N

N

Unveiling and mitigating common pitfalls in malware
analysis

Dario Nisi

» To cite this version:

Dario Nisi. Unveiling and mitigating common pitfalls in malware analysis. Cryptography and Security
[cs.CR]. Sorbonne Université, 2021. English. NNT: 2021SORUS528 . tel-03783495

HAL Id: tel-03783495
https://theses.hal.science/tel-03783495

Submitted on 22 Sep 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03783495
https://hal.archives-ouvertes.fr

"\ SORBONNE -

S UNIVERSITE

UNIVERSITE EURECOM

DEPUIS 1257 S ophia Antipolis

THESE DE DOCTORAT DE
SORBONNE UNIVERSITE
préparée a EURECOM

Ecole doctorale EDITE de Paris n° ED130
Spécialité: «Informatique, Télécommunications et Electronique»

Sujet de la thése:

Unveiling and Mitigating Common
Pitfalls in Malware Analysis

Theése présentée et soutenue a Biot, le 03/12/2021, par

DAar1o NISI

University ~ College of
London

CISPA Helmbholtz Center for
Information Security

Rapporteurs Prof. Lorenzo Cavallaro

Prof. Christian Rossow

Examinateurs Prof. Martina Lindorfer TU Wien
Prof. Davide Balzarotti EURECOM

Directeur de these Prof. Marc Dacier EURECOM

Co-Encadrant Dr. Yanick Fratantonio Cisco Systems Inc.

o0¢e

To those who did not make it through the difficult journey we shared.
You keep walking by my side, wherever I go.

Preface

The Cambridge dictionary defines a Ph.D. as “the highest college or uni-
versity degree.” Itis arguably not inspiring, but it is quite quixotic to expect
any more emotions from a dictionary definition. Allow me to add a bit of a
personal touch to this otherwise cold statement. As cliché as it may sound,
to me, a Ph.D. is actually the end destination of a journey. At times it feels
seemingly endless, tortuous, and ruthless, while at other times is exciting,
empowering, and lively. During my personal Ph.D. experience, the latter
drastically outweighed the former. The reason is easily explained: I have
had the luck to be surrounded, supported, cheered up, fed, mentored, and
inspired by some of the best people I have ever met.

First and foremost, my deepest gratitude goes to Yanick, my advisor.
Thank you for always being there when I needed it with your ever-positive
attitude, for transmitting me the n00b mindset (one of the most valuable
life lessonsI ever got), for teaching me that sometimes «itiswhatitis» and
it is better to « wrap it up move on with our lives, » and for educating me
on the importance of the Oxford comma. Oh! I have almost forgotten it;
Thanks for showing me that acknowledgments in academic writings can
be fun.

Special thanks go to Marc, my thesis director. While we did not collab-
orate much during my Ph.D. studies, I always felt you were available and
ready to help when needed.

It goes without saying, I am very grateful to the defense committee,
Profs. Davide Balzarotti, Lorenzo Cavallaro, Martina Lindorfer, and Chris-
tian Rossow. That of the Ph.D. jury member is often a thankless job but
a fundamental one nonetheless. Thank you for taking the time to assess
my research and for fueling such arich discussion during the defense with
your relevant and thought-provoking questions.

Throughout the years, I met many great professors, researchers, and
students at EURECOM and, in particular, in the S3 group. I would like to
thank each and every one of them, but the list would be too long. Just know

iii

that it has been an immense honor and pleasure to work and study along-
side you.

Some of them, however, I really cannot avoid mentioning, as I con-
sider them to be family. Graziano, Luigi, Marius, Fabio, Emanuele, Savino,
Frat'm Pox, Alessandro, Simone, Andrea, and Fioraldi'. Thanks for the fan-
tastic time we shared.

Besides this “foster” family, I have to thank my real one. I would not be
the person I am, have not my parents educated me the way they did and
loved me the way they do. Mum, Dad, thank you for the unconditional
support and for pushing me to strive for excellence. Thanks also to my
brother, Giulio, my grandmas, aunts, uncles, cousins, and the rest of my
extended family, as well as my all-time friends Giancarlo, Giulia, Grazia
Luna, Timoteo, Greta, Barbara, Alessio, Diego, and Antonio for always be-
ing there for me.

A particular acknowledgment must also go to a few (at this stage, fa-
mous) individuals (or, should I say, “creatures”). I am, of course, refer-
ring to Betty Sebright and her team, Pino Proform, and Slasti Mormanti.
Thanks for being such an endless source of inspiration. I am sure we will
meet one day.

Last but by no means least important, I wholeheartedly want to thank
Marléne. The sense of peace and joy you brought into my life is unparal-
leled. Thanks for the late-night discussions about the origin of the world,
the long and accurate proofreadings, your curious questions about my re-
search that — I admit — oftentimes cornered me, and in general for all the
small and big acts of care and love with which you spoil me on a daily ba-
sis. Without your support, this thesis could have never seen the light of the
day.

'Chronologically ordered by meeting time.

Abstract

As the importance of computer systems in modern-day societies grows, so
does the damage that malicious software causes. This led the security in-
dustry to engage in an arms race against malware authors to create better
systems to detect malware and prevent it from spreading. On their side, to
cope with the advances in the field of malware analysis, malware authors
sharpened their tools with the objective of thwarting the analysis and de-
feating countermeasures. In this arms race, in fact, all wrong assumptions
(no matter how subtle) may allow malware to circumvent detection sys-
tems, effectively running unopposed for a long period of time.

This thesis focuses on two aspects of modern malware analysis tech-
niques that are often overlooked, namely the use of API-level information
for encoding malicious behavior and the reimplementation of parsing
routines for executable file formats in security-oriented tools. This thesis
shows that taking advantage of these practices is possible on a large and
automated scale. By reviewing recent evidence brought to light by security
researchers and hunting malware in the wild, we also demonstrate that
malware authors show increasing interest in exploiting these practices.
Lastly, we study the feasibility of fixing these problems at their roots, mea-
suring the difficulties that anti-malware architects may encounter and
providing strategies to solve them.

Résumeé

Limportance des systemes informatiques dans les sociétés modernes
ne cesse de croitre, tout comme les dommages causés par les logiciels
malveillants. Cela a conduit le secteur de la sécurité a s'engager dans une
course aux armements contre les auteurs de logiciels malveillants afin
de créer de meilleurs systemes pour détecter ces derniers et empécher
leur propagation. De leur coté, pour faire face aux avancées dans le do-
maine de I'analyse des logiciels malveillants, les auteurs de ces derniers
ont affiné leurs outils dans le but de déjouer 'analyse et de mettre en échec
les contre-mesures. Dans cette course aux armements, en effet, toutes les
hypotheses erronées (aussi subtiles soient-elles) peuvent permettre aux
logiciels malveillants de contourner les systemes de détection, fonction-
nant sans réelle opposition pendant une longue période.

Cette these se concentre sur deux aspects des techniques modernes
d’analyse des logiciels malveillants qui sont souvent négligés, a savoir
I'utilisation d’informations au niveau des API pour coder les comporte-
ments malveillants etla ré implémentation des routines d’analyse des for-
mats de fichiers exécutables dans les outils orientés sécurité. Cette these
montre qu'il est possible de tirer parti de ces pratiques a grande échelle
et de maniére automatisée. En examinant les preuves récentes mises en
lumiére par les chercheurs en sécurité et en traquant les logiciels dans
leur environnent naturel, c’est-a-dire en observant empiriquement leur
modus operandi au cours d’attaques réelles, nous démontrons également
que les auteurs de logiciels malveillants manifestent un intérét croissant
pour I'exploitation de ces procédés. Enfin, nous étudions la possibilité de
corriger ces problemes a la racine, en mesurant les difficultés que les ar-
chitectes de logiciels malveillants peuvent rencontrer et en proposant des
stratégies pour les résoudre.

vii

Contents

1 Introduction 1
1.1 Contributions, 3
1.2 ThesisOutline 9

2 Background 11
2.1 Executable File Formats 12
2.2 Programming models in Modern Operating Systems 15
2.3 Dynamic Malware Analysis and Detection Techniques . . . 18

3 Finding Parsing Discrepancies for Executable File Formats: A
Systematic Exploration of the Portable Executable File Format
and its Ecosystem 21
3.1 Introduction, 21
3.2 ACritical Look at the PE Specifications 24
3.3 Software HandlingPEFiles 26

3.3.1 Basic Operations on PE Executables 26
3.3.2 PESoftwareLandscape 28
3.4 ConstraintsModeling 29
3.4.1 Constraints Extraction 29
3.4.2 Modelinglanguage 31
35 UsingModels 33
3.5.1 SampleValidation. 33
3.5.2 SampleGeneration 33
3.5.3 CornerCasesGeneration. 35
3.5.4 Differential Analysis 35
3.5.5 Differences Enumeration 36
3.5.6 Implementation. 37
3.6 ModelsEvaluation. 37
3.6.1 Assessing Under-Constrainedness 38

3.6.2 Assessing Over-Constrainedness 38

3.7 Differential Analysis, 39
3.7.1 Discrepancies among Versions of the Windows Loader 40
3.7.2 Compliance Checks Analysis of ClamAV 41
3.7.3 Memory Mapping Analysis of ClamAYV, radare2, and

Vara . . .o oo e e e 42

3.8 Bypassing Popular AnalysisTools 43

3.9 Discussion 47

3.10 RelatedWork o 48

Beyond API Tracing: Implementing a Generic and Practical By-
pass Technique and Investigating the Semantic Gap between APIs

and Syscalls in Windows 51
4.1 Introduction 51
4.2 Backgroundo . 54
4.2.1 The Windows ProgrammingModel 55
4.2.2 Dynamically-Linked Libraries 56
4.2.3 APISets and Umbrella Libraries 57
4.3 API-Based Behavioral Analysis: State of the Art and Bypasses 58
4.4 High-level API-Tracing-resistant Programming 60
441 Overview 61
4.4.2 TechnicalChallenges 62
443 OfflinePhase. 63
444 OnlinePhase. 64
445 ProofsofConcept 67
4.5 Towards Reconstructing API-Level Information from Syscalls 67
4.5.1 Analysis Environment 68
452 Dataset Lo 69
453 DataProcessing, 69
4.5.4 Examples of API-Syscall Mapping 70
4.5.5 Preliminary Measurements 72
4.5.6 Intra-APISimilarity 74
4.5.7 Inter-APISimiilarity 77
4.6 Discussion 79
4.6.1 Applicability of Our Approach in Real-World Programs 79
4.6.2 Beyond API-level Encoding of Malware Behavior . . 80
4.6.3 Considerations on the Semantic Reconstruction
Problem 81

4,7 RelatedWorko 82

Contents xi

5 Towards Reconstructing API Information from Syscalls: Explor-
ing the Semantic Gap between APIs and Syscalls in the Android

Operating System 85

5.1 Introduction 85

5.2 Background on DynamicAnalysis 88

53 Challenges 90

54 Approach 92

5.5 KnowledgeBase 93

5.5.1 Analysis Tracing Pipeline 94

5.5.2 Buildinga KnowledgeBase. 95

56 APIModels 95

5.6.1 AnatomyofanAPIModel 96

5.6.2 APIModels Creation Algorithm 96

5.6.3 APIModels Matching 97

5.7 DataExploration. 98

5.7.1 Apps Dataset and Experimental Setup 98

5.7.2 API Classification and Statistics 98

5.7.3 Noise Patterns Identification. 100

5.7.4 Ambiguity Measurement 101

5.8 Exploring the MappingProblem 103

59 RelatedWork 108

6 Future Work and Conclusion 113

6.1 FutureWork 114

6.2 Conclusion 116

Appendices 119

A Loader Modeling 121

A.1 Example of Constraints Model 122

A.2 Example of Translation in SMT problem 122

A.3 Excerpts from the Models of the Windows Loader 123

B Summary of the Thesis in French 127

B.1 Introduction 128

B2 Contexte 130
B.3 Contournement générique et pratique du tracage des API

pour les logiciels malveillants Windows 132

B.4

Exploration de la reconstruction sémantique des applica-
tions Android basée surlesyscalls 134

xii xii
B.5 Lost in the Loader : Les nombreux visages du format de

fichier PEde Windows 136

B.6 Travauxfutursetconclusion 137

List of Figures

2.1

3.1
3.2

4.1
4.2
4.3

4.4

4.5

4.6

4.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Structure ofa PE Executable 14
An overview of our analysis process. 23
Windows Loading Process 27
Overview of the offline phase of our approach 61
Map&Patch process for ntdll, kernelbase, and kernel32. . . 65
Cumulative distribution of the WinAPIs over the number of

recorded invocations L L. 73

Cumulative distribution of the WinAPIs (excluding those
that do not invoke syscalls) over the number of recorded in-

VOCAtIONS v v v e e 74
Cumulative distribution of the WinAPIs over the average

length of the syscall traces they produced 75
Disribution of WinAPI over the normalized entropy of their

races e 76
Number of matching APIs per syscall pattern (of length

from1tol0) 77
Overview of theapproach. 92
Pattern Ambiguity for 1-syscall long patterns 101
Pattern Ambiguity for 2-syscall long patterns 102

Total Pattern Ambiguity Comparison (1-syscall long patterns)103
Total Pattern Ambiguity Comparison (2-syscall long patterns)104

Pattern Ambiguity for 3-syscall long patterns 105
Pattern Ambiguity for 4-syscall long patterns 106
Pattern Ambiguity for 5-syscall long patterns 107
Total Pattern Ambiguity Comparison for 3-syscall long pat-

TEINS o e e e 108

xiv xiv
5.10 Total Pattern Ambiguity Comparison for 4-syscall long pat-
TEINS o e 109
5.11 Total Pattern Ambiguity Comparison for 5-syscall long pat-
TEINS o e e 110

List of Tables

3.1

3.2

4.1

5.1

5.2
5.3
5.4

Source of discrepancies and in which differential analysis

theywerefound 40
#Samples reported for each discrepancy 46
Overlapping sequences per each lengthclass 78

API occurrences in KB. Note: there cannot be Empty APIs

thatarealsoNon-LeafAPIs 99
API occurrences in KB (after noise reduction) 99
Results of two variants of the matching algorithm. 102
Accuracy results under relaxed definition of correctness. . . 103

Listings

4.1
4.2
4.3
5.1
Al
A2

Excerpt of the syscall trace of HttpSendRequest 54
Syscall Trace of wlanapi.dll:WlanOpenHandle 70
Syscall Trace of ws2_32.dll:setsockopt 71
Example of an analysistrace. 93
Example of a model written in our language. 122
Excerpt of the model of the loader of Windows 10 handling

relocations 125

xvii

Chapter 1

Introduction

Over the last decades, the importance of computer systems in modern-
day societies rose to the point of pervading every aspect of our daily life.
Nowadays, computer systems provide the backbone of critical infrastruc-
tures, guard our personal information, and allow for quick transmission
of essential data, inevitably affecting our private, public, and political life.

While bringing unquestionable benefits, digital technologies also
opened the door to new threats that often caught users and vendors off
guard. Driven by the potentially enormous gains that exploiting such a
vital apparatus may deliver, ill-intentioned actors started targeting com-
puter systems or using them to perpetrate frauds.

One common strategy employed by threat actors is delivering a piece
of software that performs detrimental actions on the target system, often
disguising it as harmless or even desired.

Previously relegated to the technical sphere, terms like “spyware,”
“ransomware,” “trojan horse,” and others swiftly became part of the pub-
lic discourse once threat actors started employing the internet for their
malicious intents. In fact, the global network provided an unprecedented
vector for attack for this type of software, to the point that several authors
compared the malware spread to that of an epidemic.

The parallels between the malware phenomenon and the field of epi-
demiology do not end with the extent of its proliferation. Similar to bacte-
ria and viruses, also malware tends to adapt to its environment, eventually
bypassing the barriers that block the infection.

However, while its organic counterparts evolve “by chance,” follow-
ing the rules of natural selection, malware’s evolution is the byproduct of
an intelligent design: Threat actors purposely equip their creations with
sharper weapons and clever disguises.

1

Make no mistake: What ultimately makes countering malware so com-
plex in the real world is, in fact, not only the magnitude of the malware
phenomenon. The adversarial nature of this field plays an equally impor-
tantrole in making anti-malware research and practice so challenging and
unique.

In fact, despite the security industry’s attempts to promptly detect,
document, and counter emerging threats, malware authors continuously
improve their techniques, aiming at hiding malicious behaviors from
the malware analysts’ inquisitive eyes. These techniques are commonly
known as evasion techniques because of their manifested objective of
“evading” the analysis.

While each evasion technique is different, in one way or another, all of
them exploit design flaws and limitations of anti-malware tools.

In particular, the root cause from which every type of evasion mecha-
nism originates is that anti-malware tools must model either the system
on which the malware runs or the capabilities of the malware itself. As a
result, anti-malware tools reason only about an approximation of the mal-
ware and its execution. The discrepancies between these models and the
reality of malware’s behavior pave the way to bypassing defenses and anal-
ysis.

In all fairness, the security industry gained valuable experience during
the decades-long arms race against malware. When enough new malware
strains that can elude analysis arise, the industry reacts by questioning
previous practices and adopting new ones to respond to the new threats.

However, this tendency for reactive approaches leads to keeping in
place other practices that are known to lead to loose approximations that
malware authors can leverage, atleastin a theoretical or non-scalable way.

This thesis challenges design choices in anti-malware tools and tech-
niques, adopting and promoting a proactive approach to malware analy-
sis. In particular, we focus on two practices that are still widespread, al-
though a fair share of practitioners considers them questionable. Con-
trary to the prevailing belief, we show that taking advantage of such de-
sign choices is not just a theoretical exercise but a concrete threat that the
anti-malware industry is not ready to face.

While experts acknowledge that malware may exploit these practices,
they argue that this is a “marginal” problem, the main argument being
that these techniques are either not robust enough or require substantial
manual effort: This thesis questions this argument by showing that taking
advantage of these practices is possible on a large and automated scale.
By reviewing recent evidence brought to light by security researchers and

1.1. Contributions 3

hunting malware in the wild, we also demonstrate that malware authors
show increasing interest in exploiting these practices. As part of this the-
sis, we also study the practical repercussion of these problems and the
feasibility of fixing them at their roots, measuring the difficulties that anti-
malware architects may encounter and providing strategies to solve them.

In more specific terms, this dissertation focuses on two aspects of
modern anti-malware tools and research, ubiquitous to both malware
analysis pipelines and endpoint protection software: the reimplementa-
tion of the program loader of the operating system, and the use of API-level
information for capturing malware behavior.

1.1 Contributions

The scientific value of the research work presented in this thesis unfolds
alongside three main thrusts relevant for malware analysis.

Systematic approach to find parsing discrepancies in software
handling executable file formats

A known problem in the security industry is that programs that deal with
executable file formats, such as OS loaders, reverse-engineering tools, and
antivirus software often have slight discrepancies in the way they inter-
pret an input file. Attackers can abuse these differences to evade detec-
tion or complicate reverse engineering and are often found by researchers
through a manual, trial-and-error process.

In this thesis, we present the first systematic analysis and exploration
of PE parsers. To this end, we created a custom domain-specific language
to easily capture the details on how different software parses, checks, and
validates whether a file is compliant with a set of specifications. By de-
sign, models written in our language can be translated into SMT problems
whose solutions are PE headers that the analyzed parser accepts as valid.

Byleveraging the mathematical properties of SMT problems, we devel-
oped a framework that automatically carries out various tasks that would
be hard to perform manually. For example, our framework can automat-
ically generate samples (i.e., PE files) that satisfy a specific model. More
interestingly, our framework can also produce differential test cases, PE
headers that one implementation considers valid and that a second im-
plementation would mark as invalid. As we will discuss, the existence of
these discrepancies has profound repercussion for malware analysis sys-
tems.

We then used our custom language to create models for the loaders of
three versions of Windows (XPB, 7, and 10) and the popular tools radare2,
ClamAV, and Yara. Modeling the loaders of Windows was a particularly
challenging task since it required extensive reverse engineering of differ-
ent operating system components, spanning from the kernel to the dy-
namic libraries.

By means of our framework, we compared these models and we ex-
plored the discrepancies among these loader implementations. For in-
stance, for any combination of two versions of Windows, we were able to
generate PE executables that run without problems under the first, but
that the second discarded as malformed. Similarly, we generated valid
samples according to Windows that the tools either marked as invalid or
for which they provided an inaccurate memory mapping.

The results of our analysis have consequences on several aspects of
system security. We show that popular analysis tools can be bypassed, that
the information extracted by these analysis tools can be easily manipu-
lated, and that it is trivial for malware authors to fingerprint and “target”
only specific versions of an operating system in ways that are not obvious
to someone analyzing the executable.

The discrepancies we found in this work represent a potent weapon
in the hands of malicious actors who have strong incentives in discover-
ing and exploiting them. To assess whether malware authors are leverag-
ing these discrepancies in the wild, we run a malware hunting campaign
on the popular malware analysis service VirusTotal. We estimate to have
scanned around five million samples during this campaign, parsing their
PE headers and looking for those conditions that may trigger any of the
discrepancies we found. The campaign found several samples for each
discrepancy, suggesting that malware authors put much effort into fine-
tuning their PE executables for evading analysis and defenses.

More importantly, this work shows that the fragmentation of PE load-
ers’ implementation poses a real problem. As we emphasize throughout
the thesis, there is no one correct way to parse PE files, and even different
versions of the Windows operating system treat this format slightly differ-
ently. Therefore it is not sufficient for security tools to fix the many incon-
sistencies we found in our experiments, but rather, they should tackle the
problem at its roots.

We argue, in fact, that security tools should model accurately how
different versions of the operating system parse the PE file format and
prompt the user to choose which model to employ for their analysis. Our
work provides comprehensive guidelines for the modeling phase, as well

1.1. Contributions 5

as the tools to ease this process.
We explore this research thrustin a paper titled “Lostin the loader: The
many faces of the windows PE file format,” published at RAID 2021.

Novel and universal API-tracing bypass technique

Arecent trend that analysts reported in malware consists in implementing
malicious functionalities using low-level programming primitives. While
increasing the complexity of the development process, this strategy al-
lowed threat actors to create malware that has higher chances to evade
analysis and that is significantly more challenging to detect on the end-
point.

In fact, malware analysis and endpoint protection tools often rely on
information encoded in terms of high-level functionalities provided by the
operating system (APIs). Malware can effectively disguise its malicious be-
havior by relying on lower-level primitives that analysis tools do not mon-
itor.

While effective and severe, for the time being, malware has only em-
ployed this strategy for simple tasks. This is not surprising: developing
complex functionalities using low-level programming interfaces is signif-
icantly more complex, thus incurring higher development time and costs.
Moreover, even when implemented successfully, relying solely on low-
level programming interfaces often results in less portable programs.

In this thesis, we present an approach that remarkably eases the pro-
cess of creating elaborated executables able to bypass API-based malware
analysis. This research generalizes over the recent trends that analysts re-
ported in new malware strains that directly invoke the lower-level services
of the OS kernel (namely, the syscalls) in an effort to reduce their API foot-
print.

Our system compiles programs written using the high-level APIs of the
operating system and furnishes the resulting executables with the code
implementing the APIs it needs, derived by the original Windows libraries.
At compilation time, our system resolves the program’s dependencies and
finds the DLLs that it requires. The DLLs are then modified to allow the
program to use their functionalities without the need to be loaded by the
operating system and joined together to create a custom runtime environ-
ment.

At execution time, the programs use the functionalities provided by
the embedded runtime instead of the system libraries. By doing this, the
program is completely transparent from the point of view of any API-

monitoring solution. These tools rely on the assumption that for a pro-
gram to use an API, its execution flow has to reach the code provided by the
system libraries. However, programs compiled with our approach never
need to step into system-provided (thus, potentially monitored) modules,
and can adopt arbitrarily complex obfuscation techniques to hide the na-
ture of the copy of the DLLs that they include.

What makes our technique potentially game-changing is the minimal
effort that malware authors have to put in place to adopt it. In fact, our
framework can be plugged into a typical development workflow without
rewriting or modifying the malicious logic.

We explore this research thrust in the first part of a paper titled
“Generic and Practical API Tracing Bypass for Windows Malware” (cur-
rently under submission).

Characterization of the semantic gap between low-level and
high-level programming interfaces

A common and generic way to encode the behavior of a program is to track
which APIs (Application Programming Interface) it employs. Modern op-
erating systems provide these highly specialized programming interfaces
that ease the development of complex functionalities used by benign and
malicious software alike.

API-based encoding of malicious behavior has proven effective for
malware analysis due to the high level of information and the rich seman-
tics that each API carries.

However, while many previous research works, malware analysis tools,
and endpoint protection solutions rely on high-level information to en-
code malicious behaviors, collecting such information in a reliable and
stealthy way is unfortunately impossible. Moreover, techniques such as
the one we discussed previously can create malware that does not rely at
all on the API layer for performing complex tasks.

The common analysis technique to address this concern is to move
past an API-centric conception of behavior analysis, and focus at “the
syscall layer” as the best lookout post for reliably monitoring programs’
runtime behavior, since it is more difficult, if not outright impossible (de-
pending on the threat model) to bypass.

However, employing syscalls primitives as the basic blocks for encod-
ing a program behavior does not come without a price. Indeed, syscalls
carry significantly lower semantics than APIs, which makes them more
challenging for human analysts and even automated tools.

1.1. Contributions 7

Moreover, some aspects of program execution may not be accessible at
all when choosing to encode its behavior in terms of syscalls. Some func-
tionalities that programs often use do not need the intervention of the op-
erating system to be completed. Notable security-sensitive examples are
encryption and decryption routines which only require mathematical op-
erations and, as such, can be carried out in userspace.

In this thesis, we set out to explore “the semantic gap” between API-
and syscall-level information in two modern operating systems, Windows
and Android: how “far” is the information provided by syscall traces with
respect to their API-level counterparts? If syscall traces appear to not be
as legible as API traces, what is the scale of the problem? semantics-wise,
how big is the gap between these syscall and API traces? An how challeng-
ingis it to develop an approach to automatically “bridge this gap”?

For what concerns the Windows operating system, we report the re-
sults of a large-scale dynamic analysis campaign, which characterizes the
complexity of the semantic gap between the WinAPI and the NativeAPI
layer (roughly equivalent to the syscalls).

For each of the over 23 thousand programs in our dataset, we collected
both the API- and syscall-traces employing a custom dynamic analysis
tool based on dynamic binary instrumentation. We then analyzed the col-
lected data to understand which aspects of a program’s behavior can be
reconstructed from a syscall trace and the feasibility of recovering the API-
level information. Unfortunately, our measurements on the collected data
show that many factors make the syscalls-to-APIs mapping problem am-
biguous, turning it into a practical challenge.

In a similar fashion, we measured the feasibility of reconstructing API-
level information from syscall trace, this time targeting the Android oper-
ating system.

Similarly to what happens in the Windows ecosystem, also in Android,
the vast majority of existing frameworks perform API-level tracing (i.e.,
they aim at obtaining the trace of the APIs invoked by a given app), and
use this information to determine whether the app under analysis con-
tains unwanted or malicious functionalities.

Driven by previous work that showed that, in Android, API-level trac-
ing and instrumentation mechanisms could be easily evaded, regardless
of their specific implementation details, in this chapter, we tackle the
mapping problem between the Java API-layer of Android and the Linux
syscall layer onto which it builds.

The first part of our approach consists in collecting runtime informa-
tion from a dataset of Android apps that allows inferring the caller-callee

relationships between APIs and syscalls.

To this end, we developed a novel dynamic analysis system capable of
tracing both Java APIs and syscalls that an Android app invokes during its
execution.

To build the analysis system, we relied on automatic source code anal-
ysis/editing techniques to provide the Android operating system with a
custom logging facility. In particular, we instrumented each Java method’s
entry and exit points in the Android source code to emit a custom message
that the logging interface then captures.

To ease the process of analyzing the massive amount of data collected
during the dynamic analysis phase, we created an easy-to-query data
structure that stores information about each recorded AP]I, the knowledge
base.

To condense the information stored in the knowledge base, we cre-
ated models for each API we recorded. Intuitively, these models function
as regex-like objects that match all the possible syscall traces that the in-
vocation of an API can produce. As such, these models can be used to
find potential evidence of API invocation from a syscall trace. However,
our attempts to reconstruct the APl information from the syscall traces we
recorded during the dynamic analysis were unsuccessful due to the inher-
ent similarities among the models of different APIs.

In an attempt to characterize the root causes, first by manually inves-
tigating the knowledge base and then by employing an automated ap-
proach, we discovered several syscall patterns that appear during the in-
vocation of many different APIs in a seemingly non-deterministic man-
ner. After amore in-depth investigation, we concluded that these patterns
originate from synchronization and memory management primitives that
many APIs use. For this reason, we consider these syscall patterns as noise
since they do not convey any valuable information about the API that in-
voked them.

Noisy patterns significantly contribute to the ambiguity of the seman-
tic gap between the API and the syscall layers. However, even removing
these noise sources, solving the mapping problem seems to remain out of
reach. Even under strong, favorable assumptions, the syscalls sequences
that different APIs produce appear too similar to be distinguished reliably.

For what concerns Windows, we explore this research thrust in the sec-
ond part of the paper titled “Generic and Practical API Tracing Bypass for
Windows Malware” (currently under submission); for what concerns An-
droid, we explore it in a paper titled “Exploring Syscall-Based Semantics
Reconstruction of Android Applications,”, published at RAID 2019.

1.2. Thesis Outline 9

1.2 Thesis Outline

The thesis is organized as follows. Chapter 2 provides the basic knowledge
required to understand the contribution in this thesis.

Chapter 3 is based on the paper “Lost in the loader: The many faces
of the windows PE file format” published at the 24th International Sym-
posium on Research in Attacks, Intrusions and Defenses (RAID 2021), and
systematizes our analysis of the PE loaders in the Windows ecosystem.

Chapter 4 is based on a paper titled “Generic and Practical API Tracing
Bypass for Windows Malware” (currently under submission) and presents
our generic bypass of API tracing as well as a characterization of the se-
mantic gap between APIs and syscalls, focusing on the Windows operating
system.

Chapter 5 presents our attempt at reconstructing the API semantic
from syscall traces recorded from Android applications and is based on the
paper “Exploring Syscall-Based Semantics Reconstruction of Android Ap-
plications,” published at the 22nd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2019).

Finally, Chapter 6 concludes the summary and provides possible fu-
ture research directions.

10

10

Chapter 2

Background

Given the magnitude of the malware problem, it is not surprising that re-
searchers and practitioners have developed many tools and approaches
to counter it.

Since the outset of the malware phenomenon, the security industry
has implemented a two-stage strategy to mitigate its impact and protect
the end-users. In its early days, malware analysis relied heavily on man-
ual effort. Analysts would inspect potentially malicious samples, gather
insights about their behavior when executed, and report its distinguish-
ing features if harmful. These features are then translated into actionable
procedures — often called “signatures” — that scan files and programs on
the user machine, removing those that match the malware footprint.

While this two-stage model remained in place until now, the technolo-
gies employed to analyze new malware and detect it on user equipment
evolved.

On the analysis side, the most significant breakthrough happened with
the introduction of automated pipelines that generate reports about sev-
eral aspects of program execution, such as network and filesystem oper-
ations and modifications to the system settings. Automated systems al-
lowed malware analysis to scale up and keep pace with the ever-increasing
number of samples discovered every day. In fact, malware analysts could
now focus only on those samples for which the automated tool reported
something worth investigating, reducing the overhead of auditing com-
pletely benign ones.

The endpoint protection stage also witnessed new developments over
the years. Malware signatures recognition tools started as simple byte-
patterns scanners but eventually adopted more powerful technologies,
such as domain-specific languages, to perform more complex checks.

11

12 12

Eventually, anti-virus companies introduced dynamic signatures (that
reason about the malware at runtime) and telemetry services to collect
statistics about the user machine from which carving evidence of con-
cealed attacks.

This chapter will dive into the technical details and the common im-
plementation choices of malware analysis and detection techniques. As
we will see, to counter malware effectively, one needs extensive knowledge
of the underlying operating system principles; After all, malware usually
comes in the form of “regular” executables meant to run under a specific
operating system. For this reason, we also provide background informa-
tion about those aspects of modern operating systems design that are par-
ticularly relevant for themes tackled in this thesis. In particular, we detail
the typical characteristics of the programming models that modern oper-
ating systems adopt, as well as the basics of executable file formats.

2.1 Executable File Formats

One of the main tasks of an operating system is to set up the environment
for user programs to run correctly. This preparatory stage is often referred
to as “loading” and entails creating a new process, arranging its address
space the way the program expects it, mapping in memory the modules on
which the program relies, and eventually let the execution begins, starting
from the program’s entry point.

Naturally, the loading process is not the exact same for each program.
Indeed, the operating system needs to fine-tune the different stages to
meet the detailed requirements of each program. Executable file formats
provide the instruction to encode such requirements into data structures
stored within the program’s file.

In most cases, these file formats are designed to accommodate the var-
ious features of the operating systems that support them. This is the rea-
son for which virtually each major operating system provides support for
only a handful of executable file formats. Just to name a few examples,
nowadays, the Windows operating system only supports the Portable Ex-
ecutable file format, Linux supports the ELF format, while the format of
choice for modern macOS systems is Mach-O.

On top of playing a significant role in operating system design, exe-
cutable file formats represent a major ally for malware analysis. The meta-
data stored in a program’s headers, in fact, proved very valuable for mal-
ware analysis. For example, by parsing a program’s headers, anti-malware
tools can recover its code which can then be analyzed using static bi-

2.1. Executable File Formats 13

nary analysis techniques. Moreover, in operating systems that support dy-
namic linking, the executable file formats encode which external module
and specific functionalities the program relies on. In the context of mal-
ware analysis this information hints at the program’s intent: Certain mod-
ules and functionalities are more commonly employed by malware than
regular non-malicious software.

The PE File Format

A significant portion of this thesis focuses on analyzing the ecosystem
around Portable Executable (PE), and it is worth providing more in-depth
information about this executable file format.

The PE format is the standard executable file format supported by the
Windows operating system family [pe |]. Adopted by Microsoft since the re-
lease of Windows 3.1, this format underwent a series of revisions through-
outthe years thatadded support for new features. However, its core design
remained unchanged and consists of a number of structured data types,
commonly called “headers.”

Figure 2.1 shows the structure of a PE executable. The first header at
the beginning of the file is the MZ Headler, originally used in the MS-DOS
operating system and still in use today for backward compatibility. For
Windows-specific executables, the MZ Header is only used for determin-
ing the offset at which the COFF Header starts. This second structure con-
tains essential information about the executable, including the architec-
ture on which it is meant to run, whether it is a dynamic library or a stan-
dalone executable, and whether its image supports arandomized base ad-
dress.

The Optional Header, which starts right after the COFF header, pro-
vides more detailed information, including the preferred ImageBase (i.e.,
the virtual address of the first byte of the image in case no relocation is
applied), the SizeOfImage, and the amount of memory to reserve for the
stack and heap. The peculiarity of this header is that its size is not fixed
but rather determined by the SizeOfOptionaHeader in the COFF Headler.
This design choice makes the OptionalHeader easy to extend in future re-
visions of the format specifications. Other fields of the Optional Header
worth mentioning are the Subsystem, MajorSubsystemVersion, and Mi-
norSubsystemVersion. The former indicates the Windows Subsystem re-
quired to run the executable (e.g., a program using the graphic user in-
terface requires the Windows GUI Subsystem). The other two specify the
minimum version of the Subsystem required. Similarly, the MajorOper-

14

14

SizeOfOptionalHeader
bytes

MZ Header

| e Ifanew

PE Signature

COFF Header

Optional Header

Data Directories

Section Table

Section Header /

Section Header n

Section 1

Section n

Figure 2.1: Structure of a PE Executable

2.2. Programming models in Modern Operating Systems 15

atingSystemVersion and MinorOperatingSystemVersion fields specify the
minimum version of the operating system required to run the program.

The last portion of the Optional Header contains the DataDirectory
table. A DataDirectory contains the relative virtual address (i.e., the off-
set from the base address of the memory image; from now on, RVA) and
the size of an additional data structure used for multiple purposes. Ex-
amples of DataDirectories are the Import Table, which declares the dy-
namic libraries and the functions that need to be loaded alongside the ex-
ecutable; the Export Table, containing the functions that the executable
makes available for other programs to use; the Relocation Table, which
provides a set of instructions on how to patch the executable in memory
when it is not loaded at its preferred base address; and the Certificate Ta-
ble that contains the digital signatures of the developer of the executable.
The number of DataDirectories is not fixed and it is determined by a field
in the Optional Header.

The Section Table starts at the end of the Optional Header. Each en-
try in this table defines a section, i.e., a contiguous memory region of the
image, either uninitialized or populated with portions of the executable.
Each section has its name and characteristics, such as the memory access
permission level or whether the operating system can swap out its pages
in case of a memory shortage. Sections logically organize the executable
into homogeneous portions. For example, by convention, the .fext section
contains the program’s code, while the .bss contains the uninitialized data.

2.2 Programming models in Modern Operating Sys-
tems

Modern operating system designs define a strict and clear boundary that
separates the kernel-space from the user-space. While the latter hosts
most of the applications running on the system, the kernel-space is re-
served to the critical portion of the operating system (not incidentally
called the kernel).

While this separation prevents single applications from harming the
entire system, either by malice or by accident, it also drastically reduces
the capabilities granted to each application running in user-space.

For this reason, modern general-purpose operating systems provide
one or more Application Programming Interfaces (APIs), sets of built-in
functionalities provided by the operating system that would otherwise be
very tedious, error-prone, or even downright impossible to implement in

16 16

the context of a user-space program.

In particular, the Windows operating system provides two distinct sets
of APIs: ' WinAPIs and NativeAPIs. The first represents the higher-level
layer, providing complex functionalities while hiding implementation de-
tails to the user program. Examples of WinAPI are those functionalities
related to networking (including network protocol implementations for
standard protocols and cryptography), the graphic user interface, and sys-
tem services management.

NativeAP], instead, is the lightweight and lower-level layer upon which
the WinAPI relies. With few exceptions, most notably the C runtime li-
brary and the user-space loader, the actual implementation of the major-
ity of the NativeAPIs resides in the kernel, which exposes them as system
routines that the user-space program can access using special CPU in-
structions (e.g., int, sysenter, and syscall in the Intel x86/x86-64 ISA).
In the remainder of the thesis, we will indicate this subset of NativeAPIs
with the generic term syscalls. Lower-level modules often depend solely
on the NativeAPI layer. Such is the case of device drivers (that need to in-
teract with the kernel directly) and those OS components that participate
in the early initialization phases of the system startup, i.e., a moment in
which the WinAPIs are not available yet.

The degree of their complexity, however, is not the only difference be-
tween NativeAPI and WinAPIL Indeed, while the latter is guaranteed to
be stable among different major releases of the Windows operating sys-
tem, the latter may change drastically. Introductions and removals of Na-
tiveAPIs happened various times throughout the years, as documented
by [j00], which also showed that even the application binary interface for
the same syscall (in particular, the so-called “syscall number”) changed
among different releases of the same major version of the operating sys-
tem. Moreover, while WinAPIs are thoroughly documented, some Na-
tiveAPIs are not, as they are intended for internal use only.

Although conceptually, it would be possible to write any program us-
ing either the WinAPI layer or the NativeAPI one (after all, the former
builds on top of the latter), the choice is straightforward from a program-
mer’s perspective: By providing better portability with less implementa-
tion complexity, the WinAPI layer is inevitably the most cost-effective in
the vast majority of circumstances.

For many aspects, the programming model of the Android operating
system is similar to its Windows counterpart. The so-called Android API is

'In this thesis, we consider the API acronym as countable, indicating any of the func-
tions that provided by the operating system. The same applies to WinAPI and NativeAPL

2.2. Programming models in Modern Operating Systems 17

the most abstract of the three layers and can be accessed through the Java
and Kotlin programming languages. Android APIs provide a wide range
of functionalities, from networking to cryptographic primitives and user
interface management.

The Android operating system also provides a lower-level program-
ming interface, allowing developers to write portions of their applications
using the C++ language and compiling them into native code. The sup-
port for native code was originally introduced to free performance-critical
components of applications from the burden of using a managed lan-
guage, at the expense of portability.

From native code, an application can virtually access any high-level
Android API. In fact, the Android framework itself leverages native code
to implement any functionality that requires the intervention of the ker-
nel, including the most security-relevant APIs. For example, the APIs that
handle the user’s personal data, interact with the broadband and access
the Internet are all implemented in native code.

Similar to the case of Windows, in Android, the least abstract program-
ming layer is the syscall layer, on top of which the Android APIs and the
native APIs are built. Unlike Windows, however, the syscalls in Android
are relatively stable throughout the different operating system versions, a
property inherited from the Linux kernel.

Encoding Malware Behavior

The programming model of an operating system and its APIs play a fun-
damental role in program analysis in general and in malware analysis in
particular. In fact, the sequence of APIs invoked by a program (together
with their arguments) is often used for encoding its runtime behavior.

As detailed previously, modern operating systems usually provide a
layered programming interface, allowing programs to access either high-
level semantic-rich APIs, as well as low-level ones.

Choosing which layer of the programming interface to use for encod-
ing a program’s behavior inevitably affects the expressiveness and the se-
mantics richness of the encoded information. For example, describing the
execution of a Windows program in terms of WinAPIs will result in more
intelligible information that professionals with minimum experience in
Windows programming can understand. The same cannot be said if Na-
tiveAPIs were to be used to encode the same execution because the se-
mantic that this layer carries is significantly lower. Moreover, the lack of
documentation for NativeAPIs and syscalls makes interpreting this type of

18 18

information even more complicated.

As we will explain in more detail in Chapters 4 and 5, however, obtain-
ing high-level information by directly observing a program’s execution is
unsafe and can ultimately lead to evasion strategies.

Moreover, previous works have often completely neglected lower-level
programming interfaces and focused only on high-level ones. For exam-
ple, Afonso et al. [ABF'16] pointed out how several static analysis tools for
Android applications only collect and process Android API information,
completely disregarding native code components.

2.3 Dynamic Malware Analysis and Detection Tech-
niques

Understanding the behavior of a program is a vital step toward determin-
ingwhetheritis malicious or not, which in turn is paramount for both mal-
ware analysis and endpoint protection. Dynamic analysis aims at gather-
ing this information from running the program in a controlled environ-
ment, recording as much evidence of malicious activities as possible.

Depending on the type of controlled environment, the collected infor-
mation can vary. Execution traces are one of the most common types of
evidence collected during dynamic analysis, and they describe a timeline
of what was executed in the context of the program under analysis.

For what concerns the Windows ecosystem, the security and reverse-
engineering community has proposed several dynamic analysis tech-
niques to trace a program’s execution in terms of WinAPIs, which are the
higher-level programming interface for the Windows operating system, as
we detailed in Section 2.2. Choosing to encode a program’s behavior in
terms of WinAPIs provides remarkable advantages in terms of the intelli-
gibility of the analysis results over NativeAPIs.

We can categorize the proposed techniques into three main groups
based on where the instrumentation resides.

User-space techniques achieve tracing capabilities by modifying the pro-
cess address space of the program under analysis. The simplest of such
techniques is API hooking, which introduces instructions at the begin-
ning of the code implementing each API, diverting the execution flow to-
wards the logging component each time the sample under analysis in-
vokes any API. Despite being old, API hooking is still widespread among
EDR solutions and sandboxes. For example, the Comodo OpenEDR [Com]
solution implements API hooking based on the Microsoft Detour instru-

2.3. Dynamic Malware Analysis and Detection Techniques 19

mentation framework, while the open-source sandbox Cuckoo [OM13]
ships its own hooking engine. Another prominent user-space technique
is dynamic binary instrumentation (DBI). Tools such as Intel Pin [Int] and
DynamoRIO [BGAO03] allow an analyst to instrument a program execu-
tion by interleaving its original code and user-defined routines. Previous
works [CMFT18] also used user-space techniques for import table recon-
struction by hijacking the library loading process to provide the program
under analysis with a custom monitored version of the requested library.

Out-of-guest techniques preserve the malware address space by mov-
ing the instrumentation logic outside its process’ context. These tech-
niques may rely on either ISA emulation or virtualization to create a fake
and instrumented machine into which to run the program. An example
of emulation-based instrumentation is PyREBox [Cisd], which traces API
invocation by monitoring the jmp and call instructions the program ex-
ecutes. If the target address of these instructions belongs to a system-
provided AP], the tool adds it to its report. Virtualization-based tools like
Drakvuf [LMP*14] work similarly to their emulation-based counterparts,
but they leverage hardware virtualization primitives for performance and
isolation reasons.

Hardware-assisted tracing employs the tracing facilities that the CPU
provides (e.g., Intel BTS) torecord each branch instruction that the proces-
sor executes. Techniques based on hardware-assisted tracing have been
employed for import table reconstruction [CML*21].

Similar to its Windows counterpart, the landscape of dynamic analysis
techniques for Android is quite diverse. Also in this case we can identify
three main strategies to capture a program’s behavior in terms of the high-
level primitives that the operating system provides (namely, the Android
APIs).

Ahead-of-Time compilation modifications techniques were introduced
after Android switched from its legacy bytecode-oriented design (Dalvik)
to the newer and more performant design called ART (Android Runtime).
In the new design, Android apps are still shipped to the device in byte-
code form. At installation time, however, the Android system performs
a translation from bytecode to native code, adopting an “ahead-of-time”
(AOT) approach. Previous works [BBS* 17, SWL16] have leveraged the AOT
translation process to instrument the application, introducing monitor-
ing logic.

Runtime instrumentations also allow gathering information about the

20 20

APIs that an app invokes. Frida [fri] achieves runtime instrumentation
by injecting a Javascript engine into the application address space. This
engine can then interpret user-specified instrumentation scripts, written
in Javascript, and allows, among other things, to register callbacks that
are executed each time the app’s execution reaches specific functions on
the Android framework. Runtime instrumentation can also be achieved
by modifying the Android operating system directly, like in the case of
Xposed [Dev17] and Magisk [top].

Emulation-based introspection employs modified versions of the An-
droid emulator to trace the application to analyze. Dynamic analysis tools
such as DroidScope [YY12] and DECAF++ [DQQY19], and malware sand-
boxes like the Android Malware Sandbox [Are] adopt this approach.

Chapter 3

Finding Parsing Discrepancies
for Executable File Formats

A Systematic Exploration of the Portable Executable
File Format and its Ecosystem

3.1 Introduction

Over the past thirty years, malware authors have developed many tech-
niques to bypass both static and dynamic analysis tools. The goal of the
attackers is to either bypass or reduce the effectiveness of malware anal-
ysis tools while still producing samples that the target system would cor-
rectly execute.

For example, in a recent study conducted by Cozzi et al. [CGFB18],
the authors discovered that malware authors often tamper with the exe-
cutable file format to obtain binaries that are executed correctly on the
target device but are discarded as malformed by the vast majority of the
analysis tools (including disassemblers, debuggers, and common utilities
toinspect the file headers). Along the sameline, in 2017, Kim et al. [KKD17]
discovered a set of problems in the way AV products parse and validate
signed PE files. Specifically, the authors noticed that if malicious files con-
tain the Authenticode signature copied from a benign application, they
are not analyzed. Even worse, many AV engines saved time by not even
scanning signed binaries at all.

While these studies point out interesting discrepancies, we believe
these findings are just the tip of the iceberg of a much deeper problem:

21

22 22

while the inner structure of executable file formats is defined and gener-
ally well understood, the way these files are parsed and validated differs
significantly among tools and operating systems and, surprisingly, also
among different components of the same operating system [J. 13].

Today, the security industry employs a completely automated mal-
ware collection, analysis, and classification process to handle the massive
number of new samples discovered every day. This relies on a complex
toolchain that combines many components to extract static features, col-
lect the runtime behavior from malware analysis sandboxes, and compare
each sample with information extracted from similar programs. Sadly, all
the existing infrastructures rely on a subtle and often overlooked assump-
tion, i.e., that every single component should parse, understand, and vali-
date the sample in the same way. Ideally, the task of parsing the executable
file format should be delegated to a common standard library used by
all components. In practice, instead, every program implements its own
parsing and validation routines, resulting in a multitude of strategies that
often differ in many relevant details. Even worse, these techniques are not
the same as those adopted by the operating system to decide whether a bi-
nary can be correctly loaded in memory and executed. On the one hand,
these differences may result in samples that are erroneously discarded
(because they are considered malformed by some static tools) or only par-
tially analyzed. On the other hand, as measured by Ugarte-Pedrero et
al. [UPGB19a], it canresult in the fact that alarge number of damaged files
are still assigned to dynamic analysis sandboxes — thus wasting a consid-
erable amount of time and precious resources for security companies.

In the past, researchers have tried to look at this problem by partially
documenting to what extent the structure of a PE file can be manipu-
lated without compromising its functionality [Ale] or by collecting notes
on some parts of the Windows loading process [Tod17]. However, these
studies followed a simple trial-and-error approach that failed to capture
the scale and complexity of the problem. In fact, previous attempts often
resorted to fuzz the file header fields to test whether the resulting file could
still be executed in the system. However, this approach does not account
for possible inter-relationships between fields (in which different parts of
the file need consistent information) and therefore provided limited re-
sults.

The goal of this chapter is to shed light on this complex problem by
performing a comprehensive analysis of the factors that affect the parsing
of the PE executable file format and on the fields that are read and used
by different software and operating systems. An overview of our contribu-

3.1. Introduction 23

SMT models
(Section 5) Test Case Generation (Section 5.2)

PE Software Reverse Models Q . .
. : N X o] Corner Case Generation (Section 5.3)
(Section Engineering _(Section 4) X fo! Differential Analysis (Sections 5.4, 7)

m [] Differences Enumeration (Section 5.5)

q D Procedural
— w I gﬁé’ Interpretation

</> J (Section 5) QQ Sample Validation (Section 5.1)
@r o %0

D /
> VirusTotal 100
001

Live Detection
(Section 8)

Figure 3.1: An overview of our analysis process.

tions is depicted in Figure 3.1. In particular, to perform our systematic ex-
ploration, we developed a new framework to precisely describe the steps
commonly performed by OS loaders and file parsers. While this chapter
focuses on the PE file format, the framework is generic enough to sup-
port the description for other formats. We started our analysis by focusing
on the OS loaders used in different versions of Microsoft Windows: Win-
dows XP, Windows 7, and Windows 10. For each version we wrote a model
that lists the checks and operations that are performed to determine 1) if
the file is a valid PE and thus should be “loaded” in memory and 2) how
the loading process extracts and parses information from the file. We also
focused our attention on different categories of security-related software
that deal with PE files, such as reverse-engineering tools and antivirus pro-
grams.

An analyst can use our models to perform several different tasks, such
as sample validation, sample generation, corner case generation, differ-
ential analysis, and differences enumeration. Thanks to these fully auto-
mated techniques, our framework was able to systematically enumerate
the discrepancies that exist between the Windows loaders and popular re-
verse engineering tools. Our findings have significant repercussions.

First, we show how popular analysis tools can be completely bypassed
and how the information they extract can be easily manipulated “at will.”
We also ran a VirusTotal LiveHunt session and discovered that real-world
malware is currently abusing some of these (previously unknown) dis-
crepancies in-the-wild. These findings highlight how the research com-
munity lags behind malicious actors, thus making our systematic explo-
ration of these aspects even more timely and important.

Second, we show that the differences in which the three versions of
Windows parse PE files allow attackers to create targeted executables that
would run on a specific version but would be discarded as malformed by
others. This could be used, for example, to evade common malware anal-

24 24

ysis sandboxes, which often run Windows 7. However, by far, the mostim-
portant consequence of the differences among OS loaders is that not only
the PE standard fails to describe how an executable should be parsed and
validated, but also that a de-facto reference implementation does not even
exist. Instead, our experiments show that there are as many ways to in-
terpret a PE file as there are versions of Windows, and therefore security
tools should decide which model to use on a case-by-case basis. In other
words, we show that since there is not a single correct way to parse PE files,
fixing security tools is significantly more complex than just “fixing bugs.”
Instead, we believe that the only way to tackle this problem at its root is
to offer the possibility to select which of the several loaders a tool should
mimic, in order to adapt the validation and the extracted information to
the system under analysis.

In the spirit of open science, we release the entire source code and
datasets produced for this work at https://github.com/eurecom-s3/
loaders_modeling, and we hope this will inspire a community-driven ef-
fort to refine our models and to extend them to different file formats.

3.2 ACritical Look at the PE Specifications

Before diving into the specifications of the PE Format, it is useful to intro-
duce some terminology that we will use in the rest of the chapter. We de-
fine the term “PE executable” (or simply “executable”) to mean a file that
follows the specifications of the PE Format, while we call “Process Image”
(or simply “image”) the representation in memory of the executable after
itisloaded. In the remainder of this chapter, we also use the term “parser”
in an informal way to refer to the general activity required to load the data
contained in a PE file and map it to a set of predefined data structures. Fi-
nally, we call “validation” the process required to verify whether the infor-
mation in a PE file satisfies a set of structural and logical constraints. As ex-
plained in Section 3.3, different classes of applications may parse and val-
idate PE files in different ways and may take different actions when such
constraints are not satisfied.

In addition to defining the structures of the headers (as described
in Chapter 2.1), the PE Format specifications introduce “constraints” on
their fields. With this term, we indicate a set of conditions that the fields
must respect to be considered “acceptable.” Trivial examples of con-
straints are that the first fields of the MZ and COFF Headers must contain
their respective magic numbers: Mz and PE.

https://github.com/eurecom-s3/loaders_modeling
https://github.com/eurecom-s3/loaders_modeling

3.2. A Critical Look at the PE Specifications 25

Other constraints are instead more subtle and complex. For example,
each entry in the Section Table is expected to start at a multiple of Sec-
tionAlignment and populated with portions of the executable starting at
an offset multiple of FileAlignment (both these are fields of the Optional
Header). Moreover, they are expected to be sorted in ascending order by
their starting virtual address, and adjacent entries in the table must be
contiguous.

However, what the PE Format specifications fail to convey is what hap-
pensin case an executable does not meet such constraints. In other words,
the specifications do not address the following questions “What happens
if a section does not start at a multiple of Section Alignment?” or “Can a
PE executable whose sections are not sorted be considered valid nonethe-
less?”

Other ambiguities in the specifications concern the concepts of “de-
fault values” and “architecture-specific” features. The SectionAlignment
field itself is an example of the first category. According to the specifica-
tions, the “default value” of this field is the page size in bytes of the archi-
tecture (e.g., 4K for Intel x86). Considering that sections are also used for
specifying the memory access protection level of the corresponding mem-
ory regions, it is reasonable to assume that the value of the Section Align-
ment should be at least as big as the page size. In fact, a value of Section-
Alignment smaller than the page size of the architecture could prevent the
operating system from correctly enforce memory access permissions in
adjacent sections.

OS loaders could handle this corner case in different ways. A strict
loader could discard any executable with a value of Section Alignment
smaller than the page size, while a more permissive one could still load
the executable but without enforcing the access permissions of the sec-
tions. The important aspect is that the PE specifications do not provide
any guidance about this implementation choice and provide no insights
into handling this and similar other cases.

Finally, some relocation types described in the specifications fall
within the “architecture-specific” features. For instance, the possible val-
ues of the Base Relocation Type enumerator are “meaningful” only in cer-
tain architectures. The concept of “meaningfulness,” however, is not bet-
ter elaborated in the specifications leaving, again, plenty of room for dif-
ferent implementation strategies. Should a programmer developing soft-
ware that parses the PE Format consider relocation types that are “non-
meaningful” for the targeted architecture as a violation of the specification
(and interrupt the parsing of the file) or simply ignore them?

26 26

To summarize, the PE Format specifications do not clearly specify all
the circumstances under which a file should or should not be considered
avalid PE executable, nor do they provide unequivocal guidelines on how
to handle corner cases. This, alongside the large amount of software that
needs to deal with PE files, leads unavoidably to discrepancies in how PE
executables are handled.

3.3 Software Handling PE Files

There are many classes of software that need to operate on PE files, for
different reasons and with different objectives. In this section, we explore
some of these classes, by grouping them according to their purposes and
by discussing what are the basic operations that each group must perform
to carry out its tasks.

3.3.1 Basic Operations on PE Executables

We identify three main operations that are performed by software that
deals with the PE Format. Note that we call these “operations” and not
“phases” because, as we found out in our work, they are usually inter-
leaved and not implemented as self-contained, sequential stages in the
software workflow.

Structural Checks. Operations of this type ensure that the file respects
the basic structure of the PE Format. For instance, tests to verify the magic
numbers or that the offset of a data structure points within the file bound-
aries are examples of structural checks. Depending on the purpose of the
software, these checks can be either strictly or loosely enforced. For ex-
ample, some programs adopt a best effort approach and focus on gather-
ing as much information as possible from the PE headers. For this reason,
they might not abort the entire process if a structural requirement is not
met, instead preferring to continue the process by focusing only on those
parts of the headers that respect the PE structure. Other software may im-
plement instead a more rigid structural validation, thus rejecting the files
in which a structural check fails. Even within the same piece of software
some structural checks can be enforced more strictly than others. This is
because not all PE headers play the same role in all the software imple-
mentations of the format: Some may be essential, while others may be
used only for optional features.

3.3. Software Handling PE Files 27

Kernel-Space User-Space
(Child Process)

CreateProcess

Parent syscall Structural/Compliance User-Space Loader
Process Check of PE Headers Entry Point
T ¥
Parse Memory) Parse and Apply
Layout Info &53 Relocations
QS? Parse [Tabl
It
i arse Import Table

Load dlis

T 1

Load ntdll.dll Jump to Program Entry
(User-Space Loader) Point

Figure 3.2: Windows Loading Process

Compliance Checks. This type of operation ensures that the PE executa-
bles conform to both software- and architecture-specific constraints. For
instance, the Machine field of the COFF Header specifies the CPU type on
which the executable is meant to run. Operating systems may use this field
to determine whether a program can be executed on the current CPU ar-
chitecture. Compliance Checks are usually strictly enforced, and a viola-
tion of their constraints often results in rejecting the file.

As arule of thumb, structural checks verify if a file is well formed, while
compliance checks test whether the extracted information is valid and can
be used to perform the task of the software. However, the boundary be-
tween structural and compliance checks is not always clear because of the
ambiguities in the specifications of the PE Format that fails to declare the
structure of a PE executable in a formal way. Despite this difficulty, we
believe the distinction among the two types of checks can ease the discus-
sions of the various aspects of our work.

Memory Mapping. These operations use the gathered information to pre-
pare the process address space by creating a memory representation of the
PE file suitable for execution. This image includes memory areas initial-
ized with data extracted from different portions of the executable, mem-
ory areas mapped in the process address space but left uninitialized, as
well as a description of the memory access permissions for each memory
areas.

28 28

3.3.2 PE Software Landscape

Many classes of software need to parse PE files, and for this work we focus
on three main categories, which we selected because they play a particu-
larly important role in the security domain and because we believe they
exemplify the different types of operations described above.

OS Loaders. Their objective, as their name suggests, is to load the image of
the program in memory. In the case of the Windows operating system, the
“PE loader” is not a well defined, self-contained component. As Figure 3.2
shows, there are two distinct parts that contribute to the process of load-
ing PE executables in memory. The first one is embedded in the Windows
Kernel and allocates the memory for the new process, as well as the kernel
structures that identify it. This stage of the loading process also loads the
ntdll.dll library in the new process. Once this first component finishes its
tasks, the execution of the new process starts from a function in ntdll.dll,
which initiates the second part of the loading process.

Both stages enforce structural and compliance checks on the PE head-
ers and the structural checks are usually enforced strictly on all the head-
ers. Once the loader has gathered the information it needs, it proceeds
to allocate and populate the memory needed by the program. In other
words, operating system loaders need to perform all the three basic oper-
ations described above. This, alongside the fact that they are implemented
in two different components, makes this class of software the most com-
plex and challenging to analyze.

Reverse-Engineering Tools. Programs in this class are used for software
binary analysis. For this purpose, they need to gather information from
the PE headers to recreate a memory representation similar to what an
operating system loader may produce. This means that they are mostly
interested in memory mapping and often perform structural checks with
a best-effort approach. For example, they might rely on the debug infor-
mation stored in the Debug Header if it is available, but fallback on other
heuristics if such header is not present or is malformed. On the other
hand, to be able to analyze as many executables as possible, this class of
software performs very few compliance checks.

Antiviruses. Software in this class performs both structural and compli-
ance checks on the information gathered from the PE headers of the exe-
cutable. These constraints are meant to ensure that the executable pro-
vides the data needed for their format-specific signatures. However, they
may perform very little memory mapping operations, usually only to en-

3.4. Constraints Modeling 29

able signatures to convert RVAs to offsets into the original executable file
(e.g., the rva_to_offset function in yara [yarb]).

3.4 Constraints Modeling

As we discussed at the beginning of the chapter, researchers have already
documented several inconsistencies[A. 13, BB13] in the way different pro-
grams parse PE files over the past years. These previous attempts have fo-
cused on black-box approaches that try to construct anomalous files and
observe whether a given OS (or analysis tool) would process them cor-
rectly. Altough automated black-box approaches, e.g., fuzzing, can find
interesting differences, they either could only do that in simple cases or
without the ability to list all possible differences exhaustively. Moreover,
asitis the case for software testing, whenever such approaches are unable
to find differences, it is not possible to conclude that two applications pro-
cess PE files in an equivalent way.

For this work, we are interested in finding the same flavor of behav-
ioral differences, but we take a completely different approach: we opted
for translating the parsing procedure of the various applications into for-
mal models, which we can then query to explore the space of “acceptable
inputs” systematically. Our observation is that both structural and com-
pliance checks, as well as memory mapping operations, can be ultimately
deconstructed into a set of formulas and constraints over the fields of the
PE structures.

Our main goal is thus to develop models to describe those formulas
and constraints in a way that can be used in an automated fashion to 1)
compare different models, 2) verify whether a file is compliant with a given
model, and 3) generate new PE files that satisfy the union or intersection
of a set of models. The advantage of our approach with respect to pre-
vious efforts is that it can capture aspects of PE parsers in a comprehen-
sive way, thus allowing us to exhaustively explore the search space in a
structured way — something that other automated approaches (such as
fuzzing) could not do.

3.4.1 Constraints Extraction

In our study, we model the checks performed on all the PE headers that are
relevant to the loading process. These include the MZ header, the COFF
header, the OptionalHeader, and the Section Table. We also modeled the
entries in the Data Directory that play a role during loading, namely the

30 30

Import Directory, the Import Address Table, the Loader Configuration Di-
rectory, and the Base Relocation Directory.

Our first objective is to extract the list of checks that a program per-
forms when it loads a PE file. Several static analysis techniques exist that
may help to automate this process. For instance, both symbolic execution
and taint analysis can keep track of all the operations a program makes on
its inputs and translate them into formulas. However, these approaches
have severe limitations when applied to complex software. For instance,
the Windows loader often stores and manipulates information in linked
lists. This makes the relationship between a byte in the original PE file
and a byte “tested in memory” very complex to describe and it often re-
sults in over-tainting large parts of unrelated memory. Moreover, existing
tools (even after a considerable manual effort) could not scale to a typical
OS loader’s complexity. In fact, OS loaders are tightly connected to other
low-level components of the operating system (such as the memory man-
agement and the code responsible for populating all process data struc-
tures in the kernel), and, as a result, the inability to isolate the loader itself
from the rest of the OS code often results in a constant path explosion and
constitutes a major problem for symbolic execution and taint analysis en-
gines.

While it might be possible to prepare the target code manually in a way
that could be analyzed by automated techniques, the effort would need to
be repeated for each application. We attempted to perform such a task
during our research, but we realized that it was faster and more advanta-
geous to manually extract the constraints than to reverse the code to un-
derstand which paths were safe to prune for the symbolic execution en-
gine. Moreover, in the context of analyzing a small number of very com-
plex real-world software, this manual process, when assisted with an au-
tomated regression testing environment, is significantly less error-prone
than complex automatic approaches (e.g., symbolic execution) due to var-
ious shortcuts these approaches need to use when dealing with complex-
ity.

We now provide more details about how this manual effort was con-
ducted on the Windows loader, by far the most challenging software we
modeled. This approach can be used to model other proprietary prod-
ucts with slight adjustments, while open-source software products—such
as the other pieces of software we modeled — present fewer reverse-
engineering challenges. We began by identifying the functions MiCre-
atelmageFileMap in ntoskrnl.exe and LdrplnitializeProcess in ntdll.dll,
which can be considered as the entry points for the kernel- and the user-

3.4. Constraints Modeling 31

space phase of the loading process, respectively. Using IDA Pro, and as-
sisted by the debug symbols provided by Microsoft, we decompiled these
two functions as well as the other routines that they invoke. Most of these
routinesreturn either a success or an error code. Our manual analysis con-
sisted of finding all these exit conditions, tracing back their dependency to
the input file, and encoding them using our modeling language.

Once all the functions of interest have been modeled, we tested the
model to find bugs or missing constraints. To do this, we generated a num-
ber of test cases and ran them while monitoring the operating system with
a kernel-debugger (we will explain the technique for generating test cases
in the next section). This allowed us to gain confidence in the accuracy of
our models.

3.4.2 Modeling Language

We designed a custom language tailored for describing and encoding the
knowledge acquired with our manual analysis effort. The rationale for
this choice is that very few tools have been developed over the years
for systematizing logic constraints like the ones we want to model. The
few available options are not tailored for our purposes and relying on
such tools would introduce a significant overhead for the analyst, mak-
ing the modeling process more time-consuming. For example, the SMT-
LIBlanguage [BST'10] lacks support for modeling loops, while Dijkstra’s
Guarded Command Language [Dij75] does not support structured types,
which proved to be extremely useful for modeling the Windows loaders.

Instead, our language is designed for the purpose of modeling com-
pliance checks on the PE Format (or any other similar format, like ELF).
Moreover, models written in our language can be automatically translated
in SMT queries to ensure that the constraints of the model are coherent
and to generate test cases that “satisfy” the constraints of the model. We
discuss several possible use cases in the next section.

From a high-level perspective, each model is a list of statements. Our
language supports various types of statements, each of which aims at cap-
turing (and making it easy to capture) specific traits of the file format we
want to describe. We now document the various statement types and
features of our language. The reader can find a toy example of a model
written in our language and an excerpt of one of the models of the Win-
dows loader in Appendices A.1 and A.3, respectively. Moreover, the inter-
ested reader can review the full models athttps://github. com/eurecom-
s3/loaders_modeling.

https://github.com/eurecom-s3/loaders_modeling
https://github.com/eurecom-s3/loaders_modeling

32 32

Input Definition. The first type of statements allows us to create an in-
put symbol of a given size in bytes that other statements can predicate on.
Although our language supports multiple input definition statements, in
our models we introduce only one symbolic input representing the entire
PE executable. By doing so, we can treat the different components of the PE
format as interconnected and interdependent entities, allowing our mod-
els to capture complex constraints involving fields of different headers.

Symbol Definition. The second type of statements allows us to introduce
additional symbols (e.g., labels) and associate them with the result of op-
erations on input or other symbols. The current version of our language
supports arithmetic and bit-wise operations, as well as more complex op-
erations commonly used to deal with the PE Format, e.g., ALIGNUP and
ALIGNDOWN for respectively rounding up or down to a certain power of
two.

Predicates. The third type of statements allows us to specify boolean com-
parisons between expressions of existing symbols, which evaluates to ei-
ther true or false. In these statements, comparison and logic operators can
be used, as well as more complex operators, e.g., ISPOW2 to check if the
operand is a power of two.

Terminal Predicates. Predicates in our language can be either terminal or
non-terminal. A terminal predicate must be satisfied for an input file to be
considered compliant with the model. Non-terminal predicates, instead,
do not have such arequirement and can therefore be helpful when dealing
with conditional predicates, which we discuss next.

Conditional Predicates. These allow encoding predicates of the form
P : A = B,where Ais anon-terminal predicate. In other words, if the
predicate A is true, then the boolean predicate B must also be true for the
overall predicate P to be satisfied.

Structured Types. As we mentioned in Section 3.2, the PE Format consists
of many structures containing different fields. Our language implements
a type system that makes models more readable by enabling to cast struc-
tured types on the original file and allowing the use of mnemonic names
for each of the header fields. Types can be defined as C-like structures and
can be used in all the statements discussed above.

Loops. The last construct supported by our language allows the encoding
of loops. Loops are frequently used when parsing PE files, for instance to
enforce that all entries in a list or array satisfy the same constraint. Once
again, all the statements discussed above are supported within a loop.

3.5. Using Models 33

3.5 Using Models

Once a human analyst has modeled the software constraints in our lan-
guage, the models can then be automatically translated into a formal rep-
resentation that can be used for various use cases. Moreover, we note that
while the (manual) model extraction may theoretically contain impreci-
sions (we discuss in Section 3.6 how we experimentally validated them),
all subsequent analysis steps have soundness guarantees.

3.5.1 Sample Validation

The first use case of our models is to determine whether a given PE exe-
cutable meets the requirements of a specific loader. For this purpose, we
rely on the procedural interpretation of the model. This technique consists
of interpreting the statements in the model sequentially, applying each of
them to the executable under analysis.

Symbols defined via symbol definition statements are assigned con-
crete values according to the input file and predicates are evaluated to
their boolean values. In case any of the terminal predicatesis false, the val-
idation process stops, and the executable is marked as non-conforming to
the model. Conditional predicates are also evaluated to concrete values,
but in their case the sample is rejected only if their precondition is true
as well. If all terminal predicates evaluate to true, and thus no constraint
is violated in the process, the executable is marked as conforming to the
model.

This use of our models can be relevant as part of the dynamic malware
analysis pipelines that are employed by all major security companies that
offer malware detection and analysis products. In particular, it could be
useful as a reliable pre-filtering stage that either selects the appropriate
sandbox (based on the OS that can run the sample) or quickly discards
malformed binaries that would not run successfully anyway.

3.5.2 Sample Generation

In this second use case, we describe how we can automatically generate
concrete samples compliant with a given model. This is possible because
models written in our language can be transformed into SMT decision
problems over the BitVector theory. The input of the problem is a sym-
bolic BitVector (of fixed size) representing the executable file. Each type of
statement in our language can then be translated in an appropriate SMT
problem, as follows.

34 34

Symbol Definition and Structured Types. Each symbol defined in a
model is transformed into a symbolic value that can be processed by an
SMT solver. Moreover, for each operation that puts a new symbol in re-
lation to existing symbols, our tool generates appropriate predicates that
encode their relationship. Structured types are handled in a similar fash-
ion, by using the appropriate offsets in the symbolic input to convert
aliases into concrete predicates.

Predicates. Each predicate in our language is transformed to a boolean
formula usable by an SMT solver. These SMT predicates are then used to
create appropriate constraints, depending on whether they are terminal
or non-terminal.

Terminal Predicates. Terminal predicates must be satisfied for an input
file to be compliant with a given model. Our tool performs the logic con-
junction of all the terminal predicates to create the SMT problem’s predi-
cate that it then feeds to the solver.

Conditional Predicates. Conditional predicates must be satisfied if their
precondition evaluates to true. To model them compatibly with an SMT
solver, for a conditional predicate of the form C' = D, we create the fol-
lowing SMT constraint: =C' vV D.

Handling Loops. SMT theories do not have an equivalent construct to our
loop blocks. To address this problem, we handle loops in our models by
using loop unrolling. In other words, each statement in the loop block is
executed up to a fixed amount of times (defined in the loop statement).

Finally, we create a single constraint that encodes the logical conjunc-
tion of all the constraints mentioned above (i.e., if P, is the n-th constraint
in the model, we consider the constraint A; P;). We then feed this single
constraint to the SMT solver and ask it to produce a concrete input that
satisfies all the predicates captured by our model. In the case of mod-
els that describe the compliance checks performed by a program on a PE
executable, the SMT solutions are effectively PE headers that pass these
checks. We use this observation to generate valid executables for the soft-
ware we modeled.

Generating PE Files with Valid Code. A PE file generated by the SMT
solver would pass all the checks but it would not execute any meaningful
user-space code (because the loader does not check this part). However,
this makes it harder to test whether a generated sample is valid and exe-
cutes correctly. Therefore, we added a component to specify which code
the generated PE file should execute and “plug” it into the generated files.

3.5. Using Models 35

We (successfully) tested our system with two examples, the first execut-
ing a single “exit(0)” syscall and the second printing “Hello World!”. For
more details, Appendix A.2 shows a concrete example of the translation of
a model into an SMT problem.

3.5.3 Corner Cases Generation

Our next use case focuses on generating a multitude of different test cases
that explore the corner cases imposed by the PE loaders. To do so, we lever-
age non-terminal predicates, i.e., predicates that acts as preconditions for
conditional statements. Since they do not need to be satisfied, we can con-
sider them as free variables of the SMT problem.

Based on this observation, we automatically derive a number of SMT
problems in the following way. Let S be the predicate of the SMT problem,
and @ a non-terminal predicate of the model. Now consider the two fol-
lowing SMT problems: S” +— SAQand S” + SA-Q. By construction, even
if S” and S” are different from S, their solutions (if they exist) necessarily
satisfy the original problem S too (because, by design, S is less restrictive).
However, these solutions may differ substantially. In fact, in the first, the
free constraint is asserted, which means that the conditional statements
that have () as precondition must be satisfied. The same is not true for the
solutions to the second problem.

We can generalize this process to an arbitrary number n of predicates
used as conditions by building new problems that either assert or negate
each combination of them—thus resulting in at most 2" different gener-
ated samples. In practice, the actual number of generated test cases can
be lower because there is no guarantee that some combinations of the free
constraints are not incompatible with each other, thus making the corre-
sponding SMT problem unsolvable.

3.5.4 Differential Analysis

Another use case of our work is to combine the models of two different
software and generate samples that either satisfy both or only one of the
two.

For example, we can select two SMT problems built from distinct mod-
els (for instance, two versions of Windows or a version of Windows and an
antivirus), whose predicates are S; and Sy, respectively. Our system can
then generate a third SMT model with the following predicate: Sg;;s :
S1 A =S, If this SMT problem is satisfiable, its solutions are samples that

36 36

pass all the compliance checks of the first software but do not satisfy at
least one of the constraints in the second model. On the other hand, un-
der the assumption that the models correctly reflect the behavior of the
software, if the problem is not satisfiable, it guarantees that no such sam-
ples exist.

We can also use this technique to prove that the two models are equiv-
alent. In fact, if we cannot generate any sample that satisfies S; but not S,
and neither any input that satisfies S> but not S;, we can conclude that the
two models are enforcing the same constraints.

3.5.5 Differences Enumeration

In our final use case, we can take the Differential Analysis technique one
step further to find the exact constraints in the two models that make them
behave differently.

The idea is to use an iterative process that starts with the differential
analysis between the two models to compare. If the differential analysis
problem has no solution, the process terminates. If, instead, a solution is
found, we identify the predicates in the negated model that were false in
the produced test case. We then add these predicates to the set of con-
straints negated at least once (from now on, N).

The process then continues with solving SMT problems of this form:

Sgb@ff — Sl A _‘SQ A Ssuppm't

in which Sg,pp0rt represents the logic conjunction between a subset of the

predicates in N. By construction, the solutions of this SMT problem (if
any) meet the constraints in S,,,,.+ but violate at least one constraint in
Ss. We then add the new violated constraints to N before repeating the
process until we have used all the subsets of N (including N itself) in one
iteration.

Note that this approach does not guarantee that all the differences be-
tween the two models are found when the process ends. To have this guar-
antee, one should build the Sg,;,0r+ terms as the logic conjunctions of all
the subsets of the predicates in S,. However, this requires anumber of iter-
ations that grows exponentially in the number of predicates in Sy, limiting
its applications in practice.

On the other hand, we believe that our approach represents a good
trade-off between scalability and precision. In fact, the number of iter-
ations required is lower since it is exponential only in the number of the

3.6. Models Evaluation 37

negated predicates. Moreover, the models that we compare are substan-
tially similar, meaning that only a few of the constraints are not coherent
between the models.

3.5.6 Implementation

We implemented a model analysis framework (available at https://
github.com/eurecom-s3/loaders_modeling) that can perform all the op-
erations described above. The tool consists of three different components.
The firstis the Language Front End responsible for parsing the input mod-
els and lifting them into an intermediate representation in the form of an
abstract syntax tree. This component also handles the typing system by
resolving the mnemonic fields of the structured types into offsets in the
symbolic input.

The second part is a Python Backend, which performs the sample vali-
dation task by sequentially validating each statement in the intermediate
representation on a sample provided as input.

Finally, the core of the framework is the Z3 Backend that implements
the logic to translate models into SMT problems and solve these prob-
lems by using the z3 SMT solver [DMBO08] to generate samples. It also pro-
vides an interface to combine an arbitrary number of models together and
to perform Corner Cases Generation, Differential Analysis, and Differences
Enumeration.

3.6 Models Evaluation

For our study, we modeled the loading process of three versions of Win-
dows: Windows XP SP 3, Windows 7 SP 1, and Windows 10 (v. 1909). On
average, each model contains 269 statements, of which 78 are terminal
predicates.

Since all constraints were extracted by manual analysis, which may
be affected by imprecisions, we evaluated how tightly these models cap-
ture the behavior of the target software components. To this end, we con-
ducted two sets of experiments to assess whether the models are under-
constrained (i.e., “tooloose” in accepting invalid files) or over-constrained
(i.e., “too strict” in rejecting valid files).

https://github.com/eurecom-s3/loaders_modeling
https://github.com/eurecom-s3/loaders_modeling

38 38

3.6.1 Assessing Under-Constrainedness

The objective of the first experiment is to verify that our models are not
under-constrained with respect to the real OS. That is, if our model says
“this file is a valid executable for a given OS,” then the OS should be able
toload and execute that file. Our approach consists of generating samples
“at the boundary” of our models and attempting to execute them in the
real OS: if a valid file according to our model does not run in the OS, our
manual analysis missed important constraints (i.e., the model is under-
constrained).

To generate these “extreme” samples, we used the Corner Cases Gen-
eration technique introduced in Section 3.5.3. By construction, all these
samples are guaranteed to be valid according to the model. Moreover,
since this technique recursively explores all the relevant free variables in
the model, the generated samples can be seen as representatives of all
models’ corner cases. In details we generated 80 test cases from the model
of Windows XP, 72 for Windows 7, and 20 for Windows 10. Each sample has
been generated by combining the operating system model with the model
responsible for adding the code of an “exit(0)” syscall at the entry point.
This allowed us to infer whether the sample ran correctly by observing its
return code (%ERRORLEVEL% according to the Windows terminology).

All the test cases generated by each model ran successfully under the
respective operating system.

3.6.2 Assessing Over-Constrainedness

The goal of the second experiment is to verify that our models are not over-
constrained compared to the real OS, i.e., that our models do not include
erroneous constraints that were not present in the loader code. In other
words, if the OS canload a given file, then the corresponding model should
output that “this file is valid.” To this end, we first built a dataset of 2543
real-world PE executables that we collected from the community-driven
repository of the Chocolatey [cho] Windows package manager. Note that,
although these samples are very likely valid PE executables, they would
not necessarily run under all the three Windows versions under analysis.
We processed each file with the Sample Validation technique (discussed
in Section 3.5.1) and we identified the samples that our models flagged as
invalid: given the nature of the dataset we start with, these samples repre-
sent potential imprecision of the models. Lastly, we verified whether these
invalid files would actually run under the corresponding OS.

Out of the 2543 samples, our models predicted that 632, 261, and 86

3.7. Differential Analysis 39

were invalid according to our models of Windows XP, Windows 7, and Win-
dows 10, respectively. To verify the accuracy of the prediction, we then
executed each of these samples in a VM running the respective version
of Windows OS: all samples failed to run, precisely as predicted by our
models. We believe this is strong evidence that our models are not over-
constrained. We also investigated the reasons behind this high rate of in-
valid PE samples. The most frequent problem is that these are PE files tar-
geting more recent Windows versions using the SubsystemVersion fields.
Other samples are invalid because they target other architectures than In-
tel x86, or because they are kernel modules that cannot run as standalone
executables.

As an additional experiment to check that the robustness of our execu-
tion setup, we also ran all the “valid” samples and verified that they were
all loaded properly in the respective OS. Note, however, that some of them
could not be properly executed due to missing DLL dependencies, which
isaproblem thatis notrelated to whether a given sample is compliant with
the PE format.

3.7 Differential Analysis

In this section we present the results of the differential analyses we per-
formed on our models. In particular, we present the discrepancies we
found between the versions of the Windows loader we analyzed, as well
as those between each Windows loader and three open-source tools com-
monly used in malware analysis, namely the ClamAV antivirus [Cisa],
the yara signature engine [yara], and the reverse-engineering framework
radare? [rad].

For the three versions of the Windows loaders and ClamAYV, we com-
pare the models of their compliance checks and their memory mappings.
On the other hand, we compare only the models of the memory mapping
operations performed by yara and radare2. This asymmetry is due to the
latter two not performing any compliance checks when analyzing PE exe-
cutables.

The analyses were performed by using the Differences Enumeration
technique presented in Section 3.5.5. For the sake of completeness, each
discrepancy we report has been manually validated by feeding the corre-
sponding software with the test cases that the differential analysis gener-
ated.

40 40

Table 3.1: Source of discrepancies and in which differential analysis they
were found

Discrepancies
Wl W2 W3 W4 W5

XPvs7 v / v
XPvs10 v v v

7 vs XP

7vs10 v v

10 vs XP

10vs7 v

3.7.1 Discrepancies among Versions of the Windows Loader

Interestingly, we found differences among all these three versions of the
Windows loaders. For what concerns compliance checks, we found a
number of discrepancies, discussed next. We note these represent the ex-
haustive list of discrepancies between the models we created for this work
and that all these were found automatically.

[W1] ImageBase = 0. Windows 7 considers as invalid any executable with a
value of ImageBase equal to 0. We did not find the same behavior in either
Windows XP or Windows 10.

[W2] SizeOfHeaders > offset(COFFHeader) + 0x5d. For executables with
SectionAlignment greater than the page size, both Windows 7 and Win-
dows 10 expect the SizeOfHeaders to be greater than the offset in the file
of the COFFHeader plus a constant. Windows XP, on the other hand, does
not enforce this constraint.

[W3] Relocations for other architectures. Both Windows XP and Win-
dows 7 handle architecture-specific relocation entries, even if they are not
“meaningful” for the running system. On the other hand, Windows 10 only
allows generic and Intel x86-specific relocations.

[W4] AddressOfEntryPoint < SizeOfHeaders. If the AddressOfEntryPoint
of an executable lies within the first SizeOfHeaders bytes of the image, Win-
dows 7 and Windows 10 discard the executable as invalid. The same does
not happen under Windows XP.

[W5] SizeOfImage > endof(SectionTable). Windows 7 is the only version
that does not load executables in which the offset of the last byte of the
SectionTable in the file is greater than the value of SizeOfImage.

3.7. Differential Analysis 41

Table 3.1 provides a summary of the discrepancies found during the
differential analyses. In particular, the v'symbols in the table indicate
whether a discrepancy was found during a differential analysis of two ver-
sions of the loader. For example, the vin first row (XP vs. 7), first column
(W1) indicates that the first discrepancy (ImageBase = 0) was found while
generating samples that comply with the model of Windows XP, that did
not satisfy the model of Windows 7.

It is interesting to note how our analysis did not find any discrepancy
based on the OperatingSystemVersion fields. In fact, according to the spec-
ifications, these fields should indicate the “version of the operating sys-
tem” required to run the executable. However, in our investigation, we
did not find evidence of any check performed on these fields, which can,
therefore, assume any value. This is an example of the significant differ-
ences between the specifications of the PE Format and its software imple-
mentations (which are both maintained by Microsoft). On the other hand,
the Windows loader checks that the (Major|Minor)SubsytemVersion fields
are within a range that varies across the three versions of the loader we
analyzed. Certain values of these fields also enable some version-specific
features, such as the Control Flow Guard[Micl8a] extensions of the Load
Config Directory, which the Windows 10 loader validates if the Subsys-
temVersion is greater than “6.3.” Version-specific features represent one
more cause of discrepancies in the behavior of the Windows loaders.

Our differential analysis on the memory mapping operations also
highlighted a difference in how Windows 7 and Windows 10 map PE ex-
ecutables compared to Windows XP. The difference affects the first region
of the memory map, the one that contains the PE headers. Each version of
Windows maps the PE headers in the process address space. However, if
the Section Alignment of the executable is greater than the page size, Win-
dows 7 and Windows 10 copy in this region only up to SizeOfHeaders bytes,
while Windows XP copies up to 4KB from the executable file.

3.7.2 Compliance Checks Analysis of ClamAV

We now document the results of a differential analysis to produce test
cases that comply with the constraints enforced by the operating system
loaders, butviolate those of the antivirus. For this experiment, we focus on
ClamAV. The net result of each of our findings is that while these executa-
bles would run under the different Windows operating systems without
problems, ClamAV would not be able to consider them as “fully valid PE
files,” and it would not be able to use signatures that rely on specifics of

42 42

the PE format [Cisc, Cisb].

It is also interesting to note how the differences reported by these dif-
ferential analyses are completely different from those reported between
the different versions of the OS loaders—showing once more how each de-
veloper interpreted in her own way the file specification. We now discuss
the discrepancies we identified.

[C1] SizeOfOptionaHeader. As we explained in Section 3.2, this field is
used to determine the length in bytes of the OptionalHeader. ClamAV ex-
pects its value to be greater or equal to the size of the structure defined by
the PE Format. None of the Windows loaders we analyzed in our experi-
ments enforce this constraint.

[C2] NumberOfSections. ClamAV expects at most 96 entries in the Sec-
tionTable. To the best of our knowledge this was the maximum number
of sections in an executable supported by older versions of the Windows
loader, while none of the versions of Windows we analyzed still enforces
this constraint.

[C3] Section Virtual Address. For executables with SectionAlignment less
than the page size of the architecture, the Windows loaders do not check
that the starting addresses of the sections are multiple of this value. Cla-
mAYV, on the other hand, performs this check regardless of the value of the
SectionAlignment.

3.7.3 Memory Mapping Analysis of ClamAV, radare2, and yara

We modeled the memory mapping operations of three popular soft-
ware that deal with the PE format, namely ClamAYV, radare2 [rad], and
yara [yara]. Each of these software needs to provide some sort of mem-
ory mapping of PE executables. For ClamAV and yara, this memory map-
ping can be used to write malware signatures that rely on the content of
the memory image. Radare2, on the other hand, provides the user a full-
fledged memory representation of the PE executable to support her anal-
ysis and reverse engineering.

Under the hood, memory mapping operations are usually imple-
mented by means of a primitive that maps RVAs in the memory image to
offsets in the original file. We therefore extracted and modeled the imple-
mentation of this primitive in all the three software and performed a dif-
ferential analysis between them and the three versions of Windows. Our
system found discrepancies in the memory mapping operations of all the

3.8. Bypassing Popular Analysis Tools 43

three software. In particular, we discovered that the nature of these differ-
ences was the same and it was due to incorrectly mapping PE executables
that have a SectionAlignment lower than the page size. For these executa-
bles, all three versions of the Windows loader we examined copy the entire
file as is in memory, starting at ImageBase, regardless of the entries in the
section table (thus resulting in RVAs to be equivalent to file offsets). On the
other hand, the three tools always rely on the section table to convert RVAs
into file offsets.

Our differential analysis automatically produced test cases that lever-
age this key difference, by exploiting the fact that PE executables with alow
value of SectionAlignment do not need a section table at all. Once again,
the fact that all these three software make the same mistake shows that the
PE specifications do not provide a clear and comprehensive set of guide-
lines for handling PE executables, nor they describe accurately the actual
implementation of the Windows loader.

3.8 Bypassing Popular Analysis Tools

The discrepancies we discussed in the previous section have significant
repercussions in the field of malware detection and analysis, as they un-
dermine the trust we have in popular tools. This section discusses sev-
eral examples of real executables that are not correctly supported by pop-
ular tools. It then presents the results of our investigations to determine
1) whether these discrepancies can be found among benign samples, and
2) whether there is evidence of malware samples that already exploit them
as part of their attacks in-the-wild.

ClamAV. We modified the headers of real PE files to deceive ClamAV into
not considering them as fully valid PE executables and bypassing signa-
tures relying on specifics of the PE format. For instance, by simply adding
empty sections at the end of the section table and updating the Num-
berOfSections field accordingly, the malware would still be valid for the
Windows loader, but ClamAV would have issues using some PE-specific
signatures. With minor adjustments, malware authors could also easily
abuse the other discrepancies by, for example, lowering the value of Sec-
tionAlignment below the value of the page size, or by modifying the virtual
address of one of the entries in the section table, so that the new value is
not a multiple of the value of SectionAlignment. We created several proofs-
of-concept that showcase these problems, and none of these attacks al-
tered in any way the malware behavior.

44 44

Yara. We crafted a PE file that evades two key features commonly used in
malware signatures: The resolution of imports and the pattern-matching
applied at specific virtual addresses (implemented with the keyword at).
The technique we used leverages the discrepancy in the memory mapping
operation described in the previous section, and mainly revolves around
creating a PE executable with a low value of SectionAlignment. To deceive
the imports resolution, we placed the name of the imported DLL outside
the memory ranges covered by the section table. The same can be done
to mislead actual signatures that use the at keyword. For our example, we
placed the entry point at an RVA that is not covered by the section table,
but one could hide any portion of the code with the same technique.

Radare2. Reverse-engineering tools are not immune to mishandling the
PE format either, and our experiments show that they can be easily ex-
ploited to confuse both manual and automatic analysis based on these
tools. As a proof-of-concept, we developed a technique to selectively hide
portions of code from the radare2 framework. This was achieved by low-
ering the value of SectionAlignment and then adjusting the entries of the
section table to minimize the number of bytes that radare2 maps in mem-
ory (by reducing the value of SizeOfRawData field in each entry of the sec-
tion table).

Dynamic analysis pipelines. The showcased examples aim to evade
static malware analysis, but dynamic malware analysis techniques can be
evaded too. In fact, dynamic analysis pipelines rely on an instrumented
version of an operating system to carry out their job. As we saw in the pre-
vious section, discrepancies among versions of the Windows loader ex-
ist, and no version can load all the programs that the others can. Most
dynamic malware analysis pipelines run each sample only with one Win-
dows version, which is often outdated and different than what end-users
choose[YIT*16]. Without a way to statically identify the OS version to use,
it is difficult to ensure that every file is correctly analyzed in the sandbox.

Measuring prevalence among goodware. Intuitively, one would not ex-
pect to find header “malformations” in benign software. In the vast ma-
jority of the cases, in fact, goodware is compiled by using mature and well-
tested toolchains that are unlikely to produce headers that trigger different
behaviors in different parsers. To test the validity of this assumption, we
analyzed the dataset of gopodware we used in Section 3.6.2, searching for
samples that exhibit any of the causes discrepancies highlighted in Sec-
tion 3.7. Out of the 2543 samples in the dataset, we found only three sam-
ples whose headers showcase any of the malformations. All three of them

3.8. Bypassing Popular Analysis Tools 45

are resource-only images (i.e., PE files that do not contain any code, but
only data) and had their AddressOfEntryPoint fields set to 0, matching the
conditions of the W4 discrepancy. According to the Windows APIs doc-
umentation [Mic18b], resource-only images undergo a different loading
process, which does not perform many of the operations that the regu-
lar process does, ultimately enforcing fewer constraints on the PE head-
ers. Thus, there is no evidence of prevalence among goodware of condi-
tions that can lead to discrepancies in the PE loading process. In other
words, in none of the samples in our dataset, could we find PE headers
that would trigger any of the discrepancies reported in this chapter. This
suggests that, if such peculiar headers were to be found, they most likely
would have not been produced accidentally.

Evidence of usage in-the-wild. At last, we wanted to investigate whether
real-world malware is already exploiting the discrepancies we found. To
this end, we run a LiveHunt campaign on VirusTotal [vir] from Oct. 7, 2020,
to Oct. 19, 2020. The LiveHunt service allows researchers to scan all the
samples received by the VT platform with custom signatures, written in
yara, in real-time. For our campaign, we wrote yara rules that match the
discrepancies we found in the compliance checks reported in the last sec-
tion, with the only exception of the one concerning architecture-specific
relocations.! We also wrote one additional rule that matches samples that
exhibit a value of SectionAlignment lower than the page size. As we saw
throughout the chapter, this is the precondition for all the discrepancies
in the memory mapping operations.

Our LiveHunt identified a total of 467 samples. Table 3.2 presents a
breakdown of the samples grouped by which yara rule matched and by the
number of AV detections. 73% of the samples were marked as malicious
by 20 AVs or more, with an average of 36.6 AV detections (out of 74) per
sample.

Despite evidence that the presence of discrepancies is rare in benign
samples (as discussed earlier), itis challenging to determine that, with cer-
tainty, these LiveHunt samples are intentionally abusing them. Nonethe-
less, there are some cases for which there is indeed relevant evidence. For
example, we found 77 samples with more than 96 sections, which would
interfere with ClamAV’s scanning process. Intrigued by the (relatively)
high number of encounters, we manually analyzed some of these malware

'The PE module of yara does not provide APIs to access the relocation table, and parsing
it using the yara language is not possible as it lacks support for a loop construct in which
the number of iterations is not determined before the loop starts, which is necessary to
parse the table.

46 46

Table 3.2: #Samples reported for each discrepancy

Windows Windows vs.
Loaders ClamAV
Align WI W2 W4 W5 ClI C2 C3
Samples 301 37 43 27 15 77

1 1
[0, 5) Detect. 59 14 3 15 0 0 1 0
[5,10)Detect. 36 1 3 0 0 0 1 0
0 0
1 1

[10,20) Detect. 5 4 2 1 1 0
> 20 Detect. 201 18 35 11 14 75

samples and found that they often include exactly 97 sections: this is un-
likely a coincidence as this is the minimum number required to trigger the
constraint in ClamAV. The relatively large number of samples using this
trick suggests, in our opinion, that malware authors are actively employ-
ing this as an evasion technique. However, we do not know whether these
tricks are used to specifically target ClamAV or whether they are addition-
ally targeting other antiviruses, which may be affected by similar prob-
lems.

As another noteworthy example, VirusTotal reported one sample ex-
hibiting the discrepancy involving the end of the section table (i.e., rule
WS5). It appears that this malware purposely crafted it to escape static
malware analysis. In fact, on top of its header’s peculiar structure, the
sample also showcases several anti-analysis techniques, including anti-
disassembly tricks and runtime library loading.

Last, most of the identified samples exhibit a value of section align-
ment lower than the page size. We believe it is likely that the samples’ au-
thors adjusted this value on purpose. In fact, the default value of section
alignment for all the Windows toolchains we tested is precisely the page
size, which is confirmed by very few encounters in regular PE executables.

To properly understand the results presented so far, it is important to
contextualize these numbers with respect to the big picture. In fact, on an
average week, VirusTotal processes around 3 million submissions of Win-
dows executables [Vir21], which suggests that the exploitation of the dis-
crepancies is a relatively niche phenomenon at the moment. However, we
believe that evidence of in-the-wild use of these discrepancies is concern-
ing. To the best of our knowledge, we are the first to report these discrep-
ancies publicly, and we hope our work will help the community deal with
this problem in a timely manner.

3.9. Discussion 47

3.9 Discussion

The results presented in this chapter prove that different software handle
the PE format in different fashions, leading to incongruities in both com-
pliance checks and memory mappings. Our models show that there are
as many ways to interpret a PE file as there are versions of Windows. In
Section 3.8 we showed how these discrepancies allows attackers to bypass
popular analysis tools and pipelines, and to create targeted executables
that would run on a certain version but would be discarded as malformed
by the loaders of other versions. We reported the bugs we identified to the
developers of the tools; ClamAV developers have already acknowledged
the problem and they are working on fixes. We believe, however, that it
would be significantly more complicate to “properly” address the various
aspects discussed in this chapter.

There is not a single reference (or even a correct) implementation. We
believe that security tools should allow the user to decide which model
to use on a case-by-case basis. We note that this goes beyond the rela-
tively well-known “the analyst should be able to select which type of Vir-
tual Machine / Windows version to use for dynamic analysis ” as the prob-
lem affects all static reversing tools as well. As we have shown in this chap-
ter, popular reversing tools can be completely bypassed and they can be
fooled to return misleading and/or inaccurate data to the analysis client
(e.g., a human analyst or a processing block in an automated pipeline)

So far, no static reversing tool (including the popular commercial op-
tions) has even the “concept” of letting the user selecting which loader to
emulate. Over the last decade, instead, they have all tried a best-effort ap-
proach to implement a single loading process that attempts to be flexible
and catch the various differences. This work wants to sound the alarm bell
that this long-time effort is bound to failure as there is not a single “correct”
implementation, but there are as many as the OS versions. Other than fix-
ing bugs to patch the discrepancies, we argue that the correct approach to
eradicate this problem is to continue our effort to document the parsing
models adopted by different software implementations and encode this
knowledge in formal models that can be included in other tools and se-
lected by the user.

On the need of formal specifications and reference implementations.
Until now, developers of security tools had to implement their own PE
parsers as the constraints and operations performed by the Windows
loaders were not documented. At first glance, parsing the PE Format may
seem a simple task, on top of which a large body of research and com-

48 48

mercial tools are built. As our experiments show, however, there are many
corner cases that are not sufficiently described in the PE specification, and
different tools and operating system handle them in very different ways.
This is a systemic issue that represents a concrete threat especially in ad-
versarial fields like malware analysis, in which every wrong assumption
may open up new avenues for evading detection mechanisms.

We argue that such problem should be tackled atits roots. One of these
is the lack of a formal specification of the format that defines what a well-
formed PE executable looks like. The ambiguities in the current specifica-
tions have ultimately lead to incongruities in how PE executables are han-
dled. A possible solution to this problem could be to systematize the PE
Format by means of formal methods. This would not only ease the devel-
opment of new tools and loaders, but it would also provide reliable ways
to discover discrepancies in their implementations.

One other way to avoid discrepancies among the large number of soft-
ware dealing with the PE format could be to have a well-documented, pub-
licly available reference implementation of the Windows loader, to which
the new versions of the loader comply. This would ease the task of writ-
ing new reverse engineering tools and antiviruses, since they would not
require developers to guess or to manually reverse engineer the Windows
operating system internals.

While we believe this to be the best solution for the future, our work
provides a solution to deal with both past and present versions of MS
Windows. All our models and the tools required to use them for valida-
tion, test case generation, and comparison among tools are available at
https://github.com/eurecom-s3/loaders_modeling. Thanks to our ef-
fort, PE parsing libraries and tools (such as pefile [ero] and pev [pev]) can
provide different options to their users for choosing to interpret and/or
validate a file according to one model or another.

3.10 Related Work

Program loaders are core components of an operating system and, as
such, have been widely studied by the research community. We therefore
organize the discussion of previous research in this field along four cate-
gories.

Edge cases. Researchers have shown the limitations of static analysis ap-
proaches in parsing binary formats like ELF [J. 13] and PE [ska06, roy],
by abusing relocations to hide malicious code from static analysis tools.

https://github.com/eurecom-s3/loaders_modeling

3.10. Related Work 49

Ge et al. [GPJ17] used relocations to alter the memory permissions with
severe security implications. Other researchers showed how a single
byte can break several ELF parsers and still execute on the target ma-
chine [ule19], and how to use ELF metadata to backdoor a setuid appli-
cation [SBS13]. For what concerns the PE ecosystem in particular, Alber-
tini [A. 13] created PE executables that executes different instruction on
different Windows versions, by leveraging discrepancies in the loaders im-
plementations of these operating systems. Albertini also developed a col-
lection of proof-of-concept binaries that showcase exotic features of the
PE file format [A.]. Previous works, like those by Vuksan et al. [VP11] and
Huang [Hua06], acknowledged that PE specifications leave space for im-
plementation choices and documented a series of “malformed” (yet valid)
PE header layouts. All these works only scratched the surface of the prob-
lem of discrepancies in the PE ecosystem. In fact, all studies discussed
only anecdotal examples and the authors never attempted to generalize
nor to propose a comprehensive approach to eradicate the problem.

Differential Parsing. The problem of differential parsing arises when dif-
ferent implementations of parsers for the same format produce discor-
dant results when fed with the same input. Researchers presented several
attacks based on differential parsing. For instance, Kaminsky et al. [KPS10]
demonstrated an attack against the X.509 infrastructure. Other attacks
allowed privilege escalation on mobile systems, like the infamous An-
droid “master key” attack [saul3] or the more recent iOS Oday for the plist
parsers [Sig20]. Bratus et al. showed how to create a file that the Linux
kernel- and user-space loaders parse differently [BB13]. These works
show how researchers found inconsistencies among implementations of
parsers of the same format. However, all these cases had been discov-
ered manually without any guarantee of completeness. In this thesis we
instead propose a framework to automatically find all the incongruities
among two tools. While we only presented our techniques applied to the
PE ecosystem, we also created models for software parsing the ELF format
and we are confident that our approach can be expanded to other formats
as well.

Evasion. Several studies have focused on detecting malware evasive be-
haviors [LKC11, KVK14, XZGL14] or have attempted to measure their
prevalence, such as in the case of stalling code [KKK11, B. 15]. The work
presented in this chapters fits in the line of research that identified in the
mishandling of executable file formats a major avenue for malware anal-
ysis evasion. Previous works have presented single instances of this prob-
lem. For instance, Petsios et al. [T. 17] showed two cases in which ClamAV

50 50

failed to parse malicious ELF files that properly run on the operating sys-
tem. Similarly, Kim et al. [KKD17] showed that many AV engines do not
scan signed PE files and do not accurately validate the Authenticode signa-
ture that can be copied from benign applications. Again, this shows how
evasion attacks are possible when AV engines handle PE files differently
than the OS loader.

Automatic Modeling of Protocol Stacks. Brumley et al [BCL*07] pre-
sented a taint tracking-based automatic approach to create SMT models
of the behavior of web servers handling HTTP requests. They used these
models for differential analysis with a technique similar to the one we pre-
sented in our work. However, due to the intrinsic limitations of taint track-
ing, the models they produced cannot be complete.

Chapter 4

Beyond API Tracing

Implementing a Generic and Practical Bypass
Technique and Investigating the Semantic Gap
between APIs and Syscalls in Windows

4.1 Introduction

To counter the spread of malware, the computer security community put
in place mechanisms to discover emerging threats and study their modus
operandi, in order to recognize and stop them from causing harm. Be-
havior analysis holds a crucial role in providing a prompt and targeted re-
sponse to new malware strains: Discovering what a program does is the
first step towards determining whether its intents are harmless or mali-
cious.

In the field of malware analysis, one popular way to encode a sample’s
behavior consists in gathering information about the system-provided
functionalities (APIs) that it accesses. Both manual and automatic tech-
niques collect and process such information, looking for evidence of mal-
ice in unknown samples. For a human analyst, the mere fact that a sample
imports specific Windows APIs may represent an early red flag for malev-
olent intents. Anti-malware tools of all kinds (including sandboxes, an-
tiviruses, and endpoint protection) log the APIs that programs execute to
assess their maliciousness. Similarly, previous research works heavily de-
pend on such API information for malware characterization and detec-
tion [KKB*06, SM07, PHL" 15, KKK15, HBZ18, RT20].

Given its widespread adoption by the security industry, it is paramount

51

52 52

that the tools through which we collect API-level information provide gen-
uine and trustworthy data. As discussed in this work, however, the tech-
niques in use today have technical flaws that limit their reliability, opening
the door to evasion mechanisms that malware authors soon added to their
toolboxes.

A more fundamental problem affecting API-level behavior analysis,
arises from the very premise of this approach. The (often overlooked) as-
sumption underlying the adoption of the APIs for behavior encoding, is
that programs (including malware) do indeed make extensive use of these
functionalities. At first glance, this assumption seems completely reason-
able, at least from a cost-benefit point of view. In fact, using the system-
provided APIs allows programs to delegate complex tasks to the operating
system without reinventing the wheel, thus optimizing implementation
costs. Moreover, since APIs tend to be relatively stable, they also guaran-
tee portability among different operating system versions.

Although this reasoning holds in most cases (and it surely does for
the average non-malicious program) malware has different incentives, the
first of which is hindering malware analysis. Successfully evading detec-
tion results in slower responses by the anti-malware community, thus ex-
tending the time frames in which the malware runs and monetizes un-
contested. To put it in another way, from a malware author’s perspective,
being able to resist behavior analysis may justify investing more in the de-
velopment process, even at the expenses of portability.

Over the last years, the security industry has witnessed an increasing
trend of malware samples that avoid using APIs in favor of directly invok-
ing the syscalls, the lowest-level interface between a program and the op-
erating system on top of which the APIs are implemented. Luckily, for
the moment, researchers have only found evidence of malware samples
adopting this strategy for the early stages of their execution, often just to
inject malicious code into alegitimate (hence, not monitored) system pro-
cess. To date, writing entire malicious programs solely using syscalls is still
avery challenging and error-prone process on Windows, and we speculate
this is the reason for which we are yet to see fully API-less malware.

As afirst contribution for this work, we introduce a novel approach that
simplifies developing complex software that bypasses API-monitoring.
Specifically, our approach allows one to write (possibly malicious) code
employing high-level Windows APIs, and to automatically generate self-
contained executables that do not need to interact with any OS mod-
ule other than the operating system itself. The key idea behind our API-
tracing-resistant program is to embed a self-contained custom runtime

4.1. Introduction 53

environment (derived by the Windows libraries), which replaces the one
provided by the operating system: Since the software uses its custom
runtime, malware analysis solutions cannot capture any API information
from its execution. Although simple in concept, the process of building
self-contained Windows binaries presents a variety of hard technical chal-
lenges, that, as we will explain in detail, have their roots in the Windows
operating system design.

We hope this contribution will be seen as a wake-up call for the aca-
demic and industry security community, since the adoption of these (and
similar) techniques may make API-based behavior analysis significantly
less effective. The syscall layer remains, in fact, the sole reliable bastion
from which to monitor the behavior of an application. While APIs con-
vey high-level and easily intelligible information, however, a syscall trace
offers low-level information that requires a certain familiarity with the op-
erating system internals to be fully understood. To make things worse, on
Windows, the syscall layer appears to expose much less semantics than
their counterpart on Linux. The HttpSendRequest API provides a stagger-
ing example of this semantic gap. Listing 4.1 shows the syscalls that a pro-
gram invokes when using this seemingly simple API (for space concern,
we only reported a few of the over four thousand syscalls that we recorded
for this specific API). At first sight, this syscall list seems completely un-
related to the main functionality of the API. The trace, in fact, contains
thread synchronization and inter-process communication primitives, in-
teractions with the filesystem and the system registry, but nothing that we
can intuitively trace back to a network operation.

Anecdotal examples such as the one presented above motivated our
second contribution for this work: to measure and quantify the complex-
ity of recovering API-level information from syscall-level traces on Win-
dows. To this end, we run a large-scale dynamic analysis campaign, for
which we executed over 23 thousand programs, collecting both the APIs
and the syscalls they invoke. The results of this exploration are worri-
some: We show that reconstructing API-level information from a syscall
trace is profoundly complex and ambiguous even under strong, favorable
assumptions.

In the spirit of open science, to allow the security community to repli-
cate our work and further investigate the topic, we will open-source every
relevant software artifact, dataset, and collected data.

Paper structure. The paper is organized as follows. Section 4.2 introduces
common terminology and fundamental concepts about the Windows op-
erating system needed to understand the technical details explained in

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

54 54

NtOpenEvent
ZwWaitForSingleObject
NtClose
ZwAlpcSendWaitReceivePort
ZwAlpcSendWaitReceivePort
ZwAlpcSendWaitReceivePort
ZwAlpcSendWaitReceivePort
ZwAlpcSendWaitReceivePort
ZwAlpcSendWaitReceivePort
NtOpenKeyEx
ZwQueryValueKey

NtClose

NtDuplicateObject
NtOpenThreadToken

Listing 4.1: Excerpt of the syscall trace of HttpSendRequest

the paper. Section 4.3 provides an overview of the state of the art of API-
level monitoring solutions, with an emphasis on known bypass strategies.
In Section 4.4, we present our novel approach to generate self-contained,
API-monitoring-resistant executables, detailing the technical challenges
and our solutions. Section 4.5 describes our large-scale dynamic analysis
campaign and our attempts to quantify the semantic gap between APIs
and syscalls. Section 4.6 discusses the limitations and implications of our
work. Section 4.7 gives an overview of previous work similar or related to
ours.

4.2 Background

This section provides the relevant background needed to understand the
rest of the paper. In particular, it introduces the terminology and the fun-
damentals of the programming models of the Windows operating system,
focusing primarily on the concepts of WinAPIs and NativeAPIs. We will
then present the dynamically-linked libraries, i.e., the binaries that con-
tain the implementation of the APIs, with a particular focus on three li-
braries that constitute the cornerstone of the Windows user-space run-
time. We dedicated the last part to presenting API Sets, a concept intro-

4.2. Background 55

duced in recent versions of Windows, and how their design influenced the
already complex Windows library ecosystem.

4.2.1 The Windows Programming Model

Like any modern general-purpose operating system, Windows provides
an application programming interface, a set of built-in functionalities pro-
vided by the operating system that would otherwise be very tedious, error-
prone, or even impossible to implement in the context of a user-space pro-
gram.

From a technical perspective, we can divide the Windows API ! into
two broad categories: WinAPIs and NativeAPIs. The first represents the
higher-level layer, providing complex functionalities while hiding imple-
mentation details to the user program. Examples of WinAPI are those
functionalities related to networking (including network protocol imple-
mentations for standard protocols and cryptography), the graphic user in-
terface, and system services management.

NativeAPI, instead, is the lightweight and lower-level layer upon which
the WinAPI relies. With few exceptions, most notably the C runtime li-
brary and the user-space loader, the actual implementation of the major-
ity of the NativeAPIs resides in the kernel, which exposes them as system
routines that the user-space program can access using special CPU in-
structions (e.g., int, sysenter, and syscall in the Intel x86/x86-64 ISA).
In the remainder of the paper, we will indicate this subset of NativeAPIs
with the generic term syscalls. Lower-level modules often depend solely
on the NativeAPI layer. Such is the case of device drivers (that need to in-
teract with the kernel directly) and those OS components that participate
in the early initialization phases of the system startup, i.e., a moment in
which the WinAPIs are not available yet.

The degree of their complexity, however, is not the only difference be-
tween Native and WinAPI Indeed, while the latter is guaranteed to be sta-
ble among different major releases of the Windows operating system, the
latter may change drastically. Introductions and removals of NativeAPIs
happened various times throughout the years, as documented by [j00],
which also showed that even the application binary interface for the same
syscall (in particular, the so-called “syscall-number”) changed among dif-
ferent releases of the same major version of the operating system. More-
over, while WinAPIs are thoroughly documented, some NativeAPIs are

'In this paper, we consider the API acronym as countable, indicating any of the func-
tions that provided by the operating system. The same applies to WinAPI and NativeAPIL

56 56

not, as they are intended for internal use only.

Although, conceptually, it would be possible to write any program us-
ing either the WinAPI layer or the NativeAPI one (after all, the former
builds on top of the latter), the choice is straightforward from a program-
mer’s perspective: By providing better portability with less implementa-
tion complexity, the WinAPI layer is inevitably the most cost-effective in
the vast majority of circumstances.

4.2.2 Dynamically-Linked Libraries

Unlike UNIX-like systems, in Windows, fully statically linked executables
do not exist for two reasons. In the first place, both the Native and the
WinAPI are version dependent, meaning that a fully statically linked bi-
nary would likely be compatible only with one version of the operating
system. Furthermore, Microsoft provides no statically-linked versions of
the system libraries, effectively preventing users from creating statically-
linked binaries in the first place.

The lowest stable interface with the operating system is provided by
the dynamically-linked libraries (from now on DLLs), which hide the
version-specific implementation details of the APIs. To access the func-
tionalities that the operating system provides, a process needs to load in
its address space the DLLs that implement them. This operation can hap-
pen either during the initialization phase of the process, when the user-
space loader of the operating system parses the Import Table in the PE
header [Micb] of the program, or at runtime, by using the LoadLibrary
function.

The task of loading a DLL in a process’ address space is laborious
and requires several steps, performed by two separate components: the
kernel- and the user-space loaders. As their names suggest, the former is
implemented in the operating system kernel, while the latter runs in the
context of the process requiring the library. The DLL loading procedure
starts with the kernel-space loader mapping the library in memory, fol-
lowing the layout specified in the PE header. The execution then reaches
the user-space loader, which, in the case of position-independent code
(the default for DLLs in Windows) applies the “relocations,” i.e., patches
the code of the library to ensure that the instructions accessing absolute
addresses in memory behave correctly, even if the library is not mapped at
its preferred base address. Since the Windows libraries have complex in-
terdependencies, to load a library successfully the user-space loader also
needs to find its dependencies and initiate the loading procedure for each

4.2. Background 57

of them in a recursive fashion. Only when all the dependencies are cor-
rectly satisfied can the user-space loader run the initialization routine of
the library, which creates and initializes the data structures that the library
code needs.

Ntdll, the lowest-level library of the Windows operating system, pro-
vides the implementation of the user-spacer loader. This DLL also ships
the user-space implemented NativeAPIs and the stubs to invoke those that
the kernel offers through the system call mechanism.

To avoid a chicken and egg problem (“if the user-space loader loads
DLLs and ntdll implements the user-space loader, then who loads nt-
dll?”), Windows maps this library in every process on the system. In fact,
ntdll also provides the first routine executed in the context of a newly cre-
ated process (LdrInitializeProcess), which is in charge, among other tasks,
of creating the process environment block (PEB) and other critical data
structures.

Alongside ntdll, modern versions of Windows also load kernelbase and
kernel32 in every process on the system. These two libraries provide those
WinAPIs that a process likely needs. For example, they implement high-
level functionalities for file manipulation, threading, and heap manage-
ment.

4.2.3 API Sets and Umbrella Libraries

Windows supports other platforms than personal and server computers,
such as embedded devices, game consoles, and virtual reality head-up
displays. These devices often support only a subset of the WinAPI collec-
tion, which theyimplementin DLLs that follow a different naming scheme
than those found on a regular PC.

In an effort to overcome WinAPI fragmentation, thus improving inter-
device portability, recent versions of Windows introduced the concept of
API Sets [Micc], i.e., groups of semantically similar WinAPIs that a device-
specific version of Windows may or may not support. User programs can
query the availability of an API Set on the system by loading the corre-
sponding “umbrella library.” If the loading process succeeds, the system
effectively supports all the WinAPIs in the set, and the program can access
them from the loaded library. Umbrella libraries follow a common nam-
ing scheme (“api-<feature>-l<major version>-<minor version>.dll”) on all
versions of Windows. Instead of containing the actual implementation of
the WinAPIs in the corresponding set, umbrella libraries act as forwarders
towards the system DLLs that do provide it.

58 58

Since Windows 7, the Windows system DLLs themselves started us-
ing API Sets to encode their dependencies. As a result, their import tables
would often point to the umbrella library rather than the system library
providing the API implementation. Unfortunately, this makes navigating
the intricated interdependencies of the Windows library ecosystem even
more challenging.

4.3 API-Based Behavioral Analysis: State of the Art
and Bypasses

The ultimate goal of malware analysis is to distinguish malicious programs
from legitimate ones by inspecting their behavior, that is, the ensemble of
the activities they carry out when running on a system. In the Windows
operating system, one way to encode a program’s behavior is to list either
the WinAPIs or the syscalls it employs.

From an analyst point of view, using the WinAPIs to encode the be-
havior of a program is preferable over using the syscalls: Their high-level
semantic makes the WinAPIs more intelligible, allowing the analyst to dis-
tinguish malicious activities in less time and with minimal effort. More-
over, since they are more stable among major versions of the operating
system, preferring the WinAPIs to their lower-level counterparts allows
writing tools and analysis systems that are easier to port to new versions
of the OS. Consider, for example, antivirus dynamic signatures: Writing
them in terms of WinAPIs ensures that the same signatures will work on
any version of Windows, protecting even new releases from known mal-
ware.

Broadly speaking, to list the WinAPIs that a program employs, one can
either opt for a static or a dynamic approach. The first parses the binary’s
import table, which lists the functions it uses and the DLLs that implement
them. The second, instead, consists of executing the program in a mon-
itoring environment that logs every time the execution flow steps into a
system library.

As is often the case for static binary analysis techniques, the first strat-
egy falls short when dealing with obfuscation mechanisms. Obfuscated
malware frequently hides or tampers the import table to make it harder
to parse for static analysis tools. Some malware families go as far as re-
implementing portions of the user-space loader to resolve and bind de-
pendencies and do so in a custom and convoluted way. For this reason,
recent research works have focused on recovering the import table from

4.3. API-Based Behavioral Analysis: State of the Art and Bypasses 59

obfuscated malware using dynamic analysis.

As we saw in Chapter 2, researchers also proposed a plethora of dy-
namic analysis techniques to trace the execution of a Windows program
in terms of the WinAPIs it invokes.

Although worthy of interest in principle, all these techniques present
technical flaws that make them less effective or even completely bypass-
able by the analyzed program. For example, API hooking can be bypassed
by jumping ahead of the starting point of the function to invoke (after
having crafted a coherent stack frame by “emulating” the skipped instruc-
tion), effectively avoiding any hook. Similarly, hardware-assisted tracing
can be hindered by executing massive amounts of (otherwise meaning-
less) control flow-deviating instructions to fill the trace buffer with useless
information.

Even implementation-specific bypasses are possible, like the Heaven'’s
Gate technique [Cise] that exploits the way several antivirus products im-
plemented API tracing for 32-bit programs running in compatibility mode
on a 64 bit Windows OS. For this type of program, the antiviruses only
monitored the 32-bit versions of the system libraries, completely over-
looking their 64-bit equivalent, which the OS maps in the process address
space and that the program can access after switching the processor mode
of operation.

What makes the entire class of dynamic API monitoring techniques
frail, however, is the ubiquitous assumption that the control flow must
reach the system DLL. Only when this happens, in fact, do these tech-
niques log the API invocation. While this assumption may seem reason-
able and harmless, it opens the door to a more generic type of bypass strat-
egy. An attacker can indeed avoid using the WinAPI altogether, relying
only on the less semantic-rich NativeAPI to complete their malicious ac-
tivities.

Unsurprisingly, researchers have reported malware families resort-
ing to such a strategy. Notable examples are FormBook|[Fir] and Floki-
bot [Mala]. Given that NativeAPI's ABI (e.g., the syscall number param-
eter) may change among different versions of Windows, samples of these
families started implementing boilerplate code to invoke the kernel rou-
tines, which they would then fill with the syscall numbers extracted from
the ntdll library stored on disk.

While this trend is alarming, as far as we are aware, malware has only
been shown to implement this bypass strategy for the early stages of an
infection, often only to inject malicious code in the context of a system
process. Since the target process is considered trusted (thus, not moni-

60 60

tored), the injected code makes regular use of the WinAPIs to carry out the
malicious activities.

We would argue that the reason behind the all-in-all limited adoption
of this bypass strategy resides in the significant implementation complex-
ity one incurs by only using syscalls. It is not surprising that process injec-
tion is, to the best of our knowledge, the sole documented use case for this
strategy. In fact, implementing this technique does not require more than
a handful of historically stable syscalls, like NtVirtualAllocEx, NtVirtual-
WriteEx, NitCreateThread, making it relatively portable, thus worth imple-
menting from a malware author’s point of view.

The next section discusses how this universal type of bypass can be
pushed one step further, making it possible for a malware author to ac-
cess high-level APIs (at development time) while still bypassing any API
monitoring system (when the malware actually runs).

4.4 High-level API-Tracing-resistant Programming

The research question we tackle in this section is the following: How can
a Windows program take advantage of the WinAPIs and bypass API mon-
itoring solutions simultaneously? As Section 4.3 underlines, malware’s at-
tempts to circumvent APl monitoring solutions have so far remained rudi-
mentary (e.g., invoking syscalls directly). Such an approach does notscale:
Re-implementing the same complex functionalities that the WinAPIs pro-
vide using only syscalls is out of reach because it requires extensive reverse
engineering of the OS internals and great implementation efforts.

Our work tackles the problem from an orthogonal perspective. In-
stead of re-implementing a high-level layer of API, we adopt a code reuse
approach that borrows the WinAPIs’ implementation from the DLLs of
the Windows operating system. The programs we are able to create with
our technique are equipped with a custom runtime that contains all the
WinAPIs the program needs. By doing this, these programs do not need
to ever step into any system-provided modules, effectively bypassing any
tracing mechanism that could be in place. One important note: differ-
ently than existing approaches, which borrow WinAPIs’ implementation
from the DLL files on the target host (e.g., a malware would read “ker-
nel32.dll” from the victim’s file system), our technique does not depend
on these either. In other words, our technique allows a malware to em-
bed the required resources (or, alternatively, make it possible to retrieve
them at run-time from arbitrarylocations, such as a network backend), in-
stead of needing to trust resources on the victim machine — which could

4.4. High-level API-Tracing-resistant Programming 61

Library Processing

System Custom

DLLs :> Qg |:> Runtime

ﬁ Compilation/

Linking

P
srﬁﬁiig’ — Qé} > | Executable

Figure 4.1: Overview of the offline phase of our approach

be a dynamic analysis sandbox. Although this difference seems minor, we
needed to address a number of previously unsolved technical challenges.
Moreover, this technique defeats analysis sandbox that “instrument” the
actual DLL files on the analysis sandbox environments. This makes our
technique more evasive than existing ones.

4.4.1 Overview

Our approach consists of two separate phases. The first one, which we call
the “offline phase,” takes place during the development of the program
that is to be equipped with anti-tracing capabilities. Figure 4.1 shows the
offline phase of our pipeline in broad lines. It starts with collecting the sys-
tem libraries from a fresh installation of Windows. The collected libraries
are then processed and merged into the custom runtime. Note how some
knowledge about the program’s source code is needed to build the run-
time. This is due to the fact that, at least in the vast majority of cases, the
program to equip with anti-tracing capabilities does not require the en-
tire collection of libraries to function. The custom runtime, which is then
linked to the final program, contains all the processed libraries and the
logic to initialize them at runtime.

The second phase, which we call the “online phase,” starts instead at
the beginning of the execution of the equipped program. Before leaving
the stage to the program’s main function, in fact, the loader component
of the custom runtime resolves the dependencies of the programs and
fetches the corresponding library from the program executable. The cus-
tom runtime then loads and initializes each library in the context of the

62 62

current process, starting from ntdll, kernelbase, and kernel32 that, as we
will explain later in this section, need special care to behave correctly.

4.4.2 Technical Challenges

As simple as the idea may seem, this approach does not come without se-
rious technical challenges.

In the first place, the Windows system libraries show complex interde-
pendencies, which need to be considered when building the custom run-
time. Failure to handle the DLL dependencies may result in unavailable
functionalities or the execution flow inadvertently reaching the system li-
braries. The latter may happen, for example, when the custom runtime
does not contain any of the dependencies of a library, and the loader re-
solves it to the one that the operating system provides. The widespread
use of API Sets to encode dependencies among system DLLs introduces
one more layer of complexity. These surrogate libraries do not contain the
actual implementation, but act as placeholders that the system resolves at
runtime. In other words, a library that imports an API-set library implic-
itly depends on a second one. To ship a stand-alone runtime, both implicit
and explicit dependencies must be correctly handled.

Another major technical challenge of our approach lies in the three
system libraries, namely ntdll, kernelbase, and kernel32, being already
loaded and initialized when the startup phase of the custom runtime be-
gins. Handling any of these three libraries the same way as the others re-
sults inevitably in them failing to initialize. Indeed, their initialization rou-
tines are not designed to run more than once per process. For example,
for command-line programs, the DIIMain of the kernelbaselibrary, among
other things, establishes a remote procedure call endpoint that has exclu-
sive access to the console manager. If this routine were to run a second
time for the same process, it would fail to establish a second endpoint.

Not running the initialization routines of these libraries at all is not an
option either. Some vital data structures, such as the handle of the process
heap, are created by these routines; Them being uninitialized correctly
leads to inconsistencies and unexpected behaviors in many cases.

Lastly, we would argue that even if the initialization routines of these
three libraries could run twice, initializing all the data structures ade-
quately, this would still not be enough for the process to run correctly.
In fact, having two distinct versions of ntdll mapped in the same process
means having two different PEB structures, and since this data structure
should be accessible through the gs segmentregister (which is how system

4.4. High-level API-Tracing-resistant Programming 63

libraries access it), the PEB of the custom library must supersede the orig-
inal one. However, modifying the memory area pointed by the gs segment
register can lead to unexpected behavior challenging to troubleshoot. To
overcome this problem, we opted for patching at runtime the three li-
braries’ code, redirecting each memory access in their data sections, to-
wards the data section of their system-provided counterparts. By doing
so, we ensure that the libraries point to the correctly initialized data struc-
tures and that we do not create doppelganger PEBs.

The rest of the section provides more implementation details of both
the “offline” and the “online phase,” focusing on how we handled the chal-
lenges discussed so far.

4.4.3 Offline Phase

The offline phase of our approach pursues the objective of creating the
custom runtime, starting from the system DLLs and linking it to the final
executable.

This phase begins with finding all the system libraries on a fresh instal-
lation of Windows. To this end, we listed all the files with d11 extension in
the System32 directory and its subdirectories recursively.

The next step of the process consists of finding the set of libraries on
which the target program depends to assemble the custom runtime. This
aims at reducing the size of the custom runtime by only selecting those li-
braries that the program would actually need during its execution. For this
purpose, we gather knowledge about the WinAPIs that the target program
needs and the DLLs that provide their implementation. For each of them,
we compute the set of libraries they depend on by traversing their import
table recursively.

API Set libraries need special care compared to standard libraries. In
general, these libraries do not contain any code at all, but only an export
table listing the WinAPI in the set. For each entry in the table, the for-
warder field contains a pointer to the name of the library that effectively
implements the matching function. We leverage this in our dependency
processing to resolve API Sets to actual libraries.

Once we computed the set of dependencies of the program, we assign
to each library a random name, ensuring to modify the import and ex-
port tables of each library so that they reflect the new naming scheme. Al-
though this may resemble a naive form of obfuscation (and in many ways,
it is), the primary purpose of this step is to avoid that loading any of the
libraries in the custom runtime could result into loading system-provided

64 64

libraries. By default, on recent versions of Windows, the loader first checks
whether the requested library is among the ones listed in the registry key
Session Manager KnownDLLs [Mical. Suppose that is the case, then the
loader uses the system DLL instead of the one provided in the application’s
directory. Since several of the system libraries are listed in the registry key
of a newly installed system, renaming them is a convenient way to force
the system into loading the libraries of the custom runtime instead of the
original ones.

During the offline phase, we statically analyze ntdll, kernelbase, and
kernel32 to list all the instructions that access their data sections. For the
purposes of this work we only considered readable/writable data sections
(e.g., “.data” and “.bss”), which are the ones containing all the important
data structures. To achieve this, we used IDA Pro [HR] to disassemble and
iterate over all the instructions in the libraries. Each time we encountered
aninstruction that used the RIP-relative memory addressing mode for one
of their operands, we would add its address to the list of instructions to
patch at runtime. At the end of the process, we encode this list in a table
that we store in a dedicated section appended to the library itself. During
the online phase, the custom runtime uses this information to patch the
libraries.

The last stage of the offline phase consists of transforming each library
into a resource that the final executable can access at runtime. Finally,
we link the transformed libraries and the logic of the custom runtime that
implements the “online phase” to the final executable.

4.4.4 Online Phase

The online phase of our approach starts at the beginning of the execution
of the program equipped with the custom runtime. Its goal is to load and
initialize the libraries that provide the WinAPI that the program uses. As
explained before, we do not handle all the libraries in the custom runtime
in the same way. While our custom runtime relies on the LoadLibrary API
to load the majority of the libraries, for what concerns ntdll, kernelbase,
and kernel32, we developed a technique that we call Map&Patch, designed
to avoid loading twice the same libraries. The online phase starts by han-
dling the three libraries before loading the rest of the custom runtime.

Map&Patch. Figure 4.2 depicts the inner mechanism of the custom loader
that we implemented to handle the three libraries that the Windows OS
maps before the process starts. For each of the three libraries, the cus-
tom loader retrieves the base address at which the system mapped their

4.4. High-level API-Tracing-resistant Programming

65

Map & Patch

Find Base Address of the System DLL

@

Find Free Area Near the System DLL

Allocate Memory and Map Custom DLL

@

Apply PE Relocations

L

Patch RIP-Relative Instructions

@

Figure 4.2: Map&Patch process for ntdll, kernelbase, and kernel32

66 66

original counterparts. To do so, we parse the LoaderData structure in the
PEB, iterating over the InMemoryModuleOrderList array that contains in-
formation about every module loaded in the current process. Knowing the
base address of the original library is paramount for two reasons. Firstly,
to patch each instruction correctly, we need to add the offset between the
system DLLs address and the custom one’s to its RIP-relative operand.
Secondly, the original library’s base address limits the choice for the base
address of the custom library. Indeed, if the two modules were too far away
in memory, it would not be possible to patch the custom one appropri-
ately because the Intel x86-64 ISA only allows addressing memoryin alim-
ited range around the address of the instruction (42 GB). For this reason,
the next step of the Map&Patch technique is finding a suitable address for
mapping the custom library.

We achieve this by using the NtVirtualQuery syscall, which, given an
address, returns information about the memory region around the ad-
dress, specifying its size and whether it is free or reserved. Starting from
the address right above the end of the system library, we iterate the pro-
cess until we find a free memory region big enough for the custom library.
If the iterative process goes beyond an offset of 0x80000000 (the limit sup-
ported by the ISA for instruction pointer-relative addressing), we start it
again from the address right below the base address of the original DLL
and descending. If even this attempt of finding a suitable address fails,
the process stops. We note, however, that this is very unlikely to happen
in practice. In fact, at the beginning of the execution, only a tiny amount
of memory is mapped. Even if everything coalesced in the same region,
it would not occupy a 2GB range around the original libraries. In our ex-
perience, we never even needed to query the memory below the original
library to find a appropriate address for the custom one. After finding one,
the custom loader reserves the memory using the NtAllocateVirtualMem-
ory syscall before mapping it according to the memory layout outlined by
the section table in its PE header.

The Map&Patch process then applies the relocation information that
the PE header provides. Supporting relocations is essential since the read-
only sections of the three libraries contain pointers to data structures that
need to be updated at loading time. In our experience, failure to imple-
ment relocations results in memory access violations once the program
invokes any WinAPI using the custom runtime. The custom loader then
patches the instructions found during the offline phase, adding the cal-
culated offset to the RIP-relative operand of the instruction. To this end,
it parses the table appended at the end of the library, in which each entry

4.5. Towards Reconstructing API-Level Information from Syscalls 67

points to a 4-byte word in the code section, corresponding to the operand
to modify. Finally, the Map&Patch process ends by fixing the memory per-
missions of the custom library, as specified in its section table, allowing the
program to execute the instructions in the code section.

Loading other libraries. After the Map&Patch process finishes, the pro-
gram can already access various WinAPIs, including the primitives for file
management and library loading. The custom runtime employs these fea-
tures to create one file per library, according to the naming scheme de-
cided during the offline phase.
It then proceeds toload each library invoking the LoadLibrary WinAPI that
the custom version of kernelbase provides.

At this point, the custom runtime is fully initialized, and the program
can start.

4.4.5 Proofs of Concept

To demonstrate the feasibility of our approach, we designed three proofs
of concept that carry out tasks typically found in malware. Each PoC was
implemented in less than 80 lines of C++ code, only a few more than it
would be required to implement the same functionalities in a regular Win-
dows program.

The first (and simplest) PoC use file manipulation APIs to open, write,
and read data from a file on the disk.

The second carries out a process injection employing the QueueUser-
APC WinAPI, using a technique similar to the one described by [Red] and
commonly used by malware, including APT[Cybc].

The last PoC performs network operations using WinAPIs provided by
the wininet DLL. This PoC is the most complex among those we devel-
oped, and it carries out an HTTPS request, retrieving a web page from an
URL.

4.5 Towards Reconstructing API-Level Information
from Syscalls

The bypass approach we presented in the previous section and our
the state-of-the-art investigation highlight how fragile and unreliable
WinAPI-based behavior analysis truly is at its core. The source of all evils,
in this case, is easy to spot: WinAPI-based analysis techniques try to fight

68 68

the enemy on its own terrain. These techniques rely on information col-
lected from within the malicious process’ context and the address space,
which are, however, under the complete control of the malicious process
— there is no guarantee that the information collected from it is genuine.

A more sound approach to malware behavior analysis should rely on
information collected at the boundaries of the context of the malicious
application, where the malware can exercise only limited control. In most
scenarios, the syscall layer between the user space and the kernel is the
most natural of the interfaces to monitor because, under a reasonable
attacker model (i.e., uncompromised kernel) we can consider this layer
trusted.

However, the fact that collecting WinAPI-level information is unreli-
able does not make it less valueable. Indeed, the higher-level semantics
that these APIs carry make them easy to interpret and employ for describ-
ing complex behaviors. The same cannot be said for syscalls.

Driven by the rationale that, under the hood, the WinAPIs make use
of the syscall layer, we set to explore the feasibility of reconstructing their
high-level semantics from a syscall trace. To this end, we dynamically an-
alyzed a dataset of (non-malicious) Windows executables, recording both
the WinAPIs and the syscalls they invoked, so to build a knowledge base.
Our measurements aim at quantifying the complexity of the “mapping
problem,” i.e., the process of bridging the semantic gap between WinAPI
and syscalls.

4.5.1 Analysis Environment

To collect WinAPI and syscall traces, we developed a dynamic analysis tool
based on Intel Pin [Int], the DBI framework. This framework grants the
ability to instrument a program at several granularities, such as function
calls, basic blocks, or even single instruction levels.

Intel Pin also allows intervening anytime certain events happen during
a program’s execution. For example, it is possible to invoke user-provided
callbacks each time the process loads a module. We used this feature to
intercept the loading of any system library and to instrument the func-
tions they export. Doing so guarantees that anytime the program invokes
a WinAPI, Intel Pin executes our custom routines both before the execu-
tion of the API and after it returns. In this way, we can log both the begin-
ning and the end of each WinAPI.

Our tool employs a similar process to trace the syscalls too. ntdll, in
fact, provides wrappers for all the syscalls that the kernel supports and

4.5. Towards Reconstructing API-Level Information from Syscalls 69

that the other system DLLs use for their purposes. By instrumenting this
library at the beginning of the execution, we are able to run our custom
logging infrastructure anytime the WinAPIs reach the syscall layer.

Noteworthy, our tool enforces strict temporal ordering of the entries in
the traces and logs both the WinAPIs and the syscalls on the same channel.
These two characteristics make it possible to infer a caller-callee relation-
ship between the entries in the trace, allowing to obtain the syscalls that
the program invoked as a side-effect of employing a WinAPI.

We compiled our tool for the Intel x86 and x86-64 architectures to sup-
port both 32 and 64-bit executables. The two versions were deployed on a
group of virtual machines — each provided with 2GB of RAM and two logic
CPUs — running on a server powered by four Intel Xeon Platinum 8160.
Each VM runs a vanilla installation of Windows 10 (version 1909), which
we restore to a clean snapshot at the end of the execution of each sample
in the dataset. We instructed our tool to run each sample for 5 minutes.

4.5.2 Dataset

Our dataset contains a total of 2.3117 x 10* non-malicious samples. We
relied on Chocolatey [cho] for the creation of this dataset. This third-party
package manager allows installing a multitude of free software products
quickly. We installed all the available packages on Chocolatey on a ma-
chine running a clean version of Windows. We then selected all the files
on the system with .exe extension. As a result, our dataset also contains
executables that Windows itself ships.

The strict policies that Chocolatey enforces before supporting new
packages guarantee that the entirety of this dataset is non-malicious —
a desirable property for the large-scale analysis we conduct. Since our
objective is to characterize the relationship between WinAPI and syscall
invocations, we are only interested in recording the syscalls that the pro-
gram invokes indirectly by employing the WinAPIs. Malware, on the other
hand, often uses syscalls directly, which could pollute our results, making
it deleterious for our purposes.

4.5.3 Data Processing

The traces that our DBI tool captures contain one record for each mon-
itored event, i.e., the invocation of either a WinAPI or a syscall wrapper.
For each event, the system logs the API/syscall name, the library provid-
ing it, and whether the event corresponds to the beginning or the end of

70 70

NtOpenThreadToken
NtOpenThreadToken
NtOpenThreadToken
NtSetInformationThread
NtAlpcCreateSecurityContext
NtSetInformationThread

Listing 4.2: Syscall Trace of wlanapi.dll: WlanOpenHandle

the execution of the target function. Our tool also logs the stack pointer
and the first element in the stack, i.e., the return address of the current in-
vocation. This data is helpful in supporting recursive functions during the
trace processing phase.

We processed the raw data collected during the dynamic analysis cam-
paign and organized itin an easy-to-query data structure (from now on the
knowledge base) that stores the list of syscalls generated by each WinAPI
that the samples invoked. For this work, we are only interested in the
WinAPIs that the programs invoked directly. In other words, even if our
tool recorded intermediary APIs too, the data processing phase kept only
the top-level ones. The rationale behind this choice is that it allows us to
keep only those WinAPIs that the programs intended to use.

The data processing treats the trace recorded for each sample sequen-
tially. For each of them, the process commences by separating the entries
based on the threads that invoked the corresponding WinAPI or syscall.
Then, for each thread, the analysis system slices the corresponding trace
in chunks delimited by the start and end event of the same API.

For determining that a start event and an end event belong to the same
WinAPI invocation, the system checks that the API and library names are
the same and that both the stack pointer and the return address match.
These comparisons prevent matching the beginning of a recursive API
with the end of any reentrant calls. For each chunk, the system stores the
invoked syscalls in the knowledge base as a new entry for the WinAPI.

4.5.4 Examples of API-Syscall Mapping

By querying our knowledge base, it is possible to find different types of
WinAPI, performing all sorts of tasks, from file manipulation to graphic
user interface creation, wireless access point discovery, and internet-
related operations.

4.5. Towards Reconstructing API-Level Information from Syscalls 71

NtDuplicateObject
NtCreateEvent
NtDeviceloControlFile
NtDeviceIoControlFile
NtDevicelIoControlFile

Listing 4.3: Syscall Trace of ws2_32.dll:setsockopt

The complexity (in terms of generated syscalls) of the WinAPIs in our
knowledge base varies greatly. While some WinAPIs generate syscall se-
quences that are expected and intelligible even to the untrained eye, oth-
ers are exotic and counterintuitive.

Let us introduce a few telling examples of the wide range of complexity
among the WinAPI we recorded.

The CreateFileA and WriteFileA, both implemented in kernelbase, re-
spectively invoke one syscall each, namely NtCreateFile and NtWriteFile.
In other words, these APIs map directly to one syscall, which is also the se-
mantically closest to the task that the corresponding API performs. From
a semantic reconstruction point of view, APIs such as these two are trivial
(and almost useless) to recover.

Other WinAPIs’ semantics are remarkably more difficult to recon-
struct. Take WilanOpenHandle and setsockopt, whose syscall footprints
are shown in Listings 4.2 and 4.3, respectively. The former instantiates the
wireless LAN manager, while the latter is the standard C function that sets
options on a network socket. In the perspective of semantic reconstruc-
tion, the differences between these two APIs and the previous examples,
do not lie exclusively in the length of the syscall traces they produced. The
syscall footprints of WlanOpenHandle and setsockopt, in fact, do not con-
vey any information that intuitively hints to the original APIs’ task.

What makes these two WinAPIs’ syscall trace so unintelligible is their
use of the advanced local procedure call [RSI12a, p. 209] (ALPC, from now
on) in the case of WianOpenHandle, and device driver input-output con-
trol functions (IOCTL) [RSI12b, p. 25] for setsockopt. ALPC employs a few
dedicated syscalls (one of whichis NtAlpcCreateSecurityContext in List-
ing 4.2) to implement a request-response protocol, through which user-
space processes can communicate with the system services. On the other
hand, device drivers execute IOCTL functions when the user-space pro-
cess invokes NtDeviceIoControlFile (as in Listing 4.3) or other specific
syscalls.

72 72

These two mechanisms reflect the modular design of Windows: For
most tasks, the kernel only acts as a message delivery facility rather than
carrying out the actual work, in a microkernel architecture fashion[TB15,
p. 65]. Consequently, the Windows syscall layer is rather small and
message-passing-oriented, compared to other operating systems that ex-
pose, instead, a thicker and more task-oriented one?.

4.5.5 Preliminary Measurements

In total, we recorded 1.1552 x 10 distinct WinAPIs and 184 dis-
tinct syscalls. Our dynamic analysis campaign captured a total of
2.018 34573 x 108 WinAPI invocations (the average number per WinAPI
is 1.7472 x 10%) and 1.007 8877 x 107 syscall invocations (5.4776 x 10* in-
vocations per syscall, on average).

By manually exploring the knowledge base, we noticed that certain
syscalls are prevalent in the traces recorded for many WinAPIs, more
specifically, NtWaitForSingleObject and NtAllocateVirtualMemory.
Most of the times, these syscalls did not seem fundamental to the overall
function and semantic of the WinAPIs that employ them. The first one,
for example, is used for thread synchronization, which, by itself, does not
carry any information about the API behavior. The second allocates new
memory in the process address space. In the vast majority of cases we
inspected, its invocation seems to be a byproduct of the process’ state at
the moment of the WinAPI invocation. This syscall is indeed also used
to reserve new memory pages for the process’ heap when the already
allocated ones are full. This is to say that any WinAPI that creates heap
objects can invoke this syscall if the process is running out of heap space.
A third example of widespread syscall is NtClose, which disposes of any
type of object created by the Windows operating system, including open
files, local procedure calls endpoints, and internet connections. This lack
of specialization is what makes, in our opinion, this syscall marginal from
a semantics point of view. Since, in most cases, these syscalls do not carry
any valuable information about the WinAPI that invoked them, we de-
cided to consider them as noise and to remove all their invocations from
our knowledge base. From now on, all the data we report are computed
without considering these three syscalls.

One fundamental limitation prevents retrieving the entire WinAPI
trace of a program’s execution from the corresponding syscall trace:
Some APIs do not have any syscall footprint. In fact, whole classes of

“For reference, the Linux operating system has a dedicated syscall for setsockopt

4.5. Towards Reconstructing API-Level Information from Syscalls 73

1.0

0.8 A

0.6 -

% of WinApis

0.2 4

0.0 1 T T T T T T T
10° 10! 10? 103 104 10° 10° 107
of recorded invocations

Figure 4.3: Cumulative distribution of the WinAPIs over the number of
recorded invocations

WinAPIs (e.g., string manipulation) are entirely implemented in user-
space, thus do not invoke any syscall. In our knowledge base, we counted
9.936 x 103> WinAPIs (86% of the total) that did not result in any syscall
across any of their recorded invocations.

As one would expect, programs employ some types of WinAPI more
than others. Consequently, during our experiment we recorded many in-
vocations of the same WinAPIs and very few of some others. Figure 4.3
presents the cumulative distribution function (CDF) of the WinAPIs over
the number of invocations we recorded during the experiment. As the
graph shows, we recorded less than ten invocations for circa 40% of the
WinAPIs, while the top 10% of the APIs have been recorded more than
three thousand times. If we do not consider those WinAPIs that never in-
voke syscalls (see Figure 4.4), the situation is slightly different. On aver-
age, those APIs that invoke syscalls were recorded more times: the share
of WinAPIs that we observed ten times or less is circa 27%, while the most
recorded 10% was observed at least 13 thousand times.

74 74

1.0 A

0.8 A

0.6 1

% of WinApis

0.2 4

0.0 T T T T T T T T
100 10! 102 103 104 10° 10 107
of recorded invocations (w/o empties)

Figure 4.4: Cumulative distribution of the WinAPIs (excluding those that
do not invoke syscalls) over the number of recorded invocations

4.5.6 Intra-API Similarity

Measuring the similarity between the syscall trace resulting from the in-
vocation of a WinAPI can suggest the actual complexity of bridging the
semantic gap between the two layers. Suppose having an unknown se-
quence of syscalls from which to reconstruct the candidate APIs likely to
have generated them. If invoking the same WinAPI always resulted in
the same syscall sequence, this task would be relatively easy because we
would need to compare the syscall sequence to the sole “footprint” of each
APL

As we frequenlty see in our knowledge base, however, two invocations
of the same WinAPI often result into diverging sequences of syscalls. One
interesting measure of the complexity of each WinAPI is the number of
different syscall sequences that it can generate. Figure 4.5 shows the CDF
of the WinAPIs with respect to the number of distinct syscall sequences
that we recorded during their invocations. As the graph reports, the me-
dian number of syscall sequences per APl is two, and about 88% of the APIs

4.5. Towards Reconstructing API-Level Information from Syscalls 75

=
o
1

% of WinAPIs
© © © o © © ©
w H (8,1 [e)] ~ [o0] (o)
1 1 1 1 1 1 1

't
N
!

0 10 20 30 40 50
distinct syscall-sequences

Figure 4.5: Cumulative distribution of the WinAPIs over the average length
of the syscall traces they produced

produced ten distinct sequences or less.

The bare number of distinct syscall sequences, however, tells only part
of the story. Indeed, this measure does not consider that APIs may gener-
ate specific syscall sequences very rarely or under abnormal conditions.
For example, an API that always generates the same syscall sequence un-
der normal conditions could fail and return an error before invoking any
syscall at all if it received the wrong parameters. To take cases like these
into consideration, we measured the normalized entropy of the set of
syscall sequences of each WinAPI as follows:

_ p(s;) loga(p(s;))
! Z log;)

where p(s;) denotes the “probability” of i-th distinct sequence recorded for
the WinAPI in question, that is, the ratio between the number of times we
recorded that sequence and the total number of invocations of that API.
The normalized entropy provides qualitative information about the diver-

76 76

200 A

175 A

150 A

125 +

100 A

of WinAPIs

~
w
1

50 A

25 4 w
| bl e . o |
0.0 0.2 0.4 0.6 0.8 1.0
Normalized Entropy

Figure 4.6: Disribution of WinAPI over the normalized entropy of their
traces

sity of the sequences an API can generate. A lower value of 7 indicates a
certain “stability” in the sequences that the API generates. In contrast, a
high value suggests that the API behaves in a in a way that is trickier to
predict. Taking it to the extremes, a value of of 0 means that the WinAPI
always generate the same syscall sequence, while a value of 1 (the maxi-
mum possible value of normalized entropy) means that the API can pro-
duce more than one sequence, each of them with the same probability. We
calculated the normalized entropy for each WinAP], for which we recorded
atleast 30 invocations and that produced syscalls at least once. Figure 4.6
shows the distribution of the normalized entropy we calculated. The left-
side peak represents those APIs whose normalized entropy is close to 0
and thus always produce the same syscall sequence. In general, the nor-
malized entropy of the dataset seem relatively low, suggesting that, on av-
erage, WinAPIs are relatively stable in terms of the syscall sequences they
produce.

4.5. Towards Reconstructing API-Level Information from Syscalls 77

o}
1024
: o
g o o
2 0 © 9 0 °©
£ : o
© g 8 8 o
E 101 o 8)
5 g 0 0
- 8 o} o)
S o) o] o o) o] le) o
o) o o o o o o o
o) o) o o) o o o o
o) o) o) o) o) o) o)
(o) o) o) o) o) o) 0
100

1 2 3 4 5 6 7 8 9 10
Lenght of syscall pattern

Figure 4.7: Number of matching APIs per syscall pattern (of length from 1
to 10)

4.5.7 Inter-API Simiilarity

The likeness among syscall traces generated by the same API is not the
only indicator of the reconstruction problem’s complexity. An orthogo-
nal metrics consists in estimating the degree of similarities between the
traces produced by different APIs. As an experiment of thought, take two
APIs that exclusively and always generate the same syscall trace. Despite
being both very stable, for all intent and purposes, they are completely in-
distinguishable from the point of view of the reconstruction process.

To measure the degree of similarities among the WinAPIs, we gathered
all the sequences shorter than or equal to 10 syscalls in our knowledge
base. For each sequence, we then counted the number of WinAPIs which
had generated it at least once. This measure quantifies the difficulty of
distinguishing which API generated an unknown syscall sequence: A high
number of WinAPIs matching the same sequence indicates that the recon-
struction problem is intrinsically ambiguous.

Figure 4.7 presents the results of the measurements. For each se-

78 78

Length Tot. Sequences Overlapping Sequences (%))

2 syscalls 467 —

3 syscalls 675 631 (93.5%)
4 syscalls 745 726 (97.4%)
5 syscalls 681 674 (99.0%)
6 syscalls 636 627 (98.6%)
7 syscalls 577 580 (98.8%)
8 syscalls 522 521 (99.8%)
9 syscalls 495 495 (100%)
10 syscalls 433 431 (99.5%)

Table 4.1: Overlapping sequences per each length class

quence length, the figure shows one boxplot representing the number of
WinAPIs matching for each syscall sequence of that length. The orange
stripe in the middle of the box indicates the median value of the number
of APIs matching, meaning that 50% of the sequences of that length match
with that many APIs or more. The lower and upper borders of the box indi-
cate the first (Q1) and third quartile (Q3), respectively, while the whiskers
mark a one and a half interquartile range above and below Q3 and Q1, re-
spectively. The circles above the whiskers represent outliers matched by
many more APIs than the average.

The graphs suggest that the longer the syscall sequence, the less ambigu-
ous it is, as fewer WinAPIs can produce them. Intuitively, this seems rea-
sonable: longer syscall sequences are more specialized, which in turn
means that only a few highly specialized WinAPIs can invoke them.

None of the measurements presented so far highlighted an unsur-
mountable obstacle that hinders the reconstruction of WinAPI-level se-
mantics from syscalls. As a matter of fact, not only the syscall sequences
produced by the same API are relatively similar, but also, notwithstanding
few exceptions, each syscall sequence matches only a few APIs or, in most
cases, a single APIL.

So far, however, we have considered only single syscall sequences, and
attempted to find which API may have invoked them. This simplified sce-
nario does not model what handling an entire syscall trace is. By process-
ing one sequence at a time, we implicitly assume that, on a syscall trace,
we can identify the start and endpoint of each API. Unfortunately, this is
never the case in a real-world scenario.

What we have yet to consider is that the syscall sequences in our knowl-
edge base can partially overlap. Incidentally, we believe this is what makes

4.6. Discussion 79

the reconstruction process extremely challenging in real scenarios. Ta-
ble 4.1 reports the number of overlapping syscall sequences in our knowl-
edge base, divided by length. We only considered sequences whose size
is greater than two syscalls, but less than ten. We labeled a sequence as
“overlapping” if it contains any known shorter sequence. The results of
these measurements unveil how ambiguous the syscall sequences really
are. For each length class, overlapping sequences represent 90% of the to-
tal. Notice that we purposely did not consider the 1-syscall long sequences
in the knowledge base. If we were to consider those in the measurement,
the number of overlapping sequences would be even more significant.

4.6 Discussion

This section discusses the applicability in real-world scenarios, and the
implications of our work, defining a roadmap for the security community
to address the flaws we discussed in this paper. We start by describing
the drawbacks that might limit the adoption of our bypass approach by
real-world malware. We then move to examining the classes of security-
oriented software that need to be adjusted and how. Finally, we survey
possible avenues to further investigate the API semantic reconstruction
from syscall traces.

4.6.1 Applicability of Our Approach in Real-World Programs

Given that we only implemented our approach in proof-of-concept form,
one legitimate question is whether malware could use this mechanism for
evasive purposes.

A first concern could regard the out-of-the-norm size of the executa-
bles that our procedure generates. Even to implement simple func-
tionalities, programs compiled with our approach easily reach tens of
megabytes in size, which is orders of magnitude bigger than regular mal-
ware [UPGB19b]. However, this argument does not stand because regular
software often reach several tens of megabytes in size, meaning that a big
size would not be a distinctive characteristic of the executables compiled
with out approach. Indeed, malware analysts have reported that some
malware families, for example LoudMiner, embedded entire virtualiza-
tion stacks in their samples, suggesting that they care more about stealth-
iness than size [ESE]. Furthermore, by applying more binary analysis to
the Windows DLLs, it could be possible to reduce even more the size of
the executables by pruning all the code in the custom runtime that is not

80 80

vital to the functionalities the program uses. Another alternative is that
these payloads could be obfuscated and embedded as “PE resources”, or
even downloaded from network end-points at runtime.

Another possible concern about the current implementation of our
approach is that it generates version-specific executables. This is due to
the custom runtime being based on version-specific Windows libraries.
While we acknowledge this as a valid argument, we do not believe that pro-
ducing version-specific programs is a fundamental flaw of our proposal.
In the first place, our approach in its current version could be used for mal-
ware running only specific versions of the Windows operating system, for
example for targeted attacks. Moreover, with minor modifications, our ap-
proach can be used to embed more versions of the custom runtime in the
same binary. During the online phase, then, the program would choose
which runtime to employ based on the version of Windows on which it
runs.

We also envision a common solution for both problems described
above. With enough development effort, it is possible to setup a sort of
“custom-runtime delivery networks,” through which malicious actors can
provide their malware with the custom runtime. To support this mode of
operation, one could implement a preliminary stage in the online phase to
discover the current version of the operating system, and then download
the corresponding custom runtime from the network. Since the executa-
bles developed with this approach do not need to embed any custom run-
time, their size will be comparable to that of the average malware sample.

A third critic could point out that a program containing known Win-
dows libraries is already suspicious. To put it another way, one could ap-
ply the simple heuristic of marking executables embedding any Windows
library as malicious. This argument has its roots in the observation that
malware is indeed the only class of software with enough incentives to
adopt such an approach, i.e., regular non-malicious software will never
embed the Windows libraries in its executables. While this heuristic can
work on the current version of our approach, nothing prevents malicious
actors from obfuscating the produced executables by packing or crypting,
effectively defeating any attempt to recognize the Windows libraries stat-
ically.

4.6.2 Beyond API-level Encoding of Malware Behavior

Asdocumented in Section 4.3, current API-monitoring solutions have fun-
damental flaws that allow attackers to bypass the instrumentation, effec-

4.6. Discussion 81

tively hiding their malicious actions. While it was known to the secu-
rity community that these API-based solutions are bypassable, this paper
shows that automating and “scaling up” the evasions is more feasible than
previously thought.

The bypass strategies that malware has adopted so far are naive and
cumbersome, limiting their applicability to simple tasks. However, we
showed that a more “programmer-friendly” approach to API-monitoring
bypass is not only possible, but also completely within reach of malicious
actors. We believe that it is only a matter of time before analysts start
encountering malware shipping more sophisticated and universal bypass
techniques.

To mitigate this upcoming threat, the security industry needs to renew
its current approach to malware behavioral analysis, moving from an API-
centric conception towards a more resilient and harder to bypass syscall-
centric one.

End-point protections such as EDR and antiviruses raise particular
concern. Too often these tools employ user-space techniques for API trac-
ing, in order to help preventing malware infection at runtime. These ap-
proaches, which the red teaming community already considers frail [Mos,
Bui], will be less effective in facing this type of threat.

Finally, dynamic analysis sandboxes would need to be revised too,
since several products of this class have behavior analysis based on API-
tracing as one of their main selling points. In fact, even the most sophisti-
cated techniques (e.g., emulation, virtual machine introspection) cannot
guarantee sound API traces.

4.6.3 Considerations on the Semantic Reconstruction Problem

The measurements exposed in Section 4.5 highlight that the task of recov-
ering the WinAPI-level information from a syscall trace is complex and nu-
anced. Despite remaining an open problem, reconstructing high-level se-
mantic from low-level (but trusted) sources still stands as our best chance
to counter malware that has more and more incentives to conceal its be-
havior from analysis systems and antiviruses.

The difficulty that lies at the heart of this problem, is the inherent am-
biguity that syscalls carry. As our experiments showed, different APIs use
the same syscalls, often in the same order, making them tricky to distin-
guish in practice.

We believe that the key to solve the semantic reconstruction problem
in the general case is to reduce the sources of ambiguity.

82 82

One possible strategy could be to aggressively prune noisy syscalls, in
a similar way to what we did in our experiment. Removing those spuri-
ous syscalls whose invocation is a mere byproduct of low-level mechanism
(e.g., synchronization, heap management) can reduce the traces’ ambigu-
ity. One could go as far as ignoring any syscall that is not security sensitive.
This, however, comes at the price of giving up reconstructing those APIs
that rely solely on the ignored syscalls.

Another avenue to simplify the reconstruction problem can be to
inspect, at analysis time, the parameters of the syscalls — especially
those involved in local procedure calls. As we described in Section 4.5.4,
WinAPIs use ALPC when they need to access a service provided by a sys-
tem user-space process. This is the case of several WinAPIs, including net-
work operations and cryptographic primitives. Unmarshaling the data ex-
changed between the analyzed process and the service provider yields less
ambiguous information, closer in semantics to that of the corresponding
API. CopperDroid [TKFC15b, RFC13] adopts a similar approach to recover
semantic data from binder transactions, roughly the equivalent of ALPC
for the Android operating system.

4.7 Related Work

Over the last decades, as the malware threat grew, the security community
has responded by thoroughly studying trends and refining analysis tech-
niques for delivering the best possible countermeasures to the end-user.
In this section, we analyze the closest previous researches to ours, catego-
rizing them into four groups.

Employing API traces for behavior analysis. By virtue of the high-level
semantic they carry, WinAPIs found a prominent role in encoding mal-
ware behavior. For example, researchers employed API-level information
to characterize the behavior of spyware [KKB*06], botnets [SM07], and,
more recently, ransomware [HBZ18]. Ki et al. [KKK15] proposed employ-
ing WinAPI sequences as an indication of compromise. Recent works by
Rabadi et Teo [RT20] and Pirscoveanu et al. [PHL115] even used API-level
information for machine learning-based malware detection. Despite their
unquestionable contribution to the field, all these work rely on correct
API-level information, which unfortunately cannot be always trusted. As
we described in this paper, no mechanism ensures capturing API traces in
a reliable way. To make things even worse, malware authors are already
moving towards not using APIs at all.

4.7. Related Work 83

API-level information collection. To the extent of our knowledge, the first
attempt at API tracing dates back to 1999, when Hunt et Brubacher [HB99]
introduced the technique, today known as API hooking, that many secu-
rity solutions employ, such as dynamic analysis sandboxes [OM13] and
EDRs [Com]. The research community has also proposed several other
mechanisms to collect API-level information in different contexts. For ex-
ample, various works [KISH13, CML*21, CMF*18] refined import table
reconstruction from obfuscated malware. As we covered in more detail
in Section 4.3, all these previous attempts to gather API information im-
plicitly assume that the analyzed malware employs the WinAPIs, which it
is not necessarily the case.

Documenting bypassing techniques. Throughout the years, the secu-
rity industry made a considerable effort to report new trends in malware
evasion techniques. Several blog posts by both antivirus companies and
malware analysts detailed malware families evading API hooking by em-
ploying direct system calls technique [Mala, Fir, Cybd, Cyba, Malb], and
sketched mitigations against it [Cybb].

ScareCrow [Sec] provides anti-hooking functionalities by modifying
the code of the system libraries loaded in memory at runtime. In particu-
lar, ScareCrow reads the preamble of the functions it intends to use from
the system DLL on the disk and re-writes them in memory, overwriting the
hooks that EDRs may have introduced. This approach assumes that the
DLL on the disk is genuine, which is not necessarily true. Analysis tools
may, in fact, modify the library on the disk.

Kawakoya et al. [KSO"17] proposed StealthLoader, a custom user-
space loader that programs can use to map system libraries, theoretically
defeating API monitoring solutions. Despite resembling ours, this ap-
proach presents several limitations that we overcame. In the first place,
StealthLoader also makes the wrong assumption that the libraries on the
disk are genuine. Our approach does not have this limitation: By em-
bedding its own custom runtime, a program compiled with our tech-
nique does not need to trust the DLLs found on the system. Furthermore,
StealthLoader does not include any mechanism to cope with libraries al-
ready loaded at the beginning of its execution. As the authors acknowl-
edge, this limits the number of WinAPIs that StealthLoader supports. For
example, StealthLoader cannot support APIs that manipulate heap ob-
jects, which most programs use.

Behavior reconstruction from syscalls. Previous works acknowledged
the inherent ambiguity in syscall traces and attempted to recover mali-
cious behavior from them. Accessminer [LBK+ 10, FLBK15] modeled what

84 84

benign syscall interactions looked like and employed them for malware
analysis, using an anomaly-based detection strategy. In the context of the
Android ecosystem, previous works have attempted to reconstruct the API
semantics from syscall traces. Copperdroid [TKFC15b, RFC13] recovers
Android Service invocations, by unmarshaling the data that the applica-
tion under analysis and the service managers exchange through the ioctl
syscall.

Chapter 5

Towards Reconstructing API
Information from Syscalls

Exploring the Semantic Gap between APIs and
Syscalls in the Android Operating System

5.1 Introduction

In the realm of malware analysis for Android apps, dynamic analysis ap-
proaches and instrumentation techniques are at the foundation of vir-
tually all existing analysis frameworks, developed by both academia and
industry [GZZ" 12, ZWZJ12, FADA14, ARF*14, GKP*15, LNW' 14, WL16,
HTP15, Devl7, fri]. While dynamic analysis approaches can take many
forms, they all share one key aspect: given an application, the goal is to
“capture” all actions it performs during its execution. To this end, these
apps are run in an instrumented environment, which records a trace of
the app’s behavior.

API-level tracing. In Android, most of these approaches aim at producing
a list of high-level API calls performed by the app under analysis. These
high-level API calls are Java methods exposed by the Android framework,
a vast extension of the Java SDK. These methods include standard Java
methods (e.g., string operations, networking primitives), as well as a large
corpus of Android-specific methods, such as APIs dealing with building
Android user interfaces, inter-app interactions, reading values from de-
vice’s sensors, sending and receiving text messages. Having access to an
accurate trace of invoked APIs is of great importance. In fact, these APIs

85

86 86

capture the high-level, semantic-rich behavior of an app and allow both
human analysts and automated approaches to detect and characterize
both malicious and unsafe actions the app could perform.

These approaches work by heavily instrumenting the app itself or
the execution environment (e.g., by function hooking). Unfortunately,
to date, all current API-level instrumentations can be easily detected
and bypassed [ABF"16]. The key problem is that these instrumentation
mechanisms all introduce visible instrumentation artifacts, which co-
exist within the same security boundary as the app itself. Acquiring these
high-level traces require heavy instrumentation, which is hard to imple-
ment efficiently and it is trivially detectable by malware, which could de-
cide not to show any malice when instrumentation is detected [YIT*16].
Android apps can also contain components written in native code, whose
behavior cannot be captured if the app’s instrumentation is only per-
formed at the Java API level. More importantly, previous works have
shown that the mere presence of native code can make the results of the
analysis of the Java layer not only detectable and evadable, but even mis-
leading [ABF'16]. In fact, since native code components and Java code
run within the same security boundary, native components could surrep-
titiously modify the intended functionality of Java components making
high-level recordings of an app’s behavior completely unreliable. These is-
sues severely affect the reliability of acquiring high-level API-based traces.

Syscall-level tracing. A different approach consists in capturing the ac-
tions performed by an app by recording its low-level interactions with the
operating system, specifically, by recording the system calls (syscalls) it in-
vokes [TKFC15a, DAUR16]. This approach is not affected by the limita-
tions mentioned above. In fact, regardless of the language used to imple-
ment the different app’s components, to interact with the operating sys-
tem, the app needs to eventually invoke a system call. Moreover, this kind
of instrumentation is harder to detect, since it can be easily implemented
entirely by code running in kernel mode, not visible to the analyzed mali-
cious app.

Bridging the semantic gap. Given the security guarantees that ap-
proaches based on syscall-level analysis would get us, it is clear that, ide-
ally, this approach should be preferred. In practice, however, the informa-
tion they extract is too low level, making their results difficult to be inter-
preted. The conceptual problem is that, in the general case, it is challeng-
ing to recover the high-level semantics of an app’s behavior solely start-
ing from the list of recorded syscalls. For instance, even a simple opera-
tion, such as instantiating an SSL connection to a remote server, which

5.1. Introduction 87

an Android app can perform by invoking a single high-level API, gener-
ates a complex sequence of multiple syscalls, most of them seemingly un-
related with the triggering of the high-level functionality. In this specific
case, for instance, the complexity is due to the fact that the analyzed app
ultimately has to invoke a series of syscalls belonging to different techni-
cal areas to complete this task, including inter-process communication
with the system service that provides the trusted CA certificates, random-
number generation for creating the nonce used to setup the connection,
and network-related syscalls to perform the handshake with the remote
server. While there are few works that reconstruct parts of this behav-
ior (e.g., CopperDroid [TKFC15a] focuses on reconstructing the semantics
of specific activities, including Binder-related operations), it is not clear
whether reconstructing this semantics gap is in fact possible or practical
in the general case. In fact, even though it may be practical to scan for spe-
cific patterns in a sequence of syscalls, traces often contain thousands of
syscalls that do not seem to relate to any common pattern.

Goal of this work. To date, we are not aware of any work that actually in-
vestigates the feasibility of reconstructing the high-level semantics from
generic low-level syscall traces. The goal of this work is to fill this gap: this
chapter presents the first systematic exploration of the challenges and fea-
sibility of bridging the gap from trustworthy system calls to semantics-rich,
but difficult-to-obtained high-level APIs.

To this end, we have built a new analysis framework aiming at explor-
ing the complexity of this research problem with a data-driven approach.
The first key challenge is the scale: by dynamically analyzing 750 Android
apps, we have collected data on over 40 million API invocations, which
in turn generated over 13 milion syscalls invocation (interestingly, many
APl invocations do not invoke any syscall). We then process this low-level
data to build a knowledge base of so-called “models,” which aim at sum-
marizing the big amount of raw data that we have collected in the previ-
ous step, to make it more viable for subsequent analysis. The complexity
of the Android framework, the high number of exposed high-level APIs,
the API's non-deterministic behavior, and the overlap generated by these
APIs, make the analysis of this dataset far from trivial. To the best of our
knowledge, this work performs the first data-driven exploration of this
problem space, and it provides evidence that this is a very difficult prob-
lem, significantly more challenging than what previously thought.

In summary, this work brings the following contributions:

* We systematically explored the research problem of semantically

88 88

lifting a generic trace of performed system calls to a trace of invoked
high-level APIs, with a focus on Android.

* We built a large-scale, annotated dataset that maps high-level APIs
to the various “representations” of low-level syscall traces, and we
provide an in-depth discussion of patterns and other interesting as-
pects.

* We develop and test different approaches attempting to perform the
aforementioned semantic lift problem, and we show that this is a
much more difficult problem than what previously thought.

* We provide recommendations and lessons learned that future work
needs to consider when tackling this problem.

In the spirit of open research, we make our instrumentation frame-
work, the collected dataset, and the analysis results publicly available at:
https://github.com/eurecom-s3/syscall2api.

5.2 Background on Dynamic Analysis

Android framework API. Programming languages are commonly divided
in two categories, depending on whether they provide a high- or a low-
level abstraction over the computing system. High-level programming
languages provide to the programmer a closer experience to a natural lan-
guage and they are designed to perform complex tasks in few lines of code.
On the other hand, low-level programming languages allow the program-
mer to interact with those aspects of computation that high-level pro-
gramming takes for granted.

High-level programming languages expose to programmers a set of
functionalities, called Application Programming Interface (API). In An-
droid, these APIs are implemented in the so-called Android Framework.
Some of these APIs are not implemented solely in Java, since their behav-
ior exceeds the expressiveness of this language. They rely instead on the
Java Native Interface (JNI), which provides a bridge toward parts of the
framework written in C or C++. This is the case for some of the most com-
plex and, arguably, the most security relevant APIs, like those that handle
the personal data of the user, interact with the broadband, access the In-
ternet, etc. Indeed, those functionalities require the intervention of the
operating system to be accomplished. Being based on the Linux kernel,

https://github.com/eurecom-s3/syscall2api

5.2. Background on Dynamic Analysis 89

in the Android operating system a user space application can take advan-
tage of the services exposed by the kernel by means of system calls (syscall
from now on).

Even though it is true that any security sensitive operation is per-
formed by means of syscalls, the contrary is not true. In fact, a vast num-
ber of syscalls are actually invoked to implement behaviors that are not
strictly security-sensitive, such as user interaction, memory management,
and thread synchronization.

It is important to note that not only the framework, but also apps can
contain pieces of code written in low-level languages. Moreover, both the
high- and low-level code run in the same process and with the same priv-
ileges and there is no security boundary between the two. This is a com-
mon misconception, which led previous works to overlook the role of na-
tive code in the realm of Android dynamic analysis [ABF ' 16].

Dynamic analysis. Understanding the behavior of a program is an im-
portant step toward determining whether it is malicious or not. Dynamic
analysis aims to gather this information from running the program in a
controlled environment, recording as much evidence of malicious activi-
ties as possible.

Dependingon the type of the controlled environment, the collected in-
formation can vary. Execution traces are one of the most common types of
evidence collected during dynamic analysis and they describe a timeline
of what was executed in the context of the program under analysis. Differ-
ent granularities are possible, including API- and syscall-level traces.

API tracing records all the high-level functions invoked during the exe-
cution. Different mechanisms have been proposed to obtain such traces,
including framework modification, run-time hooking and Ahead-of-Time
(AOT) compilation instrumentation. Unfortunately, all of them can be de-
tected and evaded by native code components.

Framework modifications, for example, can be identified by a mali-
cious application through memory introspection. Moreover these tech-
niques rely on the assumption that the program uses the default run-time
provided by the system, but a malicious application could ship its own
run-time library as a native library, avoiding completely the instrumen-
tation. Run-time hooking and AOT compilation instrumentation suffer
from similar problems. They both assume that the malicious code is im-
plemented by the app in the high level language. However, the malicious
behavior could be perpetrated by the native code, for example by mim-
icking the same syscalls that the framework would invoke to complete the
same task. More fundamentally, the fallacy of API tracing mechanisms re-

90 90

sidesin that the instrumentation is in the same security context of the pro-
gram under analysis.

On the contrary, syscall traces can be obtained directly from the kernel,
ina transparent way from the program perspective. There are several tech-
niques to acquire syscall traces, the two most prominent being strace, a
ptrace-based mechanism, and SystemTap [EH06], which inserts probes in
kernel space and logs relevant information. The main drawback of syscall
tracing is that the information collected are difficult to interpret. Finding
evidence of malicious activity from a syscall trace alone can be a hard task.

5.3 Challenges

Reconstructing the semantic gap from a syscall trace is a task made partic-
ularly difficult by several challenges, which this section systematizes. We
note that the discussion of these challenges is “conceptual” — a priori, it
was not known whether these challenges would or would not actually pose
problems when dealt with in practice. To the best of our knowledge, in fact,
no previous work has ever explored the actual practicality issues that these
challenges create. One of the contributions of this work is to fill this gap: as
we will present throughout the chapter, our experiments provide the first
data-backed evidence that these challenges do cause profound problems.

Multiple possible execution paths. The first challenge is that different
invocations of the same API could follow different execution paths. This
could be the case for anumber of reasons. An API could behave differently
depending on the arguments with which it has been invoked. However, its
behavior could also differ depending on the execution environment and
context. Different execution paths of course imply that the number and
type of syscalls that are executed upon API invocation can widely vary. For
example, consider an HTTP-related API: from the perspective of syscalls
invocations, the recorded trace can widely change depending whether the
API's argument is a valid URL, or whether the device has network connec-
tivity. These aspects can clearly influence whether we would see network-
related activity in the syscall traces.

Non-determinism. Another potential problem is non-determinism. With
this term, we refer to those cases for which even if an API is invoked with
the same arguments and within a “similar” environmental context, the
syscall traces could still differ due to inherent non-determinism of the sys-
tem or because of very subtle “internal” differences (e.g., the current in-
ternal state of the memory allocator). Naturally, one could argue that the

5.3. Challenges 91

lowest-level aspect of the system could be considered as part of the “con-
text” and that this challenge is overlapping with the previous one. This
would be, of course, a valid argument. Nonetheless, we opted to make this
distinction explicit due to the different nature of the source of potential di-
vergent behaviors. As we will discuss throughout the chapter, the different
nature greatly influences the frequency with which such non-determinism
arise and how these problems should be tackled in practice.

Multiple layers of APIs. The Android framework is organized as a com-
plex, multi-layer system of APIs: each AP], especially the ones “exposed” to
third-party apps, are implemented by invoking several others lower-level
APIs. Indeed, it is rare that a high-level API directly invokes syscalls. This
means that, when dealing with these higher-level APIs, every potential be-
havioral difference and non-determinism that affect lower-level APIs will
be somehow combined—in a potentially combinatorial way. This makes
capturing all different behaviors of a non-trivial API very challenging in
the general case.

Inherent ambiguity of syscall traces. Different APIs often use the same
syscalls to implement their behaviors. In other words, a given sequence
of syscalls can (and often does) overlap across the execution of different
APIs. From the perspective of analyzing a syscall trace to then understand
which APIs have been actually invoked, this poses a significant challenge:
it is very complex to “go back” with certainty as there are many different
possibilities that may explain a particular sequence of syscalls. We then
say that these syscall traces are ambiguous as it is often not possible to
determine which, across a number of potential candidates, is the real API
that has been actually invoked.

No clear boundaries. Given a syscall trace, it is challenging to determine
when the syscall sub-trace of a specific API is starting or ending. In fact,
there are no clear-cut markers signaling these aspects, and traces of dif-
ferent APIs (or even of the same one) may have different lengths. This as-
pect, together with the other aspects and the combinatorial nature of how
low-level APIs are used to implement higher-level APIs, makes associating
a series of syscalls to a given APl much more challenging.

Event-based nature of Android apps. Android apps are written follow-
ing an event-driven paradigm, which implies that apps often make use of
callbacks. The classic example is the definition of an onClick callback to
define what should happen when the user clicks on a specific button.
This pattern often causes several, nested control flow transitions from
the Android framework to the Android app, and vice versa. In fact, con-

92 92

API
Models

Analysis Pipeline
Apps \ | Execution Y\ Knowledge
Dataset Traces Base

Figure 5.1: Overview of the approach.

Modeling
Algorithm

sider what happens in the scenario where a user clicks on a button: 1)
the control flow transitions from the framework to the onClick callback
method, implemented in the app; 2) the onClick method may invoke sev-
eral Android APIs, which would cause the control flow to transition back
to the Android framework; 3) when the execution of these APIs is over,
the control flow goes back to the onClick method; 4) when the onClick
method ends its execution, the control flow goes back to the Android
framework once again. These various control flow transitions make our
analysis significantly more complicated. We note that these problems
do not affect more traditional programs that do not heavily rely on asyn-
chronous callbacks.

APIs cannot be invoked without proper context. With the aim of col-
lecting data about which syscalls are invoked by which API, one possi-
bility would be to consider each API separately and automatically invoke
it within an instrumented environment. Unfortunately, this approach
would not work in practice. In fact, the vast majority of APIs need to be
invoked with the appropriate context, or otherwise they would quickly
quit their execution due to errors. Moreover, many of these APIs require
a proper “receiving” object to be invoked on, and the automatic creation
of such objects is a very challenging task per-se.

5.4 Approach

This section discusses how we approached the various challenges dis-
cussed in the previous section. Our approach is summarized in Figure 5.1.

The first step of our approach consists in building a dataset contain-
ing which syscalls are invoked by which API. Conceptually, the idea is to
use this dataset as a sort of ground truth, to then use it to perform addi-
tional experiments. As mentioned earlier, this task is challenging per-se.
In fact, we cannot just create code to execute the various APIs, as we would
not know with which arguments we would need to invoke them and from
which context. We approached this problem by taking a large number of

5.5. Knowledge Base 93

API A: Entering
Syscall w
Syscall x
API B: Entering

Syscall y
API B: Exiting
API C: Entering
Syscall z
API C: Exiting
API A: Exiting

Listing 5.1: Example of an analysis trace.

benign Android apps and by executing them in an instrumented environ-
ment to produce both API- and syscall-level traces. This step is discussed
in Section 5.5.

This raw data is sparse and contains a remarkable amount of redun-
dancy, and the scale of this data does not make it suitable to be used for
additional analysis without a pre-processing step. Thus, in a second step,
theraw datais then organized in a data structure (that we refer to as know!-
edge base), which lays the foundation for subsequent analysis. For this
step, the idea is to eliminate unneeded redundancy and to somehow ob-
tain a concise representation of what contained in the dataset. The output
of this analysis is a set of so-called API models. These models offer a “us-
able” over-approximation of all the behavior collected during the initial
analysis phase (see Section 5.6).

The specifics of these API models have been designed to be useful for
two different purposes. First, we perform the first empirical data explo-
ration on this peculiar dataset (see Section 5.7), and we use it to uncover
patterns and high-level metrics that show how challenging the problem of
semantics reconstruction actually is. Second, we use these API models to
take the first steps toward mapping a generic sequence of syscalls to their
associated APIs, as discussed in Section 5.8.

5.5 Knowledge Base

In this section we present the methodology we followed to create our
knowledge base. We started by considering a set of benign Android apps,
which we then analyzed within our analysis framework, discussed in this

94 94

section. This analysis framework consists in an instrumented environ-
ment capable of logging traces of both syscalls and APIs. These raw anal-
ysis traces are then parsed and loaded in a more suitable tree-based data
structure.

5.5.1 Analysis Tracing Pipeline

Syscall-level tracing. To log the syscalls invoked by a given app we relied
onstrace, whichisarobust, off-the-shelftool based on the ptrace syscall.
For each syscall, we traced the timestamp, the calling thread id, the syscall
name and its arguments. For obvious performance reasons, this behavior
can be selectively enabled on the application under analysis only, so to
avoid to slow the entire system down with unneeded instrumentation.

We note that, in principle, relying on strace has two disadvantages.
First, it can be detected by an app. While this is true, this is nota problem at
this stage because our goal is to collect the behavior of benign apps, which
we assume to not contain anti-debugging techniques. Moreover, strace
can be completely implemented in kernel space [HKFK18, EH06], making
itmoreresilient to anti-debugging techniques and suitable for the analysis
of malicious programs. Second, strace can cause a significant slowdown.
However, once again, this is not a significant concern in our scenario as
we are analyzing apps to collect “as much behavior as possible,” and we do
not necessary need to cover “all” the behavior of an app. In other words,
while the slowdown may make us lose some behavior, this aspect does not
threaten the validity of our experiments. The aspect that is actually of crit-
ical importance is that all the events (both syscalls and APIs) are logged in
the appropriate chronological order, which is the case for our system.

API-level tracing. To log the APIs invoked by a given app, we first con-
sidered well known instrumentation frameworks, such as Xposed [Dev17]
and Frida [fri]. In fact, one of the main features of these frameworks is the
possibility of tracing specific APl methods. Unfortunately, it turns out that
when attempting to hook more than a few hundreds APIs, these frame-
works make the system unstable, leading to repeated crashes. This is a
problem as the Android framework is constituted by tens of thousands of
APIs.

To this end, we have developed a new solution, which is based on
source code instrumentation. By means of JavaParser [javb], we automati-
cally instrumented all the public methods in the AOSP framework. In par-
ticular, we added a call to 1ogApi () —a new static method that we defined
inthe java.logging.Logger class—at the entry pointand at all exit points

5.6. API Models 95

(e.g., return statements, catch blocks of exceptions) of every instrumented
method.

The logApi method takes a string as its first argument, which our in-
strumentation pass uses to specify which API has been invoked. In par-
ticular, this string contains the name of the instrumented method and
whether the call originates from an entry point or an exit point (i.e.,
whether the method has been just invoked or whether its execution is
aboutto end). Under thehood, this 1logApi method simplyinvokesawrite
syscall, using as an argument the same argument received by the logApi
method itself.

This technical solution gives us a setting where both syscalls and APIs
logging converge in the same unified tracing channel. Since these analysis
traces are also thread-aware (by simply logging the thread id of the thread
that invoked the API or syscall), all the log entries are already chronologi-
cally ordered and consistent, by design.

Example of an analysis trace. The result of this step is a merged anal-
ysis trace, which contains both syscalls and APIs, with the correspond-
ing thread id and timestamp. Listing 5.1 shows an example of an analysis
trace. In the listing, it is possible to see how the system can transparently
log both enter and exit events for both syscalls and APIs.

5.5.2 Building a Knowledge Base

The analysis traces created in the previous step contain all the informa-
tion collected, but they are not easily processable. To this end, we post-
process these traces and we organize them in a more suitable data struc-
ture. This structure consists in a key-value store in which each key is the
fully qualified method name of an API, and each value is a list of entries,
each of which represents a specific instance of an API invocation. Each of
these entries contains a list of events recorded between the start and the
end of that specific instance of the API invocation. The events can either
be “syscall invocation” or “API invocation.”

5.6 API Models

Invocations of the same API usually share common features but they are
not always completely identical. For example, the two different branches
of an if-else construct in the API code can lead to different sequences of
API calls or syscalls (see Section 5.3 for a more systematic discussion of

96 96

similar challenges). The knowledge base discussed in the previous section
contains all relevant information and it can be already used as a source of
interesting data. However, it cannot be used to recover the high-level se-
mantics without some kind of pre-processing. The reason for this is that
APIs can potentially have a big number of different invocations (see Sec-
tion 5.7) and each invocation can be significantly different from others.

In this section we introduce the concept of API models, their design
and the rationale behind it. We then present an algorithm that creates API
models starting from the invocations of an API. The last part of this section
discusses how a sequence of syscalls can be then matched against these
API models.

5.6.1 Anatomy of an API Model

In the context of this work, an API model is an object that summarizes the
common features between different invocations of the same API. A model
is constituted by an ordered sequence of symbols representing the vari-
ous APIs and syscalls found in the invocations. Each symbol in the model
can have an optional modifier that indicates that it can appear up to an
unlimited number times.

API models represent an over-approximation of all the information
stored in the knowledge base. In fact, by assuming that a syscall pattern
can be repeated up to an unlimited number of times, an API model can
match sequences that have not been observed in the API invocations.

The choice to model repetitions of syscalls in this way is driven by
the intuition that repeated patterns generate from loops in the execution.
Those loops can be repeated either a fixed or a variable number of times.
Our API models make use of the repetition modifier only if the same pat-
tern has been observed repeating itself a different number of times in dis-
tinct invocations.

5.6.2 API Models Creation Algorithm

The model creation phase consists in applying a two-step algorithm to all
the APIs in the knowledge base. In the first step we identify all those in-
vocations that are identical according to the following definition: fwo in-
vocations are identical if they contain the same API calls and syscalls in the
same order. Note that the syscalls arguments are not taken into account.
Duplicate invocations are not taken into account from further processing.

5.6. API Models 97

In the second step the algorithm processes each of the remaining invo-
cations to create a list of models for each API. In particular, the algorithm
proceeds as follows. It first attempts to find the longest repeated patternin
the invocation under analysis. If a repeating pattern is found (e.g., a single
syscall or a sequence of syscalls that keep repeating itself), the algorithm
creates a model similar to the original invocation, except for the repeat-
ing pattern that is marked with the repetition modifier. This model is then
checked against the other invocations. If at least one of them produces a
match, the generalization is considered “useful” and the model is added
to the list of API models. If not, it means that this over-generalized model
was not useful: the algorithm thus discards it, and adds to the list of API
models the trivial model matching the “exact” invocation under analysis.

5.6.3 API Models Matching

Once these API models are computed, the next step is to approach the
mapping problem. Given a sequence of syscalls, this problem aims at de-
termining which API is the most likely to have generated such a sequence.
In a way, the goal is to map a given sequence to the “correct” API. There are
of course many different possible algorithms and strategies to implement
this.

For this work, we opted to implement two extreme strategies: the
longest match and shortest match strategies. In both cases, the algorithm
starts from the very beginning of the syscall sequence. It then considers
all the API models in our database and it determines which of these API
models actually match the given sequence of syscalls. The algorithm then
selects the longest (or the shortest) of these matches, and this initial se-
quence of syscalls is considered as covered. The algorithm then proceeds
by applying the same method to the sequence of syscalls that followed the
one that is covered by the selected API model.

We note that this constitutes the first step into reconstructing the API
trace starting from a sequence of syscalls. We present an evaluation of
these two strategies in Section 5.7. Of course, we acknowledge that there
are in fact many other potential strategies. However, we believe that con-
sidering these two extreme strategies is a promising first step toward un-
derstanding and exploring this relevant research problem.

98 98

5.7 Data Exploration

This section explores our knowledge base (KB) by discussing interesting
statistics and insights. We start by giving more precise information about
the apps that we analyzed for collecting the analysis traces and the ex-
perimental setup. We then present measurements about the information
stored in the KB. These measures provide empirical data highlighting the
difficulties in reconstructing the high-level semantics from generic low-
level syscall traces. Specifically, we will show how the APIs in the KB are
very diverse and, because of their nature, how different APIs present dif-
ferent challenges for semantic reconstruction. We will also show how a
human analyst can query the KB and how this is important in highlighting
the problematic nature of two aspects, namely noise and ambiguity, mak-
ing semantic reconstruction a task more challenging than what previously
thought. We then explore these two aspects in an automated fashion and
we discuss the gained insights in Section 5.7.3 and 5.7.4, respectively.

5.7.1 Apps Dataset and Experimental Setup

As mentioned throughout this chapter, we opted for a data-driven ap-
proach to explore the problem of semantics gap reconstruction. We build
our ground truth of analysis traces by recording the execution of a set of
750 apps. We collected these apps from the F-Droid Open Source Android
App Repository [fdr]. In particular, we selected all apps from this dataset
that used at least one dangerous permission. The rationale behind this
choice is that these apps would tend to be more complex than others not
requiring any permission, and would thus have more chances to expose
interesting behavior.

Each app was executed for five minutes on a Google Nexus 5X device,
which was previously instrumented with our modified Android frame-
work, as described in Section 5.5.1. We then used the Android Monkey
Runner [Goo] to stimulate the app’s user interface. We fully acknowledge
that the Monkey Runner is not sophisticated and may not trigger deep
parts of the app’s codebase. However, we note that the rationale behind
these experiments is not to fully cover a specific app, but to execute many
apps and collect what we can from each of them.

5.7.2 API Classification and Statistics

Our KB contains invocations for a total number of 4,630 distinct APIs. The
total number of API invocations observed is over 40 million, while the to-

5.7. Data Exploration 99

Leaf APIs Non-Leaf APIs

Empty APIs 1730 -
Monoform APIs 29 810
Multiform APIs 573 1488

Table 5.1: API occurrences in KB. Note: there cannot be Empty APIs that
are also Non-Leaf APIs

Leaf APIs Non-Leaf APIs

Empty APIs 2850 -
Monoform APIs 59 665
Multiform APIs 94 962

Table 5.2: API occurrences in KB (after noise reduction)

tal number of syscall that these API invocations invoked is over 13 mil-
ion. Note that the number of API invocations is larger than the number
of syscalls, which means that a significant number of API invocations do
not result in any syscall. In average, each API has been observed 8,721
times, while the average number of events in the invocation lists is 0.84
(3.63 without considering empty invocation lists).

We categorize the APIs according to two different aspects. First, we
consider how many different entries each API has in its invocation list.
That is, for each API we look at how many different syscall sequences
we have recorded in our dataset. We distinguish three different cases: 1)
Empty APIs, those whose invocations are all empty lists; 2) Monoform APIs,
those for which all the invocations are equals (and non-empty); and 3)
Multiform APIs, those that have at least two different non-empty invoca-
tions. Second, we cluster APIs according to the fype of events that each of
their invocations contains. For this aspect, we distinguish between 1) Leaf
APIs, those whose invocations contain only syscalls, and 2) Non-Leaf APIs,
those containing at least one API in their invocation lists.

Table 5.1 shows the occurrences of each category of APIs in our KB. It is
interesting to understand how each category of API plays a different role
in the context of semantic reconstruction. Empty APIs are those that are
completely implemented in user space and do not make any system calls.
For this reason, their behavior cannot be identified at all based on syscall
information only. Multiform APIs make the overall task of semantic recon-
struction very challenging because all of their invocations must be taken
into account. Our modeling algorithm, for example, could produce more

100 100

than one model for each API in this class. Monoform APIs, on the other
hand, are simpler because their only invocation can also be used as model.

Leaf APIs are the closest to syscalls in terms of seman-
tics. Some of them invoke always the same syscall (e.g., an-
droid.net.LocalSocket.setSoTimeout always executes the syscall set-
sockopt). They are also the easiest to reconstruct, since their behavior
can be recognized directly from the executed syscall. To reconstruct a
Non-Leaf API, instead, one needs first to reconstruct the other APIs that it
could invoke.

5.7.3 Noise Patterns Identification

While inspecting the data offered by our knowledge base, we came across
surprising insights. For example, we found some syscalls in the invoca-
tion list of a few of those APIs that were expected to be empty. One exam-
ple is the java.lang.StringBuilder.append API. Interestingly, while the vast
majority of the invocations of these APIs were indeed empty, (very) few of
these invocations contained peculiar syscall patterns that, at first glance,
we could not explain with the expected behavior of the API. To our sur-
prise, we then found that these patterns were also observed in the models
built for other APIs.

To investigate this unexpected finding, we developed a post-process
analysis pass to automatically identify similar cases. The key idea is to
perform anomaly detection. Our system identifies a model of an API as
an outlier if the model describes a number of invocations (of that API)
that is lower than a certain threshold (for our tests, we used 1/1000 as a
threshold). With this tool, we identified three “noise” patterns. The firstre-
lates to thread synchronization (e.g., futex, sched_yield and clock_gettime
syscalls). The second relates to memory management (e.g., madvise and
mprotect) or their combinations. Finally, the third pattern we identified
relates to the specific mallocimplementation in Android’s bionic Clibrary:
since it is used to obtain memory for the allocation of new objects, it can
potentially appear during the invocation of any API that allocates Java
objects—and, similarly to the other two cases, this is what causes the noisy
pattern.

To better explore the role that these noisy patterns have in our dataset,
we opted to eliminate from our models all the syscall patterns that con-
tribute to such noise (i.e., the ones mentioned above), since we believe
that these classes of syscalls do not carry any meaningful information that
can be used to reconstruct any API semantic. Table 5.2 shows statistics

5.7. Data Exploration 101

CDF 1-syscall long traces

1.0 + |

- 36

08 - - 32

- 28
0.6 4 - 24£
g - 208
i - 16°
0.4 "

- 12

0.2 - -8

-4

T T T T T T T T T T 0

0 3 6 9 12 15 18 21 24 27 30
Pattern Ambiguity

Figure 5.2: Pattern Ambiguity for 1-syscall long patterns

for each class of APIs in the KB after removing the noisy patterns. A com-
parison of these data with those in Table 5.1 suggests that noise reduction
leads to more consistent data. For instance, the number of APIs that have
two or more different invocations decreased by almost 50%.

5.7.4 Ambiguity Measurement

Another aspect we explored relates to the inherent ambiguity of models
included in our KB. For example, we noticed that some models overlap or
are identical, even though they belong to different APIs. This means that
potentially more than one API model can provide a match for the same
syscall pattern, leading to ambiguity in the results of any matching algo-
rithm.

With the goal of quantifying the ambiguity of the results in our dataset,
we define a new metric, which we call ambiguity score. This metricis anin-
teger number that can be computed for each pattern of syscalls. We define
this metric as the number of different APIs (in our KB) that match against
a given pattern of syscalls. We tackle this problem by considering syscalls
patterns of different lengths. Moreover, we consider two different values:
pattern ambiguity score and total pattern ambiguity score, the only differ-
ence between the two being that in the latter case we weight a pattern ac-
cording to how many times it appeared in our traces. Figure 5.2 and Fig-
ure 5.3 show the cumulative distribution functions (CDF) of the ambigu-

102 102

CDF 2-syscall long traces

1.0 - 27
_,—l—‘- 24
0.8 - - 21
B
- 18,
=
0.6 - Z
— - 158
z g
~ - 124
0.4 -
- 9 %
0.2 - 6
-3
T T T T T T T LB 0

0 1 2 3 4 5 6 7 8
Pattern Ambiguity

©

Figure 5.3: Pattern Ambiguity for 2-syscall long patterns

Shortest Match Longest Match
w/ noise w/onoise w/ noise w/onoise
Trace coverage 26.4% 45.2% 33.0% 61.5%
Correct matches 30.9% 38.9% 26.4% 46.9%

Table 5.3: Results of two variants of the matching algorithm.

ity score for 1-syscall and 2-syscall long patterns respectively (after having
removed the noise). Figure 5.4 and Figure 5.5, instead, plot the CDF of
the rotal ambiguity score, for the same patterns. These figures show the
data before and after removing the noise. For a better visual comparison
between the CDFs, the figures show the data around the point in which
the CDF of the noiseless KB reaches 1.0. The CDF of the noisy KB instead
reaches 1.0 at much higher abscissa (not shown in the figures), since it
raises at a slower pace with respect to those of the noiseless KB. This is
also true for the CDFs built for other syscall pattern lengths, meaning that
models built without removing the noise are more ambiguous than their
noiseless counterpart. Figures 5.6 to 5.11 show the CDFs for patterns of
different lengths (from three to up to five).

5.8. Exploring the Mapping Problem 103

Ambiguity CDF for 1-syscall long patterns

1.0 4~ = w/o noise

w/ noise

—

~0.8 4 P

0.6

0 4 8 12 16 20 24 28
Ambiguity

Figure 5.4: Total Pattern Ambiguity Comparison (1-syscall long patterns)

Method Class Package
Trace Coverage 61.8% 62.0% 63.1%
Correct Matches 46.9% 47.0% 49.3%

Table 5.4: Accuracy results under relaxed definition of correctness.

5.8 Exploring the Mapping Problem

This section discusses a first attempt to reconstruct the semantics gap of
a generic sequence of syscalls. The input to this step is a non-annotated
syscall trace and we investigate how two strategies would perform in this
context. The challenges discussed in Section 5.3 make this task particu-
larly difficult.

To this end, we define the notion of correct match as follows. A match
is correct if it spans the same syscalls of an API in the annotated trace and
if said API is in the set of those that the algorithm selected as candidates.
This means that a match is not considered correct if, for example, it covers
more syscalls than the ones actually produced by the API, or if it does not
start exactly on its first syscall.

We measure the results of the reconstruction process in terms of per-
centage of APIs correctly identified (i.e., the ratio between the number of
APIs correctly identified and the total number of APIs in the annotated
trace) and percentage of the traces covered by correct matches (i.e., the ra-

104 104

Ambiguity CDF for 2-syscall long patterns

1.0 |
]
30.8 T
2
0.6 T — w/o noise
w/ noise
T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10

Ambiguity

Figure 5.5: Total Pattern Ambiguity Comparison (2-syscall long patterns)

tio between the number of syscalls correctly assigned to a candidate API
and the number of syscalls effectively in the trace).

We implemented two variants of a matching algorithm: a shortest
match and a longest match policy. Table 5.3 reports the results in terms
of trace coverage (i.e., which percentage of the trace was possible to cover)
and correct matches (i.e., the ratio of matches that are correct). These re-
sults show that, clearly, the “longest match” heuristic results are better, as
it produces higher rates of correct matches and trace coverage in each sin-
gle test. Table 5.3 also provides a comparison of the results obtained by
adopting the models built before and after noise reduction. Itisinteresting
to note that not only noise reduction decreases the ambiguity (as shown
in Section 5.7.3), but it also increases the amount of correct matches.

We note that the results reported thus far use a quite aggressive defi-
nition of “correctness.” In a way, we consider a match correct if and only
if the algorithm is able to identify the specific, exact API. Since there are
cases in which different APIs belonging to the same class (or package)
actually have the same semantics, we decided to explore how the accu-
racy would change under a more relaxed definition of “correct match.”
Table 5.4 shows the percentage of trace coverage and match correctness
when a match is considered as correct in three different scenarios (us-
ing the “longest match” heuristics and after noise removal): we consider a
match correct if the method name, the class name, or the package name of
the API matched (instead of its fully qualified name, which also contains

5.8. Exploring the Mapping Problem 105

CDF 3-syscall long traces

1.0 i |
| - 21
0.8 - - 18
- 152
0.6 5
® - 12%
3 &
e}
0.4 -9
-6
0.2 -
-3
T T T T T T 0
0 2 4 6 8 10 12

Pattern Ambiguity

Figure 5.6: Pattern Ambiguity for 3-syscall long patterns

the types of its arguments). The table shows that the numbers do improve,
but that they are still far from ideal. We believe that the reason for the low
accuracy of the results of our algorithm resides in the fact that it fails in
recovering from an incorrect match caused by a length mismatch. In this
situation, the algorithm is out of synchronization as it tries to match the
next API from the very next syscall in the trace.

Another source of desynchronization is given by those sections of the
trace in which no APIs are recorded (i.e., when the execution of the appli-
cation returns to the framework, see Section 5.3 for more details). This
issue cannot be solved applying the same approach used for APIs, but
they do not share enough features to build meaningful models. Moreover,
these areas contain similar patterns to those observed in AP models, mak-
ing it difficult to distinguish between them.

Discussion. These results show that simple strategies are far from enough
to properly map sequences of low-level syscalls to high-level APIs. The
mapping task appears even more challenging when considering that our
experimental setup made the analysis, in theory, much simpler than what
it would be in a real scenario. In fact, our experiments attempt to map se-
quences of syscalls to APIs that have been extracted from the same knowl-
edge base. In a real scenario, instead, the algorithm would not have any
guarantee that the potential target APl is one API already in the knowledge
base (as an unknown app may make use of APIs never seen in the train-

106 106

CDF 4-syscall long traces

1.0 H - 21
- 18
0.8 4
- 15
2
0.6 - 128
% El
= a
-9%
0.4 %
-6
0.2 +
-3
T T T T T T T T 0

0 1 2 3 4 5 6 7 8 9
Pattern Ambiguity

Figure 5.7: Pattern Ambiguity for 4-syscall long patterns

ing set). Moreover, we even simplified the problem by assuming that the
starting point of the first API in the trace is known. Last, our “correctness”
definition is quite generous, as it considers an API match as correct if the
correct API is among one of the selected candidates: ideally, the perfect
matching system should indicate only one API for each match. We believe
these observations strength our key hypothesis: that, even under these very
favorable conditions, the mapping problem presents inherent difficulties
that are very challenging to overcome.

Future directions. We believe that reducing the noise in the models is a
key component for a successful approach to the mapping problem, since
we identified that the noisy patterns produced by the framework and the
ART runtime a strong source of ambiguity. To this aim, we believe that
future work should investigate a more aggressive noise reduction strategy
to improve the results. Another direction for improvements could be to
leverage the fact that some APIs are often used in conjunction with others,
providing a heuristic for choosing between multiple candidate APIs.

At the moment, our system collected information about the APIs ex-
posed via Java public method. A different approach would be to monitor
the invocation of every single Java method (including private ones) in the
framework. On the one hand, this approach could shed light on those ar-
eas of the traces that seemingly do not contain any APIL. On the other hand,
private methods are more difficult to interpret for an analyst since they

5.8. Exploring the Mapping Problem 107

CDF b5-syscall long traces

1.0 + -
) 27
- 24
0.8 4
- 21
- 1832
0.6)
® - 153
= 12“%
~ e}
0.4 W%
-9
0.2 - -6
-3
T T T T T L 0
0 1 6 7

3 4
Pattern Ambiguity

Figure 5.8: Pattern Ambiguity for 5-syscall long patterns

are undocumented and require knowledge of the internals of the Android
framework to be fully understood.

Another step of our pipeline that can be enhanced is the model cre-
ation algorithm. In general, we believe that future works should focus on
creating API models that describe as many features of the API invocations
as possible. In this work we show how to model repeating patterns, but
there are other features that are worth modeling. For example, one possi-
ble improvement can be to summarize in the same model all those invo-
cations that differ for a small number of syscalls and/or API calls only.

In an attempt to model this type of scenarios, a first version of our
prototype relied on the Needleman-Wunsch sequence alignment algo-
rithm [NW70]. The rationale was that by aligning two invocations is pos-
sible to find those syscalls and API calls that appear in only one of them.
We leveraged the aligned sequences to create models in which the sym-
bols corresponding to these API calls and syscalls were marked with an
additional modifier. This modifier indicates that the symbol to which it
is applied is “optional,” meaning that the model matches a sequence re-
gardless of its presence. This approach, however, led to unacceptably high
computational complexity of the pattern matching phase, to the point of
making it unfeasible in practice for models with many entries. Still, we be-
lieve there could be some value in adopting this technique for only a sub-
set of the APIs, especially those whose invocations contain only a small
number of syscalls and API calls.

108 108

Ambiguity CDF for 3-syscall long patterns

1.00 I
0.95
X
=0.90
0.85
= w/0 noise
w/ noise
0.80 T T T T T T
0 2 4 6 8 10 12

Ambiguity

Figure 5.9: Total Pattern Ambiguity Comparison for 3-syscall long patterns

Lastly, we believe our approach would clearly benefit from integrating
the results from existing systems like CopperDroid [TKFC15a], which al-
ready perform several steps to recover the semantics of the ioct! syscalls.
This particular class of syscalls is among the most frequent and ambigu-
ous ones in our knowledge base. This is due to its fundamental role in
thelow-level implementation of the Binder subsystem, which relies on the
ioctl syscall to exchange “parcels” of data between user apps and system
services. Integrating CopperDroid with our system would add the corre-
sponding Binder semantics to each ioctl syscall, which would eventually
reduce the ambiguity for this class of syscalls significantly.

5.9 Related Work

The Android security community has published a vast number of works
related to program analysis of unknown apps. This section places our
work in the context of two main related areas, namely static and dynamic
program analysis.

Several static analysis approaches have been proposed to analyze An-
droid apps, and malware in particular. Some of the early works in this area
include RiskRanker [GZZ"12] and DroidRanger [ZWZ]J12], which rely on
symbolic execution and a set of heuristics to detect unknown malicious
applications. Another work is Apposcopy, which uses a signature-based

5.9. Related Work 109

Ambiguity CDF for 4-syscall long patterns

1.00
—_—
0.95 +
®
= 0.90 +
0.85 4
= w/0 noise
w/ noise
0.80 T 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Ambiguity

Figure 5.10: Total Pattern Ambiguity Comparison for 4-syscall long pat-
terns

approach to detect known malware samples [FADA14]. Other works do
not only focus on malware detection, but are more generic and attempt to
identify suspicious data flows via taint analysis. Two relevant works in this
area are FlowDroid [ARF'14] and DroidSafe [GKP*15].

Another important trend of works attempts to perform malware clas-
sification by using machine learning techniques. Some of the early works
include Drebin [ASM'14] and DroidAPIMiner [ADY13], which both ex-
tract several features from Android applications (e.g., requested per-
missions, invoked framework APIs) and then apply machine learning
techniques to perform classification. A different system is AppCon-
text [YXA"15], which uses machine learning techniques to identify mal-
ware by using the “context” of each behavior as a feature. More recently,
Mariconti et al. proposed MaMaDroid [MOA™17], a tool that uses Hidden
Markov Model chains and, once again, starts from the API function calls
to build behavioral models. Another recent work in a similar direction is
SLAP [MRG " 18], which also uses machine learning with features based on
API-related information, with the difference that it attempts to be more re-
silient to adversarial samples.

There has also been extensive research on program analysis of An-
droid apps through dynamic analysis. Enck et al. [EGC*10] present Taint-
Droid, a dynamic taint analysis that performs whole-system data flow
tracking through modifications to the underlying Android framework and

110 110

Ambiguity CDF for 5-syscall long patterns

1.00 +—
0.95 +
X
=0.90
0.85
= w/0 noise
w/ noise
0.80 T T T T T T T 1
0 1 2 3 4 5 6 7 8

Ambiguity

Figure 5.11: Total Pattern Ambiguity Comparison for 5-syscall long pat-
terns

native libraries. Other efforts, such as Mobile Sandbox [SFE*13] and An-
drubis [LNWT14], developed tools and techniques to dynamically ana-
lyze unknown Android applications. Another trend of works has pro-
posed approaches based on dynamic analysis to perform multipath ex-
ecution and dynamic symbolic execution on Java and Android applica-
tions [jpb, GKS05, MMP"12, WL16, RAMB16]. These approaches achieve
higher code coverage than simpler dynamic analysis tools.

We note that all these existing works use API-level information as the
main building block for their analysis. Their main rationale is that API-
level information provides semantics-rich data, which in many cases is
enough to discern benign apps from the malicious ones. This common
trait of all these recent works underline the importance that API-related,
semantics-rich data can play within the Android security research com-
munity. However, as often mentioned in this chapter, all these approaches
can be detected and evaded [ABF'16].

One of the very few works that fully acknowledge this limitation and
performs a step forward is CopperDroid [RFC13, TKFC15a]. In this work,
the authors show how it is possible to reconstruct two categories of high-
level behaviors. The first one consists in those implemented through An-
droid Services, which CopperDroid identifies by unmarshaling objects
used in Binder transactions (e.g., access to geolocalisation). The second
includes those behaviors that result in a sequence of syscalls with a clear

5.9. Related Work 111

data dependency, which CopperDroid reconstructs by means of a value-
based data flow analysis technique (e.g., opening a file and performing op-
erations on it).

However, the authors of CopperDroid also note that API-level informa-
tion, while useful in reconstructing high-level behaviors in some cases, is
not fully trustworthy when dealing with some complex scenarios. Take,
as an example, the behavior of the createSocket method of the SSLSocket-
Factory Java class. This API creates an SSL tunnel over an already opened
TCP socket. Exploring our dataset we noticed that to perform this task the
framework invokes various syscalls, for example, “getrandom” to generate
the nonce used for the encryption or “read/write” to perform the hand-
shake. By simply inferring the data dependency between syscalls, Copper-
Droid would be able to recognize its network-related aspect, but it would
fail in understanding that the syscall pattern is actually implementing a
tunnelling mechanism that, according to the API documentation [java],
enables to instantiate an SSL connection over a proxy.

Our work thus differs from CopperDroid by exploring the behavior re-
construction problem in a more generic way: given a list of syscalls, is it
possible to build a pattern identification and “go back” from syscall to API
in the general case? In other words, in this work we are interested in an-
swering a more generic question, and we do not rely on specific patterns
or on data-dependency among syscalls to address the mapping problem.
The main difference with previous works is that we focused on using a
data-driven approach to explore the more-generic problem of performing
semantics reconstruction of a generic sequence of syscalls. In the process,
we have also built the first dataset of API-syscall relationship — to the best
of our knowledge, the first of its kind.

The problem of reconstructing high-level behaviors from low-level
features is not exclusive to the Android security research field. Mar-
tignoni et al. [MSF'08], for example, modeled a set of malicious behaviors
found in different malware families for the Windows operating system. To
this aim the authors manually analyzed the executions traces of malware
and benign programs to express high-level behaviors in terms of lower-
level syscall-like events.

The main drawback of their approach is that the modeling phase can-
not be automated because it requires human understanding of each high-
level behavior. In our work, instead, the modeling phase is completely au-
tomated. Moreover, our approach is more generic since it models more
than just a restricted set of behaviors and is not bound to malicious be-
haviors only.

112 112

Chapter 6

Future Work and Conclusion

113

114 114

6.1 Future Work

The research presented in this thesis suggests several avenues for future
explorations in the field of malware analysis. In particular, we can high-
light two strategies to build upon our work.

The first strategy consists of applying the techniques described in
Chapter 3 to new domains. An obvious extension of our work on the PE
ecosystem would entail analyzing other executable file formats. Our lan-
guage, in fact, is generic enough to support other formats as well. This
allows reusing our analysis framework as is, without any modification at
all. We suspect that the software ecosystems built around other formats
such as ELF and Mach-O are also affected by the problem of discrepan-
cies, paving the way to evasion techniques that are yet to be explored sys-
tematically.

The case of ELF is particularly fascinating. Since this format is the de-
facto standard for most UNIX-like operating systems, a comprehensive
analysis needs to consider the possibility that malware samples may at-
tempt to camouflage as programs for another operating system, hiding
their actual targets.

Our modeling language and differential analysis framework could also
be used to study discrepancies in software handling other types of file for-
mats. A particularly promising target may be the PDF format, which is
known to be very complex and difficult to parse correctly [ELM16]. Mal-
ware commonly uses PDF files as vectors for infection by embedding ma-
licious JavaScript code, which endpoint protection tools try to counter by
extracting and analyzing these payloads. Previous works [CHY"16] have
shown how malware exploits discrepancies in the extraction process to
evade analysis. Future works may adopt and adapt the tools and method-
ology presented in this thesis to study the PDF parsing landscape system-
atically.

The file type inference system is another attack surface in antiviruses
that the literature has found vulnerable to parsing differential attacks. In-
deed, previous works have discovered that some antiviruses could not cor-
rectly infer the format of input files, opening the doors to evasion. Indeed,
malware can confuse the antivirus into scanning it with signatures that
reason about the semantic of the wrong file format. Jana et al. [JS12] pro-
vide a notable example, finding several of such exploitation techniques
employing of blackbox fuzzing. We believe that this approach may have
just scratched the surface of the type inference problem and that our tech-
niques may actually help find more sources of discrepancies.

6.1. Future Work 115

Lastly, our analysis framework can be used to generate valid seeds for
fuzzing parser for file formats. In particular, one can leverage the Corner
Case Generation technique described in Chapter 3.5.3 to produce a cor-
pus of valid test cases for the software to test. By construction, these test
cases trigger different paths in the original software, providing a good ini-
tial code coverage.

The second strategy aims at improving our work on the reconstruction
of high-level semantics from low-level sources. In particular, an interest-
ing way to tackle this problem could be to apply machine learning or pat-
tern recognition techniques.

Another possibility could be to consider more information other than
the sole syscall name, such as syscall arguments, invocation timing, and
even some sort of data flow analysis among different syscalls. While our
work on the semantic reconstruction ended in a negative result, there is
no reason to believe that it cannot be solved, at least in some cases.

Moreover, while we focused on the Windows and Android operating
systems, other platforms could also be studied, notably macOS and Linux.
Both of these operating systems pose unique challenges. For example,
while Windows and Android mainly support one set of APIs (the WinAPI
and the Android Java API), Linux does not have one single programming
language (thus, one single API set). This means that to recover high-level
runtime information of a Linux program from its syscalls, one needs first
to study the programming language in which the program is written and
its APIs.

Finally, while in both our explorations of the semantic gap we dy-
namically analyzed non-malicious software, another possible future work
could analyze malware, investigating whether it employs different APIs,
or if the same APIs results in different syscalls if employed for malicious
purposes (e.g., when malware invokes the same APIs, but with different
arguments).

116 116

6.2 Conclusion

Due to its adversarial nature, the field of malware analysis and detection
has become nuanced and very complex to master. Every wrong assump-
tion in the design of anti-malware tools can open the door for evasion
techniques that malicious actors do not wait to exploit to secure higher
revenues for their harmful campaigns.

This thesis challenges two technical assumptions that the security in-
dustry has overlooked. For both of them, we provided systematic ways for
exploitation, as well as guidelines and first approaches to solving the prob-
lems at their roots.

In particular, Chapter 3 presents our exploration of the parsing dif-
ferential problem among software that handles the PE file format. Our
methodology allows attackers and defenders alike to find discrepancies
that malware can leverage to circumvent analysis and detection. This
work suggests that the way security tools have handled executable file for-
mats so far is conceptually flawed. In particular, security tools assume that
each version of the operating system parses and loads the same executable
in the same way. The results of our work completely overturn this concep-
tion by showing that implementations of the loader component of differ-
ent versions handle edge cases differently. We argue that the next genera-
tion of security tools should treasure these findings and switch to a more
sound approach to program loading.

Chapters 4 describes our work on API tracing bypass. Our novel tech-
nique creates self-contained executables that do not need any library pro-
vided by the Windows operating system. From a malware analysis point of
view, such programs do not execute any APIs, effectively evading any in-
strumentation that relies on API-level information. In other words, this
work proves that obtaining high-semantic information about a program’s
execution directly and in a reliable and unavoidable way is impossible.

This led us to study the feasibility of recover high-level semantic from
low-level information sources, captured through techniques that (regular)
malware cannot evade. In particular, in Chapters 4 and 5, we explore the
semantic reconstruction problem from the syscall-layer to the API-level
for the Windows and Android operating systems.

On top of the technical contributions highlighted throughout the dis-
sertation, we believe that, on a more fundamental level, the merit of this
thesis is that of trying to anticipate future trends in malware. Studying and
questioning common practices and beliefs led us to discover new avenues
for evasion.

6.2. Conclusion 117

By documenting our research work and its results, we hope to raise
awareness among the security community about the shortcoming of our
current techniques and possible new threats. To paraphrase Sun Tzu’s
“The Art of the war,” only by knowing yourself and your enemy you need
not fear the result of a hundred battles.

118 118

Appendices

119

Appendix A

Loader Modeling

121

122 122

A.1 Example of Constraints Model

INPUT foo 4

bar <- ADD foo 1

V1i: ULE bar 10 term
V2: UGE foo 4

V3(V2): UGE foo 7 term

Listing A.1: Example of a model written in our language.

Listing A.1 provides a concrete example of a model written in our lan-
guage. We now discuss the semantics of this model, and we will use this
example as reference when explaining how other parts of our framework
work.

At Line 1, the model specifies the existence of a 4-byte long input,
named foo. At Line 2, a new symbol is introduced, bar, and the model
specifies that it is defined as foo + 1. Note that multi bytes are parsed to
integers as big-endian. Thus, adding 1 to a 4-byte field means adding 1
to its 4th byte, with carry. At Line 3, the model defines a boolean predi-
cate, V1. The boolean predicate V1 evaluates to true if and only if bar is
less or equal than 10 (the “U” in ULE indicates it is an unsigned compar-
ison). Moreover, the term keyword specifies that V1 is a terminal predi-
cate. This implies that, for an input file to be considered compliant, bar’s
value must be less or equal than 10. At Line 4, the model defines another
boolean predicate, V2. This predicate evaluates to true if and only if foo
is greater or equal than 4 (once again, the comparison is unsigned). Note
that, differently from V1, V2 is not a terminal predicate. This means that,
per se, whether V2 evaluates to true is not a necessary condition for a given
input file to be considered valid. The truth value of V2, however, is relevant
for the conditional predicate V3 specified at Line 5. The semantics of line 5
is the following: if V2 evaluates to false, then V3 evaluates to true, indepen-
dently from the input value; if, however, V2 evaluates to true, the specified
predicate (i.e., foo greater or equal than 7) must also evaluate to true for
V3 to be satisfied. In addition to that, note that V3 is a terminal predicate,
which indicates that it must evaluate to true for an input file to satisfy the
model. The net effect of this model is to constrain the value of the input in
the ranges [0, 3] and [7, 9].

A.2 Example of Translation in SMT problem

For sake of clarity, we now discuss how the example model discussed in
the previous section in Listing A.1 is translated into an SMT problem.

A.3. Excerpts from the Models of the Windows Loader 123

The symbol definition at line 2 introduces the following formula:
bar <+ foo+1
Line 3 introduces the following predicate:
P foo+1<10
Line 4 is translated into the following predicate:
Qi: foo=4
The conditional predicate is instead translated as
Py: Q1= (foo>T7)

The final formula of the SMT problem is then computed as the logic con-
junction of all terminal predicates, in this case P, and P»:

F: (foo+1<10)A(=(foo>4)V (foo>T))

Thus, the SMT solver will be tasked to find an foo such that the final
constraint F is satisfied. In this case, the constraint is satisfiable, and the
SMT solver would return an integer value in the ranges [0, 3] and [7, 9].

A.3 Excerpts from the Models of the Windows Loader

Listing A.2 shows the portion of the model of the loader of Windows 10 that
handles the Base Relocation data directory.

Lines 2 to 4 parse the RVA and size of the relocation table. Line 7 intro-
duces the boolean predicate V6, which evaluates to true when the reloca-
tion directory RVA and size are valid. All the following statements have V6
as a precondition since they only make sense if the executable has a relo-
cation table.

The logic that models the relocation table’s content is embedded in the
loop L1 introduced at line 11 by the VLOOP operand. At each iteration of
the loop, the variable relocBlockAddr contains the offset of the current
relocation block in the file, starting from the value stored in loopStart.
The boolean predicate V99 (defined at line 21) is evaluated at the end of
each loop cycle to determine whether the loop must continue. If that is
the case, relocBlockAddr will be updated with the value stored in the vari-
able nextBlockAddr. The last parameter of the VLOOP operand is the unroll

124 124

count that indicates the maximum number of times the SMT solver must
consider the statements in the loop.

Each relocation block is followed by a number of relocation entries
which depends on the block’s size. The loop L2 handles each relocation
entry for the current block. For the sake of brevity, we will not describe the
parameters of the L2 loop, as they are similar to the one of L1.

The terminal predicate at line 34 determines the types of relocations
that the loader supports. For Windows 10, this predicate evaluates to true
if the relocation type is either 10, or less or equal to 4.

N o a A w

10
11

12
13
14
15

17
18

20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

A.3. Excerpts from the Models of the Windows Loader 125

Relocations

P: relocDir <- optHdr.DataDirectory[40, 8] as
_IMAGE_DATA_DIRECTORY

P: relocVA <- relocDir.VirtualAddress

P: relocSize <- relocDir.Size

From ntdll!LdrRelocateImageWithBias :45,48
V6: AND (UGE optHdr.NumberOfRvaAndSizes 6) AND (NEq relocVA 0)
(NEq relocSize 0)

P: tmpSize <- relocSize
P(V6): loopStart <- relocVA
L1(V6): relocBlockAddr <- VLOOP(loopStart, nextBlockAddr, V99,
10)
P: relocBlock <- HEADER[relocBlockAddr ,6 8]
P: blockSize <- relocBlock[4, 4]
P: blockPage <- relocBlock[0, 4]

firstEntryAddr <- ADD relocBlockAddr 8

nEntry <- SHR (SUB blockSize 8) 1

tmpSize <- SUB tmpSize blockSize
nextBlockAddr <- ADD relocBlockAddr blockSize

‘U ‘U ‘U ‘o

V99: NEq tmpSize O

P: tmpEntry <- INT O 4
V96: UGE nEntry 1
L2(V96): entryAddr <- VLOOP(firstEntryAddr, nextBAddr, V98,
10)
P: entry <- HEADER[entryAddr, 2]
P: tmpEntry <- ADD tmpEntry 1
P: nextBAddr <- ADD entryAddr 2

P: relocType <- SHR BITAND entry[1] O0xfO 4
P: relocAddr <- BITAND entry Oxfff

Vii: EQ (BITAND (SHL omne (SHR entry 12)) 0x3a0) O term
Vi2: OR EQ relocType 10 ULE relocType 4 term
V13: ULT ADD blockPage relocAddr imageEnd term

RelocType 4 uses two entries instead of 1
V1i4: Eq relocType 4

P(V14): tmpEntry <- ADD tmpEntry 1

P(V14): nextBAddr <- ADD nextBAddr 2

From ntdll!LdrRelocateImageWithBias :47

Checks that the RtlImageNtHeader is still valid

Meaning that the targeted addre cannot be 0x0 or Ox1...
Vi5: OR (EQ relocType 0) AND (NEQ relocAddr 0) (NEQ

46
47

48
49

50
51
52
53

126 126

relocAddr 1) term
Cannot overlap with e_lfanew (0x3f-0x40)
Vi6: OR (EQ relocType 0) OR (ULT relocAddr 0x3f) (UGT
relocAddr 0x40) term
Cannot overlap with PE magic (e_lfanew-e_lfanew+4)
V1i7: OR (EQ relocType 0) OR (ULT relocAddr HEADER.e_lfanew)
(UGT relocAddr ADD HEADER.e_lfanew 4) term

V98: ULT tmpEntry nEntry
END L2
END L1
Listing A.2: Excerpt of the model of the loader of Windows 10 handling
relocations

Appendix B

Summary of the Thesis in
French

127

128 128

B.1 Introduction

Au cours des dernieres décennies, I'importance des systémes informa-
tiques dans les sociétés modernes a augmenté au point d’envahir tous
les aspects de notre vie quotidienne. De nos jours, les systemes infor-
matiques constituent I’épine dorsale des infrastructures critiques, prote-
gent nos informations personnelles et permettent la transmission rapide
de données essentielles, ce qui affecte inévitablement notre vie privée,
publique et politique.

Tout en apportant des avantages indiscutables, les technologies
numériques ont également ouvertla porte a de nouvelles menaces qui ont
souvent pris les utilisateurs et les vendeurs au dépourvu. Poussés par les
gains potentiellement énormes que peut procurer I'exploitation d'un ap-
pareil aussi vital, des acteurs mal intentionnés ont commencé a cibler les
systemes informatiques ou a les utiliser pour perpétrer des fraudes.

Lune des stratégies couramment employées par les acteurs de la men-
ace consiste a fournir un logiciel qui effectue des actions préjudiciables
sur le systeme cible, souvent en le faisant passer pour inoffensif ou méme
souhaité. Internet a fourni un vecteur d’attaque sans précédent pour ce
type de logiciel, au point que plusieurs auteurs ont comparé la propaga-
tion des logiciels malveillants a celle d'une épidémie.

Les paralleles entre le phénomene des logiciels malveillants et le do-
maine de I'épidémiologie ne s’arrétent pas a I'ampleur de leur proliféra-
tion. Tout comme les bactéries et les virus, les logiciels malveillants ont
tendance a s'adapter a leur environnement et finissent par contourner les
barriéres qui bloquent l'infection. En effet, malgré les efforts déployés par
le secteur de la sécurité pour détecter, documenter et contrer rapidement
les menaces émergentes, les auteurs de logiciels malveillants affGtent con-
tinuellement leurs outils, dans le but de dissimuler les comportements
malveillants aux yeux inquisiteurs des analystes de logiciels malveillants.

La cause premiere de tous les types de mécanismes d’évasion est que
les outils anti-malware doivent modéliser soit le systéme sur lequel le mal-
ware fonctionne, soitles capacités du malware lui-méme. Par conséquent,
les outils anti-malware ne raisonnent que sur une approximation du mal-
ware et de son exécution. Les divergences entre ces modeles et la réalité
du comportement des logiciels malveillants ouvrent la voie au contourne-
ment des défenses et des analyses.

En toute justice, le secteur de la sécurité a acquis une expérience pré-
cieuse au cours de la course aux armements contre les logiciels malveil-
lants qui a duré plusieurs décennies. Lorsque suffisamment de nouvelles

B.1. Introduction 129

souches de logiciels malveillants échappant a 'analyse apparaissent, le
secteur réagit en remettant en question les pratiques antérieures et en
adoptant de nouvelles pour répondre aux nouvelles menaces.

Cependant, cette tendance aux approches réactives conduit a main-
tenir en place d’autres pratiques dont on sait qu’elles conduisent a des ap-
proximations laches, ce dont les auteurs de logiciels malveillants peuvent
tirer parti, du moins de maniere théorique ou non évolutive.

Cette theése remet en question les choix de conception des outils et
techniques anti-malware, en adoptant et en promouvant une approche
proactive de I'analyse des malwares. Nous nous concentrons en parti-
culier sur deux pratiques qui sont encore tres répandues, méme si une
bonne partie des praticiens les considérent comme discutables. Con-
trairement a la croyance dominante, nous montrons que tirer profit de tels
choix de conception n’est pas seulement un exercice théorique mais une
menace concrete alaquelle 'industrie des anti-malwares n'est pas préte a
faire face.

En termes plus spécifiques, cette these se concentre sur deux aspects
des outils et de la recherche anti-malware modernes, omniprésents a la
fois dans les pipelines d’analyse des malwares et dans les logiciels de pro-
tection des points finaux : I'utilisation d’informations au niveau des API
pour coder le comportement des malwares, et la réimplémentation du
chargeur de programmes du systeme d’exploitation.

Si les experts reconnaissent que les logiciels malveillants peuvent
exploiter ces pratiques, ils affirment que c’est un mal nécessaire (et
marginal). Cette theése remet en question cet argument en montrant que
tirer profit de ces pratiques est possible a grande échelle et de maniere au-
tomatisée. En examinant les preuves récentes mises en lumiere par les
chercheurs en sécurité et la chasse aux logiciels malveillants dans la na-
ture, nous démontrons également que les auteurs de logiciels malveillants
montrent un intérét croissant pour l'exploitation de ces pratiques. En-
fin, nous étudions la possibilité de résoudre ces problemes a la racine, en
mesurant les difficultés que les architectes anti-malware peuvent rencon-
trer et en proposant des stratégies pour les résoudre.

Cerésumé (dont la structure reflete celle de la theése elle-méme) est or-
ganisé comme suit. La section 2 fournit les connaissances de base néces-
saires ala compréhension dureste dela thése. La section 3 est basée surun
article actuellement en cours de soumission a IEEE Security and Privacy
2022 et présente notre contournement générique du tracage des API ainsi
qu’'une caractérisation de I'écart sémantique entre les API et les syscalls,
en se concentrant sur le systeme d’exploitation Windows. La section 4

130 130

présente notre travail "Exploring Syscall-Based Semantics Reconstruction
of Android Applications", publié lors du 22e Symposium international
sur la recherche en matiere d’attaques, d’intrusions et de défenses, dans
lequel nous tentons de reconstruire la sémantique de I'API a partir de
traces de syscall enregistrées a partir d’applications Android [NBF19]. La
section 5 est basée sur notre travail "Lost in the loader : The many faces
of the windows PE file format" publié lors du 24e Symposium interna-
tional sur la recherche en matiere d’attaques, d’intrusions et de défenses,
et systématise notre analyse des chargeurs PE dans I'écosysteme Win-
dows [NGFB21]. Enfin, la section 6 conclut le résumé et propose des ori-
entations de recherche futures.

B.2 Contexte

Compte tenu de 'ampleur du probleme des logiciels malveillants, il n’est
pas surprenant que les chercheurs et les praticiens aient développé de
nombreux outils et approches pour le contrer.

Depuis le début du phénomene des logiciels malveillants, le secteur
de la sécurité a mis en ceuvre une stratégie en deux étapes pour atténuer
son impact et protéger les utilisateurs finaux. A ses débuts, 'analyse des
logiciels malveillants reposait essentiellement sur un travail manuel. Les
analystes inspectaient des échantillons potentiellement malveillants, re-
cueillaient des informations sur leur comportement et signalaient leurs
caractéristiques distinctives s'’ils étaient dangereux. Ces caractéristiques
sont ensuite traduites en procédures exploitables - souvent appelées "sig-
natures" - qui analysent les fichiers et les programmes de la machine de
l'utilisateur et suppriment ceux qui correspondent a I'empreinte du logi-
ciel malveillant.

Sice modele en deux étapes est resté en place jusqu’a présent, les tech-
nologies employées pour analyser les nouveaux logiciels malveillants et
les détecter sur les équipements des utilisateurs ont évolué.

Du co6té de l'analyse, la percée la plus importante a eu lieu avec
I'introduction de pipelines automatisés qui génerent des rapports sur
plusieurs aspects de I'exécution des programmes, tels que les opérations
du réseau et du systeme de fichiers et les modifications des parametres
du systeme. Les systémes automatisés ont permis a 'analyse des logiciels
malveillants de se développer et de suivre le rythme de 'augmentation
constante du nombre d’échantillons découverts chaque jour. En fait,
les analystes de logiciels malveillants peuvent désormais se concentrer
uniquement sur les échantillons pour lesquels I'outil automatisé a signalé

B.2. Contexte 131

quelque chose qui mérite d’étre examiné, ce qui réduit les frais généraux
liés a 'audit d’échantillons totalement inoffensifs.

Létape de la protection des points de terminaison a également connu
de nouveaux développements au fil des ans. Les outils de reconnaissance
des signatures de logiciels malveillants ont commencé comme de simples
scanners de modeles d’octets, mais ont fini par adopter des technologies
plus puissantes, telles que les langages spécifiques a un domaine, pour
effectuer des vérifications plus complexes. Par la suite, les sociétés an-
tivirus ont introduit des signatures dynamiques (qui raisonnent sur les
logiciels malveillants au moment de leur exécution) et des services de
télémétrie pour collecter des statistiques sur la machine de 'utilisateur,
a partir desquelles il est possible de graver des preuves d’attaques dis-
simulées. Codage du comportement du programme L'analyse dynamique
(ou, comme onl’appelle souvent, comportementale) des logiciels malveil-
lants vise a comprendre ce que fait le logiciel malveillant pendant son exé-
cution.

Selon les aspects du comportement du logiciel malveillant sur lesquels
I'analyse se concentre, les résultats de 'analyse contiennent différents
types d'informations. Par exemple, la liste des adresses IP avec lesquelles
le programme a établi la communication et leur contenu permettrait de
dresser un tableau précis de son comportement du point de vue de la mise
en réseau. D’autre part, la liste des fichiers créés, modifiés ou supprimés
indiquerait le comportement du systeme de fichiers.

Une facon courante et plus générique de coder le comportement
d’'un programme consiste a suivre les API (Application Programming In-
terface) qu’il utilise. Les systemes d’exploitation modernes fournissent
ces interfaces de programmation hautement spécialisées qui facilitent
le développement de fonctionnalités complexes utilisées par les logiciels
bénins et malveillants.

Décrire le comportement d'un programme en termes d’API qu’il utilise
est souhaitable pour de nombreuses raisons, la premiere étant la simplic-
ité aveclaquelle un analyste humain peut les interpréter. Cependant, il est
bien connu que la collecte d’informations de niveau API de maniere fiable
n'est pas possible dans le cas général et que les logiciels (y compris les logi-
ciels malveillants) peuvent éviter completement d’utiliser les API de haut
niveau. En s'appuyant sur des interfaces de niveau inférieur (ce que 'on
appelle généralement I'interface syscall), les programmes peuvent réim-
plémenter complétement '’API de haut niveau, du moins en théorie.

Formats des fichiers exécutables Avant de lancer un programme,
le systeme d’exploitation doit préparer un environnement adapté a

132 132

I'exécution du programme. Par exemple, des logiciels différents néces-
sitent des tailles différentes de mémoire privée et des configurations dif-
férentes de processeur pour fonctionner correctement. Les informations
relatives a ces exigences sont codées dans les en-tétes du programme,
c'est-a-dire des données structurées stockées au début du fichier exé-
cutable, conformément a la spécification d'un format de fichier exé-
cutable.

Les informations contenues dans les en-tétes du programme sont pré-
cieuses pour l'analyse des logiciels malveillants. Par exemple, les formats
de fichiers exécutables codent la disposition en mémoire (appelée image)
du programme ou, en d’autres termes, un ensemble d’instructions per-
mettant de charger correctement le fichier du programme en mémoire.
Savoir a quoi ressemble 'empreinte mémoire d'un programme au début
de son exécution est un prérequis pour de nombreuses techniques anti-
malware avancées.

Cette these étudiera le format Portable Executable, le standard de facto
des systemes Windows. Etant donné le modele de source fermée adopté
par Microsoft, les implémentations du chargeur de Windows qui analy-
sent etinterprétent les données ne sont pas accessibles au public. Par con-
séquent, les responsables des outils de sécurité ont dii réimplémenter la
logique d’analyse du format PE a partir de zéro, en se basant uniquement
sur les spécifications du format.

Le plus souvent, cependant, ces implémentations personnalisées dif-
ferent légerement les unes des autres et de celle fournie par le chargeur
du systeme d’exploitation. Cela entraine des divergences dans ce que
différents outils (et méme différentes versions d'un méme systéme
d’exploitation) considerent comme un programme valide que les logiciels
malveillants peuvent exploiter pour échapper a l'analyse et a la détection.

Siles travaux précédents ont mis en évidence plusieurs exemples de di-
vergences entre différentes implémentations de la logique d’analyse syn-
taxique du PE, tous ont été découverts par essais et erreurs et non par une
approche automatisée et systématique.

B.3 Contournement générique et pratique du
tracage des API pour les logiciels malveillants
Windows

Ce chapitre présente notre exploration des problemes qui surviennent
lorsque les outils anti logiciels malveillants s'appuient sur des informa-

B.3. Contournement générique et pratique du tracage des API pour les
logiciels malveillants Windows 133

tions au niveau des API pour 'analyse comportementale.

En particulier, nous présentons une approche qui facilite remar-
quablement le processus de création d’exécutables élaborés capables de
contourner l'analyse des logiciels malveillants basée sur les API. Cette
recherche généralise certaines tendances récentes que les analystes ont
signalées dans les nouvelles souches de logiciels malveillants qui in-
voquent directement les services de bas niveau du noyau du systeme
d’exploitation (a savoir, les syscalls) dans le but de réduire leur empreinte
APIL.

Notre systéeme compile les programmes écrits en utilisant les API de
haut niveau du systeme d’exploitation et fournit aux exécutables résul-
tants le code implémentant les API dont il a besoin, dérivé des biblio-
theques originales de Windows. En fait, au moment de la compilation,
notre systeme résout les dépendances du programme et trouve les DLL
dont il a besoin. Les DLL sont ensuite modifiées pour permettre au pro-
gramme d’utiliser leurs fonctionnalités sans avoir besoin d’étre chargées
par le systeme d’exploitation, puis elles sont assemblées pour créer un en-
vironnement d’exécution personnalisé.

Au moment de I'exécution, les programmes utilisent les fonctionnal-
ités fournies par le runtime embarqué au lieu des bibliotheques du sys-
teme. Ce faisant, le programme est totalement transparent du point de
vue de toute solution de surveillance des API. Ces outils, en fait, reposent
sur ’hypothése que pour qu'un programme puisse utiliser une API, son
flux d’exécution doit atteindre le code fourni par les bibliothéques du sys-
teme. Cependant, les programmes compilés avec notre approche n'ont
jamais besoin d’entrer dans les modules fournis par le systeme (donc, po-
tentiellement surveillés).

Lexistence d'un tel mécanisme de contournement générique suggere
que le fait de s'appuyer exclusivement sur des informations au niveau de
I’API est préjudiciable a I'analyse des logiciels malveillants, car il ouvre la
voie a I'évasion.

Au-dela d’'une conception de I'analyse du comportement centrée sur
les API, nous envisageons la couche syscall comme le meilleur poste de
surveillance pour controler de maniere fiable le comportement des pro-
grammes en cours d’exécution.

Cependant, l'utilisation des primitives syscalls comme blocs de base
pour coder le comportement d’'un programme a un prix. En fait, les ap-
pels systéme ont une sémantique beaucoup plus faible que les API, ce qui
signifie qu'ils sont plus difficiles a interpréter pour les analystes humains.

De plus, certains aspects de 'exécution d'un programme peuvent ne

134 134

pas étre accessibles du tout lorsqu'on choisit d’'encoder son comporte-
ment en termes d’appels systéme. Certaines fonctionnalités que les pro-
grammes utilisent souvent, en fait, ne nécessitent pas l'intervention du
systeme d’exploitation pour étre réalisées. Les routines de cryptage et de
décryptage qui ne nécessitent que des opérations mathématiques et qui,
en tant que telles, peuvent étre exécutées dans I'espace utilisateur sont des
exemples notables de sécurité.

Dans la derniere partie du chapitre, nous rapportons les résultats
d’'une campagne d’analyse dynamique a grande échelle, qui caractérisent
la complexité de I’écart sémantique entre les deux couches.

Pour chacun des plus de 23 000 programmes de notre ensemble de
données, nous avons recueilli les traces API et syscall a 'aide d'un outil
d’analyse dynamique personnalisé basé sur I'instrumentation binaire dy-
namique.

Nous avons ensuite analysé les données collectées pour comprendre
quels aspects du comportement d'un programme peuvent étre reconstru-
its a partir d'une trace de syscall, et la faisabilité de la récupération des
informations au niveau de I'’API.

Malheureusement, nos mesures sur les données collectées montrent
que de nombreux facteurs rendent le probleme de la mise en correspon-
dance des syscalls et des API ambigués, ce qui en fait un défi pratique.

B.4 Exploration delareconstruction sémantique des
applications Android basée sur le syscalls

De maniere similaire a la derniére partie du précédent, ce chapitre
présente nos mesures sur la faisabilité de la reconstruction d'informations
de niveau API a partir de traces de syscall, en ciblant cette fois le systeme
d’exploitation Android.

Alinstar de ce qui se passe dans 1'écosysteme Windows, la grande ma-
jorité des cadres existants effectuent un tracage au niveau des API (C’est-
a-dire qu’ils visent a obtenir la trace des API invoquées par une applica-
tion donnée) et utilisent ces informations pour déterminer sil’application
analysée contient des fonctionnalités indésirables ou malveillantes.

Suite a des travaux antérieurs qui ont montré que, dans Android, les
mécanismes de tracage et d'instrumentation au niveau de I’API pouvaient
étre facilement contournés, quels que soient les détails de leur mise en
ceuvre spécifique, nous abordons dans ce chapitre le probleme de la cor-
respondance entre la couche API Java d’Android et la couche syscall Linux

B.4. Exploration de la reconstruction sémantique des applications
Android basée sur le syscalls 135

sur laquelle elle repose.

La premiere partie de notre approche consiste a collecter des in-
formations sur le temps d’exécution a partir d'un ensemble de don-
nées d’applications Android, de maniere a pouvoir déduire les relations
appelant-calculé entre les API et les appels systeme.

A cette fin, nous avons développé un nouveau systéme d’analyse dy-
namique capable de suivre a la fois les API Java et les appels systéme
qu’'une application Android invoque pendant son exécution.

Pour construire le systeme d’analyse, nous nous sommes appuyés sur
des techniques d’analyse/édition automatique du code source pour doter
le systeme d’exploitation Android d'une fonction de journalisation per-
sonnalisée. En particulier, nous avons instrumenté les points d’entrée et
de sortie de chaque méthode Java dans le code source d’Android pour
émettre un message personnalisé que l'interface de journalisation cap-
ture ensuite.

Pour faciliter le processus d’analyse de la quantité massive de données
collectées pendant la phase d’analyse dynamique, nous avons créé une
structure de données facile a interroger qui stocke des informations sur
chaque API enregistrée, la base de connaissances.

Pour condenser les informations stockées dans la base de connais-
sances, nous avons créé des modeles pour chaque API enregistrée. In-
tuitivement, ces modeéles fonctionnent comme des objets de type regex
qui correspondent a toutes les traces d’appels systéme possibles que
I'invocation d’'une API peut produire. En tant que tels, ces modeles peu-
vent étre utilisés pour trouver des preuves potentielles d'invocation d’API
a partir d'une trace de syscall. Cependant, nos tentatives de reconstruire
les informations sur les API a partir des traces d’appels systéme que nous
avons enregistrées pendant 'analyse dynamique ont échoué en raison des
similitudes inhérentes aux modeles des différentes API.

En essayant de caractériser les causes profondes, d’abord en exami-
nant manuellement la base de connaissances, puis en utilisant une ap-
proche automatisée, nous avons découvert plusieurs modeles d’appels
systeme qui apparaissent pendant l'invocation de nombreuses API dif-
férentes d'une maniere apparemment non déterministe. Apres une en-
quéte plus approfondie, nous avons conclu que ces schémas proviennent
des primitives de synchronisation et de gestion de la mémoire que de
nombreuses API utilisent. Pour cette raison, nous considérons ces mod-
eles de syscall comme du bruit puisqu’ils ne transmettent aucune infor-
mation précieuse sur I'’API qui les a invoqués.

Les modeles bruyants contribuent de maniere significative a

136 136

I'ambiguité de I'écart sémantique entre I'API et les couches syscall.
Cependant, méme en supprimant ces sources de bruit, la résolution du
probleme de la cartographie semble rester hors de portée. En fait, méme
avec des hypotheses fortes et favorables, les séquences d’appels systéme
produites par les différentes API sont trop similaires pour étre distinguées
de maniere fiable.

B.5 Lostinthe Loader: Les nombreux visages du for-
mat de fichier PE de Windows

Un probléeme connu dans le secteur de la sécurité est que les programmes
qui traitent les formats de fichiers exécutables, tels que les chargeurs de
systemes d’exploitation, les outils de rétro-ingénierie et les logiciels an-
tivirus, présentent souvent de 1égeres divergences dans la facon dont ils
interpretent un fichier d’entrée. Ces différences peuvent étre exploitées
par les attaquants pour échapper a la détection ou compliquer la rétro-
ingénierie et sont souvent découvertes par les chercheurs par un proces-
sus manuel d’essais et d’erreurs.

Dans ce chapitre, nous présentons la premieére analyse et exploration
systématique des analyseurs syntaxiques PE. A cette fin, nous avons créé
un langage personnalisé spécifique au domaine afin de capturer facile-
mentles détails surla fagon dontles différents logiciels analysent, vérifient
et valident si un fichier est conforme a un ensemble de spécifications. Par
conception, les modeles écrits dans notre langage peuvent étre traduits
en problemes SMT dont les solutions sont des en-tétes PE que le parseur
analysé accepte comme valides.

En tirant parti des propriétés mathématiques des problémes SMT,
nous avons développé un cadre qui exécute automatiquement diverses
taches qui seraient difficiles a réaliser manuellement. Par exemple, notre
cadre peut produire des cas de test différentiels ; en d’autres termes, des
en-tétes PE qu'une implémentation considere comme valides et que la
deuxieme implémentation marquerait comme non valides.

Nous avons ensuite utilisé ce langage personnalisé pour créer des
modeles pour les chargeurs de trois versions de Windows (XP, 7 et 10) et les
outils populaires radare2, ClamAV et Yara. La modélisation des chargeurs
de Windows a été une tache particulierement difficile, car elle a nécessité
une rétro-ingénierie approfondie de différents composants du systeme
d’exploitation, du noyau aux bibliotheques dynamiques.

Au moyen de notre cadre, nous avons comparé ces modeles, en explo-

B.6. Travaux futurs et conclusion 137

rant les divergences entre les implémentations de ces chargeurs. Par ex-
emple, pour toute combinaison de deux versions de Windows, nous avons
pu générer des exécutables PE qui s'exécutent sans probleme sous la pre-
miere, mais que la seconde rejette comme étant malformés. De méme,
nous avons généré des échantillons valides en fonction des fenétres que
les outils ont marquées comme non valides ou pour lesquelles ils ont
fourni une cartographie mémoire inexacte.

Les résultats de notre analyse ont des conséquences sur plusieurs as-
pects de la sécurité des systémes. Nous montrons que les outils d’analyse
populaires peuvent étre contournés, que les informations extraites par
ces outils d’analyse peuvent étre facilement manipulées et qu'’il est trivial
pour les auteurs de logiciels malveillants de prendre des empreintes dig-
itales et de " cibler " uniquement des versions spécifiques d'un systeme
d’exploitation d’'une maniére qui n’est pas évidente pour quelqu'un qui
analyse l'exécutable.

Dans la derniere partie du chapitre, nous présentons les résultats
d'une campagne de chasse aux logiciels malveillants que nous avons
menée sur VirusTotal et qui visait a trouver des preuves de logiciels
malveillants adoptant les divergences découvertes par notre cadre dans la
nature. La campagne a trouvé plusieurs échantillons pour chaque diver-
gence, ce qui suggere que les auteurs de logiciels malveillants s’efforcent
de peaufiner leurs exécutables PE pour échapper aux analyses et aux
défenses.

Plus important encore, ce travail montre que la fragmentation de la
mise en ceuvre des chargeurs de PE pose un réel probléeme. Comme nous
I'avons souligné tout au long de ce chapitre, il n'existe pas une seule facon
correcte d’analyser les fichiers PE, et méme les différentes versions du sys-
teme d’exploitation Windows traitent ce format de facon légerement dif-
férente. Par conséquent, il ne suffit pas que les outils de sécurité corri-
gent les nombreuses incohérences que nous avons trouvées dans nos ex-
périences, mais plutdt, pour s'attaquer au probleme a la racine, ils de-
vraient permettre a I'analyste de choisir lequel des différents modeles de
chargeurs il doit émuler.

B.6 Travaux futurs et conclusion

Les recherches présentées dans cette these suggerent plusieurs pistes
d’explorations futures dans le domaine de 'analyse des logiciels malveil-
lants.

138 138

Bien que cette thése fournisse des informations précieuses sur les car-
actéristiques du fossé sémantique entre les API et les syscalls, nous pen-
sons que des efforts supplémentaires doivent étre faits pour le combler de
maniere générique. En outre, sinous nous sommes concentrés sur les sys-
temes d’exploitation Windows et Android, d’autres plateformes doivent
également étre étudiées, notamment macOS et Linux. Ces deux systemes
d’exploitation posent des défis uniques. Par exemple, alors que Windows
et Android prennent principalement en charge un ensemble d’API ('API
WinAPI et ’API Java d’Android), Linux ne dispose pas d'un seul langage de
programmation (et donc d'un seul ensemble d’API). Cela signifie que pour
récupérer des informations d’exécution de haut niveau d'un programme
Linux a partir de ses appels systeme, il faut d’abord étudier le langage de
programmation dans lequel le programme est écrit et ses API.

Le méme raisonnement s’applique a la modélisation de différentes
implémentations de chargeurs de programmes pour trouver des diver-
gences. Il faut étudier davantage d’outils liés a la sécurité et davan-
tage de versions de Windows pour comprendre de maniere exhaustive
I'ampleur du probléme de différentiel d’analyse syntaxique pour le format
PE. En outre, la prise en compte d’autres systemes d’exploitation et for-
mats exécutables représente également une voie viable pour de nouvelles
recherches. Nous espérons que la méthodologie et les outils développés
dans le cadre de cette thése nous aideront dans cette tache.

En plus des contributions techniques mises en évidence tout au long
de la these, nous pensons que, sur un plan plus fondamental, le mérite
de cette these est d’essayer d’anticiper les tendances futures des logi-
ciels malveillants. L'étude et la remise en question des pratiques et des
croyances courantes nous ont permis de découvrir de nouvelles voies
d’évasion. En documentant notre travail de recherche et ses résultats,
nous espérons sensibiliser la communauté de la sécurité aux lacunes de
nos techniques actuelles et aux nouvelles menaces possibles. Pour para-
phraser "Lart de la guerre" de Sun Tzu, seule la connaissance de soi et de
son ennemi permet de ne pas craindre le résultat de cent batailles.

References

(A.]

[A. 13]

[ABF*16]

[ADY13]

[Ale]

[Are]

[ARF'14]

A. Albertini. Corkami PE files corpus. https://github.com/
corkami/pocs/tree/master/PE.

A. Albertini. Making a Multi-Windows PE. POC or GTFO,
(0x01), 2013.

Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam
Doupé, Mario Polino, Paulo de Geus, Christopher Kruegel,
and Giovanni Vigna. Going native: Using a large-scale analy-
sis of android apps to create a practical native-code sandbox-
ing policy. In The Network and Distributed System Security
Symposium, pages 1-15, 2016.

Yousra Aafer, Wenliang Du, and Heng Yin. Droidapiminer:
Mining api-level features for robust malware detection in an-
droid. In Proceedings of the Security and Privacy in Commu-
nication Networks (SecureComm), 2013.

Alexander Sotirov. TinyPE. http://www.phreedom.org/
research/tinype/.

Areizen. Android malware sandbox. https://github.com/
Areizen/Android-Malware-Sandbox.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bod-
den, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Anal-
ysis for Android Apps. In Proceedings of the Conference on
Programming Language Design and Implementation (PLDI),
2014.

139

https://github.com/corkami/pocs/tree/master/PE
https://github.com/corkami/pocs/tree/master/PE
http://www.phreedom.org/research/tinype/
http://www.phreedom.org/research/tinype/
https://github.com/Areizen/Android-Malware-Sandbox
https://github.com/Areizen/Android-Malware-Sandbox

140

140

[ASM ™ 14]

[B. 15]

[BB13]

[BBS*17]

[BCL107]

(BGAO3]

[BST'10]

[Bui]

[CGFB18]

Daniel Arp, Michael Spreitzenbarth, Hubner Malte, Hugo
Gascon, and Konrad Rieck. Drebin: Effective and Explain-
able Detection of Android Malware in Your Pocket. In Pro-
ceedings of the Network and Distributed System Security Sym-
posium (NDSS), 2014.

B. Baker, A. Chiu. Threat spotlight: Rombertik — gazing past
the smoke, mirrors, and trapdoors. https://blogs.cisco.
com/security/talos/rombertik, 2015.

S Bratus and] Bangert. Elfs are dorky, elves are cool. POC or
GTFO, (0x00), 2013.

Michael Backes, Sven Bugiel, Oliver Schranz, Philipp von
Styp-Rekowsky, and Sebastian Weisgerber. ARTist: The An-
droid Runtime Instrumentation and Security Toolkit. In Eu-
ropean Symposium on Security and Privacy (EuroS&P). IEEE,
2017.

David Brumley, Juan Caballero, Zhenkai Liang, James New-
some, and Dawn Song. Towards automatic discovery of de-
viations in binary implementations with applications to er-
ror detection and fingerprint generation. In USENIX Security
Symposium, page 15, 2007.

Derek Bruening, Timothy Garnett, and Saman Amarasinghe.
An infrastructure for adaptive dynamic optimization. In In-
ternational Symposium on Code Generation and Optimiza-
tion, 2003. CGO 2003., pages 265-275. IEEE, 2003.

Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib
standard: Version 2.0. In Proceedings of the 8th international
workshop on satisfiability modulo theories (Edinburgh, Eng-
land), volume 13, page 14, 2010.

Hoang Bui. Bypass edr’s memory protection, introduc-
tion to hooking. https://medium.com/@fsx30/bypass-—
edrs-memory-protection-introduction-to-hooking-
2efb21lacffd6. Accessed January 14, 2022.

Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and
Davide Balzarotti. Understanding linux malware. In IEEE
Symposium on Security & Privacy. IEEE Computer Society,
May 2018.

https://blogs.cisco.com/security/talos/rombertik
https://blogs.cisco.com/security/talos/rombertik
https://medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb21acffd6
https://medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb21acffd6
https://medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb21acffd6

References

141

[cho]

[CHY"16]

[Cisa]
[Cisb]

[Cisc]

[Cisd]

[Cise]

[CMFT18]

[CML*21]

[Com]

[Cybal]
[Cybb]

Chocolatey, the package manager for windows. https://
chocolatey.org/. Accessed January 14, 2022.

Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht
Bhaskar, and Mu Zhang. Extract me if you can: Abusing pdf
parsers in malware detectors. In NDSS, 2016.

Cisco. Clamav. https://www.clamav.net/.

Cisco. ClamAV - Bytecode Signatures. https://www.clamav.
net/documents/bytecode-signatures.

Cisco. Clamav - file hash signatures. https://www.clamav.
net/documents/file-hash-signatures.

Cisco Talos. Pyrebox, a python scriptable reverse engineering
sandbox. https://blog.talosintelligence.com/2017/07/
pyrebox.html.

Cisco Talos. RATs and stealers rush through "Heaven’s Gate"
with new loader. https://blog.talosintelligence.
com/2019/07/rats-and-stealers-rush-through-
heavens.html.

Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng, Ting
Chen, Xiaosong Zhang, and Jean-Yves Marion. Towards
paving the way for large-scale windows malware analysis:
Generic binary unpacking with orders-of-magnitude perfor-
mance boost. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 395—
411, 2018.

Binlin Cheng, Jiang Ming, Erika A Leal, Haotian Zhang, Jian-
ming Fu, Guojun Peng, and Jean-Yves Marion. Obfuscation-
resilient executable payload extraction from packed mal-
ware. In 30th {USENIX} Security Symposium ({ USENIX} Se-
curity 21), 2021.

Comodo Cyber Security. Openedr. https://github.com/
ComodoSecurity/openedr. Accessed January 14, 2022.

Cyberbit. Latest Trickbot Variant has New Tricks Up Its Sleeve.

Cyberbit. Malware Mitigation when Direct System Calls are
Used.

https://chocolatey.org/
https://chocolatey.org/
https://www.clamav.net/
https://www.clamav.net/documents/bytecode-signatures
https://www.clamav.net/documents/bytecode-signatures
https://www.clamav.net/documents/file-hash-signatures
https://www.clamav.net/documents/file-hash-signatures
https://blog.talosintelligence.com/2017/07/pyrebox.html
https://blog.talosintelligence.com/2017/07/pyrebox.html
https://blog.talosintelligence.com/2019/07/rats-and-stealers-rush-through-heavens.html
https://blog.talosintelligence.com/2019/07/rats-and-stealers-rush-through-heavens.html
https://blog.talosintelligence.com/2019/07/rats-and-stealers-rush-through-heavens.html
https://github.com/ComodoSecurity/openedr
https://github.com/ComodoSecurity/openedr

142

142

[Cybc]

[Cybd]

[DAURI16]

[Devl17]

[Dij75]

[DMBO08]

[DQQY19]

[EGCT10]

(EHO6]

Cyberbit. New ’early bird’ code injection technique dis-
covered. https://www.cyberbit.com/blog/endpoint-
security/new-early-bird-code-injection-technique-
discovered/. Accessed January 14, 2022.

Cyberbit. New LockPoS Malware Injection Technique.

Marko Dimja$evi¢, Simone Atzeni, Ivo Ugrina, and Zvonimir
Rakamaric. Evaluation of android malware detection based
on system calls. In Proceedings of the 2016 ACM on Interna-
tional Workshop on Security And Privacy Analytics, pages 1-8.
ACM, 2016.

XDA Developers. Xposed installer (framework).
http://repo.xposed.info/module/de.robv.android.
xposed.installer, 2017.

Edsger W Dijkstra. Guarded commands, nondeterminacy
and formal derivation of programs. Communications of the
ACM, 18(8):453-457, 1975.

Leonardo De Moura and Nikolaj Bjerner. Z3: An Efficient
SMT Solver. In Proceedings of the International Conference on
the Theory and Practice of Software, International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems (ETAPS/TACAS), 2008.

Ali Davanian, Zhenxiao Qi, Yu Qu, and Heng Yin. Decaf++:
Elastic whole-system dynamic taint analysis. In 22nd Inter-
national Symposium on Research in Attacks, Intrusions and
Defenses ({ RAID} 2019), pages 31-45, 2019.

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taint-
Droid: An Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In Proceedings of the
USENIX Conference on Operating Systems Design and Imple-
mentation, 2010.

Frank Ch Eigler and Red Hat. Problem solving with systemtap.
In Proceedings of the Ottawa Linux Symposium, volume 2006,
2006.

https://www.cyberbit.com/blog/endpoint-security/new-early-bird-code-injection-technique-discovered/
https://www.cyberbit.com/blog/endpoint-security/new-early-bird-code-injection-technique-discovered/
https://www.cyberbit.com/blog/endpoint-security/new-early-bird-code-injection-technique-discovered/
http://repo.xposed.info/module/de.robv.android.xposed.installer
http://repo.xposed.info/module/de.robv.android.xposed.installer

References

143

[ELM16]

[ero]

[ESE]

[FADA14]

[fdr]

[Fir]

[FLBK15]

[fri]

[GKP'15]

[GKS05]

[Goo]

Guillaume Endignoux, Olivier Levillain, and Jean-Yves Mi-
geon. Caradoc: a pragmatic approach to pdf parsing and val-
idation. In 2016 IEEE Security and Privacy Workshops (SPW),
pages 126-139. IEEE, 2016.

erocarrera. pefile. https://github.com/erocarrera/
pefile.

ESET. LoudMiner uses virtualization software to mine cryp-
tocurrency.

Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Ap-
poscopy: Semantics-Based Detection of Android Malware
Through Static Analysis. In Proceedings of the ACM Sympo-
sium on the Foundations of Software Engineering (FSE), 2014.

F-droid — free and open source software applications for the
android platform. https://f-droid.org/.

Fireeye. Significant formbook distribution campaigns im-
pacting the u.s. and south korea. https://wuw.fireeye.
com/blog/threat-research/2017/10/formbook-malware-
distribution-campaigns.html.

Aristide Fattori, Andrea Lanzi, Davide Balzarotti, and Engin
Kirda. Hypervisor-based malware protection with access-
miner. Computers & Security, 52:33-50, 2015.

Frida analysis framework. https://www.frida.re.

Michael Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham,
Nguyen Nguyen, and Martin Rinard. Information-Flow Anal-
ysis of Android Applications in DroidSafe. In Proceedings
of the Network and Distributed System Security Symposium
(NDSS), 2015.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: di-
rected automated random testing. In ACM Sigplan Notices.
ACM, 2005.

Google. Ul/Application Exerciser Monkey | Android Develop-
ers. http://developer.android.com/tools/help/monkey.
html.

https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile
https://f-droid.org/
https://www.fireeye.com/blog/threat-research/2017/10/formbook-malware-distribution-campaigns.html
https://www.fireeye.com/blog/threat-research/2017/10/formbook-malware-distribution-campaigns.html
https://www.fireeye.com/blog/threat-research/2017/10/formbook-malware-distribution-campaigns.html
https://www.frida.re
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

144

144

(GPJ17]

(GZZ112]

[(HB99]

[HBZ18]

[HKFK18]

[HR]

[(HTP15]

[HuaO6]

[Int]

U.13]

Xinyang Ge, Mathias Payer, and Trent Jaeger. An evil copy:
How the loader betrays you. In NDSS, 2017.

Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and
Xuxian Jiang. RiskRanker: Scalable and Accurate Zero-day
Android Malware Detection. In Proceedings of the Interna-
tional Conference on Mobile Systems, Applications, and Ser-
vices (MobiSys), 2012.

Galen Hunt and Doug Brubacher. Detours: Binary intercep-
tion of win32 functions. In Third USENIX Windows NT Sym-
posium, page 8. USENIX, July 1999.

Nikolai Hampton, Zubair Baig, and Sherali Zeadally. Ran-
somware behavioural analysis on windows platforms. Jour-
nal of information security and applications, 40:44-51, 2018.

Tobias Holl, Philipp Klocke, Fabian Franzen, and Julian
Kirsch. Kernel-assisted debugging of linux applications. In
2nd Reversing and Offensive-oriented Trends Symposium 2018
(ROOTS), November 2018.

Hex-Rays. IDA Pro: a cross-platform multi-processor
disassembler and debugger. http://www.hex-rays.com/
products/ida/index.shtml.

Roee Hay, Omer Tripp, and Marco Pistoia. Dynamic de-
tection of inter-application communication vulnerabilities in
android. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis, pages 118-128. ACM, 2015.

Yinrong Huang. Vulnerabilities in portable executable (pe)
file format for win32 architecture. Technical report, TR, Exu-
rity Inc., Canada, 2006.

Intel. Pin a dynamic binary instrumentation tool. https:
//software.intel.com/content/www/us/en/develop/
articles/pin-a-dynamic-binary-instrumentation-
tool.html. Accessed January 14, 2022.

J. Bangert, R. Shapiro, S. Bratus. Weird Machines
and revisiting Trusting Trust for binary toolchains.
http://www.cs.dartmouth.edu/~sergey/trust/30c3-
chain-of-trust.pdf, 2013.

http://www.hex-rays.com/products/ida/index.shtml
http://www.hex-rays.com/products/ida/index.shtml
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
http://www.cs.dartmouth.edu/~sergey/trust/30c3-chain-of-trust.pdf
http://www.cs.dartmouth.edu/~sergey/trust/30c3-chain-of-trust.pdf

References 145

(jOO] joOru. Windows system call tables. https://github.com/
jOOru/windows-syscalls.

[java] Java documentation for javax.net.ssl.sslsocketfactory.createsocket.
https://docs.oracle.com/javase/8/docs/api/javax/
net/ssl/SSLSocketFactory.html#createSocket-
java.net.Socket-java.lang.String-int-boolean-. Ac-
cessed: 2019-06-27.

[javb] Java Parser and Abstract Syntax Tree for Java. https://
github.com/javaparser/javaparser.

[jpb] JPF-symbc: Symbolic PathFinder. http://babelfish.arc.
nasa.gov/trac/jpf/wiki/projects/jpf-symbc.

[JS12] Suman Jana and Vitaly Shmatikov. Abusing file processing in
malware detectors for fun and profit. In 2012 IEEE Sympo-
sium on Security and Privacy, pages 80-94. IEEE, 2012.

[KISH13] Yuhei Kawakoya, Makoto Iwamura, Eitaro Shioji, and Takeo
Hariu. Api chaser: Anti-analysis resistant malware analyzer.
In International Workshop on Recent Advances in Intrusion
Detection, pages 123-143. Springer, 2013.

[KKBT06] Engin Kirda, Christopher Kruegel, Greg Banks, Giovanni Vi-
gna, and Richard Kemmerer. Behavior-based spyware detec-
tion. In Usenix Security Symposium, page 694, 2006.

[KKD17] Doowon Kim, Bum Jun Kwon, and Tudor Dumitras. Certified
malware: Measuring breaches of trust in the windows code-
signing pki. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, pages
1435-1448, 2017.

[KKK11] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel.
The power of procrastination: detection and mitigation of
execution-stalling malicious code. In Proceedings of the 18th
ACM conference on Computer and communications security,
pages 285-296, 2011.

[KKK15] Youngjoon Ki, Eunjin Kim, and Huy Kang Kim. A novel ap-
proach to detect malware based on api call sequence anal-
ysis. [International Journal of Distributed Sensor Networks,
11(6):659101, 2015.

https://github.com/j00ru/windows-syscalls
https://github.com/j00ru/windows-syscalls
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLSocketFactory.html#createSocket-java.net.Socket-java.lang.String-int-boolean-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLSocketFactory.html#createSocket-java.net.Socket-java.lang.String-int-boolean-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLSocketFactory.html#createSocket-java.net.Socket-java.lang.String-int-boolean-
https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc

146

146

[KPS10]

[KSO17]

[KVK14]

[LBK*10]

[LKC11]

[LMP*14]

[LNW+14]

[Mala]

Dan Kaminsky, Meredith L Patterson, and Len Sassaman. Pki
layer cake: New collision attacks against the global x. 509 in-
frastructure. In International Conference on Financial Cryp-
tography and Data Security, pages 289-303. Springer, 2010.

Yuhei Kawakoya, Eitaro Shioji, Yuto Otsuki, Makoto Iwamura,
and Takeshi Yada. Stealth loader: Trace-free program loading
for api obfuscation. In International Symposium on Research
in Attacks, Intrusions, and Defenses, pages 217-237. Springer,
2017.

Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel.
Barecloud: bare-metal analysis-based evasive malware de-
tection. In 23rd USENIX Security Symposium (USENIX Secu-
rity 14), pages 287-301, 2014.

Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mi-
hai Christodorescu, and Engin Kirda. Accessminer: using
system-centric models for malware protection. In Proceed-
ings of the 17th ACM conference on Computer and communi-
cations security, pages 399-412, 2010.

Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani
Comparetti. Detecting environment-sensitive malware. In
International Workshop on Recent Advances in Intrusion De-
tection, pages 338-357. Springer, 2011.

Tamas K. Lengyel, Steve Maresca, Bryan D. Payne, George D.
Webster, Sebastian Vogl, and Aggelos Kiayias. Scalability, Fi-
delity and Stealth in the DRAKVUF Dynamic Malware Analy-
sis System. In Proceedings of the 30th Annual Computer Secu-
rity Applications Conference, 2014.

Martina Lindorfer, Matthias Neugschwandtner, Lukas We-
ichselbaum, Yanick Fratantonio, Victor Van Der Veen, and
Christian Platzer. Andrubis-1,000,000 apps later: A view on
current android malware behaviors. In 2014 Third Interna-
tional Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS), pages 3-17. IEEE,
2014.

MalwareBytes. Floki bot and the stealthy dropper.
https://blog.malwarebytes.com/threat-analysis/2016/
11/floki-bot-and-the-stealthy-dropper/ .

https://blog.malwarebytes.com/threat-analysis/2016/11/floki-bot-and-the-stealthy-dropper/
https://blog.malwarebytes.com/threat-analysis/2016/11/floki-bot-and-the-stealthy-dropper/

References

147

[Malb]

[Mica]

[Micb]
[Micc]

[Mic18al]

[Mic18b]

[MMP+12]

[MOA*+17]

[Mos]

[MRG™18]

[MSF*08]

Malwarebytes. Process Doppelgidnging meets Process Hol-
lowing in Osiris dropper.

Microsoft. Dynamic-link library search order. https:
//docs.microsoft.com/en-us/windows/win32/d11ls/
dynamic-link-library-search-order#search-order-for-
desktop-applications.

Microsoft. PE Format.
Microsoft. Windows API sets.

Microsoft. Control flow guard. https://docs.microsoft.
com/en-us/windows/win32/secbp/control-flow-guard,

2018.

Microsoft. LoadLibraryExA — Windows API. https:
//docs.microsoft.com/en-us/windows/win32/api/
libloaderapi/nf-libloaderapi-loadlibraryexa, 2018.

Nariman Mirzaei, Sam Malek, Corina S. Pasreanu, Naeem
Esfahani, and Riyadh Mahmood. Testing Android Apps
Through Symbolic Execution. In ACM SIGSOFT Software En-
gineering Notes, 2012.

Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis,
Emiliano De Cristofaro, Gordon Ross, and Gianluca Stringh-
ini. Mamadroid: Detecting android malware by building
markov chains of behavioral models. In Proceedings of the
Network and Distributed System Security Symposium (NDSS),
2017.

Fabian Mosch. A tale of edr bypass methods. https:
//s3cur3thlsshit.github.io/A-tale-of-EDR-bypass-
methods/. Accessed January 14, 2022.

Aravind Machiry, Nilo Redini, Eric Gustafson, Yanick Fratan-
tonio, Yung Ryn Choe, Christopher Kruegel, and Giovanni
Vigna. Using Loops For Malware Classification Resilient to
Feature-unaware Perturbations. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC), 2018.

Lorenzo Martignoni, Elizabeth Stinson, Matt Fredrikson,
Somesh Jha, and John C Mitchell. A layered architecture

https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order#search-order-for-desktop-applications
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order#search-order-for-desktop-applications
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order#search-order-for-desktop-applications
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order#search-order-for-desktop-applications
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://s3cur3th1ssh1t.github.io/A-tale-of-EDR-bypass-methods/
https://s3cur3th1ssh1t.github.io/A-tale-of-EDR-bypass-methods/
https://s3cur3th1ssh1t.github.io/A-tale-of-EDR-bypass-methods/

148

148

[NBF19]

INGFB21]

[(NW70]

(OM13]

(pel

[pev]

[PHL*15]

[rad]

[RAMB16]

for detecting malicious behaviors. In International Work-
shop on Recent Advances in Intrusion Detection, pages 78-97.
Springer, 2008.

Dario Nisi, Antonio Bianchi, and Yanick Fratantonio. Explor-
ing syscall-based semantics reconstruction of android appli-
cations. In 22nd International Symposium on Research in At-
tacks, Intrusions and Defenses (RAID 2019), Chaoyang Dis-
trict, Beijing, September 2019. USENIX Association.

Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Da-
vide Balzarotti. Lost in the loader: The many faces of the
windows pe file format. In 24th International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2021), San
Sebastian, Spain, October 2021. ACM.

Saul B Needleman and Christian D Wunsch. A general
method applicable to the search for similarities in the amino
acid sequence of two proteins. Journal of molecular biology,
48(3):443-453, 1970.

Digit Oktavianto and Igbal Muhardianto. Cuckoo malware
analysis. Packt Publishing Ltd, 2013.

PE Format. https://docs.microsoft.com/en-gb/windows/
win32/debug/pe-format.

pev - user manual. http://pev.sourceforge.net/doc/
manual/en_us/.

Radu S Pirscoveanu, Steven S Hansen, Thor MT Larsen,
Matija Stevanovic, Jens Myrup Pedersen, and Alexandre
Czech. Analysis of malware behavior: Type classification us-
ing machine learning. In 2015 International conference on cy-
ber situational awareness, data analytics and assessment (Cy-
berSA), pages 1-7. IEEE, 2015.

radare2, a portable reversing framework. http://www.
radare.org/.

Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric
Bodden. Harvesting Runtime Values in Android Applications
that Feature Anti-Analysis Techniques. In Proceedings of the

https://docs.microsoft.com/en-gb/windows/win32/debug/pe-format
https://docs.microsoft.com/en-gb/windows/win32/debug/pe-format
http://pev.sourceforge.net/doc/manual/en_us/
http://pev.sourceforge.net/doc/manual/en_us/
http://www.radare.org/
http://www.radare.org/

References

149

[Red]

[REC13]

[roy]

[RSI12a]

[RSI12Db]

[RT20]

[saul3]

[SBS13]

[Sec]

[SFE*13]

Annual Symposium on Network and Distributed System Secu-
rity (NDSS), 2016.

Red Teaming Experiments. = Apc queue code injection.
https://www.ired.team/offensive-security/code-
injection-process-injection/early-bird-apc-queue-
code-injection. Accessed January 14, 2022.

Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. A
system call-centric analysis and stimulation technique to au-
tomatically reconstruct android malware behaviors. EuroSec,
April, 2013.

roy g biv / defjam. Virtual Code Windows 7 update.
https://github.com/darkspik3/Valhalla-ezines/blob/
master/Valhalla}20%233/articles/VCODE2. TXT.

Mark E Russinovich, David A Solomon, and Alex Ionescu.
Windows Internals, Part 1. Microsoft Press, 2012.

Mark E Russinovich, David A Solomon, and Alex Ionescu.
Windows Internals, Part 2. Microsoft Press, 2012.

Dima Rabadi and Sin G Teo. Advanced windows methods on
malware detection and classification. In Annual Computer
Security Applications Conference, pages 54-68, 2020.

saurik. Exploit (& Fix) Android Master Key. http://www.
saurik.com/id/17,2013.

Rebecca Shapiro, Sergey Bratus, and Sean W. Smith. “weird
machines” in ELF: A spotlight on the underappreciated meta-
data. In 7th USENIX Workshop on Offensive Technologies
(WOOT 13), Washington, D.C., August 2013. USENIX Associ-
ation.

Optiv Security. ScareCrow. https://github.com/optiv/
ScareCrow.

Michael Spreitzenbarth, Felix Freiling, Florian Echtler,
Thomas Schreck, and Johannes Hoffmann. Mobile-sandbox:
having a deeper look into android applications. In Proceed-
ings of the ACM Symposium on Applied Computing (SAC),
2013.

https://www.ired.team/offensive-security/code-injection-process-injection/early-bird-apc-queue-code-injection
https://www.ired.team/offensive-security/code-injection-process-injection/early-bird-apc-queue-code-injection
https://www.ired.team/offensive-security/code-injection-process-injection/early-bird-apc-queue-code-injection
https://github.com/darkspik3/Valhalla-ezines/blob/master/Valhalla%20%233/articles/VCODE2.TXT
https://github.com/darkspik3/Valhalla-ezines/blob/master/Valhalla%20%233/articles/VCODE2.TXT
http://www.saurik.com/id/17
http://www.saurik.com/id/17
https://github.com/optiv/ScareCrow
https://github.com/optiv/ScareCrow

150

150

[Sig20]

[ska06]

[SMO07]

[SWL16]

[T. 17]

[TB15]

[TKFC15a]

[TKFC15b]

[Tod17]

[top]

[ulel9]

Siguza. Psychic Paper. https://siguza.github.io/
psychicpaper/, 2020.

skape. Locreate: An Anagram for Relocate. http://www.
uninformed.org/?v=6&a=3&t=txt, 2006.

Elizabeth Stinson and John C Mitchell. Characterizing bots’
remote control behavior. In International Conference on De-
tection of Intrusions and Malware, and Vulnerability Assess-
ment, pages 89-108. Springer, 2007.

Mingshen Sun, Tao Wei, and John C.S. Lui. Taintart: A practi-
cal multi-level information-flow tracking system for android
runtime. In Proceedings of the 23rd ACM Conference on Com-
puter and Communications Security, CCS’16, 2016.

T. Petsios, A. Tang, S.]J. Stolfo, A. D. Keromytis, S. Jana. NEZHA:
Efficient Domain-independent Differential Testing. In Pro-
ceedings of the 38th IEEE Symposium on Security & Privacy,
San Jose, CA, May 2017.

Andrew S Tanenbaum and Herbert Bos. Modern operating
systems. Pearson, 2015.

Kimberly Tam, Salahuddin Khan, Aristide Fattori, and
Lorenzo Cavallaro. CopperDroid: Automatic Reconstruction
of Android Malware Behaviors. In Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2015.

Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and
Lorenzo Cavallaro. Copperdroid: automatic reconstruction
of android malware behaviors. In Ndss, 2015.

Todd Cullum. Portable Executable File Corrup-
tion Preventing Malware From Running. https:
//toddcullumresearch.com/2017/07/16/portable-
executable-file-corruption/, 2017.

topjohnwu. Magisk. https://github.com/topjohnwu/
Magisk.

ulexec. ELF Crafting Advance Anti-Analysis techniques for
the Linux Platform. https://github.com/radareorg/
r2con2019/blob/master/talks/elf_crafting/ELF_
Crafting_ulexec.pdf, 2019.

https://siguza.github.io/psychicpaper/
https://siguza.github.io/psychicpaper/
http://www.uninformed.org/?v=6&a=3&t=txt
http://www.uninformed.org/?v=6&a=3&t=txt
https://toddcullumresearch.com/2017/07/16/portable-executable-file-corruption/
https://toddcullumresearch.com/2017/07/16/portable-executable-file-corruption/
https://toddcullumresearch.com/2017/07/16/portable-executable-file-corruption/
https://github.com/topjohnwu/Magisk
https://github.com/topjohnwu/Magisk
https://github.com/radareorg/r2con2019/blob/master/talks/elf_crafting/ELF_Crafting_ulexec.pdf
https://github.com/radareorg/r2con2019/blob/master/talks/elf_crafting/ELF_Crafting_ulexec.pdf
https://github.com/radareorg/r2con2019/blob/master/talks/elf_crafting/ELF_Crafting_ulexec.pdf

References

151

[UPGB19a]

[UPGB19b]

[vir]

[Vir21]

[VP11]

[WL16]

(XZGL14]

[yara]

[yarb]

[YIT"16]

[YXAT15]

Xabier Ugarte-Pedrero, Mariano Graziano, and Davide
Balzarotti. A close look at a daily dataset of malware sam-
ples. ACM Transactions on Privacy and Security (TOPS),
22(1):6:1-6:30, January 2019.

Xabier Ugarte-Pedrero, Mariano Graziano, and Davide
Balzarotti. A close look at a daily dataset of malware sam-
ples. ACM Transactions on Privacy and Security (TOPS),
22(1):1-30, 2019.

VirusTotal. https://www.virustotal.com/.

VirusTotal. File statistics during last 7 days. https://www.
virustotal.com/en/statistics/, 2021.

Mario Vuksan and Tomislav Pericin. Constant insecurity:
Things you didn't know about portable executable file format.
In BlackHat, 2011.

Michelle Y Wong and David Lie. Intellidroid: A targeted input
generator for the dynamic analysis of android malware. In
NDSS, volume 16, pages 21-24, 2016.

Zhaoyan Xu, Jialong Zhang, Guofei Gu, and Zhigiang Lin.
Goldeneye: Efficiently and effectively unveiling malware’s
targeted environment. In International Workshop on Recent
Advances in Intrusion Detection, pages 22—-45. Springer, 2014.

VirtusTotal - yara in a nutshell. https://github.com/
VirusTotal/yara.

PE module — yara 4.0.2 documentation. https://yara.
readthedocs.io/en/stable/modules/pe.html.

Akira Yokoyama, Kou Ishii, Rui Tanabe, Yinmin Papa, Kat-
sunari Yoshioka, Tsutomu Matsumoto, Takahiro Kasama,
Daisuke Inoue, Michael Brengel, Michael Backes, et al. Sand-
print: fingerprinting malware sandboxes to provide intelli-
gence for sandbox evasion. In International Symposium on
Research in Attacks, Intrusions, and Defenses, pages 165-187.
Springer, 2016.

Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie,
and William Enck. AppContext: Differentiating Malicious

https://www.virustotal.com/
https://www.virustotal.com/en/statistics/
https://www.virustotal.com/en/statistics/
https://github.com/VirusTotal/yara
https://github.com/VirusTotal/yara
https://yara.readthedocs.io/en/stable/modules/pe.html
https://yara.readthedocs.io/en/stable/modules/pe.html

152

152

[YY12]

[ZWZ]12]

and Benign Mobile App Behaviors Using Context. In Proceed-
ings of the International International Conference on Software
Engineering (ICSE), 2015.

Lok Kwong Yan and Heng Yin. Droidscope: Seamlessly re-
constructing the OS and dalvik semantic views for dynamic
android malware analysis. In 21st USENIX Security Sympo-
sium (USENIX Security 12), pages 569-584, Bellevue, WA, Au-
gust 2012. USENIX Association.

Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey,
You, Get Off of My Market: Detecting Malicious Apps in Of-
ficial and Alternative Android Markets. In Proceedings of the
Network and Distributed System Security Symposium (NDSS),
2012.

	Introduction
	Contributions
	Thesis Outline

	Background
	Executable File Formats
	Programming models in Modern Operating Systems
	Dynamic Malware Analysis and Detection Techniques

	Finding Parsing Discrepancies for Executable File Formats: A Systematic Exploration of the Portable Executable File Format and its Ecosystem
	Introduction
	A Critical Look at the PE Specifications
	Software Handling PE Files
	Basic Operations on PE Executables
	PE Software Landscape

	Constraints Modeling
	Constraints Extraction
	Modeling Language

	Using Models
	Sample Validation
	Sample Generation
	Corner Cases Generation
	Differential Analysis
	Differences Enumeration
	Implementation

	Models Evaluation
	Assessing Under-Constrainedness
	Assessing Over-Constrainedness

	Differential Analysis
	Discrepancies among Versions of the Windows Loader
	Compliance Checks Analysis of ClamAV
	Memory Mapping Analysis of ClamAV, radare2, and yara

	Bypassing Popular Analysis Tools
	Discussion
	Related Work

	Beyond API Tracing: Implementing a Generic and Practical Bypass Technique and Investigating the Semantic Gap between APIs and Syscalls in Windows
	Introduction
	Background
	The Windows Programming Model
	Dynamically-Linked Libraries
	API Sets and Umbrella Libraries

	API-Based Behavioral Analysis: State of the Art and Bypasses
	High-level API-Tracing-resistant Programming
	Overview
	Technical Challenges
	Offline Phase
	Online Phase
	Proofs of Concept

	Towards Reconstructing API-Level Information from Syscalls
	Analysis Environment
	Dataset
	Data Processing
	Examples of API-Syscall Mapping
	Preliminary Measurements
	Intra-API Similarity
	Inter-API Simiilarity

	Discussion
	Applicability of Our Approach in Real-World Programs
	Beyond API-level Encoding of Malware Behavior
	Considerations on the Semantic Reconstruction Problem

	Related Work

	Towards Reconstructing API Information from Syscalls: Exploring the Semantic Gap between APIs and Syscalls in the Android Operating System
	Introduction
	Background on Dynamic Analysis
	Challenges
	Approach
	Knowledge Base
	Analysis Tracing Pipeline
	Building a Knowledge Base

	API Models
	Anatomy of an API Model
	API Models Creation Algorithm
	API Models Matching

	Data Exploration
	Apps Dataset and Experimental Setup
	API Classification and Statistics
	Noise Patterns Identification
	Ambiguity Measurement

	Exploring the Mapping Problem
	Related Work

	Future Work and Conclusion
	Future Work
	Conclusion

	Appendices
	Loader Modeling
	Example of Constraints Model
	Example of Translation in SMT problem
	Excerpts from the Models of the Windows Loader

	Summary of the Thesis in French
	Introduction
	Contexte
	Contournement générique et pratique du traçage des API pour les logiciels malveillants Windows
	Exploration de la reconstruction sémantique des applications Android basée sur le syscalls
	Lost in the Loader : Les nombreux visages du format de fichier PE de Windows
	Travaux futurs et conclusion

