2)

)
.
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The last line follows from the series expansion of the Logarithm. We apply another series
expansion for the second term of ψt: we have

Tr(Bt(KPt−1|t−1K
> + φ(b)I)−1)

= Tr
(
BtC

−1
t

(
I + (φ(b)− φ(bt))C

−1
t

)−1)
= Tr

(
BtC

−1
t

(
I −

(
φ′(bt)(b− bt) +

1

2
φ′′(bt)(b− bt)2

)
C−1
t

+
(
φ′(bt)(b− bt)C−1

t

)2
+ o((b− bt)2)

))
.

Summing the last two equations, and using the identity Tr(AB) = Tr(BA), we can identify
the first and second derivatives of ψt.

— We develop a similar argument in the diagonal setting:

ψt(b) = log det(KPt−1|t−1K
> +Dφ(b)) + Tr(Bt(KPt−1|t−1K

> +Dφ(b))
−1) ,

then we apply the series expansion of the Logarithm:

log det(KPt−1|t−1K
> +Dφ(b))− Tr Log(Ct)

= Tr Log
(
I +Dφ(b)−φ(bt)C

−1
t

)
= Tr

(
Dφ′(bt)(b−bt)+ 1

2φ
′′(bt)(b−bt)2C−1

t −
1

2
(Dφ′(bt)(b−bt)C

−1
t )2 + o(‖b− bt‖2)

)
,

where Ct = KPt−1|t−1K
>+Dφ(bt) and φ

′(bt), φ
′′(bt) denote the coefficient-wise application

of the first and second derivatives of φ to the vector bt. We apply another series expansion
for the second term of ψt:

Tr
(
Bt(KPt−1|t−1K

> +Dφ(b))
−1
)

= Tr
(
BtC

−1
t

(
I +Dφ(b)−φ(bt)C

−1
t

)−1)
= Tr

(
BtC

−1
t

(
I −Dφ′(bt)(b−bt)+ 1

2φ
′′(bt)(b−bt)2C−1

t

+ (Dφ′(bt)(b−bt)C
−1
t )2 + o(‖b− bt‖2)

))
.

Summing the last two equations we obtain

ψt(b) = Tr Log(Ct) + Tr(BtC
−1
t ) + Tr

(
C−1
t (I −BtC−1

t )Dφ′(bt)(b−bt)+ 1
2φ
′′(bt)(b−bt)2

)
+ Tr

(
C−1
t (BtC

−1
t − I/2)Dφ′(bt)(b−bt)C

−1
t Dφ′(bt)(b−bt)

)
+ o(‖b− bt‖2) .
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Then we use the identity Tr(ADvBDv) = v>(A�B>)v. We have

ψt(b) = Tr Log(Ct) + Tr(BtC
−1
t )

+
1

2
(b− bt)>

(
C−1
t (I −BtC−1

t )Dφ′′(bt) � I

+ 2C−1
t (BtC

−1
t − I/2)� C−1

t � φ′(bt)φ′(bt)>
)

(b− bt)

+ (∆C−1
t (I−BtC−1

t ) � φ
′(bt))

>(b− bt) + o(‖b− bt‖2) .

Thus we can identify the first and second derivatives of ψt.

Proof of Proposition 6.4. As long as f(b̂t−1|t−1) � 0 we know that f is twice differentiable in
b̂t−1|t−1 and the local upper-bound property of Proposition 6.4 holds if ∂2ψt

∂b2t
|b̂t−1|t−1

≺ Ht. We
bound the expressions obtained in Lemma C.1.

— In the scalar setting,

ψ′′t (b̂t−1|t−1) = Tr(C−1
t (I −BtC−1

t ))φ′′(b̂t−1|t−1) + 2 Tr(C−2
t (BtC

−1
t − I/2))φ′(b̂t−1|t−1)2 .

Furthermore, Ct � 0 thus C−1
t � 0, Tr(C−1

t ) > 0, and Tr(C−2
t ) > 0. φ′′(b̂t−1|t−1) =

−1/(1 + b̂t−1|t−1)2 < 0 and φ′(b̂t−1|t−1)2 > 0, therefore we obtain

ψ′′t (b̂t−1|t−1) < −Tr(C−1
t BtC

−1
t )φ′′(b̂t−1|t−1) + 2 Tr(C−2

t BtC
−1
t )φ′(b̂t−1|t−1)2 .

— In the diagonal setting,

∂2ψt
∂b2t

∣∣∣
b̂t−1|t−1

= C−1
t (I −BtC−1

t )Dφ′′(b̂t−1|t−1) � I

+ 2C−1
t (BtC

−1
t − I/2)� C−1

t � φ′(b̂t−1|t−1)φ′(b̂t−1|t−1)> .

Similarly we have C−1
t � 0, Dφ′′(b̂t−1|t−1) ≺ 0 and as diagonal coefficients of C−1

t are
positive, it yields (C−1

t Dφ′′(b̂t−1|t−1))� I ≺ 0.

Moreover φ′(b̂t−1|t−1)φ′(b̂t−1|t−1)> � 0, and we can apply Schur product theorem: C−1
t �

C−1
t � φ′(b̂t−1|t−1)φ′(b̂t−1|t−1)> � 0. Eventually:

∂2ψt
∂b2t

∣∣∣
b̂t−1|t−1

≺ −C−1
t BtC

−1
t Dφ′′(b̂t−1|t−1) � I

+ 2C−1
t BtC

−1
t � C−1

t � φ′(b̂t−1|t−1)φ′(b̂t−1|t−1)> .

Proof of Proposition 6.5. Thanks to Lemma 6.1 we have:

KL
(
N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || PFt

)
= −1

2
log det Σt|t +

1

2
Ebt∼N (b̂t|t,Σt|t)

[ψt(bt)]

+
1

2
Tr
(

(Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>)(Σt−1|t−1 + ρbI)−1
)

+ cb ,
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where cb is a constant independent of b̂t|t,Σt|t. Combining the last equation and Proposition 6.4,
then using the first two moments of the gaussian distribution we obtain:

KL
(
N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || PFt

)
≤ −1

2
log det Σt|t +

1

2
ψt(b̂t−1|t−1) +

1

2

∂ψt
∂bt

∣∣∣>
b̂t−1|t−1

(b̂t|t − b̂t−1|t−1)

+
1

4
Tr
(
Ht(Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>)

)
+

1

2
Tr
(

(Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>)(Σt−1|t−1 + ρbI)−1
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This yields the upper bound of Proposition 6.5. The recursive updates follow from the first order
conditions:
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= 0 .
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D.1 Nomenclature

The experts AR, Lin, GAM, RF, RF_GAM, MLP are the ones presented in that same order in
Section 8.3.

Names of the form model_setting refer to the expert obtained by state-space adaptation of
the model model with the setting setting. For instance, Lin_dynamic refers to a linear model
adapted with the Kalman filter in the dynamic setting, c.f. Section 8.4.2.

We consider quantile variants of RF, denoted by RFq where q is the quantile order in percent
(e.g. RF40 is the quantile random forest of quantile value 0.4). We also consider a quantile
variant of the dynamic MLP denoted by similar names (MLP_dynamic60 is the quantile 0.6 of
the MLP in the dynamic setting).

Furthermore, we introduce an expert named GAM_SAT forecasting each day with the GAM as
if it were a Saturday motivated by Chapter 7.

Finally, each expert x yields another expert x_corr after intraday correction.

D.2 Day-to-day Evolution of the Forecasting Strategy

As explained in Section 8.5.4, our strategy evolved in time and we recall here every change.
— From January 18th to January 24th: we used the following set of experts obtained

by the greedy selection described in Section 8.5.4: RF, RF_corr, RF50_corr, RF60_corr,
Lin_dynamic_corr, Lin_viking_corr, GAM, GAM_corr, GAM_staticbreak_corr, GAM_dynamic_corr,
GAM_viking_corr, GAM_dynamicbig_corr, RF_GAM, RF_GAM_corr, GAM_SAT_corr, MLP_dynamic60,
MLP_dynamic90, MLP_dynamic99. We aggregated with ML-poly with an aggregation esti-
mated independently for each hour, with the absolute loss. We found afterward a bug in
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Figure D.1 – Special day correction applied on February 5th. It is a multiplicative correction,
e.g. at midday we reduce our forecast by about 3.8%.

RF50_corr, RF60_corr: the quantile RF were set to 0 on the test set so that these two
experts were simple intraday autoregressive trained in an unwanted manner.

— From January 25th to January 31st: we removed the experts RF50_corr, RF60_corr
and we replaced them with AR_corr.

— February 1st and 2nd: we used the uniform average between three forecasts. First,
the previous aggregation. Second, another aggregation procedure called RF-stacking,
consisting in a quantile random forest minimizing the MAE and taking as input the 72
experts as well as the day type and hour of the day. Third, a benchmark close to the one
given by the competition organizers: we predict each time with the last available load of
the same hour and the same day group (week days, saturdays and sundays).

— From February 3rd to 7th: we removed the benchmark which damaged the perfor-
mances. For Feb. 5th we corrected the ML-poly prediction using a special day correction,
once we observe that Feb. 5th had a special behavior in the last three years. Precisely,
we observed that the relative error of the model is significantly negative on the last three
years, a behavior that may come from a bank holiday for instance. Therefore we fit a
smoothed function of the time of day on the relative error and we applied it to our forecast.
We truncated so that there is no correction during night. See the shape of the correction
in Figure D.1.

— February 8th: we used the single expert Lin_dynamicbig_corr as we observed that it
was by far our best expert on the last week, and it seemed to perform especially well on
Mondays.

— February 9th: we came back to the average between ML-poly and the RF-stacking but
we added to the aggregation ML-poly the expert Lin_dynamicbig_corr, and we replaced
the expert AR_corr with another expert AR_intra incorporating directly the intraday
correction in the autoregressive, instead of correcting an autoregressive based only on
daily lags.

— February 10th and 11th: we removed the RF-stacking which degraded our performances
since its introduction and we kept only the aggregation ML-poly.

— February 12th and 13th: we corrected a posteriori the electricity load for February 5th

with the special day correction. It was important to do it on that day as the weekly lags
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is important in the models.
— February 14th: we used once again the average between the ML-poly aggregation and

the RF-stacking, as we observed that the RF-stacking is especially good on Sunday.
— February 15th and 16th: we used only the ML-poly aggregation.
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Modèles espace-état pour la prévision de séries temporelles. Application aux
marchés électriques.

Résumé

L’électricité étant difficile à stocker, prévoir la demande est un enjeu majeur pour maintenir l’équilibre
entre la production et la consommation. L’évolution des usages de l’électricité, le déploiement des énergies
renouvelables, et plus récemment la crise du coronavirus, motivent l’étude de modèles qui évoluent au
cours du temps, pour tenir compte des changements de comportements. L’objectif de ce travail est de
proposer des méthodes adaptatives de prévision, et nous nous sommes intéressés tout spécialement au
cadre des modèles espace-état. Dans ce paradigme, on représente l’environnement (ou le contexte) par
un état caché. À chaque instant, la demande dépend de cet état que nous cherchons donc à estimer
grâce aux observations dont nous disposons, et selon les hypothèses que l’on effectue sur la dynamique
du système. L’estimation de l’état nous permet ensuite de prévoir la demande.
Un premier objectif de la thèse est de contribuer au lien entre l’optimisation et l’estimation dans les
modèles espace-état. Nous interprétons en effet les méthodes que nous utilisons comme diverses façons
de paramétrer un algorithme de descente de gradient de second ordre, et nous avons détaillé ce lien
dans un cas particulier. Une seconde contribution de la thèse est de proposer différentes méthodes
d’estimation dans les modèles espace-état. Le principal enjeu nous semble être de définir la dynamique
avec laquelle évolue l’état, et nous proposons deux méthodes dans ce but. Le troisième apport de ce
manuscrit est d’appliquer ces méthodes espace-état à la prévision de consommation d’électricité. Nos
prévisions s’appuient sur des modèles de prévision existants, par exemple le modèle additif généralisé,
que nous cherchons à adapter. Ainsi, nous tirons parti de certaines dépendances complexes capturées
par les modèles existants, par exemple la sensibilité de la consommation d’électricité à la température,
tout en profitant de la faculté d’adaptation des modèles espace-état.

Mots clés : modèles espace-état, prévision de consommation électrique, séries temporelles

Abstract

Electricity storage capacities are still negligible compared to the demand. Therefore, it is fundamental
to maintain the equilibrium between consumption and production, and to that end, we need load fore-
casting. Numerous patterns motivate the study of time-varying models, including: changes in people’s
habits, increasing renewable capacities, more recently the coronavirus crisis. This thesis aims to propose
adaptive methods for time series forecasting. We focus on state-space models, where the environment
(or context) is represented by a hidden state on which the demand depends. Thus, we try to estimate
that state based on the observations at our disposal. Based on our estimate, we forecast the load.
The first objective of the thesis is to enrich the link between optimization and state-space estimation.
Indeed, we see our methods as second-order stochastic gradient descent algorithms, and we treat a
particular case to detail that link. The second contribution concerns variance estimation in state-space
models. Indeed, the variances are the parameters on which the models’ dynamics crucially relies. The
third part of the manuscript is the application of these methods to electricity load forecasting. Our
methods build on existing forecasting methods like generalized additive models. The procedure allows to
leverage advantages of both. On the one hand, statistical models learn complex relations to explanatory
variables like temperature. On the other hand, state-space methods yield model adaptation.

Keywords: electricity load forecasting, state-space models, time series
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